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Introduction

John Fauvel & Jan van Maanen 

When the English mathematician Henry Briggs learned in 1616 of the invention of 
logarithms by John Napier, he determined to travel the four hundred miles north to 
Edinburgh to meet the discoverer and talk to him in person. The meeting of Briggs 
and Napier is one of the great tales in the history of mathematics. According to 
William Lily, who had it from Napier’s friend John Marr, it happened when Napier 
had given up hope of seeing his long-awaited southern guest: 

It happened one day as John Marr and Lord Napier were speaking of Mr. Briggs “Ah John”, 
saith Marchiston, “Mr. Briggs will not come.” At the very instant one knocks at the gate. 
John Marr hastened down, and it proved Mr Briggs, to his great contentment. He brings Mr. 
Briggs to my Lord’s chamber, where almost one quarter of an hour was spent each beholding 
the other with admiration, before one spoke: at last Mr. Briggs began: “My lord, I have 
undertaken this long Journey purposely to see your Person, and to know by what Engine of 
Wit or Ingenuity you came first to think of this most excellent Help unto Astronomy, viz., the
Logarithms; but, my Lord, being by you found out, I wonder nobody else found it out before, 
when now known it is so easy.” He was nobly entertained by Lord Napier, and every summer 
after this, during Lord Napier’s being alive, this venerable man, Mr. Briggs. went to Scotland 
to visit him. 

The many layers of significance of this story make it an invaluable resource for 
mathematics teachers at all levels. For younger pupils, the idea of two grown men 
sitting looking at each other in silence for fifteen minutes on first meeting is 
sufficiently strange to provoke mirth and a vivid sense of how important 
mathematical ideas were to them. Pupils need no knowledge of logarithms to 
recognise from this that mathematics is something which has been invented by 
people at particular stages of history, not something which has always been there. 
Questions arise for young pupils too about the practicalities of life in old times, 
about travelling long distances as well as how before the days of photographs and 
television people generally had no accurate idea of what each other looked like 
unless they met in the flesh. Some may notice that in ancient times people were 
sometimes called by their name (‘Napier’) and sometimes by where they lived 
(‘Marchiston’), as Napier lived in a castle called Marchiston Castle. It is in 
elementary and middle school, too, that teachers can introduce pupils to another of 
Napier’s inventions, his ‘rods’ or ‘bones’ for speeding up multiplication. These lay 
bare the structure of multiplying in the decimal place-value numeral system (Hindu-
Arabic numbers, as we call them) in a way which deepens student understanding and 
memorisation of the process. 
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Older pupils who are beginning to learn about logarithms are reinforced in 
understanding their importance, through reflecting on the lengths to which Briggs 
went in wanting to meet and admire their discoverer. Or were logarithms invented, 
not discovered? Teachers can explain how arduous calculations could be before 
logarithms, and tell pupils of Kepler’s remark that thanks to Napier the astronomer’s 
life-span had been doubled. This invention is a microcosm of the activity of 
mathematicians down the ages: the point of mathematics is to make things happen 
more easily and to save people trouble. (This revelation will be quite surprising to 
some pupils!-or at least to their parents with unhappy memories of their school 
mathematics lessons.) The possible benefits of the story work on a number of 
levels. Once students know, for example, how happy the astronomer was when 
multiplication of two ten-digits numbers reduced to a simple addition, they will 
never have a problem in remembering which is the correct rule: log ab = log a +
log b, not log(a+b) = log a × log b.

Senior students will begin to recognise just how significant logarithms are: that a 
device for easing the activity of calculating turns out to be one of the most 
influential and far-reaching of ideas in all of mathematics, a function of immense 
power and reach which pulls together ideas from different areas of mathematics. 
This illuminates another general truth about the amazing power of mathematics, the 
way different parts of it reinforce each other. Here, it is little short of miraculous 
how ideas from ancient Greece (curves from slicing cones, called conic sections), 
from early seventeenth century Scotland, and from later in the seventeenth century 
(a general method for finding the areas bounded by curves) all come together to 
generate a complex of mathematics of great power, and the student who is trained to 
understand and share in these ideas is immensely empowered as a result. 

Trainee teachers reflecting on the story can absorb all these resonances and also 
notice what the story of Briggs’s meeting with Napier tells us about the psychology 
of learning mathematics: it is every pupil’s experience that once some difficult idea 
has been learned it seems so natural that you cannot understand why you did not 
understand it before! The concept of an “Engine of Wit or Ingenuity” is a very deep 
one. The apparent tension in this phrase between mechanical and psychological 
images is characteristic of the seventeenth century, prefiguring perhaps the 
‘mechanical philosophy’ promoted by René Descartes and others a few decades 
later.

There are lessons for those designing mathematics education syllabuses too. The 
curriculum designer will appreciate that an apparently straightforward observation 
made by several mathematicians from Archimedes onwards, that multiplying 
numbers can correspond to adding powers of another number, or more simply that 
geometrical and arithmetical series can run in parallel, took many centuries to be 
recognised as a key perception to build upon for calculational purposes. The
curricular implications may be (put in a rather general way) that what seems simple 
after the event can pose difficulties for students until they are prepared for new ways 
of looking at things. 

This one short tale from four centuries ago can in this way be seen to lay the 
grounding for a number of valuable interactions between teacher and student in the 
mathematics classroom over several school years. A teacher able to support, 
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encourage and lead students in this way through their school career is a better 
teacher: better prepared, better resourced, more empowered. History, we might say, 
is an Engine of Mathematical Wit. This story, and the pedagogical reflections which 
it generates, are to this extent a microcosm of what we hope the present book will 
achieve.

The background to this study 

Does history of mathematics have a role in mathematics education? This book has 
been made by people who believe that the answer is positive, that the history of 
mathematics can play a valuable role in mathematical teaching and learning. It is 
the report of a study instigated by the International Commission on Mathematical 
Instruction (ICMI). We describe later how the study was carried out, but first sketch 
the problem setting of the study, the general background of concerns from several 
quarters which have led to a flourishing of work in this area in recent decades. 

Mathematicians, historians and educators in many countries have long thought 
about whether mathematics education can be improved through incorporating the 
history of mathematics in some way. This arises from the recognition that 
mathematics education does not always meet its aims for all pupils, and that so long 
as some students emerge from their education with less understanding of
mathematics than might be useful for them, or indeed with an actual fear or phobia 
about mathematics, then it is worth exploring possible avenues for improving the 
process. Nor have they only thought about the possibility of using history; many 
teachers in classrooms across the world have tried out various pedagogic 
possibilities. It soon emerges that there is a wide range of views and experiences of 
how history of mathematics can help. Some educators believe that mathematics is 
intrinsically historical: so learning the subject must involve its history, just as 
studying art involves learning about art history. Others see a number of ways in 
which history can aid the teacher’s, and thus the learner’s, task, from the apparently 
banal (such as giving more information about the names students may meet-which,
by the way, are often wrong attributions in any case, as in the cases of Pascal’s 
triangle and L’Hôpital’s rule, not to speak of Pythagoras’ theorem) to a deeper way 
of teaching mathematics in a historical vein. 

It is not only teachers who are concerned with perceived failings in school and 
college mathematics. Parents, employers and politicians all vie repeatedly in urging 
attention to the system’s ability to deliver enough students passing mathematics 
examinations. Whatever the truth behind such fears and concerns, resolving them is 
evidently a political matter, and thus adoption of the contribution offered by this 
Study, to improve mathematics education through the provision and use of historical 
resources, is a political choice to be made or influenced at any or all of the several 
layers of decision-making in complex modem societies. 

The ICMI Study 

ICMI, the International Commission on Mathematical Instruction, was established in 
1908 at the International Congress of Mathematicians held in Rome, its first chair 
being Felix Klein. After an interruption of activity between the two World Wars, it 
was reconstituted in 1952 as a commission of the International Mathematical Union 
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(IMU). The IMU itself was formed at the 1920 International Congress of 
Mathematicians, held in Strasbourg. The history of these international bodies is thus 
closely linked with twentieth century internationalisation of mathematical activity, 
in particular with the efforts of mathematicians to re-energise international co-
operation after major wars, as part of the healing and reconciliation process and in a 
spirit of optimism about building a better future for everyone. In 1972, at the second 
International Congress on Mathematical Education in Exeter, UK, the idea was 
developed of an International Study Group on the Relations between History and 
Pedagogy of Mathematics, which was formally affiliated to ICMI at the 1976 
International Congress (ICME-3) at Karlsruhe, Germany. HPM has continued ever 
since to explore and advise on these relations through the activities of its members, 
who are mathematics educators, teachers and historians across the world., who are 
mathematics educators, teachers and historians across the world. 

Since the mid 1980s ICMI has engaged in promoting a series of studies on 
essential topics and key issues in mathematics education, to provide an up-to-date
presentation and analysis of the state of the art in that area. The tenth ICMI Study, 
whose report is presented in the present volume, was conceived in the early 1990s in 
order to tease out the different aspects of the relations between history and pedagogy 
of mathematics, in recognition of how the endeavours of how the HPM Study Group 
had encouraged and reflected a climate of greater international interest in the value 
of history of mathematics for mathematics educators, teachers and learners. 
Concerns throughout the international mathematics education community began to 
focus on such issues as the many different ways in which history of mathematics 
might be useful, on scientific studies of its effectiveness as a classroom resource, 
and on the political process of spreading awareness of these benefits through 
curriculum objectives and design. It was judged that an ICMI Study would be a 
good way of bringing discussions of these issues together and broadcasting the 
results, with benefits, it is to be hoped, to mathematics instruction world-wide.

ICMI Studies typically fall into three parts: a widely distributed Discussion
Document to identify the key issues and themes of the study; a Study Conference 
where the issues are discussed in greater depth; and a Study Volume bringing
together the work of the Study so as to make a permanent contribution to the field. 
The current study has followed this pattern. 

The Discussion Document was drawn up by the two people invited by ICMI to 
co-chair the Study, John Fauvel (Open University, UK; HPM chair 1992-1996) and 
Jan van Maanen (University of Groningen, Netherlands; HPM chair 1996-2000),
with the assistance of the leading scholars who formed the International Programme 
Committee: Abraham Arcavi (Israel), Evelyne Barbin (France), Jean-Luc Dorier 
(France), Florence Fasanelli (US, HPM Chair 1998-1 992), Alejandro Garciadiego 
(Mexico), Ewa Lakoma (Poland), Mogens Niss (Denmark) and Man-Keung Siu 
(Hong Kong). The Discussion Document was widely published, in for example the 
ICMI Bulletin 42 (June 1997), 9- 16, and was translated into several other languages 
including French, Greek and Italian. From the responses and from other contacts, 
some eighty scholars were invited to a Study Conference in the spring of 1998, an 
invitation which in the event between sixty and seventy were able to accept. 



Introduction xv 

The Study Conference took place in the south of France, at the splendid country 
retreat of the French Mathematical Society, CIRM Luminy (near Marseille), from 20 
to 25 April 1998. Local organisation was in the hands of Jean-Luc Dorier 
(University of Grenoble). The scholars attending were from a variety of 
backgrounds: mathematics educators, teachers, mathematicians, historians of 
mathematics, educational administrators and others. This rich mix of skills and 
experiences enabled many fruitful dialogues and contributions to the developing 
study.

The means by which the Study was advanced, through the mechanism of the 
Conference, is worth description and comment. Most participants in the Conference 
had submitted papers, either freshly written or recent position papers, for the others 
to read and discuss, and several studies were made available by scholars not able to 
attend the meeting. These, together with whatever personal qualities and 
experiences each participant was bringing to the Conference, formed the basis for 
the work. Apart from a number of plenary and special sessions, the bulk of the 
Conference’s work was done through eleven working groups, corresponding, in the 
event, to the eleven chapters of the Study Volume. Each participant belonged to two 
groups, one meeting in the mornings and one in the afternoons. Each group was led 
by a convenor, responsible for co-ordinating the group’s activities and playing a 
major part in the editorial activity leading to the eventual chapters of the book. Each 
group’s work continued for several months after the Conference, with almost 
everyone participating fully in writing, critical reading, bibliographical and other 
editorial activities. 

This way of group working for a sustained period towards the production of a 
book chapter was a fresh experience to many participants, since the pattern of 
individual responsibility for separate papers is a more common feature of such 
meetings and book productions. In this instance the participants proved remarkably 
adept at using the new structures to come up with valuable contributions to the 
development of the field, all the more valuable for their being the results of 
consensual discussions and hard-written contributions, which have been edited and 
designed into the present Study Book. 

Authorship of contributions 

As just explained, this ICMI Study adopted a style of collective group work in 
which international teams worked together on the various issues, each led by a 
convenor, whose reports form the basis of the chapters in this book. We have 
experienced this as a very useful and productive way of working for the teachers, 
educators and researchers involved, who were able to share insights, experiences and 
ideas, and develop strategies together for future progress in the field. It follows 
from the working style that it is not quite as straightforward as usual to attribute 
responsibility and authorship to particular sections of text. As will be seen, each 
chapter is credited to a team, listed in alphabetical order, headed by the name of the 
chapter co-ordinator. Within the chapters, sometimes names may appear as 
responsible for subsections and sometimes not. In the construction of the book some 
sections retained individual responsibility (while commented on and modified by the 
help of the rest of the group), and others were by the end of the process a genuinely 
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group or sub-group collaboration (while initially drafted by an individual, as is 
almost always the case). 

An intercontinental discussion at the ICMI Study conference in Luminy, France: Vicky
Ponza (Argentina), Daina Taimina (Latvia), Florence Fasanelli (USA), Chris Weeks

Among the considerations here are that readers often find it easier and more 
welcoming to consider a particular text as written by a person rather than a 
collective; and that a named author is able to use the word “I” in a text, which is a 
user-friendly form of address, where appropriate and natural, rather than the forced 
third-person or first-person-plural style of scientific texts. Another consideration is, 
of course, that individuals should receive credit for their contributions, particularly 
in the institutional imperatives of today. But the overall message to readers is that 
this book represents an act of collective scholarship all of whose contributors shared 
in its production. 

The purpose of the ICMI Study 

This book has several functions, namely to 
(i) survey and assess the present state of the whole field; 
(ii) provide a resource for teachers and researchers, and for those involved with 

curriculum development; 
(iii) indicate lines of future research activity; 
(iv) give guidance and information to policy-makers about issues relating to the use 

of history in pedagogy. 
These functions are variously carried out through the eleven chapters which follow. 
Each chapter has a very short abstract, which is not only a summary of the ensuing 
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chapter but can be seen to form a sentence or paragraph in a story which as in some 
Victorian novel can be seen as “The Argument Of This Book”. 

The argument of this book 

People have studied, learned and used mathematics for over four thousand years. 
Decisions on what is to be taught in schools, and how, are ultimately political, 
influenced by a number of factors including the experience of teachers, expectations 
of parents and employers, and the social context of debates about the curriculum. 
The ICMI study is posited on the experience of many mathematics teachers across 
the world that its history makes a difference: that having history of mathematics as a 
resource for the teacher is beneficial. School mathematics reflects the wider aspect 
of mathematics as a cultural activity. 

From the philosophical point of view, mathematics must be seen as a human 
activity both done within individual cultures and also standing outside any particular 
one. From the interdisciplinary point of view, students find their understanding both 
of mathematics and their other subjects enriched through the history of mathematics. 
From the cultural point of view, mathematical evolution comes from a sum of many 
contributions growing from different cultures. 

The question of judging the effectiveness of integrating historical resources into 
mathematics teaching may not be susceptible to the research techniques of the 
quantitative experimental scientist. It is better handled through qualitative research 
paradigms such as those developed by anthropologists. 

The movement to integrate mathematics history into the training of future 
teachers, and into the in-service training of current teachers, has been a theme of 
international concern over much of the last century. Examples of current practice 
from many countries, for training teachers at all levels, enable us to begin to learn 
lessons and press ahead both with adopting good practices and also putting 
continued research effort into assessing the effects. 

The use of history of mathematics in the teaching and learning of mathematics 
requires didactical reflection. A crucial area to explore and analyse is the relation 
between how students achieve understanding in mathematics and the historical 
construction of mathematical thinking. The needs of students of diverse educational 
backgrounds for mathematical learning are increasingly being appreciated. Using 
historical resources, teachers are better able to support the learning of students in 
such diverse situations as those returning to education, in under-resourced schools 
and communities, those with educational challenges, and mathematically gifted 
students.

An analytical survey of how history of mathematics has been and can be 
integrated into the mathematics classroom provides a range of models for teachers 
and mathematics educators to use or adapt. Further specific examples of using 
historical mathematics in the classroom both support and illustrate these arguments, 
and indicate the ways in which the teaching of particular subjects may be supported 
by the integration of historical resources. 

The study of original sources is the most ambitious of ways in which history 
might be integrated into the teaching of mathematics, but also one of the most 
rewarding for students both at school and at teacher training institutions. The 
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integration of history is not confined to traditional teaching delivery methods, but 
can often be better achieved through a variety of media which add to the resources 
available for learner and teacher. A considerable amount of work has been done in 
recent decades on the subject of this study, which is here summarised, in the form of 
an annotated bibliography, for works appearing in eight languages of publication. 
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Abstract: People have studied, learned and used mathematics for over four thousand years. 
Decisions on what is to be taught in schools, and how, are ultimately political, influenced by 
a number of factors including the experience of teachers, expectations of parents and 
employers, and the social context of debates about the curriculum. The ICMI study is posited 
on the experience of many mathematics teachers across the world that its history makes a 
difference: that having history of mathematics as a resource for the teacher is beneficial. 

1.1 Introduction 

People have studied, learned and used mathematics for over four thousand years, 
although it is only relatively recently that mathematics has been taught, in most 
countries, to a high proportion of the population. With the establishment of 
universal education, more widespread attention has been focused on just what was 
taught and why. These decisions are ultimately political, albeit influenced by a 
number of factors including the experience of teachers, the expectations of parents 
and employers, and the social context of debates about the content and style of the 
curriculum.

The present ICMI study is posited on the experience of many mathematics 
teachers across the world that the history of mathematics makes a difference: that 
having history of mathematics as a resource for the teacher is beneficial. 
Increasingly a number of local and national governments, and other bodies 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 1-38
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responsible for curriculum design and expectations, are persuaded by the arguments 
of these mathematics teachers that it is worthwhile to incorporate history of 
mathematics within mathematics education. Detailed consideration of these 
arguments will be found later in the book. The next section (§1.2) in this opening 
chapter summarizes, therefore, the experience of a number of countries across the 
world (sixteen in all) in relation to the political guidelines governing inclusion of 
history of mathematics in the school mathematics curriculum. A further critical area 
is what happens in the textbooks written to deliver the curriculum. Section 1.3 is a 
case study looking in detail at how curriculum and textbooks can absorb a historical 
dimension, in the case of one particular country, Poland. Broader issues of the ways 
in which historical information can be integrated into textbooks are looked at later in 
the book (§7.4.1). In assessing the current role of history in mathematics education 
a further area of critical importance, of course, besides curricula and textbooks, is 
what happens in teacher training colleges. This is explored only briefly in this 
chapter as it is discussed in some detail in a later chapter (§4.2). 

Section 1.4 presents a policy statement around the introduction of a greater 
historical dimension in the mathematics curriculum, with some ideas for promoting 
it further. It is important to bear in mind that all of the ideas discussed in the rest of 
this book depend for their practical implementation on the development of a political 
consensus in the many countries and educational systems across the world. While 
this ICMI Study volume is not a text in practical political science, one of the aims of 
the Study is to inform and guide policy-makers about the incorporation of history in 
pedagogy, a task in which all readers, as concerned citizens as well as wearing a 
range of other hats, may choose to become involved. The final section of this 
opening chapter presents some quotations, illustrating how these matters have been 
thought of by mathematicians, advisers and other opinion formers over the past two 
centuries, to support the arguments for using the history of mathematics while 
learning and teaching mathematics at all levels. 

1.2 What part does history of mathematics currently 
occupy in national curricula? 

1.2.1 Argentina 

In the Educación General Básica, the curriculum laying down what is required for 
all pupils up to the age of 14, the Argentinian Ministry of Culture and Education 
gives eight foci for what mathematical studies at school are intended to achieve. 
These include conceptual comprehension, pleasure in doing mathematics, the value 
of new technology, the internal cohesion of mathematics, the significance and 
functionality of mathematics at work, the habit of setting and solving problems in a 
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variety of settings, and finally “the value of mathematics in culture and society, in 
history and the present.” Nowhere in the official documents are there found 
statements about utilising the history of mathematics within the curriculum, 
although teachers and faculty individually express such an interest and hold annual 
national meetings to pursue knowledge of history. 

1.2.2 Austria 

In the Austrian syllabus, the general teaching goals for grades 9-12 state that the 
students should “know about the change of mathematical concepts in the historical 
development as well as in their personal development.” More specifically, in the 9th 
grade students should know about the change of the concept of function; in the 10th 
grade they should know the historical meaning of logarithms and in grade 11 they 
should learn historical aspects of the calculus. None of this is compulsory, however. 
In school books for grades 5 to 8, there are historical notes, ranging from a few lines 
up to several pages, in connection with trigonometry, complex numbers, and limits 
of a sequence as well as with other topics. Thus some lines are included about 
historical figures such as Al-Khwarizmi, Archimedes, Cardano, Eratosthenes, 
Galileo, Omar Khayyam, Pythagoras, and Adam Ries. 

1.2.3 Brazil 

From 1931 to 1954, Brazil had a mandatory national curriculum for secondary 
school mathematics, and from 1946 to 1954 a mandatory curriculum for elementary 
school mathematics. From 1954 onward, the regulations were changed so that each 
state can establish its own curriculum. Nevertheless, tradition, inertia, and the fact 
that textbooks define, in practice, the actual curriculum assure a homogeneity among 
the curricula of the individual states. 

In 1997, after wide discussions and consultations, the ministry of education 
issued ‘parameters’ for the first four years of schooling. In 1998 similar parameters 
were established in an analogous way, for grades 5 to 8, and for grades 9 to 11 of 
secondary school. The parameters are not mandatory, but there have been in the late 
1990s a considerable number of requests, from state offices of education, for a 
national curriculum for Brazil as a whole. The Ministry of Education has chosen not 
to establish a mandatory national curriculum, but the national parameters have to 
some extent taken on this role. 

In the parameters for grades 1 to 8, there is a strong emphasis on the history of 
mathematics, and on the fact that mathematics is not just a body of knowledge, but 
also of processes and practices that were slowly created in response to human needs 
and curiosity. The parameters also call attention to the fact that mathematics should 
not be treated separately from other school subjects, nor indeed from broader 
concerns with the environment, health, etc. Within mathematics, too, teachers are 
urged to try to foster integration of arithmetic, geometry, and measurements. Four 
resources are listed for doing mathematics inside the classroom: problem solving, 
history of mathematics, information technologies, and games. Specifically in 
relation to the history of mathematics the parameters say: 
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The history of mathematics, by means of a process of didactic transposition and together with 
other didactic and methodological resources, can offer an important contribution to the 
process of mathematics teaching and learning. By revealing mathematics as a human creation, 
by showing necessities and preoccupations from different cultures in different historical 
periods, by establishing comparisons between mathematics concepts and processes of past 
and present, the teacher has the possibility of developing more favorable attitudes and values 
to the student facing mathematical knowledge. In several situations, having history of 
mathematics as a resource can clarify mathematical ideas that are being constructed by 
students, especially to give answers to some questions and, in this way, contribute to the 
constitution of a critical look over the objects of knowledge. 

Thus teachers are told why it will be beneficial to use history, but are given little 
guidance on how to do so. 

1.2.4 China 

Once the Chinese people won their real independence in 1949, the government 
launched a movement of patriotism, and asked mathematical educators to foster 
pupils’ patriotic thought by means of incorporating more knowledge of Chinese
history of mathematics. This led to researches into the ancient history of 
mathematics. As a consequence, when Chinese historians of mathematics were 
invited to compile new textbooks, a number of mathematical results could be re-
named after their ancient Chinese equivalents or the Chinese authors who discovered 
them. For example, before 1949 the Gou Gu Theorem was called Pythagoras 
theorem, the Yang Hui Triangle was Pascal’s Triangle, and the Zu Geng Principle 
was Cavalieri’s Principle. 

In China, 95 percent of schools adopt the nation-wide unified mathematics 
textbooks (1 996), in which 16 items are concerned with the history of mathematics: 

1. Decimals (4-grade). Chinese ancient mathematics. 
2. ‘Pi’ (5-grade): Liu Hui (about 263), and Zu Chong Zhi (429-500).
3. Equations (7-grade): the Nine chapters of arithmetic, a Chinese classical work 

of the first century, explained by Liu Hui. 
4. Negative number (7- grade): Nine chapters of arithmetic 
5. The origin of geometry (7-grade): Egypt, Euclid, Mo Zi. 
6. Parallel axiom (7-grade): Euclid. Lobachevsky. 
7. Mathematical symbols (7-grade): Multiplication sign (Oughtred 163 1), decimal 

point (Clavius, 1593) 
8. A story of Gauss (7-grade)
9. Gou Gu Theorem (8-grade): Zhao Shuang 
10. The discovery of irrational number (8- grade): school of Pythagoras. 
11. The history of quadratic equation (8-grade). Nine chapters of arithmetic, 

12. Pi (8-grade): Liu Hui, Zu Chong Zhi, Ludolph van Ceulen. 
13. The area of triangle (8-grade): Qin Jiu Shao (1202-1261), Heron (about 62) 
14. Construction with rules and compasses (9-grade): Greek mathematics 
15. Zu Gen Principle (c. 500) (1 1-grade)
16. Binomial coefficients (12-grade): Yang Hui (about 1250) 

Diophantus, Yang Hui, Viète, Buddhist Yi Xing 
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Eight items in this list are from China, just half of the total number. Few Chinese 
teachers use the historical material as aids to mathematics teaching in the classroom, 
however, except for some paragraphs directly concerning education for patriotism. 

In normal colleges and universities, where teachers are trained, there is intended 
to be an optional course on the history of mathematics (45 classroom hours). 
However, because of the lack of mathematical historians to teach the subject, many 
universities are unable to offer a course of mathematics history when the students 
elect to do it. Most knowledge of history of mathematics that Chinese teachers have 
is from other mathematics courses. Recently, however, the research of history of 
mathematics has made rapid progress in China, and now more than one hundred 
historians of mathematics are working in institutions for teacher training. 

A lot of historical events lead teachers to formalism, abstraction and absolutism. 
In China, Marxist philosophy is an important political course. In addition, Marx had 
an unpublished work, his Mathematical manuscripts, in which many mathematical 
problems were explored. In particular, Marx talked about the logical basis of 
Newton’s calculus. In the curriculum of the Masters degree in mathematics 
education, there is a basic course on philosophy and history of mathematics. 
Therefore many Chinese mathematicians and teachers pay more attention to the 
logical aspect of mathematics, and explore such topics as Russell’s paradox and 
Cantor’s set theory. A number of books explain the historical context and details of 
three mathematical crises: the discovery of irrational numbers; infinitesimal 
calculus; and the paradoxes of set theory; as well as the familiar three schools of 
logicism, formalism, and intuitionism. For this reason many university students 
name Kurt Gödel as a mathematical hero. In contrast to their enthusiasm for 
formalism, abstraction and absolutism, history of mathematics textbooks in China 
pay less attention to applied mathematics. Maxwell’s equations, for example, are 
usually ignored in histories which discuss the 19th century. 

The mathematics curriculum in China maintains the standards of a formal, 
rigorous, deductive system. Most mathematics teachers believe that training in 
logical thinking is the core of mathematics teaching, and that any informal approach 
will be harmful to pupils. In 1996, the Chinese Education Ministry published the 
programme of Mathematics Curriculum, in which only one sentence concerned the 
history of mathematics: “Aid by history of mathematics to foster pupil’s patriotism.” 
The Programme of mathematics teaching and learning which the Education 
Ministry published in 1996 pointed out that “By presenting of ancient and modern 
achievements in China, the pupil’s sense of national pride and patriotic thought is 
aroused.”

1.2.5 Denmark 

The history of mathematics played a fairly minor role in Danish mathematical 
curricula at all levels up until the 1970s. Even though the history of mathematics 
was represented as personal choices of topic in the past (and still is today) at the 
university level where courses are taught, and quite a few students write Master’s 
theses in the subject, there was no influence of history on the teaching and learning 
of mathematics at large. At the school level, no historical component at all was 
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given, apart from names attached to theorems. Only in one text book system were 
anecdotes included as spices to the diet, but not made the object of teaching or 
learning.

Changes began in 1972, when Roskilde University was established with the 
purpose of bringing some innovation in tertiary education in Denmark. The history 
of mathematics was included in the mathematics programme right from the 
beginning. It was, and remains, an underlying idea in the Roskilde programme that 
mathematics is a discipline that exists, evolves, and is exercised in time and space; 
that is, in history and society. Rather than requiring students to take specific history 
courses, they are required to include historical considerations in their studies. It 
should be noted that these studies are strongly based on projects. 

In the mid 1970s, the academic upper secondary school system (grades 10 to 12) 
underwent a rapid expansion that almost caused a crises as far as mathematics was 
concerned. Instead of continuing to address a rather limited elite of 10 percent of 
the youth cohort, about 30 percent were addressed, and this has now expanded to 50 
percent. It was clear that such a great portion of the population could not be 
expected to swallow the very theoretical diet previously taught. During 1979, 
mathematics educators conducted a series of meetings and in-service courses for 
teachers throughout the country where they presented some ideas of what could be 
done to cater for the much broader audience now enrolling in advanced secondary 
education. Mogens Niss suggested the ‘historical aspect of mathematics’, among 
other aspects, as a part of defining the curriculum in dimensions of mathematics 
rather than the topics of a traditional syllabus. 

A lot of experimentation was begun by schools, and by individual teachers 
throughout the country, including ways to include the historical aspect of 
mathematics in its teaching and learning. When, later in the 1980s, the Parliament 
decided to establish a general reform of the structure of the curriculum of the upper 
secondary school, the Ministry of Education began to promote a slightly modified 
form of the Standard Experimental Curriculum. This is still in force (1999), with a 
few modifications in the organizational structure. The current curriculum document 
includes these statements: 

Students have to acquire knowledge of elements of the history of mathematics and of 
mathematics in cultural and societal contexts. [. . .] Some of the main [mathematical] strands 
are to put in perspective by considering elements of the history of the topics dealt with, and-
to a lesser extent-aspects of the epoch, culture or society in which those topics were
developed.

The fact that the historical aspect of mathematics was made a compulsory 
component of the upper secondary curriculum had implications for the university 
studies in mathematics that (at Masters level) prepare upper secondary school 
teachers. It simply became a requirement for the employment of a university 
graduate in mathematics in an upper secondary school that his or her university 
studies have included elements of the history of mathematics. So all Danish 
universities were forced to introduce such elements in their programmes (which 
some of them did only reluctantly). 
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In the primary and lower secondary school levels no historical elements are 
included in the curriculum either officially or unofficially, and this too has 
consequences for the education of teachers for those levels (which takes place in 
independent teacher training colleges). It is certainly not the case that the historical 
aspect of mathematics is given prominent position in mathematics education at all 
levels in Denmark. 

The reason why elements of the history of mathematics were introduced, as a 
non-negligible component of upper secondary mathematics education, and later of 
university mathematics programmes, was not that individuals or associations did a 
lot of clever and efficient canvassing and lobbying to influence the authorities. 
Instead, a combination of historical conditions and circumstances paved the way for 
the changes which are described here. Two factors seem to have been essential: 
firstly, the task and role of the upper secondary school in general, and of 
mathematics in particular, became subject to drastic changes that called for reform. 
Nobody believed that things could have continued unaltered. Secondly, mathematics 
educators who had thought about new principles for the design of mathematics 
curricula and gained experiences from innovative teaching and learning, were 
available with ideas that might be explored as possible means to solve some of the 
problems encountered. 

1.2.6 France 

The main level of the French syllabus in which history of mathematics is involved is 
the tertiary level. France has a centralized education system that officially 
prescribes the various courses of instruction that students follow. In this system, 
some 50,000 of the best students undergo their first two years of tertiary education, 
at the end of which they sit competitive examinations. These gain them entry to 
engineering schools, for the great majority, or to the écoles normales superieures in
order to become researchers and teachers at either the tertiary or secondary level. 

In mathematics, the same teacher teaches one class, of about 45 students, for 
some sixteen to twenty hours a week. The basic class either works as a whole group 
or is divided into subgroups according to the activity. For two to five hours a week, 
the students work on exercises in groups of a half or a quarter of the class, with or 
without the computer. One hour a fortnight they work in groups of three for oral 
questions.

This system underwent an important reform in 1995, affecting both its structure 
and its programmes of instruction. This reform aims to reduce the importance of 
mathematics with regard to other disciplines, to bring more coherence with physics 
and engineering science into their learning and to develop a spirit of initiative in the 
students. The mathematics syllabus is in two parts with accompanying comments. 
The first sets out general aims while the other deals with the topics of linear algebra, 
calculus, and geometry. The students must know how to use both calculators and 
programs which perform symbolic manipulations. There are differences in content, 
according to the particular course of study, but the educational objectives are the 
same. Mathematical education must “simultaneously develop intuition, imagination, 
reasoning and rigour.” 
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The history of mathematics was not neglected in this reform: 

It is important that the cultural content of mathematics should not be simply sacrificed to its 
technical aspects. In particular, historical texts and references allow the analysis of the 
interaction between mathematical problems and the construction of concepts, and brings to 
the fore the central role played by scientific questioning in the theoretical development of 
mathematics. Moreover, they show that the sciences, and mathematics in particular, are in 
perpetual evolution and that dogmatism is not advisable. 

Another innovation through these 1995 reforms was the introduction of project 
work. The history of mathematics is also mentioned in relation to this: “The study 
of a subject brings an increasing depth of theoretical understanding together with 
experimental aspects and applications as well as the application of computing 
methods. It may include an historical dimension.” In the first year, students choose 
their project freely. In their second year they must fix their area and subject in a 
very wide framework. At their final assessment each student presents a page long 
summary and speaks for 20 minutes before two examiners. This project work 
allows teachers the freedom to introduce the history of mathematics. 

1.2.7 Greece 

The educational policy adopted in Greece on the relation between the history of 
mathematics and the teaching of mathematics takes place through several 
institutions. The Institute of Pedagogy, an official institution of the Ministry of 
Education, has responsibility for planning curricula and producing textbooks for 
primary and secondary education. Unlike in some other countries, each subject 
taught in Greek schools has only one official textbook, so their content is of 
particular importance. In secondary education, mathematics textbooks written 
during the period 1987-1993 are still in use in 1999. Almost every chapter in these 
books ends up with a historical note, printed on a different colour of paper, which is 
strictly separated from the rest of the mathematical content of the chapter. These 
notes cover in total 104 pages out of the 2500 pages of the official mathematics 
textbooks used in the six grades of secondary education. 

According to the ‘Guidelines for Teaching Mathematics’ edited by the Institute 
of Pedagogy, the official aim of supplying textbooks with historical notes is to 
stimulate students’ interest and love for mathematics. There are also brief 
recommendations to the teachers for using these notes in the classroom and for 
encouraging discussion on them. But this tends not to happen. Although teachers 
consider some historical notes very interesting, the fact that they are presented in 
isolation from the rest of the text makes them appear to be useless and having 
nothing to do with the real problem of teaching and learning mathematics. The 
teachers themselves have little historical experience or confidence, since there is at 
present an almost total absence of history of mathematics in either pre-service or in-
service experiences of teachers. (But see §4.3.1.2 for discussion of an exception to 
this general experience, in a primary pre-service context.) This negative practical 
response from teachers to the historical notes in current textbooks has caused some 
concern to the Institute of Pedagogy’s officials, who are considering a proposal for 
changing the position of historical material in textbooks. In 1999 a new 
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mathematics textbook for science-oriented students of age 17 was published, with 
historical material incorporated into the various chapters as historic introductions 
which will necessarily be taught in the classrooms. 

1.2.8 Israel 

There is no recommendation in official documents about the teaching of history of 
mathematics in Israeli schools. However, several initiatives have been undertaken by 
universities and academic institutions to develop materials suitable for both 
classroom use and teacher education courses, both pre-service and in-service. These 
materials are used in teacher college courses and in-service programs and some are 
being slowly incorporated by teachers into their classrooms. 

1.2.9 Italy 

In Italy the association of history with mathematics teaching has a long tradition. 
This tradition is linked to the past influence of important scholars in the field of 
history of mathematics and epistemology, who were concerned both with problems 
of mathematical instruction and of teacher education. Evidence of this historical 
tradition in teaching is seen in the publication in Italy around 1900 of a 
mathematical journal for students in which the history of mathematics was one of 
the basic topics treated. 

This Italian orientation towards a historical perspective in teaching is also 
present in the new Italian mathematical programmes, which are very centralized and 
have a national examination. For students aged 14-16 the official programme states 
that “At the end of the first two years of upper secondary school the student has to 
be able to put into a historical perspective some significant moments of the evolution 
of mathematical thinking.” This has been in place since 1923. In 1985 there was an 
experimental new programme which included the following statement: “The results 
of research in the historical/epistemological field offer the best inspiration for 
stimulating students to create conjectures, hypotheses, problems on which the 
teacher may develop his/her teaching.” For the students aged 11-14 the concept 
since 1979 has been that: “The teacher has to orient the student towards a reflection 
on the historical dimension of sciences.” In 1990 a compulsory two-year post-
graduate qualification for those aspiring to teach was set up, requiring didactics, 
history, and epistemology in the curriculum. There is support of the revival of 
interest in historical and epistemological themes from the Ministry of Universities
and the National Research Council. 

In teacher education, history of mathematics is not compulsory, although in the 
post-laureate courses where prospective teachers specialize, courses in the history 
and epistemology of mathematics are on offer. All teachers, though, have degrees in 
mathematics or physics, not pedagogy, and in the university, courses in history of 
mathematics are often offered. These are usually very technical since they are 
mostly aimed at forming researchers in the history of mathematics. 

In practice there are few books written in or translated into Italian on the history 
of mathematics. The result is that the teachers’ historical culture may be confined to 
what is written as optional notes in the students’ textbooks. Nevertheless, a 
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considerable amount of information has been gathered about how and why teachers 
use history in their classrooms in Italy: to use paradoxes for eradicating students’ 
false beliefs on mathematical concepts; to discuss critical concepts of mathematics 
starting from history such as variable; to investigate the students’ beliefs about the 
historical development of mathematics; to use original sources in geometry. It is 
apparent that some teachers have clearly focused on certain mathematical objectives 
of their teaching which can be conveniently pursued through history. 

1.2.10 Japan 

School curricula in Japan from elementary schools up to senior high schools are 
strictly controlled by the government, through the Ministry of Education and 
Culture. The curriculum is reformed periodically, at least every ten years. In the 
last curricular reform, in the mid 1990s, there was a major change in the basic view 
of what the compulsory curriculum in mathematics should contain. 

Mathematical topics were divided into two categories: the basic compulsory core 
subjects, and optional subjects which could be freely chosen. This opened paths of 
free choice in the Japanese national curriculum for the first time, although the 
options were limited to several predetermined subjects. But it had another and much 
deeper pedagogical effect, to move beyond the traditional way of piling up new 
mathematical knowledge upon old. Now, if some knowledge is indispensable for 
solving a problem, students are to gain that knowledge at the stage that they 
themselves recognize the need for it. For example, if they come across a maximum-
minimum problem of a function of degree more than four, they will realize they 
need to factorize a polynomial of degree more than three. They will then be well 
motivated, or such is the theory, to study the basic factor theorem or remainder 
theorem of polynomials. For this reason the basic discussion of formulae, including 
manipulations of complex fractional formulae and fundamental exercises related to 
the theory of polynomials, is moved out of the core curriculum. 

Other topics were introduced in the core course: elementary probability theory 
and discussion of progressions. Another core topic was finite discrete mathematics, 
introduced because of its growing importance in the digital information age. But the 
most basic part of high school mathematics, numbers and formulae, was transferred 
into the optional category. 

So the new categorization between core and optional subjects regards the 
importance of traditional subjects in a quite different way. It is true that the 
traditional systematic way of teaching, impelled to an extent by logical efficiency, 
did not meet the needs of all learners, and true too that school teachers will be 
inclined to teach in much the same way as before. Nevertheless, the changed 
balance gives the impression of being rather too daring, of throwing away 
fundamental knowledge from the core curriculum. It does not appear to be a 
curriculum development framed in a historically alert way. If the reformers had had 
a greater knowledge of the revolutionary significance of algebraic symbolism 
discovered and developed in the 17th century, and the immense influence it had in 
the whole of mathematics, they might have been a little more cautious about 
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seeming to abandon the historical legacy of mathematics for fashionable topics of 
the moment. 

It appears, then, as though not only does history of mathematics play very little 
role in the explicit mathematics curriculum in Japan, it did not play as important a 
role in the construction of that curriculum as, it could be argued, is desirable. It is 
argued later in this book that historical awareness has an important role to play in the 
construction of curricula even where there is no explicit historical content in the 
curriculum itself. 

The first generation of students educated under the new curriculum has already 
entered university. There is a widespread feeling among university teachers that 
these students, even those majoring in the exact sciences, have less understanding of 
basic skills and concepts (such as equation, function), while being able to carry out 
routine actions such as finding derivatives and primitive functions. Such concerned 
teachers see the new curriculum as a factor contributing to the apparent weakening 
in students’ mathematical understanding. It remains to be seen whether the next 
round of curricular reforms will absorb the lessons of this book and bring the 
advantages of a knowledge of history to the construction of the Japanese curriculum. 

1.2.11 Netherlands 

At present history of mathematics has no structural position in mathematics 
education in Dutch secondary schools. Yet, there was a vivid tradition in the history 
of mathematics during the twentieth century. Several textbooks for secondary 
schools had chapters on the history of the subject matter. The mathematics teacher 
and historian of mathematics Eduard Jan Dijksterhuis promoted the history of 
mathematics as a subject in the training of mathematics teachers, and at some places 
history was even an optional part of the upper secondary level curriculum. But in 
present mathematics curricula, history of mathematics has no longer a place as a 
subject in its own right. 

On the other hand, historical notes are found in some mathematics textbooks, in 
the form of biographical information or historical introductions to topics. Most of 
the time history is perceived as an extra which can be left out (and probably is left 
out by many teachers), much as an illustration with a caption but no textual 
reference. In most texts references to history are rare or totally absent. A survey 
done in 1992 on how four school texts treat Pythagoras’ theorem revealed that in 
two of them (Exact Wiskunde and Wiskundelijn: Wiskunde is the Dutch for 
‘mathematics’) there was no historical reference for this topic; one (Moderne
Wiskunde) added the solitary remark “Pythagoras was a Greek philosopher (about 
500 B.C.)”; and one (Sigma) remarked of the theorem “It is thought that a Greek 
mathematician, Pythagoras (580-496 B.C.), was the first to prove it.” While the 
text-writer clearly had a little historical information, references of this kind seem 
somewhat perfunctory. 

In the curricula for primary education and lower secondary (general) education 
nothing is said about history of mathematics. One can safely say that it plays no 
official role whatsoever. For upper secondary education (16-18 years of age, 
followed by about 35% of the population), a new programme (‘Wiskunde B’) has 
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been in preparation. The curriculum proposals at different levels all have one remark 
in common: the student should be able to “identify (historical) situations where 
mathematics played an important role” (the parentheses are in the original text), For 
the more difficult topics further historical integration is suggested: it is asked that the 
student should have some knowledge about the historical development of the 
calculus and of the historical roots of geometry. 

It is not clear that how much influence these well-meaning remarks will have, at 
least in the short term: they are too general, and there is no guarantee that any 
historical understanding acquired by students will be reflected in the contents of the 
state examinations. The state examination form only half of the final examination, 
however; the other half is done by the schools themselves. In these school 
examinations a new dimension has been prescribed: students should write papers, 
collect materials, study relevant literature, give presentations, and so on, for 
mathematics as well as for other subjects. Mathematics teachers are not used to this, 
and are rather worried about it. History of mathematics can offer rich materials for 
these kind of activities, and so well-trained and resourced teachers have good 
classroom opportunities. But there remain no certainties for the use of history in 
mathematics education. 

Besides these curricular opportunities there are further positive signs for the 
future role of history in mathematics education. Notably, research into the area is 
going on, with some PhD students at Dutch universities. In summary: history of 
mathematics used to have a stronger position in Dutch mathematics education than it 
has currently, but things are looking up. 

1.2.12 New Zealand 

The New Zealand Mathematics Curriculum is designed around six specified strands: 
Number, Measurement, Mathematical Processes, Statistics, Geometry and Algebra. 
None of the strands explicitly emphasises or encourages the inclusion of history of 
mathematics. However, a real encouragement to include history as a part of the 
process of enabling students’ mathematical nurturing is to be found in the 

Figure 1. 1: From the first printed Maori arithmetic, by Henare Taratoa, 1858 
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Development Band of the Curriculum. This band is an official addition to the basic 
curriculum, designed for use in enriching the mathematical experiences of gifted and 
talented students. Ministry of Education publications written in support of the 
Development Band recognise and encourage an understanding of the changes in the 
ideas and practice of mathematics that have occurred over time . 

Some individual teachers of mathematics in New Zealand are known for their 
enthusiasm in regard to utilising history of mathematics as a part of their normal 
method of teaching. Papers and workshops offered by them at conferences, for 
example at the biennial conferences of the New Zealand Association of Mathematics 
Teachers, are regarded increasingly, by other conference participants, as interesting 
and innovative. One of the better known New Zealand mathematics publications, 
the Mathematical Digest, regularly carries historical information and suggestions for 
ways of including history in teaching or thinking about the mathematics covered in 
each of the Curriculum strands. 

Figure 1.2: a ‘tauira raupapa’ (sequential pattern), as included in the New Zealand 
Mathematics Curriculum 

Local and international culture-focused studies have begun to influence the ways 
in which those using the Mathematics Curriculum reflect historical differences. The 
incentive to adopt the changes in attitude that this requires has been intensified in 
New Zealand by the legal requirement that all official statements reflect bi-culturally 
sensitive attitudes. The term ‘bi-cultural’ is used in New Zealand to denote the 
recognition of the life and culture of the first settlers of the land, Maori, in relation to 
more recent settlers. 

The present Mathematics Curriculum, implemented in 1994, appeared in a Maori 
version (see figure 1.2) as well as in an English one, but this simply highlighted the 
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fact that translation is not enough to make sense of a culture’s historical 
mathematical expression. Policy makers and teachers alike are presently searching 
for more appropriate ways of acknowledging the history and practice of Maori 
mathematical needs and methods, so that they, as well as the mathematics of other 
cultures, will have a similar status to that presently enjoyed by the mathematics 
emanating from the history of the mathematical needs and methods of Europeans. 

1.2.13 Norway 

National curricula have guided Norwegian school work in mathematics since 1827. 
A component reflecting culture and history has been made more explicit in the most 
recent Norwegian curricular reforms, those of 1994-98, through the efforts of 
Norwegian researchers and mathematics educators inspired by the Danish thinking 
described above (§ 1.2.3). In the new 1994 curriculum for grade 11 (16-17 year 
olds), for instance, the common goals (those describing attitudes, skills and 
perspectives which should penetrate the whole course for all students) include the 
following:

Goal 8: Mathematics as cultural heritage. Pupils should gain insights into the history of 
mathematics and know some of its importance for our social and cultural life. Pupils should 
know some main themes from the history of mathematics, the roots of mathematics in 
different cultures, some typical tools in the mathematics of these cultures, the importance of 
mathematics for the techno-scientific culture, and examples of the interplay between 
mathematics and art. 

It is interesting to note that the preliminary published version of this goal (dated 
April 1993) attracted some criticism in the media: “Something here is fundamentally 
wrong. The main point of mathematics is, and should be, to solve mathematical 
problems.” Other arguments advanced from this perspective were that such a 
generalised goal was difficult to assess, and that teachers were not trained to teach it. 
On the other hand, the criticism was also an opportunity for counter-arguments to be 
brought forward: that history reflects an important part of the national heritage, that 
it helps explain how mathematics is the basis for other subjects, that pupils can 
better understand features of the conceptual development of mathematics, and that it 
inspires pupils and helps to humanise the subject in their eyes. 

The new elementary school curricula for grades 1 -10 (pupils aged 6-16), brought 
forward in 1997, are also attentive to the inclusion of historical material. The sixth 
common goal for mathematics is “that pupils develop insight in the history of 
mathematics, and in the role of mathematics in culture and science.” Some specific 
examples are given in the detailed spelling-out of the curriculum. In grades 8-10,
for example, pupils “should have some knowledge about the main features of 
number systems used by different cultures”, and “should experience aesthetic 
aspects of geometry through practical examples in architecture, art and handicraft, 
and see this in a cultural and historical connection.’’ 

The publication of textbooks for the Norwegian curriculum requires national 
approval and the history of mathematics is not yet fully integrated into the five 
currently-approved texts. Although there is some lip-service to historical and 
cultural issues, for example comparing the Hindu-Arabic numeral system with those 
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of the Babylonians, Romans and Egyptians, the analysis is rather shallow and 
pedagogical opportunities are lost through not discussing comparative structural 
advantages and disadvantages of the systems. The presentation is like storytelling 
and does not explain or discuss problematic issues. Another theme treated 
notionally but inadequately is the solution of equations: although pupils become 
aware that solutions for different kinds of equation were developed in the past, there 
is no discussion of the transition from verbal to symbolic solutions or the role of 
symbolism in facilitating the later expression of these solutions. The textbook 
writers seem to underestimate the magnitude which the step from arithmetic to 
symbolic algebra represents for each student, and not to understand the help which 
historical parallels can present here for both teachers and pupils. These are but two 
examples of missed opportunities in the treatments seen in the textbooks. It is clear 
that the historical aspect needs to be developed further to really become an 
integrated area of inspiration for teachers and pupils. 

At the teacher education level, reforms began to be implemented in 1998 in 
which the support for prospective teachers in relation to the historical/cultural 
dimension of the curriculum was to be strengthened. Mathematics 1, for example (a 
course obligatory for all student teachers, representing one half of their studies for 
one year) contains the statement: 

Mathematics has its history in all cultures and societies. It shows its development from 
ancient geometry to fractals, from astronomical calculations of the Mayas to Newton’s and 
Einstein’s mathematical models of the universe, and through the development of number 
systems and ways of reckoning. Historically, mathematics has developed in interchange with 
problems from other sciences and subject areas of society. The field also develops on its own 
premisses and by posing its own problems. Students should (e.g.) 

• know the historical development of numerals, number systems and geometry 

• be able to describe ethnomathematics as expressed in the daily life of some peoples 

• be able to give examples of how mathematics influences Norwegian society and culture 

• identify and explain mathematics in music, drama, art, architecture and handicraft. 

1.2.14 Poland 

In Poland, the school year 1999/2000 brought important changes to the system of 
general education for pupils from the ages of 7 to 19. Hitherto there was a ‘8 + 4’ 
system: eight grades of elementary education (pupils 7-15 years old) followed by 
four grades of secondary education (students 15-19 years old). From 1999, this was 
progressively replaced by a new ‘6 + 3 + 3’ system: six grades of elementary school 
(pupils 7-13 years old), followed by three grades of gymnasium (pupils 13-16 years 
old), and finally three grades of lycee (secondary school, for students from 16 to 19 
years old). The new system will be fully in place by 2004.. 

This reform was not restricted only to administrative changes, but essential 
changes of school curricula were introduced. The new Curriculum Basis for 
General Education was elaborated for every educational stage. This document, 
from the Ministry of National Education, specifies the basic knowledge and basic 
skills which are needed at a given educational level. This document serves as a 
point of departure for constructing the curriculum for school subjects and for 
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elaborating standards of learning outcomes at the end of each educational level. A 
curriculum can be prepared by educators, subject experts or teachers and must be 
accepted by the Ministry of National Education. A teacher can choose, from many 
such proposals already prepared, whichever which seems the most suitable for their 
pupils. Curriculum proposals are usually accompanied by suggestions about the 
textbooks and various didactical materials, which help teachers to work with pupils 
more effectively. 

In the case of mathematical education, this way of preparing and organising 
work with pupils has been developed over several years, especially at elementary 
school level-that is, creating mathematics curricula based on the common core and 
preparing school-books adequate to them. In secondary school there is little 
diversity; this educational level is rather more traditional, mainly because of the 
urgency of passing examinations for the secondary-school certificate and then 
university entrance examinations. 

The main idea of the new educational changes was to place general education 
within a framework of what are called ‘key competencies’, such as: planning, 
organising, evaluating one’s own learning, effective intercommunication in various 
situations, working in a group, problem solving ability, efficient using of 
information technology. In relation to mathematical education, the Curriculum 
Basis for General Education includes for every educational level a list of essential 
mathematical skills to develop and mathematical notions to form, those which are 
deemed necessary from the point of view of general education and of developing the 
key competencies. In this context there is no entry (key word) in this document 
connected with history of mathematics. The important role of history of 
mathematics in mathematics education will happen on the level of the realisation of 
the educational aims. 

There are some ten curriculum proposals for mathematics in the new elementary 
school and gymnasium, prepared on the new basis, most of which include a fairly 
perfunctory attention to history. The textbooks proposed to support these curricula 
similarly tend to include at best a few biographical notes and rather basic historical 
information. One curriculum proposal and accompanying textbook series, however, 
called Mathematics 2001, is an exception in including rather more history and with a 
more considered integration of historical and mathematical learning materials. 

1.2.15 United Kingdom 

Traditionally, schools and teachers in the UK had autonomy about what to teach and 
how to teach it, even though the examination system and the text books dictate the 
syllabus in secondary schools to some extent. There are several examination boards 
each of which is competing for customers and increasingly the government have 
encouraged the notion of education as a market place. Schools are funded on 
numbers of students and parents are encouraged to shop around for the best school. 
Examination results from each school must be published. It is therefore in the 
school’s financial interests to gain the best possible exam results for their children. 
To ensure the best results teachers must decide which exam board to use. Many of 
those working in schools, however, would say that the home background of the 
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children is what makes a big difference to the results; it is certainly true that the 
areas with high-priced housing seem to be very much over-represented in the 
schools with the best exam results. Even under a state system of education there are 
ways to buy better education for your children. 

There is no requirement for history of mathematics to be included in the 
syllabus. The word ‘history’ does not appear in the National Curriculum for 

Reflecting on Chapter 8

What you should know
• how the work of Descartes compares with that of Pierre Fermat 
• evidence of Descartes’s approach to negative and imaginary solutions of

• how Descartes constructed a normal to a given curve 
• the relationship between algebra and geometry in La Géométrie

Preparing for your next review 

equations

• Bring your answer to Activity 8.1 to the review together with half a page in your 
own words describing the revolutionary features of La Géométrie 

• Answer the following check questions. 

1 Prepare a presentation explaining how the work of Descartes was influenced by 
van Schooten, Viète and Fermat. 

2 Use Descartes’s method to find the equation of the normal to y2 = 4 x at (1,2). 

Figure 1.3: From Nuffield’s ‘History of mathematics’ option (1994) the 
final question of Chapter 8 

mathematics. Text books are not vetted by any official body, and vary in the extent 
to which they include history of mathematics, but there is very little history in any 
set of text books. (An exception to this statement is a option on the history of 
mathematics which ran within the Nuffield ‘A’ level scheme for some years during 
the 1990s-but it stands out by its exceptionality.) 

As in many other countries, mathematics graduates are not keen to enter 
teaching where the morale is low, as are pay and working conditions, whereas in 
other fields of employment mathematics graduates are found to be attractive and 
paid accordingly. This gives the good mathematics student more of a choice than 
that in some other disciplines. On the other hand, many departments of education in 
the universities are obliged to accept students with qualifications which are not the 
best, with either low grades in their mathematics degree or graduates in other 
disciplines (but who have studied some mathematics). The latter are required to take 
a two-year post-graduate degree, whereas mathematics majors take a one-year
course. To become a teacher of mathematics for ages 11-18 a student would be 
expected to be a graduate with a post-graduate teaching certificate. Once a teacher is 
qualified there is the possibility of teaching outside the discipline. 

The 1998 National Curriculum for teacher training makes no mention of the 
history of mathematics but is essentially concerned with the content of the 
curriculum and teaching styles. It is concerned with students’ mathematical 
attainment and requires the institution to carry out a subject audit for all those on the 
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course and to ensure that by the end of the course all students reach the required 
standard. For students aged 3 to 11 teachers must have completed a subject study in 
mathematics and be able to demonstrate that they can reach the required standards in 
mathematical understanding. Again, there is no mention of the history of 
mathematics in the National Curriculum for Teacher Training, 

1.2.16 United States of America 

In the USA, there is a great deal of variability since most educational decisions are 
taken at a state level: according to a 1996 publication by the American Association 
for the Advancement of Science, 

State departments of education or state education agencies are continuously grappling with 
how to create an equitable education system that includes flexible policies and practices 
which take into account the needs of each student 

In school reform in mathematics, the state education agencies use the National 
Council of Teachers of Mathematics Standards; hold planning seminars for school 
superintendents and district administrators, school principals and administrators, 
lead teachers, and community and business leaders; strengthening-service; and write 
and disseminate curricula and guides for use in the planning an implementation of 
curricula by school districts. 99 percent of high school graduates had studied 
mathematics in high school between 1982 and 1992. However, only 68.4 percent 
studied algebra; 48 percent geometry, 37 percent algebra II; 12 percent 
trigonometry; and 4 percent calculus. 

In Florida, for 
example, at the top administrative level the State Board of Education has to approve 
the State Standards or Framework. The plan in place since 1996 is to have trainers 
come in to work in each district to align the local curriculum with the new standards. 
All decisions on usage are local. Florida teachers are not required to have majored in 
mathematics to teach the subject. Other states, however, such as Michigan, have 
certification requirements which ensure that new teachers are well prepared. It is the 
colleges and universities which makes higher impositions on graduating students. 

The position of the various societies with regard to history of mathematics in 
teacher education varies. The position of the National Council of Teachers of 
Mathematics (NCTM, with 120,000 members) is that 

Students should have numerous and varied experiences related to the cultural, historical, and 
scientific evolution of mathematics so they can appreciate the role of mathematics in the 
development of our contemporary society and explore these relationships among mathematics 
and the disciplines it serves. . . . It is the intent of this goal-learning to value mathematics-
to focus attention of the need for student awareness of the interaction between mathematics 
and the historical situations from which it has developed and the impact that interaction has 
on our culture and our lives. 

This view is made explicit in regard to calculus: 

As students explore the topics proposed in this standard, it is important that they develop an 
awareness of, and appreciation for, the historical origins and the cultural contributions of 
calculus.

Making changes in curriculum varies from state to state.
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The NCTM standards have made a major impact nationally and locally. The revised 
standards will be published in 2000. The NCTM has long supported the 
contribution history can make to mathematics education, notably in its celebrated 
and influential thirty-first yearbook, the 542 page Historical topics for the 
mathematics classroom (NCTM 1969), in which a number of leading historians and 
mathematics educators came together to provide an overview and reference resource 
for mathematics students and teachers. 

The Mathematical Association of America (MAA, with 18,000 members) 
recommended in 199 1 that teacher education classes include the history of 
mathematics, and it too has a long and distinguished record in promoting and 
publishing books on the history of mathematics in relation to mathematics 
education. (The second president of the MAA, indeed, was the historian and 
educator Florian Cajori.) Not all organisations have been so supportive, however; 
the Mathematical Sciences Education Board of the National Research Council did 
not mention either history or culture in their 1990 recommendations for reshaping 
school mathematics. 

1.3 History of mathematics in curricula and schoolbooks: a 
case study of Poland 

Ewa Lakoma

The framework for current developments in Polish school education is described 
above (§1.2.14), where it was noted that some ten curriculum proposals for 
mathematics in the new elementary school and gymnasium have been put forward. 
Generally these include only such quasi-historical entries as the Roman notation of 
numbers, or knowing and applying the Pythagorean Theorem. Most textbooks 
written according to these proposals merely include some biographical notes on the 
most famous mathematicians-Pythagoras, Euclid, Plato, Descartes-and
information on the most famous historical facts concerning school mathematics: 
who introduced the rectangular coordinates system, what is the Pythagorean triple, 
what are Platonic solids, and so on (see Nowecki 1996-9; Pawlak 1999). In the 
Polish mathematics curriculum there are two theorems which traditionally have to be 
considered at school level: Pythagoras’ theorem (direct and opposite) and the 
theorem of Thales (direct and opposite). (The theorem of Thales is essentially 
Euclid’s Elements vi.2, that a line parallel to one side of a triangle cuts the other two 
sides proportionally.) But the labels ‘Pythagoras’ and ‘Thales’ in themselves do not 
constitute history. 

From among the variety of proposals for the new mathematics curriculum it is 
useful to look at a project called Mathematics 2001. Its curriculum, textbooks, and 
other didactical materials include relatively more mathematical history than other 
proposals (Dabrowski 1999a, 1999b). This project uses the history of mathematics 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 19-29
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as an origin for didactical situations, which can be interesting for pupils, and as a 
source of original simple reasonings, which can be readily understood and also turn 
out to be helpful for today’s pupils. The history of mathematics serves as a source 
of information on various ways of mathematical thinking and arguments. Besides a 
list of topics to learn, the curriculum Mathematics 2001 presents a list of the student 
learning outcomes expected at the given educational level. Moreover, it includes a 
list of examples of didactical situations and concrete tasks to solve by pupils. 
Among these didactical situations and outcomes we can find relatively many 
elements of the history of mathematics. I present some examples below, first in the 
curriculum and then in the schoolbooks for that curriculum, to illustrate the range of 
topics which can draw upon history. General issues about the range of ways in 
which historical material can be incorporated into textbooks are looked at in a later 
chapter (§7.4.1). 

1.3.1

− Elementary school (4th grade):
Topic 411 Numbers and their properties: the authors propose, among examples 

of didactical situations and tasks to solve, that pupils could compare various systems 
of writing numbers, for example a system with the base 5 and the Aztec numeral 
system.

Topic 413 Algorithms of arithmetic operations: consider ways of calculating 
numbers using Chinese abacus. 

Topic 414 Properties of numbers, properties of divisibility: use graphical 
representations of numbers (rows of stones, rectangular shapes or notched 
rectangles) and manipulate them in order to justify discovered properties of 
numbers.

Topic 415 Numbers and their properties: use tangrams, distinguishing their parts 
and describing their size, and adapt them to introduce the concept of fraction. 

Topic 454 Measure: tangrams are used in order to introduce methods of 
measuring an area. 

− Elementary school (5th grade):
Topic 552 Measure, area of triangle, quadrangle: build figures of various 

shapes using the same pieces of tangrams, and express their observations concerning 
an area. 

− Elementary school (6th grade):
Topic 613 Properties of numbers, properties of divisibility: consider

Pythagorean triples, find generators, and search for relations with triangles 
(proportional triples versus triangles with similar shape). Also pupils can be asked to 
explore magic squares, and describe ways of their transformations. 

Topic 642 Geometric transformations, isometries: build isometric figures, 
assembling pieces of tangrams. 

Topic 664 Algebra, discovering & formulating regularities: use the algorithm 
known as the sieve of Eratosthenes to find all prime numbers less than 100. 
Gymnasium (1 st grade) 

History of mathematics in mathematics curricula 
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Figure 1.4: “Behold!” and “Calculate!” 

Topic 106 Theorem, assuming, thesis, proof: analyse and discuss various proofs 
of the Pythagorean theorem, e.g. they can discuss the justifications involved in Look
at it! (Patrz!) and in Calculate it! (Licz!) -see figure 1.4. 

− Gymnasium (2nd grade):
Topic 232 Geometric figures and their properties, trigonometric proportions: 

find, in some materials on history of mathematics, information about how Thales 
estimated from the sea coast a distance between ships on the sea. 

Topic 251 Measure, π number, circumference, area of a circle: find out
information on π, i.e. on how the circumference of a circle was measured in the past.
Pupils can be also asked to find in literature how Erathostenes computed a radius of 
the Earth, and to compare his results with data known at present. 

Topic 241 Homothety and similarity of figures: consider the theorem of Thales 
and justify it by means of similar triangles. 

1.3.2

In all books we can find some biographical notes on the most famous 
mathematicians, and notes concerning the origins of various mathematical notations, 
eg of the sign for equality, of the sign for squaring (ie power 2), or of the square root 
sign. Moreover, many of them include brief notes on the historical development of 
mathematical activities or mathematical ideas in a range of cultures, such as 
Egyptian mathematics, Chinese mathematics, Hindu mathematics, Greek 
mathematics, the school of Pythagoras, Euclid and the Elements, and the origins of 
algebra.

The series of school-books Mathematics 2001 (Lakoma 1996, 1997a, 1998; 
Zawadowski 1999) includes, in comparison to other textbooks (eg Novecki 1996-9;
Pawlak 1999) a relatively large component of history of mathematics. First we look 
at examples from the Mathematics 2001 series, and then will illustrate some 
examples from other textbooks. 
− Elementary school textbook (4th grade):

History of mathematics in mathematics school-books
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Figure 1.5: From the module ‘How did Egyptians calculate?’ 

Module 2: “How did Egyptians calculate?” (see figure 1 5), Topic Numbers and 
their properties. Pupils get acquainted with Egyptian symbols of numbers notation, 
and are asked to discover ways of writing numbers by means of these symbols. They 
try to answer: what was the Egyptian system of writing numbers? What is a system 
of writing numbers today? 

Module 11: “Calculating sticks” (see figure 1.6). Topic Numbers and their 
properties: the algorithm of multiplication by ‘calculating sticks’ is presented here 
as elaborated by John Napier in the 17th century (often called ‘Napier’s rods’ or 
‘Napier’s bones’ to make multiplying numbers an easier process. Pupils are asked 
to discover how this works, and to analyse and understand the algorithm of 
multiplication. Then they consider contemporary algorithms for multiplication and 
choose the most suitable for them. 
− Elementary school textbook (5th grade):

Module 2: “How did Hindu multiply numbers?”. Topic Numbers and their 
properties. The subject serves as a point of departure to develop a skill of 
multiplying numbers. Pupils are asked to discover the Hindu algorithm, to analyse 
it and to find pros and cons of this way of multiplying. 

Module 4: “Number sieve”. Topic Properties of numbers, properties of 
divisibility. Pupils are asked to find numbers which are divisible by 2, 3 and so on. 
In this way they get know the method of finding prime numbers known as 
‘Erathostenes’ sieve’. 

Module 15: “Pros of multiplication table”. Topic: Numbers: adding and 
subtracting fractions. Pupils become acquainted with Egyptian fractions and are 
asked to present some fractions as sums of Egyptian fractions. 

Module 19: “What are matches for?”. Topic Geometric figures: equilateral 
triangle, isosceles triangle. Pupils read about some discoveries of Thales: The two 
angles at the base of an isosceles triangle are equal; two intersecting straight lines 
form two pairs of equal angles; the diameter of a circle divides it into two equal 
parts. In this context pupils are asked to discover and analyse some further 
properties of triangles. 
− Elementary school textbook (6th grade):

Module 27: “Time for a puzzle”. Topic Discovering regularities. Pupils are 
asked to discover and analyse regularities of mathematical activities, using various 
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Figure 1.6: Evaluation of methods for multiplication based on a comparison 
with Napier’s rods 

graphical representations of numbers, they also discuss Pythagorean triples (as was 
suggested in the curriculum). 

In modules 29 and 30, pupils have the opportunity to do simple examples of 
classic geometrical constructions by means of compasses and a ruler. 

− Gymnasium schoolbook (1st grade):
Reader 1: “What is a theorem?” Topic Theorem, assumption, thesis, proof 

Pupils read a text with information about the earliest theorems, mainly from Greece. 
Theorema means ‘that which is seen’, so the first proofs served as tools, leading to 
catching a sight, meeting with an illumination. As an example Greek ‘pebble 
arithmetic’ is shown, for justifying properties of numbers. 

Module 7: “Secants and tangents”. Topic Geometric figures: pupils are asked to 
make a poster presenting the mathematical fact, discovered by Thales, that a triangle 
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Figure 1. 7: The ancient puzzle of the life span of Diophantus is an excellent opportunity
for students to solve linear word problems. 

whose vertices are situated on a circle, with one of its sides a diameter of the circle, 
is right-angled.

Module 18: “From a problem to an equation” (see figure 1.7). Topic Algebraic
language. Analysing problems of Diophantos, and of Bhaskara is a point of 
departure for gaining a very important skill, to express a mathematical word problem 
in algebraic symbols. Presenting old ways of thinking helps pupils to analyse 
particular steps of the process of this translation. Pupils already know examples of 
simple equations. Now they develop their skills to read mathematical texts and 
express a problem in symbols, leading to an algebraic equation. 

Module 22: “Let’s cut a square!” Topic Pythagoras’ theorem. Pupils are asked 
to build a puzzle. Thanks to it they are able to discover Pythagoras’ theorem. This 
important theorem is presented, and analysed. In module 23 pupils are also asked to 
consider some situations coming from every day life in which it is useful to apply 
this theorem (e.g. parking a car). They also try to discover a method of finding 
segments whose length is a square root. How to get a square root of 10, of 17 as 
quickly as possible? 

Reader 7: “The Pythagorean legend”. Topic Properties of numbers, discovering
regularities. This is a story about mathematical ideas associated with the 
Pythagoreans. The algorithm of alternative subtracting, to find common divisor of 
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two numbers, is presented, When applied to a side and a diagonal of the regular 
pentagon, this algorithm does not stop, leading to the conclusion that the side and 
diagonal of a regular pentagon are incommensurable: their lengths are numbers 
which are irrational. This story lets pupils become acquainted with important 
problems of ancient mathematics. The aim of the reader is to let pupils know a 
fascinating adventure in the history of mathematics and to present ways of thinking 
which can be interested and understandable for a pupil at this educational level. 
− Elementary school textbook (8th grade, old structure; Lakoma 1997 b):

Module 40: “Trousers of Thales”. Topic Theorem of Thales. Pupils are asked to 
analyse a sequence of figures, which illustrate succeeding steps of mathematical 
reasoning leading to the proof of Thales’ theorem. 

Pupils
become acquainted with an information on a classic problem of squaring of the 
circle. This information is a point of departure for estimating and discovering a 
method of calculating an area of a circle. 

In this book we can also find examples of classic geometrical constructions by 
means only of ruler and compasses. Pupils have also opportunity to analyse Platonic 
solids.

Other examples of school-books including history of mathematics 

− Secondary school textbook (4th grade, old structure; Walat 1990):
Although this book is out of print, being replaced by other series of textbooks, it 

is worth presenting the main ideas and to show examples of historical elements 
included in it. It was addressed to students preferring humanistic subjects, like 
languages, history, philosophy, psychology, fine arts etc. Although this book was 
written according to the curriculum of the old secondary school, which did not 
included elements of mathematics history, it was decided by the authors to present 
one third of mathematical material in a form of historical investigations. In this part 
of the book students could find a lot of old mathematical texts, written in original 
language or translated into Polish. Students usually were asked to read a text, to 
analyse it and to follow the argument, or to apply it in some situations. They were 
often asked to compare old mathematical methods with these methods in use today. 
The historical texts chosen for the students to have opportunity to read were 
fundamental to the historical development of mathematics. Students could read 
fragments of the following works: 

Euclid, Elements, book i, some of books ii and iii, written in old Polish (a 
translation from 18 17). 

Cardano, passages concerning the development of algebra. Students were asked 
to interpret his algebraic description and to translate it into today’s language of 
algebraic symbols. 

Rene Descartes, passages from La géométrie. Students were asked to analyse the 
rule of signs, which gives information about the number and the position of the roots 
of a polynomial equation, and to apply it in some simple cases. They also had the 
opportunity to read the first book of La géométrie in French or in parallel Polish 
translation. Students could follow the method of mathematical reasoning proposed 

Module 7: “Squaring of a circle” Topic Measure, area of a circle. 
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by Descartes. The authors briefly explained the main ideas of this method just above 
the original text. Students were asked to understand Descartes’ way of solving 
quadratic equations using ruler and compasses. 

Nicolaus Copernicus, extracts from De revolutionibus orbium coelestium 
presented in Latin (figure 1 .8) with parallel Polish translation (figure 1.9). Students 
got to know the theorem of Ptolemy: the product of diagonals of a quadrangle 
inscribed in a circle is equal to the sum of products of the opposite sides. Then they 
were asked to work out why Pythagoras’ theorem can be deduced from the theorem 
of Ptolemy. 

Students could also find a lot of old mathematical methods from the traditional 

Figure 1.8: Copernicus proves Ptolemy’s theorem, from De revolutionibus (1543)

canon of mathematical knowledge, for example the ‘galley method’ of dividing 
numbers Students were asked to apply this method of dividing numbers and to 
compare it with a method that they use today. 
− Secondary school textbook (3th grade, old structure; Walat 1988):

The earlier third-grade textbook in the same style also contains many references 
to history of mathematics. Studying properties of numbers leads to using Gauss’ 
method or graphic representations of numbers for calculating sums of many 
components. Students can also consider polyhedrons; they were encouraged to 
analyse some examples like the three-dimensional stellated polyhedra and the 
Platonic solids described by Luca Pacioli in De divina proportione, and also are able 
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Figure 1.9: Polish translation of the passage in figure 1.8, with the question relating 
Ptolemy ‘s theorem to Pythagoras 

to discover Euler’s formula. They also read brief information on the thirteenth book 
of Euclid’s Elements, in which the construction of the Platonic solids is presented. 
Analysing logarithms give an opportunity to present methods of calculating them, 
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due to Jost Bürgi, John Napier and Henry Briggs. A short computer program was 
used here, to generate various values of the logarithmic function. 

1.3.3 Final remarks 

Textbooks used now at secondary school level do not include elements of the history 
of mathematics. Their structure is much more rigid, authors preferring the form of a 
formal lecture try to explain mathematics as simply as possible. This brief review 
has allowed us to see that there are two different points of view on the place of 
mathematics history in curricula and school-book, according to whether historical 
elements are encouraged or discouraged. What is the reason for such a polarisation 
of standpoints? Careful analysis of those didactical approaches which use history of 
mathematics, and those which do not, allows us to hypothesise that an attitude 
towards history of mathematics in mathematics education very much depends on a 
general viewpoint towards mathematics learning and mathematics teaching. 

There are, broadly speaking, two contradictory cognitive styles in mathematics 
education. One is seen in the work of Euclid, the other in Descartes. The style of 
Euclid was presented in Elements, perhaps the world’s oldest textbook. It is a 
systematic presentation of mathematics: definitions, axioms, theorems, proofs, 
theorems, proofs, . . . Formulating mathematical theory in such a dogmatic frame
became the canon of knowledge for many centuries. This rigid style, albeit replaced 
for educational aims by equivalent texts written in a form more suitable for students, 
has its votaries even today. In the work of Rene Descartes, by contrast, there is no 
such style. Descartes presented mathematics as a fascinating description of his 
adventures in connection with solving mathematical problems (see for example 
Fauvel 1988). It is ‘symptomatic that he presented his fundamental work La
géométrie as an example of activity, supplemented to his Discours de la Methode 
He showed the reader ways to solve a given problem, then he posed several others 
connected with it and sketched their solutions in such way that a reader had 
opportunity to solve them individually. Descartes introduced convenient algebraic 
notation, which spread out very quickly and is also used today. 

Euclid also introduced terms and concepts which we still use, in what is called 
‘school geometry’. However the difference between the styles is fundamental: in 
Euclid’s works we find a logically built structure of knowledge, whereas Descartes 
provided us with essays on natural ways of mathematical reasoning which lets us 
construct the world of mathematics. Both these styles of presenting mathematics 
correspond with different cognitive styles characteristic of people’s learning. We 
can call these styles the dogmatic style and the discursive (nearly: discours-ive)
style. Schools, in order to be effective, have to adapt themselves to the cognitive 
abilities of the students, and have to take note of the pattern of their cognitive 
development. When this fundamental demand is taken into account in mathematics 
education, the discursive style is generally preferable. 

History of mathematics can play a very useful role in mathematics education, but 
the way in which it is used very much depends which style of education we prefer. 
Mathematics history in education can be presented as a set of curious details, which 
can arouse students’ interest in mathematics. In this context it can be used in both 
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styles of education. History of mathematics can also create a context for introducing 
mathematical concepts, in ways which encourage students to think. Historical 
solutions let students to continue simple ways of thinking and to develop them 
individually. The different points of view which are possible to present in historical 
contexts give students the opportunity to develop the art of discussing, to justify 
their own opinions, to present their own reasoning to other people. Historical cases 
encourage students to repeat individual attempts to solve problems. All these 
activities are very useful for forming mathematical concepts and developing 
mathematical thinking. Thus, history of mathematics seems to be especially useful 
when we prefer a discursive style of education. 

We can risk posing this hypothesis: the more attention we pay to regard pupil’s 
cognitive development, the more useful becomes history of mathematics in creating 
and realising didactical proposals. 
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1.4 Policy and politics in the advocacy of a historical 
component

Science is a political issue because scientific research and achievements are of 
great importance for all people in the world. Mathematical education is a political 
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issue because it is one of the essential channels for science to be approached by all 
people. The history of mathematics shows how fundamental is the link between 
mathematics, mathematical education, and the general conceptions of people at each 
time and each place. It shows, too, how the content of any mathematics curriculum 
represents a choice, essentially a political choice, that has been made; and by the 
same token is apt to change when other political influences are in place. This 
section states the position of the group of the ICMI Study who were charged with 
reaching a strategic view on the political context, outlining some strategies that can 
be employed to ensure that history is incorporated into teaching. 

Should a historical dimension be incorporated in the official mathematics 
curriculum? And if so, how can it be made to happen? As the present study clearly 
shows, there is wide variation in just what “a historical dimension” can be taken to 
mean. The many different ways in which history of mathematics can enter the 
educational process are discussed in depth in other chapters of this book, the 
possibilities ranging from anecdotal support in on-going teaching (§7.3.1, 97.4. 1), to
using original sources in the classroom (chapter 9); from influencing the structure of 
a curriculum (§8.5.2) to exploring history of mathematics for trainee teachers 
(chapter 4), for example by gaining further insights into the development of 
students’ understanding (chapter 5 ) . But precisely because there are so many 
possibilities, there is scope for confusion and muddle in the advice tendered to 
educational policy formers, as well as in their reactions to well-meant solicitation. 

It is important therefore to be alert to any possible problems which a historical 
dimension could be thought to generate, and indeed to examine policy proposals 
carefully from the perspective of a devil’s advocate. In this way counter-arguments
and misunderstandings can be anticipated (as was seen in the example of Norway, 
§ 1.2.13 above). 

Such awareness of arguments countering a role for history, as well as knowledge 
of the benefits and potential of a historical dimension, has to be exercised in the 
context of the wide range of opinion-formers and policy advisers in many countries 
nowadays. A number of different groups are concerned with, and have greater or 
lesser influence over, decisions about what is taught in schools: classroom teachers, 
head teachers, school authorities, educational theorists and researchers, parents, local 
politicians, national politicians, publishers, journalists and other influences on public 
opinion. These groups do not all have a common interest in solving educational 
problems in the same way. (For example, a classroom teacher who is convinced of 
the value of gaining a fuller historical awareness through in-service training may 
find a different reaction from the head teacher who is having to make budgetary 
decisions as well as pedagogical ones.) 

Several difficulties might be anticipated at the classroom level, let alone at other 
levels of opinion formation. To incorporate history within a mathematics 
curriculum might be thought to consume more time, involve more effort, distract 
pupils from the task of exploring and gaining confidence in their handling of 
mathematics itself; it might indeed be thought a somewhat alien intrusion, 
introducing a quite different world from that of mathematical inquiry. Furthermore, 
it might be something beyond the competence of the teacher, who may indeed have 
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chosen to pursue mathematics precisely because it didn’t involve reading about 
history, or writing joined-up sentences. Teachers without some historical training 
may feel nervous and ill-prepared, and worry about how to access historical sources 
as well as their competence in handling them. There may be concerns about the 
danger of replacing a flexible strategy, in which teachers can use history as a 
resource and teaching aid as appropriate, with a rigid curricular imperative in which 
the history exam becomes as terrifying to contemplate as the maths test. It could be 
that introducing a new pedagogical principle in an unimaginative or bureaucratic 
way may do more harm than good. (Such concerns are raised in the work of Jean-
Pierre LeGoff, discussed in § 3.2 below.) To seek to impose the wider use of history 
may precisely miss the point, that it is the enthusiasm of the teacher which effects 
the most successful teaching, even in the most knowledgeable teacher, not the way 
of delivering the subject matter. There are a variety of such concerns which may 
need to be resolved as we consider just what results we want to accomplish: namely, 
the successful delivery of a better mathematics education for all students 
everywhere.

That said (and these matters will be returned to periodically in the course of this 
volume), it will be helpful to draw attention here to some possibilities for the 
political development of the ideas put forward in this book. This section speaks to 
the range of opinion formers mentioned above, and outlines ways in which they 
might be approached and with what message. The experience of different countries 
is very different both in political structures and in the length of chain of 
communication between, say, a classroom teacher and the ministry of education, so 
this section is not a prescriptive framework but a reminder of possibilities of 
influencing those who control what is in the curriculum and are in a position to 
influence any role of history of mathematics within the experiences of pupils and 
students of mathematics. 

1.4.1

Bureaucracies work both through personal contacts and position papers, so a useful 
strategy would be to prepare a summary of the Study Book to be presented to each 
authority (for example, by the ICMI representative in each country). This executive 
summary should be translated into a number of languages and published in 
mathematics and education journals. It is as well to make sure that authorities are 
aware of the three following important issues: national contributions will always be 
recognised; the study of history of mathematics will attract students to study the 
exact sciences; and to reassure that the study of history of mathematics is not a 
substitute for the study of mathematics but a resource within its better delivery. 
Throughout the political process a robust assertive tone, sensitive to counter-
arguments and determined to anticipate and rebut them, will gain respect and 
influence.

1.4.2 Teacher associations 

It is vital to call attention to the importance of imbuing professionals with 
knowledge of history of mathematics, and more especially with sensitivity towards 

Political authorities (at all levels) 
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the arguments of this Study, involved in the national committees. In several 
countries, special sessions on history of mathematics and its use in the classroom are 
scheduled at the national and regional meetings. A related task is to encourage 
historically oriented articles, and discussions of the classroom use of historical 
material, in journals. Meetings can profitably be held with officers of teachers’ 
associations to summarize and explain the contents of the Study Book. The 
importance should not be underestimated of including in reward systems for teachers 
due recognition of those who work to develop their skills in a historical direction; 
the argument may be strongly put that such teachers are better teachers, better 
informed and better motivated, as a result of this kind of in-service training. 

1.4.3 Professional mathematics associations 

There is growing enthusiasm among professional mathematicians for history of 
mathematics, through a greater awareness of its important roles (though this has long 
been perceived by leading mathematicians: see the quotations by Lagrange, Abel, 
De Morgan and others, §1.5 below). It is notable that some major international 
meetings, such as the International Congress of Mathematicians, have invited 
historians to make a major plenary address, and it is reasonable to work for such a 
presence at other meetings too. At a number of regional, national and international 
meetings, special sessions on history of mathematics are increasingly popular 
features, and in journals historically oriented articles are increasingly encouraged 
and seen. 

Studies on the history of contemporary mathematics should be encouraged and 
also-this is particularly important-simpler versions aimed at students; the success 
of recent accounts of, for example, chaos theory and Andrew Wiles’ solution of 
Fermat’s Last Theorem shows that where there is a will, simplified accounts of 
recent history can be achieved and resonate with students, teachers and the general 
public.

1.4.4 Tertiary teachers 

Encourage the designation of grants to study history of mathematics and its 
integration in teaching; for example by the production of study units. The 
promotion of seminars on the history of mathematics can reinforce the efforts of 
faculty members to widen the number of colleagues friendly towards history. The 
reward system for both college faculty and school teachers needs to be revised so 
that tenure and promotion criteria are seriously considered for those whose research 
activity includes research on the use of history of mathematics in mathematics 
classes, and the disseminate of these findings to mathematics teachers and faculty. 

A key emphasis at tertiary level is teacher education, since teachers will 
implement the curriculum with ease and pleasure only if they are familiar with it and 
fully understand it. History of mathematics should be included in teacher education 
programmes, so that teachers have the flexibility of using it as and if they choose to 
do so: it is then knowledge over which they have ownership. These issues are 
discussed further in chapter 4.
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1.4.5 Parents 

Parents can be among the most worried of opinion formers, both through their own 
bad experiences with mathematics in the past and through concerns about modern 
education generally. By the same token, any strategy which leads to noticeably 
better results or greater enthusiasm among pupils should gain strong parental 
support. The promotion of mathematics awareness with an historical aspect, such as 
through texts in national newspapers about aspects of the history of mathematics, is 
helpful, as are other ways of popularizing mathematics and its history though a 
range of media (books, plays, newspapers, films, TV programmes). Teachers have 
found that mathematics awareness evenings, weeks, or other events of a semi-social
nature are an excellent way of boosting parental interest in their childrens’ 
mathematical studies, and that a historical dimension to the content of these events 
produces remarkable growth in confidence and support. 

1.4.6 Textbook authors 

Some authors may need encouragement and help both in accuracy and relevance of 
historical references and in thinking through the pedagogical challenges of 
incorporating historical material. This task, on a country by country basis, is 
occupying the attention of several leading mathematics educationists with historical 
interests.

1.5 Quotations on the use of history of mathematics in 
mathematics teaching and learning 

There has been interest over several centuries in the relations between the history of 
mathematics and the teaching and learning of mathematics, as will become apparent 
from various discussions in the course of this book. Many leading mathematicians 
and teachers down the ages have expressed, in different ways and for different 
reasons, ideas about the relationships between mathematics and its history. We 
conclude this chapter with a number of quotations illustrating this theme, for 
reference and interest as well as to strengthen the case of those arguing today for a 
stronger incorporation of history in the educational process. Each quotation could 
be analyzed in detail for its presuppositions, pedagogical attitudes, social context 
and contemporary value-which might provide useful discussion material for groups 
in, say, initial teacher training-but here we leave such analysis as an exercise for
readers and their students. 

Portugal 1772 

From the Statutes of the Portuguese University of 1772, written by Jos Monteiro Da 
Rocha, in the section on the first-year curriculum. 

1 In order that the lessons of the mathematics course be done in good order, and with profit 
from the students: the reader of geometry, to whom belong the disciplines of the first year, 
before entering the lessons proper to his chair, will read the general prolegomena to the 
mathematical sciences. 
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2 In them he will make a brief introduction to the study of these sciences: showing the object, 
division, and its general prospect: explaining the method that they use; the usefulness, and 
excellence of it: and making a summary of the main accomplishments of its history through 
its most remarkable times. They are: from the origin of mathematics, until the century of 
Thales and Pythagoras; from this until the foundation of the Alexandrian School; from this 
until the Christian Era; from this until the destruction of the Greek Empire; from this until 
Descartes; and from Descartes until the present time. 

3 This summary shall be proportionate to the capacity of the students, so that it predisposes 
them, and encourages them to enter the study with pleasure. Because of it the reader will not 
enter in the detailed description of the discoveries that were made in the said sciences in 
different times and places; because it cannot be understood, unless the same sciences have 
been studied; and then they will not need the voice of the master, to be instructed in history. 
He will recommend nevertheless very much to his disciples, that according to their 
progression in the mathematics course that they should be instructed particularly in it: 
showing them, that the first thing that must be done by somebody that wants to study in the 
progress of mathematics, is to instruct himself in the discoveries made before him; in order 
not to lose time in discovering for the second time the same things; nor in working in the tasks 
and undertakings already carried out. 

Figure 1. 10: Portugal still encourages teachers to incorporate history in mathematics 
education. Here an age-old method for drawing ellipses is illustrated by images from a 
17th century text and from the dynamic geometry software package Sketchpad, in the 
teacher training text by Eduardo Veloso, Geometria: temas actuais, 1998 

And in the description of the second year algebra curriculum we find: 

3 To facilitate better his entrance in it, and assure the fruit of the lessons: the professor will 
begin with the respective prolegomena: giving a detailed idea of its purpose, and the means it 
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applies to obtain its goal: showing its origin, and progresses: and making a summary of the 
history of the said algebra through its most notable times. 

4 In particular he will show the reason that the ancients, although they knew the fundamental 
rules of analysis and were endowed of such great skill, have not extracted from it the amazing 
advantages that the moderns have discovered; lacking the instrument of analysis that is 
algebra.

France 1790s 

Joseph Louis Lagrange (I 736-1813), the leading pure mathematician in France 
after the French Revolution, was co-opted to teach mathematics to trainee school-
teachers at the Ecole Normale. This passage occurs in his lectures to them on 
logarithms (J. L Lagrange, Lectures on elementary mathematics, Open Court 1901, 

Since the calculation of logarithms is now a thing of the past, except in isolated instances, it 
may be thought that the details into which we have entered are devoid of value. We may, 
however, justly be curious to know the trying and tortuous paths which the great inventors 
have trodden, the different steps which they have taken to attain their goal, and the extent to 
which we are indebted to these veritable benefactors of the human race. Such knowledge, 
moreover, is not a matter of idle curiosity. It can afford us guidance in similar inquiries and 
sheds an increased light on the subjects with which we are employed. 

Norway 1820s 

Niels Henrik Abel (1802-1829), Norway’s greatest mathematician who died 
tragically young, wrote this in the margin of one of his notebooks: 

It appears to me that if one wants to make progress in mathematics one should study the 
masters.

England 1865 

Augustus De Morgan (1806-1871): from his inaugural address as first president of 
the London Mathematical Society, 16th January 1865. 

1 say that no art or science is a liberal art or a liberal science unless it be studied in connection 
with the mind of man in past times. It is astonishing how strangely mathematicians talk of the 
Mathematics, because they do not know the history of their subject. By asserting what they 
conceive to be facts they distort its history in this manner. There is in the idea of every one 
some particular sequence of propositions, which he has in his own mind, and he imagines that 
that sequence exists in history; that his own order is the historical order in which the 
propositions have successively been evolved. The mathematician needs to know what the 
course of invention has been in the different branches of Mathematics; he wants to see 
Newton bringing out and evolving the Binomial Theorem by suggestion of the higher theorem 
which Wallis had already given. If he be to have his own researches guided in the way which 
will best lead him to success, he must have seen the curious ways in which the lower 
proposition has constantly been evolved from the higher. 

22) :
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Italy 1871 

Eugenio Beltrami (1835-1899), professor of rational mechanics at the University of 
Bologna (Giornale di matematiche 11 (1 873), 153) 

Students should learn to study at an early stage the great works of the great masters instead of 
making their minds sterile through the everlasting exercises of college, which are of no use 
whatever, except to produce a new Arcadia where indolence is veiled under the form of 
useless activity. 

England 1890 

From the presidential address of J W L Glaisher (1848-1928) to Section A of the 
British Association for Advancement of Science, 1890

In any treatise or higher text-book it is always desirable that references to the original 
memoirs should be given, and, if possible, short historic notices also. I am sure that no 
subject loses more than mathematics by any attempt to dissociate it from its history. 

USA 1896 
Florian Cajori (1859-1930; A history of elementary mathematics with hints on 
methods of teaching, New York: Macmillan, 1896, v): 

The education of the child must accord both in mode and arrangement with the education of 
mankind as considered historically; or, in other words, the genesis of knowledge in the 
individual must follow the same course as the genesis of knowledge in the race. To M. Comte 
we believe society owes the enunciation of this doctrine-a doctrine which we may accept 
without committing ourselves to his theory of the genesis of knowledge, either in its causes or 
its order.” [Herbert Spencer, Education: intellectual, moral and physical, New York, 1894, 
p.122] If this principle, which was also held by Pestalozzi and Froebel, be correct, then it 
would seem as if the knowledge of the history of a science must be an effectual aid in 
teaching that science. Be this doctrine true or false, certainly the experience of many 
instructors establishes the importance of mathematical history in teaching. 

Germany 1897 

Hermann Schubert (I 848-191 I; Mathematical essays and recreations, Chicago 
1898,32):

The majority of mathematical truths now possessed by us presuppose the intellectual toil of 
many centuries. A mathematician, therefore, who wishes to acquire a thorough understanding 
of modern research in this department, must think over again in quickened tempo the 
mathematical labours of several centuries. 

UK 1919 

From a Mathematical Association Committee report, 1919: 

The Historical aspect of Mathematics has never yet found its fitting place in teaching of the 
schools. [. . .] Every boy [“(Throughout the report the word BOY is to be taken as referring to 
pupils of either sex)”] ought to know something of the more human and personal side of the 
subject he studies. [. . .] The history of mathematics will give us some help in framing our 
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school syllabus, [. . .] Recommendation: That portraits of the great mathematicians should be
hung in the mathematical classroom, and that reference to their lives and investigations should 
be frequently made by the teacher in his lessons, some explanation being given of the effect of 
mathematical discoveries on the progress of civilization. 

Scotland 1929 

Dame Kathleen Ollerenshaw (b. 1912; ‘Living mathematics’, IMA Bulletin 25 
(1989), 50-56; 5 1): 

One memorable experience at St Leonards was the enlightened gift from my housemistress of 
H.W. Turnbull’s lovely small book The great mathematicians. Every youngster showing an 
interest in a particular branch of learning (or other worthy activity) should be given the 
appropriate book telling of the giants in their field who paved the way. If there was any one 
moment in my life when I knew that I must specialise in mathematics, with no conceivable 
alternative, it was when I first read this beautifully written history. 

USA 1930 

Vera Sanford (A short history of mathematics, Boston: Houghton Mifflin, v): 

Upwards of a century ago, Augustus De Morgan presented a brief for the study of textbooks 
in arithmetic in these terms: “A most sufficient recommendation of the study of old works to 
the teacher, is shewing that the difficulties which it is now (I speak to the teacher not the rule-
driller) his business to make smooth to the youngest learners, are precisely those which 
formerly stood in the way of the greatest minds, and sometimes effectually stopped their 
progress.” It was not necessary to limit this to teachers nor to the study of textbooks in a 
particular branch of mathematics, for the struggle of mankind to formulate mathematical 
concepts, to evolve a useful symbolism, and to solve quantitative questions arising from his 
environment are of interest to teachers, students, and bystanders as well. 

Soviet Union 1931 

Mark Yakovlevich Vygodskii (Foundations of infinitesimal calculus, Moscow-
Leningrad 193 1, 5): 

I wrote this book because of my deep conviction that none of the existing textbooks puts the 
key ideas of infinitesimals before beginners with the necessary sharpness and clarity. . . . This 
is the reason behind the depressing fact that the apparatus of analysis remains a dead 
apparatus in the hands of the students. 

The viewpoint underlying the present textbook is that the learner must be introduced to
the study of analysis by getting acquainted with its fundamental notions at the stage at which 
they arise directly from practical needs. Their rigorization and cleansing must be a later issue, 
initially of secondary importance. 

In other word, I am attempting to replace the formal-logical scheme by the historical 
scheme, or rather, by the historico-logical scheme. 

Of course, this does not mean that I propose to take the reader through all the twists and 
turns of the historical development and reconstruct the chronological order of the evolution of 
the ideas of analysis. The historical material in my book is not its subject matter but the basis 
for the exposition. 
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UK 1958 

From a UK Ministry of Education report, 1958: 

The teacher who knows little of the history of Mathematics is apt to teach techniques in 
isolation, unrelated either to the problems and ideas which generated them or to the further 
developments which grew out of them. [. . .] A knowledge of the arguments and dissensions 
between great mathematicians might induce healthy skepticism and discussion in the 
classroom and lead to a firmer grasp of principles. [. . .] One of the most valuable assets 
which the teacher can acquire from a knowledge of the history of his subject is an 
appreciation of the influence of current traditions. [. . .] It is important to convey to the 
pupils the knowledge that much of what is taught today as a finished product was the result of 
centuries of groping or of spirited controversy. [. . .] Mathematics can be properly taught 
only against a background of its own history. 
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Abstract: School mathematics reflects the wider aspect of mathematics as a cultural activity. 
From the philosophical point of view, mathematics must be seen as a human activity both 
done within individual cultures and also standing outside any particular one. From the 
interdisciplinary point of view, students find their understanding both of mathematics and 
their other subjects enriched through the history of mathematics. From the cultural point of 
view, mathematical evolution comes from a sum of many contributions growing from different 
cultures.

2.1 Introduction 

In the 1980s, mathematics educators and didacticians in many countries felt the need 
to give a more reliable foundation to educational research through philosophical 
reflection on the processes involved. What philosophy is suitable for this purpose? 

Philosophy must explain mathematical thought not only at the level of research, 
but also as far as teaching is concerned. It must also explain the development of 
mathematics in the past: philosophy needs history. But what history is suitable? 
There is a history of documents and a history of ideas. The latter needs the former, 
but didactics and epistemology need the latter. This means that we must avoid the 
identification of philosophy of mathematics with mathematical logic. Our 
philosophy must guide and explain educational choices; it must help in a better 
planning of teaching. It must be open to new reflections. In this sense it could be 
considered as being almost equivalent to epistemology (Speranza and Grugnetti 
1996).

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 39-62
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A cultural perspective on mathematics makes us attend to mathematical histories 
and to what they tell us about who developed mathematical ideas in different 
societies (Bishop 1995). Multicultural aspects and interdisciplinary issues become 
therefore part of epistemological reflections about mathematics education; the 
relationships between philosophical, multicultural and interdisciplinary issues are 
very strong. Moreover, the history of mathematics as the history of ideas is strictly 
linked to (or better, is part of) the history of human beings. In this view we have to 
analyse the cultural, political, social, economic contexts in which ideas arose 

2.2 Philosophical issues 

2.2.1

Differing views on the nature of historical enquiry 

The widely held view of mathematics as a pure subject uninfluenced by outside 
forces is slowly changing, and this is reflected in the changes in the approach to 
more general historical study. If we agree that history is that branch of knowledge 
which caters for society’s needs to understand particular aspects of the human past, 
then we express our needs by demanding answers to a range of who? what? when? 
how? and why? questions. However, as soon as we start to investigate, we find that 
these questions are not at all easy to answer. Traditionally, history is viewed as a 
study of carefully delimited aspects of the past employing systematic research in all 
available sources. The approach can be from a social, political or economic point of 
view, and necessarily employs a general philosophy (for example, structuralism, 
Marxism, etc.) in its interpretation. More recently, ‘post-modem’ history is seen as 
a set of processes and power relations linking the past to the present, where the 
interpretations of events and facts are critically interrogated, the underlying 
assumptions are revealed, the status of texts are called into question, and where 
groups of people and their conditions are defined and redefined by those in power. 

In a similar manner, there have been changes in the way history of mathematics 
is undertaken. ‘Internalist’ history of mathematics is recognised by its tendency to 
see mathematics as a subject isolated from ‘external’ influences and as a progression 
of ideas which are improving and becoming more abstract and general with time. In 
the internalist, sometimes called ‘Whiggish’, account the events of the past are seen 
as instances of steps towards the present more perfect structures. This kind of 
history tends to interpret the past in terms of modem concepts. More recently, 
researchers have tried to take a more holistic view, with mathematics seen as a 
component of the contemporary culture; the historian’s task is then to discover the 
influences, conditions and motivations (social, economic and political as well as 
scientific and mathematical) under which problems arose. Admitting these points of 
view necessarily leads to much reinterpretation of the received wisdom of earlier 
writers. In the past, most research in the history of mathematics has been carried out 
by those with mathematical training. In consequence, the interpretation and its 

Historical investigation, evidence and interpretation 
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writing up has not only utilised technical language, but has tended to employ a 
narrative which maintains the genre of the hypothetical-deductive style employed in 
mathematics itself. In this way it has given the impression of an authoritative 
account of the events in question, where often the historical subject can be criticised 
for making errors, pursuing a fruitless avenue of enquiry, or not seeing a solution 
which later seemed obvious. 

Historians, on the other hand, realise that there are many different sorts of
questions about the past, giving rise to many different sorts of history. The events, 
structures and processes of the past are known only through the relics and traces of 
the past, which are themselves politically and conceptually loaded and imperfect. 
There are difficulties of understanding archaic languages, contemporary technical 
terms, and the special ‘codes’ within the available sources, so that any interpretation 
is cautious and aware that many concepts may carry with them a collection of 
unsubstantiated assumptions. In perceiving relationships between different events 
and conditions the historian may have to consider theories derived, for example, 
from economics, psychology, sociology or anthropology. Furthermore, the account 
is constrained by conventions of language, genre, mode, argument, and a number of 
other cultural and social contextual conventions. In this perception theory, sources, 
and style interact in an iterative way. 

Facts and events 

The notion of a ‘fact’ is ambiguous, since it includes the sense of both event 
(meaning whether or not the event took place), and a statement about an event 
(where the concern is with the truth or falsity of an occurrence or statement). In this 
sense, facts are constructed in the documents which refer to the occurrence of the 
events, not only by interested parties (contemporary or more recent) commenting on 
the events or the documents, but also by historians giving what they believe is a true 
account of what really happened in the past. Therefore it is the facts that are subject 
to revision and further interpretation, and they can even be dismissed given 
sufficient reasons. 

This view allows us to account for the fact that historiographical consensus 
about any event is very difficult to achieve. It is always open to revision from 
another perspective. We not only change our ideas of what the facts of a given 
matter are, but our notions of what a fact might be, how facts are constructed, and 
what criteria should be used to assess the adequacy of a given collection of facts in 
relation to the events which they claim to support. The relation between facts and 
events is always open to negotiation and re-conceptualisation not because events 
change with time, but because we change our ways of conceptualising them. 

This argument leads to a position of historical relativism in which the truth and 
authoritativeness of a given account of the past must be assessed in relation to the 
cultural context and social conditions prevailing at the time, and with respect to the 
perspective of the current interpretation. As noted above, the interpreter’s viewpoint 
is also involved. The problem is that this position appears to deny a secure and 
timeless epistemological foundation for history, which still causes concern to some 
historians. However, it must be recognised that a particular historical investigation 
in its final written form does not represent a totally authoritative statement or a 
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secure piece of knowledge. It is a contribution to knowledge which is immediately 
open to scrutiny, analysis and criticism by fellow historians. 

The philosophical problematique 

Following this line of argument, the problem of interpretation is even more difficult 
in the history of mathematics since much of what we now choose to identify as 
mathematics has been perceived differently by people in the past, so that the history 
of mathematics is different for different periods and cultures. For example, the 
interpretation of Mesopotamian tablets by Høyrup, Damerow and others (Høyrup
1996) is radically different from that of Van der Waerden, whose ‘Babylonian 
algebra’ appears as the standard interpretation in many histories of mathematics 
(Van der Waerden 1961). For events even further in the past, Seidenberg has 
followed the anthropologists’ maxim that ‘the present use of the tool does not 
necessarily indicate its origin’, and provided evidence that the origins of some 
techniques that we regard as elementary mathematics can be found in ancient ritual 
practices (Seidenberg 1962). According to this account, these techniques were then 
much later adapted to other purposes such as counting, geometrical measurement, 
elementary mechanics and astronomy. Looking for the beginnings of mathematical 
ideas may well lead us into new areas quite outside our familiar territory. These 
examples of conflicting historical interpretation illustrate the need for a careful 
philosophical analysis of the assumptions and other aspects of the process of doing 
history of mathematics. 

2.2.2

The demise of traditional philosophies 

Until relatively recently, scholars who were involved in the philosophy of 
mathematics could only be found in departments where there was a significant 
interest in logic and related technical aspects of mathematics. This could be seen as 
broadly the result of changes in mathematics through the nineteenth century where 
abstraction and structural aspects dominated the interest in the development of 
mathematics in many fields. From these beginnings, we can see Platonism revisited;
the idea of an ideal perfect structure, ‘out there’ for us to discover seemed very 
appealing.

Later, various forms of Formalism inspired by Hilbert and his co-workers
provided many interesting technical challenges within the branches of mathematics. 
Rigour ruled, and while of course, rigour is important, for some, like Russell, it 
became the central concern. So much so, that Logicism attempted to reduce the 
whole of mathematics to a cold, clear and unassailable core of technical 
manipulation without any necessary meaning. We know (through the work of Gödel 
and others) that this programme was not entirely successful, and its failure began to 
cast doubts on some of the other areas where Formalism influenced the way that 
mathematics was conceived (see also Hofstadter 1979). 

An approach from an entirely different direction came from one of the principles 
of Kantian philosophy, and provided the interesting and challenging idea of 

Philosophy of mathematics, old and new 
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introducing the role of intuition in the creation of mathematics. Starting from a 
minimal basis, Brouwer and Weyl put forward the principles of Intuitionism, and in 
a sense, re-introduced the role of the individual creative actor into the making of 
mathematics (Heyting 1956; Weyl 1949). While the pure theory was interesting, we 
know it was unable to provide a sufficiently coherent foundation for all the 
mathematical ideas that were current at the time, and the exclusion of so much of the 
mathematics that had been built up over so many years was too much to bear. 

Bringing the human actor back more firmly into the centre of the stage continued 
with the work of Wittgenstein, who challenged a range of tacitly accepted 
assumptions about the nature of the enterprise we call mathematics (Wittgenstein 
1956). The semiotic significance of acts, the meanings of words in the language and 
the social contexts in which these meanings are built up was not at first seen as a 
challenge to Formalism. However, the influence that Wittgenstein had on his 
contemporaries was enough to sow the seeds of a fundamentally new look at the 
nature of mathematics and the way in which mathematics was done. 

Definitions of mathematics 

Mathematics has meant different things to people at different times. Of course, 
when we use the word mathematics in this context, we can never be sure that those 
who talked about it in the past gave quite the same meaning to it as we do today. 
For the Pythagoreans, in whose world all objects were fundamentally numerable, all 
was number. For Plato, where ‘ideal forms’ played a significant part in his world 
view, mathematics was something else again. The idea of a pure and unassailable 
truth which had some connection with the real world was for long one of the
cornerstones of the definitions of mathematics. In the seventeenth century 
mathematics became the model of God’s universe, and was seen as the supreme 
science of counting and measurement, and this view became reinforced the more 
humankind discovered how to use the technical power of mathematics to describe 
the motions of the stars or the tides of the sea. 

There was a radical change in point of view in the nineteenth century with the 
invention of non-Euclidean geometries and the search for the ‘basic laws’ of algebra. 
This led to an emphasis on abstract structures, extending and generalising ideas into 
other domains, and the bringing together of a number of hitherto apparently 
unrelated areas under some general unifying concepts. Along with these 
developments came the realisation that mathematical truth was a matter of 
consistency of arguments; and further, that mathematics did not necessarily have 
anything to do with the real world. Definitions became more and more abstract and 
inclusive, but always it seemed that there was still some aspect of the enterprise that 
got left out. As a final gesture of defeat, some decided to retreat to the position that 
mathematics is what mathematicians do. Now, even among research 
mathematicians there is no consensus on what mathematics is (see Thurston, 1994; 
Atiyah, 1994). 

History and culture 

Following Wittgenstein, other ideas slowly began to be brought into the discussions 
of the nature of mathematics, and a number of these key influences appeared from 



44 2 Philosophical, multicultural and interdisciplinary issues 

completely outside mathematics. Almost at the same time, and in their own 
particular ways, Kuhn, Wilder and Lakatos were concerned about the role of science 
and mathematics as a function of the cultural context in which the ideas grew. 
Putting people back into the picture as active creators of the theories was a major 
step in forming new views about the philosophy of mathematics. Although, of 
course, the definition of a paradigm may be as elusive as the definition of 
mathematics, the way in which Kuhn argued for the persuasive power of discourse 
and the psychological basis for the adoption of a change in a theory (Kuhn 1962) 
was a serious challenge to accepted beliefs about the nature of the historical process 
in science. Wilder, influenced by anthropological theories, was ambiguous in the 
way in which he talked about culture, and regarded mathematics somehow as an 
organic whole (Wilder 1950; Wilder 1968). In identifying generalised internal and 
external influences on the development of mathematics he located mathematics in a 
milieu of social, economic and cultural stresses which were seen to determine the 
directions in which the subject developed. Lakatos, again, (Lakatos 1976) putting 
forward a quasi-empirical view, showed how the fallibilism of Popper and the 
heuristic of Polya contributed to the way in which the step by step development of 
theories could be described as a process of successive refinement of ideas by 
modifying the original idea to include (or exclude) any new objects or properties of 
objects.

While there had always been people writing histories of mathematics, up to now 
the writing had been more internalist in approach, but from the late 1960s these 
influences began to make themselves felt, and more ‘socially based’ writing of 
history slowly began to appear. Likewise, the writing in the philosophy of 
mathematics began to change. For example, Kitcher’s discussion of the nature of 
mathematical knowledge (Kitcher 1983) largely relies for its evidence on material 
from the history of mathematics, and the contributors to Gillies’ edited collection of 
arguments for or against the idea of revolutions in mathematics (Gillies 1992) 
clearly view mathematics as an ongoing process of reconceptualisation influenced 
by a range of both internal and external events. Some historians have come to feel 
that there has been a revolution in the historiography of mathematics, because of the 
way in which contemporary historical interpretation has come to include social 
contexts.

2.2.3

Abstraction versus empiricism? 

There is a tension in the ways we view the nature of mathematics. On the one hand, 
mathematics is a body of abstract knowledge which is available to be learned or 
rediscovered and then improved upon by any individual. On the other, mathematics 
arises from problems, which are expressed in the needs of people at a particular 
time. It has been argued that these two general ways of regarding mathematics may 
be fundamentally incompatible: mathematics as a set of timeless truths and value 
free facts may be actually inconsistent with mathematics as a cultural product set in 
social contexts. However, it is our contention that these are not incompatible, on the 

The ends of the spectrum 
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grounds that a study of the history of mathematics itself shows that the conception of 
mathematics as timeless derives from a particular cultural context. 

Epistemology can be regarded as the investigation of how and under what 
conditions our knowledge of the world is formed. Since, furthermore, what we 
regard as ‘knowledge’ is a distillation and abstraction of the responses to questions 
and problems (many of which lie in the remote past of our species), then that part of 
our present knowledge which we call mathematics consists of the concepts and 
theories which have been built up in the process of answering certain types of 
problems in rather special ways. Initially, these problems were essentially practical, 
but as society evolved, many problems and their solutions became progressively 
abstract and entered an intellectual world which some neo-Platonist philosophers 
regard as somehow detached from individuals, having an independent existence. 
Thus we arrive at a belief that mathematics is ‘discovered’ in some way, implying an 
a priori existence for a host of mathematical concepts, many of which have yet to be 
discovered. In this sense the idea of an independent world of mathematical ideas is 
one generated under particular historical circumstances and transmitted to 
individuals through socio-educational influences. Furthermore, even if we accept 
the idea that mathematical ideas are carried and transmitted to individuals in some 
unconscious way through their culture, many studies have shown that mathematical 
concepts and processes are very different in different societies, and so the belief in 
the universality and a priori existence of mathematical ideas cannot be sustained. 

Invention versus discovery? 

Considering the nature of mathematics from a background of the history of 
mathematics changes the way we conceive the epistemological problems of the 
development of mathematical knowledge in the individual and in society. The 
historical approach encourages and enables us to regard mathematics not as a static 
product, with an a priori existence, but as an intellectual process; not as a completed 
structure dissociated from the world, but as an on-going activity of individuals. 
Recognising this activity is important for the establishment of scientific parameters 
for any didactical theory since the historical and cultural dimensions considered by 
Vygotsky have, until recently, largely been omitted from the established body of 
psycho-pedagogic theory inspired by many of the followers of Piaget. Following 
this line of argument, we can arrive at a distinction, based on the experience of 
studying the history of mathematics, which may help us to resolve the false 
dichotomy of invention versus discovery which besets the neo-Platonists. We can 
suggest here that concepts are invented, modified and extended in the process of 
answering problems, (which recognises the originality, creativity and social contexts 
of the activity of the human mind), and that theorems and proofs are discovered in 
the process of finding solutions to these problems (which recognises the particular 
modes of thought and logical patterns which we call mathematics). 
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2.3 Multicultural issues 

2.3.1 Introduction 

During the twentieth century, significant changes have occurred in our 
understanding of the contributions that different cultures have made to our history. 
It is important in mathematics, as in any other discipline, to be sensitive to new 
issues. Showing how mathematical thinking and applications developed in different 
cultures, in response to the needs and thinking of different societies, not only enables 
a wider understanding of the concepts embodied in mathematics but also encourages 
greater creativity and confidence in using its various branches. A history that shows 
the diversity, rather than the universality, of mathematical development adds an 
exciting dimension to the subject. It allows the world and its history to enter the 
classroom in a way that works against a narrow ethnocentric view, without denying 
the extent to which developments have often been embedded in cultural contexts. A 
multicultural approach both requires and enables us to step into a realm of thinking 
which challenges our valuing of different styles and branches of the activity we 
recognise as mathematics. 

At the beginning of the twenty-first century we have a much greater 
understanding of the global nature of mathematical endeavour than previously, and 
this has considerable implications for the ways in which history can be interpreted 
and incorporated beneficially in mathematics classrooms. One of the most widely 
accepted contemporary descriptions of what history is about can be summarised in 
the phrase the study of change over time. This study, however, always carries a 
fundamental philosophical approach, explicit or implicit, which influences the kind 
of interpretation put upon the historical events. There are many advantages in 
contemplating the changes that have taken place in mathematical thinking over the 
centuries. Historical study allows identification of the cultural factors which 
enabled one idea to be acted upon but another to be forgotten about, sometimes for 
centuries, and it also allows a study of the practical applications that the ideas were 
used to support. Furthermore, it encourages an understanding of the ways in which 
ideas that benefit one group have been used to benefit other groups, and an 
appreciation of the ways in which various issues have effected changes within or 
among different cultures. Searching for these aspects can lead to a greater 
appreciation of the wealth of ideas that are a part of mathematics, and a greater 
understanding of the contribution to change made by one’s own culture as well as a 
greater awareness of the contributions made by other cultures. This broadening of 
perspectives can give a new impetus to teachers and students alike to search within 
their own background and culture as well as within the cultures of others, and 
thereby come to understand that what is found is a part of a global heritage rather 
than merely a national or regional one. 

Mathematics is not just text; it lives in the minds of people and can, to an extent, 
be disclosed by interpreting the artefacts they have produced. These artefacts, 
inscriptions, instruments, books, and technical devices have been developed in 
particular places for particular reasons and an understanding of these reasons can 
help students to relate mathematical ideas to something greater than simply their 
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own immediate environment. Through finding primary sources, making conjectures 
from the evidence of history, researching from secondary sources, using original 
instruments and methods, thinking of the ways in which need leads to creativity, 
students can learn to use the tools of other peoples and other cultures. In this way 
they can expand their own skills in ways that empower them to express their own 
intuitive feelings and thoughts, enabling them to use and develop their own aesthetic 
and creative senses. 

2.3.2

One of the ways of using the history of mathematics to help interlock ideas, 
illustrate their development and engage the attention of students is through the use of 
themes that are problem-based rather than personality-based. The following five 
examples are included to encourage teachers to find different methods from history 
for doing calculations which have applications that are both modem and appropriate. 
The first two examples come from early Egyptian mathematics. 

(i) Egyptian multiplication example 

Did ancient Egyptian mathematicians multiply in the same way as we do, and if not 
is their method a useful resource for today’s classroom? In their method of 
duplication and mediation the Egyptian would proceed as follows. In multiplying 
17 by 13, for example, the scribe had first to decide which of the numbers he was 
going to multiply by the other. If 17 was chosen he would then proceed by 
successively multiplying 17 by 2 (i.e. counting to double each result), and stopping 
before he got to a number which exceeded the multiplier, 13. He then added such 
results as would correspond to multiplying by 13 (here, 1 + 4 + 8). This method can 
used for the multiplication of any two integers, since every integer can be expressed 
as the sum of integral powers of 2. It is highly unlikely that the Egyptians were 
aware of this general rule in the form that we give it today, though the confidence 
with which they approached all forms of multiplication by this process suggests that 
they were aware of a reliable algorithmic process. This ancient method was widely 
used by Greeks and continued well into the Middle Ages in Europe. 

(ii) Early Egyptian division example 

For early Egyptians, as for us, the process of division was closely related to the 
method of multiplication. In the Ahmes Papyrus a division x/y is introduced by the 
words ‘reckon withy so as to obtain x’. So an Egyptian scribe, rather than thinking 
of ‘dividing 696 by 29’, would say to himself, ‘starting with 29, how many times 
should I multiply it by itself to get 696’. The procedure he would set up to solve this 
problem would be similar to a multiplication exercise. The scribe would stop at 16, 
for the next doubling would take him past the divisor, 29, and taking the sum of the 
appropriate numbers from the continued doubling of 29 gives the answer. 

People have developed skills in mathematics, just as they have in other subjects, 
which reflect their cultural needs and values. Mathematics ceases to be relevant if it 
appears to be at odds with what people believe to be useful or true. The next three 
examples come from islands and island groups in the southern Pacific Ocean and 
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show other aspects of the way a multicultural approach affects the presentation of 
mathematical ideas and methods (see Begg et al 1996).

(iii) Concepts of distance and area 

In many Polynesian languages the idea associated with distance is to do with how 
long it takes to get somewhere rather than with the linear ground distance, so 
traditional questions about calculating distance may not convey any useful methods. 
In New Guinea the value of a piece land has more to do with its productivity 
potential than with its length and breadth, so the traditional concept of area has little 
relevance. In lands which have such very different terrains than those of the parts of 
Europe where concepts and unit terms for describing linear distance and length-and-
breadth area were developed, it is more useful to see these traditional calculations 
methods as a part of European mathematics. 

(iv) Beliefs, algebra and statistics 

In introducing variables or equations one talks about x standing for an unknown. 
Many traditional beliefs among Pacific Island peoples link unknowns with magic, 
evil spirits and things to be avoided. At least in the early stages of algebra, students 
of these islands would find — + 3 = 7 much easier than x + 3 = 7 . Similarly, 
consider this question: “If half of all children born are boys and the sex of the child 
is an independent outcome for each birth, what is the probability of the fourth child 
in a family being a boy if the first three were girls?” Asking this in some cultural 
groups could well return the answer that the assumptions are not valid, as the sex of 
a child depends on God and is not random. 

(v) Language 

It does not make mathematics multicultural simply to translate European 
mathematics into the language of an indigenous people. For example, in English 
‘equals’ has different meanings in the context of sets and numbers. Some languages 
use the same word for a number of equivalent relationships (equals, congruent, 
equivalent, similar), and so translation does not convey the same breadth of 
mathematical language. Even with non-mathematical words, one language may not 
have developed subtlety in the same areas as another. 

These examples help us to see how many aspects of mathematics and its 
development can be discussed when a problem-based approach is enhanced by 
adding a multicultural dimension to the teaching of the history of mathematics. 
Discussion around topics such as those mentioned in the above examples help 
students to see ways in which differences in history, geographic location, culture and 
beliefs have influenced developments in mathematics. This, in turn, may well help 
students to understand better the concepts of multiplication, division, measurement, 
algebra, statistics, reasoning and so on. In solving similar problems in several 
different ways, there could well be a kind of synthesis of mathematical procedures 
and traditions from a number of different countries and cultures. 
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This approach does not merely give a way of integrating the history of 
mathematics effectively, it is also inclusive of students with different intuitive 
dispositions and insights. It is useful in increasing the range of different 
mathematical skills which students have available for problem solving. It allows 
students and teachers to think of mathematics as a discipline of continuous reflection 
and action influenced by thoughtfulness, reasoning, known procedures, 
intuitiveness, experimentation, and application to practical situations. It 
demonstrates that mathematics, like all other subjects that students study at school, 
is not merely a subject in which one learns a series of irrefutable and unchangeable 
truths. It opens up ways in which the study of mathematics also contributes to the 
study of the ways in which people everywhere come to know things, and come to 
see how new knowledge can be used constructively without discarding or belittling 
old knowledge of a different time or place. 

Using a multicultural approach to unravel some of the threads of the past helps 
us to understand the limitations that were placed on our perspectives by former 
labelling methods, For example, the term Arab mathematics usually refers to a 
phase of mathematical development which occurred in very different places, from 
Baghdad at the time of Harun al-Rashid or al-Ma’mun through to the Iberian 
peninsula, and was in fact the work of many people from different origins and even 
different religions who happened to be at the courts of the caliphs. The time span of 
the development of this section of mathematics was long, and there were too many 
known intercultural influences to talk simply of ‘the Arabs’ or of ‘Islamic 
mathematics’. What is important to realise about the mathematics of this period is 
that it is far from being ethnocentric. Appreciating the mathematics that developed 
makes us realise that some caliphs, somewhere in Mesopotamia, judged the 
achievements of science and mathematics as being so important that they invited 
eminent specialists from all over the world to their courts. The work was undertaken 
by many learned people from many countries and cultures, who engaged in what 
amounts to a collective effort, all the way from the Middle-East to the West of 
Spain. It subsequently inspired several scholars in Europe who not only used the 
mathematical insights, but also completed translations from Greek and Syriac into 
Arabic and then into Latin, Hebrew and other languages. So it involved very many 
peoples, very many cultures, several religions, and many languages, and directly 
influenced the mathematics that developed in Africa, the Gulf States, and central and 
western Europe. 

The emphasis one places on this detail or that is frequently affected by the 
philosophical climate of the environment in which one finds oneself. During the 
latter part of the twentieth century, the extension of the ideals of multiculturalism 
into the practice of all disciplines has changed the climate in classrooms, in 
mathematics just as much as in other subjects in schools’ curriculum. Retaining a 
contextual balance in teaching the history of mathematics will mean that horizontal 
connections are grappled with as well as vertical ones. For example, the ways in 
which powerful men and expanding states employed mathematicians for economic, 
colonising and military issues should not be overlooked. History can expose diverse 
motivations, both external and internal, for why and how mathematics has developed 
in different societies. 
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An appreciation of the contribution that multiculturalism has made to our 
thinking and attitudes gives teachers a good background for judging the ways in 
which they can extend ideas of what can be learned about mathematics beyond the 
parameters previously set by European culture and societies, and value other ways of 
looking at things. An acceptance of multiculturalism has meant that history can now 
be used to convey a message which corresponds to the general attitude of many 
philosophers, writers and mathematicians over the centuries: that enthusiasm and 
creativity is fired by a desire to know, to think, to explore and ultimately to prove 
enough to move on to the next mathematical challenge, rather than by a desire to 
find a way to elevate one’s own country or culture, or one’s own gender or race. 

2.3.3

In the teaching of mathematics there are opportunities for introducing aspects of the 
history of mathematics through stories and examples from different ethnic and social 
perspectives. However, each such episode should be carefully prepared, presented 
and respected within its own context. For example, labels such as 
ethnomathematics or women’s mathematics are often useful for bringing attention to 
particular issues, but can often act to politicise these issues and have the danger of 
preventing particular groups from sharing in the wider community of mathematics. 
As we use and teach the global evidence of mathematical ideas developing in 
relation to contemporaneous need and in conjunction with the interdisciplinary 
interactions of ideas of each society, we can contribute to the freshness that 
multiculturalism engenders. 

With the increase in the availability of human and intellectual resources which is 
generated by this philosophical shift, students and teachers of the twenty-first
century will be able to see how one culture, or one group of people, or one 
geographical area has influenced another or added to understanding already gained 
in a different setting. Mathematics is a human enterprise, a voyage into the realm of 
human thinking and experimentation, and not a constantly upward movement 
towards perfection. One looks to history with the idea of restraining the 
paraphernalia of one’s own culture and national identity so that a broader 
understanding of the ideas of others can be gained. This is not to say that teachers 
should avoid identifying the mathematics of their own region. It is one of the 
contributions made by taking a multicultural approach that regional developments 
no longer need be treated as separate issues. It is important that students can 
identify and defend the ideas and nuances contained in the mathematics developed 
in their particular region, and that they recognise the significance of these ideas in 
terms of both the time and cultural context in which they appeared, and the kinds of 
problems that they were developed to solve. 

It is important to celebrate the diversity that history can show us, and to 
recognise that in particular times and places, conditions supported the growth of 
certain groups of scholars and mathematical ideas which made significant 
contributions to the establishment of our current body of knowledge. It is also 
necessary to understand that mathematical rigour is relative to the time and place in 

Mathematics as a human enterprise 
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which the arguments were first conceived, and that denigrating individuals or groups 
for a lack of rigour shows a clear misunderstanding of the meaning and purpose 
involved. Different types of thinkers transcend mere cultural lines; even among 
people of similar backgrounds, there are wide variations in the ways in which people 
think. Understanding these differences and finding the many examples in the history 
of mathematics which illustrate these points can also allow the different thinking and 
learning styles of students to become recognised. Within one culture there can often 
be found those who empathise with the mathematics of another culture, or with the 
ways that others have of expressing mathematical ideas. The Alcazar in Seville was 
built by an Islamic engineer but commissioned by a Christian ruler who preferred 
the mathematical beauty of the designs of his Moorish predecessors just as much as 
he recognised the greater efficiency of the Islamic architectural designs for 
controlling the climatic influences of temperature and humidity. 

A multicultural approach does not seek to lead people to the belief that 
ultimately every culture or group of people have thought of everything that really 
matters in mathematics. Nor does it seek to persuade that everyone will benefit 
from, and be able to use, all mathematical approaches. Studying and understanding 
the methods that other groups of people have developed in response to their needs 
may well help students to identify the particular characteristics of the method being 
taught to them, and thus better understand a particular concept, but it does not have 
the long-term effect of putting everyone in an equal position. It does, however, open 
up the possibilities of comparisons and the recognition of diversity. It enables us to 
see that an exchange of ideas can be made from the security of a mutual concern to 
explore mathematical concepts and to experience the advantages or the beauty that 
the application of the concept provides in the environment of the people who use it. 
Throughout the history of mathematics it is not always possible to decide which 
particular branch or emphasis will persist. There is no clear way to predict what will 
happen, or to nominate which movement will retain ascendancy, or to judge which 
skill will be rendered useless as it is replaced by a new discovery. 

Multiculturalism then, in the sense that we have tried to convey here, is the 
identification and celebration of diversity, the respecting and valuing of the work of 
others, the recognition of different contexts, needs and purposes, and the realisation 
that each society makes and has made important contributions to the body of 
knowledge that we call mathematics. Given this view, the inclusion of a 
multicultural dimension in our teaching of mathematics makes a significant 
contribution to humanist and democratic traditions in education. 
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2.4 Interdisciplinary issues 

2.4.1 Introduction 

Suppose that you attend a lecture in which a well-known mathematician presents the 
results of their recent research activity. You might be surprised to see that the 
lecture room is not crowded, that the size of the audience does not reflect the famous 
name of the scientist, but consists of a small number of research mathematicians and 
a few graduate students. During the lecture you come to realise that only a handful 
of colleagues working in the same specialised field are able to understand the proof 
of the theorem, despite the lecturer’s efforts and unquestionable capability. 

People connected with this issue are aware that, quite often, editors of
mathematics research journals have difficulty in finding knowledgeable reviewers to 
assess newly submitted papers. The huge advances in the discipline of mathematics 
and the high degree of sophistication in all of its branches have resulted in narrow 
specialisations. No mathematician would nowadays be able or even dare to try to 
learn all mathematics, to be a kind of universal mathematician. 

This is one of the characteristics of modem mathematics which has generated a 
widespread idea that mathematics is a highly difficult and demanding subject. Its 
abstract nature and specialised symbolism makes it unattainable for most ordinary 
people. Another popular view of mathematics, by contrast, is that of a utilitarian 
subject seen only in the context of its applications. This ambiguous inheritance of 
mathematics, seen as both a mystical, abstract, difficult subject and as a tool for 
other disciplines, has contributed to the development of negative attitudes towards 
mathematics. These beliefs are unproductive in the teaching and learning process, 
adversely influencing the attitudes of students. 

The history of mathematics, however, informs us that this kind of specialisation 
is a recent development and that the situation was quite different in the past. Going 
back in history, we can easily see that not only were the various branches of 
mathematics unified and interrelated, but that mathematics, particularly elementary 
mathematics, was constructed by humans in an effort to answer real life problems. 
More than that, those problems were not only mathematical but also 
indistinguishable from other disciplines to such an extent that it is often not clear 
whether practical or theoretical problems motivated the development of one or the 
other, Part of this story is by no means unknown to the teacher. There are many 
examples where teachers refer to applications of mathematics in physics and other 
school subjects. Yet these references are often made incidentally and in a passive 
rather than in a systematic and organised sense, whereas the student may be 
interested in having first hand experience of those mathematical concepts and 
methods which were motivated and developed hand in hand with other disciplines. 

Specialisation in education too is a modern phenomenon, which results in 
viewing present day school mathematics as completely separate from other subjects 
of the curriculum, and school administration and time-tabling of classes also often 
work against efforts to make links between subjects. Typically, history classes deal 
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with politics and economics but only mention technology in passing. Little, if any, 
attention is paid to the contributions that mathematics at all levels has made to 
general economic development, while the political motivations for developments in 
mathematics go unnoticed. Clearly every subject has its own history, but all their 
histories are linked within the contexts in which they originated and were used and 
studied.

The history of mathematics can act not only as the factor linking mathematical 
topics, to the fuller understanding of both, but also between mathematics and other 
disciplines and as part of history itself. We consider here (1) how the history of 
mathematics links with the study of history; (2) how it links topics within 
mathematics; and (3) how it links mathematics with other disciplines. 

2.4.2

With regard to the place of history in the curriculum, one might argue that 
mathematics plays no role within history. However, there are many skills and 
processes used in studying history, which are also useful in the study of 
mathematics. These skills can give those who study history new insights into their 
own learning of mathematics, For example, since history uses logic, reason and 
various forms of evidence to justify interpretations of past events, these ideas can be 
seen as analogous to the processes of seeking justification for mathematical 
statements. The teacher alert to these parallels is in a stronger position to make links 
and encourage student discussion and understanding. 

Conversely, mathematical thinking may support students in several ways when 
studying history. The investigation of primary evidence and the process of deciding 
which are the key results, factors or connections in historical events; the 
identification of causes and effects from perceived patterns, and making conjectures 
from evidence, are all activities which can be enriched by the skills learnt in 
mathematical problem solving. Researching secondary evidence on mathematical 
topics in books, encyclopaedias and articles and using original texts, instruments and 
materials to replicate the process of doing mathematics from another time or place 
can help to deepen one’s understanding of historical periods and the ways in which 
people of the time tackled everyday problems. 

These connections suggest that while the contexts and intentions of the two 
subjects may be quite different, there are not only cognate skills that are being used 
in the practice of both history and mathematics, but that making them explicit may 
help learners to recognise and develop these transferable processes. 

2.4.3 History of mathematics linking topics within mathematics 

Until relatively recently, different strands of mathematics have been developed by 
mathematicians who were acquainted with most, if not all, areas of mathematics of 
their time. Although this is now probably impossible, mathematicians make 
increasing links within the subject to try to prevent fragmentation. Davis and Hersh 
(1982) show a list of present and past mathematical topics to illustrate the rapid 
expansion of the subject over the past 100 years. The history of mathematics is the 

History of mathematics and the study of history 



54 2 Philosophical, multicultural and interdisciplinary issues 

ideal context where students can be shown how interdependent the different areas of 
mathematics are today, and how they have been steadily becoming more and more 
interrelated over time. 

This is true from almost as far back as we have records. The popular conception 
of Euclid’s Elements, for example, is that it is a geometry text. However, anyone 
who spends even a short time studying the different books of the Elements comes to 
realise that this is a synthesis, by mathematicians of one particular culture, of a large 
part of the mathematics that has gone before, and that it links together a wide range 
of different mathematical ideas within its formal geometrical context. 
Understanding and recognising the links between different areas of mathematics can 
be approached from a relatively elementary background. We only have to mention 
here Euclid, Al-Khwarizmi and Descartes to indicate how an inventive teacher with 
historical resources can demonstrate how arithmetic, algebra and geometry are 
related in the work of these mathematicians and how the relational ideas deepened 
and developed over time. 

During the nineteenth century, we see more examples of the synthesis and 
consolidation (as Wilder calls it) of old with new mathematics. The concentration 
on the processes of the different branches of mathematics, and the consequent 
development of and relationships between these processes (as general properties of 

Figure 2. 1: Symmetry and spiral formations in plants, from J. Bell Pettigrew, Design in 
nature, 1908. 

areas of mathematics), produced hierarchies of abstract structures which became 
successively more inclusive of the mathematics that had gone before. Unexpected 
alliances have emerged between different branches of mathematics. Algorithm 
theory which began in the first part of the twentieth century has its roots in logic 
which was one of the most profound studies of the ancient Greeks (Chabert 1999; 
Schreiber 1994). A later development, model theory, is responsible for the return of 
infinitesimals, in the non-standard analysis of Abraham Robinson. 

An impressive example of links between different parts of mathematics is the 
notion of symmetry, which had its first appearance as a geometrical notion (Weyl 
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1952). In the late eighteenth and early nineteenth century it began to be recognised 
that algebraic permutations had the same structure as some geometric symmetries 
and later, as the theory of algebraic group structure developed, this was applied to 
classify different types of geometric transformations. In this way, geometry and 
algebra became inextricably linked through the recognition of common properties 
which emphasised higher order procedures and operations. It is these procedures 
and operational generalisations which we focus on when we are discussing the 
deeper nature of mathematics, and it is precisely these structural aspects that we try 
to help our students develop when we are teaching, even at elementary levels (see 
Ch. 5). The recent proof of Fermat’s Last Theorem by Andrew Wiles shows how a 
problem unsolved for many years, tantalising mathematicians thereby, has over its 
history considerably enriched the body of mathematics known as number theory. 
The solution of this old problem was achieved using one of the most recent notions 
in mathematics, modular elliptic curves. This is just one example of how the 
conjunction of the old and the new is a commonly occurring event in the 
development of mathematics today. 

2.4.4 History of mathematics linking mathematics with other 
disciplines

(i) The physical and biological sciences 

The link between mathematics and the teaching of physics has a long and well-
established tradition, and history offers many examples of problems and alternative 
solutions. Thinking about a problem from an historical context can make the 
learning of physics and mathematics more meaningful. A good source of examples 
covering many areas of the science curriculum can be found in journals like Science
and Education where discussions range over the epistemological bases for scientific 
beliefs, the nature of evidence, the processes of scientific method, and the sense in 
which pupils’ concepts may or may not be like those of earlier scientists. The 
naming of a concept such as force identifies a general phenomenon, while the 
formation of equations describing the relationships between concepts is a way of 
modelling them in measurable terms. However, naming and establishing 
relationships between concepts are theoretical activities, and through these 
theoretical constructions we may be led to believe in the reality of the objects we 
ourselves have created. In discussions such as these, it can be seen that not only 
may mathematics be used and developed as a tool to solve problems, but also that 
the epistemological bases of the concepts involved call into question the ways in 
which these ideas are symbolised in mathematics itself. Some examples of such 
situations follow. 

Floating, sinking, Archimedes’ principle and relative density 

The familiar story of how Archimedes investigated whether the King’s jeweller had 
cheated him, by using a proportion of silver in a crown supposed to be made of solid 
gold, can be used with quite young children. 
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A familiar sight in some primary classrooms is that of children experimenting to 
determine which objects sink and which float and asking why they do this. By using 
a bowl of water with graduations on the outside it is possible to make a reasonable 
estimate of an object’s volume. Many things can be learnt in this way about the 
basic techniques of measurement, and about relative densities, perhaps 
unconsciously re-enacting experiences similar to those of our ancestors. We know 
now that the density of silver is less than that of gold and might refer to the anecdote 
where Archimedes “ran naked through the street shouting eureka, eureka” (Heath
1921 ii, 19). The reason for his enthusiasm was the discovery of the principle of 
displacement, but the thrill of making a discovery is a very emotional event and an 
opportunity can be taken by teachers to help pupils share this kind of excitement. 
Hitchcock (1996) has provided many useful ideas for the dramatisation of scientific 
events, and plays such as Brecht’s Galileo (1 952) or Whitemore’s Breaking the code 
(1987) can be used to explore the emotions and the scientific and political contexts 
of discovery (see §7.4.10 and §10.2.1 for filler discussion of plays in the 
classroom).

Dynamics, velocity, acceleration and energy 

Roll a marble down each of two inclined planes. The planes have the same height 
but different slopes, Which marble has the greater velocity when it reaches the 
bottom of its slope? 

Figure 2.2: 18th century model illustrating Johann Bernoulli’s ‘brachystochrone 
problem’: the marble b that falls along the cycloid passes G before the marble d that falls 
along a straight line from Desaguliers, Experimental philosophy, 1734).. 

Frequently students limit themselves by only searching for a formula to solve the 
problem, which is a straightforward task in itself but restricts the students’ thinking 
about the physical possibilities. By drawing the velocity and acceleration vectors, 
the forces acting on the marbles can be described, and by graphing the velocities of 
the marbles, the teacher can introduce a practical example of one of the problems 
which motivated the development of the calculus. Although the ideas used in the 
concept of energy conservation are difficult, they were already implicit in some, 
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partially metaphysical, considerations of Galileo, developed later through Huygens’ 
experiences of collisions, generalised by Leibniz, and further generalised by Johann 
Bernoulli, finally reaching Joule’s formulation half way through the nineteenth 
century. Students’ own learning might follow a similar path helping them to gain 
greater insight into both physics and mathematics. 

Invariance, non-Euclidean geometry and relativity 

A teacher alert to the history of mathematical and scientific ideas has a rich set of 
resources for illuminating pupils’ studies, For students beginning to study twentieth 
century physics, the teacher can outline the contribution to these developments of 
some interesting and accessible mathematics. The beginnings of the concept of 
invariance, so important in the physics of the twentieth century, can be found in the 
projective geometry of Desargues and Pascal, with the ideas of projection and 
section. The techniques of projection and section are intuitively appealing and were 
developed by Chasles, and later by Poncelet and other nineteenth century geometers 
into a method for proving theorems within the new geometry. In a different context 
we find Lagrange developing ideas of invariance from purely arithmetical and 
algebraic problems. By the late nineteenth century, Cayley, J.J. Sylvester and 
Gordan had developed the invariant theory of algebraic curves to a high degree of 
complexity. Also other non-Euclidean geometries had been developed and the 
concept of axiomatic systems was beginning to emerge. Hilbert’s consolidation of 
these different geometries by their generalisation as groups with certain invariant 
properties under specific transformations led to startling new ways of 
conceptualising problems. Hilbert’s systematic study of theoretical physics, in close 
collaboration with Minkowski, led to Minkowski’s early work on relativity theory. 
Without the tools of Riemannian Geometry and the theory of invariance Einstein’s 
general theory of relativity and gravitation could not have been stated. 

(ii) Geography and economics 

Eratosthenes measured the radius of the earth, based on the knowledge that Syene, a 
town at a distance of 20 000 stadia to the south of Alexandria was on the same 
meridian. At noon on the summer solstice, a vertical gnomon cast no shadow in 
Syene while at the same time in Alexandria an upright gnomon (‘pole’) cast a 
shadow corresponding to an angle of one fiftieth of the circle (Heath 1921 ii, 106). 
Using the telephone or the Internet, schools in two different cities of known 
coordinates could liaise. Their students could try Eratosthenes’ method to find the 
circumference of the Earth by comparing the angle of the sun in each place at the 
same time (Ogborn, Koulaides & Papadopetrakis 1996). 

This example shows how a mathematics teacher can collaborate with colleagues 
in the geography department. The next examples indicate themes that would be 
suitable for collaboration with the economics teacher. 

In 1485 the Treviso arithmetic was published as a manual demonstrating the 
power of the new Hindu-Arabic notation for arithmetic, and the ways in which this 
made many calculations easier (Swetz 1987). This was largely motivated by the 
expansion of commerce and banking in the nearby Italian cities and the growing 
trade with Northern Europe. In the next decade, in 1494, Pacioli devoted three 
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chapters of his Summa de arithmetica to trade, bookkeeping, money, and problems 
of exchange. Finding ways of handling money efficiently and accurately has led to a 
number of technical developments, each embodying innovative mathematical 
concepts.

In our own century electronic computers have become indispensable in business; 
the development of these machines engaged some of the most brilliant minds in 
mathematics and physics. Conversely, we can point to a variety of operations and 
notions which come into mathematics directly from the experience of money or are 
reinforced through these means. Notions of expectation and risk, which originated 
in gambling, later became essential in life insurance, as part of the science of 
statistics. Gambling also led to the theory of probability and this now finds 
applications in the most important areas of the theoretical sciences. Derived from 
these classical theories are the modem theories of mathematical economics. 

Another aspect of the links between geography, economics and mathematics are 
the voyages of discovery. The motivations range from curiosity to the expansion of 
empires but the essential needs are the same: accurate maps and ways of finding 

Figure 2.3: Interlacings through time and through the world, from G. Bain, 
Celtic art, 1945
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one’s exact position on an empty ocean. Looking at popular accounts of adventurers 
does not bring these problems immediately to mind, but the history of navigation is 
full of dramatic stories and the slow but sure development of instrumentation and 
calculational devices which enabled sailors to find their way across the sea, by day 
or by night. Here, astronomy and mathematics are the key to success. 

(iii) Mathematics, art and music 

We are often tempted to look for mathematics in artistic creations. A common
example is that of the Islamic tile patterns which are so often taken out of their 
original context and treated just as examples of plane symmetry groups. While we 
can engage in this on one level as an example of applied abstract algebra, do we take 
time to wonder at the significance of these patterns in the contexts in which they 
were created? If we mathematise artistic creations in this way, rather like regarding 
Renaissance painting merely as examples of the development of perspective, we 
may stand in danger of decontextualising and dehumanising them. On the other 
hand an understanding of Renaissance painting or Islamic patterns which includes 

Figure 2.4: Links between mathematics, biology and history are found in the investigation 
of spirals, which goes back to at least the time of Archimedes; here in the shell of a nautilus 
and in a Japanese image of 1866 

recognition of the creators’ mathematical skills is all the richer thereby. 
Finding and identifying pattern is generally recognised as a mathematical 

activity, but the sources and examples of pattern in nature and in artefacts are, in 
some sense, works of art in themselves. So, Islamic patterns, friezes and wallpaper 
patterns world-wide; wrought iron work in gates and fencing in Mozambique, 
Europe and the Americas; weaving patterns in fabrics, baskets and carpets across the 
continents should be regarded as cultural products in their own context, but can also 
be seen as examples of ethnomathematical activity. As people have developed their 
own mathematics, so have they also developed artistic traditions and artefacts. By 
helping students and others to see and participate in artistic projects, which overtly 
use mathematics from some time and place, their understanding of the underlying 
mathematical concepts and skills can be heightened. 
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A sense of rhythm is one of man’s universal and basic perceptions. Building on 
this, the human voice or the sound of a musical instrument and the variety of 
musical creation is infinite. Each culture has its own aesthetic values and so 
different styles of music arise. However, underlying all of these are rhythm and 
structure, the basic elements which can be found in music lessons from primary 
school to the conservatoire. The theory of music is full of applied mathematics, 
which can be found over most of musical history, from the description of the 
musical intervals in the different scales to the compositions and writings of Karl Orff 
and Herbert von Karajan. 

(iv) Ritual, religion and philosophy 

Mathematics in history is inextricably linked with both emerging and developed 
philosophies and religions. There is considerable evidence for the early 
development of counting and geometry in ancient rituals, traces of which are found 
in Egypt, Babylon, India, China, and Greece. The circle and square were sacred 
figures with special significance and their properties were studied by the priests. 
The observation that the square on the diagonal of a right triangle was equal to the 
sum of the squares on the other two sides was widely known, and the dissection and 
rearrangement of areas found both ritual and practical applications in the building of 
altars and the construction of temples. Also, in exploring the properties of numbers 
we observe how religious practice may be affected by mathematics in number 
symbolism and mysticism. 

Mathematics is also a science of the infinite. Hermann Weyl speculated that the 
presence of the infinite in mathematics runs parallel to religious intuition. Be that as 
it may, metaphysical speculations are present in mathematics as in many other 
human activities, and it is just these metaphysical notions that create the problems 
with the understanding of many modem day mathematical concepts. At a somewhat 
deeper level of cultural influence we can see how notions of mathematical proof 
have influenced theology. Such was the search for certainty that Spinoza, in the 
seventeenth century, employed the Euclidean formulation of elementary notions, 
axioms and theorems in his proofs of the existence of God. 

In a situation where both mathematics and philosophy are part of the curriculum, 
there are opportunities to enrich both disciplines with historical examples. 
Following step by step the birth of western rationality, by integrating the knowledge 
that students possess from their philosophy course with that acquired during their 
mathematics lessons, can enable them to achieve a deeper level of knowledge about 
the cultural role of mathematics. Until the eighteenth century, no clear distinction 
existed between philosophical and mathematical thinking. ‘Natural philosophy’ was 
the name given to scientific activities until relatively late, so the aspects of western 
rationality that are revealed during mathematical activities can be regarded as the 
counterpart of those explored during the philosophy class. 
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2.5 Conclusion 

This chapter takes into account the metacognitive level, the level at which didactics 
and history of mathematics meet each other. An exploration of educational theory 
which goes over curricular planning, and a history which goes over a story of events 
can try to understand the how and the why of what is happening, in history and in 
the classroom. This metacognitive request pushes the didactician firstly to 
investigate the nature of mathematics, and then the surrounding philosophical, 
multicultural and interdisciplinary issues. The analysis we have done leads us to see 
even more clearly that school mathematics has to reflect, in a way it has not always 
done hitherto, some aspects of mathematics as a cultural activity. 
- from the philosophical point of view: mathematics must be seen as a human 

activity, with its cultural and creative aspects. 
- from the interdisciplinary point of view: when mathematics is linked with other 

subjects, the connections must be seen not only in one direction. Students will 
find their understanding both of mathematics and their other subjects enriched, 
through the historical liaison, sympathies and mutual aid between the subjects. 

- from the cultural point of view: mathematical evolution comes from a sum of 
several contributions. Mathematics can be seen as having a double aspect: an 
activity both done within individual cultures and also standing outside any 
particular culture. 
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Chapter 3

Integrating history: research perspectives 

Evelyne Barbin 

with Giorgio T. Bagni, Lucia Grugnetti, Manfred Kronfellner, Ewa Lakoma, 
Marta Menghini 

Abstract: The question of judging the effectiveness of integrating historical resources into 
mathematics teaching may not be susceptible to the research techniques of the quantitative 
experimental scientist. It is better handled through qualitative research paradigms such as 
those developed by anthropologists. 

3.1 Introduction 

Over the past twenty years or so there has been a growing interest in history by 
teachers and educators. What consequences may this interest have for mathematics 
education? And how can we judge its effectiveness? A great many articles have
appeared in increasing number over this time, including educational reports, 
reflections of teachers and accounts of teaching experiences. This material gives
different arguments in favour of including a historical dimension in the teaching of
mathematics, and often contains reasons for why the teacher believed it to be
effective. We also can identify through this material different ways in which it is
effective, depending for example upon whether the presence of history is implicit or
explicit in the teaching situation; and whether the use of history is local, being used
for a particular topic, or global-that is, characterising the didactic strategy or the
way the mathematics is taught.

The two most commonly presented reasons for the inclusion of a historical
dimension are that history of mathematics provides an opportunity for developing
our view of what mathematics is; and that it allows us to have a better understanding
of concepts and theories. In each of these there is a sequence of developing
understandings: the history of mathematics can first change the teacher's own
perception and understanding about mathematics, then it will influence the way
mathematics is taught, and finally it affects the way the student perceives and
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understands mathematics. We can evaluate the effectiveness of introducing an 
historical dimension into the teaching of mathematics through an examination of this 
process.

The breadth of the arguments is such that we cannot approach the question of 
using history of mathematics in a quantitative or piece-meal fashion. We offer 
examples later of case-study evaluations that use a holistic and qualitative approach. 
Our approach should not be seen as prescriptive: we do not propose models or 
programmes. On the contrary, a view of the whole of the process suggests we 
should be cautious; there are limits and risks attached to an approach that takes too 
simplistic a view of the significance of history in mathematics education. 

The change which this may bring about in the image of mathematics held by the 
teacher can be presented as a contrast between a formal presentation of mathematics 
and a heuristic approach provided by history. This difference corresponds to a 
contrast in pedagogic style: that of the traditional teacher, where knowledge is 
handed out by the teacher, and a learning process based on mathematical activity by 
the student. The heuristic view is associated with a constructivist view of 
mathematics in which knowledge is constructed step by step and concepts are 
clarified through solving new problems. History here is not only a revelation but 
also a source of reflection for the teacher, as is shown in the examples given in 
sections 3.3 and 3.4. 

The historical dimension encourages us to think of mathematics as a continuous 
process of reflection and improvement over time, rather than as a defined structure 
composed of irrefutable and unchangeable truths. The latter view is one that may be 
held by the teacher fresh from college or university and without experience of 
research. Thinking about mathematics as an intellectual activity, rather than as a 
finished product, means thinking of problems to be solved, of the importance of 
conjectures and the value of intuition. In this sense, the pupil in mathematics and 
the mathematical researcher are engaged in the same activity. The historical 
dimension here can bring about a global change in a teacher’s approach, whether or 
not the historical element is explicitly present in the classroom. Historical 
knowledge helps the teacher to understand stages in learning as well as to propose 
problems inspired by history, It is interesting to note that teachers in some countries 
are tempted to contrast the image of mathematics which history presents with that 
given by the ‘modem mathematics‘ reforms which were popular in the 1960s. Under 
modern mathematics reforms the teaching of mathematics began with the most 
recent formulation of concepts of mathematics, which is the exact opposite of the 
historically-informed approach. 

Historical awareness also leads teachers to change the way they think about their 
students. As shown in sections 3.5 and 3.6, the responses students make to an 
historical problem take on a new character when they are compared with the 
responses made by mathematicians through the ages. Historical and epistemological 
analysis helps the teacher to understand why a certain concept is difficult for the 
student and can help also in the teaching strategy and development. This has two 
particular consequences for how the teacher can use the historical dimension 
effectively. First, the teacher can adopt a constructive attitude towards the errors the 
students make. Secondly, the teacher can focus on producing a variety of responses 
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to a given problem, relate them to what the students know or to the connections 
within their present knowledge. The historical dimension leads to the idea that 
mathematics is no longer a sequence of discrete chapters (in geometry, algebra or 
analysis), but is an activity of moving between different ways of thinking about 
mathematical concepts and tools. 

When we learn about the historical development of mathematics it affects how 
we think about the time our students spend in developing mathematical 
understanding. If it took several centuries for mathematicians to be able to make 
explicit our current concept of a limit, for example, it is going to take a considerable 
time for our students as well. There is time needed, also, to deal with the 
epistemological problems inherent in manipulating the infinite. And then it takes 
time to move from the idea of the limit as a tool for solving problems to the idea of 
the limit as part of an integrated body of mathematical knowledge linked to other 
concepts, such as that of real number or set. We should note, however, that even if 
students are led to construct their knowledge in a way that parallels the historical 
development, it does not mean that there will be an exact match between the 
student's construction and the historical sequence. After all, obstacles encountered 
by mathematicians in history may not be those that face the student of today. 
Nonetheless, learning that there were obstacles is in itself beneficial. 

If the teacher decides to introduce history explicitly in class, it can be done either 
as part of a global approach in terms of a didactic strategy or in a local way, in the 
context only of teaching a particular topic. In addition to the points made above, the 
teacher may wish to provide a cultural context for mathematical knowledge by 
locating this knowledge within the history of mankind and ideas. Where explicit use 
of history is concerned, there are limitations and risks. It is seen in section 3.7 that it 
can be difficult to understand the procedure used by a mathematician of ancient 
times if it is not set within the historical context. There is a difficulty here for the 
teacher to resolve, well before it becomes one for the student (this raises the question 
of the training of teachers). At least two types of danger can arise when using 
history explicitly. First, using piece-meal historical illustrations can give a false and 
truncated view of what mathematics, and indeed history, was really like historically. 
Alternatively, in trying to present a global historical view, we could be in danger of 
ending up with an education in mathematics history quite independent of the needs 
of mathematics education. At worst, one could fear that mathematics might one day 
be replaced by a teaching of its history. 

It is therefore a question of integrating history within the teaching of 
mathematics, and that is why teachers talk of a historical dimension, a historical 
style, or a historical perspective in mathematics education. These terms describe, in 
a general way, the teacher's active mobilisation of all his or her historical and 
epistemological reflections. In evaluating the effectiveness of using history in 
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mathematics classrooms, we have to consider all the aspects of a historical 
dimension. It is possible to appreciate the effectiveness of using history through an 
ethnographic approach to examples of practice. Section 3.2 suggests we should 
proceed by an analysis of case studies, using the observations of participants and 
interviews with students and teachers, and drawing on existing written accounts, in 
particular on articles where teachers explain why and how their historical approach 
to mathematics has changed the way they teach. 

3.2 The historical dimension: from teacher to learner 

Evelyne Barbin 

A good place to start an analysis of the effectiveness of using a historical dimension 
in the teaching of mathematics is to ask ‘does it work?’. First we need to establish 
what the ‘it‘ is: that is, we need to determine the nature of teacher’s objectives when 
they use history as part of their mathematics teaching. Only after that would we be 
able to seek an answer to our question. But the question remains of how an answer 
might be reached. It is tempting to ask for a ‘scientific’ study of the problem. 
Unfortunately, there exist no successful studies where the impact of an historical 
dimension can be measured by using a battery of tests for determining the 
competences of students, nor comparative experiences between classes where an 
historical dimension was or was not used. The reason for this is that the attainment 
of objectives claimed for using history cannot be measured by assessments (Rogers 
1993). Objectives such as interest or understanding of a concept cannot be 
measured in a quantitative way. It is even less appropriate to use quantitative 
methods for trying to measure the impact on mathematics education when history is 
used in a global way. Such attempts as have been made to formulate and pursue 
such studies have failed on methodological grounds. 

We shall attempt a response to our initial question in another way, through the 
use of a qualitative analysis of the changes that can occur when history has a place 
in the teaching of mathematics. In particular we shall look at the way in which a 
change in the teacher brings about a change in the teaching, which in turn leads to a 
change in the student. The methodology used here is ethnographic, which is often 
used in educational research (Eisenhart 1988). We shall consider nine articles 
written by teachers of mathematics and intended for other teachers. These articles 
are of significant interest, in that they present case studies by teachers of work in 
their own classrooms, and are spread over a sufficiently long time span for us to be 
able to assess agreements and differences. They include at the same time some 
introspection by the teachers on their own conceptions and intentions, and personal 
observations of the effects of the outcomes. In their choice of aims, we can also 
read about the role the teachers played in the reported cases and whether, in their 
view, the observed changes could be generalised to other classes. The nine articles 
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surveyed were all published in France between 199 1 and 1998 in the review Repères 
IREM: namely, Bühler 1998, Farey and Métin 1993, Friedelmeyer 1991, 
Friedelmeyer 1993, LeGoff 1994, M:ATH 1991, Métin 1997, Nouet 1992, and Stoll 
1993.

These articles all concern mathematics teaching in the lycée (15-18 years) and 
are addressed to the same readership. Six of them deal with an explicit use of 
history, one using problems from the history of mathematics and the others using the 
reading of historical texts. The other three articles deal with an implicit use of 
history, one of which is local (a problem inspired by history) and the other two 
global. In overview, three of the authors use history primarily so as to bring about a 
change in the way mathematics is viewed, for five of them the aim is to improve the 
learning of mathematics, and one of them uses history as a way of aiding the mental 
construction of mathematical concepts. 

In the articles, taken as a whole, we can identify five results of using history. It 
can bring about a change in 

- the teacher’s mathematical conceptions 

- the student’s mathematical conceptions 
- the role of the teacher 

- the way students view mathematics 

- the students’ learning and understanding 

These five types of effect are not all discussed in each of the articles and we need to 
consider the different ways the authors articulate them. 

In three of the articles, the authors write about how the study of historical texts 
has changed their own mathematical conceptions and of the changes they perceive in 
their students. The group M:ATH writes that 

The confrontation with mathematical texts changes the view of mathematics for both teacher 
and student. Mathematics becomes alive, it is no longer a rigid object. It is the object of 
enquiry, controversy, contains mistakes and uses methods of trial and error. 

They add: “reading old texts excites the curiosity of the students and encourages 
them to question” (M:ATH 1991). For Monique Nouet, “the prime objective 
attached to the history of mathematics concerns one’s view of the discipline: it is 
possible to show that mathematics is a science on the move”, and one of her final 
class students (17 years) wrote that “mathematics has for me passed from the status
of a dead science to that of a living science, with an historical development and 
practical applications” (Nouet 1992). Jean-Marie Farey and Frédéric Métin wanted 
to share a surprise with their students (Farey and Métin 1993): 

The image that we give of our specialism through teaching is too often that of a frozen world, 
merciless and hardly human [...I. Some people turn to the history of mathematics: 
astonishment and wonder! [...]. We are no longer dealing with a finished product but with 
something in continuous evolution; it is no longer a case of accepting a discipline of divine 
nature, but of understanding tools, methods and concepts. 
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Their article describes the different reactions of 15 year old (2nd class) students 
when presented with a text by Ben Ezra (12th century) which explains the method of 
double false position. 

Some of the authors describe the change in their attitude towards teaching that 
comes from a new understanding of the nature of mathematics. André Stoll finds 
the formal definition of the integral given to students of the final class (1 7 years) 
quite unacceptable given that “two thousand years were required to bring the 
infinitesimal calculus to fruition”, and he suggests a sequence of problems inspired 
by the works of Archimedes, Ibn-Qurra and Fermat. The resultant effect on his 
teaching was to set up a link between integral calculus and differential calculus and 
to introduce a definition of integral in a ‘natural’ way (Stoll 1993). Jean-Pierre
Friedelmeyer explains that it is not a question of expecting our students to follow the 
same evolutionary process that took place historically, but that an understanding of 
history helps the teacher “better to understand certain difficulties that the student has 
and to construct a shortened path whereby the difficulties are confronted with a full 
awareness of the causes of those difficulties” (Friedelmeyer 1991). This is the 
approach adopted in his later article where he explores the root cause of the 
difficulties of the current teaching of analysis which, he claims, lie with the concept 
of numerical continuity, “since the student’s intuition is based on a long-standing
idea of geometric continuity”. A historical perspective provides the opportunity of 
entering into “times when understanding was closer to the intuition held by our 
students, and this aids us in managing the stages by which the concepts and 
fundamental tools of analysis are constructed, and to set the notions of meaning and 
rigour in context” (Friedelmeyer 1993). 

Their new perception of mathematics also radically alters the view the teachers 
have of their students’ learning processes. Nouet considers that the most important 
aspect of the history of mathematics for her students is to raise the question of the 
time needed to deal with a topic: she allows time for her students to construct their 
ideas slowly and to identify moments of misunderstanding. During the course of the 
school year adjustments take place, and the way the students express their ideas 
improves as the teacher delves more deeply into the topic. In this way the students 
are reassured and some regain confidence in themselves (Nouet 1992). History
encourages the teacher to see the student as a thinking and inquiring being, and to 
take a fresh attitude towards the work the student produces. Frédéric Métin’s 
purpose in presenting his 2nd class (15 years) students with a text by Legendre on 
the approximation of n was “to encourage them to talk about the way they thought 
about numbers and approximations”. In addition to questions about the 
mathematics, he asked them to comment on what they found awkward in the 
notation, why Legendre wrote ‘equals’, and what they thought about it (Métin 1997). 
Martine Bühler set her students the famous problem of sharing out winnings when a 
game of chance is interrupted (le problème des partis) and she analyses the seven 
methods invented by her students. Her own knowledge of the solutions proposed by 
Pascal, Fermat and Huygens helped her in encouraging the students to follow 
through their different ideas (Bühler 1998). 

Most of the nine articles deal with examples where history is explicitly 
introduced into a mathematics lesson and comment on its effects on learning. None 
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of the authors attempted to quantify their results. In order to assess whether the use 
of history has an effect on the learner, they did not feel it appropriate to carry out a 
standard evaluation of the students’ abilities in solving some exercise or other. 
Judgements about the effects of the historically-based teaching strategy rests on 
other grounds. It is important to make the point that when students become better at 
understanding, it has a significant effect on their learning (Kieran 1994). The 
conviction that the use of history improves the learning of mathematics rests on two 
assumptions about the process of learning: the more a student is interested in 
mathematics, the more work will be done; and, the more work that is done the 
greater will be the resulting learning and understanding. It may be added that the 
interest provoked by the use of history goes beyond its being just a motivating 
factor. The work which the students are asked to do involves real mathematical 
activity and the learning does not consist solely in diligently working through 
exercises (Barbin 1997). 

Historical knowledge enriches the mathematical culture of the teachers. This has 
important consequences for the way it is taught, and also how the role of the learner 
is perceived. In proposing that their pupils read a problem from an historical source, 
Farey and Métin (1993) adopt a new attitude: 

The teacher does not adopt the position of the person who animates the classroom, but 
voluntarily steps back [...]. We are not wanting the students to find a method of solution, nor 
to carry out a simple application of a method; the students therefore react in ways that are 
different to how they usually behave. 

Jean-Pierre LeGoff writes that a teacher is also a researcher, and above all an 
intellectual, who can find through the history of mathematics the pleasure of 
teaching. The pleasure which the history of mathematics offers the teacher can also 
benefit the student through the wealth of knowledge the teacher gains, something 
that can be summarised by analogy with painting and the neat comment “the more 
colours an artist uses, the richer will be his touch” (LeGoff 1994). 

In illustrating and defending the use of an historical dimension in teaching 
mathematics, many of the authors point out to the sort of historical training their 
teaching rests on. Two of the articles make a different point too, indicating limits to 
the use of history in teaching mathematics, and drawing attention to potential risks. 
Métin concludes his article on a pessimistic note with respect to the reading of 
historical texts; it seems to have most advantage for the better students, and he 
indicates that he is turning now towards a more global use of history through 
introducing cultural and historical aspects into all of his teaching (Métin 1997). 
LeGoff distrusts any historical dimension which would be dictated by an official 
curriculum, he fears that such a move would only propose a ‘historical veneer’, or a 
teaching of history which would create a screen in front of the mathematics, or 
perhaps an historical introduction to texts which would present them retrospectively 
as superceded by later knowledge (LeGoff 1994). 

LeGoff s reflections raise the question of whether an historical dimension should 
be incorporated into the official mathematics curriculum, which is dealt with more 
fully elsewhere in this book. Up to the present, the French curriculum mentions 
history in connection with mathematics teaching only as a possibility: the teacher is 
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completely free to use history or not. If some form of general recommendation were 
to be imposed, we face two difficulties. First, it would be hard to implement, unless 
teachers were to have a specific and solid training. Second, a too specific curriculum 
could have the perverse effect of making the historical aspect rigid, or it might 
separate the history from the mathematics. These difficulties would multiply with 
developmental changes to course models or to teaching methods imposed on 
teachers under the pretext of efficacy or because of a new view of the science of 
teaching. These points should be borne in mind when considering the political 
context of educational reforms. To return to the overall point of this section, 
however, the articles examined above show considerable agreement between the 
different authors and we have identified qualitative similarities in the changes in the 
attitudes of teachers and students. This suggests that the experiences described are 
not exceptional, but can be generalised to all mathematics education, provided we 
take account of the particular nature of the specific examples we have mentioned. 
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3.3

Manfred Kronfellner 

The ‘New Math’ of the 1960s and 1970s aimed to introduce in school from the very 
beginning a university level of rigour. The obvious difficulties experienced by 
pupils in the process of learning and understanding of these concepts led educators 
in the 1970s to develop alternative approaches, such as ‘simplified analysis’, while 
still maintaining the demand for exactness. But in practical mathematics education 
these revisionist proposals did not succeed. In reaction to the problems posed by 
New Math, in the 1970s the genetic method was reinvented (or rediscovered). 
Roland Fischer, for example, proposed the idea of a heuristic approach with 
‘subsequent exactification’ (Fischer 1978). In contrary to the New Math ideology he 
argued for teaching the essential concepts at a heuristic (“naive”) level initially, then 
to apply the concepts, theorems and algorithms on this low level as far as possible, 
and to increase exactness and rigour only afterwards. 

In the case of differential calculus this method leads to the following teaching 
strategy. Do not define the concept of limit, at first, in the usual formalistic way, but 
use only a heuristic idea such as ‘unlimited approximation’ (Kronfellner & Peschek 

1991, Bürger et al. 1991, Kronfellner 1998, 76ff). The symbol lim is in this phase 

of the teaching strategy not a well defined mathematical concept, but only an 
abbreviation for the phrase “when z approaches (unlimited) to x”. Other theoretical
concepts, such as continuity, are also avoided in this phase. Based on these intuitive 
conceptions some rules of differentiation, restricted to polynomial functions, are 
derived and applied to those tasks usually treated in school mathematics. After this 
period, when the need occurs for rules to treat further types of function, the necessity 
and the advantages of a more exact definition of the concept of limit will be 
elaborated, and subsequently used for more exact proofs of the rules already used, as 
well as for proving additional theorems. 

It can be characterised as 
genetic, more precisely ‘indirect genetic’ in the sense of Otto Toeplitz (1927), 
although in his original proposal Fischer was not motivated by historical goals. The 
‘indirect genetic method’ means that there is no need to mention historical details 
explicitly. The historical development only acts as a guideline. It shows the teacher 
(or the textbook author) the crucial way forward: namely, that those aspects of a 
concept which historically have been recognised and used before others are probably 
more appropriate for the beginning of teaching than modem deductive 
reformulations. Newton, Leibniz, Euler and others of the early calculus era 
contributed successfully to the development of mathematics and its applications 

The indirect genetic approach to calculus 

z→x

This approach has epistemological potentialities. 
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Figure 3.1: These gentlemen, who seem to be on the verge of inventing the 
pigeonhole principle, introduced Newton's calculus to English readers by 
showing its benefits for traditional country pursuits. From Newton's Method of 
fluxions (1 736). 
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without an exact concept of limit, and without the concept of continuity. This can be 
used as an epistemological argument to avoid exaggerated exactness in too early a 
stage of the teaching process, to proceed to contextual interpretations and 
applications in order to make these (pre-) concepts meaningful to the pupils, and 
only after that to elaborate more exact definitions. 

The historical development also shows that the community of great 
mathematicians needed a long time, more than one century, to build the conceptual 
basis of the subject. This underlines once more the intrinsic difficulty of these 
insights and reminds us to be patient with our pupils and not to assault them too 
early with such difficult mathematical concepts and too high levels of abstractness 
and exactness. Teachers sometimes feel guilty or dissatisfied when they teach a 
subject on a lower level than they are familiar with from their university study. 
Such teachers can hopefully be reassured by pointing to the historical development. 
Is the mathematical level of Euler and others really too low for our pupils? 

The indirect genetic method has broader potentialities. According to Toeplitz 
one advantage of the approach consists in the possibility of the teacher making 
parallels to the historical development visible, and supplementing the teaching with 
additional historical details without being forced to change the order of succession 
of teaching units. When, for example, the teacher rephrases “approaches unlimited” 
as something like “infinitely close to”, (s)he has an opportunity to speak about 
infinitesimals, differentials, their dubiousness, and their recent interpretation in 
Robinson’s ‘non-standard analysis’. When starting the phase of subsequent exacti-
fication (s)he can report explicitly about the famous criticism of Bishop Berkeley, 
the long lasting development from Newton, Leibniz, to Cauchy, Weierstrass and the 
reason for the search or need of an exact philosophical and conceptual basis (in 
geometrical style, according to the axiomatic method of Euclid’s Elements). The
need for additional concepts can be underlined by reporting about Bolzano and the 
concept of continuity which he needed for an exact proof of the Intermediate Value 
Theorem. (The search for a proof here shows also the process of historical 
exactification, given that the theorem appears geometrically evident and was used 
already earlier by Euler and Gauss without scruples (Hairer &Wanner 1996, 205). 
Further historical details which can easily be built in are Fermat‘s maximum 
method, Descartes’ or Fermat’s tangent method, remarks on the ‘priority dispute’ 
and its political background, on the use of different notions and symbols and their 
influence on the further development, on ancient roots of infinitesimals and infinity 
(actual versus potential infinity), and so on. In this way some brief asides about the 
development of calculus or of mathematics in general can contribute to an 
appropriate image of mathematics as a dynamic and developing science, contrary to 
some public opinion, and as an important part of our culture. 

In spite of these advantages the indirect genetic approach contains also 
limitations and risks. It may be that this method needs more time to teach than a 
straight-forward and more formalistic one, even if no additional historical details are 
explicitly mentioned. Furthermore the approach may look somewhat long-winded
or fuzzy, though only for those who are already experienced in using mathematical 
formalism; so it is an impression which teachers have, rather than their pupils. The 
latter, by contrast, feel rather confused by unfamiliar abstract symbols and concepts. 
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Certainly, teachers have to be convinced that this additional need of time is a 
fruitful investment and not wasted, even when this cannot be verified by indubitable 
empirical results. They should be encouraged to make their own experiences with 
this method, and to compare the results and their feeling with previous experiences. 
It is especially important that teachers should learn confidence, not to have guilty 
consciences when doing mathematics on less precise level than that of their 
university studies. 

Another limitation consists in the very real difference between the learning pupil 
and the great mathematician of the past. Pupils do not necessarily feel a lack of 
rigour, whereas the great mathematicians had a more subtle perspective. It is well 
known that, from Newton onwards, several versions of the calculus were explored 
from the perspective of validity and rigour, a fact underlined by Bishop Berkeley‘s 
famous criticism. 

On the other hand, there is the converse danger, when teachers set out to teach 
according to the indirect genetic method, of underestimating the advantages of 
modem notation and exactness. Although too high a level of rigour and formalism 
in an early phase of the teaching seems to be obstructive, it is still an important goal 
of mathematics education to show the merit of precise and exact formalism and to 
teach students to recognise and use this advantage. This goal has to be taken into 
account, but mainly in a later phase of teaching. Similar arguments hold for the 
possibilities and advantages of modem technology, in computer algebra systems. 
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3.4

Ewa Lakoma 

We can distinguish two essential models of how mathematics education takes place. 
In the traditional model, the teacher plays the main role and gives to students ready-
made, already-existing, independent knowledge. The main style of teaching is a 
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Stochastics teaching and cognitive development
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lecture, during which the teacher shows students definitions of mathematical notions 
and typical examples of applications of these notions. The main task of students is 
to become acquainted with these definitions and applications and to use them in 
typical exercises. This model takes account only of logical connections between 
mathematical concepts, treated synchronically (that is, irrespective of any 
development over time). 

An alternative model, which has arisen more recently, is one in which students 
learn mathematics in a more active way and construct, step by step, their own 
mathematical knowledge. In this active style the role of the teacher is quite 
different. Here the teacher plays the role of tutor, advisor, observer and helper, 
helping students to work in the direction and manner appropriate to their abilities. 
This model has arisen through recent research in mathematics education which 
shows that the epistemological structure of mathematics, in the matter of students’ 
cognitive development, differs from that presupposed in the scientific, synchronic 
model (Freudenthal 1983; Sierpinska 1996). Thus one of the main aims of didactics 
of mathematics is to gain the knowledge necessary to create a new style of 
mathematics teaching. In this approach it is necessary to recognise the structure of 
mathematics not only from the logical, formal point of view but also from the 
diachronic perspective, which takes into account the historical development of 
mathematical concepts. 

In the case of probability and 
statistics, which for brevity we call 
stochastics, understanding the 
mathematics is not enough to work out 
an approach to teaching. The didactical 
structure must differ essentially from the 
scientific one, which is founded on 
Kolmogorov’s axiomatics (Hacking 
1975; Lakoma 1992). The high-level
probabilistic concepts are too abstract 
and too far from the real context to be 
understandable by students who are not 
becoming mathematicians. In education 
we need another, non-axiomatic,
structure of probability which shows the 
domain as a mathematics alive and in the 
process of being developed. 

The dual character of the probability 
concept, described from the historical 
point of view by Ian Hacking in his work 
The emergence of probability (1975),
has become an inspiration for research 
into how the probability concept 

develops in today’s classroom (Lakoma 1990). Today’s environment is certainly 
different from what it was some centuries ago, but the main research hypothesis is 
that the dual character of probability —laws of chance versus degrees of belief— 

Figure 3.2: Galton’s Quincunx (1873), a 
model for a probabilistic experiment. 
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plays as important role today in the process of learning probability and statistics as it 
did in history. One of the main aims of these research studies in stochastics 
education is to explore and to understand the process of forming in the student’s 
mind such mental objects (Freudenthal 1983) as can be given mathematical structure 
through the concept of probability. Many individual cases of students learning 
probability and statistics at secondary level were carefully analysed (Lakoma 1990, 
1998, 1999b, 1999c) which led to the didactical hypothesis that the process of 
learning probability concepts has a strong interactive nature. Various forms of 
interactions among students seem to stimulate the process of forming probabilistic 
notions, in a way which respects a student’s natural cognitive development. 

Hacking’s dual characterisation of probability arose from his historical analysis 
of its emergence in the seventeenth century (Hacking 1975, 12): 

It is notable that the probability that emerged so suddenly is Janus-faced. On the one side it is 
statistical, concerning itself with stochastic laws of chance processes. On the other side it is 
epistemological, dedicated to assessing reasonable degrees of belief in propositions quite 
devoid of statistical background. 

Analysis of early probabilistic reasonings shows that both these aspects became 
intertwined, starting from about the time of Pascal. The history suggests that in 
order to acquire the probability concept it is necessary to accept consciously its dual 
nature. Therefore in the process of probability teaching it is necessary to create such 
conditions that will make possible to form in students’ mind the dual probability 
concept.

Working out the historical phenomenology of probabilistic concepts (Lakoma 
1992)—in the sense of Freudenthal (Freudenthal 1983—led to what has been called 
the Local Model’s approach to probability and statistics teaching (Lakoma 1990, 
1996, 1998, 1999b, 1999c). This approach gives students an opportunity to learn 
probability in a way which respects their individual cognitive development. The 
fundamental idea of this approach is to use forms of teaching which stimulate the 
student’s initiative. Natural activities in the process of probability learning are 
involved by discovering and formulating problems which arise from them, and 
searching for solutions, even partial ones, according to the individual students’ 
abilities. These activities allow students to develop both aspects of probability and 
keep them in balance. The methodology of the process, which comes directly from 
Isaac Newton, may be described having the following steps: discovery of a problem; 
formulation of a problem; construction of a model representing the ‘real’ 
phenomenon; analysis of this model; confronting the results obtained from the 
model with the ‘real’ situation. At the early stages of education students build 
models which just fit to the concrete phenomena. These are local models. At the 
more advanced levels these models become more general, appropriate to the whole 
class of phenomena and much more sophisticated mathematically. What is 
important is the explanatory value of a local model. 

The history of probability is used for two important purposes: not only to 
elaborate a didactical approach to stochastics teaching but also to understand 
students’ ways of probabilistic thinking (Lakoma 1990, 1998, 1999b, 1999c). By 
observing when students are able to use in their arguments both aspects of 
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probability we can recognise whether they are already fluent with the mature, dual, 
probability concept or if they still need to make efforts to form in their mind the 
essential duality of the concept. So, it is worth stressing that knowledge of the 
historical development of probabilistic concepts serves us as a tool to evaluate a 
degree of maturity of students’ probabilistic knowledge and understanding. It thus 
serves us as a tool for measuring the effectiveness of the didactical approach to 
stochastics teaching. 

Thus, the example of stochastics teaching shows that using the history of 
mathematics in mathematics education can be effective in : 
− creating a didactical approach to mathematics teaching which takes account of

the student’s cognitive development; 

− recognising the student’s ways of arguments as corresponding with past
problems, and encouraging their responses to real situations similar to those 
known from the history of mathematics; 

− organising the process of learning mathematics according to the student’s actual
abilities.

For assessing the effectiveness of using history of mathematics in mathematics 
education, a qualitative analysis seems to be more useful than a quantitative 
approach. Using history of mathematics is found to be effective when we try to 
recognise general mathematical competencies in the performance of students rather 
than particular skills. It is possible to evaluate this kind of effectiveness after some 
years in which they have been learning mathematics in active style, by observing 
students’ progress and actions in real situations when they use their knowledge. 
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3.5 Ancient problems for the development of strategic 
thinking

Lucia Grugnetti 

One of the risks in introducing history of mathematics in mathematics education is 
the anachronism which consists in attributing to an author knowledge that he never 
possessed, There is a vast difference between recognising Archimedes as a 
forerunner of integral and differential calculus, whose influence on the founders of 
the calculus can hardly be overestimated, and seeing in him, as has sometimes been 
done, an early practitioner of the calculus. If the risk of anachronism is a big one for 
historians, it is not smaller in doing history of mathematics in mathematics 
education. So, when a past mathematician or other scientist is introduced in the 
classroom, it is desirable to outline the political, social, economical context in which 
he lived. In this way it is possible to discover that facts and theories, studied in 
different disciplines, are concretely related (Grugnetti 1994). The interaction 
between history and didactics of mathematics must, however, be developed taking 
into account the negative influences that each can have on the other (Pepe 1990). A 
possible negative influence of history on didactics is the creation of a domain with 
interesting and curious references which are, in effect, not essential and are felt to be 
irrelevant. But the history of mathematics does offer several examples which gain 
by an interdisciplinary approach (Pepe 1990) such as, for example, the number 
systems of the ancients; Galileo, the mathematisation of the physical world and the 
experimental method; Descartes and the analytical method. 

When ancient problems are used, teachers and pupils can compare their 
strategies with the original ones (Grugnetti 1994). This is an interesting way for 
pupils to be led to understand the economy and the power of present mathematical 
symbols and processes. And another point: observing the historical evolution of a 
concept, pupils can remark that mathematics is not fixed and definitive. 

An example of way that the history of mathematics can foster an 
interdisciplinary approach, generating material across several school subject areas, is 
given by the Liber Abaci (1202) of Leonardo Pisano (known as Fibonacci). This 
provides a source of problems which concern different teachers and subjects, such 
as:
– Italian and Latin: what kind of language is that of the Liber Abaci? 

– history: the development of the Middle Ages in Europe and Islam 

– geography: the West, the Middle East, the Islamic world 

– mathematics: pupils' strategies for solving some problems 

– Fibonacci's strategies: why did he solve his problems in the way he did? 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study,
Dordrecht: Kluwer 2000, pp. 78-81
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An important component of this approach is the possibility for the students to 
compare their strategies with the ancient ones. The students can, for example, 
understand the economy and the effectiveness of modem algebraic processes 
compared to the ancient methods. The activity of recognising and comparing 
strategies is one of the most important aspects to develop in mathematics learning. 
Only once students become able to compare different strategies (for solving 
problems, but also for proving theorems), can the process of generalisation evolve. 

It is interesting to ask 13/14 year old pupils to try to translate the following 
problem from the Liber Abaci: 

In quodam plano sunt due 
turres, quarum una est alta 
passibus 30, altera 40, et distant 
in solo passibus 50; infra quas 
est fons, ad cuius centrum 
volitant due aves pari volatu, 
descendentes pariter ex 
altitudine ipsarum; queritur 
distantia centri ab utraque turri. 

When this was done in class, 
in Italy, several translations 
(into Italian) were discussed, 
of which the final version 
was reached, which in 
English may be rendered as 
follows:

Two towers, the heights of 
which are 30 paces and 40 
paces, have a 50 paces distance. 
Between the two towers there is 
a font where two birds, flying 
down from the two towers at the 
same speed will arrive at the 
same time. What is the distance 
of the font from the two towers? 

The 13/14 year old pupils 
then solved the problem, 

Figure 3.3: The two towers problem, here from the using the Pythagorean 
Calandri manuscript (1491), as it appeared on the theorem and solving an 
cover of the Mathematical Gazette of March 1992, an 
issue that was especially devoted to history in The real interest of this 
mathematical education. problem was that of 

analysing and discussing 
Fibonacci’s strategy in which arithmetic writing of operations is not given and in 
which the Pythagorean theorem is implicitly used. This is a literal translation of 
Fibonacci’s text: 

equation.
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If the higher tower is at a distance of 10 from the font, 10 times 10 is 100 which added to the 
higher tower times itself is 1600, which gives 1700, we must multiply the remaining distance 
times itself, which added to the lower tower times itself, i.e. 900, gives 2500. This sum and 
the previous one differ by 800. We must move the font away from the higher tower. For 
example by 5, i.e. globally by 15, which multiplied by itself is 225, which added to the higher 
tower times itself gives 1825, which added to the lower tower times itself gives 2125. The two 
sums differ by 300. Before the difference was 800. So, when we added 5 paces, we reduced 
the difference of 500. If we multiply by 300 and we divide by 500, we have 3, which added to 
15 paces gives 18 which is the distance of the font from the higher tower. 

Pupils had to interpret Fibonacci’s sentences and translate them into mathematical 
symbolism. This activity was done in small heterogeneous groups. In modern 
symbolism Fibonacci’s procedure can be written as: 

102+402= 100+ I600= 1700and

(50 - 10)2+302=402 +302= 1600+900=2500

(Fibonacci says: “this sum and the previous one differ by 800”) 

1 52+ 402= 225 + 1600 = 1825 and 

352+ 302= 1225 + 900 = 2125 

(Fibonacci says: “the two sums differ by 300”). He now uses the diagram: 

and his last sentence could be written as: 

(5 x 300): 500 = 3; 

3 + 15 = 18. 

The discussion brought to the class’s attention the method of ‘false position’, one of 
the oldest ways to solve problems (which was used also by the ancient Egyptians). 

For the students it was an occasion for understanding that it is more economical 
to solve this problem using a simple algebraic equation, which Fibonacci could not 
use. The class discussion centered on the reasons why Fibonacci could not use 
algebra in our sense. In this way a historical example could contribute also to give to 
students the opportunity to compare arithmetical and algebraic procedures. 
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Figure 3.4: Fibonacci’s diagram 

The Fibonacci problem did not finish here! In fact, Fibonacci considers a second 
strategy to solve it. After having explained that the triangle agz (where z is the font) 
is isosceles on the base ag (with ae = eg) by construction, Fibonacci adds (see 
Figure 3.1): 

40 and 30 is 70; the half is 35, in fact the line ef. The lines df and fb have 25 in length, the 
difference between 35 and the lower tower is 5, which, multiplied by 35 is 175, which divided 
by the half of the distance between the two towers, in fact 25, gives 7 (the line fz). Therefore
dz is 32 and it remains 18 for the line zb.

It would be interesting to discuss with students some aspects of Fibonacci’s 
procedure which, as we can see, is based on the similarity of triangles efz and ghe
where h is the intersection point of ef and the parallel to df which contains g. The
open raising of hypotheses by the students, and the subsequent discussion about 
them, are important elements in this didactic strategy. 

Through this kind of activity it is possible to introduce history of mathematics in 
mathematics education avoiding the risks and reaching the aims mentioned at the 
beginning of this section. There is certainly prima facie evidence that it was 
effective for the students. 
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3.6

Giorgio T. Bagni 

The history of mathematics provides a collection of useful examples for assisting in 
the learning of mathematics, which can be used by the teacher in a number of ways 
(Fauvel 1990, 1991; Pepe 1990; Barbin 1991; Grugnetti 1992; Furinghetti 1993; 
Furinghetti and Somaglia 1997). This section examines some topics in the history of 
infinite series which help us to understand better the difficulties faced by today’s 
pupils.

The study of infinite series is an important topic of the mathematical curriculum 
of the upper secondary school. For several centuries it has played a central role in 
the study of analysis (on which see Boyer 1969; Edwards 1994), as well as provided 
a number of counter-intuitive obstacles for the learner. A sum of infinitely many 
addends, for example, is often considered by pupils to be ‘infinitely great’. In this 
instance the history of mathematics can both help the teacher to understand the 
pupil’s difficulty and suggest what to do about it. 

A time-honoured problem in this area is Zeno of Elea’s paradox of ‘Achilles and 
the Tortoise’. This concerns a convergent geometric series. Pupils may experience 
difficulty in absorbing the difference between convergent, divergent and 
indeterminate series, and this can cause problems and inconsistencies in their minds. 
Let us consider directly a famous indeterminate series, the one consisting of +1 and -
1 in alternation. In 1703, the Italian mathematician Guido Grandi stated: “From 1-
1+1-1+ ... I can obtain 0 or 1. So the creation ex nihilo is quite plausible” (Bagni 
1996, II) (we may note here the theological motivation for the argument, which may 
interest some pupils). Grandi’s argument was based on bracketing the series in two 
alternative ways 

Difficulties with series in history and in the classroom 

(1-1)+(1-1)+(1-1)+(1-1)+ ... 

1+(- 1+1)+(-1 + 1)+(-1 +1)+... 

= 0+0+0+0+ ... = 0 

=1+0+0+0+ ... = 1

The sum of the alternating series was considered 1/2 by many mathematicians in the 
17th century. According to Grandi, this can be justified by considering the sum of 
the geometric series 

Then putting x = 1 into the series we should have: 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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We may note that there is a simpler way to reach the same (false) conclusion. The 
same result can be achieved by the following procedure 

1

2
s = 1-1+1-1+... ⇒s = 1-1(1-1+1-1+ ...) ⇒ s = 1-s ⇒ s = —.

It can be interesting for some pupils to ask them what is the fallacy in this
argument. (It is because the argument works only once you have established that the 
series does indeed have a sum which is a number ‘s’ like any other; but that is what 
you are trying to establish. Nowadays we accept such a geometrical series as having 
asum only if |x| < 1 .)

Gottfried Wilhelm Leibniz, too, studied Grandi’s series, and he wrote to Jacopo 
Riccati summarising the argument mentioned above: 

I do not know if Mr. Count Riccati, and Mr. Zendrini have seen about the question whether 1 -

1+1-1 etc. is 1/2, as R. P. Grandi stated, someway correctly. In fact 1/(1 +x) is

1-x+xx− x3 +x4 -x5 etc. so if x is 1, we have 1/(1+1) = 1-1+1-1+1-1etc. = 1/2. It seems

that this is clearly absurd. In the Acta Eruditorum from Leipzig I think I have solved this 

problem.

(this letter was probably written in 1715; see Michieli 1943, 579). In fact Leibniz 
studied Grandi’s series in some letters to Christian Wolff, where he introduced an 
interesting probabilistic argument that influenced Johann and Daniel Bernoulli too. 
Leibniz noticed that if we stop the series 1-1+1-1+ ... at some finite stage, taken at 
random, it is possible to have 0 or 1 with the same “probability”. So the most 
“probable” value is the average between 0 and 1, so 1/2 (Leibniz 1715). This 
argument was accepted by some later distinguished mathematicians, notably Joseph 
Louis Lagrange and Siméon Denis Poisson. 

Later in the 18th century, Leonhard Euler wrote in his textbook on differential 
calculus Institutiones calculi differentialis (1755): “We state that the sum of an 
infinite series is the finite expression by which the series is generated. From this 
point of view the sum of the infinite series 1 - x + x2 -x3+ ... is 1/(1+ x) because
the series arises from the development of the fraction, for every value x”. Euler
considered infinite series as a part of algebra of polynomials (Kline 1972, 537). So
series were considered to be polynomials that can express the original function, 
without any convergence control. As we shall see, this situation can be important in 
the educational field. 

Jacopo Riccati (Grugnetti 1985, 1986) criticised the convergence of Grandi’s 
series to 1/2 in his Saggio intorno al sistema dell‘universo (Ricatti 1754/1761, 87), 
he wrote: 

Grandi‘s argument is interesting, but it is wrong, because it causes contradictions. [...] Let us 

consider n/(1+ 1) and, by the common procedure, let us obtain the series n-n+n-n+n-n et.cet.

= n/(1 + 1) , If we remember that 1-1 = n-n, or 1+n = n+1, we have that either in this series or

in Grandi’s series there are the same number of 0. 
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The contradiction involving “the same number of 0” was reached in this way. 
Having written 1/2 = 1-1+1-1 +... “by the common procedure”, Riccati introduced 
the series: 

n
2

s = 1-1+1-1+1-1+ ... = (1-1)+(1-1)+(1-1)+ ... = 0+0+0+ ... 

s’ = n-n+n-n+n-n+ ... = (n-n)+(n-n)+(n-n)+... = 0+0+0+ ... 

So Riccati concluded that Grandi’s procedure is incorrect. His argument cannot be 
accepted (notice that it is based upon the “common procedure”, which is not correct 
for an indeterminate series), although his conclusion is clear and correct (Riccati 
1754/1761, 86): 

The mistake is caused by [...] the use of a series from which it is impossible to get any 
conclusion. In fact, [...] it does not happen that if we stop this series, the following terms can 
be neglected in comparison with preceding terms, this property is verified only for convergent 
series.

Educational aspects 

Let us turn now examine some educational aspects. This issue was raised with Liceo
Scientifico students in Treviso (Italy) who did not know infinite series, although they 
had been introduced to the concept of infinite set. The following question was given 
to them (45 pupils 16-17 year olds and 43 17-18 year olds—88 pupils in all): 

In I703 the mathematician G. Grandi studied the addition 1-1+ 1-1 +... (addends, infinitely 
many, are always + I and -1). What is your opinion about it? 

Pupils answered as follows: 

— =n-n+n-n+ ...

Let us compare the considered series, we can write: 

26 pupils (29%) said the answer is 0 
18 pupils (20%) said the answer can be either 0 or 1
5 pupils (6%) said the answer does not exist 
4 pupils (5%) said the answer is 1/2 
3 pupils (4%) said the answer is 1 
2 pupils (2%) said the answer is infinite 
30 pupils (34%) gave no answer. 

First of all, notice that the greater part of the pupils interpreted the question as an 
implicit request to calculate the ‘sum’ of the series. Only 5 students (6%) explicitly 
stated that it is impossible to calculate the sum of Grandi’s series. Note too that a 
fifth of the pupils suggested the possibility of two answers. 

The students were interviewed about their answers. Some of them used, in 
effect, similar arguments to those found in the eighteenth century. “If I want to add 
always 1 and -1, I can write (1-1)+(1-1) so I can couple 1 and -1: so I am going to 
add infinitely many 0, and I obtain 0.” (Marco, 3rd class, and 15 other pupils). And 
those students who stated that the sum of the series is 1/2 justified it by arguments 
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similar to the probabilistic argument of Leibniz. “If I add the numbers I have 1, 0, 1,
0 and always 1 and 0. The average is ½.” (Mirko, 4th class). 

So students’ justifications are remarkably similar to some we find in the history 
of mathematics. In particular, we can recognise, explicitly or implicitly, that some 
students felt as did several mathematicians in the 17th and 18th centuries, that an 
infinite series can be always considered a polynomial: the notion of convergence, 
not considered before the work of Gauss, had not entered the Italian pupils’ heads 
yet either . This seems to bear out in this instance the view of Piaget and Garcia 
(1 983), that historical development and individual development are parallel. 

Didactic reflection 

Anna Sfard states that in order to speak of mathematical objects, it is necessary to 
make reference to the process of concept formation, and supposes that an 
operational conception can be considered before a structural one (Sfard 199 1, I0). 
As regards infinite series, the passage from an operational conception to a structural 
one is hard, because of the necessity of some basic notions (for example the limit 
concept).

As regards the savoir savant, the historical development of mathematical
concepts can be considered as the sequence of (at least) two stages: an early, 
intuitive stage, and a mature stage; several centuries can pass between these stages. 
In the early stage the focus is mainly operational, the structural point of view is not a 
primary one. For example, in the early stage of working on infinite series (that is, at 
least until Gauss’s works) main questions of convergence were not fully considered. 
From the educational point of view, a similar situation can be pointed out (Sfard 
1991): of course, in an early stage pupils approach concepts by intuition, without a 
full comprehension of the matter. Then the learning becomes better and better, until 
it is mature. 

There is a clear analogy between these situations. And the experimental results 
given above show that in the educational passage from the early stage to the mature 
one we can point out, in our pupils’ minds, some doubts and some reactions that we 
can find in the passage from the early stage to the mature one as regards the savoir
savant, too. Of course, processes of teaching and learning take place nowadays, 
after the full development of the savoir savant, as regards either early stage, either 
mature stage. So the didactic transposition, whose goal is initially a correct 
development of intuitive aspects, can be strongly based upon the results achieved in 
the mature stage, too, of the development of the savoir savant. 

Moreover the process of teaching-learning and the didactic transposition must
consider that, as we previously underlined, pupils’ reactions are sometimes similar 
to corresponding reactions noticed in several great mathematicians in the history of 
mathematics. This correspondence can be a very important tool for the teacher in 
developing the effectiveness of history as a resource base, but it needs a clear 
epistemological skill. 
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3.7 On potentialities, limits and risks 

Marta Menghini 

Let us try to think about potentialities, limits and risks (Grugnetti 1994) in 
connection with determining the effectiveness of using history of mathematics in the 
classroom.

Consider first the case in which one asks history of mathematics for help in 
teaching an argument. The simplest way is to use history implicitly: to take ideas.
This means that history is not an aim for itself, but a teaching itinerary is constructed 
which must utilise suggestions from various sectors, always keeping in mind the 
didactic aims. So, in speaking of the implicit use of history, we are not referring 
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here necessarily to the “indirect genetic method” of 0. Toeplitz (1 927) discussed in 
section 3.3 above, The indications which derive from history can be very slight. 
This way of using history is growing as more research is done on learning 
difficulties. One tries, in fact, to go back to the origins of a concept, to conceive it in 
a different situation, to return to the instant in which the theory “branched out”. 
More generally, one enters into the area of didactic transposition, that attempts to 
calibrate the didactic operation in relation to the conceptual difficulties and 
complexities of a given topic. 

In a first broad classification, we can say that in those cases the limits are those 
of the classroom, like always in teaching; the potentialities, of course, consist in a 
better understanding of the topic. The risks are involved with a lack in didactical 
transposition; more precisely,. the risk is to follow too much the real historic path. A 
didactical competence is needed, more than a historic one: a historian could easily 
be drawn to criticise the somewhat distorted and adjusted interpretations given to a 
certain event for pedagogic purposes. 

A more detailed example is that of teaching analysis, discussed in section 3.3, in 
which history is used to help pupils better understand a topic which is known to 
cause difficulties for pupils. Another case would be to give, using history, some 
additional knowledge, in order to help in understanding a more general topic. Let us 
explain this by an example. 

In his Conic Sections of the 3rd century B.C. (Apollonius 1923, Apollonius 
1952) Apollonius describes a geometric procedure for the sectioning of a cone with 
a plane in order to determine what we today would call the equation of the parabola, 
and then of the other two conic sections (Mancini Proia and Menghini 1984, 
Menghini 1991). In this procedure one determines a relationship between a segment 
of the axis of the parabola and a segment perpendicular to it, such that the segments 
correspond to what we today would call the coordinates of a point. The procedure is 
not common enough in schools to be considered a mathematical fact ‘without 
history’. Nevertheless, in teaching conic sections, one can follow different paths 
which make more or less explicit use of the history of the subject. 

In an implicit use, one presents the topic along classical lines but without 
mentioning Apollonius and his era. There are notable advantages (potentialities) for
the teacher in this strategy: an application of 3-dimensional geometry, an optimal 
connection between synthetic geometry and analytical geometry, and above all, the 
possibility to connect, using their equations, the definition of the conics as sections 
of a cone to that of a conic as a locus of points. For pedagogic reasons one can 
simplify the original procedure (already rather simple) in many parts: notation, use 
of x-y coordinates, limitation to a right cone, limitation to the parabola. In 
particular, it will be necessary to modify one passage. Given a relation of the type 
a:b = c:d (where a, b, c, d are segments), in order to substitute, in a further 
expression, the value a = b•c/d, Apollonius must introduce a new parameter (which
requires a complicated geometric explanation), since he cannot rely on the algebraic 
procedure, i.e., substituting the segments with their lengths. This “simplification” is 
a deep modification, it must be stressed with teachers. As we said earlier, the limits
of such a use of history are connected with the mathematical difficulty of the topic. 
This treatment is interesting and deep, but it is not easier than the usual treatment of 
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conic sections. The risks (in this case, the lack in didactical transposition) are 
connected with the “simplifications” we mentioned above: the teacher must be able 
to translate and to reinterpret certain passages into a language which is 
comprehensible for the pupil. 

Another teaching aim could be that of ‘giving to mathematics a cultural vision’. 
By immersing a topic in a historic period, we can obtain, within this aim, a changing 
of point of view, an understanding of a mentality, which are important potentialities
in a mathematics curriculum. The principal risks consist in pointing out the 
historical aspect more than the mathematical one, to have a sort of history-course
with a low mathematical level. A limit of this aim is that it demands a certain 
historic competence from the teacher. 

Let us take up again the example of Apollonius, which earlier we dealt with 
implicitly. The historical context of Apollonius’ procedure can be explicitly 
addressed, for suitable classes, and this offers other interesting aspects in addition to 
those of the implicit treatment. One can, for example, compare the definitions of 
Apollonius with those of his predecessors, analyze some of the properties known to 
Apollonius, observe this ‘precursor’ of the Cartesian plane, see how to move from 
one definition to the other, and watch how the concept of conic sections has changed 
over the centuries with a definite ‘cultural’ growth. 

As to the simplifications, it is obvious that one has to rely on algebraic 
procedures in an ‘implicit’ scholastic treatment, since the requirements of Greek 
geometrical handling are so intense. But the algebraic procedure is preferable even
if one chooses the second path, in which history is used in an explicit way. Only in 
this case (in fact, to avoid a ‘misstatement’) one must clearly tell the students that at 
this point one must substitute the lines of Apollonius with algebraic statements. In 
helping the students to understand the difference the teacher can again underline 
different styles in the treatment of a topic. 

In the explicit case the treatment becomes longer than in the first one, so, in 
addition to the limits of the classroom, we have also the limits of time: it is difficult 
to treat topics in this way more than two or three times in a year. The risk is that, 
underlining the historical aspect, the teacher tells students about Apollonius, the 
Greeks, the synthetic methods, and that Apollonius found a brilliant method to 
determine a sort of equation of the parabola by sectioning a cone, but doesn’t 
explain this method mathematically. So the story becomes a too long anecdote, 
which can be boring and reduces its effectiveness, especially for gifted students. 

This risk, in connection with the same aims, can be observed too in the case of 
the reading of original texts. To read in the classroom passages from the original 
works of famous mathematicians is a simple and realistic way to introduce the 
history of mathematics into teaching. From the viewpoint of the historian, it is a 
useful way to begin to develop an interest in history. From the didactic point of 
view, it is one of the first efforts to move out of the usual canons of the teaching of 
mathematics, provided that one evaluates carefully the interest, the relevance and the 
cultural contribution of the chosen text (Barbin 1991). A text which highlights a 
fundamental moment in the history of mathematics (a change in language, an 
innovative idea, a ‘rich’ problem) is interesting also from a didactic point of view. 
Once in a while, for example, a passage is appealing because the language used is 
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different from the usual one, because the problem discussed is interesting, because 
in its solution one uses for the first time an actual technique of demonstration (or on 
the contrary, because one uses a technique different from the one commonly used). 

But we have to pay attention to the use that a teacher can make of the text. When 
trainee teachers were asked if they would use the original text of Apollonius 
(Bottazzini et al. 1992) with their pupils, referring to the passage mentioned before, 
many of them said yes, because one can explain to pupils that today’s notation is 
simpler and more elegant. But the same conclusion can be drawn from the reading 
of many passages! For example in Italy it sometimes happens that 16th century 
algebraists (who write more or less in Italian) are read in the classroom, and the 
same conclusion is drawn. A better historic competence could help in the discovery 
of a deeper significance in the various passages (see section 3.4). Another risk
connected to the lack of historical competence is given by an autonomous 
bibliographical research. Someone not expert in history can hardly know if a chosen 
passage is effectively representative of a certain historical period or of a way of 
thinking. The choice of a work by an unknown and too original author isn’t helpful. 
It is possible that it presents a unique problem to propose in class, but it is not 
appropriate (and may be distracting) to underline its historical aspect. 

Another problem, already hinted at, is that sometimes the reading of original 
texts does not really interest the good students of mathematics but is more 
meaningful to the students with greater interest in humanistic topics. Is it true that 
some of them understand the mathematical problem only through the reading of the 
passage (Lit and Siu 1998)? Or do they like this kind of classroom activity because 
one doesn‘t need to do real mathematics? 

In the case of an explicit use of history the objectives of the educator are quite 
different from those of an implicit use. The intention may be, again, to intervene in 
the conquest of a concept, but above all, one wants to describe a historical period, to 
show the evolution and the stages in the progress of mathematics. In this case, even 
with the necessary simplifications, the emphasis is on history. 

But we can do something more, we can go inside history maintaining an attitude 
as open as possible to historical investigation. This is the case in which we want to 
stress even more that mathematics is something that is developed and can be 
constructed, when we want to stress the creative side of mathematics more than the 
cultural one. Here we need the pupil to become an actor: implicitly by posing 
problems taken also from history, explicitly letting him follow the path of the 
development of a certain piece of history. The risk in this case is to ‘teach’ this 
development. Among the potentialities: the pupil has the courage to discuss 
something done 200 years ago, even by a great mathematician (while he has not the 
courage to discuss what his teacher says). All this, as we saw in sections 3.5 and 
3.6, is strictly connected to the way the teacher acts. 
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3.8 Suggestions for future research 

At the beginning of this chapter, we mentioned the many articles appearing in recent 
years about the use of history in teaching mathematics. For pursuing an investigation 
on the effectiveness of history in the classroom, it seems desirable to collect and to 
study two kind of materials: 
1. to collect experiences of teachers who use history. The purpose is to study their 

aims, their steps, the problems they meet in teaching, the advantages and the 
disadvantages in their eyes. 

2. to collect questionnaires and interviews of teachers and pupils about 
mathematics. The purpose is to study their approaches to mathematical 
concepts, such as the infinite, and mathematical ideas, such as mathematical 
rigour.

The optimal way to explore all these materials is, as we explained earlier, 
necessarily qualitative, recognising that ethnographic methods are appropriate to 
explore the question of effectiveness. But we have to make precise what these 
methods mean for the specific question of the relations between history and 
mathematical teaching. 

If we think about the future, we have to take into account how the teaching of 
mathematics will evolve and what problems may arise in the next years. A major 
point is the interest and enthusiasm towards mathematics found in educational 
circles. This question has two levels. One is the pertinence of mathematics in the 
curriculum. In some countries, there is a trend to reduce the quantity of 
mathematical teaching or to orient it towards applied subjects. This is linked, in 
particular, with the use of new technologies. Secondly, the difficulties of 
interesting pupils themselves in mathematics. This point is very important if we 
think that it is not possible to engage in real mathematical activity without an 
enthusiasm or intellectual interest for mathematics. The introduction of history of 
mathematics can play here a decisive role. History is a source to define perennial 
knowledge, that is, knowledge which permits us to understand the world. But more 
than that, we can find in history the meanings of mathematical knowledge, to 
understand what it is for and what are the problems mathematics helps to solve. All 
this reinforces the image of mathematics for teachers and pupils, so for history to 
respond effectively in this regard is essential. 
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Abstract:The movement to integrate mathematics history into the training of future teachers,
and into the in-service training of current teachers, has been a theme of international concern
over much of the last century. Examples of current practice from many countries, for training
teachers at all levels, enable us to begin to learn lessons and press ahead both with adopting
good practices and also putting continued research efforts into assessing the effects.

4.1

Almost since the beginning of internationally coordinated mathematical activities, 
the importance of a historical component in the training of future mathematics 
teachers has been stressed by historians of mathematics and by mathematics 
educators and has been backed by the mathematical community. Already in 1904, 
the third International Mathematical Congress, held in Heidelberg, adopted a motion 
recommending the introduction of a historical component (IMC 1904, 5 1):

Considering that the history of mathematics nowadays constitutes a discipline of undeniable 
importance, that its benefit-from the directly mathematical viewpoint as well as from the 
pedagogical one-becomes ever more evident, and that it is, therefore, indispensable to
accord it the proper position within public instruction. 

The Congress wished to see established, on an international level (ibid., 5 1):

. . . that the history of the exact sciences be taught at the universities, by introducing lecture 
courses for the four parts: 1. Mathematics and Astronomy, 2. Physics and Chemistry, 3. 
Natural Sciences, 4. Medicine. 

Earlier views on history in teacher education 
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The motion was proposed by expert mathematicians, historians of mathematics and 
mathematics educators, including David Eugene Smith (USA), Paul Tannery 
(France), Anton von Braunmühl, Emil Lampe, Max Simon, Paul Stäckel, and Ernst 
Wölffing (Germany), and Gino Loria (Italy). They made reference to earlier similar 
motions passed by the International Congress for Comparative Historical Research 
(Paris 1900) and by the International History Congress (Rome 1903). 

Since mathematics students were at this time (and in the following decades) 
almost exclusively studying for a teaching licence, the effect of this motion was to 
recommend the introduction of mathematics history into teacher training. The 
motion even recommended, additionally, the proposal “to introduce the elements of 
the history of the exact sciences into the curriculum of the particular teaching 
disciplines of the high schools’’ (ibid., 51 sq.) 

The readiness to agree to such appeals has probably not diminished since that 
time. The problem, however, lies not simply with putting such appeals into practice. 
Nowadays, we can also see a profound shift in the motivations and justifications 
advanced for such claims and, consequently, decidedly different forms of practice 
from those intended by the proponents of the use of history at the beginning of this 
century.

The changes that have occurred during the last two or three decades can best be 
illustrated by considering a characteristically traditional position as presented by the 
Dutch teacher and historian of mathematics Eduard Jan Dijksterhuis. The position 
he adopted is highly revealing since it was published in an ICMI study directly 
preceding our present one, namely the Dutch contribution of 1962 to an international 
ICMI study on the state of teaching mathematics. Contrary to earlier periods, 
Dijksterhuis here made a distinction between two different career orientations: the 
profession of mathematics teacher and the career of mathematician. 

As regards the latter, Dijksterhuis expressed his conviction that “the history of 
mathematics does not form an essential part” of the study of mathematics-at best
forming a complement serving some historical or cultural curiosity. In justification, 
Dijksterhuis (1962,34) claimed that: 

present-day mathematics has [,..] adopted and preserved all (from older mathematics) that was 
valuable and discarded the rest. There is not the slightest reason for occupying oneself with 
this rest once more. 

For the other career pattern, that of mathematics teacher, he proposed a historical 
component as an essential core of the study course (ibid., 34 sq.): 

An entirely different situation presents itself for those who are qualifying for the profession of 
mathematics teacher in a secondary school. Their principal task will be to hand on 
mathematical knowledge to the new generation and, if possible, to engender love and 
admiration of man’s achievements in this field through the centuries. For those students a 
knowledge of the historical evolution of the science is an asset which is not only valuable, but 
downright indispensable, and which alone, naturally in combination with a good command of 
present-day mathematics, will enable them to perform their duties satisfactorily. They are 
constantly concerned with phases from the development of mathematics which have long ago 
become a thing of the past and they have to make those phases clear and attractive to 
adolescents who in this way have to be trained in mathematical thinking. 
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It is striking how relatively implicit Dijksterhuis’s justification remains for such a 
strong claim. He bases his claim exclusively on the value of history in the 
mathematics classroom of the future teacher, saying nothing about the use of history 
as a means of developing the teacher’s own knowledge. He refers to the 
motivational function of history in the classroom and to the function of mental 
discipline and training which could be exerted without emphasising particular 
mathematical subjects (but probably intending classical mathematical topics). 

And it is likewise striking how sure he was about the content structure for the 
historical component. In eight pages he set out “what historical topics have to be 
considered important for prospective mathematics teachers”. (ibid., 35; our 
emphasis) Greek mathematics is depicted as the “principal subject”, “a thorough 
knowledge” of it is considered as “absolutely indispensable”: it provides the 
conceptual and methodological guidelines. (ibid., 36 sq.). The mathematics teacher 
whom Dijksterhuis has in mind is one for secondary schools, and presumably for 
their upper grades, as he himself had been for much of his career. Clearly, among 
the variety of types of secondary schools, only classically orientated ’grammar 
schools’ (in Germany and the Netherlands Gymnasium) are considered: schools 
emphasising a historical approach by their entire curriculum and spirit, and thus 
supporting such an orientation in mathematics teaching. 

Contrary to this traditional position from the 1960s, almost all of its 
assumptions—explicit as well as implicit-about the aims, functions and 
methodologies of a historical component have now changed, at least in general. No 
longer is the historical component of only indirect use for the trainee teacher’s later 
classroom experiences; no longer is Greek mathematics regarded as the key field of 
historical knowledge; no longer is there a clear consensus about the content or 
structure of school mathematics courses; no longer is the historical component 
restricted to teachers of secondary schools-teachers in primary schools are now
seen to be helped by historical resources as well. 

On the other hand, the consensus about the usefulness of mathematics history 
courses which was apparent in the 1904 ICM motion can no longer be supposed to 
be shared by the entire mathematical community. This much is already implied in 
Dijksterhuis’s view that history is inessential for ‘general’ mathematical studies, and 
remains a widespread view today. 
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4.2 International overview 

Over the last two decades, the number of persons trained and competent in the 
history of mathematics has considerably increased in many countries. Some of these 
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graduates have entered the teaching profession. The use of history in the 
mathematics classroom has become more common and we notice an increase in the 
number of courses in the history of mathematics in teacher training institutions. 
Nevertheless, these courses represent largely individual initiatives; the issue is how 
such courses may be more widely established and how to ensure a more stable and 
official status for a historical component in teacher education. 

In what follows, we describe the current state of teaching history of mathematics 
to future mathematics teachers in a number of countries which, taken as a whole, 
will provide a fairly representative picture. 

One of the characteristic trends is that practising a historical component in 
teacher training is no longer restricted to those countries with an extended tradition 
in mathematics history and a considerable mathematical community. We find a 
growing number of countries at the ‘periphery’ where, comparatively recently, 
historians of mathematics, or mathematics educators with a strong interest in 
mathematics history, have achieved an academic position where they are able to 
introduce mathematics history courses into teacher training after having qualified 
themselves by specialised research, mainly at one of the metropolitan centres.One 
example of this trend is Morocco. Historical information is present in its 
mathematics textbooks and we even find some simple activities based on this 
information, as Abdellah El-Idrissi remarks. In the past, teachers used to avoid these 
passages because they felt they lacked sufficient knowledge or were not convinced 
of the value of such an approach. Only comparatively recently do we find historians 
of mathematics and interested mathematics educators developing mathematics 
history at the universities and at the ENS (Écoles Normales Supérieures), 
responsible for teacher training. Research seminars are used to establish an 
infrastructure for communication, and courses in mathematics history are being 
offered. At the moment, such courses are offered at two of the four ENS. Up to 
now, these courses have been entirely optional and without an official or general 
status. The principal source material-both for the information given in school 
textbooks and for teacher education courses—comes from the prevailing cultural 
heritage, that is from the history of Arab mathematics. 

Another example is presented by Brazil where in a few universities historians of 
mathematics have become established as university professors in recent years. 
Evidently, there is not yet an official status for mathematics history within teacher 
education, but at these universities courses are offered for future teachers. At 
several universities, graduate programmes in the history of mathematics have a 
formal status, usually in connection with mathematics education. The first initiative 
in Brazil for generally introducing mathematics history was taken by the Brazilian 
Society of Mathematics, remarkably, which suggested history courses as a 
component of mathematical studies as long ago as 1979. As a result of national 
meetings and seminars, there is now a considerable community of mathematics 
teachers actively concerned with the relation between mathematics education and 
mathematics history. This lends support to the use of a historical component in 
teacher training and the introduction of history into the classroom. This remarkably 
strong movement is particularly inspired by a new vision of mathematics history 

4 History of mathematics for trainee teachers 



4.2 International overview 95 

known as ethnomathematics. This has been promoted not only by the Brazilian 
scholar Ubiratan d’ Ambrosio and others (e.g. Paulus Gerdes, Marcia Ascher) who 
have developed it internationally as a historically oriented research field, but it also 
features in the work of the Brazilian mathematician Eduardo Sebastiani Ferreira. 
The attractiveness of the historical dimension of ethnomathematics resides in its 
emphasis on a culture’s own historical roots-in the Brazilian case on the 
unravelling and appreciation of mathematical elements of earlier, indigenous 
cultures in Latin-America.

The last example in this group is provided by Hong Kong. Due to the long-
standing and successful research and teaching of Man-Keung Siu, a key person in 
the mathematics education community of Hong Kong, most teacher education 
courses there include some elements of history and many teachers are interested in 
historical issues, as Chun-Ip Fung reports. There are no official regulations requiring 
courses in mathematics history for mathematics teachers; yet at two of the 
universities in Hong Kong such courses are regularly offered. The courses at both 
universities provide us with the first example of another new trend: the extension of 
the history of mathematics to primary education. While one of the universities 
(Chinese University of Hong Kong) is exclusively concerned with the initial training 
of primary school teachers, the other one (University of Hong Kong) has courses for 
primary and secondary school teachers and also includes mathematics history in in-
service training courses. It is also interesting to note an emphasis on a balanced 
account of the contributions of different cultures to the development of mathematics 
(thus avoiding a possible tendency towards Sino-centrism). In these courses the 
time spent on history ranges from a few hours to over forty hours. Course objectives 
range from simply opening up the historical dimension for teachers to highlighting 
the development of school mathematics, instructional use of historical materials or 
even, if time permits, an introduction to the world history of mathematics. 

The next group of examples is from countries where there exists a longer tradition of 
research and teaching in mathematics history but where, for various reasons, a 
historical component is relatively poorly established. 

In Italy, a considerable tradition of research in mathematics history has existed 
since the nineteenth century, but the development of mathematics as a school 
discipline took place in a manner quite different from that in other European 
countries (cf: Schubring 1996, 377sq.). Here no differentiation between study 
courses for mathematics teachers and those for mathematicians has emerged: 
mathematicians and teachers take the same final academic examination, the laurea.
There are courses in mathematics education or in mathematics history at many 
universities, although they do not constitute a necessary part of the laurea
examination. Both kinds of course are taught by the holder of a post in 
‘complementary mathematics’ (matematiche complementare), a position which can 
be filled by experts from the fields of either mathematics education, mathematics 
history, or mathematical epistemology. 

There is another peculiar element in the Italian system. In addition to the 
academic laurea, there is a national examination of mathematics teachers. This is 
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organised by the state in a centralised way, and is the same for the whole of Italy. 
Although the examination confers the abilitazione, the qualification needed to be 
employed as mathematics teacher, the examination takes place rather infrequently 
(the last time, after an interval of more than six years). According to the programme 
for these oral exams, knowledge about “the most important moments of the history 
of mathematics’’ can be a subject for examination-which implies a rather
traditional understanding of this discipline. Teachers qualifying from the university 
at a time between two national exams can only be employed temporarily. For a 
permanent position they have to pass the next national exam. There is now (October 
1998) a plan to establish a ‘Scuola di specializzazione per insegnanti’. This would 
provide a specialisation for teachers over two years, for those who have passed the 
Laurea exam, and the abilitazione would then be automatically conferred. 

In the Netherlands, with a shorter research tradition but with a specialised 
centre for the subject at Utrecht, history of mathematics is taught at five of its twelve 
universities as an optional part of the study course, not specifically concerned with 
the training of mathematics teachers. While the universities confer the ‘first degree’ 
to teachers, i.e. the ability to teach in all grades of secondary schools, the 
polytechnics confer the ‘second degree’, qualifying for teaching in the lower 
secondary grades. In relation to the latter qualification, the teaching of mathematics 
history at the various institutions shows a broad spectrum. Some just have scattered 
information within the mathematics courses while others have formal historical 
courses (van Maanen 1995). 

In France, research and teaching in mathematics history used to be performed 
within the discipline of philosophy, while the mathematical departments, in general, 
took no interest in history. Consequently, the history of mathematics was almost 
universally absent in the training of mathematicians and mathematics teachers. The 
situation began to change following the establishment of Institutes for Research into 
Mathematics Education (IREM) in 1969, whose task it was to provide in-service
training for mathematics teachers. When, in 1975, the Commission Inter-IREM
d’Histoire et d’Epistémologie des Mathématiques was created, it began to organise 
in-service training in the history of mathematics, with the aims of promoting the 
introduction of mathematics history into the classroom and of enriching teachers’ 
understanding of mathematics. In particular, this second aim is characterised by 
concerns for the epistemological dimension of mathematics. This perspective, 
sketched in (Barbin 1995), is quite dominant in the French approaches to history, 
and can be seen as a reflection of the original official position of the history of 
mathematics as part of the discipline of philosophy. The Commission inter-IREM
itself, as well as organising working groups at numerous local IREMs, has published 
an enormous number of pertinent papers and books which together constitute the 
richest source of historical material anywhere available (see §1 1.10.2). 

The restriction of historical training to a voluntary component of in-service
mathematics teacher training looked ready to change in 1989 with the establishment 
of the IUFM, Instituts Universitaires de Formation des Maîtres, the first time that 
higher education institutes had been established for teacher training in France. 
Primary school teachers had previously been trained at teacher training écoles
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normales. Secondary mathematics students can enter the IUFM after having 
obtained a licence in mathematics (requiring three years of university studies). 
While the IUFM provide, a professional form of teacher training for secondary 
schools, the mathematics part of the courses is to a large degree provided by 
professors connected with an IREM. In particular, those among them who are 
committed to the work of the Commission Inter-IREM are active in ensuring a 
historical component in courses for future mathematics teachers. Sometimes, there 
is opposition from colleagues who are against such an innovation. At one IUFM, for 
example, an attempt to make the history component compulsory for secondary 
school teachers failed and was retained as only an optional subject. At the present 
time, history of mathematics is not identified as part of the IUFM’s official 
curriculum programme. In a recent list of competences, established by the Ministère
de I ’Education, history of mathematics is mentioned as a topic to be studied, but not 
to be assessed. Nonetheless, in several of the 29 institutes there are either optional 
courses in history in the second (final) year or the option of choosing this subject for 
the concluding so-called professional thesis, as Éliane Cousquer reports. 

Following the setting up of the IUFM, a recent development is for some 
universities to offer ‘pre-professional’ modules in order to prepare students better for 
teacher training. These modules include some history of mathematics and history of 
science. Another new development is the introduction of ‘culture générale’ modules 
into the first years of university studies for science and mathematics students and 
these also often contain either lectures or taught courses in the history of 
mathematics.

In Germany the situations in the former German Democratic Republic and in 
the pre-1990 Federal Republic used to be different. In the Federal Republic (known 
as West Germany), which we consider here first, a decisive break occurred in the 
late 1960s and the 1970s. The cultural values of those social classes which had until 
then dominated the aims and visions of the educational sector-the so-called
Bildungsbürgertum— lost ground, as a consequence of, first the student movement, 
and later on the process of radical individualisation. The key pattern of the former 
established set of cultural values had been historicism, that is referring actual values 
to supposed or real historical roots, preferably in the ‘Christian Occident’ or in 
classical Antiquity. From the 1970s these values could no longer be regarded as 
socially shared. The effect of this radical break with tradition 
was that all elements of school curriculum content reminiscent of historicism were 

removed. In language teaching, the classical texts by poets like Goethe and Schiller 
were replaced by non-literary texts (‘Gebrauchstexte’) and even history instruction 
itself was in danger of being replaced by the study of social processes. In the same 
way, all allusions to mathematics history which used to be present in mathematics 
textbooks—mainly for the upper grades of the socially and culturally high status 
Gymnasium— were eliminated. The Gymnasien themselves were dismantled in 1972 
and replaced by secondary schools no longer emphasising historicism and cIassical 
values (with the exception of Bavaria). New mathematics textbooks produced since 
the 1970s are practically void of any historical references. Only recently has a new 
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textbook series been published which includes some elements of history—this time 
no longer restricted to the upper grades or selected schools. 

For teacher education at universities, i.e. for future Gymnasium teachers, there 
used to be some rather isolated and rare historical lectures, while teacher education 
at the pedagogical colleges for primary and lower secondary schools contained no 
history at all. This situation has gradually changed since the 1970s. Firstly, as a 
consequence of the student movement, reflection on mathematics and its social 
function—and this included history—became enhanced so that at some universities 
history became integrated into the curriculum for lecture courses, as an optional 
subject (although this had little effect in practice). However, graduates of the newly 
expanded history of science centres at the universities of Hamburg and Munich 
would soon make it possible for other universities to offer courses in the history of 
mathematics. And, following the integration of the pedagogical colleges with the 
universities in most of the federal states during the 1980s, it is now also possible for 
future primary teachers to take such courses. Further details are given in a 
forthcoming article by Schubring. 

The development in Germany is ad hoc and has no official support. This is 
illustrated by events following the integration of the GDR into the Federal Republic 
in 1990. As in other fields, the new federal states immediately adopted the 
regulations of the old Federal Republic. The compulsory teaching of history as part 
of mathematics education was mostly abolished and the centre for the history of 
science at Leipzig was dismantled. Nowadays, in the majority of the new states, 
mathematics history does not figure at all in the curriculum for teacher education. In 
two of the new states some minimal history is again prescribed, but this involves just 
three universities. 

In general, looking at teacher examination regulations issued by the federal 
states, one can detect a certain progress. In half of the current 16 states, 
mathematics history is mentioned either as an optional subject of studies (but not of 
exams) and usually grouped together with reflection on foundations and logic or, in 
four states, as a compulsory subject of studies for future secondary school teachers 
(but rarely as a subject of examination). Even in the latter cases, there is not much 
emphasis on history as such—’insight’ into the development of mathematics is 
expected—and in both cases a bare minimum of study time is prescribed, seldom 
more than two weekly hours in a one-semester course. The two ‘western’ states who 
prescribe these studies are those housing the two specialised history of science 
centres, the small state of Hamburg and Bavaria, which is the only state to have held 
on to a considerable part of the Gymnasium traditions. It is also worth mentioning 
that in a small number of states, in Baden-Württemberg and Brandenburg for 
example, regulations provide an opportunity for future primary school teachers to 
study the history of mathematics. 

Whatever the regulations, the practice is quite different. Whereas occasional 
history courses may be offered in all states, including those not mentioning history 
in their regulations, and local curricula for teacher education at a number of 
universities include mathematics history, regular courses outside the Munich and 
Hamburg centres, and now Berlin, are rare. Where lecture courses are offered, these 
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are initiatives by enthusiasts, and there is no coordination or common structure. 
Unsurprisingly, no specific teaching material is available for the courses. Finally, it 
is worth noting that the history of mathematics education and of mathematics 
teaching are both mentioned in the curriculum regulations of several states for 
trainee teachers. This itself opens up a number of possibilities, at least potentially. 

The four European countries we have just considered have a rather poor record for 
the teaching of the history of mathematics, despite the strengths of their long-
standing mathematical tradition and a strong mathematical community. Some other 
European countries, with smaller communities of mathematicians or a less 
impressive mathematical tradition, fare rather better in this respect. 

Austria, for instance, unlike its neighbours Germany and Italy, includes the 
history of mathematics as a recognised component of teacher training for secondary 
schools. Although Austria is a federal state, there are common national regulations 
for the examination of secondary school teachers throughout Austria, as Manfred 
Kronfellner reports. Future mathematics teachers are required to take an oral 
examination in either philosophical aspects or historical aspects of mathematics, and 
this necessitates prior study. At all universities, there are regular courses in the 
history of mathematics to enable students to prepare for the examination. In one 
university, the Vienna Technical University, the study course in history is to become 
compulsory. It is worth noting that there are in Austria two history textbooks 
specifically for mathematics teachers (Kaiser/Nöbauer 1984; Kronfellner 1998). 
These textbooks emphasise the Problemgeschichte, i.e. the evolution of 
mathematical ideas. 

In Poland, the teaching of mathematics history is widely practised, and this 
practice was unaffected by the political changes in Poland around 1989. Most 
universities offer a course in the history of mathematics, as Ewa Lakoma was able to 
establish by a questionnaire sent to about one hundred persons teaching at the 
various teacher training institutions who are interested in or active in the history of 
mathematics. These courses may be either compulsory or optional. Up to now, there 
are no general regulations concerning the curriculum for future teachers. Each 
university runs its own programme. The Ministry of Education is, however, 
preparing regulations to certificate university programmes for teacher education. In 
July 1998, only a few universities did not have history of mathematics in the 
curriculum for mathematics teachers. The courses usually comprise 30 to 60 hours 
per year and are given as lectures to students of the third, fourth, or fifth year of the 
five year study course. The history of mathematics lecture course often has 
supplementary exercises, demanding usually 30 hours per year. 

The history of mathematics lecture courses in different universities have a 
relatively common structure, namely: 
1. The first traces of concepts of number and shape in ancient times 
2. Empirical mathematics in ancient Egyptian and Babylonian times 
3. Greek mathematics before and after the time of Alexander the Great 
4. Mathematics in the East: China, India and Arab countries 
5. European mathematics in mediaeval times and during the Renaissance 
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6. The development of the calculus and probability in the 17th and 18th centuries 
7. Algebra from the 17th to 19th centuries 
8. Set theory in the 19th century 
9. Geometry in the 19th century; the development of non-Euclidean geometries 
10. The Erlangen programme and the Hilbert programme 
1 1. Hilbert’s problems 
12. The Polish school of mathematics 
13. Notes on the law of parallelism in the history of mathematics teaching; how to

benefit from historical knowledge in mathematics education. 
While the structure here seems to reflect the general pattern of certain mathematics 
history textbooks, topic 12 shows the extent to which course content can be related 
to the cultural history of one’s own country. Ewa Lakoma reports: 

The tradition of the Polish school of mathematics is so strong that the history of mathematics, 
in a natural manner, is a matter of interest to mathematicians and to students. In fact, 
Professor Andrzej Mostowski, a great mathematician, also gave lectures on the history of 
mathematics.

Topic 13 in the list is also significant, showing the new approach which mathematics 
educators take to the history of mathematics. History can serve as a source of 
reflection or, often in too simplistic a way, as a direct guideline for the practice of 
teaching.

As with Poland, the strength of the cultural roots of mathematics in Portugal
seem to have inspired the establishment of a historical component within 
mathematics teacher education when a specific diploma for mathematics teachers 
and a related curriculum was set up in Portugal in 1972. The basic components of 
this study course are didactics, methodology, and psychology of learning. Initially, 
a one semester course used to be devoted to mathematics history, but this can now 
be extended to two semesters. This course is offered at all universities and appears in 
all programmes for the training of teachers for upper secondary schools. For the 
training of teachers for primary schools and lower secondary grades (1 to 6), a 
history of mathematics course is not generally included; there would not be enough 
time, since these students also have to study other disciplines (according to a 
communication by Jaime Carvalho e Silva, and Amaro 1995). 

The structure of the course ‘The history of mathematics’ at Coimbra University 
shows the importance attached to the cultural history of the nation, inspired by the 
achievements of Portuguese mathematicians in the period of the ‘voyages of 
discovery’ in the 15th and 16th centuries, and the consequences of the educational 
reforms of 1772. It has four components: 
– History of analysis from Archimedes to Weierstrass 

– History of geometry 

– History of numerical analysis 
– History of mathematics in Portugal. 

The last of these components discusses the following issues: 
– Why study history of mathematics and history of mathematics education? 
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– The university reform of 1772 

– The Libro de Algebra of Pedro Nunes (1 567) 

– The Principios mathematicos of Anastacio da Cunha (1 790) 

– The mathematics education reform of Sebastião e Silva (1962-1973).
Another course, taught at the Universidade do Minho, at Braga, emphasises the 
mathematical contribution of antiquity (Babylonians, Egyptians, Greek 
mathematics) and for modem times just two aspects: Hilbert and the history of 
mathematics in Portugal (Amaro 1993,456). 

The purpose of teaching the history of mathematics, as stated by Portuguese 
mathematics educators, primarily at the pedagogical colleges and teacher training 
institutes for grades 1 to 6 (‘Escolas Superiores de Educação’), is to enhance the 
mathematical understanding of future teachers and to develop methodological 
reflection about teaching practice. For example, at the Pedagogical College at 
Castelo Branco students in their final year of a degree course in mathematics or 
science take a course whose declared aims are, among others: 

– to construct a basic knowledge about the development of mathematical thinking 
with respect to numbers, numeral systems, early computing, fractions, and 
geometry;

– to foster an understanding of how mathematics is used and why it is needed in 
society;

– to develop an understanding of the nature of mathematics; 

– to develop teaching and learning skills, based on the study of specific aspects of 
mathematics history. (ibid., 457) 

In order to participate successfully, the student teachers have to choose a topic from 
the syllabus of the 5th or 6th grade and are expected to devise a plan for a learning 
unit which connects mathematics history and learning activities, based on an 
exploration of available historical literature. (ibid., 457 sq.) 

National seminars on the history of mathematics take place, the eleventh of 
which was in 1999. These seminars promote cooperation between secondary school 
teachers and university professors. Recently, a number of students have obtained a 
master of education degree in which the history of mathematics was a major 
component.

The term ‘cultural identity’ could be used for the cases of Poland and Portugal in 
order to describe the specific ‘rooting’ of mathematics within their respective 
cultures and societies. These types of socially shared values can be described as 
arising ‘from below’. We can also identify examples of the introduction of cultural 
values through the educational sector ‘from above’. In these cases, ideological 
judgements are responsible for shaping the content and structure of the educational 
system, as with certain centralised state policies. (Ideology’ here is not intended to 
carry an a priori negative character: the term. ‘idéologie’ evolved in France around 
1800 as the science of ideas and of their emergence and development.) This is of 
relevance for the institutionalisation of mathematics history since, to take recent well 
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known examples, socialist countries used to integrate mathematics history into 
Marxist philosophy. We will discuss the impact of this for teacher education for 
some particular cases. 

Our first example is China. Although China has one of the oldest traditions in 
mathematics, the subject fell into decline after 1600 and from the middle of the 
nineteenth century Western mathematics became dominant. According to the 
accepted view within the People’s Republic of China, the traditions of Chinese 
mathematics fell into oblivion and became only revalued and reassessed when the 
Republic was established in 1949. As Dianzhou Zhang reports: 

Once the Chinese people won their real independence in 1949, the government launched a 
movement of patriotism, and asked mathematical educators to foster pupils’ patriotic thought 
by means of incorporating more knowledge of Chinese history of mathematics. This led to 
researches into the ancient history of mathematics being conducted. As a consequence, when 
Chinese historians of mathematics were invited to compile new textbooks, a number of 
mathematical results were then renamed after, or more correctly attributed to, Chinese 
authors.

As an example, Zhang mentions the replacement of Pythagoras theorem by ‘Gou Gu 
theorem’, Pascal’s Triangle by ‘Yang Hui Triangle’, and Cavalieri’s principle by 
‘Zu Geng principle’. It may be noted here that in recent Arab textbooks Pascal’s 
triangle is referred to as ‘Ibn Munim’s triangle’. As regards teacher training, Zhang 
reports that 

in normal colleges and universities there is supposed to be an optional course on the history of 
mathematics (45 classroom hours). However, because of the lack of mathematical historians 
to teach the subject, many universities are unable to offer a course of mathematics history 
when the students elect to do it. 

In actual fact, it appears that research into the history of mathematics only rarely 
transfers into teaching. 

In the former Soviet Union, mathematics history was cited in support of the case 
for the validity of the Marxist thesis that the development of scientific ideas is 
determined by social conditions (the famous ‘externalist position’) by Boris Hessen 
in his seminal and ground breaking paper on the social roots of Newton’s Principia
given to the 193 1 International Congress of History of Science (Hessen 193 1). This 
had an important influence on mathematics teacher training. For students of 
mathematics at the pedagogical institutes, future secondary school teachers, a course 
in the history of mathematics became compulsory. The course programme, valid for 
the entire country, was prepared and supervised by a committee comprising the 
experts in this field. It would appear that the course was well taught at the better of 
the pedagogical institutes. In fact, the number of specialised textbooks, many 
translated into other languages, show that this course was well established (examples 
are the books published by G. P. Boev in 1956; by Rybnikov, 3 editions between 
1960 and 1994; by G. I. Gleizer, 3 editions between 1964 and 1983; by I. Ya. 
Depman in 1965 and by B. V. Bolgarskii in 1974). A particularly popular book was, 
and still is, a textbook especially prepared for the pedagogical institutes: A. 
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Youschkevitch et al. (eds.), Khrestomatiya po istorii matematiki (Source book on 
the history of mathematics), Moscow 1976-77.

In Russia today, the situation is clearly more variable and there is no longer a 
centrally prescribed programme for teacher training. Institutions can devise their 
own programmes. It is clear, however, that at many pedagogical institutes (now 
renamed pedagogical universities) history courses continue to be a component of the 
training of mathematics teachers and in some instances may even be compulsory. 
(This information is kindly provided by Sergei S. Demidov, Moscow.) At the 
Rostov Institute, a course on the history of mathematics teaching at Russian schools 
has been developed (see Poljakova 1993, 1997). 

A revealing case study, described in a forthcoming article by Hans Wußing, is 
provided by the former German Democratic Republic. While the history of 
mathematics was a research area and was taught at a modest level, though without 
any particular official support, in the first two decades of the GDR's existence, the 
government rather suddenly, and without being urged to do so by the discipline, 
declared in 1969 that the study of mathematics history was to be a required 
component of teacher training for secondary schools. Analogous decisions were 
taken for physics, biology and chemistry. In general, it proves easier to introduce 
mathematics history into textbooks than to change the practice of teacher training. 
In the case of the GDR, however, the reverse was true. While historians of 
mathematics and publishers of textbooks were unhappy with the quality of those 
parts of school mathematics instruction materials that related to history, the situation 
for teacher training was much better. A training programme was established so that 
after a certain time almost all the universities and pedagogical colleges were 
provided with professors or lecturers competent to give courses in the history of 
mathematics. Suitable teaching materials and textbooks were developed, in 
particular Hans Wulßing's successful and much translated Vorlesungen zur 
Geschichte der Mathematik (Lectures on the History of Mathematics). 

We have seen that there are situations where individual initiatives have succeeded in 
introducing a historical component into teacher training and we have raised the issue 
of whether such individual initiatives might become more widely adopted. We have 
also seen that there are cases of centralised, directed programmes decided by a 
ministry or state which might well include elements of the history of mathematics. 
It is interesting to note that there are some fortunate cases in small countries, with 
just one university or teacher training institution, where individual actions become, 
in effect, official measures. 

One such case is Latvia, one of the Baltic states, formerly part of the Soviet 
Union and now an independent country, with only one university, in the capital 
Riga. Daina Taimina reports that when she began to lecture at Riga University (now 
the University of Latvia) in the late 1970s she was able to establish a course in the 
history of mathematics which had not previously been offered. Presumably, 
establishing this course was facilitated by the then current state policy of support for 
history of mathematics in mathematics education. The course became well accepted 
and a part of the regular study programme for mathematics teachers. Eventually, in 
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1990, she was able to publish a textbook for this history course, being the first 
textbook in the Latvian language on the history of mathematics. The course 
comprises 25 hours in one semester and is taken as one of the last courses a 
prospective teacher takes before finishing. Former students rated the history course 
as the finishing touch to all the other mathematics courses they had studied. In the 
new 1998 regulations for teacher training in Latvia, the mathematics history course 
is prescribed as a standard course of two hours per week in the last, ninth, semester 
within a study field of ‘educational issues’. 

A somewhat analogous success has been achieved in Cyprus, where there is 
only one university in the capital, Nicosia. Thanks to the energetic activity of 
individuals, mathematics history has been introduced into the training of future 
primary school teachers. This training is given at the Department of Education of 
the University of Cyprus. This component in Cyprus is therefore also an example of 
the new trend to bring some mathematics history into the training of the primary 
school teachers. This particular innovation is all the more remarkable since these 
future teachers are trained as ‘generalists’, required to teach almost all subjects of 
the primary school syllabus, unlike their secondary colleagues who are usually 
trained for teaching just one or two subjects. A further difficulty for initiatives of 
this sort lies in the fact that primary students, both here in Cyprus and in other 
countries, may not be well prepared in mathematics from their own secondary 
school studies and may even have dropped the subject. We present in the next 
section (§4.3.1.2) the approach being adopted in Cyprus to use history to improve 
the attitude of these students towards mathematics and even to enhance their 
mathematical competences. 

This trend to create a historical component for future teachers is also 
represented, albeit rather patchily, in Britain. Teacher training institutions are no 
longer quite as autonomous as they were, but a number of universities include some 
aspects of the history of mathematics in courses for future school teachers, either as 
taught components or as study topics. The British Society for the History of 
Mathematics (BSHM) established an education section in 1990 (HIMED) which 
organises annual conferences and promotes the use of history in mathematics 
education. Both the Mathematical Association and the Association of Teachers of 
Mathematics promote the use of history of mathematics in teaching through journal 
articles and conference activities. Among universities offering history of 
mathematics courses, whether for mathematics or mathematics education students, 
the Open University, a distance learning university with a large number of students, 
is prominent. 

The presence of more historical components is related to changes in social 
conditions, in particular in the composition of school populations. Many 
industrialised countries are becoming ever more ‘multi-cultural’ because of growing 
migration from the so-called Third World. This is particularly the case with former 
colonial powers. These social changes are clearly reflected by new claims being 
made for the teaching of mathematics history in schools, which in turn influence the 
context in which history is presented to trainee teachers. 
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One argument for including history in mathematics courses is that it helps to 
‘humanise’ mathematics. While this may seem a traditional motivation for the 
subject, a new reason being proposed is that it helps to overcome mathematics 
anxiety or mathematics avoidance. It is argued for instance that many girls in 
Britain do not continue with mathematics learning beyond the age of sixteen because 
mathematics is seen as being about things, not people. Probably the strongest 
support for including history as a part of mathematics is a new claim that history 
helps to emphasise the subject’s multicultural inheritance and the culturally 
dependent nature of the subject. It is argued that including the history of 
mathematics is particularly important in a rapidly growing multicultural and 
pluralistic society, and that in Britain it helps to counter still prevalent eurocentric or 
colonialist views. A revealing presentation of this claim is given as a rationale for a 
history course at the University of Greenwich (Sheath, Troy and Seltman 1996): 

Finally, we intend that students be aware of the issues inherent in interpreting the mathematics 
of other times and cultures from the viewpoint of our own. It may be argued that deep in the 
consciousness of the West is the assumption of cultural superiority, the assumption that 
almost all gains in human civilisation, and certainly mathematics, have originated in WASP 
(White Anglo-Saxon Protestant) culture. Such ethnocentricity urgently needs to be tempered 
by knowledge of the contribution of all humanity to present-day mathematics, which is itself 
global in character. The hierarchical view whereby some contributions are considered 
superior to others, as if there were some quantitative measure, has to be tested. 

Such challenges to ‘ WASP’ cultural hegemony have been formulated even more 
radically in the United States. There have resulted profound changes in the 
declared rationales of the educational system and in the content and structures of 
syllabuses, with the intention of replacing the cultural values and curriculum 
representative of exclusively ‘dead white males’ by consideration of the 
contributions of women, of minorities and of other cultures. 

As with all federal states, it is quite difficult to give a fair general description of 
the educational scene for the whole USA and, in particular, as to the acceptance of a 
historical component for trainee teachers. There is the added complication that US 
requirements for teacher certification are defined not only by individual Boards of 
Education but also by other organisations. Probably the most influential of such 
organisations is NCATE (National Council for Accreditation of Teacher Education), 
one of the two accrediting bodies in the USA for teacher education programmes. 
Each individual university or college decides for itself whether to have particular 
programmes, such as teacher education, accredited and to which standard. Having 
courses accredited ensures the employability of the graduates. 

A survey carried out by Victor Katz (1 998) shows that in the majority of the US 
states certification requirements for teachers at secondary schools require the study 
of a course in the history of mathematics, whether this is for mathematics teacher 
education programmes or for individuals presenting themselves for accreditation. 
Traditionally ‘neutral’ formulations of competences in, for example ‘foundations 
and history of mathematics’ (Maine) are the exception. The minimal expression of 
mainstream programmes is to require “studies of the historical and cultural 
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significance of mathematics” (Pennsylvania). More explicit and typical is the 
requirement in Montana that: 

for the prospective teacher, the programme shall . . . include experiences in which they . . . 
explore the dynamic nature of mathematics throughout history and its increasingly significant 
role in social, cultural and economic development. 

The trend of multi-culturalism is tellingly explicit in the California state 
requirements. Standard 14 of the Commission on Teacher Credentialing states, of 
programmes in teacher education: 

History of Mathematics: Each programme requires students to have a foundation of 
knowledge about the history of mathematics, and a historical perspective regarding the 
development of mathematics. 

The rationale for standard 14 is that “a foundation in the history of mathematics 
enables students to gain a rich understanding of the origins of mathematical 
concepts”. Reviewers who judge whether a programme meets this standard are 
expected to consider the extent to which 
(i) The programme requires students to understand the chronological and topical 

development of mathematics. 
(ii) The programme requires students to understand the contributions of historical 

figures, including individuals of various racial, ethnic, gender, and national 
groups.

(iii) The programme requires students to understand the contributions of 
mathematics to society, and its impact on society. 

(iv) The programme provides opportunities for students to be exposed to the 
mathematical discoveries that have affected the course of civilisation. 

(v) The programme has other qualities related to this standard that are brought to 
the reviewers’ attention by the institution. 

The requirements of the NCATE emphasise most explicitly the new trend for multi-
culturalism and the consideration of minorities. The process of meeting NCATE 
Standards is fairly rigorous. For example, to meet the requirements for accreditation 
for grades 7-12 mathematics teachers, a programme must require students to meet a 
long list of ‘outcomes’ specified in three broad areas: mathematics, teaching 
preparation and field-based experiences. A given programme must state, for each 
particular outcome, how it is met, whether by a specific course or by experiences 
over several courses or in other ways. Outcome 1.7 for Grade 7-12 mathematics 
teachers, for example, states that 

Programmes prepare prospective teachers who have a knowledge of historical development in 
mathematics that includes the contributions of underrepresented groups and diverse cultures. 

This quotation is from the NCATE Curriculum Guidelines for mathematics which 
were prepared by the National Council of Teachers of Mathematics and are (for 
grades 7 to 12 mathematics teachers) from the 1993 revision of these guidelines (p. 
429). Identical quotations could be made for Kindergarten to grade 4 teachers (p. 
4 17) and for grades 5 to 8 teachers (p. 423). 
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Although primary trainee teachers should also study history of mathematics, 
according to NCATE, primary teachers in the USA are not certified in an academic 
field. Most of them have a very minimal background in mathematics so that there is 
not yet in practice a drive towards introducing a historical component for them. 

One can conclude that the majority of prospective teachers for secondary schools 
are exposed to history of mathematics in some form, and that it is delivered with a 
dominantly multi-culturalist perspective. 

A further new trend in the justification for including a historical component in 
mathematics teaching is a reflection of changes occurring in the school system, at 
least in a number of industrialised countries. For whatever reasons, there is an 
increasing tendency for students in secondary schools to show a marked distaste for 
mathematics. This is related to the deep structural change of those schools which 
prepare students for entrance to the universities. These schools were once for a 
(relatively small) minority of students from a social élite. These schools now 
receive students who want to proceed to a university education from a much broader 
proportion of the population, perhaps 30, 40 or even 50 percent of an age group 
instead of a small minority, yet the curriculum has not been correspondingly 
modified. The mathematics curriculum, for instance, is regarded by students as 
particularly boring. This social pressure against mathematics as a main school 
discipline is felt most strongly in Scandinavian countries. 

In Denmark, for instance, mathematics history is included for its humanising 
qualities so that students see better the attractiveness of mathematics. A first step 
was the Ministry’s new syllabus of 1988 for the gymnasium (i.e. grades 10-12),
according to which mathematics should be taught with due respect to three aspects: 
its history, its inner structure, and its applicability. Eventually, an entirely revised 
syllabus of 1994 for the folkeskole (i.e., grades 1-10) demanded that mathematics 
history should be included in the teaching of mathematics and the importance of 
mathematics for the development of the society should be illustrated, thus giving the 
measure a clear social perspective. 

As Torkil Heiede reports, in Denmark the history of mathematics is now 
therefore in some sense obligatory, and for all school grades. This was, in fact, only 
possible because the history of mathematics has a long and unbroken tradition in 
mathematics education in Denmark. At Copenhagen University the tradition goes 
back about hundred years (especially to the two experts in Greek geometry, the 
mathematician H.G. Zeuthen and the philologist J.L. Heiberg). History of 
mathematics was given a new impetus there in the 1930s, during the residence of 
Otto Neugebauer, the expert in Babylonian and Egyptian mathematics. 
Furthermore, at the four newer universities, particularly in Aarhus, the history of 
mathematics has been developed, with the result that mathematics teachers in 
Danish gymnasiums (all of whom have a master’s degree in mathematics, or perhaps 
in physics or chemistry) have always had the opportunity of attending a course in the 
history of mathematics as part of their training. 

The new syllabuses have not only encouraged the production of new 
mathematics textbooks with integrated aspects of mathematics history but the 
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historical component in teacher training for secondary schools has changed to 
become an important subject for future teachers. At the universities the number of 
students attending undergraduate courses in the history of mathematics has increased 
considerably. For instance at the University of Copenhagen, the mean audience 
used to be 20 students per year, but in the year after the new regulations for the 
gymnasium had been published, the number swelled to 40 and in the following year 
to 80 as older students realised that it was necessary for them to take this course if 
they were to become gymnasium teachers. Now the numbers have stabilised again 
at a level of 50 per year. Unfortunately, the larger attendance combined with 
departmental adjustments between the undergraduate study subjects has forced a 
reduction in both the size and scope of the course. Also at the teacher training 
colleges which educate the future folkeskole teachers, history of mathematics now 
has a more prominent place than ever before. 

As regards in-service training for teachers at gymnasiums, the number of courses 
in the history of mathematics has been increased in recent years. In-service training 
for folkeskole teachers is better structured, with courses in the history of 
mathematics frequently occurring, usually as part of more general mathematics 
courses (Heiede 1996b). 

The last new trend to be presented here is, from a structural viewpoint, highly 
innovative. It primarily concerns countries which had been formerly subject to 
colonialism and where their own cultural traditions had been not only overlaid by 
the colonial power’s own culture and values but intentionally suppressed. Since 
these traditions were oral, they would inevitably become lost through lack of use. 

The best example of a new evaluation of these traditions is that of Mozambique,
a former Portuguese colony (Gerdes 1998). Here, the unravelling of hidden or 
suppressed ethnic Black African traditions in developing and practising geometry 
and arithmetic has not only developed into a research programme for mathematics 
history and mathematics education (thus constituting a novel approach to 
ethnomathematics) but has also become the rationale for mathematics teacher 
education. This programme of ethnomathematics, called ‘mathematics in history’, 
fulfils the function of permitting the trainee teachers to establish an intrinsic 
relationship towards mathematics and enables them later to teach mathematics to 
their students as a meaningful subject rooted in their own culture. When the 
Mathematics Teacher Education Programme began after independence, “few 
students ... actually liked mathematics; many spoke frequently about mathematics as 
‘the beast with seven heads’, apparently having no utility in society and no roots in 
Mozambiquan and African cultures.”(Gerdes 1998). Mathematical traditions and 
practices of daily life which have survived colonial rule can be incorporated into the 
school curriculum. We have already noted the value other countries place on a link 
between the mathematics that is studied and the cultural history of the society, but 
this Mozambique programme relies on a much more intrinsic relationship. 

The ethnomathematical programme ‘mathematics in history’ was inaugurated at 
the Pedagogical University of Mozambique, training teachers for primary and 
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secondary schools and has now built up considerable experience. The aim of the 
programme is (quoted from Gerdes 1998,41): 

to contribute to a broader historical, social and cultural perspective on and understanding of 
mathematics. The first theme ‘Counting and Numeration Systems’, gives a good start, because 
the students can begin to analyze and compare the various ways of counting and numeration 
they learned in their life. After they have discovered the rich variety at the national level, they 
then are brought into contact with systems both from other parts of Africa and the world, and 
from other historical periods. 

The aims of this course permeate the entire curriculum but special emphasis is given 
in a course during the fourth of the ten semesters. Mathematics in history is, 
moreover, a subject of later specialisation, for a thesis and examination. As Gerdes 
emphasises, “mathematics is a universal activity; that is, it is a pan-cultural and pan-
human activity”, going on to stress that the development of mathematics is not 
unilinear but multilinear (ibid., 47).
In concluding this section, we can sum up by saying that the scope, function and 
vision of mathematics history in teacher training programmes are undergoing 
profound changes. Earlier idealistic views, focusing on a standard canon of 
Western, particularly Greek, mathematics are largely fading away, as is the view that 
it is only suitable for students of the upper grades of secondary schools for the social 
élite. Everywhere in the educational system, there is evidence of systemic changes, 
even crises, and the introduction of mathematics history responds in different ways 
to these crises and changes. In many industrialised countries, we find a widespread 
aversion of students to mathematics or, at least, an avoidance of it. Here, 
mathematics history is seen as a way of combating this distaste for mathematics by 
presenting mathematics as a living, ‘human’ subject. This might also apply to social 
subgroups, minorities or populations hitherto excluded from higher learning. 

While in many of the European States, with eminent traditions in mathematics, 
new visions on the role of mathematics history within the teaching of mathematics 
have not yet widely emerged, we find that countries on the periphery, as it were, 
have been more successful in this respect. By broadening the cultural perspectives, 
in particular in the centres of former colonial powers or in countries where racism 
has been rife, mathematics history has achieved a novel and important function in
helping to create a multicultural vision. 
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4.3 Examples of current practice 

We can summarise the grounds for including a historical component in the training 
of teachers, as these purposes have been developed over the last decades, as setting 
out to achieve four main functions: 
1. letting teachers know of the past of mathematics (the direct teaching of the 

history of mathematics); 
2. enhancing teachers’ understanding of the mathematics they are going to teach 

(methodological and epistemological function); 
3. equipping teachers with the methods and techniques of incorporating historical 

materials in their teaching (use of history in the classroom); 
4. enhancing teachers’ understanding of the evolution of their profession and of 

the curricula (history of mathematics teaching). 
The following examples of practice in a number of countries show how these 
functions are currently achieved in teacher education. 

4.3.1 Current practice in initial teacher training 

4.3.1.1 Hong Kong: On finding a place for history in primary mathematics 
teacher education 

Chun-Ip Fung 

Setting objectives is troublesome for brief history courses of some 15 hours 
duration. Unfortunately, this was what I have been confronted with during the past 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMl study, 
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seven years when teaching history of mathematics to both pre-service and in-service
teachers, who have not more than a high school graduate level in mathematics and 
who are supposed to teach until Grade 9. The main struggle is to resolve two 
possibly conflicting aims: whether you want students to acquire a rough picture of 
what has happened in mathematics in the past, or whether you want students to be 
able to capture and organise historical material for instructional use. Is it better to 
develop a historical viewpoint during the study of historical materials or a 
pedagogical one? 

During the past seven years of experimentation, I have had first-hand experience 
of the struggle between these aims. In an attempt to enhance students’ historical 
knowledge, a brief overview of the world history of mathematics was given, 
important historical events being highlighted. To provide summative assessment, an 
open-book written examination was set (this was for a group of serving teachers and 
also a group of pre-service teachers). Examples of the questions are: 
1. Right-angled triangles were studied in the Elements, the Zhou Bi Suan Jing, and

the Jiu Zhang Suan Shu. 
a) Give evidence from each. 
b) Comment on the difference of their achievements. 

2. Euclid’s Elements were famous for rigour and deductive reasoning. In Book 1, 
for example, propositions were built on definitions, postulates and common 
notions.

a) Give an example to illustrate the above description. 
b) Can you see any exception? Please comment. 

3. Some people say that the idea of limit existed at the time of Euclid. Discuss this 
issue with reference to Proposition 1, Book 10 of the Elements, which reads: 

Two unequal magnitudes being set out, if from the greater there be subtracted a magnitude 
greater than its half, and from that which is left a magnitude greater than its half, and if this 
process be repeated continually, there will be left some magnitude which will be less than the 
lesser magnitude set out. 

This approach concentrated on building up students’ historical knowledge, at the 
expense of the pedagogical dimension. It was not particularly successful, even on 
the level of the acquisition of factual knowledge. There are several possible 
explanations. Firstly, the students’ mathematical knowledge was sketchy to begin 
with. This exerted great pressure on their reading of mathematical texts, which are 
generally not written for readers of their mathematical background. Secondly, not 
having enough time to adjust to a more historical approach, students often had a high 
anxiety level. Thirdly, the fact that students often lack general historical awareness 
for cultures. 

An alternative approach was tried, which requires students to locate and organise 
historical materials for teaching purpose. Owing to the unavailability of original 
sources, students are only able to consult secondary sources. For most of the time, 
students preferred to read books containing short popular accounts. Traditional 
history of mathematics texts were shunned. This may be due to the fact that most 
history of mathematics texts presuppose a certain knowledge of mathematics and a 
certain familiarity with Western history, one or both of which was absent for these 
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Figure 4.1: The Chinese remainder theorem from SUN ZI SUAN JING 
(Master Sun's Mathematical Manual), c. 4th century. For Hong Kong 
student teachers this type of source presents diffictulties. 

students. A problem which this led to was the accuracy of quoted historical facts. 
Since students made use of sources which focused more on arousing interest than on 
accuracy, the historical events and information about characters given in these texts 
might be based on unconfirmed or even erroneous information. Without a critical 
training, students often muddle facts with rumours, since the mathematics story 
books on which they so heavily relied do not normally distinguish fact from hearsay. 
At the end of the course, I was assigned the difficult task of evaluating the project, 
using assessment criteria which called for evaluating the student's work according to 
(i) the accuracy of historical materials used, and (ii) the extent to which the 
curriculum structure enhanced mathematics learning. Apparently, criterion (i) is 
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essential to ensure that the student’s work has something to do with history. 
However, it is practically impossible for me, as a non-historian, to check the 
accuracy of material case by case. The difficulty which this illustrates is that an 
instructor who is a pedagogue may be reluctant to play the role of a historian, 
whether or not a lack of qualification is taken into account. 

My experience seems to suggest that a compromise between the two intended 
aims is necessary. This could be done by moving away from the idea of a history 
course, and developing in its place a mathematics course having some historical 
connections. To this end, technical mathematics would be the prime object of study. 
Examples from history are selected and presented in modem language. Choices, 
both of mathematics and of history, are made according to relevance for school 
mathematics and to technical complexity. Teaching develops via the instructor’s 
explaining a segment of mathematics, with the students reading assigned historical 
materials, and finally students presenting their instructional designs as to how to 
incorporate the segment into school teaching. This mode was tried out and met with 
relatively smaller resistance. 

4.3.1.2

George Philippou and Constantinos Christou 

In this section we present a primary pre-service programme based on history of 
mathematics, developed in two universities during the last nine years, The 
programme proved to be effective in terms of changing students’ attitudes toward 
mathematics.

Entering characteristics In Greece and Cyprus, the programme of study for 
primary teachers caters for the ‘generalist teacher’, that is, for a person capable of 
teaching all subjects in the primary school curriculum. A typical such programme 
consists of a broad set of areas (science, literature, psychology, sociology, learning 
theories, research methodology etc.) including one or two compulsory mathematics 
courses and one methodology course. These courses are intended to enhance the 
students’ mathematical understanding and their ability to transform mathematical 
knowledge into didactical situations. 

Mathematical teacher preparation Pre-service programmes provide for growth 
in content knowledge and pedagogical content knowledge. The former is the 
amount of knowledge ‘per se’ and its organisation in the mind of the teacher, and the 
latter includes useful forms of representation ideas, analogies, illustrations, 
examples, explanations, etc. That is, what makes a topic easy or difficult for the 
learner (Grouws and Schultz 1996). 

The question of what mathematical content is most appropriate for the primary 
teacher is intriguing. Traditionally, it was taken for granted that the primary teacher 
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needs to be better versed in general pedagogy rather than in mathematics as a 
discipline. Recently, however, the emphasis is rather on the mathematical world 
view than on the content. Prospective teachers need mathematical experiences that 
challenge old and foster new dispositions, leading to self-confidence, developing the 
ability to apply mathematical methods and symbolism, viewing mathematics as a 
study of patterns and relationships, and opening a perspective on the nature of 
mathematics through historical and cultural approaches. The potential of history of 
mathematics to enhance mathematical understanding, to motivate the learner to 
make necessary connections, and to realise the continuity of human culture has been 
repeatedly advocated by those experienced in the field. 

4.3.1.2.1 Teachers’ beliefs and teacher education 
Content knowledge and pedagogical content knowledge is translated into practice 
through the filter of one’s philosophy of mathematics and its learning (Swafford 
1995). Thus, apart from knowledge and abilities, prospective teachers are expected 
to develop positive attitudes and beliefs related to the task. Teacher education 
should enable trainee teachers to transform and enhance their beliefs in relation to 
classroom actions. Such change is expected to improve teacher classroom 
behaviour, though we cannot assume that changes in beliefs will necessarily be 
translated into changes in practice. 

Beliefs and attitudes are mental states organised around an object or situation 
through experience, predisposing one to respond in a favourable or unfavourable 
way. Beliefs are propositions that are accepted as true by the individual; they 
constitute the individual’s subjective knowledge about self and the environment, 
physical or mental. Richardson (1995) identifies beliefs as the teacher’s own 
theories, which are sets of interrelated conceptual frameworks tidily connected with 
action; they are a kind of knowledge-in-action, Beliefs are thought to drive action, 
but experience and reflection on action may lead to modified beliefs i.e., there is an 
interactive process between the two variables. Attitudes include motivation, interest, 
confidence, perseverance, willingness to take risks, tolerance, and resistance to 
premature closure (Reynolds 1992). 

4.3.1.2.2 The teacher preparation program 
A pre-service primary teacher mathematical programme can rely on an overall grasp 
of the nature and significance of the subject, an ‘advanced literacy’ in the 
fundamental concepts and methods and a competence in mathematical thinking. A 
guided journey through the history of mathematics would enable students to 
construct mathematical meanings and support their new conceptions about 
mathematics by changing their beliefs and attitudes towards mathematics and its 
teaching. The specific programme considered here was based on selected works and 
paradigms from the history of mathematics, exploring the cultural environment of 
the genesis of these works and ideas. How mathematical thinking evolved, seen by 
following the solution of some major problems that intrigued and inspired the 
leading mathematical minds from the classical Greek world until modem times, was 
expected to function as a strong motivation and aid. Coming to know some of the 
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successes, and understanding some of the failures, of well-known mathematicians 
would offer students an insight concerning the nature and the significance of 
mathematics. Hands-on experience together with the incentive to follow the steps of 
major characters was assumed to free students of some misconceptions, fears, and 
negative attitudes. 

The journey started with ‘pre-Hellenic mathematics’, proceeded to Greek 
mathematics, passed through Islamic and Hindu contributions, elements of the 
mathematics of the mediaeval and the Enlightenment period, and culminated with 
six rather lengthy units, selected from contemporary mathematics (for a list of topics 
see Philippou & Christou 1998b). 

At the University of the Aegean, Rhodes (UA), the programme comprised one 
content course and one method course, while at the University of Cyprus (UC) it 
comprised two content courses and one method course. In both cases the courses 
were structured so as to facilitate active learning. The three credits were divided 
into two hours lecturing and a one and a half-hour activities session. The students 
were led to construct their own meanings and draw conclusions by working on tasks 
and examples from the history of mathematics. 

4.3.1.2.3 The programme evaluation 
After being run for four years (1988-1992) at the UA, the programme was assessed 
in terms of its effectiveness in improving students’ attitudes toward mathematics. A 
questionnaire was administered concurrently to students at entry (El) and the end of 
the programme (E2) (Philippou 1993). For comparison purposes, the same set of 
questions was administered to comparable samples in two other rural Greek 
Departments of Education. At the UC a longitudinal assessment process was 
adopted (1992-1 995); namely, the same set of questions was administered before the 
commencement of the programme (Ph1), after the first course (Ph2) and at the end 
of the three courses of the programme (Ph3) (Philippou & Christou 1998a). 

The questionnaire consisted of three complementary scales. The Dutton scale 
comprised 18 statements ranging from highly negative attitudes toward 
mathematics, e.g., ‘I detest mathematics and avoid using it at all times’, to the most 
favourable e.g., ‘mathematics thrills me, it’s my favourite subject’. The liking-
disliking scales comprised ten items each requesting the subjects to choose the 
reasons of liking or disliking the subject, and the self-rating scale was an eleven 
point linear scale on which the subjects were expected to locate their feelings with 
respect to mathematics. 

Several statistical tests were applied. At the UA we used the t-test for each item
on the Dutton scale and the liking-disliking scales to test for differences between El 
and E2, whereas for UC the x2 -test was used for Ph1, Ph2 and Ph3. The points of
the self-rating scale were grouped into four categories: highly negative, negative, 
neutral, positive and highly positive attitudes. The Median Polishing Analysis was 
also applied on the responses of the three phases at UC. To this end, the Dutton 
scale was partitioned into three parts reflecting feelings of satisfaction, anxiety, and
appreciation of the usefulness of mathematics. In addition, ten semi-structured
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interviews were carried out, to elicit the views of those interviewed and their 
feelings with regard to the programme. 

4.3.1.2.4 Results and discussion 
The analysis revealed an alarmingly high proportion of students bringing along 
extremely negative attitudes. For instance, 26% and 24% of the students in UA and 
UC respectively endorsed the statement “I detest mathematics and avoid using it at 
all times”. Similar proportions endorsed the statements “I have never liked 
mathematics”, “I have always been afraid of mathematics” and “I do not feel sure of 
myself in mathematics”. The same pattern of responses also appeared in the self-
rating scale, in which 36.9% and 33.5% of the subjects located themselves in the 
range 1-5. Students liked mathematics mainly because “it develops mental abilities” 
(58%, 47%) and “it is practical and useful” (48%, 39%), while they disliked 
mathematics primarily because of “lack of understanding” (3 1 %, 24%) and because 
of “lack of teacher enthusiasm” (32%, 25%). 

Changes in attitudes were observed in both universities, but it was greater in the 
case ofUC. In the UA, the t-test indicated significant differences at the 0.01 level in
six items, indicating improvement of attitudes, while no such difference was 
observed in the control group. In the UC, the χ2-test revealed significant differences
in attitude on 14 out of 18 statements of the Dutton scale. For instance, the 
proportion of students who ‘detest mathematics’ dropped from (26%,24%) to (16%, 
12%) and of those who ‘never liked mathematics’ from (36%, 28%) to (32%, 18%) 
in UA and in UC, respectively. Conversely, the proportion of those who ‘enjoy 
working and thinking about mathematics outside school’ went up from 18%, 20% to 
27%, 40% in UA and in UC, respectively. The proportion of subjects who detest 
mathematics also dropped, according to responses on the self-rating scale from 
(14.6%, 14.3%) to (5.9%, 3.1%). 

The Median Polishing Analysis showed a positive change throughout the three 
phases in all three sub-scales. The overall effect was found to be low (34%, 21%, 
and 41%, for the three scales, respectively), indicating a rather low level of 
endorsement of the ideas portrayed by the items. Attitude change, however, was 
shown by Row Effects to be remarkable in all three sub-scales. That is, 
– in the satisfaction scale, a positive change: – 14.5% → 3.5% → 3.5%;

– in the anxiety scale, a steady negative change: 3% → 0% → -3%;  and 

– in the usefulness scale, a steady improvement: – 4.5% → 7.5% → 9.5%.

In brief, the programme was found to be effective in improving prospective 
teachers’ attitudes. It produced attitude change as evidenced by different 
instruments in a variety of situations. According to students’ evaluations, their 
introduction to history of mathematics played a major role in this development, 
though some related variables, such as instructors’ enthusiasm, have not been ruled 
out.



4.3.1.2 Greece and Cyprus: a preservice programme 117 

References for §4.3.1.2 

Grouws, D.A., K. A. Schultz 1996. ‘Mathematics teacher education’, in: J. Sicula (Ed.). 
Handbook of research on teacher education, London: Prentice Hall, 442-458

Philippou, George N. 1994. ‘Misconceptions, attitudes and teacher preparation’. in: 
Proceedings of the Third International Seminar on Misconceptions and Educational 
Strategies in Science and Mathematics, Ithaca NY: Cornell University. 

mathematics programme in changing prospective teachers’ attitudes toward mathematics’, 
Educational studies in mathematics, 35, 189-206

Philippou, George N., Christou, Constantinos 1998b. ‘Beliefs, teacher education and history 
of mathematics’. Proceedings of PME 22 (Conference of the International Group for the 
Psychology of Mathematics Education, 4, 1-9 

Reynolds, A. 1992. ‘What is a competent beginning teacher? A review of the literature’, 
Review of educational research, 62 (1), 1-35

Richardson, V. 1996. ‘The role of attitudes and beliefs in learning to teach’, in: J. Sicula (Ed.). 
Handbook of research on teacher education, London: Prentice Hall, 102-1 19 

Swafford, J.O. 1995. ‘Teacher preparation’, in: I. M. Carl (Ed.), Prospects for school 
mathematics, Reston VA: NCTM, 157-1 74 

Philippou, George N., Christou, Constantinos 1998a. ‘The effects of a preparatory 

4.3.1.3

David Lingard 

4.3.1.3.1 Context 
Routes to Qualified Teacher Status (QTS) at both primary and secondary levels have 
undergone considerable change in recent years. At secondary level these could now 
include a 2-year or 3-year BSc Honours undergraduate course (in Mathematics and 
Education), or a 2-year or 1-year postgraduate (PGCE) course. At primary level, the 
routes could include a 3-year BA Honours undergraduate course, or a I-year
postgraduate (PGCE) course. 

As part of the inevitable accompanying curriculum review, these changes have 
seen the introduction of some form of history of mathematics unit into the majority 
of these courses at a number of universities offering these QTS routes. The only 
students who miss out are usually those on the 1-year PGCE courses for whom, 
sadly, the pressures on time are already enormous. Some of these postgraduates may 
however have followed a history unit as part of their undergraduate mathematics 
degree course. 

4.3.1.3.2 Rationale 
The Mathematics Education Centre at Sheffield Hallam University is perhaps typical 
of the institutions which have embraced the history of mathematics as an integral 

UK: A new dimension in educating mathematics teachers 
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component of QTS courses for both primary and secondary student teachers. We
believe that some knowledge and understanding of and immersion in the history of 
mathematics is an important ingredient in the education of mathematics teachers 
because it helps them to: 
1, make more sense of mathematics, 
2. humanise the subject in the school classroom, 
3. emphasise the continuous and continuing development of mathematics, and 
4. appreciate the multi-cultural inheritance and culturally dependent nature of 

mathematics.
To this, George Sarton would have added: “The study of the history of mathematics 
[. . .] will enrich their minds, mellow their hearts and bring out their finer qualities.” 
(Sarton 1936), with which we would concur. 

4.3.1.3.3 Content 
In theory, these history units form a 35-hour or 70-hour taught course, for primary 
and secondary students respectively. In practice, about one third of that time is 
handed over to the students for individual enquiry and research, and to group and 
individual tutorials to support and guide this. 
The topics for the taught sessions are designed to : 
a) give students an overview of the history of mathematics, 
b) focus upon a number of key events, discoveries, developments and publications 

(e.g. The Rhind Papyrus, Greek geometry and proof, the quest for a value for n, 
analytical geometry and the calculus, the history of algebra, Chinese 
mathematics and the Nine chapters, etc.), 

c) examine in more detail the life and work of one or two significant 
mathematicians (examples so far have included: Pythagoras, Archimedes, Al-
Khwarizmi, Newton, Germain, Euler, Kovalevsky and Ramanujan), 

d) consider some related themes (e.g. the contribution of women, the effect of 
religious patronage and persecution, the translation of texts, collaboration and 
plagiarism),

e) look at some of the ‘unsolved’ problems that have fascinated many 
mathematicians over the years and which have been responsible for the 
development of new mathematics (e.g. the three problems of antiquity, the 
Goldbach conjecture, the Riemann hypothesis, the four-colour map, Hilbert’s 
problems, and Fermat’s last theorem), and throughout 

f) set the history of mathematics into the wider context of world history. 
The selection of topics, themes and mathematicians etc. may vary from course to 
course and from year to year. Choices are dictated partly by student interest, 
perceived relative importance (historically and/or mathematically) and, inevitably, 
the personal interest, experience and knowledge of the tutors! 

4.3.1.3.4 Teaching and learning styles 

The teaching and learning styles adopted by the tutors are of particular importance. 
These are intended to reflect and role model good classroom practice. There are no 
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lectures. Classes are taught in groups of up to 25 students, and the taught sessions 
will include a mixture of direct teaching (exposition), small group work, paired 
work, individual tasks and plenary discussion. More specifically these include: 

(i) Problem solving, e.g. the 
Egyptian method for finding 
the volume of a truncated 
pyramid (cf. The Moscow 
Papyrus, problem 14), 

(ii) Reading and research, 
(iii) Debate (see for example ‘The 

Sheffield balloon debate’, 
Hicks 1997, and figure 4.2) 

(iv) Field trips (to support work on 
Newton, for example, students 
might spend a day visiting his 
birthplace, Woolsthorpe 
Manor, the King’s School in 
Grantham where he was a 
pupil, and the Grantham 
museum),

(v) Individual ‘work in progress’ 
presentations, in order that 
peers may benefit from the 
research and study undertaken 

for assessed assignments, 
The use of television, video and 

Figure 4.2: The Sheffield Balloon Debate 
(Student poster reproduced in the BSHM 

Newsletter #35, Autumn 1997) audio programmes (see e.g. 
(vi)

§4.3.1.3.5 below), 
(vii) Group exercises, including for example the production of a wall poster to 

illustrate the development of mathematics over a particular period of time, 
(viii) Quizzes designed to promote research (and enjoyment !).

4.3.1.3.5 A typical session 
To illustrate the above in more detail, there follows a summary of a recent 3-hour
taught session on the BSc Secondary course (Year 1, 17 students): 

Topic : the contribution of women to the history of mathematics. 

Preparation : Students were given a booklet of key readings (extracts from Mozans 
1913, Burton 1986, Osen 1974 and Downes 1997) one week before the session and 
asked to study these. 
a) Groups of 3 or 4, each group given a large envelope containing over 50 ‘clues’ 

(pieces of evidence) relating to four famous contemporary mathematicians. 
Object: to sort the evidence and identify the four. The adjacent resources centre 
was available for limited research (the mathematicians were Gauss, Germain, 
Lagrange and Poisson). 
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b) Listen to audio cassette ‘Who is Sophie Germain ?’ (Cassette M006/B, Maths 
Miscellany, Open University, 1994). Students also follow the dialogue with a 
tape transcript. 

c) Plenary discussion, including how and when this might be used in the school 
classroom, with which pupils and with what additional accompanying 
resources/activities.

d) Closer examination of the correspondence between Germain and Gauss (referred 
to on the tape) about her proof concerning the primes for which 2 is a residue or 
non-residue. Exploration of this, mathematically, in pairs. 

e) Move to adjacent PC lab. Use of Excel (spreadsheets) to extend this work. 
Discussion about use of this in schools and Information and Communication 
Technology (ICT) issues. 

f) Exposition by the tutor about prejudicial attitudes towards women in 
mathematics and in history. Illustrated with examples from the 19th century in 
England, and by other ‘case studies’, including Hypatia, Somerville and 
Kovalevsky.

g) Listen to extracts from BBC radio programme ‘Real women: Sophie Germain’ 
(BBC Radio 4, broadcast on 6 March, 1998) to compare and contrast to b) 
above.

h) Summary and plenary discussion. 
It has taken several years to develop a range of similarly inter-active sessions, and it 
is a constant but nonetheless enjoyable challenge to structure new ones. 

4.3.1.3.6 Assessment 
In some respects it has proved to be problematic to find the best mode of 
assessment. What we have settled for at present is a combination of a written, 
critical account (at least 4000 words) of some aspect of the history of mathematics, 
and a presentation of this work to their peers. Students are free to propose and 
negotiate a topic with the tutors, no two being able to pursue the same topic at any 
one time. In their account students are encouraged to raise and try to answer 
questions such as: why did this happen then? what were the catalysts for change? 
what were the immediate and longer term effects of this development/discovery? 
who plagiarised whom? whose version of events do we believe, and why? etc. 
Accounts must be drawn from a wide range of sources, be well illustrated and 
professionally produced. 

The peer group presentations may last 20 minutes and should be informative, 
interesting, lively and inter-active (à la classroom!). They are usually done at the 
end of the unit, are given in historical order and often provide an enjoyable summary 
of the course. The current weightings are 60 % for the account, 40 % for the 
presentation.

The written accounts have, perhaps surprisingly, proved popular with students. 
Many enjoy the freedom of choice, the individual enquiry and research and the 
opportunity to ‘publish’. Some have great difficulty in constraining their accounts 
to less than 5000 words, some reach 8000! The marking load for tutors is very 
heavy. The presentations are also time consuming, usually occupying a whole day. 
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We have tried a timed, written, ‘open book’ examination, and also a vive-voce with a 
mixture of prepared and ad hoc questions, but tutors and students were dissatisfied 
with both. 

To give a flavour of the work undertaken, in addition to the more obvious (but 
no less valuable) choices, recent assignments have also included the lives and work 
of individual mathematicians: Thomas Harriot, Simon Stevin, Albrecht Dürer, Liu 
Hui, Eratosthenes, Heron of Alexandria, and George and Mary Boole; cultural 
surveys such as mathematics in China, Vedic mathematics, and mathematics and 
Islam; and particular topics such as the museum of Alexandria, the development of 
perspective, logic in the 19th century, the history of topology, the Lucasian chair at 
Cambridge, and the solution of equations. 

4.3.1.3.7 Resources 
The students rely heavily upon books and journal articles and frequently need to 
make use of inter-library loan facilities. Students are given a detailed booklist, 
currently listing over 250 popular titles available in the library, to get them started. 
It is interesting to note that about 80% of these have been published in the last 15 
years. The proliferation of websites on the internet for the history of mathematics
(well summarised and annotated by Barrow-Green 1998; and see §10.3.2) form an 
increasingly used source of material, especially for those with access at home, but 
John Fauvel’s timely and cautionary article (Fauvel 1995) is prescribed reading for 
all students at the outset! 

The Open University history of mathematics course broadcasts, their Maths 
Miscellany audio tapes, a variety of relatively recent television and radio 
programmes and even occasional coverage in the responsible press all provide 
further material. So too do articles in the professional journals, such as Mathematics
in school, Mathematics teaching and the BSHM Newsletter. 

We try to encourage students to make their own field trips, especially where 
these may be local for the students. So far these have included Cambridge 
University and the Whipple Museum, the British Museum and the Science Museum 
in London, George Green’s mill in Nottingham, and Lincoln and Doncaster (Boole). 

4.3.1.3.8 Feedback and evaluation 
We were initially taken aback by the overwhelming positive feedback from the 
majority of students and this is documented in Lingard 1997. Colleagues in other 
institutions in England would seem to confirm the apparent enjoyment of such units 
in QTS courses. Some of these clearly relate to a desire to humanise and civilise the 
school curriculum, and they impinge upon the relationship between mathematics, 
gender and ‘ways of knowing’ which in turn requires a re-conceptualisation of the 
nature of the discipline, as argued in Povey et al 1999.

In the longer term, what is perhaps even more encouraging and relevant is the 
growing evidence, locally and elsewhere, that once in post, many student teachers 
are using what they have gained from the course in their classrooms. Amongst the 
most recent examples are: classroom murals on the history of mathematics in one 
school, a Millennium project on the mathematics of the last thousand years in 
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another, and a one week study project for the whole of year 7 (11 year olds) on the
life and work of four famous mathematicians. Sadly, there are as yet insufficient 
good classroom materials to support the work of these school teachers. This is 
where, in England at least, the next thrust is needed. 
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4.3.1.4 Mozambique: Mathematics in history for secondary school trainee 
teachers

Abdulcarimo Ismael 

The programme component ‘Mathematics in History’ was introduced in 1990 as a 
compulsory course in all mathematics teachers ‘licenciatura’ programmes at the 
Universidade Pedagógica in Mozambique. This initiative found its inspiration in the 
ethnomathematical research, especially as it relates to didactics, which has taken 
place since the end of 1970s and which became organised in 1988 as the 
‘Ethnomathematics in Mozambique’ research project. 

the origin of some mathematical/geometrical ideas; the roots of mathematics in 
African and Mozambiquan cultures; and the history of mathematics in Africa and in 
the other parts of the world. The main topics of the course are: 
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In the teaching of ‘Mathematics in History’, three aspects are stressed: 
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– the history of multiplication: explanations of different methods of multiplication; 
the method of Ahmes in the Rhind Papyrus, called the 'African multiplication 
method'; where does the method taught in schools in Mozambique come from? 

– counting and numeration systems: classification according to basis and position; 
survey of the numeration systems found in the students' own mother tongues and 
of popular counting methods (for results see Gerdes 1993 & 1994b); the binary 
system, calculators and African duplication systems. 

– number systems: the history of natural numbers, negative numbers and 
associated historical issues, rational and irrational numbers (Pythagorean 
philosophy), imaginary numbers. 

– history of algebraic equations: different methods (algebraic and geometrical) for 
solving algebraic equations (Egyptian, Greek, Maghreb, Babylonian). 

– numerical analysis: iterative methods for solving equations (from Babylonian, 
Egyptian, Hellenistic, and Arab methods until the theory of Galois). 

– history of geometry: geometry 
in African cultures; history of 
geometrical methods; the 
contributions of Euclid, 
Archimedes, Descartes and 
others.

– history of the calculus: the 
contributions of Leibniz and 
Newton; roots of the calculus in 
Northern Africa, India and 
Europe.

We imagine that most of our 
activities are similar to those used 
in other countries, but there are 
some aspects to be stressed which 
are 'innovations'. We ask students 
to think about cultural aspects of 
their own lives which can be 
directly or indirectly related to 
mathematics and probably also to 
its history. We require students to 
take an active role in the process of 
learning about the history of 

characteristic example of a LUSONA, the and by reflecting on their own 
art of sand drawing as exercised by the counting processes (e.g. aspects of 
Tchokwe in Angola. Such SONA serve to counting and spoken numeration 
reconstruct traditional geometrical systems), by looking for oral sources 
knowledge and are used in teacher (interviewing old people and 
education in Mozambique and in the illiterate people), analysing the data 
classroom as well. From Gerdes 1991, 
courtesy of the author. 

Figure 4.3: A leopard with five cubs: a mathematics, through collecting data
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they have gathered, interpreting the results and formulating their own hypotheses. 
In doing this we are asking them to take an active part in historiography and in 
reviving history. Gerdes (1990, 1995) presents many examples of 
ethnomathematical aspects which can serve as resources for doing history of 
mathematics in the classroom. His articles (1993, 1994a, 1994b) were used in the 
teaching of the mathematics in history course with UP-students. The articles in 
Gerdes 1993 and 1994b include works and article by others at the UP (Marcos 
Cherinda, Jan Draisma, Abdulcarimo Ismael, Abilio Mapapa, Daniel Soares). 

At the end of each 'mathematics in history' course, we have carried out an 
anonymous evaluation. The results have shown that the students were usually 
surprised by what they had done; there was a high level of interest in the course, the 
students themselves were very motivated and convinced about the usefulness of 
history of mathematics in their future profession. The students also feel very 
confident about the potential that Africa has to offer and its contribution to the 
development of mathematics. Sometimes the students even go so far as to make 
exaggerations such as: 'all mathematics comes from Africa'. 
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4.3.1.5 Morocco: History of mathematics used in teacher training: an 

example

Abdellah El Idrissi 

We offer here an example of using history of mathematics with secondary teacher 
trainees. The intention was to use history for the purposes of epistemological 
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analysis. The aim was for students to analyse mathematical reasoning and to 
become acquainted with the major stages of the evolution of certain concepts after 
having traced their development (El Idrissi 1998). 

The topic used in this example is trigonometry and, in particular, the 
fundamental concepts of angle and the basic trigonometric ratios. The course, for 
about ten students, was planned to last for about twenty hours. The guiding 
principles for the course were as follows. 

4.3.1.5.1 Guiding principles 
a) The course should be activity based with a minimum of teacher ‘narration’. 
b) The topics and sessions should be based around specific problems and sources. 
c) All work should be based on original texts. Original texts, even if they are 

difficult to use, provide for a better understanding and avoid imposing erroneous 
interpretations.

d) In using history it is important to distinctinguish between hard facts and inter-
pretations, and also to follow the tools, concepts and conventions of the period. 
Preferably one avoids early recourse to modem symbolism and interpretations. 

e) In teacher training historical analysis should be complemented by some teaching 
activities. This will help encourage the interest of the students by providing 
material they will be able to use in their classrooms. 

4.3.1.5.2 Course description 
Trigonometry has a history of more than four thousand years and a choice has to be 
made of subject matter and time period. Four periods were chosen. 

a The Egyptian period: The Rhind Papyrus (c. 1500 BC)

This document is one of the rare mathematical documents we possess as evidence of 
Egyptian mathematics. Reading and interpreting the document is relatively recent. 
The Rhind Papyrus consists of mathematical problems together with their solutions, 
both of which provide useful study material. The problems we chose concerned the 
‘seqt’, a concept close to our idea of cotangent and which was used to determine the 
angle of slope of sides of pyramids. (Gillings 1972; Neugebauer 1969; Smith 1958) 

b Ancient Greece: Ptolemy’s Almagest (c. 150) 

The Almagest is the oldest work that informs us of Greek ideas on trigonometry, 
earlier works having been lost. Two chapters of this work on astronomy are given 
over to trigonometry and, in particular, to the construction of a table of chords. We 
were interested in the underlying mathematical reasoning as well as the construction 
of the table. (Neugebauer 1969; Smith 1958; Halma 18 13) 

c The Hindu period: the Suryasiddhanfa (c. 500) 

Hindu trigonometry as presented in the Suryasiddhanfa differs from Greek 
trigonometry in that a table of sines is constructed using the radius of the circle as 
the base. The other difference is the complete absence of symbols, all results being 
given in words. (Burgess 1858; Smith 1958) 
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d The Arab period: Al-Tusi’s Traité du Quadrilatère (c. 1250) 

Al-Tusi’s work marks a 
decisive stage in the 
development of trigonometry 
in which Greek and Hindu 
influences are apparent. A 
variety of methods for the 
solution of triangles is given. 
The methods depend on 
different units of angle which 
are in fact incompatible. Figure 4.4: Al-Tusi’s quadrilateral (from the 1891 

edition) Resolving these differences is 
a challenge for the students 
and provides opportunities for 

fruitful resolution of conflicting viewpoints (AI-Tusi 189 1).
Following the principles given above, pertinent extracts were selected from each 

source and activities based on the text were given to the students. Some activities 
went beyond the strict historical context in order to deal further with the 
mathematics or the teaching of mathematics. (A fuller discussion of original sources 
and their use will be found in Ch. 9). 

4.3.1.5.3 Evaluation 
The results of the teaching programme were analysed qualitatively. Seven 
statements were presented to the students. Each of the participants was asked to 
agree or disagree and to give reasons. It should be noted that the statements did not 
make explicit reference to the history of the subject. Two examples: 
1. Tangent is simply the ratio of sine to cosine. For pupils to understand tangents 

all that is necessary is for them to understand sine and cosine, following which 
we can be sure they will understand tangent. 
For me trigonometrical ratios (sine, cosine, tangent, ...) seem the same as 
measuring angles. That is why I would plan my teaching of trigonometry as a 
way of measuring angles, or at least as a way of describing angles. 

The course was evaluated using semi-structured interviews. The main purpose was 
to get the students to explain and justify their answers. The evaluation led to three 
important conclusions. 

First, history of mathematics helped the students to analyse mathematical 
concepts and, to a certain extent, to choose suitable teaching strategies. Second, the
students became aware of difficulties that may arise if history is used to teach some 
mathematics or to clarify concepts. Third, there are cases where the history of 
mathematics can convey concepts, inappropriate for teaching mathematics. 
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4.3.1.6

Éliane Cousquer 

In the mathematics department of the IUFM du Nord Pas-de-Calais, we have had a 
great deal of experience in teaching the history of mathematics (IUFM stands for 
Institut Universitaire de Formation des Maîtres). This takes place within the IUFM
for initial teacher training, and mainly within the IREM for in-service teacher 
training. Our practice has changed and evolved over time. 

Initially, a twenty-hour course in history of mathematics was compulsory, and 
had to be taken in either the first or the second year. This proved to be 
unsatisfactory in either year. In the first year, students wished to devote all their 
time to prepare for an examination which does not require the history of 
mathematics, and in the second year, the teaching practice stage and the writing up 
of the thesis take up most of the energy of the students who, in any case, tend to feel 
that the training at the IUFM is too diversified. Consequently, the mathematics 
department decided to make the history course optional and to link it to the needs of 
those students who are preparing for their practice stage. 

Nowadays, a course is delivered in parallel to the seminars preparing for the 
professional thesis. The course deals with the history of a number of topics, such as 
algebraic equations, proof, numbers, measuring and vector calculus (see Cousquer 
1998). Students can draw on these topics either for the preparation of their practice 
stage in schools or for the thesis. This turns out to be more satisfactory, since the 
students find the history of mathematics course directly relevant to their needs. 
Rather fewer than half group take the course but, on the whole, these fifty-odd
participants find it interesting. Students gain deeper understanding through working 
on their thesis, which is enhanced by the work in schools teaching and by having 
followed the history course. The course at the IUFM provides a rich experience, and 
the participating trainee teachers wish it to continue since such courses provide 
meaning for the topics they had to teach during their practice stage: introduction to 
algebra, initiation to proofs, presentation of different kinds of numbers, vector 
methods in geometry. Linking the history course to the immediate concerns of the 
practice stage makes the course more valuable. 
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4.3.1.7 Germany: A course component on the history of mathematics 
education and the professionalisation of mathematics teaching 

Gert Schubring 

The point of departure for this component is the ambiguous position of mathematics 
instruction and of mathematics teachers in a large number of technologically 
developed countries. While mathematics officially enjoys the status of a major 
teaching subject and is generally assigned the highest importance for developing 
science and technology and hence for social welfare, it is at the same time held to be 
accessible to only a small percentage of ‘gifted’ students. Hence, mathematics 
teachers are accustomed to be faced in practice with a disparagement of their subject 
by the general public and by parents. The consequences of this disparagement are 
either an acceptance that they can achieve only limited success with their teaching 
or, on the other hand, a confirmation over and again of the impression of failure in 
mathematics experienced by the great majority. Their training does not prepare 
mathematics teachers to cope with the fragile social status of mathematics 
instruction. Nor are they prepared for entering into a discourse legitimating the role 
of mathematics instruction within general education when confronted with harassing 
questions by parents about the value of mathematics instruction. This ambiguity is 
experienced by mathematics teachers even in their daily professional life. 

The thinking behind this component is therefore to prepare future mathematics 
teachers, during their university studies, for problems of their future profession 
arising from the specific social and cultural resonances of the subject they teach. 

As educational structures are a result of long-term processes, the component was 
developed as a historical one: introducing the teacher students to the history of 
mathematics education and in particular to the history of their profession as teachers 
of mathematics. The notions of profession and professionalisation are different from 
those used in pedagogy and in history of pedagogy. These notions are not restricted 
here to refer to the social aspect of teacher life, they rather embrace the content of 
teaching since a dominant element of mathematics teachers’ professional identity is 
their own intrinsic relation to their subject, their ‘love of mathematics’. Historical 
studies on the emergence and further development of the profession of mathematics 
teachers and on its field of professional activity in mathematics instruction are, thus, 
highly apt to contribute to instilling meta-knowledge about their subject into future 
teachers. Such studies will make them aware that the history of mathematics 
education and of their own profession is not an isolated or internal one, but rather a 
social and cultural history which relates school mathematics to the overall history of 
the respective countries. In fact, school knowledge is even less neutral than 
scientific knowledge: history of mathematics education must therefore be thought of 
as a part of the social history of knowledge. School mathematics develops as a 
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constitutive part of the institutional history of school in the respective countries-it
is subjected to social pressures on contents and methods of teaching, and its 
epistemology is affected by the social norms and values generally shared in a 
country at a given time. 

In the study component 
developed, the major 
national focus was given by 
Prussia, the first German 
state to be profoundly 
modernised at the beginning 
of the nineteenth century. 
The results of the study were 
fascinating and entirely 
different from the traditional 
type of rather dull listings of 
administrational decisions 
about school syllabuses. The 
emergence of the profession 
of mathematics teacher in 
Prussia was shown to be a 
direct expression of the 
modernising policy of the 
Prussian state after 1809: a 
formerly marginal subject 
became a major teaching 
subject and an integral and 
constitutive component of 
systematic educational 
reforms. An example may 
be seen in figure 4.5, which 
shows an extract from a 
mathematics curriculum for 
the gymnasium, proposed to 
the Prussian ministry in 
1810. The extract shows the 
novel and ambitious calculus 
syllabus for the last class (six 
hours per week for three 
years), which included 
Taylor’s theorem as well as 
mechanics. Never entirely 
realised but an ideal 
guideline, such a document 
helps us analyse the 
historical conditions for Figure 4.5: Geheimes Staatsarchiv Preussischer 

Kulturbesitz Berlin, Rep. 76 alt (wissenschaftl. 
Deputation), Nr. 18, fol. 64v/65r 
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implementing curricular change. 
In a conscious endeavour, mathematics teacher education was institut-

ionalised, together with establishing the profession of mathematics teachers for the 
new major subject. It is moving to follow the biographies of the first generations of 
mathematics teachers who, often isolated among their colleagues teaching classical 
languages and among the local public, struggled desperately to have mathematics 
acknowledged against all kinds of resistance. The history of mathematics education 
even in just one country proved to be quite complex, and at the same time provided 
rewarding structural insights into social and cultural factors of school mathematics 
and their teachers. Some of these insights are: 
– school mathematics in no way constitutes a direct reflection or projection of 

mathematics as a scholarly body of knowledge-neither in its respective modem
state nor in a historically more remote form. 

– in the first instance, this is due to the fact (usually systematically neglected in 
traditional histories of mathematics education) that mathematics is not an 
isolated subject in school, but has to coexist with many other teaching subjects. 
The relative status of mathematics as a subject of instruction and examination 
(and, consequently, the status of its teachers) is shown to be the result of a 
complex social negotiation process attributing a relative educational weight to 
each subject of instruction. But not only that, it also emerges that the scope and 
type of school mathematics emerge as variables which largely depend upon the 
social functions ascribed to schooling and to the given school structure. 

– more particularly, school mathematics is moulded by culturally determined 
epistemologies characterising the type of mathematics taught in a particular 
school structure. In fact, one of the most unexpected outcomes of the historical 
component for the student teachers were concrete visualisations of the 
continuum of epistemological mouldings ascribed to school mathematics in 
different social and cultural contexts. These varied from a pure view on 
mathematics which emphasised formal mental training at the one extreme, and 
on the other a view of applied mathematics emphasising vocational purposes and 
usefulness.

– another intriguing dimension is presented by the enormous variability in the 
relation between school knowledge and scientific knowledge. There are periods 
where school mathematics constitutes a hermetic body of knowledge, without 
explicit relations to the academic world, producing its own standards of rigour 
and its own architecture of mathematics justifying the selection of contents and 
the chosen hierarchy of concepts. And there are other periods of an ‘open’ 
curriculum where school teachers were aiming at following methodological 
views converging with those of academic mathematics. 

The new component for mathematics teacher education has been successfully 
established at Bielefeld University where courses in history of mathematics 
education figure in practically all curricula leading up the various teachers’ 
diplomas.



4.3. 1. 7 Germany: professionalisation and the history of education 131

References for §4.3.1.7 

Schubring, Gert 1984. ‘Essais sur I’histoire de I’enseignement des mathématiques, 
particulièrement en France et en Prusse’, Recherches en didactique des mathématiques, 5,
343-385.

Schubring, Gert 1989a. ‘ Warum Karl Weierstraß beinahe in der Lehrerprüfung gescheitert 

Schubring, Gert 1989b. ‘Theoretical categories for investigations in the social history of 
wäre’, Der Mathematikunterricht, 35: 1, 13-29. 

mathematics education and some characteristic patterns’, in: C. Keitel, P. Damerow, A. 
Bishop, P. Gerdes (eds.), Mathematics, education and society, Paris: UNESCO, Science 
and Technology Education Document Series No. 35, 6-8.

Studien und Materialien zum Prozeß der Professionalisierung in Preußen (1810-1870)
Second, revised edition: Weinheim: Deutscher Studien Verlag. 

Current practice in in-service training 

Schubring, Gert 199 1. Die Entstehung des Mathematiklehrerberufs im 19. Jahrhundert. 

4.3.2

4.3.2.1

Torkil Heiede 

An in-service course for primary and lower secondary teachers of mathematics, 
covering the whole history of mathematics in seven three-hour sessions: that is 
surely impossible! In earlier years I have given a relatively comprehensive 
exposition several times in courses consisting of 33 such sessions, stretching from 
September to May, but that was stopped-not because of too few applicants, but
because too few of them had their applications endorsed by the local school 
authorities, who tended to consider a course devoted entirely to the history of 
mathematics as a luxury. This took place at the Royal Danish School of Educational 
Studies, an institution with the purpose of giving further education to teachers in the 
folkeskole (i.e. grades 1-10) in Denmark. We now decided to place a course in the 
history of mathematics inside a larger course (one six-hour day per week, 33 weeks) 
in general mathematics. If it was impossible to cover the whole history of 
mathematics in seven such sessions, then the solution might be to pick out seven 
important bits and try to present them in such a way that the participants realised that 
here was something relevant and interesting, something to return to and to go on 
with. Also it had to be underlined that hand-outs and other material was meant not 
to pass unadapted into the participants’ own classrooms but to be drawn upon-
together with what they could find on their own, helped by a list of references-to
colour and maybe improve their mathematics teaching. Here follows a synopsis of 
what was planned for these seven sessions, with a few commentaries: 
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4.3.2.1.1 Session one: Egyptian mathematics 
A base 10 number system which is not a position system. Addition and subtraction 
algorithms. Multiplication algorithm based on duplication. The similarity to so-
called Russian peasant multiplication, and to what goes on inside the calculators of 
to-day, working in a binary (base 2) system. Calculation with unit fractions. 
Solving linear equations by trial and error (regula falsi). Everything illustrated with 
original problems and tables from e.g. the Rhind papyrus. 

4.3.2.1.2 Session two: Babylonian mathematics 
A base 60 system which is also a positional system (as ours), discovered by the 
participants from a picture of an Old-Babylonian clay tablet containing a 
multiplication table for 9 (see §8.3.1 .1 .2). Sexagesimal fractions. Division by table 
of reciprocals. Solution of quadratic equations (taken directly from pictures of 
original clay tablets). Deciphering some tablets, e.g. Plimpton 322 tablet; 
conjectures on its content. 

These first two sessions show that number systems and algorithms different from 
our own can be as valid and efficient as ours. This throws light on our own number 
system and algorithms. 

4.3.2.1.3 Session three: Greek mathematics 
Two rather clumsy number systems (also Roman numerals) and the later 
sexagesimal number system of the Greek astronomers. Pythagorean mathematics. 
Incommensurability and its consequences. Euclid’s Elements, in Danish translation. 
Euclid i, 47-48 (Pythagoras’ theorem), Euclid ix, 20: the primes outnumber any 
number. Proof by exhaustion, especially pyramid, Euclid xii, 7, and cone, Euclid 
xii, 10. Archimedes, especially the areas of the circle and the surface of a sphere, 
and the volumes of the cone and the sphere. Sand-reckoner and the Method.
Diophantus, his symbolism and his solutions of equations, especially his treatment 
of Pythagorean triples. The Greek number concept versus ours. 

4.3.2.1.4
Number systems and calculations: who invented a symbol for zero? Solution of 
equations, systems of equations. Indian astronomy and trigonometry. Pythagoras’ 
theorem before Pythagoras; Pascal’s triangle before Pascal. The Chinese Suan-Pan
and the Japanese Soroban. 

4.3.2.1.5
Al-Khwarizmi and his books: the origin of the words algorithm and algebra. The
number system and how it arrived from India. The solution of linear and quadratic 
equations, possible influence from Babylonia. Omar Khayyam, geometric solution 
of cubic equations. The translators in Spain and the origin of the word sinus.
Fibonacci and his books. Maybe also Jordanus and Oresme. 

Session four: Indian and Chinese mathematics 

Session five: Arabic and European Mediaeval mathematics 
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Luca Pacioli. The cubic controversy: 
Del Ferro, Tartaglia, Cardano, Ferrari 
and the algebraic solutions of cubic and 
biquadratic equations. A glimpse of 
Abel and Galois. Trigonometry and 
navigation. Viète and his notations; his 
theorem on sums, products etc. of roots 
in equations. Stevin and decimal 
fractions. Descartes and Fermat, the 
birth of analytical geometry; its 
importance for the beginning of 
calculus. Probability theory; Cardano's 
Liber de ludo aleae; the
correspondance between Fermat and 
Pascal. Fermat's last theorem. 

(But next to nothing about the story 
of the calculus, series, differential 
equations, real and complex analysis 
etc. throughout the 18th and 19th 
centuries, even if it was more or less 
synonymous with mathematics in this 

has to be left 
out, and the participants do not 
themselves teach even the rudiments.) 

period   something
Figure 4.6: Mathematics education 
c. 1550 

4.3.2.1.7 Session seven: Non-Euclidean geometry 
Its roots in Greek and Arabic mathematics. Saccheri, Lambert, Legendre, Gauss, 
Bolyai, Lobachevsky, Beltrami, Klein and Poincaré. Most of the participants have 
never heard about it, and it would come as a shock for them that mathematics has 
become something separate from physics, in that mathematical statements cannot 
any more be considered to be true in any straightforward physical sense. Even if the 
participants never mention non-Euclidean geometry explicitly, their awareness of its 
existence should influence what they say in class, so that their pupils may get a 
better impression of the nature of contemporary mathematics. 

The course was carried through more or less according to the plan and was repeated, 
with modifications, in the following years. It was a success with most of the 
participants, even those who did not know much mathematics and not much general 
history either, who are victims of our ahistoric times and had no general historical 
framework on which to hang the history of mathematics. It is obvious that much of 
the history of mathematics was not even touched upon in this course; it only gave an 
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overview, but with many examples, and with many of them taken as near as possible 
to original sources. 
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4.3.2.2

Hélène Gispert 

I would like to give examples of the possible use of the history of mathematics for 
in-service teacher training. I have given sessions in the history of mathematics to 
both primary teachers and secondary mathematics teachers. In the case of primary 
teachers, most of them teach mathematics as just one of many subjects and have no 
university mathematics education. In spite of the difference in the audience, the aim 
for these sessions is the same in both cases. The aim is not to train teachers in using 
history of mathematics in their classrooms. My purpose is, in fact, to use the history 
of mathematics and the history of mathematics teaching to show the links that have 
existed in different times between the contents and aims of mathematics as a science 
on the one hand, and the social, economic and cultural backgrounds in which they 
were defined, on the other hand. 

These historical sessions were organised as part of larger training courses in 
mathematics which can last from one to four weeks. One or two days are devoted to 
historical topics chosen in relation to the main topics of the training sessions. These 
historical sessions consist of both lectures and working groups on original historical 
texts.

The first example is a four weeks’ in-service teacher training for primary 
teachers which colleagues in mathematics and technology organised and which is 
called ‘geometry with head and hands’. There are two history sessions of three 
hours each. In the first one, I try to make teachers conscious of the different status 
that geometry and its teaching had in different societies. I present the cases of Egypt 
and Mesopotamia, Plato’s Academy, China, and several periods of mathematical and 
intellectual history of Europe, from the Middle Ages to the 19th century. Teachers 
are then led to question some obvious notions common to their own geometrical 
experience as secondary pupils (such as rigour, proof, figure, definition) but which 
seem to contradict their present experience of primary school teaching of geometry. 
Primary level geometry is actually based on figures (or drawings) and what can be 

France: history of mathematics in in-service training for primary and 
secondary teachers 
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seen and handled in the real world. These features often lead teachers to consider 
that they are not doing ‘geometry’. The historical point of view helps them to ask 
new questions about the relations between geometry at primary level, where proof is 
not required, and geometry at secondary level where pupils have to gradually learn 
about proof. It also helps the teachers to work in a new way on the general theme 
chosen for the session, that is ‘geometry with head and hands’. 

The second historical session deals with the history of geometry teaching and 
teaching through the practical tools (‘travail manuel’) in use for primary schools 
during the 19th and 20th centuries in France. During this session, teachers work on 
texts-mostly public documents, official curricular documents and commentaries on 
the curriculum. The declared purposes of the two parallel educational systems that 
existed in France until the 1950s can be clearly seen: primary education, intended 
for the education of the masses, whose curriculum had to be practical, limited, 
concrete and useful; as opposed to secondary education, reserved for the elite and 
having only cultural purposes. Geometry, together with its content, teaching, and 
practical applications is clearly not the same for both systems. A role of the ‘travail 
manuel’, widely adopted at the end of the last century, for the primary level, was to 
provide mathematics object-lessons, including geometry lessons. This gave us 
topics that brought us back to the main theme of the session and to ask what in 
geometry teaching relates to the head and what relates to the hands. 

The second example was planned for both secondary mathematics teachers and 
for those working in teacher education. The first group had a one-week session 
dealing with the link between primary and lower secondary education, now part of a 
common curriculum programme but formerly quite distinct, as explained above. For 
the second group, the session was entirely devoted to the history of mathematics and 
lasted three days. The focus was the history of mathematics teaching during the last 
two centuries and considered the questions: who were the main actors? and what 
were the main issues in the mathematics curriculum? As in the first example, I was 
interested in showing the differences between the history of the two parallel teaching 
systems, the primary one and the secondary one, whose aims were re-evaluated
several times during the last two last centuries in relation to economic and political 
changes in France. What is interesting is that the position of mathematics, and more 
generally of science, in both school curricula appeared to be conditional upon these 
political changes. The study of these periods of change in the curriculum leads 
mathematics teachers to become aware of the range and variety of the major actors, 
their interests and the reasons advanced to defend the mathematics curriculum or to 
argue for change. As well as pedagogic reasons, economic, ideological and 
scientific reasons are advanced. This should broaden the perceptions of 
mathematics teachers by making them aware of what they may not have understood 
before the course: the fact that factors affecting the teaching of mathematics at each 
period, and therefore also today, depend also on social influences. Delving into 
history in this way helps to highlight an aspect of the educational situation of today 
of which secondary teachers seem hardly aware. The first years of the present 
secondary level for all pupils from 11 to 15 in France (collège), including its 
mathematics content, is in fact the fruit of two quite distinct school traditions which 
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were combined in the 1960s. The primary one, as we have said, was for most of the 
11 to 14 or 15 year old children and was concrete and practical. The secondary one, 
intended for the small minority who pursued their studies up to university level, 
claimed to be essentially cultural with no practical application in view. Debates
about what should be the nature of mathematics teaching in today’s ‘college unique’ 
(comprehensive school), catering for all pupils, will be more meaningful after 
learning about the mathematical content, as well as the pedagogical methods, of 
these two former distinct, and opposed, systems. 

For both examples cited, the teachers have valued the historical detour offered 
by the sessions. It has allowed them first to appreciate the link between mathematics
and the history of the societies where it developed and flourished, and second to 
have a better understanding of the main issues of mathematical teaching, past and 
present. They found history to be a valuable tool to obtain a better understanding of 
their profession and its practice. Nevertheless, it remains a detour. Most of them 
consider it quite enough to insert a few historical sessions among a largely non-
historical training course and would not have chosen a specific training course in 
history of mathematics. For this reason, I think these sessions, brief though they 
were, were effective in that a larger number of teachers gained the benefit of a 
historical perspective in mathematics and mathematics education than would have 
been the case if a course only dealing with the history of mathematics had been 
offered. When it comes to those concerned with training teachers, my view is that 
they should have more than these limited insights. History deserves to become a 
tool in the training of teachers, but there is much to do before that goal can be 
achieved.
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4.3.2.3

João Pitombeira de Carvalho 

The concept of function provides a good example of the value of a historical 
perspective about the teaching of mathematics. In particular, it can explain and 
modify one's work with teachers in continuing education projects, such as in-service
courses for mathematics teachers of primary and secondary schools. 

In Brazil, many of these teachers react strongly when they are told that a 
function is a correspondence that assigns to every element of a set A , its domain, a 
well defined element of another set B. Most of them are familiar only with the 
definition of a function as a particular kind of relation defined on the Cartesian set 
A x B. Some of them even say that this is the only way of defining a function, and 
that this is perfectly appropriate for the teaching of mathematics in primary or 
secondary schools. 

4.3.2.3.1 Historical Perspective 
A historical perspective about the evolution of mathematics teaching in Brazil 
explains why teachers understand function this way. A secondary school curriculum 
in Brazil was first established in 1837, with the creation of the Colégio Pedro II, a
public school which was set up to correct the laxity and disorganisation prevailing at 
all levels of teaching up to that time. Even though primary school teaching was 
regulated only in 1946, the Colégio Pedro II was fundamental for the organisation 
and regulation of secondary school teaching in the Brazilian Empire, and later 
during the republican years, from 1889 on. 

The first appearance of the word 'function' in the official curriculum was in 
1889. According to the textbooks then in use (e.g. Sonnet 1869), a function was 
defined in terms of variables: 

A variable y is called a function of another variable x, ify varies with x, and if y assumes one 
or several well defined values when a definite value is attributed to x.

At the same time, just after the monarchy was overthrown, a major curricular reform 
introduced the study of the differential and integral calculus in the secondary 
schools. The textbook specified in the official curricular regulation was that by H. 
Sonnet. This reform lasted only for a few years, and the teaching of calculus in the 
secondary schools was then abandoned for almost half a century. 

The function concept appears on and off in successive curricula for the Colégio
Pedro II after this period. Examination of some of the textbooks used during this 
period shows that they adhere to the function definition given above. The 
mathematics teachers at this model school used to be trained at the Escola Militar, 
the later Escola Politécnica, which trained engineers. Functions were introduced 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 137- 140

Brazil: The concept of function in in-service training 



138 4 History of mathematics for trainee teachers 

there as a rule of correspondence (Dynnikov 1999). The perusal of more recent texts 
used in the Colégio Pedro II in the 1920’s shows a similar treatment of the function 
concept. In particular, the texts Curso de Matemática I and Curso de Matemática II, 
written by Euclides Roxo, a staunch defender of Klein’s ideas on the teaching of 
mathematics, stress the use of the function concept in the secondary school 
curriculum. According to him, the function concept should permeate all the 
curriculum and not be a particular topic of study. 

In the early thirties and forties, the mathematical syllabus for secondary schools 
experienced a round of major modifications and consolidation. These modifications 
included a unification of the curriculum, a position strongly defended by Euclides 
Roxo. This syllabus set the trend for all subsequent ones. In the new textbooks 
written for these curricula, a function is a well defined correspondence between two 
sets. They state this in terms of independent and dependent variables, and also allow 
many-valued functions. 

Things changed in the late 1950s, with the arrival, in Brazil, of the ideas of the 
‘modem math’ movement. From then on, in almost all textbooks, a function 
becomes a particular kind of relation in a Cartesian product (see for example 
Pitombeira 1996 and 1998b). In the late 1950s and the 1960s, many books were 
written for mathematics teachers along the lines of the modem math movement. 
Also, many in-service programmes were set up to bring teachers up to date. 
Textbook writers very quickly took up the new ideas, since the official curricula 
called for a set theoretical approach to the function concept. A study made in 1995 
by this author showed that even then some states still specified that the concept of a 
function should be presented this way. This study dealt specifically with elementary 
school mathematics. Notwithstanding, the documentation presented by the States’ 
Secretarias de Educação in most cases contemplated secondary school curricula, and 
so the claim made in this paper is justified (see Pitombeira 1998a). On account of 
all this, the new presentation of the function concept became widespread in school 
mathematics. This trend was reinforced by analogous introductions of set-theoretic
definitions in some textbooks for universities and teacher colleges. 

Because of all these developments, the presentation of the function concept 
along the lines laid down by the new maths movement became widespread and self-
reproducing: the more it was adopted, the more it was included in the official 
curricula, Now, because of very strong criticism of the modem math movement, 
there is a new generation of textbooks which has gone back to the definition of a 
function as a functional dependence. In a certain way, we have completed the circle. 

4.3.2.3.2 What to do 
The prevailing conception of a function among teachers, that is, as a special kind of 
relation in a Cartesian product, impedes the use of the function concept in most 
situations. Even if the teacher proceeds from this definition to give examples of 
‘honest’ functions, that is, numerical functions in which a ‘variable’ y varies with a 
‘variable’ x, we have observed that they do not connect these two notions of a 
function, and this leads to a very unsatisfactory situation: the student asks himself 
what really is a function. In the worst case, the teacher restricts his examples of 
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functions to special subsets of a Cartesian product, and the student is completely 
bewildered when he faces the graph of a numerical function and the teacher tells him 
that the graph represents a function. Also, some of the textbooks which present the 
Cartesian product definition do not stress that in many applications one is really 
interested in how the dependent variable varies when the independent one varies. 
Some of them hardly ever present examples of this dependence. 

We set ourselves the task of convincing teachers to abandon the Cartesian 
product definition in favour of the correspondence one. Of course, the simple 
statement that their definition is ‘bad’ and that the one we propose is ‘good’ would 
not change their conception of a function. Instead we set up the following steps, in 
which the historical perspective on the teaching of mathematics plays a major role. 

1 - Review of the evolution of the function concept. 

We stressed Euler’s contribution. In particular, they were given old and modem 
textbooks used in Brazil and asked to see how their definitions and examples 
comply with Euler’s point of view, that is, if we still had Euler’s definition, would 
the examples presented in the textbooks be functions? We then studied the 
evolution of the function concept after Euler’s definition, presenting Cauchy’s 
conception of a function, and ending with the Cauchy-Dirichlet-Bourbaki definition. 
We point out that this part is not a course on the history of mathematics. From the 
very beginning of our programme the teacher is immersed in school mathematics, 
via the textbooks. 

2 - Discussion of some of the ideas of the modern math movement. 

We dealt with its use of set theory and how it attempted to build up the concepts of 
school mathematics starting from set theory. The teachers received examples of 
textbooks which followed the ideas of the modem math movement and we asked the 
teachers to compare the examples they presented with the examples found in the 
older textbooks. The teachers were also asked to evaluate how the modem math 
textbooks dealt with the transition from their abstract definition to the presentation 
of the usual functions of school mathematics. 

The teachers were also asked to look for the official curricular instructions 
issued by the state Secretaria de Educação from the 1950s to 1990s and to discuss 
their presentation of the function concept. 

3 - A presentation of the history of the teaching of mathematics in Brazil 

This was along the lines of the historical perspective given above. For this, the 
teachers were given extracts of textbooks used (from the 1850’s to the 1950’s) and 
asked to compare their treatment of the function concept. 

4 - A discussion of their own learning of the function concept in their high school 

The teachers were asked to bring their old school and college textbooks and to 
discuss with the group how these texts present the concept of function and work 
with it (examples, applications, exercises). A comparison of how some widely used 

and college years. 
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current textbooks present the concept of function and the examples and exercises 
they give. The teachers analyse current textbooks and write up an essay comparing 
them, their examples and exercises they give and the coherence between the 
definitions and the examples presented. 

4.3.2.3.3 Conclusion 
After trying this approach, which lays heavy stress on the historical aspects of the 
teaching of mathematics, during several years in programmes of continuing 
education, we feel that the teachers' ability to present the concept of function 
meaningfully to their students was much improved. The teachers do not have to live 
any more with two different function concepts. They know how to translate one into 
the other, and can emphasise the work with numerical functions, correlating graphs, 
tables and analytical definitions. 

This consideration of the history of mathematics education was essential to show 
the teachers that the way they see things is a consequence of past ideas, movements, 
influences. Making them retrace this history will allow them to take account of the 
different presentations of the function concept, without adopting a hostile position 
towards some of them. 
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4.4 Issues of Concern 

We can summarise the following issues of concern which arise from the evidence 
presented earlier about the practice and experiences of teacher trainers, both pre-
service and in-service, in a number of countries. 

1. An evident obstacle for the effective use of mathematics history in classrooms 
is that mathematics teachers are still rather weakly qualified in their historical 
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knowledge and 
confidence. Efforts are 
being made to improve 
the situation by 
extending and 
generalising the 
historical component in 
teacher training. An 
analogous problem, 
however, is the level of 
qualification of the 
teacher trainers 
themselves, i.e. those 
who have to teach 
mathematics history to 
future teachers and are 
expected to impart a 
critical use of historical 
sources and to judge the 
value of secondary 
literature. The quality of 
the training component 
is dependent on the 
competence of the 
teacher trainers in 
mathematics history. 

Figure 4.7: the seventeenth century Japanese teacher had Given that a 
to be trained in a variety of subjects. considerable proportion 

of these professors are 
beginning their own 

teaching courses as autodidacts, the major bottle-neck is the access to reliable 
secondary literature. 

2. It is not feasible for all the necessary general historical background knowledge 
to be transmitted within the context of training in the history of mathematics; rather, 
this component can only be effective if the trainee teachers have been provided with 
a more general knowledge of history: not only of their respective national history 
and of international history: of political history and of economic history, but also of 
the history of civilisation. The major part of such general knowledge (and interest in 
it!) should be assured by the school curriculum but it is necessary to establish a 
cooperation with historians for the historical component at the university level, too. 

3. Due to the close relation of the evolution of mathematical ideas with the 
development of philosophical and epistemological conceptions, an analogous 
cooperation with philosophers should be established as well. 

4. The new tendency to integrate mathematics history into the training of future 
primary teachers, meets with other difficulties. These trainee teachers have in 
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general to study several disciplines, so that there is not much time provided for the 
mathematical studies proper. In any event, these trainee teachers were usually not 
high achievers in mathematics in their own schooling. It is therefore highly 
important to assure sufficient competence in mathematics for them. The results 
from Cyprus are encouraging and show that the historical component can contribute 
to improve a positive relationship towards mathematics itself. 

5 . Up to now, there is only scattered evidence about the effectiveness of the 
historical training in the later teaching practice. Even at the level of university 
teaching itself, the evidence of its impact is very meagre, since the lectures are but 
rarely accompanied by exercises or followed by seminars allowing for a deepening 
of subjects and self-activity; and assessments via examinations are just as rare. It is 
desirable both to establish more systematic assessments at the university level on the 
one hand, and also to foster stronger relations between teacher trainers and their 
graduates during their later teaching practice in schools. 

Such relations would permit an exchange of information which would facilitate 
reducing unrealistic or exaggerated views about the impact of the use of history in 
classrooms on the one hand and to transmit recent progress in historiography to 
practising teachers, thus clarifying older, rather mythical presentations of the 
evolution of mathematics. 

6. To make further progress in integrating a historical component, more staff 
specialised in teaching history of mathematics are needed, as well as the 
development of better adapted teaching material and of exemplary modules as 
models and guides. 



Chapter 5

Historical formation and student understanding of 
mathematics

Luis Radford

with Maria G. Bartolini Bussi, Otto Bekken, Paolo Boero, Jean-Luc Dorier, 
Victor Katz, Leo Rogers, Anna Sierpinska, Carlos Vasco 

Abstract: The use of history of mathematies in the teaching and learning of mathematics 
requires didactical reflection. A crucial area to explore and analyse is the relation between 
how students achieve understanding in mathematics and the historical construction of 
mathematical thinking. 

5.1 Introduction

Luis Radford 

The history of mathematics may be a useful resource for understanding the 
processes of formation of mathematical thinking, and for exploring the way in which 
such understanding can be used in the design of classroom activities. 

It is in this spirit that in the last decades some mathematics educators have had 
recourse to the history of mathematics. However, such a task demands that 
mathematics educators be equipped with a clear and rich theoretical framework 
accounting for the general formation of mathematical knowledge. In addition to 
offering a clear epistemological stance, the theoretical framework has to ensure a 
fruitful articulation of the historical and psychological domains as well as to support 
a coherent and fecund methodology (see figure 5.1). 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 143-170
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Figure 5.1: Theoretical framework allowing an articulation between the account of 
students ’ learning of mathematics and the account of the historical development of 
mathematics, and supporting a methodology for the design of historically based 
classroom activities. 

The lack of such a suitable framework often leads to oversimplifying views about 
the way in which mathematical concepts have developed historically (see ‘historical 
domain’ in figure 5.1). Indeed, even though new historiographic paradigms have 
emerged in the past few years (see Gillies 1992, Høyrup 1995, Lizcano 1993, among 
others), the history of mathematics is all too often read in an unhistorical way. That 
is, narratives are presented which implicitly assume that past mathematicians were 
essentially dealing with our modern concepts, but just did not have our modern 
notations at their disposal. Reading history like this, in what might be called a 
teleological way, the historian seems to assume, in effect, that there was a course 
that the historical developments just had to take. In making this assumption, a 
normative dimension is introduced into the account, through which the historian 
endows other cultures and mathematicians of other epochs with rationalities and 
conceptualisations that were completely alien to them. 

Besides this problem of conveniently framing the historical conceptual 
development of mathematics, the link between historical developments in 
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mathematical thinking and the students’ learning of mathematics (see horizontal 
arrow in Figure 5.1) has often been done in terms of a naïve psychological version 
of biological recapitulationism. Briefly stated, biological recapitulationism, an idea 
introduced at the end of the last century, following Darwin’s writings on the 
evolution of species, posits that the development of the individual (ontogenesis)
recapitulates the development of mankind (phylogenesis). The German biologist 
Ernst Haeckel seems to have been the first to transfer this ‘biological’ law to the 
psychological domain. He said that “the psychic development of the child is but a 
brief repetition of the phylogenetic evolution” (quoted by Mengal 1993, 94). 

The concept of genetic development was partly elaborated in the 1970s, in the 
work of the psychologists Jean Piaget and Rolando Garcia, as a reaction to this 
simplistic psychological version of recapitulationism. In their book Psychogenesis
and the history of science (1989—a book that has had a significant influence on 
mathematics educators interested in the use of the history of mathematics-they
presented a different perspective. They argued that we should try to understand the 
problem of knowledge in terms of the intellectual instruments and mechanisms 
allowing its acquisition. According to them, the first of those mechanisms is a 
general process which accounts for the individual’s assimilation and integration of 
what is new on the basis of his or her previous knowledge. (This is a view that runs 
against the positivist view that knowledge simply accumulates in a straightforward 
way.) On the one hand, in gaining 
knowledge the individual is seen as selecting, transforming, adapting and 
incorporating the elements provided by the external world to his or her own 
cognitive structures (Piaget and Garcia 1989, 246); while, on the other hand, there 
can be no assimilation of ‘pure’ objects divorced from their context, insofar as 
objects always have a social signification (p. 247). This paradox led Piaget and 
Garcia to discuss the influence of the social environment on the evolution of 
knowledge in the individual. 

Pursuing this further led Piaget and Garcia to ask whether two different social 
environments could lead to two different psychogenetic developments. Since the 
works of Bachelard, Kuhn and Feyerabend had stressed the significant role played 
by social settings in the formation of conceptual systems and theoretical knowledge, 
Piaget and Garcia’s question was hardly inevitable. The question has become even 
more urgent nowadays in the light of recent cognitive, anthropological and 
sociological discussions about the mind. In an interview given in the mid 1970s, 
when their book was still in preparation, Piaget clearly stated that one of the 
problems that led him to write the book was to investigate if there is only one 
possible line of evolution in the development of knowledge or if there are many, and 
he replied (Bringuier 1980, 100): 

Garcia, who is quite familiar with Chinese science, thinks that they have travelled a route very 
different from our own. So I decided to see whether it is possible to imagine a psychogenesis 
different from our own, which would be that of the Chinese child during the greatest period of 
Chinese science, and I think that it is possible. 

However, in their book the problem was dealt with in terms of the difference 
between the individual’s acquisition of knowledge and the ‘epistemic paradigm’ in 

But then there is an apparent dilemma. 
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which the individual finds him or herself subsumed. By epistemic paradigm they 
meant “a conception [of science] that has become part of accepted knowledge and is 
transmitted along with it, as naturally as oral or written language is transmitted from 
one generation to the next” (Piaget and Garcia 1989, 252). This concept was 
explicitly presented as an epistemological alternative to Kuhn’s concept of paradigm 
and—in particular—its socially imposed norms. Thus, the ‘failure’ of Greek and 
Mediaeval thinkers to conceive the principle of inertia in physics, and the success of 
the Chinese in conceiving such a principle—which they apparently considered “as 
obvious as the fact that a cow is not a horse” (p. 253)—was explained in terms of the 
different epistemic paradigms in which Greek and Chinese science were couched (p. 
254). Although the individual was seen as being in dialectical interaction with the 
object of knowledge, and it was recognised that society provides objects with 
specific meanings, Piaget and Garcia traced a clear frontier dividing the social and 
the individual. For them, a distinction must be made between mechanisms to 
acquire knowledge and the way in which objects are conceived by the subject. In a 
concise and clear phrase, they said: “Society can modify the latter, but not the 
former.” (p. 267). 

In their approach to the relations between ontogenesis and phylogenesis, Piaget 
and Garcia did not seek for a parallelism of contents between historical and 
psychogenetical developments but for the mechanisms of passage from one 
historical period to the following. They tried to show that those mechanisms are 
analogous to those of the passage from one psychogenetic stage to the next. In 
addition to the assimilation mechanism previously mentioned, they identified a 
second mechanism of passage. This was described as a process that leads from the 
intra-object, or analysis of objects, to the inter-object, or analysis of the 
transformations and relations of objects, to the trans-object, or construction of 
structures. The two mechanisms were considered as invariable and omnipresent, not 
only in time but in space too. That is, we do not have to specify what they are in a 
certain geographical space at a particular time since it is considered that they do not 
change from place to place and from time to time. 

The Russian psychologist Lev Vygotsky was also concerned with the 
relationship between ontogenesis and phylogenesis, but—starting from a distinct 
conception of the mind—took a different approach. Instead of posing the problem 
in terms of some invariable mechanisms of acquisition of knowledge, he felt that 
thinking developed as the result of two lines or processes of development: a 
biological (or natural) process and a historical (or cultural) one. One of his 
fundemental differences with Piaget and Garcia’s approach lies in the 
epistemological role of culture. For Piaget and Garcia, culture cannot modify the 
essential instruments of knowledge acquisition, for they saw these instruments as 
originating in the biological realm of the individual (Piaget and Garcia 1989, 184). 
In Vygotsky’s approach, though, culture not only provides the specific forms of 
scientific concepts and methods of scientific inquiry but overall modifies the activity 
of mental functions through the use of tools -of whatever type, be they artefacts 
used to write as clay tablets in ancient Mesopotamia, or computers in contemporary 
societies, or intellectual artefacts such as words, language, or inner speech 
(Vygotsky 1994). 
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It is this cultural 
line of development 
in Vygotsky’s account 
that renders any 
recapitulationism
impossible. For 
instance, in one of the 
many passages in 
which he dealt with 
this topic, he 
discusses the 

higher mental 
functions in history 
and in the child, and 
goes on to say that 
“we do not mean to 
say that ontogenesis 
in any form or degree 
repeats or produces 
phylogenesis or is its 
parallel.” (Vygotsky 
1997, 19). One of the 
reasons is the 
variability introduced 
by the sociohistorical 
conditions, which are 
different in each 
period of the history. 
In this view, 
ontogenesis runs, so 
to speak, underpinned 
by biological 
phylogenesis and the
sociohistorical con- 
ditions where onto- 
genesis takes place 

The growing of the normal child into civilisation usually represents a single merging with the 
process of his organic maturation. Both planes of development -the natural and the 
cultural-coincide and merge. Both orders of changes mutually penetrate each other and form 
in essence a single order of social-biological formation of child personality. 

The examples of Piaget and Garcia, and of Vygotsky, uncover the complexity of the 
problem of the relationship between phylogenesis and ontogenesis and the 
importance of working towards a clear theoretical framework. 

development of 

Figure 5.2: Comparison of phylogenesis and ontogenesis 
have been made since the late 19th century, as seen in this 
‘Diagram of the development of mathematical experience 
in the race and in the individual‘ by Miss Barvell in the 
Mathematical Gazette of 1913. 

(pp. 19-20);
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This chapter summarises different ways in which the history of mathematics 
contributes to a better understanding of the student processes of learning 
mathematics and the design and analysis of teaching activities. In reference to the 
different domains mentioned in Figure 5.1, the sections presented in this chapter 
may be described as follows. In section 5.2, Victor Katz and his colleagues sketch 
some case studies dealing with the relations between the historical and psychological 
domains. More specifically, they give some examples from the history of 
mathematics where we see mathematicians struggling with problems that appear to 
present difficulties analogous to those faced by our students today, when they tackle 
the contemporary version of those problems in their school curriculum. They 
emphasise the importance of teachers having some knowledge of the history of 
mathematics, as it may help them to help their students overcome some important 
difficulties which arise in the mathematics classroom. 

In section 5.3, Maria Bartolini Bussi and Anna Sierpinska present some 
sophisticated methodological approaches recently developed by mathematics 
educators. In these approaches, one of the goals is to study the historical conditions 
which made possible the emergence of a certain type or domain of mathematical 
knowledge (historical domain) and to adapt and integrate those conditions into the 
design of classroom activities (methodological domain) and the analysis of students’ 
forms of mathematical thinking (psychological domain). 
In section 5.4, Luis Radford, Paolo Boero and Carlos Vasco focus on the 
epistemological assumptions (epistemological domain) which underline three 
current teaching/research approaches using the history of mathematics: Brousseau’s 
epistemological obstacles, Radford’s socio-cultural perspective and Boero’s Voices 
and Echoes Games. They make it evident that the interpretation of the conceptual 
development of mathematics (historical domain), and the investigation of the 
psychological processes underlying the learning of mathematics (psychological 
domain), as well as the linking of these phenomena with the design of classroom 
activities (methodological domain), will all depend upon the chosen framework. 
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5.2 The role of historical analysis in predicting and 
interpreting students’ difficulties in mathematics 

Victor Katz, Jean-Luc Dorier, Otto Bekken and Anna Sierpinska 

As noted in the introduction of this chapter, Piaget and Garcia (1989, 27-28) claim 
that

the advances made in the course of the history of scientific thought from one period to the 
next, do not, except in rare instances, follow each other in random fashion, but can be 
seriated, as in psychogenesis, in the form of sequential ‘stages.’ ... [and] the mechanisms 
mediating transitions from one historical period to the next are analogous to those mediating 
the transition from one psychogenetic stage to the next. 

Anna Sfard has noted (private communication) that this analogy “is particularly 
striking at those special junctures where in order to assimilate or create or learn a 
new concept, the already constructed knowledge has to undergo a complete 
reorganisation, and the whole epistemological foundation has to be reconstructed as 
well.” The claim of Piaget, which is supported by Sfard, needs of course to be 
supported by research into students’ shifts in understanding mathematical 
difficulties. This research has been done in several specific cases of student 
difficulty, where there was a historical reason to believe that such a difficulty might 
exist. We summarise the results of some of these research studies below. 

A first example of this phenomenon of students finding difficulties analogous to 
those of past mathematicians is familiar to most calculus teachers: the concept of a 
‘limit’ in analysis. Teachers are aware that it is generally difficult to explain the 
formal notion of limit at the beginning of an elementary calculus class, where it 
‘logically’ belongs. Students certainly ‘know’ that the limit of 2x+3 as x approaches
7 is 17, but resist trying to prove such an obvious result using epsilons and deltas. 
They cannot comprehend why such a proof would be necessary. 

To set this in context, historians are aware that the formal idea of a limit was not 
developed until a century and a half after the basic concepts of the calculus were 
invented by Newton and Leibniz. During that period, from about 1670 to 1820, 
many mathematicians used the concept of limit with great understanding -and
could calculate limits in many important cases-but they did not have a definition
which would enable the statement “the limit of f(x) as x approaches a is L” to be
proved with the rigor of classical Greek mathematics. Analysing the historical 
conditions and reasons why the shift from an intuitive to a formal understanding of 
limits took mathematicians so long to accomplish gives us valuable information 
which can help us both predict and interpret our students’ difficulties in 
accomplishing this shift in a few short weeks (see Cornu 1991, Sierpinska 1988, 
Bum 1993). 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 149-1 54 
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Besides the difficulty related to the passage from an intuitive to a rigorous 
understanding and use of the concept of limit, other difficulties arise from this 
concept in the comprehension of curvilinear area, tangent line and instantaneous 
flow. An intensive historical search on the development of calculus allowed M. 
Schneider (1988) to demonstrate that these difficulties surface from the same 
epistemological obstacle: the absence of separation, in the mind of students, between 
mathematics and an illusory ‘sensible’ world of magnitudes. This investigation 
provided Schneider with a research methodology to render such learning difficulties 
apparent: for example, the reactions of students in learning about Cavalieri’s 
principles, indivisibles and related paradoxes reveal mental shifts in meaning from 
the world of magnitudes to their measures. 

Jean-Luc Dorier (1998), in his studies of how best to teach the concepts of linear 
dependence and linear independence in linear algebra, has noted that although 
students entering university often have certain conceptions of these notions in 
concrete situations, they have difficulty in understanding the connection of the 
formal definition with these earlier situations. A historical analysis of the 
development of these concepts provides help in understanding the students’ 
difficulties.

The twin concepts of linear dependence and independence emerged historically 
in the context of linear equations and, in particular, in Euler’s analysis of Cramer’s 
paradox dealing with the number of intersection points of two algebraic curves. 
Euler found that the paradox was based on the ‘fact’ that n linear equations 
determine exactly n unknown values, but realised that this latter statement is not 
always true. He discussed several examples in which systems of n equations in n
unknowns do not have a single n-fold solution and realised that in certain cases the
actual constraints imposed on the unknowns by the equations are fewer than n. That
is, Euler stated that certain of the equations are “contained” in the others; this is his 
notion of what we can call inclusive dependence. After Euler’s work, many 
mathematicians considered this problem of dependence and tried to determine 
conditions on the determinant of a dependent system which would show the nature 
of the set of solutions. But it was not until 1875 that Georg Frobenius pointed out 
the similarity of dependence of a set of equations to dependence of a set of n-tuples.
He could then give a formal definition of the concept of ‘linear dependence’ and 
show how the notion of ‘rank’ of a system enabled one to determine the dimension 
of the set of solutions. 

The teaching experiment reported by Dorier, based on a historical analysis of the 
development of the concept of rank, was designed to help the students understand 
the power of linear dependence as a formal and unifying concept. Indeed, from their 
secondary school practice of solving equations, students entering university usually 
have an Eulerian ‘inclusive dependence’ idea of equations. But at the university 
level, it is necessary for the students to move to the stage where they understand the 
formal concept of dependence in a global context. That is, they need to understand 
that the equations, and not just n-tuples, must be regarded as objects in their own
right and that there needs to be a definition of linear dependence which applies to 
both of these cases, as well as in even more general contexts. Thus it was necessary 
to devise a teaching strategy to meet these needs. 
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On a more elementary level, students often have trouble making the shift from 
solving concrete problems using words and numbers to the more abstract problem of 
using letters to designate unknown quantities. Again, we know that, historically, it 
was a difficult conceptual switch. In order to help students understand the role of 

letters as representing 
unknowns, Radford and 
Grenier (1 996a, 1996b) 
designed a teaching 
sequence in which 
students were asked to 
solve some word 
problems using 
manipulatives. These 
manipulatives were 
conceived in such a way 
that the unknown quantity 
was modelled by a hidden 
number of candies in a 
bag or a hidden number of 
hockey cards in an 

Figure 5.3: Not only ‘hidden quantities’ are hard to envelope, and so On. The 
understand. The Hindu-Arabic numerals themselves were teaching sequence was 
difficult for early European users, as this medieval Italian structured to allow the 
manuscript testifies. The scribe has rendered as “xxx xxx 1 students to master two 
302 303 . . . ” what we would write as “30 31 32 33”. important rules of Islamic 
Such a text helps today‘s teachers to appreciate how algebra, those of al-
difficult it is for pupils to learn positional notation. muqabala and al-jabr. In

the second step of the 
teaching sequence, 
instead of using 

manipulatives, the students had to make drawings (e.g. of a bag containing an 
unknown number of candies) and, in the third step, the students had to use letters 
instead of drawings. The teaching sequence was inspired by a historical analysis of 
medieval Italian algebra (Radford 1995, 1997), in particular by an idea of the 
fourteenth century mathematician Antonio de Mazzinghi, who explained the concept 
of unknown as a ‘hidden’ quantity. 

Anna Sfard (1995) found furthermore that even if high school students could 
solve linear equations or systems of linear equations with numerical coefficients, it 
was still difficult for them to make the jump to solving systems with literal 
coefficients. She notes that at first she was “quite insensitive to the huge conceptual 
difference between equations with numerical coefficients and equations with 
parameters.” And it took several weeks of hard work before the students could cope 
with such equations in a reasonable manner. Sfard found that colleagues had 
encountered similar difficulties. Again, a historical analysis shows that this 
difficulty is not surprising. Even though by the late medieval period, letters and 
other abbreviations were being used in algebra to designate unknowns and their 
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powers, the rules for solving equations were always stated in terms of concrete 
examples.

Thus one could solve x
2

+ 10x = 39, but not x
2

+ bx = c. It was François Viète in
the late sixteenth century who first introduced letters to designate known values 
(parameters) and in this way brought a great conceptual change to algebra. It was 
Viète’s work that enabled formulas to be written to solve quadratic and cubic 
equations, for example, and that led, in general, to structural manipulations in 
algebra rather than purely operational ones. The historical difficulties in this shift 
from numerical to purely symbolic algebra again leads us to believe that teachers 
must be aware of the conceptual difficulties their students may have in making the 
same shift. 

Lisa Hefendehl-Hebeker (1991) analysed the always difficult task of helping 
students understand the meaning of a negative number, and the reasons for the rules 
governing operations with these numbers. Negative numbers have, of course, been 
used for two millennia in China, but mathematicians in the West have always been 
suspicious of them, even though the rules for operation on them were known by the 
sixteenth century. Even as late as the nineteenth century, there were some English 
mathematicians who tried to reformulate algebra without the use of negative 
numbers, because they believed that they were nonsensical. The question, in fact, 
became whether negative numbers were ‘quantities’ and then what it meant for a 
‘quantity’ to be less than zero. There were, of course, numerous attempts 
throughout the centuries to justify negative numbers, either by using them to model 
a particular idea (debt, for example) or by deriving the rules of operation by 
arguments based on the “principle of permanence of equivalent forms” (Peacock 
1830), in particular the distributive and associative laws. Hefendehl-Hebeker shows 
in her article how modern students’ confusions about these laws are mirrored in 
confusions of such authors as Stendhal and d’Alembert in the 18th century. A 
teacher would do well to study these ‘confusions’ to see why his or her own students 
could be confused. But Hefendehl-Hebeker also notes that Hermann Hankel in the 
mid-19th century advocated a change in point of view by looking at negatives as an 
extension of the number system rather than as quantities in their own right. That is, 
he urged that these numbers be introduced in a purely formal manner, without 
worrying about what kind of quantity they represent. Again, this history shows how 
one might try to introduce and justify negative numbers in the classroom. 

Another set of numbers which often causes difficulties for students is the 
complex numbers. At one time in school they are told that negative numbers do not 
have square roots, and later they are told that in fact they do have square roots. Why 
have the rules changed? A historical analysis here shows again that there was a long 
period of development between the first discovery of complex numbers by Cardano 
and Bombelli in their studies of solutions of cubic equations in the fifteenth century 
and the general acceptance of these numbers into mathematics in the nineteenth. As 
in the case of negatives, it took centuries for mathematicians to give up the idea that 
‘number’ must represent the measure of a quantity. The final acceptance of these 
numbers came only through their geometric interpretation, that is, on their modelling 
in a well-understood area of mathematics. Again, many textbooks today seem to 
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violate this historical analysis by simply defining the square root of -1 by fiat, 
without any motivation whatsoever. 

Non-Euclidean geometry was developed by three mathematicians early in the 
nineteenth century. Carl Friedrich Gauss, who developed it first, declined to publish 
anything on this topic, because he did not want to deal with the controversies he was 
sure would erupt. But two less famous mathematicians, Janos Bolyai in Hungary 
and Nikolai Lobachevsky in Russia, both published their studies in this field around 
1830. Nevertheless, it proved very difficult for mathematicians to give up the very 
strong conviction that geometry describes a unique reality and, as such, can not 
admit a plurality of axiom systems, It was not until several mathematicians showed 
how non-Euclidean geometry could be modelled in Euclidean geometry that the 
mathematical community began to accept the validity of non-Euclidean geometry. 
So again, we should not be surprised when there is difficulty for students to 
understand that Euclidean geometry may not in fact be the ‘best’ geometry to 
describe the space in which we live. 

A final common student difficulty involves the transition to abstraction. As a 
typical example, many instances of what today are called groups were known in the 
first eight decades of the nineteenth century-and some were known even earlier. 
Yet it was not until 1882 that the first complete formal definition of this abstract 
concept was given. Nevertheless, many current textbooks in abstract algebra begin 
by giving a formal definition of a group before the student has experienced many of 
these examples. It is not surprising that students have difficulties making the leap to 
abstraction; too little attention has been paid to the necessary steps that historically 
preceded this leap. 

As these examples demonstrate-and there are numerous others-a teacher who
is knowledgeable in the history of mathematics will anticipate student difficulties in 
areas where, historically, much work was needed to overcome significant 
difficulties. Thus the teacher can be prepared with appropriate teaching strategies 
for these situations, ones which may well be in accord with the historical 
developments and which will help the students overcome these obstacles to 
understanding. And as some of the research results in this area demonstrate, these 
strategies may well be effective. Yet the knowledge of history of mathematics is not 
sufficient to develop teaching strategies; if the analysis of historical conditions of the 
emergence of a concept is an important source of information to predict and analyse 
students’ difficulties, teachers still must take into account the reality of teaching at a 
certain level with a certain type of student. There is no automatic transfer from 
history to teaching. First, the knowledge of history must be as complete as possible, 
involving primary sources whenever feasible. Second, there must exist a 
preliminary didactical investigation about students’ difficulties. Finally, the 
confrontation of the historical and didactical situations must be made with great 
care, taking into account the conditions and constraints of the two different 
environments, the historical and the classroom. 

Such work needs competence both in history and in mathematics education 
research and shows interesting possible interactions between these two fields for the 
future.



154 5 Historical formation and student understanding of mathematics 

References for §5.2 

Burn, R. P. 1993. ‘Individual development and historical development: a study of calculus’, 
International journal of mathematics education, science and technology, 24, 429-433

Cornu, B. 1991. ‘Limits’, in D. Tall (ed.), Advanced mathematical thinking, Dordrecht:
Kluwer, 153-166

Dorier, J.-L. 1998. ‘The role of formalism in the teaching of the theory of vector spaces’, 
Linear algebra and its applications, 275, 1-4, 14 1 -160

Hefendehl-Hebeker, L. 1991. ‘Negative numbers: obstacles in their evolution from intuitive to 
intellectual constructs’, For the learning of mathematics, 11 (1), 26-32

Peacock, George 1830. A treatise on algebra, Cambridge
Piaget, J. and Garcia, R. 1989. Psychogenesis and the history of science (trans. by Helga 

Radford, L. 1995. ‘Before the other unknowns were invented: didactic inquiries on the 
Feider), New York: Columbia University Press 

methods and problems of medieval Italian algebra’, For the learning of mathematics, 15
(3), 28-38

Radford, L. and Grenier, M. 1996a. ‘Entre les choses, les symboles et les idees. . . une 
sequence d’enseignement d’introduction a I’algèbre’, Revue des sciences de l ’éducation 

Radford, L. and Grenier, M. 1996b. ‘On the dialectical relationships between symbols and 
algebraic ideas’, in: L. Puig and A. Gutierrez (eds.), Proceedings of the 20th International 
Conference for the Psychology of Mathematics Education, Valencia: Universidad de 
Valencia, vol. 4, 179-1 86 

Radford, L. 1997. ‘L’invention d’une idée mathématique: la deuxieme inconnue en algebra’, 
Repères, Revue des IREMs 28 (July), 8 1-96

Schneider M. 1988. Des objets mentaux ‘aire ‘ et ‘volume’ au calcul des primitives, Thèse de 
doctorat, Louvain-la-Neuve

Sfard, Anna 1995. ‘The development of algebra: confronting historical and psychological 
perspectives’, Journal of mathematical behavior 14, 15-39

Sierpinska, Anna 1988. ‘Sur un programme de recherche lit a la notion d’obstacle 
epistemologique’, in N. Bednarz and C. Gamier (eds.). Construction des savoirs: 
obstacles et conflicts, Ottawa: Agence d’Arc Inc., 130-148

22, 253-276

5.3 The relevance of historical studies in designing and 
analysing classroom activities 

Maria G. Bartolini Bussi and Anna Sierpinska 

With contributions by Paolo Boero, Jean Luc Dorier, Ernesto Rottoli, Maggy 
Schneider, and Carlos Vasco 

When a mathematics educator draws on the history of the domain in designing 
activities for the students he or she may be looking for facts: Who were the authors 
of that particular piece of mathematics? When did they live? What were their lives? 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 154-1 61 
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By introducing historical anecdotes in his or her classes he or she may increase the 
students’ motivation to learn mathematics. But a historical study may have other 
goals as well: looking for geneses of mathematical ideas or contexts of emergence of 
mathematical thinking, in the aim of defining conditions which have to be satisfied 
in order for the students to develop these ideas and thinking in their own minds. 

5.3.1 Bringing historical texts into the classroom: the ‘voices and 
echoes’ games 

For example, Boero et al. (1 997, 1998) concerned themselves with the conditions of 
emergence of theoretical knowledge. Mathematical thinking is theoretical par 
excellence, and without developing this special attitude of mind in the students there 
is less opportunity for deepening their understanding of mathematics. A historico-
epistemological analysis was, for these authors, a basis for an analytical definition of 
theoretical knowledge which included parameters such as organisation, coherence 
and systematic character, the role played by definitions and proofs, the speech genre 
characteristic of theoretical discourse, and the ways of viewing the objects of the 
theory. This definition became subsequently a basis for a didactic theory: indeed, 
Boero et al. have designed and implemented an innovative educational methodology 
in the classroom called the ‘voices and echoes game’, which draws on the 
Vygotskian distinction between everyday and scientific concepts and the Bakhtinian 
construct of ‘voice’. 

The main hypothesis of this methodology is the introduction, into the classroom, 
of ‘voices’ from the history of mathematics (in the form of selected primary sources, 
with commentaries). This might, by means of well chosen tasks, develop into a 
‘voices and echoes game’ suitable for the mediation of some important elements of 
theoretical knowledge. The chosen examples of theoretical knowledge are 
conceptual leaps in the cultural history of mankind: the theory of falling bodies of 
Galileo and Newton, Mendel’s probabilistic model of the transmission of hereditary 
traits, mathematical proof and algebraic language. All these feature aspects of a 
counterintuitive character. The authors claim that the ‘new’ manners of viewing and 
the methodological requirements are expressed by the ‘voices’ of the protagonists 
themselves in the speech genre that belongs to their cultural tradition. Such voices 
act as voices belonging to real people with whom an imaginary dialogue can be 
conducted beyond space and time. The voices are continuously regenerated in 
response to changing situations: They are not passively listened to but actively 
appropriated through an effort of interpretation. The authors describe a number of 
teaching experiments whereby they introduce some analytical tools (i.e. different
types of echoes) which, on the one hand, are used to interpret classroom processes 
and, on the other, are used to design classroom activity. For instance, a ‘mechanical
echo’ consists in a precise paraphrasing of a verbal voice, whilst an ‘assimilation
echo’ refers to the transfer of the content/method conveyed by a voice to other 
problem situations. A ‘resonance’ is a student’s appropriation of a voice as a way of 
reconsidering and representing his or her experience. The most delicate issue in this 
methodology is, certainly, the selection of historical sources capable of conveying 
the crucial ideas of a scientific revolution in a concise manner, so as to comply with 
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the space and time constraints of 
institutionalised teaching. Boero’s 
published experiments concern mainly 
grade 8 secondary school students, but 
studies presently in progress (with voices 
taken from Plato’s dialogues) have given 
evidence that similar processes can be 
implemented also in primary schools and 
with pupils from a range of socio-cultural
backgrounds (Garuti et al 1999). We 
analyse below (§5.4) the epistemological 
assumptions of this methodology. 

This approach is consistent with the 
approach of Bartolini Bussi et al. (1996,
1999) who also introduced a guided reading 
of historical sources in primary school, in
two long-term teaching experiments 
concerning perspective drawing and gears. 
Even if no explicit voices and echoes game 
was introduced in the classroom, the guided 
reading and interpretation of well selected 
historical sources had been used to 
institutionalise the pieces of knowledge 
built in the classroom by shifting them to a 
theoretical level. In both experiments the 

appropriation of the theoretical dimension of mathematical knowledge had led the 
pupils to produce theorems, i. e. statements with proofs inside a reference theory 
(Mariotti et al. 1997). The above experiments concern early grades of school (4-8).

Other experiments have been carried out successfully in the 11 th grade (Ernesto 
Rottoli, personal communication), using original texts of Greek authors and excerpts 
from historical studies, in order to integrate the knowledge acquired during 
philosophy lessons and the knowledge acquired during mathematics lessons. The 
aim was to organise a deeper level of knowledge. The design was based on the 
awareness that in ancient times mathematics and philosophy were strictly linked to 
each other and some traces of this link are still present in highly organised and 
culturally rooted linguistic patterns. 

5.3.2

Figure 5, 4: Whether a section of a 
cone is the same as a section of a 
cylinder, and whether either is egg-
shaped, has long been debated,
Here Dürer’s discussion of the

derellipse (Underweysung
Messung, 1525)

Indirect use of historical and epistemological studies in the 
design of activities for students 

In the research projects described above, elements of the history of science 
(fragments of original texts) were used in an explicit manner in the teaching 
sequences, and historico-epistemological studies were directly linked to the contents 
of teaching. The links between the historical studies and the teaching design can be 
much more implicit and indirect, and the relevance of these studies for the didactic 
activity somewhat less obvious. 
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5.3.3

This is certainly the case of the research projects on the teaching and learning of 
linear algebra conducted, independently, by Dorier and Sierpinska. 

The motivation of these research projects has been students’ commonly stated 
difficulty with the axiomatic approach used in undergraduate linear algebra courses. 
This difficulty is often hard for mathematicians to understand, for whom the 
axiomatic approach is indeed the royal road to linear algebra, at last allowing the 
subject to be presented in a simple, neat and coherent way. The questions that 
naturally arise in this situation are: why is it difficult to understand a simple 
axiomatic theory? What are the conditions of coming to construct or understand this 
or that particular concept of this theory? What can be done to facilitate the 
understanding of this theory by the students? Some answers to these questions make 
no reference to history. For example, one may say that the axiomatic theories that 
constitute linear algebra are simple only in appearance. A slightly deeper 
mathematical analysis of the basic concepts of linear algebra shows their inner 
complexity (see, e.g. Sierpinska, Dreyfus, Hillel, 1999). This complexity may not 
be accessible to an undergraduate student, and therefore, he or she will have to 
accept the teacher’s word that, for example, it makes sense to accept this definition 
rather than a different one. This happens so often in a linear algebra course, that 
many students end up developing what is called ‘the obstacle of formalism’ (Dorier 
et al 1997). It may not have been necessary to refer to history to answer these 
questions. But it proved useful and inspiring, both in explaining students’ 
difficulties and in designing activities for them. 

For example, a look at the history of linear algebra from a very broad 
perspective of currents of thought allowed the identification of three interacting 
modes of reasoning, labelled ‘synthetic-geometric’, ‘analytic-arithmetic’, and 
‘analytic-structural’ (Sierpinska et al. 1997). These modes of reasoning are linked 
to different theoretical perspectives and imply different meanings of concepts. They 
are not equally accessible to beginning linear algebra students, and the students tend 
to be inflexible in using them in different contexts. An awareness of these modes of 
reasoning and their role in linear algebra helps in both designing activities for 
students and reacting to the students’ responses to them in a teaching situation. 

A more fact-focused look at the history of linear algebra allowed the 
identification of the contexts in which the basic linear algebra concepts emerged: 
analytic geometry, vector algebra, vector analysis and applications in physics; linear 
equations and determinants, linear differential and functional equations, abstraction 
of vector structures in functional analysis (Dorier 1995a, 1997). Specific contexts 
have been used in the design of history-inspired classroom activities. For example, 
instead of simply giving the definition of a linearly independent set of vectors and 
following it by a series of exercises, Dorier (1 998a, 1998b) proposed to anchor the 
students’ understanding in their experience of the Gaussian elimination method for 
solving systems of equations, which is introduced in secondary schools in France. 
The task for the students was to discuss and analyse this method. In this research, 
history was a source of inspiration and a means of control in the building of the 
didactic experiment, but the experiment did not aim at a reconstruction in the 
classroom of the historical development or even at commenting on historical texts. 

The example of linear algebra 



158

Case study: Fermat as an inspiration for work with Cabri 

The reference to history is also implicit in recent research by Sierpinska, Hillel & 
Dreyfus (submitted), which focuses on the students’ understanding of the notion of 
vector and its coordinates in a basis. This research involved designing and 
evaluating a teaching sequence in the Cabri dynamic geometry environment. What 
emerged was the striking difference between the way in which Fermat approached 
the problem of finding a canonical equation of a conic in his Ad locos planos et 
solidos isagoge (c.1635) and the algorithmic procedure which is normally used in 
present day linear algebra courses. This triggered an understanding of the difference 
between geometric and arithmetic spaces, and a coherent explanation in these terms 
of the students’ difficulties and conceptions. A brief outline of this explanation 
follows.

Elements of an n-dimensional arithmetic space are n-tuples of real numbers. By
defining operations of addition and scalar multiplication on the n-tuples in a
coordinate-wise fashion one obtains a vector space structure usually denoted by .
There is a long-standing tradition of referring to the elements of the arithmetic 
spaces as ‘points’, and of using the language of Euclidean geometry to refer to their 
subsets such as straight lines and planes. This is what we do in linear algebra 
classes, without, however, discussing with the students the status, in the theory, of 
the geometric objects thus evoked. There are important differences between the 
‘arithmetic spaces’ underlying vector spaces and the ‘geometric spaces’ of
Euclidean geometry. The objects of the arithmetic spaces are sets of n-tuples of real
numbers defined by conditions (in the form of equations, inequalities, etc.) on the 
terms of the n-tuples belonging to the sets. These objects can be represented by
geometric figures like lines or surfaces. The representations will depend on the 
choice of a coordinate system. 

A set {(x, y ) : x2 + y2 = 1) , for example, will be represented by a geometric circle

in an orthonormal coordinate system, and by a geometric ellipse in a non-
orthonormal coordinate system. (Here geometric circle means the locus of points 
equidistant from a given point.) In geometric spaces, the roles of objects and 
representations are reversed. Objects, given by relations between their parts, can be 
represented by sets of n-tuples defined by conditions on their terms, e.g. by
equations. These equations will be different depending on the choice of the 
coordinate system. 

Fermat and Descartes worked with geometric spaces, and for them, equations 
were representations of geometric objects: they were introducing a system of 
coordinates into a pre-existing geometric space. But, in a process which started by 
the end of the 17th century with the work of Newton and other creators of calculus, 
representations started to play the role of objects: “Before Descartes, the solution of 
an algebraic equation was nothing but a tool to solve other problems. After 
Descartes and particularly at the end of the 17th century, to give an equation or a 
symbolic expression was just to give a curve, and to give an integral was just to give 
an area, even if the curve and the area are geometric objects that we can perfectly 
characterise without mentioning any equation or integral.” (Panza 1996, 245). This 

5 Historical formation and student understanding of mathematics 
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process led to the replacement of the geometric space with, as it were, a system of 
coordinates without an underlying geometric space. 

The geometric language and drawings of lines and planes in today's linear 
algebra textbooks are used as mere didactic aids in the introduction of the 
spaces, illustrations which play no role in the building of the theory. But thinking of 
vectors as n-tuples leads, notoriously, to students' difficulties with the notions of
'change of basis' and 'coordinates of a vector in a basis', especially when these 
notions are introduced in the context of spaces (Hillel & Sierpinska 1994).
Indeed, for a student who is thinking in terms of arithmetic spaces, the notion of 
change of coordinates may not make sense. Insofar as an arithmetic space is nothing 
but a system of coordinates, changing the system means changing the space, so one 
should maybe speak of transformations of the space. The very notion of coordinates 
of a vector does not seem to make sense in the arithmetic frame of mind, where a 
vector is nothing but coordinates. In our courses we often try to give some meaning 
to the notion of change of basis by introducing the topic of canonical equations of 
conics. But in doing this, without warning the student, we revert to thinking in 
terms of geometric spaces: conics are again geometric objects which can be 
represented by different equations depending on the choice of the coordinate system. 
This only adds to the confusion in the students' minds. The notions of coordinates 
of a vector in a basis and change of basis make more sense for the students when 
they start working with vector spaces other than (especially with function 
spaces) but, at an early stage in the teaching of linear algebra, it seems useful to 
restore the geometric genesis of the spaces. This was the guiding idea of the 
teaching design and an important part of the rationale behind the choice of the 
computer environment, namely the preference of a Dynamic Geometry Software 
over a Computer Algebra System. 

A posteriori, it is clear that it was not necessary to study Fermat's Isagoge to 
come to this understanding of the students' difficulties. But it helped a lot in 
clarifying ideas and making distinctions between blurred concepts. The simple 
reason for this can be that understanding ideas gains much from analyzing 
contrasting ways of thinking, from having access to their articulated exposition, and 
from following their evolution over long periods of time. All this is made possible 
in a historical study. 

5.3.4 The example of calculus 

Another example of the use of historical studies in understanding students' 
difficulties and designing activities for them is found in a research project conducted 
by Schneider (details in §8.2.2). This is a project concerned with calculus, which 
takes into account the order and choice of historical contexts, the historical forms of 
the central concepts, and the analysis of the evolution of these concepts in terms of 
epistemological obstacles (Schneider 1988). Activities for the students are designed 
with the intention of allowing the students to put to test, individually and 
collectively, their previous beliefs and to become aware of the limitations of these. 
The problem situations generated in these activities are expected to give rise to 
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cognitive and socio-cognitive conflicts and to create favourable conditions for 
students to reach a better understanding. 

Although the project is framed by a constructivist view, it is not assumed that the 
students construct theoretical knowledge only as described by the constructivist 
model. Indeed, in this project, students’ understanding is seen as dependent, to a 
certain extent, on the didactic mediation of the teacher. For example, a game of 
‘voices and echoes’ (in Boero’s sense, see above) between Berkeley’s text and the 
students about instantaneous velocity, with a meta-level type of intervention of the 
teacher (see Dorier 1995b), makes the students better aware of their own perception 
of mathematics and of the connections of this discipline with the perceptible 
phenomena of the physical world. In this project, the theory of epistemological 
obstacles and the constructivist approach are conceived of as hypotheses whose 
efficiency should be tested case by case, taking into account the specificity of the 
mathematical contents, the socio-cultural origin of students, the problem situations 
as described by some precise didactic variables, each situation having to be studied 
didactically (for an example of a didactic study of a situation related to instantaneous 
flow see Schneider 1992). 

5.3.5

In neither of the examples of research given in this section was the methodology of 
history-based design and analysis of student activities an object of explicit 
discussion. Other research in mathematics education is concerned with this 
particular question, especially in the context of the theory of epistemological 
obstacles (e.g. Schneider 1988, 15-16; Sierpinska 1994, 120-125). Here, let us 
mention in more detail only a methodology proposed by Vasco (1995), which is not 
related to the framework of epistemological obstacles. The heuristics proposed in 
this work, called ‘forward and backward heuristics’, are aimed at helping to find 
hypotheses for potentially optimal sequencing of mathematics curricula. The 
‘forward heuristics’ are meant to propose efficient ways of reviewing the 
phylogenesis of the particular mathematical subject, in order to optimise the 
ontogenetic mastery of that conceptual field. The ‘backward heuristics’ propose 
ways to trim, compress, and even alter the sequences found through the forward 
heuristics. Forward heuristics lay out the rough draft of the roads on the 
mathematical map; backward heuristics do the redesigning, the short-cutting, and the 
road signalling (Vasco 1995,62).
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5.4 Epistemological assumptions framing interpretations of 
students understanding of mathematics 

Luis Radford, Paolo Boero and Carlos Vasco 

Two different phenomena need to be linked, in using the history of mathematics to 
understand better the student processes of learning mathematics and the way in 
which such an understanding can be used in the design of classroom activities. On 
the one hand, the learning processes of contemporary students; on the other hand, 
the historical construction of mathematical knowledge. These phenomena belong to 
two different theoretical realms: the former to the psychology of mathematics, the 
latter to an opaque field where epistemology and history (to mention only two 
disciplines) encounter each other. 

The linking of psychological and historico-epistemological phenomena requires 
a clear epistemological approach. Within the field of mathematics education, 
different approaches have been used. They differ in their epistemological 
assumptions and, as a result of this, they provide different explanations of the 
history of mathematics. They also offer different interpretations of students’ 
understanding of mathematics and suggest different methodological lines of 
pedagogical action. The aim of this section is to provide an overview of some 
approaches and their corresponding epistemological frameworks. 

5.4.1 The ‘epistemological obstacles’ perspective 

This approach is based on the idea of epistemological obstacles developed by G. 
Bachelard and later introduced into the didactics of mathematics by G. Brousseau in 
the 1970s. Brousseau’s approach is based on the assumption that knowledge exists 
and makes sense only because it represents an optimal solution in a system of 
constraints. For him, historical studies can be inspiring in finding systems of 
constraints yielding this or that particular mathematical knowledge: these systems of 
constraints are then called ‘situations fondamentales’. In Brousseau’s view, 
knowledge is not a state of mind; it is a solution to a problem, independent of the 
solving subject. Within this context, an epistemological obstacle appears as the 
source of a recurrent non-random mistake that individuals produce when they are 
trying to solve a problem. 

A clear assumption underlying this approach is that an epistemological obstacle 
is something wholly pertaining to the sphere of the knowledge-a sphere that 
Brousseau conceives as separated from other spheres. Thus he distinguishes the 
epistemological obstacles from other obstacles, e.g. those related to the students’ 
own cognitive capacities according to their mental development (ontogenetic
obstacles), those which result from the teaching choices (didactic obstacles) 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 162-167
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(Brousseau 1983, 177; Brousseau 1997, 85-7) and those whose origin is related to 
cultural factors (cultural obstacles) (Brousseau 1989; Brousseau 1997, 98-1 14). Of 
course, the clear-cut division of obstacles into ontogenetic, didactic, cultural and 
epistemological categories is in itself an epistemological assumption. 

The link between the psychological and the historical phenomena to which we 
referred previously is ensured by another epistemological assumption: in 
Brousseau’s account, an epistemological obstacle is precisely characterised by its 
reappearance in both the history of mathematics and in contemporary individuals 
learning mathematics. He says (translation from Brousseau 1983, 178; Brousseau 
1997, 87-8): “The obstacles that are intrinsically epistemological are those that 
cannot and should not be avoided, precisely because of their constitutive role in the 
knowledge aimed at. One can recognise them in the history of the concepts 
themselves.”

A third epistemological assumption is to be found in the articulation 
‘student/milieu’. According to Brousseau, the teacher sets the situation, but the 
knowledge which will result is due to the student’s appropriation of the problem. 
Thus, the motivation is an exclusive relationship between the problem-situation and 
the student. In doing this, Brousseau supposes that a kind of isolation between the 
teacher and the student takes place during the process of solving the given problem. 

The interpretation of the student’s understanding of mathematics is framed here 
by the idea that the development of knowledge is a sequence of conceptions and 
obstacles to overcome (Brousseau 1983, 178). Consequently, the pedagogical action 
is focused on the elaboration and organization of teaching situations built on 
carefully chosen problems that will challenge the previous students’ conceptions and 
make it possible to overcome the epistemological obstacles, opening new avenues 
for richer conceptualisations (for an example, see the way Schneider organised her 
calculus teaching, §5.3.4). 

Sierpinska has stressed that, although the new conceptualisations may be seen as 
more complex than the previous ones, these do not have to be necessarily related to 
steps in the development or progress of knowledge: “Epistemological obstacles are 
not obstacles to the ‘right’ or ‘correct’ understanding: they are obstacles to some 
change in the frame of mind.” (Sierpinska 1994, 121). 

5.4.2 A socio-cultural perspective 

Some Vygotskian perspectives in mathematics education choose, from the outset, a 
different set of epistemological assumptions. Thus, in Radford’s socio-cultural
perspective, knowledge is not restricted to the technical character which results 
when knowledge is seen as essentially related to the actions required to solve 
problems. Following a socio-historical approach (see eg Mikhailov 1980, Ilyenkov 
1977) and a cultural tradition (see eg Wartofsky 1979), knowledge is conceived as a 
culturally mediated cognitive praxis resulting from the activities in which people 
engage. Furthermore, the specific content with which knowledge is provided is seen 
as framed by the rationality of the culture under consideration. It is the mode of that 
rationality which will delimit the borders of what can be considered as a scientific 
problem and what shapes the norms of scientific inquiry-for instance, what is an 
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accepted scientific discourse and what is not, what is accepted as evidence and what 
is not. The mode of the rationality relates directly to the social, historical, material 
and symbolic characteristics underpinning the activities of the individuals (Radford, 
submitted). Hence, from a sociocultural epistemological viewpoint, knowledge can 
only be understood in reference to the rationality from which it arises and the way 
the activities of the individuals are imbricated in their social, historical, material and 
symbolic dimensions. 

In this line of thought, a problem is never an object on its own, but is always 
posed, studied and solved within the canons of rationality of the culture to which it 
belongs (Radford 1997a). For example, the supposed numerical patterned cosmo-
logical nature of the universe was an important belief in the culture of the 
Neoplatonists (as it was in the early Pythagorean schools). Another belief from that 
early Greek period was that “the paradigmatic relation between the world and 
numbers is such that what is true of numbers and their properties is also true of the 
structure and processes of the world” (O’Meara 1989, 18). The problems that they 
posed, resulting from the aforementioned assumed numerical structure of the world 
and the investigation of this structure through. non-deductive methods (Radford 
1995), were seen as being completely genuine and valid within their rationality and 
beliefs.

In Radford’s socio-cultural approach, the student/milieu relation is sustained by 
the epistemological assumption according to which knowledge is socially 
constructed. Instead of seeing such a construction as a diachronic move between the 
teacher and the student, as is often the case in socio-constructivist accounts, the 
student is seen as fully submerged in his cultural milieu, acting and thinking through 
the arsenal of concepts, meanings and tools of the culture. The way in which an 
individual appropriates the cultural knowledge of his or her culture is often referred 
to in Vygotskian perspectives as interiorisation. Different accounts of interiorisation 
can be provided. In the socio-cultural approach under consideration, a semiotic, 
sign-mediated, discursive account sees interiorisation not as a passive process but an 
active one, in which the individual (through the use of signs and discourse) re-
creates concepts and meanings and co-creates new ones (Radford 1998). An
experimental historically-based classroom study concerning the re-creation of 
concepts can be found in Radford and Guérette (1 996). A historical case study about 
the co-creation of new mathematical objects is provided by the invention of the 
second unknown in algebra by Antonio de Mazzinghi in the 14th century (see 
Radford 1997b). 

In this socio-cultural perspective, the classroom is considered as a micro-space
of the general space of culture, and the understanding that a student may have of 
mathematics is seen as a process of cultural intellectual appropriation of meanings 
and concepts along the lines of student and teacher activities. Understanding is not 
seen merely as a unidirectional stage reached by a fortunate student resulting from 
the sudden awareness of something becoming clear. As Voloshinov (1 973, 102) put 
the matter, “Any true understanding is dialogical in nature”, meaning that at the very 
core of understanding resides a hybrid semiotic matching of different views. Since 
such a semiotic matching is contextually situated and culturally sustained, there is no 
question, in this approach, of reading the history of mathematics through 
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recapitulationistic lenses (whether of contents or mechanisms). The history of 
mathematics is a rather marvellous locus in which to reconstruct and interpret the 
past, in order to open new possibilities for designing activities for our students. 
Although cultures are different they are not incommensurable; as explored in 
Voloshinov’s concept of understanding, cultures can learn from each other. Their 
sources of knowledge (e.g. activities and tools) and their meanings and concepts are 
historically and panculturally constituted. This is made clear by the fact that most of 
our current concepts are mutations, adaptations or transformations of past concepts 
elaborated by previous generations of mathematicians in their own specific contexts. 

5.4.3

Let us now turn to the epistemological assumptions underlying Boero’s ‘voices and 
echoes’ perspective (see §5.3.1). His point of departure is the fact that some verbal 
and non-verbal expressions (especially those produced by scientists of the past) 
represent in a dense way important leaps in the evolution of mathematics and 
science. Each of these expressions conveys a content, an organisation of the 
discourse and the cultural horizon of the historical leap. Referring to Bachtin (1968)
and Wertsch (1991), Boero & al (1997) called these expressions voices. Performing
suitable tasks proposed by the teacher, the student may try to make connections 
between the voice and his/her own interpretations, conceptions, experiences and 
personal senses (Leont’ev 1978), and produce an echo, a link with the voice made 
explicit through a discourse. What the authors have called the Voices and echoes 
game (VEG) is a particular educational situation aimed at activating students to 
produce echoes through specific tasks: “How might X have interpreted the fact that 
Y?”; or “Through what experiences might Z have supported his hypothesis?”; or:
“ What analogies and differences can you find between what your classmate said 
and what you read about W? ”.

The epistemological assumptions underlying the VEG, partly presented in Boero 
& al (1998), concern both the nature of ‘theoretical knowledge’ (the content to be 
mediated through the VEG), and the cognitive and educational justifications of the 
VEG. As regards the nature of theoretical knowledge, in mathematics and 
elsewhere, some characteristics were highlighted drawing on the seminal work of 
Vygotsky about scientific concepts (see Vygotsky 1990, chapter 6). In particular, 
theoretical knowledge is systematic and coherent; validation of many statements 
depends on logico-linguistic developments related to basic assumptions (axioms in 
mathematics, principles in physics, etc.). 

In relationship to the problem of transmitting mathematical theoretical 
knowledge in school, the preceding description was refined by taking into account 
Wittgenstein’s philosophy of language as well as recent developments in the field of 
mathematics education by Sfard. The following aspects of theoretical knowledge in 
mathematics were considered as crucial, concerning both the processes of theory 
production (especially as regards the role of language) and the peculiarities of the 
produced theories: 

The ‘voices and echoes’ perspective 
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– theoretical knowledge is organised according to explicit methodological
requirements (like coherence, systematicity, etc.), which offer important 
(although not exhaustive) guidelines for constructing and evaluating theories; 

– definitions and proofs are key steps in the progressive extensions of a theory. 
They are produced through thinking strategies (general, like proving by 
contradiction; or particular, like ‘epsilon-delta reasoning’ in mathematical 
analysis) which exploit the potentialities of language and belong to cultural 
tradition;

– the speech genre of the language used to build up and communicate theoretical 
knowledge has specific language keys for a theory or a set of coordinated 
theories-for instance, the theory of limits and the theory of integration, in 
mathematical analysis. The speech genre belongs to a cultural tradition; 

– as a coherent and systematic organisation of experience, theoretical knowledge 
vehiculates specific ‘manners of viewing’ the objects of a theory (in the field of 
mathematical modelling, we may consider deterministic or probabilistic 
modelling; in the field of geometry, the synthetic or analytic points of view; 
etc.).

In Boero et al. (1998), the authors claim that the approach to theoretical knowledge 
in a given mathematics domain must take these elements into account, with the aim 
of mediating them in suitable ways. Concerning the problem of ‘mediation’, the 
assumption is made that, depending on its very nature, each of the listed 
peculiarities is beyond the reach of a purely constructivistic approach. 

The authors’ working hypothesis is that the VEG can function as a learning 
environment where the elements listed above can be mediated through suitable 
tasks, needing ‘active imitation’ in the student’s ‘zone of proximal development’. 
The first teaching experiments, reported in Boero et a1 1997, Boero et al. 1998,
Garuti 1997, Lladó & Boero 1997, Tizzani & Boero 1997, were intended to provide 
experimental evidence for this hypothesis. 

The three perspectives mentioned in this section have shown a variety of ways of 
conceiving the production of knowledge. Each of them relies on different 
epistemological assumptions. It is evident from this that different epistemological 
assumptions lead to different interpretations of the history of mathematics, as well as 
different ways of linking historical conceptual developments to the conceptual 
developments of contemporary students. 
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5.5 Conclusions: guidelines and suggestions for future 
research

Jean-Luc Dorier and Leo Rogers 

The various issues addressed in this chapter, and the related teaching experiments 
and didactical analyses briefly described, show clearly that while ‘naive 
recapitulationism’ has persisted in many forms, the relation between ontogenesis and 
phylogenesis is now recognised to be much more complex than was originally 
believed. The relations between history of mathematics and learning and teaching of 
mathematics can be extremely varied. Some teaching experiments may use 
historical texts as essential material for the class, while on the other hand some 
didactical analyses may integrate historical data in the teaching strategy, and 
epistemological reflections about it, in such a way that history is not visible in the 
actual teaching or learning experience. 

While some knowledge of history of mathematics may help in understanding or 
perhaps even anticipating some of our students’ misunderstandings, a careful 
didactical analysis using history of mathematics is necessary in order to try to 
overcome students’ difficulties. History may be a guide for designing teaching 
experiments but it is only one of many approaches, more or less essential, more or 
less visible, of the whole didactical setting. Therefore, one of the necessary 
conclusions of this chapter would be that any use of history in the teaching of 
mathematics needs an accompanying didactical reflection. 

This way of putting things creates an asymmetry between history and didactics 
which may not reflect their actual relationship. Indeed any attempt to put in relation 
the history of mathematics and the teaching or learning of mathematics necessarily 
induces an epistemological questioning both of individual cognitive development 
and of the interpretations of the historical development of mathematics. What 
happened in the past and what may be likely to happen in the classroom are 
obviously different phenomena because they are based in very different cultural, 
sociological, psychological and didactical environments and because contemporary 
didactical contexts and historical periods conform to very different constraints. 

Beyond these differences, the act of teaching is legitimated by the belief that 
what is taught in the classroom bears some similarity with professional mathematics. 
However, the knowledge to be taught (savoir enseigné) is a transformation of the 
knowledge of ‘professional’ mathematicians (savoir savant) even if it uses the same 
vocabulary, notions, and so on, and it is rare that historical processes are taken into 
account explicitly while writing curricula. Historians of mathematics may object 
that this is a nonsense. On the other hand, it would also be a nonsense to try to 
impose a reconstruction of history in the teaching process, in a very strict 
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recapitulationist paradigm. As Chevallard says (translated from Chevallard 1991, 
48):

Another direction for research consists in being aware that the planned didactical construction 
of knowledge is a specific project within the teaching process, bearing an a priori 
heterogeneity with the scientific practices of knowledge, and not immediately reducible to the 
corresponding socio-historical geneses of knowledge. 

Nevertheless, teaching is still organised in such a way that there is a social demand 
that the knowledge to be taught must appear as close as possible to the official 
knowledge of mathematicians. In this sense, an epistemological reflection on the 
development of ideas in the history of mathematics can enrich didactical analysis by 
providing essential clues which may specify the nature of the knowledge to be 
taught, and explore different ways of access to that knowledge. Nevertheless what 
appears to have happened in history does not cover all the possibilities. 

Figure 5.5: Nicolaus Copernicus, in front of the Polish Academy of Sciences in Warsaw,
seen through the interpretative lens first of Polish history, then of the Danish sculptor
Bertel Thorwaldsen, then ofa British photographer in the 1990s. Now an inspiration to
Polish students, in the 19th and 20th centuries many who had only vague understanding
of his achievements were nevertheless agitated about whether Copernicus was Polish or
German. The sphere and the compasses have long been symbols to represent a
mathematician to the gaze of passers by.

We cannot reconstruct the past with any certainty. Not only are we missing 
essential data (for example, lost texts, ephemera, unpublished material or oral 
exchanges) but also a historical fact or event is never pristine. A fact or event is 
always seen through interpretative lenses and hence will only be partial and 
subjective. We face essentially similar difficulties when analysing didactical events. 
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To this extent history and mathematical pedagogy share common theoretical issues 
with regard to the necessity for epistemological reflection. We need not only to look 
through history in order to try to improve the teaching of mathematics but also to 
elaborate common (‘echoing’) ways of exploring historical and didactical situations. 
This could be a very challenging issue for future research which could be 
approached from different viewpoints. It could be a new way of raising the issue of 
cultural influences in the development of mathematics. 

We have said above that what happened in history does not cover all the possible 
ways of access to one specific element of knowledge. Yet, when setting up a 
teaching programme, one should try to analyse as many ways of access to the 
knowledge as possible. This is an important part of any didactical analysis where 
the use of history can be informative. However, this work is usually confined within 
the limits of an official curriculum. Indeed, traditions in curricula are sometimes so 
strong that our views, even as researchers in mathematics education, on the 
organisation of knowledge are limited because of the strong cultural influences that 
unconsciously guide our thoughts about the different possible organisations of a 
curriculum. Because history is temporally and culturally distant from the 
mathematics taught in our usual curricula, it may provide us with some unusual 
ways of access to knowledge that could be of considerable didactical value. Of 
course, this can be possible only if one does not look at history through the lens of 
‘modern mathematics’. In this sense, another line of development for future 
research would be a reflection on certain parts of the curriculum in relation to an 
epistemological reflection on its historical developments. 

It may be added that, among the areas for further research, it seems important 
that mathematics educators and. teachers should become more closely involved in 
co-operative efforts to develop and implement lessons and modules using the 
history of mathematics as we have shown here. In a similar manner, collaborative 
work between historians of mathematics and mathematics educators can contribute 
to better elucidation of the problem of the link between the epistemological and 
psychological aspects of the conceptual development of mathematical thinking. 
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Chapter 6

History in support of diverse educational 
requirements—opportunities for change 

Karen Dee Michalowicz 

with Coralie Daniel, Gail FitzSimons, Maria Victoria Ponza, Wendy Troy 

Abstract: The needs of students of diverse educational backgrounds for mathematical 
learning are increasingly being appreciated. Using historical resources, teachers are better 
able to support the learning of students in such diverse situations as those returning to 
education, in under-resourced schools and communities, those with educational challenges, 
and mathematically gifted students. 

6.1 Introduction 

The scholarly study of mathematics history has, for the most part, taken place within 
the realm of the universities. Within the universities, one can find the research 
community of mathematicians interested in mathematics history; within the 
universities one can find the authors of mathematics history books and texts. At a 
growing number of universities and colleges, the study of the history of mathematics 
has become part of the curriculum for mathematics undergraduate and graduate 
students. Indeed, in recent times many universities and colleges have started to 
provide courses in history of mathematics for prospective secondary school 
mathematics teachers. 

Nevertheless, there has been minimal interest from the mathematics community 
in introducing the history of mathematics to pre-college students, or to students who 
choose alternative directions for their post-secondary education. One can speculate 
on the reasons for this. Those who teach mathematics history in the university are 
not the teachers of the primary students, secondary students, or students seeking 
alternative education at whatever level. Nor are they the teachers of the gifted pre-
college students. When one finds a primary or secondary teacher using mathematics 
history in a pedagogical way, it is usually (although in some countries this is 
changing) because the teacher is an amateur mathematics historian, not because the 
teacher had been trained in the area. 
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The authors of this chapter, university faculty in mathematics and mathematics 
education, teachers of secondary and elementary students, teachers of the gifted, 
and teachers of students seeking or needing alternative education practices, have 
found that mathematics history has greatly influenced their success in the classroom. 
Their anecdotal evidence is voluminous. 

This chapter has been written to highlight some of the ideas and practices of 
these teachers. Their experiences circle the globe. They have worked with children 
and young adults from many economic, cultural, social and educational 
backgrounds. They have located resources or created and produced their own. 
From different backgrounds and different countries, they have brought their 
common love of mathematics history to the students that they teach. They all have 
seen how inspiring mathematics history can be to their students regardless of their 
diverse backgrounds. 

Although some of the following essays are specific to individual countries, the 
heart of the issue applies globally. In most countries, similar circumstances can be 
found. For example, the educational inequity witnessed in some areas of Argentina 
can be likened to that of impoverished regions in such countries as the United States. 
Teacher training is another global issue. Curriculum is a volatile issue, especially in 
countries without a national curriculum. 

6.2 Educational, cultural, social and economic diversity in 
primary, secondary and tertiary settings 

6.2.1

Except within the most impoverished areas of the world, most children receive at 
least a primary education, including arithmetic. While most students will have some 
secondary education, students in some areas of the globe may go no further than 
primary school. In whatever country, it behooves society to provide the best and 
most solid primary education possible. Unfortunately, mathematics is that part of 
the primary curriculum many teachers are less than eager to teach. Undoubtedly 
students realise when their teachers’ attitude towards mathematics is one of anxiety.
Students will tend to follow the lead of their teacher, their role model, in this.It 
seems imperative to provide teachers with tools and resources that will reduce their 
anxiety and that of their students. Part of this strategy lies in the ways teachers and 
students see the value of mathematics, as something useful and interesting beyond 
the needs of basic computation. No one will deny that students should know how to 
compute. Whole number operations, fractions and decimals are a necessary part of 
primary education. They are skills that most need throughout their lives. However, 
students and teachers need to know that mathematics is much more than 
computation.

The history of mathematics is an instrument to enhance the value of mathematics 
in the classroom and to enlighten students to the breadth of mathematics. When 
primary teachers are given the opportunity to see how mathematics can be connected 

Primary education and the use of mathematics history in the 
classroom
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to their social studies curriculum (geography, history, etc.) and even to their 
literature curriculum, arithmetic can begin to take on a more meaningful role in the 
classroom. While there is little if any research to verify this position, there is a 
myriad of anecdotal reports given by primary teachers who have found success in 
the practice of connecting the history, geography, and cultural times of mathematics 
to the study of primary arithmetic. 

Figure 6. 1: The Egyptian Rhind papyrus (written by Ahmes the scribe in 1650 BC in 
hieratic, top image, with its hieroglyphic transcription below), now in the British 
Museum, is accessible to primary school pupils in deciphering and calculating, as well as 
in problem solving. Primary school teachers may use it to link mathematics with history 
in their classes. From The Rhind Mathematical Papyrus (A.B. Chace et al. eds.), ii,
Oberlin Ohio 1929, pl. 73 

Given that the use of the history of mathematics in the primary classroom is an
idea with merit, the question is how can it be accomplished. It appears that the need
lies in two areas. One, teachers need to receive the necessary education to be able to
understand about the history of mathematics and how it connects to the arithmetic in
the classroom. Second, teachers must have access to materials, or at least need
guidance on where to look for materials or how to create their own materials for the
classroom.
In many countries, mathematics education for primary teachers is minimal. Many of
these teachers would not be comfortable with the secondary school mathematics
content. Thus, even if it is available, a university course in mathematics history
would not be something the pre-service primary teacher would attempt. The
mathematics is too sophisticated. The type of course in mathematics history that
primary teachers need, which would connect with their prospective curriculum,
content and pedagogical concerns is just not available. Even inservice education for
primary teachers in the use of mathematics history is seldom found.

Mathematics history resources for the primary classroom do exist in a small
number. However, these resources are not available globally and are costly. Is there
a solution for providing the primary teacher with the instruction and the materials
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needed to use mathematics history in the classroom? Probably not at this time in a 
conventional way. However, there are tiny alternative steps that can be taken to 
work toward providing for the teachers needs. First and foremost, teacher educators 
internationally need to make a commitment to providing opportunities for teachers 
to learn about using the history of mathematics and how to develop materials. They 
need to look to traditional ways of instruction and to non-traditional, alternative 
ways of instruction. With the latter idea in mind, it is suggested that the Internet 
could play a very important role in both education and resources. There are a 
number of outstanding Web sites that contain mathematics history resources some of 
which are excellent for the primary teacher (see the section on Internet use, §10.3.2). 
At some such sites there could be posted a ‘Primary Teacher Education Centre’ 
which would include sources for historical readings for the teacher, ways the 
curriculum could be connected, timelines, maps, and other primary materials. 
Names of teachers using mathematics history who could mentor other teachers could 
be listed, too. 

The Internet, although still not accessible universally, is becoming more and 
more available even to remote areas. Globally educators are beginning to realise 
that Internet access, at a reasonable cost, provides the unlimited information that a 
school or even town library in an impoverished area could never provide. In many 
countries, the Internet is already providing for adult education in many fields of 
instruction. Obviously, providing inservice in mathematics history on-line is a 
capability that already exists and needs only to be put in place. 

Attitudes toward mathematics are developed early in children. We know how 
well a positive attitude influences learning. Therefore, knowing how the use of 
mathematics history can provide for affective student needs, it appears that its 
introduction into the primary grades is very important. It would be desirable if all 
schools of education would provide teacher training in the use of the history of 
mathematics for primary school. This ideal appears to be a long term process. 
However, with a little creative thinking, the Internet could provide information and 
resources that the primary teacher could use immediately. The challenge is there. 

6.2.2 Under-served (limited resources) students 

Maria Victoria Ponza 

Among the resources assigned to education in the world, economic funds are 
essential to our purposes, since pedagogic resources depend on them. There are few 
qualified teachers, no improvement, renovation or ‘up-dating’ for such teachers as 
there are, or for the necessary materials such as buildings, chairs, books, and paper. 
It is a fact that all over the world the economic resources allotted to education are 
insufficient. But in some countries they are excessively scarce, and such funds as 
are available are improperly distributed. This section is a case study in how 
countries in this situation can use the history of mathematics in the light of these 
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constraints, from the perspective of one such region, the province of Cordoba in 
Argentina.

In Argentina and many other countries, there are two very different types of 
schools: government schools and private schools, differing mainly in the economic 
resources at the schools’ disposal. In government schools most of the funds go into 
paying salaries (at rather a low level), while private schools are able to invest more 
and more money every year in providing all the necessary resources for teaching 
already mentioned (teachers, materials, training, buildings, etc.). As a result, the 
social gap between rich and poor in that country becomes widened. 

Frequently, people are heard to refer to the existence of two Argentinas as a 
consequence of an economic policy that has a direct influence upon educational 
policy. Families naturally belong to one or the other Argentina, most of them to the 
one where the lower resources are found. In consequence, government schools are 
always overcrowded. (This situation is not unique to Argentina, of course; but 
Argentina is the subject of this case study.) 

A difference between some countries and Argentina lies in the fact that many of 
the Argentine pupils are aware of hardship and realise how fortunate they are to be 
able to attend high school. These pupils at least begin with a wish to study and to 
take the best advantage of their opportunities. Similarly, there are for historical 
reasons a cadre of capable teachers in government schools who take their work 
seriously. Nonetheless, there are broader social factors working in the opposite 
direction. One of the main problems of a country such as Argentina today is that, 
partly in response to a spreading global ethos, people are drawing nearer to short-
term individual action and further away from investing in training and excellence. 
The trend towards immediate gratification is unlikely to bring about important 
achievements in education, by diverting attention and resources from the long-term
competency and skills which are needed for sustained success in the world today. 

Mariano Moreno School in Rio Ceballos, Cordoba Province, Argentina, belongs 
to the group of government schools of Argentina where economic resources are 
minimal. Any project away from the conventional depends exclusively on the will, 
drive and creativity of the pupils and teaching personnel without expectations of 
funding. In 1994, I coordinated and took part in an interdisciplinary project lasting 
an academic year with 13-year-old pupils and encompassing seven subjects. The 
project was approached from the context of history in general. Thus in order to 
obtain a coherent participation of the area of mathematics, it was the history of 
mathematics that was explored. As a result of the project, many changes were 
observed in the attitude of pupils towards mathematics: their rejection of the subject 
decreased and they experienced a surge of interest. Historical investigations of 
important figures in the mathematical past, their lives and discoveries, enabled 
pupils to see human aspects of mathematics that they had never previously 
imagined. From that moment on, I started using the history of mathematics as a 
resource for teaching pupils of different ages. 

In recent years, the province of Cordoba has experienced untimely reforms in the 
educational system, practically without notice and without providing training about 
the reforms for the teachers. This has put the teaching staff in a difficult position 
with regard to curricular contents, and also led to problems in the conduct of pupils. 
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Thus it was that in 1996, we found ourselves teaching, for the first time, pupils a 
year younger who had been moved from their previous school where they originally 
expected to complete their seventh grade. These students were relocated to a school 
with very bad classroom conditions. As a consequence, the pupils had difficulty in 
adapting to their new environment and discipline problems were rife. This particular 
situation forced us ask ourselves what could be done in the light of the reality that 
we were confronted with. The answer was prompt: make use of other resources; in 
this case, resort to the history of mathematics. 

In the first year course, under my charge, the history of mathematics exercised 
what can only be described as a magical effect. In moments when disorder impeded 
hearing any possible explanation of usual mathematical curriculum, I found that 
telling, by way of story, the history of the symbols + (plus), of - (minus), of 
mathematicians such as Euclid or Galois, etc., succeeded in calming everyone and 
aided in the progress of the lesson. In 1997 those same pupils, now in the second 
year, agreed to work with me on curricular contents from the history of mathematics. 

For several years my pupils have been performing mathematical dramatisations, 
thus establishing a relationship between mathematics and other subjects. The 1997 
proposal put forward by me offered a good opportunity to perform drama connected 
to the history of mathematics. The project aimed at providing pupils with a lively 
experience of historical facts regarding mathematics by experiencing the life of 
some famous figures so as to humanise our subject. Also, a comparative study of 
the social and political contexts at different ages down to the present was 
undertaken. These ideas crystallised into a practical plan when my pupils suggested 
writing and performing a play on the life of Evariste Galois (for more details see 
Ch. 10). The drama production and related interdisciplinary activities provided 
particular reflections upon the following general questions: 
– What role can the history of mathematics play in response to special educational 

needs?
– What relationship is there between the role or roles we attribute to history and 

the ways of introducing or using it for educational purposes? 

– What consequences will it produce for organisation and practice in the 
classroom?

Working out the curricula of the whole academic year using the history of 
mathematics and drama gave us a chance to become aware of several beneficial 
aspects.
1. In a school with an excessive number of pupils on every course, and where 

economic scarcity influences the possibility of having texts as teaching aids, the 
history of mathematics acted as a mobilising element for bringing together 
resources which on their own would have been wanting. 
It provided an incentive for reading and encouraging the use of the library. 
It stimulated the development of expression in language and mathematics, since 
a large amount of new mathematical terminology was discovered, used and 
understood by students through reading the history and interpreting the text. 
The introduction of historical anecdotes served to humanise the mathematics 
and to lessen students’ rejection of it. 

2.
3.

4.
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5 . The dramatisation and the work on generating the text revealed hidden aspects 
of the personality of the pupils, as well as sensitising them to the realities of the 
past and the actuality of the present. Pupils identified aspects of Galois’ life 
with the unfair conditions they suffer in their own lives. The public recognition 
eventually granted to Galois’ work, although belated, awakened some hope in 
them and encouraged them to continue studying and participating. As a teacher, 
this gave me a chance to become acquainted with other aspects of my pupils’ 
lives and understand them better. 

6. The introduction of mathematics history into the course curriculum attracted the 
attention of pupils, since it was the first time that they had seen such a thing. 

7. With regard to the mathematical concepts arising from Galois, the pupils could 
not, of course, tackle them in depth owing to their rudimentary knowledge; they 
are 14-year-old pupils and in their 2nd. course of the basic cycle. 

The political realities of finding a role for history in the classroom. 

At present the history of mathematics is not included in the course of study for 
pupils. Nor is it present in the curriculum of institutions in charge of preparing 
nationally qualified mathematics teachers in Argentina (and most other countries for 
that matter). Those who already teach mathematics are minimally interested, partly 
through being overworked already, and have had little opportunity to see the history 
of mathematics as other than a gratuitous accessory. Such teachers do not pursue 
further information and do not refer to mathematics history during classroom 
teaching. If, however, consideration of the history of mathematics even in an 
isolated manner (by only an individual teacher here or there) brings about such 
important consequences for the teaching and learning of mathematics, as has been 
seen in this case study, it becomes imperative to work towards the systematisation of 
these advantages. What is needed is the wider availability of historical texts in the 
country, which up to now are in the hands of only a very few teaching personnel, 
and owing in any case only to personal efforts. The public libraries lack this 
material, and it is essentially completely absent from schools and institutions of 
teacher training. (The bibliographies elsewhere in chapters 9 and 11 of this book 
give an indication of what is available.) 

At this moment, year 1998, the pupils I worked with on the Galois project are 
attending the 3rd school year. Since I am still their teacher, I have the opportunity to 
see the effects of their dramatic work in the previous year. It appears that they have 
a stronger basis in their mathematical curricula. And they have learned much about 
being patient when searching for information, and feeling pleasure when 
discovering. The project continues largely thanks to the pupils’ own initiative. 

A good example of this is the method we applied to arrive at the concept of 
irrational number and the enlargement of the numerical field. To begin, I planned 
for more thorough pupil research about Pythagoras than was done the previous year. 
My aim was to lead the pupils to discover the square root of 2, starting from the 
Pythagorean theorem they already knew. One of the self-appointed teams was made 
up of three students, two of them attracted to mathematics after studying its history. 
This team contributed a great amount using information found in the town library. 
They discussed it and pointed out the main details. They then synthesised their 
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findings. When all the pupils had read this synthesis, in a subsequent lesson I had 
them examine the sociopolitical conditions found during the 6th century BC, starting 
with the Pythagoreans. The pupils concluded that from the social point of view the 
Pythagoreans formed a closed community with very specific ground rules for social 
behavior. Their behaviour seemed to be politically inconsistent: in external affairs 
they were fighters against the tyranny of Polycrates, whereas in home affairs they 
were tyrants against one another, living under a very strict regime characterised by 
the secrecy of its acts, the disclosure of which meant a threat to their lives. 

We discussed whether there was any parallelism between conditions in those 
ages and the present time. They concluded that there is great similarity, since at 
present, in the pupils’ opinion, there are closed groups or lobbies both within 
governments and outside them, such as in the news media. They investigate each 
other and find out facts which may have serious consequences upon the population. 
Yet, important information is kept a secret. These groups look critically towards 
everything that lies outside them. None the less, they keep secret what does not 
further their own interests. 

We examined the mathematical discoveries of the Pythagoreans in relationship 
to their intrinsic and social value. The pupils concluded that these discoveries were 
numerous and very influential, such as philosophy of life based on numbers, musical 
notes, the notion of one of the first non-geocentric planetary systems and the 
celebrated theorem (which seems to have already been used by Babylonians and 
well-known in other cultures). We examined the mathematical consequences of the 
theorem and its close relationship to the socio-political behavioural ground rules of 
the Pythagoreans. The pupils discovered that the right triangle with legs 1 and 1 led 
them to the square root of 2 which the Pythagoreans kept secret. I explained to the 
pupils that this was an incommensurable, as well as what this term meant, and gave 
reasons for our interest: that it was one of the most famous of non-rationals in 
history, and explored with them its connection to geometry. Thus I introduced the 
irrational numbers which enlarged the numerical field and completed the straight 
line.

Pupils have little notion that they are themselves the subjects of history, that they 
are the makers of present history. As such, it is imperative that they should learn to 
be broad minded, working out and holding their own point of view, respecting 
others ideas. Here interdisciplinary activities play an key role, allowing pupils to 
establish connections, participate, strengthen and convey ideas, avoiding a mere 
repetition of other people’s concepts. 

It appears that the educational reform begun in Cordoba in 1996 may never 
achieve its goals. One of the causes for this debacle is not having the trained 
teachers needed to carry out interdisciplinary tasks, and not having restructured the 
system to implement this. Perhaps my pupils will in due course take their place in 
helping encourage the use of interdisciplinary tasks and build a better Argentina. 
My main objective as regards the 1998 project can be synthesised in one question: 
how might pupils who have learned the importance of knowledge and hard work 
contribute to change our society being, as they are, subjects of history? 
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Note

My special thanks to the pupils of Mariano Moreno School, 3rd. year course, 1st. section, year 
1998, and to Dr Maria Luiza Cestari. 

References for §6.2.2

Boero P., Pedemonte B., Robotti E. 1997. ‘Approaching theoretical knowledge through voices 
and echoes: a Vygotskian perspective’, Proceedings of the 21st International Conference 
on the Psychology of Mathematics Education, Lahti, ii, 8 1-88

Durán, Antonio Jose 1996. Historia, con personajes, de los conceptos del cálculo, Madrid:
Ed. Alianza Universal, 17-22 

Hitchcock, Gavin 1997. ‘Teaching the negatives, 1870-1970: a medley of models’, For the 
learning of mathematics 17 (1), 17-25

Muñoz Santoja, José, Carmen Castro, Maria Victoria Ponza 1996. ‘Pueden las matemtiticas 
rimar?’, Suma 22, (Federación Española de Sociedades de Profesores de Matemtiticas, 
Zaragoza), junio, 97- 102 

Panza Doliani, 0, Ponzano, P. 1994. El saber, si ocupa lugar, Córdoba, Argentina: Ciencia 
Nueva , 13-24 

Poincaré, Henri 1995. ‘La creación matemática’, in Investigación y Ciencia: Grandes 
Matemáticos, Barcelona: Ed. Prensa Cientifica SA, 2-4 

Ponza, Maria Victoria 1996. ‘La experiencia interdisciplinaria en la realidad educativa de 
hoy’, Suma 21 (Federación Española de Sociedades de Profesores de Matemáticas, 
Zaragoza), febrero, 97- 101 

de Educación y Ciencia (Centro de profesores de Linares), 9-18.
Ruiz Ruano, Paula; Perez, Pilar 1996. ‘Hipatia en el pais de las empatias’, Jaén: Consejería 

Savater, Fernando 1997. El valor de educar, Barcelona: Ed. Ariel SA, 47-54,92-100, 1 10- 
111, 116-142

6.2.3 Alternative educational pathways: adult learners returning to 
mathematics education, vocational education and training 

Gail FitzSimons 

In an era of economic rationalism the education of adult learners is assuming 
increasing importance, both in general return-to-study classes and in specifically 
oriented vocational classes. For the purposes of this discussion, adult learners are 
taken to be people who have been out of formal education systems for some length 
of time, or participating for the first time; vocational students include those who are 
returning to, or continuing with, post-compulsory education. (In some countries 
specialised vocational education begins during the secondary years of schooling.) 
These educational settings include both formal institutions as well as informal, 
community, and workplace sites. It is not possible to make universal statements on 
the provision of adult and vocational education-they each vary in the degree of
emphasis placed on general versus specific vocational content and in the importance 
placed on credentials and pathways to further study. In different countries the 

John Fauvel, Jan van Maanen (eds.), History in mathematics education. the ICMI study, 
Dordrecht: Kluwer 2000, pp. 179-184 
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responsibility for the costs of such education is distributed variously among 
governments, industries, and individual students, but the overall intention would 
appear to be the improvement of the economic and/or the social well-being of the 
individual and the community at large. 

Mathematics is seen as having a crucial role in respect of social end economic 
development. However, mathematics education for adults has generally followed 
the form of selections from the entire range of school and sometimes undergraduate 
curricula, with adult life skills or vocational examples inserted as deemed 
appropriate. In other words, many (but not all) courses offered are likely to be fairly 
traditional and based on a utilitarian framework. By and large they are also been 
premised on a deficit model of the learner, seeking to remedy perceived gaps in their 
mathematical knowledge when compared to official checklists of so-called essential 
skills. For a more extensive comparison of the international situation regarding 
adult learners of mathematics see FitzSimons (1997). 

This section concerns the teaching of mathematics to adult learners from the 
perspective of the use of the history of mathematics and mathematics education. I 
argue that its adoption will ultimately be more effective and empowering for the 
individual, the wider community, and national and even global interests. Thus the 
opportunities for and constraints on the use of history of mathematics in adult and 
vocational education will be discussed. 

In vocational education there appears to be little or no place for the history of 
mathematics: should it make an appearance in texts, it is generally trivial, sometimes 
inaccurate, and not integrated with the main thrust of the lesson (Maass & 
Schloeglmann 1996). Adult education may or may not have such an instrumental 
focus: inclusion of the history of mathematics is a matter of chance in terms of 
quantity and quality of effort. Contributing factors are the rigidity of the curriculum, 
and the background of the teacher in terms of philosophical beliefs about 
mathematics and pedagogical content knowledge and reasoning (Brown & Borko 
1992), as well as knowledge of the history of mathematics itself. Clearly there is a 
need for quality resource material and appropriate professional development. 

The diversity of social, cultural, and economic backgrounds in society at large 
may be somewhat reduced in any particular study group, although the life 
experiences of each person will be unique. In addition there will be variations in 
educational background and of expectations in the cognitive and affective domains. 
Each person may, in different ways, be likely to seek to increase their economic, 
social, cultural, and/or symbolic capital (Bourdieu 1991). Use of the history of 
mathematics in teaching provides an opportunity for the learner to appreciate the 
struggles of people throughout history to overcome difficulties similar to those they 
are facing. Viewing the study of mathematics through the lens of a study of 
humanity, rather than as cold, hard science, can play an important role in the 
overcoming of mathematics anxiety (FitzSimons 1995). The study of 
ethnomathematics in particular is a powerful means of valuing experiences and 
cultures of members of minority groups while expanding the horizons of all 
participants. However, Knijnik (1993) warns against placing too high a value on the 
popular knowledge of subordinate groups, and recommends that students have the 
opportunity to become aware of the possible limitations, which may be transcended 
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through a process of cultural synthesis, The term ‘ethnomathematics’ may also be 
applied to the mathematics practised by people in the workplace, its form evolving 
from the adaptation of strategies for solving problems that arise within this particular 
culture which has, of course, its own discourse and literacies (O’Connor 1994). 

There are constraints within formal educational institutions providing 
mathematics education for adult and vocational students. For example, the use of 
the history of mathematics may be constrained by the inertia generated by structural 
rigidities of curriculum, particularly in the case of competency-based education and 
training (FitzSimons 1996). Educational systems which do not value professional 
development specific to mathematics teaching and learning exacerbate the problem, 
as does the trend (in Australia at least) towards the removal of any requirement for 

educational qualifications in teachers in 
a profession that is becoming 
increasingly deregulated and casualised. 
On the other hand, systems which allow 
flexibility in curriculum and assessment 
enable creativity on the part of informed 
teachers and their students in the pursuit 
of knowledge for its own sake, and it is 
here that the use of history of 

Figure 6,2: Flexibility in the curriculum mathematics has the possibility of 
for adult learners (from the algebra text flourishing.
by A. de Graaf; Amsterdam 1672) A further constraint on the use of 

history of mathematics is the power of 
industry to determine narrowly focused 

curricula for vocational students. Even the more general adult education is 
frequently subjected to being framed within notions of ‘usefulness’. Given the 
underlying expectation of economic efficiency, especially in government- or
industry-subsidised education and training, excursions into the history of 
mathematics are likely to be seen as a waste of time and money. This is a 
particularly short-sighted approach in view of the attention paid to the development 
of so-called key competencies (Mayer 1992) described as being essential for 
effective participation work and in other social settings, for example: 
a) collecting, analysing and organising information, 
b) communicating ideas and information, 
c) planning and organising activities, 
d) working with others and in teams, 
e) using mathematical ideas and techniques, 
f) solving problems, and 
g) using technology. 

The development of each of these would be enhanced through the use of the 
history of mathematics, since the skills developed through historical activity are 
precisely those leading to these competencies. It would also seem beneficial to 
increase the understanding of vocational students by including something of the 
history of ideas that have led to the present situation of an increasingly technological 
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environment. It is through such understanding, as well as their developing 
competencies, that the possibilities for progress by workers and students might be 
realised.

In considering how the educational benefits might be brought about it is, of 
course, particularly essential to convince policy makers of the appropriateness of 
including history of mathematics, as well as to provide encouragement and support 
for teachers. 

Justification for the use of history of mathematics can be made on grounds of 
enhancing individual development, especially in the possibilities it offers for 
overcoming mathematics anxiety, in broadening the socio-cultural perspectives of 
learners, and also in stimulating further mathematical and scientific enquiry. This 
leads to social benefits for the individual in increased self-confidence and respect 
from others, and for the community in terms of that person’s participation in 
decision-making processes required in a social democracy as well as in the 
workplace. In addition, adult learners are able to share their legitimate knowledge 
with others such as family and friends for whom they can act as role model, mentor, 
or even collaborator. There may be economic benefits at the personal level, and 
ultimately national, even international economic benefits flowing from enhanced 
participation in mathematics education. It is recognised that there is considerable 
debate about the paradox of an increasingly technological society, formatted by 
hidden mathematics (Skovsmose 1994), apparently needing to know less 
mathematics. However, Noss (1 997) has argued that there is now a greater need for 
people to be able to use mathematics in a constructive, interpretive way in situations 
of conflicting information and to be able to find practical solutions in the inevitable 
situation of technological breakdown. Learners at all levels need to have the self-
confidence to persevere with mathematical studies. 

Arguments for the teaching of history of mathematics to adults need to be 
supported by a range of theoretical foundations. There is support from the history of 
mathematics itself for a philosophy of mathematics that sees it as fallible and 
socially constructed (Ernest 199 1). Studies in the sociology of mathematics and 
mathematics education suggest the need for a broader view of mathematics than the 
traditional white, male, eurocentric version that commonly prevails. Walkerdine 
(1994) makes just this point. Ernest (1996) has pointed out that there is a strong 
relationship between the classroom experience of students and the general public 
image of mathematics. If someone’s school experience has left them perceiving 
mathematics as fixed and absolute, exact and certain, and specified by rules, they are 
likely to be think of mathematics ever after as cold, inhuman, and rejecting. Recent 
philosophical analyses, however, have developed and enriched how mathematics is 
thought of. In a postmodernist analysis, mathematics is seen to be an outcome of 
social practices wherein people and history, among other things, play a vital 
constitutive role. Bishop (1988) addressed the values attributed to mathematics (viz. 
rationalism, objectivism, mystery, openness, control, and progress) each of which 
can be, and have been, valued highly by the mathematics community, but which 
have the potential to alienate members of the general public. In contrast to these 
potentially-alienating mathematical values, Bishop noted six universal activities 
(viz. counting, locating, measuring, designing, explaining, and playing) which 
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underline the commonality of mathematics in most people’s cultural activities, 
thereby providing justification for an ethnomathematical approach to teaching. 
Other work has built upon these ideas. Skovsmose’s critical approach to 
mathematics education for democratic competence (Skovsmose 1994) takes account 
of these values, and here the use of history of mathematics can illuminate how 
mathematical values and activities have been utilised in the past. The approaches of 
these recent educational thinkers is pertinent to both adult and vocational 
mathematics education. 

Teachers in adult and vocational education make certain epistemological 
choices. They may choose, or be compelled, to operate variously within paradigms 
such as the traditional method of transmission, constructivism (radical, social), 
socio-cultural situated learning in a community of practice. It is possible to 
incorporate the use of history of mathematics under each, but the methodologies 
utilised are dependent on various factors in the teaching situation such as, for 
example: the size, location, and heterogeneity of the class; access to various forms of 
multimedia, including print-based; the type of interaction between teacher and 
learner, whether personal or distance education modes of teaching, including self-
paced learning; and the time allocated for lessons. Within these parameters, some 
possibilities for using the history of mathematics are: 
a) teaching through history and ethnomathematics; 
b) teaching about history and ethnomathematics; 
c) encouraging students’ reflection on their own experiences of mathematics 

education-their personal history-to encourage metacognition; and 
d) an integrated curriculum with a problem solving or project-based approach 

where the history of mathematics and ethnomathematical studies develop within 
the contextual setting for teacher and learner (e.g., FitzSimons, 1995; this 
volume).

Naturally the choice(s) will depend on the teacher’s judgement of their 
appropriateness for the objectives of the session, and the teacher’s ability to adjust 
the teaching style and content. 

Much innovative work has been carried out by practitioners in the absence of 
funded research. Although the field of adult education in mathematics is burgeoning 
(FitzSimons 1997), there have been few dissertations noted to date, and the 
likelihood of formal research on the impact of using history of mathematics in adult 

education is even more 
remote. It is recognised that 
few busy teachers have time 
to document and analyse 
their teaching experiences, 
given the intensity of work 
pressures. However, it is in 
the interests of both 
government and industry to 
ensure that the best possible 
outcomes, according to their 

Figure 6.3: Problems with tables are of all ages (from 
the algebra text by A. de Graaf; Amsterdam 1672) 
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own criteria, are achieved. This section has asserted the benefits of using history of 
mathematics, based on the writer’s personal experience and her reading of 
mathematics education and related literatures. Further, more formal, research is 
needed to justify this assertion and to provide documentary analysis of effective 
strategies according to the diverse needs of particular adult student groups. 
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6.2.4 Minority school populations 

Webster’s New World College Dictionary (1996) gives as its third definition of 
minority “a racial, religious, ethnic or political group smaller than and differing from 
the larger, controlling group in a community, nation, etc”. Using a global 
perspective, ‘minority’ does not refer to any particular racial, ethnic, religious, 
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ethnic or political group. Within a 
school setting, a school district, or 
the schools in a particular country, 
minority students may number 
more than one half of the school 
population. Odd as this seems, 
what the word minority refers to, in 
terms of educational anthropology, 
is the population of students who 
have a culture (ideas, customs, 
skills, arts, etc.) which is different 
from the dominant school culture. 
For example, a school may use 
English as its language of 
instruction although many or even 
most students may not speak 
English as their first language. 
Another example would be in the 
cases of independent nations 
which, in the past, existed as 
colonies of other nations. In 
former times, and perhaps even 
now, the dominant school culture 
could be very different from the 
native culture. One need only look 
to the continent of Africa for such 
examples,

During the last half of the 
twentieth century, war, famine, and other turmoil has caused the emigration of many 
people to countries in Europe, in North America, and to the southern Pacific 
countries of Australia and New Zealand. Most of these immigrants have racial, 
religious or ethnic backgrounds different from the dominant culture of the countries 
to which they have emigrated. The immigrant children bring their culture to school 
with them. In some countries, such as Brazil, Australia and New Zealand, and parts 
of the United States and Canada, some of the minorities are not immigrants, but 
members of the aboriginal or indigenous peoples with their own culture and 
language.

While there is no universally dominant school culture, each country looks to 
educate its students in a way that it perceives as appropriate. Within the United 
States, because there is no national curriculum, policies of different states greatly 
differ about the best way to educate students from diverse cultural backgrounds. In 
one US state, highly populated by Spanish speaking immigrants from Central and 
South America, an ESL (‘English as a second language’) program in the schools 
does not exist. Yet in another state, populated by many Mexican immigrants, there 
are such ESL programs. In a number of countries in Europe, special language 

Figure 6.4: This image from 16th century Peru, 
showing the Secretario del Inca with his quipu, 
reminds South American students that the 
ancient people of their pre-Spanish heritage 
had sophisticated means for recording and 
transmitting numbers. 
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programs for non-native speakers in the schools is not an issue. These countries 
expect non-native speakers to enter the classroom, learn the national language and 
adapt to the school culture. 

The purpose of this section is not to question how a particular country educates 
its minority students or criticise national educational policies. Rather it is to 
examine ways in which, globally, teachers of all students can provide learning 
environments which enhance the learning of mathematics. The reader should bear in 
mind that there is nothing deficient about a minority population; being different does 
not mean being of less value. Rather, educators need to realise that all students, in 
particular minority students, have a culture which may or may not conform to the 
dominant classroom expectations. The question remains how teachers can create 
within the classroom an equitable learning environment in which all students may 
learn and realise the value of their education. 

At first glance mathematics would appear to be the curriculum area in which 
students from all diverse backgrounds have common ground. After all, except for a 
few minor differences in the algorithms for basic skills (such as the way in which 
calculations are written down on paper), computational skills throughout the world 
are much alike. None the less, students globally learn mathematics based on their 
familiar linguistic and cultural patterns (Trentacosta 1997). Many study school 
mathematics without understanding the use for it; many dislike school mathematics; 
many more exhibit great mathematics anxiety. Minority students appear to suffer 
the worst. 

One way in which curriculum specialists encourage teachers to make their 
content area meaningful is by humanising the subject. What better way can 
mathematics be humanised then by the use of mathematics history in the classroom? 
Besides being entertaining, the history of mathematics provides the student with 
information about the global roots of mathematics. Mathematics history helps 
students realise that mathematics is not just the invention of the dominant school 
culture. Rather, it helps students realise that mathematics evolved from many 
sources and in many places. For example, minority students from Central American 
can learn that recent Olmec research suggests that the ancient people of their 
heritage developed the concept of zero perhaps earlier than any other ancient 
peoples. Students with an Ashanti African heritage can appreciate that the Ashanti 
mathematics bone is one of the oldest mathematics artifacts. Students with an 
Indian heritage can celebrate the contributions that their ancestors made to our 
present day numeration system and to concepts of negative numbers. Our female 
students can be inspired by the stories of courageous women mathematicians. The 
noted ethnomathematics scholar, Marcia Ascher, points out that when teachers 
emphasise the roles different cultures have played in the evolution of mathematics, 
students’ pride in the accomplishment of their people is enhanced and they begin to 
value mathematics as a human activity (Ascher 1991). The history of mathematics, 
using both its European and non-European roots, makes mathematics relevant to the 
cultural heritage of all students. 

To help the reader find information about and plan activities for students of 
diverse cultural backgrounds a resource bibliography is provided. 
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Resource bibliography 

(* Indicates a work appropriate for primary and upper elementary or middle school 
teachers; ** mainly secondary; *** reference for all teachers) 
***Ascher, Marcia I 99 1, Ethnomathematics. A Multicultural View of Mathematical Ideas, 

Pacific Grove, CA: Brooks/Cole Publishing 
***Ascher, Marcia & Robert Ascher 1997. Mathematics of the incas: code of the quipu, New

York: Dover 
*Alcoze, T., et al. 1993. Multiculturalism in mathematics, science, and technology: readings 

and activities, Menlo Park, CA: Addison-Wesley, 1993. 
*Kaleidoscope Series, 1994. Count on it, North Billerica, MA: Curriculum Associates 
*Lumpkin, B. & Strong, D., 1995. Multicultural science and math connections, Portland,

MA: Walch, 1995. 
**Johnson, A, 1994. Classic math history topics of the classroom, Palo Alto, CA: Dale

Seymour Pub. 
***Powell, A. B. and M. Frankenstein, Eds, 1997. Ethnomathematics: challenging 

eurocentrism in mathematics education, NY: State University of New York Press 
**Smith, S. 1995. Agnesi to Zeno: over 100 vignettes from the history of mathematics. 

Berkeley, CA: Key Curriculum Press 
**Swetz, F., 1994. Learning activities from the history of mathematics, Portland, MA: Walch 
** *Trentacosta, J. 1997. Multicultural andgender equity in the mathematics classroom: the

***Zaslavsky, C., 1996. Fear of math, New Brunswick, New Jersey: Rutgers University 

*Zaslavsky, C., 1994. Multicultural math: hands-on math activities from around the world, 

*Zaslavsky, C., 1987, 1993. Multicultural mathematics: interdisciplinary cooperative-

***Zaslavsky, C. 1996. The multicultural math classroom: bringing in the world, 

gift of diversity, Reston, VA: National Council of Teachers of Mathematics 

Press

New York: Scholastic Professional Books 

learning activities. Portland, MA: Walch 

Portsmouth, NH: Heinemann 

6.2.5 Students having educational challenges 

Worldwide, students with educational challenges are either not schooled, or put into 
special classes, or are integrated into the regular classroom with their agemates. 
These students may be found in primary, secondary and alternative education 
programs, In some cases, those with learning disabilities reach the tertiary level. 
While the use of mathematics history can be an excellent pedagogical tool, resources 
for teachers are mostly unavailable. Therefore, teachers are left to develop their own 
resources. This is not an easy task because it requires a background in mathematics 
history, as well as the understanding of the cognitive level of the student and the 
student's special needs. If countries actually have special education training for 
teachers, one cannot expect that the training will include a strong background in 
mathematics, much less the history of mathematics. 

None the less, students with educational challenges can enjoy and be inspired by 
mathematics history. For example, the abacus is an excellent manipulative resource 
for helping students develop number sense. Limiting addition and subtraction to 
examples which do not require regrouping can provide an opportunity for 
exceptional learners to experience an ancient, multicultural tool. It has also been 
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found that some of the ancient computational algorithms are better to use with 
students with learning disabilities. Students enjoy learning about the history of these 
algorithms along with their success in the use of the algorithm. It can be helpful for 
students to realise that other scientists and mathematicians also had learning 
disabilities. Albert Einstein often mentioned his poor computational skills. 

Certainly, using the history of mathematics with exceptional children is an area 
which is ripe for exploration. At this time there do not appear to be any historians or 
educational researchers who are working in this area. There are individuals who 
have shared their few experiences of using mathematics history. But these practices 
are little known to fellow practitioners. 

6.2.6

Coralie Daniel 

The idea that almost everything can be done in a variety of ways is as true for 
mathematics as it is for anything else. Many mathematics teachers would respond to 
a remark conveying this idea, with examples and anecdotes from their classroom 
experiences that illustrate the point. Yet, while this is likely to be the case in a 
conversation, few would say that they actually begin their lessons with the idea of 
finding the widest variety of solutions, or that they prepare their lesson plans with 
the specific intention of developing a particular concept through the presentation of 
a variety of widely different strategies or processes. Many classroom lessons are 
based on an assumption that a teacher’s task lies in introducing an idea and then 
giving an example, showing a formula, teaching a method that proves the idea. 
Most students seem content that the single proof approach is a reasonable way for a 
teacher to stimulate the learning process and transmit knowledge, and because they 
have limited mathematical experience, they are unlikely to ask whether or not there 
are alternative methods that could be learned or thought through. But this is not true 
of gifted and highly talented mathematics students. 

From a very early age gifted and talented children make an impression through 
the complexity of the why? and how? questions they ask. Most people are familiar 
with children’s why? questions which follow on in a sequence derived from the adult 
responses, without thought on the child’s part. Compare, though, the following pre-
schoolers’ why? and how? questions (Daniel 1995): 

“Why are the clouds gray if what you said yesterday about why the sky is blue, is true?” 

“I can see how these blocks go together on the floor, so how can I write that on paper?” 

“How can I make these spaces [between telegraph poles] seem the same when they are 
not?’

The children and students who ask such questions retain information and think about 
obvious links between things, but they also experiment, think laterally, notice detail, 

Mathematically gifted and talented students 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 188-195
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• He tuhi püongo e pa ana ki te wlukamahia o tëtahi inenga whaitake e 
whai wähi mai ana ëtahi ähua örite. Hei whakatauira, ko te rapanga e 
whakaahuatia ana i raro nei

Figure 6.5: Problems found in many cultures offer gifted students opportunities to 
discover mathematics for themselves. Both Maori and Dutch students have the 
opportunity to work out, from the hint that a mirror on the ground provides a clue, how to 
measure the height of an object. The first case is from the New Zealand curriculum in 
Maori (1994), the second, a bit more complicated since the foot of the tower is out of 
reach, from a textbook in algebra by Abraham de Graaf (1672). 
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conceptualise, and allow prior learning to influence other ideas. They develop one 
idea from another, but in doing so they make value judgements, adapt ideas, enjoy 
discussing how things interact, are curious to see how knowledge and ideas can be 
applied to the world as they know it, and are stimulated by considering (but not 
necessarily adopting) other people’s ideas. They are keen to proceed from one point 
of view to another by discussion and conversation, rather than by an example taught, 
copied down, practised and thus (presumably) learned. Teaching and learning, as 
the most important aspects of the educational process, have already been superseded 
by thinking, in the minds of gifted and talented students, usually before they have 
even begun formal schooling. This is often threatening to teachers; but it need not 
be.

It is not difficult to see a link between these aptitudes and the history of the 
development of mathematical ideas. As with all knowledge and philosophies, it was 
the application of just these attitudes—by different people over centuries of time— 
that enabled mathematical ideas, concepts, and proofs to be developed at all. This 
understanding in itself gives a reason for the inclusion of ideas from the history of 
mathematics in teaching gifted and talented mathematicians at any level. 

The inclusion of historical material is not simply the adding of whimsical stories 
or biographical extras to basic mathematics lessons, to make students feel relaxed 
and add a level of fun to the mathematics classroom. Inclusion of the history of 
mathematics should also be undertaken for the way in which such an inclusion opens 
up different areas of mathematics and broadens the possibilities of helping to satisfy 
the curiosity and thinking needs of gifted students. For example, it is almost certain 
that many teachers have told their students something about Pythagoras (even if it is 
merely his name) when they have been teaching anything about the characteristics of 
the various squares on the sides of right-angled triangles. But how many teachers 
will have said (or even been aware) that there are at least 370 (Loomis 1968) known 
ways to show that the square on the hypotenuse of a right-angled triangle is equal to 
the sum of the squares on the other two sides? How many teachers have shown a 
number of those solutions in the same lesson series? This is a good way of 
illustrating to students that Pythagoras was one among many who was on to 
something very useful that could be thought about in many different ways; the 
alternative, teaching that Pythagoras discovered a theorem for which the proof is 
such-and-such, is very confining, not to say boring, by comparison. A teacher is 
likely to choose a presentation that seems to be the most logical, or choose the 
version remembered from some level in their own education and presume that is the 
most logical, the most universally known, and the easiest to follow. 

There are ample indications, both in research and in anecdotal evidence, that 
there are real differences in the ways people approach thinking, in the ways that they 
relate to the various branches of a subject area, both aesthetically and functionally, 
and in the sort of information they are most likely to be able to follow and use again 
(Krutetskii 1976; Gelman 1993; Gross 1993; Holton & Daniel 1996). These genetic 
differences and intuitive preferences can be broadly described as placing any one 
individual in a position where they will use best an approach which principally uses 
their own style, whether analytical and reasoning skills, or reasoning and geometric 
skills, or geometric and pictorial skills (Krutetskii 1976; Holton & Daniel 1996). 
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Gifted students especially need to know this, so that their view of their own 
ability is not impaired by believing that one type of thinking is better than another. 
When one looks at various mathematical proofs that have been offered for particular 
ideas down through the ages, one can begin to identify the sorts of differences in 
approach that have influenced each of the mathematicians working on the idea. 
Looking at proofs from this point of view, and placing them in their historical 
context, also makes one aware of another interesting aspect of the contribution that a 
regard for the history of mathematics can make to classroom presentation and to the 
confidence of both teachers and gifted students in exploring various solutions to 
problems. It becomes clear that more recent proofs of a proposition are not 
necessarily the better proofs simply because they are more recent. In Durell (1 952), 
a text that was used extensively in New Zealand schools, the proof given as that of 
the Pythagorean theorem is an analytical proof attributed to Euclid. Although 
Durell’s text (p. 268) states that Pythagoras’ method of proof is not known, the more 
geometrical proof commonly attributed to Pythagoras (Eves 1992) is given as an 
introductory comment earlier in the chapter. The geometrical proof would be 
considered to be the more self-evident and the more easily accessible of the two, and 
many proofs which are over fifteen hundred years more recent cannot be considered 
to throw greater light on the truth of the idea. The Euclidean proof would certainly 
interest most gifted mathematics students but it would be less immediately 
accessible to students with a geometric and a pictorial intuitive approach. 

Realisation of the fact that proofs may well reflect differences in thinking styles, 
as well as differences in the fashions of thought patterns of any given period in time, 
should encourage teachers and students alike to have confidence in exploring and 
investigating one proof or another, and to openly allow different personal 
assessments of which proof appeals and which does not. 

Recognising that different students in one’s classroom will intuitively access 
mathematical concepts more easily through one or another of these reasoning, or 
geometric, or pictorial approaches-but not through all—creates a new challenge for 
teachers. The link between different intuitive ways of seeing things and perceptions 
of what to put together to answer the question is strong not only in students but also 
in teachers themselves. 

Few educators hold any longer to the idea of people being empty vessels who 
can be filled up with learning or expertise. Usually the phrase is used in describing 
students’ roles in the educational process, but it is as true in relation to defining 
teachers’ capabilities as it is in relation to describing students’ potential as learners. 
Osborn (1 983) has categorised aspects of mathematical ability slightly differently 
from some other writers but he recognised that teachers (albeit unwittingly and 
unintentionally) will teach, and evaluate and assess, principally from the perspective 
of their own thinking type. While it is reasonably easy to develop skills which 
enable one to recognise solutions that come from a thinking style which is different 
from one’s own, it is difficult (and in the long-term perhaps impossible) to be able to 
memorise, or easily recall, solutions which do not come from one’s own approach. 
This is not because people are unwilling to do it, but because the neural system in 



192 6 History in support of diverse educational requirements 

their brain is programmed not to do it (Edelman 1994; Csikszentmihalyi, Rathunde 
& Whalen 1997; Dehaene 1997). 

Not only do different things trigger off different responses, but different brains 
encode different things. Repetition does not go far towards changing this. Many 
mathematics programmes used in the past have assumed that repetition will change 
this, but most mathematicians would see that we do not have the same expectations 
in regard to other fields of capability. For example, we accept that just because one 
is an outstanding singer, does not mean that one will necessarily be able to become a 
concert pianist. Practice will improve what one can do; but it will not automatically 
turn a high-achieving singer into a superb pianist. In the field of music we would 
not expect effort alone to change the teacher or the student, and so we should not 
expect it in mathematics, either, even among gifted students and highly talented 
teachers.

In mathematics we need to help teachers find non-threatening ways to recognise 
and declare their own intuitive preferences in approach and to access and share 
examples of other methods of achieving solutions. Using the history of mathematics 
as an intrinsic part of one’s teaching can help immensely in providing such an 
approach. For teachers, their own memory and initial response can become less 
influential in determining what is presented in the classroom, without fear of losing 
their credibility. Students see that the broadness of solutions presented in history 
proves in itself that one person is unlikely to be able to do everything from every 
point of view. It allows students and teachers to see that differences are acceptable; 
it offers them opportunities to make judgements about the types of solutions which 
increase their understanding; and it potentially offers the social and educational 
advantage of allowing other students to identify some of their skills as being similar 
to some of the skills of gifted students in their midst. 

Whether or not a teacher merely gives a precis of the historical context of the 
mathematics being studied in class, does not matter. Finding out what will be 
acceptable to the teacher is a very important aspect of survival for gifted and 
talented students in a mathematics classroom. References to the history of particular 
mathematical ideas will have opened up avenues for mental exploration and actual 
research which the student can follow up with the knowledge that what is found out 
will be acceptable to the teacher. Adding to teachers’ repertoires the resource of 
different examples, approaches, and proofs from history can give them more 
confidence in using discussion and opinion as a part of their methods in teaching 
mathematics, and more confidence in accepting that gifted and talented students may 
well know more mathematics and be able to solve more complex problems, than 
many teachers. 

Problems for gifted and talented students in mathematics classrooms include 
boredom, a lack of a sense of stimulation, and isolation from others because they 
wish to explore mathematical concepts rather than merely learn specific methods of 
proof. Comments from teachers indicate that it is not only difficult to find enough 
extension work for gifted students, but also difficult to find time to concentrate on 
locating material when the whole class does not need to be catered for in this way. 
Inclusion of the history of mathematics not only increases access to possible 
mathematical extension for gifted students, but also enables teachers to show that 
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they are not afraid of exploring different solutions. This benefits the whole class as 
well as providing a discussion environment which can increase the contribution 
gifted mathematics students can make and decrease their sense of working alone. 

There are college texts available, such as Eves' An introduction to the history of 
mathematics (1 992), which will provide teachers with a quick reference book for 
both practical examples and references to other texts available. Such books often 
also give the story of the development of mathematical ideas a general historical 
context by linking the patterns of mathematical developments with those of other 
academic disciplines and with particular historical periods and events. 

Research shows that gifted and talented mathematicians are most likely to be 
advanced and voracious readers from an early age, and also frequently show a real 
interest in taking courses and papers in history and in philosophy (Daniel 1995). 
The books read by mathematically gifted students often include books by writers 
such as Tolkein, C.S.Lewis, Penrose, Sagan, Adams, and Asimov, and this in itself 
gives an indication of the way in which gifted and talented mathematics students 
seek themselves to link the worlds of mathematics, science, and philosophy (Daniel 
and Holton 1995). The inclusion of material in the mathematics classroom which 
increases the interdisciplinary connections which students can make increases the 
reward received from their interest in mathematics. The embedding of mathematics 
in its historical context helps to encourage able mathematics students to use, and see 
value in using, other skills and interests as a part of their progress towards being able 
mathematicians. And again, it increases the sense of inclusiveness with the class, as 
less able students will also be motivated and stimulated by being able to make links 
with other subject areas. 

History has many examples of mathematicians who were variously 
misunderstood, under-appreciated, acclaimed and then never heard of again, or 

penalised for their skills 
and ideas. At the very 
least, a study of the 
history of mathematicians 
and their ideas will be 
supportive for gifted and 
talented mathematics 
students (who are self-
conscious about that), for 
it offers models of 
differences and of 
intellectual fortitude in 
the face of criticism, 
examples of thought-
fulness and experiment-

Figure 6.6: In museum visits and elsewhere the ation, and evidence that 
ethnomathematics of cultures from across the world is 

those who did not follow very evident to the alerted eye. Here patterns from the 
Bakuba people of the Congo demonstrate what the contemporaneously

mathematicians think of as the seven one-colour one- accepted approach to 
dimensional patterns. 
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solving a problem were not mad. Without the encouragement to think independently 
and the freedom to contribute unashamedly, many famous mathematicians would 
not have made the contribution they have to our understanding of mathematics. 
Similarly, for our own society to gain the greatest benefit from those who are 
mathematically able, it is important that as large a number of mathematically gifted 
and talented people as possible are helped to develop in ways which foster their 
abilities and encourage them to use their talent openly. 

Last winter I carried out an experiment on perception and language. I asked 
people who happened to come into my office (about a dozen in all) to tell me what 
they could see when they looked out of the window. Basically, three different kinds 
of answers were given. Some named first the objects that lay on the horizon then 
worked backwards, with details of things between the horizon and themselves, and 
giving opinions in their descriptions through the use of words such as ‘pretty’, 
‘small’, ‘purple’. A second group named something in the middle distance, 
described in detail the things to its left and right, and used functional and emotional 
words such as ‘useless’, ‘benign’, ‘dangerous’ to describe what they saw. Three 
people named first the building immediately across the street, and stopped there. 
When asked “What else?”, they described its colour and texture, and then the small 
tree and the cars parked on the road between the wall and the window. 

At least three things became evident from listening to the descriptions and 
discussing the viewers’ interpretations of what they saw. First, the question of what 
was ‘good visualising’, ‘logical’, or ‘a fair description’ suddenly took on new 
meaning—or no meaning at all! Such words were themselves subjective and were 
defined differently by different viewers. Second, it was significant that it was 
winter, because large deciduous trees obstruct the range of views in summer, and 
hence would have had an influence on what was described. Third, the total picture of 
what could be viewed from my window was actually most richly described by 
combining all three types of description. If one thinks about these three things from 
the point of view of teaching mathematics, then one can see an immediate advantage 
to teaching within a framework which 
1. identifies different views of what it is important to know, 
2. provides various contexts in relation to areas of knowledge and world views, 

and
3. shows that there are many ways of fitting differences together and still making 

sense of them. 
The use of history offers such a framework in the teaching and understanding of 
mathematics, just as much as it does in other subjects. 
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6.3 Opportunities for change 

6.3.1 Teacher education 

The educational, cultural, economic and social diversity which is found in the 
history of mathematics can be used to help students and teachers learn more 
effectively. It follows that teachers, at all levels, would benefit from some 
experience and background in the history of mathematics. A major question 
remains, of how teachers are to gain such experience. This was discussed more 
fully, in a general context, in chapter 4. Here we suggest a few ideas in relation to 
teacher training, in the context of the concerns of this chapter. Training may be 
available either while teachers are in their initial pre-service training or as in-service
provision for practising teachers, and we make some brief remarks on each. 

There are several possibilities for making the history of mathematics part of pre- 
service teacher education. 

a) Integration for non-specialist teachers of mathematics. 

Easy-to-find references and resources for teaching mathematics under topic headings 
would enable teacher-trainers to give a context for whatever style they adopt with 
non-specialist teachers, mainly those preparing to teach in primary or elementary 
schools. So, under the heading of number could be listed such topics as place value, 
examples of counting in Babylonian numerals or counting with sticks and stones. 
Some schools with non-specialist teachers have theme or topic-based lessons. If the 
topic were Ancient Egypt, for example, mathematics can be cross referenced 
through finding angles, triangles and measures under pyramid construction, or 
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indeed pursuing the way loaves of bread were divided for distribution in the Rhind 
Papyrus.

b) Separate modules on 
the history of mathematics 
for specialist mathematics 
teachers.

Those training to teach at 
primary, elementary, 
secondary and further 
levels in various settings 
are often college or 
university students. 
Sometimes a ‘standard’ 
history of mathematics 
course is offered to give the 
trainee teachers an 
overview of the subject. 
Even, or especially, in such 
a course it is important that 
the balance be wide 
ranging and specifically 
address the requirements of 
the gifted, different 
cultures and social 
groupings, the 
educationally disadvan-
taged, and other individuals 
or groups along the lines 
discussed in this chapter. 
This will enrich teachers’ 
ability to meet challenges 
that they may face in the 
course of their professional 
life.

c, Integrate the history of 
mathematics into teacher 

Figure 6.7: Benjamin Banneker (I 731-1806), the first 
African American to be recognised for his mathematical 
abilities, can be an inspiration for teachers of minority 
students in north America today. Teachers of gifted training

is particularly students everywhere can encourage projects into his life, It
to share his work in surveying and almanac-making with 

appropriate for those 
the rest of the class. .training as specialist 

secondary mathematics 
teachers (often post-graduates) that they be provided with references and resources 
under mathematical topic headings, and guidance in a range of uses of history in the 
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classroom. The same principle holds as in the previous case, that potential teachers 
need to acquire confidence in making use of resources for a wide range of students. 
For teaching material under the heading of Pythagoras’ theorem, for example, the 
possibilities might include: different approaches to its proof through history 
(appropriate for some gifted students); uses and applications of the theorem through 
the ages (particularly for adults and workplace learners); using ready prepared 
jigsaw pieces which fit to show the Pythagorean relationship (good for students with 
a mental or physical handicap); different representations of the theorem to reflect the 
cultures represented amongst the students and beyond (to help relate minority group 
students to the world-wide nature of the history of mathematics). 

In the case of current teachers of mathematics who are receiving up-dating or 
other in-service training, the issues are slightly different because of their greater 
classroom experience. Such teachers can be helped to cater for the needs of a 
diversity of students, by suggesting ways for using material from the history of 
mathematics in their teaching. Summarising broadly, most such uses will be by 
integrating, adding or substituting historical material. There are several possibilities 
by which the HPM community can contribute to in-service provision (we draw 
attention here to some possibilities especially appropriate for the themes of this 
chapter).
– Case studies of teachers using the history of mathematics in various ways. Each 

such study needs to include the context-country, place, language, students, 
teacher, resources, activity and student response. Such a collection of case 
studies would provide a vision of alternatives, both inspirational and 
occasionally as a warning. Each would have to be brief and concise to be 
accessible to busy teachers across the world. 

– Classroom-ready resources like photocopiable sheets, press-out models, outline 
lesson plans. 

– Multi-lingual resources. Particularly in societies in which several languages co-
exist in the community, it will be useful for translations to be made available of 
key identified materials. 

– Day courses funded internationally, with a local and international flavour. These 
could be run by local advisors or advisory teachers who would show how the 
history of mathematics is part of each country’s mathematics and history 
curriculum. Resources and Activities 

The following are specific resources and activities which are known to have been 
used by at least one practising teacher in at least one country, who claims it to have 
‘worked’ for them. These :fall into four main categories of activity or resource, 
which may be described as researching, presenting, visiting, and experiencing. 

Researching These activities for the students have a variety of names such as 
‘researching a topic’, ‘doing a piece of coursework’, ‘doing a project’. They can 
range from small, short, relatively closed exercises in finding out using a given 
resource, to an open-ended whole class investigation lasting several weeks, and 
involving many different aspects. Examples would include finding out about a 
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Biography Project - Poster

In this project you will learn about a mathematician and create a poster display, 
This project will bo due on the first day your class meets, during the last week of 
classes, this semester The posters will be displayed for other students to critique 
and to ask you questions about your mathematician. 

You must include the following elements in your display: 

• picture of your mathematician • creditthe source (10 points)
• one page curriculum vita or resuemé of your mathematician. You may be 

creative, but you must be factual concerning: schooling, papers/books written, 

• timeline portraying significant events of his/her life interwoven with significant 

• one page summary of an important result attributed to this mathematician, 

and scientists/science • explanation of how other mathematicians/mathematics 

(10 points) 

mentorship- note this is not a biography (10 points) 

world events and contemporary lives (20 points) 

s as necessary (20 points) including relevant graphs and mathematics 

your mathematician and his/her work (10 points)directlyinfluenced 

a book) (5 points) 

(10 points) 

• brief anecdote about your mathematician 
• bibliography (at least 3 references and at least one of these references must be 

• your poster should be easily read, neatly organzied, and creatively displayed

• critique of your display by the other students in the class. Five points would be 
an “A” grade, four points a “B”, etc. (5 points) 

(adapted from an assgnment by LynnFoshee Reed, The Governor’s School for Government and International

Studies, Richmond, VA) 

Figure 6.8: the US teacher who devised this project for her math class combined 
‘researching’ and ‘presenting ’ activities for the pupils, who responded with enthusiasm to 
the challenges of a carefully guided set of instructions. 

mathematician; the evolution of the subtraction algorithm; early symbolism around 
the world; some ‘other’ number system: who ‘invented’ calculus?; writing your 
personal history of learning and doing mathematics. 

Presenting There are many different ways of presenting, communicating and 
disseminating the findings and discoveries made by students of all ages. Examples 
would include: play-writing and acting; role play in costume; simulation of a 
mathematical discovery by re-enacting the process; spoken presentation; video; 
slides; projected transparencies; photos; posters (cf. figure 6.8); structured 
discussion or debate; drawing; a written essay or paper; building a model; playing a 
game; creating a stereogram. We may note two things in particular about the 
process of presenting. One is that such experiences develop and deepen student 
competencies across the range of the skills they are learning at school. The other 

Joanne Peeples <joannep@epcc.edu>>



6.3 Opportunities for change 199 

point to notice is that some students will flourish particularly strongly in such 
activities and show talents that were hidden in the usual class contexts. 

Visiting Visits outside the classroom can bring history to life. The events, 
people and objects which illustrate the history of mathematics can be found in a 
wide variety of places. Many teachers have learned to make the most of what is 
available in the school locality. It is often surprising how much there is. Many 
schools are not too far from one or all of: museum; exhibition; church; site of 
historic interest; sundial; palace; cemetery; building; art gallery; play; concert; park; 
countryside; city; boat trip; river bank; coast line; talks; lectures; demonstrations; 
historical mathematics tours; historical mathematics trails. One pre-college teacher 
from the United States has for the last 10 years taken students on a ‘Math Tour of 
England’. Among the places and artifacts which can be visited are the Rhind 
mathematical papyrus at the British Museum, Babylonian mathematical tablets also 
at the BM, ancient scientific instruments in the Science Museum (London), letters of 
Newton at the British Library, astrolabes at the Science Museum in Oxford, 
Newton’s birthplace in Lincolnshire, and so on. 

Experiencing The objects and artifacts which make history and are its primary 
evidence need to be seen, heard, touched, played with and experienced at first hand. 
Some things will have to be copies, models, films or photocopies of the real thing. 
Objects fall into several categories. Measuring instruments like a sextant, water 
clock, sundial, dividers, compasses, weights and balances. Calculating devices like
abaci, quipus, counting boards, early computers, Napier’s bones. Written material 
in the form of manuscripts, early books and printing, stone inscriptions, papyri, clay 
tablets, diaries, text books. Natural objects which have inspired the creation of 
mathematics in the past like spirals on shells and fir cones, the movement of the 
stars and planets, the rhythm and beat in music. Artifacts, objects made by people, 
often embody mathematics and its history: woven baskets, furniture, building 
design, tiling, friezes, wrought-iron work, machines of all sorts, games and puzzles. 
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6.4 Conclusion 

The aim of this chapter has been to help the reader become aware of the pedagogical 
opportunities of using the history of mathematics in institutional settings other than 
the typical university environment. Because of their own experiences, the authors 
know and are keen to share the knowledge that students can enjoy, learn from, and 
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be enriched with experiences in mathematics history long before they are in the 
university. Research indicates that early adolescence is the time that students begin 
defining their attitudes toward mathematics. It therefore seems imperative that 
opportunities for incorporating mathematics history into the classroom begin early 
and continue throughout the educational careers of students. Universities and 
teacher education programmes should find a place for history in the curriculum from 
two perspectives: the curriculum of the teacher in training and the curriculum of the 
classroom student. 

When students receive a limited education, as many do, it is for a variety of 
reasons. Some for lack of economic resources, some because of cognitive 

Figure 6.9: The ‘diverse educational requirements’ team working on this chapter at the 
ICMI Study Meeting: Coralie Daniel, Wendy Troy, Gunnar Gjone, Gail FitzSimons, 
Karen Dee Michalowicz, Vicky Ponza 

limitations, some because higher education is not readily available or appreciated; 
and some, unfortunately, because of the quality of their teachers. Even students 
from affluent backgrounds can find themselves studying in mathematics classrooms 
where the quality of the instruction causes anxiety, frustration, and negative 
attitudes. But, more generally, the needs of students of diverse educational 
backgrounds are increasingly being appreciated, and the availability of resources to 
help in their mathematical learning is more apparent. It has been argued here that a 
historical component, or the possibility of historical resources, can help teachers 
support students in such situations. 
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Abstract: An analytical survey of how history of mathematics has been and can be integrated 
into the mathematics classroom provides a range of models for teachers and mathematics 
educators to use or adapt. 

7.1 Introduction 

Mathematics is often regarded as a collection of axioms, theorems, and proofs. 
Organised and presented as a formal deductive structure, this assumes, at least 
implicitly, that the logical clarity of such a presentation may be sufficient for 
understanding mathematics. Under this view, strongly influenced by formalism as a 
philosophical trend, mathematics seems to progress by a more or less linear 
accumulation of new results (Davis and Hersh 1980, Ch.7; Brown 1977, Ch.4). 
Publicly, it consists of polished products of mathematical activity, which can be 
communicated, criticised (in order to be finally accepted or rejected) and which may 
serve as the basis for new work. Increasingly, though, it is recognised that this view 
of mathematics is just one aspect of what constitutes mathematical knowledge. The 
process of doing mathematics is equally important, especially from a didactical point 
of view. This process includes using heuristics, making mistakes, having doubts and 
misconceptions, and even retrogressing in the development and understanding of a 
subject (Lakatos 1976, Introduction; Courant and Robbins 194 1, Introductory 
comments; Stewart 1989, 6-7; Schoenfeld 1992; Barbin 1997). In this 
understanding, the meaning of mathematical knowledge is determined not only by 
the circumstances in which it becomes a deductively-structured mathematical 
theory, but also by the procedure that originally led to it and which is indispensable 
for its understanding (cf. Brousseau 1983, 170; Hadamard 1954, 104). 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 201-240
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To learn mathematics, then, is not only to become acquainted with and 
competent in handling the symbols and the logical syntax of theories, and to 
accumulate knowledge of new results presented as finished products. It also 
includes the understanding of the motivations for certain problems and questions, 
the sense-making actions and the reflective processes which are aimed at the 
construction of meaning by linking old and new knowledge, and by extending and 
enhancing existing conceptual frameworks (Hiebert and Carpenter 1992, 67; 
Schoenfeld et al., 1993). Teaching mathematics then becomes a much more 
complex enterprise than just the mere exposition of well organised mathematical 
developments. It should include giving opportunities to do mathematics, in the 
sense described above. In this respect history of mathematics seems a natural means 
for exposing mathematics in the making, and thus it may play a very important role 
in mathematics education. 

This chapter is intended to review how the history of mathematics can be and 
has been harnessed and integrated in mathematics education. More specifically, in 
section 7.2 the above general argument for the relevance of history is analysed in 
more detail. The analysis provides several reasons why the history of mathematics 
may be relevant to the teaching and learning process, both for the teacher and the 
learner. In this process, some arguments questioning the use of history in 
mathematics education are raised and dealt with. In section 7.3, we elaborate on the 
important question of how integration of history can be effected, and in section 7.4, 
the longest section of the chapter, we survey and exemplify a wide spectrum of 
different possible implementations of history in the mathematics classroom. 

7.2 Why should history of mathematics be integrated in 
mathematics education? 

Integrating the history of mathematics in mathematics education has been advocated 
for a long time (De Morgan 1865; Glaisher 1890; Poincaré 1908; Barwell 1913; 
Miller 1916; MAA 1935; Klein 1914/1945,268; British Ministry of Education 1958; 
Lakatos 1976, Introduction and Appendix 2; Leake 1983; see also Kline 1973, 
Ch.4). In 1969, the US NCTM (National Council for the Teaching of Mathematics) 
devoted its 31st Yearbook to the history of mathematics as a teaching tool (NCTM 
1969). On the other hand, several difficulties have been raised, challenging the 
desirability or feasibility of seeking to integrate history of mathematics in 
mathematics education. In this section, we first summarise these objections (in a list 
extended from that given in Siu 1998) and then we classify and discuss the different 
arguments that have been or may be proposed in favour of integrating history in 
mathematics education, dealing implicitly, in the process, with the objections. 
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Some objections 

Arguments against the incorporation of history are based on at least two sources of 
difficulty: philosophical and practical. Among the former we hear that: 

(O1) History is not mathematics. If you must teach history, then you need to 
teach mathematics itself first: teach the subject first, then its history. 

(O2) History may be tortuous and confusing rather than enlightening (e.g. 
Fowler in Ransom 1991, 15; Fauvel 1991,4). 

(O3) Students may have an erratic sense of the past which makes historical 
contextualisation of mathematics impossible without their having had a broader 
education in general history (e.g. Fauvel 1991,4). 

(O4) Many students dislike history and by implication will dislike history of 
mathematics, or find it no less boring than mathematics. 

(O5) Progress in mathematics is to make the tackling of difficult problems a 
routine, so why bother by looking back? (e.g. Le Goff 1996, 13) 

(O6) History may be liable to breed cultural chauvinism and parochial 
nationalism.
Some of the practical objections to incorporating history within mathematics 
teaching and learning are: 

(O7) Lack of time: there is not enough classroom time for mathematics learning 
as it is, still less when it is proposed to teach history of mathematics as well (e.g. 
Buhler 1990,43). 

(O8) Lack of resources: there are not enough appropriate resource materials to 
help even those teachers who may want to integrate historical information (e.g. 
Fauvel 1991,4; Le Goff 1996, 13). 

(O9) Lack of expertise: the teacher’s lack of historical expertise (e.g. Fowler in 
Ransom 1991 p.16) is a consequence of the lack of appropriate teacher education 
programmes; indeed, not only historical but also interdisciplinary knowledge is 
required, which is far beyond what mathematics teachers are equipped for. The lack 
of expertise leads to an even more debilitating lack of confidence. 

(O10) Lack of assessment: there is no clear or consistent way of integrating any 
historical component in students’ assessment, and if it is not assessed then students 
will not value it or pay attention to it. 

Some arguments in support of integrating history 

There are five main areas in which mathematics teaching may be supported, 
enriched and improved through integrating the history of mathematics into the 
educational process: 
a) the learning of mathematics; 
a) the development of views on the nature of mathematics and mathematical 

b) the didactical background of teachers and their pedagogical repertoire; 
c) the affective predisposition towards mathematics; and 
d) the appreciation of mathematics as a cultural-human endeavour. 

activity;
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(cf. references at the beginning of this section and also, Arcavi 1985 Ch.1; Fauvel 
1991; Ransom et al. 1991; Lefort 1990,87-88; Grugnetti 1998, 1-2).

In the following we elaborate on these arguments, and by implication we deal 
with some of the aforementioned objections (citing them by number at the end of 
each argument to which they are related). 

(a) The learning of mathematics 

1. Historical development vs. polished mathematics: mathematics is usually 
taught in a deductively oriented organisation. However, the historical development 
of mathematics shows that the deductive (or even strictly axiomatic) organisation of 
a mathematical discipline comes only after this discipline has reached maturity, so 
that it becomes necessary to give an a posteriori presentation of its logical structure 
and completeness. Freudenthal(1983, ix) describes this as follows: 

“No mathematical idea has ever been published in the way it was discovered. Techniques 
have been developed and are used, if a problem has been solved, to turn the solution 
procedure upside down . . . [and turn] the hot invention into icy beauty.” 

Thus, mathematics is usually globally and retrospectively re-organised. On the one 
hand, it would seem that this re-organisation is needed to avoid possible tortuous 
and long-winded accounts. On the other hand, questions and problems which 
constituted basic motivations for the development of an idea, as well as any doubts 
along the way, remain hidden under a linearly organised, deductive body of 
knowledge, in which new results seem to be simply added in a cumulative way. 

In this connection, the proper integration of history into mathematics education 
can play an important role by helping to uncover how “our mathematical concepts, 
structures, ideas have been invented as tools to organise the phenomena of the 
physical, social and mental world” (Freudenthal 1983, ix). In this way the learning 
of a mathematical concept, structure or idea may gain from acquaintance with the 
motivation and the phenomena for which it was created (Barbin 1996, 196; Nouet 
1996, 125; Tzanakis 1996, 97). This fact has been recognised and advocated by 
many (Klein 1926-7/1979, 3 16; Polya 1954, 1968; Lakatos 1976 Introduction and 
Appendix 2). However, it implies neither that there is a uniquely specified 
presentation of a subject that follows exactly the usually complicated historical 
development, nor that the learning of mathematics should be guided by “ontogenesis 
recapitulates phylogenesis” (Fauvel 1991, 3-4; Sierpinska 1994, 122; Rogers 1998 
52, 3). History could at best suggest possible ways to present the subject in a natural 
way, by keeping to a minimum logical gaps and ad hoc introduction of concepts, 
methods or proofs. In this way the historical record could inspire teachers and help 
them in their teaching (cf. $3.2 and Menghini 1998 $2, Tzanakis and Thomaidis 
1998 53.3). (O1, O2, O5) 

2. History as a resource: the history of mathematics provides a vast reservoir of 
relevant questions, problems and expositions which may be very valuable both in 
terms of their content and their potential to motivate, interest and engage the learner 
(Van Maanen 1991, 47; Arcavi in Ransom et al. 1991, 11; Friedelmeyer 1990, 1; 
1996, 121; Ransom et al 1991, 8; Ernest 1994, 237-238). In this connection, 
historically inspired exercises may stimulate the student’s interest and contribute to 
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curricular enhancement alongside those exercises and problem which may seem 
more artificially designed. Through such exercises, aspects of the historical 
development of a subject become a working knowledge for the student; in this way 
history no longer appears as something alien to mathematics proper (cf. §3.2 and 
Tzanakis 1996,97). (O1, O7, O4, O10) 

3. History as a bridge between mathematics and other subjects: history exposes 
interrelations among different mathematical domains, or, of mathematics with other 
disciplines, (for example, physics: Tzanakis 1999, 2000). It also suggests that 
mathematical activities and results may be interdependent (Jozeau 1990 p.25). 
Thus, integration of history in teaching may help to bring out connections between 
domains which at first glance appear unrelated. It also provides the opportunity to 
appreciate that fruitful research in a scientific domain does not stand in isolation 
from similar activities in other domains. On the contrary, it is often motivated by 
questions and problems coming from apparently unrelated disciplines and having an 
empirical basis. (O9)

4. The more general educational value of history: students involved in 
historically oriented study projects may develop personal growth and skills, not 
necessarily associated only with their mathematical development, such as reading, 
writing, looking for resources, documenting, discussing, analysing, and ‘talking 
about’ (as distinct from ‘doing’) mathematics (Ransom et al 1991,9). (O10)

(b) The nature of mathematics and mathematical activity 

1. Content: a more accurate view of mathematics and mathematical activity may 
be provided by historically important questions, problems, and answers (whether 
provided directly by primary sources or reconstructed in a modem language). 
Students may learn that mistakes, heuristic arguments, uncertainties, doubts, 
intuitive arguments, blind alleys, controversies and alternative approaches to 
problems are not only legitimate but also an integral part of mathematics in the 
making (see for example, Arcavi et. al, 1982, 1987; and in this chapter, §7.4.6). 
They may become more able to understand why conjectures and proofs, which have 
been put forward in the past, do or do not supply satisfactory answers to already 
existing problems. Indirectly, students may be encouraged to formulate their own 
questions, make conjectures and pursue them (Friedelmeyer 1996, 121 ; Rodriguez 
1998, 4; Tzanakis 1996, 97). History also makes more visible (to both teachers and 
students), the evolutionary nature of mathematical knowledge and the time-
dependent character of fundamental meta-concepts, such as proof, rigour, evidence, 
error etc. (Ransom et al 1991, 12; Barbin 1996, 198-202; 1997; Nouet 1996, 126). 
( O 5 ,O 4 )

2. Form: mathematics is evolving not only in its content, but also in its form, 
notation, terminology, computational methods, modes of expression and 
representations. History helps students to understand this as well as the 
mathematical (verbal, or symbolic) language of a given period, and to re-evaluate
the role of visual, intuitive and non-formal approaches that have been put forward in 
the past (van Maanen 1991, 47). Then, with the aid of original material, or even 
simple extracts from it (see §7.3, below) both the teacher and the learner may 
become aware of the advantages and/or disadvantages of modern forms of 
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mathematics. (O2). (Think for instance of vector analysis without vector notation as 
it appeared in the second half of the 19th century in Maxwell’s electrodynamics; 
classical mechanics in Newton’s euclidean geometric form; Diophantus’s algebraic 
notation; the advantages and disadvantages of the older formulation of differential 
geometry by using indices to describe tensor quantities, compared to its modem, 
coordinate-independent formulation.) 

(c) The didactical background of teachers 

By studying history and trying to reconstruct aspects of the historical development 
of specific mathematical topics in a didactically appropriate manner, teachers may: 

1. Identify the motivations behind the introduction of (new) mathematical 
knowledge, through the study of examples that served as prototypes in its historical 
development and which may help students to understand it (cf. (al) above). (O5)

(i) the difficulties, or, even obstacles, that appeared in history and may reappear in 
the classroom; 

(ii) how ‘advanced’ a subject may be-namely, even when a subject may appear 
simple, it may have been the result of a gradual evolution. In general, this 
evolution was based on concrete questions and problems which are not evident 
if the subject is presented in its modem form right from the beginning. But 
these questions and problems may presuppose a mathematical maturity on the 
part of the student that may not exist yet. In this sense, the history of 
mathematics may help the teacher to become aware of the pros and cons of 
presenting a subject at a particular level of education (Arcavi in Ransom 199 1, 
11; Tzanakis 1996, 97; Horng 1998, 1; Rodriguez 1998,4-5). (O5)

3. Get involved into, hence become more aware of, the creative process of 
‘doing mathematics’ (Barbin 1997). Thus, teachers (and in this connection, students 
as well), can not only enrich their mathematical literacy, but also appreciate better 
the nature of mathematical activity. 

4. Enrich their didactical repertoire of explanations, examples, and alternative 
approaches to present a subject or to solve problems (cf. (a2) above). (O1).

5 . Participate in a situation in which they have to decipher and understand a 
known piece of correct mathematics but whose treatment is not modem (see also 
Ch. 9, about working with primary sources), and thus they can exercise sensitivity, 
tolerance and respect towards non-conventional or idiosyncratic ways to express 
ideas or solve problems. This argument is valid for students as well. (O2)

(d) The affective predisposition towards mathematics 

History can provide role models of human activity, from which several things can be 
learned, among them the following: 

1. That mathematics is an evolving and human subject rather than a system of 
rigid truths. It is a human endeavour which requires intellectual effort and it is 
determined by several factors, both inherent to mathematics itself and external to it 
(cf. (e) below). In particular, it is not a God-given finished product designed for rote 
learning.

2. Become aware of: 
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2. The value of persisting with ideas, of attempting to undertake lines of inquiry, 
of posing questions, and of attempting to develop creative or idiosyncratic ways of 
thought (cf. (b1) above). 

3, Not to get discouraged by failure, mistakes, uncertainties or 
misunderstandings, appreciating that these have been the building blocks of the 
work of the most prominent mathematicians. (O2, O5) 

(e) The appreciation of mathematics as a cultural endeavour 

As stated above, mathematics is not a rigidly structured system of results, but a 
continuously evolving human intellectual process, tightly linked to other sciences, 
culture and society (cf. Rickey 1996,252; Ernest 1994,238; Van Maanen 199 1, 47). 
For example: 

1. Through the detailed study of historical examples, students can be given the 
opportunity to appreciate that mathematics is driven not only by utilitarian reasons 
(a currently prevailing view), but also developed for its own sake (Hallez 1990, 
p.97), motivated by aesthetic criteria, intellectual curiosity, challenge and pleasure, 
recreational purposes etc. (Chandrasekhar 1987, Ch.4; Kragh 1990, Ch. 14; Tzanakis 
1997). (O5)

2. History can provide examples of how the internal development of 
mathematics, whether driven by utilitarian or ‘pure’ reasons, has been influenced, or 
even determined to a large extent, by social and cultural factors. (O9)

3. Mathematics in its modem form is mostly viewed as a product of a particular 
(western) culture. Through the study of history of mathematics, teachers and 
students have the opportunity to become aware of other, less known, approaches to 
mathematics that appeared within other cultures, and the role it played in them. In 
some cases, these cultural aspects may help teachers in their daily work with multi-
ethnic classroom populations, in order to re-value local cultural heritage as a means 
of developing tolerance and respect among fellow students (Nouet 1996, 126; Ch. 6, 
above). (O6)

The discussion in this section illustrates the many roles which history may play in 
mathematics education, varying according to both the intended purposes and the 
beneficiaries. Both students and teachers benefit; the latter may profit, not only as 
practitioners, but also as students themselves, both in their pre-service education and 
in in-service development programs. Above all, the present discussion brings out 
the need for: 
(i) easily accessible, comprehensible resources, available to teachers and students 

(e.g. Fauvel and Gray 1987). (O8)
(ii) a systematic preparation of future teachers both during their initial training and 

through in-service studies (cf Ch. 4). (O9)
The present volume in general, and the rest of this chapter in particular, is intended 
as a contribution to the fulfilment of these needs. In the next sections, we survey 
ways in which history may in practice be integrated with educational experiences. 
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7.3 How may history of mathematics be integrated in 
mathematics education? 

Making explicit some reasons for integrating history in mathematics education, as 
we did in the previous section, still leaves open the question of how this integration 
may be accomplished. In this section, we distinguish and analyse three different yet 
complementary ways in which this may be done. In broad terms they may be 
characterised as: 
1,
2.

3.

Learning history, by the provision of direct historical information. 
Learning mathematical topics, by following a teaching and learning approach 
inspired by history. 
Developing deeper awareness, both of mathematics itself and of the social and 
cultural contexts in which mathematics has been done. 

7.3.1 Direct historical information 

By direct historical information, we mean both 
a) isolated factual information, such as names, dates, famous works and events, 

time charts, biographies, famous problems and questions, attribution of priority, 
facsimiles etc., and 

b) full courses or books on the history of mathematics. These may be a simple 
account of historical data, or a history of conceptual developments, or something 
in between. 

In both cases the emphasis is more on resourcing history than on learning 
mathematics (in contrast to what is described in the following subsections). Given 
that emphasis, this is an auxiliary way of integrating history; by itself it does not 
directly change the intrinsic teaching of particular mathematical content (although it 
will surely affect the learning experience). 

In section 7.4 we describe in some detail different implementations of this 
emphasis, such as historical ‘snippets’ (§7.4.1), parts of packages ‘ready to use’ in 
the classroom (§7.4.5), becoming acquainted with famous problems (§7.4.7), certain 
kind of plays (§7.4.10), certain visual displays (§7,4.11), visits to museums 
(§7.12) and databases in the WWW (§7.4.13). Although direct historical 
information may not be the main emphasis of the remaining implementations 
described in section 7.4, it can be an integral part of them. 

Most of the arguments analysed in section 7.2 can be partially supported by such 
integration, depending on the form, the scope and the chosen depth. 

7.3.2

This is essentially what may be called a genetic approach to teaching and learning. 
It is neither strictly deductive nor strictly historical, but its fundamental thesis is that 
a subject is studied only after one has been motivated enough to do so, and learned 
only at the right time in one’s mental development. This means that those questions 

A teaching approach inspired by history 
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and problems which the subject at that stage may be addressing have been 
sufficiently elucidated and appreciated (cf. Toeplitz 1963, Edwards 1977). Thus, the 
subject (e.g. a new concept or theory) must be seen to be needed for the solution of 
problems, so that the properties or methods connected with it appear necessary to the 
learner who then becomes able to solve them. This character of necessity of the 
subject constitutes the central core of the meaning to be attributed to it by the 
learner. In this sense, in a genetic approach the emphasis is less on how to use 
theories, methods and concepts, and more on why they provide an answer to specific 
mathematical problems and questions, without however disregarding the ‘technical’ 
role of mathematical knowledge (Sierpinska 1991 $11). From such a point of view, 
the historical perspective offers interesting possibilities for a deep, global 
understanding of the subject, according to the following general scheme (Tzanakis 
1996; Tzanakis 2000, § 1 ; cf. Kronfellner 1996, 3 19; Lalande et al 1993):

(1) Even the teacher who is not a historian should have acquired a basic 
knowledge of the historical evolution of the subject. 

(2) On this basis, the crucial steps of this historical evolution are identified, as 
those key ideas, questions and problems which opened new research perspectives. 

(3) These crucial steps are reconstructed, so that they become didactically 
appropriate for classroom use. 

(4) These reconstructed crucial steps are given as sequences of historically 
motivated problems of an increasing level of difficulty, such that each one builds on 
some of its predecessors. The form of these problems may vary from simple 
exercises, of a more or less ‘technical’ character, to open questions which probably 
should be tackled as parts of a particular study project to be performed by groups of 
students.

(i)

(ii)

Concerning this scheme, we make some further remarks. 
Both the teacher and the students may well make use of original and secondary 
sources (§ 7.4.2,7.4.3, Ch. 9). 
Mainly in stage (2) above (and partly in (3)), the teacher makes an effort to 
grasp the difficulties inherent in the subject and to gauge possible obstacles in 
its understanding. Then the selection of questions and problems can be made, 
motivated by history, so as to activate the curiosity of the learner and smooth 
the learner’s path, by creating and/or explaining the necessary motivations for 
studying new theories, methods and concepts. In this way, one could have an 
answer to the important question put forward by Brousseau (1983, 167; our 
translation):

A pupil doesn’t do mathematics if he is not given problems and does not solve problems. 
Everybody accepts this fact. The difficulties arise once it is required to know, which 
problems must be given to him, who puts them and in what way. 

At this level, inductive reasoning and analogies dominate as creative and 
discovering patterns, emphasising the mathematical activity itself rather than 
the well-organised arrangement of its results (Polya 1954, Polya 1968, 
Tzanakis 1997 §7, Tzanakis 1998).

(iii) In the reconstructions of stage (3), history may enter either explicitly or 
implicitly. There is a duality here, as has been stressed by several authors, 
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from Toeplitz’s work to recent researches (see e.g. the distinction between 
direct and indirect genetic approach (Toeplitz 1927, 1963; Schubring 1978, 
1988), ‘forward and backward heuristics’ (Vasco 1995, 6 1-62), explicit and 
implicit use of history (§ 3.1; Menghini 1998, §2)). In a reconstruction in 
which history is explicitly integrated, mathematical discoveries are presented 
in all their aspects. Different teaching sequences can be arranged according to 
the main historical events, in an effort to show the evolution and the stages in 
the progress of mathematics by describing a certain historical period 
(Menghini 1998,3; Schubring 1978; Schubring 1988; cf. Hairer & Wanner 
1996; Friedelmeyer 1990; Martin 1996). In a reconstruction in which history 
enters implicitly, a teaching sequence is suggested in which use may be made 
of concepts, methods and notations that appeared later than the subject under 
consideration, keeping always in mind that the overall didactic aim is to 
understand mathematics in its modem form. In such an approach, the teaching 
sequence does not necessarily respect the order by which the historical events 
appeared; rather, one looks at the historical development from the current stage 
of concept formation and logical structuring of the subject (Kronfellner 1996; 
Siu 1997; Stillwell 1989; for examples see e.g. Radford and Guérette 1996 §§
2,3; Tzanakis 1995; Tzanakis 1999). At this point, it is important to stress that 
the above two possible types of reconstructions of the historical development 
are not mutually exclusive. They have a dual character with respect to each 
other and both may be used in teaching a subject in complementary ways (cf. 
Ofir 1991, 23; Flashman 1996): in an explicit integration of history, emphasis 
is on a rough but more or less accurate mapping of the path network that 
appeared historically and led to the modem form of the subject; in an implicit 
integration, the emphasis is on the redesigning, shortcutting and signalling of 
this path network (Vasco 1995,62). In both cases, historical aspects of famous 
problems, intuitive arguments, errors, and alternative conceptions may be 
incorporated in teaching (§7.4.6, §7.4.7). 

(iv) A reasonable concern about such an approach might be the fear that it takes 
too much time, or leads to over-voluminous textbooks. Such a fear is not well-
founded. The sequence of problems (devised in the sense of (4) above) can 
give compact opportunities to the learner to arrive at constructive results, 
starting from easy corollaries of the main subject and often following the main 
steps of the historical path. In this way, the solution of exercises becomes an 
essential ingredient of learning, leading to the construction of the necessary 
technical knowledge on the basis of interesting problems and not on the basis 
of exercises artificially constructed and often devoid of interest (§§7.4.4, 
7.4.2). One must be careful, of course, not to seem to abuse this strategy by 
presenting fundamental aspects of the subject (e.g. basic concepts, or difficult 
theorems) in the form of exercises, or problems. 

The approach outlined as (1) to (4) above has distinct advantages, some of which are 
the following: 
– Reconstructions of examples (point (3) and remark (iii) above) make it possible 

for students to understand the motivation for the introduction of a new concept, 
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theory, method, or proof, and to grasp their content more profoundly ($7.2, a2, 
cl).

– The learner and the teacher are thus encouraged to think of themselves as 
pursuing their own researches (§7.2, b1, c3, d2).

– Point (2) above (identification of the crucial steps) often reveals interrelations 
between different mathematical and non-mathematical domains, which have a 
great didactic interest (§7.2, a3). 

– It is possible to make the solution of problems and exercises an essential 
ingredient of the presentation, very helpful for a complete understanding of the 
subject (see point (4) and remark (iv) above). Often the interest is naturally 
induced by historically important and mathematically fruitful questions, without 
however neglecting their role as a means to improve one’s knowledge of 
‘mathematical techniques’ (§7.2, a2).

– The approach suggests several possibilities for teaching a subject, according to 
the specific needs of the classroom and the curriculum; e.g. emphasise the 
historical aspects, or specific mathematical ideas, or interrelations between 
different mathematical or nonmathematical domains etc (§7.2.al). 

– By points (1) and (2) above, the teacher has the opportunity to compare modem 
mathematics with its form in the past (notation, terminology, methods of proof 
and of computation, etc). Presentation of aspects of this comparison may be 
beneficial for the students (§7.2, b2). 

– Also by points (1) and (2) above, it is possible for the teacher to look for and 
recognise difficulties and obstacles to the learner’s understanding (§7.2, c2). 

7.3.3 Mathematical awareness

We propose that mathematical awareness should include aspects related to (a) the 
intrinsic and (b) the extrinsic nature of mathematical activity. In this connection, 
history offers interesting possibilities, which are outlined in the rest of this 
subsection.

(a) Awareness of the intrinsic nature of mathematical activity

The history of mathematics provides opportunities to unfold, analyse and emphasise 
important aspects of doing mathematics, such as: 
(i) The role of general conceptual frameworks and of associated motivations, 

questions and problems, which have led to developments of particular 
mathematical domains (e.g. Tzanakis 1995; cf. §7.2, d1, el, e2). 
The evolving nature of mathematics, both in content and in form; notation, 
terminology, favourite computational methods, modes of expression and 
representations, as well as metamathematical notions such as proof, rigour and 
evidence, in comparison with mathematics of today (see e.g. Barbin 1996; 
Kleiner 1996; cf. §7.2, b). 

(iii) The role of doubts, paradoxes, contradictions, intuitions, heuristics and 
difficulties while learning and producing new mathematics in the context of 

(ii)
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specific questions and problems, and the motivations for generalising, 
abstracting and formalising in such a context (e.g. Lakatos 1976, appendices 1 
and 2; Friedelmeyer 1996; cf. §7.2, d3, c2, al). 

(b) Awareness of the extrinsic nature of mathematical activity 

Mathematics is often regarded as a discipline which is largely disconnected from 
social and cultural concerns and influences. Its history may illustrate the 
superficiality of such a view. For example: 
(i) Aspects of mathematics may be seen as closely related to philosophical 

questions and problems, the arts (music, architecture etc), other sciences and 
also humanities (e.g. Montesinos Sirera 1996; Pérez 1996; cf. §7.2, a3, e3). 
The social and cultural milieu may be seen to influence the development, or 
delay the development, of certain mathematical domains (e.g., references in (i) 
above; Brin et al. 1993; cf. §7.2, e2).

(iii) Mathematics is recognisably an integral part of the cultural heritage and 
practices of different civilisations, nations, or, ethnic groups (e.g. Cousquer 
1998, Horng 1996; cf. §7.2, e3). 

(iv) Currents in mathematics education throughout its history reflect trends and 
concerns in culture and society (e.g. Gispert 1997; FitzSimons 1996; cf. 7.2 e). 

The emphases listed above can serve as a general outline of how to start to translate 
some of the arguments supporting the integration of history into mathematics 
education, detailed in §7.2. More specific guidelines for practical implementation 
are detailed in the next section. For example: research projects on history texts 
(§7.4.2), primary sources (§7.4.3), taking advantage of errors, alternative 
conceptions, change of perspective, revision of assumptions, intuitive arguments 
(§7.4.6), famous historical problems (§7.4.7), mechanical instruments (§7.4.8), 
experiential mathematical activities (§7.4.9) and outdoors experience (§7.4.12). 

Ways of integrating history into mathematics education clearly involve the use 
of sources of reference material. These materials can be roughly categorised into 
three types: 
a) Primary source material (excerpts from original mathematical documents). 
b) Secondary source material (textbooks with history narratives, interpretations, 

reconstructions etc). 
c) Didactical source material (see below). 
Historians of mathematics are, by their profession, mostly interested in the evidence 
supplied by primary sources, and contribute to the progress of knowledge by writing 
secondary materials. Teachers of mathematics (at all levels) may benefit from both 
primary and (perhaps more from) secondary materials and they particularly welcome 
the third category of didactic materials. By didactic source materials, we mean the 
body of literature which is distilled from primary and secondary writings with the 
eye to an approach (including exposition, tutorial, exercise etc) inspired by history. 
Of the three categories, the didactic resource material seems to be the most lacking 
in the public domain. Teachers of mathematics and mathematics educators are 
encouraged to develop, individually, or, in collaboration, their own material in this 
category and to make it available to a wider community. 

(ii)
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Figure 7.1: Reference materials that play a role when history of mathematics (HM) enters the 
classroom for mathematics teaching (MT). 

The diagram above (figure 7.1) illustrates the kinds of reference material. The 
arrows indicate possible interconnections between the materials. 

7.4 Ideas and examples for classroom implementation 

In this section we survey a wide range of possible ways of implementing history in 
the mathematics classroom, through giving examples under each of the following 
headings:
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1. Historical snippets 
2.
3. Primary sources 
4. Worksheets 
5 . Historical packages 
6.

7. Historical problems 
8. Mechanical instruments 
9. Experiential mathematical activities 
10. Plays 
11. Films and other visual means
12. Outdoors experience 
13. The World Wide Web 

7.4.1 Historical Snippets 

Many mathematical textbooks, at all levels, have incorporated in their exposition 
historical information, which we call historical snippets. It is beyond the scope of 
this chapter to survey a representative sample of snippets from textbooks around the 
world. Instead, we propose a way of characterising and categorising them according 
to their format and their content, based on surveying a range of textbooks from 
various countries. 

Under format, we consider 
(a) whereabouts it is inserted in the text in relation to the mathematical 

exposition to which it refers: is the snippet before, during (interspersed within the 
text or as footnotes), alongside (in parallel to the main text but separated from it), or 
after the mathematical exposition? 

(b) the didactical approach: is the snippet merely expository, or does it invite 
active involvement (a problem to solve, a notation to decipher, or proposed activities 
and projects)? 

(c) how substantial it is: how much attention is devoted to the historical side, in 
comparison to the mathematical exposition? is a mathematician given just his dates, 
or are further and more helpful details of his life provided? 

(d) style and design of the snippet: is the narrative informal, friendly, easy to 
read? Is it salient and distinguishable from the main text (using different colours, 
backgrounds, fonts)? Is it visually appealing? 

Under content, we consider what the snippet consists of and what aspects of history 
it emphasises: 

(e) Factual data: the snippet may consist, for example, of photographs, facsimiles 
of title pages or other pages of books, biographies, attribution of authorship and 
priorities, anecdotes, dates and chronologies, mechanical instruments, and 
architectural, artistic, or cultural designs. 

7 History of mathematics in the classroom: an analytic survey 

Research projects based on history texts 

Taking advantage of errors, alternative conceptions, change of perspective, 
revision of implicit assumptions, intuitive arguments 
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(f) Conceptual issues: the narrative may touch upon motivation, origins and 
evolution of an idea, ways of noting and representing ideas as opposed to modem 
ones, arguments (errors, alternative conceptions etc), problems of historical origin, 
ancient methods of calculation, etc. 

7.4.2

We outline here an experience from Denmark. While this example is at university 
level, the principle is applicable at any level when appropriate changes are made. In 
the master’s degree studies in mathematics at Roskilde University, project work 
occupies a centra1 position. Students spend half of their time working in small 
groups on projects dealing with various aspects of mathematics. Each project aims 
at posing and answering a few research-type questions. A project typically takes 1-2
semesters to be carried out to completion, in parallel with more traditional course 
work. The main product of a project is a 70-150 page report written by the students 
in the group and defended at an oral examination with internal and external 
examiners. Students have to make three projects in mathematics, in one of which 
they consider aspects of the nature and structure of mathematics as a science with 
particular regard to its methods, theories and organisation so as to elucidate 
philosophical issues, historical developments, or the social role of mathematics. The 
underlying philosophy behind such projects is that every mathematics graduate, 
irrespective of his or her future career as a researcher, teacher, or user of 
mathematics, should have at least an impression of mathematics as a discipline 
situated in human culture and society (§7.2, e2), having a history and being related 
to other disciplines (§7.2, a3). In general, the research questions, investigations, and 
processes bear a strong resemblance to what is encountered in original and 
publishable research projects (§7.2, c3, b1, a4). 

Examples of projects with a substantial historical component are ‘Angle 
trisection: a classical problem’, ‘Euler and Bolzano: mathematical analysis from a 
philosophical perspective’, ‘The history of the theory of complex numbers’, ‘The 
genesis of non-euclidean geometry and its impact on the development of 
mathematics’, ‘The influence of Galois on the development of abstract algebra’, 
‘The standard methods of mathematical statistics: internal and external factors in 
their genesis and development’ and ‘The early development of game theory’. 

As an illustration, we outline the genesis and development of one project, on 
‘Cayley’s problem and the early development of what later became fractals’, carried 
out by six students, whose interest in chaos and fractals led to the project. Advised 
by active researchers in the field of dynamical systems with a serious interest in its 
history, the students decided to look at the history of ‘Cayley’s problem’ (the 
problem of determining the domains of convergence for Newton’s iteration method 
applied to a complex polynomial function). Initial investigations showed that 
Cayley and Schröder had studied variants of this problem independently of one 
another in the late 19th century. 

Against this background, the following research questions were formulated for 
the project: How did Cayley and Schröder actually solve Cayley’s Problem for a 
quadratic polynomial? and: Why is it so much more difficult to treat the cubic case 

Student research projects based on history texts 
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than the quadratic case, and what was the historical evolution that led to results 
regarding the former case? To answer these questions, the group set out to identify 
and read relevant parts of secondary sources (with a historical and/or strictly 
mathematical content) and of original articles in the period 1870-1920 by Schröder, 
Cayley, Koenigs, Fatou and Julia, so as to acquire the mathematical knowledge of 
complex iteration necessary to understand what was going on. Based on this 
material, the group gave an interpretation of the historical evolution in the area 
under consideration and found that the reasons why it took three decades to go from 
degree 2 to higher degrees were essentially two-fold. Firstly, Schröder’s and 
especially Cayley’s methods were so tightly tailored to deal with quadratic 
polynomials that they were not generalisable to higher degrees, and, secondly, the 
general mathematical developments in set theory and topology of the early 20th 
century were a key prerequisite for the new results obtained by Fatou and Julia. 

The project was reported in a 78 page report and was defended by the group at 
an oral examination by the supervisor and an external examiner from another 
university. While this represents one example of project work, appropriate for its 
institution and the students concerned, something similar may be devised for pupils 
of other ages and levels of experience. 

7.4.3 Primary Sources 

The centrality and importance of the use of primary sources was addressed by the 
Discussion Document (Question 8) which convened this ICMI study (Fauvel and 
Van Maanen, 1997). We do not give an example here, but refer the reader to chapter 
9 for detailed discussion. 

7.4.4 Worksheets 

The use of worksheets is widespread in many mathematical classrooms around the 
world. They are meant for students to work either individually or in groups, and are 
of two main kinds: 

(a) Worksheets which contain a collection of exercises in order to master a 
procedure, or consolidate a topic which was learned in the classroom and which can 
be worked, either in class, or at home. 

(b) Worksheets which are designed as a structured and guided set of questions to 
introduce a new topic, a set of problems, or issues for discussion. The design 
usually takes into account the student’s previous knowledge and by gradual 
questioning leads to the development of the basics of a previously unknown topic 
(cf. 7.3.2, point (4) and remark (iv)). These worksheets are usually meant to be used 
in the classroom, often in pairs or groups of students, the teacher acting as a 
consultant and guide. Worksheets of this kind are also used in teacher education 
courses.

It is this second type of worksheet that we are especially concerned with here, as 
they can be especially suitable for the development of mathematical understanding 
through the integration of history. They are appropriate at any level of schooling, 
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including tertiary level. Arcavi 1987, Arcavi and Bruckheimer 1991, Bruckheimer 
and Arcavi 2000 describe single worksheets, as well as collections of worksheets, 
especially designed to integrate historical topics, both in classrooms and in teacher 
education courses. 

These worksheets are usually structured around short historical extracts, 
accompanied by historical information to describe their context, followed by 
questions aimed at supporting the understanding of the contents (§7.2, al), the 
discussion of the mathematical issues involved, comparison between mathematical 
treatments of then and now (§7.2, b), and solving problems in the extracts, or similar 
ones inspired by it (§7.2, a2). If the extract contains ancient notation, or notation 
which is foreign to the students, the questions support the translation into modem 
notation, by supplying partial ‘dictionaries’ to be completed by relying on the 
context. When the extract contains more than one piece of information, the 
questions support the parsing of the text to cope with its apparent complexity 
(§7.2, c5). Critical reading of extracts is encouraged by asking students to check a 
calculation, discuss an argument, or simply by completing a mathematical sentence 
from which small pieces were deliberately omitted for this purpose (§7.2, a4). 
Sometimes, the worksheets bring out arguments about mathematics and its nature, or 
about the nature of a certain mathematical topic; the questions ask the students to 
elaborate arguments to support or oppose what is presented (§7.2, b1). In the case of 
worksheets designed for teacher education courses, the questions also ask students to 
address didactical issues raised by the text, their potential value for the teacher’s own 
practice, and their similarities and differences with modem didactical approaches 

The authors report on the ways they have used the worksheets, as well as on the 
design of the accompanying answer sheets, in which not only answers, but also 
further historical and mathematical consolidation are provided. Worksheets of this 
kind can be designed to study the history of a mathematical topic, or simply to be 
used as needed in the mathematical classroom for single class periods, where the 
topic is relevant to the curriculum. 

7.4.5 Historical packages 

Bruckheimer and Arcavi (2000) define ‘historical packages’ (or historical 
‘happenings’) as a collection of materials narrowly focused on a small topic, with 
strong ties to the curriculum, suitable for two or three class periods, ready for use by 
teachers in their classrooms. These packages are more than historical asides, but 
less than a comprehensive historical approach to a large topic. Where possible, they 
are built around short fragments of primary sources (usually a 3-4 line quotation) 
and even though they are meant to be driven by the teacher, they are mostly based 
on the active participation of the students (§7.2, d2, b1). The role of the teacher 
consists of presenting the historical background needed, proposing the questions and 
the problems and guiding the discussion. 

The package is meant to be self-contained: it provides the teacher with a folder 
including the detailed text of the activity, historical and didactical background, 
guidelines for classroom implementation, expected student reactions (based on 

(§7.2, c). 
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previous classroom trials) and all the illustrative material needed in the form of pre-
prepared overhead projector transparencies. The transparencies contain (i) 
reproductions from original texts, pictures of mathematicians, etc. and (ii) the 
quotations, the problems and issues for discussion. 

The aforementioned authors report on the development of five such packages: 
‘Ancient numerals and number systems’, ‘Arithmetic in ancient Egypt’, ‘π: and the
circumference of the circle’, ‘Word problems and equations’ (described in Ofir and 
Arcavi, 1992), and ‘Casting out nines’ (described briefly below and in more detail in 
Bruckheimer et al 1995).

‘Casting out nines’ tells the story of a topic which in some countries has dropped 
out of the curriculum, but which nevertheless contains mathematically rich and 
relevant issues for discussion with junior high and high school students. At the 
same time, it gives an opportunity for teachers to enhance their mathematical 
literacy. The activities are organised around quotations from old textbooks, on ways 
to check multiplication calculations based on properties of numbers modulo 9. The 
quotations include statements which the students are asked to test, discuss, justify, or 
reject (§7.2, a4). Once the method is understood and justified, students are asked to 
discuss the issue of simplicity versus reliability (casting out nines provides a 
necessary but not sufficient condition for the correctness of the calculation; 
§7.2, b1). Then the discussion is moved towards checks by means of other numbers 
as they appear in an 18th century textbook. 

As another example, we mention a package on the Pythagorean theorem, 
prepared mainly in English for Grade 8 students (age 14) in Hong Kong (Lit 1999). 
The textbook in use at school was analysed and improved by taking into account 
historical aspects of the subject. The package includes activities, manipulations, 
proofs of the Pythagorean theorem in various cultures, related problems taken from 
ancient scriptures, and historical narratives, as detailed below: 

A. (i) Presentation of the Chinese, Egyptian, Greek and Babylonian origins of the 
Pythagorean theorem. (ii) Presentation of the Chinese ‘water weed problem’ (Bai 
1990, 419-420), and the Indian ‘lotus problem’ (Du et al 1991, 572-573; for both 
problems see Swetz and Kao 1977, 30-33). (iii) The original writings for reference, 
to be used by the students. 

B. Seven different proofs of the theorem by methods that appeared in various 
cultures in order to see the same problem in different perspectives (§7.2, e3) 

C. A diagrammatic proof from ancient Chinese mathematics which illustrates 
that the problem can be treated not only algebraically. 

D. A simplified account of an early crisis in the foundations of mathematics, 
concerning the discovery of irrationals and its relationship to the Pythagorean 
theorem (§7.2, a3). 

E. Historically motivated activities such as (i) making a right-angled triangle 
from a string with 11 knots; or (ii) deciphering the relations between number 
columns of the Babylonian tablet ‘Plimpton 322’, given on a worksheet in Hindu-
Arabic numerals (Boyer 1968; Eves 1990; cf. §7.2, a2, c4). 

F. On the basis of E(i) above, students are asked to explain the proof of the
Pythagorean theorem by geometrical dissection, which illustrates the use of 
manipulations.
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The package contains all the necessary written documents and materials for items A
to F, four articles (in Chinese) for the students to read, and brief guidelines to 
teachers. Before the actual implementation, the original design of the package was 
pre-tested in two Grade 8 classes in October 1996, leading to its revision and final 
design.

7.4.6 Taking advantage of errors, alternative conceptions, change of 
perspective, revision of implicit assumptions, intuitive arguments etc. 

An advantage of implementing history in the presentation and learning of 
mathematics is the opportunity it presents to appreciate and make explicit use of the 
constructive role of (i) errors, (ii) alternative conceptions, (iii) changes of 
perspective concerning a subject, (iv) paradoxes, controversies and revision of 
implicit assumptions and notions, (v) intuitive arguments, that appeared historically 
and may be put to beneficial use in the teaching and learning of mathematics, either 
directly or didactically reconstructed (in the sense of §7.3.2). 

Some of these have to do with a broad theme and usually span a long period, 
perhaps in different guises. These can help to give a perspective on the issue 
concerned (cf. §7.2, b1). An example of (ii), for the sake of illustration, is early 
belief in the commensurability of all magnitudes; of (iii), rejection of negative 
numbers, even as late as the beginning of the 19th century; of (iii) and (iv), ‘proofs’
of the ‘Parallel Postulate’; of (i) and (v), controversy over the infinitesimals and the 
many strange results about infinite series; of (iv), paradoxes in probability theory 
ever since the 17th century. Here one may think of D’Alembert’s calculation of 2/3 
for the probability of a coin falling at least once head if tossed twice, in the French 
Encyclopédie (1 754), or Bertrand’s different answers, by using different methods for 
estimating the probability that a chord chosen at random will be larger than the side 
of an equilateral triangle inscribed in the circle, published in Calcul des probabilités 
(1 889); see Székely 1986)). References for and fuller discussion of these examples 
abound in the literature. 

Other examples afford an opportunity to look into the methodology of 
mathematical invention, e.g. exploration of the Euler-Descartes formula V-E+F=2
in solid geometry (see Biggs et al. 1976, Ch.5; Lakatos 1976; Siu 1990, Ch.4). 

Finally, some others may contribute to enhance understanding by (all examples 
here are of case (i), ie the historically constructive role of errors): 
a) leading to specific significant notions. An example here would be Cauchy‘s 

‘proof of the convergence of a sequence of continuous functions; see Rickey 
1995, 130-132; Siu 1997, 147-148;

b) leading to a correct proof of a specific theorem. An example here would be 
Kempe’s ‘proof of the Four Colour Map Conjecture and Heawood’s proof of the 
Five Colour Map Theorem in the late 19th century; see Biggs et al. 1976, Chap 6; 
Siu 1990, Chap. 6. 

c) leading to both significant notions and correct theorems. An example here 
would be Lame’s ‘proof of Fermat’s Last Theorem and Kummer’s 
counterexample and subsequent work on cyclotomic integers, from which the 



220 7 History of mathematics in the classroom: an analytic survey 

notion of ideal in commutative ring theory arose; see Edwards 1977, Ch.4; Siu 
1990, Ch. 6; Siu 1997, 148-149.

Now we give some details of specific examples. 

(i) Errors 

Here are five short examples, useful for undergraduate and/or senior high school 
students (§7.2, a, c4): 

(1) A surviving deed from Edfu in Egypt, dating back to the 2nd century BC, 
gave the area of a quadrilateral as the product of the pairs of arithmetic means of 
opposite sides. From this the area of a triangle was deduced, as the product of the 
mean of two sides and one half of the third side. Students can be asked to 
investigate how good the formula is, when it will give a correct answer and what 
some special cases yield (see Eves 1990, 63, exercise 2.13(f)). They can also be 
asked to discuss the hypothetical historico-mathematical issue of whether the ancient 
Egyptians were aware of the mistake. An argument here could be that their 
awareness or otherwise of this fact is irrelevant, if the areas they calculated were 
approximately rectangular (in which case the mistake is small and the method is 
convenient).

(2) Archimedes (3rd century BC) obtained the formula A= πab for the area of an
ellipse with semi-axes a,b in On conoids and spheroids. Hence, the ratio of the area 
of an ellipse to that of its circumscribed rectangle is π/4. Based on analogy,
Fibonacci (13th century) argued that since the ratio of the area of a circle (which is 
the special case with a=b) to that of its circumscribed square (which is of course 
π/4) is equal to the ratio of the perimeter of a circle to that of its circumscribed
square, the same held true for an ellipse and its circumscribed rectangle. This would 
yield the formula P =π (a+b) for the perimeter of an ellipse. Students can be asked
to comment on its validity, and more generally (and probably on the basis of more 
examples) to discuss the method of analogy in mathematics (see Siu 1990, Ch. 2; cf. 
Polya 1954, 77-79; and here §7.3.2, remark (ii)). 

(3) In Chapter Four of Jiu Zhang Suan Shu (‘Nine Chapters on the Mathematical 
Art’, c.100 BC – AD 100), the volume of a sphere was said to be 9/16 that of its 
circumscribed cylinder (Bai 1990). In his commentary, Liu Hui (c. 250) pointed out 
that this is incorrect and gave further elaboration, which led to a correct formula, 
derived through an ingenious means by Zu Chong-Zhi and his son Zu Geng in the 
late 5th century. Students can be asked to compare the incorrect formula with the 
correct one and to guess how the 9/16 might have come about. This can lead to a 
discussion of the interesting principle known in the West as Cavalieri’s principle, 
stated in 1635 (see Siu 1993,353-354; Wagner 1978). 

(4) Galileo conjectured that a heavy rope suspended from both ends hangs in the 
shape of a parabola (which is indeed the case if the rope suspends a plank, in the 
manner of a suspension bridge). This problem of the curve formed by a hanging 
rope was later posed by Jakob Bernoulli and solved by mathematicians of the 17th 
and 18th centuries, including Huygens, Leibniz and Johann Bernoulli. Huygens 
coined the word ‘catenary’ (catena) for this curve. Students can be asked to find the 
equation of a catenary and compare it with a parabola. This example can also be 



7.4 Ideas and examples for classroom implementation 221 

used to motivate and predispose students to the study of differential equations 
(Rickey 1995, 127-129; cf. 7.2.a2, cl). 

(5) In a 3-page paper of 1878 which appeared in the first issue of the American
journal of mathematics, Arthur Cayley claimed that there were three groups of order 
6, characterised by generators and relations: 
(i) a; a6 = 1 
(ii) a, b; a2= b3 = 1, ab = ba 
(iii) a, b; a2 = b3 = 1, ab = b2 a, ba =ab2

why some among the three are isomorphic (see Lam 1998,363). 

(ii) Alternative conceptions 

The history of the notion of function, as a rule by which an element of a set is 
associated to exactly one element of another set, is relatively late. It came after 
more restricted, but intuitive conceptions were found to be insufficient (e.g. the 
function as a formula, cf. Euler’s definition, Boyer 1959, 243; for a comprehensive 
account of the history of the function concept, see Youshkevitch 1976). At the high 
school level, this fact may help the teacher to appreciate the difficulties of his 
students to understand the abstract definition in depth (§7.2, c2). Even where they 
have been taught the rule-based definition over several years of education, students 
may continue to identify a function by its mode of representation, in effect a formula 
(Bakar and Tall 1991; Grugnetti 1994; Vinner and Dreyfous 1989). 

Gottlib (1998) developed an activity for use in teacher workshops or courses, in 
which participants follow some of the stages of the historical evolution of the 
function concept, which were accompanied with details of mathematicians’ 
struggles and rejection of new ideas. Cognitive studies that explore student 
conceptions and difficulties when learning functions, are also examined. Then, the 
teachers compare the past developments with the experiences of students who learn 
the concept, in order to develop appreciation of the complicated process of learning 
a complex concept, such as the function concept. Finally, the teachers consider 
didactical implications (for another such activity, see Lycée Group 1996). At a 
higher level, the history of the abstract definition of a function may be given in more 
detail, based on historically motivated questions, like Fourier’s assertion that any 
periodic ‘function’ may be represented by a trigonometric series and Dirichlet’s 
function as a famous counterexample to this assertion (Boyer 1959, 599-600; Struik 
1948, 148; Kronfellner 1996; Siu 1995; §7.2, a2). 

Incidentally, this example may also help teachers to see how alternative 
conceptions (of a function) and errors can give the problem background from which 
the concepts of uniform convergence of functions, Riemann integrability, and 
functions of bounded variation emerge as proof-generated concepts (see Lakatos 
1976, 146-148; Siu 1997). 

(iii) Change of perspective 

The distinction between synthesis and analysis in geometry is an interesting 
illustration of how mathematical methods and points of view concerning the same 
subject are not unique. Euclid’s Elements is the historical paradigm of synthetic 

Students can be asked to find whether this claim is valid, and if not, to explain 
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exposition in geometry. According to Pappus’ Mathematical collection 
(‘Synagoge’), book vii, the ancient mathematicians used not only synthesis, but also 
analysis in their geometrical research (see Thomas 1941, 596-600; Ver Eecke 1982, 
477-512; Heath 1981, 400-401; Fauvel and Gray 1987, 208-209). In the late 16th 
century, Viète impelled an ‘analytic program’, quite distinct from the Greek method 
of analysis, that eventually led to the creation of analytic geometry by Fermat and 
Descartes (Boyer 1956, Ch. 5 ; Mahoney 1994, Chs.2, 3; Mancosu 1992, 83-1 16). 
Elaborating on the same geometrical problem both by synthesis (in the Euclidean 
model) and by analysis (with the aid of algebra) may be very enlightening for 
understanding the roles of discovery procedures and of proof in geometry (Bos and 
Reich 1990; §7.2.b). 

Shortly after the Cartesian method had been published, Desargues (and, to a 
certain extent, Pascal) gave a serious impetus to the synthetic approach with the 
creation of projective geometry (Kline 1963, Chs.10, 11; Gray 1987a, 16-21). The 
two points of view are equally acceptable, logically sound and mathematically 
fruitful but they are methodologically different. Comparing them leads to issues 
such as a unified perspective on all conic sections (circles, ellipses, parabolas and 
hyperbolas), whether by the analysis of Descartes (in which a conic is an equation of 
the second degree in two unknowns), or by the synthesis of Desargues (in which a 
conic is the projection of a circle); cf. §7.2, b2. 

Moving on to a later period, it may also be interesting to observe how the fruitful 
co-operation of the two approaches, visible in the works of Monge and Carnot, was 
followed by a confrontation of extreme points of view in the geometers of the next 
generations. Brianchon, Poncelet, Chasles and Steiner supporting the exclusive use 
of synthetical methods, while Gergonne, Servois, Möbius and Plücker defended the 
supremacy of the analytical point of view (Boyer 1985, 572-585). For an account of 
the history of geometry in this period, see Gray 1987b. 

(iv) Revision of implicit assumptions 

Our example here is at university level: the efforts of the Irish mathematician 
William Rowan Hamilton that led him to the quaternion concept (for details and 
further references see Tzanakis 1995). In the early 19th century it was realised that 
the product z1z2 of two complex numbers is geometrically given by the plane 
rotation and multiplication of the one by the argument and norm of the other. 
Hamilton’s motivation was to find an extension of complex numbers, so that a 
similar relation exists between the sought numbers and rotations and similarities in 
space. That his efforts were for a long time unsuccessful was partly due to his 
geometric perception of z1z2 as a rule for multiplying vectors in the plane, rather than 
as a (linear) operator defined by (say) z1 on complex numbers, a useful concept that 
dominated mathematics much later (cf. §7.2, b). These are mathematically, but not 
conceptually, equivalent geometric representations. So for several years he confined 
himself to the study of this question for vectors in R3. A change of perspective for 
z1z2 in the above sense readily leads to the appreciation that one has to move to R4: a 
three-dimensional rotation followed by a similarity requires 4 parameters, a fact 
already known at that time from Euler’s work on mechanics. This is a good starting 
point for arriving naturally at the quaternion concept, by considering the problem of 
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determining analytically (e.g. in terms of Euler’s parameters) the composition of two 
space rotations (cf. §7.2, al, a2). This makes it necessary to reject the 
commutativity of the product of two numbers, an assumption implicit to 
mathematics before Hamilton’s quaternions (cf. 7.2.al). In this example, history of 
mathematics inspires the presentation, which appears implicitly (§7,3,2(iii)). This 
could also serve as an example to highlight for students some aspects of generalising 
from one set of number-like objects to another; for example, that some properties are 
lost in generalisation. 

(v) Intuitive arguments 

Apart from well-known examples, like the intuitive perception of the derivative of a 
function as a rate of change or as a slope to a curve and the integral as an area, many 
other examples can be given (Friedelmeyer 1996, 118-1 19). For instance, 
Bernoulli’s intuitive argument of using Fermat’s derivation of the law of refraction 
in geometrical optics in order to solve the brachistochrone problem (Dugas 1988, 
254-256) can be used as a natural first step to introduce the calculus of variations 
(university level; cf. §7.2, al, a2); or at the high school level, as a physically 
interesting problem that needs some computational skill and an understanding of 
elementary differential calculus (Simmons 1974 51.6; cf. §7.2, a3). Similar 
comments hold for the introduction of basic concepts and theorems of vector 
analysis through fluid dynamics and electrodynamics (university level), by 
reproducing the non-rigorous, but intuitive proofs of Stokes’ and Gauss’ theorems 
given by Maxwell (1873/1954, §§ 21-24; cf. §7.2, al, a3, a2). 

Finally in this sub-section we illustrate how two of these features may come 
together in an example. 

(ii) Alternative conceptions and (iv) revision of implicit assumptions and 
paradoxes

The long history of the mathematisation of infinite sets is very rich in ideas, 
paradoxes, alternative conceptions and revision of implicit assumptions, from 
Zeno’s paradoxes (5th century BC), up to Zermelo’s, Gödel’s and Cohen’s work in 
the 20th century (for the latter see Van Dalen and Monna 1972, 26-62). It is often 
intermingled with the history of related topics, like the concepts of the continuum, 
measure, and dimension (e.g. Stillwell 1989, Ch.20; cf. §7.2, a3). Here we comment 
only on the different approaches in history to the conceptually difficult subject of the 
cardinality of infinite sets, which may have interesting didactical implications for 
undergraduate students (§7.2, c2). 

There are two historical ways of approaching the question of comparing the 
cardinal numbers of two infinite sets: inclusion and bijection. Already in 1638, 
Galileo fully understood and pointed out their mutual incompatibility, by referring to 
the bijection between the set of positive integers and its proper subset of perfect 
squares and by drawing the conclusion that, when dealing with the infinite, it is not 
possible to use words like ‘bigger’, ‘smaller’ or ‘equal’ (Galilei 1638/1954, 3 1-33).
These criteria reappeared in the 19th century in the work of Bolzano, Cantor and 
Dedekind.
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In 185 1, Bolzano proposed the inclusion criterion: a set A has less elements than 
a set B, if A is a proper subset of B, that is if A is contained in B but not equal to B 
(Bolzano 1851/1950, §§ 19-21). Thus, in his own example, the set of all real 
numbers between 0 and 5 (0,5) has less elements than (0,12) despite the existence of 
a bijection between them (e.g. 5y=12x); (Lombardo Radice 1981, 111.2; Moreno and
Waldegg 1991, 213-216). Later, Cantor proposed the modern criterion based on 
bijections: two sets A and B have the same cardinal number, if and only if there 
exists a bijection between A and B (Cantor 1878, 1895; cf. Fauvel and Gray 1987, 
577-580). This conception opposed that of Bolzano, given Dedekind’s definition 
(1 888) of an infinite set as one possessing a proper subset with the same cardinal 
number as the whole set (Dedekind 1888/1963, 63; Lombardo Radice 1981, IV.1; 
Moreno and Waldegg 1991, 216-219). For a comprehensive account of Cantor’s 
work in this connection, see Dauben 1979. 

7.4.7 Historical problems 

The history of mathematics provides a vast reservoir of problems that can be 
stimulating and productive for both, students and teachers. From a didactic 
perspective, the problems are of various kinds. 
(i) problems with no solution, 
(ii) famous problems still unsolved, or solved with great difficulty, 
(iii) problems having clever, alternative, or exemplary solutions, 
(iv) problems that motivated and/or anticipated the development of a whole 

(mathematical) domain, or simply 
(v) problems presented for recreational purposes (distinct from the previous cases 

(i)-(iv) which are more closely related to the main mathematical curriculum). 
Below we give a small sample that can be used in a variety of ways at various levels 
of instruction, and some relevant references. 

(i) Problems with no solution 

(a) The three famous problems of antiquity: doubling the cube, trisecting an 
angle, squaring the circle (and the construction of the regular heptagon); Bunt et al. 
1976, Ch.4. These can also be considered as recreational problems (e.g. Dörrie 
1965, §§ 35-37), or as problems which motivated developments in algebra through 
the algebraicisation of Euclidean constructions (e.g. Courant and Robbins 194 1, 
Ch.III; Bunt et al. 1976, §4-8; Stillwell 1989, §§ 2.3, 5.4, 11.7). 

(b) The problem of solving by radicals the general n-th degree algebraic equation
for n =2, 3,4, 5 and higher (e.g. Stillwell 1989, Chs.5, 18). This also falls in (iv), if
an introduction to Galois’ ideas and group theory is given (cf. Bourbaki 1984, 72-73,
Klein 1926-7/1979, 81-84, 99-106).

(c) The impossibility of expressing the arc length of an ellipse and a hyperbola in 
terms of elementary functions. This destroyed Leibniz’s programme of integration 
in closed form. The problem may serve as an introduction to elliptic integrals and 
functions (and also falls in category (iv)). The same holds for the physical problem 
of finding in closed form the period of oscillation of a simple pendulum (e.g. 
Stillwell 1989, Ch. 11). 
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(d) The impossibility of proving Euclid’s parallel postulate from the other 
axioms, a problem that motivated the development of both Euclidean and non-
Euclidean geometry (e.g. Bonola 1955). 

(ii) Famous problems still unsolved, or solved with great difficulty 

(a) Fermat’s Last Theorem-that x” + y” = zn has no solutions for n greater than 
2—both as an elementary problem (with proofs for specific exponents, e.g. 
Rademacher and Toeplitz 1990, § 14; Laubenbacher and Pengelley 1999, 156-203)
and questions related to its general form (e.g. Edwards 1977). For a semi-popular
account, see Singh 1998. 

(b) The innocent-looking Goldbach’s conjecture (every even natural number is 
the sum of two primes), as well as, the existence of infinitely many pairs of twin 
primes (primes with a difference equal to 2); see e.g. Courant and Robbins 1941, 30-
31.

(c) Riemann’s conjecture (the zeros of the zeta function have all real part equal 
to 1/2) in several contexts; for instance, in connection with the distribution of primes 
(e.g. Davis and Hersh 1980, Ch.8, and in detail in Edwards 1974). 

(iii) Problems having clever, alternative, or, exemplary solutions 

(a) Many simple proofs of the Pythagorean theorem, which appeared in different 
cultures (Loomis 1972; Eves 1983, Ch.4; Nelsen 1993). 

(b) Dandelin’s proof of the characterisation of conic sections, considered as the 
intersection of a cone and a plane, as loci of points, by using two spheres tangent to 
the cone and the plane (e.g. Apostol 1967, § 13.18). 

(c) Various proofs of the fundamental theorem of algebra (e.g. Stilwell 1989, 
§§13.6-13.7, Dörrie 1965, §23), and more compact proofs based on the elementary 
theory of analytic functions (e.g. Knopp 1945, §28). 

(iv) Problems that motivated and/or anticipated the development of a whole 
domain

As well as the examples alluded to above in (i), (iia), and (iic), we may mention 
(a) The ‘prime number theorem’: the number of primes less than n, approaches

asymptotically n/ln(n) (Courant and Robbins 1941, 25-30; Davis and Hersh 1980,
Ch.5; Apostol 1976, Ch.13; Hardy and Wright 1975, Ch.XXII.) This motivated 
developments in number theory (Apostol 1976, 8-9).

(b) The Weierstrass polynomial approximation theorem for real continuous 
functions (Hairer and Wanner 1996, §III.9), which stimulated developments in 
approximation theory and functional analysis (see e.g. Bourbaki 1984, 257-258).

(c) The problem of stakes mentioned below in §7.4.9(d), which stimulated the 
development of probability theory. 

(d) The problem of small vibrations of a string, and the debate in the second half 
of the 18th century among d’Alembert, Euler and Daniel Bernoulli concerning the 
determination of the general solution of the wave equation. The investigations 
concerning this problem were recapitulated in Lagrange’s report to the Academy of 
Turin in 1759, Recherches sur la nature et la propagation du son, but the problem 
remained poorly understood for some time and significant progress was made after 
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Fourier’s work (1 822) on the solution of partial differential equations (especially the 
heat equation) with the aid of trigonometric series (Davies and Hersh 1980, Ch.5; 
Dieudonné 198 1, §I.2; Fourier 1822/1955). This problem, apart from stimulating 
the development of the classical theory of Fourier analysis, also led to a discussion 
and gradual clarification of the concept of a function, a key development with far 
reaching consequences to the whole of mathematics (e.g. Struik 1948, 147-148; cf. 
§7.4.6 (ii)). 

(e) Johann Bernoulli’s brachistochrone problem: to find the trajectory of a point 
mass moving on a vertical plane between two fixed points, under its weight only, in 
least time (Courant and Robbins 1941, 383-384; Simmons 1974, §1.6). This 
problem and its solution-the cycloid-anticipated and motivated developments in
both the calculus of variations and analytical mechanics (Dugas 1988, Ch.III.V). 

(f) Closely related to (e), is the study of the cycloid in the 17th century. It 
constituted a source of problems that motivated developments in calculus. Roberval, 
Fermat and Descartes proposed ingenious methods to find the tangent through a 
point of the curve and they showed (together with Pascal, Torricelli) a great 
virtuosity in the manipulation of indivisibles in order to compute the area under the 
curve (Clero & Le Rest 1980, Chs. 2, 3). Its length was calculated by Wren and by 
Pascal, and the latter also determined the centres of gravity of several plane regions 
and solids associated with the cycloid (Clero & Le Rest 1980, Ch.4, 5; Dugas 1988, 
186; Hairer and Wanner, 103). Huygens proved that it is the solution of the problem 
of the isochrone pendulum (Clero & Le Rest 1980, Ch.6; Dugas 1988, §II.V.6; cf. 
Sommerfeld 1964, §17) and the Bernoullis showed that it is the solution of the 
brachistochrone problem (Hairer and Wanner 1996, 136-137). It was a curve also 
studied by Newton, Wallis and Leibniz (Clero & Le Rest 1980, Ch. 8). The variety 
of ideas, concepts, points of view, methods and results connected with the history of 
this curve make it a privileged vehicle for a historical approach to the calculus. 

(v) Recreational problems 

Many historical examples can be found in the references below, in the Journal of 
Recreational Mathematics, or from Singmaster 1993. Some of them are: 

(a) Euler’s problem of finding the number of ways in which a plane convex 
polygon with n sides can be divided into triangles by its diagonals (Dörrie 1965, §7). 

(b) Lagrange’s problem of proving that any natural number is the sum of 4 
squares (Rademacher and Toeplitz 1990, §9). 

(c) Steiner’s problem of finding the maximum of x1/x for real positive x (Dörrie 
1965, $89). 

(d) The ‘five-colour problem’, a much simpler version of the four colour 
problem (Rademacher and Toeplitz 1990, §12), 

(e) ‘Napoleon’s problem’ (and solution presented to Laplace) of specifying the 
centre of a given circle with the aid only of a compass (Carrega 1981, Ch.7, page 
115).
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7.4.8 Mechanical instruments 

The introduction of mechanical instruments in the mathematics classroom is related 
to two interconnected problems in mathematics education: the socio-cultural
development of mathematical awareness (§7.2, e, §7.3.3(b)), and building up an 
empirical basis for mathematical proofs (Bartolini Bussi 1998, 5; cf. §7.2, a3). It is 
possible to illustrate many mathematical concepts and proofs using instruments that 
have been devised for this purpose, for instance, drawing conic sections, or solving 
the ancient Greek geometrical problems. A list of such didactically appropriate 
mechanical devices can be found at the WWW-address
http://museo.umino,it/labmat/ and further reference to related teaching experiments 
can be found in (Bartolini Bussi and Pergola 1996) and in §10.2.2 of this volume. 
Here we mention briefly a few examples. 

(a) Descartes in his Géométrie of 1637 (Descartes 1954, 153-156), shows how to 
find n mean proportionals (geometric means) between two given lengths a and b. He 
gives an actual geometrical construction to do this, which can be used to build a 
mechanical device in order to perform the construction. It can easily be simulated 
using a dynamic geometry software (Dennis and Confrey, 1997, 147-156). The 
construction of this machine is not the only example we can find in Descartes. His 
method to solve geometrically second degree equations (Descartes 1954, 12-1 7) can 
also be done on paper, or simulated on a computer screen. 

(b) D’Alembert, in the Encyclopédie méthodique (1751/1987, 659-660)
describes an apparatus for finding the roots of equations, which can also be 
simulated.

(c) Projects which involve more sophisticated mathematics, namely, 
transformations in the plane, show to the students apparently surprising results and 
get them involved in the exploration of the underlying mathematics (cf. §7.2, b1, d2, 
c3). For instance, Peaucellier’s conversion of circular motion into linear motion is a 
striking example of inversion. Hart’s converter solves the same problem. These
dynamic constructions can be done both with ‘real’ materials and on the computer 
screen (see, for example, Courant and Robbins, 155-158).

(d) Finally, devices for testing experimentally the ‘brachistochrone’ property of 
the cycloid may be constructed, similar to that constructed in 18th century Paris— 
which still exists today, together with a bigger, modem one in La Cité des Sciences 
et de l’ Industrie de la Villette in Paris. Two billiard balls are left to move 
downwards along a straight line and a cycloidal trajectory, respectively, with the 
same end points. It may be seen that the billiard ball along the cycloid arrives first 
to the lowest point, contrary to what may be naively guessed on intuitive grounds. 
A similar device for comparing the time along a straight line and a parabolic 
trajectory, constructed by Galileo, is now in the Science Museum of Florence, Italy 
(cf. §7.4.6(v), 7.4.7(iv), and Chabert 1993). 
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7.4.9 Experiential mathematical activities 

An experiential mathematical activity would consist of re-living arguments, 
notations, methods, games and other ways of doing mathematics in the past. Several 
kinds of activity are possible, of which we mention four classes here. 

(a) arguments 

The teacher sets a specific question, or problem, taken from the history of 
mathematics and explains its importance to the scientific community in the past. 
Then, he encourages the students to think about it, discuss it in the classroom under 
his supervision, work at home alone, or in groups and re-discuss their findings and 
opinions (7.2.d2, a4). 

For example, students might be asked to consider justifications, or indeed proofs, 
of Euclid’s 5th (‘parallel’) postulate. In an experiment (Patronis 1997), the interest 
of 16 year old high school students was stimulated by the teacher’s elaborating 
historical comments on the foundations of geometry. She asked them to think about 
the following question (cf. §7.2, a2). The existence of a line, passing through a 
given point and parallel to a given line, is easily proved: what about its uniqueness, 
which seems to be intuitively evident? This served as an intellectual challenge for 
some students (cf. §7.2, el), who proceeded to re-invent arguments put forward in 
well known ‘proofs’ of the 5th postulate (cf.. §7.2, b1). Moreover, there was a lively 
discussion on more general meta-mathematical themes; on what is meant by proving 
a proposition, or what is it to make a correct mathematical assertion. The answer 
given by one student that “a correct proposition is one accepted by the majority of 
people and which does not violate certain rules”, may give the teacher an 
opportunity to discuss further examples at this meta-mathematical level and may 
give hints to the students about the evolutionary nature of mathematical knowledge 
(cf. §7.2, b1). 

(b) notations 

Students can be introduced to ancient numeration systems through their notations 
and be given the opportunity to practice writing different kinds of numbers in these 
systems. By implication, they are exposed in an experiential way to the re-
appreciation of the (decimal) positional numeration system, whose characteristics 
are taken so much for granted. By comparing and contrasting, they can analyse the 
hidden assumptions of their known system and its efficiency (§7.2, a2). A detailed 
discussion of an example, in which student teachers work on a reproduction of an 
old Babylonian clay tablet, is discussed in §8.3.1 (see also van der Waerden 196 1, 
37-45; Smith 1958, 36-39 for a description of the subject in a way adaptable to a 
didactic approach; Eves 1990, 19-21).

(c) methods 

Students can be asked to make use of old finger reckoning methods to make simple 
calculations as people did in the past. For example, students can experience and 
practice a simple multiplication method for numbers between 6 and 10, which could 
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make it unnecessary to learn the multiplication table for numbers greater than 5 
(Smith 1958,201): 

To multiply 7 by 8, say, raise two fingers on one hand and three on the other, 
since 5+2=7 and 5+3=8. Then, add the numbers denoted by the raised fingers, 
2+3=5, and multiply those denoted by the others, 3 × 2 = 6, and the former result is
the tens, 50, and the latter is the units, the product being 56. 

High school students with basic knowledge of elementary algebra can be asked 
why the method works in general. They can also be asked to invent and justify a 
similar method for numbers between 10-15 (see Smith 1958, 201-202; §7.2, b1, c3). 
Baumgart (1989, 120-123) provides material that can be used to introduce children 
to finger reckoning and operations performed using fingers. The classical Greek 
problems can also provide mathematical activities that could be experiential: 
Baumgart (1989, 199-200) describes several constructions to trisect an angle 
(Archimedes' neusis, or using the conchoid, etc) which can be reproduced by the 
students, using simple classroom materials for the tomahawk or hatchet construction 
with cardboard (see also Eves 1990, 114-115; Aaboe 1964, 108-109). Another 
example would consist of solving quadratic equations graphically following the 
methods of Al-Khwarizmi, or Descartes, either with paper and pencil or with 
dynamic geometry software (Jones 1969,260-263; Descartes 1954, 12-17).

(d) games 

It is often claimed (see e.g. Boyer 1968, 397) that the starting point for the modem 
theory of probability can be found in correspondence between Fermat and Pascal 
about the following problem: two gamblers are playing for a stake, which is to go to 
the one, who first wins n points, but the play is interrupted, when the first has made 
p points and the second q points. It is required to know how to divide the stakes. 
Students can be asked to replay a dice game, interrupt it and discuss the ways in 
which the stakes should be divided between the players. Students can also be asked 
to play ancient games (for example, games taken from Bell and Cornelius 1988) and 
analyse their strategies, possible implicit mathematical ideas and the socio-cultural
context in which the games appeared (7.2.a4, 7.2.e). 

7.4.10 Plays 

Plays are usually integrated in education in general as a way to enact human 
situations, perhaps to illuminate moral or ethical or social quandaries; thus they are 
usually not associated with mathematical classrooms. History of mathematics 
nevertheless provides an opportunity to incorporate the use of plays in at least two 
different ways. Fuller discussion of this area will be found in § 10.2.1. 

(a) Plays can be designed to re-experience the life of mathematicians in the past, 
as a way to appreciate the human side of mathematical activity (§7.2, dl). Ponza 
(1998) carried out such an experiment with her high school students to encourage 
them in their mathematical studies by researching and reviving episodes of the 
turbulent and short life of Galois (cf. Ponza 1996). T. Limnaiou, (as reported in the 
Hellenic Society's Report, 1998) described theatre plays, which were performed in 
the evenings at school with the participation of students, teachers and parents. The 
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plays were based on ancient Greek texts and the historical comments included in the 
mathematics textbooks. She reports mixed results: on the one hand, it was 
stimulating for the students, yet many teachers argued that “this is not mathematics”. 

(b) Plays can be designed to re-enact famous arguments in history, to let students 
revive not only the human aspects of the history of mathematics, but also 
mathematical issues, as if they were their own (§7.2, b1, d2). Such plays may be 
constructed by the class, or the work of other teachers utilised in this context (cf 
Hitchcock 1992). Boero and Tizzani 1997, Garuti 1997, Boero et al. (1998),
describe a teaching experiment and make a theoretical analysis in which it is 
suggested that by echoing historical voices, students may identify their own and 
other’s conceptions. 

7.4.11

Films related to the history of mathematics can highlight the human, cultural and 
social context of mathematics and mathematicians, and/or mathematical ideas, 
developments and arguments (§7.2, e). There are only a few movies which are 
played commercially in theatres. One of them (the Swedish film The hill on the 
dark side of the moon), was on the life of Sofia Kovalevskaya. There are some TV 
programs about mathematics and mathematicians, which were aired in public 
channels. For example, the Public Television Broadcasting net in the USA (through 
the Public station WQED of Pittsburgh) produced in 1998 a collection of seven one-
hour videotapes, under the name ‘Life by the Numbers’. Devlin (1998, p. vii), in the 
accompanying book to the video collection, describes the series as being about 
‘everyday life and the role played in everyday life by mathematics’. The series 
presents a diverse group of individuals (scientists, artists, athletes, medical 
researchers and others), describing their creative and surprising ways of using 
mathematics to explore the world and improve life. 

Films have also been developed with clearly didactical intentions for classroom 
use, with a strong focus on history. A notable example is The Tunnel of Samos. It is 
notable because it merges the historical and the mathematical aspects of the tunnel 
construction, shares with the viewers the consideration of historical hypotheses 
based on mathematical arguments, and makes use of the graphical and visual power 
of the media to illustrate the mathematical principles involved (for some details on 
the mathematical aspects of the subject, see §9.5.1 in this volume; for the historical 
problem, see Van der Waerden 1961, 102-104. The film has a duration of 30’, 
produced within “Project Mathematics” in 1995, in the California Institute of 
Technology, Caltech 1-70, Pasadena, CA 91 125). In the UK the Open University 
has also made a number of films about the history of mathematics, which appear 
regularly on the BBC. 

Visual means, other than movies, include posters displaying portraits of 
mathematicians, facsimiles of famous works, time charts with chronological, or 
thematic historical developments. Among the posters, ‘Magic Maths’ is a series of 
mathematical stereograms developed by J. Shanks and C. Daniel (Available from the 
authors at: Otago Maths Education Centre, Dep. of Maths and Stats, University of 
Otago, P.O. Box 56, Dunedin, New Zealand). These stereograms offer visual appeal 

Films and other visual means 
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and interest to students of all abilities and ages, hiding images which students can 
interpret and interconnect. 

7.4.12 Outdoor experiences 

The mathematics of outdoors experiences refers, among other things, to the 
identification of forms and shapes, patterns in nature, in architecture (past and 
present) and in art (§7.2, a3). Exploring historical outdoor instruments with 
students, such as navigational and surveying equipment in order to learn 
trigonometry, is another such set of experiences (Kiely 1947). The term could also 
refer to visits to museums of science which display mathematical exhibits of 
different kinds, some of which may include historical background. In the following 
we describe a unique example of an outdoors experience taken from Japanese 
culture.

The Chinese mathematical tradition inspired the development of mathematics in 
Japan. This gradually led to its regeneration in the early 17th century. Wa-San, the 
original Japanese mathematics, is to be distinguished from European or Western 
mathematics (Smith and Mikami 1914; Mikami 1913/1974; Ogura 1993; Rothman 
and Fukagawa 1998): the name Wa-San is composed of two Chinese characters: wa

meaning ‘Japan’ and 
san meaning
‘arithmetic’ or 
‘calculation’. During 
the 250 years of the 
Edo Age, many 
professional
mathematicians
established their own 
schools and developed 
original numerical 
mathematics, while the 
school system for 
laymen, called 
‘Terakoya’, spread all 
over Japan and it was 
through this type of 
school that laymen 
learned Wa-San. Since 
laymen could not afford 
to publish their 
problems and solutions, 
as was common 

Figure 7.2: If the radius of each circle is 1, what is the 
length of the rectangle’s sides? (Mitiwaki et al 1987, Ohtake practice among 
1974) mathematicians of the 

period, they posted 
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them in ‘San-Gaku’, a kind of bulletin board in the temples or shrines of several 
regions, until about 80 years ago. 

Many of these problems can be solved by modem college, or even secondary 
school, mathematics, but at that time they were solved numerically. Figure 7.2 
shows such a problem on a ‘San-Gaku’.

Some of these materials are still preserved, and published also in English 
(Fukagawa and Pedoe, 1989, Fukagawa and Sokolowsky in press). In the Gunma 
prefecture in Japan there are 74 such bulletin boards. High school mathematics 
clubs tour these sites during summer vacations, or holidays and report on their 
investigations at their school cultural festival (Okada 1957, 1975, Ohtake 1974). 
The problems and their answers are usually provided by the board, but the solution 
process usually is missing, or it is very sketchy. Thus, student activities consist of 
understanding the problem, re-creating a solution procedure and checking their 
answers with those provided by the bulletin board (§7.2, al). The student methods 
are very different from those used by the problem authors, since they apply modem 
western mathematics to solve them. Nevertheless students still have to decipher the 
statement and the solution of the problem given in the board (§7.2, c5). By having in 
mind that these problems and their solutions were the creation of ordinary people, 
students not only exercise problem solving, but they also may have an opportunity to 
demystify the subject, and to connect it to popular cultural practices (§7.2, e3). 

7.4.13 The WWW 

The World Wide Web (Internet) can help the integration of history in mathematics 
education in at least two ways: as a resource, and as a means of communication. 
The resource aspect is dealt with quite fully in §10.3 below; here we focus on the 
communication dimension, with an example from Israel of how the Internet can be 
used to deliver and support entire courses. 

Zehavi (1 999) has implemented a course for in-service teachers on the history of 
negative numbers, based on the materials developed in the Weizmann Institute (for a 
description of the materials see Arcavi et al. 1982), taking advantage of the 
hypertext facilities to explore links according to the user’s decision. The course is 
restricted (by means of a personal password) to those teachers enrolled. Access to 
an outline of the 10 chapters of the course is possible at 

After a first face to face meeting, participants work from their homes, they answer 
the questions from the materials, receive comments and after a certain date, full 
answers are provided by the course administrators and made available to the 
participants through the web. As well as being part of an electronic forum for 
discussion of issues, raised by the learning materials and reflecting on the answers 
by their peers, teachers are provided with an email address for technical support. 
Such courses demand a heavy administration, but at the same time, allow the regular 
updating of materials online and attention to many individual needs. 

http://www.weizmann.ac.il/sci-tea/math/open.htm.
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Historical support for particular subjects 

Man-Keung Siu 

with Giorgio T. Bagni, Carlos Correia de Sa, Gail FitzSimons, Chun Ip 
Fung, Hélène Gispert, Torkil Heiede, Wann-Sheng Horng, Victor Katz, 
Manfred Kronfellner, Marysa Krysinska, Ewa Lakoma, David Lingard, João 
Pitombeira de Carvalho, Michel Rodriguez, Maggy Schneider, Constantinos 
Tzanakis, Dian Zhou Zhang 

Abstract: This chapter provides further specific examples of using historical mathematics in 
the classroom, both to support and illustrate the arguments in chapter 7, and to indicate the 
ways in which the teaching of particular subjects may be supported by the integration of 
historical resources. 

8.1 Introduction 

Some of the ways in which history of mathematics can help mathematics students, 
teachers and researchers were examined in the previous chapter. Reasons were put 
forward for concluding that history can help us to 
(i) grasp more profoundly the meaning of concepts, theories, methods and proofs 

in mathematics; 
(ii) identify crucial steps, difficulties and obstacles in the evolution of a subject; 
(iii) organise teaching better and provide motivation for the study of a subject; 
(iv) build up a reservoir of examples, problems and alternative viewpoints about a 

subject;
(v) appreciate mathematics better as a creative process; 
(vi) see mathematics as a human endeavour which is related to other human 

activities;
(vii) maintain an open and humane attitude towards the study of mathematics. 
Many examples were given to illustrate various ways of implementing the 
integration of history of mathematics with mathematics teaching in mathematics 
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education. While these many examples are certainly illustrative and useful, they are 
by design, in order to illustrate a wide range of implementations, a potpourri with 
only sketchy descriptions. In this chapter we will offer a further list of selected 
examples from classroom teaching experience, to be accompanied by discussion 
more detailed than could be afforded in chapter 7. 

To help readers better orientate their attention and interests we discuss these 
examples against the background of a three-dimensional framework: 
1. the level of the curriculum, which in most countries has a tripartite layering, 

from primary or elementary school (from age 6 to 12) to secondary or high 
school (from age 12 to 18) up to university or college (from age 18 and 
beyond);

2. the mathematical topic within the curriculum, such as algebra, geometry, 
analysis, probability theory, etc.; 

3. the ways by which history of mathematics is integrated with mathematics 
teaching in mathematics education. 

Clearly, a historical example will not often have a set of clear-cut coordinates in this 
three-dimensional framework. The same topic may be presented at different levels 
(often to different depth) or with the historical content integrated in different ways, 
and the same example may involve different areas of mathematics. In fact, as we 
witness time and again in history, many instances of mathematical development 
arose from or resulted in the fruitful marriage of different areas of mathematics. 
Thus, readers are requested to regard this framework only as a rough schematic tool 
in a broad sense rather than as a strict compartmentalisation. One example (§8.4.7) 
is even selected to display how the same piece of historical material can be used at 
different levels in different subject areas for different purposes. 

Of course, there are as many different ways to integrate history of mathematics 
into classroom teaching as there are teachers. Different teachers have different 
styles, hold different beliefs and place emphasis on different aspects, despite the fact 
that they all agree on the value of history of mathematics—and even on this point 
teachers may differ in their conception of what history means, not to mention the 
different views a historian of mathematics, a mathematician and a mathematics 
teacher may adopt on this issue! This is natural and not a bad thing: variety implies 
richness, which when gathered under combined effort will yield a fuller vista. 
Hence, instead of attempting to tailor the variety of examples contributed by 
different authors into one uniform mould, we prefer to retain the individual style and 
emphasis, while grouping the examples into a more structured whole in a format 
closely related to the general directions and emphases given in section 7.2 and 7.3 of 
chapter 7. Name(s) of contributing author(s) are attached to each section. 

Section 8.2 consists of examples of teaching specific topics in which history of 
mathematics inspires the whole structure of the teaching. Section 8.3 includes 
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examples that unfold the evolving nature of mathematics, both in content and in 
form, as well as to present (some small piece of) mathematics in the context of
different cultures. Section 8.4 treats some specific examples from various areas of 
mathematics and levels of the curriculum. Finally, section 8.5 highlights the social 
and cultural aspects of mathematics in a broad sense. Readers are requested not to 
interpret this structure too inflexibly-sometimes examples in one section can
equally be placed in another. Certainly such a small list of examples can hardly do 
justice to the wide variety of possible ways of integrating history in teaching and 
learning mathematics. But we hope to exhibit a wide coverage so as to stimulate 
other teachers across the world to think of more examples and to make available 
further didactical source material. 

This chapter, then, is both supplementary and complementary to chapter 7: 
supplementary in the sense that it provides further specific examples to support the 
arguments presented there; complementary in that the historical dimension of 
teaching, as illustrated mainly through the content of these examples, complements 
the practical implementations described in section 7.4 of chapter 7. With this in 
mind, we present the examples for the convenience of the reader by giving clearly 
marked references to relevant sections in chapter 7 in bold face such as 7.2.c2.

8.2 Teaching projects inspired by history 

8.2.1

Marysa Krysinska, with the collaboration of Christiane Hauchart 

Where history inspires the presentation of mathematics, there can be a global 
reorganisation of the conventional, deductively organised teaching approach (7.3.2).
The two examples which follow are taken from the Belgian teaching project De
Question en Question (DQQ), which led to a series of textbooks with the same title 
for the first 4 years of high school (Thomas-Van Dieren and Rouche 1993; GEM 
1996). In these textbooks the teaching approach is heuristic, in this sense: a 
sequence of problems and problem-situations is given, on the basis of which new 
concepts are progressively constructed, in order to solve a problem or to provide a 
proof. The foundational questions and their answers appear at the end, in contrast 
with conventional textbooks. In elaborating these textbooks, history played a 
dominant role. 

Negative numbers 

Negative numbers appear in the project in the context of several models, like gain 
and loss, debt and credit, stairs up and down. Above all, they are used for locating 
the points on a straight line. Their addition is introduced by means of 

Examples from algebra and analysis 
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– two graded rulers, sliding along each other, thus providing a mechanical device 
for addition; 

– successive movements of the rulers forward and backward on the number line, 
when the numbers to be added exceed the gradation of the rulers. 

In history, the multiplication of negative numbers constituted a very important 
epistemological obstacle (7.2.c2). Today’s students share in experiencing such 
obstacles. In the DQQ textbook, after it is noticed that the intuitive models which 
work for the addition of negative numbers do not work for their multiplication, the 
multiplication of negatives is introduced by trying to extend the multiplication table 
of positive numbers to negative ones and conserving the observed regularities. This 
is done by introducing, first the multiplication of a positive number by a negative 
one, and then the multiplication of two negative numbers. In the first case, 
multiplication of a positive number by a negative one is expressed by the succession 
of two geometric transformations. For instance, multiplication by (-2) means, to 
take the opposite and to multiply by 2, or the reverse. In the second case, the 
product of two negative numbers is found by extending geometrically a linear 
function table, e.g. (3,-6), (2,-4), (1,-2), to negative values of x; that is, in our 
example, by computing y = -2x for negative values ofx.

History suggests that the conceptual extension from positive to negative numbers 
is facilitated (7.2.a1) in the context of analytical geometry. Freudenthal (1 983) 
observed that mathematicians who applied Descartes’ method could no longer avoid 
allowing the letters to take negative values. If straight lines are to be described 
algebraically in their totality, or curves described algebraically in all cases, negative 
values of the variables must necessarily be admitted. 

Functions

Functions appear as a means to give a model of phenomena in various contexts. For 
instance, in the DQQ textbook a model of the dependence of the stopping distance of 
a car on its velocity v is given. From a data table, we observe first that the stopping 
distance is a sum of the “thinking distance” dT and the “braking distance” dB. We
represent the data graphically by vertical sticks, in the manner of Nicole Oresme 
(Calinger 1995, 253-260; Clagett 1959, Ch.6]. This representation suggests the laws 
of dependence: the dT-graph is a straight line, while the dB-graph looks like a
parabola; after this, we verify in the tables that dT /v and dB /v2 are constant.

This teaching approach takes into account the following historical facts: 
– Proportionality, ratio conservation and linearity are fundamental concepts which 

can lead to the discovery of non-linearity (Freudenthal 1983) 
– Historically, the study of motion has been closely related to the emergence of the 

function concept, and more generally, to the development of analysis (Boyer 
1959, Chaps 4,5). In the DQQ project this favourable relation is preserved (7. 
2.a1).

– The representation of functions by the use of vertical sticks (cf. Oresme) makes 
algebraic operations with functions easier. The representation of any magnitude 
f(x) (length, area, volume, time, etc) by a line segment seems to support the 
function concept (Souffrin and Weiss) (7.2.a1).
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– In contrast with the usual teaching approach to analysis (in which the function 
concept, in its abstract form as a relation, is introduced right from the 
beginning), distinguishing the independent from the dependent variable leads to 
the less general, but more intuitive, conception of a function as a rule by which 
the second is expressed in terms of the first (7.4.6(ii) and references therein).
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8.2.2 A heuristic introduction to analysis implicitly inspired by its 
historical development 

Maggy Schneider 

The following is an outline of examples taken from the Belgian teaching project 
Approche Heuristique de l’Analyse done by the Groupe AHA (consisting of P. 
Bolly, A. Chevalier, M. Citta, C. Hauchart, M. Krysinska, D. Legrand, N. Rouche, 
M. Schneider ) (Groupe AHA 1999), concerning the last two years of high school 
and in which history inspires the presentation (7.3.2). 

An introduction to the concept of the instantaneous rate of change of a quantity 

This introduction is based on the study of problems like this: 

A pump is filling up a conical vase with an angle 90° at the vertex, in such a way that the 
level h of the water increases by 1 cm per minute. At what stage does the flow of the pump 
reach 100 cm3/min?

This problem motivates students to test the applicability of the concept of a 
steady flow, and to lead them gradually to understand that the flow is continuously 
increasing. Hence, they begin to understand that it is necessary to cut the time into 
smaller and smaller intervals. With more working they may come to see that this 
problem leads to the idea of a new calculus (putting ∆t = 0 in the expression for the
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average flow of water in the interval [t, t + ∆t]) and the physically intuitive assertion
(correct if numerically h = t) that the flow is 100cm3/min when the cross-section of 
the vase is 100cm2. Finally, in order to help the students overcome their uneasiness 
about the boldness of this new calculus, and their hesitation to accept the concept of 
instantaneous flow, a thought experiment is proposed (based on a reformulation of 
the intuitive assertion above, adaptable to the case h is different from t), which may 
convince them that the result obtained in this way is exact. It consists of a 
comparison of the flow in a conical vase with a steady flow in a cylinder, in 
particular cases. Epistemological and didactic aspects of this problem are analysed 
in Schneider 1992. 

The concept of a tangent line 

The concept of a tangent line is originally studied separately from the concept of 
velocity. Calculations of lines tangent to polynomial functions, obtained by linear 
approximations, challenge the intuitive geometric idea that students have for a 
tangent line, namely a straight line intersecting the curve as a whole only at this 
point. Subsequently, the connection between linear approximations and differential 
quotients is established by the formal similarity of the results obtained from two 
problems, one about velocities and another about tangents. The instantaneous 
velocity and the slope of a tangent, though a priori conceptually different, appear 
henceforth as two aspects of the same concept. Then, the calculation of 
instantaneous rates of change helps the determination of the slope of tangents to the 
graph of non-polynomial functions, without using a linear approximation (for details 
see Grand’Henry-Krysinska and Hauchart 1993). 

The limit concept 

One gets closer to the concept of the limit in order to prove that an infinite filling 
yields an exact result for a curvilinear area or a volume. This can be seen, for 
example, when one fills up the area under y=x3 from x=0 to x= 1 using
rectangles. The sum of the area of n circumscribed rectangles gives the sequence 
(1+2/n+l/n2)/4. The sum of the area of n - 1 inscribed rectangles gives the

sequence (1-2/n+1/n2)/4. These two sequences have the same limit 1/4. 
However, not all students are convinced that this limit is the exact area sought. 
Hence, it is interesting to propose a proof, on the basis of which aspects of the 
abstract concept of a limit are built up. Suppose that this area is bounded above and 
below by the two given sums above. Therefore, the area under y = x3 cannot equal

1/4 + ε with ε as small as we like, for by subdividing the interval into a sufficiently
large number of segments, we may make the sum of the area of circumscribed 
rectangles to be between 1/4 and 1/4 + ε. Hence the area sought is larger than one
of its approximations from above, which is a contradiction. Similarly, the area 
cannot be equal to 1/4 - ε.

As shown in Schneider 1988, such a proof prepares the way to the (ε, N)
formulation of the concept of the limit of a sequence. For example, the quantifiers 
Vand 3and the traditional way in which they are put forward (∀ ... ∃...), appear as
a kind of ‘watermark’ in this proof. Namely, on the one hand, one has to verify 
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inequalities whatever the value of ε. On the other hand, the contradiction appearing
in this proof follows already from the existence of a value of n fulfilling a given 
condition. Of course, the limit concept is constructed here only in an implicit and 
sketchy way. But actually, this proof is based on the possibility of finally getting the 
term of each sequence above as close as one wishes to 1/4 Thus, it leads the 
students to appreciate the technical role to be played later by the abstract rigorous 
formulation of the limit concept. 

In several respects, this approach is inspired by history (7.3.2):
– Order and choice of topics (7.2.a1). The concepts (velocities, tangents, areas 

and volumes) are first introduced in physical and geometrical contexts without 
any a priori connection between each other. This connection is gradually made 
evident: slopes of tangents and velocities are two aspects of the derivative 
concept; area and volume calculations appear later as the reverse procedure of 
the computation of derivatives. Finally, the general relationship between these 
problems is established through the rigorous formulation of the limit concept. 
Studying the properties of this concept, one is led to sharpen the nature of the 
numbers used. 

– The evolutionmy nature of the form of mathematics (7.2.b2). In the project, 
limits are first defined as results obtained by cancelling terms with At or 1/n as 
was done in the 17th century. At the end of the project, limits are defined in 
terms of ‘‘ε, δ”.

The evolutionary nature of mathematical research activity (7.2.b1). The initial 
motivation is the solution of problems. In this way, the new calculus, though not 
a rigorously founded method, is nevertheless a powerful tool, which produces 
new results. And then the new method is validated by thought experiments for 
velocities and linear approximations for tangents. Later, concepts of the final 
(rigorous) theory are proof-generated concepts (in the sense of Lakatos 1976, 
Appendices 1, 2), that is, concepts mathematically sharpened in order to meet 
the requirements of a rigorous proof. 

– Epistemological obstacles (7.2.c2). This approach takes into account difficulties 
encountered by mathematicians in the past, and by students today (even after a 
first course in analysis). For example, some students seem unwilling to accept 
the concept of an instantaneous rate of change of a quantity, feeling rather that to 
obtain a flow, it is necessary that a small volume remains. Others are sceptical 
about calculating the exact value of a curvilinear area by cancelling terms in the 
sum of areas of rectangles, because their conception of a limit rests on their 
visual perception of magnitudes, where rectangles have to be gradually narrowed 
until they become real line segments (Schneider 1988). 

– Intellectual style of classical works (7.2.c4). Newton’s kinematic arguments 
have inspired this approach: the idea of variation, hence the idea of a differential 
quotient, was originally introduced more easily in terms of velocity than in terms 

–
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of the tangent concept. Other problems leading to the Fundamental Theorem of 
Calculus are also inspired by Newton’s kinematic arguments. The proof by 
reductio ad absurdum described above is inspired by the ancient Greek 
exhaustion method. 
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8.2.3

Eva Lakoma 

In the past 20 years, there has been a continuous evolution of ideas on the nature of 
mathematics and its teaching and learning. Instead of simply transmitting the 
definitions of basic concepts, presenting the formal structure of mathematical 
theories and giving some straightforward applications, it is now accepted that 
mathematics teaching at all educational levels should also stimulate students’ 
interest and promote their abilities to use mathematics as a language for 
communicating and describing mental, physical, or social phenomena. This point of 
view, however, requires that mathematics teaching must take into account the actual 
cognitive development of the students (cf. Freudenthal 1983; Sierpinska 1994, 
1996). Just to supply a simpler version of already-made mathematics is insufficient 
to provide a didactical approach compatible with the above-mentioned point of view 
(7.1, 7.2). This point is especially important in the domain of stochastics (as we call 
probability theory and statistics). Probabilistic concepts cannot be understood in 
depth by simply giving their logical connections to other concepts and their place in 
modern probability theory, founded for instance on Kolmogorov’s axioms, which 
are too abstract to be understood by students. Didactically, a heuristic (non-
axiomatic) approach is needed, which presents stochastics as a live part of 
mathematics, making possible the solution of real problems by describing real 
situations on the basis of simple models which have a great explanatory value 
(Lakoma 1990). 

How may history help the teaching of probabilistic concepts? 
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Figure 8. 1 The ‘cup of probability’ points at the historical development of the dual 
probability concept. On the left side are the mental objects that correspond with the 
aleatory aspect, on the right side the epistemological nature of probability is 
represented. Before 1660 the two aspects existed independently, from Pascal’s time on 
they join, leading to the 20th century foundation through the notion of independence 
and Kolmogorov ’s axioms. 

A knowledge of the ways by which probabilistic thinking naturally appears and 
of the peculiarities of understanding probabilistic concepts is extremely desirable. 
In this kind of educational research, it is very helpful, and turns out to be fruitful, to 
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take into account the historical development of this domain (Lakoma 1999a). 
Giving a historical perspective to the teaching of stochastics is helpful, not only for 
exploring and understanding the student’s ways of probabilistic thinking (7.2.a1),
but also for inspiring the design of a teaching approach to stochastics, the Local 
Models Approach (LMA), which takes into account the student’s actual cognitive 
abilities (Lakoma 1990; 1996; 1998; 1999b; 1999c; 7.2.c2 and 7.3.2).

An analysis of the historical phenomenology of probabilistic concepts led to the 
following conclusions that have been taken into account in the LMA (Lakoma 
1990).

(a) The concept of probability has a dual nature 

(i) an epistemological aspect, implied by the general state of our knowledge of a 
given phenomenon. It is related to the degree of our belief, conviction or confidence 
on an argument concerning this phenomenon, and which is supported by this 
argument.

(ii) an aleatory aspect, related to the physical structure of the random 
mechanisms under consideration and with their tendency to produce stable relative 
frequencies of events (for the historical analysis see Hacking 1975). 

The “chance calculus” is based on (i) and the “frequency calculus” on (ii). 
History shows that a necessary condition for understanding probability is to make 
explicit its dual nature. The analysis of original or reconstructed probabilistic 
reasonings shows (Hacking 1975; Lakoma 1992) that from Pascal’s era onwards, 
both these aspects are inseparable, affecting each other deeply. This analysis 
suggests that emphasising only one of these aspects, or treating them separately in 
teaching, prevents students’ understanding of the fundamentally dual nature of the 
probability concept. Also see figure 8.1 for a schematic representation of the 
historical development of the concept of probability. 

(b) There is an interplay between the concepts of probability and of expectation 

Development of the dual nature of probability goes in parallel with the emergence 
and establishment of the concept of expectation (expected value). This appears 
already in the pre-Pascal period in both the probabilistic reasonings used and the 
content of the problems studied, which were focused on the estimation of chances 
for winning in a game or on the distribution of a stake, naturally anticipating the 
notion of expectation. In a more sophisticated form, expectation appears around 
1660 in the reasoning of Pascal and Huygens, who also appreciated the dual nature 
of the probability concept (Freudenthal 1980; Hacking 1975; Todhunter 1865). 
Apparently, the emergence of the concept of expectation and its careful distinction 
from probability made probability calculus more understandable and clear for many 
people in the past, thus enhancing its development. Therefore, didactically, 
probability and expectation can and should be introduced and developed in parallel, 
while always keeping in mind that it is necessary to distinguish and contrast them; 
e.g. one may consider probabilistic problems in connection with answering not only 
the question “How often?” but also the question “Is it worthwhile” 
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(c) Local models are useful 

Historically, the probability concept emerged through the solution of concrete 
problems, arising from the needs of everyday life. In order to solve them, people 
tried to observe the random phenomenon from which the problem arose, to discover 
some (if any) of its regularities and to develop arguments sufficient for providing 
conclusions related to the answer to the problem. These activities were connected 
with a theoretical modelling of the random phenomenon, which emphasised some of 
its features, neglecting others as less important. The conclusions drawn from such 
models were not considered as absolute, but were tested in practice, confirming or 
questioning the validity of the model. Hence, the natural activities on which 
learning probabilistic concepts could be based is the determination, formulation and 
search for solution of concrete problems, according to the scheme (1) discovery of 
the problem; (2) formulation of the problem; (3) construction of a model 
representing the real phenomenon under consideration; (4) analysis of the model; ( 5 )
comparison of the results obtained with the real situation. Originally, students build 
models, adequate only for concrete random phenomena and having an explanatory 
value, which may be called local models. At a more advanced level, these models 
become mathematically more sophisticated and general, appropriate for the 
description of a whole class of phenomena. 

(d) Problems with a finite and infinite probability space should be presented 

All the old probabilistic problems considered in the pre-Pascal era could be 
described in modem terminology in terms of a finite probability space. The problem 
of ‘waiting for the first success’ (one of the simplest problems described by an 
infinite probability space) appeared originally in Huygens’s De ratiociniis in ludo 
aleae (1657) (Hacking 1975, Ch.11). Why was such a natural problem posed so 
late? The answer seems to be connected with the establishment of the dual nature of 
the probability concept, and the emergence of the concept of expectation. It is 
worthwhile to notice that the first attempt to solve this problem went back to 
Cardano’s De ludo aleae (ca. 1550) (Hacking 1975, Ch. 6), who anticipated this dual 
nature and the concept of expectation. By means of such examples involving 
infinite probability spaces, it may be possible to help students realise this dual nature 
of the probability concept. Accordingly, in teaching probability, it would be good 
not only to present problems formulated in finite probability spaces, but also 
problems in infinite probability spaces, which are naturally stimulating for the 
students and which can be solved by methods that take into account the student’s 
actual level of cognitive development. 

The conclusions (a)-(d) have been taken into account at secondary school level 
in several cases which have been carefully analysed (Lakoma 1990; 1998), 
suggesting that the LMA teaching strategy has a positive effect at this level. 
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8.2.4

Victor Katz 

Most modem trigonometry texts begin the subject by defining the basic 
trigonometric ratios, calculating these ratios using some elementary geometry for 30, 
45, and 60 degrees, and then assume that students will use calculators to find the 
trigonometric ratios for any other value. Students are thus led to believe that their 
calculators are “magic boxes’’ with little people inside measuring sides of triangles. 
Furthermore, when the half angle, sum, and difference formulas are derived, 
students wonder what their purpose is. 

It is much more natural to adapt the original order of treatment of Ptolemy (or 
even Copernicus) and develop the subject in a manner inspired by history (Aaboe 
1964, Ch.4; 7.3.2). That is not to say that one should work with chords. There are 

Trigonometry in the historical order 
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good reasons for using sines (and cosines and tangents). But given the definition of 
a trigonometric ratio, one can use geometry to determine these values, not only for 
30,45, and 60 degrees, but also for angles of 18, 36, 54, and 72 degrees. The initial 
goal of the course is, then, to calculate, at least in principle, the values of sine, 
cosine, and tangent for every integral-valued angle from 1 to 90 degrees. So one 
derives the half angle and difference formulas and uses them to calculate. Students 
will soon realise that it is not possible to calculate the sine of 1 degree exactly, 
however. (Teachers may well want to relate this impossibility to the question of 
trisecting an angle (7.2.a3).) However, if students notice that the sine function is 
essentially linear for small values, one can then approximate the sine of 1 degree to a 
reasonable level of accuracy and then use the sum formulas to calculate in principle 
the sine (and cosine and tangent) of any angle of an integral number of degrees. 
(Again, the linearity of the sine function for small values is an important idea for 
later use.) With the trigonometric tables now calculated, one can use them to solve 
triangles of various types. In particular, another goal of the trigonometry course, 
again one based on history, should be to solve spherical triangles as well as plane 
triangles. After all, the major use of trigonometry, from the time of its invention, 
was to solve spherical triangles related to astronomy. Such questions still prove to 
be of great interest to students. (See relevant chapters in (Katz 1998) for a more 
detailed account.) 
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8.3 Cultural aspects of mathematics in a historical 
perspective

8.3.1

8.3.1.1 Counting and symbol systems 

Gail FitzSimons 

Historical support is valuable for students of all ages; not least, adults seeking to 
develop their numeracy skills. For instance, it is usually fascinating for mature-age
students to reflect on the number system currently used. Where did the digits come 
from? How have they evolved? What about zero? What brought about the change 
from Roman numerals? What is the history of the evolution of symbols indicating 
the decimal point, percentage, basic operations, index numbers etc? What is the 

Number systems and their representations 
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history of vulgar (common) fractions? What about the term “vinculum”? What 
about counting systems in non-European cultures: finger reckoning (e.g. Smith 
1958), body counting systems (e.g. Bishop 1995), etc? Such questions (generated 
by teachers or students) may lead to the realisation that mathematics as we know it 
was not always there, and that there is a historical necessity across different cultures 

in the creation of 
mathematical
solutions to 
mankind’s
challenges and 
problems (7.2.e).
Smith 1958 
provides an 
excellent resource 
for teachers, both 
in text and in 
illustrations.

From counting 
systems it is but a 
short step to 
representations in 
the form of 
calendars:
“probably the idea 
of applying the 
syntax of causal 
and temporal 

chaining to arithmetic and geometry was the origin of mathematics as we know it” 
(Schweiger 1994, 300). Much work has been done on the history of calendars, yet 
inspection of an Australian Aboriginal calendar of the seasons (figure 8.2), for 
example, will illustrate a totally different world view (FitzSimons 1992). 
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8.3.1.2 A Babylonian tablet

Torkil Heiede
Based on an Old Babylonian tablet of around 1700 BC, the following is an example 
of how it is possible to help students—at all levels of education—to discover for 

Figure 8.3: A Babylonian tablet, object of study for the mathematics class 

themselves with minimal guidance how to read some ancient numerals, understand 
an ancient number system and find traces of this number system in their everyday 
experience.

Figure 8.3 (reproduced from and discussed in Aaboe 1964, 6-10) shows the 
obverse (O) and reverse (R) of the tablet, with writing consisting of combinations of 
just two symbols, a vertical wedge (vw) and a corner wedge (cw). The signs in the 
left-hand column (Col. I) of the first nine lines on O may be read as the numbers 
from 1 to 9, since they consist of one to nine vw (grouped in threes for easy 
reading). In the next line they see a cw, naturally read as 10, especially since the 
entries in the last four lines on the O and the first four lines on R can then be read as 
the numbers from 11 to 18. The students can be told that, to read R, the tablet is 
turned 180° around its lower edge. The next line in Col. I on R ought to show 19, 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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and it does, but with a special sign (the usual sign is the one expected by the 
students). This is supported by the fact that the signs on the next four lines can 
easily be interpreted as 20, 30, 40, 50, respectively. Only multiples of 10 are shown, 
but it is easy to guess that e.g. 27 would be written by combining the signs for 20 
and 7. 

With all this in mind, the students can now turn to the right-hand column (Col. 
11). The first six lines on 0 can easily be read as 9, 18, 27, 36, 45, 54, and students 
guess that the tablet is a multiplication table for 9. Hence, the following lines on O 
should say: 63, 72, 81, 90, 99, 108, 117, 126; but what the students find is something 
looking like 1,3; 1,12; 1,21; 1,30; 1,39; 1,48; 1,57; 2,6. This makes sense if the 
digits to the left of the commas are interpreted as 1×60 and 2×60 respectively (e.g. 
1,48 means 1×60+48=108 = 12×9 which stands in Col. II against 12 in Col. I). Then 
all (except the last) lines on R can be similarly interpreted (e.g. 2,33 corresponds to 
2×60+33=153=17×9 standing against 17 in Col. I) and the tablet gives all multiples 
of 9 from 1×9 to 59×9 by combining different entries (e.g. 27×9=20×9+7×9). But 
what about 60×9? A bright student might point out that, as a vw can mean 1×60 as 
well as 1, we can go back to the first line of the 0 and find 60×9 in Col. II as 9 
which can be understood as 9×60=540, standing against 1 in Col. I which is now 
read as 1x60. Moreover, the entry in the second line of Col. I can be read as 
2×60=120, and the entry in Col. II as 18×60=1080 which is precisely 120×9, and so 
on throughout the whole tablet. Then by returning to the beginning once more and 
interpreting 1 as 1 ×602, 2 as 2×602, and so forth, the tablet can be used eventually to 
find all multiples of 9! The students will observe that everything is expressed in a 
position system just like ours, based on 60 rather than 10. In our system we must 
memorise ten different symbols for the numbers from 0 to 9, but it would be much 
harder to memorise fifty-nine different symbols for the numbers from 1 to 59. It is 
remarkable that the Babylonians managed with just two symbols, the vw and the cw, 
and using the second for 10 as a sort of auxiliary base (probably they had inherited 
this from an earlier repetitive system based on 10). 

But there is even more to be said: just as we can express common fractions as 
(finite or infinite) decimal fractions in base 10, the Babylonians could also 
understand their vw as 1/60, 1/602, ... and thereby express common fractions as 
sexagesimal fractions (e.g. 1,15,20 could mean 1 +1 5/60+20/602). However, the 
system was complicated by the absence of a sexagesimal ‘point’ and the meaning of 
the text had to be deduced from the context (in our transcription we put a semicolon 
to distinguish e.g. 1 ; 15,20 = 1 +23/90 from 1,15;20 = 75+1/3). There was no symbol 
for zero (until very late in their history) so that 1,15;20 could also mean 1,0,15;20 = 
3615+1/3. They tried to compensate for both weaknesses by appropriate spacing 
(e.g. in Col. II, seventh line on the 0, four vw should be read, not as 4 but as 1,3 = 
1×60+3 = 63). It is also clear that Babylonian scribes must have had tablets with 
other multiplication tables. This explains the mysterious last line on R of our tablet; 
it is simply a sort of heading for the next tablet in the set. 

(i)

What can be gained by exposing students to such a discovery procedure? 
By coming to understand a number system completely different from ours, 
they may be able to appreciate that the same thoughts and insights can be 
expressed in very different but equally valid ways (7.2.c5,7.2.d2,7.2.e3).
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(ii) They may thereby come to understand our own number system better and 
wonder where it comes from (7.2.b2).

(iii) They may get a sense of the history of mathematics by being led to understand 
that our subdivisions of the time and angle units are reminiscences of this 4000 
year-old number system, passed on to us through ancient Greek astronomers. 

(iv) Last but not least, one should mention the pure joy of discovery (7.2.el).
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8.3.1.3 Abacus in mind 

Dian Zhou Zhang 

Making history an integral part of mathematics classes for students, young and old, 
has the possibility of stimulating further research on their part. Real personal 
interest stimulates continuous questioning and non-routine branching of inquiry 
(7.2.b2; 7.2.c1). The following is an example. 

Although the calculator is very common in many primary schools in China, 
mental arithmetic is still a popular tradition. In recent times, many teachers and 
students are using ‘abacus in mind’, that is, imaginary manipulations of the abacus, 
to do the basic operations on whole numbers. This raises the question: “The 
procedure of operation with the abacus is from left to right (i.e. from higher to lower 
digits), but in the normal pencil-paper operation it is usually from right to left. 
Which way is better?” 

Some ten years ago, in the German curriculum the convention for order of 
calculating changed from ‘right to left’ to ‘left to right’, the author has been 
informed. Many Chinese mathematics educators want to unify the two systems. If 
‘abacus in mind’ is really a good way of operating, China intends to change the 
curriculum just like in Germany. In this connection, it may be helpful to clarify the 
historical aspects of the subject. The Sun zi suan jing (c. 5th century) was the 
earliest mathematical text in China in which an explicit description of the method of 
multiplication and division appeared. Multiplication was done from left to right 
(Lam and Ang 1992, §3.3). The same method was later employed in the Islamic 
mathematical world. But in the earliest printed book on arithmetic in Europe, the 
Treviso Arithmetic (1478), multiplication was done from right to left (Swetz 1987). 
When and why were the rules changed? The clarification of this situation would be 
of interest in mathematics education research. These questions are within the scope 
of many schools and pre-service trainee teachers or in-service teacher, in schools of 
education.
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Open Court 

8.3.2

Wann Sheng Horng 

The so-called Pythagorean theorem has witnessed multiple discoveries over the 
course of history (7.2.e3). It has been demonstrated in different civilisations—the 
word ‘demonstrated’ rather than ‘proved’ is used here because the traditional 
meaning of a ‘proof (an English term equivalent to Greek apodeixis) is a specific 
deductive procedure leading to what is to be concluded. This can be traced back to 
Greek primary concern about methodology in order to secure the certainty of 
mathematics. For example, the Pythagorean theorem (Proposition 47 in the first 
book of Euclid’s Elements) is proved as a logical consequence of earlier 
propositions together with the five postulates and five common notions at the 
beginning of the book. It is interesting to note that the 17th century English 
philosopher Thomas Hobbes was convinced, by reading this proof, of the claim that 
certainty of knowledge is attainable through mathematics (7.2.e) (Siu 1990). 

However, the teacher should not regard the Euclidean demonstration as the only 
legitimate approach to this proposition in the classroom, especially since 
multicultural concerns are now an issue of mathematics education. In fact, ancient 
mathematicians in both China and India usually used some other approaches to 
explain why their formulas or algorithms work (see Siu 1993). For example, the 
term upapatti, which appears often in ancient Indian mathematical texts, bears a 
meaning close to ‘convincing demonstration’. Two arguments were associated with 

the upapatti in Bhaskaracharya’s 
(b.1114 AD) Bijaganita (Joseph
1994). Modem versions of these 
two demonstrations for the 
Indian ‘Pythagorean theorem’ 
are as follows: 
1. Since triangles CDB, 

ADC and ACB are 
similar, a/c = d/a implies

The Pythagorean theorem in different cultures 

Figure 8.4 
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d = a2 /c and b/c = e/b, implies e = b2 /c respectively. Therefore, c = d+e = (a2

+b2 )/c, and so c2 = a2 +b2 (see figure 8.4). 

Figure 8.5 

2. Let ya = c, bhuja = a and kotti =
b, then c2 = (b-a)2 +4.½ab = a2

+b2 (see figure 8.5). 
According to Saraswati Amma 
(1979, 3), the Indian upapatti is 
different from Greek apodeixis:

There was an important difference 
between the Indian proofs and their 
Greek counterparts. The Indian’s aim 
was not to build up an edifice of 
geometry on a few self-evident axioms, 
but to convince the intelligent student 
of the validity of the theorem so that 
visual demonstration was quite an 
accepted form of proof. This leads us 
to another characteristic of Indian 

mathematics which makes it differ profoundly from Greek mathematics. Knowledge for its 
own sake did not appeal to the Indian mind. Every discipline (sastra) must have a purpose. 

To teachers sharing multicultural concerns the first of these Indian approaches to the 
Pythagorean theorem is of particular interest, since a similar method is also found in 
ancient Chinese mathematics. The third century Chinese mathematicians Zhao 
Shuang and Liu Hui gave their commentaries to the Zhou Bi Suan Jing (The
mathematical canon of the gnomon of Zhou) and the Jiu Zhang Suan Shu (Nine
chapters on the mathematical art) respectively. In showing how the ‘Pythagorean 
theorem’ works, both of them present visual demonstrations similar to that of 
Bhaskaracharya. The Chinese ‘Pythagorean theorem’ was related to the treatment of 
the so-called Gou Gu problem, namely, given two sides of a right-angled triangle, to 
find the third side. Note that literally Gou and Gu denote the least and the medium 
side respectively. It is due to this fact that the Pythagorean theorem is also called the 
Gou Gu theorem in Chinese mathematics textbooks (see Swetz and Kao 1977). 

Let us first see how Zhao Shuang commented on the Gou Gu problem and its 
solution in his commentary to the Zhou Bi Suan Jing (Cullen 1995, 83): 

The base and altitude are each multiplied by themselves. Add to make the hypotenuse area. 
Divide this to open the square, and this is the hypotenuse. In accordance with the hypotenuse 
diagram [‘Xian Tu’, see figure 8.61. You may further multiply the base and altitude together 
two of the red areas. Double this to make four of the red areas. Multiply the difference of the 
base and altitude by itself to make central yellow area. If [one such] difference area is added 
[to the four red areas], the hypotenuse area is completed. 
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We leave to the 
reader to translate Zhao 
Shuang’s demonstration 
into modem algebraic 
notation. Essentially it 
is very similar to that of 
Bhaskaracharya. We 
can add one similar 
example, namely, Liu 
Hui’s explanation of 
how the algorithm for 
the Gou Gu problem
works. In his commen-
tary to Chapter Nine 
(entitled ‘Gou Gu’) of 
Jiu Zhang Suan Shu, 
Liu Hui explained as 
follows (Martzloff 
1997,296):

Base-squared makes the 
red square, leg-squared
makes the azure square. 
Let the Out-In mutual 
patching [technique] [be] 
applied according to the 
categories to which [these 
pieces] belong by taking 
advantage of the fact that 
what remains does not 
move and form the surface 
of the hypotenuse. 

Since Liu Hui’s original diagram had been lost by the thirteenth century, perhaps 
the rational reconstruction by the late Qing mathematician Gu Guanguang (1 799-
1862) (Figure 8.7, from (Martzloff 1997, 297) would help us understand how the 
visual demonstration was actually carried out. 

As to whether such explanation is related to the Greek sense of proof, Cullen 
comments: “It may be misleading to call Liu Hui’s “suasive explanations” by the 
same name as the rather differently directed and structured rhetorical machinery 
provided by writers such as Euclid, for which we may reasonably use the modem 
term ‘proof.” (Cullen 1995, 92). Martzloff expresses a similar point: “[T]he 
explanation of Pythagoras’ theorem may only suggest how to set about it and since 
the commentator’s excessively laconic text is clearly, on its own, not sufficient to 
reconstitute the details of the process, it follows that it is not only what the student 
will read or heard that is important but the manipulation which he will have seen the 
master undertake. The fact that these two- or three-dimensional figures of Chinese 

Figure 8.6: The ‘Xian Tu ’ diagram 
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Figure 8.7: out-in patching 

geometry often refer to actual concrete objects reinforces this interpretation.” 
(Martzloff 1997, 72). In using these different explanations in the classroom, 
teachers can use them to make contrasts, emphasising not only the methodology but 
the epistemology as well (7.2.b1, 7.2.b2, 7.2.c5). In other words, teachers should 
try to stress that to prove is not only to convince but also to enhance understanding 
(7.2.b1). After explaining what these proofs or explanations are about, the teacher 
can go on to urge students to explore their socio-cultural meaning. In this 
connection, the teacher is encouraged to introduce a critical re-evaluation of 
mathematics in different civilisations and thereby share with the students a sense of 
multiculturalism in mathematics (Nelson et al. 1993; Joseph 199 1 ; Gerdes 1994; 
7.2. e3). 

For general information on the Pythagorean Theorem, teachers may like to refer 
to Loomis 1968, in which over three hundred proofs have been collected. Teachers 
who want to introduce to the class some related ethnomathematics will find useful 
material in Gerdes 1994. Those who are critical of Eurocentrism and 
Hellenocentrism in the history of mathematics should keep in mind that 
multicultural concerns help to promote in students a flexible and open mind to 
mathematical culture of any origin. 
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8.3.3

Chun Ip Fung, João B. Pitombeira de Carvalho 

With the introduction of trigonometric ratios in the middle school or early secondary 
mathematics curriculum, students are often confronted with problems which rely on 
the notion of angle. Some students accept without question the use and availability 
of angles of elevation or depression. The activity described below helps to re-instate
for students the centrality of similar triangles in simple surveying situations. 

The Source 

According to the Chinese classic Hai Duo Suan Jing written by Liu Hui, the 
surveying of the height of distant objects could be done by the method of double 
difference. Using this method, the Chinese achieved complicated surveying of 
remote objects without the notion of angle (7.2.a2; 7.4.3). Problem 1 of the nine 
problems in the book reads (Swetz 1992, p.20: zhang and bu are ancient Chinese 
length units): 

Now for [the purpose of] looking at a sea island, erect two poles of the same height, 3 zhang
[on the ground], the distance between the front and the rear [pole] being a thousand bu.
Assume that the rear pole is aligned with the front pole. Move away 123 bu from the front 
pole and observe the peak of the island from the ground level; it is seen that the tip of the 
front pole coincides with the peak. Move backward 127 bu from the rear pole and observe the 
peak of the island from the ground level again; the tip of the back pole also coincides with the 
peak. What is the height of the island and how far is it from the pole? 

Measuring distances: Heron vs. Liu Hui 
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The activity 

Ask students to estimate the height of an island without actually going onto the 
island (7.3.2).

Target student group 

Junior secondary school students with knowledge of similar triangles, congruent 
triangles, Pythagorean theorem, and trigonometric ratios. 

The organization of the activity 

263

Step 1: Let students discuss how to do it with simple apparatus. 
Step 2: Show how the Chinese did it by calculating the area of suitably chosen 

rectangles, as explained in Yang Hui’s commentary (1275) on Liu Hui’s Hai Duo 
Suan Jing (Wu 1982). (See Example 8.4.4 for a related discussion in Greek 
mathematics.)

Step 3: Ask students to go on a field trip to estimate (in groups) the height of an 
island in a familiar community. 

Step 4: Ask students to compare their results with the data available in relevant 
agents/authorities.

Objectives of the activity: 

1. To let students appreciate that as far as solution of right triangles is concerned, 
the trigonometric ratio technique is simply a tool derived from the properties of 
similar triangles; 
To let students see that the development of mathematics does not follow a 
unique path, independent of the civilisations in which it has developed (7.2.e3,
7.2.al);
To let students see how mathematics intertwined with surveying in ancient time 
(7.2.a3,7.2.d).

The problem described above, was tackled in a different culture (namely, that of 
Hellenistic Greece) by Heron of Alexandria (1st century AD). (Heath 192 1, ii, 345; 
for his life see Drachmann 1972). It is interesting to present the problems from that 
perspective, thus implicitly stressing the cultural dimension of mathematical activity 
(7.2.e). To avoid repetition, we consider a Greek solution to the somewhat different 
problem of measuring the distance AB, when B is inaccessible from A,, e.g. because 
there is a river between A and B (as in figure 8.8). 

2.

3.

Figure 8.8: Determine the distance AB, when B is inaccessible from A 
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On the straight line BA produced, choose a point C and erect perpendiculars AD
and CE to BC. The point D is chosen to lie on BE. The points C and E are chosen 
in such a way that AC, AD and CE can be measured. Using similar triangles, we 
have that CE/AD = BC/BA. Let AB =x. Then (AC+x)/x = CE/AD. If we call 
CE/AD k, which is known, we have AC+x = kx, and thus x(k-1) = AC, and so 
x = AC/(k-1) (Katz 1998; 4.3.1). 

This solution requires a surveyor’s measuring chain (or tape) and a sighting 
instrument that can measure angles (in particular, right angles). 
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8.4 Detailed treatment of particular examples 

8.4.1

Giorgio T. Bagni 

The introduction of imaginary numbers is an important step in the high school 
mathematics curriculum (students 15-19 years old). High school students of 11 to 
14 years old are often reminded about the impossibility of calculating the square root 
of negative numbers. However, at a later stage, they are asked to accept the 
presence of ‘√-1’, named i. This inconsistency can be a source of confusion.

On the other hand, we may consider the solution of cubic equations following 
the work of Niccolo Fontana (Tartaglia, 1500-1557), Girolamo Cardano (1 50 1 -
1576), and Rafael Bombelli (1526-1 573): imaginary numbers were not introduced 
via quadratic equations, but via cubic equations, an approach having a basic 
advantage. Their solution does not take place entirely in the set of real numbers, but 
one of the final results is always real. A recent study was motivated by this fact 
(7.3.2). In this research 97 high school students (age 16-18), who did not know 

Introducing complex numbers: an experiment 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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complex numbers, were interviewed (Bagni 1997). For the equation x2 + 1 = 0, 
hence x=±i, only 2% accepted the solution, 92% rejected it and 6% did not answer. 
Afterwards, the solution of the cubic equation x3 = 15x+4, namely 

x = (2 + 1 1i)1/3+ (2 - 1 1i)1/3 so that x = (2+i) + (2-i)= 4, was accepted by 54%; 35%

rejected it and 11% did not answer. 
Under the same conditions, a similar test was then proposed to 52 students of the 

same age group, where the equations were presented in the reverse order: 41%
accepted the solution of the cubic equation (25% rejected and 34% did not answer). 
Immediately after that, the solution of the quadratic equation was accepted by 18% 
of the students, with only 66% rejecting it (16% did not answer). These 
experimental results suggest that teaching a subject by taking account of some basic 
facts in its historical development may help students to acquire a better 
understanding of it (Weil 1978; Fauvel 1990; Swetz 1995). 

References for §8.4.1
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8.4.2 Intertwining a mathematical topic with other (non-)
mathematical topics 

a Duplication of the cube 

Manfred Kronfellner 

Tasks often play an important role in mathematics teaching, as well as in preparing 
for teaching and in assessment. One strategy for introducing history would be to 
offer suitable tasks in which a traditional curriculum topic is connected with history. 
Such tasks might act as ‘kernels of crystallisation’ for some further historical 
information in order to connect these kernels, by and by, to a network-like overview 
of some steps in the historical development of mathematics (7.2.a3).

An example of such a network may be based on the problem of the duplication 
of a cube, one of the ‘three classical problems’ which have been stimulating 
mathematicians for more than two thousand years. The question of how to duplicate 

a cube—that is, the geometric construction of —was expressed by Menaechmus 
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using the proportion 1 : x = x : y = y : 2. By transforming this proportion, we get y
= x2, xy=2 so that x3 = 2. This implies that the solution x can be obtained from the
intersection of the parabola y=x2 with the hyperbola xy=2.

To find the solution, the ancient Greeks invented devices such as Plato’s 

Figure 8.9: Plato’s machine for constructing OK and OG such that 
a:OK=OK:OG=OG:2a, in which case OK is the side of the doubled cube. 

machine and Eratosthenes’ plates, see figures 8.9, 8.10 (Heath 1963; Eves 1976; 
Kaiser 1996), or they created new curves like Diocles’ cissoid, see figure 8.11. 

Figure 8.10: Eratosthenes’ plates 

In high school, the explanation of each of these machines or curves can be posed, 
independently of each other, as tasks concerning applications of similar triangles and 
proportions.
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Figure 8.11: Doubling the cube with the cissoid of Diocles 

Extensions to a historical network (see the table below): 

One possible extension is to deal with the other two classical problems as well 
(trisection of an angle, quadrature of a circle) and the ancient Greek methods to 
solve them (using further new curves such as conchoid, quadratrix, Archimedean 
spiral), or to reveal connections of this problem with musical scales (see Example 
8.4.2b following). 
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Another possibility is to elaborate on the scientific/philosophical background of 
Greek mathematics. The Greeks were not satisfied with the methods described 
above because they wanted solutions using only compasses and the straightedge. 
Why? The restriction of geometric constructions to compasses and straightedge, a 
tradition that went back to Plato and possibly earlier (Boyer 1959, 27; Wussing 
1965, 75), is reflected in the postulates of Euclid’s Elements, which formed a secure 
basis for mathematics. The need for such a basis seems to be connected not only 
with the discovery of the incommensurable magnitudes, but also with Zeno’s 
paradoxes. Among other things (in particular, criticism of the concept of motion and 
time (Boyer 1959,24; Whitrow 1980, section 4.4)), Zeno (at least implicitly) tried to 
criticise the mathematics of his period. (For Zeno’s intention, see Boyer 1959, 23-
24; Kirk et al 1983, sections 327-329.) An analysis of his famous paradoxes shows 
that application of discrete methods to infinity may cause problems: does a line 
consist of (indivisible) points (atoms)? Do points exist? Do we get these points 
when we bisect the line infinitely often? Can we make up a line out of points? 
(Struik 1967, 44) Such questions could not be answered at the time. Therefore, in 
addition and in parallel to the fact that the discovery of the irrationals produced a 
deep crisis of mathematics by showing the incompleteness of mathematical 
argumentation based exclusively on rational numbers (a view not universally 
supported by recent historians: for a new interpretation of Greek work on 
incommensurable magnitudes, see Fowler 1987; Knorr 1975), the difficulties 
revealed by Zeno’s paradoxes concerning the relation between the discrete and the 
continuous led Greek mathematicians to try to consolidate the basis of mathematics 
and to develop a secure method. 

The axiomatic method in Euclid‘s Elements —based on Plato and Aristotle— 
fulfilled this need (Eves and Newsom 1958, §2.2; Kaiser and Nobauer 1998, 18). 
The starting point of this work, the postulates, grounded it implicitly (though not 
explicitly) on constructions by compasses and straightedge: the first postulate (to 
draw a straight line through two given points) and the second postulate (to continue 
a straight line in either direction) allow the use of a straightedge; the third postulate 
(to draw a circle with a given centre and a distance) allows the use of a pair of 
compasses. This implies that all one can construct with compasses and straightedge 
is also deducible from the postulates. With the axiomatic method the 
mathematicians possessed a tool which produces indubitable results as long as the 
postulates are indubitable. Zeno’s paradoxes can already be found in school books 
as tasks, but mostly they remain isolated as an oddity; their role in the history 
outlined above is rarely explained in textbooks. 

There are also possible connections to more recent developments: besides 
Kepler’s use of conic sections in astronomy, we can cope in some sense with Galois’ 
theory which leads to the impossibility of a solution of the problem using only 
compasses and straightedge. This proof can be explained heuristically in nonlinear 
analytical geometry, when teaching the intersection of circles (compasses) and lines 
(straightedge); these intersections always lead to equations of degree 2n, but never to 
equations of degree 3; therefore cubic roots cannot be constructed with these tools. 
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A historical network based on the duplication of the cube 
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b Musical scales 

Michel Rodriguez 

All mathematics teachers in the world know that music was an integral part of 
mathematics in Greek civilisation, but few know why it was so. Though many of 
them have learned music theories and participate in musical activities, yet they have 
no idea of the close relationship between the two disciplines, except for the famous 
name of Pythagoras. The history of mathematics can help to clarify this point. 
Below we outline an activity which touches upon some of the principal 
characteristics of Greek mathematical culture, like the constructions with 
straightedge and compasses, and the theory of proportion (8.4.2a above, 8.4.4 below; 
7.2.a3; 7.2.d). 

The activity was carried out in two 3-hour sessions with 15 students (half the 
class) of a French high school 2nd class (15-16 years old). It was devised as a 
series of activity modules so that teachers can have more freedom when using them, 
in contrast to the rigidity and apparent constraints of the official curriculum. First 
we revisit the duplication of the cube. 

First Part: Problem of Delos - duplication of the cube (7.2.a2) 

1. A voyage from Eudoxus to Descartes (constructions with straightedge and 
compasses): (a) construction of line segments, areas and volumes, (b) emergence of 
unit segment, construction of the product, quotient, square root (duplication of 
square) of numbers, their geometric mean, the golden ratio etc. 

2. The central problem, the duplication of the cube: (a) research with 
straightedge and compasses, until the conjecture of the impossibility of the problem 
comes to the mind of the students (“What is the number that we want to construct?” 
Emergence of 21/3).

3. Mechanical solutions: (a) setting up in parallel the problem of finding the 
double mean proportional, (b) presentation of Eratosthenes’ mesolabe; students are 
supplied with identical rectangular tiles on each of which the diagonal is already 
marked, and they have to find out why these tiles can be used to find 21/3, (c) with 
the aid of handouts, a rapid presentation of Plato’s machine (see figure 8.9). 

Second Part: Musical scales, Pythagorean and equal-tempered

1. What is a musical note?: (a) presentation of the inverse proportional relation 
between the frequency of the wave emitted and the length of the vibrating string (we 
measure the lengths of the strings of a guitar); (b) the notion of a resonance interval: 
octave and fifth (respective ratios 2 and 3/2); (c) principles of the Pythagorean 
scales, algorithm and computation of the first 11 ratios by this method; (d) “Is the 
Pythagorean scale constructible with straightedge and compasses?” Yes, because all 
ratios are rational; (e) “Does the stem of the guitar represent a Pythagorean scale?’ 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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No, there are noticeable differences, (particularly at the level of the 4th space), but 
the reading of the measurements help to observe a geometric regularity of this scale. 

2. The equal-tempered scale, which appeared in Europe in the end of the 17th 
century: (a) the scale of Werckmeister in 1691, temperament of 12 notes; (b) the 
ratio of frequencies will form a geometric sequence; find the ratio r, say. One finds
r12 = 2, thus r = 21/12 ; (c) particular case, the 4th space corresponds to the ratio of 
frequency (21/12)4= 21/3. Here we come back to 21/3. (See also Chapter 9 of Land 
1975, whose figure on p.132 is reproduced here as figure 8.12.)

3. Return to Delos, by posing a simple problem: “Is the equal-tempered scale 
constructible with straightedge and compasses?’’ For concluding this activity, two 
different possibilities have been envisaged: 

(a) A classical one is to point out that this problem is equivalent to the problem 
of the duplication of the cube: (i) To find a construction of the tempered scale with 
straightedge and compasses means to settle the problem on the 4th space, which at 
the same time solves the Delian problem. (ii) To find the solution of the problem of 
Delos means that the 4th space of a guitar is constructible. Now the sixth is already 
constructible (26/12 = 21/2, which we have already come across). Thus, we find the 
5th space as the geometric mean, and the ratio of the 4th to the 5th (or of the 5th to 
the 6th) will be the ratio which enables us to construct the whole scale using 

proportionalities!
(b) A more exotic 

possibility is to claim that 
we can find an acoustic 
solution to the problem of 
Delos (7.4.8, 7.4.9). 
Suppose that we want to 
find the edge of a cube 
twice in volume of a given 
cube. We start by 
transferring the length of 
the edge of the given cube 
to a stretched monochord 
and observe the resonant 
interval that this vibration 
gives with a string of a 
guitar when a finger lies on 
the 4th space (one can 
even adjust the tension of 
the monochord or of the 
guitar for tuning the two 
vibrations, and play them 
at unison). Then, lengthen 

the monochord without
Figure 8.12: Guitar and scale (from Land 1975, 132) 
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modifying its tension and compare now with the same string of the guitar vibrating 
empty (space 0). When we find out the same resonance interval (or the unison), the 
lengths will be in the ratio, and the only thing left is to construct the double cube! 

The activity in this section takes a lot of time, but it is worthwhile, since it 
touches on a variety of domains (7.2.a3). However, one may remark that at the end 
of the activity there are still doubts about the constructibility of the duplication of 
the cube and of the scale of Werckmeister. Isn’t this a good illustration of an 
essential aspect of science? In science, there is always something left to look for. 
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c Leonardo’s geometric sketches 

Chun Ip Fung 

Fascinating geometric sketches are found in the notebooks of Leonardo da Vinci. 
Most of these figures are directly related to the squaring of curvilinear regions. The 
following cat’s eye diagram (figure 8.13) is one among them (Wills 1985, 11). 

The following activity is designed for junior 
secondary school students (age 12 to 14) with 
knowledge of the Pythagorean theorem, the area 
ratio of similar figures, and knowing formulae for 
area computation of simple figures including 
circle, sector, rectangle. The task is to calculate 
the area of the shaded part in the above diagram in 
terms of the radius of the circle (7.3.3.b; 7.3.1). .

Design of the activity: 
Step 1: Ask students to compute the area, 

making assumptions where necessary (7.2b1). 
Step 2: Show how Leonardo did it, using a 

simple cut-and-paste method , as displayed in 
figure 8.14 for a different area. 

Figure 8.13: The cat‘s eye, or 
what part of the circle is the 

shaded area? 

Purposes of the activity: 
1. To let students appreciate the.aesthetic nature of mathematics (7.2.e1);

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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Figure 8.14: How Leonardo solved this type of problems, i.e. by simple cut-and-paste
(from Wills 1985). 

2. To warn students that the existence of mathematical products, such as 
formulae for area computation, does not automatically downplay the importance of 
having an alert and active mind (7.2.d).

Reference for §8.4.2 c 

Wills, H., 1985. Leonardo’s dessert: no pi, Reston, Va: National Council of Teachers of 
Mathematics

8.4.3 Surveyors’ problems 

João B. Pitombeira de Carvalho 

The following are two examples whose purpose is to show how concepts of 
elementary Euclidean geometry were used to solve surveyors’ problems in times 
gone by (7.2.a2). The tools used are simple and easily constructed, to enable high 
school students to actually solve similar problems (7.4.8). An ordnance map, a 
compass, measuring chains or tapes can be easily procured and offer the opportunity 
of letting the students practise their skills (7.4.12).

a The tunnel of Eupalinos on the island of Samos 

What is striking about this example is that the tunnel was constructed, around 530 
BC, starting simultaneously from both sides of the mountain, as would be done 
today. However, today we have very sophisticated instruments that enable us to dig 
both segments of the tunnel in such a way that both working crews meet as planned. 
How did ancient builders proceed, without our sophisticated surveying instruments? 
The answer is fairly simple: they used plane Euclidean geometry (particularly the 
similarity of triangles) and had sighting instruments, called a dioptra, that enabled 
surveyors to measure angles with good accuracy. (For further discussion of this 
celebrated tunnel, in a classroom context, see §9.5.1 .) 
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As a matter of fact, students can easily build themselves such sighting devices 
and practice measuring angles, as in ancient times. Suppose we want to dig a tunnel 
with ends at A and B (see figure 8.15), which are initially assumed to be level. 
Draw an arbitrary straight line segment BC. From C, draw the perpendicular CD to
BC, then ED perpendicular to CD, then EF perpendicular to DE, and so on, till we 
are close to A. These straight line segments are all drawn in such a way that from C
you can see D, from D you can see E, and so on. We now have a polygonal line 
BCDEFGH. Note that the angle at each vertex C, D, E, G is a right angle. All these 
right angles can be drawn using a dioptra. 

Figure 8. 15: Making a straight tunnel, starting from both sides of the 
mountain (530 BC) 

Choose J on CH such that JA is perpendicular to CH. Let AK be the 
perpendicular from A to BC. Since the lengths DC, EF and GJ are known, and using 
the fact that our polygonal line is made up of adjoining perpendicular segments, it is 
very easy to find the length AK. Similarly, it is possible to find the length KB and
thus the ratio BK/AK. Let this ratio be called k. Construct now the right triangles 
BLM and ANB such that the ratios BL/LM and NA/PN are both equal to k. The
similarity of the triangles BLM, BKA and ANP assure us that the points P, A , B and
M are collinear. It is now very simple to dig the tunnel; just make sure that the 
crews working at Q and R, inside the mountain, can be sighted from P and M
respectively (van der Waerden 1974, 102-104).

This description assumes that all points are in the same plane. But it can easily 
be modified to take account of differences in height between the points considered. 
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We have a description of a dioptra given by Hero, and thus it was possible to 
reconstruct this very ancient and useful instrument (van der Waerden 1974, 104; see 
Drachmann 1972 for more on Hero’s work). The alidade (from the Arabian word 
al’Dad), a very simple sighting instrument, is still in use today by armies in the field 
or prospectors. It is simply a pocket compass placed on a horizontally held board. 

b Heron’s formula for the area of a triangle 

It is known that the Greeks did not use trigonometry to solve surveying problems 
(Katz 1998, 158-162). Instead, they relied on plane geometry. We have just seen 
how they could solve surveying problems using elementary facts of plane Euclidean 
geometry. Heron’s name is also attached to a formula, albeit one that is probably 
due to Archimedes (Fauvel and Gray 1987, 205-206; Thomas 1941, 470-477): let 
ABC be a triangle with sides a, b and c. If p = (a + b + c )/2 , then Hero’s formula

states that the area S of the triangle is given by S =

Using this formula, it is easy to find the area of any plot of land bounded by a 
polygonal line, if we are able to measure the distances between its vertices. Thus, to 
find the area of ABCDEFG, we can decompose the polygon as shown (see figure 
8.16). If we can measure the distances AB, BC, CD, DE, EF, FG, AG, AC, CG, GC 
and GE, we can find the required area using only a very simple instrument, a 
measuring chain or tape, without having to worry about measuring angles and 
‘solving’ triangles using trigonometry. 

Figure 8.16: Dissecting a polygon in order to determine its area 

These examples illustrate the way knowledge of its history may help teachers 
and students to appreciate the importance of mathematics for the solution of real 
problems of vital importance, by elementary means (7.2.e3; 7.2.a3). More
generally, vocational contexts offer opportunities for the use of history, e.g. in the 
history of quality control, a vital aspect of most modem industries (COMAP 1990). 
In trade and technician areas, it should be possible to briefly trace the evolution of 
formulas and techniques, generally presented to students as a fait accompli, to



276 8 Historical support for particular subjects 

enhance the depth of understanding and to stimulate interest. Adopting such an 
historical perspective will offer the possibility of stimulating discussion on the social 
uses to which mathematics is put; a competency not commonly found, if at all, in 
current adult or vocational mathematics curricula. 
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8.4.4

Carlos Correia de Sá 

The theory of proportion played a central role in Greek mathematics. However, the 
early Pythagorean approach, which took into account only the positive integers, 
proved insufficient when incommensurable magnitudes were discovered. Eudoxus 
eventually created a new theory of proportions (exposed in book v of Euclid’s 
Elements (Euclid 1925)) that worked both in the commensurable and in the 
incommensurable cases. Meanwhile, the need for another method of proof was 
certainly felt. Although there is no historical evidence that the geometry of areas 
was created as an alternative method of proof, it allowed formulations and proofs of 
old results without appealing to the concept of proportion. 

The interrelations between the theory of proportions and the geometry of areas 
constitute a considerable wealth of resources that can be put to use in the 
mathematics classroom: the concepts of ratio and proportion, the ideas of number 
and area, several geometric constructions with straightedge and compasses, the 
Pythagorean theorem, the geometric solution of 2nd degree equations and (perhaps 
most importantly) many opportunities to practise the translation from the 
geometrical to the numerical context and vice versa (7.2.a3; 7.2.a2). 

A significant part of the geometry of magnitudes that Euclid exposed in the 
Elements admits an arithmetic-algebraic interpretation that may be explored in the 
high school mathematics classroom, in order to reveal the interrelations between 
arithmetic operations, algebraic procedures and geometric constructions. 

Theory of proportion and the geometry of areas 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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The geometric analogues of addition and subtraction are obvious. In Greek 
geometry, it is the construction of a rectangle with given sides that is usually 
interpreted as a multiplication of line segments. Propositions 1 and 4 of Book ii of 
the Elements may then be regarded as the geometric versions of the distributive law 
of multiplication with respect to addition and of the formula for the square of a sum, 
respectively. This part of the geometry of areas has no relation to the theory of 
proportions; it may have been created independently, probably long before the 
discovery of incommensurability. But the notions of the fourth proportional of three 
line segments, and of the mean proportional of two line segments, admit alternative 
formulations in terms of the geometry of areas. 

The standard constructions of the fourth proportional (Elements vi, 2) and of the 
mean proportional (Elements vi, 13), may have been the first ones to be used. 
However, they require a theory of proportions for the incommensurable case. 
Alternative formulations of these concepts, that avoid any reference to 
proportionality, are the following. 
– Let the line segments a, b, c be given; their fourth proportional is a line segment 

x such that a:b=c:x or, equivalently, such that ax=bc. Thus, x is the side of a 
rectangle that admits a as a side and has the area of the rectangle with sides b 
and c. 

– In an analogous way, let line segments a, b be given; their mean proportional is a 
line segment y such that a:y=y;b, or, equivalently, such that y2=ab. Thus, y is
the side of a square with the same area as the rectangle with sides a and b. 

These are examples of problems (I) of ‘application’ of an area to a line segment and 
(II) of the ‘quadrature’ of an area, respectively: 

(I) To apply a figure F to a line segment s means to construct a rectangle with 
the same area as F and having s as one of its sides (it is enough to construct its other 
side x); written as sx=F, where x is the line sought, this geometrical construction 
clearly admits an arithmetical interpretation as a division. 

(II) To find the quadrature of afigure F is to construct a square with the area of 
F (it is enough to construct its side y); written as y2=F, where y is the line sought, 
this geometrical construction corresponds to the extraction of a square root. 

Euclid presented these constructions, in the context of the geometry of areas, 
using only straightedge and compasses; the application of a rectangle to a line 
segment (Elements i, 43) and the quadrature of a rectangle (Elements ii, 5 and 6). 
These propositions constitute alternative constructions of the fourth and mean 
proportionals:

(a) Implicit to proposition Elements i, 43 is the notion of the diagonal 
decomposition of a parallelogram; in the classroom, however, one may prefer to use 
only the case of the rectangle, which is the only one needed in this context, although 
the general case is not harder to prove. The proof uses only that a parallelogram is 
bisected by any of its diagonals, and that if one subtracts equals from equals, then 
one obtains equals. 

(b) The idea behind propositions Elements ii, 5 and ii, 6 is the same: to transform 
a given rectangle into a gnomon which is the difference of two squares. The proofs 
use only the equality of the areas of the two complements of a diagonal 
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decomposition (for the particular case of the squares). Once the rectangle is 
expressed as the difference of two squares, the Pythagorean theorem immediately 
yields its quadrature. 

The drawing of parallels and perpendiculars to given lines, passing through 
given points, is the only technical skill that is needed in order to be able to 
manipulate areas by means of the above mentioned propositions. Of course, this is a 
topic where appropriate tasks provide many opportunities to practice these 
elementary but important constructions with straightedge and compasses. 

It is natural to deal with applications and quadratures of rectangles before 
considering other figures: the geometric constructions are the simplest ones and the 
links to the theory of proportions are very close. However, both operations are 

easily generalised to an arbitrary 
polygonal figure, by means of its 
decomposition into (a finite number 
of) triangles. One need only 
construct, for each triangle of the 
decomposition, a rectangle with the 
same area; the application of all the 
rectangles to the same line segment, 
as in layers, yields a rectangle equal 
in area to the initial polygon; by 
squaring each of the rectangles and 
by adding all the resulting squares 

(by means of the Pythagorean theorem) one always obtains new squares as sums. A 
typical task may be, for example, to give the areas A and B (A bigger than B) and the 
line segments and to ask for (1) a rectangle equal to A+B and a side equal to s, (2) a 
square equal to A-B (see figure 8.17). 

Mastering the procedures used in the case of polygons leads to an understanding 
of the difficulties met in the case of most curvilinear figures and in particular, of the 
reason why the quadrature of the circle was such an important problem for so long 
(7.2.cl).

A generalisation of the concept of application of areas, considering ‘deficient’ 
and ‘exceeding’ applications, can also be found in Euclid’s Elements (although his 
search for generality forces him to postpone it to book vi, where, after the Eudoxan 
theory of proportions has been exposed, he deals with the similarity of plane 
figures). The Greek names for the concepts of deficiency and excess were used by 
Apollonius in order to classify the conic sections, and are still in use today in the 
words ‘ellipse’ and ‘hyperbola’ respectively. These generalisations of the concept 
of the application of areas are particularly relevant for the mathematics classroom, 
since they allow for the solution of second degree equations by methods based on 
the geometry of areas (7.2.a3); there are historical texts of medieval Arab 
mathematicians containing such solutions. In this context, it is of course very 
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interesting to compare this approach with the radically different one proposed by 
Descartes in his Géométrie.

The Greeks also considered an important generalisation of the notion of the 
mean proportional. If one inserts any (finite) number of line segments between two 
given line segments, in such a way that the ratio of any consecutive two segments is 
constant, then one obtains magnitudes in continuous proportion; this concept 
corresponds to that of a geometrical progression. An important illustration comes 
from Hippocrates’ reduction of the problem of the duplication of the cube, to that of 
inserting two mean proportionals between the edge of the given cube and the double 
of that edge (cf. example 8.4.2a above). 

This topic also extends, in a natural way, to consideration of the ratios of other 
types of magnitudes. The ratio of two areas reduces to the ratio of two lengths by 
means of the application of both areas to the same line segment. Finally, if one is 
willing to incorporate the use of curves into the presentation, then the quadratrix and 
the spiral are most easily introduced, as curves that transform ratios between angles 
into ratios between lengths. In particular, one obtains easy solutions of the problem 
of the trisection of the angle and one may also obtain less trivial solutions of the 
problem of the quadrature of the circle (via the rectification of the circumference). 
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8.4.5

Dian Zhou Zhang 

Mathematics is an exact science, hence in its context deductive thinking is 
indispensable. However, mathematics is not equivalent to logic. In China, most 
school mathematics teachers believe that the sole core of mathematics teaching and 
learning is the development of pupils’ logical thinking ability. Any test problem is
almost exclusively designed as a logical process, deductively organised. Therefore, 
in China’s ‘examination kingdom’, mathematics = logic is a very popular ideal. 
Even at the university level, including teacher training courses, every professor 
emphasises in analysis the importance of the ‘epsilon-delta’ language. There is even 
a well-known motto: “Everything is inferior, only epsilon-delta is superior!” 

As a reaction to this, the work of Fermat (1 638) may be presented, to show that a 
great mathematical work in analysis might be non-rigorous, without any use of the 
epsilon-delta formulation, but based more on mathematical intuition than on 
deductive reasoning (7.2.b).

In his study entitled Methodus ad disquirendam maximam et minimam (‘Method
of finding maximum and minimum’) (Fermat 1638/1891; Struik 1969, 223-4;
Fauvel and Gray 1987, 358), Fermat gave the following example: Given a segment 
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OB, it is required to find a point A on it such that the area of a rectangle with sides 
OA and AB is a maximum. This area is A(B-A) = AB-A2. He replaced A by A+E
where E is an infinitesimal quantity. Then the length of the other segment is B-
(A+E) and the areas of the rectangle becomes (A+E)(B-A-E). By arguing that near a 
maximum the values of a function (that is, here, the two areas) do not change, he put 
them equal, obtaining: 

Dividing by E, he got B = 2A + E. He proceeded further by discarding the E-term
and got B=2A, i.e. the rectangle is a square with a side half of the initial segment 
(see e.g. Boyer 1959, 155-156).

Many school teachers suggest that we can use the following deductive 
argument: by noticing that 

AB-A2 = B2/4 - (A-B/2)2

it becomes clear that for A=B/2, we get the maximum value B2/4.
Which argument is preferable? If we want to solve this particular problem only, 

the second is more compact. However, Fermat’s demonstration is more powerful 
and deeper, giving a non-rigorous but intuitive elementary application of 
infinitesimal calculus, of a much more general domain of applicability and capable 
of considerable generalisation at a higher level. Notice that, by essentially the same 
argument, one may introduce the concept of the variation of a functional in the 
calculus of variations (7.2.cl).
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8.4.6

Dian Zhou Zhang 

In past decades more and more books in mathematics begin with very general 
abstract concepts such as sets, axioms and categories. In particular, the notion of a 
set has become a basic concept for every mathematics learner. In 1994, at the 
beginning of a Chinese graduate course on real and complex analysis, the class was 
asked to say something about the historical background of set theory. The students 
replied that Cantor was the creator of set theory in the 19th century and in Cantor‘s 
view, any collection of things of any kind could be a set. They also said that, 
because the concept is too abstract, Cantor suffered from mental illness by thinking 
too hard on it and finally died at a mental hospital! Notwithstanding the inaccuracy 
of the story, this seems to be all that the class knew about Cantor and set theory! 

However, we know that every mathematical concept has its concrete root. In 
order to understand better the thinking process of a mathematician we must seek its 
original historical source. This is well illustrated by the example of Cantor. 

Cantor was led into investigating infinite sets when he got interested in the 
uniqueness problem of representing a function by its Fourier series. He extended the 
uniqueness theorem of Heine, as well as that of himself, to the case when an infinite 
set of ‘exceptional’ points (that is, points at which one knows nothing more about 
the sum of the trigonometric series) exists. The more general question is: “What 
kind of infinite sets can be admitted as exceptional sets for the uniqueness theorem 
still to hold?” Cantor considered a point set A in the interval [a,b]. The set of limit 
points of A is called the derived set A' of A. The derived set of A' is called the 2-
derived set of A, and so on. An infinite set with a finite derived set is called a set of 
the 1st kind. Likewise, if the n-derived set of A is finite, then A is called a set of the
nth kind. In 1872 Cantor published a paper in which he pointed out that if in the
interval [0, 2π] a trigonometric series represents zero for all x, except possibly on an
exceptional set of the nth kind, then all the coefficients of the trigonometric series 
must vanish. This means that the uniqueness theorem on Fourier series is valid for 
an exceptional set of the nth kind. This work opened up the way for his point set
theory to follow. (See Kline 1972, Ch. 40, 4 1 ; Dauben 1979, Ch.2 for more detail). 

This story helps students to understand the real mathematical thinking process, 
and is beneficial for them to acquire a correct insight into mathematics in general 
(7.2.a2,7.2.d1).
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8.4.7 Discrete mathematics: an example 

Man Keung Siu 

The following is an example taken from discrete mathematics, which cuts across 
different levels from school to university; there are different purposes for using this 
example as well as different ways of using it. The topic is the famous problem of 
the seven bridges of Königsberg, which asks for a way to walk across all seven 
bridges, each exactly once, and back to the starting point (see e.g. Ball 1974, ch.9). 
A solution was presented by Euler to the St. Petersburg Academy on 26 August 
1735 (Euler 1736; for an English translation of the original, in full or in part, see 
Biggs et al. 1976, Ch.1; Calinger 1995, 503-506; Struik 1969, 183-187; Wolff 1963, 

Told in the form of a story, perhaps with some embellishment (7.3.1), this
example can serve as a nice starter for a public lecture for school pupils, along with 
an exposition on related topics such as mazes, one-stroke line drawing and real-life
applications under the heading of the so-called Chinese Postman Problem, i.e. to 
find an optimal way, in terms of cost or length, to cover all edges in a given network 
(see e.g. Biggs et al. 1976, Chap.1; Chavey 1992; Steen 1988, Chap.1). Besides the 
arousal of their interest, and learning some graph theory and its applications, the 
audience can watch a problem expressed in a different cultural context (7.2.e3;
Ascher 1991, Chap.2) and experience a taste of problem solving (7.2.a2).

Through consulting contemporary works in the 60s and 70s on matching and 
routing algorithms (see Edmonds et al. 1973; Guan 1962), this example can be used 
to enhance understanding of those algorithms in an undergraduate course in 
operational research (7.2.a3).

This example can also be used in an introductory undergraduate course in 
discrete mathematics or graph theory. It provides excellent material for students to 
witness how an important notion (in this case the degree of a vertex in a graph) and 
a basic theorem (in this case the so-called Handshaking Lemma) arise from their 
original forms and evolve into the familiar forms in modem textbooks (7.2.b1;
7.2.cl). Students can see how a good formulation (not necessarily in the form we 
know it today initially) facilitates a solution and gives rise to new developments. 
Throughout the memoir of Euler there is no mention of the term “graph” or 
“degree”, and no record of any picture which resembles our modem notion of a 
graph. It is even interesting to note that Euler’s explanation is different from, yet 
related to, the standard exposition given in a modem textbook on discrete 
mathematics (7.2.b2). “What the first solution lacked in completeness and polish, it 
made up for in clarity, wealth of ideas, and revelation of the author’s train of 
thoughts” (Siu 1995,281). 

197-206).
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A comparison of the differences and similarities between Euler’s solution and 
the standard exposition in modem textbooks, makes for a fruitful case-study in a 
course for in-service school teachers on the methodology of problem solving (see 
Siu 1995, 280-281) and on the nature of proofs in mathematics (see Siu 1990, Ch.4; 
7.2.c3). It can also be used in a course on mathematics, or its history through the 
study of original documents (Euler 1736) (7. 4.3; chapter 9 below). Papers on the 
history of this problem, such as Sachs et al. 1988 and Wilson 1986 are helpful. 
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8.4.8

Constantinos Tzanakis 

The study of the historical evolution of mathematics and physics reveals their 
continuous fruitful interaction. By following an approach inspired by history 
(7.3.2), this interaction can and should be unfolded in the teaching process, contrary 
to what usually happens. Many examples can be given (Tzanakis 1996; 1999; 
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2000). Here, we give an example at the undergraduate level, by contrasting its 
conventional presentation to one inspired by history. This example is also indicative 
of the close relation between differential geometry and physics (general relativity: 
GR) (7. 2.a3), of the way by which history can motivate the introduction of a new 
concept (7.2.al; 7.2.cl) and may suggest a way to present it (7.2.al). We are 
concerned with the introduction of the concept of a connection, which describes the 
idea of parallelism on an arbitrary manifold M. Conventionally it is introduced ad
hoc in the following rather mystifying and unintelligible way (see e.g. 0’ Neill 
1983, Ch.3; Bishop et al 1980, §5.7; Choquet-Bruhat et al 1982,300-301):

– A connection V is a mapping from pairs of vector fields to vector fields, V:(X, Y) 

+ VX Y, which is linear in the first argument (over real valued functions f) and 
satisfies the Leibniz rule in the second: 

– Y is called parallel along (the integral curves of) X, if VX Y = 0. 

– A curve with velocity X parallel to itself is called a geodesic (“straightest” line). 

If (8/8u’ = 8i) are the basis vector fields induced by coordinates (ui), the

Christoffel functions are defined by v,,a, = r ak (henceforth, repeated indices 

denote summations over them). Subsequently it is shown that if r are the 

corresponding functions for other coordinates ( u'' ) , then 

(1)

Conversely, functions transforming as above under a change of coordinates define a 
connection uniquely. 

–
This approach leaves the following natural questions unanswered: 

‘straightest’ line? 
– What motivates the use of the term connection? 

An answer presupposes the proof of the (local) existence of normal coordinates, 
hence, it is necessarily a posteriori (see e.g. O’ Neill 1983, 59, 72-73).

In contrast, by taking into account the historical development of the subject 
(7.3.2) we outline below another possible approach: 

1. A general knowledge of the history of the subject 

Although the appearance of Riemannian geometry precedes its physical 
applications, (i) it was motivated by physical intuition (see quotations from Gauss, 
Riemann and Clifford in (Mehra 1972, 111; Spivak 1979, 152-153; Clifford 
1876/1956, 569), (ii) its further development was (and still is) greatly stimulated by 
its applications to general relativity (see e.g. Levi-Civita 1927/1977, vii-viii).
Therefore, some aspects of differential geometry may be better understood on the 
basis of (i) and (ii). 

Why does V illustrate parallelism? Specifically, why does VXY = 0 give a 
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2. Crucial historical steps 

(a) Galileo’s remark that all freely falling bodies in earth’s (homogeneous) 
gravitational field have the same acceleration (Galilei 1632/1954, 65). (b) Einstein‘s 
ingenious generalisation to a universal principle, on which he founded general 
relativity: at an arbitrary point of any gravitational field, all freely falling bodies, 
irrespective of their nature, move with the same acceleration, which is constant in a 
sufficiently small neighbourhood of that point (Einstein 1901/1950a, 100; Pais 1982, 
195, 205). By
choosing a coordinate system moving with this common acceleration, a body on 
which non-gravitational forces do not act moves rectilinearly and uniformly. 

3. Reconstruction 

(a) Mathematically, 2(c) says that at every point p and for any direction (vector) V, 

there exists an appropriate curve y and local coordinates (xa) in which y has 

constant velocity V, i.e. zero acceleration, d2xa/dt2 = 0. In a Euclidean space, this 

describes a straight line. In general, this is true only in a neighbourhood of each 
point p, i.e. y is locally ‘straight’. Now, it is a computational exercise (7.2.a2) to

show that in arbitrary coordinates (ua ) , this equation takes the form 

(c) This implies that Newton’s law of inertia is locally valid. 

(2)

with the functions l- transforming by (1) in a change of coordinates. That is, (2) 

are the well known geodesic equations. 
This approach answers the ‘natural’ questions left untouched by the conventional 

presentation: in 3. above, the idea of a straightest curve is expressed, i.e. a curve 

with velocity parallel to itself. Hence, in arbitrary coordinates, r expresses 

‘parallelism’, i.e. the possibility to decide whether two vectors at different points are 

‘parallel’. Hence r establish the connection between the two vectors. Finally, 

since r in (2) transforms by (1) in a coordinate change, we have the equivalence of 

the (physically motivated) existence of normal coordinates with the previously given 
abstract definition of a connection (if the latter is assumed to be symmetric). 

In this example, history appears implicitly (7.3.2iii), given that: (i) Originally, 
Einstein did not arrive at (2) in this way (Einstein 19 16/1 950b, section 9; Pais 1982, 
203, 220; Mehra 1972, 103), although a few years later he outlined this approach 
qualitatively (Einstein 1922/1956, 76). (ii) The concept of parallelism was 
introduced geometrically by Levi-Civita in 19 17 in a different way (Levi-Civita
1923/1977, viii and Chap..V(b); Eisenhart 1926, section 24 and references therein). 
The approach in 3(a) appeared a few years later in Weyl’s work (Weyl 1918/1950, 
206; Weyl 1952, section 14). 
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8.5 Improving mathematical awareness through the history 
of mathematics 

8.5.1 History of mathematics education 

Hélène Gispert, Man Keung Siu 

Mathematics education develops alongside mathematics, each exerting its influence 
over the other, sometimes in a gradual or indirect way. In this very broad sense the 
study of the history of mathematics education is helpful to the training of a 
mathematics teacher. Teacher education belongs to a domain which connects school 
disciplines and society, posing questions concerning the function of schools and 
what knowledge society needs. Thus, views on the role and nature of mathematics 
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interact with the goals assigned to the school system, which is affected strongly by 
the society and the culture in which the school system is embedded (7.2.e2)). The
history of mathematics education, of how school knowledge was constructed, of 
how social issues partly determined and influenced education, is of pedagogical 
benefit in the development of a mathematics teacher (7.3.3b).

In (Siu 1995), the author attempts to illustrate through a preliminary study of the 
history of mathematics in ancient China the thesis that “[the] development of 
mathematics education, and with it, the development of mathematics itself, is to a 
large extent dictated by the general prevalent Anschauung of mathematics of the 
community at the time at the place”, and to discuss what lesson we can learn from 
the study. By “Anschauung of mathematics” is meant “the conception one holds of 
the subject called mathematics, which breeds a frame of mind that will mould one’s 
action”. In parallel with mathematics education in the narrow sense, which consists 
in the transmission of mathematical knowledge, in the broad sense mathematics 
education is the formation of an Anschauung of mathematics. A teacher who has 
acquired a historical perspective on mathematics education will be in a better 
position to help students in this respect. On a more down-to-earth level, this 
historical study can help a teacher to understand not only the way of teaching the 
syllabus, but also the origin and reason for its content. In Siu and Volkov 1999, the 
authors probe further into this area and discuss the state examinations in 
mathematics in the Tang Dynasty (6 18-907), thereby offering a somewhat 
rehabilitated view from the one hinted at in Siu 1995 and helping to shed light on the 
question of possible cultural difference in the learning of mathematics; see, for 
instance, Biggs 1996 (7.2.e2).

In Gispert 1997 the author reports on her work with pre-service primary and 
secondary school teachers in studying different mathematics syllabi in France of the 
19th and 20th centuries. This includes the study of the accompanying commentaries 
as well as the debates which were aroused at different times in their political, 
economical, scientific and pedagogical contexts (7.3.3b). Such activities help to 
render prospective teachers less naive, better equipped for the syllabus they are 
going to teach and better prepared for any change in the syllabus which they will 
encounter during their teaching career. 
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8.5.2

Victor Katz 

In a recently established private school in the USA, for which the author has been 
acting in an advisory capacity, the basic philosophy involves centring the curriculum 
on the cultural history of the world (7.3.3b). All aspects of the curriculum, 
including language arts, visual arts, science, and mathematics are tied into that core 
cultural history. Thus, ideally, students should be studying the mathematics of a 
particular time period at the same time they are considering the history, art, and 
literature of that period. In this way, students will understand the role of 
mathematics in the development of civilisation (7.2.e3). It is, of course, also 
necessary to structure the mathematics curriculum so that students, by the time they 
graduate, master all of the mathematics that a typical high school student in the USA 
will have learned by that time. Although this curriculum is only under development, 
the following is an indication of how this is working out in grades 5 (10-11 year 
olds) and grade 9 (14-1 5 year olds). 

In grade 5, the curriculum explores ancient Mesopotamia, Egypt, and India from 
approximately 3000-1000 BC. Thus, the students study such topics as the 
development of the base-60 place value system and its connection with the decimal 
place value system; the extension of these systems to fractions; the basic formulas 
for perimeter, area, and volume; the notion of a square root; an introduction to 
algebra using false position; and the Pythagorean theorem. In grade 9, where the 
students are studying the period from about 1450-1 650, the mathematical topics 
include solid geometry, especially the geometry of the sphere (so that students can 
understand something of navigation in the age of discovery); similarity and its 
application to perspective; the basics of the conic sections; the solution of 
polynomial equations, including the cubic formula in the work of Cardano and the 
subsequent discovery of complex numbers; trigonometry, through a reading of the 
first book of Copernicus’ De Revolutionibus (1543); the idea of a mathematical 
model in the work of Galileo; and the beginnings of analytic geometry in Descartes 
and Fermat. Although it remains to be seen whether the entire secondary curriculum 
can be dealt with in this manner, this development is an exciting new way of 
integrating history of mathematics with mathematics teaching and learning. 

Teaching secondary mathematics in a historical perspective 
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8.5.3 Adults’ mathematics educational histories 

Gail FitzSimons 

This section includes a description of some activities utilised by the author in a class 
of women returning to study mathematics, in an informal setting. Although the 
subject was part of a recognised credential, curriculum and assessment were at that 
time negotiable. The intention of the course was to provide the students with the 
mathematical skills they wished to learn; possibly, but not necessarily, with a view 
to further study or to gaining employment. For some, the expressed intention was to 
be able to help their children with mathematics homework throughout the different 
stages of schooling-an important social and economic consideration according to
Faure et al 1972. Accordingly, the aim of integrating history was in the form of a 
general cultural and social awareness of mathematics and ethnomathematics (7.2.e;
7.3.3b). The goals included assisting the women to overcome mathematics anxiety, 
to better connect mathematics with the rest of their lives, to view mathematics as a 
fallibilist discipline, and to enhance their metacognitive skills by reflecting on their 
previous mathematics learning experiences (for more detail, see §6.2.3, above).

At various times the history of mathematics was used for: 
a) teaching through history and ethnomathematics (7.3.2),
b) teaching about history and ethnomathematics (7.3.1) and
c) encouraging students’ reflection on their personal history of mathematics 

Thus, aspects of mathematics related to philosophy, art, architecture, natural and 
social sciences, for example, were integrated into classes, as was the cultural 
heritage of different societies at different periods (7.2.e3). These three foci could 
equally apply in other sectors of education, as will be demonstrated below. 

There are many reasons why adults return to study mathematics to pursue further 
or vocational education (FitzSimons 1994). Along with some teacher education 
students, adults frequently exhibit signs of anxiety, if not low self-esteem, in 
mathematics at least. They are likely, at some point, to have experienced 
mathematics as absolute, cold and unwelcoming, with instruction having been aimed 
primarily at other more able students in the class. Mathematics may have even been 
used to classify and position them. Re-entry to the study of mathematics per se is
not always the choice of the student, but may be a requirement imposed by course 
regulations or other authorities. The task of the mathematics instructor is not only to 
teach mathematics, but also in many cases to help the students find new approaches 
to the subject and how it might be learned; even to overcome difficulties arising 
from past experiences of learning mathematics. 

Asking adult (and teacher education) students to reflect on their past 
mathematics education experiences serves many purposes. It enables the instructor 
to know more about the students and to plan more appropriate and meaningful 
learning experiences. More importantly, it helps the students to articulate their 
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beliefs and attitudes about the nature of mathematics and of how it is learned. Once 
these are made explicit it is more likely that they can be addressed, enabling the 
possibility of a greater breadth of perspective. It is also a step on the way to 
developing metacognitive skills. 

Both cognitive and affective domains are likely to be invoked in the presentation 
of personal mathematics education histories. A study (FitzSimons 1995) of women 
voluntarily returning to study mathematics given an open-ended task of reflection, 
indicated that the following categories were considered important in their memories 
of previous schooling: 

(a) content: lists of topics covered, especially the four basic processes and the 
emotions evoked by these items; 

(b) pedagogical practices of their teachers, both positive and negative, and the 
resulting self-images produced (somewhat different from the majority of 
mathematics educators!); 

(c) external influences which affected their mathematics and other education, 
such as the effects of their parents’ and teachers’ attitudes towards their gender, the 
experience of war (common to many immigrants to Australia), and the setbacks 
associated with moving house, country, or even mathematics groups; and 

The study also presented evidence of journal writing reflecting the integral part 
played by the use of history of mathematics in the classes. 
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Chapter 9

The use of original sources in the mathematics 
classroom

Hans Niels Jahnke 

with Abraham Arcavi, Evelyne Barbin, Otto Bekken, Fulvia Furinghetti, 
Abdellah El Idrissi, Circe Mary Silva da Silva, Chris Weeks 

Abstract: The study of original sources is the most ambitious of ways in which history might 
be integrated into the teaching of mathematics, but also one of the most rewarding for 
students both at school and at teacher training institutions. 

9.1 Introduction 

Among the various possible activities by which historical aspects might be 
integrated into the teaching of mathematics, the study of an original source is the 
most demanding and the most time consuming. In many cases a source requires a 
detailed and deep understanding of the time when it was written and of the general 
context of ideas; language becomes important in ways which are completely new 
compared with usual practices of mathematics teaching. Thus, reading a source is 
an especially ambitious enterprise, but, as we want to show, rewarding and 
substantially deepening the mathematical understanding. In this chapter we describe 
some ideas and international experiences concerning the use of original sources in 
the mathematics classroom, referring to teaching at schools as well as at teacher 
education institutions. 

In principle, the aims and effects which might be pursued by way of an original 
source will not be different from those attained by other types of historical activities. 
However, there are three general ideas which might best be suited for describing the 
special effects of studying a source. These are the notions of replacement,
reorientation and cultural understanding. By these we mean: 
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(i) replacement 

Integrating history in mathematics replaces the usual with something different: it 
allows mathematics to be seen as an intellectual activity, rather than as just a corpus 
of knowledge or a set of techniques. 

(ii) reorientation 

Integrating history in mathematics challenges one’s perceptions through making the 
familiar unfamiliar. Getting to grips with a historical text can cause a reorientation 
of our views. History of mathematics has the virtue of ‘astonishing with what 
comes of itself (Veyne 1971). All too often in teaching, what happens is that 
concepts appear as if already existing. This is true for the concept of a set, for 
example, but just as true for the concept of a triangle or a function. And concepts 
are manipulated with no thought for their construction. History reminds us that these 
concepts were invented and that this did not happen all by itself. 

(iii) cultural understanding 

Integrating history of mathematics invites us to place the development of 
mathematics in the scientific and technological context of a particular time and in 
the history of ideas and societies, and also to consider the history of teaching 
mathematics from perspectives that lie outside the established disciplinary subject 
boundaries.

In this chapter we begin with discussing motivations, aims and uses which are 
especially connected with the study of original sources (section 9.2). Of course, 
there is some overlap with the general aims underlying the introduction of historical 
components, but we concentrate on those dimensions specific for our topic. We 
discuss especially the hermeneutic process of interpreting a source and the special 
role of language in it (section 9.3). In a further step we investigate four examples, 
two taken from the context of teacher education (sections 9.4.1 and 9.4.2) and two 
from school teaching (sections 9.5.1 and 9.5.2). The special reference to teacher 
education is motivated by our conviction that the reading of original sources should 
become an obligatory part of mathematics teacher education at all levels. In section 
9.6 we deal with didactic strategies, and in section 9.7 discuss some research 
questions and issues of concern. Section 9.8 is the bibliography for this chapter, and 
in the appendix, 9.9, the reader will find hints on useful resources. 

9.2 Motivations, aims and uses 

9.2.1

The role of primary sources in the integration of history of mathematics into 
mathematics education should be considered in the light of different possible 
purposes. Incorporating primary sources is not good or bad in itself. We need to 

The specific value and quality of primary sources 
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establish the aims, including the target population, the kind of source that might be 
suitable and the didactical methodology necessary to support its incorporation. 

In the following, we describe some objectives and examples of how primary 
sources help to pursue them. There are almost certainly further ones we do not 
mention (cf. Arcavi & Bruckheimer 1998; Fauvel 1990 (see especially the papers by 
Jozeau, Bühler, Hallez, Horain); Furinghetti 1997; IREM de Montpellier 1995; 
Jahnke 1995; Laubenbacher & Pengelley 1996, 1998; Lefebvre & Charbonneau 
199 1 ; LeGoff 1994; Logarto et al. 1996; M:ATH 199 1 ; Métin 1997; Nouet 1992). 

In contrast to merely relying on secondary literature the reading of primary 
sources may help to 

a) clarify and extend what is found in secondary material, 
b) uncover what is not usually found there, 
c) discern general trends in the history of a topic (secondary sources are usually all-

topic chronological accounts, and some topics are very briefly treated or omitted 
altogether), and 

misrepresentations found in the literature. 

Reading historical texts may produce a cultural shock, by which we may 
experience the replacement and reorientation referred to above. This will only 
happen, however, if the reading is not teleological, that is, provided we do not 
attempt to analyse the text uniquely from the point of view of our current knowledge 
and understanding. Such a reading could carry with it erroneous interpretations, 
given that the writer may be using an idea according to a conception quite different 
from ours. If the value of history lies in reorientation, in understanding rather than 
judging, then texts need to be contextualised, that is located in the context of their 
time. We need to remind ourselves that the writer was addressing not us, but a 
contemporary audience. 

To have our perspectives of knowledge challenged is beneficial. Thus, it is 
important to read Descartes’ Geometry (1637) being aware that the text was not 
understood by his contemporaries. We would then pay more attention to the 
changes brought about by Cartesian geometry, for example by the introduction of a 
unit segment, which appears so ‘natural’ in coordinate geometry that it passes by 
almost unnoticed. We can also show that the coordinate geometry system works in a 
way that can be related with the Section Theorem in the geometry of the triangle 
(Euclid’s Elements vi.2, sometimes called Thales’ Theorem: that a line parallel to 
one side of a triangle cuts the other sides in the same ratio), something which 
appears to be quite absent now from the official curriculum in many countries. This 
example shows that the replacement and reorientation aspects of history are directly 
linked to didactical considerations. 

Reading historical texts in class introduces history in an explicit way. 
Nevertheless, this activity has to be integrated into the mathematics lessons and not 
provided just as an extra. It also presupposes that the teachers have a sense of 
history and, of course, that they are able to handle the mathematics involved. Thus, 
reading sources presupposes adequate preparation (see Chapter 4). 

d) put in perspective some of the interpretations, value judgements or even 
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9.2.2

There is a common belief held by many, teachers and students alike, about the static 
nature of mathematical concepts: once a concept is defined, it remains unchanged. 
Even those who do not hold this belief may not have had opportunities to experience 
the evolving nature of ideas. Take for example the concept of function. At some 
early stage, functions were restricted to those which could be expressed by algebraic 
relationships. Later, the concept was extended beyond correspondences which can 
be expressed algebraically, and later still to correspondences not involving sets of 
numbers at all. Thus we have the more general and formal definition today: a subset 
of the Cartesian product of two sets with certain properties. In another sense, the 
concept was restricted to univalent relationships. (For a detailed discussion of the 
history of the function concept see, for example Youschkevitch 1976 and for a brief 
survey Kleiner 1989.) We suggest that primary sources can offer the experience of a 
non-mediated contact with the way in which ideas were defined at a certain time, 
different from that in use today. 

Another example is the notion of a curve. Curves seem to be considered the 
same throughout the school programme. The circle, however, can be variously 
presented: as a static object in geometry, consisting of points at equal distance from 
its centre; as a dynamic object produced by the rotation of a line segment about one 
of its (fixed) extremities; as an object in algebra, namely an equation; or as a 
functional object. History can make us aware of the significance of these different 
ways of thinking about a curve through letting us understand the problems that led 
mathematicians to pass from one notion to the other, and also to see the nature of the 
changes in conception that came about (Barbin 1996). For example, the dynamic 
notion of a curve in the 17th century is linked to problems about movement that 
scientists of the time were considering. In particular, we can see from reading 
Dialogues on the two new sciences how Galileo changes the (static) parabola of his 
study into the (dynamic) trajectory of a cannon ball. Whereas the parabola of Greek 
geometry is the intersection of a cone and a plane, the Galilean parabola becomes 
the trajectory of a moving body, subject to a uniform horizontal and a uniformly 
accelerated vertical movement. 

In order to see how the idea of a curve evolved and became refined, it is 
interesting to read and compare several historical texts, for example to look at the 
methods for finding tangents found in the works of Euclid, Apollonius, Roberval, 
Fermat, Descartes, Leibniz and Newton. Similarly, to see how the idea of function 
or number has evolved and become refined, it is important to read texts related to 
stages of their history. 

Primary sources provide also lively examples of how different representational
systems were used in the past. These examples may help students to put into 
perspective our current representational systems as just one of many possible ways 
of performing operations and handling and communicating concepts. Moreover, by 
comparing and contrasting our representations with those in the past as they appear 
in original sources, students might appreciate the crucial role representations play in 
the inception and evolution of ideas. 

In Arcavi 1987 an activity for elementary school students is described, in which 
a brief extract from the Rhind Papyrus is presented; with the aid of an accompanying 
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‘dictionary’, the challenge consists of deciphering the arithmetical operations 
performed, explaining how they work, and applying them to further examples. This 
activity serves as the basis for discussion of the characteristics of the Egyptian 
numeration system as opposed to ours, including advantages and disadvantages of 
both. Van Maanen (1997) describes similar experiences with primary sources from 
a later period. His students report that they find it a difficult but very interesting 
puzzle, first to find out what the handwritten text says and then what it meant and 
why it worked. Furthermore such a problem makes students aware that methods and 
standards are changing. When students compare and contrast the representations 
they know and use at school with those in original sources, they not only learn about 
the latter, but most importantly, their attention is re-focused on the former, providing 
an opportunity to re-discover properties taken for granted and which were “clogged 
with automatisms” (Freudenthal 1983,469). 

9.2.3 Experiencing the relativity of truth and the human dimension of 
mathematical activity 

The fact that the idea of truth is relative can be seen when we consider how the 
significance of proof has changed in history (Barbin 1994). While the first 
reasonings in Greek geometry had to do with explaining real problem situations, like 
the problem of finding inaccessible distances, the purpose of logical proof in Euclid 
was to convince, or even defeat, the (supposedly sceptical) reader. This idea of 
proof was denounced in the 17th century by geometers who preferred to enlighten 
rather than defeat their readers. As for the idea of proof in Hilbert’s geometry, it is 
conceived of as a way of deciding the validity of a proposition, that is to determine 
whether or not it is consistent with a set of formal axioms. To obtain a feeling for 
what proof means, it is interesting to read a variety of proofs of the same theorem, 
for example the different proofs for the sum of the angles of a triangle given over the 
two thousand years from Euclid to Hilbert (Barbin 1995). 

It is also illuminating to study examples of doubts and errors which arose when 
mathematicians were working on new problems and concepts. This is different from 
the usual presentation of mathematical activity, described by Kessel in this way 
(Kessel 1998,44): 

This detached style of speaking and writing about mathematics suggests to listeners and 
readers that mathematics is independent of time and place . . . ideas that are not tied to specific 
people, times, and places, but which are abstract and timeless ... and which avoids 
mentioning concrete doers. 

Thus, in many classrooms all over the world, mathematical activity is generally 
perceived as the production of clean and correct answers to problems. Alternative, 
recent experiences (e.g. de Abreu 1998; Arcavi et al. 1998; Farey & Métin 1993; 
Lampert 1990; Pirie & Schwarzenberger 1988; Voigt 1985; Wood 1998) are 
beginning to include the sharing of intuitions, conjectures, the development of 
heuristics, and the encouragement of reflection and communication. All these 
legitimise the explicit raising of doubts, committing errors, entering blind alleys, and 
discussing seemingly non-solvable contradictions. 
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Thus, primary sources can provide lively documented examples of genuine 
mathematical activity in the making, and reading them may legitimise and humanise 
it (“if famous mathematicians went through it, why not I?”). Moreover, these doubts 
become issues for discussion with the potential of enriching students’ formal and 
informal knowledge of a topic, and their ability to ‘talk mathematics’. 

For example, one could confront teachers with the doubts mathematicians had in 
the 16th and 17th century regarding the nature of irrational numbers (Arcavi et al. 
1987). In the discussion of the source, teachers may dare to express their own 
discomfort and/or uncertainties about the ‘infinite’ decimal representation of 
irrational numbers. They can also share in the struggle between the usefulness of the 
concept of irrationals when rationals fail (e.g. in geometrical measurements) and 
their uncertain nature as numbers. For those less troubled by such problems, the 
discussion serves to develop an awareness that the infinite digits in the decimal 
expansion of an irrational were regarded as problematic to the point that their status 
as numbers was questioned. By implication, this leads to a recognition that this can 
be an issue with students as well, and to reflecting on the crucial importance of the 
role of representations of a concept, their influence on the way the idea is 
conceptualised, questioned, and ultimately accepted or rejected. 

9.2.4 Relations between mathematics and philosophy 

The contribution that the history of mathematics makes to our understanding of the 
cultural context is an excellent opportunity, or a necessary reason, for relating 
mathematics to other fields of knowledge (see Furinghetti & Somaglia 1998). 
Frequently, mathematicians were also philosophers and it is quite artificial to 
separate their disciplines (Barbin & Caveing 1996). In any case, it is often 
beneficial to read mathematicians with an awareness of the prevailing philosophy of 
their time. Consideration of the relationship between mathematics and the real 
world will benefit enormously when mathematics teachers work collaboratively with 
teachers of the physical sciences. The example we quoted above concerning Galileo 
illustrates this point. 

Reading a source can be the trigger for establishing a dialogue with the ideas 
expressed. The source then becomes an interlocutor to be interpreted, to be 
questioned, to be answered and to be argued with. This applies especially to sources 
which discuss meta-mathematical issues such as the nature of the mathematical 
objects we handle, and the essence of mathematical activity. For example, one can 
use extracts taken from The principles of algebra (1 796) by William Frend (1757- 
1841) in which it is proposed that negative numbers should be banned. Frend’s 
arguments against negative numbers raised, and continue to raise for students today, 
serious discussions on issues such as the use of models, analogies, or metaphors in 
mathematics (such as debts in accounting); the legitimacy of creating new ideas, 
provided they are well-defined and internally consistent; the ambivalence of 
symbols when used in allied but yet different meanings; and the need for formal 
definitions of concepts such as negative numbers. 
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9.2.5 Simplicity, motivation and didactics 

Occasionally, primary sources can be used because they are simpler and friendlier 
than their later elaboration. One notable example is Dedekind’s (1 83 1 -19 16) 
definition of real numbers, as it appears in his essay Stetigkeit und Irrationalzahlen 
(1872) (see Essays on the theory of numbers, 1924). His style is didactical and 
clear, first explaining the method to be followed, then using an analogy in order both 
to engage readers’ established knowledge and also to share with readers his sources 
of insight. Only after that are the formal definitions carefully developed step by 
step. Simplicity and friendliness can also be found in the sense-making explanations 
proposed in some primary sources for basic but formal mathematical laws, which 
teachers and curriculum designers struggle to find. As we progress in history, 
especially through the 20th century, many texts tend to adopt formal justifications to 
formal laws, and many students may feel alienated. However, some older texts 
often resort to everyday language and reasonable explanations which can enrich the 
didactical repertoire of teachers by appeal to students’ sense making. Such is the 
case with Viète’s (1540-1603) presentation of simple algebraic laws, in his In artem 
analyticem isagoge (see Bruckheimer & Arcavi 1997). 

9.2.6 Perspectives on mathematics education 

Primary sources seem to be a most reasonable way to learn about the central topics 
taught in schools in the past, curricular trends in general and various approaches to 
learning and teaching. One activity that Bruckheimer et al. (1995) designed for 
classroom use with 12-13 year old students is based on old arithmetic textbooks, 
which give the flavour of what and how students studied in the past: methods of 
calculation were a central topic, and accuracy was a major preoccupation. There are 
whole sections devoted to calculation checks, such as ‘casting out nines’. This 
checking method, as it appears in primary sources, provides an opportunity to deal 
with many fundamental topics: why does the method work, which kinds of errors 
can and which cannot be detected, why 9 is preferred to, say, 2, or 7, and so on. 

Besides the flavour of past textbooks and dealing with mathematical issues, the 
sources provide, by implication, the realisation that the goals for mathematics 
education have changed rather dramatically over the last 100-150 years. In the past, 
mathematics instruction for all (‘all’ in the past was probably more restricted than 
‘all’ is regarded today) may have been mainly devoted to producing good clerks who 
could calculate accurately. Today, with the emergence of freely available 
calculators and the demands of a technological society, the emphasis in arithmetic 
shifts towards estimation, reasonableness of answers, etc., and other signs of 
mathematical literacy. 
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9.2.7 Local Mathematics 

Primary sources can also be used in mathematics to rediscover and emphasise the 
heritage of the culture in which students learn. As most cultures have written 
mathematical documents (and certainly verbal accounts of everyday mathematical 
practices), it is not hard to find appropriate sources suitable for classroom use or 
teachers’ workshops. 

9.3 Sources, hermeneutics and language 

Reading an original source is a specific activity of relating the synchronous and the 
diachronous mathematical culture to each other (cf. Jahnke 1994, 154 ff.). The term 
synchronous culture refers to dialogue and work in the classroom as well as the role 
of mathematics in public life, in economy, technology, science and culture and the 
image which is attached to it. The diachronous culture means the development of 
these elements through history and has to be related to the synchronous culture and 
the life and thinking of the learners. However, it should not simply affirm the 
synchronous culture, but should rather widen and deepen the understanding of the 
learner.

In traditional theories of hermeneutics the relation between the historical 
meaning of a text (the intention of its author) and its meaning for a modern reader is 
amply reflected and identified as the essential problem of interpretation. In fact, 
seen under the aspect of method, history of mathematics, like any history, is 
essentially an hermeneutic effort. If history of mathematics is not to deteriorate into 
a dead dogma, teachers should have some ideas about the hermeneutic process and 
the fruitful tension between the meaning of a text in the eyes of its author and the 
meaning for a modern reader. 
The process of interpreting an original mathematical source may be described by a 
twofold circle. Texts and their authors (or theories and their creators) are interpreted 
by a modern reader, and the interpreter should always be aware of the hypothetical 
and intuitive character of his interpretation. The interpretation takes place in a 
circular process of forming hypotheses and checking them against the text given. In 
the case of history of science, the objects of this process of interpretation, the 
scientific subjects (individuals or groups) are themselves involved in a hermeneutic 
process of creating theories and checking them against phenomena which they want 
to explain or against intended aims they want to reach. Thus, the whole process of 
interpreting a source may be described by a twofold circle where in a primary circle 
a scientist (or a group of scientists) is acting and in a secondary circle the modem 
reader tries to understand what is going on. Those concerned with history have to 
engage with a complex network of relations between their own interpretations of a 
certain concept or theory and the interpretation of the original author. 

Teachers should be aware of this twofold circle and able to move in it. Only this 
will create a climate in the classroom adequate for encouraging students to generate 
their own hypotheses about a text and so become ready for thinking themselves into 
other persons who have lived in another time. 
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This thinking into other persons and into a different world seems to be the core 
of an educational philosophy underlying the reading of original sources. She who 
thinks herself into a scientist doing mathematics at a different time has herself to do 
mathematics; she moves in a mental game in the primary circle reflecting what the 
person under study might have had in mind. One has to ask for the theoretical 
conditions this person is explicitly or implicitly supposing, and one will have to 
mobilise imagination to generate hypotheses about them. 

Thinking themselves into other persons motivates students to reflect about their 
own views of the subject matter. This reflection, in turn, is made objective by the 
material (the text) they are studying. Certain aspects of the historical persons and 
their ideas will be easily accessible, others will remain alien. As a crucial point in 
hermeneutics, the student’s self will unavoidably enter the scene, not as a disturbing 
factor, but as a decisive prerequisite to insight. 

Even if an original source is given in the native language of the students its 
interpretation presupposes a considerable linguistic competence. This requirement 
should be accepted by teachers and students. Oral and written language are equally 
important. The students should have the opportunity of extensive discussions, but 
they should also be asked to produce their own written texts. The idea of a 
‘mathematical essay’ is old and sounds, since it is never realised, a bit antiquated. 
Historical subjects would provide natural starting points for such activities. 

An important aim should be the elaboration of the individual language of the 
students. In reading a source they are confronted with at least three different 
languages: the mathematical language of their usual lessons, the language of the 
original source, and their own way of speaking about mathematics. These three 
languages have to be related to each other, and the students should be able to move 
freely from one language into the other. This should be a general educational aim of 
mathematics teaching beyond the special occasion of history of mathematics. When 
in their future lives students practise mathematics, they will need above all to 
communicate and translate ideas and facts into mathematical language and vice 
versa. History of mathematics contributes considerably to the development of this 
ab i 1 ity . 

9.4 Integrating original sources in pre-service teacher 
education

As we said above, the reading of original sources should become an obligatory part 
of mathematics teacher education at all levels. This will not only contribute 
substantially to their mathematical competence, but is also a necessary condition if 
they are expected to include historical components into their future mathematics 
teaching. In the following we describe two experiences with original sources from 
teacher education institutions, the first from Morocco, the second from Norway. 

9.4.1

In this section, we present an example of using an original text in the pre-service
education of mathematics teachers. The objective was to initiate an analysis of 

Example 1: Egyptian measures of angles 
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trigonometric notions, in particular the concepts of cotangent, tangent and angle. 
The example was treated at the École Normale Supérieure in Marrakech, Morocco 
(see El Idrissi 1998). The text used is an extract of the Rhind Papyrus, written in the 
17th century B.C. and now in the British Museum, London. It contains problems 
together with their solutions. The text was originally in Egyptian hieratic script; we 
refer to a 20th century English translation (Gillings 1972). The example here 
concerns reckoning a pyramid, problem 56 from the Rhind Papyrus (RP 56) and its 
solution:
A pyramid has a height of 250 cubits and a base of 360 cubits. What is its sekt? 

Solution:

1) Find 1/2 of 360: 180. 

2) How many times is 250 in 180: 1/2 1/5 1/50 yard 

3) Now a yard is 7 palms. 

4) Then multiply 7 by 1/2 1/5 1/50: 5 1/25 palms. This is its sekt. 
The above extract was presented to teacher students, and they were confronted with 
questions and proposals for activities. Actually, an analysis of the problem was 
done even before the questions were posed. The most important elements emerging 
from this analysis were: 

1. The calculation is given by means of unit fractions. 
2. The question is asked about an empirical case, a pyramid. 
3. The solution is given without any definition or justification. It is an algorithm 

for calculating. 
4. In the first stage of the solution, the student is told to find the half of 360 and 

not to divide 360 by two. These two seemingly similar operations are 
conceptually different. 
In the second stage, the result is given together with a unit, the yard. In 
principle, there should not be any units as the intention is to divide yards by 
yards.
In the third stage, the students transform a result given in yards into palms. 
A naive interpretation of the solution could make believe that the sekt is 
identical with the cotangent (Smith 1958). Taking into account the earlier 
remarks, however, sekt and cotangent are different. 
The sekt can be defined as the horizontal shift in palms which corresponds to a 
vertical shift of one yard (see figure 9.1). 

5.

6.
7.

8.

Figure 9. 1: The sekt 

9. The sekt can be considered as a measure of angles. 
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On the basis of this analysis, activities were suggested to the students, working in 
groups of two or three. These activities were to prompt students’ reflections on 
trigonometrical concepts like cotangent, tangent, angle. 

The goal of the first activity was to define the sekt. As we have mentioned, the 
spontaneous answers given by the students tended to identify the sekt with the 
cotangent. After they had been asked to observe and to note the position of the units 
in the given solution, several students succeeded in giving more appropriate 
definitions of the sekt. 

With the objective of helping them to consider the sekt as a measure of angle, we 
asked them to measure the sekt of certain angles while using the metric system, a 
centimetre corresponding to the cubit. They were also asked to compare an angle of 
sekt s with other angles whose respective sekts were s/2 and 2s. With the same aim,
we asked the students to solve other problems posed in the Rhind Papyrus in which 
the given and unknown properties are different, while using a reasoning analogous 
to that of RP 56. 

We also asked them to guess how the Egyptians, on the basis of the sekt, might 
have proceeded to construct the pyramids. This question illustrates the fact that a 
straight line has a constant growth rate. Another and no less fascinating activity 
consisted in constructing an instrument to measure the sekt of angles, to provide it 
with a name and to compare the measurements of angles done by means of a sekt 
and by means of degrees. The activity of constructing real instruments was very 
dynamic. Indeed, the participants made great efforts to succeed. Some groups 
achieved classical results, while others showed more originality by providing 
instruments using glides (see figure 9.2). Two names were proposed for these 
instruments (in French, as the language of instruction): seketeur and sektomètre, the
second name being maintained. 

Figure 9.2: Instruments to measure sekts 

Comparing degree to sekt raises the problem of the linearity of the concept of 
cotangent and tangent. Classes discussing the issue are led to understand the 
advantages of using the degree, and consequently of using to circle arcs to measure 
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angles. Thus, if two angles (OA,OB) and (OB,OC) are given, and S1 and S2 are
their sekts respectively, the sekt of their sum (OA,OC) is not the sum (S1 + S2) of 
their sekts. Speaking trigonometrically, this signifies that the cotangent function is 
not linear: 

ctg (OA,OB) + ctg (OB,OC) > ctg [(OA,OB)+(OB,OC)]
The same is true for the tangent function. Measuring in degrees, however, the 

measure of the sum of angles is equal to the sum of the measures of the angles (see 
figure 9.3). 

Figure 9.3: Measuring the angle, with the sekt and with degrees 

These are the main activities offered to the students. We now describe how history 
was used and how we were able to profit from it for the education of trainee 
teachers.
1. The history of mathematics is first involved in introducing the text. The extract 

is presented and placed into context. Some information is provided about the 
Egyptian culture and about research into it—the problem RP 56 also provided 
an occasion for discussing the notation and concept of the unit fraction, the 
construction of pyramids, etc. 
The second part of studying the extract consists in analysing the reasoning of 
the answer presented in it. This analysis tries to keep as close as possible to the 
Egyptian way of thinking. While we cannot pretend to have identified the 
underlying Egyptian reasoning in all its details, an effort was made to draw the 
students’ attention to the contextual components which are involved in 
analysing this reasoning. In fact, this analysis is in some respects an 
introduction to the reasoning of future pupils. It can be noted, for instance, that 
young pupils do not take great pains to justify their own reasoning altogether. 
They are sometimes quite content with using some ambiguous properties or 
operations provided these will yield correct results. 
History is used in the above as a pretext to work on certain practical properties 
from the concepts of incline, tangent, cotangent and angle. The practical 
interest of these properties is inspired by the ancient character of the text 
considered. The historical problem RP56 enabled us to proceed to a 
comparison of the concepts of sekt, cotangent, and of measuring the angle in 
degrees.

2.

3.
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4. The history of mathematics is in fact used in this example as a crucial 
motivational element for an epistemological analysis. The latter consists in 
analysing, from the perspective of teaching, concepts, reasonings and methods 
used by the ancients, and the difficulties and obstacles which have impeded the 
evolution of concepts or methods. Thus in this example we have complemented 
the historical or mathematical analysis proper by activities appropriate for the 
education of future teachers. 

It may be concluded from the above that original texts, even in translation, may be 
used in a most relevant and fruitful way. To ensure the best contribution to the 
educational process, however, they must be carefully selected, well analysed, and 
presented in a dynamic and interactive way. 

9.4.2 Example 2: complex numbers in geometry and algebra 

A vulgar mechanick can practice what he has been taught, but if he is in error, he knows not 
how to find out and correct it, and if you put him out of his road, he is at a stand. Whereas he 
that is able to reason, is never at rest till he gets over every rub. (Newton 1694) 

The course MATH 9 at Kristiansand university 

This course, first put on in 1978, was intended as preparation for teaching, bearing in 
mind that there are different ways to integrate history into the mathematics 
curriculum:

(i) Following genetically the historical development while teaching a theme; 
(ii) Using historical problems and examples as a treasure chest to illustrate a 

subject;
(iii) Opening the student’s mind to the fact that mathematics is continually refining 

its theories, by seeing the historical struggle to develop solutions to problem 
situations, with new conceptual ideas and theories of understanding. 

To read excerpts from original sources should contribute to a critical and more 
robust understanding of the methods of today. It enables students to work with 
problems from the origin of a concept, to look at historical mistakes, the etymology 
of words and the development of notation. The lecture notes (Bekken 1983 and 
1994) were put together to help discuss 
– issues from our teaching of algebra through historical material, 

– the growth of ideas and their forms in algebra, 

– in a problem solving style, 

– with excerpts from sources, and 

– with mathematical problem studies. 
Sub-themes were developments of number concepts, like irrationals and 

imaginaries, symbolisation, and accepted proofs, or demonstrations. 
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Sources for understanding complex numbers 

As Norwegians, we studied the work of a fellow countryman, Caspar Wessel. One 
of his concerns was how to add and multiply directed lines in the plane. Wessel's 
solution, first presented in 1796, provides a good introduction to the teaching of 
complex numbers, because in this source Wessel gave the geometric representation 
of complex numbers as it is taught today. It is often overlooked that this came out of 
his attempt to add and multiply directed line segments, vectors as we now call them. 
In Wessel 1797 (see Nordgaard 1959) we find: 

§4. The product of two lines of length 1 in the same plane as the positive unit and with the 
same starting point, should be in the same plane, with an angle of direction to the unit being 
the sum of the direction angles of the factors. 

§5. Let +1 denote the positive unit, and let a certain perpendicular unit with the same starting 
point be +ε, The direction angles of +1 = 0º , of -1= 180º , of +ε = 90º and of
–ε = 270º. To obtain the rule of §4, we have to multiply according to:

From this we see that ε becomes = , and the product follows the usual algebraic rules.

§7. The line having direction angle v to the unit +1 is cos v + ε sin v and when multiplied
with the line cos u + ε sin u , the product becomes the line with direction angle v+u, denoted
by cos(v+u) + ε sin(v+u).

§9. The general representation of a line of length r and direction angle v to the positive unit 
+1 is r(cos v + ε sin v).

Next Wessel demonstrates that he knows very well how this relates to imaginary 
numbers, and explains the fractional Euler-de Moivre formula. Thus, Wessel had 
found a new application of imaginary numbers: to the geometry of plane positions. 
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In this way he also solved another important problem of his time: to give imaginary 
numbers a geometric representation. This is, in other words, to reconnect the 
meaning of general numbers to something geometric, but in fact this problem is 
nowhere mentioned by Wessel. 

Glushkov (1977) points to the product of triangles (figure 9.4), introduced by 
Viète (1591/1983), which we can connect with Wessel’s product of directed line 
segments. Students are asked to explore and explain this. 

Figure 9.4: Viète’s product of triangles 

Impossible quantities in algebra 

Earlier, imaginaries had come to be useful in algebra, first in the works of Cardano 
(1545/1968) and Bombelli (1572/1966), later also in Viète (1591/1983), Descartes, 
and Wallis. The most quoted passages in Cardano’s Ars magna comes from his 
chapter 37 ‘On the rule for postulating a negative’ (1 545/1968,2 19-220):

If it should be said, Divide 10 into two parts the product of which is 40, it is clear that this 

case is impossible. Nevertheless, we will work thus: We divide 10 into two equal parts, 

making each 5. These we square, making 25. Subtract 40, if you will, from the 25 thus 

produced, as I showed you in the chapter on operations in the sixth book, leaving a remainder 

of -15, the square root of which added to or subtracted from 5 gives parts the product of 

which is 40. These will be 5 + and 5 - , ... and you will have that which you 

seek. ... Putting aside the mental tortures involved, multiply 5 + by 5 - , making 

25 - (-15). Hence this product is 40. ... This is truly sophisticated since with it one cannot 

carry out the operations one can in the case of a pure negative. ... So progresses arithmetic 

subtlety the end of which, as is said, is as refined as it is useless. 

which is also worth looking at in Latin: 
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This is the first known appearance of the square root of negatives, which here reads 

R m: 15. 
A few paragraphs later we find the following example leading to this case of 

working with imaginaries, or ‘sophistic negatives’ as Cardano called them (Cardano 
1545/1968,221):

If it be said, Divide -6 into two parts the product of which is +24, the problem will be one 

of the sophistic negative and will pertain to the second rule, and the parts will be -3+ 

and -3- .

These imaginaries are in Ars magna not connected to Cardano’s main theme of 
cubic and quartic equations, but it is interesting to note his point of view on 
negatives (1 549/1968, 154): they may be necessary for intermediate calculations 
toward a true, i.e. positive, answer. 

The same is true for the imaginaries, but Cardano does not comment on this. 
Instead, we look at an example given by Clairaut in 1746, who wants to solve the 
cubic equation x3 = 63x + 162 . For this equation the Cardano-Tartaglia solution
procedure leads to the formula 

where the equality may be verified by direct multiplication. Then the Cardano. 
Tartaglia solution says that one of the solutions x is found via 

Thus the equation has a factor (x+6) and so the other solutions can be found by

factoring:

Hence a true positive solution is x=9, but Clairaut reached it only through
computations involving both imaginaries and negatives. 

Rafael Bombelli (1572/1966) found that in irreducible cases like the one above, 
there are always three real roots, but most often you are not able to do the actual 
reduction as simply as in the Clairaut example. Other early examples were given by 
Bombelli (1 572) as well as Leibniz (1 676). In this process we have seen Cardano 

computing with expressions like 

and Clairaut with 



9.4 Original sources in pre-service teacher education 307 

just using what the English mathematician George Peacock (1 842) was to call the 
‘principle of permanence of forms’, that such new numbers behave structurally like 
old ones. But if so, why isn’t always √ ab = √ a√ b ? Because then, we would get, as 
pointed out bv Euler (1770/1984), that 

Resolving this apparent paradox will be a helpful discussion item for students 
exploring the ramifications of symbols they may have come to take for granted. 

9.5 Integrating Original Sources in the Classroom 

In the following we present two examples of reading original sources in school 
classrooms, one (§9.5.1) from Germany, the other (§9.5.2) from Italy. 

9.5.1

The story of the tunnel 

The ancient Greek historian Herodotus described a tunnel constructed on the island 
of Samos by the engineer Eupalinos about 530 BC. Knowledge of such a tunnel had 
become completely lost when it was rediscovered towards the end of the 19th 
century. First archaeological excavations showed that Herodotus’s report was 
absolutely reliable. Between 197 1 and 1978, the tunnel was completely excavated 
and examined in detail (Kienast 1986/87). The tunnel cuts through a mountain to 
supply the Samos fortress with water. It is 1040 metres long, 2 metres wide and 2 

metres high, consisting of a path for inspections 
and a canal for the water beside it. It was mined 
simultaneously from both ends, and the two teams 
met under the mountain. 
The underlying engineering feat is considerable. 
The standard procedure for tunnels of such length 
at the time was to dig several shafts to the surface 
in order to determine the position reached and to 
correct the direction of the digging. This method 
was not used here. Since the discovery of the 
tunnel, a much discussed question has been how 
Eupalinos surveyed the tunnel’s direction with 
such accuracy. 
A possible answer may lie in a source of some 
600 years later. In a handbook describing the 
handling of a surveying instrument called dioptra
(figure 9.5), Heron of Alexandria (40-120 AD)
treats the problem of ‘cutting through a mountain 
in a straight line if the entrances of the tunnel are 
given’ (Schöne 1903, 238 ff). Heron’s booklet 
poses a number of other interesting surveying 
problems which could be treated in the classroom. 

Example 1: Greek surveying: the tunnel of Samos 

Figure 9.5: Heron’s dioptra 
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In an introduction, Heron describes the dioptra’s uses, naming military applications 
besides land surveying and astronomy. A specially nice remark says that, frequently 
storm attacks on fortresses were easily repelled because the besiegers had 
underestimated the height of the walls, attacking with ladders which were too short. 
In such cases, Heron said, the dioptra had its uses, for it served to measure the 
heights in question “out of range” (Schöne 1903, 191). 

A teaching unit about Heron’s surveying text 

For a long time, the experts favoured the hypothesis that Eupalinos had essentially 
proceeded as described by Heron (cf. Van der Waerden 1956, 168 ff), and it is also 
the basis of the following lesson. The above mentioned excavations, however, have 
led archaeologists to prefer another theory. We shall see that the students 
discovered both these theories on their own. 

On the basis of this story about the Samos tunnel, a teaching sequence founded 
on Heron’s text was developed and tested at various schools in the region of 
Bielefeld, Germany (Jahnke &Habdank-Eichelsbacher 1999). 

Figure 9.6: Heron’s method of surveying a tunnel 

While one could expect the story to be attractive to the pupils, the source might 
raise some difficulties. For fourteen- or fifteen-year-olds it was rather long. As is 
common in ancient Greek geometrical texts the essential idea is not explicitly 
mentioned, the argument proceeds step-by-step. Some teachers expected even 
problems with the Greek letters. Nevertheless, it was decided to present the source 
unchanged as it was printed in Schöne’s Greek-German edition. The students were 
told that this was a section of an ancient original surveyor’s handbook which had not 
been especially devised for them. While it might not be too easy to read, they would 
be able to cope with the difficulties. For a number of students, this remark proved to 
be quite motivating. 

Mathematically, Heron’s surveying method requires the notion of similarity. 
This had not been explicitly treated in the 9th grades where the teaching took place. 
The idea was to rely on the students’ intuitive previous knowledge. One could 
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expect that they had a notion of how maps work. In most classes the teaching unit 
on the tunnel of Samos served as an introduction to the concept of similarity. 

All in all, the teaching sequence consisted of 3 + n lessons. An introductory 
lesson about the students’ knowledge of history of mathematics ended with the story 
of the Samos tunnel. In a second lesson the problem of how the direction of the 
tunnel could have been determined was discussed with the students. In the third 
lesson the source was analysed, after a first reading had been given as homework. In 
further lessons other surveying problems were treated. 

The classroom experience 

All classes had a lot of fun establishing a map of the history of mathematics. To 
both their teachers’ and their own surprise, the students’ previous knowledge of 
history of mathematics was manifold. They knew a lot of facts. Above all, students 
have historical imagination and find questions such as why mankind started to use 
and write numbers, or to draw and analyse geometrical figures, quite natural and 
interesting.

The discussions about how Eupalinos might have determined the direction of the 
tunnel, under the condition that one end cannot be seen from the other, proved to be
very fruitful. All classes developed essentially the same two solutions. And these 
are exactly those offered by the archaeologists. 

The first method is that of the source. It can be understood from Heron’s figure 
(see figure 9.6). Starting from one entrance a sequence of segments around the 
mountain is measured. From this one can calculate the segments BN and ∆N whose
ratio gives the direction of the tunnel. Then, at both entrances beams are constructed 
showing the right direction. The second possible strategy found by the students 
results from the question whether it is possible to take bearings from the mountain’s 
summit on both entrances marked by flags. If this is not directly possible, one could 
put up a sequence of flags connecting the entrances and then adjust the sequence 
until the flags lie on a straight line from one entrance to the other. Modern 
archaeologists found signs suggesting that Eupalinos proceeded this way, but it is 
possible that he used both methods. 

After this preliminary and informal discussion with the students which did not 
end with a clear and definite result, but with a lot of ideas and a feeling for the 
nature of the problem, they got copies of the source which was to be read as 
homework. Before the next lesson, there were already discussions among the 
students about Heron’s idea. In the lesson itself the general idea was presented by 
one or several students, then the source was read step by step. It was a nice 
experience that in one class the discussion was opened by a student with the 
statement “Heron has made a mistake!”. In fact, if one reads Heron literally the 
student was right, but others argued that this is a matter of interpretation. 

It was interesting to see how the students explained Heron’s method without 
knowing the notion of similarity. In one class, they argued that his idea is the same 
as that underlying the determination of the slope of a straight line. As this had been 
treated quite a while ago, this was a compliment to them and their teacher. In the 
other classes, the argument was a bit vague, but intuitively correct when students 
argued that Heron constructed a sort of a map. 
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After discussion of the source, teaching was continued in various ways. It was 
pointed out to the students that the workers didn’t meet exactly, but missed each 
other by about 10 metres in the middle. It was determined by drawing that the error 
in measuring the angle of direction had been less than 1 degree. The question how 
Heron coped with the difference in altitude was raised in all classes. 

Written student productions 

All students were assigned the task of summarising Heron’s method in a small 
written essay. The results show that more than two thirds of the students had 
completely understood the text. Many students were able to free themselves from 
the language of the source and to express the idea in their own words, finding quite 
convincing descriptions which represented a mixture of everyday language and of 
the expert language acquired in the classroom. Such written exercises and the skills 
they develop and demonstrate are an important general objective of integrating 
historical sources into mathematics teaching. 

9.5.2

The teaching environment 

The activity here analysed has been planned and developed in a classroom by a 
secondary teacher (see Testa 1996). It was carried out in an Italian Scientific 
Lyceum, a high school in which mathematics is an important (and difficult) subject; 
16 students (1 1 girls, 5 boys) aged 16/17 volunteered to participate. The total time 
employed was 16 afternoons, after the school time. 

The subject taught is conics, which in the official mathematics curriculum is 
suggested only as optional subject matter. In the first eight afternoons theories about 
conics of various classical authors such as Pappus and Eutocius were outlined. Also 
the means for the pointwise construction of the conics (Euclid’s Elements book II) 
were discussed, The following eight afternoons were devoted to the study of De la 
Chapelle’s Traité des sections coniques, et autres courbes anciennes. This text is a 
revision with ‘didactic eyes’ of classic works on optics. There is a systematic 
application of algebra to geometry, a unifying use of Euclid iii, 35; the links with 
physics are considered. The text was chosen for its clarity and elegance. The
preface shows that the author was aware of the students’ difficulties in learning 
mathematics and looked for ways of overcoming them. 

The Italian teacher’s choices reveal his view on the use of history in 
mathematics teaching: to read an ancient text is his favourite way of integrating 
history in classroom, and doing history of mathematics is nothing other than doing 
mathematics. The teacher is historically well read and experienced. Thus, to look 
for original sources and to work with them is not a problem to him. 

The experience 

In our description, we focus on the teaching of De la Chapelle’s text. The main 
difficulty to face was the unknown language. The teacher rejected the idea of 
presenting a literal translation, to avoid the temptation for students to participate 

Example 2: An 18th century treatise on conic sections 
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only passively. Instead, he prepared 34 worksheets containing passages of the 
French text, with blanks in strategic positions to be filled in by the students. At the 
beginning the original text was quite fully summarised, in later worksheets the 
amount of original text was increased, and with the last worksheets the text was 
almost entirely the original, In the worksheets De la Chapelle’s symbols were kept. 
Since the original figures usually contain elements referring to different 
propositions, the teacher drew new figures containing only the elements essential to 
a single proposition, during the first period; later on students were encouraged to use 
the original figures, and to decode the information contained in them. 

At the beginning, mediation by the 
teacher was important, afterwards the 
students’ work was more and more 
autonomous. Students worked in groups, 
and also did homework. They devised 
their own strategies for handling the 
difficulties, using coloured pencils to 
decode figures, and substituting the old 
notations by new ones. In order to fill the 
blanks, students had to understand the 
underlying reasoning. This method of 
work roused lively discussions among 
students. After they had worked at the 
given worksheet, the teacher showed in a 
transparency the complete original 
passage and discussed the work performed 
by the students. 

Evaluation of the experience 

After each session a questionnaire was 
given to the students in order to evaluate the understanding of mathematical contents 
and to check any difficulties. At the end of the overall experience they answered an 
open questionnaire aimed at investigating how they perceived the use of history of 
mathematics, in particular the use of original sources. Students were very 
collaborative, and gave a great deal of information; their protocols can be considered 
as written interviews, The most significant points which emerged were: 
– doing mathematics became more pleasant 

– it was easy to see the evolution of mathematics and to become aware that there 
are different points of view to face problems 

– the method of work led directly to seeing what there is behind a theorem 

– the study of the original text was preferred since the participation in the work 
was more active 

– it was more difficult to grasp the language than the spirit of the work 

Figure 9.7: Drawing’s from De la 
Chapelle ‘s treatise 
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– to work directly with the text required more careful reflection on problems and 
better understanding of their meaning: thus apparently simple problems revealed 
unexpected aspects 

– it was made possible to go beyond theorems and to arrive at the roots of 
mathematics

– the experience changed the image of school mathematics. 

The words of one student point out the effectiveness of integrating original sources: 
“The proofs I had to complete helped me to learn working on my own. I liked 
working with the graded worksheets because they implied a step-by-step reasoning 
unlike my usual way of thinking.” Working with original texts clearly produces 
changes in the mode of learning. 

The experiment had particular features which make it difficult to draw general 
conclusions. Among these features were that it was an extra-curriculum activity 
involving only volunteer students; the source concerns a quite unknown author; it 
deals with a language not mastered by students; the text used was conceived as a 
textbook; and the teacher here possessed a remarkable competence in history of 
mathematics and familiarity with the use of original sources. 

On the other hand for our study these elements can be seen as positive, since: 

– being an optional activity allowed the teacher freedom in planning and 
developing the didactic procedure 

– using a rarely considered author fostered originality and creativity in the 
experience

– the presence of an unknown language is a quite typical obstacle in using original 
sources and thus it is interesting to see how the teacher has faced this difficulty 

– to use a text written for didactic purposes is an intermediate situation facilitating 
the approach to an original source 

– the teacher’s competence has made the experience very rich in cultural values. 

The literature on the use of original sources in courses (not specifically for history of 
mathematics) shows that successful experiments generally refer to university level 
or, in the case of high school level, to optional courses (see Laubenbacher & 
Pengelley 1994; 1996). Other interesting examples exist, which concern limited 
passages in limited activities; this is the case, for example, with using of mediaeval 
arithmetic word problems. A wider and systematic use of original sources presents 
difficulties of time, souce availability, and so on. Undoubtedly the main point is the 
role played by the teacher. He has to really believe in the value of original sources, 
he has to be competent enough in order to find and to manage materials suitable to 
the needs of his classroom, he has to plan strategies of mediation very carefully. 
These strong requirements emphasise the difficulty in the transferability of good 
experiences from one teacher to another and in making the use of original sources a 
routine activity. 
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9.6 Didactical strategies for integrating sources 

9.6.1

As we explained above (section 9.3), reading a source is a hermeneutic activity and, 
thus, subject to the rules of hermeneutics. In every teaching where an original 
source is going to play a role the teacher has to consider the concrete relationship 
between the text, the context and the readers. Depending on the aims of teaching 
there should be a certain balance between the proper analysis of the source and the 
investigation of the context. Usually, students reading a mathematical text are not 
used to asking for the context. In a way, they are even educated not to consider it: 
mathematics should be independent of the context and understandable out of itself; 
the time when a text has been written, the country or the author seem to be 
irrelevant. Therefore, students have to be guided to asking meaningful questions 
about the context. Frequently, it will be necessary to do some independent 
investigations about the context and study the biography of the author before the 
source can be interpreted adequately. Also, to relate the context information to the 
meaning of the text under study requires some skills which presuppose some 
experience and have to be trained. For example, frequently it makes a difference 
whether a text has been written by a theoretically or a practically minded author, and 
it is possible to trace indications of this prevalent habit of mind in the text. This is 
very illuminating, but, of course, requires some experience. 

It should be clear that the aim of these activities is not at all an imitation of the 
professional historian in regard to rigour and sophistication. Rather, the students are 
led to asking new questions which, in general, they had never asked before. 

The use of primary sources in the classroom requires special care, to clarify the 
proposed objectives and the adequacy of a source to the students’ needs. The 
concrete conditions of the students should be considered, and, of course, it makes a 
difference whether a source is studied with school students or with future 
mathematics teachers or with in-service teachers. The chosen contents need to be 
related to the respective student interests, the availability of texts in the mother 
language (or, at least, a language known to the students or the teacher) and in 
accordance with the objectives that the teacher intends to achieve. 

9.6.2 Classroom strategies 

At the moment there is no elaborated and generally accepted approach available for 
the reading of sources in the classroom. There are, however, some experiences, and, 
in the following, we want to give a generalised picture of these experiences. This 
may be taken as a collection of ideas and guidance (which does not pretend to be 
exhaustive) from which interested readers may select what is appropriate to their 
needs.

The triad: text - context - reader
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(i) Introducing a source 

To introduce original material in the classroom, two types of strategy are 
imaginable: direct and indirect. Using a direct strategy, the teacher presents the text 
without any previous preparation. An indirect strategy is a situation where the 
source is consulted after some previous activities. 

1. A direct strategy to a source might have as an objective to provoke a shock in 
the students, through perceiving the difference between their modem view of the 
subject and the view-point expressed in the source. This will provoke questions for 
study. After reading, the student is required to answer a series of questions 
previously established by the teacher—or it may be suggested that the student 
extracts questions from the text. Presenting the text in this way has the objective of 
challenging the student and raising a polemic around the theme. 

2. An indirect strategy might result from solving problems. The teacher presents 
to the students a non-routine problem, to raise their curiosity and the need for a 
deeper study of the subject. After this the teacher might present an extract of an 
original text related to the questions the students had formulated. 

3. Another indirect strategy could start with a historical author. The teacher 
begins by showing how mathematics is connected with the society of a certain time 
and, together with the students, he points out the mathematicians’ names that stood 
out. The students select one or more authors and try to gather available information 
about them. Only after interest about the mathematician has been raised does the 
teacher present a source extract, and the class work culminates with its analysis. 

4. Textbooks might be another point of departure. The teacher selects a theme in 
the textbook used in the classroom. She questions its approach. Then she presents 
other textbooks, or extracts from an old textbook, for analysis and comparison with 
the current one. It raises the students’ curiosity; they feel the desire to discover who 
introduced that concept or theory, who formulated or solved that problem. Thus, the 
original text appears in a natural way and is worked on as a profound study of the 
text used in the classroom. Further possibilities and problems with respect to the 
process of interpreting and analysing ancient textbooks are discussed in 
Glaeser 1983 and Schubring 1987. 

5 . In the education of adults it might be easiest and most natural to introduce a 
source through a presentation from the tutor. This is a discourse within which the 
tutor provides information, formulates a synthesis, or introduces a new question. 
The tutor sketches the historical background and comments on difficulties, special 
features, and objectives of the text in question. Switching between different texts or 
different parts of the same text can also be achieved by short presentations in which 
the tutor provides a synthesis of the text already treated and introduces the 
subsequent ones. These presentations should not be over extended; a few minutes 
will do. 

(ii) Analysis of a source and cognitive debates 

The analysis of historical texts is a difficult activity in history of mathematics. 
Sometimes it should be supported and guided through questions from the teacher. 
Sometimes, it seems to be more adequate to let the students find out the right 
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questions. An important aspect is to find suitable questions so that students become 
immersed in the historical context of the text under study. 

To improve the conditions of analysis, some texts must be modified or translated 
and adapted to the general context within which they are being introduced. At the 
same time, they have to be modified so as to remain within the students’ or trainees’ 
grasp. Nevertheless, it is imperative that these adaptations remain as closely aligned 
as possible to the original author’s thought (Barbin 1987). 

Frequently, the analysis of a text gives rise to cognitive debates. These are 
discussions within which the students are called to express their own views on a 
concept’s or method’s validity and relevance, and above all to give reasons for their 
own choice. For this, great care is needed in selecting the texts or controversies 
which are to be the object of debate. 

To prompt a successful debate, the educator should suggest to each group of 
students or trainees that they prepare to argue in favour of one or other point of 
view, Notwithstanding their directive character, these suggestions tend to motivate 
students and inspire them to find out for themselves about the advantages of a 
historical reasoning which at first glance might appear naive or erroneous (Desautels 
& Larochelle 1989, 1992; Legrand 1988; Lakatos 1976). 

(iii) Construction of measuring instruments 

Humankind has al ways been preoccupied with measuring physical or mathematical 
quantities and this is particularly true for mathematicians and scientists. Historical 
research reveals different conceptions of measurement. Although these conceptions 
may easily become apparent in some cases, they may not exist within a structured 
theory and they may not even have been used to construct instruments. Nevertheless, 
the ideas encountered through historical study may serve to inspire activities which 
can help participants to analyse their own reasoning and also encourage them to 
construct their own measuring instruments. For instance, mathematical machines 
for drawing curves may be of interest (Dennis 1997; El Idrissi 1998; Ransom 1995; 
also see section 10.2.2). 

(iv) Verbalisation 

With regard to acquainting the participants with the reasoning of mathematicians, 
having them verbalise this reasoning seems to be an excellent strategy. It makes 
students attentive to original thoughts and helps prevent them from attributing to 
mathematicians things they never said, and (if trainee or in-service teachers) from 
passing on such misunderstandings to their pupils in due course. Take care to have 
them distinguish in these verbalisations between things derived from the texts 
themselves and interpretations of the latter. This activity is also beneficial in 
alerting students to the difficulties which may be met when reasoning in 
mathematics without the support of a formal system. 

(v) Translation 

As with verbalisation, translations of text extracts are intended to acquaint students 
and trainees with the thought and conception of mathematicians in regard to 
mathematical reasonings and concepts. At least two types of translation can be 
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distinguished here: translations into modem mathematical language, and translation 
from one language into another. While the former serves in particular to reconstruct 
a mathematical argument, the latter has promising educational advantages insofar as 
it initiates students and trainees into mastering a language and to conceptual analysis 
(Arcavi et al. 1982, 1987; Testa 1996). 

(vi) Validation of reasonings 

During their first studies of historical works, students and trainees sometimes 
disparage the mathematical value of reasonings found in historical texts, especially 
if they have been accustomed to continuous praise of recent mathematical progress. 
This attitude may prevent students from realising the educational and mathematical 
potential contained in ancient reasoning. 

To challenge this attitude, one may ask students to validate the reasoning of the 
mathematicians of old. Such validations are intended to demonstrate how well-
founded are the methods used in history, in the light of more elaborate mathematical 
knowledge. This prompts the students both to give historical reasonings the same 
status as present-day thought with regard to mathematical foundations and also to 
challenge their own conceptions of present-day methods, in particular as regards the 
learning of mathematics. These ancient methods often have the advantage of being 
within the pupils’ grasp and of providing interesting hints for teaching (Arcavi et al. 
1982, 1987). 

(vii) Comparison 

To compare different texts or text extracts is also a fascinating approach, in 
particular in history of mathematics. The comparison may include texts of the same 
period or of different periods, having the same or different objects. These 
comparisons must be accompanied by activities and questions of understanding 
aimed at making analysis more purposeful and more attractive. 

Comparing historical texts permits students to realise how the notation and 
symbols of mathematics have evolved. It helps them to focus on the essential in 
historical mathematical writings. In addition, the comparison of mathematical 
textbooks is a promising approach to the history of teaching. 

(viii) Synthesis 

Activities of synthesis should be done by students outside of the course; for this 
external type of work, all the strategies mentioned above can be used. This 
homework should be designed either as a preparation for future courses or as a work 
of synthesis. It may be planned for the end of course sections. 

9.7 Evaluation, research questions and issues of concern 

Though the idea of integrating history of mathematics into mathematics teaching 
originated more than a hundred years ago, practical efforts on a larger scale beyond 
isolated activities of individuals have been made only in the last twenty years. Since 
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reading sources belongs to the most demanding of possible activities, it is not 
surprising that up till now there is no systematic empirical research, investigating 
opportunities, difficulties and outcomes of sources as part of mathematics teaching. 

At present, there are essentially two types of contributions to the field. On the 
one hand we have a number of reports reflecting personal experiences with reading 
original sources in various contexts, be it school teaching, or the education of future 
teachers (cf. Arcavi 1987; Furinghetti 1997; Jahnke 1995; Laubenbacher & 
Pengelley 1998; Silene & Testa 1998). On the other hand, there are quite a few 
papers with proposals on what could be done. However, to reach a new conceptual 
and practical level we do need more research. In this section we sketch some 
directions of work which could be followed. 

First of all, we should know better whether reading a source does in fact make a 
difference compared to other possible activities. Given the large amount of time 
required for using original sources, we should be sure that the effort is really 
worthwhile. From theoretical reflections we are quite sure that a source will open up 
new dimensions of understanding. We have mentioned above experiments where 
the integration of historical sources has been successful. The problem is to ensure 
adequate conditions. It is clear that the role of the teacher/tutor is crucial for 
creating the right atmosphere and providing the necessary intellectual tools for 
students.

This leads to further questions. Reading a source demands in a specific way a 
feeling for the intellectual, social and cultural context in which it has been written 
and the ability to ask questions concerning these dimensions. This in turn 
presupposes that the learner has already a certain historical background and an 
ability which we would like to call historical imagination. Under conditions where 
history of science is a curricular subject neither in regular school teaching nor at 
universities, a historical background in science and mathematics can only result 
from personal reading or from the media (television, films etc.). Thus we should 
investigate what previous knowledge about these things our students have and how 
much we can rely on this as a historical foundation to build on (see Demattè 1994; 
Demattè & Furinghetti 1999). 

Because of this context dependence, reading a source is quite different from 
reading a normal text of mathematics. Thus, one has to change one’s reading habits, 
and, again, we should know more about this, theoretically and empirically. 

It is very important to investigate the reading strategies and the strategies of 
interpretation as well as the difficulties students encounter with sources. How do 
students react to a text, how do they work with terms whose meaning they do not 
know? Are they able to identify essential elements of a text? How do they translate 
the meaning of a text into their own language? Only with a better understanding 
about this shall we be able to devise more effective teaching strategies. 

One of the essential ideas connected with the reading of a source is that this will 
influence the students on their meta-cognitive level and contribute to their ability to 
reflect about mathematics. Again, we need to know more whether this is really the 
case, and if so, to what degree. 

It would be worthwhile also to know more about processes of mathematical
understanding which might not be intended, but nevertheless happen. Students, or 
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teachers, may see in a historical document a source of insight, which may add to 
their understanding, regardless of the historical context, and far from the intention of 
the original writer. Thus the question to explore is: can original documents be the 
trigger for re-thinking the mathematics, even by way of erroneously attributing 
intentions to the text, which are not there, or misrepresenting its ideas? In other 
words, the source can be the motivation and inspiration for thinking differently 

about a mathematical 
topic, in a way which 
has nothing to do with 
what any historian 
would have seen in the 
source.

It is obvious that 
all these questions 
might be answered 
differently for young 
pupils or adults. Thus, 
the age factor is 
important.

There is a practical 
problem which will 
continue to remain a 
task of great 
importance for future 
work: the 
identification and 
editing of adequate 
source material. 

This overview 
shows that we are only
at the beginning of a
process in which
history of mathematics
might become an
organic part of 

Figure 9.8: Grade 9 pupils (13 year olds) in a Dutch 
mathematics teaching. secondary school explored this 17th century Dutch 

algebra text in learning about quadratic equations. The To achieve this goal

title page, and a page with the geometrical proof of an we have to solve a lot
equation-solving rule, were supplied together with the of problems. 
teacher's hand-written glossary to help pupils to study the Fortunately, these 
text at home before the classroom discussion (from van problems turn out to 
Maanen 1997) be interesting and 

demanding.
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APPENDIX: RESOURCES 

Sources of original mathematical material 

The following references are to sources where original works can be found. The 
selection of material has to be somewhat restricted and we have chosen material that 
is currently, or recently, in print or material that is widely available in libraries. 
There are a number of excellent histories of mathematics which, while being 
histories, also contain a great deal of illustrative original material. These are not 
listed here but a selection of them will be found directly after this appendix. Nor 
have we included here references to Complete Works of mathematicians, assuming 
that the interested reader would know how to access such material. 

Archimedes: Dijksterhuis, E. J., Archimedes, Princeton, New Jersey: Princeton 
University Press, 1987; Heath, T. L. The Works of Archimedes, New York: Dover 
Publications.
The Heath edition, with the 1912 supplement, presents a translation of the extant works of 
Archimedes, using modern notation to make the mathematics easier to follow for the modem 
reader, but this has the disadvantage of re-interpreting the original line of thought. 
Dijksterhuis uses a notation that allows the reader to come closer to the original Greek 
thinking. On the other hand, Dijksterhuis does not give a translation of all the propositions, 
preferring to guide the reader through the essential material. 

Argand, R.: Essai sur une manière de représenter les quantités imaginaires dans les 
constructions géométriques. new print. Paris: Albert Blanchard, 197 1.
English text books continue to use the name Argand diagram for the representation 
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of complex numbers on the plane and this facsimile of the 1874 second edition of Argand’s 
1806 essay is a clear and simple presentation of his argument. An English translation of the 
earlier publication by Caspar Wessel on this subject will be found in D. E. Smith. 

Barrow-Green, J. 1998, ‘History of mathematics: resources on the World Wide 
Web’, Mathematics in school 27 (4), 16-22.
This paper annotates web addresses useful for historians of mathematics. Cf. § 10.3.2. 

Berggren, L., Borwein, J, Borwein, P. 1997. Pi: a source book, New York: Springer 
Not so much a history of p - is that possible? - but a collection of articles about the number. 
Thus we find essays on the series formula, algorithms, computer calculations and the Gauss 
Arithmetic-Geometric mean. The book deserves a mention here because of the wealth of 
original material. Many of the original papers appear in the original Latin, French or German 
and without translations. The photocopies of original printed works are of variable quality 
and no editorial corrections of typos, etc. has been undertaken. Nonetheless, having original 
works in their original presentations brings its own excitement to the interested reader. 

Bernoulli, Johann. Lectiones de calculo differentialium. Mscrpt. German edition: P. 
Schafheitlin (ed. & transl.), Die Differentialrechnung von Johann Bernoulli aus dem 
Juhre 1691/92. Ostwalds Klassiker der exakten Wissenschaften 2 1 1, Leipzig: 
Akademische Verlagsgesellschaft, 1 924 
This is a German translation of the first textbook on calculus ever written, though not 
published at its time. It can be read after some introduction into calculus. 

Bibby, J. 1986. Notes towards a history of teaching statistics, Edinburgh: John 
Bibby Books 
Much of interest here for projects – it includes many original sources and pictures – as well as 
giving the statistics teacher useful information on how the teaching of the subject has changed 
over that past century or two. 

Cantor, G. 1915. Contributions to the Founding of the Theory of Transfinite 
Numbers, New York: Open Court Publications 
An English translation of Cantor’s ‘Beiträge zur Begrundung der transfiniten Mengenlehre’. 

Cardano, G. 1545/1968. The great art or The rules of algebra, (T. Richard Witmer 
tr. 1968), Cambridge: MIT Press 
First published as Ars magna in 1545, this a cornerstone book in the history of mathematics 
reveals the author’s solution to cubic and biquadratic equations. Long unavailable, except in 
rare Latin editions, now available through a Dover reprint. 

Chabert, J.-L. et al. (ed.), Histoire d’algorithmes, Paris: Belin, 1994; English tr. A
history of algorithms, Berlin: Springer, 1999 
A rich source of historical material, including many non-European works. Each chapter 
shows the development of a topic with extensive extracts from original writing. This would 
allow the teacher to introduce a topic directly from the original publications of 
mathematicians. Topics covered include: methods of false position, Euclid’s algorithm, 
interpolation, approximate solutions and convergence. 

Cullen, C. 1998. Astronomy and mathematics in ancient China: the Zhou Bi Suan 
Jing, Cambridge: University Press 
This complete translation of an important 1st century Chinese text provides rich material for 
the mathematics classroom. It is also a very beautifully produced book with an easily 
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accessible introduction to the developing mathematical and astronomical practices of ancient 
Chinese astronomers and shows how the generation and validation of knowledge was closely 
related to statecraft and politics. 

Descartes: D. E. Smith & M. L. Latham (ed., tr.), The Geometry of René Descartes, 
Open Court, 1925; New York: Dover Publications, 1954 
La Géométrie, which appeared originally as an appendix to Discours de la Méthode (1 637), 
presents Descartes' algebraic treatment of geometry. The English translation is in a simple 
and direct style, while the parallel facsimile of the first edition provides the possibility of 
comparison with the original French, as well the opportunity of comparing modern algebraic 
usage with the original French typography. The whole is enriched with numerous explanatory 
footnotes.

Dhombres, J. et al., Mathématiques au fil des âges, Paris: Gauthier-Villars 1987 
For readers of French this is a valuable collection of over 100 extracts, some quite extensive, 
grouped together to reflect ideas in the use of mathematics, arithmetic, algebra, analysis, 
probability and geometry. The chapters on analysis and geometry are subdivided to deal with 
themes, such as the origin of the infinitesimal calculus and the representation of space. The 
selection of material naturally reflects French interests and contributions. Here you will find 
Fermat's use of geometric progression to determine areas under the hyperbola and Condorcet 
on combining probabilities. The whole is most attractively produced, with fine illustrations, 
and concludes with brief biographies of more than 150 mathematicians. 

Dürer, A.: Unterwisung der Messung: Um einiges geküirzt und neuerem 
Sprachgebrauch angepaßt herausgegeben sowie mit einem Nachwort versehen. 
Reproduction of the edition München 1908: Wiesbaden, Sändig 1970. Original 
edition: Nürnberg 1525, reproduced in facsimile: Nördlingen: Verlag Dr. Alfons
Uhl, 1983 
Contains a lot of geometrical constructions. 

Eagle, R. E., Exploring mathematics through history, Cambridge: Univ. Press, 1995 
A collection of sources, from the earliest number recordings up to Fermat and Pascal's 
discussion of probability, prepared to be used in the secondary mathematics classroom. Each 
topic contains a description of the context and a simple explanation of the mathematics for use 
by the teacher or by a student. The material for use in class contains brief extracts of original 
material. The whole is delightfully illustrated and is presented so that it can be used by a 
teacher who has little or no historical background knowledge. 

Fauvel, J. (ed.), History in the Mathematics Classroom: the IREM Papers, Leicester:
Mathematical Association, 1990 
Nine articles by French mathematics teachers showing how they have used original material 
in their classrooms. Each article contains the original material in English translation, 
providing the teacher with lesson material. A wealth of ideas and experiences. 

Fauvel, John and Gray, Jeremy, The history of mathematics: a reader, Basingstoke
and London: Macmillan Press, 1987 
This selection of over 400 extracts was originally prepared for the Open University course 
Topics in the History of Mathematics and covers mathematical writings from the earliest ideas 
of numbers and counting up to the mechanisation of calculation. The collection includes
many comments on the nature of mathematical activity by mathematicians and other 
philosophers to sit alongside the original mathematical material. The contribution of Islamic 
mathematics is given its rightful place and of particular note is the chapter on the 
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mathematical sciences in Tudor and Stuart England which contains material unlikely to be 
encountered in other collections. The extracts have been carefully chosen to be easily 
accessible and include, for example, the proof by Gauss that the regular 17-gon is
constructible.

Hay, Cynthia (ed.), Mathematics from Manuscript to Print 1300 - 1600, Oxford:
Clarendon Press, 1988 
Papers on aspects of mediaeval mathematics, containing extensive extracts from the works of 
Maurolico, Nicolas Chuquet and Agrippa not easily found elsewhere. 

Heath, Thomas L. Aristarchus of Samos, the ancient Copernicus: a history of Greek 
astronomy to Aristarchus together with Aristarchus’s treatise On the sizes and 
distances of the sun and moon; a new Greek text with translation and notes, Oxford: 
Clarendon Press 1966 
This book contains Aristarchus’ famous paper on the relative distances of the sun and the 
moon from the earth. The hypotheses and theorems can be discussed in a course on 
trigonometry.

Heronis Alexandrini opera quae supersunt omnia. Greek-German edition. Stuttgart: 
Teubner 1976. 
Contains a lot of valuable sources on measurement, optics, geometry. 

Hilbert, D. Foundations of geometry, Chicago: Open Court 1902. 
A translation of the 1899 Grundlagen der Geometrie, in which Hilbert showed that it is 
possible to construct a geometry based on a complete system of axioms. In the first chapter, 
Hilbert began by stating 21 axioms involving six primitive or indefined terms. He presents 
five groups of axioms: incidence, order, congruence, parallels and continuity. 

I’Hospital, G. M. L ’analyse des infiniment petits, pour l ’intelligence des lignes 
courbes. Paris: Imprimérie Royale, 1696. Reproduction Paris: ACL-éditions, 1988 
The first calculus textbook ever published. See Bernoulli. 

IREM: Images, Imaginaires, Imaginations, Une perspective historique pour 
I’introduction des numbres complexes. Paris: Ellipses 1998 
Historical sources on complex numbers, and experiences with these texts in the classrooom. 

IREM de Basse Normandie (ed.): Une histoire des equations par les textes. 1994 
A collection of sources on the solution of equations from the Babylonians to Lagrange. 

IREM de Basse Normandie (ed.): La question des parallèles: une histoire de 
l’émergence des geometries non-euclidiennes. 1995 
Texts by Euclid, AI Khayyam, Wallis, Saccheri, Gauss, Lobatchevsky. 

IREM de Basse Normandie (ed.): La creation du calcul des probabilités et la loi des 
grands nombres de Pascal à Poisson. 1995 
Texts by Pascal, Huygens, Bernoulli, de Moivre, Laplace, Poisson. 

Klein, F. et al., Famous Problems and other monologues, New York: Chelsea 
Publishing Company, 1955 
Of the four monographs brought together in this single volume, the most useful from our 
point of view is the translation of Klein’s Famous Problems of Elementary Geometry. Not
only do we have the presentation of the three classical problems -the duplication of the cube, 
the trisection of an angle and the quadrature of the circle - as well as a detailed explanation 
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for the construction of a 17-gon, but also, in part II, a discussion of the transcendence of π
and a very nice presentation of the countability of algebraic numbers. This last is at a level 
that could be used as a rich source, accessible to school mathematicians. 

Lietzmann, W. Bd. 1: Aus der Mathematik der Alten: Quellen zur Arithmetik, . . . 
1928, Bd. 2: Aus der neueren Mathematik: Quellen zum Zahlbegriff und zur 
Gleichungslehre, zum Funktionsbegriff und zur Analysis 1929, Leipzig: Teubner 
A useful collection, unfortunately no longer in print. 

Midonick, H. (ed.), A treasury of mathematics, New York: Philosophical Library, 
Inc., 1965. 
An attractively produced volume of fifty four original sources selected to illustrate 
contributions which changed or altered the course of the development of mathematics. More 
extracts from non-European sources than in other comparable collections. Each selections is 
preceded by a short introductory essay. 

Newman, J. R., The world of mathematics, London: George Allen & Unwin, 4 vols. 
1960
Described as a ‘small library of mathematics’, this four volume collection of articles contains 
many examples of original mathematical writing. Here will be found, for example, Newton’s 
letters of 1676 in which he explains the extension of the binomial theorem to fractional and 

negative exponents (as well as his use of a½ and a-1 ), The Sand Reckoner by Archimedes, 
Euler’s original article on the seven bridges of Königsberg and Alan Turing’s article ‘Can a 
Machine Think?’ 

Newton, I., The mathematical papers of Isaac Newton, ed. D. T. Whiteside: Vol. V: 
Lectures on Algebra. Cambridge: University Press, 1972 
Newton’s lectures on algebra, from 1683 to 1684. A bilingual edition, Latin and English, 
containing a full commentary by Whiteside and facsimiles of Newton. It starts with ‘First 
book of universal arithmetic’, where it is possible to detect the author’s conception of algebra. 
Particularly interesting is Newton’s didactic approach to show the use of algebra in a 
mathematical problem, translating a word problem from natural everyday discourse to 
mathematical symbolism. Clearly expressed, the text can easily be read by mathematical 
beginners.

Open University, Topics in the history of mathematics, (General ed. John Fauvel), 
Milton Keynes: Open University Press, 1987 
The Open University course material for the degree level unit of this title contains 17 
booklets, each of which can be obtained separately. While being a teaching course, each 
booklet contains extracts of original material. Video materials are also available. 

Pappas, T., Mathematics appreciation, John Bibby Books, 1988. 
A source book containing ten lessons, each with photocopiable assignment pages. Historical 
material at the level of elementary mathematics. 

Rhind mathematical papyrus: Chace, A. B. et al: Oberlin, Ohio: Mathematical 
Association of America, 1927, 1929; reprt. National Council of Teachers of 
Mathematics, 1978; Robins, G & Shute, C., London: British Museum Publications, 
1987, 1998. 
The Chace edition includes almost all of the problems from the Rhind Papyrus, with 
attractively presented text in hieroglyphic and hieratic writing alongside the English 
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translation. The British Museum publication only has some sample problems but contains 
attractive full colour plates of the papyrus. 

Riese, Adam, Rechenbuch, facsimile of 1574 edition, Hanover: Th. Schäfer, 1992
This book is perhaps the most famous of the early printed arithmetics and the name Adam 
Riese has come into the German language to signify accurate calculation. The fact that it is in 
German, and in Gothic script as well, makes it difficult for the non German reader to use, but 
the beautiful woodcut illustrations alone recommend the book as an important stage in the 
change from abacus calculation to written methods. 

Schneider, I. Die Entwicklung der Wahrscheinlichkeitstheorie von den Anfängen bis 
1933 : Einführungen und Texte. Darmstadt: Wissenschaftliche Buchgesellschaft 
1988
A comprehensive collection of sources from the history of probability theory, translated into 
German.

Smith, David E., A source book in mathematics, New York: Dover Publications, 
1929, 1959. 
A collection of 125 extracts, mostly not available in English elsewhere. The book is divided 
into five sections (number, algebra, geometry, probability and calculus/functions). The 
extracts have been chosen to illustrate significant incidents or ‘discoveries’. Some of the 
extracts, such as Cardan on imaginary roots or the correspondence between Pascal and Fermat 
on the notion of probability, are capable of being used in upper secondary school 
mathematics.

Struik, Dirk J., A source book in mathematics, 1200-1800,Princeton, New Jersey: 
Princeton University Press, 1969, 1986 
A selection of mathematical writings of authors from the Latin world who lived between the 
thirteenth and the end of eighteenth century. By Latin, Struik means that there are no Arabic 
or Oriental sources, except where much used Latin translations are available, for example in 
the case of AI-Khwarizmi. Struik intersperses helpful explanatory commentary on the selected 
texts but substantial blocks of original writing remain intact. There is a great deal of rich 
material here, ranging from Stevin’s description of decimal notation to Euler’s theory of zeros 
of different values. 

Swetz, F. (ed.) Learn from the masters!, Washington, DC: Mathematical Association of 
America, 1995 
A collection of twenty-three articles by contributors who are actively engaged in using history 
in the teaching of mathematics. The intention is to show how one can use history in 
mathematics teaching and many of the articles contain direct extracts from original material 
which could be used by the teacher. An excellent starting point for the interested mathematics 
teacher.

Swetz, F., Capitalism & arithmetic: the new math of the fifteenth century. La Salle, 
Illinois: Open Court Publishing Co., 1987 
The Treviso Arithmetic of 1478 is the earliest known dated printed arithmetic book and this 
English translation from the Venetian dialect comes with a useful commentary. Many of the 
problems, for example on the rule of three or problems of inheritance, could be used directly 
in the mathematics classroom. Students will also benefit from seeing so many ways of setting 
out ‘long’ multiplication. 
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Thomas [=Bulmer-Thomas], Ivor, Greek mathematical works, Cambridge, Mass & 
London: Harvard University Press, vol. 1, 1939, 1980, vol. 2, 1941, 1993. 
This valuable collection of writings is arranged roughly chronologically with the first volume 
dealing with the mathematics up to Euclid (fl. 300 BC) and the second volume taking the story 
on as far as Pappus of Alexandria (fl. 300 AD). Thomas arranges his material around themes 
so some later writings appear in the first volume, when giving examples of Greek writing on 
arithmetic, for example. The whole work is set with the Greek original alongside the English 
translation and helpful footnotes are used to explain the text. Among the gems for use in the 
mathematics classroom are: Nicomachus on figurate numbers and his description of the sieve 
of Eratosthenes, selections from Archimedes and early ideas of trigonometry, including 
Ptolemy’s table of chords and Diophantus on types of equations. 

Wieleitner, H. Mathematische Quellenbücher. Bd. 1 : Rechnen und Algebra, 1927, 
Bd. 2: Geometrie und Trigonometrie, 1927, Bd. 3: Analytische und synthetische 
Geometrie, 1928, Bd. 4: Analysis, 1928. Berlin: Salle 
A useful collection, unfortunately no longer in print. 

Viète, François, Introduction to the Analytical Art, in: J. Klein, Greek Mathematical 
Thought and the Origin of Algebra, Cambridge: MIT Press, 1968, 3 13-353
Klein’s study of the revival of Greek mathematics, via Arabic science, in the 13th to 16th 
centuries, contains an English translation (by J. Winfree Smith) of Viète’s important work 
which marks the beginning of the use of symbolism in mathematics. 
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with June Barrow-Green, Maria G. Bartolini Bussi, Masami Isoda, Jan van 
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Brummelen

Abstract: The integration of history is not confined to traditional teaching delivery methods, 
but can often be better achieved through a variety of media which add to the resources 
available for learner and teacher. 

10.1 Introduction 

Jan van Maanen 

10.1.1 Why other media? 

Can we still speak about ‘traditional’ ways of teaching mathematics? If so, would 
this be the chalk-and-blackboard manner which will be familiar to most readers of 
this book from their own school days? In his address to the 7th International
Congress on Mathematical Education (Howson 1994) Geoffrey Howson showed 
slides of classes learning mathematics. The range of conditions in which classes 
worked was enormous, from open-air teaching in Africa to spacious western 
classrooms, from barefoot kids to strictly disciplined Asian classes. Despite the 
wide variety of teaching and learning conditions, in many cases the blackboard was 
the centre of activities and chalk was the medium. In many countries of the world, 
the majority of schools have no electricity supply let alone telephone cables, and are 
often too poor even to provide pencils and notebooks for schoolchildren. And 
although it is clear that in many parts of the world the situation is now changing, and 
that other media, notably computers, are coming into classrooms both as 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 329-370
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presentation tools for the teachers and as working tools for the students, the usual 
method of teaching mathematics is still with blackboard and chalk (or sometimes 
whiteboard and marker). At any rate this is the starting point for this chapter. If in 
the life-time of this book the centrality of focal board—whether blackboard, 
whiteboard or indeed overhead projecto—and board-writing implement (chalk or 
marker pen) no longer holds, perhaps the reader will consider this chapter as a 
historical document, foreshadowing things to come. 

During the past century or more, blackboard and chalk were identical with 
mathematical activity. Thus in 1925 the Dutch teacher and historian of mathematics 
E. J. Dijksterhuis characterised and defended deductive mathematical thinking by 
presenting the prototype mathematician as one who begins with nothing but chalk 
and then starts to create new mathematics (translated from Van Berkel 1996, 132): 

The man comes and stands in front of you; he has a blackboard and a piece of chalk; he has 
seen nothing nor experienced anything that he comes to report about; he does not need 
apparatus in order to give life to phenomena that lead to questions, but he builds an 
immaterial world for you, apparently from nothing. 

The traditional way of teaching is notable for the way it focuses the class’s 
attentions on a vertical surface (board or screen) at the front, whose content is 
controlled by the teacher. Present teaching practices are strongly governed by 
technology and media; they are just so familiar that we may not think of them in that 
way. This technique is highly effective in the sense that it conveys messages, from 
the teacher to the student, quickly and with little cost of material and personnel. 
Some students (often those who go on to be teachers in their turn) learn very well 
through this process. On the other hand, it appears that this way of teaching does 
not invite all learners. It may be, as researchers are beginning to realise, that the 
difficulties experienced by many students are as much to do with the traditional 
teaching mechanisms as with any innate lack of competence or application. Making 
an appeal to many learners seems to require other means than just passing accurate 
information. It is here that the non-standard media discussed in this chapter may 
have an important role to play in educating young people broadly across the whole 
range of students and institutions. 

The underlying issues here are investigated in some more depth in the remainder 
of this introductory section. Then in section 10.2 some specific cases of using non-
standard media in connection with the history of mathematics, to improve 
educational experiences and opportunities, will be presented and investigated. 
Section 10.3 explores the educational value of one of the most rapidly developing 
uses of new technology, the World Wide Web, in the context of support for 
mathematical learning from historical resources. 

10.1.2 And which media? 

Non-standard media for teaching mathematics have been listed already in Ch. 7, 
within the broader framework of possible ways of implementing history in the 
mathematics classroom. Some of them fit well within traditional methods, such as 
having ‘historical snippets’ in textbooks (§7.4.1); using ‘worksheets’ (§7.4.4); and 
working on errors, alternative conceptions, and other instances where history 
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presents a contrast to the usual perspective (§7.4.6). Several of the items surveyed 
within §7.4 will not be considered here. This chapter restrict itself to explorations in 
more depth of domains, such as working with mechanical instruments or doing 
dramathematics, that the authors have experience with themselves. 

The media chosen for discussion here form but a small selection of those which 
are possible and have been used by imaginative teachers. An important earlier 
survey of the range of possibilities was the eighteenth yearbook of the US National 
Council of Teachers of Mathematics (NCTM), published in 1945 under the title 
Multi-sensory aids in the teaching of mathematics. Its opening paragraph provides 
an interesting historical record (NCTM 1945, vii): 

Teaching aids in mathematics are not new. The last hundred years have brought us the 
telephone, the phonograph, the radio, television, the silent and sound motion picture, the 
stereoscope, the three-dimensional coloured pictures on lenticulated film and the Polaroid 
three-dimensional pictures, and motion pictures in colour. These inventions and 
developments are being used in many forms in our schools at the present time. It is only 
natural that mathematics teachers, too, consider the possible adaptation of these materials to 
the improvement of instruction in their field. 

It is interesting to compare this list with a list one might draw up now under a 
similar rubric. Perhaps discussion of precisely this point may provide a useful 
exercise for trainee teachers who are exploring the uses of history and media in their 
future mathematics classroom. 

A powerful example of how insights from new media can be integrated into 
learning is the innovative book by Eduardo Veloso (1998). Veloso discusses, 
among a wealth of other things, how historical problems can be taken as a source of 
inspiration for investigations with computer programs like Sketchpad and Cabri. 
The publisher of this book, which aims to present materials to teachers, is the 
governmental institute for educational innovation. Apparently media like computer 
programs are still seen as an ‘educational innovation’, at least by the government. 
This is but one instance of how the range of ideas developed in this chapter can be 
integrated into the development of progressive mathematics education. 

10.1.3 Affect and effect 

The work done in preparation for this ICMI study has produced very positive reports 
about the greater affectiveness that non-standard methods can bring about. That is, 
the way students warm to mathematical learning through the range of methods such 
as doing projects, watching films, constructing models, researching history in 
libraries, devising dramatic presentations, surfing the World Wide Web. In part, of 
course, the perception of the learning benefits arise from a ‘new technology’ effect: 
something seems good just because it is new, a perhaps welcome change from 
traditional lessons. But even here the concerned educator can learn a lesson: pupils 
and students today have a far wider range of outside influences than once they did, 
and a pedagogy that does not take that into account will fail to inspire and carry with 
it an ever-growing proportion of the young people concerned. On this argument, the 
development of using non-standard media, as a delivery mechanism for teaching, is 
essential part for mathematics teachers in the years ahead. 
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The general experience is that at first the media discussed in this chapter take 
more time to produce learning effects than the traditional teaching methods, but that 
in the long run teacher and learner will earn their earlier investment back. This is 
true, of course, of the use of history as a whole in mathematics education. Some 
teachers are fearful of using historical resources because they expect them take up 
more precious class time. This fear may be justifiable in the short run. It is the 
long-term growth in understanding, however, which is at stake. The advantages 
argued for history in general, and non-standard media support in particular, are to do 
with the overall educational experience and the development of the learner over 
time.

As an example, consider the experience of Argentinian fourteen-year-olds
described by Vicky Ponza in §10.2.1. There is a narrow sense in which they might 
have been taught more mathematics more quickly by conventional means than they 
learned by researching and constructing a play on the life of Galois. This view, 
however, fails to understand that the students were somewhat disengaged from 
mathematics beforehand and showed no promise of mathematical learning 
achievements in any event; the subject had seemed too remote from their concerns 
and too alienating as an emotional experience. Involving the students affectively did 
take time, but had a possibly lifelong benefit for them in securing their engagement 
with the idea of developing mathematical strengths. 

This has long been the experience of teachers experimenting with non-standard
media activities. One medium that has been explored, for example, especially in 
primary and middle schools, is that of curve-stitching. This was a technique 
popularised in English education circles at the end of the nineteenth century, notably 
by Mary Boole (the widow of the mathematician George Boole), for constructing 
curves by stitching their tangents on cards. When these practices were tried in the 
US in the 1940s it was found that hitherto-alienated students were attracted to 
mathematics as a result of the novelty and interest of this practical activity. One of 
the teachers involved recorded the following observations (McCamman 1945, 85): 

An intricate and lacy design was made by a boy noisy in voice and manner, who was so 
unfamiliar with sewing that he thought the needle had to be tied to the end of the thread. A 
particularly striking design was made by a Chinese boy who at one time had been considered 
incapable of taking the regular mathematics courses. His chief difficulty was his inability to 
express himself in a strange language. [. , , ] Some students who have not been doing well in 
geometry find in this work a new opportunity to be successful and to earn the praise of their 
classmates. In many such cases, the increased interest in geometry seemed to carry over to 
subsequent work. 

Not that non-standard media benefit only previously under-achieving students. One 
of the major arguments of this book, for the media discussed in this chapter no less 
than elsewhere, is that there are benefits across the full range of student abilities, 
ages and institutions. A second message from the accounts here is that multi-media
teaching ideas work best when the teacher is personally committed to and 
enthusiastic about the technology in question. That is one reason why what we 
present is a range of possible resources, and ideas for using them, and in no sense a 
recommendation that teachers ‘should’ use this, that or the other. A teacher who is 
personally excited about sundials, say, or dynamic geometry software, or the 
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patterns and rhythms of folk dances, can do wonders in the classroom with that 
material which another teacher could not. We intend that this chapter will also 
provide useful ideas and stimulus for a teacher whose particular enthusiasms are 
something else again from the particular examples discussed here: for film-making,
perhaps, or basket-weaving, or architecture, or devising mathematical trails, or 
encouraging poster production. 

The question of the effectiveness of the various teaching modes, technologies 
and experiments described here is not easy to evaluate scientifically by the norms of 
modern experimental science. Elsewhere (Ch. 3) there is a discussion of research 
criteria and techniques, and there it is argued that anthropological or sociological 
research methods are better paradigms for evaluation in situations with as many 
uncontrollable variables as the learning situations in question here. Hence 
observational reports from teachers, and the sharing of subjective experiences by 
both teachers and students, are an important way of the researcher’s gaining 
confidence in the effectiveness of the procedures. 

10.1.4 Media and cognitive aspects of learning 

One of the main benefits of having a range of media resources available is that this 
enables the cognitive needs of a greater number of students to be met. Through 
recognising more explicitly that students are very different, their individuality is 
allowed for and addressed more than traditional teaching methods are supposed to 
do. There have been serious concerns from many teachers in recent years, in two 
different directions. One is that traditional mathematics education preferentially 
benefits students with particular cognitive skills. The other is that all students are 
affected by the range of stimuli in their lives today, notably on their attention spans, 
in a way which has consequences for learning. Of course this is a complex and 
contentious area on which much work has been and continues to be done. But the 
implication for the present context is that students whose needs are not well met in 
the present system, for whatever reason, may find renewed learning possibilities in a 
range of other approaches. 

This viewpoint again has deep historical roots: the French writer Jean-Jacques
Rousseau was among the foremost advocates of learning aids, in the eighteenth 
century. Yet they have always remained at the periphery of pedagogic strategies. 
Pre-echoing the discussion of traditional educational techniques at the beginning of 
this chapter, a New York teacher at the end of World War II described the 
classrooms she saw as follows (Carroll 1945, 16): 

In the high school, classical subjects [. . . ] are all too commonly taught by the medieval 
methods of lecture, question, and answer. Except, perhaps, for the differences in dress and 
attitude of the students, a casual visitor might be unable to tell the difference between many 
1944 classrooms in mathematics and their prototypes of the Middle Ages. 

From the historian’s perspective, these concerns (like the perennial concerns‘about 
the value of history in mathematics teaching) are always with us. Each generation 
needs to confront afresh the ways in which contemporary technology and media can 
support the role of the mathematics teacher. 
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Various other aspects are likely to play a role here, but need further research 
before their effect on mathematical learning can be established. In an arbitrary order 
I list some of these. Reading skills, particularly skills to understand ideas that are not 
familiar to the student, are probably well stimulated through the study of historical 
problems and methods. Given the effects of socialisation upon gender roles, girls 
and boys may respond differently to mathematics taught with history than to 
mathematics taught without. And students vary dramatically in what grips their 
imagination: understanding and describing what Fibonacci asked about the rabbits 
may be a goal that is better realisable for some students than proving general 
statements about Fibonacci numbers. This does not mean that teachers should forget 
about general proofs, but rather that we could think about setting a richer variety of 
goals among mathematics learners. Mathematics is a difficult area to reach the level 
of producing independent results, or otherwise feeling ‘ownership’ of the subject. 
History of mathematics may be helpful here. In this area students may sooner have 
the feeling that they have done valuable independent work, and be proud of it. 

10.1.5 Media and assessment 

An increasingly important aspect of mathematics education, in many countries, is 
the assessment procedure. Examinations as a critical component of the school 
experience began to be developed in the early nineteenth century, with the 
educational reforms following the French Revolution, and have come over the past 
two centuries to attain great significance. Sometimes teachers’ pay has depended on 
the examination results of their pupils, and sometimes the status or remuneration of 
the school, besides the familiar fact that students’ future progress, through education 
or the outside world, depends upon the results of their mathematics and other 
examinations. Not all teachers, still less students, view these developments with 
equal enthusiasm, but nevertheless this dimension of school experience is with us 
for the foreseeable future and can be made to yield benefits for the participants as 
well as for the wider political-economic system. 

In this context, the form which examinations take is of great importance. 
Traditionally, these consist of students writing down answers to mathematical 
problems, generally within a fixed time limit. In recent decades other forms of 
assessment have been explored, such as relaxing the time limit and assessing work 
done over the whole of the study period (see Niss 1992a, 1992b, especially Izard 
1992; Swan 1992). Here it can be useful to explore the way in which the 
combination of history and non-standard media can provide a much richer 
assessment environment, in which the skills and talents of a wider range of students 
can be represented and given credit. 

Many of the resources discussed in this chapter give rise to assessment 
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opportunities which can satisfy both the expectations of the wider system, for a 
ranking of students for various public purposes, and the expectations of students for 
a fulfilling and relatively stress-free mode of assessment. The Argentinian 
experiences recounted by Vicky Ponza (§ 10.2.1), for instance, concern the 
construction of a drama in such a way that every member of the class is concerned in 
some aspect of the production. The instruments whose classroom use is described 
by Maria Bartolini Bussi (§ 10.2.2) again offer opportunities for non-standard 
assessment in terms of mathematics classrooms, but which are familiar in creative 
arts. Students can be asked to assemble their own productions in a portfolio, or to 
present it to fellow-students or to an outside audience. This will be a way of 
assessing progress in mathematics of increasing importance. 
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10.2 Learning through history and non-standard media 

10.2.1 Mathematical Dramatisation 

Vicky Ponza 

There is a clear tendency in the world today to use sophisticated electronic media in 
education. In many countries however, such as Argentina, such facilities are not 
widely available to students in educational institutions. Even where computers are 
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available, in some cases teachers and students cannot profit wholly by them owing 
to the lack of resources such as funding for telephone bills. In the face of these 
needs, in my country teachers usually assume one of the following attitudes: either 
they come to terms with technological limitations, making use of wholly traditional 
methods, or they try to explore new ways to make up for these deficiencies. What 
new ways are these? We might, for instance, mention mathematical dramatisation. 
By this I mean the search for elements which may touch the students’ sensibility and 
turn mathematics into a warmer, friendlier subject. Thus mathematical dramatisation 
means working on mathematics by involving intuition, creativity and the human 
body.

The need for developing such dimensions of mathematics has long been known 
by more insightful commentators. In a lecture delivered at the beginning of the 
twentieth century to the Psychological Society of Paris, Henri Poincaré commented 
on the psychological dimension of mathematical activity in these words (Poincaré 
1914,49-50):

A mathematical demonstration is not a simple juxtaposition of syllogisms; it consists of 
syllogisms placed in a certain order [. . .]. If I have the feeling, so to speak the intuition, of 
this order, so that I can perceive the whole of the argument at a glance, I need no longer be 
afraid of forgetting one of the elements; each of them will take place itself naturally in the 
position prepared for it, without my having to make any effort of memory. [. . . ] It is time to 
penetrate further, and to see what happens in the very soul of the mathematician. 

Searching deep into the mathematician’s soul is an approach in which teachers can 
help encourage their students. In Argentina I have worked with students in a number 
of ways in order to help them develop their feelings in harmony with their 
mathematical skills and interests. 

1. Intuition and creativity as related to the body allow us to go from dance (the 
choreography of the Argentinian dance music the ‘zamba’) to the drawing of 
described curves, and from these to the discovery of graphs of continuous, 
discontinuous and quadratic functions, as well as their characteristics. 

2. They may also lead us to what I call ‘corporised geometry’. Geometry is 
perhaps the part of mathematics most closely related to the natural and artificial 
surrounding created by the human being. Bodies, planes, straight lines, angles are to 
be found in the human body and we can discover them or make them up among 
several individuals. 

Some students have a natural talent for performing as mimics. Bodily 
expression may be orientated from and towards geometry and a theorem may be 
proved, or at least made plausible, without resorting to either verbal or written 
language at all. 

4. And by fusing these talents with the act of performance we will be able to 
produce ‘mathematical theatre’, that is to say, write and act mathematics. 

These four activities are among those made with students between 13 and 17 and 
evaluated at Mariano Moreno School, Rio Ceballos, Cordoba, Argentina. For 
example, two students whose interest in human relations is more vivid than their 
command of mathematical language may nevertheless be encouraged to relate the 
two: Juliet may ask Romeo to leave, appealing to mathematical terms: “You have to 

3.
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leave. My mother interposes as a transversal between the parallels of our love. We
are alternative exterior. Although we may be congruent we will never be together.” 
Mathematical dramatisation becomes an open door towards interdisciplinary work 
and consequently towards a wide range of possibilities for all subjects. 

Interdisciplinary trials were made all through one year (1994) at an Argentine
school, which involved seven subjects including mathematics. The work revealed 
the need to start from history and take history as its leading theme. Mathematics 
was involved through working on a play with the students, whose scene was the 
Alexandrian Library. Students carried out research into the history of mathematics, 
which opened the way for introducing a dialogue between Euclid and Eratosthenes, 
which included references to several mathematical topics which formed part of the 
curriculum. The biographical allusions served the purpose of humanizing concepts. 
(Similar dramatic activity, also relating to ancient Alexandria, is seen in the 
‘Museum Strategy’ of Pennington and Faux 1999, described below, §10.2.1 Annex.) 

Once the potential of these teaching and learning techniques are explored, it will 
be clear that they are of value whatever the original motivation for their 
introduction, whether or not there are economic or other difficulties about the use of 
other media. Dramatisation is an important tool in the repertoire of every teacher, in 
whatever circumstances they work. Other teachers have worked on mathematical 
dramatisation, notably Gavin Hitchcock from Zimbabwe who in a series of 
contributions (Hitchcock 1992; 1996a; 1996b; 1997) has devised dramatic pieces for 
humanising and contextualising the development of mathematical concepts. 
Hitchcock 1997, for example, dramatizes the development of negative numbers 
between 1870 and 1970. In his introduction to that Hitchcock notes that “it might be 
good to expose a form of children or grown-up students to a variety of different 
approaches to this topic or others and encourage them to become active critics 
instead of passive receivers”. 

The effectiveness of this working method became evident in the course of a trial 
made in 1997 with students between 12 and 13 years of age (2nd school year) of the 
above mentioned Argentine school and its follow-through in 1998, which I now 
outline here (for fuller details see Ponza 1998). 

Dramatisation of the life of Galois 

1. Divided in task-groups from the beginning of the class year, the pupils looked 
for information about the history of mathematics. They were instructed to 
search in their own library (which in general had rather poor resources), in the 
school library and in the town during a period of two weeks. They did this work 
outside school times. They had to bring the material and note carefully the name 
of the work and of the author. 

2. Once all the material had been gathered, it was sorted out in the school during 
mathematics class-time according to the people and themes they had researched. 
Despite the fact that in the whole village there was no specific bibliography on 
the history of mathematics, some of the pupils surpassed my expectations on the 
quality and quantity of the information found. I made use of my personal 
library, contributing as a member of the research group. 
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3. I made a second selection of the material contributed by us all, relating it to the 
contents to be developed in the second year, and I planned the classes from the 
starting point of history wherever possible. 

4. When starting a unit, I would distribute amongst the groups the relevant 
material. The pupils would look up the historical elements appropriate to the 
specific themes and they would then read out the researched information to the 
whole class. Each one would do their own introductory summary, emphasizing 
distinct aspects, according to their personality and inclinations. This 
introduction served to motivate and would be enriched by new additions 
discovered in the course of the unit’s development. 

5. In some units pupils were captivated by the life of particular mathematicians. 
Evariste Galois was a case in point, whose life and work arose when the pupils 
were researching into the history of equations. They decided to write a small 
dramatic piece and show it first within their own course and then before all 
interested pupils in the school. In the writing and performance of the play they 
took the following steps: 

a) The groups looked for details related to the life of Galois. 
b) Each group informed all others about the details they had compiled. 
c) Each group wrote a play and read it to fellow classmates. 
d) A new task-team made up of representatives from each of the original task-

groups synthesised the different plays into the final work to be shown. 
e) They shared out responsibilities of every aspect of the production: between those 

acting, those in charge of stage design, wardrobe and other helpers, always 
bearing in mind and with due regard for personal idiosyncrasies and leanings. 
This enabled all the pupils on the course to participate in one form or another. 

Here are extracts from the play. We give here the first and second scenes, and the 
concluding statement (the full text is in Ponza 1998; the translation is by Antonio 
Luque).

FIRST SCENE 

(Classroom in the Ecole Louis Le Grand. Various students, Galois and François, a 
friend, conversing. A tutor is close by his writing desk, talking in private with a 
student).

GALOIS: Dear François, I can’t stand this place any longer. It is all so strict! They 
don’t let us think for ourselves, nor have our own opinions, one cannot sleep or eat. 

FRANÇOIS: Yes, the food is meagre, all is dull, but you need patience! Here we 
learn Greek and Latin and all else to prepare us for the future. 

GALOIS: I am not interested in Greek or Latin. What is more the tutors ... (the tutor 
talking to the other student raises his voice, grabs him by the scruff of his neck and 
starts slapping him) 

TUTOR: So you can’t repeat the phrase which I gave you in Latin, nor in Greek, 
huh?

GALOIS: (Jumping towards the tutor) Enough! Stop hitting him, you have no right! 
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TUTOR: Don’t I? Of course I do. Just as I’m allowed to tell you to shut up. 
Particularly you, who are repeating the course, and still can’t pass Greek or Latin. 

GALOIS: I am not interested! And you can’t punish us for that! 

TUTOR: (Calmer now, as he has come across someone who stands for himself) I
find you strange, Galois. Your parents were very studious in those matters. You will 
not go far. You will remain mediocre all your life. Let’s see, is there anything which
interests you? 

GALOIS: I enjoy geometry: there I can see, feel and think. Legendre is a master. 
And also algebra. So it is that I chose the subject of mathematics, and now 1 know 
what I want to be in life: I shall be a mathematician. I am studying analysis and the 
algebra of Abel and will enrol in the Ecole Polytechnique. 

TUTOR: Bah! ... Just a simple optional subject! You are a day-dreamer and you will 
be nothing but a failure all your life. 

SECOND SCENE 

(Other students leave the stage. Galois moves forward and sits down on a writing 
desk. While he is talking the scene changes to the Ecole Polytechnique.) 

GALOIS: I have got to prepare really well. It is difficult to obtain a place in the 
Ecole Polytechnique but from it have proceeded the best mathematicians. I will also 
write down my discoveries on equations and will ask those geniuses to present them 
to the Academy of Sciences. 

(Continues working. Meanwhile in the Ecole Polytechnique, Dinet and Cauchy are 
now set up. Galois takes up his note book and walks towards them) 

GALOIS: Morning, Profs! Are you the great sage mathematician Cauchy? 

CAUCHY: Yes, I am. And this is the great professor Dinet, who marked your exam 
paper.

DINET: (He is very old and a bit deaf) Tell me young man, what did you mean 
when you wrote here that it is possible to define which equations can be solved 
using roots? 

GALOIS: Ah, yes. It appears that looking for the conditions necessary for the 
coefficients to have a formula which would give the solutions, I discovered what 
you have just read, because if you analyze an algebraic equation ... 

DINET: (Interrupting) No, no, no. Don’t come to me with weird things, inventions, 
discoveries. What can a young man like you ever discover! Why don’t you show all 
your rough work, all the steps you’ve taken? Why did you not move each term one 
at a time as you have been taught? 

GALOIS: But professor, this is something obvious, allow me to pursue my 
explanation of the solutions that I discovered. 

DINET (Interrupting) And besides, what is this about logarithms? These are but 
hieroglyphs (looks at Cauchy) Plainly you lack a systematic training. 

GALOIS: (Looking at Cauchy as if asking for help) Gentlemen please. 

DINET and CAUCHY: Dismiiiiiiiiiiiiiissed. 
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GALOIS: (despairingly) Wait gentlemen, please wait (he stops and shows them his 
notes). Listen to my theories and you will see that I am right. I have discovered the 
solution to equations of degree beyond two and three: in order to solve them by 
roots, it is necessary ... 

CAUCHY: (takes the notebook and leafs through it) Rubbish, rubbish. Why have I 
got to read the work of a 17 year old youngster like you? Besides, I don’t understand 
any of it at all (throws it into a paper bin) 

GALOIS: You are, you are ... I can’t stick ... you two idiots. And you look it! (he
throws all loose sheets on the writing desk over their heads). 

DINET and CAUCHY: Dismissed, dismiiiissed for good and e-ver. 

[...]

Concluding statement 

NARRATOR: We identify ourselves with many aspects of the life and experience of 
Galois, and so ask: for how much longer will the superficial prevail over the deeper? 
Will we forsake the opportunity of developing ourselves in school? Will we lose our 
humanity? He was only twenty years old when he died. He suffered the greatest 
injustices of the so called geniuses of the epoch. Notwithstanding the theft, envy, 
indifference they could not stop him becoming, years later, one of the most 
important men in mathematics. We believe [Creemos] that justice was finally done, 
but we request [queremos] that justice be realised in real time. It is not good enough 
years later. 

Evaluation

This play is only one of the many issues of a school year devoted to working at 
mathematics with history as a starting-point, supplying evidence for the possibilities 
of mathematical dramatisation. For further discussion of the issues, see § 6.2.2. 

Can mathematics be learned by means of dramatisation? If so, is it just intuitive 
learning? The trials mentioned in this section have proved that mathematics can, in 
fact, be learned in this way. By starting from the intuitive-emotional as a means of 
approaching pure and abstract matter, we overcome the resistance often put up 
against mathematics. This method is endorsed by biological research which, as 
concerns mathematics, holds the existence of an almost total lack of formation of 
emotive memories (right cerebral hemisphere). In his essay ‘El saber si ocupa un 
lugar’ (Knowledge does occupy a space), published in 1994, Osvaldo Panza Doliani 
bases his judgment on multi-comprehension, that is to say, on the development of a 
scientific discipline supported by all sciences, the epistemological basis of which is 
natural evolutionary rigour. He holds that 

all the events that take place, be they orderly or disorderly, turn out to teach the human being 
a lesson. Therefore, when teaching, the incentives are not just pedagogical, but various. The 
three issues related to biological findings which should lead the way to a new pedagogy are: 
a) The fact that, so far, teaching has scarcely considered the biological tempo needed for the 
organisation of memories, b) Disregard of the fact that sensory perception is the life of the 
brain and, consequently, the latter depends on it, c) Disregard of the fact that sensory 
perception depends on teaching. 
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This method of teaching is not just intuitive. When students write or dance or 
perform mathematics they work out, they analyze, organize and solve. 

As well as inquiring into the potentialities, it is well to consider the risks and 
limits of mathematical dramatisation. The main risk lies in remaining at the initial 
phase of the process, that is to say, at its intuitive, motivating stage, at the stage of 
mere fun. This means overlooking the educational factor and, accordingly, failing to 
transmit to the students the need of arriving at the pure matter, of attaining 
mathematical rigour and an appropriate language. This would reveal that the teacher 
has not understood the real motivating meaning of the history of mathematics. We 
have to work out strategies which may help us to approach practical as well as pure 
and abstract mathematics, and that may have students realize that they are also 
building up their knowledge when they spend long hours studying by themselves. 

Regarding its limits, I consider the main problem to be time, worsened by 
bureaucratic hindrances and disorganisation of the educational system. This makes 
it very difficult to develop a coordinated task among parallel courses, which might 
permit us to go deeper into this method in lower courses of high school, so as to be 
free to work on pure, abstract mathematics in the higher courses. The economic 
factor is a corollary of the time issue since, among other things, teachers’ training 
depends on it. The qualification of a few teachers and the effort invested by them is 
not enough to guarantee the fulfillment of these aims. 

Annex: The Museum Strategy 

The work of the UK mathematics educators Eileen Pennington and Geoff Faux is 
another example of exploring the potential of mathematical dramatisation. In their 
ten lesson project No royal road to geometry (named after Euclid’s reported 
response when King Ptolemy asked for a shorter route than by studying the 
Elements) Pennington and Faux encourage children to act the roles of museum 
designers who are working to bring ancient mathematics and its context to life in a 
modern museum setting. By engaging the children in a second-level dramatisation, 
as it were, playing the part of museum workers who may decide to play the part of 
Greek mathematicians, the situation is both more realistic and better able to meet 
other pedagogic aims such as explicitly encouraging research activities, design and 
other cross-curricular work and an even wider range of roles for different children to 
adopt. In addition, the focus on needing to carry out a range of research activities in 
order to prepare the museum exhibit usefully helps pupils attend both to their 
sources of information and to transmuting it for the benefit of others. The teacher 
participates explicitly in an unforced way as the museum curator. This strategy of 
dramatisation provides much opportunity for children in middle schools (the work of 
Pennington and Faux is aimed particularly at 10-11 year olds) to develop their 
understandings across a range of mathematical, historical and design subjects. For 
example, there might be lively and valuable discussion among the museum 
designers as to whether ancient Alexandria would be likely to have had a public 
statue in the market-place labelled “Aristarchus of Samos, 320 - 250 BC”! 
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10.2.2 Ancient instruments in the modern classroom 

Maria G. Bartolini Bussi 

The history of mathematics can enter classroom activity, besides the other ways 
discussed in this chapter, by investigating also copies of ancient instruments and 
other artefacts, reconstructed on the basis of historical sources. In museums of the 
history of science throughout the world there are to be found beautiful collections of 
original instruments. We may refer to the Museo di Storia della Scienza, in Florence 
(Italy), to the Hilbert Raum of the Mathematics Institute in Göttingen (Germany) 
and to the Emperor Collection, stored in the Palace Museum of the Forbidden City 
in Beijing (China), to mention just a few in different parts of the world. Because of 
the delicacy of those precious artefacts, visitors are not usually allowed to touch 
them. Hence an important part of the experience, namely the visual tactile feedback 
while handling the instrument, is not accessible to teachers and students. It would 
be really more useful to have rough yet working copies of them in the classroom 
(preferably as physical objects, although computer simulations increasingly have a 
role to play in this area). To provide even rough working models is not an easy 
matter, especially for complex ones, but some specimens representative of important 
class of instruments could be built by teachers or students themselves (see CIEAEM 
1958; Cundy & Rollet 1952). Here we present briefly some ideas for instruments in 
the modem classroom, categorized by the mathematical subject matter involved. 

Arithmetic

Modem copies of arithmetic historical artefacts comprise for instance Mesopotamian 
tablets, different kinds of abaci and Napier’s rods. Mesopotamian tablets were made 
of clay, but copies may be built now by plasticine, so allowing the same material to 
be used several times. The system of signs for numerals in their sexagesimal 
counting system, an early positional system, may be introduced in the classroom by 
means of realistic re-creation of copies of the original tablets (Robson 1996; 1998) 
and the tablets can be used for various problem-solving and investigation activities 
(Bums 1998; MacKinnon 1992). 

Figure 10.1: 987 654 321 on the soroban 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 343-350



Figure 10.2: Napier’s rods in Japan 
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The positional system of notation up to the construction of algorithms for 
arithmetic operation is embodied by 
several kinds of abaci: instances are 
given by 
the dust abacus of the Babylonians, the 
line abacus of the Greeks, the grooved 
abacus of the Romans, the bead abaci 
in the Chinese (suan pan), Japanese
(soroban) or Russian (s ’choty) 
versions (Metallo 1990; Yoshinko 
1963; Boyer 1968 Ch. 12; Smith 1958, 

Multiplication in the decimal 
positional system can be carried out by 
using Napier’s rods (early 17th 
century), a way of utilising, in wood, 
bone or cardboard, the principles of 
the ancient ‘gelosia’ method of 
calculating on paper (Smith 1958, 101-
128; Swetz 1994, 179-192). This may 
be thought of as an idea about carrying 
out arithmetic calculations with 
carefully designed physical objects. 
Later devices to the same end, true 
calculating engines in the modem 
sense, are less easily reproduced in the 
classroom. Even the 17th century 
engines (eg Schickard’s, Pascal’s or 
Leibniz’s calculating machines, cf. 
figure 10.3) involve quite complicated 
machinery, let alone later develop-
ments such as Babbage’s difference 
and analytical engines (Swade 199 1). 

Algebra

Solving equations by mechanical 
artefacts dates back to the classical age. 

mean proportionals between two given 
segments, that is equivalent to solving 

an equation of degree at least three, lead to the production of meanfinders or, 
according to the ancient name, of examples of mesolabon. Instances are offered by 
the mesolabon of Eratosthenes (Fauvel & Gray 1987, 83-85), of Plato, of Dürer
(Dürer 1525/1995), of Descartes (Fauvel & Gray 1987: 344-5). A mechanical 
method of solution of equations is given by D’Alembert’s machine (Diderot 1751): 

156-196).

Figure 10.3: The design of a 
calculating machine which 
Schickard sent to Kepler in 1624 The problem of finding two or more
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two working copies at least have been built, in Pisa by Franco Conti and in Grenoble 
by Jean Marie Laborde. 

Geometry

A very rich collection of more than one hundred and seventy geometrical models 
and instruments have been constructed in Modena (Italy) by a group of secondary 
school teachers, under the scientific direction of M. Bartolini Bussi. A virtual visit 
might be done by surfing one of the following sites: 

http://www.museo.unimo.it/labmat/ or http://www.museo.unimo.it/theatrum/. 
The former is a trilingual (Italian, English, French) site updated to February 1997. 
The latter is a monolingual site (Italian) updated to December 1998 with dozens of 
photos, animations and interactive simulations: a copy on CD-rom may be delivered 
free to interested people who send a message to the author of this section 
(bartolini@unimo.it). The artefacts are made with wood, plexiglass, brass, lead and 
threads, on the basis of historical sources from the classical ages to the nineteenth 
century. For each model, historical sheets and activity sheets for secondary and 
university students are available. 

A visit to the collection could start from the visual tactile exploration of the most 
ancient instruments, namely Platonic and Archimedean solids and big size static 
models which illustrate the three-dimensional theory of conics, from the ancient 
static models, to the compasses of the XVII century. The classical problems of 
doubling the cube or trisecting the angle are considered. For the former, meanfinders 
can be used (see above). For the latter, several trisectors are available (see also Yates 
1945b).

There are also several instruments related to the two trends that characterise 
modern geometry from the seventeenth century onwards and came together in the 

Figure 10.4: Instrument designed by van Schooten (1646) to draw an hyperbola. On the 
left the design from the Exercitationum mathematicarum libri quinque. 1656; on the right 
the instrument as it is reconstructed by the Laboratorio di Matematica of the museum of 
the university of Modena and Reggio Emilia. A Java-simulation is available on CD and on 
the internet. 
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late nineteenth century: the mechanical-analytical style initiated by Descartes, and 
the projective-synthetical style initiated by Desargues. In the former area, there are 
on show several curve-drawing devices to draw conics, cubics, quartics and curves 
of higher degree and pantographs to realise linear or more generally birational 
transformations. In particular, the problem of drawing straight lines (i. e. of 
transforming a circular motion into a linear motion) is illustrated by means of the 
linkages which realise the most relevant solutions proposed in the nineteenth 
century. The history of the representation of curves (Bos 1981) can be explored 
through the instruments from the classical age (eg Nicomedes compass), to the 
works of Descartes and van Schooten, to the multifaceted study of organic 
generation of curves (with Newton’s contributions), up to the theoretical proof of the 
possibility of drawing any general algebraic curve, offered by Kempe in 1876. In 
this case the story reaches forwards to today’s development in pure and applied 
mathematics (Bartolini Bussi 1998). 

In the case of the projective-synthetical branch of geometry, working models of 
practical perspectographs can be used by students and teachers. These instruments 
(dating back to Dürer, Niceron, Scheiner, Lambert and others) allow the exploration 
of various geometrical themes. In art, for instance, the production of real life 
paintings that give the illusion of reality, or anamorphoses that can return an 
understandable image of something only when they are looked at from a very 
particular and unexpected point of view. Desargues’ and De la Hire’s projective 
approach to conics is illustrated by dynamical models that explain the genesis of 
plane definitions, and Newton’s study of cubics by shadows is presented. 

A complete interactive catalogue, in Italian, is in the CD Rom realised by 
Bartolini Bussi & al. (1999) (see also the webpage reference). A historical 
excursion through the models conveys the idea of the progressive expansion of 
geometry that goes along with the introduction of more and more theoretical 

Figure 10.5: Dürer’s ‘perspectograph’ with three strings, in the version from the 
Undenveysung (1525) and as a model in the Modena university museum 

instruments over the centuries. An example is offered by the shift from Euclid’s 
geometry, based on the straightedge and compasses—in which context problems like 
the trisection of angle and the duplication of cube were (it eventually turned out) 
theoretically unsolvable—to Descartes’ geometry. Here the same problems became 
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solvable by means of other kinds of mechanical devices to be conceived as 
theoretical instruments. This shift paves the way to a critical approach to the more 
sophisticated electronic instruments that are today available: the computer is much 
more flexible than ancient instruments, yet the understanding of the underlying 
theoretical assumptions that make it possible to solve problems (approximately or 
rigorously?) is more difficult and hidden inside the black box. 

Applied mathematics 

Nearly all the instruments from ancient and modem technology embody a lot of 
mathematics, hidden in the instrument itself and accessible only through a careful 
and intentional analysis. Just to quote some examples, we refer to astronomical 
instruments such as sundials and astrolabes (Ransom 1993), instruments for 
navigation (Albuquerque 1988a, 1988b; Ransom 1993), for surveying (Kiely 1947; 
Eagle 1995, 65-74) and mechanical instruments (Gille 1978). A very rich catalogue 
is in the 1972 reprint of Bion’s classical treatise (1758). 

Examples of classroom activity 

Classroom activity with instruments of the kind described in this section can take 
place in several ways, of which there are two main categories: 
1. visiting the instruments, either in reality or a virtual visit (eg. by means of 

videos, computer simulations, CD roms, or websites). This can address in an 
agreeable way the cultural dimension of mathematics, such as the link between 
visual, tactile and intellectual activity in mathematics, and the dialectic 
interaction between pure and applied mathematics over the centuries. 

2. specific classroom activities for helping students experience the tasks of working 
mathematicians (eg constructing proofs) or develop the understanding of some 
specific piece of knowledge. 

Pupils can handle instruments with mathematical goals from very early. An 
interesting example is given by a Portuguese project. In the last decade a number of 
teachers of mathematics in Portugal have been exploring in their lessons the theme 
of 15th and 16th century Portuguese voyages. In the past, this theme was used 
mainly by general history teachers, and the relevance of mathematics as a major way 
to understand the processes used in high sea navigation by the Portuguese navigators 
was almost neglected. But during the school year 1991-1992, a national project was 
set up which involved around three hundred pupils of 8th and 9th grades. They
interpreted marine rules, studied maritime principles, built and graduated models of 
nautical instruments, and learned how to use them to measure the altitude of the 
stars. They used and developed their knowledge of mathematics to understand the 
basic principles of astronomical navigation (Veloso 1992, 1994). 

This is but one example of the way an informed teacher can make use of 
historical ideas involving instruments, devices and artefacts from the past to enrich 
their mathematics lessons and attain various education goals. I give references here 
for some other examples, at a range of educational levels: 
– perspectographs (see figure 10.5) in primary school (Bartolini Bussi 1996) 

– gears in grades 3-6 (Bartolini Bussi & al. 1999) 
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– Napier’s rods in grades 5-6 (Navarra 1994) 

– the kaleidoscope for middle-school geometry classes (Graf & Hodgson 1990) 

– linkages in grades 6-8 (Damiani et al. 1998; Yates 1945a) 

– cross-staff and sundials in years 10-12 (Ransom 1993) 

– pantographs in grade 1 1 (Bartolini Bussi & Pergola 1996) 

– curve drawing devices in grades 12 (van Maanen 1992; Dennis 1995; Dennis 
1997)

– pulleys in calculus teaching (van Maanen 1991) 

– 3-dimensional theory of conics in grade 12 (Bartolini Bussi & Pergola 1994) 

– abaci for prospective teachers (Metallo 1990) 

Figure 10.6: A ‘compasso perfetto ’. The first leg can be placed at a fixed angle towards 
the plane, the length of the second leg is variable through a pin which can shift into a 
tube. Here the design by Barozzi (Admirandum illud geometricurn problema, Venice
1586) and the model built in Modena. 

It is quite difficult to compare different methodologies in such a short space. What 
seems to be shared is the focus on manipulative activity: it means that instruments 
are not only looked at but really handled by the students. This tactile dimension add 
something specific to the historical dimension of all the activities that are described 
throughout this whole book. We can wonder why tactile activity turns out to be so 
important not only with young pupils but also with high school students and adults. 

Surely a part of the answer is in motivation: not least, people who do not like 
mathematics (we could say, especially people who do not like mathematics) enjoy 
recourse to physical objects, closer to their everyday experience than blackboards 
full of symbolic equations (hence the success of ‘hands on’ scientific exhibitions, all 
over the world). But this is only a part of the story and, maybe, the less important. 
In tactile experience there is an important part of the cognitive foundations of 
mathematical activity. 
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An interesting epistemological analysis of the abacus (and of other important 
media) is offered by Brian Rotman. The abacus is a machine which keeps track of 
the process of counting, and Rotman (1993, 33) points out that 

to move from abacus to paper is to shift from a gestural medium (in which physical 
movements are given ostensively and transiently in relation to an external apparatus) to a 
graphic medium (in which permanent signs, having their origin in these movements, are 
subject to a syntax given independently of any physical interpretation). 

A similar analysis could be done for most of the instruments described above. This 
cognitive aspect is analysed by Bartolini Bussi & al (1999) for the genesis of the
sign ‘arrow’ to denote orientation. In a similar way, Dennis (1995) studies the 
genesis of the idea of variable and of singular points of a curve in the manipulative 
activity with curve drawing devices of the geometers of the 17th century. In this 
way many important experiences and conceptual transitions from the past may be 
replicated in today’s mathematics classroom. 
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10.2.3 Inquiring mathematics with history and software 

Masami Isoda 

Many mathematical instruments are discussed in the previous section. Each 
instrument can also be represented by some computer software. This section 
discusses software from the viewpoint of integrating traditional instruments and 
computers for mathematical inquiry in the classroom. As an example of conceptual 
integration, in what follows the word ‘tool’ may stand both for instruments and for 
mathematical software. 

Mathematics software enables us to represent mathematics on a computer and 
change this representation depending on mathematical rules. Figure 10.7 shows the 
recent history of software innovation for general users of mathematics: Graphing 
Software (Algebraic Expresser, Function Probe, Calculus Unlimited, etc.); Dynamic 
Geometry Software (DGS) (Cabri, Geometer’s Sketchpad, etc.); Spreadsheets 
(Excel, Lotus, etc.); Computer Algebra Systems (CAS) (Derive, Mathematica, 
Maple, etc). Using functions or macros, some of these packages can be extended to 
design special instruments. Some were developed for research, but the evolution of 
the interface has made such software more accessible to general users. These days, 
many mathematical software packages incorporate multiple representation features 
(Yerushalmy & Schwartz 1993, 47) and enable us to use it on the world wide web 
with Java (Cabri Applet, Sketchpad Applet etc). 

Figure10.7: Evolution of mathematics software for general users 

Several studies have already indicated the power of multiple representation tools 
for knowledge construction. Through the use of these tools, we can assist students to 
translate and interpret concepts through various representations (Lesh, Landau & 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 351-358
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Hamilton 1983,271 ; Kaput 1989, 17 1 ; Isoda 1998a, 270), and help students’ inquiry 
into mathematical ideas. 

10.2.3.1 Inquiry using multiple representation tools: a historical view 
To use software and instruments for mathematical inquiry, we should identify some 
features of tools used in such inquiries. In the following, the roles of tools and the 
context for using them are discussed from a historical viewpoint. In addition, an 
example of students’ inquiry is presented. 

A lot of historical examples indicate the following roles of tools in inquiry: 
a) determining the subject of the mathematical inquiry; 
b) giving a method for the mathematical inquiry; 
c) revealing the epistemological obstacles inherent in using such tools in the 

specific context. 
The classical tools of ruler and compasses are well known examples for all three of 
these roles. 

As David Dennis and Jere Confrey (1997) discussed, the problem of using tools 
is closely related to the problem of representation because any tool can be used to 
represent an idea. For example, in the 17th century Descartes (1628) lamented the 
loss of geometric intuition possessed by the ancients. So, in 1637 he applied an 
algebraic representation to the ancients’ geometry and tried to develop a new 
analysis of how to carry out mathematical research. He felt the restriction of ruler 
and compass was strange as he could use many tools outside the context of Euclid. 
We should recognise the following points about the context for using tools: 
1. we can change the role of tools depending on the context; 
2. we can support students’ understanding through the changing of tools and 

representations.
History tells us that the tools used for mathematical inquiry are themselves 
reformulated using mathematical (especially algebraic) representations, as 
mathematicians in the scientific revolution tried to select, find or construct 
convenient representations and instruments for their research. Even though Pascal 
(1640) tried to retain the ancients’ geometry for the discussion of truth, we find that 
200 years later his projective geometry was reconstructed using algebraic 
representation. Such computational contexts have enabled mathematicians to 
develop innovative software for mathematics, so that everyone can use multiple 
representation software on computers. In the area of education, the increasing 
dominance of algebraic formulation of mathematical ideas strongly influenced 
school mathematics until the age of modernisation. The positives are balanced by 
some negative aspects. Today, in many countries, students, and even teachers, have 
no opportunity to learn about the higher concept of geometric representation of 
curves because they have only learned about curves through algebraic 
representation. To guarantee student inquiry, we should avoid anti-didactic
inversion (Freudenthal 1973, 122). Thus we should add the following additional 
point about the context for using tools: 
3. although the generality or viability of a mathematical ideas depends on the 

representation, we should give students the opportunity to select, find or create 
new tools or representations for constructing knowledge. 
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In the last decade, the multiple representation environment of tools has 
encouraged new laboratory approaches and has changed learning contexts 
(Zimmermann et al 1990; Leinbach et al 1991). This environment helps students in 
their mathematical inquiry through multiple representations (see figure 10.8, Isoda 
1998a, 269). In this environment, no undue emphasis should be given to a particular 
representation or tool so that students will better appreciate the power and beauty of 
various representations or tools. 

Figure 10.8: Inquiry based on tools which allow Multiple Representation 

For example, Jan van Maanen (1991) discussed his classroom teaching activity 
based on L’Hôpital’s weight problem (L’Hôpital 1696, 62) with physical 
instruments (figure 10.9). 

Let F be a pulley, hanging freely at the 
end of a rope CF which is fastened at 
C, and let D be a weight. D is hanging 
at the end of the rope DFB, which
passes behind the pulley F and is 
suspended at B such that the points C
and B are on the same horizontal line. 
One supposes that the pulley and the 
ropes do not have mass; & one asks at 
what place the weight D or the pulley 
F will be. 

Figure 10.9: The problem from the Analyse des Using this physical problem, 
infiniment petits (1696) that L’Hôpital used to L’Hôpital demonstrates the
show the power of the differential calculus significance of the method of 

calculus by showing that the result 
is same as that obtained by the method of geometry. The problem can be 
investigated in today’s classroom using a concrete model, through the means of 
computer algebra (CAS) or dynamic software (DGS). Masami Isoda observed 
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undergraduate students’ mathematical inquiry: the roles a, b, c and the contexts 1, 2, 
3 were confirmed. Using such tools, students experienced the visual correspondence 
between geometric representations of motion and graphical representations of 
motion, the emergence of the same equations by differentiation and by geometrical 
reasoning, the correspondence between data from measurement and the results of 
mathematics and so on. These correspondences are not the same as in L’Hôpital’s 
discussion but students are able to experience the methodological correspondence 
between geometry and calculus that L’Hôpital wished to highlight. Thus students 
appreciate the power and beauty from these correspondences. 

10.2.3.2 Technology and history 
Technology can help students to understand history better, and thus mathematics 
more deeply. When students read Descartes’ Geometry based on their knowledge of 
school algebraic geometry, they cannot understand it very well because they are not 
starting from where Descartes was starting. Descartes was trying to make a new 
universe of mathematics beyond classical geometry, including moving beyond the 
limit of three geometrical dimensions. If students think that, say, multiplication is 
represented only numerically and graphs are sets of ordered pairs, then it is difficult 
for them to understand Descartes’ geometrical reasoning. But if they try to draw 
each figure in his Geometry using Dynamic Geometry Software, they easily find out 
why Descartes had to discuss the geometric representation of multiplication from the 
beginning. So technology help us to understand the history more appropriately. But 
there remains a distinct cognitive difference between Descartes and the students. By 
using DGS, students’ understanding may well come closer to that of Descartes. But 
Descartes’ lament that the ancient intuitions had been lost could not be understood 
by students, not least because DGS gives them alternative intuitions for inquiry. 
Descartes had to reconstruct mathematics based on algebra as a new way of 
knowing. So the use of technology is not putting students back into Descartes’ 
frame of mind, but is broadening their awareness of the richness of mathematics and 
its roots. One of the major pedagogical concerns for many years has been that 
students have lost the opportunity to experience classical geometrical intuitions, 
which are not replaced by a haze of algebraic symbols; DGS begins to offer a chance 
to re-experience some age-old intuitions. 

In a similar way, modem programmable calculators enable today’s students to 
redo calculations of former times, often to greater accuracy and far further into the 
calculation. In capturing in a few seconds a calculation which may have taken a 
sixteenth century astronomer days or months, students are arguably not recapturing 
the experience of old but generating a fresh one. In some cases today’s students 
may be able to find things in the figures which their predecessors could not. 

Another case in point is the Japanese mathematics wasan, or traditional 
mathematics (Smith and Mikami 1914). Some of the high level numerical methods 
developed in Japan before the influx of western mathematics in the nineteenth 
century have been lost; all that is known is that they were different from western 
proof-based mathematics, and that the results are correct. The comparison of results 
tells us the correctness of Japanese lost methods, but we could not know the method 
by this comparison. To explore what their methods might have been, computer 
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Figure 10. 10: Java applet of ellipse compass by van Schooten, on a Japanese web-page
that visits Bartolini Bussi's 'museum' ( h t t p : / / w w w . m u s e o . u n i m o . i t / l a b m a t / )

software is available to track through the calculations under different hypotheses. It 
is thus a powerful tool for checking conjectures about historical methods, as well as 
doing mathematics, but also it introduces the possibility of misunderstanding, just as 
much as if we make conjectures about ancient methods of sand-board calculation by 
using paper and pencil. 

10.2.3.3 Integrating approach with tools 
There are many research projects which have been designed to examine the 
integration of mathematics with tools. Some ongoing projects are aimed at 
curriculum development of mathematics with tools and others at the development of 
a curriculum which integrates mathematics and history, but each of them adopts 
history in the classroom. 

As examples of projects that focus on curriculum development with tools, Jere 
Confrey and David Dennis (1995, 1997) in the US, and later Masami Isoda in Japan 
(1997, 1998b), have designed projects for the integration of geometry, algebra and 
calculus using drawing instruments, and multiple representation software including 
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DGS. Their physical instruments are made from a changeable parts set, so new 
instruments are easy to construct. To allow students to construct instruments, Jere 
Confrey and Masami Isoda (see Web reference) began to use LEGO. Their projects 
used tools for integrating multiple representations which are supported by history. 

Here are two examples of projects that focus on the development of a 
curriculum which integrates mathematics and history. Recently in Italy, the project 
of Maria G. Bartolini Bussi developed Java tools (figure 10.10) for her virtual 
mathematical laboratory and now in her project, many kinds of representation tools, 
instruments and software are available for the teaching of mathematics and history 
(see §10.2.1). Arzarello’s project in Italy originally named EuCart (Euclid & 
Descartes) is focused on the teaching of proof. The project uses the multiple 
representation tools of DGS and CAS. In the project, there is a focus on three 
historical periods, Euclid, Descartes and Hilbert, with an introduction of original 
sources in the classroom, framed by the teacher’s introduction. DGS is oriented to 
developing the semantics of proof whilst CAS is oriented to develop the syntax of 
proof.

10.2.3.4 Beyond each tool’s disadvantages 
An instrument can be made from many kinds of representations. Each 
representation of it has advantages and disadvantages. One aim of integrating 
various tools or representations is to develop the student’s competence for selecting 

and creating appropriate tools or 
representations. For example, in the 
Algebra, geometry and calculus for all 
project by Isoda (1999), students were 
asked to explore ellipses, with original 
pictures by Van Schooten (Maanen 
1992; see also figure 10.1 1), using
various representations. When 
students used physical pieces of 
LEGO, they commented on the 
changing of physical resistance when 
they tried to draw an ellipse. In the 
case of DGS, they did not. With 
physical tools, students discussed the 
difficulty of using them for drawing. 
In the case of DGS, students could 
draw some parts of an ellipse quite 
easily, but to draw other parts they 
needed additional constructions and 

this advantage led to misunderstandings by some students. A student reported that 
we must first solve equations if we are to represent an ellipse using BASIC. 
Students began to change parts without the teacher’s intervention because they had 
experience of changing LEGO parts when they were young. But students did not try 
to change equation parameters until the teacher suggested it. By using LEGO and 
DGS, students could find the general equation of an ellipse. When teacher asked the 

Figure 10.11: Van Schooten ’s ellipse-
drawers (1646); a screen showing a Java 
simulation is shown in figure 10.10. 
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students to make a drawing tool from LEGO with different parameters, some 
students changed the parameters of the figure on DGS first; which led to success. In 
short, various representations support students’ multiple reasoning abilities and the 
development of their relational understanding. 
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10.3 Resources for history of mathematics on the World 
Wide Web 

10.3.1 Teachers, learners and the World Wide Web 

Glen Van Brummelen 

Massive, epoch-making revolutions in communications technology are so rare that 
only a couple (the printing press, and perhaps the telephone) occurred before our 
lifetimes. But in the last thirty years we have witnessed a cascade of revolutions, all 
products of computer technology. New developments often seem more dramatic 
from within than from without; nevertheless, the computer revolution seems to be 
changing, genuinely and substantially, who we are, and how and what we think. 
The World Wide Web, for example, has evolved from non-existence only five years 
ago to become the central storehouse of human knowledge today. The Web is more 
than the next step in a larger process; it is the first major realisation of the alteration 
of ourselves by our own machines. The Web in its current incarnation may not be 
recognisable ten years from now, but our children will identify it as the birth of a 
new era. 

As is typical for technological advances, the Web thrusts its new tools upon 
educators much more quickly than we can adjust to them. The mathematics 
education community has only recently come to terms with the use of pocket
calculators, and debate still rages over more sophisticated tools like graphing 
calculators and computer algebra systems. The Web‘s revolution is more 
fundamental: it affects not just mathematics but all disciplines, jarring into motion 
the previously static media of paper, chalk and books, and expanding globally the 
communities within our reach. We shall examine what is now available for the use 
of educators in the history of mathematics on the Web, but perhaps more important 
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Dordrecht: Kluwer 2000, pp. 358-362



10.3.1 Teachers, learners and the World Wide Web

to our vision of the future is an exploration of the medium itself. The best way to 
learn what the Web represents is not to read about it, but to use it. Hence, readers 
are encouraged to set this chapter aside for now and visit the site that accompanies 
this article: 

(As a self-referential hint to the possibilities of global communication of this new 
technology, the author presented this work from Vancouver, Canada, to the ICMI 
Study Meeting in Luminy, France, during the main drafting of this section.) 

The new medium 

The Web’s innovation, deceptively simple and over thirty years old, is hypertext. A
hypertext document is a book freed of its binding: one may link the pages any way 
one likes, unlike the sequential ordering of a conventional book. Rather than 
pursuing topics according to the author’s design, readers follow their own path 
through the content, guided by their own purposes and interests. Hypertext has been 
used to some effect in computerised reference sources such as Windows Help and 
CD-ROM encyclopaedias. However, hypertext alone does not revolutionise the 
planet. The power of the Web is not primarily in its navigational flexibility, but in 
its universality. It is a system with few barriers to communication. Anyone with 
modest financial resources may access, contribute, and alter it. The Web thus 
spreads ideas globally by removing the physical constraints of publishing, marketing 
and dissemination. The result is a virtually endless supply of information with the 
absence of imposed structure. Unbounded access to knowledge frees the user to 
construct her own intellectual environment, uninhibited by other perspectives: an 
Enlightenment nightmare, and a postmodem paradise. 

The recent advent of Web applets (programs that can be executed through the 
Internet) promises to extend the medium substantially. CGI and Java applets now 
run seamlessly, often unnoticed by the user, to produce the distracting graphics and 
banner advertisements at commercial sites. More positive educational uses include 
instructional aids that permit the user to interact with simulated environments, 
tapping learning channels that recall the tactile explorations of childhood. 

Developments on the horizon include increasingly seamless interaction not just 
with machines, but with expert systems and with other people. Videoconferencing 
and virtual whiteboards will transform the Web into a means whereby one could 
hold a seminar where every participant is in a different country, yet the 
communication will be as smooth as if all were in the same room. Through our own 
natural choices in such a fluid environment, the existing trend for our communities 
to be shaped by our interests, rather than geographical barriers, may accelerate. 

Innovations seldom live up to the unbounded expectations of instantaneous 
reform, or to the apocalyptic warnings of detractors. Consider, for example, the real 
place occupied by pocket calculators in today’s classroom compared to the over-
enthusiastic predictions of thirty years ago. Some problems with the Web are 
already surfacing. For instance, the very democracy treasured by Internet 
enthusiasts produces a number of undesirable side effects. Relevant to education is 
the spread of misinformation. With printed material, the financial overhead 
involved in its production ensured that publishers had some commitment to the 
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quality of their works. With the Web, one can be no surer of what one reads than of 
what one overhears in a conversation at a dinner table. The Web‘s fluidity implies 
that teachers can never be sure that a resource which exists during their preparation 
period will exist at class time. Advertising is becoming so prevalent that many 
people find it annoying, although the Web is hardly the only medium to suffer from 
this particular vice. Finally, class distinction issues raise worrying problems: often, 
only wealthier students with computers-in wealthier countries-have access to the
new technology. This is partially resolved, in wealthier countries, through free 
Internet services sponsored by advertising and access at public libraries. 

Some good uses of Web technology in the history of mathematics 

The rest of this section highlights some of the most creative uses of Web technology 
for classroom use with respect to the history of mathematics. In some cases these 
sites are chosen because of their effective use of the new medium; in many other 
cases they are chosen merely because they make globally available a powerful 
resource. Most of the sites are aimed at high school to undergraduate students. 

Two large sites are good comprehensive sources of information in the history of 
mathematics. The St. Andrews MacTutor History of Mathematics Archive contains 
biographies of hundreds of historical mathematicians, and a number of survey 
articles on a variety of historical topics. David Joyce’s history of mathematics site 
contains a great deal of useful bibliographic information. An index of Web sites 
related to the history of mathematics is maintained at the Canadian Society for 
History and Philosophy of Mathematics site. Due to the fluidity and expansion of 
the Web, indices like this one are becoming more difficult to maintain. Search 
engines such as Altavista and Yahoo can be useful for finding new sites, and 
britannica.com regularly reviews sites of interest in addition to providing content 
from the Encyclopedia Britannica. 

David Joyce’s Euclid’s Elements Online is an excellent example of the 
interactivity made possible by the Web. Joyce provides the entire text of the 
Elements, but what makes the site special are its geometric figures. The points in the
diagrams may be moved while the geometric relations between the objects in the 
diagram are preserved, much like Geometer’s Sketchpad or Cabri Géométrie but 
without the need for software. The meaning of a theorem can be made clear with a 
few simple experiments with the handsomely rendered figures. The Famous Curves 
Index at the St. Andrews site contains explorations of a similar nature, suitable for 
mathematical experimentation with historically important curves. 

Although the technological advances displayed at the sites listed above are 
intriguing and entertaining, equally important is the increased availability of less 
technologically-oriented material. PBS’s Nova Online, for example, includes a site 
devoted to the recent television programme on Andrew Wiles’ solution to Fermat’s 
Last Theorem. In addition to a complete transcript of the program, users will find a 
biography of Sophie Germain, teacher’s guides to using the program in class, and 
exercises in Pythagorean mathematics appropriate for use by students before and 
after viewing. The Museum of History of Science (Oxford, U.K.) has several 
‘virtual exhibitions’, providing an experience that comes close to an in-person visit. 
Gary Stoudt maintains a page designed for his history of mathematics course that 
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allows student access to a variety of primary sources. The Galileo Project (Rice 
University) contains an impressive amount of detail on Galileo’s life, work and 
times, stored in an unconventional and innovative manner. Much of this material 
would have been very difficult for a teacher to locate and distribute to his or her 
class prior to the advent of the Web. 

A number of brave attempts have been made to place entire courses on the Web. 
While this has not yet occurred in the history of mathematics (to my knowledge), 
several sites contain material of at least tangential interest. Brian Martin, at The 
King’s University College, Edmonton, has converted his astronomy course, taught to 
a great extent from an historical perspective, to the Internet. The site is used as a 
supplement, not as a replacement for student-teacher interaction. From his and 
others’ experiences, readers tempted to follow suit should be warned that the effort 
required for such an enterprise is enormous, well beyond any of the authors’ initial 
expectations. I have heard estimates that the commitment is up to ten times that 
required for a standard course. 

A number of instructors have initiated projects whereby students’ efforts in the 
course are placed on the Web. Where this occurs gradually over successive years of 
the offering of a course, the results can be quite impressive. Larry Riddle’s site 
honouring and exploring the work of women mathematicians at Agnes Scott 
College, written by students in his classes, has won a number of Internet awards. A 
more general effort is underway with Len Berggren’s history of mathematics course 
at Simon Fraser University, Vancouver, Canada. A number of sites contain student 
papers done at a variety of schools and universities, for instance Tufts University‘s 
course Inventing Science. It would be as well to be aware of these sites not only for 
their potential for benefit, but also for the potential they provide for students’ 
academic dishonesty. 

Where are we going? 

Clearly, extensive efforts have already generated creative and helpful Internet 
resources in the history of mathematics, but much more could be done. The terrain 
is covered haphazardly and the quality varies considerably from site to site. As 
communication speed increases, students will come to expect much greater 
interactivity, and educators may have difficulty coming to grips with how it might 
be used effectively. Finally, the potential for classes and seminars that transcend 
geographical boundaries has not yet been realised. Within several years students in 
France, for example, may be able to share a virtual classroom with students in South 
Africa and North America, with instructors or leaders from Australia and Germany. 
For a small, geographically scattered community like those of us dedicated to the 
history of mathematics, this will be ground-breaking. In the end, however, 
computers do not organise such co-operation on their own. It is incumbent on us to 
begin thinking how this might be accomplished and to increase our collaboration, so 
that when the tools are placed in our hands, we will be ready. 

References for §10.3.1 

The following list provides the addresses of sites referred to in this section. For a 
categorised listing, see the next section (§ 10.3.2.3). 
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Canadian Society for History and Philosophy of Mathematics 
ht tp : / /www.k ingsu .ab .ca /~g len /cshpm/home.h tm

Euclid's Elements Online (D. Joyce) 
ht tp : / /a lephO.c la rku .edu /~d joyce / java /e lements /e lements .h tm l

Famous Curves Index (St. Andrews) 
ht tp : / /www-groups .dcs .s t -and .ac .uk /~h is to ry /Java / index .h tm l

The Galileo Project 
ht tp : / /es . r i ce .edu /ES/humsoc /Ga l i l eo / index .h tm l

History of Mathematics (J. L. Berggren, Simon Fraser University) 
ht tp : /www.math .s fu .ca /h is tmath

Altavista
ht tp : / /www.a l tav is ta .com

Encyclopedia Britannica 
ht tp : / /www.br i t tan ica .com

Inventing Science (Tufts University course) 
http://www.perseus.tufts.edu/GreekScience/

David Joyce's History of Mathematics Site 
ht tp : / /a leph0 .c la rku .edu /~d joyce /mathh is t /mathh is t .h tm l

Brian Martin's Introduction to Astronomy Course 
ht tp : / /www.k ingsu .ab .ca /~br ian /as t ro /a200home.h tm

Museum of History of Science (Oxford) 
ht tp : / /www.mhs .ox .ac .uk

Nova Online: The Proof 
http://www.pbs.org/wgbh/nova/proof/

Primary Sources for the History of Mathematics (G. Stoudt) 
ht tp : / /www.nsm. iup .edu /ma/gss toud t /h is to ry /ma35O/sources_home.
h tml

St. Andrews MacTutor History of Mathematics Site 
ht tp : / /www-groups .dcs .s t -and .ac .uk /~h is to ry /

Women Mathematicians (L. Riddle) 
ht tp : / /www.agnessco t t .edu / l r i dd le /women/women.h tm l

10.3.2 Web historical resources for the mathematics teacher 

June Barrow-Green

The general argument of this book is that mathematics teachers and learners can be 
greatly empowered by having historical resources available to them. It is argued in 
chapter 4 that mathematics teachers will benefit from some historical training, either 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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before or during their teaching career. Of course, one must be realistic about what is 
possible within the time constraints of life, and the time commitment that this 
suggests will not fit the current needs or options of all teachers or future teachers. 
One can treat history of mathematics as an area to become acquainted with 
gradually, as and when time permits, but one can begin to use resources sooner and 
develop the skills on the hoof, so to speak. In this context the internet is a 
tremendous boon. But there is a problem, as Glen Van Brummelen pointed out in 
the previous section (§10.3.1): information on the Web is of such variable quality 
that a responsible teacher must both be aware of that and seek to train students in 
techniques of critical judgement (see also Fauvel 1995). This section consists of 
some ideas to help both teachers and students in this process. 

As with all resources, gaining a sense of what kind of thing they comprise and 
gaining some practice in using them is strongly desirable as a preparation for 
exploiting them later on in an educational context. What this section offers is firstly 
(§10.3.2.1) some guidance on web searching and determining the likely reliability of 
information; secondly (§ 10.3.2.2) a listing of sample questions which could help you 
to use the internet with your students; and thirdly (§10.3.2.3) a listing of some sites 
which could provide answers or generate material for helping the teacher who is 
seeking to use history as a resource. 

10.3.2.1 Searching and reliability 

There is now a wide variety of material on history of mathematics available on the 
Web, ranging from interactive texts and museum catalogues, through to high school 
student projects, and including a wide range of reference sources. However, 
wonderful though it is to have access to huge quantities of information, it is not 
much use if you cannot find what you want. Moreover, the quality of Web pages 
varies widely and so far there is no common standard. Anyone, anywhere, can place 
material on the Web and so it is important to develop a strategy for assessing the 
quality of the information. This is especially important for students, given the 
importance (for general education, not only in mathematics) of web users learning to 
assess the reliability of web information. To make the best use of the Web you need 
to be able both to search the Web efficiently and to recognise a good site when you 
find one. Furthermore, it is recommended that you check the status of a site before 
you recommend it someone else. Just because a site was located at a particular 
address last time you looked, that is no guarantee that the next time you look it will 
still be at the same address, or indeed that it will still exist! What follows is a 
summary of some general points for using the Web with a critical awareness of its 
possible flaws. 

Searching the Web 

1. Let someone else do the work! Start from an annotated list of Web resources, 
such as provided in § 10.3.2.3 below. 

2. Be as precise as possible. Remember that computers are very literal-minded!
3. Try different search engines. 
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4. Look for indicators of downloading time, eg graphics, video, software 
applications, etc. The site may have been developed on a more powerful 
computer or network than you have at home or school, and what seemed a rapid 
image to the site’s constructor can clog up your computer or communication 
links for minutes on end, or indeed cause it to freeze. 

5. Be aware of your browser’s limitations. 
6. Make bookmarks for future reference. 

Evaluating a Web Site 

1. Establish the authority (or not!) of the author: check any links to the author’s 
home page; look for evidence of other publications; look for reason/motivation 
for the site’s creation. 

2. Accuracy of information: look for references to established sources; try to cross-
check some information (but beware of the proliferation of errors through web 
pages copying each other!). 

3. Currency of information: look for the dates when the site was created and when 
it was last revised. 

4. Links to other sites: external links need separate evaluation. 
5. General characteristics: consider the standard of the prose, the ease of navigation 

around the site, the completeness of the information, and any evidence of 
commercial interest. 

10.3.2.2

Here are seven examples of questions which teachers could use either to find out 
information themselves or to use as a project (or component of a project) with 
students. For speed, some ‘answers’: that is, the addresses of sites which the search 
might lead to, are given here. Note that addresses which are too long are split over 
two lines. It would be useful to gain practice by starting with the question (without 
yet knowing a suitable site) and recording the stops along the way while getting 
closer (hopefully!) to the goal. The aim of this exercise is three-fold, therefore: to 
answer particular questions or follow particular leads, to indicate the kind of 
inquiries that could be put or followed, and also to gain experience in searching and 
evaluating the Web. 

1. Find three different types of numeral systems (apart from the Hindu-Arabic 1, 2, 
3 ...). Compose a sum which includes one or more of the basic operations (+, -,
x, ÷) in each of the different systems. 

Some sample questions in exploring Web resources for history of 
mathematics

Chinese:
ht tp : / /www.mandar in too ls .com/numbers .h tm l
h t tp : / /A lephO.c la rku .edu /~d joyce /mathh is t / ch ina .h tm l

h t tp : / /eye l id .ukon l ine .co .uk /anc ien t /numbers .h tm

ht tp : / /www.vpds .wsu .edu / fa i r_95 /gym/um001.h tm l

Egyptian:

Mayan:
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Old Babylonian: 

Roman:
ht tp : / / i t . s t l awu.edu /~dmelv i l l /mesomath / index /h tm l

h t tp : / /www.dead l ine .demon.co .uk / roman/ f ron t .h tm

2 . When were the words quadratic and cubic first used? 
ht tp : / /members .ao l . com/ je f f570 /mathword .h tm l

Who was the earliest person to solve a quadratic and/or cubic equation? When? 
What method did they use? What did the equations look like? When were the 
formulae for solving quadratic and/or cubic equations first used? By whom? 

3. Find an illustration of a page from Euclid’s Elements. What does it show? How 
old is it? How does it differ from a modern geometry text? 

ht tp : / /meta lab .unc .edu /expo /va t i can .exh ib i t /exh ib i t /Ma in

h t tp : / / r s l .ox .ac .uk / imaca t / ino5 .h tm l
h t tp : / / cccw.adh .b ton .ac .uk /schoo lo fdes ign /MA.COURSE/17 /L

h t tp : / /www-h is to ry .mcs .s t -and .ac .uk /h is to ry

- Ha l l .  h tm l  

OB.  h tm l  

4. Who was the first female mathematician who we know about? 

5. Alan Turing was responsible for cracking the Enigma cipher in World War II. 
Who was Alan Turing? What were the essential features of the Enigma machine 
and where can you see one? 

ht tp : / /www.agnessco t t .edu / l r i dd le /women/kova .h tm

ht tp : / /www. tu r ing .o rg .uk / tu r ing
h t tp : / /www.c ran f ie ld .ac .uk /ccc /bpark /

6. In October 1998 an Archimedes manuscript was sold at Christie’s in New York. 
What was on the manuscript? How old was it? How much did it fetch? 

ht tp : / /www. thewa l te rs .o rg /a rch imedes .h tm l
h t tp : / /www.mcs .d rexe l .edu /~c ro r res /Arch imedes /con ten ts .h

tm l

7. What is ‘Fermat’s Last Theorem’? Why did it take so long to prove? 
ht tp : / /www.pbs .o rg /wgbh/nova /p roo f /
h t tp : / /www-groups .dcs .s t -and .ac .uk /%7Eh is to ry /H is tTop ics

/Fermat ’ s - las t - theorem.h tml

10.3.2.3
Below is a selection of internet sites which may be found useful as a resource. For
ease of reference, and to emphasise the wide range of available sites, they have been 
put into twelve categories: B1 General History of Mathematics Sites; B2 Web
Resources; B3 Biography; B4 Regional Mathematics; B5 Web Exhibits; B6 
Books on-line; B7 Student Presentations; B8 Bibliography; B9 Societies; B 10 
History ofComputing; B 11 Education; B12 Miscellaneous.

The listing here is fairly compact, with the main purpose of illustrating the kind 
of historical resource available on the Web. Any given site is only mentioned no 
more than once, although the larger sites could be cited under several of the above 

Examples of internet sites as a resource for history of mathematics 
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headings, and those flagged in Glen Van Brummelen’s discussion (§ 10.3.1) have 
not always been included again. Slow-loading sites or those requiring special 
browsers are indicated with an asterisk (*). Fuller descriptions and further sites may 
be found in Barrow-Green 1998, and on the BSHM Resources website given in B2. 

B1 General History of Mathematics Sites 

Large sites have a gateway page which give an indication of the type of resources 
that are available on other pages of the site. The following are the addresses of
gateways to some of the best known of the general sites on history of mathematics. 
(Some of the pages on these sites are also included in other sections.) 

http: / / forum.swarthmore.edu/~steve/steve/steve/mathhistory.html
This site is part of The Math Forum, an on-line mathematics education community 
centre, hosted by Swarthmore College, and provides an extensive list of annotated 
links to other sites. The sites are ordered alphabetically and the collection can be 
viewed in outline or annotated form. There is a well designed search engine which 
allows for a variety of searches, i.e. keywords, categories and dates. 

Trinity College, Dublin, History of Mathematics archive 
ht tp : / /www.maths . tcd . ie /pub /H is tMath /H is tMath .h tm l
This site, created and maintained by David Wilkins, includes biographies of some 
seventeenth and eighteenth century mathematicians, material on Berkeley, Newton, 
Hamilton, Boole, Riemann and Cantor, and an extensive (but unannotated) directory 
of history of mathematics websites. 

B2 Web Resources 

Many sites contain pages that are devoted to links to other related sites. Provided 
they are kept up to date, these can be extremely useful. However, there is a 
tendency to provide lists of links with no annotation, which means that there is no 
way of telling whether a site is, for example, hypertext, interactive, image intensive, 
or indeed whether it has been prepared by scholars or students. You can therefore 
end up wasting a lot of time waiting for a site to be downloaded which turns out not 
to have the information you require. Until you have visited a lot of sites and know 
your way around enough to recognise sites only by name, it is generally better to use 
an annotated list of resources. 

ht tp : / /www.dcs .warw ick .ac .uk /bshm/ resources .h tm l
An annotated guide prepared on behalf of the British Society for the History of 
Mathematics which includes a fuller range of sites under the same categorisation as 
in this section. Useful to bookmark! 

The Mathematical Museum - History Wing 
ht tp : / /e l i b .z ib -ber l i n .de :88 /Math-Net /L inks /mathe-museum.h is t .

h tm l
The ‘History’ wing of The Mathematical Museum is part of the Math-Net Links to 
the Mathematical World and contains links to exhibitions, hyperbooks, information 
systems, museums and pages of interest for the history of mathematics and 

The Math Forum Internet Resource Collection 

BSHM Resources
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associated fields. It consists of sections on history of mathematics, history of 
computing and communication, and related history information. It is well annotated 
and includes some sample illustrations. 

ht tp : / /www.asa .un imeIb .edu .au /hs tm/hs tm_ove .h tm
A gateway into a wide range of resources covering the history of many scientific 
fields including mathematics. A particular feature of the site is its rating system that, 
with given criteria, evaluates the depth, content and design of each site listed. 

B3 Biography 

There is plenty of material on the Web concerned with lives of mathematicians. It 
comes in a wide variety of guises, much of it excellent, and, on the whole, the Web 
is a very good place to start looking for biographical material. These 'personal' sites 
generally contain a broad spectrum of material about the individual and have good 
links to other relevant sites. 

ht tp : / /www.mcs .d rexe l .edu /~c ro r res /Arch imedes /con ten ts .h tm l
An extremely rich collection of Archimedean miscellanea produced by Chris Rorres 
of Drexel University, Philadelphia, including a pages on different aspects of 
Archimedes' mathematics, books on Archimedes, information on Syracuse, and links 
to other related sites, eg a bibliography of Archimedean literature. 

WWW Virtual Library. History of Science, Technology & Medicine 

Archimedes

Hypatia of Alexandria 
ht tp : / /www.po lyamory .o rg /~howard /Hypa t ia
An extensive and partially annotated list of web resources connected with Hypatia. 
The internal links include a long list of published books and articles which contain 
information on Hypatia, as well as transcriptions from 18th and 20th century texts. 

ht tp : / /www. tu r ing .o rg .uk / tu r ing
A large and well structured site on Turing's life and work maintained by Andrew 
Hodges, the author of Alan Turing: The Enigma. It includes material on the history 
of the computer as well as links to other related sites. 

The Alan Turing Home Page 

B4 Regional Mathematics

There are many sites on regional, particularly ancient, mathematics. Many of the
general sites include good regional pages. The following is a short list of some
smaller (in terms of their history of mathematics content) sites which illustrate a
variety of presentations.

Mathematicians of the African Diaspora 
ht tp : / /www.math .bu f fa lo .edu /mad/mad0.h tm l
An excellent site created and maintained by Scott Williams of the State University 
of New York at Buffalo to exhibit the accomplishments of the people of Africa and 
Africa Diaspora within the mathematical sciences. The history pages include the 
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mathematics of Ancient Egypt, Pre-Colonial Nigeria, and Swaziland (the Lemombo 
Bone). There are good links to other related sites. 

ht tp : / /eye l id .ukon l ine .co .uk /anc ien t /maths l .h tm
Also the addresses that end on /maths2 .h tm and /maths3 .h tm They present 
some basic mathematical problems for high school pupils, produced by artist Mark 
Millimore as part of his extensively illustrated Ancient Egypt site. 

ht tp : / / i t . s t l awu.edu /~dmelv i l l /mesomath / index .h tm l
Plenty of interesting and historically accurate material, collected and written by 
Duncan Melville for his undergraduate history course, and an extensive annotated 
bibliography by Eleanor Robson. 

B5 Web Exhibits 

These are sites which make use of a variety of devices available to those with 
sufficiently enhanced browsers, and also tend to be very image intensive. However, 
it is not always necessary to enable all the tools in order to get a good sense of the
potential of the sites and they are well worth visiting, if only to get an idea of what 
sort of things are possible. 

ht tp : / /www. thewa l te rs .o rg /a rch imedes / f rame.h tm l
An excellent site created by the Walters Art Gallery, Baltimore to complement their 
exhibition of The Archimedes Palimpsest (20 June-5 September 1999). It contains 
richly illustrated pages on the life of Archimedes, the history (past, present and 
future) of the Palimpsest and a commentary by Reviel Netz. 

B6 Books on-line

Texts on-line come in two forms: straightforward copies of original texts-
particularly useful if the text in question is otherwise difficult to obtain--or copies 
which have been annotated or translated in order to increase accessiblility. 

ht tp : / /a leph0 .c la rku .edu /~d joyce / java /e lements / toc .h tm l
A full text interactive version of Euclid's Elements with historical and mathematical 
comments produced by David Joyce. With a Java enabled browser (Netscape or 
Internet Explorer Version 3 or higher) it is possible to dynamically change the 
diagrams. A remarkable site which makes the Elements accessible in a completely 
new way (see § 10.3.1 above; Van Brummelen 1998). Highly recommended. 

B7 Student Presentations 

Student projects are now well established across the curriculum, and the Web can be 
an extremely useful resource in this context. It can be used not only as a means of 
supplying information for the project, but also as the medium by which the students 
present their work. In the latter case students not only have the chance to share the 
fruits of their labours with others, but also have the opportunity to receive feedback 
too.

Egyptian Mathematics Problems 

Mesopotamian Mathematics 

*The Archimedes Palimpsest 

*Euclid's Elements 
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*Galileo Project at Rice University 
ht tp : / /es . r i ce .edu /ES/humsoc /Ga l i l eo /S tuden t_Work /
An excellent collection of student projects which derived from a course on Galileo 
in Context. 

B8 Bibliography 

These sites contain lists of published books and/or articles which are relevant to 
using history of mathematics in an educational context. 

ht tp : / /www.dcs .warw ick .ac .uk /bshm/abs .h tm l
Brief abstracts, sorted alphabetically by author, of papers published in journals and 
books. There is a separate education section covering abstracts of papers on the uses 
of history of mathematics in education, history of mathematics courses, and the 
history of mathematics education. 

B9 Societies 

Most academic disciplines have societies which exist to help the promotion of their 
subject at a variety of levels. The Web now provides a very convenient way to find 
out what such Societies offer their membership, how much it costs to join, as well as 
supplying a means of obtaining an application form. Both of the following societies 
actively promote the use of history of mathematics in education at all levels. 

ht tp : / /www.dcs .warw ick .ac .uk /bshm/
The site includes membership details, BSHM abstracts (see Bibliography), an 
archive containing a list of talks given to the Society, and a page of links to other 
sites.

ht tp : / /www.k ingsu .ab .ca /~g len /cshpm/home.h tm
The site includes membership details, free access to the History and Pedagogy of 
Mathematics Newsletter, and a page of links to other sites. 

B10 History of Computing 

BSHM Abstracts 

The British Society for the History of Mathematics 

The Canadian Society for the History and Philosophy of Mathematics 

The Virtual Museum of Computing 
ht tp : / /www.comlab .ox .ac .uk /a rch ive /o ther /museums/

A site, developed and maintained by Jonathan Bowen of Reading University, made 
up of an extensive collection of links to sites connected with the history of 
computing and computer-based exhibits. The site is divided into galleries covering a 
variety of topics such as general historical information, on-line exhibits etc. 

ht tp : / /www. fourmi lab .ch /babbage /con ten ts .h tm l
An excellent site containing texts of historical documents, including Menebrea's 
description of the Engine translated by Ada Lovelace, and a detailed description of 
an Analytical Engine emulator which runs as a Java applet. 

comput ing .h tm l

Charles Babbage's Analytical Engine 
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B11 Education 

Some of the most interesting sites are emerging from teachers with an interest both 
in history and in using computers. See also Sharp 1998. 

ht tp : / /math .nmsu.edu /~h is to ry /
The experiences of Reinhard Laubenbacher and David Pengelley of New Mexico 
State University in using original historical sources in teaching mathematics. The 
site is well referenced and there are links to several of the articles mentioned (mostly 
in the form of .dvi or .ps files) as well as links to other resources. 

B12 Miscellaneous 

Other sites which are helpful or interesting to visit but which do not fall naturally 
into any of the categories above. 

Teaching with Original Historical Sources in Mathematics 

Earliest Uses of Various Mathematical Symbols 
ht tp : / /members .ao l . com/ je f f570 /mathsym.h tml

Earliest Known Uses of Some of the Words of Mathematics 
ht tp : / /members .ao l . com/ je f f570 /mathword .h tm l
The above two sites, which are the product of multiple contributors, are very high 
quality and provide an excellent resource. They are maintained by Jeff Miller of 
Gulf High School, Florida and contributions are welcomed. 
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Chapter 11 

Bibliography for further work in the area 

John Fauvel 

with Éliane Cousquer, Fulvia Furinghetti, Torkil Heiede, Chi Kai Lit, Harm 
Jan Smid, Yannis Thomaidis, Constantinos Tzanakis 

Abstract: A considerable amount of research has been done in recent decades on the subject
of this study, which is here summarised, in the form of an annotated bibliography, for works
appearing in eight languages ofpublication.

11.1 Introduction 

John Fauvel 

The final chapter of the Study illustrates something of the range and scope of work 
in recent decades on the relations between history and pedagogy of mathematics, 
across a number of countries. Through annotated bibliographies of work published 
in eight languages some impression is given of how much and how varied the 
activity has been, mostly in the last two decades, of which the present work is in part 
a consolidation. One of the aspects of international activity which the chapter 
highlights is how many different countries have been engaged in internal discussions 
about supporting mathematics teachers through the integration of history. Note that 
for the purposes of this book, the annotations are given in English, with the 
exception of the Chinese bibliography (§1 1.2) which is written in Chinese. 

This chapter does not form this ICMI Study’s bibliography, in the usual sense, 
since individual chapters and sometimes sections of the book have their own 
bibliographical list of references. Nor is it for the most part a list of primary source 
or other printed resources for classroom use, such as works of the great 
mathematicians or secondary histories of mathematics. Help on these issues is given 
elsewhere. The resource appendix to Chapter 9 contains an annotated list of original 
sources which may be helpful to teachers, other useful works are mentioned in 
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various places throughout the book, and other resources are discussed in chapter 10, 
for example the guide to internet resources in §10.3. In making the selection of 
papers to include in this chapter, we had to put to one side most of the very 
considerable number of excellent pieces of work which mediate between history and 
the mathematics classroom, providing resources for classroom teachers to use and 
learn from. (While recognising that there is a continuum of work here, and that it is 
difficult to draw a rigid line between classroom resources, on the one hand, and 
discussions about the value and use of those resources, on the other.) 

Of course, for future research in this area to build upon the work already done it 
is not sufficient merely to list that work bibliographically: it has to be categorised 
and evaluated for its relevance to particular research questions. In the preparation of 
this Study quite some discussions were held on various possible categorisations. 
Notable work was done by Harm Jan Smid, who divided the themes addressed in the 
Dutch and German reports he had surveyed as falling into five categories (a refined 
version of the ‘continuum’ referred to above). 
(i) Discussions and/or advocacy in general of the possibilities and advantages of 

the use of history of mathematics in teaching and learning mathematics. 
(ii) Examples, didactical guidelines and hints for teachers on how to use historical 

material in their lessons. 
(iii) The provision of more or less ready made historical resources to use in the 

classroom.
(iv) Empirical descriptions of the use of historical material in the classroom; 
(v) Research focussing on the results and effects of the use of historical materials, 

both affective and/or cognitive. 
Any particular article might well incorporate several of these themes. In the event it 
seemed best to present the bibliographical data in this chapter, covering a yet wider 
range of approaches from different countries and linguistic traditions, in a more 
unmediated form (that is to say, without an elaborate classification), while urging 
that some such categorisation would be a good starting point for future work in the 
area.

The point of this chapter is, then, to provide in capsule form an impression of the 
kinds of work published in eight languages on the topic of the study, namely 
discussions of the relations between history of mathematics and the teaching and 
learning of mathematics. While no complete coverage is achievable, even in the 
languages here let alone across the rest of the world, it is hoped and intended that a 
fairly representative selection of work has been noticed here. Reading the 
annotations provides a further reinforcement of various messages and arguments put 
forward in the rest of the book, about the many different ways of integrating history, 
reasons for doing so, and the different benefits to mathematics curricula and learning 
experiences across the world. 
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11.2 Chinese 

Chi Kai Lit 
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Figure 11.1:delegates at the ICMIStudy meeting take an evening walk: Chi Kai Lit, Fung
Kit Siu, Chun Ip Fung, Man Kung Siu, Masami Isoda, Wann Sheng Horng, Ryosuke
Nagaoka

11.3 Danish 

Torkil Heiede 

This section is an annotated list of some of the works written in, or translated into, 
Danish which are suitable for use in teacher education or in the classroom: not 
comprehensive but indicative of the kind of material available. 

Aaboe, Asger, Episoder fra matematikkens historie [‘Episodes from the history of 
mathematics’], Copenhagen: Munksgaard 1966, repr. Borgen, 1986 
Both in its original American edition and in this Danish translation by the author, this book 
has been an inspiration for many teachers of the history of mathematics. Chapters on 
Babylonian mathematics, Greek mathematics and Euclid’s Elements, Archimedean
mathematics, and Ptolemy’s trigonometry. 

Andersen, Kirsti, et al., Nogle kapitler af matematikkens historie [‘Some chapters of 
the history of mathematics’], Aarhus: Matematisk Institut 1979, 2 vols. 
Nineteen essays on different historical topics by Danish historians of mathematics, with 
emphasis on the history of analysis. 

Andersen, Kirsti (ed.), Kilder og kommentarer til ligningernes historie [‘Sources
and commentaries to the history of equations’], Vejle: Forlaget Trip 1986 
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Nine chapters (by six different authors) on the history of algebra from Babylonian antiquity to 
Descartes and Newton, with a short epilogue on the fundamental theorem of algebra, and on 
equations of degree higher than four. With long excerpts from original sources (in Danish 
translation), exercises, notes and references. 

Andersen, Kirsti, Henk Bos & Jesper Lützen, Trœk af den matematiske analyses 
historie: En antologi af kilder og sekundœr litteratur [‘Features of the history of 
mathematical analysis: an anthology of sources and secondary literature’], Aarhus: 
Institut for de Eksakte Videnskabers Historie, Aarhus Universitet 1987 
The first part contains 18 substantial excerpts from original sources, some of them in the 
original language (Latin, French, German, English etc.), all with translations into Danish, and 
with introductions, notes and exercises in Danish. The second part contains 11 excerpts from 
secondary literature, in English or Danish. With an annotated list of references. 

Beck, Hans Jörgen, et al., Matematik i lœreruddannelsen: Kultur, kundskab og 
kompetence [‘Mathematics in teacher education: culture, knowledge, and 
competence’], Copenhagen: Gyldendal 1998-, vols. 1-
A textbook (planned in two volumes) for the education of primary and lower secondary 
mathematics teachers, with emphasis on the historical and cultural dimension. The first 
volume treats numbers, geometry and probability. Two volumes of work cards are also 
planned, and a volume on the didactics of mathematics. 

Bomann, Gunnar, Talsystemerne og deres udviklingshistorie [‘Number systems and 
the history of their evolution’], Copenhagen: Danmarks Lærerhørjskole 1992 
The history of the number concept and the 19th century construction of the natural, rational, 
real, and complex numbers. Written mainly for the further education of teachers in the 
folkeskole (grades 1-10 in the Danish school system); many portraits and references. 

Clausen, Flemming, Poul Printz & Gert Schomacher, Ind i matematikken [‘Into
mathematics’], Copenhagen: Munksgaard 1989-1994, 6 vols.; 2.ed. under publ. 
The mathematics curriculum of the Danish gymnasium (grades 10-12) is here presented in a 
full-size historical and cultural frame, permeating the whole exposition. Written as school 
texts, but eminently useful also in teacher education. The six volumes are: Numbers and 
geometry; Analytic geometry and functions; Differential calculus; Probability theory and 
statistics; Vectors and solid geometry; Integral calculus and differential equations. 
Beautifully and richly illustrated, each volume contains hundreds of exercises. 

Euklids Elementer I-XIII. Copenhagen: Gyldendal 1897-19 12, 6 vols.: repr. of 1 -IV,
Vejle: Forlaget Trip 1985 
Heiberg’s Greek text of Euclid’s Elements, translated by one of his students, Thyra Eibe, 
herself a gymnasium mathematics teacher: the standard text for generations of mathematics 
students and their teachers at Danish universities. 

Heiede, Torkil, Matematisk analyse: hvad er det for noget? [‘Mathematical analysis: 
what is it?’], Copenhagen: Matematisk Institut, Danmarks Lærerhøjskole 199 1 
Heiede, Torkil, Diflerentialregning: hvad er det for noget? [‘Differential calculus: 
what is it?’], Copenhagen: Matematisk Institut, Danmarks Lærerhøjskole 199 1 
Heiede, Torkil, Integralregning: hvad er det for noget? [‘Integral calculus: what is 
it?’], Copenhagen: Matematisk Institut, Danmarks Lærerhøjskole 1992 
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Heiede, Torkil, Logaritme- og exponentialfunktioner: hvad er det for noget? 
[‘Logarithmic and exponential functions: what is it?’], Copenhagen: Matematisk 
Institut, Danmarks Lærerhøjskole 1993 
Aimed at in-service education of teachers and at evening classes at introductory university 
level, these four volumes treat differential and integral calculus with emphasis on the history 
of the subject. With exercises and references. 

Huygens, Christiaan, Om regning på lykkespil [‘On the calculus of fortune games’]. 
Tr. Kirsti Andersen, Aarhus: Videnskabshistorisk Museums Venner 1986 
A translation of Huygens’s classic treatise, with commentaries, exercises, and references. 

Høyrup, Jens, Algebra på lertavler [‘Algebra on clay tablets’], Copenhagen: 
Matematiklererforeningen 1 998 
Detailed readings-with substantial explanations and commentaries—of 18 original 
Babylonian sources in Danish translation, with 10 others left to the reader as exercises. More 
demanding and more rewarding than many other treatments, this book argues that the 
Babylonians‘ starting point was geometric rather than algebraic. 

la Cour, Poul, Historisk Matematik [‘Historical mathematics’], Copenhagen: 
P.G.Philipsen 1888, later eds. 1899,1909, 1942, 1962 
A classic among Danish historical presentations of elementary mathematics. The book was 
originally written for the authors’ own teaching at one of Denmark‘s folkehøjskoler (folk high 
schools), a special sort of historically-minded schools for young adults (in those days mostly 
from rural surroundings). 

Lobatjevskij, N.I., Geometriske undersøgelser over teorien for parallelle linier 
[‘Geometrical investigations on the theory of parallel lines’]. Trans1 from German 
by Lars C. Mejlbo, Aarhus: Matematisk Institut, Aarhus Universitet 1988 
An annotated translation of the first publication in a modem western language on non-
Euclidean geometry. The first Danish translation of this important source. 

Lund, Jens, Regn med en skriver: Matematik i det gamle Ægypten [‘Calculate with a 
scribe: mathematics in ancient Egypt’], Copenhagen: Munksgaard 1997 
A detailed presentation of Egyptian mathematics, mainly in the form of exercises involving 
problems from original sources (the Rhind and Moscow and other papyri, the leather roll, 
inscriptions on stones), with very full commentaries and references. 

Lützen, Jesper, Cirklens kvadratur, vinklens tredeling, terningens fordobling: Fra 
oldtidens geometri til moderne algebra [‘The squaring of the circle, the trisection of 
the angle, the doubling of the cube: from the geometry of antiquity to modem 
algebra’], Heming: Forlaget Systime 1985 
A history of the whole of mathematics, seen as inspired by the three great classical problems 
and all their ramifications-in geometry, algebra, and analysis-from antiquity to the
transcendence of π. With many exercises and a full list of references.

Lützen, Jesper & Kurt Ramskov, Kilder til matematikkens historie [‘Sources for the 
history of mathematics’], Copenhagen: Universitet 1998,2nd ed. 1999 
A collection of 36 sources, in Danish or English translation, with commentaries and exercises. 
They are chosen so as to be of central importance for the history of mathematics and cover the 
whole range from Babylonian calculations to Dedekind on irrational numbers. One of them is 
from the secondary literature and consists of extracts from the Unguru - van der Waerden 
discussion of the ‘geometrical algebra’ in Euclid‘s Elements Books ii and vi. 
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MejIbo, Lars C.., Uendelige rœkker: en historisk fremstilling [‘Infinite series: a 
historical exposition’], Aarhus: Matematisk Institut, Aarhus Universitet 1983 
Infinite series from antiquity till modern times, including the contributions of the Indians, and 
those of mediaeval and Renaissance Italians. 

Mejlbo, Lars C., Om den elementœre geometris historie [‘On the history of 
elementary geometry’], Aarhus: Matematisk Institut, Aarhus Universitet 1989 
A very detailed and full presentation of the whole history of geometry, from antiquity to 
Hilbert and Poincarék; with annotated sources and extracts from secondary literature, portraits, 
biographical sketches, exercises and copious references. 

Niss, Mogens, Matematikkens udvikling - op til renœssancen: Skitse med pointer 
[‘The evolution of mathematics to the Renaissance: a sketch with highlights’], 
Roskilde: IMFUFA 1985 
A very short history of mathematics (in large format) from antiquity up to but not including 
the European Renaissance, emphasising the relations between mathematics and society. 

Nordisk Matematisk Tidskrift (from 27, 1979, also called Normat)
Since 1953 this journal has been published jointly by the mathematical societies and 
associations of teachers of mathematics in the five Nordic countries (Denmark, Finland, 
Iceland, Norway, Sweden). Since its beginning, a main interest has always been the history of 
mathematics, and over the years many papers of historical or biographical content have been 
published, in Danish, Norwegian, or Swedish. This journal has always been an important 
source of material relevant to the education of teachers. 

Zeuthen, Hieronymus Georg, Mathematkens Historie: Oldtid og Middelalder [‘The history of 
mathematics: antiquity and the middle ages’], Copenhagen: Høst & Søn 1893, new ed. rev. by 
Otto Neugebauer, 1949 

Zeuthen, Hieronymus Georg, Mathematikens Historie: 16de og I 7de Aarhundrede 
Copenhagen: Høst & Søn 1903 
These two volumes constitute the classical Danish exposition of the history of mathematics up 
to Newton and Leibniz, in their time translated into both German and French. They are now 
dated, but Neugebauer’s revision of the first volume is still useful. 

11.4 Dutch 

Harm Jan Smid 

The papers reviewed and annotated in this section are chosen from those on the 
relation between history of mathematics and the teaching and learning of 
mathematics which have appeared in Dutch over the past three-quarters of a century. 

Amerom, Barbara van, Geschiedenis van de wiskunde in de klas, Masters Thesis 
University of Groningen, 1994 
Based on original sources, two booklets on differentiation and integration were composed for 
use in the classroom. The booklet on differentiation was used in five classes, and took some 
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five lessons to work through. Pupils’ reactions were determined by means of classroom 
observations, interviews with the teacher and a questionnaire. The results were that the pupils 
found the texts too difficult and they were not interested in historical materials. 

Auwera, N. van der., ‘Diophantus in de klas’, Wiskunde en ondenvijs 21 (1995),
207-2 1 1. 
Two simple problems of Diophantus in the original Greek were given to 17-year-old pupils 
(who were studying Greek). Beforehand they studied a worksheet with an explanation of 
Diophantus’ notation and symbolism, then answered questions. 

Barbin, Evelyne, ‘Het belang van de geschiedenis van de wiskunde voor de 
wiskundige vorming’, Uitwiskeling 10 (1 994), 1-7
Educational interest in history of mathematics originated in part from resistance to the ‘new 
math’. Learning deductively only makes sense if mathematics has a meaning for the pupil. 
A historical perspective, for instance by reading historical texts, gives insight into the 
development of mathematics, and provides a teacher with more understanding of the pupil’s 
problems.

Beckers, D.J., ‘Historia magistra vitae: de geschiedenis als inspiratiebron voor een 
rekenles’, Euclides 72 (1997), 259-262
History of mathematics should be a source of inspiration. There is no simple analogy 
between the history and the learning processes of children. History of mathematics should not 
become a part of the mathematics curriculum in school, but ideas and examples from the 
history of mathematics could enrich lessons. 

Breugel, K. van, ‘Van kleitablet tot overhead’, Euclides 63 (1987), 1 17- 1 1 8 
There are three main reasons for using the history of mathematics in mathematics teaching. 
When teaching mathematical concepts, it can be helpful to know something about the 
historical development of the concept. History can explain why some definitions or notations 
originated, like the division of a circle in 360 degrees. And the history of mathematics has 
interesting stories that can arouse the interest of the students. 

Bunt, L.N.H., De geschiedenis van de wiskunde als onderwerp voor het gymnasium 
A, Groningen 1954 
During the years 195 1-1953 experiments were held in five classical gymnasia on the teaching 
of the history of Egyptian, Babylonian and Greek mathematics. These experiments took place 
in the classes 5 and 6 (the two highest classes), where usually solid geometry was taught. 
These experiments can be regarded as highly successful and satisfactory. One result was the 
publication of a textbook on the history of mathematics for this type of school. Due to these 
experiments the teaching of the history of mathematics was made a optional subject (which 
was widely chosen) in classical gymnasia. (This possibility disappeared from the curriculum 
in the 1970s when the Dutch educational system underwent a major change.) 

Grootendorst, A.W., ‘De geschiedenis van de wiskunde en het onderwijs in de 
wiskunde’, Wiskunde en onderwijs 8 (1982), 287-306
One task of a mathematics teacher is to pass a cultural inheritance to future generations. 
History is very appropriate for that purpose. Also, it is nowadays difficult for a teacher to 
remain an active mathematical scientist. Studying history of mathematics is a good way to 
remain active in mathematics, apart from its help in teaching. 

Gullikers, Iris, Geschiedenis van de wiskunde in het onderwijs: literatuurlijst, 
Report University of Groningen, 1996 



388 11 Bibliography for further work in the area 

A list describing 23 articles for the use of the history of mathematics in teaching, mainly from 
Euclides, The Mathematical Gazette, Nieuwe wiskrant and Wiskunde en onderwijs. 

Hairs, E de, ‘Het cultuur-historisch element in het wiskundeonderwijs’, Euclides 4

The cultural-historical element in mathematics teaching should be more than just an 
illustration to regular teaching. There is an international movement going on to reform 
mathematics teaching. The teaching of the history of mathematics fits in that movement; the 
genetic-historical method of teaching, especially, can profit very much from the use of the 
history of mathematics. 

Huisjes, J. and Langeland, J, ‘Wat deed een Egyptenaar 4000 jaar geleden met een 
differentiaalvergelijking?’, Nieuwe wiskrant 11 (1992), 32-35 
In 1992, a questionnaire was send to 600 mathematics teachers of all levels about their 
knowledge of history of mathematics and their interest in using it in the classroom. Most 
teachers did not know very much about the history of mathematics; 90% sometimes 
mentioned history in class, varying from just a casual remark to extensive treatment of a 
historical topic. Many teachers would like to do more on history of mathematics, but are 
impeded by lack of knowledge, time and appropriate materials. 

Kool, M., ‘Waarom kort als het ook lang kan?, Wiskundige notaties in zestiende-
eeuwse rekenboeken’, Nieuwe wiskrant 18 (1998), 5-9
16th century arithmetic books hardly used modern symbolic mathematical notations. Trying 
to understand 16th century solutions and abbreviations can be a challenging and interesting 
learning experience for today’s students. 

Looij, H. van, ‘Het nut van de geschiedenis van de wiskunde’, Wiskunde en
ondenvijs 6 (1980), 429-444
History of mathematics can help pupils to discard the idea that mathematics is a completed 
and faultless edifice, instead of a human project with many new developments and unsolved 
problems. With the historic-genetic method the teacher can help the pupil to gain a better 
understanding and to experience mathematics as a living entity. History of mathematics also 
teaches the pupil to see mathematics as a part of human culture. 

Maanen, Jan van, ’Over het verdelen van aangeslibd land: een brugklaspoject’, 
Euclides 60 (1984), 161-168
English version (‘Teaching geometry to 11 year old “mediaeval lawyers”’) cf. § 1 1.5.1. 

Maanen, Jan van, ‘Een gewichtig probleem van L’Hôpital’, Nieuwe wiskranf, 10

English versiom (‘L’Hôpital’s weight problem’) referred to in §1 1.5. 

Meskens, Ad, ‘Zestiende-eeuwse wiskunde doorheen het middelbaar onderwijs’, 
Wiskunde en ondenvijs 18 (1992), 232-248
A number of examples from 16th-century arithmetic books for schools are presented, mainly 
from trading applications. Such problems could be used in the classroom. 

Mooij, H., ‘De geschiedenis van de wiskunde en de didactiek’, in: Over de didactiek 
van de meetkunde benevens benaderingsconstructies ter verdeling van een hoek in 
gelijke delen, Amsterdam 1948, chapter 2 
Incorporating the history of mathematics in teaching, especially in plane geometry, is useful 
because pupils gain a better understanding of the necessity of doing mathematics, the 
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importance of intuitive and inductive reasoning is illuminated and the mutual influencing of 
mathematics and society can become more clear. 

Schrek, D. J.E. ‘Het cultuurhistorisch element in het wiskunde-onderwijs’, Euclides

Paying attention to history narrows the gap between the exact sciences and the liberal arts. 
History of mathematics has become a full grown branch of science; in several countries, e.g. 
Germany, history of mathematics has been recommended as a school subject. Historical 
examples, problems or the study of theorems in their original Greek formulation can broaden 
the cultural horizon of children. Nowadays there is enough material available for teachers to 
interweave elements from the history of mathematics into their mathematics lessons. It 
should not be taught as a separate subject. 

1 (1 924) 29-46
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John Fauvel 

Arcavi, Abraham, ‘Two benefits of using history’, For the learning of mathematics 
11.2 (1991), 11 
One benefit lies in using history to unpack the automatic quality of mathematics, to re-
examine known and taken-for-granted mathematical ideas. Another is to sensitise the teacher 
to possible difficulties of student understanding, and help in listening to students’ arguments. 

Arcavi, Abraham, Maxim Bruckheimer and Ruth Ben-Zvi, ‘History of mathematics 
for teachers: the case of irrational numbers’, For the learning of mathematics 7.2

The development and implementation of a course on irrational numbers, taught through 
worksheets with further materials and answer sheets. The course objectives were to 
strengthen the teachers’ knowledge, pursue other pedagogic issues, develop work around 
primary sources, and foster an image of mathematics as creative human endeavour. 

Arcavi, Abraham, Maxim Bruckheimer and Ruth Ben-Zvi, ‘Maybe a mathematics 
teacher can profit from the study of the history of mathematics’, For the learning of 
mathematics 3.1 (1982) 30-37
A two-day teacher workshop was designed to create a picture of the development of a topic 
(negative numbers), with details of worksheets and of the reception of the event. 

Barbin, Evelyne, ‘The reading of original texts: how and why to introduce a 
historical perspective’, For the learning of mathematics 11.2 (1 99 1) 12-13
Reading original texts allows the teacher or learner to study mathematical activity, and gain 
access to the concepts permeating mathematical texts. This process changes the image of 
mathematics and enables learners to see it as an activity, illustrated by comparing the way 
Euclid and Clairaut approach angles of a triangle. 

Barbin, Evelyne, ‘The role of problems in the history and teaching of mathematics’, 
in R. Calinger (ed), Vita mathematica: historical research and integration with 
teaching, Washington: MAA 1996, 17-25

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMl study, 
Dordrecht: Kluwer 2000, pp. 389-404

(1987) 18-23
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Introducing history of mathematics to future teachers transforms the practice of teaching 
mathematics, through changing the epistemological concepts of mathematics; in particular by 
emphasising the construction of knowledge out of the activity of problem solving. This is seen 
in the examples of the concept of angle and the concept of curve. 

Bartolini Bussi, Maria, and Maria Alessandra Mariotti, ‘Semiotic mediation: from 
history to the mathematics classroom’, For the learning of mathematics 19.2 (1999),

Whether a section of a cone is the same as a section of a cylinder, and whether either is egg-
shaped, has long been debated. Students trying to find the flaw in historic arguments such as 
those by Witelo (c.1200) and Dürer (1525), need help in harmonising the figural and 
conceptual aspects of the problem. The teacher has a key role in helping them to master the 
conflict and achieve a new conceptual control. 

BOS, H. J. M., ‘Mathematics and its social context: a dialogue in the staff room, with 
historical episodes’, For the learning of mathematics 4.3 (1 984) 2-9
The history of mathematics can inform both pupils and teachers about the social context of 
mathematics, and help them to decide what position they hold in debates about it. 

Brummelen, Glen Van, ‘Jamshid al-Kashi: calculating genius’, Mathematics in 

The remarkable and beautiful insights of the C15 Iranian astronomer al-Kashi, working in 
Samarkand in the 1420s, led to unprecedentedly accurate values of p and the sine of 1° (the 
equivalent of 16 and 17 decimal places, respectively). His method for sin 1° is essentially that 
of fixed-point iteration which can be done on a calculator in class. 

Brummelen, Glen Van, ‘Using ancient astronomy to teach trigonometry: a case 
study’, Histoire et épistémologie dans I ’éducation mathématique, IREM de 
Montpellier (1995),275-28 1 
Students who perform well on technical examinations at the end of a course may still not 
grasp why the subject exists, what the mathematics means, or how to ask mathematical 
questions. Carefully planned use of history can help address these problems. A guided case 
study of ancient astronomy has proved fruitful in evoking greater trigonometric confidence 
and understanding. 

Bum, Bob, ‘What are the fundamental concepts of group theory?’, Educational
studies in mathematics 31 (1966), 371-377
The conventional way of teaching the notion of group, as a set with a binary operation 
satisfying four axioms, is more logically than psychologically satisfying. Starting from the 
historical origins of permutation and symmetry may have pedagogic benefits. 

Bum, R.P., ‘Individual development and historical development: a study of 
calculus’, Int. J. Math. Educ. Sci. Technol. 24 (1993), 429-433
The rigour of undergraduate analysis was introduced by Cauchy and Weierstrass during the 
19th century, and the conventions of pre-19th century calculus are close to the conventions of 
pre-university calculus in England today. The analogy between personal development and 
historical development in calculus is richly suggestive-but may not be pressed too far. 

Burns, Stuart, ‘The Babylonian clay tablet’, Mathematics Teaching 158 (1997),
44-45
Investigations of a Babylonian tablet by middle school pupils revealed some remarkable 
differences, from those who discovered what it was about without realizing what they had 
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achieved, to those who used a book to learn what all the numbers were—to give them the 
‘right’ answer—without gaining any idea what the tablet was about. 

Carvalho e Silva, Jaime, ‘History of mathematics in the classroom: hopes, 
uncertainties and dangers’, Sergio Nobre (ed), Proceedings of HPM Meeting, 
Blumenau, Brazil 1994, 129-135
Portugal provides an example, in the 1950s-60s textbooks of José Sebastião e Silva, of 
historically-informed school textbooks whose successors, when fashion changed, contained 
no history. Although the Portuguese syllabus now pays vague lip-service to history of 
mathematics, proponents must safeguard against changes of fashion and political whim. 

Cooper, Amira, ‘Integration of the historical development of mathematics in 
mathematics teaching in the high school using self reading’, Eduardo Veloso (ed), 
Proceedings of HEM Meeting, Braga, Portugal 1996, vol II,3-10
Providing historical material for students, to read on their own at home, contributes to a 
significant change in students’ attitudes towards mathematics, as well as increasing the 
number who saw individual reading as an important part of the learning process. 

Crawford, Elspeth, ‘Michael Faraday on the learning of science and attitudes of 
mind’, Science and education 7 (1 998): 203-2 1 1 
Faraday’s ideas about learning are relevant to scientific learning in general. It is central to 
learning in science to acknowledge that an inner struggle is involved in facing unknowns. 
Following Faraday, for teachers to understand their own feelings while teaching is essential to 
enable empathy with the fears and expectations of learners. 

D’Ambrosio, Ubiratan, ‘Ethnomathematics and its place in the history and pedagogy 
of mathematics’, For the learning of mathematics 5.1 (1985) 44-48
A suggestion for looking at the history of mathematics in a broader context, to incorporate 
practices which are mathematical in their nature without constituting mathematisation in the 
traditional sense. Such an approach has implications for curriculum development, particularly 
in third world countries. 

D’ Ambrosio, Ubiratan, ‘Where does ethnomathematics stand nowadays?’, For the 
learning of mathematics 17.2 (1997), 13-17
History is critical to ethnomathematical studies; conversely ethnomathematics calls for a 
broader concept of sources and a new historiography for the history of mathematics, which in 
turn affects mathematics. 

Deakin, Michael A. B., ‘Women in mathematics: fact versus fabulation’, Australian
mathematical society gazette 19 (1992), 105-1 14 
Many historical accounts of women in mathematics, some recent, overlook Theon’s 
instruction to his daughter Hypatia “To teach superstitions as truths is a most terrible thing.” 
To pursue the truth about mathematical women in the past leads to recognition of the diversity 
of role models they provide, in their very disparate talents and interests. 

Deakin, Michael, ‘Boole’s mathematical blindness’ Mathematical gazette 80, no.

George Boole never solved a particular problem in operational calculus, despite working on it 
throughout his life and holding the key to its solution. Analysing the factors which prevented 
him—a technical deficiency, coupled with failing to conceive of the solution as being a 
solution—helps us understand difficulties encountered by today’s students. 

489 (1996) 511-518
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Dennis, David, and Jere Confrey, ‘Drawing logarithmic curves with Geometer's
sketchpad: a method inspired by historical sources’, in James R. King and Doris 
Schattschneider (eds,) Geometry turned on! Dynamic software in learning, teaching 
and research, MAA 1997, 147-156
A mechanical linkage device from Descartes’ Geometry, which can be used for finding any 
number of points on a logarithmic or exponential curve, can be simulated on computer. Such 
a tool helps populate the dialogue between grounded activity and systematic inquiry, between 
physical investigations and symbolic language, in mathematics learning. 

Dennis, David, and Jere Confrey, ‘The creation of continuous exponents: a study of 
the methods and epistemology of John Wallis’, CBMS Issues in mathematics 
education 6 (1996) 33-60
History provides rich sources of alternative conceptualization and diverse routes to the 
development of an idea. This deepens the close listening of teachers and researchers to student 
mathematics, and leads to reconceptualizing the epistemology of mathematics. History is 
seen as the coordination of multiple forms of representation. How geometry and ratio 
supported Wallis’s development of exponents is explored in depth. 

Dorier, Jean-Luc, ‘On the teaching of the theory of vector spaces in the first year of
French science universities’, Edumath 6 (1 998), 38-48
Historical analysis enables us to explain the specific meaning which formalism has in the 
theory, and thus the teaching, of vector spaces. Other pedagogical issues, including students’ 
mistakes, can be understood and acted upon better through the study of history. 

Downes, Steven, ‘Hypatia versus the National Curriculum’, Mathematics teacher 

Reflections on the tensions between the demands of a national curriculum and attempts to 
help pupils enjoy mathematics through historical activities. 

Downes, Steven, ‘Women mathematicians, male mathematics: a history of 
contradiction?’, Mathematics in school 26.3 (1 997), 26-27
It is not sufficient to show pupils that some women (the familiar few names from history) can 
do mathematics; rather, it is necessary to educate girls into seeing that they as women are not 
‘other’ to mathematics, through a historical analysis of how women’s participation in 
mathematics has been constructed. 

Eagle, Ruth, ‘A typical slice’, Mathematics in school 27.4 (1998), 37-39
Exploring Archimedes’ Method with trainee teachers reveals a method for determining 
volumes which kindles interest and is well within the grasp of secondary school pupils. 

Ernest, Paul, ‘The history of mathematics in the classroom’, Mathematics in school 

Examples of classroom worksheets devised by student teachers drawing upon the history of 
mathematics.

Fauvel, John, ‘Algorithms in the pre-calculus classroom: who was Newton-
Raphson?’, Mathematics in school 27.4 (1998), 45-47
The so-called Newton-Raphson method (due in its present form to Thomas Simpson) provides 
insights into algorithms and iterative processes which can be useful for pupils before as well 
as after they learn calculus. 

153 (1995), 8-9

27.4 (1998), 25-3 1
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Fauvel, John, ‘Empowerment through modelling: the abolition of the slave trade’, in 
R. Calinger (ed), Vita mathematica: historical research and integration with 
teaching, Washington: MAA 1996, 125-130
An example of the use of a historical artefact—a diagram from Thomas Clarkson’s History of 
the abolition of the Africa slave-trade (1808)—in order to help students to think and learn 
about graphical modelling techniques. 

Fauvel, John, ‘Platonic rhetoric in distance learning: how Robert Record taught the 
home learner’, For the learning of mathematics 9.1 (1989) 2-6 
The textbooks of Robert Record (c.1510-1558), the first writer of mathematics textbooks in 
English, show astonishing freshness and pedagogic insight, not least how to empathise with 
the reader at a distance. 

Fauvel, John, ‘Using history in mathematics education’, For the learning of 
mathematics 11.2 (1991) 3-6
A survey of ways history can be used in the mathematics classroom, the reasons advanced for 
doing so, and political and other issues surrounding the introduction of a historical dimension 
to mathematics education. 

Fernandez, Eileen, ‘A kinder, gentler Socrates: conveying new images of 
mathematics dialogue’, For the learning of mathematics 14.3 (1994) 43-47
Revisiting the celebrated encounter between Socrates and the slave-boy, in Plato’s Meno, with
a view to drawing out its implications for mathematics teacher training: in particular, how it 
might be used to promote an image of teachers and students empowering one another. 

FitzSimons, Gail, ‘Is there a place for the history and pedagogy of mathematics in 
adult education under economic rationalism?’, Eduardo Veloso (ed), Proceedings of 
HEM Meeting, Braga, Portugal 1996, vol II, 128-135 
Before the growth of economic rationalism and the adoption of industrial values to the 
exclusion of others, further education classes in Australia enabled adults returning to study to 
learn about the history of mathematics and recreate parts for themselves. 

Fowler, David H., ‘A final-year university course on the history of mathematics: 
actively confronting the past’, The mathematical gazette 76 (1992), 46-48
History is the active confrontation of the past and the present. Students on this course are 
encouraged in this by (a) reading a selection of texts and writing a short description and a 
short essay on their reactions; (b) giving a 15-minute talk to the class at some stage; (c) 
writing a substantial essay. Some of the skills this course develops are notoriously neglected 
in mathematics courses, and are in great demand in the outside world. 

Frankenstein, Marilyn, ‘Various uses of history in teaching criticalmathematical 
literacy’, Sergio Nobre (ed), Proceedings of HPM Meeting, Blumenau, 1994, 91-98 
A prime use of history is for students to examine their personal schooling history. Another is 
the hidden history, involving peoples’ mathematical developments, which can be used to 
demystify the structure of mathematics and of society. 

Freudenthal, Hans, ‘Should a mathematics teacher know something about the history 
of mathematics?’, For the learning of mathematics 2.1 (1981) 30-33
The teacher’s knowledge of history should be integrated knowledge, familiar to the teacher 
and a cornucopia available for instruction: not hidden in drawers to be opened at pre- 
established moments. For students and teachers, the history of mathematics should concern 
the processes rather than the products of mathematical creativity. 
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Friedelmeyer, Jean-Pierre, ‘What history has to say to us about the teaching of 
analysis’, Evelyne Barbin and Régine Douady (eds), Teaching mathematics: the 
relationship between knowledge, curriculum and practice, Topiques éditions 1996, 

Reforms in analysis teaching have attempted to reconcile the apparently irreconcilable needs 
for rigour and for understanding. Teaching in a historical context enables the meaning and 
rigour to be interactively constructed along with the student’s mathematical insight, by a 
process which is dynamic and living. 

Führer, Lutz, ‘Historical stories in the mathematics classroom’, Mathematical
gazette 76, no. 475 (1 992) 127-138
The desirability of incorporating history in mathematics teaching is easier to establish than 
how in practice it may be done. Two stories—Eratosthenes, and ideas of π—illustrate that
history is too important to use to bore and perplex pupils: rather, it provides a changed tone 
for the framework within which mathematics education takes place. 

Furinghetti, Fulvia, ‘History of mathematics, mathematics education, school 
practice: case studies in linking different domains’, For the learning of mathematics 

Experiences of teachers exploring different ways of using history are discussed and 
taxonomised: informing students’ image of mathematics, as a source of problems, as an 
optional activity, and as a different approach to concepts. ‘Integration’ is preferable to ‘use’ 
of history, to characterise a more methodical development and analysis. 

Furinghetti, Fulvia, ‘The ancients and the approximated calculation: some examples 
and suggestions for the classroom’ Mathematical gazette 76, no. 475 (1992) 

History is a good source of problems for the classroom, particularly in relation to the area of 
approximated calculation, which is of increasing importance in the practical mathematics 
curricula of today. These problems are of interest not only from an algorithmic point of view, 
but also for developing mathematical concepts. 

Furinghetti, Fulvia, and Annamaria Somaglia, ‘History of mathematics in school 
across disciplines’, Mathematics in school 27.4 (1998), 48-5 1 
History of mathematics can help pupils see the genesis of ideas and connections between 
subjects, with real benefits for their seeing the homogeneity of knowledge as well as 
mathematical development. Several interdisciplinary projects relate mathematics and 
philosophy, art, music, &c. Students’ mathematical difficulties are addressed by a considered 
approach drawing upon contexts from the history of mathematics. 

Garcia, Paul, ‘Dismissis incrutiationibus’, Histoire et épistémologie dans 
l ’éducation mathématique, IREM de Montpellier (1 995), 17 1 -190
Among the reasons why secondary school teachers might consider using history are to show: 
that today’s ‘elementary’ concepts may not have been obvious to even great past 
mathematicians; that the personalities of mathematicians have the same problems as everyone 
else; and that even today there can be disputes about ideas. 

Gardiner, Tony, ‘Once upon a time’ Mathematical gazette 76,. 475 (1992) 143-1 50 
History of mathematics has much to offer the teaching of mathematics. Two pitfalls, though, 
are the temptation to enlist the support of ‘history’ when trying to change social attitudes, and 
the uncritical way in which intelligent students respond to pseudo-history.

109-122

17.1 (1997), 55-61
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Gardner, J Helen, “‘How fast does the wind travel?”: history in the primary 
mathematics classroom’, For the learning of mathematics 11.2 (1991) 17-20
Examples of incorporating a historical dimension into multi-ethnic primary education (8 to 10 
year-olds).

Gauld, Colin, ‘Making more plausible what is hard to believe: historical 
justifications and illustrations of Newton’s third law’, Science and education 7
(1 998): 159-172
Similarity between the notions of young people today and those of pre-Newtonian scientists 
suggests that a study of attempts to justify Newton’s third law from the C17 to the C19 may 
provide arguments to help students to consider it plausible. 

Gerdes, Paulus, ‘Examples of incorporation into mathematics education of themes 
belonging to the history of geometry in Africa’, Sergio Nobre (ed), Proceedings of 
HPMMeeting, Blumenau, Brazil 1994, 2 14-221
Two examples: the living tradition of the originally female geometry of handbags in 
Mozambique, and the almost disappeared tradition of male geometry of sand drawings from 
Angola and Zambia. 

Graf, Klaus-Dieter and Bernard R. Hodgson, ‘Popularizing geometrical concepts: 
the case of the kaleidoscope’, For the learning of mathematics 10.3 (1 990) 42-50
Historical and pedagogic account of the kaleidoscope (Brewster 181 7), a particularly 
successful example of an instrument which captures the attention of pupils and involves them 
in mathematics. With further reflections on its transference to computer software. 

Grattan-Guinness, Ivor, ‘Some neglected niches in the understanding and teaching 
ofnumbers and number systems’, ZDM 98/1 (1998), 12-18
Historical examples in the field of number, selected for their possible use in teaching at school 
or college level, with pedagogic commentary: including fractions and ratios, integers with 
properties, algorist vs abbacist approaches to calculation, and zero. 

Griffiths, H. B., Massimo Galuzzi, Michael Neubrand and Colette Labord, ‘The 
evolution of geometry education since 1900’, in C. Mammana and V. Villani (eds) 
Perspectives in the teaching of geometry for the 21st‘ century, Kluwer 1998, 193-234
The roles of geometry in the curriculum over the past century in England, Italy, Germany, and 
France, compared as a considered exercise in understanding the past better in order to avoid 
future mistakes of education policy. 

Hahn, Alexander J., ‘Two historical applications of calculus’, College mathematics 
journal 29 (1 998), 93-103
L’Hopital’s determination of the static geometry of a pulley, and Galileo’s experiment with 
balls rolling down an inclined plane, are two problems pitched at just the right level for 
students beginning calculus. Through such problems students can both deepen their insights 
and practise their computational skills. 

Hefendehl-Hebeker, Lisa, ‘Negative numbers: obstacles in their evolution from 
intuitive to intellectual constructs’, For the learning of mathematics 11.1 (1991)

The intellectual hurdles that blocked the understanding of negative numbers thoughout history 
may also block the understanding of present-day students. The examples of D’Alembert and 
Stendhal illustrate the confusions. Among others, Hermann Hankel in 1867 sought to 
overcome the difficulties by a change of viewpoint. 

26-32
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Heiede, Torkil, ‘Why teach history of mathematics?’ Mathematical gazette 76, no.

Because the history of a subject is part of the subject. If you are not aware that mathematics 
has a history then you have not been taught mathematics, but have been cheated of an 
indispensable part of it. You are not a mathematics teacher if you do not teach also the 
history of mathematics. 

Hitchcock, Gavin, ‘Dramatizing the birth and adventures of mathematical concepts: 
two dialogues’, in R. Calinger (ed), Vita mathematica: historical research and 
integration with teaching, Washington: MAA 1996, 27-4 1
The power of dialogue and theatre in reconstructing the historical story of informal 
mathematics-making is shown in two playlets, about the acceptance in Europe of decimal 
expansions of irrational numbers (a dialogue between Stifel and Stevin) and of negative roots 
of equations (Frend, Peacock and De Morgan). 

Hitchcock, Gavin, ‘Teaching the negatives, 1870-1970: a medley of models’, For
the learning of mathematics 17.1 (1997), 17-25, 42 
Six contrasting classroom scenes of good teachers at work: C. Smith (1888), A N Whitehead 
(1918), E. Landau (1930), T. Apostol (1957), American teacher (1961), English teacher 
(1966), with prologue (A. De Morgan) and epilogue (F. Klein). With questions and exercises, 
for teacher-training workshops. 

Hitchcock, Gavin, ‘The “grand entertainment”: dramatising the birth and 
development of mathematical concepts’, For the learning of mathematics 12.1

Use of dialogue and theatre is a way to allow the student to share something of the creative 
tensions and intellectual excitement experienced by human mathematics-makers in their 
historical problem-situations. An example is given, a synopsis of a six-scene play on the rise 
of negative numbers. ‘Grand entertainment’ is Kepler’s phrase. 

Isaacs, Ian, V Mohan Ram and Ann Richards, ‘A historical approach to developing 
the cultural significance of mathematics amongst first year preservice primary 
school teachers’, Eduardo Veloso (ed), Proceedings of HEM Meeting, Braga,
Portugal 1996, vol II,26-33 
A course at the Northern Territory University, Australia, set out to modify the belief systems 
and perceptions of trainee primary teachers about the nature of mathematics and the purpose 
of school mathematics, Work included geometry from China, India, Egypt and Greece.
Results were mixed; many students were unconvinced and more work is needed. 

Jones, Charles V., ‘Finding order in history learning: defining the history and 
pedagogy of mathematics’, Sergio Nobre (ed), Proceedings of HPM Meeting, 
Blumenau, Brazil 1994,35-45 
Historio-pedagogy will become a discipline when a founding set of assumptions and a 
research agenda is agreed: for example, seeing the processes of history and of learning as 
complex systems with emergent order. This view must criticise many assumptions in current 
pedagogy; teacher and learner might begin to relate as mentoring partners. 

Katz, Kaila, ‘Historical content in computer science texts: a concern’, Annals of the 
history of computing 19.1 ( 1997), 16- 19 
Those teaching computer science courses may have little chance or competence to evaluate 
the historical material found in student textbooks. Yet there are problems with the historical 
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content of many current texts. The history of the field deserves the same careful treatment in 
these texts as do other aspects of computer science. 

Katz, Victor J., ‘Using history in teaching mathematics’, For the learning of 
mathematics 6.3 (1986) 13-19
Use of historical materials is profitable both for motivating students and for developing the 
curriculum, and can give rise to valuable pedagogic ideas. Examples are given from 
algorithms, combinatorics, logarithms, trigonometry, and mathematical modelling. 

Katz, Victor, ‘Ethnomathematics in the classroom’, For the learning of mathematics 

Many important mathematical ideas grew out of the needs of cultures around the world. 
These are exemplified in examples from combinatorics, arithmetic and geometry. Studying 
these broadens students’ understanding not only of mathematics but also of the world. 

Katz, Victor, ‘Some ideas on the use of history in the teaching of mathematics’, For
the learning ofmathematics 17.1 (1997), 62-63
To discover ways of making learning better for students, teachers need to experiment with 
various ways of using history and sharing the results. Successful use may require action on a 
larger scale: setting a series of ideas, or even a whole course, in historical context. 

Kleiner, Israel, ‘A historically focused course in abstract algebra’, Mathematics
magazine 71 (1998), 105-1 11 
A course in abstract algebra, for an in-service master’s programme for mathematics teachers, 
was based around the theme of showing how abstract algebra originated in, and sheds light 
on, the solution of concrete problems. The historical material was mainly approached through 
secondary sources. 

Kool, Marjolein, ‘Dust clouds from the 16th century’, Mathematical gazette 76

Working with historical materials in the classroom is a way of motivating pupils. In 
particular, it can be very useful with students of below average capabilities or with learning 
difficulties, who are easily distracted in mathematics lessons and have little interest. Here the 
example is given of working with 16th century Dutch arithmetic texts. 

Kool, Marjolein, ‘Using historical arithmetic books in teaching mathematics to low 
attainers’, Histoire et épistémologie dans l ’éducation mathématique, IREM de 
Montpellier (1 995), 2 15-225
Low-attaining teenagers can be enthused and stimulated by working with carefully selected 
samples from old arithmetic books and mss. They come to see mathematics as problems done 
and solved by other people too, with whom they can identify. With several pages of 
worksheets.

Kubli, Fritz, ‘Historical aspects in physics teaching: using Galileo’s work in a new 
Swiss project, Science and education 8 (1999), 137-150
A questionnaire about incorporating historical material in their physics programme was sent 
to students in Swiss high schools, canvassing different types of intervention (eg sporadic 
recounting, original texts, reconstructed historical experiments). Early results show a 
difference in the responses of male and female students. 

14.2 (1994), 26-30

(1 992) 90-96
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Laubenbacher, Reinhard, and David Pengelley, ‘Great problems of mathematics: a 
course based on original sources’, American mathematical monthly 99 (1 992)’ 

In this course, aimed at giving students the “big picture”, we examine the evolution of 
selected great problems from five mathematical subjects: area and the definite integral, set 
theory, solutions of algebraic equations, Fermat’s last theorem, and the parallel postulate. The 
use of original sources allows students to appreciate the progress through time in clarity and 
sophistication of concepts and techniques. 

Laubenbacher, Reinhard, and Michael Siddoway, ‘Great problems of mathematics: a 
summer workshop for high school students’, The college mathematics journal 25

In a 3-week summer workshop for 22 high school students from across the country we 
examined, using original sources, the evolution of selected great problems from set theory, 
number theory, and calculus. The first year used a traditional lecture approach. The second 
year’s teaching style incorporated two pedagogical devices that proved amazingly effective: 
the ‘discovery’ method and daily writing. The discovery method led to far deeper 
understanding, while the writing was a valuable tool for comprehending and mastering 
mathematics. The ability of primary source material to engage students’ attention and spur 
their efforts was dramatically evident. 

Le Goff, Jean-Pierre, ‘Cubic equations at secondary school level: following in 
Euler’s footsteps’, Evelyne Barbin and Régine Douady (eds), Teaching
mathematics: the relationship between knowledge, curriculum and practice, 
Topiques éditions 1996, 11-34
Whether or not included in the curriculum, cubic equations are important for leading to the 
emergence of imaginary numbers and to the solution of trigonometric equations. A class of 
17-year-olds in Normandy tackled a text of Euler as an investigation, here described in detail. 
The same text was explored differently in another class. 

Lombardi, Olimpia, ‘Aristotelian physics in the context of teaching science: a 
historical-philosophical approach’, Science and education 8 (1 999), 2 17-239 
Aristotelian physics for didactic purposes is sometimes presented in too fragmentary and 
oversimplified a way. Reading the original texts is a richer intellectual experience and shows 
the author’s thought in action. 

Maanen, Jan van, ‘L’Hôpital’s weight problem’, For the learning of mathematics 

Classroom use (with 18-year-old pupils in a Dutch gymnasium) of a problem from the first 
calculus textbook, L‘Hôpital’s Analyse des infiniment petils (1696), with a discussion of the 
value and purpose of this activity. 

Maanen, Jan van, ‘New maths may profit from old methods’, For the learning of 
mathematics 17.2 (1 997), 39-46
Four classroom activities-bisecting an angle, solving a quadratic equation, estimating a 
logarithm, calculaing the area of a triangle-show how tackling problems from old textbooks 
can enable school pupils and trainee teachers to gain fresh and invigorating perspectives on 
what they are learning. 

Maanen, Jan Van, ‘Old maths never dies’, Mathematics in school 27 (1998), 52-54

313-317
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Today’s students are intrigued and inspired by C17 textbook problems at a number of levels, 
from deciphering gothic type (a morale-boosting activity for weaker students) to realising that 
problems can be solved geometrically as well as algebraically. 

Maanen, Jan van, ‘Seventeenth century instruments for drawing conic sections’, 
Mathematical gazette 76 (1992), 222-230
A consequence of Descartes’ new approach to geometry (1 637) was an increased interest in 
instruments for drawing conic sections, taken up particularly by the Dutch mathematician Van 
Schooten (1 6 1 5/6- 1660). 

Maanen, Jan van, ‘Teaching geometry to 11 year old “mediaeval lawyers”’, 
Mathematical gazette 76, no. 475 (1992) 37-45
11-year old pupils studying Latin and mathematics studied a 1355 treatise by Bartolus of 
Saxoferrato on the division of alluvial deposits. Besides integrating the two subjects in the 
same project, it was a way of encouraging pupils to work together, to see the importance of 
mathematics in society, and to discover ruler-and-compass constructions. 

MacKinnon, Nick, ‘Homage to Babylonia’ Mathematical gazette 76 (1 992) 158-178
Some resources on Old Babylonian mathematics that have been used with classes, at various 
places in the curriculum, in relation to place value, Pythagoras’ theorem, and quadratic 
equations. How the material may be integrated into pupils’ general education, and where to 
see cuneiform mathematics in Britain. 

MacKinnon, Nick, ‘Newton’s teaser’, Mathematical gazette 76, no. 475 (1992) 2-27
Leibniz’s series for π/4, and Newton’s riposte in his Epistolu posterior (1676). The latter
“makes an excellent peg on which to hang a number of lessons on infinite series, and 
integration, and in the course of researching this article I found I had touched base with so 
many A-level topics that my whole teaching at this level has been revolutionised.” 

McBride, Carl and James H Rollins, ‘The effect of history of mathematics on 
attitudes toward mathematics of college algebra students’, Journal for research in 
mathematics education 8 (1977), 57-61
Incorporating ideas from the history of mathematics into a college algebra course produces a 
significant positive effect on student attitudes towards mathematics. 

Menghini, Marta, ‘Form in algebra: reflecting, with Peacock, on upper secondary 
school teaching’, For the learning of mathematics 14.3 (1994) 9-14
In teaching algebra it is better at a certain level to underline explicitly the transition from 
arithmetical to symbolic algebra. The work of George Peacock and other C19 English 
algebraists (Gregory, Babbage, De Morgan and Boole) provides a useful analogy. 

Monk, Martin, and Jonathan Osborne, ‘Placing the history and philosophy of science 
on the curriculum: a model for the development of pedagogy’, Science education 81

Two main issues for those wishing to introduce HPS into science teaching are the 
justification, and the placement of materials. The justification must point to places where the 
inclusion of history will directly contribute to the learning of science concepts. Materials 
must support teachers’ main aims, and understanding of science education as epistemological 
justification, rather than seem bolted on in a context of discovery. 

Morley, Arthur, ‘Should a mathematics teacher know something about the history of 
mathematics?’, For the learning of mathematics 2.3 (1982) 46 

(1997), 405-424
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Yes, for two reasons: to get student teachers to reflect on the nature of the subject they will 
teach, and to understand issues of curriculum content. 

Mower, Pat, ‘Mathematical fiction’, Humanistic mathematics network journal 19

Students in the history of mathematics class at Washburn University developed their 
understanding of mathematics and its history through creating imaginative fiction including 
‘A day in the life of Diophantus’ and a newspaper report on the discovery of an ancient 
document by Diophantus. 

Nouet, Monique, ‘Using historical texts in the lycée’, Evelyne Barbin and Régine 
Douady (eds), Teaching mathematics: the relationship between knowledge, 
curriculum and practice, Topiques éditions 1996, 125-138 
Using primary historical texts has several benefits, enabling students to experience the 
pleasure of discovery; to see that mathematics has developed and that the same concept can 
appear in a variety of ways and contexts; and to be reassured, improve their repertoire of 
approaches and improve their performance. These benefits are seen in the study of texts by 
Roberval, Pascal, Archimedes, and Arnauld, in the final-year class of a lycée. 

Ofir, Ron, ‘Historical happenings in the mathematical classroom’, For the learning 
of mathematics 11.2 (1991) 21-23
Discussion of activities developed for classroom use (12 to 14 year-olds), in the context of 
number systems. fractions, and π.

Ofir, Ron, ‘and Abraham Arcavi, ‘Word problems and equations: an historical 
activity for the algebra classroom’, Mathematical gazette 76, no. 475 (1992) 69-84 
A history of algebra activity for junior high school students (aged 12-14), relating to problems 
that reduce (in modern terms) to ax = b, taking the form of a teacher directed 
presentation/discussion with accompanying transparencies and worksheet. 

Orzech, Morris, ‘An activity for teaching about proof and about the role of proof in 
mathematics’, PRIMUS 6 (1996), 125-139 
A linear algebra class was infused with history and philosophy of mathematics, to help 
students understand the notion of proof. The method here involved experiencing a historical 
skit/dialogue about the definition of proof, and looking at some historical proofs to understand 
the development of the notion. 

Perkins, Patricia, ‘Using history to enrich mathematics lessons in a girls’ school’, 
For the learning ofmathematics 11.2 (1991) 9- 10
Setting mathematics in a historical context, presenting it as part of cultural heritage, has 
proved a successful strategy for pupils in an independent girls’ school, particularly on issues 
concerning confidence and gender awareness. 

Pimm, David, ‘Why the history and philosophy of mathematics should not be rated 
X’, For the learning of mathematics 3.1 (1 982) 12- 15
History and philosophy of mathematics can be of use to mathematics education through 
informing our understanding of mathematics, which is enriched and encouraged by an 
awareness of its problem sources. It gives a sense of place and meaning from which to learn 
mathematics, challenging the notion of a static list of accumulated truths. 

(1999), 39-46 
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Ponza, Maria Victoria, ‘A role for the history of mathematics in the teaching and 
learning of mathematics: an Argentinian experience’, Mathematics in school 27.4

The experience of writing and producing a play about Galois (whose text is reproduced here) 
had notable effects upon the interest and enthusiasm of pupils for mathematics. 

Radford, Luis, ‘An historical incursion into the hidden side of the early development 
of equations’, in Joaquim Giménez et al, Arithmetics and algebra education (1996),

A historical case-study, of the rise of the algebraic concept of equation, shows that 
mathematical reification processes (processes of abstraction and/or generalisation) are socio- 
culturally related, in this case to the development of writing and of socially elaborated forms 
of mathematical explanation: equations have always had a meaning shaped by the social 
structures in which they were practised. 

Radford, Luis, ‘Before the other unknowns were invented: didactic inquiries on the 
methods and problems of mediaeval Italian algebra’, For the learning of 
mathematics 15.3 (1 995), 28-38
Didactical-epistemological analysis of problems and methods in Italian algebra from the 12th 
century onwards helps us understand the meaning of algebraic ideas, and helps draw out 
information that can be used in teaching: not to follow the same path, but to find new teaching 
possibilities (e.g. links between algebra and negative numbers). 

Radford, Luis, ‘On psychology, historical epistemology, and the teaching of 
mathematics: towards a socio-cultural history of mathematics’, For the learning of 
mathematics 17.1 (1997), 26-33
The history of mathematics can be used, in a less naive way than anecdotally or as a source of 
problems, as an epistemological laboratory to explore the development of mathematical 
knowledge. This requires critical analysis of how historical and conceptual developments are 
linked—notably, of the notion of ‘epistemological obstacles’-through exploring how 
knowledge is rooted in its socio-cultural context. 

Ransom, Peter, ‘A historical approach to maximum and minimum problems’, 
Mathematical gazette 76, no. 475 (1 992) 85-89
Finding a minimum, before pupils have met calculus, by studying Fermat’s method proves to 
have several advantages: it encourages library use and practice in algebra as well as following 
through a mathematical argument and introducing calculus. 

Ransom, Peter, ‘Navigation and surveying: teaching geometry through the use of old 
instruments’, Histoire et épistémologie dans I ’éducation mathématique, IREM de 
Montpellier (1 995), 227-239
Report on a workshop showing how to use easily made instruments such as sundials and the 
cross-staff for teaching trigonometry and geometry, with discussion of the benefits to pupils 
of becoming involved in practical mathematics in this way. 

Rice, Adrian, ‘A platonic stimulation: doubling the square or why do I teach 
maths?’, Mathematics in school 27.4 (1998), 23-24
Interacting with a mathematics class as, in Plato’s Meno, Socrates did with Meno’s slave-boy 
is an example of how to stimulate students through introducing problems from history. 

Robson, Eleanor, ‘Counting in cuneiform’, Mathematics in school 27.4 (1998), 2-9

(1998), 10-13
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Resources for teachers and suggestions for classroom activity involving Babylonian 
mathematics.

Rogers, Leo, ‘History of mathematics: resources for teachers’, For the learning of 
mathematics 11.2 (1991) 48-52
Bibliographical survey of resources for teachers interested in the history of mathematics or its 
use in the classroom. 

Rogers, Leo, ‘Is the historical reconstruction of mathematical knowledge possible?’, 
Histoire et épistémologie dans I ’éducation mathématique, IREM de Montpellier 

By studying the history of mathematics we can examine aspects of the processes and the 
contexts whereby it was developed. A programme of rational reconstruction of its history is 
relevant to the communication of mathematics at all levels. 

Seltman, Muriel, and P E J Seltman, ‘Growth processes and formal logic: comments 
on history and mathematics regarded as combined educational tools’, Int. J. Math. 
Educ. Sci. Technol 9 (1978) 15-29
History of mathematics, seen as permeating through the whole of mathematics, can alleviate 
some of the teaching problems raised by the formal-logical character of mathematical 
thinking. Knowledge of the circumstances of mathematical discovery is integral to the access 
to, appreciation of and performance in mathematics. 

Siu, Man-Keung, ‘The ABCD of using history of mathematics in the 
(undergraduate) classroom’, BHKMS 1 (1997), 143-1 54 
Some teaching experience in using history of mathematics in the undergraduate classroom is 
shared through selected illustrative examples. These can be roughly categorised into four 
‘levels’ as (1) Anecdotes, (2) Broad outline, (3) Content and (4) Development of 
mathematical ideas. 

Siu, Man-Keung, ‘Proof and pedagogy in ancient China: examples from Liu Hui’s 
commentary on Jiu zhang suan shu’, Educational studies in mathematics 24 (1993),
345-357
The pedagogical implications of aspects of proof in ancient Chinese mathematics. 

Speranza, Francesco and Lucia Grugnetti, ‘History and epistemology in didactics of 
mathematics’, Nicolina A Malara, Marta Menghini and Maria Reggiani (eds), Italian
research in mathematics education 1988-1995, CNR 1996, 126-135
The interaction between mathematical didactics, and its history and epistemology, is rich, and 
in Italy is institutionalised. In the 1900s the relation was the subject of a rich debate; many 
writings from that period are still useful. The debate resumed in the 1980s, and now involves 
many groups across Italy. 

Steiner, Hans-Georg, ‘Two kinds of “elements” and the dialectic between synthetic- 
deductive and analytical-genetic approaches in mathematics’, For the learning of 
mathematics 8.3 (1988) 7-15
The concept of ‘elements’, and related words such as ‘elementary’, in authors such as Euclid, 
Arnauld, Clairaut and Bourbaki, show how fundamental dualisms between synthesis and 
analysis, justification and development, representation and operation, &c, have proved a 
vehicle for epistemological and didactical clarifications consisting in a dialectical synthesis of 
the original contrasts, based on the elaboration of complementarist views. 

(1995), 105-1 14 
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Stowasser, Roland, ‘A textbook chapter from an idea of Pascal’, For the learning of 
mathematics 3.2 (1982) 25-30
Raids on the history of mathematics can contribute to concrete mathematics teaching: 
exemplified by Pascal’s paper relating the divisibility of numbers to the sum of their ciphers .

Stowasser, Roland, and Trygve Breiteig, ‘An idea from Jakob Bernoulli for the 
teaching of algebra: a challenge for the interested pupil’, For the learning of 
mathematics 4.3 (1990) 30-38
Jacob Bernoulli’s Ars conjectandi (1713) has a discussion of sums of powers, arising from 
‘Pascal’s triangle’. A passage from John Wallis’s Arithmetica infinitorum (1655) can be used 
in class also, for approximations of power sums which prepare the ground for calculus. 

Swetz, Frank, ‘Mathematical pedagogy: an historical perspective’, Eduardo Veloso 
(ed), Proceedings of HEM Meeting, Braga, Portugal 1996, vol II, 12 1 - 127
Analysis of didactical trends in historical texts may explore several aspects, notably
organisation of material, use of instructional discourse, use of visual aids and of tactile aids. 
Examples considered include Babylonian and Chinese texts. 

Swetz, Frank, ‘To know and to teach: mathematical pedagogy from a historical 
context’, Educational studies in mathematics 29 (1995), 73-88
The contents of historical mathematical texts usually embody a pedagogy. Several 
pedagogical techniques are analysed: instructional discourse, logical sequencing of problems 
and exercises, employment of visual aids. Many of these have historical antecedents. 

Tahta, Dick, ‘In Calypso’s arms’, For the learning of mathematics 6.1 (1986) 17-23
Reflections on the role of ancient problems and narrative sensibilities in mathematics 
teaching. The continuing reflexive generation of the account mathematics gives of its own 
history is too important to be left to historians, or mathematicians: the challenge for teachers 
is to recast the historical record knowingly. 

Thomaidis, Yannis, ‘Historical digressions in Greek geometry lessons’, For the 
learning ofmathematics 11.2 (1991) 37-43
Two historical digressions (straightedge and compasses constructions, and Ptolemaic 
trigonometry) in a Greek lyceum (16-1 7 year-olds), in response to teaching problems, 
provoked discussion and creative activity. This showed how the distant cultural past of a 
country can influence its contemporary mathematical education. 

Tzanakis, Constantinos, ‘Reversing the customary deductive teaching of 
mathematics by using its history: the case of abstract algebraic concepts’, Proc. of 
the first European Summer University on history and epistemology in mathematics 
education, IREM de Montpellier (1995), 271-273.
The customary deductive approach in mathematics teaching can be reversed by using its 
history as an essential ingredient, here examined in the case of complex number, rotation 
group, and morphisms of abstract algebraic structures. 

Tzanakis, Constantinos, ‘Unfolding interrelations between mathematics and physics, 
in a presentation motivated by history: two examples’, Int. jour. math. educ. sci. 
technol. 30 (1999), 103-1 18 
History plays a prominent role in a genetic approach revealing interrelations between physics 
and mathematics. The two examples are the derivation of Newton’s law of gravitation from 
Kepler’s laws, as an application of differential calculus, and the foundations of special 
relativity as an example of the use of matrix algebra. 
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Voolich, Erica Dakin, ‘Using biographies in the middle school classroom’, Sergio 
Nobre (ed), Proceedings of HPM Meeting, Blumenau 1994, 167-172
Various ways of incorporating biographical material about mathematicians in classroom 
activities include birthday celebrations, construction of 5-minute biographies in which the 
name is hidden until the end, and role-playing on mock TV chat shows. 

Zaslavsky, Claudia, ‘World cultures in the mathematics class’, For the learning of 
mathematics 11.2 (1991) 32-36
Introducing multicultural, interdisciplinary perspectives into the mathematics curriculum is of 
particular benefit for the self-esteem and interest of ‘minority’ students as well as provoking 
added appreciation and awareness for all students. 

11.6 French 

Eliane Cousquer 

Barbin, Evelyne, ‘Sur les relations entre épistémologie, histoire et didactique’, 
Repères-IREM 27 (1 997) 
Reflections on the links and the oppositions between the different trends of thought in France. 

Barbin, Evelyne, ‘Les éléments de géométrie de Clairaut, une géométrie 
problématisée’, Repères-IREM 4 (1 99 1) 
Teaching geometry by presenting problems is a current theme of thought. From this point of 
view, Clairaut’s book is extremely interesting since his aim was to set up the objects and 
foundations of elementary geometry in order to solve measurement problems. 

Bkouche, Rudolf, ‘Enseigner la géométrie, pourquoi ?’, Repéres-IREM 1 (1 990) 
History enlightens three aspects of geometry in a teaching context: the science referring to 
solid configurations, geometry in its links with the other areas of knowledge, geometry 
considered as a language and as a representation. 

Bkouche, Rudolf, Autour du théorème de Thalès, IREM de Lille, 1994 
This booklet investigates different proofs given of the proportional segments theorem (known 
as Thales ’ theorem by the French), from Greek antiquity to the beginning of the 20th century. 

Friedelmeyer, Jean-Pierre, et al, ‘Les aires, outil heuristique, outil démonstratif’, 
Repères-IREM31 (1998)
20 activities for secondary education presented from a historical angle. 

Friedelmeyer, Jean-Pierre, ‘L’indispensable histoire des mathématiques’, Repères-
IREM 5 (1991)
The logarithmic function shows how returning to the past allows the teacher to restore 
meaning to the words and concepts whose connotations have been lost over the years. 

Gaud et Guichard, ‘Les nombres relatifs, histoire et enseignement’, Repères-IREM 2
(1991)

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 404-405
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This thorough article provides teachers with numerous extracts of texts that can be used in 
class, on the history as well as on the difficulties raised through the centuries in the teaching 
of signed numbers, and on the models that have been used. 

Glaeser, ‘Epistémologie des relatifs’, Recherches en didactique des mathématiques 2
(3), 1981 
A detailed study of texts about the rule of signs, from Diophantus to contemporary authors, 
allows us to localize some of the obstacles which block the comprehension of negative 
numbers. Educational research should examine whether what troubled Euler or d’Alembert 
still troubles our young students today. 

Groupe Math, IREM de Paris 7, ‘Mathématiques, approche par des textes 
historiques’, Repères-IREM3 (1 99 1) 
Introducing Pythagorean number triples into middle school with the aid of Diophantus’ 
writings, and natural logarithms into senior classes with the aid of Ozanam’s work. 

Lefort, Xavier, ‘L’histoire de la carte de France de Cassini’, Repères-IREM 14
(1 994) 
Interdisciplinary work in the history of mathematics meant for the fourth form and involving 
librarians, French teachers, history teachers and mathematics teachers. 

Métin, Frederick, ‘Legendre approxime π en classe de seconde’, Repères-IREM 29
(1 997) 
In-class investigation of a writing by Legendre’s estimation of π.

Radford, Luis, ‘L’invention d’une idée mathématique: la deuxième inconnue en 
algèbre’, Repères-IREM 28, 1997
The invention of a mathematical idea: the second unknown in algebra, invented by the users 
of abaci in the Middle Ages and the Renaissance. 

Stoll, ‘Comment I’histoire des mathématiques peut nous dévoiler une approche 
possible du calcul intégral’, Repères-IREM 11 (1 993) 
How the history of mathematics can reveal a possible approach to the integral calculus: in-
class use of historical writings. 

11.7 German 

Harm Jan Smid 

Beutelspacher, A, and Weigand, H.-G., ‘Die faszinierende Welt der Zahlen’, 
Mathematik Iehren 87 (1998), 4-8 
The history of numbers, considered from a historic-genetic point of view, can shed light on 
many learning problems of our pupils today. 

Damerow, Peter, ‘Vorläufige Bemerkungen über das Verhältnis rechendidaktischer 
Prinzipien zur Frühgeschichte der Arithmetik’, Mathematica Didactica, 4 (1 98 l), 
131-153

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 405-411
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The starting point for all didactical theories of mathematics today is that mathematical 
knowledge develops from acting with concrete objects (Piaget), but this starting point is only 
a rule of thumb when developing learning materials for mathematics. Psychology cannot 
answer how mathematical techniques developed from material artefacts. The early history of 
counting provides examples from which we understand better how constructive-additive
number systems originated from concrete objects. 

Folkerts, M, ‘Mathematische Historie und Didaktik der Mathematik‘, Praxis der 
Mathematik 16 (1974), 322-326
Abstracts of the presentations of 12 participants of the symposium “How can historical 
elements be incorporated in the teaching of elementary mathematics?”, held at the Technical 
University of Berlin in 1974. In general four points of view were advanced: the possibility of 
a genetic way of teaching, the history of mathematics as a treasury for all kind of examples, to 
promote the understanding that mathematics is a human activity and to foster the 
understanding of relations between mathematics and society. 

Freudenthal, Hans, ‘Soll der Mathematiklehrer etwas von der Geschichte der 
Mathematik wissen?’, Zentralblatt für Didaktik der Mathematik (1978), 75-78
English version (‘Should a mathematics teacher know something about the history of 
mathematics?’) referred to in § 11.5.1. 

Gerstberger, H. ‘Irrationalzahlen und Flächenaddition: Wiederentdeckung von 
Anfang an?’, Mathematik Lehren 19 (1986), 10-14
By using the Greek method of adding of areas and constructing squares of the same area, the 
pupils of a class succeeded in proving the theorem of Pythagoras in a more meaningful way 
than usual. 

Glickman, L., ‘ Warum man historische Notizen in den Stochastik-Unterricht
einbauen sollte’, Stochastik in der Schule 9 (1988), 43-46
The elementary theory of probabilities is known for its difficulties for novices. Historical 
examples, showing the difficulties the pioneers in this field encountered, like those of the 
chevalier de Méré, can comfort and help to overcome these difficulties. 

Haller, R., ‘Zur Geschichte der Stochastik’, Mathematik der Didaktik 16 (1988),

History of stochastics can be used to introduce the subject; the original problems, stemming 
from real life, can be treated; the often interesting lives of founders of stochastics can be told; 
and the origin of some technical terms and symbols still in use. 

Hefendehl-Hebeker, L., ‘Die negativen Zahlen zwisschen anschaulicher Deutung 
und gedanklicher Konstruktion - geistige Hindernisse in ihre Geschichte,’ 
Mathematik Lehren 35 (1990), 6-12
Negative numbers can be very problematic for pupils. The history of mathematics can help to 
understand these difficulties. The transition from the idea of numbers as closely connected 
with physical quantities to numbers as a system as a logical system of symbols is still a 
difficult step for pupils today. 

Jahnke, H N, ‘Mathematik historisch verstehen, oder: Haben die alte Griechen 
quadratische Gleichungen gelöst?’, Mathematik lehren 47 (1 99 l), 6-1 2 
Two main problems concerning the use of the history of mathematics in teaching are lack of 
time, and a lack of expertise by teachers in this field. Toeplitz (1927) argued that by the use 
of the history of mathematics “the dust of ages would disappear and the mathematical ideas 
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would seem living creatures again.” The debate between Weyl and Unguru on Greek 
‘geometric algebra’ shows that this is a problematic point of The history of 
mathematics can help in the acquiring of mathematical techniques, but this is only useful 
when teaching historical thinking is taken seriously, and takes account of hermeneutic 
thinking.

Jahnke, H. N., ‘Zahlen und Grössen: Historische und Didaktische Bemerkungen’, 
Mathematische Semesterberichte 28 (1 98 1), 202-229
The significance of the history of mathematics for its teaching and learning is still 
problematic: didactics of mathematics may come to have a more independent place and then 
history of mathematics might have a more important role. By studying the history of 
mathematics the role of mathematics for general education can become more clear. In the 
19th century mathematics underwent a major change, from a science devoted to objects to a 
science devoted to functional relations between (formal) objects. This should have 
consequences for mathematics education. 

Jahnke, H.N. ‘Ai-Khwarizmi und Cantor in der Leherbildung’, in R. Biehler et al 
(eds), Mathematik allgemein bildend unterrichten, Köln 1995, 114-136
History of mathematics should play a role in teacher training. Studying historical texts 
confronts the reader with other points of view and can foster deeper understanding of 
(school)mathematics. Since history of mathematics, when taken seriously, is difficult, it is not 
so easy to incorporate history of mathematics in teacher training. Possibilities for doing this 
were demonstrated in an in-service course for teachers, using primary and secondary sources. 
The article highlights two examples: solving quadratic equations by the method of Al-
Khwarizmi, and the theory of transfinite numbers by Cantor. 

Jahnke, H.N., ‘Historische Reflexion im Unterricht. Das erste Lehrbuch der 
Differentialrechnung (Bernoulli 1692) in einer elften Klasse’, Mathematica
Didactica 18 (1995), 30-57
The use of original materials in the classroom offers the opportunity of doing history of 
mathematics in a hermeneutic way: interpreting these texts respecting the historical context 
and specific character of the text. It is not important whether or not all students arrive at the 
same interpretation; the exchange of arguments can promote a better understanding of the 
mathematical content. A series of five lessons in a German school class used a text of Johann 
Bernoulli on tangents of a parabola. Later some lessons about a part of Bernoulli’s text on 
points of inflexion were given in the same way. 

Jahnke, H.N., ‘Mathematikgeschichte für Lehrer: Gründe und Beispiele’, 
Mathematische Semesterberichte 43 (1 996), 2 1-46 
The idea that history of mathematics should play a role in teaching is not new, nor yet 
widespread. For a more substantial position, history of mathematics needs to be incorporated 
in teacher education. Examples from such a course, concerning Newton and Cantor, are 
discussed. It is essential to have a hermeneutic point of view, ie trying to enter into the 
understandings of people living in another time and culture. 

Kaiser, H. and Nöbauer, W., Geschichte der Mathematik fur den Schulunterricht, 
Vienna 1984 
This book is the result of in-service courses for teachers, its aim to help teachers to 
incorporate history of mathematics in their lessons. An overview is given of the history of 
mathematics, and the historical roots of some topics are presented. 

view.
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Kronfellner, Manfred, Historische Aspekte im Mathematikunterricht, Vienna 1998 
The expectations, hopes and limits of introducing history in mathematics teaching are 
discussed. Then a didactical model of history orientated mathematics teaching is developed: 
two elements play an important role, the ‘genetic principle’ and the idea of ‘constructive 
realism’. The third part contains suggestions for lessons with historical content, for instance 
the development of the differential calculus. 

Lehmann, J., ‘25 historische Mathematikaufgaben’, Math. Lehren 53 (1992), 6-11
Solving historical problems, and the history of mathematics in general, were liked very much 
by the students of the author. Here 25 problems are presented, from Babylonia, China, 
Greece and mediaeval Europe, and from German textbooks. 

Lehmann, K, ‘Einige Gedanke zur Einbeziehung historische Elemente in dem 
Mathematikunterricht, dargestelt am Beispiel der Klasse 5’, Mathematik in der 
Schule, 26 (1988), 377-384; 452-462; 585-592; 758-769
The curriculum (of the former DDR) indicates that historical elements should be used in 
teaching. In practice this often doesn’t work out, due to lack of time, or lack of expertise by 
the teacher. The history of mathematics could be used to pursue the following aims: the 
construction of a scientific world picture, character formation by the examples of historical 
personalities, making mathematics teaching more interesting by historical examples. 
Examples of historical material are presented that can be used within the framework of a 
textbook prescribed in the fifth grade of the former DDR. The articles also give details about 
the way these examples were used in the classroom. 

Malle, G, ‘Aus der Geschichte lernen’, Mathematik lehren 75 (1996), 4-75
The history of the development of the concept of function offers an example of how elements 
from history can be used: not only for teaching concepts themselves, but also for structuring 
the way the idea of function is introduced and developed in the curriculum. 

Noebauer,V, ‘Geschichte der Mathematik im Mathematikunterricht’, Der
mathematische und natunvissenschajtliche Unterricht, 34 (1 98 l), 87-91
Although mathematics is very important for our culture, it is hardly seen as important for 
general education and is highly isolated from other school topics. Using history of 
mathematics in teaching could help to improve this situation. 

Rieche, A, and J. Maier, ‘Mathematikunterricht im historischen Museen: Vorschäge 
und Bausteine’, Muthemutik Lehren 47 (1991), 14-17
At the museum of Roman excavations in Xanten (North Rhine Westfalia), a mathematics 
teacher and museum curator have developed games and playful activities around the museum 
objects, such as inscriptions and abaci, by which children can become acquainted with the 
Roman numeral system and finger counting. 

Riehl, G, ‘Quadraturen Eine mathematikhistorisch orientierte Einf,hrung in die 
Integralrechnung’, Mathematik in der Schule, 36 (1998), 347-361; 419-430
A short course on the introduction of integration is presented, based on ideas due to O 
Toeplitz, about a genetic way of learning new concepts, that is to say taking into account the 
historical development of a concept. 

Rödler, K, ‘Die Geschichte der Zahlen und des Rechnens’, Mathematik lehren 87

During the first years of the primary school, many children have difficulties with the 
understanding of the decimal system and the place-value system. A project about the 

(1998), 9-14
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development of various number systems, over four months, had lessons and worksheets on 
topics as body counting, counting with pebbles and scratches, Egyptian and Roman number 
systems, the abacus and the introduction of the Hindu-Arabic number system. 

Röttel, K, ‘Aus der Arbeit der römischen Feldmesser’, Praxis der Mathematik 23

The methods of the Roman surveyors offer opportunities for geometry teachers. The lay-out
of camps, tunnel-surveying and distance between places, and calculations of areas and 
volumes can motivate pupils of several grades when learning geometry. 

Schubring, Gert, ‘Historische Begriffsentwicklung und Lernprozess aus der Sicht 
neuerer mathematikdidaktischer Konzeptionen (Fehler, “Obstacles”, 
Transposition)’, ZDM (1988), 138-148
The classical justification for using history of mathematics in education, as motivation, is 
unsatisfactory. According to modern, 
subjectivist constructivist views, mathematics has not an unique position: its claim to be a 
objective fault-free science is not justified. There is a connection between students’ mistakes, 
cognitive obstacles, and problems in the historical development of mathematics. There is not 
only the problem of transition of mathematics as a scientific object into school mathematics, 
but also the teaching of mathematics has its influences on the development of mathematics 
itself.

Schubring, Gert, Das genetische Prinzip in der Mathematik-Didaktik, Stuttgart 1978 
There are several aspects of the genetic principle, for instance as psychological-genetic or 

historical-genetic. The nature of scientific knowledge and the social meaning of knowledge 
play an important role. With extensive case studies from the history of mathematics 
education.

Scriba, C J, ‘Die Rolle der Geschichte der Mathematik in der Ausbildung von 
Schüler und Lehrer’, Jahresbericht der Deutsche Mathematiker Verein, 85 (1983),

In the first part three axioms are defended: mathematics without history is impossible; 
mathematics should be taught within a scientific, cultural and social framework; mathematics 
as a cultural phenomenon cannot be understood without historical considerations. In the 
second part an outline is given of programmes of history of mathematics in universities and 
teacher training institutes in several countries. These courses serve as examples how history 
of mathematics can be integrated in the training of mathematicians and teachers. 

Scriba, C J, ‘Die Behandlung mathematikgeschichtliche Probleme im Unterricht’, 
Beiträge zum Mathematikunterricht (1 974), 43-54
Four arguments and ways for using history of mathematics in teaching: to raise interest in 
mathematics as a form of human activity; to use the historical growth of mathematics for a 
genetic way of teaching; the use of the history of mathematics as a treasury of examples in 
teaching; and to explain the interdependence between mathematics and society. Examples, 
mainly from the theory of series, are given of historical topics that could be used in teaching. 

Stowasser, R J K, ‘Die Idee der Rekursion und der Isomorphie’, Der
Mathematiklehrer 2 (1 983), 2-10
Two classical problems from the history of mathematics for mathematically talented pupils: 
one by Jacob Steiner concerning the number of regions in which the plane is divided by n 

(1981), 210-215

There exists a much more fundamental reason. 
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lines; the other by Euler, about the number of ways to put n letters in n addressed envelopes 
so that all letters are addressed wrongly. 

Stowasser, R.J.K., ‘Streifzüge durch die Geschichte: Eine Idee von Pascal Air das 
Schulbuch’, Der Mathematiklehrer 2 (198 l), 36-39
On the basis of an idea from Pascal (taken from his De numeris multiplicibus ex sola 

characterum mumericum additione agnoscendi) children of eleven years old worked on 
problems concerning remainders with the division of large numbers, introduced by means of a 
one-handed clock. 

Strecker, C. ‘Eratosthenes von Kyrene, Columbus von Genua und der Erdumfang: 
eine fragwürdige Geschichte’, Mathematik in der Schule 36 (1998), 106-1 14 
History of mathematics can be used to promote critical thinking. For example, the well 
known story of Eratosthenes measuring the circumference of the earth can give raise to 
critical doubts over whether this can have happened in the way the story tells us. Columbus’s 
misusing the then known facts about the map of the earth provides an amusing example of 
how making a mathematical mess can influence world history! 

Toeplitz, O., Die Entwicklung der Infinitesimalrechnung. Eine Einleitung in die 
Infinitesimalrechnung nach der genetischen Methode, Berlin 1949 
Otto Toeplitz, founding father of the genetic method of teaching, here introduced calculus 
along these lines: not to present a history of calculus, but to shed light on the origin and 
genesis of decisive problems and ideas in its development. 

Toeplitz.O. , ‘Das Problem der Universitiitsvorlesungen über Infinitesimalrechnung 
und ihre Abgrenzung gegenüber der Infinitesimalrechnung an den höheren Schulen’, 
Jahresbericht der Deutsche Mathematiker Verein 36 (1 927), 88- 100
In this classical text the idea of the genetic method is introduced. It is demonstrated in the 
case of teaching calculus to first year university students. The genetic method, that is going 
back to the roots of the concepts, can offer a way beyond the dilemma of rigour versus 
intuition in teaching. It can be applied in a direct way, which implies the use of historic 
material. It can also be used in an indirect way, which means that historical analysis can help 
to find didactical diagnosis and therapies for learning difficulties. 

Waerden, B.L. van der, ‘Die ‘genetische Methode’ und der Mittelwertsatz der 
Differentialrechnung’, Praxis der Mathematik 22 (1 980), 52-54
In 1926 Otto Toeplitz advocated the use of the genetic method. Applying this, we see that the 
mean value theorem did not play an important role in calculus until the middle of the 19th 
century. Newton, the Bemoullis, Euler etc. could do without it. Using the mean value 
theorem for proving other theorems that already appear quite obvious without proof could be 
restricted to the training of Future mathematicians. There is no reason to make this theorem a 
cornerstone in the teaching of calculus for future chemists, physicists, etc. 

Windmann, B., ‘Methoden des Geschichtsunterrichts im Mahtematikunterricht’, 
Mathematik Lehren 19 (1 986), 24-31
The connection between history and mathematics has been discussed for more than a century, 
without much results. Knowledge of history of mathematics can help teacher and pupil to 
gain insight in the reasons why some topics are taught. It is doubtful if the often heard 
argument of the ‘genetical principle’ really is true. More important is that history shows that 
mathematics is a living subject, created by thinking people. 
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Zerger, H, ‘Historische Aspekte bei der Logarithmus und Exponentalfunktion’, 
Mathematik Lehren 19 (1986), 18-23
Including historical elements could enrich teaching of the logarithm function, in two ways: 
historical side steps, for instance about Bürgi‘s log table or Bernoulli’s problem on the 
calculation of compound interest, or a complete historical orientated treatment of the 
logarithmic function. 

Zimmerman, B., ‘Gudrun auf den Spuren von Gauss und Descartes’, Mathematik
lehren 47 (1991), 30-41
Using history to support the mathematical development of gifted children, the starting point 
was the counting of squares in a grid, leading to the summation of square numbers. By using 
an analogy of the well-known summation of the natural numbers by Gauss they tried to solve 
the problem, which proved to be hard. More historical examples could be used; historical 
texts, when well chosen, can be made accessible for schoolchildren, motivating them by 
showing them how mathematics has grown. 

11.8 Greek 

Yannis Thomaidis and Costas Tzanakis 

This bibliography is of papers written in Greek concerning the relation between 
history of mathematics and mathematics teaching, in chronological order. (Note that 
the Euclides cited here is the Greek journal of that name, published in Athens since 
1982, and not the Dutch journal published in Groningen since 1924.) 

Lampiris, K., ‘Historical remarks in the teaching of mathematics’, The pedagogue 

The first paper in Greek literature which highlights the positive role of using history in the 
mathematics teaching process. The author gives many examples that go beyond a mere 
quotation of dates or biographical information. 

Thomaidis, Y.,‘The axiomatic method of teaching and the historical reality’, (Greek) 
Mathematical review 26 (1 984), 2-13
This paper highlights the dichotomy between exposing mathematics axiomatically and 
discovering mathematics as happened in history. Trigonometry and complex numbers are 
used as examples to support the argument. 

Thomaidis, Y., ‘Teaching concepts of the calculus, guided by its historical 
development’, Euclides y 9 (1 985), 8-22 
This paper explores further the issues raised in (Thomaidis 1984). The teaching of calculus as 
an axiomatic theory, in Greek upper secondary education, is contrasted with the historical 
roots of the subject. 

Thomaidis, Y., ‘Origins and applications of theory in the teaching of mathematics 
(the case of logarithms)’, Euclides γ13 (1986), 1-30

12-13 (1922), 181-186

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 41 1-414
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The theory and applications of logarithms, as they appear in modem Greek textbooks of 
elementary algebra, are contrasted with the historical development of logarithmic concepts. 

Poulos, A., ‘The history of mathematics and its importance for secondary school in-
service teachers‘ training’, Contemporary education 29 (1986), 35-42
The author presents a variety of cognitive, scientific, educational, didactic, cultural and 
philosophical values of the history of mathematics, which are closely related to the profession 
of teaching mathematics. 

Kastanis, N., ‘A case of historical confusion in school geometry textbooks’, 
Euclides γ14 (1987), 71-73
The article calls into question the use of the term ‘theorem of Thales’ for the theorem 
Concerning the proportional segments formed by parallels on straight lines. 

Kastanis, N., ‘A frequently encountered mistake in the historiography of 
mathematics that is incorporated in high school mathematics textbooks’, Euclides γ

The article points out that most textbooks incorrectly use small letters of the Greek alphabet, 
for representing numbers in ancient Greek mathematical works written before the 3rd century 
BC.

Thomaidis, Y. & N. Kastanis, ‘A historical study of the relation between history and 
didactics of mathematics’, Euclides γ16 (1 987), 61-92
This paper examines the development of the relations between history and pedagogy of 
mathematics from the early 19th century to the present time, both in the international and the 
Greek educational systems. 

Roussopoulos, G., ‘History and philosophy of mathematics: their role in teaching 
mathematics’, Proc. of the 4th Greek Conference on Mathematics Education, 
Athens: Greek Mathematical Society (1987), 369-379
The author argues that history and philosophy of mathematics are basic components in the 
context of a heuristic methodology of teaching mathematics. 

Patmanidis, A., ‘Revealing the role of the history of mathematics in teaching 
mathematics’, Diastasi 3-4 (1988)’ 102-106 
Stemming from pupils’ reactions to a historical note on Euclid’s 5th postulate in a geometry 
textbook, this article traces the main steps in the development of non-Euclidean geometries 
and argues in support of teacher’s historical knowledge. 

Kastanis, N., ‘The concept of space before and after non-Euclidean geometries: an 
approach for didactic reasons’, Cahiers en didactique des mathématiques 1 (1988),

A short account of the author’s presentation in the HPM session at ICME-6, Budapest, July 

Kastanis, N., ‘An example of confusion concerning history of mathematics as it 
appears in the high school textbook’, Euclides y 21 (1989), 23-26 
The term ‘gnomon of Anaximander’ is used incorrectly in a Greek geometry textbook. 

Thomaidis, Y., N. Kastanis & T. Tokmakidis, ‘Relations between history and 
didactics ofmathematics’, Euclides γ23 (1990), 11-17

14 (1987), 80-82 

15-17

27-August 3, 1988.
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A detailed account of the activities on the theme ‘relations between history and didactics of 
mathematics’, at ICME-6, Budapest, July 27-August 3, 1988 

Thomaidis, Y., ‘Historical digressions in geometry high school course’, Euclides γ

This paper presents an experimental lesson of geometry, motivated by the rich historical 
background of some, otherwise routine exercises from a Greek geometry textbook. [English 
version in For the learning of mathematics 11 (2) (1991), 37-43]

Tzanakis, C., ‘Is it possible to teach abstract algebraic structures in high school? A 
historical approach’, Euclides y 28 (199l), 24-34
On the basis of the historical development of the concepts of a group, ring, field and vector 
space it is argued that these concepts cannot be understood in their abstract form by high 
school students. Students would do better by acquaintance with mathematically important 
specific examples as happened historically. 

Tzanakis, C., ‘A genetic approach in teaching mathematics and physics’, Proc. of 
the conference on the didactic use of the history of sciences, Thessaloniki: Greek 
Society for the History of Science and Technology 1991, 65-90
A genetic approach is illustrated for mathematics, by describing how concrete examples of 
algebraic structures may be used at the high school level, to prepare for their subsequent 
abstract presentation at university level; and for physics, by presenting a teaching sequence 
for basic concepts of undergraduate quantum mechanics. 

Thomaidis, Y ., ‘Historical problems in mathematics teaching: the case of negative 
numbers’, Proc. of the conference on the didactic use of the history of sciences, 
Thessaloniki: Greek Society for the History of Science and Technology 1991, 

The author argues that the knowledge of historical problems can be beneficial in the planning 
of didactic situations for introducing mathematical concepts. He offers, as an example, a new 
interpretation of the history of negative numbers in the early 17th century [English version in 
Science & Education 2 (1 993), 69-86].

Chistianidis, Y., ‘Comments on two historical notes appearing in the high school 
mathematics textbooks’, Euclides γ43 (1995), 1-10
The author, a historian of ancient Greek mathematics, criticises historical notes in two 
geometry textbooks from the point of view of historiographical accuracy. 

Tzanakis, C., ‘Relating the teaching of mathematics and physics on the basis of their 
historical development: a genetic approach’, Proc. of the 1st Greek conference on 
mathematics in education and society, T. Exarhakos (ed.), University of Athens 

Mathematics and physics have always had an intimate connection, which appears in three 
different ways. This fact should not be ignored in their teaching. Their interconnection in 
teaching may lead to a deeper understanding of both disciplines. 

Thomaidis, Y., ‘Is historical parallelism possible in teaching and learning 
mathematical concepts? The case of the ordering on the number line’, Diastasi
(Section on research on the didactics of mathematics) 2 (1997), 3-38
The findings of an historical study are associated with those of an empirical one with 16 year-
old pupils, in order that the controversial relation between the historical evolution of 

25 (1990), 27-41

127-137

(1996), 349-361
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mathematical concepts and their learning at school be critically discussed. The order-relation
and the algebra of inequalities are presented as examples, suggesting a clear distinction 
between the two domains. 

Tsimpourakis, D., ‘On the historical notes included in the mathematics textbooks’, 
Euclides ß 31 (1) (1997), 1-10
The author criticises some historical notes contained in Greek geometry textbooks, from the 
point of view of historiographic accuracy. 

Tzanakis, C.,‘Conditions and presuppositions of a constructive role for history of 
mathematics in understanding and teaching mathematics’, Diastasi 3 (1998), 58-86
The importance of the history of mathematics in teaching and understanding mathematics is 
examined, with emphasis on understanding the significance of reasoning by induction and by 
analogy, on inspiring teaching and on interconnecting the teaching of mathematics and 
physics. §7.3.2 is based on this article. 

11.9 Italian 

Fulvia Furinghetti 

This bibliography is a supplement to that appearing in a survey article published in 
1996, Francesco Spenanza and Lucia Grugnetti, ‘History and epistemology in 
didactics of mathematics’, in Nicolina A. Malara, Marta Menghini and Maria 
Reggiani (eds), Italian research in mathematics education 1988-1995, CNR 1996, 
126-135. That paper contains a list of papers in the area by Italian authors from 
1988 up to 1995. 

Bagni, T. G., ‘Ma il passaggio non è iI risultato. L’introduzione dei numeri 
immaginari nella scuola superiore’, La matematica e la sua didattica, 2 (1997),

The author introduced complex numbers to his high school class through history. 

Barozzi, G. C., ‘Un esempio di utilizzo del sistema Cabri-Géomètre’, 
L ’insegnamento della matematica e delle scienze integrate, 17A (1 994), 460-466
Old problems are solved in an alternative way through the software Cabri-géomètre. 

Bianchini, S. & Velardi, R., ‘Dalla conoscenza dei contenuti alla rielaborazione e 
sistemazione della matematica: Leonardo Pisano e Maria Gaetana Agnesi’, Scuola e 
didattica, 14 (1 990) 
Authors of the past help to illuminate the passage of mathematics from its birth to its 
systematisation. The authors specifically notice the work of the Italian woman mathematician 
Maria Agnesi. 

Bottino, R. M., Cutugno, P. & Furinghetti, F.: 1997, ‘Progettazione e utilizzo di un 
sistema ipermediale per la storia della matematica’, L ’insegnamento della 
matematica e delle scienze integrate, 20A-B (1 997), 839-854

187-201

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
Dordrecht: Kluwer 2000, pp. 414-416
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An activity carried out with university students consisted in projecting and realising in 
hypermedia the three classical problems. 

Brigaglia, A., ‘Alcune considerazioni sulle finalità didattiche dell’insegnamento 
della geometria euclidea’, Archimede, 48 ( 1996), 170-184.
Examples taken from Newton, Descartes, Viète show that Euclidean geometry can be an 
interesting field in which to develop the objectives suggested by official curricula, including 
links with the use of dynamic and computational software and programming. 

De Mattè, A., ‘Storia. Pseudostoria. Concezioni’, L ’insegnamento della matematica 
e delle scienze integrate, 17B (1 994), 269-281
The author investigates beliefs held by secondary students (aged 11-13) about the genesis of 
mathematical ideas (concepts and processes) and their history. These students have 
experience in the study of history (events and civilisations) and of mathematics, but not 
explicit preparation in history of mathematics. This study may serve as a background for 
studies on the role of history in mathematics teaching. 

Dupont, P., ‘Storia e didattica della definizione classica della probabilità’, 
L ’educazione matematica, 7 Suppl. (1 986), 1-27
Some important moments of history of probability can provide teachers with hints when faced 
with the epistemological obstacles for today’s students of the classical definition. 

Freguglia, P., ‘Momenti nella storia dell’algebra’, in: L ’algebra tra tradizione e 
rinnovamento, Quademi Ministero Pubblica Istruzione 7 (1 994), 131 -149.
A brief survey of the theory of algebraic equations developed in sixteenth century before 
Viète. The links between algorithmic-arithmetic techniques and geometrical questions are 
studied through the works of the Italian mathematicians Bombelli, Cardano, Ferrari, and 
Tartaglia. This article is a chapter in a book of a series edited by the Ministry of Education as 
basic reference in annual training courses for teachers. In each course a different school 
subject is presented from different points of views and for each subject a chapter is always 
dedicated to historical issues. 

Galuzzi, M. & D. Rovelli: ‘Storia della matematica e didattica: qualche 
osservazione’, in: L ’insegnamento della geometria, Quademi Ministero Pubbica 
Istruzione 19/2 (1997), 70-110.
This is the historical chapter in the book for teacher training in geometry. It begins discussing 
the links of history and mathematics teaching, and afterwards some topics from Euclid, 
Descartes and Newton. 

Grugnetti, L., ‘Storia ed epistemologia dell’analisi’, in: Didattica dell ’analisi, 
Quaderni Ministero Pubblica Istruzione, 24 (1998), 70- 105.
Some points of history of mathematics relevant to the history of calculus. The aim is to 
provide teachers with materials to be discussed in class, in order to confront the 
epistemological obstacles they encounter in learning and teaching calculus. 

Menghini, M., ‘Some remarks on the didactic use of the history of mathematics’, in: 
L. Bazzini & H.-G. Steiner (eds.) Proceedings of the first Italian - German
symposium on didactics of mathematics (1989), 51-58. 
The link between art and mathematics is illustrated through the study of the use of conics in 
Roman Baroque architecture. Other aspects of the connections between mathematics and art 
are discussed through the work of the Dutch painter M. C. Escher, whose well-known
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painting inspired by Poincaré’s model of non-Euclidean geometry was used in the classroom 
to introduce pupils to problems of non-Euclidean geometries and to motivate a discussion on 
the nature of space as it developed in 19th century. 

Palladino, F., ‘Planimetri e integrafi’, L ’insegnamento della matematica e delle scienze 
integrate, 18B (1995), 51-79

Palladino, F., ‘Una rassegna di antichi strurnenti di misura per I’insegnamento e le 
applicazioni della matematica’, L ’insegnamento della matematica e delle scienze integrate, 

Some important instruments and models such as integraphs, planimeters, special compasses, 
were in fashion a century ago. Their use is connected to a particular vision of the teaching 
and the nature of mathematical knowledge. 

Speranza F., ‘Perché I’epistemologia e la storia nella formazione degli insegnanti?’, 
Università e scuola (Periodico Concird), 1/R (1996), 70-72
The author claims the importance of epistemology and history in education of prospective 
mathematics teachers. This opinion is supported by the conviction that the epistemological 
reflection intended as a reflection on the construction of knowledge is part of the pedagogical 
reflection.

19A-B (1996), 594-608.

11.10 Collections of articles (special issues) 

John Fauvel 

This section contains bibliographical details of some of the collections which 
include articles about relations between the history of mathematics and the teaching 
and learning of mathematics. Such collections have been prepared both as special 
issues of journals (§ 1 1.10.1) and as books (§ 1 1.10.2). The annotations in this section 
do not describe the collections but are confined to listing authors whose papers are 
in the collections. Some of these papers are annotated above. The listing of names 
is not always exhaustive: most of the works cited form even richer collections than 
the short listing of authors implies, often containing further papers about the history 
of mathematics and the history of mathematics education. Simply looking over 
these journal and book details gives a strong impression of the remarkable amount of 
activity in this area over recent years, and it may be hoped and expected that even 
more activity will take place in the years to come. 

11.10.1 Journals (special issues) 

L ’insegnamento della matematica e delle scienze integrate 14 (1991), no 11/12. 
This issue is dedicated to the history of sciences as a help for didactics of sciences. It contains 
articles of Dupont, Colombo Bozzolo, Balzarini, Sibilla, Saladin, Manara, Brunet 
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