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About the Author

Peter Wayner is the author of more than a dozen books, if you include
the different versions of this book, Disappearing Cryptography. This
book is one of the best examples of a common theme in his work,
the idea that information can hide from everyone. (The first edition
came with the subtitle “Being and Nothingness on the Net”, a choice
that lost out to the power of keyword searches on the Internet. It’s
one thing to hide when you want to hide, but not when someone is
looking for a book to purchase on Amazon.)

Other books that follow in this theme are:

• Digital Cash, An exploration of how to move money across the
Internet by creating bits that can’t be counterfeited. [Way95b]

• Translucent Databases–A manifesto on how to preserve privacy
and increase security by creating databases that do useful work
without having anything in them. [Way03]

• Digital Copyright Protection– How to keep content on a flexible
leash. [Way97b]

• Policing Online Games – How to enforce contracts and keep
games honest and fair. [Way05]

He writes often on technical topics for venues like New York
Times, InfoWorld, Byte, Wired and, on occasion, even a USENET
newsgroup or two.

When he’s not writing, he consults on these topics for a wide
range of companies.
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Preface

This book is a third edition and so that means more thanks for
everyone. There is no doubt that I owe a debt of gratitude to the
participants in the cypherpunks and coderpunks mailing lists. Their
original contributions inspired me to write the first book and their
continual curiosity makes it one of the best sources of information
around.

Some newer mailing lists are more focused on the topic. The
watermarking list and the stegano list both offer high quality dis-
cussions with a high signal-to-noise ratio. Other lists like the RISKS
digest and Dave Farber’s Interest People list helped contribute in
unexpected ways. Of course, modern list-like web sites like Slashdot,
Kuro5hin, and InfoAnarchy contributed by offering solid, moderated
discussions that help the signal jump out of the noise. It is impossible
to thank by name all of the members of the community who include
plenty of solid information and deep thought in their high-quality
postings.

The organizers of the Information Hiding Workshops brought
some academic rigor to the area by sponsoring excellent workshops
on the topic. The discipline of creating, editing, reviewing, present-
ing and publishing a manuscript advanced the state of the art in
numerous ways. The collected papers published by Springer-Verlag
are a great resource for anyone interested in the development of the
field.

Some others have helped in other ways. Peter Neumann scanned
the first manuscript and offered many good suggestions for improv-
ing it. Bruce Schneier was kind enough to give me an electronic
version of the bibliography from his first book [Sch94]. I converted
it into Bibtex format and used it for some of the references here. Ross
Anderson’s annotated bibliography on Information Hiding was also
a great help.

Scott Craver, Frank Hartung, Deepa Kundur,Mike Sway, and three
anonymous reviewers checked the second edition. Their comments
helped fixed numerous errors and also provided many suggestions
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xiv Preface

for improving the book.
The original book was originally published by AP Professional, a

division of Harcourt-Brace that blended into Morgan Kaufmann. The
team responsible for producing the first edition was: Chuck Glaser,
Jeff Pepper, Mike Williams, Barbara Northcott, Don DeLand, Tom
Ryan, Josh Mills, Gael Tannenbaum, and Dave Hannon.

The second edition would not exist without the vision and sup-
port of Tim Cox at Morgan Kaufmann. I would like to thank Tim and
Stacie Pierce for all of their help and encouragement.

The third edition exists because Rick Adams, Gregory Chalson
and Denise Penrose saw the value in the book and devoted their
hard work and energy to bringing it to market again. Sherri Davidoff,
Rakan El-Khalil, Philipp Gühring,Scott Guthery, J. Wren Hunt, John
Marsh, Chris Peikert Leonard Popyack and Ray Wagner read portions
of the book and provided invaluable help fixing the book.

Peter Wayner
Baltimore, MD
October 2008
p3@wayner.org
http://www.wayner.org



Book Notes

The copy for this book was typeset using the LATEX typesetting soft-
ware. Several important breaks were made with standard conven-
tions in order to remove some ambiguities. The period mark is nor-
mally included inside the quotation marks like this “That’s my an-
swer. No. Period.” This can cause ambiguities when computer terms
are included in quotation marks because computers often use peri-
ods to convey some meaning. For this reason, my electronic mail ad-
dress is “p3@wayner.org”. The periods and commas are left outside
of all quotes to prevent confusion.

Hyphens also cause problems when they’re used for different
tasks. LISP programmers often use hyphens to join words together
into a single name like this: Do-Not-Call-This-Procedure. Un-
fortunately, this causes grief when these longer words occur at the
end of a line. In these cases, there will be an extra hyphen in-
cluded to specify that there was an original hyphen in the word.
This isn’t hyper-compatible with the standard rules that don’t in-
clude the extra hyphen. But these rules are for readers who know
that self-help is a word that should be hyphenated. No one knows
what to think about A-Much-Too-Long-Procedure-That-Should--
Be-Shortened-For-Everyone.
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A Start

This book is about making information disappear. For some people,
this topic is a parlor trick, an amazing intellectual exercise that rattles
around about the foundations of knowledge. For others, the topic
has immense practical importance. An enemy can only control your
message if they can find it. If you hide data, you can protect your
thoughts from censorship and discovery.

The book describes a number of different techniques that people
can use to hide information. The sound files and images that float
about the network today are great locations filled with possibilities.
Large messages can be hidden in the noise of these images or sound
files where no one can expect to find them. About one eighth of an
image file can be used to hide information without any significant
change in the quality of the image.

Information can also be converted into something innocuous.
You can use the algorithms from Chapter 7 to turn data into some-
thing entirely innocent like the voice-over to a baseball game. Bad
poetry is even easier to create.

If you want to broadcast information without revealing your lo-
cation, the algorithms from Chapter 11 show how a group of peo-
ple can communicate without revealing who is talking. Completely
anonymous conversations can let people speak their mind without
endangering their lives.

The early chapters of the book are devoted to material that forms
the basic bag of tricks like private-key encryption, secret sharing,
and error-correcting codes. The later chapters describe how to apply
these techniques in various ways to hide information. Each of them
is designed to give you an introduction and enough information to
use the data if you want.

The information in each chapter is roughly arranged in order
of importance and difficulty. Each begins with a high-level sum-
mary for those who want to understand the concepts without wading
through technical details, and a introductory set of details, for those
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2 A Start

who want to create their own programs from the information. Peo-
ple who are not interested in the deepest, most mathematical details
can skip the last part of each chapter without missing any of the high-
lights. Programmers who are inspired to implement some algorithms
will want to dig into the last pages.

Many of the chapters also come with allegorical narratives that
may illustrate some of the ideas in the chapters. You may find them
funny, you may find them stupid, but I hope you’ll find some better
insight into the game afoot.

For the most part, this book is about having fun with information.
But knowledge is power and people in power want to increase their
control. So the final chapter is an essay devoted to some of the polit-
ical questions that lie just below the surface of all of these morphing
bits.

0.1 Notes On the Third Edition

When I first wrote this book in 1994 and 1995, no one seemed to
know what the word “steganography” meant. I wanted to call the
book Being and Nothingness on the Net. The publisher sidesteped
that suggestion by calling it Disappearing Cryptography and putting
the part about Being and Nothingness in the subtitle. He didn’t want
to put the the word “steganography” in the title because it might
frighten someone.

When it came time for the second edition, everything changed.
The publisher insisted we get terms like steganography in the title
and added terms like Information Hiding for good measure. Every-
one knew the words now and he wanted to make sure that the book
would show up on a search of Amazon or Google.

This time, there will be no change to the title. The field is much
bigger now and everyone has settled on some of the major terms.
That simplified a bit of the reworking of the book, but it did nothing
to reduce the sheer amount of work in the field. There are a num-
ber of good academic conferences, several excellent journals and a
growing devotion to building solid tools at least in the areas of digital
rights management.

The problem is that the book is now even farther from compre-
hensive. What began as an exploration in hiding information in plain
sight is now just an introduction to a field with growing economic im-
portance.

Watermarking information is an important tool that may allow
content creators to unleash their products in the anarchy of the web.
Steganography is used in many different places in the infrastructure
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of the web. It is now impossible to do a good job squeezing all of the
good techniques for hiding information into a single book.

0.2 Notes On the Second Edition

The world of steganography and hidden information changed dra-
matically during the five years since the first edition appeared. The
interest from the scientific community grew and separate confer-
ences devoted to the topic flourished. A number of new ideas, ap-
proaches, and techniques appeared and many are included in the
book.

The burgeoning interest was not confined to labs. The business
community embraced the field in the hope that the hidden infor-
mation would give creators of music and images a chance to con-
trol their progeny. The hidden information is usually called a wa-
termark. This hidden payload might include information about the
creator, the copyright holder, the purchaser or even special instruc-
tions about who could consume the information and how often they
could push the button.

Many of the private companies have also helped the art of infor-
mation hiding, but sometimes the drive for scientific advancement
clashed with the desires of some in the business community. The
scientists want the news of the strengths and weaknesses of stegano-
graphic algorithms to flow freely. Some businessmen fear that this
information will be used to attack their systems and so they push to
keep the knowledge hidden.

This struggle errupted into an open battle when the recording in-
dustry began focusing on the work of Scott A. Craver, John P McGre-
gor, Min Wu, Bede Liu, Adam Stubblefield, Ben Swartzlander, Dan
S. Wallach, Drew Dean, and Edward W. Felten. The group attacked
a number of techniques distributed by the Secure Digital Music Ini-
tiative, an organization devoted to creating a watermark system and
sponsored by the members of the music industry. The attacks were
invited by SDMI in a public contest intended to test the strengths
of the algorithms. Unfortunately, the leaders of the SDMI also tried
to hamstring the people who entered the contest by forcing them to
sign a pledge of secrecy to collect their prize. In essence, the group
was trying to gain all of the political advantages of public scrutiny
while trying to silence anyone who attempted to spread the results
of their scrutiny to the public. When the group tried to present their
work at the Information Hiding Workshop in April in Pittsburgh, the
Recording Industry Association of America (RIAA) sent them a let-
ter suggesting that public discussion would be punished by a law-
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suit. The group withdrew the paper and filed their own suit claiming
that the RIAA and the music industry was attempting to stiffle their
First Amendment Rights. The group later presented their work at the
USENIX conference in Washington, DC, but it is clear that the battle
lines still exist. On one side are the people who believe in open shar-
ing of information, even if it produces an unpleasant effect, and on
the other are those who believe that censorship and control will keep
the world right.

This conflict seems to come from the perception that the algo-
rithms for hiding information are fragile. If someone knows the
mechanism in play, they can destroy the message by writing over the
messages or scrambling the noise. The recording industry is worried
that someone might use the knowledge of how to break the SDMI al-
gorithms to destroy the watermarking information– something that
is not difficult to do. The only solution, in some eyes, is to add secu-
rity by prohibiting knowledge.

This attitude is quite different from the approach taken with the
close cousin, cryptography. Most of the industry agrees that pub-
lic scrutiny is the best way to create secure algorithms. Security
through obscurity is not as successful as a well-designed algorithm.
As a result, public scrutiny has identified many weaknesses in cryp-
tographic algorithms and helped researchers develop sophisticated
solutions.

Some companies trying to create watermarking tools may feel
that they have no choice but to push for secrecy. The watermarking
tools aren’t secure enough to withstand assault so the companies
hope that some additional secrecy will make them more secure.

Unfortunately, the additional secrecy buys little extra. Hidden in-
formation is easy to remove by compressing, reformatting, and re-
recording the camouflaging information. Most common tools used
in recording studios, video shops, and print shops are also good
enough to remove watermarks. There’s nothing you can do about it.
Bits are bits and information is information. There is not a solid link
between the two.

At this writing the battle between the copyright holders and the
scientists is just beginning. Secret algorithms never worked for long
before and there’s no reason why it will work now. In the meantime,
enjoy the information in the book while you can. There’s no way to
tell how long it will be legal to read this book.



Chapter 1

Framing Information

On its face, information in computers seems perfectly defined and
certain. A bank account either has $1,432,442 or it has $8.32. The
weather is either going to be 73 degrees or 74 degrees. The meeting
is either going to be at 4 pm or 4:30 pm. Computers deal only with
numbers and numbers are very definite.

Life isn’t so easy. Advertisers and electronic gadget manufacturers
like to pretend that digital data is perfect and immutable, freezing
life in a crystalline mathematical amber; but the natural world is
filled with noise and numbers that can only begin to approximate
what is happening. The digital information comes with much more
precision than the world may provide.

Numbers themselves are strange beasts. All of their certainty can
be scrambled by arithmetic, equations and numerical parlor tricks
designed to mislead and misdirect. Statisticians brag about lying
with numbers. Car dealers and accountants can hide a lifetime of
sins in a balance sheet. Encryption can make one batch of numbers
look like another with a snap of the fingers.

Language itself is often beyond the grasp of rational thought.
Writers dance around topics and thoughts, relying on nuance, inflec-
tion, allusion, metaphor, and dozens of other rhetorical techniques
to deliver a message. None of these tools are perfect and people seem
to find a way to argue about the definition of the word “is”.

This book describes how to hide information by exploiting this
uncertainty and imperfection. This book is about how to take words,
sounds, and images and hide them in digital data so they look like
other words, sounds, or images. It is about converting secrets into
innocuous noise so that the secrets disappear in the ocean of bits
flowing through the Net. It describes how to make data mimic other
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6 CHAPTER 1. FRAMING INFORMATION

data to disguise its origins and obscure its destination. It is about
submerging a conversation in a flow of noise so that no one can know
if a conversation exists at all. It is about taking your being, dissolving
it into nothingness, and then pulling it out of the nothingness so it
can live again.

Traditional cryptography succeeds by locking up a message in
a mathematical safe. Hiding the information so it can’t be found
is a similar but often distinct process often called steganography.
There are many historical examples of it including hidden compart-
ments, mechanical systems like microdots, or burst transmissions,
that make the message hard to find. Other techniques like encod-
ing the message in the first letters of words disguise the content and
make it look like something else. All of these have been used again
and again.David Kahn’s

Codebreakers provides
a good history of the
techniques.[Kah67]

Digital information offers wonderful opportunities to not only
hide information, but also to develop a general theoretical frame-
work for hiding the data. It is possible to describe general algorithms
and make some statements about how hard it will be for someone
who doesn’t know the key to find the data. Some algorithms offer a
good model of their strength. Others offer none.

Some of the algorithms for hiding information use keys that con-
trol how they behave. Some of the algorithms in this book hide in-
formation in such way that it is impossible to recover the informa-
tion without knowing the key. That sounds like cryptography, even
though it is accomplished at the same time as cloaking the informa-
tion in a masquerade.

Is it better to think of these algorithms as “cryptography” or as
“steganography”? Drawing a line between the two is both arbitrary
and dangerously confusing. Most good cryptographic tools also pro-
duce data that looks almost perfectly random. You might say that
they are trying to hide the information by disguising it as random
noise. On the other hand, many steganographic algorithms are not
trivial to break even after you learn that there is hidden data to find.
Placing an algorithm in one camp often means forgetting why it
could exist in the other. The best solution is to think of this book as a
collection of tools for massaging data. Each tool offers some amount
of misdirection and some amount of security. The user can combine
a number of different tools to achieve their end.

The book is published under the title of “Disappearing Cryptog-
raphy” for the reason that few people knew about the word “stegano-
graphy” when it appeared. I have kept the title for many of the same
practical reasons, but this doesn’t mean that title is just cute mecha-
nism for giving the buyer a cover text they can use to judge the book.
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Simply thinking of these algorithms as tools for disguising informa-
tion is a mistake. Some offer cryptographic security at the same time
as an effective disguise. Some are deeply intertwined with crypto-
graphic algorithms, while others act independently. Some are diffi-
cult to break without the key while others offer only basic protection.
Trying to classify the algorithms purely as steganography or cryptog-
raphy imposes only limitations. It may be digital information, but
that doesn’t mean there aren’t an infinite number forms, shapes, and
appearances the information may assume.

1.0.1 Reasons for Secrecy

There are many different reasons for using the techniques in this
book and some are scurrilous. There is little doubt that the Four
Horsemen of the Infocalypse– the drug dealers, the terrorists, the
child pornographers, and the money launderers– will find a way to
use the tools to their benefit in the same way that they’ve employed
telephones, cars, airplanes, prescription drugs, box cutters, knives,
libraries, video cameras and many other common, everyday items.
There’s no need to explain how people can hide behind the veils of
anonymity and secrecy to commit heinous crimes.

But these tools and technologies can also protect the weak. In
book’s defense, here’s a list of some possible good uses:

1. So you can seek counseling about deeply personal problems
like suicide.

2. So you can inform colleagues and friends about a problem with
odor or personal hygiene.

3. So you can meet potential romantic partners without danger.

4. So you can play roles and act out different identities for fun.

5. So you can explore job possibilities without revealing where
you currently work and potentially losing your job.

6. So you can turn a person in to the authorities anonymously
without fear of recrimination.

7. So you can leak information to the press about gross injustice
or unlawful behavior.

8. So you can take part in a contentious political debate about,
say, abortion, without losing the friendship of those who hap-
pen to be on the other side of the debate.
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9. So you can protect your personal information from being ex-
ploited by terrorists, drug dealers, child pornographers and
money launderers.

10. So the police can communicate with undercover agents infil-
trating the gangs of bad people.

Chapter 22 examines
the promises and perils

of this technology in
more detail.

There are many other reasons, but I’m surprised that government
officials don’t recognize how necessary these freedoms are to the
world. Much of government functions through back-corridor bar-
gaining and power games. Anonymous communication is a stan-
dard part of this level of politics. I often believe that all governments
would grind to a halt if information was as strictly controlled as some
would like it to be. No one would get any work done. They would just
spend hours arguing who should and should not have access to in-
formation.

The Central Intelligence Agency, for instance, has been criticized
for missing the collapse of the former Soviet Union. They contin-
ued to issue pessimistic assessments of a burgeoning Soviet military
while the country imploded. Some blame greed, power, and politics.
I blame the sheer inefficiency of keeping information secret. Spy-
master Bob can’t share the secret data he got from Spymaster Fred
because everything is compartmentalized. When people can’t get
new or solid information, they fall back to their basic prejudices—
which in this case was that the Soviet Union was a burgeoning em-
pire. There will always be a need for covert analysis for some prob-
lems, but it will usually be much more inefficient than overt analysis.

Anonymous dissemination of information is a grease for the
squeaky wheel of society. As long as people question its validity and
recognize that its source is not willing to stand behind the text, then
everyone should be able to function with the information. When it
comes right down to it, anonymous information is just information.
It’s just a torrent of bits, not a bullet, a bomb or a broadside. Sharing
information generally helps society pursue the interests of justice.

Secret communication is essential for security. The police and the
defense department are not the only people who need the ability to
protect their schedules, plans, and business affairs. The algorithms
in this book are like locks on doors and cars. Giving this power to ev-
eryone gives everyone the power to protect themselves against crime
and abuse. The police do not need to be everywhere because people
can protect themselves.

For all of these reasons and many more, these algorithms are
powerful tools for the protection of people and their personal data.
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1.0.2 How It Is Done

There are a number of different ways to hide information. All of them
offer some stealth, but not all of them are as strong as the others.
Some provide startling mimicry with some help from the user. Oth-
ers are largely automatic. Some can be combined with others to pro-
vide multiple layers of security. All of them exploit some bit of ran-
domness, some bit of uncertainty, or some bit of unspecified state in
a file. Here is an abstract list of the techniques used in this book:

Use the Noise The simplest technique is to replace the noise in an
image or sound file with your message. The digital file con-
sist of numbers that represent the intensity of light or sound
at a particular point of time or space. Often these numbers are
computed with extra precision that can’t be detected effectively
by humans. For instance, one spot in a picture might have 220
units of blue on a scale that runs between 0 and 255 total units.
An average eye would not notice if that one spot was converted
to having 219 units of blue. If this process is done systemat-
ically, it is possible to hide large volumes of information just
below the threshold of perception. A digital photo-CD image
has 2048 by 3072 pixels that each contain 24 bits of informa-
tion about the colors of the image. 756k of data can be hidden
in the three least significant bits for each color of each pixel.
That’s probably more than the text of this book. The human
eye would not be able to detect the subtle variations but a com-
puter could reconstruct them all.

Spread the Information Out Some of the more sophisticated mech-
anisms spread the information over a number of pixels or mo-
ments in the sound file. This diffusion protects the data and
also makes it less susceptible to detection, either by humans
looking at the information or by computers looking for statis-
tical profiles. Many of the techniques that fall into this cate-
gory came from the radio communication arena where the en-
gineers first created them to cut down on interference, reduce
jamming, and add some secrecy. Adapting them to digital com-
munications is not difficult.

Spreading the information out often increases the resilience to
destruction by either random or malicious forces. The spread-
ing algorithms often distribute the information in such a way
that not all of the bits are required to reassemble the origi-
nal data. If some parts get destroyed, the message still gets
through.



10 CHAPTER 1. FRAMING INFORMATION

Many of these spreading techniques hide information in the
noise of an image or sound file, but there is no reason why they
can’t be used with other forms of data as well.

Many of the techniques
are closely related to the

process of generating
cryptographically secure
random numbers– that
is, a stream of random
numbers that can’t be

predicted. Some
algorithms use this

number stream to
choose locations, others

blend the random
values with the hidden

information, still others
replace some of the

random values with the
message.

Adopt a Statistical Profile Data often falls into a pattern and com-
puters often try to make decisions about data by looking at the
pattern. English text, for instance, uses the letter ‘p’ for more
often than the letter ‘q’ and this information can be useful for
breaking ciphers. If data can be reformulated so it adopts the
statistical profile of the English language, then a computer pro-
gram minding ps and qs will be fooled.

Adopt a Structural Profile Mimicking the statistics of a file is just
the beginning. More sophisticated solutions rely on complex
models of the underlying data to better mimic it. Chapter 7, for
instance, hides information by making it look like the transcript
of a baseball game. The bits are hidden by using them to choose
between the nouns, verbs and other parts of the text. The data
are recovered by sorting through the text and matching up the
words with the bits that selected them. This technique can
produce startling results, although the content of the messages
often seems a bit loopy or directionless. This is often good
enough to fool humans or computers that are programmed to
algorithmically scan for particular words or patterns.

Replace Randomness Many software programs use random num-
ber generators to add realism to scenes, sounds, and games.
Monsters look better if a random number generator adds blotches,
warts, moles, scars and gouges to a smooth skin defined by
mathematical spheres. Information can be hidden in the place
of the random number. The location of the splotches and scars
carries the message.

Change the Order A grocery list may be just a list, but the order of
the items can carry a surprisingly large amount of information.

Split Information Data can be split into any number of packets that
take different routes to their destination. Sophisticated algo-
rithms can also split the information so that any subset of k of
the n parts are enough to reconstruct the entire message.

Hide the Source Some algorithms allow people to broadcast infor-
mation without revealing their identity. This is not the same as
hiding the information itself, but it is still a valuable tool. Chap-
ters 10 and 11 show how to use anonymous remailers and more
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mathematically sophisticated Dining Cryptographers’ solutions
to distribute information anonymously.

These different techniques can be combined in many ways. First
information can be hidden by hiding it in a list, then the list can be
hidden in the noise of a file that is then broadcast in a way to hide the
source of the data.

1.0.3 How Steganography Is Used

Hidden information has a variety of uses in products and protocols.
Hiding slightly different information or combining the various algo-
rithms creates different tools with different uses. Here are some of
the most interesting applications:

Enhanced Data Structures Most programmers know that standard
data structures get old over time. Eventually there comes a time
when new, unplanned information must be added to the for-
mat without breaking old software. Steganography is one so-
lution. You can hide extra information about the photos in the
photos themselves. This information travels with the photo but
will not disturb old software that doesn’t know of its existence.

A radiologist could embed comments from in the background
of a digitized x-ray. The file would still work with standard tools,
saving hospitals the cost of replacing all of their equipment.

Strong Watermarks The creators of digital content like books, movies,
and audio files want to add hidden information into the file
to describe the restrictions they place on the file. This mes-
sage might be as simple as “This file copyright 2001 by Big Fun”
or as complex as “This file can only be played twice before
12/31/2002 unless you purchase three cases of soda and sub-
mit their bottle tops for rebate. In which case you get 4 song
plays for every bottle top.” Digital Watermarking

by Ingemar J. Cox,
Matthew L. Miller and
Jeffrey A. Bloom is a
good introduction to
watermarks and the
challenges particular to
the subfield.[CMB01]

Some watermarks are meant to be found even after the file un-
dergoes a great deal of distortion. Ideally, the watermark will
still be detectable even after someone crops, rotates, scales and
compresses some document. The only way to truly destroy it is
to alter the document so much that it is no longer recognizable.

Other watermarks are deliberately made as fragile as possible.
If someone tries to tamper with the file, the watermark will
disappear. Combining strong and weak watermarks is a good
option when tampering is possible.
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Document-Tracking Tools Hidden information can identify the le-
gitimate owner of the document. If it is leaked or distributed
to unauthorized people, it can be tracked back to the rightful
owner. Adding individual tags to each document is an idea at-
tractive to both content-generating industries and government
agencies with classified information.

File Authentication The hidden information bundled with a file can
also contain a digital signature certifying its authenticity. A reg-
ular software program would simply display (or play) the doc-
ument. If someone wanted some assurance, the digital signa-
ture embedded in the document can verify that the right person
signed it.

Private Communications Steganography is also useful in political
situations when communications is dangerous. There will al-
ways be moments when two people can’t exchange messages
because their enemies are listening. Many governments con-
tinue to see the Internet, corporations and electronic conver-
sations as an opportunity for surveillance. In these situations,
hidden channels offer the politically weak a chance to elude the
powerful who control the networks. [Sha01]

Not all uses for hidden information come classified as stegano-
graphy or cryptography. Anyone who deals with old data formats and
old software knows that programmers don’t always provide ideal data
structures with full documentation. Many basic hacks aren’t much
different from the steganographic tools in this book. Clever program-
mers find additional ways to stretch a data format by packing extra
information where it wasn’t needed before. This kind of hacking is
bound to yield more applications than people imagined for stegano-
graphy. Somewhere out there, a child’s life may be saved thanks to
clever data handling and steganography!

1.0.4 Attacks on Steganography

Steganographic algorithms provide stealth, camouflage and security
to information. How much, though, is hard to measure. As data
blends into the background, when does it effectively disappear? One
way to judge the strength is to imagine different attacks and then
try to determine whether the algorithm can successfully withstand
them. This approach is far from perfect, but it is the best available.
There’s no way to anticipate all possible attacks, although you can try.
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Attacking steganographic algorithms is very similar to attack-
ing cryptographic algorithms and many of the same techniques ap-
ply. Of course, steganographic algorithms promise some additional
stealth in addition to security so they are also vulnerable to addi-
tional attacks.

Here’s a list of some possible attacks:

File Only The attacker has access to the file and must determine if it
holds a hidden message. This is the weakest form of attack, but
it is also the minimum threshold for successful steganography.

Many of these basic attacks rely on a statistical analysis of digi-
tal images or sound files to reveal the presence of a message in
the file. This type of attack is often more of an art than a sci-
ence because the person hiding the message can try to counter
an attack by adjusting the statistics.

File and Original Copy In some cases, the attacker may have a copy
of the file with the encoded message and a copy of the original,
pre-encoded file. Clearly, detecting some hidden message is a
trivial operation. If the two files are different, there must be
some new information hidden inside of it.

The real question is what the attacker may try to do with the
data. The attacker may try to destroy the hidden information,
something that can be accomplished by replacing it with the
original. The attacker may try to extract the information or
even replace it with their own. The best algorithms try to de-
fend against someone trying to forge hidden information in a
way that it looks like it was created by someone else. This is of-
ten imagined in the world of watermarks, where the hidden in-
formation might identify the rightful owner. An attacker might
try to remove the watermark from a legitimate owner and re-
place it with a watermark giving themselves all of the rights and
privileges associated with ownership.

Multiple Encoded Files The attacker gets n different copies of the
files with n different messages. One of them may or may not
be the original unchanged file. This situation may occur if a
company is inserting different tracking information into each
file and the attacker is able to gather a number of different ver-
sions. If music companies sell digital sound files with person-
alized watermarks, then several fans with legitimate copies can
get together and compare their files.

Some attackers may try to destroy the tracking information or
to replace it with their own version of the information. One of
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the simplest attacks in this case is to blend the files together,
either by averaging the individual elements of the file or by
creating a hybrid by taking different parts from each file.

Access to the File and Algorithm An ideal steganographic algorithm
can withstand scrutiny even if the attacker knows the algorithm
itself. Clearly, basic algorithms that hide and unveil informa-
tion can’t resist this attack. Anyone who knows the algorithm
can use this it to extract the information.

But this can work if you keep some part of the algorithm se-
cret and use it as the “key” to unlock the information. Many
algorithms in this book use a cryptographically secure random
number generator to control how the information is blended
into a file. The seed value to this random number stream acts
like a key. If you don’t know it, you can’t generate the random
number stream and you can’t unblend the information.

Destroy Everything Attack Some people argue that steganography
is not particularly useful because an attacker could simply de-
stroy the message by blurring a photo or adding noise to a
sound file. One common technique used against the kind of
block compression algorithms like JPEG is to rotate an image
45 degrees, blur the image, sharpen it again, and then rotate it
back. This mixes information from different blocks of the im-
age, effectively removing some schemes like the ones in Chap-
ter 14.

This technique is a problem, but it can be computationally pro-
hibitive for many users and it introduces its own side effects.
A site like Flickr.com might consider doing this to all incom-
ing images to deter communications, but it would require a fair
amount of computation.

It is also not an artful attack. Anyone can destroy messages.
Cryptography and many other protocols are also vulnerable to
it.

Random Tweaking Attacks Some attackers may not try to deter-
mine the existence of a message with any certainty. An attacker
could just add small, random tweaks to all files in the hope of
destroying whatever message may be there. During World War
II, the government censors would add small changes to num-
bers in telegrams in the hopes of destroying covert communi-
cations. This approach is not very useful because it sacrifices
overall accuracy for the hope of squelching a message. Many
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of the algorithms in this book can resist a limited attack by us-
ing error-correcting codes to recover from a limited number of
seemingly random changes.

Add New Information Attack Attackers can use the same software
to encode a new message in a file. Some algorithms are vulner-
able to these attacks because they overwrite the channel used
to hide the information. The attack can be resisted with good
error-correcting codes and by using only a small fraction of the
channel chosen at random.

Reformat Attack One possible attack is to change the format of the
file because many competing file formats don’t store data in
exactly the same way. There are a number of different image
formats, for instance, that use a variety of bits to store the in-
dividual pixels. Many basic tools help the graphic artist deal
with the different formats by converting one file format into an
other. Many of these conversions can’t be perfect. The hidden
information is often destroyed in the process. Images can be
stored as either JPEG or GIF images, but converting from JPEG
to GIF removes some of the extra information– the EXIF fields
– embedded in the file as part of the standard.

Many watermark algorithms for images try to resist this type
of attack because reformatting is so common in the world of
graphic arts. An ideal audio watermark, for instance, would
still be readable after someone plays the music on a stereo and
records it after it has traveled through the air.

Of course, there are limits to this. Reformatting can be quite
damaging and it is difficult to anticipate all of the cropping,
rotating, scaling, and shearing that a file might undergo. Some
of the best algorithms do come close.

Compression Attack One of the easiest attacks is to compress the
file. Compression algorithms try to remove the extraneous in-
formation from a file and “hidden” is often equivalent to “ex-
traneous”. The dangerous compression algorithms are the so-
called lossy ones that do not reconstruct a file exactly during
decompression. The JPEG image format, for instance, does a
good job approximating the original.

Some of the watermarking algorithms can resist compression
by the most popular algorithms, but there are none that can
resist all of them.

The only algorithms that can resist all compression attacks
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hides the information in plain sight by changing the “percep-
tually salient” features of an image or sound file.

Unfortunately, steganography is not a solid science, in part be-
cause there’s no simple way to measure how well it is doing. How
hidden must the information be before no one can see it? Just how
invisible is invisible? The models of human perception are often too
basic to measure what is happening.

The lack of a solid model means it is difficult to establish how well
the algorithms resist attack. Many algorithms can survive cursory
scrutiny but fail if a highly trained or talented set of ears and eyes an-
alyze the results. Some people with so-called “golden ears” can hear
supposedly changes in an audio file that are inaudible to average hu-
mans. A watermark may be completely inaudible to most of the buy-
ing public, but if the musicians can hear it the record company may
not use it.

Our lack of understanding does not mean that the algorithms
don’t have practical value. A watermark heard by 1% of the popu-
lation is of no concern to the other 99%. An image with hidden infor-
mation may be detectable, but this only matters if someone is trying
to detect it.

There is also little doubt that a watermark or a steganographic
tool does not need to resist all attackers to have substantial value. A
watermark that lives on after cropping and basic compression still
carries its message to many people. A hacker may learn how to de-
stroy it, but most people have better things to do with their time.

Our lack of understanding does not mean that the algorithms do
not offer some security. Some of the algorithms insert their informa-
tion with mechanisms that offer cryptographic strength. Borrowing
these ideas and incorporating them provides both stealth and secu-
rity.

1.1 Adding Context

One reviewer of the book who was asked for a backcover blurb joked
that the book should be “essential bedside for reading for every ter-
rorist”. After a pause he added, “and every freedom fighter, Holly-
wood executive, police officer, abused spouse, chief information of-
ficer, and anyone needing privacy anywhere.”

You may be a terrorist or you may be a freedom fighter. Who
knows? This book is just about technology and technology is neu-
tral. It teaches you how to cast shape shifting spells that make data
look like something completely different. You may have good plans
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for these ideas. Perhaps you want to expose a local chemical com-
pany dumping toxic waste into the ground. Or you might be filled
with the proverbial malice aforethought and you can’t wait to hatch
a maniacal plan. You might be part of that cabal of executives using
these secret algorithms to plan where and when to dump the toxic
waste. Technology is neutral.

There is some human impulse that would like to believe that all
information is ordered, correct, structured, organized, and above all
true. We dream that computers and their vast collection of trivia
about the world will keep us safe, secure, and moving toward some
glorious goal, even if we don’t know what it is. We hope that the
databases held by the government, the banks, the insurance compa-
nies, the retail stores, the doctors, and practically everyone else will
deliver unto us a perfectly ordered world.

Alas, nothing could be farther from the truth. Even the bits can
hide multiple meanings. They’re supposed to be either on or off, true
or false, 0 or 1, but even the bits can conspire to carry secret messages
and hidden truths. Information is not as certain or as precise as it
may seem to be. Sometimes a cigar carries a freight train load of
meaning and sometimes it is just a cigar. Sometimes it is close and
no cigar at all.

Throughout it all, only a human can make sense of it. Only a
human can determine the difference between an obscene allusion
to a cigar and reference to an object for delivering nicotine. We keep
hoping that artificial intelligence and database engines will be able
to parse all of the data, all of the facts, and all of the bits and identify
the terrorists who need punishing, the good people who need help,
and the split ends that need another dose of special conditioner.

You, the reader, are the human who must decide how to use the
information in this book. You can solve crimes, coordinate a wed-
ding, plan a love that will last forever, or concoct dastardly schemes.
The technology is neutral. The book is just equations on a page. You
will determine what the equations mean for the world.



Chapter 2

Encryption

2.1 Pure White

In the early years of the 21st century, Pinnacle Paint was purchased
by the MegaGoth marketing corporation in a desperate attempt to
squeeze the last bit of synergy from the world. The executives of
MegaGoth, who were frantic with the need to buy something they
didn’t already own so they could justify their existence, found them-
selves arguing that the small, privately owned paint company fit
nicely into their marketing strategy for dominating the entertain-
ment world.

Although some might argue that people choose colors with their
eyes, the executives quickly began operating under the assumption
that people purchased paint that would identify them with some-
thing. People wanted to be part of a larger movement. They weren’t
choosing a color for a room, they were buying into a lifestyle—how
dare they choose any lifestyle without licensing one from a conglom-
erate? The executives didn’t believe this, but they were embarrassed
to discover that their two previous acquisitions targets were already
owned by MegaGoth. Luckily, their boss didn’t know this either when
he gave the green light to those projects. Only the quick thinking of
a paralegal saved them from the disaster of buying something they
already owned and paying all of that tax.

One of the first plans for MegaGoth/Pinnacle Paints is to take
the standard white paint and rebottle it in new and different prod-
uct lines to target different demographic groups. Here are some of
Megagoth’s plans:

Moron and Moosehead’s Creative Juice What would the two lovable
animated characters paint if they were forced to expand their
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creativity in art class? Moron might choose a white cow giving
milk in the Arctic for his subject. Moosehead would probably
try to paint a little lost snowflake in a cloud buffeted by the wind
and unable to find its way to its final destination: Earth.

Empathic White White is every color. The crew of “Star Trek: They
Keep Breeding More Generations” will welcome Bob, the “em-
path,” to the crew next season. His job is to let other people
project their feelings onto him. Empathic White will serve the
same function for the homeowner as the mixing base for many
colors. Are you blue? Bob the Empath could accept that feel-
ing and validate it. Do you want your living room to be blue?
That calls for Empathic White. Are you green with jealousy?
Empathic White at your service.

Fright White MegaGoth took three British subjects and let them
watch two blood-draining horror movies from the upcoming
MegaGoth season. At the end, they copied the color of the sub-
ject’s skin and produced the purest white known to the world.

Snow White A cross-licensing product with the MegaGoth/Disney
division ensures that kids in their nursery won’t feel alone for
a minute. Those white walls will be just another way to experi-
ence the magic of movie produced long ago when Disney was a
distinct corporation.

White Dwarf White The crew of “Star Trek” discovers a White Dwarf
star and spends an entire episode orbiting it. But surprise! The
show isn’t about White Dwarf stars qua White Dwarfs, it’s really
using their super-strong gravitational fields as a metaphor for
human attraction. Now, everyone can wrap themselves in the
same metaphor by painting their walls with White Dwarf White.

2.2 Encryption and White Noise

Hiding information is a tricky business. Although the rest of this
book will revolve around camouflaging information by actually mak-
ing the bits look like something else, it is a good idea to begin with
examining basic encryption.

Standard encryption functions like AES or RSA hide data by mak-
ing it incomprehensible. They take information and convert it into
total randomness or white noise. This effect might not be a good
way to divert attention from a file, but it is still an important tool.
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Many of the algorithms and approaches described later in the book
perform best when they have a perfectly random source of data.

Encrypting a file before applying any of the other approaches is a
good beginning, but it doesn’t complete the picture. Sometimes too
much randomness can stick out like a sore thumb. Chapter 17 de-
scribes several algorithms that can flag images with hidden informa-
tion by relying on statistical tests that measure, often indirectly, the
amount of randomness in the noise. A file that seems too random
stands out because the noise generated by many digital cameras isn’t
as random as it might seem.

The trick is to use some extra processing to add a bit of statistical
color to the data before it is introduced. Chapters 6 and 7 describe
some solutions. Others involve mixing in the hidden message in a
way that doesn’t distort the statistical profile of the data.

The world of cryptography began attempting to produce perfect
white noise during World War II. This is because Claude Shannon-
Claude E. Shannon, a mathematician then working for Bell Labs, de-
veloped the foundations of information theory that offered an ideal
framework for actually measuring information.

Most people who use computers have a rough idea about just
how much information there is in a particular file. A word processing
document, for instance, has some overhead and about one byte for
each character– a simple equation that doesn’t seem to capture the
essence of the problem. If the number of bytes in a computer file is
an accurate measurement of the information in it, then there would
be no way that a compression program could squeeze files to be a
fraction of the original size. Real estate can’t be squeezed and dia-
monds can’t be smooshed, but potato chips always seem to come in a
bag filled with air. That’s why they’re sold by weight not volume. The
success of compression programs like PKZIP or Stuffit means that
measuring a file by the number of bytes is like selling potato chips
by volume. Compression is

discussed in Chapter 5.Shannon’s method of measuring information “by weight” rests on
probability. He felt a message had plenty information if you couldn’t
anticipate the contents, but it had little information if the contents
were easy to predict. A weather forecast in Los Angeles doesn’t con-
tain much information because it is often sunny and 72 degrees
Fahrenheit. A weather forecast in the Caribbean during hurricane
season, though, has plenty of potential information about coming
storms that might be steaming in.

Shannon measured information by totaling up the probabilities.
A byte has 8 bits and 256 different possible values between 00000000
and 11111111 in base 2. If all of these possible values occur with the
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same probability, then there are said to be 8 bits of information in
this byte. On the other hand, if only two values like 00101110 and
10010111 happen to appear in a message, then there is only one bit
of information in each byte. The two values could be replaced with
just a 0 and a 1 and the entire file would be reduced to one-eighth
the size. The number of bits of information in a file is called, in this
context, its entropy.

Shannon also provided a precise formula for measuring the size
of information, a topic found later in Section 2.3. This measurement
of information offered some important insights to cryptographers.
Mathematicians who break codes rely on deep statistical analysis to
ferret out patterns in files. In English, the letter “q” is often followed
by the letter “u” and this pattern is a weak point that might be ex-
ploited by attackers trying to get at the underlying message. A good
encryption program would leave no such patterns in the final file.
Every one of the 256 possible values of a byte would occur with equal
probability. It would seem to be filled chock-full with information.

One-time pads are an encryption system that is a good example
of the basic structure behind information theory. The one-time pad
received its name because spies often carried pads of random num-
bers that served as the encryption key. They would use each sheet
once and then dispose of it.A secret can be split into

parts using an extension
of one-time pads

described on page 58.

A one-time pad can be built by using a standard method of en-
cryption. Assume for the moment that a key is just a number like 5
and a message consists of all uppercase letters. To encrypt a letter
like “C” with a key number like 5, count over five letters to get “H”. If
the counting goes past “Z” at the end of the alphabet, simply go back
to “A” and keep going. The letter “Y” encrypted with the key number
6 would produce “E”. To decrypt work backward.

Here is a sample encryption:

H E L L O
9 0 2 1 0

Q E N M O

In this case, the key is the five numbers 9, 0, 2, 1, and 0. They
would constitute the one-time pad that encrypted this message. In
practice, the values should be as random as possible. A human might
reveal some hidden short circuits in its brain.1

Shannon proved that a one-time pad is an unbreakable cipher be-
cause the information in the final file is equal to the information in
the key. An easy way to see why this is true is to break the message,

1Or the limitations of creativity brought on by too much television.
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“QENMO” from above. Any five-letter word could be the underlying
message because any key is possible. The name, “BRUNO”, for in-
stance, would have generated “QENMO” if the key numbers were 15,
13, 19, 25, and 0. If all possibilities are available, then the attacker
can’t use any of the information about English or the message itself
to rule out solutions. The entropy of the message itself should be
greater than or equal to the entropy in the key. This is certainly the
case here because each byte of the message could be any value be-
tween 0 and 255 and so could the key. In practice, the entropy of the
key would be even greater because the distribution of the values in
the message would depend on the vagaries of language while the key
can be chosen at random.

A real one-time pad would not be restricted to uppercase char-
acters. You could use a slightly different encryption process that em-
ployed all 256 possible values of a byte. One popular method is to use
the operation known as exclusive-or (XOR), which is just addition in
the world of bits. (0 + 0 = 0, 0 + 1 = 1, and 1 + 1 = 0 because it wraps
around.) If the one-time pad consists of bytes with values between 0
and 255 and these values are evenly distributed in all possible ways,
then the result will be secure. It is important that the pad is not used
again because statistical analysis of the underlying message can re-
veal the key. The United States was able to read some crucial cor-
respondence between Russia and its spies in the United States dur-
ing the early Cold War because the same one-time pad was reused.
[Age95] The number of bits in the key was now less than the number
of bits of information in the message, and Shannon’s proof that the
one-time pad is a perfect encryption no longer holds.

The one-time pad is an excellent encryption system, but it’s also
very impractical. Two people who want to communicate in secret
must arrange to securely exchange one-time pads long before they
need to start sending messages. It would not be possible, for in-
stance, for someone to use their WWW browser to encrypt the credit
card numbers being sent to a merchant without exchanging a one-
time pad in person. Often, the sheer bulk of the pad makes it too
large to be practical.

Many people have tried to make this process more efficient by
using the same part of the pad over and over again. If they were en-
crypting a long message, they might use the key 90210 over and over
again. This makes the key small enough to be easily remembered,
but it introduces dangerous repetition. If the attackers are able to
guess the length of the key, they can exploit this pattern. They would
know in this case that every fifth letter would be shifted by the same
amount. Finding the right amount is often trivial and it can be as
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easy as solving a crossword puzzle or playing Hangman.

2.2.1 DES and Modern Ciphers

There are many different encryption functions that do a good job of
scrambling information into white noise. One of the once practical
and secure encryption algorithms still in use today is the Data En-
cryption Standard (DES) developed by IBM in the 1970s. The system
uses only 56 bits of key information to encrypt 64-bit blocks of data.
Today, the number of the bits in the key is considered too small be-
cause some computer scientists have assembled computers that can
try all 255 possible keys in about 48 hours.[Fou98] Newer machines
can search all of the keys even faster.

One of the newest and most efficient replacement for DES is the
Advanced Encryption Standard, an algorithm chosen by the U.S. gov-
ernment after a long, open contest. The algorithm, Rijndael, came
from Joan Daemen and Vincent Rijmen, and narrowly defeated four
other highly qualified finalists. 2 [DR00, DR01]

The basic design of most modern ciphers like DES and Rijndael
was inspired, in part, by some other work of Claude Shannon in
which he proposed that encryption consists of two different and
complementary actions: confusion and diffusion. Confusion con-
sists of scrambling up a message or modifying it in some non-linear
way. The one-time pad system above confuses each letter. Diffusion
involves taking one part of the message and modifying another part
so that each part of the final message depends on many other parts
of the message. There is no diffusion in the one-time pad example
because the total randomness of the key made it unnecessary.

DES consists of sixteen alternating rounds of confusion and dif-
fusion. There are 64 bits that are encrypted in each block of data.
These are split into two 32-bit halves. First, one half is confused by
passing it through what is called an “S-box.” This is really just a ran-
dom function that is preset to scramble the data in an optimal way.
Then these results are combined with the key bits and used to scram-
ble the other half. This is the diffusion because one half of the data
is affecting the other half. This pattern of alternating rounds is often
called a Feistel network.

The alternating rounds would not be necessary if a different S-
box were used for each 64-bit block of the message. Then the cipher
would be the equivalent of a one-time pad. But that would be inef-
ficient because a large file would need a correspondingly large set of

2Daemen and Rijmen suggest pronouncing the name: ”Reign Dahl”, ”Rain Doll”, or
”Rhine Dahl”.
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S-boxes. The alternating rounds are a compromise designed to se-
curely scramble the message with only 64 bits.

The confusion and diffusion functions were designed differently.
Confusion was deliberately constructed to be as nonlinear as possi-
ble. Linear functions, straight lines, are notoriously easy to predict.
The results don’t even come close.

Creating a nonlinear S-box is not an easy process. The original
technique was classified, leading many to suspect that the U.S. gov-
ernment had installed a trap door or secret weakness in the design.
The recent work of two Israeli cryptographers, Eli Biham and Adi
Shamir, however, showed how almost linear tendencies in S-boxes
could be exploited to break a cipher like DES. Although the technique
was very powerful and successful against DES-like systems, Biham
and Shamir discovered that DES itself was optimally designed to re-
sist this attack.

The diffusion function, on the other hand, was limited by tech-
nology. Ideally, every bit of the 64-bit block will affect the encryption
of any other bit. If one bit at the beginning of the block is changed,
then every other bit in the block may turn out differently. This insta-
bility ensures that those attacking the cipher won’t be able to localize
their effort. Each bit affects the others.

Figure 2.1 shows how one half of the data encrypts the other half.
Alternating which half scrambles the other is a good way to ensure
that the contents of one half affect the other. The diffusion in DES is
even more subtle. Although the information in one half would affect
the other after only one round, the bits inside the halves wouldn’t
affect each other quite as quickly. This part of the book does not go
into the design of the S-boxes in detail, but the amount of scrambling
was limited by the technology available in the mid-1970s when the
cipher was designed. It takes several rounds of this process to diffuse
the information thoroughly.

Figure 2.2 shows one of the eight S-boxes from DES. It is simply a
table. If the input to the S-box is 000000 then the output is 1110. This
is the most basic form of scrambling and it is fairly easy to reverse.
The S-box takes 6 bits as input to implement diffusion. The 32 bits of
one half are split into eight 4-bit blocks. Each of the 4-bit blocks then
grabs one bit from the block to the left and one bit from the block to
the right. That means that each 4-bit block influences the processing
of the adjacent 4-bit block. This is how the bits inside each of the
halves affect each other.

This is already too much detail for this part of the book. The rest
of DES is really of more interest to programmers who actually need
to implement the cipher. The important lesson is how the design-
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S-boxes 

confuse data

KEY

Figure 2.1: A schematic view of one round of DES. 64 bits enter and
are split into two 32-bit halves. The left half is scrambled up with the
key using the S-boxes. This result is then mixed in with the right half
and the result of adding these two together becomes the new left half.
The new right half is just a copy of the old left half.

000000→ 1110 000001→ 0100 000010→ 1101 000011→ 0001
000100→ 0010 000101→ 1110 000110→ 1011 000111→ 1000
001000→ 0011 001001→ 1010 001010→ 0110 001011→ 1100
001100→ 0101 001101→ 1001 001110→ 0000 001111→ 0111
010000→ 0000 010001→ 1111 010010→ 0111 010011→ 0100
010100→ 1110 010101→ 0010 010110→ 1101 010111→ 0001
011000→ 1010 011001→ 0110 011010→ 1100 011011→ 1011
011100→ 1001 011101→ 0101 011110→ 0011 011111→ 1000
100000→ 0100 100001→ 0001 100010→ 1110 100011→ 1000
100100→ 1101 100101→ 0110 100110→ 0010 100111→ 1011
101000→ 1111 101001→ 1100 101010→ 1001 101011→ 0111
101100→ 0011 101101→ 1010 101110→ 0101 101111→ 0000
110000→ 1111 110001→ 1100 110010→ 1000 110011→ 0010
110100→ 0100 110101→ 1001 110110→ 0001 110111→ 0111
111000→ 0101 111001→ 1011 111010→ 0011 111011→ 1110
111100→ 1010 111101→ 0000 111110→ 0110 111111→ 1101

Figure 2.2: This table shows how the first DES S-box converts 6-bit
values into 4-bit ones. Note that a change in one input bit will gener-
ally change two output bits. The function is also nonlinear and diffi-
cult to approximate with linear functions.
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ers of DES chose to interleave some confusion functions with some
diffusion functions to produce incomprehensible results.

The best way to judge the strength of an encryption system like
DES is to try to break it. Talking about highly technical things like
code breaking at a high level can be futile because the important
details can often be so subtle that the hand-waving metaphors end
up flying right over the salient fact. Still, a quick sketch of an attack
on the alternating layers of confusion and diffusion in DES can give
at least an intuitive feel for why the system is effective.

Imagine that you’re going to break one round of DES. You have
the 64 bits produced by one step of confusion and one step of
diffusion. You want to reconstruct the 64 bits from the begin-
ning and determine the 56 key bits that were entered. Since only
one round has finished, you can immediately discover one half
of the bits. The main advantage that you have is that not much
diffusion has taken place. Thirty-two bits are always unchanged
by each round. This makes it easier to determine if the other
half could come from the same file. Plus, these 32 bits were also
the ones that fed into the confusion function. If the confusion
process is not too complicated, then it may be possible to run
it in reverse. The DES confusion process is pretty basic, and it
is fairly straightforward to go backward. It’s just a table lookup.
If you can guess the key or the structure of the input, then it is
simple.

Now imagine doing the same thing after 16 rounds of confusion
and diffusion. Although you can work backward, you’ll quickly dis-
cover that the confusion is harder to run in reverse. After only one
round, you could recover the 32 bits of the left half that entered the
function. But you can’t get 32 bits of the original message after 16
rounds. If you try to work backward, you’ll quickly discover that ev-
erything is dependent on everything else. The diffusion has forced
everything to affect everything else. You can’t localize your search to
one 4-bit block or another because all of the input bits have affected
all of the other bits in the process of the 16 rounds. The changes have
percolated throughout the process.

Rijndael is similar in theme to DES, but much more efficient for
modern CPUs. The S-boxes from DES are relatively simple to imple-
ment on custom chips, but they are still complicated to simulate with
the general purpose CPUs used in most computers. The confusion in
AES is accomplished by multiplying by a polynomial and the diffu-
sion occurs when the subblocks of the message block are scrambled.
This math is much more basic than the complex S-boxes because the
general-purpose CPUs are designed to handle basic arithmetic.
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The other four AES finalists can also be shoehorned into this
model of alternating rounds of confusion and diffusion. All of them
are considered to be quite secure which means they all provide more
randomization.

2.2.2 Public-Key Encryption

Public-key encryption systems are quite different from the popular
private-key encryption systems like DES. They rely on a substantially
different branch of mathematics that still generates nice, random
white noise. Even though these foundations are different, the results
are still the same.

The most popular public-key encryption system is the RSA algo-
rithm that was developed by Ron Rivest, Adi Shamir, and Len Adle-
man when they were at MIT during the late 1970s.Ron Rivest, Adi
Shamir, and Len Adleman The system uses two keys. If one key en-
crypts the data, then only the other key can decrypt it. After the en-
cryption, first key becomes worthless It can’t decrypt the data. This
is not a bug, but a feature. Each person can create a pair of keys
and publicize one of the pair, perhaps by listing it in some electronic
phone book. The other key is kept secret. If someone wants to send
a message to you, they look up your public key and use it to encrypt
the message to you. Only the other key can decrypt this message now
and only you have a copy of it.

In a very abstract sense, the RSA algorithm works by arranging the
set of all possible messages in a long, long loop in an abstract math-
ematical space. The circumference of this loop, call it n, is kept a
secret. You might think of this as a long necklace of pearls or beads.
Each bead represents a possible message. There are billions of bil-
lions of billions of them in the loop. You send a message by giving
someone a pointer to a bead.

The public key is just a relatively large number, call it k. A message
is encrypted by finding its position in the loop and stepping around
the loop k steps. The encrypted message is the number at this posi-
tion. The secret key is the circumference of the loop minus k. A mes-
sage is decrypted by starting at the number marking the encrypted
message and marching along the n − k steps. Because the numbers
are arranged in a loop, this will bring you back to where everything
began– the original message.

Two properties about this string of pearls or beads make it possi-
ble to use it for encryption. The first is that given a bead, it is hard
to know its exact position on the string. If there is some special first
bead that serves as the reference location like on a rosary, then you
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would need to count through all of the beads to determine the exact
location of one of the beads. This same effect happens in the math-
ematics. You would need to multiply numbers again and again to
determine if a particular number is the one you want.

The second property of the string of beads in this metaphor does
not make as much sense, but it can still be easily explained . If you
want to move along the string k beads, then you can jump there
almost instantaneously. You don’t need to count each of the k beads
along the way. This allows you to encrypt and decrypt messages
using the public-key system.

The two special features are similar but they do not contradict
each other. The second says that it is easy to jump an arbitrary num-
ber of beads. The first says it’s hard to count the number of pearls be-
tween the first bead and any particular bead. If you knew the count,
then you could use the second feature. But you don’t so you have to
count by hand.

The combination of these two features makes it possible to en-
crypt and decrypt messages by jumping over large numbers of beads.
But it also makes it impossible for someone to break the system be-
cause they can’t determine the number of steps in the jump without
counting.

This metaphor is not exactly correct, but it captures the spirit
of the system. Figure 2.3 illustrates it. Mathematically, the loop is
constructed by computing the powers of a number modulo some
other number. That is, the first element in the loop is the number.
The second is the square of the number, the third is the cube of the
number, and so on. In reality, the loop is more than one-dimension-
al, but the theme is consistent.

2.2.3 How Random Is the Noise?

How random is the output of a encryption function like DES or RSA?
Unfortunately, the best answer to that question is the philosophical
response, “What do you mean by random?” Mathematics is very
good at producing consistent results from well-defined questions,
but it has trouble accommodating capricious behavior.

At the highest level, the best approach is indirect. If there was
a black box that could look at the first n bits of a file and predict
the next set of bits with any luck, then it is clear that the file is not
completely random. Is there such a black box that can attack a file
encrypted with DES or AES? The best answer is that no one knows of
any black box that will do the job in any reasonable amount of time. A
brute-force attack is possible, but this requires a large machine and



30 CHAPTER 2. ENCRYPTION

around
n pearls n – k pearls to decode

k pearls to encode

Figure 2.3: RSA encryption works by arranging the possible messages
in a loop with a secret circumference. Encryption is accomplished by
moving a random amount, k, down the loop. Only the owners know
the circumference, n, so they can moven−k steps down the loop and
recover the original message.

some insight into the structure of the encrypted file. So we could
argue that the results of DES or AES should appear random because
we can’t predict them successfully.[Way92, Fou98]

The same arguments also hold for RSA. If there was some black
box that could take a number and tell you where it stood in the loop,
then you would be able to break RSA. If the input doesn’t fall in a pat-
tern, then the output should be very random. If there was some way
of predicting it, then that could be used to break RSA. Of course, the
bits coming out of a stream of RSA-encrypted values are not perfectly
random, at least at the level of bits. The values in the output are all
computed modulo n so they are all less than n. Since n is not a power
of 2, some bits are a little less likely.

Even if the values can’t be predicted, they still might not be as ran-
dom looking as we might want. For instance, an encrypted routine
might produce a result that is uncrackable but filled with only two
numbers like 7 and 11. The pattern might be incomprehensible and
unpredictable, but you still wouldn’t want to use the source as the
random number generator for your digital craps game. One immedi-
ate clue is that if the 7 and the 11 occur with equal probability, then
the entropy of such a file is clearly 1 bit per number.

It is easy to construct a high-level argument that this problem will
not occur with DES. All possible output values should be produced
with equal probability. Why? Because DES can be decoded success-
fully. 64 bits go into DES and 64 bits go out. Each possible output can
have only one matching input and vice versa. Therefore each possi-
ble output can be produced.
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The same argument also holds for RSA. The loop contains a num-
ber for each of all possible messages and these numbers are dis-
tributed around the loop in a way that we can’t invert. Therefore,
each output value has practically the same probability of emerging
from the function.

Although these two arguments don’t prove that the output from
an encryption function is random, they do suggest that DES and RSA
will pass any test that you can throw at them. If a test is good enough
to detect a pattern, then it would be a good lever for breaking the
code. In practice, the simple tests support these results. The out-
put of DES is quite random.3 Many tests show that it is a good way
to “whiten” a random number source to make it more intractable.
For instance, some people experiment with using a random physical
process like counting cosmic rays to create random numbers. How-
ever, there might be a pattern caused by the physics of the detector.
A good way to remove this possibility is to use DES to encrypt the
random data and produce the whitest noise possible.

2.3 Measuring and Encrypting Information

Information is a slippery notion. Just how big is a fact? How much
data must be accumulated before you have a full-fledged concept?
None of these questions are easy to answer, but there are approxima-
tions that help with digital data. Shannon’s measure of information is
closely tied to probability and randomness. In a sense, information
is defined by how much randomness it can remove. Our goal is to
harness randomness and replace it with a hidden message. Knowing
the size, length, depth or breadth of our target is a good beginning.

Let an information stream be composed of n characters between
x0 and xn−1 that occur in the stream with probability ρ(xi). Shan-
non’s measure of the entropy in the information stream, that is the
number bits per character, can be written:

n−1∑
i=0

ρ(xi) log

(
1

ρ(xi)

)
.

The log is taken base two.

3The level of randomness depends on the input file if there is no key feedback
mechanism being used. In some versions of DES, the results of one block are XORed
with the inputs for the next block so that there will be diffusion across the blocks. If
this is not used, someone could input a file with a pattern and get out a file with a
pattern as long as the pattern repeats in an even multiple of 8 bytes.
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If a stream is made up of bytes with values between 0 and 255
and every byte value occurs with equal probability of 1

256 , then the
entropy of the stream is 8 bits per byte. If only two bytes, say 43 and
95, each occur half of the time and the other 254 bytes don’t occur
at all, the entropy of this stream is only 1 bit per byte. In this basic
example, it should be obvious how the bit stream can be compressed
by a factor of 8 to 1 bit per character. In more complex examples, the
entropy is still a good rough measure of how well a basic compression
algorithm will do.

The limitations of Shannon’s measure of information are pretty
obvious. An information stream that repeats the bytes 0, 1, 2, . . . , 254,
255, 0, 1 . . . ad infinitum would appear to contain 8 bits of informa-
tion per byte. But, there really isn’t that much information being
conveyed. You could write a short two-line program in most com-
puter languages that would duplicate the result. This computer pro-
gram could stand in for this stream of information and it would be
substantially cheaper to ship this program across the network than it
would be to pay for the cost of sending an endless repeat stream of
bytes.

In a sense, this repeating record computer program is a good
compressed form of the information. If the data was potato chips,
you would hope that it was measured by the number of lines in a
computer program that could generate it, not the Shannon entropy.
There is another measure of information known as the Kolmogorov
complexity that attempts to measure the information by determin-
ing the size of the smallest program that could generate the data.
This is a great theoretical tool for analyzing algorithms, but it is en-
tirely impractical. Finding the smallest program is both theoretically
and practically impossible because no one can test all possible pro-
grams. It might be a short program in C, but how do we know the
length in Pascal, Smalltalk, or a language that no one has written yet?

The Shannon measure of information can be made more compli-
cated by including the relationship between adjacent characters:

∑
i,j

ρ(xi|xj) log

(
1

ρ(xi|xj)

)
.

ρ(xi|xj) means the probability that xi follows xj in the information
stream. The sum is computed over all possible combinations. This
measure does a good job of picking up some of the nature of the
English language. The occurrence of a letter varies significantly. “h”
is common after a “t” but not after a “q”. This measure would also
pick up the pattern in the example of 0, 1, 2, . . . , 255, 0, 1, . . .

But there are many slightly more complicated patterns that could
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be generated by a computer program yet confound this second-order
entropy calculation. Shannon defined the entropy of a stream to in-
clude all orders up to infinity. Counting this high may not be possi-
ble, but the higher order terms can usually be safely ignored. While it
may be practical to compute the first- or second-order entropy of an
information stream, the amount of space devoted to the project obvi-
ously becomes overwhelming. The number of terms in the summa-
tion grows exponentially with the order of the calculation. Shannon
created several experimental ways for estimating the entropy, but the
limits of the model are still clear.

2.3.1 RSA Encryption

The section “Encryption and White Noise” on page 20 described RSA
encryption with the metaphor of a long circle of beads. Here are
the equations. The system begins with two prime numbers p and q.
Multiplying p and q together is easy, but no one knows of an efficient
way to factor n = pq into its components p and q if the numbers are
large (i.e., about 1024 to 2048 bits).

This is the basis of the security of the system. If you take a number
x and compute the successive powers of x, then xφ(n) mod pq = x.4

That is, if you keep multiplying a number by x modulo pq, then it
returns to x after φ(pq) + 1 steps.

A message is encrypted by treating it as the number x. The sender
encrypts the number x by multiplying it by itself e times, that is com-
puting xe mod pq. The receiver decrypts the message by multiplying
it by itself d times, that is computing (xe)d mod pq. If d × 3 = φ(x),
then the result will be x.

This φ(n) is called the Euler Totient function and it is the number
of integers less than n that are relatively prime to n. If n is a prime
number then φ(n) is n − 1 because all of the integers less than n
are relatively prime to it. The values are commutative so φ(pq) =
φ(p)φ(q). This means that φ(pq) = pq − p − q + 1. For example,
φ(15) = 8. The numbers 1, 2, 4, 7, 8, 11, 13 and 14 are relatively prime
to 15. The values 3, 5, 6, 9, 10 and 12 are not.

Calculating the value of φ(pq) is easy if you know both p and q, but
no one knows an efficient way to do it if you don’t. This is the basis for
the RSA algorithm. The circumference of this string of pearls or beads
is φ(pq). Moving one pearl or bead along the string is the equivalent
of multiplying by x.

4x mod y means the remainder after x is divided by y. So 9 mod 7 is 2, 9 mod 3 is
0.
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The two keys for the RSA are chosen so they both multiply to-
gether to give 1 modulo φ(pq). One is chosen at random and the
other is calculated by finding the inverse of it. Call these e and dNeal Koblitz’s book,

[Kob87], gives a good
introduction to finding

this inverse.

where de = 1 mod φ(pq). This means that:

xed mod pq = x.

This can be converted into an encryption system very easily. To en-
crypt with this public key, calculate xe mod pq. To decrypt, raise this
answer to the d power. That is, compute:

(xe mod pq)d mod pq = xde mod pq = x.

This fulfills all of the promises of the public-key encryption sys-
tem. There is one key, e, that can be made public. Anyone can en-
crypt a message using this value. No one can decrypt it, however,
unless they know d. This value is kept private.

The most direct attack on RSA is to find the value of φ(pq). This
can be done if you can factor pq into p and q.

Actually implementing RSA for encryption requires attention to a
number of details. Here are some of the most important ones in no
particular order:

Converting Messages into Numbers Data is normally stored as bytes.
RSA can encrypt any integer that is less than pq. So there needs
to be a solid method of converting a collection of bytes into and
out of integers less than pq. The easiest solution is to glue to-
gether bytes until the string of bytes is a number that is greater
than pq. Then remove one byte and replace it with random bits
so that the value is just less than pq. To convert back to bytes,
simply remove this padding.The equations here

make it easy to describe
RSA, but they aren’t

enough to make it easy
to build a working

implementation. Dan
Boneh, Antoine Joux,

and Phong Q. Nguyen
found major

weaknesses in naive
solutions for converting

a message into a
number. [BJN00]

Fast Modulo Computation Computing xe mod pq does not require

[BFHMV84], [Bri82],
[Mon85], and [QC82]

discuss efficient
multiplication

algorithms.

multiplying x together e times. This would be prohibitive be-
cause e could be quite large. An easier solution is to compute
x, x2 mod pq, x4 mod pq, x8 mod pq, . . . That is, keep squaring
x. Then choose the right subset of them to multiply together to
get xe mod pq. This subset is easy to determine. If the ith bit of
the binary expansion of e is 1, then multiply in x2i

mod pq into
the final answer.

Finding Large Prime Numbers The security of the RSA system de-
pends on how easy it is to factor pq. If both p and q are large
prime numbers, then this is difficult. Identifying large prime
numbers as luck would have it, is pretty easy to do. There are
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a number of tests for primality that work quite well. The solu-
tion is to choose a large, odd number at random and test it to
see if it is prime. If it isn’t, choose another. The length of time
it takes to find a prime number close to an integer x is roughly
proportional to the number of bits in x.

The Lehman test [Leh82] is a good way to determine if n is
prime. To do so, choose a random number a and compute
a(n−1)/2 mod n. If this value is not 1 or −1, then n is not prime.
Each value of a has at least a 50% chance of showing up a non-
prime number. If we repeat this test m times, then we’re sure
that we have a 1 in 2m chance that n is not prime, but we haven’t
found an a that would prove it yet. Making m = 100 is a good
starting point. It is not absolute proof, but it is good enough.

RSA encryption is a very popular algorithm used for public-key
encryption. There are also a large number of other algorithms that
are available. The discussion of these variants is beyond the scope of
this book. Both Bruce Schneier’s book, [Sch94], and Gus Simmons’
book [ed.92] offer good surveys.

2.4 Summary

Pure encryption algorithms are the best way to convert data into
white noise. This alone is a good way to hide the information in the
data. Some scientists, for instance, encrypt random data to make it
even more random. Encryption is also the basis for all of the other
algorithms used in steganography. The algorithms that take a block
of data and hide it in the noise of an image or sound file need data
that is as close to random as possible. This lowers the chance that it
can be detected.

Of course, nothing is perfect. Sometimes data that is too random
can stick out too. Chapter 17 describes how to find hidden informa-
tion by looking for values that are more random than they should be.

The Disguise Good encryption turns data into white noise that ap-
pears random. This is a good beginning for many algorithms
that use the data as a random source to imitate the world.

How Secure Is It? The best new encryption algorithms like Rijndael
and the other four AES finalists have no practical attack known
to the public. These algorithms are designed and evaluated on
their ability to resist attack. DES is no longer very secure for
serious applications.
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How to Use It? Encryption code can be downloaded from a number
of places on the Net.

Further Reading

• Applied Cryptography by Bruce Schneier is a good general
introduction to the subject. It includes good summaries of
the major algorithms. [Sch94]

• Handbook of Applied Cryptography by Alfred J. Menezes,
Paul C. van Oorschot and Scott A. Vanstone is a good tech-
nical discussion of many of the most important algorithms
as well as their mathematical foundations. [MvV97]

• The proceedings from the various conferences sponsored
by the International Association of Cryptologic Research
(IACR) offer some of the most timely insights into the best
open research in the field. See iacr.org.

• It’s impossible to summarize all of the hard work that cryp-
tographers have done to create linear approximations of
non-linear encryption functions. Adi Shamir did a good
job and extended the techniques developed by many oth-
ers in his talk given at Crypto 2008. He describes a sophis-
ticated algebraic technique that can be applied to many of
the most common algorithms used today.[Sha08]



Chapter 3

Error Correction

3.1 Close but No Cigar

1. Speedwalking.

2. America OnLine, CompuServe and Prodigy.

3. Veggie burgers.

4. Using a Stairmaster.

5. Winning the Wild Card pennant.

6. Driving 55 mph.

7. Living in suburbia.

8. New Year’s Resolutions.

9. Lists as poetry.

10. Lists as a simple way to give structure to humor.

11. Cigarettes.

3.2 Correcting Errors

The theory of computers rests on an immutable foundation: a bit is
either on (“1”) or off (“0”). Underneath this foundation, however, is
the normal, slightly random, slightly chaotic world in which humans
spend their time. Just as the sun is sometimes a bit brighter than

37
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usual and sometimes it rains for a week straight, the physics that gov-
ern computer hardware are a bit more random. Sometimes the spot
on the hard disk responsible for remembering something doesn’t be-
have exactly perfectly. Sometimes an alpha particle from outer space
screams through a chip and changes the answer.

Computer designers manage to corral all of this randomness
through a mixture of precision and good mathematics. Clean ma-
chines eliminate the dirt that screws things up and the math of error-
correcting codes is responsible for fixing up the rest of the problems
that slip through. This mathematics is really one of the ideas that
is most responsible for the digital explosion by making it possible
to build a digital circuit with a bit of sloppiness that can never be
present in an analog world. Designers know that the sloppiness can
be fixed by a bit of clever mathematics.

Error-correcting codes can be used effectively to hide informa-
tion in a number of important ways. The most obvious is to just in-
troduce small errors into a file in an organized fashion. If someone
tries to read the file with ordinary tools, the error correction patches
up these changes and no one is the wiser. More sophisticated tools
could find these changes by comparing the original file with the
cleaned-up version or simply using the error-correcting principles to
point the location. The message could be encoded in the position of
the errors.

Some music CD manufacturers are taking advantage of the differ-A high number of errors
might indicate the

existence of a message.
Chapter 17 describes

how to build statistical
models to detect

abnormal patterns like
a high error rate.

ences between the error-correcting mechanisms in computers and
CD players. Strategically placed errors will be corrected by a CD
player but labeled as disk failure by the mechanisms in computers.

Error-correcting codes can also be used to help two people share

Page 178 shows how to
construct a system using

random walks. Ross
Anderson, Roger

Needham, and Adi
Shamir used a similar

approach to hide
information in their

steganographic file
system. [ANS98]

a channel. Many semi-public data streams make ideal locations to
hide information. It might be possible to insert bits in a photo-
graph or a music file that floats around on the Internet by grabbing
it and replacing it with a copy that includes your message. This
works well until someone else has the same idea. Suddenly one
message could overwrite another. An ideal solution is to arrange
it so no one took up more than a small fraction of a channel like
this one. Then, they would write their information with an error-
correcting code. If two messages interacted, they would still only
damage a fraction of each other’s bits and the error-correcting code
would be used to fix it. This is how the codes are used in many radio
systems.

Of course, error-correcting codes can also help deal with errors
introduced by either attackers, a noisy channel, or a format conver-
sion. Some web sites reduce the size of images or apply subtle color
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corrections. In some cases, these modifications introduce only a few
changes to the file and the error-correcting codes can recover them.
This additional strength is hard to measure because there is no easy
way to predict the damage waiting for the file.

On occasion, it makes sense to split a message into a number of
different parts to be shipped through different channels. Ideally, the
message could be reconstructed if a few of the parts have been com-
promised along the way. The part could either be lost or scrambled
by a malicious courier. In either case, error-correcting codes can de-
fend against this problem. Better secret splitting

solutions are found
in Chapter 4.

A system of error-correcting codes comes in any number of fla-
vors. Many of the most commonly used codes have the ability to
carry k bits in a packet of n bits and find the right answer if no more
than m errors have been made. There are many possible codes that
come with different values of k, n, and m, but you never get anything
for free. If you have 7 bits and you want each block to carry at least
4 bits of information, then one standard code can only correct up to
one error per block. If you want to carry 6 bits of information in a 7-
bit block, then you can’t successfully correct errors and you can only
detect them half of the time.

The best metaphor for understanding error-correcting codes is to
think about spheres. Imagine that each letter in a message is repre-
sented as the center of a sphere. There are 26 spheres for each letter
and none of them overlap. You send a message by sending the coor-
dinates to this point at the center. Occasionally a transmission glitch
might nudge the coordinates a bit. When the recipient decodes the
message, he or she can still get the correct text if the nudges are small
enough so the points remain inside the sphere. The search for the
best error-correcting codes involves finding the best way to pack the
spheres so that you can fit the most spheres in a space and transmit
the most characters.

Although mathematicians talk about sphere packing on an ab-
stract level, it is not immediately obvious how this applies to the digi-
tal world where everything is made up of binary numbers that are on
or off. How do you nudge a zero a little bit? If you nudge it enough,
when does it becomes a one? How do you nudge a number like 252,
which is 11111100 in binary? Obviously a small nudge could convert
this into 111111101, which is 253. But what if the error came along
when the first bit was going through the channel? If the first bit was
changed the the number would become 011111100. That is 114, a
change of 128, which certainly doesn’t seem small. That would imply
that the spheres really couldn’t be packed too closely together.

The solution is to think about the bits independently and to mea-
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sure the distance between two numbers as the number of different
bits. So 11111100 and 11111101 are one unit apart because they dif-
fer in only one bit. So are 11111100 and 01111100. But 01111100 and
11111101 are two units apart. This distance is often called the Ham-
ming distance.

This measure has the same feel as finding the distance between
two corners in a city that is laid out on a Manhattan-like grid. The
distance between the corner at 10th Avenue and 86th Street and the
corner at 9th Avenue and 83rd Street is four blocks, although in Man-
hattan they are blocks of different lengths. You just sum up the differ-
ences along each of the different dimensions. In the street example,
there are two dimensions that are the avenues that run north and
south or the streets that run east and west. In the numerical exam-
ple, each bit position is a different dimension and the 8-bit examples
above have eight dimensions.Error-correcting codes

spread the information
out over a number of

bits in the same fashion
as the spread-spectrum

algorithms in
Chapter 14.

The simplest example of an error-correcting code uses 3 bits to
encode each bit of data. The code can correct one error in a bit but
not two. There are eight possible combinations of three bits: 000,
001, 010, 011, 100, 101, 110, and 111. You can think of these as the
eight corners of a cube as shown in Figure 3.1. A message 0 can be
encoded as “000,” and a 1 can be encoded as “111”. Imagine there
is an error and the “000” was converted into a “001”. The closest
possible choice, “000”, is easy to identify.

The sphere of “000” includes all points that are at most one Ham-
ming unit away: 001, 010, and 100. Two errors, however, nudge a
point into the adjacent sphere.

Obviously, the technique can be extended into higher-dimen-
sional spaces. The trick is to find an optimal number of points that
can be packed into a space. Imagine, for instance, a five-dimension-
al space made up of the points 00000, 00001, 00010, . . . , 11111. Every
point has an opposite point that is five units away from it. 00000 is
five steps away from 11111 and 10111 is five units away from 01000. It
is easy to construct a sphere with a radius of two units around each
point. That means 0 can be encoded as 00000 and 1 can be encoded
as 11111. Up to two errors could occur and the correct answer would
be found. 10110 is two units away from 11111, so it would fall in its
sphere of influence and be decoded as a 1.

Generally, odd-dimensional spaces are much better than even-
dimensional spaces for this basic scheme. Imagine the six-dimen-
sional space created from the points 000000, 000001, 000010, . . . , 111111.
Both 000000 and 111111 are six units apart. But if you draw a sphere
of radius 3 around each point, then the spheres overlap. The point
010101, for instance, is both three units away from 000000 and three
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000 001

010 011

100 101

110 111

Figure 3.1: The eight corners of the cube. The two corners, 000 and
111, are used to send the message of either 0 or 1. If there is an error
in one bit, then it can be recovered by finding the closest corner.

000 001

010 011

100 101

110 111

Figure 3.2: The Hamming distance shows that the corner “011” is
three steps or units away from “100”. That’s the longest distance in
this cube.
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Figure 3.3: A poor way to pack circles. If the system error can’t shift
the signal more than the radius of the sphere, then the space between
the circles is wasted. Figure 3.4 shows a better approach.

units away from 111111. It’s in both spheres. If you were to try and
construct an error-correcting code using this arrangement, then you
would only be able to fit two spheres of radius 2 in the space and
the code would only be able to resist up to two errors per block. Ob-
viously the 5-bit code in the five-dimensional space is just as error-
resistant while being more efficient.

There is no reason why you need to pack only two spheres into
each space. You might want to fit in many smaller spheres. In seven-
dimensional space, you can fit in two spheres of radius 3 centered
around any two points that are seven units apart. But you can also
fit in a large number of spheres that have a radius of only 1. For
instance, you can place spheres with a single unit radius around
0000000, 0000111, 1110000, 0011001, 1001100, 1010001, and 1000101.
None of these spheres overlap and the space is not full. You could
also add a sphere centered around 1111110. There are eight code
words here, so eight different messages or 3 bits of information could
be stored in each 7-bit code word. Up to one bit error could be found
and resolved.

In general, packing these higher-dimensional spaces is quite dif-
ficult to do optimally. It should be clear that there are many other
points that are not in any of eight different spheres. This reflects a
gross inefficiency.

“Constructing Error-Correcting Codes” on page 46 describes how
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Figure 3.4: A better approach to packing the circles from Figure 3.3.
This is about 86.6% of the original height. It is wider by one half of
the radius of a circle.

to build general Hamming codes. It is possible to use the algorithm
given there to construct an error-correcting code that packs 4 bits
of information, or 16 different messages, into one 7-bit code word.
That’s one extra bit of data. The code can also resist up to 1 bit of
error. The 16 centers generated by this method are:

0000000 0001111 0010011 0011100
0100101 0101010 0110110 0111001
1000110 1001001 1010101 1011010
1100011 1101100 1110000 1111111

There are many other types of error-correcting codes. The metaphor
of sphere packing is a good way to understand the basic idea, but it
offers little guidance on how it can be done effectively. It is easy to
imagine stacking pool balls in a rack, but it is impossible to visualize
how to do this in multiple dimensions—especially if the Hamming
distance is used.

In practice, error-correcting codes rest on algorithms that take the
data and add extra parity bits that can be used to recover the data.
The parity bits “puff up” the data into more dimensions and move
the points away from each other. For instance, in four dimensions
the points 1110 and 1111 are right next to each other. But if three
parity bits are added to the end of each one, the results, 1110000 and
1111111, are four units apart.
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If you look carefully at the table on page 43, the first four bits
represent all of the possible points in a four-dimensional space. The
last three bits are parity bits that were added to puff it out into seven
dimensions.

The location of the parity bits varies significantly between differ-
ent codes. Some codes can correct a certain number of errors that
occur anywhere in a block of data. Others can correct errors that hap-
pen in bursts. They might be able to correct only one burst of errors,
but that burst can contain anywhere between one flipped bit and an
upper limit of k. If the errors don’t occur next to each other, however,
then the code can’t fix the error. Each of these codes places the parity
bits in different arrangements to grab different types of errors.

The rest of this book will rely on error-correcting codes to add
robustness to protocols, perhaps add randomness, and provide an-
other way to split information into a number of different parts. Using
error-correcting codes is essential if information might bump into
other information in the channels.

3.2.1 Error Correction and White Noise

Error-correcting codes may be intended to correct errors, but they
can also be used to make a bit stream conform to some pattern.
Once a collection of bits is encoded in an error-correcting code then
changes can be introduced without destroying the underlying infor-
mation. These changes might add randomness or, with some diffi-
culty, make the data conform to a pattern.

In practice, the best choice for this approach is error-correcting
codes that can sustain a high number of errors. A good first choice
might be the 3-bit error-correcting code that conveys one bit. You
write 000, 001, 010, or 100 for the 0 bit and 111, 110, 101, or 011 for
the 1 bit. Any of the three are acceptable choices. This will triple the
size of the file, but it will allow plenty of flexibility in rearranging the
structure of the data.

Adding randomness is easy, but there are limitations to making
the data fit some other pattern. Obviously the underlying data must
come close enough to the pattern so that errors can be introduced
successfully. In an abstract sense, the pattern must fall into the
spheres. The bigger the spheres, the more patterns that can work
successfully. For instance, you could easily use the 3-bit code de-
scribed above to produce a bit stream that never had more than three
ones or three zeros occur in a row. Each bit could be encoded with
a pattern that started with a 1 or a 0. On the other hand, you could
not produce a pattern that always requires that there were five ones
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or zeros in a row.
This technique can be taken one step further that takes it outside

of the realm of error-correcting codes entirely. If you’re planning to
use the error-correcting codes to give you enough room to add some
randomness to the data, then you’re going to lose many of the error-
correcting properties. For instance, one flipped bit can convert 110,
a value representing 1, into 010, a value representing 0. In essence,
you might want to forget about the error-correcting ability altogether
and just construct a list of codes that represent each bit. 1 might be
encoded as 001, 100, 011, and 111, while 0 may be encoded as 110,
101, 010, and 000. The main advantage of this approach is that the
distribution of zeros and ones can be even more balanced. In the 3-
bit code used as an example in this section, there are an average of
2.25 bits used to encode a 1 and .75 used to encode a 0. This means a
file with a high percentage of ones, for instance, will still have a high
percentage after the encoding. Using random codes assigned to each
bit can remove this bias.

3.2.2 Error Correction and Secret Sharing

Error-correcting codes have a functional cousin known as secret shar-
ing – that is, a class of algorithms that allow a file be split intom parts Secret sharing is

described in detail in
Chapter 4.

so that only m − k parts are necessary to reconstruct it. Obviously,
an error-correcting code that could handle up to k errors in m bits
would works similarly. Simply encode the file using this method and
then break up the m bits into m different files.

There is one problem with this approach. Some bits are more
privileged than others in some error-correcting schemes. For in-
stance, the next section on Hamming codes describes a code that
takes 11 bits and adds 4 parity bits that will correct any single er-
ror. Ideally, a file encoded with this code could be broken into 15
parts and any 14 parts would suffice to recover the data. But, there
are only 11 bits of data in every block of 15 bits. The other 4 parity
bits are used just to correct the errors. If the ith bit of each block al-
ways goes in the ith part, then the right 11 parts would suffice. The
key is to distribute the bits so this never happens. Here are the steps:

1. Choose an error-correcting code that offers the right recovery
properties. It is easy to find Hamming codes that recover single
errors.

2. Encode the file using this technique.

3. If there are n bits in each block and n files, then place one
bit from each block in each file. That is, place bit i in file i +
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j mod n. The choice of j should vary with each block. It can
either increase sequentially or be chosen by a random number
generator. If a random number generator is used, it should be
a pseudo-random number generator that can be reseeded to
recover the information later.

For most practical purposes, error-correcting codes are not ideal
ways to share secrets. While it is easy to construct a Hamming code
that can sustain one error, it is pretty inefficient to generate an error-
correcting code that contains n bits per block and still survive, say,
n− 2 errors. The theory is not optimized around this solution and, in
fact, the approach presented in this chapter can’t detect more than n

2
errors.

A better secret-sharing technique emerges directly from geome-
try. Imagine that you encode a message as a point in a plane. One
solution is to draw three lines through the point and distribute the
lines to different people. Two lines are enough to reconstruct the
point. The process can be turned into an error-correcting code just
by choosing the one point that represents the largest intersection
of lines. If you want to encode larger amounts of data, you can
use higher-dimensional spaces and use planes or higher dimensions.
This is close to what the Hamming codes are doing, but it is difficult
to think in these terms when only bits are being used.

3.3 Constructing Error-Correcting Codes

Hamming codes are easy and elegant error-correcting codes. Con-[Ara88] and [LJ83] were
the source for this

material.
structing them and using them is relatively easy. The problem can
be thought of as taking your incoming message bits and then adding
parity bits that will allow you to correct the errors. The net effect is to
create an overdetermined collection of linear equations that can be
solved in only one way.

The easiest way to introduce the algorithm is by constructing anSection 4.2 shows how
to use error-correcting

codes as a way to share
responsibility or split a

secret into multiple
parts. Better algorithms

follow.

example code that takes 11 bits and adds 4 new parity bits to the
mix so that an error of at most one bit can be corrected if it occurs.
The input bits will be a1, . . . , a11. The output bits are b1, . . . , b15. For
the purpose of illustrating the algorithm, it is easier to use binary
subscripts: b0001 through b1111.

The best way to illustrate the process is with a table of the output
bits. The input bits are merely copied over into an output slot with a
different number. This is easy to do in hardware if you happened to
be implementing such an algorithm in silicon. The extra parity bits
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Table 3.1: Output Bit: Where It Comes From

b0001 a1 + a2 + a4 + a5 + a7 + a9 + a11 mod 2
b0010 a1 + a3 + a4 + a6 + a7 + a10 + a11 mod 2
b0011 a1

b0100 a2 + a3 + a4 + a8 + a9 + a10 + a11 mod 2
b0101 a2

b0110 a3

b0111 a4

b1000 a5 + a6 + a7 + a8 + a9 + a10 + a11 mod 2
b1001 a5

b1010 a6

b1011 a7

b1100 a8

b1101 a9

b1110 a10

b1111 a11

are computed by adding up different sets of the input bits modulo 2.
They are found in output bits b0001, b0010, b0100, and b1000.

Errors are detected by calculating four formulas that will give the
location of the error:

c0 = b0001 + b0011 + b0101 + b0111 + b1001 + b1011 + b1101 + b1111 mod 2

c1 = b0010 + b0011 + b0110 + b0111 + b1010 + b1011 + b1110 + b1111 mod 2

c2 = b0100 + b0101 + b0110 + b0111 + b1100 + b1101 + b1110 + b1111 mod 2

c3 = b1000 + b1001 + b1010 + b1011 + b1100 + b1101 + b1110

+ b1111 mod 2

These four equations yield 4 bits. If they’re combined into a single
number, then they’ll reveal the location of an error. For instance,
imagine that bit b1011 was flipped by an error. This is the incoming
bit a7 and this bit is part of the equation that produces parity bits
b1000, b0010, and b0001. The pattern should be obvious. The parity bits
are stuck at slots that have only a single 1 in the binary value of their
subscript. A normal bit is added into the equation by examining the
binary value of its subscript. If there is a 1 at position i, then it is
added into the parity bit that has a 1 at position i. b1011 has three 1’s,
so it ends up in four equations.

The effect of an error in b1011 is easy to follow. b0001 will not match
the sum b0011 + b0101 + b0111 + b1001 + b1011 + b1101. This will mean that
c0 will evaluate to 1. The same effect will set c1 = 1 and c3 = 1. c2 will



48 CHAPTER 3. ERROR CORRECTION

stay zero. If these are combined in the proper order, 1011, then they
point directly at bit b1011.

These equations also correct errors that occur in the parity bits.
If one of these is flipped, only one of the equations will produces a
1. The rest yield zeros because the parity bits are not part of their
equations.

The general steps for constructing such an error-correcting code
for n bits can be summarized:

1. Find the smallest k such that 2k−k−1 ≤ n. This set of equations
will encode 2k − k − 1 bits and produce 2k − 1 bits.

2. Enumerate the output bits with binary subscripts: b00...01 . . . b11...11.

3. The parity bits will be the output bits with a single 1 in their
subscript.

4. Assign the input bits to the nonparity output bits. Any order
will suffice, but there is no reason not to be neat and do it in
order.

5. Compute the parity bit with a 1 at position i by adding up all of
the output bits with a 1 at the same position, i, except the parity
bit itself. Do the addition modulo 2.

6. To decode, compute ci which is the sum of all output bits that
have a 1 in position i, including the parity bit. This will yield a
0 if the parity bit matches and a 1 if it doesn’t. Aggregating the
ci values will reveal the position of the error. This code will only
detect one error.

What is the most efficient choice of k for this algorithm? Given
that the number of parity bits is proportional to the log of the num-
ber of input bits, it is tempting to lump the entire file into one big
block and use only a small number of parity bits. This requires a large
number of additions. There are about n log n

2 additions in a block of
n bits. Large blocks require fewer parity bits but need more compu-
tation. They also correct only one error in the entire block and this
substantially limits their usefulness. The best trade off must be based
on the noisiness of the channel carrying the information.

Implementations of Hamming codes like this one are often fastest
when they are done a word at a time. Most CPUs have instructions
that will do a bitwise XOR of an instruction word, which is usually ei-
ther 32 or 64 bits long. XOR is addition modulo 2. These fast XORs
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provide a good way of computing up to 32 or 64 encodings in paral-
lel. This is done by using all of the above equations, but doing the cal-
culations with words instead of bits and XOR instead of basic arith-
metic.

This approach is a very fast way to encode the error-correcting
bits and it is a quick way to detect errors, but correcting the error can
be slow. Testing for errors can be done just by seeing if all of the ci
values are zero. If one of the ci is not zero, then the code must step
through each of the bits individually and compute the location of the
errors. This is much slower, but not any slower than computing the
code in a bitwise fashion.

The Hamming codes described in this section are particularly el-
egant, in my opinion, because of the way that the results of the ci are
aggregated to find the location of the error. This is just a result of
the arrangements of the parity bits. The same basic algorithm could
be used no matter what order the bits were found. Any permuta-
tion of the bits b0001 through b1111 would work. The recovery process
wouldn’t be as elegant.

This elegant arrangement is not necessary for hardware-based
implementations because the correction of the error does not need
to be done by converting the ci values into an index that points to
the error. It is quite possible to create a set of AND gates for each bit
that looks for a perfect match. This means the parity bits could be
placed at the beginning or the end of each block. This might simplify
stripping them out.

3.3.1 Periodic Codes

The codes described in the previous section correct only one bit error
per block. This may suffice, but it can be pretty inefficient if the block
sizes are small. The Hamming codes need three parity bits to correct
one error in four bits. That’s almost a 50% loss just to correct one bit
out of four.

The Hamming codes are also less than optimal because of the
nature of the noise that can corrupt digital data. The errors may not
be randomly distributed. They are often grouped in one big burst
that might occur after an electrical jolt or some other physical event
disrupts the stream. A scratch on a CD-ROM may blur several bits
that are right next to each other. These errors would destroy any
Hamming solution that is limited to correcting one bit in each block.

Periodic codes are a better solution for occasions that demand
detecting and recovering errors that occur in bursts. In this case,
the parity bits will be distributed at regular intervals throughout the
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stream of bits. For instance, every fourth bit in a stream might be a
parity bit that is computed from some of the previous bits. As before,
the location of the parity bits can be varied if the number of parity
bits per set of bits is kept constant, but it is often cleaner to arrange
for them to occur periodically.

The Hamming codes are designed to work with predefined blocks
of bits. The convolutional codes described here will work with rolling
blocks of bits that overlap. The same convolutional technique will
also work with fixed blocks, but it is left out here for simplicity. To
avoid confusion, this section will use the word subblock to refer to
the smaller sets of bits that are used to create the rolling block.

The periodic code will consist of a subblock of bits followed by a
set of parity bits that are computed from the bits that are present in
any number of the preceding subblocks. The parity might also de-
pend on some of the bits in the following subblocks, but this config-
uration is left out in the interest of simplicity.

A set of bits from a convolutional code might look like this:

b(i,1), b(i,2), b(i,3), b(i,4), b(i,5), p(i,1).

Here, b(i,1) stands for the first data bit in subblock i. p(i,1) is the first
parity bit. There are five data bits and one parity bit in this example.

The parity bit could be any function of the bits in the previous
subblocks. For simplicity, let

p(i,1) = b(i,1) + b(i−1,2) + b(i−2,3) + b(i−3,4) + b(i−4,5) mod 2.

That is, each parity bit is affected by one of the bits in the previous
five subblocks.

These parity bits can detect one burst of up to five bits that oc-
curs in each rolling set of five subblocks. That means that the error
will be detected if every two error bursts have at least five subblocks
between them. The error, once detected, can be fixed by asking for a
retransmission of the data.

The error can be detected by watching the trail it leaves in the
parity bits that follow it. A burst of errors in this case might affect any
of the five parity bits that come after it. When the parity bits don’t
match, the previous set of five subblocks can be retransmitted to fix
the problem. It should be easy to see how spreading out the parity
bits makes it possible for the code system to detect bursts of errors.
None of the equations used to calculate the parity bits depends on
neighboring bits. In this example, there are at least five bits in the
bit stream between each of the bits used to calculate each parity bit.
In the Hamming example, each of the parity equations depended on
some adjacent bits. If both of those bits were flipped because of a
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burst of error noise, then the errors would cancel out and the error
would be recoverable.

Recovering a parity error is normally not possible with a simple Section 14.4.2 describes
a coding scheme that
can produce the right
parity values when only
some of the bits can be
changed, a solution
that’s useful when you
only want to tweak the
least damageable parts
of an image.

code like this example. If one of the parity bits doesn’t agree in this
example, then the error could have been introduced by an error in
six different bits. Finding which one is impossible. To some extent,
a larger burst of errors will make the job easier. For instance, if three
bits in a row are flipped, then three consecutive parity bits will also
be flipped. If the parity bits are examined individually, then each one
could have been caused by up to six different errors. But periodic
codes like this are designed to handle bursts of errors. So it is accept-
able to assume that the three errors would be adjacent to each other.
This limits the location to two different spots.

For instance, here is a data stream with correct parity bits:

. . . 01010 0 01010 1 1001 1 01111 1 00011 1 . . .

If the first three bits are flipped, then the first three parity bits are also
flipped:

. . . 10110 1 01010 0 11001 0 01111 1 00011 1 . . .

Each individual error could have occurred in any of the previous five
blocks, but the overlapping nature of the code limits the error to the
first block shown here or either of the two blocks that preceded it.
If five bits were flipped in a row, then the exact location would be
known and it would be possible to correct the errors. This pushes
the code to an extreme and it would be better not to hope for bursts
to come at the extreme limit of the ability of the codes to detect the
errors. Both [LJ83] and [Ara88]

are good sources.The periodic code described in this section is a good way to detect
bursts of errors, but it cannot help correct them unless the burst is at
the extreme. There is some information available, but it is clearly not
enough to recover the data.

3.4 Summary

Error-correcting codes are one of the most important tools for build-
ing digital systems. They allow electronic designers to correct the
random errors that emerge from nature and provide the user with
some digital precision. If the electronics were required to offer per-
fect accuracy, then they would be prohibitively expensive.

These codes are useful for correcting problems that emerge from
the transmission systems. It might be desirable, for instance, for
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several people to use the same channel. If they use a small part
of the channel chosen at random, then the codes will correct any
occasional collisions.

The field is also blessed with a deep body of literature exploring
many different variations that lie outside of the scope of this intro-
duction. Unfortunately this book does not have the space to consider
them all nor outline the different ways that they can be more or less
useful for steganography.

Chapter 14 describes spread-spectrum-like applications for hid-
ing information. These techniques also rely on distributing the mes-
sage over a relatively large number of elements in the file. If several of
the elements are disturbed or mangled, these spread-spectrum solu-
tions can still recover the message.

The Disguise If you want to use these codes to hide information, the
best solution is to tweak a small subset of bits. If each block has
8 bits, for instance, the you can send 3 bits per block. If you
want to send 000, then flip bit 0. If you want to send 011, then
flip bit 3, and so on. When the bits are finally read at the other
end, the error-correcting codes will remove the errors and the
casual reader won’t even know they were there. You can use the
error-correcting codes to recover them.

Of course, this solution trades accuracy for steganography. Ac-
cidental or intentional errors will destroy the message. The
error-correcting powers of the equation will be spent on car-
rying the information.

Another simple solution is to encode your message by making a
few small changes in a signal that is already protected by some
error correction. Your message might be hide three bits (0 ≤
i < 8) by creating a fake error in bit i. This can be repeated for
every error-corrected byte, a pretty good packing ratio. When
someone receives the file, the regular error correction code will
fix the problem effectively hiding your changes. You can strip
the secret bits out by using the error-correcting algorithm to
detect the changes.

How Secure Is It? Error-correcting codes are not at all secure against
people who want to read them. The patterns between the bits
are easy to detect. They are quite resistant, however, against
errors.

How To Use Them? Error-correcting codes are rarely sold to con-
sumers directly, although consumers use them all the time.
Many electronic devices, however, like CD players and cell
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phones, rely on them. Programmers who need to use error-
correcting codes should search out complete books on the
topic, which is large and engaging.

Further Reading

• Shu Lin and Daniel J. Costello’s book, Error Control Cod-
ing, is one of the classic treatments in the area. [LC04]

• Jessica J. Fridrich, Miroslav Goljan, Petr Lisonek and David
Soukal discuss the use of Michael Luby’s LT Codes as
a foundation for building better versions of perturbed
quantization discussed in Section 14.4.2. They are like
error-correcting codes that are computed when some of
the bits can’t be changed. These graph-based codes can
be faster to compute than matrix-based solutions.[Lub02,
FGLS05]

• Wojciech Mazurczyk and Krzysztof Szczypiorski found that
Voice Over IP calls could hide information because the al-
gorithms work around missing packets— or packets re-
placed with hidden messages.[MS08]



Chapter 4

Secret Sharing

4.1 Two out of Three Musketeers

In Bob’s Manhattan living room, three high school chums are con-
fronting a middle-age crisis over scotch and soda. They’re all lawyers
and disenchanted by the way that money and corruption have ru-
ined the justice system. Inspired by movies like Batman, they decide
to recreate The Three Musketeers and prowl about the night looking
for people in need of help.
Bob: Okay. It’s settled. We’ll file for our license to carry con-

cealed weapons tomorrow. On Friday, we pick out our
Glocks.

Harry: Yes. 9mm.
Together: All for one and one for all!
Harry: You know, I just thought of something. My wife promised

her cousin we would go to dinner at her house on Friday.
She planned it last month. Could we get the Glocks an-
other day?

Bob: Sunday’s out for me. We’re going to my mother’s house
after church.

Mark: Well, doesn’t fighting evil count for something in the eyes
of God?

Bob: Yes. But I still think we need a contingency. We’re not
always going to be available. There will be business trips,
family visits, emergencies.

Mark: This is a good point. We might be stuck in traffic or held
up in court. We need a plan.

Harry: Well, what if we said, “All available for one and one for
who’s there that evening?”

55
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Mark: Not bad. It’s more flexible. But what if just one of us is
there?

Harry: What’s the difference?
Mark: That one person really wouldn’t be a group. He would be

acting as a vigilante. He could do anything he wanted that
evening. Maybe even something that was less than just.

Harry: So you want a quorum?
Mark: Yes. I say two out of three of us should be there before

someone can start invoking the name of the Three Mus-
keteers.

Bob: What about costumes? What do we wear if we’re alone?
Mark: Doesn’t matter. The most important thing is what we

shout as we vanquish the foes. Are we together on this?
Together: Two out of Three for One and One for Two out of Three!

4.2 Splitting Up Secrets

There are many occasions when you need to split a key or a secret
into numerous puzzle parts so that the secret can only be recovered
if all of the parts are available. This is a good way to force people to
work together. Many nuclear weapons systems, for instance, require
two people to turn two different keys simultaneously. Bank safe de-
posit boxes have two locks and one key is held by the owner while the
other is held by the bank.1

Splitting information into a number of parts is a good way to
make information disappear. Each part may look like noise, but to-
gether they create the message. These different parts can take differ-
ent paths adding further confusion to the entire process.

There are many neat ways to mathematically split a secret into
parts. This secret might be the key to an encrypted file or it might be
the important factoid itself. The goal is to create n different files or
numbers that must all be present to reconstruct the original number.
There are also threshold schemes that let you recover the secret if you
have some smaller subset of the original parts. If a corporation has
five directors, for instance, you might require that three be present to
unlock the corporation’s secret key used to sign documents.

The mathematics of these schemes is really quite simple and in-
tuitive. Chapter 3 showed how error-correcting codes can be used as
primitive secret-sharing devices. That is, you can split up a secret by
encoding it with a error-correcting code that can correct wrong bits.

1It is not clear to me why the bank needs to have its own key on the box. The
combination to the vault serves the same purpose.
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(The 7-bit code from page 47 shows how you can split up a secret into
seven parts so that it can be recovered if any six parts are available.)

There are numerous problems with this approach. First, some
bits are often more privileged than others. In the 7-bit scheme from
page 47 in Chapter 3, four of the seven bits hold the original message.
The other three are parity bits. If the right four are put together, then
the original secret is unveiled. If one of these bits is missing, however,
then the parity bits are needed to get the secret.

Second, there can be some redundancy that allows people to un-
veil the secret even if they don’t hold all of the parts. For instance, the
3-bit error-correcting code described on page 40 can recover the cor-
rect answer even if one of the three bits is changed. This is because
each bit is essentially turned into three copies of itself. If these three
copies are split into three parts, then they won’t prevent each person
from knowing the secret. They have it in their hands. Their part is an
exact copy of the whole. This is an extreme example, but the same
redundancies can exist in other versions. Deliberately adding

errors is one way to
prevent this.

A better solution is to use algorithms designed to split up secrets
so thatthey can’t be recovered unless the correct number of parts
is available. Many different algorithms are available to do this, but
most of them are geometric in nature. This means that it is often
easy to understand them with figures and diagrams.

4.2.1 Requiring All Parts

Many of the algorithms described later in this section can recover a
secret split into n parts if only k parts are available. There are many
times when you might want to require that all parts be present. There
are good algorithms that work quite well when n = k, but are not
flexible to handle cases when k is less than n. These basic algorithms
are described here before the other solutions are explained. Repeating the same

encryption function
again and again can
introduce some
theoretical problems
and make analyzing the
system tricky.

One approach is to imitate safe deposit boxes and use n layers of
encryption. If f(ki, X) encrypts a message X with key ki, then you
can take the secret and encrypt it repeatedly with each of n different
keys. That is, compute:

f(k1, f(k2, f(k3, . . . f(kn, X) . . .))).

Each person gets one of the n keys and it should be obvious that
the secret can’t be recovered unless all of them are present. If one is
missing, then the chain is broken and the layers of encryption can’t
be stripped off.

A simpler approach is to think of the secret as a number, X , and
then split it into n parts that all add up to that number, X1 + X2 +
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X3 + · · · + Xn = X . If one number is missing, it is impossible to
determine what X might be. This solution is an extension of the
one-time pad and it is just as secure. If the parts are chosen by a
good, secure random number generator, there is no way the people
who hold the n− 1 parts can guess what the value of the missing part
might be.

In practice, this solution is often computed for each bit in the
secret. That is, the secret is split into n parts. If the first bits of the
parts are added together, they will reveal the first bit of the secret. If
the second bits of the different parts are added together, the result is
the second bit of the secret. This addition is done modulo 2, so you’re
really just determining whether there is an odd or even number of
ones in the bits. Here’s an example:

X1 = 101010100

X2 = 101011010

X3 = 110010010

X4 = 010101100

X1 +X2 +X3 +X4 = 100110000

If you wanted to split up a secret, then you would generate the
first n − 1 parts at random. Then you would compute Xn so that
X1 + · · ·+Xn = X . This is actually easy. Xn = X +X1 + · · ·+Xn−1.

Are both of these solutions equally secure? The addition method,
which is just an extension of the one-time pad, is perfectly secure.
There is no way that the system can be broken if you don’t have
access to all of the parts. There is no additional pattern. The layers of
encryption are not necessarily as secure. There are so many variables
in the choice of encryption function and the size of the keys, that
some choices might be breakable.

Another way of understanding this is to examine the entropy of
the equation, X1 + X2 +X3 + · · · +Xn = X . If each value of Xi has
m bits, then there are mn bits of entropy required to determine the
equation. If n − 1 values of Xi are recovered, there are still m bits of
entropy or 2m possible solutions to explore.

Intuitively, this encryption equation has the same properties:

f(k1, f(k2, f(k3, . . . f(kn, X) . . .))).

If each key, ki, has m bits, then there are still mn bits of entropy in
the equation. Unfortunately, the complexity of the function f makes
it difficult to provide more mathematical guarantees. If the basic
function, f , is secure enough to use for basic encryption, then it
should be secure in this case. But, there are many interesting and
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(x,y)

Figure 4.1: A secret, x, is split into two parts by finding two random
lines that intersect at (x, y). (y is chosen at random.)

unanswered questions about what happens if the same system is
used to encrypt data over and over again with different keys. 2The
simplest approach is the best in this case.

4.2.2 Letting Parts Slide

Obviously, there are many reasons why you might want to recover
some secret if you don’t have all of the parts. The most basic algo-
rithms are based on geometry. Imagine that your secret is a number,
x. Now, choose an arbitrary value for y and join the two values to-
gether so they represent a point on a plane. To split up this secret into
two parts, just pick two lines at random that go through the point.-

(See Figure 4.1.) The secret can be recovered if the intersection of Gus Simmons’ chapter
on Shared Secrets
[Sim93] is a great
introduction to the
topic.

the two lines is found. If only one line is available, then no knows
what the secret might be.

If there are two lines, then both parts need to be available to find
the solution. This technique can be extended so there are n parts, but
any two parts are enough to recover the secret.

Simply choose n lines that go through (x, y) at random. Any pair
will intersect at (x, y) and allow someone to recover the secret, as
in Figure 4.2. When the secret must be split into n parts and any
k must be available to recover the secret, then the same approach

2Some good introduction papers include [CW93].
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(x,y)

Figure 4.2: A secret, x, is split into n parts by finding n random lines
that intersect at (x, y). (y is chosen at random.) Any pair is enough to
recover the secret.

can be used if the geometry is extended into k dimensions. If k = 3,
then planes are used instead of lines. Three planes will intersect only
at the point. Two planes will form a line when they intersect. The
point (x, y, z) will be somewhere along the line, but it is impossible
to determine where it is.Stephan Brands uses

this technique in his
digital cash scheme

[Bra93].

It is also possible to flip this process on its head. Instead of hiding
the secret as the intersection point of several lines, you can make the
line the secret and distribute points along it. The place where the line
meets the y axis might be the secret. Or it could be the slope of the
line. In either case, knowing two points along the line will reveal the
secret. Figure 4.3 shows this approach.

Each of these systems offers a pretty basic way to split up a secret
key or a file so that some subset of people must be present. It should
be easy to see that the geometric systems that hide the secret as the
intersection point are as secure as a one-time pad. If you only have
one line, then it is impossible to guess where the intersection lies
along this line. x = 23 is just as likely as x = 41243. In fact, owning
one part gives you no more insight into the secret than owning no
part. In either case, all you know is that it is some value of x. This is
often called a perfect secret-sharing system.

Some people might be tempted to cut corners and hide infor-
mation in both the x and the y coordinate of the intersection point.
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Figure 4.3: Here the secret is the line itself. Random points along the
line are distributed as the parts of the secret. You must have two to
recover the line.

This seems feasible because you can choose any set of lines that goes
through this point. This changes the parameters of the system sub-
stantially. If you own a part of the secret, then you know something
about the relationship between x and y. The slope of the line and the
y intercept describe exactly how x and y change in unison. Roger Dingledine,

David Molnar, and
Michael J. Freedman
designed Free Haven to
split up a document
among a number of
servers using Michael
Rabin’s secret sharing
and information
dispersal algorithm.
The system also offers a
mechanism for paying
server owners.[DF00,
Rab89a, Rab89b]

In some cases, this might be enough to crack the system. For in-
stance, imagine you are protecting the number of men and women
escaping from England on the Mayflower. Storing the number of
men in the x coordinate and the number of women in the y coor-
dinate is a mistake. An English spy might know that the number of
men and the number of women are likely to be roughly equal given
the percentages of men and women in society. This extra informa-
tion could be combined with one part to reveal a very good approxi-
mations of x and y.3

4.2.3 A More Efficient Method

The basic secret-sharing methods split up a secret, X , into n equal
sized parts. If the secret is m bits long, then the parts are also m
bits long. This has the advantage of perfect security. If one part is

3You should also avoid storing them as separate secrets broken into parts. In this
case, one part from each of the two secrets would still yield enough information. The
best solution is to encrypt the two values and split the key to this file.
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missing, the secret can only be recovered by testing all potential m
bits of the missing part— and only if there’s a way to check these 2m

possibilities and verify the correct one.
Ifm bits are too unwieldy for some reason, another quick solution

is to encrypt X with some function and split the result into n parts.
That is, take the m bits from f(X) and distribute m

n bits to each part
holder.Hugo Krawczyk offers a

scheme that provides
more computational

assurances that the
secret can’t be

reconstructed without
all parts. [Kra94]

This approach sacrifices security for efficiency. Replacing a lost
part just requires testing all possible combinations of m

n bits instead
ofm bits– a solution that only works if there’s a way to test the secret.
But if this proposition is difficult enough, then the approach may be
useful.

It should be noted that such a function f must be designed so
that any change to one bit in the input has the potential to change
any output bit. This feature is common ifm is smaller than the block
of a modern, well-designed algorithm like DES or Rijndael. If m is
larger, ff(X)r) should arrange for every every bit to affect every other
if Xr stands for the bits in X arranged in reverse order.

If more strength is desirable, the parts can encrypted in a round
robin. Let {p1, p2, . . . , pn} be the n parts with m

n bits in each piece.
Instead of giving pi to person i, we can give f(h(pi−1), pi) to person i.
This means that we can’t recover part i without part i − 1. All parts
must be present.

4.2.4 Providing Deniability

Each of the secret-sharing schemes described in this chapter offer
some mindboggling chances to hide data in the Net. There is no rea-
son why one particular file alone should be enough to reveal the in-
formation to anyone who discovers it. Splitting a file into multipleThe error-correcting

codes described in
Chapter 3 can also be

used to add some
deniability.

pieces is an ideal way to add complete deniability. Imagine, for in-
stance, that the important data is stored in the least significant bits
of some image using the techniques from Chapter 9. You could put
the important data in the GIF file you use for your home page back-
ground and then place this up on the Web. But this is your home
page; and the connection is obvious. Another solution is to find, say,
three other GIF images on the Web. Maybe one of them is from the
Disney World home page, another is from the White House home
page, and the third is from some shady hacker site in Europe. Extract
the least significant bits from each of these files. You have no control
over these bits, but you can use them to hide ownership of the data
by using the first secret-sharing scheme described here. If you add
up the values recovered from all four sites, then the final information
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appears.
The Publius system
created by Marc
Waldman, Aviel D.
Rubin and Lorrie Faith
Cranor uses basic secret
sharing algorithms to
distribute the key to a
document. [WRC00] For
more, see Section 10.6.

Now imagine that the word gets out that the information is hid-
den in the combination of these four sites. Which one of the four
is responsible? Disney World, the White House, the hackers in Eu-
rope, or you? It is impossible to use the least-significant bits of each

This system is just like
the classic book ciphers
which used a book as
the one-time pad.

of these images to point the finger at anyone. The hidden informa-
tion is the sum of the four and any one of the four could have been
manipulated to ensure that the final total is the hidden information.
Who did it? If you arrange it so that the hidden information is found
in the total of 100 possible images, no one will ever have the time to
track it down.

Of course, there are still problems with the plan. Imagine that
Disney World used a slick, ray-traced image from one of their films
like Toy Story. These images often have very smooth surfaces with
constant gradients that usually have very predictable least significant
bits. This would certainly be a defense against accusations that they The Chi-Squared Test

and other measures of
randomness can be
found in Don Knuth’s
[Knu81].

manipulated the least significant bits to send out a secret message.
The images chosen as the foils should have a very noisy set of least
significant bits.

4.3 Building Secret-Sharing Schemes

Secret-sharing schemes are easy to explain geometrically, but adapt-
ing them to computers can involve some compromises. The most
important problem is that computers really deal only with integers.
Lines from real numbered domains are neither efficient nor often
practical. For instance, five numbers involved in a typical scheme for
hiding a secret as the intersection of two lines. Two numbers describe
the slope and y-intercept of one line, two numbers describe the sec-
ond line, and one number describes the x coordinate of the intersec-
tion point. If x is an integer, then it is not possible to choose lines
at random that have both integers for their slope and y-intercept. If
they are available, there will be a few of them.

You can use floating-point numbers, but they add their own insta-
bility. First, you must round off values. This can be a significant prob-
lem because both sides must do all rounding-off the same. Second,
you might encounter big differences in floating-point math. Two dif-
ferent CPUs can come up with different values for x/y. The answers
will be very close, but they might not be the same because the differ-
ent CPUs could be using slightly different representations of values.
Most users of floating-point hardware don’t care about these very mi-
nor differences because all of their calculations are approximations.
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But this is a problem with cryptography. Changing one bit of an en-
cryption key is usually enough to ruin decryption—even if only the
least significant bits that change.

The best solution is to return to finite collections of integers mod
some prime number. Adi Shamir Shamir used this domain to hide
secrets by choosing polynomials from this domain [Sha79]. Instead
of lines or planes to hide the information, he chose k − 1 degree
polynomials, p(x), where the first parameter, p0 = p(0), holds the
secret. (This is a line when k = 2.) One point on the polynomial
goes to each part holder. k parts can be used to reconstruct the
polynomial and determine the secret, p(0).

Here are the basic steps:

1. Choose a value of q that is prime and greater than n.

2. Find a random polynomial, p(x), of degree k−1 by selecting k−1
random integers between 0 and q. These will be the coefficients
of the polynomial, p1 . . . pk−1. p0 is the secret to be stored away.

3.
∑k−1

i=0 pix
i is the polynomial.

4. Choosenpoints, x1 . . . xn. These should be distinct and nonzero.
Compute p(x1) . . . p(xn). These are the n parts to be distributed
to part holders with the values of xi. Any subset of k are enough
to determine p(x) and the secret p0.

5. To recover the value of p0, use Lagrangian interpolation. That
is, you can use the points to estimate the derivatives of the
polynomial at a point.

This solution uses only integers. It should be obvious that you
need k points to recover the polynomial. The easiest way to see this
is to realize that having k − 1 points gives no information about p(0).
In fact, for any potential value of p(0) you might guess, there is some
p that generates it. You can find this p by taking the k − 1 points
and your guess for p(0) and generating the polynomial. So, if there
is a one-to-one mapping between these guesses, then the system is
perfect. The part holder has no advantage over the outside guesser.

The scheme also offers greater efficiency for cases where k is a
reasonably large number. In Section 4.2, the geometrical solution
was to create a k-dimensional space and fill it with k − 1 dimen-
sional hyperplanes. Intersecting k hyperplanes was enough to reveal
the point. The problem with this solution is that the hyperplanes
take up more and more space as k grows larger. I don’t mean they
consume more abstract space—they just require more space to hold
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the information that represents them. The Shamir scheme shown
here doesn’t require more space. Each part is still just a point, (x, y)
that lies on the polynomial. This is substantially more efficient.

4.3.1 Making Some More Equal

In each of the schemes described in this chapter, the secrets are split
into n parts and each of the n parts has the same equal share of
control. Humans, being human, are never satisfied with anything as
fair as that—some people will want some parts to be more powerful
than others.

The most straightforward way to accomplish this is to give some
people more parts. For instance, imagine a scheme where you need
six parts to reconstruct the secret. That is, you might have a col-
lection of five-dimensional hyperplanes in a six-dimensional space.
Any set of six points is enough to uncover the secret, which for the
sake of example will be the launch codes for a nuclear missile. Let’s
say that it takes two commanders, three sergeants, or six privates to
launch a missile. This can be accomplished by giving three parts to
the commanders, two parts to the sergeants, and one part to each
private.

One problem with this solution is that arbitrary combinations of
different ranks can join together. So, one commander, one sergeant,
and one private can work together to uncover the secret. This might
not be permitted in some cases. For example, the U.S. Congress re-
quires a majority of both the House and the Senate to pass a bill. But
the votes from one chamber can’t be counted against the other. So
even though there are 100 Senators and 435 members of the House,
a Senator is not worth 4.35 House members. A bill won’t pass just
because 99 Senators vote for it and only 10 House Representatives.
But this could be the situation if someone naively created a secret-
sharing scheme by parceling out parts to both sides of Congress from
the same shared secret.

A better solution to prevent this is to first split the secret into two
equal parts, XH and XS , so that both are required to endorse a bill
with the digital signature of Congress. Then HR would be split into
435 parts so that 218 are enough to recover it. HS is split into 100
parts so that 51 are enough to recover it.

Numerous combinations can make these schemes possible. Prac-
tically any scheme can be implemented using some combination
and layers of secrets. The only problem with very complicated sys-
tems is that they can require many different dimensions. For in-
stance, if you want a system that takes 17 privates, 13 sergeants, or
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5 generals to launch some missiles, then you can use a system with
17×13×5dimensions. This can get a bit arcane, but the mathematics
is possible.

4.4 Public-Key Secret Sharing

All of the algorithms in this section share one set of bits, the se-
cret. This secret may be used for anything, but it is probably go-
ing to be used as a key to unscramble some information encrypted
with a secret-key algorithm. The notion of splitting up authority and
responsibility can also be incorporated into public-key algorithms.
In these schemes, the actions for scrambling and unscrambling can
be split and controlled separately. The holder of one key controls
encryption and the holder of the other key controls decryption. If
secret sharing is combined with public-key encryption, one group
must agree to encrypt a message and another group must agree to
decrypt it.Approaches like this are

often called threshold
decryption or threshold

signatures.

One easy solution is to combine any public-key algorithm with
any of the secret sharing solutions. The keys are just collections of
bits and these collections can be split into arbitrary subcollections
using any basic secret splitting solution. This mechanism is perfectly
useful, but it has limitations. If a group of people get together to en-
crypt or decrypt a message, the key must be put together completely.
Once it is assembled, whoever put it together now controls it. The
secret sharing feature is gone.

This approach splits the ability to decrypt a public key message
among a group of k people. Anyone can send a message to the group,
but they all must agree to decrypt it. No information obtained from
decrypting one message can be used to decrypt the next. The system
relies on the strength of the discrete log problem. That is, it assumes
that given g, p, and gx mod p, it is hard to find x.Similar techniques can

be used to produce
anonymous digital cash

and secure voting
solutions.

[Bra95b, Bra95a]

The private key consists of k values {x1, . . . , xk} that are dis-
tributed among the k members who will have control over the de-
cryption process. The public key is the value, a = gx1

1 gx2

2 . . . gxk

k mod p,
where the values of gi and p are publicly available numbers. The val-
ues of gi may be generators of the group defined modulo p but the
algorithm will work with most random values less than p.

A message to the group is encrypted by choosing a random value,
y, and computing gy

1 mod p, g
y
2 mod p, . . . g

y
k mod p. Then the value

ay mod p is computed and used to generate a secret key for encryp-
tion the message with an algorithm like AES. The message consists of
this encrypted data and the k values gy

1 mod p, g
y
2 mod p, . . . g

y
k mod p.
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This mechanism, first proposed by Taher Elgamal, is very similar in
spirit to Diffie-Hellman key exchange.

The message can be decrypted by distributing the k values to
the group. Each person computes (gy

i )xi mod p and returns this
value to the group leader who multiplies them together. ay =
(gy

1 )x1(gy
2 )x2 . . . (gy

n)xn mod p.
The same set of keys can also generate digital signatures for the

group with a modified version of the digital signatures used with the
Diffie-Hellman-style public key system. Here are the steps:

1. The signers and the signature verifier agree on a challenge
value, c. This is usually generated by hashing the document be-
ing signed. It could also be created by the verifier on the fly as a
true challenge.

2. Each member of the group chooses a random witness, wi and
computes gwi

i mod p.

3. Each member of the group computes ri = cxi + wi and
gri

i mod p.

4. The group discards the values of wi and gathers together the
rest of the values in a big collection to serve as the signa-
ture. These values are: {r1 = cx1 + w1, . . . rk = cxk + wk},
{gr1

1 mod p, . . . , grk

k mod p}, and the product of:

gw1

1 mod p, . . . , gwk

k mod p.

5. Anyone who wants to check the signature can compute a(−c)gr1

1

. . . grk

k mod p and make sure it is the same as the product of
gw1

1 mod p, . . . , gwk

k mod p.

Similar solutions can be found using RSA-style encryption sys-
tems. In fact, some of the more sophisticated versions allows RSA
keys to be created without either side knowing the factorization.
[BF97, GRJK00, BBWBG98, CM98, WS99, FMY98]

4.5 Steganographic File Systems and Secret
Sharing

Secret sharing algorithms split information into a number of parts so
that the information can only be recovered if some or perhaps all of
the parts are available. The same basic algebra can also be used by
one person to hide their data so only the person who knows the right
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combination of parts can verify that the data is there. This applica-
tion may be valuable if you happen to be storing the information on
your hard disk and you want to deny that it is there.

Ross Anderson, Roger Needham, and Adi Shamir created two ver-
sions of what they called a steganographic file system. [ANS98] Their
first uses math very similar to secret sharing and so it is described
here.

The system grabs a large block of disk space, randomizes it, and
then absorbs files that are protected with passwords. If you don’t
know the password, then you can’t find the file. If you do know the
password, then the random bits produce the file. There’s no way to
identify that the file exists without the password.“Three may keep a secret

if two are
dead.”–Benjamin

Franklin

This scheme is far from perfect. For it to work well, the passwords
must be assigned in a hierarchy. That means if someone knows one
password, Ki, then they must know all other passwords Kj where
0 ≤ j < i. If there are only three files, then the person with access
to file 3 must also have access to files 1 and 3. Anderson, Needham
and Shamir imagine that a person under interrogation may reveal
the password to several modestly dangerous files without revealing
the more sensitive ones.

The mathematics is all linear algebra. For the sake of simplicity,
the system is defined for binary numbers where addition is the XOR
(⊕) operation and multiplication is the AND (·) operation.

A basic steganographic file system can hold m files that are n bits
long. In the beginning, the files are set to be random values that are
changed as information is stored in the system. It often helps to think
of the file system as a big matrix with m rows and n columns. Let Ci

stand for the ith row.
The password for file j is Kj, a m-bit-long vector where Kj(i)

stands the ith bit of the vector. To recover file j from the file system,
add together all of the rows, Ci, where Kj(i) = 1. That is:

⊕m
i=1Kj(i)Ci.

How do you store a file in the system? Here’s a basic sketch of the
steps for storing one file:

1. Break it into n bit blocks.

2. Choose a password for each block. One good solution is to
concatenate a random string, S, before the password, hash it
with a cryptographically secure hash function, H , and take the
first m− 1 bits to serve as Kj.

3. Add a parity bit to Kj to make sure it is the correct length. Use
odd parity to ensure that the number of 1 bits in the vector
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is odd. That is, set the last bit to be one if there are an even
number of ones in the first m − 1 bits and a zero if there are an
odd number.

4. Encrypt the block with a separate encryption function, ideally
using a different key constructed by appending a different ran-
dom string. This encryption function is necessary because of
the linear nature of the file system. If an attacker can estab-
lish some part of the file, D, then the attacker can solve some
linear equations to recover Kj . If the files aren’t encrypted, an
attacker can extract the file if the attacker can guess a phrase
and its location in the file.

5. Replace Ci with D ⊕ Ci for all i where Kj(i) = 1.

This basic algorithm will store one file in the system. If it is used
repeatedly, it may bring problems because new files can overwrite
other files. If you want to store more than one file in the system, you
need to ensure that they will not disrupt each other.

The simplest solution is to choose the m values of Kj so that
they’re orthogonal vectors. That is, Ki ·Kj = 1 if and only if i = j. In
all other cases, Ki · Kj = 0. If the password vectors are orthogonal,
then m different files can be stored in the system without disturbing
each other.

In other words, whenever the values of D are added to different
rows Cj , that it will not distort another file. Why? IfKp ·Kq = 0, then
there are only an even number of bits that are one in bothKp andKq.
Imagine that you’re replacingCj withD⊕Cj for all j whereKp(j) = 1.
Some of these rows will also rows which are storing parts of another
file defined by key Kq. Why isn’t this file disturbed? Because D will
only be added to an even number of rows and the value will cancel
out. D ⊕D = 0.

Consider this example with K:
0 1 1 1 0
1 0 1 1 0
0 0 1 1 1
1 1 1 0 1
1 1 0 1 1

This matrix contains the keys for 5 files. The first row, for instance,
specifies that the first file consists of C2 ⊕ C3 ⊕ C4. The second
row specifies that the second file consists of C1 ⊕ C3 ⊕ C4. If new
data is stored in the first file, then C2, C3, and C4 will all become
C2 ⊕ D,C3 ⊕ D, and C4 ⊕ D respectively. What does this do to the
second file? C1 ⊕ C3 ⊕ C4 becomes C1 ⊕ (C3 ⊕ D) ⊕ (C4 ⊕ D) =
C1 ⊕ C3 ⊕ C4 ⊕D ⊕D = C1 ⊕ C3 ⊕ C4.
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Here’s a basic algorithm for constructing K from a list of m pass-
words, P1, P2, · · ·Pm. Repeat this for each password, Pi.

1. LetKi = H(Pi), whereH is some cryptographically secure hash
function.

2. For all j < i, letKi = (Ki ·Kj)Kj⊕Ki. This orthonormalization
step removes the part of the previous vectors that overlaps with
the new row. That is, it ensures that there will only be an even
number of bits that are one in both rows. It does this for all
previous values.

3. If Ki = 0, then an error has occurred. The new chosen key is
not independent of the previous keys. Set Ki = H(H(Pi)) and
try again. Continue to hash the password until an acceptable
value of Ki is found that is orthonormal to the previous keys.

This algorithm does not compute the values ofKi independently
of each other. You must know the values of all Kj where j < i to
compute Ki. This is less than ideal, but it is unavoidable at this time.
Anderson, Needham and Shamir decided to turn this restriction into
a feature by casting it as a linear file access hierarchy. If you can read
file i, then you can read all files j where j < i.

Forcing all of the keys into a hierarchical order may not always
be desirable. Another technique for finding keys is to restrict each
person to a particular subspace. That is, split the keyspace into or-
thogonal parts. If person i wants to choose a particular Ki, then that
person must check to see that Ki is in the right subspace.

The easiest way to split the keys into orthogonal subspaces is to
force certain bits in the key to be zero. Alice might use keys where
only the first ten bits can be set to 1, Bob might use keys where only
the second ten bits can be non-zero, and so on.

If necessary, Alice, Bob and the rest of the gang can agree on a
random rotation matrix, R, and use it to rotate the subspaces. So
Alice will only choose a key vector if RKi has zeros in all the right
places.

This version of the file system is also a bit unwieldy. If you want to
read or write a fileD, then you may need to access as many asmother
rows. This factor can be substantial if m grows large. This can be
reduced by using non-binary values instead of bits for the individual
elements of Ki.
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4.6 Summary
Secret-sharing is an ideal method for distributing documents across
the network so no one can find them. It is an ideal way for people to
deny responsibility. In some cases, the parts of the secret can be from
the Web pages of people who have nothing to do with the matter at
hand.

The Disguise Secret sharing lets you share the blame.

How Secure Is It? The algorithms here are unconditionally secure
against attacks from people who have less than the necessary
threshold of parts.

How to Use It. The XOR algorithm described here is easy to imple-
ment. It is an ideal way to split up information so that every
party needs to be present to put the information back together.



Chapter 5

Compression

5.1 Television Listing

8:00 PM 2 (IRS) Beverly Hills Model Patrol— New lip gloss intro-
duced.

5 (QUS) Cash Calliope: Musical Detective — Death with a Cap-
ital D-minor.

9 (PVC) Northern Cops— Town council bans eccentrics at town
meeting, but not for long.

14(TTV) Def N B— Beethoven raps for the Queen.

9:00 PM 2 (IRS) Super Hero Bunch— Evil just keeps coming back for
more.

5 (QUS) Sniffmaster Spot— Spot discovers toxic waste at Acme
Dog Food Plant.

9 (PVC) Mom’s a Klepto— Family stress as Mom plagiarizes
daughter’s English paper.

14(TTV) Easy Cheesy— Customer asks for Triple Anchovy pizza.

10:00 PM 2 (IRS) X Knows Best— Alien stepdad shows love is not
Earthbound.

5 (QUS) Dum De Dum Dum— Detective Gump meets murder-
ing publisher.

9 (PVC) Betrayal Place— Bob betrays Jane.

14(TTV) Beverly Hills Astronaut— Buzz discovers there are no
malls in Space!

73
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5.2 Patterns and Compression

Life often reduces to formulas. At least it does on television, where
the solutions appear every 30 or 60 minutes. When you know the
formula, it is very easy to summarize information or compress it.
A network executive reportedly commissioned the television show
“Miami Vice” with a two-word memo to the producer reading, “MTV
Cops.” You can easily specify a episode of “Gilligan’s Island” with a
single sentence like, “The one with the cosmonauts.” Anyone who’s
seen only one episode of the show will know that some cosmonauts
appear on the island, offer some hope of rescue, but this hope will be
dashed at the end when Gilligan screws things up.

Compressing generic information is also just a matter of finding
the right formula that describes the data. It is often quite easy to find
a good formula that works moderately well, but it can be madden-
ingly difficult to identify a very good formula that compresses the
data very well. Finding a good formula that works well for specific
types of data like text or video is often economically valuable. People
are always looking for good ways to cut their data storage and com-
munications costs.

Compressing data is of great interest to anyone who wants to hide
data for four reasons:

Less data is easier to handle. This speaks for itself. Basic text can
easily be compressed by 50 to 70%. Images might be com-
pressed by 90%.

Compressed data is usually whiter. Compression shouldn’t destroy
information in a signal. This means that the information per
bit should increase if the size of the file decreases. More infor-
mation per bit usually appears more random.Details about

measuring
information are on page

31.
Reversing compression can mimic data. Compression algorithms

try to find a formula that fits the data and then return the spe-
cific details of the formula as compressed data. If you input
random data into a compression function, it should spit out
data that fits the formula.Page 183 shows how the

JPEG algorithm can
identify just how much
space can be exploited

in an image.

Compression algorithms identify noise Good compression algorithms
understand how human perception works. Algorithms like
JPEG or MP3 can strip away extra information from a file that a
human doesn’t notice. This information can also be exploited
by steganographers to locate places where a significant amount
of noise might be replaced by a hidden message.
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Of course this approach is dangerous as well. If the JPEG algo-
rithm strips away some information, then any information you
insert in this location is just as liable to be stripped away. An
attacker or a well-meaning programmer along the path could
compress a file to save space and destroy your message. This
makes the technique dangerous for weakly protected data like
watermarks, but potentially useful if you can be reasonably
sure the file won’t be compressed along the path. 1 One watermarking

algorithm in Section
14.7.1 deliberately aims
to hide information in
the most important
parts of the image to
avoid being destroyed
during compression.

Compression is an important tool for these reasons. Many good
commercial compression programs already exist simply because of
the first reason. Many good encryption programs use compression
as an additional source of strength. Mimicking, though, is why com-
pression is discussed in depth in this book. Some of the basic com-
pression algorithms provide a good way to make information look
like something else. This trick of flipping the algorithm on its head is
discussed in Chapter 6.

A number of techniques for compressing data that are used today.
The field has expanded wildly over the last several years because of
the great economic value of such algorithms. A procedure that com-
presses data in half can double the storage area of a computer with
no extra charge for hardware. People continue to come up with new
and often surprisingly effective techniques for compressing data, but
it all comes down to the basic process of identifying a formula that
does a good job of fitting the data. The parameters that make the for-
mula fit the data directly becomes the compressed surrogate. Some
of the more popular techniques are:

Probability Methods These count up the occurrences of characters
or bytes in a file. Then they assign a short code word to the most
common characters and a long one to least common ones.
Morse code is a good example of a compression algorithm from
this class. The letter “e”, which is the most common in the En-
glish language, is encoded as a dot. The letter “p”, which is less
common, is encoded as dot-dash- dash-dot. The Huffman code
is the best known edition of these codes.

Dictionary Methods These algorithms compile a list of the most
common words, phrases, or collections of bytes in a file, then
number the words. If a word is on this list, then the compressed
file simply contains the number pointing to the dictionary en-
try. If it isn’t, the word is transmitted without change. This tech-
nique can be quite effective if the data file has a large amount

1WebTV’s network, for instance, will strip away higher order data from images if it
won’t show up on a television set.
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of text. Some report compressing text to 10 to 20% of its orig-
inal size. The Lempel-Ziv compression algorithm is the most
commonly used version of this algorithm.

Run-Length Encoding Many images are just blocks of black pixels
and white pixels. If you walk along a line, you might encounter
1000 white pixels followed by 42 black pixels followed by 12
white pixels, etc. Run-length encoding stores this as a sequence
of numbers 1000, 42, 12, etc. This often saves plenty of space
and works well for black-and-white line art. Faxes use this tech-
nique extensively.

Wave Methods These algorithms use a collection of waves as the ba-
sic collection of formulas. Then they adjust the size and po-
sition of the waves to best fit the data. These work quite well
with images that do not need to be reconstructed exactly. The
new image only needs to approximate the original. The JPEG,
JPEG2000 and MPEG image and video compression standards
are three of the more famous examples of this technique.Chapter 14 investigates

the information-hiding
capabilities of wavelets. Fractal Methods Fractal functions produce extremely complicated

patterns from very simple formulas. This means that they can
achieve extremely high compression if you can find the formula
that fits your data.A good introduction to

fractal compression can
be found in

[BS88, Bar88, Bar93].
Adaptive Compression Schemes Many compression schemes can

be modified to adapt to the changing data patterns. Each of the
types described here comes in versions that modify themselves
in the middle of the data stream to adapt to new patterns.

All of these compression schemes are useful in particular do-
mains. There is no universal algorithm that comes with a universal
set of functions that adapt well to any data. So people modify exist-
ing algorithms and come up with their own formulas.

Compression functions make good beginnings for people who
want to hide data because the functions were constructed to describe
patterns. There are two ways to use compression functions success-
fully to hide information. One is to mold it into the form of other
data so it blends in. A compression function that works well on ze-
bras can model black and white stripes and convert a set of stripes
into a simple set of parameters. If you had such a function, it could
be applied to some data in reverse and it would expand the data into
zebra stripes. The result would be bigger, but it would look like some-
thing else. The data could be recovered by compressing it again.

Compression techniques can also be used to identify the least im-
portant nooks and crannies of a file so that extra data can be snuck
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into them. Many image-compression functions are designed to be
lossy. That means that the reconstructed image may look very simi-
lar to the original image, but it won’t be exactly the same. If the func-
tions that describe an image can be fitted more loosely, then the al-
gorithms can use fewer of them and produce a smaller compressed
output. For instance, an apple might be encoded as a blob of solid
red instead of a smooth continuum of various shades of red. When
the image is decompressed, much of the smaller detail is lost but
the overall picture still looks good. These compression functions can
easily compress an image to be one-fifth to one-tenth of its original
size. This is why they are so popular.

5.2.1 Huffman Coding

A good way to understand basic compression is to examine a sim-

The television format
example from the
beginning of the chapter
is an example of lossy
compression. They are
not enough to recreate
the entire program.
They’re a better example
of lossy compression
where a surrogate is
found.

ple algorithm like Huffman coding. This technique analyzes the fre-
quency with which each letter occurs in a file and then replaces it
with a flexible-length code word. Normally, each letter is stored as
a byte which takes up 8 bits of information. Some estimates of the
entropy of standard English, though, show that it is something just
over about 3 bits per letter. Obviously there is room to squeeze up
to almost 5/8ths of a file of English text. The trick is to assign the
short code words to common letters and long code words to the least
common letters. Although some of the long words will end up being
longer than 8 bits, the net result will still be shorter. The common
letters will have the greatest effect.

Table 5.1 shows a table of the occurrences of letters in several dif-
ferent opinions from the United States Supreme Court. The space
is the most common character followed by the letter “E”. This table
was constructed by mixing lower- and uppercase letters for simplic-
ity. An actual compression function would keep separate entries for
each form as well as an entry for every type of punctuation mark. In
general, there would be 256 entries for each byte.

Table 5.2 shows a set of codes that were constructed for each letter
using the data in Table 5.1. The most common character, the space,
gets a code that is only 2 bits long: 01. Many of the other common
characters get codes that are 4 bits long. The least common charac-
ter, “Z”, gets an 11-bit code: 00011010001. If these codes were used
to encode data, then it should be easy to reduce a file to less than
one-half of its original size.

Here’s a simple example that takes 48 bits used to store the word
“ARTHUR” in normal ASCII into 27 bits in compressed form:
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Table 5.1: The frequency of occurrence of letters in a set of opinions
generated by the U.S. Supreme Court.

Letter Frequency Letter Frequency

space 26974 A 6538
B 1275 C 3115
D 2823 E 9917
F 1757 G 1326
H 3279 I 6430
J 152 K 317
L 3114 M 1799
N 5626 O 6261
P 2195 Q 113
R 5173 S 5784
T 8375 U 2360
V 928 W 987
X 369 Y 1104
Z 60

Table 5.2: The codes constructed from Table 5.1. A Huffman tree
based on these codes is shown in Figure 5.2.

Letter Code Letter Code

space 01 A 1000
B 111011 C 10110
D 11100 E 0000
F 001101 G 111010
H 00111 I 1001
J 0001101001 K 000110101
L 10111 M 001100
N 1101 O 1010
P 000101 Q 00011010000
R 1111 S 1100
T 0010 U 000100
V 0001111 W 0001110
X 0001110 Y 0001100
Z 00011010001
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Letter: A R T H U R
ASCII: 01000001 01010010 01010100 01001000 01010101 01010010
Compressed: 1000 1111 0010 00111 000100 1111

The Huffman algorithm can also be used to compress any type of
data, but its effectiveness varies. For instance, it could be used on a
photograph where the intensity at each pixel is stored as a byte. The
algorithm would be very effective on a photograph that had only a
few basic values of black and white, but it wouldn’t work well if the
intensities were evenly distributed in a photograph with many even
shades between dark and light. The algorithm works best when there
are a few basic values.

More sophisticated versions of the Huffman code exist. It is com-
mon to construct second-order codes that aggregate pairs of letters.
This can be done in two ways. The easiest way to do this is to sim-
ply treat each pair of letters as the basic atomic unit. Instead of con-
structing a frequency table of characters, you would construct a table
of pairs. The table would be much larger, but it would generate even
better compression because many of the pairs would rarely occur.
Pairs like “ZF” are almost nonexistent.

Another way is to construct 26 different tables by analyzing which
letters follow other letters. One table for the letter “T” would hold
the frequency that the other letters might follow after the “T”. The
letter “H” would be quite common in this table because “TH” occurs
frequently in English. These 26 tables would produce even more
compression because more detailed analysis would tune the code
word even more. The letter “U” would receive a very short code word
after the letter “Q” because it invariably follows.

This example has shown how a Huffman compression function
works in practice. It didn’t explain how the code words were con-
structed nor did it show why they worked so well. The next section in
this chapter will do that. Chapter 6 shows how to

run Huffman codes in
reverse.

5.3 Building Compression Algorithms

Creating a new compression algorithm has been one of the more
lucrative areas of mathematics and computer science. A few smart
ideas are enough to save people billions of dollars of storage space
and communications time, and so many have worked with the idea
in depth. This chapter won’t investigate the best work because it is
beyond the scope of the book. Many of the easiest ideas turn out to
hide information the best. Huffman codes are a perfect solution for
basic text. Dictionary algorithms, like Lempel-Ziv, are less effective.



80 CHAPTER 5. COMPRESSION

W A

T E

S

0

0 0

0 1

1

1

1

Figure 5.1: A small Huffman tree. The code for each letter is deter-
mined by following the path between the root of the tree and the leaf
containing a particular letter. The letter “T”, for instance, receives the
code 110.

5.3.1 Huffman Compression

Huffman compression is easy to understand and construct. Let the
set of characters be Σ and let ρ(c) be the probability that a particular
character, c, occurs in a text file. Constructing such a frequency table
is easily done by analyzing a source file. It is usually done on a case-
by-case basis and is stored in the header to the compressed version,
but it can also be done in advance and used again and again.

The basic idea is to construct a binary tree that contains all of the
characters at the leaves. Each branche is labeled with either a zero or
a one. The path between the root and the leaf specifies the code used
for each letter. Figure 5.1 shows this for a small set of letters.

The key is to construct the tree so that the most common letters
occur near the top of the tree. This can be accomplished with a
relatively easy process:

1. Start with one node for each character. This node is also a
simple tree. The weight of this tree is set to be the probability
that the character associated with the tree occurs in the file.
Call the trees for ti and the weightw(ni). The value of i changes
as the number of trees change.

2. Find the two trees with the smallest weight. Glue these into one
tree by constructing a new node with two branches connected
to the roots of the two trees. One branch will be labeled with a
one and the other will get a zero. The weight of this new tree is
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Figure 5.2: The top of the tree built from the data in Table 5.1. The
generated the codes shown in Table 5.2. Only the top part is shown
here because of space considerations. Less common letters like “Z”
are in the missing part of the tree corresponding to the prefix 0001.

set to be the sum of the old trees that were joined.

3. Repeat the previous step until there is only one tree left. The I know of a Greek
labyrinth which is a
single straight line.
Along this line so many
philosophers have lost
themselves that a mere
detective might well do
so too.
—Jorge Luis Borges in
Death and the Compass

codes can be constructed by following the path between the
root and the leaves.

The characters with the smallest weights are joined together first.
Each joining process adds another layer between the root and the
leaves. So it is easy to see how the least common letters get pushed
far away from the root where they have a longer code word. The
most common letters aren’t incorporated until the end, so they end
up near the top.

The algorithm naturally balances the tree by always taking the
smallest weights first. The weight for a tree represents the number of
times that any of the characters in the tree will occur in a file. You can
prove that the tree constructed by this algorithm is the best possible
tree by imagining what happens if you mistakenly choose the wrong
two trees to join at a step. More common characters get pushed
farther from the root and get longer code words than less common
characters do. The average compression drops.

Many other people have extended the theme of Huffman coding
by creating other algorithms that use the addresses of nodes in a
tree. One popular technique is to use Splay trees where the trees
are modified every time a character is encoded. One version moves
the letter to the top of the tree in a complex move that preserves
much of the structure. The result is that the most common letters
bubble up to the top. The constant rearrangement of the tree means
that the tree adapts to the local conditions. This type of algorithm
would be ideal for compressing a dictionary where even the least
popular letters like “j” or “z” are common in sections. When the
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algorithm moved through the “j” part of the dictionary, the node
containing “j” would be pushed repeatedly to the top of the splay tree
where it would get a short code word. Later, when the compression
function got to the “z” section, the node for “z” would end up near the
top consistently giving “z” a short code word. Obviously one major
problem with this compression scheme is that the entire file must
be processed from the beginning to keep an accurate description of
the splay tree. You can’t simply jump to the “z” section and begin
decompressing.A good basic reference

on compression is
[Sto88].

This basic Huffman algorithm has many different uses. It will be
in Chapter 6 to turn data into something that looks like English text.
Huffman encoding is also used as a building block in Chapter 7 to
make optimal weighted choices between different words. The same
structure is as useful there as it is here.

5.3.2 Dictionary Compression

Compression schemes like the popular and patented Lempel-Ziv al-
gorithm are called dictionary schemes because they build a big list
of common words in the file.2 This list can either be created in one
swoop at the beginning of the compression or it could be built and
changed adaptively as the algorithm processes the file. The algo-
rithms succeed because a pointer describing the position in the dic-
tionary takes up much less space than the common word itself.

The dictionary is just a list of words. It is almost always 2n words
because that makes the pointer to a particular word take up n bits.
Each word can either be a fixed length or a flexible length. Fixed
lengths are easier to handle, but flexible lengths do a better job of
approximating the English language and x86 machine code.

Compression follows easily. First, the file is analyzed to create a
list of the 2n most common words. Then the file is processed by scan-
ning from beginning to end. If the current word is in the dictionary,
then it is replaced by a tag, <InDict>, followed by the position in the
dictionary. If it isn’t in the dictionary, then it is replaced by a tag,
<Verbatim>, followed by the word that remains unchanged.

Obviously, the success of the algorithm depends on the size of the
tags (<InDict> and <Verbatim>), the size of the dictionary, and the
number of times something is found in the dictionary. One basic and
usually effective solution is to make the tags be one entire byte, B. If
the value of the byte is zero, then the next n bits represents a word in

2The algorithms are not particularly good at compressing files like dictionaries
used by humans. The fact that I used a regular dictionary as an example in the previous
section is just a coincidence. Don’t be confused.
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the dictionary. If the value of the byte,B, is greater than zero, then B
bytes are copied verbatim out of the original file. This scheme allows
the program to use flexible word sizes that work well with English.
There are many different schemes that are more efficient that others
in some cases.

The index into the dictionary does not need to be n bit numbers.
You can also count the occurrence of words in the dictionary and use
a Huffman-like scheme to devise short code words for some of them.
The tag for verbatim text is usually included as just another word in
this case.

The dictionary can also adapt as the file is processed. One sim-
ple technique is to keep track of the last time a word from it was
used. Whenever a section of verbatim text is encountered, the oldest
word is swapped out of the dictionary and the newest verbatim text
is swapped in. This is a great technique for adapting to the text be-
cause many words are often clustered in sections. For instance, the
words “dictionary,” “Huffman,” and “compression” are common in
this section but relatively rare in other parts of the book. An adaptive
scheme would load these words into the dictionary at the beginning
of the section when they were first encountered and not swap them
out until they aren’t used for a while.

Dictionary schemes can be quite effective for compressing arbi-
trary text, but they are difficult to run in reverse to make data mimic
something. Chapter 6 uses Huffman-like algorithms to generate real
text, but it doesn’t include a section on reversing dictionary algo-
rithms. They are described in this chapter because compression is a
good way to save space and whiten data. The algorithms don’t work
particularly well for mimicry because they require a well-constructed
dictionary. In practice, there is no good automatic way that I know for
constructing a good one.

5.3.3 JPEG Compression

The Huffman encoding described in “Huffman Compression” (see
page 80) and the dictionary schemes in “Dictionary Compression”
(see page 82) are ideal for arbitrary collections of data. They can
also work quite well on some types of image files, but they fail on
others. If an image has a small number of colors that may occur in
a predictable pattern, then both of these algorithms may do a good
job of finding a pattern that is strong enough to generate a good
compression. This often doesn’t happen because the images contain
many shades of colors. The Japanese flag, for instance, has one red
circle that is a constant color, but a realistically lit apple has many
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different shades of red.
The JPEG algorithm is a good example of how to tune an algo-

rithm to a particular type of data. In this case, the algorithm fits co-
sine functions to the data and then stores the amplitude and period.
The number of functions used and the size can be varied according
to the amount of compression desired. A small number of functions
produces a high amount of compression but a grainy image. More
functions add accuracy, but take up more space. This flexibility is
possible because people don’t always particularly care if they get ex-
actly the same image back when it is decompressed. If it looks rea-
sonably close, it is good enough.

This flexibility is what is so useful about JPEG encoding. The
algorithm from Section 5.3.1 will be run in reverse to produce text
that mimics English text. The JPEG algorithm doesn’t do that well.
However, it does have the ability to identify nooks and crannies in the
image that might have space to hold information. This is described
in detail in Chapter 9.

5.3.4 GZSteg

Many of the compression algorithms can be tweaked in clever ways
to hide information. A simple but quite effective technique was used
by Andrew Brown when he created the GZSteg algorithm to hide in-
formation normally stored with the popular GZIP compression al-
gorithm. This technique is used frequently throughout the Net so it
makes an ideal candidate for an innocuous location.

Ordinarily, the GZIP algorithm will compress data by inserting
tokens that point back to a previous location where the data was
found. Here’s a sample section of text:

The famous Baltimore Oriole, Cal Ripken Jr., is the son of
Cal Ripken Sr. who coached for the Orioles in the past.

Here’s a sample section that was compressed. The tokens are shown
in italics.

The famous Baltimore Oriole, Cal Ripken Jr., is the son of
(30,10) Sr. who coached for the (48,6)s in the past.

In this example, there are two tokens. The first one, (30,10), tells
the algorithm to back 30 characters and copy 10 characters to the
current location. The compression technique works quite well for
many text algorithms.

GZSteg hides information by changing the number of characters
to copy. Every time it inserts a token that requires copying more



5.4. SUMMARY 85

than 5, it will hide one bit. If the bit is zero, then the token is left
unchanged. If the bit is one, then the number of characters to be
copied is shortened by one. Here’s the same quote with the two bits
11 encoded:

The famous Baltimore Oriole, Cal Ripken Jr., is the son of
(30,9)n Sr. who coached for the (46,5)es in the past.

In both cases, the size of the copying was cut by one. This does
reduce the amount of compression to a small extent.

The greatest advantage of this approach is that the file format is
unchanged. A standard GZIP program will be able to decompress the
data without noticing that information was hidden in the process.
Information could be left around without attracting suspicion. A
quick analysis, however, could also reveal that data was hidden in
such a manner. If you scan the file and examine the tokens, you can
easily determine which ones are just a character too small. There
is no way to deny that the program that did the GZIP compression
failed.

5.4 Summary

Compression algorithms are normally used to reduce the size of a
file without removing information. This can increase their entropy
and make the files appear more random because all of the possible
bytes become more common. The compression algorithms can also
be useful when they’re used to produce mimicry by running the com-
pression functions in reverse. This is described in Chapter 6.

The Disguise Compression algorithms generally produce data that
looks more random. That is, there is a more even distribution
of the data.

How Secure Is It? Not secure at all. Most compression algorithms
transmit the table or dictionary at the beginning of the file. This
may not be necessary because both parties could agree on such
a table in advance. Although I don’t know how to figure out
the mapping between the letters and the bits in the Huffman
algorithm, I don’t believe it would be hard to figure out.

How to Use It Many compression programs available for all com-
puters. They often use proprietary algorithms that are better
than the versions offered here and make an ideal first pass for
any encryption program.
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Further Reading

• My book, Compression Algorithms for Real Programmers,
is an introduction to some of the most common compres-
sion algorithms. [Way00]

• The Mathematical Theory of Communication by Claude E.
Shannon and Warren Weaver is still in print after almost
60 years and over 20 printings. [SW63]

• Khalid Sayood’s long book,Introduction to Data Compres-
sion, is an excellent, deep introduction. [Say00]

• Jacob Seidelin suggests compressing text by turning it into
an 8-bit PNG file. He provides the Javascript code on his
blog, nihilogic. The result looks much like white noise.
This may be a more practical way to hide information in
the least significant bits of images. [Sei08]



Chapter 6

Basic Mimicry

6.1 Reading between the Lines

Here is the transcript from the mind of a cynic reading through the
personals section of a newspaper:

SF ISO SM. Old-fashioned romantic wants same for
walks in rain, trips to Spain and riding on
planes. Send picture and dating strategy.

Great. Eliza Doolittle. Literally. I come up with a dating strategy
and she does little but ride along. This is not a good sign. She’s proba-
bly a princess working as a executive assistant who wants to be rescued
and catapulted into the upper class. Rules me out. I’m not going to
work my butt off so she can relax in Spain trying to pronounce words
differently. What’s so romantic about Spain, anyway? She’s proba-
bly read Hemingway too and I’ll be forced to run in front of a bunch
of bulls just so she’ll think I’m dashing in an old-fashioned way. No
thanks. I’ll take a new-fashioned Range Rover like they drive around
Africa. Those things can’t be toppled by a bunch of bulls. And if it’s
raining, I won’t get wet or slip all over the place. Geez.

SF ISO SM. Dancing. Wine. Night. Sky. Moon.
Romancing. Dine. Write by June.

Great. Poetry. She’ll expect me to reciprocate. I just won’t be able to
say, “Yeah, let’s grab a burger tonight.” Nope. I’ll have to get some
watercolors and paint a letter to her. In some ancient verse form.
Rhyming really is the sign of an overactive mind. Who really cares if
two words in different parts of a paragraph happen to end with the

87
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same sound? It’s just a coincidence. She’ll probably spend all of her
time picking up patterns in our lives. I’ll have to keep saying, “No. I
still love you. I just want to watch the seventh game of the World Series.
The Red Sox are in it this year. It’s tied. They might actually win! This
is not a sign of a bad relationship. ” Geez.

SF ISO SM. Fast cars, fast boats and fast horses
are for me. Don’t write. Send a telegram.

Great. Has she ever fallen off of a fast horse? They’re animals. They
only tolerate us on their backs as long as the oats are fresh. Women are
the same way. But they don’t take to a rein as well. And they don’t just
want fresh oats. I bet fast food isn’t on her list. She’ll ride along and
take me for whatever I’ve got. Then she’ll grab a fast plane out of my
life. No way. Her boat’s sinking already. Geez.

6.2 Running in Reverse

The cynic looking for a date in the introduction to this chapter has
the ability to take a simple advertisement and read between the lines
until he’s plotted the entire arc of the relationship and followed it to
its doom. Personal ads have an elaborate shorthand system for com-
pressing a person’s dreams into less than 100 words. The shorthand
evolved over the years as people learned to pick up the patterns in
what people wanted. “ISO” means “In Search Of” for example. The
cynic was just using his view of the way that people want to expand
the bits of data into a reality that has little to do with the incoming
data.

This chapter is about creating an automatic way of taking small,
innocuous bits of data and embellishing them with deep, embroi-
dered details until the result mimics something completely differ-
ent. The data is hidden as it assumes this costume. The effect is
accomplished here by running the Huffman compression algorithm
described in Chapter 5 in reverse. Ordinarily, the Huffman algorithm
would approximate the statistical distribution of the text and then
convert it into a digital shorthand. Running this in reverse can take
normal data and form it into elaborate patterns.

Figure 6.1 is a good place to begin. The text in this figure was cre-
ated using a fifth-order regular mimic function by analyzing an early
draft of Chapter 5. The fifth-order statistical profile of the chapter
was created by counting all possible sets of five letters in a row that
occur. In the draft, the five letters ‘mpres’ occur together in that order
84 times. Given that these letters are part of the word ‘compression’,
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it is not surprising that the five letters ‘ompre’ and ‘press’ also occur
84 times.

The text is generated in a process guided by these statistics. The
text begins by selecting one group of five letters at random. In the
Figure, the first five letters are “The l”. Then it uses the statistics to
dictate which letters can follow. In the draft of Chapter 5, the five
letters ‘he la’ occur 2 times, the letters ‘he le’ occur 16 times and the
letters “he lo” occur 2 times. If the fifth-order text is going to mimic
the statistical profile of Chapter 5, then there should be a 2 out of
20 chance that the letter “a” should follow the random “The l”. Of
course, there should also be a 16 out of 20 chance that it should be a
“e” and a 2 out of 20 chance that it should be an “o”.

This process is repeated ad infinitum until enough text is gener-
ated. It is often amazing just how real the result sounds. To a large
extent, this is caused by the smaller size of the sample text. If you as-
sume that there are about 64 printable characters in a text file, then
there are about 645 different combinations of five letters. Obviously,
many of them like “zqTuV” never occur in the English language, but a
large number of them must make their way into the table if the algo-
rithm is to have many choices. In the last example, there were three
possible choices for a letter to follow “The l”. The phrase “The let-
ter” is common in Chapter 5, but the phrase “The listerine” is not.
In many cases, there is only one possible choice that was dictated by
the small number of words used in the sample. This is what gives it
such a real sounding pattern.

Here’s the algorithm for generating nth-order text called T given a
source text S:

1. Construct a list of all combinations of n letters that occur in S
and keep track of how many times each of these occurs in the S.

2. Choose one at random to be a seed. This will be the first n
letters of T .

3. Repeat this loop until enough text is generated:

(a) Take the last n− l letters of T .

(b) Search through the statistical table and find all combina-
tions of letters that begin with these n− 1 letters.

(c) The last letters of these combinations is the set of possible
choices for the next letter to be added to T .

(d) Choose among these letters and use the frequency of their
occurrences in S to weight your choice.

(e) Add it to T .
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The letter compression or video is only to
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branches is easy to be use of find the because
many people has shows the codes The most nooks
like three constructed with a function, the greate
the moMany good formations. This simply be
compression show a Huffman code work quite easily
common in these 26 different takes 48 bit should
in this can be patter-frequency the image space
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Figure 6.1: This is a Fifth order random text generated by mimicking
the statistical distribution of letters in an early draft of Chapter 5.
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The algorithm works for n that is two or larger. Obviously, the
quality of the output of the lower-order samples depends on the or-
der. Here are some samples:

First Order islhne[hry saeeooisnre uo ‘ w nala al coehhs pebl
e to agboean ce ed cshcenapch nt
sibPah ea m n [tmsteoia lahid egnndl y et r yf arleo awe
l eo rttnntnnhtohwiseoa a dri 6oc7teit2t lenefe clktoi
l mlte r ces. woeiL , misetemd2np eap haled&oolrcc yttr
tr,oh en mi elarlbeo tyNunt . syf es2 nrrpmdo,0 reet dadwn’dysg
te.ewn1ca-ht eitxrni ntoos xt eCc oh sao vhsoh0mhgr

Second Order Thy etheren’ ante esthe ales. icone thers the
ase omsictorm s iom. wactere cut le ce s mo be t Me. Y
whes ine odofuion os thore cctherg om tt s d Thm & tthamben
tin’ssthe, co westitit odecra fugon tucod. liny Eangem
o wen il ea bionBulivethe ton othanstoct itaple

Third Order ith eas a tan’t genstructin ing butionsmage ruct
secate expachat thap-res ‘‘Miamproxis is of is a to af
st. This there is monst cone usectuabloodes it aluengettecte
por be the andtaly com Bevers gor the Hufferess. M B G
achasion the coduch occomprence mon Quited the ch like
bitheres. The

Fourth Order captionary. Image and to compression lest
constance tree. Family for into be mode of bytes in
algorith a file of that cosition algorithm that word
even that a size summarge factal size are:

ite position scien Raps.

The is are up much length ence, the if the a
refsec-ent sec-ent of fits to the crans usuall
numberse compression

A good ways that in algoright. The brase two wants to
hidea of English Cash the are compres then matimes formatimes
from the data finding pairst. This only be ression o

There is little doubt that the text gets more and more readable
as the order increases. But who would this fool? What if the enemy
designed a computer program that would flag suspicious electronic
mail by identifying messages that don’t have the right statistical mix
of characters? Foreign languages could pop right out. French, for
instance, has a greater number of apostrophes as well as a different
distribution of letters. Russian has an entirely different alphabet,
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but even when it is transliterated the distribution is different. Each
language and even each regional dialect has a different composition.

The texts generated here could fool such an automatic scanning
device because the output is statistically equivalent to honest English
text. For instance, the letter “e” is the most common and the letter
“t” is next most common. Everything looks statistically correct at
all of the different orders. If the scanning software was looking for
statistical deviance, it wouldn’t find it.

An automatic scanning program is also at a statistical disadvan-
tage with relatively short text samples. Its statistical definition of
what is normal must be loose enough to fit changes caused by the
focus of the text. A document about zebras, for instance, would have
many more “z”s than the average document, but this alone doesn’t
make it abnormal. Many documents might have a higher than av-
erage occurrence of “j”s or “q”s merely because the topic involves
something like jails or quiz shows.

Of course, these texts wouldn’t be able to fool a person. At least
the first-, second-, or third-order texts wouldn’t fool someone. But
a fifth-order text based on a sample from an obscure and difficult
jargon like legal writing might fool many people who aren’t familiar
with the structures of the genre.

More complicated statistical models can produce better mimicry,
at least in the right cases. Markov models, for instance, are common
in speech recognition and genetic algorithms can do a good job pre-
dicting some patterns. In general, any of the algorithms designed to
help a computer learn to recognize a pattern can be applied here to
suss out a pattern before being turned in reverse to imitate it.

More complicated grammatical analysis is certainly possible. There
are grammar checkers that scan documents and identify bad sen-
tence structure. These products are far from perfect. Many people
write idiomatically and others stretch the bounds of what is consid-
ered correct grammar without breaking any of the rules. Although
honest text generated by humans may set off many flags, even the
fifth-order text shown in this chapter would appear so wrong that it
could be automatically detected. Any text that had, say, more wrongChapter 7 offers an

approach to defeating
grammar checkers.

than right with it could be flagged as suspicious by an automatic pro-
cess. [KO84, Way85].

6.2.1 Choosing the Next Letter

The last section showed how statistically equivalent text could be
generated by mimicking the statistical distribution of a source col-
lection of text. The algorithm showed how to choose the next letter
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so it would be statistically correct, but it did not explain how to hide
information in the process. Nor did it explain how to run Huffman
compression in reverse.

The information is hidden by letting the data to be concealed
dictate the choice of the next letter. In the example described above,
either “a”, “e”, or “o” could follow the starting letters “The l”. It is easy
to come up with a simple scheme for encoding information. If “a”
stands for “1”, “e” stands for “2” and “o” stands for “3”, then common
numbers could be encoded in the choice of the letters. Someone at
a distance could recover this value if they had a copy of the same
source text, S, that generated the table of statistics. The could look
up “The l” and discover that there are three letters that follow “he l”
in the table. The letter “e” is the second choice in alphabetical order,
so the letter “e” stands for the message “2”.

A long text like the one shown in Figure 6.1 could hide a different
number in each letter. If there were no choice about the next letter
to be added to the output, though, then no information could be
hidden. That letter would not hide anything.

Simply using a letter to encode a number is not an efficient or a
flexible way to send data. What if you wanted to send the message
“4” and there were only three choices? What if you wanted to send
a long picture? What if your data wanted to send the value “1”, but
the first letter was the least common choice. Would this destroy the
statistical composition?

Running Huffman codes in reverse is the solution to all of these
problems. Figure 6.2 shows a simple Huffman tree constructed from
the three choices of letters to follow “The l”. The tree was constructed
using the statistics that showed that the letter “e” followed in 16 out of
the 20 times while the letters “a” and “o” both followed twice apiece.

Messages are encoded with a Huffman tree like this with a vari-
able number of bits. The choice of “e” encodes the bit “0”; the choice
of “a” encodes “10”; and the choice of “o” encodes the message “11”.
These bits can be recovered at the other end by reversing this choice.
The number of bits that are hidden with each choice of a letter varies
directly with the number of choices that are possible and the proba-
bilities that govern the choice.

There should generally be more than three choices available if the
source text S is large enough to offer some variation, but there will
rarely be a full 26 choices. This is only natural because English has
plenty of redundancy built into the language. Shannon recognized
this when he set up information theory. If the average entropy of En-
glish is about 3 bits per character, then this means that there should
only be about 23 or eight choices that can be made for the next char-
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Figure 6.2: A small Huffman tree built to hide bits in the choice of a
new letter. Here, the letter “a” encodes “10”, the letter “e” encodes “0”
and the letter “o” encodes “11”.

acter. This value is weighted by the probabilities.
There are problems, of course, with this scheme. This solution is

the best way to hide the information so that it mimics the source text
S for the same reason that Huffman codes are the most efficient way
to construct tree-like compression schemes. The same proof that
shows this works in reverse.Section 6.3.1 shows a

more accurate
approximation.

But even if it is the best, it falls short of being perfect. In the small
example in Figure 6.2, the letter “e” is chosen if the next bit to be
hidden is “0”, while either “a” or “o” will be hidden if the next bit is
“1”. If the data to be hidden is purely random, then “e” will be chosen
50% of the time while “a” or “o” will be chosen the other 50% of the
time. This does not mimic the statistics from the source text exactly.
If it did, the letter “e” would be chosen 80% of the time and the other
letters would each be chosen 10% of the time. This inaccuracy exists
because of the binary structure of the Huffman tree and the number
of choices available.

6.3 Implementing the Mimicry

There are two major problems in writing software that will gener-
ate regular nth-order mimicry. The first is acquiring and storing the
statistics. The second is creating a tree structure to do the Huffman-
like coding and decoding. The first problem is something that re-
quires a bit more finesse because there are several different ways to
accomplish the same ends. The second problem is fairly straightfor-
ward.
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Several people have approached a similar problem called gener-
ating a travesty. This was addressed in a series of Byte magazine arti-
cles [KO84, Way85] that described how to generate statistically equiv-
alent text. The articles didn’t use the effect to hide data, but they
did concentrate on the most efficient way to generate it. This work
ends up being quite similar in practice to the homophonic ciphers
described by H. N. Jendal, Y. J. B. Kuhn, and J. L. Massey in [JKM90]
and generalized by C. G. Gunther in [Gun88].

Here are four different approaches to storing the statistical tables
needed to generate the data:

Giant Array Allocate an array with cn boxes where c is the number
of possible characters at each position and n is the order of the
statistics being kept. Obviously c can be as low as 27 if only
capital letters and spaces are kept. But it can also be 256 if all
possible values of a byte are stored. This may be practical for
small values of n, but it quickly grows impossible if there are k
letters produced.

Giant List Create an alphabetical list of all of the entries. There is
one counter per node as well as a pointer and a string holding
the value in question. This makes the nodes substantially less
efficient than the array. This can still pay off if there are many
nodes that are kept out. If English text is being mimicked, there
are many combinations of several letters that don’t occur. A list
is definitely more efficient.

Giant Tree Build a big tree that contains one path from the root to
a leaf for each letter combination found in the tree. This can
contain substantially more pointers, but it is faster to use than
the Giant List. Figure 6.3 illustrates an implementation of this.

Going Fishing Randomize the search. There is no statistical table
produced at all because c and n are too large. The source file
serves as a random source and it is consulted at random for
each choice of a new letter. This can be extremely slow, but
it may be the only choice if memory isn’t available.

The first three solutions are fairly easy to implement for anyone
with a standard programming background. The array is the easiest.
The list is not hard. Anyone implementing the tree has a number of
choices. Figure 6.3 shows that the new branches at each level are
stored in a list. This could also be done in a binary tree to speed
lookup.
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a b c

b t 3

Figure 6.3: This tree stores the frequency data for a file with n layers
of branching for nth-order statistics. Access is substantially faster.
The dashed lines show where nodes are omitted. The only complete
word shown here is “at”. It occurs three times in the sample.

The fourth solution, going fishing, is a bit more complicated. The
idea is to randomly select positions in the text and use this to ran-
domize the search. Not all of the data can be kept in a table so all of
the choices won’t be available at each juncture. Therefore, you must
live with what you can find. The most extreme version of this algo-
rithm simply searches the entire file and constructs the right table
entry on the fly. Here is a more sensible approach:

1. Choose a location in the source file at random. Call this charac-
ter i. This random source must be duplicated during decoding
so it must come from a pseudo-random number generator that
is synchronized.

2. If you are constructing an nth-order mimicry, search forward
until you find the n − 1 characters in question. The next char-
acter may be the one you desire.

3. Let there be k characters in the source file. Go to position i +
k
2 mod k. Search forward until the right combination of n − 1
characters are found.

4. If the next character suggested by both positions is the same,
then nothing can be encoded here. Send out that character and
repeat.
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5. If the characters are different, then one bit can be encoded with
the choice. If you are hiding a 0 using this mimicry, then output
the character found beginning at position i. If you are hiding
a 1, then output the character found after the search began at
i+ k

2 mod k.

This solution can be decoded. All of the information encoded
here can be recovered as long as both the encoder and the decoder
have access to the same source file and the same stream of i values
coming from a pseudo-random source. The pseudo-random gener-
ator ensures that all possible combinations are uncovered. This does
assume, however, that the candidates of n − 1 characters are evenly
distributed throughout the text.

The solution can also be expanded to store more than one bit per
output letter. You could begin the search at four different locations
and hope that you uncover four different possible letters to output.
If you do, then you can encode two bits. This approach can be ex-
tended still further, but each search does slow the output.

In general, the fishing solution is the slowest and most cumber-
some of all the approaches. Looking up each new letter takes an
amount of time proportional to the occurrence of the n− 1 character
group in the data. The array has the fastest lookup, but it can be pro-
hibitively large in many cases. The tree has the next fastest lookup
and is probably the most generally desirable for text applications.

6.3.1 Goosing with Extra Data

Alas, statistical purity is often hard to generate. If the data to be hid-
den has maximum entropy, then the letters that emerge from the
Huffman-tree based mimicry will emerge with a probability distri-
bution that seems a bit suspicious. Every letter will appear with a
probability of the form 1/2i; that is, 50%, 25%, 12.5%, and so on. This
may not be that significant, but it might be detected. Music is also fair game.

Many have
experimented with
using musical rules of
composition to create
new music from
statistical models of
existing music. One
paper on the topic is
[BJNW57].

Better results can be obtained by trading off some of the efficiency
and using a pseudo-random number generator to add more bits to
make the choice better approximate the actual occurrence in the
data.

This technique can best be explained by example. Imagine that
there are three characters, “a”, “b”, and “c” that occur with probabil-
ities of 50%, 37.5%, and 12.5% respectively. The ordinary Huffman
tree would look like the one in Figure 6.4. The character “a” would
occur in the output file 50% of the time. This would be fine. But “b”
and “c” would both occur 25% of the time. “b” will occur as often as
“c”, not three times as often as dictated by the source file.
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Figure 6.4: An ordinary Huffman tree built for three characters, “a”,
“b”, and “c” that occur with probabilities of 50%, 37.5%, and 12.5%
respectively.

Figure 6.5 shows a new version of the Huffman tree designed to
balance the distribution. There are now two extra layers added to the
tree. The branching choices made in these extra two layers would
use extra bits supplied by a pseudo-random generator. When they
were recovered, these bits would be discarded. It should be easy to
establish that “b” will emerge 37.5% of the time and “c” will be output
12.5% of the time if the data being hidden is perfectly distributed.

The cost of this process is efficiency. The new tree may produce
output with the right distribution, but decoding is often not possible.
The letter “b” is produced from the leaves with addresses 100, 101,
and 110. Since only the first bit remains constant with the tree in
Figure 6.5 then only one bit can be hidden with the letter “b”. The
other two bits would be produced by the pseudo-random bit stream
and not recovered at the other end. The tree in Figure 6.4 would hide
two bits with the letter “b”, but it would produce a “b” 25% of the
time. This is the trade-off of efficiency versus accuracy.

How many bits are hidden or encoded if a “c” is output? It could
either be three that are encoded when a 111 is found in the input file
or it could be one bit padded in the same manner as the letter “b”.
Either choice is fine.

This technique can be extended significantly to support any
amount of precision. The most important step is to make sure that
there will be no ambiguity in the decoding process. If the same char-
acter exists on both branches, then no bit can be encoded using any
of the subtree descending from this point.

This means that it is not possible to encode data which is dom-
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Figure 6.5: An expanded version of the tree shown in Figure 6.4. The
decisions about which of the dashed branches to take are made by
drawing bits from an extra pseudo-random source. Only the first
decision is made using a bit from the data to be hidden.

inated by one character that appears more than 50% of the time. If
“a”,“b” and “c” were to emerge 75%, 25% and 5% of the time respec-
tively, then it would not be possible to encode information with this
scheme and also produce the letter “a” 75% of the time.

One way around this process is to produce pairs of characters.
This is often feasible if one letter dominates the distribution. That
is, produce the pairs “aa”,“ab”,“ac”,“ba”,“bb”,“bc”, “ca”,“cb”, and “cc”
with probabilities of 56%, 18%, 3%, 18%, 6%, 1%, 3%, 1%, and .2%
respectively.

6.3.2 Regular Mimicry and Images

The regular mimicry algorithms described in this chapter are aimed
at text and they do a good job in this domain. Adapting them to
images is quite possible, if only because the digitized images are just
patterns of the two letters “1” and “0”. But the success is somewhat
diluted.

Chapter 9 shows how to flip the least significant bits to store in-
formation. Chapter 9 doesn’t try to mimic the pattern of the least
significant bits. It just assumes that they fall into a standard even
distribution. The regular mimicry algorithms can be used to tailor
the distribution to some model.

The simplest solution is to group together the pixels into a regular
set of groups. These groups might be 2 × 2 or 3 × 3 blocks or they
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might be broken into linear groups of pixels from the same row. Now
the least significant bits of each of these pixels can be treated as
characters. One image might be used as the model used to compute
the distribution table that generates a Huffman tree. Then data can
be hidden in another image by using this Huffman tree to generate
blocks of bits to replace the least significant bits in the image.

More sophisticated solutions could be based on the color of the
pixels themselves, but they are probably too complicated to be prac-
tical. The advantage of this system is that it could detect and imitate
any statistical anomalies introduced when an image was created. Or-
dinarily, CCD arrays have slight imperfections that affect how each
sensing cell reacts to light. High-quality arrays used by people like
NASA are tested and corrected. Most civilian arrays never receive
this individual treatment. The system might pick up any low-level
incongruities if they happen to fall in a pattern that is reflected in the
statistical distribution of the pixel groups.

6.4 Summary

This chapter described how to produce mimic text that looks statis-
tically similar to the original text. The mechanisms in this chapter
treat letters as the individual element, something that allows the data
to pass some statistical tests but fail others. The count of letters like
‘e’ and ‘t’ might be consistent, but there are often large numbers of
words that can’t be found in a dictionary. Another approach taken by
some experimenters is to treat words as the individual elements for
the statistical models. This requires more text to create the model,
but it provides excellent, if rambling, results. There are no misspelled
words that aren’t found in the source.

Chapter 7 describes how to use a more sophisticated grammar-
based method to achieve a better result. Chapter 8 goes even further
and shows how a Turing machine can be made to run backward and
forward to produce the most complicated text.

The Disguise The text produced by these regular mimic functions
can be quite realistic. The results are statistically equivalent.
First-order text will have similar first-order statistics. Second-
order text will have the same occurrence of pairs. This can be
quite realistic in the higher orders, but it will rarely pass the
reading test. Humans will quickly recognize it as gibberish.

How Secure Is It? There is no reason to guess that this system offers
any more security than hiding the information. How hard it



would be to break such a statistical system is an open question.
I believe that it would be possible to examine the statistics and
come up with a pretty good guess about the shape of the Huff-
man trees used to generate the text. There may only be a few
thousand options, which can be tested quite quickly if some
known plaintext is available.

For that reason, this system should probably be used in low-
grade applications that demand verisimilitude but not perfec-
tion.

How to Use It? No software is being distributed right now to handle
this problem, but it should be easy to code it.

Further Reading

• Krista Bennett offers a nice survey of textual stegano-
graphic methods in her report, “Linguistic Steganography:
Survey, Analysis, and Robustness Concerns for Hiding In-
formation in Text”. [Ben04]

• Steganosaurus, from John Walker, is a C-based program
that will use a dictionary to turn bits into gibberish; see
fourmilab.ch/stego.[Wal94]



Chapter 7

Grammars and Mimicry

7.1 Evolution of Everyday Things

Recently, I sat down with Charles Radwin, an evolutionary scientist,
who drew a fair bit of acclaim and controversy over his paper showing
how evolution led the human species to gorge on the O.J. Simpson
trial. I asked him his views about how evolution affects other aspects
of our lives. Here is our conversation:

Q: Eventually all toilets need their handles wiggled to stop
them from running. Why?

A: The commodes obviously developed this response to pre-
vent calcification. The extra running water prevented
tank stoppage and the toilets that had this gene quickly
outlasted those that didn’t. It was simple natural selec-
tion.

Q: What about toasters? No matter how hard you try to set
them right, they always burn some toast.

A: Toasters developed this response to protect their host or-
ganism. Golden brown toast begs for a thick coating of
butter. Perfect toasters gave their host humans massive
coronary occlusions and that sends them to the scrap
heap. The best toasters are those that do not kill off their
hosts. They ultimately come to dominate the ecological
landscape in the kitchen.

Q: Lightbulbs always burn out when I turn on the light. Why
not, say, in the middle of a novel?

A: Again, lightbulbs evolved this way to protect their host
humans. People often turn on lights when they enter a
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dark room. If the lightbulb dies at this moment, no one
is stranded in the dark. But if the lightbulb burns out
when someone is in the middle of the room, that human
invariably trips over the coffee table, falls and splits its
head wide open. Naturally, the lightbulbs that evolve into
a synergistic relationship with their human hosts survive
the best.

Q: But why don’t lightbulbs live forever? Wouldn’t that make
life even better for their hosts?

A: Evolution can’t function without new generations. Some-
thing must die in order for progress to occur.

Q: Copying machines always break down ten minutes before
the crucial presentation. I’ve almost lost two jobs when a
copier quit on me. They certainly weren’t protecting their
host organism, were they?

A: Evolution is a tricky balance. An organism can be too suc-
cessful and consume all of its habitat. Imagine a perfect
copying machine that did one billion flawless copies in a
second. Wonderful, right? Not for the copying machine.
Everything would be copied. It would have no purpose
and the humans would quickly replace it with something
more fun like a refrigerator filled with beer.

Q: Speaking of beer, why do some of those pop-tops break off
without opening the can? By the end of a fishing trip, my
cooler is filled with unopenable cans with no pop-tops.

A: You’re answering your own question, aren’t you?
Q: Why isn’t beer entering into a synergistic relationship with

the human? I’m certainly game.
A: In this case, the beer and the human are competing for

the same ecological niche. If two humans drink beer, they
often go off and create another human, not another beer.

Q: What if people set up another batch of hops and malt
when they got drunk? Would those pull tabs start coop-
erating?

A: Evolution is hard to predict. Small changes in the equa-
tion can often change the entire outcome. I think that
the beer pull tops would soon become harder to pull off.
Why? Because organisms often evolve reproductive re-
straint to avoid catastrophic competition. Your scenario
could quickly lead to a flood of beer.

Q: There’s nothing I can do about the pull tabs? Aren’t evolu-
tionary scientists good for anything?

A: Evolution is tricky. If scientists were able to answer all of
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the questions, there would be no need for evolutionary
scientists. Nor would there be any need for the program
officers at the National Science Foundation who give out
money to evolutionary scientists. There is a well-defined
synergy at work here.

7.2 Using Grammar for Mimicry

Chapter 6 showed how to hide data and turn it into something that
mimicked the statistical patterns of a file. If you want a piece of text
to sound like the New York Times, for instance, you could feed in a
large amount of source material from the paper and gather statistical
patterns that make it possible to mimic its output. Ideally, such a
function would be a strong technique for hiding information from
automatic scanning programs that might use statistical patterns to
identify data.

The output of these Huffman-based methods could certainly fool
any machine examining data for suspicious patterns. The letters
would conform to the expected distribution: “e”s would be com-
mon, “z”s would be uncommon. If either second- or third-order text
was used, then “u”s would follow “q”s and everything would seem to
make sense to a computer that was merely checking statistics.

These statistical mimic functions wouldn’t fool anyone looking
at the grammar. First- or second-order mimicry like that found on
page 91 looks incomprehensible. Words start to appear in third-
or fourth-order text, but they rarely fall into the basic grammatical
structure. Even a wayward grammar checker could flag these a mile
away.

This chapter describes how to create mimicry that will be gram-
matically correct and make perfect sense to a human. The algorithms
are based on some of the foundational work done in linguistics that
now buttresses much of computer science. The net result is some-
thing that reads quite well and can be very, very difficult to break.

7.2.1 Context-Free Grammars

The basic abstraction used in this chapter is context-free grammar, a Earlier editions of this
book included code for
generating
grammar-based
mimicry. It’s now
available directly from
the author.

notion developed by Noam Chomsky [CM58] to explain roughly how
languages work. The structure is something like a more mathemati-
cal form of sentence diagramming. This model was adopted by com-
puter scientists who both explored its theoretical limits and used it
as a basis for programming languages like C or Pascal.

A context-free grammar consists of three different parts:
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Terminals This is the technical term for the word or sentence frag-
ments that are used to put together the final output. Think of
them as the patterns printed on the puzzle fragments. The ter-
minals will often be called words or phrases.

Variables These are used as abstract versions of decisions that will
be made later. They’re very similar to the variables that are used
in algebra or programming. They will be typeset in boldface like
this: variable.

Productions These describe how a variable can be converted into
different sets of variables or terminals. The format looks like
this:

variable→words ‖ phrase.

That means that a variable can be converted into either words
or a phrase. The arrow (→) stands for conversion and the dou-
ble vertical line (‖) stands for “or”. In this example, the right-
hand side of the equation only holds terminals, but there can
be mixtures of variables as well. You can think of these produc-
tions as rules for fitting puzzle pieces together.

The basic idea is that a grammar describes a set of words known
as terminals and a set of potentially complex rules about how they
go together. In many cases, there is a fair bit of freedom of choice in
each stage of the production.

In this example the variable could be converted into either words
or a phrase. This choice is where the information will be hidden.
The data will drive the choice in much the same way that a random
number generator drives a fake computerized poetry machine. The
data can be recovered through a reverse process known as parsing.

Here’s a sample grammar:

Start → noun verb
noun → Fred ‖ Barney ‖ Fred and Barney
verb → went fishing. ‖went bowling.

By beginning with the Start variable and applying productions to
convert the different variables, the grammar can generate sentences
like “Fred and Barney went fishing.” This is often written with a
squiggly arrow (�) representing a combination of several different
productions like this: Start � Fred and Barney went fishing. Another
way to state the same thing is to say: The sentence “Fred and Barney
went fishing” is in the language generated by the grammar. The order
of the productions is arbitrary and in some cases the order can make
a difference (it doesn’t in this basic example).



7.2. USING GRAMMAR FOR MIMICRY 107

More complicated grammars might look like this:

Start → noun verb
noun → Fred ‖ Barney
verb → went fishing where ‖went bowling where
where → in direction Iowa. ‖ in direction Minnesota.
direction → northern ‖ southern

For simplicity, each of the productions in this grammar has two
choices— call them 0 and 1. If you begin with the Start variable and
always process the leftmost variable, then you can convert bits into
sentences from the language generated by this grammar. Here’s a
step-by-step illustration of the process:

Step Answer in Progress Bit Hidden Production Choice

1 Start none Start → noun verb
2 noun verb 1 noun→ Barney
3 Barney verb 0 verb → went fishing where
4 Barney went fishing where 1 where → in direction Minnesota.
5 Barney went fishing in 0 direction → northern

direction Minnesota.

The bits 1010 were hidden by converting them into the sentence
“Barney went fishing in northern Minnesota.” The bits 0001 would
generate the sentence “Fred went fishing in southern Iowa.” The bits
1111 would generate the sentence “Barney went bowling in southern
Minnesota.” There are 24 different sentences in the language gener-
ated by this grammar and all of them make sense.

Obviously, complex grammars can generate complex results and
producing high-quality text demands a certain amount of creativity.
You need to anticipate how the words and phrases will go together
and make sure everything fits together with a certain amount of fe-
licity.

Figure 7.1 shows the output from an extensive grammar devel-
oped to mimic the voice-over from a baseball game. The entire gram-
mar can be requested from the author.

Figure 7.1 only shows the first part of a 26k file generated from
hiding this quote:

I then told her the key-word which belonged to no lan-
guage and saw her surprise. She told me that it was im-
possible for she believed herself the only possessor of that
word which she kept in her memory and which she never
wrote down. . . This disclosure fettered Madame d’Urfé
to me. That day I became the master of her soul and I
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Well Bob, Welcome to yet another game between the Whappers
and the Blogs here in scenic downtown Blovonia. I think
it is fair to say that there is plenty of BlogFever
brewing in the stands as the hometown comes out to root
for its favorites. The Umpire throws out the ball. Top
of the inning. No outs yet for the Whappers. Here we go.
Jerry Johnstone adjusts the cup and enters the batter’s
box. Here’s the pitch. Nothing on that one. Here comes
the pitch It’s a curvaceous beauty. He just watched it
go by. And the next pitch is a smoking gun. He lifts it
over the head of Harrison "Harry" Hanihan for a double!
Yup. What a game so far today. Now, Mark Cloud adjusts
the cup and enters the batter’s box. Yeah. He’s winding
up. What looks like a spitball. He swings for the
stands, but no contact. It’s a rattler. He just watched
it go by. He’s winding up. What a blazing comet. Swings
and misses! Strike out. He’s swinging at the umpire.
The umpire reconsiders until the security guards arrive.
Yup, got to love this stadium.

Figure 7.1: Some text produced from a baseball context-free gram-
mar show partially in Figure 7.3. See also Figure 7.2 for an example
imitating spam.
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abused my power. –Casanova, 1757, as quoted by David
Kahn in The Codebreakers. [Kah67]

The grammar relies heavily on the structure of the baseball game
to give form to the final output. The number of balls, strikes, and
outs are kept accurately because the grammar was constructed care-
fully. The number of runs, on the other hand, is left out because the
grammar has no way of keeping track of them. This is a good illus-
tration of what the modifier “context-free” means. The productions
applied to a particular variable do not depend on the context that
surrounds the variable. For instance, it doesn’t matter in the basic
example whether Fred or Barney is fishing or bowling. The decision
on whether it is done in Minnesota or Iowa is made independently.

The baseball grammar that generated Figure 7.1 uses a separate
variable for each half-inning. One half-inning might end up produc-
ing a collection of sentences stating that everyone was hitting home
runs. That information and its context does not affect the choice of
productions in the next half-inning. This is just a limitation enforced
by the way that the variables and the productions were defined. If
the productions were less arbitrary and based on more computation,
even better text could be produced.1

Several other grammars live on at spammimic.com. The main ver-
sion will encode a message with phrases grabbed from the flood of
spam pouring into our mailboxes. Figure 7.2 shows some of the re-
sults.

7.2.2 Parsing and Going Back

Hiding information as sentences generated from a particular gram-
mar is a nice toy. Recovering the data from the sentences turns the
parlor game into a real tool for transmitting information covertly.
The reverse process is called parsing and computer scientists have
studied it extensively. Computer languages like C are built on a
context-free grammar. The computer parses the language to under-
stand its instructions. This chapter is only interested in the process
of converting a sentence back into the list of bits that led to its pro-
duction.

Parsing can be complex or easy. Most computer languages are de-
signed to make parsing easy so the process can be made fast. There
is no reason why this can’t be done with mimicry as well. You can al-
ways parse the sentence from any context-free grammar and recover

1It is quite possible to create a more complex grammar that does a better job of
encoding the score at a particular time, but it won’t be perfect. It will do a better job,
but it won’t be exactly right. This is left as an exercise.
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the sequence of productions, but you don’t have to use these arbi-
trarily complex routines. If the grammar is designed correctly, it is
easy enough for anyone to parse the data.

There are two key rules to follow. First, make sure the grammar
is not ambiguous; second, keep the grammar in Greibach Normal
Form. If the same sentence can emerge from a grammar through two
different sets of productions, then the grammar is ambiguous. This
makes the grammar unusable for hiding information because there
is no way to accurately recover the data. An ambiguous grammar
might be useful as a cute poetry generator, but if there is no way to
be sure what the hidden meaning is, then it can’t be used to hide data.

Here’s an example of an ambiguous grammar:

Start → noun verb ‖who what
noun → Fred ‖ Barney
verb → went fishing. ‖went bowling.
who → Fred went ‖ Barney went
what → bowling ‖ fishing

The sentence “Fred went fishing” could be produced by two dif-
ferent steps. If you were hiding data in the sentence, then “Barney
went bowling” could have come from either the bits 011 or the bits
110. Such a problem must be avoided at all costs.

If a context-free grammar is in Greibach Normal Form (GNF), it
means that the variables are at the end of the productions. Here are
some examples:

Production In GNF?
Start → noun verb YES
where → in direction Iowa. ‖ in direction Minnesota. NO
where → in direction state. ‖ in direction state. YES
what → bowling ‖ fishing YES

Converting any arbitrary context-free grammar into Greibach
Normal Form is easy. Add productions until you reach success. Here’s
the extended example from this section with a new variable, state,
that places this in GNF.

Start → noun verb
noun → Fred ‖ Barney
verb → went fishing where ‖went bowling where
where → in direction state
direction → northern ‖ southern
state → Iowa. ‖Minnesota.
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This grammar generates exactly the same group of sentences or
language as the other version. The only difference is in the order
in which choices are made. Here, there is no choice available when
the variable where is tackled. No bits would be stored away at this
point. The variables for direction and state would be handled in or-
der. The result is that the sentence “Barney went fishing in northern
Minnesota” is produced by the bits 1001. In the previous grammar
on page 107, the sentence emerged from hiding bits 1010.

Parsing the result from a context-free grammar that is in Greibach The program was a
mimetic weapon,
designed to absorb local
color and present itself
as a crash priority
override in whatever
context it encountered.
—William Gibson in
Burning Chrome

Normal Form is generally easy. The table on page 107 shows how the
sentence “Barney went fishing in northern Minnesota” was produced
from the bits 1010. The parsing process works along similar lines.
Here’s the sentence being parsed using the grammar in GNF on 110.

Sentence Fragment
Step in Question Matching Production Bit Recovered

1 Barney went fishing noun → Fred ‖ Barney 1
in northern Minnesota.

2 Barney went fishing verb → went fishing where ‖ 0
in northern Minnesota. went bowling where

3 Barney went fishing where → in direction state. none
in northern Minnesota.

4 Barney went fishing direction → northern ‖ southern 0
in northern Minnesota.

5 Barney went fishing state → Iowa. ‖ Minnesota. 1
in northern Minnesota.

The bits 1001 are recovered in step 5. This shows how a parsing
process can recover bits stored inside of sentences produced using
grammar in GNF. Better parsing algorithms can handle any arbitrary
context-free grammar, but this is beyond the purview of this book.

7.2.3 How Good Is It?

There are many ways to measure goodness, goodness knows, but the
most important ones here are efficiency and resistance to attack. The
efficiency of this method is something that depends heavily on the
grammar itself. In the examples in this section, one bit in the source
text was converted into words like “Minnesota” or “Barney”. That’s
not particularly efficient.

The grammar could encode more bits at each stage in the pro-
duction if there were more choices. In each of the examples, there
were only two choices on the right side of the production, but there
is no reason why there can’t be more. Four choices would encode
two bits. Eight choices would encode three bits, and so on. More
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Dear Friend ; Thank-you for your interest in our
publication . If you no longer wish to receive our
publications simply reply with a Subject: of "REMOVE" and
you will immediately be removed from our club ! This mail
is being sent in compliance with Senate bill 1626 ; Title
3 , Section 308 . THIS IS NOT MULTI-LEVEL MARKETING .
Why work for somebody else when you can become rich as few
as 10 WEEKS ! Have you ever noticed how many people you
know are on the Internet and nearly every commercial on
television has a .com on in it . Well, now is your chance
to capitalize on this ! We will help you use credit cards
on your web site and deliver goods right to the customer’s
doorstep ! The best thing about our system is that it
is absolutely risk free for you . But don’t believe us
! Prof Anderson who resides in Idaho tried us and says
‘‘Now I’m rich, Rich, RICH’’ . This offer is 100% legal
. We beseech you - act now ! Sign up a friend and you
get half off . Thank-you for your serious consideration
of our offer . Dear Colleague ; This letter was specially
selected to be sent to you . If you are not interested
in our publications and wish to be removed from our lists,
simply do NOT respond and ignore this mail ! This mail is
being sent in compliance with Senate bill 1623 ; Title 1 ,
Section 302 ! This is different than anything else you’ve
seen . Why work for somebody else when you can become
rich as few as 30 WEEKS . Have you ever noticed people
will do almost anything to avoid mailing their bills &
people love convenience . Well, now is your chance to
capitalize on this . We will help you turn your business
into an E-BUSINESS & deliver goods right to the customer’s
doorstep ! You are guaranteed to succeed because we take
all the risk . But don’t believe us ! Prof Ames who
resides in North Dakota tried us and says ‘‘Now I’m rich
many more things are possible’’ . We assure you that we
operate within all applicable laws ! We beseech you - act
now ! Sign up a friend and you’ll get a discount of 20

Figure 7.2: Some text produced from the spam mimicry grammar at
spammimic.com.
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choices are often not hard to add. You could have 1024 names of
people that could be produced as the noun of the sentence. That
would encode 10 bits in one swoop. The only limitation is your
imagination.

Assessing the resistance to attack is more complicated. The hard-
est test can be fooling a human. The text produced in Chapter 6
may look correct statistically, but even the best fifth-order text seems
stupid to the average human. The grammatical text produced from
this process can be as convincing as someone can make the gram-
mar. The example that produced the text in Figure 7.1 shows how
complicated it can get. Spending several days on a grammar may
well be worth the effort.

There are still limitations to the form. Context-free grammars
have a fairly simple form. This means, however, that they don’t keep
track of information particularly well. The example in Figure 7.1
shows how strikes, balls, and outs can be kept straight, but it fails
to keep track of the score or the movement of the base runners. A
substantially more complicated grammar might begin to do this, but
there will always be limitations to writing the text in this format. “Language exerts

hidden power, like a
moon on the tides.”–
Rita Mae Brown,
Starting From Scratch

The nature of being context-free also imposes deeper problems on
the narrative. The voice-over from a baseball game is a great conceit
here because the story finds itself in the same situation over and over
again. The batter is facing the pitcher. The details about the score
and the count change, but the process repeats itself again and again
and again.

Creating a grammar that produces convincing results can either
be easy or hard. The difficulty depends, to a large extent, on your
level of cynicism. For instance, anyone could easily argue that the
process of government in Washington, D.C. is a three-step process:

1. Member of Congress X threatens to change regulation Y of in-
dustry Z.

2. Industry Z coughs up money to the re-election campaign of
other members P, D, and Q.

3. P, D, and Q stop X’s plan in committee.

If you believe that life in Washington, D.C. boils down to this basic
economic process, you would have no problem coming up with a
long, complicated grammar that spins out news from Washington.
The same can be said for soap operas or other distilled essences of
life.

There are deeper questions about the types of mathematical at-
tacks that can be made on the grammars. Any attacker who wanted
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to recover the bits would need to know something about the gram-
mar that was used to produce the sentences. This would be kept
secret by both sides of the transmission. Figuring out the grammar
that generated a particular set of sentences is not easy. The ambigu-
ous grammar example on page 110 shows how five production rulesThe Alicebot project lets

computers chatter in
natural languages.

Imagine if they were
encoding information

at the same time?
(www.alicebot.org)

can produce a number of sentences in two different ways. Because
there so many different possible grammars that could generate each
sentence, it would be practically impossible to search through all of
them.

Nor is it particularly feasible to reconstruct the grammar. Decid-
ing where the words produced from one variable end and the words
produced by another variable begin is a difficult task. You might be
able to create such an inference when you find the same sentence
type repeated again and again and again.

These reasons don’t guarantee the security of the system by any
means. They just offer some intuition for why it might be hard to
recover the bits hidden with a complicated grammar. Section 7.3.4“Scrambled Grammars”

on page 119 shows how
to rearrange grammars

for more security.

fon page 128 discusses some of the deeper reasons to believe in the
security of the system.

7.3 Creating Grammar-Based Mimicry

Producing software to do context-free mimicry is not complicated.A C version of the code is
also available on the
code disk. It is pretty

much a straight
conversion.

You only need to have a basic understanding of how to parse text,
generate some random numbers, and break up data into individual
bits.

There are a number of different details of the code that bear ex-
plaining. The best place to begin is the format for the grammar files.
Figure 7.3 shows a scrap from the baseball context-free grammar il-
lustrated in Figure 7.1.

The variables begin with the asterisk character and must be one
contiguous word. A better editor and parser combination would be
able to distinguish between them and remove this restriction. Start-
ing with a bogus character like the asterisk is the best compromise.
Although it diminishes readability, it guarantees that there won’t be
any ambiguity.

The list of productions that could emerge from each variable is
separated by forward slashes. The pattern is: phrase / number/. The
final phrase for a variable has an extra slash after the last number.
The number is a weighting given to the random choice maker. In this
example, most of the weights are .1. The software simply adds up all
of the weights for a particular variable and divides through by this
total to normalize the choices.



7.3. CREATING GRAMMAR-BASED MIMICRY 115

*WhapperOutfieldOut = He pops one up into deep left field./.1/

He lifts it back toward the wall where it is caught

by *BlogsOutfielder *period/.1/

He knocks it into the glove of

*BlogsOutfielder *period /.1/

He gets a real piece of it and

drives it toward the wall

where it is almost ... Oh My God! ... saved by

*BlogsOutfielder *period /.1/

He pops it up to *BlogsOutfielder *period /.2//

*WeatherComment = Hmm . Do you think it will rain ? /.1/

What are the chances of rain today ? /.1/

Nice weather as long as it doesn’t rain . /.1/

Well, if rain breaks out it will

certainly change things . /.1/

You can really tell the mettle of a

manager when rain is threatened . /.1//

*BlogsOutfielder = Orville Baskethands /.1/

Robert Liddlekopf /.1/

Harrison "Harry" Hanihan /.1//

Figure 7.3: Three productions from the grammar that produced the
text in Figure 7.1.
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1

1

0

0

Orville Baskethands

Robert Liddlekopf

Harrison Harry Hanihan

Figure 7.4: The Huffman tree used to hide information in the choice
of the Blogs outfielder who makes a particular play.

The weightings aren’t used randomly. If the choice of a particular
phrase is going to encode information, then there must be a one-to-
one connection between incoming bits and the output. The Huff-
man trees discussed in “Choosing the Next Letter” on page 92 are the
best way to map a weighted selection of choices to incoming bits.
The weightings are used to build a tree. Figure 7.4 shows the tree
built to hide information in the choice of the Blogs outfielder who
makes a play. The same proof that shows that Huffman trees are the
optimal way to compress a file shows that this is the best way to en-
code information.

Naturally, the Huffman tree only approximates the desired sta-
tistical outcome and the level of the approximation is limited to the
powers of one-half. Figure 7.4 shows how badly the Huffman tree can
often be off the mark. One of the choices encodes one bit of informa-
tion and the other two each encode two. This means, effectively, that
the first choice will be made 50% of the time and the other two will
be chosen 25% of the time.

The level of inaccuracy decreases as more and more choices are
available. For instance, it should be obvious that if a variable can be
converted into 2i different choices each with equal weighting, then
the approximation will be perfect. This will also be the case if all of
the weightings are powers of 2 and the total adds up to a power of 2—
for instance: {1, 1, 2, 4, 2, 2, 4}.
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7.3.1 Parsing the Output

The code in the class MimicParser handles the job of converting
mimicry back into the bits that generated it. Parsing the output from
a context-free grammar is a well-understood problem and is covered
in depth in the computer science literature. The best parsers can
convert any text from a grammar back into a sequence of produc-
tions that lead to the text. The most general parsing algorithms like
the CYK algorithm are slow.[HU79]

The parsing algorithm implemented in this code is a compro-
mise. It will only work on grammars that are in a limited version
of Greibach Normal Form. This form requires that any variables be
placed at the end of each production. Page 110 shows some exam-
ples. The form required by this parser is even stricter because it must
be easy to determine which choice was made by examining the first
words of a production. This means that no two choices from the
same variable may have the same first n words. n is adjustable, but
the larger it gets, the slower the algorithm can become.

This format makes parsing substantially easier because the parser
only needs to look at the words and phrases. There is no need to
follow the variables and make guesses. The best way to illustrate this
is with a grammar that doesn’t follow this rule. Here’s a grammar that
is not in the correct format:

Start → noun verb
noun → Fred AndFriend ‖ Fred Alone
AndFriend → and Barney went fishing where ‖

and Barney went bowling where
Alone → went fishing where ‖

went bowling where
where → in direction state.
direction → northern ‖ southern
state → Iowa. ‖Minnesota.

Imagine that you are confronted with the sentence “Fred and
Barney went fishing in northern Iowa.” This was produced by the
bits/choices 0000. Parsing this sentence and recovering the bits is
certainly possible, butnot easy. The production “noun → Fred And-
Friend ‖ Fred Alone” does not make it easy to determine which
choice was made. The terminal words at the beginning of each
choice are the same. They both say “Fred”. A parser would need to
examine the results of expanding the variables AndFriend and Alone
to determine which path was taken. Following these paths is feasible,
but it slows down the algorithm and adds complexity to the result.
Most serious parsers can handle this problem.



118 CHAPTER 7. GRAMMARS AND MIMICRY

This implementation is lazy in this respect, but I don’t think much
is sacrificed. It is relatively easy to place the grammars in the correct
format. It could be modified to read:

Start → noun verb
noun → Fred and Barney what ‖ Fred what
what → went fishing where ‖went bowling where
where → in direction state
direction → northern ‖ southern
state → Iowa. ‖Minnesota.

Any context-free grammar can be placed in Greibach Normal
Form. It is also possible for the grammar in Greibach Normal Form
to be expanded so that there are no ambiguities. Alas, sometimes n
needs to be made quite large to accomplish this. Another solution is
to implement more complicated parsing algorithms.

7.3.2 Suggestions for Building Grammars

Creating a grammar that can be used to effectively turn data into in-
nocuous text can be time-consuming if you want to do it well. More
words and phrases mean more choices, and more choices mean
more data that can be packed into place. The grammars that have
long phrases and few choices can be pretty inefficient. Here are some
suggestions:David McKellar created

one grammar that
encodes message in

spam-like phrases
removed from his

collection of spam
messages. You can see it

in action at
spammimic.com.

Think about the Plot and Narrative The grammar for the baseball
game voice-over in Figure 7.1 is an excellent example of a genre
that can successfully stand plenty of repeating. These genres
make the best choice for context-free grammars because the
repeating effect saves you plenty of effort. You don’t need to
come up with production after production to make the system
work. The same choices can be used over and over again.

There are other good areas to explore. Stock market analysis is
generally content-free and filled with stream-of-consciousness
ramblings about a set of numbers flowing throughout the world.
No one can summarize why millions of people are buying and
selling. Sports reporting usually amounts to coming up with
different ways of saying “X smashed Y” or “X stopped Y.” A more
sophisticated version can be built that would use actual news
feeds to modify the grammars so the data was correct and filled
with hidden bits.

There are other genres that are naturally plot-free. Modern po-
etry and free verse are excellent genres to exploit. People don’t
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know what to expect, and a strange segue produced by a poorly
designed grammar doesn’t stand out as much. Plus, the human
brain is very adept at finding patterns and meaning in random
locations. People might actually be touched by the work pro-
duced by this.

Break up Sentences The more choices there are, the more data will
be encoded. There is no reason why each sentence can’t be bro-
ken up into productions for noun phrase, verb phrase, and ob-
ject phrase. Many sentences begin with exclamations or exhor-
tations. Make them vary.

Use Many Variations More choices mean more data is hidden. There
are many different ways to say the same thing. The same
thoughts can be expressed in a thousand different forms. A
good writer can tell the same story over and over again. Why
stop at one simple sentence?

7.3.3 Scrambled Grammars

Creating a complicated grammar is not easy, so it would be ideal if
this grammar could be used again and again. Naturally, there are
problems when the same pattern is repeated in encryption. This
gives the attacker another chance to search for similarities or pat-
terns and crack the system. Most of the work in creating a grammar
is in capturing the right flavor of human communication. The actual
arrangement of the words and phrases into products is not as impor-
tant. For instance, several of the grammars above that generate sen-
tences about Fred and Barney produce exactly the same collection of
sentences even though the grammars are different. There are many
different grammars that generate the same language and there is no
reason why the grammars can’t be converted into different versions
automatically.

There are three major transformations described here:

Expansion A variable in one production is expanded in all possible
ways in another production. This is like distributing terms in
algebra. For example:

noun → Fred AndFriend ‖ Fred Alone
AndFriend → and Barney went fishing where ‖

and Barney went bowling where
Alone → went fishing where ‖went bowling where
...

...
...
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The first variable, AndFriend, is expanded by creating a new
production for noun for all possible combinations. The pro-
duction for AndFriend disappears from the grammar:

noun → Fred and Barney went fishing where ‖
Fred and Barney went bowling where‖ Fred Alone

Alone → went fishing where ‖went bowling where
...

...
...

Contractions These are the opposite of expansions. If there is some
pattern in several of the productions, it can be replaced by a
new variable. For instance, the pattern “Fred and Barney” is
found in two productions of noun:

noun → Fred and Barney went fishing where ‖
Fred and Barney went bowling where‖ Fred Alone

Alone → went fishing where ‖went bowling where
...

...
...

This can be contracted by introducing a new variable, what:

noun → Fred and Barney what where‖ Fred Alone
what → went bowling ‖went fishing
Alone → went fishing where ‖went bowling where
...

...
...

This new grammar is different from the one that began the ex-
pansion process. It produces the same sentences, but from dif-
ferent patterns of bits.

Permutation The order of productions can be scrambled. This can
change their position in any Huffman tree that is built. Or the
scrambling can take place on the tree itself.

Any combination of expansion, contraction, and permutation
will produce a new grammar that generates the same language. But
this new language will produce the sentences from bits in a com-
pletely different manner. This increases security and makes it much
less likely that any attacker will be able to infer coherent information
about the grammar.

These expansions, contractions, and permutations can be driven
by a pseudo-random number generator that is seeded by a key. One
person on each end of the conversation could begin with the same
large grammar and then synchronize the random number generators
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at both ends by typing in the session key. If this random number gen-
erator guided the process of expanding, contracting, and permuting
the grammar, then the grammars on both ends of the conversation
would stay the same. After a predetermined amount of change, the
result could be frozen in place. Both sides would still have the same
grammar, but it would now be substantially different than the start-
ing grammar. If this is done each time, then the structure would be
significantly different and attackers would have a more difficult time
breaking the system.

Here are more careful definitions of expansion, contraction, and
permutation. The context-free grammar is known as G and the pro-
ductions take the form Ai → α1‖α2‖ . . . ‖αn. The Ai are the variables
and the αj are the productions, which are a mixture of terminals and
variables.

An expansion takes these steps:

1. Choose one production that contains variable Ai. It is of the
form: V → β1Aiβ2. V is a variable. β1 and β2 are strings of
terminals and variables.

2. Ai can be replaced by, say, n productions: Ai → α1‖α2‖ . . . ‖αn.
Choose a subset of these productions and call it Δ. Call the set
of productions not in Δ as Δ̄.

3. For each chosen production of Ai, add another production for
V of the form V → β1αiβ2.

4. If the entire set of productions for is expanded (i.e., Δ̄ is empty),
then delete the production V → β1Aiβ2 from the set of pro-
ductions for V . Otherwise, replace it with the production V →
β1Akβ2, where Ak is a new variable introduced into the system
with productions drawn from Δ̄. That is, Ak → αi for all αi in
Δ̄.

Notice that not all productions don’t have to be expanded. The effect When I did him at this
advantage take, An ass’s
nole I fixed on his head:
Anon his Thisbe must be
answered, And forth my
mimic comes.
—Puck in A
Midsummer Night’s
Dream

on the size of the grammar is hard to predict. If the variable Ai has n
productions and the variable itself is found in the right-hand side of
m different productions for various other variables, then a complete
expansion will create nm productions.

A contraction is accomplished with these steps:

1. Find some set of strings {γ1 . . . γn} such that there exist pro-
ductions of the form V → β1γiβ2 for each γi. β1 and β2 are just
collections of terminals and variables.

2. Create the new variable Ak.
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3. Create the productions Ak → γi for each i.

4. Delete the productions V → β1γiβ2 for each i and replace them
with one production, V → β1Akβ2.

Notice that all possible productions don’t have to be contracted.
This can shorten the grammar significantly if it is applied success-
fully.

The expansion and contraction operations are powerful. If two
grammars, G1 and G2, generate the same language, then there is
some combination of expansions and contractions that will convert
G1 into G2. This is easy to see because the expansion operation can
be repeated until there is nothing left to expand. The entire grammar
consists of a start symbol and a production that takes the start sym-
bol into a sentence from the language. It is all one variable and one
production for every sentence in the language. There is a list of ex-
pansions that will convert both G1 and G2 into the same language.
This list of expansions can be reversed by a set of contractions that
inverts them. So to convert G1 into G2, simply fully expand G1 and
then apply the set of contractions that are the inverse of the expan-
sions that expand G2. This proof will probably never be used in prac-
tice because the full expansion of a grammar can be quite large.

The most important effect of expansion and contraction is how it
rearranges the relationships among the bits being encoded and the
structure of the sentences. Here’s a sample grammar:

noun → Bob and Ray verb ‖ Fred and Barney verb ‖
Laverne and Shirley verb ‖ Thelma and Louise verb

verb → went fishing where ‖
went shooting where ‖
went flying where ‖
went bungee-jumping where

where → in Minnesota. ‖ in Timbuktu. ‖
in Katmandu. ‖ in Kalamazoo.

Each of these variables comes with four choices. If they’re weighted
equally, then we can encode two bits with each choice. Number them
00, 01, 10, and 11 in order. So hiding the bits 110100 produces the
sentence “Thelma and Louise went shooting in Minnesota.”Figure 7.5 shows a way

to convert 12 phrases
into bits.

There is also a pattern here. Hiding the bits 010100 produces the
sentence “Fred and Barney went shooting in Minnesota.” The first
two bits are directly related to the noun of the sentence, the second
two bits to the verb, and the third two bits depend on the location.
Most people who create a grammar follow a similar pattern because
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it conforms to our natural impression of the structure. This is dan-
gerous because an attacker might be savvy enough to exploit this pat-
tern. A sequence of expansions can fix this. Here is the grammar after
several changes:

noun → Bob and Ray verb2 ‖ Fred and Barney verb4 ‖
Laverne and Shirley verb ‖ Thelma and Louise verb3‖
Bob and Ray went fishing where ‖
Bob and Ray went shooting where ‖
Thelma and Louise went fishing where ‖
Thelma and Louise went bungee-jumping where ‖
Fred and Barney went shooting in Minnesota. ‖
Fred and Barney went shooting in Timbuktu. ‖
Fred and Barney went shooting in Katmandu. ‖
Fred and Barney went shooting in Kalamazoo.

verb → went fishing where ‖
went shooting where ‖went flying where ‖
went bungee-jumping in Minnesota. ‖
went bungee-jumping in Timbuktu. ‖
went bungee-jumping in Katmandu. ‖
went bungee-jumping in Kalamazoo.

verb2 → ‖went flying where ‖went bungee-jumping where
verb3 → went shooting where ‖went flying where
verb4 → went fishing where ‖went flying where ‖

went bungee-jumping where
where → in Minnesota. ‖ in Timbuktu. ‖

in Katmandu. ‖ in Kalamazoo.

The productions for the variable noun have been expanded in a
number of different ways. Some have had the variable verb rolled
into them completely while others have had only a partial combina-
tion. There are now four different versions of the variable verb that
were created to handle the productions that were not expanded.

The effect of the contractions is immediately apparent. Figure 7.5
shows the Huffman tree that converts bits into productions for the
variable noun. The relationships among nouns, verbs, and locations
and the bits that generated them is now much harder to detect. The
first two bits don’t correspond to the noun any more.

Table 7.1 shows phrases and the bits that generated them:2

There are still some correlations between sentences. The first two
sentences in Table 7.1 have different endings which are reflected in

2Some of the relationships between bits and the choice of production are left un-
explained and are for the reader to discover.
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Bob and Ray verb2
Fred and Barney verb4
Laverne and Shirley verb
Thelma and Louise verb3
Bob and Ray went fishing where
Bob and Ray went shooting where
Thelma and Louise went fishing where
Thelma and Louise went bungee-jumping where
Fred and Barney went shooting in Minnesota.
Fred and Barney went shooting in Timbuktu.

Fred and Barney went shooting in Kathmandu.
Fred and Barney went shooting in Kalamazoo.

0

1
0

1
0

1

0

1
0

1
0

1

0

1

0

1

0

1

0

1

0

1

Figure 7.5: A Huffman tree that converts bits into productions for the
variable noun.

Table 7.1:
Phrase Bits

Fred and Barney went shooting in Katmandu. 0000
Fred and Barney went shooting in Minnesota. 0011
Fred and Barney went fishing in Minnesota. 110100
Fred and Barney went bungee-jumping in Minnesota. 1100100
Thelma and Louise went bungee-jumping in Minnesota. 010000
Thelma and Louise went flying in Timbuktu. 100101

the last two bits. In fact, the first two bits seem to mean “Fred and
Barney went shooting” and the last two bits choose the location. This
pattern could easily be erased if the order of the productions were
permuted. It could also be affected by any weighting given to the
phrases.

But this same pattern does not hold for the other sentences. If
the sentence begins “Fred and Barney went fishing” or if they go
“bungee-jumping”, then a different pattern holds. The location is de-
termined by the choice made when the variable where is expanded.
In this case, the relationship between the bits and the location is dif-
ferent. “Minnesota” is produced by the bits 00 in this case.

This is a good illustration of the effect that is the basis for all of the
security of this system. The meaning of the phrase “Minnesota” de-
pends on its context. In most cases it is generated by the bits 00, but
in a few cases it emerges from the bits 11. This is somewhat ironic be-
cause the grammars are called “context-free.” The term is still correct



7.3. CREATING GRAMMAR-BASED MIMICRY 125

but the structure of the grammars can still affect the outcome. A deeper exploration of
the security can be
found in Section 7.3.4.The process of contraction can add even more confusion to the

mixture. Here’s the grammar from Table 7.3.3 after several contrac-
tions:

noun → Bob and Ray verb2 ‖ Fred and Barney verb4 ‖
Laverne and Shirley verb ‖ Thelma and Louise verb3‖
who went fishing where ‖
Bob and Ray went shooting where ‖
Thelma and Louise went bungee-jumping where ‖
Fred and Barney went shooting in Minnesota. ‖
Fred and Barney went shooting in Timbuktu. ‖
Fred and Barney verb5

who → Bob and Ray ‖ Thelma and Louise
verb → went fishing where ‖

went shooting where ‖
went flying where ‖
went bungee-jumping in Minnesota. ‖

went bungee-jumping in Kalamazoo. ‖
went bungee-jumping where2

verb2 → ‖went flying where ‖
went bungee-jumping where

verb3 → went shooting where ‖went flying where
verb4 → went fishing where ‖

went flying where ‖went bungee-jumping where
verb5 → went shooting in Katmandu. ‖

went shooting in Kalamazoo.
where → in Minnesota. ‖ in Timbuktu. ‖

in Katmandu. ‖ in Kalamazoo.
where2 → in Timbuktu. ‖ in Katmandu.

Two new variables, verb5 and where2, have been introduced
through a contraction. They will significantly change the relation-
ship between the bits and the choice made for several sentences. Fig-
ure 7.6 shows new Huffman trees that are used to convert bits into the
choice of productions for variables. Here’s a table that shows some
sentences and the bits that produced them before and after the con-
tractions:
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went fishing where

went shooting where

went flying where

went bungee-jumping in Minnesota.

went bungee-jumping in Kalamazoo.

went bungee-jumping where2

in Minnesota.

in Timbuktu.

in Kathmandu.

in Kalamazoo.

in Timbuktu.

in Kathmandu.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1
verb

where where2

Figure 7.6: A Huffman tree that converts bits into productions for the
variable verb, where and where2 from Table 7.3.3.

Bits before Bits after
Phrase Contractions Contractions

Laverne and Shirley went bungee-jumping 101100 101011
in Minnesota.

Laverne and Shirley went bungee-jumping 101101 1010000
in Timbuktu.

Fred and Barney went shooting 0001 01111
in Kalamazoo.

Fred and Barney went bungee-jumping 1100100 1100100
in Minnesota.

Thelma and Louise went bungee-jumping 010000 010000
in Minnesota.

Some of the relationships among the noun, verb, and location are
still preserved, but some aspects are significantly changed. A series
of expansions and contractions can scramble any grammar enough
to destroy any of these relationships.

A third new variable, who, was also introduced through contrac-
tion, but it created a production that was not in Greibach Normal
Form (noun→who went fishing where).

This would not work with the parser used to generate Figure
7.1. The grammar is still not ambiguous. This example was only
included to show that the expansions and contractions can work
around grammars that are not in Greibach Normal Form.

One interesting question is the order in which the bits are applied
to the production in this case. The previous examples in Greibach
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Bob and Ray verb2
Fred and Barney verb4
Laverne and Shirley verb
Thelma and Louise verb3

Bob and Ray went shooting where
who went fishing where

Thelma and Louise went bungee-jumping where
Fred and Barney went shooting in Minnesota.
Fred and Barney went shooting in Timbuktu.

Fred and Barney verb5.

0

1
0

1

0

1
0

1
0

1

0

1

0

1

0

1

0

1

Figure 7.7: A Huffman tree that converts bits into productions for the
variable noun from Table 7.3.3.

Normal Form used the rule that the leftmost variable is always ex-
panded in turn. This rule works well here, but it leads to an interest-
ing rearrangement. In the GNF examples, the first part of the sen-
tence was always related to the first bits. In this case, this fails. Here
the steps assuming the leftmost rule:

Bits of
Starting Choice Produces

noun 0010 who went fishing where
who went fishing where 0 Bob and Ray went fishing where
Bob and Ray went 11 Bob and Ray went fishing

fishing where in Kalamazoo.

There is no reason why the sequence of productions needs to be
related with a leftmost first rule. A general parsing algorithm would
be able to discover the three different choices made in the creation
of this sentence but the GNF-limited parser could not. They could be
arranged in any predefined order used by both ends of the commu-
nications link. So the sentence “Bob and Ray went fishing in Kala-
mazoo” could be said to be generated by any of the six combinations
0010011, 0010110, 0001011, 0110010, 1100010, or 1100100.

This last section on expansions and contractions has ignored the
feature that allows a user to weight the choices according to some
predetermined agenda. These weights can be carried accurately
throughout the expansion and contraction process. If there is an ex-
pansion, the terms are multipled through. If there is a contraction,
they are gathered. Here’s an example of expansion. The weightings
are shown as variables in parentheses.



128 CHAPTER 7. GRAMMARS AND MIMICRY

Before:

noun → Thelma and Louise what (a1) ‖Harry and Louise what (a2)
what → went shooting. (a3) ‖went to the hospital. (a4)

Before expansion:

noun → Thelma and Louise what (a1) ‖
Harry and Louise went shooting. ( a2a3

a3+a4
) ‖

Harry and Louise went to the hospital. ( a2a4

a3+a4

)
what → went shooting. (a3) ‖went to the hospital. (a4)

Here’s the same example reworked for contraction. Before:

noun → Thelma and Louise what (a1) ‖
Harry and Louise went shooting. (a2) ‖
Harry and Louise went to the hospital. (a3)

what → went shooting. (a4) ‖
went to the hospital. (a5)

After contraction:

noun → Thelma and Louise what (a1) ‖
Harry and Louise what2 (a2 + a3)

what → went shooting. (a4) ‖
went to the hospital. (a5)

what2 → went shooting. ( a2

a2+a3
) ‖

went to the hospital. ( a3

a2+a3
)

These rules can be expanded arbitrarily to handle all expansions
and contractions. Weightings like this can significantly affect the way
that bits are converted into phrases using Huffman trees. The trees
work perfectly only if the weights are structured correctly, so it is
highly likely that most trees will produce imperfect approximations
of the weights. As the expansions and contractions change the tree
structure, the weights will significantly alter the patterns produced.

7.3.4 Assessing the Theoretical Security of Mimicry

Determining the strengthof mimic functions based on context-free
grammars is not an easy task. There are two basic approaches and
both of them can leave you with doubt. The first is to analyze the
structure of the system on a theoretical level and use this to compare
it to other systems. This can indicate that it can often be quite hard
to break through the mimicry in these systems, but it can’t prove to
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you that there are no holes out there. You just know that in the past,
others have tried and failed to break similar systems. This is good
news, but it is not conclusive. There might be new holes that are easy
to exploit in these grammar-based mimic functions, but that are hard
to use in other systems. The principal difficulty

of your case lay in the
fact of there being too
much evidence. What
was vital was overlaid
and hidden by what
was irrelevant.
—Arthur Conan Doyle
in The Naval Treaty

These holes are fairly common in theoretical approaches. For in-
stance, there are very few proofs that show how hard it is to solve
some mathematical problems. Sorting numbers is one of the few
examples. It has been shown that if you have a list of n numbers,
then it takes time proportional to cn logn where c is some machine-
based constant [AHU83]. This is a nice result, but it doesn’t make a
good theoretical basis for a cryptographically secure system. There
are other algorithms for sorting that can succeed in a time propor-
tional to kn, where k is a different machine-based constant. These
algorithms only work if you can place absolute bounds on the size of
the numbers before beginning (64 bits is usually enough).

The other approach is to create different attacks against the sys-
tem and see if it is strong enough to withstand them. This can cer-
tainly show the strength of the system, but it too can never be conclu-
sive. There is no way to be sure that you’ve tried all possible attacks.
You can be thorough, but you can’t be complete.

Still, probing the limits of grammar-based mimic functions is an
important task. The best theoretical bounds that exist are based on
work exploring the limits of computers that try to learn. In this area,
many researchers have based their work on Les Valiant’s PAC model
from probablistic learning [Val84]. In it, a computer is given some
examples from a particular class and it must try to learn as much as
possible about the class so it can decide whether a new example is
part of it. The computer’s success is measured probabilistically and
it succeeds if it starts getting more right than wrong.

There are many different forms of PAC algorithms. In some, the
computer is given examples that are just in the class. In others, the
computer gets examples from within and without the class. Some-
times, the computer can even create examples and ask whether that
example is in or out of the class. This type of algorithm has the po-
tential to be the most powerful, so it helps if the theoretical bounds
can defend against it.

Michael Kearns and Les Valient show that “learning” boolean for-
mulas, finite automata, or constant-depth threshold circuits is at
least as difficult as inverting RSA encryption or factoring Blum in-
tegers (x, such that x = pq, where p and q are prime, and p, q =
3 mod 4). The proof shows this by casting the factoring process into
each of these different models of computation. [KV89, Kea89]
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Dana Angluin and Michael Kharitonov [AK91] extended the work
of Kearns and Valient as well as the work of Moni Naor and M. Yung
[NY89, NY90]. Their work shows that there are no known algorithms
run in polynomial time that predict membership in a class defined
by finite unions or interesections of finite automata or context-free
grammars.

These bounds deal with learning to predict whether a sentence
is in a class defined by a grammar, not to discover its parse tree.
But the results can apply to the grammar-based system here if there
is someway that a parse tree-discovering algorithm can be used to
predict membership.

Imagine that such an algorithm exists. Here is how to apply it
to predicting membership in some language defined by grammar
G1, known as L(G1). The start symbol for G1 is S1. Now suppose
there is another grammar G2 with start symbol S2. Create a new
grammar, G, that is the union of G1 and G2 by creating a new start
symbol, S, and the production S → S1‖S2. Take a set of strings
ai ∈ L(G). They are either in L(G1) or L(G2). Apply the algorithm
that can learn to predict parse trees and feed it this set of strings. If
such an algorithm can learn to predict the parse tree grammar, then
it can predict whether a string is in L(G1). If such an algorithm runs
in polynomial time, then it can be used to break RSA, factor Blum
integers and solve other problems. Therefore, there is no known
algorithm to predict even the first branch of a parse tree.

This result applies to the hardest grammars that might exist but it
does not offer any clues on how to actually produce such a grammar.
An algorithm that could construct such a grammar and guarantee
that it was hard to discover would be quite a find. There are some
minor observations, however, that can be satisfying.

You can easily imagine a grammar that would be easy to break. If
each word or substring was visible in one production, then it would
be relatively easy to isolate the string of productions that produced a
long section of text. The boundaries of the productions are simple to
establish by accumulating enough sample text so that each produc-
tion is used twice. The two occurrences can be compared to reveal
the different parts of the production.

This leads to the observation that each word should appear in
multiple productions. The section beginning on page 119 describes
how contractions and expansions can be applied automatically to
change grammars so they fit this requirement.

How much contraction and expansion is enough? [Way95a] gives
one set of equations that can be used to measure the “randomness”
or “entropy” of a grammar. The equations are modelled on Shannon’s
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measure of entropy of a bit stream. If one word is quite likely to
follow another, then there is not much information bound in it. If
many words are likely, then there is plenty of information bound in
this choice.

The equations measure the entropy of the entire language gen-
erated by a grammar. If the amount is large, then the information
capacity of the grammar is also large and a great deal of information
should be able to be transmitted before significant repetition occurs.
This practical approach can give a good estimate of the strength of a
grammar.

Both of these approaches show that it can be quite difficult to
discover the grammar that generated a text. They do not guarantee
security, but they show that the security may be difficult to achieve
in all cases. It can be even more difficult if the grammar is modified
in the process through expansions and contractions. These can be
chosen by both sides of a channel in a synchronized way by agreeing
on a cryptographically secure pseudo-random number generator.

7.3.5 Efficient Mimicry-Based Codes

The one problem with the mimicry system described in this chapter
is that it is inefficient. Even very complicated grammars will easily
double, triple, or quadruple the size of a file by converting it into text.
Less complicated grammars could easily produce output that is ten
times larger than the input. This may be the price that must be paid
to achieve something that looks nice, but there may be other uses for
the algorithm if it is really secure.

Efficient encryption algorithms using the techniques of this chap-
ter are certainly possible. The results look like ordinary binary data,
not spoken text, but they do not increase the size of a file. The key is
just to build a large grammar. Here’s an example:

Terminals Let there be 256 terminal characters, that is, the values of
a byte between 0 and 255. Call these {t0 . . . t255}.

Variables Let there be n variables, {v0 . . . vn}. Each variable has 256
productions.

Productions Each variable has 256 productions of the form vi →
tjva1

. . . vak
. That is, each variable will be converted into a sin-

gle terminal and k variables. Some productions will have no
variables and some will have many. Each terminal will appear
on the right side of only one production for a particular vari-
able. This ensures that parsing is easy.
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This grammar will not increase the size of the file when it is en-
coded. Each variable has 256 different productions available to it, so
8 bits are consumed in the process of making the choice. The result
is one new terminal added to the stream which takes 8 bits to store.

There are potential problems with this system. The biggest one
is ensuring that the average string of terminals in the language is fi-
nite. If there are too many variables on the right-hand side of the
productions, then the generating process could never end. The stack
of pending variables would continue to grow with each production.
The solution is to make sure that the average number of variables on
the right-hand side of the production is less than one. The relation-
ship between the average number of variables and the average length
of the phrases in the language defined by the grammar is direct.
A smaller number of average variables means shorter phrases. As
the average number of variables approaches one, the average length
tends toward infinity.3

The average length of a phrase in the language is not as important
in this particular example. The bits can be recovered easily here
because the grammar is in Greibach Normal Form and there is no
need to place parsing decisions on hold. Each terminal only appears
on the right hand side of one production per variable, so the final file
does not need to be a complete phrase produced by the grammar.
It could just be a partial one. There is no reason why the grammars
need to be as easy to parse, but more complicated grammars need to
have the entire phrase produced from the starting symbol.

7.4 Summary

This chapter has described simple ways to produce very realistic
texts by using a system of rules defined by a human. Complicated
grammars can hide large volumes of data in seemingly human bab-
ble. This babble could be posted to some Internet newsgroup, and it
will be hard to tell the difference between this and the random flames
and cascading comments that float through the linguistic ether.

There are still other levels of abstraction that are possible. MUDs
(Multiple-User Dungeons) allow users to meet up in a text-based
world defined and built up by textual architects. It is possible to
meet people in the MUD rooms and hold conversations in the same
way that you might ordinarily talk. Some MUDs now sport computer
programs that pretend to be human in the spirit of the great Eliza
[Wei76]. These programs use complicated grammars to guide the

3This might be modeled with queuing theory.



7.4. SUMMARY 133

response of the computer and the computer can turn data into the
random choices that guide the grammars.

Here’s an extreme example. You want to set up a conversation The sun’s a thief, and
with his great attraction
Robs the vast sea: the
moon’s an arrant thief,
And her pale fire she
snatches from the sun:
The sea’s a thief, whose
liquid surge resolves The
moon into salt tears. . .
—William Shakespeare
in Timons of Athens

with a friend across the country. Ordinarily, you might use the basic
talk protocol to set up a text-based link. Or you might use one of the
Internet phone programs to exchange sound. In either case, the bits
you’re exchanging can be monitored.

What if your talk program didn’t contact the other person directly
but logget into a MUD somewhere on the Net as a persona? The other
person’s talk program could do the same thing and head for the same
room. For the sake of atmosphere, let’s make it a smoke-filled room
with leather chairs so overstuffed that our textual personae get lost in
them. There are overstuffed mastodons on the wall to complement
the chairs.

Instead of handing your word bits over to the other person’s per-
sona directly, your talk program encodes them into something in-
nocuous like a discussion about last night’s baseball game. It might
be smart enough to access the online database to get an actual score-
card to ensure that the discussion was accurate. When the other
person responded, his talk program would encode the data with a
similar grammar. The real conversation might be about very private
matters, but it might come out sounding like baseball to anyone who
happened to be eavesdropping on the wires.

Both sides of the conversation can use the same grammar. This
convention would make it possible for both sides to hold a coherent
conversation. After one persona commented about the hitting of Joe
Swatsem, the other could say something about Swatsem because the
same grammar would control what came afterward.

The entire system is just an automated version of the old gangster-
movie conceit about talking in code. One gangster says, “Hey, has the
shipment of tomatoes arrived yet?” The other responds, “Yeah. It’ll
cost you 10,000 bananas.” The potentials are amazing.

The Disguise Grammar-based mimicry can be quite realistic. The
only limitation is the amount of time that someone puts into
creating the grammar.

How Secure Is It? At its best, the grammar-based system here can be
as hard to break as RSA. This assessment, though, doesn’t mean
that you can achieve this security with the same ease as you
can with RSA. There is no strong model for what is a good key.
Nor has there been any extensive work done on breaking the
system.
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How to Use It? The code for the mimic system is available from the
author.. Or you can just go to spammimic.com if you want your
message to look like spam.

Further Work There are a number of avenues to pursue in this
arena. A theory that gives a stronger estimates of the brute force
necessary to recognize a language would be nice. It would be
good to have a strong estimate of just how many strings from
a language must be uncovered before someone can begin to
make sense of it. If someone could program the entropy es-
timates from [Way95a] or come up with better ones, then we
could experiment with them to see how well they assess the dif-
ficulty of attack.

It would also be nice to have an automatic way of scanning texts
and creating a grammar that could be used by the system here.
There are many basic constructs from language that are used
again and again. If something could be distilled from the raw
feed on the Net, then it could be pushed directly into a program
that could send out messages. This could lead to truly auto-
mated broadcast systems. One part would scan newsgroups or
the net for source text that could lead to grammars. The other
would broadcast messages using them. I imagine that it could
lead to some truly bizarre AI experiences. You could set up two
machines that babble to each other, mimicking the Net but re-
ally exchanging valuable information.

Further Reading

• A number of papers from Purdue’s large group extend
these grammar techniques with a comprehensive database
of synonyms for words. Their work suggests that the
most ambiguous words where possible because more spe-
cific words may not be easily swapped into a sentence.
[ARC+01, ARH+02, TTA06, AMRN00, ARH+03, TTA06]

• Cuneyt M. Taskiran, Umut Topkara, Mercan Topkara and
Edward J. Delp developed a tool for finding text generated
by methods like the grammar-based tool described in this
chapter. They compare the statistics gathered from ana-
lyzing when words are found adjacent to each other with
their general occurrence in the general language and use
it to train statistical classifiers. [TTTD06]

• The BLEU score, a rough statistical comparison of the
phrase length, measures the quality of automated transla-



tion. Mercan Topkara, Guiseppe Riccardi, Dilek Hakkani-
Tur and Mikhail Atallah use it to evaluate the effects of
their textual transformation on the readability.[TRHTA06]
[TRHTA06]

• Compris sells TextHide and TextSign, a software programs
that hide information by changing the structure of sen-
tences. See compris.com/subitext/.



Chapter 8

Turing and Reverse

8.1 Doggie’s Little Get Along

One weekend I messed with the guts of my jukebox.
I wanted to zip it up to tweet like a bird
When the wires got crossed and the records spun backward
And this is the happy voice that I heard:

Whoopee Tie Yi Yay,
The world’s getting better and your love’s getting strong

Whoopee Tie Yi Yay,
Your lame dog will walk by the end of this song.

The music was eerie, sublime and surreal,
But there was no walrus or devil.
The notes rang wonderfully crystalline clear
Telling us that it was all on the level:

Whoopee Tie Yi Yay
This weekend your sixty-foot yacht will be floated.

Whoopee Tie Yi Yay
The boss just called to tell you, “You’re promoted.”

So after a moment I began to start thinking
What if I rewired the touch tone?
After a second of cutting and splicing, it suddenly rang.
This was voice that came from the phone:

Whoopee Tie Yi Yay
This is the Publisher’s Clearing House to Tell You’ve Won

Whoopee Ti Yi Yay
A new car, an acre of dollars and a house in the sun.

A few minutes later my lost sweetheart called:
The guy she ran off with wasn’t worth Jack.
He wore a toupee and the truck was his mother’s.
Now she could only beg for me back.

137
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Whoopee Tie Yi Yay
Why spend your grief on a future that’s wrecked

Whoopee Tie Yi Yay
Why look backward when hindsight is always so perfect.

8.2 Running Backward

The song that introduces this chapter is all about what happens to a
man when he finds a way to play the country music on his jukebox
backward. His dog walks, his girlfriend returns, and the money rolls
in. The goal of this chapter is to build a machine that hides data as it
runs forward. Running it in reverse allows you to recover it. The main
advantage of using such a machine is that some theoretical proofs
show that this machine can’t be attacked by a computer. These the-
oretical estimates of the strength of the system are not necessarily
reliable for practical purposes, but they illustrate a very interesting
potential.

Chapter 7 described how to use grammars to hide data in realistic-
sounding text. The system derived its strength from the structure of
the grammars and their ability to produce many different sentences
from a simple collection of inputs. The weaknesses of the system
were also fairly apparent. Grammars that were context-free could not
really keep track of scores of ballgames or other more complicated
topics. They just produced sentences with no care for the context.
A bit of cleverness could go a long way, but anyone who has tried to
create complicated grammars begins to understand the limitations
of the model.

This chapter will concentrate on a more robust and complete
model known as the Turing machine, a concept was named after Alan
Turing, who created it in the 1930s as a vehicle for exploring the lim-
its of computation. Although the model doesn’t offer a good way to
whip up some good mimicry, it does offer a deeper theoretical look
at just how hard it may be to break the system.

A good way to understand the limits of context-free grammars is
to examine the type of machine that is necessary to recognize them.
When testing this, I built a parser for recovering the data from the
mimicry using a model of a push-down automata. The automata
refers to a mechanism that is a nest of if-then and goto statements.
The push-down refers to the type of memory available to it—in this
case a push-down stack that can store information by pushing it onto
a stack of data and retrieve it by pulling it off. Many people compare
this to the dishracks that are found in cafeterias. Dishes are stored in
a spring-loaded stack. The major limitation of this type of memory is
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the order. Bits of information can only be recalled from the stack in
the reverse order in which they were put onto the stack. There is no
way to dig deeper.

It is possible to offer you solid proof that push-down automata
are the ideal computational model for describing the behavior of
context-free grammars, but that solution is a bit dry. A better ap- You can find a good

proof in [AHU83].proach is to illustrate it with a grammar:

start → Thelma and Louise what when ‖Harry and Louise
what when

what → went shooting with where ‖
bought insurance with where

with → with Bob and Ray ‖with Laverne and Shirley
when → on Monday. ‖ on Tuesday. ‖ on Wednesday. ‖ on

Thursday.
where → in Kansas ‖ in Canada

A typical sentence produced by this grammar might be “Thelma
and Louise went shooting with Bob and Ray in Kansas on Monday.”
This was produced by making the first choice of production from
each variable and thus hiding the six bits 000000. But when the first
choice was made and Thelma and Louise became the subjects of the
sentence, the question about the date needed to be stored away until
it was needed later. You can either think of the sentence as develop-
ing the leftmost variable first or you can think of it as choosing the
topmost variable from the stack. Here’s a table showing how a sen-
tence was produced. It illustrates both ways of thinking about it.

Stack Pending Sentence Pending with Variables

start noun

what Thelma and Louise Thelma and Louise what
when when

with Thelma and Louise went Thelma and Louise went
where shooting shooting with where
when

where Thelma and Louise went Thelma and Louise went
when shooting with Bob and Ray shooting with Bob and Ray

where when

when Thelma and Louise went Thelma and Louise went
shooting with Bob and Ray shooting with Bob and Ray
in Kansas in Kansas when

empty Thelma and Louise went Thelma and Louise went
shooting with Bob and Ray shooting with Bob and Ray
in Kansas on Monday. in Kansas on Monday.
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Both metaphors turn out to be quite close to each other. The
context-free grammars and the stack-based machines for interpret-
ing them are equivalent. This also illustrates why it is possible to im-
itate certain details about a baseball game like the number of outs or
the number of strikes, while it is much harder, if not impossible, to
give a good imitation of the score. There is no way to rearrange the
information on the stack or to recognize it out of turn.

The Turing machine is about as general a model of a computer as
can be constructed. Unlike the push-down automata, a Turing ma-
chine can access any part of its memory at any time. In most models,
this is described as a “tape” that is read by a head that can scan from
left to right. You can also think of the “tape” as regular computer
memory that has the address 0 for the first byte, the address 1 for the
second byte, and so on.

The main advantage of using a Turing machine is that you access
any part of the memory at any time. So you might store the score
of the baseball game at the bytes of memory with addresses 10140
and 10142. Whenever you needed this, you copy the score to the out-
put. This method does not offer any particularly great programming
models that would make it easier for people to construct a working
Turing mimicry generator. Alas.

The real reason for exploring Turing machines is that there are
a wide variety of theoretical results that suggest the limits on how
they can be analyzed. Alan Turing originally developed the models
to explore the limits of what computers can and can’t do [Tur36a,
Tur36b]. His greatest results showed how little computers could do
when they were turned against themselves. There is very little that
computers and the programs they run can tell us definitively about
another computer program.

These results are quite similar to the work of Kurt Gödel, who
originally did very similar work on logical systems. His famous the-
orem showed that all logical systems were either incomplete or in-
consistent. The result had little serious effect on mathematics itself
because people were quite content to work with incomplete systems
of logic— they did the job. But the results eroded the modernist be-
lief that technology could make the world perfect.

Turing found that the same results that applied to Gödel’s logi-
cal systems could apply to computers and the programs that ran on
them. He showed, for instance, that no computer program could
definitively answer whether another computer program would ever
finish. It might be able to find the correct answer for some subset of
computer programs, but it could never get the right answer for all of
them. The program was either incomplete or inconsistent.
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Others have extended Turing’s results to show that it is practically
impossible to ask the machines to say anything definitive about com-
puters at all. Rice’s theorem showed that computers can only answer
trivial questions about other computers [HU79]. Trivial questions
were defined as those that were either always true or always false. Abraham Lincoln was

really the first person to
discover this fact when
he told the world, “You
can fool some of the
people all of the time
and all of the people
some of the time. But
you can’t fool all of the
people all of the time.”
The same holds true if
you substitute
“computer program” or
“turing machine” for
“people.”

To some extent, these results are only interesting on a theoreti-
cal level. After all, a Macintosh computer can examine a computer
program written for an IBM PC and determine that it can’t execute
it. Most of the time, a word processor might look at a document and
determine that it is in the wrong format. Most of the time, comput-
ers on the Internet can try to establish a connection with other com-
puters on the Internet and determine whether the other computer is
speaking the right language. For many practical purposes, comput-
ers can do most things we tell them to do.

The operative qualifier here is “most of the time.” Everyone knows
how imperfect and fragile software can be. The problems caused by
the literal machines are legendary. They do what they’re told to do,
and this is often incomplete or imperfect—just like the theoretical
model predicted they would be.

The matter for us is compounded by the fact that this application
is not as straightforward as opening up word processing documents.
The goal is to hide information so it can’t be found. There is no co-
operation between the information protector and the attacker trying
to puncture the veil of secrecy. A better model is the world of com-
puter viruses. Here, one person is creating a computer program that
will make its way through the world and someone else is trying to
write an anti-virus program that will stop a virus. The standard virus- Can you abort a virus?

Can you baptize one?
How smart must a virus
be to be a virus?

scanning programs built today look for tell-tale strings of commands
that are part of the virus. If the string is found, then the virus must
be there. This type of detection program is easy to write and easy to
keep up to date. Every time a new virus is discovered, a new tell-tale
string is added to the list.

But more adept viruses are afoot. There are many similar strings
of commands that will do a virus’s job. It could possibly choose any
combination of these commands that are structured correctly. What
if a virus scrambled itself with each new version? What if a virus
carried a context-free grammar of commands that would produce
valid viruses? Every time it copied itself into a new computer or
program, it would spew out a new version of itself using the gram-
mar as its copy. Detecting viruses like this is a much more difficult
proposition.

You couldn’t scan for sequences of commands because the se-
quences are different with each version of the virus. You need to
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build a more general model of what a virus is and how it accom-
plishes its job before you can continue. If you get a complete copy of
the context-free grammar that is carried along by a virus, you might
create a parser that would parse each file and look for something that
came from this grammar. If it was found, then a virus would be iden-
tified. This might work sometimes, but what if the virus modified
the grammar in the same way that the grammars were expanded and
contracted on page 119? The possibilities are endless.

The goal for this chapter is to capture the same theoretical im-
possibility that gives Turing machines their ability to resist attacks
by creating a cipher system that isn’t just a cipher. It’s a computing
machine that runs forward and backward. The data is hidden as it
runs forward and revealed as it runs backward. If this machine is
as powerful as a Turing machine, then there is at least the theoreti-
cal possibility that the information will never be revealed. Another
computer that could attack all possible machines by reversing them
could never work in all cases.

8.2.1 Reversing Gears

Many computer scientists have been studying reversible computers
for some time, but not for the purpose of hiding information. Revers-
ible machines have a thermodynamic loophole that implies that they
might become quite useful as CPUs become more and more power-
ful. Ordinary electronic circuits waste some energy every time they
make a decision, but reversible computers don’t. This wasted energy
leaves a normal chip as heat, which is why the newest and fastest
CPUs come with their own heat-conducting fins attached to the top.
Some of the fastest machines are cooled by liquid coolants that can
suck away even more heat. The build up of waste heat is a serious
problem—if it isn’t removed, the CPU fails.

The original work on reversible computers was very theoretical
and hypothetical. Ed Fredkin offered a type of logic gate that would
not expend energy. [Fre82] Normal gates that take the AND of two
bits are not reversible. For instance, if x AND y is 1, then both x and
y can be recovered because both must have been 1. But if x AND y
is 0, then nothing concrete is known about either x or y. Either x or y
might be a 1. This makes it impossible to run such a normal gate in
reverse.

The Fredkin gate, on the other hand, does not discard informa-
tion so it can be reversed. Figure 8.1 shows such a gate, and the logic
table that drives it. There are three lines going in and three lines leav-
ing. One of the incoming lines is a control line. If it is on, then the
other two lines are swapped. If it is off, then the other lines are re-
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Figure 8.1: An illustration of a Fredkin gate. If the control line is
on, then the output lines are switched. Otherwise, they’re left alone.
(Drawn from Bennett’s figure.[BL85])

versed. This gate can be run in reverse because there is only one pos-
sible input for each output.

The Scientific American
article by Charles
Bennett and Rolf
Landauer makes a good
introduction to
reversible machines.
[BL85]

Figure 8.2 shows an AND gate built out of a Fredkin gate. One
of the two input lines from a normal AND gate is used as the control
line. Only one of the output lines is needed to give us the answer. The
other two bits are wasted. Ordinarily, the information here would be
thrown away by sending the bits to ground, where they would heat
up the chip. A truly reversible machine would store the bits at this
location until the computer was run in reverse. Then the gate would
have all of the information ready to compute the inverse. An OR gate
would be built in the same way, but it would have one input fixed to
be a 1.

There are a number of other mechanical approaches to building
a reversible computer. Ed Fredkin and Tommaso Toffoli developed
a billiard ball computer that could be made to run in reverse if a
suitable table could be found [FT82]. It would need to be perfectly
smooth so the balls would move in synchrony. The table itself must
be frictionless and the bumpers would need to return all of the en-
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Figure 8.2: An AND gate built out of a Fredkin gate. The extra waste
bits must be stored at the gate so that computation can be reversed
later. [BL85]

ergy to the balls so that nothing would be lost and there would be
just as much kinetic energy at the beginning of the computation as
at the end.

Figure 8.3 shows how two billiard balls can build an AND gate.
The presence of a ball is considered to be the on state, so if both balls
are there, they will bounce off each other and only one ball will con-
tinue on its way. If the balls reach the end of the computation, then
they can bounce off a final wall and make their way back. It should
be easy to see that this gate will work both forward and backward. OR
gates are more complicated and include extra walls to steer the balls.

This is an interesting concept, but it is hardly useful. No one can
build such a frictionless material. If they could, it might be years be-
fore we got to actually trying to use it to compute. There would be
too many other interesting things to do, like watching people play
hockey on it. More practical implementations, however, use cellu-
lar automata that come before and after it. Toffoli described revers-
ible cellular automata in his Ph.D. thesis [Tof77a] and in other subse-
quent articles [Tof77b, TM87]. N. Margolus offers one solution that
implements the billiard ball models. [Mar84]

The key result about reversible computers comes from Charles
David Hillman has

written about reversible
one-dimensional

cellular automata
[Hil91b, Hil91a].

Bennett who showed that any computation can be done with a re-
versible Turing machines. He created a few basic examples of revers-
ible Turing machines with well defined commands for moving the
read/write head of the tape and changing the state of the machine.
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X

Y

X and Y

X and Y

Y and not X

X and not Y

Figure 8.3: The three possible outcomes of a billiard ball AND gate.
The presence of a ball indicates an on signal. If only one ball is
present, then no bounce occurs and it continues on its way. If both
are present, then they bounce off each other. If none are present,
then nothing happens. (Adapted from Bennett )

The transition rules for these machines often look quite similar to the
Fredkin gate. There is just as much information coming out of each
step as going into it. This is balanced correctly so the position that
leads to another position can always be inferred and the machine
can be reversed.

This result shows that anything that can be done with a computer
can be done with a reversible computer. All that is necessary is find- Reversible computation

is also great for
debugging programs.

ing a way to save the information from each step so it can be effec-
tively run in reverse. But what does this mean if you want to hide
information? It means that any computation can be used to hide in-
formation in the final outcome. How much can be stored? It all de-
pends on the calculation. Ordinarily, any random number generator
that is used to add realism or to scramble the outcome of a game can
be replaced by a collection of data to be hidden. This data can be
recovered as the machine runs in reverse.

How would such a system work? One obvious solution is to create
a universal, reversible Turing machine format. A standard program
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running on everyone’s computer would be able to read in a Turing
machine and run it forward or backward. If you wanted to send a
message, you would pack in the data and run the machine until it
stopped. The result would be the output, perhaps some computer-
generated poetry, and a pile of waste data that must be kept around
in order to run the machine in reverse.

At the other end, the recipient would load this information into
the same universal, reversible Turing machine and run it backward
to recover the data. The one problem with this scenario is that any
attacker could also have the same universal, reversible Turing ma-
chine. They could intercept the message and reverse it. For the tech-
nique to be successful, some data must be kept secret from the at-
tacker. This could travel separately. In the grammar machine from
Chapter 7, the grammar acts as the key. It must be distributed sepa-
rately.

One solution is to keep the structure of the Turing machine secret
and let it act as a key. Only the output and the extra, “waste” bits
of information must be transmitted to the recipient. Anyone can
intercept the message, but they cannot read it without a copy of the
program that created it.

How difficult can this be? Obviously, there will be some programs
that are pretty easy to crack. For instance, a program that merely
copies the data to be hidden and spits it out would be easy to de-
duce. The output would maintain all of the structure of the original
document. More and more complicated programs would get more
and more complicated to deduce. Eventually, something must be too
hard to crack. The tough question is whether there is some threshold
that can be established where it is positively known that programs
that are beyond it are completely safe.

Such a threshold can never be well-defined. That is, there can be
no neat machine that will examine any program and say, “This can’t
be broken.” There might be machines that could point out flaws in
programs and show how they could be broken, but they would not
be guaranteed to find all flaws.

This uncertainty is a pain, but it affects the enemy in the same
way. The enemy can not come up with an arbitrary machine that
will be able to examine every message you send and discover the
program that was used to hide the data. It may be able to find some
solutions, but there will be no brute-force attack that will work in all
cases.

This is a nice beginning for security, but it is not absolute. The
one-time pad offers a similar security blanket. No brute-force attack
that will break the system, as long as the key bits are completely
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random. What is completely random? In practice, it means that
the attacker can’t build a machine that will predict the pattern of the
bits. This is substantially easier to achieve for one-time pads than
it is for reversible Turing machines. There are numerous sources of
completely random information and noise that can be used as the
basis for a one-time pad. The random snow from a noisy section of
the radio spectrum can make the good beginning for such a pad.

The rest of this chapter will concentrate on actually constructing

See Section 2.2 on page
22 for details.

a reversible Turing machine that could be used to create hidden mes-
sages in text. It will be based, in part, on the grammar approach from
Chapter 7 because text is a good end product for the process. There is
no reason why the work couldn’t be adapted to produce other mim-
icry.

8.3 Building a Reversible Machine

If every Turing machine can be reconstructed in a reversible manner, Some reversible
machines are inherently
error limiting and
self-resynchronizing in
both directions, as
shown by Peter
Neumann[Neu64] for
David Huffman’s
information-lossless
sequential machines.
[Huf59]

then every possible machine is a candidate for being turned into a
vehicle for hidden information. Obviously, though, some machines
are more interesting than others. For instance, loan companies use
computer programs to evaluate the credit of applicants and these
programs respond with either “qualified” or “unqualified”. That’s
just one bit of information and it seems unlikely that anyone will
be able to hide much of anything in that bit. On the other hand,
programs that produce complex worlds for games like Doom spit
out billions of bits. There is ample room in the noise. Imagine if
some secret information was encoded in the dance of an attacking
droid. You might get your signal by joining an internet group game
of Doom. The information would come across the wire disguised
as instructions for where to draw the attacker on the screen. Your
version of Doom could extract this.

This chapter will show how to build two different reversible ma-
chines. The first, a simple reversible Turing machine, is provided as a
warm-up. It is based on the work of Charles Bennett and it shows
how to take the standard features of a Turing machine and tweak
them so that there is only one possible state that could lead to an-
other. This makes it possible to rewind the behavior.

The second machine is an extension of the grammar-based mim-
icry from Chapter 7. That system used only context-free grammars.
This one lets you simulate any arbitrary computation to add realism
to the text that it produces. The data hidden by the system won’t be
recovered by parsing. It will come by running the machine in reverse.
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This means that a practical way needs to be constructed to ship the
extra variables and “waste” bits along.

8.3.1 Reversible Turing Machines

An ordinary Turing machine consists of a set of states, S, a set of
symbols that can appear on the tape, Σ, and a set of transition rules,
δ, that tell the machine what happens when. For instance, δ might
specify that if the machine is in state s2, and the symbol σ4 is on
the tape underneath the read/write head, then the read/write head
should write the symbol σ5 on the tape, move the head to the right
one notch and change to state s42. This is how you program a Turing
machine. The abstraction is fairly crude, but it makes it simpler to
keep track of all the possibilities.If a certain puritanical

tradition, for instance,
is profoundly suspicious

of the novel, this is
because the novel is felt

to celebrate and
encourage misconduct,

rather than censure and
repress it.

—D.A. Miller in The
Novel and The Police

Converting such a machine to run backward is pretty straightfor-
ward. The main problem is looking for combinations of states and
tape symbols that lead to the same states. That is when it is impossi-
ble to put the machine in reverse because there are two different pre-
ceding situations that could have led to the present one. The easiest
solution is to keep splitting up the states until there is no confusion.

For each state, si ∈ S, construct a list of triples of states, tape
symbols, and direction (sj , σk, L) that could lead to the state si. That
is, if the machine is in state sj with the read/write head over the
symbol σl, then it will write σk and move to the left one step. In
other words, if the machine is running backward and it finds itself
in state, si , with symbol σk to the right of it, then it can move to the
right, change to state sj , and overwrite σk with σl and not violate the
program. That is, this is a correct move.

There will be a conflict if there are triples of the form (s∗, σ∗, L)
and (s∗, σ∗, R) in the same set. (Let s∗ stand for any element si from
S.) This is because it is possible that the machine will end up some-
place with one of the symbols to the left and one to the right. You
might be able to make meta-arguments that such a combination
could never exist because of the structure of the program, but these
are often hard to prove.

If such a conflict occurs, then create a new state and split apart
the actions. All of the triples that moved left into the old state, si, can
stay pointing to state, si. The triples that moved right, however, will
be moved to point to the new state sj. The transition rules out of sj

will be a duplicate of si.
To a large extent, splitting these states is the same as finding a

place to keep a “waste” bit around. The Fredkin AND gate generates
some waste bits that must be stored. Splitting the state creates a
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waste bit.
The same splitting process must be done if there are two triples

of the form: (sa, σk, L) and (sb, σk, L). Both of these states, sa and sb,
lead to the same symbol existing to the right of the current position
of the read/write head. Choosing is impossible. Again, a new state
must be added and the transition rules duplicated and split.

It should be obvious that a Turing machine will grow substantially
as it is made reversible. This growth can even be exponential in many
cases. There is no reason why anyone would want to program this
way. The complications are just too great. But this example is a good
beginning.

8.3.2 Reversible Grammar Generators

The goal of this book is to produce something that seems innocuous
but hides a great deal of information from plain sight. Chapter 7
did a good job of this with a context-free grammar, but there are
numerous limitations to that approach. This part of the book will
build a reversible, Turing-equivalent machine that will be able to do
all basic computations, but still be reversible. It will get much of
its performance by imitating the Fredkin gate, which merely swaps
information instead of destroying it.

Numerous problems that need to be confronted in the design of
this machine. Here are some of them:

Extra State At the end of the computation, there will be plenty of
extra “waste” bits hanging around. These need to be conveyed
to the recipients so they can run their machines in reverse.

There are two possible solutions. The first is to send the ex-
tra state through a different channel. It might be hidden in
the least significant bits of a photo or sent through some other
covert channel. The second is to use a crippled version of the
machine to encode the bit as text without modifying any of the
state. That is, reduce the capability of the machine until it acts
like the context-free grammar machine from Chapter 7.

Ease of Programmability Anyone using the machine will need to
come up with a collection of grammars to simulate some form
of text. Constructing these can be complicated, and it would be
ideal if the language could be nimble enough to handle many
constructions.

The solution is to imitate the grammar structure from Chapter
7. There will be variables and productions, but you can change
the productions en route using reversible code.
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Minimizing Extra State Any extra bits must be transported through
a separate channel at the end and so they should be kept to a
minimum. For that reason, all strings should be predefined as
constants. They can’t be changed. If they could be changed,
then the final state of all strings would need to be shipped to
the recipient. This would be too much baggage.

Arithmetic Arithmetic is generally not reversible. 3 + 2 is not revers-
ible, but it can be reversed if one half of the equation is kept
around. So adding the contents of register A1 and register A2

and placing the result in register A1 is reversible. The contents
ofA2 can be subtracted fromA1 to recover the original value of
A1.

For the most part, addition, subtraction, multiplication, and
division are reversible if they’re expressed in this format. The
only problem is multiplication by zero. This must be forbidden.

Structure of Memory What form will the memory take? Ordinary
computers allow programmers to grab and shift blocks of mem-
ory at a time. This is not feasible because it would require too
many extra waste bits would need to be stored. Block moves of
data are not reversible. Swaps of information are.

For that reason, there is an array of registers. Each one holds
one number that can be rounded off in some cases. The final
state of the registers will be shipped as extra state to the recipi-
ent so any programmer should aim to use them sparingly. Un-
fortunately, the rules of reversibility can make this difficult.

Conditional Statements Most conditional statements that choose
between branches of a program can be reversed, but some-
times they can’t be. Consider the case that says, “If x is less than
100, then add 1 to x. Otherwise, add 1 to p.” Which path do you
take if you’re running in reverse and x is 100? Do you subtract 1
from p or not? Either case is valid.

One solution is to execute each branch storing results in tem-
porary variables. When the conditional statement is encoun-
tered, the proper choices are swapped into place.

Another solution is to forbid the program to change the con-
tents of the variables that were used to choose a branch. This
rules out many standard programming idioms. Here’s one way
to work around the problem:
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if x<100 then {
swap x,k;
k=k+1}
else {
p=p+1;
swap x,k;}
swap x,k;

Loops Loops may be very handy devices for a programmer, but they
can often be an ambiguous obstacle when a program must
run in reverse. One easy example is the while loop often writ-
ten to find the last element in a string in C. That is, a counter
moves down the string until the termination character, a zero,
is found. It may be easy to move backward up the string, but it
is impossible to know where to stop.

The problems with a loop can be eliminated if the structure is
better defined. It is not enough to give a test condition for the
end of the loop. You must specify the dependent variable of the
loop, its initial setting, and the test condition. When the loop
is reversed, the machine will run through the statements in the
loop until the dependent variable reaches its initial setting.

This structure is often not strong enough. Consider this loop:

i=1;
j=i;
while (i<2) do {
j=j+.01;
i=floor(j);}

The floor(x) function finds the largest integer less than or
equal to x. This function will execute 100 times before it stops.
If it is executed in reverse, then it will only go through the loop
twice before i is set to its initial value, one. It is clear that i is
the defining variable for the loop, but it is also clear that j plays
a big part.

There are two ways to resolve this problem. The first is to warn
programmers and hope that they will notice the mistake before
they use the code to send an important message. This leaves
some flexibility in their hands.

Another solution is to further constrain the nature of loops
some more. There is no reason why they can’t be restricted to
for loops that specify a counter that is incremented at each it-
eration and to map functions that apply a particular function to
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every element in a list. Both are quite useful and easy to reverse
without conflicts.

Recursion Recursion is a problem here. If procedures call them-
selves, then they are building a de facto loop and it may be dif-
ficult to identify a loop’s starting position. For instance, here is
an example of a loop with an open beginning:

procedure Bob;
x=x+1;
if x<100 then Bob;
end;

This is just a while loop and it is impossible to back into it and
know the initial value of x when it began.

One solution is to ban recursion altogether. The standard loop
constructs will serve most purposes. This is, alas, theoreti-
cally problematic. Much of the theoretical intractability of pro-
grams comes from their ability to start recursing. While this
might make implementing reversible programs easier, it could
severely curtail their theoretical security.

Another solution is to save copies of all affected variables be-
fore they enter procedures. So, before the procedure Bob be-
gins, the reversible machine will save a copy of x. This version
won’t be destroyed, but it will become part of the waste bits that
must be conveyed along with the output.

In the end, the code for this system is quite close to the assemblyRalph Merkle also notes
that most assembly code
is reversible and predicts
that in the future smart

compilers will rearrange
instructions to ensure
reversibility. This will
allow the chips to run

cooler once they’re
designed to save the

energy from reversible
computations [Mer93].

code used for regular machines. The only difference is that there
is no complete overwriting of information. That would make the
system irreversible. Perhaps future machines will actually change
the programming systems to enhance reversibility. That may come
if reversible computers prove to be the best way to reduce power
consumption to an acceptable level.

8.3.3 The Reversible Grammar Machine

Although the structure will be very similar to machine code, I’ve cho-
sen to create this implementation of the Reversible Grammar Ma-
chine (RGM) in LISP, one of the best experimental tools for creat-
ing new languages and playing around with their limits. It includes
many of the basic features for creating and modifying lists plus there
are many built-in pattern-matching functions. All of this makes it



8.3. BUILDING A REVERSIBLE MACHINE 153

relatively easy to create a reversible machine, albeit one that doesn’t
come with many of the features of modern compilers.

Here are the major parts of the system:

Constant List The major phrases that will be issued by the program
as part of its grammar will be stored in this list, constant-list.
It is officially a list of pairs. The first element of each pair is a
tag-like salutation that is used as a shorthand for the phrase.
The second is a string containing the constant data. This con-
stant list is part of the initial program that must be distributed
to both sides of the conversation. The constants do not change;
so there is no need to transmit them along with the waste state
produced by running a program forward. This saves transmis-
sion costs. The main purpose of the constant list is to keep all
of the phrases that will be output along the way. These are often
long, and there is little reason for them to change substantially.
Defining them as constants saves space. The constant list can
also include any data like the variable list. The data just won’t
change.

Variables The data is stored in variables that must be predefined to
hold initial values. These initial values are the only way that
information can actually be assigned to a variable. The rest of
the code must change values through the swap command. The
variables are stored in the list var-list, which is as usual a list
of pairs. The first element is the variable tag name. The second
is the data stored in the variable.

There are five types of data available here: lists, strings, inte-
gers, floating-point numbers, and tags. Lists are made up of any
of the five elements. There is no strict type checking, but some
commands may fail if the wrong data is fed to them. Adding
two strings, for instance, is undefined.

Some care should be taken with the choice of variables. Their
contents will need to be sent along with the output so the re-
cipient can reverse the code. The more variables there are, the
larger this section of “waste” code may be.

Procedure List At each step, some code must be executed. These
are procedures. For the sake of simplicity, they are just lists
of commands that are identified by tags and stored in the list
proc-list. This is a list of pairs. The first element is the tag
identifying the procedure, and the second is the list of com-
mands. There are no parameters in the current implementa-
tion, but they can be added.
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Commands These are the basic elements for manipulating the data.
They must be individually reversible. The set of commands in-
cludes the basic arithmetic, the swap command, the if state-
ment and the for loop tool. These commands take the form of
classic LISP function calls. The prefix notation that places the
command at the front is not as annoying in this case because
arithmetic is reversible, so addition looks like this: (add first
second). That command adds first and second and places the
result in first.

There are three other arithmetic commands: sub, mul and div,
which stand for subtraction, multiplication and division, re-
spectively. The only restriction is that you can’t multiply a num-
ber by zero because it is not reversible. This is reported by an
error message.

Output Commands There is one special command, chz, that uses
the bits that are being hidden to pick an output from a list.
When this command is run in reverse by the recipient, the hid-
den bits are recovered from the choice. The format is simple:
(chz ( tag tag...tag)). The function builds up a Huffman
tree like the algorithm in Chapter 7 and uses the bits to make a
choice. The current version does not include the capability to
add weights to the choices, but this feature can be added in the
future.

The tags can point to either a variable or a constant. In most
cases, they’ll point to strings that are stored as constants. That’s
the most efficient case. In some cases, the tags will contain
other tags. In this case, the choose function evaluates that tag
and continues down the chain until it finds a string to output.

For practical reasons, a programmer should be aware of the
problems of reversibility. If two different tags point to the same
string, then there is no way for the hidden bits to be recovered
correctly. This is something that can’t be checked in advance.
The program can check this on the fly, but the current imple-
mentation doesn’t do it.

Code Branches There is an if statement that can be used to send
the evaluation down different branches. The format is (if
(test if-branch else-branch). The program evaluates the
test and if it is true, then it follows the if-branch otherwise
it follows the else-branch.

The format of the test is quite similar to general LISP. For in-
stance, the test (gt a b) returns true if a is greater than b. The
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other decision functions are lt, le, ge and eq, which stand for
less than, less than or equal to, greater than or equal to, and
equal to.

The current implementation watches for errors that might be
introduced if the two variables used to make a decision were
changed along one of the branches. It does this by pushing the
names onto the Forbidden-List and then checking to see the
list before the evaluation of each operation.

Program Counter and Code This machine is like most other soft-
ware programs. There will be one major procedure with the tag
main. This is the first procedure executed, and the RGM ends
when finished. Other procedures are executed as they’re en-
countered and a stack is used to keep track of the position in
partially finished procedures.

The source code is available from the author.

8.4 Summary

Letting a machine run backward is just one way to create the most
complicated computer-generated mimicry. You could also create
double-level grammars or some other modified grammar-based sys-
tem.

The Disguise The text produced by these reversible machines is as
good as a computer could do. But that may not be so great.
Computers have a long way to go before they can really fool a
human. Still, static text can be quite realistic.

How Secure Is It? Assessing the security of this system is even more
complicated than understanding the context-free grammars
used in Chapter 7. Theoretically, there is no Turing machine
that can make nontrivial statements about the reversible Tur-
ing machine. In practice, there may be fairly usable algorithms
that can assemble information about the patterns in use. The
question of how to create very secure programs for this revers-
ible machine is just as open as the question of how to break
certain subclasses.

How to Use It The LISP software is available from the author. It
runs on the XLISP software available for free at many locations
throughout the Internet.
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Further Work The LISP code is very rudimentary. It’s easy to use if
you have access to a LISP interpreter. A better version would
offer a wider variety of coding options that would make it easier
to produce complicated text.

A more interesting question is how to guarantee security. Is it
possible to produce a mechanism for measuring the strength
of a reversible grammar? Can such a measuring mechanism
be guaranteed? An ultimate mechanism probably doesn’t ex-
ist, but it may be possible to produce several models for attack.
Each type of attack would have a corresponding metric for eval-
uating a grammar’s ability to resist is. Any collection of models
and metrics would be quite interesting.

Further Reading

The field of reversible computing continues to draw some at-
tention from people trying to build quantum computers. Some
recent papers include a survey by Michael Frank and the papers
from the tracks at the conference devoted to the topic. [Fra05]
In particular, see the work of Daniel B. Miller, Ed Fredkin, Alexis
De Vos and Yvan Van Rentergem. [VR05, MF05, TL05, BVR05,
Fra05]



Chapter 9

Life in the Noise

9.1 Boy-Zs in Noizy, Idaho

Scene: A garage with two teens and guitars.

Teen #1 No. I want it to go, “Bah, dah, dah, dah, bah, screeeeech,
wing, zing. . . ”

Teen #2 How about, “Bah, dah, dah, dah, bah, screeeeech, screech,
wing, zing. . . ”

Teen #1 Hey, let’s compromise: “Bah, dah, dah, screeech, zip, pop,
screeech?”

Teen #2 Oh; I don’t know anymore.
Teen #1 What’s the problem?
Teen #2 I just get tired of trying to say something with noise.
Teen #1 Hey. We agreed. Mrs. Fishback taught us in English class

that the true artist challenges contemporary society. We
need to expose its fallacies through the very force of our
artistic fervor. Our endeavor must course through the
foundations of society like an earthquake that gets a 10.0
on the Richter scale.

Teen #2 Yeah. So what? She’s just a hippie chick. That’s her idea.
Teen #1 Come on. Join the clambake. We have to confront the

conformity of the adults with an urgency that heretofore
has not been seen on this planet. We need to demand
that culture come alive with a relevance that can speak
truth to the young and the restless. There are paradigms
to shatter.

Teen #2 Would you shut up with that science stuff? Mr. Hornbeam
said that Thomas Kuhn wasn’t going to be on the final.

157
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Besides people managed to have a good time even before
Copernicus and Galileo broke the paradigms apart. What
about melody and harmony?

Teen #1 We can make our fuzz circuits do everything for us. Sub-
urbia is just sleepwalking through life. Only our harsh
notes can wake them to the discord that lies beneath the
greenswept swards of our existence. That’s what Mrs.
Fishback says.

Teen #2 Cut it out. You like your dad’s car as much as I do. How
would you like your father to awaken you from your sleep-
walking and force you to do some actual walking to the
mall? I don’t want to make Mrs. Fishback’s music.

Teen #1 Why not? She obviously understands the evil hegemony
proffered by a corporate culture intent on creating a som-
nolent adolescence. We are not people merely because we
consume.

Teen #2 Nirvana, Pearl Jam, and the rest live on major labels sold
at full list price at our mall.

Teen #1 Whoa! Perhaps we’re being led to rebel in the hopes that
anticulture will sell even more than traditional culture?

Teen #2 Yes. You got it.
Teen #1 It’s true. Mrs. Fishback just wants us to create a youth

she never had when she was running between classes and
earning good grades. The revolution always ended in the
1960s when the exams came around. They smoked a lit-
tle pot, went to a protest, but most of it was just grooving
to the music and searching for someone to do some lov-
ing. Then they got married and got jobs. We’re just do-
ing what her generation wants. They’re marketing to us
through their dreams of what they wished their childhood
had been.

Teen #2 You’re getting the hang of it.
Teen #1 The pervasive drive to explode the previous is just another

marketing move. Unknowingly, we’re channeling our re-
bellious energy through a marketing path created by a
cynical corporate structure intent on destroying the po-
tential for upheaval in every youth. Instead of remaking
the world with our passion, we’re simply consuming anti-
cultural icons constructed as pseudo-rebellious pabulum.

Teen #2 Bonzai!
Teen #1 So what do we do?
Teen #2 I have this Beethoven music here. It has no copyright.
Teen #1 Excellent. By reinvigorating the classic music, we’ll be
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subverting the corporate music world that uses the laws of
intellectual property to milk our youth. Instead of work-
ing long hours at McDonald’s to save for a new $17.95 Nir-
vana Retrospective CD, we’ll truly shatter the power struc-
ture by playing music long freed from the authorial and
corporate imperative.

Teen #2 And there are some great bass chords in this Ninth Sym-
phony.

9.2 Hiding in the Noise

Noise, alas, is part of our lives. The advertisements for digital this
and digital that try to give the world the impression that digital cir-
cuits are noise-free and thus better, but this is only half true. The dig-
ital signal may be copied and copied without changing the message.
thanks to error-correcting codes and well-defined circuitry, but this
doesn’t eliminate much of the original noise. Digital photographs,
digitized music, and digital movies all have a significant amount of
noise that is left over from their original creation. When the voices,
sounds, and photographs are converted into bits, the circuits that do
the job are often less than perfect. A bit of electrical noise might
slightly change the bits and there is no way to recover. This noise
is something that will always be with us.

This noise is also an opportunity. If it doesn’t really matter
whether the bits are exactly right, then anyone who needs to hide
information can take advantage of the uncertainty. They can claim
the bits for their own through squatter’s rights. This is probably the
most popular form of steganography and the one with the most po-
tential. There are millions of images floating about the Net used as
window dressing for Web sites and who knows what. Any one could
hijack the bits to carry their own messages.

The principle is simple. Digitized photos or sounds are repre-
sented by numbers that encode the intensity at a particular moment
in space and/or time. A digital photo is just a matrix of numbers that
stands for the intensity of light emanating from a particular place at a
particular time. Digitized sounds are just lists of the pressure hitting
a microphone at a sequence of time slices.

All of these numbers are imprecise. The digital cameras that gen-
erate images are not perfect because the array of charge-coupled de-
vices (CCDs) that convert photons to bits is subject to the random
effects of physics. In order to make the devices sensitive enough to
work at normal room levels, they must often respond to only a few
photons. The randomness of the world ensures that sometimes a few
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too many photons will appear and sometimes a few too few will ar-
rive. This will balance out in the long run, but the CCD must generate
an image in a fraction of a second. So it is occasionally off by a small
amount. Microphones suffer in the same way.“God is in the details.”

–Mies van der Rohe The amount of noise available for sending information can be
truly staggering. Many color digital photographs are stored with 32
bits allocated for each pixel. There are 8 bits used to encode either
the amount of red, blue, and green or the amount cyan, magenta,
and yellow of each pixel. That’s 24 bits. If only one pixel from each
of the colors was allocated to hiding information, then this would be
1/8th or about 10% of the file. At the top of the scale, a Kodak photo-
CD image is 3072 by 2048 pixels and takes up about 18 megabytes.
That leaves about 1.8 megabytes to hold information. The text of this
book is well under half a megabyte, so there is plenty of room for
hiding more information in a single snapshot. Many people won’t
want to spend 18 megabytes of storage space on a single snapshot.
Less precise versions of images can run between 200k to 600k and
still devote about 10% of their space to hidden data.

But if about 12.5% is devoted, how much does this affect the ap-
pearance of the image? Each of these 8 bits stores a number between
0 and 255. The last bit in each group of 8 bits is known as the least
significant bit. It’s value is 1. The most significant bit, the first one,
contributes 128 to the final number if it is a one. This means that the
least significant bit can change the intensity of a pixel in the final im-
age by about .5 to 1% at the most. Trading 12.5% of the image data
in a way that will only affect the final image by about 1% is a good
solution.

There is no reason why more data can’t be stored away. If the two
least significant bits are given over to hidden data, then each pixel
cannot change by more than 3 units. That is still about 1 to 3% of the
value of a pixel. But this is 25% of the final image size. This is a huge
amount of bandwidth waiting to be captured and used.

9.2.1 Problems with the Noise

The amount of bandwidth available in the least significant bits of an
image or a sound file is large, but it is not always easy to exploit.
Unfortunately, potential steganographers must fight for the hidden
spaces with compression algorithm architects who want to create
compression algorithms that strip away the extra space.Chapter 5 discusses

compression algorithms
and how they can

enhance steganography.

The basic image format may use 24 bits to encode the color of
each pixel, but this basic format is used less and less frequently.
Compression algorithms like JPEG do a good job and often use one or
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two bits per pixel. Basic compression algorithms like JPEG can eas-
ily save a factor of 10 without significantly distorting an image. Most
digital cameras, for instance, now come with built in JPEG compres-
sion chips to save space and allow people to take more pictures. 24-
bit color may be slightly more accurate, but no one wants to waste
the space on it.

The same holds true for music. Today, MP3 files are much more
common than files that record the intensity at each time slice. Com-
pression algorithms like MP3 can easily save a factor of 10 over raw
digitized data. Newer algorithms can save even more. This is great
news if you’re storing your CD collection on your computer, but not
if you want an easy channel to exploit for steganography.

This effect, incidentally, is what leads some steganographers to
hide information in the most “perceptually significant” parts of a file.
That is, they want to ignore the noise and hide the information in
the part that the humans can perceive. The noise will eventually ex-
tracted and removed by some compression algorithm, but the per-
ceptually important parts will live on. [CKLS96] Instead of hiding in-
formation in subtle changes of the intensity, hide the information in
the position of a person’s nose or the length of the hair.

This is a good point, but it is more of a challenge for researchers
and a loose design principle. Even if basic mechanisms for exploiting
the noise in a file may not be as robust as possible, they are still worth
exploring. The rest of this chapter is devoted to noise. Following
chapters attempt more robust solutions.

9.2.2 Good noise?

A practical problem is finding good noise. Most image and sound
files include enough natural noise Chapter 17 discusses

how some cameras don’t
provide good enough
noise to mask hidden
bits.

to hide a 3% change, but this noise is rarely as pure as can be.
Figure 9.1 shows a black-and-white scanned image of a photograph
taken of a computer on a desk. Figure 9.2 shows just the least signif-
icant bits. It is obvious that there is a highly random pattern to them
caused by the noise in the digitizing circuit on the scanner. It is ran-
dom, but it is not as random as it could be.

Many images and sound files probably have enough inherent
noise to hide data. The image in Figure 9.1 has plenty of junk so small
variations don’t show up. But there are some images that do not han-
dle the imposed noise as well. Many images are created entirely on
the computer in applications like Adobe Illustrator. These produce
pure, consistent fields of color. Even modifying them a bit can stand
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Figure 9.1: This is a black-and-white photo of the author’s desk.
There is plenty of junk on the desk that is hiding secret documents.
The noise in the image lends itself to hidden data as well.
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Figure 9.2: These are the least significant bits of the photo in Figure
9.1. The most significant bits were deleted to show the randomness
that exists at this level. (See Figure 9.4.)

out because a pure tone is converted to one with a bit of noise.1 “Putting JPEG to Use”
on page 183 shows how
compression can
identify just how much
space can be exploited
in an image.

9.2.3 Independence Problems

One of the deeper problems is defining good noise. The least signifi-
cant bits of a music or image file often seem close to random, at least
to the average eye or ear, but they often contain hidden patterns and
structure. Many of the microphones, cameras or scanners used to
generate the files are far from perfect and they often introduce their
own patterns.

One of the most common is a correlation between the high order
bits and the least significant bit. A picture of a bright day might
include a number of intense reflections of the sun. These pure white
points usually saturate the sensor and produce patches of maximum
values of 255. There are relatively few values of 254. If the least

1The pure colors are often jarring to the eye and this is why artists often use textures
and slight imperfections to make the image more appealing. It is anyone’s guess why
the optic nerve seems to react this way, but perhaps it is an effect like the moiré
patterns produced when one pattern is digitized at too coarse a level. If you’ve ever
looked at anyone wearing a fine checked shirt or tie on television you may have seen
this effect.
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significant bits were truly random and uncorrelated with the higher
order bits, then there would be equal numbers of 255s and 254s. This
often happens to a lesser degree in many other parts of the image
where only one color may appear completely saturated.

This is just a simple example. Good scientists with a deep knowl-Chapter 17 offers a
number of basic

statistical tests for
identifying the presence

of steganography.

edge of the physics behind the sensors can often detect more sophis-
ticated patterns. Digital copier manufacturers, for instance, can tune
their toner mechanisms to do a good job with either fine white lines
or fine black lines. Doing well with both is difficult.

All of these subtle statistical patterns can be destroyed when you
replace the least significant bits with your message. Simply pouring
in a well-compressed and encrypted message puts in white noise
with no correlations to the higher order bits.

There is no easy way to avoid this problem. The mimic functions
from Chapter 6 can be used in complicated ways to imitate the pat-
terns, but this is largely a cat-and-mouse, spy-vs-spy game. The at-
tacker may have some model of the statistical correlations in the file.
If you can anticipate this model or come up with your own that en-
compasses it, then you can mold the data in your message to fit it.
If you choose incorrectly or the eavesdropper/attacker changes their
model, your data could stick out like a sore thumb.

There is no solution to winning this game, but it is possible to
minimize the dangers of playing it. The best defense against statis-
tical problems like this is to avoid getting greedy by packing in too
much data. An 800kB file has 800kB least significant bits available
that can store up to 100kB bytes of a message. Using all 100kB of the
channel, however, will completely destroy all statistical correlations
but inserting 1k message will leave 99% of the least significant bits
unchanged. Most of the statistical patterns will also be unchanged
and thus indistinguishable from a pure file.

All of the statistical techniques for detecting steganography usu-
ally become much less sensitive when only a small fraction of the
available bandwidth is used to hold a message.See Chapter 17 for a

description of some of
these algorithms for

detecting hidden
messages.

Another more sophisticated solution is to embed the information
in several pixels at the same time. A simple way is to just choose
several pixels and embed the information in the parity of these pixels.
Let a zero be encoded by ensuring that there’s an even number of 1s
in the least significant bits of the chosen pixels. A one can be encoded
with an odd number of 1s. This spreads out the change.

All of the analytical attacks on steganography work best when
the steganographer gets greedy and saturates the hidden channel.
Leaving most of the image unchanged is the best defense.
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9.2.4 File Format Grief

File formats are a serious problem for anyone who would like to rou-
tinely use bit-level steganography to hide images. Many image or au-
dio file formats were designed to squeeze out some of the extra noisy
details to save space. This might be done by a special, efficient file
format like GIF or by an aggressive compression program that does
not care if it reconstructs an image that is not exactly the same. Both
of these make it hard to just hide information in the least significant
bits of an image. Jessica J. Fridrich and

Rui Du propose hiding
information in the
parity of the sum of the
colors of multiple pixels.
The more pixels used for
each color, the smaller
the changes that need to
be made.[FD99, AP98]

The GIF file format and its 8-bit color standard is a significant
impediment because 8-bit color is quite different from 24-bit color.
It uses a table of 256 different colors that best represent the image
as a color map. The color of each pixel is described by giving the
closest color from this 256-entry table. The bits do not correspond

Yes, the newspapers
were right: snow was
general all over Ireland.
—James Joyce in The
Dead

to the intensity of the colors at each pixel. This means that changing
the least significant bits doesn’t necessarily change the intensity at
a pixel by less than 1%. Entry 128 of the table might be a saturated
ruby red while entry 129 might be a pale, washed-out indigo. They
may only differ in the least significant bit, but that can be enough to
cause major changes in the final outcome.

There are a number of different solutions to this problem. The
first is to use a smaller number of colors in the table. Instead of
choosing the 256 colors that do the best job representing the colors
of an image, the software could choose 128 colors and then choose
128 colors that are quite similar to the original 128. They might even
be the same, but that could be too suspicious. The table could be
arranged so that the two very similar colors only differ in one bit.
Here’s an abbreviated example of such a table:

Entry Num. Binary Red Intensity Green Intensity Blue Intensity

0 00000000 150 20 10
1 00000001 151 20 12
2 00000010 14 150 165
3 00000011 16 152 167
4 00000100 132 100 10
5 00000101 135 67 15
...

...
...

...
...

So if you want to hide the value 1 in a pixel, you would find the
closest color in the table and then choose the version of it with the
least significant bit set to one. If the closest color had red set to 15,
green set to 151, and blue set to 167, and you wanted to hide the bit
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Figure 9.3: Even the second-to-least significant bits appear fairly ran-
dom. These are the second-to-least significant bits of the photo in
Figure 9.1.

1, then you would choose color 3 for that pixel. If you wanted to hide
a 0, then you would choose color 2.

There is no reason why the least significant bit needs to be used
to separate pairs. It might very well be any of the bits. Here is another
table where the third bit is used to mix pairs:

Entry Num. Binary Red Intensity Green Intensity Blue Intensity

0 00000000 150 20 10
...

...
...

...
...

2 00000010 14 150 165
...

...
...

...
...

4 00000100 132 100 10
...

...
...

...
...

33 00100001 151 20 12
...

...
...

...
...

35 00100011 16 152 167
...

...
...

...
...

37 00100101 135 67 15
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Figure 9.4: These are the most-significant bits of the photo in Fig-
ure 9.1. The seven least significant bits were deleted to contrast the
images in Figure 9.2.

Nor is there any reason why only 1 bit is encoded in each pixel.
The same algorithms that choose 256 or 128 best colors for an im-
age can be used to find the closest 64 colors. Then 2 bits per pixel
could be allocated to hidden information. Obviously this can lead
to a degraded image, but the hidden information can often mod-
erate the amount of degradation. Imagine, for instance, that we
tried to be greedy and hide 4 bits per pixel. This would leave 4
bits left over for actually specifying the color and there could only
be 16 truly different colors in the table. If the photo was of a
person, then there is a good chance that one of the colors would
be allocated to the green in the background, one of colors would
go to a brown in the hair and maybe two colors would be given
over to the skin color. A two-toned skin could look very fake.2

But each of these two tones might also be hiding 4 bits of informa-
tion. This would be mean that there were 16 surrogates for each of
these two tones and these 16 surrogates would be used fairly ran-

2Recent work suggests that human eyes pick up skin tones more than most colors.
So the best algorithms devote more colors in the table to skin colors in the hopes of
better representing them. The eyes don’t really seem to care much about the shade of
green in a tree.
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domly. This would add a significant amount of texture that might
mitigate some of the effects.3

Another significant hurdle for image- and sound-based stegano-
graphy is the compression function. The digital representations of
these data are so common that many specialized compression func-
tions exist to pack the data into smaller files for shipping across the
network. JPEG (Joint Photographic Experts Group) is one popular
standard algorithm for compressing photographs. MPEG is a similar
standard designed for motion pictures.

Both of these are dangerous for bit-level infopacking because
they are lossy compression functions. If you take a file, compress it
with JPEG, and then uncompress it later, the result will not be exactly
the same as the original. It will look similar, but it won’t be the same.
This effect is quite different than the lossless compression used on
many other forms of data like text. Those functions reproduce the
data verbatim. Lossy compression functions are able to get signif-
icantly more compression because they take a devil-may-care atti-
tude with the details. The end result looks close enough. The JPEG
algorithm itself is adjustable. You can get significantly more com-
pression if you’re willing to tolerate more inaccuracies. If you turn
up the compression significantly, the pixels begin to blend into big
blocks of the same color.JPEG compression can

also help. See page 183.

9.2.5 Deniability
Deniability is one of the greatest features of hiding information in
images from Web pages. If you structure your information correctly,
you can spread it out among a number of unrelated locations. If the
information is discovered, it will be impossible to tell exactly where
it came from.

Imagine that you have some bits that you want to distribute to the
world. You could hide these bits in an image file and place it on your
home page for all to download. If unintended people discover the
bits, however, they know the information came from you because it
is on your Web page.

Instead, you can split up the information into n parts using the
basic tricks from Chapter 4. These n files, when they’re XORed to-
gether, will reveal the hidden data. Ordinarily, you would create n−1
files at random and then compute the last file so that everything adds
up. But why bother using files at random when there is a great source
of randomness on the network? You could snarf n − 1 different GIF
images from the Net and use them. One might be a picture of Socks

3Random noise has been used to make quantization look more realistic. Too many
discrete levels look artificial [Rob62].
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the Cat from the White House page. Another might be a quilt from
the page of some quilting club that is the picture of innocence. Any-
one who wanted to recover the information would get all of these
GIFs from the Net, recover the secret bits from all of them, and add
them up to recover the hidden data.

The net effect of this trick is deniability. No one can be sure who
was the one who was hiding the secret bits. Could it be the White
House? They’ve been known to sponsor covert missions based in the
Old Executive Office Building. Could it be the quilting circle? No one
knows who injected the secret bits into the file. Even the person who
recovers the bits might not know who was sending the message. It’s
quite a ruse. The section beginning

on page 99 describes
sophisticated ways of
matching patterns in
the least significant bits.

There are some practical problems associated with this tech-
nique. First, you must keep the file creation dates secret. The one
GIF that actually contains the message will be the newest file. HTTP
doesn’t usually ship this information to Web browsers so there is little
problem with keeping the information secret. But you can also fake
it by resetting the clock on your machine.

Second, you should search out GIF files that seem to have the
right structure for storing secret bits. This will prevent someone from
examining the files and discovering that only one of them has the
right structure to hide bits. That is, all but one of the n files are 8-bit
color with color tables filled with 256 different shades.

Third, you should worry about one of the images disappearing
from the Net. It’s tempting to use images from other web sites for
parts because it will deflect attention and hide the source of the mes-
sage, but this could be thwarted if someone redesigns a web site.

You can add some error-correcting features to this scheme if you
want to create, say, three different sets of files. When each set of the
three sets of files are combined, then three versions of the hidden
bits emerges. Any disparities between the files can be resolved by
choosing the value of the bit in question that is correct in two out of
three files.

More complicated error-correcting schemes like the ones de-
scribed in Chapter 3 can also be used successfully. For instance, a
file to be hidden could be encoded with an error-correcting code that
converts every 8 bits into, say, a 12-bit block that can recover errors.
One bit from each of the 12-bit blocks could be placed into 12 sepa-
rate files that were then hidden in 12 different GIFs sprinkled around
the network. If someone could not recover all 12 GIFs because of
network failures, then the error-correcting code will allow the infor-
mation to be recovered.
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9.2.6 Finding Edges

The Digital Invisible Ink Toolkit written by Kathryn Hempstalk in-
cludes several algorithms for encoding information in the most vi-
sual significant parts of the image. How does it identify them? By
using a Sobel filter or a Laplace filter, two standard averaging tools
that identify the pixels that are most different from their neighbors.
These are usually called the edges of the item.

The software package locates these edges and then tweaks the
least significant bits at these locations. The algorithms only feed the
most significant bits into the filters to avoid any problems caused by
side effects from changing the least significant bits. It is possible that
the change of the least significant bit would turn a pixel from an edge
into a non-edge making it invisible to the decoding algorithm.

One of the version called BattleSteg will choose pixels at random
until it finds one that is significantly edgy. Then it tweaks the least
significant bits of the pixels around it. The random selection process
is driven by the password so it the recovery process can repeat the
same sequence. FIgure 9.5 shows an image with a hidden informa-
tion and the locations where the data is stored.

9.3 Bit Twiddling

Perhaps the best way to begin experimenting with hiding informa-
tion in the noise is to download one of the experimental packages
floating around the Net. There are easily more than one hundredAppendix A offers a list

of some of the more
prominent

steganography
packages.

programs that have been circulated publically, but many of them
seem to disappear as quickly as they appear.

9.3.1 Working with GIFs

GIF files store their images by creating a pallette of 2n different colors
and then mapping the colors from the image to the closest color.
This can make it harder to store data by flipping the least significant
bits because two adjacent entries in the table of colors may wildly
different even though they only differ by one significant bit.

One of the earlier programs, Hide and Seek worked around this
problem.

One version, grey.exe, converted color GIFs into grayscale GIFs
that would not show any of the artifacts associated with 8-bit color
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Figure 9.5: The top photo shows an image after the BattleSteg algo-
rithm hides information in the edges identified by a Laplace Filter.
The bottom image shows these most interesting or salient pixels.
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Figure 9.6: This shows how adding information to the least signifi-
cant bit of a 24-bit color image has little effect. The image was later
converted to black and white for this book. (Photo courtesy of the
Lacrosse Foundation.)

Figure 9.7: 8-bit color images can make poor candidates for adding
information into the least significant bit because entries in the color
table might not be next to each other. The image was later converted
to black and white for this book.
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steganography.The lack of color, though, could be a bit of a indica-
tion that something had changed.

The second program, reduce.exe, shrank the color table from
256 colors to 128 colors and then duplicates these 128 colors so that
adjacent entries in the color table were exactly the same. If this is
done, hiding information in the least significant bit won’t affect the
look of the image.

There are a number of different programs for reducing the size of
the palette. The simplest is:

1. Create a two-dimensional matrix containing the distances be-
tween all pairs of colors in the palette. The distance between
two colors, (R1, G1, B1) and (R2, G2, B2) is

δ((R1, G1, B1), (R2, G2, B2)) =
√

(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2

.

2. Find the best color to delete. That is, find the color with the
closest neighbor and remove it.

3. Repeat until the palette is the desired size.

Unfortunately, this technique leaves a large red flag for anyone
scanning GIFs looking for hidden information. While the eye may Chapter 17 describes a

several techniques for
detecting a
steganographic
message.

not see any change after flipping the least significant bits, an 8-bit
color table with only 128 different colors is easier to detect automat-
ically than a bad image with plenty of artifacts.

Another early program, EzStego’s, solution for dealing with GIF
palettes was a bit more wily. The software written by Romana
Machado sorts the palettes so that the 2n colors in an n-bit file flow
smoothly from one to another. That is, each jump from the i-th color
to the i + 1 is relatively small. Any hidden information that changes
the least significant bit will introduce small changes. Ordering the
colors in the palette is trivial with one-dimensional color spaces in
black and white images, but it is much more difficult in three dimen-
sions.

EzStego treats the challenge as a version of the Travelling Sales-
man Problem. The colors are cities in three dimensions (RGB) and
the goal is to find the shortest path through all of stops.

There are no easy answers for Travelling Salesman problems so
EzStego uses a basic approximation that works pretty well. It may Other approximations

for the travellings
salesman problem can
be found in
[Tah92, Cla83].

not find the optimal solution, but it will often find one that works
very well. Here’s the algorithm:

Begin with two colors in the list, {c0, c1}. Set the first one to be C.
Repeat this until all colors are inserted.
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1. Find the color that is farthest from C. Call it d.

2. Find the best place to insert this color in the list. That is, scan
the list and find i such that δ(C, ci) + δ(C, ci+1) is minimized.

3. Insert d and set it to be the new C.

Finding the farthest color ensures that algorithm does not get
“trapped” in one corner of the three-dimensional color cube only to
find it must make big leaps to reach the other colors.

This sorting algorithm is not perfect and there’s no guarantee that
the jumps will be small. While the overall distance is minimized,
some distances are more important than others. Adding information
in the least significant bit will only produce some changes. In a three-
bit system, 001 can only change to 000, not 010. Sorting the entire
palette may leave one of the longer jumps between color 000 and
001 and put one of the shorter ones between 001 and 010. A more
sophisticated approach will try to find the best way to pair up all of
the colors in the palette so that the total distance of all of the pairs is
minimized.

Jessica J. Fridrich offered an easy tweak to the algorithm. Instead
of sorting the palette, the algorithm looks for the closest color with
the right parity for representing the bit being hidden. The parity of
the bit is R +G+B mod 2. [Fri99]

EzStego tries to thwart steganalysis by shipping the palette un-
sorted. Here are the steps:

1. Begin with an unsorted palette produced by a program like
Photoshop.

2. Sort the palette so the closest colors fall next to each other in
order.

3. Encode the message by twiddling the least significant bit. Make
sure to encrypt the message with a cryptographically secure
random number stream.

4. Unsort the palette by renumbering all of the colors with their
original values from the original palette.

5. Ship the image. Any attacker looking at the palette will only see
one produced by a non-steganographic program.

6. The receiver can re-sort the palette using the same sorting al-
gorithm. If the algorithm is deterministic, it will produce the
same results.
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7. The receiver can now extract the bits by using the sorted palette
values assigned to the colors. The least significant bits now
encode the message.

This solution removes the problem with a highly structured palettes
because it uses one produced by the image’s creating software. Any
attacker will have trouble determining the existence of the message
by looking at the structure of the palette. Andreas Westfeld and

Andreas Pfitzmann
created the pallettes in
Figure 9.8 for their
paper [WP99] with only
61 short lines of
Postscript!

9.3.2 Smarter Color Reduction

There are two different types of image steganography supported by
S-Tools a package written by Andy Brown. The software, now up
to version 4.0, can hide information in images stored as either GIFs
or BMP files orin sound stored as WAV files. Earlier versions even
offered to store data in the unallocated sectors of a disk. Wilson MacGyver Liaw

wrote a good
introduction to the GIF
file format in [Lia95].

While the software can hide information in the least significant
bits of 24-bit BMP files, the software can also reduce the image to
256 colors with an algorithm designed by Paul Heckbert [Hec82] to
reduce the number of colors in an image in the most visually nondis-
ruptive way possible. The algorithm plots all of the colors in three di-
mensions and then searches for a collection of n boxes that contains
all of the colors in one of the boxes. When it is finished, it chooses
one color to represent all of the colors in each box. S-Tools offers
three different options for how to choose this one color: the center
of the box, the average box color, or the average of all of the pixels in
the box.

The process for constructing the set of boxes is described in detail
in Heckbert’s thesis. The process begins with the complete 256 ×
256 × 256 space as one box. Then it begins to recursively subdivide
the boxes by splitting them in the best way possible. It continues
this splitting process until there are n boxes representing the space.
Heckbert developed this algorithm to correct some of the defects he
found in the “popularity” algorithms being used. These algorithms
would clump together nearby colors until only n clumps were left.
Then it would choose some color, usually the center of the clump,
to represent all of the colors. This works quite well for colors in
tight clumps, but it can be disastrous for colors that are part of big,
gaseous clumps. In those cases, the difference between the colors
and their chosen representative was too large. This would lead to big
shifts in the colors used in the details.

Heckbert suggests that a good way to understand the two ap-
David Charlap wrote a
good introduction to the
BMP format in
[Cha95a, Cha95b].

proaches is by comparing them to the “quantization” methods used
in choosing the representatives for the two houses of the Congress of
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Figure 9.8: A generic palette is shown on the top and the sorted ver-
sion is shown on the bottom.
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the United States. The Senate gets two members from each state and
Heckbert compares this to his algorithm. It spreads out the repre-
sentation so no part of the color space is over- or under-represented.
The House of Representatives, on the other hand, gets one represen-
tative for each unit of population. This works well if you’re from heav-
ily populated areas like Manhattan. These have representatives for
each part of town. Western states like Nevada, however, have only
one representative and thus have little power in the House. Heckbert
compares this approach to the “popularity” algorithms.

The subdivision algorithm used by S-Tools can use two different
ways to cut the boxes. In one way, the largest dimension is chosen
by measuring the greatest difference in RGB values. In the other way,
the largest dimension is found by comparing the luminosity of the
different choices. Here is the basic algorithm in detail:

1. Place all of the colors from the image in one box.

2. Repeat this until there are n boxes that will represent the final n
colors.

(a) For each box, find the minimum and maximum value in
each dimension. That is, find the smallest and largest
value of red for any color in the box, the smallest and
largest value of green, and the smallest and largest value
of blue.

(b) For each dimension of each box, measure the length. This
might be the difference in absolute length or it might be
the difference in luminosity.

(c) Find the longest dimension and split this particular box.
Heckbert suggests this can be done by either finding the
median color in the box along this dimension, or you can
choose the geometric middle.

3. Choose a representative color for all of the original colors in
each box. S-Tools offers three choices: center of the box, av-
erage of the colors, or average of the pixels.

When the new set of n colors is chosen, S-Tools can use “dither-
ing” to replace the old colors with new ones.

The algorithm attempts to find the best number of new colors,
n, through a limbo process. It slowly lowers the number of colors
until it ends up with less than 256 colors after the data is mixed into
the least significant bits. Often, it must repeat this process several
times until the right number is found. S-Tools cannot predict the
number of final colors ahead of time because it constantly tries to
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add 3 bits to each pixel. That is, it takes the red, green, and the blue
values for each pixel and changes the least significant bit of each one
independently. That means one color could quite possibly become
eight. This is quite likely to happen if that color is common in the
image because each pixel is handled differently. On average, each of
the eight slightly different colors should appear after ten to twelve
pixels of the same color are mapped.The program

MandelSteg, developed
by Henry Hastur, hides

information in the least
significant bit of an

image of the
Mandelbrot Set. This

synthetic image is
computed to seven bits

of accuracy and then the
message is hidden in the

eighth. See page 319.

This means that it is impossible for the algorithm to predict the
final number of colors it needs. It might try to reduce the number
of final colors in the image to 64. Then, after the data is mixed in, it
might end up with 270 colors or 255. If it was 255, then it could save
the file. Otherwise, it would start the process again and reduce the
colors some more. The entire process is iterative. S-Tools attempts
to predict the correct number through extrapolation, but it has taken
several iterations every time I modified a file.

9.3.3 Sound Files

The simplest way to hide information in the noise is to use uncom-
pressed sound files in formats like the WAV. S-Tools can store data in
the least significant bits of a WAV file—one of the standard sound for-
mats for Microsoft Windows. These files can use either 8 or 16 bits of
data to represent each instance. People with Sound Blaster cards will
have no problem generating these files from any source.

S-Tools hides one bit per either 8 or 16 bits and will also use a
random number generator to choose a random subset of bits. This
spreads the distortion throughout the sound file. The program will
display a graph representing the sound and also play it for you. After
data is hidden, the graph shows all of the changes made to the wave
form in red and leaves the unchanged parts in black. This is, in effect,

revealing where the pattern of ones and zeros in the hidden file
differed from the least significant bits of the sound file. Figure 9.9
shows a screen shot from the program.

9.4 Random Walks and Subsets

This chapter has discussed hiding information in image or sound
files by grabbing all of the least significant bits to hold information.
There is no reason why all of them need to be used. Both Hide and
Seek and S-Tools use random number generators to choose the bytes
that are actually drafted to give up their least significant bits to the
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Figure 9.9: The main window of st-wav.exe, the S-Tools program for
hiding information in a WAV file. The program displays the changed
parts of the waveform in red, but this detail is lost in a black-and-
white book.

cause. This random process guarantees that the distortion is dis-
tributed throughout the file so it is not so apparent. It also makes
it difficult for some attacker to figure out which bits are important.
S-Tools uses the MD5 algorithm to ensure that the random num-
bers are cryptographically secure. A more modern hash function like
SHA256 may make more sense now that researchers are discovering
a number of weaknesses in MD5 .

In fact, a random subset can have some other uses. First, if a
person selects a small, random subset to store information, then an-
other person could do the same thing. If both use different sources
of randomness to choose small subsets, then there is a good chance
that very few bits will end up in both subsets. Error-correcting codes
can help recover from this overlap. This could allow several people to
use the same file to pass information to several different other ones.

Steve Walton suggested this approach in his article, “Image Au-
thentication for a Slippery New Age” [Wal95b]. This approach uses
a general, two-dimensional random walk that weaves around a pic-
ture. Occasionally, the path may wrap around itself which requires
keeping track of where the path has been before. Hide and Seek,
in contrast, views the picture as a one-dimensional list of pixels and
chooses a random number of pixels to jump ahead.
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The source code was also included with the earlier versions of
Hide and Seek, which makes it possible to look at the guts of the
program. This makes it possible to examine how information is dis-
persed throughout the bits. If a smaller file is going to be packed into
the bits, then the program tries to randomly arrange the bits so that
they’re not adjacent to each other. This has two effects. First, the
noise is more randomly distributed throughout the image instead of
being clustered on the top half. Second, you must know the loca-
tion of bits to find the data and the location is governed by a random
number generator driven by a user-chosen key. Both of these en-
hance the security of the system.

The dispersion is controlled by an 8-byte header for the file. The
first 2 bytes are the length of the file, the second 2 bytes are a ran-
dom number seed that is chosen at random when the information is
packed and the third pair of bytes is the version number. The fourth
pair is not used, but is included to fill out an 8-byte block for the IDEA
cipher. This block is encrypted with the IDEA cipher using an op-
tional key and then stored in the first 64 pixels of the image. If you
don’t know the key, then you can’t recover the header information
that controls the dispersion of the data throughout the image.

The actual dispersion is random. At the beginning, the random
number generator is seeded with the second pair of bytes from the
header block. The code from Hide and Seek 4.1 just uses the built-in
C random number generator which may be adequate for most in-
tents and purposes. A stronger implementation would use a crypto-
graphically secure random number generator. Or, perhaps, it would
use IDEA to encrypt the random bit stream using a special key. Either
method would add a a great deal of security.

Here’s the section of C code devoted to handling the dispersion.
The code for getting the color table entry for pixel (x, y) and flipping
it appropriately is removed. This code will store an entire byte in the
eight pixels. The amount of the variable dispersion controls how
many pixels are skipped on average. It is set to be the rounded off
amount of 19000 divided by the length of the incoming data.

int used=0,disp=0,extra=0;

for(i=0;i<8;i++) {

// Code removed here for flipping LSB of (x,y)

disp=(random(dispersion+extra)+1);
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used+=disp;

extra=((dispersion*(i+1))-used);

x+=disp;

// Move over x pixels. Code removed to handle

// wraparound.

}

There is a certain rough, frontier aspect to just choosing arbitrary
random walks throughout the data. It does not require that there
be any prior communication between two people who happen to be
hiding information in the same picture. They’re just both keeping
their fingers crossed that the collisions will be minor and the error-
correcting codes will be able to fix them.

Here is a more principled way to create multiple channels in an
image. If all parties coordinate their use ahead of time, they can
ensure that their random walks will not collide. This saves space
because error-correcting codes do not need to be used, but it does
increase the complexity of the process.

To create n channels, divide the file into n-byte blocks of data.
One byte from each block will be given to each channel. In the sim-
plest and most transparent approach, the assignment of byte and
channel number is hard coded. Channel 1 gets byte 1, channel 2 gets
byte 2, and so on. A better approach shuffles the bytes by using a set
of permutations of the values between 1 and n. Here’s a good way to
generate a sequence of random permutations of the set:

1. Start with the ordered set (1, 2, . . . , n).

2. To generate a new random permutation repeat this j times. A
larger j is better, but less efficient.

(a) Choose two items in the set at random using the output of
a cryptographically secure random number generator.

(b) Swap their positions. For example, if the set is (5, 1, 3, 2, 4)
before and the second and fourth values are chosen by
the random number generator, then the result will be
(5, 2, 3, 1, 4).

3. Output this permutation. Goto step 2 to keep going.
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The i-th permutation spit out by this permutation generation
routine can determine which channel gets which byte in the ith

block. This ensures that no two users will collide.
Another approach can mangle the process even more. Why

should blocks be made up of adjacent bytes? In the most basic ap-
proach, byte i from channel k in an n-channel system is assigned to
byte in + k in the file. This can be scrambled using exponentiation
modulo the length of the file. So if the file is p bytes long and p just
happens to be prime, then (in+ k)e mod p will scramble the bytes so
they are not adjacent.

Walton imagines that the least significant bits in his random walk
can be used to construct a seal for the image. That is, you can “sign”
the image by embedding some digital signature of the image in the
least significant bits. Naturally, this digital signature would only be
computed of the non-least significant bits because those bits are the
only ones that would remain unchanged during the process. This
sealing system could be used by professional photographers to at-
tach their mark to a photograph.

Some have argued that this approach is a waste. Appending the
signature data to the end of the photo made more practical sense.
This type of signature would be able to handle all types of photo
formats including binary images without enough significant bits to
hide data. Also, there would be no need to avoid the least significant
bits while encoding the information and so the signature would be
even better.Another solution is to

create a random
permutation of the bits.
Tuomas Aura describes

this in [Aur95].

These suggestions are certainly correct. The only advantage that
the surreptitious approach would have is secrecy. Presumably pho-
tographers would sign images to protect their copyright. They could
prove conclusively that the photo was stolen. If the signature is ap-
pended to the file, then someone could remove it or tamper with it.
If it is hidden with a random walk in the least significant bits, then
someone has to find it first. Of course, malicious people could just
write over the least significant bits of a photo as a precaution.

9.4.1 Empty Disk Space

The algorithms for choosing a random subset of an image or sound
file by walking around them at random can be used to hide informa-
tion in other ways.

Earlier versions of S-Tools included a program, st-fdd.exe, to
hide information in the unallocated areas of a floppy disk. Each
disk is broken into sectors and the sectors are assigned to individual
files by the file allocation table (FAT). The unused sectors are just
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sitting around not doing anything. If someone tries to open them up
with an editor like a word processor or even tries to examine them
with a File Manager, they’ll find nothing. This is just empty space to
the operating system. But this doesn’t mean it can’t hold anything.
Information can be written into these sectors and left around. The
only way it can be corrupted is if someone writes a new file to the
disk. The operating system may assign those sectors to another file
because it thinks the space is free.

S-Tools stores information in this free space by choosing empty
sectors at random. The first sector gets the header of the file which
specifies the length and the random number seed that was used to
choose the sectors. Then the information is just stored in this string
of sectors selected at random.

If encryption is used, the random number generator uses the en-
cryption key as a seed. This means that a different selection of ran-
dom sectors will be chosen. The data itself is encrypted with any of
the five algorithms offered in the other two implementations of S-
Tools.

At the end, S-Tools offers to write random noise in the extra space
that is not taken up by the hidden file. This is often a good idea be-
cause the empty space may often have some pattern to it left over
from the last file it stored. Ordinarily, disk space is not actually
cleared off when a file is erased.

The entry in the FAT table is just changed from “assigned” to
“empty.” The old data and its pattern are still there. This means
that someone could identify the sectors of a floppy disk containing
hidden information by looking for the ones that have random infor-
mation. The ones that contain scraps of text files or image or ordi-
nary data would be presumed innocent.4 S-Tools will overwrite this
to convert the unallocated sectors into a sea of noise. This is equiva-
lent to using a new disk.

9.5 Putting JPEG to Use

The first part of this chapter lamented the effects of JPEG on image
files holding data in the least significant bits. The lossy compression
algorithm could just mush all of that information into nothingness
because it doesn’t care if it reconstructs a file correctly. Although this
can be problem if someone uses JPEG to compress your file, it doesn’t

4You could first use st-bmp.exe or st-wav.exe to hide the information in a picture
or a sound bite. Then you could store it in the unallocated sectors. Then it would look
like random discarded information.
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Figure 9.10: The user interface for st-fdd.exe shows the allocated
sectors in red, the unallocated sectors in gray, and the ones that have
been converted to hide information in yellow.
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mean that the JPEG algorithm is useless to the person who would like
to hide information successfully in images.

There are two possible ways that you can use the JPEG algorithm
to store information. The first is to use it as a tool to identify the
complexity of an image. This section discusses that approach. The
second way is to use some hidden parts of the standard to hide infor-
mation. That is described in the next section.

The JPEG algorithm can be a good tool for identifying the level of
detail in a scene. This level of detail can be used to find the noisiest
corners of the image where data can be stored. In the first part of the
chapter, the basic algorithm for hiding information would just use
the n least significant bits to hide information. If n = 1, there would
only be a small but uniform effect that was randomly distributed
throughout the image. If n was larger, then more information could
be stored away in the image, but more distortion would also emerge.
In any case, the distortion would be uniformly distributed across the
entire image, even if this wasn’t practical.

For instance, imagine a picture of a person sitting on a red-and-
white checked picnic blanket in the middle of a grassy field. It might
make sense to set n = 4 over a grassy section because it is out of focus
and not particularly filled with important detail. On the other hand,
you would only want to use n = 1 in the areas of the face because
the detail was so significant to the photo. Naturally, you could go
through the photo by hand and identify the most significant and
fragile sections of the photo, but this would defeat the purpose of
the algorithm. Not only would it be time-consuming, but you would
need to arrange for someone on the other end of the conversation to
construct exactly the same partition. This is the only way that they
would know how to recover the bits.

The JPEG compression algorithm offers an automatic way to seg-
ment the photo and identify the most important or salient portions
of an image. It was designed to do this to increase compression. The
algorithm’s creators tweaked the algorithm so it would provide visu-
ally satisfying images even after some of the detail was lost to com-
pression.

The application is basic. Let f be a 24-bit image file wait-
ing to have data hidden in some of its least significant bits. Let
JPEG

−1(JPEG(f)) be the result of first compressing f with JPEG
and then uncompressing it. The differences between f and
JPEG

−1(JPEG(f)) reveal how much noise is available to hide infor-
mation. For each pixel, you can compare f with JPEG

−1(JPEG(f))
and determine how many of the bits are equal. If only the first 4 bits
of the 8 bits encoding the blue intensity are the same, then you can



186 CHAPTER 9. LIFE IN THE NOISE

conclude that the JPEG algorithm doesn’t really care what is in the
last 4 bits. The algorithm determined that those 4 bits could be set
to any value and the resulting image would still look “good enough.”
That means that 4 bits are available to hide information. Elsewhere
in the image, all 8 bits of f might agree with JPEG

−1(JPEG(f)).
Then no information can be hidden in these bits.

This algorithm makes it possible to identify the locations of im-
portant parts of the image. You can choose the right accuracy value
for JPEG as well. If you need a good final representation, then you
should use the best settings for JPEG and this will probably identify
a smaller number of bits available to hide data. A coarser setting for
JPEG should open up more bits.

There are many other compression algorithms being developed
to hide information. The fractal compression algorithms from Barns-
ley’s Iterated Systems [BH92] are some of the more popular tech-
niques around. Each could be used in a similar fashion to identify
sections of the image that can be successfully sacrificed.

Other solutions that are tuned to different types of images can
also be used successfully. For instance, there are some algorithms de-
signed to convert 24-bit color images into 8-bit color images. These
do a good job of identifying 256 colors that represent the image. You
can identify the number of free bits at each pixel by comparing the
24-bit value with the entry from the 256-color table that was chosen
to replace it. Some of these algorithms are tuned to do a better job
on faces. Others work well on natural scenes. Each is applicable in
its own way and can do a good job with the system.

If you use JPEG or a similar lossy algorithm to identify the high-
noise areas of an image, then you must change one crucial part of
the system. When a GIF file is used to hold information, then the
recipient doesn’t need to have a copy of the original image. The
n least significant bits can be stripped away and recovered. They
can be used verbatim. If JPEG is going to point out the corners and
crevices of the image waiting for more data, then both the sender
and the recipient must have access to the same list of corners and
crevices. Probably the easiest way to accomplish this is to make sure
that both sides have copies of the original image. This is a limitation
if you’re going to communicate with someone whom you’ve never
met before. You must somehow arrange to get the image to them.

9.5.1 Hiding Information in JPEG Files

There is no doubt that the JPEG’s lossy approach to hiding infor-
mation is a problem that confounds the basic approach to stega-
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nography. The compression algorithm is lossy so it will usually de-
stroy any of the subtle changes you might make to embed a message.
Derek Upham recognized that it was possible to tweak the JPEG coef-
ficients instead of the individual pixels, an approach, he called Jsteg.
The JPEG algorithm compresses data in two steps. First, it breaks the
image into 8×8 blocks of pixels and fits cosine functions (Figure 14.9)
to these pixels to describe them. That is, it finds a weighted average
of the functions that adds up to something pretty close to the original
block of 8× 8 pixels. Then it stores the weights of these cosine func-
tions to serve as a description of this block of pixels. The amount of
compression can be increased or decreased by setting more or fewer
of the weights to be zero. Upham recognized that you could tweak
the least significant bits of the weights to store information.

His solution is coded in C and distributed as a diff file that can
be added to the standard JPEG version 4 distributed on the Net. His
code adds an additional command line feature for UNIX machines
that allows you to hide a file as you compress an image. This is a nice
approach because it builds on the standard JPEG distribution. Also,
it is important because the JPEG image format more common on the
Net. It is much more efficient than the GIF format for photographs,
although GIF is usually better for graphics when there are a limited
number of colors and run-length compression works well.

There are also a number of physiological reasons why this ap-
proach may actually generate better effects than tweaking the least
significant bits of the data. The programs like S-Tools and Stego
jump through many hoops to handle 8-bit color images. They end
up with clusters of colors in the color table that are quite similar to
each other. This can be accomplished quite well, but it may be easy
to detect by someone scanning the color tables.

Tweaking the frequencies of the discrete cosine transform that
models the 8 × 8 block of data has a different effect. Although these
tweaks can harm the quality of the final image, it is hard to distin-
guish their effects. After all, the discrete transformation is already an
approximation and it is harder to notice changes in an approxima-
tion. In essence, the bits are hidden by controlling whether the JPEG
program rounds up or rounds down. Rounding up is a 1 and round-
ing down is a 0. These numbers can be recovered by looking at the
least significant bits of the frequencies.

Upham chose one interesting approach to hiding the informa-
tion. There must be some header at the beginning of the block of
data to tell how many bits are there. Ordinarily, this would be a sin-
gle number. So the first 32 bits would be devoted to a number that
would say that there are, say, 8,523 bytes stored in the least signif-
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icant bits that follow. Upham noted that this number would often
have a great number of zeros at the front of it. Since these bits would
normally be somewhat randomly distributed, a block of zeros could
look suspicious. Sixteen zeros in a row should only occur about 1 out
of 216 times.

His solution was to have two fields in the header. The first con-
sisted of a 5-bit number that specified the number of bits in the sec-
ond field. The second field would contain the number of bits in the
entire file. This would remove any large blocks of bits at the begin-
ning of the number while leaving the flexibility for extremely large
files. He also suggests that the number of bits in the second field be
padded with an extra 0 about half of the time. This prevents the sixth
bit of the file from always being a 1. This is a very subtle attention to
detail.5

9.5.2 Outguess

The Outguess software written by Niels Provos tweaks least signifi-
cant bits like all of the other tools, but it does it carefully to avoid in-
troducing statistical signatures that might alert attackers looking for
the presence of the message.

This attention to statistical detail has its costs. The program iden-
tifies potential bits and then rules out using half of them in order to
have potential corrections. This cuts the capacity of the channel in
half but increases the security dramatically.

In the most abstract sense, the Outguess algorithm is straight for-
ward. Every time you change a bit to hide information, you search
for an equivalent bit and change it too to maintain a balanced sta-
tistical profile. If you change a 0 to a 1, then change a 1 to a 0 at the
same time. The Outguess software can be modified to work with any
data format given routines for identifying good places to hide data.
[Pro01b, Pro01a]

These balanced changes can be used in any of the steganographic
solutions. In practice, Provos implements the algorithm by changing
the JPEG compression coefficients. Just changing the least signifi-
cant bits may introduce higher order changes to the JPEG compres-
sion coefficients and these changes can be relatively easy to detect.
[JJ98a]

5John Marsh, a reader, suggests that techniques like Rice Coding and Golumb Cod-
ing are effective here because they do well encoding small integers while handling very
large ones too.
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9.5.3 F4 and F5

Jsteg was the first generation of programs designed to hide informa-
tion in the JPEG image format, but attackers soon discovered it left
a serious statistical signature. The coefficents in JPEG compression
normally fall along a bell curve and the information hiding process
distorts this. In most photographs, the most common coefficient is
0 followed by 1 and −1, followed again by 2 and −2, etc. The occur-
rence of coefficients drops off as the coefficients get larger.

Jsteg ruins this smooth curve when information is hidden. The
coefficients of 2 and 3, for instance, are interchanged by the process
of tweaking the least significant bit leaving both of them occurring
in equal proportions. [JJ98a, JJ98b, WP99, Wes01] The same happens
with coefficient pairs like 4 and 5 or −1 and −2. Finding a JPEG file
with many pairs of coefficients that occur in equal probability is a
sure sign that a message may be hidden with the Jsteg algorithm.

One solution is to change the probability of zeros and ones in the
information being hidden. The algorithms from Chapter 6 make it
possible to change the statistical probability to mimic any distribu-
tion. Let’s say that our analysis of JPEG image shows that the coeffi-
cient of 3 occurs about 60% as often as 2. A 3 corresponds to a hidden
bit of 1 and a 2 corresponds to a hidden bit of 0. If we could arrange
for the number of 1s to be hidden about 60% as often as the number
of 0s, then the coefficients would balance out.

Here’s one basic solution. Create a collection of n bit words and
uses these as characters for the algorithm in section 6.2.1. Use the
number of zeros and ones in the word to determine the weight. If a
zero is assigned weight .625 and a one is assigned .375, the values will
emerge in something approximating a distribution of 1 to .6.

For example, let n = 8. There are 256 characters in the alphabet.
Give 00000000 a weight of 8 × .625, 00000001 a weight of 7 × .625 +
.375, etc. These can be used to build a Huffman tree to change the
statistics of the incoming data. If this pre-processing is done, the
statistics of the Jsteg algorithm begin to come much closer to real
images. This isn’t perfect, but it doesn’t need to be because the values
of the coefficients vary from image to image.

Andreas Westfeld proposes another solution to the statistical gap.
His algorithm, F4, encodes the data with more care avoiding the sta-
tistical distortions. [Wes01]

Here’s the mechanism for hiding a coefficient C:

• If C = 0, skip over it and don’t hide any information in this
coefficient. This decreases the effectiveness of the algorithm,
but there’s no choice. Jsteg also does this.
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• If C > 0 and odd leave C unchanged to encode a 1 and decre-
ment it to encode a 0.

• IfC > 0 and even leave C unchanged to encode a− and decre-
ment it to encode a 1.

• ifC < 0 and odd, leaveC unchanged to hide a 0 and increment
it to hide a 1.

• ifC < 0 and even, leaveC unchanged to hide a 1 and increment
it to hide a 0.

The only problem occurs when the decrementing or the incre-
menting produce a new coefficient of zero. In those cases, the bit is
repeated because the information is effectively lost. The coding pro-
cess ignores the coefficients with zero.

Here’s a table that shows a slightly different technique for encod-
ing information.

Coefficient After encoding 0 (skip) 1
2 2 1
3 2 3
4 4 3
-1 -1 0 (skip)
-2 -1 -2
-3 -3 -2
-4 -3 -4

Here’s a table showing the bits 01010 being hidden. The five bits
require seven coefficients because some are skipped.

Hidden Bit Coefficient Before Coefficient After
0 4 4
1 2 1

0 (skip) 0 0
0 (again) -2 -1

1 1 1
0 (skip) 1 0

0 (again) 2 2
Decoding the file is simple. A coefficient of 1, for instance, is

either produced by hiding a 1 in a coefficient of 2 or by hiding a 1 in a
coefficient of 1. In either case, the hidden bit is 1. The same pattern
holds throughout the encoding process.

This solution avoids the gross statistical problems of Jsteg, but
it still changes the profile. Some bits are hidden by shrinking the
absolute values of the coefficients. This means that there are more
values clustered around 0 than before and the distribution is now



tighter. This is not as glaring because the distribution naturally varies
between images, but it is still worth combating.

Westfeld further enhanced the process to minimize the disrup-
tion to the file in the next version of the algorithm, F5. He uses a pro-
cess he calls matrix encoding to spread the information out among
more bits. This reduces the density and decreases the amount of dis-
tortion.

Imagine you want to store n = 4 bits of data. One solution is to
pick 2n = 16 different locations in the image and only change one of
the locations. A change at position 3 = 0011 would mean you wanted
to store the message 0011. The algorithm F5 chooses the best value of
n to accommodate the data being stored. The positions are chosen
with a cryptographically secure pseudo-random bit stream.

9.6 Summary

Placing information in the noise of digitized images is one of the
most popular methods of steganography. The different approaches
here guarantee that the data will be hard to find if you’re careful
about how you use the tools. The biggest problem is making sure that
you handle the differences between 24-bit and 8-bit images correctly.

The Disguise The world is filled with noise. There is no reason why
some of the great pool of randomness can’t be used to hide
data. This disguise is often impossible for the average human
to notice.

How Secure Is It? These systems are not secure if someone is look-
ing for the information. But many of the systems can produce
images that are indistinguishable form the original. If the data
is compressed and encrypted before it is hidden, it is impossi-
ble to know whether the data is there or not. This can be sub-
verted if a special header is used to identify details about the
file. Chapter 17 describes how these simple approaches can be
detected.

How to Use the Software There are many different versions of the
software available on the Net. The Cypherpunks archive is a
good location for the programs. Others circulate throughout
the Net.



Chapter 10

Anonymous Remailers

10.1 Dr. Anon to You

Host: On this week’s show, we have Anonymous, that one-
named wonder who is in the class of artists like Madonna,
Micheangelo and the Artist Formerly Known as Prince,
who are so big they can live on one name alone. He, or
perhaps she, is the author of many of the most incendiary
works in the world. We’re lucky we could get him or her on
the show today, even though he or she would only agree
to appear via a blurred video link. [beat] Mr. Anonymous
(or should I say Ms. Anonymous?), it’s great to have you
on the show.

Anon: Make it Dr. Anonymous. That will solve the gender prob-
lem. I was just granted an honorary doctorate last June.

Host: Congratulations! That must be quite an honor. Did they
choose you because of your writings? It says here on my
briefing sheet that you’ve written numerous warm and
romantic novels like the Federalist Papers. Great stuff.

Anon: Actually, the Federalist Papers weren’t a book until they
were collected. It really wasn’t a romantic set of papers,
although it did have a rather idealistic notion of what
Congress could be.

Host: Sexual congress. Now that’s a euphemism I haven’t heard
for a while. You’re from the old school, right? That’s where
you got the degree?

Anon: Well. . .
Host: This explains why you’re so hesitant to get publicity, right?

It’s too flashy.

193
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Anon: No. It’s not my style. I prefer to keep my identity secret
because some of what I write can have dangerous reper-
cussions.

Host: What a clever scheme! You’ve got us all eating out of your
hand. Every other author would fall over himself to get on
this show. We’re just happy to be talking with you.

Anon: I was a bit hesitant, but my publisher insisted on it. It was
in the contract.

Host: Do you find it hard to be a celebrity in the modern age?
Don’t you feel the pull to expand your exposure by, say,
doing an exercise book with Cher? She’s got one name
too. You guys would get along great. You could talk about
how the clerk at the Motor Vehicles department gives you
a hard time because you’ve left a slot on the form blank.

Anon: Well, that hadn’t crossed my mind.
Host: How about a spread in Architectural Digest or InStyle?

They always like to photograph the famous living gra-
ciously in large, architecturally challenging homes. Or
how about Lifestyles of the Rich and Famous? They could
show everyone where and, of course, how you live. It’s a
great way to sell your personality.

Anon: Actually, part of the reason for remaining anonymous is
so that no one shows up at your house in the middle of
the night.

Host: Oh, yeah, groupies offering themselves. I have that prob-
lem.

Anon: Actually to burn the place down and shoot me.
Host: Oh, okay. I can see you doing a book with Martha Stewart

on how to give a great masquerade party! You could do
some really clever masks and then launch it during Mardi
Gras in New Orleans. Have you thought about that?

Anon: No. Maybe after I get done promoting my latest book. It’s
on your desk there. The one exposing a deep conspiracy
that is fleecing the people. Money is diverted from tax
accounts into a network of private partnerships where it
fills the coffers of the very rich.

Host: What about a talk show? I guess I shouldn’t ask for com-
petition. But you could be a really spooky host. You could
roam the audience wearing a big black hood and cape.
Just like in that Mozart movie. Maybe they could electron-
ically deepen your voice so everyone would be afraid of
you when you condemned their shenanigans. Just like in
the Wizard of Oz.
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It would be really hot in those robes under the lights, but I could
see you getting a good share of the daytime audience. You would be
different.
Anon: My book, though, is really showing the path toward a rev-

olution. It names names. It shows how the money flows. It
shows which politicians are part of the network. It shows
which media conglomerates turn out cheerful pabulum
and “mind candy” to keep everyone somnolescent.

Host: Whoa! Big word there. Speaking of big words, don’t you
find “Anonymous” to be a bit long? Do you go by “Anon”?
Does it make you uncomfortable if I call you “Anon”? Or
should I call you “Dr. Anon”?

Anon: Either’s fine. I’m not vain.
Host: I should say not. Imagine not putting your name on a

book as thick as this one. Speaking of vain, are you into
horse racing? I wanted to ask you if you were the person
in that Carly Simon song, “You’re so vain, you probably
think this song is about you.” She never told anyone who
it was about. I thought it might be you. The whole secrecy
thing and all.

10.2 Anonymous Remailers

There are many reasons why people would want to write letters or
communiqués without attaching their names. Some people search
for counseling through anonymous suicide prevention centers. Other
people want to inquire about jobs without jeopardizing their own.
Then there are the times that try our souls and drive us to write long,
half-mad screeds that ring with the truth that the people in power
don’t want to hear. These are just a few of the reasons to send infor-
mation anonymously. Even a high government official who is help-
ing to plan the government’s approach to cracking down on cryptog-
raphy and imposing key escrow admitted to me over lunch that he or
she has used pay phones from time to time. Just for the anonymity.

Much of what we do, or did in the past, is largely anonymous.
Keeping track of who did what when is a waste of time. People only
recorded data that made sense and the rest was quickly forgotten
providing a cloud of forgiveness that covered the past.

On the Internet, anonymous remailers are one solution for letting
people communicate anonymously. These mail programs accept in-
coming mail with a new address and some text for the body of the
letter. They strip off the incoming header that contains the real iden-
tity of the sender and remail the content to the new address. The re-



196 CHAPTER 10. ANONYMOUS REMAILERS

cipient knows it came from an anonymous remailer, but they doesn’t
know who sent it there.

In some cases, the remailer creates a new pseudonym for the
outgoing mail. This might be a random string like “an41234”. Then
it keeps a secret internal log file that matches the real name of the
incoming mail with this random name. If the recipient wants to
reply to this person, they can send mail back to “an41234” in care of
the anonymous remailer who then repackages the letter and sends it
on. This allows people to hold a conversation over the wires without
knowing each other’s identity.

There are many legitimate needs for services like this one. Most
of the newspapers that offer personal ads also offer anonymous mail-
boxes and voicemail boxes so that people can screen their responses.
People may be willing to advertise for a new lover or friend if the
anonymous holding box at the newspaper gives them a measure of
protection. Some people often go through several exchanges of let-
ters before they feel trusting enough to meet the other person. Or
they may call anonymously from a pay phone. There are enough
nasty stories from the dating world to make this anonymous screen-
ing a sad, but very necessary, feature of modern life.1

Of course, there are also many controversial ways that anony-
mous remailers can be used. Someone posted copyrighted doc-
uments from the Church of Scientology to the Internet using an
anonymous remailer based in Finland [Gro95]. This raised the ire of
the church, which was able to get the local police to raid the site and
force the owner to reveal the sender’s name. Obviously, remailers can
be used to send libelous or fake documents, documents under court
seal, or other secret information. Tracking down the culprit depends
on how well the owner of the remailer can keep a secret.

There are a wide variety of anonymous remailers on the Internet
and the collection is growing and shrinking constantly. One current
source of a good list can be found at http://www.chez.com/frogadmin/.
These also include pointers to the software and instructions on how
to start up your own remailer.

10.2.1 Enhancements

There are a number of ways that the anonymous remailers can be
enhanced with features. Some of the most important ones are:

1Strangely enough, in the past people would rely on knowing other people exten-
sively as a defense against this type of betrayal. People in small towns knew everyone
and their reputations. This type of knowledge isn’t practical in the big city, so complete
anonymity is the best defense.
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Encryption The remailer has its own public-key pair and accepts the
requests in encrypted form. It decrypts them before sending
them out. This is an important defense against someone who
might be tapping the remailer’s incoming and outgoing lines of
a remailer.

Latency The remailer will wait to send out the mail in order to con-
found anyone who is watching the traffic coming in and out.
This delay may either be specified by the incoming message or
assigned randomly.

Padding Someone watching the traffic in and out of a remailer might
be able to trace encrypted messages by comparing the size.
Even if the incoming and outgoing messages are encrypted
with different keys, they’re still the same size. Padding mes-
sages with random data can remove this problem.

Reordering The remailer may get the messages in one order, but it
doesn’t process them in the same first-in-first-out order. This
adds an additional measure of secrecy.

Chaining Remailers If one anonymous remailer might cave in and
reveal your identity, it is possible to chain together several re-
mailers in order to add additional secrecy. This chain, unlike
the physical basis for the metaphor, is as strong as its strongest
link. Only one machine on the list has to keep a secret to stop
the trail.

Anonymous Posters This machine will post the contents to a news-
group anonymously instead of sending them out via e-mail.

Each of these features can be found in different remailers. Con-
sult the lists of remailers available on the net to determine which fea-
tures might be available to you.

10.2.2 Using Remailers

There are several different types of anonymous remailers on the net-
work and there are subtle differences between them. Each class was
written by different people and they approached the details in their
own way. The entire concept isn’t too challenging, though, so every-
one should be able to figure out how to send information through an
anonymous remailer after reading the remailer’s instructions.

One of the more popular remailers in history was run by Johan
Helsingius in Helsinki, Finland, at anon@anon.penet.fi until legal
troubles exhausted his patience. Composing e-mail and sending it
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through the remailer was simple. You created the letter as you would
any other, but you addressed it to anon@anon.penet.fi. At the top of
the letter, you added two fields, X-Anon-Password: and X-Anon-To:.
The first held a password that you used to control your anonymous
identity. The second gave the address to which the message would
go. Here’s a short sample:

Mime-Version: 1.0

Content-Type: text/plain; charset="us-ascii"

Date: Tue, 5 Dec 1995 09:07:07 -0500

To: anon@anon.penet.fi

From: pcw@flyzone.com (Peter Wayner)

Subject: Echo Homo

X-Anon-Password: swordfish

X-Anon-To: pcw@access.digex.net

Le nom de plume de la rose est <<Pink Flamingo.>>

When the message arrives in Finland, the remailer strips off
the header and assigns an anonymous ID to my address
pcw@flyzone.com. The real name and the anonymous name are
placed in a table and bound with a password. You don’t need to use
a password, but this adds security. Anyone with a small amount of
technical expertise can fake mail so that it arrives looking like it came
from someone else. The password prevented anyone from captur-
ing your secret identity. If they did’t know your password, then they
could’t assume your identity.

The password was also necessary for dissolving your identity. If
you wanted to remove your name and anonymous identity from the
system, then you needed to know the password. This remailer placed
a waiting period on cancellation because it did’t want people to come
in, send something anonymously, and then escape the flames. If you
send something, then you should feel the heat, was the philosophy–
a philosophy that eventually wore out the welcome.

If you wanted to post anonymously to a newsgroup, you could put
the newsgroup’s name in the X-Anon-To: field like this:

Mime-Version: 1.0

Content-Type: text/plain; charset="us-ascii"

Date: Tue, 5 Dec 1995 09:07:07 -0500

To: anon@anon.penet.fi

From: pcw@flyzone.com (Peter Wayner)

Subject: Stupidity

X-Anon-Password: swordfish

X-Anon-To: alt.flames
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Figure 10.1: A screenshot of the Windows program Private Idaho. You
can use it to send encrypted or anonymous mail.

In <412A9231243@whitehouse.gov>, Harry Hstar writes:

> Why you’re so dumb, I can’t believe that someone

> taught you how to type.

You’re so stupid, that you probably don’t understand

why this is such a great insult to you.

This would get posted under your anonymous identity. If some-
one wanted to respond, they could write back through the remailer.
It would protect your identity to some degree.

10.2.3 Using Private Idaho

One of the nicer e-mail packages for the Windows market is Private
Idaho, first written by Joel McNamara The original program is still
available as freeware, but some of the more advanced development
is now bundled as a US$30 product. (www.itech.net.au/pi/)

Private Idaho is just a shell for composing the email message and
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encrypting it with the necessary steps. The final product can be
handed off directly to an SMTP server or to another email package
like Eudora. The original product was just a shell for handling many
of the chores involved in choosing a path, handling the keys, and en-
crypting the message. The latest is more of a full-fledged tool.

You can get copies of the original software directly from www.es-
kimo.com/~joelm/pi.htmland versions of the latest from www.itech-
.net.au/pi/.

10.2.4 Web Remailers

A number of web sites offer remailers for reposting information.
Adding one level of anonymity is easy for web designers to in-
clude and many do. Some of the most popular are now pay ser-
vices. The Anonymizer (http://www.anonymizer.com/) offers tools
for both sending anonymous email and browsing the web anony-
mously. They deliberately keep few log files that might be used to
break the veil of secrecy. After the September 11,2001 attacks on the
World Trade Center and the Pentagon, the company made news by
offering to help anonymous tipsters turn in the terrorists. The site
argued that if the terrorists were ruthless enough to kill 5,000, they
would not hesitate to track down and kill anyone who turned them
in.

Many people use the free email services like Hotmail, Popmail,
Excite, or Netscape as pseudononymous drop boxes. These services
may work well for basic situations, but they often keep voluminous
log files that can reveal the identity of user. Some, like Microsoft’s
Hotmail, are pushing new services such as the Passport in an effort
to assign fixed identities to people.

10.3 Remailer Guts

Designing the inside of a remailer is fairly easy. Most UNIX mail sys-
tems will take incoming mail and pass it along to a program that will
do the necessary decoding. Repackaging it is just a matter of rear-
ranging the headers and re-encrypting the information. This process
can be accomplished with some simple scripts or blocks of C code.
Moving this to any platform is also easy.

Designing better, smarter remailer systems is more of a challenge.
Here are some of the standard attacks that people might use to try to
follow messages through a web of remailers:
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In and Out Tracking The attacker watches as messages go in and
out of the remailer and matches them up by either order or size.
The defense against this is to keep n messages in an internal
queue and dispense them in random order. The messages are
either kept all the same size or randomly padded at each itera-
tion.

Remailer Flooding Imagine that one remailer receives a letter and
the attacker wants to know where it is going. The remailer
keeps n letters in its queue and dispenses them randomly. The
attacker can send n messages to the remailer just before the
message in question arrives. The attacker knows the destina-
tion of her own n messages, so she can pick out the one mes-
sage different from the flow. If the messages are sent out ran-
domly, then the attacker must send another n messages to en-
sure that subsequent messages won’t confuse her.

One defense against this approach is remailer broadcasting.
Instead of sending each subsequent message to a particular
remailer using one-to-one mail delivery, the remailer would
broadcast it to a group of other remailers. Only one remailer
would have the right key to decrypt the next address. The oth-
ers would simply discard it.

Replay Attack An attacker grabs a copy of the message as it goes
by. Then it resends it later. Eventually the letter will make its
way through the chain of remailers until it arrives at the same
destination as before. If the attacker keeps track of all of the
mail going to all of the destinations and replays the message
several times, then only one consistent recipient will emerge.
This is the destination.

The best solution is to require that each message contain an in-
dividual ID number that is randomly generated by the sender.
The remailer stores this ID in a large file. If it encounters an-
other message with the same ID, then it discards the message.
The size of this ID should be large enough to ensure that two
IDs will almost certainly not match if they’re chosen at random.

Forged Mail Attack It is relatively easy to fake mail sent to an SMTP.
Someone could pretend to be you when they sent the anony-
mous message containing something illegal. If the police were
willing to pressure the remailer operator into revealing names,
then you could be fingered for something you didn’t do.

The passwords used by many remailers are a good defense
against this problem. The anonymous remailer won’t send
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along mail that is supposed to be from a certain site unless
the correct password is included. A more sophisticated system
would require that the mail be signed with the correct digital
signature.

Each of these solutions came from a paper by David Chaum
[Cha81] that describes a process called a mix. The details of this pa-
per were used as the architecture for the most sophisticated type of
remailer currently operating on the Net. Lance Cottrell wrote Mix-
master, a UNIX-based program that will send anonymous mail pack-
ages using the more robust structure described in the paper.

The main difference is in the structure of the address informa-The State may, and
does, punish fraud

directly. But it cannot
seek to punish fraud

indirectly by
indiscriminately

outlawing a category of
speech, based on its

content, with no
necessary relationship

to the danger sought to
be prevented.

—From the majority
opinion by Justice
Stevens in Joseph
McIntyre v. Ohio

Election Committee

tion. The first class of remailers packaged their data up in nesting
envelopes. Each remailer along the chain would open up an enve-
lope and do the right thing with the contents. Mixmaster maintains
a separate set of addressing blocks. Each travels through the entire
chain of remailers. It is more like a distribution list that offices of-
ten use to route magazines through a list of different recipients. Each
recipient crosses off its name after it receives it.

There are two advantages to arranging the contents of the mes-
sages in this form. The first is that there is no natural reason for
the size of the messages to shrink. If the outer envelopes are merely
stripped off, then the size of the letter will shrink. This can be com-
pensated by adding padding, but getting the padding to be the right
size may be complicated because of the different block sizes of ci-
phers like DES. The second advantage is reduced encryption time.
The block of the encryption does not have to be encrypted or de-
crypted for each stage of the remailer chain. Only the address blocks
need to be manipulated.

Imagine that a message will take five hops. Then the header for a
Mixmaster will contain a table that looks something like this if all of
the encryption was removed:

Remailer’s Entry Next Destination Packet ID Key

Bob Ray 92394129 12030124

Ray Lorraine 15125152 61261621

Lorraine Carol 77782893 93432212

Carol Gilda 12343324 41242219

Gilda Final Location 91999201 93929441

The encryption was removed to show how the process works.
This header specifies that the mail should go from the remailer run
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by Bob, to Ray to Lorraine to Carol to Gilda before heading to its final
destination. The Packet ID is used by each remailer to defend against
replay attacks.

There are two types of encryption used in Mixmaster. First, each
entry in the header is encrypted with the public key of the remailer.
So the Next Destination, the Packet ID, and the Key for Ray are en-
crypted with Ray’s public key. Only the rightful recipient of each re-
mailer will be able to decode its entry.

The second encryption uses the keys stored in the table. The best
way to understand it is to visualize what each remailer does. Here are
the steps:

1. Decodes its packet using its secret key. This reveals the next
destination, the ID, and the Key. I was the shadow of the

waxwing slain by the
false azure of the
window pane.
—John Shade in Pale
Fire

2. Uses its Key to decrypt every entry underneath it. Mixmaster
uses triple DES to encode the messages.

3. Moves itself to the bottom of the list and replaces the remailer
name, the destination information, and the ID with a random
block of data. This obscures the trail.

If this is going to be repeated successfully by each remailer in the
list, then the initial table is going to have to be encrypted correctly.
Each entry in the header will need to be encrypted by the key of each
of the headers above it. For instance, the entry for Carol should look
something like this:

E12030124(E61261621(E93432212(PKCarol(. . .))).

Bob’s remailer will strip off the first level of encryption indicated by
the function E12030124, Ray’s will strip off the second and Lorraine’s
will strip off the third. The final block left is encrypted by Carol’s
public key.

When the header finally arrives at the last destination, each block
will have been re-encrypted in reverse order. This forms something
like the signature chain of a certified letter. Each step must be com-
pleted in order and each step can only be completed by someone
holding the matching secret key. The final recipient can keep this
header and check to see that it was processed correctly.

The last key in the chain, in this case the one in the entry for Gilda,
is the one that was used to encrypt the message. There is no reason
for the remailer to decrypt the message at each step.

Mixmaster currently appends a block of 20 header entries to the
top of each entry. Each block takes 512 bytes. If the letter is only going
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through five remailers, for instance, then the others are filled with
random noise. Each entry in the table contains a bit that identifies it
as a “final” hop. If that bit is set, then the key is used to decrypt the
main block.

The main block of each message is also kept the same size. If a
current message is too short, then padding is added until it is 20k
long. If it is too long, then it is broken into 20k blocks. This size
is flexible, but it should be set to a constant for all messages. This
prevents anyone from identifying the messages from their size or the
change of size.

Mixmaster software and much more information can currently be
found at obscura.com.

10.3.1 Other Remailer Packages

One of the nicest, feature-rich programs for UNIX-based machines is
Mailcrypt, written in emacs-lisp for use with the popular GNU Emacs
program distributed by the GNU project. The software, created by
Patrick LoPresti, will handle all of the basic encryption jobs for mail
including encrypting outgoing mail, decrypting incoming mail, and
evaluating signatures. The software interacts with the major UNIX
mail reading programs like MH-E, VM, and Rmail.

The software also includes a good implementation that will cre-
ate chains of remailers. When you choose this option, it will auto-
matically create a nested packet of encrypted envelopes that will be
understood by the remailers on the list maintained by Raph Levien.

You can create lists of possible remailer chains for future use.
These can either be hard coded lists or they can be flexible. You can
specify, for instance, that Mailcrypt should choose a different ran-
dom ordering of four remailers everytime it sends something along
the chain. You could also request that Mailcrypt use the four most
reliable remailers according to the list maintained by Raph Levien.
This gives you plenty of flexibility in guiding the information. To get
Mailcrypt, go to http://cag-www.lcs.mit.edu/mailcrypt/.

Mailcrypt also makes it easy to use pseudonyms very easily. You
can create a PGP key pair for a secret identity and then publicize it.
Then if you want to assume a name like Silence Dogood, you could
send off your messages through a chain of remailers. The final read-
ers would be able to verify that the message came from the one and
only original Silence Dogood because they would be able to retrieve
the right public key and check the signature. Some people might try
and imitate him or her, but they would not own the corresponding
secret key so they couldn’t issue anything under this pseudonym.
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Another program developed just for chaining together the nec-
essary information for remailers is Premail written by Raph Levien.
The software is designed as a replacement for Sendmail, the UNIX
software that handles much of the low-level SMTP. Premail can take
all of the same parameters that modify its behavior including an ad-
ditional set of commands that will invoke chains of remailers. So you
can drop it in place of Sendmail any place you choose.

Premail has several major options. If you just include the line
key: user id in the header with the recipient’s user id, then Pre-
mail will look up the key in the PGP files and encrypt the file using
this public key on the way out the door. If you include the header line
Chain: Bob; Ray; Lorraine, then Premail will arrange it so that
the mail will head out through Bob, Ray, and Lorraine’s anonymous
remailers before it goes to the final destination. You can also specify
an anonymous return address if you like by adding the Anon-From:
field to the header. Premail is very flexible because it will randomly
select a chain of remailers from the list of currently operating re-
mailers. Just specify the number of hops in a header field like this:
Chain:3. Premail will find the best remailers from Raph Levien’s list
of remailers.

10.3.2 Splitting Paths

The current collection of remailers is fairly simple. A message is sent
out one path. At each step along the line, the remailers strip off the
incoming sender’s name and add a new anonymous name. Return
mail can follow this path back because the anonymous remailer will
replace the anonymous name with the name of the original sender.

This approach still leaves a path—albeit one that is as strong as its
strongest link. But someone can certainly find a way to discover the
original sender if they’re able to compromise every remailer along
the chain. All you need to know is the last name in the chain, which
is the first one in the return chain.

A better solution is to use two paths. The outgoing mail can be
delivered along one path that doesn’t keep track of the mail moving
along its path. The return mail comes back along a path specified
by the original sender. For instance, the original message might go
through the remailer anon@norecords.com which keeps no records
of who sends information through it. The recipient could send re-
turn mail by using the return address in the encrypted letter. This
might be my-alias@freds.remailer.com. Only someone who could
decode the message could know to attack my-alias@freds.remail-
er.com to follow the chain back to the sender.
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The approach defends against someone who has access to
the header which often gives the anonymous return address.
Now, this information can be encoded in the body. The plan is still
vulnerable because someone who knows the return address
my-alias@freds.remailer.commight be able to coerce Fred into re-
vealing your name.

A different solution is to split up the return address into a secret.
When you opened an account at freds.remailer.com, you could
give your return address as R1. This wouldn’t be a working return
address, it would just be one half of a secret that would reveal your re-
turn address. The other half, R2, would be sent along to your friends
in the encrypted body of the letter. If they wanted to respond, they
would include R2 in the header of their return letter. Then, freds-
.remailer.com could combine R1 and R2 to reveal the true return
address.

The sender’s half of the return address can arrive at the anony-
mous drop box at any time. The sender might have it waiting there
so the letter can be rerouted as soon as possible or the sender might
send it along three days later to recover the mail that happened to be
waiting there.

This split secret can be created in a number of different ways. The
simplest technique is to use the XOR addition described in Chapter 4.
This is fast to implement, and perfectly secure. The only practical
difficulty will be converting this into suitable ASCII text. email ad-
dresses are usually letters and some punctuation. Instead of creating
a full 8-bit mask to be XORed with the address, it is probably easier
to think of offsets in the list of characters. You could come up with
a list of the 60-something characters used in all email addresses and
call this string, C. Splitting an email address would consist of doing
the following steps on a character-by-character basis:

1. Choose a new character from C. Store this in R1. Let x be its
position in C.

2. To encode a character from the email address, find the charac-
ter’s position in C and move x characters down x. If you get to
the end, start again.

3. Store this character in R2.

The reverse process is easy to figure out. This will produce a
character-only split of the email address into two halves, R1 and R2.
R1 is deposited at an anonymous remailer and attached to some
pseudonym. R2 is sent to anyone whom you want to respond to you.
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They must include R2 in their letter so the remailer can assemble the
return address for you.

An even more sophisticated approach can use the digital signa-
ture of the recipient. The initiator of the conversation could deposit
three things at the return remailer: the pseudonym, one half of the
return address,R1, and the public key of the person who might be re-
sponding. When that person responds, they must send fe(R2). This
is the other half of the secret encoded with the private key. The re-
mailer has the corresponding public key so it can recover R2 and
send the message on its way.

The systems can be made increasingly baroque. A remailer might
want to protect itself against people banging down its door asking
for the person who writes under a pseudonym. This can be ac-
complished by encrypting the remailer’s files with the public keys
of the recipient. This is better explained by example. Imagine that
Bob wants to start up an anonymous communication channel with
Ray through freds.remailer.com. Normally, freds.remailer.com
would store Bob’s return address, call it B, and match it with Bob’s
pseudonym, maskT-AvEnGrr. Naturally, someone could discover B
by checking these files.

freds.remailer.com can protect itself by creating a session key,
ki, and encrypting it with Ray’s public key, fray(ki). This value is sent
along to Ray with the message. Then it uses ki to encrypt B using
some algorithm like triple DES before discarding ki. Now, only Ray
holds the private key that can recover ki and thus B. freds.remail-
er.com is off the hook. It couldn’t reveal B even if it wanted to.

This solution, unfortunately, can only handle one particular on-
going communication. It would be possible to create different ses-
sion keys for each person to whom Bob sends mail. This increases
the possibility that B could be discovered by the remailer who keeps
a copy ofB the next time that mail for maskT-AvEnGrrcomes through
with a session key attached.

10.4 Anonymous Networks

Anonymous remailers move single packets. Some will fetch web-
pages anonymously. It should come as no surprise that ambitious
programmers extended these ideas to provide seamless tools for
routing all packets to the Internet. They have essentially created
TCP/IP proxies that encrypt all data leaving the computer and then
bounce it through a network of servers that eventually kick it out into
the Internet at large.
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Each of these systems offer a great deal of anonymity against
many attackers. The packets from all of the users form a cloud that
effectively obscures the begining and the end of each path. None of
the solutions, however, are perfect against omniscient and omnipo-
tent attackers who can monitor all of the nodes in the network while
probing it with their own packets. Each of the systems has some defi-
nite strengths but a few weaknesses that may be exploited in extreme
cases.

10.4.1 Freedom Network

Zero Knowledge Systems designed and built the Freedom Network, a
collection of servers joined by a sophisticated protocol for encrypting
packets. The network lasted until 2001 when the company shut it
down for financial reasons. The network remains one of the most
ambitious tools for providing privacy on the Internet.

The Freedom Network
drew heavily on the

inspiration of the Onion
Routing Network

developed at the Naval
Research Labs by Paul

Syverson, Michael Reed
and David Goldschlag.

[SRG00, STRL00, SGR97,
RSG98] See Section 10.7.

The network consisted of a collection of Anonymous Internet
Proxies that would decrypt and encrypt messages while forwarding
the data on to other proxies. If a computer wants to establish a path
to the Internet, it takes these steps:

1. At the center of the network is the NISS or the Network Infor-
mation Status Server, a central computer that maintains a list
of operating AIPs and their public keys.

2. The computer takes a list of these machines and chooses a
random path through a collection of machines. This may use
information about distance and load to optimize the process.
Shorter chains offer better service while longer chains offer
more resistance to detection. Chains running through differ-
ent countries may offer some extra legal protection.

3. The computer uses Diffie-Hellman key exchange to negotiate a
key with each AIP in the chain.

4. The data going out the chain is encrypted with each key in turn.
If fk is the encryption function using key k, then fk1

(fk2
(. . . fkn

(data)))
is sent down the chain. ki is the key for the i − th AIP in the
chain.

5. Each AIP receives its packet of data and uses the negotiated
session key to strip away the top layer before passing it on.

6. The last AIP in the chain sends the packet off to the right desti-
nation.
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7. The return data follows the same chain in reverse. Each AIP
uses the session key to encrypt the data.

8. The computer strips away the n layers.

Zero Knowledge refers to this process as telescope encryption. The
actual process is more involved and sophisticated. Providing ade-
quate performance while doing so much encryption is not an easy
trick.

10.4.2 PipeNet

PipeNet is another anonymous network created by Wei Dai. It also
rests on a network of computers that route encrypted packets. The
principle difference lies in the synchronized mechanism for coordi-
nating the flow of the packets. At each clock step, all of the computers
in the network receive a packet, perform the necessary encryption,
and then pass it on. If a packet does not arrive, one is not sent.

This solution prevents an omniscient attacker from watching the
flow of all of the packets in the hope to figuring out who is commu-
nicating with whom. In the Freedom network, a heavy user may in-
advertantly give away their path by shipping a large amount of data
along it. The omniscient attacker may not be able to break the en-
cryption, but jus counting the size of the packets could reveal the
destination. Ideally, a large user base would provide enough cover.

The PipeNet’s strict process for sending information ensures that
each link between machines only carries the same amount of infor-
mation at each step. The data moves along the chain in a strictly
choreographed process like soldiers marching across the square.

This process, however, has its own weaknesses. If one packet is
destroyed or one node in the network locks up, the entire chain shuts
down. If data doesn’t arrive, it can’t go out. [BMS01]

10.4.3 Crowds

The Crowds tool developed by Michael Reiter and Aviel D. Rubin
offers a good mechanism for webbrowsing that provides some of the
same anonymity as the Freedom Network or PipeNet, but without as
much security. It’s simplicity, however, makes it easy to implement
and run. [RR98]

The protocol is very simple. Each computer in the network ac-
cepts a URL request for a document on the web and it makes a ran-
dom choice to either satisfy the request or pass it along to another
randomly selected user. If you want to see a document, your request
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may pass through a number of different people before finally being
fetched from the right server and passed back through the chain.

This process offers a high degree of anonymity, but not one that
can begin to fool an omniscient attacker watching all sites. The sim-
plicty offers a strong amount of confusion. Your machine may re-
ceive a request from Alice, but there’s no way to know if Alice is ac-
tually interested in the information itself. Her machine may just be
passing along the request from someone else who might be passing
it along from someone else etc. Each individual in the chain can
only know that someone out there is interested in the information,
but they can’t be certain who that person is.

10.4.4 Freenet

One of the most ambitious and successful anonymous publication
systems is Freenet, a peer-to-peer network originally designed by Ian
Clarke. The project itself is highly evolved and open source distri-
butions of the code are available from freenet.sourceforge.net.
[CSWH00, Cla99]

The system distributes information across a random collection of
servers donating their spare diskspace to people seeking to publish
documents. The network has no central server that might be com-
promised so all searches for information fan out across the network.
Each machine remembers a certain amount about previous searches
so it can answer requests for popular documents.

Each document is known within the network by three different
keys which are really 160-bit numbers created by applying the SHA
hash function. If you want to retrieve a document, you ask for it with
one of the three key numbers. The search process is somewhat ran-
dom and unorganized, but also resistant to damage to the network.
Here are the steps:

1. You start a search by specifying the key value and a “time to
live” number which limits the depth of the nodes you want to
search.

2. You choose one node in the network to begin the search.

3. This node checks to see if the key matches any files stored lo-
cally. If there’s a match, the node returns the file.

4. If there’s no local match, the node checks a cache of recent
searches. If the key is found there, the node retrieves the docu-
ment. In some cases, this document is already stored locally. In
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others, the node must return to the original source to retrieve
it.

5. If there’s no match, the server asks another in a chain and the
process repeats. At each step, the “time to live” counter is re-
duced by one. When it reaches zero, the search fails.

The caching of this depth-first search speeds up the retrieval of
the most popular documents.

The keys assigned to each document are generated in three dif-
ferent ways. The author begins by assigning a title to the document,
T . This string of characters is converted into a keyword-signed key.
This value is hashed by computing SHA(T ) and then used to both
encrypt and sign the document. Using SHA(T ) to encrypt the doc-
ument ensures that only someone who knows T can read a file. The
individual servers can hold any number of files each encrypted by
the hash of their titles, but only the person who knows the title can
read them. This provides a certain amount of deniability to the server
owner who never really understands the material on their hard disk.

The hash of the title is also used as the seed to a pseudo-randomly
driven public/private key generation routine. While most public keys
are chosen with true random sources, this algorithm uses the hash of
T to ensure that everyone can generate the same key pair if they know
T . This public key is then used to sign the document providing some
assurance that the title and the document match.

This mechanism is far from perfect. Anyone can think up the
same title and an attacker may deliberately choose the same title
for a replacement document. Freenet fights this by creating a signed
subspace key connected to the author posting the document. The
creation of this key is a bit more involved:

1. First the author publishes a public key bound to their identity.

2. The public key and the title are hashed independently.

3. The results are XOR’ed together and hashed again: SHA(SHA(T )⊕
SHA(public key)).

4. The private key associated with the public key is used to sign
the file.

5. The file is published with both the signed subspace key and the
signature.

Retrieving the file now requires knowing both T and the public
key of the author. Only the author, however, knows the private key so
only the author can generate the right signature.
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A third key, the content-hash key, is created by hashing the entire
document. The author can decide which keys to include with the
document when publishing it.

Obviously maintaining some central index of keys, documents
and the servers holding them would make life easier for everyone
including those who seek to censor the system. Freenet avoids this
process, but does take one step to make the searching process eas-
ier. When new documents are inserted into the network, the author
places them on servers which hold similar keys. The storing proce-
dure searches the network looking at similar keys and then places the
document there.

10.4.5 OceanStore

One of the more ambitious projects for persistent, robust, distributed
storage is OceanStore developed by a large group of faculty and stu-
dents at the University of California at Berkeley. Many of the basic
ideas and the flavor of the project are clearly inspired by the Freenet
project, but embellished with more sophisticated tools for upgrading
and duplicating documents. [KBC+00]

The most significant addition is a mechanism for ensuring that
documents aren’t destroyed when they are updated. Blocks of new
data can be inserted into documents and these changes propagate
through the network until all copies are current. The mechanism
also contains a more sophisticated routing structure to speed the
identification and location of documents. All of these details are
beyond the current scope of the book.

10.5 Long term storage

Anonymous remailers normally do their work in a few split seconds,
deliver their message to the right person, and then move on. What if
we want a send a message that lasts? What if we want to post a mes-
sage where it will be available for a long time? You could always buy
a server, pay for a connection and keep paying the bills but that may
not work. Controversial material can be shut down with many differ-
ent types of legal challenges and most server farms aren’t willing to
spend too much time or energy against determined opponents.

This technique is becoming increasingly controversial because
the algorithms are used to store and exchange copyrighted music
and video files.
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10.5.1 Eternity Server

One solution is to split up the document into many pieces and store
these piece on many computers, a suggestion that Ross Anderson ex-
plored in his design for an Eternity server.[And96a] The design out-
lines several of the tricks that might allow a network of nmachines to
store m files and allow the file’s owner to both pay the cost of storage
and recover the files when necessary.

In the system, each file, Fi, is given a name, Ni, and stored on a
set of servers, {Sj , Sk, . . .}with these steps:

1. A general key, key, is chosen.

2. The key for encrypting the data for server Sj is computed from
h(key + name(Sj)) where name(Sj) is some function that gen-
erates a name for a server like the DNS system.

3. A unique name for each file is computed with h(Ni, name(Sj)).
The data is stored under this unique name on Sj .

4. A random amount of padding is added toFi in a way that can be
easily removed. It might consist of appending the true length
of the file to the beginning of the file and then adding extra
random information to the end.

5. The file is encrypted for Sj with this key and sent to the server.

This stores a separate copy on the set of servers. Each copy is
encrypted with a different key and each copy has a different length.

Another option is to split each file up into smaller, standard sizes,
a technique that eliminates the need for padding while introducing
more complexity. It is also possible to add the secret sharing tech-
nique from Chapter 4 to add the requirement that any k parts of the
file must be recovered before the file can be found. This would elim-
inate some of the need for encryption.

Anderson imagines paying the server owners, a process that can
involve increasingly complex amounts of anonymous payment. He
imagines that each server might submit a bill every so often to some
central payment office. This could be audited to prevent an errant
server from claiming to be storing a file without actually doing so.
One technique would be for the central office to send the server a
challenge nonce, c, and ask the server to compute a keyed hash,
h(c, Fi) to prove that they know the data in Fi. This audit would
require the central auditing office have a copy of Fi and the key used
to scramble it, key. If the auditing passes, the payment office would
send the right money to the server.



214 CHAPTER 10. ANONYMOUS REMAILERS

Searching for the file could be accomplished by broadcasting Ni

to all of the servers, asking them to compute h(Ni + name(Sj)), and
see if they have the file. This might help someone recover a file after
some time or allow a central payment mechanism to figure out who
to pay for storage.

10.5.2 Entanglement

One technique for preventing the destruction of some documents is
to tie their existence to other documents so that one can’t be deleted
without others being destroyed in the process. Some say that the
future of the documents becomes entangled.James Aspnes, Joan

Feigenbaum, Aleksandr
Yampolskiy, and Sheng
Zhong consider some of

the theoretical aspects of
All or Nothing

Entanglement in
[AFYZ04].

Here’s a simple algorithm for mixing the fate that is based on
some of the simplest secret sharing algorithms from Chapter 4.
Given a file, F , break it into n partsF1+F2+. . .+Fn so thatF can only
be reconstructed by someone who holds all n pieces. (Let + stand for
exclusive-or.) Ordinarily, n − 1 pieces would be built with a random
number source. In this case, let’s choose parts of other documents
for these pieces.

That is, let P1, P2, P3, . . . be a sequence of parts to documents that
acts as the storage for the entangled documents. To storeF , use these
steps:

1. Choose a set of n− 1 parts from the set ofm parts of files previ-
ously locked away in storage, P1, P2, P3, . . . Pm. Use some ran-
dom number generator driven by the file name. This might
mean using h(key+name(F )) as a seed where key is an optional
key and name(F ) is some name given to the file. Call these
Pr1, Pr2, Pr3 . . .where r1, r2, . . . represents the choices made by
the random number generator driven by h(key + name(F )).

2. Compute Pm+1 = F + Pr1 + Pr2 + . . .+ Prn−1.

3. Create a table entry that links Pm+1 with name(F ).

This solution makes it impossible to delete a file without en-
dangering some of the files that were stored after it. There are still
some weaknesses from this approach.The table linking Pm+1 with
name(F ) lets someone know exactly which block to delete to de-
stroy the file. It won’t be possible to tell which other files are endan-
gered unless there’s no key used to compute the sequence of random
blocks chosen for each file, r1, r2, . . ..

One possible solution is to use a hash table2 with holes for k

2In this case, the word hash is used as a data structure designer might use it, not a
cryptographer.
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blocks P1 . . . Pk . In the beginning, all of the blocks are initialized to
be empty. Then a random collection of blocks are filled with random
numbers so that there will be random data to be used for the n − 1
blocks used to store a file.

A keyed random number sequence, r1, r2, . . ., is still used to select
the parts, but it is modified to take into account the fact that many of
the blocks may hold no data. In this case, the n− 1 parts used in the
secret sharing algorithm will be the first n− 1 full parts identified by
the random number sequence. That is, Pr1 and Pr2 might be unfilled
yet, but Pr3 and Pr4 have random data available either from another
file or from the initial seeding of random information. So we use
those two parts. The final part, F + Pr1 + Pr2 + . . . + Prn−1, is not
stored at Pm+1, but at the first empty part identified by the random
number stream, in this case, Pr1.

This technique eliminates the need for any table linking Pm+1

with the name for the file, but it adds other complexity. It is possible
to identify the empty and full blocks when the file is being stored
but this will change as more blocks are added to the mixture. One
solution is to add some additional information to the final part that
includes the name of the file, perhaps encrypted with a key, and
the locations of the n − 1 part needed to assemble the final part.
The file could then be recovered by computing the random number
stream, r1, r2, . . ., and testing each part identified by the stream until
the final part is found. The name attached to the final part will make
it possible to identify it and the locations of the n−1 parts stored with
that name will make it possible to recover the entire file.

An approach like this is still vulnerable to some simple denial-
of-service attacks like storing a large number of garbage files. This
will make it much more likely that deleting one file will not damage
anything of value.

10.6 Publius

Another popular tool for storing documents securely is the Publius
system designed by Marc Waldman, Aviel D. Rubin and Lorrie Faith
Cranor.

The system uses secret sharing algorithms to split up a document
between n different servers so that any m pieces are sufficient to re-
cover it. The tool uses a protocol for recovering the document that
rests on top of HTTP making it possible for it to work fairly innocu-
ously with standard webservers. The solution is notable because it
offers the publisher and only the publisher an opportunity to delete
and update the documents after they’re distributed.
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A server, Si, holds a document, F under a name, Ni,j by storing
the following:Publius is named after

the pseudonym chosen
by Alexander Hamilton,

James Madison, and
John Jay. [Pub88] They

chose the pseudonym
from the name of
Publius Valerius

Publicola, a prominent
Roman consul known

for helping establishing
a republic.

1. A share of a symmetric cipher key, key, call it keyi. This is con-
structed by using a secret sharing algorithm to split the key into
n parts so that any m are sufficient to recover it.

2. The result of encrypting F with some strong symmetric cipher,
ENC(F, key). (The published paper stores the same encrypted
version on all servers, but it might make sense to add another
layer of encryption so that the encrypted version is different on
all servers.)

3. A name by which the part will be known. In this case, namei =
h(F, ki). The original paper shortens the result of h by splitting
the result of the hash function in half and XORing the two parts
together.

4. A password that will give the creator the ability to delete and
update the block of data stored here. In this case, the password
itself is not stored, but the hash of the password concatenated
with the server’s name: h(Si, password).

Storing the file involves encrypting it at least once with a random
key and splitting the key up between the servers. Recovering it in-
volves retrieving at least m shares of the key and the copies of the
encrypted file before decrypting them.

In the original version, the n servers are chosen from the names
themselves: namei mod servers where servers is a static number of
servers in the system. If by some coincidence, the various values of
namei only choose a small subsection of the set of servers, a different
key is chosen until the parts will be distributed successfully.

This process makes it possible to create short URLs produced by
concatenating the values of namei into one manageable block of text.
Here’s one of the original URLs from the paper:

http://!anon!/AH2LyMOBWJrDw=GTEaS2GlNNE=NIBsZlvUQ-
P4=sVfdKF7o/kl=EfUTWGQU7LX=OCk7tkhWTUe=GzWiJyio75b=-
QUiNhQWyUW2=fZAX/MJnq67=y4enf3cLK/0=

The values of namei are BASE64 encoded and separated by equals
signs. Any user recovering a document would choose a subset of
m names and compute nameimymod servers to identify where the
parts might be stored before requesting them.
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The password allows the creator to change the stored data by
proving knowledge of the password, perhaps by sending

h(nonce, h(Si, password))

where nonce is a random string concatenated with the current time.
When the server validates the result by duplicating the calculation,
the server can either delete the file entirely or just add an update.

The original paper suggests using a new URL to store any updated
content, effectively replacing an old file with a completely new ver-
sion with a new name and new URL. Any request for an old URL
would receive a copy of the new URL. The client would compare the
new URLs delivered by the m servers and, if the new URLs match,
request the new URL. Another technique is to add a list of changes
to the original file, a newtermdiff that adds the changes. This could
also be encrypted by key and stored along side. The client package
would be responsible for integrating these changes after recovering
the original file and the diff.

The original Publius system also embedded a flag in the URL
which would effectively say, “This URL can’t be updated.” If this flag
appeared in the URL, the client would refuse to follow any redirec-
tions offered by the servers. This could prevent any redirection by a
man in the middle. Publishing the diffs alongside would not be af-
fected to some system wide redirection.

10.7 Onion Routing

One of the most successful anonymous routing tools is the Onion
Routing protocol built by by Paul Syverson, David Goldschlag, Michael
Reed, Roger Dingledine and Nick Mathewson. The protocol has been
revised and extended since its introduction in 1996 and it is imple-
mented by a rich collection of tools including a version of the Firefox
browser.

The system can protect a user from an eavesdropper tracking
their browsing by sending the requests through a series of randomly
chosen proxy servers. Each link in the path is encrypted with a dif-
ferent layer of encryption a process that gives the protocol its name.
Each proxy server along the chain will strip off its layer of encryption
until the last proxy server will spit out an unencrypted packet of data
to the eventual source. All of the proxy servers along the path can
confound an eavesdropper by making it impossible to know which
data is coming and which is going. Anyone watching a user may see
only encrypted data leaving the machine and encrypted data return-
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Alice alpha beta Bob

Figure 10.2: A simple circuit established between Alice’s and Bob’s
computers might pass through two proxies, alpha and beta. This
circuit will be hidden by the confusion of the network described in
Figure 10.3.

ing effectively making it impossible to track where the packets go and
who sends back a response.

The security of the system depends heavily on the confusion pro-
vided by the network of proxy machines– a network that is said to
include at least 1000 servers at some times. If an eavesdropper can’t
watch all of the machines, then the eavesdropper may not be able
to track where requests go. Encrypted requests enter the cloud on
the edges and emerge somewhere else as cleartext data going to the
real destination. Matching the clients with the cleartext requests that
eventually emerge is not an easy task. [DS03, Ser07]

A powerful eavesdropper, though, can often figure out informa-
tion from watching carefully. An omniscient eavesdropper can of-
ten match clients with the cleartext packets that leave the cloud of
proxy servers by timing them. If an encrypted packet enters from Al-
ice’s machine at 10:30, 10:32, and 10:35 and some cleartext packets of
the same general size leave a distant proxy at 10:31, 10:33, and 10:36,
then there is a good chance that those were Alice’s packets. The qual-
ity of this analysis depends heavily on the performance of the net-
work and the number of other users. A fast network that doesn’t in-
troduce very large delays will also make the matching process more
precise.

The system is also vulnerable to other accidental leaks of data. If
a proxy server shuts down for some reason then it will break all of the
paths that use it. All of the clients that used it will need to renegotiate
new paths, effectively identifying some of the past traffic. This won’t
link up people immediately, but it can be revealing if it is repeated
several times.

There is also one inherent limitations to the protocol that is often
forgotten: onion routing only protects information to the last proxy
in the chain. After that, the last proxy will communicate in the clear
with the final destination for the data packet. Some suggest that the
people who volunteer to operate the last proxies in the chain, the
edge servers, may be doing so to peek at all of the data flowing past.
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Alice alpha beta Bob

Figure 10.3: The circuit between Alice and Bob from Figure 10.2
will be hidden by the traffic between all of the other circuits flow-
ing through the network of proxies. In this case, Salpha is the entry
node and Sbeta is the exit node. There will probably be other servers
in between in an actual example, but they are elided here.
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This won’t tell them who initiated the data packet, but it will give
them a view of the data itself and this can be quite useful. This prob-
lem can be reduced by using SSL to negotiate a separate encrypted
channel between the sender and the final destination for the data.

10.7.1 Establishing a Circuit

The Onion Routing protocol builds its circuits up step by step by ne-
gotiating with each step along the circuit. Here are the steps involved
in building the chain illustrated in Figures 10.2 and 10.3:

1. Alice decides she wants to send some packets of data to Bob
using the Onion Routing network.

2. She chooses server Salpha at random from a list of servers that
accept incoming circuits. This is often called the entry node.

3. Alice and Salpha negotiate a key. The latest version of the
Onion Routing software uses ElGamal key exchange with es-
tablished Diffie-Hellman keys because it has proven to be faster
than the RSA algorithms used in the original version. Call this
keyalice,alpha. [ØS07a]

4. Alice now has a secure path between her computer and Salpha.
She can extend this by choosing another server at random from
the network, Sbeta.

5. Alice does not communicate with Sbeta directly; she uses Salpha

as her proxy. Sbeta doesn’t even know that Alice exists because
all of Sbeta’s communications are with Salpha. Alice negotiates
a key by sending her half of the key establishment protocols
through her encrypted tunnel with Salpha who sends them on
to Sbeta on her behalf. Let’s call the result of this negotiation:
keyalice, beta.

6. After Alice completes the key negotiation process with Sbeta,
she checks the signature on keyalice,beta provided by Sbeta. This
preventsSalpha from cheating and pretending to open up a new
circuit for Sbeta or just setting up a fake man-in-the-middle at-
tack.

7. If the circuit was longer, Alice would repeat this negotiation
phase with a number of servers in the circuit.

8. Alice now has a circuit constructed with Sbeta, her proxy for the
general Internet also called the exit node. If she sends out a
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packet, it will be Sbeta that delivers it to the final destination
and it will be Sbeta that will accept any communication for her
as her proxy.

This description leaves out a number of details of how the nego-
tiation is accomplished but they can be found in the original papers.
[ØS07a, DMS04, SRG00, STRL00, SGR97, RSG98]

After building these keys, Alice now has a way to communicate
with Bob. A round trip might look like this:

1. Alice encrypts the packet of data, M , with keyalice,beta produc-
ing Ekeyalice,beta

(M).

2. Alice encrypts this encrypted packet again with keyalice,alpha

producing: Ekeyalice,alpha
(Ekeyalice,beta

(M))

3. Alice sends this to Salpha.

4. Salpha strips away the outer layer to get Ekeyalice,beta
(M) and

sends this to Sbeta.

5. Sbeta strips away the inner layer and uncoversM . This packet of
data could be any low-level TCP packet like an HTTP web page
request.

6. Sbeta sends off M and gets back any response, call it R.

7. Sbeta encrypts the response with the key shared with Alice pro-
ducing: Ekeyalice,beta

(R) and pass this on to Salpha.

8. Sbeta encrypts the response with the key shared with Alice pro-
ducing: Ekeyalice,alpha

(Ekeyalice,beta
(R)) and pass this on to Alice.

9. Alice strips away both of the layers of encryption to get R.

This process is often called telescoping, a reference to the old col-
lapsible spyglasses built from nesting tubes.

10.7.2 More Indirection: Hidden Services

The basic Onion Routing system hides the identity of one end of a
conversation, call it the client, from the other by passing the bits
through a cloud of proxies. There’s no reason why the system can’t
also hide the destination, the so-called server, from the client if the
proxy servers in the middle of the cloud can be trusted to keep some
secrets about the destination of the information. This is a reasonable
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assumption if the number of proxies is large and the eavesdropping
capabilities of any adversary are small.

The latest versions of the system can also offer hidden servers
through the cooperation of special proxy nodes acting as rendezvous
points, directory servers, introduction points, and valet servers. All
of these live on top of the normal network of entry nodes and exit
nodes, often with the same machine offering multiple services. The
directory server contains a list of hidden servers out on the network
and the introduction points that will act as their proxies and hide
their existence. When a connection is established, the rendezvous
points will act as a midway point, hiding the identies of the client
and the now hidden server from each other.

Here is the rather complicated first structure for hiding hidden
servers behind multiple layers of introduction as illustrated by Figure
10.4 [ØS07b].:

1. When a hidden server wants to join the onion network, it looks
around for an introduction point. When it finds a trustable
server that will do the job, it sets up a secure link and waits.

2. The hidden server tells the directory server about the introduc-
tion point. This directory server can assign a special name
much like the DNS system used for normal domains. In prac-
tice, the domains with the suffix .onion are used to indicate
these addresses.

3. When Alice wants to find the hidden server, she sends the
.onion address to the directory server which sends her to the
introduction point.

4. Alice shops around for a rendezvous point to act as the mid
point for the communications. (This is marked as “meet” in
Figure 10.4 to save space.) Note that the rendezvous point will
not ordinarily know who Alice may be because the communi-
cation is hidden by the chain of proxies in the circuit that Al-
ice established with the rendezvous point. So Alice will need to
identify her connection with some sort of pseudonym. Note,
this could be a weak point if Alice is able to control the ren-
dezvous point too.

5. Alice begins a key negotiation with the hidden server and for-
wards this information with the location of the rendezvous
point to the introduction point.
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Figure 10.4: The circuit between a client (Alice) and a hidden server
(perhaps Bob) will work through an introductory server (marked “in-
tro”), a directory server and a rendezvous server (marked “meet”).
The dashed lines aren’t directly part of the protocol; they just indi-
cate that the normal onion routing encryption is the basis for the in-
teraction. [ØS07b]
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6. The introduction point passes this information on to the hid-
den server who then decides whether to complete the key ex-
change and meet at the rendezvous point.

7. Assuming the hidden server likes Alice’s request, it will set up
its own tunnel to the rendezvous point and tell the rendezvous
point that it wants to communicate with Alice. Well, it won’t
know Alice by name. It will only know Alice’s pseudonym.

8. The rendezvous point will notify Alice that the hidden server
wants to talk too.

9. Alice completes the key negotation with the hidden service and
she now has a secure link to the hidden server without knowing
who the hidden server happens to be.

This entire exchange is a bit like the kind of negotiation that
teenagers use in courting when asking their friends to find out if so-
and-so likes me. If the entire onion network is trustworthy, the link is
trustworthy too. The rendezvous point doesn’t know the identity of
either the client (Alice) or the server because the layers of proxies in
between hide this information. Also, the introductory server and the
directory server won’t know the hidden server because the layers of
proxies hid the sender during the initiation. The directory server just
knows that there’s some hidden server out there with a name and an
identity.

Still, this has limitations. Imagine someone decides to operate
a hidden server good-stuff.onion. Once the name becomes known
and passed around among people, there’s no easy way for the original
owner of good-stuff.onion to prevent someone else from setting up
shop and broadcasting the name to directory servers. How will the
directory server know which is the rightful owner of the name? If the
battles over domain services are brutal when privacy isn’t involved,
they’re close to impossible when it’s not possible to identify people.

One solution is to tie the identity to some public key not a domain
name like good-stuff.onion. Only the person who created the orig-
inal key pair should be able to lay claim to this public key later. The
only problem is that this key is not as easy to remember as the simple
domain name good-stuff.onion.

This problem can be reduced but not eliminated if the directory
servers have a long memory and maintain long, stable connections
with the onion routing network. They can link the domain name
with the public key when the entry is created and as long as they
honor this link, the network will be able to find one and only one
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hidden server that is the original owner of good-stuff.onion. Only
the owner of a matching key can re-establish the link.

The usual problems of timing attacks are also possible in this
world. If a user can control how a rendezvous point re-broadcasts
information to a hidden server, a sophisticated client might be able
to identify a hidden server by noting when the data leaves the ren-
dezvous point and when it arrives. If the data packets leave and ar-
rive in a pattern that stands out from the noise, it would be possible
to find a hidden server in much the same way that an eavesdropper
can identify both sides of a communication.

If hidden servers don’t introduce enough layers of indirection and
proxied communication, then you might also look to valet nodes.
These replace the directory servers with a cloud of flexible, irregular
servers that know the right introduction points. After a hidden server
negotiates a connection with an introduction point, the introduction
point turns around and finds some valet nodes on its own. The hid-
den server doesn’t contact a directory server and it doesn’t broadcast
its own information. This reduces the weakness posed by a directory
server.

How does the client find a valet node? The information for con-
necting with the valet node and the various public keys for negoti-
ating a tunnel with the introduction point are bundled together and
circulated, perhaps out of the network.

10.7.3 Stopping Bad Users

Bad users of the onion routing network can ruin the reputation of
other users. The Wikipedia, for instance, often blocks TOR exit nodes
complete because some people have used the network to hide their
identities while defacing the wiki’s entries. Is it possible to build
up anonymous reputations for users that follow them from visit to
visit, effectively banning the bad user? There are no simple solutions
because there’s little way to establish that a new user to the system
isn’t someone who acted poorly in the past. But it is possible to put
some hurdles in the way by giving returning users some additional
powers if they present some form of anonymous credentials.

One straight-forward solution is to use some form of certificates
signed with a blind signature, a technique that borrows from some
of the early solutions for building anonymous digital cash. [SSG97,
DMS03] When you register, you get an anonymous coin to be spent
redeeming services in the future. If you behave well, you can get a
new coin when you turn in the old one. Section 12.5.1 uses blind

signatures for zero
knowledge proofs.

For the sake of simplicity, let the coin be some random number,
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m, chosen by the newly arriving user who wants to be anonymous in
the future. When registering for the service, the user doesn’t present
m per se, just m after being modified by some blinding factor, a value
that is chosen differently depending on the digital signature algo-
rithm that will be used to certify the coin. In the case of an RSA signa-
ture, this would be another random value b encrypted by the public
key. The signature will reverse this encryption allowing the blinding
factor to be stripped out later:

1. Alice wants to register for anonymous access to the server– a
process through which the server might ask for a real identity.
This happens outside the TOR cloud.

2. Alice downloads the server’s public key. In the case of RSA, this
would be a modulus n and an exponent e.

3. Alice chooses a random blinding factor b and a random serial
number for the coin, m, computes bem mod n and sends this to
the server while registering.

4. The server responds by signing this value. In the case of RSA,
that means computing (bem mod n)d mod n = bdemd mod n =
bmd mod nwhere d is the corresponding private exponent. The
server returns this to Alice.

5. Alice strips out the blinding factor. In the case of RSA, this
means multiplying by b−1 mod n. This produces md mod n, a
valid digital signature on m that was produced without reveal-
ing m to the server.

Alice is free to use this anonymous token at any time by submit-
ting both m and md mod n at any time. (The server might impose
time limits by changing the values of the public and private keys,
d, e, and n, from time to time.) If Alice behaves well, she can get
another anonymous token by working through the same algorithm
again with a new serial number, m′. The server would keep track of
the spent serial numbers to prevent reuse.

There are limitations to this approach too. The server must make
a decision about Alice’s behavior before giving her a new coin for
another visit. If Alice’s misbehavior comes to light after this coin is
generated, well, there’s nothing that can be done. The chain of abuse
will continue.

A more robust algorithm called Nymble proposes a way of con-
structing the coins so they can be linked together. It adds, in essence,
a trap door to the blinding mechanism that is minded by a separate
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reputation server. If bad behavior comes to light, the service can ap-
proach the reputation server and ask it to spring open the trap door.
This will allow the server to ban the bad person when they return.
[JKTS07] The field of digital cash

is a rich world of
mathematical
techniques for settling
debts anonymously. All
of the algorithms are
much more
sophisticated and secure
than the simple one
presented here. See
[CFN93, Way95b,
Way97a] and many
others.

The actual algorithm is too complicated to describe in this space,
but it is based on a technique known as hash chains, a sequence of
values produced by repeatedly hashing a number. That is,m0 is cho-
sen at random and thenmi = h(mi−1. This technique might be com-
bined with the anonymous coin by presenting mi with the anony-
mous coin on the first visit. The server does not need to renew the
service at each visit by providing another anonymous coin because
it can use the hash chain to keep track of the good users.

On the next trip, Alice presentsmi−1 to the server which verifies it
by looking at to see that h(mi−1) = mi. If it does, the server discards
mi and replaces it withmi−1 on the list of hash chains corresponding
to good anonymous users. If problems emerge later, the server just
shuts down a particular chain. Bad behavior is banned again.

10.8 Anonymous Auction Protocols

In anonymous and semi-anonymous networks, it is often difficult to
conduct traditional business when the traditional solution requires
some form of identification. Auctions, for instance, usually demand
that all of the interested parties appear before each other so everyone
can watch the action. Real estate auctions are held on the steps of
the court house for just this reason. When people want to remain
anonymous during an auction, they usually need to send some proxy
or rely on the auction house to keep their identity a secret.

Ross Anderson and Frank Stajano showed how the Diffie-Hellman
key exchange algorithm could be extended to offer anonymous bid-
ding over a network. [SA00] Their auction takes place continuously
and requires the various bidders to chime in with their bids at the
right time, much like a traditional auction held in a hall. The iden-
tities, though, are hidden from each other and even from the seller
too. When a winner is finally chosen, the seller and the buyer can
quickly establish an encrypted communication channel to negotiate
when and how to trade the goods for cash. If the goods are digital,
the buyer and seller don’t even need to reveal their identities to each
other.

In the original paper, the ith round of the auction begins at time
it where t is the amount of time between rounds. For the sake of
simplicity, let the price be f(i). Since this is a Diffie-Hellman-based
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protocol, the group must also choose some prime p and a generator
g for the field.

If buyer j wants to pay f(i), they choose a random number, xi,j ,
and announce gxi,j mod p at time it. The seller chooses one of the
submitted values, perhaps at random or perhaps by choosing the
first to arrive if it can be determined fairly. This becomes the winning
bid at time i.

The seller announces the chosen value and broadcasts it. If the
seller wants to be clever, the seller can also choose a random value,
yi, construct a key from gyi mod p and gxi,jyi mod p, and encrypt a
message. Each of the bidders can try to read the message but only
the bidder who wins round i will succeed.

This continues until there’s only one winning bidder left standing.
The bidder who wins round i will usually drop out of round i + 1 to
avoid being duped into continuing bidding because there’s no easy
way to for an anonymous bidder to see when there are no other bid-
ders. When no bids arrive for a round, the seller and the buyer can
establish a key and begin any negotiations to exchange the goods. If
physical items and real cash are part of the transaction, this will usu-
ally involve stripping away the anonymity from each other. But the
losing bidders don’t find out any information.

Anderson and Stajano point out, often humorously, that there are
many ways for bidders to ensure that the auction is honest. While
the bidders are kept anonymous, they can claim ownership of a bid
by revealing a value of xi,j .

It is possible to extend the protocol to remove the requirement to
hold the bidding in rounds by allowing each bidder to include their
maximum bid. The bidder can also sign this with their private key,
xi,j and gxi,j mod p. If this can be reliably distributed to all bidders,
perhaps through a system like the Dining Cryptographers’ network
(see Chapter 11), then the seller can choose a winning bid through a
dutch auction.

10.9 The Future

In the short-term future, every machine on the Internet will be a first-
class citizen that will be able to send and receive mail. The best so-
lution for active remailers is to create tools that will turn each SMTP
port into an anonymous remailer. To some extent, they already do
this. They take the incoming mail messages and pass them along
to their final destination. It would be neat, for instance, to create
a plug-in MIME module for Eudora or another email program that
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would recognize the MIME type “X-Anon-To:” and resend the mail
immediately.

To a large extent, these tools are not the most important step. The
tools are only useful if the remailer owner is willing to resist calls to
reveal the hidden identity.

There is also a great need for anonymous dating services on the
Net. Although many of the remailers are clothed in the cyberpunk
regalia, there is no doubt that there are many legitimate needs for
remailers. An upscale, mainstream remailer could do plenty of busi-
ness and help people in need of pseudonymous communication.

10.10 Summary

The Disguise The path between sender and recipient is hidden from
the recipient by having an intermediate machine remove the
return address. More sophisticated systems can try to obscure
the connection to anyone who is watching the mail messages
entering and leaving the remailing computer.

How Secure Is It? Basic anonymous remailers are only as secure as
the strongest link along the chain of remailers. If the person
who runs the remailer chooses to log the message traffic, then
that person can break the anonymity. This may be compelled
by the law enforcement community through warrants or sub-
poenas.

The more sophisticated remailers that try to obscure traffic
analysis can be quite secure. Anyone watching the network of
remailers can only make high-level statements about the flow
of information in and out of the network. Still, it may be quite
possible to track the flow. The systems do not offer the un-
conditional security of the dining cryptographers networks de-
scribed in Chapter 11.

Digital Mixes must also be constructed correctly. You cannot
use RSA to sign the message itself. You must sign a hash of the
message. [PP90] shows how to exploit the weakness.

How to Use the Software The Cypherpunks archive offers all of the
software necessary to use chaining remailers or Mixmaster. The
WWW pages are the easiest options available to most people.



Further Reading

• There are a number of different products available now
from companies offering various levels of anonymous and
pseudonymous accounts. Some include MuteMail (mute-
mail.com), HushMail (hushmail.com), Guardster (guard-
ster.com), Safe Mail, (safe-mail.net), and Anonymizer
(anonymizer.com). These operations are often secure, but
they have been known to turn over subscriber informa-
tion and, in some cases, decryption keys in response to
subpoenas. [And07] HushMail, for instance, says that it
will not release information without a subpoena from the
Supreme Court of British Columbia, Canada, a significant
legal hurdle but one that can be met.

• George Danezis, Roger Dingledine and Nick Mathewson
have an anonymous remailer, Mixminion, that uses Mix-
like routing to obscure the content and path of the mes-
sages. The latest version is available from mixminion.net.
[DDM03]

• MorphMix is a tool developed by Marc Rennhard and
Bernhard Plattner that asks each user’s node to actively
contribute to the mix, a choice that helps force the net-
work infrastructure to scale while also requiring a mecha-
nism for ranking the reputation of the users.[RP04, TB06]

• Salsa, a tool from Arjun Nambiar and Matthew Wright,
selects the nodes in a path in a random way in order to
prevent an attacker from infiltrating the circuits. This
forces the attacker to control a significant proportion of
the nodes in order to have a good chance of intercepting a
message. [NW06]



Chapter 11

Secret Broadcasts

11.1 Table Talk

Chris: I heard that Bobby got fired?
Leslie: Fired?
Pat: I heard he was let go because of a drop in sales.
Chris: Yes, the sales he’s supposed to be making.
Leslie: But everyone’s sales are down.
Pat: He said he was having a good quarter.
Chris: Good? His sales are down even more.
Leslie: Down more than what?
Pat: Maybe they’re just down relative to last year, which was a

good year for everyone.
Chris: I think they’re down relative to everyone else’.
Leslie: Maybe it was something else. I heard he was drinking too

much.
Pat: I heard because he couldn’t take his boss’s stupidity.
Chris: Actually, his boss is brilliant. Bobby’s the problem.
Leslie: This doesn’t add up.
Pat: Well, it does add up. Maybe the truth is somewhere in

between everything we’ve said. You just need to add it
together.

11.2 Secret Senders

How can you broadcast a message so everyone can read it but no
one can know where it is coming from? Radio broadcasts can easily
be located with simple directional antenna. Anonymous remailers

231
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(see Chapter 10) can cut off the path back to its source, but they can
often be compromised or traced. Practically any message on the Net
can be traced because packets always flow from one place to another.
This is generally completely impractical, but it is still possible.

None of these methods offers unconditional security, but there
is one class of algorithms created by David Chaum that will make
it impossible for anyone to detect the source of a message. He ti-
tled the system the “dining cryptographers” which is a reference to
a famous problem in computer system design known as the “dining
philosophers.” In the Dining Philosophers problem, n philosophers
sit around the table with n chopsticks set up so there is one chopstick
between each pair. To eat, a philosopher must grab both chopsticks.
If there is no agreement and no schedule, then no one will eat at all.

Chaum phrased the problem as a question of principle. Three
cryptographers are eating dinner and is from the National Security
Agency. The waiter arrives and tells them that one person at the ta-
ble has already arranged for the check to be paid, but he wouldn’t
say who left the cash. The cryptographers struggle with the problem
because neither of the two nongovernment employees want to ac-
cept even an anonymous gratuity from the NSA. But, because they
respect the need for anonymity, they arrange to solve the problem
with a coin-tossing algorithm. When it is done, no one will know
who paid the check, but they’ll know if the payer is from the NSA.

This framing story is a bit strained, but it serves the purpose. In
the abstract, one member will send a 1-bit message to the rest of
the table. Everyone will be able to get the same message, but no
one will be able to identify which person at the table sent it. There
are many other situations that seem to lend themselves to the same
problem. For instance, a father might return home to find the rear
window smashed. He suspects that it was one of the three kids, but
it could have been a burglar. He realizes that none will admit to
doing it. Before calling the police and reporting a robbery, he uses
the same dining cryptographer protocol so one of the kids can admit
to breaking the window without volunteering for punishment.1

If a 1-bit message can be sent this way, then there is no reason
why long messages cannot come through the same channel. One
problem is that no one knows when someone else is about to speak,
since no one knows who is talking. The best solution is to never in-
terrupt someone else. When a free slot of time appears, participants
should wait a random amount of time before beginning. When theyRandom protocols for

sharing a
communication

channel are used by the
Ethernet developed at

Xerox PARC.

start broadcasting something, they should watch for corrupted mes-

1This may be progressive parenting, but I do not recommend that you try this at
home. Don’t let your children learn to lie this well.
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sages caused by someone beginning at the same time. If that occurs,
they should wait a random amount of time before beginning again.

The system can also be easily extended to create a way for two
people to communicate without anyone being able to trace the mes-
sage. If no one can pinpoint the originator of a message with the
Dining Cryptographers protocol, then no one can know who is ac-
tually receiving the message. If the sender encrypts the communi-
cation with a key that is shared between two members at the table,
then only the intended recipient will be able to decode it. The rest at
the table will see noise. No one will be able to watch the routing of
information to and fro.

The system for the dining cryptographers is easy to understand.
In Chaum’s initial example, there are three cryptographers. Each
one flips a coin and lets the person on his right see the coin. Now,
each cryptographer can see two coins, determine whether they’re
the same or different, and announce this to the rest of the table. If
one of the three is trying to send a message—in this case that the
NSA paid for dinner—then they swap their answer between same
and different. A 1-bit message of “yes” or “on” or “the NSA paid” is
being transmitted if the number of “different” responses is odd. If
the count is even, then there is no message being sent.

There are only three coins, but they are all being matched with
their neighbors so it sounds complex. It may be best to work through
the problem with an example. Here’s a table of several different out-
comes of the coin flips. Each column shows the result of one diner’s
coin flip and how it matches that of the person on their right. An “H”
stands for heads and a “T” stands for tails. Diner #1 is to the right of
Diner #2, so Diner #1 compares the coins from columns #1 and #2
and reports whether they match or not in that subcolumn. Diner #2
is to the right of Diner #3 and Diner #3 is to the right of Diner #1.

Diner #1 Diner #2 Diner #3
Coin Match Coin Match Coin Match Message

H Y H Y H Y none
T N H Y H N none
T Y H Y H N yes
T N H N H N yes
T N H N T Y none
T Y H N T Y yes

In the first case, there are three matches and zero differences.
Zero is even so no message is sent. But “no message” could be con-
sidered the equivalent of 0 or “off”. In the second case, there are two
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differences, which is even so no message is sent. In the third case, a
message is sent. That is, a “1” or an “on” goes through. The same is
true for the fourth and sixth cases.

The examples don’t need to be limited to three people. Any num-
ber is possible and the system will still work out the same. Each coin
flipped is added into the final count twice, once for the owner and
once for the neighbor. So the total number of differences will only be
odd if one person is changing the answer.

What happens if two people begin to send at once? The protocol
fails because the two changes will cancel each other out. The total
number of differences will end up even again. If three people try to
send at once, then there will be success because there will be an odd
number of changes. A user can easily detect if the protocol is failing.
You try to broadcast a bit, but the final answer computed by everyone
is the absence of a bit. If each person trying to broadcast stops and
waits a random number of turns before beginning again, then the
odds are that they won’t collide again.

Is this system unconditionally secure? Imagine you’re one of the
people at the table. Everyone is flipping coins and it is clear that there
is some message emerging. If you’re not sending it, then can you
determine who is? Let’s say that your coin comes up heads. Here’s a
table with some possible outcomes:

You Diner #2 Diner #3
Coin Match Coin Match Coin Match

H Y H N ? Y
H Y H N H Y
H Y H N T Y

H Y H Y ? N
H Y H Y T N
H Y H Y H N

H N T Y ? Y
H N T Y H Y
H N T Y T Y

H N T N ? N
H N T N T N
H N T N H N

There are four possible scenarios reported here. In each case,We were never that
concerned about

Slothrop qua Slothrop.
—Thomas Pynchon in

Gravity’s Rainbow

your coin shows heads. You get to look at the coin of Diner #2 to your
right. There are an odd number of differences appearing in each case
so someone is sending a message. Can you tell who it is?

The first entry for each scenario in the table has a question mark
for the flip of the third diner’s coin. You don’t know what that coin is.
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In the first scenario, if that hidden coin is heads then Diner #2 is lying
and sending a message. If that hidden coin is tails, then Diner #3 is
lying and sending the message. The message sender for each line is
shown in italics.

As long as you don’t know the third coin, you can’t determine
which of the other two table members is sending the message. If this
coin flip is perfectly fair, then you’ll never know. The same holds true
for anyone outside the system who is eavesdropping. If they don’t see
the coins themselves, then they can’t determine who is sending the
message.

There are ways for several members of a dining cryptographers
network to destroy the communications. If several people conspire,
they can compare notes about adjacent coins and identify senders.
If the members of the table announce their information in turn, the
members at the end of the list can easily change the message by
changing their answer. The last guy to speak, for instance, can always
determine what the answer will be. This is why it is a good idea to
force people to reveal their answers at the same time.

The Dining Cryptographers system offers everyone the chance
to broadcast messages to a group without revealing anyone’s iden-
tity. It’s like sophisticated anonymous remailers that can’t be com-
promised by simply tracing the path of the messages. Unfortunately,
there is no easy way to use system available on the Internet. Perhaps
this will become more common if the need emerges.

11.3 Creating a DC Net

The Dining Cryptographers (DC) solution is easy to describe because
many of the difficulties of implementing the solution on a computer
network are left out of the picture. At a table, everyone can reveal
their choices simultaneously. It is easy for participants to flip coins
and reveal their choices to their neighbors using menus to shield the
results. Both of these solutions are not trivial to resolve for a practical
implementation.

The first problem is flipping a coin over a computer network. Ob-
viously, one person can flip a coin and lie about it. The simplest so-
lution is to use a one-way hash function like MD5 or Sneferu.

Manuel Blum described
how to flip coins over a
network in [Blu82]. This
is a good way to build
up a one-time pad or a
key.

The phone book is a good, practical one-way function but it is not
too secure. It is easy to convert a name into a telephone number, but
it is hard to use the average phone book to convert that number back
into a name. The function is not secure because there are other ways
around the problem. You could, for instance, simply dial the number
and ask the identity of the person who answers. Or you could gain
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access to a reverse phone directory or phone CD-ROM that offered
the chance to look up a listing by the number, not the name.

The solution to using a one-way function to flip a coin over a
distance is simple:

1. You choose x, a random number and send me h(x) where h is a
one-way hash function that is easy to compute but practically
impossible to invert.

2. I can’t figure out x from theh(x) that you sent me. So I just guess
whether x is odd or even. This guess is sent back to you.

3. If I guess correctly about whether x is odd or even, then the coin
flip will be tails. If I’m wrong, then it is heads. You determine
whether it is heads or tails and send x back to me.

4. I compute h(x) to check that you’re not lying. You can only
cheat if it is easy for you to find two numbers, x , which is odd,
and y, which is even, so that h(x) = h(y). No one knows how to
do this for good one-way hash functions.The protocol can be

made stronger if I
provide the first n bits of
x. A precomputed set of

x and y can’t be used.

This is the algorithm that the two neighbors can use to flip their
coins without sitting next to each other at the dinner table. If you
find yourself arguing with a friend over which movie to attend, you
can use this algorithm with a phone book for the one-way function.
Then the flip will be fair.

The second tool must allow for everyone to reveal at the same
time whether their coin flips agree or disagree. Chaum’s paper sug-
gests allowing people to broadcast their answers simultaneously but
on different frequencies. This requires more sophisticated electron-
ics than computer networks currently have. A better solution is to re-
quire people to commit to their answers through a bit commitment
protocol.

The solution is pretty simple. First, the entire group agrees on a
stock phrase or a collection of bits. This should be determined as
late as possible to prevent someone from trying to use computation
in advance to game the system. Call this random set of bits B. To
announce their answers, the n participants at the table:

1. Choose n random keys, {k1, . . . , kn}, in secret.

2. Individually take their answers, put B in front of the answer,
and encrypt the string with their secret key. This is fki

(Bai),
where f is the encryption function, ki is the key, and ai is the
answer to be broadcast.
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3. Broadcast their encrypted messages to everyone in the group.
It doesn’t matter what order this happens.

4. When everyone has received the messages of everyone else,
everyone begins sending their keys, ki, out to the group.

5. Everyone decrypts all of the packets, checks to make sure thatB
is at the beginning of each packet, and finally sums the answers
to reveal the message.

These bit commitment protocols make it nearly impossible for
someone to cheat. If there were no B stuck at the beginning of the
answers that were encrypted, a sophisticated user might be able to
find two different keys that reveal different answers. If he wanted to
tell the group that he was reporting a match, then he might show one
key. If he wanted to reveal the other, then he could send out another
key. This might be possible if the encrypted packet was only one
bit long. But it would be near impossible if each encrypted packet
began with the same bitstring, B. Finding such a pair of keys would
be highly unlikely, which is why the bitstring B should be chosen as
late as practical.

The combination of these two functions makes it easy to imple-
ment a DC network using asynchronous communications. There is
no need for people to announce their answers in synchrony. Nor is
there any reason for people to be adjacent to each other when they
flip the coin.

11.3.1 Cheating DC Nets

There are a wide variety of ways for people to subvert the DC net-
works, but there are adequate defenses to many of the approaches. If
people conspire to work together and reveal their information about
bits to others around the table, then there is nothing that can be
done to stop tracing. In these situations, anonymous remailers can
be more secure because they’re as secure as their strongest link.

Another major problem might be jamming. Someone on the net-
work could just broadcast extra messages from time to time and thus
disrupt the message of someone who is legitimately broadcasting. If,
for instance, a message is emerging from the network, a malicious
member of the group could start broadcasting at the same time and
destroy the rest of the transmission. Unfortunately, the nature of DC
networks means that the identity of this person is hidden.

If social problems become important, then it is possible to re-
veal who is disrupting the network by getting everyone on the net-
work to reveal their coin flips. When this is done, it is possible to
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determine who is broadcasting. Presumably, there would be rules
against broadcasting when another person is using the DC network
so it would be possible to unwind the chain far enough to reveal who
that person might be.

This can be facilitated if everyone sends out a digital signature
of the block of coin flips. Each person in the network has access to
two keys— theirs and their neighbor’s. The best solution is to have
someone sign the coin flips of their neighbor. When the process is
unwound, this prevents them from lying about their coin flips to pro-
tect themselves. Forcing everyone to sign their neighbor’s coin flips
prevents people from lying about their own coin flips and changing
the signature.

This tracing can be useful if only one person uses the DC network
for a purpose that offends a majority of the participants—perhaps to
send an illegal threat. If one person is trying to jam the communi-
cations of another, however, then it reveals both senders. The only
way to determine which one is legitimate is to produce some rules
for when members can start broadcasting. The first one would be
the legitimate sender. The one who began broadcasting afterward
would be the jammer.

11.4 Summary

Dining Cryptographers networks offer a good opportunity to provide
unconditional security against traffic analysis. No one can detect
the broadcaster if the nodes of the network keep their coin flips pri-
vate. Nor can anyone determine the recipient if the messages are
encrypted.

The major limitation to DC nets is the high cost of information
traffic. Every member of the network must flip coins with their neigh-
bor and then broadcast this information to the group. This can be
done in blocks, but it is still a significant cost. n people mean that
network bandwidth increases by a factor of 2n.

The Disguise DC nets offer an ideal way to obscure the source of a
transmission. If this transmission is encrypted, then only the
intended recipient should be able to read it.

How Secure Is It? The system is secure if all of the information about
the coin flips is kept secret. Otherwise, the group can track
down the sender by revealing all of this information.

Further Reading



• Philippe Golle and Ari Juels updated the algorithm making
it easier to identify the cheating players without requir-
ing extra rounds. The data for checking the calculations
is bundled with each broadcast making it noninteractive.
[GJ04]



Chapter 12

Keys

12.1 The Key Vision

A new directive from the National Science Foundation ordered all
researchers to stop looking for “keys” that will dramatically unlock
the secrets behind their research. The order came swiftly after a
new study showed that a “wholistic vision” was a more powerful
metaphor than the lock and key. Administrators at the National Sci-
ence Foundation predicted the new directive would increase discov-
eries by 47% and produce significant economies of effort.

The recent news of the metaphoric failure of the lock and key im-
age shocked many researchers. Landon P. Murphy, a cancer special-
ist at Harvard’s Women and Children’s Hospital, said, “We spent our
time searching for one key insight that would open up the field and
provide us all of nature’s abundant secrets. One key insight can do
that for you.”

In the future, all researchers will train their minds to search for a
“wholistic picture” that encompasses all of their knowledge. An in-
clusive understanding is thought to yield more discoveries in a faster
time period because the grand vision can often see the entire forest
not just the trees.

“Let’s say you’re on top of a mountain. You can see much fur-
ther than you can at the base– even if you have a key to the tunnel
under the mountain.” said Bruce Konstantine, the Executive Deputy
Administrative Aide at the NSF. “We want our researchers to focus on
establishing the grand vision.”

Some scientists balked at the new directive and countered with a
metaphor of their own. “Sure you can see for miles but you can’t see
detail.” said Martin Grubnik, a virologist at the University of Pitts-
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burgh. “Some of us need to focus on the small things and the details
to make progress. That’s the key.”

Konstantine dismissed this objection and suggested that the vi-
rologists might make more progress if they avoided a narrow focus.

“The key insight, or perhaps I should say the true vision, is that
scientists who focus too narrowly avoid seeing the big picture. We
want more big pictures. If that means abandoning the hope for one
key, so be it.”

12.2 Extending Control

Most of the game of steganography involves finding a set of algo-
rithms that can make one chunk of data look like another. In some
instances, camouflaging the existence of the data is not enough.
Stronger attacks require stronger measures and one of the most ver-
satile is adding some key bits to the algorithm.

The key is some relatively small collection of bits that plays a
strong role in the algorithm. If someone doesn’t hold the right key,
they can’t unlock certain features of the algorithm. The bits of infor-
mation in the key are somehow essential for manipulating the data.

Most of the keying techniques used in steganography are exten-
sions of the solutions used in basic cryptography. Some of the basic
types include:

Secret Keys One key is used to hide the information and the same
key must be available to uncover the information. This is of-
ten called symmetric or private key steganography. The second
term isn’t used in this book to avoid confusion with public-key
approaches.

Public Mechanisms or Public Keys One key hides the information
and a different key uncovers it. Some call these asymmetric be-
cause the algorithms separate the functions. These solutions
are often useful for watermarking information because some-
one can uncover the information without the power to hide
new information— that is, the power to make new copies with
the person’s watermark.

None of the algorithms described here offer a solution with
any of the simplicity of the best public-key encryption systems.
They often rely on difficult problems or some obscurity to pro-
vide some form of a “private key”. In many cases, there is no
private key at all. The public key is just used to verify the signa-
ture.
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Some of the other solutions provide public-key behavior by en-
crypting and decrypting the hidden information with standard
public-key algorithms.

Zero-Knowledge Proofs These systems allow the information hider
to secure information so that it’s existence can be revealed
without revealing the information itself. The technique can
also be useful for watermarking because the information hider
can prove they hid the information without giving someone
else the power to hide the same information. That is, to make
copies with the same watermark.

Collision Control Codes Let’s say you have several copies of a doc-
ument. These codes try to prevent you from combining the
copies in ways to obscure the information hidden inside. Some
basic attacks on watermarking information, for instance, in-
volve averaging several different copies. These solutions resist
these attacks.

There are a number of approaches for implementing algorithms
that fall into these classes. The simplest is to use basic secret-key or
public-key algorithms on the data before it is handled by the stega-
nography algorithm. The encryption algorithm and the hiding algo-
rithm are kept separate and distinct from each other.

Separating the functions is easier to understand and it has one
practical advantage: encryption algorithms naturally make data look
more random and random data is often the best kind for stegano-
graphy. Encrypting the data often makes sense even if the secrecy
is not necessary because encryption is one of the simplest ways to
increase the randomness of the data. Of course, this approach can
occasionally produce data that is too random, a problem discussed
in depth in Chapter 17.

Keeping the encryption separate from the hiding is more intellec-
tually straight-forward. Good encryption algorithms can be mixed or
matched with good steganographic solutions as the conditions dic-
tate. There’s no need to make compromises.

But splitting the two processes is also limiting because the hiding
algorithm is the same for everyone. Anyone can recover the hidden
bits because the algorithm is essentially public. Anyone who uses it
to recover bits on one occasion can now use it again and again in
other situations. They may not be able to do anything with the bits
because the encryption is very strong, but they will be able to find
them relatively easily and replace them with bits of their own.

Keying the hiding process ensures that only people with the right
key can either hide or recover bits. This restricts attackers by adding
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an additional layer of complexity to the process.
Many of the basic algorithms in this book use generic keys to con-

trol the random choices made by them. If an arbitrary decision needs
to be made, then a cryptographically secure random number gener-
ator driven by a key is one of the simplest mechanisms for adding a
key to the scheme.

The algorithms in Chapter 9 hide information in the least signifi-
cant bits of image and sound files by selecting a subset of elements.
This selection process is driven by a random number generator that
repeatedly hashes a key. In Chapter 13, the functions used to com-
pute the sorted list of data elements can include a key. If the same
stream of random numbers isn’t available, the bits can’t be extracted.

More sophisticated systems integrate the key even deeper into
the algorithm. Some try to constrain how the answer to some hard
problem is constructed. Others try to limit how it is encoded in the
data.

Many of these newer advanced systems show how just about any
computational processes can be tweaked or distorted to include a
few extra bits. Most algorithms include some arbitrary decisions
about location, order, or process and which can be driven by some
key. In the best cases, the authors understand the problem well
enough to provide some actual arguments for believing that the pro-
cess is hard to decrypt without the key.

12.3 Signing Algorithms

Many of the keying algorithms provide some kind of assurance about
the documents authenticity by acting like digital signatures for the
document. These solutions are quite useful in all situations where
digital signatures on arbitrary files provide some certainty. They’re
also especially useful for watermarking. The ideal algorithm allows
the file’s creator to embed a watermark in such a way that only the
proper key holders can produce that watermark.

The basic solution involves separating the image or audio file into
two parts. The first holds the details that will remain unchanged dur-
ing the steganography. If the information is hidden in the least sig-
nificant bits, then this part is the other bits, the most significant ones.
The second part is the bits that can be changed to hide information.
This set may be defined and hence controlled by a key.

A digital signature on the file can be constructed by hashing the
unchangeable part, signing the hash value with a traditional digital
signature function, and then encoding this information in the sec-
ond part reserved for hidden information. The digital signature may
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Figure 12.1: An embedded digital signature can be woven into a file.
In this visual allegory, the file is broken up into five chunks. Each
chunk is broken up into two part– one that remains unchanged and
the other that hides information. The data from section i is used to
create a digital signature that is embedded in section i+ 1.

be computed with traditional public-key algorithms like RSA, or it
may use more basic solutions with secret key algorithms or even hash
functions.[Won98, Wal95a]

This process uses two keys that may or may not be drawn from
the same set of bits. The first is used to define the parts of the file
that may be changed. It could be a random number stream that picks
pixels to hide information. The second key actually constructs the
signature. Jessica J. Fridrich and

Miroslav Goljan suggest
self-embedding a copy
of an image in itself.
Details from one block
are embedded in
another block across the
image. Cropping or
other tampering can be
reversed. [FG99]

This approach is direct, and easy to code, but it hides the informa-
tion in the most succeptable part of the file. Compression algorithms
and other watermarks can damage the information by changing the
data in this section. [CM97]

The mechanism can also be extended by splitting the file into
numerous sections. The signature for section i can be embedded
into section i+1. Figure 12.1 shows how this might be done with a file
broken into five sections. The data from one section is hidden in the
next section. Separating the hiding also can provide an indication of
where any tampering took place.

12.4 Public-Key Algorithms

Many researchers are trying to develop “public-key” algorithms for
hiding information that provide many of the same features as public-
key cryptography. The systems allow a user to hide information in
such a way that anyone can recover it, but ideally in a way that no
one can create new data in the right format.

This feature is desirable for watermarks because it is ideal for
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the average user (or the user’s computer) to check information for
watermarks.

All of the algorithms are new and relatively untested, but they
still offer exciting possibilities for watermarking files. If they can be
developed to be strong enough to resist attack, people will be able to
use them to track royalties and guarantee the authenticity of the files.

12.4.1 Leveraging Public-Key Cryptography

The standard encryption algorithms can be mixed with stegano-
graphy to offer many of the features of public-key cryptography.
Imagine that you want to embed a message into a file so that only
the person with the right secret key can read it. [And96c]

Here’s a straight-forward example:

1. Choose a secret key, x.

2. Encrypt the plaintext data with this key using the public key of
the recipient: Epk(x).

3. Hide this value in a predetermined spot.

4. Use x as a standard key to determine where the other informa-
tion is hidden.

If the public-key algorithm and the infrastructure are trustworthy,
only the correct recipient should be able to decrypt Epk(x) and find
x.

12.4.2 Constraining Hard Problems

One strategy is to use problems that are hard to solve but easy to
verify as the basis for public-key signature. The knowledge of how to
solve the difficult problem acts like a private key and the knowledge
of how to verify it acts like the public key. The real challenge is finding
problems that behave in the right way.

The class of NP-complete problems includes classic computer
science challenges like boolean satisfiability, graph coloring, the
travelling salesman problem, and many others. [GJ79] They are of-
ten hard to solve but always easy to verify. Unfortunately, it is not
always easy to identify a particular problem with the right mixture of
strength.

This approach has not been historically successful. An early
public-key system created by Ralph Merkle and Martin Hellman used
an NP-complete problem known as the knapsack. (Given n items
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with weights {w1, ldots, wn}, find a subset that weighs W pounds.)
Their algorithm created custom knapsacks that appeared to offer a
guarantee that they were hard to pack exactly. Only someone with
a secret value, the private key, could determine the right subset of
objects to put in the knapsack with ease. After some equally hard
work, a human, Adi Shamir found a general algorithm that will break
the system without threatening the general NP-complete problems.
It exploited the key generation process that tried but failed to find
enough complicated sizes for the knapsacks. [Sha82, Lag84, Odl84]

No one else has had luck with NP complete problems. They seem
theoretically secure because there’s no general algorithms for solving
them quickly, there are a number of fast heuristics that find solutions
in almost all cases. Indeed, no one has a good mechanism for iden-
tifying a small subset of problems that are difficult enough to offer
some guarantees.

In one solution, Gang Qu imagines that the ability to create these
solutions is what is being protected by a watermark. A person who
knows how to solve the travelling salesman problem optimally may
market their solutions to airlines, businesses or traveling salesforces.
To protect against piracy of their custom itineraries, they could hide
some signature information in the file that proves the solutions are
theirs. A competing business may develop their own solutions, but
anyone can check the provenance by looking for this hidden infor-
mation.

The technique hides information in the solutions to the difficult
problems by forcing certain parameters to take certain values. [Qu01,
KQP01] Anyone can examine the solution and check the parameters,
but it should be difficult to assemble a new solution because the
problem is presumably hard. The approach does not really require
a set of bits labeled a “public key”, but it still behaves in much the
same way.

Information is hidden in the solution to the problem by introduc-
ing new constraints on the solution. The classic boolean satisfiabil-
ity problem, for instance, takes n boolean variables, {x1, . . . , xn} and
tries to assign true or false values to them so that a set of boolean
clauses are all true. Information can be encoded in the answer by
forcing some of the variables to take particular values— say x14 =
T, x25 = F, x39 = F, x59 = T and x77 = T might encode the bitstring
10011. Of course, adding this extra requirement may make a solution
impossible, but that is a chance the designers take.

The technique can be applied to many NP-complete problems
and other problems as well. Many problems have multiple solutions
and information can be hidden by choosing the appropriate solution
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Figure 12.2: A graph colored so that no two adjacent nodes have the
same color. Information can be encoded in this solution by forcing
certain nodes to certain colors.

that also encodes the information. Figure 12.2 shows a graph colored
so that several nodes take fixed colors. One way to encode the infor-
mation is to grab pairs of nodes and force them to have either the
same or different colors. Two nodes can be forced to have the same
color by merging them while the algorithm looks for a solution. Two
nodes can be kept different by adding an edge that connects them.
Other problems usually have some latitude.

The process can be strengthened by hashing steps along the way.
Let K0 be a creator’s original watermarking information. It might be
their name, it might be an email address, or it could be a reference
to some big table of known creators. LetH be a strong hash function
like MD5 or SHA. Let {C1, . . . , Cn} be a set of constraints to the prob-
lem that are open for twiddling to hold information. These may be
extra variables in a boolean satisfiability problem that can be set to
true or false. Or they could be nodes in a graph that might hold dif-
ferent values. For the sake of simplicity, assume that each constraint
can encode one bit. The following loop will encode the watermark:

1. Let Ki = H(Ki−1, Ci−1). The hashing function should be fed
both the information encoded in Ci−1 and some data about
the structure of Ci−1 itself. This data might include the node
numbers, the variable names, or the boolean formulae. (Set C0
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to be a null string.)

2. Extract one bit from Ki and encode it in Ci.

Repeat this for all n constraints.
The watermark can be tested by repeating the process. Any skep-

tical inquirer can get K0 from the creator and step through the pro-
cess, checking the bits at each point.

This approach can be used to protect complicated engineering
designs where the creator must solve a difficult problem. Chip de-
signers, for instance, often solve large NP-complete problems when
they choose how to lay out transistors. This technique allows them to
encode a watermark in the chip design that essentially says, “Copy-
right 2001 Bob Chiphead”.

The technique can be applied to more general information-hiding
problems or watermarking problems, but it has limitations. The cre-
ator must have the ability to find solutions to difficult problems– so-
lutions that are difficult for the average person to aquire. The sim-
plest way to accomplish this is to create a large computer that is
barely able to find solutions to large, difficult problems. Only the
owner of the computer (or one of similar strength) would be able to
generate solutions. Ron Rivest and Silvio Micali discuss using a sim-
ilar solution to mint small tokens, Peppercoin. [Riv04]

12.4.3 Using Matrix Multiplication

Recovering information from a file requires finding a way to amplify
the information and minimize the camouflaging data. One solution
is to rely on the relatively random quality of image or sound informa-
tion and design a recovery function that strips away relatively ran-
dom information. Whatever is left could hold the information in
question.

Joachim J. Eggers, Jonathan K. Su, and Bernd Girod suggest us-
ing a mechanism where matrix multiplication dampens the cover-
ing data but leaves distinctive watermarks untouched. [ESG00b,
ESG00a] They base their solution on eigenvectors, the particular vec-
tors that are left pointing in the same direction even after matrix mul-
tiplication. That is, if M is a matrix and w is an eigenvector, then
Mw = λw, where λ is a scalar value known as an eigenvalue. Ev-
ery eigenvector has a corresponding eigenvalue. Most vectors will be
transformed by matrix multiplication, but not the eigenvectors. For
the sake of simplicity, we assume that the eigenvectors are one unit
long— that is, whw = 1.
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Exploiting this property of matrix multiplication requires assum-
ing that the data in the file is relatively random and comes with a
mean value of zero. Sound files fit this model, but image files usually
fail because they consist of bytes that range between 0 and 255. Any
file can be converted into one with a zero mean value by calculating
the mean and subtracting it from each entry. The result may not be
sufficiently random for this algorithm, but we will assume that it is.

Let x be a vector of data where the watermark will be hidden. We
assume that it comes with a zero mean and is sufficiently random.
What is sufficiently random? Perhaps it’s better to define this by
describing the effect we want. Ideally, we want xhMx = 0 or at least
sufficiently close to zero. Then it will drop out of the computation
and only the watermark will be left.

Let w be an eigenvector of some matrix, M , and λ be the corre-
sponding eigenvalue. Mw = λw. This vector can be used as a water-
mark and added to the camouflaging data, x, with a weight, β. Ide-
ally, β is chosen so that x + βw is perceptually identical to x and the
watermark can be extracted.

The watermark is extracted from the data by computing

(x+ βw)hM(x+ βw) = xhMx+ xhMβw + βwMx+ β2wMw.

If the assumption about the randomness of x holds, the first three
terms will be close to zero leaving us with β2λ(wh

w) = β2λ.
A public-key system can be established if the values ofM , β, and λ

are distributed. Anyone can test a file, y, for the presence or absence
of the watermark by computing yhMy and determining whether it
matches β2λ.

This approach still has a number of different limitations. First,
the number of elements in x and w must be relatively large. Eggers,
Su and Girod report results with lengths of about 10,000 and about
100,000. Larger values help guarantee the randomness that pushes
xhMx to zero.

Second, finding the eigenvectors of M is just as easy for the mes-
sage creator as any attacker. One solution is to choose an M which
has many different eigenvectors, {w1, . . . , wn} that all come with the
same eigenvalue λ. The attacker may be able to identify all of these
eigenvectors, but removing the watermark by subtracting out the dif-
ferent values of wi, one after another, could be seen as a brute-force
attack.

Of course, the ease of finding the eigenvectors means that some-
one can insert a fake watermark by choosing any eigenvector,wi, that
comes with an eigenvalue of λ. This means that the algorithm can’t
be used to generate digital signatures like many of the classic pub-
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lic key algorithms, but it might still be of use for creating watermarks
that prevent copying. A pirate would find little use in adding a signal
that indicated that copying should be forbidden.

More sophisticated attacks may be possible. The authors credit
Teddy Furon for identifying a trial-and-error approach to removing
watermarks with this tool by changing the scale for the part of the
signal in the space defined by the eigenvectors, {w1, . . . , wn}, with
length λ.

The algorithm can be tuned by choosing different values of M .
The authors particularly like permutation matrices because an n× n
matrix can be stored with n − 1 values. “Multiplication” by a per-
mutation matrix is also relatively easy. Using the matrix designed to
compute the discrete cosine transform is also a good choice because
the computation is done frequently in image and sound manipula-
tion.

This solution is far from perfect and its security is not great. Still,
it is a good example of how a function might be designed to mini-
mize the camouflaging data while amplifying the hidden data. The
process is also keyed so that the value of M must be present to ex-
tract the hidden message.

12.4.4 Removing Parts

Many of the algorithms in this book hide information by making a
number of changes to a number of different locations in the file and
then averaging these changes to find the signal. The proceding sec-
tion (12.4.3), for instance, may add hundreds of thousands of small
values from the watermark eigenvector into the file. The spread-
spectrum-like techniques from Chapter 14 will spread the signal over
many different pixels or units from a sound file. The signal is ex-
tracted by computing a weighted average over all of them.

One insight due to Frank Hartung and Bernd Girod is that the
information extractor does not need to average all of the locations
to extract a signal. [HG97] The algorithms already include a certain
amount of redundancy to defend against either malicious or acci-
dental modifications to the file. If the algorithms are designed to
carry accurate data even in the face of changes to an arbitrary num-
ber of elements, why not arrange for the receiver to skip that arbitrary
number of elements all together?

Consider this algorithm:

1. Create n “keys”, {k1, . . . , kn}.

2. Use cryptographically secure random number generators to
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use these keys to identify n different sets of m elements from
the file.

3. Tune the hiding algorithm so it can hide information in mn
elements in such a way that the information can be recovered
even if (n− 1)m elements are not available or damaged.

4. Hide the information.

5. Distribute then “keys” to the ndifferent people who might have
a reason to extract the information. The algorithm will still
work because the information was hidden with such redun-
dancy that only one subset is necessary.

Hartung and Girod use the term “public-key” for the n values of
{k1, . . . , kn}, even though they do not behave like many traditional
public keys. The keys do offer a good amount of antifraud protec-
tion. Anyone possessing one ki can extract the information, but they
cannot embed new information. If the holder of the value of ki tries
to embed a new signal, it will probably be invisible to the holders of
the other n − 1 keys because their keys define different subsets. The
holder of ki can change the elements as much as possible, but this
won’t change the information extracted by others.

Of course, this approach does have limitations. The values of ki

are not truly public because they can’t circulate without restrictions.
They also can’t be used to encrypt information so that they can only
be read by the holder of a corresponding private key. But the results
still have some applications in situations where the power of keys
needs to be reined in.

12.5 Zero Knowledge Approaches

Zero knowledge proofs are techniques for proving you know some
information without revealing the information itself. The notions
began evolving in the 1980s as cryptographers and theoretical com-
puter scientists began exploring the way that information could be
segregated and revealed at optimal times. In one sense, a zero knowl-
edge proof is an extreme version of a digital signature.

Here’s an example of a zero knowledge proof. Let G be a graph
with a set of nodes ({v1, v2, . . . , vn}) and a set of edges connecting
the nodes ({(vi, vj), . . .}). This graph can be k−colored if there exists
some way to assign one of k different colors to the n nodes so that
no edge joins two nodes with the same color. That is, there does not
exist an i and a j such that f(vi) = f(vj) and (vi, vj) is in the set of
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Figure 12.3: A graph where the nodes are assigned one of four colors.

edges. f is the coloring function. Figure 12.3 shows one graph that is
4-colored.

Finding a k−coloring of an arbitrary graph can be a complicated
and difficult process in some cases. The problem is known to be
NP-complete, [GJ79] which means that some instances seem to grow
exponentially more difficult as more nodes and edges are added. In
practice, a coloring for many graphs can be found relatively quickly.
It’s often harder to find difficult graphs and this is one of the practical
limitations of using zero knowledge proofs in applications. There are
a number of details that make it difficult to produce a working and
secure implementation of this idea.

Let’s say you know a coloring of some graph and you want to
prove that you know it without actually revealing it to another per-
son, the skeptical inquirer. Here’s an easy way to prove it:

1. Create a random permutation of the coloring, f ′. That is, swap
the various colors in a random way so that f ′(vi) �= f ′(vj) for all
(vi, vj) in the graph.

2. The skeptical inquirer can give you a random bit string, S. Or S
might be established from an unimpeachable source by hash-
ing an uncorruptible document. If the zero knowledge proof is
going to be embedded in a document, this hash might be of the
parts of the document that will not be changed by the embed-
ding.

3. Create n random keys, p1 . . . pn and use an encryption function
to scramble the string S + i+ f ′(vi) for each node in the graph
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Figure 12.4: In a zero-knowledge proof, the colors of the nodes are
encrypted and sent to the skeptical inquirer who asks to have two
adjacent nodes revealed.

where + stands for concatenation. Ship the encrypted versions
to the skeptical inquirer.

4. The skeptical inquirer chooses an edge at random from the
graph, (va, vb) and presents it to you.

5. You ship pa and pb to the skeptical inquirer, who uses them to
decrypt the encrypted version of the colors, f ′(va) and f ′(vb). If
the two are different, the skeptical inquirer knows that you’ve
proven that you know how to color at least one part of the
graph. Figure 12.4 shows two adjacent nodes being revealed.

This process should be repeated until the skeptical inquirer is
satisfied. If the edges are truly chosen at random, any mistakes in
the coloring stand an equal chance of being revealed at each step.
The randomness prevents the prover from anticipating the choice
and selecting f ′. Eventually, any weakness or miscoloring will show
through.

Zero knowledge proofs like this may be useful in the world of hid-
den information because they allow the information hider to control
how and when the information is revealed to another person. The
structure of the proof, however, guarantees that no information is re-
vealed. The proof can’t be repeated by someone else or used as a
basis to remove the information. This solution may be useful for wa-
termarking applications where a copyright holder may want to prove
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that they are the rightful owner without revealing the technique to
others.

In theory, any zero-knowledge proof can be used as a watermark.
Every proof begins with a set of bits that identify the instance of the
problem. Imagine that m iterations of the encrypted graph proce-
dure described above are sufficient to prove knowledge of the graph
coloring. The proof can be embedded in a document with these
steps:

1. Create a value of S by hashing the parts of the document that
won’t be modified during the embedding process. These might
be the most significant bits or some other high-pass filtering of
the document.

2. Createm permutations of the coloring: f ′1, f
′
2, . . . f

′
m.

3. Create m × n keys, pi,j , where i stands for the iteration of the
proving algorithm, (1 ≤ i ≤ m), and j stands for the node,
(1 ≤ j ≤ n).

4. Scramble the coloring of the n nodes for each iteration of the
proof by encrypting the string S+ i+ j+ f ′i(vj), where + stands
for concatenation.

5. Embed each of the encrypted colors and the description of the
graph in the document. If necessary, the encrypted colors can
be embedded in hidden locations described by pi,j . For in-
stance, this value could be used as a seed for a cryptograph-
ically secure random number generator that chooses a string
of pixels to hide the signal.

If someone challenges the document, they can ask the informa-
tion hider to prove that they know how to color the graph hidden
away inside of it. Presumably, this problem is difficult to solve and
only the person who hid the graph would know how to color it. The
skeptic could repeat these stepsm times. Let i stand for the iteration.

1. The skeptic recovers the graph.

2. The skeptic assembles S by examining the unchanged parts of
the document.

3. The skeptic chooses a random edge, (va, vb).

4. The prover reveals pi,a and pi,b. These values can be used to
locate the encrypted colors and then decrypt them. If they don’t
match, the process continues. If they do match, the prover is
toast.
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This solution offers a number of advantages if a suitable graph
can be found. The person hiding the information can prove they hid
it without revealing enough information for someone to duplicate
the proof. Each skeptic is going to choose the edges at random, and
it’s unlikely that the all of them will be repeated.

This static version is not as powerful as the interactive version
because the prover must lock in the colorings. If a skeptic is able to
get the prover to repeat the algorithm a number of times, eventually
the skeptic will gather enough of the keys, pi,j , to stand a good chance
of proving they know the graph coloring. Eventually, the prover will
reveal the entire colorings. This slow leak of information means that
the proofs are not zero-knowledge. This process may still be practical
if m and n are large enough and the number of times the proof is
executed is kept small enough.

Finding a suitable graph is not an easy process. There are many
different kinds of zero-knowledge proofs that can be embedded in
similar situations, but most of them are not particularly practical.
The proofs rely on problems that can be hard in the worst cases, but
are usually rather easy to compute. Finding and identifying guaran-
teed difficult instances of the problem is not easy. One of the first
public-key encryption systems developed by Ralph Merkle and Mar-
tin Hellman used one NP-complete problem known as the knapsack.
Eventually, all versions of the algorithm were broken and many grew
skeptical that basic NP-complete problems could be trusted to pro-
duce difficult instances.

12.5.1 Discrete Logs for Proofs

Scott Craver developed one mechanism for zero knowledge water-
marking that relies on the difficulty of the discrete log problem.
(Given y, find x such that y = gx mod q, where q is a prime cho-
sen according to some increasingly strict guidelines for ensuring the
strength of cryptographic systems based on the difficulty of the dis-
crete log problem.) This solution succeeds because it uses a number
of fake watermarks as decoys. Ideally, anyone trying to tamper with
the watermark must remove the real one as well as all of the decoys.
Ideally, there will be so much information that removing them all will
substantially change the image.

Let x be the secret key that acts as a watermark. This algorithm
will allow the information hider to prove they know xwithout reveal-
ing x itself. The prover hides y1 = gx mod q in the document using a
key, p1, to choose the locations in the document.

The prover then extracts n− 1 fake watermarks that happen to be
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in the document. That is, the prover chooses n − 1 keys, p2, . . . , pn,
to extract n − 1 values, y2, . . . , yn. Using fake decoys derived from
the document can help increase the strength of the watermark. The
more there are, the more likely that removing them will damage the
image. In some cases, the prover may actually insert them if this
makes the task easier.

When a skeptic shows up with the document, the prover can show
knowledge of x without giving the skeptic the power to repeat this
process. The decoys prevent the skeptic from ever learning which
value of yi has a known log. Here are the steps.

1. The prover presents the keys, p1, . . . , pn, to the skeptic.

2. The skeptic recovers the values of yi.

3. This loop is repeated as many times as necessary.

(a) The prover generates n blinding factors, b1, . . . , bn, that are
used to scramble the watermarks by computingwi = gbiyi.

(b) The prover scrambles up these values of wi before ship-
ping them to the skeptic.

(c) The skeptic flips a coin and makes one of two demands to
the prover:

i. Tell me all of the blinding values, b1, . . . , bn. Knowing
these, the skeptic can check to make sure that there is
one legitimate value of wi for each value of yi.

ii. Prove you know the log to one of these values. The
prover accomplishes this by revealing x+b1mod (q−1).
This is the log of w1 = gb1y1 = gb1gx = gx+b1 mod q.

At each iteration, the prover must reveal one half of the solution.
The structure makes it unlikely that a skeptic will turn around and
successfully repeat the proof to someone else. It is not possible to
take the answers from one and use the information to answer the
other. Only someone who knows the value of x can do it.

There are still limitations to this algorithm. The prover must re-
veal the location of the different blocks of bits, something that leaves
them succeptible to destruction. The decoys increase the workload
of the attacker and increase the probability that removing all of the
information will substantially change the document.

One way to improve the strength of the algorithm is to mix in a
number of real marks with the decoys. That is, the prover arranges
to hide multiple values of yi where the prover knows the value of
xi such that yi = gxi mod q. The prover can then use a different
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subset of values with each skeptic as long as the prover knows one
value of xi for the values in the subset. Of course, multiple copies
and multiple blocks and help reduce this danger but they do not
eliminate it. Eventually, all of the marks will be revealed.

12.6 Collusion Control

Another technique for “keying” watermarks is occasionally called
“collusion control” for lack of a better term. Imagine that you cre-
ate two documents, d1 and d2, with watermark bitsw1 and w2 encod-
ing the true owner’s identity. Watermarking is an imperfect science,
so despite your best efforts someone trying to cheat the system com-
pares the files and finds where they are different. The cheater injects
random noise into these locations, effectively changing half of the
bits. What happens to the watermarks?

Basic systems would fail here. If w1 = 001010111 and w2 =
001010100, then only the last two bits are different. A new watermark,
00101010101 would implicate someone else.

Collusion control systems that can combat this were first intro-
duced by Dan Boneh and James Shaw.[BS95] Their mechanism acts
like an extension of error-correcting codes.Error-correcting codes

are described in Chapter
3.

Here’s a example. Let S be the set of n-bit code words with only
a single bit set to 1. If n = 4, then S = {1000, 0100, 0010, 0001}.
Let one code word be assigned to each document. If two document
holders collude, they will only find that their watermarks differ by
two bits. Boneh and Shaw call this a frameproof code and note that
any code that is frameproof for n users must come with n bits. So this
construction is optimal.

For example, let Alice’s watermark be 0100 and Bob’s be 0001.
Someone tries to erase the watermark by creating a synthetic one
blending the two files. After identifying all bits that are different, the
attacker chooses half from Alice’s file and half from Bob’s. What hap-
pens if someone compares a file from Alice and a file from Bob to find
differences? If someone creates a new file with the watermark 0101,
then both Alice and Bob will be implicated. Anyone examining the
file can trace it back to both of them. Changing 50 percent of the bits
will produce one of the two watermarks. One will remain implicated.

Of course, a clever attacker may flip both to zero to produce the
watermark 0000. This will implicate no one, but it is not easy to
generate. Anyone trusting the watermark will not choose bit vectors
like this example. They may XOR them with a secret password and
the attacker won’t know what is up and down, so to speak. A zero in
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the fourth position may identify Bob after it is XORed with the secret
vector.

Boneh and Shaw extend this idea by combining it with ideas from
the world of error-correcting codes. Each attacker will need to flip
many bits before the watermark is effectively erased, because the
error-correcting codes compensate for random flips.

12.7 Summary

Most algorithms in this book can add additional security with a key.
This key can be used to create a pseudo-random bit stream by com-
puting successive values of some encryption or hash function:

f(key), f(f(key)), f(f(f(key))), . . . .

This bit stream can be used to either choose a subset of the file or to
control how it is encoded at each location. Only someone with the
same key can recover the information. Of course, it also makes sense
to encrypt the file with another key and a cryptographically strong
algorithm before it is inserted.

Keying the algorithm defends against the often public nature of
computer standards. If the software is going to be used often and
distributed to many people, then the algorithms inside of it become
public. Adding a key to the algorithm increases its strength dramati-
cally.

The Disguise Many of the algorithms add an extra layer of disguise
by using the key to modify the behavior of the algorithm. This
means that any attacker will not be able to extract the data with
knowledge of the algorithm alone.

How Secure Is It? Pseudo-random bit streams created by repeated
encryption or hashing can be quite secure.

How to Use It Replace any random number generator used to add
noise with a pseudo-random keyed stream, which can also be
used to extract particular subsets or to rearrange the data itself.
The algorithms in Chapter 13, for instance, use a keyed encryp-
tion function to change the data’s order.

Further Reading

• Luis von Ahn and Nicholas J. Hopper provide a good theo-
retical foundation for understanding when steganography
can offer public-key-like behavior. [vAH04]
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• Michael Backes and Christian Cachin suggest that a good
public-key steganography system is built from a good
public-key crypto system offering output indistinguish-
able from a random source. This allows them to produce a
system that can resist active attacks. [BC05]



Chapter 13

Ordering and Reordering

13.1 Top 10 Reasons Why Top 10 Lists Fail

10. Who wants to be last on the list? On the other hand, making the
list is much better than being 11th.

9. Is nine really better than 10?

8. There are usually twenty to thirty people who say they are in
“the top ten.”

7. “Lists provide a simulacrum of order that reifies our inherent
unease over the chthonic forces of disorder”– Guy de Montpar-
nasse, doctoral thesis.

6. Sixth is a comfortable position. It’s not high enough to provide
endless anxiety about slippage, but it’s not low enough to slip
off of the list. Slipping off the list would be terrible.

5. Five golden rings.

4. There is no number 4.

3. All good things come in threes. But it’s not the same if you’re
number 3 in a list of 10. Being third in a list of 100, however, is
pretty good. Of course, every top 10 list is really a list of 100 or
1000 with the other 90 or 990 left off. Where do you draw the
line?

2. No one ever remembers the silver medalist.

1. Being number one would be much more fun if everyone wasn’t
gunning to unseat you.

261
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13.2 Introduction

Most of the algorithms in this book hide information in data formats
that are relatively rigid. Image files must describe the color of each
pixel in a well-defined order. Audio files are pretty much required to
describe the sound at each point in time. Hiding the information in
specific places in the noise is a pretty good gamble because the files
aren’t going to be rearranged.

Some data is not as rigid. Text documents can have chapters, sec-
tions, paragraphs and even sentences rearranged without changing
the overall meaning. That is to say, the overall meaning of a text doc-
ument isn’t changed by many ways of rearranging sentences, para-
graphs, sections or chapters. There’s no reason why the elements in
a list can’t be scrambled and rescrambled without the reader notic-
ing. Many of the chapters in this book can be reordered a bit without
hurting the overall flow.

Even files with a strong fixed relationship with time and space can
be rearranged. Image files can be cropped, rotated, or even arranged
in a tile. Songs can be rearranged or edited, even after being fixed in
a file. All of these changes can rearrange files.

When the data can be reordered, an attacker can destroy the hid-
den message without disturbing the cover data. Mikhail Atallah and
Victor Raskin confronted this problem when designing a mechanism
for hiding information in natural language text. If they hid a bit or
two by changing each sentence, then they could lose the entire mes-
sage if the order of each sentence was rearranged.[ARC+01] Many of
the text mechanisms in Chapters 6, 7, and 8 are vulnerable to this
kind of attack. One change at the beginning of the datastream could
confound the decoding of everything after it. Many of the solutions
in Chapter 9 store the bits in random locations dictated by some
pseudo-random stream of values. Destroying the bits early in this
stream can trash the rest of the file.“There it was, hidden in

alphabetical order”–
Rita Holt

The information stream has two components: the data and the
location where it is stored. Most of the algorithms in this book con-
centrate on styling and coiffing the data until it assumes the right
disguise. The location where the data goes is rarely more than a tool
for adding some security and the algorithms pay little attention to
the problem.

This chapter focuses on the second component: how to defend
and exploit the location where the information is held. Some of the
algorithms in this chapter insulate data against attackers who might
tweak the file in the hope of dislocating the hidden information un-
derneath. They provide a simple way to establish a canonical order
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for a file. The attackers can rearrange the file as much as they want
but the sender and the receiver will still be able to re-establish the
canonical order and send a message.

Other algorithms exploit the order of the content itself and make
no changes to the underlying information. There are n! ways that
n items can be arranged. That means there are log2 n! bits that can
be transmitted in a list with n items. None of the items themselves
change, just their order in a list.

Still other algorithms mix in false data to act as decoys. They get in
the way until they’re eliminated and the canonical order is returned.

All of these algorithms rely on the fact that information does not
need to flow in a preset pattern if the correct order can be found later.
This fact is also be useful if parts of the message travel along different
paths.

13.3 Strength Against Scrambling

Many of the attacks on steganographic systems try to destroy the
message with subtle reordering. Image warping is one the most com-
plex and daunting parts of the StirMark benchmarks used to measure
the robustness of techniques for hiding data in images.

Here’s a very abstract summary of a way to make any stegano-
graphic system resist re-ordering:

• Break up the data stream into discrete elements: {x1, x2, . . . , xn}.
This may be words, pixels, blocks of pixels, or any subset of the
file. These blocks should be small enough to endure any tweak-
ing or scrambling by an opponent but large enough to be differ-
ent.

• Choose a function, f , that is independent of the changes that
might be made in the hiding process. If the least significant bit
is changed to hide a message, then f should only depend on
the other bits.

Many of the same principles that go into designing a hash func-
tion can be applied to designing this sorting function. This
function, f , can also be keyed so that an additional value, k,
can change the results.

• Apply f to the elements.

• Sort the list based on f .

• Hide the information in each element, xi, with appropriate so-
lutions.
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• Unsort the list or somehow arrange for the receipient to get all
of the values of {x1, . . . , xn} through any means.

Information can be hidden in multiple locations and reorderedIn a one-time hash
system, the sender

changes the cover data,
x, until f(x) sends the
right message. [Shi99]

The message is usually
short because searching

for a x requires brute
force. This is similar to

the mechanisms in
Chapter 9 which

permute the color of a
pixel until the parity

sends the right message.

by the recipient without any communication from the source. The
only synchronization necessary is the choice of f and perhaps the
key, k. The good news is that the multiple containers can move
through different channels on independent schedules and arrive in
any order without compromising the message.

Sorting the data allows the sender to scramble the cover data in
any random fashion, secure in the knowledge that the receiver will
be able to reorder the information correctly when it arrives.

Sorting is also a good alternative to choosing a subset of the cover
data to hold the hidden message. Other solutions use some key and
a random number generator to choose a random subset of the mes-
sage. Another solution is to apply some function, f , to the elements
in the data stream, sort the stream and then choose the first n to hold
the hidden message.

Of course, the success of these solutions depends entirely on the
choice of the function, f . Much of the problem is usually solved
once the data is converted into some digital format. It’s already a big
number so sorting the values is easy. The identity function, f(x) = x,
is often good enough.

One potential problem can occur if multiple elements are iden-
tical or produce the same value of f That is, there exist i and j such
that f(xi) = f(xj). In many normal sorting operations, the values of i
and j are used to break the tie, but this can’t work because the sender
and the receiver may get the values of x in a different order.

If xi = xj , then it doesn’t matter in which order they occur. But
if xi �= xj , then problems may emerge if the sender and the receiver
do not place them in the same order. After the receiver extracts the
data from xi and xj , it could end up in the wrong order, potentially
confusing the rest of the extracted information.

There are two solutions to this problem. The simplest is to be cer-
tain that f(xi) = f(xj) only happens when xi = xj . This happens
when f is a pure encryption automorphism. This is often the best
solution. The other is to use some error correcting coding to remove
the damage caused by decoding problems. Some error-correcting
codes can do well with several errors in a row and this kind is essen-
tial. If xi and xj are misordered because f(xi) = f(xj), then they’ll
generate two wrong errors in order. If there are multiple values that
produce the same f , then there will be multiple problems.

If it is not possible to guarantee that the values of f will be unique,
it makes sense to ensure that the same amount of information is
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packed into each element xi. This guarantees that the damage mis-
ordering will not disturb the other packets.

13.4 Invariant Forms

One of the biggest challenges in creating the functions f is the fact
that the message encoder will use f to choose the order before the
data is hidden. The receiver will use f after the data is inserted. If
the hiding process can change the value of f , then the order could be
mangled.

There are two basic ways to design f . The first is to ensure that f
does not change when data is hidden. Some simple invariant func-
tions are:

• If the elements are pixels where data is inserted into the least
significant bit, then the value of f should exclude the least sig-
nificant bit from the calculations.

• If the elements are compressed versions of audio or image data,
then the function f should exclude the coefficients that might
be changed by inserting information. JPEG files, for instance,
can hide data by modifying the least signficant bit of the coeffi-
cients. f should depend on the other bits.

• If the data is hidden in the elements with a spread-spectrum
technique that modifies the individual elements by no more
than±ε, then the values can be normalized. Let xi be the value
of an element. This defines a range xi − ε < xi ≤ xi + ε. Let the
set of normalized or canonical points be {0, 2ε, 4ε, 6ε, . . .}. One
and only one of these points is guaranteed to be in each range.
Each value of xi can be replaced by the one canonical point that
lies within ±ε of xi.

To compute f use the canonical points instead of the real values
of xi.

13.5 Canonical Forms

Another solution is to create a “canonical form” for each element.
That is, choose one version of the element that is the same. Then,
the data is removed by converting it into the canonical form and the
result is used to compute f .

Here are some basic ones:
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• If the data is hidden in the least significant bit of pixels or audio
file elements, then the canonical form can be found by setting
the least significant bit to zero.

• If the information-hiding process modifies the elements by no
more than ±ε then canonical points can be established as they
were above. Let {0, 2ε, 4ε, 6ε, . . .} be the set of canonical points.
Only one will lie in the range xi − ε < xi ≤ xi + ε.

• Sentences can be put into canonical form. Mikhail Atallah and
Victor Raskin use natural language processing algorithms to
parse sentences.[ARC+01] The sentence “The dog chased the
cat” takes this form in their LISP-based system:

(S
(NP the dog)
(VP chased
(NP the cat)))

The letter ‘S’ stands for the beginning of a sentence, the letters
‘NP’ stands for a noun phrase, and the letters ‘VP’ stands for a
verb phrase. If the sentence can’t be parsed, it is ignored.

Their solution hides information by applying a number of
transformations like switching between the active and passive
voice. One bit could be encoded by switching this example to
read “The cat was chased by the dog”. Others solutions they
use include moving the adjunct of a sentence, clefting the sen-
tence, and inserting extra unnecessary words and phrases like
“It seems that...”

A canonical form can be defined by choosing one version of the
transformation. In this example, the active voice might be the
canonical form for the sentence.

13.6 Packing in Multiple Messages

Sorting can also let you store multiple messages in a collection of
data. If f1 defines one order and f2 defines another order, then both
orderings can be used to hide information if the sizes are right. If the
number of elements in the camoflauging data is much larger than the
amount of information being hidden, then the chances of a collision
are small.

The chances of a collision are easy to estimate if you can assume
that the sorting functions, f1 and f2, behave like random number
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generators and place each element in the order with equal proba-
bility. The easiest way to create this is to use a well-designed cryp-
tographically secure hash function like SHA. The designers have al-
ready worked hard to ensure that the results of these functions be-
have close to a random number source.

If you can assume that f1 and f2 are random enough, then the
odds of a collision are simple. If data is hidden in the first n1 ele-
ments in the list produced by f1 and the first n2 elements in the list
produced by f2, then the estimated chance of collisions is:

n1 × n2

n
.

The damage can be reduced by using error-correcting codes like the
ones described in Chapter 3.

13.7 Sorting to Hide Information

The algorithms in the first part of this chapter use sorting as a form
of camoflage. The information is hidden and then scrambled to hide
it some more. Correctly sorting the information again reveals it.

Another solution is to actually hide information in the choice of
the scrambling. If there are n items, then there are n! ways that they
can be arranged. If the arrangements are given numbers, then there
are logn! bits. Matthew Kwan used this solution to hide information
in the sequence of colors in the palette of a GIF image. A freely-
available program called GifShuffle implements the solution.

Here’s a simple version of the algorithm:

1. Use a keyed pseudo-random bit stream to choose pairs of pixels
or data items in the file.

2. For each pair, let D be the difference between the two values.

3. If the difference is greater than some threshold of perception,
ignore the pair. That is, if the differences between the pixels or
data items are noticable by a human, then ignore the pair.

4. IfD = 0, ignore the pair.

5. Encode one bit of information in the pair. Let D > 0 stand for a
zero and D < 0 stand for a one. If the pixels aren’t arranged in
the right order, swap them.
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This basic mechanism hides bits in pairs of pixels or data items.
The solution does not change the basic statistical profile of the un-
derlying file, an important consideration because many attacks on
steganography rely on statistical analysis. Of course, it does changeThe locations of

transistors on a circuit
can be sorted in

different ways to hide
information that may

track the rightful
owner.[LMSP98]

some of the larger statistics about which pixels of some value are near
other pixels of a different value. Attackers looking at basic statistics
won’t detect the change, but attackers with more sophisticated mod-
els could.

The algorithm can also be modified to hide the information sta-
tistically. An early steganographic algorithm called Patchwork re-
peats this process a number of times to hide the same bit in nu-
merous pairs. The random process chooses pairs by selecting one
pixel from one set and another pixel from a different set. The mes-
sage is detected by comparing the statistical differences between
the two sets. The largest one identifies the bit being transmitted.
There’s no attempt made to synchronize the random selection of pix-
els. [BGML96, GB98].

In this simple example, one bit gets hidden in the order of 21

items. The process can be taken to any extreme by choosing sets
of n pixels or items and hiding information in the order of all of
them. Here’s one way that a set of n items, {x0, x1, . . . , xn−1}, can
encode a long logn!-bit number, M . Set m = M and let S be the set
{x1, x2, . . . , xn}. Let the answer, the set A, begin as the empty set.
Repeat this loop for i taking values beginning with n and dropping to
2.

1. Select the item in S with the index mmod i. The indices start at
0 and run up to i− 1. There should only be i elements left in S
at each pass through the loop.

2. Remove the item from S and stick it at the end of A.

3. Setm = m
i . Round down to the nearest integer.

The value ofM can be recovered with this loop. Begin withm = 1.

1. Remove the first element in A.

2. Convert this element into a value by counting the values left
in A with a subscript that is less than its own. That is, if you
remove xi, count the values of xj still in A where j < i.

3. Multiply m by this count and set it to be the new value of m.

Using this steganographically often requires finding a way to as-
sign a true order to the element. This algorithm assumes that the
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elements in the set S come ordered from 0 to n − 1. Kwan, for in-
stance, orders the RGB colors in the palette of the GIF by using what
he calls the “natural” order. That is, every color is assigned the value
216 ×Red+ 28 ×Blue+Green and then sorted accordingly.

Many of the sorting strategies used above can also be used to sort
the elements. If they are encrypted with a particular key before the
sorting then the key acts as a key for this steganography.

This algorithm can be particularly efficient in the right situations.
Imagine you have all 65,536 two byte values arranged in a list. This
takes 128k bytes. This list can store 119255bytes with this algorithm—
close to 90% of the payload. Of course, good steganographic oppor-
tunities like shopping lists are rarely so compact, but the theoretical
potential is still astonishing.

13.8 Word Scrambling

One commonly cited observation from cognitive science is that hu-
mans can read words even if the order of some of the internal letters
are reordered. Apparently the words are usually understandable if
the first and last letters are left unchanged. The mind seems to pay
particular attention to the first and last letter while ignoring the ab-
solute order of the interior letters.

Here’s a sample:

At Pairs, jsut atfer dark one gusty eivnneg in the auutmn
of 18, I was einonyjg the tofolwd luxury of mittoiaedn
and a mehuseacrm, in cnpmaoy wtih my fnired C. Aug-
sute Diupn, in his lttile back lrraiby, or book-coelst, au
tiosrime, No. 33 Rue Donot, Fuuoarbg St. Giearmn. For
one hour at lesat we had maniienatd a pofunord sielcne;
wilhe ecah, to any caasul osvreebr, might hvae seemed in-
ntetly and eilesulcvxy oipcecud with the cilunrg eiddes of
sokme taht oppressed the apoestrhme of the ceahmbr. For
melsyf, heovewr, I was mletnlay dusiscisng cietarn tipocs
wichh had foermd mettar for ciestnovoarn bteeewn us at
an eielarr pioerd of the eiennvg; I mean the aiffar of the
Rue Mogure, and the mestryy aintentdg the meudrr of
Miare Rogt. I leookd on it, torfeerhe, as sioetnhmg of a
coniiccende, wehn the door of our apetnarmt was torwhn
open and aittedmd our old aincqatcanue, Mioesunr G, the
Pfeecrt of the Piasairn piolce.

Here’s the original from Edgar Allan Poe’s Purloined Letter:
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At Paris, just after dark one gusty evening in the autumn
of 18, I was enjoying the twofold luxury of meditation
and a meerschaum, in company with my friend C. Au-
guste Dupin, in his little back library, or book-closet, au
troisime, No. 33 Rue Donot, Faubourg St. Germain. For
one hour at least we had maintained a profound silence;
while each, to any casual observer, might have seemed in-
tently and exclusively occupied with the curling eddies of
smoke that oppressed the atmosphere of the chamber. For
myself, however, I was mentally discussing certain topics
which had formed matter for conversation between us at
an earlier period of the evening; I mean the affair of the Rue
Morgue, and the mystery attending the murder of Marie
Rogt. I looked on it, therefore, as something of a coinci-
dence, when the door of our apartment was thrown open
and admitted our old acquaintance, Monsieur G, the Pre-
fect of the Parisian police.[Poe44]

The algorithm used the original order as the canonical order for
the letters in each word and then hid information in the order of the
n− 2 interior letters of every n-letter word.

13.9 Adding Extra Packets

Another way to scramble the order is to add fake packets. Ron Rivest
suggested this idea as one way to evade a ban on cryptography.
[Riv98] He suggested letting every packet fly in the clear with a digital
signature attached. Valid packets come with valid signatures, while
invalid packets come with invalid signatures.

Rivest suggested using keyed message authentication codes gen-
erated by hash functions. If x is the message, then the signa-
ture consisted of f(kx), where k is a key known only to those who
can read the message. Let f ′(x) be some bad signature-generating
function, perhaps a random number generator. Let the message
be {x1, x2, . . . , xn}. Rivest called these the wheat. Let the chaff
be {r1, . . . , rk}, random numbers of the correct size. The mes-
sage consists of pairs like (x1, f(kx1)) mixed in with distractions like
(ri, f

′(ri)).
Many standard digital signature algorithms can also be used if we

relax the notion that the signatures can tested by anyone with access
to a public key. If the verification key is kept secret, only the sender
and any receiver can tell the wheat from the chaff. Traditional public
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key algorithms can still be useful here because the receiver’s key can
not be used to generate the signatures themselves.

Mihir Bellare and
Alexandra Boldyreva
take this one step
further with all or
nothing transforms that
provide more
efficiency.[BB00a]

At the time Rivest’s article was written, the U.S. government
restricted the export of algorithms designated as “cryptography”
while placing no limitations on those used for “authentication”.
Hash function-based message authentication codes were typically
assumed to offer no secrecy and thus were freely exportable. Rivest
suggested that his solution pointed to a loophole that weakened the
law.

The security of this solution depends to a large extent on the
structure of x and the underlying data. If x contains enough infor-
mation to be interesting in and of itself, the attacker may be able to
pick out the wheat from the chaff without worrying about f or k.

One solution is to break the file into individual bits. This mecha-
nism is a bit weak, however, because there will be only two valid sig-
natures: f(k0) and f(k1). Rivest overcomes this problem by adding
a counter or nonce to the mix so that each packet looks like this:
(xi, i, f(kixi)). This mechanism is not that efficient because each bit
may require a 80-200-bit-long packet to carry it.

This solution can easily be mixed with the other techniques that
define the order. One function, f , can identify the true elements
of the message and another function, g, can identify the canonical
order for the elements so the information can be extracted.

13.10 Port Knocking

When bits travel across the Internet, they carry two major pieces of
information that act as the address: the IP address and the port. The
IP address has traditionally been four bytes written as four base 10
numbers separated by periods (e.g. 55.123.33.252), an old format
that is gradually being eclipsed by IPv6 a newer version with longer
addresses to solve the problems of overcrowding. The IP address
generally makes a clear distinction between machines, while the port
generally makes a distinction between functions.

So information sent to a different IP address will generally go to
a different machine, although this is often confused by the way that
some machines, especially servers, will do the work of multiple ma-
chines. Information sent to different ports will generally end up in
the control of different software packages that will interpret it differ-
ently. Telnet generally uses port 25, while webservers generally an-
swer requests on port 80. There are dozens of standard and not so
standard choices that computers generally follow but don’t have to
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do so. Some web servers answer port 8080 while some users try to
route data through port 80 trying to act like the data from a web site.

Network administrators have tried to curtail some behavior on
their branches of the Internet by blocking particular ports. If the
administrator doesn’t like web sites operating inside the subnetwork,
the administrator can program the routers to refuse to deliver all
information heading to port 80. Spammers can usually be locked out
by shutting down all traffic going to port 25, a technique that also
effectively blocks all legitimate messages too.

What’s a network administrator to do? There’s no easy way to tell
the difference between good and bad information by looking at the
port numbers alone. Good and bad people use them for good and
bad reasons.

One neat idea is port knocking, a virtual implementation of the
idea used by speakeasies and other places of ill repute to exclude
police and other undesirables by only opening a door if the person
uses the right pattern of knocks. The right pattern of sounds, say
“rap rap RAP [pause] RAP RAP”, is equivalent to a computer trying
to open a connection to ports 152, 222, and 13 in short succession.
A firewall might deny access to all outsiders who don’t present the
right pattern of data (ports 152, 222, and 13) at the beginning of a
session and block data from other IP addresses that don’t present
the right sequence. The firewall doesn’t need to read the data itself,
just the quick pattern of requests for connection to particular ports.
[Krz03b, Krz03a]A nice collection of

articles and pointers to
software packages can

be found at
portknocking.org.

This technique is an ideal application of the way to hide infor-
mation inside of a list described in this chapter. A user and a fire-
wall could agree on the correct pattern for the day by computing
h(salt|port|password) for each available port. (It would make sense
to exclude the ports that might be left open, say 23, 25 and 80.) Then
these hashed values could be sorted and the first n used as the port
knocking sequence. The salt could consist of some random informa-
tion and, perhaps, the date or time that the sequence would work.

The port knocking could also encrypt a message by permuting the
available port numbers according to the algorithms in this chapter.

13.10.1 Enhancing Port Knocking

In recent years, port knocking has captured the imagination of a
number of protocol designers who’ve found a number of ways to re-
vise and extend the idea to enhance its security [Jea06, deG07]:

One Time Pads The desirable sequence can only be used once and
then it is forgotten. This might be implemented by adding a
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counter to the salt used to compute h(salt|port|password). Af-
ter each successful use, the counter in the salt is incremented
and the old version is no longer useful.

Challenge-Response Knocking If one knocking sequence is good,
then two or three might be more secure. If Alice wants Bob
to open up, Alice can present the right sequence of knocks
for the day. Then Bob could return the favor and send some
challenge value back to Alice. It could go in the clear or it
could be further encrypted by turning it into a sequence of
knocks that Bob makes on Alice’s firewall. Alice decodes this
challenge value or nonce and then uses it to compute a new
sequence of knocks to return. Perhaps Alice must compute
h(salt|port|password|nonce) for each port. Then Bob can really
be certain that Alice is trustworthy.

Letting Bob challenge Alice to create a new sequence of knocks
removes the danger that a casual eavesdropper will be able to
figure out the right sequence of ports by simply replaying the
traffic pattern. Alice’s second set of knocks will be different with
each different nonce and only someone who knows the correct
values of salt and password will be able to compute the right
sequence of ports.

Monotonically Increasing Knocks If port requests are sent across
the Internet in quick succession, they may arrive in a different
order than they departed. This scrambling can confound an al-
gorithm that is depending on a particular sequence. One trick
is to remove the ordering and just look at the choice of ports. If
Alice requests access by computing the first n ports after sort-
ing h(salt|port|password), then it will suffice for Alice to present
those firstn ports in any sequence. That is, if the correct order is
ports 1552, 299, 441, and 525, then any of the 24 ways of knock-
ing on these four ports will be enough to gain access.

It should be clear that this cuts down the brute-force attack by
a factor of n!, making it seem a bit weaker, but this approach
can increase the stealth by reducing the chance for a consistent
pattern. Alice may knock on ports 1552, 299, 441,and 525 at one
moment and 441525, 299, and 1552 at the next.

Fake Ports There’s no reason why the sequence of ports needs to be
limited to the correct sequence and only that sequence. Bob
might allow Alice to mix in as many as m different spurious
values chosen at random. As long as the n correct ports arrive
within a window of n + m knocks, then Bob will assume that
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Alice is correct. This can also increase the stealth by preventing
the same pattern of n ports from emerging.

Subsets Another way to make the process even trickier is to group
together sets of ports, call them P1, P2, . . .. When the algorithm
says knock on port i, it chooses one of the ports from set Pi,
adding more confusion.

There is no end to the complexity and deception that can be
added to these algorithms. The only limitation is that port knocking
is relatively expensive. A “knock” consists of a UDP or TCP packet
that may have several hundred bits even though it is only conveying
16 bits of information, the port number. Mixing in fake ports with
a challenge and response can really slow things down. This is why
some are examining packing all of the authentication information
into a single packet, a technique often called, unsurprisingly, single
packet authentication.

13.11 Continuous Use and Jamming

There is no reason why the information needs to be encoded in one
set of n items and n! different permutations. R. C. Chakinala, Abishek
Kumarasubramanian, R. Manokaran, G. Noubir, C.Pandu Rangan,
and Ravi Sundaram imagined using the technique to send informa-
tion by distorting the order of packets traveling over a TCP-IP net-
work. These packets are not guaranteed to arrive in the same se-
quence in which they left the sender and so the packets include a
packet number to allow the recipient to put them back in the correct
order. Sometimes packets take different paths through the network
and the different paths reorder things. This is an opportunity to hide
information by purposely misordering the packets as they leave and
hiding a signal in this misordering. [CKM+06]

In a long file transfer, there’s no obvious beginning and end of
the set of objects and so it’s possible to imagine a more continuous
transfer of data by modifying the order of successive groups. It would
be possible, for instance, to reorder every 5 packets in groups and
send along log25! bits.

If some intermediary wants to distort the flow of packets to try
and jam any communications, the game becomes a bit more inter-
esting. Imagine that the sender can only modify the position of a
packet by a few slots, say +/ − 2. The jammer can only change the
position of a few. The result can be analyzed by game theory to de-
termine the maximal data throughput that the sender can produce
and the maximum amount of data that the jammer can stop.
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13.12 Summary

The order of objects in a set is a surprisingly complex stream of infor-
mation that offers a correspondingly large opportunity for stegano-
graphy. Sometimes an adversary may choose to change the order of a
list of objects in the hope of destroying some steganography. Some-
times the data objects take different asynchronous paths. In either
case, a hidden canonical order defined by some keyed function, f , is
a good way to restore the order and withstand these attacks.

The idea can also be turned on its head to store information.
Changing the order of objects requires no change in the objects
themselves, eliminating many of the statistical or structural forms
of steganalysis described in Chapter 17. There are no anolomies cre-
ated by making subtle changes. The result can hold a surprisingly
large amount of information. n objects can store logn! bits.

Of course, sometimes subtle changes may need to be made to add
cover. Many lists are sorted alphabetically or according to some other
field of the data. This field could be an artificially generated system
t act as a cover. A list of people, for instance, might be sorted by a
membership number generated randomly to camoflage the reason
for sorting it.

The Disguise Any set of n items, {x1, . . . , xn}, can conceal log n! bits
of information in the sorted order. This information can be
keyed or hidden by sorting on f(xi) instead of xi, where f is
an encryption or hash function.

Some decoy packets can also distract eavesdroppers if another
function, g, can be used to create a secure signature or mes-
sage authentication code that distinguishes between valid and
invalid packets.

Sometimes the attacker will rearrange the order of a set of ob-
jects to destroy a message. Sorting the objects with the function
f before processing them is a good defense.

How Secure Is It? The security depends on both the quality of the
camouflaging data and the security of f . If the set of objects
is a list that seems completely random, then it is unlikely to
receive any scrutiny. The information can only be extracted if
the attacker discovers the true order of the set— something that
a solid encryption or hash function can effectively prevent.

How to Use It? Choose your objects for their innocence, choose an
encryption function, choose a key, compute f(xi) for all ob-
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jects, sort on this value to get the so-called “true order”, use the
reordering function to insert the data, and ship with this order.

Further Reading

• Rennie deGraaf, John Aycock and Michael Jacobson add
some authentication to port knocking by mixing in stan-
dard authentication algorithms and public-key cryptogra-
phy. [dAJ05]

• David Glaude and Didier Barzin created SteganoGifPalet-
teOrder which hides information in the permutation of
the colors in the GIF palette in the same manner as Gif-
Shuffle. They have a nice description of the algorithm. See
http:/users.skynet.be/glu/sgpo.htm

• There’s been a great deal of exploration of how to hide
basic information in TCP/IP protocols. (And much of this
applies to other network protocols because it relies upon
general weaknesses in exchanges.) See, for instance, work
by Joanna Rutkowska [Rut06],
Steven J. Murdoch and Stephen Lewis [ML05, Mur06], and
Eugene Tumoian and Maxim Anikeev. [TA05]

• Mihir Bellare and Alexandra Boldyreva looked at the secu-
rity of chaffing and winnowing in [BB00b].



Chapter 14

Spreading

14.1 A New Job

We open with a shot of a fishing boat where a father and son work on
tempting the fish with seductive offers of worms and minnows.
Father: It makes me happy to have my son come home from col-

lege and stay with us.
Son: Ah, quit it.
Father: No. Say something intelligent. I want to see what I got for

my money.
Son: Quit it.
Father: No. Come on.
Son: The essential language of a text is confusion, distraction,

misappropriation, and disguise. Only by deconstructing
the textual signifiers, assessing and reassessing the semi-
otic signposts, and then reconstructing a coherent yet di-
vergent vision can we truly begin to apprehend and per-
haps even comprehend the limits of our literary media.

The son reels in his line and begins to switch the lures.
Father: It makes me proud to hear such talk.
Son: I’m just repeating it.
Father: A degree in English literature is something to be proud of.
Son: Well, if you say so.
Father: Now, what are you going to do for a job?
Son: Oh, there aren’t many openings for literature majors. A

friend works at a publishing house in New York...
The son trails off, the father pauses, wiggles in his seat, adjusts his line
and begins.

277
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Father: There’s no money in those things. College was college. I
spoke to my brother Louie, your uncle, and he agrees with
me. We want you to join the family business.

Son: The import/export business? What does literature have to
do with that?

Father: We’re not technically in import and export.
Son: But.
Father: Yes, that’s what the business name says, but as you put it,

there’s a bit of confusion, distraction and disguise in that
text.

Son: But what about the crates of tomatoes and the endless
stream of plastic goods?

Father: Subtext. We’re really moving money. We specialize in
money laundering.

Son: What does money have to do with tomatoes?
Father: Nothing and everything. We move the tomatoes, they

pay us for the tomatoes, someone sells the tomatoes, and
in the end everyone is happy. But when everything is
added up, when all of the arithmetic is done, we’ve moved
more than a million dollars for our friends. They look like
tomato kings making a huge profit off of their tomatoes.
We get to take a slice for ourselves.

Son: So it’s all a front?
Father: It’s classier if you think of the tomatoes as a language

filled with misdirection, misapprehension, and misun-
derstanding. We take a clear statement written in the lan-
guage of money, translate it into millions of tiny tomatoe
sentences, and then, through the magic of accounting, re-
turn it to the language of cold, hard cash.

Son: It’s a new language.
Father: It’s an old one. You understand addition. You understand

the sum is more than the parts. That’s what we do.
Son: So what do you want from me?
Father: You’re now an expert on the language of misdirection.

That’s exactly what we need around the office.
Son: A job?
Father: Yes. We would pay you three times whatever that publish-

ing firm would provide you.
Son: But I would have to forget all of the words I learned in

college. I would need to appropriate the language of the
stevedores and the longshoremen.

Father: No. We want you to stay the way you are. All of that
literature stuff is much more confusing than any code we
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could ever create.
Father and son embrace in a happy ending unspoiled by confusion or
misdirection.

14.2 Spreading the Information

Many of the algorithms in this book evolved during the modern dig-
ital era where bits are bits, zeros are zeros and ones are ones. The
tools and the solutions all assume that the information is going to be
encoded as streams of binary digits. Tuning the applications to this
narrow view of the world is important because binary numbers are
the best that the modern machines can do. They are still capable of
hair-splitting precision, but they do it by approximating the numbers
with a great deal of bits.

The algorithms in this chapter take a slightly different approach.
While the information is still encoded as ones or zeros, the theory
involves a more continuous style. The information at each location
can vary by small amounts that may be fractions like .042 or 1.993.
This detail is eventually eliminated by rounding them off, but the
theory embraces these fractional values.

This is largely because the algorithms imitate an entire collec-
tion of techniques created by radio engineers. Radio engineers at-
tacked a similar problem of hiding information in the past when
they developed spread-spectrum radio using largely analog ideas.
In the beginning, radios broadcast by pumping power in and out of
their antenna at a set frequency. The signal was encoded by chang-
ing this power ever so slightly. Amplitude modulated radios (AM)
changed the strength of signal while frequency modulated radios
(FM) tweaked the speed of the signal a slight amount. To use the
radio engineers words, all of the “energy” was concentrated at one
frequency.

spread-spectrum radio turned this notion on its head. Instead of
using one frequency, it used several. All of the energy was distributed
over a large number of frequencies— a feat that managed to make
radio communication more secret, more reliable, more efficient and
less susceptible to jamming. If the signal lived on many different fre-
quencies, it was much less likely that either intentional or uninten-
tional interference would knock out the signal. Several radios could
also share the same group of frequencies without interfering. Well,
they might interfere slightly, but a small amount wouldn’t disrupt the
communications.

Many of the techniques from the spread-spectrum radio world
are quite relevant today in digital steganography. The ideas work well
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if the radio terminology is translated into digital speak. This is not as
complicated as it looks. Plus, using digital metaphors can offer a few
additional benefits which may be why most spread-spectrum radios
today are entirely digital.

The basic approach in radio lingo is to “spread the energy out
across the spectrum”. That is, place the signal in a number of dif-
ferent frequencies. In some cases, the radios hop from frequency to
frequency very quickly in a system called time sequence. This fre-
quency hopping is very similar to the technique of using a random
number generator to choose the locations where the bits should be
hidden in a camouflaging file. In some cases, the same random num-
ber generators developed to help spread spectrum radios hop from
frequency to frequency are used to choose pixels or moments in an
audio file.

Sometimes the systems use different frequencies at the same
time, an approach known as direct sequence. This spreads out the
information over the spectrum by broadcasting some amount of in-
formation at one frequency, some at another, etc. The entire message
is reassembled by combining all of the information.

The way the energy is parceled out is usually pretty basic. At
each instance, the energy being broadcast at all of the frequencies
is added up to create the entire signal. This is usually represented
mathematically by an integral. Figure 14.1 shows two hypothetical
distributions. The top integrates to a positive value, say 100.03, and
the bottom integrates to 80.2. Both functions look quite similar. They
have the same number of bumps and the same zero values along the
x-axis. The top version, however, has a bit more “energy” above the x-
axis than the other one. When all of this is added up, the top function
is sending a message of “100.03”

spread-spectrum radio signals like this are said to be resistant
to noise and other interference caused by radio jammers. Random
noise along the different frequencies may distort the signal, but the
changes are likely to cancel out. Radio engineers have sophisticated
models of the type of noise corrupting the radio spectrum and they
use the models to tune the spread-spectrum algorithms. Noise may
increase the signal at one frequency, but it is likely to decrease it
somewhere else. When everything is added together in the integral
the same result comes out. Figure 14.2 shows the same signals from
Figure 14.1 after a bit of noise corrupts them.

A radio jammer trying to block the signal faces a difficult chal-
lenge. Pumping out random noise at one frequency may disrupt a
signal concentrated at that single frequency, but it only obscures one
small part of the signal spread out over a number of frequencies. The
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Figure 14.1: The energy spread over a number of different frequen-
cies is computed by integration. The top function integrates to say
100.03 and the bottom integrates to 80.2. Both look quite similar but
the top one is a bit more top-heavy.
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Figure 14.2: The signals from Figure 14.1 after being changed by a bit
of random noise. The integrals still come out to 100.03 and 80.2.
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effects of one powerful signal are easy to filter out by placing limits
on the amount of power detected at each frequency. These algorithms for

spreading information
out over a number of
bits are very similar to
the error-correcting
codes described in
Chapter 3.

If a jammer is actually able to identify the band of frequencies
used for the entire spread-spectrum signal, it is still hard to disrupt
it by injecting random noise everywhere. The noise just cancels out
and the signal shines through after integration. In practice, there are
ways to jam spread-spectrum signals, but they usually require the
jammer to pump out significantly more power. Large amounts of
noise can disrupt the system.

14.3 Going Digital

The spread-spectrum solutions use the analog metaphors of contin-
uous functions measuring “energy” that are evaluated using integra-
tion. In the digital world, integers measuring any quantity define dis-
crete functions. In many cases, they measure energy. The integers
that define the amount of red, blue and green color at any particular
pixel measure the amount of red, green and blue light coming from
that location. The integers in a sound file measure the amount of en-
ergy traveling as a pressure wave. Of course, the same techniques
also work for generic numbers that measure things besides energy.
There’s no reason why these techniques couldn’t be used with an ac-
counting program counting money.

A “spread-spectrum” digital system uses the following steps:

1. Choose the Locations If the information is going to be spread
out over a number of different locations in the document, then
the locations should be chosen with as much care as practical.
The simplest solution is choose a block of pixels, a section of an
audio file, or perhaps a block of numbers. More complicated
solutions may make sense in some cases. There’s no reason
why the locations can’t be rearranged, reordered, or selected as
directed by some keyed algorithm. This might be done with a
sorting algorithm from Chapter 13 to find the right locations
or a random number generator that hops from pixel to pixel
finding the right ones.

2. Identify the Signal Strength Spread spectrum solutions try to
hide the signal in the noise. If the hidden signal is so much
larger than the noise that it competes with and overwhelms the
main signal, then the game is lost.

Choosing the strength for the hidden signal is an art. A strong
signal may withstand the effects of inexact compression algo-
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rithms but it also could be noticeable. A weaker signal may
avoid detection by both a casual user and anyone trying to re-
cover it.

3. Study the Human Response Many of the developers of spread-
spectrum solutions for audio files or visual files study the limits
of the human’s senses and try to arrange for their signals to stay
beyond these limits. The signal injected into an audio file may
stay in the low levels of the noise or it may hide in the echoes.

Unfortunately, there is a wide range in human perception.
Some people have more sensitive eyes and ears. Everyone can
benefit from training. Many spread-spectrum signal designers
have developed tools that fooled themselves and their friends,
but were easily detected by others.

4. Inject the Signal The information is added to the covering data
by making changes simultaneously in all of the locations. If the
file is a picture, then all of the pixels are changed by a small
amount. If it’s a sound file, then the sound at each moment
gets either a bit stronger or a bit weaker.

The signal is removed after taking the same steps to find the right
locations in the file.

Many approaches to spread-spectrum signal hiding use a mathe-
matical algorithm known as the Fast Fourier Transform. This uses
a collection of cosine and sine functions to create a model of the
underlying data. The model can be tweaked in small ways to hide
a signal. These approaches might be said to be everything in par-
allel. More modern variations use only the cosine (Discrete Cosine
Transform), the sine (Discrete Sine Transform), or more complicated
waveforms altogether (Discrete Wavelet Transform).

14.3.1 An example

Figure 14.3 shows the graph of .33 seconds from a sound file with
samples taken 44,100 times per second. The sound file records the
sound intensity with a sequence of 14, 976 integers that vary from
about 30, 000 to about−30, 000. Call these xi, where i ranges between
0 and 14975.

How can information be distributed throughout a file? A spread-
spectrum approach is to grab a block of data and add small parts of
the message to every element in the block. Figure 14.4 shows a graph
of the data at the moments between 8200 and 8600 in the sound file.
A message can be encoded by adding or subtracting a small amount
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Figure 14.3: A graph of a .33 seconds piece from a sound file.
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Figure 14.4: A small section of Figure 14.3 from range (8200,8600).

from each location. The same solution can be used with video data
or any other data source that can withstand small pertubations.

Here are the raw values between 8250 and 8300: 2603, 2556, 2763,
3174, 3669, 4140, 4447, 4481, 4282, 3952, 3540, 3097, 2745, 2599, 2695,
2989, 3412, 3878, 4241, 4323, 4052, 3491, 2698, 1761, 867, 143, -340,
-445, -190, 203, 575, 795, 732, 392, -172, -913, -1696, -2341, -2665,
-2579, -2157, -1505, -729, 6, 553, 792, 654, 179, -548, -1401, -2213 .

The values in the range (8200, 8600) add up to 40, 813, or an aver-
age of about 102.

A basic algorithm encodes one bit by choosing some strength
factor, S, and then arranging for the absolute value of the average
value of the elements to be above S if the message is a 1 and below S
if the message is a 0.

Choosing the right value ofS for this basic algorithm is something
of an art that is confounded by the size of the blocks, the strength
of the real signal, the nature of the sound, and several other factors.
Let’s imagine S = 10. If the message to be encoded is 1, then nothing
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needs to be done. The average value of 102 is already well above 10.
If the message is 0, however, the average value needs to be re-

duced by at least 92 and perhaps more if there’s going to be any mar-
gin of error. Subtracting 100 from each element does not distort the
signal too much when the values range between ±7500. Of course,
some elements have small values like 6 or−190, and they will be dis-
torted more, but this is well below the threshold of our perception.

A more sophisticated mechanism spreads the distortion propor-
tionately. This can be calculated with this formula:

xi = xi − xi × total change∑ |xi|
If this is reduced to each value, xi, then the sum moves by the amount
of total change.

This approach has several advantages over simply encoding the
information in the least signficant bit because the data is spread over
a larger block. Any attacker who just flips a random selection of the
least signficant bits will wipe out the least significant bit message,
but will have no effect on this message. The random changes will
balance out and have no net effect on the sum. If the absolute value
of the average value is over S, then it will still be over S. If it was
under, then it will still be under.

Random noise should also have little affect on the message if the
changes balance out. A glitch that adds in one place will probably
be balanced out by a glitch that subtracts in another. Of course, this
depends on the noise behaving as we expect. If the size of the blocks
is big enough, the odds suggest that truly random noise will balance
itself.

The mechanism does have other weaknesses. An attacker might
insert a few random large values in places. Changing several small
elements of 100 to 30, 000 is one way to distort the averages. This
random attack is crude and might fail for a number of reasons. The
glitches might be perceptable and thus easily spotted by the parties.
They could also be eliminated when the sound file is played back.
Many electronic systems remove short, random glitches.

Of course, there are also a number of practical limitations. Many
compression algorithms use only a small number of values or quanta
in the hope of removing the complexity of the file. 8-bit μ-law encod-
ing, for instance, only uses 256 possible values for each data element.
If a file were compressed with this mechanism, any message encoded
with this technique could be lost when the value of each element was
compressed by converting it to the closest quantized value.

There are also a great number of practical problems in choosing
the size of the block and the amount of information it can carry. If the
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blocks are small, then it is entirely possible that the signal will wipe
out the data.

The first part of Figure 14.4, for instance, shows the data between
elements x8200 and x8300. Almost all are above 0. The total is 374, 684
and the average value is 3746.84. Subtracting this large amount from
every element would distort the signal dramatically.

Larger blocks are more likely to include enough of the signal to
allow the algorithm to work, but increasing the size of the block re-
duces the amount of information that can be encoded.

In practice, blocks of 1000 elements or 1/44th of a second seem
to work with a sound file like the one displayed in Figure 14.3. The
following table shows the average values in the blocks. The average
values are about 1% of the largest values in the block. If S is set to be
around 3%, then the signal should be encoded without a problem.

x1 to x1000 19.865
x1000 to x1999 175.589
x2000 to x2999 -132.675
x3000 to x3999 -354.728
x4000 to x4999 383.372
x5000 to x5999 -111.475
x6000 to x6999 152.809
x7000 to x7999 -154.128
x8000 to x8999 -59.596
x9000 to x9999 153.62
x10,000 to x10999 -215.226

14.3.2 Synchronization

This mechanism is also susceptible to the same synchronization
problem that affects many watermarking and information hiding al-
gorithms, but it is more resilient than many. If a significant number
of elements are lost at the beginning of the file, then the loss of syn-
chronization can destroy the message.

This mechanism does offer a gradual measure of the loss of syn-
chronization. Imagine that the block sizes are 1000 elements. If only
a small number, say 20, are lost from the beginning of the file, then
it is unlikely that the change will destroy the message. Spreading the
message over the block ensures that there will still be 980 elements
carrying the message. Clearly, as the amount of desynchronization
increases, the quality of the message will decrease, reaching a peak
when the gap reaches one half of the block size. It is interesting to
note that the errors will only occur in the blocks where the bits being
encoded change from either a zero to a one or a one to a zero.
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Synchronization can also be automatically detected by attempt-
ing to extract the message. Imagine that the receiver knows that a
hidden message has been encoded in a sound file but doesn’t know
where the message begins or ends. Finding the correct offset is not
hard with a guided search.

The message might include a number of parity bits, and a basic
error-detecting solution. That is, after every eight bits, an extra parityChapter 3 discusses

error-detecting and
error-correcting codes.

bit is added to the stream based on the number of 1s and 0s in the
previous eight bits. It might be set to 1 if there’s an odd number and 0
if there’s an even number. This basic error detection protocol is used
frequently in telecommunications.

This mechanism can also be used to synchronize the message
and find the location of the starts of the blocks through a brute-force
search. The file can be decoded using a variety of potential offsets.
The best solution will be the one with the greatest number of correct
parity bits. The search can be made a bit more intelligent because the
quality of the message is close to a continuous function. Changing
the offset a small amount should only change the number of correct
parity bits by a correspondingly small amount.Many attacks like the

StirMark tests destroy
the synchronization.
Chapter 13 discusses

one way to defend
against it.

More sophisticated error-correcting codes can also be used. The
best offset is the one that requires the fewest number of corrections
to the bit stream. The only problem with this is that more correcting
power requires more bits, and this means trying more potential off-
sets. If there are 12 bits per word and 1000 samples encoding each
bit, then the search for the correct offset must try all values between
0 and 12000.

14.3.3 Strengthening the System

Spreading the information across multiple samples can be strength-
ened by using another source of randomness to change the way that
data is added or subtracted from the file. Let αi be a collection of co-
efficients that modify the way that the sum is calculated and the sig-
nal is extracted. Instead of computing the basic sum, calculate the
sum weighted by the coefficients:

∑
αixi.

The values of α can act like a key if they are produced by a crypto-
graphically-secure random number source. One approach is to use
a random bit stream to produce values of α equal to either +1 or −1.
Only someone with the same access to the random number source
can compute the correct sum and extract the message.
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The process also restricts the ability of an attacker to add random
glitches in the hope of destroying the message. In the first example,
the attacker might always use either positive or negative glitches and
drive the total to be either very positive or very negative. If the values
of α are equally distributed, then the heavy glitches should balance
out. If the attacker adds more and more glitches in the hope of ob-
scuring any message, they become more and more likely to cancel
each other out.

Clearly, the complexity can be increased by choosing different
values of α such as 2, 10 or 1000, but there do not seem to be many
obvious advantages to this solution.

14.3.4 Packing Multiple Messages

Random number sources like this can also be used to select strange
or discontinuous blocks of data. There’s no reason why the elements
x1 through x1000 need to work together to hide the first bit of the mes-
sage. Any 1000 elements chosen at random from the file can be used.
If both the message sender and the receiver have access to the same
cryptographically secure random number stream generated by the
same key, then they can both extract the right elements and group
them together in blocks to hide the message.

This approach has some advantages. If the elements are chosen
at random, then the block sizes can be significantly smaller. As noted
above, the values between x8200 and x8300 are largely positive with a
large average. It’s not possible to adjust the average up or down to be
larger or smaller than a value, S, without signficantly distorting the
values in the block. If the elements are contiguous, then the block
sizes need to be big to ensure that they’ll include enough variation
to have a small average. Choosing the elements at random from the
entire file reduces this problem significantly.

The approach also allows multiple messages to be packed to-
gether. Imagine that Alice encodes one bit of a message by choosing
100 elements from the sound file and tweaking the average to be ei-
ther above or belowS. Now, imagine that Bob also encodes one bit by
choosing his own set of 100 elements. The two may choose the same
element several times, but the odds are quite low that there will be
any significant overlap between the two. Even if Alice is encoding a 1
by raising the average of her block and Bob is encoding a 0 by lower-
ing the average of his block, the work won’t be distorted too much if
very few elements are in both blocks. The averages will still be close
to the same.

Engineering a system depends on calculating the odds and this
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process is straight forward. If there are N elements in the file and k
elements in each block, then the odds of choosing one element in a
block is k

N . The odds of having any overlap between blocks can be
computed with the classic binomial expansion.

In the sound file displayed in Figure 14.3, there are 14, 976 ele-
ments. If the block sizes are 100 elements, then the odds of choosing
an element from a block is about 1

150 . The probability of choosing 100
elements and finding no intersections is about .51, one intersection,
about .35, two intersections, about .11, three intersections, about .02,
and the rest are negligible.

Of course, this solution may increase the amount of information
that can be packed into a file, but it sacrifices resistance to synchro-
nization. Any complicated solution for choosing different elements
and assembling them into a block will be thwarted if the data file
loses information. Choosing the 1st, the 189th, the 542nd, and the
1044th elements from the data file fails if even the first one is deleted.

14.4 Comparative Blocks

The first section spread the information over a block of data by rais-
ing the average so it was larger or smaller than some value, S. The
solution works well if the average is predictable. While the examples
used sound files with averages near zero, there’s no reason why other
data streams couldn’t do the job if their average was known before-
hand to both the sender and the recipient.

Another solution is to tweak the algorithm to adapt to the data at
hand. This works better with files like images, which often contain
information with very different statistical profiles. A dark picture of
shadows and a picture of a snow-covered mountain on a sunny day
have significantly different numbers in their file. It just isn’t possible
for the receiver and the sender to predict the average.

Here’s a simple solution:

1. Divide the elements in the file into blocks as before. They can
either be contiguous groups or random selections chosen by
some cryptographically secure random number generator.

2. Group the blocks into pairs.

3. Compute the averages of the elements in the blocks.

4. Compare the averages of the pairs.

5. If the difference between the averages is larger than some
threshold, (|B1 −B2| > T ), throw out the pair and ignore it.
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6. If the difference is smaller than the threshold, keep the pair and
encode information in it. Let a pair where B1 > B2 signify a 1
and let a pair where B1 < B2 signify a 0. Add or subtract small
amounts from individual elements to make sure the informa-
tion is correct. To add some error resistance, make sure that
|B1 −B2| > S, where S is a measure of the signal strength.

Throwing out wildly different pairs where the difference is greater
than T helps ensure that the modifications will not be too large. Both
the sender and the receiver can detect these wildly different blocks
and exclude them from consideration.

Again, choosing the correct sizes for the blocks, the threshold T
and the signal strength S requires a certain amount of artistic sense.
Bigger blocks mean more room for the law of averages to work at
the cost of greater bandwidth. Decreasing the value of T reduces the
amount of changes that might need to be made to the data in order
to encode the right value at the cost of excluding more information.

One implementation based on the work of Brian Chen and Greg
Wornell hid one bit in every 8×8 block of pixels.[CW00, CW99, Che00,
CMBF08] It compared the 64 pixels in each block with a reference
pattern by computing a weighted average of the difference. Then it
added or subtracted enough to each of the 64 pixels until the com-
parison came out to be even or odd. Spreading the changes over the
64 pixels reduces the distortion.

This reference pattern acted like a key for the quantization by
weighting it. Let this reference pattern be a matrix, wi,j , and the data
be mi,j . To quantize each block, compute:

x =
∑
i,j

wi,jmi,j .

Now, replace x with a quantized value, q, by setting mi,j = mi,j −
wi,j(x − q)/b, where b is the number of pixels or data points in the
block. In the 8 × 8 example above, b would be 64. The distortion is
spread throughout the block and weighted by the values of wi,j .

The reference pattern does not need to be the same for each block
and it doesn’t need even to be confined to any block-like structure. In
the most extreme case, a cryptographically secure pseudo-random
stream could be used to pick the data values at random and effec-
tively split them into weighted blocks.

14.4.1 Minimizing Quantization Errors

In one surprising detail, the strategy of increasing the block size be-
gins to fail when the data values are tightly quantized. Larger blocks
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mean the information can be spread out over more elements with
smaller changes. But after a certain point, the changes become
too small to measure. Imagine, for instance, the simplest case of a
grayscale image, where the values at each pixel range from 0 to 255.
Adding a small amount, say .25, is not going to change the value of
any pixel at all. No one is going to be able to recover the information
because no pixel is actually changed by the small additions.

This problem can be fixed with this algorithm. Let S be the
amount to be spread out over all of the elements in the block. If this
was spread out equally, the amount added to each block would be
less than the quantized value.

While S is greater than zero, repeat the following:

1. Choose an element at random.

2. Increase the element by one quanta. That is, if it is a simple
linearly encoded data value like a pixel, add one quanta to it. If
it is a log-encoded value like an element in a sound file, select
the next largest quantized value.

3. Subtract this amount from S.

The average of all of the elements in the block will still increase,
but only a subset of the elements will change.

14.4.2 Perturbed Quantization

Another solution to minimizing the changes to an image is to choose
the pixels (or other elements) that don’t show the change as readily as
the others. Here’s a basic example. Imagine that you’re going to turn
a nice grayscale image into a black and white image by replacing each
gray value between 0 and 255 with a single value, 0 or 255. This pro-
cess, often called half-toning, was used frequently when newspapers
could only print simple dots.

The easiest solution is to round off the values, turning everything
between 0 and 127 into a 0 and everything between 128 and 255 into
a 255. In many cases, this will be a good approximation. Replacing a
232 with a 255 doesn’t change the result too much. But there may
be a large collection of gray pixels that are close to the midpoint.
They could be rounded up or down and be just as inaccurate. The
perturbed quantization algorithms developed by Jessica J. Fridrich,
Miroslav Goljan, Petr Lisonek and David Soukal focus on just these
pixels. [FGS04, FGLS05, Spi05]

The problem is that while the sender will know the identities of
these pixels, the recipient won’t be able to pick them out. There’s no
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way for the decoder to know which pixels could have been rounded
up or down. The trick to the algorithms is to use a set of linear
equations and working with the perturbable pixels to ensure that the
equations produce the right answer. If the sender and the receiver
both use the same equations, the message will get through. These equations are

often called wet paper
codes and are based on
solutions developed to
work with bad memory
chips with stuck cells.
[FGS04]

Let there be n pixels in the image. Here’s an algorithm for a
way to change the values that are close in order to hide a message,
m0,m1,m2, . . . :

1. Run your quantization algorithm to quantize all of the pixels.
This will produce a set of bits, bi, for 0 ≤ i < n. In our black
and white example, the value of bi is the value after the round-
ing off. In practice, it might be the least-significant bit of the
quantization. When these bits are places in a vector, they are
called b.

2. Examine the quantization algorithm and identify k bits that are
close and could be quantized so that bi could be either a 0 or a 1.
In our black and white example, these might be gray values of
128± ε. The number of bits that are close enough, that is within
±ε, determine the capacity of the image.

3. Construct a k×nbinary matrix,D. This might be shared in pub-
lic, computed in advance, or constructed with a cryptograph-
ically secure pseudo-random stream dictated by a shared pass-
word.

4. Arrange for row i of this matrix to encode message mi. Since
this is a binary matrix with bit arithmetic, this means that the n
entries in row i select a subset of the pixels in the image. When
the bits from these pixels are added up, they should equal mi.
In other words,

Db = m

5. The problem is that Db will not equal m unless we arrange for
some of the b values to change. If we could change all of the
bits in b, then we could simply invert D and compute D′m. If
we can only change k values, we still produce the right answer.
In other words, we need to find some slightly different values,
b̂, where b̂i = bi when bi is not one of the k values that can be
changed. On average, only 50% of the k values will actually be
changed.

6. Gaussian elimination can solve these equations and find the
values for b̂.
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7. Change the values of the k changeable bits so that they’re equal
to b̂. The recipient will be able to use D to find m without
knowing which of the bits were actually changed.

In practice, it often makes sense to work with subsets of the image
when the implementation computes b̂ in O(k3) time.

14.5 Fast Fourier Solutions

Many of the spread-spectrum solutions use a branch of mathemat-
ics known Fourier Analysis or a more modern revision of this known
as Wavelet Analysis. The entire branch is based on the work of Jean-
Baptiste Fourier, who came up with a novel way of modeling a func-
tions using a set of sine and cosine functions. This decomposition
turned out to be quite useful for finding solutions to many differen-
tial equations, and it is often used to solve engineering, chemistry
and physics problems.

The mechanism he proposed is also quite useful for stegano-
graphy because it provides a basic way to embed several signals to-
gether in a larger one. The huge body of scholarship devoted to the
topic makes it easier to test theories and develop tools quickly. One
of the greatest contributions, the so-called Fast Fourier Transform is
an algorithm optimized for the digital data files that are often used to
hide information today.

The basic idea is to take a mathematical function, f , and rep-
resent it as the weighted sum of another set of functions, α1f1 +
α2f2α3f3 . . .. The choice of the values of fi is something of an art and
different choices work better for solving different problems. Some of
the most common choices are the basic harmonic functions like sine
and cosine. In fact, the very popular discrete cosine transform which
is used in music compression functions like the MP3 and the MPEG
video compression functions uses f1 = cos(πx), f2 = cos(2πx),
f3 = cos(3πx), etc. (Figure 14.6 shows the author’s last initial recoded
as a discrete cosine transform.) Much research today is devoted to
finding better and more sophisticated functions that are better suited
to particular tasks. The section on wavelets (Section 14.8) goes into
some of the more common choices.

Much of the mathematical foundation of Fourier Analysis is aimed
at establishing several features that make them useful for different
problems. The cosine functions, for instance, are just one set that is
orthogonal, a term that effectively means that the set is as efficient as
possible. A set of functions is orthogonal if no one function, fi, can
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Figure 14.5: The first four basic cosine functions used in Fourier se-
ries expansions: cos(x), cos(2x), cos(3x) and cos(4x).
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Figure 14.6: The author’s last initial recreated as a Fourier series
adding together the four functions shown in Figure 14.5: 1.0 cos(x) +
.5 cos(2x)− .8 cos(3x) + .3 cos(4x).

be represented as the sum of the others. That is, there are no values
of {α1, α2, . . . αi−1, αi+1, . . .} that exist so that

fi =
∑
i�=j

αjfj .

The set of cosine functions also forms a basis for the set of suffi-
ciently continuous functions. That is, for all sufficiently continuous
functions, f , there exists some set of coefficients, {α1, α2, . . .}, such
that

f =
∑

αjfj.

The fact that the set of cosine functions is both orthogonal and a ba-
sis means that there is only one unique choice of coefficients for each
function. In this example, the basis must be infinite to represent all
sufficiently continuous functions, but most discrete problems never
require such precision. For that reason, a solid discussion of what it
means to be “sufficiently continuous” is left out of this book.

Both of these features are important to steganography. The fact
that each function can be represented only by a unique set of values
{α1, α2, . . .} means that both the encoder and the decoder will be
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working with the same information. The fact that the functions form
a basis mean that the algorithm will handle anything it encounters.
Of course, both of these requirements for the set of functions can
be relaxed, as they are later in the book, if other steps are taken to
provide some assurance.

Incidentally, the fact that there are many different basis functions
means that there can be many different unique representations of
the data. There is no reason why the basis functions can’t be changed
frequently or shared between sender and receiver. A key could be
used to choose a particular basis function and this could hamper the
work of potential eavesdroppers. [FBS96]

14.5.1 Some Brief Calculus

The foundation of Fourier analysis lies in calculus, so a brief intro-
duction is provided in the original form. If we limit f(x) to the range
0 ≤ x ≤ 2v, then the function f can be represented as the infinite
series of sines and cosines:

f(x) =
c0
2

+

∞∑
j=−∞

cj sin(
jπx

v
) + dj cos(

jπx

v
).

Fourier developed a relatively straight forward solution for com-
puting the values of cj and dj , again represented as integrals:

cj =
1

v

∫ 2v

0

f(x) cos(
jπx

v
)dx dj =

1

v

∫ 2v

0

f(x) sin(
jπx

v
)dx

The fact that these functions are orthogonal is expressed by this
fact:

∫
cos(iπx) cos(jπx)dx = 0, ∀i �= j.

The integral is 1 if i = j.
In the past, many of these integrals were not easy to compute for

many functions, f , and entire branches of mathematics developed
around finding results. Today, numerical integration can solve the
problem easily. In fact, with numerical methods it is much easier to
see the relationship between the functional analysis done here and
the vector algebra that is its cousin. If the function f is only known
at a discrete number of points {x1, x2, x3, . . . , xn}, then the equations
for cj and dj look like dot products:



14.6. THE FAST FOURIER TRANSFORM 297

cj =

n∑
i=1

f(xi) cos(jπxi/v) dj =

n∑
i=1

f(xi) sin(jπxi/v).

Discrete approaches are almost certainly going to be more inter-
esting to modern steganographers because so much data is stored
and transported in digital form.

14.6 The Fast Fourier Transform

The calculus may be beautiful, but digital data doesn’t come in conti-
nous functions. Luckily, mathematicians have found versions of the
equations suitable for calculation. In fact, the version for discrete
data known as the Fast Fourier Transform (FFT) is the foundation
for many of the digital electronics used for sound, radio, and images.
Almost all multimedia software today uses some form of the FFT to
analyze data, find the dominant harmonic characteristics, and then
use this information to enhance or perhaps compress the data. Mu-
sicians use FFT-based algorithms to add reverb, dampen annoying
echoes, or change the acoustics of the hall where the recording was
made. Record companies use FFTs to digitize music and store it on
CDs. Teenagers use FFTs again to convert the music into MP3 files.
The list goes on and on.

The details behind the FFT are beyond the scope of this book.
The algorithm uses a clever numerical juggling routine often called
a “butterfly algorithm” to minimize the number of multiplications.
The end result is a long vector of numbers summarizing the strength
of various frequencies in the signal.

To be more precise, an FFT algorithm accepts a vector of n el-
ements, {x0, x1 . . . xn−1, and returns another vector of n elements
{y0, y1 . . . yn−1, where

ys =
1√
n

n∑
r=1

xre
2πi(r−1)(s−1)/n.

This equation is used by Mathematica and its Wavelet Explorer pack-
age, the program that created many of the pictures in this section.
Others use slight variations designed to solve particular problems.

The vector that emerges is essentially a measure of how well each
function matches the underlying data. For instance, the fourth ele-
ment in the vector measures how much the graph has in common
with cos(4× 2πx) + i sin(4 × 2πx).
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Figure 14.7: 256 points calculated from the equation (2 + x
64 ) sin(4 ×

2πx/256).
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Figure 14.8: A graph of the real and imaginary parts of the Fourier
transform computed from the data in Figure 14.7.

Figure 14.7 shows a graph of the function (2+ x
64 ) sin(4×2πx/256).

If the 256 points from this example are fed into a Fourier transform,
the result has its largest values at the y4 and the y251 position. The
second spike is caused by aliasing. The values in the first n

2 elements
report the Fourier transform of the function computed from left to
right and the second n

2 elements carry the result of computing it from
right to left. The results are mirrors.

Figure 14.8 shows the real and imaginary parts of the Fourier
transform applied to the data in Figure 14.7. Many physicists and
electrical engineers who use these algorithms to analyze radio phe-
nomena like to say that most of the “energy” can be found in the
imaginary part at y4 and y251. Some mathematicians talk about how
Figure 14.8 shows the “frequency space”, while Figure 14.7 shows
the “function space”. In both cases, the graphs are measuring the
amount that the data can be modeled by each element.
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This basic solution from the Fourier transform includes both real
and imaginary values, something that can be confusing and unnec-
cessary in many situations. For this reason, many also use the dis-
crete cosine transform and its cousin the discrete sine transform. Both
have their uses, but sine transforms are less common because they
do a poor job of modeling the data near the point x = 0 when
f(0) �= 0. In fact, most users choose their modeling functions based
on their performance near the endpoints.

Figure 14.5 shows the first four basis functions from one common
set used for the discrete cosine transform:

√
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n
cos(

π

n
(k +

1

2
)x), k = 0, 1, 2, 3, . . .

Another version uses the similar version with a different value at
the endpoint:

√
2

n
cos(

kπ

n
x), k = 0, 1, 2, 3, . . .

Each of these transforms also has an inverse operation. This
is useful because many mathematical operations are easier to do
“in the frequency space”. That is, the amount of energy in each
frequency in the data is computed by constructing the transforms.
Then some basic operations are done on the frequency coefficients,
and the data is then restored with the inverse FFT or DCT. Figure 14.9 shows the 64

different
two-dimensional cosine
functions used as the
basis functions to model
8 × 8 blocks of pixels for
JPEG and MPEG
compression.

Smoothing data is one operation that is particularly easy to do
with the FFT and DCT— if the fundamental signal is repetitive. Fig-
ure 14.10 shows the four steps in smoothing data with the Fourier
transform. The first graph shows the noisy data. The second shows
the absolute value of the Fourier coefficients. Both y4 and y251 are
large despite the effect of the noise. The third graph shows the coef-
ficients after all of the small ones are set to zero. The fourth shows the
reconstructed data after taking the inverse Fourier transform. Natu-
rally, this solution works very well when the signal to be cleaned can
be modeled well by sine and cosine functions. If the data doesn’t fit
this format, then there are usually smaller distinctions between the
big and little frequencies making it difficult to remove the small fre-
quencies.

14.7 Hiding Information with FFTs and DCTs

Fourier transforms provide ideal ways to mix signals and hide infor-
mation by changing the coefficients. A signal that looks like cos(4πx)
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Figure 14.9: The 64 two-dimensional basis functions used in the two-
dimensional discrete cosine transform of an 8 × 8 grid of pixels. The
intensity at each particular point indicates the size of the function.
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Figure 14.10: The four steps in smoothing noisy data with the FFT.
The first graph shows the data; the second, the result of computing
the FFT; the third, data after small values are set to zero; and fourth,
the final result.

can be added by just increasing the values of y4 and y251. The more
difficult challenge is doing this in a way that is hard to detect and re-
sistant to changes to the file that are either malicious or incidental.

Here’s an example. Figure 14.11 shows the absolute value of the
first 600 coefficients from the Fourier transform of the voice signal
shown in Figure 14.3. The major frequencies are easy to identify and
change if necessary.

A simple watermark or signal can be inserted by changing setting
y300 = 100000. The result after taking the inverse transform looks
identical to Figure 14.3 at this level of detail. The numbers still range
from −30, 000 to 30, 000. The difference, though small, can be seen
by subtracting the original signal from the watermarked one. Figure
14.12 shows that the difference oscilliates between 750 and−750 with
the correct frequency.

14.7.1 Tweaking a Number of Coefficients

Ingemar Cox, Joe Kilian, Tom Leighton and Talal Shamoon [CKLS96]
offer a novel way to hide information in an image or sound file by

tweaking the k largest coefficients of an FFT or a DCT of the data.
Call these {y1, y2, . . . yk−1}. The largest coefficients correspond to the
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Figure 14.11: The first 600 coefficients from the Fourier transform of
Figure 14.3.
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Figure 14.12: The result of subtracting the original signal shown in
Figure 14.3 from the signal with an inflated value of y300.
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Figure 14.13: Another solution is to order the coefficients in signifi-
cance. This figure shows the popular zig-zag method to order coef-
ficients from a two-dimensional transform. The ones in the upper
lefthand corner correspond to the lowest frequencies and are thus
the most significant for the eye.

most significant parts of the data stream. They are the frequencies
that have the most “energy” or that do the most for carrying the in-
formation about the final image.

Cox and colleagues suggest that hiding the information in the
largest coefficients may sound counterintuitive, but it is the only
choice. At first glance, the most logical place to hide the data is in
the noise— that is, the smallest coefficients. But this noise is also the
most likely to be modified by compression, printing, or using a less
than perfect conversion process. The most significant parts of the
signal, on the other hand, are unlikely to be damaged without dam-
aging the entire signal.

This philosophy has many advantages. The data is spread out
over numerous data elements. Even if several are changed or deleted,
the information can be recovered. Cox and colleagues demonstrate
that the images carrying this watermark can survive even after being
printed and scanned in again. Of course, the bandwidth is also signif-
icantly smaller than other solutions like tweaking the least signficant
bit.

Their algorithm uses these steps:

1. Use a DCT or FFT to analyze the data.

2. Choose the k largest coefficients and label them {y0, y1, y2, . . . yk−1}
for simplicity. The smaller coefficients are ignored. The first co-
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efficients representing the smallest frequencies will often be in
this set, but it isn’t guaranteed.

Another solution is to order the coefficients according to their
visual significance. Figure 14.13 shows a zig-zag ordering used
to choose the coefficients with the lowest frequencies from a
two-dimensional transform. The JPEG and MPEG algorithms
use this approach to eliminate unnecessary coefficients. Some
authors suggest skipping the first l coefficients in this ordering
because they have such a big influence on the image. [PBBC97]
Choosing the next k coefficients produces candidates that are
important to the description of the image but not too impor-
tant.

3. Create a k-element vector, {b1, b1, b2, . . . bk−1}, to be hidden.
These can be either simple bits or more information rich real
numbers. This information will not be recovered intact in all
cases, so it should be thought of more as an identification num-
ber, not a vector of crucial bits.

4. Choose α, a coefficient that measures the strength of the em-
bedding process. This decision will probably be made via trial
and error. Larger values are more resistant to error, but they
also introduce more distortion.

5. Encode the bit vector in the data by modifying the coefficients
with one of these functions they suggest:

• y′i = yi + αbi

• y′i = yi(1 + αbi)

• y′i = yie
αbi

6. Compute the inverse DCT or FFT to produce the final image or
sound file.

The existence of the embedded data can be tested by reversing
the steps. This algorithm requires the presence of the original image,
a problem that severely restricts its usefulness in many situations.
The steps are:

1. Compute the DCT or FFT of the image.

2. Compute the DCT or FFT of the original image without embed-
ded data.

3. Compute the top k coefficients.
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4. Use the appropriate formula to extract the values of αbi.

5. Use the knowledge of the distribution of the random elements,
bi, to normalize this vector. That is, if the values of bi are real
numbers chosen from a normal distribution around .5, then
determine which value of α moves the average to .5. Remove
α from the vector through division.

6. Compare the vector of {b0, b1, b2, . . . bk−1} to the other known
vectors and choose the best match.

The last step for identifying the “watermark” is one of the most
limiting for this particular algorithm. Anyone searching for it must
have a database of all watermarks in existence. The algorithm usually
doesn’t identify a perfect match because roundoff errors add impre-
cision even when the image file is not distorted. The process of com-
puting the DCTs and FFTs introduces some roundoff errors and en-
capsulating the image in a standard 8-bit or 24-bit format adds some
more. For this reason, the best we get is the most probable match.

This makes the algorithm good for some kinds of watermarks but
less than perfect for hidden communication. The sender and re-
ceiver must agree on both the cover image and some code book of
messages or watermarks that will be embedded in the data.

If these restrictions don’t affect your needs, the algorithm does
offer a number of desirable features. Cox and colleagues tested the
algorithm with a number of experiments that proved its robustness.
They began with several 256× 256 pixel images, distorted the images
and then tested for the correct watermark. They tried shrinking the
size by a factor of 1

2 , using heavy JPEG compression, deleting a re-
gion around the outside border, and dithering it. They even printed
the image, photocopied it, and scanned it back in without removing
the watermark. In all of their reported experiments, the algorithm
identified the correct watermark, although the distortions reduced
the strength.

The group also tested several good attacks that might be mounted
by an attacker determined to erase the information. First, they tried
watermarking the image with four new watermarks. The final test
pulled out all five, although it could not be determined which were
the first and the last. Second, they tried to average together five im-
ages created with different watermarks and found that all five could
still be identified. They indicate, however, that the algorithm may
not be as robust if the attacker were to push this a bit further, say by
using 100 or 1000 different watermarks.
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14.7.2 Removing the Original from the Detection Pro-
cess

Keeping the original unaltered data on hand is often unacceptable
for applications like watermarking. Ideally, an average user will be
able to extract the information from the file without having the orig-
inal available. Many of the watermarking applications assume that
the average person can’t be trusted with unwatermarked data be-
cause they’ll just pirate it.

A variant of the previous algorithm from Cox et al. does not re-
quire the original data to reveal the watermark. A. Piva, M. Barni,
F. Bartolini, and V. Cappellini produced a similar algorithm that
sorts the coefficients to the transform in a predictable way. Figure
14.13, for instance, shows a zig-zag pattern for ordering the coeffi-
cients from a two dimensional transform according to their rough
frequency. If this solution is used, there is no need to keep the origi-
nal data on hand to look for the k most significant coefficients. Many
other variants are emerging.

14.7.3 Tempering the Wake

Inserting information by tweaking the coefficients can sometimes
have a significant effect on the final image. The most fragile sections
of the image are the smooth, constant patches like pictures of a clear,
blue, cloudless summer sky. Listeners can often hear changes in au-
dio files with pure tones or long quiet segments. Data with rapidly
changing values mean there is plenty of texture to hide information.
Smooth, slowly changing data means there’s little room. In this most
abstract sense, this follows from information theory. High entropy
data is a high bandwidth channel. Low entropy data is a low band-
width channel.

Some algorithms try to adapt the strength of a watermark to the
underlying data by adjusting the value of α according to the camou-
flaging data. This means the strength of the watermark becomes a
function of location (αi,j) in images and of time (αt) in audio files.

There are numerous ways to calculate this value of α, but the sim-
plest usually suffice. Taking a window around the point in space
or time and averaging the deviation from the mean is easy enough.
[PBBC97] More sophisticated studies of the human perception sys-
tem may be able to provide a deeper understanding of how our eyes
and ears react to different frequencies.
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Figure 14.14: The Meyer ψ function.

14.8 Wavelets

Many of the algorithms use sines and cosines as the basis for con-
structing models of data, but there is no reason why the process
should be limited to them alone. In recent years, researchers be-
gan devoting new energy to exploring how strange and different
functions can make better models of data– a field the researchers
call wavelets. Figure 14.14 shows one popular wavelet function, the
Meyer ψ function. Some of the

steganography detection
algorithms examine the
statistics of wavelet
decompositions. See
Section 17.6.1.

Wavelet transforms construct models of data in much the same
way Fourier transforms or Cosine transforms do — they compute co-
efficients that measure how much a particular function behaves like
the underlying data. That is, the computation finds the correlation.
Most wavelet analysis, however, adds an additional parameter to the
mix by changing both the frequency of the function and the loca-
tion or window where the function is non-zero. Fourier transforms,
for instance, use sines and cosines that are defined from −∞ to +∞.
Wavelet transforms restrict the influence of each function by sending
the function to zero outside a particular window from a to b.
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Using these localized functions can help resolve problems that
occur when signals change over time or location. The frequencies in
audio files containing music or voice change with time and one of the
popular wavelet techniques is to analyze small portions of the file. A
wavelet transform of an audio file might first use wavelets defined
between 0 and 2 seconds, then use wavelets defined between 2 and 4
seconds, etc. If the result finds some frequencies in the first window
but not in the second, then some researchers say that the wavelet
transform has “localized” the signal.Roz Chast’s collection,

Theories of Everything
lists books “not by the

same author” including
Nothing But Cosines.

The simplest wavelet transforms are just the DCT and FFT com-
puted on small windows of the data. Splitting the data into smaller
windows is just a natural extension of these algorithms.

More sophisticated windows use multiple functions defined at
multiple sizes in a process called multi-resolution analysis. The easi-
est way to illustrate the process is with an example. Imagine a sound
file that is 16 seconds long. In the first pass, the wavelet transform
might be computed on the entire block. In the second pass, the
wavelet transform would be computed on two blocks between 0 and
7 seconds and between 8 and 15 seconds. In the third pass, the trans-
form would be applied to the blocks 0 to 3,4 to 7, 8 to 11, and 12 to
15. This is three stage, multi-resolution analysis. Clearly, it is easier
to simply divide each window or block by two after each stage, but
there is no reason why extremely complicated schemes with multi-
ple windows overlapping at multiple sizes can’t be dreamed up.

Multiple resolution analysis can be quite useful for compression,
a topic that is closely related to steganography. Some good wavelet-
based compression functions use this basic recursive approach:

1. Use a wavelet transform to model the data on a window.

2. Find the largest and most significant coefficients.

3. Construct the inverse wavelet transform for these large coeffi-
cients.

4. Subtract this version from the original. What is left over is the
smaller details that couldn’t be predicted well by the wavelet
transform. Sometimes this is significant and sometimes it isn’t.

5. If the differences are small enough to be perceptually insignif-
icant, then stop. Otherwise, split the window into a number of
smaller windows and recursively apply this same procedure to
the leftover noise.

This recursive, multi-resolution analysis does a good job of com-
pressing many images and sound files. The wider range of choices
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in functions means that the compression can be further tuned to
extract the best performance. There are many different wavelets
available and some are better at compressing some files than others.
Choosing the best one is often as much an art as a science.

In some cases, steganographers suggest that the choice of the
function can also act like a key if only the sender and the receiver
know the particular wavelet.

Are highly tuned
wavelets more or less
stable for information
encoding? That is, can a
small change in a
coefficient be reliably
reassembled later, even
after printing and
scanning? In other
words, how large must
the α term be?

It is not possible to go into the wavelet field in much depth here
because it is more complex and not much of this complexity affects
the ability to hide information.

Most of the same techniques for hiding information with DCTs
and DFTs work well with DWTs. In some cases, they outperform the
basic solutions. It is not uncommon to find that information hidden
with DWTs does a better job of surviving wavelet-based compression
algorithms than information hidden with DCTs or DFTs. [XBA97] Us-
ing the same model for compression and information hiding works
well. Of course, this means that an attacker can just choose a dif-
ferent compression scheme or compress the file with a number of
schemes in the hope of foiling one.

14.9 Modifications

The basic approach to hiding information with sines, cosines or
other wavelets is to transform the underlying data, tweak the coef-
ficients, and then invert the transformation. If the choice of coef-
ficients is good and the size of the change is manageable, then the
result is pretty close to the original.

There are a number of variations on the way to choose the coeffi-
cients and encode some data in the ones that are selected. Here are
some of the more notable:

Identify the Best Areas Many algorithms attempt to break up an im-
age or sound file and identify the best parts for hiding the infor-
mation. Smooth, stable regions turn mottled or noisy if coeffi-
cients are changed even a small amount.

Multi-resolution wavelet transforms are a good tool for identi-
fying these regions because they recursively break up an image
until a good enough model is found. Smooth, stable sections
are often modeled on a large scale, while noisy, detailed sec-
tions get broken up multiple times. The natural solution is to
hide the information in the coefficients that model the small-
est, most detailed regions. This confines the changes to the
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edges of the objects in images or the transitions in audio files,
making it more difficult for the human perception system to
identify them. [AKSK00]

Quantize the Coefficients to Hide Information Many of the trans-
form hiding methods hide information by adding in a water-
mark vector. The information is extracted by comparing the co-
efficients with all possible vectors and choosing the best match.
This may be practical for small numbers of watermarks, but it
doesn’t work well for arbitrary blocks of information.

A more flexible solution is to tweak the coefficients to hide in-
dividual bits. Let Q be some quantization factor. An arbitrary
coefficient, yi, is going to fall between aQ ≤ yi ≤ (a + 1)Q for
some integer, a. To encode a bit, round off yi to the value where
the least significant bit of a is that bit. For example, if the bit
to be encoded is zero and a = 3, then set yi = (a + 1)Q = 4Q.
[KH98]

Any recipient would extract a bit from yi by finding the closest
value of aQ. If the transform process is completely accurate,
then there will be some integer where aQ = yi. If the transform
and inverse transform introduce some rounding errors, as they
often do, then yi should still be close enough to some value of
aQ— if Q is large enough.

The value of Q should be chosen with some care. If it is too
large, then it will lead to larger changes in the value of yi. If it
is too small, then it may be difficult to recover the message in
some cases when error intrudes.

Deepa Kundur and
Dimitrios Hatzinakos

describe a
quantization-based

watermark that also
offers tamper detection.

[KH99]

This mechanism also offers some ability to detect tampering
with the image or sound file. If the coefficients are close to
some value of aQ but not exactly equal to aQ, then this might
be the result of some minor changes in the underlying file. If
the changes are small, then the hidden information can still be
extracted. In some cases, the tamper detection can be useful.
A stereo or television may balk at playing back files with imper-
fect watermarks because they would be evidence that someone
was trying to destroy the watermark. Of course it could also be
the result of some imperfect copying process.

Hide the Information in the Phase The Discrete Fourier Transform
produces coefficients with a real and an imaginary value. These
complex values can also be imagined in polar coordinates as
having a magnitude and an angle. (If yi = a + bi, then a =



14.10. SUMMARY 311

mcos(θ) and b = msin(θ), wherem is the magnitude and θ is the
angle.) Many users of the DFT feel that the transform is more
sensitive to changes made in the angles of the coefficient than
changes made in the magnitude of the coefficients. [RDB96,
LJ00]

This method is naturally adaptive to the size of the coefficients.
Small values are tweaked a small amount if they’re rotated θ+ψ
degrees. Large values are tweaked a large amount.

Changing the angle this way requires a bit of attention to sym-
metry. When the input to a DFT are real values, as they almost
are in steganographic examples, then the angles are symmet-
ric. This symmetry must be preserved to guarantee real values
will emerge from the inverse transform.

Let θi,j stand for the angle of the coefficient (i, j). If ψ is added
to θi,j , then−ψ must be added to θm−i,n−j , where (m,n) are the
dimensions of the image.

14.10 Summary

Spreading the information over a number of pixels or units in a
sound file adds more security and intractability. Splitting each bit
of information into a number of pieces and distributing these pieces
throughout a file reduces the chance of detection and increases re-
sistance to damage. The more the information is spread throughout
the file, the more redundancy blocks attacks.

Many solutions use well-understood software algorithms like the
Fourier transform. These tools are usually quite popular in tech-
niques for adding watermarks because many compression algo-
rithms use the same tools. The watermarks are usually preserved
by compression in these cases because the algorithms use the same
transforms.

The Disguise Information is spread throughout a file by adding small
changes to a number of data elements in the file. When all of
the small changes are added up, the information emerges.

How Secure Is It? The changes are small and distributed so they can
be more secure than other solutions. Very distributed informa-
tion is resistant to attack and change because an attacker must
destroy enough of the signal to change it. The more places the
information is hidden, the harder it is for the attacker to locate
it and destroy it.
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The system can be made much more secure by using a key to
create a pseudo-random bit stream that is added into the data
as it is mixed into the mix. Only the person with the key can
remove this extra encryption.

How to Use It In the most abstract sense, just choose a number of
locations in the file with a pseudo-random bit stream, break
the data into little parts, and add these parts into all of the
locations. Recover the message by finding the correct parts and
adding them together.

This process is very efficient if it is done with a fast Fourier
transform. In these cases, the data can be hidden by tweaking
the coefficients after the transform. This can add or subtract
different frequency data.

Further Reading

Using wavelets, cosines or other functions to model sound and
image data is one of the most common strategies for water-
marking images today. There are too many good papers and
books to list all of them. Some suggestions are:

• Digital Watermarking by Ingemar Cox, Matthew L. Miller
and Jeffrey A. Bloom is a great introduction to using wavelet
techniques to embed watermarks and hide information.
The 2007 edition is broader and it includes a good treat-
ment of steganography and steganalysis. [CMB02, CMB07]

• The proceedings of the International Workshop on Digital
Watermarking are invaluable sources that track the devel-
opment of steganography using wavelets and other func-
tional decomposition. [PK03, KCR04, CKL05, SJ06]

• A good conference focused on watermarking digital con-
tent is the Security, Steganography, and Watermarking of
Multimedia Contents. [DW04, DW05]

• Jessica J. Fridrich, Miroslav Goljan, Petr Lisonek and David
Soukal discuss the use of Michael Luby’s LT Codes as
a foundation for building better versions of perturbed
quantization. These graph-based codes can be faster to
compute than the matrix-based solutions.[Lub02, FGLS05]



Chapter 15

Synthetic Worlds

15.1 Slam Dunks

The Play By Play Man and the Color Man work through a way of
encoding messages in an athletic contest.
PBPM: Things are looking a bit difficult for the Montana Shot

Shooters. They had a lead of 14 points at the halftime, but
now the Idaho Passmakers have hit two three-point shots
in a row. Whammo! They’re back in the game. The Shot
Shooters have called a time out to regroup.

CM: Putting six points on the board that way really sends a
message. They made it look easy.

PBPM: Those two swishes announced, “We’re still here. You can’t
beat us that easily. We’ve got pride, intestinal fortitude
and pluck.” The emphasis is on pluck.

CM: And composure too. They whipped the ball around the
key. They signaled, “We can move the rock and then send
it home. We can pass the pill and force you to swallow it
whole. We know basketball. This is our game too.”

PBPM: There was even a startling subtext to the message. I be-
lieve the Passmakers were telling the Shot Shooters that
this game was different from the last. Yes, the Shot Shoot-
ers beat them at home by 22 points, but that was two
months ago. Now, Jimmy D’s leg is better. He’s quicker.
The injury he sustained while drinking too much in the
viscinity of a slippery pool deck is behind him. The nasty,
golddigging girlfriend is history. The Passmakers are re-
minding the Shot Shooters that a bit of cortisone is a time
proven solution for knee problems, but moving on with

313
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your life and putting bad relationships behind you is an
even better cure for the human heart. That’s the message
I think that is encoded in those three-point shots.

CM: We’re back from the time out now. Let’s see what the Shot
Shooters can do.

PBPM: The Shot Shooters put the ball in play. Carter pauses and
then passes the ball over halfcourt to Martin. He fakes
left, goes right. It’s a wide open lane. He’s up and bam,
bam, bam. That’s quite a dunk. The Passmakers didn’t
even have a defense.

CM: Whoa. That sends a message right there. A dunk like
that just screams, “You think three-point shots scare me?
You think I care about your prissy little passing and your
bouncy jump shots? There was no question where this
ball was going. Nobody in the stands held their breath to
see if it would go in. There was no pregnant pause, no
hush sweeping the crowd, and no dramatic tension. This
ball’s destiny was the net and there was no question about
it.” He’s not being steganographic at all.

15.2 Created Worlds

Many of the algorithms for sound and image files revolve around
hiding information in the noise. Digitized versions of the real world
often have some extra entropy waiting for a signal. But advances in
computer graphics and synthesis mean that the images and sound
often began life in the computer itself. They were not born of the
real world and all of the natural entropy constantly oozing from the
plants, the light, the animals, the decay, the growth, the erosion, the
wind, the rain and who knows what else. Synthetic worlds are, by
definition, perfect.

At first glance, perfection is not good for hiding information.
Purely synthetic images began as mathematics and this means that a
mathematician can find equations to model that world. A synthetic
image of a ball in the light has a perfect gradient with none of the dis-
tortions that might be found in an image of an imperfect ball made
by worn machinery and lit by a mass-produced bulb powered by an
overtaxed electrical system.

These regularities make it easy for steganalysis to identify images
with extra, hidden information. Even slight changes to the least sig-
nificant bit become detectable. The only advantage is that the in-
creasing complexity of the models means that any detection pro-
cess must also become increasingly complex too. This does pro-
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vide plenty of practical cover. Better computer graphics technology
is evolving faster than any algorithm for detecting the flaws. More
complicated models are coming faster than we can suss them out.

If the practical limitations aren’t good enough, the models for syn-
thesizing worlds can be deputized to carry additional information.
Instead of hiding the extra information of the final image or sound
file, the information can be encoded during the synthesis.

There are many opportunities to hide information. Many com-
puter graphics algorithms use random number generators to add a
few bits of imperfection and the realism that comes along with them.
Any of these random number streams can be hijacked to carry data.

The program
MandelSteg, developed
by Henry Hastur, hides
information in the least
significant bit of an
image of the
Mandelbrot Set. This
synthetic image is
computed to seven bits
of accuracy and then the
message is hidden in the
eighth. See page 319.

Another source can be found in tweaking the data used to drive
the synthesis, perhaps by changing the least significant bits of the
data. One version of an image may put the ball at coordinates
(1414, 221) and another version may put it at (1413, 220). A water-
marked version of a movie may encode the true owner’s name in the
position of one of the characters and the moment they start talk-
ing. Each version of the film will have slightly different values for
these items. The rightful owner could be extracted from these subtle
changes.

Wolfgang Funk worked through some of the details for perturbing
three-dimensional models described with polynomial curves in the
NURBS standard. [Fun06] The polynomials describing the objects
are specified by points along the surface known as control points.
New control points can be added without significantly changing the
description of the surface if they’re placed in the right spots. Old
control points can usually be moved a slight amount so the shape
changes a bit. Hao-Tian Wu and Yiu-ming Cheung suggest using a
secret key to traverse the points describing the object and then mod-
ifying their position relative to the centroid of other points. Moving
one direction by a small amount encodes a 0 and moving in the other
direction encodes a 1.[WmC06]

An even more complicated location to hide the information can
be found by changing the physics of the model. The acoustical char-
acteristics of the room are easy to change slightly. The music may
sound exactly the same. The musicians may start playing at exactly
the same time. But the size and characteristics of the echos may
change just a bit.

There are many ways that the parameters used to model the
physics can be changed throughout a file. The most important chal-
lenge is guaranteeing that the changes will be detectable in the image
or sound file. This is not as much of a problem as it can be for other
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approaches. Many of the compression algorithms are tuned to save
space by removing extraneous information. The locations of objects
and the physical qualities of the room, however, are not extraneous.

The timbre of the instruments and the acoustical character of theMarkus Kuhn and Ross
Anderson suggest that

tweaking the video
signal sent to the

monitor can send
messages because the

electron guns in the
monitor emit so much

electro-magnetic
“noise”.[KA98]

recording studio are also not extraneous. Compression algorithms
that blurred these distinctions would be avoided, at least by serious
users of music and image files.

Designing steganographic algorithms that use these techniques
can be something of an art. There are so many places to hide extra
bits that the challenge is arranging for them to be found. The changes
should be large enough to be detected by an algorithm but small
enough to escape casual detection by a human.

15.3 Text Position Encoding and OCR

Chapters 6 and 8 show how to create synthetic textual descriptions
and hide information in the process. A simpler technique for hid-
ing information in text documents is to fiddle with the letters them-
selves.Matthew Kwan

developed a program
called Snow which hides

three bits at the end of
each text line by adding

between 0 and 7 bits.

One of the easiest solutions is to encode a signal by switching be-
tween characters that appear to be close to each other, if not identi-
cal. The number zero,‘0’, and the capital O are close to each other in
many basic fonts. The number ‘1’ and the lower-case l are also often
indistinguishable. The front cover of the Pre-proceedings of the 4th
Information Hiding Workshop carried a message from John McHugh.
[McH01]

If the fonts are similar, information can be encoded by swapping
the two versions. Detecting the difference in printed versions can be
complicated because OCR programs often use context to distinguish
between the two. If the number one is found in the middle of a word
made up of alphanumeric characters, the programs often will fix the
perceived mistake.

If the fonts are identical, the swap can still be useful for hiding
information when the data is kept in electronic form. Anyone read-
ing the file will not notice the difference, but the data will still be ex-
tractable.

This is often taken to extremes by some members of the hacker
subculture who deliberately swap vaguely similar characters. The
number four (‘4’) bears some resemblance to the capital A, the num-
ber three (‘3’) looks like a reversed capital E. This technique can elude
keyword searches and automated text analysis programs, at least un-
til the spelling becomes standardized and well known. Then a docu-
ment with the phrase “3L33t h4XOR5” starts to look suspicious.
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Humans also provide some error correction for basic spelling and
grammatical errors. A hidden message can be encoded by introduc-
ing seemingly random misspellings from time to time. 1

15.3.1 Positioning

Another possible solution is to simply adjust the positions of letters,
words, lines and paragraphs. Typesetting is as much of an art as a
job and much care can be devoted to algorithms for arranging these
letters on a page. Information can always be hidden when making
this decision.

The LATEX and TEX typesetting systems used in creating this book
justify lines by inserting more white space after a punctuation mark
than after a word. American typesetters usually put three times as
much space after punctuation. The French, on the other hand,
avoid this distinction and set both the same. This mechanism is easy
to customize and it is possible to change the “stretchability” of white
space following any character. This paragraph was typeset so the
whitespace after words ending in ‘e’ or ‘r’ received three times as
much space with thesfcode macro.

Changing these values throughout a document to smaller values
is relatively simple to do. In many cases, detecting these changes
is also relatively simple. Many ommercial OCR programs continue
to make minor errors on a page, but steganographic systems using
white space can often be more accurate. Detecting the size of the
whitespace is often easier than sussing out the differences between
the ink marks.

Jack Brassil, Steve Low, Nicholas Maxemchuk and Larry O’Gorman
experimented with many techniques for introducing small shifts to
the typesetting algorithms. [BO96, LMBO95, BLMO95, BLMO94]
This can be easy to do with open source tools like TEX that also in-
clude many hooks for modifying the algorithms. Dima Pröfrock, Mathias

Schlauweg and Erika
Müller suggest that
actual objects in
digitized video can be
moved slightly to encode
watermarks.[PSM06]

One of their most successful techniques is moving the individual
lines of text. They successfully show that entire lines can be moved
up or down one or two six-hundredths of an inch. Moving a line is
easy to detect if any skew can be eliminated from the image. As long
as the documents are close to horizontal alignment, the distance
between the individual lines can be measured with enough precision
to identify the shifted lines.

The simplest mechanism for measuring a line is to “flatten” it
into one dimension. That is, count the number of pixels with ink

1Some might be tempted to blame me and the proofreader for any errors that crept
into the text. But perhaps I was sending a secret message.
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Figure 15.1: Three lines of printed text scanned in at 400 pixels per
inch.
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Figure 15.2: A graph of the sums of the rows in Figure 15.1. White
is usually assigned 255, so the short line in the middle is less pro-
nounced.

in each row. Figure 15.2 shows the result of summing the intensity
of each pixel in the row. The maximum value of each pixel is 255
if it is completely white. For this reason, the second row has a much
smaller valley because it is shorter and made up of more white space.

The structure of the peaks and valleys also varies with the words.
The third row has more capital letters, so there is a more pronounced
valley at the beginning corresponding to the horizontal lines in the
capital letters. The choice of the font also changes the shape of this
graph and can even be used to identify the font. [WH94] Generally,
fonts with serifs make it easier to identify the baselines than sans-
serif fonts, but this is not guaranteed.

More bits can be packed into each line by shifting individual
words up or down a three hundredth of an inch. The detection pro-
cess becomes more complicated because there is less information to
use to measure the horizontal shift of the baseline. Short words are
not as desireable as longer ones. In practice, it may make sense to
group multiple small words together and shift them in a block.

Experiments by Jack Brassil and Larry O’Gorman show that the lo-
cation of the baseline and any information encoded in it can be reg-
ularly extracted from text images even after repeated photocopying.
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Moving the individual lines up or down by one or two six-hundredths
of an inch is usually sufficient to be detected. They do note that their
results require a well-oriented document where the baselines of the
text are aligned closely with the raster lines. Presumably, a more so-
phisticated algorithm could compensate for the error by modeling
the antialiasing, but it is probably simpler to just line up the paper
correctly in the first place.

15.3.2 MandelSteg and Secrets

Any image is a candidate for hiding information, but some are bet-
ter than others. Ordinarily, images with plenty of variation seem
perfect. If the neighboring pixels are different colors, then the
eye doesn’t detect subtle changes in the individual pixels. This
led Henry Hastur to create a program that flips the least signif-
icant bits of a Mandelbrot set. These images are quite popular
and well-known throughout the mathematics community. This pro-
gram, known as MandelSteg, is available with source code from the
Cypherpunks archive (ftp://ftp.csua.berkeley.edu/pub/cypher-
punks/steganography/).

The manual notes that there are several weaknesses in the system.
First, someone can simply run the data recovery program, GifExtract,
to remove the bits. Although there are several different settings, one
will work. For this reason, the author suggests using Stealth, a pro-
gram that will strip away the framing text from a PGP message, leav-
ing only noise.

There are other weaknesses. The Mandelbrot image acts as a one-
time pad for the data. As with any encoding method, the information
can be extracted if someone can find a pattern in the key data. The
Mandelbrot set might look very random and chaotic, but there is still
plenty of structure. Each pixel represents the number of iterations
before a simple equation (f(z) = z2 + c) converges. Adjacent pix-
els often take a different number of pixels, but they are still linked by
their common generating equation. For this reason, I think it may be
quite possible to study the most significant bits of a fractal image and
determine the location from where it came. This would allow some-
one to recalculate the least significant bits and extract the answer.2

2David Joyce offers a Mandelbrot image generator on the Web (http://
aleph0.clarku.edu/djoyce/julia/explorer.html).
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15.4 Echo Hiding

Hiding information in the noise of sound files is a good solution,
but the information may be erased by good compression algorithms.
Daniel Gruhl, Anthony Lu, and Walter Bender suggest tweaking the
basic acousitics of the room to hide information. While this can still
be obscured by sufficiently strong compression, it is often more likely
to withstand standard algorithms. Echoes are part of recordings and
sophisticated listeners with trained ears can detect small changes in
them. Good recording engineers and their compressionists try to
avoid eliminating the echos in an effort to provide as much verisimil-
itude as possible.[GLB96]

Many recording software programs already include the ability to
add (or subtract) echoes from a recording. They can also change the
character of the echo by twiddling with strength of the echo and the
speed at which it vanishes.

Information can be included by changing either the strength or
the length of the decay. Gruhl, Lu and Bender report success with
encoding a single bit by changing the length of time before the echo
begins. A one gets a short wait (about .001 seconds) and a zero gets
a slightly longer wait (about .0013 seconds). More than one bit is en-
coded by splitting up the signal and encoding one bit in each seg-
ment.

The signal is detected by autocorrelation. If the audio signal is
represented by f(t), then the bit is extracted by computing f(t+ .001)
and f(t + .0013). Segments carrying a signal of one will generally
produce a higher value of f(t+ .001) and segments carrying a signal
of zero will produce a higher value of f(t+ .0013).

The bandwidth available depends on the sampling rate and a
lesser amount on the audio file itself. Higher-frequency sounds and
higher sampling rates can provide accurate results with shorter seg-
ments, both alone and in combination. Gruhl, Lu and Bender report
success with segments lasting one-sixteenth of a second.

The success of this algorithm depends, to a large extent, on the
ears listening to it. Some humans are born with good hearing, some
train their ears to hear better, and some do both. The music indus-
try continues to experiment with techniques like echo hiding to add
a watermark to recordings. The results are often quite good, but still
problematic. In many cases, the average human can’t detect the ad-
ditional echo. Many of those who do detect it think the sound is
richer. Still, some of the best artists in the business often reject any
change to their perfect sound. At times, this debate can ring with
irony. Garage bands devoted to making noisy, feedback-rich music
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sometimes complain about an tiny added bit of echo added as a wa-
termark. This process still continues to require an artist’s touch.

15.5 Summary

There is no reason to stop with just moving lines of text or adding
echos. Any synthetic file can be tweaked during the construction.
The real challenge is creating detection algorithms that will detect
and extract the changes from the files. In some cases, the data is
readily available. An animated presentation developed in Macrome-
dia’s Flash format, for instance, could encode information in the po-
sition and timing of the items. This data is easy to extract from the
files using the publicly distributed information about the file format.

If the data can’t be extracted from the file many, many of the tech-
niques developed by the artificial intelligentisia for image and audio
analysis can be quite useful. Machine vision algorithms, for instance,
can extract the position and orientation of animated characters in a
movie. Echo detection and elimination tools used by audio engineers
can also help located echoes carring hidden information.

The Disguise Any synthetic file, be it text, sound, light, or maybe one
day smell, can carry information by tweaking the parameters
during synthesis.

How Secure Is It The security depends, to a large extent, on the na-
ture of the files and the skill of the artist. High-quality graphics
have many places where a slight twist of the head could carry
several bits of information without anyone noticing.

How to Use It Any of the steganographic techniques for tweaking
the least significant bits or adding in signals can be used on the
raw data used to guide the synthesis. To a large extent, all of the
techniques for steganography are just applied at an earlier step
in the process. For instance, an animator may choose the posi-
tion of a character’s limbs and then feed this data to a render-
ing engine. The steganography is done just after the animator
chooses the position but before the rendering.

Further Reading

• Siwei Lyu and Hany Farid analyzed the statistical structure
of the wavelet decomposition of images and found subtle
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but useful differences between the decomposition of nat-
ural scenes and the scenes produced by computer graph-
ics. They were able to train a statistical quantifier to dis-
tinguish between the two. [Lyu05, LF05]



Chapter 16

Watermarks

16.1 A Patent for Watermarking Humans

Why should watermarks be limited to digital files and pieces of pa-
per? Can any way of leaving a trace act like a watermark? We offer the
claims to an unfiled patent application for “implanting a memetic
watermark through humorous banter”.

Claims:

1. A method for implanting and detecting a watermark in a hu-
man subject by

identifying a funny sentence selected from a group of witti-
cisms, whimsical retorts, riddles, puns, limericks, jokes, droll
patter, parodistic remarks, and satirical levity;

offering said funny sentence to said human subject in a man-
ner designed to attract their attention and implant said funny
sentence in their brain and create an instance of a memetic wa-
termark;

detecting the presence of said memetic watermark by repeating
said funny sentence in order to analyze the response of said
human subject, who will either laugh or announce that the joke
was not new to them.

2. The method of claim (1) where said funny sentence is repeated
and repeated until it is firmly implanted in said human sub-
ject’s neural patterns.

3. The method of claim (2) where said funny sentence is repeated
again and again in order to increase the reaction time and vol-

323
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ume of the response of said human subject in order to increase
the detection of said watermark.

4. The method of claim (3) where said funny sentence is repeated
several more times, increasing the sensitivity in said human
subject enough to prompt them to throttle the neck of the next
person to repeat said funny sentence increasing further the
ability to detect said watermark.

16.2 Tagging Digital Documents

One of the most demanding applications for the algorithms that hide
information is protecting copyrighted information. The job requires
the hidden information to somehow identify the rightful owner of the
file in question and, after identifying it, prevent it from being used in
unauthorized ways. This is a tall order because the content industry
has great dreams for digital books, music, movies and other multime-
dia presentations. Putting a computer in the loop means that content
producers can experiment with as many odd mechanisms for mak-
ing money as they can imagine. Some suggest giving away the first
n−1 chapters of a murder mystery and charging only for the last one
with the identity of the murderers. Others propose giving people a
cut when they recommend a movie to a friend and the friend buys
a copy. All of these schemes depend on some form of secure copy
protection and many of the dreams include hidden information and
steganography.

Hiding information to protect text, music, movies, and art is usu-
ally called watermarking, a reference to the light image of the manu-
facturer’s logo pressed into the paper when it was made. The term is
apt because steganography can hide information about the creator
of a document as well as information spelling out who can use it and
when. Ideally, the computer displaying the document will interpret
the hidden information correctly and do the right thing by the cre-
ators.

Treating the document as the creators demand is not an easy
challenge. All of the algorithms in this book can hide arbitrarly com-
plex instructions for what can and can’t be done with the document
carrying the hidden information. Some copy protection schemes use
as few as 70 bits, a number that can fit comfortably in almost any
document.

Just inserting the information is not good enough because wa-
termarks face different threats. Most standard steganographic algo-
rithms fight against discovery by blending in as well as possible to
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avoid detection. Watermarks also try to hide— but usually to stay
out of the way, not to avoid being discovered. Most consumers and
pirates will know the watermark is there soon after they try to make
a copy. The real challenge is keeping the consumer or pirate from
making a copy and removing the watermark. Digital Watermarking

by Ingemar J. Cox,
Matthew L. Miller, and
Jeffrey A. Bloom is a
good survey of a quickly
growing field.[CMB01]

This too is not easy. The ideal watermark will stick with a docu-
ment even after editing, cropping, compression, rotation, or any of
the basic forms of distortion. Alas, there are no ideal watermarks out
there to date, although many offer some form of resistance to basic
distortions.

Defending against basic copying is easy. A digital copy of a doc-
ument will be exact and carry any watermark along with it. But not
all copies are exact. Artists often crop or rotate an image. Compres-
sion algorithms for sound or image files add subtle distortions by re-
producing only the most significant parts of the information stream.
Pirates seek to reproduce all of the salient information while leaving
the hidden information behind. Defending against all of the possible
threats is practically impossible.

This shouldn’t come as a surprise. Making a copy of a document
means duplicating all of the sensations detectable by a human. If the
sky is a clear, bright blue in the document, then it should be a clear,
bright blue in the copy as well. If a bell rings in the document, then
it should ring with close to the same timbre in the copy. But if some
part of a document can’t be perceived, then there’s no reason to make
a copy of that part.

The watermark creator faces a tough conundrum. Very-well-
hidden information is imperceptable to humans and thus easy to
leave behind during copying. The best techniques for general steg-
anography are often untenable for watermarks. Compression al-
gorithms and nonexact copying solutions will strip the watermarks
away.

But information that’s readily apparent to human eyes and ears
isn’t artistically desirable. Distortions to the music and the images
can ruin them or scar them, especially in an industry that often
pushes the quality of the reproduction in marketing.

If the ideal watermark can’t be created, there’s no reason why a
practical one can’t solve some of the problems. Adobe Photoshop, for
instance, comes with a tool for embedding a watermark designed by
Digimarc. The software can insert a numerical tag into a photo that
can then be used to find the rightful owner in a database. The solu-
tion that uses some of the wavelet-encoding techniques from Chap-
ter 14 can resist many basic distortions and changes introduced, per-
haps ironically, by Photoshop. The technique is not perfect, however,
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and preliminary tests show that rotating an image by 45 degrees be-
fore blurring and sharpening the image will destroy the watermark.

All of the watermarking solutions have some weakness to tricks
like that. Measuring the amount of resistance is hard to do. The
StirMark suite is a collection of basic distortions that bend, fold and
mutilate an image while testing to see if the watermark survives. This
collection is a good beginning, but the range of distortion is almost
infinite and difficult to model or define.

16.2.1 A Watermarking Taxonomy

At this point, watermark creators are still exploring the limits of the
science and trying to define what can and can’t be done to resist the
real and somewhat imagined threats. Toward this end, they’ve cre-
ated a kind of taxonomy of watermarks that describes the different
kinds and their usefulness. Here is a list of the different ways to eval-
uate them:

Fragility Some watermarks disappear if one bit of the image is
changed. Hiding information in the least significant bit (Chap-
ter 9) is usually not a robust watermark because one flipped
bit can make it impossible to recover all of the information.
Even error correction and redundancy can add only so much
strength.

Fragile watermarks, though, are not always useless. Some pro-
pose inserting watermarks that break immediately as a tech-
nique to detect any kind of tampering. If the watermark in-
cludes some digital signature of the document, then it offers
assurance that the file is unaltered.

Continuity Some watermarks resist a wide range of distortions by
disappearing gradually as the changes grow larger. Larger and
larger distortions produce weaker and weaker indications that
a watermark is present.

This continuity is often found in some of the wavelet-encoding
solutions described in Chapter 14. The watermark itself is a
vector of coefficients describing the image. Small changes in
the image produce small changes of the coefficients. A vector
matching algorithm finds the watermark by finding the best
match.

In many cases, the strength of the watermark is a trade off with
the amount of information in the watermark itself. A large
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number of distinct watermarks requires a small distance be-
tween different watermarks. A small distance means that only
a small distortion could convert one watermark into another.

Watermark Size How many “bits” of information are available? Some
watermarks simply hide bits of information. Counting the
number of bits stored in the document is easy.

Other watermarking schemes don’t hide bits per se. They add
distortions in such a way that the shape and location of the
distortions indicate who owns the document. Hiding lots of
information means having many different and distinct patterns
of distortions. In some cases, packing many different patterns
is not easy because the size, shape and interaction with the
cover document are not easy to model or describe.

Blind Detection Some watermarks require providing some extra data
to the detector. This might be the original unwatermarked im-
age or sound file, or it could be a key. The best solutions offer
blind detection, which provides as little information as possible
to the algorithm that looks for a watermark. The ideal detector
will examine the document, check for a watermark and then
enforce the restrictions carried by the watermark.

Blind detection is a requirement for many schemes for con-
tent protection. Providing a clean, unwatermarked copy to the
computers of the users defeats the purpose. But this doesn’t
mean that nonblind schemes are worthless. Some imagine sit-
uations where the watermark is only extracted after the fact,
perhaps as evidence. One solution is to embedded the Id num-
ber of the rightful owner of a document in a watermark. If the
document later appears in open circulation, perhaps on the In-
ternet, the owners could use a nonblind scheme to extract the
watermark and track down the source of the file. They could
still hold the original clean copy without releasing it.

Resistance to Multiple Watermarks Storing more hidden informa-
tion is one of the easiest attacks to launch against a document
with hidden information. Using the same algorithm often guar-
antees that the same hidden spots will be altered to carry the
new message.

An ideal watermark will carry multiple messages from multi-
ple parties, who can insert their data and retrieve it without
any coordination. Some of these least significant bit schemes
from Chapter 9 offer this kind of resistance by using a key to
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choose where to hide the data. Many can carry multiple mes-
sages without any problem, especially if error correction han-
dles occasional collisions.

Unfortunately, these ideal solutions are often fragile and thus
undesirable for other reasons. This is another trade off. Lo-
calizing the information in the watermark reduces the chance
that another random watermark will alter or destroy it, but it
also increases the chance that a small change will ruin it.

Accuracy Many watermarking schemes achieve some robustness to
distortion by sacrificing accuracy. Many rely on finding the best
possible match and thus risk finding the wrong match if the
distortion is large enough. These algorithms sacrifice accuracy
in a strange way. Small changes still produce the right answer,
but large enough changes can produce a dramatically wrong
answer.

Fidelity One of the hardest effects of watermarks to measure is the
amount of distortion introduced by the watermarking process
itself. Invisible or inaudible distortions may be desirable, but
they’re usually easy to defeat by compression algorithms that
strip away all of the unnecessary data.

The best schemes introduce distortions that are small enough
to be missed by most casual observers. These often succeed by
changing the relative strength or position of important details.
One classic solution is to alter the acoustics of the recording
room by subtly changing the echos. The ear usually doesn’t
care if the echoes indicate a 8 × 8 room or a 20 × 20 room. At
some point, this approach fails and the art is finding the right
way to modulate the accoustics without disturbing the greatest
number of listeners.

Many of the wavelet-encoding techniques from Chapter 14
succeed by changing the relative strength of the largest coef-
ficients assembled to describe the image. The smallest coef-
ficients are easy to ignore or strip away, but the largest can’t be
removed without distorting the image beyond recognition. The
solution is to change the relative strengths until they conform
to some pattern.

Resistance to Framing One potential use for watermarks is to iden-
tify the rightful owner of each distinct copy. Someone who
might want to leak or pirate the document will try to remove
that name. One of the easiest techniques is to buy multiple
copies and then average them together. If one pixel comes from
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one version and another pixel comes from another, then there’s
a good chance that neither watermark will survive. Some
schemes deliberately try to avoid this kind of attack by embed-
ding multiple copies of the signature and creating identifica-
tion codes that can survive this averaging.

Keying Is a key required to read the watermark? Is a key required to
insert it? Some algorithms use keys to control who inserts the
data to prevent unauthorized people from faking documents
or creating faked watermarks. Others use keys to ensure that
only the right people can extract the watermark and glean the
information. Chapter 12 describes some of the approaches.

No algorithm offers the ideal combination of these features, in
part because there’s often no way to have one feature without sacri-
ficing the other. The good news is that often watermarks that fail one
task can find use in another form.

16.3 A Basic Watermark

Here is a basic technique for watermarking that blends together
many of the different solutions proposed in recent years. This de-
scription is a bit abstract, which obscures the challenges of actually
producing a working version that implements the technique. Here’s
the algorithm:

1. Begin with a document in a standard form.

2. Choose a mechanism for decomposing the document into im-
portant components. One solution is to use the discrete cosine
transform to model the signal as the sum of a collection of co-
sine functions multiplied by some coefficients. Let {c0, . . . , cn}
be the set of coefficients.

3. The coefficients measure the size of the different components.
Ideally, the model will guarantee that large coefficients have
a large effect on the document and small coefficients have a
small effect. If this is the case, find a way to exclude the small
coefficients. They’re not important and likely to be changed
dramatically by small changes in the document itself.

4. Quantize the coefficents by finding the closest replacement
from a small set of values. One of the simplest quantization
schemes for a value, ci, is to find the integer ki such that kiQ is
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closest to x. The value of Q is often called the quanta. Expo-
nential or logarithmic schemes may be appropriate for some
cases.

5. Let {b0, . . . , bn} be a watermark. Insert a watermark by tweaking
each coefficient. Each value of ci lies between an odd and an
even integer multiple of Q. That is, kiQ ≤ ci ≤ (ki + 1)Q. To
encode bi = 0 at coefficient ci, set ci to the even multiple of Q.
To encode bi = 1, set ci to be the odd multiple of Q.

6. Use a reverse transform to reconstruct the original document
from the new values of {c0, . . . , cn}. If the understanding of the
decomposition process is correct, the changes will not alter the
image dramatically. Of course, some experimentation with the
value of Q may be necessary.

This scheme for encoding a watermark can be used with many
models for deconstructing images and sound files. The greatest chal-
lenge is setting the value of Q correctly. A large Q adds robustness
at the cost of introducing greater distortion. The cost of a large Q
should be apparent by this point. The value can be seen by examin-
ing the algorithm for extracting the watermark:

1. To extract a watermark, begin by applying the same decon-
structive technique that models the document as a series of co-
efficients: {c′0, . . . , c′n}.

2. Find the integer ki such that |kiQ − c′i| is minimized. If there’s
been no distortion in the image, then c′i = kiQ. If our model of
the document is good, small changes in the document should
correspond to small changes in the coefficients. Small changes
should still result in the same values of ki.

3. If ki is odd, then bi = 1. If ki is even, then bi = 0. This is the
watermark.

Many watermarking schemes add an additional layer of protec-
tion by including some error correction bits to the watermark bits,
{b0, . . . , bn}. (See Chapter 3.) Another solution is to compare the
watermarking bits to a known set of watermarks and find the best
match. To some extent, these are the same techniques. Choosing the
size of Q and the amount of error correction lets you determine the
amount of robustness available.

This solution is a very good approach that relies heavily on the
decomposition algorithm. The discrete cosine transform is a good
solution, but it has weaknesses. Even slight rotations can introduce
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big changes in the coefficients produced by the transform. Some
researchers combat this with a polar transform that produces the
same coefficients in all orientations of the document. This solution,
though, often breaks if the document is cropped thus changing the
center. Every model has strengths and weaknesses.

16.3.1 Choosing the Coefficients

Another challenge is choosing the coefficients to change. Some sug-
gest changing only the largest and most salient. In one of the first
papers to propose a watermark scheme like this, Ingemar Cox, Joe
Kilian, Tom Leighton, and Talal Shamoon suggested choosing the
largest coefficients from a discrete cosine transform of the image.
The size guaranteed that these coefficients contributed more to the
final image than the small ones. Concentrating the message in this
part of the image made it more likely that the message would survive
compression or change.[CKLS96]

Others suggest concentrating in a particular range for perceptual
reasons. Choosing the right range of discrete cosine coefficients can
introduce some resistance to cropping. The function cos(2πx), for in-
stance, repeats every unit while cos(2π

1000x) repeats every 1000 units. A wa-
termark that uses smaller, shorter waves is more likely to resist crop-
ping than one that relies on larger ones. These shorter waves also
introduce smaller, more localized distortions during the creation of
the watermark.

16.4 An Averaging Watermark

Cropping is one of the problems confronting image watermark cre-
ators. Artists frequently borrow photographs and crop them as
needed. A watermark designed to corral these artists must withstand
cropping.

An easy solution is to repeat the watermark a number of times
throughout the image. The first solution in this chapter accom-
plishes this to some extent by using decomposition techniques like
the discrete cosine transform. Many of the same coefficents usually
emerge even after cropping.

This example is a more ordinary approach to repeating the wa-
termark. It is not elegant or mathematically sophisticated, but the
simplicity has some advantages.

A watermark consists of an m× n block of small integers. For the
sake of simplicity, let’s assume the block is 4 × 4 and constructed of
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values from the set {−2,−1, 0, 1, 2}. There are 516 = 152587890625
possible watermarks in this example, although it will not always be
practical to tell the difference between them all. Let these values be
represented by wi,j|, where 0 ≤ i < m and 0 ≤ j < n. In this case,
m = n = 4.

The watermark is inserted by breaking the image into 4×4 blocks
and adding the values into the pixels. Pixel pi,j is replaced with pi,j +
wi mod m,j mod n. If the value is too large or too small, it is replaced
with either the maximum value or zero, usually 255 and 0.

How is the watermark recovered? By averaging pixels. Let w′a,b be
the average intensity of all pixels, pi,j , such that i mod m = a and
j mod n = b. In the 4 × 4 example, w′0,1 is the average of pixels like
p0,1, p4,1, p8,1, p0,5, p4,5, p8,9, etc.

The success of this step assumes that the patterns of the image
do not fall into the same m × n rhythm as the watermark. That is,
the average value of all of the pixels will be the same. A light picture
may have a high average value while a dark picture may have a low
average value. Ideally, these numbers balance out. If this average
value is S, then the goal is to find the best watermark that matches
w′ − S.

This is easy if the image has not been cropped or changed. w′ −S
should be close to, if not the same as, the inserted watermark. The
only inaccuracy occurs when the watermark value is added to a pixel
and the pixel value overflows.

Recovering the watermark is still simple if the image is cropped in
the right way. If the new boundaries are an integer multiple ofm and
n pixels away from the original boundaries then the values of w′ and
w will still line up exactly.

This magical event is not likely and any of the mn possible orien-
tations could occur. One solution is to compare the values recovered
from the image to a database of known watermarks. This takes kmn
steps, where k is the number of known watermarks. This may not be
a problem if the system uses only a small number of watermarks, but
it could become unwieldy if k grows large.

Another solution is to create a canonical order for the watermark
matrix. Let p and q be the canonical offsets. The goal is to find one
pair of values for p and q so that we always find the same order for the
watermark, no matter what the scheme. This is a bit cumbersome
and there are other solutions.

1. For this example, let zi,j = 54i+j . Five is the number of possible
values of the watermark.

2. Let F (w, p, q) =
∑
zi,j(2 + w(i+p) mod 4(j+q) mod 4).
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3. Try all possible values of F (w, p, q) and choose the maximum
(or minimum). This is the canonical order of w.

Ifmn is a reasonable value, then it might make more sense to store
mn versions of each watermark in a database. If it is large, then a
canonical order might make more sense.

It should become clear at this point that all possible 516 water-
marks can’t be used. Some of them have identical canonical values.
Every watermark has 15 other shifty cousins.

16.4.1 Effects of Distortion

Much of the success of this watermark depends on the way that the
averaging balances out any potential changes. If the noise or distor-
tion in the image is uniformly distributed, then the changes should
balance out. The averages will cancel out the changes.

Not all distortions are equal. Several of the StirMark changes in-
troduce or delete rows or columns of pixels from the middle of the
image. This can throw off the averaging completely and destroy this
kind of watermark. While it may be possible to recover it by sampling
sections of the image, the process is neither easy nor guaranteed.

16.4.2 Birthday Marks

Here is a short, more basic example loosely based on a number of
systems. The phrase birthday marks is borrowed from the birthday
paradox, the fact that the odds of any two people having the same
birthday in a group of n people increases quadratically, O(n2), as the
group grows. In a group of 23 people, there’s a 50-50 chance that
one pair will share the same birthday and it becomes almost a sure
thing, (> 99%) when there are 57 people. Clearly at 367 people, it’s
guaranteed. The birthday paradox

was also an inspiration
for the birthday attacks
using hash collisions.
[Cop85, GCC88]

Imagine that you can put mi,j marks in the content by tweaking
positions in the file. While the notation suggests a grid because there
are two parameters, the marks don’t need to be arranged in a grid.
Indeed, there shouldn’t be any detectable connection between the
parameters, i and j, and the locations of the marks. If a file has
k locations, you might store the marks at a position computed by
encrypting i and j.

Although there won’t be any connection between the locations
and the parameters i and j, let’s write these marks in a matrix for
clarity. For simplicity, let’s imagine there are 16 users so we’ll assign
16 unique ids. When user a buys a document, let’s put a mark on
spots ma,i and mi,a for all 0 ≤ i < 16. For the sake of example,
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assume a = 3 spots with marks are drawn as ones in this matrix and
the unmarked spots are left as zeros:

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Now assume that there’s another user out there with an Id number
of 7. The matrix of marks made in 7’s copy of the content will look like
this:

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Let’s assume that 3 and 7 decide to collude to strip out their
marks. They don’t understand the watermarking algorithm. They
don’t know how the data is inserted into the files. They just have two
versions of the content and they can compare them with each other.
If they do this, they’ll find a number of places where there are differ-
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ences: everymi,j , where ior j is either 3 or 7 except form3,3,m3,7,m7,3

and m7,7.
If 3 and 7 are able to blur away the marks at every place where

there’s a difference, they’ll still leave four marks that identify the pair.
The content owners will be able to track the document to these two
people.

If 3 and 7 decide to use an attack and flip a coin at every difference
they find in their document and keep one or the other version, they’ll
still leave plenty of marks with their unique identity.

This naive solution does not have the best performance as the
number of unique Ids grows larger because it requires O(n2) marks
for n unique Ids. This can be avoided to some extent by repeating the
process a number of times. Imagine, for instance, that a unique Id
number consists of six hexadecimal digits. The previous matrix with
162 = 256 marks could be repeated six times, once to encode each
digit. Instead of requiring 2242

= 248 marks, it would only require
6× 256, a much smaller number.

16.5 Summary

Watermarking is not an easy challenge for steganography. Many of
the researchers exploring it have high ideals and want their water-
marks to remain intact even after a fairly daunting array of distor-
tions and changes.

This chapter offers two basic algorithms that resist some basic
distortions. The discussion avoids much of the complexity involved
in determining when a watermark may or may not be present. Find-
ing it is easy if the image is not changed. Finding it afterwards be-
comes an exercise in informed guessing. Just when is one vector of
numbers close enough to another? Which is the best match for a
watermark? These are questions of engineering and design not an-
swered in this chapter. Finding the best solution requires building a
system and testing it with a collection of sample images and sound
files. Much of the real challenge is tweaking the coefficents.

The Disguise Watermarks are steganographic solutions designed to
withstand more general attacks from a savvy set of users and
potential pirates. The ideal watermark will embed information
in such a way that the only way to destroy it is to introduce so
much noise and distortion that the original image is unusable
and perhaps unrecognizable.

How Secure Is It? None of the watermarks come close to this ideal,
but some are quite useful. Systems like Digimarc’s are in wide
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use thanks to the company’s partnership with Adobe. They can
be circumvented but they can withstand many casual distor-
tions. Much of their success depends on the individual algo-
rithm and the sample files.

How to Use It . Find an image, introduce some changes, and then
hope to track down the person violating your copyright. In
practice, the legal and logistical headaches may be greater than
the problems of making the watermark work. If you get re-
ally frustrated, just start suing people as some companies have
done.

Further Reading

While any of the algorithms in this book can be used to embed
a watermark, most of the common algorithms use mechanisms
based on either the discrete cosine transform or the discrete
wavelet decomposition. Chapter 14 digs deeply into this area.
Some other suggestions are:

• Digital Watermarking by Ingemar Cox, Matthew L. Miller
and Jeffrey A. Bloom is a great introduction to using wavelet
techniques to embed watermarks and hide information.
The 2007 edition is broader and it includes a good treat-
ment of steganography and steganalysis. [CMB02, CMB07]

• The proceedings of the International Workshop on Digital
Watermarking are invaluable sources that track the devel-
opment of steganography using wavelets and other func-
tional decomposition. [PK03, KCR04, CKL05, SJ06]

• A good conference focused on watermarking digital con-
tent is the Security, Steganography, and Watermarking of
Multimedia Contents. [DW04, DW05]



Chapter 17

Steganalysis

17.1 Code Words

Authors of recommendation letters often add a secret layer of mean-
ing hidden beneath the surface of a letter that is ostensibly positive.

• All of his colleagues are astounded by his scrupulous attention
to detail and the zeal with which he shares this information.

• Let us just say that his strength is his weakness.

• Bold words and sweeping statements are his friend.

• We continue to be amazed by his ability to whip off articles,
journal papers, and conference talks with such a minimal time
in the lab.

• This candidate is a master of the art of not saying what he
means. He slips quickly between two-faced disinformation and
carefully worded calumny.

17.2 Finding Hidden Messages

Many of the techniques in this book are far from perfect. A wise at-
tacker can identify files with hidden information by looking carefully
for some slight artifacts created by the process of hiding information.
In some cases, the tests are easy enough to be automated with a high
degree of reliability. This field is often called steganalysis, a term that
mimics the word cryptanalysis, the study of breaking codes.

337
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The field of steganalysis is usually more concerned with simply
identifying the existence of a message instead of actually extracting
it. This is only natural because the field of steganography aims to
conceal the existence of a message, not scramble it. Many of the ba-
sic tests in steganalysis will often just identify the possible existence
of a message. Recovering the hidden data is usually beyond the ca-
pabilities of the tests because many algorithms use cryptographically
secure random number generators to scramble the message as it is
inserted. In some cases, the hidden bits are spread throughout the
file. Some of these algorithms can’t tell you where they are, but they
can tell that the hidden bits are probably there.

Identifying the existence of a hidden message can often be enough
for an attacker. The messages are often fragile and an attacker can
destroy the message without actually reading it. Some data can be
wiped out by storing another message in its place. Other data can
be nullified by flipping a random number of the least significant bits.
Many small distortions can wipe out the information, which after all
is stored in the form of small distortions. While the attacker may not
read the message, the recipient won’t either. It may even be argued
that adding small, random permutations is more effective than try-
ing to detect the existence of the message in the first case. This is
a corollary to Blaise Pascal’s idea that one might as well believe in a
God because there’s no downside if you’re wrong.

All of these attacks depend on identifying some characteristic
part of an audio or image file that is altered by the hidden data.
That is, finding a way where the steganography failed to imitate or
camoflage enough. In many cases, the hidden data is more random
than the data it replaces and this extra “perfection” often stands out.
The least significant bits of many images, for instance, are not ran-
dom. In some cases the camera sensor is not perfect and in others
the lack of randomness is introduced by some file compression. Re-
placing the least significant bits with a more random (i.e. higher en-
tropy) hidden message removes this artifact.“When a thing is funny,

search it carefully for a
hidden truth.” –George

Bernard Shaw,
unsourced

There are limitations. Many of these techniques must be tuned
to attack the output from particular software programs. They can be
highly effective in the hands of a skilled operator searching for hid-
den information created by a known algorithms, but they can begin
to fail when they encounter the results from even slightly different al-
gorithms. There is no guarantee that the steganalysis algorithms can
be automatically extended to each version of the software. There is
no magic anti-steganography bullet.

But there are also no guarantees that any steganographic algo-
rithm can withstand clever steganalysis. None of the algorithms in
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this book offer mathematical guarantees that they are free from sta-
tistical or computational artifacts. Many of the automatic stega-
nographic programs introduce errors if they are used without care.
Many are very easy to detect if used without caution.

17.3 Typical Approaches

The basic approaches for steganalysis can be divided into these cat-
egories:

Visual or Aural Attacks Some attacks strip away the significant parts
of the image in a way that lets a human try to search for visual
anomalies. One common test displays the least significant bits
of an image. Completely random noise often reveals the exis-
tence of a hidden message because imperfect cameras, scan-
ners, and other digitizers leave echoes of the large structure in
the least significant bits. (See Figures 9.1 and 9.2 for instance.)

The brain is also capable of picking up very subtle differences
in sound. Many audio watermark creators are thwarted by very
sensitive ears able to pick up differences. Preprocessing the file
to enhance parts of the signal makes their job easier.

Structural Attacks The format of the data file often changes as hid-
den information is included. Often these changes can be boiled
down to an easily detectable pattern in the structure of the data.
In some cases, steganographic programs use slightly different
versions of the file format and this gives them away. In others,
they pad files or add extra information in another way.

Statistical Attacks The patterns of pixels and their least significant
bits can often reveal the existence of a hidden message in the
statistical profile. The new data doesn’t have the same statisti-
cal profile as the standard data is expected to have.

Of course, there is no reason to limit the approaches. Every stega-
nographic solution uses some pattern to encode information. Com-
plex computational schemes can be created for every algorithm to
match the structure. If the algorithm hides the information in the
relative levels of pairs of pixels, then an attack might compute the
statistical profile of pairs. If an algorithm hides data in the order of
certain elements, then one attack may check the statistical profile of
the orders.

There is no magic theoretical model for either steganalysis or an-
tisteganalysis. This is largely because theoretical models are always
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limited in their power. The mimic functions described in Chapters
7 and 8 are theoretically hard to break. The classical work from Kurt
Goedel, Alan Turing, and others firmly establishes that there can’t be
computer programs that analyze other computer programs.

Such theoretical guarantees are comforting, but they are rarely
as strong as they sound. To paraphrase Abraham Lincoln, “You can
fool all of the computer programs some of the time, and some of the
computer programs all of the time, but you can’t fool all of the com-
puter programs all of the time.” Even if no program can be created
to crack mimic functions all of the time, there’s no reason why some-
thing might not detect imperfections that happen most of the time.
For instance, the software for hiding information in the voice-over of
baseball games is going to become repetitive after some time. Some
form of statistical analysis may reveal something. It won’t work all of
the time, but it will work some of the time.

The best the steganographer can do is constantly change the pa-
rameters and the locations used to hide information. The best the
steganalyst can do is constantly probe for subtle patterns left by mis-
take.

17.4 Visual and Aural Attacks

The simplest form of steganalysis is to examine the picture or sound
file with human eyes or ears. Our senses are often capable of com-
plex, intuitive analysis that can, in many ways, outstrip the power of
a computer. If the steganographic algorithm is any good, the changes
should not be apparent at first.

17.4.1 Visual Attacks

Hiding the information from human eyes is the first challenge. Some
basic algorithms will make mistakes and make large color changes
in the process of hiding the information, but most should produce a
functionally identical image or sound file.

But a bit of computer enhancement can quickly make a hidden
message apparent to our eyes. If the most important parts of the
image are stripped away, the eye can often spot encoded informa-
tion without any trouble. Figures 17.1 and 17.2 show the least signifi-
cant bits of an image before and after information is hidden with the
EzStego program.

The figures illustrate how the least significant bits in an image are
often far from random. Notice how the saturated areas of the image
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Figure 17.1: The top line shows a picture and its least significant
bits before approximately 6000 bytes were hidden in the image with
EzStego. The image had a capacity of 15000 bytes. The bottom line
shows the image and the least significant bits afterwards.

can still be seen in the least significant bits. When the image is either
all white or all black, the least significant bit is far from random.
It’s usually pegged at either a zero or a one. Even the nonsaturated
sections are far from random. The positions of the objects in an
image and the lights that illuminate them guarantees that there will
often be gradual changes in colors. These gradients are also far from
random. There’s also just pure imperfection. Digital cameras do not
always have a full 24 bits of sensitivity. The software may pump out
24-bit images, but only after padding the results and adding extra
detail. The least significant bits are not always assigned randomly
when the sensors do not have sufficient resolution. “In the long run, there

are no secrets. in
science. The universe
will not cooperate in a
cover-up.” – Arthur C.
Clarke and Michael P.
Kube-Mcdowell in The
Trigger.

After information is hidden in the least significant bits, though,
all of these regions become much more random. The eye is often
the fastest tool for identifying these changes. It’s very easy to see the
effects in Figures 17.1 and 17.2.

There is no reason why more complicated visual presentations
can’t be created. Information does not need to be hidden in the least
significant bits, in part because it is often very fragile there. [SY98]
More complicated presentations might combine several bit planes
and allow the attacker to try to identify where the extra information
may be hidden.
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Figure 17.2: The top line shows a picture and its least significant bits
before approximately 17,000 bytes were hidden in the image with
EzStego. The image had a capacity of 20,000 bytes. The bottom line
shows the image and the least significant bits afterwards.
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Figure 17.3: The JPEG compression function often leaves strong vi-
sual artifacts around hard edges. This image was created by com-
pressing text with a very low quality, a process that encourages the
artifacts by limiting the number of coefficients kept.

In some cases, file compression algorithms can leave large areas
with the same least significant bits. The JPEG algorithm, for instance,
stores each image as the weighted sum of some cosine functions.
If the 64 pixels in the 8 × 8 block are sufficiently similar, the algo-
rithm will simply store the average value. The GIF algorithm will also
replace similar colors with the same value in the interest of saving
space. Both of these effects conspire to prevent the least significant
bits from being truly random.

The JPEG algorithm can also leave artifacts, a factor illustrated by
Figure 17.3. In this figure, the compression quality was deliberately
kept extremely low to amplify the artifacts that seem to echo around
the hard edges. If the coefficients of the JPEG image are tweaked to
encode the message, the echos and artifacts will be inconsistent and
this inconsistency may even be detectable by the eye. In most cases,
statistical techniques will be more powerful and many of the algo-
rithms described later in this chapter are sensitive to the existence of
these artifacts. The algorithms often become less adept at detecting
steganography when the JPEG algorithm is used with higher quality.

17.4.2 Aural Attacks

Skilled audio technicians and musicians can often hear changes ig-
nored by the average pair of ears. Many creators of watermarks for
music systems find it simple to inject extra echos in places that are
never heard by most people. The trained ears, however, can detect
them immediately.

Average ears can pick up information if the data is normalized.
Most techniques depend on the way that the human brain picks up
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the most significant frequency while ignoring softer versions of sim-
ilar frequencies.

17.5 Structural Attacks

In many cases, steganographic algorithms leave behind a character-
istic structure to the data. This is often as distinctive as a person’s
handwriting or an artist’s brushstroke. If you know what to look for,
you can often spot the effects of some algorithms very quickly.

Many of the basic steganographic solutions that hide information
in the least significant bits of images are hampered by the data for-
mats used to represent images. Hiding information in the least sig-
nificant bit is easy when each pixel is represented by 24 bits, with 8
bits allocated for the amount of red, green and blue. Scanners and
cameras often leave enough randomness in the three least signifi-
cant bits assigned to each pixel to make it feasible to store the data.

Unfortunately, most images don’t allocate 24 bits for each image.
File formats like the GIF or PNG allocate 8 bits or fewer by building
a palette of selected colors. An i bit palette means 2i possible col-
ors. These can significantly reduce the size of the images, especially
when they’re combined with run-length encoding to compress long
stretches of identical pixels.

In some cases, the structure used by the software hiding the data
is different from the standard. Many GIF files are written with entries
for 256 colors, even if only a small number are needed. The software
SysCop only writes out the colors in the image. The extra efficiency
may shrink the file, but it can distinguish the output.

There are glitches and minor incompatibilities in many of the
current packages. Version 4.1 of Hide and Seek, for instance, requires
all images to be 320 × 480 arrays of pixels. StegoDos uses 320 × 200
pixel images. None of these limitations are difficult to fix, but they
show how dangerous quick and dirty steganography software can be.
[JJ98a]

Hiding information in the compressed GIF or PNG format by
tweaking the least significant bit can fail dramatically because the
palette entries are often not close enough to each other. Entry
01001001 may be a deep blue while entry 01001000 may be a hot
pink. Twiddling the last bit will distort the image.

Many of the steganographic schemes in Chapter 9 try to avoid this
problem by constructing a special palette. This process can leave a
damning mark.

A good technique is to choose a smaller palette and then add
duplicate colors that can be used to hide information. S-Tools,
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for instance, first creates an optimal 32-color palette for the im-
age. Then it creates seven near duplicate colors that differ by one
pixel in either the red, green or blue component. If one of the
32 chosen colors has the RGB profile of (64, 250, 120), then 7 ad-
ditional colors will be added with the RGB values of (64, 250, 121),
(64, 251, 120), (64, 251, 121), (65, 250, 120), (65, 250, 121), (65, 251, 120)
and (65, 251, 121). Less dramatic versions of this approach are also
common. MandelSteg, for instance, reduce the size of the palette to
128 different colors and then creates only one near duplicate of each
color.

This approach can hide up to three extra bits of information at
every pixel— a significant payload but one that comes with a cost
because palettes like these are also easy to detect. When clusters of
colors appear in the palette, they are often indicators of bit-twiddling
schemes like this. Natural palette creation algorithms try to choose
colors as widely dispersed as possible in order to minimize the error
of reducing the number of colors.

In other cases, the algorithms try to order the elements of the
palette to place similar colors next to each other. Flipping the least
significant bit should not distort the image too much because a sim-
ilar color should be near by. EzStego, a program written by Romana
Machado, uses this technique with some success. Section 13.7 describes

how to hide information
in the order of the
colors, a technique used
in GifShuffle.

The attacker may be able to intercept the bits if the sorting
method is publicly known or easy to figure out. If the data is pro-
tected by an additional layer of encryption, then the message will be
indistinguishable from random noise.

An attacker may still detect the presence of a message by exam-
ining the statistical profile of the bits. An encrypted hidden message
should come with an equal probability of ones and zeros. If the num-
bers of zeros and ones are equal, then the odds point toward a hidden
message.

There are two ways to thwart these attacks. The first is to use
some keyed version of the sorting routine in order to prevent an
eavesdropper from assembling the sorted palette. The palette sort-
ing algorithm is not deterministic because it tries to arrange points
in a three-dimensional space so that the distance between adjacent
points is minimized. This is a discrete version of the Traveling Sales-
man problem, a known difficult problem. EzStego uses one reason-
able approximation that makes guesses. Instead of using a random
source to make decisions, a cryptographically secure keyed random
number generator can take the place and create a keyed sorting al-
gorithm.

The second is to use the statistical mimic functions described in
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Chapter 6 to create a statistically equivalent version of least signifi-
cant bits. The patterns from the least significant bits of the original
image can be extracted and then used to encode the data. This ap-
proach may fool some statistical tests, but not all of them. It may also
fail some of the visual tests described in section 17.4.

17.5.1 Interpolated Images

One of the secrets of modern digital photography is that an n-
megapixel camera doesn’t really have n million sensors that detect
the intensity of the red, green and blue light falling on that point.
Many cameras have only one sensor at each pixel and this detects ei-
ther red, green or blue. The other two values are guessed at by aver-
aging their neighbors. This guessing is often called either color filter
array or demosaicking

Here’s one of the typical CFA arrangements commonly known as
the Bayer array in tribute to its creator, Bryce Bayer. There are twice
as many green pixels in the grid because the human eye is more
sensitive to green:

b g b g b
g r g r g
b g b g b
g r g r g
b g b g b
g r g r g

Let (3, 4) be a g, or green sensor pixel, in the grid just shown. The
red value for (3, 4) is calculated with a weighted average of the red
sensors to the left and right, (2, 4) and (4, 4), the red sensors above,
(2, 2) and (4, 2), and the red sensors below, (2, 6) and (4, 6). Some
cameras may use an even larger collection, but this can increase er-
rors along the edges or at other places where the intensity changes
dramatically. The weights are usually chosen to give more weight
to the closest neighbors, although the systems usually include some
functionality to reduce errors caused along edges.The CFA algorithms

often differ from model
to model, something
that Sevinc Bayram,

Husrev T. Sencar, Nasir
D. Memon, and Ismail
Avcibas discovered can
be used to identify the

model from a
picture.[BSMA05]

Alin Popescu and Hany Farid looked at this fact and recognized
that doctored images will have values that don’t satisfy these aver-
ages. A red pixel at one location won’t be a weighted average of
its neighbors. The computations will be most significant along the
edges. [PF05, Pop05]

They devised an algorithm that inverts the averages by estimating
the original sensor values and then determines where the pixels were
generated in a way that doesn’t correspond to the standard averaging
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Figure 17.4: The upper image shows a photo of Ocean City, NJ mod-
ified by pasting a boat in the sky. The lower image is the output of
Popescu and Farid’s algorithm. The darkest spots are the ones where
there’s the most disagreement with the neighbors.
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done by digital cameras. That is, it looks for an estimate of the orig-
inal sensor and measures how much the image in question deviates
from it. This solution will also detect basic doctoring or photoshop-
ping of images as well as steganography.

Their algorithm is necessary because the images are modified
once again by the compression process. This means that the value at
a particular pixel is not the exact value produced by the CFA interpo-
lation. The lossy compression algorithm has added more averaging.

Figure 17.4 shows a picture of a beach with a lifeboat pasted on
the sky. The second image highlights the most suspicious pixels with
darker values. There are a number of grey pixels in the image, but
the darkest are found around the edges of the boat itself. Some parts
of the boat’s interior are not colored because the cutting and pasting
didn’t move the entire boat. The other objects in the image aren’t
changed, but they still suggest that there’s some incongruity, an effect
caused by the compression process.

There are some limits to this approach. A smart steganographer
might use the Bayer table to control how information is mixed in the
grid. The first pixel gets additional information added to the blue
component, the second pixel gets it added to the green channel, etc.
Then the results for the other pixels are guessed or interpolated using
the same algorithm that a camera might use. The result looks as if it
came directly from the camera because it is processed with exactly
the same algorithms.

17.6 Statistical Attacks

Much of the study of mathematical statistics is devoted to determin-
ing whether some phenomenon occurs at random. Scientists use
these tools to determine whether their theory does a good job of ex-
plaining the phenomenon. Many of these statistical tools can also
be used to identify images and music with hidden messages because
a hidden message is often more random than the information it re-
places. Encrypted information is usually close to random unless it
has been reprocessed to add statistical irregularities.

The simplest statistical test for detecting randomness is the χ2

(Chi-Squared) test which sums the square of the discrepancies. Let
{e0, e1, . . .} be the number of times that a sequence of events occurs.
In this case, it may be the number of times that a least significant
bit is one or zero. Let E(ei) be the expected number of times the
event should occur if the sample was truly random. The amount of
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randomness in the sample is measured with this equation:

χ2 =
∑ (ei − E(ei))

2

E(ei)
.

High scores indicate an nonrandom condition— one that was
probably part of an original picture or sound file created by an
imperfect set of sensors. Low scores indicate a high degree of
randomness— something that is often connected with encrypted
hidden information.

The χ2 test can be applied to any part of the file. The least sig-
nificant bits can be analyzed by looking at two events, e0, when
the least significant bit is zero, and e1, when the bit is one. A low
score means the bits occur with close to equal probability, while a
higher one means that one bit outnumbers the other. In this case,
E(e0) = E(e1) = .5.

A better solution is to create four events that look at the pattern of
neighboring least significant bits. Natural images often leave neigh-
boring bits set to the same value. Files with hidden information have
neighbors that are often different.

Event bit neighbor bit
e0 0 0
e1 0 1
e2 1 0
e3 1 1

Files with a high amount of hidden information will usually have
low scores in this χ2 test. More natural, undoctored images often
have higher scores, as Figures 17.1 and 17.2 indicate.

Neil Johnson, Sushil Jajodia, Jessica J. Fridrich, Rui Du, and Meng
Long report that measuring the number of close colors is a good sta-
tistical test for detecting images with data hidden in the least signif-
icant bits. A pair of close colors differs by no more than one unit in
each of the red, green and blue components. Naturally constructed
files have fewer close pairs than ones with extra inserted data. This
is especially true if the image was stored at one time by a lossy com-
pression mechanism like JPEG. Testing for the number of close pairs
is an excellent indicator. [JJ98a, JJ98b, FDL00, Mae98]

These tests will often do a good job of identifying basic least-
significant bit stegangraphy. More complicated mechanisms for hid-
ing data, however, would avoid this test and require one tuned to the
algorithm at hand. Imagine the sender was hiding information by
choosing pairs of pixels and occasionally swapping them to encode
either a zero or a one. The overall distribution of colors and their Section 13.7 describes

how to hide
information in the
sorted order of pixels.

least significant bits would not be changed in the process. Swapping
doesn’t change the statistical profile of the least significant bits.
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An enhanced version of the test can identify a hidden collection of
bits in some cases if the attacker can identify the pairs. The order of
pairs in an image with hidden information should occur with equal
frequency, while that in a natural image should probably come with
some imperfection.

More sophisticated tests can be tuned to different applications.
The program JSteg hides information by changing the least signifi-
cant bit of the integer coefficients used in the JPEG algorithm. In
normal pictures, smaller coefficients are more common than larger
ones. The value of 1 is more than twice as common as the value of 2,
a value that is in turn about twice as common as 3. [Wes01] When the
least significant bits of these values are tweaked to hide information,
the occurrences equalize. The number of 1s and 2s become equal,
the occurrences of 3s and 4s become equal, and so forth. If two coef-
ficients differ by only the least significant bits, then their occurrences
becomes equal as information is hidden.

The χ2 test can help identify JPEG photos where the coefficients
occur with too much similarity.

17.6.1 Wavelet Statistics

Another solution is to examine the statistics produced by applying
a set of functions to the image. Hany Farid noted that many of
the wavelet functions used to model images often produced dis-
tinctive statistical profiles. [RC95, Sha93, BS99] He applied one set,
the quadrature mirror filters (QMF) , at multiple scales and found
that the basic statistical profile of the coefficients generated by these
wavelet decompositions could predict the presence or absence of a
message in some cases. That is, the mean, variance, skewness and
kurtosis were different enough to be distinctive.

Basic programs like Jsteg and EzStego could be detected with ac-
curacy rates approach 98% while more careful programs like Out-
guess could be found as often as 77% of the time. Of course, the
success depended heavily on the size of the message encoded in the
images. The high success rate came when the hidden message was
about 5% of the carrier image’s size. If the image size dropped, the
success rate dropped to next to nothing (2%).

Some of this success is no doubt due to the fact that a program
like Outguess only tries to balance the first-order statistics. Multi-
scale decompositions with more complicated statistics are still af-
fected by even these balanced tweaks. A more sophisticated version
of Outguess designed to keep the QMF statistics in balance could
probably defeat it. Of course, keeping the message small is one of



17.7. SUMMARY 351

the easiest solutions.

17.6.2 Re-alignment

One of the simplest yet most efficient approaches for detecting stega-
nographic tweaks is to break up the blocks used during compression.
These are usually 8 × 8 pixel blocks in the JPEG algorithm, but they
may be larger and more varied in more sophisticated wavelet com-
pression schemes.

The blocks can be broken up by trimming parts of the image.
Jessica J. Fridrich suggests cropping away a margin of 4 pixels on all
sides of a JPEG image. Each block is split into four parts and glued
together with the blocks of the neighbors.

The original and cropped images are compared by looking at the
statistical profiles of both versions of the image. If the original was
only compressed with a pure JPEG algorithm without any stegano-
graphic tweaking, the statistical profile should be the same. The
alignment of the grid with the image shouldn’t change anything.

If the original image does have some steganographic tweaking in
the coefficients, then the changes will distort some but not all of the
blocks. When these changes are parceled out according to the new,
redrawn grid, they will be averaged out and diminished. The cropped
image should have a statistical profile that’s closer to an unaltered
image than the original.

In comparing the images, Fridrich constructs first- and second-
order histograms of the low-order frequencies. The middle and
higher frequencies are often much less common and so they become
less significant. “Most steganographic techniques in some sense add
entropy to the array of quantized [JPEG] coefficients and thus are
more likely to increase the variation V than decrease [it]”, concludes
Fridrich.[Fri04]

17.7 Summary

For every steganographic algorithm, there may be a form of steganal-
ysis that detects it. Many of the early algorithms were relatively easy
to detect because they left statistical anomalies. The newest algo-
rithms are much more secure, but only time will tell whether they
are able to withstand sophisticated analysis.

A good open question is whether there can be any solid descrip-
tion of which tweaks change which class of statistics. It would be nice
to report that simply swapping the least significant bits will change
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a particular set of stats and leave unchanged another particular set.
This work, however, needs a deeper understanding of how digital
cameras, cameras, and microphones convert our world into num-
bers.

In the meantime, the easiest way to slip by steganographic attacks
is to minimize the size of the embedded message. The smaller the
message, the fewer changes in the file and the slighter the distortion
in the statistics. In this realm, as in many others, the guiding rule is
“Don’t get greedy.”

Mark Ettinger uses
game theory to model

the cat and mouse game
between hider and

attacker. [Ett98]

The Disguise Data mimicry often fails to completely hide the exis-
tence of a message because efforts to blend the data often leave
other marks. Steganalysis often detects these patterns and re-
veals the existence of the message.

How Secure Is It? Many of the early software packages for hiding in-
formation in the noise of an image are often easy to detect. Im-
ages have more structure than we can easily describe mathe-
matically. In many cases, the cameras or scanners don’t gen-
erate files with true noise in the least significant bit and this
means that any efforts to hide information there will be de-
feated.

Mehdi Kharrazi, Husrev T. Sencar and Nasir Memon built a
large collection of test images and tested three detection schemes
against several embedding algorithms.[KSM06] They found that,
in general,

• Comparing the correlation between the least significant
and the next-to-least significant bit planes is the most ef-
fective detector of pure or RAW images that haven’t been
compressed with JPEG or another DCT-based compres-
sion scheme.

• Artifacts from the cosine transform help many statistical
tools because they add a regularity that is distorted when
the message and all of its additional entropy are added to
the file. Steganography is easier to detect in files that have
been heavily compressed.

• The cropping or realignment from Section 17.6.2 is gener-
ally the most accurate of the three on files that have some
JPEG compression in their history.

• Recompressing JPEG files, especially after cropping, can
confound the detectors.
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How to Use It The best steganalysis is aimed at individual algorithms
and the particular statistical anomalies they leave behind. The
best solution is to learn which software is being used and ana-
lyze it for characteristic marks. More general solutions are usu-
ally far from accurate. The best general solution is to check the
randomness of the least significant bits. Too much randomness
may be a sign of steganography— or a sign of a very good cam-
era.

Further Reading

• The Investigator’s Guide to Steganography by Gregory Kip-
per describes many of the major programs floating around
the Internet and explains some techniques for detecting
when they’ve been used. [Kip03]

• Nicholas Zhong-Yang Ho and Ee-Chien Chang show how
it is possible to identify the information in redacted docu-
ments by looking at the edge effects like the ones in Figure
17.3. If the redaction does not black out the entire 8 × 8
block, some residual effects from JPG compression will be
left behind. This may be enough to recover the informa-
tion removed during redaction. [HC08]



Chapter 18

Obfuscation

18.1 Regulation

From DEPARTMENT OF THE TREASURY
Internal Revenue Service
26 CFR Part 1
[TD 9115]
RIN 1545-BC27

Temporary regulations issued under 1.168(k)-1T and 1.14-
00L(b)-1T (TD 9091, 68 FR 52986 (September 8, 2003))
provide that the exchanged basis (referred to as the car-
ryover basis in such regulations) and the excess basis,
if any, of the replacement MACRS property (referred to
as the acquired MACRS property in such regulations) is
eligible for the additional first year depreciation deduc-
tion provided under section 168(k) or 1400L(b) if the re-
placement MACRS property is qualified property under
section 168(k)(2), 50-percent bonus depreciation prop-
erty under section 168(k)(4), or qualified New York Lib-
erty Zone property under section 1400L(b)(2). However, if
qualified property, 50-percent bonus depreciation prop-
erty, or qualified New York Liberty Zone property is placed
in service by the taxpayer and then disposed of by that
taxpayer in a like-kind exchange or involuntary conver-
sion in the same taxable year, the relinquished MACRS
property (referred to as the exchanged or involuntarily
converted MACRS property in such regulations) is not el-
igible for the additional first year depreciation deduction
under section 168(k) or 1400L(b), as applicable. However,

355
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the exchanged basis (and excess basis, if any) of the re-
placement MACRS property may be eligible for the ad-
ditional first year depreciation deduction under section
168(k) or 1400L(b), as applicable, subject to the require-
ments of section 168(k) or 1400L(b), as applicable. The
rules provided under 1.168(k)-1T and 1.1400L(b)-1T ap-
ply even if the taxpayer elects not to apply these tempo-
rary regulations.

18.2 Code Rearrangement

In the beginning, everyone was happy if the code just ran. Anyone
who lived with punch cards or paper tape, or any system without
persistent memory, spent too much time loading the software.Some call it shrouded

code. Now software is everywhere and it is much easier to analyze code
on a meta-level. Every compiler reads our code and tweaks it to
make it run faster. Most good programming editors and integrated
development environments have meta-tools that make suggestions
for rearranging the code.

These tools are an opportunity for sneaking in hidden messages
on two different levels. First, it is possible to tweak the code to hide
a message that is independent of the code— a message might hold a
watermark with a user’s Id or something entirely different. Second,
the code itself can be twisted up in a way that makes it harder to
read or understand. The first is generally called watermarking or
steganography, while the second is often called obfuscation.The SandMark tool by

Christian Collberg will
embed information

while obfuscating Java
byte code.

The two goals depend on the same basic observation: software
code consists of a number of different steps but not all of the steps
need to be in the same order. If steps A,B, and C can be done in
any order, we can hide a message in this order by giving one person
software that does them in order C,B, and A while giving another a
package that executes the steps as B,C, and then A. There are six
different messages (3! = 3× 2× 1) that can be hidden here.

The process of obfuscation can be helped along by scrambling
the order of the steps if we assume that some of the orders are easier
to comprehend than others. Programmers, of course, will always
argue about the cleanest way to write their software, but even after
accounting for natural differences, there are some orders that are
harder to understand.

Reordering the instructions is just the beginning. Savvy tools can
rewrite the code by replacing one set of instructions with another set
that does exactly the same thing. A loop of code that keeps repeating
as long as some counter is strictly less than, say, 10 can be replaced
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by a loop that repeats as long as the counter is less than or equal to 9.
Both end at the same time. Both do the same thing. But this flexibility
can hide one bit of information. String together 30 of them in the
code and there’s a watermark.

Obfuscation offers opportunities for more fun. If the goal is to
keep a human from understanding the code, it can help to rename
the variables with odd names— even words that themselves hide
steganographic messages.

In the end, obfuscation may never be completely secure. If the
software is to be understood by a computer, then it must be in some
form that can be understood by a human— at least as long as the
human is thinking like a computer. The general impression is that
obfuscated code can provide a hurdle for any attacker but will never
reach the security offered by standard encryption packages. Turn to [BGI+01] for a

theoretical discussion of
the limits of
obfuscation. The paper
has seven authors and
log 7! bits can be hidden
in the order of their
names.

18.3 Compiling Intelligence

Most of the techniques in this section were originally developed by
compiler developers who wanted to rearrange the order of code so
they could optimize the speed of the processors. Getting informa-
tion from the main memory into the processor chip was often much
slower than using information directly from the small internal mem-
ory, and so the code optimizer would delay the execution until all of
the information was in the internal memory.

Rearranging the code to hide a message or the intent of the code
itself isn’t limited by such concerns. Any valid order is okay and so
there are more opportunities to hide messages. If the code obfusca-
tion is done at the source code level, the compiler will probably strip
out many of the hidden bits by optimizing the compiled code. If it is
done at the binary level, obfuscating the code may make it slower. 1

Here is a list of techniques for re-arranging the code.

• Worthless Instructions The simplest way to hide bits and add
some confusion to code is to just create new instructions and
interleave them. As long as you don’t use any real variables
in your new code, there shouldn’t be any weird side-effects,
except perhaps for memory usage if you decide to consume
huge blocks of memory.

Many compilers will strip out the so-called dead code before
generating the object code, an effect that can be useful if you

1Some languages like Java have binary code that is further refined at runtime by
another layer of translation and compilation. This further optimization can reverse
any of the inefficiencies added by the obfuscation.
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want to avoid slowing down the software. These dead code
detection schemes, though, can also be used to identify the
worthless instructions and remove them.

Another solution is to ensure that the worthless code will al-
ways compute some value of zero and then add this result to a
live variable. Here’s an example:

int dummy=2*live;
dummy=dummy*10;
for (int i=0;i<20;i++){
dummy=dummy-live;
}
live=live+dummy;

This code won’t change the value of live, at least until it over-
flows a 32-bit architecture.

• Renaming Code rearrangement for optimization uses renam-
ing to let two different blocks of code run simultaneously even
if they happen to be using the same variable name. It’s com-
mon, for instance, for many loops to use the variable i to count.
In the source code, two independent loops can be given differ-
ent names without affecting the results.For fun, some

programmers run the
International

Obfuscated C Code
Contest, the Obfuscated

Perl Contest, the
International

Obfuscated Ruby Code
Contest, and the

Obfuscated PostScript
Contest.

If the goal is obfuscation, new variables can be created and in-
formation can be copied from one to the other. If two blocks of
code use variable foo5000, then an additional variable, bar422,
can be created to replace foo5000 in one of the blocks if the
right copying statements are included. foo5000 = bar422
should be added to the end of one block and bar422 = foo5000
should be added to the other. If you can be certain that one
block is always executed before the other, then you can remove
the copying statement from the second.

• Naming The names of the actual variables can be used to en-
code information in the process of obfuscating the code— a
technique that doesn’t do anything for optimization. Any of
the techniques from the text steganography Chapters such as
Chapter 6 can create variable names that encode hidden bits. If
you’re programming in very prolix languages like Java that en-
courage people to give their variables names thatAreEntireSen-
tencesSeparatedByCamelCase, then you might even use vari-
able names built by grammar-based tools like the ones in Chap-
ter 7 or 8.
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At first glance, there may be little that you can hide in binary
code because the variables are just registers and there aren’t
many of them, but there’s still room for hidden bits. The order
that the registers are used by the code is an ordered list and an
ordered list of n items can hold log2 n! bits of hidden informa-
tion. See Chapter 13. This technique could also be used with
source code-level hidden information.

• Reordering If any n blocks of instructions are independent
from each other, then they can be reordered in arbitrary ways
to hide log2 n! bits of data.

If the blocks have several instructions in them, they can often
be shuffled together in arbitrary ways to increase the complex-
ity:

Before:

a1();
a2();
a3();
b1();
b2();
b3();
c1();
c2();
c3();

After:

a1();
b1();
c1();
c2();
a2();
a3();
b2();
b3();
c3();

The number of potential shuffles is quite high and depends on
a number of assumptions about the underlying instruction set.

• Loop Unrolling Loop unrolling is a technique to interleave the
instructions from different interations of a loop. That is, it starts
the i+ 1th iteration of loop before the ith is finished.

Here’s a loop:
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i=0;
while (i<3) {
a(i);
b(i);
c(i);
}

Here’s the loop after being unrolled:

a(0);
b(0);
c(0);
a(1);
b(1);
c(1);
a(2);
b(2);
c(2);

Here’s the loop after being unrolled and reordered:

a(0);
a(1);
b(0);
a(2);
b(1);
c(0);
c(1);
b(2);
c(2);

All of the usual rules about independence apply to the reorder-
ing. In many cases, the passes through the loops are indepen-
dent and so can be used liberally.

This can be a powerful technique for obfuscation if a loop can
be unrolled a number of times. If some variable renaming is
introduced in the middle of the different blocks, it can be ex-
tremely confusing.

• Branch Composition A chain of simple if-then statements can
be rewritten in a number of ways that both obscure the mean-
ing of the underlying code while storing some hidden bits.
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if (a<b) {
if (c<d){
//...
} else {
//...
}
} else {
if (c<d){
//...
} else {
//...
}
}

This could be written:

if ((a<b) and (c<d)) {
} else if ((a<b) and (c>=d)) {
} else if ((a>=b) and (c<d)) {
}else {
}

The branching can be composed in many ways that are beyond
the scope of this book.

• Inlining Routines Many programmers like to break up their
software into short functions, methods or subroutines in or-
der to increase the readability of the code. This can be easily
defeated by replacing the calls to the subroutines with the sub-
routine itself. This is often done by code optimizers to reduce
the number of calls to the subroutines, an operation that can
often slow down software, but can also obliterate the software
author’s attempts at breaking up the package into easily read-
able snippets.

This technique can be quite useful when it is composed with
loop unrolling and other transformations because it creates
longer blocks with more instructions. In other words, more fer-
tile grounds for more operations.

• Innane Comments All of the text steganography from Chapters
6, 7, and 8 can be used to create innane comments for source
code.

• Loop Endpoint Modification This technique offers little to
code optimization, but it’s a cheap, quick way to hide one bit
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of information. If the loop counter is an integer and it’s incre-
mented in a predictable way, it’s possible to use one of these
two equivalent pieces of code:

for (int i=0;i<10;i++){
for (int i=0;i<=9;i++){

• Transformation Most programming languages are, like C, Java
and Perl, inherently declarative and filled with statements that
are executed in some predefined order. Others are defined
more by transformations. They are not much different from
the grammars used in Chapters 7 and 8. These chapters of-
fer a number of ways to transform the grammars, in essence,
to change the encryption structure. These techniques, like the
ones in Section 7.3.3, will also help obfuscate code.

These techniques themselves are pretty independent and it’s usu-
ally possible to use all of them with some code.In fact, I know one

person who worked at a
place that used

automated tools to
search for comments.

He turned around and
wrote an automated
comment generator.

The techniques are also easy to apply in different contexts. Re-
ordering independent blocks of instructions can usually be done eas-
ily with source code if the language doesn’t require that the methods
or variables be declared in a fixed order. The methods in a Java class,
for instance, can appear in any order, and this is an easy way to add
a watermark to Java code without bothering to do any complicated
code analysis to determine whether two blocks of code are truly in-
dependent.

The technique can often be applied in binary packages too if the
binary code doesn’t require code to appear in a particular order. Var-
ious routines can be reordered in code as long as all references to the
location are rewritten.

18.4 Real Tools

There are too many tools available for obfuscation to list them here.
This short list is provided only as a starting point:

• JODE A nice package for Java from Jochen Hoenicke that can
be downloaded from jode.sourceforge.net. It includes a de-
compiler, an obfuscator that works by renaming, and a few
other tools like a dead code eliminator. This tool can be used
to introduce watermarks or remove them.
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• yGuard Another Java-based package from yWorks (www.ywork-
s.com) will rename variables, methods, classes and what-not
while eliminating other dead code. This can also shrink the size
of the binaries dramatically.

• SWF Encrypt A commercial package from Amayeta (www.amay-
eta.com) will scramble Flash (SWF) files while encrypting them.

There are also steganographic tools for adding watermarks or
data to source code, obfuscating the behavior a bit in the process.
Hydan, a tool written by Rakan El-Khalil and Angelos D. Keromytis,
will swap equivalent operations in x86 binary code. For instance,
both add %eax, $20 and sub %eax, $-20 will add 50 to the register
eax, providing the opportunity to hide one bit. They report that they
can embed about 1 bit per 110 bits of x86 binary code on average, an
amount they determined empirically by embedding watermarks in
x86 code compiled for Linux, Windows and BSD systems. The soft-
ware can be downloaded from http://www.crazyboy.com/hydan/.
[EKK04]

18.5 Summary

Obfuscation is a technique that is normally used to hide the mean-
ing of some software by rearranging the operations, but it can also
be used to add weak watermarks to the code. In both cases, the al-
gorithms rely on a collection of transformations that change the ap-
parent operation of the software without changing the results. An
obfuscated program should produce exactly the same results as an
unobfuscated one.

The Disguise The results of scrambling these programs can be quite
useful in many simple scenarios. Removing the variable names
and inlining a few instructions will make it difficult for any
reader to follow the simple flow of the software.

How Secure Is It? There are theoretical proofs that suggest that this
technique will never produce completely inscrutible code— an
understandable result given that any useful software must be
understood by the computer. Still, software written by some-
one else is often hard enough to read. Strip away the com-
ments, the variable names, and some of the structure, and it
could require a lot of work to reassemble.
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This technique may be more useful as a watermarking tool than
as an obfuscator. Small changes in the code can mark individ-
ual copies of the software.

Still, there are simple techniques that can be used to strip away
some of the watermarking tools. Decompiling the binary soft-
ware and then recompiling it is one simple solution that will
remove many of the effects described here. Or simply adding
another watermark on top of the software can remove the old
one.

How to Use It? There are a number of packages that will do simple
obfuscation. See Section 18.4. Most of these will only perform
basic obfuscation by renaming variables and doing some ba-
sic reordering. More sophisticated commercial tools are also
widely available.

Further Reading

• There are a number of code obfuscation tools on the mar-
ket, but they are not designed to hide information while
obfuscating the code. RetroGuard from retrologic.com
and CodeShield from codingart.comwork with Java code.

• Christian S. Collberg and Clark Thomborson survey many
of the techniques for obfuscation and watermarking, in-
cluding dynamic watermarking that morphs as the pro-
gram executes, making it harder to identify the watermark.
[CT02]

• Bertrand Anckaert, Matias Madou and Koen De Bosschere
offer a general way to think about self-modifying code,
something that makes it much simpler to build dynamic
watermarks.



Chapter 19

Synchronization

19.1 Stealing Baseball’s Signs

To: Newly Signed Recruits
From: Third-Base Coach

Here are the signs for tonight’s game. As usual, I will string to-
gether a sequence of bogus signs in front of the two trigger signals.
After the two trigger signals, alpha and beta follow in immediate se-
quence. I will deliver the one sign that isn’t fake. Pay attention to that
one. Then I’ll add in another three to seven fake signals to close out
the set. Remember: Ignore all signs that don’t follow the alpha and
beta sign in sequence. If you see another sign between the alpha and
beta, ignore them all. If you see the beta before the alpha, ignore it.
Use the alpha andbeta to synchronize yourself on the sign that mat-
ters.

Sign Meaning
Touch Nose Drug tester wants to check your steroid level.

Drink lots of fluids.
Grab Left Ear Someone dinged your new Escalade in the parking lot.
Grab Right Ear alpha
Grab Left Ear Your broker called with bad news about that

investment in pork bellies.
Cover Eyes beta
Slap Left Hip Watch your mouth. We could lipread that last epithet.
Kick Left Foot The owner is calling your bluff. He said “No” to your

salary demands.
Muss Hair We should dock your pay for that last one.
Hitch up Pants The team doctor says I should cut back on

the steak dinners.

365



366 CHAPTER 19. SYNCHRONIZATION

19.2 Getting In Sync

Most of the algorithms in this book depend, in one form or other,
on getting the complete file. The message may be hidden in a small
fraction of the file, but everything is available for extraction. If the
hidden bits are supposed to be located 14 pixels from the left and 212
from the bottom, that spot can be found because the entire frame is
available.

There are many cases when the entire file isn’t around. Photos
are routinely cropped before being reused. Only a short clip of a
sound file or a movie may be available. Anyone turning on a radio
at a particular moment may start receiving the signal at any arbitrary
place in the stream.

Unfortunately, some of the more extreme algorithms in this book
rely heavily on absolute synchronization to function correctly. Most
effective encryption algorithms change their process throughout the
file, encrypting the nth byte differently from the n + 1th byte. Some
of the algorithms for hiding information use a subset of the data and
rely heavily on the boundaries to define those pixels.

Synchronizing a bit stream between a sender and a receiver is not
hard to do, but it is a bit tricky to do in an efficient manner. The
simplest trick is to introduce a special synchronization character and
only use it at the beginning or end of a word. The easiest example is
unary or base one encoding, where a 1 is used as the boundary and
the number of 0s encodes the value. So a message of 2, 3, 2 would
look like 1001000100.

Morse code uses two different-sized pauses in the signal stream.
Short pauses break up the dits and the dashes, while pauses that are
three times as long break up the letters. The gap between the three
dots in an S (...) should be one third the size of the gap between the
last dot and the beginning of the next letter. The factor of 3 is just a
convention and many people probably deviate.

Dedicating an entire character like 1 to synchronization in an al-
gorithm is expensive. Can you imagine transmitting the yearly bud-
get of the United States government (currently about $3.1 trillion) in
unary? While the approach is basic, it’s not easy to extend in the dig-
ital world, where there are only two real characters. Other characters
are just composed of blocks of 0s or 1s and it’s not simple to find the
beginning and end of the block.
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Figure 19.1: An imperfect modification of the Huffman tree from
Figure 5.1. The extra synchronization character, ‘*’, is not unique.

19.3 Extending Other Tools

Section 5.2.1 describes Huffman coding, a compression algorithm
that will produce variable-length codes for characters and compress
the bit stream by giving shorter codes to more common letters and
longer codes to the rarer ones. The standard algorithm may be very
good at squeezing out the extra entropy from a file, but it is extremely
fragile. If only one bit is lost, the rest of the stream can be compro-
mised.

Adding a synchronization character to a Huffman code is not as
easy as creating another character and adding it the mix. Figure 19.1
is a modified version of Figure 5.1 created by adding another charac-
ter, ‘*’, to the alphabet to act as a synchronizer. This seems to work.
Adding the asterisk at the beginning of a word or a paragraph would
be a signal. The word ‘ate’ would be encoded as ‘1111011101110’.
Anyone who needs to synchronize a stream of bits could look for the
four 1s in a row and then start forward from that point.

This would seem to work. There are four 1s in the asterisk’s code
block, ‘1111’, and because of the shape of the tree, four 1s only occur
in this asterisk. But there are three problems:

• The rest of the tree is not guaranteed to be as short as it is in this
example. This can be guaranteed by assigning the synchroniza-
tion character the lowest probability, something that ensures it
will be the longest code in the tree.

• Two letters together can produce the synchronization code.
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Figure 19.2: Figure 19.1 after the tree is rearranged to make the syn-
chronization code be 0111. These techniques are also used in Section
7.3.3 to scramble the tree to add more confusion to the code.

The code for ‘at’ is ‘011110’. Is this the place where we should
start decoding?

• It’s not clear where the code itself begins. The word ‘*tea’ would
be encoded: ‘1111110111001’. Where do the four 1s end and the
real message begin?

The last two problems can be solved by choosing the synchro-
nization code carefully and tweaking the tree by adding extra values
or nodes. This will decrease the efficiency but not as much as con-
verting to unary.

The key to avoiding the third problem is choosing a synchroniza-
tion code that is not susceptible to prefix inversion. That is, it’s not
possible to break the code block into two separate parts, A and B,
such that A + B = B + A where + stands for concatenation. The
block 1111 is one of the worst candidates for this because there are
three different ways to break it into A and B that satisfy the equa-
tion. Setting A = 111 and B = 1 is just one of them. A better choice
is something like 0111. Figure 19.2 shows a tree redrawn to avoid this
problem.

Avoiding the second problem is a bit trickier. If two adjacent char-
acters can produce the synchronization code, then it would intro-
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Figure 19.3: Figure 19.2 after the code for ‘A’ is changed from 11 to
110. Notice that there’s a blank node for the code 111. This shouldn’t
be used.

duce bad synchronization characters. The solution is to add extra
bits to the codes to eliminate this possibility— a process that will
hurt the code’s efficiency. The price, however, may be fairly low if
the codes are long. Adding an extra bit to a 12-bit code isn’t as bad as
adding an extra one to a 3-bit code.

The trick is to ensure that the code for one character can’t be bro-
ken into partsA and B such thatB is a prefix for the synchronization
code. So if the synchronization code is 0111, then a code that ends
with 01 would be bad because it is a prefix of the synchronization
code.

The codes produced by the Huffman algorithm can be made
longer by adding extra characters to the end. It’s not easy to add them
to the beginning or the middle, but it is to add them to the end. These
are wasted bits that serve no purpose except to prevent the synchro-
nization code from appearing.

Figure 19.3 shows Figure 19.2 after the code forA has been rewrit-
ten to use an extra bit, 110. This creates a code, 111, that is never used
when compressing the data. This inefficency, though, ensures that
none of the other letters will combine to form the synchronization
code. There is no code that will produce three 1s in a row except the
synchronization code.

The construction in Figure 19.3 is more of an accident produced
by the fact that the tree is small and there is only one letter that ends
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in a 1. There are a number of similar constructions that can produce
fairly efficient codes.

Imagine, for instance, that the tree will have height 2n, meaning
that the longest codes will be 2n bits long. Let one of these long codes
be the synchronization code created from n 0s followed by n 1s. So if
n = 4, then the synchronization code would be 00001111. Let’s repre-
sent this as 0414 or 0n11. Using a long code for synchronization may
be a bit inefficient if you intend to include it often, but it simplifies
the process of ensuring that no two letters can combine to form the
synchronization character.

We can fix the codes for the remaining characters by adding the
right suffixes:

• If a code for a character ends with more than n 0s, add 101 to
the code.

• If a code for a character ends with fewer than n 0s, add 1 to the
code.

• If a code for a character ends with more than n 1s, add nothing.

• If a code for a character ends with fewer than n 1s, add 01 to the
code.

This construction may not be optimal in many cases, but it should
suffice to prevent n 0s from appearing before n 1s except in the syn-
chronization character.

There are other techniques that rearrange the tree and provide
more efficient codes.

19.4 Summary

Being able to pick up a steganographic trail in the middle of a stream
is a useful technique for adding watermarks and other messages
when the cover file may be cropped or truncated along the way.
When users cut and paste snippets of songs or parts of an image, the
watermark can still survive if it’s possible to synchronize the solution.

The algorithms given here are just a small selection. Synchroniza-
tion is a common problem in data communications because noise
can corrupt signals. Many radio devices like cell phones must be able
to synchronize themselves with a network when they turn on.

The Disguise The algorithms given here don’t add any cover to the
process themselves. They just make it simpler to recover the
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hidden message when the disguise is chopped or truncated. A
snippet can still reveal enough information.

How Secure Is It? This construction doesn’t add any security itself,
but it does offer it indirectly by making it possible to recover
information from partial fragments.

How to Use It? If you have a short message and a long cover file, re-
peat the message throughout the cover file numerous. This
only works on methods that don’t base the encoding on the rel-
ative position in the file. Random walks that leave the stegano-
graphic method in places won’t work. The algorithms should
use some regular hiding algorithm that will be possible to pick
up even after cropping.

Further Reading

• S. Manoharan describes how self-synchronizing codes can
solve issues created by cropping and sampling. [Man03]



Chapter 20

Translucent Databases

20.1 Missed Connections

• To the kind person who took my new iPod from the gym on 49th
and Broadway, enjoy the ear mites.

• To the person who left their coat behind at a bar in the East
Village, you can recover it at the coin lockers at Grand Central
Station. It’s in locker 421 and the pass code is the first three
letters in the name of the bar followed by the two digits of the
date you left it behind.

• To the redhaired stunner in a blue Nike running jacket on the
F train on Monday morning around 9 am. You took my heart
yesterday, a major felony, btw, that should be worth 5 to 7 years
and a fine not exceeding $10,000. LOL. I spoke with my parole
officer, who told me it was okay to date on the first weekend out
of the joint. Call me, please.

• To the two snickering high school students who looked at my
outfit, caught my eye and then covered their mouths while
laughing at me on the Number 2 train last Thursday. You can
stop looking for your black leather gloves. You left them behind
on the train and I was too busy being hurt to tell you when you
left.

20.2 Hiding In Databases

Much of the work in this book is aimed at hiding information in
the cracks of other pieces of information, in essence turning it into

373
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an extra passenger on some bigger file traveling throughout the net.
The tricks in this book are also useful when the information remains
sitting in one central location like a database. The math remains the
same, although there are some new twists from the database world
that can be used to hide signals in images or other traditional homes
for steganography.

Traditional centralized servers will collect gigabytes and gigabytes
of information about users and then use simple access control mech-
anisms like passwords to control who gets to see which piece of in-
formation. The database becomes an all-seeing oracle with the re-
sponsibility of guarding the data. It becomes a big target for attack-
ers, who can read all of the information inside the database if they
can find a weakness in any of the layers in the system. Some thieves
simply steal the hard disk to circumvent the locks placed by the op-
erating system.

The term translucent databases is meant to describe any effort to
lock up a central pile of data so only the rightful owners, the clients,
can use it. A typical translucent system requires the user or client to
encrypt the bits before storing them in the database, stripping the
central server from having any responsibility for protecting the in-
formation. If the encryption is done in the correct way, the database
can still search through records and retrieve the information for the
client without knowing much about that information.

There are a number of different way to build a translucent mech-
anism and this chapter will only describe two: steganographic func-
tions and one-way functions. The first approach is a natural descen-A more complete

exploration of this topic
is found in my book,

Translucent Databases
[Way03].

dent of the algorithms found in this book and the various tricks for
steganographically encoding a message let the client encrypt it and
store it in the database. The one-way functions are more thorough
tools that completely scramble data; they also can be used for stega-
nography.

Imagine someone wants to add image-tagging features to an on-
line auction site but the complexity of the legacy code makes it dif-
ficult to add them in a traditional way. The users could simply be-
gin using some of the image tools described in this book to add the
descriptive words to the images without disrupting the normal soft-
ware. No changes would be necessary to the core auction database.
Anyone who wanted to search these image tags could run a separate
crawler that scans for them without disturbing the regular workflow
of the site.

The power this vests in the client means that the auction site
wouldn’t even need to grant permission or even know that the action
was going on. The users would have the power to add features of
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their own accord and on their own terms.

20.2.1 One-way Functions

One of the simplest ways to build a translucent database is to obscure
some of the columns of the database by passing them through a one-
way function, a mathematical convenience that is easy to compute
but practically impossible to invert. (Use h(x) to denote the one way
functions.) So-called cryptographically secure hash functions like
SHA256 are some of the most commonly used one-way functions to-
day, but almost any good cryptographic algorithm can be converted
into acting the same way by disposing of the keys.

A translucent version of a store’s database holding the customer’s
records might look like this:

h(name) item number size color
ab9938c . . . 4000 XL green
ab9938c . . . 4000 XL blue
2c42d45 . . . 4002 L rose
99ab993 . . . 4003 M yellow
99ab993 . . . 4000 M green

This table does not store the name of the customer directly. It
stores h(name), which is the result of passing the name through a
one-way function like SHA256. The other three columns are left un-
scrambled, a feature that lets the marketing and inventory depart-
ments study past sales.

Storing the customer’s name in this way lets the store track a cus-
tomer’s purchases while giving the customer some control over how
the information is used. The store can ask its database to answer a
question like “Which colors for item 4000 are popular?” but it can’t
poke around and ask, “Who is buying item 4000?” If the customer re-
turns to the store, though, the customer can calculate h(name) and
look up the past item numbers and sizes. Once the customer pro-
vides h(name), the store can provide all of the intrusive services that
it might want to provide.

There are limitations to this approach. The central database ad-
ministrator can’t invert the values of h(x) and so the administrator is
often unable to fix entries in the table. Attackers who are targeting
particular individuals and know their names can defeat simple sys-
tems like this by computing h(x) on their own— a problem that can
be fixed by asking the users to add a password to the mix and store
h(name, password) instead.
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This solution, though, is still often much cheaper and simpler
than building sophisticated access mechanisms and finding a secure
operating system to host the database.

20.3 Using Strong One-Way Functions

Using steganography with a centralized database produces databases
with two levels of access that can be controlled by the users alone.
The solutions make it simple to add new functions to legacy applica-
tions without disturbing them. If f(x,C) is some function that hides
the secret bits of x in the coverC in a way that can’t be detected, then
a client stores f(x,C) in the database instead of C. Only the people
who know about f and have the right keys to reverse f can extract x.
Everyone else sees plain old values of C.

Here are a few quick examples of how this can be useful:

• A database that tracks ships can blur the actual position of a
ship by adding a vector, (h1(xi), h2(yi)), to each ship’s position,
(xi, yi). If the values of h1 and h2 can only be computed by
some users, then only those users can find the position of the
ship with the highest level of precision. One possible solution
is to use h1(x) = SHA256(name, password, x), where name is
the name of the ship and password is some secret password.-

A technique like this might be useful if a shipping companyThe HMAC is a
mechanism for hashing
a longer document with

a key. It is the best
technique for mixing a
key into a generic hash

function. [Pro, NN06,
BCK96b, BCK96a]

wants to dispense positions with rough accuracy to the general
public so they can track the movement of their goods, but keep
the greatest accuracy for internal use.

• An image royalty company might want to piggyback on the
wide-open, public databases like flickr.com by embedding
sales information inside an image. They might add prices and
copyright information inside the image so anyone browsing the
site could get immediate royalty information.

20.3.1 One-Way Functions and Steganography

The paradigm of encrypting columns in a database can be converted
into a tool for hiding information in plain site. Instead of storing the
table in some distant database, why not distribute the entire thing
and let the user find the right rows?

Imagine a table with n rows much like the table like the one in
Section 20.2.1 where n− 1 rows are made up of random information
and one row contains the true signal. A legitimate user can find
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the right row by knowing either h(x) or just x and the structure of
h. That is, anyone searching for the secret data can find it in the
sea of noise by knowing either the right key, 2c42d45 . . ., or the right
way to calculate the key (Use your name, and compute h(name +′

swordfish′)).
There are a number of ways that this technique can be extended.

One simple mechanism is to put random numbers in one column,
call them xi, and digital signatures in another, yi = s(xi). Only the
legitimate rows have digital signatures that check out. These signa-
tures could be as simple as a message authentication code or MAC
like s(x) = SHA256(x + password). Still, using fast authentication
computations makes this an expensive mechanism because some-
one looking for data must look at every row and decide whether yi

matches s(xi).

20.4 Summary

Databases don’t need to store information in the clear and rely on
elaborate security mechanisms and good operating systems to pro-
tect the information. The client can encrypt or hash the data before
storing it. Only the client can fetch it later.

This increases the security of the database and reduces the re-
sponsibility on the shoulders of the database administrator at the
cost of eliminating their ability to help. Removing the danger of a
superuser also eliminates the superuser as a source of assistance.

The Disguise Hide information in a database by either encrypting it
completely or storing it steganographically inside other infor-
mation.

How Secure Is It? It depends on the quality of the encryption or
steganographic algorithm. In most cases, the best hash func-
tions will suffice, although some mathematical research is chip-
ping away at their strength.

How to Use It? UseSHA256(data) instead of data for a column. Only
the true owner of data can then use that column as a key to
locate the row.

Further Reading

• My book, Translucent Databases, describes a number of
techniques for hiding information in databases.[Way01]
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• The proper way to use synthetic one-way functions like
SHA256 is a fertile topic because of all the recent research
identifying weaknesses in some of the standard designs
like MD5 and SHA-1. While many of the results won’t have
much immediate practical effect on some of the tech-
niques used in translucent databases, there’s little doubt
that the research could lead to a consistent and useful at-
tack capable of producing useful collisions. Even some of
the more sophisticated tools like the HMAC are suscepti-
ble. [RR08, FLN07, MTMM07]



Chapter 21

Plain Sight

21.1 Laughtracks

To: Production Staff and Set Design
From: Jerry Brown, Asst. to the Executive Writing Arc Supervisor
Re: Meta-textual clues for audience.

Recent audience surveys show that the larger broadcast audience
fails to grasp the humorous possibilities of the narrative arc designed
by the office of the Writing Arc. To facilitate the absorbtion of our hu-
mor, we are asking that we construct a new set of neon signs that will
cue the studio audience to inject the kind of meta-narrative instruc-
tions that will allow our broadcast audience to, for lack of a bigger
term, laugh at the right places.

All future scripts from the Office of the Writing Arc Supervisor will
include cues for when to activate these lighted signs.

Snicker For use when a mild signal should be injected into the story
stream.

Snort We hope to limit this to the jokes told by our particularly cur-
mugeonly characters.

Please Groan Best used for puns and other cheap forms of humor.
This will indicate that we’re not stooping to cheap tricks to get
laughs but approaching them with an obviously ironic pose.

Knee Slapper For older jokes that we’ve borrowed from the old
school of comedy.

Through the Nose For physical comedy.

379
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Atomic Funny This signals super-duper funniness. The atomic bomb
of humor. Not to be confused with humor that just bombs. To
be used sparingly, no more than twice per episode.

21.2 Hiding in the Open

In the middle of Michael Crichton’s Jurassic Park, when the charac-
ters are coming to realize the depth of their predicament, the math-
ematician in the bunch, Ian Malcolm, asks the dinosaur curators to
reprogram their computers. The original software began with an ex-
pected count of dinosaurs and then scanned the park looking to ac-
count for all of the dinosaurs on the list. If one was missing, it raised
an alarm and triggered a search. It all seemed bullet-proof.

But when Malcolm asked them to raise the expected count, the
computer came back and found even more dinosaurs than it did in
the original count.

“Now you see the flaw in your procedures,” Malcolm said. “You
only tracked the expected number of dinosaurs. You were worried
about losing animals, and your procedures were designed to advise
you instantly if you had less than the expected number. But that
wasn’t the problem. The problem was, you had more than the ex-
pected number.”[Cri90]

The dinosaurs were breeding and the elaborate control system
couldn’t account for them. Malcolm saw this weakness in the system
as an example of a larger truth about the universe.

“[S]traight linearity, which we have come to take for granted in
everything from physics to fiction, simply does not exist. Linearity
is an artificial way of viewing the world. Real life isn’t a series of
interconnected events occurring one after another like beads strung
on a necklace. Life is actually a series of encounters in which one
event may change those that follow in a wholly unpredictable, even
devastating way.” he explained.

All data formats for computers begin with expectations. While
the formats may not be linear in the strictest sense of the word, they
are still well defined and the strength of this definition leads to its
weakness.

Much of this book involves tweaking the actual data stored in a
file by introducing small changes like adding a bit more red to a pixel.
These solutions are useful, but they can introduce distortions that
can lead to detection. As Chapter 17 shows, many of the simplest al-
gorithms distort the statistical profile of the files in subtle but often
detectable ways. To make matters worse, the approach is in constant
competition with compression algorithms that try to squeeze out all
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extraneous information and noise to save space. This is why many
researchers suggest that the only long-term solution is to hide infor-
mation in the salient features, the actual visible or audible parts of a
file. Wojciech Mazurczyk

and Krzysztof
Szczypiorski found that
Voice Over IP calls could
hide information
because the algorithms
work around missing
packets— or packets
replaced with hidden
messages.[MS08]

Here’s a counter approach: Instead of hiding information in the
data itself, hide information in the gaps in the data structures, in the
places where the software won’t look for it.

“K is for Keeler, As fresh
as green paint, The
fastest and mostest To
hit where they
ain’t.”–Ogden
Nash[Nas49]

Consider how to join these two facts: (1) GIF files, like most files,
begin at the beginning of the data with a few bytes that describe
the size of the data, while (2) ZIP files begin at the end with a table
that describes the location of data inside. This makes it possible to
concatenate a GIF file and a ZIP file so that both are still decodable,
at least least in theory. Just type this on a Mac or UNIX box:

cat somefile.zip >> somefile.gif
This will append somefile.zip to the end of somefile.gif. It

essentially hides a GIF file at the beginning of a ZIP file or a ZIP file
at the end of the GIF file. A program looking for a GIF file will start at
the beginning, decode the header information describing the size of
the image, and then unpack it beginning at the very beginning. A ZIP
file decoder will do the same, but from the end. I assume that the ZIP
file was designed this way to make it easier to add more files to a ZIP
file by just appending them to the end.

Neither software package will notice the other— unless there are
some unspoken assumptions made by the programmers. It’s entirely
possible that a clever programmer will mix up the two different val-
ues: (1) the length of the file as described by the header and (2) the
length of the file as described by the operating system. This will lead
the results to crash nonstandard implementations.

21.3 Other Formats

Many formats make it easy to add freeloading data to a file. In fact,
good programmers have been pushing this as a design feature for
software because it makes it simpler to improve software without
crashing older versions. A good file format will include a mechanism
to add more data later in case the need becomes necessary.

Many of the modern tagged languages like XML (Extensible Markup
Language) or its cousins like SGML (Standard Generalized Markup
Language) or HTML (Hypertext Markup Language) are designed to
let the programmer toss in additional information or create addi-
tional data as necessary.

Here’s a common example:
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<recipe name="brownies" >
<title>Chocolate Brownies</title>
<ingredient amount=".75" unit="cup">
melted butter</ingredient>

<ingredient amount="1.5" unit="cup">
sugar</ingredient>

<ingredient amount="1.5" unit="teaspoon">
vanilla</ingredient>

<ingredient amount="3" unit="item">
eggs</ingredient>

<ingredient amount=".5" unit="cup">
cocoa powder</ingredient>

<ingredient amount=".75" unit="cups">
flour</ingredient>

<ingredient amount="1" unit="teaspoon">
salt</ingredient>

<ingredient amount="1" unit="cup">
nuts</ingredient>

<ingredient amount="1" unit="cup">
semi-sweet chocolate chips</ingredient>

<instructions>
<step>Mix together.</step>
<step>Pour into pan.</step>
<step>Bake in the oven at 350(degrees)F.</step>

</instructions>
</recipe>

Here’s how easily it can be extended with some new tags and at-
tributes:

<recipe name="brownies" >
<title>Chocolate Brownies</title>
<creator email="unknown@unknown.com"> Mrs. Quinn </creator>
<ingredient amount=".75" unit="cup" type="liquid">
melted butter</ingredient>

<ingredient amount="1.5" unit="cup" type="level">
sugar</ingredient>

<ingredient amount="1.5" unit="teaspoon" type="liquid">
vanilla</ingredient>

<ingredient amount="3" unit="item">
eggs</ingredient>

<ingredient amount=".5" unit="cup" type="level">
cocoa powder</ingredient>

<ingredient amount=".75" unit="cup" type="level">
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flour</ingredient>
<ingredient amount="1" unit="teaspoon" type="heaping">
salt</ingredient>

<ingredient amount="1" unit="cup" type="heaping">
nuts</ingredient>

<ingredient amount="1" unit="cup" type="heaping">
semi-sweet chocolate chips</ingredient>

<instructions>
<step>Mix together.</step>
<step>Pour into pan.</step>
<step>Bake in the oven at 350(degrees)F.</step>

</instructions>
</recipe>

The new version includes attributes describing the type of mea-
surement used for the ingredients and a new tag giving credit to the
creator. Most software tuned to the original package will ignore these
extra tags and find only the data it expects to find.

This is usually the case with XML, but it is not always true. The
specification includes a mechanism for defining the legitimate pat-
tern for the tags and this specification can block the adding of extra
tags. The Document Type Definition, or DTD, includes definitions for
which tags should be found and where they can be found.

Many programmers report a fair amount of frustration with rigid
DTDs because they cause incompatibilities between versions of the
software. This is especially true if the software relies on a feature
that allows a DTD to be downloaded from a web site. I know one
open-source project that started crashing after some of the keepers
updated the DTD on a distant web site.

21.3.1 Microformats

One of the more established attempts at building a regular mech-
anism for revising and extending HTML lives at the www.microfor-
mats.org web site. The Microformats project includes a number of
additions to HTML that add more semantic meaning to the text. The
extra meaning identifies the context or meaning of the text on a web
page by identifying its role. One type of tag wraps around a zip or
postal code. Nother identifies a telephone number.

Here’s an example of an address spelled out in the the vcard for-
mat:

<div class="vcard">
<a class="fn org url" href="http://www.munster.com/">
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Herman Munster</a>
<div class="adr">
<span class="type">Work</span>:
<div class="street-address">1313 Mockingbird Lane</div>
<span class="locality">Mockingbird Heights</span>,
<abbr class="region" title="California">CA</abbr>
<span class="postal-code">94301</span>
<div class="country-name">USA</div>
</div>
<div class="tel">
<span class="type">Work</span> +1-650-556-1234
</div>
<div class="tel">
<span class="type">Fax</span> +1-650-556-1235
</div>
<div>Email:
<span class="email">info@munster.com</span>
</div>

</div>

There are similar formats for calendars (hCalendar), opinions
(hReview), social networks (XFN), geography (geo) and a few others.
All are designed to add the information in a way that will be ignored
by the browser. It will slip by the web browser like a dinosaur because
the web browser isn’t looking for it.

21.3.2 Rice’s Theorem

One of the more interesting theorems from computer science theory
suggests that it may be theoretically impossible for anyone to exam-
ine a program and determine whether it is packing extra information
in a data file. This theorem is worth mentioning even if it may not
have much practical use.

A casual version of the theorem, due to Henry Gordon Rice, states
that a software program can’t be counted on to detect whether an-
other program is conforming to some standard for a file format.
The theorem itself says that the problem is undecidable, a term that
means that the program is guaranteed to halt and give a definitive
answer. If it doesn’t halt, it could go on checking, rechecking or look-
ing for some complex answer.

This theorem may help establish a theoretical limit to checking
for secret messages in file formats, but it may not be of practical value
because the theoretical result is based on asking a computer program
to examine itself, a sort of logical tongue-twister that can have odd
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logical consequences. A less rigorous piece of software may be able
to do a good job of testing for errant code.

The parsers for XML, for instance, can test to see whether XML
conforms to a well-defined model. Extra tags and attributes are
flagged and reported. Even if most software can’t rely on these rules,
they exist and do a good job of checking the data flowing along the
wires. The XML standard, though, isn’t Turing-complete and so it’s
possible to build a fairly straightforward testing tool.

21.4 Summary

Almost every data format has plenty of loopholes that can be used to
add extra data. If the code reads the first n items on a line, you can
stick more information after the nth item. If there’s a special end of
file marker, say a zero, then you can add more after the zero. This
technique makes it easy to add information in many cases.

A neat trick is mixing together two files with head-first and tail-
first ordering of data like the GIF format and the ZIP formats. If these
two parts are glued together, decoding algorithms will frequently fail
to notice the other half. This lets a GIF hitch a ride on ZIP file and a
ZIP file hitch a ride on a GIF.

The Disguise Information is stored in the spare corners of data files,
a surprisingly easy process.

How Secure Is It? It may be theoretically impossible to detect that
a piece of software is capable of reading or hiding extra data
in a file. This theoretical barrier, though, may not have much
practical weight.

How to Use It? The simplest solution may be to glue together a ZIP
and a GIF file. Or just add extra nodes to an XML file.

Further Reading

There are a many data format books out there. It’s impossible
to list them all.
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Coda

As I’ve been writing this book, I’ve been haunted by the possibility
that there may be something inherently evil or wrong in these algo-
rithms. If criminals are able to hide information so effectively, justice
becomes more elusive. There is less the police can do before a crime
is committed and there is less evidence after the fact. All of the ideas
in this book, no matter how philosophical or embellished with alle-
gory or cute jokes, carry this implicit threat.

This threat became a bit more obvious after the destruction of the
World Trade Center on September 11th, 2001. Some news reports of-
fered the supposition that the attackers may have coordinated their
efforts by hiding information in images. While there is no evidence
that this occurred as I rewrite this chapter, there’s no doubt that it
could have occurred.

The U.S. Federal Bureau of Investigation, or at least its senior
officers, are clearly of the opinion that they need ready access to all
communications. If someone is saying it, writing it, mailing it, or
faxing it, the Bureau would like to be able to listen in so they can
solve crimes. This is a sensible attitude. More information can only
help make sure that justice is fair and honest. People are convicted
on the basis of their own words—not the testimony of stool pigeons
who often point the finger in order to receive a lighter sentence.

The arguments against giving the FBI and the police such power
are more abstract and anecdotal. Certainly, the power can be tamed
if everyone follows proper procedures. If warrants are filed and
chains of evidence are kept intact, the power of abuse is minimized.
But even if the police are 100 times more honest than the average
citizen, there will still be rogue cops on the force with access to the
communications of everyone in the country. This is a very powerful

387
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tool and the corruption brought by power is one of the oldest themes.
Both of these scenarios are embodied in one case that came along

in the year before I began writing the first edition of the book. The
story began when a New Orleans woman looked out the window and
saw a police officer beating her son’s friend. She called the Internal
Affairs department to report the officer. By lunchtime, the officer in
question knew the name of the person making the accusation, her
address, and even what she was wearing. He allegedly ordered a hit
and by the end of the day, she was dead.

How do we know this happened? How do we know it wasn’t a ran-
dom case of street violence? Federal authorities were in New Orleans
following the officer and bugging his phone. He was a suspect in a
ring of corrupt cops who helped the drug trade remain secure. They
audiotaped the order for the hit.

There is little doubt that secure communications could have
made this case unsolvable. If no one had heard the execution order
except the killer, there would be no case and no justice.

There is also little doubt that a secure Internal Affairs office could
have prevented the murder. That leak probably came from a col-
league, but the corrupt cops could have monitored the phones of
the Internal Affairs division. That scenario is quite conceivable. At
the very least, the murder would have been delayed until a case was
made against the officer. The right to confront our accusers in court
means that it would have been impossible to keep her identity secret
forever.

Which way is the right way? Total openness stops many crimes,
but it encourages others forms of fraud and deceit. Total secrecy
protects many people, but it gives criminals a cover.

In the past, the FBI and other parts of the law enforcement com-
munity suggested a system known as “key escrow” as a viable com-
promise. The escrow systems broadcast a copy of the session key in
an encrypted packet that can only be read by designated people. Al-One solution is to

encrypt the session key
with a special public

key. Only the
government has access

to the private key.

though Department of Justice officials have described extensive con-
trols on the keys and on access to them, I remain unconvinced that
there will not be abuse. If the tool is going to be useful to the police
on the streets, they’ll need fast access to keys. The audit log will only
reveal a problem if someone complains that their phone was tapped
illegally. But how do you know your phone was tapped? Only if you
discover the tapes someone’s hands.

There really is no way for technology to provide any ultimate so-
lution to this problem. At some point, law enforcement authorities
must be given the authority to listen in to solve a crime. The more
this ability is concentrated in a small number of hands, the more
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powerful it becomes and the more alluring the corruption associated
with breaking the rules. Even the most dangerous secret owned by
the United States, the technology for building nuclear weapons, was
compromised by an insider. Is there any doubt that small-time crimi-
nals with needs won’t be able to pull off small-time corruption across
the country?

The depth and complexity of this corruption can lead to ironic
situations. Robert Hanssen, an FBI agent who worked on counteres-
pionage, turned out to be spying for the Russians at the same time.
In September 2001, the head of the Cuban desk at the Defense Intel-
ligence Agency was arrested and charged with being a spy for, of all
places, Cuba. If the goal is to protect US information from Russian or
Cuban ears, we must realize that putting eavesdropping technology
in the hands of the FBI or the DIA may also be putting this technol-
ogy at the disposal of foreign powers.

If giving into widespread eavesdropping is not a cure, then allow-
ing unlimited steganography and cryptography is not one either. The
technology described in this book offers a number of ways for infor-
mation to elude the police dragnets. Encrypted files may look like But in the end it doesn’t

matter what they see or
think they see. The
terminals are equipped
with holographic
scanners, which decode
the binary secret of every
item, infallibly. This is
the language of the
waves and radiation, or
how the dead speak to
the living. And this is
where we wait together,
regardless of age, our
carts stocked with
brightly colored goods.
—Don DeLillo in White
Noise

secrets and secrets can look damning. Although the Fifth Amend-
ment to the U.S. Constitution gives each person the right to refuse to
incriminate themselves, there is little doubt that invoking that right
can look suspicious.

Mimic functions, anonymous remailers, and photographic stega-
nography allow people to create files and hide them from sight. If no
one can find them, no one can demand the encryption key. This may
offer a powerful tool for the criminal element.

There are some consolations. Random violence on the street can’t
be stopped by phone taps. Muggers, rapists, robbers, and many other
criminals don’t rely on communications to do their job. These are
arguably some of the most important problems for everyone and
something that requires more diligent police work. None of the tools
described in this book should affect the balance of power on the
street.

Nor will banning cryptography or steganography stop terrorism.
The hijackers used knives and guile, not cutting epigrams floating
around in the netherworld of stegospace. The pen is not always
mightier than the box cutter.

In reality, very few crimes can be readily solved through wiretaps
because very little crime depends on communication and the ex-
change of information. Bribery of officials, for instance, is only com-
mitted when two people sit down in private and make an agreement.
If the money can’t be traced (as it so often can’t be), then the only
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way to prove the crime happened is to record the conversation or
get someone to testify. Obviously, the recorded conversation is much
more convincing evidence. State and local police in some states are
not allowed to use wiretaps at all. Some police officers suggest that
this isn’t an accident. The politicians recognized that the only real
targets for wiretaps were politicians. They were the primary ones
who broke laws in conversation. Almost all other lawbreaking in-
volved some physical act that might leave other evidence.

The power to create secret deals that this technology offers is
numbing. The only consolation is that these deals have been made
in the past and only a fool would believe that they won’t be made in
the future. No wiretap laws stopped them before cryptography be-
came cheap. Meeting people face to face to conduct illegal business
also has other benefits. You can judge people better in person. Also,
locations like bars where such deals may be made offer drinks and
often food. You can’t get that in cyberspace.

The fact that crooks found ways to elude wiretaps in the past can
be easily extended to parallel a popular argument made by the Na-
tional Rifle Association. If cryptography is outlawed, only outlaws
will have cryptography. People who murder, smuggle, or steal will
probably not feel much hesitation to violate a law that simply gov-
erns how they send bits back and forth. Honest people who obey
any law regulating cryptography will find themselves easy marks for
those who want to steal their secrets.

I mulled over all of these thoughts while I was writing this book.
I’ve almost begun to feel that the dispute is not really about tech-
nology. If criminals can always avoid the law, this won’t change with
more technology. The police have always been forced to adapt to
new technology and they will have to do the same here.

In the end, I began concentrating on how to balance the power
relationships. If power can be dispersed successfully, then the results
of abuse can be limited. If individuals can control their affairs, then
they are less likely to be dominated by others. If they’re forced to
work in the open, then they’re more likely to be controlled.

The dishonest will never yield to the law that tells them not to
use any form of steganography. The cliché of gangsters announcing
the arrival of a shipment of 10,000 bananas will be with us forever.
The question is whether the honest should have access to the tools
to protect their privacy. Cryptography and steganography give indi-
viduals this power and this is, for better or for worse, the best place
that it should be.
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Software

Many programs can also be found in numerous archives. Some of
the better ones include:

• http://www.stegoarchive.com/

• http://crypto.radiusnet.net/archive/

• http://www.cl.cam.ac.uk/~fapp2/steganography/

• http://www.geocities.com/Paris/9955/priv.html

• http://www.student.seas.gwu.edu/~sowers/digwat.html

• http://www.jjtc.com/Steganography/tools.html

• http://www.watermarkingworld.org/

• http://www.funet.fi/pub/crypt/steganography/

• http://glu.freeservers.com/stegano.htm

A.1 Commercial Packages

http://www.bluespike.com/ This company led by Scott Moskowitz
holds a number of significant patents for watermarking and
embedding information in files The Giovanni watermarking
system offers point-and-click watermarking.

http://www.neobytesolutions.com/ Invisible Secrets will encrypt and
hide information in your file system.

391
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http://www.datamark-tech.com DataMark offers digital watermark-
ing technology for content management.

http://pc-magic.com/ Magic Folders from PC-Magic will hide and
encrypt files in your file system.

http://www.steganos.com The Internet Privacy Suite from Steganos
includes a version of Hide and Seek.

http://www.signumtech.com/ Signum builds watermarking software.

http://www.mediasec.com Mediasec offers MediaSign and Media-
Trust tools for embedding digital signatures in files.

http://web.clicknet.ro/xidie/stegano.html The Xidie Security Suite,
by Laic Aurelian, compresses, encrypts, and embeds informa-
tion in a wide variety of files, including most image and sound
formats. It is free for noncommercial use and a commerical li-
cense is available.

A.2 Open Packages

These packages are either open source, freeware or shareware:

http://www.wbailer.com/wbstego wbStego is a tool written by Wer-
ner Bailer for inserting information into the least significant
bits of BMP files which also includes options for embedding
information in the PDF, HTML and ASCII files. The core tools
include a variety of different encryption algorithms as well as
the ability to spread out the hidden information to different
locations inside the file.

http://skyjuicesoftware.com Data Stash from Lim Chooi Guan of
SkyJuice Software will hide data in a wide variety of files.

http://www.pariahware.com Pict Encrypt from Pariahware is a ba-
sic tool for embedding some encrypted text in an image. It runs
on the Macintosh and does not include much documentation
about the algorithm.

http://wwwrn.inf.tu-dresden.de/w̃estfeld/f5.html The F5 package
encodes information in JPEG images using a technique to
thwart visual and statistical attacks. [Wes01]
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http://diit.sourceforge.net/ The Digital Invisible Ink Toolkit written
by Kathryn Hempstalk includes several algorithms for encod-
ing information and several algorithms for analyzing the results
to look for steganography. The hiding algorithms all work on
the least significant bits. The more sophisticated algorithms
use Sobel filters or Laplace filters to flag the best pixels for hid-
ing information. These tend to flag the edges between objects
where the intensity of the image changes quickly.

http://web.clicknet.ro/xidie/stegano.html The Xidie Security Suite
by Laic Aurelian compresses, encrypts and embeds informa-
tion in a wide variety of files including most image and sound
formats. It is free for non-commercial use and a commerical
license is available.

http://www.hermetic.ch/hst/hst.htm Hermetic Stego will hide in-
formation in BMP files. For Windows.

http://www.heinz-repp.onlinehome.de/Hide4PGP.htm Hide4PGP
by Heinz Repp will hide information in the least significant bits
of BMP and WAV files. The source and versions for Windows
and Linux are available.

http://www.fourmilab.ch/stego Steganosaurus, from John Walker,
is a C-based program that uses a dictionary to turn bits into
gibberish. [Wal94]

ftp://ftp.hacktic.nl/pub/crypto/macintosh/ Paranoid, by Nathan Mar-
iels, will encrypt information and hide it in sound files.

http://cypherspace.org/adam/stealth/ PGP Stealth, from Adam Back,
will strip off all of the headers from PGP files, producing some-
thing that should be random.

http://www.nic.funet.fi/pub/crypt/steganography/ Texto, by Kevin
Maher, is an text steganography program that uses some basic
grammars. [Mah95]

http://www.stego.com/ Romana Machado distributed the Java ver-
sion of her Stego and EzStego software from here. This cross-
platform tool hides information in the least significant bit of
an image after the colors in the image are sorted. This usually
works quite well, but there can be some inconsistencies. The
software was distributed with the GNU Public License.

http://wwwrn.inf.tu-dresden.de/w̃estfeld/f5.html The F5 software
used for hiding information in JPEG images includes a number



394 APPENDIX A. SOFTWARE

of enhancements designed to avoid steganalytic techniques
discovered by the creator, Andreas Westfeld. [Wes01, WP99]

http://www.mcdonald.org.uk/StegFS/ This is the source for the Ste-
ganographic File System described in Section 4.5. This soft-
ware works well with Linux file systems and can probably be ex-
tended to any other file systems with some work. It is released
under the GNU GPL.

http://www.smalleranimals.com/stash.htm The StashIt software hi-
des data in the least significant bits of images with five different
techniques. There is no charge for it.

http://www.darkside.com.au/snow/ The Snow software, developed
by Matthew Kwan, will insert extra spaces at the end of each
line. Three bits are encoded in each line by adding between 0
and 7 spaces that are ignored by most display programs, includ-
ing web browsers.

http://www.infonex.com/m̃ark/pgp/m-readme.html The Mandel-
Steg software hides information in the least significant bit of an
image of the Mandelbrot set. The set can be synthesized for any
set of coordinates in the plane with seven bits of accuracy. The
last bit is the message.

http://www.stella-steganography.de/ The Stella (Steganography Ex-
ploration Lab) software is both a tool for hiding information in
bitmaps and a lab for exploring how hidden the information
may be. The software includes a number of different tools for
taking apart the images to see the effects.

http://www.darkside.com.au/gifshuffle/ The Gifshuffle program
written by Matthew Kwan hides information in the ordering of
the palette of an image. If there are n! different ways to ar-
range n objects, then log2(n!) bits can be hidden in the choice of
which sorting to choose. GifShuffle hides 209 bytes in the way
that it selects 256 colors.

http://glu.freeservers.com/sgpo.htm David Glaude and Didier Bar-
zin created this program (SteganoGifPaletteOrder) that hides
information in the permutation of the colors in the GIF palette
in the same manner as GifShuffle.

http://www.spammimic.com David McKellar created one grammar
that encodes message in spam-like phrases removed from his
collection of spam messages. It is based on the algorithms de-
scribed in Chapter 7.
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http://www.steganos.com/ Steganos sells a suite of security prod-
ucts that includes The Safe, a “hard drive that disappears at the
click of a button. ”

http://www.tiac.net/users/korejwa/jsteg.htm This is the JSteg soft-
ware enhanced with a Windows shell.

http://linux01.gwdg.de/ãlatham/stego.html The JPHide and JPSeek
programs, written by Allan Latham, hide information in the
JPEG coefficients using classical algorithms. The software keeps
track of the change in the statistical profile of the coefficients to
help you avoid steganalysis. (See Chapter 17.)

http://www.compris.com/subitext/ Compris sells TextHide and Text-
Sign,a software programs that hide information by changing
the structure of sentences. The text should, in theory, say the
same thing after the extra information is inserted.

http://www.ctgi.net/nicetext/ Mark Chapman created NiceText as
his master’s thesis project during his time at the University of
Wisconsin studying with George Davida. The software assem-
bles a dictionary and classifies words to make it possible to ap-
proximate styles while also hiding information in text. [CD97]
See also http://www.nicetext.com.

http://www.datamark-tech.com/ DataMark Technologies sells four
programs using steganography. One offers watermarking, one
embeds raw information, one adds a digital signature to an
image, and one builds a “safe”.

http://www.stealthencrypt.com/ Stealth Encrypt bundles a stega-
nography wizard with its security suite.

http://www.heinz-repp.onlinehome.de/Hide4PGP.htm Hide4PGP
stores data in the least significant bit of either BMP or WAV files.
It’s a small, free program.

http://www.blindside.co.uk/ BlindSide hides information in bitmap-
ped images after using a proprietary encryption algorithm for
extra protection.

http://steghide.sourceforge.net/ The Steghide software is a GPL-
protected package started by Stefan Hetzl for hiding informa-
tion in the least significant bits of images (BMPs) or sound files
(WAV or AU).
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http://www.brasil.terravista.pt/Jenipabu/2571/e hip.htm Hide In
Picture stores information in the least significant bits of image
files.

http://www.intar.com/ITP/itpinfo.htm In The Picture hides infor-
mation in 4-bit, 8-bit and 24-bit images. The software can also
store multiple files protected with different passwords.

http://sourceforge.net/projects/mixmaster/ MixMaster is an excel-
lent set of tools for running and using anonymous remailers.

http://members.nbci.com/fredc/encryptpic.html EncryptPic hides
information in 24-bit BMP images after scrambling them with
the Cast algorithm.

ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/s-tools4.zip An-
drew Brown wrote S-Tools, one of the first programs for hiding
information in image and sound files.

http://www.neobytesolutions.com/invsecr/index.htm Invisible Se-
crets is a shareware program for storing information in the
usual places. It is a well-designed and highly polished program.
A version supported by banner ads is also available.

http://www.neobytesolutions.com/invsecr/index.htm S-Mail hides
information in x86 executable files (.exe or .dll) The programs
still work after the information is inserted.

http://www.camouflagesoftware.co.uk/ Camouflage is a basic tool
for compressing, encrypting and then appending the informa-
tion to the end of a file. The information isn’t inserted stegano-
graphically into the actual data, it’s just stuck at the end. This is
often good enough an is guaranteed not to leave any distortion
to the cover file.

http://wbstego.wbailer.com/ wbStego is a polished, professional
tool for hiding information in sound, image and text formats.
The latest version can also store them in Adobe PDF files in or-
der to help establish ownership.

http://www.scramdisk.clara.net/ If you want to hide information in
a scrambled directory on your hard drive, Scramdisk provides
the mechanism.

http://www.petitcolas.net/fabien/steganography/mp3stego/index.html
Fabien A. P. Petitcolas created MP3Stego for hiding information
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in the very popular MP3 files. The mechanism tweaks the par-
ity of some of the quantized coefficients chosen using a random
number generator. [AP98]

http://www.outguess.org/ Niels Provos built the Outguess system to
hide information in JPEG files without distorting the statistical
profile. He also distributes the StegDetect program, which will
detect distortions in other steganographic systems.

http://www.psionic.com/papers/covert/ Psionic Software created
this package for hiding information in the redundant or op-
tional bits of the TCP/IP headers. (The IP packet identification
field, the TCP initial sequence number field and the TCP ac-
knowledged sequence number field.)

http://sandmark.cs.arizona.edu/ The SandMark tool, by Christian
Collberg, will embed information while obfuscating Java byte
code.

ftp://ftp.funet.fi/pub/crypt/steganography/PGM.stealth.c.gz PGM-
Stealth hides data in the least significant bits of PGM files on
UNIX boxes.

ftp://ftp.funet.fi/pub/crypt/steganography/piilo061195.tar.gz Piilo
hides data in the least significant bits of PGM files on UNIX
boxes.

http://www.cl.cam.ac.uk/f̃app2/watermarking/stirmark/ The Stir-
Mark software helps test watermarking or image steganographic
methods by scrambling the images in subtle ways. The software
treats the image like a rubber sheet by stretching some parts,
blurring other parts, destroying some parts, and even duplicat-
ing small parts. The meddling is controlled with parameters so
watermark creators can make claims like, “This software resists
StirMark at settings up to 1.5.”

A.3 Steganalysis Software

http://www.spy-hunter.com/stegspydownload.htm StegSpy, by Bill
Englehardt, identifies some of the more common signatures
used in steganography programs.

http://www.outguess.org/ Niels Provos built the StegDetect system
to detect statistical differences in files with embedded mes-
sages. He also distributes the OutGuess program, which hides
information in JPEG files.
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http://www.sarc-wv.com/ The Steganography Analysis and Research
Center (SARC), a division of BackBone Security, builds the Steg-
anography Analyzer Signature Scanner (StegAlyzerSS) and the
Steganography Analyzer Artifact Scanner (StegAlyzerAS), two
tools that detect unique statistical signatures or artifacts added
by some common steganography programs.



Bibliographic Notes

This book is quite incomplete because it offers the reader an intro-
duction to many of the topics. Some topics are simply left out be-
cause of time and space constraints. Others are only touched briefly.
This preface to the bibliography is intended to offer some sugges-
tions for further reading and exploration.

A good place to begin is with history. David Kahn’s Codebreakers
is an excellent survey of the history of cryptology [Kah67]. There are
numerous descriptions of steganographic solutions like secret inks
and microdots. More recent histories are published in Cryptologia.

There are a number of other good books on the subject. Stefan
Katzenbeisser and Fabien A.P. Petitcolas edited a collection of es-
says from the leading researchers entitled Information Hiding Tech-
niques for Steganography and Digital Watermarking. [SKE00] Neil
Johnson, Zoran Duric, and Sushil Jajodia’s recent addition, Infor-
mation Hiding: Steganography and Watermarking, is the first part
of a series. [JDJ01]. Ross Anderson’s general survey, Security En-
gineering, also includes some information on steganography and
watermarking.[And01]

Some of the best material can be found, in it’s original form, in the
Proceedings of the Information Hiding Workshop. There have been
nine conferences and more are on their way.

Other more specific information can be found in these areas.

Error-Correcting Codes The chapter in this book can not do justice
to this wide field. There are many different types of codes with
different applications. Some of the better introductions are:
[LJ83] and [Ara88].

Compression Algorithms Compression continues to be a hot topic
and many of the latest books aren’t current any longer. The
best solution is to combine books like [Bar88, BS88] with pa-
pers from the the procedings from academic conferences like
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[Kom95]. I also wrote an introductory book on compression
last millenium. [Way99]

Subliminal Channels This idea is not covered in the book, but it
may be of interest to many readers. Much of the work in the
area was done by Gus Simmons, who discovered that many dig-
ital signature algorithms had a secret channel that could be ex-
ploited to send an extra message. [Sim84, Sim85, Sim86, Sim93,
Sim94] This is pretty easy to understand in the abstract. Many
of the algorithms, like the Elgamal signature scheme [ElG85]
or the Digital Signature Algorithm [NCS93] create a new digi-
tal signature at random. Many valid signatures exist and the
algorithm simply picks one at random. It is still virtually im-
possible for someone without the secret key to generate one,
but the algorithms were intended to offer authentication with-
out secrecy.

Imagine that you want to send a one bit message to someone.
The only encryption software you can use is a DSA signature
designed not to hide secrets. You could simply send along a
happy message and keep recomputing the digital signature of
this message until the last bit is the bit of your message. Eventu-
ally, you should find one because the algorithm chooses among
signatures at random.

This abstract technique only shows how to send one bit. There
are many extra bits available for use and the papers describe
how to do the mathematics and exploit this channel.

The algorithms form an important basis for political discus-
sions about cryptography. The U.S. Government would like
to allow people to use authentication, but they would like to
restrict the use of secrecy-preserving encryption. Algorithms
like the DSA appear to be perfect compromises. The existence
of subliminal channels, however, shows how the current algo-
rithms are not a perfect compromise.1

Covert Channels This is, in many ways, just an older term for the
same techniques used in this book. The classic example comes
from operating system design: Imagine that you run a com-
puter system that has an operating system that is supposed to
be secure. That means the OS can keep information from trav-
eling between two users. Obviously, you can implement such
an OS by shutting down services like file copying or electronic

1They may be a perfectly adequate practical compromise because implementing
the software to use this additional channel is time consuming.
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mail. It is not clear, however, that you can completely eliminate
every way of communicating.

The simplest example for sending a message is to tie up some
shared resource like a printer. If you want to send a ‘1’ to a
friend, then you print a file at 12:05 and tie up the printer. If
you want to send a ‘0’, then you print the file at 12:30. The other
person checks the availability of the printer. This may not be a
fast method, but it could work. The speed of the channel de-
pends on the shared system resources and the accuracy of de-
tection. Obviously one way to defend against covert channels
is to create timing errors, but then that just creates other prob-
lems.

Some beginning sources are [NCS93, PN93, MM92]

Digital Cash There are many different ways to exchange money over
digital wires, but some of the most interesting systems offer
complete anonymity. People are able to spend their money
without fear of records being kept. This is a fairly neat trick
because digital cash must be counterfeit-resistant. Paper cash
achieves this goal when it is printed with a sophisticated press.
Digital copies, on the other hand, are easy to make. If peo-
ple can copy files of numbers meant to represent cash, then
anonymity would seem to allow people the freedom to coun-
terfeit without being caught.

The cleverest schemes involve a complicated spending system
that forces the spender to reveal part of their identity. If the
spender tries to use a bill twice, enough of the identity should
be revealed to expose the criminal.

Anonymous Voting People often want to cast their votes anony-
mously because this can prevent coercision. Paper ballots are
generally successful if no one checks the ballot before they en-
ter the box. Providing the same accountability and security is
no simple feat.

Interest in this topic is very high and there are enough good al-
gorithms to justify a separate book. K. Sako and J. Kilian [SK95],
for instance, modified the Mixmaster protocol described in
Chapter 10 to provide a simple way for people to cast their vote.
Each person can check the tally and compare their vote to the
recorded vote to guarantee that the election was fair.

Many of the newer systems rely upon the homomorphic en-
cryption systems that allow manipulation of encrypted data.
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One notable examples includes the work of Martin Hirt, Kazue
Sako and Joe Kilian [HS00, Hir01, SK94].

There are many features in the different Sensus system from
Lorrie Faith Cranor and Ron K. Cytron, for instance, provides
the user the ability to vote for one person but effectively hide
and this fact from others.

Other systems include [BY86, Boy90, FOO93, CC96].

Finally, newer and better papers can be found through electronic
paper archives like the CiteSeer system run by NEC (http://cite-
seer.nj.nec.com/). This is an invaluable source of knowledge.
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[PSM06] Dima Pröfrock, Mathias Schlauweg, and Erika Müller.
Video watermarking by using geometric warping with-
out visible artifacts. In Camenisch et al. [CCJS07], pages
78–92.

[Pub88] Publius. Federalist: A Collection of Essays Written in
Favor of the New Constitution. J. and A. McClean, 1788.

[QC82] J.-J. Quisquater and C. Couvreur. Fast decipherment
algorithm for rsa public-key cryptosystem. Electronic
Letters, 18, 1982.

[Qu01] Gang Qu. Keyless public watermarking for intellectual
property authentication. In Fourth Information Hiding
Workshop, 2001.

[Rab89a] Michael Rabin. Efficient dispersal of information for
security, load balancing and fault tolerance. Journal of
the ACM, 38:335–348, 1989.

[Rab89b] Michael O. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. J. ACM,
36(2):335–348, 1989.

[RC95] R. Rinaldo and G. Calvagno. Image coding by block pre-
diction of multiresolution submimages. IEEE Transac-
tions on Image Processing, 4:909–920, 1995.

[RDB96] J. Ruanaidh, W. Dowling, and F. Boland. Phase water-
marking of digital images. In Proceedings of ICIP’96,
volume III, pages 239–242, Lausanne, Switzerland,
September 1996.

[Riv98] Ron Rivest. Chaffing and winnowing: Confidentiality
without encryption, summer 1998.

[Riv04] Ronald L. Rivest. Peppercoin micropayments. In Ari
Juels, editor, Financial Cryptography, volume 3110 of
Lecture Notes in Computer Science, pages 2–8. Springer,
2004.



424 BIBLIOGRAPHY

[Rob62] L. G. Roberts. Picture coding using pseudo-random
noise. IRE Trans. on Information Theory, IT-8, Feb 1962.

[RP04] M. Rennhard and B. Plattner. Practical anonymity for
the masses with morphmix, 2004.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds:
anonymity for Web transactions. ACM Transactions on
Information and System Security, 1(1):66–92, 1998.

[RR08] Christian Rechberger and Vincent Rijmen. New re-
sults on nmac/hmac when instantiated with popular
hash functions. Journal of Universal Computer Science,
14(3):347–376, feb 2008.

[RSG98] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous connections and onion routing. IEEE Journal on
Selected Areas in Communications, 16(4):482–494, May
1998.

[Rut06] Joanna Rutkowska. Subverting vista kernel for fun and
profit. In Black Hat Briefings, 2006.

[SA00] Frank Stajano and Ross J. Anderson. The cocaine auc-
tion protocol: On the power of anonymous broadcast.
In IH ’99: Proceedings of the Third International Work-
shop on Information Hiding, pages 434–447, London,
UK, 2000. Springer-Verlag.

[Say00] Khalid Sayood. Introduction to data compression (2nd
ed.). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2000.

[Sch94] Bruce Schneier. Applied Cryptography. John Wiley and
Sons, New York, 1994.

[Sei08] Jacob Seidelin. Compression using canvas and png-
embedded data. nihilogic, April 2008.

[Ser07] Andrei Serjantov. A fresh look at the generalised mix
framework. In Borisov and Golle [BG07], pages 17–29.

[SGR97] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anony-
mous connections and onion routing. In IEEE, editor,
Proceedings / 1997 IEEE Symposium on Security and Pri-
vacy, May 4–7, 1997, Oakland, California, pages 44–54,
1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1997. IEEE Computer Society Press.



BIBLIOGRAPHY 425

[Sha79] A. Shamir. How to share a secret. Communications of
the ACM, 24(11), Nov 1979.

[Sha82] Adi Shamir. A polynomial time algorithm for breaking
the basic merkle-hellman cryptosystem. In CRYPTO,
pages 279–288, 1982.

[Sha93] J. Shapiro. Embedded image coding using zerotrees of
wavelet coeffcients. IEEE Transactions on Signal Pro-
cessing, 41(12):3445–3462, 1993.

[Sha01] Toby Sharp. An implementation of key-based digital sig-
nal steganography. In Fourth Information Hiding Work-
shop, 2001.

[Sha08] Adi Shamir. How to solve it: New techniques in alge-
braic cryptanalysis. In Crypto 2008, Santa Barbara, Cal-
ifornia, August 2008.

[Shi99] Natori Shin. One-time hash steganography. In 3rd In-
formation Hiding Workshop, Lecture Notes of Computer
Science (1768), New York, Heidelberg, 1999. Springer-
Verlag.

[Sim84] G.J. Simmons. The prisoner’s problem and the sublim-
inal channel. In Advances in Cryptology: Proceedings of
CRYPTO ’83. Plenum Press, 1984.

[Sim85] G.J. Simmons. The subliminal channel and digital sig-
natures. In Advances in Cryptology: Proceedings of EU-
ROCRYPT 84. Springer-Verlag, 1985.

[Sim86] G.J. Simmons. A secure subliminal channel (?).
In Advances in Cryptology–CRYPTO ’85 Proceedings.
Springer-Verlag, 1986.

[Sim93] G.J. Simmons. The subliminal channels of the U.S. Dig-
ital Signature Algorithm (DSA). In Proceedings of the
Third Symposium on: State and Progress of Research in
Cryptography, Fondazone Ugo Bordoni, Rome, 1993.

[Sim94] G.J. Simmons. Subliminal communication is easy using
the DSA. In Advances in Cryptology–EUROCRYPT ’93
Proceedings. Springer-Verlag, 1994.

[SJ06] Yun-Qing Shi and Byeungwoo Jeon, editors. Digi-
tal Watermarking, 5th International Workshop, IWDW



426 BIBLIOGRAPHY

2006, Jeju Island, Korea, November 8-10, 2006, Proceed-
ings, volume 4283 of Lecture Notes in Computer Science.
Springer, 2006.

[SK94] Kazue Sako and Joe Kilian. Secure voting using partially
compatible homomorphisms. In CRYPTO ’94: Proceed-
ings of the 14th Annual International Cryptology Con-
ference on Advances in Cryptology, pages 411–424, Lon-
don, UK, 1994. Springer-Verlag.

[SK95] K Sako and J Kilian. Receipt-free mix-type voting
schemes. In Advances in Cryptology– Eurocrypt ’95,
pages 393–403. Springer-Verlag, 1995.

[SKE00] A.P. Petitcolas (Editor) Stefan Katzenbeisser (Editor), Fa-
bien. Information Hiding Techniques for Steganography
and Digital Watermarking. Artech House, January 2000.

[Spi05] Matthew D. Spisak. An analysis of perturbed quantiza-
tion steganography in the spatial domain. PhD thesis,
Air Force Institute of Technology, Wright-Patterson Air
Force Base, Ohio, April 2005.

[SRG00] Paul F. Syverson, Michael G. Reed, and David M. Gold-
schlag. Onion routing access configurations. In DISCEX
2000: Proceedings of the DARPA Information Survivabil-
ity Conference and Exposition, volume I, pages 34–40,
Hilton Head, SC, January 2000. IEEE CS Press.

[SSG97] Paul F. Syverson, Stuart G. Stubblebine, and David M.
Goldschlag. Unlinkable serial transactions. In Financial
Cryptography, pages 39–56, 1997.

[Sto88] James Storer. Data Compression. Computer Science
Press, Rockville, MD, 1988.

[STRL00] Paul F. Syverson, Gene Tsudik, Michael G. Reed, and
Carl E. Landwehr. Towards an analysis of onion rout-
ing security. In Workshop on Design Issues in Anonymity
and Unobservability, Berkeley, CA, July 2000.

[SW63] Claude E. Shannon and Warren Weaver. A Mathematical
Theory of Communication. University of Illinois Press,
Champaign, IL, USA, 1963.



BIBLIOGRAPHY 427

[SY98] Sabrina Sowers and Abdou Youssef. Testing digital wa-
termark resistance to destruction. In Information Hid-
ing Workshop, Lecture Notes of Computer Science (1525),
New York, Heidelberg, 1998. Springer-Verlag.

[TA05] Eugene Tumoian and Maxim Anikeev. Network based
detection of passive covert channels in tcp/ip. In LCN
’05: Proceedings of the The IEEE Conference on Local
Computer Networks 30th Anniversary, pages 802–809,
Washington, DC, USA, 2005. IEEE Computer Society.

[Tah92] H. Taha. Operations Research An Introduction. Macmil-
lan Publishing Company., New York, 1992.

[TB06] Parisa Tabriz and Nikita Borisov. Breaking the collu-
sion detection mechanism of morphmix. In George
Danezis and Philippe Golle, editors, Privacy Enhancing
Technologies, volume 4258 of Lecture Notes in Computer
Science, pages 368–383. Springer, 2006.

[TL05] Tommaso Toffoli and Lev B. Levitin. Specific ergodicity:
an informative indicator for invertible computational
media. In Bagherzadeh et al. [BVR05], pages 52–58.

[TM87] Tommaso Toffoli and Norman Margolus. Cellular Au-
tomata Machines. MIT Press, London, 1987.

[Tof77a] T. Toffoli. Cellular Automata Mechanics. PhD thesis, The
University of Michigan, 1977.
Toffoli’s demonstration of reversible universal computa-
tion.

[Tof77b] Tommaso Toffoli. Computation and construction uni-
versality of reversible cellular automata. Journal of
Computer and System Sciences, 15:213–231, 1977.

[TRHTA06] Mercan Topkara, Guiseppe Riccardi, Dilek Hakkani-Tur,
and Mikhail J. Atallah. Natural language watermark-
ing: Challenges in building a practical system. In Pro-
ceedings of the SPIE International Conference on Secu-
rity, Steganography, and Watermarking of Multimedia
Contents, January 2006.

[TTA06] Umut Topkara, Mercan Topkara, and Mikhail J. Atal-
lah. The hiding virtues of ambiguity: quantifiably re-
silient watermarking of natural language text through
synonym substitutions. In MM&Sec ’06: Proceedings



428 BIBLIOGRAPHY

of the 8th workshop on Multimedia and security, pages
164–174, New York, NY, USA, 2006. ACM.

[TTTD06] Cuneyt M. Taskiran, Umut Topkara, Mercan Topkara,
and Edward J. Delp. Attacks on lexical natural language
steganography systems. In Proceedings of the SPIE In-
ternational Conference on Security, Steganography, and
Watermarking of Multimedia Contents, January 2006.

[Tur36a] Alan Turing. On computable numbers with an applica-
tion to the entscheidungsproblem. Proceedings of the
London Math Soceity, 2(42):230–265, 1936.

[Tur36b] Alan Turing. On computable numbers with an applica-
tion to the entscheidungsproblem. Proceedings of the
London Math Soceity, 2(43):544–546, 1936.

[vAH04] Luis von Ahn and Nicholas J. Hopper. Public-key steg-
anography. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT, volume 3027 of Lecture Notes in
Computer Science, pages 323–341. Springer, 2004.

[Val84] Leslie G. Valient. A theory of the learnable. Communi-
cations of the ACM, 27:1134–1142, 1984.

[VR05] Alexis De Vos and Yvan Van Rentergem. Reversible com-
puting: from mathematical group theory to electronical
circuit experiment. In Bagherzadeh et al. [BVR05], pages
35–44.

[Wal94] John Walker. Steganosaurus. cir-
culating on the web, December 1994.
http://www.fourmilab.ch/stego/stego.shar.gz,
accessed 2005-03-25.

[Wal95a] S. Walton. Information authentication for a slippery
new age. Dr. Dobbs Journal, 20(4):18–26, April 1995.

[Wal95b] Steve Walton. Image authentification for a slippery new
age. Dr. Dobbs Journal, Apr 1995.

[Way85] Peter Wayner. Building a travesty tree. BYTE, page 183,
September 1985.

[Way92] Peter C. Wayner. Content-addressable search engines
and DES-like systems. In Advances in Cryptology:
CRYPTO ’92 Lecture Notes in Computer Science, volume
740, pages 575–586, New York, 1992. Springer-Verlag.



BIBLIOGRAPHY 429

[Way95a] Peter Wayner. Strong theoretical steganography. Cryp-
tologia, 19(3):285–299, July 1995.

[Way95b] Peter C. Wayner. Digital Cash: Commerce on the Net. AP
Professional, Boston, 1995.

[Way97a] Peter Wayner. Digital Cash, 2nd Edition. AP Profes-
sional, Chestnut Hill, MA, 1997.

[Way97b] Peter Wayner. Digital Copyright Protection. AP Profes-
sional, Chestnut Hill, MA, 1997.

[Way99] Peter Wayner. Data Compression for Real Programmers.
AP Professional, Chesnutt, Hill, MA, 1999.

[Way00] Peter Wayner. Compression algorithms for real program-
mers. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2000.

[Way01] Peter Wayner. Translucent Databases. Flyzone Press,
Baltimore, MD, USA, 2001.

[Way03] Peter Wayner. Translucent Databases. Flyzone Press,
Baltimore, Maryland, 2003.

[Way05] Peter Wayner. Policing Online Games. Flyzone Press,
Baltimore, Maryland, 2005.

[Wei76] Joseph Weizenbaum. Computer power and human rea-
son : from judgment to calculation. W.H. Freeman, San
Fransisco, 1976.

[Wes01] Andreas Westfeld. High capacity depsite better ste-
ganalysis: F5- a steganographic algorithm. In Fourth
Information Hiding Workshop, pages 301–315, 2001.

[WH94] Peter Wayner and Dan Huttenlocher. Image analysis
to obtain typeface information. U.S. Patent, 5253307,
1994.

[WmC06] Hao-Tian Wu and Yiu ming Cheung. A high-capacity
data hiding method for polygonal meshes. In Ca-
menisch et al. [CCJS07], pages 188–200.

[Won98] P.W. Wong. A public key watermark for image verifica-
tion and authentication. In In Proc. of ICIP’98, volume 1,
pages 425– 429, Chicago, USA, October 1998.



430 BIBLIOGRAPHY

[WP99] Andreas Westfeld and Andreas Pfitzmann. Attacks on
steganographic systems. In Information Hiding, Third
International Workshop, IH’99, volume 1768, pages 61–
76, Dresden, Germany, 1999. Springer Verlag.

[WRC00] Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cra-
nor. Publius: A robust, tamper-evident, censorship-
resistant, web publishing system. In Proc. 9th USENIX
Security Symposium, pages 59–72, August 2000.

[WS99] Wright and Spalding. Experimental performance of
shared RSA modulus generation (short). In SODA: ACM-
SIAM Symposium on Discrete Algorithms (A Conference
on Theoretical and Experimental Analysis of Discrete Al-
gorithms), 1999.

[XBA97] X.-G. Xia, C. Boncelet, and G. Arce. A multiresolution
watermark for digital images. In IEEE Signal Processing
Society 1997 International Conference on Image Process-
ing (ICIP’97), Santa Barbara, California, October 1997.



Index

A Midsummer Night’s Dream, 121
Adams, Rick, xiv
Adi, 64
Adleman, Len, 28
Adobe Photoshop, 325
AES, 20
Alicebot, 114
All or Nothing Entanglement, 214
all or nothing transforms, 271
Amadeus, 195
Amayeta, 363
Anckaert, Bertrand, 364
Anderson, Ross, xiii, 38, 68, 213, 227,

316, 399
Angluin, Dana, 130
Anikeev, Maxim, 276
Anonymity, legal status, 202
Anonymizer, 230
Anonymous Internet Proxies, 208
Anonymous Remailers, 193
AP PROFESSIONAL, xiv
Artist Formerly Known As Prince, 193
ASCII, 392
Aspnes, James, 214
asymmetric, 242
Atallah, Mikhail, 135, 262, 266
Aura, Tuomas, 182
Aurelian, Laic, 392, 393
Avcibas, Ismail, 346
Aycock, John, 276

Back, Adam, 393
BackBone Security, 398
Backes, Michael, 260
Bailer, Werner, 392
Barzin, Didier, 394
Barni, M., 306
Barnsley, Michael, 76

Bartolini, F., 306
Barzin, Didier, 276
basis, 295
BattleSteg, 170, 171
Bayer array, 346
Bayer, Bryce, 346
Bayram, Sevinc, 346
Bell Labs, 21
Bellare, Mihir, 271, 276
Bender, Walter, 320
Bennett, Charles, 143, 144, 147
Bennett, Krista, 101
Biham, Eli, 25
birthday attacks, 333
birthday marks, 333
birthday paradox, 333
BLEU, 134
blind detection, 327
blind signatures, 225
blinding factor, 226
blinding factors, 257
BlindSide, 395
Bloom, Jeffrey A., 11, 312, 325, 336
BMP, 392
BMP files, hiding information in, 175
Boldyreva, Alexandra, 271, 276
Boneh, Dan, 34, 258
boolean satisfiability, 246
Borges, Jorge Luis, 81
Brands, Stephan, 60
Brassil, Jack, 317, 318
Brown, Andrew, 396
Brown, Andrew, 84
Brown, Andy, 175
Brown, Rita Mae, 113
Burning Chrome, 111

Cachin, Christian, 260

431



432 INDEX

Camouflage, 396
Cappellini, V., 306
Casanova, 109
Cast, 396
Cellular Automata, 144
chaff, 270
Chakinala, R. C., 274
Chalson, Gregory, xiv
Chang, Ee-Chien, 353
Chapman, Mark, 395
Charlap, David, 175
Chast, Roz, 308
Chaum, David, 202, 232
Chen, Brian, 291
Cher, 194
Cheung, Yiu-ming, 315
Chi-Squared, 348
Chi-Squared Test, 63
Chomsky, Noam, 105
CiteSeer, 402
Clarke, Arthur C., 341
Clarke, Ian, 210
Codebreakers, 109
CodeShield, 364
codingart.com, 364
cold, See also “gold”, 231
Collberg, Christian, 356, 397
Collberg, Christian S., 364
color filter array, 346
Compris, 135, 395
content-hash key, 212
control points, 315
Copernicus, 158
cord, See also “cold”, 231
Costello, Daniel J., 53
Cottrell, Lance, 202
Covert Channels, 400
Cox, Ingemar, 301, 312, 331, 336
Cox, Ingemar J., 11, 325
Cox, Tim, xiv
Cranor, Lorrie Faith, 63, 215, 402
Craver, Scott, xiii, 256
Craver, Scott A., 3
Crichton, Michael, 380
Crowds, 209
cryptanalysis, 337
Cryptographers, Dining, 232

Cytron, Ron K., 402

Daemen, Joan, 24
Dai, Wei, 209
Danezis, George, 230
Data Stash, 392
DataMark, 392
DataMark Technologies, 395
Davida, George, 395
Davidoff, Sherri, xiv
De Bosschere, Koen, 364
De Vos, Alexis, 156
dead code, 357
Dean, Drew, 3
Death and the Compass, 81
deGraaf, Rennie, 276
DeLand Don, xiv
DeLillo, Don, 389
Delp, Edward J., 134
demosaicking, 346
Deniability, and secret sharing, 62
DES, 24
DES, is it a group?, 59
Dictionary Compression Schemes, 82
Differential Cryptanalysis, 25
Diffie-Hellman key exchange, 67, 227
Digimarc, 325, 335
Digital Invisible Ink Toolkit, 170, 393
Digital Signatures, 400
digital signatures of photographs, 182
Dingledine, Roger, 61, 217, 230
Dining Cryptographers, 232
Dining Philosophers, 232
direct sequence, 280
directory server, 222
directory servers, 222, 225
discrete cosine transform, 294, 299
discrete sine transform, 299
Document Type Definition, 383
Dogood, Silence, 204
Doyle, Arthur Conan, 129
DTD, 383
Du, Rui, 165, 349
Duric, Zoran, 399

edges, 170
Eggers, Joachim J., 249
El-Khalil, Rakan, xiv, 363



INDEX 433

Elgamal signatures, 400
Elgamal, Taher, 67
emacs, 204
EncryptPic, 396
Englehardt, Bill, 397
entangled, 214
Entanglement, 214
entropy, 22
entry node, 219, 220
Error-correcting codes, 37
Error-correcting codes, for mitigat-

ing random walk collisions,
179

Eternity server, 213
Ethernet, 232
Ettinger, Mark, 352
Eudora, 200
Euler Totient function, 33
EXIF fields, 15
exit node, 219, 220
Extensible Markup Language, 381
EzStego, 173, 174, 340–342, 345, 350,

393

F4, 189
F5, 191
Farber, Dave, xiii
Farid, Hany, 321, 346
Fast Fourier Transform, 284, 294, 297
Federal Bureau of Investigation, 387
Federalist Papers, 193
Feigenbaum, Joan, 214
Feistel network, 24
Felten, Edward W., 3
Flickr.com, 14
Four Horsemen of the Infocalypse, 7
Fourier Analysis, 294
Fourier, Jean-Baptiste, 294
Fractal Compression, 76
frameproof, 258
Frank, Michael, 156
Franklin, Benjamin, 68, 204
Fredkin Gate, 142
Fredkin, Ed, 142, 143, 156
Free Haven, 61
Freedman, Michael J., 61
Freedom Network, 208

Freenet, 210
Fridrich, Jessica J., 53, 165, 174, 245,

292, 312, 349, 351
Funk, Wolfgang, 315
Furon, Teddy, 251

Gühring, Philipp, xiv
GAK (Government Access to Keys),

388
Galil eo, 158
geo, 384
Gibson, William, 111
GIF files, hiding information in, 175
GIF format, 385
GifExtract, 319
GifShuffle, 267, 276, 345, 394
Gifshuffle, 394
Giovanni watermarking system, 391
Girod, Bernd, 249, 251
Glaser Chuck, xiv
Glaude, David, 276, 394
GNU, 204
Goedel, Kurt, 340
gold, See also “golf”, 231
Goldschlag, David, 208, 217
golf, word, 231
Goljan, Miroslav, 53, 245, 292, 312
Golle, Philippe, 239
Golumb Coding, 188
graph coloring, 246
Gravity’s Rainbow, 234
Greibach Normal Form, 110
Gruhl, Daniel, 320
Guan, Lim Chooi, 392
Guardster, 230
Gunther, C. G., 95
Guthery, Scott, xiv
GZIP, 84
GZSteg, 84

Hakkani-Tur, Dilek, 135
half-toning, 292
Hamilton, Alexander, 216
Hamming Distance, 40
Hannon Dave, xiv
Hanssen, Robert, 389
Harcourt-Brace, xiv
Hartung, Frank, xiii, 251



434 INDEX

hash, 214
hash chains, 227
Hastur, Henry, 178, 315, 319
Hatzinakos, Dimitrios, 310
hCalendar, 384
Heckbert, Paul, 175
Hellman, Martin, 246, 256
Helsingius, Johan, 197
Hempstalk, Kathryn, 170, 393
Hermetic Stego, 393
Hetzl, Stefan, 395
hidden servers, 222
Hide and Seek, 392
Hide and Seek 4.1, 170
Hide4PGP, 393
Hide4PGP, 395
Hiding information, in BMP files, 175
Hiding information, in empty disk

space, 182
Hiding information, in GIF files, 175
Hiding Information, in the Mandel-

brot Set, 319
Hiding information, in WAV files, 178
Hillman, David, 144
Hirt, Martin, 402
HMAC, 376, 378
Ho, Nicholas Zhong-Yang, 353
Hoenicke, Jochen, 362
Holt, Rita, 262
homomorphic encryption, 401
Hopper, Nicholas J., 259
hReview, 384
HTML, 381, 392
Huffman Codes, 75
Huffman coding, 367
Huffman compress, used for mim-

icry, 88
Huffman Compression, 80
Hunt, J. Wren, xiv
HushMail, 230
Hydan, 363
Hypertext Markup Language, 381

IACR, 36
IDEA, 180
Images, regular mimicry and, 99
In The Picture, 396

InfoAnarchy, xiii
information dispersal algorithm, 61
Information Hiding Workshops, xiii
International Association of Crypto-

logic Research, 36
International Obfuscated C Code Con-

test, 358
International Obfuscated Ruby Code

Contest, 358
International Workshop on Digital Wa-

termarking, 312, 336
Internet Privacy Suite, 392
introduction point., 222
introduction points, 225
Invisible Secrets, 391, 396
IP address, 271
IPv6, 271

Jacobson, Michael, 276
Jajodia, Sushil, 349, 399
Jay, John, 216
Jendal, H .N., 95
JODE, 362
Johnson, Neil, 349, 399
Joux, Antoine, 34
Joyce, David, 319
Joyce, James, 165
JPEG, 76, 168
JPEG, hiding information in JPEG files,

186
JPEG, identifying noise levels, 183
JPEG2000, 76
JPHide, 395
JPSeek, 395
JSteg, 350, 395
Jsteg, 187, 189, 190, 350
Juels, Ari, 239
Jurassic Park, 380

Kahn, David, 6, 109
Katzenbeisser, Stefan, 399
Kearns, Michael, 129
Keromytis, Angelos D., 363
key, 242
Key Escrow, 388
keyword-signed key, 211
Kharitonov, Michael, 130
Kharrazi, Mehdi, 352



INDEX 435

Kilian, Joe, 303, 333, 403
Kipper, Gregory, 355
Knuth, Don, 63
Koblitz, Neal, 34
Kolmogorov complexity, 32
Krawczyk, Hugo, 62
Kube-Mcdowell, Michael P., 343
Kuhn, Markus, 318
Kuhn, Thomas, 160
Kuhn, Y.J.B., 95
Kumarasubramanian, Abishek, 276
Kundur, Deepa, vii, 312
Kuro5hin, vii
Kwan, Matthew, 269, 318, 396

Lacrosse Foundation, 174
Landauer, Rolf, 143
Laplace filter, 172
Laplace filters, 395
Latham, Allan, 397
Lehman test of primality, 35
Leighton, Tom, 303, 333
Lempel-Ziv Compression, 76
Lempel-Ziv compression, 82
Levien, Raph, 206, 207
Lewis, Stephen, 278
Liaw, Wilson MacGyver, 177
Lin, Shu, 53
Lincoln, Abraham, 342
Lisonek, Petr, 53, 294, 314
LISP, 153
Liu, Bede, 3
Long, Meng, 351
LoPresti, Patrick, 206
lossy, 15
lossy data compression, 77
Low, Steve, 319
LT Codes, 53, 314
Lu, Anthony, 322
Luby, Michael, 53, 314
Lyu, Siwei, 323

Machado, Romana, 175, 347, 395

Malcolm, Ian, 382
Mandelbrot Set, 180, 317
Mandelbrot Set, Hiding information

in, 321
MandelSteg, 180, 317, 347, 396
Manhattan Metric, 40
Manoharan, S., 373
Manokaran, R., 276
Mariels, Nathan, 395
Margolus, N., 144
Marsh, John, viii, 190
Massey, J.L., 95
Mathewson, Nick, 219, 232
matrix encoding, 193
Maxemchuk, Nicholas, 319
Mazurczyk, Wojciech, 53, 383
McGregor, John P, 3
McHugh, John, 318
McIntyre v. Ohio, 204
McKellar, David, 118, 396
McNamara, Joel, 201
MD5, 380
MD5 , 181, 237
Mediasec, 394
MediaSign, 394
MediaTrust, 394
MegaGoth, 19
Memon, Nasir, 354
Memon, Nasir D., 348
Menezes, Alfred J. , 36
Merkle, Ralph, 153, 248, 258
message authentication code, 379
MH-E, 206
Micali, Silvio, 251
Micheangelo, 195
Microformats, 385
Miller, D.A., 148
Miller, Daniel B., 157
Miller, Matthew L., 11, 314, 327, 338
Mills Josh, viii
MIT, 28
MixMaster, 398



436 INDEX

Moskowitz, Scott, 391
Mozart, Wolfgang, 195
MP3, 294
MP3Stego, 396
MPEG, 76, 168
multi-resolution analysis., 308
Murdoch, Steven J., 276
MuteMail, 230
Müller, Erika, 317

Nabokov, Vladimir, 203
Nambiar, Arjun, 230
NEC, 402
Needham, Roger, 38, 68
Neumann, Peter, xiii, 147
Neumann Peter, xiii
New Orleans Police, 388
Nguyen, Phong Q., 34
NiceText, 395
nihilogic, 86
NISS, 208
Noar, Moni, 130
nonce, 273
Northcott, Barbara, xiv
Nothing But Cosines, 308
Noubir, G., 274
NURBS, 315
Nymble, 226

O’Gorman, Larry, 317, 318
Obfuscated Perl Contest, 358
Obfuscated PostScript Contest, 358
Obfuscation, 355
obfuscation, 356
Obfuscation, code, 355
OceanStore, 212
one-time hash, 264
one-time pad, 22, 58
One-time pads, 23
one-way functions, 374
Onion Routing, 217
Onion Routing Network, 208
orthogonal, 294
OutGuess, 397
Outguess, 188, 350, 397
Output Commands, 154

Pale Fire, 133, 203

palette, 344
Paranoid, 393
Pariahware, 392
parity bits, 43
Pascal, Blaise, 338
Patchwork, 268
PC-Magic, 392
PDF, 392
Peikert, Chris, xiv
Penrose, Denise, xiv
Pepper Jeff, xiv
Peppercoin, 249
perturbed quantization, 53, 292, 312
Petitcolas, Fabien A. P., 396
Petitcolas, Fabien A.P., 399
Pfitzmann, Andreas, 175, 229
Pfitzmann, Birgit, 229
PGMStealth, 397
PGP Stealth, 393
Philosophers, Dining, 232
Pict Encrypt, 392
Piilo, 397
Pinnacle Paint, 19
PipeNet, 209
Piva, A., 306
PKZIP, 21
Plattner, Bernhard, 230
Poe, Edgar Allan, 269
Popescu, Alin, 346
Popyack, Leonard, xiv
port, 271
port knocking, 272
prefix inversion, 368
Premail, 205
Prince, 193
Private Idaho, 199
private key, 242
Provos, Niels, 188, 397
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