

Lecture Notes in Computer Science 3373
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hans Dobbertin Vincent Rijmen
Aleksandra Sowa (Eds.)

Advanced
Encryption Standard –
AES

4th International Conference, AES 2004
Bonn, Germany, May 10-12, 2004
Revised Selected and Invited Papers

1 3

Volume Editors

Hans Dobbertin
Ruhr-University of Bochum
Cryptology and IT Security Research Group
Universitätsstrasse 150, 44780 Bochum, Germany
E-mail: Hans.Dobbertin@ruhr-uni-bochum.de

Vincent Rijmen
Graz University of Technology
Institute for Applied Information Processing and Communications (IAIK)
Inffeldgasse 16a, 8010 Graz, Austria
E-mail: vincent.rijmen@iaik.tugraz.at

Aleksandra Sowa
Ruhr-University of Bochum
Horst Görtz Institut für Sicherheit in der Informationstechnik
Universitätsstrasse 150, 44780 Bochum, Germany
E-mail: Aleksandra.Sowa@hgi.ruhr-uni-bochum.de

Library of Congress Control Number: 2005928447

CR Subject Classification (1998): E.3, F.2.1-2, I.1.4, G.2.1

ISSN 0302-9743
ISBN-10 3-540-26557-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26557-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11506447 06/3142 5 4 3 2 1 0

Preface

This volume comprises the proceedings of the 4th Conference on Advanced En-
cryption Standard, ‘AES — State of the Crypto Analysis,’ which was held in
Bonn, Germany, during 10–12 May 2004.

The conference followed a series of events organized by the US National In-
stitute of Standards and Technology (NIST) in order to hold an international
competition to decide on an algorithm to serve as the Advanced Encryption
Standard (AES). In 1998, at the first AES conference (AES 1), 15 different algo-
rithms were presented, discussed, reviewed and verified. A second conference was
organized in April 1999, and by August 1999 only five candidates were still in the
running: MARS, RC6, Rijndael, Serpent and Twofish. After a further conference
devoted to verification, testing and examination of the candidate algorithms in
order to prove their performance and security, one winning algorithm remained.
The encryption scheme Rijndael, designed by the Belgian cryptographers Joan
Daemen and Vincent Rijmen, was selected in 2000 to become the successor to
the famous DES (Data Encryption Standard) and it is now the Advanced En-
cryption Standard.

Like DES before it, AES is going to become a de facto world standard for the
encryption of data. The security of Internet applications, for instance, is already
depending today and, in view of the increasing implementation, will depend in
future even more on AES. Analysis of the cryptographic strength of AES belongs
therefore certainly to the most important topics in cryptology. A recent key re-
covery approach, by solving a complicated system of quadratic equations, which
is due to Courtois and others, has caused a big debate. Previously, approaches
of this kind were considered as purely theoretical, and hopeless in practice. The
big unanswered question is whether the addition of newly proposed techniques
has changed or can change this situation.

Four years after the National Institute of Standards and Technology chose Ri-
jndael to be the Advanced Encryption Standard, leading experts and scientists
from all over the world were invited to discuss — critically but constructively —
the strengths and weaknesses of Rijndael, and to look for solutions that will make
it a strong information encryption formula for the next two, five, ten, or maybe
dozens of years. The intentions of the AES4 conference organizers were to present
the most recent ideas and results on the cryptanalysis of the AES, and to stimu-
late future research on the important open questions about the perspectives and
limits of new cryptanalytic approaches.

The response to the conference was excellent. Ten submission were selected
for presentation. The programme included six keynote addresses (invited talks),
given by Yvo Desmedt from Florida State University, Vincent Rijmen from the
IAIK, Graz University of Technology and Cryptomathic, Carlos Cid from Royal
Holloway, University of London, Nicolas T. Courtois from Axalto Smart Cards,

VI Preface

Jean-Charles Faugère from the University of Paris VI/INRIA, France, and John
Kelsey from the National Institute for Standards and Technology. As a novum,
AES4 introduced for the first time a closing panel discussion on the future of
Rijndael and cryptography, moderated by Peter Welchering from the German
Scientific Press Conference. Researchers took the opportunity to present their
opinions and suggestions on the cipher weaknesses, known and unknown attacks,
and the future of their work. John Kelsey remarked that most of the practical
problems are usually other than the weaknesses of a cipher. Nevertheless, as
Nicolas T. Courtois argued, there is still ‘plenty of work’ to do. Carlos Cid and
Vincent Rijmen emphasized the necessity to make the current research transpar-
ent, to make it popular and understandable and to let other people know ‘what
we are talking about’ (Vincent Rijmen).

We would like to thank Aleksandra Sowa, the Managing Director of the Horst
Görtz Institute (HGI) for IT security at the Ruhr University of Bochum. She
did an excellent job as General Chair by organizing the AES4 conference with
the help of our young colleagues from the Chair for IT Security and Cryptology
(CITS).

We are also grateful to NIST and Cryptomathic for supporting this event,
and, last but not least, we would like to thank all the committee members for
their work.

April 2005 Hans Dobbertin and Vincent Rijmen

Organization

AES4 was organized by the Ruhr University of Bochum, in cooperation with the
Graz University of Technology and NIST.

General Chair

Aleksandra Sowa Horst Görtz Institute, Ruhr University Bochum

Program Co-chairs

Hans Dobbertin Horst Görtz Institute, Ruhr University Bochum
Vincent Rijmen Graz University of Technology

Program Committee

Don Coppersmith IBM
Nicolas T. Courtois Axalto Smart Cards
Lars R. Knudsen Technical University of Denmark
Matt Robshaw Royal Holloway, University of London

Sponsoring Institutions

Cryptomathic A/S, Århus
NIST

Table of Contents

Cryptanalytic Attacks and Related Results

The Cryptanalysis of the AES - A Brief Survey
Hans Dobbertin, Lars Knudsen, Matt Robshaw . 1

The Boomerang Attack on 5 and 6-Round Reduced AES
Alex Biryukov . 11

A Three Rounds Property of the AES
Marine Minier . 16

DFA on AES
Christophe Giraud . 27

Refined Analysis of Bounds Related to Linear and Differential
Cryptanalysis for the AES

Liam Keliher . 42

Algebraic Attacks and Related Results

Some Algebraic Aspects of the Advanced Encryption Standard
Carlos Cid . 58

General Principles of Algebraic Attacks and New Design Criteria for
Cipher Components

Nicolas T. Courtois . 67

An Algebraic Interpretation of AES−128
Ilia Toli, Alberto Zanoni . 84

Hardware Implementations

Efficient AES Implementations on ASICs and FPGAs
Norbert Pramstaller, Stefan Mangard, Sandra Dominikus,
Johannes Wolkerstorfer . 98

Small Size, Low Power, Side Channel-Immune AES Coprocessor:
Design and Synthesis Results

Elena Trichina, Tymur Korkishko, Kyung Hee Lee 113

X Table of Contents

Other Topics

Complementation-Like and Cyclic Properties of AES Round Functions
Tri Van Le, Rüdiger Sparr, Ralph Wernsdorf, Yvo Desmedt 128

More Dual Rijndaels
H̊avard Raddum . 142

Representations and Rijndael Descriptions
Vincent Rijmen, Elisabeth Oswald . 148

Linearity of the AES Key Schedule
Frederik Armknecht, Stefan Lucks . 159

The Inverse S-Box, Non-linear Polynomial Relations and Cryptanalysis
of Block Ciphers

Nicolas T. Courtois . 170

Author Index . 189

The Cryptanalysis of the
A Brief Survey

Hans Dobbertin1, Lars Knudsen2, and Matt Robshaw3

1 Cryptology and IT Security Research Group,
Ruhr-University of Bochum, Germany
Hans.Dobbertin@ruhr-uni-bochum.de

2 Department of Mathematics,
Technical University of Denmark,

DK-2800 Lyngby, Denmark
Lars.R.Knudsen@mat.dtu.dk

3 France Télécom Research and Development,
38–40 rue de Général-Leclerc, 92794 Issy Moulineaux, France

Matt.Robshaw@francetelecom.com

Abstract. The Advanced Encryption Standard is more than five years
old. Since standardisation there have been few cryptanalytic advances de-
spite the efforts of many researchers. The most promising new approach
to AES cryptanalysis remains speculative, while the most effective at-
tack against reduced-round versions is older than the AES itself. Here
we summarise this state of affairs.

1 Introduction

In January 1997 the National Institute of Standards and Technology (NIST) ini-
tiated the search for a replacement for the Data Encryption Standard (DES) [28].
The requirements for the new standard, to be called the Advanced Encryption
Standard (AES), were that it should be:

– a 128-bit block cipher with the choice of three key sizes of 128, 192, respec-
tively 256 bits,

– a public and flexible design,
– at least as secure as two-key triple-DES, and
– available royalty-free worldwide.

At the conclusion of this standardisation effort, with many man-years of
cryptanalytic and implementation expertise provided from around the world,
Rijndael, developed by Joan Daemen and Vincent Rijmen [11], was a popular
choice to become the AES. In November 2001 the AES effort came to its conclu-
sion with the publication of FIPS 197 [29], and today the AES is fast becoming
a vital component of the digital infrastructure.

The proceedings of the Fourth AES Conference that follow in this volume
reflect ongoing research efforts into the security and performance of the AES. In
this short article, we briefly review some promising – but unsuccessful – attempts
to compromise this elegant cipher.

H. Dobbertin, V. Rijmen, and A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 1–10, 2005.

AES -

c© Springer-Verlag Berlin Heidelberg 2005

2 H. Dobbertin, L. Knudsen, and M. Robshaw

2 AES Design

The AES has been described so often and is, by now, so familiar that a brief
overview of the AES design will suffice for our purposes.

The AES is a classic substitution/permutation or SP-network that requires
10, 12, or 14 rounds of encryption; the exact number depending on the length of
the key. The AES is byte-oriented and heavily reliant on operations in the field
GF(28). Conceptually, the AES is best described with the sixteen bytes of the
128-bit input block a0a1 . . . a14a15 being arranged in a (4 × 4) matrix of bytes:

a3

a2

a1

a0

a7

a6

a5

a4

a11

a10

a9

a8

a15

a14

a13

a12

Using the nomenclature of FIPS 197, a typical round of the cipher
uses the following operations, “SubBytes”, “ShiftRows”, “MixColumns” and
“AddRoundKey”. The final round has a slightly different form and omits the
MixColumns operation.

Encryption begins with an AddRoundKey operation, then computation con-
tinues for a given number of rounds, with each round using the four operations
taken in the order above. In SubBytes each byte is replaced by a byte from an
invertible S-box. In ShiftRows the rows (of bytes) are shifted a number of byte
positions to the left. The top row is not shifted, the second row is shifted by one
position, the third by two, and the fourth row by three. In MixColumns the four
bytes in each column are mixed by pre-multiplying the four-byte vector by a
fixed, invertible, (4× 4)-matrix over GF(28), that is derived from an MDS code.
MixColumns has the property that if two input vectors differ in s bytes, then
the output vectors differ in at least 5 − s bytes, where 1 ≤ s ≤ 4. Each round
closes with AddRoundKey where 16 round-key bytes are exclusive-or’ed to the 16
data bytes. Each round uses all four operations except the last round when the
operation MixColumns is omitted. We refer to [29] for more details on this and
other aspects of the algorithm.

The key schedule for the AES is relatively simple. It takes the user-supplied
key of 16, 24, respectively 32 bytes and returns what is called an ExpandedKey
of 16 × 11, 16 × 13, and 16 × 15 bytes respectively. The details can be found
in [13, 29].

3 The Components

By design, Rijndael, and therefore by extension the AES, is a very structured
cipher. This very clean structure has at least two attractive consequences:

The Cryptanalysis of the AES - A Brief Survey 3

1. It is possible to provide a simple explanation for the intended effect of each
cipher component. The most striking consequence is that we can derive solid
reassurance for the resistance of the AES to basic differential [4] and lin-
ear [23] cryptanalytic attacks.

2. The implementor is provided with a wide range of implementation options.
This is evidenced by the attractive performance profile of the AES across a
wide range of environments.

We will explore the first consequence in this article.

3.1 The S-Box

The cryptographic strength or weakness of the AES depends strongly on the
choice of S-box. While it is likely that we would view the S-box as a single
entity, it has three distinct components; inversion over GF(28) which is naturally
augmented to handle the zero input, transformation by a GF(2)-linear map L,
and addition of a constant c = 0x63. Thus, up to a GF(2)-affine modification,
the S-box S(x) of the AES is the inversion in the multiplicative group of GF(28):

S(x) = A(1/x) (with the convention 1/0 = 0), (1)

where A(x) = L(x) + c is a GF(2)-affine permutation of GF(28).
The cryptographic advantages of 1/x on GF(2n) have been known for some

time. It realizes the best known properties of bijective S-box constructions with
respect to the following properties:

Degree. All S-box component functions (i.e. non-zero linear combinations of
Boolean coordinate functions of the S-box) have degree n − 1.
The degree of all non-zero component functions of a non-constant power
function xd is the Hamming weight of the binary representation of the re-
mainder of d modulo 2n − 1. Thus the maximal degree n − 1 is achieved if,
and only if, up to cyclotomic equivalence, d = −1 = 2n − 2 = 2 (1 + 2 +
22 + ... + 2n−2) mod (2n − 1). On the other hand it is well known that each
component function of a one-to-one S-box has at most degree n − 1.

Resistance to linear attack. Low correlation between S-box component func-
tions and affine Boolean functions.
The absolute value of the correlation between any non-zero component func-
tion of 1/x and any affine Boolean function is bounded by 2−n/2−1 for even
n. This can be shown by using the famous Hasse bound for the number of
points on elliptic curves. It is an open problem whether this bound can be
improved. We mention that for odd n, the bound 2−n−1/2 is attained by 1/x
and this is known to be optimal.

Resistance to differential attack. The designer’s dream “for each prescribed
input difference one can derive no information about the S-box output dif-
ference” is almost achieved.
For characteristic 2, differences coincide with sums. Thus the number of pos-
sible output differences for pre-scribed input difference is at most 2n−1. If this

4 H. Dobbertin, L. Knudsen, and M. Robshaw

bound is achieved then the S-box is called almost perfect nonlinear (APN),
and in this case each output difference is attained precisely two times. If n
is odd then 1/x is APN, while 2n−1 − 1 is the number of output differences
for even n. The latter is due to the fact that 1/x is linear on GF(4). It is not
known if there is any APN one-to-one S-box for even n.

These properties of inversion are preserved under affine modifications and
are therefore valid for the S-box of the AES. The net result is an exceptional
resistance to differential and linear cryptanalysis. In [11] it is shown that any
four-round differential characteristic has a probability of less than 2−150 and that
any four-round linear characteristic holds with a correlation less than 2−75. These
bounds are sufficient to conclude that the basic attacks based on differential and
linear cryptanalysis will not succeed against the AES.

While the resistance of the AES to advanced attacks or those using differen-
tials and/or linear hulls remains open, there have been a series of results that
explore these issues [8, 18, 19, 20, 21, 30, 31, 7, 32, 33, 34, 5]. However there seems
little chance of a major breakthrough in this direction.

3.2 Rearranging Components

While the structure of Rijndael received cryptanalytic attention during the AES
process, (see Section 4) it was only at the tail end of that process that a dif-
ferent kind of observation began to be explored. These observations are based
on alternative representations of components, or the entireity, of the AES. Some
researchers have considered a continued fraction representation of AES encryp-
tion [16] while others have considered the concept and implications of dual Ri-
jndaels [3, 35]. Other observations have been concerned with the way AES oper-
ations are presented [25, 26].

Clearly, operations such as SubBytes and ShiftRows trivially commute with
one another. Indeed, properties such as these were used by the AES designers to
show how AES decryption could be written in a form that more closely resembled
encryption. However a more fundamental re-writing is also possible. While it is
typical to take the S-box as a single entity, we have already observed that it
consists of three separate components; the augmented inversion mapping 1/x, the
linear map L, and addition of the constant 0x63. Concern about the algebraic
simplicity of the inversion operation over GF(28) lead the designers to introduce
a mixing function (the linear map L) over GF(2), while concern that the input
0 would be mapped to 0 through the two combined operations lead to the final
addition of the constant.

Yet, it is instructive to view this package as the sequence of independent
operations it truly is [25, 26]. It is then trivial to see that the parallel addition
of sixteen constants 0x63 can be moved (unchanged) through the ShiftRows
operation. It can also be moved (unchanged) through the MixColumns operation.
We might therefore remove the addition of the constant from the encryption
process entirely and, instead, consider it a minor addition to the key schedule.
We can also view the sixteen parallel applications of the linear map L as part of

The Cryptanalysis of the AES - A Brief Survey 5

the diffusion layer that follows. While making the diffusion layer slightly more
complicated than that given in the standard description, this separation of the
components of the AES yields a more unified functional description.

The value of such rewriting has been questioned [12], but it does provide
some additional perspectives on the AES structure. But while there is some
interaction between this line of work and the aims of algebraic cryptanalysis
(see Section 5) these different perspectives on the AES have yet to yield any
practical cryptanalytic advance. Instead the most successful attacks on the AES
are of an entirely different nature.

4 Structural Attacks

The most effective attacks on reduced-round variants of the AES are variants of
the Square attack which is due to Knudsen. Since this attack was used against
a predecessor [10] of the AES it was accounted for by the AES designers [11].

In this attack we take a set of 256 plaintexts where the first byte takes all
possible values. The other 15 bytes of the input can take any value but the
same value in a given byte position must be used across all 256 texts. We will
describe a set of texts that have this property as an integral. Imagine one begins
an AES-round with such an integral. In the following we shall denote the byte-
position containing a variable value with an “a” (for “all”). Consider the actions
of SubBytes, ShiftRows, and MixColumns.

a

�
SubBytes

a

�
ShiftRows

a

�
MixColumns

a
a
a
a

The AddRoundKey operation adds the same round key to each of the 256 texts
in the integral, therefore any integral before AddRoundKey will yield an integral
after. Consider a second round of transformation.

a
a
a
a

�
SubBytes

a
a
a
a

�
ShiftRows

a
a

a
a

�
MixColumns

a a a a
a a a a
a a a a
a a a a

It follows that after two rounds of encryption and for each byte position,
every possible value in a given byte position is taken once and only once in the
set of 256 texts. Now consider a third round.

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

�
SubBytes

a a a a
a a a a
a a a a
a a a a

�
ShiftRows

a a a a
a a a a
a a a a
a a a a

�
MixColumns

s s s s
s s s s
s s s s
s s s s

Here s indicates that the sum of the texts in a particular byte can be deter-
mined (and in this case is equal to zero). The interesting part is what happened

6 H. Dobbertin, L. Knudsen, and M. Robshaw

during the MixColumns operation. Before the operation, in each byte position
the 256 values were a permutation of the values 0, . . . , 255. MixColumns com-
bines four bytes to yield one byte in a linear way. This means that after the
application of MixColumns every byte position will be balanced, that is, if we
exclusive-or all 256 values in any single byte position we will get zero as a result.
Note how this property, after three rounds of AES encryption does not depend
on the details of the S-box nor on the value of the secret key.

Such three-round structures can be used to attack the AES reduced to six
rounds (where the first round consists of AddRoundKey and the last round is
without MixColumns). The structure is used over rounds two to four. Then by
guessing four key bytes in the first round, four key bytes in the final application
of AddRoundKey and one key byte in the second-last application of AddRoundKey,
in total nine key bytes, one can compute a candidate value for the sum of the
texts in one byte position after four rounds of encryption. For a structure of 256
plaintexts of the form above, this sum is known to be zero. In fact, there will
be values of the nine key bytes that will return zero as the value of the sum
by chance. So to eliminate false alarms, the attack needs to be repeated a few
times to uniquely determine the correct key bytes. Once the nine key bytes have
been found, we find the remaining twelve key bytes of the final application of
AddRoundKey, after which the user-selected key can be derived. Taking advantage
of some advanced observations, there is a more effective extension of this attack.
This can be used to find the secret key with 6 · 232 chosen plaintexts in a time
equivalent to 244 encryptions and 232 words of memory [15, 22]. There have also
been some further extensions to the basic Square attack, but these require an
explosive increase in the running time [15, 22].

Another kind of structural attack that has been described against the AES
is sometimes referred to as a collision or bottleneck attack. These attacks re-
quire around 232 plaintexts and exploit a three-round structure [17, 24]. These
approaches can be used to attack AES reduced to seven rounds but the running
time is almost the same as an exhaustive search for the key.

5 Algebraic Attacks

We saw in Section 3.1 that the S-box was carefully constructed around inversion
in GF(28). As a consequence, if we appeal to our earlier notation (1), then we
have the implicit equation A−1(S(x))x = 1 for x �= 0. Thus there are eight
quadratic equations that relate the bits of S(x) and x. Of these eight equations
seven holds always, while the eighth holds only when x �= 0, that is, in 255 of 256
cases. In addition, another 32 quadratic equations can be derived since xy = 1
implies that

x2y = x, xy2 = y, x4y = x3, and that xy4 = y3.

Each of these equations leads to eight quadratic equations on the bit level and
all of these always hold. The resulting 39 quadratic equations turn out to be a

The Cryptanalysis of the AES - A Brief Survey 7

base for the vector space, over GF(2), of all quadratic equations relating the
input and output bits of the AES S-box.

In every round of the AES, a parallel block of several instances of the S-
box is applied. But everything else that happens in the encryption/decryption
procedure outside the S-boxes is GF(28)-linear. These observations motivate a
tempting idea. Suppose a plaintext block P and the corresponding ciphertext
block C (or a collection of such pairs) were known. Could we recover the encryp-
tion key K by establishing, and solving, a binary quadratic equation system?

Establishing such a quadratic equation system is easy. The bits of the ex-
panded round keys, which we consider unknowns, are added bitwise (in byte
blocks) to each S-box input. We introduce new variables for the input and out-
put bits of each occurring S-box, and relate them by the quadratic equations
mentioned above. The disadvantage is that this leads to a huge number of bi-
nary variables.

Everything in the AES encryption/decryption algorithm can be described
equally over GF(2) or GF(28) with two exceptions. The first exception is inver-
sion over GF(28); this makes it hard to work over GF(2). However, the inversion
operation would be much easier if we could work over GF(28). But at this point,
the second exception comes into play. The GF(2)-linear mapping L, used to
modify 1/x in the S-box, appears to prevent an algebraic attack with quadratic
equations over GF(28). Indeed, it was the intention of the AES designers to de-
stroy the GF(28)-structure by taking an affine modification of 1/x. However, it
was observed [27] that the GF(2)-linear mappings

L : GF(2n) −→ GF(2n)

are precisely those, which can be written as polynomials in the form

L(x) =
∑

i<n

αix
2n

,

with uniquely determined αi ∈ GF(2n) (i < n). Thus the GF(2)-affine map A

can be represented as A(x) =
∑

i<8 aix
2i

+ c with coefficients in GF(28). This
then allows AES encryption to be represented as a sparse system of quadratic
equations over GF(28) and there are strong reasons for expecting such a system
to be easier to solve than the corresponding system over GF(2) [27].

There is much discussion and speculation about whether such algebraic at-
tacks might ever be relevant. While some very positive views have been ex-
pressed [9], most researchers are more cautious. Without doubt, the need to find
powerful elimination techniques for multi-variate equation systems is a signif-
icant topic in cryptography, though not only in the context of block ciphers.
Some well known basic ingredients such as

– linearization (substitution of monomials by single new variables) and
– Buchberger’s algorithm (computations of Gröbner bases),

8 H. Dobbertin, L. Knudsen, and M. Robshaw

have lead to algorithms such as XL (eXtended Linearization), XSL (eXtended
Sparse Linearization), and also the algorithms F4 and F5 due to Faugère. Various
web-links on this topic are available [9]. Unfortunately the complexity of these
algorithms is closely related to very difficult problems in algebraic geometry and
commutative algebra, and heuristics are very risky. A recent result leading to a
re-evaluation of the XL algorithm exemplifies this [14].

The threat posed by algebraic attacks on the AES is difficult to quantify. As
things stand, there is little belief that the XSL algorithm—which was explic-
itly formulated to work with the AES equation systems—will work as orginally
hoped. That said, there is no intrinsic reason why new variants of XL or XLS
might not work at some stage in the future.

Instead, the AES system of equations over either GF(2) or GF(28) is cur-
rently “best” solved [6] using Gröbner basis techniques such as Buchberger’s
algorithm or F4. However there are many complications and there remains much
to understand. Furthermore, recent experimental work [6] has shown that basic
implementations of these algorithms are limited, and memory limitations thwart
attempts to cryptanalyse even the most basic variants of the AES. However all
is not lost for the cryptanalyst.

One frustrating aspect of the experimental work in [6] is that simple changes
to the way the equation systems are presented can have an unpredictable ef-
fect on the solution time. Furthermore, equal-sized equation systems arising
from two very different AES-variants can take very different amounts of time
to solve. However, if equal-sized equation systems can take different times to
solve, then the solving algorithm would seem to be taking advantage of hidden
structure in one of the cases. Thus it might be hoped that additional research
will lead to more efficient, potentially AES-specific, solution methods in the
future.

There is currently no solid estimation for the effort of an algebraic attack
against the AES. To break AES in practice remains completely elusive. How-
ever for those interested in a challenge, one example in the Mystery Twister
2005 [2] cryptographic challenge is dedicated to an attack on a small scale vari-
ant of the AES [6] with 64-bit keys.

6 Conclusions

The AES is a de facto world standard with an intended lifespan of 30 years and,
as the successor to DES, has much to live up to. Yet, apart from the currently
speculative threat of algebraic attacks, there are few results since standardisation
that would lead anyone to seriously question the practical security of the AES.
Hopefully, by the time of some future AES5 conference, the true extent of block
cipher algebraic cryptanalysis will be much clearer, but at the time of writing
the AES has reached its fifth birthday in very good shape.

The Cryptanalysis of the AES - A Brief Survey 9

References

1. AES web site of ECRYPT:http://www.iaik.tu-graz.ac.at/research/krypto/
AES/

2. Mystery Twister web site: http://www.mystery-twister.com
3. E. Barkan and E. Biham, In how many ways can you write Rijndael?, Proceedings

of Asiacrypt 2002, Lecture Notes on Computer Science, vol. 2501, Springer-Verlag,
Berlin – New York, 2002.

4. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer Verlag, 1993.

5. A. Biryukov, The boomerang attack on 5 and 6-round reduced AES, in these
proceedings, pp. 13–17.

6. C. Cid, S. Murphy and M. Robshaw, Small Scale Variants of the AES,
Proceedings of Fast Software Encryption 2005, Lecture Notes on Com-
puter Science, vol. Springer-Verlag, Berlin – New York, to appear; see
http://www.isg.rhul.ac.uk/∼ccid/publications.htm

7. J.H. Cheon, M. Kim, K. Kim, J.-Y. Lee, and S. Kang, Improved impossible differ-
ential cryptanalysis of Rijndaeland Crypton, In 3rd International Conference on
Information Security and Cryptology (ICISC 2001), volume 2288 of Lecture Notes
in Computer Science 2288, Springer-Verlag, Berlin – New York, 2001, pp. 39–49.

8. K. Chun, S. Kim, S. Lee, S. Sung, and S. Yoon, Differential and linear cryptanalysis
for 2-round SPNs, Information Processing Letters 87, 2003, pp. 277–282.

9. N. Courtois: Is AES a secure cipher? http://www.cryptosystem.net/aes/
10. J. Daemen, L. Knudsen, and V. Rijmen, The block cipher Square, In Fast Soft-

ware Encryption, 4th International Workshop, FSE’97, Haifa, Israel, January 1997,
E. Biham(ed.), Lecture Notes in Computer Science, vol. 1267, Springer-Verlag,
Berlin – New York, 1997, pp. 149–165.

11. J. Daemen and V. Rijmen, AES Proposal: Rijndael. Version 2.0, available via
http://www.crsc.nist.gov.

12. J. Daemen and V. Rijmen, Answers to “New Observations on Rijndael”. Archived
via http://www.crsc.nist.gov.

13. J. Daemen and V. Rijmen, The Design of Rijndael. AES - The Advanced Encryp-
tion Standard, Springer-Verlag, Berlin – New York, 2002.

14. C. Diem, The XL-algorithm and a conjecture from commutative Algebra, Asiacrypt
2004, December 2004, Korea, Lecture Notes in Computer Science, to appear.

15. N. Ferguson, J. Kelsey, B. Schneier, M. Stay, D. Wagner, and D. Whiting, Improved
cryptanalysis of Rijndael, Fast Software Encryption, 7th International Workshop,
FSE 2000, B. Schneier (ed.), New York, April 2000, Lecture Notes in Computer
Science, vol. 1978, Springer-Verlag, Berlin – New York, 2001, pp. 213–230.

16. N. Ferguson, R. Shroeppel, and D. Whiting, A simple algebraic representa-
tion of the AES, Selected Areas in Cryptography, SAC 2001, S. Vaudenay and
A.M. Youssef (editors), Lecture Notes in Computer Science, vol. 2259, Springer-
Verlag, Berlin – New York, 2001, pp. 103–111.

17. H. Gilbert and M. Minier., A collision attack on 7 rounds of Rijndael, 3rd Advanced
Encryption Standard Candidate Conference, National Institute of Standards and
Technology, April 2000, pp. 230–241.

18. S. Hong, S. Lee, J. Lim, J. Sung, and D. Cheon, Provable security against differ-
ential and linear cryptanalysis for the spn structure, Fast Software Encryption,
7th International Workshop, FSE 2000, B. Schneier (ed.), New York, April 2000,
Lecture Notes in Computer Science, vol. 1978, Springer-Verlag, Berlin – New York,
2001, pp. 273–283.

http://www.iaik.tu-graz.ac.at/research/krypto/
AES/
http://www.mystery-twister.com
http://www.isg.rhul.ac.uk/~ccid/publications.htm
http://www.cryptosystem.net/aes/
http://www.crsc.nist.gov
http://www.crsc.nist.gov

10 H. Dobbertin, L. Knudsen, and M. Robshaw

19. L. Keliher, Refined analysis of bounds related to linear and differential cryptanalysis
for the AES these proceedings, pp. 45–60.

20. L. Keliher, H. Meijer, and S. Tavares, New method for upper bounding the max-
imum average linear hull probability for SPNs Advances in Cryptology - EURO-
CRYPT’01, Birgit Pfitzmann(ed.), Lecture Notes in Computer Science, vol. 2045,
Springer-Verlag, Berlin – New York, 2001, pp. 420–436.

21. L. Keliher, H. Meijer, and S. Tavares, Improving the upper bound on the maximum
average linear hull probability for Rijndael, In Selected Areas in Cryptography,
8th Annual International Workshop, SAC 2001 Toronto, Ontario, Canada, August
16-17, 2001, S. Vaudenay and A. M. Youssef (ed.), Lecture Notes in Computer
Science, vol. 2259, Springer-Verlag, Berlin – New York, 2001, pp. 112–128.

22. S. Lucks, Attacking seven rounds of Rijndael under 192-bit keys and 256-bit keys,
Proceedings of the 3rd Advanced Encryption Standard Candidate Conference, Na-
tional Institute of Standards and Technology, April 2000, pp. 215–229.

23. M. Matsui, The First Experimental Cryptanalysis of the Data Encryption Stan-
dard Advances in Cryptology - CRYPTO’94, Yvo Desmedt (ed.), Lecture Notes in
Computer Science, vol. 839, Springer-Verlag, Berlin – New York, 1994, pp. 26–39.

24. M. Minier, A three rounds property of the AES, these proceedings, pp. 18–29.
25. S. Murphy and M. Robshaw, New Observations on Rijndael. August 7, 2000.

Archived via http://www.crsc.nist.gov.
26. S. Murphy and M. Robshaw, Further Comments on the Structure of Rijndael.

August 17, 2000. Archived via http://www.crsc.nist.gov.
27. S. Murphy and M. Robshaw, Essential algebraic structure within the AES, Ad-

vances in Cryptology – CRYPTO 2002, Lecture Notes in Computer Science, vol.
2442, Springer-Verlag, Berlin – New York, 2002, pp. 1-16.

28. National Institute of Standards and Technology: Advanced encryption standard,
FIPS 46-3, US Department of Commerce, Washington D.C., October 1999.

29. National Institute of Standards and Technology: Advanced encryption standard,
FIPS 197, US Department of Commerce, Washington D.C., November 2001.

30. S. Park, S.H. Sung, S. Chee, E.-J. Yoon, and J. Lim, On the security of Rijndael-like
structures against differential and linear cryptanalysis, Advances in Cryptology -
ASIACRYPT 2002, Y. Zheng (ed.), Lecture Notes in Computer Science, vol. 2501,
Springer-Verlag, Berlin – New York, 2002, pp. 176–191.

31. S. Park, S.H. Sung, S. Lee, and J. Lim, Improving the upper bound on the maximum
differential and the maximum linear hull probability for SPN structures and AES,
Fast Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden,
February 2003, T. Johansson (ed.), Lecture Notes in Computer Science, vol. 2887,
Springer-Verlag, Berlin – New York, 2003, pp. 247–260.

32. R.C.W. Phan, Classes of impossible differentials of the advanced encryption stan-
dard, Electronics Letters 38(11), 2002, pp. 508–510.

33. R.C.W. Phan, Impossible differential cryptanalysis of 7-round Advanced Encryp-
tion Standard, Information Processing Letters 91, 2004, pp. 33–38.

34. R.C.W. Phan and M.U. Siddiqi, Generalised impossible differentials of the Ad-
vanced Encryption Standard, Electronics Letters 37(14), 2001, pp. 896–898.

35. H. Raddum, More Dual Rijndaels, these proceedings, pp. 144–150.

http://www.crsc.nist.gov
http://www.crsc.nist.gov

The Boomerang Attack on 5 and 6-Round
Reduced AES�

Alex Biryukov

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10,
B–3001 Heverlee, Belgium

http://www.esat.kuleuven.ac.be/∼abiryuko/

Abstract. In this note we study security of 128-bit key 10-round AES
against the boomerang attack. We show attacks on AES reduced to 5
and 6 rounds, much faster than the exhaustive key search and twice
faster than the “Square” attack of the AES designers. The attacks are
structural and apply to other SPN ciphers with incomplete diffusion.

1 Introduction

In this paper we study security of 128-bit key AES [4] against the boomerang at-
tack [7]. The boomerang attack was developed in 1999 after the AES competition
was already running. This attack sometimes allows to break more rounds than
the conventional differential or linear attacks, especially for the ciphers with few
but carefully designed rounds (for example, see an attack on SAFER++ [2]).

In this paper we show attacks on AES reduced to 5 and 6 rounds. Six round
attack has complexity of 271 data and steps of analysis (measured in 6-round
encryptions). The attack is twice faster than the “Square” attack of the designers
of the AES in terms of time complexity which is a dominant factor, but has
much higher data complexity. The boomerang attack on AES is less efficient
than the partial sum attack [5]. See Table 1 for comparison of our attacks with
the previous results on a 128-bit key AES.

2 Boomerang Attack on SPNs with Incomplete Diffusion

Boomerang attack is a chosen plaintext-adaptive chosen ciphertext attack. It is
an extension of differential cryptanalysis and works on quartets of data (P, P ′),

� This work was supported in part by the Concerted Research Action (GOA) Mefisto-
2000/06 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT. The in-
formation in this document reflects only the author’s views, is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose.
The user thereof uses the information at its sole risk and liability.

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 11–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.esat.kuleuven.ac.be/~abiryuko/

12 A. Biryukov

Table 1. Comparison of our results with previous attacks on AES

Attack Key size Rounds Dataa Typeb Workloadc Memorya

Square attack [4] 128 5 of 10 211 CP 240 211

Square attack [4] 128 6 of 10 232 CP 272 232

Collision attack [6] 128 7 of 10 232 CP 2128 280

Partial sum [5] 128 6 of 10 234.6 CP 244 232

Partial sum [5] 128 7 of 10 2128–2119 CP 2120 264

Imposs. diff. [1] 128 5 of 10 229.5 CP 231 240

Imposs. diff. [3] 128 6 of 10 291.5 CP 2122 2?

Our Boomerang attack 128 5 of 10 239 CP/ACC 239 233

Our Boomerang attack 128 6 of 10 271 CP/ACC 271 233

a Expressed in the number of blocks.
b CP – Chosen Plaintext, ACC – Adaptive Chosen Ciphertext.
c Expressed in equivalent number of encryptions.

(Q,Q′). The attack works when encryption E() can be split into E = E1 ◦ E0,
where E0 is weak in encryption direction and E1 is weak in decryption direction.
We refer the reader to [7] for further details.

In this section we present a generic method of breaking five and six round
substitution-permutation networks (SPNs) using a boomerang distinguisher.
The attacks that we will show will be structural in the sense that they will not
use specific properties of S-boxes or of the mixing layer, but will use only the
fact that diffusion is incomplete (which is the case for many ciphers, including
the AES).

We will describe this attack on an example of Rijndael-like cipher with layers
of 16, 8x8-bit S-boxes, and Rijndael-like diffusion involving ShiftRows and Mix-
Columns (though exact constants in the MixColumns matrix will be irrelevant
to the attack).

The five round attack will be as follows:

1. Prepare a pool of plaintexts {Pi}, i = 0, . . . 232 − 1 which have all possible
values in four bytes (which will appear in the same column before the Mix-
Columns) and arbitrary constant in the other bytes. Encrypt the pool and
obtain a pool of 232 ciphertexts {Ci}.

2. Construct a pool of modified ciphertexts: Di = Ci ⊕∇, where ∇ is a fixed
non-zero difference with only one active S-box (for example, a non-zero dif-
ference in the first byte and zero difference in 15 other bytes).

3. Decrypt the pool {Di} to obtain a pool {Qi} of 232 new plaintexts.
4. Sort the pool {Qi} by the bytes corresponding to eight inactive S-boxes.

Pick only those pairs Qi, Qj which have zero difference in these 8 bytes. If
none found go to step 1.

5. For each of the quartets Pi, Pj , Qi, Qj that pass step 4, guess the 32-bit
key value that enters the four S-boxes corresponding to non-constant bytes.
Using the guessed key value partially encrypt one round and check that

The Boomerang Attack on 5 and 6-Round Reduced AES 13

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

P=2
−13.5

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

��
��
��

��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
��������
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
��������
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

P=1

P=1 P=1

P=1

P=1

P=2 −32

P=2
−22

Fig. 1. Schematic description of a boomerang quartet for Rijndael reduced to five
rounds

resulting difference is in a single active S-box, which is a 22-bit filtering
condition for each pair (Pi, Pj) and (Qi, Qj). This gives a 44-bit condition
in total for both sides of the boomerang in the case of common 4-tuples
of active S-boxes. However with probability half we will have no common
4-tuples, i.e. all the twelve active S-boxes (4 from the (Pi, Pj) pair and 8
from the (Qi, Qj) pair) non-overlapping. We will then pick key-candidates
that are suggested at least twice.

See Figure 1 for a schematic description of the boomerang distinguisher used in
this 5-round attack. The rectangles in the figure denote the layers of S-boxes,
and the gray squares indicate the active S-boxes. Arrows represent the cost of
pattern propagation in terms of probability.

Complexity of the 5-Round Attack. Analysis of the complexity of the at-
tack described above is as follows: Each pool of 232 texts contains 263 pairs with
difference in the four relevant bytes. From these pairs 263/222 = 241 will have a
single active S-box after one round1. After the second round we will have four
active S-boxes. After the 3rd round all bytes will be active. From the bottom up
direction we will have one round crossed with probability one, with a truncated
differential that starts with one active S-box and ends with four active S-boxes.
At this point we need that after the next S-box layer the difference in these four
active S-boxes would be the same. This happens with probability 2−32. Then
we can switch to the last face of the boomerang, where the effect of the mixing
of the 3rd round can then be undone with probability one and we will get four
active S-boxes after the S-box layer of the 3rd round. We will have to pay 2−13.5

1 The chance of going from 4 active S-boxes to one is 4 · 28/232 = 2−22, since we do
not care about the location of the single active S-box.

14 A. Biryukov

in probability for the four active S-box difference to turn into two active S-box
difference after this S-box layer and the MixColumns which is just above it. From
that point we let our truncated differential run freely with probability 1. As a
result we will obtain a new pair of plaintexts with some difference in eight bytes
and zero difference in the other eight bytes. This is our 64 − log(6)-bit filtering
condition for the good boomerang quartets (the − log(6) appears since we do
not fix the places of the two active S-boxes).

We pick about 26 pools in which we will have 241 · 26 · 2−13.5 · 2−32 ≈ 3 good
boomerangs returning back. The average amount of false quartets which satisfy
our initial filtering condition is 263 · 26 · 2−64 · 6 = 192.

In the simplest case when the boomerang returns in the same four bytes as
it was sent we perform a guess of the 32-bit key and check it against two sides of
the boomerang Pi, Pj and Qi, Qj whether in both cases it leads to a single active
S-box after one round. This gives a 44-bit filtration condition which leaves only
the correct key guess with probability 1− 2−12. However with probability 1/2 it
may happen that for the two boomerang pairs active 4-tuples of the output pair
(Qi, Qj) will be different from those of the input pair (Pi, Pj). In this case we
independently guess 32-bits of the key corresponding to the input four bytes for
each pair and leave only those keys that lead to a single active S-box after the
first round. We expect at least two good boomerang quartets in our pools and
thus the correct key would be counted at least twice. Note that we have about 100
noisy pairs (those with non-overlapping 4-tuples) each of which suggests about
4 · 28 candidates for the 32-bit key. That means that we may have a few wrong
keys suggested due to the birthday collisions together with the correct key sug-
gested by the good boomerangs. The same analysis can be performed in parallel
on another 4-tuple to produce few candidates for another 32-bit part of the key.
Knowing a few candidates for at least half of the first subkey we can repeat the at-
tack with much less data and smaller complexity to achieve the full key-recovery.

Total complexity of this 5-round attack is 238 chosen plaintext/adaptive cho-
sen ciphertext queries and 238 time steps which mainly would be spent on en-
crypting and sorting the data. The memory required by the attack is 232 blocks
or 236 bytes.

Extension to 6-Rounds of AES. The attack described above can be extended
by one round at the bottom at the cost of guessing 32-bits of the key of the 6th
round. We double the number of pools from 26 to 27 to get 4-6 good quartets for
better filtration. We expect that at least 2-3 good quartets will have overlapping
4-tuples between the P ’s and the Q’s which provides 2−12 filtration power. Thus
we will get about 232 · 100 · 2−12 ≈ 227 candidates for 64-bit partial key: 32-bits
at the top and 32-bits at the bottom. The correct key will be suggested at least
twice, and the wrong keys would likely be suggested only once, since we are
below the birthday bound for a 64-bit event. Thus we expect that all the wrong
pairs will be filtered out at the key-recovery step. Finally, complexity of this 6
round attack will be 239 chosen plaintexts, 271 adaptively chosen ciphertexts,
the same amount of time steps spent mainly encrypting the texts and 237 bytes
of memory.

The Boomerang Attack on 5 and 6-Round Reduced AES 15

It seems likely that this attack may be converted to break 7-rounds of the
192-bit key AES.

3 Conclusions

We have shown boomerang attacks on 5 and 6 round AES much faster than
exhaustive search. We notice that AES has many truncated differentials with
probability one spanning up to three rounds, however they are quite expensive in
terms of probability when trying to extend them at either end of the boomerang
distinguisher. The attacks presented in this paper are twice more efficient than
the “Square” attack but are less efficient than the partial sum attack. This may
mean that AES has sufficient security margin against the boomerang attacks.
The attacks presented in this paper are structural attacks (i.e. they do not use
specific properties of the underlying cipher) applicable to arbitrary 5-6 round
SPNs with incomplete diffusion. It is an open problem whether the middle-
round gaining trick, for example as used in a recent attack on Safer++ [2] would
be applicable to the AES.

References

[1] E. Biham and N. Keller, “Cryptanalysis of reduced variants of Rijn-
dael,” in Official public comment for Round 2 of the Advanced Encryp-
tion Standard development effort , 2000. Available at http://csrc.nist.gov/

encryption/aes/round2/conf3/papers/35-ebiham.pdf.
[2] A. Biryukov, C. D. Canniére, and G. Dellkrantz, “Cryptanalysis of SAFER++,”

in Proceedings of Crypto’03 (D. Boneh, ed.), Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2003. NES/DOC/KUL/WP5/028. Full version available at
http://eprint.iacr.org/2003/109/.

[3] J. H. Cheon, M. Kim, K. Kim, J.-Y. Lee, and S. Kang, “Improved impossible
differential cryptanalysis of Rijndael and Crypton,” in Proceedings of ICISC’01
(K. Kim, ed.), no. 2288 in Lecture Notes in Computer Science, pp. 39–49, Springer-
Verlag, 2001.

[4] J. Daemen and V. Rijmen, The Design of Rijndael: AES — The Advanced En-
cryption Standard . Springer-Verlag, 2002.

[5] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting,
“Improved cryptanalysis of Rijndael,” in Fast Software Encryption, FSE 2000
(B. Schneier, ed.), vol. 1978 of Lecture Notes in Computer Science, pp. 213–230,
Springer-Verlag, 2001.

[6] H. Gilbert and M. Minier, “A collision attack on seven rounds of Rijndael,” in Pro-
ceedings of the Third AES Candidate Conference, pp. 230–241, National Institute
of Standards and Technology, Apr. 2000.

[7] D. Wagner, “The boomerang attack,” in Fast Software Encryption, FSE’99 (L. R.
Knudsen, ed.), vol. 1636 of Lecture Notes in Computer Science, pp. 156–170,
Springer-Verlag, 1999.

http://csrc.nist.gov/
encryption/aes/round2/conf3/papers/35-ebiham.pdf
http://eprint.iacr.org/2003/109/

A Three Rounds Property of the AES

Marine Minier

Université Paris 8 - INRIA,
Projet CODES,

Domaine de Voluceau-Rocquencourt,
B.P. 105, 78 153 Le Chesnay Cedex - France

marine.minier@inria.fr

Abstract. Rijndael is the new Advanced Encryption Standard designed
by V. Rijmen and J. Daemen and chosen as AES by the NIST in October
2000. Surprisingly, the number of cryptanalyses against this algorithm is
very low in depict of many efforts furnished to break it.

This paper presents a stronger property than the one used in the Bot-
tleneck Cryptanalysis [GM00]. Unfortunately, this property could not be
used to mount a more efficient cryptanalysis than the Bottleneck Attack
because it is not possible to improve the complexity of the four rounds
distinguisher used in this attack. So, the complexity of the Bottleneck
Attack (recalled in this paper) is always 2144 AES executions using 232

plaintexts.

1 Introduction

In the initial article describing Rijndael [DR98], V. Rijmen and J. Daemen wrote :
“For the different block lengths of Rijndael, no extensions to 7 rounds [of a known
attack] faster than an exhaustive key search have been found”. Of course, since
1998, some attacks reached this aim. In the case of key length equal to 192 or
256 bits, Ferguson et al., in [FKS+00], presented an improvement of the Square
Attack [DR98] permitting to cryptanalyse an eight-rounds version of Rijndael
with a complexity equal to 2204 executions and 2128 − 2119 plaintexts. S. Lucks
presented in [Luc01] an other improvement of the Square Attack using a par-
ticular weakness of the key schedule against a seven-rounds version of Rijndael
where 2194 executions are required for a number of chosen plaintexts equal to
232. H. Gilbert and M. Minier in [GM00] also presented an attack against a
seven-rounds version of Rijndael (known under the name of “Bottleneck At-
tack”) using a stronger property on three inner rounds than the one used in the
Square Attack in order to mount an attack against a seven-rounds version of
Rijndael requiring 2144 cipher executions with 232 chosen plaintexts. In the case
of a 128 bits key lenght, for a seven-rounds version of Rijndael, only two attacks
are known. The first is due to Ferguson et al. in [FKS+00] and requires 2120

cipher executions for a number of plaintexts equal to 2128 − 2119. The second
one, due to H. Gilbert and M. Minier in [GM00], is a marginal speed up of the
128-bits key search requiring 232 chosen plaintexts.

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 16–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Three Rounds Property of the AES 17

During the two last years, some new results was published concerning essen-
tially the algebraic structure of the AES S-box. Those results use a potential
weakness of the AES : there is only one non-linear operation in the AES round
function, the inversion in the Galois Field GF (28). So, it is possible to derive
this inversion application into quadratic equations that are true with probability
one. In [CP02], N. Courtois and J. Pieprzyk presents the quadratic equations
given by the AES S-box on GF (2). The authors use those quadratic equations
to express all input/output bytes of each round and generate a huge system to
solve. They apply the XL and the XSL algorithms to obtain the solutions of the
system generated. An other article presented at Crypto’02 by S. Murphy and
M. Robshaw [MR02] also describe the algebraic structure of the AES S-box and
the quadratic equations of this one but on the field GF (256).

The aim of this paper is to present a ”new property” on three inner AES
rounds stronger than the one used in the Bottleneck Attack described in [GM00].
This ”new property” is very similar to the bottleneck property but as now does
not permit to improve any attack due to the same number of dependent bytes
implied in the four rounds distinguisher. This property is, however, stronger
because the number of deduced collisions is bigger.

This paper is organized as follow: Section 2 provides a brief outline of the
AES. Section 3 describes the 3-rounds property and the 4-rounds distinguisher
used in the Bottleneck Attack. Section 4 presents the ”new property”. Section 5
describes, one more time, the bottleneck attack on seven rounds of the AES for
a 128 bits block and a 192 or 256 bits key. Section 6 concludes this paper.

2 A Brief Outline of the AES

The AES is a symmetric block cipher using a parallel and byte-oriented structure.
The key length and the block length are variable and are equal to 128, 192 or
256 bits. The current block is represented by a matrix of bytes. We focus from
now on a 128-bits block represented by a 4 × 4 matrix of bytes :

B =

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

The number of rounds nr is also variable : 10, 12 or 14, depending on the
block length and on the key length. The key schedule derives nr + 1 128-bits
round keys k0 to knr from the master key k of variable length.

The round function, repeated nr − 1 times, is composed of four basic trans-
formations, all linear except the first one :

– SubBytes : a bytewise transformation that applies on each byte of the current
block an 8-bits to 8-bits non linear S-box (that we call S) composed by the
inversion in the Galois Field GF (256) and by an affine transformation.

18 M. Minier

– ShiftRows: a linear mapping that rotates on the left all the rows of the
current matrix (0 for the first row, 1 for the second, 2 for the third and 3 for
the fourth)

– MixColumn: another linear mapping represented by a 4 × 4 matrix chosen
for its good properties of diffusion (see [DR02]). Each column of the input
matrix is multiplied by the MixColumns matrix in the Galois Field GF (256)
that provides the corresponding column of the output matrix. We denote by
ai,j for i and j from 0 to 3, the coefficients of the MixColumns matrix.

– AddRoundKey : a simple x-or operation between the input matrix and the
subkey of the current round denoted by ki.

Those nr − 1 rounds are surrounded at the top by an initial key addition
with the subkey k0 and at the bottom by a final transformation composed by a
call to a round function where the MixColumns operation is omitted.

3 The Three-Rounds Property and the Four-Rounds
Distinguisher

We now describe the three inner rounds property used in [GM00] and the four
inner rounds distinguisher deduced.

3.1 The Three-Rounds Property

We note Y, Z, R and S the different intermediate input/output states of three
consecutive inner rounds as noticed in figure 1.

We focus from now on an input block Y with its three left columns fixed.
The most at right column, marked on figure 1, is composed by one active byte
y which takes all possible values between 0 and 255 and by a triplet c equal to
(c0, c1, c2) of constant bytes which will represent a parameter. More formally, we
note Y0,3 = y, Y1,3 = c0, Y2,3 = c1 and Y3,3 = c2.

In the same way, we use the following notations for some particular bytes
marked on figure 1. So, we denote Z0,3 = z0, Z1,3 = z1, Z2,3 = z2, Z3,3 = z3,
R0,3 = r0, R1,0 = r1, R2,1 = r2, R3,2 = r3 and S0,3 = s.

So, let us analyze how the Z, R and S particular bytes z0 to z3, r0 to r3 and
s can be seen as c-dependent and key-dependent functions of the y input byte.

– After the first round, the y → zc
0[y] one to one function is independent from

the value of the c triplet and is entirely determined by one key byte, due
to the effect of the ShiftRows operation. The same property holds for z1, z2

and z3. So, the quartet of bytes (z0, z1, z2, z3) is a function of the y values
entirely determined by four key-dependent bytes. More formally, there exists
4 key-dependent constants k1,i,0 for i = 0..3 such that

zi = ai,0 · S(y) + k1,i,0 , i = 0..3

where S represents the AES S-box.

A Three Rounds Property of the AES 19

second round
 4 key and c−dep. bytes

third round
1 key−dep. byte

SubBytes
ShiftRows

AddRoundKey
MixColumns

SubBytes
ShiftRows

AddRoundKey
MixColumns

SubBytes
ShiftRows

AddRoundKey
MixColumns

first round
4 key−dependent bytes

y

s

c0

c2
c1

S(y)

S(c0)

S(c1)

S(c2)z0
z1
z2
z3

r0
r1

r2
r3

S(z0)

S(z1)

S(z2)

S(s3)

S(r0)

S(r1)

S(r2)

S(r3)

Y

Z

R

S

Fig. 1. The Three Inner Rounds Property

– After the second round, each of the four bytes ri[y], i = 0..3 is a one to one
function of the corresponding zi[y] byte entirely determined by one single
unknown byte that is entirely determined by c and the key. The quartet of
bytes (r0, r1, r2, r3) of R marked on figure 1 is a function of (z0, z1, z2, z3)
entirely determined by four key-dependent and c-dependent bytes.

– After the third round, the s byte marked on figure 1 can be expressed as
a function of the (r0, r1, r2, r3) quartet of bytes entirely determined by one
key-dependent byte depending on the subkey of the round.

In summary, the s byte depends on only 5 key-dependent bytes and 4 c-dependent
bytes. More formally, the partial function sc[y] is entirely determined by a re-
duced number of unknown bytes. We can exploit this restricted dependency by
constructing collisions on all the y values for distinct values of the c triplet. In
other words :

Property 1. There exists c′ and c′′ two triplets of constants such as for all y
values between 0 and 255, we have : sc′ [y] = sc′′ [y]. In this case, we say that we
have a collision.

20 M. Minier

In fact, the number of obtained collisions is 256, one for each y value.
Under the heuristic assumption that the unknown constants depending on

the key and on the c triplet behave as random functions, then, by the birthday
paradox, if we take a C set of 216 c triplets, the probability to obtain a collision
is non negligible.

This property can be extended to mount an efficient four-rounds distinguisher
by adding a fourth round at the bottom of the three previous rounds.

3.2 The Four-Rounds Distinguisher

We consider the deciphering of the fourth round in the following way (see
figure 2) :

S

s

t0
t1
t2
t3

ShiftRowsSubBytes

MixColumnsAddRoundKey

−1

−1

−1

−1

τ+δ

T

Fig. 2. The Extension to a Fourth Round

We denote by T the output block after the fourth round and we denote by
(t0, t1, t2, t3) the last column of T marked on the figure 2. We can express the
byte s as s = S−1[(0E · t0 + 0B · t1 + 0D · t2 + 09 · t3) + δ] where S represents
the AES S-box and δ a constant depending on the subkey of the fourth round.
We have the following property :

Property 2. There exists a collision between sc′ [y] and sc′′ [y] if and only if for
all y values between 0 and 255, we have :

0E · tc′0 + 0B · tc′1 + 0D · tc′2 + 09 · tc′3 = 0E · tc′′0 + 0B · tc′′1 + 0D · tc′′2 + 09 · tc′′3 .

To simplify the notations we denote 0E · tc0 + 0B · tc1 + 0D · tc2 + 09 · tc3 by τ c[y].
τ c[y] is a function of y entirely determined by 6 unknown bytes depending on
the key and by 4 additional unknown bytes depending on both the key and the
c values.

The following four inner rounds distinguisher is tested on a limited number
of y values, a set Λ of 16 values is sufficient, the number of false alarms being
negligible in this case.

A Three Rounds Property of the AES 21

– Select a C set of about 216 c triplet values and a subset of {0 · · · 255}, say
for instance a Λ subset of 16 y values.

– For each c triplet value, compute the Lc = (0E ·tc0+0B·tc1+0D·tc2+09·tc3)y∈Λ.
– Check wether two of the above lists, Lc′ and Lc′′ are equal.

The computations made at the secund step of this distinguisher (16 linear
combinations of the outputs) represent substantially less than one single AES
execution.

This four-rounds distinguisher requires about 220 chosen inputs Y, and since
the collision detection computations (based on the analysis of the corresponding
T values) require less operations than the 220 4-inner rounds computations, the
complexity of the distinguisher is less than 220 AES encryptions for a probability
of success equal to 1/2 (due to the birthday paradox).

4 The ”New Three-Rounds Property”

We describe, in this section, a ”new” three-rounds property derived from the
previous one that permits to obtain an higher number of collisions. For more
clarity, we use the same notation than the previous one. In this ”new property”,
the number of initial active bytes in the last Y column has been modified.
Here, we define two active bytes y and c0 instead of one (the y byte) before.
In this case, the c triplet becomes a pair of bytes defined by cp = (c1, c2). Let
us explain how those two active bytes cross three inner rounds (see figure 3) :

– After the first round, the y → z
cp

0 [y, c0] one to one function is independent
from the value of the cp triplet and is entirely determined by one key byte,
due to the effect of the ShiftRows operation. The same property holds for
z1, z2 and z3. So, the quartet of bytes (z0, z1, z2, z3) is a function of the
y and c0 values entirely determined by four key-dependent bytes.

– After the second round, each of the four bytes ri[y, c0], i = 0..3 is a one to
one function of the corresponding zi[y, c0] byte entirely determined by one
single unknown byte that is entirely determined by cp and the key. The
quartet of bytes (r0, r1, r2, r3) of R marked on figure 3 is a function of
(z0, z1, z2, z3) entirely determined by four key-dependent and c-dependent
bytes.

– After the third round, the s byte marked on figure 3 can be expressed
as a function of the (r0, r1, r2, r3) quartet of bytes entirely determined by
one key-dependent byte depending on the subkey of the round.

As in the section 3.1, we can deduce that the s byte at the end of the third
round is a function of y and c0 entirely determined by 5 key-dependent bytes
and 4 key-dependent and cp-dependent bytes. We can also exploit this restricted
dependency between the s byte and the two active bytes y and c0 by defining a
new kind of collision :

22 M. Minier

second round
 4 key and c−dep. bytes

third round
1 key−dep. byte

SubBytes
ShiftRows

AddRoundKey
MixColumns

SubBytes
ShiftRows

AddRoundKey
MixColumns

SubBytes
ShiftRows

AddRoundKey
MixColumns

first round
4 key−dependent bytes

y

s

c0

c2
c1

S(y)

S(c0)

S(c1)

S(c2)z0
z1
z2
z3

r0
r1

r2
r3

S(z0)

S(z1)

S(z2)

S(s3)

S(r0)

S(r1)

S(r2)

S(r3)

Y

Z

R

S

Fig. 3. The Other Three Inner Rounds Property

Property 3. There exists c′p and c′′p two pairs of constants such as for all y and
c0 values between 0 and 255, we have : sc′p [y, c0] = sc′′p [y, c0]. In this case, we
say that we have a collision.

The number of obtained collisions is (256)2, one for each y and c0 value.
This ”new” property is due to the very symmetric and parallel structure of

the AES in the byte position level.
We verify the veracity of this property by computer experiments.

Unfortunately, this property could not be used to mount a more efficient four-
rounds distinguisher than the one presented in section 3.2. Indeed, the number
of cp pairs used in the distinguisher and the probability of success depend on
only the four intermediate cp-dependent bytes. The number of such bytes is the
same for the property of the section 3.1 and the ”new” one in depict of the bigger
number of obtained collisions.

So, we do not find a more efficient distinguisher that permits to use this
stronger property and to improve an attack. We use the same distinguisher than
the one described in section 3.2.

A Three Rounds Property of the AES 23

5 The Bottleneck Attack on a Seven-Rounds Version of
the AES with Key Lengths Equal to 192 and 256 Bits
Using 232 Chosen Plaintexts

Even if the new property could not be used to improve the four-rounds
distinguisher described in section 3.2 and so the bottleneck attack, we give a
short description of this known cryptanalysis. So, we are going to recall, in
this section, how the four inner rounds distinguisher of the section 3.2 could
be extended to mount a seven-rounds attack on the AES with a 192 or a 256
bits key.

The seven-rounds version of the AES is depicted in figure 4. The seventh
round is here considered as the last round (i.e. it doesn’t contain the Mix-
Columns operation). X represents a plaintext block and V the corresponding
ciphertext. The four previous rounds are surrounded at the top by one initial
round X → Y, composed by an initial key addition followed by one round
and at the bottom by two final rounds : T → U and U → V.

The attack method is a combination between the four-rounds distinguisher
presented in section 3.2 and an exhaustive search of some keybytes or combi-
nation of keybytes of the initial and the two final rounds. The attack described
here uses the fact that, in the equations provided by the four-rounds distin-
guisher, there is a variables separation in terms which involve one half of
the 2 last rounds key bytes and terms which involve a second half of the 2
last round key bytes in order to save a 280 factor in the exhaustive search
complexity.

5.1 Extension at the Beginning

The distinguisher of section 3.2 could be extended by one round at the beginning
using the same method than the one proposed by the authors of Rijndael in the
initial paper [DR98] and first applied to the algorithm Square.

The main idea used here is that if, in the initial key addition, the 4 key bytes
(denoted by kini = (k0,0, k0,1, k0,2, k0,3)), added with the four bytes (x0, x1, x2, x3)
of the plaintext X marked in figure 3, are known then it is possible to partition
the 232 plaintexts into 224 subsets of 28 plaintexts values satisfying the condi-
tions of section 3.2 (i.e. (c0, c1, c2) stay a triplet of constants and y is the active
byte).

So, if all the 232 possible plaintexts are encrypted for all the possible values of
the (x0, x1, x2, x3) quartet (the other 12 bytes being taken equal to a constant),
the 232 plaintexts could be partitioned, according to the value of kini, into 224

subsets of 28 plaintexts according the values of y (which are known up to an
unknown constant linked with the first round key byte). Those subsets are such
that the y byte takes all possible values between 0 and 255 and the c = (c0, c1, c2)
triplet is composed of three constant values, different and unique for each of the
224 subsets, the 12 other Y bytes are constant and all those constant values are
the same for all subsets.

Those 232 plaintexts give the corresponding 232 ciphertexts V .

24 M. Minier

...

x0
x1

x2
x3

y

c0
c1
c2

t0
t1
t2
t3

D
istinguisher on 4 rounds

Y

X

T

V

U

Fig. 4. Attack on Seven Rounds of the AES

5.2 Extension at the End

Each of the t0, t1, t2, t3 bytes can be expressed as a function of four bytes of the
V ciphertext and five unknown key bytes (i.e. four of the final round subkey and
one linear combination of the penultimate round subkey). So, in order to improve
the key exhaustive search on the two last rounds, the equations of collisions are
”cuted” in two parts as follows :

A Three Rounds Property of the AES 25

τ c′
1 = 0E · tc′0 + 0B · tc′1 and τ c′

2 = 0D · tc′2 + 09 · tc′3
With this notation the equation of collision τ c′ = τ c′′ described in property 2

could be expressed as τ c′
1 + τ c′

2 = τ c′′
1 + τ c′′

2 , i.e. τ c′
1 + τ c′′

1 = τ c′
2 + τ c′′

2 . τ1 depends
on t0 and t1 and τ2 depends on t2 and t3. Now, due to the fact that the last
round of the AES does not contain the MixColumns operation, t0 and t1 could
be expressed, as shown on figure 3, as a function of 8 ciphertext bytes and 10 key
bytes of the two last rounds denoted by kτ1 . In the same way, t2 and t3 depend
on 8 ciphertext bytes and on 10 key bytes of the two last rounds denoted by kτ2 .

This remark permits to share in two parts the key exhaustive search and to
improve the attack on a seven rounds-version of the AES by a factor 280.

5.3 Outline of the Attack

An efficient exhaustive search of the kini, kτ1 and kτ2 keys could be performed
in the following way:

First step :
Cipher the 232 chosen plaintexts for all possible values of the quartet
(x0, x1, x2, x3).

Second step :
For kini from (0,0,0,0) to (255,255,255,255) do

Partition the (256)4 chosen plaintexts
into (256)3 Λc sets according the value of the triplet c
Choose into those (256)3 Λc sets 216 values of c
For each value of the (c′, c′′) pair do

For kτ1 from (0, · · · , 0) to (255, · · · , 255) do
Compute the values of (τ c′

1 ⊕ τ c′′
1)y=0···15 from the ciphertexts

Put them in a table Tkini,c′,c′′ [kτ1]
End For
For kτ2 from (0, · · · , 0) to (255, · · · , 255) do

Compute the values of (τ c′
2 ⊕ τ c′′

2)y=0···15 from the ciphertexts
Look in the table Tkini,c′,c′′ [kτ1] if the same values appear
If yes, verify the same computation for all the y values

If equality for all y values, return (kini, kτ1 , kτ2)
Else continue
End If

End For
End For

End For

Since the above procedure tests whether the exist collisions inside a random
set of 2562 of the 2564 possible sc[y] functions, the probability of the procedure
to result in a collision, and thus to provide kini, kτ1 and kτ2 is high (say about
1/2). In other words, the success probability of the attack is about 1/2.

The first step could be made independently and requieres 232 chosen plain-
texts and 232 AES executions.

26 M. Minier

The complexity of the secund step is about 2144 operations less expensive than
AES executions. Its probability of success is about 1/2. This attack provides 20
bytes of information on the last and penultimate key values.

5.4 How to Improve this Attack Using the Lucks’ Property of the
Key Schedule for a 192 Bits Key

We can improve, by using the particular property of the key schedule described
by S. Lucks in [Luc00], the complexity of the attack by a little factor in the
case of a key length equal to 192 bits. Indeed, the attack presented by S. Lucks
permits to limit the key exhaustive search to only 8 kτ2 bytes instead of the 10
initial bytes because the knowledge of the two first columns of the last subkey
determines completely, taking into account the effect of the last ShiftRow, the
two others bytes of the penultimate subkey that compose kτ2 .

6 Conclusion

We have shown in this paper that there exists a strong collision property on
three inner AES rounds due to some partial byte oriented functions induced by
the AES cipher. This property is stronger than the one used in the bottleneck
attack even if this new bottleneck property could not be extend in a better four
rounds distinguisher that the one used in the known attack.

Maybe, there is a better way to exploit this new restricted dependency but
we do not find how to extend it.

References

[AES99] http://www.nist.gov/aes
[CP02] N. Courtois and J. Pieprzyk, ”Cryptanalysis of Block Ciphers with Overde-

fined Systems of Equations”. In Asiacrypt’02, Queenstown, New Zealand,
Lecture Notes in Computer Science 2501, Springer-Verlag, 2002.

[DR98] J. Daemen, V. Rijmen, ”AES Proposal : Rijndael”, The First Advanced
Encryption Standard Candidate Conference, N.I.S.T., 1998.

[DR02] J. Daemen, V. Rijmen, The Design of Rijndael. Springer-Verlag, 2002.
[FKS+00] N. Ferguson, J. Kelsey, B. Shneier, M. Stay, D. Wagner and D. Whit-

ing, ”Improved Cryptanalysis of Rijndael”. In Fast Software Encryption’00,
New York, United State, pp. 213-230. Lectures Notes in Computer Science
1978, Springer-Verlag, 2000.

[GM00] H. Gilbert, M. Minier, ”A Collision Attack on 7 rounds of Rijndael”. In The
Third Advanced Encryption Standard Candidate Conference. N.I.S.T., 2000.

[Luc00] S. Lucks, ”Attackng Seven Rounds of Rijndael Under 192-bit and 256-bit
Keys”. In The Third Advanced Encryption Standard Candidate Conference.
N.I.S.T., 2000.

[MR02] S. Murphy and M. Robshaw, ”Essential Algebraic Structure Within the
AES”. In Crypto’02, Santa Barbara, United State, Lectures Note in Com-
puter Science 2442, Springer-Verlag, 2002.

DFA on AES

Christophe Giraud

Oberthur Card Systems,
25, rue Auguste Blanche, 92 800 Puteaux, France

c.giraud@oberthurcs.com

Abstract. In this paper we describe two different DFA attacks on the
AES. The first one uses a fault model that induces a fault on only one bit
of an intermediate result, hence allowing us to obtain the key by using
50 faulty ciphertexts for an AES-128. The second attack uses a more
realistic fault model: we assume that we may induce a fault on a whole
byte. For an AES-128, this second attack provides the key by using less
than 250 faulty ciphertexts.

If we extend our hypothesis by supposing that the attacker can choose
the byte affected by the fault, our bit-fault attack requires 35 faulty ci-
phertexts to obtain the secret key and our byte-fault attack requires only
31 faulty ciphertexts.

Keywords: AES, DFA, side-channel attacks, smartcards.

1 Introduction

Since Boneh, Demillo and Lipton introduced a cryptanalytic attack in Septem-
ber 1996 based on the fact that errors may be induced on smartcards during the
computation of a cryptographic algorithm to find the key [6], many papers have
been published on this subject. Boneh et al. succeeded in breaking an RSA CRT
with both a correct and a faulty signature of the same message. Lenstra then
improved their attack [9] by finding one of the factors of the public modulus
using only one faulty signature of a known message. In October 1996, Biham
and Shamir published an attack on secret key cryptosystems [4] entitled Differ-
ential Fault Analysis (DFA). In 2000, Biehl, Meyer and Müller presented a paper
describing two types of DFA attacks on elliptic curve cryptosystems [3] which
were later refined by Ciet and Joye [7].

DFA is frequently used nowadays to test the security of cryptographic smart-
cards applications, especially those using the DES. On the 2nd October 2000,
the AES was chosen to be the successor of the DES and, since then, it is used
more and more in smartcards applications. So it seems interesting to investigate
what is feasible on the AES by using DFA. Unfortunately, the DFA attack on
symmetric cryptosystems proposed by Biham and Shamir [4] does not work on
the AES. This is why we work to find a way to attack the AES by using DFA.

On a smartcard, a fault may be induced by its owner in many ways, such as
power glitch, clock pulse or radiation of many kinds (laser, etc...). These external

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 27–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 C. Giraud

interventions may induce a fault, but we do not know the real impact on the
computation inside the card. This is why, in this paper, we use two types of fault
models. The first fault model assumes that the fault occurs on only one bit of a
temporary result. Of course such a fault may be difficult to induce in practice,
so the second fault model assumes that the induced fault may change a whole
byte. The first fault model is the same as the one used in [3, 4, 6] and was put
into practice in 2002 by Skorobogatov and Anderson [13].

In the course of this paper, we describe the AES algorithm before looking
at a DFA attack on the AES by using our first fault model. This attack allows
us to find the AES-128 key by using 50 faulty ciphertexts. We then explain a
more practical DFA attack on an AES-128 by using our second fault model. This
attack allows us to find the key by using less than 250 faulty ciphertexts. Finally
we present the second attack on a real smart card from a practical point of view.

2 AES

In the rest of the paper, we will use the following notations:

– we denote by M the plaintext and by K the AES key,
– M i denotes the temporary cipher result after the ith round and M i

j the jth

byte of M i,
– Ki denotes the ith AES round key and Ki

j the jth byte of Ki,
– C denotes the correct ciphertext and Cj the jth byte of C,
– D denotes a faulty ciphertext and Dj the jth byte of D.

The following section gives a general description of the AES. For more infor-
mation, the reader can refer to [11, 8].

2.1 General Description

The AES algorithm is capable of encrypting or decrypting data blocks of 128
bits by using cryptographic keys of 128, 192 or 256 bits.

The AES key scheduling provides Nr + 1 round keys. The number of rounds
Nr is dependent on the key length as shown in the following table:

Key length Number of Rounds
AES-128 128 10
AES-192 192 12
AES-256 256 14

A 16-byte temporary result is represented as a two-dimensional array of bytes
consisting of 4 rows and 4 columns. For example, M i = (M i

0, ...,M
i
15) is repre-

sented by the following array:

DFA on AES 29

Round

Round

Final Round

C

M

Round Key K
0

Round Key K
1

Round Key K
Nr-1

Round Key K
Nr

Fig. 1. General structure of AES

M i
0 M i

4 M i
8 M i

12

M i
1 M i

5 M i
9 M i

13

M i
2 M i

6 M i
10 M i

14

M i
3 M i

7 M i
11 M i

15

2.2 A Round

The Round function is composed of 4 transformations: SubBytes (SB), ShiftRows
(SR), MixColumns (MC) and a bit-per-bit XOR with a round key. The Final
Round of the AES is composed of the same functions as a classical Round except
that it does not include the MixColumns transformation.

SubBytes. This transformation is a non-linear byte substitution and operates
on each input byte independently. So, we apply the substitution table (S-box)
on each byte of the input to obtain the output.

ShiftRows. The rows of the temporary result are cyclically shifted over differ-
ent offsets. Row 0 is not shifted, Row 1 is shifted over 1 byte, Row 2 is shifted
over 2 bytes and Row 3 is shifted over 3 bytes.

MixColumns. Here, the columns of the temporary result are considered as
polynomials over F28 and multiplied modulo x4 + 1 with a fixed polynomial
a(x) = 03 ∗ x3 + 01 ∗ x2 + 01 ∗ x + 02.

Notice that if we change a byte of the input of SubBytes or of ShiftRows, it
will change one byte of the output. But for the MixColumns transformation,
changing a byte of the input induces a modification of four output bytes.

30 C. Giraud

2.3 Key Scheduling

The Key Scheduling generates the round keys from the AES key K by using 2
functions: the Key Expansion and the Round Key Selection.

Key Expansion. This function computes from the AES key, an expanded key
of length equal to the message block length multiplied by the number of rounds
plus 1.
The expanded key is a linear array of 4-byte words and is denoted by EK[4 ∗
(Nr + 1)] where Nr is the number of rounds. If we denote by Nk the key length
in words, the key expansion is described in the following pseudo code:
KeyExpansion(byte Key[4 ∗ Nk], word EK[4 ∗ (Nr + 1)])

{
word temp;

for (i = 0 ; i < Nk ; i + +)

EK[i] = (Key[4 ∗ i], Key[4 ∗ i + 1], Key[4 ∗ i + 2], Key[4 ∗ i + 3]);

for (i = Nk ; i < 4 ∗ (Nr + 1) ; i + +)

temp = EK[i − 1];

if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) ⊕ Rcon[i/Nk];

else if ((Nk > 6) and (i mod Nk = 4))

temp = SubWord(temp);

EK[i] = EK[i − Nk] ⊕ temp;

}
where:

– SubWord() is a function that applies the AES S-box at each byte of the
4-byte input to produce an output word,

– RotWord() is a cyclic rotation such that a 4-byte input (a, b, c, d) produces
the 4-byte output (b, c, d, a),

– the round constant word array, Rcon[i], is defined by Rcon[i] = (xi−1, {00},
{00}, {00}) with xi−1 being powers of x (x is denoted as {02}) in the field
F28 .

Round Key Selection. This routine extracts the 128-bit round keys from the
Expanded Key.

Example of Key Scheduling for an AES-128.

AES Key: K

Expanded Key: EK0 EK1 EK2 EK3 EK4 EK5 EK6 EK7 ...
Round Keys: Round Key 0 Round Key 1 ...

DFA on AES 31

where

– (EK0, ..., EK3) is the 128-bit AES key K,
– EK4 = EK0 ⊕ SubWord(RotWord(EK3)) ⊕ Rcon[1],
– EK5 = EK1 ⊕ EK4,
– EK6 = EK2 ⊕ EK5,
– EK7 = EK3 ⊕ EK6, ...

3 Bit-Fault Attack

In this section, by using a DFA attack where a fault occurs on only one bit of
the temporary cipher result at the beginning of the Final Round, we show how
to obtain the entire last round key, i.e. the AES key for an AES-128. For more
information about this fault model, the reader can refer to [13].

For the sake of simplicity, we describe the attack on an AES using a 128-bit
key.

Round 9 Round 10

Key Scheduling

MC o SR o SB SR o SB

Key Scheduling K
10

K
8

K
9

M
8

M
9

C

Fig. 2. The last rounds of an AES-128

By definition, we have

C = ShiftRows(SubBytes(M9)) ⊕ K10 (1)

Let us denote by SubByte(M i
j) the result of the substitution table applied on

the byte M i
j and by ShiftRow(j) the position of the jth byte of a temporary

result after applying the ShiftRows transformation.
So, we have from (1)

CShiftRow(i) = SubByte(M9
i) ⊕ K10

ShiftRow(i), ∀i ∈ {0, ..., 15} (2)

If we induce a fault ej on one bit of the jth byte of the temporary cipher result
M9 just before the Final Round, we obtain a faulty ciphertext D where:

DShiftRow(j) = SubByte(M9
j ⊕ ej) ⊕ K10

ShiftRow(j) (3)

and for all i ∈ {0, ..., 15}\{j}, we have:

DShiftRow(i) = SubByte(M9
i) ⊕ K10

ShiftRow(i) (4)

So, if there is no induced fault on the ith byte of M9, we obtain from (2) and (4)

CShiftRow(i) ⊕ DShiftRow(i) = 0 (5)

32 C. Giraud

and if there is an induced fault on M9
j , we have from (2) and (3)

CShiftRow(j) ⊕ DShiftRow(j) = SubByte(M9
j) ⊕ SubByte(M9

j ⊕ ej) (6)

Firstly, we determine ShiftRow(j) which is the position of the only non-zero
byte of C ⊕ D and we thus obtain j. We then use a counting method in order
to find M9

j : we guess the single bit fault ej and we find a set of possible values
for M9

j which verify (6). For each of these values, we increase the corresponding
counter by 1. With another faulty ciphertext, the right value for M9

j is expected
to be counted more frequently than any wrong value, and can thus be identified.
Then we iterate the previous process to obtain all the other bytes of M9.

Now, as we know the value of the ciphertext C and the value of M9, we can
easily obtain the last round key K10 from the formula (1) and consequently the
AES key K by applying the inverse of the Key Scheduling to K10.

By using 3 faulty ciphertexts with faults induced on the same byte of M9,
we have a 97% chance of having one value left for this byte (cf. appendice A).
So, it is possible to obtain the 128-bit AES key by using less than 50 faulty
ciphertexts.

This attack operates independently on each byte, so if we succeed in inducing
a fault on only one bit on several bytes of M9, we reduce the number of faulty
ciphertexts required to obtain the key.

We notice that this attack also operates on the AES-192 and on the AES-256.
In such cases, we obtain the last round key, i.e. the security of the AES-192 is
reduced from 24 to 8 bytes and the security of the AES-256 is reduced from 32
to 16 bytes.

This attack is powerful but requires inducing a fault on only one bit at the
time of a precise event (i.e. at the beginning of the last round) which may be
difficult in practice.

4 A Second Type of DFA Attack on the AES-128

This DFA attack uses the fault model based on inducing a fault which may
change a whole byte of a temporary result. This attack, which only works on an
AES using a 128-bit key, is divided into 3 steps :

1. we obtain the last 4 bytes of K9 by exploiting the faulty ciphertexts obtained
when a fault is introduced on K9, just before the computation of K10,

2. we obtain another 4 bytes of K9 by exploiting the faulty ciphertexts obtained
when a fault is introduced on K8, just before the computation of K9,

3. finally, we obtain the AES key K by exploiting the faulty ciphertexts ob-
tained by introducing a fault on M8 before entering Round 9 and by using
the 8 bytes of K9 disclosed in steps 1 and 2.

In smartcard implementations, each round key is computed on-the-fly. In the
following section, “attack on Ki” means that the correct ith round key has been
used for the cipher and that a fault has been induced on this round key before
computing the i + 1th round key which is a faulty round key.

DFA on AES 33

4.1 DFA Attack on K9

We suppose that we know both the correct ciphertext C and a faulty ciphertext
D of the same plaintext M and that the fault occurs on one of the bytes of
K9 just before computing K10 as shown in figure 3, where the shaded squares
represent the bytes affected by the fault.

We want the fault to occur on one of the last 4 bytes of K9. In that case,
two of the last 4 bytes of the faulty ciphertext will be different from those of the
correct ciphertext. We must hence check if this condition is true: if it is not, we
abandon this faulty ciphertext and we generate another faulty ciphertext with
a fault on K9 and we test it again.

Round 9 Round 10

Key Scheduling

MC o SR o SB SR o SB

Key Scheduling

Fig. 3. Fault on the 14th byte of the penultimate round key K9

Now, we will see that it is possible to identify:

– the position j of the byte on which the fault occurred
– and the value ej of this fault.

If we suppose that a fault ej occurs on the jth byte of K9 (12 ≤ j ≤ 15) just
before the Final Round, there will only be one non-zero byte in the first 4 bytes
of C ⊕ D. If we denote this byte the kth (0 ≤ k ≤ 3), j is then defined by

j = (k + 1 mod 4) + 12 (7)

By computing C ⊕ D, we determine k and thus obtain j.
By definition, we have:

∀i ∈ {0, ..., 15}, Ci = SubByte(M9
ShiftRow−1(i)) ⊕ K10

i (8)

More precisely:
- if i = 0:

Ci = SubByte(M9
ShiftRow−1(i)) ⊕ SubByte(K9

(i+1 mod 4)+12) ⊕ K9
i ⊕ 0x36 (9)

- if i ∈ {1, 2, 3}:
Ci = SubByte(M9

ShiftRow−1(i)) ⊕ SubByte(K9
(i+1 mod 4)+12) ⊕ K9

i (10)

We also have for the faulty ciphertext:

Dj = SubByte(M9
ShiftRow−1(j)) ⊕ K10

j ⊕ ej (11)

34 C. Giraud

and
- if k = 0:

Dk = SubByte(M9
ShiftRow−1(k)) ⊕ SubByte(K9

j ⊕ ej) ⊕ K9
k ⊕ 0x36 (12)

- if k ∈ {1, 2, 3}:
Dk = SubByte(M9

ShiftRow−1(k)) ⊕ SubByte(K9
j ⊕ ej) ⊕ K9

k (13)

It is easy to see, from (8) and (11), that the value of the fault ej is equal to
Cj ⊕ Dj .

We have now identify the position j of the byte on which the fault occurred
and the value ej of this fault. Let us see how to use this information to obtain
the value of K9

j .
From (9), (10), (12) and (13), we have the equation

Ck ⊕ Dk = SubByte(K9
j) ⊕ SubByte(K9

j ⊕ ej) (14)

We know the value of Ck ⊕ Dk and the value of ej . So, we search the possible
values x ∈ {0, ..., 255} which satisfy the equation

Ck ⊕ Dk = SubByte(x) ⊕ SubByte(x ⊕ ej) (15)

We obtain K9
j and K9

j ⊕ ej as solutions to (15). So, if we obtain another faulty
ciphertext with a fault e′j (e′j �= ej) which occurs on the same byte j of K9, we
obtain K9

j and K9
j ⊕ e′j as solutions. This allows us to deduce the value of K9

j

because it is the only value that appears in both solution.
With this attack, we obtain the values of the last 4 bytes (K9

12 to K9
15) of the

round key K9 with 32 faulty ciphertexts on average.

4.2 Attack on K8

Now, we will see how to obtain the 4 bytes K9
8 to K9

11. We use faulty ciphertexts
obtained when the fault ej occurred on one byte of K8 (lets say the jth byte)
before Round 9.

We want the fault to occur on one of the last 4 bytes of K8. If it is the case,
there will only be one zero byte in the last 4 bytes of C ⊕ D. So we test this

Round 9 Round 10

Key Scheduling

MC o SR o SB SR o SB

Key Scheduling

Fig. 4. Fault on the 14th byte of the antepenultimate round key K8

DFA on AES 35

condition and if it is false, we generate another faulty ciphertext with a fault
induced on K8 and we test it again.

As in section 4.1, we will:

– identify the position j of the byte on which the fault occurred
– and obtain the value ej of this fault.

If we denote by l the position of the zero byte in the last 4 bytes of C ⊕ D
(12 ≤ l ≤ 15), j is then defined by

j = (l − 1 mod 4) + 12 (16)

Now, we know on which byte of K8 the fault occurred.
We have, for the faulty ciphertext D:

{
Dj = SubByte(M9

ShiftRow−1(j)) ⊕ K10
j ⊕ ej if j �= 12

Dj = SubByte(M9
ShiftRow−1(j) ⊕ ej) ⊕ K10

j ⊕ ej if j = 12 (17)

and for the correct ciphertext:

Ci = SubByte(M9
ShiftRow−1(i)) ⊕ K10

i ∀i ∈ {0, ..., 15} (18)

– If j �= 12, we easily obtain the value of ej which is equal to Cj ⊕ Dj .
– But, if j = 12, the ShiftRows transformation does not affect the 12th byte

and we cannot directly obtain the value of the fault ej . We only know that

Cj ⊕ Dj = SubByte(a) ⊕ SubByte(a ⊕ ej) ⊕ ej (19)

for a certain 8-bit value a. In this case, we guess the fault ej and we look
for a value a which satisfies (19). If such a value exists, we assume that our
guess may be correct and we keep it as a possible value for the fault ej . We
obtain between 107 and 146 different possible values for ej depending on the
value of Cj ⊕ Dj ; the average is about 127.

Now, we have identify the position j of the byte on which the fault occurred
and the value ej of this fault if j �= 12 or a set of possible values if j = 12. Let
us see how to use this information to obtain the value of K8

j .
If we induce a fault on K8

j (12 ≤ j ≤ 15), the 4 bytes of the faulty 9th round
key at position (j − 1 mod 12) + 4n, n ∈ {0, 1, 2, 3}, are different from the bytes
at the same position of the correct 9th round key K9. These four differences
between the correct and the faulty 9th round key are equal and we denote this
difference fj .

If we denote k = (j − 1 mod 4) + 12, we have K9
k ⊕ fj as the value of the kth

byte of the faulty 9th round key.
So, we have:
- if j = 14:

Dj−2 mod 4 = SubByte(M9
ShiftRow−1(j−2 mod 4)) ⊕ SubByte(K9

k ⊕ fj)
⊕K9

j−2 mod 4 ⊕ 0x36
(20)

36 C. Giraud

- if j ∈ {12, 13, 15}:
Dj−2 mod 4 = SubByte(M9

ShiftRow−1(j−2 mod 4)) ⊕ SubByte(K9
k ⊕ fj)

⊕K9
j−2 mod 4

(21)

And we obtain from (9), (10), (20) and (21):

Cj−2 mod 4 ⊕ Dj−2 mod 4 = SubByte(K9
k) ⊕ SubByte(K9

k ⊕ fj) (22)

As we know the value of K9
k from the previous attack (section 4.1), we can

easily find the value of fj which satisfies (22).
Moreover, K9

j−1 mod 4 ⊕ fj is the value of the (j − 1 mod 12)th byte of the
faulty 9th round key. So, we have for the faulty Key Scheduling:

- if j = 13:

SubByte(K8
j ⊕ ej) ⊕ K8

j−1 mod 4 ⊕ 0x36 = K9
j−1 mod 4 ⊕ fj (23)

- if j ∈ {12, 14, 15}:
SubByte(K8

j ⊕ ej) ⊕ K8
j−1 mod 4 = K9

j−1 mod 4 ⊕ fj (24)

and for the correct Key Scheduling:
- if j = 13:

SubByte(K8
j) ⊕ K8

j−1 mod 4 ⊕ 0x36 = K9
j−1 mod 4 (25)

- if j ∈ {12, 14, 15}:
SubByte(K8

j) ⊕ K8
j−1 mod 4 = K9

j−1 mod 4 (26)

We obtain from (23), (24), (25) and (26):

fj = SubByte(K8
j ⊕ ej) ⊕ SubByte(K8

j) (27)

With the value of fj previously obtained from (22), we find all the possible values
K8

j which satisfy (27).
As in section 3, we use a counting method in order to find the correct K8

j .
The right K8

j can be obtained quickly when j �= 12 because we know the value
of the fault ej . However, if j = 12 it is more difficult because there are many
possible values for ej (between 107 and 146). Although we need more faulty
ciphertexts to determine K8

12 than to determine K8
13, K8

14 or K8
15, the number

required is relatively low. We need approximately 13 faulty ciphertexts from the
same plaintext to obtain K8

12 and only 2 to obtain K8
13, K8

14 or K8
15 (by using

simulation, we find that we have a 90% chance of success to determine K8
12 if

we use 10 faulty ciphertexts and this percentage grows up to 99% if we use 13
faulty ciphertexts).

Finally, to obtain K9
8 , K9

9 , K9
10 and K9

11, we use the following formula:

K9
i = K8

i+4 ⊕ K9
i+4 ∀i ∈ {8, ..., 11} (28)

At this step, we have obtained the last 8 bytes of the penultimate round key K9

by using about 240 faulty ciphertexts.

DFA on AES 37

Round 9 Round 10

Key Scheduling

MC o SR o SB SR o SB

Key Scheduling

Fig. 5. Fault on the 11th byte of M8

4.3 DFA Attack on M8

Before entering Round 9, we assume that a fault on one byte of M8 has been
induced. As we have determined the last 8 bytes of K9, we want the fault to
occur on a byte of M8 which will be XORed with one of the last 8 bytes of K9

after MC ◦ SR ◦ SB. Due to the ShiftRows and MixColumns transformations,
we know that if we induce a fault on M8

12, M8
1 , M8

6 or on M8
11 (resp. on M8

8 ,
M8

13, M8
2 or on M8

7), the result of these bytes after MC ◦SR◦SB will be XORed
with K9

12 to K9
15 (resp. K9

8 to K9
11). So, we want a fault to occur on one of these

8 bytes of M8 and to test if this happens, we look at the faulty ciphertext: if
only the 4 bytes (D12, D9, D6, D3) (resp. (D8, D5, D2, D15)) differ from (C12,
C9, C6, C3) (resp. (C8, C5, C2, C15)) of the correct ciphertext, this shows that
the fault occurred on one of the 4 bytes (M8

12, M8
1 , M8

6 , M8
11) (resp. (M8

8 , M8
13,

M8
2 , M8

7)).
In the following, let (D12, D9, D6, D3) be different from (C12, C9, C6, C3).

We guess the fault ej (1 ≤ ej ≤ 255) and we list all the 4-byte values V which
verify one of the following equations:

SB(MC(V) ⊕ K9
12−15) ⊕ SB(MC(V ⊕ (0, 0, 0, ej)) ⊕ K9

12−15) = TR12−15

SB(MC(V) ⊕ K9
12−15) ⊕ SB(MC(V ⊕ (0, 0, ej , 0)) ⊕ K9

12−15) = TR12−15

SB(MC(V) ⊕ K9
12−15) ⊕ SB(MC(V ⊕ (0, ej , 0, 0)) ⊕ K9

12−15) = TR12−15

SB(MC(V) ⊕ K9
12−15) ⊕ SB(MC(V ⊕ (ej , 0, 0, 0)) ⊕ K9

12−15) = TR12−15

(29)
where K9

12−15 denotes the 4-byte value (K9
12,K

9
13,K

9
14,K

9
15) and TR12−15 the

4-byte value (C ⊕D)ShiftRow(12−15) = (C12 ⊕D12, C9 ⊕D9, C6 ⊕D6, C3 ⊕D3).
So, if we apply the same reasoning to another faulty ciphertext which differs

from the correct ciphertext on (D12, D9, D6, D3), we obtain another list of 4-
byte values. There will only be one 4-byte value present in both lists and this
will be the correct value of the last 4 bytes of the temporary result before the
MixColumns transformation in Round 9.

Proceeding in the same way with two different faulty ciphertexts in which
(D8, D5, D2, D15) differ from (C8, C5, C2, C15), we obtain the correct 8th to
11th bytes of the temporary result before the MixColumns transformation in
Round 9.

Having now identified the last 8 bytes of the temporary cipher result before
the MixColumns transformation in Round 9, we apply MixColumns to these 8
bytes. We then XOR the result with the corresponding bytes of K9 (i.e. K9

8 to
K9

15) and we apply SR◦SB. This result is a part of the correct temporary result

38 C. Giraud

before the XOR with K10. So, we XOR it with the corresponding bytes of the
ciphertext C to obtain the bytes K10

2 , K10
3 , K10

5 , K10
6 , K10

8 , K10
9 , K10

12 and K10
15 .

Using the known bytes of K9, we obtain 6 other bytes of K10 by the following
relations:

K10
13 = K10

9 ⊕ K9
13

K10
11 = K10

15 ⊕ K9
15

K10
10 = K10

6 ⊕ K9
10

K10
14 = K10

10 ⊕ K9
14

K10
7 = K10

11 ⊕ K9
11

K10
4 = K10

8 ⊕ K9
8

(30)

Finally, we find the last 2 unknown bytes of K10 by a very fast exhaustive
search and we obtain the AES key from K10 by applying the inverse of the Key
Scheduling.

Theoretically, we obtain the full AES key by using less than 250 faulty ci-
phertexts.

5 Remark

The previous number of required faulty ciphertexts was determined by supposing
that the fault location cannot be chosen, i.e. the position of the fault is uniformly
distributed among the 16 bytes of a chosen temporary result. If we suppose that
we can choose the byte where the fault is induced, we need on average 35 faulty
ciphertexts to recover the secret key by using our bit-fault attack and only 31
faulty ciphertexts by using our byte-fault attack (we need 8 faulty ciphertexts to
perform the fault attack described in section 4.1, 19 to perform the one described
in section 4.2 and 4 to perform the one described in section 4.3).

6 In Practice

We implemented the algorithmic part of the second attack on an AES-128 and,
by simulating faults on random bytes of K8, K9 and M9, we found the whole
AES key by using 250 faulty ciphertexts. This was easily done on a computer
but we were yet to discover if our second attack could be successfully put into
practice on a smart card.

By using a microscope, a modified camera flash and a computer, we attacked
an AES-128 on an 8-bit smart card (to make the attack easier, we used a known
AES code). Firstly, we had to find out where the light flash was most efficient
on the surface of the chip and then we had to synchronize the flash with the
operations we wanted to disturb.

We even succeeded in inducing a fault for nearly every execution of the AES,
we needed a lot of tries to obtain a “good” faulty ciphertext. Indeed, most of
the time, the induced fault affected 4 or 8 bytes of the temporary result.

To recover the key, we needed numerous tries: more than 1000 AES executions
were required.

DFA on AES 39

If we had had a laser we could have shortened the length of the flash and
hence obtained a “good” faulty ciphertext more frequently by disturbing the
chip for a very short time, i.e. during the treatment of only one byte.

This experience demonstrates that AES on smart cards must now be imple-
mented not only with SPA/DPA countermeasures but also with DFA counter-
measures.

7 Conclusion

Although DFA on the DES is a well-known attack, it is impossible to directly
apply Biham and Shamir’s attack to the AES as the latter does not have the
Feistel Structure. This paper extends the operative field of differential fault at-
tacks by describing how to perform two different DFA attacks on the AES. Each
of these attacks allow us to obtain the full AES key in the case of a 128-bit
key length. We note that it is possible to put the second attack into practice on
smart cards. However, it is easy to avoid both attacks. For example, this can be
done by doubling the last two rounds and by checking if the two outputs are
equal.

Acknowledgments

I would like to thank Mathieu Ciet for his valuable comments as well as Erik
Knudsen for many helpful discussions. The practical attack would never have
been possible without the help of Hugues Thiebeauld. Finally, I am really grateful
to Julia Bradley for her help and support during the writing of this paper.

References

1. R. Anderson and M. Kuhn. Tamper Resistance - a Cautionary Note. In Proceedings
of the 2nd USENIX Workshop on Electronic Commerce, pages 1–11, 1996.

2. R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. In
B. Christianson, B. Crispo, T. Mark, A. Lomas, and M. Roe, editors, 5th Security
Protocols Workshop, volume 1361 of Lecture Notes in Computer Science, pages
125–136. Springer-Verlag, 1997.

3. I. Biehl, B. Meyer, and V. Müller. Differential Fault Analysis on Elliptic Curve
Cryptosystems. In M. Bellare, editor, Advances in Cryptology – CRYPTO 2000,
volume 1880 of Lecture Notes in Computer Science, pages 131–146. Springer-
Verlag, 2000.

4. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystem.
In B.S. Kalisky Jr., editor, Advances in Cryptology – CRYPTO ’97, volume 1294
of Lecture Notes in Computer Science, pages 513–525. Springer-Verlag, 1997.

5. J. Blömer and J.-P. Seifert. Fault based cryptanalysis of the Advanced Encryption
Standard. In R.N. Wright, editor, Financial Cryptography – FC 2003, volume 2742
of Lecture Notes in Computer Science. Springer-Verlag, 2003.

40 C. Giraud

6. D. Boneh, R.A. DeMillo, and R.J. Lipton. On the Importance of Checking Cryp-
tographic Protocols for Faults. In W. Fumy, editor, Advances in Cryptology –
EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 37–
51. Springer-Verlag, 1997.

7. M. Ciet and M. Joye. Elliptic Curve Cryptosystems in the Presence of Permanent
and Transient Faults. In Designs, Codes and Cryptography, 2004. To appear.

8. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.
9. A.K. Lenstra. Memo on RSA Signature Generation in the Presence of Faults.

Manuscript, 1996. Available from the author at akl@Lucent.com.
10. D.P. Maher. Fault Induction Attacks, Tamper Resistance, and Hostile Reverse

Engineering in Perspective. In R. Hirschfeld, editor, Financial Cryptography – FC
’97, volume 1318 of Lecture Notes in Computer Science, pages 109–121. Springer-
Verlag, 1997.

11. National Institute of Standards and Technology. FIPS PUB 197: Advanced En-
cryption Standard, 2001.

12. G. Piret and J.-J. Quisquater. A Differential Fault Attack Technique Against SPN
Structures, with Application to the AES and Khazad. In C.D. Walter, Ç.K. Koç,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2003, volume 2779 of Lecture Notes in Computer Science, pages 77–88. Springer-
Verlag, 2003.

13. S. Skorobogatov and R. Anderson. Optical Fault Induction Attack. In B. Kaliski
Jr., Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
2–12. Springer-Verlag, 2002.

A The First Attack in More Details

If a message M is ciphered by using an AES-128 and if a one-bit fault ej is
induced on M9

j , we obtain a faulty ciphertext D. We then have the following
equation:

CShiftRow(j) ⊕ DShiftRow(j) = SubByte(M9
j) ⊕ SubByte(M9

j ⊕ ej) (31)

For each faulty ciphertext we perform 8.28 tests, i.e. for all values of x between
0 and 255 and for ej ∈ {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}, we test
if the following equality holds :

CShiftRow(j) ⊕ DShiftRow(j) = SubByte(x) ⊕ SubByte(x ⊕ ej) (32)

There is no solution to (32) if CShiftRow(j) ⊕ DShiftRow(j) = 185, so this value
can be excluded right away. By consecutively fixing the left hand side of (32)
with the 254 possible values {1, .., 255}\{185} and by testing all possible pairs
(x, ej), we find that the number of possible values for M9

j varies from 2 to 14;
the average is about 8.

If we assume that we are in the worst case, then we obtain 14 possible values
for M9

j for each faulty ciphertext.

akl@Lucent.com

DFA on AES 41

If we obtain another faulty ciphertext with an induced fault on M9
j we obtain

another set of possible values for M9
j . In each set we have the correct value of

M9
j , so to identify this value the other 13 values must be different from each

other.
If we denote by A the set of these 13 values obtained with the first faulty

ciphertext and by B the set of the possible values obtained with the second faulty
ciphertext except the correct value of M9

j , we have only one possible value left
for M9

j with probability :

P2 = P (A ∩ B = Ø)
= P (|A ∩ B| = 0)

=

⎛

⎝ 255
13

⎞

⎠∗
⎛

⎝ 255 − 13
13

⎞

⎠

⎛

⎝ 255
13

⎞

⎠
2

	 50%

(33)

With a third faulty ciphertext with an induced fault on M9
j we obtain yet another

set of 14 possible values for M9
j . If we denote by C this set without the correct

value of M9
j , we have only one possible value left for M9

j with probability :

P3 = P (A ∩ B ∩ C = Ø)
= P (|A ∩ B ∩ C| = 0)
=

∑min{|A|,|B|}
k=0 P (|A ∩ B| = k, |A ∩ B ∩ C| = 0)

=
∑13

k=0 P (|A ∩ B| = k) ∗ P (|A ∩ B ∩ C| = 0 / |A ∩ B| = k)

=
∑13

k=0

⎛

⎝ 255
13

⎞

⎠∗
⎛

⎝ 13
k

⎞

⎠∗
⎛

⎝ 255 − 13
13 − k

⎞

⎠

⎛

⎝ 255
13

⎞

⎠
2 ∗

⎛

⎝ 255
k

⎞

⎠∗
⎛

⎝ 255 − k
13

⎞

⎠

⎛

⎝ 255
k

⎞

⎠∗
⎛

⎝ 255
13

⎞

⎠

	 97%

(34)

Refined Analysis of Bounds Related to Linear
and Differential Cryptanalysis for the AES

Liam Keliher

Department of Mathematics and Computer Science,
Mount Allison University,��

Sackville, New Brunswick, Canada
lkeliher@mta.ca

Abstract. The best upper bounds on the maximum expected linear
probability (MELP) and the maximum expected differential probability
(MEDP) for the AES, due to Park et al. [23], are 1.075 × 2−106 and
1.144 × 2−111, respectively, for T ≥ 4 rounds. These values are simply
the 4th powers of the best upper bounds on the MELP and MEDP for
T = 2 [3, 23]. In our analysis we first derive nontrivial lower bounds
on the 2-round MELP and MEDP, thereby trapping each value in a
small interval; this demonstrates that the best 2-round upper bounds are
quite good. We then prove that these same 2-round upper bounds are
not tight—and therefore neither are the corresponding upper bounds for
T ≥ 4. Finally, we show how a modified version of the KMT2 algorithm
(or its dual, KMT2-DC), due to Keliher et al. (see [8]), can potentially
improve any existing upper bound on the MELP (or MEDP) for any
SPN. We use the modified version of KMT2 to improve the upper bound
on the AES MELP to 1.778 × 2−107, for T ≥ 8.

Keywords: AES, Rijndael, SPN, provable security, linear cryptanalysis,
differential cryptanalysis, MELP, MEDP, KMT2, KMT2-DC.

1 Introduction

During the past few years, several papers have appeared dealing with the prov-
able security of substitution-permutation network (SPN) block ciphers against
linear and differential cryptanalysis [3, 6, 7, 9, 10, 11, 12, 22, 23, 24]. Most of these
results have been applied to the Advanced Encryption Standard (AES) [5]—
each new result has demonstrated greater provable security against one or both
of these attacks.

Exhibiting provable security against linear and differential cryptanalysis re-
quires proving that the maximum expected linear probability (MELP) and the
maximum expected differential probability (MEDP), respectively, are small over

�� This work was funded by the Natural Sciences and Engineering Research Council
of Canada (NSERC).

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 42–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis 43

Table 1. Previous upper bounds on the MELP and MEDP for the AES

MELP MEDP Range of rounds

2−24 [7] 2−24 [7] T ≥ 2

2−75 [9] 2−75 [10] T ≥ 7

2−92.4 [11, 12] 2−95.1 [12] T ≥ 9

2−96 [24] 2−96 [24] T ≥ 4

1.06 × 2−96 [22] 1.06 × 2−96 [22] T ≥ 4

1.075 × 2−106 [23] 1.144 × 2−111 [23] T ≥ 4

T core cipher rounds (typically T = R − 1 or T = R − 2, where R is the to-
tal number of rounds). Since exact computation of these values often appears
to be infeasible, researchers have focused on bounds. A sufficiently small up-
per bound corresponds to a data complexity that is prohibitively large, since
the data complexity is proportional to the inverse of the corresponding MELP /
MEDP [19, 20]. Note that bounds often appear in pairs—one each for the MELP
and MEDP—because of the well-known duality between linear and differential
cryptanalysis [1, 17]. Table 1 summarizes the upper bounds that have been de-
rived for the AES prior to the current paper. 1 2

The best upper bounds in Table 1 (last row), due to Park et al., are in fact
the 4th powers of the best upper bounds on the MELP and MEDP for T = 2,
namely 48,193,441

252 ≈ 1.44 × 2−27 and 79
234 ≈ 1.23 × 2−28, respectively [3, 23]. In

fact, Park et al. show that the 4th power of any upper bound on the 2-round
MELP / MEDP for the AES is an upper bound on the MELP / MEDP for
T ≥ 4 (this also follows from the work of Sano et al. [24]). Therefore the 2-round
MELP and MEDP are important values for analyzing the resistance of the AES
to linear and differential cryptanalysis.

In this paper we first derive nontrivial lower bounds on the 2-round MELP
and MEDP for the AES, namely 1.638 × 2−28 and 1.656 × 2−29, respectively,
thereby trapping each value in a small interval; this demonstrates that the best
2-round upper bounds are quite good.3 Second, we prove that these same 2-round
upper bounds are not tight—and therefore neither are the corresponding upper
bounds for T ≥ 4. Third, we show how a modified version of the KMT2 algorithm
(or its dual, KMT2-DC), due to Keliher et al. (see [8]), can potentially improve
any existing upper bound on the MELP (or MEDP) for any SPN. We use the
modified version of KMT2 to improve the upper bound on the AES MELP

1 The results in [7] were not applied to the AES, but the values in the first row of
Table 1 are the upper bounds that would have resulted.

2 The almost identical bounds in [24] and [22] were apparently obtained indepen-
dently.

3 After the presentation of this paper, we learned that the same lower bounds had
previously been obtained by Chun et al. [3].

44 L. Keliher

to 1.778 × 2−107, for T ≥ 8. (The KMT2 / KMT2-DC algorithm computes
upper bounds on the MELP / MEDP “from scratch”; the modification involves
incorporating existing upper bounds that are superior to those computed directly
by KMT2 / KMT2-DC in order to refine the former.)

1.1 The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a U.S. block cipher standard se-
lected in 2000 after an open submission and evaluation process. The AES is the
SPN Rijndael, designed by Joan Daemen and Vincent Rijmen [5]. A single AES
round (minus the subkey mixing) is depicted in Figure 1.

32−bit LT 32−bit LT 32−bit LT 32−bit LT

Fig. 1. One AES round

The AES has a block size of 128 bits. The substitution stage consists of 16
identical 8×8 s-boxes (the same s-box is used in all rounds). The linear transfor-
mation comprises two steps: a byte permutation, and the parallel application of
four copies of a maximally diffusive 32-bit linear transformation (see Remark 4).
The number of rounds varies according to the key length as follows: 128-bit
key ⇒ 10 rounds, 192-bit key ⇒ 12 rounds, 256-bit key ⇒ 14 rounds.

1.2 Assumption of Independent Subkeys

In analyzing the resistance of block ciphers to linear and differential cryptanal-
ysis, it is standard to assume that each subkey is chosen independently and uni-
formly from the set of all possible subkeys.4 We adopt this approach. Because of
the complexities introduced by most key schedules, the values relevant to linear
and differential cryptanalysis are rarely calculated for the true distribution of
subkeys—this remains an interesting and largely unexplored area of study.

2 Linear and Differential Cryptanalysis

Linear and differential cryptanalysis are generally considered to be the most
powerful attacks on block ciphers. Linear cryptanalysis, due to Matsui [16], is
a known-plaintext attack that exploits the existence of relatively large expected

4 Some authors use AES* to denote the AES modified by this assumption.

Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis 45

linear probability (ELP) values over T core cipher rounds. Differential cryptanal-
ysis, due to Biham and Shamir [2], is a chosen-plaintext attack that exploits the
existence of relatively large expected differential probability (EDP) values over T
core rounds. Typical values of interest are T = R − 1 and T = R − 2.

The remainder of this section deals with background concepts related to
linear and differential cryptanalysis of SPNs. We use N to denote the block size,
n to denote the s-box input/output size, and M to denote the number of s-boxes
per round (so M = N

n). We assume that the same linear transformation and
sequence of s-boxes are used in each round (the s-boxes within a round may or
many not be identical). It is easy to generalize to the situation in which the
linear transformation and s-boxes differ from round to round.

2.1 Linear and Differential Probability

Definition 1. Let B : {0, 1}d → {0, 1}d, and let a,b,∆x,∆y ∈ {0, 1}d be
fixed. If X ∈ {0, 1}d is a uniformly distributed random variable, then the linear
probability LP(a,b) and the differential probability DP(∆x,∆y) are defined as

LP(a,b) = (2 · ProbX {a • X = b • B(X)} − 1)2

DP(∆x,∆y) = ProbX {B(X) ⊕ B(X ⊕ ∆x) = ∆y} .

If B is parameterized by a key, k, we write LP(a,b;k) and DP(∆x,∆y;k),
respectively, and the expected linear probability ELP(a,b) and expected differ-
ential probability are defined as

ELP(a,b) = EK [LP(a,b;K)]
EDP(∆x,∆y) = EK [DP(∆x,∆y;K)] ,

where K is a random variable uniformly distributed over the space of keys.

We view LP, ELP, DP, or EDP values as entries in a 2d × 2d table in the
obvious way. The values a and b in Definition 1 are called input and output
masks, and the values ∆x and ∆y are called input and output differences. For
our purposes, the mapping B in Definition 1 will be bijective, and will be an
s-box, a single encryption round, or a sequence of consecutive encryption rounds.

Lemma 1. Let B : {0, 1}d → {0, 1}d be bijective, and let a,b,∆x,∆y ∈ {0, 1}d.
Then

∑

u∈{0,1}d

LP(a,u) =
∑

u∈{0,1}d

LP(u,b) = 1 (1)

∑

∆u∈{0,1}d

DP(∆x,∆u) =
∑

∆u∈{0,1}d

DP(∆u,∆y) = 1 . (2)

Proof. The proof of (1) derives directly from Parseval’s Theorem [18]. The proof
of (2) is trivial.

46 L. Keliher

Remark 1. In what follows, terms such as “first round” and “last round” are
relative to the T rounds under consideration. Single-variable superscripts refer
to individual rounds, e.g., LP t(a,b;kt) and ELP t(a,b) are LP and ELP values,
respectively, for round t (1 ≤ t ≤ T). Superscripts of the form [i . . . j] (with
i < j) refer to a sequence of consecutive rounds viewed as a single unit, e.g.,
EDP [1...3](∆x,∆y) is an EDP value over rounds 1 . . . 3.

2.2 Provable Security (MELP and MEDP)

Given T ≥ 2 core rounds under consideration, the critical value for linear crypt-
analysis is the maximum expected linear probability (MELP)5:

MELP = max
a,b∈{0,1}N\0

ELP [1...T](a,b) . (3)

The critical value for differential cryptanalysis is the maximum expected differ-
ential probability (MEDP):

MEDP = max
∆x,∆y∈{0,1}N\0

EDP [1...T](∆x,∆y) . (4)

For linear cryptanalysis / differential cryptanalysis, the data complexity of an
attack with a given probability of success is proportional to the inverse of the
MELP / MEDP. Therefore provable security can be claimed if this value is
sufficiently small that the corresponding data complexity is prohibitive [19, 20].

2.3 Linear and Differential Characteristics

In general, for T ≥ 2, it appears to be infeasible to compute the MELP or MEDP
exactly for most SPNs. A traditional method of approximation involves the use
of characteristics.

Definition 2. A linear characteristic / differential characteristic for rounds
1 . . . T is a (T+1)-tuple of N -bit masks / differences, Ω =

〈
a1,a2, . . . ,aT ,aT+1

〉
/

Ω =
〈
∆x1,∆x2, . . . ,∆xT ,∆xT+1

〉
; we view at / ∆xt and at+1 / ∆xt+1 as in-

put and output masks / differences, respectively, for round t (1 ≤ t ≤ T). The
corresponding expected linear characteristic probability (ELCP) / expected dif-
ferential characteristic probability (EDCP) is defined as

ELCP [1...T](Ω) =
T∏

t=1

ELP t(at,at+1) /

EDCP [1...T](Ω) =
T∏

t=1

EDP t(∆xt,∆xt+1) .

5 A number of papers (including some by the author) use maximum average linear hull
probability (MALHP), but MELP is more consistent with other related terminology.

Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis 47

Remark 2. For most SPNs, it is feasible to compute the values ELP t(at,at+1) /
EDP t(∆xt,∆xt+1) (see Section 2.5), and therefore to compute ELCP [1...T](Ω) /
EDCP [1...T](Ω).

Using the Best Characteristic (Practical Security). A best linear / dif-
ferential characteristic is one that maximizes ELCP [1...T](Ω) / EDCP [1...T](Ω)
(a best characteristic is not necessarily unique) . There are well-known (and
relatively efficient) algorithms for finding best characteristics [17, 21]. Denote
the best linear / differential characteristic by Ω̂L =

〈
â1, â2, . . . , âT , âT+1

〉
/

Ω̂D =
〈
∆x̂1,∆x̂2, . . . ,∆x̂T ,∆x̂T+1

〉
. The data complexity of linear / differen-

tial cryptanalysis is often estimated by assuming that

MELP = ELP [1...T](â1, âT+1) ≈ ELCP [1...T](Ω̂L) / (5)

MEDP = EDP [1...T](∆x̂1,∆x̂T+1) ≈ EDCP [1...T](Ω̂D) . (6)

If the resulting data complexity is prohibitive, the cipher is practically secure [13].

2.4 Linear Hulls and Differentials

The concept of linear hulls is due to Nyberg [19]. The counterpart for differential
cryptanalysis is the concept of differentials, due to Lai et al. [14].

Definition 3. If T ≥ 2 and a,b ∈ {0, 1}N / ∆x,∆y ∈ {0, 1}N , then the corre-
sponding linear hull / differential, denoted ALH (a,b)6 / DIFF (∆x,∆y), is the
set of all linear / differential characteristics for rounds 1 . . . T having a / ∆x
as the first mask / difference and b / ∆y as the last mask / difference, i.e., all
linear / differential characteristics of the form

Ω =
〈
a,a2,a3, . . . ,aT ,b

〉
/ Ω =

〈
∆x,∆x2,∆x3, . . . ,∆xT ,∆y

〉
.

Theorem 1 ([19, 14]). Let a,b ∈ {0, 1}N . Then

ELP [1...T](a,b) =
∑

Ω∈ALH (a,b)

ELCP [1...T](Ω)

EDP [1...T](∆x,∆y) =
∑

Ω∈DIFF(∆x,∆y)

EDCP [1...T](Ω) .

It follows from Theorem 1 that the approximation in (5) / (6) does not hold
in general, since ELP [1...T](a,b) / EDP [1...T](∆x,∆y) is seen to be the sum
of (a large number of) terms ELCP [1...T](Ω) / EDCP [1...T](Ω), and therefore,
in general, the ELCP / EDCP of any characteristic will be strictly less than
the corresponding ELP / EDP value. Further, the MELP / MEDP may not be
equal to (i.e., may be strictly greater than) the ELP / EDP associated with any
best characteristic. This situation may result in an overestimation of the data
complexity—beneficial for an attacker, but problematic for a cipher designer.

6 Nyberg originally used approximate linear hull, hence the abbreviation ALH.

48 L. Keliher

2.5 Active S-Boxes and Branch Numbers

Let L denote the SPN linear transformation represented as an invertible N ×N
binary matrix, i.e., if x,y ∈ {0, 1}N are the input and output, respectively, for
the linear transformation, then y = Lx (view x and y as column vectors).

Lemma 2 ([5]). If a ∈ {0, 1}N is a mask applied to the inputs of L, then there
is a unique corresponding mask b ∈ {0, 1}N applied to the outputs, i.e., there
is a mask b such that for all x ∈ {0, 1}N , a • x = b • (Lx). The relationship
between a and b is given by a = L′b, where L′ is the matrix transpose of L.

If ∆x ∈ {0, 1}N is an input difference for L, then ∆y = L(∆x) is the unique
corresponding output difference, i.e., L(x)⊕L(x⊕∆x) = ∆y for all x ∈ {0, 1}N .

It follows from Lemma 2 that if at / ∆xt and at+1 / ∆xt+1 are input and out-
put masks / differences for round t, then the resulting input and output masks /
differences for the substitution stage of round t are at / ∆xt and bt = L′at+1 /
∆yt = L−1(∆xt+1). Further, at / ∆xt and bt / ∆yt can be naturally partitioned
into input and output masks / differences for each s-box in round t. Enumerate
the s-boxes from left to right as St

1, S
t
2, . . . , S

t
M , and let the input and output

masks / differences for St
m be denoted at

m / ∆xt
m and bt

m / ∆yt
m (1 ≤ m ≤ M).

Then from Matsui’s Piling-up Lemma [16],

ELP t(at,at+1) =
M∏

m=1

LPSt
m(at

m,bt
m) (7)

EDP t(∆xt,∆xt+1) =
M∏

m=1

DPSt
m(∆xt

m,∆yt
m) (8)

(here the superscript St
m has the obvious meaning).

Definition 4 ([25]). Let Ω be a T -round linear / differential characteristic for
rounds 1 . . . T . Then Ω is called consistent if, for each s-box in rounds 1 . . . T ,
the input and output masks / differences determined by Ω for that s-box are
either both zero or both nonzero.

Definition 5 ([1]). Given a consistent linear / differential characteristic, any
s-box for which the resulting input and output masks / differences are nonzero is
called linearly / differentially active (or just active, when the context is clear).

For the remainder of this paper, we limit our consideration to consistent
characteristics.

Definition 6. Given a linear / differential characteristic, let v ∈ {0, 1}N be the
input or output mask / difference for the substitution stage of round t. Then
the active s-boxes in round t can be determined from v (without knowing the
corresponding output or input mask / difference). We define γv to be the M -bit
vector that encodes this pattern of active s-boxes: γv = γ1γ2 . . . γM , where γi = 1
if the ith s-box is active, and γi = 0 otherwise, for 1 ≤ i ≤ M .

Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis 49

Definition 7. Let γ, γ̂ ∈ {0, 1}M . Then

Wl[γ, γ̂] = #
{
y ∈ {0, 1}N : γx = γ, γy = γ̂, where x = L′y

}

Wd[γ, γ̂] = #
{
∆x ∈ {0, 1}N : γ∆x = γ, γ∆y = γ̂, where ∆y = L(∆x)

}
.

Remark 3. Informally, the value Wl[γ, γ̂] / Wd[γ, γ̂] represents the number of
ways the linear transformation can “connect” a pattern of active s-boxes in one
round (γ) to a pattern of active s-boxes in the next round (γ̂).

The diffusive power of a linear transformation is its ability to force some
minimum number of s-boxes to be active over a sequence of rounds. This is
quantified in the following definition.

Definition 8 ([5]). The linear / differential branch number, Bl / Bd, of an
SPN linear transformation is the minimum number of linearly / differentially
active s-boxes in two consecutive rounds for any nonzero characteristic:

Bl = min
{

wt(γx) + wt(γy) : y ∈ {0, 1}N \ 0, x = L′y
}

/

Bd = min
{

wt(γ∆x) + wt(γ∆y) : ∆x ∈ {0, 1}N \ 0, ∆y = L(∆x)
}

.

Remark 4. It is trivial to show that 2 ≤ Bl,Bd ≤ (M + 1). Hong et al. [6]
prove that Bl = (M + 1) if and only if Bd = (M + 1); in this case, the linear
transformation is called maximally diffusive.

3 General Analysis of 2-Round MELP / MEDP

In this section we analyze the 2-round MELP and MEDP for a general SPN,
stating results that will be useful in later sections. We focus primarily on the
MELP, as the development for the MEDP is essentially parallel (we point out
the significant differences in Section 3.1).

Without loss of generality, assume that the linear transformation is omitted
from round 2. Therefore the active s-boxes in round 2 can be determined directly
from an output mask for round 2, without applying Lemma 2.

Let a,b ∈ {0, 1}N \0 be input and output masks, respectively, for round 1 and
round 2, and let f = wt(γa), � = wt(γb). Enumerate the active s-boxes in round 1
as S1

1 , S1
2 , . . . , S1

f , and enumerate the active s-boxes in round 2 as S2
1 , S2

2 , . . . , S2
� .

Let αi be the input mask for S1
i (derived from a), for 1 ≤ i ≤ f , and let βj

be the output mask for S2
j (derived from b), for 1 ≤ j ≤ �. The characteristics

in ALH (a,b) have the form 〈a,y,b〉; enumerate the distinct “middle” masks
as y1,y2, . . . ,yW , where W = Wl[γa, γb]. The yw are input masks for round 2;
denote the corresponding output masks for the substitution stage of round 1 as
x1,x2, . . . ,xW (xw and yw are related as in the first part of Lemma 2). For a
given xw (1 ≤ w ≤ W), let χ(w,i) be the output mask for S1

i (1 ≤ i ≤ f), and

50 L. Keliher

for the corresponding yw, let υ(w,j) be the input mask for S2
j (1 ≤ j ≤ �). It

follows from Theorem 1, Definition 2, and (7) that

ELP [1...2](a,b) =
W∑

w=1

⎛

⎝
f∏

i=1

LPS1
i (αi,χ(w,i)) ·

�∏

j=1

LPS2
j (υ(w,j),βj)

⎞

⎠ . (9)

It is useful to consider the set of vectors (of length f + �) of the form

Vw =
〈
χ(w,1), χ(w,2), . . . , χ(w,f), υ(w,1), υ(w,2), . . . , υ(w,�)

〉
, (10)

for 1 ≤ w ≤ W . Each coordinate of Vw is an element of {0, 1}n \ 0 (recall that
n is the s-box input/output size).

Lemma 3. Given a,b ∈ {0, 1}N \ 0 that satisfy wt(γa) + wt(γb) = Bl, let
W = Wl[γa, γb], f = wt(γa), � = wt(γb), and let χ(w,i), υ(w,j) be defined as
above. Then for fixed i (1 ≤ i ≤ f), the values χ(1,i), . . . ,χ(W,i) are distinct, and
for fixed j (1 ≤ j ≤ �), the values υ(1,j), . . . ,υ(W,j) are distinct. In other words,
for the set of vectors {Vw}W

w=1, all the values in any one position are distinct.

Proof. Contained in the proof of Theorem 1 in [23].

Remark 5. Clearly if wt(γa)+wt(γb) = Bl, then Wl[γa, γb] ≤ (2n − 1). Further,
the values χ(w,i) and υ(w,j) depend only on γa and γb, not on the specific values
of a and b.

Lemma 4. Given a,b ∈ {0, 1}N \ 0 that satisfy wt(γa) + wt(γb) > Bl, let W =
Wl[γa, γb], f = wt(γa), � = wt(γb), and let χ(w,i), υ(w,j) be defined as above.
Consider the vectors Vw in (10). Select any (f +�−Bl) vector positions, and fix a
value in {0, 1}n \0 for each position. Now form the subset of {Vw}W

w=1 consisting
of those Vw that contain the selected fixed values in the specified positions—denote
this subset by V. Then for each of the Bl vector positions whose values were not
fixed, all the values in that position are distinct as we range over V.

Proof. Contained in the proof of Theorem 1 in [23].

Remark 6. It follows that the number of vectors in V is at most (2n − 1). The
vectors in V depend on γa and γb (not on the specific values of a and b), and
also on the choice of vector positions to be assigned fixed values, together with
the particular fixed values chosen for those positions.

Definition 9. For T = 2 core SPN rounds, a Bl-list is a set of vectors, each of
which has length Bl, that has been derived in one of two ways:

1. by selecting any a,b ∈ {0, 1}N \ 0 satisfying wt(γa) + wt(γb) = Bl and
forming the set {Vw}W

w=1, as in Lemma 3;

Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis 51

2. by selecting any a,b ∈ {0, 1}N \ 0 satisfying wt(γa) + wt(γb) > Bl, forming
any set V according to Lemma 4, and then shortening each vector in V to
length Bl by removing those positions that were assigned fixed values.

Let Bl-LIST (i) denote the set of all Bl-lists that are formed by Option i above,
for i = 1, 2, and let

Bl-LIST = Bl-LIST (1) ∪ Bl-LIST (2) .

For any Z ∈ Bl-LIST, let δ(Z) denote the number of vectors in Z.

It follows from Remarks 5 and 6 that δ(Z) ≤ (2n − 1) for any Z ∈ Bl-LIST.
For any vector z =

〈
ζ1, ζ2, . . . , ζBl

〉
in any Bl-list Z, each ζi is either an output

mask for a particular s-box in round 1, or an input mask for a particular s-box
in round 2. In the former case, let αi denote a nonzero input mask for the
same s-box, and let LP∗(αi, ζi) = LP(αi, ζi). In the latter case, let αi denote
a nonzero output mask for the same s-box, and let LP∗(αi, ζi) = LP(ζi,αi);
here αi is playing the role of one of the βj used earlier, e.g., in (9), and LP∗(·, ·)
is the transpose of the s-box LP table. (For simplicity, the specific s-box is now
implicit in the notation.)

Definition 10. Let Z ∈ Bl-LIST. Then

σ(Z) def= max
α1,...,αBl

∈{0,1}n\0

⎛

⎜⎝
∑

〈ζ1,...,ζBl
〉∈Z

Bl∏

i=1

LP∗(αi, ζi)

⎞

⎟⎠ .

The following two theorems are central to this paper.

Theorem 2. The 2-round MELP is lower bounded by

max
{

σ(Z) : Z ∈ Bl-LIST (1)
}

.

Proof. It is easy to see that max
{

σ(Z) : Z ∈ Bl-LIST (1)
}

is exactly equal to

max
a,b∈{0,1}N\0

wt(γa)+wt(γb)=Bl

ELP [1...2](a,b) ,

which clearly lower bounds the 2-round MELP (see (3)).

Theorem 3. The 2-round MELP is upper bounded by

max {σ(Z) : Z ∈ Bl-LIST } .

Proof. Let M = max {σ(Z) : Z ∈ Bl-LIST}. Given the proof of Theorem 2, it
suffices to show that

max
a,b∈{0,1}N\0

wt(γa)+wt(γb)>Bl

ELP [1...2](a,b) ≤ M .

52 L. Keliher

Let a,b ∈ {0, 1}N \ 0 such that F
def= wt(γa) + wt(γb) − Bl > 0. In keeping

with Lemma 4, isolate F of the active s-boxes to be assigned fixed output/input
masks (fixed output masks for round-1 s-boxes, and fixed input masks for round-2
s-boxes), let these fixed masks be denoted ζ1, . . . , ζF , and let the corresponding
input/output masks derived from a and b be denoted α1, . . . ,αF . Let the masks
derived from a and b for the “non-fixed” s-boxes be denoted α1, . . . ,αBl

. Denote
the Bl-list resulting from this setup by Zζ1,...,ζF

. Then

ELP [1...2](a,b)

=
∑

ζ1,...,ζF ∈{0,1}n\0

∑

〈ζ1,...,ζBl
〉∈Zζ1,...,ζF

⎛

⎝
F∏

i=1

LP∗(αi, ζi) ·
Bl∏

j=1

LP∗(αj , ζj)

⎞

⎠

=
∑

ζ1,...,ζF ∈{0,1}n\0

F∏

i=1

LP∗(αi, ζi)

⎛

⎜⎝
∑

〈ζ1,...,ζBl
〉∈Zζ1,...,ζF

Bl∏

j=1

LP∗(αj , ζj)

⎞

⎟⎠

≤ M
⎛

⎝
∑

ζ1,...,ζF ∈{0,1}n\0

F∏

i=1

LP∗(αi, ζi)

⎞

⎠

= M ,

where the last equality follows easily from (1).

3.1 Considerations Specific to MEDP

Tailoring the above definitions and results to the MEDP is straightforward: Bd

is substituted for Bl, Wd[] for Wl[], “difference” for “mask,” DP values for
LP values, and DIFF (·, ·) for ALH (·, ·). As well, the relationship between input
and output differences over the linear transformation is via the second part of
Lemma 2.

4 Lower Bounding the AES 2-Round MELP / MEDP

For the AES, Bl = Bd = 5; this is due to the fact that Bl = Bd = 5 for the 32-bit
linear transformation component of the 128-bit AES linear transformation (see
Figure 1) [5]. Hereafter we refer to Bl-lists or Bd-lists as 5-lists. As noted earlier,
all AES s-boxes are identical. It is not hard to see that computing the MELP /
MEDP for 2 AES rounds is equivalent to computing the MELP / MEDP for the
“reduced” SPN depicted in Figure 2.

To lower bound the 2-round MELP / MEDP for the AES, we compute the
value in Theorem 2 (or its MEDP counterpart) for the SPN in Figure 2. There
are 56 pairs (γ, γ̂) ∈ {0, 1}4 × {0, 1}4 for which wt(γ) + wt(γ̂) = 5; enumerate
these as (γ1, γ̂1), (γ2, γ̂2), . . . , (γ56, γ̂56). A straightforward computation reveals
that the 5-list associated with each pair (γs, γ̂s) contains exactly

(
28 − 1

)
= 255

Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis 53

32−bit LT

Fig. 2. Reduced 2-round AES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

LowerBound = 0

For s = 1 to 56

Sum = 0

For w = 1 to 255

Prod = 1

For i = 1 to 5

End For

For 1 ≤ α1, α2, α3, α4, α5 ≤ 255

Sum = Sum + Prod

End For

If (Sum > LowerBound)

LowerBound = Sum

End If

End For

End For

Prod = Prod × XP∗(αi, D[s, w, i])

Fig. 3. Algorithm for lower bounding the 2-round MELP / MEDP for the AES

vectors. We store all the 5-lists in a 3-dimensional array of bytes, D[·, ·, ·], of size
56×255×5, such that D[s, ·, ·] contains the 5-list for (γs, γ̂s) in the obvious way.
Computing the lower bound on the MELP / MEDP reduces to the algorithm in
Figure 3. (We use XP to mean either LP or DP, as appropriate.) The algorithm
as presented is computationally intensive; however, we can make use of the fact
that we are searching for a maximum to incorporate significant pruning, greatly
reducing the running time.

Using the above algorithm, the lower bound on the 2-round MELP for the
AES is 1.638×2−28. Since the best upper bound is 48,193,441

252 ≈ 1.44×2−27 [3, 23],
the 2-round MELP is now known almost exactly. The lower bound on the 2-round
MEDP is 1.656×2−29, and since the best upper bound is 79

234 ≈ 1.23×2−28 [3, 23],
the 2-round MEDP is also now known almost exactly.

These lower bounds are important in light of the fact, stated earlier, that
the 4th power of any upper bound on the 2-round MELP / MEDP for the
AES (including the exact value) is an upper bound on the MELP / MEDP for
T ≥ 4 [23, 24]. This is how Park et al. obtain the upper bounds in the last row

54 L. Keliher

of Table 1. However, by constraining the 2-round MELP / MEDP as above, we
see that this approach is essentially exhausted (for the AES).

5 Best AES 2-Round Upper Bounds Not Tight

In this section we show that the best upper bounds on the 2-round MELP and
MEDP for the AES are not tight. First, we state the rationale behind the current
bounds, and then we explain why they cannot be attained.

It is well known that all the nontrivial rows and columns of the LP / DP
table for the AES s-box have the same distribution of values, given in Table 2
for the LP table and Table 3 for the DP table (ρi is a distinct value, and φi is
the frequency with which it occurs) [11, 23].

Table 2. Distribution of LP values for the AES s-box

i 1 2 3 4 5 6 7 8 9

ρi

(
8
64

)2 (
7
64

)2 (
6
64

)2 (
5
64

)2 (
4
64

)2 (
3
64

)2 (
2
64

)2 (
1
64

)2
0

φi 5 16 36 24 34 40 36 48 17

Table 3. Distribution of DP values for the AES s-box

i 1 2 3

ρi
1
64

1
128

0

φi 1 126 129

We again use XP to mean either LP or DP, as appropriate. Consider the
upper bound given in Theorem 3 (or its MEDP counterpart). Let Z ∈ 5-LIST.
Adapting Theorem 1 in [23] to our notation, σ(Z) equals the maximum value
possible for a 5-list if, for some α1, . . . ,α5 ∈ {0, 1}8 \ 0, the following two con-
ditions are satisfied:

1. For every 〈ζ1, . . . , ζ5〉 ∈ Z,

XP∗(α1, ζ1) = XP∗(α2, ζ2) = · · · = XP∗(α5, ζ5) .

2. No nonzero XP value is omitted. In other words, for each i ∈ {1 . . . 5}, as we
range over all 〈ζ1, . . . , ζ5〉 ∈ Z the values XP∗(αi, ζi) include every nonzero
value in the XP table row or column indexed by αi. (Obviously a necessary
condition for the omission of a nonzero XP value is that δ(Z) < 255.)

Using the notation of Table 2 / Table 3, the maximum possible value for σ(Z)
is

∑
ρ5

i φi — this is exactly the best upper bound on the 2-round MELP /

Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis 55

MEDP [3, 23]. However, we have determined that this “worst-case” situation
never occurs.

In brief, we systematically generated all 5-lists in 5-LIST(2) (it is clear from
Section 4 that we don’t need to consider the elements of 5-LIST(1)). We observed
that δ(Z) < 255 for all Z ∈ 5-LIST(2) (specifically, 251 ≤ δ(Z) ≤ 254). For each
5-list generated, we ran an algorithm which ascertained that there do not exist
masks α1, . . . ,α5 ∈ {0, 1}8 \ 0 satisfying both Condition 1 and Condition 2
above. We used aggressive pruning to avoid iterating through all possible values
of the αi (approximately 240) for any 5-list.

6 Modified Version of KMT2 Algorithm

The KMT2 algorithm (resp. its dual, KMT2-DC), due to Keliher, Meijer, and
Tavares [8, 11], is a general algorithm that can be used to compute an upper
bound on the MELP (resp. MEDP) for each value of T ≥ 2 for any SPN. For
a fixed value T ≥ 2, and for all nonzero patterns of active s-boxes in the first
and last rounds given by γ and γ̂, KMT2 (resp. KMT2-DC) computes a value
UB [1...T](γ, γ̂) such that for all a,b ∈ {0, 1}N \ 0, if γa = γ and γb = γ̂, then
ELP [1...T](a,b) ≤ UB [1...T](γ, γ̂) (resp. EDP [1...T](a,b) ≤ UB [1...T](γ, γ̂)). The
values in the third row of Table 1 are from KMT2 and KMT2-DC.

The KMT2 / KMT2-DC algorithm works recursively, i.e., for T ≥ 3, the
values UB [1...T](γ, γ̂) depend on the values UB [1...(T−1)](γ, γ̂). This allows for a
very simple improvement: For any T ≥ 2, suppose that B is known to be an
upper bound on the MELP / MEDP for that value of T (from some external
source of information). Then if B < UB [1...T](γ, γ̂), replace UB [1...T](γ, γ̂) with
B before proceeding to the computations for T + 1. In other words, enhance

-109

-108

-107

-106

-105

-104

-103

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Modified KMT2
Park et al. [23]

Number of rounds being approximated (T)

lo
g2

(u
pp

er
bo

un
d)

Fig. 4. Results from modified KMT2 for AES

56 L. Keliher

KMT2 / KMT2-DC by incorporating other upper bounds when those bounds
are superior to the values determined directly by the algorithm.

For the AES, we modified KMT2 in this fashion by incorporating the upper
bound on the MELP for T ≥ 4 due to Park et al [23]. The results are plotted in
Figure 4. For T ≥ 8, for example, the upper bound on the MELP is improved
to 1.778 × 2−107. This improvement is slight, but it is an effective “proof of
concept.” For other ciphers, the modified version of KMT2 / KMT2-DC may
yield much more significant improvements over existing upper bounds.

Interestingly, modifying KMT2-DC using the upper bound on the AES MEDP
for T ≥ 4 due to Park et al. yielded no improvement over the existing bound for
T ≥ 4. This appears to be an artifact of the simple distribution of DP values for
the AES s-box (LP / DP values play a fundamental role in KMT2 / KMT2-DC).

7 Conclusion

We have carefully analyzed bounds related to linear and differential cryptanal-
ysis for the AES. We present nontrivial lower bounds on the 2-round maximum
expected linear probability (MELP) and maximum expected differential proba-
bility (MEDP), trapping each value in a small interval. We then prove that the
best upper bounds on the 2-round MELP and MEDP are not tight. Finally, we
show how a modified version of the KMT2 / KMT2-DC algorithm can poten-
tially improve existing upper bounds on the MELP / MEDP for any SPN, and
we use the modified KMT2 algorithm to tighten the upper bound on the AES
MELP to 1.778 × 2−107, for T ≥ 8.

References

1. E. Biham, On Matsui’s linear cryptanalysis, Advances in Cryptology—
EUROCRYPT’94, LNCS 950, pp. 341–355, Springer-Verlag, 1995.

2. E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, Ad-
vances in Cryptology—CRYPTO’90, LNCS 537, pp. 2–21, Springer-Verlag, 1991.

3. K. Chun, S. Kim, S. Lee, S.H. Sung, S. Yoon, Differential and linear cryptanalysis
for 2-round SPNs, Information Processing Letters, Vol. 87, pp. 277–282, 2003.

4. J. Daemen, L. Knudsen, and V. Rijmen, The block cipher Square, Fast Software
Encryption (FSE’97), LNCS 1267, pp. 149–165, Springer-Verlag, 1997.

5. J. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced Encryp-
tion Standard, Springer-Verlag, 2002.

6. S. Hong, S. Lee, J. Lim, J. Sung, and D. Cheon, Provable security against differ-
ential and linear cryptanalysis for the SPN structure, Fast Software Encryption
(FSE 2000), LNCS 1978, pp. 273–283, Springer-Verlag, 2001.

7. J.-S. Kang, S. Hong, S. Lee, O. Yi, C. Park, and J. Lim, Practical and provable
security against differential and linear cryptanalysis for substitution-permutation
networks, ETRI Journal, Vol. 23, No. 4, December 2001.

8. L. Keliher, Linear cryptanalysis of substitution-permutation networks, Ph.D. The-
sis, Queen’s University, Kingston, Canada, 2003.

Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis 57

9. L. Keliher, H. Meijer, and S. Tavares, New method for upper bounding the
maximum average linear hull probability for SPNs, Advances in Cryptology—
EUROCRYPT 2001, LNCS 2045, pp. 420–436, Springer-Verlag, 2001.

10. L. Keliher, H. Meijer, and S. Tavares, Dual of new method for upper bounding the
maximum average linear hull probability for SPNs, Technical Report, IACR ePrint
Archive (http://eprint.iacr.org, Paper # 2001/033), 2001.

11. L. Keliher, H. Meijer, and S. Tavares, Improving the upper bound on the maximum
average linear hull probability for Rijndael, Eighth Annual International Workshop
on Selected Areas in Cryptography (SAC 2001), LNCS 2259, pp. 112–128, Springer-
Verlag, 2001.

12. L. Keliher, H. Meijer, and S. Tavares, Completion of computation of improved
upper bound on the maximum average linear hull probability for Rijndael, Techni-
cal Report, IACR ePrint Archive (http://eprint.iacr.org, Paper # 2004/074),
2004.

13. L. Knudsen, Practically secure Feistel ciphers, Fast Software Encryption,
LNCS 809, pp. 211–221, Springer-Verlag, 1994.

14. X. Lai, J. Massey, and S. Murphy, Markov ciphers and differential cryptanaly-
sis, Advances in Cryptology—EUROCRYPT’91, LNCS 547, pp. 17–38, Springer-
Verlag, 1991.

15. C.H. Lim, CRYPTON: A new 128-bit block cipher, The First Advanced Encryption
Standard Candidate Conference, Proceedings, Ventura, California, August 1998.

16. M. Matsui, Linear cryptanalysis method for DES cipher, Advances in Cryptology—
EUROCRYPT’93, LNCS 765, pp. 386–397, Springer-Verlag, 1994.

17. M. Matsui, On correlation between the order of s-boxes and the strength of DES,
Advances in Cryptology—EUROCRYPT’94, LNCS 950, pp. 366–375, Springer-
Verlag, 1995.

18. W. Meier and O. Staffelbach, Nonlinearity criteria for cryptographic functions,
Advances in Cryptology—EUROCRYPT’89, LNCS 434, pp. 549–562, Springer-
Verlag, 1990.

19. K. Nyberg, Linear approximation of block ciphers, Advances in Cryptology—
EUROCRYPT’94, LNCS 950, pp. 439–444, Springer-Verlag, 1995.

20. K. Nyberg and L. Knudsen, Provable security against a differential attack, Journal
of Cryptology, Vol. 8, No. 1, pp. 27–37, 1995.

21. K. Ohta, S. Moriai, and K. Aoki, Improving the search algorithm for the best lin-
ear expression, Advances in Cryptology—CRYPTO’95, LNCS 963, pp. 157–170,
Springer-Verlag, 1995.

22. S. Park, S.H. Sung, S. Chee, E-J. Yoon, and J. Lim, On the security of Rijndael-like
structures against differential and linear cryptanalysis, Advances in Cryptology—
ASIACRYPT 2002, LNCS 2501, pp. 176–191, Springer-Verlag, 2002.

23. S. Park, S.H. Sung, S. Lee, J. Lim, Improving the upper bound on the maximum
differential and the maximum linear hull probability for SPN structures and AES,
Fast Software Encryption (FSE 2003), LNCS 2887, pp. 247–260, Springer-Verlag,
2003.

24. F. Sano, K. Ohkuma, H. Shimizu, and S. Kawamura, On the security of nested
SPN cipher against the differential and linear cryptanalysis, IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, Vol. E86-A,
No. 1, pp. 37–46, 2003.

25. S. Vaudenay, On the security of CS-Cipher, Fast Software Encryption (FSE’99),
LNCS 1636, pp. 260–274, Springer-Verlag, 1999.

Some Algebraic Aspects of the Advanced
Encryption Standard

Carlos Cid

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, UK
carlos.cid@rhul.ac.uk

Abstract. Since being officially selected as the new Advanced Encryp-
tion Standard (AES), Rijndael has continued to receive great attention
and has had its security continuously evaluated by the cryptographic
community.

Rijndael is a cipher with a simple, elegant and highly algebraic struc-
ture. Its selection as the AES has led to a growing interest in the study
of algebraic properties of block ciphers, and in particular algebraic tech-
niques that can be used in their cryptanalysis.

In these notes we will examine some algebraic aspects of the AES
and consider a number of algebraic techniques that could be used in the
analysis of the cipher. In particular, we will focus on the large, though
surprisingly simple, systems of multivariate quadratic equations derived
from the encryption operation, and consider some approaches that could
be used when attempting to solve these systems.

These notes refer to an invited talk given at the Fourth Conference on
the Advanced Encryption Standard (AES4) in May 2004, and are largely
based on [4].

1 Introduction

Rijndael is a block-cipher with a simple and elegant structure. It has been de-
signed to offer strong resistance against known attacks, in particular differential
and linear cryptanalysis, while enabling efficient implementation on different
platforms. Given its careful design criteria, it seems unlikely that its security
can be affected by conventional methods of cryptanalysis.

Rijndael has also a highly algebraic structure: the cipher round transforma-
tions are based on simple operations over the finite field F28 . Its selection as the
AES has therefore led to a growing interest in the study of algebraic proper-
ties of block ciphers, as well as algebraic techniques that can be used in their
cryptanalysis [1, 2, 6, 12, 13].

This new approach in cryptanalysis seems promising. One reason is that con-
ventional methods of cryptanalysis of block-ciphers (e.g. differential and linear
cryptanalysis) are generally based on a “statistical” approach: the attacker at-
tempts to construct probabilistic characteristics through as many rounds of the

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 58–66, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Some Algebraic Aspects of the Advanced Encryption Standard 59

cipher as possible, in order to distinguish the cipher from a random permuta-
tion. Most modern ciphers have been designed with these attacks in mind, and
therefore do not generally have their security affected by them.

In contrast, the so-called algebraic attacks exploit the intrinsic algebraic
structure of a cipher: the attacker expresses the encryption transformation as
a (large) set of multivariate polynomial equations, and subsequently attempts
to solve such a system to recover the encryption key. Algebraic attacks could
open new perspectives in the cryptanalysis of block ciphers.

In these notes we will examine some algebraic aspects of the AES and consider
a number of algebraic techniques that could be used in the analysis of the cipher.

2 The Basic Structure of the AES

Rijndael is a key-iterated block cipher, which alternates key-independent round
transformations and key addition. In the basic version (considered here), the
cipher encrypts 128-bit blocks in 10 rounds, using 128-bit keys. We refer to [9]
for a full description of the cipher.

In these notes we will also consider the Big Encryption System (BES), another
iterated block cipher which was introduced in [13]. BES operates on 128-byte
blocks with 128-byte keys, and has also a very simple algebraic structure: one
round of the cipher consists of inversion, matrix multiplication and key addition,
all operations over F28 .We refer to [13] for the full description of the BES cipher.

Both the AES and the BES use a state vector of bytes, which is transformed
by the basic operations within a round. Furthermore, it is shown in [13] that one
can embed the AES into the BES, and that way obtain an alternative description
of the AES. This relationship between both ciphers may well provide new ways
for the cryptanalysis of the AES.

3 Algebraic Analysis of the AES

Due to the rich algebraic structure of the AES, there is currently a growing
interest in the study of algebraic techniques which could be applied in its crypt-
analysis. These are known as algebraic attacks. Currently there appears to be
two main approaches:

– Study the system of polynomial equations derived from the cipher;
– Study the AES underlying algebraic structure.

4 Algebraic Attacks

Unlike most conventional methods of cryptanalysis, the so-called algebraic at-
tacks attempt to exploit the intrinsic algebraic structure of the cipher. More
specifically, the attacker expresses the encryption transformation as a set of

60 C. Cid

multivariate polynomial equations and tries to recover the encryption key by
solving the system.

While in theory most modern block ciphers can be fully described by a sys-
tem of multivariate polynomial equations over a finite field, for the majority of
the cases such systems prove to be just too complex for any practical purpose.
However, given its algebraic structure, it seems that the AES could be more
vulnerable to such approach.

In [6] Courtois and Pieprzyk exhibit a large, sparse and overdefined system of
multivariate quadratic equations over F2 whose solution would recover the AES
encryption key. In the same paper they propose a method called XSL (eXtended
Sparse Linearization), as an attempt to efficiently solve the system. Around the
same time, Murphy and Robshaw [13] showed how to express the AES encryption
as a far simpler system of equations over F28 , which is derived from the BES.
If XSL or some of its variants are in fact valid methods, this system should be
faster to solve than the original one over F2, and in theory, could provide an
efficient key-recovery attack.

5 Potential Attack Techniques

Given the AES and BES algebraic formulations, it is clear that an efficient
method for the solution of this type of system of multivariate quadratic equa-
tions would provide a key-recovery attack of the AES with potentially very few
plaintext-ciphertext pairs. While the problem of solving generic large systems of
multivariate equations of degree greater than one over a finite field is known to
be NP-complete, it is conceivable that a technique can be developed which ex-
ploits the particular algebraic structure of the AES and BES systems. Below we
investigate a few approaches which have been proposed for solving such systems.

6 Linearization Methods

The method of linearization is a well-known technique for solving large systems
of multivariate polynomial equations. In this method one considers all monomi-
als in the system as independent variables and tries to solve the system using
linear algebra techniques. In order to apply the method, the number of linearly
independent equations in the system needs to be approximately the same as the
number of terms in the system. When this is not the case, a number of techniques
have been proposed to generate enough LI equations.

6.1 XL Algorithm

In [5] an algorithm for solving systems of multivariate quadratic equations called
XL (standing for eXtended Linearization) is proposed. XL is a simple algorithm:
if A is a system of m quadratic equations fi in n variables over a field K, and
D ∈ N, one executes the following steps:

Some Algebraic Aspects of the Advanced Encryption Standard 61

1. Multiply: Generate all the products
∏k

j=1 xij
∗ fi with k ≤ D − 2;

2. Linearize: Consider each monomial of degree ≤ D as a new variable and
perform Gaussian elimination on the system obtained in step 1;

3. Solve: Assume that step 2 yields at least one univariate equation. Solve this
equation;

4. Repeat: Simplify the equations and repeat the process to find the values of
the other variables.

The hope is that after few iterations the algorithm will yield a solution for the
system.

In [5] the authors present some estimates for the complexity of the algorithm
for random systems with m ≈ n. In particular, they provide evidence that XL
can solve randomly generated overdefined systems of polynomial equations in
subexponential time.

The XL algorithm (as in the form above) is a reasonably new idea, and its
behaviour is not entirely understood yet. When analysing the algorithm, one
must examine two key points:

1. Does the algorithm always terminate?
2. Does the algorithm work as predicted?

Does XL Always Terminate? By applying well-known commutative algebra
techniques (Hilbert Theory), one can show that there are cases for which the
algorithm does not terminate [10]. However, when working over finite fields, this
problem can be avoided by adding to the system the underlying field equations
xq

i − xi = 0 .

Does XL Work as Predicted? Initially it was suggested that XL could solve
systems of polynomial equations in subexponential time when the number of
equations exceeded the number of variables by a small number. However there
has been strong evidence that some of the heuristics used in the original article
were too optimistic [3, 10].

This discrepancy arises from the fact that one may often overestimate the
number of linearly independent equations generated by the algorithm. There
has been recently few papers studying the XL [3, 10], and one could say that the
algorithm has just started to be better understood now.

In any case, it is widely agreed that application of the XL algorithm against
the polynomial system which arises from the AES (either over F28 or F2) does
not provide an efficient attack against the cipher.

6.2 Variants of XL

Since the introduction of the XL method, a number of variants have been pro-
posed. These attempt to exploit specific properties of the polynomial systems,
such as how overdefined the system is, the order of the field, etc. Of particular
relevance for the AES is the method proposed in [6] by Courtois and Pieprzyk.

62 C. Cid

XSL is based on the XL method, but uses the sparsity and specific structure
of the equations to mount the attack; instead of multiplying the equations by
all monomials up to certain degree, in the XSL algorithm the equations are
multiplied only by “carefully selected monomials” (we refer to [6] and its earlier
version [7] for a full description of the method). While this has the intention to
create less new terms when generating new equations, it is not entirely clear the
exact criteria used for selecting the monomials.

The system used in [6] to mount the attack has 8000 quadratic equations
and 1600 variables, over F2 (the variables represent the input/output bits). Two
attacks are described in [7]: the first one ignores the key schedule and therefore
needs 11 known plaintext/ciphertext pairs (for the AES-128); the second attack
uses the key schedule, and in theory could be mounted with a single known
plaintext/ciphertext pair. In [6] it is claimed that the second XSL attack would
have complexity of ≈ 2230 and ≈ 2255 when applied against the 128-bit and
256-bit AES, respectively. So the XSL attack would represent a (theoretical)
successful key-recovery attack against the 256-bit AES.

XSL Attack on the BES. As said earlier, the F28 -system derived from the
BES is much simpler than the F2-system presented in [6]. In particular, it is far
sparser. This would strongly suggest that the XSL attack is more suited to the
BES system than to the original AES system.

Murphy and Robshaw consider in [13, 14] the consequences of the XSL attack
against the BES. Using the estimates given in [6], they conclude that if XSL is in
fact a valid technique, a key-recovery attack against the AES might be possible
with a work effort of about 2100 encryptions. This would clearly represent a
successful attack against the AES-128.

Accuracy of the XSL Estimates. The XSL algorithm consists basically of
two main steps:

1. The equation generation procedure;
2. The T ′ method at the end of the algorithm.

The first step corresponds to the multiplication of the initial set of equations
by selected monomials. This is done in similar manner of the XL algorithm.
The T ′ method is used at the end, and in theory would allow the method to
effectively solve the system even when the difference between the total number
of terms and the number of linearly independent equations is reasonably large.

The main issue when considering XSL attacks (in fact, all the XL-based
attacks) against the AES is how accurate the estimates for the number of linearly
independent equations are. As explained above, there is evidence that some of
the heuristics in the original XL paper were too optimistic. In fact, there is even
more concern when considering the XSL algorithm. Additionally, it is not clear
how effective the T ′ method is as a last step of the algorithm. The algorithm is
an ad-hoc method, based on a number of heuristics arguments, and although this
might not invalidate the XSL technique entirely, it makes it harder to formally

Some Algebraic Aspects of the Advanced Encryption Standard 63

examine the algorithm and consider whether the XSL attacks described in [6]
work as claimed.

In fact, we have considered very small versions of BES, with reduced block
length and number of rounds, and smaller field. We ran a few simulations with
these versions, and it appears that the attacks do not work in the manner pre-
dicted in [6]. Again, while this might not invalidate the XSL technique, it could
raise doubts on whether the method is generally applicable against the AES and
BES systems. It is clear that more research is needed to determine how effective
this technique is against the AES.

7 Computational Algebra Techniques

Solving multivariate polynomial systems is a typical problem studied in Alge-
braic Geometry and Commutative Algebra. The classical algorithm for solving
this type of problem is the Buchberger algorithm for calculating Gröbner Bases
(see [8] for definitions and description of the algorithm). The algorithm generates
a basis for the ideal derived from the set of equations, which can then be used
to obtain the solutions.

The complexity of most algorithms used for calculating a Gröbner basis of
an ideal is closely related to the total degree of the intermediate polynomials
that are generated during the running of algorithm. In the worst case the Buch-
berger algorithm is known to run in double exponential time. One of the most
efficient algorithms known, due to Faugère [11], appears to be single exponen-
tial. In any case, in practice it is widely believed that Gröbner Bases algorithms
cannot be used for efficiently solving generic systems with more than a handful
of variables.

However, the type of systems which arise from cryptosystems are often very
structured. In particular, the BES system has a very regular structure. This is
given for j = 0, . . . , 15 and m = 0, . . . , 7 by:

0 = w0,(j,m) + p(j,m) + k0,(j,m),
0 = xi,(j,m)wi,(j,m) + 1 for i = 0, . . . , 9,
0 = wi,(j,m) + ki,(j,m) +

∑
(j′,m′) α(j,m),(j′,m′)xi−1,(j′,m′) for i = 1, . . . , 9,

0 = c(j,m) + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′).

This system could be viewed as an “iterated” system of equations, with blocks
of similar “sub-systems” repeated for every round. One could also use the trans-
formation x �→ x254 as the S-Box inversion to eliminate a number of variables
(the BES system considered above has the simplest form, with only quadratic
and linear equations).

Furthermore, since the system includes the equations relating every variable
with its conjugates, we have the following easy proposition:

Proposition 1. The degree of polynomials occurring in the computation of a
Gröbner basis of a BES-type system with n variables is at most n.

64 C. Cid

This is clearly an upper bound, and we expect that in practice the degrees are
much lower. This fact, together with the particular structure of the system, can
be exploited to infer more precise bounds for the complexity of the attack.

One can also seek alternatives for the use of the usual Gröbner bases al-
gorithm. There are also a number of common techniques used in cryptanalysis
that could be used in conjunction with computer algebra methods . For example,
one could attempt to adapt the meet-in-the-middle technique and consider two
smaller systems. This has the potential to reduce the complexity of the attack.
One should also note that in practice the attacker is not primarily interested
in the full solution of the system, but rather in the key variables. In fact, in a
“partial key recovery” attack, only few key variables might suffice.

Therefore, it is possible that one may be able to use a combination of crypt-
analytic and algebraic techniques (including Linearisation and Gröbner Bases)
to mount a successful attack without actually computing the solution of the
entire system.

7.1 The Polynomial Ideal Generated by the BES System

Let S be the system of multivariate quadratic equations derived from the BES
encryption operation, and K a fixed encryption key. A closer look at the prop-
erties of the ideal generated by these polynomials may prove to be useful when
attempting to solve the system.

For every plaintext/ciphertext pair (P,C), we have a particular system S(P,C)

and an ideal 1

I(P,C) = 〈S(P,C)〉 ⊆ K[xi,(j,m), . . . , wi,(j,m), . . . , ki,(j,m)].

In fact we are mostly interested in the ideal

IK
(P,C) = I(P,C) ∩ K[k0, k1, . . . , k15]

where k0, k1, . . . , k15 are the first key variables (i.e. the original key).
Thus for every key K, we can associate an ideal of F[k0, k1, . . . , k15] defined

as
IK =

⊕

(P,C)

IK
(P,C) ,

where (P,C) run through all plaintext/ciphertext pairs.
Given a key K, a random plaintext block P , and C such that EK(P) = C,

the probability that there exists another key K ′ with EK′(P) = C is approx-
imately (1 − 1/(e − 1)) ∼= 42%. Therefore we expect that in many cases, for
a given plaintext/ciphertext pair (P,C), the K-dimension of the residue class
ring K[k0, k1, . . . , k15]/IK

(P,C) is greater than 1 (i.e., the corresponding reduced
Gröbner basis should contain polynomials with degree greater than 1).

1 To avoid inconsistent systems, we will make sure to describe the system in such way
that it does not include “0-inversions” (i.e. use the map x �→ x254 when necessary).

Some Algebraic Aspects of the Advanced Encryption Standard 65

On the other hand, the K-dimension of K[k0, k1, . . . , k15]/IK is almost cer-
tainly 1. In other words, we expect IK to be of the form

IK =< k0 − κ0, k1 − κ1, . . . , k15 − κ15 >

with κi ∈ K. If this is not true, then there are at least two keys K1 and K2 such
that

EK1(P) = EK2(P)

for every plaintext block P , and K1 and K2 induce the same permutation on the
set of possible plaintext blocks, which would not appear to be the case for the
AES.

8 Alternative Approaches

It is clear that an efficient method for solving the polynomial systems considered
so far would represent a successful key-recovery attack against the AES. However,
even when the system cannot be solved, other approaches could well be used in
order to mount less ambitious attacks against the cipher. One could examine
common applications of the AES, such as AES-based hash function and MAC
constructions, modes of operation, relation between plaintexts, etc.

At the very least, a cryptanalyst would like to find a polynomial-time dis-
tinguisher between the cipher and a random permutation. This could be used
either to mount a practical attack or simply to show some structural weakness
of the cipher.

Given the rich algebraic structure of the cipher, it is not inconceivable that an
“algebraic” distinguisher exists. This would most likely exploit the byte-oriented
structure of the cipher and the typical round version of the BES, which consists
of inversion, matrix multiplication and key addition over F28 :

b �→ MB .b−1 + (kB)i

Mathematically, this seems to be the most natural representation of the cipher.
Both the S-Box (inversion on F28) and the linear layer are highly structured,
and this could well be exploited in the analysis of the cipher.

9 Conclusion

Rijndael is a cipher with a simple, elegant and highly algebraic structure. Its se-
lection as the AES has led to a growing interest in the study of algebraic proper-
ties of block ciphers, with a particular focus on algebraic techniques that can be
used in their cryptanalysis. One promising approach is to exploit the large, though
surprisingly simple, system of multivariate quadratic equations derived from the
cipher. An efficient method for solving this system would represent a successful
key-recovery attack against the AES. While the problem of solving such systems

66 C. Cid

is known to be hard, it is not entirely unlikely that a technique can be developed
which exploits the particular algebraic structure of these particular systems.

Furthermore, it is also possible that the AES algebraic structure could be
exploited on mounting less ambitious attacks. The AES has a rich algebraic
structure, and while many of these properties might not prove to be relevant
in the cryptanalysis, it is not inconceivable that one could find a novel way to
explore this structure in the analysis of the cipher.

References

1. Elad Barkan and Eli Biham. In how many ways can you write Rijndael? In Yuliang
Zheng, editor, Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 160–175. Springer, 2002.

2. Alex Biryukov and Christophe De Canniere. Block Ciphers and Systems of
Quadratic Equations. In FSE’2003, 2003.

3. Jiun-Ming Chen and Bo-Yin Yang. Theoretical Analysis of XL over Small Fields.
In Proceedings of the 9th Australasian Conference on Information Security and
Privacy, 2004. to appear.

4. Carlos Cid, Sean Murphy, and Matthew Robshaw. Computational and Algebraic
Aspects of the Advanced Encryption Standard. In Proceedings of the Seventh
International Workshop on Computer Algebra in Scientific Computing - CASC
2004, 2004. to appear.

5. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations.
In Eurocrypt’2000, pages 392–407. Springer, 2000.

6. Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations. In Yuliang Zheng, editor, Advances in Cryptology -
ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages
267–287. Springer, 2002.

7. Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations. Cryptology ePrint Archive, Report 2002/044, 2002.

8. David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms.
Undergraduate Texts in Mathematics. Springer, Second edition, 1997.

9. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag, 2002.
10. Claus Diem. The XL-algorithm and a conjecture from commutative algebra, 2004.

submitted.
11. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner Bases

without reduction to zero F5. In T. Mora, editor, International Symposium on
Symbolic and Algebraic Computation - ISSAC 2002, pages 75–83, July 2002.

12. N. Ferguson, R. Shroeppel, and D. Whiting. A simple algebraic representation
of Rijndael. In Proceedings of Selected Areas in Cryptography, pages 103–111.
Springer-Verlag, 2001.

13. Sean Murphy and Matthew Robshaw. Essential Algebraic Structure within the
AES. In M. Yung, editor, Advances in Cryptology - CRYPTO 2002, volume 2442
of LNCS, pages 1–16. Springer-Verlag, 2002.

14. Sean Murphy and Matthew Robshaw. Comments on the Security of the AES and
the XSL Technique. Electronic Letters, 39:26–38, 2003.

General Principles of Algebraic Attacks and
New Design Criteria for Cipher Components�

Nicolas T. Courtois

Axalto Cryptographic Research & Advanced Security,
36-38 rue de la Princesse, BP 45, 78430 Louveciennes Cedex, France

courtois@minrank.org

http://www.nicolascourtois.net

Abstract. This paper is about the design of multivariate public key
schemes, as well as block and stream ciphers, in relation to recent at-
tacks that exploit various types of multivariate algebraic relations. We
survey these attacks focusing on their common fundamental principles
and on how to avoid them. From this we derive new very general design
criteria, applicable for very different cryptographic components. These
amount to avoiding (if possible) the existence of, in some sense “too sim-
ple” algebraic relations. Though many ciphers that do not satisfy this
new paradigm probably still remain secure, the design of ciphers will
never be the same again.

Keywords: algebraic attacks, polynomial relations, multivariate equa-
tions, finite fields, design of cryptographic primitives, generalised linear
cryptanalysis, multivariate public key encryption and signature schemes,
HFE, Quartz, Sflash, stream ciphers, Boolean functions, combiners with
memory, block ciphers, AES, Rijndael, Serpent, elimination methods,
Gröbner bases.

1 Introduction

In this paper we consider a very ambitious question: how to design secure cryp-
tosystems and in particular how to design secure ciphers ? Very little real answers
do exist in this area. However it is possible to learn from our experience, and
formulate some design criteria, resulting on the one hand, from some practical
requirements on cryptographic systems, and on the other hand, from the known
attacks. Doing so we are still not done, and this for two reasons. First of all,
the recommandations do usually conflict with each other and are not obvious to
balance. Moreover for both practical implementation criteria and security crite-
ria, it is always hard to know and debatable to what extent exactly a system
satisfies these. Nevertheless, the work on the design criteria is and always was
an important and necessary area of research.

� Work supported by the French Ministry of Research RNRT Project “X-CRYPT”.

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 67–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 N.T. Courtois

This paper is about an emergence of a new type of design criteria on various
types of cryptographic primitives. It turns out that many recent attacks on
public key signature and encryption schemes, block and stream ciphers (including
AES) have a common denominator. This common feature is the exploitation (by
various methods) of the existence of various types of algebraic relations that
involve both the inputs and the outputs of some component. We will formulate
the resulting design criteria on the respective components that will be very
similar, if not identical.

2 From Boolean Functions to Algebraic Relations

Most of the current cipher design paradigms can be seen in terms of looking for
in some sense “good” Boolean functions / “good” vectorial functions (S-boxes)
and avoiding “bad” ones. The outputs of cryptosystems (and their components)
should simply not depend on their inputs in a way that is too simple. The defi-
nition of the word “simple” does naturally vary from one place to another. For
example in the design of stream ciphers, there are many so called “non-linearity”
criteria, dictated by some (not always really practical) attacks. Building ciphers
with such components allows to make sure that many (from real to very theoret-
ical) attacks will not work very well on these ciphers. For example, in [25] Golic
explains the criteria on the Boolean functions that should be used in stream
ciphers. Obviously these criteria, to some extent being necessary in the design
of good ciphers, are by far insufficient and nothing guarantees that a cipher
that made out of “good” components will be good itself (i.e. will be secure).
Moreover, using such components is sometimes even perceived (if they are really
very good) as a potential danger (special may mean dangerous). In particular,
many recent attacks in different areas of cryptography do work in spite of using
very good (sometimes optimal) components w.r.t. aforementioned criteria (for
example highly non-linear components).

2.1 Interesting Special Case: AES S-Box

AES (Rijndael) [19, 20] is precisely a good case to study in this respect. First,
because its security is simply essential, and more importantly, because it pushes
the (aforementioned) philosophy that culminates two decades of research in the
design of modern ciphers to its limits. A general question is, whether it is possible
(and how) to attack ciphers build with highly-nonlinear components (and thus
build with eminently “good” Boolean function. Obviously studying this question
will in most cases not give results being directly applicable to AES, but it gives
us the opportunity to come up with new approaches to attack AES later, as well
as should help us to simply design much better ciphers in the future (that avoid
also the recent attacks).

In [5], Canteaut and Videau study the non-linearity properties of the Inverse
function in GF (2n) (the only non-linear component of AES) with relation to
linear, differential and higher-order differential attacks. It is exceptional and

General Principles of Algebraic Attacks and New Design Criteria 69

close to optimality, see [5]. On page 6 of [21], the designers of AES say: “[...] The
disadvantage of these boxes is that they have a simple description in GF (2m), [...]
we are not aware of any vulnerability caused by this property. [...] Should such
a vulnerability exist, one can always replace the Sboxes by Sboxes [...] that are
not algebraic over GF (2m). [...]” Unfortunately important vulnerability of the
inverse S-box does exist. Historically the idea goes back to the algebraic attacks
on several so called multivariate public key schemes, initiated by Patarin in [41],
greatly improved by Courtois et al. [9, 18], and recently adopted by Faugère
and Joux [31]. The seminal idea (due to Patarin) is to study the security of
a cipher component not in terms of Boolean/algebraic functions, but in terms
of Boolean/algebraic relations that involve both inputs and output bits. In
the last two years, this precise idea, has led to a sudden collapse of several
important families of stream ciphers, as demonstrated by Courtois, Meier et al in
[16, 17, 2, 10, 12] and numerous other recent papers. We explain these in Section
4. But does it matter at all for block ciphers ? This will the main subject of this
paper starting from Section 5.

3 From Multivariate Public Key Schemes to General
Algebraic Attacks

At Crypto’95, Jacques Patarin proposes a very interesting attack on the
Matsumoto-Imai public-key cryptosystem of Eurocrypt’98, see [36, 40]. This cryp-
tosystem, at the time considered as very promising, is based on a univariate
transformation, that can be for example X �→ X3. This cube function, instead
of being over a ring of numbers modulo some N like with RSA, is over a finite
field, for example GF (280). The order of a multiplicative group of GF (280) is
known and therefore in many cases, such a power function over a finite field is,
unlike in RSA, easily invertible. However, the same algebraic structure of this
function can be “concealed” (cf. [36, 40]) when it is written in a new representa-
tion, as a set of multivariate quadratic polynomial functions. It is done in such
a way that it is easy to compute it forwards, and hard backwards, for anyone
that does not known how the system of equations have been generated. Thus,
Matsumoto and Imai construct their public key cryptosystem, see [36] for more
details.

Incidentally, due to the cube function, this cryptosystem have extremely good
properties when considered in terms of Boolean functions, see [39, 5]. Yet, this
did not prevent Jacques Patarin from rather badly breaking this cryptosystem,
at Crypto’95 [40]. He shows that there are simple algebraic relations that re-
late input and output bits of this cryptosystem. More precisely, if the input
is (x0, . . . , x79) and the output is (y0, . . . , y79) there exist bi-linear equations of
type, for example

∑
ij αijxiyj = 0. Then, Patarin remarks that if such equations

exist, they can be easily found from the public key, and then subsequently they
can be used to decrypt any message: if we substitute a concrete values of y in
these equations they become linear and can be solved to recover the xi.

70 N.T. Courtois

This attack has been generalised by Courtois in [9]. This paper also proposes
a first “theory” of algebraic attacks on public key schemes1 that we will develop
and explain here. This “theory” is quite simple and can potentially be applied
to many different situations that arise in cryptanalysis. To achieve this we will
be voluntarily imprecise. Some details vary from one attack to another, and it
should be applicable also to situations that are very different than the area of
algebraic attacks.

From one point of view, one can think that it applies to more or less all cryp-
tographic attacks. To explain this, let’s consider any attack on any deterministic
one-way function which is described as a set of explicit arithmetic formulae
yi = Fi(x0, . . . , xn−1). The answer x we are looking for is also seen as a set
of equations, though much simpler xi = . . ., which a hypothetical attack would
evaluate to. We wish to look at any deterministic attack as a series of transfor-
mations that starts from (somewhat “complex”) initial equations and eventually
produces somewhat “simpler” ones (containing the solution to the system). Sim-
ilarly, following [9], starting from some notion of complexity that is adapted to
our initial equations, and makes them hard to solve, we can also try to construct
attacks that work exactly in this way. For this, still following [9], we need to
study (and find) methods that given some initial equations, give hope to gener-
ate some “simpler” equations. With such methods we hope to solve the system,
by successive simplifications. For example, one possible notion of complexity is
the non-linear degree. In Matsumoto-Imai and HFE systems [36, 40, 41] we have
initial equations that are quadratic and our goal will be to find some simpler,
linear equations. Most attacks known on these systems work in this way, e.g.
[40, 41, 9, 18, 31].

Attacks that work in such a way, may be iterative with many steps, which
makes them hard to understand and study. For example it is far from being clear
what is the complexity of Courtois-Pieprzyk XSL attack on AES [15]. However,
again following [9], what one should study, and what is really interesting, is
what happens in one step of the attack. From the cryptological point of view
the main question will be not what is the exact complexity of an attack, but
rather if the attack is feasible in general (at least in some cases), and even
more importantly, how to completely avoid such attacks. For these questions,
the most important answers may already be given by looking at the beginning
of the attack process. Do we gain something ? Can we by some means gain
anything simpler from the initial equations ? Obviously it is always possible to
combine equations in some way, (and it is very simple for Boolean algebraic
equations over a finite filed). However, usually, we obtain other equations that
have nothing special and are in fact more complex than the initial equations.
Following [9], the interesting phenomenon to watch for is a type of “collapse in
the complexity”. For example, we take some multivariate equations of degree 2,
combine them algebraically to get an equation of expected degree 4, but when we

1 It applies also almost literally to algebraic attacks on block and stream ciphers, but
at the time, nobody really suspected this.

General Principles of Algebraic Attacks and New Design Criteria 71

compute this equation its degree collapses from 4 to 3. Here we gain something,
some simplification arises. The heuristic is then that, if it can be done once, it can
be done several times and in many cases we end up by obtaining a full working
algebraic attack. In rare cases, it will obviously fail, but we know that designing
systems such that there is no “collapse of complexity” in some sense, will prevent
many attacks, whether they work well, or not. For example, building a cipher
with large random components(e.g. S-boxes) makes such cases of “complexity
collapse” to some degree very unlikely if not impossible, this whatever is our
definition of complexity.

When, as in many cases studied in this paper, the notion of complexity is the
non-linear degree of a multivariate polynomial form of a function, the existence of
“complexity collapse” can be characterised as follows. If an algebraic combination
of the original equations is of lower degree than expected, it means that there
exist a non-trivial and in some sense “simple” (e.g. low degree) function G such
that:

G (x0, . . . , xn−1; F0(x0, . . . , xn−1), . . . Fm−1(x0, . . . , xn−1)) = 0

If we replace yi = Fi(x0, . . . , xn−1) we get an algebraic relation between input
and output bits:

G (x0, . . . , xn−1; y0, . . . , ym−1) = 0 (∗)

In these formulas the xi and the yi may be in GF (2), but may be also in
any other finite field GF (q). We are at the right point. It turns out that talking
about algebraic relations is more general than considering “a collapse in the
complexity”: algebraic relations may exist, be found and directly be used in an
attack, disregarding the initial complexity of the equations, that in some cases
is within no comparison (much more complex).

Undoubtedly, there are many cases in which the very existence of an alge-
braic “complexity collapse” or/and resulting algebraic relations at some level, is
somewhat trivial and inevitable. There are also many cases in which such occur-
rence can be an isolated phenomenon that does not lead to interesting attacks.
Yet, to make sure that a system resists to large class of possible attacks it is
sensible to avoid such situations whatsoever. (This concerns, as we will explain
later mainly Generalised Linear Cryptanalysis and direct algebraic XSL-type at-
tacks, and potentially other future attacks). Another way of seeing such design
criteria is to say that, in a sense, components of our system (or the whole system
itself) will be “more” indistinguishable from random components (e.g. random
functions or random permutations), and thus less attacks should be possible.

In the following sections we will explain briefly, how this general paradigm
of algebraic attacks applies to other contexts. This list is not exhaustive, and
we expect that many other areas of cryptographic security can be described in a
meaningful way in terms of “complexity collapse” and/or simple “I/O relations”
with respect to some (not necessarily algebraic/polynomial degree) notion of
complexity.

72 N.T. Courtois

3.1 How to Build Secure Multivariate Public Key Cryptosystems

Here the conclusion follows immediately: for a trapdoor function to be secure
we need to make sure that there is no multivariate relations such as (∗) that
contain less than, let’s say 280 different monomials (in general, for finite systems,
it is impossible to avoid the existence of algebraic relations, but their size will be
astronomical). In practice, for most systems, if there is no algebraic/multivariate
relations of size less than 240, there should be no practical algebraic attack on the
system (because we need to be able to recover the equations first). However, in
some special cases, equations of large sizes can be build directly by a method that
depends on the cipher, and then they can be used by substitution of variables.
Therefore the proposed bound of 280 gives a better guarantee.

4 Algebraic Attacks on Stream Ciphers

The algebraic attacks on stream ciphers have been introduced in 2003 by Cour-
tois and Meier [17, 16]. Since then, the area has known an important research
activity with many interesting contributions, to quote only some, by Armknecht
and Krause [2, 1], Cho and Pieprzyk [6], Courtois [12, 10], Hawkes and Rose [27],
Lee, Kim, Hong, Han and Moon [33], Meier, Carlet and Pasalic [37], and others.
In this paper we only explain the main principle of algebraic attacks on stream
ciphers from [17, 10], and what are the resulting design criteria for components
of such ciphers.

The algebraic attack on stream ciphers is extremely general and applies po-
tentially to all ciphers that have some linear feedback (for example based on
LFSRs or cellular automata). We assume that in our cipher the first (linear)
component is as follows. Let x = (x0, . . . , xn−1) ∈ GF (q)n be the state of this
component. We assume that the cipher is regularly clocked (some relaxations
are possible, see [17, 16]) and at each clock the linear state x is updated by some
multivariate linear function L. This means that at each clock x becomes L(x),
and if K = (K0, . . . ,Kn−1) is the initial state, at time t the state will be called
x(t) and by definition we have x(t) = Lt(K).

Then we assume that the state of the linear component is supplied to the
second “filter/combiner” component that outputs the keystream (it may output
one or several bits at a time). This output component can be stateless or stateful:
in the second case it also has internal memory bits that are updated at each clock.
In this case, we have in addition to the linear feedback in the first component,
a non-linear feedback in the second component (but usually of much smaller
size/importance than the linear feedback).

Let l be the number of memory bits in the second component, that after
the time t are a

(t)
0 , . . . , a

(t)
l−1. In particular, for stateless filters/combiners l is 0,

for example when a Boolean function is used to filter/combine the state bits
of one or several LFSRs. The initial inner state is a(−1), exists before t = 0,
and can be anything (it is unknown in the attack and algebraic attacks tend to
eliminate all the monomials in the ai). At each clock t, the combiner outputs m

General Principles of Algebraic Attacks and New Design Criteria 73

bits y
(t)
0 , . . . , y

(t)
m−1, for t = 0, 1, 2, For example, if the ciphers uses a single

Boolean function to combine input bits, we have simply m = 1. In general,
the second component can be described as a pair of functions F = (F1, F2) :
GF (2)n+l → GF (2)m+l, that given the current state and the input, computes
the next state and the output:

F :

{
(y(t+1)

0 , . . . , y
(t+1)
m−1) = F1(x

(t)
0 , . . . , x

(t)
n−1, a

(t)
0 , . . . , a

(t)
l−1)

(a(t+1)
0 , . . . , a

(t+1)
l−1) = F2(x

(t)
0 , . . . , x

(t)
n−1, a

(t)
0 , . . . , a

(t)
l−1)

The most general form of an algebraic attack on stream ciphers following
closely [10, 12, 17] works as follows.

• We assume that L is known (for example the LFSRs used in the cipher are
known or can be guessed/revovered).

• We consider M consecutive states of the cipher.
• Find (by some method that is very different for each cipher) one (at least,

but one is enough) multivariate relation G between the state bits xi and
some M consecutive outputs, for example:

G(x0, x1, . . . , xn−1; y(0), . . . , y(M−1)) = 0

We assume that G is of degree d in the xi (the degree in the yi may also be
important, but usually will not influence the total attack complexity).

• By recursive structure of the cipher, for any initial state K and for any t,
the same equation will apply to all consecutive windows of M states

G(Lt(K); y(t), . . . , y(t+M−1)) = 0

• The y(t), . . . , y(t+M−1) are replaced by their values known from the observed
output of the cipher.

• Due to the linearity of L, for any t, the degree of these equations is still d.
• For each keystream bit, we get a multivariate equation of degree k in the xi.
• Given many keystream bits, we inevitably obtain a very overdefined system

of equations (i.e. great many multivariate equations of degree d in the Ki).
• To solve these equations we may apply the XL algorithm from Eurocrypt

2000 [43], adapted for this purpose in [16] and other improved elimination
techniques such as computing Gröbner bases combined with linear algebra,
see [22, 23]. However, if we dispose of a sufficient amount of keystream, (which
is frequently not very big, see [17]), all these are not necessary.

• If the amount of keystream available is large enough, we use a so called
linearization method that is particularly simple. There are about T ≈ (

n
d

)

monomials of degree ≤ d in the n variables Ki (assuming d ≤ n/2). We
consider each of these monomials as a new variable Vj . Given about

(
n
d

)
+M

keystream bits, and therefore R =
(
n
d

)
equations on successive windows of

M bits, we get a system of R ≥ T linear equations with T =
(
n
d

)
variables Vi

that can be easily solved by Gaussian elimination on a linear system of size
T . The time to solve such a system is Tω with in theory ω ≤ 2.376 [7] but
in practice for small systems, it is believed that one should rather consider
ω that is closer to 3 than to 2.376.

74 N.T. Courtois

4.1 How to Build Secure Stream Ciphers

For stream ciphers in which the second component does not have internal mem-
ory, the case M > 1 does not make a lot of sense, and if we wish the cipher to
avoid algebraic attacks, we get a requirement on the second component that is
identical to our requirement on public key trapdoor functions. There should be
no “simple” algebraic relations between its inputs and outputs such as:

G (x0, . . . , xk−1; y0, . . . , ym−1) = 0 (∗)
Similarly, in the general case l ≥ 1 we need to avoid the existence of “not too

complex” equations (that eliminate the internal state bits ai) of type:

G(x0, x1, . . . , xn−1, y(0), . . . , y(M−1)) = 0 (∗∗)
For stream ciphers however, the notion of “simple” and “complex” equations

changes. It is no longer the total size of these equations (number of monomials)
that matters, but their degree in the xi (their degree in the yi can be large,
provided that the total size of the equations is not too big and that there is
some method to generate these equations from the description of the cipher).
Our recommandation, for ciphers that aim at 2128 security is that there should be
no G that can be efficiently written (for example using up to 2128 of memory)
with degree d ≤ 16. (We do not exactly require that they do not exist, and for
some high d there may exist large relations with, for example 2100 monomials,
that are not a problem as long as there is no efficient algorithm to recover/write
and otherwise use them). For higher security levels, for example military-level
requirements of type 2256, we recommend a cautious d ≥ 32. For specific ciphers
these numbers may be lower but then they require a careful study if they will
not be broken by fast algebraic attacks [12, 1, 27].

It is certainly possible to obtain components that satisfy these criteria by
using sufficiently large random S-boxes (the exact size will depend a lot of the
exact construction). Otherwise, proposing constructive methods to obtain com-
ponents that will (if possible provably) satisfy these criteria is an important open
problem. For Boolean functions, this problem can be rephrased as constructing
“good” Boolean function that in addition to classical non-linearity criteria re-
spond also to the new criterion of “algebraic immunity”. It also remains an open
problem, see [37].

5 Block Ciphers and Algebraic Relations

This paper is about a simple idea of studying algebraic relations on different
components. In this paper we will not try to summarise all the results but
the outcome of this approach on stream ciphers and multivariate public key
schemes was quite devastating, see among others [1, 2, 6, 9, 10, 11, 12, 14, 15, 16,
17, 18, 22, 23, 27, 31, 33, 37, 40, 41, 42, 43]. Several classes of schemes were shown
to be substantially less secure than expected, and sometimes badly broken. But

General Principles of Algebraic Attacks and New Design Criteria 75

the real question that many people are asking is, does this type of attacks matter
also for block ciphers ?

At present many cryptologists still believe that they don’t matter (at all).
Yet, from one point of view there is no doubt that it does ! For example with
the polynomial approximation attack of [30], Jakobsen was the first to claim
that to obtain secure ciphers “[...] it is not enough that round functions have
high Boolean complexity. [...]” . He proposes already to avoid functions that
have simple algebraic properties in the design of block ciphers (but his warning
was never taken seriously). Regarding the AES S-box, in [8] and in [13] in these
proceedings, Courtois shows that it is possible to construct, by several very
different methods, many block ciphers based on the inverse in GF (2n) that
satisfy all the known design criteria on block ciphers, yet remain very very weak.

These schemes are insecure, because the Inverse-based Rijndael-type S-boxes,
though very complex when regarded as a function, can be characterised in several
ways by algebraic relations, cf. [13, 15, 38]. Here we are concerned with attacks
being forms of generalised linear cryptanalysis, see [26, 32, 8, 13]. Though these
attacks techniques clearly do evolve into general attacks that can be applied
potentially to any block cipher, the insecure ciphers constructed in [13] remain
very special contrived ciphers.

On the contrary, for ciphers such as DES and AES, that use relatively small S-
boxes and a lot of diffusion that connects the outputs of one S-box to many other
S-boxes in the next rounds, (wide trail strategy of AES designers [19, 20]), we
expect that the things should be very different. In [13, 8], heuristic arguments are
given to the effect that, the impact of generalised linear cryptanalysis on such
ciphers (e.g. AES) is expected to be low, as long as they resist well to linear
cryptanalysis. Therefore, it seems so far that the algebraic relations may do not
really matter so much for AES and similar ciphers.

6 Global Algebraic Attacks on Block Ciphers

We see that, finding attacks on ciphers such as AES, remains an ambitious
task, even given the existence of algebraic relations on the S-boxes. Unfortu-
nately, there is yet another attack strategy, published in 2002 by Courtois and
Pieprzyk, that is designed to render the “wide trail strategy” useless. It can be
called a direct/global algebraic attack strategy, or exact algebraic approach.
At the origin, it also uses the existence of algebraic relations for the individual
components of the cipher. We do not however try to connect the specific mono-
mials that appear in one equation to another equation, which may be very hard,
but just write the equations for the whole cipher, to obtain a global system of
equations that uniquely characterizes the key to be found. Then we see if it is
possible (in theory and/or in practice) to solve such a system of equations.

This type of approach, if proven to work efficiently in practice, is not less
than a major revolution in the field of block cipher cryptanalysis. This is be-
cause, except few very weak ciphers, all the general attacks known up till now
for block ciphers are attacks that combine “approximations”, that are some

76 N.T. Courtois

properties (linear, differential, higher-order differential, polynomial approxima-
tion etc..) true with some probability that except for some very weak ciphers is
different from 1. This “combine approximations” paradigm has three important
consequences. First of all, the complexity of the attacks must grow exponentially
with the number of rounds. Secondly, the number of plaintexts needed in an at-
tacks also grows in the same way (and may be the main limitation in practice).
Finally, ciphers with good diffusion (wide trail strategy) force the attacker to
use several approximations in parallel in the same round, and the efficiency of
the attacks further decreases.

The “exact algebraic” approach that exploits equations that are true with
probability 1 that exist locally (for example for each S-box) has the potential
to remove simultaneously the three aforementioned obstacles. The complexity is
not longer condemned to grow exponentially with the number of rounds. The
number of required plaintexts may be quite small (e.g. 1). And the wide trail
strategy should have no impact whatsoever on the complexity of the attack.

6.1 How Secure Are Today’s Block Ciphers ?

Some people dismiss the idea of an algebraic attack on AES, as being too simple
and too naive to be true. Our impression is that, it is rather the current thinking
about the security of block ciphers that is very naive.

We get the impression that, if we mix sufficiently many rounds of any con-
struction, it will be secure. In practice however, the ciphers are meant to be
rather fast, have a limited number of rounds, but yet the security claims made
on them are extremely ambitious. During the AES contest many authors pro-
posed ciphers claimed to be indistinguishable from a random permutation within
less than 2256 computations. This is a huge number. With the Moore’s law, such
keys should remain secure against brute force until around 2200. This gives us
200 years to invent new mathematics, new algorithms, and new attacks that will
break the cipher faster than the exhaustive search before it is outdated. Who
can make security predictions for such a long period of time, knowing that so
many security claims are disproved every year ? Moreover, 2256 is close to the
number of atoms in the universe, therefore it also possible that the computers
will never actually have such a computing power. This means that we are left
with infinite time to find better attacks. We believe therefore that betting that a
cipher cannot be distinguished from a random cipher faster than by brute force,
may be an infinitely risky bet for 256-bit ciphers. Our guess is rather that all the
block ciphers with 256-bit keys that were submitted to AES, will some day be
broken faster than by exhaustive search, simply because our current knowledge
about the real security of block ciphers is yet very low.

6.2 Who Invented Algebraic Attacks on Block Ciphers ?

According to a visionary recommandation of Shannon from his 1949 paper [44],
breaking a good cipher should require: “as much work as solving a system of
simultaneous equations in a large number of unknowns of a complex type”. There

General Principles of Algebraic Attacks and New Design Criteria 77

are many ways of interpreting this statement. For example we may think about
multivariate quadratic equations with Boolean variables, the large number of
unknowns may mean a large number of monomials, unknowns of a complex type
may mean monomials of high degree (or that combine variables that come from
remote location inside a cipher).

From another point of view, it is a trivial folklore attack that anyone can
think of. Indeed, it is easy to see that, for any practical cryptographic system
that relies on computational (not information-theoretic) security, we can write
a system of Boolean equations such that solving it allows to find the key. Then,
solving a general system of Boolean equations is an NP-hard problem, and solv-
ing non-linear systems of large size is expected to be hopeless. However, it turns
out that, what makes such problems hard is not so much the number of vari-
ables or monomials, but the balance between the number of equations and the
number of monomials that appear in these equations. From this, we expect that,
systems that are overdefined, sparse, or both, should be much easier to solve
than general systems of similar size. As far as we know, before 1998-2000, the
scientific community were not aware of this fact, and easily believed that large
systems of equations are necessarily hard to solve. When the XL attack was first
introduced by Courtois, Klimov, Patarin and Shamir [43], as a development of
earlier ideas of Shamir and Kipnis [42], things started to change. In particular,
specialists of elimination methods such as Gröbner bases that have been stud-
ied for many years now, see for example [45, 22, 23], started to realise the full
potential of these and other algebraic techniques to solve problems that arise
in cryptography. It turns out that the cryptographic instances of multivariate
systems of equations have several interesting properties that may and do help to
solve them efficiently. Among these properties we will quote the fact that they
are over very small finite fields, they usually have a unique solution, they do not
have solutions in extensions fields or at infinity, and again, they are frequently
over-determined, and sparse (with several possible notions of sparsity).

At present the area of algebraic attacks is full of open problems that should
be solved with time. A lot remains to be done in discovering cryptanalytic appli-
cations of already existing algebraic methods of solving systems of polynomial
equations. Similarly, specific systems of equations that arise in cryptography
should allow (and already do) to better understand why certain very general al-
gebraic algorithms (such as Buchberger or F5 algorithms) for solving equations
work well in some cases, and do fail in some other cases. Finally, new meth-
ods of solving algebraic equations should and will be invented, motivated by
cryptographic attacks.

6.3 The Structure of Algebraic Attacks

Global algebraic attacks on block cipher following Courtois and Pieprzyk (pre-
viously imagined also by Shannon, Patarin and probably few others) contains
the following three stages, that can and should be studied separately.

1. Write an appropriate initial system. Write a system of equations that,
given one or several known plaintexts, uniquely characterizes the key. This

78 N.T. Courtois

system should be as over-determined (also called overdefined) and as sparse
as possible. This can be measured by the initial ratio Rini/Tini between the
number of equations Rini in the system and the total number of monomials
Tini that appear in it. It can be for example 1/4 or 1/3. It is not clear what
is the optimal setting for algebraic attacks: we may try simply to achieve
a lowest Rini/Tini possible, however for some systems with a higher initial
ratio, but a lower global size, or some specific additional properties, the
overall complexity of an algebraic attack may be lower.

2. Expand it. The second step is an expansion step. The goal is, starting from
the original Rini equations with Tini monomials, to produce (for example by
multiplying the equations by some well chosen polynomials) another (much
bigger) set of R equations with T monomials. The goal is to have the new
ratio R/T close (or bigger than) 1. If R > T it means that the set of equations
is redundant, and we should think of a better method of generating them
(to avoid redundancies) and also of a better method of counting how many
equations we have, that are not trivial linear combinations of other equations,
and therefore serve no purpose.

Here the main criterion of “success” is not so much the final ratio R/T
(that simply must be somewhat close to 1, e.g. 0.9) but the size T . However
it remains possible that some attacks with a worse (larger) T and better
(bigger) R/T do in fact work better (cf. next step).

3. Final in place elimination. The final step should be an “in place” elimi-
nation method that given an “almost saturated system” with R/T close to 1,
finds a solution. On proposed method to achieve this is by generating a com-
pletely saturated system (the T’ method proposed by Courtois in [15, 14].
It can also be achieved by computing a Gröbner basis of the expanded sys-
tem, and probably by other means. The (heuristic) requirement is that the
memory required in this third step should not exceed T , otherwise maybe
we need to improve rather the second (expansion) step.

6.4 Applicability of Algebraic Attacks

There are reasons why, overdefined and/or sparse systems are bound to appear
frequently in cryptography. In most settings, there is no cryptographic solutions
with unconditional security, and we have to rely on computational security. A
relatively short (128 bits or less) key will be usually used many times, to produce
much more information: many known plaintexts, many signatures, etc. In public
key cryptography, a proof of security would allow to be certain that each utiliza-
tion of the cryptographic scheme, does not leak useful information. Secret key
schemes do not have such proofs of security, and the more we use it, the more the
problem become overdefined (if we do not introduce additional variables). It is
also in secret key cryptography, that the problems may become really massively
overdefined, if we think about the amounts of data that can be encrypted with a
single key, on a satellite link. Another problem is a consequence of the fact that
many ciphers are designed to be implemented in hardware with a very low gate

General Principles of Algebraic Attacks and New Design Criteria 79

count. This allows to design an algebraic attack with relatively small umber of
variables and a very small number of monomials (very sparse).

These are theoretical considerations. The present experience of algebraic at-
tacks is that, their complexity should grow “nearly polynomially” in the number
of rounds and in the block size, with however a really huge constant called Γ that
does depend only on the S-box. (This for all known versions of the XSL attack,
and for both resulting definitions of Γ , see [15]). For a random S-box (and also
for many other S-boxes that have no special properties such as algebraic rela-
tions) this constant Γ can be shown to be double-exponential in s, the size of the
S-box in bits. In [15], it appears that already 4-bit S-boxes, should be sufficient
for 2128 security and probably beyond. For the Rijndael S-boxes, it is possible
to see that Γ grows only simply exponentially in s. Then it seems that even
for s = 8 algebraic attacks faster than 2128 may exist, see [15, 38], but we are
clearly on the frontier of applicability of algebraic attacks. Thus, it seems that
in fact algebraic attacks are only possible for some very special ciphers. Apart
from Serpent and Rijndael, we are not aware of a single other block cipher for
which even a current (probably too optimistic) estimations of the complexity of
algebraic attacks would give less than the exhaustive search.

6.5 Is AES Broken ?

It is important to say: we really do not know. It is possible that, one of the XSL
attacks works exactly as predicted, or a simple combination of already known
attacks already breaks AES. Our favorite candidate in this respect would be to
combine the Murphy-Robshaw idea of using equations over GF (256) from [38],
with one of the XSL expansion attacks from [15], and replace the final T ′ method
by a (presumably better) advanced Gröbner bases algorithm such as Faugère’s
F5 [23]. This might simply break AES. But it is also possible that it fails quite
miserably for some fundamental reason that is not yet understood. Then, a slight
modification of the attack could still remove the theoretical obstacle and give an
attack that might again work in practice. Studying algebraic attacks on block
ciphers in all due details is outside the scope of this paper, and remains largely
to be done. Both theoretical and experimental results will probably be needed
to get the full picture.

6.6 How to Avoid Algebraic Attacks on Block Ciphers

At any rate, we advocate to take the algebraic attacks on block ciphers very
seriously and to design block ciphers that do avoid such attacks. The resulting
security criterion is, still more or less the same. The S-boxes of a block cipher
should avoid the existence of “simple” algebraic relations of type:

G (x0, . . . , xs−1; y0, . . . , ys−1) = 0 (∗)
The exact definition of “simple” that would prevent all algebraic attacks

on block ciphers is not obvious to give. We need to avoid equations that, for
some representation, and some system of equations, give a low value of Γ . For

80 N.T. Courtois

example following [15], we should avoid systems that are too overdefined or/and
too sparse.

This should not be very hard to achieve. We believe that using random S-
boxes on 8 bits should be about sufficient to achieve 128-bit security (though not
for sure). We recommend in fact to construct bigger S-boxes that have no alge-
braic relations starting from random bijective 8-bit S-boxes. For higher security
requirements such as military applications, we advocate to make mandatory a
requirement that the cipher should use at several places inside the encryption,
a random S-box of at least 16 bits.

7 The Future of AES

In our opinion, AES should still be recommended as the best choice of encryption
algorithm for applications that do not require long-term security. We believe
however that NIST should set an expiration date for AES, that could be 2010.
It could be extended it later, according to the developments in cryptanalysis, but
we believe that in 2010 it will be much wiser to replace AES by a better cipher,
being not vulnerable to algebraic attacks, generalised linear cryptanalysis with
multiple approximations, and other attacks that will probably be invented by
2010. The replacement should be done even if it turns out that known algebraic
attacks on block ciphers do not work, and all other attacks that exploit algebraic
relations (e.g. generalised linear cryptanalysis) do not break AES either.

In addition, we believe that a cipher such as AES can only be really credible
as the world’s standard all-purpose cryptographic high security lock, if there is a
series of AES challenges. They could range from 100 to 1 million dollars, and be
offered for solving various important open problems that in a different manner
do compromise the security of AES, up to a total break that is done or doable in
practice. This would allow to monitor the progress in the security of AES and to
ascertain a serious status of this scheme compared to so many other schemes that
are broken every year. For people that do not have expertise in cryptography,
and cannot tell between real or fake security experts, such challenges, are the
only way of knowing that the AES is indeed not yet broken, and some people take
its security seriously enough to offer 1 million dollar to whoever demonstrate it
can be broken in practice.

8 Conclusion

Algebraic attacks exploit the existence of multivariate relations on the appropri-
ate cryptographic component. They do allow to break many multivariate public
key schemes and stream ciphers. For block ciphers, their effectiveness is far from
being clear. Yet, it is very sensible to avoid the existence of such algebraic re-
lations for non-linear components of block ciphers. This not only because of
algebraic attacks, but also because of generalised linear attacks: examples of
contrived ciphers are known that are not secure with relation to these.

General Principles of Algebraic Attacks and New Design Criteria 81

Thus, we propose (if possible) to simply avoid multivariate and algebraic
relations in all types of cipher components. This extends the current paradigm
of avoiding “bad” Boolean functions, or/and “bad” vectorial functions (S-boxes).

One method to achieve this would be to construct appropriate cryptographic
components with guaranteed “algebraic immunity”. A much simpler method, is
to use sufficiently large random S-boxes. This should prevent all known attacks
on block ciphers: linear/differential cryptanalysis with generalisations, all kinds
of generalised linear attacks as described in [13], and also any kind of exact
algebraic attacks such as XSL [15].

References

1. Frederik Armknecht: Improving Fast Algebraic Attacks, to appear in FSE 2004,
LNCS, Springer.

2. Frederik Armknecht, Matthias Krause: Algebraic Atacks on Combiners with Mem-
ory, Crypto 2003, LNCS 2729, pp. 162-176, Springer.

3. Kazuaro Aoki and Serge Vaudenay: On the Use of GF-Inversion as a Cryptographic
Primitive. SAC 2003, LNCS 3006, pp. 234-247, Springer 2004.

4. Ross Anderson, Eli Biham and Lars Knudsen: Serpent: A Proposal for the Ad-
vanced Encryption Standard.

5. Anne Canteaut, Marion Videau: Degree of composition of highly nonlinear func-
tions and applications to higher order differential cryptanalysis, Eurocrypt 2002,
LNCS 2332, Springer.

6. Joo Yeon Cho and Josef Pieprzyk; Algebraic Attacks on SOBER-t32 and SOBER-
128, will appear in FSE 2004, LNCS, Springer.

7. Don Coppersmith, Shmuel Winograd: Matrix multiplication via arithmetic pro-
gressions, J. Symbolic Computation (1990), 9, pp. 251-280.

8. Nicolas Courtois: Feistel Schemes and Bi-Linear Cryptanalysis, To be presented at
Crypto 2004, Santa Barbara, California, 15-19 August 2004.

9. Nicolas Courtois: The security of Hidden Field Equations (HFE); Cryptographers’
Track Rsa Conference 2001, LNCS 2020, Springer, pp. 266-281.

10. Nicolas Courtois: Algebraic Attacks on Combiners with Memory and Several Out-
puts, Available on http://eprint.iacr.org/2003/125/. 23 June 2003.

11. Nicolas Courtois: La sécurité des primitives cryptographiques basées sur
les problèmes algébriques multivariables MQ, IP, MinRank, et HFE,
PhD thesis, Paris 6 University, September 2001, in French. Available at
http://www.minrank.org/phd.pdf.

12. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,
Crypto 2003, LNCS 2729, pp: 177-194, Springer.

13. Nicolas Courtois: The Inverse S-box, Non-linear Polynomial Relations and Crypt-
analysis of Block Ciphers, in AES 4 Conference, Bonn May 10-12 2004, LNCS,
Springer.

14. Nicolas Courtois and Jacques Patarin, About the XL Algorithm over GF (2), Cryp-
tographers’ Track RSA 2003, LNCS 2612, pages 141-157, Springer 2003.

15. Nicolas Courtois and Josef Pieprzyk, Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations, Asiacrypt 2002, LNCS 2501, pp.267-287,
Springer, a preprint with a different version of the attack is available at
http://eprint.iacr.org/2002/044/.

82 N.T. Courtois

16. Nicolas Courtois: Higher Order Correlation Attacks, XL algorithm and Cryptanal-
ysis of Toyocrypt, ICISC 2002, LNCS 2587, pp. 182-199, Springer.

17. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer. An
extended version is available at http://www.minrank.org/toyolili.pdf

18. Nicolas Courtois, Magnus Daum and Patrick Felke: On the Security of HFE, HFEv-
and Quartz, PKC 2003, LNCS 2567, Springer, pp. 337-350. The extended version
can be found at http://eprint.iacr.org/2002/138/.

19. Joan Daemen, Vincent Rijmen: AES proposal: Rijndael,
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf

20. Joan Daemen, Vincent Rijmen: The Design of Rijndael. AES - The Advanced
Encryption Standard, Springer-Verlag, Berlin 2002. ISBN 3-540-42580-2.

21. Joan Daemen, Vincent Rijmen, Bart Preneel, Anton Bosselaers, Erik De Win: The
Cipher SHARK, FSE 1996, Springer.

22. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases
(F4), Journal of Pure and Applied Algebra 139 (1999) pp. 61-88. See
www.elsevier.com/locate/jpaa

23. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5), Workshop on Applications of Commutative Algebra,
Catania, Italy, 3-6 April 2002, ACM Press.

24. Niels Ferguson, Richard Schroeppel and Doug Whiting: A simple algebraic repre-
sentation of Rijndael, SAC 2001, page 103, LNCS 2259, Springer.

25. Jovan Dj. Golic: On the Security of Nonlinear Filter Generators, FSE’96, LNCS
1039, Springer, pp. 173-188.

26. C. Harpes, G. Kramer, and J. Massey: A Generalization of Linear Cryptanaly-
sis and the Applicability of Matsui’s Piling-up Lemma, Eurocrypt’95, LNCS 921,
Springer, pp. 24-38. http://www.isi.ee.ethz.ch/ harpes/GLClong.ps

27. Philip Hawkes, Gregory Rose: Rewriting Variables: the Complexity of Fast
Algebraic Attacks on Stream Ciphers, by Philip Hawkes and Gregory G.
Rose. In crypto 2004, to appear in LNCS, Springer, 2004. Available from
eprint.iacr.org/2004/081/.

28. Thomas Jakobsen and Lars Knudsen: Attacks on Block Ciphers of Low Algebraic
Degree, Journal of Cryptology 14(3): 197-210 (2001).

29. Thomas Jakobsen: Higher-Order Cryptanalysis of Block Ciphers. Ph.D. thesis,
Dept. of Math., Technical University of Denmark, 1999.

30. Thomas Jakobsen: Cryptanalysis of Block Ciphers with Probabilistic Non-Linear
Relations of Low Degree, Crypto 98, LNCS 1462, Springer, pp. 212-222, 1998.

31. Antoine Joux, Jean-Charles Faugère: Algebraic Cryptanalysis of Hidden Field
Equation (HFE) Cryptosystems Using Gröbner Bases, Crypto 2003, LNCS 2729,
pp. 44-60, Springer, 2003.

32. Lars R. Knudsen, Matthew J. B. Robshaw: Non-Linear Characteristics in Linear
Cryptoanalysis. Eurocrypt’96, LNCS 1070, Springer, pp. 224-236, 1996.

33. Dong Hoon Lee, Jaeheon Kim, Jin Hong, Jae Woo Han and Dukjae Moon: Alge-
braic Attacks on Summation Generators, on eprint.iacr.org/2003/229/ and to
appear in FSE 2004, LNCS, Springer.

34. R. Lidl, H. Niederreiter: Finite Fields, Encyclopedia of Mathematics and its appli-
cations, Volume 20, Cambridge University Press.

35. Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied
Cryptography; CRC Press, 1996.

General Principles of Algebraic Attacks and New Design Criteria 83

36. Tsutomu Matsumoto, Hideki Imai: Public Quadratic Polynomial-tuples for efficient
signature-verification and message-encryption, Eurocrypt’88, Springer 1998, pp.
419-453.

37. Will Meier, Enes Pasalic and Claude Carlet: Algebraic Attacks and Decomposition
of Boolean Functions, Eurocrypt 2004, pp. 474-491, LNCS 3027, Springer, 2004.

38. S. Murphy, M. Robshaw: Essential Algebraic Structure within the AES, Crypto
2002, Springer.

39. Kaisa Nyberg: Differentially Uniform Mappings for Cryptography, Eurocrypt’93,
LNCS 765, Springer, pp. 55-64.

40. Jacques Patarin: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88; Crypto’95, Springer, LNCS 963, pp. 248-261, 1995.

41. Jacques Patarin: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymm. Algorithms, Eurocrypt’96, Springer, pp. 33-48.

42. Adi Shamir, Aviad Kipnis: Cryptanalysis of the HFE Public Key Cryptosystem;
In Advances in Cryptology, Proceedings of Crypto’99, Springer, LNCS. The paper
can be found at http://www.hfe.info.

43. Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov, Efficient Al-
gorithms for solving Overdefined Systems of Multivariate Polynomial Equations,
Eurocrypt’2000, LNCS 1807, Springer, pp. 392-407.

44. Claude Elwood Shannon: Communication theory of secrecy systems, Bell System
Technical Journal 28 (1949), see in patricular page 704.

45. Wang, D. Elimination Methods, Texts and Monographs in Symbolic Computation,
Springer, 2001. XIII, ISBN 3-211-83241-6.

An Algebraic Interpretation of AES−128

Ilia Toli and Alberto Zanoni

Dipartimento di Matematica Leonida Tonelli,
Università di Pisa,

Via Buonarroti 2, 56127 Pisa, Italy
{toli, zanoni}@posso.dm.unipi.it

Abstract. We analyze an algebraic representation of AES−128 as an
embedding in BES, due to Murphy and Robshaw. We present two sys-
tems of equations S� and K� concerning encryption and key generation
processes. After some simple but rather cumbersome substitutions, we
should obtain two new systems C1 and C2. C1 has 16 very dense equa-
tions of degree up to 255 in each of its 16 variables. With a single pair
(p, c), with p a cleartext and c its encryption, its roots give all possible
keys that should encrypt p to c. C2 may be defined using 11 or more pairs
(p, c), and has 16 times as many equations in 176 variables. K� and most
of S� is invariant for all key choices.

1 Introduction

The well famous symmetric-key 64-bit cryptosystem DES [10] was broken in
1998 by means of a special purpose computer called DES Cracker. This computer
contained 1536 chips, could search 88 billion keys/sec, and costed 250.000 $. It
won RSA Laboratories DES Challenge II-2 by successfully finding a DES key
in 56 hours in July 1998. In January 1999, RSA Laboratories DES Challenge
III was solved by the DES Cracker working in conjunction with a worldwide
network of 100.000 computers known as distributed.net. This cooperative
effort found a DES key in 1335 minutes, testing over 245 billion keys/sec.

Other than exhaustive key search, the two most important attacks to DES are
differential cryptanalysis and linear cryptanalysis. An actual implementation of
the latter was carried out in 1994 by its inventor, Matsui. It is a known-plaintext
attack using 243 plaintext-ciphertext pairs, all of which are encrypted using the
same, unknown, key. It took 40 days to generate them, and it took 10 days to
actually find the key.

This cryptanalysis did not have any practical impact on the security of DES,
however, due to the extremely huge number of plaintext-ciphertext pairs that
are required to mount the attack. It is unlikely in practice that an adversary will
be able to accumulate such a huge number of plaintext-ciphertext pairs that are
all encrypted using the same key.

On January 2, 1997, NIST began the process of choosing a replacement for
DES. The replacement should be called AES (Advanced Encryption Standard).

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 84–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Algebraic Interpretation of AES−128 85

After a 3-years-long evaluation, Rijndael [3, 4] was chosen to be the AES
among 15 eligible candidates upon 21 submissions. It was published as FIPS 197
[5] on November 26, 2001.

Rijndael is a block cipher, that encrypts blocks of 128, 192, and 256 bits
using symmetric keys of 128, 192, and 256 bits. It was designed with a particular
attention to bit-level attacks, such as linear and differential cryptanalysis. What
makes it particularly resistant to such attacks is the tension between operations
in the two fields F = GF (28) and GF (2). Since its proposal, several new bit-
level attacks, such as impossible differential and truncated differential have been
proposed. Most of them break with some efficiency reduced versions of Rijndael.
For a general version of it, they are not much better than exhaustive key search.
In practice they are mostly academic arguments rather than real world threats
to the security of AES. The interested reader can find an account and some
references about these cryptological tools in [9].

Actually, only the blocklength 128 of Rijndael was approved to become AES.
Another, new, cryptological tool is the algebraic representation of the cipher

[8], [6], [2]. In this case, an eavesdropper tries to write the whole set of operations
and parameters of the cipher by means of a system of polynomial equations,
which he/she next tries to solve. In general, the related systems are enormous.
Solving them by means of general purpose techniques, such as Gröbner bases [1]
is considered the wrong way to face the problem. However, they sometimes bear
a lot of intrinsic structure, that probably facilitates the task. A little research
is done in the topic. Specially AES seems to have been designed regardless to
algebraic cryptanalysis tools.

In this paper we focus on the BES algebraic approach, due to Murphy and
Robshaw [8].

2 An Overview on AES-128

Here is a sketch of AES encryption algorithm.
– Input a plaintext x. Initialize State = x, and perform an operation

AddRoundKey, in w= hich we xor the RoundKey with the State.
– For each round but the last one, perform a substitution operation called

SubBytes on State, using an S-box, perform a permutation ShiftRows
on State, perform an operation MixColumns on State, and perform
AddRoundKey.

– Perform SubBytes, ShiftRows, and AddRoundKey.
– Define the ciphertext y to be State.

All of AES operations are byte-oriented. The cleartext, ciphertext, and each
output of mid-steps of encryption and decryption algorithms are thought of as
4 × 4 matrices of bytes. The arithmetic operations performed on each byte are
those of the finite field F = GF (28). The elements are thought of as univari-
ate polynomials with coefficients in GF (2), mod (m(t)), the so-called Rijndael
polynomial:

m(t) = t8 + t4 + t3 + t + 1 = 11b (1)

86 I. Toli and A. Zanoni

s00 s01 s02 s03

s10 s11 s12 s13

s20 s21 s22 s23

s30 s31 s32 s33

=⇒
s00 s01 s02 s03

s11 s12 s13 s10

s22 s23 s20 s21

s33 s30 s31 s32

Fig. 1. The ShiftRows operation on AES

They are represented as couples of integers in hexadecimal representation. If
interpreted as eight-bit binary strings, the numbers give the exponents of the
terms in the polynomial representation.

The SubBytes operation substitutes each of the given bytes x with S(x):

S(x) = 63+8fx127+b5x191+01x223+f4x239+25x247+f9x251+09x253+05x254

(2)
Actually, S(x) is a permutation polynomial.

The ShiftRows operation permutes bytes in each row, as shown in Figure 1.
The MixColumns operation performs a permutation of bytes in each column

by means of a certain matrix from the linear group GL(F, 16), explicitely given
later in section 3. In practice, the columns are considered as polynomials from
F[x], and multiplied mod(x4 + 1) with the polynomial a(x):

a(x) = 03x3 + 01x2 + 01x + 02. (3)

2.1 The Key Schedule

The key used in every cipher round is successively obtained by the key of the
precedent one. The whole procedure is sketched below.

– Input a key h0. Initialize H0 = h0.
– For each round r = 1, . . . , 10, perform a permutation called RotWord on

the sub-vector formed by the last four elements (word) of Hr−1, as shown
in Figure 2.

– Perform the SubWord (S-box on each byte) operation on the obtained
word, and add the constant vector Rconr = (tr−1, 0, 0, 0). Define the other
elements by means of bitwise xor operations in terms of the obtained result
and other words from Hr−1.

– Define the complete set of keys h to be {Hr | r = 0, . . . , 10}.

We consider each vector as divided into four words, indicated with a second
index ranging from 0 to 3. For y ∈ F

4 we put

ϕr
A(y) = SubWord(RotWord(y)) + Rconr,

a0 a1 a2 a3 =⇒ a1 a2 a3 a0

Fig. 2. The RotWord operation on AES

An Algebraic Interpretation of AES−128 87

while the xor operation corresponds to the sum in F. The rth round for the AES
key generation scheme is the following one:

KA =

⎧
⎪⎪⎨

⎪⎪⎩

Hr0 = ϕr
A(Hr−1,3)

Hr1 = Hr0 + Hr−1,1

Hr2 = Hr1 + Hr−1,2

Hr3 = Hr2 + Hr−1,3

=⇒ Hr = (Hr0,Hr1,Hr2,Hr3) (4)

3 An Overview on the Big Encryption System (BES)

Our starting point is the BES cipher, in which the AES is embedded by a
“natural” mapping. The BES operations involve no computations in GF(2), only
in F. This allows us to describe AES by means of polynomial equation systems.
Solving the systems means to find the key or an alias of its, and therefore to
break the code.

The state spaces of AES and BES are respectively A = F
16 and B = F

128.
The basic tool for the embedding is the conjugation operation φ, that considers
for each value in F the vector of its successive square powers.

F � a �−→ φ(a) = ã = (a20
, a21

, ..., a27
) ∈ F

8 (5)
F

n � a �−→ φ(a) = ˜ =
(
φ(a0), ..., φ(a7)

) ∈ F
8n (6)

Thanks to the easy-to-verify properties (with 0−1 = 0) :

φ(a + a′) = φ(a) + φ(a′) and φ(a−1) = φ(a)−1 , (7)

we can put a one-to-one correspondence between AES and BES operations:

BA = φ(A) ⊂ B (8)

as the subset of B corresponding to A.
Let p, c ∈ B be the plaintext and ciphertext, respectively; wi, xi ∈ B (0 ≤

i ≤ 9) the mapped state vectors before and after the inversion phases that occur
in the codifying process, and hi ∈ B the used keys.

All the phases of Rijndael algorithm may be translated in B using just lin-
ear algebra in F, apart from inversion, which is simply done component-wise, as
follows.

The matrix LA : F � GF (2)8 → GF (2)8 � F for the affine transformation
for one byte in the S-box phase can be represented by the polynomial function
f : F → F:

a

88 I. Toli and A. Zanoni

f(a) =
7∑

k=0

λka2k

(9)

λ0 = t2 + 1 λ4 = t7 + t6 + t5 + t4 + t2

λ1 = t3 + 1 λ5 = 1
λ2 = t7 + t6 + t5 + t4 + t3 + 1 λ6 = t7 + t5 + t4 + t2 + 1
λ3 = t5 + t2 + 1 λ7 = t7 + t3 + t2 + t + 1

(10)

Working in B, LB(a) = φ(LA(a)) = (f(a)2
0
, . . . , f(a)2

7
) and we must compute

the successive squares of f : this is accomplished by finite induction, with basic
step:

(f(a))2 =

(
7∑

k=0

λka2k

)2

=
7∑

k=0

λ2
ka2k·2 =

7∑

k=0

λ2
ka2k+1

(11)

Simply speaking, it is sufficient to iteratively square and circularly shift (a28
=

a = a20
) the coefficients. The resulting matrix, which we still indicate with LB ,

is

LB = [lij]i,j=0,...7 with lij = λ2i

(8−i+j) mod 8 (12)

The global transformation LinB : F
128 → F

128 is the block diagonal matrix with
16 blocks equal to LB .

The AES constant cA = 63 = t6 + t5 + t + 1 ∈ F used in the S-box maps
into:

φ(cA) = (63, C2, 35, 66, D3, 2F, 39, 36)
= (t6 + t5 + t + 1, t7 + t6 + t, t5 + t4 + t2 + 1, t6 + t5 + t2 + t,

t7 + t6 + t4 + t + 1, t5 + t3 + t2 + t + 1, t5 + t4 + t3 + 1,

t5 + t4 + t2 + t) (13)

The corresponding BES vector cB is simply obtained by the juxtaposition of 16
consecutive copies of φ(c), such that:

cB = φ(cA, . . . , cA︸ ︷︷ ︸
16

) = (φ(cA), . . . , φ(cA)︸ ︷︷ ︸
16

) [cB]i = [φ(cA)]i mod 8 (14)

An Algebraic Interpretation of AES−128 89

The AES ShiftRows transformation is given by the matrix RA : F
16 → F

16:

RA =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

The corresponding BES matrix is obtained simply “expanding” each one in RA

with an identity matrix of order 8, I8, and each 0 with a zero (8 × 8) matrix.
The result is RB : F

128 → F
128.

The AES MixColumns may be represented using the CA : F
4 → F

4 matrix:

CA =

⎛

⎜⎜⎝

t t + 1 1 1
1 t t + 1 1
1 1 t t + 1

t + 1 1 1 t

⎞

⎟⎟⎠ (16)

The AES transformation is given by the MixA : F
16 → F

16 block diagonal matrix
having as blocks four copies of CA. In order to obtain the corresponding matrix
we first need to compute the following matrices C

(k)
B , for k = 0, . . . , 7:

C
(k)
B =

⎛

⎜⎜⎜⎝

t2
k

(t + 1)2
k

1 1
1 t2

k

(t + 1)2
k

1
1 1 t2

k

(t + 1)2
k

(t + 1)2
k

1 1 t2
k

⎞

⎟⎟⎟⎠ (17)

with:

t2
0

= t t2
3

= t4 + t3 + t + 1 t2
6

= t6 + t3 + t2 + 1
t2

1
= t2 t2

4
= t6 + t4 + t3 + t2 + t t2

7
= t7 + t6 + t5 + t4 + t3 + t

t2
2

= t4 t2
5

= t7 + t6 + t5 + t2

(18)
from which (t + 1)2

k

= t2
k

+ 1 may be very easily computed.
Using an appropriate basis (see below), the resulting matrix MB : F

128 →
F

128 may be written as a block diagonal one, having as blocks for all possible k

90 I. Toli and A. Zanoni

four consecutive copies of C
(k)
B . The change of basis is necessary because of the

different positioning of value powers in φ’s image with respect to what we need.
Indeed, if a ∈ F

16, then:

φ(a) = (a0, ..., a
27

0 , a1, . . . , a
27

1 , . . . , a15, . . . , a
27

15) (19)

while in order to use the block diagonal representation, we would need the vector
rearranged in this way:

a′ = (a0, ..., a15, a
2
0, . . . , a

2
15, . . . , a

27

0 , . . . , a27

15) (20)

The corresponding permutation matrix PermB : F
128 → F

128 permits to do this
transformation. To write it down easily, suppose to divide it into (16 × 8) sub-
matrices, called Phk, h = 0, . . . , 7, k = 0, . . . , 15. Each sub-matrix element (with
i = 0, . . . , 15, j = 0, . . . , 7) is thus defined:

[Phk]ij =
{

1 if i = k and j = h
0 else (21)

Its inverse matrix Perm(−1) is equally easy to describe: viewing it as composed of
(8×16) sub-matrices P

(−1)
hk , with h = 0, . . . , 15, k = 0, . . . , 7, the generic element

[P (−1)
hk]ij (with i = 0, . . . , 7, j = 0, . . . , 15) is defined exactly as [Phk]ij is. We

therefore have MixB = Perm−1
B · MB· PermB .

It is possible to avoid using cA slightly modifying the key generation scheme
with respect to the original proposal. We show here how. If b, (hB)i ∈ B are
the state and key vectors for the generic ith round of BES associated to the
corresponding one in AES, we have:

RoundB(b, (hB)i) = MixB(RB(LinB(b−1) + cB)) + (hB)i

= MB · (b−1) +
(
CB(cB) + (hB)i

)
(22)

= MB · (b−1) + (kB)i

with:

MB = MixB · RB · LinB, CB = MixB · RB , (kB)i = CB(cB) + (hB)i (23)

The change on key generation scheme consists in adding a constant vector to
each obtained round key, and this will be the form of the system we will work
with.

3.1 BES Key Schedule Translation

– The AES RotWord operation is represented by a matrix RWA : F
4 −→ F

4.

RWA =

⎛

⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞

⎟⎟⎠ (24)

The BES version RWB : F
32 −→ F

32 is obtained by replacing the ones with
the identity matrix I8, and the zeroes with the (8 × 8) zero matrix.

An Algebraic Interpretation of AES−128 91

– The S-box is applied only to a part of the whole vector, and therefore the cor-
responding matrix dimension changes. The resulting block diagonal matrix
is Link

B : F
32 −→ F

32, with four blocks equal to LB .
– The constant ck

B is obtained with just four copies of φ(cA):

ck
B = φ(cA, cA, cA, cA) = (φ(cA), φ(cA), φ(cA), φ(cA)), [ck

B]i = [φ(cA)]i mod 8

(25)
– The constant vectors Rconi = (ti−1, 0, 0, 0) are mapped into:

(RconB)i = φ(Rconi) = (φ(tr−1 =), 0, . . . , 0︸ ︷︷ ︸
24

) (26)

In order to compute them, we need the tj normal forms with respect to m(t).

To write in a very compact way the round key equations, we keep using the
matrix notation, but in a functional sense. It is not possible to avoid here the
use of constants.

If ϕi
B : F

32 → F
32 is the BES ith-round mapping function for a conjugated

word x:
ϕi

B(x) = Link
B(RWB(x))−1 + ck

B + (RconB)i (27)

the generic AES and BES round matrices are MKi
A and MKi

B :

MKi
A =

⎛

⎜⎜⎝

0 0 0 ϕi
A

0 I4 0 ϕi
A

0 I4 I4 ϕi
A

0 I4 I4 I4 + ϕi
A

⎞

⎟⎟⎠ and MKi
B =

⎛

⎜⎜⎝

0 0 0 ϕi
B

0 I32 0 ϕi
B

0 I32 I32 ϕi
B

0 I32 I32 I32 + ϕi
B

⎞

⎟⎟⎠ (28)

A key round is given by the computation of hi = MKi
B(hr−1).

4 The Systems

We indicate how the processes for encryption and key generation can be rep-
resented by algebraic systems. We underline here once and for all that all the
indicated variables satisfy the F-belonging equation y256 + y = 0.

4.1 Encryption

Remembering that the last round differs slightly from the other ones, with M∗
B =

RB · LinB , the resulting system for codification is [8]:
⎧
⎪⎪⎨

⎪⎪⎩

w0 = p + k0

xi = wi
−1 i = 0, ..., 9

wi = MBxi−1 + ki i = 1, ..., 9
c = M∗

Bx9 + k10

(29)

Let here and in the rest of this paper the (8j + m)th component of all the
vectors be indicated using the indexes expression (j,m), with j = 0, . . . , 15 and

92 I. Toli and A. Zanoni

m = 0, . . . , 7. Under the hypothesis that no 0-inversion occurs (true for the 53%
of encryptions and 85% of 128-bit keys), it is possible to expand the above system
as follows, for all possible values of j and m

⎧
⎪⎪⎨

⎪⎪⎩

0 = w0,(j,m) + p(j,m) + k0,(j,m)

0 = xi,(j,m)wi,(j,m) + 1 i = 0, . . . , 9
0 = wi,(j,m) + (MBxi−1)(j,m) + ki,(j,m) i = 1, . . . , 9
0 = c(j,m) + (M∗

Bx9)(j,m) + k10,(j,m)

(30)

Let α, β ∈ F be the generic coefficients of MB and M∗
B , respectively. Now, adding

the fact that the above equations should be valid for the BA subset, that is, the
state vectors must have the conjugation property, we finally have (with m + 1
considered mod8):

S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = w0,(j,m) + p(j,m) + k0,(j,m)

0 = wi,(j,m) + ki,(j,m) +
∑

(j′,m′)

α(j,m),(j′,m′)xi−1,(j′,m′) i = 1, . . . , 9

0 = c(j,m) + k10,(j,m) +
∑

(j′,m′)

β(j,m),(j′,m′)x9,(j′,m′)

0 = xi,(j,m)wi,(j,m) + 1 i = 0, . . . , 9
0 = x2

i,(j,m) + xi,(j,m+1) i = 0, . . . , 9
0 = w2

i,(j,m) + wi,(j,m+1) i = 0, . . . , 9

(31)

Let S�, � = 1, . . . , 6 indicate the equations in the �th line of the above system
for all the possible values of i, j and m, and I� the ideal they generate. As we
see, the system is very sparse, with S′ = {S1, S2, S3} linear, and the remaining
equations in S′′ = {S4, S5, S6} quadratic.

With k = {ki}, w = {wi}, x = {xi}, the numbers of the system are given in
the following tables.

Line Number of equations
S1 16 · 8 = 128
S2 9 · 16 · 8 = 1152
S3 16 · 8 = 128
S4 10 · 16 · 8 = 1280
S5 10 · 16 · 8 = 1280
S6 10 · 16 · 8 = 1280
S Total = 5248

Block Number of variables
k 11 · 16 · 8 = 1408
x 10 · 16 · 8 = 1280
w 10 · 16 · 8 = 1280

Total = 3968

4.2 Key Generation

It is possible to write down an analogous system for the key generation. It is more
convenient to translate directly the AES procedure KA into its BES counterpart
KB , without explicitly expanding all the equations, as it is done in MKi

B . The
equations express all the hi,(j,m) variables in term of the h0,(j,m) ones. The index
ranges for the equations are: i = 1, . . . , 10, j̃, j̃′ = 0, . . . , 3 and m,m′ = 0, . . . , 7,
while the Link

B matrix coefficients are indicated with γ.

An Algebraic Interpretation of AES−128 93

KB =

⎧
⎪⎪⎨

⎪⎪⎩

H̃i0 = ϕi
B(H̃i−1,3)

H̃i1 = H̃i0 + H̃i−1,1

H̃i2 = H̃i1 + H̃i−1,2

H̃i3 = H̃i2 + H̃i−1,3

=

⎧
⎪⎪⎨

⎪⎪⎩

zi,(j̃,m) = h254
i−1,(12+[(j̃+1) mod 4],m)

hi,(j̃,m) = (ck
B + (RconB)i)(j̃,m) +

∑

(j̃′,m′)

γ(j̃,m)(j̃′,m′)zi,(j̃′,m′)

hi,(4s+j̃,m)= hi,(4(s−1)+j̃,m) + hi−1,(4s+j̃,m) s = 1, 2, 3

Let cRi = ck
B + (RconB)i be the constant vector occurring in each round, and

its elements be indicated with δi. Remembering the third equivalence of (23),
with t = 0, . . . , 15 and the conjugation property, we can obtain the keys with:

K =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = zi,(j̃,m) + h254
i−1,(12+[(j̃+1) mod 4],m)

0 = hi,(j̃,m) + δi,(j̃,m) +
∑

(j̃′,m′)

γ(j̃,m)(j̃′,m′)zi,(j̃′,m′)

0 = hi,(4s+j̃,m) + hi,(4(s−1)+j̃,m) + hi−1,(4s+j̃,m) s = 1, 2, 3

0 = ki,(t,m) + (CB(cB))(t,m) + hi,(t,m)

0 = z2
i,(j̃,m) + zi,(j̃,m+1)

0 = h2
i,(j̃,m) + hi,(j̃,m+1)

(32)

5 System Solving

Actually, we are interested to recover the key out of the systems S and K, that is
the original key h = φ−1(k�) = {h0, . . . , h15}, where k� = {k0,(0,m), . . . , k0,(15,m)}.
This is the task of this section.

In order to obtain equations relating h (k) components we have to eliminate
all other variables. We will do this by:

– modifying the way the systems are written,
– doing some variable substitutions “by hand” (see below), and finally
– perform Gröbner bases computations (more complicated substitutions, ex-

pansions and simplifications) in order to obtain the final system.

First of all, we write the systems in a more appropriate way for our purposes.
Observe that, for each variable v ∈ k,w, z,h, the conjugation property of BES
vectors may be synthesized by the obvious following relations:

vi,(j,m) = v2m

i,(j,0) m = 0, . . . , 7 (33)

5.1 Encryption

We rewrite S as follows: first of all, we remove the imposed restriction about
inversion, and we substitute S4 with an equation expressing the true definition

94 I. Toli and A. Zanoni

of the general inverse of an element of F. Then we use (33), in order to remove
all the variables with index m > 0, and obtain:

S� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = w2m

0,(j,0) + p2m

(j,0) + k2m

0,(j,0)

0 = w2m

i,(j,0) + k2m

i,(j,0) +
∑

(j′,m′)

α(j,m),(j′,m′)x
2m′

i−1,(j′,0) i = 1, . . . , 9

0 = c2m

(j,0) + k2m

10,(j,0) +
∑

(j′,m′)

β(j,m),(j′,m′)x
2m′

9,(j′,0)

0 = xi,(j,0) + w254
i,(j,0) i = 0, . . . , 9

(34)

We use the last equation to remove all the xi,(j,0), and, being each line a set of
successive square powers, we keep only the ones with m = 0, obtaining:

S� =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = w0,(j,0) + p(j,0) + k0,(j,0)

0 = wi,(j,0) + ki,(j,0) +
∑

(j′,m′)

α(j,0),(j′,m′)w
254·2m′

i−1,(j′,0) i = 1, . . . , 9

0 = c(j,0) + k10,(j,0) +
∑

(j′,m′)

β(j,0),(j′,m′)w
254·2m′

9,(j′,0)

(35)

Because of the block structure of matrices LinB and RB, the β coefficients do
not depend on j and j′, and the values are simply the coefficients of f . To further
simplify the notations, hereafter we take, mod255:

ω = (ω0, . . . , ω7) = (254 · 20, . . . , 254 · 27) = (254, 253, 251, 247, 239, 223, 191, 127),
ω′ = (ω′

0, . . . , ω
′
7) = (ω0 − 127, . . . , ω7 − 127) = (127, 126, 124, 120, 112, 96, 64, 0) .

be two auxiliary vectors. We can now avoid writing m index, and finally write:

S� =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = w0,j + pj + k0,j

0 = wi,j + ki,j +
∑

(j′,m′)

α(j,0),(j′,m′)w
ωm′
i−1,j′ i = 1, . . . , 9

0 = k10,j + cj +
∑

m′
λm′ w

ωm′
9,j′

(36)

The system so obtained has 16 + 9 · 16 + 16 = 176 equations in 11 · 16 + 10 ·
16 = 336 variables. Obviously, it expresses nothing but a series of successive
substitutions, down to the last equation. If we consider the block lex order for
which, independently from the lex order inside each block,

k10 > w9 > k9 > · · · > w0 > k0 (37)

we have a (not reduced) Gröbner basis [1], and the above substitutions may be
considered as the complete reduction computation. The resulting set of the last
16 equations, where all the w variables disappeared, is what we were looking for.
Indicating with qS

j the polynomials resulting from the substitutions, we have:

k10,j + cj + qS
j (k0, . . . ,k9, p) = 0 j = 0, . . . , 15 (38)

An Algebraic Interpretation of AES−128 95

5.2 Key Generation

We now try to get more informations analyzing K. We may:

– substitute z variables in the second line equations, to get rid of them.
– use the conjugation property, expressing everything in terms of variables

with m = 0.
– note that the CB(cB) constant vector has cA = t6 + t5 + t + 1 in each of its

(j, 0) positions, and opportune powers in the other ones. In other words, the
equations on the fourth line of K, K4, may be reduced (the other ones are
powers of it) to:

hi,(j,0) + ki,(j,0) + cA = 0 (39)

– for the above considerations, express everything directly in term of k vari-
ables.

– observe that Link
B is a block diagonal matrix, and therefore just j̃′ = j̃ is

“active” for each single equation, and what remains is nothing more than
the set of coefficients of the f polynomial.

After the elaboration and always keeping present that we work in F, the
modified key generation scheme translates into the following system (where i =
1, . . . , 10; s, j̃ = 0, . . . , 3 and in the las= t version we omit m). For brevity, we
define the function:

in : N � n → in(n) = 12 + [(n + 1) mod 4] ∈ N (40)

K� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = hi,(j̃,0) + δi,(j̃,0) +
∑

(j̃′,m′)

γ(j̃,0)(j̃′,m′)h
254·2m′

i−1,(in(j̃′),0)

0 = hi,(4s+j̃,0) + hi,(4(s−1)+j̃,0) + hi−1,(4s+j̃,0)

0 = hi,(j̃,0) + (ki,(j̃,0) + cA)

=

⎧
⎨

⎩
0 = (ki,(j̃,0) + cA) + δi,(j̃,0) +

∑

m′
γ(j̃,0)(j̃,m′)

(
ki−1,(in(j̃),0) + cA

)ωm′

0 =
(
ki,(4s+j̃,0) + cA

)
+

(
ki,(4(s−1)+j̃,0) + cA

)
+

(
ki−1,(4s+j̃,0) + cA

)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 = ki,j̃ +
(
cA + δi,(j̃,0)

)

+
(
ki−1,in(j̃) + cA

)127·
(∑

m′
λm′(ki−1,in(j̃) + cA

)ω′
m′

)

0 = ki,4s+j̃ + ki,4(s−1)+j̃ + ki−1,4s+j̃ + cA

Now only k variables remain, 160 equations in 176 variables, and by successive
substitutions we can express all the ones with i > 0 as polynomials in the
“parameters” k0. The equations are a Gröbner basis for several suitable lex
orderings. Its complete reduction may be computed considering, for example,
the one such that

k10,15 > · · · > k10,0 > · · · > k0,15 > · · · > k0,0 (41)

Now we can do backward substitutions, à la Gauss. Note that it is possible to
work with h variables in order to have the equations following the original AES

96 I. Toli and A. Zanoni

definition, and use (39) only at the end, in order to obtain the modified key
generation scheme. In any case, the result is:

ki,j = qK
i,j(k0) i = 1, . . . , 10 , j = 0, . . . , 15 (42)

The final step consists in putting together the results obtained in the former
sections. Now we have two main possibilities, depending on the number of (p, c)
pairs we may use.

A single (p, c) pair. We have to eliminate all the generated intermediate keys,
putting together the systems S� and K�, with the refinement of (37) sug-
gested by (41). In this way we obtain the entire substitution process once
and for all. It is summarized by the insertion of (42) into (38):

C1 = { qK
10,j(k0)+cj+qS

j

(
k0, q

K
1,j(k0), . . . , qK

9,j(k0), p
)

= 0 | j = 0, . . . , 15 }
(43)

which is a system of 16 equations in 16 variables, whose roots give the desired
keys.

Eleven or more (p, c) pairs. We may simply use a copy of (38) for each (p, c)
pair, in order to obtain a system in 176 variables with 176 or more equations,
whose roots give all the desired keys, too.

C2 = { k10,j + c
(n)
j + qS

j

(
k0, . . . ,k9, p

(n)
)
= 0 | n = 1, . . . , d , j = 0, . . . , 15 }

(44)

These systems are extremely dense, and a very big computation power is required
to solve them. Obviously, making use of more (p, c) pairs, we may render the
system to be solved overdetermined. We may use these tools jointly, and so on.

6 Conclusions

We presented some algebraic aspects of representing AES as a system of poly-
nomial equations following the BES approach. By means of successive substi-
tutions, we were able to eliminate all the intermediate variables, and obtain
two systems S� and K� whose solution corresponds exactly to code breaking.
Actually, they are rather complicated. Solving them is not trivial at all.

K� and most of S� are invariant for all choices of keys. When extended, their
joint size is of about 500 Kb. Each of them is a (not reduced) Gröbner basis for
several lex orderings, their union is not. Probably there exists some ordering for
which the calculus of a Gröbner basis is easier. If we ever can obtain this with
reasonable computational resources, then AES can be declared broken.

Succeeding to calculate the Hilbert series of K� ∪S�, we should easily obtain
the number ns of its solutions. We suspect that ns is invariant for all key and
(p, c) choices. Furthermore, we expect that ns expresses the redundancy of the
keyspace of AES. That is, it tells us how many key choices will set up the same
bijection between the cleartext space and ciphertext space. The number of such
bijections is expected to be:

An Algebraic Interpretation of AES−128 97

#(AES Keyspace)
ns

(45)

Probably a reasonably simple canonical representation of such bijections can
be found. In this case, if ns is big enough, probably the right (unique up to the
isomorphism) key can be found using exhaustive search.

References

1. D. A. Cox, J. Little, D. O’Shea. Ideals, Varieties, and Algorithms, An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Springer-
Verlag, New York, 1992.

2. N. Courtois, J. Pieprzyk. Cryptanalysis of block ciphers with overdefined systems
of equations. IACR eprint server www.iacr.org, April 2002.

3. J. Daemen, V. Rijmen. AES proposal: Rijndael (Version 2). NIST AES website:
csrc.nist.gov/encryption/aes, 1999.

4. J. Daemen, V. Rijmen. The design of Rijndael: AES - The Advanced Encryption
Standard. Springer-Verlag, 2002.

5. National Institute of Standards and Technology. Advanced Encryption Standard.
FIPS 197. 26 November 2001.

6. N. Ferguson, R. Schroeppel, D. Whiting. A simple algebraic representation of
Rijndael. In Selected Areas in Cryptography, Proc. SAC 2001, Lecture Notes in
Computer Science 2259, pp. 103-111, Springer Verlag, 2001.

7. Grayson, Daniel R. and Stillman, Michael E. Macaulay 2, a software system
for research in algebraic geome= try. Available at http://www.math.uiuc.edu/

Macaulay2/.
8. G.-M. Greuel, G. Pfister, H. Schönemann. Singular 2-0-3. A Computer Algebra

System for Polynomial Computations. Center for Computer Algebra, University
of Kaiser slautern, 2003. www.singular.uni-kl.de.

9. S. Murphy M. J.B. Robshaw. Essential Algebraic Structure within the AES. M.
Yung (ed.): CRYPTO 2002, LNCS 2242, pp. 1-16, Springer-Verlag 2002.

10. E. Oswald, J. Daemen, and V. Rijmen. The State of the Art of Rijndael’s Se-
curity. Technical report. Available at www.a-sit.at/technologieb/evaluation/

aes report e.pdf.
11. D. R. Stinson. CRYPTOGRAPHY, Theory and Practice. Chapman & Hall/CRC,

2002. Second edition.

Efficient AES Implementations on ASICs
and FPGAs

Norbert Pramstaller, Stefan Mangard, Sandra Dominikus,
and Johannes Wolkerstorfer

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

{firstname.surname}@iaik.at

Abstract. In this article, we present two AES hardware architectures:
one for ASICs and one for FPGAs. Both architectures utilize the simi-
larities of encryption and decryption to provide a high throughput using
only a relatively small area. The presented architectures can be used in a
wide range of applications. The architecture for ASIC implementations
is suited for full-custom as well as for semi-custom design flows. The ar-
chitecture for the FPGA implementation does not require on-chip block
RAMs and can therefore even be used for low-cost FPGAs.

Keywords: Advanced Encryption Standard (AES), FPGA, ASIC.

1 Introduction

The symmetric block cipher Rijndael [4] has been standardized by NIST1 as
Advanced Encryption Standard (AES) [10] in November 2001. Today, AES is
the most widely used symmetric block cipher and it is implemented in many
different devices to secure wired as well as wireless connection links.

The requirements for an implementation of AES strongly depend on the
application running on the device and of course also on the type of the device.
In many scenarios, it is sufficient to implement AES in software. However, there
are also many very relevant scenarios, where the requirements concerning the
implementation of AES can only be met by dedicated hardware implementations.

Encryption engines for high speed communication links, for example, often
need to be implemented in hardware due to the high throughput requirements.
In applications that need to be resistant against side-channel attacks, AES is
also often implemented in special hardware modules [11]. The reason for this
is simply that it is easier to secure a small AES module against side-channel
attacks rather than to secure an entire processor. In devices where the power
consumption is critical, hardware implementations are also the preferred choice,
because they consume considerably less power than software implementations.

1 National Institute of Standards and Technology.

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 98–112, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Efficient AES Implementations on ASICs and FPGAs 99

In this article, we present efficient hardware implementations for ASICs and
FPGAs that can be used for a wide range of applications. Both architectures use
similarities of encryption and decryption to provide a high level of performance
using only a relatively small area. While most publications on implementations of
AES only provide performance and area figures without interfaces and registers
for CBC mode, the architectures presented in this article are complete. Both
architectures include an AMBA APB [1] interface and can perform encryptions
and decryptions in CBC mode.

Our architecture for ASICs is presented in Section 2 and the one for FPGAs
is discussed in Section 3. Conclusions about both architectures can be found in
Section 4.

2 ASIC Implementation of AES

During the last years, several proposals [8, 12, 13, 16, 19] on how to implement
AES on an ASIC have been published. Most of these publications focus mainly
on the throughput of the implementation. In this article however, we describe
an architecture that in addition is highly regular and scalable. Therefore, it can
be used for a wide range of applications.

The architecture discussed in this article has balanced combinational paths
in order to fully utilize every clock cycle. The fact that the combinational paths
are short compared to other published AES architectures, makes the presented
architecture a favorable choice for low-power applications. This is due to the fact
that glitches, which occur more frequently in long combinational paths than in
short ones, cause a significant power consumption.

The regularity of the presented architecture helps to keep the size of the
AES architecture small during place-and-route of a semi-custom design flow and
facilitates the creation of full-custom designs. Full-custom approaches are inter-
esting for smart card implementations that are required to provide protection
against power analysis attacks [7]. In a full-custom approach, the designer can
well balance the capacitive loads of output nodes, as it is for example desired
for logic styles like the one described in [14, 15].

The performance of our AES architecture can gradually be increased at the
cost of an increased chip size. The overall structure of this architecture, which is
capable of performing AES encryptions and decryptions, is shown in Fig. 1. The
AES hardware module consists of the following four components:

– The Interface: The AMBA APB interface handles all communication of
the AES module with its environment.

– The Data Unit: The data unit is the main module of the architecture.
It can perform any kind of AES encryption or decryption round using the
round key that is assigned to its key input. Although the number of rounds
is different for the three standardized key sizes, the types of rounds which
need to be executed are the same for all key sizes. Consequently, the data
unit is independent of the key size.

100 N. Pramstaller et al.

generator

storage

CBCcell cell cell cell

cell cell cell cell

cell cell cell cell

cell cell cell cell

S-Box

data unit

in
te

rf
ac

e

key unit input

output

key

data

d
at

a_
o

u
t

32

32

32

32

128

32

32

S-Box S-Box S-Box

input
32

Fig. 1. Overall structure of the AES module

– The Key Unit: The key unit serves two main purposes: the storage of
cipher keys and the calculation of the round keys. To save die size, the
S-Boxes of the data unit are reused to perform the key expansion. In the
presented architecture, this reuse is possible for any key size without loss of
performance.

– The CBC Unit: The CBC unit of the AES module implements the CBC
mode without any negative influence on the overall performance of the AES
module.

In the presented architecture, a 128-bit block of data is encrypted as follows.
First, a cipher key needs to be loaded via the AMBA APB interface into the key
unit. Once a key is loaded, it can be used for an arbitrary number of encryptions
and decryptions. After the loading of the cipher key, the first 128-bit block of
data is transferred via the interface and the CBC unit into the data unit. The
data unit then iteratively performs the number of AES rounds that are required
for the used key size.

In each round, the key unit provides the corresponding round key to the data
unit. To calculate these round keys, the key unit uses the S-Boxes of the data
unit during a clock cycle in which they are not required by the data unit. After
the calculation of the AES rounds, the encryption result is passed in 32-bit words
to the interface via the CBC unit. Decryptions are computed in a very similar
way. In this case, the data unit performs the inverse AES transformations in
reversed order and also the key unit provides the round keys in reversed order.

The remainder of this section presents the details of the data and the key unit.

2.1 The Data Unit

The data unit is the biggest and the most important component of the AES
architecture. It stores the current 128-bit data block of an encryption or de-

Efficient AES Implementations on ASICs and FPGAs 101

Key

Cell 31

S-Box

Cell 21

Cell 11

Cell 01

Cell 30

S-Box

Cell 20

Cell 10

Cell 00

Cell 32

S-Box

Cell 22

Cell 12

Cell 02

S-Box

Cell 23

Cell 13

Cell 03

Cell 33 In

In

In

In

Key

Key

Key

Out

Out

Out

Out

S-Box

Fig. 2. The architecture of the standard data unit

cryption (referred to as the “State”) and is capable of performing any number
and type of en-/decryption rounds on this State. Consequently, all four AES
transformations (SubBytes, ShiftRows, MixColumns and AddRoundKey) and
the corresponding inverse transformations are implemented within the data unit.
For the AddRoundKey transformation, a corresponding round key needs to be
provided by the key unit.

Figure 2 shows the standard version of the data unit. It consists of sixteen
so-called data cells and four S-Boxes. An S-Box of the architecture is a circuit
capable of performing the SubBytes and the inverse SubBytes transformation for
an 8-bit input. The data cells store eight bits per cell and perform all other AES
transformations and the corresponding inverses, when connected appropriately.
In full-custom designs, inputs and outputs of the data cells can be defined such
that connection by abutment is possible when they are placed next to another.

Another distinguishing feature of the presented architecture is the fact that
the combinational paths are relatively short and, more important, very balanced.
The commonly used approach to implement AES in hardware is to store the 128-
bit State in a register and to perform the AES transformations (except for the
ShiftRows transformation) column by column. Therefore, to perform a normal

102 N. Pramstaller et al.

AES encryption round, first the ShiftRows transformation is done in one clock
cycle. Then, the remaining transformations of an AES round are applied column
by column, whereby all transformations for one column are usually done within
one clock cycle.

The problem of this approach is that the combinational path to perform
a SubBytes, a MixColumn and an AddRoundKey transformation in one clock
cycle is very long. Additionally, the implementation of the ShiftRows transfor-
mation causes a significant wiring overhead. The data unit, presented in this
section, solves both problems. It performs AES encryptions and decryptions in
the following way:

To load a data block, the input data is shifted column by column from the
right side (see Fig. 2) into the data cells. The inputs labelled “In” are connected
via the CBC unit to the interface. The initial AddRoundKey transformation is
done in the fourth clock cycle at the same time as the last column is loaded.

To compute a normal AES round, the registers are rotated vertically to per-
form the (Inv)SubBytes and the (Inv)ShiftRows transformation row by row. In
our design, we use an S-Box with one pipeline stage. Therefore, the (Inv)SubBytes
and the (Inv)ShiftRows transformations can be applied to all sixteen bytes of
the State in five clock cycles.

In the sixth clock cycle of a normal AES round, the (Inv)MixColumns and
the AddRoundKey transformations are performed by all data cells in parallel.
Since the S-Boxes are not used by the data unit during the sixth clock cycle,
they can be utilized by the key unit to perform the key expansion for the next
round key.

This way, the required number of encryption or decryption rounds can be
executed by the data unit and the key unit until the 128-bit result is finally
stored in the registers of the data unit. This result is then shifted column by
column to the left (to the interface of the AES module). At the same time, a
new input State can be loaded.

Using the standard data unit, the minimal number of clock cycles that are
required to perform an AES-128 encryption or decryption is 65. Four clock cycles
are required for the I/O of the data unit, 54 clock cycles are required to perform
the nine normal AES rounds and seven are required for the final round.

The following two subsections present the architecture of the S-Boxes and
the data cells.

S-Boxes. In hardware implementations, the SubBytes transformation and its
inverse are the most expensive AES transformations. For the presented AES
module, a pipelined (one stage) implementation of the S-Box as described in [18]
is used. The main idea of this implementation is to build an efficient combina-
tional circuit for the S-Box, which is based on the fact that GF (28) can be seen
as quadratic extension of the field GF (24). A pipelined version of the S-Box is
used to accomplish that the combinational paths in the architecture are balanced
(i.e. the paths of the S-Boxes and those of a MixColumns-and-AddRoundKey
step are roughly the same).

Efficient AES Implementations on ASICs and FPGAs 103

Data Cells. The design of the data cells is crucial for the overall architecture
of the data unit. The data cells serve as storage elements of the AES State and
perform the (Inv)MixColumns and the AddRoundKey transformation. Besides
some input selection circuit, each data cell consists of eight flip-flops, a multi-
plier [17] for the MixColums transformation (which can also be omitted in order
to scale the design) and XOR gates for the AddRoundKey transformation.

2.2 The Key Unit

The key unit is used to store keys and to calculate the key expansion function.
Due to the fact that the AES is standardized for 128, 192 and 256-bit keys, the
interface between the key unit and the data unit is designed such that the key
expansion for several different key sizes can be implemented on the same chip.

The key unit used in our design stores the key loaded via the interface and is
capable of calculating all round keys for encryption and decryption iteratively.
Since the data unit does not perform any S-Box lookups while the MixColumns
and AddRoundKey transformations are executed, the S-Boxes of the data unit
are reused by the key unit during this clock cycle. Details about the key unit
can be found in [8].

2.3 Performance of the ASIC AES Implementation

As mentioned before, the presented AES module is built up very regular and is
highly scalable. Three different scaled versions of the module have been imple-
mented and tested. They are named “standard version”, which was described
in the previous sections, “minimum version”, which is the smallest, but slowest
one, and the “high-performance version”, which is the fastest, but most area
intensive version.

As shown in Fig. 2, the data unit of the standard version consists of 16
data cells (including 16 MixColumns multipliers) and four S-Boxes. The en-
/decryption of an 128-bit data block requires 65 clock cycles. By using 16 S-Boxes
instead of four, the performance can be increased. The S-Box lookup can be done
for all 128 bits of the State in parallel. With this configuration (high-performance
version), the AES module requires only 35 clock cycles to en-/decrypt a 128-bit
data block. In the minimum version of the AES module, only four S-Boxes and
four MixColumns multipliers are used. Only the four “leftmost” data cells con-
tain MixColumns multipliers. In the other data cells the multipliers are omitted.
Here, 92 clock cycles are needed to process a 128-bit data block.

In this section, we give a comparison of the three different scaled versions of
the AES module in terms of performance and area. Additionally, a comparison
to related work is given.

2.4 Performance of the Presented ASIC Design

The three versions of AES-128 have been implemented in VHDL and have been
synthesized for a 0.6 µm CMOS process. Table 1 shows the complexity in gate

104 N. Pramstaller et al.

Table 1. Complexity of AES components in GE

Component Complexity [GE]

S-Box 392
Multiplier 212
Data cell (without Multiplier) 87
Key generator 1,633
Key store 691
AMBA Bus Interface 267
CBC Register 1,599

Table 2. Complexity of the AES-128 modules

Component # Minimum # Standard # High Perf.

S-Boxes 4 1,568 4 1,568 16 6,272
Multipliers 4 848 16 3,392 16 3,392
D. cells without mult. 16 1,392 16 1,392 16 1,392
Multiplexors 96 224 192 384 224 374

Data unit 4,032 6,736 11,430

Key generator 1 1,633 1 1,633 1 1,633
Key store 1 691 1 691 1 691

Key unit 2,324 2,324 2,324

AMBA + CBC 1 1,866 1 1,866 1 1,866
Control logic 319 279 230

Additional 2,185 2,145 2,096

Total 8,541 11,205 15,850

equivalents (GE) of each component used for the AES module. In Table 2, the
complexity of the three different modules is calculated by adding the size of the
components used for the different versions. In the first column for each version
the used number of components is given. The standard version of the module
has a complexity of 11,205 GE, whereas the minimum version needs 8,541 GE.
The high performance version requires 15,850 GE.

The high-performance module essentially consists of 12 S-Boxes more than
the standard module. This causes an increase of the complexity by 41%. On the
other hand, the minimum version consists of 12 MixColumns multipliers less than
the standard version and is therefore 24% smaller. The critical path of all three
designs is more or less the same and is determined by the delay of one pipeline
stage of the S-Box—the maximum frequency for the complete AES-128 modules
(including AMBA interface, CBC, and control logic) on the 0.6 µm technology
is about 50 MHz. In Table 3, a summary of the performance is shown.

The standard version needs 65, the high-performance version 35, and the
minimum version 92 clock cycles to perform an AES-128 encryption or decryp-
tion. In the high-performance version, the improvement of the throughput by
87% is paid by an increase of the complexity by 41%. In the minimum version,
the reduced complexity (-24%) accounts for a 29% loss in throughput.

Efficient AES Implementations on ASICs and FPGAs 105

Table 3. Summary of the performance of the different AES-128 modules

Clock Throughput@50 MHz Area
Version Cycles [Mbps] [GE]

Minimum 92 70 8,541

Standard 65 98 11,205

High perf. 35 183 15,850

2.5 Related Work

This subsection compares the presented architecture with the one proposed
in [13]. The design of Satoh et al. consists of 5,400 GE and was implemented
on a 0.11 µm technology. The design consists of a core data path and a key
generator. It does not include mechanisms for I/O, CBC registers or a key store.
Its maximum clock frequency is about 130 MHz. The design requires 54 cy-
cles to perform an encryption, which leads to a theoretical throughput (for the
four-S-Box version) of 311 Mbps.

For a comparison of complexity, the gate count for our design has to be
reduced by the additional components our design offers (key store, CBC registers,
AMBA interface)—this leads to a gate count of about 8,600 GE for the standard
AES-128 module. This comparison is still not completely fair, since different
technologies are used for synthesis. The 0.11 µm technology used in [13] allows
smaller structures and offers different leaf cells. It seems to be more extensive
than our technology, because similar components of the designs are claimed to
be smaller in the architecture in [13]. For example, the S-Box proposed by Satoh
et al. was reconstructed and synthesized with our technology. The result was a
15% bigger S-Box than used in our design, whereas the results with the 0.11 µm
technology in [13] show an S-Box that needs 25% less GE than our S-Box design
in the 0.6 µm technology.

The big difference in the used technology also does not allow a reasonable
comparison of the maximum frequencies or the throughput. When comparing
the two proposed S-Boxes synthesized in our 0.6 µm technology in terms of
delay, our proposed S-Box is about 30% faster. An attempt to compare the
throughput of both designs starts with comparing the critical paths. In [13] the
critical path is very long: The SubBytes, the MixColumns and the AddRoundKey
transformation are done for one column within one clock cycle. Additionally, in
the same clock cycle the data passes the so-called selector function, which seems
to be another major cause of delay.

In our presented architecture, the critical path consists only of one pipeline
stage of an S-Box. This is approximately a third of the critical path of the
architecture presented in [13]. Using the same technology for synthesis of the
compared designs, we expect the maximum frequency of our module to be at
least three times higher than the maximum frequency stated in [13]. This leads
to a better overall performance.

106 N. Pramstaller et al.

3 FPGA Implementation of AES

Reconfigurable devices like Field Programmable Logic Arrays (FPGA) gain more
and more importance in hardware, software and hardware/software co-designs.
In the beginning often seen only as devices for rapid prototyping, FPGAs are
increasingly used for final applications. One of the mostly used arguments for
using FPGAs rather than ASICs, is the reduced time-to-market and the cost
advantages of standard devices.

Due to the importance of reconfigurable devices, numerous FPGA AES im-
plementations have been published within the last years. These implementations
mainly focus on high throughput rates [3, 9], and use techniques like loop un-
rolling and pipelining. They are able to report throughput rates up to 12,160
Mbps [3]. Applying such techniques leads to AES hardware implementations that
require a huge amount of FPGA resources that are only available for expensive
devices and cannot be implemented in low-end FPGAs.

In this section we present a new universal architecture that is supported by
several FPGA product families and can also be implemented using inexpensive
low-end FPGAs. It is the first known AES FPGA implementation that does
not require on-chip block RAMs. Furthermore, it implements the complete AES
encryption standard and features the Cipher Block Chaining (CBC) mode.

3.1 Related Work

Gaj et al. [3] published the fastest known FPGA implementation. For encryption
and decryption with 128-bit keys, a throughput of 12,160 Mbps on a Xilinx Vir-
tex XCV1000BG560-6 device is reported. McLoone et al. [9] achieve a through-
put of 6,956 Mbps for 128-bit keys only. They also presented encryption engines
for 192-bit or 256-bit keys with accordingly lower throughput. Their combined
encryption and decryption implementation can handle 128-bit keys and achieves
a throughput of 3,239 Mbps on a Xilinx Virtex-E XCV3200E-8CG1156 device.
The third implementation published by Dandalis et al. [5] also provides encryp-
tion and decryption for 128-bit keys. They achieve a throughput of 353 Mbps
on a Xilinx Virtex XCV1000BG560-6 device. Fischer et al. [6] published a non-
pipelined design supporting encryption and decryption for 128-bit keys. They
report a throughput of 451 Mbps of their fast configuration and 115 Mbps for
an economic configuration. A drawback of their design is the missing on-chip
round-key generation. Chodowiec et al. [2] presented an implementation for low-
end devices. Using only few resources they achieve a throughput ranging from
139 Mbps to 166 Mbps depending on the used FPGA device.

All implementations (except [6, 2]) use a considerable amount of hardware
resources. For instance, [9] requires 138 block RAMs for 256-bit keys. This de-
mands the use of expensive million-gate FPGA devices.

As shown above, most published hardware implementations focus on high
throughput rates and do not provide a non-parameterizable design to support the
complete AES standard. Furthermore, the high throughput implementations [3,
9] do not support the Cipher Block Chaining mode (CBC).

Efficient AES Implementations on ASICs and FPGAs 107

3.2 Architecture of the AES FPGA Implementation

This section describes the architecture of the AES co-processor. Starting with a
swift overview, we will present details to highlight some innovative improvements
that make it possible to present a resource-efficient AES co-processor suitable
for low-end FPGA devices.

Basic components of the AES co-processor as shown in Fig. 3 are the AMBA
APB interface, the data unit, the key unit, and the control unit. The key unit
calculates the KeyExpansion function. All round keys are pre-calculated and
stored in the key unit. Pre-calculated round keys allow fast en-/decryption of
different data blocks for the same cipher key because no additional KeyExpan-
sion is required. The data unit holds the State and performs all AES transfor-
mations: AddRoundKey, (Inv)SubBytes, (Inv)ShiftRows and (Inv)MixColumns.
When encryption or decryption has completed the ciphertext (plaintext in case
of decryption, respect.) is stored in the data unit. The control unit receives
commands from the AMBA interface and generates control signals for all other
modules. In addition to control round-key calculation, encryption and decryp-
tion, it also sequences data loading and unloading.

AMBA

Interface

(APB)

Data

Unit Key

Unit

Control Unit

data in

data out

Fig. 3. Architecture of the AES co-processor

The architecture is similar to the architecture presented in Section 2. Differ-
ences are a modified State representation and a modified round-key calculation
scheme. Due to a non-pipelined approach, the same performance for all modes
of operations (ECB and CBC) is reached. Next we describe the AES data unit
and the AES State representation in detail.

Data Unit. The data unit stores the State, all intermediate results of the round
function applied to the State and the output data when encryption or decryption
has completed. The major difference to all other published AES implementations
is the innovative State representation that consists of two States. One State
contains the actual State values and the other State stores newly calculated
values. Figure 4 depicts the two States, referred to as StateA and StateB. In
each cycle, 32 bits (one row or one column) of either StateA or StateB are
altered. Using a second State provides a lot of benefits without the need of
additional recourses: (Inv)ShiftRows comes for free and no State transposition
between column and row operations is required.

Storage elements in FPGAs can be efficiently implemented by using syn-
chronous RAMs because the basic logic elements of FPGAs, called slices, can

108 N. Pramstaller et al.

(0,3)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(7,3)

0

1

2

3

4

5

6

7

R
A

M
 3

ad
d
re

ss
 [

2
..
0
] S

ta
te

A
S

ta
te

B

(0,2)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(7,2)

(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(7,1)

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0)

(6,0)

(7,0)

R
A

M
 2

R
A

M
 1

R
A

M
 0

Fig. 4. The State-RAM

be configured as 16 × 1 bit synchronous RAM. Two slices (= one Configurable
Logic Block - CLB) provide 16 × 1 bit synchronous dual-port RAM function-
ality (see [20]). Dual-port RAMs allow concurrent reading and writing to the
RAM. Due to these technology features, the State-RAM as depicted in Fig. 4
is implemented as four slices of 8 × 8 bit synchronous dual-port RAMs to allow
addressing the slices independently.

The data unit performs all transformations of the round function: (Inv)Shift-
Rows, (Inv)SubBytes, (Inv)MixColumns and AddRoundKey. AddRoundKey and
(Inv)MixColumns are applied to the State column by column, whereas (Inv)-
ShiftRows and (Inv)SubBytes are applied to the State row by row. Due to
the slice architecture of the RAM which holds the State, it is not possible to
read/write from/to the RAM column by column. Hence, a transposition of the
State is necessary if a row-oriented operation follows a column-oriented oper-
ation, or vice versa. Transposition would require a reorganization of the State
before further operations can be performed. By using two States, transposition
can be implemented by accordingly addressing the State-RAM. Furthermore,
(Inv)ShiftRows can be combined with transposing the State. As a consequence
of this, (Inv)ShiftRows and transposition come for free. In the sequel we describe
the memory organization and State transposition for encryption. The same ap-
proach can easily be modified for decryption.

When a row-oriented operation follows a column-oriented operation (or vice
versa), the State must be transposed. Combining row and column transfor-
mations minimizes the number of required transpositions: ShiftRows is com-
bined with SubBytes and AddRoundKey is combined with MixColumns. This
approach requires only one transposition per round. Encryption requires Sub-
Bytes followed by ShiftRows. Since ShiftRows does not affect the byte values
and SubBytes is applied to each byte of the State individually, the order of
both operations does not matter. This fact eases the address generation for the
State-RAM.

For explaining the State transposition we consider the State as 4 × 4 matrix:
S = (si,j)i=0..3

j=0..3. The ShiftRows transformation described in [10] can then be
expressed as follows:

S′ = ShiftRows(S) = (si,j−i mod 4)i = 0..3
j = 0..3 (1)

Efficient AES Implementations on ASICs and FPGAs 109

4

5 5

6 6 6

7 7 7 7

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

+

SubBytes

S
ta

te
A

S
ta

te
B

4 4 4 4

5

6 6

7 7 7

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 5

SubBytes

4 4 4

5 5 5 5

6

7 7

0 1 2 3

4 5 6 7

2 2 2 2

3 3 3 3

SubBytes

4 4

5 5 5

6 6 6 6

7

0 1 2 3

4 5 6 7

8 9
1

0

1

1

3 3 3 3

SubBytes

Fig. 5. ShiftRows and SubBytes for encryption

If we replace the State by the transposed State, we obtain:

S′T = ShiftRows(ST) = (si+j mod 4,j) i =0..3
j = 0..3 (2)

With the result of (2) the addressing of the StateB-RAM can be determined: the
indices (i, j) must be substituted with (i + j mod 4, j). Due to the even number
of AES rounds for all key lengths, ShiftRows is always applied to StateB only.
Thus, the resulting index tuples can be directly mapped to the RAMs. The first
part of the tuple index specifies the RAM slice and the second part specifies the
RAM address. Since we operate on StateB, we must add an offset of 4 to the
index value to get the correct address. Figure 5 shows the transposition of the
State, including ShiftRows and SubBytes for encryption.

Implementation of (Inv)SubBytes and (Inv)MixColumns. The (Inv)-
SubBytes transformation is based on [18]. One difference is that the byte inver-
sion in GF(28) is implemented by using a synchronous ROM. (Inv)MixColumns
is similar to the architecture presented in [17]. For further details refer to [18, 17].

Key Unit. An innovative aspect of our implementation is that the key unit
can handle 128-bit, 192-bit and 256-bit keys with minimal additional hardware
requirements. Supporting all key lengths increases the needed hardware resources
for the key unit by only 7.8%. The size of the key memory for 256-bit keys is the
same as for 128-bit keys. For 128-bit keys, the KeyExpansion function derives
44 32-bit round-key parts from the cipher-key. This requires a 64 × 32 bit RAM.
256-bit keys produce 63 32-bit round-key parts fitting the 64 × 32 bit RAM.

3.3 Performance of the FPGA AES Implementation

This section compares the proposed AES co-processor with the works referred
to in Section 3.1. In order to provide comparable results, we implemented our
co-processor on a Xilinx Virtex-E XCV1000EBG560-8 device.

110 N. Pramstaller et al.

Table 4. Hardware resources and throughput comparison

ECB mode
Work Device #CLB-slices #BRAM Throughput

[Mbps]

Gaj et al. [3] Xilinx XCV1000 12,600 80 12,160

McLoone et al. [9] (I) Xilinx XCV812E 2,222 100 6,956

McLoone et al. [9] (II) Xilinx XCV3200E 2,577 112 5,800

McLoone et al. [9] (III) Xilinx XCV3200E 2,995 138 5,000

McLoone et al. [9] (IV) Xilinx XCV3200E 7,576 102 3,239

Dandalis et al. [5] Xilinx XCV1000 5,673 ? 353

Fischer et al. [6] (I) FLEX 10KE200-1 2,530 24 451

Fischer et al. [6] (II) ACEX 1K50-1 1,213 10 115

Chodowiec et al. [2] Xilinx XC2S30-6 222 3 166

Our proposal Xilinx XCV1000E 1,125 0 215

[9]: enc.: (I)AES-128, (II)AES-192, (III)AES-256, enc./dec.:(IV)AES-128
[6]: AES-128 enc./dec.: (I) fast configuration, (II) economic configuration

The performance results given in Table 4 are for the ECB mode. Most of these
implementations claiming high throughput rates will have similar performance
figures when operating in the CBC mode. The CBC mode is strictly recom-
mended and commonly used for encrypting high-speed data streams (e.g. as it
is used for encrypting data transfers over networks) and hence, the above-listed
high throughput rates lose their significance.

As shown in Table 4 our implementation is the only one that does not require
any block RAMs. The presented AES co-processor supports the complete AES
standard and the CBC mode. Additionally, it is equipped with a 32-bit AMBA
APB interface that eases the integration with processors used in System-on-Chip
designs [1]. If we do not consider the CBC mode and the AMBA bus interface,
our approach is still comparable with the above-listed works but we would require
less hardware resources (-26 %).

Our implementation utilizes 9.16% of the available logic cells on a Xilinx
Virtex-E XCV1000EBG560-8 device. 90.8% of the logic resources and 100% of
the on-chip BRAMs can be used by other circuits like a LEON2 or an ARM
processor. For a stand-alone application a low-end FPGA (e.g. Xilinx SpartanII
XC2S100-6) is sufficient for implementing the complete AES co-processor— the
other approaches (except [2]) do not fit on a SpartanII device. The high through-
put designs do not support this flexibility and require expensive multi-million
gate FPGAs. Another important fact is that the other works do not provide an
en-/decryption engine that supports all defined key lengths.

The maximum clock frequency on a XCV1000 FPGA is 161 MHz. At this
frequency, a throughput of 215 Mbps for AES-128, 180 Mbps for AES-192, and
156 Mbps for AES-256 is achieved for both ECB mode and CBC mode.

Efficient AES Implementations on ASICs and FPGAs 111

4 Conclusions

In this article we presented two designs of a compact AES co-processor, one
suitable for ASIC implementations, the other one suitable for FPGAs. Both
designs are able to implement the whole functionality of the AES standard:
encryption and decryption with all key lengths (128-bit, 192-bit, and 256-bit).
In addition to covering the complete AES standard they support the Cipher
Block Chaining mode CBC. The AES co-processors also have a standard 32-bit
interface (AMBA) that facilitates the integration in System-on-Chip designs.

Our ASIC implementation is very regular, which makes it well suited for full
custom designs, and highly scalable. By scaling, the ASIC AES module it can be
adapted for many different applications with different requirements. With this
architecture high performance (up to 198 Mbps) as well as low area requirements
(down to 8,500 GE) can be reached on a 0.6 µm technology.

For the FPGA implementation, we have shown that due to an innovative
State representation the complete AES co-processor can be implemented on
inexpensive low-end FPGA devices. An implementation on a Xilinx Virtex-E
device uses only 1,125 CLB-slices and no block RAMs. Our FPGA implemen-
tation reaches a throughput of 215 Mbps at a clock frequency of 161 MHz for
encryption and decryption.

References

1. ARM Limited. AMBA 2.0 Specification. "http://www.arm.com/armtech/", 2001.

2. P. Chodowiec and K. Gaj. Very Compact FPGA Implementation of the AES
Algorithm. In Workshop on Cryptographic Hardware and Embedded Systems –
CHES 2003, volume 2779 of Lecture Notes in Computer Science (LNCS), pages
319–333. Springer, 2003.

3. P. Chodowiec, P. Khuon, and K. Gaj. Fast Implementations of Secret-Key Block
Ciphers Using Mixed Inner- and Outer-Round Pipelining. In Symposium on Field
Programmable Gate Arrays – FPGA 2001, pages 94–102. ACM Press, 2001.

4. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.

5. A. Dandalis, V. Prasanna, and J. Rolim. A Comparative Study of Per-
formance of AES Final Candidates Using FGPAs. "http://csrc.nist.gov/

CryptoToolkit/aes/round2/conf3/aes3agenda.html", 2000.

6. V. Fischer and M. Drutarovský. Two Methods of Rijndael Implementation in
Reconfigurable Hardware. In Workshop on Cryptographic Hardware and Embedded
Systems – CHES 2001, volume 2162 of Lecture Notes in Computer Science (LNCS),
pages 77–92. Springer-Verlag, 2001.

7. P.C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
Cryptology – CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer-Verlag, 1999.

8. S. Mangard, M. Aigner, and S. Dominikus. A Highly Regular and Scalable AES
Hardware Architecture. In IEEE Transactions on Computers, volume 52, pages
483–491, April 2003.

"http://www.arm.com/armtech/"
"http://csrc.nist.gov/
CryptoToolkit/aes/round2/conf3/aes3agenda.html"

112 N. Pramstaller et al.

9. M. McLoone and J.V. McCanny. High Performance Single-Chip FPGA Rijndael
Algorithm Implementations. In Workshop on Cryptographic Hardware and Em-
bedded Systems – CHES 2001, volume 2162 of Lecture Notes in Computer Science
(LNCS), pages 65–76. Springer-Verlag, 2001.

10. National Institute of Standards and Technology. Federal Information
Processing Standard 197, The Advanced Encryption Standard (AES).
"http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf", 2001.

11. N. Pramstaller, F.K. Gürkaynak, S. Haene, H. Kaeslin, N. Felber, and W. Ficht-
ner. Towards an AES Crypto-chip Resistant to Differential Power Analysis. In
Proccedings of ESSCIRC 2004, to appear, 2004.

12. A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar amd J.R. Rao, and Pankaj Ro-
hatgi. Efficient Rijndael Encryption Implementation with Composite Field Arith-
metic. In Workshop on Cryptographic Hardware and Embedded Systems – CHES
2001, volume 2162 of Lecture Notes in Computer Science (LNCS), pages 171–184.
Springer-Verlag, 2001.

13. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hardware
Architecture with S-Box Optimization. In Advances in Cryptology – ASIACRYPT
2001, volume 2248 of Lecture Notes in Computer Science (LNCS), pages 239–254.
Springer-Verlag, 2001.

14. K. Tiri, M. Akmal, and I. Verbauwhede. A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In Proceedings of ESSCIRC 2002, 2002.

15. K. Tiri and I. Verbauwhede. Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In Workshop on Crypto-
graphic Hardware and Embedded Systems – CHES 2003, volume 2779 of Lecture
Notes in Computer Science (LNCS), pages 125–136. Springer, 2003.

16. B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke. Hardware Performance Sim-
ulations of Round 2 Advanced Encryption Standard Algorithms. "http://

csrc.nist.gov/encryption/aes/round2/NSA-AESfinalreport.pdf", 2000.
17. J. Wolkerstorfer. An ASIC implementation of the AES-MixColumn operation. In

Proceedings of Austrochip 2001, October 2001.
18. J. Wolkerstorfer, E. Oswald, and M. Lamberger. An ASIC implementation of the

AES S-Boxes. In Topics in Cryptology – CT-RSA 2002, Proceedings of the RSA
Conference 2002, volume 1965 of Lecture Notes in Computer Science. Springer-
Verlag, February 2002.

19. S-Y Wu, S-C Lu, and C-S Laih. Design of AES Based on Dual Cipher and Com-
posite Field. In Topics in Cryptology – CT-RSA 2004, Proceedings of the RSA
Conference 2004, volume 2964 of Lecture Notes in Computer Science. Springer-
Verlag, February 2004.

20. Xilinx Incorporated. Silicon Solutions — Virtex Series FPGAs. "http://

www.xilinx.com/products/".

"http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf"
"http://
csrc.nist.gov/encryption/aes/round2/NSA-AESfinalreport.pdf"
"http://
www.xilinx.com/products/"

Small Size, Low Power, Side Channel-Immune
AES Coprocessor: Design and Synthesis Results

Elena Trichina1, Tymur Korkishko2, and Kyung Hee Lee2

1 Department of Computer Science, University of Kuopio,
P.O.B. 1627, FIN-70211, Kuopio, Finland��

2 Information security TG, i-Networking Lab, Information Security Group,
Samsung Advanced Institute of Technology, Korea

Abstract. When cryptosystems are being used in real life, hardware and
software implementations themselves present a fruitful field for attacks.
Side channel attacks exploit information such as time measurements,
power consumption, and electromagnetic emission that leaks from a de-
vice when it executes cryptographic applications. When leaked informa-
tion is correlated to a secret key, an adversary may be able to recover the
key by monitoring this information. This paper describes an AES copro-
cessor that provides complete protection against first-order differential
power analysis by embedding a widely used software countermeasure that
decorrelates data being processed from the leaked information, so-called
data masking, at a hardware level.

1 Introduction

In applications such as smart cards hardware complexity and tamper resistance
are very important issues that directly affect the cost and consumer acceptance
of such devices. A class of side channel attacks enables breaking cryptographic
algorithms by measuring timing characteristics [12], power consumption [11, 18],
and electromagnetic radiation [8, 23] of a smart card microprocessor when it runs
cryptographic applications.

Until recently, most of these attacks exploited some specific features of soft-
ware implementations of cryptographic algorithms, and many countermeasures
were designed at a software level. For many applications, however, it is neces-
sary that cryptographic algorithms should be realized in hardware. Although not
many results have been published yet, it is prudent to suggest that cryptographic
hardware also leaks side channel information, and that alongside with general
tamper-resistant features cryptographic coprocessors should include countermea-
sures specifically designed to protect them against side channel attacks.

One of the most powerful software techniques to counteract such attacks is
to mask all input and intermediate data values in order to de-correlate any in-
formation leaked through side channels from actual secret data being processed.

�� This work had been done when the author was with the Smart Card System Engi-
neering Business Unit, System LSI Division, Samsung Electronics Co. LTD., Korea.

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 113–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

114 E. Trichina, T. Korkishko, and K.H. Lee

In [28] it had been shown how to apply data masking technique at the level
of micro operations such as logical AND, XOR, etc., and how to use these op-
erations as building blocks for implementation of inversion in composite fields
directly on masked data. In this paper we use ideas from [28] in order to build a
practical coprocessor for an Advanced Encryption Standard algorithm [7] that
is immune to side channel attacks. First, we generalize multiplication on masked
data from a bitwise multiplication operation (i.e., logical AND) to multiplica-
tion in any GF (2n) field. This generalization allows us to use standard libraries
while designing side channel attacks-resistant cryptographic hardware for appli-
cations that are based on binary field arithmetic. What is more important, our
method provides considerable savings in the gate count and power consumption
in comparison with [28].

The synthesis results for a ”minimalist” architecture that implements a 16
clock/round version of the AES coprocessor with a flexible key size, show that
with 0.18 µm technology the performance of 4Mbps can be achieved with the
circuit comprising 20,506 gates clocked at 5MHz and requiring 1.07 µA. This is
better than countermeasures such as dynamic and differential CMOS logic [26]
or asynchronous circuits with dual rail logic [21] can offer. Also, our solution
has an advantage of using standard technologies, standard libraries, and well-
established design tools.

The rest of the paper is organized as follows. After a brief reminder of the AES
algorithm in Chapter 2, we describe principles of power analysis attacks. The
countermeasure consisting in masking all input and intermediate data with some
random values and difficulties of its implementation for the AES algorithm are
discussed in Chapter 4, after which we suggest our solution to this problem. The
details of the DPA-resistant AES coprocessor architecture are given in Chapter
6. The paper is concluded with synthesis results and a brief comparison of our
design with other hardware solutions.

2 AES Reminder

The Advanced Encryption Standard [7] is a round-based symmetric block cipher.
The standard key size is 128 bits, but for some some applications 192 and 256-
bit keys must be supported as well. The round consists of four different opera-
tions, namely, SubBytes, ShiftRows, MixColumn, and AddRoundKey, that are
performed repeatedly in a certain sequence; each operation in a standard algorithm
maps a 128-bit input state into a 128-bit output state. The state is represented as
a 4 × 4 matrix of bytes. The number of rounds depends on the key size. In the de-
cryption process, the inverse operations are executed in a slightly different order.

ShiftRows is a cyclic shift operation on each of four rows in a 4×4-byte state
using 0 ∼ 3 offsets. MixColumn treats 4-byte data blocks in each column of a
state as coefficients of a 4-term polynomial, and multiplies them modulo x4 + 1
with the fixed polynomial c(x) = {03}x3 + {01}x2 + {01}x + {02}. AddRound-
Key is a bit-wise XOR operation on 128-bit round keys and data. These three
operations are linear.

Small Size, Low Power, Side Channel-Immune AES Coprocessor 115

SubBytes is the main building block of the AES. It replaces each byte in a
state by its substitute in an Sbox that comprises a composition of two transfor-
mations:

– First, each byte in a state is replaced with its reciprocal in the finite field
GF (28), except that 0, which has no reciprocal, is replaced by itself. This is
the only non-linear function in the AES algorithm.

– Then an affine transformation f is applied. It consists of a bitwise matrix
multiply with some fixed 8 × 8 binary matrix followed by XOR with the
hexadecimal number {63}.

The round key is computed in parallel to the round operation. It is derived from
the cipher key by means of key expansion and round key selection operations,
which are similar to those of the round operations, and also use Sboxes.

3 S-Box Architecture

There are many design trade-offs to be considered when implementing an S-
box in ASIC since the size, the speed, and the power consumption of an AES
coprocessor depends largely on the number and the style of implementation of
Sboxes [20]. It also turned out that this operation is the most difficult to protect
against side channel attacks.

To optimize the silicon area, a number of flexible ASIC solutions that use
similarities between encryption and decryption to share silicon were proposed
[14, 20], where SubBytes was implemented in two steps, as a combination of
inversion in the field and an affine transformation f . While the affine trans-
formations used for encryption and decryption are slightly different, the silicon
implementing inversion in GF (28) can be used for both, as shown in Fig. 1.
Therefore, an area- and power-efficient and secure implementation of inversion
may have a big impact on an overall design.

The most obvious solution is to use a look-up table for this operation [14].
It is fast and inexpensive in terms of power consumption [20]. There is a major
drawback, however. Namely, the size of silicon is about 1,700 gate equivalents
per table in 0.18µ technology. Considering that up to 20 such tables (including
4 tables for key scheduling) is required per round, this solution is hardly feasible
for co-processors intended for smart cards and other embedded systems.

Among various alternative approaches composite field inversion produces the
most compact AES implementations [24, 25, 30] which can be further optimized

Inverse Affine

Transform
X-1

Table
Affine

Transform

Enc/Dec

x y

A-1(x+c)

Ax-1+c

Fig. 1. S-box implementation suitable for encryption and decryption

116 E. Trichina, T. Korkishko, and K.H. Lee

to minimize power consumption [20]. As a basis for our design we use fully
combinational logic implementation of inversion in composite fields described
in [30].

Usually the field GF (28) is seen as an extension of GF (2) and therefore its
elements can be represented as bytes. However, GF (28) can also be seen as a
quadratic extension of GF (24); in this case an element a ∈ GF (28) is represented
as a linear polynomial aHx + aL, denoted [aH , aL], with coefficients in GF (24).
This isomorphic representation is far better suited for hardware implementation
[22, 24, 20, 30].

The bijection from a ∈ GF (28) to a two-term polynomial [aH , aL] is given
by the linear function map computed by means of XOR operations on bits of
a. The inverse transformation map−1 converts a two-term polynomial back to
element a ∈ GF (28), and is defined in a similar way. For more details see [30].

All arithmetic operations applied to elements of GF (28) can also be computed
in a new representation. Two-term polynomials are added by addition of cor-
responding coefficients. Multiplication and inversion of a two term-polynomial
requires modular reduction to ensure that the result is a two-term polynomial
as well; the irreducible polynomial n(x) = x2 +{1}x+{e} whose coefficients are
chosen to optimize finite field arithmetic can be used for this purpose.

Inversion of a two-term polynomial is defined as (aHx+aL)⊗(aHx+aL)−1 =
{0}c + {1}. From this definition the formulae for inversion can be derived:

(aHx + aL)−1 = (aH ⊗ d)x + (aH ⊕ aL) ⊗ d
d = ((a2

H ⊗ {e}) ⊕ (aH ⊗ aL) ⊕ a2
L)−1.

(1)

Fig. 2 depicts a block diagram of inversion in composite field GF ((24)2). As
one can see, one addition, one squaring, one multiplication by a constant, three
general multiplications, and one inversion in GF (24) are necessary for such im-
plementation. All these operations can be realized in combinational logic. Only
general multiplication and inversion in GF (24) require to use both, AND and
XOR gates for their implementation; all other operations need only compositions
of XOR gates [30].

X

X

X

a
H

a
L

b
H

b
L

Square

in GF(24)

Constant mul.

in GF(24)

Multiplication

in GF(24)

Inversion

in GF(24)
x

X-1

X2

Fig. 2. Inversion in GF ((24)2)

Small Size, Low Power, Side Channel-Immune AES Coprocessor 117

4 Side Channel Attacks and Computations on Masked
Data

Basically, side-channel attacks work because there is a correlation between the
physical measurements taken during computations, such as power consump-
tion [11, 18], EMF radiation [8, 23], time of computations [12], and the internal
state of the processing device, which itself is related to a secret key.

4.1 Power Analysis Basics

Among side-channel attacks, a differential power analysis (DPA) is the main
concern when implementing cryptographic algorithms in embedded devices be-
cause due to physical constraints an adequate shielding and power consumption
filtering cannot be employed. Power analysis attacks use an all-pervasive fact
that, ultimately, all calculations performed by a digital device operate on logi-
cal ones and zeros; and in contemporary technology power consumption while
manipulating a logical one differs from power consumption while manipulating
a logical zero.

To illustrate why the power analysis works, let us consider an example in
Fig. 3. The circuit, first appeared in [18], represents a component model useful
for understanding power consumption characteristics of Complementary Metal
Oxide Semiconductor (CMOS) technology.

+

pinV

Gates

Other

pinV

loadC

gateV

V

ss

cc

2Q

1Q

−

bondL

bondL

2C
1C mR

scope

Fig. 3. Measuring power consumption of a smart card

The two most essential components of power consumption during the change
of a state of a CMOS gate are dynamic charge resp. discharge (appr. 85%) and
dynamic short circuit current (appr. 15%). This is sketched in Fig. 3 where the
output of each gate has a capacitive load consisting of the parasitic capacity of
the connected wires and gates of the following stages. An input transition re-
sults in an output transition, which discharges or charges this parasitic capacity,
causing a current to flow to Vcc or to Vss.

118 E. Trichina, T. Korkishko, and K.H. Lee

For example, as Vgate changes from 0 to 5 volts, the transistors Q1 and Q2

are both conducting for a brief period causing current to flow from Vcc to the
ground. Also, during this time the capacitor Cload will be discharged (or charged)
causing more (or less) current to flow through the Vss pin. The current charges
and discharges capacitors Cload, C1, and C2, and flows out of the smart card
through a bond wire that acts as an inductor Lbond.

Power dissipated by the circuit can be monitored by using a small resistor
Rm in series between the Vss pin and the ground (or, alternatively, between the
Vcc pin and the true source). Current moving through Rm creates a time varying
voltage that can be sampled by a digital oscilloscope.

The more circuit changes its state, the more power is dissipated. In a syn-
chronous design gates are clocked, which means that all gates change their state
at the same time. Information useful to an attacker is leaked because the amount
of current being drawn when the circuit is clocked is directly related to a change
of the state of Cload or the current drawn by other gates attached to Cload. Thus,
whenever the secret key data or data correlated to the secret key is manipulated,
the microprocessor can leak damaging information that can be observed at the
Vscope.

In a microprocessor each clock pulse causes many bit transitions to occur si-
multaneously. There are two types of information leakage that can be observed at
the Vscope: Hamming weight leakage and transition count leakage [18]. The Ham-
ming weight information leaks when the dominant source of current is caused by
discharging of the Cload. The transition current information can leak when the
dominant source of current is due to the switching of the gates that are driven
by the data bus. When the data bus changes state, many of the gates driven by
the bus will briefly conduct current. Thus, the more bits change states, the more
power is dissipated.

From this explanation we deduce that the power consumption of a circuit at
time t is the sum of power dissipated by all gates at this time. Of course, various
noise components must be considered as well [18]. It can be stated as the simple
power model

P (t) =
∑

f(g, t) + N(t),

where t denotes time, N(t) is a normally distributed random variable which
represents a noise component, and f(g, t) denotes power consumption of gate g
at time t.

The next step is to relate this model to statistics. If we consider function
f(g, t) as a random variable from an unknown probability distribution, then
according to the Central Limit Theorem, P (t) is normally distributed. In a DPA
attack, an attacker divides the power measurements in two or more different
sets and tries to compute the difference between these sets in order to verify
the selection function, which relates the corresponding power measurements to
the hypothesis concerning the values of the target bits of the key. Only if the
hypothesis was correct, there will be some noticeable peaks in statistics.

For example, a selected bit b at the output of one Sbox of the first round of
the AES algorithm will depend on the known input message and 8 unknown bits

Small Size, Low Power, Side Channel-Immune AES Coprocessor 119

of the key. The correlation between power consumption and b can be computed
for all 256 values of 8 unknown bits of the key. The correlation is likely to be
maximal for the correct guess of the 8 bits of the key. Then an attack can be
repeated for the remaining Sboxes.

4.2 Data Masking and Inversion in GF (24)

There are many strategies to combat side-channel attacks. On a hardware level,
the countermeasures usually include clock randomization, power consumption
randomization, current compensation, and various detectors of abnormal be-
havior. However, the effect of these countermeasures can be reduced by various
signal processing and statistical techniques [6]. Software-based countermeasures
include introducing dummy instructions, randomization of the instruction exe-
cution sequence, balancing Hamming weights of the internal data, etc.

Data masking is one of the most powerful software countermeasures against
side channel attacks [5, 11]. The idea is simple: the message and the key are
masked with some random values at the beginning of computations, and there-
after everything is almost as usual. Of course, the value of the mask at the end
of some fixed step (e.g., at the end of a round or at the end of a linear part of
computations) must be known in order to re-establish the expected data value
at the end of the execution; we call this mask correction.

A traditional XOR operation is used for data masking; however, a mask is
arithmetic in GF (28). The operation is compatible with the AES structure ex-
cept for inversion in SubBytes, which is the only non-linear transformation. In
other words, to compute mask corrections for each of the linear transformations
in a round, we simply have to apply this transformation separately to masked
bytes and to corresponding masks.

Unfortunately, it turned out to be rather difficult to find an efficient and
secure solution for non-linear operations. The first attempt to transform masked
data between Boolean and arithmetic operations in a secure way [17] was shown

xa ⊕ yb ⊕ x y z

zzba ⊕⋅

Fig. 4. Masked AND (MAND)

120 E. Trichina, T. Korkishko, and K.H. Lee

to be insufficient against DPA attacks. A more sound method for mask switching
[10] involves too much computational overhead.

To overcome this difficulty, Akkar and Giraud [1] proposed transformed mask-
ing, where first an additive mask is replaced by a multiplicative mask in a series
of multiply and add operations, after which a normal inversion takes place, and
finally, the transformation of a multiplicative mask into an additive mask is car-
ried out again. However, it was pointed out in [9] that a multiplicative mask
does not blind zero, and thus does not prevent a DPA attack.

In [28] it was noticed that for a fully combinational AES Sbox design, the
problem of ”masked inversion” can be effectively reduced to the problem of
computing binary XOR and AND operations on masked bits ã = a⊕x, b̃ = b⊕ y
and on bits of the mask x, y without ever revealing actual data bits a, b in
the process. For XOR computing the mask correction is trivial because ã ⊕ b̃ =
(a ⊕ b) ⊕ (x ⊕ y).

Masked AND and the corresponding mask correction can be computed by
manipulating only masked data bits and the bits of the masks as follows 1. Let
c = a · b. Then

c ⊕ z = a · b ⊕ z = (ã · b̃ ⊕ (y · ã ⊕ (x · b̃ ⊕ (x · y ⊕ z)))). (2)

This can be implemented as a cascade of logic gates as shown in Fig. 4.
To realize inversion in GF (28) on masked data, one would have to replace

each AND gate used by a multiplier and an inverter in GF (24) with the circuit
depicted in Fig.4, increasing more than fourfold a total amount of gates in the
Sbox combinational logic design.

4.3 Masked GF (2n) Multiplier

Let us make an observation that equation (2) can be generalized to the equation
for ”masked multiplication’ in any field GF (2n). If A,B,X, Y, Z ∈ GF (2n), then

(A⊗B)⊕Z = [(A⊕X)⊗(B⊕Y)]⊕[X⊗(B⊕Y)]⊕[(A⊕X)⊗Y]⊕[X⊗Y]⊕Z. (3)

Hence, masked multiplication in GF (2n) can be performed using conventional
multipliers with any architecture, and four additional XOR operations for mask
correction, as depicted in Fig. 5. An additional mask Z is also used to mask the
output product. Hence, this approach requires 4 ”normal” multipliers in GF (2n)
and 4 bitwise XOR operations.

In contrast, a straightforward application of the technique suggested in [28]
involves building masked multipliers by replacing every AND gate in a ”normal”
multiplier with a masked AND(MAND) circuit. For example, Fig.6 illustrates a
transformation of a conventional multiplier in GF (22) into a masked multiplier
using this approach.

1 To achieve balanced and independent intermediate results, the scheme is used a
freshly generated random bit z as a new mask.

Small Size, Low Power, Side Channel-Immune AES Coprocessor 121

GF(2n)

XOR

XOR

XOR

XOR

A XB Y X Y Z

(A B) Z Z

 MMUL

GF(2n) GF(2n) GF(2n)

Fig. 5. Building a masked multiplier in GF (2n) from standard multipliers

AND

a0 b0

AND

a1 b1

AND

a1 b0

XOR

c0

XOR

a1 a0

AND

b1

XOR

c1

(a) Multiplier in GF(2^2)

MAND MAND

XOR

a’0 b’0 x0 y0 z0 a’1 b’1 x1 y1 z1

XOR

c’0 z’0

MAND

a’1 b’0 x1 y0 z2

XOR

a1 a0 b1

MAND

XOR

x1 x0 y1
z3

XOR XOR

c’1 z’1

(b) Masked multiplier in GF(2^2)

Fig. 6. Transformation of a usual (a) multiplier into a masked (b) multiplier in GF (22)

122 E. Trichina, T. Korkishko, and K.H. Lee

The implementation complexity of a masked multiplier can be calculated
knowing the complexity of a basic standard multiplier. For example, for the
popular Mastrovito multipliers in GF (2n) [16], the space complexity expressed
in the number of AND and XOR gates is n2 and ≥ (n2 − 1), respectively. Then
the complexity of the generalized masked multiplier when compared with the
original straightforward implementation constitutes 9 to 29 % improvement in
the number of XOR gates, as can be seen from the Table 1.

Table 1. Comparison of the space complexity of generalized and straightforward
masked multipliers in GF (2n)

GF Irreducible Mastrovito mult. Straight. masked Proposed mult. Advantage
n Polynomial AND XOR AND XOR AND XOR %

2 [2,1,0] 4 3 16 22 16 20 9.1
4 [4,1,0] 16 15 64 94 64 76 19.1
8 [8,5,3,2,0] 64 84 256 382 256 284 25.7

16 [16,11,6,5,0] 256 281 1024 1534 1024 1084 29.3

5 Secure AES Coprocessor

When manipulating masked data, all operations in a round, apart from Sub-
Bytes, require simple mask corrections in a form of analogous computations on
masks that are carried out in parallel with the main computation flow. This can
be achieved simply by duplicating hardware for all transformations but Sub-
Bytes.

Field Isom
InvAffine and

Field Isom

InvField Isom
and Affine

InvField Isom

Secure X-1

Field Isom
InvAffine and

Field Isom

InvField Isom
and Affine

InvField Isom

G xor M M FW

Sbox(G) xor F F

P xor M

F

M
W

Z

Z

P-1 xor F

Fig. 7. Masked S-box

Small Size, Low Power, Side Channel-Immune AES Coprocessor 123

Another solution is to pipeline computations on masked data and on masks,
which halves the throughput, and for which additional 128-bit registers are re-
quired for mask values. Since each 1-bit register needs an equivalent of 6-7 gates,
there is no visible advantage for pipelining.

The structure of the Masked Sbox is depicted in Fig. 7. The inverse field
isomorphism map−1 and affine transformation f are both linear operations, and
they are merged to optimize the gate count; the same holds for map and f−1

in decryption [14, 20]. A duplicate data path on the right hand side computes a
mask correction.

In this figure, the box ”Secure X−1” represents inversion in GF ((24)2) im-
plemented as was defined in Eq. 1. M is a random mask, (G xor M) represents
a masked input, Z, W, F are new masks used to ”refresh” the masked data at
the end of each operation in GF (24) and at the end of inversion in GF ((24)2).
The details are given in Fig. 8 where every SMul2n box is, in fact, a generalized
masked multiplier in GF (24). The box X−1 represents inversion in GF (24), and
is implemented in combinational logic in the same way as in [30], with every
AND being replaced with masked AND.

Altogether, 1.2K gate equivalent is required to implement one S-box which
is 25% better than the table lookup implementation.

SMul
2n

XOR

x2g

XOR

SMul
2n

SMul
2n

XOR

x2g

XOR

X-1

P xor M

P-1 xor FF

F MW Z

ML MH

MH

mA mB

X

Y
Z

mA mBmAmB
X X

Y Y

Z Z

8488 4

44

4 4

88

Fig. 8. Masked inverter in GF ((24)2)

124 E. Trichina, T. Korkishko, and K.H. Lee

6 Conclusion

The secure hardware AES module based on the described scheme has been fully
implemented in 0.18µm technology. As a balance between the throughput and
the gate count, 1 Sbox has been used for the main datapath, and one for the key
scheduling. Our implementation of MixColumn resembles the one reported in [29]
and exploits common subexpressions for MixColumn/InvMixColumn operations.

The general design flow for a secure AES module is depicted in Fig. 9. First, a
Verilog model had been created and tested, after which Cadence Design System
Verilog-XL simulator was used to generate timing diagrams and to verify the
correctness of the design. When RTL code had been verified, the digital circuit
was synthesized with Synopsys Design Analyzer tool using Samsung 0.18 µm li-
braries. Power-compiler simulation data at 5 MHz were obtained with simulation
tool CubicWare.

The summary of the synthesis results are given in the table in Fig. 10. The
total gate count for the secure AES module (excluding I/O) with a flexible key
size is 20,06K, while for a standard 128-bit key the gate count can be reduced
to 16K. The power consumption is 2.0 mA in 0.18µm technology for a flexible
key size architecture, and 1.6 mA for a 128-bit key standard. With 0.13µm
technology, the power consumption can be reduced to 1.1 mA, which allows us
to use this module in applications such as GSM and ad-hoc networks. The secure
AES module has throughput 4 Mbps when operated at 5 MHz.

The described approach can be applied to other cryptographic coprocessors
that use arithmetic operations in Galois fields. It provides comparable protection
as dynamic and differential logic [26] and asynchronous dual rail circuits [21] at
the similar price in terms of the gate count and power consumption. Taking into

Initial
specs

Verilog
modelVerilog

simulator
(Cadence Design

System Verilog-XL)

Test bench Logic
synthesis

(Synopsys
Design Analyzer)

Test data

Timing diagrams

Digital circuit

Synthesis
options

Samsung 0.18um
standard cell library

Synthesis report

Phase 1: Functional simulation Phase 2: Logical synthesis

FIPS AES

Correct results
produced?

Correct
Verilog model

or specs No

Yes Initiate next phase

Fig. 9. Hardware design flow

Small Size, Low Power, Side Channel-Immune AES Coprocessor 125

806011436Subtotal for masked key scheduler

300300Data controlControl

4001140Key control

20506

4913

6523

7632

2732

4900

1556 (1386)

350 (180)

1206

Scalable key size

3225Mask

4835Masked keyMasked key scheduler

7632Subtotal for masked datapath

Mask

Masked data

Input -output processing

Inverter in GF((24)2)

Subcomponents

16390TOTAL for masked AES

2732

4900Masked datapath

1556 (1386)Subtotal for masked Sbox (for key scheduler)

350 (180)

1206Masked Sbox

128 bit key sizeComponents

806011436Subtotal for masked key scheduler

300300Data controlControl

4001140Key control

20506

4913

6523

7632

2732

4900

1556 (1386)

350 (180)

1206

Scalable key size

3225Mask

4835Masked keyMasked key scheduler

7632Subtotal for masked datapath

Mask

Masked data

Input -output processing

Inverter in GF((24)2)

Subcomponents

16390TOTAL for masked AES

2732

4900Masked datapath

1556 (1386)Subtotal for masked Sbox (for key scheduler)

350 (180)

1206Masked Sbox

128 bit key sizeComponents

Fig. 10. Gate count for a secure AES module

account that the latter techniques require new logic libraries, careful ”balancing”
of place and routing and new development tools which implies higher design and
production costs and longer time-to-market, our solution offers a competitive
alternative to a hardware protection.

References

1. Akkar, M., Giraud, C.: An implementation of DES and AES, secure against some
attacks. Proc. Cryptographic Hardware and Embedded Systems: CHES 2001. Lec-
ture Notes in Computer Science 2162 (2001) 309-318

2. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices.
Proc.Security Protocols: IWSP 1997. Lecture Notes in Computer Science 1361
(1997) 125-136

3. Blömmer, J., Merchan J. G., Krummel, V.: Provably secure masking of AES. IACR
Cryptology ePrint Archive Report 2004/101 (2004)

4. M. Bucci, L.Germani, M. Guglielmo, R. Luzzi, A. Trifiletti: A simulation method-
ology for DPA resistance testing of cryptographic processors (manuscript) 2003

5. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards sound approaches to counteract
power-analysis attacks. Proc. Advances in Cryptology – Crypto’99. Lecture Notes
in Computer Science 1666 (1999) 398-412,

6. Clavier, C., Coron, J-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. Proc. Cryptographic Hardware and Embedded Sys-
tems: CHES 2000. Lecture Notes in Computer Science 1965 (2000) 252-263

7. Daemen, J., Rijmen, V.: The design of Rijndael: AES - The Advanced Encryption
Standard. Springer-Verlag Berlin Heidelberg (2002)

8. Gandolfi, K., Mourtel, C., Oliver, F.: Electromagnetic analysis: concrete results.
Proc. Cryptographic Hardware and Embedded Systems: CHES 2001. Lecture Notes
in Computer Science 2162 (2001) 251-261

9. Goliç, J., Tymen,Ch.: Multiplicative masking and power analysis of AES. Proc.
Cryptographic Hardware and Embedded Systems: CHES 2002. Lecture Notes in
Computer Science 2523 198-212

126 E. Trichina, T. Korkishko, and K.H. Lee

10. Goubin, L.: A sound method for switching between boolean and arithmetic mask-
ing. Proc. Cryptographic Hardware and Embedded Systems: CHES’01. Lecture
Notes in Computer Science 2162 (2001) 3-15

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Proc. Advances in Cryp-
tology – CRYPTO’99. K Lecture Notes in Computer Science 1666 (1999) 388-397

12. Kocher, P.: Timing attacks on implementations of Diffie-Hellmann, RSA, DSS,
and other systems. Proc. Advances in Cryptology – Crypto’96. Lecture Notes in
Computer Science 1109 (1996) 104-113

13. Kommerling, O., Kuhn, M.: Design principles for tamper-resistant smartcard pro-
cessors. Proc. USENIX Workshop on Smartcard Technology (Smartcard 99) (1998)
9-20

14. Lu, C. C., Tseng, S-Y.: Integrated design of AES (Advanced Encryption Sran-
dard) encryptor and decryptor. Proc. IEEE conf. on Application-Specific Systems,
Architectures, and Processors (ASAP’02) (2002) 277-285

15. Mangard, S., Aigner, M., Dominikus, S.: A highly regular and scalable AES hard-
ware architecture. IEEE Transactions on Computers 52 no. 4 (2003) 483-491

16. E.D. Mastrovito, VLSI architectures for computations in Galois fields, PhD Thesis,
Linkoping University, Linkoping, Sweden (1991)

17. Messerges, T.: Securing the AES finalists against power analysis attacks. Proc.
Fast Software Encryption Workshop 2000. Lecture Notes in Computer Science
1978 (2000) 150-165

18. Messerges, T. S., Dabbish, E. A., Sloan, R. H.: Examining smart-card security
under the thread of power analysis. IEEE Trans. Computers. 51 no. 5 (2002) 541-
522

19. Messerges, T. S.: Using second-order power analysis to attack DPA resistant soft-
ware. Proc. Cryptographic Hardware and Embedded Systems – CHES 2000. Lec-
ture Notes in Computer Science 1965 (2000) 238-251

20. Morioka, S., Satoh, A.: An optimized S-Box circuit architecture for low power
AES design. Proc. Cryptographic Hardware and Embedded Systems: CHES 2002.
Lecture Notes in Computer Science 2523 (2003) 272-186

21. Moore, S., Anderson, R., Cunningham, P., Mullins, R., Taylor, G.,: Improving
smart card security using self-timed circuits. Proc. Proceeding 8th IEEE Inter-
national Symposium on Asynchronous Circuits and Systems – ASYNC’02. IEEE
(2002) 23-58

22. Paar, C.: Efficient VLSI architectures for bit parallel computations in Galois fields.
PhD Thesis, University of Essen, Germany (1994)

23. Quisquater, J. J., Samide, D.: Electromagnetic analysis (ema): measures and
counter-measures for smart cards. Proc. Smartcard Programming and Security.
Lecture Notes in Computer Science 2140 (2001) 200-210

24. Rudra, A., Dubey, P., Julta, C., Kumar, V., Rao, J., Rohatgi, P.: Efficient Rijndael
implementation with composite field arithmetic. Proc. Cryptographic Hardware
and Embedded Systems – CHES’01. Lecture Notes in Computer Science 2162
(2001) 175-188

25. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware ar-
chitecture with S-Box optimization. Proc. Advances in Cryptology – ASIACRYPT
2001. Lecture Notes in Computer Science 2248 (2001) 239-254

26. Tiri, K., Akmal, M., Verbauwhede, I.: A dynamic and differential CMOS logic with
signal independent power consumption to withstand differential power analysis on
smart cards. Proc. IEEE 28th Europen Solid-State Circuit Conf. – ESSCIRC’02
(2002)

Small Size, Low Power, Side Channel-Immune AES Coprocessor 127

27. E. Trichina, E., De Seta, D., Germani, L.: Simplified Adaptive Multiplicative Mask-
ing for AES and its secure implementation. Proc. Cryptographic Hardware and
Embedded Systems: CHES 2002. 2523 of Lecture Notes in Computer Science 2523
(2002) 277-285

28. Trichina, E.: Combinational logic design for AES SubByte transformation on
masked data. IACR Cryptology ePrint Archive (2003)

29. Wolkerstorfer, J.,: An ASIC implementation of the AES MixColumn operation, In
Proceedings Austrochip 2001 (2001)

30. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES
S-Boxes. Proc. Topic in Cryptography – CT-RSA 2002. 2271 of Lecture Notes in
Computer Science 2271 (2002) 67-78

Complementation-Like and Cyclic Properties
of AES Round Functions

Tri Van Le 1, Rüdiger Sparr 2, Ralph Wernsdorf 2, and Yvo Desmedt 1

1 Dept. of Computer Science, Florida State University,
260 Love Building, Tallahassee, FL 32306-4530, USA

tll6935@garnet.acns.fsu.edu

desmedt@cs.fsu.edu
2 Rohde & Schwarz SIT GmbH,

Agastraße 3, D-12489 Berlin, Germany
{ruediger.sparr, ralph.wernsdorf}@sit.rohde-schwarz.com

Abstract. While it is known previously that the cycle lengths of indi-
vidual components of the AES round function are very small, we demon-
strate here that the cycle length of the S-box combined with the ShiftRow
and MixColumn transformation is at least 10205. This result is obtained
by providing new invariances of the complete AES round function with-
out the key addition. Furthermore, we consider self-duality properties of
the AES round function and derive a property analogous to the com-
plementation property of the DES round function. These results confirm
the assessments given in other publications that the AES components
have several unexpected structural properties.

Keywords: Rijndael, AES, invariance, cyclic properties, self-duality.

1 Introduction

The cipher Rijndael was selected in 2000 as the Advanced Encryption Standard
(AES) and was designed to resist known attacks to block ciphers up to that time.
In particular, Rijndael is considered to be immune to differential cryptanalysis
[2] and linear cryptanalysis [6], cf. [10]. On the other hand, in order to achieve
a good performance on different platforms, the components of Rijndael operate
completely on the Galois field GF (28). Some recent algebraic analyses of the
AES try to exploit the algebraic structure of the finite field GF (28) which lead
to algebraic relations and simple algebraic representations (cf. [4], [8], and [15]).
The analysis of such mathematical properties can lead to new cryptanalytic
insights and approaches. In many cases this seems to be the only way to find
cryptographic weaknesses. Regularities of algorithm components, such as short
cycles, ”inner structures” or symmetries can yield starting points for attacks.

In this paper we present some new results on the algebraic properties of the
AES round function. The paper is organized as follows: In Section 2 we first
give a short description of the AES round function and fix some definitions and

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 128–141, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Complementation-Like and Cyclic Properties of AES Round Functions 129

notations with respect to invariances and permutation groups. In Section 3 we
summarize known results on the cyclic order of basic components of the AES
round function and provide some new results. In Section 4 we present a number of
new invariances of the AES round function with the all zero subkey. In addition,
we have found more invariances of some powers of this round function. From the
result proved in [13] that the set of AES round functions generates the alternating
group on {0, 1}128, it follows that the existence of nontrivial invariances which
hold for all 2128 AES round subkeys can be excluded. In Section 5 we compute
different cycle lengths of the AES round function under the all zero subkey
exploiting the invariances found in Section 4. The cycle computations performed
in Section 5 show that the cyclic order of this round function has by far not the
small size as the cyclic orders of its components. In Section 6 we consider self-
duality properties of the AES round function and we derive a property analogous
to the complementation property of the DES round function.

2 Preliminaries

2.1 Description of the AES Round Function

We now give a short description of the AES round function. The AES is defined
for 128-bit blocks and key sizes 128, 192, and 256 bits (cf. [9]). The bytes bi of
the state space of the AES are written in matrix form:

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16

In the following we write the state of the AES as a byte vector of the form
(b1, b2, b3, b4, ..., b16) with meaning as a matrix of the form as indicated above. A
round of Rijndael proceeds in the following 4 consecutive operations on {0, 1}128

(cf. [9]):
To every byte of the state the S-Box is applied (ByteSub), the bytes of the

rows of the state matrix are shifted (ShiftRow), every byte-column is mixed by
a linear transformation (MixColumn), and finally, the state is XORed with the
128-bit subkey (AddRoundKey).

The S-box of Rijndael is composed as the inversion in the Galois field GF (28)
modulo the irreducible polynomial x8 + x4 + x3 + x + 1, followed by an affine
transformation (see [9] for details). The application of the inversion in GF (28),
resp. the affine transformation described above to the 16 bytes of the state is
denoted by I and A, respectively.

In the ShiftRow operation, the bytes of row i of the state are rotated i places
to the left, where i = 0, 1, 2, 3.

In the MixColumn operation, each column of the state is considered as a
polynomial over GF (28) and multiplied modulo x4 + 1 with the polynomial
03 · x3 + 01 · x2 + 01 · x + 02.

130 T. Van Le et al.

The ShiftRow, MixColum, AddRoundKey operation is denoted by S, M , and
X, respectively.

2.2 Definitions and Notation

Let Y be a nonempty finite set and let G be a permutation group on Y , i.e., a
subgroup of the group of bijective mappings of Y to itself. G is called transitive
if, for any pair of elements (y, y′) ∈ Y 2, there is a permutation f ∈ G with
f(y) = y′, otherwise G is said to be intransitive. The cyclic order of an element
f ∈ G is the cardinality of the cyclic subgroup generated by f or, in other
words, the least natural number n > 0 such that fn(y) = y for all y ∈ Y .
Further information on the theory of permutation groups can be found in [11]
or [14].

Let f : {0, 1}128 → {0, 1}128 denote an operation on the state space of Ri-
jndael. A property P ⊆ {0, 1}128, P �= ∅, is called an invariance of f , if P is
preserved by f , i.e., for every x ∈ P it follows that f(x) ∈ P .

In this paper we use the notation (f ◦ g)(x) = g(f(x)) for compositions of
functions f, g. The cardinality of a set Y is denoted by |Y |. Furthermore, we
write F2 for the Galois field with two elements.

3 Cyclic Order of Components of I ◦ A ◦ S ◦ M

In this section we summarize known results on the cyclic order of (compositions
of) basic components of the Rijndael round function and provide some new
results.

Clearly, the cyclic order of I, S, X, X �= id, is 2, 4, 2, respectively. Song and
Seberry showed that the cyclic order of the MixColumn operation M is 4 (cf.
[12]). Because the cycle lengths for I ◦ A applied to bytes are 87, 81, 59, 27, 2,
the cyclic order of I ◦ A applied to the AES state space is the least common
multiple of 87, 81, 59, 27, 2 which is 277182 (cf. [12]). Then it follows that the
cyclic order of I ◦ A ◦ S is 554364 (cf. [12]) which is the least common multiple
of 277182 and 4. Murphy and Robshaw [7] showed that the order of A′ ◦ S ◦ M
is 16, where A′(a)(u) = (u7 + u6 + u5 + u4 + 1)a(u) mod u8 + 1.

Proposition 1. The cyclic order of the affine transformation A is 4.

Proof. According to [3], the affine transformation A can be written as a mapping
of the ring F2[u]/(u8 + 1)

A : a(u) �→ f(u)a(u) + g(u) mod u8 + 1,

where f(u) = u7 + u6 + u5 + u4 + 1, and g(u) = u7 + u6 + u2 + u. Then
we have f(u)2 = u6 + u4 + u2 mod u8 + 1 and f(u)4 = 1 mod u8 + 1. Since
f(u)3 + f(u)2 + f(u) = 1 mod u8 + 1, it follows that A4(a)(u) = f(u)4a(u) +
(f(u)3 + f(u)2 + f(u) + 1)g(u) = a(u)mod u8 + 1. �

Complementation-Like and Cyclic Properties of AES Round Functions 131

The next two propositions summarize the results about the cyclic orders for
step-2 and step-3 compositions of basic components of the AES round function.
The cyclic orders of the mappings I ◦ A and I ◦ A ◦ S were stated by Song and
Seberry in [12].

Proposition 2. The cyclic order of I ◦ A, A ◦ S, S ◦ M , M ◦ X for X �= id, is
277182, 4, 8, 8, respectively.

Proof. From the preceding proposition it follows that the cyclic order of A ◦ S
must be 4. Because the S ◦ M -mapping is F2-linear, it can be represented by a
128×128-matrix over F2, whose order is 8. It remains to prove the result for the
cyclic order of M ◦ X. We consider M as an element in the ring Mat128(F2) of
128× 128-matrices over F2. Let E denote the unit element of Mat128(F2). Then
we have (M ◦X)8(y) = M8y+(M +E)7x, where y denotes an 128-bit vector over
F2 and x denotes the 128-bit key added by X. Since (M + E)4 = M4 + E4 = 0,
it follows that (M ◦ X)8(y) = y for all 128-bit vectors y over F2. Because there
exist cycles for M ◦ X of length 8, the cyclic order of M ◦ X is 8. �

Similar arguments yield the following results for the cyclic order of the map-
pings A◦S ◦M , S ◦M ◦X, and A◦S ◦M ◦X, with X �= id, stated in Proposition
3 and 4.

Proposition 3. The cyclic order of I ◦A ◦S, A ◦S ◦M , S ◦M ◦X for X �= id,
is 554364, ≤ 32, 16, respectively. �

Proposition 4. The cyclic order of A ◦ S ◦ M ◦ X for X �= id is ≤ 32. �

4 Invariances of I ◦ A ◦ S ◦ M

In this section we list various invariances of the mapping I ◦ A ◦ S ◦ M and its
powers. The following three propositions can easily be verified.

Proposition 5. The following sets Inv1, ..., Inv6 are invariances of the mapping
I ◦ A ◦ S ◦ M .
Inv1 = {(x, x, x, ..., x)|x ∈ GF (28)},
Inv2 = {(x, y, x, y, x, y, ..., x, y)|x, y ∈ GF (28)},
Inv3 = {(w, x, y, z, w, x, y, z, w, x, y, z, w, x, y, z)|w, x, y, z ∈ GF (28)},
Inv4 = {(w, x,w, x, y, z, y, z, w, x, w, x, y, z, y, z)|w, x, y, z ∈ GF (28)},
Inv5 = {(w, x, y, z, y, z, w, x, w, x, y, z, y, z, w, x)|w, x, y, z ∈ GF (28)},
Inv6 = {(s, t, u, v, w, x, y, z, s, t, u, v, w, x, y, z)|s, t, u, v, w, x, y, z ∈ GF (28)}. �

Proposition 6. The following sets Inv7, ..., Inv10 are invariances of the map-
ping (I ◦ A ◦ S ◦ M)2.
Inv7 = {(x, x, x, x, y, y, y, y, x, x, x, x, y, y, y, y)|x, y ∈ GF (28)},
Inv8 = {(x, y, x, y, y, x, y, x, x, y, x, y, y, x, y, x)|x, y ∈ GF (28)},
Inv9 = {(s, t, s, t, u, v, u, v, w, x, w, x, y, z, y, z)|s, t, u, v, w, x, y, z ∈ GF (28)},
Inv10 ={(s, t, u, v, w, x, y, z, u, v, s, t, y, z, w, x)|s, t, u, v, w, x, y, z ∈ GF (28)}. �

132 T. Van Le et al.

Proposition 7. The following sets Inv11, ..., Inv14 are invariances of the map-
ping (I ◦ A ◦ S ◦ M)4.
Inv11 ={(w,w,w,w, x, x, x, x, y, y, y, y, z, z, z, z)|w, x, y, z ∈ GF (28)},
Inv12 ={(w, x, y, z, x, y, z, w, y, z, w, x, z, w, x, y)|w, x, y, z ∈ GF (28)},
Inv13 ={(w, x,w, x, y, z, y, z, x, w, x, w, z, y, z, y)|w, x, y, z ∈ GF (28)},
Inv14 ={(w, x, y, z, z, w, x, y, y, z, w, x, x, y, z, w)|w, x, y, z ∈ GF (28)}. �

Note that the invariances of (I ◦ A ◦ S ◦ M)2 resp. (I ◦ A ◦ S ◦ M)4 listed in
Propositions 6 and 7 are not invariances of I ◦ A ◦ S ◦ M .

Proposition 8. There exist no invariances P of I ◦ A ◦ S ◦ M ◦ X such that
P �= {0, 1}128 which hold for all 2128 round subkeys.

Proof. The existence of a nontrivial invariance of I ◦A◦S ◦M ◦X that holds for
all 2128 round subkeys would imply that the permutation group generated by all
2128 round functions is intransitive. But this contradicts the fact from [13] that
this group is the alternating group on {0, 1}128. �

Remark 1. The same argument shows that for any natural number n > 0 there
are no nontrivial invariances P of (I ◦ A ◦ S ◦ M ◦ X)n which hold for all 2128·n

combinations of n round subkeys. �

Nevertheless, for special sets of round functions we obtain the following in-
variances.

Remark 2. (a) For all i ∈ {1, 2, ..., 6} we have: If the round subkey is an element
of Invi, then Invi is an invariance of I ◦ A ◦ S ◦ M ◦ X.
(b) For i ∈ {7, 8, ..., 14} similar properties can be derived by a suitable choice of
the round keys over 2 and 4 rounds respectively. �

This means that for round subkeys and input blocks with one of the structures
given above, the round function of AES has some strong regularities. From the
size of the invariance Inv6, we obtain the following result.

Corollary 1. There exists a set of AES round functions R with |R| = 264 such
that the permutation group generated by R is intransitive. �

One cannot expect that these invariances can be extended to the complete
AES because the AES key scheduling is designed to avoid regularities.

5 On the Cyclic Order of I ◦ A ◦ S ◦ M

Because the mappings I, A, S, M and their concatenations I ◦A, A ◦ S, S ◦M ,
I ◦A ◦S, and A ◦S ◦M all have relatively small cyclic orders, it is important to
check whether this causes small cyclic orders of the AES round functions.

Complementation-Like and Cyclic Properties of AES Round Functions 133

Table 1. Cycle Lengths for Invariances Inv1, ..., Inv5

Invariance: Cycle lengths:

Inv1 87, 81, 59, 27, 2

Inv2 \ Inv1 39488, 16934, 7582, 548, 36, 24, 21, 15, 8, 2

Inv3 \ Inv2 1088297796, 637481159, 129021490, 64376666,
11782972, 13548, 10756, 5640, 3560, 1902, 136,
90, 47, 40, 12, 4

Inv4 \ Inv2 1219717400, 599556416, 315637164, 4307366,
2990738, 2153683, 1958224, 1606154, 1495369,
975150,803077, 564988, 487575, 86038, 82750,
67324, 21758, 13024, 10902, 5451, 5354, 3340,
2677, 2356, 988, 856, 108, 48, 22, 20, 18, 12,
11, 9, 8, 4

Inv5 \ Inv2 1052651234, 737292504, 417828286, 193225414,
96612707, 87601912, 11068518, 9460050, 6486298,
5534259, 4730025, 3243149, 394266, 197133, 42454,
16932, 3166, 3078, 2366, 1583, 1539, 1183, 1160,
1062, 912, 496, 38, 18, 9, 6, 2

The round function I ◦A◦S ◦M with the all zero round subkey is intuitively
one of the first candidates for which a small cyclic order seems to be possible.
The results of Section 4 can be exploited to find out a lower bound for the cyclic
order of this round function. Consider the invariance sets of the permutation
I ◦ A ◦ S ◦ M given in Section 4. Since a cycle starting from a point of an
invariance set can only contain points of this set, the cycle length is limited by
the size of the invariance set. Because we have |Invi| ≤ 232 for i = 1, ..., 5, it is
possible to compute such cycles on a PC. Table 1 lists all cycle lengths according
to the invariances Inv1, ..., Inv5. Note that the cycles from the invariance Inv3

are related to those provided in the Appendix of [12]. The Appendix provides a
complete listing of the cycles for Inv1, ..., Inv5.

The least common multiple of the computed cycle lengths for the invariances
Inv1, ..., Inv5 of Table 1 is equal to

15480 20902 25688 03988 20263 80165 33732 81646 22636
91465 18521 79549 12467 08119 71956 75745 56484 49918
71194 74949 82013 75604 65431 85505 89291 91969 54985
57959 09774 73220 08631 61663 54665 95490 84924 52493
78665 19158 83139 45332 15200 0,

which is a number of 206 decimals. Since the least common multiple of the cycle
lengths for Inv1, ..., Inv5 is a divisor of the cyclic order of I ◦A◦S ◦M , we obtain
the following result.

Proposition 9. The cyclic order of I ◦ A ◦ S ◦ M is greater than 10205. �

Starting from other points in other invariance sets still other cycles can be
found. This way the lower bound can be further increased essentially.

134 T. Van Le et al.

It follows that the cyclic order of I ◦ A ◦ S ◦ M has by far not the small size
as the cyclic orders of its components, but for points from invariance sets short
cycles may occur. Furthermore, the cyclic order of I ◦A ◦S ◦M is much greater
than the number 2128 of AES blocks.

6 Self-duality of the AES Round Function

According to [1], two block ciphers E and E′ are called dual to each other if
there are invertible transformations f , g, and h such that

f(Ek(x)) = E′
g(k)(h(x))

holds for all keys k and plaintexts x. Any cipher is trivially dual to itself, but
sometimes there are nontrivial invertible transformations for a cipher onto itself
such that the equation above holds for all k and x, as is the case for the DES (cf.
[5], p. 248). In [1] the question is considered whether the AES block encryption
has self-duality properties, i.e.:

Do nontrivial invertible transformations f , g, h exist such that for the AES
block encryption for all plaintext blocks x and all keys k the equation f(AESk(x))
= AESg(k)(h(x)) holds ?

In this section we show that this question has a positive answer according to
the AES round function.

For any natural number n > 0, let Sn denote the symmetric group of degree
n, i.e., the permutation group on the set {1, ..., n}. Now we set π0 := (1 6 11 16),
π1 := (5 10 15 4), π2 := (9 14 3 8), and π3 := (13 2 7 12), and define G as
the semidirect product of the group generated by π0, π1, π2, π3 and S4, where
S4 operates arbitrarily on the four vectors v0 := (1, 6, 11, 16), v1 := (5, 10, 15, 4),
v2 := (9, 14, 3, 8), and v3 := (13, 2, 7, 12). Then we obtain the following result.

Proposition 10. There exists a permutation group G of order |G| = 6144 such
that for any byte-permutation π ∈ G, there exists a byte-permutation π′ such
that ∀x ∈ {0, 1}128 : π ◦ I ◦ A ◦ S ◦ M(x) = I ◦ A ◦ S ◦ M ◦ π′(x). �

Although one cannot expect that this property can be extended to the com-
plete AES mapping, the property of Proposition 10 opens some new possibilities
for protection against side channel attacks. Furthermore, Proposition 10 is re-
lated to the results provided in Appendix A of [15] where the expressions of
the 128 bit-components of the AES round function have many similarities and
partially the same component expressions.

On the basis of Proposition 10 it is possible to derive self-duality properties
of the AES round function. If X is added, we obtain the following result.

Complementation-Like and Cyclic Properties of AES Round Functions 135

Corollary 2. There exists a permutation group G of order |G| = 6144 such
that for any byte-permutation π ∈ G, there exists a byte-permutation π′ such
that (π ◦ I ◦ A ◦ S ◦ M ◦ X(k))(x) = (I ◦ A ◦ S ◦ M ◦ X(π′−1(k)) ◦ π′)(x) holds
for all k ∈ {0, 1}128 and x ∈ {0, 1}128. �

If we consider in Corollary 2 the special case π = π′, then we find the following
byte permutations (written as products of cycles, the bytes are enumerated as
described in Section 2.1).

P1 = (1 5 9 13)(2 6 10 14)(3 7 11 15)(4 8 12 16),
P2 = (1 9)(5 13)(2 10)(6 14)(3 11)(7 15)(4 12)(8 16),
P3 = (1 13 9 5)(2 14 10 6)(3 15 11 7)(4 16 12 8).

This means that the following automorphism equations hold for the AES round
function.

Proposition 11. For any byte permutation Pi, i = 1, 2, 3 defined above, the
equation Pi((I ◦A ◦S ◦M ◦X(k))(x)) = (I ◦A ◦S ◦M ◦X(Pi(k)))(Pi(x)) holds
for all k ∈ {0, 1}128 and x ∈ {0, 1}128. �

This way we have found a property analogous to the complementation prop-
erty of the DES round function (see for example p. 248 in [5]).

7 Conclusions

Novel invariances of the mapping I ◦A◦S ◦M were found. It follows that for big
sets of round subkeys there are regularities in the corresponding round functions.
On the other hand, the existence of nontrivial invariances which hold for all 2128

AES round subkeys is excluded.
Several cycle lengths for the complete AES round function with the all zero

subkey were computed. It turns out that the cyclic order of this round function is
much greater than the cyclic orders of its components. Nevertheless, for several
special round keys some short cycles exist.

The self-duality properties described in Section 6 confirm the assessments
given in other publications that the AES components have several unexpected
structural properties.

We conclude that the AES has many algebraic properties which have not been
found before in other block ciphers. In particular, the round function seems
to have more invariants than the round function of DES. The results are not
necessarily suitable to break AES. But in combination with other approaches
they may lead to new insights and analysis methods.

References

1. E. Barkan and E. Biham. In how many ways can you write Rijndael? In Advances
in Cryptology - ASIACRYPT 2002, Lecture Notes in Computer Science 2501, pp.
160-175, Springer-Verlag, 2002.

136 T. Van Le et al.

2. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. J.
Cryptology, Vol. 4, pp. 3-72, 1991.

3. J. Daemen and V. Rijmen. AES Proposal: Rijndael. Available via
http://csrc.nist.gov/CryptoToolkit/aes, September 3, 1999.

4. N. Ferguson, R. Schroeppel, and D. Whiting. A simple algebraic representation of
Rijndael. In Selected Areas in Cryptography, SAC 2001, Lecture Notes in Computer
Science 2259, pp. 103-111, Springer-Verlag, 2001.

5. A. G. Konheim. Cryptography: A Primer. John Wiley and Sons, 1981.
6. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryp-

tology - EUROCRYPT’93, Lecture Notes in Computer Science 765, pp. 386-397,
Springer-Verlag, 1994.

7. S. Murphy and M. J. B. Robshaw. New observations on Rijndael. Available via
http://csrc.nist.gov/CryptoToolkit/aes, August 7, 2000.

8. S. Murphy and M. J. B. Robshaw. Essential algebraic structure within the AES.
In Advances in Cryptology - CRYPTO 2002, Lecture Notes in Computer Science
2442, pp. 1-16, Springer-Verlag, 2002.

9. National Institute of Standards and Technology (U.S.): Advanced Encryp-
tion Standard (AES), FIPS Publication 197, November 26, 2001. Available at
http://csrc.nist.gov/publications/fips/fips197/ fips-197.pdf.

10. S. Park, S. H. Sung, S. Lee, and J. Lim. Improving the upper bound on the max-
imum differential and the maximum linear hull probability for SPN structures
and AES. In Fast Software Encryption, 10th International Workshop, FSE 2003,
Lecture Notes in Computer Science 2887, pp. 247-260, Springer-Verlag, 2003.

11. D. Robinson. A Course in the Theory of Groups. Graduate Texts in Mathematics,
Springer-Verlag, New York, 1982.

12. B. Song and J. Seberry. Further observations on the structure of the AES algorithm.
In Fast Software Encryption, 10th International Workshop, FSE 2003, Lecture
Notes in Computer Science 2887, pp. 223-234, Springer-Verlag, 2003.

13. R. Wernsdorf. The round functions of Rijndael generate the alternating group. In
Fast Software Encryption, 9th International Workshop, FSE 2002, Lecture Notes
in Computer Science 2365, pp. 143-148, Springer-Verlag, 2002.

14. H. Wielandt. Finite Permutation Groups. Academic Press, New York, 1964.
15. A. M. Youssef and S. E. Tavares. On some algebraic structures in the AES round

function, http://eprint.iacr.org/2002/144, September 20, 2002.

Complementation-Like and Cyclic Properties of AES Round Functions 137

A Some Cycles of I ◦ A ◦ S ◦ M

The following tables provide a complete listing of the cycles for the invariances
Inv1, ..., Inv5.

A.1 Cycles of I ◦ A ◦ S ◦ M for Inv1

Starting point in INV1: Cycle length:

1 (04x, 04x, 04x, 04x, 04x, 04x, 04x, 04x, ...) 87

2 (01x, 01x, 01x, 01x, 01x, 01x, 01x, 01x, ...) 81

3 (00x, 00x, 00x, 00x, 00x, 00x, 00x, 00x, ...) 59

4 (0bx, 0bx, 0bx, 0bx, 0bx, 0bx, 0bx, 0bx, ...) 27

5 (73x, 73x, 73x, 73x, 73x, 73x, 73x, 73x, ...) 2

A.2 Cycles of I ◦ A ◦ S ◦ M for Inv2 \ Inv1

Starting point in INV2 \ Inv1: Cycle length:

1 (00x, 02x, 00x, 02x, 00x, 02x, 00x, 02x, ...) 39488

2 (00x, 01x, 00x, 01x, 00x, 01x, 00x, 01x, ...) 16934

3 (00x, 07x, 00x, 07x, 00x, 07x, 00x, 07x, ...) 7582

4 (00x, b8x, 00x, b8x, 00x, b8x, 00x, b8x, ...) 548

5 (00x, c6x, 00x, c6x, 00x, c6x, 00x, c6x, ...) 548

6 (03x, d6x, 03x, d6x, 03x, d6x, 03x, d6x, ...) 36

7 (07x, f1x, 07x, f1x, 07x, f1x, 07x, f1x, ...) 36

8 (03x, d5x, 03x, d5x, 03x, d5x, 03x, d5x, ...) 24

9 (05x, 0fx, 05x, 0fx, 05x, 0fx, 05x, 0fx, ...) 21

10 (0fx, 05x, 0fx, 05x, 0fx, 05x, 0fx, 05x, ...) 21

11 (06x, 86x, 06x, 86x, 06x, 86x, 06x, 86x, ...) 15

12 (0ex, 6ex, 0ex, 6ex, 0ex, 6ex, 0ex, 6ex, ...) 15

13 (2dx, 4ax, 2dx, 4ax, 2dx, 4ax, 2dx, 4ax, ...) 8

14 (5dx, a3x, 5dx, a3x, 5dx, a3x, 5dx, a3x, ...) 2

15 (86x, c0x, 86x, c0x, 86x, c0x, 86x, c0x, ...) 2

A.3 Cycles of I ◦ A ◦ S ◦ M for Inv3 \ Inv2

Starting point in Inv3 \ Inv2: Cycle length:

1 (00x, 00x, 00x, 03x, 00x, 00x, 00x, 03x, ...) 1088297796

2 (00x, 00x, 00x, 02x, 00x, 00x, 00x, 02x, ...) 637481159

3 (00x, 00x, 00x, 04x, 00x, 00x, 00x, 04x, ...) 637481159

4 (00x, 00x, 00x, 06x, 00x, 00x, 00x, 06x, ...) 637481159

5 (00x, 00x, 00x, 08x, 00x, 00x, 00x, 08x, ...) 637481159

6 (00x, 00x, 00x, 01x, 00x, 00x, 00x, 01x, ...) 129021490

7 (00x, 00x, 00x, 07x, 00x, 00x, 00x, 07x, ...) 129021490

8 (00x, 00x, 00x, 09x, 00x, 00x, 00x, 09x, ...) 129021490

9 (00x, 00x, 00x, 10x, 00x, 00x, 00x, 10x, ...) 129021490

138 T. Van Le et al.

Starting point in Inv3 \ Inv2: Cycle length:

10 (00x, 00x, 00x, 16x, 00x, 00x, 00x, 16x, ...) 64376666

11 (00x, 00x, 01x, 42x, 00x, 00x, 01x, 42x, ...) 64376666

12 (00x, 00x, 00x, eax, 00x, 00x, 00x, eax, ...) 11782972

13 (00x, 02x, 3ax, f9x, 00x, 02x, 3ax, f9x, ...) 13548

14 (00x, 05x, fdx, e6x, 00x, 05x, fdx, e6x, ...) 13548

15 (00x, 10x, 04x, adx, 00x, 10x, 04x, adx, ...) 10756

16 (00x, 02x, 2dx, b0x, 00x, 02x, 2dx, b0x, ...) 5640

17 (00x, 15x, e1x, 86x, 00x, 15x, e1x, 86x, ...) 5640

18 (00x, 09x, 40x, 90x, 00x, 09x, 40x, 90x, ...) 3560

19 (00x, 00x, c2x, 2bx, 00x, 00x, c2x, 2bx, ...) 1902

20 (00x, 21x, e4x, f9x, 00x, 21x, e4x, f9x, ...) 1902

21 (01x, d2x, 66x, c5x, 01x, d2x, 66x, c5x, ...) 136

22 (03x, 04x, c1x, cax, 03x, 04x, c1x, cax, ...) 90

23 (02x, 33x, 8dx, 7fx, 02x, 33x, 8dx, 7fx, ...) 90

24 (01x, 12x, dcx, 34x, 01x, 12x, dcx, 34x, ...) 47

25 (01x, 8bx, 9dx, edx, 01x, 8bx, 9dx, edx, ...) 47

26 (02x, 4dx, b4x, b1x, 02x, 4dx, b4x, b1x, ...) 47

27 (03x, c9x, 75x, a2x, 03x, c9x, 75x, a2x, ...) 47

28 (0ax, ffx, 4ax, dfx, 0ax, ffx, 4ax, dfx, ...) 40

29 (03x, 27x, 26x, 6cx, 03x, 27x, 26x, 6cx, ...) 12

30 (01x, 82x, 8fx, c8x, 01x, 82x, 8fx, c8x, ...) 4

31 (27x, aax, 2fx, 56x, 27x, aax, 2fx, 56x, ...) 4

32 (7dx, adx, f5x, a3x, 7dx, adx, f5x, a3x, ...) 4

A.4 Cycles of I ◦ A ◦ S ◦ M for Inv4 \ Inv2

Starting point in Inv4 \ Inv2: Cycle length:

1 (00x, 00x, 00x, 00x, 00x, 01x, 00x, 01x, ...) 1219717400

2 (00x, 00x, 00x, 00x, 00x, 0ax, 00x, 0ax, ...) 1219717400

3 (00x, 00x, 00x, 00x, 00x, 06x, 00x, 06x, ...) 599556416

4 (00x, 00x, 00x, 00x, 00x, 0ex, 00x, 0ex, ...) 599556416

5 (00x, 00x, 00x, 00x, 00x, 03x, 00x, 03x, ...) 315637164

6 (00x, 00x, 00x, 00x, 00x, 07x, 00x, 07x, ...) 315637164

7 (00x, 00x, 00x, 00x, 02x, 62x, 02x, 62x, ...) 4307366

8 (00x, 00x, 00x, 00x, 02x, 3cx, 02x, 3cx, ...) 2990738

9 (00x, 00x, 00x, 00x, 00x, 16x, 00x, 16x, ...) 2153683

10 (00x, 00x, 00x, 00x, 0dx, aex, 0dx, aex, ...) 2153683

11 (00x, 00x, 00x, 00x, 01x, 64x, 01x, 64x, ...) 1958224

12 (00x, 00x, 00x, 00x, 01x, 88x, 01x, 88x, ...) 1958224

13 (00x, 00x, 00x, 00x, 07x, 0fx, 07x, 0fx, ...) 1606154

14 (00x, 00x, 00x, 00x, 08x, 42x, 08x, 42x, ...) 1495369

15 (00x, 00x, 00x, 00x, 0ex, 98x, 0ex, 98x, ...) 1495369

16 (00x, 00x, 00x, 00x, 0dx, e8x, 0dx, e8x, ...) 975150

17 (00x, 00x, 00x, 00x, 01x, 14x, 01x, 14x, ...) 803077

18 (00x, 00x, 00x, 00x, 01x, adx, 01x, adx, ...) 803077

19 (00x, 00x, 00x, 00x, 05x, b0x, 05x, b0x, ...) 564988

Complementation-Like and Cyclic Properties of AES Round Functions 139

Starting point in Inv4 \ Inv2: Cycle length:

20 (00x, 00x, 00x, 00x, 0bx, 2fx, 0bx, 2fx, ...) 487575

21 (00x, 00x, 00x, 00x, 21x, 9ax, 21x, 9ax, ...) 487575

22 (00x, 01x, 00x, 01x, 3cx, ecx, 3cx, ecx, ...) 86038

23 (00x, 01x, 00x, 01x, b9x, 14x, b9x, 14x, ...) 86038

24 (00x, 01x, 00x, 01x, cdx, a4x, cdx, a4x, ...) 86038

25 (00x, 02x, 00x, 02x, a9x, bbx, a9x, bbx, ...) 86038

26 (00x, 00x, 00x, 00x, 06x, 15x, 06x, 15x, ...) 82750

27 (00x, 00x, 00x, 00x, 15x, 06x, 15x, 06x, ...) 82750

28 (00x, 00x, 00x, 00x, 34x, 48x, 34x, 48x, ...) 82750

29 (00x, 01x, 00x, 01x, bcx, 72x, bcx, 72x, ...) 82750

30 (00x, 00x, 00x, 00x, 02x, 02x, 02x, 02x, ...) 67324

31 (00x, 00x, 00x, 00x, 05x, 05x, 05x, 05x, ...) 21758

32 (00x, 00x, 00x, 00x, 17x, 17x, 17x, 17x, ...) 21758

33 (00x, 00x, 00x, 00x, 03x, 03x, 03x, 03x, ...) 13024

34 (00x, 0ax, 00x, 0ax, 63x, 1ex, 63x, 1ex, ...) 10902

35 (00x, 0fx, 00x, 0fx, 79x, 89x, 79x, 89x, ...) 5451

36 (00x, 07x, 00x, 07x, aax, 22x, aax, 22x, ...) 5451

37 (00x, 0ex, 00x, 0ex, 4bx, 2ex, 4bx, 2ex, ...) 5354

38 (00x, 00x, 00x, 00x, 01x, 01x, 01x, 01x, ...) 3340

39 (00x, 05x, 00x, 05x, 7fx, 04x, 7fx, 04x, ...) 2677

40 (00x, 29x, 00x, 29x, 8ex, b1x, 8ex, b1x, ...) 2677

41 (00x, 00x, 00x, 00x, 91x, 91x, 91x, 91x, ...) 2356

42 (00x, 0bx, 00x, 0bx, 2ex, 35x, 2ex, 35x, ...) 988

43 (00x, 00x, 00x, 00x, 09x, 09x, 09x, 09x, ...) 856

44 (02x, bbx, 02x, bbx, bbx, 02x, bbx, 02x, ...) 108

45 (00x, 2bx, 00x, 2bx, 38x, bfx, 38x, bfx, ...) 48

46 (00x, 6ex, 00x, 6ex, c2x, 78x, c2x, 78x, ...) 48

47 (00x, bax, 00x, bax, 24x, b5x, 24x, b5x, ...) 48

48 (13x, 18x, 13x, 18x, 78x, 69x, 78x, 69x, ...) 48

49 (12x, 13x, 12x, 13x, cdx, d6x, cdx, d6x, ...) 22

50 (05x, f1x, 05x, f1x, 83x, e9x, 83x, e9x, ...) 20

51 (0dx, eax, 0dx, eax, 62x, d1x, 62x, d1x, ...) 20

52 (07x, 6cx, 07x, 6cx, 7bx, 4ax, 7bx, 4ax, ...) 18

53 (03x, b4x, 03x, b4x, b4x, 03x, b4x, 03x, ...) 12

54 (06x, 06x, 06x, 06x, 35x, 35x, 35x, 35x, ...) 12

55 (05x, cbx, 05x, cbx, 51x, cex, 51x, cex, ...) 11

56 (21x, 7ex, 21x, 7ex, 21x, ebx, 21x, ebx, ...) 11

57 (1ax, 27x, 1ax, 27x, 49x, fax, 49x, fax, ...) 9

58 (28x, 8dx, 28x, 8dx, 90x, eax, 90x, eax, ...) 9

59 (03x, 2dx, 03x, 2dx, 09x, 76x, 09x, 76x, ...) 8

60 (2cx, 26x, 2cx, 26x, 97x, 84x, 97x, 84x, ...) 8

61 (2cx, b1x, 2cx, b1x, b1x, 2cx, b1x, 2cx, ...) 8

62 (12x, 12x, 12x, 12x, f9x, f9x, f9x, f9x, ...) 4

63 (39x, 53x, 39x, 53x, eax, 4bx, eax, 4bx, ...) 4

64 (39x, 67x, 39x, 67x, 9fx, e4x, 9fx, e4x, ...) 4

140 T. Van Le et al.

A.5 Cycles of I ◦ A ◦ S ◦ M for Inv5 \ Inv2

Starting point in Inv5 \ Inv2: Cycle length:

1 (00x, 00x, 00x, 03x, 00x, 03x, 00x, 00x, ...) 1052651234

2 (00x, 00x, 00x, 05x, 00x, 05x, 00x, 00x, ...) 1052651234

3 (00x, 00x, 00x, 04x, 00x, 04x, 00x, 00x, ...) 737292504

4 (00x, 00x, 00x, 01x, 00x, 01x, 00x, 00x, ...) 417828286

5 (00x, 00x, 00x, 02x, 00x, 02x, 00x, 00x, ...) 417828286

6 (00x, 00x, 00x, 2cx, 00x, 2cx, 00x, 00x, ...) 193225414

7 (00x, 00x, 00x, 18x, 00x, 18x, 00x, 00x, ...) 96612707

8 (00x, 00x, 00x, 47x, 00x, 47x, 00x, 00x, ...) 96612707

9 (00x, 00x, 00x, 0ex, 00x, 0ex, 00x, 00x, ...) 87601912

10 (00x, 00x, 00x, 66x, 00x, 66x, 00x, 00x, ...) 87601912

11 (00x, 00x, 00x, 49x, 00x, 49x, 00x, 00x, ...) 11068518

12 (00x, 00x, 03x, e9x, 03x, e9x, 00x, 00x, ...) 9460050

13 (00x, 00x, 04x, 45x, 04x, 45x, 00x, 00x, ...) 6486298

14 (00x, 00x, 00x, 43x, 00x, 43x, 00x, 00x, ...) 5534259

15 (00x, 00x, 0bx, 61x, 0bx, 61x, 00x, 00x, ...) 5534259

16 (00x, 00x, 00x, 27x, 00x, 27x, 00x, 00x, ...) 4730025

17 (00x, 00x, 01x, 2fx, 01x, 2fx, 00x, 00x, ...) 4730025

18 (00x, 00x, 05x, 23x, 05x, 23x, 00x, 00x, ...) 3243149

19 (00x, 00x, 06x, 49x, 06x, 49x, 00x, 00x, ...) 3243149

20 (00x, 00x, 40x, 54x, 40x, 54x, 00x, 00x, ...) 394266

21 (00x, 00x, 1ax, 8fx, 1ax, 8fx, 00x, 00x, ...) 197133

22 (00x, 00x, 22x, 91x, 22x, 91x, 00x, 00x, ...) 197133

23 (00x, 02x, 9ex, 6dx, 9ex, 6dx, 00x, 02x, ...) 42454

24 (00x, 06x, 7ax, f3x, 7ax, f3x, 00x, 06x, ...) 42454

25 (00x, 00x, b9x, 2dx, b9x, 2dx, 00x, 00x, ...) 16932

26 (00x, 02x, 00x, 45x, 00x, 45x, 00x, 02x, ...) 16932

27 (00x, 02x, cax, 65x, cax, 65x, 00x, 02x, ...) 16932

28 (00x, 09x, 9ex, e9x, 9ex, e9x, 00x, 09x, ...) 16932

29 (00x, 16x, efx, 51x, efx, 51x, 00x, 16x, ...) 3166

30 (00x, 02x, 54x, 1ax, 54x, 1ax, 00x, 02x, ...) 3078

31 (00x, 25x, c7x, 5ex, c7x, 5ex, 00x, 25x, ...) 2366

32 (00x, 02x, 9cx, e1x, 9cx, e1x, 00x, 02x, ...) 1583

33 (00x, 13x, 25x, 5ax, 25x, 5ax, 00x, 13x, ...) 1583

34 (00x, 12x, 23x, f1x, 23x, f1x, 00x, 12x, ...) 1539

35 (00x, 23x, 71x, aex, 71x, aex, 00x, 23x, ...) 1539

36 (00x, 16x, a2x, eax, a2x, eax, 00x, 16x, ...) 1183

37 (00x, 1dx, 56x, 47x, 56x, 47x, 00x, 1dx, ...) 1183

38 (00x, 84x, 4dx, b4x, 4dx, b4x, 00x, 84x, ...) 1160

39 (00x, 03x, 49x, 72x, 49x, 72x, 00x, 03x, ...) 1062

40 (00x, 09x, 9dx, 7ax, 9dx, 7ax, 00x, 09x, ...) 1062

41 (00x, 24x, f5x, 24x, f5x, 24x, 00x, 24x, ...) 1062

42 (00x, 5ax, 24x, 44x, 24x, 44x, 00x, 5ax, ...) 1062

43 (00x, 0fx, 39x, 9bx, 39x, 9bx, 00x, 0fx, ...) 912

Complementation-Like and Cyclic Properties of AES Round Functions 141

Starting point in Inv5 \ Inv2: Cycle length:

44 (00x, 49x, cfx, ccx, cfx, ccx, 00x, 49x, ...) 496

45 (00x, f8x, 3fx, e6x, 3fx, e6x, 00x, f8x, ...) 496

46 (02x, 9bx, adx, 9ex, adx, 9ex, 02x, 9bx, ...) 38

47 (03x, 5bx, 16x, d9x, 16x, d9x, 03x, 5bx, ...) 38

48 (03x, 58x, 9cx, 44x, 9cx, 44x, 03x, 58x, ...) 18

49 (25x, dex, 99x, 86x, 99x, 86x, 25x, dex, ...) 9

50 (3bx, dcx, 96x, e9x, 96x, e9x, 3bx, dcx, ...) 9

51 (06x, 83x, 45x, d3x, 45x, d3x, 06x, 83x, ...) 6

52 (3ex, 99x, 88x, cex, 88x, cex, 3ex, 99x, ...) 6

53 (08x, 24x, f2x, 16x, f2x, 16x, 08x, 24x, ...) 2

54 (24x, f2x, 16x, 08x, 16x, 08x, 24x, f2x, ...) 2

55 (35x, ecx, c0x, a7x, c0x, a7x, 35x, ecx, ...) 2

56 (c0x, a7x, 35x, ecx, 35x, ecx, c0x, a7x, ...) 2

More Dual Rijndaels

H̊avard Raddum

Dep. of Informatics, The University of Bergen, P.O.box 7800, 5020 Bergen, Norway

Abstract. It is well known that replacing the irreducible polynomial
used in the AES one can produce 240 dual ciphers. In this paper we
present 9120 other representations of GF (28), producing more ciphers
dual to the AES. We also show that if the matrix used in the S-box
of Rijndael is linear over a larger field than GF (2), this would have
implications for the XSL attack.

1 Introduction

The cipher Rijndael [1] has been selected by NIST as the AES. Most of the
operations in Rijndael are based on the field GF (28), and several researchers
have made comments on the algebraic structures found in the cipher [3, 4, 5].
At ASIACRYPT 2002 Barkan and Biham [5] showed that the ciphers produced
when changing the polynomial used in AES are duals of Rijndael. In this paper
we construct many more duals of the AES.

Also at ASIACRYPT 2002 Courtois and Pieprzyk [6] described a possible
attack on the AES, using a large system of equations. We will show that one of
the dual ciphers could produce a much smaller system, that should be easier to
solve. However, we have checked that the matrix used in the affine transformation
in the S-box is not among those which would simplify the system of equations.

At EUROCRYPT 2003 Biryukov et al. [7] presented a tool for finding affine
equivalent S-boxes. This can be used to find 2040 pairs of affine mappings that
can be inserted in the AES, without changing the permutation induced by the
cipher. By replacing the field polynomial in the AES with one of the 30 other
irreducible polynomials, one is likely to be able to produce as many as 61,200
different versions of the duals of the AES found in [5]. This class can probably
be extended using the duals presented here.

In Section 2 we give a brief description of Rijndael, and the definition of a
dual cipher. In Section 3 we show how to construct 1170 different representations
of GF (28), each one resulting in 8 ciphers dual to the AES. In Section 4 we check
whether the system of equations in the XSL-attack can be simplified. Conclusions
are made in Section 5.

2 Description of Rijndael

We here give a brief description of Rijndael, omitting the key schedule. A more
detailed description can be found in [1].

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 142–147, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

More Dual Rijndaels 143

Rijndael is a 128-bit block cipher with key sizes of 128, 192 or 256 bits. The
cipher consists of a round function that is repeated 10, 12 or 14 times according
to the length of the key. The cipher block and the round keys are viewed as
4 × 4-matrices of bytes. In some operations these bytes are viewed as elements
of GF (28), as well as 8-bit strings. The irreducible polynomial over GF (2) used
to represent GF (28) is x8 + x4 + x3 + x + 1.

There are four operations in the round function of Rijndael. These are used
in the following order:

– SubBytes
– ShiftRows
– MixColumns
– AddRoundKey

SubBytes replaces each byte of the cipher block. Each byte is first replaced by its
inverse, when viewed as an element of GF (28) (0−1 = 0), and then passed through
an affine transformation Ax + b as an 8-bit vector. The constants A and b are

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
1
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ShiftRows takes row i of the cipher block, containing four bytes, and shifts
it i positions to the left. The top row is row 0 and the bottom is row 3.

MixColumns views the cipher state as a 4 × 4-matrix over GF (28), and pre-
multiplies it with a constant 4 × 4-matrix with elements from GF (28).

AddRoundKey simply xors the cipher block with the key for the current
round.

An AddRoundKey is applied to the plaintext before the first round, and in
the last round MixColumns is removed.

2.1 Dual Ciphers

We give here the definition of a dual cipher from [5].

Definition 2.1. Two ciphers E and E′ are called dual ciphers if there exists
invertible transformations f, g and h such that

∀P,K f(EK(P)) = E′
g(K)(h(P)).

In the case for Rijndael in this paper we will have f = g = h. The transfor-
mation f will be an isomorphism of GF (28) applied on all 16 bytes in the cipher
block in parallel.

144 H. Raddum

3 Different Representations of GF (28)

The designers of Rijndael chose the irreducible polynomial r(x) = x8 +x4 +x3 +
x + 1 to construct GF (28). In the following let α be a root of r(x). Elements of
GF (2)[α] (all sums and products of elements from GF (2)∪{α}) may be written
as polynomials in α over GF (2), with degree at most 7. The elements of GF (28)
are sometimes regarded as 8-bit vectors, with the natural mapping

c7α
7 + . . . + c1α + c0 ←→ (c7, . . . , c1, c0).

When an element of GF (28) is written as a column vector c0 is at the top and
c7 is at the bottom.

3.1 Dual Ciphers by Replacing r(x)

There are 30 irreducible polynomials of degree 8 over GF (2). As pointed out in
[5], we may define β to be a root of any one of these polynomials, and construct
GF (28) = GF (2)[β]. The isomorphism φ between GF (2)[α] and GF (2)[β] is
established when we find a root of r(x) in GF (2)[β], and let this root be the
image of α.

This isomorphism is a linear mapping. Let Mφ be the 8×8-matrix over GF (2)
whose column i is φ(αi), where column 0 is the leftmost column and column 7
is the rightmost column. Then φ(a) can be computed as φ(a) = Mφ · a, where
a ∈ GF (2)[α] is written as a column vector.

Denote encryption of plaintextP under keyK usingRijndael byEK(P). Let the
cipher we get by replacing all constants in GF (28) in Rijndael by their image under
φ, and replacing A with MφAM−1

φ be called E′. Then we have the duality [5]:

φ(EK(P)) = E′
φ(K)(φ(P)),

where we understand φ to be applied to each of the GF (28)-elements in the blocks
P,K and EK(P).

Since there are 8 different roots of r(x) in GF (28), we get 8 different iso-
morphisms between GF (2)[α] and each representation of GF (28). With 30 ir-
reducible polynomials of degree 8 over GF (2) we therefore get a total of 240
different matrices Mφ.

3.2 Other Representations of GF (28)

There are other ways of constructing GF (28) than by using an irreducible poly-
nomial of degree 8 over GF (2). This is shown by the following example.

First we create GF (22) = GF (2)[β] with β2 + β + 1 = 0. Then we can make
GF (28) with t(x) = x4 + βx3 + x + (β + 1), an irreducible polynomial of degree
4 over GF (2)[β]. Defining γ to be a root of t(x), the elements of GF (28) can be
written as polynomials in γ of degree at most 3 with coefficients from GF (2)[β].
Writing elements of GF (22) as polynomials in β of degree at most 1 over GF (2),
we get a natural mapping between 8-bit strings and elements of GF (2)[β, γ]:

(c7β + c6)γ3 + (c5β + c4)γ2 + . . . + (c1β + c0) ←→ (c7, . . . , c0). (1)

More Dual Rijndaels 145

With this mapping the isomorphism φ : GF (2)[α] −→ GF (2)[β, γ] can now be
realized as a matrix-multiplication in the same way as in the single extension
case. We find a root of r(x) in GF (2)[β, γ] and let this element be φ(α). Then
Mφ = [1, φ(α), φ(α2), . . . , φ(α7)].

3.3 All Possible Representations of GF (28) Using Irreducible
Polynomials

Here we will show that there are 1170 different representations of GF (28) using
roots from irreducible polynomials. We have the following inclusions of subfields
of GF (28):

GF (2) ⊂ GF (22) ⊂ GF (24) ⊂ GF (28).

This induces four different chains of fields starting with GF (2) and ending in
GF (28), these chains are listed below. The number above an arrow in GF (2i) n−→
GF (2di) means there are n irreducible polynomials of degree d over GF (2i).

– GF (2) 30−→ GF (28): 30 representations.

– GF (2) 1−→ GF (22) 60−→ GF (28): 60 representations.

– GF (2) 3−→ GF (24) 120−→ GF (28): 360 representations.

– GF (2) 1−→ GF (22) 6−→ GF (24) 120−→ GF (28): 720 representations.

Adding the numbers together we get 1170 representations of GF (28).
The mapping between 8-bit strings and field elements for the last two chains

can be done as follows.
GF (2) −→ GF (24) −→ GF (28): Let β be a root of an irreducible polynomial

of degree 4 over GF (2), and let γ be a root of an irreducible polynomial of degree
2 over GF (2)[β]. The conversion is then

(c7β
3 + . . . + c4)γ + (c3β

3 + . . . + c0) ←→ (c7, . . . , c0).

GF (2) −→ GF (22) −→ GF (24) −→ GF (28): Let β be a root of x2 + x + 1,
γ a root of an irreducible polynomial of degree 2 over GF (2)[β], and δ a root of
an irreducible polynomial of degree 2 over GF (2)[β, γ]. The mapping becomes

((c7β + c6)γ + (c5β + c4))δ + ((c3β + c2)γ + (c1β + c0)) ←→ (c7, . . . , c0).

For each representation there are 8 choices for the element φ(α). In total we
then get 8 · 1170 = 9360 matrices Mφ yielding isomorphisms, and so 9360 duals
of the AES. We have generated all these matrices, and checked that they are all
different (However, it can be shown that there are 60 pairs of matrices {M,M ′}
such that the first 4 columns of M and M ′ are equal).

It should be noted that the idea of constructing GF (28) using two field ex-
tensions and applying it to Rijndael is not new. It has been done in [8], for the
purpose of making an efficient hardware implementation of inversion in GF (28).

146 H. Raddum

4 Implications for the XSL-Attack

The XSL attack is described in [6]. The basis of the attack is the fact that the
non-linear part of the S-box in Rijndael is inversion in the field GF (28). If X is
the input to the inversion and Y is the output, we have the relation XY = 1
(except for X = 0). By writing X as x7α

7 + . . . + x0 and Y as y7α
7 + . . . + y0,

the expression

(x7α
7 + . . . + x0)(y7α

7 + . . . + y0) = 0 · α7 + . . . + 0 · α + 1

will give us 8 quadratic equations in the variables x0, . . . , x7, y0, . . . , y7.

4.1 Brief Summary of the XSL Attack

At some point in each round, we give variable names to the bits of the cipher
block. Since all the operations in Rijndael except the field inversion are linear
over GF (2), the input and output of the inversion are linear expressions in
these variables. By using the relation of the field inversion described above, we
can create an equation system in the key bits and the intermediate ciphertext
bits using one known plaintext/ciphertext pair. All of these equations will be
quadratic, and for the 128-bit key case the system should define the key uniquely.

The rest of the attack is to try to solve this equation system by creating
new equations using multiplication with monomials, and in the end using re-
linearization. If the XSL attack works, it is important that it is faster than
exhaustive search. One crucial point for the complexity of solving the system is
the number of variables it contains, and for the re-linearization, the number of
monomials.

4.2 Matrix in S-Box GF (22)-Linear?

Let us assume for a little while that the matrix used in the S-box of Rijndael is
linear over GF (22). The other linear operations are linear over GF (28), and in
particular over GF (22). This means that Rijndael can be described completely
in terms of GF (22), it will never be necessary to go down to bit level in any
of the operations. Since all the linear operations of Rijndael are GF (22)-linear,
we can make an equation system like the one used in the XSL-attack, but now
with variables and coefficients from GF (22). Since two and two bits are melted
together to form one variable, we will only get half as many variables as in the
original system, and only about one fourth of the number of quadratic monomi-
als. Since the number of monomials is significantly smaller in the system over
GF (22), and since we only have half as many variables, it should be easier to
reach the point where re-linearization can be applied.

The number of invertible 8×8-matrices over GF (2) is about 262.2, and of these
only about 231.5 are linear over GF (22). This means a random invertible GF (2)-
matrix have a probability of less than 2−30 of being GF (22)-linear. A check has
indeed verified that the matrix used in the S-box of Rijndael is not GF (22)-linear,
and so the system can not be simplified this way. To our knowledge this is the
first time it has been checked whether this matrix is linear over a larger field.

More Dual Rijndaels 147

5 Conclusions

In this paper we have increased the list of ciphers dual to Rijndael from 240 to
9360. If this will have any impact on the security of Rijndael remains to be seen.
Many properties of Rijndael, such as differential and linear probabilities, carry
over to any of the duals, but other things can change. The designers of Rijndael
stated in [2] that the constant b in the affine transformation of the S-box was
chosen so the S-box would have no fixed points. However, some of the duals have
an S-box with four fixed points.

The idea of describing one of the duals of Rijndael completely in terms of
GF (22) did not pay off this time, but we hope it could serve as an inspiration
to do more algebraic analysis of the AES.

References

1. FIPS PUB 197. Advanced Encryption Standard (AES), National Institute of Stan-
dards and Technology, U.S. Department of Commerce, November 2001.
http://cscr.nist.gov/publications/fips/fips197/fips-197.pdf

2. J. Daemen, V. Rijmen. AES Submission document on Rijndael, Version 2, Septem-
ber 1999.
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

3. N. Ferguson, R. Schroeppel, D. Whiting. A Simple Algebraic Representation of
Rijndael. Selected Areas in Cryptography 2001, LNCS 2259, pp. 103-111, 2001.

4. S. Murphy, M. Robshaw. Essential Algebraic Structure within the AES. CRYPTO
2002, LNCS 2442, pp. 1-16, 2002

5. E. Barkan, E. Biham. In How Many Ways Can You Write Rijndael?. ASIACRYPT
2002, LNCS 2501, pp. 160-175, 2002.

6. N. Courtois, J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations. ASIACRYPT 2002, LNCS 2501, pp. 267-287, 2002.

7. A. Biryukov, C. De Cannière, A. Braeken, B. Preneel. A Toolbox for Cryptanalysis:
Linear and Affine Equivalence Algorithms. EUROCRYPT 2003, LNCS 2656, pp.
33-50, 2003.

8. J. Wolkerstorfer, E. Oswald, M. Lamberger. An ASIC Implementation of the AES
SBoxes. CT-RSA 2002, LNCS 2271, pp. 67-78, 2002

Representations and Rijndael Descriptions�

Vincent Rijmen and Elisabeth Oswald

IAIK, Graz University of Technology,
Inffeldgasse 16a, A-8010 Graz, Austria

{vincent.rijmen, elisabeth.oswald}@iaik.tugraz.at

Abstract. We discuss different descriptions of Rijndael and its compo-
nents and how to find them. The fact that it is easy to find equivalent
descriptions for the Rijndael transformations, has been used for two dif-
ferent goals. Firstly, to design implementations on a variety of platforms,
both efficient and resistant against side channel analysis. Secondly, to an-
alyze the security of the cipher We discuss these aspects, give examples,
and present our views.

1 Introduction

In this paper, we give an overview of recent developments in the study of Rijn-
dael security and efficient Rijndael implementations. Central to many of these
developments is the technique of changing representations, and therefore we take
this as the central theme of our treatment here.

When we look at what has been published about Rijndael in the last couple
of years, we see that most authors restrict in their studies the possible changes
of representation to the set of polynomial bases in a finite field, e.g. selection
of a different base element or the selection of a different reduction polynomial.
However, finite fields have a much richer structure, e.g. they can also be described
as vector spaces over the ground field. It is our belief that exploration of the
vector space representation can bring us to new insights in both security and
efficient implementation of the Rijndael.

We start this paper by setting the framework to study different represen-
tations and the resulting equivalent descriptions for Rijndael. Afterwards, we
present the overview of recent results and place them in our framework.

2 Change of Representation: An Old Mathematical
Technique

It is well-known that the choice of representation influences the complexity of
most problems related to algebra. One example with application in cryptography

� This research was supported financially by the A-SIT, Austria.

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 148–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Representations and Rijndael Descriptions 149

is given by elliptic curves. An arbitrary elliptic curve has a defining equation of
the following form:

Ay2 + Byx + Cy = Dx3 + Ex2 + Fx + G. (1)

By choosing another representation, the defining equation can be transformed
into the following form:

y2 = x3 + ax + b . (2)

For all defining equations of the form (1), there is an equation of the form (2)
defining an elliptic curve with the same mathematical properties, although both
curves contain different points (x, y).

A second example is the gate complexity of a circuit that implements the
squaring operation in a finite field with characteristic two. If the elements of the
field are represented by their coordinates with respect to a normal basis, then
the squaring operation corresponds to a simple rotation of the coordinates. In
other representations, the squaring operation corresponds to a more complicated
linear transformation of the coordinates.

The problem we address in this paper, is exactly the opposite problem. When
given a Boolean transformation with fixed ‘points’ (x, S(x)), we want to find a
simple algebraic description for this Boolean transformation.

3 Boolean Transformations and Algebras

In order to improve understanding of the issues related to equivalent descriptions,
it is important to clearly define the terminology. We make a distinction between
two mathematical concepts that are often used as synonyms. These concepts are
an abstract element of an algebra on the one hand, and the representation of the
element on the other hand. We start with a definition for an algebra.

An algebra consists of one or more sets of elements and one or more operations
between the elements. We will consider here algebras that contain only one set
of elements, denoted by A. Furthermore, we will assume that the cardinality of
A equals 2n for some integer value n.

An m-ary operation b maps an input consisting of m elements of A to an
output, which is also in A.

b : Am → A : (x1, x2, . . . , xm) �→ b(x1, x2, . . . , xm) = y (3)

A 1-ary operation is also called an (algebraic) function.
A Boolean vector is a one-dimensional array of bits. By Boolean transfor-

mation, we mean a function S that maps a Boolean vector to another Boolean
vector. For sake of simplicity, we will assume that the input and output vectors
have equal size.

S : Zn
2 → Zn

2 : x �→ y = S(x) (4)

A representation ρ maps the elements of A to n-bit Boolean vectors.

ρ : A → Zn
2 : x → ρ(x) = x (5)

150 V. Rijmen and E. Oswald

The inverse map of a representation is called a labeling map. A representation,
or labeling, defines a map from the algebraic functions to the Boolean transfor-
mations:

R(b) = Sb ⇔ ∀x ∈ A : ρ(b(x)) = Sb(ρ(x)) . (6)

Algebra elements �
�

Boolean vectors

representation

labeling

Operations � Boolean transformations

description

Fig. 1. Terminology w.r.t. algebra elements and Boolean vectors

3.1 Finding Descriptions

Finding an algebraic description for a Boolean transformation S can be done in
three steps.

Initialization: Decide on an algebra to be used.
Labeling: Define a labeling map from the Boolean vectors to elements of the

algebra.
Describing: Compute the description of the Boolean transformation S.

Before describing the steps in some more detail, we briefly return to the previ-
ous example. Suppose we have a Boolean transformation S that implements a
rotation of the bits: S(x) = x ≪ 1. Suppose further that we have chosen to use
the finite field GF (2n) as the algebra to work in. Since S is linear over this field,
it can always be described with a linear polynomial l(x):

l(x) =
n−1∑

i=0

aix
2i

, (7)

where the ai are some constants. If the Boolean vectors x are considered as the
representation of the coordinates of the elements x with respect to a normal
basis, then the polynomial describing S can be as simple as l(x) = x2.

Selecting an Algebra. For the values of n that are of practical importance,
the number of algebras that can be defined, is very large: (2n)2

2n

different bi-
nary operations can be defined. However, the requirement to obtain a ‘simple’
description in practice limits the number of interesting algebras. The most natu-
ral choices are perhaps the vector space (GF(2))n or the field GF(2n). However,
other algebras can be used as well, e.g. the algebra < Z2n+1\{0},× > as used
in IDEA.

Representations and Rijndael Descriptions 151

Selecting a Labeling. Once an algebra has been selected, the elements of the
algebra have to be assigned to the Boolean vectors. We call this the labeling of
the Boolean vectors. Let the labeling map be denoted by m:

m : (Z2)n → A. (8)

The number of labeling maps equals (2n!). Note that this is more general than
a change of basis in a finite field.

Computing the Representation. Once the algebra and the labeling map are
defined, the input-output tuples of the transformation S can be translated into
tuples of the algebra:

(x, S(x)) → (a, b) = (m(x),m(S(x))). (9)

The functional description of S in the new representation can be derived from
the input-output tuples, using for instance the Lagrange interpolation formula,
if it can be applied in the algebra selected.

4 Rijndael Descriptions

Equivalent descriptions can be investigated for any block cipher. Indeed, al-
ready in the 1980’s, several results appeared about equivalent descriptions for
the DES [6]. Afterwards, the topic seems to have died out in the field of sym-
metric cryptography. The selection of Rijndael to become the AES has triggered
new research in this direction.

4.1 Number of Equivalent Descriptions

The design of Rijndael was made in the field GF(256). All design criteria were
made and the selection of components was done with this field in mind. In order
to be able to define the input-output behavior uniquely, one specific representa-
tion of the field elements had to be chosen. The choice was made to use a binary
polynomial basis, with irreducible polynomial p(t) = t8 + t4 + t3 + t + 1.

In [2], it was observed that 240 equivalent ciphers (i.e. alternative descrip-
tions) can be generated by choosing one of the 30 irreducible binary polynomials
of degree 8 and by choosing one of the 8 roots of this polynomial as generator.

However, there are many more alternative representations possible. The field
GF(256) is isomorphic to the field (GF (2))8, which is also an 8-dimensional
vector space. In this vector space, there are

7∏

i=0

(28 − 2i) ≈ 262 (10)

different bases. Each base leads to a different labeling of bytes and hence a differ-
ent description of Rijndael. In [3], 2040 bases with a special property are derived.

152 V. Rijmen and E. Oswald

The authors combine these 2040 bases with the 30 irreducible polynomials in or-
der to define 61200 equivalent cipher descriptions.

Equivalent descriptions can also be constructed by defining an arbitrary bi-
jective labeling map m. There are 256! different such labeling maps and at least
as many different descriptions. Finally, observe that labeling maps don’t have
to be bijective. Also injective maps can be used (cf. infra), and hence there are
infinitely many labeling maps.

4.2 Useful Representations

The vast majority of the 256! equivalent descriptions of Rijndael will not result in
any new insights. Indeed, only the 262 descriptions that are constructed following
a change of basis in the vector space (GF (2))8, have the property that ‘addition’
corresponds to binary exclusive-or. In all other descriptions, the specification of
addition will require the use of tables without any apparent structure.

The transformations MixColumns and AddRoundKey can be described by
very simple operations when the default representation is used. This is a second
reason to look for new representations ‘close’ to the default representation.

5 Descriptions Assisting Implementations

Alternative descriptions facilitating implementations are used mostly on con-
strained platforms: hardware and small processors. In environments with little
constraints, the default description of Rijndael seems to be as good as any other
one.

The addition of side-channel attack countermeasures usually decreases the
performance and/or increases the cost of an implementation. Hence, the tech-
niques developed to improve the performance of ordinary implementations in
constrained environments, are usually also of use in side-channel attack resisting
hardware.

5.1 Hardware Efficient Descriptions

As explained before, the use of alternative finite field representations in order
to reduce the gate count of a circuit is a well-established technique. Several
alternative representations have been proposed in the cryptographic literature,
mainly in order to improve the implementation of the SubBytes transformation.

The first type of alternative representation is to label bytes as polynomials
of degree smaller than 2, with coefficients in GF(16):

m : Z8
2 → GF (16)[t]/(t2 + At + B) : x �→ m(x) = at + b, (11)

with a = m1(x), b = m2(x). The maps m1,m2 have to satisfy some conditions
and the coefficients A,B are chosen such that the polynomial t2 +At+B is irre-
ducible. Then, the transformation SubBytes can be described by one nonlinear
formula of the form

Representations and Rijndael Descriptions 153

(at + b)−1 = (b2B + baA + a2)−1(bt + a + bA), (12)

combined with linear and affine operations, which depend on the choice for A,B
and the details of the maps m1(x),m2(x). Descriptions of this type have been
proposed in [12, 13, 14, 16].

The alternative representations mainly improve the gate complexity of the
SubBytes step, while the complexity of the other steps remains the same, or
deteriorates slightly. This results in different approaches. In the first approach,
the SubBytes is implemented in the representation that is best for that step, and
the other steps are implemented using another representation. This approach
necessitates changes of representation in between steps [14, 16].

In the second approach, frequent changes of representation are avoided by
adopting a ‘compromise’ representation, which improves the complexity of Sub-
Bytes, and doesn’t increase the complexity of other steps too much [13].

In the third approach, an alternativ representation, which is best for the
SubBytes step, is combined with an equivalent AES [17].

5.2 Representations Assisting SCA Countermeasures

Side-channel attacks are used to extract secret key material from real systems. It
has been observed that computing hardware and software often leak information
about secret keys used in cryptographic algorithms. This leakage comes from
variations in execution time, power consumption, radiation, etc.

Many proposals for hardware designs that resist side-channel attacks, are
based on masking techniques: the sensitive values are never manipulated directly,
but only in blinded, or masked, form. The mask is a random value, which needs to
be processed separately. Such a masking scheme can also be described as a secret
sharing scheme, where the masked and the masked value are two shares. Hence,
a masking scheme by itself can already be seen as an expanding alternative
representation.

For linear operations, it is well-known what masking schemes to use and how
to implement them. For the non-linear operation of Rijndael, there are several
proposals.

5.3 Additive Split

In order to implement a linear operation L(x), the input x is represented by a
tuple (p, q) with p + q = x. We call this the additive split of sensitive variables.
In order to compute the tuple corresponding to L(x), the linear operation is
performed separately on each share. Indeed, we have that if x = p + q, then
L(x) = L(p) + L(q), and hence L(x) is represented by (L(p), L(q)).

The addition of two sensitive variables can also be protected using the addi-
tive split. The result can be computed in a secure way by simply adding the co-
ordinates of the corresponding tuples: if x is represented by (p, q) and y by (r, s),
then x + y can be represented by (v, w) = (p + r, q + s) or (v, w) = (p + s, q + r).
In both representations, v and w are completely uncorrelated to the values of x
and y.

154 V. Rijmen and E. Oswald

The SubBytes step in the Rijndael round transformation consists of an affine
operation and the multiplicative inverse map, or, more accurately, the power
function map x254. Protecting non-linear maps by means of an additive split is
not a straightforward process.

In order to implement this map, two functions f, g are required, such that
x254 = f(p) + g(q) (where x = p + q). In order to have security against first-
order side-channel attacks, the implementation of maps f(p) and g(q) should
not produce intermediate results which correlate with p + q. It remains an open
problem whether such maps can be defined.

As an alternative solution, other types of split have been proposed in the
literature and we describe them in Section 5.4. In Section 5.5, we describe a re-
cently developed method. By using a special representation of the field elements,
it becomes possible to protect also the power function by means of an additive
split.

5.4 Multiplicative Split

A multiplicative split was proposed in [1]. A byte x is mapped to (p, q) with
x = pq254. It can be seen that the tuple corresponding to x254 can be computed
as (p254, q254) = (q, p). Hence this representation would allow to implement the
power function with a simple swap of registers. Alas, it seems from [1] that the
requirement to change the representation from additive split to multiplicative
split and vice versa, makes it necessary to compute the power functions of the
two shares explicitly.

A more important disadvantage is the so-called zero multiplication problem,
which refers to the fact that a multiplicative split fails to hide the zero value:

x = 0 ⇔ (p = 0 or q = 0). (13)

One approach to fix this problem is to introduce a second injective map, that
maps the elements of GF(256) to a larger ring containing zero divisors [9].

5.5 Additive Split in Tower Fields

This technique has been described in [11]. It builds on the techniques explained
in [16]. During all operations, the variables are protected by means of an additive
split. In [4], an alternative method was developed, based on the same principles.

In the tower field representation, bytes are labeled as polynomials of degree
smaller than 2. The two coefficients of the polynomials are elements of GF(16).
For some of the computations, these coefficients in turn are labeled as polyno-
mials of degree 2, with coefficients in GF(4).

m : Z8
2 → GF (16)[t]/(t2 + At + B) : x �→ m(x) = at + b, (14)

m′ : GF (16) → GF (4)[u]/(u2 + Cu + D) : y �→ m′(y) = cu + d, (15)

with a = m1(x), b = m2(x), c = m′
1(y), d = m′

2(y). The maps m1,m2,m
′
1,m

′
2

have to satisfy some conditions and the coefficients A,B,C,D are chosen such

Representations and Rijndael Descriptions 155

that the polynomials t2 + At + B and u2 + Cu + D are irreducible over GF(16),
respectively GF(4), and lead to efficient arithmetic. Note that the labeling maps
are all linear and hence they can be protected as explained in Section 5.3. The
multiplicative inverse map can be described in two steps, which are explained
below.

Step 1: GF(16). Firstly, (12) is used to describe the map using only the fol-
lowing operations: addition, multiplication and taking the multiplicative inverse.
All these operations are in GF(16). The implementation of the multiplicative in-
verse is done in Step 2. The additions in GF(16) are protected as explained in
Section 5.3.

The multiplication of two sensitive variables a and b, that are represented
by (p, q) and (r, s), is implemented by multiplying the coordinates p and r, and
adding so-called correction terms ci. The correction terms are defined in such
a way that they can be computed without producing intermediate results that
correlate to a, b, ab, a+ b, a2, b2, or any other value that could leak information
about the sensitive variables to the attacker. The result is a representation of
the following form:

(v, w) = (pq +
∑

i

ci, q). (16)

Step 2: GF(4). The second step is similar to the first step, but operating on
smaller fields. A formula very similar to (12) describes how the multiplicative
inverse in GF(16) can be computed using operation in GF(4) only.

Addition and multiplication in GF(4) are implemented and protected as de-
scribed for Step 1. For the implementation of the multiplicative inverse, the
following fact is used.

For all x ∈ GF(4), it holds that x−1 = x2, hence taking the multiplicative
inverse is a linear operation, that can be protected by means of an additive split,
as described in Section 5.3.

6 Representations Assisting Cryptanalysis

Several alternative descriptions have been derived, showing that more elegant,
more structured and more simple sets of equations defining Rijndael can be
constructed. Although several of them seem a promising start for an attack, no
breakthrough has been demonstrated yet.

6.1 BES

Murphy and Robshaw [10] define the block cipher BES, which operates on data
blocks of 128 bytes instead of bits. According to Murphy and Robshaw, the
algebraic structure of BES is even more elegant and simple than that of Rijndael.
Furthermore, Rijndael can be embedded into BES. There is a map φ such that:

Rijndael(x) = φ−1 (BES (φ(x))) . (17)

156 V. Rijmen and E. Oswald

The map φ can also be seen as an injective labeling of the inputs of Rijndael.
Murphy and Robshaw proceed with some observations on the properties of

BES. However, these properties of BES do not apply to Rijndael.

6.2 Redundant S-Boxes

Any 8 × 8-bit S-box can be considered as a composition of 8 Boolean functions
sharing the same 8 input bits. J. Fuller and W. Millan observed that the S-box
of Rijndael can be described using one Boolean function only [8]. The 8 Boolean
functions can be described as

fi(x1, . . . , x8) = f(gi(x1, . . . , x8)) + ci, i = 1, . . . , 8, (18)

where the function f is the only nonlinear function, the gi are affine functions
and the ci are constants.

6.3 Continued Fractions

Ferguson, Schroeppel and Whiting [7] derive a closed formula for Rijndael that
can be seen as a generalization of continued fractions. Any byte of the interme-
diate result after 5 rounds can be expressed as follows.

x = K +
∑ C1

K∗ +
∑ C2

K∗ +
∑ C3

K∗ +
∑ C4

K∗ +
∑ C5

K∗ + p∗∗

(19)

Here every K is some expanded key byte, each Ci is a known constant and each
∗ is a known exponent or subscript, but these values depend on the summation
variables that enclose the symbol.

A fully expanded version of (19) has 225 terms. It is currently unknown what
a practical algorithm to solve this type of equations would look like.

6.4 XL and XSL Methods

XL and XSL are new methods to solve nonlinear algebraic equations [5, 15]. The
effectiveness and efficiency of these methods remain a topic of debate. It seems
plausible that the complexity of the methods is influenced by the description that
is chosen. For instance, the authors of [10] claim that using their representation,
the complexity of the XSL method decreases significantly. More details about
the methods can be found elsewhere in these proceedings.

7 Conclusions and Perspective on the Future

Compared with other symmetric ciphers, the design of Rijndael shows a remark-
able level of mathematical abstraction. The rich structure, and in particular the

Representations and Rijndael Descriptions 157

ease with which equivalent descriptions can be constructed, on the one hand has
caused worries with some people fearing for its long-term security. On the other
hand, the presence mathematical structure has certainly greatly facilitated the
development of efficient implementations on constrained environments and envi-
ronments where protection measures against side-channel attacks are required.

We expect that the continuation and generalization of this research will lead
to better insights in the security of Rijndael and even more efficient implemen-
tations. Furthermore, we expect that many results will be applicable to other
ciphers as well, leading to an increased understanding about the process of de-
signing secure symmetric primitives.

References

1. Mehdi-Laurant Akkar and Christophe Giraud, “An implementation of DES and
AES secure against some attacks,” CHES 2001, LNCS 2162, Springer-Verlag, 2001,
pp. 309–318.

2. Elad Barkan and Eli Biham, “In how many ways can you write Rijndael?”,
Advances in Cryptology — Asiacrypt 2002, LNCS 2051, Springer-Verlag, 2002,
pp. 160–175.

3. Alex Biryukov, Christophe De Canniére, An Braeken and Bart Preneel, “A tool-
box for cryptanalysis: linear and affine equivalence algorithms,” Advances in
Cryptology — Eurocrypt 2003, LNCS 2656, Springer-Verlag, 2003, pp. 33–50.

4. Johannes Blömer, Guajardo Merchan and Volker Krummel, “Provably secure
masking of AES”, Selected Areas in Cryptography - SAC’04, LNCS, Springer-
Verlag, to appear.

5. Nicolas T. Courtois and Josef Pieprzyk, “Cryptanalysis of block ciphers with
overdefined systems of equations,” Advances in Cryptology — Asiacrypt ’02,
LNCS 2501, Springer-Verlag, 2003, pp. 267–287.

6. Marc Davio, Yvo Desmedt, Marc Fosséprez, René Govaerts, Jan Hulsbosch, Pa-
trik Neutjens, Philippe Piret, Jean-Jacques Quisquater, Joos Vandewalle, and Pas-
cal Wouters, “Analytical characteristics of the DES,” Advances in Cryptology —
Crypto ’83, Plenum Press, 1984, pp. 171–202.

7. Niels Ferguson, Richard Schroeppel, and Doug Whiting, “A simple algebraic rep-
resentation of Rijndael,” Selected Areas in Cryptography SAC01, LNCS 2259,
Springer-Verlag, 2001, pp. 103-111.

8. Joanne Fuller and William Millan, “On linear redundancy in S-boxes,” Fast Soft-
ware Encryption ’03, LNCS 2887, Springer-Verlag, 2003, pp. 74–86.

9. Jovan Dj. Golic and Christophe Tymen, “Multiplicative masking and power anal-
ysis of AES,” CHES 2002, LNCS 2535, Springer-Verlag, 2003, pp. 198–212.

10. Sean Murphy and Matthew J.B. Robshaw, “Essential algebraic structure within
the AES”, Advances in Cryptology — Crypto 2002, LNCS 2442, Springer-Verlag,
2002, pp. 17–38.

11. Elisabeth Oswald, Stefan Mangard and Norbert Pramstaller, “Secure and efficient
masking of the AES: a mission impossible?,” Technical report IAIK-TR 2003/11/1,
available from http://eprint.iacr.org/2004/134.pdf.

12. Vincent Rijmen, “Efficient implementation of the Rijndael S-box,” available from
http://www.esat.kuleuven.ac.be/∼rijmen/rijndael/sbox.pdf, 2000.

158 V. Rijmen and E. Oswald

13. Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao,
and Pankaj Rohatgi, “Efficient Rijndael encryption implementation with composite
field arithmetic,” CHES 2001, LNCS 2162, Springer-Verlag, 2001, pp. 171–184.

14. Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh, “A compact
Rijndael hardware architecture with S-box optimization,” Advances in Cryptology,
Asiacrypt 2001, LNCS 2248, Springer-Verlag, 2001, pp. 239–254.

15. Adi Shamir, Jacques Patarin, Nicolas Courtois and Alexander Klimov, “Efficient
Algorithms for solving Overdefined Systems of Multivariate Polynomial Equa-
tions”, Advances in Cryptology — Eurocrypt 2000, LNCS 1807, Springer-Verlag,
2000, pp. 392–407.

16. Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger, “An ASIC
implementation of the AES S-boxes,” Topics in Cryptology — CT-RSA 2002,
LNCS 2271, Springer-Verlag, 2002, pp. 67–78.

17. Shee-You Wu, Shih-Chuan Lu, and Chi Sung Laih, “Design of AES Based on Dual
Cipher and Composite Field,” Topics in Cryptology — CT-RSA 2004, LNCS 2964,
Springer-Verlag, 2004, pp. 25–38

Linearity of the AES Key Schedule

Frederik Armknecht� and Stefan Lucks

Theoretische Informatik,
Universität Mannheim,

68131 Mannheim Germany
armknecht@th.informatik.uni-mannheim.de

lucks@th.informatik.uni-mannheim.de

Abstract. The AES key schedule can almost be described as collection
of 32 linear feedback shift registers LFSRs, working in parallel. This
implies that for related keys, i.e., pairs of unknown keys with known
differences, one can in part predict the differences of the individual round
keys. Such a property has been used (but not explained in detail) by
Ferguson et al. [3] for a related key attack on a 9-round variant of the
AES (with 256-bit keys). In the current paper, we study the propagation
of (known) key differences in the key schedule for all three key sizes of
the AES.

1 Introduction

Recall the key schedule of the AES, e.g. for 128-bit keys. Denote the inital cipher
key (K0,K1,K2,K3) ∈

({0, 1}32
)4. This is the first round key, as well. The next

round key is (K4,K5,K6,K7), the next one is (K8,K9,K10,K11), . . . The 32-bit
values Ki are generated by the following key schedule algorithm:

If (i mod 4) = 0
then Ki := Ki−4 ⊕ f(Ki−1) ⊕ const(i)
else Ki := Ki−4 ⊕ Ki−1,

where f : {0, 1}32 → {0, 1}32 is a nonlinear function and const(i) are some
round-dependent constants. The nonlinear function f allows reasonably efficient
implementations, and thus the key schedule itself is highly efficient. The key
schedules for 192-bit and 256-bit keys are defined similarly.

Consider two unknown cipher keys (K0,K1,K2,K3) and (K̃0, K̃1, K̃2, K̃3)
with known differences δi = Ki ⊕ K̃i, i = 0, 1, 2, 3. The key schedule allows us
to describe linear realationships of the form

43⊕

i=0

ci · (Ki ⊕ K̃i) = δ, ci ∈ {0, 1}

� Supported by grant 620307 of the DFG (German Research Foundation).

H. Dobbertin, V. Rijmen, A. Sowa (Eds.): AES 2004, LNCS 3373, pp. 159–169, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

160 F. Armknecht and S. Lucks

with known δ. In principle, such relationships could be used to mount related-key
attacks against the AES – and in fact, one such related-key attack for the AES
variant with 256-bit keys has been previously published [3].

The current paper investigates the existence of such linear relationships in
the AES key schedule(s). It turns out that for none of the defined key sizes, any
such relationship exists which covers the entire key-schedule (i.e., which involves
values from the first round key and values from the last round key, but no values
from round keys in between).

2 Definitions and Motivation

There exist three different versions of the AES:

Nk Key size 32 · Nk Number of rounds Nr

4 128 bit 10
6 192 bit 12
8 256 bit 14

Before encryption, the secret key K of size 32 ·Nk is expanded to a key K of
size 128 · (Nr +1). Following the description given in [2] we divide the expanded
key K into 4 · (Nr +1) parts K0, . . . ,K4Nr+3 ∈ {0, 1}32. In the following, we will
treat the Ki as vectors of the vector space �32

2 and denote by ⊕ the corresponding
addition of two vectors.1 The first Nk vectors are exactly the secret key K and
the rest is defined by the key schedule.

To increase the resistance against related-key attacks the key schedule was
designed such that the descriptions of the columns Ki, i ≥ Nk, are linearly inde-
pendent of K. In fact, given two unknown keys K and K̃ with known difference

K ⊕ K̃ = (K0 ⊕ K̃0, . . . ,KNk−1 ⊕ K̃Nk−1) =: (δ0, . . . , δNk−1) =: δ

it should be infeasible to say anything about the differences Ki ⊕ K̃i for i ≥ Nk.
Surprisingly, it is possible to find (many) linear combinations of the following
kind:

4Nr+3⊕

i=0

ci · Ki = 0, ci ∈ �2 (1)

This implies that the following equation is true
Nk−1⊕

i=0

ci · δi =
Nk−1⊕

i=0

ci · (Ki ⊕ K̃i) =
4Nr+3⊕

i=Nk

ci · (Ki ⊕ K̃i)

For example the following equation holds for the 128-bit variant:

K4 ⊕ K̃4 ⊕ K5 ⊕ K̃5 = δ1

In the following section, we develop the general theory and provide a basis
of all valid linear combinations of K0, . . . ,K4Nr+3 for all three AES variants.

1 In fact, this is simply the componentwise XOR of the 32 bits of the two vectors.

Linearity of the AES Key Schedule 161

3 Linearity of the AES Key Schedule

In the following we examine the key schedules of the three AES variants with
128-bit, 192-bit resp. 256-bit key lengths. We will see that in all cases many
equations of the type (1) exist.

3.1 AES with 128 Bit Key Length

Let K = (K0,K1,K2,K3) ∈ {0, 1}128 be the secret key with Ki ∈ {0, 1}32. Then
the expanded key K = (K0, . . . ,K43) is defined by the following key schedule:

Ki := Ki , 0 ≤ i < 4
Ki := Ki−4 ⊕ fi(Ki−1) , 4 ≤ i ≤ 43, i mod 4 = 0
Ki := Ki−4 ⊕ Ki−1 , 4 ≤ i ≤ 43, i mod 4 �= 0

fi(x) is the permutation f(x) ⊕ const(i) mentionend in section 1; but we
will see that the exact definition of fi does not matter for our observations. To
motivate the theory, we have a look at the definition of K4, . . . ,K11:

K4 = K0 ⊕ f4(K3)
K5 = K1 ⊕ K4 = K0 ⊕ K1 ⊕ f4(K3)
K6 = K2 ⊕ K5 = K0 ⊕ K1 ⊕ K2 ⊕ f4(K3)
K7 = K3 ⊕ K6 = K0 ⊕ K1 ⊕ K2 ⊕ K3 ⊕ f4(K3)
K8 = K4 ⊕ f8(K7) = K0 ⊕ f4(K3) ⊕ f8(K7)
K9 = K8 ⊕ K5 = K1 ⊕ f8(K7)

K10 = K9 ⊕ K6 = K0 ⊕ K2 ⊕ f4(K3) ⊕ f8(K7)
K11 = K10 ⊕ K7 = K1 ⊕ K3 ⊕ f8(K7)

We observe that each of the vectors K0, . . . ,K11 can be expressed by a linear
combination of K0,K1,K2,K3, f4(K3), f8(K7). This can be easily generalized:
each of the vectors K0, . . . ,K43 can be written as a linear combination of ele-
ments of the set

B := {K0,K1,K2,K3︸ ︷︷ ︸
=K

, f4(K3), . . . , f40(K39)}.

This complies with the following matrix-vector-product where M is a binary
matrix of size 44 × 14:

M ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

K0

...
K3

f4(K3)
...

f40(K39)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎝
K0

...
K43

⎞

⎟⎠ (2)

162 F. Armknecht and S. Lucks

K0 K1 K2 K3 f4(K3) . . . f40(K39)

K0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0

K4 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0

K8 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0

K12 1 0 0 0 1 1 1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0

K16 1 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0

K20 1 0 0 0 1 1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 0 0 0

K24 1 0 0 0 1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 1 0 1 0 1 0 0 0 0
1 0 1 0 1 1 0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0 0 1 0 0 0 0

K28 1 0 0 0 1 1 1 1 1 1 1 0 0 0
1 1 0 0 1 0 1 0 1 0 1 0 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 0
0 0 1 1 0 0 1 0 0 0 1 0 0 0

K32 1 0 0 0 1 1 1 1 1 1 1 1 0 0
0 1 0 0 0 1 0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0

K36 1 0 0 0 1 1 1 1 1 1 1 1 1 0
1 1 0 0 1 0 1 0 1 0 1 0 1 0
1 1 1 0 1 0 0 1 1 0 0 1 1 0
1 1 1 1 1 0 0 0 1 0 0 0 1 0

K40 1 0 0 0 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 0 0 1 0 0 0 1

Fig. 1. The linear expressions of K0, . . . , K43 for the 128-bit variant

Linearity of the AES Key Schedule 163

Figure 1 in section 4 displays the linear expression for K0, . . . ,K43.
As the rank of M is 14, one can construct 30 linearly independent vectors

C(1), . . . , C(30) ∈ �32
2 such that

(
C(i)

)t

· M = 0, i = 1, . . . , 30.

In fact, C(1), . . . , C(30) is a basis of the nullspace of M t. Together with (2) this
implies for C(i) = (c(i)

0 , . . . , c
(i)
43)t the following equation:

0 =
(
C(i)

)t

·

⎛

⎜⎝
K0

...
K43

⎞

⎟⎠ =
43⊕

j=0

c
(i)
j · Kj .

This is exactly an equation as displayed in (1). A possible choice of C(1), . . . , C(30)

is given in Figure 2 in section 4. We checked that no non-trivial linear relations
between the K0,K1,K2,K3 (= K) and the key vectors K40,K41,K42,K43 of the
last round exist.

Assume we try to find expressions
⊕43

i=0 ci ·Ki = 0 with at least one non-zero
coefficient c40, . . . , c43 and as many zero coefficients c39, c38, . . . as possible.2 One
such example is

K2 ⊕ K3 ⊕ K8 ⊕ K12 ⊕ K24 ⊕ K28 ⊕ K40 ⊕ K41 ⊕ K42 ⊕ K43.

As one of the anonymous referees pointed out, this is optimal. It is straightfor-
ward to verify this using Figure 2.

Similarly, Figure 2 can be used to solve the open problem posed by Nicolas
Courtois [1] whether

⊕43
i=1 Ki is equal to zero. Figure 2 desribes a base for all

valid linear combinations of the Ki. As it turns out,
⊕43

i=1 Ki is not within its
linear span.

3.2 AES with 192 Bit Key Length

We denote again by K = (K0,K1,K2,K3,K4,K5) ∈ {0, 1}192 the secret key with
Ki ∈ �

32
2 . The key schedule is very similar to the 128 bit variant described in

3.1:

Ki := Ki , 0 ≤ i < 6
Ki := Ki−6 ⊕ fi(Ki−1) , 6 ≤ i ≤ 51, i mod 6 = 0
Ki := Ki−6 ⊕ Ki−1 , 6 ≤ i ≤ 51, i mod 6 �= 0

Again, the exact definition of fi is of no importance and is therefore omitted
here.

2 This means to express a linear relationship of the last round key (K40, K41, K42, K43)
by earlier round keys - the earlier, the better.

164 F. Armknecht and S. Lucks

K0 K3 K8 K16 K24 K32 K40

0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 0 1 0
0 1 0 0 1 0 0 0 1 1 0
0 0 1 0 0 0 0 0 1 0 1 0
0 1 0 1 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0 1 1 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2. 30 linearly independent non-trivial linear combinations of the vectors Ki for
the 128-bit variant

As in the 128-bit case, the definition of the vectors K0, . . . ,K51 can be ex-
pressed by a system of linear equations:

M ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

K0

...
K5

f6(K5)
...

f48(K47)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎝
K0

...
K51

⎞

⎟⎠ (3)

Now, M is a binary matrix of size 52 × 14. An exact description of the linear
expressions of the vectors Ki can be found in Figure 3 in section 4.

The rank of M is 14 and hence the dimension of the nullspace of M t is 38.
A possible choice of the basis3 is displayed in Figure 4 in section 4. Again, no

3 I.e., a set of 38 linearly independent non-trivial linear relations of the Ki.

Linearity of the AES Key Schedule 165

K0 K5 f6(K5) . . . f48(K47)
K0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0

K4 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0 0 0

K8 1 1 1 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 0 0 0 0 0 0
1 1 1 1 1 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0

K12 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0

K16 1 0 1 0 1 0 1 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 0

K20 0 1 1 0 0 0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 1 1 0 0 0 0 0
1 1 0 0 1 1 1 0 1 0 0 0 0 0

K24 1 0 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0

K28 1 0 0 0 1 0 1 1 1 1 0 0 0 0
0 1 0 0 0 1 0 1 0 1 0 0 0 0
1 0 0 0 0 0 1 1 1 1 1 0 0 0
1 1 0 0 0 0 1 0 1 0 1 0 0 0

K32 1 1 1 0 0 0 1 0 0 1 1 0 0 0
1 1 1 1 0 0 1 0 0 0 1 0 0 0
0 1 1 1 1 0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 1 0 1 0 0 0

K36 1 0 0 0 0 0 1 1 1 1 1 1 0 0
0 1 0 0 0 0 0 1 0 1 0 1 0 0
1 0 1 0 0 0 1 1 0 0 1 1 0 0
0 1 0 1 0 0 0 1 0 0 0 1 0 0

K40 0 0 1 0 1 0 0 0 1 1 1 1 0 0
0 0 0 1 0 1 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 1 1 1 1 1 1 0
1 1 0 0 0 0 1 0 1 0 1 0 1 0

K44 0 1 1 0 0 0 0 1 1 0 0 1 1 0
0 0 1 1 0 0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0 0 0 1 0 1 0

K48 1 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 1 0 1 0 1 0 1
0 0 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 0 0 1 0 0 0 1

Fig. 3. The linear expressions of K0, . . . , K51 for the 192-bit variant

non-trivial linear relations between the vectors K0,K1,K2,K3,K4,K5 and the
key K48,K49,K50,K51 of the last round exist.

3.3 AES with 256 Bit Key Length

Let K = (K0,K1,K2,K3,K4,K5,K6,K7) ∈ {0, 1}256 with Ki ∈ {0, 1}32 be the
secret key. The description of the key schedule differs from the both given before:

Ki := Ki , i < 8
Ki := Ki−8 ⊕ fi(Ki−1) , i ≥ 8, i mod 8 = 0
Ki := Ki−8 ⊕ g(Ki−1) , i ≥ 8, i mod 8 = 4
Ki := Ki−8 ⊕ Ki−1 , i ≥ 8, i mod 8 �∈ {0, 4}

Again, fi and g are non-linear permutations whose exact definitions do not
matter.

In fact the description of the key schedule can be simplified. Let fi := g for
i mod 8=4. Then the key schedule can be rewritten to

166 F. Armknecht and S. Lucks

K0 K5 K8 K16 K24 K32 K40 K48
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1 0
0 1 1 1 1 1 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 1 1 1 0 0 1 0 0 1 0
0 1 1 1 1 0 1 0 0 0 1 0
0 1 1 0 0 0 1 0 1 0
0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 4. 38 linearly independent non-trivial linear combinations of the vectors Ki for
the 192-bit variant

Ki := Ki , i < 8
Ki := Ki−8 ⊕ fi(Ki−1) , i ≥ 8, i mod 4 = 0
Ki := Ki−8 ⊕ Ki−1 , i ≥ 8, i mod 4 �= 0

This is very similar to the key schedule used in the 128-bit case. Again,
each of the key vectors K0, . . . ,K59 can be expressed by a linear combination of
the vectors K0, . . . ,K7, f8(K7), . . . , f56(K55). These can be found in Figure 5 in
section 4. The corresponding matrix-vector-product is

M ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

K0

...
K7

f8(K7)
...

f56(K55)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎝
K0

...
K59

⎞

⎟⎠ (4)

M has the size 60 × 21 and the rank 21. This implies that 39 linearly inde-
pendent non-trivial linear combinations of the vectors Ki can be found. One
possible choice is displayed in Figure 6 in section 4. As in both cases before, the
expressions of the vectors K0, . . . ,K7,K56, . . . ,K59 are linearly independent.

Linearity of the AES Key Schedule 167

K0 K7 f8(K7) f56(K55)
K0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

K8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

K12 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

K16 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

K20 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

K24 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

K28 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0

K32 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

K36 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

K40 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

K44 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0

K48 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

K52 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

K56 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Fig. 5. The linear expressions of K0, . . . , K59 for the 256-bit variant

4 Exact Descriptions

In this section, we provide an exact description of

– the expression of Ki as a linear combination of the vectors K0, . . . ,KNk−1

and fj(Kj−1)
– a basis for all non-trivial linear combinations of the vectors K0, . . . ,K4Nr+3

for all three AES variants.
We demonstrate on an example how the tables have to be read. Figure 1 shows

how K0, . . . ,K43 (in the 128-bit case) can be expressed by a linear combination of
K0,K1,K2,K3, f4(K3), . . . , f40(K39). Assume for example that we are interested

168 F. Armknecht and S. Lucks

K0 K7 K8 K20 K32 K44 K56
0 1 1 0 0 0 0 0 1 0 1 0
0 1 1 1 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1

Fig. 6. 39 linearly independent non-trivial linear combinations of the vectors Ki for
the 256-bit variant

in the expression of K19. This can be found in the 20th row of the table (not
counting the ”indexing row” at the top). This row contains only two entries
unequal zero: one in the 4th column which corresponds to K3 and one in the 8th
column which corresponds to f16(K15). This means that

K19 = K3 ⊕ f16(K15).

Figure 2 displays 30 linearly independent non-trivial linear relations of K0, . . . ,
K43. For example, the last but four row shows that

K1 ⊕ K2 ⊕ K4 ⊕ K12 ⊕ K20 ⊕ K22 = 0.

5 Conclusion

The current paper gives a complete description of all linear relationships between
singular round key values Ki ∈ {0, 1}32. More specifically, for each key schedule
a matrix M is described such that each linear relationship of the form

4Nr+3⊕

i=0

ci · Ki = 0, ci ∈ �2

corresponds to a vector in the nullspace of M t. Such relationships can in principle
be useful for related-key attacks against the AES.

Our observations are independent from the choice of the nonlinear function f
(in fact, we could even allow independent nonlinear functions for each of the fi).

Linearity of the AES Key Schedule 169

If the AES key schedule would evaluate one nonlinear function fi for each
round key value Ki (i ≥ 4 for 128-bit keys ect.), the corresponding matrix M
would be a square matrix of full rank, and thus no useful linear relationships
could exist.

This would, however, decrease the performance of the AES key schedule
significantly, without solving an immediate problem: We could verify that no
exclusive relationship between the round key values from the first round and the
last round exists. Thus, there is no straightforward way to exploit of our findings
to mount a related key attack against the AES.

Acknowledgment

The author would like to thank Joe Cho, Nicolas Courtois, Erik Zenner, Matthias
Krause and the unknown referees for helpful comments and discussions.

References

1. Nicolas Courtois, Private Communication.
2. J. Daemen and V. Rijmen: The Design of Rijndael, 2002, Springer.
3. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay, David Wag-

ner, and Doug Whiting. Improved Crypanalysis of Rijndael. Fast Software Encryp-
tion 2000, Springer Lecture Notes in Computer Science.

Author Index

Armknecht, Frederik 159

Biryukov, Alex 11

Cid, Carlos 58
Courtois, Nicolas T. 67, 170

Desmedt, Yvo 128
Dobbertin, Hans 1
Dominikus, Sandra 98

Giraud, Christophe 27

Keliher, Liam 42
Knudsen, Lars 1
Korkishko, Tymur 113

Lee, Kyung Hee 113
Lucks, Stefan 159

Mangard, Stefan 98
Minier, Marine 16

Oswald, Elisabeth 148

Pramstaller, Norbert 98

Raddum, H̊avard 142
Rijmen, Vincent 148
Robshaw, Matt 1

Sparr, Rüdiger 128

Toli, Ilia 84
Trichina, Elena 113

Van Le, Tri 128

Wernsdorf, Ralph 128
Wolkerstorfer, Johannes 98

Zanoni, Alberto 84

	front-matter.pdf
	1.pdf
	Introduction
	AES Design
	The Components
	The S-Box
	Rearranging Components

	Structural Attacks
	Algebraic Attacks
	Conclusions

	2.pdf
	Introduction
	Boomerang Attack on SPNs with Incomplete Diffusion
	Conclusions

	3.pdf
	Introduction
	A Brief Outline of the AES
	The Three-Rounds Property and the Four-Rounds Distinguisher
	The Three-Rounds Property
	The Four-Rounds Distinguisher

	The ”New Three-Rounds Property”
	The Bottleneck Attack on a Seven-Rounds Version of the AES with Key Lengths Equal to 192 and 256 Bits Using 2$\^32$ Chosen Plaintexts
	Extension at the Beginning
	Extension at the End
	Outline of the Attack

	How to Improve this Attack Using the Lucks’ Property of the Key Schedule for a 192 Bits Key
	Conclusion

	4.pdf
	Introduction
	AES
	General Description
	A Round
	Key Scheduling

	Bit-Fault Attack
	A Second Type of DFA Attack on the AES-128
	DFA Attack on K^9
	Attack on K^8
	DFA Attack on M^8

	Remark
	In Practice
	Conclusion
	The First Attack in More Details

	5.pdf
	Introduction
	The Advanced Encryption Standard (AES)
	Assumption of Independent Subkeys

	Linear and Differential Cryptanalysis
	Linear and Differential Probability
	Provable Security (MELP and MEDP)
	Linear and Differential Characteristics
	Linear Hulls and Differentials
	Active S-Boxes and Branch Numbers

	General Analysis of 2-Round MELP / MEDP
	Considerations Specific to MEDP

	Lower Bounding the AES 2-Round MELP / MEDP
	Best AES 2-Round Upper Bounds Not Tight
	Modified Version of KMT2 Algorithm
	Conclusion

	6.pdf
	Introduction
	The Basic Structure of the AES
	Algebraic Analysis of the AES
	Algebraic Attacks
	Potential Attack Techniques
	Linearization Methods
	XL Algorithm
	Variants of XL

	Computational Algebra Techniques
	The Polynomial Ideal Generated by the BES System

	Alternative Approaches
	Conclusion

	7.pdf
	Introduction
	From Boolean Functions to Algebraic Relations
	Interesting Special Case: AES S-Box

	From Multivariate Public Key Schemes to General Algebraic Attacks
	How to Build Secure Multivariate Public Key Cryptosystems

	Algebraic Attacks on Stream Ciphers
	How to Build Secure Stream Ciphers

	Block Ciphers and Algebraic Relations
	Global Algebraic Attacks on Block Ciphers
	How Secure Are Today's Block Ciphers ?
	Who Invented Algebraic Attacks on Block Ciphers ?
	The Structure of Algebraic Attacks
	Applicability of Algebraic Attacks
	Is AES Broken ?
	How to Avoid Algebraic Attacks on Block Ciphers

	The Future of AES
	Conclusion

	8.pdf
	Introduction
	An Overview on AES-128
	The Key Schedule

	An Overview on the Big Encryption System (BES)
	BES Key Schedule Translation

	The Systems
	Encryption
	Key Generation

	System Solving
	Encryption
	Key Generation

	Conclusions
	References

	9.pdf
	Introduction
	ASIC Implementation of AES
	The Data Unit
	The Key Unit
	Performance of the ASIC AES Implementation
	Performance of the Presented ASIC Design
	Related Work

	FPGA Implementation of AES
	Related Work
	Architecture of the AES FPGA Implementation
	Performance of the FPGA AES Implementation

	Conclusions

	10.pdf
	Introduction
	AES Reminder
	S-Box Architecture
	Side Channel Attacks and Computations on Masked Data
	Power Analysis Basics
	Data Masking and Inversion in $GF(2^4)$
	Masked $GF(2^n)$ Multiplier

	Secure AES Coprocessor
	Conclusion
	References

	11.pdf
	Introduction
	Preliminaries
	Description of the AES Round Function
	Definitions and Notation

	Cyclic Order of Components of $\;I\circ A\circ S\circ M$
	Invariances of $\;I\circ A\circ S\circ M$
	On the Cyclic Order of $\;I\circ A\circ S\circ M$
	Self-duality of the AES Round Function
	Conclusions
	Some Cycles of $\;I\circ A\circ S\circ M$
	Cycles of $\;I\circ A\circ S\circ M $ for ${\rm Inv}_1$
	Cycles of $\;I\circ A\circ S\circ M$ for ${\rm Inv}_2\setminus {\rm Inv}_1$
	Cycles of $\;I\circ A\circ S\circ M$ for ${\rm Inv}_3\setminus {\rm Inv}_2$
	Cycles of $\;I\circ A\circ S\circ M$ for ${\rm Inv}_4\setminus {\rm Inv}_2$
	Cycles of $\;I\circ A\circ S\circ M$ for ${\rm Inv}_5\setminus {\rm Inv}_2$

	12.pdf
	Introduction
	Description of Rijndael
	Dual Ciphers

	Different Representations of $GF(2^8)$
	Dual Ciphers by Replacing r(x)
	Other Representations of $GF(2^8)$
	All Possible Representations of $GF(2^8)$

	Implications for the XSL-Attack
	Brief Summary of the XSL Attack
	Matrix in S-Box $GF(2^2)$-Linear?

	Conclusions

	13.pdf
	Introduction
	Change of Representation: An Old Mathematical Technique
	Boolean Transformations and Algebras
	Finding Descriptions

	Rijndael Descriptions
	Number of Equivalent Descriptions
	Useful Representations

	Descriptions Assisting Implementations
	Hardware Efficient Descriptions
	Representations Assisting SCA Countermeasures
	Additive Split
	Multiplicative Split
	Additive Split in Tower Fields

	Representations Assisting Cryptanalysis
	BES
	Redundant S-Boxes
	Continued Fractions
	XL and XSL Methods

	Conclusions and Perspective on the Future

	14.pdf
	Introduction
	Definitions and Motivation
	Linearity of the AES Key Schedule
	AES with 128 Bit Key Length
	AES with 192 Bit Key Length
	AES with 256 Bit Key Length

	Exact Descriptions
	Conclusion

	back-matter.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

