
Martin H. Trauth
MATLAB® Recipes for Earth Sciences

Martin H. Trauth

MATLAB® Recipes
for Earth Sciences

With text contributions by
Robin Gebbers and Norbert Marwan
and illustrations by Elisabeth Sillmann

With 77 Figures and a CD-ROM

Privatdozent Dr. rer. nat. habil.
M.H. Trauth
University of Potsdam
Department of Geosciences
P.O. Box 60 15 53
14415 Potsdam
Germany

E-mail:
trauth@geo.uni-potsdam.de

Copyright disclaimer

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of
MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

For MATLAB® product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Library of Congress Control Number: 2005937738

ISBN-10 3-540-27983-0 Springer Berlin Heidelberg New York
ISBN-13 978-3540-27983-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broadcasting, reproduction on microfilm or in any other way, and stor-
age in data banks. Duplication of this publication or parts thereof is permitted only un-
der the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer-Verlag. Viola-
tions are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
Springer.com
© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are ex-
empt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner
Typesetting: camera-ready by Elisabeth Sillmann, Landau
Production: Christine Jacobi
Printing: Krips bv, Meppel
Binding: Stürtz AG, Würzburg

Printed on acid-free paper 32/2132/cj 5 4 3 2 1 0

Preface

Various books on data analysis in earth sciences have been published during
the last ten years, such as Statistics and Data Analysis in Geology by JC Davis,
Introduction to Geological Data Analysis by ARH Swan and M Sandilands,
Data Analysis in the Earth Sciences Using MATLAB® by GV Middleton or
Statistics of Earth Science Data by G Borradaile. Moreover, a number of
software packages have been designed for earth scientists such as the ESRI
product suite ArcGIS or the freeware package GRASS for generating geo-
graphic information systems, ERDAS IMAGINE or RSINC ENVI for remote
sensing and GOCAD and SURFER for 3D modeling of geologic features. In
addition, more general software packages as IDL by RSINC and MATLAB®

by The MathWorks Inc. or the freeware software OCTAVE provide powerful
tools for the analysis and visualization of data in earth sciences.

Most books on geological data analysis contain excellent theoreti-
cal introductions, but no computer solutions to typical problems in earth
sciences, such as the book by JC Davis. The book by ARH Swan and
M Sandilands contains a number of examples, but without the use of com-
puters. G Middleton s book fi rstly introduces MATLAB as a tool for earth
scientists, but the content of the book mainly refl ects the personal interests
of the author, rather then providing a complete introduction to geological
data analysis. On the software side, earth scientists often encounter the prob-
lem that a certain piece of software is designed to solve a particular geologic
problem, such as the design of a geoinformation system or the 3D visualiza-
tion of a fault scarp. Therefore, earth scientists have to buy a large volume
of software products, and even more important, they have to get used to it
before being in the position to successfully use it.

This book on MATLAB Recipes for Earth Sciences is designed to help
undergraduate and PhD students, postdocs and professionals to learn meth-
ods of data analysis in earth sciences and to get familiar with MATLAB,
the leading software for numerical computations. The title of the book is
an appreciation of the book Numerical Recipes by WH Press and others
that is still very popular after initially being published in 1986. Similar to
the book by Press and others, this book provides a minimum amount of

VI Preface

theoretical background, but then tries to teach the application of all methods
by means of examples. The software MATLAB is used since it provides
numerous ready-to-use algorithms for most methods of data analysis, but
also gives the opportunity to modify and expand the existing routines and
even develop new software. The book contains numerous MATLAB scripts
to solve typical problems in earth sciences, such as simple statistics, time-
series analysis, geostatistics and image processing. The book comes with a
compact disk, which contains all MATLAB recipes and example data fi les.
All MATLAB codes can be easily modifi ed in order to be applied to the
reader s data and projects.

Whereas undergraduates participating in a course on data analysis might
go through the entire book, the more experienced reader will use only one
particular method to solve a specifi c problem. To facilitate the use of this
book for the various readers, I outline the concept of the book and the con-
tents of its chapters.

1. Chapter 1 – This chapter introduces some fundamental concepts of sam-
ples and populations, it links the various types of data and questions to
be answered from these data to the methods described in the following
chapters.

2. Chapter 2 – A tutorial-style introduction to MATLAB designed for earth
scientists. Readers already familiar with the software are advised to pro-
ceed directly to the following chapters.

3. Chapter 3 and 4 – Fundamentals in univariate and bivariate statistics.
These chapters contain very basic things how statistics works, but also
introduce some more advanced topics such as the use of surrogates. The
reader already familiar with basic statistics might skip these two chap-
ters.

4. Chapter 5 and 6 – Readers who wish to work with time series are recom-
mended to read both chapters. Time-series analysis and signal processing
are tightly linked. A solid knowledge of statistics is required to success-
fully work with these methods. However, the two chapters are more or
less independent from the previous chapters.

5. Chapter 7 and 8 – The second pair of chapters. From my experience,
reading both chapters makes a lot of sense. Processing gridded spatial
data and analyzing images has a number of similarities. Moreover, aerial

Preface VII

photographs and satellite images are often projected upon digital eleva-
tion models.

6. Chapter 9 – Data sets in earth sciences are tremendously increasing in the
number of variables and data points. Multivariate methods are applied to
a great variety of types of large data sets, including even satellite images.
The reader particularly interested in multivariate methods is advised to
read Chapters 3 and 4 before proceeding to this chapter.

I hope that the various readers will now fi nd their way through the book.
Experienced MATLAB users familiar with basic statistics are invited to pro-
ceed to Chapters 5 and 6 (the time series), Chapters 7 and 8 (spatial data and
images) or Chapter 9 (multivariate analysis) immediately, which contain
both an introduction to the subjects as well as very advanced and special
procedures for analyzing data in earth sciences. It is recommended to the
beginners, however, to read Chapters 1 to 4 carefully before getting into the
advanced methods.

I thank the NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER
Science Team and the director Mike Abrams for allowing me to include the
ASTER images in the book. The book has benefi t from the comments of a
large number of colleagues and students. I gratefully acknowledge my col-
leagues who commented earlier versions of the manuscript, namely Robin
Gebbers, Norbert Marwan, Ira Ojala, Lydia Olaka, Jim Renwick, Jochen
Rössler, Rolf Romer, and Annette Witt. Thanks also to the students Mathis
Hein, Stefanie von Lonski and Matthias Gerber, who helped me to improve
the book. I very much appreciate the expertise and patience of Elisabeth
Sillmann who created the graphics and the complete page design of the
book. I also acknowledge Courtney Esposito leading the author program at
The MathWorks, Claudia Olrogge and Annegret Schumann at Mathworks
Deutschland, Wolfgang Engel at Springer, Andreas Bohlen and Brunhilde
Schulz at UP Transfer GmbH. I would like to thank Thomas Schulmeister
who helped me to get a campus license for MATLAB at Potsdam University.
The book is dedicated to Peter Koch, the late system administrator of the
Department of Geosciences who died during the fi nal writing stages of the
manuscript and who helped me in all kinds of computer problems during the
last few years.

Potsdam, September 2005

Martin Trauth

Contents

Preface V

1 Data Analysis in Earth Sciences 1

1.1 Introduction 1
1.2 Collecting Data 1
1.3 Types of Data 3
1.4 Methods of Data Analysis 7

2 Introduction to MATLAB 11

2.1 MATLAB in Earth Sciences 11
2.2 Getting Started 12
2.3 The Syntax 15
2.4 Data Storage 19
2.5 Data Handling 19
2.6 Scripts and Functions 21
2.7 Basic Visualization Tools 25

3 Univariate Statistics 29

3.1 Introduction 29
3.2 Empirical Distributions 29
3.3 Example of Empirical Distributions 36
3.4 Theoretical Distributions 41
3.5 Example of Theoretical Distributions 50
3.6 The t–Test 51
3.7 The F–Test 53
3.8 The χ2–Test 56

X Contents

4 Bivariate Statistics 61

4.1 Introduction 61
4.2 Pearson s Correlation Coeffi cient 61
4.3 Classical Linear Regression Analysis and Prediction 68
4.5 Analyzing the Residuals 72
4.6 Bootstrap Estimates of the Regression Coeffi cients 74
4.7 Jackknife Estimates of the Regression Coeffi cients 76
4.8 Cross Validation 77
4.9 Reduced Major Axis Regression 78
4.10 Curvilinear Regression 80

5 Time-Series Analysis 85

5.1 Introduction 85
5.2 Generating Signals 85
5.3 Autospectral Analysis 91
5.4 Crossspectral Analysis 97
5.5 Interpolating and Analyzing Unevenly-Spaced Data 101
5.6 Nonlinear Time-Series Analysis (by N. Marwan) 106

6 Signal Processing 119

6.1 Introduction 119
6.2 Generating Signals 120
6.3 Linear Time-Invariant Systems 121
6.4 Convolution and Filtering 124
6.5 Comparing Functions for Filtering Data Series 127
6.6 Recursive and Nonrecursive Filters 129
6.7 Impulse Response 131
6.8 Frequency Response 134
6.9 Filter Design 139
6.10 Adaptive Filtering 143

7 Spatial Data 151

7.1 Types of Spatial Data 151
7.2 The GSHHS Shoreline Data Set 152
7.3 The 2-Minute Gridded Global Elevation Data ETOPO2 154
7.4 The 30-Arc Seconds Elevation Model GTOPO30 157

Contents XI

7.5 The Shuttle Radar Topography Mission SRTM 158
7.6 Gridding and Contouring Background 161
7.7 Gridding Example 164
7.8 Comparison of Methods and Potential Artifacts 169
7.9 Geostatistics (by R. Gebbers) 173

8 Image Processing 193

8.1 Introduction 193
8.2 Data Storage 194
8.3 Importing, Processing and Exporting Images 199
8.4 Importing, Processing and Exporting Satellite Images 204
8.5 Georeferencing Satellite Images 207
8.6 Digitizing from the Screen 209

9 Multivariate Statistics 213

9.1 Introduction 213
9.2 Principal Component Analysis 214
9.3 Cluster Analysis 221
9.4 Independent Component Analysis (by N. Marwan) 225

General Index 231

1 Data Analysis in Earth Sciences

1.1 Introduction

Earth sciences include all disciplines that are related to our planet Earth.
Earth scientists make observations and gather data, they formulate and test
hypotheses on the forces that have operated in a certain region in order to
create its structure. They also make predictions about future changes of the
planet. All these steps in exploring the system Earth include the acquisition
and analysis of numerical data. An earth scientist needs a solid knowledge in
statistical and numerical methods to analyze these data, as well as the ability
to use suitable software packages on a computer.

This book introduces some of the most important methods of data analy-
sis in earth sciences by means of MATLAB examples. The examples can
be used as recipes for the analysis of the reader s real data after learn-
ing their application on synthetic data. The introductory Chapter 1 deals
with data acquisition (Chapter 1.2), the expected data types (Chapter 1.3)
and the suitable methods for analyzing data in the fi eld of earth sciences
(Chapter 1.4). Therefore, we fi rst explore the characteristics of a typical data
set. Subsequently, we proceed to investigate the various ways of analyzing
data with MATLAB.

1.2 Collecting Data

Data sets in earth sciences have a very limited sample size. They also con-
tain a signifi cant amount of uncertainties. Such data sets are typically used
to describe rather large natural phenomena such as a granite body, a large
landslide or a widespread sedimentary unit. The methods described in this
book help in fi nding a way of predicting the characteristics of a larger pop-
ulation from the collected samples (Fig 1.1). In this context, a proper sam-
pling strategy is the fi rst step towards obtaining a good data set. The devel-
opment of a successful strategy for fi eld sampling includes decisions on

2 1 Data Analysis in Earth Sciences

1. the sample size – This parameter includes the sample volume or its weight
as well as the number of samples collected in the fi eld. The rock weight
or volume can be a critical factor if the samples are later analyzed in the
laboratory. On the application of certain analytic techniques a specifi c
amount of material may be required. The sample size also restricts the
number of subsamples that eventually could be collected from the single
sample. If the population is heterogeneous, then the sample needs to be
large enough to represent the population s variability. On the other hand,
a sample should always be as small as possible in order to save time and
effort to analyze it. It is recommended to collect a smaller pilot sample
before defi ning a suitable sample size.

Fig. 1.1 Samples and population. Deep valley incision has eroded parts of a sandstone unit
(hypothetical population). The remnants of the sandstone (available population) can only
be sampled from outcrops, i.e., road cuts and quarries (accessible population). Note the
difference between a statistical sample as a representative of a population and a geological
sample as a piece of rock.

Geological
sample

Accessible
Population

Road cut

Outcrop

River valley

Available
Population

Hypothetical
Population

1.3 Types of Data 3

2. the spatial sampling scheme – In most areas, samples are taken as the
availability of outcrops permits. Sampling in quarries typically leads to
clustered data, whereas road cuts, shoreline cliffs or steep gorges cause
traverse sampling schemes. If money does not matter or the area allows
hundred percent access to the rock body, a more uniform sampling pat-
tern can be designed. A regular sampling scheme results in a gridded dis-
tribution of sample locations, whereas a uniform sampling strategy in-
cludes the random location of a sampling point within a grid square. You
might expect that these sampling schemes represent the superior method
to collect the samples. However, equally-spaced sampling locations tend
to miss small-scale variations in the area, such as thin mafi c dykes in a
granite body or spatially-restricted occurrence of a fossil. In fact, there is
no superior sample scheme, as shown in Figure 1.2.

The proper sampling strategy depends on the type of object to be analyzed,
the purpose of the investigation and the required level of confi dence of the
fi nal result. Having chosen a suitable sampling strategy, a number of distur-
bances can infl uence the quality of the set of samples. The samples might
not be representative of the larger population if it was affected by chemi-
cal or physical alteration, contamination by other material or the sample
was dislocated by natural or anthropogenic processes. It is therefore recom-
mended to test the quality of the sample, the method of data analysis em-
ployed and the validity of the conclusions based on the analysis in all stages
of the investigation.

1.3 Types of Data

These data types are illustrated in Figure 1.3. The majority of the data con-
sist of numerical measurements, although some information in earth sci-
ences can also be represented by a list of names such as fossils and minerals.
The available methods for data analysis may require certain types of data in
earth sciences. These are

1. nominal data – Information in earth sciences is sometimes presented as
a list of names, e.g., the various fossil species collected from a limestone
bed or the minerals identifi ed in a thin section. In some studies, these
data are converted into a binary representation, i.e., one for present and
zero for absent. Special statistical methods are available for the analysis
of such data sets.

4 1 Data Analysis in Earth Sciences

a b

c d

e

First Road

S
ec

on
d

R
oa

d

Boreholes

First Road

S
ec

on
d

R
oa

d

Boreholes

First Road

S
ec

on
d

R
oa

d

First Road

S
ec

on
d

R
oa

d

Boreholes

Quarry

Samples

First Road

S
ec

on
d

R
oa

d

Samples

R
iv

er
Va

lle
y

Samples

R
oa

d
cu

ts

Fig. 1.2 Sampling schemes. a Regular sampling on an evenly-spaced rectangular grid,
b uniform sampling by obtaining samples randomly-located within regular grid squares,
c random sampling using uniform-distributed xy coordinates, d clustered sampling
constrained by limited access, and e traverse sampling along road cuts and river valleys.

1.3 Types of Data 5

Cyclotella ocellata
C. meneghiniana
C. ambigua
C. agassizensis
Aulacoseira granulata
A. granulata var. curvata
A. italica
Epithemia zebra
E. sorex
Thalassioseira faurii

 1. Talc
 2. Gypsum
 3. Calcite
 4. Flurite
 5. Apatite
 6. Orthoclase
 7. Quartz
 8. Topaz
 9. Corundum
10. Diamond

0 1 2 3 4 5 6 7

2.5 4.0 7.0

-3 -2 -1 0 1 2 3 4

-0.5 +2.0 +4.0

0 25 50 75

30 50 82.5%

100%

N

31

28
25

27

30
33

N

EW

S

110°

70°

45°

a b

e f

g

c d

EW

S

N

Fig. 1.3 Types of data in earth sciences. a Nominal data, b ordinal data, c ratio data,
d interval data, e closed data, f spatial data and g directional data. For explanation see text.
All data types are described in the book except for directional data since there are better tools
to analyze such data in earth sciences than MATLAB.

6 1 Data Analysis in Earth Sciences

2. ordinal data – These are numerical data representing observations that
can be ranked, but the intervals along the scale are not constant. Mohs
hardness scale is one example for an ordinal scale. The Mohs hardness
value indicates the materials resistance to scratching. Diamond has a hard-
ness of 10, whereas this value for talc is 1. In terms of absolute hardness,
diamond (hardness 10) is four times harder than corundum (hardness 9)
and six times harder than topaz (hardness 8). The Modifi ed Mercalli Scale
to categorize the size of earthquakes is another example for an ordinal
scale. It ranks earthquakes from intensity I (barely felt) to XII (total de-
struction).

3. ratio data – The data are characterized by a constant length of successive
intervals. This quality of ratio data offers a great advantage in comparison
to ordinal data. However, the zero point is the natural termination of the
data scale. Examples of such data sets include length or weight data. This
data type allows either a discrete or continuous data sampling.

4. interval data – These are ordered data that have a constant length of suc-
cessive intervals. The data scale is not terminated by zero. Temperatures
C and F represent an example of this data type although zero points exist
for both scales. This data type may be sampled continuously or in discrete
intervals.

Besides these standard data types, earth scientists frequently encounter spe-
cial kinds of data, such as

1. closed data – These data are expressed as proportions and add to a fi xed
total such as 100 percent. Compositional data represent the majority of
closed data, such as element compositions of rock samples.

2. spatial data – These are collected in a 2D or 3D study area. The spatial
distribution of a certain fossil species, the spatial variation of the sand-
stone bed thickness and the 3D tracer concentration in groundwater are
examples for this data type. This is likely to be the most important data
type in earth sciences.

3. directional data – These data are expressed in angles. Examples include
the strike and dip of a bedding, the orientation of elongated fossils or the
fl ow direction of lava. This is a very frequent data type in earth sciences.

1.4 Methods of Data Analysis 7

Most of these data require special methods to be analyzed, that are outlined
in the next chapter.

1.4 Methods of Data Analysis

Data analysis methods are used to describe the sample characteristics as
precisely as possible. Having defi ned the sample characteristics we proceed
to hypothesize about the general phenomenon of interest. The particular
method that is used for describing the data depends on the data type and the
project requirements.

1. Univariate methods – Each variable in a data set is explored separately
assuming that the variables are independent from each other. The data are
presented as a list of numbers representing a series of points on a scaled
line. Univariate statistics includes the collection of information about
the variable, such as the minimum and maximum value, the average and
the dispersion about the average. Examples are the investigation of the
sodium content of volcanic glass shards that were affected by chemical
weathering or the size of fossil snail shells in a sediment layer.

2. Bivariate methods – Two variables are investigated together in order to
detect relationships between these two parameters. For example, the cor-
relation coeffi cient may be calculated in order to investigate whether there
is a linear relationship between two variables. Alternatively, the bivariate
regression analysis may be used to describe a more general relationship
between two variables in the form of an equation. An example for a bi-
variate plot is the Harker Diagram, which is one of the oldest method
to visualize geochemical data and plots oxides of elements against SiO2
from igneous rocks.

3. Time-series analysis – These methods investigate data sequences as a
function of time. The time series is decomposed into a long-term trend,
a systematic (periodic, cyclic, rhythmic) and an irregular (random, sto-
chastic) component. A widely used technique to analyze time series is
spectral analysis, which is used to describe cyclic components of the
time series. Examples for the application of these techniques are the
investigation of cyclic climate variations in sedimentary rocks or the
analysis of seismic data.

8 1 Data Analysis in Earth Sciences

4. Signal processing – This includes all techniques for manipulating a signal
to minimize the effects of noise, to correct all kinds of unwanted distor-
tions or to separate various components of interest. It includes the design,
realization and application of fi lters to the data. These methods are widely
used in combination with time-series analysis, e.g., to increase the signal-
to-noise ratio in climate time series, digital images or geophysical data.

5. Spatial analysis – The analysis of parameters in 2D or 3D space. Therefore,
two or three of the required parameters are coordinate numbers. These
methods include descriptive tools to investigate the spatial pattern of geo-
graphically distributed data. Other techniques involve spatial regression
analysis to detect spatial trends. Finally, 2D and 3D interpolation tech-
niques help to estimate surfaces representing the predicted continuous
distribution of the variable throughout the area. Examples are drainage-
system analysis, the identifi cation of old landscape forms and lineament
analysis in tectonically-active regions.

6. Image processing – The processing and analysis of images has become
increasingly important in earth sciences. These methods include manipu-
lating images to increase the signal-to-noise ratio and to extract certain
components of the image. Examples for this analysis are analyzing satel-
lite images, the identifi cation of objects in thin sections and counting an-
nual layers in laminated sediments.

7. Multivariate analysis – These methods involve observation and analysis
of more than one statistical variable at a time. Since the graphical repre-
sentation of multidimensional data sets is diffi cult, most methods include
dimension reduction. Multivariate methods are widely used on geochem-
ical data, for instance in tephrochronology, where volcanic ash layers are
correlated by geochemical fi ngerprinting of glass shards. Another impor-
tant example is the comparison of species assemblages in ocean sedi-
ments in order to reconstruct paleoenvironments.

8. Analysis of directional data – Methods to analyze circular and spherical
data are widely used in earth sciences. Structural geologists measure
and analyze the orientation of slickenlines (or striae) on a fault plane.
Circular statistics is also common in paleomagnetics applications.
Microstructural investigations include the analysis of the grain shape
and quartz c-axis orientation in thin sections. The methods designed to
deal with directional data are beyond the scope of the book. There are

Recommended Reading 9

more suitable programs than MATLAB for such analysis (e.g., Mardia
1972; Upton and Fingleton 1990)

Some of these methods require the application of numerical methods, such
as interpolation techniques or certain methods of signal processing. The fol-
lowing text is therefore mainly on statistical techniques, but also introduces
a number of numerical methods used in earth sciences.

Recommended Reading

Borradaile G (2003) Statistics of Earth Science Data - Their Distribution in Time, Space and
Orientation. Springer, Berlin Heidelberg New York

Carr JR (1995) Numerical Analysis for the Geological Sciences. Prentice Hall, Englewood
Cliffs, New Jersey

Davis JC (2002) Statistics and data analysis in geology, third edition. John Wiley and Sons,
New York

Mardia KV (1972) Statistics of Directional Data. Academic Press, London
Middleton GV (1999) Data Analysis in the Earth Sciences Using MATLAB. Prentice Hall
Press WH, Teukolsky SA, Vetterling WT (1992) Numerical Recipes in Fortran 77. Cambridge

University Press
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical Recipes in C++.

Cambridge University Press
Swan ARH, Sandilands M (1995) Introduction to geological data analysis. Blackwell

Sciences
Upton GJ, Fingleton B (1990) Spatial Data Analysis by Example, Categorial and Directional

Data. John Wiley & Sons

2 Introduction to MATLAB

2.1 MATLAB in Earth Sciences

MATLAB® is a software package developed by The MathWorks Inc.
(www.mathworks.com) founded by Jack Little and Cleve Moler in 1984
and headquartered in Natick, Massachusetts. MATLAB was designed to
perform mathematical calculations, to analyze and visualize data, and
write new software programs. The advantage of this software is the com-
bination of comprehensive math and graphics functions with a powerful
high-level language. Since MATLAB contains a large library of ready-
to-use routines for a wide range of applications, the user can solve tech-
nical computing problems much faster than with traditional program-
ming languages, such as C, C++, and FORTRAN. The standard library
of functions can be signifi cantly expanded by add-on toolboxes, which
are collections of functions for special purposes such as image process-
ing, building map displays, performing geospatial data analysis or solv-
ing partial differential equations.

During the last few years, MATLAB has become an increasingly popular
tool in the fi eld of earth sciences. It has been used for fi nite element model-
ing, the processing of seismic data and satellite images as well as for the
generation of digital elevation models from satellite images. The continuing
popularity of the software is also apparent in the scientifi c reference litera-
ture. A large number of conference presentations and scientifi c publications
have made reference to MATLAB. Similarly, a large number of the comput-
er codes in the leading Elsevier journal Computers and Geosciences are now
written in MATLAB. It appears that the software has taken over FORTRAN
in terms of popularity.

Universities and research institutions have also recognized the need for
MATLAB training for their staff and students. Many earth science depart-
ments across the world offer MATLAB courses for their undergraduates.
Similarly, The MathWorks provides classroom kits for teachers at a rea-
sonable price. It is also possible for students to purchase a low-cost edi-

12 2 Introduction to MATLAB

tion of the software. This student version provides an inexpensive way for
students to improve their MATLAB skills.

The following Chapters 2.2 to 2.7 contain a tutorial-style introduction
to the software MATLAB, to the setup on the computer (Chapter 2.2), the
syntax (2.3), data input and output (2.4 and 2.5), programming (2.6), and
visualization (2.7). It is recommended to go through the entire chapter in or-
der to obtain a solid knowledge in the software before proceeding to the fol-
lowing chapter. A more detailed introduction is provided by the MATLAB
User s Guide (The MathWorks 2005). The book uses MATLAB Version 7
(Release 14, Service Pack 2).

2.2 Getting Started

The software package comes with extensive documentation, tutorials and
examples. The fi rst three chapters of the book Getting Started with MATLAB
by The MathWorks, which is available printed, online and as PDF fi le is
directed to the beginner. The chapters on programming, creating graphical
user interfaces (GUI) and development environments are for the advanced
users. Since Getting Started with MATLAB mediates all required knowledge
to use the software, the following introduction concentrates on the most rel-
evant software components and tools used in the following chapters.

After installation of MATLAB on a hard disk or on a server, we launch the
software either by clicking the shortcut icon on the desktop or by typing

matlab

at the operating system prompt. The software comes up with a number of
window panels (Fig. 2.1). The default desktop layout includes the Current
Directory panel that lists the fi les contained in the directory currently used.
The Workspace panel lists the variables contained in the MATLAB work-
space, which is empty after starting a new software session. The Command
Window presents the interface between software and the user, i.e., it accepts
MATLAB commands typed after a prompt, >>. The Command History re-
cords all operations once typed in the Command Window and enables the
user to recall these. The book mainly uses the Command Window and the
built-in Text Editor that can be called by

edit

Before using MATLAB we have to (1) create a personal working direc-
tory where to store our MATLAB-related fi les, (2) add this directory to the

2.2 Getting Started 13

MATLAB search path and (3) change into it to make this the current work-
ing directory. After launching MATLAB, the current working directory is
the directory in which the software is installed, for instance, c:/MATLAB7
on a personal computer running Microsoft Windows and /Applications/
MATLAB7 on an Apple computer running Macintosh OS X. On the UNIX-
based SUN Solaris operating system and on a LINUX system, the current
working directory is the directory from which MATLAB has been launched.
The current working directory can be printed by typing

pwd

after the prompt. Since you may have read-only permissions in this direc-
tory in a multi-user environment, you should change into your own home
directory by typing

cd 'c:\Documents and Settings\username\My Documents'

Fig. 2.1 Screenshot of the MATLAB default desktop layout including the Current Directory
and Workspace panels (upper left), the Command History (lower left) and Command Window
(right). This book only uses the Command Window and the built-in Text Editor, which can
be called by typing edit after the prompt. All information provided by the other panels can
also be accessed through the Command Window.

14 2 Introduction to MATLAB

after the prompt on a Windows system and

cd /users/username

or

cd /home/username

if you are username on a UNIX or LINUX system. There you should create
a personal working directory by typing

mkdir mywork

The software uses a search path to fi nd MATLAB-related fi les, which are
organized in directories on the hard disk. The default search path only in-
cludes the MATLAB directory that has been created by the installer in the
applications folder. To see which directories are in the search path or to add
new directories, select Set Path from the File menu, and use the Set Path
dialog box. Alternatively, the command

path

prints the complete list of directories included in the search path. We attach
our personal working directory to this list by typing

path(path,’c:\Documents and Settings\user\My Documents\MyWork’)

on a Windows machine assuming that you are user, you are working on
Hard Disk C and your personal working directory is named MyWork. On a
UNIX or LINUX computer the command

path(path,'/users/username/work')

is used instead. This command can be used whenever more working direc-
tories or toolboxes have to be added to the search path. Finally, you can
change into the new directory by typing

cd mywork

making it the current working directory. The command

what

lists all MATLAB-related fi les contained in this directory. The modifi ed
search path is saved in a fi le pathdef.m in your home directory. In a future
session, the software reads the contents of this fi le and makes MATLAB to
use your custom path list.

2.3 The Syntax 15

2.3 The Syntax

The name MATLAB stands for matrix laboratory. The classic object handled
by MATLAB is a matrix, i.e., a rectangular two-dimensional array of num-
bers. A simple 1-by-1 matrix is a scalar. Matrices with one column or row
are vectors, time series and other one-dimensional data fi elds. An m-by-n
matrix can be used for a digital elevation model or a grayscale image. RGB
color images are usually stored as three-dimensional arrays, i.e., the colors
red, green and blue are represented by a m-by-n-by-3 array.

Entering matrices in MATLAB is easy. To enter an arbitrary matrix, type

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2]

after the prompt, which fi rst defi nes a variable A, then lists the elements of
the matrix in square brackets. The rows of A are separated by semicolons,
whereas the elements of a row are separated by blanks, or, alternatively, by
 commas. After pressing return, MATLAB displays the matrix

A =
 2 4 3 7
 9 3 -1 2
 1 9 3 7
 6 6 3 -2

Displaying the elements of A could be problematic in case of very large ma-
trices, such as digital elevation models consisting of thousands or millions
of elements. In order to suppress the display of a matrix or the result of an
operation in general, you should end the line with a semicolon.

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2];

The matrix A is now stored in the workspace and we can do some basic op-
erations with it, such as computing the sum of elements,

sum(A)

which results in the display of

ans =
 18 22 8 14

Since we did not specify an output variable, such as A for the matrix entered
above, MATLAB uses a default variable ans, short for answer, to store the
results of the calculation. In general, we should defi ne variables since the
next computation without a new variable name overwrites the contents of
ans.

16 2 Introduction to MATLAB

The above display illustrates another important point about MATLAB.
Obviously the result of sum(A) are the four sums of the elements in the four
columns of A. The software prefers working with the columns of matrices. If you
wish to sum all elements of A and store the result in a scalar b, you simply type

b = sum(sum(A));

which fi rst sums the colums of the matrix and then the elements of the re-
sulting vector. Now we have two variables A and b stored in the workspace.
We can easily check this by typing

whos

which is certainly the most frequently-used MATLAB command. The soft-
ware lists all variables contained in the workspace together with information
about their dimension, bytes and class.

Name Size Bytes Class
A 4x4 128 double array
ans 1x4 32 double array
b 1x1 8 double array
Grand total is 21 elements using 168 bytes

It is important to note that by default MATLAB is case sensitive, i.e., two
different variables A and a can be defi ned. In this context, it is recommended
to use capital letters for matrices and lower-case letters for vectors and sca-
lars. You could now delete the contents of the variable ans by typing

clear ans

Next we learn how specifi c matrix elements can be accessed or exchanged.
Typing

A(3,2)

simply returns the matrix element located in the third row and second col-
umn. The matrix indexing therefore follows the rule (row, column). We can
use this to access single or several matrix elements. As an example, we
type

A(3,2) = 30

to replace the element A(3,2) and displays the entire matrix

A =
 2 4 3 7
 9 3 -1 2
 1 30 3 7
 6 6 3 -2

2.3 The Syntax 17

If you wish to replace several elements at one time, you can use the colon
operator. Typing

A(3,1:4) = [1 3 3 5];

replaces all elements of the third row of matrix A. The colon operator is used
for other several things in MATLAB, for instance as an abbreviation for
entering matrix elements such as

c = 0 : 10

which creates a row vector containing all integers from 0 to 10. The corre-
sponding MATLAB response is

c =
 0 1 2 3 4 5 6 7 8 9 10

Note that this statement creates 11 elements, i.e., the integers from 1 to 10
and the zero. A common error while indexing matrices is the ignorance of
the zero and therefore expecting 10 instead of 11 elements in our example.
We can check this from the output of whos.

Name Size Bytes Class
A 4x4 128 double array
b 1x1 8 double array
c 1x11 88 double array
Grand total is 28 elements using 224 bytes

The above command only creates integers, i.e., the interval between the
vector elements is one. However, an arbitrary interval can be defi ned, for
example 0.5. This is later used to create evenly-spaced time axes for time
series analysis for instance.

c = 1 : 0.5 : 10;

c =
 Columns 1 through 6
 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
 Columns 7 through 12
 4.0000 4.5000 5.0000 5.5000 6.0000 6.5000
 Columns 13 through 18
 7.0000 7.5000 8.0000 8.5000 9.0000 9.5000
 Column 19
 10.0000

The display of the values of a variable can be interrupted by pressing Ctrl-C
(Control-C) on the keyboard. This interruption only affects the output in
the Command Window, whereas the actual command is processed before
displaying the result.

18 2 Introduction to MATLAB

MATLAB provides standard arithmetic operators for addition, +, and
 subtraction, -. The asterisk, *, denotes matrix multiplication involving in-
ner products between rows and columns. As an example, we multiply the
matrix A with a new matrix B.

B = [4 2 6 5; 7 8 5 6; 2 1 -8 -9; 3 1 2 3];

The matrix multiplication then is

C = A * B

which generates the output

C =
 63 46 22 28
 61 43 81 78
 46 34 7 11
 66 61 38 33

In linear algebra, matrices are used to keep track of the coeffi cients of linear
transformations. The multiplication of two matrices represents the combina-
tion of two linear transformations to one single transformation. Matrix mul-
tiplication is not communative, i.e., A*B and B*A yield different results in
most cases. Accordingly, MATLAB provides matrix divisions, right, /, and
left, \, representing different transformations. Finally, the software allows
 power of matrices, ^, and complex conjugate transpose, ', i.e, turning rows
into columns and columns into rows.

In earth sciences, however, matrices are often simply used as two-di-
mensional arrays of numerical data instead of an array representing a linear
transformation. Arithmetic operations on such arrays are done element-by-
element. Whereas this does not make any difference in addition and subtrac-
tion, the multiplicative operations are different. MATLAB uses a dot as part
of the notation for these operations.

For instance, multiplying A and B element-by-element is performed
by typing

C = A .* B

which generates the output

C =
 8 8 18 35
 63 24 -5 12
 2 3 -24 -45
 18 6 6 -6

2.5 Data Handling 19

2.4 Data Storage

This chapter is on how to store, import and export data with MATLAB. In
earth sciences, data are collected in a great variety of formats, which often
have to be converted before being analyzed with MATLAB. On the other
hand, the software provides a number of import routines to read many bi-
nary data formats in earth sciences, such as the formats used to store digital
elevation models and satellite date.

A computer generally stores data as binary digits or bits. A bit is similar
to a two-way switch with two states, on = 1 and off = 0. In order to store
more complex types of data, the bits are joined to larger groups, such as
bytes consisting of 8 bits. Such groups of bits are then used to encode data,
e.g., numbers or characters. Unfortunately, different computer systems and
software use different schemes for encoding data. For instance, the repre-
sentation of text using the widely-used text processing software Microsoft
Word is different from characters written in Word Perfect. Exchanging
binary data therefore is diffi cult if the various users use different computer
platforms and software. As soon as both partners of data exchange use
similar systems, binary data can be stored in relatively small fi les. The
transfer rate of binary data is generally faster compared to the exchange of
other fi le formats.

Various formats for exchanging data have been developed in the last
decades. The classic example for the establishment of a data format that
can be used on different computer platforms and software is the American
Standard Code for Information Interchange ASCII that was fi rst published
in 1963 by the American Standards Association (ASA). ASCII as a 7-bit
code consists of 27=128 characters (codes 0 to 127). Whereas ASCII-1963
was lacking lower-case letters, the update ASCII-1967, lower-case letters as
well as various control characters such as escape and line feed and various
symbols such as brackets and mathematical operators were also included.
Since then, a number of variants appeared in order to facilitate the exchange
of text written in non-English languages, such as the expanded ASCII con-
taining 255 codes, e.g., the Latin–1 encoding.

2.5 Data Handling

The simplest way to exchange data between a certain piece of software and
MATLAB is the ASCII format. Although the newer versions of MATLAB
provide various import routines for fi le types such as Microsoft Excel bina-

20 2 Introduction to MATLAB

ries, most data arrive as ASCII fi les. Consider a simple data set stored in a
table such as

SampleID Percent C Percent S
101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 -999
106 0.501 -999

The fi rst row contains the variable names. The columns provide the data for
each sample. The absurd value -999 marks missing data in the data set. Two
things have to be changed in order to convert this table into MATLAB format.
First, MATLAB uses NaN as the arithmetic representation for Not-a-Number
that can be used to mark gaps. Second, you should comment the fi rst line by
typing a percent sign, %, at the beginning of the line.

%SampleID Percent C Percent S
101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 NaN
106 0.501 NaN

MATLAB ignores any text appearing after the percent sign and continues
processing on the next line. After editing this table in a text editor, such as
the MATLAB Editor, it is saved as ASCII text fi le geochem.txt in the current
working directory (Fig. 2.2). MATLAB now imports the data from this fi le
with the load command:

load geochem.txt

MATLAB loads the contents of fi le and assigns the matrix to a variable
named after the fi lename geochem. Typing

whos

yields

Name Size Bytes Class
geochem 6x3 144 double array
Grand total is 18 elements using 144 bytes

The command save now allows to store workspace variables in a binary
format.

save geochem_new.mat

2.6 Scripts and Functions 21

MAT-fi les are double-precision, binary fi les using .mat as extension. The
advantage of these binary mat-fi les is that they are independent from the
computer platforms running different fl oating-point formats. The command

save geochem_new.mat geochem

saves only the variable geochem instead of the entire workspace. The op-
tion -ascii, for example

save geochem_new.txt geochem -ascii

again saves the variable geochem, but in an ASCII fi le named geochem_new.
txt. In contrast to the binary fi le geochem_new.mat, this ASCII fi le can be
viewed and edited by using the MATLAB Editor or any other text editor.

2.6 Scripts and Functions

MATLAB is a powerful programming language. All fi les containing
MATLAB code use .m as extension and are therefore called M-fi les. These
fi les contain ASCII text and can be edited using a standard text editor.
However, the built-in Editor color highlights various syntax elements such
as comments (in green), keywords such as if, for and end (blue) and charac-
ter strings (pink). This syntax highlighting eases MATLAB coding.

Fig. 2.2 Screenshot of MATLAB Text Editor showing the content of the fi le geochem.txt. The
fi rst line of the text is commented by a percent sign at the beginning of the line, followed by
the actual data matrix.

22 2 Introduction to MATLAB

MATLAB uses two kinds of M-fi les, scripts and functions. Whereas
scripts are series of commands that operate on data contained in the work-
space, functions are true algorithms with input and output variables. The
advantages and disadvantages of both M-fi les will now be illustrated by
means of an example. First we start the Text Editor by typing

edit

This opens a new window named untitled. First we are generating a simple
MATLAB script. We type a series of commands calculating the average of
the elements of a data vector x.

[m,n] = size(x);
if m == 1
 m = n;
end
sum(x)/m

The fi rst line returns the dimension of the variable x using the command
size. In our example, x should be either a column vector with dimension
(m,1) or a row vector with dimension (1,n). We need the length of the
vector for dividing the sum of the elements, which is either m or n. The
if statement evaluates a logical expression and executes a group of com-
mands when this expression is true. The end keyword terminates the last
group of commands. In the example, the if loop picks either m or n de-
pending on if m==1 is false or true The last line computes the average by
dividing the sum of all elements by the number of elements m or n. We do
not use a semicolon here to enable the output of the result. We save our new
M-fi le as average.m and type

x = [3 6 2 -3 8];

in the Command Window to defi ne an example vector x. Then we type

average

without the extension .m to run our script. We obtain the average of the ele-
ments of the vector x as output.

ans =
 3.2000

After typing

whos

we see that the workspace now contains

2.6 Scripts and Functions 23

Name Size Bytes Class
ans 1x1 8 double array
m 1x1 8 double array
n 1x1 8 double array
x 1x5 40 double array
Grand total is 8 elements using 64 bytes

The listed variables are the example vector x and the output of the size
function, m and n. The result of the operation is contained in the variable
ans. Since the default variable ans might be overwritten during one of the
following operations, we wish to defi ne a different variable. Typing

a = average

however, causes the error message

??? Attempt to execute SCRIPT average as a function.

Obviously, we cannot assign a variable to the output of a script. Moreover,
all variables defi ned and used in the script appear in the workspace, in our
example, the variables m and n. Scripts contain sequences of commands
applied to variables in the workspace. MATLAB functions instead allow to
defi ne inputs and outputs. They do not automatically import variables from
the workspace. To convert the above script into a function, we have to intro-
duce the following modifi cations (Fig. 2.3):

function y = average(x)
%AVERAGE Average value.
% AVERAGE(X) is the average of the elements in the vector X.

% By Martin Trauth, Feb 18, 2005.

[m,n] = size(x);
if m == 1
 m = n;
end
y = sum(x)/m;

The first line now contains the keyword function, the function name
average and the input x and output y. The next two lines contain com-
ments as indicated by the percent sign. After one empty line, we see an-
other comment line containing informations on the author and version of the
M-fi le. The remaining fi le contains the actual operations. The last line now
defi nes the value of the output variable y. This line is now terminated by a
semicolon to suppress the display of the result in the Command Window.
We fi rst type

help average

24 2 Introduction to MATLAB

which displays the fi rst block of contiguous comment lines. The fi rst execut-
able statement or blank line — as in our example — effectively ends the
help section and therefore the output of help. Now we are independent from
the variable names used in our function. We clear the workspace and defi ne
a new data vector.

clear

data = [3 6 2 -3 8];

We run our function by the statement

result = average(data);

This clearly illustrates the advantages of functions compared to scripts.
Typing

whos

results in

Name Size Bytes Class
data 1x5 40 double array
result 1x1 8 double array
Grand total is 6 elements using 48 bytes

Fig. 2.3 Screenshot of the MATLAB Text Editor showing the function average. The
function starts with a line containing the keyword function, the name of the function
average and the input variable x and the output variable y. The following lines contain
the output for help average, the copyright and version information as well as the actual
MATLAB code for computing the average using this function.

2.7 Basic Visualization Tools 25

indicates that all variables used in the function do not appear in the work-
space. Only the input and output as defi ned by the user are stored in the
workspace. The M-fi les can therefore be applied to data like real functions,
whereas scripts contain sequences of commands are applied to the variables
in workspace.

2.7 Basic Visualization Tools

MATLAB provides numerous routines for displaying your data as graphs.
This chapter introduces the most important graphics functions. The graphs
will be modifi ed, printed and exported to be edited with graphics software
other than MATLAB. The simplest function producing a graph of a variable
y versus another variable x is plot. First we defi ne two vectors x and y,
where y is the sine of x. The vector x contains values between 0 and 2 with

/10 increments, whereas y is defi ned as element-by-element sine of x.

x = 0 : pi/10 : 2*pi;
y = sin(x);

These two commands result in two vectors with 21 elements each, i.e., two
1-by-21 arrays. Since the two vectors x and y have the same length, we can
use plot to produce a linear 2D graph y against x.

plot(x,y)

This command opens a Figure Window named Figure 1 with a gray back-
ground, an x-axis ranging from 0 to 7, a y-axis ranging from -1 to +1 and a
blue line. You may wish to plot two different curves in one single plot, for
example, the sine and the cosine of x in different colors. The command

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1,'r--',x,y2,'b-')

creates a dashed red line displaying the sine of x and a solid blue line
representing the cosine of this vector (Fig. 2.4). If you create another plot,
the window Figure 1 is cleared and a new graph is displayed. The com-
mand figure, however, can be used to create a new fi gure object in a new
window.

26 2 Introduction to MATLAB

plot(x,y1,'r--')
figure
plot(x,y2,'b-')

Instead of plotting both lines in one graph at the same time, you can also
fi rst plot the sine wave, hold the graph and then plot the second curve.
The command hold is particularly important while using different plot
functions for displaying your data. For instance, if you wish to display the
second graph as a bar plot.

plot(x,y1,'r--')
hold on
bar(x,y2)
hold off

This command plots y1 versus x as dashed line, whereas y2 versus x is
shown as group of blue vertical bars. Alternatively, you can plot both graphs
in the same Figure Window, but in different plots using the subplot. The
syntax subplot(m,n,p) divides the Figure Window into an m-by-n ma-
trix of display regions and makes the p-th display region active.

subplot(2,1,1), plot(x,y1,'r--')
subplot(2,1,2), bar(x,y2)

In our example, the Figure Window is divided into two rows and one col-
umn. The 2D linear plot is displayed in the upper half, whereas the bar
plot appears in the lower half of the Figure Window. In the following, it is
recommended to close the Figure Windows before proceeding to the next
example. After using the function subplot, the following plot would re-
place the graph in the lower display region only, or more general, the last
generated graph in a Figure Window.

An important modifi cation to graphs it the scaling of axis. By default,
MATLAB uses axis limits close to the minima and maxima of the data. Using
the command axis, however, allows to change the settings for scaling. The
syntax for this command is simply axis([xmin xmax ymin ymax]).
The command

plot(x,y1,'r--')
axis([0 pi -1 1])

sets the limits of the x-axis to 0 and , whereas the limits of the y-axis are set
to the default values -1 and +1. Important options of axis are

plot(x,y1,'r--')
axis square

making the current axes region square and

2.7 Basic Visualization Tools 27

plot(x,y1,'r--')
axis equal

setting the aspect ratio in a way that the data units are equal in both
direction of the plot. The function grid adds a grid to the current plot,
whereas the functions title, xlabel and ylabel allows to define a
title and labels the x– and y–axis.

plot(x,y1,'r--')
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')
grid

These are a few examples how MATLAB functions can be used at in the
Command Window to edit the plot. However, the software also supports
various ways to edit all objects in a graph interactively using a computer
mouse. First, the Edit Mode of the Figure Window has to be activated by
clicking on the arrow icon. The Figure Window also contains a number of
other options, such as Rotate 3D, Zoom or Insert Legend. The various ob-

Fig. 2.4 Screenshot of the MATLAB Figure Window showing two curves in different line
types. The Figure Window allows to edit all elements of the graph after choosing Edit Plot
from the Tools menu. Double clicking on the graphics elements opens an options window
for modifying the appearance of the graphs. The graphics is exported using Save as from the
File menue. The command Generate M-File from the File menu creates MATLAB code from
an edited graph.

28 2 Introduction to MATLAB

jects in a graph, however, are selected by double-clicking on the specifi c
component, which opens the Property Editor. The Property Editor allows to
make changes to many properties of the graph such as axes, lines, patches
and text objects. After having made all necessary changes to the graph, the
corresponding commands can even be exported by selecting Generate M-
File from the File menu of the Figure Window.

Although the software now provides enormous editing facilities for
graphs, the more reasonable way to modify a graph for presentations or pub-
lications is to export the fi gure, import it into a software such as CorelDraw
or Adobe Illustrator. MATLAB graphs are exported by selecting the com-
mand Save as from the File menu or by using the command print. This
function allows to export the graph either as raster image (e.g., JPEG) or
vector fi le (e.g., EPS or PDF) into the working directory (Chapter 8). In
practice, the user should check the various combinations of export fi le for-
mat and the graphics software used for fi nal editing the graphs.

Recommended Reading

Davis TA, Sigmon K (2004) The MATLAB Primer, Seventh Edition. Chapman & Hall/CRC
Etter DM, Kuncicky DC, Moore H (2004) Introduction to MATLAB 7. Prentice Hall
Gilat A (2004) MATLAB: An Introduction with Applications. John Wiley & Sons
Hanselman DC, Littlefi eld BL (2004) Mastering MATLAB 7. Prentice Hall
Palm WJ (2004) Introduction to MATLAB 7 for Engineers. McGraw-Hill
The Mathworks (2005) MATLAB - The Language of Technical Computing – Getting Started

with MATLAB Version 7. The MathWorks, Natick, MA

3 Univariate Statistics

3.1 Introduction

The statistical properties of a single parameter are investigated by means of
 univariate analysis. Such variable could be the organic carbon content of a
sedimentary unit, thickness of a sandstone layer, age of sanidine crystals in a
volcanic ash or volume of landslides in the Central Andes. The number and
size of samples we collect from a larger population is often limited by fi nan-
cial and logistical constraints. The methods of univariate statistics help to
conclude from the samples for the larger phenomenon, i.e., the population.

Firstly, we describe the sample characteristics by means of statistical
parameters and compute an empirical distribution (descriptive statistics)
(Chapters 3.2 and 3.3). A brief introduction to the most important measures
of central tendency and dispersion is followed by MATLAB examples.
Next, we select a theoretical distribution, which shows similar characteris-
tics as the empirical distribution (Chapters 3.4 and 3.5). A suite of theoreti-
cal distributions is then introduced and their potential applications outlined,
before we use MATLAB tools to explore these distributions. Finally, we try
to conclude from the sample for the larger phenomenon of interest (hypoth-
esis testing) (Chapters 3.6 to 3.8). The corresponding chapters introduce the
three most important statistical tests for applications in earth sciences, the
t-test to compare the means of two data sets, the F-test comparing variances
and the χ2-test to compare distributions.

3.2 Empirical Distributions

Assume that we have collected a number of measurements of a specifi c ob-
ject. The collection of data can be written as a vector x

30 3 Univariate Statistics

containing N observations x
i
. The vector x may contain a large number of

data points. It may be diffi cult to understand its properties as such. This is
why descriptive statistics are often used to summarise the characteristics
of the data. Similarly, the statistical properties of the data set may be used
to defi ne an empirical distribution which then can be compared against a
theoretical one.

The most straight forward way of investigating the sample characteristics
is to display the data in a graphical form. Plotting all the data points along
one single axis does not reveal a great deal of information about the data set.
However, the density of the points along the scale does provide some infor-
mation about the characteristics of the data. A widely-used graphical display
of univariate data is the histogram that is illustrated in Figure 3.1. A histo-
gram is a bar plot of a frequency distribution that is organized in intervals or
classes. Such histogram plot provides valuable information on the character-
istics of the data, such as central tendency, dispersion and the general shape
of the distribution. However, quantitative measures provide a more accurate
way of describing the data set than the graphical form. In purely quantitative
terms, mean and median defi ne the central tendency of the data set, while
data dispersion is expressed in terms of range and standard deviation.

x x

f(
x)

f(
x)

Histogram Cumulative Histogram

a b

8 10 12 14 16
0

2

4

6

8

10

12

8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Fig. 3.1 Graphical representation of an empirical frequency distribution. a In a histogram,
the frequencies are organized in classes and plotted as a bar plot. b The cumulative
histogram of a frequency distribution displays the counts of all classes lower and equal
than a certain value.

3.2 Empirical Distributions 31

Measures of Central Tendency

Parameters of central tendency or location represent the most important
measures for characterizing an empirical distribution (Fig. 3.2). These val-
ues help to locate the data on a linear scale. They represent a typical or best
value that describes the data. The most popular indicator of central tendency
is the arithmetic mean, which is the sum of all data points divided by the
number of observations:

The arithmetic mean can also be called the mean or the average of an uni-
variate data set. The sample mean is often used as an estimate of the popula-
tion mean µ for the underlying theoretical distribution. The arithmetic mean
is sensitive to outliers, i.e., extreme values that may be very different from
the majority of the data. Therefore, the median as often used as an alterna-
tive measure of central tendency. The median is the x-value which is in the
middle of the data, i.e., 50% of the observations are larger than the median
and 50% are smaller. The median of a data set sorted in ascending order is
defi ned as

Median
Mean Mode

Outlier

Median
Mean Mode

8 10 12 14 16
0

5

10

15

0 2 4 6 8
0

10

20

30

40

50

x x

f(
x)

f(
x)

Skew DistributionSymmetric Distribution

a b

Fig. 3.2 Measures of central tendency. a In an unimodal symmetric distribution, the mean,
median and mode are identical. b In a skew distribution, the median is between the mean and
mode. The mean is highly sensitive to outliers, whereas the median and mode are not much
infl uenced by extremely high and low values.

32 3 Univariate Statistics

if N is odd and

if N is even. While the existence of outliers have an affect on the median, their
absolute values do not infl uence it. The quantiles provide a more general way
of dividing the data sample into groups containing equal numbers of observa-
tions. For example, quartiles divide the data into four groups, quintiles divide
the observations in fi ve groups and percentiles defi ne one hundred groups.

The third important measure for central tendency is the mode. The mode
is the most frequent x value or – in case of data grouped in classes – the
center of the class with the largest number of observations. The data have no
mode if there aren t any values that appear more frequently than any of the
other values. Frequency distributions with one mode are called unimodal,
but there may also be two modes (bimodal), three modes (trimodal) or four
or more modes (multimodal).

The measures mean, median and mode are used when several quantities
add together to produce a total, whereas the geometric mean is often used
if these quantities are multiplied. Let us assume that the population of an
organism increases by 10% in the fi rst year, 25% in the second year, then
60% in the last year. The average increase rate is not the arithmetic mean,
since the number of individuals is multiplied (not added to) by 1.10 in the
fi rst year, by 1.375 in the second year and 2.20 in the last year. The average
growth of the population is calculated by the geometric mean:

The average growth of these values is 1.4929 suggesting a ~49% growth
of the population. The arithmetic mean would result in an erroneous value
of 1.5583 or ~56% growth. The geometric mean is also an useful measure
of central tendency for skewed or log-normally distributed data. In other
words, the logarithms of the observations follow a gaussian distribution.
The geometric mean, however, is not calculated for data sets containing
negative values. Finally, the harmonic mean

3.2 Empirical Distributions 33

is used to take the mean of asymmetric or log-normally distributed data,
similar to the geometric mean, but they are both not robust to outliers. The
harmonic mean is a better average when the numbers are defi ned in relation
to some unit. The common example is averaging velocity. The harmonic
mean is also used to calculate the mean of samples sizes.

Measures of Dispersion

Another important property of a distribution is the dispersion. Some of the
parameters that can be used to quantify dispersion are illustrated in Figure
3.3. The simplest way to describe the dispersion of a data set is the range,
which is the difference between the highest value and lowest in the data set
given by

Since range is defi ned by the two extreme data points, it is very susceptible
to outliers. Hence, is is not a reliable measure of dispersion in most cases.
Using the interquartile range of the data, i.e., the middle 50% of the data
attempts to overcome this. A very useful measure for dispersion is the stan-
dard deviation.

The standard deviation is the average deviation of each data point from
the mean. The standard deviation of an empirical distribution is often used
as an estimate for the population standard deviation σ. The formula of the
population standard deviation uses N instead of N-1 in the denominator.
The sample standard deviation s is computed with N-1 instead of N since it
uses the sample mean instead of the unknown population mean. The sam-
ple mean, however, is computed from the data x

i
, which reduces the degrees

of freedom by one. The degrees of freedom are the number of values in a
distribution that are free to be varied. Dividing the average deviation of
the data from the mean by N would therefore underestimate the population
standard deviation σ.

The variance is the third important measure of dispersion. The variance
is simply the square of the standard deviation.

34 3 Univariate Statistics

Mode 1 Mode 2

Mode 1

Mode 2 Mode 3

−2 0 2 4 6 8 −2 0 2 4 6 8

0 10 20 30 6 8 10 12 14 16 18

10 15 20 5 10 15 20

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0

20

40

60

80

100

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

x x

x x

x x

f(
x)

f(
x)

f(
x) f(
x)

f(
x) f(
x)

Positive SkewnessNegative Skewness

High Kurtosis Low Kurtosis

Bimodal Distribution Trimodal Distribution

a

c

e f

d

b

Fig. 3.3 Dispersion and shape of a distribution. a-b Unimodal distributions showing a
negative or positive skew. c-d Distributions showing a high or low kurtosis. e-f Bimodal and
trimodal distribution showing two or three modes.

3.2 Empirical Distributions 35

Although the variance has the disadvantage of not sharing the dimension
of the original data, it is extensively used in may applications instead of the
standard deviation.

Furthermore, both skewness and kurtosis can be used to describe the
shape of a frequency distribution. Skewness is a measure of asymmetry of
the tails of a distribution. The most popular way to compute the asymmetry
of a distribution is Pearson s mode skewness:

skewness = (mean-mode) / standard deviation

A negative skew indicates that the distribution is spread out more to the left
of the mean value, assuming increasing values on the axis to the right. The
sample mean is smaller than the mode. Distributions with positive skew-
ness have large tails that extend to the right. The skewness of the symmetric
normal distribution is zero. Although Pearson s measure is a useful measure,
the following formula by Fisher for calculating the skewness is often used,
including the corresponding MATLAB function.

The second important measure for the shape of a distribution is the kurtosis.
Again, numerous formulas to compute the kurtosis are available. MATLAB
uses the following formula:

The kurtosis is a measure of whether the data are peaked or fl at relative to
a normal distribution. A high kurtosis indicates that the distribution has a
distinct peak near the mean, whereas a distribution characterized by a low
kurtosis shows a fl at top near the mean and heavy tails. Higher peakedness
of a distribution is due to rare extreme deviations, whereas a low kurtosis is
caused by frequent moderate deviations. A normal distribution has a kurto-
sis of three. Therefore some defi nitions for kurtosis subtract three from the
above term in order to set the kurtosis of the normal distribution to zero.

After having defi ned the most important parameters to describe an em-
pirical distribution, the measures of central tendency and dispersion are il-

36 3 Univariate Statistics

lustrated by means of examples. The text and binary fi les used in the follow-
ing chapters are on the CD that comes with this book. It is recommended to
save the fi les in the personal working directory.

3.3 Example of Empirical Distributions

Let us describe the data contained in the fi le organicmatter_one.txt. This fi le
contains the organic matter content (in weight percent, wt%) of lake sedi-
ments. In order to load the data type

corg = load('organicmatter_one.txt');

The data fi le consists of 60 measurements that can be displayed by

plot(corg,zeros(1,length(corg)),'o')

This graph demonstrates some of the characteristics of the data. The organic
carbon content of the samples range between 9 and 15 wt%. Most data clus-
ter between 12 and 13 wt%. Values below 10 and above 14 are rare. While
this kind of representation of the data has its advantages, univariate data are
generally displayed as histograms:

hist(corg)

By default, the MATLAB function hist divides the range of the data into
ten equal intervals or classes, counts the observation within each interval
and displays the frequency distribution as bar plot. The midpoints of the
default intervals v and the number of observations n per interval can be ac-
cessed using

[n,v] = hist(corg);

The number of classes should be not lower than six and not higher than fi f-
teen for practical purposes. In practice, the square root of the number of ob-
servations, rounded to the nearest integer, is often used as number of classes.
In our example, we use eight classes instead of the default ten classes.

hist(corg,8)

We can even define the midpoint values of the histogram classes. In
this case, it is recommended to choose interval endpoints that avoid
data points falling between two intervals. The maximum and minimum

3.3 Example of Empirical Distributions 37

values contained in the data vector are

 max(corg)

ans =
 14.5615

 min(corg)

ans =
 9.4168

The range of the data values, i.e., the difference between maximum and
minimum values is

range(corg)

ans =
 5.1447

The range of the data is the information that we need in order to defi ne the
classes. Since we have decided to use eight classes, we split the range of the
data into eight equal-sized bins. The approximate width of the intervals is

5.1447/8

ans =
 0.6431

We round this number up and defi ne

v = 10 : 0.65 : 14.55;

as midpoints of the histogram intervals. The commands for displaying the
histogram and calculating the frequency distribution are

hist(corg,v);

n = hist(corg,v);

The most important parameters describing the distribution are the averages
and the dispersion about the average. The most popular measure for average
is the arithmetic mean of our data.

mean(corg)

ans =
 12.3448

Since this measure is very susceptible to outliers, we use the median as an

38 3 Univariate Statistics

alternative measure of central tendency.

 median(corg)

ans =
 12.4712

which is not much different in this example. However, we will see later that
this difference can be signifi cant for distributions that are not symmetric in
respect with the arithmetic mean. A more general parameter to defi ne frac-
tions of the data less or equal to a certain value is the quantile. Some of the
quantiles have special names, such as the three quartiles dividing the distri-
bution into four equal parts, 0-25%, 25-50%, 50-75% and 75-100% of the
total number of observations.

 prctile(corg,[25 50 75])

ans =
 11.4054 12.4712 13.2965

The third parameter in this context is the mode, which is the midpoint of the
interval with the highest frequency. MATLAB does not provide a function
to compute the mode. We use the function find to located the class that has
the largest number of observations.

v(find(n == max(n)))

ans =
 11.9500 12.6000 13.2500

This statement simply identifi es the largest element in n. The index of this
element is then used to display the midpoint of the corresponding class v. In
case there are several n s with similar values, this statement returns several
solutions suggesting that the distribution has several modes. The median,
quartiles, maximum and minimum of a data set can be summarized and
displayed in a box and whisker plot.

 boxplot(corg)

The boxes have lines at the lower quartile, median, and upper quartile val-
ues. The whiskers are lines extending from each end of the boxes to show
the extent of the rest of the data.

The most popular measures for dispersion are range, standard deviation
and variance. We have already used the range to defi ne the midpoints of the
classes. The variance is the average squared deviation of each number from
the mean of a data set

3.3 Example of Empirical Distributions 39

 var(corg)

ans =
 1.3595

The standard deviation is the square root of the variance.

 std(corg)

ans =
 1.1660

It is important to note that by default the functions var and std calculate the
sample variance and standard deviation representing an unbiased estimate of
the sample dispersion of the population. While using skewness to describe
the shape of the distribution, we observe a negative skew close to zero:

 skewness(corg)

ans =
 -0.2529

Finally, the peakedness of the distribution is described by the kurtosis. The
result from the function kurtosis,

 kurtosis(corg)

ans =
 2.4670

suggests that our distribution is slightly fl atter than a gaussian distribution
since its kurtosis is lower than three. Most of these functions have cor-
responding versions for data sets containing gaps, such as nanmean and
nanstd, which treat NaN s as missing values. To illustrate the use of these
functions we introduce a gap to our data set and compute the mean using
mean and nanmean for comparison.

corg(25,1) = NaN;

mean(corg)

ans =
 NaN

 nanmean(corg)

ans =
 12.3371

In this example the function mean follows the rule that all operations with

40 3 Univariate Statistics

NaN s result in NaN s, whereas the function nanmean simply skips the miss-
ing value and computes the mean of the remaining data. As a second ex-
ample, we now explore a data set characterized by a signifi cant skew. The
data represent 120 microprobe analyses on glass shards hand-picked from a
volcanic ash. The volcanic glass has been affected by chemical weathering
in an initial stage. Therefore, the glass shards show glass hydration and sodi-
um depletion in some sectors. We study the distribution of sodium contents
(in wt%) in the 120 measurements using the same principle as above.

sodium = load('sodiumcontent.txt');

As a fi rst step, it is always recommended to visualize the data as a histo-
gram. The square root of 120 suggests 11 classes, therefore we display the
data by typing

hist(sodium,11)

[n,v] = hist(sodium,11);

Since the distribution has a negative skew, the mean, median and mode are
signifi cantly different.

mean(sodium)

ans =
 5.6628

median(sodium)

ans =
 5.9741

v(find(n == max(n)))

ans =
 6.5407

The mean of the data is lower than the median, which is in turn lower than
the mode. We observe a strong negative skew as expected from our data.

skewness(sodium)

ans =
 -1.1086

Now we introduce a signifi cant outlier to the data and explore its impact on
the statistics of the sodium contents. We used a different data set contained
in the fi le sodiumcontent_two.txt, which is better suited for this example
than the previous data set. The new data set contains higher sodium values

3.4 Theoretical Distributions 41

of around 17 wt% and is stored in the fi le

sodium = load('sodiumcontent_two.txt');

This data set contains only 50 measurements in order to better illustrate the
effect of an outlier. We can use the script used in the previous example to
display the data in a histogram and compute the number of observations n
with respect to the classes v. The mean of the data is 16.6379, the media is
16.9739 and the mode is 17.2109. Now we introduce one single value of 1.5
wt% in addition to the 50 measurements contained in the original data set.

sodium(51,1) = 1.5;

The histogram of this data set illustrates the distortion of the frequency dis-
tribution by this single outlier. The corresponding histogram shows several
empty classes. The infl uence of this outlier on the sample statistics is sub-
stantial. Whereas the median of 16.9722 is relatively unaffected, the mode
of 170558 is slightly different since the classes have changed. The most
signifi cant changes are observed in the mean (16.3411), which is very sensi-
tive to outliers.

3.4 Theoretical Distributions

Now we have described the empirical frequency distribution of our sample.
A histogram is a convenient way to picture the probability distribution of the
variable x. If we sample the variable suffi ciently often and the output ranges
are narrow, we obtain a very smooth version of the histogram. An infi nite
number of measurements N and an infi nite small class width produces
the random variable s probability density function (PDF). The probability
distribution density f(x) defi nes the probability that the variate has the value
equal to x. The integral of f(x) is normalized to unity, i.e., the total number
of observations is one. The cumulative distribution function (CDF) is the
sum of a discrete PDF or the integral of a continuous PDF. The cumulative
distribution function F(x) is the probability that the variable takes a value
less than or equal x.

As a next step, we have to fi nd a suitable theoretical distribution that
fi ts the empirical distributions described in the previous chapters. In this
section, the most frequent theoretical distributions are introduced and their
application is described.

42 3 Univariate Statistics

Uniform Distribution

A uniform distribution or rectangular distribution is a distribution that
has constant probability (Fig. 3.4). The corresponding probability density
function is

where the random variable x has any of N possible values. The cumulative
distribution is

The probability density function is normalized to unity

i.e., the sum of probabilities is one. Therefore, the maximum value of the
cumulative distribution is one as well.

1 2 3 4 5 6
0

0.05

0.1

0.15
f(x)=1/6

0

1

1.2

0 1 2 3 4 5 6

0.2

0.2

0.4

0.8

0.6

x x

f(
x)

f(
x)

Cumulative Distribution
Function

Probability Density
Function

a b

Fig. 3.4 a Probability density function f(x) and b cumulative distribution function F(x)
of a uniform distribution with N=6. The 6 discrete values of the variable x have the same
probability 1/6.

3.4 Theoretical Distributions 43

An example is a rolling die with N=6 faces. A discrete variable such as the
faces of a die can only take a countable number of values x. The probability
of each face is 1/6. The probability density function of this distribution is

The corresponding cumulative distribution function is

where x takes only discrete values, x=1, 2, …, 6.

Binomial or Bernoulli Distribution

A binomial or Bernoulli distribution, named after the Swiss scientist James
Bernoulli (1654-1705), gives the discrete probability of x successes out of
N trials, with probability p of success in any given trial (Fig. 3.5). The prob-
ability density function of a binomial distribution is

0 1 2 3 4 5
0

0 1 2 3 4 56 6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

x x

f(
x)

f(
x)

Probability Density
Function p=0.1

Probability Density
Function p=0.3

a b

Fig. 3.5 Probability density function f(x) of a binomial distribution, which gives the
probability p of x successes out of N=6 trials, with probability a p=0.1 and b p=0.3 of
success in any given trial.

44 3 Univariate Statistics

The cumulative distribution function is

where

The binomial distribution has two parameters N and p. The outcome of a
drilling program of oil provides an example of such distribution. Let us as-
sume that the probability of a drilling success is 0.1 or 10%. The probability
of x=3 wells out of a total number of N=10 wells is

Therefore only six out of one hundred wells are successful.

Poisson Distribution

When the numbers of trials is N and the success probability is p 0, the
binomial distribution approaches the Poisson distribution with one single
parameter λ=Np (Fig. 3.6) (Poisson, 1837). This works well for N>100 and
p<0.05 or 5%. We therefore use the Poisson distribution for processes char-
acterized by extremely low occurrence, e.g., earthquakes, volcano eruptions,
storms and fl oods. The probability density function is

and the cumulative distribution function is

The single parameter λ describes both the mean and the variance of this
distribution.

3.4 Theoretical Distributions 45

Normal or Gaussian Distribution

When p=0.5 (symmetric, no skew) and N , the binomial distribution ap-
proaches the normal or gaussian distribution with the parameters mean µ
and standard deviation σ (Fig. 3.7). The probability density function of a
normal distribution in the continuous case is

and the cumulative distribution function is

The normal distribution is used when the mean is the most frequent and most
likely value. The probability of deviations is equal towards both directions
and decrease with increasing distance from the mean. The standard normal
distribution is a special member of the normal family that has a mean of zero
and a standard deviation of one.

We transform the equation of the normal distribution by substitute
z=(x-µ)/σ.

0 1 2 3 4 5 6 0 1 2 3 4 5 6
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

x x

f(
x)

f(
x)

Probability Density
Function λ=0.5

Probability Density
Function λ=2

a b

Fig. 3.6 Probability density function f(x) of a Poisson distribution with different values for
λ. a λ=0.5 and b λ=2.

46 3 Univariate Statistics

This defi nition of the normal distribution is often referred to as z distribution.

Logarithmic Normal or Log–Normal Distribution

The logarithmic normal distribution is used when the data have a lower
limit, e.g., the amount of precipitation or the frequency of earthquakes (Fig.
3.8). In such cases, distributions are usually characterized by signifi cant
skewness, which is best described by a logarithmic normal distribution The
probability density function of this distribution is

and the cumulative distribution function is

σ=0.5
σ=1.0

σ=2.0

σ=0.5

σ=1.0

σ=2.0
0.2

0.4

0.6

0.8

0 2 4 6

0.2

0.4

0.6

0.8

1 1

0 0
0 2 4 6

x x

f(
x)

F
(x

)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.7 a Probability density function f(x) and b standardized (F(x)
max

=1) cumulative
distribution function of a gaussian or normal distribution with mean µ=0 and different values
for standard deviation σ.

3.4 Theoretical Distributions 47

where x>0. The distribution can be described by the two parameters mean µ
and variance σ2. The formulas for mean and variance, however, are differ-
ent from the ones used for normal distributions. In practice, the values of x
are logarithmized, the mean and variance are computed using the formulas
for the normal distribution and the empirical distribution is compared with
a normal distribution.

Student s t Distribution

The Student s t distribution was fi rst introduced by William Gosset (1876-
1937) who needed a distribution for small samples (Fig. 3.9). W. Gosset was
a Irish Guinness Brewery employee and was not allowed to publish research
results. For that reason he published his t distribution under the pseudonym
Student (Student, 1908). The probability density function is

where Γ is the Gamma function

σ=0.5

σ=0.65

σ=1.0

σ=0.5
σ=0.65

σ=1.0

0.2

0.4

0.6

0.8

−6 −4 −2 0 2 4 6−6 −4 −2 0 2 4 6

0.2

0.4

0.6

0.8

1 1

0 0

x x

f(
x)

F
(x

)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.8 a Probability density function f(x) and b standardized (F(x)
max

=1) cumulative
distribution function F(x) of a logarithmic normal distribution with mean =0 and with
different values for σ.

48 3 Univariate Statistics

which can be written as

if x>0. The single parameter Φ of the t distribution is the degrees of freedom.
In the analysis of univariate data, this parameter is Φ=n-1, where n is the
sample size. As Φ , the t distribution converges to the standard normal
distribution. Since the t distribution approaches the normal distribution for
Φ>30, it is not often used for distribution fi tting. However, the t distribution
is used for hypothesis testing, namely the t–test (Chapter 3.7).

Fisher s F Distribution

The F distribution was named after the statistician Sir Ronald Fisher
(1890-1962). It is used for hypothesis testing, namely for the F–test
(Chapter 3.8) (Fig. 3.10). The F distribution was named in honor of the
statistician Sir Ronald Fisher. The F distribution has a relatively com-

Φ=5 Φ=5

Φ=1

Φ=10.1

0.2

0.3

0.4

−6 −4 −2 0 2 4 6−6 −4 −2 0 2 4 6

0.5

0

0.2

0.4

0.6

0.8

1

0

x x

f(
x)

F
(x

)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.9 a Probability density function f(x) and b standardized (F(x)
max

=1) cumulative
distribution function F(x) of a Student s t distribution with different values for Φ.

3.4 Theoretical Distributions 49

plex probability density function:

where x>0 and Γ is again the Gamma function. The two parameters Φ
1
 and

Φ
2
 are the degrees of freedom.

χ2 or Chi-Squared Distribution

The χ2 distribution was introduced by Friedrich Helmert (1876) and Karl
Pearson (1900). It is not used for fi tting a distribution, but has important ap-
plications in statistical hypothesis testing, namely the χ2–test (Chapter 3.9).
The probability density function of the χ2 distribution is

where x>0, otherwise f(x)=0. Again, Φ is the degrees of freedom (Fig. 3.11).

Φ1=1, Φ2=5

Φ1=10, Φ2=10
Φ1=1, Φ2=5

Φ1=10, Φ2=10

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1 1

0 0
0 1 2 3 4 0 1 2 3 4

x x

f(
x)

F
(x

)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.10 a Probability density function f(x) and b standardized (F(x)
max

=1) cumulative
distribution function F(x) of a Fisher s F distribution with different values for Φ

1
 and Φ

2
.

50 3 Univariate Statistics

3.5 Example of Theoretical Distributions

The function randtool is a tool to simulate discrete data with a statistics
similar to our data. This function creates a histogram of random numbers
from the distributions in the Statistics Toolbox. The random numbers that
have been generated by using this tool can be exported into the workspace.
We start the graphical user interface (GUI) of the function by typing

randtool

after the prompt. We can now create a data set similar to the one contained
in the fi le organicmatter.txt. The 60 measurements have a mean of 12.3448
wt% and a standard deviation of 1.1660 wt%. The GUI uses Mu for µ (the
mean of a population) and Sigma for σ (the standard deviation). After choos-
ing Normal for a gaussian distribution and 60 for the number of samples, we
get a histogram similar to the one of the fi rst example. This synthetic distri-
bution based on 60 samples represents a rough estimate of the true normal
distribution. If we increase the sample size, the histogram looks much more
like a true gaussian distribution.

Instead of simulating discrete distributions, we can use the probability
density function (PDF) or cumulative distribution function (CDF) to com-
pute a theoretical distribution. The MATLAB Help gives an overview of
the available theoretical distributions. As an example, we use the func-

Φ=3

Φ=2

Φ=4

Φ=1Φ=1

Φ=2

Φ=4
Φ=3

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

1

0 0
0 2 4 6 8 0 2 4 6 8

0.5

x x

f(
x)

F
(x

)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.11 a Probability density function f(x) and b standardized (F(x)
max

=1) cumulative
distribution function F(x) of a χ2 distribution with different values for Φ.

3.6 The t–Test 51

tions normpdf(x,mu,sigma) and normcdf(x,mu,sigma) to compute
the PDF and CDF of a gaussian distribution with mean Mu=12.3448 and
Sigma=1.1660, evaluated at the values in x in order to compare the result
with our sample data set.

x = 9:0.1:15;
pdf = normpdf(x,12.3448,1.1660);
cdf = normcdf(x,12.3448,1.1660);
plot(x,pdf,x,cdf)

MATLAB also provides a GUI-based function for generating PDFs and
CDFs with specifi c statistics, which is called disttool.

disttool

We choose pdf as function type and Mu=12.3448 and Sigma=1.1660.
The function disttool uses the non-GUI functions for calculating prob-
ability density functions and cumulative distribution functions, such as
normpdf and normcdf.

3.6 The t–Test

The Student s t–test by William Gossett (1876-1937) compares the means
of two distributions. Let us assume that two independent sets of n

a
 and n

b

measurements that have been carried out on the same object. For instance,
they could be the samples taken from two different outcrops. The t–test can
now be used to test the hypothesis that both samples come from the same
population, e.g., the same lithologic unit (null hypothesis) or from two dif-
ferent populations (alternative hypothesis). Both, the sample and population
distribution have to be gaussian. The variances of the two sets of measure-
ments should be similar. Then the appropriate test statistic is

where n
a
 and n

b
 are the sample sizes, s

a
2 and s

b
2 are the variances of the two

samples a and b. The alternative hypothesis can be rejected if the measured
t-value is lower than the critical t-value, which depends on the degrees of
freedom Φ=n

a
+n

b
-2 and the signifi cance level α. If this is the case, we can-

not reject the null hypothesis without another cause. The signifi cance level

52 3 Univariate Statistics

α of a test is the maximum probability of accidentally rejecting a true null
hypothesis. Note that we cannot prove the null hypothesis, in other words
not guilty is not the same as innocent (Fig. 3.12).

The t–test can be performed by the function ttest2. We load an example
data set of two independent series of measurements. The fi rst example shows
the performance of the t–test on two distributions with with the means 25.5
and 25.3, respectively, whereas the standard deviations are 1.3 and 1.5.

clear

load('organicmatter_two.mat');

The binary fi le organicmatter_two.mat contains two data sets corg1 and
corg2. First we plot both histograms in one single graph

[n1,x1] = hist(corg1);
[n2,x2] = hist(corg2);

h1 = bar(x1,n1);
hold on
h2 = bar(x2,n2);

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b'x)

Here we use the command set to change graphic objects of the bar plots
h1 and h2, such as the face and edge colors of the bars. Now we apply the
function ttest2(x,y,alpha) to the two independent samples corg1 and
corg2 at an alpha=0.05 or 5% signifi cance level. The command

[h,significance,ci] = ttest2(corg1,corg2,0.05)

yields

h =
 0

significance =
 0.0745

ci =
 -0.0433 0.9053

The result h=0 means that you cannot reject the null hypothesis without
another cause at a 5% signifi cance level. The signifi cance of 0.0745 means
that by chance you would have observed values of t more extreme than the
one in the example in 745 of 10,000 similar experiments. A 95% confi dence
interval on the mean is [-0.0433 0.9053], which includes the theoretical (and

3.6 The F–Test 53

hypothesized) difference of 0.2.
The second synthetic example shows the performance of the t–test on very

different distributions in the means. The means are 24.3 and 25.5, whereas
the standard deviations are again 1.3 and 1.5, respectively.

clear

load('organicmatter_three.mat');

This fi le again contains two data sets corg1 and corg2. The t–test at a 5%
signifi cance level

[h,significance,ci] = ttest2(corg1,corg2,0.05)

yields

h =
 1

significance =
 6.1138e-06

ci =
 0.7011 1.7086

The result h=1 suggests that you can reject the null hypothesis. The signifi -
cance is extremely low and very close to zero. The 95% confi dence interval
on the mean is [0.7011 1.7086], which again includes the theoretical (and
hypothesized) difference of 1.2.

3.7 The F–Test

The F–test by Snedecor and Cochran (1989) compares the variances s
a
2 and

s
b
2 of two distributions, where s

a
2>s

b
2. An example is the comparison of the

natural heterogenity of two samples based on replicated measurements. The
sample sizes n

a
 and n

b
 should be above 30. Then the appropriate test statistic

to compare variances is

The two variances are not signifi cantly different, i.e., we reject the alterna-
tive hypothesis, if the measured F-value is lower then the critical F-value,
which depends on the degrees of freedom Φ

a
=n

a
-1 and Φ

b
=n

b
-1, respec-

tively, and the signifi cance level α.

54 3 Univariate Statistics

Although MATLAB does not provide a ready-to-use F–test, this hypoth-
esis test can easily be implemented. We fi rst apply this test to two distribu-
tions with very similar standard deviations of 1.3 and 1.2, respectively.

load('organicmatter_four.mat');

The quantity F is defi ned as the quotient between the larger and the smaller
variance. First we compute the standard deviations, where

s1 = std(corg1)

s2 = std(corg2)

yields

s1 =
 1.2550

s2 =
 1.2097

The F–distribution has two parameters, df1 and df2, which are the num-
bers of observations of both distributions reduced by one, where

df1 = length(corg1) - 1

df2 = length(corg2) - 1

yields

df1 =
 59

df2 =
 59

Next we sort the standard deviations by their absolute value,

if s1 > s2
 slarger = s1
 ssmaller = s2
else
 slarger = s2
 ssmaller = s1
end

and get

slarger =
 1.2550

3.6 The F–Test 55

ssmaller =
 1.2097

Now we compare the calculated F with the critical F. This can be accom-
plished using the function finv on a 95% signifi cance level. The function
finv returns the inverse of the F distribution function with df1 and df2
degrees of freedom, at the value of 0.95. Typing

Freal = slarger^2/ssmaller^2

Ftable = finv(0.95,df1,df2)

yields

Freal =
 1.0762

Ftable =
 1.5400

The F calculated from the data is smaller than the critical F. We therefore
cannot reject the null hypothesis without another cause. The variances are
identical on a 95% signifi cance level.

We now apply this test to two distributions with very different standard
deviations, 2.0 and 1.2, respectively.

load('organicmatter_five.mat');

Now we compare the calculated F with the critical F at a 95% signifi cance
level. The critical F can be computed using the function finv. We again type

s1 = std(corg1);

s2 = std(corg2);

df1 = length(corg1) - 1;

df2 = length(corg2) - 1;

if s1 > s2
 slarger = s1;
 ssmaller = s2;
else
 slarger = s2;
 ssmaller = s1;
end

Freal = slarger^2/ssmaller^2

Ftable = finv(0.95,df1,df2)

56 3 Univariate Statistics

and get

Freal =
 3.4967

Ftable =
 1.5400

The F calculated from the data is now larger than the critical F. We therefore
can reject the null hypothesis. The variances are different on a 95% signifi -
cance level.

3.8 The χ 2–Test

The χ 2–test introduced by Karl Pearson (1900) involves the comparison of
distributions, permitting a test that two distributions were derived from the
same population. This test is independent of the distribution that is being
used. It can therefore be applied to test the hypothesis that the observations
were drawn from a specifi c theoretical distribution. Let us assume that we
have a data set that consists of 100 chemical measurements from a sand-
stone unit. We could use the χ2–test to test that these measurements can be
described by a gaussian distribution with a typical or best central value and
a random dispersion around this value. The n data are grouped in K classes,
where n should be above 30. The frequencies within the classes O

k
should

not be lower than four and never be zero. Then the appropriate statistics is

where E
k
 are the frequencies expected from the theoretical distribution. The

alternative hypothesis is that the two distributions are different. This can be
rejected if the measured χ 2 is lower than the critical χ 2, which depends on
Φ=K-Z, where K is the number of classes and Z is the number of parameters
describing the theoretical distribution plus the number of variables (for in-
stance, Z=2+1 for mean and variance in the case of a gaussian distribution
of a data set containing one variable, Z=1+1 for a Poisson distribution of one
variable) (Fig. 3.12).

As an example, we test the hypothesis that our organic carbon measure-
ments contained in organicmatter.txt have a gaussian distribution. We fi rst
load the data into the workspace and compute the frequency distribution
n_exp of the data.

3.8 The χ2
–Test 57

corg = load('organicmatter_one.txt');

v = 10 : 0.65 : 14.55;
n_exp = hist(corg,v);

We use this function to create the synthetic frequency distribution n_syn
with a mean of 12.3448 and standard deviation of 1.1660.

n_syn = normpdf(v,12.3448,1.1660);

The data need to be scaled so that they are similar to the original data set.

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

The fi rst line normalizes n_syn to a total of one. The second command scales
n_syn to the sum of n_exp. We can display both histograms for comparison.

subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of these plots shows that they are similar. However, it
is advisable to use a more quantitative approach. The χ2-test explores the
squared differences between the observed and expected frequencies. The

Φ=5 χ2 (Φ=5, α=0.05)

Reject null hypothesis!
This decision has a 5%
probability of being wrong.

Donʼt reject
null hypothesis
without another cause!

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

f(

)

χ2

χ2

Probability Density Function

Fig. 3.12 Principles of a χ2-test. The alternative hypothesis that the two distributions are
different can be rejected if the measured χ2 is lower than the critical χ2, which depends on
Φ=K-Z, where K is the number of classes and Z is the number of parameters describing the
theoretical distribution plus the number of variables. In the example, the critical χ2(Φ=5,
α=0.05) is 11.0705. If the measured χ2=2.1685 is well below the critical χ2, we cannot reject
the null hypothesis. In our example, we can therefore conclude that the sample distribution is
not signifi cantly different from a gaussian distribution.

58 3 Univariate Statistics

quantity χ2 is defi ned as the sum of the these squared differences devided by
the expected frequencies.

chi2 = sum((n_exp - n_syn).^2 ./n_syn)

ans =
 2.1685

The critical χ2 can be calculated using chi2inv. The χ2–test requires the
degrees of freedom Φ. In our example, we test the hypothesis that the data are
gaussian distributed, i.e., we estimate two parameters µ and σ. The number
of degrees of freedom is Φ=8-(2+1)=5. We test our hypothesis on a p=95%
signifi cance level. The function chi2inv computes the inverse of the χ2

CDF with parameters specifi ed by Φ for the corresponding probabilities in p.

chi2inv(0.95,5)

ans =
 11.0705

The critical χ2 of 11.0705 is well above the measured χ2 of 2.1685. We
therefore cannot reject the null hypothesis. Hence, we conclude that our data
follow a gaussian distribution.

Recommended Reading

Bernoulli J (1713) Ars Conjectandi. Reprinted by Ostwalds Klassiker Nr. 107-108.
Leipzig 1899

Fisher RA (1935) Design of Experiments. Oliver and Boyd, Edinburgh
Helmert FR (1876) Über die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler

und über einige damit im Zusammenhang stehende Fragen. Zeitschrift für Mathematik
und Physik 21:192-218

Pearson ES (1990) Student , A Statistical Biography of William Sealy Gosset. In: Plackett
RL, with the Assistance of Barnard G.A., Oxford, University Press

Pearson K (1900) On the criterion that a given system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably supposed to have
arisen from random sampling. Philos. Mag. 5, 50:157-175

Poisson SD (1837) Recherches sur la Probabilité des Jugements en Matière Criminelle et
en Matière Civile, Précédées des Regles Générales du Calcul des Probabilités, Bachelier,
Imprimeur-Libraire pour les Mathematiques. Paris, 1837

Sachs L (2000) Angewandte Statistik – Anwendung statistischer Methoden, Zehnte,
überarbeitete und aktualisierte Aufl age. Springer Berlin Heidelberg New York

Snedecor GW, Cochran WG (1989) Statistical Methods, Eighth Edition. Iowa State University
Press

Spiegel MR (1994) Theory and Problems of Statistics, 2nd Edition. Schaum s Outline Series,
McGraw-Hill

Recommended Reading 59

Student (1908) On the Probable Error of the Mean. Biometrika 6: 1-25
Taylor JR (1997) An Introduction to Error Analysis – The study of uncertainties in physical

measurements, Second Edition. University Science Books, Sausalito, California
The Mathworks (2004) Statistics Toolbox User s Guide - For the Use with MATLAB®. The

MathWorks, Natick, MA

4 Bivariate Statistics

4.1 Introduction

Bivariate analysis aims to understand the relationship between two variables
x and y. Examples are the length and the width of a fossil, the sodium and
potassium content of volcanic glass or the organic matter content along a
sediment core. When the two variables are measured on the same object, x is
usually identifi ed as the independent variable, whereas y is the dependent
variable. If both variables were generated in an experiment, the variable
manipulated by the experimentalist is described as the independent variable.
In some cases, both variables are not manipulated and therefore indepen-
dent. The methods of bivariate statistics help to describe the strength of the
relationship between the two variables, either by a single parameter such as
Pearson s correlation coeffi cient for linear relationships or by an equation
obtained by regression analysis (Fig. 4.1). The equation describing the rela-
tionship between x and y can be used to predict the y-response from arbitrary
x s within the range of original data values used for regression. This is of
particular importance if one of the two parameters is diffi cult to measure. In
this case, the relationship between the two variables is fi rst determined by
regression analysis on a small training set of data. Then the regression equa-
tion is used to calculate this parameter from the fi rst variable.

This chapter fi rst introduces Pearson s correlation coeffi cient (Chapter 4.2),
then explains the widely-used methods of linear and curvilinear regression
analysis (Chapter 4.3, 4.10 and 4.11). Moreover, a selection of methods is
explained that are used to assess the uncertainties in regression analysis
(Chapters 4.5 to 4.8). All methods are illustrated by means of synthetic ex-
amples since they provide excellent means for assessing the fi nal outcome.

4.2 Pearson s Correlation Coeffi cient

Correlation coeffi cients are often used at the exploration stage of bivariate

62 4 Bivariate Statistics

statistics. They are only a very rough estimate of a rectilinear trend in the
bivariate data set. Unfortunately the literature is full of examples where the
importance of correlation coeffi cients is overestimated and outliers in the
data set lead to an extremely biased estimator of the population correlation
coeffi cient.

The most popular correlation coeffi cient is Pearson s linear product-mo-
ment correlation coeffi cient ρ (Fig. 4.2). We estimate the population s cor-
relation coeffi cient ρ from the sample data, i.e., we compute the sample
correlation coeffi cient r, which is defi ned as

Regression line

i-th data point (xi,yi)

Regression line:
age = 6.6 + 5.1 depth

Correlation coefficient:
r = 0.96

Depth in sediment (meters)

A
ge

 o
f s

ed
im

en
t (

ky
rs

)

y-intercept = 6.6
Slope = 5.1

1

5 10 15 20
0

20

40

60

80

100

120

0

Bivariate Scatter

Fig. 4.1 Display of a bivariate data set. The twenty data points represent the age of a sediment
(in kiloyears before present) in a certain depth (in meters) below the sediment-water interface.
The joint distribution of the two variables suggests a linear relationship between age and depth,
i.e., the increase of the sediment age with depth is constant. Pearson s correlation coeffi cient
(explained in the text) of r=0.96 supports the strong linear dependency of the two variables.
Linear regression yields the equation age=6.6+5.1 depth. This equation indicates an increase
of the sediment age of 5.1 kyrs per meter sediment depth (the slope of the regression line).
The inverse of the slope is the sedimentation rate of ca. 0.2 meters/kyrs. Furthermore, the
equation defi nes the age of the sediment surface of 6.6 kyrs (the intercept of the regression
line with the y-axis). The deviation of the surface age from zero can be attributed either to
the statistical uncertainty of regression or any natural process such as erosion or bioturbation.
Whereas the assessment of the statistical uncertainty will be discussed in this chapter, the
second needs a careful evaluation of the various processes at the sediment-water interface.

4.2 Pearson s Correlation Coeffi cient 63

Outlier

Random bivariate
data cluster

r = 0.96 r = -0.97

r = 0.36

r = 0.96 r = 0.38

r = 0.95

0 5 10 15 20
0

20

40

60

80

100

120

0 5 10 15 20
−120

−100

−80

−60

−40

−20

0

20

0 5 10 15 20
0

5

10

15

20

0 5 10 15 20
0

5

10

15

0 5 10 15 20
−500

0

500

1000

1500

2000

2500

−10 −5 0 5 10
0

100

200

300

400

500

600

x x

x x

x x

y y

y y

y y

Bivariate Scatter Bivariate Scatter

Bivariate Scatter Bivariate Scatter

Bivariate Scatter Bivariate Scatter

a

c

e f

d

b

Fig. 4.2 Pearson s correlation coeffi cent r for various sample data. a-b Positive and negative
linear correlation, c random scatter without a linear correlation, d an outlier causing a
misleading value of r, e curvilinear relationship causing a high r since the curve is close to a
straight line, f curvilinear relationship clearly not described by r.

64 4 Bivariate Statistics

where n is the number of xy pairs of data points, s
x
 and s

y
 the univariate

standard deviations. The numerator of Pearson s correlation coeffi cient is
known as corrected sum of products of the bivariate data set. Dividing the
numerator by (n-1) yields the covariance

which is the summed products of deviations of the data from the sample
means, divided by (n-1). The covariance is a widely-used measure in bivari-
ate statistics, although it has the disadvantage of depending on the dimen-
sion of the data. We will use the covariance in time-series analysis, which
is a special case of bivariate statistics with time as one of the two variables.
Dividing the covariance by the univariate standard deviations removes this
effect and leads to Pearson s correlation coeffi cient.

Pearson s correlation coeffi cient is very sensitive to various disturbances
in the bivariate data set. The following example illustrates the use of the
correlation coeffi cients, highlights the potential pitfalls when using this
measure of linear trends. It also describes the resampling methods that can
be used to explore the confi dence of the estimate for ρ. The synthetic data
consist of two variables, the age of a sediment in kiloyears before present
and the depth below the sediment-water interface in meters. The use of syn-
thetic data sets has the advantage that we fully understand the linear model
behind the data.

The data are represented as two columns contained in fi le agedepth.txt.
These data have been generated using a series of thirty random levels (in me-
ters) below the sediment surface. The linear relationship age=5.6*meters+1.2
was used to compute noisefree values for the variable age. This is the equa-
tion of a straight line with slope 5.6 and an intercept with the y-axis of 1.2.
Finally, some gaussian noise of amplitude 10 was added to the age data. We
load the data from the fi le agedepth.txt.

agedepth = load('agedepth.txt');

We defi ne two new variables, meters and age, and generate a scatter plot
of the data.

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

We observe a strong linear trend suggesting some dependency between the

4.2 Pearson s Correlation Coeffi cient 65

variables, meters and age. This trend can be described by Pearson s cor-
relation coeffi cient r, where r=1 stands for a perfect positive correlation, i.e.,
age increases with meters, r=0 suggests no correlation, and r=-1 indicates
a perfect negative correlation. We use the function corrcoef to compute
Pearson s correlation coeffi cient.

corrcoef(meters,age)

which causes the output

ans =
 1.0000 0.9342
 0.9342 1.0000

The function corrcoef calculates a matrix of correlation coeffi cients
for all possible combinations of the two variables. The combinations
(meters, age) and (age, meters) result in r=0.9342, whereas
(age, age) and (meters, meters) yield r=1.000.

The value of r=0.9342 suggests that the two variables age and meters
depend on each other. However, Pearson s correlation coeffi cient is highly
sensitive to outliers. This can be illustrated by the following example. Let us
generate a normally-distributed cluster of thirty (x,y) data with zero mean
and standard deviation one. In order to obtain identical data values, we reset
the random number generator by using the integer 5 as seed.

 randn('seed',5);
x = randn(30,1); y = randn(30,1);

plot(x,y,'o'), axis([-1 20 -1 20]);

As expected, the correlation coeffi cient of these random data is very low.

corrcoef(x,y)

ans =
 1.0000 0.1021
 0.1021 1.0000

Now we introduce one single outlier to the data set, an exceptionally high
(x,y) value, which is located precisely on the one-by-one line. The correla-
tion coeffi cient for the bivariate data set including the outlier (x,y)=(5,5)
is considerably higher than before.

x(31,1) = 5; y(31,1) = 5;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

66 4 Bivariate Statistics

ans =
 1.0000 0.4641
 0.4641 1.0000

After increasing the absolute (x,y) values of this outlier, the correlation
coeffi cient increases dramatically.

x(31,1) = 10; y(31,1) = 10;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
 1.0000 0.7636
 0.7636 1.0000

and reaches a value close to r=1 if the outlier has a value of
(x,y)=(20,20).

x(31,1) = 20; y(31,1) = 20;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
 1.0000 0.9275
 0.9275 1.0000

Still, the bivariate data set does not provide much evidence for a strong
dependence. However, the combination of the random bivariate (x,y) data
with one single outlier results in a dramatic increase of the correlation coef-
fi cient. Whereas outliers are easy to identify in a bivariate scatter, erroneous
values might be overlooked in large multivariate data sets.

Various methods exist to calculate the signifi cance of Pearson s correla-
tion coeffi cient. The function corrcoef provides the possibility for evalu-
ating the quality of the result. Furthermore, resampling schemes or surro-
gates such as the bootstrap or jackknife method provide an alternative way
of assessing the statistical signifi cance of the results. These methods repeat-
edly resample the original data set with N data points either by choosing N-1
subsamples N times (the jackknife) or picking an arbitrary set of subsamples
with N data points with replacements (the bootstrap). The statistics of these
subsamples provide a better information on the characteristics of the popu-
lation than statistical parameters (mean, standard deviation, correlation co-
effi cients) computed from the full data set. The function bootstrp allows
resampling of our bivariate data set including the outlier (x,y)=(20,20).

4.2 Pearson s Correlation Coeffi cient 67

rhos1000 = bootstrp(1000,'corrcoef',x,y);

This command fi rst resamples the data a thousand times, calculates the
correlation coeffi cient for each new subsample and stores the result in the
variable rhos1000. Since corrcoef delivers a 2x2 matrix as mentioned
above, rhos1000 has the dimension 1000x4, i.e., 1000 values for each
element of the 2x2 matrix. Plotting the histogram of the 1000 values of
the second element, i.e., the correlation coeffi cient of (x,y) illustrates the
dispersion of this parameter with respect to the presence or absence of the
outlier. Since the distribution of rhos1000 contains a lot of empty classes,
we use a large number of bins.

hist(rhos1000(:,2),30)

The histogram shows a cluster of correlation coeffi cients around r=0.2 that
follow the normal distribution and a strong peak close to r=1 (Fig. 4.3).
The interpretation of this histogram is relatively straightforward. As soon
as the subsample contains the outlier, the correlation coeffi cient is close to
one. Samples without the outlier yield a very low (close to zero) correla-
tion coeffi cient suggesting no strong dependence between the two vari-
ables x and y.

Low corrrelation coefficients
of samples not containing

the outlier

High corrrelation coefficients
of samples including

the outlier

Correlation Coefficient r

B
oo

ts
tr

ap
 S

am
pl

es

−0.5 0 0.5 1
0

50

100

150

200

250

300

350
Histogram of Bootstrap Results

Fig. 4.3 Bootstrap result for Pearson s correlation coeffi cient r from 1000 subsamples. The
histogram shows a roughly normally-distributed cluster of correlation coeffi cients at around
r=0.2 suggesting that these subsamples do not contain the outlier. The strong peak close to
r=1, however, suggests that such an outlier with high values of the two variables x and y is
present in the corresponding subsamples.

68 4 Bivariate Statistics

Bootstrapping therefore represents a powerful and simple tool for accept-
ing or rejecting our fi rst estimate of the correlation coeffi cient. The applica-
tion of the above procedure applied to the synthetic sediment data yields a
clear unimodal gaussian distribution of the correlation coeffi cients.

corrcoef(meters,age)

ans =
 1.0000 0.9342
 0.9342 1.0000

rhos1000 = bootstrp(1000,'corrcoef',meters,age);

hist(rhos1000(:,2),30)

Most rhos1000 fall within the interval between 0.88 and 0.98. Since the
resampled correlation coeffi cients obviously are gaussian distributed, we
can use the mean as a good estimate for the true correlation coeffi cient.

mean(rhos1000(:,2))

ans =
 0.9315

This value is not much different to our fi rst result of r=0.9342. However,
now we can be certain about the validity of this result. However, in our
example, the bootstrap estimate of the correlations from the age-depth data
is quite skewed, as there is a hard upper limit of one. Nevertheless, the boot-
strap method is a valuable tool for obtaining valuable information on the
reliability of Pearson s correlation coeffi cient of bivariate data sets.

4.3 Classical Linear Regression Analysis and Prediction

 Linear regression provides another way of describing the dependence be-
tween the two variables x and y. Whereas Pearson s correlation coeffi cient
only provides a rough measure of a linear trend, linear models obtained by
regression analysis allow to predict arbitrary y values for any given value
of x within the data range. Statistical testing of the signifi cance of the linear
model provides some insights into the quality of prediction.

Classical regression assumes that y responds to x, and the entire disper-
sion in the data set is in the y-value (Fig. 4.4). Then, x is the independent
or regressor or predictor variable. The values of x is defi ned by the experi-
mentalist and are often regarded as to be free of errors. An example is the
location x of a sample in a sediment core. The dependent variable y contains

4.3 Classical Linear Regression Analysis and Prediction 69

errors as its magnitude cannot be determined accurately. Linear regression
minimizes the y deviations between the xy data points and the value pre-
dicted by the best-fi t line using a least-squares criterion. The basis equation
for a general linear model is

where b
0
 and b

1
 are the coeffi cients. The value of b

0
 is the intercept with the

y-axis and b
1
 is the slope of the line. The squared sum of the y deviations

to be minimized is

Partial differentiation of the right-hand term and equation to zero yields a
simple equation for the fi rst regression coeffi cient b

1
:

y-
in

te
rc

ep
t b

0
y

Regression line

Regression line:
y = b0 + b1 x

∆y

∆x

i-th data point (xi,yi)
∆x=1

∆y=b1

0 2 4 6 8
0

1

2

3

4

5

6

1 3 5 7

x

Linear Regression

Fig. 4.4 Linear regression. Whereas classical regression minimizes the y deviations, reduced
major axis regression minimizes the triangular area 0.5*(x y) between the points and the
regression line, where x and y are the distances between the predicted and the true x and
y values. The intercept of the line with the y-axis is b

0
, whereas the slope is b

1
. These two

parameters defi ne the equation of the regression line.

70 4 Bivariate Statistics

The regression line passes through the data centroid defi ned by the samples
means. We can therefore compute the other regression coeffi cient b

0
,

using the univariate sample means and the previously computed slope b
1
.

Let us again load the synthetic age-depth data from the fi le agedepth.txt.
We defi ne two new variables, meters and age, and generate a scatter plot
of the data.

agedepth = load('agedepth.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A signifi cant linear trend in the bivariate scatter plot and a correlation co-
effi cient of more than r=0.9 suggests a strong linear dependence between
meters and age. In geologic terms, this suggests that the sedimentation
rate is constant through time. We now try to fi t a linear model to the data
that helps us to predict the age of the sediment at levels without age data.
The function polyfit computes the coeffi cients of a polynomial p(x) of
degree n that fi ts the data y in a least-squared sense. In our example, we fi t a
polynomial of degree n=1 (linear) to the data.

p = polyfit(meters,age,1)

p =
 5.6393 0.9986

Since we are working with synthetic data, we know that values for slope
and intercept with the y-axis. While the estimated slope agrees well with
the true value (5.6 vs. 5.6393), the intercept with the y-axis is signifi cantly
different (1.2 vs. 0.9986). Both data and the fi tted line can be plotted on the
same graph.

plot(meters,age,'o'), hold

plot(meters,p(1) * meters + p(2),'r')

4.3 Classical Linear Regression Analysis and Prediction 71

Instead of using the equation for the regression line, we can also use the
function polyval to calculate the y-values.

plot(meters,age,'o'), hold

plot(meters,polyval(p,meters),'r')

Both, polyfit and polyval are incorporated in the MATLAB GUI func-
tion polytool.

polytool(meters,age)

The coeffi cients p(x) and the equation obtained by linear regression can
now be used to predict y-values for any given x-values. However, we can
only do this for the depth interval for which the linear model was fi tted,
i.e., between 0 and 20 meters. As an example, the age of the sediment at the
depth of 17 meters depth is given by

polyval(p,17)

ans =
 96.8667

This result suggests that the sediment at 17 meters depth has an age of ca.
97 kyrs. The goodness-of-fi t of the linear model can be determined by calcu-
lating error bounds. These are obtained by cloosing an additional output pa-
rameter for polyfit and by using this as an input parameter for polyval.

[p,s] = polyfit(meters,age,1);
[p_age,delta] = polyval(p,meters,s);

This code uses an interval of ±2s, which corresponds to a 95% confi dence
interval. polyfit returns the polynomial coeffi cients p, and a structure s
that polyval uses to calculate the error bounds. Structures are MATLAB
arrays with named data containers called fi elds. The fi elds of a structure can
contain any kind of data, such as text strings representing names. Another
might contain a scalar or a matrix. In our example, the structure s contains
fi elds for the statistics of the residuals that we use to compute the error
bounds. delta is an estimate of the standard deviation of the error in pre-
dicting a future observation at x by p(x). We plot the results.

plot(meters,age,'+',meters,p_age,'g-',...
 meters,p_age + 2 * delta,'r--',meters,p_age - 2 * delta,'r--')
xlabel('meters'), ylabel('age')

Since the plot statement does not fi t on one line, we use an ellipsis (three
periods), ..., followed by return or enter to indicate that the statement

72 4 Bivariate Statistics

continues on the next line. The plot now shows the data points, the regres-
sion line as well as the error bounds of the regression (Fig. 4.5). This graph
already provides some valuable information on the quality of the result.
However, in many cases a better knowledge on the validity of the model is
required and therefore more sophisticated methods for confi dence testing of
the results are introduced in the following.

4.5 Analyzing the Residuals

When you compare how far the predicted values are from the actual or ob-
served values, you are performing an analysis of residuals. The statistics
of the residuals provides valuable information on the quality of a model
fi tted to the data. For instance, a signifi cant trend in the residuals suggest
that the model not fully describes the data. In such a case, a more com-
plex model, such as a polynomial of a higher degree should be fi tted to the
data. Residuals ideally are purely random, i.e., gaussian distributed with
zero mean. We therefore test the hypothesis that our residuals are gaussian
distributed by visual inspection of the histogram and by employing a χ2-test
introduced in the previous chapter.

res = age - polyval(p,meters);

Depth in sediment (meters)

A
ge

 o
f s

ed
im

en
ts

 (
ky

rs
)

Regression line

95% Confidence Bounds

95% Confidence Bounds

i-th data point

0 2 4 6 8 10 12 14 16 18 20
−50

0

50

100

150
Linear Regression

Fig. 4.5 The result of linear regression. The plot shows the original data points (plus signs),
the regression line (solid line) as well as the error bounds (dashed lines) of the regression.

4.5 Analyzing the Residuals 73

Plotting the residuals does not show obvious patterned behavior. Thus no
more complex model than a straight line should be fi tted to the data.

plot(meters,res,'o')

An alternative way to plot the residuals is a stem plot using stem.

subplot(2,1,1)
plot(meters,age,'o'), hold
plot(meters,p(1) * meters + p(2),'r')

subplot(2,1,2)
stem(meters,res);

Let us explore the distribution of the residuals. We choose six classes and
calculate the corresponding frequencies.

[n_exp,x] = hist(res,6)

n_exp =
 5 4 8 7 4 2

x =
 -16.0907 -8.7634 -1.4360 5.8913 13.2186 20.5460

By basing the bin centers in the locations defi ned by the function hist, a
more practical set of classes can be defi ned.

v = -13 : 7 : 23

n_exp = hist(res,v);

Subsequently, the mean and standard deviation of the residuals are com-
puted. These are then used for generating a theoretical frequency distribu-
tion that can be compared with the distribution of the residuals. The mean
is close to zero, whereas the standard deviation is 11.5612. The function
normpdf is used for creating the frequency distribution n_syn similar to
our example. The theoretical distribution is scaled according to our original
sample data and displayed.

n_syn = normpdf(v,0,11.5612);

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

The fi rst line normalizes n_syn to a total of one. The second command
scales n_syn to the sum of n_exp. We plot both distributions for compari-
son.

74 4 Bivariate Statistics

subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of the bar plots reveals similarities between the data sets.
Hence, the χ2-test can be used to test the hypothesis that the residuals follow
a gaussian distribution.

chi2 = sum((n_exp - n_syn).^2 ./n_syn)

chi2 =
 2.3465

The critical χ2 can be calculated by using chi2inv. The χ2 test requires the
degrees of freedom df, which is the number of classes reduced by one and
the number of parameters estimated. In our example, we test for a gaussian
distribution with two parameters, mean and standard deviation. Therefore the
degrees of freedom is df=6-(1+2)=3. We test at a 95% signifi cance level:

chi2inv(0.95,3)

ans =
 7.8147

The critical χ2 of 7.8147 is well above the measured χ2 of 2.3465. It is not
possible to reject the null hypothesis. Hence, we conclude that our residuals
follow a gaussian distribution and the bivariate data set is well described by
the linear model.

4.6 Bootstrap Estimates of the Regression Coeffi cients

We use the bootstrap method to obtain a better estimate of the regression
coeffi cients. Again, we use the function bootstrp with 1000 samples
(Fig. 4.6).

p_bootstrp = bootstrp(1000,'polyfit',meters,age,1);

The statistics of the fi rst coeffi cient, i.e., the slope of the regression line is

hist(p_bootstrp(:,1),15)

mean(p_bootstrp(:,1))

ans =
 5.6023

std(p_bootstrp(:,1))

4.6 Bootstrap Estimates of the Regression Coeffi cients 75

ans =
 0.4421

Your results might be slightly different due to the different state of the built-
in random number generator used by bootstrp. The relatively small stan-
dard deviation indicates that we have an accurate estimate. In contrast, the
statistics of the second parameter shows a signifi cant dispersion.

hist(p_bootstrp(:,2),15)
mean(p_bootstrp(:,2))

ans =
 1.3366

std(p_bootstrp(:,2))

ans =
 4.4079

The true values as used to simulated our data set are 5.6 for the slope and
1.2 for the intercept with the y-axis, whereas the coeffi cients calculated us-
ing the function polyfit were 5.6393 and 0.9986, respectively. We see
that indeed the intercept with the y-axis has a large uncertainty, whereas the
slope is very well defi ned.

Slope

B
oo

ts
tr

ap
 S

am
pl

es

Y−Axis Intercept

B
oo

ts
tr

ap
 S

am
pl

es

Slope = 5.6±0.4 Y Intercept = 1.3±4.4

4 5 6 7
0

50

100

150

200

−10 0 10 20
0

50

100

150

200
1st Regression Coefficient 2st Regression Coefficient

a b

Fig. 4.6 Histogram of the a fi rst (y-axis intercept of the regression line) and b second (slope
of the line) regression coeffi cient as estimated from bootstrap resampling. Whereas the fi rst
coeffi cient is very-well constrained, the second coeffi cient shows a large scatter.

76 4 Bivariate Statistics

4.7 Jackknife Estimates of the Regression Coeffi cients

The jackknife method is a resampling technique that is similar to the boot-
strap method. However, from a sample with n data points, n subsets with
n-1 data points are taken. Subsequently, the parameters of interest are cal-
culated, such as the regression coeffi cients. The mean and dispersion of the
coeffi cients are computed. The disadvantage of this method is the limited
number of n samples. The jackknife estimate of the regression coeffi cients
is therefore less precise in comparison to the bootstrap results.

MATLAB does not provide a jackknife routine. However, the correspond-
ing code is easy to generate:

for i = 1 : 30
 % Define two temporary variables j_meters and j_age
 j_meters = meters;
 j_age = age;
 % Eliminate the i-th data point
 j_meters(i) = [];
 j_age(i) = [];
 % Compute regression line from the n-1 data points
 p(i,:) = polyfit(j_meters,j_age,1);
end

The jackknife for n-1=29 data points can be obtained by a simple for loop.
Within each iteration, the i-th element is deleted and the regression coef-
fi cients are calculated for the i-th sample. The mean of the i samples gives
an improved estimate of the coeffi cients. Similar to the bootstrap result, the
slope of the regression line (fi rst coeffi cient) is clearly defi ned, whereas the
intercept with the y-axis (second coeffi cient) has a large uncertainty,

mean(p(:,1))

ans =
 5.6382

compared to 5.6023+/-0.4421 and

mean(p(:,2))

ans =
 1.0100

compared to 1.3366+/-4.4079 as calculated by the bootstrap method. The
true values are 5.6 and 1.2, respectively. The histogram of the jackknife
results from 30 subsamples

hist(p(:,1));
figure
hist(p(:,2));

4.8 Cross Validation 77

does not display the distribution of the coeffi cients as clearly as the boot-
strap estimates (Fig. 4.7). We have seen that resampling using the jackknife
or bootstrap methods provides a simple and valuable tool to test the quality
of regression models. The next chapter introduces an alternative approach
for quality estimation, which is by far more often used than resampling.

4.8 Cross Validation

A third method to test the goodness-of-fi t of the regression is cross valida-
tion. The regression line is computed by using n-1 data points. The n-th data
point is predicted and the discrepancy between the prediction and the actual
value is computed. Subsequently, the mean of the discrepancies between the
actual and predicted values is determined.

In this example, the cross validation for n data points is computed. The
corresponding 30 regression lines display some dispersion in slope and y-
axis intercept.

for i = 1 : 30
 % Define temporary variables j_meters and j_age
 j_meters = meters;
 j_age = age;
 % Eliminate the i-th data point

Slope Y−Axis Intercept

Slope
= 5.6±0.4

Y Intercept
 = 1.3±4.4

Ja
ck

kn
ife

 S
am

pl
es

Ja
ck

kn
ife

 S
am

pl
es

5.4 5.5 5.6 5.7 5.8 5.9 −2 −1 0 1 2 3
0

2

4

6

8

10

0

2

4

6

8

10

12
1st Regression Coefficient 2st Regression Coefficient

a b

Fig. 4.7 Histogram of the a fi rst (y-axis intercept of the regression line) and b second (slope
of the line) regression coeffi cient as estimated from jackknife resampling. Note that the
parameters are not as clearly defi ned as from bootstrapping.

78 4 Bivariate Statistics

 j_meters(i) = [];
 j_age(i) = [];
 % Compute regression line from the n-1 data points
 p(i,:) = polyfit(j_meters,j_age,1);
 % Plot the i-th regression line and hold plot for next loop
 plot(meters,polyval(p(i,:),meters),’r’), hold on
 % Store the regression result and errors in p_age and p_error
 p_age(i) = polyval(p(i,:),meters(i));
 p_error(i) = p_age(i) - age(i);
end

The prediction error is – in the best case – gaussian distributed with zero
mean.

mean(p_error)

ans =
 0.0122

The standard deviation is an unbiased mean deviation of the true data points
from the predicted straight line.

std(p_error)

ans =
 12.4289

Cross validation gives valuable information of the goodness-of-fi t of the
regression result. This method can be used also for quality control in other
fi elds, such as spatial and temporal prediction.

4.9 Reduced Major Axis Regression

In some cases, both variables are not manipulated and can therefore be con-
sidered to be independent. In fact, a number of methods are available to
compute a best-fi t line that minimizes the distance from both x and y. As an
example, the method of reduced major axis (RMA) minimizes the triangular
area 0.5*(x y) between the points and the regression line, where x and

y are the distances between predicted and true x and y values (Fig. 4.4).
This optimization appears to be complex. However, it can be shown that the
fi rst regression coeffi cient b

1
 (the slope) is simply the ratio of the standard

deviations of x and y.

4.9 Reduced Major Axis Regression 79

Similar to classic regression, the regression line passes through the data cen-
troid defi ned by the sample mean. We can therefore compute the second
regression coeffi cient b

0
 (the y-intercept),

using the univariate sample means and the previously computed slope b
1
.

Let us load the age-depth data from the fi le agedepth.txt and defi ne two
variables, meters and age. It is ssumed that both of the variables contain
errors and the scatter of the data can be explained by dispersion of meters
and age.

clear
agedepth = load('agedepth.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

The above formular is used for computing the slope of the regression
line b

1
.

p(1,1) = std(age)/std(meters)

p =
 6.0367

The second coeffi cient b
0
, i.e., the y-axis intercept can therefore be com-

puted by

p(1,2) = mean(age) - p(1,1) * mean(meters)

p =
 6.0367 -2.9570

The regression line can be plotted by

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

This linear fi t slightly differs from the line obtained from classic regres-
sion. It is important to note that the regression line from RMA is not the
bisector of the angle between the x-y and y-x classical linear regression
analysis, i.e., using either x or y as independent variable while computing
the regression lines.

80 4 Bivariate Statistics

4.10 Curvilinear Regression

It has become apparent from our previous analysis that a linear regression
model provides a good way of describing the scaling properties of the data.
However, we may wish to check whether the data could be equally-well
described by a polynomial fi t of a higher degree (n>1).

To clear the workspace and reload the original data, type

agedepth = load('agedepth.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

Subsequently, a polynomial of degree n=2 can be fi tted by using the function
polyfit.

p = polyfit(meters,age,2)

p =
 -0.0132 5.8955 0.1265

The fi rst coeffi cient is close to zero, i.e., has not much infl uence on predic-
tion. The second and third coeffi cients are similar to the coeffi cients ob-
tained by linear regression. Plotting the data yields a curve that resembles a
straight line.

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

Let us compute and plot the error bounds obtained by passing an op-
tional second output parameter from polyfit as an input parameter to
polyval.

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

This code uses an interval of ±2s, corresponding to a 95% confi dence inter-
val. polyfit returns the polynomial coeffi cients p, but also a structure s for
use the polyval to obtain error bounds for the predictions. The structure s
contains fi elds for the norm of the residuals that we use to compute the error
bounds. delta is an estimate of the standard deviation of the prediction er-
ror of a future observation at x by p(x). We plot the results.

4.10 Curvilinear Regression 81

plot(meters,age,'+',meters,p_age,'g-',...
 meters,p_age + 2 * delta,'r', meters,p_age - 2 * delta,'r')
grid on

We now use another synthetic data set that we generate using a quadratic
relationship between the barium content (in wt.%) down a sediment core
(in meters).

meters = 20 * rand(30,1);
barium = 1.6 * meters.^2 - 1.1 * meters + 1.2;
barium = barium + 40.* randn(length(meters),1);

plot(meters,barium,'o')

bariumcont = [meters barium];

bariumcont = sortrows(bariumcont,1);

save bariumcont.txt bariumcont -ascii

The synthetic bivariate data set can be loaded from fi le bariumcont.txt.

bariumcont = load('bariumcont.txt');

meters = bariumcont(:,1);
barium = bariumcont(:,2);

plot(meters,barium,'o')

Fitting a polynomial of degree n=2 yields a convincing regression result
compared to the linear model.

p = polyfit(meters,barium,2)

p =
 1.8272 -4.8390 -1.4428

As shown above, the true values for the three coeffi cients are +1.6, –1.1 and
+1.2. There are some discrepancies between the true values and the coeffi -
cients estimated using polyfit. The regression curve and the error bounds
can be plotted by typing (Fig. 4.8)

plot(meters,barium,'o'), hold
plot(meters,polyval(p,meters),'r')

[p,s] = polyfit(meters,barium,2);
[p_barium,delta] = polyval(p,meters,s);

plot(meters,barium,'+',meters,p_barium,'g',meters,...
 p_barium+2*delta,'r--',meters,p_barium-2*delta,'r--')
grid on
xlabel('meters'), ylabel('barium content')

82 4 Bivariate Statistics

The plot nicely shows that the quadratic model for this data is a good one.
The quality of the result could again be tested by exploring the residuals,
employing resampling schemes or cross validation. The combination of re-
gression analysis with one of these methods represent a powerful tool in
bivariate data analysis, whereas Pearson s correlation coeffi cient should be
used only as a fi rst test for linear relationships.

Recommended Reading

Alberède F (2002) Introduction to Geochemical Modeling. Cambridge University Press
Davis JC (2002) Statistics and data analysis in geology, third edition. John Wiley and Sons,

New York
Draper NR, Smith, H (1998) Applied Regression Analysis. Wiley Series in Probability and

Statistics, John Wiley & Son
Efron B (1982) The jackknife, the bootstrap, and other resampling plans. Society of

Depth in sediment (meters)

B
ar

iu
m

 c
on

te
nt

 (
%

)

Regression line

95% Confidence Bounds

95% Confidence Bounds

i-th data point

0 2 4 6 8 10 12 14 16 18 20
200

100

0

100

200

300

400

500

600

700

800
Curvilinear Regression

Fig. 4.8 Curvilinear regression from barium contents. The plot shows the original data points
(plus signs), the regression line for a polynomial of degree n=2 (solid line) as well as the error
bounds (dashed lines) of the regression.

Recommended Reading 83

Industrial and Applied Mathematics CBMS-NSF Monographs, 38
Fisher RA (1922) The goodness of fi t of regression formulae, and the distribution of regression

coeffi cients. J. Royal Statist. Soc. 85:597-612
MacTavish JN, Malone PG, Wells TL (1968) RMAR; a reduced major axis regression

program designed for paleontologic data. Journal of Paleontology 42/4:1076-1078
Pearson K (1894-98) Mathematical Contributions to the Theory of Evolution, part I to IV.

Philosophical Transactions of the Royal Society 185-191
The Mathworks (2004) Statistics Toolbox User s Guide - For the Use with MATLAB®. The

MathWorks, Natick, MA

5 Time-Series Analysis

5.1 Introduction

Time-series analysis aims to understand the temporal behavior of one of
several variables y(t). Examples are the investigation of long-term records
of mountain uplift, sea-level fl uctuations, orbitally-induced insolation varia-
tions and their infl uence on the ice-age cycles, millenium-scale variations of
the atmosphere-ocean system, the impact of the El Niño/Southern Oscillation
on tropical rainfall and sedimentation (Fig. 5.1) and tidal infl uences on no-
bel gas emissions of bore holes. The temporal structure of a sequence of
events can be random, clustered, cyclic or chaotic. Time-series analysis pro-
vide various tools to detect these temporal structures. The understanding of
the underlying process that produced the observed data allows us to predict
future values of the variable. We use the Signal Processing Toolbox, which
contains all necessary routines for time-series analysis.

The fi rst section is on signals in general and a technical description how
to generate synthetic signals to be used with time-series analysis tools
(Chapter 5.2). Then, spectral analysis to detect cyclicities in a single time
series (autospectral analysis) and to determine the relationship between two
time series as a function of frequency (crossspectral analysis) is demon-
strated in Chapters 5.3 and 5.4. Since most time series in earth sciences are
not evenly-spaced in time, various interpolation techniques and subsequent
spectral analysis are introduced in Chapter 5.5. In the subsequent Chapter
5.6, the very popular wavelets are introduced having the capability to map
temporal variations in the spectra. The chapter closes with an overview of
nonlinear techniques, in particular the method of recurrence plots, which are
more and more used in earth sciences (Chapter 5.7).

5.2 Generating Signals

A time series is an ordered sequence of values of a variable y(t) at certain

86 5 Time-Series Analysis

time intervals t
k
.

If the time-indexed distance between any two successive observation t
k
 and

t
k+1

is constant, the time series is equally spaced and the sampling interval
is

The sampling frequency f
s
 is the inverse of the sampling interval t. In most

cases we try to sample at constant time intervals or sampling frequencies.
However, in some cases equally-spaced data are not available. As an exam-
ple assume deep-sea sediments sampled at fi ve-centimeter intervals along a
sediment core. Radiometric age determination of certain levels of the sedi-
ment core revealed signifi cant fl uctuation in the sedimentation rates. The

Frequency (yrs-1)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

13.1
Atlantic SST Variability

3.2

ENSO

1.0
2.2

1.8

Annual
Cycle

1.2

0

10

20

30

40

0 0.5 1 1.5 2

a b

Fig. 5.1 a Photograph of ca. 30 kyr-old varved sediments from a landslide-dammed lake in the
Northwest Argentine Andes. The mixed clastic-biogenic varves consist of reddish-brown and
green to buff-colored clays sourced from Cretaceous redbeds (red-brown) and Precambrian-
early Paleozoic greenshists (green-buff colored). The clastic varves are topped by thin white
diatomite layers documenting the bloom of silica algae after the austral-summer rainy season.
The distribution of the two source rocks and the interannual precipitation pattern in the area
suggests that the reddish-brown layers refl ect cyclic recurrence of enhanced precipitation,
erosion and sediment input in the landslide-dammed lake. b The powerspectrum of a red-
color intensity transect across 70 varves is dominated by signifi cant peaks at frequencies of
ca. 0.076, 0.313, 0.455 and 1.0 yrs-1 corresponding to periods of 13.1, 3.2, 2.2, and around
1.0 years. This cyclicities suggest a strong infl uence of the tropical Atlantic sea-surface
temperature (SST) variability (characterized by 10 to 15 year cycles), the El Niño/Southern
Oscillation (ENSO) (cycles between two and seven years) and the annual cycle at 30 kyrs
ago, similar to today (Trauth et al. 2003).

5.2 Generating Signals 87

samples equally spaced along the sediment core are therefore not equally
spaced on the time axis. In this case, the quantity

where T is the full length of the time series and N is the number of data points,
represents only an average sampling interval. In general, a time series y(t

k
)

of a process can be represented as a linear sum of a long-term component or
trend y

tr
(t

k
), a periodic component y

p
(t

k
) and a random noise y

n
(t

k
).

The long-term component is a linear or higher-degree trend that can be ex-
tracted by fi tting a polynomial of a certain degree and subtracting the values
of this polynomial from the data (see Chapter 4). Noise removal will be
described in Chapter 6. The periodic – or cyclic in a mathematically less
rigorous sense – component can be approximated by a linear combination
of cosine (or sine) waves that have different amplitudes A

i
, frequencies f

i
 and

phase angles ψ
i
.

The phase angle ψ helps to detect temporal shifts between signals of the
same frequency. Two signals y

1
 and y

2
 of the same period are out of phase if

the difference between ψ
1
 and ψ

2
 is not zero (Fig. 5.2).

The frequency f of a periodic signal is the inverse of the period τ. The
Nyquist frequency f

Nyq
is half the sampling frequency f

s
 and provides a maxi-

mum frequency the data can produce. As an example, audio compact disks
(CDs) are sampled at frequencies of 44,100 Hz (Hertz, which is 1/second).
The corresponding Nyquist frequency is 22,050 Hz, which is the highest
frequency a CD player can theoretically produce. The limited performance
of anti-alias fi lters used by CD players again reduce the frequency band and
cause a cutoff frequency at around 20,050 Hz, which is the true upper fre-
quency limit of a CD player.

We generate synthetic signals to illustrate the use of time-series analysis
tools. While using synthetic data we know in advance which features the
time series contains, such as periodic or stochastic components, and we can
introduce artifacts such as a linear trend or gaps. This knowledge is particu-
larly important if you are new to time series analysis. The user encounters
plenty of possible effects of parameter settings, potential artifacts and errors

88 5 Time-Series Analysis

in the application of spectral analysis tools. Therefore we start with simple
data before we apply the methods to more complex time series.

The next example illustrates how to generate a basic synthetic data series
that is characteristic to earth sciences data. First we create a time axis t run-
ning from 0.01 to 100 in 0.01 intervals. Next we generate a strictly periodic
signal y(t), a sine wave with period 5 and amplitude 2 by typing

t = 0.01 : 0.01 : 100;
y = 2*sin(2*pi*t/5);

plot(t,y)

Period τ

Amplitude A

Phase Shift ∆t

y1(t)

y2(t)

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

y(
t)

y(
t)

t

t

Periodic Signal

Periodic Signals

Fig. 5.2 Two periodic signals y
1
 and y

2
 as a function of time t defi ned by the amplitudes A

1

and A
2
, the period τ

1
=τ

2
, which is the inverse of the frequency f

1
=f

2
. Two signals y

1
and y

2
 of

the same period are out of phase if the difference between ψ
1
 and ψ

2
 is not zero.

5.2 Generating Signals 89

The period of τ=5 corresponds to a frequency of f=1/5=0.2. Natural data
series, however, are much more complex than a simple period signal. The
next complicated signal is generated by superposition of several periodic
components with different periods. As an example, we compute such a
signal by adding three sine waves with the periods τ

1
=50 (f

1
=0.02), τ

2
=15

(f
2

0.07) and τ
3
=5 (f

3
=0.2), respectively. The corresponding amplitudes are

A
1
=2, A

2
=1 and A

3
=0.5. The new time axis t runs from 1 to 1000 with 1.0

intervals.

t = 1 : 1000;
y = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,y),axis([0 200 -4 4])

Only one fi fth of the original data series is displayed by restricting the x-axis
limits to the interval [0 200]. It is, however, recommended to generate long
data series as in the example in order to avoid edge effects while applying
spectral analysis tools for the fi rst time.

In contrast to our synthetic time series, real data also contain various dis-
turbances, such as random noise and fi rst or higher-order trend. Firstly, a
random-number generator can be used to compute gaussian noise with zero
mean and standard deviation one. The seed of the algorithm needs to be set
to zero. Subsequently, one thousand random numbers are generated using
the function randn.

randn('seed',0)
n = randn(1,1000);

We add this noise to the original data, i.e., we generate a signal containing
additive noise (Fig. 5.3). Displaying the data illustrates the impact of noise
on a periodic signal. In reality, no record that is free of noise. Hence, it is im-
portant to familiarize oneself with the infl uence of noise on power spectra.

yn = y + n;

plot(t,y,'b-',t,yn,'r-'), axis([0 200 -4 4])

In many cases, the signal processing methods are applied to remove most of
the noise although many fi ltering methods make arbitrary assumptions on
the signal-to-noise ratio. Moreover, fi ltering introduces artifacts and statisti-
cal dependencies to the data. These may have a profound infl uence on the
resulting power spectra.

Finally, we introduce a linear long-term trend to the data by adding a
straight line with slope 0.005 and intercept zero with the y-axis (Fig. 5.3).

90 5 Time-Series Analysis

Original
signal

Signal with
noise

Original
signal

Signal with
trend

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0

−4

−3

−2

−1

0

1

2

3

4

−4

−3

−2

−1

0

1

2

3

4

−4

−3

−2

−1

0

1

2

3

4

20 40 60 80 100 120 140 160 180 200

t

t

y(
t)

y(
t)

y(
t)

t

Composite Periodic Signal

Signal with Linear Trend

Signal with Additive Random Noise
a

b

c

Fig. 5.3 a Synthetic signal with the periodicities τ
1
=50, τ

2
=15 and τ

3
=5, different amplitudes,

b overlain by gaussian noise and c a linear trend.

5.3 Autospectral Analysis 91

Such trends are common features in earth sciences. As an example, consider
the glacial-interglacial cycles observed in marine oxygen isotope records
overlain by a long-term cooling trend during the last six million years.

yt = y + 0.005 * t;

plot(t,y,'b-',t,yt,'r-'), axis([0 200 -4 4])

In reality, more complex trends exist, such as higher-order trends or trends
characterized by changing slopes. In practice, it is recommended to elimi-
nate such a trend by fi tting polynomials to the data and to subtract the the
corresponding values. This synthetic time series now contains many charac-
teristics of a typical data set in the earth sciences. It can be used to illustrate
the use of spectral analysis tools that are introduced in the next chapter.

5.3 Autospectral Analysis

Autospectral analysis aims to describe the distribution of variance contained
in one single signal x(t) over frequency or wavelength. A simple way to
describe the variance in a signal over a time lag k is the autocovariance. An
unbiased estimator of the autocovariance cov

xx
 of the signal x(t) with N data

points sampled at constant time intervals t is

The autocovariance series clearly depends on the amplitude of x(t).
Normalizing the covariance by the variance σ2 of x(t) yields the autocor-
relation sequence. Autocorrelation involves correlating a series of data with
itself, depending on a time lag k.

The most popular method to compute power spectra in earth sciences is the
method introduced by Blackman and Tukey (1958). The Blackman-Tukey
method estimates the power-spectral density by calculating the complex
Fourier transform X(f) of the autocorrelation sequence corr

xx
(k).

92 5 Time-Series Analysis

where M is the maximum lag and f
s
 the sampling frequency. The Blackman-

Tukey power spectral density PSD is estimated by

The actual computation of PSD can be performed only at a fi nite number
of frequency points by employing a Fast Fourier Transformation (FFT).
The FFT is a method to compute a discrete Fourier Transform with reduced
execution time. Most FFT algorithms divide the transform into two pieces
of size N/2 at each step. It is therefore limited to blocks of power of two.
In practice, the PSD is computed by using N squared number of frequen-
cies. The actual number of frequencies used lies close to the number of data
points in the original signal x(t).

The discrete Fourier transform is an approximation of the continu-
ous Fourier transform. The Fourier transform expects an infi nite signal.
However, real data are limited at both ends, i.e., the signal amplitude is zero
beyond the limits of the time series. In the time domain, a fi nite signal cor-
responds to an infi nite signal multiplied by a rectangular window that is one
within the limits of the signal and zero elsewhere. In the frequency domain,
the multiplication of the time series with this window equals to a convolu-
tion of the power spectrum of the signal with the spectrum of the rectangular
window. The spectrum of the window, however, equals a sin(x)/x function,
which has a main lobe and several side lobes at both sides of the main peak.
Therefore all maxima in a power spectrum leak, i.e., they lose power with
respect to the minor peaks (Fig. 5.4).

A popular way to overcome the problem of spectral leakage is windowing.
The sequence of data is simply multiplied by a window with smooth ends.
Several window shapes are available, e.g., Bartlett (triangular), Hamming
(cosinusoidal) and Hanning (slightly different cosinusoidal). The use of
these windows slightly modifi es the equation of the power spectral density.

where M is the maximum lag considered and window length, and w(k) is the
windowing function. The Blackman-Tukey method therefore performs au-
tospectral analysis in three steps, calculation of the autocorrelation sequence
corr

xx
(k), windowing and fi nally computation of the discrete fourier trans-

form. MATLAB allows to perform power spectral analysis with a number of
modifi cations of the above method. A useful modifi cation is the method by

5.3 Autospectral Analysis 93

Welch (1967) (Fig. 5.5). The method includes dividing the time series into
overlapping segments, computing the power spectrum for each segment and
averaging the power spectra. The advantage of averaging spectra is obvious,
it simply improves the signal-to-noise ratio of a spectrum. The disadvantage
is a loss of resolution of the spectrum.

The Welch spectral analysis that is included in the Signal Processing
Toolbox can be applied to the synthetic data sets. The MATLAB function
periodogram(y,window,nfft,fs) computes the power spectral den-
sity of y(t). We use the default rectangular window by choosing an empty
vector [] for window. The power spectrum is computed using a FFT of
length nfft of 1024. We then compute the magnitude of the complex out-
put pxx of periodogram by using the function abs. Finally, the sampling
frequency fs of one is supplied to the function in order to obtain a correct
frequency scaling of the f-axis.

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude),grid
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

The graphical output shows that there are three signifi cant peaks at the posi-

Rectangular

Hanning

Bartlett

Main Lobe
Side Lobes Hanning

Rectangular

Bartlett

P
ow

er
 (

dB
)

A
m

pl
itu

de

TimeFrequency

0

0.2

0.4

0.6

0.8

10 20 30 40 50 6000 1.00.2 0.4 0.6 0.8
−140

−120

−100

−80

−60

−40

−20

0

20

40
1

Time DomainFrequency Domain

a b

Fig. 5.4 Spectral leakage. a The relative amplitude of the side lobes compared to the main
lobe is reduced by multiplying the corresponding time series with b a window with smooth
ends. A number of different windows with advantages and disadvantages are available
instead of using the default rectangular window, including Bartlett (triangular) and Hanning
(cosinusoidal) windows. Graph generated using the function wvtool.

94 5 Time-Series Analysis

tion of the original frequencies of the three sine waves. The same procedure
can be applied to the noisy data:

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

Original signal

1st segment
(t = 1 : 100)

2nd segment
(t = 51 : 150)

3rd segment
(t = 101 : 200)

Overlap of 100 samples

Overlap of 100 samples

0 20 40 60 80 100 120 140 160 180 200

t

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

y(
t)

y(
t)

y(
t)
y(t)

Principle of Welchʼs Method

e

Fig. 5.5 Principle of Welch power spectral analysis. The time series is divided into overlapping
segments, then the power spectrum for each segment is computed and all spectra are averaged
to improve the signal-to-noise ratio of the power spectrum.

5.3 Autospectral Analysis 95

plot(f,magnitude),grid
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

Let us increase the noise level. The gaussian noise has now a standard devia-
tion of fi ve and zero mean.

randn('seed',0);
n = 5*randn(size(y));
yn = y + n;

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

This spectrum resembles a real data spectrum in the earth sciences. The
spectral peaks now sit on a signifi cant noise fl oor. The peak of the high-
est frequency even disappears in the noise. It cannot be distinguished from
maxima which are attributed to noise. Both spectra can be compared on the
same plot (Fig. 5.6):

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

P
ow

er

P
ow

er

f1=0.02

f2=0.07

f3=0.2

f1=0.02

f2=0.07

f3=0.2 ? Noise
floor

0.2 0.3 0.4 0.50.10 0
0

200

400

600

800

1000

200

400

600

800

1000

0.2 0.3 0.4 0.50.1
0

Frequency Frequency

Power Spectral
Density Estimate

Power Spectral
Density Estimate

a b

Fig. 5.6 Comparison of the Welch power spectra of the a noise-free and b noisy synthetic
signal with the periods τ

1
=50 (f

1
=0.02), τ

2
=15 (f

2
0.07) and τ

3
=5 (f

3
=0.2). In particular, the

peak with the highest frequency disappears in the noise fl oor and cannot be distinguished
from peaks attributed to the gaussian noise.

96 5 Time-Series Analysis

plot(f,magnitude,'b')
hold

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude,'r'), grid
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

Next we explore the infl uence of a linear trend on a spectrum. Long-term
trends are common features in earth science data. We will see that this trend
is misinterpreted as a very long period by the FFT. The spectrum therefore
contains a large peak with a frequency close to zero (Fig. 5.7).

yt = y + 0.005 * t;

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

[Pxxt,f] = periodogram(yt,[],1024,1);
magnitudet = abs(Pxxt);

subplot(1,2,1), plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

Frequency Frequency

P
ow

er

P
ow

er

f1=0.02

f2=0.07

f3=0.2
f1=0.02

f2=0.07
f3=0.2

Linear trend

0.2 0.3 0.4 0.50.1
0

200

400

600

800

1000

0

1000

2000

3000

4000

5000

6000

7000

0.2 0.3 0.4 0.50.10 0

Power Spectral
Density Estimate

Power Spectral
Density Estimate

a b

Fig. 5.7 Comparison of the Welch power spectra a of the original noisefree signal with the
periods τ

1
=50 (f

1
=0.02), τ

2
=15 (f

2
0.07) and τ

3
=5 (f

3
=0.2) and b the same signal overlain by

a linear trend. The linear trend is misinterpreted as a very long period with a high amplitude
by the FFT.

5.4 Crossspectral Analysis 97

subplot(1,2,2), plot(f,abs(Pxxt))
xlabel('Frequency')
ylabel('Power')

To eliminate the long-term trend, we use the function detrend.

ydt = detrend(yt);

subplot(2,1,1)
plot(t,y,'b-',t,yt,'r-'), axis([0 200 -4 4])

subplot(2,1,2)
plot(t,y,'b-',t,ydt,'r-'), axis([0 200 -4 4])

The corresponding spectrum does not show the low-frequency peak any-
more. Some data contain a high-order trend that can be removed by fi tting
a higher-order polynomial to the data and by subtracting the corresponding
x(t) values.

5.4 Crossspectral Analysis

Crossspectral analysis correlates two time series in the frequency domain.
The crosscovariance is as a measure for the variance in two signals over a
time lag k. An unbiased estimator of the crosscovariance cov

xy
 of two signals

x(t) and y(t) with N data points sampled at constant time intervals t is

The crosscovariance series again depends on the amplitudes of x(t) and y(t).
Normalizing the covariance by the standard deviations of x(t) and y(t) yields
the crosscorrelation sequence.

In practice, the same methods and modifi cations outlined in the previous
chapter are used to compute the crossspectral density. In addition to the two
autospectra of x(t) and y(t) and the crossspectrum,

98 5 Time-Series Analysis

the complex Fourier transform X(f) also contains information on the phase
relationship W(f) of the two signals:

The phase difference is important in calculating leads and lags between two
signals, a parameter often used to propose causalities between the two pro-
cesses documented by the signals. The correlation between the two spectra
can be calculated by means of the coherence:

The coherence is a real number between 0 and 1, where 0 indicates no cor-
relation and 1 indicates maximum correlation between x(t) and y(t) at the
frequency f. Signifi cant degree of coherence is an important precondition for
computing phase shifts between the two signals.

We use two sine waves with identical periodicities τ=5 (equivalent to
f=0.2) and amplitudes equal to two. The sine waves show a relative phase

Frequency Frequency

P
ow

er

P
ha

se
 a

ng
le

Corresponding phase
angle of 1.2568, equals
(1.2568*5)/(2*π)=1.001

f1=0.02 f1=0.02

0 1 2 3 4 5
0

5

10

15

20

0 1 2 3 4 5
−2

−1

0

1

2

3

4
Cross PSD Estimate Phase spectrum

a b

Fig. 5.8 Crossspectrum of two sine waves with identical periodicities τ=5 (equivalent to
f=0.2) and amplitudes two. The sine waves show a relative phase shift of t=1. In the argument
of the second sine wave this corresponds to 2 /5, which is one fi fth of the full wavelength
of τ=5. a The magnitude shows the expected peak at f=0.2. b The corresponding phase
difference in radians at this frequency is 1.2568, which equals (1.2568*5)/(2*) = 1.0001,
which is the phase shift of one we introduced at the very beginning.

5.4 Crossspectral Analysis 99

shift of t=1. In the argument of the second sine wave this corresponds to
2 /5, which is one fi fth of the full wavelength of τ=5.

t = 0.01 : 0.1 : 100;
y1 = 2*sin(2*pi*t/5);
y2 = 2*sin(2*pi*t/5 + 2*pi/5);

plot(t,y1,'b-',t,y2,'r-')
axis([0 20 -2 2]), grid

The crossspectrum is computed by using the function cpsd (Fig. 5.8).

[Pxy,F] = cpsd(y1,y2,[],0,512,10);
magnitude = abs(Pxy);

plot(F,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Cross PSD Estimate via Welch')

The function cpsd(y1,y2,window,noverlap,nfft) specifi es the num-
ber of FFT points nfft used to calculate the cross powerspectral density
estimate, which is 512 in our example. The parameter window is empty
in our example, therefore the default rectangular window is used to obtain
eight sections of y1 and y2. The parameter noverlap defi nes the number
of samples of overlap from section to section, ten in our example. Coherence
does not make much sense if we only have noise-free data with one frequen-
cy. This results in a correlation coeffi cient that equals one everywhere. Since
the coherence is plotted on a log scale (in decibel, dB), the corresponding
graph shows a log coherence of zero for all frequencies.

[Cxy,f] = mscohere(y1,y2,[],0,512,10);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence Estimate via Welch')

The function mscohere(y1,y2,window,noverlap,nfft) specifi es the
number of FFT points nfft=512, the default rectangular window, which
overlaps by ten data points. The complex part of Pxy is required for comput-
ing the phase shift using the function angle between the two signals.

phase = angle(Pxy);

plot(f,phase), grid
xlabel('Frequency')
ylabel('Phase angle')
title('Phase spectrum')

100 5 Time-Series Analysis

The phase shift at a frequency of f=0.2 (period τ=5) can be interpolated from
the phase spectrum

interp1(f,phase,0.2)

which produces the output

ans =
 1.2568

The phase spectrum is normalized to one full period τ=2 , therefore a phase
shift of 1.2568 equals (1.2568*5)/(2*) = 1.0001, which is the phase shift of
one that we introduced at the beginning.

We now use two sine waves with different periodicities to illustrate
crossspectral analysis. The both have a periodicity of 5, but with a phase
shift of 1, then they have both one other period, which are different, how-
ever.

clear

t = 0.01 : 0.1 : 1000;
y1 = sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
y2 = 2*sin(2*pi*t/50) + 0.5*sin(2*pi*t/5+2*pi/5);

plot(t,y1,'b-',t,y2,'r-')

Now we compute the crossspectrum, which clearly shows the common pe-
riod of τ=5 or frequency of f=0.2.

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
magnitude = abs(Pxy);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Cross PSD Estimate via Welch')

The coherence shows a large value of approximately one at f=0.2.

[Cxy,f] = mscohere(y1,y2,[],0,512,10);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence Estimate via Welch')

The complex part is required for calculating the phase shift between the two
sine waves.

5.5 Interpolating and Analyzing Unevenly-Spaced Data 101

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
phase=angle(Pxy);

plot(f,phase)

The phase shift at a frequency of f=0.2 (period τ=5) is

interp1(f,phase,0.2)

which produces the output of

ans =
 1.2568

The phase spectrum is normalized to one full period τ=2 , therefore a phase
shift of 1.2568 equals (1.2568*5)/(2*) = 1.0001, which is again the phase
shift of one that we introduced at the beginning.

5.5 Interpolating and Analyzing Unevenly-Spaced Data

Now we use our experience of evenly-spaced data to run a spectral analysis
on unevenly-spaced data. Such data are very common in earth sciences. For
example, in the fi eld of paleoceanography, the deep-sea cores are typically
sampled at constant depth intervals. Transforming evenly-spaced length-pa-
rameter data to time-parameter data in an environment with changing length-
time ratios results in unevenly-spaced time series. Numerous methods exist
for interpolating unevenly-spaced sequences of data or time series. The aim
of these interpolation techniques for tx data is to estimate the x-values for an
equally-spaced t vector from the actual irregular-spaced tx measurements.
Linear interpolation is relatively simple and straightforward method for ex-
trapolating between two equally spaced data points. It predicts the x-values
by effectively drawing out a straight line between two neighboring measure-
ments and by calculating the appropriate point along that line. However,
the method also has its limitations. It assumes linear transitions in the data,
which introduces a number of artifacts, including the loss of high-frequency
components of the signal and limiting the data range to that of the original
measurements.

Cubic-spline interpolation is another method for interpolating data that
are unevenly spaced. Cubic splines are piecewise continuous curves, pass-
ing through at least four data points for each step. The method has the ad-
vantage that it preserves the high-frequency information contained in the
data. However, steep gradients in the data sequence could cause spurious

102 5 Time-Series Analysis

amplitudes in the interpolated time series, which typically occur as neigh-
boring extreme minima and maxima. Since all these and other interpolation
techniques might introduce some artifacts to the data, it is always advisable
to (1) preserve the number of data points before and after interpolation, (2)
report the method employed for estimating the equally-spaced data sequence
and (3) explore the impact of interpolation on the variance of the data.

After this brief introduction to interpolation techniques, we apply the
most popular linear and cubic-spline interpolation techniques to unevenly-
spaced data. Having interpolated the data, we use the spectral tools that have
already been applied to evenly-spaced data (Chapters 5.3 and 5.4). Firstly,
we load the two time series:

series1 = load('series1.txt');
series2 = load('series2.txt');

Both synthetic data sets contain a two-column matrix with 339 rows. The
fi rst column contains ages in kiloyears that are not evenly spaced. The second
column contains oxygen-isotope values measured on foraminifera. The data
sets contain 100, 40 and 20 kyr cyclicities and they are overlain by gaussian
noise. In the 100 kyr frequency band, the second data series is shifted by
5 kyrs with respect to the fi rst data series. To plot the data we type

plot(series1(:,1),series1(:,2))
figure
plot(series2(:,1),series2(:,2))

The statistics of the spacing of the fi rst data series can be computed by

intv1 = diff(series1(:,1));

plot(intv1)

The plot shows that the spacing varies around a mean interval of 3 kyrs with
a standard deviation of ca. 1 kyrs. The minimum and maximum value of the
time axis

min(series1(:,1))

max(series1(:,1))

of t
1
=0 and t

2
=997 kyrs gives some information of the temporal range of the

data. The second data series

intv2 = diff(series2(:,1));

plot(intv2)

5.5 Interpolating and Analyzing Unevenly-Spaced Data 103

min(series2(:,1))

max(series2(:,1))

has a similar range from 0 to 997 kyrs. We see that both series have a mean
spacing of 3 kyrs and range from 0 to ca. 1000 kyrs. We now interpolate the
data to an evenly-spaced time axis. While doing this, we follow the rule that
number of data points should not be increased. The new time axis runs from
0 to 996 kyrs with 3 kyr intervals.

t=0 : 3 : 996;

We now interpolate the two time series to this axis with linear and spline
interpolation methods.

series1L = interp1(series1(:,1),series1(:,2),t,'linear');
series1S = interp1(series1(:,1),series1(:,2),t,'spline');

series2L = interp1(series2(:,1),series2(:,2),t,'linear');
series2S = interp1(series2(:,1),series2(:,2),t,'spline');

The results are compared by plotting the fi rst series before and after inter-
polation.

plot(series1(:,1),series1(:,2),'ko')
hold
plot(t,series1L,'b-',t,series1S,'r-')

We already observe some signifi cant artifacts at ca. 370 kyrs. Whereas the
linearly interpolated points are always within the range of the original data,
the spline interpolation method produces values that are unrealistically high
or low (Fig. 5.9). The results can be compared by plotting the second data
series.

plot(series2(:,1),series2(:,2),'ko')
hold
plot(t,series2L,'b-',t,series2S,'r-')

In this series, only few artifacts can be observed. We can apply the function
used above to calculate the power spectral density. We compute the FFT for
256 data points, the sampling frequency is 1/3 kyrs-1.

[Pxx,f] = periodogram(series1L,[],256,1/3);
magnitude = abs(Pxx);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

104 5 Time-Series Analysis

Signifi cant peaks occur at frequencies of 0.01, 0.025 and 0.05 approximate-
ly, corresponding to the 100, 40 and 20 kyr cycles. Analysis of the second
time series

[Pxx,f] = periodogram(series2L,[],256,1/3);
magnitude = abs(Pxx);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

also yields signifi cant peaks at frequencies of 0.01, 0.025 and 0.05 (Fig. 5.10).
Now we compute the crossspectrum of both data series.

[Pxy,f] = cpsd(series1L,series2L,[],128,256,1/3);
magnitude = abs(Pxy);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Cross PSD Estimate via Welch')

The coherence is quite convincing.

[Cxy,f] = mscohere(series1L,series2L,[],128,256,1/3);

Original data point

Linearly-interpolated
data series

Spline-interpolated
data series

350 360 370 380 390 400 410 420 430 440 450
−25

−20

−15

−10

−5

0

5

10

15
y(

t)

t

Interpolated Signals

Fig. 5.9 Interpolation artifacts. Whereas the linearly interpolated points are always within
the range of the original data, the spline interpolation method causes unrealistic high and
low values.

5.5 Interpolating and Analyzing Unevenly-Spaced Data 105

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence Estimate via Welch')

We observe a fairly high coherence in the frequency bands of the 0.01, 0.25
and 0.5. The complex part is required for calculating the phase difference
per frequency.

phase = angle(Pxy);

t Frequency

1st data series

2nd data
series

f1=0.01

f2=0.025

f3=0.05

High coherence in
the 0.01 frequency
band

Phase angle in the 0.01
frequency band

0.4

0.6

0.8

0 0.05 0.15 0 0.05 0.150.1 0.1 0.20.2

0.2

1

4

3

2

1

0

1

2

3

4

0

100

200

300

400

500

600

700

5

0

5

0 200 400 600 800 1000 0 0.05 0.1 0.15 0.2

0

y(
t)

P
ow

er

M
ag

ni
tu

de
 S

qu
ar

ed
 C

oh
er

en
ce

P
ha

se
 a

ng
le

Frequency Frequency

Phase spectrum

Time Domain Cross PSD Estimate

Coherence Estimate

a

c d

b

Fig. 5.10 Result from crossspectral analysis of the two linearly-interpolated signals. a
Signals in the time domain, b crossspectrum of both signals, c coherence of the signals in the
frequency domain and d phase spectrum in radians.

106 5 Time-Series Analysis

plot(f,phase)
xlabel('Frequency')
ylabel('Phase angle')
title('Phase spectrum')

The phase shift at a frequency of f=0.01 (period 100 kyr)

interp1(f,phase,0.01)

which produces the output of

ans = 0.2796

The phase spectrum is normalized to a full period τ=2 . Hence, a phase
shift of 0.2796 equals (0.2796*100 kyr)/(2*) = 4.45 kyr. This corresponds
roughly to the phase shift of 5 kyr introduced to the second data series with
respect to the fi rst series.

As a more comfortable tool for spectral analysis, the Signal Processing
Toolbox also contains a GUI function named sptool, which stands for
Signal Processing Tool.

5.6 Nonlinear Time-Series Analysis (by N. Marwan)

The methods described in the previous sections detect linear relationships
in the data. However, natural processes on the Earth often show a more
complex and chaotic behavior. Methods based on linear techniques may
therefore yield unsatisfying results. In the last decades, new techniques of
nonlinear data analysis derived from chaos theory have become increasingly
popular. As an example, methods have been employed to describe nonlinear
behavior by defi ning, e.g., scaling laws and fractal dimensions of natural
processes (Turcotte 1997, Kantz and Schreiber 1997). However, most meth-
ods of nonlinear data analysis need either long or stationary data series.
These requirements are often not satisfi ed in the earth sciences. While most
nonlinear techniques work well on synthetic data, these methods fail to de-
scribe nonlinear behavior in real data.

In the last decade, recurrence plots as a new method of nonlinear data
analysis have become very popular in science and engineering (Eckmann
1987). Recurrence is a fundamental property of dissipative dynamical sy-
stems. Although small disturbations of such a system cause exponentially
divergence of its state, after some time the system will come back to a state
that is arbitrary close to a former state and pass through a similar evolution.
Recurrence plots allow to visualize such a recurrent behavior of dynamical

5.6 Nonlinear Time-Series Analysis (by N. Marwan) 107

systems. The method is now a widely accepted tool for the nonlinear analy-
sis of short and nonstationary data sets.

Phase Space Portrait

The starting point of most nonlinear data analysis is the construction of the
phase space portrait of a system. The state of a system can be described by
its state variables x

1
(t), x

2
(t), …, x

d
(t). As example, suppose the two variables

temperature and pressure to describe the thermodynamic state of the Earth s
mantle as a complex system. The d state variables at time t form a vector
in a d-dimensional space, the so-called phase space. The state of a system
typically changes in time. The vector in the phase space therefore describes
a trajectory representing the temporal evolution, i.e., the dynamics of the
system. The course of the trajectory provides all important information on
the dynamics of the system, such as periodic or chaotic systems having char-
acteristic phase space portraits.

In many applications, the observation of a natural process does not yield
all possible state variables, either because they are not known or they cannot
be measured. However, due to coupling between the system s components,
we can reconstruct a phase space trajectory from a single observation u

i
:

where m is the embedding dimension and τ is the time delay (index based;
the real time delay is τ = t). This reconstruction of the phase space is called
time delay embedding. The phase space reconstruction is not exactly the
same to the original phase space, but its topological properties are pre-
served, if the embedding dimension is large enough. In practice, the embed-
ding dimension has to be larger then twice the phase space dimension, or
exactly m>2d+1. The reconstructed trajectory is suffi cient enough for the
subsequent data analysis.

As an example, we now explore the phase space portrait of a harmonic
oscillator, like an undamped pendulum. First, we create the position vector
y1 and the velocity vector y2

x = 0 : pi/10 : 3*pi;
y1 = sin(x);
y2 = cos(x);

The phase space portrait

plot(y1,y2)

108 5 Time-Series Analysis

xlabel('y_1'), ylabel('y_2')

is a circle, suggesting an exact recurrence of each state after one cycle
(Fig. 5.11). Using the time delay embedding, we can reconstruct this phase
space portrait using only one observation, e.g., the velocity vector, and a
delay of 5, which corresponds to a quarter of the period of our pendulum.

t = 5;
plot(y2(1:end-t), y2(1+t:end))
xlabel('y_1'), ylabel('y_2')

As we see, the reconstructed phase space is almost the same as the original
phase space. Next we compare this phase space portrait with the one of a
typical nonlinear system, the Lorenz system (Lorenz 1963). This three-di-
mensional dynamical system was introduced by Edward Lorenz in 1963 to
describe turbulence in the atmosphere with three states: two temperature
distributions and velocity. While studying weather patterns, Lorenz realized
that weather often does not change as predicted. He based his analysis on
a simple weather model and found out that small initial changes can cause
dramatic divergent weather patterns. This behaviour is often referred as
the butterfl y effect. The Lorenz system can be described by three coupled
nonlinear differential equations for the three variables: two temperature dis-
tributions and the velocity.

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1
−1

0

1

−1

0

1

0.5

−0.5

0.5

−0.5

y1

y 2

y1

y 2

Periodic Signal Phase Space Portrait

a b

Fig. 5.11 a Original and b reconstructed phase space portrait of a periodic system. The
reconstructed phase space is almost the same as the original phase space.

5.6 Nonlinear Time-Series Analysis (by N. Marwan) 109

Integrating the differential equation yields a simple MATLAB code for
computing the xyz triplets of the Lorenz attractor. As system parameters
controlling the chaotic behaviour we use s=10, r=28 and b=8/3, the time
delay is dt=0.01. The initial values are x1=6, x2=9 and x3=25, that can
certainly be changed at other values.

dt = .01;
s = 10;
r = 28;
b = 8/3;
x1 = 8; x2 = 9; x3 = 25;
for i = 1 : 5000
 x1 = x1 + (-s*x1*dt) + (s*x2*dt);
 x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt);
 x3 = x3 + (-b*x3*dt) + (x1*x2*dt);
 x(i,:) = [x1 x2 x3];
end

Typical traces of a variable, such as the fi rst variable can be viewed by
plotting x(:,1) over time in seconds (Fig. 5.12).

Time

T
em

pe
ra

tu
re

−20

−15

−10

−5

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

Lorenz System

Fig. 5.12 The Lorenz system. As system parameters we use s=10, r=28 and b=8/3, the
time delay is dt=0.01.

110 5 Time-Series Analysis

t = 0.01 : 0.01 : 50;
plot(t, x(:,1))
xlabel('Time')
ylabel('Temperature')

We next plot the phase space portrait of the Lorenz system (Fig. 5.13).

plot3(x(:,1),x(:,2),x(:,3)), grid, view(70,30)
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')

In contrast to the simple periodic system described above, the trajectories of
the Lorenz system obviously do not follow the same course again, but it re-
curs very closely to a previous state. Moreover, if we follow two very close
segments of the trajectory, we will see that they run into different regions
of the phase space with time. The trajectory is obviously circling one fi xed
point in the phase space – and after some random time period – circling
around another. The curious orbit of the phase states around fi xed points is
known as the Lorenz attractor.

These observed properties are typical of chaotic systems. While small
disturbances of such a system cause exponential divergence of its state, the
system returns approximately to a previous state through a similar course.

0

10

20

30

40

50

−20

0

20
−50

0
50

−20
0

20

−20

0

20

−20

−10

0

10

20

3

1

x x 3

x
2

x

x
2

x
1

Phase Space Portrait Phase Space Portrait

a b

Fig. 5.13 a The phase space portrait of the Lorenz system. In contrast to the simple
periodic system, the trajectories of the Lorenz system obviously do not follow the same
course again, but it recurs very closely to a previous state. b The reconstruction of the
phase space portrait using only the fi rst state and a delay of six reveals a similar phase
portrait with the two typical ears.

5.6 Nonlinear Time-Series Analysis (by N. Marwan) 111

The reconstruction of the phase space portrait using only the fi rst state and
a delay of six

tau = 6;
plot3(x(1:end-2*tau,1),x(1+tau:end-tau,1),x(1+2*tau:end,1))
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')
grid, view([100 60])

reveals a similar phase portrait with the two typical ears (Fig. 5.13). The
characteristic properties of chaotic systems are also seen in this reconstruc-
tion.

The time delay and embedding dimension has to be chosen with a pre-
ceding analysis of the data. The delay can be estimated with the help of the
autocovariance or autocorrelation function. For our example of a periodic
oscillation,

x = 0 : pi/10 : 3*pi;
y1 = sin(x);

we compute and plot the autocorrelation function

for i = 1 : length(y1) - 2
 r = corrcoef(y1(1 : end-i), y1(1 + i : end));
 C(i) = r(1,2);
end

plot(C)
xlabel('Delay'), ylabel('Autocorrelation')
grid on

Now we choose such a delay at which the autocorrelation function equals
zero for the fi rst time. In our case this is 5, which is the value that we have
already used in our example of phase space reconstruction. The appropriate
embedding dimension can be estimated by using the false nearest neigh-
bours method or, simpler, recurrence plots, which are introduced in the next
chapter. Tthe embedding dimension is gradually increased until the majority
of the diagonal lines are parallel to the line of identity.

The phase space trajectory or its reconstruction is the base of several mea-
sures defined in nonlinear data analysis, like Lyapunov exponents, Rényi
entropies or dimensions. The book on nonlinear data analysis by Kantz and
Schreiber (1997) is recommended for more detailed information on these
methods. Phase space trajectories or their reconstructions are also the neces-
sary for constructing recurrence plots.

112 5 Time-Series Analysis

Recurrence Plots

Th phase space trajectories of dynamic systems that have more than three
dimensions are diffi cult to visualize. Recurrence plots provide a way for
analyzing higher dimensional systems. They can be used, e.g., to detect tran-
sitions between different regimes or to fi nd interrelations between several
systems. The method was fi rst introduced by Eckmann and others (1987).
The recurrence plot is a tool that visualizes the recurrences of states in the
phase space by a two-dimensional plot.

If the distance between two states i and j on the trajectory is smaller than
a given threshold ε, the value of the recurrence matrix R is one, otherwise
zero. This analysis is therefore a pairwise test of all states. For N states we
compute N2 tests. The recurrence plot is then the two-dimensional display
of the NxN matrix, where black pixels represent R

i,j
=1 and white pixels

indicate R
i,j
=0 and a coordinate system with two time axes. Such recurrence

plots can help to fi nd a fi rst characterization of the dynamics of data or to
fi nd transitions and interrelations of the system.

As a fi rst example, we load the synthetic time series containing 100 kyr,
40 kyr and 20 kyr cycles already used in the previous chapter. Since the data
are unevenly spaced, we have to linearly transform it to an equally-spaced
time axis.

series1 = load('series1.txt');
t = 0:3:996;
series1L = interp1(series1(:,1),series1(:,2),t,'linear');

We start with the assumption that the phase space is only one-dimensional.
The calculation of the distances between all points of the phase space trajec-
tory reveals the distance matrix S.

N = length(series1L);
S = zeros(N, N);

for i = 1:N,
 S(:,i) = abs(repmat(series1L(i), N, 1) - series1L(:));
end

Now we plot the distance matrix

imagesc(t,t,S)

5.6 Nonlinear Time-Series Analysis (by N. Marwan) 113

for the data set. Adding a colorbar

colorbar

provides a quantitative measure for the distances between states (Fig. 5.14).
We apply a threshold ε to the distance matrix to generate the black/white
recurrence plot (Fig. 5.15).

imagesc(t,t,S<1)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

Both plots reveal periodically occurring patterns. The distances between
these periodic patterns represent the cycles contained in the time series. The
most signifi cant periodic structures have periods of 200 and 100 kyr. The 200
kyr period is most signifi cant because of the superposition of the 100 and 40
kyr cycles, which are common divisors of 200 kyr. Moreover, there are small

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

0.0

2.0

4.0

6.0

Fig. 5.14 Visualization of the distance matrix from the synthetic data providing a quantitative
measure for the distances between states at certain times; blue colors indicate small distances,
red colors represent large distances.

114 5 Time-Series Analysis

substructures in the recurrence plot, which have sizes of 40 and 20 kyr.
As a second example, we apply the method of recurrence plots to the

Lorenz system. We again generate xyz triplets from the coupled differential
equations.

dt = .01;
s = 10;
r = 28;
b = 8/3;
x1 = 8; x2 = 9; x3 = 25;
for i = 1 : 5000
 x1 = x1 + (-s*x1*dt) + (s*x2*dt);
 x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt);
 x3 = x3 + (-b*x3*dt) + (x1*x2*dt);
 x(i,:) = [x1 x2 x3];
end

We choose the resampled fi rst component of this system and reconstruct a
phase space trajectory by using an embedding of m=3 and τ=2, which cor-
responds to a delay of 0.17 sec.

0

0

0.0

0.5

1.0

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

50

Time

T
im

e

Fig. 5.15 Visualization of the recurrence plot after applying a threshold of ε=1 to the distance
matrix.

5.6 Nonlinear Time-Series Analysis (by N. Marwan) 115

t = 0.01 : 0.05 : 50;
y = x(1:5:5000,1);
m = 3; tau = 2;

N = length(y);
N2 = N - tau*(m - 1);

The original data series has a length of 5000, after resampling 1000 data points
or 50 sec, but because of the time delay method, the reconstructed phase space
trajectory has the length 996. Now we create the phase space trajectory with

for mi = 1:m
 xe(:,mi) = y([1:N2] + tau*(mi-1));
end

We can accelerate the pair-wise test between each points on the trajectory
with a fully vectorized algorithm supported by MATLAB. For that we need
to transfer the trajectory vector into two test vectors, whose component-wise
test will provide the pair-wise test of the trajectory vector:

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

Using these vectors we calculate the recurrence plot using the Euclidean
norm without any FOR loop.

S = sqrt(sum((x1 - x2).^ 2,2));
S = reshape(S,N2,N2);

imagesc(t(1:N2),t(1:N2),S<10)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

This recurrence plot reveals many short diagonal lines (Fig. 5.16). These
lines represent epochs, where the phase space trajectory runs parallel to for-
mer or later sequences of this trajectory, i.e., the states and the dynamics are
similar at these times. The distances between these diagonal lines, represent-
ing the periods of the cycles, differ and are not constant – just as they are in
a harmonic oscillation.

The structure of recurrence plots can also be described by a suite of quan-
titative measures. Several measures are based on the distribution of the
lengths of diagonal or vertical lines. These parameters can be used to trace
hidden transitions in a process. Bivariate and multivariate extensions of re-
currence plots furthermore offer nonlinear correlation tests and synchroni-
zation analysis. A detailed introduction to recurrence plot based methods
can be found at the web site

http://www.recurrence-plot.tk

116 5 Time-Series Analysis

The analysis of recurrence plots has already been applied to many problems
in earth sciences. The comparison of the dynamics on modern precipitation
data with paleo-rainfall data inferred from annual-layered lake sediments in
the northwestern Argentine Andes provides a good example of such analy-
sis (Marwan et al. 2003). In this example, the method of recurrence plots
was applied to red-color intensity transects across ca. 30 kyr-old varved
lake sediments shown in Figure 5.1. Comparing the recurrence plots from
the sediments with the ones from modern precipitation data revealed that
the reddish layers document more intense rainy seasons during the La Niña
years. The application of linear techniques was not able to link the increased
fl ux of reddish clays and enhanced precipitation to either the El Niño or La
Niña phase of the ENSO. Moreover, recurrence plots helped to prove the
hypothesis that a longer rainy seasons, enhanced precipitation and stronger
infl uence of the El Niño/Southern Oscillation has caused enhanced landslid-
ing at 30 kyrs ago (Marwan et al. 2003, Trauth et al. 2003).

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

0.0

0.5

1.0

Time

T
im

e

Fig. 5.16 Visualization of the recurrence plot after applying a threshold of ε=10 to the
distance matrix.

Recommended Reading 117

Recommended Reading

Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence Plots of Dynamical Systems.
Europhysics Letters 5:973-977

Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis. Cambridge University Press,
Cambridge

Lorenz EN (1963) Deterministic nonperiodic fl ow. Journal of Atmospheric Sciences
20:130-141

Marwan M, Thiel M, Nowaczyk NR (2002) Cross Recurrence Plot Based Synchronization of
Time Series. Nonlinear Processes in Geophysics 9(3/4):325-331

Marwan N, Trauth MH, Vuille M, Kurths J (2003) Nonlinear time-series analysis on
present-day and Pleistocene precipitation data from the NW Argentine Andes. Climate
Dynamics 21:317-332

Romano M, Thiel M, Kurths J, von Bloh W (2004) Multivariate Recurrence Plots. Physics
Letters A 330(3-4):214-223

Takens F (1981) Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics,
898:366-381

The Mathworks (2002) Signal Processing Toolbox User s Guide - For the Use with
MATLAB®. The MathWorks, Natick, MA

Trulla LL, Giuliani A, Zbilut JP, Webber Jr CL (1996) Recurrence quantification analysis of
the logistic equation with transients. Physics Letters A 223(4):255-260

Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. Cambridge
University Press

Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple landslide clusters
record Quaternary climate changes in the NW Argentine Andes. Palaeogeography
Palaeoclimatology Palaeoecology 194:109-121

Weedon G (2003) Time-Series Analysis and Cyclostratigraphy - Examining stratigraphic
records of environmental change. Cambridge University Press

Welch PD (1967) The Use of Fast Fourier Transform for the Estimation of Power Spectra:
A Method Based on Time Averaging Over Short, Modifi ed Periodograms. IEEE Trans.
Audio Electroacoustics AU-15: 70-73

6 Signal Processing

6.1 Introduction

Signal processing refers to techniques for manipulating a signal to mini-
mize the effects of noise, to correct all kinds of unwanted distortions or to
separate various components of interest. Most signal processing algorithms
include the design and realization of filters. A fi lter can be described as a
system that transforms signals. System theory provides the mathematical
background for filter design and realization. A filter as a system has an input
and an output, where the output signal y(t) is modifi ed with respect to the
 input signal x(t) (Fig. 6.1). The signal transformation is often referred to as
convolution or, if fi lters are applied, fi ltering.

This chapter is on the design and realization of digital fi lters with the help
of a computer. However, many natural processes resemble analog fi lters that
act over a range of spatial and temporal scales. As an example, the perma-
nent mixing of the ocean and the atmosphere smoothes local weather and
climate conditions. A single rainfall event is not recorded in lake sediments
because short and low-amplitude events are smeared over a longer time
span. Bioturbation also introduces serious distortions for instance to deep-
sea sediment records. In addition to such natural fi lters, the fi eld collection
and sampling of geological data alters and smoothes the data with respect to
its original form. For example, a fi nite size sediment sample integrates over

Input signal Output signalSignal transformation

LTI System

Fig. 6.1 Schematic of a linear time-invariant (LTI) system. The input signal is transformed
into an output signal.

120 6 Signal Processing

a certain period of time and therefore smoothes the natural signal. Similarly,
the measurement of magnetic susceptibility with the help of a loop sensor
introduces signifi cant smoothing since the loop integrates over a certain sec-
tion of the sediment core.

In most cases, the characteristics of these natural fi lters are diffi cult to de-
termine. Numerical fi lters, however, are designed with well-defi ned charac-
teristics. In addition, artifi cial fi lters are time invariant in most cases, while
natural fi lters, such as ocean mixing or bioturbation, may change with time.
An easy way to describe or predict the effect of a fi lter is to explore the
fi lter output of a simple input signal, such as a sine wave, a square wave, a
sawtooth, ramp or step function. Although there is an endless variety of such
signals, most systems or fi lters are described by their impulse response, i.e.,
the output of a unit impulse.

The chapter starts with a more technical section on generating periodic
signals, trends and noise, similar to Chapter 5.1. Chapter 6.3 is on linear
time-invariant systems, which provide the mathematical background for fi l-
ters. The following Chapters 6.4 to 6.9 are on the design, the realization and
the application of linear time-invariant fi lters. Chapter 6.10 then suggests
the application of daptive fi lters originally developed in telecommunication
automatically. Adaptive fi lters extract noisefree signals from duplicate mea-
surements on the same object. Such fi lters can be used in a large number of
applications, such as noise removal from duplicate paleoceanographic time
series or to improve the signal-to-noise ratio of parallel color-intensity tran-
sects across varved lake sediments (see Chapter 5, Fig. 5.1). Moreover, such
fi lters are also widley-used in geophysics for noise canceling.

6.2 Generating Signals

MATLAB provides numerous tools to generate basic signals that can be
used to illustrate the effects of fi lters. In the previous chapter we have gener-
ated a signal by adding together three sine waves with different amplitudes
and periods. In the following example, the time vector is transposed for the
purpose of generating column vectors.

t = (1:100)';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 100 -4 4])

 Frequency-selective fi lters are very common in earth sciences. They are
used for removing certain frequency bands from the data. As an example,

6.3 Linear Time-Invariant Systems 121

we could design a fi lter that has the capability to suppress the portion of the
signal with a periodicity of τ=15, whereas the other two cycles are unaf-
fected. Such simple periodic signals can also be used to predict signal distor-
tions of natural fi lters.

A step function is another basic input signal that can be used for exploring
fi lter characteristics. It describes the transition from a value of one towards
zero at a certain time.

t = (1:100)';
x = [ones(50,1);zeros(50,1)];

plot(t,x), axis([0 100 -2 2])

This signal can be used to study the effects of a fi lter on a sudden transi-
tion. An abrupt climate change could be regarded as an example. Most
natural fi lters tend to smooth such a transition and smear it over a longer
time period.

The unit impulse is the third important signal that we will use in the fol-
lowing examples. This signal equals zero for all times except for a single
data point which equals one.

t = (1:100)';
x = [zeros(49,1);1;zeros(50,1)];

plot(t,x),axis([0 100 -4 4])

The unit impulse is the most popular synthetic signal for studying the per-
formance of a fi lter. The output of the fi lter, the impulse response, describes
the characteristics of a fi lter very well. Moreover, the output of a linear time-
invariant fi lter can be described by the superposition of impulse responses
that haven been scaled by the amplitude of the input signal.

6.3 Linear Time-Invariant Systems

Filters can be described as systems with an input and output. We therefore
fi rst describe the characteristics of a more general system before we proceed
to apply this theory to fi lters. Important characteristics of a system are

1. Continuity – A system with continuous inputs and outputs is continuous.
Most of the natural systems are continuous. However, after sampling na-
tural signals we obtain discrete data series and model these natural sy-
stems as discrete systems, which have discrete inputs and outputs.

122 6 Signal Processing

2. Linearity – For linear systems, the output of the linear combination of
several input signals

is the same linear combination of the outputs:

The important consequence of linearity is scaling and additivity (super-
position). Input and output can be multiplied by a constant before or af-
ter transformation. Superposition allows to extract additive components
of the input and transform these separately. Fortunately, many natural
systems show linear behavior. Complex linear signals such as additive
harmonic components can be separated and transformed independently.
Milankovitch cycles provide example of linear superposition in paleocli-
mate records, although there is an ongoing debate about the validity of
this assumption. Numerous nonlinear systems exist in nature that do not
obey the properties of scaling and additivity. An example of such a linear
system is

t = (1:100)';
y = 2*t;

plot(t,y)

An example of such a nonlinear system is

t = (-100:100)';
y = t.^2;

plot(t,y)

3. Time invariance – The system output y(t) does not change with a de-
lay of the input x(t+i). The system characteristics are constant with time.
Unfortunately many systems in nature change their characteristics with
time. For instance, benthic mixing or bioturbation depends on various
environmental parameters such as nutrient supply. Therefore the system s
performance varies with time signifi cantly. In such case, the actual input
of the system is hard to determine from the output, i.e., to extract the ac-
tual climate signal from a bioturbated sedimentary record.

6.3 Linear Time-Invariant Systems 123

4. Invertibility – An invertible system is a system where the original input
signal can be reproduced from the systems output. This is an important
property if unwanted signal distortions have to be corrected. In such a
case, the known system is inverted and applied to the output to recon-
struct the undisturbed input. As an example, a core logger measuring the
magnetic susceptibility with a loop sensor. The loop sensor integrates
over a certain core interval with highest sensitivity at the location of the
loop and decreasing sensitivity down- and up-core. The above system
is also invertible, i.e., we can compute the input signal from the output
signal by inverting the system. The inverse system of the above linear
fi lter is

t = (1:100)';
y = 0.5*t;

plot(t,y)

The nonlinear system

t = (-100:100)';
y = t.^2;

plot(t,y)

is not invertible. Since this system yields equal responses for different
inputs, such as y=+4 for inputs x=-2 and x=+2, the input can not be re-
constructed from the output. A similar situation can also occur in linear
systems, such as

t = (1:100)';
y = 0;

plot(t,y)

The output is zero for all inputs. Hence, the output does not contain any
information about the input.

5. Causality – The system response only depends on present and past in-
puts x(0), x(-1), …, whereas future inputs x(+1), x(+2), … have no ef-
fect on the output y(0). All realtime systems, such telecommunication
systems, must be causal since they can not have future inputs available
to them. All systems and fi lters in MATLAB are indexed as causal. In
earth sciences, however, numerous non-causal fi lters are used. Filtering
images or signals extracted from sediment cores are examples where the
future inputs are available at the time of fi ltering. Output signals have to

124 6 Signal Processing

be delayed after fi ltering to compensate the differences between causal
and non-causal indexing.

6. Stability – A system is stable if the output of a fi nite input is also fi nite.
Stability is critical in fi lter design, where fi lters often have the disadvan-
tage of provoking diverging outputs. In such cases, the fi lter design has to
be revised and improved.

Linear time-invariant (LTI) systems as a special type are very popular. Such
systems have all the advantage that have been described above. They are
easy to design and to use in many applications. The following chapters 6.4
to 6.9 describe the design, realization and application of LTI-type fi lters to
extract certain frequency components of signals. These fi lters are mainly
used to reduce the noise level in signals. Unfortunately many natural sys-
tems do not behave as LTI systems. In many cases the signal-to-noise ratio
varies with time. Chapter 6.10 describes the application of adaptive fi lters
that automatically adjust their characteristics in a time-variable environ-
ment.

6.4 Convolution and Filtering

The mathematical description of a system transformation is convolution.
Filtering is one application of the convolution process. Running mean of
length fi ve provides an example of such a simple fi lter. The output of an
arbitrary input signal is

The output y(t) is simply the average of the fi ve input values x(t-2), x(t-1),
x(t), x(t+1) and x(t+2). In other words, all the fi ve consecutive input values
are multiplied by a factor of 1/5 and summed to form y(t). In this exam-
ple, all input values are multiplied by the same factor, i.e., they are equally
weighted. The fi ve factors used in the above operation are also called fi lter
weights b

k
. The fi lter can be represented by the vector

b = [0.2 0.2 0.2 0.2 0.2]

consisting of the identical fi lter weights. Since this fi lter is symmetric, it
does not shift the signal on the time axis. The only function of this fi lter is to

6.4 Convolution and Filtering 125

smooth the signal. Therefore running means of a given length are often used
to smooth signals, mainly for cosmetic reasons. Modern spreadsheet soft-
ware usually contains running means for smoothing data series. The impact
of the smoothing fi lter increases with increasing fi lter length.

The weights that a fi lter of arbitrary length may take can vary. As an ex-
ample, let us assume an asymmetric fi lter of fi ve weights.

b = [0.05 0.08 0.14 0.26 0.47]

The sum of all of the fi lter weights is one. It therefore does not introduce en-
ergy to the signal. However, since it is highly asymmetric it shifts the signal
along the time axis, i.e., it introduces a phase shift.

The general mathematical representation of the fi ltering process is the
convolution

where b
k
 is the vector of fi lter weights, N

1
+N

2
 is the order of the fi lter, which

is the length of the fi lter reduced by one. In our examples of fi lters of fi ve
weights, the order of the fi lters is four. In contrast to this format, MATLAB
uses the engineering standard of indexing fi lters, i.e., fi lters are always de-
fi ned as causal. Therefore the convolution used by MATLAB is defi ned as

where N is the order of the fi lter. A number of frequency-domain tools pro-
vided by MATLAB cannot simply be applied to non-causal fi lters that have
been designed for applications in earth sciences. Hence, it is common to
carry out phase corrections in order to simulate causality. For example, fre-
quency-selective fi lters as introduced in Chapter 6.9 can be applied using
the function filtfilt, which provides zero-phase forward and reverse
fi ltering.

The functions conv and filter that provide digital fi ltering with
MATLAB are best illustrated in terms of a simple running mean. The n
elements of the vector x(t

1
), x(t

2
), x(t

3
), …, x(t

n
) are replaced by the arithme-

tic means of subsets of the input vector. For instance, a running mean over
three elements computes the mean of inputs x(t

n-1
), x(t

n
), x(t

n+1
)to obtain the

126 6 Signal Processing

output y(t
n
). We can easily illustrate this by generating a random signal

clear

t = (1:100)';
randn('seed',0);
x1 = randn(100,1);

designing a fi lter that averages three data points of the input signal

b1 = [1 1 1]/3;

and convolving the input vector with the fi lter

y1 = conv(b1,x1);

The elements of b1 are the weights of the fi lter. In our example, all fi lter
weights are the same and they equal 1/3. Note that the conv function yields
a vector that has the length n+m-1, where m is the length of the fi lter.

m1 = length(b1);

We should explore the contents of our workspace to check for the length of
the input and output of conv. Typing

whos

yields

Name Size Bytes Class

b1 1x3 24 double array
m1 1x1 8 double array
t 100x1 800 double array
x1 100x1 800 double array
y1 102x1 816 double array
Grand total is 306 elements using 2448 bytes

Here we see that the actual input series x1 has a length of 100 data points,
whereas the output y1 has two more elements. Hence, convolution intro-
duces (m-1)/2 data points at both ends of the data series. In order to compare
input and output signal, we cut the output signal at both ends.

y1 = y1(2:101,1);

A more general way to correct the phase shifts of conv is

y1 = y1(1+(m1-1)/2:end-(m1-1)/2,1);

which of course only works for an odd number of fi lter weights. Then we

6.5 Comparing Functions for Filtering Data Series 127

can plot both input and output signals for comparison. We also use legend
to display a legend for the plot.

plot(t,x1,'b-',t,y1,'r-')
legend('x1(t)','y1(t)')

This plot illustrates the effect of the running mean on the original input se-
ries. The output y1 is signifi cantly smoother than the input signal x1. If we
increase the length of the fi lter, we obtain an even smoother signal.

b2 = [1 1 1 1 1]/5;
m2 = length(b2);

y2 = conv(b2,x1);
y2 = y2(1+(m2-1)/2:end-(m2-1)/2,1);

plot(t,x1,'b-',t,y1,'r-',t,y2,'g-')
legend('x1(t)','y1(t)','y2(t)')

The next chapter introduces a more general description of fi lters.

6.5 Comparing Functions for Filtering Data Series

A very simple example of a nonrecursive fi lter was described in the previ-
ous section. The fi lter output y(t) only depends on the fi lter input x(t) and
the fi lter weights b

k
. Prior to introducing a more general description for

linear time-invariant fi lters, we replace the function conv by filter that
can be used also for recursive fi lters. In this case, the output y(t

n
) depends

on the fi lter input x(t), but also on previous elements of the output y(t
n-1

),
y(t

n-2
), y(t

n-3
).

clear
t = (1:100)';
randn('seed',0);
x3 = randn(100,1);

We design a fi lter that averages fi ve data points of the input signal.

b3 = [1 1 1 1 1]/5;
m3 = length(b3);

The input vector can be convolved with the function conv. The output is
again correct for the length of the data vector.

y3 = conv(b3,x3);
y3 = y3(1+(m3-1)/2:end-(m3-1)/2,1);

128 6 Signal Processing

Although the function filter yields an output vector with the same length
as the input vector, we have to correct the output as well. In this case, the
function filter assumes that the fi lter is causal. The fi lter weights are in-
dexed n, n-1, n-2 and so on. Hence, no future elements of the input vector,
such as x(n+1), x(n+2) and so forth are needed to compute the output y(n).
This is of great importance in the fi eld of electrical engineering, the classic
fi eld of application of MATLAB, where fi lters are often applied in real time.
In earth sciences, however, in most applications the entire signal is available
at the time of processing the data. Filtering the data series is computed by

y4 = filter(b3,1,x3);

and afterwards the phase correction is carried out using

y4 = y4(1+(m3-1)/2:end-(m3-1)/2,1);
y4(end+1:end+m3-1,1)=zeros(m3-1,1);

which only works for an odd number of fi lter weights. This command sim-
ply shifts the output by(m-1)/3 towards the lower end of the t-axis, then
fi lls the end of the data series by zeros. Comparing the ends of both outputs
illustrates the effect of this correction, where

y3(1:5,1)
y4(1:5,1)

yields

ans =
 0.3734
 0.4437
 0.3044
 0.4106
 0.2971

ans =
 0.3734
 0.4437
 0.3044
 0.4106
 0.2971

This was the lower end of the output. We see that both vectors y3 and y4
contain the same elements. Now we explorer the upper end of the data vec-
tor, where

y3(end-5:end,1)
y4(end-5:end,1)

6.6 Recursive and Nonrecursive Filters 129

causes the output

ans =
 0.2268
 0.1592
 0.3292
 0.2110
 0.3683
 0.2414

ans =
 0.2268
 0.1592
 0
 0
 0
 0

The vectors are identical up to element y(end-m3+1), then the second vec-
tor y4 contains zeros instead of true data values. Plotting the results with

subplot(2,1,1), plot(t,x3,'b-',t,y3,'g-')
subplot(2,1,2), plot(t,x3,'b-',t,y4,'g-')

or in one single plot,

plot(t,x3,'b-',t,y3,'g-',t,y4,'r-')

shows that the results of conv and filter are identical except for the upper
end of the data vector. These observations are important for our next steps in
signal processing, in particular if we are interested in leads and lags between
various components of signals.

6.6 Recursive and Nonrecursive Filters

Now we expand our nonrecursive fi lters by a recursive component, i.e., the
output y(t

n
) depends on the fi lter input x(t), but also on previous output val-

ues y(t
n-1

), y(t
n-2

), y(t
n-3

). This fi lter requires the nonrecursive fi lter weights b
i
,

but also the recursive fi lters weights a
i
(Fig. 6.2). This fi lter can be described

by the difference equation.

Whereas this is a non-causal version of the difference equation, MATLAB
uses the causal indexing again,

130 6 Signal Processing

with the known problems in the design of zero-phase fi lters. The larger of
the two quantities M and N

1
+N

2
or N, respectively, is the order of the fi lter.

We use the same synthetic input signal as in the previous example to il-
lustrate the performance of a recursive fi lter.

clear
t = (1:100)';
randn('seed',0);
x5 = randn(100,1);

We fi lter this input using a recursive fi lter with a set of weights a5 and b5,

b5 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a5 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m5 = length(b5);

y5 = filter(b5,a5,x5);

and correct the output for the phase

y5= y5(1+(m5-1)/2:end-(m5-1)/2,1);
y5(end+1:end+m5-1,1)=zeros(m5-1,1);

Now we plot the results.

plot(t,x5,'b-',t,y5,'r-')

bi T

+

T ai

+

Input signal x(t)

Output signal y(t)

Fig. 6.2 Schematic of a linear time-invariant fi lter with an input x(t) and an output y(t). The
fi lter is characterized by its weights a

i
 and b

i
, and the delay elements T. Nonrecursive fi lters

only have nonrecursive weights b
i
, whereas the recursive fi lter also requires the recursive

fi lters weights a
i
.

6.7 Impulse Response 131

Obviously this fi lter changes the signal dramatically. The output only con-
tains low-frequency components, whereas all higher frequencies are elim-
inated. The comparison of the periodograms of input and output reveals
that all frequencies above f=0.1 corresponding to a period of τ=10 are sup-
pressed.

[Pxx,F] = periodogram(x5,[],128,1);
[Pyy,F] = periodogram(y5,[],128,1);

plot(F,abs(Pxx),F,abs(Pyy))

Hence, we have now designed a frequency-selective fi lter, i.e., a fi lter that
eliminates certain frequencies whereas other periodicities are more or less
unaffected. The next chapter introduces tools to characterize a fi lter in the
time and frequency domain that help to predict the effect of a frequency-
selective fi lter on arbitrary signals.

6.7 Impulse Response

The impulse response is a very convenient way of describing the fi lter char-
acteristics (Fig. 6.3). A useful property of the impulse response h in LTI
systems involves the convolution of the input signal x(t) with h to obtain the
output signal y(t).

It can be shown that the impulse response h is identical to the fi lter weights
in the case of nonrecursive fi lters, but is different for recursive fi lters.
Alternatively, the convolution is often written in a short form:

In many examples, the convolution in the time domain is replaced by a sim-
ple multiplication of the Fourier transforms H(f) and X(f) in the frequency
domain.

The output signal y(t) in the time domain is then obtained by a reverse Fourier

132 6 Signal Processing

transformation of Y(f). In many cases, the signals are often convolved in the
frequency domain for simplicity of the multiplication as compared to a con-
volution in the time domain. However, the FFT itself introduces a number of
artifacts and distortions and therefore convolution in the frequency domain
is not without problems. In the following examples we apply the convolu-
tion only in the time domain.

First we generate an unit impulse:

clear
t = (0:20)';
x6 = [zeros(10,1);1;zeros(10,1)];

stem(t,x6),axis([0 20 -4 4])

The function stem plots the data sequence x6 as stems from the x-axis ter-
minated with circles for the data value. This might be a better way to plot
digital data than using the continuous lines generated by plot. We now feed
this to the fi lter and explore the output. For nonrecursive fi lters, the impulse
response is identical to the fi lter weights.

b6 = [1 1 1 1 1]/5;
m6 = length(b6);

y6 = filter(b6,1,x6);

We correct this for the phase shift of the function filter again, although
this might not be important in this example.

0 5 10 15 200 5 10 15 20
2

1

0

1

2

2

1

0

1

2

t t

y(
t)

y(
t)

Unit Impulse Impulse Response

a b

Fig. 6.3 Transformation of a a unit impulse to compute b the impulse response of a system.
The impulse response is often used to describe and predict the performance of a fi lter.

6.7 Impulse Response 133

y6= y6(1+(m6-1)/2:end-(m6-1)/2,1);
y6(end+1:end+m6-1,1)=zeros(m6-1,1);

We obtain an output vector y6 of the same length and phase as the input
vector x6. We plot the results for comparison.

stem(t,x6)
hold on
stem(t,y6,'filledv,'r')
axis([0 20 -2 2])

In contrast to plot, the function stem only accepts one data series.
Therefore, the second series y6 is overlaid on the same plot using the func-
tion hold. The effect of the fi lter is clearly seen on the plot. It averages the
unit impulse over a length of fi ve elements. Furthermore, the values of the
output equal the fi lter weights of a6, in our example 0.2 for all elements of
a6 and y6.

For a recursive fi lter, the output y6 does not agree with the fi lter weights.
Again, impulse is generated fi rst.

clear
t = (0:20)';
x7 = [zeros(10,1);1;zeros(10,1)];

Subsequently, an arbitrary recursive fi lter with weights of a7 and b7 is de-
signed.

b7 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a7 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m7 = length(b7);

y7 = filter(b7,a7,x7);

y7= y7(1+(m7-1)/2:end-(m7-1)/2,1);
y7(end+1:end+m7-1,1)=zeros(m7-1,1);

The stem plot of the input x2 and the output y2 shows an interesting impulse
response:

stem(t,x7)
hold on
stem(t,y7,'filled','r')
axis([0 20 -2 2])

The signal is again smeared over a wider area. It is also shifted towards the
right. Therefore this fi lter not only affects the amplitude of the signal, but
also shifts the signal towards lower or higher values. In most cases, phase
shifts are unwanted characteristics of fi lters, although in some applications
shifts along the time axis might of particular interest.

134 6 Signal Processing

6.8 Frequency Response

Next we investigate the frequency response of a fi lter, i.e., the effect of a fi l-
ter on the amplitude and phase of a signal (Fig. 6.4). The frequency response
H(f) of a fi lter is the Fourier transform of the impulse response h(t). The
absolute of the complex frequency response H(f) is the magnitude response
of the fi lter A(f).

The argument of the complex frequency response H(f) is the phase response
of the fi lter.

Since MATLAB fi lters are all causal it is diffi cult to explore the phase of sig-
nals using the corresponding functions contained in the Signal Processing
Toolbox. The user s guide for this toolbox simply recommends to delay the
fi lter output in the time domain by a fi xed number of samples, as we have
done it in the previous examples. As an example, a sine wave with a period
of 20 and an amplitude of 2 is used as an input signal.

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

1

0 −1000

−800

−600

−400

−200

0

Frequency Frequency

M
ag

ni
tu

de

P
ha

se
 in

 d
eg

re
es

Magnitude Unwrapped Phase

a b

Fig. 6.4 a Magnitude and b phase response of a running mean over eleven elements.

6.8 Frequency Response 135

clear
t = (1:100)';
x8 = 2*sin(2*pi*t/20);

A running mean over eleven elements is designed and this fi lter is applied
to the input signal.

b8 = ones(1,11)/11;
m8 = length(b8);

y8 = filter(b8,1,x8);

The phase is corrected for causal indexing.

y8= y8(1+(m8-1)/2:end-(m8-1)/2,1);
y8(end+1:end+m8-1,1)=zeros(m8-1,1);

Both input and output of the fi lter are plotted.

plot(t,x8,t,y8)

The fi lter obviously reduces the amplitude of the sine wave. Whereas the
input signal has an amplitude of 2, the output has an amplitude of

max(y8)

ans =
 1.1480

The fi lter reduces the amplitude of a sine with a period of 20 by

1-max(y8(40:60))/2

ans =
 0.4260

i.e., approximately 43%. The elements 40 to 60 are used for computing the
maximum value of y8 in order to avoid edge effects. On the other hand, the
fi lter does not affect the phase of the sine wave, i.e., both input and output
are in phase.

The same fi lter, however, has a different impact on a different signal. Let
us design another sine wave with a similar amplitude, but with a different
period of 15.

clear
t = (1:100)';
x9 = 2*sin(2*pi*t/15);

Applying a similar fi lter and correcting the output for the phase shift of the

136 6 Signal Processing

function filter,

b9 = ones(1,11)/11;
m9 = length(b9);

y9 = filter(b9,1,x9);

y9= y9(1+(m9-1)/2:end-(m9-1)/2,1);
y9(end+1:end+m9-1,1)=zeros(m9-1,1);

The output is again in phase with the input, but the amplitude is dramatically
reduced as compared to the input.

plot(t,x9,t,y9)

1-max(y9(40:60))/2

ans =
 0.6768

The running mean over eleven elements reduces the amplitude of this sig-
nal by 67%. More generally, the fi lter response obviously depends on the
frequency of the input. The frequency components of a more complex sig-
nal containing multiple periodicities. Hence, they are affected in a different
way. The frequency response of a fi lter

clear
b10 = ones(1,11)/11;

can be computed using the function freqz.

[h,w] = freqz(b10,1,512);

The function freqz returns the complex frequency response h of the digital
fi lter b10. The frequency axis is normalized to . We transform the fre-
quency axis to the true frequency values by

f= w/(2*pi);

Next we calculate the magnitude of the frequency response and plot the
magnitude over the frequency.

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude')

This plot can be used to predict the magnitude of the fi lter for any frequency

6.8 Frequency Response 137

of an input signal. An exact value of the magnitude can also be obtained by
simple interpolation of the magnitude,

1-interp1(f,magnitude,1/20)

ans =
 0.4260

which is the expected ca. 43% reduction of the amplitude of a sine wave
with period 20. The sine wave with period 15 experiences an amplitude
reduction of

1-interp1(f,magnitude,1/15)

ans =
 0.6768

i.e., around 68% similar to the value observed at the beginning. The fre-
quency response can be calculated for all kinds of fi lters. It is a valuable
tool to predict the effects of a fi lter on signals in general. The phase re-
sponse can also be calculated from the complex frequency response of the
fi lter (Fig. 6.4):

phase = 180*angle(h)/pi;

plot(f,phase)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

The phase angle is plotted in degrees. We observe frequent 180° jumps in
this plot that are an artifact of the arctangent function inside the function
angle. We can unwrap the phase response to eliminate the 180° jumps us-
ing the function unwrap.

plot(f,unwrap(phase))
xlabel('Frequency'),ylabel('Phase in degrees')
title('Phase')

Since the fi lter has a linear phase response, no shifts of the frequency com-
ponents of the signal occur relative to each other. Therefore we would not
expect any distortions of the signal in the frequency domain. The phase shift
of the fi lter can be computed using

interp1(f,unwrap(phase),1/20) * 20/360

ans =
 -5.0000

138 6 Signal Processing

and

interp1(f,unwrap(phase),1/15) * 15/360

ans =
 -5.0000

respectively. Since MATLAB uses causal indexing for fi lters, the phase
needs to be corrected, similar to the delayed output of the fi lter. In our
example, we used a fi lter of the length eleven. We have to correct the
phase by (11-1)/2=5. This suggests a zero phase shift of the fi lter for both
frequencies.

This also works for recursive fi lters. Assume a simple sine wave with
period 8 and the previously employed recursive fi lter.

clear
t = (1:100)';
x11 = 2*sin(2*pi*t/8);

b11 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a11 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m11 = length(b11);

y11 = filter(b11,a11,x11);

Correct the output for the phase shift introduced by causal indexing and plot
both input and output signals.

y11= y11(1+(m11-1)/2:end-(m11-1)/2,1);
y11(end+1:end+m11-1,1)=zeros(m11-1,1);

plot(t,x11,t,y11)

The magnitude is reduced by

1-max(y11(40:60))/2

ans =
 0.6465

which is also supported by the magnitude response

[h,w] = freqz(b11,a11,512);

f= w/(2*pi);

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')

6.9 Filter Design 139

title('Magnitude Response')

1-interp1(f,magnitude,1/8)

ans =
 0.6462

The phase response

phase = 180*angle(h)/pi;

f= w/(2*pi);

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Magnitude Response')

interp1(f,unwrap(phase),1/8) * 8/360

ans =
 -5.0144

must again be corrected for causal indexing. The sampling interval was one,
the fi lter length is fi ve, therefore we have to add (5-1)/2=2 to the phase shift
of -5.0144. This suggests a corrected phase shift of -3.0144, which is exactly
the delay seen on the plot.

plot(t,x11,t,y11), axis([30 40 -2 2])

The next chapter gives an introduction to the design of fi lters with a desired
frequency response. These fi lters can be used to amplify or suppress differ-
ent components of arbitrary signals.

6.9 Filter Design

Now we aim to design fi lters with a desired frequency response. Firstly,
a synthetic signal with two periods, 50 and 15, is generated. The power
spectrum of the signal shows the expected peaks at the frequencies 0.02
and ca. 0.07.

t = 0:1000;
x12 = 2*sin(2*pi*t/50) + sin(2*pi*t/15);

plot(t,x12), axis([0 200 -4 4])

[Pxx,f] = periodogram(x12,[],1024,1);

plot(f,abs(Pxx))

140 6 Signal Processing

xlabel('Frequency')
ylabel('Power')

We add some gaussian noise with amplitude one and explore the signal and
its periodogram.

xn12 = x12 + randn(1,length(t));

plot(t,xn12), axis([0 200 -4 4])

[Pxx,f] = periodogram(xn12,[],1024,1);

plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

The Butterworth fi lter design technique is a widely-used method to create
fi lters of any order with a lowpass, highpass, bandpass and bandstop con-
fi guration (Fig. 6.5). In our example, we like to design a fi ve-order lowpass
fi lter with a cutoff frequency of 0.08. The inputs of the function butter are
the order of the fi lter and the cutoff frequency normalized to the Nyquist fre-
quency, which is 0.5 in our example, that is half of the sampling frequency.

[b12,a12] = butter(5,0.08/0.5);

The frequency characteristics of the fi lter shows a relatively smooth transi-
tion from the passband to the stopband, but the advantage of the fi lter is its
low order.

[h,w] = freqz(b12,a12,1024);
f = w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

We can again apply the fi lter to the signal by using the function filter.
However, frequency selective fi lters such as lowpass, highpass, bandpass
and bandstop are designed to suppress certain frequency bands, whereas
phase shifts should be avoided. The function filtfilt provides zero-phase
forward and reverse digital fi ltering. After fi ltering in the forward direction,
the fi ltered sequence is reversed and it runs back through the fi lter. The mag-
nitude of the signal is not affected by this operation, since it is either 0 or
100% of the initial amplitude, depending of the frequency. In contrast, all
phase shifts introduced by the fi lter are zeroed by the forward and reverse
application of the same fi lter. This function also helps to overcome the prob-
lems with causal indexing of fi lters in MATLAB. It eliminates the phase

6.9 Filter Design 141

differences of causal vs. non-causal versions of the same fi lter. Filtering and
plotting the results clearly illustrates the effects of the fi lter.

xf12 = filtfilt(b12,a12,xn12);

Passband

Stopband
Transition

Passband

Stopband
Transition

Cutoff
Frequency

Passband Passband Passband

Stopband Stopband Stopband

Transition Transition Transition Transition

Cutoff
Frequency

0 0.25 0.5 0.75 1.0
FrequencyFrequency

FrequencyFrequency

0 0.25 0.5 0.75 1.0

0 0.25 0.5 0.75 1.0 0 0.25 0.5 0.75 1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

Highpass FilterLowpass Filter

Bandstop FilterBandpass Filter

a

c d

b

Fig. 6.5 Frequency response of the fundamental types of frequency-selective fi lters. a
Lowpass fi lter to suppress the high-frequency component of a signal. In earth sciences, such
fi lters are often used to suppress high-frequency noise in a low-frequency signal. b Highpass
fi lter are employed to remove all low frequencies and trends in natural data. c-d Bandpass
and bandstop fi lters extract or suppress a certain frequency band. Whereas the solid line in
all graphs depicts the ideal frequency response of a frequency-selective fi lter, the gray band
shows the tolerance for a low-order design of such a fi lter. In practice, the frequency response
lies within the gray band. Higher-order fi lters allow to approximate the ideal line better than
low-order fi lters.

142 6 Signal Processing

plot(t,xn12,'b-',t,xf12,'r-')
axis([0 200 -4 4])

One might now wish to design a new fi lter with a more rapid transition from
passband to stopband. Such a fi lter needs a higher order. It needs to have a
larger number of fi lter weights. We now create a 15-order Butterworth fi lter
as an alternative to the above fi lter.

[b13,a13] = butter(15,0.08/0.5);

[h,w] = freqz(b13,a13,1024);

f = w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

The frequency response is clearly improved. The entire passband is rela-
tively fl at at a value of 1.0, whereas the stopband is approximately zero
everywhere. Next we modify our input signal by introducing a third period
of 5. This signal is then used to illustrate the operation of a Butterworth
bandstop fi lter.

x14 = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
plot(t,x14), axis([0 200 -4 4])

[Pxx,f] = periodogram(x14,[],1024,1);

plot(f,abs(Pxx))

The new Butterworth fi lter is a bandstop fi lter. The stopband of the fi lter is
between the frequencies 0.06 and 0.08. It can therefore be used to suppress
the period of 15 corresponding to a frequency of approximately 0.07.

xn14 = x14 + randn(1,length(t));

[b14,a14] = butter(5,[0.06 0.08]/0.5,'stop');
xf14 = filtfilt(b14,a14,x14);

[Pxx,f] = periodogram(xf14,[],1024,1);

plot(f,abs(Pxx))

plot(t,xn14,'b-',t,xf14,'r-'), axis([0 200 -4 4])

The plots show the effect of this fi lter. The frequency band between 0.06
and 0.08, and therefore also the frequency of 0.07 was successfully removed
from the signal.

6.10 Adaptive Filtering 143

6.10 Adaptive Filtering

The fi xed fi lters used in the previous chapters make the basic assumption
that the signal degradation is known and it does not change with time. In
most applications, however, an a priori knowledge of the signal and noise
statistical characteristics is usually not available. In addition, both the noise
level and the variance of the genuine signal can be highly nonstationary with
time, e.g., stable isotope records during the glacial-interglacial transition.
Fixed fi lters thus cannot be used in an nonstationary environment without a
knowledge of the signal-to-noise ratio.

In contrast, adaptive fi lters widely used in telecommunication industry
could help to overcome these problems. An adaptive fi lter is an inverse
modeling process, which iteratively adjusts its own coeffi cients automati-
cally without requiring any a priori knowledge of signal and noise. The
operation of an adaptive fi lter includes, (1) a fi ltering process, the purpose
of which is to produce an output in response to a sequence of data, and (2)
an adaptive process providing a mechanism for the adaptive control of the
fi lters weights (Haykin 1991).

In most practical applications, the adaptive process is oriented towards
minimizing an error signal or cost function e. The estimation error e at an in-
stant i is defi ned by the difference between some desired response d

i
 and the

actual fi lter output y
i
, that is the fi ltered version of a signal x

i
, as shown by

where i=1, 2, …, N and N is the length of the input data vector. In the case
of a nonrecursive fi lter characterized by the vector of fi lter weights W with
f elements, the fi lter output y

i
is given by the inner product of vector W and

the input vector X
i
.

The selection of the desired response d that is used in the adaptive process
depends on the nature of the application. Traditionally, d is a combined sig-
nal that contains a signal s and random noise n

0
. The signal x contains a noise

n
1
 uncorrelated with the signal s but correlated in some unknown way to the

noise n
0
. In noise canceling systems, the practical objective is to produce a

system output y that is a best fi t in the least-squares sense to the signal d.
Different approaches have been developed to solve this multivariate min-

imum error optimization problem (e.g., Widrow and Hoff 1960, Widrow
et al. 1975, Haykin 1991). Selection of one algorithm over another is in-
fl uenced by various factors: the rate of convergence (number of adaptive

144 6 Signal Processing

steps required for the algorithm to converge close enough to an optimum
solution), misadjustment (measure of the amount by which the fi nal value
of the mean-squared error deviates from the minimum squared error of an
optimal fi lter, e.g., Wiener 1945, Kalman and Bucy 1961), and tracking (the
capability of the fi lter to work in a nonstationary environment, i.e., to track
changing statistical characteristics of the input signal) (Haykin 1991).

The simplicity of the least-mean-squares (LMS) algorithm, originally de-
veloped by Widrow and Hoff (1960), has made it the benchmark against
which other adaptive fi ltering algorithms are tested. For applications in earth
sciences, we use this fi lter to extract the noise from two signals S and X,
both containing the same signal s, but uncorrelated noise n

1
 and n

2
 (Hattingh

1988). As an example, consider a simple duplicate set of measurements on
the same material, e.g., two parallel stable isotope records from the same
foraminifera species. What you will expect are two time-series with N ele-
ments containing the same desired signal overlain by different uncorrelated
noise. The fi rst record is used as the primary input S and the second record
is the reference input X.

and

As demonstrated by Hattingh (1988), the required noise-free signal can be
extracted by fi ltering the reference input X using the primary input S as the
desired response d. The minimum error optimization problem is solved by
the L2-norm (least-mean-square). The mean-squared error e

i
2 is a second-or-

der function of the tap weights in the nonrecursive fi lter. The dependence of
e

i
2 on the unknown tap weights may be seen as a multidimensional parabo-

loid with a uniquely defi ned minimum point. The tap weights corresponding
to the minimum point of this error performance surface defi ne the optimum
Wiener solution (Wiener 1945). The value computed for the weight vector
W using the LMS algorithm represents an estimator whose expected value
approaches the Wiener solution as the number of iterations approaches infi n-
ity (Haykin 1991). Gradient methods are used usually to reach the minimum
point of the error performance surface. For simplifi cation of the optimiza-
tion problem, Widrow and Hoff (1960) developed an approximation for the
required gradient function that can be computed directly from the data. This
leads to a simple relation for updating the tap-weight vector W.

6.10 Adaptive Filtering 145

The new parameter estimate W
i+1

is based on the previous set of fi lter weights
W

i
plus a term which is the product of a bounded step size u, a function of the

input state X
i
 and a function of the error e

i
. In other words, error e

i
 calculated

from the previous step is fed back to the system to update fi lter coeffi cients
for the next step (Fig. 6.6). The fi xed convergence factor u regulates the
speed and stability of adaption. A small value ensures a higher accuracy but
more data are needed to teach the fi lter to reach the optimum solution. In the
modifi ed version of the LMS algorithm by Hattingh (1988), this problem
is overcome by feeding the data back so that the canceler can have another
chance to improve its own coeffi cients and adapt to the changes in the data.

In the following MATLAB function canc, each of these loops is called
an iteration since many of these loops are required to achieve optimal re-
sults. This algorithm extracts the noise-free signal from two vectors x and s
containing the correlated signal and uncorrelated noise. As an example, we
generate two signals containing the same sine wave, but different gaussian
noise.

x = 0:0.1:100;
y = sin(x);
yn1 = y + 0.2*randn(size(y));
yn2 = y + 0.2*randn(size(y));

plot(x,yn1,x,yn2)

Save the following code in a text fi le canc.m and include it into the search

Fig. 6.6 Schematic of an adaptive fi lter. Each iteration involves a new estimate of the fi lter
weights W

i+1
 based on the previous set of fi lter weights W

i
 plus a term which is the product of

a bounded step size u, a function of the fi lter input X
i
, and a function of the error e

i
. In other

words, error e
i
 calculated from the previous step is fed back to the system to update fi lter

coeffi cients for the next step (modifi ed from Trauth 1998).

Σ
+

-

Reference
input

System
output

Adaptation
Algorithm

Filter
output

Error

Adaptive Noise Canceller

Primary
input

146 6 Signal Processing

path. The algorithm canc formats both signals, feeds them into the fi lter
loop, corrects the signals for phase shifts and formats the signals for the
output.

function [zz,yy,ee] = canc(x,s,u,l,iter)
% CANC Correlated Adaptive Noise Canceling
[n1,n2]=size(s);n=n2;index=0; % Formatting
if n1>n2
 s=s';x=x';n=n1;index=1;
end
w(1:l)=zeros(1,l);e(1:n)=zeros(1,n); % Initialization
xx(1:l)=zeros(1,l);ss(1:l)=zeros(1,l);
z(1:n)=zeros(1,n);y(1:n)=zeros(1,n);
ors=s;ms(1:n)=mean(s).*ones(size(1:n));
s=s-ms;x=x-ms;ors=ors-ms;
for it=1:iter % Iterations
 for I=(l+1):(n+1) % Filter loop
 for k=1:l
 xx(k)=x(I-k);ss(k)=s(I-k);
 end
 for J=1:l
 y(I-1)=y(I-1)+w(J).*xx(J);
 z(I-1)=z(I-1)+w(J).*ss(J);
 end
 e(I-1)=ors(I-1-(fix(l/2)))-y(I-1);
 for J=1:l
 w(J)=w(J)+2.*u.*e(I-1).*xx(J);
 end
 end % End filter loop
 for I=1:n % Phase correction
 if I<=fix(l/2)
 yy(I)=0;zz(I)=0;ee(I)=0;
 elseif I>n-fix(l/2)
 yy(I)=0;zz(I)=0;ee(I)=0;
 else
 yy(I)=y(I+fix(l/2));
 zz(I)=z(I+fix(l/2));
 ee(I)=abs(e(I+fix(l/2)));
 end
 yy(I)=yy(I)+ms(I);
 zz(I)=zz(I)+ms(I);
 end % End phase correction
 y(1:n)=zeros(size(1:n));
 z(1:n)=zeros(size(1:n));
 mer(it)=mean(ee((fix(l/2)):(n-fix(l/2))).^2);
end % End iterations
if index==1 % Reformatting
 zz=zz';yy=yy';ee=ee';
end

The required inputs are the signals x and s, the step size u, the fi lter length l
and the number of iterations iter. In our example, the two noisy signals are
yn1 and yn2. We choose a fi lter with l=5 fi lter weights. A value of u in the

6.10 Adaptive Filtering 147

range of 0 <u< l/λ
max

 where λ
max

 is the largest eigenvalue of the autocorrela-
tion matrix of the reference input, leads to reasonable results (Haykin 1991)
(Fig. 6.7). The value of u is computed by

k = kron(yn1,yn1');
u = 1/max(eig(k))

which yields

u =
 0.0019

Original noisefree signal
Filtered signal

Noise

Mean-squared error

1st data noisy series
2nd data noisy series

0 5 10 15 20 0 5 10 15 20
0

0.1

0.2

0.3

0.4

2

1

0

1

2

2

1

0

1

2

0 5 10 15 20 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x x

E
2

ny
yn

x Iteration

Duplicate Noisy Records Learning Curve

Filter Result Extracted Noise
a

c d

b

Fig. 6.7 Output of the adaptive fi lter. a The duplicate records corrupted by uncorrelated noise
are fed into the adaptive fi lter with 5 weights with a convergence factor of 0.0019. After
10 iterations, the fi lter yields the b learning curve, c the noisefree record and d the noise
extracted from the duplicate records.

148 6 Signal Processing

We now run the adaptive fi lter canc for 10 iterations and use the above
value of u.

[z,e,mer] = canc(yn1,yn2,0.0019,5,10);

The evolution of the mean-squared error

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen step
size u=0.0019 obviously leads to a relatively fast convergence. In most ex-
amples, a smaller step size decreases the rate of convergence, but increases
the quality of the fi nal result. We therefore reduce u by one order of magni-
tude and run the fi lter again with more iterations.

[z,e,mer] = canc(yn1,yn2,0.0001,5,20);

The plot of the mean-squared error against the iterations

plot(mer)

now convergences after around six iterations. We now compare the fi lter
output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

This plot shows that the noise level of the signal has been reduced dramati-
cally by the fi lter. Finally, the plot

plot(x,e,'r')

shows the noise extracted from the signal. In practice, the user should vary
the parameters u and l in order to obtain the optimum result.

The application of this algorithm has been demonstrated on duplicate
oxygen-isotope records from ocean sediments (Trauth 1998). The work by
Trauth (1998) illustrates the use of the modifi ed LMS algorithm, but also
another type of adaptive fi lter, the recursive least-squares (RLS) algorithm
(Haykin 1991) in various environments.

Recommended Reading

Alexander ST (1986) Adaptive signal processing: theory and applications. Springer, Berlin
Heidelberg New York

Buttkus B (2000) Spectral Analysis and Filter Theory in Applied Geophysics. Springer,
Berlin Heidelberg New York

Recommended Reading 149

Cowan CFN, Grant PM (1985) Adaptive fi lters. Prentice Hall, Englewood Cliffs, New Jersey
Grünigen DH (1993) Digitale Signalverarbeitung – Grundlagen und Anwendungen, Beispiele

und Übungen mit MATLAB. AT Verlag, Aarau/Schweiz
Hattingh M (1988) A new data adaptive fi ltering program to remove noise from geophysical

time- or space series data. Computers & Geosciences 14(4):467-480
Haykin S (1991) Adaptive fi lter theory. Prentice Hall, Englewood Cliffs, New Jersey
Kalman R, Bucy R (1961) New results in linear fi ltering and prediction theory. ASME Tans.

Ser. D Jour. Basic Eng. 83:95-107
Sibul LH (1987) Adaptive Signal Processing. IEEE Press
The Mathworks (2002) Signal Processing Toolbox User s Guide - For the Use with

MATLAB®. The MathWorks, Natick, MA
Trauth MH (1998) Noise removal from duplicate paleoceanographic time-series: The use of

adaptive fi ltering techniques. Mathematical Geology 30(5):557-574
Widrow B, Hoff Jr. M (1960) Adaptive switching circuits. IRE WESCON Conv. Rev.

4:96-104
Widrow B, Glover JR, McCool JM, Kaunitz J, Williams CS, Hearn RH, Zeidler JR, Dong

E, Goodlin RC (1975) Adaptive noise cancelling: principles and applications. Proc. IEEE
63(12):1692-1716

Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series, with
engineering applications. MIT Press, Cambridge, Mass (reprint of an article originally
issued as a classifi ed National Defense Research Report, February, 1942)

7 Spatial Data

7.1 Types of Spatial Data

Most data in earth sciences are spatially distributed, either as vector data,
(points, lines, polygons) or as raster data (gridded topography). Vector data
are generated by digitizing map objects such as drainage networks or out-
lines of lithologic units. Raster data can be obtained directly from a satellite
sensor output, but in most cases grid data can be interpolated from irregu-
larly-distributed samples from the field (gridding).

The following chapter introduces the use of vector data by using coast-
line data as an example (Chapter 7.2). Subsequently, the acquisition and
handling of raster data is illustrated with help of digital topography data
(Chapters 7.3 to 7.5). The availability and use of digital elevation data has
increased considerably since the early 90 s. With 5 arc minutes resolution,
the ETOPO5 was one of the fi rst data sets for topography and bathymetry.
In October 2001, it was replaced by the ETOPO2 that has a resolution of 2
arc minutes. In addition, there is a data set for topography called GTOPO30
completed in 1996 that has a horizontal grid spacing of 30 arc seconds (ap-
proximately 1 km). Most recently, the 30 and 90 m resolution data from the
Shuttle Radar Topography Mission (SRTM) have replaced the older data
sets in most scientifi c studies.

The second part of the chapter deals with surface estimates from irregular-
spaced data (Chapters 7.6 to 7.9). In earth sciences, most data are collected
in an irregular pattern. Access to sample rocks is often restricted to natural
outcrops such as shoreline cliffs and the walls of a gorge, or anthropogenic
outcrops such as road cuts and quarries. Clustered and traversed data is a
challenge for all gridding techniques. The corresponding chapters illustrate
the use of the most important gridding routines and outline the potential
pitfalls while using these methods.

This chapter requires the Mapping Toolbox although most graphics rou-
tines used in our examples can be easily replaced by standard MATLAB func-

152 7 Spatial Data

tions. An alternative and very useful mapping toolbox by Rich Pawlowicz
(Earth and Ocean Sciences at the Unversity of British Columbia) is avail-
able from

http://www2.ocgy.ubc.ca/~rich

The handling and processing of large spatial data sets also requires a power-
ful computing system with at least 1 GB physical memory.

7.2 The GSHHS Shoreline Data Set

The global self-consistent, hierarchical, high-resolution shoreline data
base GSHHS is amalgamated from two public domain data bases by Paul
Wessel (SOEST, University of Hawaii, Honolulu, HI) and Walter Smith
(NOAA Laboratory for Satellite Altimetry, Silver Spring, MD). On the web
page of the US National Geophysical Data Center (NGDC)

http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html

the coastline vector data can be downloaded as MATLAB vector data. First
we defi ne the geographic range of interest as decimal degrees with west
and south denoted by a negative sign. For example, the East African coast
would be displayed on the latitude between 0 and +15 degrees and longitude
of +40 to +50 degrees. Subsequently, it is important to choose the coastline
data base from which the data is to be extracted. As an example, the World
Data Bank II provides maps at the scale 1 : 2,000,000. Finally, the compres-
sion method is set to None for the ASCII data that have been extracted. The
data format is set to be MATLAB and GMT Preview is enabled. The result-
ing GMT map and a link to the raw text data can be displayed by pressing
the Submit – Extract button at the end of the web page. By opening the 228
KB large text fi le on a browser, the data can be saved onto a new fi le called
coastline.txt. The two columns contained in this fi le represent the longitude/
latitude coordinates of NaN-separated polygons or coastline segments.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642

7.2 The GSHHS Shoreline Data Set 153

42.915987 0.028749
42.918921 0.032562
42.922441 0.035789
(cont'd)

The NaN s perform two functions: they provide a means for identifying break
points in the data. They also serve as pen-up commands when the Mapping
Toolbox plots vector maps. The shorelines can be displayed by using

data = load('coastline.txt');

plot(data(:,1),data(:,2),'k'); axis equal
xlabel('Longitude'), ylabel('Latitude')

More advanced plotting functions are contained in the Mapping Toolbox,
which allow to generate the following plot (Fig. 7.1):

 axesm('MapProjection','mercator', ...
 'MapLatLimit',[0 15], ...

Longitude

La
tit

ud
e

0

5

10

15

36 38 40 42 44 46 48 50 52 54

GSHHS Data Set

Fig. 7.1 Display of the GSHHS shoreline data set. The map shows an area between 0° and
15° northern latitude, 40° and 50° eastern longitude. Simple map using the function plot
and equal axis aspect ratios.

154 7 Spatial Data

 'MapLonLimit',[40 50], ...
 'Frame','on', ...
 'MeridianLabel','on', ...
 'ParallelLabel','on');
plotm(data(:,2),data(:,1),'k');

Note that the input for plotm is given in the order longitude, followed by the
latitude. The second column of the data matrix is entered fi rst. In contrast,
the function plot requires an xy input. The fi rst column is entered fi rst. The
function axesm defi nes the map axis and sets various map properties such
as the map projection, the map limits and the axis labels.

7.3 The 2-Minute Gridded Global Elevation Data ETOPO2

ETOPO2 is a global data base of topography and bathymetry on a regular
2-minute grid. It is a compilation of data from a variety of sources. It can be
downloaded from the US National Geophysical Data Center (NGDC) web
page

http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html

From the menu bar Free online we select Make custom grids which is linked
to the GEODAS Grid Translator. First we choose a Grid ID (e.g., grid01), the
Grid Data Base (e.g., ETOPO2 2-minute Global Relief), our computer sys-
tem (e.g., Macintosh) and the Grid Format (e.g., ASCII for both the data and
the header). Next we defi ne the longitude and latitude bounds. For example,
the latitude (lat) from -20 to +20 degrees and a longitude (lon) between +30
and +60 degrees corresponds to the East African coast. The selected area can
be transformed into a digital elevation matrix by pressing Design–a–grid.
this matrix may be downloaded from the web page by pressing Download
your Grid Data, Compress and Retrieve and Retrieve compressed fi le in the
subsequent windows. Decompressing the fi le grid01.tgz creates a directory
grid01_data. This directory contains various data and help fi les. The sub-
directory grid01 contains the ASCII raster grid fi le grid01.asc that have the
following content:

NCOLS 901
NROWS 1201
XLLCORNER 30.00000
YLLCORNER -20.00000
CELLSIZE 0.03333333
NODATA_VALUE -32768
270 294 278 273 262 248 251 236 228 223 ...
280 278 278 264 254 253 240 234 225 205 ...

7.3 The 2-Minute Gridded Global Elevation Data ETOPO2 155

256 266 267 283 257 273 248 228 215 220 ...
272 273 258 258 254 264 232 218 229 210 ...
259 263 268 275 242 246 237 219 211 209 ...
(cont'd)

The header documents the size of the data matrix (e.g., 901 columns and
1201 rows in our example), the coordinates of the lower-left corner (e.g.,
x=30 and y=-20), the cell size (e.g., 0.033333 = 1/30 degree latitude and
longitude) and the -32768 fl ag for data voids. We comment the header by
typing % at the beginning of the fi rst six lines

%NCOLS 901
%NROWS 1201
%XLLCORNER 30.00000
%YLLCORNER -20.00000
%CELLSIZE 0.03333333
%NODATA_VALUE -32768
270 294 278 273 262 248 251 236 228 223 ...
280 278 278 264 254 253 240 234 225 205 ...
256 266 267 283 257 273 248 228 215 220 ...
272 273 258 258 254 264 232 218 229 210 ...
259 263 268 275 242 246 237 219 211 209 ...
(cont’d)

and load the data into the workspace.

ETOPO2 = load('grid01.asc');

We fl ip the matrix up and down. Then, the -32768 fl ag for data voids has to
be replaced by the MATLAB representation for Not-a-Number NaN.

ETOPO2 = flipud(ETOPO2);
ETOPO2(find(ETOPO2 == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(ETOPO2(:))
min(ETOPO2(:))

In this example, the maximum elevation of the area is 5199 m and the mini-
mum elevation is -5612 m. The reference level is the sea level at 0 m. We
now defi ne a coordinate system using the information that the lower-left
corner is s20e30, i.e., 20° southern latitude and 30° eastern longitude. The
resolution is 2 arc minutes corresponding to 1/30 degrees.

[LON,LAT] = meshgrid(30:1/30:60,-20:1/30:20);

Now we generate a colored surface from the elevation data using the

156 7 Spatial Data

function surf.

surf(LON,LAT,ETOPO2)
 shading interp
axis equal, view(0,90)
 colorbar

This script opens a new fi gure window and generates a colored surface.
The surface is highlighted by a set of color shades on an overhead view
(Fig. 7.2). More display methods will be described in the chapter on SRTM
elevation data.

Longitude

La
tit

ud
e

−4000

−3000

0

1000

2000

30 35 40 45 50 55 60
−20

−15

−10

−5

0

5

10

15

20

−5000

−2000

−1000

3000

5000

4000

ETOPO2 Data Set

Fig. 7.2 Display of the ETOPO2 elevation data set. The map uses the function surf for
generating a colored surface. The colorbar provides an information on the colormap used to
visualize topography and bathymetry.

7.4 The 30-Arc Seconds Elevation Model GTOPO30 157

7.4 The 30-Arc Seconds Elevation Model GTOPO30

The 30 arc second (approximately 1 km) global digital elevation data set
GTOPO30 only contains elevation data, not bathymetry. The data set has
been developed by the Earth Resources Observation System Data Center
and is available from the web page

http://edcdaac.usgs.gov/gtopo30/gtopo30.html

The model uses a variety of international data sources. However, it is based
on raster data from the Digital Terrain Elevation Model (DTEM) and vec-
tor data from the Digital Chart of the World (DCW). The GTOPO30 data
set has been divided into 33 pieces or tiles. The tile names refer to the lon-
gitude and latitude of the upper-left (northwest) corner of the tile. The tile
name e020n40 refers to the upper-left corner of the tile. In our example, the
coordinates of the upper-left corner are 20 degrees eastern longitude and
40 degrees northern latitude. As example, we select and download the tile
e020n40 provided as a 24.9 MB compressed tar fi le. After decompressing
the tar fi le, we obtain eight fi les containing the raw data and header fi les in
various formats. Moreover, the fi le provides a GIF image of a shaded relief
display of the data.

Importing the GTOPO30 data into the workspace is simple. The Mapping
Toolbox provides an import routine gtopo30 that reads the data and stores
it onto a regular data grid. We import only a subset of the original matrix:

latlim = [-5 5]; lonlim = [30 40];
GTOPO30 = gtopo30('E020N40',1,latlim,lonlim);

This script reads the data from the tile e020n40 (without fi le extension) in
full resolution (scale factor = 1) into the matrix GTOPO30. The coordinate
system is defi ned by using the lon/lat limits as listed above. The resolution
is 30 arc seconds corresponding to 1/120 degrees.

[LON,LAT] = meshgrid(30:1/120:40,-5:1/120:5);

A grayscale image can be generated from the elevation data by using the
function surf. The fourth power of the colormap gray is used for darken-
ing the map at higher levels of elevation. Subsequently, the colormap is
fl ipped vertically in order to obtain dark colors for high elevations and light
colors for low elevations.

figure
surf(LON,LAT,GTOPO30)
shading interp

158 7 Spatial Data

 colormap(flipud(gray.^4))
axis equal, view(0,90)
colorbar

This script opens a new fi gure window, generates the gray surface using
interpolated shading in an overhead view (Fig. 7.3).

7.5 The Shuttle Radar Topography Mission SRTM

The Shuttle Radar Topography Mission (SRTM) incorporates a radar
system that fl ew onboard the Space Shuttle Endeavour during an 11-day
mission in February 2000. SRTM is an international project spearheaded
by the National Geospatial-Intelligence Agency (NGA) and the National
Aeronautics and Space Administration (NASA). Detailed info on the SRTM

La
tit

ud
e

5

4

3

2

1

0

-1

-2

-3

-4

-5

Longitude

30 31 32 33 34 35 36 37 38 39 40
0

1000

1500

2500

3000

3500

4000

4500

5000

5500

2000

500

GTOPO30 Data Set

Fig. 7.3 Display of the GTOPO30 elevation data set. The map uses the function surf for generating
a gray surface. We use the colormap gray to power of four in order to darken the colormap with
respect to the higher elevation. In addition, we fl ip the colormap in up/down direction using
flipud to obtain dark colors for high elevations and light colors for low elevations.

7.5 The Shuttle Radar Topography Mission SRTM 159

project including a gallery of images and a users forum can be accessed on
the NASA web page:

http://www2.jpl.nasa.gov/srtm/

The data were processed at the Jet Propulsion Laboratory. They are being
distributed through the United States Geological Survey s (USGS) EROS
Data Center by using the USGS Seamless Data Distribution System.

http://seamless.usgs.gov/

Alternatively, the raw data fi les can be downloaded via FTP from

ftp://e0mss21u.ecs.nasa.gov/srtm/

This directory contains zipped fi les of SRTM-3 DEM s from various areas
of the world, processed by the SRTM global processor and sampled at 3
arc seconds or 90 meters. As an example, we download the 1.7 MB large
fi le s01e036.hgt.zip containing the SRTM data. All elevations are in meters
referenced to the WGS84 EGM96 geoid as documented at

http://earth-info.nga.mil/GandG/wgs84/index.htm

The name of this fi le refers to the longitude and latitude of the lower-left
(southwest) pixel of the tile, i.e., one degree southern latitude and 36 de-
grees eastern longitude. SRTM-3 data contain 1201 lines and 1201 samples
with similar overlapping rows and columns. After having downloaded and
unzipped the fi le, we save s01e036.hgt in our working directory. The digital
elevation model is provided as 16-bit signed integer data in a simple binary
raster. Bit order is Motorola (big-endian) standard with the most signifi cant
bit fi rst. The data are imported into the workspace using

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

This script opens the fi le s01e036.hgt for read access using fopen, defi nes
the fi le identifi er fid, which is then used for reading the binaries from the
fi le using fread, and writing it into the matrix SRTM. Function fclose
closes the fi le defi ned by fid. Firstly, the matrix needs to be transposed and
fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

The -32768 fl ag for data voids can be replaced by NaN, which is the MATLAB
representation for Not-a-Number.

160 7 Spatial Data

SRTM(find(SRTM == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(SRTM(:))

ans =
 3992

min(SRTM(:))

ans =
 1504

In our example, the maximum elevation of the area is 3992 m, the minimum
altitude is 1504 m above sea level. A coordinate system can be defi ned by
using the information that the lower-left corner is s01e036. The resolution is
3 arc seconds corresponding to 1/1200 degrees.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);

A shaded grayscale map can be generated from the elevation data using
the function surfl. This function displays a shaded surface with simulated
lighting.

figure
surfl(LON,LAT,SRTM)
 shading interp
colormap gray
view(0,90)
colorbar

This script opens a new fi gure window, generates the shaded-relief map us-
ing interpolated shading and a gray colormap in an overhead view. SRTM
data contain considerable amount of noise, we fi rst smooth the data using
an arbitrary 9x9 pixel moving average fi lter. The new matrix is stored in the
matrix SRTM_FILTERED.

B = 1/81 * ones(9,9);
SRTM_FILTERED = filter2(B,SRTM);

The corresponding shaded-relief map is generated by

figure
surfl(LON,LAT,SRTM_FILTERED)
shading interp
colormap gray
view(0,90)
 colorbar

7.6 Gridding and Contouring Background 161

After having generated the shaded-relief map, the graph has to be exported
onto a graphics fi le (Fig. 7.4). For instance, the fi gure may be written onto a
JPEG format with 70% quality level and a 300 dpi resolution.

print -djpeg70 -r300 srtmimage

The new fi le srtmimage.jpg has a size of 300 KB. The decompressed image
has a size of 16.5 MB. This fi le can now be imported to another software
package such as Adobe Photoshop.

7.6 Gridding and Contouring Background

The previous data sets were all stored in equally-spaced two-dimensional
arrays. Most data in earth sciences, however, are obtained on an irregular
sampling pattern. Therefore, irregular-spaced data have to be interpolated,

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 3736

Longitude

La
tit

ud
e

SRTM Data Set

Fig. 7.4 Display of the fi ltered SRTM elevation data set. The map uses the function surfl
for generating a shaded-relief map with simulated lighting using interpolated shading and a
gray colormap in an overhead view. Note that the SRTM data set contains a lot of gaps, in
particular in the lake areas.

162 7 Spatial Data

i.e., we compute a smooth and continuous surface from our measurements
in the fi eld. Surface estimation is typicall carried out in two major steps.
Firstly, the number of control points needs to be selected. Secondly, the grid
points have to be estimated. Control points are irregularly-space fi eld mea-
surements, such as the thicknesses of sandstone units at different outcrops or
the concentrations of a chemical tracer in water wells. The data are generally
represented as xyz triplets, where x and y are spatial coordinates and z is the
variable of interest. In such cases, most gridding methods require continu-
ous and unique data. However, the spatial variables in earth sciences are
often discontinuous and spatially nonunique. As an example, the sandstone
unit may be faulted or folded. Furthermore, gridding requires spatial auto-
correlation. In other words, the neighboring data points should be correlated
with each other by a certain relationship. It is not sensible to use random z
variable for the surface estimation if the data are not autocorrelated. Having
selected the control points, the calculation of the z values at the equally-
spaced grid points varies from method to method.

Various techniques exist for selecting the control points (Fig. 7.5a). Most
methods make arbitrary assumptions on the autocorrelation of the z variable.
The nearest-neighbor criterion includes all control points within a circular
neighborhood of the grid point, where the radius of the circle is specifi ed by
the user. Since the spatial autocorrelation is likely to decrease with increas-
ing distance from the grid point, considering too many distant control points
is likely to lead to erroneous results while computing the grid points. On
the other hand, small circular areas limit the calculation of the grid points
to a very small number of control points. Such an approach leads to a noisy
estimate of the modeled surface.

It is perhaps due to these diffi culties that triangulation is often used as an
alternative method for selecting the control points (Fig. 7.5b). In this technique,
all control points are connected to a triangular net. Every grid point is located
in a triangular area of three control points. The z value of the grid point is com-
puted from the z values of the grid points. In a modifi cation of such gridding,
the three points at the apices of the three adjoining triangles are also used. The
Delauney triangulation uses the triangular net where the acuteness of the tri-
angles is minimized, i.e., the triangles are as close as possible to equilateral.

Kriging introduced in Chapter 7.9 is an alternative approach of select-
ing control points. It is often regarded as the method of gridding. Some
people even use the term geostatistics synonymous with kriging. Kriging is
a method for determining the spatial autocorrelation and hence the circle di-
mension. More sophisticated versions of kriging use an elliptical area which
includes the control points.

7.6 Gridding and Contouring Background 163

The second step of surface estimation is the actual computation of the z
values of the grid points. The arithmetic mean of the z values at the control
points.

provides the easiest way of computing the grid points. This is a particularly
useful method if there are only a limited number of control points. If the
study area is well covered by control points and the distance between these
points is highly variable, the z values of the grid points should be computed
by a weighted mean. The z values at the control points are weighted by the
inverse distance d

i
 from the grid points.

Depending on the spatial scaling relationship of the parameter z, the inverse

Control Point

Grid Point

a b

Fig. 7.5 Methods to select the control points for estimating the grid points. a Construction of
a circle around the grid point (plus sign) with a radius defi ned by the spatial autocorrelation
of the z-values at the control points (circles). b Triangulation. The control points are selected
from the apices of the triangles surrounding the grid point and optional also the apices of the
adjoining triangles.

164 7 Spatial Data

square or the root of distance may also be used instead of weighing the z val-
ues by the inverse of distance. The fi tting of 3D splines to the control points
provides another method for computing the grid points that is commonly
used in the earth sciences. Most routines used in surface estimation involve
cubic polynomial splines, i.e., a third-degree 3D polynomial is fi tted to at
least six adjacent control points. The fi nal surface consists of a composite
of pieces of these splines. MATLAB also provides interpolation with bihar-
monic splines generating very smooth surfaces (Sandwell, 1987).

7.7 Gridding Example

MATLAB provides a biharmonic spline interpolation since its very begin-
nings. This interpolation method was developed by Sandwell (1987). This
specifi c gridding method produces smooth surfaces that are particularly
suited for noisy data sets with irregular distribution of control points. As an
example we use synthetic xyz data representing the vertical distance of an
imaginary surface of a stratigraphic horizon from a reference surface. This
lithologic unit was displaced by a normal fault. The foot wall of the fault
shows more or less horizontal strata, whereas the hanging wall is charac-
terized by the development of two large sedimentary basins. The xyz data
are irregularly distributed and have to be interpolated onto a regular grid.
Assume that the xyz data are stored as a three-column table in a fi le named
normalfault.txt.

4.32e+02 7.46e+01 0.00e+00
4.46e+02 7.21e+01 0.00e+00
4.51e+02 7.87e+01 0.00e+00
4.66e+02 8.71e+01 0.00e+00
4.65e+02 9.73e+01 0.00e+00
4.55e+02 1.14e+02 0.00e+00
4.29e+02 7.31e+01 5.00e+00
(cont’d)

The fi rst and second column contains the coordinates x (between 420 and
470 of an arbitrary spatial coordinate system) and y (between 70 and 120),
whereas the third column contains the vertical z values. The data are loaded
using

data = load('normalfault.txt');

Initially, we wish to create an overview plot of the spatial distribution
of the control points. In order to label the points in the plot, numerical z
values of the third column are converted into string representation with

7.7 Gridding Example 165

maximum two digits.

labels = num2str(data(:,3),2);

The 2D plot of our data is generated in two steps. Firstly, the data are dis-
played as empty circles by using the plot command. Secondly, the data
are labeled by using the function text(x,y,’string’) which adds text
contained in string to the xy location. The value 1 is added to all x coor-
dinates as a small offset between the circles and the text.

plot(data(:,1),data(:,2),'o')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

This plot helps us to defi ne the axis limits for gridding and contouring,
xlim = [420 470] and ylim = [70 120]. The function meshgrid transforms
the domain specifi ed by vectors x and y into arrays XI and YI. The rows of
the output array XI are copies of the vector x and the columns of the output
array YI are copies of the vector y. We choose 1.0 as grid intervals.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

The biharmonic spline interpolation is used to interpolate the irregular-
spaced data at the grid points specifi ed by XI and YI.

ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

The option v4 depicts the biharmonic spline interpolation, which was the
sole gridding algorithm until MATLAB4 was replaced by MATLAB5.
MATLAB provides various tools for the visualization of the results. The
simplest way to display the gridding results is a contour plot using con-
tour. By default, the number of contour levels and the values of the contour
levels are chosen automatically depending on the minimum and maximum
values of z.

 contour(XI,YI,ZI)

Alternatively, the number of contours can be chosen manually, e.g., 10 con-
tour levels.

contour(XI,YI,ZI,10)

Contouring can also be performed at values specifi ed in a vector v. Since the
maximum and minimum values of z is

166 7 Spatial Data

min(data(:,3))

ans =
 -25

max(data(:,3))

ans =
 20

we choose

v = -30 : 5 : 25;

The command

[c,h] = contour(XI,YI,ZI,v)

returns contour matrix c and a handle h that can be used as input to the func-
tion clabel, which labels contours automatically.

 clabel(c,h)

Alternatively, the graph is labeled manually by selecting manual option in
the function clabel. This function places labels onto locations that have
been selected with the mouse. Labeling is terminated by pressing the re-
turn key.

[c,h] = contour(XI,YI,ZI,v);
clabel(c,h,'manual')

Filled contours are an alternative to the empty contours used above. This
function is used together with colorbar displaying a legend for the graph.
In addition, we plot the locations and z values of the control points (black
empty circles, text labels) (Fig. 7.6).

 contourf(XI,YI,ZI,v), colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels);
hold off

A pseudocolor plot is generated by using the function pcolor. Black con-
tours are also added at the same levels as in the above example.

 pcolor(XI,YI,ZI), shading flat
hold on
contour(XI,YI,ZI,v,'k')
hold off

7.7 Gridding Example 167

The third dimension is added to the plot by using the mesh command. We
use this example also to introduce the function view(az,el) for a view-
point specifi cation. Herein, az is the azimuth or horizontal rotation and el
is the vertical elevation (both in degrees). The values az = -37.5 and el =
30 defi ne the default view of all 3D plots,

 mesh(XI,YI,ZI), view(-37.5,30)

whereas az = 0 and el = 90 is directly overhead and the default 2D view

mesh(XI,YI,ZI), view(0,90)

The function mesh represents only one of the many 3D visualization meth-
ods. Another commonly used command is the function surf. Furthermore,
the fi gure may be rotated by selecting the Rotate 3D option on the Edit Tools
menu. We also introduce the function colormap, which uses predefi ned
pseudo colormaps for 3D graphs. Typing help graph3d lists a number
of builtin colormaps, although colormaps can be arbitrarily modifi ed and

425 430 435 440 445 450 455 460 465 470

75

80

85

90

95

100

105

110

115

120

25

20

15

10

5

0

5

10

15

20

25

30
420

70
15

15

15

15

15

15

15

15

15

20 20

20

20

20

10

10

10

10

10

5 5

5

5
5

5

5

0

0

0

0

0

–5

–5

–5
–5

–5

–5

–10

–10 –10

–10

–10–10–10–10
–10

–10

–10
–10

–10
–15
–15

–15–15–15

–15

–15

–15 –15–15

–15

–15

–15–15

–10

–20 –20–20
–20

–20

–20–20

–20

–20

–25

–25–25

0

Fig. 7.6 Filled contours used together with a colorbar displaying a legend for the graph and the
plot of the locations and z-values of the true data points (black empty circles, text labels).

168 7 Spatial Data

generated by the user. As an example, we use the colormap hot, which is a
black-red-yellow-white colormap.

 surf(XI,YI,ZI), colormap('hot'), colorbar

In this case, Rotate 3D only rotates the 3D plot, not the colorbar. The func-
tion surfc combines both a surface and a 2D contour plot in one graph.

 surfc(XI,YI,ZI)

The function surfl can be used to illustrate an advanced application of 3D
visualization. It generates a 3D colored surface with interpolated shading
and lighting. The axis labeling, ticks and background can be turned off by
typing axis off. In addition, black 3D contours may be added to the sur-
face plot. The grid resolution is increased prior to data plotting in order to
obtain smooth surfaces (Fig. 7.7).

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

surf(XI,YI,ZI), shading interp, light, axis off
hold on
contour3(XI,YI,ZI,v,'k');
hold off

Fig. 7.7 Three-dimensional colored surface with interpolated shading and simulated lighting.
The axis labeling, ticks and background are turned off. In addition, the graph contains black
3D contours.

7.8 Comparison of Methods and Potential Artifacts 169

The biharmonic spline interpolation described in this chapter provides a so-
lution to most gridding problems. It therefore was the only gridding method
that came with MATLAB for quite a long time. However, different applica-
tions in earth sciences require different methods for interpolation. However,
there is no method without problems. The next chapter compares biharmon-
ic splines with other gridding methods and summarizes their strengths and
weaknesses.

7.8 Comparison of Methods and Potential Artifacts

The fi rst example illustrates the use of the bilinear interpolation technique
for gridding irregular-spaced data. Bilinear interpolation is an extension of
the one-dimensional linear interpolation. In the two-dimensional case, linear
interpolation is performed in one direction fi rst, then in the other direction.
Intuitively, the bilinear method is one of the simplest interpolation tech-
niques. One would not expect serious artifacts and distortions of the data.
On the contrary, this method has a number of disadvantages and therefore
other methods are used in many applications.

The sample data used in the previous chapter can be loaded to study the
performance of a bilinear interpolation.

data = load('normalfault.txt');
labels = num2str(data(:,3),2);

We now choose the option linear while using the function griddata to
interpolate the data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');

The result are plotted as fi lled contours. The plot also includes the location
of the control points.

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')

The new surface is restricted to the area that contains control points. By
default, bilinear interpolation does not extrapolate beyond this region.
Furthermore, the contours are rather angular compared to the smooth out-
line of the biharmonic spline interpolation. The most important character of
the bilinear gridding technique, however, is illustrated by a projection of the
data in a vertical plane.

170 7 Spatial Data

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'ro')
text(data(:,1)+1,data(:,3),labels)
title('Linear Interpolation'), hold off

This plot shows the projection of the estimated surface (vertical lines) and
the labeled control points. The z-values at the grid points never exceed the
z-values of the control points. Similar to the linear interpolation of time
series, bilinear interpolation causes signifi cant smoothing of the data and a
reduction of the high-frequency variation.

Biharmonic splines are sort of the other extreme in many ways. They are
often used for extremely irregular-spaced and noisy data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')

The fi lled contours suggest an extremely smooth surface. In many applica-
tions, this solution is very useful, but the method also produces a number of
artifacts. As we can see from the next plot, the estimated values at the grid
points are often out of the range of the measured z-values.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'o')
text(data(:,1)+1,data(:,3),labels);
title('Biharmonic Spline Interpolation'), hold off

In some cases, this makes a lot of sense and does not smooth the data in the
way bilinear gridding does. However, introducing very close control points
with different z-values can cause serious artifacts.

data(79,:) = [450 105 5];
data(80,:) = [450 104.5 -5];
labels = num2str(data(:,3),2);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

The extreme gradient at the location (450,105) results in a paired low and
high (Fig. 7.8). In such cases, it is recommended to delete one of the two
control points and replace the z-value of the remaining control point by the
arithmetic mean of both z-values.

Extrapolation beyond the area supported by control points is a common
feature of splines. Extreme local trends combined with large areas with no

7.8 Comparison of Methods and Potential Artifacts 171

data often cause unrealistic estimates. To illustrate these edge effects we
eliminate all control points in the upper-left corner.

[i,j] = find(data(:,1)<435 & data(:,2)>105);
data(i,:) = [];

labels = num2str(data(:,3),2);

plot(data(:,1),data(:,2),'ko')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

We again employ the biharmonic spline interpolation technique.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

420 425 430 435 440 445 450 455 460 465 470
70

75

80

85

90

95

100

105

110

115

120

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

20

15

15

15

15

15

15

15

15

20 20

20

20

20

10

10

10

10

10

5 5

5

5
5

5

5

0

0

0

0

0

–5

–5

–5
–5

–5

–5

–10

–10 –10

–10

–10–10–10–10
–10

–10

–10
–10

–10
–15
–15

–15–15–15

–15

–15

–15 –15–15

–15

–15

–15–15

–10

–20 –20–20
–20

–20

–20–20

–20

–20

–25

–25–25

015

–5
5

Fig. 7.8 Filled contours of a data set gridded using a biharmonic spline interpolation. At the
location (450,105), very close control points with different z-values have been introduced.
Interpolation causes a paired low and high, which is a common artefact of spline interpolation
of noisy data.

172 7 Spatial Data

v = -40 : 10 : 40;
contourf(XI,YI,ZI,v)
caxis([-40 40]), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

As we can see from the plot, this method extrapolates beyond the area with
control points using gradients at the map edges (Fig. 7.9). This is in par-
ticular unwanted while gridding variables that only have positive values,
such as thicknesses of sediment beds. Such effect is particular undesired in
the case of gridded closed data, such as percentages, or data that have only
positive values. In such cases, it is recommended to replace the estimated z
values by NaN. As an example, we erase the areas with z values larger than
20, which is regarded as an unrealistic value. The corresponding plot now
contains a sector with no data.

420 425 430 435 440 445 450 455 460 465 470
70

75

80

85

90

95

100

105

110

115

120

40

30

20

10

10

20

30

40

0

15
15

15

15

15

15

15

15

10

10

10

10

10

5 5

5

5 5

5

5

0

0

0

0

0

–5

–5

–5
–5

–5

–5

–10

–10 –10

–10

–10–10–10–10
–10

–10

–10
–10

–10
–15
–15

–15–15–15

–15

–15

–15 –15–15

–15

–15

–15–15

–10

–20 –20–20
–20

–20

–20–20

–20

–20

–25

–25–25

0

Fig. 7.9 Filled contours of a data set gridded using a biharmonic spline interpolation. No
control points are available in the upper left corner. The spline interpolation then beyond the
area with control points using gradients at the map edges causing unrealistic z estimates at
the grid points.

7.9 Geostatistics (by R. Gebbers) 173

ZID = ZI;
ZID(find(ZID > 20)) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40]), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

Alternatively, we can eliminate a rectangular area with no data.

ZID = ZI;
ZID(131:201,1:71) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40]), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

In some examples, the area with no control points is simply eliminated by
putting a legend on this part of the map.

MATLAB provides a number of other gridding techniques. Another very
useful MATLAB gridding method are splines with tension by Wessel and
Bercovici (1998). The tsplines use biharmonic splines in tension t, where
the parameter t can vary between 0 and 1. A value of t=0 corresponds to a
standard cubic spline interpolation. Increasing t reduces undesirable oscil-
lations between data points, e.g., the paired lows and highs observed in one
of the above examples. The limiting situation t 1 corresponds to linear
interpolation.

7.9 Geostatistics (by R. Gebbers)

Geostatistics is used to describe the autocorrelation of one or more variables
in the 1D, 2D, and 3D space or even in 4D space-time, to make predic-
tions at unobserved locations, to give information about the accuracy of
prediction and to reproduce spatial variability and uncertainty. The shape,
the range, and the direction of the spatial autocorrelation is described by
the variogram, which is the main tool in linear geostatistics. The origins
of geostatistics can be dated back to the early 50 s when the South African
mining engineer Daniel G. Krige fi rst published an interpolation method
based on spatial dependency of samples. In the 60 s and 70 s, the French
mathematician George Matheron developed the theory of regionalized vari-
ables which provides the theoretical foundations of Kriges s more practical
methods. This theory forms the basis of several procedures for the analysis
and estimation of spatially dependent variables, which Matheron called geo-

174 7 Spatial Data

statistics. Matheron as well coined the term kriging for spatial interpolation
by geostatistical methods.

Theorical Background

A basic assumption in geostatistics is that a spatiotemporal process is com-
posed of deterministic and stochastic components (Fig. 7.10). The determin-
istic components can be global and local trends (sometimes called drifts). The
stochastic component is formed by a purely random and an autocorrelated part.
An autocorrelated component implies that on average, closer observations are
more similar than more distant observations. This behavior is described by
the variogram where squared differences between observations are plotted
against their separation distances. The fundamental idea of D. Krige was to
use the variogram for interpolation as means to determine the magnitude of
infl uence of neighboring observations when predicting values at unobserved
locations. Basic linear geostatistics includes two main procedures: variogra-
phy for modeling the variogram and kriging for interpolation.

Preceding Analysis

Because linear geostatistics as presented here is a parametric method, the un-
derlying assumptions have to be checked by a preceding analysis. As other
parametric methods, linear geostatistics is sensitive to outliers and deviati-
ons from normal distribution. First, after opening the data fi le geost_dat.mat
containing xyz data triplets we plot the sampling locations. Doing this, we
can check point distribution and detect gross errors on the data coordinates
x and y.

load geost_dat.mat

plot(x,y,'.')

Checking of the limits of the observations z can be done by

min(z)

ans =
 3.7199

max(z)

ans =
 7.8460

7.9 Geostatistics (by R. Gebbers) 175

0 100 200 300 400 500 600 0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 10 20 30 40 50 60

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

3.0

1.5

0.0

-1.5

-3.0

0.8

0.6

0.4

0.2

0.0

1.0

x x

x

x

x

Lag Distance

Spatiotemporal Process Global Trend Component

Local Trend Component Random Component

Autocorrelation Component Variogram

a

c

e f

d

b

Fig. 7.10 Components of a spatiotemporal process and the variogram. The variogram (f)
should only be derived from the autocorrelated component.

176 7 Spatial Data

For linear geostatistics, the observations z should be gaussian distributed. In
most cases, this is only tested by visual inspection of the histogram because
statistical tests are often too sensitive if the number of samples exceed ca.
100. In addition, one can calculate skewness and kurtosis of the data.

hist(z)

skewness(z)

ans =
 0.2568

kurtosis(z)

ans =
 2.5220

A fl at-topped or multiple peaks distribution suggests that there is more than
one population in your data set. If these populations can be related to con-
tinuous areas they should be treated separately. Another reason for multiple
peaks can be preferential sampling of areas with high and/or low values.
This happens usually due to some a priori knowledge and is called cluster
effect. Handling of the cluster effect is described in Deutsch and Journel
(1998) and Isaaks and Srivastava (1998).

Most problems arise from positive skewness (long upper tail). According
to Webster and Oliver (2001), one should consider root transformation if
skewness is between 0.5 and 1, and logarithmic transformation if skewness
exceeds 1. A general formula of transformation is:

This is the so called power transformation with the special case k=0 when a
logarithm transformation is used. In the logarithm transformation, m should
be added when z values are zero or negative. Interpolation results of power-
transformed values can be backtransformed directly after kriging. The back-
transformation of log-transformed values is slightly more complicated and
will be explained later. The procedure is known as lognormal kriging. It can
be important because lognormal distributions are not unusual in geology.

 Variography with the Classical Variogram

The variogram describes the spatial dependency of referenced observations

7.9 Geostatistics (by R. Gebbers) 177

in a one or multidimensional space. While usually we do not know the true
variogram of the spatial process we have to estimate it from observations.
This procedure is called variography. Variography starts with calculating
the experimental variogram from the raw data. In the next step, the experi-
mental variogram is summarized by the variogram estimator. Variography
fi nishes with fi tting a variogram model to the variogram estimator. The ex-
perimental variogram is calculated as the difference between pairs of the
observed values depending on the separation vector h (Fig. 7.11). The clas-
sical experimental variogram is given by the semivariance,

where z
x
 is he observed value at location x and z

x+h
 is he observed value at

another point within a distance h. The length of the separation vector h is
called lag distance or simply lag. The correct term for γ(h) is semivariogram
(or semivariance), where semi refers to the fact that it is half of the variance
of the difference between z

x
 and z

x+h
. It is, nevertheless, the variance per

point when points are considered as in pairs (Webster and Oliver, 2001).
Conventionally, γ(h) is termed variogram instead of semivariogram and so
we do at the end of this chapter. To calculate the experimental variogram we
fi rst have to build pairs of observations. This is done by typing

[X1,X2] = meshgrid(x);
[Y1,Y2] = meshgrid(y);
[Z1,Z2] = meshgrid(z);

The matrix of separation distances D between the observation points is

D = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);

h

x = x + hj i

x i

Fig. 7.11 Separation vector h between two points.

178 7 Spatial Data

where srqt is the square root of the data. Then we get the experimental
variogram G as half the squared differences between the observed values:

G = 0.5*(Z1 - Z2).^2;

We used the MATLAB capability to vectorize commands instead of us-
ing for loops in order to run faster. However, we have computed n2 pairs
of observations although only n*(n-1)/2 pairs are required. For large data
sets, e.g., more than 3000 data points, the software and physical memory
of the computer may become a limiting factor. For such cases, a more ef-
fi cient way of programming is described in the user manual of the software
SURFER (2002). The plot of the experimental variogram is called the var-
iogram cloud (Fig. 7.12). We get this after extracting the lower triangular
portions of the D and G arrays

indx = 1:length(z);
[C,R] = meshgrid(indx);
I = R>C;

Distance between observations

S
em

iv
ar

ia
nc

e

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Fig. 7.12 Variogram cloud: Plot of the experimental variogram (half squared difference
between pairs of observations) versus the lag distance (separation distance of the pairs).

7.9 Geostatistics (by R. Gebbers) 179

plot(D(I),G(I),'.')
xlabel('lag distance')
ylabel('variogram')

The variogram cloud gives you an impression of the dispersion of values at
the different lags. It might be useful to detect outliers or anomalies, but it
is hard to judge from it whether there is any spatial correlation, what form
it might have, and how we could model it (Webster and Oliver, 2001). To
obtain a clearer view and to prepare variogram modeling the experimental
variogram is replaced by the variogram estimator in the next section.

The variogram estimator is derived from the experimental variograms to
summarize their central tendency (similar to the descriptive statistics derived
from univariate observations, Chapter 3.2). The classical variogram estima-
tor is the averaged empirical variogram within certain distance classes or
bins defi ned by multiples of the lag interval. The classifi cation of separation
distances is visualized in Figure 7.13.

The variogram estimator is calculated by:

where N(h) is he number of pairs within the lag interval h.
First we need an idea about a suitable lag interval h. If you have sampled

on a regular grid, you can use the length of a grid cell. If the samples have
irregular spacings, as in our case, the mean minimum distance of pairs is a
good starting point for the lag interval (Webster and Oliver 2001). To cal-
culate the mean minimum distance of pairs we have to replace the diagonal

h3 h3 h3 h3

h1 h1 h1 h1 h1 h1

h2 h2 h2 h2 h2

Fig. 7.13 Classifi cation of separation distances in the case of equally spaced observations
along a line. The lag interval is h

1
 and h

2
, h

3
 etc. are multiples of the lag interval.

180 7 Spatial Data

of the lag matrix D zeros with NaN s, otherwise the minimum distance will
be zero:

D2 = D.*(diag(x*NaN)+1);

lag = mean(min(D2))

lag =
 8.0107

While the estimated variogram values tend to become more erratic with
increasing distances, it is important to defi ne a maximum distance which
limits the calculation. As a rule of thumb, the half maximum distance is
suitable range for variogram analysis. We obtain the half maximum distance
and the maximum number of lags by:

hmd = max(D(:))/2

hmd =
 130.1901

max_lags = floor(hmd/lag)

max_lags =
 16

Then the separation distances are classifi ed and the classical variogram es-
timator is calculated:

LAGS = ceil(D/lag);

for i = 1:max_lags
 SEL = (LAGS == i);
 DE(i) = mean(mean(D(SEL)));
 PN(i) = sum(sum(SEL == 1))/2;
 GE(i) = mean(mean(G(SEL)));
end

where SEL is the selection matrix defi ned by the lag classes in LAG, DE is
the mean lag, PN is the number of pairs, and GE is the variogram estimator.
Now we can plot the classical variogram estimator (variogram versus mean
separation distance) together with the population variance:

plot(DE,GE,'.')
var_z = var(z)
b = [0 max(DE)];
c = [var_z var_z];

hold on

plot(b,c, '--r')

7.9 Geostatistics (by R. Gebbers) 181

yl = 1.1*max(GE);
ylim([0 yl])
xlabel('lag distance')
ylabel('variogram')

hold off

The variogram in Figure 7.14 shows a typical behavior. Values are low at
small separation distances (near the origin), they are increasing with increas-
ing distances, than reaching a plateau (sill) which is close to the popula-
tion variance. This indicates that the spatial process is correlated over short
distances while there is no spatial dependency over longer distances. The
length of the spatial dependency is called the range and is defi ned by the
separation distance where the variogram reaches the sill.

The variogram model is a parametric curve fi tted to the variogram es-
timator. This is similar to frequency distribution fi tting (see Chapter 3.5),
where the frequency distribution is modeled by a distribution type and its
parameters (e.g., a normal distribution with its mean and variance). Due to
theoretical reasons only functions with certain properties should be used as

Distance between observations

S
em

iv
ar

ia
nc

e

0 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

Fig. 7.14 The classical variogram estimator (gray circles) and the population variance
(dashed line).

182 7 Spatial Data

variogram models. Common authorized models are the spherical, the expo-
nential, and the linear model (more models can be found in the literature).

Spherical model:

Exponential model:

Linear model:

where c is the sill, a is the range, and b is the slope (in the case of the linear
model). The parameters c and a or b have to be modifi ed when a variogram
model is fi tted to the variogram estimator. The so called nugget effect is spe-
cial type of variogram model. In practice, when extrapolating the variogram
towards separation distance zero, we often observe a positive intercept on
the ordinate. This is called the nugget effect and it is explained by measure-
ment errors and by small scale fl uctuations (nuggets), which are not captured
due to too large sampling intervals. Thus, we sometimes have expectations
about the minimum nugget effect from the variance of repeated measure-
ments in the laboratory or other previous knowledge. More details about the
nugget effect can be found in Cressie (1993) and Kitanidis (1997). If there
is a nugget effect, it can be added to the variogram model. An exponential
model with a nugget effect looks like this:

where c
0
 is the nugget effect.

We can even combine more variogram models, e.g., two spherical models
with different ranges and sills. These combinations are called nested models.
During variogram modeling the components of a nested model are regarded
as spatial structures which should be interpreted as the results of geological

7.9 Geostatistics (by R. Gebbers) 183

processes. Before we discuss further aspects of variogram modeling let us
just fi t some models to our data. We are beginning with a spherical model
without nugget, than adding an exponential and a linear model, both with
nugget variance:

plot(DE,GE,'.')
var_z = var(z)
b = [0 max(DE)];
c = [var_z var_z];
hold on
plot(b,c, '--r')
yl = 1.1*max(GE);
ylim([0 yl])
xlabel('lag distance')
ylabel('variogram')
lags=0:max(DE);

% Spherical model with nugget
nugget = 0;
sill = 0.803;
range = 45.9;
Gsph = nugget + (sill*(1.5*lags/range-0.5*(lags/...
 range).^3).*(lags<=range)+ sill*(lags>range));
plot(lags,Gsph,'-g')
ylim([0 1.1*var_z])

% Exponential model with nugget
nugget = 0.0239;
sill = 0.78;
range = 45;
Gexp = nugget + sill*(1 - exp(-3*lags/range));
plot(lags,Gexp,'-b')

% Linear model with nugget
nugget = 0.153;
slope = 0.0203;
Glin = nugget + slope*lags;
plot(lags,Glin,'-m')
hold off

Variogram modeling is very much a point of discussion. Some advocate ob-
jective variogram modeling by automated curve fi tting, using a weighted least
squares, maximum likelihood or maximum entropy method. Contrary to this
it is often argued that the geological knowledge should be included in the
modeling process and thus, fi tting by eye is recommended. In many cases the
problem in variogram modeling is much less the question of the appropriate
procedure but a question of the quality of the experimental variogram. If the
experimental variogram is good, both procedures will yield similar results.

Another question important for variogram modeling is the intended use
of the model. In our case, the linear model seems not to be appropriate

184 7 Spatial Data

(Fig. 7.15). At a closer look we can see that the linear model fi ts reason-
ably well over the fi rst three lags. This can be suffi cient when we use the
variogram model only for kriging, because in kriging the nearby points are
the most important for the estimate (see discussion of kriging below). Thus,
different variogram models with similar fi ts near the origin will yield simi-
lar kriging results when sampling points are regularly distributed. If you
are interested in describing the spatial structures it is another case. Then it
is important to fi nd a suitable model over all lags and to determine the sill
and the range accurately. A collection of geologic case studies in Rendu
and Readdy (1982) show how process knowledge and variography can be
linked. Good guidelines to variogram modeling are given by Gringarten and
Deutsch (2001) and Webster and Oliver (2001).

We will now briefl y discuss some more aspects of variography.

1. Sample size – As in any statistical procedure you need as large a sample
as possible to get a reliable estimate. For variography it is recommended
to have more than 100 to 150 samples (Webster and Oliver, 2001). If you

Distance between observations

S
em

iv
ar

ia
nc

e

Population
variance

Spherical model

Exponential model

Linear model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0 20 40 60 80 100 120 140

Fig. 7.15 Variogram estimator (gray circles), population variance (dashed line), spherical,
exponential, and linear models (solid lines).

7.9 Geostatistics (by R. Gebbers) 185

have less, you should consider computing a maximum likelihood vario-
gram (Pardo-Igúzquiza and Dowd, 1997).

2. Sampling design – To get a good estimation at the origin of the variogram
sampling design should include observations over small distances. This
can be done by a nested design (Webster and Oliver, 2001). Other designs
were evaluated by Olea (1984).

3. Anisotropy – Until now we have assumed that the structure of spatial cor-
relation is independent from direction. Thus, we have calculated omni di-
rectional variograms ignoring the direction of the separation vector h. In
a more thorough analysis, the variogram should not only be discretized in
distance but also in direction (directional bins). Plotting directional var-
iograms, usually in four directions, we sometimes can observe different
ranges (geometric anisotropy), different scales (zonal anisotropy), and
different shapes (indicating a trend). The treatment of anisotropy needs
a highly interactive graphical user interface, e.g., VarioWin by Panatier
(1996) which is beyond the scope of this book.

4. Number of pairs and the lag interval – In the calculation of the classical
variogram estimator it is recommended to use more than 30 to 50 pairs
of points per lag interval (Webster and Oliver 2001). This is due to the
sensitivity to outliers. If there are less pairs, the lag interval should be
enlarged. The lag spacing has not necessarily to be uniform, it can be
chosen individually for each distance class. It is also an option to work
with overlapping classes, in this case the lag width (lag tolerance) has
to be defi ned. On the other hand, increasing the lag width can cause un-
necessary smoothing and detail is lost. Thus, the separation distance and
the lag width have to be chosen with care. Another option is to use a more
robust variogram estimator (Cressie 1993, Deutsch and Journel 1998).

5. Calculation of separation distance – If your observations are covering a
large area, let us say more than 1000 km², spherical distances should be
calculated instead of the Pythagorean distances from a plane cartesian
coordinate system.

Kriging

Now we are going to interpolate the observations on a regular grid by ordi-
nary point kriging which is the most popular kriging method. Ordinary point

186 7 Spatial Data

kriging uses a weighted average of the neighboring points to estimate the
value of an unobserved point:

where λι are the weights which have to be estimated. The sum of the weights
should be one to guarantee that the estimates are unbiased:

The expected (average) error of the estimation has to be zero. That is:

where z
x0

 is the true, but unknown value. After some algebra, using the pre-
ceding equations, we can compute the mean-squared error in terms of the
variogram:

where E is the estimation or kriging variance, which has to be minimized,
γ(x

i,
x

0
) is the variogram (semivariance) between the data point and the un-

observed, γ(x
i,

x
j
) is the variogram between the data points x

i
 and x

j
, and λ

i

and λ
j
 are the weights of the ith and jth data point.

For kriging we have to minimize this equation (quadratic objective func-
tion) satisfying the condition that the sum of weights should be one (linear
constraint). This optimization problem can be solved using a Lagrange mul-
tiplier ν resulting in the linear kriging system of N+1 equations and N+1
unknowns:

After obtaining the weights λ
i
, the kriging variance is given by

The kriging system can be presented in a matrix notation:

7.9 Geostatistics (by R. Gebbers) 187

where

is the matrix of the coeffi cients, these are the modeled variogram values for
the pairs of observations. Note that on the diagonal of the matrix, where
separation distance is zero, the value of γ vanishes.

is the vector of the unknown weights and the Lagrange multiplier.

is the right-hand-side vector. To obtain the weights and the Lagrange multi-
plier the matrix G_mod is inverted:

The kriging variance is given by

188 7 Spatial Data

For our calculations with MATLAB we need the matrix of coeffi cients de-
rived from the distance matrix D and a variogram model. D was calculated
in the variography section above and we use the exponential variogram
model with nugget, sill and range from the previous section:

G_mod = (nugget + sill*(1 - exp(-3*D/range))).*(D>0);

Then we get the number of observations and add a column and row vector of
all ones to the G_mod matrix and a zero at the lower left corner:

n = length(x);
G_mod(:,n+1) = 1;
G_mod(n+1,:) = 1;
G_mod(n+1,n+1) = 0;

Now the G_mod matrix has to be inverted:

G_inv = inv(G_mod);

A grid with the locations of the unknown values is needed. Here we use a
grid cell size of fi ve within a quadratic area ranging from 0 to 200 in x and y
direction, respectively. The coordinates are created in matrix form by:

R = 0:5:200;
[Xg1,Xg2] = meshgrid(R,R);

and converted to vectors by:

Xg = reshape(Xg1,[],1);
Yg = reshape(Xg2,[],1);

Then we allocate memory for the kriging estimates Zg and the kriging vari-
ance s2_k by:

Zg = Xg*NaN;
s2_k = Xg*NaN;

Now we are kriging the unknown at each grid point:

for k = 1:length(Xg)
 DOR = ((x - Xg(k)).^2+(y - Yg(k)).^2).^0.5;
 G_R = (nugget + sill*(1 - exp(-3*DOR/range))).*(DOR>0);
 G_R(n+1) = 1;
 E = G_inv*G_R;
 Zg(k) = sum(E(1:n,1).*z);
 s2_k(k) = sum(E(1:n,1).*G_R(1:n,1))+E(n+1,1);
end

Here, the fi rst command computes the distance between the grid points

2 1G R E_

7.9 Geostatistics (by R. Gebbers) 189

(Xg,Yg) and the observation points (x,y). Then we build the right-hand-
side vector of the kriging system by using the variogram model G_R and add
one to the last row. We next obtain the matrix E with the weights and the
lagrange multiplier. The estimate Zg at each point k is the weighted sum of
the observations z. Finally, the kriging variance s2_k of the grid point is
computed. We plot the results. First we create a grid of the kriging estimate
and the kriging variance:

r = length(R);
Z = reshape(Zg,r,r);
SK = reshape(s2_k,r,r);

A subplot on the right presents the kriged values:

subplot(1,2,1)
pcolor(Xg1,Xg2,Z)
title('Kriging estimate')
xlabel('x-coordinates')
ylabel('y-coordinates')
box on
colorbar('SouthOutside')

The left subplot presents the kriging variance:

subplot(1,2,2)
pcolor(Xg1,Xg2,SK)
title('Kriging variance')
xlabel('x-coordinates')
ylabel('y-coordinates')
box on
colorbar('SouthOutside')
hold on

and we are overlaying the sampling positions:

plot(x,y,'ok')
hold off

The kriged values are shown in Figure 7.16a. The kriging variance depends
only on the distance from the observations and not on the observed values
(Fig. 7.16b). Kriging reproduces the population mean when observations
are beyond the range of the variogram, at the same time kriging variance
increases (lower right corner of the maps in Figure 7.16). The kriging vari-
ance can be used as a criterion to improve sampling design and it is needed
for backtransformation in lognormal kriging. Back-transformation for lo-
gnormal kriging is done by:

y x z x x() exp(() . ())0 0
2

00 5

190 7 Spatial Data

Discussion of Kriging

Point kriging as presented here is an exact interpolator. It reproduces ex-
actly the values at an observation point, even though a variogram with a
nugget effect is used. Smoothing can be caused by including the variance
of the measurement errors (see Kitanidis, 1997) and by block kriging which
averages the observations within a certain neighborhood (block). While
kriging variance only depends on the distance between the observed and
the unobserved locations it is primary a measure of density of information
(Wackernagel, 2003). The accuracy of kriging is better evaluated by cross-
validation using a resampling method or surrogate test (Chapter 4.6 and
4.7). The infl uence of the neighboring observations on the estimation de-
pends on their confi guration. Webster and Oliver (2001) summarize: Near
points carry more weight than more distant ones; the relative weight of a

x−coordinates

y−
co

or
di

na
te

s

x−coordinates

y−
co

or
di

na
te

s
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

10 20 30 40 50 60 10 20 30 40 50 60

0 1 0 50 100 150 200

20

40

60

80

100

120

140

160

180

200

0

1

0.9

0.2 0.4 0.6 0.8
0

Kriging Estimate Kriging Variance

a b

Fig. 7.16 Interpolated values on a regular grid by ordinary point kriging using a an exponen-
tial variogram model; b kriging variance as a function of the distance from the observations
(empty circles).

Recommended Reading 191

point decreases when the number of points in the neighborhood increases;
clustered points carry less weight individually than isolated ones at the same
distance; data points can be screened by ones lying between them and the
target. Sampling design for kriging is different from the design which might
be optimal for variography. A regular grid, triangular or quadratic, can be
regarded as optimum.

The MATLAB code presented here is a straightforward implementation
of the kriging system presented in the formulas above. In professional pro-
grams the number of data points entering the G_mod matrix are restricted as
well as the inversion of G_mod is avoided by working with the covariances
instead of the variograms (Webster and Oliver, 2001; Kitanidis, 1997). For
those who are interested in programming and in a deeper understanding of
algorithms, Deutsch and Journel (1992) is a must. The best internet source
is the homepage of AI-GEOSTATISTICS:

http://www.ai-geostats.org

Recommended Reading

Cressie N (1993) Statistics for Spatial Data, Revised Edition. John Wiley & Sons, New York
Deutsch CV, Journel AG (1998) GSLIB - Geostatistical Software Library and User s Guide,

Second edition. Oxford University Press, New York
Gringarten E, Deutsch CV (2001) Teacher s Aide Variogram Interpretation and Modeling.

Mathematical Geology 33:507-534
Isaaks E, Srivastava M (1989) An Introduction to Applied Geostatistics, Oxford University

Press, New York
Kitanidis P (1997) Introduction to Geostatistics - Applications in Hydrogeology. Cambridge

University Press, New York
Olea RA (1984) Systematic Sampling of Spatial Functions. Kansas Series on Spatial Analysis

7, Kansas Geological Survey
Pannatier Y (1996)VarioWin - Software for Spatial Data Analysis in 2D, Springer-Verlag,

Berlin Heidelberg New York
Pardo-Igúzquiza E, Dowd PA (1997) AMLE3D: A computer program for the interference of

spatial covariance parameters by approximate maximum likelihood estimation. Computers
and Geosciences 23:793-805

Rendu JM, Readdy L (1982) Geology and Semivariogram – A Critical Relationship. In:
Johnson TB, Barns RJ (eds) Application of Computer & Operation Research in the
Mineral Industry. 17th Intern. Symp. American Institute of Mining. Metallurgical and
Petroleum Engineers, New York, pp. 771-783

Sandwell DT (1987) Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter
data. Geophysical Research Letters 2:139–142

The Mathworks (2004) Mapping Toolbox User s Guide - For the Use with MATLAB®. The
MathWorks, Natick, MA

Golden Software, Inc. (2002) Surfer 8 (Surface Mapping System). Golden, Colorado

192 7 Spatial Data

Wackernagel H. (2003) Multivariate Geostatistics : an introduction with applications. Third,
completely revised edition. Springer-Verlag, Berlin.

Webster R, Oliver MA (2001) Geostatistics for Environmental Scientists. John Wiley &
Sons, Chichester

Wessel P, Bercovici D (1998) Gridding with Splines in Tension: A Green function Approach.
Mathematical Geology 30:77-93

8 Image Processing

8.1 Introduction

Computer graphics are stored and processed either as vector or raster data.
Most data types that were encountered in the previous chapter were vector
data, i.e., points, lines and polygons. Drainage networks, the outline of geo-
logic units, sampling locations and topographic contours are examples of
vector data. In Chapter 7, coastlines are stored in vector format while bathy-
metric and topographic data are saved in the raster format. In many cases,
vector and raster data are combined in one data set, for instance the course
of a river is displayed on a satellite image. Raster data are often converted to
vector data by digitizing points, lines or polygons. On the other hand, vector
data are sometimes transformed to raster data.

 Images are generally represented as raster data, i.e., as a 2D array of color
intensities. Images are everywhere in geosciences. Field geologists use aeri-
al photos and satellite images to identify lithologic units, tectonic structures,
landslides and other features in a study area. Geomorphologists use such
images for the analysis of drainage networks, river catchment, vegetation
and soil types. The analysis of images from thin sections, automated identi-
fication of objects and the measurement of varve thicknesses employ a great
variety of image processing methods.

This chapter deals with the analysis and display of image data. Firstly,
the various ways that raster data can be stored on the computer are explored
(Chapter 8.2). Subsequently, the main tools for importing, manipulating and
exporting image data are presented (Chapter 8.3). This knowledge is used
for processing and georeferencing satellite images (Chapter 8.4 and 8.5).
Finally, on-screen digitization techniques are discussed (Chapter 8.7). The
Image Processing Toolbox is used for the specific examples throughout the
chapter. The image analysis and enhancement techniques discussed in this
chapter are also presented in the User s Guide. However, this chapter con-
tains a comprehensive introduction to the techniques for analyzing images
in the earth sciences by using MATLAB.

194 8 Image Processing

8.2 Data Storage

Vector and raster graphics are the two fundamental methods for storing pic-
tures. The typical format for storing vector data was already introduced in
the previous chapter. In the following example, the two columns of the fi le
coastline.txt represent the coordinates for the longitude and the latitude.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

The NaN s help to identify break points in the data.
The raster data are stored as 2D arrays. The elements of the array repre-

sent altitude above sea level, annual rainfall or, in the case of an image, color
intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181
189 190 190 188 186 183

In all cases, raster data can be visualized as 3D plot. The x and y are the indi-
ces of the 2D array or any other reference frame, and z is the numerical value
of the elements of the array (see also Chapter 7). Alternatively, the numeri-
cal values contained in the 2D array can be displayed as pseudocolor plot,
which is a rectangular array of cells with colors determined by a colormap.
A colormap is a m-by-3 array of real number between 0.0 and 1.0. Each row
defi nes a red, green, blue (RGB) color. An example is the above array that
could be interpreted as grayscale intensities ranging from 0 (black) to 255
(white). More complex examples include satellite images that are stored in
3D arrays.

As discussed before, a computer stores data as bits, which have one out
of two states, one and zero (Chapter 2). If the elements of the 2D array rep-
resent the color intensity values of the pixels (short for picture elements) of
an image, 1-bit arrays only contains ones and zeros.

8.2 Data Storage 195

0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0

This 2D array of ones and zeros can be simply interpreted as white-and-
black image, where the value of one represents white and zero corresponds
to black. Alternatively, the 1 bit array could be used to store an image con-
sisting of two different colors only, such as red and blue.

In order to store more complex types of data, the bits are joined to larger
groups, such as bytes consisting of eight bits. The earliest computers could
only send eight bits at a time and early computer code was written in sets of
eight bits, which came to be called a byte. Hence, each element of the 2D or
pixel contains a vector of eight ones or zeros.

1 0 1 0 0 0 0 1

These 8 bits or 1 byte allows 28=256 possible combinations of the eight ones
or zeros. Therefore, 8 bits are enough to represent 256 different intensities
such as grayscales. The 8 bits can be read in the following way. The bits are
read from the right to the left. A single bit represents two numbers, two bits
give four numbers, three bits show eight numbers, and so forth up to a byte,
or eight bits, which represents 256 numbers. Each added bit doubles the
count of numbers. Here is a comparison of binary and decimal representa-
tion of the number 161.

128 64 32 16 8 4 2 1 (value of the bit)
 1 0 1 0 0 0 0 1 (binary)

128 + 0 + 32 + 0 + 0 + 0 + 0 + 1 = 161 (decimal)

The end members of the binary representation of grayscales are

0 0 0 0 0 0 0 0

which is black, and

1 1 1 1 1 1 1 1

which is pure white. In contrast to the above 1 bit array, the one-byte array
allows to store a grayscale image of 256 different levels. Alternatively, the
256 numbers could be interpreted as 256 different discrete colors. In any
case, the display of such an image requires an additional source of informa-
tion about how the 256 intensity values are converted into colors. A color-

196 8 Image Processing

map is an m-by-3 array of real numbers between 0.0 and 1.0. Each row is a
RGB vector that defi nes one color by means of intensities of red, green and
blue. Numerous global colormaps for the interpretation of 8-bit color im-
ages exist that allow the cross-platform exchange of raster images, whereas
local colormaps are often embedded in a graphics fi le.

The disadvantage of 8-bit color images is that the 256 discrete colorsteps
are not enough to simulate smooth transitions for the human eye. Therefore,
in many applications a 24-bit system is used with 8 bits of data for each
 RGB channel giving a total of 2563=16,777,216 colors. Such a 24-bit image
is therefore stored in three 2D arrays or one 3D array of intensity values
between 0 and 255.

195 189 203 217 217 221
218 209 187 192 204 206
207 219 212 198 188 190
203 205 202 202 191 201
190 192 193 191 184 190
186 179 178 182 180 169

209 203 217 232 232 236
234 225 203 208 220 220
224 235 229 214 204 205
223 222 222 219 208 216
209 212 213 211 203 206
206 199 199 203 201 187

174 168 182 199 199 203
198 189 167 172 184 185
188 199 193 178 168 172
186 186 185 183 174 185
177 177 178 176 171 177
179 171 168 170 170 163

Compared to 1-bit and 8-bit representation of raster data, the 24-bit stor-
age certainly requires a lot more computer memory. In the case of very
large data sets such as satellite images and digital elevation models the user
should therefore carefully think about the suitable way to store the data.
The default data type in MATLAB is the 64-bit array which allows to store
the sign of a number (fi rst bit), the exponent (bits 2 to 12) and roughly 16
signifi cant decimals digits in the range of roughly 10-308 and 10+308 (bits 13
to 64). However, MATLAB also works with other data types such as 1-bit,
8-bit and 24-bit raster data to save memory.

The amount of memory required for storing an image depends on the data
type and the raster dimension. The dimension of an image can be described
by the numbers of pixels, which is the number of rows multiplied by the
number of columns of the 2D array. Assume an image of 729x713 pixels, as

8.2 Data Storage 197

the one we use in the following chapter. If each pixel needs 8 bits to store an
grayscale value, the memory required by the data is 729x713x8=4,158,216
bits or 4,158,216/8=519,777 bytes. This number is exactly what we obtain
by typing whos in the command window. Common prefi xes for bytes are
kilobyte, megabyte, gigabyte and so forth.

bit = a 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 Kilobyte (KB)
1024 Kilobytes = 1 Megabyte (MB)
1024 Megabytes = 1 Gigabyte (GB)
1024 Gigabytes = 1 Terabyte (TB)

It is important to note that in data communication 1 kilobit = 1,000 bits, while
in data storage 1 kilobyte = 1,024 bytes. A 24-bit or true color image then
requires three times the memory needed to store a 8-bit image, or 1,559,331
bytes = 1,559,331/1,024 kilobytes (KB) 1,523 KB 1,559,331/1,0242 =
1.487 megabytes (MB).

In many cases, however, the dimension of an image is not given by the
total number of pixels, but the length and height of the picture and its reso-
lution. The resolution of an image is the number of pixels per inch (ppi) or
dots per inch (dpi). The standard resolution of a computer monitor is 72 dpi
although modern monitors often have a higher resolution such as 96 dpi. As
an example, a 17 inch monitor with 72 dpi resolution displays 1,024x768
pixels. If the monitor is used to display images at a different (lower, higher)
resolution, the image is resampled to match the monitor s resolution. For
scanning and printing, a resolution of 300 or 600 dpi is enough in most
applications. However, scanned images are often scaled for large printouts
and therefore have higher resolutions such as 2,400 dpi. The image used in
the next chapter has a width of 25.2 cm (or 9.92 inch) and a height of 25.7
cm (10.12 inch). The resolution of the image is 72 dpi. The total number of
pixels is therefore in horizontal direction 72*9,92 713, the vertical number
of pixels is 72 *10,12 729, as expected.

Numerous formats are available to save vector and raster data into a fi le.
These formats all have their advantages and disadvantages. Choosing one
format over another in an application requires a good knowledge of the
characteristics of the various fi le formats. This knowledge is particularly
important if images are to be analyzed quantitatively. The most popular for-
mats for storing vector and raster data are:

1. Compuserve Graphics Interchange Format (GIF) – This format was de-
veloped in 1987 for raster images using a fi xed colormap of 256 colors.

198 8 Image Processing

The GIF format uses compression without loss of data. It was designed
for fast transfer rates in the internet. The limited number of colors makes
it not the right format for smooth color transitions such as a cloudy sky
and human faces. In contrast, it is often used for line art, maps, cartoons
and logos (http://www.compuserve.com/).

2. Microsoft Windows Bitmap Format (BMP) – This is the native bitmap
format for computers running Microsoft Windows as the operating sys-
tem. However, numerous converters exist to read and write BMP fi les
also on other platforms. Various modifi cations of the BMP format are
available, some of them without compressions, others with effective and
fast compression (http://www.microsoft.com/).

3. Tagged Image File Format (TIFF) – This format was designed by the
Aldus Corporation and Microsoft in 1986 to become an industry standard
for image-fi le exchange. A TIFF fi le includes an image fi le header, a di-
rectory and the data in all available graphics and image fi le formats. Some
TIFF fi le even contain vector and raster versions of the same picture, and
images in different resolution and colormap. The most important advan-
tage of TIFF was portability. TIFF should perform on all computer plat-
forms. Unfortunately, numerous modifi cations of TIFF evolved in the fol-
lowing years, causing incompatibilities. Therefore TIFF is often referred
to as Thousands of Incompatible File Formats.

4. Postscript (PS) and Encapsulated PostScript (EPS) – The PS format
has been developed by John Warnock at Parc, the research institute of
Xerox. J. Warnock was co-founder of Adobe Systems, where the EPS
format has been created. The vector format PostScript would have never
become an industry standard without Apple Computers. In 1985, Apple
needed a typesetter-quality controller for the new printer LaserWriter
and the operating system Macintosh. The third partner in the history
of PostScript was the company Aldus – now a part of Adobe Systems
–, the developer of the software PageMaker. The combination of Aldus
PageMaker, the PS format and the Apple LaserWriter were the founders
of Desktop Publishing. The EPS format was then developed by Adobe
Systems as a standard fi le format for importing and exporting PS fi les.
Whereas the PS fi le generally is a single-page format, containing an il-
lustration of a text, the purpose of an EPS fi le is to be included in other
pages, i.e., it can contain any combination of text, graphics and images
(http://www.adobe.com/).

8.3 Importing, Processing and Exporting Images 199

5. In 1986, the Joint Photographic Experts Group (JPEG) was founded
for the purpose of developing various standards for image compression.
Although JPEG stands for the committee, it is now widely used as the
name for an image compression and format. This compression consists of
grouping pixel values into 8x8 blocks and transforming each block with
a discrete cosine transform. Subsequently, all unnecessary high-frequen-
cy informaiton is eased. Such practice makes the compression method
irreversible. The advantage of the JPEG format is the availability of a
three-channel 24-bit true color version. This allows to store images with
smooth color transitions (http://www.jpeg.org/).

6. Portable Document Format (PDF) – The PDF designed by Adobe
Systems is now a true self-contained cross-platform document. The PDF
fi les contain the complete formatting of vector illustrations, raster im-
ages and text, or a combination of all these, including all necessary fonts.
These fi les are highly compressed, allowing a fast internet download.
Adobe Systems provides a free-of-charge Adobe Acrobat Reader for all
computer platforms (http://www.adobe.com/).

7. The PICT format was developed by Apple Computers in 1984 as the na-
tive format for Macintosh graphics. The PICT format can be used for
raster images and vector illustrations. PICT uses various methods for
compressing data. The PICT 1 format only supports monochrome graph-
ics, but PICT 2 supports a color depth of up to 32-bit. The PICT format is
not supported on all other platforms although some PC software tools can
work with PICT fi les (http://www.apple.com).

8.3 Importing, Processing and Exporting Images

Firstly, we learn how to read an image from a graphics fi le into the work-
space. As an example, we use a satellite image showing a 10.5 km by 11 km
sub-area in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

The fi le unconform.jpg is a processed TERRA– ASTER satellite image that
can be downloaded free-of-charge from the NASA web page. We save this
image in the working directory. The command

unconform1 = imread('unconform.jpg');

200 8 Image Processing

reads and decompresses the JPEG fi le, and imports the data as 24-bit RGB
image array and stores the data in a variable unconform1. The command

whos

shows how the RGB array is stored in the workspace:

Name Size Bytes Class
unconform1 729x713x3 1559331 uint8 array
Grand total is 1559331 elements using 1559331 bytes

The details indicate that the image is stored as a 729x713x3 array represent-
ing a 729x713 array for each of the colors red, green and blue. The listing of
the current variables in the workspace also gives the information uint8 array,
i.e., each array element representing one pixel contains 8-bit integers. These
integers represent intensity values between 0 (minimum intensity) and 255
(maximum). As example, here is a sector in the upper-left corner of the data
array for red:

unconform1(50:55,50:55,1)

ans =
 174 177 180 182 182 182
 165 169 170 168 168 170
 171 174 173 168 167 170
 184 186 183 177 174 176
 191 192 190 185 181 181
 189 190 190 188 186 183

Next we can view the image using the command

 imshow(unconform1)

which opens a new Figure Window showing a RGB composite of the image
(Fig. 8.1).

In contrast to the RGB image, a grayscale image only needs one single
array to store all necessary information. We convert the RBG image into a
grayscale image using the command rgb2gray (RGB to gray):

unconform2 = rgb2gray (unconform1);

The new workspace listing now reads:

Name Size Bytes Class
unconform1 729x713x3 1559331 uint8 array
unconform2 729x713 519777 uint8 array
Grand total is 2079108 elements using 2079108 bytes

where you can see the difference between the 24-bit RGB and the 8-bit gray-

8.3 Importing, Processing and Exporting Images 201

scale arrays. The commands

imshow(unconform1), figure, imshow(unconform2)

display the result. It is easy to see the difference between the two images in
separate Figure Windows (Fig. 8.1 and 8.2). Let us now process the grayscale
image. First we compute a histogram of the distribution of intensity values.

 imhist(unconform2)

A simple technique to enhance the contrast of such an image is to transform
this histogram in order to obtain an equal distribution of grayscales:

unconform3 = histeq(unconform2);

We can view the difference again using

imshow(unconform2), figure, imshow(unconform3)

and save the results in a new fi le

 imwrite(unconform3,'unconform3.jpg')

Detailed information on the new fi le can be obtained by typing

 imfinfo('unconform3.jpg')

which yields

Filename: 'unconform3.jpg'
FileModDate: '18-Jun-2003 16:56:49'
FileSize: 138419
Format: 'jpg'
FormatVersion: ''
Width: 713
Height: 729
BitDepth: 8
ColorType: 'grayscale'
FormatSignature: ''
NumberOfSamples: 1
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}

Hence, the command iminfo can be used to obtain useful information
(name, size, format and color type) on the newly-created image fi le.

There are many ways for transforming the original satellite image into a
practical fi le format. For instance, the image data could be stored as indexed
color image. Such an image consists of two parts, a colormap array and a

202 8 Image Processing

data array. The colormap array is an m-by-3 array containing fl oating-point
values between 0 and 1. Each column specifi es the intensity of the colors
red, green and blue. The data array is an x-by-y array containing integer ele-
ments corresponding to the lines m of the colormap array, i.e., the specifi c
RGB representation of a certain color. Let us transfer the above RGB image
into an indexed image. The colormap of the image should contain 16 differ-
ent colors.

[x,map]=rgb2ind(unconform1,16);

Fig. 8.1 RGB true color image contained in the fi le unconform.jpg. After decompressing and
reading the JPEG fi le into a 729x713x3 array, MATLAB interprets and displays the RGB
composite using the function imshow. See detailed description of the image on the NASA
TERRA-ASTER webpage http://asterweb.jpl.nasa.gov. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

8.3 Importing, Processing and Exporting Images 203

The display of the image

imshow(unconform1),figure,imshow(x,map)

clearly shows the difference between the original 24-bit RGB image
(2563 ca. 16.7 million different colors) and a color image of only 16 differ-
ent colors (Fig. 8.1 and 8.3).

Fig. 8.2 Grayscale image. After converting the RGB image stored in a 729x713x3 array
into a grayscale image stored in a 729x713 array, the result is displayed using imshow.
Original image courtesy of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER
Science Team.

204 8 Image Processing

8.4 Importing, Processing and Exporting Satellite Images

In the previous chapter we used a processed ASTER image that we have
downloaded from the ASTER web page. The original ASTER raw data con-
tain a lot more information and resolution than the free-of-charge image
stored in unconform.jpg. The ASTER instrument produces two types of data,
Level-1A and 1B. Whereas the L1A data are reconstructed, unprocessed in-
strument data, L1B data are radiometrically and geometrically corrected.
Each ASTER data set contains 15 data arrays representing the intensity val-
ues from 15 spectral bands (see the ASTER-web page for more detailed

Fig. 8.3 Indexed color image using a colormap containing 16 different colors. The result
is displayed using imshow. Original image courtesy of NASA/GSFC/METI/ERSDAC/
JAROS and U.S./Japan ASTER Science Team.

8.4 Importing, Processing and Exporting Satellite Images 205

information) and various additional information such as location, date and
time. The raw satellite data can be purchased from the USGS online store:

http://edcimswww.cr.usgs.gov/pub/imswelcome/

Enter the data gateway as guest, pick a discipline/top (e.g., Land: ASTER),
then choose from the list of data sets (e.g., DEM, Level 1A or 1B data),
defi ne the search area and click Start Search. The system now needs a few
minutes to list all relevant data sets. As list of data sets including various
types of additional information (cloud coverage, exposure date, latititude &
longitude) can be obtained by clicking on List Data Granules. Furthermore,
a low resolution preview can be accessed by selecting Image. Having pur-
chased a certain data set, the raw image can be downloaded using a tempo-
rary FTP-access. As an example, we process an image from an area in the
East African Rift System. The data are stored in two fi les

naivasha.hdf
naivasha.hdf.met

The fi rst fi le (111 MB large) is the actual raw data, whereas the second fi le (100
KB) contains the header and various other types of information on the data.
We save both fi les in our working directory. MATLAB contains various tools
for importing and processing fi les stored in the hierarchical data format (HDF).
The GUI-based import tool for importing certain parts of the raw data is

hdftool('naivasha.hdf')

This command opens a GUI that allows us to browse the content of the
HDF-fi le naivasha.hdf, obtain all information on the contents and import
certain frequency bands of the satellite image. Alternatively, the command
hdfread can be used as a quick way of accessing image data. An image as
the one used in the previous chapter is typically achieved by computing a
RGB composite from the vnir_Band3n, 2 and 1 contained in the data fi le.
First we read the data

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

These commands generate three 8-bit image arrays each representing the
intensity within a certain infrared (IR) frequency band of a 4200x4100 pixel
image. The vnir_Band3n, 2 and 1 typically contain much information about
lithology (including soils), vegetation and water on the Earth s surface.
Therefore these bands are usually combined to 24-bit RGB images

206 8 Image Processing

naivasha_rgb = cat(3,I1,I2,I3);

Similar to the examples above, the 4200x4100x3 array can now be dis-
played using

imshow(naivasha_rgb);

MATLAB scales the images in order to fi t the computer screen. Exporting
the processed image from the Figure Window would only save the image at
the monitor s resolution. To obtain an image at a higher resolution (Fig. 8.4),
we use the command

Fig. 8.4 RGB composite of a TERRA-ASTER image using the spectral infrared bands vnir_
Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

8.5 Georeferencing Satellite Images 207

imwrite(naivasha_rgb,'naivasha.tif','tif')

This command saves the RGB composite as a TIFF-fi le naivasha.tif (ca.
50 MB large) in the working directory that can be processed with other
software such as Adobe Photoshop.

8.5 Georeferencing Satellite Images

The processed ASTER image does not yet have a coordinate system. Hence,
the image needs to be tied to a geographical reference frame (georeferenc-
ing). The raw data can be loaded and transformed into a RGB composite
by typing

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

naivasha_rgb = cat(3,I1,I2,I3);

The HDF browser can be used

hdftool('naivasha.hdf')

to extract the geodetic coordinates of the four corners of the image. This
information is contained in the header of the HDF fi le. Having launched the
HDF tool, we activate File as HDF and select on the uppermost directory
naivasha.hdf. This produces a long list of fi le attributes including product-
metadata.0, which includes the attribute scenefourcorners that contains the
following information:

upperleft = [-0.319922, 36.214332];
upperright = [-0.400443, 36.770406];
lowerleft = [-0.878267, 36.096003];
lowerright = [-0.958743, 36.652213];

These two-element vectors can be collected into one array inputpoints.
Subsequently, the left and right columns can be fl ipped in order to have
x=longitudes and y=latitudes.

inputpoints(1,:) = upperleft;
inputpoints(2,:) = lowerleft;
inputpoints(3,:) = upperright;
inputpoints(4,:) = lowerright;
inputpoints = fliplr(inputpoints);

208 8 Image Processing

The four corners of the image correspond to the pixels in the four corners of
the image that we store in a variable named basepoints.

basepoints(1,:) = [1,4200];
basepoints(2,:)= [1,1];
basepoints(3,:)= [4100,4200];
basepoints(4,:)= [4100,1];

The function cp2tform now takes the pairs of control points input-
points and basepoints and uses them to infer a spatial transformation
matrix tform.

tform = cp2tform(inputpoints,basepoints,'affine');

This transformation can be applied to the original RGB composite naiva-
sha_rgb in order to obtain a georeferenced version of the satellite image
newnaivasha_rgb.

[newnaivasha_rgb,x,y]=imtransform(naivasha_rgb,tform);

Subsequently, an appropriate grid for the image may be computed. The grid
is typically defi ned by the minimum and maximum values for the longitude
and the latitude. The vector increments are then obtained by dividing the
longitude and latitude range by the array dimension and by subtracting one
from the result.

X = 36.096003 : (36.770406-36.096003)/8569 : 36.770406;
Y = 0.319922 : (0.958743-0.319922)/8400: 0.958743;

Hence, both images can be displayed for comparison (Fig. 8.4 and 8.5).

iptsetpref('ImshowAxesVisibl','On')
imshow(naivasha_rgb), title('Original ASTER Image')
figure
imshow(newnaivasha_rgb,'XData',X,'YData',Y);
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')
grid on

The command iptsetpref makes the axis of the image visible. Exporting
the results is possible in many ways, such as

 print -djpeg70 -r600 naivasha_georef.jpg

as JPEG fi le naivasha_georef.jpg compressed at 70% and at a resolution
of 600 dpi.

8.6 Digitizing from the Screen 209

8.6 Digitizing from the Screen

On-screen digitzing is a widely-used image processing technique. While
practical digitizer tablets exist in all formats and sizes, most people prefer
digitizing vector data from the screen. Examples for this application are
digitizing of river networks and drainage areas on topographic maps, the
outlines of lithologic units in maps, the distribution of landslides on satellite
images or mineral grains in a microscope image. The digitzing procedure
consists of the following steps. Firstly, the image is imported into the work-
space. Subsequently, a coordinate system is defi ned. Finally, the objects of

Longitude

La
tit

ud
e

0.9

0.4

0.5

0.6

0.7

0.8

36.1 36.2 36.3 36.4 36.5 36.6 36.7

Georeferenced ASTER Image

Fig. 8.5 Geoferenced RGB composite of an TERRA-ASTER image using the infrared bands
vnir_Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

210 8 Image Processing

interest are entered by moving a cursor or cross hair and clicking the mouse
button. The result is a two-dimensional array of xy data, such as longitudes
and latitudes of the points of a polygon or the coordinates of the objects of
interest in an area.

The function ginput contained in the standard MATLAB toolbox pro-
vides graphical input using a mouse on the screen. It is generally used to
select points such as specifi c data points from a fi gure created by a arbitrary
graphics function such as plot. The function is often used for interactive
plotting, i.e., the digitized points appear on the screen after they were select-
ed. The disadvantage of the function is that it does not provide coordinate
referencing on an image. Therefore, we use a modifi ed version of the func-
tion that allows to reference an image to an arbitrary rectangular coordinate
system. Save the following code in a text fi le minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');
xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B);

% Define upper left and lower right corner of image
disp('Click on lower left and upper right cr, then <return>')
[xcr,ycr] = ginput;
XMIN=xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX=xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN=ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX=ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata / size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata / size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

The function minput has four parts. In the fi rst part, the user enters the lim-
its of the coordinate axis as the reference for the image. Next, the image is
imported into the workspace and displayed on the screen. The third part uses
ginput to defi ne the upper left and lower right corners of the image. The re-
lationship between the coordinates of the two corners on the fi gure window
and the reference coordinate system is used to compute the transformation
for all points digitized in the fourth part.

Recommended Reading 211

As an example, we use the image stored in the fi le naivasha_georef.jpg
and digitize the outline of Lake Naivasha in the center of the image. We call
the new function minput from the Command Window using the commands

data = minput('naivasha_georef.jpg')

The function fi rst calls the coordinates for the limits of the x- and y-axis for
the reference frame. We enter the corresponding numbers and press return
after each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

Next the function reads the fi le naivasha_georef.jpg and displays the image.
We ignore the warning

Warning: Image is too big to fit on screen; displaying at 33%

and wait for the next response

Click on lower left and upper right corner, then <return>

The image window can be scaled according to user preference. Clicking on
the lower left and upper right corner defi nes the dimension of the image.
These changes are registered by pressing return. The routine then references
the image to the coordinate system and waits for the input of the points we
wish to digitize from the image.

Click on data points to digitize, then <return>

We fi nish the input again by pressing return. The xy coordinates of our digi-
tized points are now stored in the variable data. We can now use these vec-
tor data for other applications.

Recommended Reading

Abrams M, Hook S (2002) ASTER User Handbook - Version 2. Jet Propulsion Laboratory
and EROS Data Center, USA

Campbell JB (2002) Introduction to Remote Sensing. Taylor & Francis
Francus P (2005) Image Analysis, Sediments and Paleoenvironments - Developments in

Paleoenvironmental Research. Springer, Berlin Heidelberg New York
Gonzales RC, Eddins SL, Woods RE (2003) Digital Image Processing Using MATLAB.

Prentice Hall

9 Multivariate Statistics

9.1 Introduction

Multivariate analysis aims to understand and describe the relationship be-
tween an arbitrary number of variables. Earth scientists often deal with
 multivariate data sets, such as microfossil assemblages, geochemical finger-
prints of volcanic ashes or clay mineral contents of sedimentary sequences.
If there are complex relationships between the different parameters, univari-
ate statistics ignores the information content of the data. There are number
of methods for investigating the scaling properties of multivariate data.

A multivariate data set consists of measurements of p variables on n ob-
jects. Such data sets are usually stored in n-by-p arrays:

The columns of the array represent the p variables, the rows represent the n
objects. The characteristics of the 2nd object in the suite of samples is de-
scribed by the vector in the second row of the data array:

As example assume the microprobe analysis on glass shards from volca-
nic ashes in a tephrochronology project. Then the variables represent the p
chemical elements, the objects are the n ash samples. The aim of the study is
to correlate ashes by means of their geochemical fi ngerprints.

The majority of multi-parameter methods simply try to overcome the
main diffi culty associated with multivariate data sets. This problem relates
to the data visualization. Whereas the character of an univariate or bivariate

214 9 Multivariate Statistics

data set can easily be explored by visual inspection of a 2D histogram or an
xy plot, the graphical display of a three variable data set requires a projection
of the 3D distribution of data points into 2D. It is impossible to imagine or
display a higher number of variables. One solution to the problem of visu-
alization of high-dimensional data sets is the reduction of dimensionality. A
number of methods group highly-correlated variables contained in the data
set and then explore a small number of groups.

The classic methods to reduce dimensionality are the principal compo-
nent analysis (PCA) and the factor analysis (FA). These methods seek the
directions of maximum variance in the data set and use these as new coordi-
nate axes. The advantage of replacing the variables by new groups of vari-
ables is that the groups are uncorrelated. Moreover, these groups often help
to interpret the multivariate data set since they often contain valuable infor-
mation on process itself that generated the distribution of data points. In a
geochemical analysis of magmatic rocks, the groups defi ned by the method
usually contain chemical elements with similar ion size that are observed in
similar locations in the lattice of certain minerals. Examples for such behav-
ior are Si4+ and Al3+, and Fe2+ and Mg2+ in silicates, respectively.

The second important suite of multivariate methods aim to group ob-
jects by their similarity. As an example, cluster analysis (CA) is often
applied to correlate volcanic ashes as described in the above example.
Tephrochronology tries to correlate tephra by means of their geochemical
fi ngerprint. In combination with a few radiometric age determinations of
the key ashes, this method allows to correlate sedimentary sequences that
contain these ashes (e.g., Westgate 1998, Hermanns et al. 2000). More
examples for the application of cluster analysis come from the fi eld of
micropaleontology. In this context, multivariate methods are employed to
compare microfossil assemblages such as pollen, foraminifera or diatoms
(e.g., Birks and Gordon 1985).

The following text introduces the most important techniques of multivari-
ate statistics, principal component analysis and cluster analysis (Chapter 9.2
and 9.3). A nonlinear extension of the PCA is the independent component
analysis (ICA) (Chapter 9.4). Firstly, the chapters provide an introduction to
the theory behind the techniques. Subsequently, the use of these methods in
analyzing earth sciences data is illustrated with MATLAB functions.

9.2 Principal Component Analysis

The principal component analysis (PCA) detects linear dependencies be-

9.2 Principal Component Analysis 215

tween variables and replaces groups of correlated variables by new uncorre-
lated variables, the principal components (PC). The performance of the PCA
is better illustrated with help of a bivariate data set than a multivariate one.
Figure 9.1 shows a bivariate data set that exhibits strong linear correlation
between the two variables x and y in an orthogonal xy coordinate system.
The two variables have their univariate means and variances (Chapter 3).
The bivariate data set can be described by a bivariate sample mean and a co-
variance (Chapter 4). The xy coordinate system can be replaced by a new or-

First variable x

S
ec

on
d

va
ria

bl
e

y

New variable 1

N
ew

 v
ar

ia
bl

e
2

1st axis

2n
d

ax
is

−20 −15 −10 −5 0 5 10 15 20 25 30 35
−100

−50

0

50

100

150

200

−150 −100 −50 0 50 100
−10

−5

0

5

10

Fig. 9.1 Principal component analysis (PCA) illustrated on a bivariate scatter. The original xy
coordinate system is replaced by a new orthogonal system, where the fi rst axis passes through
the long axis of the data scatter and the new origin is the bivariate mean. We can now reduce
dimensionality by dropping the second axis without losing much information.

216 9 Multivariate Statistics

thogonal coordinate system, where the fi rst axis passes through the long axis
of the data scatter and the new origin is the bivariate mean. This new refer-
ence frame has the advantage that the fi rst axis can be used to describe most
of the variance, while the second axis contributes only a little. Originally,
two axis were needed to describe the data set prior to the transformation. It
is therefore possible to reduce the data dimension by dropping the second
axis without losing much information as shown in Figure 9.1.

This is now expanded to an arbitrary number of variables and samples.
Suppose a data set of measurements of p parameters on n samples stored in
an n-by-p array.

The columns of the array represent the p variables, the rows represent the n
samples. After rotating the axis and moving the origin, the new coordinates
can be computed by

The PC
1
 denoted by Y

1
 contains the greatest variance, PC

2
 the second high-

est variance and so forth. All PCs together contain the full variance of the
data set. The variance is concentrated in the fi rst few PCs, which explain
most of the information content of the data set. The last PCs are generally
ignored to reduce the data dimension. The factors a

ij
in the above equations

are the principal component loads. The values of these factors represent the
relative contribution of the original variables to the new PCs. If the load a

ij

of a variable X
1
 in PC

1
 is close to zero, the infl uence of this variable is low.

A high positive or negative a
ij
suggest a strong contribution of the variable

X
1
. The new values of the variables computed from the linear combinations

of the original variables weighted by the loads are called the principal com-
ponent scores.

In the following, a synthetic data set is used to illustrate the use of the func-
tion princomp contained in the Statistics Toolbox. Our data set contains the

9.2 Principal Component Analysis 217

percentage of various minerals contained in sediment samples. The sediments
are sourced from three rock types: a magmatic rock containins amphibole
(amp), pyroxene (pyr) and plagioclase (pla), a hydrothermal vein character-
ized by the occurrence of fl uorite (fl u), sphalerite (sph) and galenite (gal), as
well as some feldspars (plagioclase and potassium feldspar, ksp) and quartz,
and a sandstone unit containing feldspars, quartz and clay minerals (cla).

Ten samples were taken from various levels of this sedimentary sequence
that are comprised of varying amounts of these minerals. The PCA is used to
verify the infl uence of the three different source rocks and to estimate their
relative contribution. Firstly, the data are loaded by typing

data = load('sediments.txt');

Next we defi ne labels for the various graphs created by the PCA. We number
the samples 1 to 10, whereas the minerals are characterized by three-char-
acter abbreviations.

for i=1:10
 sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals= ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal'];

A successful PCA requires linear correlations between variables. The cor-
relation matrix provides a technique for exploring such dependencies in the
data set. The elements of the correlation matrix are Pearson s correlation
coeffi cients for each pair of variables as shown in Figure 9.2. In this case,
the variables are minerals.

corrmatrix = corrcoef(data);
corrmatrix = flipud(corrmatrix);

imagesc(corrmatrix), colormap(hot)
title('Correlation Matrix')
axis square, colorbar, hold
set(gca,'XTickLabel',minerals,'YTickLabel',flipud(minerals))

This pseudocolor plot of the correlation coeffi cients shows strong positive
correlations between the minerals amp, pyr and pla, the minerals ksp, qtz
and cla, and the minerals fl u, sph and gal, respectively. Moreover, some of
the minerals show negative correlations. We also observe no dependency
between some of the variables, for instance between the potassium feldspar
and the vein minerals. From the observed dependencies we expect interest-
ing results from the application of the PCA.

Various methods exist for scaling the original data before applying the

218 9 Multivariate Statistics

PCA, such as mean centering (zero means) or autoscaling (mean zero and
standard deviation equals one). However, we use the original data for com-
puting the PCA. The output of the function princomp includes the principal
components pcs, the component scores of the data newdata and the com-
ponent variances.

[pcs,newdata,variances] = princomp(data);

The fi rst fi ve principal components PC
1
 to PC

5
 can be shown ty typing

pcs(:,1:5)

ans =
 -0.3303 0.2963 -0.4100 -0.5971 0.1380
 -0.3557 0.0377 0.6225 0.2131 0.5251
 -0.5311 0.1865 -0.2591 0.4665 -0.3010
 0.1410 0.1033 -0.0175 0.0689 -0.3367
 0.6334 0.4666 -0.0351 0.1629 0.1794
 0.1608 0.2097 0.2386 -0.0513 -0.2503
 0.1673 -0.4879 -0.4978 0.2287 0.4756
 0.0375 -0.2722 0.2392 -0.5403 -0.0068
 0.0771 -0.5399 0.1173 0.0480 -0.4246

0

+ 0.5

+ 1.0

− 0.5

− 1.0

amp

pyr

pla

ksp

qtz

cla

flu

sph

gal

amp pyr pla ksp qtz cla flu sph gal

Correlation Matrix

Fig. 9.2 Correlation matrix containing Pearson s correlation coeffi cients for each pair of
variables, such as minerals in a sediment sample. Light colors represent strong positive
linear correlations, whereas dark colors document negative correlations. Orange suggests
no correlation.

9.2 Principal Component Analysis 219

we observe that PC
1
 (fi rst column) has high negative loads in the fi rst three

variables amp, pyr and pla (fi rst to third row), and high positive loads in the
fi fth variable qtz (fi fth row). PC

2
 (second column) has high negative loads in

the vein minerals fl u, sph and gal, and again a positive load in qtz. We create
a number of plots of the PCs, where we also observe signifi cant loads of the
other PCs.

subplot(2,2,1),plot(1:9,pcs(:,1),'o'),axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,1),minerals,'FontSize',8),hold
plot(1:9,zeros(9,1),'r'), title('PC 1')

subplot(2,2,2),plot(1:9,pcs(:,2),'o'),axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,2),minerals,'FontSize',8),hold
plot(1:9,zeros(9,1),'r'),title('PC 2')

subplot(2,2,3),plot(1:9,pcs(:,3),'o'),axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,3),minerals,'FontSize',8),hold
plot(1:9,zeros(9,1),'r'),title('PC 3')

subplot(2,2,4),plot(1:9,pcs(:,4),'o'),axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,4),minerals,'FontSize',8),hold
plot(1:9,zeros(9,1),'r'),title('PC 4')

The loads of the index minerals and their relationship to the PCs can be used
to interpret the relative infl uence of the source rocks. PC

1
characterized by

strong contributions of amp, pyr and pla, and a contribution with opposite
sign of qtz probably describes the amount of magmatic rock clasts in the
sediment. The second principal component PC

2
 is clearly dominated by hy-

drothermal minerals hence suggesting the detrital input from the vein. PC
3

and PC
4
 show a mixed and contradictory pattern of loads and are therefore

not easy to interpret. We will see later that this observation is in line with a
rather weak and mixed signal from the sandstone source on the sediments.

An alternative way to plot of the loads is a bivariate plot of two principal
components. We ignore PC

3
 and PC

4
 at this point and concentrate on PC

1

and PC
2
.

plot(pcs(:,1),pcs(:,2),'o')
text(pcs(:,1)+0.02,pcs(:,2),minerals,'FontSize',14), hold
x=get(gca,'XLim'); y=get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')

Here we observe the same relationships on a single plot that were previously
shown on several graphs (Fig. 9.3). It is also possible to plot the data set as
functions of the new variables. This needs the second output of princomp

220 9 Multivariate Statistics

containing the principal component scores.

plot(newdata(:,1),newdata(:,2),'+')
text(newdata(:,1)+0.01,newdata(:,2),sample), hold
x=get(gca,'XLim'); y=get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')

This plot clearly defi nes groups of samples with similar infl uences. The
samples 1, 2, 8 to 10 dominated by magmatic infl uences cluster in the left
half of the diagram, the samples 3 to 5 dominated by the hydrothermal vein
group in the lower part of the right half, whereas the two sandstone domi-
nated samples 6 and 7 fall in the upper right corner.

Next we use the third output of the function princomp to compute the
variances of the corresponding PCs.

percent_explained=100*variances/sum(variances)

amp

pyr

pla

ksp

qtz

cla

flu

sph

gal

−0.4 −0.2 0 0.2 0.4 0.6 0.8 −0.6
−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0

First principal component scores

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt
 s

co
re

s

Fig. 9.3 Principal components scores suggesting that the PCs are infl uenced by different
minerals. See text for detailed interpretation of the PCs.

9.3 Cluster Analysis 221

percent_explained =
 80.9623
 17.1584
 0.8805
 0.4100
 0.2875
 0.1868
 0.1049
 0.0096
 0.0000

We see that more than 80% of the total variance is contained in PC
1
, around

17% is described by PC
2
, whereas all other PCs do not play any role. This

means that most of the variability in the data set can be described by two
new variables only.

9.3 Cluster Analysis

 Cluster analysis creates groups of objects that are very similar compared
to other objects or groups. It fi rst computes the similarity between all pairs
of objects, then it ranks the groups by their similarity, and fi nally cre-
ates a hierarchical tree visualized as a dendrogram. Examples for group-
ing objects in earth sciences are the correlations within volcanic ashes
(Hermanns et al. 2000) and the comparison of microfossil assemblages
(Birks and Gordon 1985).

There are numerous methods for calculating the similarity between two
data vectors. Let us defi ne two data sets consisting of multiple measure-
ments on the same object. These data can be described by the vectors:

The most popular measures of similarity of the two sample vectors are

1. Euclidian distance – This is simply the shortest distance between the two
points in the multivariate space.

The Euclidian distance is certainly the most intuitive measure for similar-

222 9 Multivariate Statistics

ity. However, in heterogenic data sets consisting of a number of different
types of variables, it should be replaced the following measure.

2. Manhattan distance – In the city of Manhattan, one must walk on per-
pendicular avenues instead of diagonal crossing blocks. The Manhattan
distance is therefore the sum of all differences:

3. Correlation similarity coeffi cient – Here we use Pearson s linear product-
moment correlation coeffi cient to compute the similarity of two objects.

This measure is used if one is interested in ratios between the variables mea-
sured on the objects. However, Pearson s correlation coeffi cient is highly
sensitive to outliers and should be used with care (see also Chapter 4).

4. Inner-product similarity index – Normalizing the data vectors to one and
computing the inner product of these yields another important similarity
index. This is often used in transfer function applications. In this example,
a set of modern fl ora or fauna assemblages with known environmental
preferences is compared with a fossil sample to reconstruct the environ-
mental conditions in the past.

The inner product similarity varies between 0 and 1. A zero value sug-
gests no similarity and a value of one represents maximum similarity.
Transfer functions describe the similarity between the fossil sample and
all modern samples. The modern samples with the highest similarities are
then used to compute an estimate of the environmental conditions during
the existence of the fossil organisms.

9.3 Cluster Analysis 223

The second step in performing a cluster analysis is to rank the groups by
their similarity and build a hierarchical tree visualized as a dendrogram.
Defi ning groups of objects with signifi cant similarity and separating clusters
depends on the internal similarity and the difference between the groups.
Most clustering algorithms simply link the two objects with highest simi-
larity. In the following steps, the most similar pairs of objects or clusters
are linked iteratively. The difference between groups of objects forming a
cluster is described in different ways depending on the type of data and ap-
plication.

1. K-means clustering – Here, the Euclidean distance between the multi-
variate means of the K clusters are used as a measure for the difference
between the groups of objects. This distance is used if the data suggest
that there is a true mean value surrounded by random noise.

2. K-nearest-neighbors clustering – Alternatively, the Euclidean distance of
the nearest neighbors is used as such a measure. This is used if there is
a natural heterogeneity in the data set that is not attributed to random
noise.

It is important to evaluate the data properties prior to the application of a
clustering algorithm. Firstly, one should consider the absolute values of the
variables. For example, a geochemical sample of volcanic ash might show
SiO

2
 contents of around 77% and Na

2
O contents of 3.5%, although the Na

2
O

content is believed to be of great importance. In this case, the data need to
be transformed to zero means (mean centering). Differences in the vari-
ances and in the means are corrected by autoscaling, i.e., the data are stan-
dardized to zero means and variances that equal one. Artifacts arising from
closed data, such as artifi cial negative correlations, are avoided by using
Aitchison s log-ratio transformation (Aitchison 1984, 1986). This ensures
data independence and avoids the constant sum normalization constraints.
The log-ratio transformation is defi ned as

where x
tr

denotes the transformed score (i=1, 2, 3, …, d-1) of some raw data
x

i
. The procedure is invariant under the group of permutations of the vari-

ables, and any variable can be used as divisor x
d
.

As an example for performing a cluster analysis, the sediment data are
loaded and the plotting labels are defi ned.

224 9 Multivariate Statistics

data = load('sediments.txt');

for i=1:10
 sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals= ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal'];

Subsequently, the distances between pairs of samples can be computed. The
function pdist provides many ways for computing this distance, such as
the Euclidian or Manhattan distance. We use the default setting which is the
Euclidian distance.

Y = pdist(data);

The function pdist returns a vector Y containing the distances between
each pair of observations in the original data matrix. We can visualize the
distances on another pseudocolor plot.

 squareform(Y);
 imagesc(squareform(Y)),colormap(hot)
title('Euclidean distance between pairs of samples')
xlabel('First Sample No.')
ylabel('Second Sample No.')
colorbar

The function squareform converts Y into a symmetric, square format, so
that the elements (i,j)of the matrix denote the distance between the i
and j objects in the original data. Next we rank and link the samples with
respect to their inverse distance using the function linkage.

Z = linkage(Y);

In this 3-column array Z, each row identifi es a link. The fi rst two columns
identify the objects (or samples) that have been linked, the third column
contains the individual distance between these two objects. The fi rst row
(link) between objects (or samples) 1 and 2 has the smallest distance cor-
responding to the highest similarity. Finally, we visualize the hierarchical
clusters as a dendrogram which is shown in Figure 9.4.

 dendrogram(Z);
xlabel('Sample No.')
ylabel('Distance')
box on

Clustering fi nds the same groups as the principal component analysis. We
observe clear groups consisting of samples 1, 2, 8 to 10 (the magmatic

9.4 Independent Component Analysis (by N. Marwan) 225

source rocks), samples 3 to 5 (the the hydrothermal vein) and samples 6
and 7 (the sandstone). One way to test the validity of our clustering result is
the cophenet correlation coeffi cient. The closer this coeffi cient is to one, the
better is the cluster solution. In our case, the results

cophenet(Z,Y)

ans =
 0.7579

look convincing.

9.4 Independent Component Analysis (by N. Marwan)

The principal component analysis (PCA) is the standard method for separat-
ing mixed signals. Such analysis provides signals that are linearly uncor-
related. This method is also called whitening since this property is char-
acteristic for white noise. Although the separated signals are uncorrelated,

Sample No.

D
is

ta
nc

e

 2 9 1 8 10 3 4 5 6 7

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Fig. 9.4 Output of the cluster analysis. The dendrogram shows clear groups consisting
of samples 1, 2, 8 to 10 (the magmatic source rocks), samples 3 to 5 (the magmatic dyke
containing ore minerals) and samples 6 and 7 (the sandstone unit).

226 9 Multivariate Statistics

they could still can be dependent, i.e., nonlinear correlation remains. The
independent component analysis (ICA) was developed for the purpose of
investigating such data. It separates mixed signals into independent signals,
which are then nonlinearly uncorrelated. Fast ICA algorithms use a crite-
rion which estimates how gaussian distributed the joint distribution of the
independent components is. The less gaussian this distribution is, the more
independent the individual components are.

According to the model, n independent signals x(t) are linearly mixed in
m measurements.

and we are interested in the source signals s
i
 and in the mixing matrix A.

We can, for example, imagine that we are on a party and a lot of people
talk independently with others. We hear a mixing of these talks and perhaps
cannot distinguish the single talks. Now we could install some microphones
and use these measurements in order to separate the single conversations.
Hence, this dilemma is also called the cocktail party problem. Its correct
term is blind source separation that is given by

where WT is the separation matrix in order to reverse the mixing and get
the original signals. Let us consider a mixing of three signals s

1
, s

2
 and s

3

and their separation using PCA and ICA. At fi rst we create three periodic
signals

clear
i = (1:0.01:10 * pi)';
[dummy index] = sort(sin(i));

s1(index,1) = i/31; s1 = s1 - mean(s1);
s2 = abs(cos(1.89*i)); s2 = s2 - mean(s2);
s3 = sin(3.43*i);

subplot(3,2,1), plot(s1), ylabel('s_1'), title('Raw signals')
subplot(3,2,3), plot(s2), ylabel('s_2')
subplot(3,2,5), plot(s3), ylabel('s_3')

Now we mix these signals and add some observational noise. We get a three-
column vector x which corresponds to our measurement (Fig. 9.5).

randn('state',1);

9.4 Independent Component Analysis (by N. Marwan) 227

x = [.1*s1 + .8*s2 + .01*randn(length(i),1),...
 .4*s1 + .3*s2 + .01*randn(length(i),1),...
 .1*s1 + s3 + .02*randn(length(i),1)];

subplot(3,2,2), plot(x(:,1)),
 ylabel('x_1'), title('Mixed signals')
subplot(3,2,4), plot(x(:,2)), ylabel('x_2')
subplot(3,2,6), plot(x(:,3)), ylabel('x_3')

We begin with the separation of the signals using the PCA. We calculate the
principal components and the whitening matrix W_PCA with

[E sPCA D] = princomp(x);

The PC scores sPCA are the linearly separated components of the mixed
signals x (Fig. 9.6).

0 1000 2000 3000 4000

1000

1000

2000

2000

3000

3000

4000

4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0

0

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

−1

−0.5

0

0.5

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

−0.5

0

0.5

x 1
x 2

x 3

s
1

s
2

s 3
Raw Signals Mixed Signals

a

c

e f

d

b

Fig. 9.5 Sample input for the independent component analysis. We fi rst generate three period
signals (a, c, e), mix the signals and add some gaussian (b, d, f).

228 9 Multivariate Statistics

subplot(3,2,1), plot(sPCA(:,1))
ylabel('s_{PCA1}'), title('Separated signals - PCA')
subplot(3,2,3), plot(sPCA(:,2)), ylabel('s_{PCA2}')
subplot(3,2,5), plot(sPCA(:,3)), ylabel('s_{PCA3}')

The mixing matrix A can be found with

A_PCA = E * sqrt (D);

Next, we separate the signals into independent components. We will do
this by using a FastICA algorithm which is based on a fi xed-point iteration
scheme in order to fi nd the maximum of the non-gaussianity of the indepen-
dent components WTx. As the nonlinearity function we use a power of three
function as an example.

0 1000 2000 3000 4000

1000

1000

2000

2000

3000

3000

4000

4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0 1000 2000 3000 4000

0

0
−4

−2

0

2

4

−4

−2

0

2

−2

−1

0

1

2

−4

−2

0

2

4

−4

−2

0

2

4

−2

0

2

4

s
s

s
P

C
A

1
P

C
A

2
P

C
A

3

s I
C

A
1

s I
C

A
2

s I
C

A
3

Separated Signals − PCA Separated Signals − ICA

a

c

e f

d

b

Fig. 9.6 Output of the principal component analysis (a, c, e) compared with the output of
the independent component analysis (b, d, f). The PCA has not reliably separated the mixed
signals, whereas the ICA found the source signals almost perfectly.

Recommended Reading 229

rand('state',1);

div = 0;
B = orth(rand(3, 3) - .5);
BOld = zeros(size(B));

while (1 - div) > eps
 B = B * real(inv(B' * B)^(1/2));
 div = min(abs(diag(B' * BOld)));
 BOld = B;
 B = (sPCA' * (sPCA * B) .^ 3) / length(sPCA) - 3 * B;
 sICA = sPCA * B;
end

We plot the separated components with (Fig. 9.6)

subplot(3,2,2), plot(sICA(:,1))
ylabel('s_{ICA1}'), title('Separated signals - ICA')
subplot(3,2,4), plot(sICA(:,2)), ylabel('s_{ICA2}')
subplot(3,2,6), plot(sICA(:,3)), ylabel('s_{ICA3}')

The PCA algorithm has not reliably separated the mixed signals. Especially
the saw-tooth signal was not correctly found. In contrast, the ICA has found
the source signals almost perfectly. The only remarkable differences are the
noise, which came through the observation, the wrong sign and the wrong
order of the signals. However, the sign and the order of the signals are not
really important, because we have in general not the knowledge about the
real sources nor their order. With

A_ICA = A_PCA * B;
W_ICA = B' * W_PCA;

we compute the mixing matrix A and the separation matrix W. The mix-
ing matrix A can be used in order to estimate the portion of the separated
signals on our measurements The components a

i,j
 of the mixing matrix A

correspond to the principal components loads as introduced in Chapter 9.2.
A FastICA package is available for MATLAB and can be found at

http://www.cis.hut.fi/projects/ica/fastica/

Recommended Reading

Aitchison J (1984) The statistical analysis of geochemical composition. Mathematical
Geology 16(6):531-564

Aitchison J. (1999) Logratios and Natural Laws in Compositional Data Analysis. Mathematical
Geology 31(5):563-580

Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic
Press, London

230 9 Multivariate Statistics

Brown CE (1998) Applied Multivariate Statistics in Geohydrology and Related Sciences.
Springer, Berlin Heidelberg New York

Hermanns R, Trauth MH, McWilliams M, Strecker M (2000) Tephrochronologic constraints
on temporal distribution of large landslides in NW-Argentina. Journal of Geology
108:35-52

Pawlowsky-Glahn V (2004) Geostatistical Analysis of Compositional Data - Studies in
Mathematical Geology. Oxford University Press,

Reyment RA, Savazzi E (1999) Aspects of Multivariate Statistical Analysis in Geology.
Elsevier Science

Westgate JA, Shane PAR, Pearce NJG, Perkins WT, Korisettar R, Chesner CA, Williams
MAJ, Acharyya SK (1998) All Toba Tephra Occurrences across Peninsular India Belong
to the 75,000 yr BP. Eruption. Quaternary Research 50:107-112

accessible population 2
adaptive fi ltering 143
adaptive process 143
addition 18
Aitchisons log-ratio transformation 223
alternative hypothesis 51
amplitude 134
analog fi lters 119
analysis of residuals 72
anisotropy 185
ans 15, 23
answer 15
arithmetic mean 31, 163
array 15, 18
artifacts 169
artifi cial fi lters 120
ASCII 19
ASTER 199, 204
asterisk 18
autoscaling 218, 223
available population 2
axesm 153
axis 26, 65

B

bandpass 140
bandpass fi lter 141
bandstop 140
bandstop fi lters 141
bar plot 26
bars 26
bathymetry 154

Bernoulli distribution 43
bilinear interpolation 169
bimodal 32
binary digits 19
binomial distribution 43
bits 19, 195
bivariate analysis 61
bivariate data set 62
blank 15
blind source separation 226
block kriging 190
BMP 198
bootstrap 66, 74
bootstrp 66
box and whisker plot 38
boxplot 38
butter 140
Butterworth fi lter 140
bytes 16, 195

C

canc 145
capital letters 16
case sensitive 16
causal 125
causal indexing 129
causality 123
central tendency 30
Chi-squared distribution 49
Chi-squared test 56
chi2inv 58, 74
clabel 166
class 16
classes 30

General Index

A

232 General Index

classical regression 68
classical variogram 176
clear 16
closed data 6
cluster analysis 214, 221
clustered sampling 4
coastline vector 152
cocktail party problem 226
colon operator 17
colorbar 156, 160
colormap 157, 168, 202
column 15
comma 15
Command History 12, 13
Command Window 12, 13
comment 20
comment line 23
comments 23
complex conjugate transpose 18
confi dence interval 71, 80
confi dence testing 72
continuity 121
contour 165
contourf 166
contouring 161
Control-C 17
control points 162
conv 125, 126, 127
convolution 125
cophenet correlation coeffi cient 225
corrcoef 65
corrected sum of products 64
correlation coeffi cient 62
correlation coeffi cients 218
correlation matrix 217
correlation similarity coeffi cient 222
covariance 64
cp2tform 208
cross validation 77
Ctrl-C 17
cubic polynomial splines 164
cumulative distribution function 41, 50
cumulative histogram 30
Current Directory 12, 13

curvilinear regression 80
cutoff frequency 140

D

degrees of freedom 33, 48
Delauney triangulation 162
DEM 156
dendrogram 224
dependent variable 61, 68
descriptive statistics 29
difference equation 129
digital elevation model 157
digital fi lters 119
digital terrain elevation model 157
digitizing 151, 209
dimension 16
directional data 6
directional variograms 185
dispersion 30, 34
display 25
disttool 51
dots per inch 197
dpi 197
drifts 174
DTEM 157

E

edge effects 171
edit 13
Edit Mode 27
Editor 12, 13, 20
Edit Plot 27
element-by-element 18
ellipsis 71
empirical distribution 29, 41
Encapsulated PostScript 198
end 21, 22
EPS 198
error bounds 71
ETOPO2 154
Euclidian distance 221
expected frequencies 57

General Index 233

experimental variogram 177
export data 19

F

F-test 53
factor analysis 214
F distribution 48
fi elds 71
Figure Window 25, 26
File 14
File menu 27, 28
fi lter 119, 125, 127, 140
fi lter design 139
fi lters weights 143
fi lter weights 125
fi ltfi lt 125, 140
fi nd 38, 160
fi nv 55
for 21
Fourier transforms 131
frequency-selective fi lter 141
frequency-selective fi lters 120
frequency characteristics 140
frequency distribution 30
frequency domain 131
frequency response 134, 141
freqz 136
function 23, 24
functions 22

G

Gamma function 49
gaps 20
gaussian distribution 45
gaussian noise 140
general shape 30
Generate M-File 27, 28
geometric anisotropy 185
geometric mean 32
georeferencing 207
geostatistics 162, 173
ginput 210

global trends 174
goodness-of-fi t 71, 78
graph3d 167
graphical user interface 50
graphics functions 25
grayscale image 195
grid 27
griddata 165, 169
gridding 151, 161
grid points 162
GSHHS 152
GTOPO30 157
GUI 50

H

harmonic mean 32
HDF 207
help 24
highpass 140
highpass fi lter 141
hist 36
histogram 30
History 12
hold 26
hypothesis 51
hypothesis testing 29
hypothetical population 2

I

if 21, 22
image processing 193
images 193
imagesc 224
imfi nfo 201
imhist 201
import data 19
impulse response 131, 132
imshow 200
imtransform 208
imwrite 201
independent component analysis 214,
independent variable 61, 68

234 General Index

indexed color image 201
indexing 17
inner-product similarity index 222
inner product 18
input 23
input signal 119
Insert Legend 27
intensity image 196
intensity values 196
interpolation artifacts 169
interval data 6
invertibility 123
iterations 146

J

jackknife 66, 76
Joint Photographic Experts Group 199
JPEG 199

K

K-means clustering 223
K-nearest-neighbors clustering 223
kriging 162, 173
kriging variance 186
kurtosis 35, 39

L

lag distance 177
lag tolerance 185
lag width 185
least-mean-squares algorithm 144
length 54
linearity 122
linear kriging system 186
linear regression 68, 69
linear system 122
linear time-invariant fi lter 130
linear time-invariant systems 124
linear transformation 18
linear trend 64, 70
linkage 224

LINUX 13
LMS algorithm 144
load 20
loads 216
local trends 174
log-ratio transformation 223
logarithmic normal distribution 46
lognormal kriging 176
lower-case letters 16
lowpass 140
lowpass fi lter 141
LTI systems 124

M

M-fi les 21
Macintosh OS X 13
magnitude response 134
Manhattan distance 222
MAT-fi les 21
MATLAB 11
MATLAB Editor 20
matrix 15
matrix division 18
matrix element 16
matrix indexing 17
matrix multiplication 18
max 37
mean 30, 37, 45
mean-squared error 144
mean centering 218, 223
median 30, 31, 38
mesh 167
meshgrid 157, 160
Microsoft Windows 13
Microsoft Windows Bitmap Format

198
min 37
minput 210
missing data 20
mixing matrix 228
mode 32
monitor 197
multi-parameter methods 213

General Index 235

multimodal 32
multiplication 18
multiplying element-by-element 18
multivariate analysis 213
multivariate data sets 213

N

NaN 20, 155
nanmean 39
natural fi lters 119
nearest-neighbor criterion 162
nested models 182
noise 119, 143
nominal data 3
non-causal fi lters 125
nonlinear system 122
nonrecursive fi lters 129
normal distribution 45
normalizing 57
normcdf 51
normpdf 51
Not-a-Number 20, 155
nugget effect 182
nuggets 182
null hypothesis 51
Nyquist frequency 140

O

objective variogram modeling 183
observed frequencies 57
observed values 72
omni directional variograms 185
optimization problem 144
order of the fi lter 125
ordinal data 6
ordinary point kriging 185
outlier 66
output 23
output signal 119

P

paired low and high 170
passband 140
path 14
pathdef 14
pcolor 166
pdist 224
Pearsons correlation coeffi cients 62
percentiles 32
percent sign 20
periodogram 131
phase 134
phase shift 132
picture elements 194
pixels 194
pixels per inch 197
plot 25
point kriging 190
Poisson distribution 44
polyfi t 70
polytool 71
polyval 71
population 1, 29
Portable Document Format 199
Postscript 198
power of matrices 18
ppi 197
prctile 38
predicted values 72
prediction error 78
predictor variable 68
primary input 144
principal component analysis 214
principal component loads 216
principal components 215
principal component scores 216
princomp 216, 218
print 208
probability density function 41, 50
probability distribution 41
Property Editor 28
PS 198

236 General Index

Q

quantiles 32
quartiles 32
quintiles 32

R

randn 65
random numbers 50
random sampling 4
randtool 50
range 30, 33, 37, 181
raster data 151, 193, 194
ratio data 6
realization 119
rectangular distribution 42
recursive fi lters 129
reduced major axis regression 69, 78
reduction of dimensionality 214
reference input 144
regionalized variables 173
regression coeffi cient 69
regressor variable 68
regular sampling 4
resampling schemes 66
residuals 72
resolution 197
return 15
RGB 196, 200
RGB composite 206
RMA regression 78
rolling die 43
Rotate 3D 27
row 15
running mean 136

S

sample 1, 29
samples 29
sample size 2, 184
sampling design 185
sampling scheme 3

satellite images 204
save 20
Save as 27, 28
scalar 15
scaling 57
scatter plot 70
scores 216
scripts 22
search path 14
semicolon 15
semivariance 177
semivariogram 177
separated components 227
separation distance 185
separation vector 177
Set Path 14
shading 155, 160
shape 30, 34
shoreline data 152
Shuttle Radar Topography Mission 158
signal 143
signal processing 119
signifi cance 66
signifi cance level 51
sill 181
similarity coeffi cient 222
similarity index 222
size 22
skewness 35, 39
Solaris 13
spatial data 6
spatially-distributed data 151
spatial sampling scheme 3
splines 164
splines with tension 173
square brackets 15
squareform 224
SRTM 158
stability 124
standard deviation 30, 33, 45
standard normal distribution 45
statistical signifi cance 66
std 39
stem 133

General Index 237

step function 121
stopband 140
store data 19
structures 71
Students t distribution 47
subplot 26
subtraction 18
sum 15
SUN Solaris 13
superposition 122
surf 157, 168
surface estimation 162
surfc 168
surrogates 66
system theory 119

T

t-test 51
Tagged Image File Format 198
t distribution 47
TERRA-ASTER satellite image 199
Text Editor 12, 13, 20, 21
tform 208
theoretical distribution 29, 41
theory of regionalized variables 173
TIFF 198
time domain 131
time invariance 122
time series 15
title 27
Tools menu 27
topography 154
transpose 18
triangulation 162
trimodal 32
true color image 197
tsplines 173
ttest2 52

U

uint8 200
uniform distribution 42

uniform sampling 4
unimodal 32
unit impulse 121, 132
univariate analysis 29
UNIX 13
unwrap 137
user 14
username 14

V

var 39
variables 16
variance 33
variogram 173
variogram cloud 178
variogram estimator 177, 179
variogram model 181
variography 176
vector data 151, 193, 194
vectors 15
visualization 25

W

weighted mean 163
whitening 225
whos 16, 17
workspace 12, 13, 15

X

xlabel 27

Y

ylabel 27

Z

z distribution 46
zonal anisotropy 185
Zoom 27

