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Preface

Various books on data analysis in earth sciences have been published during 
the last ten years, such as Statistics and Data Analysis in Geology by JC Davis, 
Introduction to Geological Data Analysis by ARH Swan and M Sandilands, 
Data Analysis in the Earth Sciences Using MATLAB® by GV Middleton or 
Statistics of Earth Science Data by G Borradaile. Moreover, a number of 
software packages have been designed for earth scientists such as the ESRI
product suite ArcGIS or the freeware package GRASS for generating geo-
graphic information systems, ERDAS IMAGINE or RSINC ENVI for remote 
sensing and GOCAD and SURFER for 3D modeling of geologic features. In 
addition, more general software packages as IDL by RSINC and MATLAB®

by The MathWorks Inc. or the freeware software OCTAVE provide powerful 
tools for the analysis and visualization of data in earth sciences.

Most books on geological data analysis contain excellent theoreti-
cal introductions, but no computer solutions to typical problems in earth 
sciences, such as the book by JC Davis. The book by ARH Swan and 
M Sandilands contains a number of examples, but without the use of com-
puters. G Middleton s book fi rstly introduces MATLAB as a tool for earth 
scientists, but the content of the book mainly refl ects the personal interests 
of the author, rather then providing a complete introduction to geological 
data analysis. On the software side, earth scientists often encounter the prob-
lem that a certain piece of software is designed to solve a particular geologic 
problem, such as the design of a geoinformation system or the 3D visualiza-
tion of a fault scarp. Therefore, earth scientists have to buy a large volume 
of software products, and even more important, they have to get used to it 
before being in the position to successfully use it.

This book on MATLAB Recipes for Earth Sciences is designed to help 
undergraduate and PhD students, postdocs and professionals to learn meth-
ods of data analysis in earth sciences and to get familiar with MATLAB, 
the leading software for numerical computations. The title of the book is 
an appreciation of the book Numerical Recipes by WH Press and others 
that is still very popular after initially being published in 1986. Similar to 
the book by Press and others, this book provides a minimum amount of 
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theoretical background, but then tries to teach the application of all methods 
by means of examples. The software MATLAB is used since it provides 
numerous ready-to-use algorithms for most methods of data analysis, but 
also gives the opportunity to modify and expand the existing routines and 
even develop new software. The book contains numerous MATLAB scripts 
to solve typical problems in earth sciences, such as simple statistics, time-
series analysis, geostatistics and image processing. The book comes with a 
compact disk, which contains all MATLAB recipes and example data fi les. 
All MATLAB codes can be easily modifi ed in order to be applied to the 
reader s data and projects.

Whereas undergraduates participating in a course on data analysis might 
go through the entire book, the more experienced reader will use only one 
particular method to solve a specifi c problem. To facilitate the use of this 
book for the various readers, I outline the concept of the book and the con-
tents of its chapters.

1. Chapter 1 – This chapter introduces some fundamental concepts of sam-
ples and populations, it links the various types of data and questions to 
be answered from these data to the methods described in the following 
chapters.

2. Chapter 2 – A tutorial-style introduction to MATLAB designed for earth 
scientists. Readers already familiar with the software are advised to pro-
ceed directly to the following chapters.

3. Chapter 3 and 4 – Fundamentals in univariate and bivariate statistics. 
These chapters contain very basic things how statistics works, but also 
introduce some more advanced topics such as the use of surrogates. The 
reader already familiar with basic statistics might skip these two chap-
ters.

4. Chapter 5 and 6 – Readers who wish to work with time series are recom-
mended to read both chapters. Time-series analysis and signal processing 
are tightly linked. A solid knowledge of statistics is required to success-
fully work with these methods. However, the two chapters are more or 
less independent from the previous chapters.

5. Chapter 7 and 8 – The second pair of chapters. From my experience, 
reading both chapters makes a lot of sense. Processing gridded spatial 
data and analyzing images has a number of similarities. Moreover, aerial 
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photographs and satellite images are often projected upon digital eleva-
tion models.

6. Chapter 9 – Data sets in earth sciences are tremendously increasing in the 
number of variables and data points. Multivariate methods are applied to 
a great variety of types of large data sets, including even satellite images. 
The reader particularly interested in multivariate methods is advised to 
read Chapters 3 and 4 before proceeding to this chapter.

I hope that the various readers will now fi nd their way through the book. 
Experienced MATLAB users familiar with basic statistics are invited to pro-
ceed to Chapters 5 and 6 (the time series), Chapters 7 and 8 (spatial data and 
images) or Chapter 9 (multivariate analysis) immediately, which contain 
both an introduction to the subjects as well as very advanced and special 
procedures for analyzing data in earth sciences. It is recommended to the 
beginners, however, to read Chapters 1 to 4 carefully before getting into the 
advanced methods.

I thank the NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER 
Science Team and the director Mike Abrams for allowing me to include the 
ASTER images in the book. The book has benefi t from the comments of a 
large number of colleagues and students. I gratefully acknowledge my col-
leagues who commented earlier versions of the manuscript, namely Robin 
Gebbers, Norbert Marwan, Ira Ojala, Lydia Olaka, Jim Renwick, Jochen 
Rössler, Rolf Romer, and Annette Witt. Thanks also to the students Mathis 
Hein, Stefanie von Lonski and Matthias Gerber, who helped me to improve 
the book. I very much appreciate the expertise and patience of Elisabeth 
Sillmann who created the graphics and the complete page design of the 
book. I also acknowledge Courtney Esposito leading the author program at 
The MathWorks, Claudia Olrogge and Annegret Schumann at Mathworks 
Deutschland, Wolfgang Engel at Springer, Andreas Bohlen and Brunhilde 
Schulz at UP Transfer GmbH. I would like to thank Thomas Schulmeister 
who helped me to get a campus license for MATLAB at Potsdam University. 
The book is dedicated to Peter Koch, the late system administrator of the 
Department of Geosciences who died during the fi nal writing stages of the 
manuscript and who helped me in all kinds of computer problems during the 
last few years.

Potsdam, September 2005

Martin Trauth
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1 Data Analysis in Earth Sciences

1.1 Introduction

Earth sciences include all disciplines that are related to our planet Earth. 
Earth scientists make observations and gather data, they formulate and test 
hypotheses on the forces that have operated in a certain region in order to 
create its structure. They also make predictions about future changes of the 
planet. All these steps in exploring the system Earth include the acquisition 
and analysis of numerical data. An earth scientist needs a solid knowledge in 
statistical and numerical methods to analyze these data, as well as the ability 
to use suitable software packages on a computer.

This book introduces some of the most important methods of data analy-
sis in earth sciences by means of MATLAB examples. The examples can 
be used as recipes for the analysis of the reader s real data after learn-
ing their application on synthetic data. The introductory Chapter 1 deals 
with data acquisition (Chapter 1.2), the expected data types (Chapter 1.3) 
and the suitable methods for analyzing data in the fi eld of earth sciences 
(Chapter 1.4). Therefore, we fi rst explore the characteristics of a typical data 
set. Subsequently, we proceed to investigate the various ways of analyzing 
data with MATLAB.

1.2 Collecting Data

Data sets in earth sciences have a very limited sample size. They also con-
tain a signifi cant amount of uncertainties. Such data sets are typically used 
to describe rather large natural phenomena such as a granite body, a large 
landslide or a widespread sedimentary unit. The methods described in this 
book help in fi nding a way of predicting the characteristics of a larger  pop-
ulation from the collected samples (Fig 1.1). In this context, a proper sam-
pling strategy is the fi rst step towards obtaining a good data set. The devel-
opment of a successful strategy for fi eld sampling includes decisions on
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1. the  sample size – This parameter includes the sample volume or its weight 
as well as the number of samples collected in the fi eld. The rock weight 
or volume can be a critical factor if the samples are later analyzed in the 
laboratory. On the application of certain analytic techniques a specifi c 
amount of material may be required. The sample size also restricts the 
number of subsamples that eventually could be collected from the single 
sample. If the population is heterogeneous, then the sample needs to be 
large enough to represent the population s variability. On the other hand, 
a sample should always be as small as possible in order to save time and 
effort to analyze it. It is recommended to collect a smaller pilot sample 
before defi ning a suitable sample size.

Fig. 1.1 Samples and population. Deep valley incision has eroded parts of a sandstone unit 
(hypothetical population). The remnants of the sandstone ( available population) can only 
be sampled from outcrops, i.e., road cuts and quarries ( accessible population). Note the 
difference between a statistical sample as a representative of a population and a geological 
sample as a piece of rock.

Geological
sample

Accessible
Population

Road cut

Outcrop

River valley

Available
Population

Hypothetical
Population
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2. the  spatial  sampling scheme – In most areas, samples are taken as the 
availability of outcrops permits. Sampling in quarries typically leads to 
clustered data, whereas road cuts, shoreline cliffs or steep gorges cause 
traverse sampling schemes. If money does not matter or the area allows 
hundred percent access to the rock body, a more uniform sampling pat-
tern can be designed. A regular sampling scheme results in a gridded dis-
tribution of sample locations, whereas a uniform sampling strategy in-
cludes the random location of a sampling point within a grid square. You 
might expect that these sampling schemes represent the superior method 
to collect the samples. However, equally-spaced sampling locations tend 
to miss small-scale variations in the area, such as thin mafi c dykes in a 
granite body or spatially-restricted occurrence of a fossil. In fact, there is 
no superior sample scheme, as shown in Figure 1.2.

The proper sampling strategy depends on the type of object to be analyzed, 
the purpose of the investigation and the required level of confi dence of the 
fi nal result. Having chosen a suitable sampling strategy, a number of distur-
bances can infl uence the quality of the set of samples. The samples might 
not be representative of the larger population if it was affected by chemi-
cal or physical alteration, contamination by other material or the sample 
was dislocated by natural or anthropogenic processes. It is therefore recom-
mended to test the quality of the sample, the method of data analysis em-
ployed and the validity of the conclusions based on the analysis in all stages 
of the investigation.

1.3 Types of Data

These data types are illustrated in Figure 1.3. The majority of the data  con-
sist of numerical measurements, although some information in earth sci-
ences can also be represented by a list of names such as fossils and minerals. 
The available methods for data analysis may require certain types of data in 
earth sciences. These are

1.  nominal data – Information in earth sciences is sometimes presented as 
a list of names, e.g., the various fossil species collected from a limestone 
bed or the minerals identifi ed in a thin section. In some studies, these 
data are converted into a binary representation, i.e., one for present and 
zero for absent. Special statistical methods are available for the analysis 
of such data sets.
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Fig. 1.3 Types of data in earth sciences. a Nominal data, b ordinal data, c ratio data, 
d interval data, e closed data, f spatial data and g directional data. For explanation see text. 
All data types are described in the book except for directional data since there are better tools 
to analyze such data in earth sciences than MATLAB.
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2.  ordinal data – These are numerical data representing observations that 
can be ranked, but the intervals along the scale are not constant. Mohs
hardness scale is one example for an ordinal scale. The Mohs  hardness 
value indicates the materials resistance to scratching. Diamond has a hard-
ness of 10, whereas this value for talc is 1. In terms of absolute hardness, 
diamond (hardness 10) is four times harder than corundum (hardness 9) 
and six times harder than topaz (hardness 8). The Modifi ed Mercalli Scale 
to categorize the size of earthquakes is another example for an ordinal 
scale. It ranks earthquakes from intensity I (barely felt) to XII (total de-
struction).

3.  ratio data – The data are characterized by a constant length of successive 
intervals. This quality of ratio data offers a great advantage in comparison 
to ordinal data. However, the zero point is the natural termination of the 
data scale. Examples of such data sets include length or weight data. This 
data type allows either a discrete or continuous data sampling.

4.  interval data – These are ordered data that have a constant length of suc-
cessive intervals. The data scale is not terminated by zero. Temperatures 
C and F represent an example of this data type although zero points exist 
for both scales. This data type may be sampled continuously or in discrete 
intervals.

Besides these standard data types, earth scientists frequently encounter spe-
cial kinds of data, such as

1.  closed data – These data are expressed as proportions and add to a fi xed 
total such as 100 percent. Compositional data represent the majority of 
closed data, such as element compositions of rock samples.

2.  spatial data – These are collected in a 2D or 3D study area. The spatial 
distribution of a certain fossil species, the spatial variation of the sand-
stone bed thickness and the 3D tracer concentration in groundwater are 
examples for this data type. This is likely to be the most important data 
type in earth sciences.

3.  directional data – These data are expressed in angles. Examples include 
the strike and dip of a bedding, the orientation of elongated fossils or the 
fl ow direction of lava. This is a very frequent data type in earth sciences.
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Most of these data require special methods to be analyzed, that are outlined 
in the next chapter.

1.4 Methods of Data Analysis

Data analysis methods are used to describe the sample characteristics as 
precisely as possible. Having defi ned the sample characteristics we proceed 
to hypothesize about the general phenomenon of interest. The particular 
method that is used for describing the data depends on the data type and the 
project requirements.

1. Univariate methods – Each variable in a data set is explored separately 
assuming that the variables are independent from each other. The data are 
presented as a list of numbers representing a series of points on a scaled 
line. Univariate statistics includes the collection of information about 
the variable, such as the minimum and maximum value, the average and 
the dispersion about the average. Examples are the investigation of the 
sodium content of volcanic glass shards that were affected by chemical 
weathering or the size of fossil snail shells in a sediment layer.

2. Bivariate methods – Two variables are investigated together in order to 
detect relationships between these two parameters. For example, the cor-
relation coeffi cient may be calculated in order to investigate whether there 
is a linear relationship between two variables. Alternatively, the bivariate 
regression analysis may be used to describe a more general relationship 
between two variables in the form of an equation. An example for a bi-
variate plot is the Harker Diagram, which is one of the oldest method 
to visualize geochemical data and plots oxides of elements against SiO2 
from igneous rocks.

3. Time-series analysis – These methods investigate data sequences as a 
function of time. The time series is decomposed into a long-term trend, 
a systematic (periodic, cyclic, rhythmic) and an irregular (random, sto-
chastic) component. A widely used technique to analyze time series is 
spectral analysis, which is used to describe cyclic components of the 
time series. Examples for the application of these techniques are the 
investigation of cyclic climate variations in sedimentary rocks or the 
analysis of seismic data.
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4. Signal processing – This includes all techniques for manipulating a signal 
to minimize the effects of noise, to correct all kinds of unwanted distor-
tions or to separate various components of interest. It includes the design, 
realization and application of fi lters to the data. These methods are widely 
used in combination with time-series analysis, e.g., to increase the signal-
to-noise ratio in climate time series, digital images or geophysical data.

5. Spatial analysis – The analysis of parameters in 2D or 3D space. Therefore, 
two or three of the required parameters are coordinate numbers. These 
methods include descriptive tools to investigate the spatial pattern of geo-
graphically distributed data. Other techniques involve spatial regression 
analysis to detect spatial trends. Finally, 2D and 3D interpolation tech-
niques help to estimate surfaces representing the predicted continuous 
distribution of the variable throughout the area. Examples are drainage-
system analysis, the identifi cation of old landscape forms and lineament 
analysis in tectonically-active regions.

6. Image processing – The processing and analysis of images has become 
increasingly important in earth sciences. These methods include manipu-
lating images to increase the signal-to-noise ratio and to extract certain 
components of the image. Examples for this analysis are analyzing satel-
lite images, the identifi cation of objects in thin sections and counting an-
nual layers in laminated sediments.

7. Multivariate analysis – These methods involve observation and analysis 
of more than one statistical variable at a time. Since the graphical repre-
sentation of multidimensional data sets is diffi cult, most methods include 
dimension reduction. Multivariate methods are widely used on geochem-
ical data, for instance in tephrochronology, where volcanic ash layers are 
correlated by geochemical fi ngerprinting of glass shards. Another impor-
tant example is the comparison of species assemblages in ocean sedi-
ments in order to reconstruct paleoenvironments.

8. Analysis of directional data – Methods to analyze circular and spherical 
data are widely used in earth sciences. Structural geologists measure 
and analyze the orientation of slickenlines (or striae) on a fault plane. 
Circular statistics is also common in paleomagnetics applications. 
Microstructural investigations include the analysis of the grain shape 
and quartz c-axis orientation in thin sections. The methods designed to 
deal with directional data are beyond the scope of the book. There are 
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more suitable programs than MATLAB for such analysis (e.g., Mardia 
1972; Upton and Fingleton 1990)

Some of these methods require the application of numerical methods, such 
as interpolation techniques or certain methods of signal processing. The fol-
lowing text is therefore mainly on statistical techniques, but also introduces 
a number of numerical methods used in earth sciences.
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2 Introduction to MATLAB

2.1 MATLAB in Earth Sciences

MATLAB® is a software package developed by The MathWorks Inc. 
(www.mathworks.com) founded by Jack Little and Cleve Moler in 1984 
and headquartered in Natick, Massachusetts. MATLAB was designed to 
perform mathematical calculations, to analyze and visualize data, and 
write new software programs. The advantage of this software is the com-
bination of comprehensive math and graphics functions with a powerful 
high-level language. Since MATLAB contains a large library of ready-
to-use routines for a wide range of applications, the user can solve tech-
nical computing problems much faster than with traditional program-
ming languages, such as C, C++, and FORTRAN. The standard library 
of functions can be signifi cantly expanded by add-on toolboxes, which 
are collections of functions for special purposes such as image process-
ing, building map displays, performing geospatial data analysis or solv-
ing partial differential equations.

During the last few years, MATLAB has become an increasingly popular 
tool in the fi eld of earth sciences. It has been used for fi nite element model-
ing, the processing of seismic data and satellite images as well as for the 
generation of digital elevation models from satellite images. The continuing 
popularity of the software is also apparent in the scientifi c reference litera-
ture. A large number of conference presentations and scientifi c publications 
have made reference to MATLAB. Similarly, a large number of the comput-
er codes in the leading Elsevier journal Computers and Geosciences are now 
written in MATLAB. It appears that the software has taken over FORTRAN 
in terms of popularity.

Universities and research institutions have also recognized the need for 
MATLAB training for their staff and students. Many earth science depart-
ments across the world offer MATLAB courses for their undergraduates. 
Similarly, The MathWorks provides classroom kits for teachers at a rea-
sonable price. It is also possible for students to purchase a low-cost edi-
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tion of the software. This student version provides an inexpensive way for 
students to improve their MATLAB skills.

The following Chapters 2.2 to 2.7 contain a tutorial-style introduction 
to the software MATLAB, to the setup on the computer (Chapter 2.2), the 
syntax (2.3), data input and output (2.4 and 2.5), programming (2.6), and 
visualization (2.7). It is recommended to go through the entire chapter in or-
der to obtain a solid knowledge in the software before proceeding to the fol-
lowing chapter. A more detailed introduction is provided by the MATLAB 
User s Guide (The MathWorks 2005). The book uses MATLAB Version 7 
(Release 14, Service Pack 2).

2.2 Getting Started

The software package comes with extensive documentation, tutorials and 
examples. The fi rst three chapters of the book Getting Started with MATLAB 
by The MathWorks, which is available printed, online and as PDF fi le is 
directed to the beginner. The chapters on programming, creating graphical 
user interfaces (GUI) and development environments are for the advanced 
users. Since Getting Started with MATLAB mediates all required knowledge 
to use the software, the following introduction concentrates on the most rel-
evant software components and tools used in the following chapters.

After installation of MATLAB on a hard disk or on a server, we launch the 
software either by clicking the shortcut icon on the desktop or by typing

matlab

at the operating system prompt. The software comes up with a number of 
window panels (Fig. 2.1). The default desktop layout includes the  Current 
Directory panel that lists the fi les contained in the directory currently used. 
The Workspace panel lists the variables contained in the MATLAB work-
space, which is empty after starting a new software session. The  Command
Window presents the interface between software and the user, i.e., it accepts 
MATLAB commands typed after a prompt, >>. The  Command  History re-
cords all operations once typed in the Command Window and enables the 
user to recall these. The book mainly uses the Command Window and the 
built-in Text  Editor that can be called by

edit

Before using MATLAB we have to (1) create a personal working direc-
tory where to store our MATLAB-related fi les, (2) add this directory to the 
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MATLAB search path and (3) change into it to make this the current work-
ing directory. After launching MATLAB, the current working directory is 
the directory in which the software is installed, for instance, c:/MATLAB7
on a personal computer running  Microsoft Windows and /Applications/
MATLAB7 on an Apple computer running  Macintosh OS X. On the  UNIX-
based   SUN Solaris operating system and on a  LINUX system, the current 
working directory is the directory from which MATLAB has been launched. 
The current working directory can be printed by typing

pwd

after the prompt. Since you may have read-only permissions in this direc-
tory in a multi-user environment, you should change into your own home 
directory by typing

cd 'c:\Documents and Settings\username\My Documents'

Fig. 2.1 Screenshot of the MATLAB default desktop layout including the  Current Directory 
and Workspace panels (upper left), the Command History (lower left) and Command Window
(right). This book only uses the Command Window and the built-in  Text  Editor, which can 
be called by typing edit after the prompt. All information provided by the other panels can 
also be accessed through the Command Window.
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after the prompt on a Windows system and

cd /users/username

or

cd /home/username

if you are username on a UNIX or LINUX system. There you should create 
a personal working directory by typing 

mkdir mywork

The software uses a search  path to fi nd MATLAB-related fi les, which are 
organized in directories on the hard disk. The default search path only in-
cludes the MATLAB directory that has been created by the installer in the 
applications folder. To see which directories are in the search path or to add 
new directories, select Set Path from the File menu, and use the Set Path
dialog box. Alternatively, the command

path

prints the complete list of directories included in the search path. We attach 
our personal working directory to this list by typing

path(path,’c:\Documents and Settings\user\My Documents\MyWork’)

on a Windows machine assuming that you are  user, you are working on
Hard Disk C and your personal working directory is named MyWork. On a 
UNIX or LINUX computer the command

path(path,'/users/username/work')

is used instead. This command can be used whenever more working direc-
tories or toolboxes have to be added to the search path. Finally, you can 
change into the new directory by typing

cd mywork

making it the current working directory. The command

what

lists all MATLAB-related fi les contained in this directory. The modifi ed 
search path is saved in a fi le  pathdef.m in your home directory. In a future 
session, the software reads the contents of this fi le and makes MATLAB to 
use your custom path list.
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2.3 The Syntax

The name MATLAB stands for matrix laboratory. The classic object handled 
by MATLAB is a  matrix, i.e., a rectangular two-dimensional  array of num-
bers. A simple 1-by-1 matrix is a  scalar. Matrices with one  column or  row 
are  vectors,  time series and other one-dimensional data fi elds. An m-by-n
matrix can be used for a digital elevation model or a grayscale image. RGB 
color images are usually stored as three-dimensional arrays, i.e., the colors 
red, green and blue are represented by a m-by-n-by-3 array.

Entering matrices in MATLAB is easy. To enter an arbitrary matrix, type

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2]

after the prompt, which fi rst defi nes a variable A, then lists the elements of 
the matrix in  square brackets. The rows of A are separated by  semicolons, 
whereas the elements of a row are separated by  blanks, or, alternatively, by 
 commas. After pressing  return, MATLAB displays the matrix

A =
    2  4  3  7
    9  3 -1  2
    1  9  3  7
    6  6  3 -2

Displaying the elements of A could be problematic in case of very large ma-
trices, such as digital elevation models consisting of thousands or millions 
of elements. In order to suppress the display of a matrix or the result of an 
operation in general, you should end the line with a semicolon.

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2];

The matrix A is now stored in the  workspace and we can do some basic op-
erations with it, such as computing the  sum of elements,

sum(A)

which results in the display of

ans =
    18  22  8  14

Since we did not specify an output variable, such as A for the matrix entered 
above, MATLAB uses a default variable  ans, short for answer, to store the 
results of the calculation. In general, we should defi ne variables since the 
next computation without a new variable name overwrites the contents of 
ans.
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The above display illustrates another important point about MATLAB. 
Obviously the result of sum(A) are the four sums of the elements in the four 
columns of A. The software prefers working with the columns of matrices. If you 
wish to sum all elements of A and store the result in a scalar b, you simply type

b = sum(sum(A));

which fi rst sums the colums of the matrix and then the elements of the re-
sulting vector. Now we have two variables A and b stored in the workspace. 
We can easily check this by typing

whos

which is certainly the most frequently-used MATLAB command. The soft-
ware lists all variables contained in the workspace together with information 
about their  dimension,  bytes and  class.

Name      Size                    Bytes  Class
A         4x4                       128  double array
ans       1x4                        32  double array
b         1x1                         8  double array
Grand total is 21 elements using 168 bytes

It is important to note that by default MATLAB is  case sensitive, i.e., two 
different  variables A and a can be defi ned. In this context, it is recommended 
to use  capital letters for matrices and  lower-case letters for vectors and sca-
lars. You could now delete the contents of the variable ans by typing

clear ans

Next we learn how specifi c matrix elements can be accessed or exchanged. 
Typing

A(3,2)

simply returns the matrix element located in the third row and second col-
umn. The matrix indexing therefore follows the rule (row, column). We can 
use this to access single or several  matrix elements. As an example, we 
type

A(3,2) = 30

to replace the element A(3,2) and displays the entire matrix

A =
     2     4     3     7
     9     3    -1     2
     1    30     3     7
     6     6     3    -2



2.3 The Syntax 17

If you wish to replace several elements at one time, you can use the colon  
operator. Typing

A(3,1:4) = [1 3 3 5];

replaces all elements of the third row of matrix A. The  colon operator is used 
for other several things in MATLAB, for instance as an abbreviation for 
entering matrix elements such as

c = 0 : 10

which creates a row vector containing all integers from 0 to 10. The corre-
sponding MATLAB response is

c =
    0 1 2 3 4 5 6 7 8 9 10

Note that this statement creates 11 elements, i.e., the integers from 1 to 10 
and the zero. A common error while   indexing matrices is the ignorance of 
the zero and therefore expecting 10 instead of 11 elements in our example. 
We can  check this from the output of  whos.

Name      Size                    Bytes  Class
A         4x4                       128  double array
b         1x1                         8  double array
c         1x11                       88  double array
Grand total is 28 elements using 224 bytes

The above command only creates integers, i.e., the interval between the 
vector elements is one. However, an arbitrary interval can be defi ned, for 
example 0.5. This is later used to create evenly-spaced time axes for time 
series analysis for instance.

c = 1 : 0.5 : 10;

c =
  Columns 1 through 6 
    1.0000    1.5000    2.0000    2.5000    3.0000    3.5000
  Columns 7 through 12 
    4.0000    4.5000    5.0000    5.5000    6.0000    6.5000
  Columns 13 through 18 
    7.0000    7.5000    8.0000    8.5000    9.0000    9.5000
  Column 19 
   10.0000

The display of the values of a variable can be interrupted by pressing Ctrl-C
(Control-C) on the keyboard. This interruption only affects the output in 
the Command Window, whereas the actual command is processed before 
displaying the result.
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MATLAB provides standard arithmetic operators for  addition, +, and 
 subtraction, -. The  asterisk, *, denotes  matrix  multiplication involving  in-
ner products between rows and columns. As an example, we multiply the 
matrix A with a new matrix B.

B = [4 2 6 5; 7 8 5 6; 2 1 -8 -9; 3 1 2 3];

The matrix  multiplication then is

C = A * B

which generates the output

C =
    63    46    22    28
    61    43    81    78
    46    34     7    11
    66    61    38    33

In linear algebra, matrices are used to keep track of the coeffi cients of  linear 
transformations. The multiplication of two matrices represents the combina-
tion of two linear transformations to one single transformation. Matrix mul-
tiplication is not communative, i.e., A*B and B*A yield different results in 
most cases. Accordingly, MATLAB provides  matrix divisions, right, /, and 
left, \, representing different transformations. Finally, the software allows 
 power of matrices, ^, and  complex conjugate  transpose, ', i.e, turning rows 
into columns and columns into rows.

In earth sciences, however, matrices are often simply used as two-di-
mensional  arrays of numerical data instead of an array representing a linear 
transformation. Arithmetic operations on such arrays are done element-by-
element. Whereas this does not make any difference in addition and subtrac-
tion, the multiplicative operations are different. MATLAB uses a dot as part 
of the notation for these operations.

For instance,  multiplying A and B  element-by-element is performed 
by typing

C = A .* B

which generates the output

C =
     8     8    18    35
    63    24    -5    12
     2     3   -24   -45
    18     6     6    -6
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2.4 Data Storage

This chapter is on how to  store,  import and  export data with MATLAB. In 
earth sciences, data are collected in a great variety of formats, which often 
have to be converted before being analyzed with MATLAB. On the other 
hand, the software provides a number of import routines to read many bi-
nary data formats in earth sciences, such as the formats used to store digital 
elevation models and satellite date.

A computer generally stores data as  binary digits or bits. A bit is similar 
to a two-way switch with two states, on = 1 and off = 0. In order to store 
more complex types of data, the bits are joined to larger groups, such as 
bytes consisting of 8 bits. Such groups of bits are then used to encode data, 
e.g., numbers or characters. Unfortunately, different computer systems and 
software use different schemes for encoding data. For instance, the repre-
sentation of text using the widely-used text processing software Microsoft 
Word is different from characters written in Word Perfect. Exchanging 
binary data therefore is diffi cult if the various users use different computer 
platforms and software. As soon as both partners of data exchange use 
similar systems, binary data can be stored in relatively small fi les. The 
transfer rate of binary data is generally faster compared to the exchange of 
other fi le formats.

Various formats for exchanging data have been developed in the last 
decades. The classic example for the establishment of a data format that 
can be used on different computer platforms and software is the American
Standard Code for Information Interchange  ASCII that was fi rst published 
in 1963 by the American Standards Association (ASA). ASCII as a 7-bit 
code consists of 27=128 characters (codes 0 to 127). Whereas ASCII-1963 
was lacking lower-case letters, the update ASCII-1967, lower-case letters as 
well as various control characters such as escape and line feed and various 
symbols such as brackets and mathematical operators were also included. 
Since then, a number of variants appeared in order to facilitate the exchange 
of text written in non-English languages, such as the expanded ASCII con-
taining 255 codes, e.g., the Latin–1 encoding.

2.5 Data Handling

The simplest way to exchange data between a certain piece of software and 
MATLAB is the ASCII format. Although the newer versions of MATLAB 
provide various import routines for fi le types such as Microsoft Excel bina-
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ries, most data arrive as ASCII fi les. Consider a simple data set stored in a 
table such as

SampleID Percent C Percent S
101  0.3657  0.0636
102  0.2208  0.1135
103  0.5353  0.5191
104  0.5009  0.5216
105  0.5415  -999
106  0.501  -999

The fi rst row contains the variable names. The columns provide the data for 
each sample. The absurd value -999 marks  missing data in the data set. Two 
things have to be changed in order to convert this table into MATLAB format. 
First, MATLAB uses  NaN as the arithmetic representation for Not-a-Number
that can be used to mark  gaps. Second, you should  comment the fi rst line by 
typing a  percent sign, %, at the beginning of the line.

%SampleID Percent C Percent S
101  0.3657  0.0636
102  0.2208  0.1135
103  0.5353  0.5191
104  0.5009  0.5216
105  0.5415  NaN
106  0.501  NaN

MATLAB ignores any text appearing after the percent sign and continues 
processing on the next line. After editing this table in a text editor, such as 
the MATLAB   Editor, it is saved as ASCII text fi le geochem.txt in the current 
working directory (Fig. 2.2). MATLAB now imports the data from this fi le 
with the load command:

load geochem.txt

MATLAB loads the contents of fi le and assigns the matrix to a variable 
named after the fi lename geochem. Typing

whos

yields

Name          Size                    Bytes  Class
geochem       6x3                       144  double array
Grand total is 18 elements using 144 bytes

The command save now allows to store workspace variables in a binary 
format.

save geochem_new.mat
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MAT-fi les are double-precision, binary fi les using .mat as extension. The 
advantage of these binary mat-fi les is that they are independent from the 
computer platforms running different fl oating-point formats. The command

save geochem_new.mat geochem

saves only the variable geochem instead of the entire workspace. The op-
tion -ascii, for example

save geochem_new.txt geochem -ascii

again saves the variable geochem, but in an ASCII fi le named geochem_new.
txt. In contrast to the binary fi le geochem_new.mat, this ASCII fi le can be 
viewed and edited by using the MATLAB Editor or any other text editor.

2.6 Scripts and Functions

MATLAB is a powerful programming language. All fi les containing 
MATLAB code use .m as extension and are therefore called M-fi les. These 
fi les contain ASCII text and can be edited using a standard text editor. 
However, the built-in Editor color highlights various syntax elements such 
as comments (in green), keywords such as if, for and end (blue) and charac-
ter strings (pink). This syntax highlighting eases MATLAB coding.

Fig. 2.2 Screenshot of MATLAB  Text Editor showing the content of the fi le geochem.txt. The 
fi rst line of the text is commented by a percent sign at the beginning of the line, followed by 
the actual data matrix.
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MATLAB uses two kinds of M-fi les,  scripts and functions. Whereas 
scripts are series of commands that operate on data contained in the work-
space, functions are true algorithms with input and output variables. The 
advantages and disadvantages of both M-fi les will now be illustrated by 
means of an example. First we start the Text Editor by typing

edit

This opens a new window named untitled. First we are generating a simple 
MATLAB script. We type a series of commands calculating the average of 
the elements of a data vector x.

[m,n] = size(x);
if m == 1
   m = n;
end
sum(x)/m

The fi rst line returns the dimension of the variable x using the command 
size. In our example, x should be either a column vector with dimension 
(m,1) or a row vector with dimension (1,n). We need the length of the 
vector for dividing the sum of the elements, which is either m or n. The 
if statement evaluates a logical expression and executes a group of com-
mands when this expression is true. The  end keyword terminates the last 
group of commands. In the example, the if loop picks either m or n de-
pending on if m==1 is false or true  The last line computes the average by 
dividing the sum of all elements by the number of elements m or n. We do 
not use a semicolon here to enable the output of the result. We save our new 
M-fi le as average.m and type

x = [3 6 2 -3 8];

in the Command Window to defi ne an example vector x. Then we type

average

without the extension .m to run our script. We obtain the average of the ele-
ments of the vector x as output.

ans =
    3.2000

After typing 

whos

we see that the workspace now contains
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Name      Size                    Bytes  Class
ans       1x1                         8  double array
m         1x1                         8  double array
n         1x1                         8  double array
x         1x5                        40  double array
Grand total is 8 elements using 64 bytes

The listed variables are the example vector x and the output of the size
function, m and n. The result of the operation is contained in the variable 
ans. Since the default variable ans might be overwritten during one of the 
following operations, we wish to defi ne a different variable. Typing

a = average

however, causes the error message

??? Attempt to execute SCRIPT average as a function.

Obviously, we cannot assign a variable to the output of a script. Moreover, 
all variables defi ned and used in the script appear in the workspace, in our 
example, the variables m and n. Scripts contain sequences of commands 
applied to variables in the workspace. MATLAB functions instead allow to 
defi ne inputs and outputs. They do not automatically import variables from 
the workspace. To convert the above script into a function, we have to intro-
duce the following modifi cations (Fig. 2.3):

function y = average(x)
%AVERAGE    Average value.
%    AVERAGE(X) is the average of the elements in the vector X. 

% By Martin Trauth, Feb 18, 2005.

[m,n] = size(x);
if m == 1
   m = n;
end
y = sum(x)/m;

The first line now contains the keyword function, the function name 
average and the  input x and  output y. The next two lines contain  com-
ments as indicated by the percent sign. After one empty line, we see an-
other  comment line containing informations on the author and version of the 
M-fi le. The remaining fi le contains the actual operations. The last line now 
defi nes the value of the output variable y. This line is now terminated by a 
semicolon to suppress the display of the result in the Command Window. 
We fi rst type

help average
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which displays the fi rst block of contiguous comment lines. The fi rst execut-
able statement or blank line — as in our example — effectively ends the 
help section and therefore the output of help. Now we are independent from 
the variable names used in our function. We clear the workspace and defi ne 
a new data vector.

clear

data = [3 6 2 -3 8];

We run our function by the statement

result = average(data);

This clearly illustrates the advantages of functions compared to scripts. 
Typing

whos

results in

Name         Size                    Bytes  Class
data         1x5                        40  double array
result       1x1                         8  double array
Grand total is 6 elements using 48 bytes

Fig. 2.3 Screenshot of the MATLAB Text Editor showing the function average. The 
function starts with a line containing the keyword function, the name of the function 
average and the input variable x and the output variable y. The following lines contain 
the output for help average, the copyright and version information as well as the actual 
MATLAB code for computing the average using this function.
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indicates that all variables used in the function do not appear in the work-
space. Only the input and output as defi ned by the user are stored in the 
workspace. The M-fi les can therefore be applied to data like real functions, 
whereas scripts contain sequences of commands are applied to the variables 
in workspace.

2.7 Basic Visualization Tools

MATLAB provides numerous routines for  displaying your data as graphs. 
This chapter introduces the most important  graphics functions. The graphs 
will be modifi ed, printed and exported to be edited with graphics software 
other than MATLAB. The simplest function producing a graph of a variable 
y versus another variable x is plot. First we defi ne two vectors x and y,
where y is the sine of x. The vector x contains values between 0 and 2  with 

/10 increments, whereas y is defi ned as element-by-element sine of x.

x = 0 : pi/10 : 2*pi;
y = sin(x);

These two commands result in two vectors with 21 elements each, i.e., two 
1-by-21 arrays. Since the two vectors x and y have the same length, we can 
use plot to produce a linear 2D graph y against x.

plot(x,y)

This command opens a Figure Window named Figure 1 with a gray back-
ground, an x-axis ranging from 0 to 7, a y-axis ranging from -1 to +1 and a 
blue line. You may wish to plot two different curves in one single plot, for 
example, the sine and the cosine of x in different colors. The command

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1,'r--',x,y2,'b-')

creates a dashed red line displaying the sine of x and a solid blue line 
representing the cosine of this vector (Fig. 2.4). If you create another plot, 
the window Figure 1 is cleared and a new graph is displayed. The com-
mand figure, however, can be used to create a new fi gure object in a new 
window.
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plot(x,y1,'r--')
figure
plot(x,y2,'b-')

Instead of plotting both lines in one graph at the same time, you can also 
fi rst plot the sine wave, hold the graph and then plot the second curve. 
The command hold is particularly important while using different plot 
functions for displaying your data. For instance, if you wish to display the 
second graph as a  bar plot.

plot(x,y1,'r--')
hold on
bar(x,y2)
hold off

This command plots y1 versus x as dashed line, whereas y2 versus x is 
shown as group of blue vertical  bars. Alternatively, you can plot both graphs 
in the same Figure Window, but in different plots using the  subplot. The 
syntax subplot(m,n,p) divides the  Figure Window into an m-by-n ma-
trix of display regions and makes the p-th display region active.

subplot(2,1,1), plot(x,y1,'r--')
subplot(2,1,2), bar(x,y2)

In our example, the Figure Window is divided into two rows and one col-
umn. The 2D linear plot is displayed in the upper half, whereas the bar 
plot appears in the lower half of the Figure Window. In the following, it is 
recommended to close the Figure Windows before proceeding to the next 
example. After using the function subplot, the following plot would re-
place the graph in the lower display region only, or more general, the last 
generated graph in a Figure Window.

An important modifi cation to graphs it the scaling of axis. By default, 
MATLAB uses axis limits close to the minima and maxima of the data. Using 
the command axis, however, allows to change the settings for scaling. The 
syntax for this command is simply axis([xmin xmax ymin ymax]).
The command

plot(x,y1,'r--')
axis([0 pi -1 1])

sets the limits of the x-axis to 0 and , whereas the limits of the y-axis are set 
to the default values -1 and +1. Important options of axis are 

plot(x,y1,'r--')
axis square

making the current axes region square and



2.7 Basic Visualization Tools 27

plot(x,y1,'r--')
axis equal

setting the aspect ratio in a way that the data units are equal in both 
direction of the plot. The function  grid adds a grid to the current plot, 
whereas the functions title, xlabel and ylabel allows to define a 
title and labels the x– and y–axis.

plot(x,y1,'r--')
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')
grid

These are a few examples how MATLAB functions can be used at in the 
Command Window to edit the plot. However, the software also supports 
various ways to edit all objects in a graph interactively using a computer 
mouse. First, the Edit Mode of the Figure Window has to be activated by 
clicking on the arrow icon. The Figure Window also contains a number of 
other options, such as Rotate 3D, Zoom or Insert Legend. The various ob-

Fig. 2.4 Screenshot of the MATLAB Figure Window showing two curves in different line 
types. The Figure Window allows to edit all elements of the graph after choosing  Edit Plot
from the Tools menu. Double clicking on the graphics elements opens an options window 
for modifying the appearance of the graphs. The graphics is exported using  Save as from the 
File menue. The command  Generate M-File from the File menu creates MATLAB code from 
an edited graph.
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jects in a graph, however, are selected by double-clicking on the specifi c 
component, which opens the Property Editor. The Property Editor allows to 
make changes to many properties of the graph such as axes, lines, patches 
and text objects. After having made all necessary changes to the graph, the 
corresponding commands can even be exported by selecting Generate M-
File from the File menu of the Figure Window.

Although the software now provides enormous editing facilities for 
graphs, the more reasonable way to modify a graph for presentations or pub-
lications is to export the fi gure, import it into a software such as CorelDraw 
or Adobe Illustrator. MATLAB graphs are exported by selecting the com-
mand Save as from the File menu or by using the command print. This 
function allows to export the graph either as raster image (e.g., JPEG) or 
vector fi le (e.g., EPS or PDF) into the working directory (Chapter 8). In 
practice, the user should check the various combinations of export fi le for-
mat and the graphics software used for fi nal editing the graphs.
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3 Univariate Statistics

3.1 Introduction

The statistical properties of a single parameter are investigated by means of 
 univariate analysis. Such variable could be the organic carbon content of a 
sedimentary unit, thickness of a sandstone layer, age of sanidine crystals in a 
volcanic ash or volume of landslides in the Central Andes. The number and 
size of samples we collect from a larger  population is often limited by fi nan-
cial and logistical constraints. The methods of univariate statistics help to 
conclude from the  samples for the larger phenomenon, i.e., the  population.

Firstly, we describe the sample characteristics by means of statistical 
parameters and compute an empirical distribution ( descriptive statistics)
(Chapters 3.2 and 3.3). A brief introduction to the most important measures 
of central tendency and dispersion is followed by MATLAB examples. 
Next, we select a theoretical distribution, which shows similar characteris-
tics as the empirical distribution (Chapters 3.4 and 3.5). A suite of theoreti-
cal distributions is then introduced and their potential applications outlined, 
before we use MATLAB tools to explore these distributions. Finally, we try 
to conclude from the sample for the larger phenomenon of interest ( hypoth-
esis testing) (Chapters 3.6 to 3.8).  The corresponding chapters introduce the 
three most important statistical tests for applications in earth sciences, the 
t-test to compare the means of two data sets, the F-test comparing variances 
and the χ2-test to compare distributions.

3.2 Empirical Distributions

Assume that we have collected a number of measurements of a specifi c ob-
ject. The collection of data can be written as a vector x
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containing N observations x
i
. The vector x may contain a large number of 

data points. It may be diffi cult to understand its properties as such. This is 
why descriptive statistics are often used to summarise the characteristics 
of the data. Similarly, the statistical properties of the data set may be used 
to defi ne an empirical distribution which then can be compared against a 
theoretical one.

The most straight forward way of investigating the sample characteristics 
is to display the data in a graphical form. Plotting all the data points along 
one single axis does not reveal a great deal of information about the data set. 
However, the density of the points along the scale does provide some infor-
mation about the characteristics of the data. A widely-used graphical display 
of univariate data is the histogram that is illustrated in Figure 3.1. A histo-
gram is a bar plot of a frequency distribution that is organized in intervals or 
classes. Such histogram plot provides valuable information on the character-
istics of the data, such as central tendency, dispersion and the general  shape
of the distribution. However, quantitative measures provide a more accurate 
way of describing the data set than the graphical form. In purely quantitative 
terms, mean and median defi ne the central tendency of the data set, while 
data dispersion is expressed in terms of range and standard deviation.
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Fig. 3.1 Graphical representation of an empirical frequency distribution. a In a histogram,
the frequencies are organized in classes and plotted as a bar plot. b The cumulative 
histogram of a  frequency distribution displays the counts of all classes lower and equal 
than a certain value.
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Measures of Central Tendency

Parameters of central tendency or location represent the most important 
measures for characterizing an empirical distribution (Fig. 3.2). These val-
ues help to locate the data on a linear scale.  They represent a typical or best 
value that describes the data. The most popular indicator of central tendency 
is the arithmetic mean, which is the sum of all data points divided by the 
number of observations:

The arithmetic mean can also be called the mean or the average of an uni-
variate data set. The sample mean is often used as an estimate of the popula-
tion mean µ for the underlying theoretical distribution. The arithmetic mean 
is sensitive to outliers, i.e., extreme values that may be very different from 
the majority of the data. Therefore, the  median as often used as an alterna-
tive measure of central tendency. The median is the x-value which is in the 
middle of the data, i.e., 50% of the observations are larger than the median 
and 50% are smaller. The median of a data set sorted in ascending order is 
defi ned as
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Fig. 3.2 Measures of central tendency. a In an unimodal symmetric distribution, the mean, 
median and mode are identical. b In a skew distribution, the median is between the mean and 
mode. The mean is highly sensitive to outliers, whereas the median and mode are not much 
infl uenced by extremely high and low values.
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if N is odd and

if N is even. While the existence of outliers have an affect on the median, their 
absolute values do not infl uence it. The  quantiles provide a more general way 
of dividing the data sample into groups containing equal numbers of observa-
tions. For example, quartiles divide the data into four groups, quintiles divide 
the observations in fi ve groups and  percentiles defi ne one hundred groups.

The third important measure for central tendency is the mode. The mode 
is the most frequent x value or – in case of data grouped in classes – the 
center of the class with the largest number of observations. The data have no 
mode if there aren t any values that appear more frequently than any of the 
other values. Frequency distributions with one mode are called unimodal,
but there may also be two modes ( bimodal), three modes ( trimodal) or four 
or more modes ( multimodal).

The measures mean, median and mode are used when several quantities 
add together to produce a total, whereas the geometric mean is often used 
if these quantities are multiplied. Let us assume that the population of an 
organism increases by 10% in the fi rst year, 25% in the second year, then 
60% in the last year. The average increase rate is not the arithmetic mean, 
since the number of individuals is multiplied (not added to) by 1.10 in the 
fi rst year, by 1.375 in the second year and 2.20 in the last year. The average 
growth of the population is calculated by the geometric mean:

The average growth of these values is 1.4929 suggesting a ~49% growth 
of the population. The arithmetic mean would result in an erroneous value 
of 1.5583 or ~56% growth. The geometric mean is also an useful measure 
of central tendency for skewed or log-normally distributed data. In other 
words, the logarithms of the observations follow a gaussian distribution. 
The geometric mean, however, is not calculated for data sets containing 
negative values. Finally, the  harmonic mean
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is used to take the mean of asymmetric or log-normally distributed data, 
similar to the geometric mean, but they are both not robust to outliers. The 
harmonic mean is a better average when the numbers are defi ned in relation 
to some unit. The common example is averaging velocity. The harmonic 
mean is also used to calculate the mean of samples sizes.

Measures of Dispersion

Another important property of a distribution is the dispersion. Some of the 
parameters that can be used to quantify dispersion are illustrated in Figure 
3.3. The simplest way to describe the dispersion of a data set is the  range,
which is the difference between the highest value and lowest in the data set 
given by

Since range is defi ned by the two extreme data points, it is very susceptible 
to outliers. Hence, is is not a reliable measure of dispersion in most cases. 
Using the interquartile range of the data, i.e., the middle 50% of the data 
attempts to overcome this. A very useful measure for dispersion is the  stan-
dard deviation.

The standard deviation is the average deviation of each data point from 
the mean. The standard deviation of an empirical distribution is often used 
as an estimate for the population standard deviation σ. The formula of the 
population standard deviation uses N instead of N-1 in the denominator. 
The sample standard deviation s is computed with N-1 instead of N since it 
uses the sample mean instead of the unknown population mean. The sam-
ple mean, however, is computed from the data x

i
, which reduces the degrees 

of freedom by one. The  degrees of freedom are the number of values in a 
distribution that are free to be varied. Dividing the average deviation of 
the data from the mean by N would therefore underestimate the population 
standard deviation σ.

The variance is the third important measure of dispersion. The variance 
is simply the square of the standard deviation.
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Although the variance has the disadvantage of not sharing the dimension 
of the original data, it is extensively used in may applications instead of the 
standard deviation.

Furthermore, both skewness and kurtosis can be used to describe the 
shape of a frequency distribution. Skewness is a measure of asymmetry of 
the tails of a distribution. The most popular way to compute the asymmetry 
of a distribution is Pearson s mode skewness:

skewness = (mean-mode) / standard deviation

A negative skew indicates that the distribution is spread out more to the left 
of the mean value, assuming increasing values on the axis to the right. The 
sample mean is smaller than the mode. Distributions with positive skew-
ness have large tails that extend to the right. The skewness of the symmetric 
normal distribution is zero. Although Pearson s measure is a useful measure, 
the following formula by Fisher for calculating the skewness is often used, 
including the corresponding MATLAB function.

The second important measure for the shape of a distribution is the kurtosis.
Again, numerous formulas to compute the kurtosis are available. MATLAB 
uses the following formula:

The kurtosis is a measure of whether the data are peaked or fl at relative to 
a normal distribution. A high kurtosis indicates that the distribution has a 
distinct peak near the mean, whereas a distribution characterized by a low 
kurtosis shows a fl at top near the mean and heavy tails. Higher peakedness 
of a distribution is due to rare extreme deviations, whereas a low kurtosis is 
caused by frequent moderate deviations. A normal distribution has a kurto-
sis of three. Therefore some defi nitions for kurtosis subtract three from the 
above term in order to set the kurtosis of the normal distribution to zero.

After having defi ned the most important parameters to describe an em-
pirical distribution, the measures of central tendency and dispersion are il-
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lustrated by means of examples. The text and binary fi les used in the follow-
ing chapters are on the CD that comes with this book. It is recommended to 
save the fi les in the personal working directory.

3.3 Example of Empirical Distributions

Let us describe the data contained in the fi le organicmatter_one.txt. This fi le 
contains the organic matter content (in weight percent, wt%) of lake sedi-
ments. In order to load the data type

corg = load('organicmatter_one.txt');

The data fi le consists of 60 measurements that can be displayed by

plot(corg,zeros(1,length(corg)),'o')

This graph demonstrates some of the characteristics of the data. The organic 
carbon content of the samples range between 9 and 15 wt%. Most data clus-
ter between 12 and 13 wt%. Values below 10 and above 14 are rare. While 
this kind of representation of the data has its advantages, univariate data are 
generally displayed as histograms:

hist(corg)

By default, the MATLAB function hist divides the range of the data into 
ten equal intervals or classes, counts the observation within each interval 
and displays the frequency distribution as bar plot. The midpoints of the 
default intervals v and the number of observations n per interval can be ac-
cessed using

[n,v] = hist(corg);

The number of classes should be not lower than six and not higher than fi f-
teen for practical purposes. In practice, the square root of the number of ob-
servations, rounded to the nearest integer, is often used as number of classes. 
In our example, we use eight classes instead of the default ten classes.

hist(corg,8)

We can even define the midpoint values of the histogram classes. In 
this case, it is recommended to choose interval endpoints that avoid 
data points falling between two intervals. The maximum and minimum 
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values contained in the data vector are 

 max(corg)

ans =
   14.5615

 min(corg)

ans =
    9.4168

The range of the data values, i.e., the difference between maximum and 
minimum values is

range(corg)

ans =
    5.1447

The range of the data is the information that we need in order to defi ne the 
classes. Since we have decided to use eight classes, we split the range of the 
data into eight equal-sized bins. The approximate width of the intervals is

5.1447/8

ans =
    0.6431

We round this number up and defi ne

v = 10 : 0.65 : 14.55;

as midpoints of the histogram intervals. The commands for displaying the 
histogram and calculating the frequency distribution are

hist(corg,v);

n = hist(corg,v);

The most important parameters describing the distribution are the averages 
and the dispersion about the average. The most popular measure for average 
is the arithmetic mean of our data.

mean(corg)

ans =
    12.3448

Since this measure is very susceptible to outliers, we use the median as an 
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alternative measure of central tendency.

 median(corg)

ans =
    12.4712

which is not much different in this example. However, we will see later that 
this difference can be signifi cant for distributions that are not symmetric in 
respect with the arithmetic mean. A more general parameter to defi ne frac-
tions of the data less or equal to a certain value is the quantile. Some of the 
quantiles have special names, such as the three quartiles dividing the distri-
bution into four equal parts, 0-25%, 25-50%, 50-75% and 75-100% of the 
total number of observations.

 prctile(corg,[25 50 75])

ans =
    11.4054   12.4712   13.2965

The third parameter in this context is the mode, which is the midpoint of the 
interval with the highest frequency. MATLAB does not provide a function 
to compute the mode. We use the function find to located the class that has 
the largest number of observations.

v(find(n == max(n)))

ans =
    11.9500   12.6000   13.2500

This statement simply identifi es the largest element in n. The index of this 
element is then used to display the midpoint of the corresponding class v. In 
case there are several n s with similar values, this statement returns several 
solutions suggesting that the distribution has several modes. The median, 
quartiles, maximum and minimum of a data set can be summarized and 
displayed in a box and whisker plot.

 boxplot(corg)

The boxes have lines at the lower quartile, median, and upper quartile val-
ues. The whiskers are lines extending from each end of the boxes to show 
the extent of the rest of the data.

The most popular measures for dispersion are range, standard deviation 
and variance. We have already used the range to defi ne the midpoints of the 
classes. The variance is the average squared deviation of each number from 
the mean of a data set
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 var(corg)

ans =
    1.3595

The standard deviation is the square root of the variance.

 std(corg)

ans =
    1.1660

It is important to note that by default the functions var and std calculate the 
sample variance and standard deviation representing an unbiased estimate of 
the sample dispersion of the population. While using skewness to describe 
the shape of the distribution, we observe a negative skew close to zero:

 skewness(corg)

ans =
    -0.2529

Finally, the peakedness of the distribution is described by the kurtosis. The 
result from the function kurtosis,

 kurtosis(corg)

ans =
    2.4670

suggests that our distribution is slightly fl atter than a gaussian distribution 
since its kurtosis is lower than three. Most of these functions have cor-
responding versions for data sets containing gaps, such as nanmean and 
nanstd, which treat NaN s as missing values. To illustrate the use of these 
functions we introduce a gap to our data set and compute the mean using 
mean and nanmean for comparison.

corg(25,1) = NaN;

mean(corg)

ans =
    NaN

 nanmean(corg)

ans =
    12.3371

In this example the function mean follows the rule that all operations with 



40 3 Univariate Statistics

NaN s result in NaN s, whereas the function nanmean simply skips the miss-
ing value and computes the mean of the remaining data. As a second ex-
ample, we now explore a data set characterized by a signifi cant skew. The 
data represent 120 microprobe analyses on glass shards hand-picked from a 
volcanic ash. The volcanic glass has been affected by chemical weathering 
in an initial stage. Therefore, the glass shards show glass hydration and sodi-
um depletion in some sectors. We study the distribution of sodium contents 
(in  wt%) in the 120 measurements using the same principle as above.

sodium = load('sodiumcontent.txt');

As a fi rst step, it is always recommended to visualize the data as a histo-
gram. The square root of 120 suggests 11 classes, therefore we display the 
data by typing

hist(sodium,11)

[n,v] = hist(sodium,11);

Since the distribution has a negative skew, the mean, median and mode are 
signifi cantly different.

mean(sodium)

ans =
    5.6628

median(sodium)

ans =
    5.9741

v(find(n == max(n)))

ans =
    6.5407

The mean of the data is lower than the median, which is in turn lower than 
the mode. We observe a strong negative skew as expected from our data.

skewness(sodium)

ans =
    -1.1086

Now we introduce a signifi cant outlier to the data and explore its impact on 
the statistics of the sodium contents. We used a different data set contained 
in the fi le sodiumcontent_two.txt, which is better suited for this example 
than the previous data set. The new data set contains higher sodium values 
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of around 17 wt% and is stored in the fi le

sodium = load('sodiumcontent_two.txt');

This data set contains only 50 measurements in order to better illustrate the 
effect of an outlier. We can use the script used in the previous example to 
display the data in a histogram and compute the number of observations n
with respect to the classes v. The mean of the data is 16.6379, the media is 
16.9739 and the mode is 17.2109. Now we introduce one single value of 1.5 
wt% in addition to the 50 measurements contained in the original data set.

sodium(51,1) = 1.5;

The histogram of this data set illustrates the distortion of the frequency dis-
tribution by this single outlier. The corresponding histogram shows several 
empty classes. The infl uence of this outlier on the sample statistics is sub-
stantial. Whereas the median of 16.9722 is relatively unaffected, the mode 
of 170558 is slightly different since the classes have changed. The most 
signifi cant changes are observed in the mean (16.3411), which is very sensi-
tive to outliers.

3.4 Theoretical Distributions

Now we have described the  empirical frequency distribution of our sample. 
A histogram is a convenient way to picture the  probability distribution of the 
variable x. If we sample the variable suffi ciently often and the output ranges 
are narrow, we obtain a very smooth version of the histogram. An infi nite 
number of measurements N  and an infi nite small class width produces 
the random variable s probability density function (PDF). The probability 
distribution density f(x) defi nes the probability that the variate has the value 
equal to x. The integral of f(x) is normalized to unity, i.e., the total number 
of observations is one. The  cumulative distribution function (CDF) is the 
sum of a discrete PDF or the integral of a continuous PDF. The cumulative 
distribution function F(x) is the probability that the variable takes a value 
less than or equal x.

As a next step, we have to fi nd a suitable  theoretical distribution that 
fi ts the empirical distributions described in the previous chapters. In this 
section, the most frequent theoretical distributions are introduced and their 
application is described.
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Uniform Distribution

A uniform distribution or rectangular distribution is a distribution that 
has constant probability (Fig. 3.4). The corresponding probability density 
function is

where the random variable x has any of N possible values. The cumulative 
distribution is

The probability density function is normalized to unity

i.e., the sum of probabilities is one. Therefore, the maximum value of the 
cumulative distribution is one as well.
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Fig. 3.4 a Probability density function f(x) and b cumulative distribution function F(x)
of a uniform distribution with N=6. The 6 discrete values of the variable x have the same 
probability 1/6.
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An example is a  rolling die with N=6 faces. A discrete variable such as the 
faces of a die can only take a countable number of values x. The probability 
of each face is 1/6. The probability density function of this distribution is

The corresponding cumulative distribution function is

where x takes only discrete values, x=1, 2, …, 6.

Binomial or Bernoulli Distribution

A binomial or Bernoulli distribution, named after the Swiss scientist James 
Bernoulli (1654-1705), gives the discrete probability of x successes out of 
N trials, with probability p of success in any given trial (Fig. 3.5). The prob-
ability density function of a binomial distribution is
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Fig. 3.5 Probability density function f(x) of a binomial distribution, which gives the 
probability p of x successes out of N=6 trials, with probability a p=0.1 and b p=0.3 of 
success in any given trial.
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The cumulative distribution function is

where

The binomial distribution has two parameters N and p. The outcome of a 
drilling program of oil provides an example of such distribution. Let us as-
sume that the probability of a drilling success is 0.1 or 10%. The probability 
of x=3 wells out of a total number of N=10 wells is

Therefore only six out of one hundred wells are successful.

Poisson Distribution

When the numbers of trials is N  and the success probability is p 0, the 
binomial distribution approaches the Poisson distribution with one single 
parameter λ=Np (Fig. 3.6) (Poisson, 1837). This works well for N>100 and 
p<0.05 or 5%. We therefore use the Poisson distribution for processes char-
acterized by extremely low occurrence, e.g., earthquakes, volcano eruptions, 
storms and fl oods. The probability density function is

and the cumulative distribution function is

The single parameter λ describes both the mean and the variance of this 
distribution.
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Normal or Gaussian Distribution

When p=0.5 (symmetric, no skew) and N , the binomial distribution ap-
proaches the normal or gaussian distribution with the parameters  mean µ
and  standard deviation σ (Fig. 3.7). The probability density function of a 
normal distribution in the continuous case is

and the cumulative distribution function is

The normal distribution is used when the mean is the most frequent and most 
likely value. The probability of deviations is equal towards both directions 
and decrease with increasing distance from the mean. The  standard normal 
distribution is a special member of the normal family that has a mean of zero
and a standard deviation of one.

We transform the equation of the normal distribution by substitute 
z=(x-µ)/σ.
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Fig. 3.6 Probability density function f(x) of a Poisson distribution with different values for 
λ. a λ=0.5 and b λ=2.
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This defi nition of the normal distribution is often referred to as  z distribution.

Logarithmic Normal or Log–Normal Distribution

The logarithmic normal distribution is used when the data have a lower 
limit, e.g., the amount of precipitation or the frequency of earthquakes (Fig. 
3.8). In such cases, distributions are usually characterized by signifi cant 
skewness, which is best described by a logarithmic normal distribution The 
probability density function of this distribution is

and the cumulative distribution function is
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Fig. 3.7 a Probability density function f(x) and b standardized (F(x)
max

=1) cumulative 
distribution function of a gaussian or normal distribution with mean µ=0 and different values 
for standard deviation σ.
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where x>0. The distribution can be described by the two parameters mean µ
and variance σ2. The formulas for mean and variance, however, are differ-
ent from the ones used for normal distributions. In practice, the values of x
are logarithmized, the mean and variance are computed using the formulas 
for the normal distribution and the empirical distribution is compared with 
a normal distribution.

Student s t Distribution

The Student s  t distribution was fi rst introduced by William Gosset (1876-
1937) who needed a distribution for small samples (Fig. 3.9). W. Gosset was 
a Irish Guinness Brewery employee and was not allowed to publish research 
results. For that reason he published his t distribution under the pseudonym 
Student (Student, 1908). The probability density function is

where Γ is the Gamma function
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which can be written as

if x>0. The single parameter Φ of the t distribution is the  degrees of freedom. 
In the analysis of univariate data, this parameter is Φ=n-1, where n is the 
sample size. As Φ , the t distribution converges to the standard normal 
distribution. Since the t distribution approaches the normal distribution for 
Φ>30, it is not often used for distribution fi tting. However, the t distribution 
is used for hypothesis testing, namely the t–test (Chapter 3.7).

Fisher s F Distribution

The F distribution was named after the statistician Sir Ronald Fisher 
(1890-1962). It is used for hypothesis testing, namely for the F–test 
(Chapter 3.8) (Fig. 3.10). The F distribution was named in honor of the 
statistician Sir Ronald Fisher. The F distribution has a relatively com-

Φ=5 Φ=5

Φ=1

Φ=10.1

0.2

0.3

0.4

−6 −4 −2 0 2 4 6−6 −4 −2 0 2 4 6

0.5

0

0.2

0.4

0.6

0.8

1

0

x x

f(
x)

F
(x

)

Probability Density
Function

Cumulative Distribution
Function

a b

Fig. 3.9 a Probability density function f(x) and b standardized (F(x)
max

=1) cumulative 
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plex probability density function:

where x>0 and Γ is again the  Gamma function. The two parameters Φ
1
 and 

Φ
2
 are the degrees of freedom.

χ2 or Chi-Squared Distribution

The    χ2 distribution was introduced by Friedrich Helmert (1876) and Karl 
Pearson (1900). It is not used for fi tting a distribution, but has important ap-
plications in statistical hypothesis testing, namely the χ2–test (Chapter 3.9). 
The probability density function of the χ2 distribution is

where x>0, otherwise f(x)=0. Again, Φ is the degrees of freedom (Fig. 3.11).
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3.5 Example of Theoretical Distributions

The function randtool is a tool to simulate discrete data with a statistics 
similar to our data. This function creates a histogram of  random numbers 
from the distributions in the Statistics Toolbox. The random numbers that 
have been generated by using this tool can be exported into the workspace. 
We start the  graphical user interface ( GUI) of the function by typing

randtool

after the prompt. We can now create a data set similar to the one contained 
in the fi le organicmatter.txt. The 60 measurements have a mean of 12.3448 
wt% and a standard deviation of 1.1660 wt%. The GUI uses Mu for µ (the 
mean of a population) and Sigma for σ (the standard deviation). After choos-
ing Normal for a gaussian distribution and 60 for the number of samples, we 
get a histogram similar to the one of the fi rst example. This synthetic distri-
bution based on 60 samples represents a rough estimate of the true normal 
distribution. If we increase the sample size, the histogram looks much more 
like a true gaussian distribution.

Instead of simulating discrete distributions, we can use the  probability 
density function (PDF) or  cumulative distribution function (CDF) to com-
pute a theoretical distribution. The MATLAB Help gives an overview of 
the available theoretical distributions. As an example, we use the func-
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tions normpdf(x,mu,sigma) and normcdf(x,mu,sigma) to compute 
the PDF and CDF of a gaussian distribution with mean Mu=12.3448 and 
Sigma=1.1660, evaluated at the values in x in order to compare the result 
with our sample data set.

x = 9:0.1:15;
pdf = normpdf(x,12.3448,1.1660);
cdf = normcdf(x,12.3448,1.1660);
plot(x,pdf,x,cdf)

MATLAB also provides a GUI-based function for generating PDFs and 
CDFs with specifi c statistics, which is called  disttool.

disttool

We choose pdf as function type and Mu=12.3448 and Sigma=1.1660.
The function disttool uses the non-GUI functions for calculating prob-
ability density functions and cumulative distribution functions, such as 
normpdf and normcdf.

3.6 The t–Test

The Student s t–test by William Gossett (1876-1937) compares the means 
of two distributions. Let us assume that two independent sets of n

a
 and n

b

measurements that have been carried out on the same object. For instance, 
they could be the samples taken from two different outcrops. The  t–test can 
now be used to test the  hypothesis that both samples come from the same 
population, e.g., the same lithologic unit ( null hypothesis) or from two dif-
ferent populations ( alternative hypothesis). Both, the sample and population 
distribution have to be gaussian. The variances of the two sets of measure-
ments should be similar. Then the appropriate test statistic is

where n
a
 and n

b
 are the sample sizes, s

a
2 and s

b
2 are the variances of the two 

samples a and b. The alternative hypothesis can be rejected if the measured 
t-value is lower than the critical t-value, which depends on the degrees of 
freedom Φ=n

a
+n

b
-2 and the  signifi cance level α. If this is the case, we can-

not reject the null hypothesis without another cause. The signifi cance level 
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α of a test is the maximum probability of accidentally rejecting a true null 
hypothesis. Note that we cannot prove the null hypothesis, in other words 
not guilty is not the same as innocent (Fig. 3.12).

The t–test can be performed by the function ttest2. We load an example 
data set of two independent series of measurements. The fi rst example shows 
the performance of the t–test on two distributions with with the means 25.5 
and 25.3, respectively, whereas the standard deviations are 1.3 and 1.5.

clear

load('organicmatter_two.mat');

The binary fi le organicmatter_two.mat contains two data sets corg1 and 
corg2. First we plot both histograms in one single graph

[n1,x1] = hist(corg1);
[n2,x2] = hist(corg2);

h1 = bar(x1,n1);
hold on
h2 = bar(x2,n2);

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b'x)

Here we use the command set to change graphic objects of the bar plots 
h1 and h2, such as the face and edge colors of the bars. Now we apply the 
function ttest2(x,y,alpha) to the two independent samples corg1 and 
corg2 at an alpha=0.05 or 5% signifi cance level. The command

[h,significance,ci] = ttest2(corg1,corg2,0.05)

yields

h =
     0

significance =
    0.0745

ci =
   -0.0433    0.9053

The result h=0 means that you cannot reject the null hypothesis without 
another cause at a 5% signifi cance level. The signifi cance of 0.0745 means 
that by chance you would have observed values of t more extreme than the 
one in the example in 745 of 10,000 similar experiments. A 95% confi dence 
interval on the mean is [-0.0433 0.9053], which includes the theoretical (and 
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hypothesized) difference of 0.2.
The second synthetic example shows the performance of the t–test on very 

different distributions in the means. The means are 24.3 and 25.5, whereas 
the standard deviations are again 1.3 and 1.5, respectively.

clear

load('organicmatter_three.mat');

This fi le again contains two data sets corg1 and corg2. The t–test at a 5% 
signifi cance level

[h,significance,ci] = ttest2(corg1,corg2,0.05)

yields

h =
     1

significance =
   6.1138e-06

ci =
    0.7011    1.7086

The result h=1 suggests that you can reject the null hypothesis. The signifi -
cance is extremely low and very close to zero. The 95% confi dence interval 
on the mean is [0.7011 1.7086], which again includes the theoretical (and 
hypothesized) difference of 1.2.

3.7 The F–Test

The  F–test by Snedecor and Cochran (1989) compares the variances s
a
2 and 

s
b
2 of two distributions, where s

a
2>s

b
2. An example is the comparison of the 

natural heterogenity of two samples based on replicated measurements. The 
sample sizes n

a
 and n

b
 should be above 30. Then the appropriate test statistic 

to compare variances is

The two variances are not signifi cantly different, i.e., we reject the alterna-
tive hypothesis, if the measured F-value is lower then the critical F-value,
which depends on the degrees of freedom Φ

a
=n

a
-1 and Φ

b
=n

b
-1, respec-

tively, and the signifi cance level α.
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Although MATLAB does not provide a ready-to-use F–test, this hypoth-
esis test can easily be implemented. We fi rst apply this test to two distribu-
tions with very similar standard deviations of 1.3 and 1.2, respectively.

load('organicmatter_four.mat');

The quantity F is defi ned as the quotient between the larger and the smaller 
variance. First we compute the standard deviations, where

s1 = std(corg1)

s2 = std(corg2)

yields

s1 =
    1.2550

s2 =
    1.2097

The F–distribution has two parameters, df1 and df2, which are the num-
bers of observations of both distributions reduced by one, where

df1 = length(corg1) - 1

df2 = length(corg2) - 1

yields

df1 =
    59

df2 =
    59

Next we sort the standard deviations by their absolute value,

if s1 > s2
  slarger  = s1
  ssmaller = s2
else
  slarger  = s2
  ssmaller = s1
end

and get

slarger =
    1.2550
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ssmaller =
    1.2097

Now we compare the calculated F with the critical F. This can be accom-
plished using the function finv on a 95% signifi cance level. The function 
finv returns the inverse of the F distribution function with df1 and df2
degrees of freedom, at the value of 0.95. Typing

Freal = slarger^2/ssmaller^2

Ftable = finv(0.95,df1,df2)

yields

Freal =
    1.0762

Ftable =
    1.5400

The F calculated from the data is smaller than the critical F. We therefore 
cannot reject the null hypothesis without another cause. The variances are 
identical on a 95% signifi cance level.

We now apply this test to two distributions with very different standard 
deviations, 2.0 and 1.2, respectively.

load('organicmatter_five.mat');

Now we compare the calculated F with the critical F at a 95% signifi cance 
level. The critical F can be computed using the function finv. We again type

s1 = std(corg1);

s2 = std(corg2);

df1 = length(corg1) - 1;

df2 = length(corg2) - 1;

if s1 > s2
  slarger  = s1;
  ssmaller = s2;
else
  slarger  = s2;
  ssmaller = s1;
end

Freal = slarger^2/ssmaller^2

Ftable = finv(0.95,df1,df2)
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and get

Freal =
    3.4967

Ftable =
    1.5400

The F calculated from the data is now larger than the critical F. We therefore 
can reject the null hypothesis. The variances are different on a 95% signifi -
cance level. 

3.8 The χ 2–Test

The   χ 2–test introduced by Karl Pearson (1900) involves the comparison of 
distributions, permitting a test that two distributions were derived from the 
same population. This test is independent of the distribution that is being 
used. It can therefore be applied to test the hypothesis that the observations 
were drawn from a specifi c theoretical distribution. Let us assume that we 
have a data set that consists of 100 chemical measurements from a sand-
stone unit. We could use the χ2–test to test that these measurements can be 
described by a gaussian distribution with a typical or best central value and 
a random dispersion around this value. The n data are grouped in K classes, 
where n should be above 30. The frequencies within the classes O

k
should

not be lower than four and never be zero. Then the appropriate statistics is

where E
k
 are the frequencies expected from the theoretical distribution. The 

alternative hypothesis is that the two distributions are different. This can be 
rejected if the measured χ 2 is lower than the critical χ 2, which depends on 
Φ=K-Z, where K is the number of classes and Z is the number of parameters 
describing the theoretical distribution plus the number of variables (for in-
stance, Z=2+1 for mean and variance in the case of a gaussian distribution 
of a data set containing one variable, Z=1+1 for a Poisson distribution of one 
variable) (Fig. 3.12).

As an example, we test the hypothesis that our organic carbon measure-
ments contained in organicmatter.txt have a gaussian distribution. We fi rst 
load the data into the workspace and compute the frequency distribution 
n_exp of the data.
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corg = load('organicmatter_one.txt');

v = 10 : 0.65 : 14.55;
n_exp = hist(corg,v);

We use this function to create the synthetic frequency distribution n_syn
with a mean of 12.3448 and standard deviation of 1.1660. 

n_syn = normpdf(v,12.3448,1.1660);

The data need to be scaled so that they are similar to the original data set.

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

The fi rst line  normalizes n_syn to a total of one. The second command  scales 
n_syn to the sum of n_exp. We can display both histograms for comparison.

subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of these plots shows that they are similar. However, it 
is advisable to use a more quantitative approach. The χ2-test explores the 
squared differences between the  observed and  expected frequencies. The 

Φ=5 χ2 (Φ=5, α=0.05)
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Fig. 3.12 Principles of a χ2-test. The alternative hypothesis that the two distributions are 
different can be rejected if the measured χ2 is lower than the critical χ2, which depends on 
Φ=K-Z, where K is the number of classes and Z is the number of parameters describing the 
theoretical distribution plus the number of variables. In the example, the critical χ2(Φ=5, 
α=0.05) is 11.0705. If the measured χ2=2.1685 is well below the critical χ2, we cannot reject 
the null hypothesis. In our example, we can therefore conclude that the sample distribution is 
not signifi cantly different from a gaussian distribution.
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quantity χ2 is defi ned as the sum of the these squared differences devided by 
the expected frequencies.

chi2 = sum((n_exp - n_syn).^2 ./n_syn)

ans =
    2.1685

The critical χ2 can be calculated using chi2inv. The χ2–test requires the 
degrees of freedom Φ. In our example, we test the hypothesis that the data are 
gaussian distributed, i.e., we estimate two parameters µ and σ. The number 
of degrees of freedom is Φ=8-(2+1)=5. We test our hypothesis on a p=95%
signifi cance level. The function chi2inv computes the inverse of the χ2

CDF with parameters specifi ed by Φ for the corresponding probabilities in p.

chi2inv(0.95,5)

ans = 
    11.0705

The critical χ2 of 11.0705 is well above the measured χ2 of 2.1685. We 
therefore cannot reject the null hypothesis. Hence, we conclude that our data 
follow a gaussian distribution.
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4 Bivariate Statistics

4.1 Introduction

Bivariate analysis aims to understand the relationship between two variables
x and y. Examples are the length and the width of a fossil, the sodium and 
potassium content of volcanic glass or the organic matter content along a 
sediment core. When the two variables are measured on the same object, x is 
usually identifi ed as the  independent variable, whereas y is the dependent
variable. If both variables were generated in an experiment, the variable 
manipulated by the experimentalist is described as the independent variable. 
In some cases, both variables are not manipulated and therefore indepen-
dent. The methods of bivariate statistics help to describe the strength of the 
relationship between the two variables, either by a single parameter such as 
Pearson s correlation coeffi cient for linear relationships or by an equation 
obtained by regression analysis (Fig. 4.1). The equation describing the rela-
tionship between x and y can be used to predict the y-response from arbitrary 
x s within the range of original data values used for regression. This is of 
particular importance if one of the two parameters is diffi cult to measure. In 
this case, the relationship between the two variables is fi rst determined by 
regression analysis on a small training set of data. Then the regression equa-
tion is used to calculate this parameter from the fi rst variable.

This chapter fi rst introduces Pearson s correlation coeffi cient (Chapter 4.2), 
then explains the widely-used methods of linear and curvilinear regression 
analysis (Chapter 4.3, 4.10 and 4.11). Moreover, a selection of methods is 
explained that are used to assess the uncertainties in regression analysis 
(Chapters 4.5 to 4.8). All methods are illustrated by means of synthetic ex-
amples since they provide excellent means for assessing the fi nal outcome.

4.2 Pearson s Correlation Coeffi cient

Correlation coeffi cients are often used at the exploration stage of bivariate 
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statistics. They are only a very rough estimate of a rectilinear trend in the 
bivariate data set. Unfortunately the literature is full of examples where  the 
importance of correlation coeffi cients is overestimated and outliers in the 
data set lead to an extremely biased estimator of the population correlation 
coeffi cient.

The most popular correlation coeffi cient is   Pearson s linear product-mo-
ment correlation coeffi cient ρ (Fig. 4.2). We estimate the population s cor-
relation coeffi cient ρ from the sample data, i.e., we compute the sample 
correlation coeffi cient r, which is defi ned as

Regression line

i-th data point ( xi,yi )

Regression line: 
age = 6.6 + 5.1 depth

Correlation coefficient:
r = 0.96
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Fig. 4.1 Display of a  bivariate data set. The twenty data points represent the age of a sediment 
(in kiloyears before present) in a certain depth (in meters) below the sediment-water interface. 
The joint distribution of the two variables suggests a linear relationship between age and depth,
i.e., the increase of the sediment age with depth is constant. Pearson s correlation coeffi cient 
(explained in the text) of r=0.96 supports the strong linear dependency of the two variables. 
Linear regression yields the equation age=6.6+5.1 depth. This equation indicates an increase 
of the sediment age of 5.1 kyrs per meter sediment depth (the slope of the regression line). 
The inverse of the slope is the sedimentation rate of ca. 0.2 meters/kyrs. Furthermore, the 
equation defi nes the age of the sediment surface of 6.6 kyrs (the intercept of the regression 
line with the y-axis). The deviation of the surface age from zero can be attributed either to 
the statistical uncertainty of regression or any natural process such as erosion or bioturbation. 
Whereas the assessment of the statistical uncertainty will be discussed in this chapter, the 
second needs a careful evaluation of the various processes at the sediment-water interface.
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Fig. 4.2 Pearson s correlation coeffi cent r for various sample data. a-b Positive and negative 
linear correlation, c random scatter without a linear correlation, d an outlier causing a 
misleading value of r, e curvilinear relationship causing a high r since the curve is close to a 
straight line, f curvilinear relationship clearly not described by r.
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where n is the number of xy pairs of data points, s
x
 and s

y
 the univariate 

standard deviations. The numerator of Pearson s correlation coeffi cient is 
known as corrected sum of products of the bivariate data set. Dividing the 
numerator by (n-1) yields the covariance

which is the summed products of deviations of the data from the sample 
means, divided by (n-1). The covariance is a widely-used measure in bivari-
ate statistics, although it has the disadvantage of depending on the dimen-
sion of the data. We will use the covariance in time-series analysis, which 
is a special case of bivariate statistics with time as one of the two variables. 
Dividing the covariance by the univariate standard deviations removes this 
effect and leads to Pearson s correlation coeffi cient.

Pearson s correlation coeffi cient is very sensitive to various disturbances 
in the bivariate data set. The following example illustrates the use of the 
correlation coeffi cients, highlights the potential pitfalls when using this 
measure of linear trends. It also describes the resampling methods that can 
be used to explore the confi dence of the estimate for ρ. The synthetic data 
consist of two variables, the age of a sediment in kiloyears before present 
and the depth below the sediment-water interface in meters. The use of syn-
thetic data sets has the advantage that we fully understand the linear model 
behind the data. 

The data are represented as two columns contained in fi le agedepth.txt.
These data have been generated using a series of thirty random levels (in me-
ters) below the sediment surface. The linear relationship  age=5.6*meters+1.2
was used to compute noisefree values for the variable age. This is the equa-
tion of a straight line with slope 5.6 and an intercept with the y-axis of 1.2. 
Finally, some gaussian noise of amplitude 10 was added to the age data. We 
load the data from the fi le agedepth.txt.

agedepth = load('agedepth.txt');

We defi ne two new variables, meters and age, and generate a scatter plot 
of the data.

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

We observe a strong  linear trend suggesting some dependency between the 
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variables, meters and age. This trend can be described by Pearson s cor-
relation coeffi cient r, where r=1 stands for a perfect positive correlation, i.e., 
age increases with meters, r=0 suggests no correlation, and r=-1 indicates 
a perfect negative correlation. We use the function  corrcoef to compute 
Pearson s correlation coeffi cient.

corrcoef(meters,age)

which causes the output

ans =
    1.0000    0.9342
    0.9342    1.0000

The function corrcoef calculates a matrix of correlation coeffi cients 
for all possible combinations of the two variables. The combinations 
(meters, age) and (age, meters) result in r=0.9342, whereas 
(age, age) and (meters, meters) yield r=1.000.

The value of r=0.9342 suggests that the two variables age and meters
depend on each other. However, Pearson s correlation coeffi cient is highly 
sensitive to outliers. This can be illustrated by the following example. Let us 
generate a normally-distributed cluster of thirty (x,y) data with zero mean 
and standard deviation one. In order to obtain identical data values, we reset 
the random number generator by using the integer 5 as seed.

 randn('seed',5);
x = randn(30,1); y = randn(30,1);

plot(x,y,'o'), axis([-1 20 -1 20]);

As expected, the correlation coeffi cient of these random data is very low.

corrcoef(x,y)

ans =
    1.0000    0.1021
    0.1021    1.0000

Now we introduce one single outlier to the data set, an exceptionally high 
(x,y) value, which is located precisely on the one-by-one line. The correla-
tion coeffi cient for the bivariate data set including the outlier (x,y)=(5,5)
is considerably higher than before.

x(31,1) = 5; y(31,1) = 5;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)
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ans =
    1.0000    0.4641
    0.4641    1.0000

After increasing the absolute (x,y) values of this outlier, the correlation 
coeffi cient increases dramatically.

x(31,1) = 10; y(31,1) = 10;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
    1.0000    0.7636
    0.7636    1.0000

and reaches a value close to r=1 if the  outlier has a value of 
(x,y)=(20,20).

x(31,1) = 20; y(31,1) = 20;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
    1.0000    0.9275
    0.9275    1.0000

Still, the bivariate data set does not provide much evidence for a strong 
dependence. However, the combination of the random bivariate (x,y) data 
with one single outlier results in a dramatic increase of the correlation coef-
fi cient. Whereas outliers are easy to identify in a bivariate scatter, erroneous 
values might be overlooked in large multivariate data sets.

Various methods exist to calculate the signifi cance of Pearson s correla-
tion coeffi cient. The function corrcoef provides the possibility for evalu-
ating the quality of the result. Furthermore, resampling schemes or surro-
gates such as the bootstrap or jackknife method provide an alternative way 
of assessing the  statistical  signifi cance of the results. These methods repeat-
edly resample the original data set with N data points either by choosing N-1
subsamples N times (the jackknife) or picking an arbitrary set of subsamples 
with N data points with replacements (the bootstrap). The statistics of these 
subsamples provide a better information on the characteristics of the popu-
lation than statistical parameters (mean, standard deviation, correlation co-
effi cients) computed from the full data set. The function  bootstrp allows 
resampling of our bivariate data set including the outlier (x,y)=(20,20).
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rhos1000 = bootstrp(1000,'corrcoef',x,y);

This command fi rst resamples the data a thousand times, calculates the 
correlation coeffi cient for each new subsample and stores the result in the 
variable rhos1000. Since corrcoef delivers a 2x2 matrix as mentioned 
above, rhos1000 has the dimension 1000x4, i.e., 1000 values for each 
element of the 2x2 matrix. Plotting the histogram of the 1000 values of 
the second element, i.e., the correlation coeffi cient of (x,y) illustrates the 
dispersion of this parameter with respect to the presence or absence of the 
outlier. Since the distribution of rhos1000 contains a lot of empty classes, 
we use a large number of bins.

hist(rhos1000(:,2),30)

The histogram shows a cluster of correlation coeffi cients around r=0.2 that 
follow the normal distribution and a strong peak close to r=1 (Fig. 4.3). 
The interpretation of this histogram is relatively straightforward. As soon 
as the subsample contains the outlier, the correlation coeffi cient is close to 
one. Samples without the outlier yield a very low (close to zero) correla-
tion coeffi cient suggesting no strong dependence between the two vari-
ables x and y.
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Fig. 4.3 Bootstrap result for Pearson s correlation coeffi cient r from 1000 subsamples. The 
histogram shows a roughly normally-distributed cluster of correlation coeffi cients at around 
r=0.2 suggesting that these subsamples do not contain the outlier. The strong peak close to 
r=1, however, suggests that such an outlier with high values of the two variables x and y is 
present in the corresponding subsamples.
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Bootstrapping therefore represents a powerful and simple tool for accept-
ing or rejecting our fi rst estimate of the correlation coeffi cient. The applica-
tion of the above procedure applied to the synthetic sediment data yields a 
clear unimodal gaussian distribution of the correlation coeffi cients.

corrcoef(meters,age)

ans =
    1.0000    0.9342
    0.9342    1.0000
    
rhos1000 = bootstrp(1000,'corrcoef',meters,age);

hist(rhos1000(:,2),30)

Most rhos1000 fall within the interval between 0.88 and 0.98. Since the 
resampled correlation coeffi cients obviously are gaussian distributed, we 
can use the mean as a good estimate for the true correlation coeffi cient.

mean(rhos1000(:,2))

ans =
    0.9315

This value is not much different to our fi rst result of r=0.9342. However,  
now we can be certain about the validity of this result. However, in our 
example, the bootstrap estimate of the correlations from the age-depth data 
is quite skewed, as there is a hard upper limit of one. Nevertheless, the boot-
strap method is a valuable tool for obtaining valuable information on the 
reliability of Pearson s correlation coeffi cient of bivariate data sets. 

4.3 Classical Linear Regression Analysis and Prediction

 Linear regression provides another way of describing the dependence be-
tween the two variables x and y. Whereas Pearson s correlation coeffi cient 
only provides a rough measure of a linear trend, linear models obtained by 
regression analysis allow to predict arbitrary y values for any given value 
of x within the data range. Statistical testing of the signifi cance of the linear 
model provides some insights into the quality of prediction.

Classical regression assumes that y responds to x, and the entire disper-
sion in the data set is in the y-value (Fig. 4.4). Then, x is the  independent 
or  regressor or  predictor variable. The values of x is defi ned by the experi-
mentalist and are often regarded as to be free of errors. An example is the 
location x of a sample in a sediment core. The  dependent variable y contains 
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errors as its magnitude cannot be determined accurately. Linear regression 
minimizes the y deviations between the xy data points and the value pre-
dicted by the best-fi t line using a least-squares criterion. The basis equation 
for a general linear model is

where b
0
 and b

1
 are the coeffi cients. The value of b

0
 is the intercept with the 

y-axis and b
1
 is the slope of the line. The squared sum of the y deviations 

to be minimized is

Partial differentiation of the right-hand term and equation to zero yields a 
simple equation for the fi rst  regression coeffi cient b
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:
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The regression line passes through the data centroid defi ned by the samples 
means. We can therefore compute the other regression coeffi cient b

0
,

using the univariate sample means and the previously computed slope b
1
.

Let us again load the synthetic age-depth data from the fi le agedepth.txt.
We defi ne two new variables, meters and age, and generate a  scatter plot 
of the data.

agedepth = load('agedepth.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A signifi cant  linear trend in the bivariate scatter plot and a correlation co-
effi cient of more than r=0.9 suggests a strong linear dependence between 
meters and age. In geologic terms, this suggests that the sedimentation 
rate is constant through time. We now try to fi t a linear model to the data 
that helps us to predict the age of the sediment at levels without age data. 
The function polyfit computes the coeffi cients of a polynomial p(x) of 
degree n that fi ts the data y in a least-squared sense. In our example, we fi t a 
polynomial of degree n=1 (linear) to the data.

p = polyfit(meters,age,1)

p =
    5.6393    0.9986

Since we are working with synthetic data, we know that values for slope 
and intercept with the y-axis. While the estimated slope agrees well with 
the true value (5.6 vs. 5.6393), the intercept with the y-axis is signifi cantly 
different (1.2 vs. 0.9986). Both data and the fi tted line can be plotted on the 
same graph.

plot(meters,age,'o'), hold

plot(meters,p(1) * meters + p(2),'r')
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Instead of using the equation for the regression line, we can also use the 
function polyval to calculate the y-values.

plot(meters,age,'o'), hold

plot(meters,polyval(p,meters),'r')

Both, polyfit and polyval are incorporated in the MATLAB GUI func-
tion polytool.

polytool(meters,age)

The coeffi cients p(x) and the equation obtained by linear regression can 
now be used to predict y-values for any given x-values. However, we can 
only do this for the depth interval for which the linear model was fi tted, 
i.e., between 0 and 20 meters. As an example, the age of the sediment at the 
depth of 17 meters depth is given by

polyval(p,17)

ans =
   96.8667

This result suggests that the sediment at 17 meters depth has an age of  ca. 
97 kyrs. The  goodness-of-fi t of the linear model can be determined by calcu-
lating  error bounds. These are obtained by cloosing an additional output pa-
rameter for polyfit and by using this as an input parameter for polyval.

[p,s] = polyfit(meters,age,1);
[p_age,delta] = polyval(p,meters,s);

This code uses an interval of ±2s, which corresponds to a 95%  confi dence 
interval. polyfit returns the polynomial coeffi cients p, and a structure s
that polyval uses to calculate the error bounds. Structures are MATLAB 
arrays with named data containers called fi elds. The fi elds of a structure can 
contain any kind of data, such as text strings representing names. Another 
might contain a scalar or a matrix. In our example, the structure s contains 
fi elds for the statistics of the residuals that we use to compute the error 
bounds. delta is an estimate of the standard deviation of the error in pre-
dicting a future observation at x by p(x). We plot the results.

plot(meters,age,'+',meters,p_age,'g-',...
   meters,p_age + 2 * delta,'r--',meters,p_age - 2 * delta,'r--')
xlabel('meters'), ylabel('age')

Since the plot statement does not fi t on one line, we use an ellipsis (three 
periods), ..., followed by return or enter to indicate that the statement 
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continues on the next line. The plot now shows the data points, the regres-
sion line as well as the error bounds of the regression (Fig. 4.5). This graph 
already provides some valuable information on the quality of the result. 
However, in many cases a better knowledge on the validity of  the model is 
required and therefore more sophisticated methods for  confi dence testing of 
the results are introduced in the following.

4.5 Analyzing the Residuals

When you compare how far the  predicted values are from the actual or  ob-
served values, you are performing an  analysis of  residuals. The statistics 
of the residuals provides valuable information on the quality of a model 
fi tted to the data. For instance, a signifi cant trend in the residuals suggest 
that the model not fully describes the data. In such a case, a more com-
plex model, such as a polynomial of a higher degree should be fi tted to the 
data. Residuals ideally are purely random, i.e., gaussian distributed with 
zero mean. We therefore test the hypothesis that our residuals are gaussian 
distributed by visual inspection of the histogram and by employing a χ2-test
introduced in the previous chapter.

res = age - polyval(p,meters);
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Fig. 4.5 The result of linear regression. The plot shows the original data points (plus signs), 
the regression line (solid line) as well as the error bounds (dashed lines) of the regression.
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Plotting the residuals does not show obvious patterned behavior. Thus no 
more complex model than a straight line should be fi tted to the data.

plot(meters,res,'o')

An alternative way to plot the residuals is a stem plot using stem.

subplot(2,1,1)
plot(meters,age,'o'), hold
plot(meters,p(1) * meters + p(2),'r')

subplot(2,1,2)
stem(meters,res);

Let us explore the distribution of the residuals. We choose six classes and 
calculate the corresponding frequencies.

[n_exp,x] = hist(res,6)

n_exp =
     5     4     8     7     4     2

x =
   -16.0907   -8.7634   -1.4360    5.8913   13.2186   20.5460

By basing the bin centers in the locations defi ned by the function hist, a 
more practical set of classes can be defi ned.

v = -13 : 7 : 23

n_exp = hist(res,v);

Subsequently, the mean and standard deviation of the residuals are com-
puted. These are then used for generating a theoretical frequency distribu-
tion that can be compared with the distribution of the residuals. The mean 
is close to zero, whereas the standard deviation is 11.5612. The function 
normpdf is used for creating the frequency distribution n_syn similar to 
our example. The theoretical distribution is scaled according to our original 
sample data and displayed.

n_syn = normpdf(v,0,11.5612);

n_syn = n_syn ./ sum(n_syn);
n_syn = sum(n_exp) * n_syn;

The fi rst line normalizes n_syn to a total of one. The second command 
scales n_syn to the sum of n_exp. We plot both distributions for compari-
son.
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subplot(1,2,1), bar(v,n_syn,'r')
subplot(1,2,2), bar(v,n_exp,'b')

Visual inspection of the bar plots reveals similarities between the data sets. 
Hence, the χ2-test can be used to test the hypothesis that the residuals follow 
a gaussian distribution.

chi2 = sum((n_exp - n_syn).^2 ./n_syn)

chi2 =
    2.3465

The critical χ2 can be calculated by using chi2inv. The χ2 test requires the 
degrees of freedom df, which is the number of classes reduced by one and 
the number of parameters estimated. In our example, we test for a gaussian 
distribution with two parameters, mean and standard deviation. Therefore the 
degrees of freedom is df=6-(1+2)=3. We test at a 95% signifi cance level:

chi2inv(0.95,3)

ans =
    7.8147

The critical χ2 of 7.8147 is well above the measured χ2 of 2.3465. It is not 
possible to reject the null hypothesis. Hence, we conclude that our residuals 
follow a gaussian distribution and the bivariate data set is well described by 
the linear model.

4.6 Bootstrap Estimates of the Regression Coeffi cients

We use the  bootstrap method to obtain a better estimate of the regression 
coeffi cients. Again, we use the function bootstrp with 1000 samples 
(Fig. 4.6).

p_bootstrp = bootstrp(1000,'polyfit',meters,age,1);

The statistics of the fi rst coeffi cient, i.e., the slope of the regression line is

hist(p_bootstrp(:,1),15)

mean(p_bootstrp(:,1))

ans =
    5.6023

std(p_bootstrp(:,1))
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ans =
    0.4421

Your results might be slightly different due to the different state of the built-
in random number generator used by bootstrp. The relatively small stan-
dard deviation indicates that we have an accurate estimate. In contrast, the 
statistics of the second parameter shows a signifi cant dispersion.

hist(p_bootstrp(:,2),15)
mean(p_bootstrp(:,2))

ans =
    1.3366

std(p_bootstrp(:,2))

ans =
    4.4079

The true values as used to simulated our data set are 5.6 for the slope and 
1.2 for the intercept with the y-axis, whereas the coeffi cients calculated us-
ing the function polyfit were 5.6393 and 0.9986, respectively. We see 
that indeed the intercept with the y-axis has a large uncertainty, whereas the 
slope is very well defi ned.
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Fig. 4.6 Histogram of the a fi rst (y-axis intercept of the regression line) and b second (slope 
of the line) regression coeffi cient as estimated from bootstrap resampling. Whereas the fi rst 
coeffi cient is very-well constrained, the second coeffi cient shows a large scatter.
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4.7 Jackknife Estimates of the Regression Coeffi cients

The jackknife method is a resampling technique that is similar to the boot-
strap method. However, from a sample with n data points, n subsets with 
n-1 data points are taken. Subsequently, the parameters of interest are cal-
culated, such as the regression coeffi cients. The mean and dispersion of the 
coeffi cients are computed. The disadvantage of this method is the limited 
number of n samples. The jackknife estimate of the regression coeffi cients 
is therefore less precise in comparison to the bootstrap results.

MATLAB does not provide a jackknife routine. However, the correspond-
ing code is easy to generate:

for i = 1 : 30
    % Define two temporary variables j_meters and j_age
    j_meters = meters;
    j_age = age;
    % Eliminate the i-th data point
    j_meters(i) = [];
    j_age(i) = [];
    % Compute regression line from the n-1 data points
    p(i,:) = polyfit(j_meters,j_age,1);
end

The jackknife for n-1=29 data points can be obtained by a simple for loop. 
Within each iteration, the i-th element is deleted and the regression coef-
fi cients are calculated for the i-th sample. The mean of the i samples gives 
an improved estimate of the coeffi cients. Similar to the bootstrap result, the 
slope of the regression line (fi rst coeffi cient) is clearly defi ned, whereas the 
intercept with the y-axis (second coeffi cient) has a large uncertainty,

mean(p(:,1))

ans =
    5.6382

compared to 5.6023+/-0.4421 and
    
mean(p(:,2))

ans =
    1.0100

compared to 1.3366+/-4.4079 as calculated by the bootstrap method. The 
true values are 5.6 and 1.2, respectively. The histogram of the jackknife 
results from 30 subsamples

hist(p(:,1));
figure
hist(p(:,2));
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does not display the distribution of the coeffi cients as clearly as the boot-
strap estimates (Fig. 4.7). We have seen that resampling using the jackknife 
or bootstrap methods provides a simple and valuable tool to test the quality 
of regression models. The next chapter introduces an alternative approach 
for quality estimation, which is by far more often used than resampling.

4.8 Cross Validation

A third method to test the goodness-of-fi t of the regression is  cross valida-
tion. The regression line is computed by using n-1 data points. The n-th data 
point is predicted and the discrepancy between the prediction and the actual 
value is computed. Subsequently, the mean of the discrepancies between the 
actual and predicted values is determined.

In this example, the cross validation for n data points is computed. The 
corresponding 30 regression lines display some dispersion in slope and y-
axis intercept.

for i = 1 : 30
    % Define temporary variables j_meters and j_age
    j_meters = meters;
    j_age = age;
    % Eliminate the i-th data point
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of the line) regression coeffi cient as estimated from jackknife resampling. Note that the 
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    j_meters(i) = [];
    j_age(i) = [];
    % Compute regression line from the n-1 data points
    p(i,:) = polyfit(j_meters,j_age,1);
    % Plot the i-th regression line and hold plot for next loop
    plot(meters,polyval(p(i,:),meters),’r’), hold on
    % Store the regression result and errors in p_age and p_error
    p_age(i) = polyval(p(i,:),meters(i));
    p_error(i) = p_age(i) - age(i);
end

The  prediction error is – in the best case – gaussian distributed with zero 
mean.

mean(p_error)

ans =
    0.0122

The standard deviation is an unbiased mean deviation of the true data points 
from the predicted straight line.

std(p_error)

ans =
   12.4289

Cross validation gives valuable information of the  goodness-of-fi t of the 
regression result. This method can be used also for quality control in other 
fi elds, such as spatial and temporal prediction.

4.9 Reduced Major Axis Regression

In some cases, both variables are not manipulated and can therefore be con-
sidered to be independent. In fact, a number of methods are available to 
compute a best-fi t line that minimizes the distance from both x and y. As an 
example, the method of   reduced major axis (RMA) minimizes the triangular 
area 0.5*( x y) between the points and the regression line, where x and 

y are the distances between predicted and true x and y values (Fig. 4.4). 
This optimization appears to be complex. However, it can be shown that the 
fi rst regression coeffi cient b

1
 (the slope) is simply the ratio of the standard 

deviations of x and y.
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Similar to classic regression, the regression line passes through the data cen-
troid defi ned by the sample mean. We can therefore compute the second 
regression coeffi cient b

0
 (the y-intercept),

using the univariate sample means and the previously computed slope b
1
.

Let us load the age-depth data from the fi le agedepth.txt and defi ne two 
variables, meters and age. It is ssumed that both of the variables contain 
errors and the scatter of the data can be explained by dispersion of meters
and age.

clear
agedepth = load('agedepth.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

The above formular is used for computing the slope of the regression 
line b

1
.

p(1,1) = std(age)/std(meters)

p =
   6.0367

The second coeffi cient b
0
, i.e., the y-axis intercept can therefore be com-

puted by

p(1,2) = mean(age) - p(1,1) * mean(meters)

p =
   6.0367   -2.9570

The regression line can be plotted by

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

This linear fi t slightly differs from the line obtained from classic regres-
sion. It is important to note that the regression line from RMA is not the 
bisector of the angle between the x-y and y-x classical linear regression 
analysis, i.e., using either x or y as independent variable while computing 
the regression lines.
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4.10 Curvilinear Regression

It has become apparent from our previous analysis that a linear regression 
model provides a good way of describing the scaling properties of the data. 
However, we may wish to check whether the data could be equally-well 
described by a polynomial fi t of a higher degree (n>1).

To clear the workspace and reload the original data, type

agedepth = load('agedepth.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

Subsequently, a polynomial of degree n=2 can be fi tted by using the function 
polyfit.

p = polyfit(meters,age,2)

p =
   -0.0132    5.8955    0.1265

The fi rst coeffi cient is close to zero, i.e., has not much infl uence on predic-
tion. The second and third coeffi cients are similar to the coeffi cients ob-
tained by linear regression. Plotting the data yields a curve that resembles a 
straight line.

plot(meters,age,'o'), hold
plot(meters,polyval(p,meters),'r')

Let us compute and plot the error bounds obtained by passing an op-
tional second output parameter from polyfit as an input parameter to 
polyval.

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

This code uses an interval of ±2s, corresponding to a 95%  confi dence inter-
val. polyfit returns the polynomial coeffi cients p, but also a structure s for 
use the polyval to obtain error bounds for the predictions. The structure s
contains fi elds for the norm of the residuals that we use to compute the error 
bounds. delta is an estimate of the standard deviation of the prediction er-
ror of a future observation at x by p(x). We plot the results.
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plot(meters,age,'+',meters,p_age,'g-',...
   meters,p_age + 2 * delta,'r', meters,p_age - 2 * delta,'r')
grid on

We now use another synthetic data set that we generate using a quadratic 
relationship between the barium content (in wt.%) down a sediment core 
(in meters).

meters = 20 * rand(30,1);
barium =  1.6 * meters.^2 - 1.1 * meters + 1.2;
barium = barium + 40.* randn(length(meters),1);

plot(meters,barium,'o')

bariumcont = [meters barium];

bariumcont = sortrows(bariumcont,1);

save bariumcont.txt bariumcont -ascii

The synthetic bivariate data set can be loaded from fi le bariumcont.txt.

bariumcont = load('bariumcont.txt');

meters = bariumcont(:,1);
barium = bariumcont(:,2);

plot(meters,barium,'o')

Fitting a polynomial of degree n=2 yields a convincing regression result 
compared to the linear model.

p = polyfit(meters,barium,2)

p =
    1.8272   -4.8390   -1.4428

As shown above, the true values for the three coeffi cients are +1.6, –1.1 and 
+1.2. There are some discrepancies between the true values and the coeffi -
cients estimated using polyfit. The regression curve and the error bounds 
can be plotted by typing (Fig. 4.8)

plot(meters,barium,'o'), hold
plot(meters,polyval(p,meters),'r')

[p,s] = polyfit(meters,barium,2);
[p_barium,delta] = polyval(p,meters,s);

plot(meters,barium,'+',meters,p_barium,'g',meters,...
   p_barium+2*delta,'r--',meters,p_barium-2*delta,'r--')
grid on
xlabel('meters'), ylabel('barium content')
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The plot nicely shows that the quadratic model for this data is a good one. 
The quality of the result could again be tested by exploring the residuals, 
employing resampling schemes or cross validation. The combination of re-
gression analysis with one of these methods represent a powerful tool in 
bivariate data analysis, whereas Pearson s correlation coeffi cient should be 
used only as a fi rst test for linear relationships.
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Fig. 4.8 Curvilinear regression from barium contents. The plot shows the original data points 
(plus signs), the regression line for a polynomial of degree n=2 (solid line) as well as the error 
bounds (dashed lines) of the regression.
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5 Time-Series Analysis

5.1 Introduction

Time-series analysis aims to understand the temporal behavior of one of 
several variables y(t). Examples are the investigation of long-term records 
of mountain uplift, sea-level fl uctuations, orbitally-induced insolation varia-
tions and their infl uence on the ice-age cycles, millenium-scale variations of 
the atmosphere-ocean system, the impact of the El Niño/Southern Oscillation 
on tropical rainfall and sedimentation (Fig. 5.1) and tidal infl uences on no-
bel gas emissions of bore holes. The temporal structure of a sequence of 
events can be random, clustered, cyclic or chaotic. Time-series analysis pro-
vide various tools to detect these temporal structures. The understanding of 
the underlying process that produced the observed data allows us to predict 
future values of the variable. We use the Signal Processing Toolbox, which 
contains all necessary routines for time-series analysis.

The fi rst section is on signals in general and a technical description how 
to generate synthetic signals to be used with time-series analysis tools 
(Chapter 5.2). Then, spectral analysis to detect cyclicities in a single time 
series (autospectral analysis) and to determine the relationship between two 
time series as a function of frequency (crossspectral analysis) is demon-
strated in Chapters 5.3 and 5.4. Since most time series in earth sciences are 
not evenly-spaced in time, various interpolation techniques and subsequent 
spectral analysis are introduced in Chapter 5.5. In the subsequent Chapter 
5.6, the very popular wavelets are introduced having the capability to map 
temporal variations in the spectra. The chapter closes with an overview of 
nonlinear techniques, in particular the method of recurrence plots, which are 
more and more used in earth sciences (Chapter 5.7).

5.2 Generating Signals

A time series is an ordered sequence of values of a variable y(t) at certain 
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time intervals t
k
.

If the time-indexed distance between any two successive observation t
k
 and 

t
k+1

is constant, the time series is equally spaced and the sampling interval 
is

The sampling frequency f
s
 is the inverse of the sampling interval t. In most 

cases we try to sample at constant time intervals or sampling frequencies. 
However, in some cases equally-spaced data are not available. As an exam-
ple assume deep-sea sediments sampled at fi ve-centimeter intervals along a 
sediment core. Radiometric age determination of certain levels of the sedi-
ment core revealed signifi cant fl uctuation in the sedimentation rates. The 
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Fig. 5.1 a Photograph of ca. 30 kyr-old varved sediments from a landslide-dammed lake in the 
Northwest Argentine Andes. The mixed clastic-biogenic varves consist of reddish-brown and 
green to buff-colored clays sourced from Cretaceous redbeds (red-brown) and Precambrian-
early Paleozoic greenshists (green-buff colored). The clastic varves are topped by thin white 
diatomite layers documenting the bloom of silica algae after the austral-summer rainy season. 
The distribution of the two source rocks and the interannual precipitation pattern in the area 
suggests that the reddish-brown layers refl ect cyclic recurrence of enhanced precipitation, 
erosion and sediment input in the landslide-dammed lake. b The powerspectrum of a red-
color intensity transect across 70 varves is dominated by signifi cant peaks at frequencies of 
ca. 0.076, 0.313, 0.455 and 1.0 yrs-1 corresponding to periods of 13.1, 3.2, 2.2, and around 
1.0 years. This cyclicities suggest a strong infl uence of the tropical Atlantic sea-surface 
temperature (SST) variability (characterized by 10 to 15 year cycles), the El Niño/Southern 
Oscillation (ENSO) (cycles between two and seven years) and the annual cycle at 30 kyrs 
ago, similar to today (Trauth et al. 2003).
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samples equally spaced along the sediment core are therefore not equally 
spaced on the time axis. In this case, the quantity

where T is the full length of the time series and N is the number of data points, 
represents only an average sampling interval. In general, a time series y(t

k
)

of a process can be represented as a linear sum of a long-term component or 
trend y

tr
(t

k
), a periodic component y

p
(t

k
) and a random noise y

n
(t

k
).

The long-term component is a linear or higher-degree trend that can be ex-
tracted by fi tting a polynomial of a certain degree and subtracting the values 
of this polynomial from the data (see Chapter 4). Noise removal will be 
described in Chapter 6. The periodic – or cyclic in a mathematically less 
rigorous sense – component can be approximated by a linear combination 
of cosine (or sine) waves that have different amplitudes A

i
, frequencies f

i
 and 

phase angles ψ
i
.

The phase angle ψ helps to detect temporal shifts between signals of the 
same frequency. Two signals y

1
 and y

2
 of the same period are out of phase if 

the difference between ψ
1
 and ψ

2
 is not zero (Fig. 5.2).

The frequency f of a periodic signal is the inverse of the period τ. The 
Nyquist frequency f

Nyq
is half the sampling frequency f

s
 and provides a maxi-

mum frequency the data can produce. As an example, audio compact disks 
(CDs) are sampled at frequencies of 44,100 Hz (Hertz, which is 1/second). 
The corresponding Nyquist frequency is 22,050 Hz, which is the highest 
frequency a CD player can theoretically produce. The limited performance 
of anti-alias fi lters used by CD players again reduce the frequency band and 
cause a cutoff frequency at around 20,050 Hz, which is the true upper fre-
quency limit of a CD player.

We generate synthetic signals to illustrate the use of time-series analysis 
tools. While using synthetic data we know in advance which features the 
time series contains, such as periodic or stochastic components, and we can 
introduce artifacts such as a linear trend or gaps. This knowledge is particu-
larly important if you are new to time series analysis. The user encounters 
plenty of possible effects of parameter settings, potential artifacts and errors 
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in the application of spectral analysis tools. Therefore we start with simple 
data before we apply the methods to more complex time series.

The next example illustrates how to generate a basic synthetic data series 
that is characteristic to earth sciences data. First we create a time axis t run-
ning from  0.01 to 100 in 0.01 intervals. Next we generate a strictly periodic 
signal y(t), a sine wave with period 5 and amplitude 2 by typing

t = 0.01 : 0.01 : 100;
y = 2*sin(2*pi*t/5);

plot(t,y)
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Phase Shift ∆t
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Fig. 5.2 Two periodic signals y
1
 and y

2
 as a function of time t defi ned by the amplitudes A

1

and A
2
, the period τ

1
=τ

2
, which is the inverse of the frequency f

1
=f

2
. Two signals y

1
and y

2
 of 

the same period are out of phase if the difference between ψ
1
 and ψ

2
 is not zero.
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The period of τ=5 corresponds to a frequency of f=1/5=0.2. Natural data 
series, however, are much more complex than a simple period signal. The 
next complicated signal is generated by superposition of several periodic 
components with different periods. As an example, we compute such a 
signal by adding three sine waves with the periods τ

1
=50 (f

1
=0.02), τ

2
=15

(f
2

0.07) and τ
3
=5 (f

3
=0.2), respectively. The corresponding amplitudes are 

A
1
=2, A

2
=1 and A

3
=0.5. The new time axis t runs from 1 to 1000 with 1.0 

intervals.

t = 1 : 1000;
y = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,y),axis([0 200 -4 4])

Only one fi fth of the original data series is displayed by restricting the x-axis
limits to the interval [0 200]. It is, however, recommended to generate long 
data series as in the example in order to avoid edge effects while applying 
spectral analysis tools for the fi rst time.

In contrast to our synthetic time series, real data also contain various dis-
turbances, such as random noise and fi rst or higher-order trend. Firstly, a 
random-number generator can be used to compute gaussian noise with zero 
mean and standard deviation one. The seed of the algorithm needs to be set 
to zero. Subsequently, one thousand random numbers are generated using 
the function randn.

randn('seed',0)
n = randn(1,1000);

We add this noise to the original data, i.e., we generate a signal containing 
additive noise (Fig. 5.3). Displaying the data illustrates the impact of noise 
on a periodic signal. In reality, no record that is free of noise. Hence, it is im-
portant to familiarize oneself with the infl uence of noise on power spectra.

yn = y + n;

plot(t,y,'b-',t,yn,'r-'), axis([0 200 -4 4])

In many cases, the signal processing methods are applied to remove most of 
the noise although many fi ltering methods make arbitrary assumptions on 
the signal-to-noise ratio. Moreover, fi ltering introduces artifacts and statisti-
cal dependencies to the data. These may have a profound infl uence on the 
resulting power spectra.

Finally, we introduce a linear long-term trend to the data by adding a 
straight line with slope 0.005 and intercept zero with the y-axis (Fig. 5.3). 
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Such trends are common features in earth sciences. As an example, consider 
the glacial-interglacial cycles observed in marine oxygen isotope records 
overlain by a long-term cooling trend during the last six million years.

yt = y + 0.005 * t;

plot(t,y,'b-',t,yt,'r-'), axis([0 200 -4 4])

In reality, more complex trends exist, such as higher-order trends or trends 
characterized by changing slopes. In practice, it is recommended to elimi-
nate such a trend by fi tting polynomials to the data and to subtract the the 
corresponding values. This synthetic time series now contains many charac-
teristics of a typical data set in the earth sciences. It can be used to illustrate 
the use of spectral analysis tools that are introduced in the next chapter.

5.3 Autospectral Analysis

Autospectral analysis aims to describe the distribution of variance contained 
in one single signal x(t) over frequency or wavelength. A simple way to 
describe the variance in a signal over a time lag k is the autocovariance. An 
unbiased estimator of the autocovariance cov

xx
 of the signal x(t) with N data 

points sampled at constant time intervals t is

The autocovariance series clearly depends on the amplitude of x(t).
Normalizing the covariance by the variance σ2 of x(t) yields the autocor-
relation sequence. Autocorrelation involves correlating a series of data with 
itself, depending on a time lag k.

The most popular method to compute power spectra in earth sciences is the 
method introduced by Blackman and Tukey (1958). The Blackman-Tukey 
method estimates the power-spectral density by calculating the complex 
Fourier transform X(f) of the autocorrelation sequence corr

xx
(k).



92 5 Time-Series Analysis

where M is the maximum lag and f
s
 the sampling frequency. The Blackman-

Tukey power spectral density PSD is estimated by

The actual computation of PSD can be performed only at a fi nite number 
of frequency points by employing a Fast Fourier Transformation (FFT). 
The FFT is a method to compute a discrete Fourier Transform with reduced 
execution time. Most FFT algorithms divide the transform into two pieces 
of size N/2 at each step. It is therefore limited to blocks of power of two. 
In practice, the PSD is computed by using N squared number of frequen-
cies. The actual number of frequencies used lies close to the number of data 
points in the original signal x(t).

The discrete Fourier transform is an approximation of the continu-
ous Fourier transform. The Fourier transform expects an infi nite signal. 
However, real data are limited at both ends, i.e., the signal amplitude is zero 
beyond the limits of the time series. In the time domain, a fi nite signal cor-
responds to an infi nite signal multiplied by a rectangular window that is one 
within the limits of the signal and zero elsewhere. In the frequency domain, 
the multiplication of the time series with this window equals to a convolu-
tion of the power spectrum of the signal with the spectrum of the rectangular 
window. The spectrum of the window, however, equals a sin(x)/x function, 
which has a main lobe and several side lobes at both sides of the main peak. 
Therefore all maxima in a power spectrum leak, i.e., they lose power with 
respect to the minor peaks (Fig. 5.4).

A popular way to overcome the problem of spectral leakage is windowing. 
The sequence of data is simply multiplied by a window with smooth ends. 
Several window shapes are available, e.g., Bartlett (triangular), Hamming
(cosinusoidal) and Hanning (slightly different cosinusoidal). The use of 
these windows slightly modifi es the equation of the power spectral density.

where M is the maximum lag considered and window length, and w(k) is the 
windowing function. The Blackman-Tukey method therefore performs au-
tospectral analysis in three steps, calculation of the autocorrelation sequence 
corr

xx
(k), windowing and fi nally computation of the discrete fourier trans-

form. MATLAB allows to perform power spectral analysis with a number of 
modifi cations of the above method. A useful modifi cation is the method by 
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Welch (1967) (Fig. 5.5). The method includes dividing the time series into 
overlapping segments, computing the power spectrum for each segment and 
averaging the power spectra. The advantage of averaging spectra is obvious, 
it simply improves the signal-to-noise ratio of a spectrum. The disadvantage 
is a loss of resolution of the spectrum.

The Welch spectral analysis that is included in the Signal Processing 
Toolbox can be applied to the synthetic data sets. The MATLAB function 
periodogram(y,window,nfft,fs) computes the power spectral den-
sity of y(t). We use the default rectangular window by choosing an empty 
vector [] for window. The power spectrum is computed using a FFT of 
length nfft of 1024. We then compute the magnitude of the complex out-
put pxx of periodogram by using the function abs. Finally, the sampling 
frequency fs of one is supplied to the function in order to obtain a correct 
frequency scaling of the f-axis.

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude),grid
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

The graphical output shows that there are three signifi cant peaks at the posi-
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Fig. 5.4 Spectral leakage. a The relative amplitude of the side lobes compared to the main 
lobe is reduced by multiplying the corresponding time series with b a window with smooth 
ends. A number of different windows with advantages and disadvantages are available 
instead of using the default rectangular window, including Bartlett (triangular) and Hanning
(cosinusoidal) windows. Graph generated using the function wvtool.
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tion of the original frequencies of the three sine waves. The same procedure 
can be applied to the noisy data:

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

Original signal
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Fig. 5.5 Principle of Welch power spectral analysis. The time series is divided into overlapping 
segments, then the power spectrum for each segment is computed and all spectra are averaged 
to improve the signal-to-noise ratio of the power spectrum.
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plot(f,magnitude),grid
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

Let us increase the noise level. The gaussian noise has now a standard devia-
tion of fi ve and zero mean.

randn('seed',0);
n = 5*randn(size(y));
yn = y + n;

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

This spectrum resembles a real data spectrum in the earth sciences. The 
spectral peaks now sit on a signifi cant noise fl oor. The peak of the high-
est frequency even disappears in the noise. It cannot be distinguished from 
maxima which are attributed to noise. Both spectra can be compared on the 
same plot (Fig. 5.6):

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);
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=0.2). In particular, the  

peak with the highest frequency disappears in the noise fl oor and cannot be distinguished 
from peaks attributed to the gaussian noise.
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plot(f,magnitude,'b')
hold

[Pxx,f] = periodogram(yn,[],1024,1);
magnitude = abs(Pxx);

plot(f,magnitude,'r'), grid
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

Next we explore the infl uence of a linear trend on a spectrum. Long-term 
trends are common features in earth science data. We will see that this trend 
is misinterpreted as a very long period by the FFT. The spectrum therefore 
contains a large peak with a frequency close to zero (Fig. 5.7).

yt = y + 0.005 * t;

[Pxx,f] = periodogram(y,[],1024,1);
magnitude = abs(Pxx);

[Pxxt,f] = periodogram(yt,[],1024,1);
magnitudet = abs(Pxxt);

subplot(1,2,1), plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')
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subplot(1,2,2), plot(f,abs(Pxxt))
xlabel('Frequency')
ylabel('Power')

To eliminate the long-term trend, we use the function detrend.

ydt = detrend(yt);

subplot(2,1,1)
plot(t,y,'b-',t,yt,'r-'), axis([0 200 -4 4])

subplot(2,1,2)
plot(t,y,'b-',t,ydt,'r-'), axis([0 200 -4 4])

The corresponding spectrum does not show the low-frequency peak any-
more. Some data contain a high-order trend that can be removed by fi tting 
a higher-order polynomial to the data and by subtracting the corresponding 
x(t) values.

5.4 Crossspectral Analysis

Crossspectral analysis correlates two time series in the frequency domain. 
The crosscovariance is as a measure for the variance in two signals over a 
time lag k. An unbiased estimator of the crosscovariance cov

xy
 of two signals 

x(t) and y(t) with N data points sampled at constant time intervals t is

The crosscovariance series again depends on the amplitudes of x(t) and y(t).
Normalizing the covariance by the standard deviations of x(t) and y(t) yields 
the crosscorrelation sequence.

In practice, the same methods and modifi cations outlined in the previous 
chapter are used to compute the crossspectral density. In addition to the two 
autospectra of x(t) and y(t) and the crossspectrum,
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the complex Fourier transform X(f) also contains information on the phase 
relationship W(f) of the two signals:

The phase difference is important in calculating leads and lags between two 
signals, a parameter often used to propose causalities between the two pro-
cesses documented by the signals. The correlation between the two spectra 
can be calculated by means of the coherence:

The coherence is a real number between 0 and 1, where 0 indicates no cor-
relation and 1 indicates maximum correlation between x(t) and y(t) at the 
frequency f. Signifi cant degree of coherence is an important precondition for 
computing phase shifts between the two signals. 

We use two sine waves with identical periodicities τ=5 (equivalent to 
f=0.2) and amplitudes equal to two. The sine waves show a relative phase 
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Fig. 5.8 Crossspectrum of two sine waves with identical periodicities τ=5 (equivalent to 
f=0.2) and amplitudes two. The sine waves show a relative phase shift of t=1. In the argument 
of the second sine wave this corresponds to 2 /5, which is one fi fth of the full wavelength 
of τ=5. a The magnitude shows the expected peak at f=0.2. b The corresponding phase 
difference in radians at this frequency is 1.2568, which equals (1.2568*5)/(2* ) = 1.0001, 
which is the phase shift of one we introduced at the very beginning.
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shift of t=1. In the argument of the second sine wave this corresponds to 
2 /5, which is one fi fth of the full wavelength of τ=5.

t = 0.01 : 0.1 : 100;
y1 = 2*sin(2*pi*t/5);
y2 = 2*sin(2*pi*t/5 + 2*pi/5);

plot(t,y1,'b-',t,y2,'r-')
axis([0 20 -2 2]), grid

The crossspectrum is computed by using the function cpsd (Fig. 5.8).

[Pxy,F] = cpsd(y1,y2,[],0,512,10);
magnitude = abs(Pxy);

plot(F,magnitude), grid
xlabel('Frequency')
ylabel('Power')
title('Cross PSD Estimate via Welch')

The function cpsd(y1,y2,window,noverlap,nfft) specifi es the num-
ber of FFT points nfft used to calculate the cross powerspectral density 
estimate, which is 512 in our example. The parameter window is empty 
in our example, therefore the default rectangular window is used to obtain 
eight sections of y1 and y2. The parameter noverlap defi nes the number 
of samples of overlap from section to section, ten in our example. Coherence 
does not make much sense if we only have noise-free data with one frequen-
cy. This results in a correlation coeffi cient that equals one everywhere. Since 
the coherence is plotted on a log scale (in decibel, dB), the corresponding 
graph shows a log coherence of zero for all frequencies.

[Cxy,f] = mscohere(y1,y2,[],0,512,10);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence Estimate via Welch')

The function mscohere(y1,y2,window,noverlap,nfft) specifi es the 
number of FFT points nfft=512, the default rectangular window, which 
overlaps by ten data points. The complex part of Pxy is required for comput-
ing the phase shift using the function angle between the two signals.

phase = angle(Pxy);

plot(f,phase), grid
xlabel('Frequency')
ylabel('Phase angle')
title('Phase spectrum')
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The phase shift at a frequency of f=0.2 (period τ=5) can be interpolated from 
the phase spectrum

interp1(f,phase,0.2)

which produces the output

ans =
  1.2568

The phase spectrum is normalized to one full period τ=2 , therefore a phase 
shift of 1.2568 equals (1.2568*5)/(2* ) = 1.0001, which is the phase shift of 
one that we introduced at the beginning.

We now use two sine waves with different periodicities to illustrate 
crossspectral analysis. The both have a periodicity of 5, but with a phase 
shift of 1, then they have both one other period, which are different, how-
ever.

clear

t = 0.01 : 0.1 : 1000;
y1 = sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
y2 = 2*sin(2*pi*t/50) + 0.5*sin(2*pi*t/5+2*pi/5);

plot(t,y1,'b-',t,y2,'r-')

Now we compute the crossspectrum, which clearly shows the common pe-
riod of τ=5 or frequency of f=0.2.

[Pxy,f] = cpsd(y1,y2,[],0,512,10);
magnitude = abs(Pxy);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Cross PSD Estimate via Welch')

The coherence shows a large value of approximately one at f=0.2.

[Cxy,f] = mscohere(y1,y2,[],0,512,10);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence Estimate via Welch')

The complex part is required for calculating the phase shift between the two 
sine waves.
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[Pxy,f] = cpsd(y1,y2,[],0,512,10);
phase=angle(Pxy);

plot(f,phase)

The phase shift at a frequency of f=0.2 (period τ=5) is

interp1(f,phase,0.2)

which produces the output of

ans =
  1.2568

The phase spectrum is normalized to one full period τ=2 , therefore a phase 
shift of 1.2568 equals (1.2568*5)/(2* ) = 1.0001, which is again the phase 
shift of one that we introduced at the beginning.

5.5 Interpolating and Analyzing Unevenly-Spaced Data

Now we use our experience of evenly-spaced data to run a spectral analysis 
on unevenly-spaced data. Such data are very common in earth sciences. For 
example, in the fi eld of paleoceanography, the deep-sea cores are typically 
sampled at constant depth intervals. Transforming evenly-spaced length-pa-
rameter data to time-parameter data in an environment with changing length-
time ratios results in unevenly-spaced time series. Numerous methods exist 
for interpolating unevenly-spaced sequences of data or time series. The aim 
of these interpolation techniques for tx data is to estimate the x-values for an 
equally-spaced t vector from the actual irregular-spaced tx measurements. 
Linear interpolation is relatively simple and straightforward method  for ex-
trapolating between two equally spaced data points. It predicts the x-values
by effectively drawing out a straight line between two neighboring measure-
ments and by calculating the appropriate point along that line. However, 
the method also has its limitations. It assumes linear transitions in the data, 
which introduces a number of artifacts, including the loss of high-frequency 
components of the signal and limiting the data range to that of the original 
measurements.

Cubic-spline interpolation is another method for interpolating data that 
are unevenly spaced. Cubic splines are piecewise continuous curves, pass-
ing through at least four data points for each step. The method has the ad-
vantage that it preserves the high-frequency information contained in the 
data. However, steep gradients in the data sequence could cause spurious 
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amplitudes in the interpolated time series, which typically occur as neigh-
boring extreme minima and maxima. Since all these and other interpolation 
techniques might introduce some artifacts to the data, it is always advisable 
to (1) preserve the number of data points before and after interpolation, (2) 
report the method employed for estimating the equally-spaced data sequence 
and (3) explore the impact of interpolation on the variance of the data.

After this brief introduction to interpolation techniques, we apply the 
most popular linear and cubic-spline interpolation techniques to unevenly-
spaced data. Having interpolated the data, we use the spectral tools that have 
already been applied to evenly-spaced data (Chapters 5.3 and 5.4). Firstly, 
we load the two time series:

series1 = load('series1.txt');
series2 = load('series2.txt');

Both synthetic data sets contain a two-column matrix with 339 rows. The 
fi rst column contains ages in kiloyears that are not evenly spaced. The second 
column contains oxygen-isotope values measured on foraminifera. The data 
sets contain 100, 40 and 20 kyr cyclicities and they are overlain by gaussian 
noise. In the 100 kyr frequency band, the second data series is shifted by 
5 kyrs with respect to the fi rst data series. To plot the data we type

plot(series1(:,1),series1(:,2))
figure
plot(series2(:,1),series2(:,2))

The statistics of the spacing of the fi rst data series can be computed by

intv1 = diff(series1(:,1));

plot(intv1)

The plot shows that the spacing varies around a mean interval of 3 kyrs with 
a standard deviation of ca. 1 kyrs. The minimum and maximum value of the 
time axis

min(series1(:,1))

max(series1(:,1))

of t
1
=0 and t

2
=997 kyrs gives some information of the temporal range of the 

data. The second data series

intv2 = diff(series2(:,1));

plot(intv2)
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min(series2(:,1))

max(series2(:,1))

has a similar range from 0 to 997 kyrs. We see that both series have a mean 
spacing of 3 kyrs and range from 0 to ca. 1000 kyrs. We now interpolate the 
data to an evenly-spaced time axis. While doing this, we follow the rule that 
number of data points should not be increased. The new time axis runs from 
0 to 996 kyrs with 3 kyr intervals.

t=0 : 3 : 996;

We now interpolate the two time series to this axis with linear and spline 
interpolation methods.

series1L = interp1(series1(:,1),series1(:,2),t,'linear');
series1S = interp1(series1(:,1),series1(:,2),t,'spline');

series2L = interp1(series2(:,1),series2(:,2),t,'linear');
series2S = interp1(series2(:,1),series2(:,2),t,'spline');

The results are compared by plotting the fi rst series before and after inter-
polation.

plot(series1(:,1),series1(:,2),'ko')
hold
plot(t,series1L,'b-',t,series1S,'r-')

We already observe some signifi cant artifacts at ca. 370 kyrs. Whereas the 
linearly interpolated points are always within the range of the original data, 
the spline interpolation method produces values that are unrealistically high 
or low (Fig. 5.9). The results can be compared by plotting the second data 
series.

plot(series2(:,1),series2(:,2),'ko')
hold
plot(t,series2L,'b-',t,series2S,'r-')

In this series, only few artifacts can be observed. We can apply the function 
used above to calculate the power spectral density. We compute the FFT for 
256 data points, the sampling frequency is 1/3 kyrs-1.

[Pxx,f] = periodogram(series1L,[],256,1/3);
magnitude = abs(Pxx);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')
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Signifi cant peaks occur at frequencies of 0.01, 0.025 and 0.05 approximate-
ly, corresponding to the 100, 40 and 20 kyr cycles. Analysis of the second 
time series

[Pxx,f] = periodogram(series2L,[],256,1/3);
magnitude = abs(Pxx);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Power Spectral Density Estimate')

also yields signifi cant peaks at frequencies of 0.01, 0.025 and 0.05 (Fig. 5.10). 
Now we compute the crossspectrum of both data series.

[Pxy,f] = cpsd(series1L,series2L,[],128,256,1/3);
magnitude = abs(Pxy);

plot(f,magnitude);
xlabel('Frequency')
ylabel('Power')
title('Cross PSD Estimate via Welch')

The coherence is quite convincing.

[Cxy,f] = mscohere(series1L,series2L,[],128,256,1/3);

Original data point

Linearly-interpolated
data series

Spline-interpolated
data series

350 360 370 380 390 400 410 420 430 440 450
−25

−20

−15

−10

−5

0

5

10

15
y(

t)

t

Interpolated Signals

Fig. 5.9 Interpolation artifacts. Whereas the linearly interpolated points are always within 
the range of the original data, the spline interpolation method causes unrealistic high and 
low values.
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plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence Estimate via Welch')

We observe a fairly high coherence in the frequency bands of the 0.01, 0.25 
and 0.5. The complex part is required for calculating the phase difference 
per frequency.

phase = angle(Pxy);

t Frequency

1st data series

2nd data
series

f1=0.01

f2=0.025

f3=0.05

High coherence in
the 0.01 frequency
band

Phase angle in the 0.01
frequency band

0.4

0.6

0.8

0 0.05 0.15 0 0.05 0.150.1 0.1 0.20.2

0.2

1

4

3

2

1

0

1

2

3

4

0

100

200

300

400

500

600

700

5

0

5

0 200 400 600 800 1000 0 0.05 0.1 0.15 0.2

0

y(
t)

P
ow

er

M
ag

ni
tu

de
 S

qu
ar

ed
 C

oh
er

en
ce

P
ha

se
 a

ng
le

Frequency Frequency

Phase spectrum

Time Domain Cross PSD Estimate

Coherence Estimate

a

c d

b

Fig. 5.10 Result from crossspectral analysis of the two linearly-interpolated signals. a
Signals in the time domain, b crossspectrum of both signals, c coherence of the signals in the 
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plot(f,phase)
xlabel('Frequency')
ylabel('Phase angle')
title('Phase spectrum')

The phase shift at a frequency of f=0.01 (period 100 kyr)

interp1(f,phase,0.01)

which produces the output of

ans = 0.2796

The phase spectrum is normalized to a full period τ=2 . Hence, a phase 
shift of 0.2796 equals (0.2796*100 kyr)/(2* ) = 4.45 kyr. This corresponds 
roughly to the phase shift of 5 kyr introduced to the second data series with 
respect to the fi rst series.

As a more comfortable tool for spectral analysis, the Signal Processing 
Toolbox also contains a GUI function named sptool, which stands for
Signal Processing Tool.

5.6 Nonlinear Time-Series Analysis (by N. Marwan)

The methods described in the previous sections detect linear relationships 
in the data. However, natural processes on the Earth often show a more 
complex and chaotic behavior. Methods based on linear techniques may 
therefore yield unsatisfying results. In the last decades, new techniques of 
nonlinear data analysis derived from chaos theory have become increasingly 
popular. As an example, methods have been employed to describe nonlinear 
behavior by defi ning, e.g., scaling laws and fractal dimensions of natural 
processes (Turcotte 1997, Kantz and Schreiber 1997). However, most meth-
ods of nonlinear data analysis need either long or stationary data series. 
These requirements are often not satisfi ed in the earth sciences. While most 
nonlinear techniques work well on synthetic data, these methods fail to de-
scribe nonlinear behavior in real data. 

In the last decade, recurrence plots as a new method of nonlinear data 
analysis have become very popular in science and engineering (Eckmann 
1987). Recurrence is a fundamental property of dissipative dynamical sy-
stems. Although small disturbations of such a system cause exponentially 
divergence of its state, after some time the system will come back to a state 
that is arbitrary close to a former state and pass through a similar evolution. 
Recurrence plots allow to visualize such a recurrent behavior of dynamical 
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systems. The method is now a widely accepted tool for the nonlinear analy-
sis of short and nonstationary data sets.

Phase Space Portrait

The starting point of most nonlinear data analysis is the construction of the 
phase space portrait of a system. The state of a system can be described by 
its state variables x

1
(t), x

2
(t), …, x

d
(t). As example, suppose the two variables 

temperature and pressure to describe the thermodynamic state of the Earth s
mantle as a complex system. The d state variables at time t form a vector 
in a d-dimensional space, the so-called phase space. The state of a system 
typically changes in time. The vector in the phase space therefore describes 
a trajectory representing the temporal evolution, i.e., the dynamics of the 
system. The course of the trajectory provides all important information on 
the dynamics of the system, such as periodic or chaotic systems having char-
acteristic phase space portraits.

In many applications, the observation of a natural process does not yield 
all possible state variables, either because they are not known or they cannot 
be measured. However, due to coupling between the system s components, 
we can reconstruct a phase space trajectory from a single observation u

i
:

where m is the embedding dimension and τ is the time delay (index based; 
the real time delay is τ = t). This reconstruction of the phase space is called 
time delay embedding. The phase space reconstruction is not exactly the 
same to the original phase space, but its topological properties are pre-
served, if the embedding dimension is large enough. In practice, the embed-
ding dimension has to be larger then twice the phase space dimension, or 
exactly m>2d+1. The reconstructed trajectory is suffi cient enough for the 
subsequent data analysis.

As an example, we now explore the phase space portrait of a harmonic 
oscillator, like an undamped pendulum. First, we create the position vector 
y1 and the velocity vector y2

x = 0 : pi/10 : 3*pi;
y1 = sin(x);
y2 = cos(x);

The phase space portrait

plot(y1,y2)
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xlabel('y_1'), ylabel('y_2')

is a circle, suggesting an exact recurrence of each state after one cycle 
(Fig. 5.11). Using the time delay embedding, we can reconstruct this phase 
space portrait using only one observation, e.g., the velocity vector, and a 
delay of 5, which corresponds to a quarter of the period of our pendulum.

t = 5;
plot(y2(1:end-t), y2(1+t:end))
xlabel('y_1'), ylabel('y_2')

As we see, the reconstructed phase space is almost the same as the original 
phase space. Next we compare this phase space portrait with the one of a 
typical nonlinear system, the Lorenz system (Lorenz 1963). This three-di-
mensional dynamical system was introduced by Edward Lorenz in 1963 to 
describe turbulence in the atmosphere with three states: two temperature 
distributions and velocity. While studying weather patterns, Lorenz realized 
that weather often does not change as predicted. He based his analysis on 
a simple weather model and found out that small initial changes can cause 
dramatic divergent weather patterns. This behaviour  is often referred as 
the butterfl y effect. The Lorenz system can be described by three coupled 
nonlinear differential equations for the three variables: two temperature dis-
tributions and the velocity.
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Fig. 5.11 a Original and b reconstructed phase space portrait of a periodic system. The 
reconstructed phase space is almost the same as the original phase space. 
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Integrating the differential equation yields a simple MATLAB code for 
computing the xyz triplets of the Lorenz attractor. As system parameters 
controlling the chaotic behaviour we use s=10, r=28 and b=8/3,  the time 
delay is dt=0.01. The initial values are x1=6, x2=9 and x3=25, that can 
certainly be changed at other values.

dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

Typical traces of a variable, such as the fi rst variable can be viewed by 
plotting x(:,1) over time in seconds (Fig. 5.12).
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Fig. 5.12 The Lorenz system. As system parameters we use s=10, r=28 and b=8/3,  the 
time delay is dt=0.01.
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t = 0.01 : 0.01 : 50;
plot(t, x(:,1))
xlabel('Time')
ylabel('Temperature')

We next plot the phase space portrait of the Lorenz system (Fig. 5.13).

plot3(x(:,1),x(:,2),x(:,3)), grid, view(70,30)
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')

In contrast to the simple periodic system described above, the trajectories of 
the Lorenz system obviously do not follow the same course again, but it re-
curs very closely to a previous state. Moreover, if we follow two very close 
segments of the trajectory, we will see that they run into different regions 
of the phase space with time. The trajectory is obviously circling one fi xed 
point in the phase space – and after some random time period – circling 
around another. The curious orbit of the phase states around fi xed points is 
known as the Lorenz attractor.

These observed properties are typical of chaotic systems. While small 
disturbances of such a system cause exponential divergence of its state, the 
system returns approximately to a previous state through a similar course. 
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Fig. 5.13 a The phase space portrait of the Lorenz system. In contrast to the simple 
periodic system, the trajectories of the Lorenz system obviously do not follow the same 
course again, but it recurs very closely to a previous state. b The reconstruction of the 
phase space portrait using only the fi rst state and a delay of six reveals a similar phase 
portrait with the two typical ears.
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The reconstruction of the phase space portrait using only the fi rst state and 
a delay of six

tau = 6; 
plot3(x(1:end-2*tau,1),x(1+tau:end-tau,1),x(1+2*tau:end,1))
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')
grid, view([100 60])

reveals a similar phase portrait with the two typical ears (Fig. 5.13). The 
characteristic properties of chaotic systems are also seen in this reconstruc-
tion.

The time delay and embedding dimension has to be chosen with a pre-
ceding analysis of the data. The delay can be estimated with the help of the 
autocovariance or autocorrelation function. For our example of a periodic 
oscillation,

x = 0 : pi/10 : 3*pi;
y1 = sin(x);

we compute and plot the autocorrelation function

for i = 1 : length(y1) - 2
    r = corrcoef(y1(1 : end-i), y1(1 + i : end));
    C(i) = r(1,2);
end

plot(C)
xlabel('Delay'), ylabel('Autocorrelation')
grid on

Now we choose such a delay at which the autocorrelation function equals 
zero for the fi rst time. In our case this is 5, which is the value that we have 
already used in our example of phase space reconstruction. The appropriate 
embedding dimension can be estimated by using the false nearest neigh-
bours method or, simpler, recurrence plots, which are introduced in the next 
chapter. Tthe embedding dimension is gradually increased until the majority 
of the diagonal lines are parallel to the line of identity.

The phase space trajectory or its reconstruction is the base of several mea-
sures defined in nonlinear data analysis, like Lyapunov exponents, Rényi
entropies or dimensions. The book on nonlinear data analysis by Kantz and 
Schreiber (1997) is recommended for more detailed information on these 
methods. Phase space trajectories or their reconstructions are also the neces-
sary for constructing recurrence plots.
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Recurrence Plots

Th phase space trajectories of dynamic systems that have more than three 
dimensions are diffi cult to visualize. Recurrence plots provide a way for 
analyzing higher dimensional systems. They can be used, e.g., to detect tran-
sitions between different regimes or to fi nd interrelations between several 
systems. The method was fi rst introduced by  Eckmann and others (1987). 
The recurrence plot is a tool that visualizes the recurrences of states in the 
phase space by a two-dimensional plot.

If the distance between two states i and j on the trajectory is smaller than 
a given threshold ε, the value of the recurrence matrix R is one, otherwise 
zero. This analysis is therefore a pairwise test of all states. For N states we 
compute N2 tests. The recurrence plot is then the two-dimensional display 
of the NxN matrix, where black pixels represent R

i,j
=1 and white pixels 

indicate R
i,j
=0 and a coordinate system with two time axes. Such recurrence 

plots can help to fi nd a fi rst characterization of the dynamics of data or to 
fi nd transitions and interrelations of the system.

As a fi rst example, we load the synthetic time series containing 100 kyr, 
40 kyr and 20 kyr cycles already used in the previous chapter. Since the data 
are unevenly spaced, we have to linearly transform it to an equally-spaced 
time axis.

series1 = load('series1.txt');
t = 0:3:996;
series1L = interp1(series1(:,1),series1(:,2),t,'linear');

We start with the assumption that the phase space is only one-dimensional. 
The calculation of the distances between all points of the phase space trajec-
tory reveals the distance matrix S.

N = length(series1L);
S = zeros(N, N);

for i = 1:N,
    S(:,i) = abs(repmat(series1L(i), N, 1 ) - series1L(:));
end

Now we plot the distance matrix

imagesc(t,t,S)
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for the data set. Adding a colorbar

colorbar

provides a quantitative measure for the distances between states (Fig. 5.14). 
We apply a threshold ε to the distance matrix to generate the black/white 
recurrence plot (Fig. 5.15).

imagesc(t,t,S<1)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

Both plots reveal periodically occurring patterns. The distances between 
these periodic patterns represent the cycles contained in the time series. The 
most signifi cant periodic structures have periods of 200 and 100 kyr. The 200 
kyr period is most signifi cant because of the superposition of the 100 and 40 
kyr cycles, which are common divisors of 200 kyr. Moreover, there are small 
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Fig. 5.14 Visualization of the distance matrix from the synthetic data providing a quantitative 
measure for the distances between states at certain times; blue colors indicate small distances, 
red colors represent large distances.
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substructures in the recurrence plot, which have sizes of 40 and 20 kyr.
As a second example, we apply the method of recurrence plots to the 

Lorenz system. We again generate xyz triplets from the coupled differential 
equations.

dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

We choose the resampled fi rst component of this system and reconstruct a 
phase space trajectory by using an embedding of m=3 and τ=2, which cor-
responds to a delay of 0.17 sec.
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Fig. 5.15 Visualization of the recurrence plot after applying a threshold of ε=1 to the distance 
matrix.
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t = 0.01 : 0.05 : 50;
y = x(1:5:5000,1);
m = 3; tau = 2;

N = length(y);
N2 = N - tau*(m - 1);

The original data series has a length of 5000, after resampling 1000 data points 
or 50 sec, but because of the time delay method, the reconstructed phase space 
trajectory has the length 996. Now we create the phase space trajectory with

for mi = 1:m
  xe(:,mi) = y([1:N2] + tau*(mi-1));
end

We can accelerate the pair-wise test between each points on the trajectory 
with a fully vectorized algorithm supported by MATLAB. For that we need 
to transfer the trajectory vector into two test vectors, whose component-wise 
test will provide the pair-wise test of the trajectory vector:

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

Using these vectors we calculate the recurrence plot using the Euclidean 
norm without any FOR loop.

S = sqrt(sum((x1 - x2).^ 2,2 ));
S = reshape(S,N2,N2);

imagesc(t(1:N2),t(1:N2),S<10)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')

This recurrence plot reveals many short diagonal lines (Fig. 5.16). These 
lines represent epochs, where the phase space trajectory runs parallel to for-
mer or later sequences of this trajectory, i.e., the states and the dynamics are 
similar at these times. The distances between these diagonal lines, represent-
ing the periods of the cycles, differ and are not constant – just as they are in 
a harmonic oscillation.

The structure of recurrence plots can also be described by a suite of quan-
titative measures. Several measures are based on the distribution of the 
lengths of diagonal or vertical lines. These parameters can be used to trace 
hidden transitions in a process. Bivariate and multivariate extensions of re-
currence plots furthermore offer nonlinear correlation tests and synchroni-
zation analysis. A detailed introduction to recurrence plot based methods 
can be found at the web site

http://www.recurrence-plot.tk
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The analysis of recurrence plots has already been applied to many problems 
in earth sciences. The comparison of the dynamics on modern precipitation 
data with paleo-rainfall data inferred from annual-layered lake sediments in 
the northwestern Argentine Andes provides a good example of such analy-
sis (Marwan et al. 2003). In this example, the method of recurrence plots 
was applied to red-color intensity transects across ca. 30 kyr-old varved 
lake sediments shown in Figure 5.1. Comparing the recurrence plots from 
the sediments with the ones from modern precipitation data revealed that 
the reddish layers document more intense rainy seasons during the La Niña 
years. The application of linear techniques was not able to link the increased 
fl ux of reddish clays and enhanced precipitation to either the El Niño or La 
Niña phase of the ENSO. Moreover, recurrence plots helped to prove the 
hypothesis that a longer rainy seasons, enhanced precipitation and stronger 
infl uence of the El Niño/Southern Oscillation has caused enhanced landslid-
ing at 30 kyrs ago (Marwan et al. 2003, Trauth et al. 2003).
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Fig. 5.16 Visualization of the recurrence plot after applying a threshold of ε=10 to the 
distance matrix.
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6 Signal Processing

6.1 Introduction

Signal processing refers to techniques for manipulating a signal to mini-
mize the effects of  noise, to correct all kinds of unwanted distortions or to 
separate various components of interest. Most signal processing algorithms 
include the design and realization of filters. A fi lter can be described as a 
system that transforms signals.  System theory provides the mathematical 
background for filter design and realization. A filter as a system has an input 
and an output, where the  output signal y(t) is modifi ed with respect to the 
 input signal x(t) (Fig. 6.1). The signal transformation is often referred to as 
convolution or, if fi lters are applied, fi ltering.

This chapter is on the design and  realization of  digital fi lters with the help 
of a computer. However, many natural processes resemble  analog fi lters that 
act over a range of spatial and temporal scales. As an example, the perma-
nent mixing of the ocean and the atmosphere smoothes local weather and 
climate conditions. A single rainfall event is not recorded in lake sediments 
because short and low-amplitude events are smeared over a longer time 
span. Bioturbation also introduces serious distortions for instance to deep-
sea sediment records. In addition to such  natural fi lters, the fi eld collection 
and sampling of geological data alters and smoothes the data with respect to 
its original form. For example, a fi nite size sediment sample  integrates over 

Input signal Output signalSignal transformation

LTI System

Fig. 6.1 Schematic of a linear time-invariant (LTI) system. The input signal is transformed 
into an output signal.
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a certain period of time and therefore smoothes the natural signal. Similarly, 
the measurement of magnetic susceptibility with the help of a loop sensor 
introduces signifi cant smoothing since the loop integrates over a certain sec-
tion of the sediment core.

In most cases, the characteristics of these natural fi lters are diffi cult to de-
termine. Numerical fi lters, however, are designed with well-defi ned charac-
teristics. In addition,  artifi cial fi lters are time invariant in most cases, while 
natural fi lters, such as ocean mixing or bioturbation, may change with time. 
An easy way to describe or predict the effect of a fi lter is to explore the 
fi lter output of a simple input signal, such as a sine wave, a square wave, a 
sawtooth, ramp or step function. Although there is an endless variety of such 
signals, most systems or fi lters are described by their impulse response, i.e., 
the output of a unit impulse.

The chapter starts with a more technical section on generating periodic 
signals, trends and noise, similar to Chapter 5.1. Chapter 6.3 is on linear 
time-invariant systems, which provide the mathematical background for fi l-
ters. The following Chapters 6.4 to 6.9 are on the design, the realization and 
the application of linear time-invariant fi lters. Chapter 6.10 then suggests 
the application of daptive fi lters originally developed in telecommunication 
automatically. Adaptive fi lters extract noisefree signals from duplicate mea-
surements on the same object. Such fi lters can be used in a large number of 
applications, such as noise removal from duplicate paleoceanographic time 
series or to improve the signal-to-noise ratio of parallel color-intensity tran-
sects across varved lake sediments (see Chapter 5, Fig. 5.1). Moreover, such 
fi lters are also widley-used in geophysics for noise canceling.

6.2 Generating Signals

MATLAB provides numerous tools to generate basic signals that can be 
used to illustrate the effects of fi lters. In the previous chapter we have gener-
ated a signal by adding together three sine waves with different amplitudes 
and periods. In the following example, the time vector is  transposed for the 
purpose of generating column vectors.

t = (1:100)';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 100 -4 4])

 Frequency-selective fi lters are very common in earth sciences. They are 
used for removing certain frequency bands from the data. As an example, 
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we could design a fi lter that has the capability to suppress the portion of the 
signal with a periodicity of τ=15, whereas the other two cycles are unaf-
fected. Such simple periodic signals can also be used to predict signal distor-
tions of natural fi lters.

A step function is another basic input signal that can be used for exploring 
fi lter characteristics. It describes the transition from a value of one towards 
zero at a certain time.

t = (1:100)';
x = [ones(50,1);zeros(50,1)];

plot(t,x), axis([0 100 -2 2])

This signal can be used to study the effects of a fi lter on a sudden transi-
tion. An abrupt climate change could be regarded as an example. Most 
natural fi lters tend to smooth such a transition and smear it over a longer 
time period.

The unit impulse is the third important signal that we will use in the fol-
lowing examples. This signal equals zero for all times except for a single 
data point which equals one.

t = (1:100)';
x = [zeros(49,1);1;zeros(50,1)];

plot(t,x),axis([0 100 -4 4])

The unit impulse is the most popular synthetic signal for studying the per-
formance of a fi lter. The output of the fi lter, the impulse response, describes 
the characteristics of a fi lter very well. Moreover, the output of a linear time-
invariant fi lter can be described by the superposition of impulse responses 
that haven been scaled by the amplitude of the input signal.

6.3 Linear Time-Invariant Systems

Filters can be described as systems with an input and output. We therefore 
fi rst describe the characteristics of a more general system before we proceed 
to apply this theory to fi lters. Important characteristics of a system are

1. Continuity – A system with continuous inputs and outputs is continuous. 
Most of the natural systems are continuous. However, after sampling na-
tural signals we obtain discrete data series and model these natural sy-
stems as discrete systems, which have discrete inputs and outputs.
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2. Linearity – For linear systems, the output of the linear combination of 
several input signals

is the same linear combination of the outputs:

The important consequence of linearity is scaling and additivity ( super-
position). Input and output can be multiplied by a constant before or af-
ter transformation. Superposition allows to extract additive components 
of the input and transform these separately. Fortunately, many natural 
systems show linear behavior. Complex linear signals such as additive 
harmonic components can be separated and transformed independently. 
Milankovitch cycles provide example of linear superposition in paleocli-
mate records, although there is an ongoing debate about the validity of 
this assumption. Numerous nonlinear systems exist in nature that do not 
obey the properties of scaling and additivity. An example of such a  linear 
system is

t = (1:100)';
y = 2*t;

plot(t,y)

An example of such a  nonlinear system is

t = (-100:100)';
y = t.^2;

plot(t,y)

3. Time invariance – The system output y(t) does not change with a de-
lay of the input x(t+i). The system characteristics are constant with time. 
Unfortunately many systems in nature change their characteristics with 
time. For instance, benthic mixing or bioturbation depends on various 
environmental parameters such as nutrient supply. Therefore the system s
performance varies with time signifi cantly. In such case, the actual input 
of the system is hard to determine from the output, i.e., to extract the ac-
tual climate signal from a bioturbated sedimentary record.
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4. Invertibility – An invertible system is a system where the original input 
signal can be reproduced from the systems output. This is an important 
property if unwanted signal distortions have to be corrected. In such a 
case, the known system is inverted and applied to the output to recon-
struct the undisturbed input. As an example, a core logger measuring the 
magnetic susceptibility with a loop sensor. The loop sensor integrates 
over a certain core interval with highest sensitivity at the location of the 
loop and decreasing sensitivity down- and up-core. The above system 
is also invertible, i.e., we can compute the input signal from the output 
signal by inverting the system. The inverse system of the above linear 
fi lter is

t = (1:100)';
y = 0.5*t;

plot(t,y)

The nonlinear system

t = (-100:100)';
y = t.^2;

plot(t,y)

is not invertible. Since this system yields equal responses for different 
inputs, such as y=+4 for inputs x=-2 and x=+2, the input can not be re-
constructed from the output. A similar situation can also occur in linear 
systems, such as

t = (1:100)';
y = 0;

plot(t,y)

The output is zero for all inputs. Hence, the output does not contain any 
information about the input.

5. Causality – The system response only depends on present and past in-
puts x(0), x(-1), …, whereas  future inputs x(+1), x(+2), … have no ef-
fect on the output y(0). All realtime systems, such telecommunication 
systems, must be causal since they can not have future inputs available 
to them. All systems and fi lters in MATLAB are indexed as causal. In 
earth sciences, however, numerous non-causal fi lters are used. Filtering 
images or signals extracted from sediment cores are examples where the 
future inputs are available at the time of fi ltering. Output signals have to 
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be delayed after fi ltering to compensate the differences between causal 
and non-causal indexing. 

6. Stability – A system is stable if the output of a fi nite input is also fi nite. 
Stability is critical in fi lter design, where fi lters often have the disadvan-
tage of provoking diverging outputs. In such cases, the fi lter design has to 
be revised and improved.

Linear time-invariant (LTI) systems as a special type are very popular. Such 
systems have all the advantage that have been described above. They are 
easy to design and to use in many applications. The following chapters 6.4 
to 6.9 describe the design, realization and application of LTI-type fi lters to 
extract certain frequency components of signals. These fi lters are mainly 
used to reduce the noise level in signals. Unfortunately many natural sys-
tems do not behave as LTI systems. In many cases the signal-to-noise ratio 
varies with time. Chapter 6.10 describes the application of adaptive fi lters 
that automatically adjust their characteristics in a time-variable environ-
ment.

6.4 Convolution and Filtering

The mathematical description of a system transformation is convolution. 
Filtering is one application of the convolution process. Running mean of 
length fi ve provides an example of such a simple fi lter. The output of an 
arbitrary input signal is

The output y(t) is simply the average of the fi ve input values x(t-2), x(t-1),
x(t), x(t+1) and x(t+2). In other words, all the fi ve consecutive input values 
are multiplied by a factor of 1/5 and summed to form y(t). In this exam-
ple, all input values are multiplied by the same factor, i.e., they are equally 
weighted. The fi ve factors used in the above operation are also called fi lter 
weights b

k
. The fi lter can be represented by the vector

b = [0.2 0.2 0.2 0.2 0.2]

consisting of the identical fi lter weights. Since this fi lter is symmetric, it 
does not shift the signal on the time axis. The only function of this fi lter is to 
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smooth the signal. Therefore running means of a given length are often used 
to smooth signals, mainly for cosmetic reasons. Modern spreadsheet soft-
ware usually contains running means for smoothing data series. The impact 
of the smoothing fi lter increases with increasing fi lter length.

The weights that a fi lter of arbitrary length may take can vary. As an ex-
ample, let us assume an asymmetric fi lter of fi ve weights.

b = [0.05 0.08 0.14 0.26 0.47]

The sum of all of the fi lter weights is one. It therefore does not introduce en-
ergy to the signal. However, since it is highly asymmetric it shifts the signal 
along the time axis, i.e., it introduces a phase shift.

The general mathematical representation of the fi ltering process is the 
convolution

where b
k
 is the vector of fi lter weights, N

1
+N

2
 is the order of the fi lter, which 

is the length of the fi lter reduced by one. In our examples of fi lters of fi ve 
weights, the order of the fi lters is four. In contrast to this format, MATLAB 
uses the engineering standard of indexing fi lters, i.e., fi lters are always de-
fi ned as  causal. Therefore the convolution used by MATLAB is defi ned as

where N is the order of the fi lter. A number of frequency-domain tools pro-
vided by MATLAB cannot simply be applied to  non-causal fi lters that have 
been designed for applications in earth sciences. Hence, it is common to 
carry out phase corrections in order to simulate causality. For example, fre-
quency-selective fi lters as introduced in Chapter 6.9 can be applied using 
the function filtfilt, which provides zero-phase forward and reverse 
fi ltering.

The functions conv and filter that provide digital fi ltering with 
MATLAB are best  illustrated in terms of a simple running mean. The n
elements of the vector x(t

1
), x(t

2
), x(t

3
), …, x(t

n
) are replaced by the arithme-

tic means of subsets of the input vector. For instance, a running mean over 
three elements computes the mean of inputs x(t

n-1
), x(t

n
), x(t

n+1
)to obtain the 
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output y(t
n
). We can easily illustrate this by generating a random signal

clear

t = (1:100)';
randn('seed',0);
x1 = randn(100,1);

designing a fi lter that averages three data points of the input signal

b1 = [1 1 1]/3;

and convolving the input vector with the fi lter

y1 = conv(b1,x1);

The elements of b1 are the weights of the fi lter. In our example, all fi lter 
weights are the same and they equal 1/3. Note that the conv function yields 
a vector that has the length n+m-1, where m is the length of the fi lter.

m1 = length(b1);

We should explore the contents of our workspace to check for the length of 
the input and output of conv. Typing

whos

yields

Name     Size                     Bytes  Class

b1        1x3                        24  double array
m1        1x1                         8  double array
t       100x1                       800  double array
x1      100x1                       800  double array
y1      102x1                       816  double array
Grand total is 306 elements using 2448 bytes

Here we see that the actual input series x1 has a length of 100 data points, 
whereas the output y1 has two more elements. Hence, convolution intro-
duces (m-1)/2 data points at both ends of the data series. In order to compare 
input and output signal, we cut the output signal at both ends.

y1 = y1(2:101,1);

A more general way to correct the phase shifts of conv is

y1 = y1(1+(m1-1)/2:end-(m1-1)/2,1);

which of course only works for an odd number of fi lter weights. Then we 
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can plot both input and output signals for comparison. We also use legend
to display a legend for the plot.

plot(t,x1,'b-',t,y1,'r-')
legend('x1(t)','y1(t)')

This plot illustrates the effect of the running mean on the original input se-
ries. The output y1 is signifi cantly smoother than the input signal x1. If we 
increase the length of the fi lter, we obtain an even smoother signal.

b2 = [1 1 1 1 1]/5;
m2 = length(b2);

y2 = conv(b2,x1);
y2 = y2(1+(m2-1)/2:end-(m2-1)/2,1);

plot(t,x1,'b-',t,y1,'r-',t,y2,'g-')
legend('x1(t)','y1(t)','y2(t)')

The next chapter introduces a more general description of fi lters.

6.5 Comparing Functions for Filtering Data Series

A very simple example of a nonrecursive fi lter was described in the previ-
ous section. The fi lter output y(t) only depends on the fi lter input x(t) and 
the fi lter weights b

k
. Prior to introducing a more general description for 

linear time-invariant fi lters, we replace the function conv by filter that 
can be used also for recursive fi lters. In this case, the output y(t

n
) depends 

on the fi lter input x(t), but also on previous elements of the output y(t
n-1

),
y(t

n-2
), y(t

n-3
).

clear
t = (1:100)';
randn('seed',0);
x3 = randn(100,1);

We design a fi lter that averages fi ve data points of the input signal.

b3 = [1 1 1 1 1]/5;
m3 = length(b3);

The input vector can be convolved with the function conv. The output is 
again correct for the length of the data vector.

y3 = conv(b3,x3);
y3 = y3(1+(m3-1)/2:end-(m3-1)/2,1);
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Although the function filter yields an output vector with the same length 
as the input vector, we have to correct the output as well. In this case, the 
function filter assumes that the fi lter is causal. The fi lter weights are in-
dexed n, n-1, n-2 and so on. Hence, no future elements of the input vector, 
such as x(n+1), x(n+2) and so forth are needed to compute the output y(n).
This is of great importance in the fi eld of electrical engineering, the classic 
fi eld of application of MATLAB, where fi lters are often applied in real time. 
In earth sciences, however, in most applications the entire signal is available 
at the time of processing the data. Filtering the data series is computed by

y4 = filter(b3,1,x3);

and afterwards the phase correction is carried out using

y4 = y4(1+(m3-1)/2:end-(m3-1)/2,1);
y4(end+1:end+m3-1,1)=zeros(m3-1,1);

which only works for an odd number of fi lter weights. This command sim-
ply shifts the output by(m-1)/3 towards the lower end of the t-axis, then 
fi lls the end of the data series by zeros. Comparing the ends of both outputs 
illustrates the effect of this correction, where

y3(1:5,1)
y4(1:5,1)

yields

ans =
    0.3734
    0.4437
    0.3044
    0.4106
    0.2971

ans =
    0.3734
    0.4437
    0.3044
    0.4106
    0.2971

This was the lower end of the output. We see that both vectors y3 and y4
contain the same elements. Now we explorer the upper end of the data vec-
tor, where

y3(end-5:end,1)
y4(end-5:end,1)
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causes the output

ans =
    0.2268
    0.1592
    0.3292
    0.2110
    0.3683
    0.2414

ans =
    0.2268
    0.1592
         0
         0
         0
         0

The vectors are identical up to element y(end-m3+1), then the second vec-
tor y4 contains zeros instead of true data values. Plotting the results with

subplot(2,1,1), plot(t,x3,'b-',t,y3,'g-')
subplot(2,1,2), plot(t,x3,'b-',t,y4,'g-')

or in one single plot,

plot(t,x3,'b-',t,y3,'g-',t,y4,'r-')

shows that the results of conv and filter are identical except for the upper 
end of the data vector. These observations are important for our next steps in 
signal processing, in particular if we are interested in leads and lags between 
various components of signals.

6.6 Recursive and Nonrecursive Filters

Now we expand our  nonrecursive fi lters by a recursive component, i.e., the 
output y(t

n
) depends on the fi lter input x(t), but also on previous output val-

ues y(t
n-1

), y(t
n-2

), y(t
n-3

). This fi lter requires the nonrecursive fi lter weights b
i
,

but also the  recursive fi lters weights a
i
(Fig. 6.2). This fi lter can be described 

by the difference equation.

Whereas this is a non-causal version of the difference equation, MATLAB 
uses the  causal indexing again,
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with the known problems in the design of zero-phase fi lters. The larger of 
the two quantities M and N

1
+N

2
or N, respectively, is the order of the fi lter.

We use the same synthetic input signal as in the previous example to il-
lustrate the performance of a recursive fi lter.

clear
t = (1:100)';
randn('seed',0);
x5 = randn(100,1);

We fi lter this input using a recursive fi lter with a set of weights a5 and b5,

b5 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a5 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m5 = length(b5);

y5 = filter(b5,a5,x5);

and correct the output for the phase

y5= y5(1+(m5-1)/2:end-(m5-1)/2,1);
y5(end+1:end+m5-1,1)=zeros(m5-1,1);

Now we plot the results.

plot(t,x5,'b-',t,y5,'r-')

bi T

+

T ai

+

Input signal x(t)

Output signal y(t)

Fig. 6.2 Schematic of a  linear time-invariant fi lter with an input x(t) and an output y(t). The 
fi lter is characterized by its weights a

i
 and b

i
, and the delay elements T. Nonrecursive fi lters 

only have nonrecursive weights b
i
, whereas the recursive fi lter also requires the recursive 

fi lters weights a
i
.
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Obviously this fi lter changes the signal dramatically. The output only con-
tains low-frequency components, whereas all higher frequencies are elim-
inated. The comparison of the periodograms of input and output reveals 
that all frequencies above f=0.1 corresponding to a period of τ=10 are sup-
pressed.

[Pxx,F] = periodogram(x5,[],128,1);
[Pyy,F] = periodogram(y5,[],128,1);

plot(F,abs(Pxx),F,abs(Pyy))

Hence, we have now designed a frequency-selective fi lter, i.e., a fi lter that 
eliminates certain frequencies whereas other periodicities are more or less 
unaffected. The next chapter introduces tools to characterize a fi lter in the 
time and frequency domain that help to predict the effect of a frequency-
selective fi lter on arbitrary signals.

6.7 Impulse Response

The  impulse response is a very convenient way of describing the fi lter char-
acteristics (Fig. 6.3). A useful property of the impulse response h in LTI 
systems involves the convolution of the input signal x(t) with h to obtain the 
output signal y(t).

It can be shown that the impulse response h is identical to the fi lter weights 
in the case of nonrecursive fi lters, but is different for recursive fi lters. 
Alternatively, the convolution is often written in a short form:

In many examples, the convolution in the  time domain is replaced by a sim-
ple multiplication of the  Fourier transforms H(f) and X(f) in the  frequency 
domain.

The output signal y(t) in the time domain is then obtained by a reverse Fourier 
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transformation of Y(f). In many cases, the signals are often convolved in the 
frequency domain for simplicity of the multiplication as compared to a con-
volution in the time domain. However, the FFT itself introduces a number of 
artifacts and distortions and therefore convolution in the frequency domain 
is not without problems. In the following examples we apply the convolu-
tion only in the time domain.

First we generate an unit impulse:

clear
t = (0:20)';
x6 = [zeros(10,1);1;zeros(10,1)];

stem(t,x6),axis([0 20 -4 4])

The function stem plots the data sequence x6 as stems from the x-axis ter-
minated with circles for the data value. This might be a better way to plot 
digital data than using the continuous lines generated by plot. We now feed 
this to the fi lter and explore the output. For nonrecursive fi lters, the impulse 
response is identical to the fi lter weights.

b6 = [1 1 1 1 1]/5;
m6 = length(b6);

y6 = filter(b6,1,x6);

We correct this for the  phase shift of the function filter again, although 
this might not be important in this example.
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Fig. 6.3 Transformation of a a  unit impulse to compute b the impulse response of a system. 
The  impulse response is often used to describe and predict the performance of a fi lter.
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y6= y6(1+(m6-1)/2:end-(m6-1)/2,1);
y6(end+1:end+m6-1,1)=zeros(m6-1,1);

We obtain an output vector y6 of the same length and phase as the input 
vector x6. We plot the results for comparison.

stem(t,x6)
hold on
stem(t,y6,'filledv,'r')
axis([0 20 -2 2])

In contrast to plot, the function stem only accepts one data series. 
Therefore, the second series y6 is overlaid on the same plot using the func-
tion hold. The effect of the fi lter is clearly seen on the plot. It averages the 
unit impulse over a length of fi ve elements. Furthermore, the values of the 
output equal the fi lter weights of a6, in our example 0.2 for all elements of 
a6 and y6.

For a recursive fi lter, the output y6 does not agree with the fi lter weights. 
Again, impulse is generated fi rst.

clear
t = (0:20)';
x7 = [zeros(10,1);1;zeros(10,1)];

Subsequently, an arbitrary recursive fi lter with weights of a7 and b7 is de-
signed.

b7 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a7 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m7 = length(b7);

y7 = filter(b7,a7,x7);

y7= y7(1+(m7-1)/2:end-(m7-1)/2,1);
y7(end+1:end+m7-1,1)=zeros(m7-1,1);

The stem plot of the input x2 and the output y2 shows an interesting impulse 
response:

stem(t,x7)
hold on
stem(t,y7,'filled','r')
axis([0 20 -2 2])

The signal is again smeared over a wider area. It is also shifted towards the 
right. Therefore this fi lter not only affects the amplitude of the signal, but 
also shifts the signal towards lower or higher values. In most cases, phase 
shifts are unwanted characteristics of fi lters, although in some applications 
shifts along the time axis might of particular interest.



134 6 Signal Processing

6.8 Frequency Response

Next we investigate the  frequency response of a fi lter, i.e., the effect of a fi l-
ter on the  amplitude and  phase of a signal (Fig. 6.4). The frequency response 
H(f) of a fi lter is the Fourier transform of the impulse response h(t). The 
absolute of the complex  frequency response H(f) is the  magnitude response 
of the fi lter A(f).

The argument of the complex frequency response H(f) is the phase response 
of the fi lter.

Since MATLAB fi lters are all causal it is diffi cult to explore the phase of sig-
nals using the corresponding functions contained in the Signal Processing 
Toolbox. The user s guide for this toolbox simply recommends to delay the 
fi lter output in the time domain by a fi xed number of samples, as we have 
done it in the previous examples.  As an example, a sine wave with a period 
of 20 and an amplitude of 2 is used as an input signal.
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Fig. 6.4 a Magnitude and b phase response of a running mean over eleven elements.
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clear
t = (1:100)';
x8 = 2*sin(2*pi*t/20);

A running mean over eleven elements is designed and this fi lter is applied 
to the input signal.

b8 = ones(1,11)/11;
m8 = length(b8);

y8 = filter(b8,1,x8);

The phase is corrected for causal indexing.

y8= y8(1+(m8-1)/2:end-(m8-1)/2,1);
y8(end+1:end+m8-1,1)=zeros(m8-1,1);

Both input and output of the fi lter are plotted.

plot(t,x8,t,y8)

The fi lter obviously reduces the amplitude of the sine wave. Whereas the 
input signal has an amplitude of 2, the output has an amplitude of

max(y8)

ans =
    1.1480

The fi lter reduces the amplitude of a sine with a period of 20 by

1-max(y8(40:60))/2

ans =
    0.4260

i.e., approximately 43%. The elements 40 to 60 are used for computing the 
maximum value of y8 in order to avoid edge effects. On the other hand, the 
fi lter does not affect the phase of the sine wave, i.e., both input and output 
are in phase.

The same fi lter, however, has a different impact on a different signal. Let 
us design another sine wave with a similar amplitude, but with a different 
period of 15.

clear
t = (1:100)';
x9 = 2*sin(2*pi*t/15);

Applying a similar fi lter and correcting the output for the phase shift of the 
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function filter,

b9 = ones(1,11)/11;
m9 = length(b9);

y9 = filter(b9,1,x9);

y9= y9(1+(m9-1)/2:end-(m9-1)/2,1);
y9(end+1:end+m9-1,1)=zeros(m9-1,1);

The output is again in phase with the input, but the amplitude is dramatically 
reduced as compared to the input.

plot(t,x9,t,y9)

1-max(y9(40:60))/2

ans =
    0.6768

The  running mean over eleven elements reduces the amplitude of this sig-
nal by 67%. More generally, the fi lter response obviously depends on the 
frequency of the input. The frequency components of a more complex sig-
nal containing multiple periodicities. Hence, they are affected in a different 
way. The frequency response of a fi lter

clear
b10 = ones(1,11)/11;

can be computed using the function freqz.

[h,w] = freqz(b10,1,512);

The function freqz returns the complex frequency response h of the digital 
fi lter b10. The frequency axis is normalized to . We transform the fre-
quency axis to the true frequency values by

f= w/(2*pi);

Next we calculate the magnitude of the frequency response and plot the 
magnitude over the frequency.

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude')

This plot can be used to predict the magnitude of the fi lter for any frequency 
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of an input signal. An exact value of the magnitude can also be obtained by 
simple interpolation of the magnitude,

1-interp1(f,magnitude,1/20)

ans =
    0.4260

which is the expected ca. 43% reduction of the amplitude of a sine wave 
with period 20. The sine wave with period 15 experiences an amplitude 
reduction of

1-interp1(f,magnitude,1/15)

ans =
    0.6768

i.e., around 68% similar to the value observed at the beginning. The fre-
quency response can be calculated for all kinds of fi lters. It is a valuable 
tool to predict the effects of a fi lter on signals in general. The phase re-
sponse can also be calculated from the complex frequency response of the 
fi lter (Fig. 6.4):

phase = 180*angle(h)/pi;

plot(f,phase)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

The phase angle is plotted in degrees. We observe frequent 180° jumps in 
this plot that are an artifact of the arctangent function inside the function 
angle. We can unwrap the phase response to eliminate the 180° jumps us-
ing the function unwrap.

plot(f,unwrap(phase))
xlabel('Frequency'),ylabel('Phase in degrees')
title('Phase')

Since the fi lter has a linear phase response, no shifts of the frequency com-
ponents of the signal occur relative to each other. Therefore we would not 
expect any distortions of the signal in the frequency domain. The phase shift 
of the fi lter can be computed using

interp1(f,unwrap(phase),1/20) * 20/360 

ans =
   -5.0000
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and

interp1(f,unwrap(phase),1/15) * 15/360

ans =
   -5.0000

respectively. Since MATLAB uses causal indexing for fi lters, the phase 
needs to be corrected, similar to the delayed output of the fi lter. In our 
example, we used a fi lter of the length eleven. We have to correct the 
phase by (11-1)/2=5. This suggests a zero phase shift of the fi lter for both 
frequencies.

This also works for recursive fi lters. Assume a simple sine wave with 
period 8 and the previously employed recursive fi lter.

clear
t = (1:100)';
x11 = 2*sin(2*pi*t/8);

b11 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a11 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m11 = length(b11);

y11 = filter(b11,a11,x11);

Correct the output for the phase shift introduced by causal indexing and plot 
both input and output signals.

y11= y11(1+(m11-1)/2:end-(m11-1)/2,1);
y11(end+1:end+m11-1,1)=zeros(m11-1,1);

plot(t,x11,t,y11)

The magnitude is reduced by

1-max(y11(40:60))/2

ans =
    0.6465

which is also supported by the magnitude response

[h,w] = freqz(b11,a11,512);

f= w/(2*pi);

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
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title('Magnitude Response')

1-interp1(f,magnitude,1/8)

ans =
    0.6462

The phase response

phase = 180*angle(h)/pi;

f= w/(2*pi);

plot(f,unwrap(phase))
xlabel('Frequency'), ylabel('Phase in degrees')
title('Magnitude Response')

interp1(f,unwrap(phase),1/8) * 8/360

ans =
    -5.0144

must again be corrected for causal indexing. The sampling interval was one, 
the fi lter length is fi ve, therefore we have to add (5-1)/2=2 to the phase shift 
of -5.0144. This suggests a corrected phase shift of -3.0144, which is exactly 
the delay seen on the plot.

plot(t,x11,t,y11), axis([30 40 -2 2])

The next chapter gives an introduction to the design of fi lters with a desired 
frequency response. These fi lters can be used to amplify or suppress differ-
ent components of arbitrary signals.

6.9 Filter Design

Now we aim to design fi lters with a desired frequency response. Firstly, 
a synthetic signal with two periods, 50 and 15, is generated. The power 
spectrum of the signal shows the expected peaks at the frequencies 0.02 
and ca. 0.07.

t = 0:1000;
x12 = 2*sin(2*pi*t/50) + sin(2*pi*t/15);

plot(t,x12), axis([0 200 -4 4])

[Pxx,f] = periodogram(x12,[],1024,1);

plot(f,abs(Pxx))
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xlabel('Frequency')
ylabel('Power')

We add some  gaussian noise with amplitude one and explore the signal and 
its periodogram.

xn12 = x12 + randn(1,length(t));

plot(t,xn12), axis([0 200 -4 4])

[Pxx,f] = periodogram(xn12,[],1024,1);

plot(f,abs(Pxx))
xlabel('Frequency')
ylabel('Power')

The  Butterworth fi lter design technique is a widely-used method to create 
fi lters of any order with a  lowpass,  highpass,  bandpass and  bandstop con-
fi guration (Fig. 6.5). In our example, we like to design a fi ve-order lowpass 
fi lter with a  cutoff frequency of 0.08. The inputs of the function  butter are 
the order of the fi lter and the cutoff frequency normalized to the  Nyquist fre-
quency, which is 0.5 in our example, that is half of the sampling frequency.

[b12,a12] = butter(5,0.08/0.5);

The  frequency characteristics of the fi lter shows a relatively smooth transi-
tion from the  passband to the  stopband, but the advantage of the fi lter is its 
low order.

[h,w] = freqz(b12,a12,1024);
f = w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

We can again apply the fi lter to the signal by using the function  filter.
However, frequency selective fi lters such as lowpass, highpass, bandpass 
and bandstop are designed to suppress certain frequency bands, whereas 
phase shifts should be avoided. The function  filtfilt provides zero-phase 
forward and reverse digital fi ltering. After fi ltering in the forward direction, 
the fi ltered sequence is reversed and it runs back through the fi lter. The mag-
nitude of the signal is not affected by this operation, since it is either 0 or 
100% of the initial amplitude, depending of the frequency. In contrast, all 
phase shifts introduced by the fi lter are zeroed by the forward and reverse 
application of the same fi lter. This function also helps to overcome the prob-
lems with causal indexing of fi lters in MATLAB. It eliminates the phase 
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differences of causal vs. non-causal versions of the same fi lter. Filtering and 
plotting the results clearly illustrates the effects of the fi lter.

xf12 = filtfilt(b12,a12,xn12);
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Fig. 6.5 Frequency response of the fundamental types of frequency-selective fi lters. a
Lowpass fi lter to suppress the high-frequency component of a signal. In earth sciences, such 
fi lters are often used to suppress high-frequency noise in a low-frequency signal. b  Highpass 
fi lter are employed to remove all low frequencies and trends in natural data. c-d Bandpass
and  bandstop fi lters extract or suppress a certain frequency band. Whereas the solid line in 
all graphs depicts the ideal  frequency response of a  frequency-selective fi lter, the gray band 
shows the tolerance for a low-order design of such a fi lter. In practice, the frequency response 
lies within the gray band. Higher-order fi lters allow to approximate the ideal line better than 
low-order fi lters.
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plot(t,xn12,'b-',t,xf12,'r-')
axis([0 200 -4 4])

One might now wish to design a new fi lter with a more rapid transition from 
passband to stopband. Such a fi lter needs a higher order. It needs to have a 
larger number of fi lter weights. We now create a 15-order Butterworth fi lter 
as an alternative to the above fi lter.

[b13,a13] = butter(15,0.08/0.5);

[h,w] = freqz(b13,a13,1024);

f = w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

The frequency response is clearly improved. The entire passband is rela-
tively fl at at a value of 1.0, whereas the stopband is approximately zero 
everywhere. Next we modify our input signal by introducing a third period 
of 5. This signal is then used to illustrate the operation of a Butterworth 
bandstop fi lter.

x14 = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
plot(t,x14), axis([0 200 -4 4])

[Pxx,f] = periodogram(x14,[],1024,1);

plot(f,abs(Pxx))

The new Butterworth fi lter is a bandstop fi lter. The stopband of the fi lter is 
between the frequencies 0.06 and 0.08. It can therefore be used to suppress 
the period of 15 corresponding to a frequency of approximately 0.07.

xn14 = x14 + randn(1,length(t));

[b14,a14] = butter(5,[0.06 0.08]/0.5,'stop');
xf14 = filtfilt(b14,a14,x14);

[Pxx,f] = periodogram(xf14,[],1024,1);

plot(f,abs(Pxx))

plot(t,xn14,'b-',t,xf14,'r-'), axis([0 200 -4 4])

The plots show the effect of this fi lter. The frequency band between 0.06 
and 0.08, and therefore also the frequency of 0.07 was successfully removed 
from the signal.
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6.10 Adaptive Filtering

The fi xed fi lters used in the previous chapters make the basic assumption 
that the signal degradation is known and it does not change with time. In 
most applications, however, an a priori knowledge of the  signal and  noise 
statistical characteristics is usually not available. In addition, both the noise 
level and the variance of the genuine signal can be highly nonstationary with 
time, e.g., stable isotope records during the glacial-interglacial transition. 
Fixed fi lters thus cannot be used in an nonstationary environment without a 
knowledge of the signal-to-noise ratio.

In contrast, adaptive fi lters widely used in telecommunication industry 
could help to overcome these problems. An adaptive fi lter is an inverse 
modeling process, which iteratively adjusts its own coeffi cients automati-
cally without requiring any a priori knowledge of signal and noise. The 
operation of an adaptive fi lter includes, (1) a fi ltering process, the purpose 
of which is to produce an output in response to a sequence of data, and (2) 
an  adaptive process providing a mechanism for the adaptive control of the 
fi lters weights (Haykin 1991).

In most practical applications, the adaptive process is oriented towards 
minimizing an error signal or cost function e. The estimation error e at an in-
stant i is defi ned by the difference between some desired response d

i
 and the 

actual fi lter output y
i
, that is the fi ltered version of a signal x

i
, as shown by

where i=1, 2, …, N and N is the length of the input data vector. In the case 
of a nonrecursive fi lter characterized by the vector of fi lter weights W with 
f elements, the fi lter output y

i
is given by the inner product of vector W and 

the input vector X
i
.

The selection of the desired response d that is used in the adaptive process 
depends on the nature of the application. Traditionally, d is a combined sig-
nal that contains a signal s and random noise n

0
. The signal x contains a noise 

n
1
 uncorrelated with the signal s but correlated in some unknown way to the 

noise n
0
. In noise canceling systems, the practical objective is to produce a 

system output y that is a best fi t in the least-squares sense to the signal d.
Different approaches have been developed to solve this multivariate min-

imum error optimization problem (e.g., Widrow and Hoff 1960, Widrow 
et al. 1975, Haykin 1991). Selection of one algorithm over another is in-
fl uenced by various factors: the rate of convergence (number of adaptive 
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steps required for the algorithm to converge close enough to an optimum 
solution), misadjustment (measure of the amount by which the fi nal value 
of the mean-squared error deviates from the minimum squared error of an 
optimal fi lter, e.g., Wiener 1945, Kalman and Bucy 1961), and tracking (the 
capability of the fi lter to work in a nonstationary environment, i.e., to track 
changing statistical characteristics of the input signal) (Haykin 1991).

The simplicity of the   least-mean-squares (LMS) algorithm, originally de-
veloped by Widrow and Hoff (1960), has made it the benchmark against 
which other adaptive fi ltering algorithms are tested. For applications in earth 
sciences, we use this fi lter to extract the noise from two signals S and X,
both containing the same signal s, but uncorrelated noise n

1
 and n

2
 (Hattingh 

1988). As an example, consider a simple duplicate set of measurements on 
the same material, e.g., two parallel stable isotope records from the same 
foraminifera species. What you will expect are two time-series with N ele-
ments containing the same desired signal overlain by different uncorrelated 
noise. The fi rst record is used as the primary input S and the second record 
is the reference input X.

and

As demonstrated by Hattingh (1988), the required noise-free signal can be 
extracted by fi ltering the  reference input X using the  primary input S as the 
desired response d. The minimum error  optimization problem is solved by 
the L2-norm (least-mean-square). The  mean-squared error e

i
2 is a second-or-

der function of the tap weights in the nonrecursive fi lter. The dependence of 
e

i
2 on the unknown tap weights may be seen as a multidimensional parabo-

loid with a uniquely defi ned minimum point. The tap weights corresponding 
to the minimum point of this error performance surface defi ne the optimum 
Wiener solution (Wiener 1945). The value computed for the weight vector 
W using the LMS algorithm represents an estimator whose expected value 
approaches the Wiener solution as the number of iterations approaches infi n-
ity (Haykin 1991). Gradient methods are used usually to reach the minimum 
point of the error performance surface. For simplifi cation of the optimiza-
tion problem, Widrow and Hoff (1960) developed an approximation for the 
required gradient function that can be computed directly from the data. This 
leads to a simple relation for updating the tap-weight vector W.
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The new parameter estimate W
i+1

is based on the previous set of fi lter weights 
W

i
plus a term which is the product of a bounded step size u, a function of the 

input state X
i
 and a function of the error e

i
. In other words, error e

i
 calculated 

from the previous step is fed back to the system to update fi lter coeffi cients 
for the next step (Fig. 6.6). The fi xed convergence factor u regulates the 
speed and stability of adaption. A small value ensures a higher accuracy but 
more data are needed to teach the fi lter to reach the optimum solution. In the 
modifi ed version of the LMS algorithm by Hattingh (1988), this problem 
is overcome by feeding the data back so that the canceler can have another 
chance to improve its own coeffi cients and adapt to the changes in the data.

In the following MATLAB function  canc, each of these loops is called 
an iteration since many of these loops are required to achieve optimal re-
sults. This algorithm extracts the noise-free signal from two vectors x and s
containing the correlated signal and uncorrelated noise. As an example, we 
generate two signals containing the same sine wave, but different gaussian 
noise.

x = 0:0.1:100;
y = sin(x);
yn1 = y + 0.2*randn(size(y));
yn2 = y + 0.2*randn(size(y));

plot(x,yn1,x,yn2)

Save the following code in a text fi le canc.m and include it into the search 

Fig. 6.6 Schematic of an adaptive fi lter. Each iteration involves a new estimate of the fi lter 
weights W

i+1
 based on the previous set of fi lter weights W

i
 plus a term which is the product of 

a bounded step size u, a function of the fi lter input X
i
, and a function of the error e

i
. In other 

words, error e
i
 calculated from the previous step is fed back to the system to update fi lter 

coeffi cients for the next step (modifi ed from Trauth 1998).
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path. The algorithm canc formats both signals, feeds them into the fi lter 
loop, corrects the signals for phase shifts and formats the signals for the 
output.

function [zz,yy,ee] = canc(x,s,u,l,iter)
% CANC Correlated Adaptive Noise Canceling
[n1,n2]=size(s);n=n2;index=0; % Formatting
if n1>n2
    s=s';x=x';n=n1;index=1;
end
w(1:l)=zeros(1,l);e(1:n)=zeros(1,n); % Initialization
xx(1:l)=zeros(1,l);ss(1:l)=zeros(1,l);
z(1:n)=zeros(1,n);y(1:n)=zeros(1,n);
ors=s;ms(1:n)=mean(s).*ones(size(1:n));
s=s-ms;x=x-ms;ors=ors-ms;
for it=1:iter % Iterations
    for I=(l+1):(n+1) % Filter loop
        for k=1:l
            xx(k)=x(I-k);ss(k)=s(I-k);
        end
        for J=1:l
            y(I-1)=y(I-1)+w(J).*xx(J);
            z(I-1)=z(I-1)+w(J).*ss(J);
        end
            e(I-1)=ors(I-1-(fix(l/2)))-y(I-1);
        for J=1:l
            w(J)=w(J)+2.*u.*e(I-1).*xx(J);
        end
    end % End filter loop
    for I=1:n % Phase correction
        if I<=fix(l/2)
            yy(I)=0;zz(I)=0;ee(I)=0;
        elseif I>n-fix(l/2)
            yy(I)=0;zz(I)=0;ee(I)=0;
        else
            yy(I)=y(I+fix(l/2));
            zz(I)=z(I+fix(l/2));
            ee(I)=abs(e(I+fix(l/2)));
        end
            yy(I)=yy(I)+ms(I);
            zz(I)=zz(I)+ms(I);
    end % End phase correction
    y(1:n)=zeros(size(1:n));
    z(1:n)=zeros(size(1:n));
    mer(it)=mean(ee((fix(l/2)):(n-fix(l/2))).^2);
end % End iterations
if index==1 % Reformatting
    zz=zz';yy=yy';ee=ee';
end

The required inputs are the signals x and s, the step size u, the fi lter length l
and the number of  iterations iter. In our example, the two noisy signals are 
yn1 and yn2. We choose a fi lter with l=5 fi lter weights. A value of u in the 
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range of 0 <u< l/λ
max

 where λ
max

 is the largest eigenvalue of the autocorrela-
tion matrix of the reference input, leads to reasonable results (Haykin 1991) 
(Fig. 6.7). The value of u is computed by

k = kron(yn1,yn1');
u = 1/max(eig(k))

which yields

u =
    0.0019
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Fig. 6.7 Output of the adaptive fi lter. a The duplicate records corrupted by uncorrelated noise 
are fed into the adaptive fi lter with 5 weights with a convergence factor of 0.0019. After 
10 iterations, the fi lter yields the b learning curve, c the noisefree record and d the noise 
extracted from the duplicate records.
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We now run the adaptive fi lter canc for 10 iterations and use the above 
value of u.

[z,e,mer] = canc(yn1,yn2,0.0019,5,10);

The evolution of the mean-squared error

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen step 
size u=0.0019 obviously leads to a relatively fast convergence. In most ex-
amples, a smaller step size decreases the rate of convergence, but increases 
the quality of the fi nal result. We therefore reduce u by one order of magni-
tude and run the fi lter again with more iterations.

[z,e,mer] = canc(yn1,yn2,0.0001,5,20);

The plot of the mean-squared error against the iterations

plot(mer)

now convergences after around six iterations. We now compare the fi lter 
output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

This plot shows that the noise level of the signal has been reduced dramati-
cally by the fi lter. Finally, the plot

plot(x,e,'r')

shows the noise extracted from the signal. In practice, the user should vary 
the parameters u and l in order to obtain the optimum result.

The application of this algorithm has been demonstrated on duplicate 
oxygen-isotope records from ocean sediments (Trauth 1998). The work by 
Trauth (1998) illustrates the use of the modifi ed LMS algorithm, but also 
another type of adaptive fi lter, the recursive least-squares (RLS) algorithm 
(Haykin 1991) in various environments.
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7.1 Types of Spatial Data

Most data in earth sciences are  spatially distributed, either as  vector data, 
(points, lines, polygons) or as  raster data (gridded topography). Vector data 
are generated by  digitizing map objects such as drainage networks or out-
lines of lithologic units. Raster data can be obtained directly from a satellite 
sensor output, but in most cases grid data can be interpolated from irregu-
larly-distributed samples from the field ( gridding).

The following chapter introduces the use of vector data by using coast-
line data as an example (Chapter 7.2). Subsequently, the acquisition and 
handling of raster data is illustrated with help of digital topography data 
(Chapters 7.3 to 7.5). The availability and use of digital elevation data has 
increased considerably since the early 90 s. With 5 arc minutes resolution, 
the ETOPO5 was one of the fi rst data sets for topography and bathymetry. 
In October 2001, it was replaced by the ETOPO2 that has a resolution of 2 
arc minutes. In addition, there is a data set for topography called GTOPO30 
completed in 1996 that has a horizontal grid spacing of 30 arc seconds (ap-
proximately 1 km). Most recently, the 30 and 90 m resolution data from the 
Shuttle Radar Topography Mission (SRTM) have replaced the older data 
sets in most scientifi c studies.

The second part of the chapter deals with surface estimates from irregular-
spaced data (Chapters 7.6 to 7.9). In earth sciences, most data are collected 
in an irregular pattern. Access to sample rocks is often restricted to natural 
outcrops such as shoreline cliffs and the walls of a gorge, or anthropogenic 
outcrops such as road cuts and quarries. Clustered and traversed data is a 
challenge for all gridding techniques. The corresponding chapters illustrate 
the use of the most important gridding routines and outline the potential 
pitfalls while using these methods.

This chapter requires the Mapping Toolbox although most graphics rou-
tines used in our examples can be easily replaced by standard MATLAB func-
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tions. An alternative and very useful mapping toolbox by Rich Pawlowicz 
(Earth and Ocean Sciences at the Unversity of British Columbia) is avail-
able from

http://www2.ocgy.ubc.ca/~rich

The handling and processing of large spatial data sets also requires a power-
ful computing system with at least 1 GB physical memory.

7.2 The GSHHS Shoreline Data Set

The global self-consistent, hierarchical, high-resolution  shoreline data 
base  GSHHS is amalgamated from two public domain data bases by Paul 
Wessel (SOEST, University of Hawaii, Honolulu, HI) and Walter Smith 
(NOAA Laboratory for Satellite Altimetry, Silver Spring, MD). On the web 
page of the US National Geophysical Data Center (NGDC)

http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html

the  coastline vector data can be downloaded as MATLAB vector data. First 
we defi ne the geographic range of interest as decimal degrees with west 
and south denoted by a negative sign. For example, the East African coast 
would be displayed on the latitude between 0 and +15 degrees and longitude 
of +40 to +50 degrees. Subsequently, it is important to choose the coastline 
data base from which the data is to be extracted. As an example, the World 
Data Bank II provides maps at the scale 1 : 2,000,000. Finally, the compres-
sion method is set to None for the ASCII data that have been extracted. The 
data format is set to be MATLAB and GMT Preview is enabled. The result-
ing GMT map and a link to the raw text data can be displayed by pressing 
the Submit – Extract button at the end of the web page. By opening the 228 
KB large text fi le on a browser, the data can be saved onto a new fi le called 
coastline.txt. The two columns contained in this fi le represent the longitude/
latitude coordinates of NaN-separated polygons or coastline segments.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
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42.915987 0.028749
42.918921 0.032562
42.922441 0.035789
(cont'd)

The NaN s perform two functions: they provide a means for identifying break 
points in the data. They also serve as pen-up commands when the Mapping 
Toolbox plots vector maps. The shorelines can be displayed by using

data = load('coastline.txt');

plot(data(:,1),data(:,2),'k'); axis equal
xlabel('Longitude'), ylabel('Latitude')

More advanced plotting functions are contained in the Mapping Toolbox, 
which allow to generate the following plot (Fig. 7.1):

 axesm('MapProjection','mercator', ...
      'MapLatLimit',[0 15], ...
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Fig. 7.1 Display of the GSHHS shoreline data set. The map shows an area between 0° and 
15° northern latitude, 40° and 50° eastern longitude. Simple map using the function plot
and equal axis aspect ratios.
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      'MapLonLimit',[40 50], ...
      'Frame','on', ...
      'MeridianLabel','on', ...
      'ParallelLabel','on');
plotm(data(:,2),data(:,1),'k');

Note that the input for plotm is given in the order longitude, followed by the 
latitude. The second column of the data matrix is entered fi rst. In contrast, 
the function plot requires an xy input. The fi rst column is entered fi rst. The 
function axesm defi nes the map axis and sets various map properties such 
as the map projection, the map limits and the axis labels.

7.3 The 2-Minute Gridded Global Elevation Data ETOPO2

ETOPO2 is a global data base of  topography and  bathymetry on a regular 
2-minute grid. It is a compilation of data from a variety of sources. It can be 
downloaded from the US National Geophysical Data Center (NGDC) web 
page

http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html

From the menu bar Free online we select Make custom grids which is linked 
to the GEODAS Grid Translator. First we choose a Grid ID (e.g., grid01), the 
Grid Data Base (e.g., ETOPO2 2-minute Global Relief), our computer sys-
tem (e.g., Macintosh) and the Grid Format (e.g., ASCII for both the data and 
the header). Next we defi ne the longitude and latitude bounds. For example, 
the latitude (lat) from -20 to +20 degrees and a longitude (lon) between +30 
and +60 degrees corresponds to the East African coast. The selected area can 
be transformed into a digital elevation matrix by pressing Design–a–grid.
this matrix may be downloaded from the web page by pressing Download 
your Grid Data, Compress and Retrieve and Retrieve compressed fi le in the 
subsequent windows. Decompressing the fi le grid01.tgz creates a directory 
grid01_data. This directory contains various data and help fi les. The sub-
directory grid01 contains the ASCII raster grid fi le grid01.asc that have the 
following content:

NCOLS   901
NROWS  1201
XLLCORNER   30.00000
YLLCORNER -20.00000
CELLSIZE 0.03333333
NODATA_VALUE  -32768
270   294   278   273   262   248   251   236   228   223 ...
280   278   278   264   254   253   240   234   225   205 ...
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256   266   267   283   257   273   248   228   215   220 ...
272   273   258   258   254   264   232   218   229   210 ...
259   263   268   275   242   246   237   219   211   209 ...
(cont'd)

The header documents the size of the data matrix (e.g., 901 columns and 
1201 rows in our example), the coordinates of the lower-left corner (e.g., 
x=30 and y=-20), the cell size (e.g., 0.033333 = 1/30 degree latitude and 
longitude) and the -32768 fl ag for data voids. We comment the header by 
typing % at the beginning of the fi rst six lines

%NCOLS   901
%NROWS  1201
%XLLCORNER   30.00000
%YLLCORNER -20.00000
%CELLSIZE 0.03333333
%NODATA_VALUE  -32768
270   294   278   273   262   248   251   236   228   223 ...
280   278   278   264   254   253   240   234   225   205 ...
256   266   267   283   257   273   248   228   215   220 ...
272   273   258   258   254   264   232   218   229   210 ...
259   263   268   275   242   246   237   219   211   209 ...
(cont’d)

and load the data into the workspace. 

ETOPO2 = load('grid01.asc');

We fl ip the matrix up and down. Then, the -32768 fl ag for data voids has to 
be replaced by the MATLAB representation for  Not-a-Number  NaN.

ETOPO2 = flipud(ETOPO2);
ETOPO2(find(ETOPO2 == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(ETOPO2(:))
min(ETOPO2(:))

In this example, the maximum elevation of the area is 5199 m and the mini-
mum elevation is -5612 m. The reference level is the sea level at 0 m. We 
now defi ne a coordinate system using the information that the lower-left 
corner is s20e30, i.e., 20° southern latitude and 30° eastern longitude. The 
resolution is 2 arc minutes corresponding to 1/30 degrees. 

[LON,LAT] = meshgrid(30:1/30:60,-20:1/30:20);

Now we generate a colored surface from the elevation data using the 
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function surf.

surf(LON,LAT,ETOPO2)
 shading interp
axis equal, view(0,90)
 colorbar

This script opens a new fi gure window and generates a colored surface. 
The surface is highlighted by a set of color shades on an overhead view 
(Fig. 7.2). More display methods will be described in the chapter on SRTM 
elevation data.
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Fig. 7.2 Display of the ETOPO2 elevation data set. The map uses the function surf for 
generating a colored surface. The colorbar provides an information on the colormap used to 
visualize topography and bathymetry.
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7.4 The 30-Arc Seconds Elevation Model GTOPO30

The 30 arc second (approximately 1 km) global digital elevation data set 
GTOPO30 only contains elevation data, not bathymetry. The data set has 
been developed by the Earth Resources Observation System Data Center 
and is available from the web page

http://edcdaac.usgs.gov/gtopo30/gtopo30.html

The model uses a variety of international data sources. However, it is based 
on raster data from the    Digital Terrain Elevation Model ( DTEM) and vec-
tor data from the Digital Chart of the World (DCW). The GTOPO30 data 
set has been divided into 33 pieces or tiles. The tile names refer to the lon-
gitude and latitude of the upper-left (northwest) corner of the tile. The tile 
name e020n40 refers to the upper-left corner of the tile. In our example, the 
coordinates of the upper-left corner are 20 degrees eastern longitude and 
40 degrees northern latitude. As example, we select and download the tile 
e020n40 provided as a 24.9 MB compressed tar fi le. After decompressing 
the tar fi le, we obtain eight fi les containing the raw data and header fi les in 
various formats. Moreover, the fi le provides a GIF image of a shaded relief 
display of the data.

Importing the GTOPO30 data into the workspace is simple. The Mapping 
Toolbox provides an import routine gtopo30 that reads the data and stores 
it onto a regular data grid. We import only a subset of the original matrix:

latlim = [-5 5]; lonlim = [30 40];
GTOPO30 = gtopo30('E020N40',1,latlim,lonlim);

This script reads the data from the tile e020n40 (without fi le extension) in 
full resolution (scale factor = 1) into the matrix GTOPO30. The coordinate 
system is defi ned by using the lon/lat limits as listed above. The resolution 
is 30 arc seconds corresponding to 1/120 degrees. 

[LON,LAT] = meshgrid(30:1/120:40,-5:1/120:5);

A grayscale image can be generated from the elevation data by using the 
function surf. The fourth power of the colormap gray is used for darken-
ing the map at higher levels of elevation. Subsequently, the colormap is 
fl ipped vertically in order to obtain dark colors for high elevations and light 
colors for low elevations.

figure
surf(LON,LAT,GTOPO30)
shading interp
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 colormap(flipud(gray.^4))
axis equal, view(0,90)
colorbar

This script opens a new fi gure window, generates the gray surface using 
interpolated shading in an overhead view (Fig. 7.3).

7.5 The Shuttle Radar Topography Mission  SRTM

The  Shuttle Radar Topography Mission (SRTM) incorporates a radar 
system that fl ew onboard the Space Shuttle Endeavour during an 11-day 
mission in February 2000. SRTM is an international project spearheaded 
by the National Geospatial-Intelligence Agency (NGA) and the National 
Aeronautics and Space Administration (NASA). Detailed info on the SRTM 
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Fig. 7.3 Display of the GTOPO30 elevation data set. The map uses the function surf for generating 
a gray surface. We use the colormap gray to power of four in order to darken the colormap with 
respect to the higher elevation. In addition, we fl ip the colormap in up/down direction using 
flipud to obtain dark colors for high elevations and light colors for low elevations.
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project including a gallery of images and a users forum can be accessed on 
the NASA web page:

http://www2.jpl.nasa.gov/srtm/

The data were processed at the Jet Propulsion Laboratory. They are being 
distributed through the United States Geological Survey s (USGS) EROS 
Data Center by using the USGS Seamless Data Distribution System.

http://seamless.usgs.gov/

Alternatively, the raw data fi les can be downloaded via FTP from

ftp://e0mss21u.ecs.nasa.gov/srtm/

This directory contains zipped fi les of SRTM-3 DEM s from various areas 
of the world, processed by the SRTM global processor and sampled at 3 
arc seconds or 90 meters. As an example, we download the 1.7 MB large 
fi le s01e036.hgt.zip containing the SRTM data. All elevations are in meters 
referenced to the WGS84 EGM96 geoid as documented at

http://earth-info.nga.mil/GandG/wgs84/index.htm

The name of this fi le refers to the longitude and latitude of the lower-left 
(southwest) pixel of the tile, i.e., one degree southern latitude and 36 de-
grees eastern longitude. SRTM-3 data contain 1201 lines and 1201 samples 
with similar overlapping rows and columns. After having downloaded and 
unzipped the fi le, we save s01e036.hgt in our working directory. The digital 
elevation model is provided as 16-bit signed integer data in a simple binary 
raster. Bit order is Motorola (big-endian) standard with the most signifi cant 
bit fi rst. The data are imported into the workspace using

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

This script opens the fi le s01e036.hgt for read access using fopen, defi nes 
the fi le identifi er fid, which is then used for reading the binaries from the 
fi le using fread, and writing it into the matrix SRTM. Function fclose
closes the fi le defi ned by fid. Firstly, the matrix needs to be transposed and 
fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

The -32768 fl ag for data voids can be replaced by NaN, which is the MATLAB 
representation for Not-a-Number.
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SRTM(find(SRTM == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the work-
space by printing the minimum and maximum elevations of the area.

max(SRTM(:))

ans =
   3992

min(SRTM(:))

ans =
   1504

In our example, the maximum elevation of the area is 3992 m, the minimum 
altitude is 1504 m above sea level. A coordinate system can be defi ned by 
using the information that the lower-left corner is s01e036. The resolution is 
3 arc seconds corresponding to 1/1200 degrees.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);

A shaded grayscale map can be generated from the elevation data using 
the function surfl. This function displays a shaded surface with simulated 
lighting.

figure
surfl(LON,LAT,SRTM)
 shading interp
colormap gray
view(0,90)
colorbar

This script opens a new fi gure window, generates the shaded-relief map us-
ing interpolated shading and a gray colormap in an overhead view. SRTM 
data contain considerable amount of noise, we fi rst smooth the data using 
an arbitrary 9x9 pixel moving average fi lter. The new matrix is stored in the 
matrix SRTM_FILTERED.

B = 1/81 * ones(9,9);
SRTM_FILTERED = filter2(B,SRTM);

The corresponding shaded-relief map is generated by

figure
surfl(LON,LAT,SRTM_FILTERED)
shading interp
colormap gray
view(0,90)
 colorbar
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After having generated the shaded-relief map, the graph has to be exported  
onto a graphics fi le (Fig. 7.4). For instance, the fi gure may be written onto a 
JPEG format with 70% quality level and a 300 dpi resolution.

print -djpeg70 -r300 srtmimage

The new fi le srtmimage.jpg has a size of 300 KB. The decompressed image 
has a size of 16.5 MB. This fi le can now be imported to another software 
package such as Adobe Photoshop.

7.6 Gridding and Contouring Background

The previous data sets were all stored in equally-spaced two-dimensional 
arrays. Most data in earth sciences, however, are obtained on an irregular 
sampling pattern. Therefore, irregular-spaced data have to be interpolated, 
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Fig. 7.4 Display of the fi ltered SRTM elevation data set. The map uses the function surfl
for generating a shaded-relief map with simulated lighting using interpolated shading and a 
gray colormap in an overhead view. Note that the SRTM data set contains a lot of gaps, in 
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i.e., we compute a smooth and continuous surface from our measurements 
in the fi eld.  Surface estimation is typicall carried out in two major steps. 
Firstly, the number of  control points needs to be selected. Secondly, the  grid
points have to be estimated. Control points are irregularly-space fi eld mea-
surements, such as the thicknesses of sandstone units at different outcrops or 
the concentrations of a chemical tracer in water wells. The data are generally 
represented as xyz triplets, where x and y are spatial coordinates and z is the 
variable of interest. In such cases, most gridding methods require continu-
ous and unique data. However, the spatial variables in earth sciences are 
often discontinuous and spatially nonunique. As an example, the sandstone 
unit may be faulted or folded. Furthermore, gridding requires spatial auto-
correlation. In other words, the neighboring data points should be correlated 
with each other by a certain relationship. It is not sensible to use random z
variable for the surface estimation if the data are not autocorrelated. Having 
selected the control points, the calculation of the z values at the equally-
spaced grid points varies from method to method.

Various techniques exist for selecting the control points (Fig. 7.5a). Most 
methods make arbitrary assumptions on the autocorrelation of the z variable. 
The nearest-neighbor criterion includes all control points within a circular 
neighborhood of the grid point, where the radius of the circle is specifi ed by 
the user. Since the spatial autocorrelation is likely to decrease with increas-
ing distance from the grid point, considering too many distant control points 
is likely to lead to erroneous results while computing the grid points. On 
the other hand, small circular areas limit the calculation of the grid points 
to a very small number of control points. Such an approach leads to a noisy 
estimate of the modeled surface.

It is perhaps due to these diffi culties that  triangulation is often used as an 
alternative method for selecting the control points (Fig. 7.5b). In this technique, 
all control points are connected to a triangular net. Every grid point is located 
in a triangular area of three control points. The z value of the grid point is com-
puted from the z values of the grid points. In a modifi cation of such gridding, 
the three points at the apices of the three adjoining triangles are also used. The 
Delauney triangulation uses the triangular net where the acuteness of the tri-
angles is minimized, i.e., the triangles are as close as possible to equilateral.

Kriging introduced in Chapter 7.9 is an alternative approach of select-
ing control points. It is often regarded as the method of gridding. Some 
people even use the term geostatistics synonymous with kriging. Kriging is 
a method for determining the spatial autocorrelation and hence the circle di-
mension. More sophisticated versions of kriging use an elliptical area which 
includes the control points.
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The second step of surface estimation is the actual computation of the z
values of the grid points. The  arithmetic mean of the z values at the control 
points.

provides the easiest way of computing the grid points. This is a particularly 
useful method if there are only a limited number of control points. If the 
study area is well covered by control points and the distance between these 
points is highly variable, the z values of the grid points should be computed 
by a weighted mean. The z values at the control points are weighted by the 
inverse distance d

i
 from the grid points.

Depending on the spatial scaling relationship of the parameter z, the inverse 

Control Point

Grid Point

a b

Fig. 7.5 Methods to select the control points for estimating the grid points. a Construction of 
a circle around the grid point (plus sign) with a radius defi ned by the spatial autocorrelation 
of the z-values at the control points (circles). b Triangulation. The control points are selected 
from the apices of the triangles surrounding the grid point and optional also the apices of the 
adjoining triangles.
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square or the root of distance may also be used instead of weighing the z val-
ues by the inverse of distance. The fi tting of 3D  splines to the control points 
provides another method for computing the grid points that is commonly 
used in the earth sciences. Most routines used in surface estimation involve 
cubic polynomial splines, i.e., a third-degree 3D polynomial is fi tted to at 
least six adjacent control points. The fi nal surface consists of a composite 
of pieces of these splines. MATLAB also provides interpolation with bihar-
monic splines generating very smooth surfaces (Sandwell, 1987).

7.7 Gridding Example

MATLAB provides a biharmonic spline interpolation since its very begin-
nings. This interpolation method was developed by Sandwell (1987). This 
specifi c gridding method produces smooth surfaces that are particularly 
suited for noisy data sets with irregular distribution of control points. As an 
example we use synthetic xyz data representing the vertical distance of an 
imaginary surface of a stratigraphic horizon from a reference surface. This 
lithologic unit was displaced by a normal fault. The foot wall of the fault 
shows more or less horizontal strata, whereas the hanging wall is charac-
terized by the development of two large sedimentary basins. The xyz data 
are irregularly distributed and have to be interpolated onto a regular grid. 
Assume that the xyz data are stored as a three-column table in a fi le named 
normalfault.txt.

4.32e+02   7.46e+01   0.00e+00
4.46e+02   7.21e+01   0.00e+00
4.51e+02   7.87e+01   0.00e+00
4.66e+02   8.71e+01   0.00e+00
4.65e+02   9.73e+01   0.00e+00
4.55e+02   1.14e+02   0.00e+00
4.29e+02   7.31e+01   5.00e+00
(cont’d)

The fi rst and second column contains the coordinates x (between 420 and 
470 of an arbitrary spatial coordinate system) and y (between 70 and 120), 
whereas the third column contains the vertical z values. The data are loaded 
using

data = load('normalfault.txt');

Initially, we wish to create an overview plot of the spatial distribution 
of the control points. In order to label the points in the plot, numerical z
values of the third column are converted into string representation with 
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maximum two digits.

labels = num2str(data(:,3),2);

The 2D plot of our data is generated in two steps. Firstly, the data are dis-
played as empty circles by using the plot command. Secondly, the data 
are labeled by using the function text(x,y,’string’) which adds text 
contained in string to the xy location. The value 1 is added to all x coor-
dinates as a small offset between the circles and the text.

plot(data(:,1),data(:,2),'o')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

This plot helps us to defi ne the axis limits for gridding and contouring, 
xlim = [420 470] and ylim = [70 120]. The function meshgrid transforms 
the domain specifi ed by vectors x and y into arrays XI and YI. The rows of 
the output array XI are copies of the vector x and the columns of the output 
array YI are copies of the vector y. We choose 1.0 as grid intervals.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

The biharmonic spline interpolation is used to interpolate the irregular-
spaced data at the grid points specifi ed by XI and YI.

ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

The option v4 depicts the biharmonic spline interpolation, which was the 
sole gridding algorithm until MATLAB4 was replaced by MATLAB5. 
MATLAB provides various tools for the visualization of the results. The 
simplest way to display the gridding results is a contour plot using con-
tour. By default, the number of contour levels and the values of the contour 
levels are chosen automatically depending on the minimum and maximum 
values of z.

 contour(XI,YI,ZI)

Alternatively, the number of contours can be chosen manually, e.g., 10 con-
tour levels.

contour(XI,YI,ZI,10)

Contouring can also be performed at values specifi ed in a vector v. Since the 
maximum and minimum values of z is
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min(data(:,3))

ans =
   -25

max(data(:,3))

ans =
   20

we choose

v = -30 : 5 : 25;

The command

[c,h] = contour(XI,YI,ZI,v)

returns contour matrix c and a handle h that can be used as input to the func-
tion clabel, which labels contours automatically.

 clabel(c,h)

Alternatively, the graph is labeled manually by selecting manual option in 
the function clabel. This function places labels onto locations that have 
been selected with the mouse. Labeling is terminated by pressing the re-
turn key.

[c,h] = contour(XI,YI,ZI,v);
clabel(c,h,'manual')

Filled contours are an alternative to the empty contours used above. This 
function is used together with colorbar displaying a legend for the graph. 
In addition, we plot the locations and z values of the control points (black 
empty circles, text labels) (Fig. 7.6).

 contourf(XI,YI,ZI,v), colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels);
hold off

A pseudocolor plot is generated by using the function pcolor. Black con-
tours are also added at the same levels as in the above example.

 pcolor(XI,YI,ZI), shading flat
hold on
contour(XI,YI,ZI,v,'k')
hold off
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The third dimension is added to the plot by using the mesh command. We 
use this example also to introduce the function view(az,el) for a view-
point specifi cation. Herein, az is the azimuth or horizontal rotation and el
is the vertical elevation (both in degrees). The values az = -37.5 and el = 
30 defi ne the default view of all 3D plots,

 mesh(XI,YI,ZI), view(-37.5,30)

whereas az = 0 and el = 90 is directly overhead and the default 2D view

mesh(XI,YI,ZI), view(0,90)

The function mesh represents only one of the many 3D visualization meth-
ods. Another commonly used command is the function surf. Furthermore, 
the fi gure may be rotated by selecting the Rotate 3D option on the Edit Tools 
menu. We also introduce the function colormap, which uses predefi ned 
pseudo colormaps for 3D graphs. Typing help graph3d lists a number 
of builtin colormaps, although colormaps can be arbitrarily modifi ed and 
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Fig. 7.6 Filled contours used together with a colorbar displaying a legend for the graph and the 
plot of the locations and z-values of the true data points (black empty circles, text labels).
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generated by the user. As an example, we use the  colormap hot, which is a 
black-red-yellow-white colormap.

 surf(XI,YI,ZI), colormap('hot'), colorbar

In this case, Rotate 3D only rotates the 3D plot, not the colorbar. The func-
tion surfc combines both a surface and a 2D contour plot in one graph.

 surfc(XI,YI,ZI)

The function surfl can be used to illustrate an advanced application of 3D 
visualization. It generates a 3D colored surface with interpolated shading 
and lighting. The axis labeling, ticks and background can be turned off by 
typing axis off. In addition, black 3D contours may be added to the sur-
face plot. The grid resolution is increased prior to data plotting in order to 
obtain smooth surfaces (Fig. 7.7).

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

surf(XI,YI,ZI), shading interp, light, axis off
hold on
contour3(XI,YI,ZI,v,'k');
hold off

Fig. 7.7 Three-dimensional colored surface with interpolated shading and simulated lighting. 
The axis labeling, ticks and background are turned off. In addition, the graph contains black 
3D contours.
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The biharmonic spline interpolation described in this chapter provides a so-
lution to most gridding problems. It therefore was the only gridding method 
that came with MATLAB for quite a long time. However, different applica-
tions in earth sciences require different methods for interpolation.  However, 
there is no method without problems. The next chapter compares biharmon-
ic splines with other gridding methods and summarizes their strengths and 
weaknesses.

7.8 Comparison of Methods and Potential   Artifacts

The fi rst example illustrates the use of the  bilinear interpolation technique 
for gridding irregular-spaced data. Bilinear interpolation is an extension of 
the one-dimensional linear interpolation. In the two-dimensional case, linear 
interpolation is performed in one direction fi rst, then in the other direction. 
Intuitively, the bilinear method is one of the simplest interpolation tech-
niques. One would not expect serious artifacts and distortions of the data. 
On the contrary, this method has a number of disadvantages and therefore 
other methods are used in many applications.

The sample data used in the previous chapter can be loaded to study the 
performance of a bilinear interpolation.

data = load('normalfault.txt');
labels = num2str(data(:,3),2);

We now choose the option linear while using the function griddata to 
interpolate the data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');

The result are plotted as fi lled contours. The plot also includes the location 
of the control points.

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')

The new surface is restricted to the area that contains control points. By 
default, bilinear interpolation does not extrapolate beyond this region. 
Furthermore, the contours are rather angular compared to the smooth out-
line of the biharmonic spline interpolation. The most important character of 
the bilinear gridding technique, however, is illustrated by a projection of the 
data in a vertical plane.
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plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'ro')
text(data(:,1)+1,data(:,3),labels)
title('Linear Interpolation'), hold off

This plot shows the projection of the estimated surface (vertical lines) and 
the labeled control points. The z-values at the grid points never exceed the 
z-values of the control points. Similar to the linear interpolation of time 
series, bilinear interpolation causes signifi cant smoothing of the data and a 
reduction of the high-frequency variation.

Biharmonic splines are sort of the other extreme in many ways. They are 
often used for extremely irregular-spaced and noisy data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')

The fi lled contours suggest an extremely smooth surface. In many applica-
tions, this solution is very useful, but the method also produces a number of 
artifacts. As we can see from the next plot, the estimated values at the grid 
points are often out of the range of the measured z-values.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'o')
text(data(:,1)+1,data(:,3),labels);
title('Biharmonic Spline Interpolation'), hold off

In some cases, this makes a lot of sense and does not smooth the data in the 
way bilinear gridding does. However, introducing very close control points 
with different z-values can cause serious artifacts.

data(79,:) = [450 105 5];
data(80,:) = [450 104.5 -5];
labels = num2str(data(:,3),2);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

contourf(XI,YI,ZI), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

The extreme gradient at the location (450,105) results in a  paired low and 
high (Fig. 7.8). In such cases, it is recommended to delete one of the two 
control points and replace the z-value of the remaining control point by the 
arithmetic mean of both z-values.

Extrapolation beyond the area supported by control points is a common 
feature of splines. Extreme local trends combined with large areas with no 
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data often cause unrealistic estimates. To illustrate these  edge effects we 
eliminate all control points in the upper-left corner.

[i,j] = find(data(:,1)<435 & data(:,2)>105);
data(i,:) = [];

labels = num2str(data(:,3),2);

plot(data(:,1),data(:,2),'ko')
hold on
text(data(:,1)+1,data(:,2),labels);
hold off

We again employ the biharmonic spline interpolation technique.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');
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Fig. 7.8 Filled contours of a data set gridded using a biharmonic spline interpolation. At the 
location (450,105), very close control points with different z-values have been introduced. 
Interpolation causes a paired low and high, which is a common artefact of spline interpolation 
of noisy data.
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v = -40 : 10 : 40;
contourf(XI,YI,ZI,v)
caxis([-40 40]), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

As we can see from the plot, this method extrapolates beyond the area with 
control points using gradients at the map edges (Fig. 7.9). This is in par-
ticular unwanted while gridding variables that only have positive values, 
such as thicknesses of sediment beds. Such effect is particular undesired in 
the case of gridded closed data, such as percentages, or data that have only 
positive values. In such cases, it is recommended to replace the estimated z
values by NaN. As an example, we erase the areas with z values larger than 
20, which is regarded as an unrealistic value. The corresponding plot now 
contains a sector with no data.

420 425 430 435 440 445 450 455 460 465 470
70

75

80

85

90

95

100

105

110

115

120

40

30

20

10

10

20

30

40

0

15
15

15

15

15

15

15

15

10

10

10

10

10

5 5

5

5 5

5

5

0

0

0

0

0

–5

–5

–5
–5

–5

–5

–10

–10 –10

–10

–10–10–10–10
–10

–10

–10
–10

–10
–15
–15

–15–15–15

–15

–15

–15 –15–15

–15

–15

–15–15

–10

–20 –20–20
–20

–20

–20–20

–20

–20

–25

–25–25

0

Fig. 7.9 Filled contours of a data set gridded using a biharmonic spline interpolation. No 
control points are available in the upper left corner. The spline interpolation then beyond the 
area with control points using gradients at the map edges causing unrealistic z estimates at 
the grid points.
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ZID = ZI;
ZID(find(ZID > 20)) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40]), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

Alternatively, we can eliminate a rectangular area with no data.

ZID = ZI;
ZID(131:201,1:71) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40]), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)

In some examples, the area with no control points is simply eliminated by 
putting a legend on this part of the map.

MATLAB provides a number of other gridding techniques. Another very 
useful MATLAB gridding method are  splines with tension by Wessel and 
Bercovici (1998). The  tsplines use biharmonic splines in tension t, where 
the parameter t can vary between 0 and 1. A value of t=0 corresponds to a 
standard cubic spline interpolation. Increasing t reduces undesirable oscil-
lations between data points, e.g., the paired lows and highs observed in one 
of the above examples. The limiting situation t 1 corresponds to linear 
interpolation.

7.9 Geostatistics (by R. Gebbers)

Geostatistics is used to describe the autocorrelation of one or more variables 
in the 1D, 2D, and 3D space or even in 4D space-time, to make predic-
tions at unobserved locations, to give information about the accuracy of 
prediction and to reproduce spatial variability and uncertainty. The shape, 
the range, and the direction of the spatial autocorrelation is described by 
the variogram, which is the main tool in linear geostatistics. The origins 
of geostatistics can be dated back to the early 50 s when the South African 
mining engineer Daniel G. Krige fi rst published an interpolation method 
based on spatial dependency of samples. In the 60 s and 70 s, the French 
mathematician George Matheron developed the  theory of  regionalized vari-
ables which provides the theoretical foundations of Kriges s more practical 
methods. This theory forms the basis of several procedures for the analysis 
and estimation of spatially dependent variables, which Matheron called geo-
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statistics. Matheron as well coined the term kriging for spatial interpolation 
by geostatistical methods.

Theorical Background

A basic assumption in geostatistics is that a spatiotemporal process is com-
posed of deterministic and stochastic components (Fig. 7.10). The determin-
istic components can be  global and  local trends (sometimes called  drifts). The 
stochastic component is formed by a purely random and an autocorrelated part. 
An autocorrelated component implies that on average, closer observations are 
more similar than more distant observations. This behavior is described by 
the variogram where squared differences between observations are plotted 
against their separation distances. The fundamental idea of D. Krige was to 
use the variogram for interpolation as means to determine the magnitude of 
infl uence of neighboring observations when predicting values at unobserved 
locations. Basic linear geostatistics includes two main procedures: variogra-
phy for modeling the variogram and kriging for interpolation.

Preceding Analysis

Because linear geostatistics as presented here is a parametric method, the un-
derlying assumptions have to be checked by a preceding analysis. As other 
parametric methods, linear geostatistics is sensitive to outliers and deviati-
ons from normal distribution. First, after opening the data fi le geost_dat.mat
containing xyz data triplets we plot the sampling locations. Doing this, we 
can check point distribution and detect gross errors on the data coordinates 
x and y.

load geost_dat.mat

plot(x,y,'.')

Checking of the limits of the observations z can be done by

min(z)

ans =
    3.7199

max(z)

ans =
    7.8460
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For linear geostatistics, the observations z should be gaussian distributed. In 
most cases, this is only tested by visual inspection of the histogram because 
statistical tests are often too sensitive if the number of samples exceed  ca. 
100. In addition, one can calculate skewness and kurtosis of the data.

hist(z)

skewness(z)

ans =
    0.2568

kurtosis(z)

ans =
    2.5220

A fl at-topped or multiple peaks distribution suggests that there is more than 
one population in your data set. If these populations can be related to con-
tinuous areas they should be treated separately. Another reason for multiple 
peaks can be preferential sampling of areas with high and/or low values. 
This happens usually due to some a priori knowledge and is called cluster 
effect. Handling of the cluster effect is described in Deutsch and Journel 
(1998) and Isaaks and Srivastava (1998).

Most problems arise from positive skewness (long upper tail). According 
to Webster and Oliver (2001), one should consider root transformation if 
skewness is between 0.5 and 1, and logarithmic transformation if skewness 
exceeds 1. A general formula of transformation is: 

This is the so called power transformation with the special case k=0 when a 
logarithm transformation is used. In the logarithm transformation, m should 
be added when z values are zero or negative. Interpolation results of power-
transformed values can be backtransformed directly after kriging. The back-
transformation of log-transformed values is slightly more complicated and 
will be explained later. The procedure is known as  lognormal kriging. It can 
be important because lognormal distributions are not unusual in geology.

 Variography with the  Classical Variogram

The variogram describes the spatial dependency of referenced observations 
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in a one or multidimensional space. While usually we do not know the true 
variogram of the spatial process we have to estimate it from observations. 
This procedure is called variography. Variography starts with calculating 
the experimental variogram from the raw data. In the next step, the experi-
mental variogram is summarized by the variogram estimator. Variography 
fi nishes with fi tting a variogram model to the  variogram estimator. The ex-
perimental variogram is calculated as the difference between pairs of the 
observed values depending on the separation vector h (Fig. 7.11). The clas-
sical experimental variogram is given by the semivariance,

where z
x
 is he observed value at location x and z

x+h
 is he observed value at 

another point within a distance h. The length of the separation vector h is 
called lag distance or simply lag. The correct term for γ(h) is semivariogram
(or semivariance), where semi refers to the fact that it is half of the variance 
of the difference between z

x
 and z

x+h
. It is, nevertheless, the variance per 

point when points are considered as in pairs (Webster and Oliver, 2001). 
Conventionally, γ(h) is termed variogram instead of semivariogram and so 
we do at the end of this chapter. To calculate the experimental variogram we 
fi rst have to build pairs of observations. This is done by typing

[X1,X2] = meshgrid(x);
[Y1,Y2] = meshgrid(y);
[Z1,Z2] = meshgrid(z);

The matrix of separation distances D between the observation points is

D = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);

h

x = x + hj i

x i

Fig. 7.11 Separation vector h between two points.
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where srqt is the square root of the data. Then we get the experimental 
variogram G as half the squared differences between the observed values:

G = 0.5*(Z1 - Z2).^2; 

We used the MATLAB capability to vectorize commands instead of us-
ing for loops in order to run faster. However, we have computed n2 pairs
of observations although only n*(n-1)/2 pairs are required. For large data 
sets, e.g., more than 3000 data points, the software and physical memory 
of the computer may become a limiting factor. For such cases, a more ef-
fi cient way of programming is described in the user manual of the software 
SURFER (2002). The plot of the experimental variogram is called the  var-
iogram cloud (Fig. 7.12). We get this after extracting the lower triangular 
portions of the D and G arrays

indx = 1:length(z);
[C,R] = meshgrid(indx);
I = R>C;
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Fig. 7.12 Variogram cloud: Plot of the experimental variogram (half squared difference 
between pairs of observations) versus the lag distance (separation distance of the pairs).



7.9 Geostatistics (by R. Gebbers) 179

plot(D(I),G(I),'.' )
xlabel('lag distance')
ylabel('variogram')

The variogram cloud gives you an impression of the dispersion of values at 
the different lags. It might be useful to detect outliers or anomalies, but it 
is hard to judge from it whether there is any spatial correlation, what form 
it might have, and how we could model it (Webster and Oliver, 2001). To 
obtain a clearer view and to prepare variogram modeling the experimental 
variogram is replaced by the variogram estimator in the next section.

The variogram estimator is derived from the experimental variograms to 
summarize their central tendency (similar to the descriptive statistics derived 
from univariate observations, Chapter 3.2). The classical variogram estima-
tor is the averaged empirical variogram within certain distance classes or 
bins defi ned by multiples of the lag interval. The classifi cation of separation 
distances is visualized in Figure 7.13.

The variogram estimator is calculated by:

where N(h) is he number of pairs within the lag interval h.
First we need an idea about a suitable lag interval h. If you have sampled 

on a regular grid, you can use the length of a grid cell. If the samples have 
irregular spacings, as in our case, the mean minimum distance of pairs is a 
good starting point for the lag interval (Webster and Oliver 2001). To cal-
culate the mean minimum distance of pairs we have to replace the diagonal 

h3 h3 h3 h3

h1 h1 h1 h1 h1 h1

h2 h2 h2 h2 h2

Fig. 7.13 Classifi cation of separation distances in the case of equally spaced observations 
along a line. The lag interval is h

1
 and h

2
, h

3
 etc. are multiples of the lag interval.
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of the lag matrix D zeros with NaN s, otherwise the minimum distance will 
be zero:

D2 = D.*(diag(x*NaN)+1);

lag = mean(min(D2))

lag =
    8.0107

While the estimated variogram values tend to become more erratic with 
increasing distances, it is important to defi ne a maximum distance which 
limits the calculation. As a rule of thumb, the half maximum distance is 
suitable range for variogram analysis. We obtain the half maximum distance 
and the maximum number of lags by:

hmd = max(D(:))/2

hmd =
  130.1901

max_lags = floor(hmd/lag)

max_lags =
    16

Then the separation distances are classifi ed and the classical variogram es-
timator is calculated:

LAGS = ceil(D/lag);

for i = 1:max_lags
    SEL = (LAGS == i);
    DE(i) = mean(mean(D(SEL)));
    PN(i) = sum(sum(SEL == 1))/2;
    GE(i) = mean(mean(G(SEL)));
end

where SEL is the selection matrix defi ned by the lag classes in LAG, DE is 
the mean lag, PN is the number of pairs, and GE is the variogram estimator. 
Now we can plot the classical variogram estimator (variogram versus mean 
separation distance) together with the population variance:

plot(DE,GE,'.' )
var_z = var(z) 
b = [0 max(DE)]; 
c = [var_z var_z];

hold on

plot(b,c, '--r') 
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yl = 1.1*max(GE); 
ylim([0 yl])
xlabel('lag distance')
ylabel('variogram')

hold off

The variogram in Figure 7.14 shows a typical behavior. Values are low at 
small separation distances (near the origin), they are increasing with increas-
ing distances, than reaching a plateau ( sill) which is close to the popula-
tion variance. This indicates that the spatial process is correlated over short 
distances while there is no spatial dependency over longer distances. The 
length of the spatial dependency is called the range and is defi ned by the 
separation distance where the variogram reaches the sill.

The variogram model is a parametric curve fi tted to the variogram es-
timator. This is similar to frequency distribution fi tting (see Chapter 3.5), 
where the frequency distribution is modeled by a distribution type and its 
parameters (e.g., a normal distribution with its mean and variance). Due to 
theoretical reasons only functions with certain properties should be used as 
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variogram models. Common authorized models are the spherical, the expo-
nential, and the linear model (more models can be found in the literature).

Spherical model:

Exponential model:

Linear model:

where c is the sill, a is the range, and b is the slope (in the case of the linear 
model). The parameters c and a or b have to be modifi ed when a variogram 
model is fi tted to the variogram estimator. The so called  nugget effect is spe-
cial type of variogram model. In practice, when extrapolating the variogram 
towards separation distance zero, we often observe a positive intercept on 
the ordinate. This is called the nugget effect and it is explained by measure-
ment errors and by small scale fl uctuations ( nuggets), which are not captured 
due to too large sampling intervals. Thus, we sometimes have expectations 
about the minimum nugget effect from the variance of repeated measure-
ments in the laboratory or other previous knowledge. More details about the 
nugget effect can be found in Cressie (1993) and Kitanidis (1997). If there 
is a nugget effect, it can be added to the variogram model. An exponential 
model with a nugget effect looks like this:

where c
0
 is the nugget effect.

We can even combine more variogram models, e.g., two spherical models 
with different ranges and sills. These combinations are called  nested models.
During variogram modeling the components of a nested model are regarded 
as spatial structures which should be interpreted as the results of geological 
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processes. Before we discuss further aspects of variogram modeling let us 
just fi t some models to our data. We are beginning with a spherical model 
without nugget, than adding an exponential and a linear model, both with 
nugget variance:

plot(DE,GE,'.' ) 
var_z = var(z) 
b = [0 max(DE)]; 
c = [var_z var_z];
hold on
plot(b,c, '--r') 
yl = 1.1*max(GE); 
ylim([0 yl])
xlabel('lag distance')
ylabel('variogram')
lags=0:max(DE);

% Spherical model with nugget
nugget = 0;
sill = 0.803;
range = 45.9;
Gsph = nugget + (sill*(1.5*lags/range-0.5*(lags/...
   range).^3).*(lags<=range)+ sill*(lags>range));
plot(lags,Gsph,'-g')
ylim([0 1.1*var_z])

% Exponential model with nugget
nugget = 0.0239;
sill = 0.78;
range = 45;
Gexp = nugget + sill*(1 - exp(-3*lags/range));
plot(lags,Gexp,'-b')

% Linear model with nugget
nugget = 0.153;
slope = 0.0203;
Glin = nugget + slope*lags;
plot(lags,Glin,'-m')
hold off

Variogram modeling is very much a point of discussion. Some advocate  ob-
jective variogram modeling by automated curve fi tting, using a weighted least 
squares, maximum likelihood or maximum entropy method. Contrary to this 
it is often argued that the geological knowledge should be included in the 
modeling process and thus, fi tting by eye is recommended. In many cases the 
problem in variogram modeling is much less the question of the appropriate 
procedure but a question of the quality of the experimental variogram. If the 
experimental variogram is good, both procedures will yield similar results.

Another question important for variogram modeling is the intended use 
of the model. In our case, the linear model seems not to be appropriate 
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(Fig. 7.15). At a closer look we can see that the linear model fi ts reason-
ably well over the fi rst three lags. This can be suffi cient when we use the 
variogram model only for kriging, because in kriging the nearby points are 
the most important for the estimate (see discussion of kriging below). Thus, 
different variogram models with similar fi ts near the origin will yield simi-
lar kriging results when sampling points are regularly distributed. If you 
are interested in describing the spatial structures it is another case. Then it 
is important to fi nd a suitable model over all lags and to determine the sill 
and the range accurately. A collection of geologic case studies in Rendu 
and Readdy (1982) show how process knowledge and variography can be 
linked. Good guidelines to variogram modeling are given by Gringarten and 
Deutsch (2001) and Webster and Oliver (2001).

We will now briefl y discuss some more aspects of variography.

1. Sample size – As in any statistical procedure you need as large a sample 
as possible to get a reliable estimate. For variography it is recommended 
to have more than 100 to 150 samples (Webster and Oliver, 2001). If you 
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have less, you should consider computing a maximum likelihood vario-
gram (Pardo-Igúzquiza and Dowd, 1997).

2. Sampling design – To get a good estimation at the origin of the variogram 
sampling design should include observations over small distances. This 
can be done by a nested design (Webster and Oliver, 2001). Other designs 
were evaluated by Olea (1984). 

3. Anisotropy – Until now we have assumed that the structure of spatial cor-
relation is independent from direction. Thus, we have calculated  omni di-
rectional variograms ignoring the direction of the separation vector h. In 
a more thorough analysis, the variogram should not only be discretized in 
distance but also in direction (directional bins). Plotting directional var-
iograms, usually in four directions, we sometimes can observe different 
ranges ( geometric anisotropy), different scales ( zonal anisotropy), and 
different shapes (indicating a trend). The treatment of anisotropy needs 
a highly interactive graphical user interface, e.g., VarioWin by Panatier 
(1996) which is beyond the scope of this book.

4. Number of pairs and the lag interval – In the calculation of the classical 
variogram estimator it is recommended to use more than 30 to 50 pairs 
of points per lag interval (Webster and Oliver 2001). This is due to the 
sensitivity to outliers. If there are less pairs, the lag interval should be 
enlarged. The lag spacing has not necessarily to be uniform, it can be 
chosen individually for each distance class. It is also an option to work 
with overlapping classes, in this case the lag width (lag tolerance) has 
to be defi ned. On the other hand, increasing the lag width can cause un-
necessary smoothing and detail is lost. Thus, the separation distance and 
the lag width have to be chosen with care. Another option is to use a more 
robust variogram estimator (Cressie 1993, Deutsch and Journel 1998).

5. Calculation of  separation distance – If your observations are covering a 
large area, let us say more than 1000 km², spherical distances should be 
calculated instead of the Pythagorean distances from a plane cartesian 
coordinate system. 

Kriging

Now we are going to interpolate the observations on a regular grid by ordi-
nary point kriging which is the most popular kriging method. Ordinary point 
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kriging uses a weighted average of the neighboring points to estimate the 
value of an unobserved point: 

where λι are the weights which have to be estimated. The sum of the weights 
should be one to guarantee that the estimates are unbiased:

The expected (average) error of the estimation has to be zero. That is:

where z
x0

 is the true, but unknown value. After some algebra, using the pre-
ceding equations, we can compute the mean-squared error in terms of the 
variogram:

where E is the estimation or kriging variance, which has to be minimized, 
γ(x

i,
x

0
) is the variogram (semivariance) between the data point and the un-

observed, γ(x
i,

x
j
) is the variogram between the data points x

i
 and x

j
, and λ

i

and λ
j
 are the weights of the ith and jth data point.

For kriging we have to minimize this equation (quadratic objective func-
tion) satisfying the condition that the sum of weights should be one (linear 
constraint). This optimization problem can be solved using a Lagrange mul-
tiplier ν resulting in the linear kriging system of N+1 equations and N+1
unknowns:

After obtaining the weights λ
i
, the kriging variance is given by

The kriging system can be presented in a matrix notation:
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where

is the matrix of the coeffi cients, these are the modeled variogram values for 
the pairs of observations. Note that on the diagonal of the matrix, where 
separation distance is zero, the value of γ vanishes.

is the vector of the unknown weights and the Lagrange multiplier.

is the right-hand-side vector. To obtain the weights and the Lagrange multi-
plier the matrix G_mod is inverted:

The kriging variance is given by
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For our calculations with MATLAB we need the matrix of coeffi cients de-
rived from the distance matrix D and a variogram model. D was calculated 
in the variography section above and we use the exponential variogram 
model with nugget, sill and range from the previous section:

G_mod = (nugget + sill*(1 - exp(-3*D/range))).*(D>0);

Then we get the number of observations and add a column and row vector of 
all ones to the G_mod matrix and a zero at the lower left corner:

n = length(x);
G_mod(:,n+1) = 1;
G_mod(n+1,:) = 1;
G_mod(n+1,n+1) = 0;

Now the G_mod matrix has to be inverted:

G_inv = inv(G_mod);

A grid with the locations of the unknown values is needed. Here we use a 
grid cell size of fi ve within a quadratic area ranging from 0 to 200 in x and y
direction, respectively. The coordinates are created in matrix form by:

R = 0:5:200;
[Xg1,Xg2] = meshgrid(R,R);

and converted to vectors by:

Xg = reshape(Xg1,[],1);
Yg = reshape(Xg2,[],1);

Then we allocate memory for the kriging estimates Zg and the kriging vari-
ance s2_k by:

Zg = Xg*NaN;
s2_k = Xg*NaN;

Now we are kriging the unknown at each grid point:

for k = 1:length(Xg)
    DOR = ((x - Xg(k)).^2+(y - Yg(k)).^2).^0.5;
    G_R = (nugget + sill*(1 - exp(-3*DOR/range))).*(DOR>0);
    G_R(n+1) = 1; 
    E = G_inv*G_R; 
    Zg(k) = sum(E(1:n,1).*z); 
    s2_k(k) = sum(E(1:n,1).*G_R(1:n,1))+E(n+1,1); 
end

Here, the fi rst command computes the distance between the grid points 

2 1G R E_
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(Xg,Yg) and the observation points (x,y). Then we build the right-hand-
side vector of the kriging system by using the variogram model G_R and add 
one to the last row. We next obtain the matrix E with the weights and the 
lagrange multiplier. The estimate Zg at each point k is the weighted sum of 
the observations z. Finally, the kriging variance s2_k of the grid point is 
computed. We plot the results. First we create a grid of the kriging estimate 
and the kriging variance:

r = length(R);
Z = reshape(Zg,r,r);
SK = reshape(s2_k,r,r);

A subplot on the right presents the kriged values:

subplot(1,2,1)
pcolor(Xg1,Xg2,Z)
title('Kriging estimate')
xlabel('x-coordinates')
ylabel('y-coordinates')
box on
colorbar('SouthOutside')

The left subplot presents the kriging variance:

subplot(1,2,2)
pcolor(Xg1,Xg2,SK)
title('Kriging variance')
xlabel('x-coordinates')
ylabel('y-coordinates')
box on
colorbar('SouthOutside')
hold on

and we are overlaying the sampling positions:

plot(x,y,'ok')
hold off

The kriged values are shown in Figure 7.16a. The kriging variance  depends 
only on the distance from the observations and not on the observed values 
(Fig. 7.16b). Kriging reproduces the population mean when observations 
are beyond the range of the variogram, at the same time kriging variance 
increases (lower right corner of the maps in Figure 7.16). The kriging vari-
ance can be used as a criterion to improve sampling design and it is needed 
for backtransformation in lognormal kriging. Back-transformation for lo-
gnormal kriging is done by:

y x z x x( ) exp( ( ) . ( ) )0 0
2

00 5



190 7 Spatial Data

Discussion of Kriging

Point kriging as presented here is an exact interpolator. It reproduces ex-
actly the values at an observation point, even though a variogram with a 
nugget effect is used. Smoothing can be caused by including the variance 
of the measurement errors (see Kitanidis, 1997) and by block kriging which
averages the observations within a certain neighborhood (block). While 
kriging variance only depends on the distance between the observed and 
the unobserved locations it is primary a measure of density of information 
(Wackernagel, 2003). The accuracy of kriging is better evaluated by cross-
validation using a resampling method or surrogate test (Chapter 4.6 and 
4.7). The infl uence of the neighboring observations on the estimation de-
pends on their confi guration. Webster and Oliver (2001) summarize: Near 
points carry more weight than more distant ones; the relative weight of a 
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point decreases when the number of points in the neighborhood increases; 
clustered points carry less weight individually than isolated ones at the same 
distance; data points can be screened by ones lying between them and the 
target. Sampling design for kriging is different from the design which might 
be optimal for variography. A regular grid, triangular or quadratic, can be 
regarded as optimum. 

The MATLAB code presented here is a straightforward implementation 
of the kriging system presented in the formulas above. In professional pro-
grams the number of data points entering the G_mod matrix are restricted as 
well as the inversion of G_mod is avoided by working with the covariances 
instead of the variograms (Webster and Oliver, 2001; Kitanidis, 1997). For 
those who are interested in programming and in a deeper understanding of 
algorithms, Deutsch and Journel (1992) is a must. The best internet source 
is the homepage of AI-GEOSTATISTICS:

http://www.ai-geostats.org
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8 Image Processing

8.1 Introduction

Computer graphics are stored and processed either as  vector or  raster data. 
Most data types that were encountered in the previous chapter were vector 
data, i.e., points, lines and polygons. Drainage networks, the outline of geo-
logic units, sampling locations and topographic contours are examples of 
vector data. In Chapter 7, coastlines are stored in vector format while bathy-
metric and topographic data are saved in the raster format. In many cases, 
vector and raster data are combined in one data set, for instance the course 
of a river is displayed on a satellite image. Raster data are often converted to 
vector data by digitizing points, lines or polygons. On the other hand, vector 
data are sometimes transformed to raster data.

 Images are generally represented as raster data, i.e., as a 2D array of color 
intensities. Images are everywhere in geosciences. Field geologists use aeri-
al photos and satellite images to identify lithologic units, tectonic structures, 
landslides and other features in a study area. Geomorphologists use such 
images for the analysis of drainage networks, river catchment, vegetation 
and soil types. The analysis of images from thin sections, automated identi-
fication of objects and the measurement of varve thicknesses employ a great 
variety of image processing methods.

This chapter deals with the analysis and display of image data. Firstly, 
the various ways that raster data can be stored on the computer are explored 
(Chapter 8.2). Subsequently, the main tools for importing, manipulating and 
exporting image data are presented (Chapter 8.3). This knowledge is used 
for processing and georeferencing satellite images (Chapter 8.4 and 8.5). 
Finally, on-screen digitization techniques are discussed (Chapter 8.7). The 
Image Processing Toolbox is used for the specific examples throughout the 
chapter. The image analysis and enhancement techniques discussed in this 
chapter are also presented in the User s Guide. However, this chapter con-
tains a comprehensive introduction to the techniques for analyzing images 
in the earth sciences by using MATLAB.



194 8 Image Processing

8.2 Data Storage

Vector and raster graphics are the two fundamental methods for storing pic-
tures. The typical format for storing vector data was already introduced in 
the previous chapter. In the following example, the two columns of the fi le 
coastline.txt represent the coordinates for the longitude and the latitude.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

The NaN s help to identify break points in the data.
The raster data are stored as 2D arrays. The elements of the array repre-

sent altitude above sea level, annual rainfall or, in the case of an image, color 
intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181
189 190 190 188 186 183

In all cases, raster data can be visualized as 3D plot. The x and y are the indi-
ces of the 2D array or any other reference frame, and z is the numerical value 
of the elements of the array (see also Chapter 7). Alternatively, the numeri-
cal values contained in the 2D array can be displayed as pseudocolor plot, 
which is a rectangular array of cells with colors determined by a colormap. 
A colormap is a m-by-3 array of real number between 0.0 and 1.0. Each row 
defi nes a red, green, blue (RGB) color. An example is the above array that 
could be interpreted as grayscale intensities ranging from 0 (black) to 255 
(white). More complex examples include satellite images that are stored in 
3D arrays.

As discussed before, a computer stores data as bits, which have one out 
of two states, one and zero (Chapter 2). If the elements of the 2D array rep-
resent the color intensity values of the pixels (short for picture elements) of 
an image, 1-bit arrays only contains ones and zeros.
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0   0   1   1   1   1
1   1   0   0   1   1
1   1   1   1   0   0
1   1   1   1   0   1
0   0   0   0   0   0
0   0   0   0   0   0

This 2D array of ones and zeros can be simply interpreted as white-and-
black image, where the value of one represents white and zero corresponds 
to black. Alternatively, the 1 bit array could be used to store an image con-
sisting of two different colors only, such as red and blue.

In order to store more complex types of data, the bits are joined to larger 
groups, such as bytes consisting of eight bits. The earliest computers could 
only send eight bits at a time and early computer code was written in sets of 
eight bits, which came to be called a byte. Hence, each element of the 2D or 
pixel contains a vector of eight ones or zeros.

1    0    1    0   0   0   0   1

These 8  bits or 1  byte allows 28=256 possible combinations of the eight ones 
or zeros. Therefore, 8 bits are enough to represent 256 different intensities 
such as grayscales. The 8 bits can be read in the following way. The bits are 
read from the right to the left. A single bit represents two numbers, two bits 
give four numbers, three bits show eight numbers, and so forth up to a byte, 
or eight bits, which represents 256 numbers. Each added bit doubles the 
count of numbers. Here is a comparison of binary and decimal representa-
tion of the number 161. 

128   64   32   16    8    4    2    1         (value of the bit)
  1    0    1    0    0    0    0    1         (binary)

128 +  0 + 32  + 0 +  0 +  0 +  0 +  1 = 161   (decimal)

The end members of the binary representation of grayscales are

0    0    0    0    0    0    0    0

which is black, and

1    1    1    1    1    1    1    1

which is pure white. In contrast to the above 1 bit array, the one-byte array 
allows to store a  grayscale image of 256 different levels. Alternatively, the 
256 numbers could be interpreted as 256 different discrete colors. In any 
case, the display of such an image requires an additional source of informa-
tion about how the 256 intensity values are converted into colors. A color-
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map is an m-by-3 array of real numbers between 0.0 and 1.0. Each row is a 
RGB vector that defi nes one color by means of intensities of red, green and 
blue. Numerous global colormaps for the interpretation of 8-bit color im-
ages exist that allow the cross-platform exchange of raster images, whereas 
local colormaps are often embedded in a graphics fi le.

The disadvantage of 8-bit color images is that the 256 discrete colorsteps 
are not enough to simulate smooth transitions for the human eye. Therefore, 
in many applications a 24-bit system is used with 8 bits of data for each 
 RGB channel giving a total of 2563=16,777,216 colors. Such a 24-bit image 
is therefore stored in three 2D arrays or one 3D array of   intensity values 
between 0 and 255.

195  189  203  217  217  221
218  209  187  192  204  206
207  219  212  198  188  190
203  205  202  202  191  201
190  192  193  191  184  190
186  179  178  182  180  169

209  203  217  232  232  236
234  225  203  208  220  220
224  235  229  214  204  205
223  222  222  219  208  216
209  212  213  211  203  206
206  199  199  203  201  187

174  168  182  199  199  203
198  189  167  172  184  185
188  199  193  178  168  172
186  186  185  183  174  185
177  177  178  176  171  177
179  171  168  170  170  163

Compared to 1-bit and 8-bit representation of raster data, the 24-bit stor-
age certainly requires a lot more computer memory. In the case of very 
large data sets such as satellite images and digital elevation models the user 
should therefore carefully think about the suitable way to store the data. 
The default data type in MATLAB is the 64-bit array which allows to store 
the sign of a number (fi rst bit), the exponent (bits 2 to 12) and roughly 16 
signifi cant decimals digits in the range of roughly 10-308 and 10+308 (bits 13 
to 64). However, MATLAB also works with other data types such as 1-bit, 
8-bit and 24-bit raster data to save memory.

The amount of memory required for storing an image depends on the data 
type and the raster dimension. The dimension of an image can be described 
by the numbers of pixels, which is the number of rows multiplied by the 
number of columns of the 2D array. Assume an image of 729x713 pixels, as 
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the one we use in the following chapter. If each pixel needs 8 bits to store an 
grayscale value, the memory required by the data is 729x713x8=4,158,216 
bits or 4,158,216/8=519,777 bytes. This number is exactly what we obtain 
by typing whos in the command window. Common prefi xes for bytes are 
kilobyte, megabyte, gigabyte and so forth.

bit = a 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 Kilobyte (KB)
1024 Kilobytes = 1 Megabyte (MB)
1024 Megabytes = 1 Gigabyte (GB)
1024 Gigabytes = 1 Terabyte (TB)

It is important to note that in data communication 1 kilobit = 1,000 bits, while 
in data storage 1 kilobyte = 1,024 bytes. A 24-bit or  true color image then 
requires three times the memory needed to store a 8-bit image, or 1,559,331 
bytes = 1,559,331/1,024 kilobytes (KB)  1,523 KB  1,559,331/1,0242 = 
1.487 megabytes (MB).

In many cases, however, the dimension of an image is not given by the  
total number of pixels, but the length and height of the picture and its reso-
lution. The resolution of an image is the number of  pixels per inch ( ppi) or 
dots per inch ( dpi). The standard resolution of a computer monitor is 72 dpi 
although modern monitors often have a higher  resolution such as 96 dpi. As 
an example, a 17 inch  monitor with 72 dpi resolution displays 1,024x768 
pixels. If the monitor is used to display images at a different (lower, higher) 
resolution, the image is resampled to match the monitor s resolution. For 
scanning and printing, a resolution of 300 or 600 dpi is enough in most 
applications. However, scanned images are often scaled for large printouts 
and therefore have higher resolutions such as 2,400 dpi. The image used in 
the next chapter has a width of 25.2 cm (or 9.92 inch) and a height of 25.7 
cm (10.12 inch). The resolution of the image is 72 dpi. The total number of 
pixels is therefore in horizontal direction 72*9,92  713, the vertical number 
of pixels is 72 *10,12  729, as expected.

Numerous formats are available to save vector and raster data into a fi le. 
These formats all have their advantages and disadvantages. Choosing one 
format over another in an application requires a good knowledge of the 
characteristics of the various fi le formats. This knowledge is particularly 
important if images are to be analyzed quantitatively. The most popular for-
mats for storing vector and raster data are:

1. Compuserve Graphics Interchange Format (GIF) – This format was de-
veloped in 1987 for raster images using a fi xed colormap of 256 colors. 
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The GIF format  uses compression without loss of data. It was designed 
for fast transfer rates in the internet. The limited number of colors makes 
it not the right format for smooth color transitions such as a cloudy sky 
and human faces. In contrast, it is often used for line art, maps, cartoons 
and logos (http://www.compuserve.com/).

2. Microsoft Windows Bitmap Format ( BMP) – This is the native bitmap 
format for computers running Microsoft Windows as the operating sys-
tem. However, numerous converters exist to read and write BMP fi les 
also on other platforms. Various modifi cations of the BMP format are 
available, some of them without compressions, others with effective and 
fast compression (http://www.microsoft.com/).

3. Tagged Image File Format ( TIFF) – This format was designed by the 
Aldus Corporation and Microsoft in 1986 to become an industry standard 
for image-fi le exchange. A TIFF fi le includes an image fi le header, a di-
rectory and the data in all available graphics and image fi le formats. Some 
TIFF fi le even contain vector and raster versions of the same picture, and 
images in different resolution and colormap. The most important advan-
tage of TIFF was portability. TIFF should perform on all computer plat-
forms. Unfortunately, numerous modifi cations of TIFF evolved in the fol-
lowing years, causing incompatibilities. Therefore TIFF is often referred 
to as Thousands of Incompatible File Formats.

4. Postscript ( PS) and  Encapsulated PostScript ( EPS) – The PS format 
has been developed by John Warnock at Parc, the research institute of 
Xerox. J. Warnock was co-founder of Adobe Systems, where the EPS 
format has been created. The vector format PostScript would have never 
become an industry standard without Apple Computers. In 1985, Apple 
needed a typesetter-quality controller for the new printer LaserWriter 
and the operating system Macintosh. The third partner in the history 
of PostScript was the company Aldus – now a part of Adobe Systems 
–, the developer of the software PageMaker. The combination of Aldus 
PageMaker, the PS format and the Apple LaserWriter were the founders 
of Desktop Publishing. The EPS format was then developed by Adobe 
Systems as a standard fi le format for importing and exporting PS fi les. 
Whereas the PS fi le generally is a single-page format,  containing an il-
lustration of a text, the purpose of an EPS fi le is to be included in other 
pages, i.e., it can contain any combination of text, graphics and images 
(http://www.adobe.com/).
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5. In 1986, the  Joint Photographic Experts Group ( JPEG) was founded 
for the purpose of developing various standards for image compression. 
Although JPEG stands for the committee, it is now widely used as the 
name for an image compression and format. This compression consists of 
grouping pixel values into 8x8 blocks and transforming each block with 
a discrete cosine transform. Subsequently, all unnecessary high-frequen-
cy informaiton is eased. Such practice makes the compression method 
irreversible. The advantage of the JPEG format is the availability of a 
three-channel 24-bit true color version. This allows to store images with 
smooth color transitions (http://www.jpeg.org/).

6. Portable Document Format (PDF) – The PDF designed by Adobe 
Systems is now a true self-contained cross-platform document. The PDF 
fi les contain the complete formatting of vector illustrations, raster im-
ages and text, or a combination of all these, including all necessary fonts. 
These fi les are highly compressed, allowing a fast internet download. 
Adobe Systems provides a free-of-charge Adobe Acrobat Reader for all 
computer platforms (http://www.adobe.com/).

7. The PICT format was developed by Apple Computers in 1984 as the na-
tive format for Macintosh graphics. The PICT format can be used for 
raster images and vector illustrations. PICT uses various methods for 
compressing data. The PICT 1 format only supports monochrome graph-
ics, but PICT 2 supports a color depth of up to 32-bit. The PICT format is 
not supported on all other platforms although some PC software tools can 
work with PICT fi les (http://www.apple.com).

8.3 Importing, Processing and Exporting Images

Firstly, we learn how to read an image from a graphics fi le into the work-
space. As an example, we use a satellite image showing a 10.5 km by 11 km 
sub-area in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

The fi le unconform.jpg is a processed  TERRA– ASTER satellite image that 
can be downloaded free-of-charge from the NASA web page. We save this 
image in the working directory.  The command

unconform1 = imread('unconform.jpg');
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reads and decompresses the JPEG fi le, and imports the data as 24-bit RGB 
image array and stores the data in a variable unconform1. The command

whos

shows how the  RGB array is stored in the workspace:

Name          Size          Bytes         Class
unconform1    729x713x3     1559331       uint8 array
Grand total is 1559331 elements using 1559331 bytes

The details indicate that the image is stored as a 729x713x3 array represent-
ing a 729x713 array for each of the colors red, green and blue. The listing of 
the current variables in the workspace also gives the information uint8 array, 
i.e., each array element representing one pixel contains 8-bit integers. These 
integers represent intensity values between 0 (minimum intensity) and 255 
(maximum). As example, here is a sector in the upper-left corner of the data 
array for red:

unconform1(50:55,50:55,1)

ans =
   174 177 180 182 182 182
   165 169 170 168 168 170
   171 174 173 168 167 170
   184 186 183 177 174 176
   191 192 190 185 181 181
   189 190 190 188 186 183

Next we can view the image using the command

 imshow(unconform1)

which opens a new Figure Window showing a RGB composite of the image 
(Fig. 8.1).

In contrast to the RGB image, a grayscale image only needs one single 
array to store all necessary information. We convert the RBG image into a 
grayscale image using the command rgb2gray (RGB to gray):

unconform2 = rgb2gray (unconform1);

The new workspace listing now reads:

Name          Size          Bytes         Class
unconform1    729x713x3     1559331       uint8 array
unconform2    729x713       519777        uint8 array
Grand total is 2079108 elements using 2079108 bytes

where you can see the difference between the 24-bit RGB and the 8-bit gray-
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scale arrays. The commands

imshow(unconform1), figure, imshow(unconform2)

display the result. It is easy to see the difference between the two images in 
separate Figure Windows (Fig. 8.1 and 8.2). Let us now process the grayscale 
image. First we compute a histogram of the distribution of intensity values.

 imhist(unconform2)

A simple technique to enhance the contrast of such an image is to transform 
this histogram in order to obtain an equal distribution of grayscales:

unconform3 = histeq(unconform2);

We can view the difference again using

imshow(unconform2), figure, imshow(unconform3)

and save the results in a new fi le

 imwrite(unconform3,'unconform3.jpg')

Detailed information on the new fi le can be obtained by typing

 imfinfo('unconform3.jpg')

which yields

Filename: 'unconform3.jpg'
FileModDate: '18-Jun-2003 16:56:49'
FileSize: 138419
Format: 'jpg'
FormatVersion: ''
Width: 713
Height: 729
BitDepth: 8
ColorType: 'grayscale'
FormatSignature: ''
NumberOfSamples: 1
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}

Hence, the command iminfo can be used to obtain useful information 
(name, size, format and color type) on the newly-created image fi le.

There are many ways for transforming the original satellite image into a 
practical fi le format. For instance, the image data could be stored as  indexed
color image. Such an image consists of two parts, a colormap array and a 
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data array. The  colormap array is an m-by-3 array containing fl oating-point 
values between 0 and 1. Each column specifi es the intensity of the colors 
red, green and blue. The data array is an x-by-y array containing integer ele-
ments corresponding to the lines m of the colormap array, i.e., the specifi c 
RGB representation of a certain color. Let us transfer the above RGB image 
into an indexed image. The colormap of the image should contain 16 differ-
ent colors.

[x,map]=rgb2ind(unconform1,16);

Fig. 8.1 RGB true color image contained in the fi le unconform.jpg. After decompressing and 
reading the JPEG fi le into a 729x713x3 array, MATLAB interprets and displays the RGB 
composite using the function imshow. See detailed description of the image on the NASA 
TERRA-ASTER webpage http://asterweb.jpl.nasa.gov. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.
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The display of the image

imshow(unconform1),figure,imshow(x,map)

clearly shows the difference between the original 24-bit RGB image 
(2563 ca. 16.7 million different colors) and a color image of only 16 differ-
ent colors (Fig. 8.1 and 8.3).

Fig. 8.2 Grayscale image. After converting the RGB image stored in a 729x713x3 array 
into a grayscale image stored in a 729x713 array, the result is displayed using imshow.
Original image courtesy of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER 
Science Team.
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8.4 Importing, Processing and Exporting Satellite Images

In the previous chapter we used a processed ASTER image that we have 
downloaded from the  ASTER web page. The original ASTER raw data con-
tain a lot more information and resolution than the free-of-charge image 
stored in unconform.jpg. The ASTER instrument produces two types of data, 
Level-1A and 1B. Whereas the L1A data are reconstructed, unprocessed in-
strument data, L1B data are radiometrically and geometrically corrected. 
Each ASTER data set contains 15 data arrays representing the intensity val-
ues from 15 spectral bands (see the ASTER-web page for more detailed 

Fig. 8.3 Indexed color image using a colormap containing 16 different colors. The result 
is displayed using imshow. Original image courtesy of NASA/GSFC/METI/ERSDAC/
JAROS and U.S./Japan ASTER Science Team.
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information) and various additional information such as location, date and 
time. The raw satellite data can be purchased from the USGS online store:

http://edcimswww.cr.usgs.gov/pub/imswelcome/

Enter the data gateway as guest, pick a discipline/top (e.g., Land: ASTER),
then choose from the list of data sets (e.g., DEM, Level 1A or 1B data), 
defi ne the search area and click Start Search. The system now needs a few 
minutes to list all relevant data sets. As list of data sets including various 
types of additional information (cloud coverage, exposure date, latititude & 
longitude) can be obtained by clicking on List Data Granules. Furthermore, 
a low resolution preview can be accessed by selecting Image. Having pur-
chased a certain data set, the raw image can be downloaded using a tempo-
rary FTP-access. As an example, we process an image from an area in the 
East African Rift System. The data are stored in two fi les

naivasha.hdf
naivasha.hdf.met

The fi rst fi le (111 MB large) is the actual raw data, whereas the second fi le (100 
KB) contains the header and various other types of information on the data. 
We save both fi les in our working directory. MATLAB contains various tools 
for importing and processing fi les stored in the hierarchical data format (HDF). 
The GUI-based import tool for importing certain parts of the raw data is

hdftool('naivasha.hdf')

This command opens a GUI that allows us to browse the content of the 
HDF-fi le naivasha.hdf, obtain all information on the contents and import 
certain frequency bands of the satellite image.  Alternatively, the command 
hdfread can be used as a quick way of accessing image data. An image as 
the one used in the previous chapter is typically achieved by computing a 
RGB composite from the vnir_Band3n, 2 and 1 contained in the data fi le. 
First we read the data

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

These commands generate three 8-bit image arrays each representing the 
intensity within a certain infrared (IR) frequency band of a 4200x4100 pixel 
image. The vnir_Band3n, 2 and 1 typically contain much information about 
lithology (including soils), vegetation and water on the Earth s surface. 
Therefore these bands are usually combined to 24-bit RGB images
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naivasha_rgb = cat(3,I1,I2,I3);

Similar to the examples above, the 4200x4100x3 array can now be dis-
played using

imshow(naivasha_rgb);

MATLAB scales the images in order to fi t the computer screen. Exporting 
the processed image from the Figure Window would only save the image at 
the monitor s resolution. To obtain an image at a higher resolution (Fig. 8.4), 
we use the command

Fig. 8.4 RGB composite of a TERRA-ASTER image using the spectral infrared bands vnir_
Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.
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imwrite(naivasha_rgb,'naivasha.tif','tif')

This command saves the RGB composite as a TIFF-fi le naivasha.tif (ca. 
50  MB large) in the working directory that can be processed with other 
software such as Adobe Photoshop.

8.5 Georeferencing Satellite Images

The processed ASTER image does not yet have a coordinate system. Hence, 
the image needs to be tied to a geographical reference frame ( georeferenc-
ing). The raw data can be loaded and transformed into a RGB composite 
by typing

I1 = hdfread('naivasha.hdf','VNIR_Band3N','Fields','ImageData');
I2 = hdfread('naivasha.hdf','VNIR_Band2','Fields','ImageData');
I3 = hdfread('naivasha.hdf','VNIR_Band1','Fields','ImageData');

naivasha_rgb = cat(3,I1,I2,I3);

The  HDF browser can be used

hdftool('naivasha.hdf')

to extract the geodetic coordinates of the four corners of the image. This 
information is contained in the header of the HDF fi le. Having launched the 
HDF tool, we activate File as HDF and select on the uppermost directory 
naivasha.hdf. This produces a long list of fi le attributes including product-
metadata.0, which includes the attribute scenefourcorners that contains the 
following information:

upperleft = [-0.319922, 36.214332];
upperright = [-0.400443, 36.770406];
lowerleft = [-0.878267, 36.096003];
lowerright = [-0.958743, 36.652213];

These two-element vectors can be collected into one array inputpoints.
Subsequently, the left and right columns can be fl ipped in order to have 
x=longitudes and y=latitudes.

inputpoints(1,:) = upperleft;
inputpoints(2,:) = lowerleft;
inputpoints(3,:) = upperright;
inputpoints(4,:) = lowerright;
inputpoints = fliplr(inputpoints);
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The four corners of the image correspond to the pixels in the four corners of 
the image that we store in a variable named basepoints.

basepoints(1,:) = [1,4200];
basepoints(2,:)= [1,1];
basepoints(3,:)= [4100,4200];
basepoints(4,:)= [4100,1];

The function cp2tform now takes the pairs of control points input-
points and basepoints and uses them to infer a spatial transformation 
matrix tform.

tform = cp2tform(inputpoints,basepoints,'affine');

This transformation can be applied to the original RGB composite naiva-
sha_rgb in order to obtain a georeferenced version of the satellite image 
newnaivasha_rgb.

[newnaivasha_rgb,x,y]=imtransform(naivasha_rgb,tform);

Subsequently, an appropriate grid for the image may be computed. The grid 
is typically defi ned by the minimum and maximum values for the longitude 
and the latitude. The vector increments are then obtained by dividing the 
longitude and latitude range by the array dimension and by subtracting one 
from the result.

X = 36.096003 : (36.770406-36.096003)/8569 : 36.770406;
Y = 0.319922 : (0.958743-0.319922)/8400: 0.958743;

Hence, both images can be displayed for comparison (Fig. 8.4 and 8.5).

iptsetpref('ImshowAxesVisibl','On')
imshow(naivasha_rgb), title('Original ASTER Image')
figure
imshow(newnaivasha_rgb,'XData',X,'YData',Y);
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')
grid on

The command iptsetpref makes the axis of the image visible. Exporting 
the results is possible in many ways, such as

 print -djpeg70 -r600 naivasha_georef.jpg

as JPEG fi le naivasha_georef.jpg compressed at 70% and at a resolution 
of 600 dpi.
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8.6 Digitizing from the Screen

On-screen digitzing is a widely-used image processing technique. While 
practical digitizer tablets exist in all formats and sizes, most people prefer 
digitizing vector data from the screen. Examples for this application are 
digitizing of river networks and drainage areas on topographic maps, the 
outlines of lithologic units in maps, the distribution of landslides on satellite 
images or mineral grains in a microscope image. The digitzing procedure 
consists of the following steps. Firstly, the image is imported into the work-
space. Subsequently, a coordinate system is defi ned. Finally, the objects of 
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Fig. 8.5 Geoferenced RGB composite of an TERRA-ASTER image using the infrared bands 
vnir_Band3n, 2 and 1. The result is displayed using imshow. Original image courtesy of 
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.
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interest are entered by moving a cursor or cross hair and clicking the mouse 
button. The result is a two-dimensional array of xy data, such as longitudes 
and latitudes of the points of a polygon or the coordinates of the objects of 
interest in an area.

The function ginput contained in the standard MATLAB toolbox pro-
vides graphical input using a mouse on the screen. It is generally used to 
select points such as specifi c data points from a fi gure created by a arbitrary 
graphics function such as plot. The function is often used for interactive 
plotting, i.e., the digitized points appear on the screen after they were select-
ed. The disadvantage of the function is that it does not provide coordinate 
referencing on an image. Therefore, we use a modifi ed version of the func-
tion that allows to reference an image to an arbitrary rectangular coordinate 
system. Save the following code in a text fi le minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');
xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B);

% Define upper left and lower right corner of image
disp('Click on lower left and upper right cr, then <return>')
[xcr,ycr] = ginput;
XMIN=xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX=xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN=ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX=ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata / size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata / size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

The function minput has four parts. In the fi rst part, the user enters the lim-
its of the coordinate axis as the reference for the image. Next, the image is 
imported into the workspace and displayed on the screen. The third part uses 
ginput to defi ne the upper left and lower right corners of the image. The re-
lationship between the coordinates of the two corners on the fi gure window 
and the reference coordinate system is used to compute the transformation 
for all points digitized in the fourth part.
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As an example, we use the image stored in the fi le naivasha_georef.jpg
and digitize the outline of Lake Naivasha in the center of the image. We call 
the new function minput from the Command Window using the commands

data = minput('naivasha_georef.jpg')

The function fi rst calls the coordinates for the limits of the x- and y-axis for 
the reference frame.  We enter the corresponding numbers and press return 
after each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

Next the function reads the fi le naivasha_georef.jpg and displays the image. 
We ignore the warning

Warning: Image is too big to fit on screen; displaying at 33%

and wait for the next response

Click on lower left and upper right corner, then <return>

The image window can be scaled according to user preference. Clicking on 
the lower left and upper right corner defi nes the dimension of the image. 
These changes are registered by pressing return. The routine then references 
the image to the coordinate system and waits for  the input of the points we 
wish to digitize from the image.

Click on data points to digitize, then <return>

We fi nish the input again by pressing return. The xy coordinates of our digi-
tized points are now stored in the variable data. We can now use these vec-
tor data for other applications.

Recommended Reading

Abrams M, Hook S (2002) ASTER User Handbook - Version 2. Jet Propulsion Laboratory 
and EROS Data Center, USA

Campbell JB (2002) Introduction to Remote Sensing. Taylor & Francis
Francus P (2005) Image Analysis, Sediments and Paleoenvironments - Developments in 

Paleoenvironmental Research. Springer, Berlin Heidelberg New York
Gonzales RC, Eddins SL, Woods RE (2003) Digital Image Processing Using MATLAB. 

Prentice Hall



9 Multivariate Statistics

9.1 Introduction

Multivariate analysis aims to understand and describe the relationship be-
tween an arbitrary number of variables. Earth scientists often deal with 
 multivariate data sets, such as microfossil assemblages, geochemical finger-
prints of volcanic ashes or  clay mineral contents of sedimentary sequences. 
If there are complex relationships between the different parameters, univari-
ate statistics ignores the information content of the data. There are number 
of methods for investigating the scaling properties of multivariate data.

A multivariate data set consists of measurements of p variables on n ob-
jects. Such data sets are usually stored in n-by-p arrays:

The columns of the array represent the p variables, the rows represent the n
objects. The characteristics of the 2nd object in the suite of samples is de-
scribed by the vector in the second row of the data array:

As example assume the microprobe analysis on glass shards from volca-
nic ashes in a tephrochronology project. Then the variables represent the p
chemical elements, the objects are the n ash samples. The aim of the study is 
to correlate ashes by means of their geochemical fi ngerprints.

The majority of  multi-parameter methods simply try to overcome the 
main diffi culty associated with multivariate data sets. This problem relates 
to the data visualization. Whereas the character of an univariate or bivariate 
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data set can easily be explored by visual inspection of a 2D histogram or an 
xy plot, the graphical display of a three variable data set requires a projection 
of the 3D distribution of data points into 2D. It is impossible to imagine or 
display a higher number of variables. One solution to the problem of visu-
alization of high-dimensional data sets is the  reduction of dimensionality. A 
number of methods group highly-correlated variables contained in the data 
set and then explore a small number of groups.

The classic methods to reduce dimensionality are the principal compo-
nent analysis (PCA) and the factor analysis (FA). These methods seek the 
directions of maximum variance in the data set and use these as new coordi-
nate axes. The advantage of replacing the variables by new groups of vari-
ables is that the groups are uncorrelated. Moreover, these groups often help 
to interpret the multivariate data set since they often contain valuable infor-
mation on process itself that generated the distribution of data points. In a 
geochemical analysis of magmatic rocks, the groups defi ned by the method 
usually contain chemical elements with similar ion size that are observed in 
similar locations in the lattice of certain minerals. Examples for such behav-
ior are Si4+ and Al3+, and Fe2+ and Mg2+ in silicates, respectively.

The second important suite of multivariate methods aim to group ob-
jects by their similarity. As an example,  cluster analysis (CA) is often 
applied to correlate volcanic ashes as described in the above example. 
Tephrochronology tries to correlate tephra by means of their geochemical 
fi ngerprint. In combination with a few radiometric age determinations of 
the key ashes, this method allows to correlate sedimentary sequences that 
contain these ashes (e.g., Westgate 1998, Hermanns et al. 2000). More 
examples for the application of cluster analysis come from the fi eld of 
micropaleontology. In this context, multivariate methods are employed to 
compare microfossil assemblages such as pollen, foraminifera or diatoms 
(e.g., Birks and Gordon 1985).

The following text introduces the most important techniques of multivari-
ate statistics, principal component analysis and cluster analysis (Chapter 9.2 
and 9.3). A nonlinear extension of the PCA is the  independent component 
analysis (ICA) (Chapter 9.4). Firstly, the chapters provide an introduction to 
the theory behind the techniques. Subsequently, the use of these methods in 
analyzing earth sciences data is illustrated with MATLAB functions.

9.2 Principal Component Analysis

The  principal component analysis (PCA) detects linear dependencies be-
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tween variables and replaces groups of correlated variables by new uncorre-
lated variables, the principal components (PC). The performance of the PCA 
is better illustrated with help of a bivariate data set than a multivariate one. 
Figure 9.1 shows a bivariate data set that exhibits strong linear correlation 
between the two variables x and y in an orthogonal xy coordinate system. 
The two variables have their univariate means and variances (Chapter 3). 
The bivariate data set can be described by a bivariate sample mean and a co-
variance (Chapter 4). The xy coordinate system can be replaced by a new or-
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Fig. 9.1 Principal component analysis (PCA) illustrated on a bivariate scatter. The original xy
coordinate system is replaced by a new orthogonal system, where the fi rst axis passes through 
the long axis of the data scatter and the new origin is the bivariate mean. We can now reduce 
dimensionality by dropping the second axis without losing much information.
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thogonal coordinate system, where the fi rst axis passes through the long axis 
of the data scatter and the new origin is the bivariate mean. This new refer-
ence frame has the advantage that the fi rst axis can be used to describe most 
of the variance, while the second axis contributes only a little. Originally, 
two axis were needed to describe the data set prior to the transformation. It 
is therefore possible to reduce the data dimension by dropping the second 
axis without losing much information as shown in Figure 9.1.

This is now expanded to an arbitrary number of variables and samples. 
Suppose a data set of measurements of p parameters on n samples stored in 
an n-by-p array.

The columns of the array represent the p variables, the rows represent the n
samples. After rotating the axis and moving the origin, the new coordinates 
can be computed by

The PC
1
 denoted by Y

1
 contains the greatest variance, PC

2
 the second high-

est variance and so forth. All PCs together contain the full variance of the 
data set. The variance is concentrated in the fi rst few PCs, which explain 
most of the information content of the data set. The last PCs are generally 
ignored to reduce the data dimension. The factors a

ij
in the above equations 

are the principal component  loads. The values of these factors represent the 
relative contribution of the original variables to the new PCs. If the load a

ij

of a variable X
1
 in PC

1
 is close to zero, the infl uence of this variable is low. 

A high positive or negative a
ij
suggest a strong contribution of the variable 

X
1
. The new values of the variables computed from the linear combinations 

of the original variables weighted by the loads are called the principal com-
ponent  scores.

In the following, a synthetic data set is used to illustrate the use of the func-
tion princomp contained in the Statistics Toolbox. Our data set contains the 
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percentage of various minerals contained in sediment samples. The sediments 
are sourced from three rock types: a magmatic rock containins amphibole 
(amp), pyroxene (pyr) and plagioclase (pla), a hydrothermal vein character-
ized by the occurrence of fl uorite (fl u), sphalerite (sph) and galenite (gal), as 
well as some feldspars (plagioclase and potassium feldspar, ksp) and quartz, 
and a sandstone unit containing feldspars, quartz and clay minerals (cla).

Ten samples were taken from various levels of this sedimentary sequence 
that are comprised of varying amounts of these minerals. The PCA is used to 
verify the infl uence of the three different source rocks and to estimate their 
relative contribution. Firstly, the data are loaded by typing

data = load('sediments.txt');

Next we defi ne labels for the various graphs created by the PCA. We number 
the samples 1 to 10, whereas the minerals are characterized by three-char-
acter abbreviations.

for i=1:10
   sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals= ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal'];

A successful PCA requires linear correlations between variables. The  cor-
relation matrix provides a technique for exploring such dependencies in the 
data set. The elements of the correlation matrix are Pearson s correlation 
coeffi cients for each pair of variables as shown in Figure 9.2. In this case, 
the variables are minerals.

corrmatrix = corrcoef(data);
corrmatrix = flipud(corrmatrix);

imagesc(corrmatrix), colormap(hot)
title('Correlation Matrix')
axis square, colorbar, hold
set(gca,'XTickLabel',minerals,'YTickLabel',flipud(minerals))

This pseudocolor plot of the correlation coeffi cients shows strong positive 
correlations between the minerals amp, pyr and pla, the minerals ksp, qtz
and cla, and the minerals fl u, sph and gal, respectively. Moreover, some of 
the minerals show negative correlations. We also observe no dependency 
between some of the variables, for instance between the potassium feldspar 
and the vein minerals. From the observed dependencies we expect interest-
ing results from the application of the PCA.

Various methods exist for scaling the original data before applying the 
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PCA, such as mean centering (zero means) or autoscaling (mean zero and 
standard deviation equals one). However, we use the original data for com-
puting the PCA. The output of the function princomp includes the principal 
components pcs, the component scores of the data newdata and the com-
ponent variances.

[pcs,newdata,variances] = princomp(data);

The fi rst fi ve principal components PC
1
 to PC

5
 can be shown ty typing

pcs(:,1:5)

ans =
   -0.3303    0.2963   -0.4100   -0.5971    0.1380
   -0.3557    0.0377    0.6225    0.2131    0.5251
   -0.5311    0.1865   -0.2591    0.4665   -0.3010
    0.1410    0.1033   -0.0175    0.0689   -0.3367
    0.6334    0.4666   -0.0351    0.1629    0.1794
    0.1608    0.2097    0.2386   -0.0513   -0.2503
    0.1673   -0.4879   -0.4978    0.2287    0.4756
    0.0375   -0.2722    0.2392   -0.5403   -0.0068
    0.0771   -0.5399    0.1173    0.0480   -0.4246
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Fig. 9.2 Correlation matrix containing   Pearson s correlation coeffi cients for each pair of 
variables, such as minerals in a sediment sample. Light colors represent strong positive 
linear correlations, whereas dark colors document negative correlations. Orange suggests 
no correlation.
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we observe that PC
1
 (fi rst column) has high negative loads in the fi rst three 

variables amp, pyr and pla (fi rst to third row), and high positive loads in the 
fi fth variable qtz (fi fth row). PC

2
 (second column) has high negative loads in 

the vein minerals fl u, sph and gal, and again a positive load in qtz. We create 
a number of plots of the PCs, where we also observe signifi cant loads of the 
other PCs.

subplot(2,2,1),plot(1:9,pcs(:,1),'o'),axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,1),minerals,'FontSize',8),hold
plot(1:9,zeros(9,1),'r'), title('PC 1')

subplot(2,2,2),plot(1:9,pcs(:,2),'o'),axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,2),minerals,'FontSize',8),hold
plot(1:9,zeros(9,1),'r'),title('PC 2')

subplot(2,2,3),plot(1:9,pcs(:,3),'o'),axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,3),minerals,'FontSize',8),hold
plot(1:9,zeros(9,1),'r'),title('PC 3')

subplot(2,2,4),plot(1:9,pcs(:,4),'o'),axis([1 9 -1 1])
text((1:9)+0.2,pcs(:,4),minerals,'FontSize',8),hold
plot(1:9,zeros(9,1),'r'),title('PC 4')

The loads of the index minerals and their relationship to the PCs can be used 
to interpret the relative infl uence of the source rocks. PC

1
characterized by 

strong contributions of amp, pyr and pla, and a contribution with opposite 
sign of qtz probably describes the amount of magmatic rock clasts in the 
sediment. The second principal component PC

2
 is clearly dominated by hy-

drothermal minerals hence suggesting the detrital input from the vein. PC
3

and PC
4
 show a mixed and contradictory pattern of loads and are therefore 

not easy to interpret. We will see later that this observation is in line with a 
rather weak and mixed signal from the sandstone source on the sediments.

An alternative way to plot of the loads is a bivariate plot of two principal 
components. We ignore PC

3
 and PC

4
 at this point and concentrate on PC

1

and PC
2
.

plot(pcs(:,1),pcs(:,2),'o')
text(pcs(:,1)+0.02,pcs(:,2),minerals,'FontSize',14), hold
x=get(gca,'XLim'); y=get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')

Here we observe the same relationships on a single plot that were previously 
shown on several graphs (Fig. 9.3). It is also possible to plot the data set as 
functions of the new variables. This needs the second output of princomp
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containing the principal component scores.

plot(newdata(:,1),newdata(:,2),'+')
text(newdata(:,1)+0.01,newdata(:,2),sample), hold
x=get(gca,'XLim'); y=get(gca,'YLim');
plot(x,zeros(size(x)),'r')
plot(zeros(size(y)),y,'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')

This plot clearly defi nes groups of samples with similar infl uences. The 
samples 1, 2, 8 to 10 dominated by magmatic infl uences cluster in the left 
half of the diagram, the samples 3 to 5 dominated by the hydrothermal vein 
group in the lower part of the right half, whereas the two sandstone domi-
nated samples 6 and 7 fall in the upper right corner.

Next we use the third output of the function princomp to compute the 
variances of the corresponding PCs.

percent_explained=100*variances/sum(variances)
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Fig. 9.3 Principal components scores suggesting that the PCs are infl uenced by different 
minerals. See text for detailed interpretation of the PCs.
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percent_explained =
   80.9623
   17.1584
    0.8805
    0.4100
    0.2875
    0.1868
    0.1049
    0.0096
    0.0000

We see that more than 80% of the total variance is contained in PC
1
, around 

17% is described by PC
2
, whereas all other PCs do not play any role. This 

means that most of the variability in the data set can be described by two 
new variables only.

9.3 Cluster Analysis

 Cluster analysis creates groups of objects that are very similar compared 
to other objects or groups. It fi rst computes the similarity between all pairs 
of objects, then it ranks the groups by their similarity, and fi nally cre-
ates a hierarchical tree visualized as a dendrogram. Examples for group-
ing objects in earth sciences are the correlations within volcanic ashes 
(Hermanns et al. 2000) and the comparison of microfossil assemblages 
(Birks and Gordon 1985).

There are numerous methods for calculating the similarity between two 
data vectors. Let us defi ne two data sets consisting of multiple measure-
ments on the same object. These data can be described by the vectors:

The most popular measures of similarity of the two sample vectors are

1. Euclidian distance – This is simply the shortest distance between the two 
points in the multivariate space.

The Euclidian distance is certainly the most intuitive measure for similar-
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ity. However, in heterogenic data sets consisting of a number of different 
types of variables, it should be replaced the following measure.

2. Manhattan distance – In the city of Manhattan, one must walk on per-
pendicular avenues instead of diagonal crossing blocks. The Manhattan 
distance is therefore the sum of all differences:

3. Correlation  similarity coeffi cient – Here we use Pearson s linear product-
moment correlation coeffi cient to compute the similarity of two objects.

This measure is used if one is interested in ratios between the variables mea-
sured on the objects. However, Pearson s correlation coeffi cient is highly 
sensitive to outliers and should be used with care (see also Chapter 4).

4.   Inner-product similarity index – Normalizing the data vectors to one and 
computing the inner product of these yields another important similarity 
index. This is often used in transfer function applications. In this example, 
a set of modern fl ora or fauna assemblages with known environmental 
preferences is compared with a fossil sample to reconstruct the environ-
mental conditions in the past.

The inner product similarity varies between 0 and 1. A zero value sug-
gests no similarity and a value of one represents maximum similarity. 
Transfer functions describe the similarity between the fossil sample and 
all modern samples. The modern samples with the highest similarities are 
then used to compute an estimate of the environmental conditions during 
the existence of the fossil organisms.
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The second step in performing a cluster analysis is to rank the groups by 
their similarity and build a hierarchical tree visualized as a dendrogram. 
Defi ning groups of objects with signifi cant similarity and separating clusters 
depends on the internal similarity and the difference between the groups. 
Most clustering algorithms simply link the two objects with highest simi-
larity. In the following steps, the most similar pairs of objects or clusters 
are linked iteratively. The difference between groups of objects forming a 
cluster is described in different ways depending on the type of data and ap-
plication.

1. K-means clustering – Here, the Euclidean distance between the multi-
variate means of the K clusters are used as a measure for the difference 
between the groups of objects. This distance is used if the data suggest 
that there is a true mean value surrounded by random noise.

2. K-nearest-neighbors clustering – Alternatively, the Euclidean distance of 
the nearest neighbors is used as such a measure. This is used if there is 
a natural heterogeneity in the data set that is not attributed to random 
noise.

It is important to evaluate the data properties prior to the application of a 
clustering algorithm. Firstly, one should consider the absolute values of the 
variables. For example, a geochemical sample of volcanic ash might show 
SiO

2
 contents of around 77% and Na

2
O contents of 3.5%, although the Na

2
O

content is believed to be of great importance. In this case, the data need to 
be transformed to zero means ( mean centering). Differences in the vari-
ances and in the means are corrected by autoscaling, i.e., the data are stan-
dardized to zero means and variances that equal one. Artifacts arising from 
closed data, such as artifi cial negative correlations, are avoided by using 
Aitchison s log-ratio transformation (Aitchison 1984, 1986). This ensures 
data independence and avoids the constant sum normalization constraints. 
The log-ratio transformation is defi ned as

where x
tr

denotes the transformed score (i=1, 2, 3, …, d-1) of some raw data 
x

i
. The procedure is invariant under the group of permutations of the vari-

ables, and any variable can be used as divisor x
d
.

As an example for performing a cluster analysis, the sediment data are 
loaded and the plotting labels are defi ned.
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data = load('sediments.txt');

for i=1:10
  sample(i,:) = ['sample',sprintf('%02.0f',i)];
end
clear i

minerals= ['amp';'pyr';'pla';'ksp';'qtz';'cla';'flu';'sph';'gal'];

Subsequently, the distances between pairs of samples can be computed. The 
function pdist provides many ways for computing this distance, such as 
the Euclidian or Manhattan distance. We use the default setting which is the 
Euclidian distance.

Y = pdist(data);

The function pdist returns a vector Y containing the distances between 
each pair of observations in the original data matrix. We can visualize the 
distances on another pseudocolor plot.

 squareform(Y);
 imagesc(squareform(Y)),colormap(hot)
title('Euclidean distance between pairs of samples')
xlabel('First Sample No.')
ylabel('Second Sample No.')
colorbar

The function squareform converts Y into a symmetric, square format, so 
that the elements (i,j)of the matrix denote the distance between the i
and j objects in the original data. Next we rank and link the samples with 
respect to their inverse distance using the function linkage.

Z = linkage(Y);

In this 3-column array Z, each row identifi es a link. The fi rst two columns 
identify the objects (or samples) that have been linked, the third column 
contains the individual distance between these two objects. The fi rst row 
(link) between objects (or samples) 1 and 2 has the smallest distance cor-
responding to the highest similarity. Finally, we visualize the hierarchical 
clusters as a dendrogram which is shown in Figure 9.4.

 dendrogram(Z);
xlabel('Sample No.')
ylabel('Distance')
box on

Clustering fi nds the same groups as the principal component analysis. We 
observe clear groups consisting of samples 1, 2, 8 to 10 (the magmatic 
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source rocks), samples 3 to 5 (the the hydrothermal vein) and samples 6 
and 7 (the sandstone). One way to test the validity of our clustering result is 
the cophenet correlation coeffi cient. The closer this coeffi cient is to one, the 
better is the cluster solution. In our case, the results

cophenet(Z,Y)

ans =
    0.7579

look convincing.

9.4 Independent Component Analysis (by N. Marwan)

The principal component analysis (PCA) is the standard method for separat-
ing mixed signals. Such analysis provides signals that are linearly uncor-
related. This method is also called  whitening since this property is char-
acteristic for white noise. Although the separated signals are uncorrelated, 

Sample No.

D
is

ta
nc

e

 2  9  1  8 10  3  4  5  6  7

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Fig. 9.4 Output of the cluster analysis. The dendrogram shows clear groups consisting 
of samples 1, 2, 8 to 10 (the magmatic source rocks), samples 3 to 5 (the magmatic dyke 
containing ore minerals) and samples 6 and 7 (the sandstone unit).
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they could still can be dependent, i.e., nonlinear correlation remains. The 
independent component analysis (ICA) was developed for the purpose of 
investigating such data. It separates mixed signals into independent signals, 
which are then nonlinearly uncorrelated. Fast ICA algorithms use a crite-
rion which estimates how gaussian distributed the joint distribution of the 
independent components is. The less gaussian this distribution is, the more 
independent the individual components are.

According to the model, n independent signals x(t) are linearly mixed in 
m measurements.

and we are interested in the source signals s
i
 and in the mixing matrix A.

We can, for example, imagine that we are on a party and a lot of people 
talk independently with others. We hear a mixing of these talks and perhaps 
cannot distinguish the single talks. Now we could install some microphones 
and use these measurements in order to separate the single conversations. 
Hence, this dilemma is also called the cocktail party problem. Its correct 
term is blind source separation that is given by

where WT is the separation matrix in order to reverse the mixing and get 
the original signals. Let us consider a mixing of three signals s

1
, s

2
 and s

3

and their separation using PCA and ICA. At fi rst we create three periodic 
signals

clear
i = (1:0.01:10 * pi)';
[dummy index] = sort(sin(i));

s1(index,1) = i/31; s1 = s1 - mean(s1);
s2 = abs(cos(1.89*i)); s2 = s2 - mean(s2);
s3 = sin(3.43*i);

subplot(3,2,1), plot(s1), ylabel('s_1'), title('Raw signals')
subplot(3,2,3), plot(s2), ylabel('s_2')
subplot(3,2,5), plot(s3), ylabel('s_3')

Now we mix these signals and add some observational noise. We get a three-
column vector x which corresponds to our measurement (Fig. 9.5).

randn('state',1);
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x = [.1*s1 + .8*s2 + .01*randn(length(i),1),...
     .4*s1 + .3*s2 + .01*randn(length(i),1),...
     .1*s1 + s3 + .02*randn(length(i),1)];

subplot(3,2,2), plot(x(:,1)),
   ylabel('x_1'), title('Mixed signals')
subplot(3,2,4), plot(x(:,2)), ylabel('x_2')
subplot(3,2,6), plot(x(:,3)), ylabel('x_3')

We begin with the separation of the signals using the PCA. We calculate the 
principal components and the whitening matrix W_PCA with

[E sPCA D] = princomp(x);

The PC scores sPCA are the linearly  separated components of the mixed 
signals x (Fig. 9.6).
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Fig. 9.5 Sample input for the independent component analysis. We fi rst generate three period 
signals (a, c, e), mix the signals and add some gaussian (b, d, f).
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subplot(3,2,1), plot(sPCA(:,1))
ylabel('s_{PCA1}'), title('Separated signals - PCA')
subplot(3,2,3), plot(sPCA(:,2)), ylabel('s_{PCA2}')
subplot(3,2,5), plot(sPCA(:,3)), ylabel('s_{PCA3}')

The  mixing matrix A can be found with

A_PCA = E * sqrt (D);

Next, we separate the signals into independent components. We will do 
this by using a FastICA algorithm which is based on a fi xed-point iteration 
scheme in order to fi nd the maximum of the non-gaussianity of the indepen-
dent components WTx. As the nonlinearity function we use a power of three 
function as an example.
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rand('state',1);

div = 0;
B = orth(rand(3, 3) - .5);
BOld = zeros(size(B));

while (1 - div) > eps
   B = B * real(inv(B' * B)^(1/2));
   div = min(abs(diag(B' * BOld))); 
   BOld  = B;
   B = (sPCA' * ( sPCA * B) .^ 3) / length(sPCA) - 3 * B;
   sICA = sPCA * B;
end

We plot the separated components with (Fig. 9.6)

subplot(3,2,2), plot(sICA(:,1))
ylabel('s_{ICA1}'), title('Separated signals - ICA')
subplot(3,2,4), plot(sICA(:,2)), ylabel('s_{ICA2}')
subplot(3,2,6), plot(sICA(:,3)), ylabel('s_{ICA3}')

The PCA algorithm has not reliably separated the mixed signals. Especially 
the saw-tooth signal was not correctly found. In contrast, the ICA has found 
the source signals almost perfectly. The only remarkable differences are the 
noise, which came through the observation, the wrong sign and the wrong 
order of the signals. However, the sign and the order of the signals are not 
really important, because we have in general not the knowledge about the 
real sources nor their order. With

A_ICA = A_PCA * B;
W_ICA = B' * W_PCA;

we compute the mixing matrix A and the separation matrix W. The mix-
ing matrix A can be used in order to estimate the portion of the separated 
signals on our measurements  The components a

i,j
 of the mixing matrix A 

correspond to the principal components loads as introduced in Chapter 9.2. 
A FastICA package is available for MATLAB and can be found at

http://www.cis.hut.fi/projects/ica/fastica/
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Manhattan distance  222
MAT-fi les  21
MATLAB  11
MATLAB Editor  20
matrix  15
matrix division  18
matrix element  16
matrix indexing  17
matrix multiplication  18
max  37
mean  30, 37, 45
mean-squared error  144
mean centering  218, 223
median  30, 31, 38
mesh  167
meshgrid  157, 160
Microsoft Windows  13
Microsoft Windows Bitmap Format  

198
min  37
minput  210
missing data  20
mixing matrix  228
mode  32
monitor  197
multi-parameter methods  213
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multimodal  32
multiplication  18
multiplying element-by-element  18
multivariate analysis  213
multivariate data sets  213

N

NaN  20, 155
nanmean  39
natural fi lters  119
nearest-neighbor criterion  162
nested models  182
noise  119, 143
nominal data  3
non-causal fi lters  125
nonlinear system  122
nonrecursive fi lters  129
normal distribution  45
normalizing  57
normcdf  51
normpdf  51
Not-a-Number  20, 155
nugget effect  182
nuggets  182
null hypothesis  51
Nyquist frequency  140

O

objective variogram modeling  183
observed frequencies  57
observed values  72
omni directional variograms  185
optimization problem  144
order of the fi lter  125
ordinal data  6
ordinary point kriging  185
outlier  66
output  23
output signal  119

P

paired low and high  170
passband  140
path  14
pathdef  14
pcolor  166
pdist  224
Pearsons correlation coeffi cients  62
percentiles  32
percent sign  20
periodogram  131
phase  134
phase shift  132
picture elements  194
pixels  194
pixels per inch  197
plot  25
point kriging  190
Poisson distribution  44
polyfi t  70
polytool  71
polyval  71
population  1, 29
Portable Document Format  199
Postscript  198
power of matrices  18
ppi  197
prctile  38
predicted values  72
prediction error  78
predictor variable  68
primary input  144
principal component analysis  214
principal component loads  216
principal components  215
principal component scores  216
princomp  216, 218
print  208
probability density function  41, 50
probability distribution  41
Property Editor  28
PS  198
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Q

quantiles  32
quartiles  32
quintiles  32

R

randn  65
random numbers  50
random sampling  4
randtool  50
range  30, 33, 37, 181
raster data  151, 193, 194
ratio data  6
realization  119
rectangular distribution  42
recursive fi lters  129
reduced major axis regression  69, 78
reduction of dimensionality  214
reference input  144
regionalized variables  173
regression coeffi cient  69
regressor variable  68
regular sampling  4
resampling schemes  66
residuals  72
resolution  197
return  15
RGB  196, 200
RGB composite  206
RMA regression  78
rolling die  43
Rotate 3D  27
row  15
running mean  136

S

sample  1, 29
samples  29
sample size  2, 184
sampling design  185
sampling scheme  3

satellite images  204
save  20
Save as  27, 28
scalar  15
scaling  57
scatter plot  70
scores  216
scripts  22
search path  14
semicolon  15
semivariance  177
semivariogram  177
separated components  227
separation distance  185
separation vector  177
Set Path  14
shading  155, 160
shape  30, 34
shoreline data  152
Shuttle Radar Topography Mission  158
signal  143
signal processing  119
signifi cance  66
signifi cance level  51
sill  181
similarity coeffi cient  222
similarity index  222
size  22
skewness  35, 39
Solaris  13
spatial data  6
spatially-distributed data  151
spatial sampling scheme  3
splines  164
splines with tension  173
square brackets  15
squareform  224
SRTM  158
stability  124
standard deviation  30, 33, 45
standard normal distribution  45
statistical signifi cance  66
std  39
stem  133
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step function  121
stopband  140
store data  19
structures  71
Students t distribution  47
subplot  26
subtraction  18
sum  15
SUN Solaris  13
superposition  122
surf  157, 168
surface estimation  162
surfc  168
surrogates  66
system theory  119

T

t-test  51
Tagged Image File Format  198
t distribution  47
TERRA-ASTER satellite image  199
Text Editor  12, 13, 20, 21
tform  208
theoretical distribution  29, 41
theory of regionalized variables  173
TIFF  198
time domain  131
time invariance  122
time series  15
title  27
Tools menu  27
topography  154
transpose  18
triangulation  162
trimodal  32
true color image  197
tsplines  173
ttest2  52

U

uint8  200
uniform distribution  42

uniform sampling  4
unimodal  32
unit impulse  121, 132
univariate analysis  29
UNIX  13
unwrap  137
user  14
username  14

V

var  39
variables  16
variance  33
variogram  173
variogram cloud  178
variogram estimator  177, 179
variogram model  181
variography  176
vector data  151, 193, 194
vectors  15
visualization  25

W

weighted mean  163
whitening  225
whos  16, 17
workspace  12, 13, 15

X

xlabel  27

Y

ylabel  27

Z

z distribution  46
zonal anisotropy  185
Zoom  27


