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Directional Processing of Color Images:
Theory and Experimental Results

Panos E. Trahanias, Member, IEEE, Damianos Karakos, and Anastasios N. Venetsanopoulos, Fellow, IEEE

Abstract—The processing of color image data using directional
information is studied in this paper. The class of vector direc-
tional filters (VDF), which was introduced by the authors in a
previous work, is further considered. The analogy of VDF to
the spherical median is shown, and their relation to the spatial
median is examined. Moreover, their statistical and deterministic
properties are studied, which demonstrate their appropriateness
in image processing. VDF result in optimal estimates of the
image vectors in the directional sense; this is very important in
the case of color images, where the vectors’ direction signifies
the chromaticity of a given color. Issues regarding the practical
implementation of VDF are also considered. In addition, efficient
filtering schemes based on VDF are proposed, which include
adaptive and/or double-window structures.

Experimental and comparative results in image filtering show
very good performance measures when the error is measured in
the L*a™b" space. L*a"b" is known as a space where equal color
differences result in equal distances, and therefore, it is very close
to the human perception of colors. Moreover, an indication of
the chromaticity error is obtained by measuring the error on
the Maxwell triangle; the results demonstrate that VDF are very
accurate chromaticity estimators.

I. INTRODUCTION

OLOR image data processing is studied in this paper

using a vector approach [2]. The value at each image
pixel is taken to be a 3-D vector, and the processing approach
considers the direction of the image vectors and their magni-
tudes. The class of vector directional filters (VDF), which was
previously introduced by the authors [1], is further developed
and studied in this paper from a theoretical and an applications
point of view. It is shown that the VDF can actually be
derived as directional estimates on spherical data [3]. More
specifically, the VDF direction is the spherical median [4]
with the added constraint that the filter output be one of the
inputs. Consequently, VDF operate optimally in the sense of
direction preservation. This is very important in color image
processing since the direction of the vectors signifies the
color chromaticity. As a result, VDF operate as chromaticity
preserving filters.
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Color image processing has traditionally been approached
in a component-wise manner, i.e., the image channels are
processed separately [S]-[7]. However, these approaches fail
to consider the inherent correlation that exists between the
different channels. Moreover, they may result in pixel output
values that are different from the input values' with possible
chromaticity shifts [8]. It is, therefore, desirable to employ vec-
tor approaches in color image processing. However, few such
attempts have been reported in the literature. Vector median
filters (VME) [9], [10] and their variates [11], [12] represent
the only vector approaches proposed for color image process-
ing. Vector approaches have also been used in other tasks,
including restoration [13], [14], and edge detection [15], [16].

VMEF are derived as MLE estimates from exponential dis-
tributions. If we consider, however, directional data, MLE
estimates are not very appropriate [17]. This can be interpreted
in our case as the fact that the VMF may not preserve the
color chromaticity, with analogous visual results. VDF, on the
other hand, perform optimally in this sense. Still, VDF do
not take into account the image brightness when processing
the image vectors. To compensate for that, VDF can be made
to operate in cascade with grey-scale image processing filters,
i.e., filters that operate on the brightness component. VDF find
applications in color image processing and in areas that involve
multispectral images, i.e., satellite imaging and multispectral
biomedical image processing; moreover, VDF have been used
in color image segmentation [18] by employing a clustering
approach; the present study is confined to applications in color
image restoration assuming various noise models.

The rest of the paper is organized as follows. In Section
II, we review briefly the definition of VDF, and then, we
study them in the framework of spherical (directional) esti-
mators. The statistical and deterministic properties of VDF
are analyzed in Section III. In Section IV, we present im-
plementation details, and Section V introduces the extension
of VDF to double-window structures. Section VI contains an
extensive evaluation of their performance along with com-
parative results. In order to incorporate perceptual criteria in
the comparisons, the error is measured in the L*a*b* space,
which is known as a space where equal color differences
result in equal distances [19]. Moreover, an indication of the
chromaticity error is obtained by measuring the error on the
Maxwell triangle. Finally, we draw our conclusions and give
suggestions for further work in Section VIL

'Independent processing of the R, G, and B channels may rearrange the
vectors’ components and result in extraneous chromaticities in the output
image.
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TRAHANIAS e al.: DIRECTIONAL PROCESSING OF COLOR IMAGES: THEORY AND EXPERIMENTAL RESULTS 869

Fig. 1. SM and BVDF for spherical data. The input set consists of the five
vectors fy,- -+, f5. The BVDF is always one of the input samples (f,); this
is not the case for SM.

II. DIRECTIONAL ESTIMATORS

In this section, we review the definition of VDF introduced
in [1], and we study their relation to statistical estimators of
directional data.

A. Vector Directional Filters (VDF)

The notation used in [1] is employed here. A multichannel
signal is represented as f(z): Z' — Z™. A window W € Z!
of finite size n is implied in all operations if not stated
otherwise, and the pixels in W are denoted as z;,i =
1,2,---,n. f(z;) is an m-D vector in the vector space defined
by the m signal channels; for convenience, it will be denoted as
f;- For the case of color image processing [ = 2, and m = 3.
However, any value of m > 2 can be assumed in most of the
results presented, implying m-channel image processing. The
definition of VDF follows:

Definition 1: Let the input set {f,,7==1,2,---
a; correspond to f, and be defined as

,n}, and let

n

aiZZA(fi:fj)7 i=1,2,-,n M
7=1
where A(f;, f;) denotes the angle between vectors f; and f;.

In the general case, 0 < A(f;, f;) < m, whereas for the case
of color images, 0 < A(f,, f;) < 7/2. An ordering of the o;’s

a1y Sape) < Lae) < S oy (2)
implies the same ordering to the corresponding f,’s
V<@ <M< < £, 3)

The first term in (3) constitutes the output of the basic vector
directional filter (BVDF), whereas the first r terms of (3)
constitute the output of the generalized vector directional filter

1.5 1

1.0 1
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t

Fig. 2 Standardized influence function for the spherical median for two
values of k; & = 1 (dotted curve) and k& = 10 (solid curve).

(GVDF):

S =BVDF[f, fo,--, fn] @

{fO, f@ ... fY = GVDF[f,, fo, -, ],
1<r<n. 5)

]
As can be verified from the above definition, the BVDF
outputs the input vector that minimizes the sum of angles with
all the other vectors within the processing window; the GVDF
generalizes it since it outputs the set of vectors for which the
above sum is small. The GVDF output should subsequently
be passed through a second filter in order to produce a single
output vector. This step may only consider the magnitudes of
the vectors f(i),i =1,2,---,r, since after GVDF processing,
these vectors have (approximately) the same direction in the
vector space [1]. As a result, GVDF separate the processing
of color vectors into directional processing and magnitude
processing. This issue is deferred until Section IV, where we
discuss the implementation of VDF.

B. Spherical Median

1) Population Spherical Median: The median of a distribu-
tion on the real line and the spatial median are each defined
as that point from which the expected distance to a random
value of the given distribution is minimized {20]. For a
spherical (directional) distribution (©, ®)? [21], distance D on
the surface of the sphere is defined as the minimum arc length
between two points. This leads to the notion of the spherical
median (SM) direction [4].

Definition 2: (6, ) is the SM direction of the distribution
of (©,®) if it minimizes

E{D[(®,®),(0,¢)]} = E(©7),
(0% = cos™ AN+ Mp + Nv)) (6)

over all choices (6, ¢), where (A, M,N) and (\, pu,v) are
the direction cosines of (O, ®) and (8, ¢), respectively. Thus,
(6) minimizes the expected angular difference between the
two unit vectors; by way of comparison, the mean direction
minimizes F[1 — cos ©*]. u

2Spherical data are usually represented with the polar coordinates ©
(colatitude) and ® (latitude).
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Fig. 3. Asymptotic relative efficiency of SM versus the mean direction for
different values of &k (see text for explanation).

2) Sample Spherical Median: Let (01, ¢1),- -+, (0n, Pn) be
a random sample from a spherical distribution, and write
(Nis i, v;) = (sin; cos ¢;, sin 6 sin ¢;, cos ;) for the direc-
tion cosines of the ith observation, 1 <z < n.

Definition 3 [4]: The sample SM (SSM) is defined as the
point from which the sum of the arc lengths to the data points
is minimized. For a given point (), y, v/), this sum is given as

D\ p,v) = Zcos_l(ki/\ + g+ ). 7
i=1

H

From the above definitions, it is obvious that the direction
of the BVDF output is the SSM with the added constraint for
the filter output to be one of the input vectors; this constraint is
justified in order to avoid iterative algorithms for finding the
solution. The above observation draws an analogy between
VDF and VMF. The former results from the spherical median
and is constrained to one of the input vectors, whereas the latter
results from the spatial median with the same constraint. From
a slightly different point of view, VDF and VMF both result
from vector ordering using the aggregate ordering principle
[22], the difference being the ordering criterion. VDF use the
angles between the image vectors, whereas VMF employ the
distances between the image vectors.

For the case at hand, i.e., color image processing, it is
very important that the chrominance of the color vectors
is preserved [19], which in turn implies that the vectors’
direction should be preserved. The SM results in the least error
estimation of the angle location. Consequently, the BVDF
seems to be an appropriate directional filter for the case of
color images. The operation of SM and BVDF for spherical
data is illustrated in Fig 1, where the minimization property
of these operators is shown. It should be noted at this point
that in practice, color image data are not pure spherical data
since the magnitudes of the image vectors vary at different
pixels. However, VDF disregard the vectors’ magnitudes and
treat them purely as directional data.

III. PROPERTIES

In this section, statistical and deterministic properties of
VDF are studied. We confine ourselves mainly to the BVDF in
this section due to its amenability for mathematical treatment.
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Fig. 4. Set of 2-D vectors. BVDF output ( f g5 ) is always the middle vector
(f5)- This is not necessarily the case for the VMF output (f1 5 = f4)-

B

Maxwell
triangle

R

Fig. 5. Minimization property on the Maxwell triangle (see text for expla-
nation).

However, some of the properties are also valid in the case of
GVDF.?

A. Statistical Properties

The relation that has been established between SM and
BVDF enables the study of the latter’s statistical properties
since they parallel closely the properties of SM for which
adequate results are available in the statistical literature. In
this section, we briefly summarize these properties in order to
characterize BVDF in the framework of statistical estimators.

The robustness measures that characterize an estimator are
the breakdown point and the influence function [23]. The
breakdown point is the smallest fraction of outlier contam-
ination that can cause an estimator to become unreliable.
For spherical data, it is known that the SM attains a 50%
breakdown point [3]. Therefore, the direction estimation of the
BVDF possesses the same breakdown point, like the scalar
median [24].

3A property trivial to establish for both BVDF and GVDF is their
nonlinearity.
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Fig. 6. Perspective plots of the number of image vectors intersecting the Maxwell triangle at the same point.

The influence function IF(xz;T,F) of an estimator T
indicates the effect of a single outlier on the performance
of the estimator at a point z. The supremum of IF over z,
which is called the gross-error sensitivity (GES) ~y, measures
the worst effect of a contamination at any point z. If GES is
finite, then the estimator is said to be bias-robust (B-robust).
However, GES is often bounded if the parameter space is
bounded, which is the case for spherical data. In that case,
the concept of B-robustness needs to be modified [17]. This
has led to the introduction of standardized B-robustness (SB-
robustness), which is defined in terms of the standardized GES
(SGES) ~v*. SGES measures the maximum bias relative to a
measure of dispersion of the underlying distribution and is
more appropriate for spherical data than GES [17]:

7" = supy(T, F)/S(F)
F
= supsup SIF(z; T, F,S) ®
F T

where SIF is the standardized IF with respect to S(F'). Assum-
ing a von Misses—Fisher distribution* on the ¢-D sphere, SIF
can be numerically calculated for the SM [3]. This is shown in
Fig 2 for two k values (k is the concentration parameter of the
von Misses-Fisher distribution). Fig 2 demonstrates that SIF is
constant, depending only on & [3]. Consequently, the SM and
the BVDF estimation of the direction is SB-robust. Moreover,
it has constant norm of influence like the usual median.

The asymptotic relative efficiency (ARE) of SM compared
with the mean direction, for the above mentioned distribution,
is a function A(k) of the parameter k, given as [4]

) = kr? I (k)
~ 8sinh?(k)(coth k — 1/k)’

(€))

Numerical calculations indicate that A(k) decreases monoton-
ically from its value as k — 07 (A(0") = 0.925) to its value
as k — oo(A(co) = 0.785). A plot of A(k) is shown in

4The von Misses—Fisher distribution is the most commonly used distribu-
tion in directional data analysis [3]. It is defined parametrically, according to
a concentration parameter k. For k = 0, it reduces to the uniform distribution
on the sphere. Large values of k indicate a high degree of concentration of
the data.

)

Fig. 7.

Q(;) versus i (see text for explanation).

Fig 3. From a practical point of view, the higher efficiencies
for more disperse distributions suggest that SM may be rather
more useful, as an alternative to the mean, than its counterparts
in the plane and on the line [4].

B. Deterministic Properties

In this section, basic deterministic properties of VDF that
make them appropriate in multichannel image processing are
presented. It is verified that VDF behave analogously to the
scalar median since they are characterized by similar prop-
erties. The first three properties have been proved elsewhere
[25], and we briefly summarize them here for the completeness
of the paper.

1) Preservation of Step Edges:

NS
f(“) { f 23
where f, # f,. This is a step edge for vector-valued signals.
It is trivial to establish that this signal is a root of the BVDF,
regardless of the window size. This signal is also a root of the
GVDF if r < [n/2] + 1 (see (5)), where |-| denotes integer
part.

2) Invariance Under Scaling and Rotation: Scaling by a
scalar value and rotation of the coordinate system do not
affect the angle between two vectors, and therefore, BVDF
are invariant under these operations:

BVDF[ﬁf]vﬂf21 ) "aﬂfL] :ﬁ ) BVDF[flana"
BVDF[R{fy,f2, -+, fr}] =R{BVDF[fy, f5,- -

Let a vector-valued signal
if 2 <1g

if £ > 4o (10)

Sl (12)
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where 3 is scalar, and R{-} denotes the rotation operation.
However, the BVDF is not invariant to bias since the addition
of a (constant) vector changes the angles between vectors:

BVDF[fl +Caf2+cv"’7fL+c]

#BVDF[flvf%"'afL]-"’c' (13)

Similarly, the GVDF is also invariant under scaling and

rotation but not invariant to bias.
3) Existence of and Convergence to Root Signals: As already
proved in property A, a step edge is a root signal of the BVDF,
which proves the existence of root signals. Furthermore,
repeated application of the BVDF will eventually produce a
signal that is a root signal. This property is very similar to
vector median filters. A proof and further details on the roots
of BVDF can be found in [25].

If we confine ourselves in 2-D vectors (2-channel signals),
then it is possible to characterize the root signals of the BVDF
with a simple condition. A signal f<i) is a root of the BVDF
of length N = 2m + 1 iff, for all n, f, satisfies

Ty, > S > f(j)g,
fapy = Fwy — Tan

n—m<l<n<j<n+m

(14)

where f(;, denotes the zth component (channel) of sample
J ;) This condition stems from the fact that in two dimensions,
the BVDF is always the vector that lies in the middle of all the
vectors (the exact equivalent of the scalar median).’> Equation
(14) simply expresses in mathematical terms this property,
making use of the tangents of the vector angles (see Fig 4).

3 Note that this is not always the case for the vector median filter; see Fig. 4,
for example, where f, is the BVDF output, whereas the output of the VMF

is f4.
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4) Minimization Property on the Maxwell Triangle: Let
t;,i = 1,2,---,L be the points of intersection between the
vectors f,,i = 1,2,---, L and the Maxwell triangle, and let
BVDF[fy, fs, -, fr] = fgp- Then, if we assume that the
points &; are concentrated in a small area on the Maxwell
triangle, the point tgp is the spatial median [20] of the points
t;.

Proof: Let fi,i = 1,2,---, L denote the vectors being
formed by connecting the origin with the points ¢;,¢ =
1,2,---,L. By assumption, the points ¢; are concentrated
on the Maxwell triangle, and therefore, the vectors ff,i =
1,2,---, L are approximately of equal length. In that case, the
VMF of f! is the fip [11:

= f%p- (1s)

Consequently, f%, minimizes the sum of the Euclidean
distances between the vectors f:

L L
S lfsp— A<D NG -Fi Vi=
=1 i=1

L L
S litsp — il < Y llg — till, Vi (16)
i=1 i=1
Q.E.D.
A graphical illustration of the above property is shown in
Fig. 5. This property demonstrates in mathematical terms the
fact that VDF preserve the chromaticity of the image colors,
a measure of which is taken from the intersection points. In
other words, VDF select the output vector that results in the
least distance error estimate on the Maxwell triangle.
It should be noted that the assumption made concerning
the concentration of the points £; is (in most cases) not a
strong one since, at least in image areas with no strong
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Fig. 9. (a) Color image “peppers”; (b) image “peppers” corrupted by a mixture of Gaussian (¢ = 60) and 6% impulsive noise; (¢) GVDF_DW_aTM

results; (d) VMF resuits.

edges, the image vectors tend to be locally clustered in the
directional sense. This can be observed in Fig. 6, where the
perspective plots of the number of image vectors intersecting
the Maxwell triangle at the same point have been drawn for
two 20 x 20 neighborhoods (with no strong edges) taken
from two images. In the opposite case (strong edges present),
we cannot rigorously prove this assertion since the vectors
fii=1,2,---, L are not of equal length. However, using
computer simulations, we have demonstrated the validity of
this property for numerous example cases that were tested.
An intuitive justification of that relies on the fact that the
BVDF chooses the vector f g, most centrally located (in the
directional sense) in the input population f;; therefore, the
point tgp will always be centrally located in the population
t;.

IV. IMPLEMENTATION OF VDF

The implementation of VDF can be studied along different
axes, regarding the various issues that are involved in that. At
first, we need to devise techniques for accelerating the compu-
tations since they involve time-consuming operations (square
roots, inverse cosines, etc.). This can be easily achieved based
on the observation that as the processing window (of size n)
moves within the image, then after each move, only m (m <mn,
and usually, m = /n) new pixels are considered whose
angles with the other vectors have to be computed. The angles

of the rest of the n — m vectors are simply updated. This
implementation has led to considerable computational savings,
especially in the case of relatively large windows (fora 7 x 7
window, the computational savings come to 81.5%).

Next, GVDF involve a parameter 7 (see (5)) that needs to be
specified for a particular implementation. Basically, there are
two ways of choosing r: adaptive and nonadaptive. The case
of adaptive selection of r is desirable since it may produce a
better output vector set. When there is a high variation of the
color in the image (edges), the ;) sequence will present a
large discontinuity that separates the vectors in the two regions.
In this case, only vectors from one region will be output by an
adaptive GVDF. At a uniform region, on the other hand, the
a;) sequence is growing quite regular, and a ot of vectors
are taken that may result in improved noise rejection. These
issues are illustrated in Fig 7, where the ordered sequence a;)
has been plotted for four different placements of the window
W (5 x 5) on the “mandrill” image (Fig. 11). Three out of
the four window positions correspond to rapidly changing
areas (hair texture, eyes-lash border, beard), whereas, the
fourth one corresponds to a smooth area (nose). The first
three window placements give rise to curves 1, 2, and 3,
respectively, whereas the fourth gives rise to curve 4. As can
be observed, for large 4 values, ;) grows very rapidly in the
case of nonsmooth image areas. However, in all cases, o
is small and almost constant for smaller 7 values. Therefore,
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we suggest a value of r = [n/2] + 1, for a window of size
n for a nonadaptive selection of r. As can be verified from
Fig. 7, this represents a “‘safe value” since c(;) starts increasing
for 7 values much larger than |n/2] + 1. To implement the
adaptive selection of 7, we take the derivative of the sequence
oy and cut it at the first discontinuity that exceeds 7% of the
maximum derivative. This is illustrated in Fig. 8 for the four
angle sequences shown in Fig. 7 and for 7 = 25. This value
of 7 has been set through experimentation; more importantly,
these experiments have verified that this value is not crucial for
the filter performance. In our implementations of GVDF, we
have adopted the adaptive version since our simulations have
shown that it performs slightly better than the nonadaptive
version.

Finally, GVDF need to be combined with appropriate (mag-
nitude processing) filters in order to produce a single output
vector at each pixel. In the case of BVDF, no such filter
is present; this represents a drawback since the magnitude
information carried by the vectors is not taken into account
when computing the output vector. GVDF can alleviate that
by operating in cascade with filters that consider the magnitude
information. The application of GVDF results in a set of
vectors with (approximately) the same direction in the color
space [1]. More specifically, GVDF eliminate from the input
vectors the ones with atypical directions and output the ones
centrally located in the population. Consequently, GVDF
achieve, in a sense, production of a (locally) single-channel
signal since the set of vectors produced contains samples in
(almost) the same direction.
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The GVDF output should subsequently be passed through a
filter F in order to produce a single output at each pixel. Since
the GVDF output consists of vectors with (approximately) the
same direction, F may consider only the magnitudes of the
vectors, i.e., it can be any grey-scale image processing filter
[26], [27]; depending on the application, smoothing filters
(e.g., a-trimmed mean—aTM) or detail preserving filters
(e.g., multistage max/median—MM [28]) can be employed.
Referring to the definition of GVDF (see (5)), the above
operation can be written as

:f{fﬂ),f(z)’ . ’f(T)}
:F{GVDF[flafZa7fn]}

fo (17a)

(17b)

The above-described structure draws an analogy between
GVDF and the modified mean trimmed (MTM) filters [29].
These filters operate by excluding the samples in the filter
window that differ considerably from the median value and,
subsequently, taking the mean of the remaining samples. It
is well known that MTM perform very accurately both in
gray-scale and in multichannel image processing [24]. GVDF
follow the same principle in the multichannel case but employ
a different criterion. Instead of utilizing the distances between
the samples, they employ the angles between the vectors,;
vectors that form large angles with the rest of the samples are
characterized as directional outliers and are excluded from
further processing. The amount of trimming depends on the
filter parameter r (in the adaptive case, the threshold 7). The
smaller the r (or 7) is, the stronger the trimming. The two
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Fig. 11.

Tilustrative examples: (a) Image “mandrill” corrupted by 6% impulsive noise; (b) GVDF_DW_MM results; (c) VMF results; (d) image “mandrill”

corrupted by Von Misses—Fisher noise (k = 1); (e) GVDF_aTM results; (f) VMF results.

extreme cases are r = 1 and r = n. In the former case (r = 1),
the GVDF reduces to BVDF, and no magnitude processing is
performed; in the later case (r = n), the GVDF output is the
same as its input, and no directional processing is performed.

V. DOUBLE-WINDOW STRUCTURES

Double-window (DW) filtering structures are known to
perform very accurately in grey-level irmage processing [29],
[24]. They do so by computing the median in a small window
and then using pixel values from a larger window (the ones
that satisfy a condition) to perform averaging. In other words,
two distinguishable operations (computation of median and
averaging) are performed using different windows. Each of
these two windows plays a specific role; the small window
is used for preserving the image details, whereas the large
window is used in order to obtain a broad coverage of pixel
values. Consequently, a more accurate approximation of the
output value is achieved. This can also be extended to VDF
processing. The two operations of directional processing and
magnitude processing can be made to perform in two windows.
This leads to the double-window GVDF (GVDF_DW).

Definition 4: Let W1, W5 be two windows with W, C Ws.
Additionally, let f, ,7 = 1,2,---,n be the image vectors in
Wy, ie., fi, € Wy and f,,5 = 1,2,---,1 be the image
vectors in W5 but not in W7, i.e., fzj e Wy — Wi. The
application of GVDF to f,,,i = 1,2,---,n produces the

output set { fgl), f§2), S fgr)} (see Definition 1 and (5)) for
the ordering of ay,’s ag ) < agz) <. .. < agr) <. < agn)
(see (2)). The set {ﬁl), §2),-~-,f§")} is augmented with
vectors from Wy — Wy, and subsequently, it is used in (17)
to compute the final output f.

Let _f:zj € Wy — Wy, and let o/Qj correspond to fzj and
be defined as

b, = A(fa,, f1): (18)
=1

Then, f,, is added to the set {f{", f?,-.., f} if the
condition

ap, < af? (19)

is satisfied. In other words, the outer window Wy — W, con-
tributes with the vectors fzj that diverge from the population

J1, less than the divergence of the last considered vector (f Y))
from f,,. n

Definition 4 uses the inner window (W) to perform the
directional ordering of the vectors; subsequently, vectors from
the outer window (W, — W7) are also used in the step of
magnitude processing if they are centrally located within the
population of vectors f, ,7 = 1,2,---,n. This is in analogy
with the scalar DW filters that consider the pixels from the
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Fig. 12. Performance evaluation results for the case of Gaussian noise.

outer window if they are close to the median (centrally located
on the line).

The rationale for the introduction of GVDF_DW is similar
to the scalar case. The small (inner) window is used to
compute accurate directional estimates, whereas the large
(outer) window contributes to the magnitude processing step
under the constraint of the (already) computed directional
estimates. Consequently, more vectors are used to compute
the filter output, resulting in a better estimate. Our computer
experiments have demonstrated this, as will be shown in the
following section.

VI. EXPERIMENTAL RESULTS

‘We have conducted a set of experiments in order to evaluate
VDF and compare their performance against the performance
of VMF. The results of these experiments are presented in
this section. Sample illustrative results are also presented to
demonstrate the performance of the filters. In all cases, we
have used 5 x 5 masks to implement the filters. A convention
is used in the sequel for the naming of the filter structures.
The magnitude processing filter abbreviation is appended
to the directional processing filter abbreviation. Therefore,
GVDF_DW_aTM stands for double window GVDEF followed
by an a-trimmed mean, and GVDF_MM stands for GVDF
followed by a multistage max/median filter.

The images used in the experiments were RGB color
images; the noise models implemented and tested were Gauss-

ian, impulsive, Von Misses—Fisher, and Gaussian mixed with
impulsive. For the noise models Gaussian, impulsive, and their
mixture, a channel correlation factor of 0.5 has been used to
simulate the channel correlation in color images. For the case
of Von Misses—Fisher noise, the above does not apply since
this distribution refers to spherical data and is computed after
transforming the data to spherical coordinates. The value of 0.5
for the channel correlation has been chosen as an “unbiased”
estimate of the true correlation.

A. lllustrative Examples

The performance of VDF has been subjectively estimated
using real color images corrupted by artificial noise. We
present here illustrative examples that demonstrate the useful-
ness of VDF in color image processing. The first result refers
to the color image “peppers” shown in Fig. 9(a). Fig. 9(b)
shows the same image corrupted by a mixture of Gaussian
and impulsive noise. The Gaussian distribution is characterized
by zero mean and standard deviation ¢ = 60, and 6%
of the impulses have been added to the signal. Both the
Gaussian and the impulsive noise have been modeled using a
channel correlation factor p = 0.5. The results after processing
Fig. 9(b) with GVDF_DW_oTM are presented in Fig. 9(c);
Fig. 9(d) shows the same results for the case of VMF filtering
for comparison purposes. As can be verified, GVDF perform
very efficiently in the removal of noise. Moreover, they
effectively combine the directional processing characteristics
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(removal of vectors with atypical directions) with magnitude
processing characteristics (efficiency of the a-trimmed mean
filter in smoothing out Gaussian noise).

In order to impart a better appreciation as of the performance
of the filters, we show in Fig. 10 the actual image vectors
for the 40 x 32 window shown in Fig. 9 superimposed on
the image data. The initial vector field is shown in Fig. 10(a),
where one can easily distinguish the three different areas on the
image: red part of pepper, white (reflectance) part of pepper,
and green stem. In Fig. 10(b), the same window is presented,
after it has been corrupted by noise, with obvious effect on the
vector field. Fig. 10(c) and (d) show the restored vector field
for the cases of GVDF_DW_aTM and VMEF, respectively. As
can be observed, the GVDF has almost completely restored
the vector field with no noticeable deformations and clear
boundaries between the three areas. On the contrary, the effects
of noise still show up on the VMF result; a comparison of the
two images (Fig. 10(c) and (d)) clearly favors the GVDF over
VMF.

Iustrative examples for two other noise models are shown
in Fig. 11 for the “mandrill” image. Fig. 11(a) shows the man-
drill image corrupted with 6% impulsive noise, and Fig. 11(b)
and (c) show the GVDF_DW_MM and VMF results, respec-
tively. As can be verified, the results are comparable, but
stil, GVDF_DW_MM has a slightly better performance in
preserving the fine details of the image (see the hair texture,

for example). This can mainly be ascribed to the multistage
max/median filter used as the magnitude processing filter,
which is known to perform very accurately in preserving the
fine image details.

In Fig. 11(d), a version of the mandrill image corrupted with
Von Misses—Fisher noise (k = 1) is presented, and the filtering
results are shown in Fig. 11(e) and (f). Fig. 11(e) is the
GVDF_aTM, and Fig. 11(f) is the VMF result, respectively.
Again, GVDF show superior performance and a more pleasing
result for the human observer.

B. Performance Evaluation

In order to objectively evaluate the performance of VDF, we
have used the two color images “peppers” (Fig. 9) and “man-
drill” (Fig. 11) and the following evaluation procedure. For
each image and for each of the noise models (described above),
we have varied the corresponding parameter of the noise
model® and measured two performance measures: Eps,+p+ and
NCRE. Ejxg«p+ refers to the mean absolute error measured
in the L*a*b* space. It is known [19] that in this space,
equal color differences result in equal distances, and therefore,
Ep+q-p is very close to the human perception of error in
color images [30]. Normalized chromaticity error (NCRE) has

6 For the case of mixed noise (Gaussian with impulsive), only the standard
deviation of the Gaussian distribution was varied, and the percentage of
impulses was constant and equal to 10%.
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Fig. 14. Performance evaluation results for the case of Von Misses-Fisher noise.

been introduced in [1] and measures the distance of the color
vectors on the Maxwell triangle. Since the color chromaticity
is obtained from the intersection point on the Maxwell triangle,
NCRE gives an indication of the chromaticity error. It has been
adopted in this work since VDF are chromaticity preserving
filters, and it is desirable to evaluate their performance with
respect to that. It should be noted that NCRE should not be
taken to be the exact chromaticity error since it is known
that the Maxwell triangle is not a plane where equal color
differences result in equal distances. Rather, NCRE gives an
exact indication of the vectors’ divergence from the origi-
nal directions, which can be qualitatively interpreted as the
chromaticity error.

The results obtained are shown in the form of plots in
Figs 12—15 for the four noise models: Gaussian, impulsive,
Von Misses—Fisher, and Gaussian mixed with impulsive, re-
spectively. For the case of impulsive noise, the MM filter has
been used as the magnitude processing filter. For the other
noise models, MM has been replaced by the oTM filter. In
all cases, we show the results of BVDF, GVDF followed by
the corresponding magnitude processing filter, double window
GVDF followed by the corresponding magnitude processing
filter, and VMF.

As can be verified from the plots of Figs. 12-15, the perfor-
mance of GVDF is at least equal and in most cases is superior
to the performance of VMF. For the case of Gaussian noise

(Fig. 12), GVDF_DW_aTM has by far the best performance
with GVDF_oTM following next. The same remark is also
valid for the case of Gaussian mixed with impulsive noise
(Fig. 15). In the impulsive case (Fig. 13), where VMF is
known to perform very accurately, GVDF_DW_MM is at least
as accurate and in some cases slightly superior to the VMF.
For the Von Misses—Fisher noise distribution, it is noted that
larger k£ values indicate smaller noise levels, and consequently,
we obtain decreasing curves (Fig. 14). GVDF_DW_aTM and
GVDF_aTM perform more accurately, especially for small &
values. For large k values, the noise tends to behave more
like impulsive noise, and hence, VMF perform comparable to
GVDF.

In conclusion, the results presented in Figs. 12-15 show
the accuracy of directional processing in color images and,
moreover, demonstrate the effectiveness of combining GVDF
with efficient gray scale image processing filters. It should also
be noted at this point that consistent results (with the ones
presented above) have been obtained when using a variety
of other color images and the same evaluation procedure.
Figs. 12—15 presented here are simply representative of the
performance of the filters evaluated.

VII. CONCLUSIONS

In this paper, we have studied VDF in the framework of
directional estimators and have extensively evaluated their
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Fig. 15. Performance evaluation results for the case of Gaussian mixed with 10% impulsive noise.

performance. Their relation to the spherical median has been
investigated, and their statistical and deterministic properties
have been developed. Efficient computational schemes for
their implementation have been employed, and their extension
to double window structures has been proposed. Evaluation
results have shown very accurate performance measures that
compare very favorably to the VMF for various noise models.
The advantage of VDF is the preservation of the chromaticity
component, which is very important in visual perception.
Moreover, GVDF can be combined with efficient grey-scale
image processing filters, resulting in effective filtering struc-
tures.

Color image processing has receiving increased attention
lately due to many important applications involved in color
imaging. It has been recognized by many authors that pro-
cessing of color image data as vector fields is desirable due to
the correlation that exists between the image channels. Toward
this end, VMF [9] and some variations [11], [12] have been
introduced and studied recently. These filters are mainly based
on distance ordering principles. VDF represent an approach
where directional information is used to process the image
vectors. Experimentation with this approach has shown very
promising results. Future work in this area should address the
processing of other multichannel images (e.g., satellite images
and multispectral medical images) in the framework of VDF.
Moreover, the issue of magnitude processing has not been

fully investigated in the present work. More work is needed
to establish the relation between directional and magnitude
processing and, possibly, to derive more appropriate classes of
magnitude processing filters to operate in cascade with GVDEF.
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