Zahir M. Hussain
Amin Z. Sadik
Peter 0'Shea

Digital Signal
Processing

An Introduction with
MATLAB and Applications

@ Springer

Digital Signal Processing

Z.ahir M. Hussain - Amin Z. Sadik -
Peter O’Shea

Digital Signal Processing

An Introduction with MATLAB and
Applications

@ Springer

Prof. Zahir M. Hussain Peter O’Shea

School of Electrical and Computer School of Engineering Systems
Engineering QUT

RMIT University Gardens Point Campus

Latrobe Street 124, Melbourne Brisbane 4001

VIC 3000 Australia

Australia e-mail: pj.oshea@qut.edu.au

e-mail: zmhussain@ieee.org

Amin Z. Sadik

RMIT University

Monash Street 19 Lalor, Melbourne
VIC 3075

Australia

e-mail: azsadik@ieee.org

ISBN 978-3-642-15590-1 e-ISBN 978-3-642-15591-8

DOI 10.1007/978-3-642-15591-8

Springer Heidelberg Dordrecht London New York

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the right of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to our loving families.

Preface

Signal Processing (SP) is a subject of central importance in engineering and the
applied sciences. Signals are information-bearing functions, and SP deals with the
analysis and processing of signals (by dedicated systems) to extract or modify
information. Signal processing is necessary because signals normally contain
information that is not readily usable or understandable, or which might be dis-
turbed by unwanted sources such as noise. Although many signals are non-
electrical, it is common to convert them into electrical signals for processing. Most
natural signals (such as acoustic and biomedical signals) are continuous functions
of time, with these signals being referred to as analog signals. Prior to the onset of
digital computers, Analog Signal Processing (ASP) and analog systems were the
only tools to deal with analog signals. Although ASP and analog systems are still
widely used, Digital Signal Processing (DSP) and digital systems are attracting
more attention, due in large part to the significant advantages of digital systems
over their analog counterparts. These advantages include superiority in perfor-
mance, speed, reliability, efficiency of storage, size and cost. In addition, DSP can
solve problems that cannot be solved using ASP, like the spectral analysis of
multicomponent signals, adaptive filtering, and operations at very low frequencies.

Following the recent developments in engineering which occurred in the 1980s
and 1990s, DSP became one of the world’s fastest growing industries. Since that
time DSP has not only impacted on traditional areas of electrical engineering, but
has had far reaching effects on other domains that deal with information such as
economics, meteorology, seismology, bioengineering, oceanology, communica-
tions, astronomy, radar engineering, control engineering and various other
applications.

This book is based on the Lecture Notes of Associate Professor Zahir M.
Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z.
Sadik (at QUT & RMIT, 2005-2008), and the Notes of Professor Peter O’Shea at
Queensland University of Technology.

Part I of the book addresses the representation of analog and digital signals and
systems in the time domain and in the frequency domain. The core topics covered
are convolution, transforms (Fourier, Laplace, Z, Discrete-time Fourier, and

vii

viii Preface

Discrete Fourier), filters, and random signal analysis. There is also a treatment of
some important applications of DSP, including signal detection in noise, radar
range estimation for airborne targets, binary communication systems, channel
estimation, banking and financial applications, and audio effects production.
Design and implementation of digital systems (such as integrators, differentiators,
resonators and oscillators are also considered, along with the design of conven-
tional digital filters. Part I is suitable for an elementary course in DSP.

Part II (which is suitable for an advanced signal processing course), considers
selected signal processing systems and techniques. Core topics covered are the
Hilbert transformer, binary signal transmission, phase-locked loops, sigma—delta
modulation, noise shaping, quantization, adaptive filters, and non-stationary signal
analysis.

Part III presents some selected advanced DSP topics.

We hope that this book will contribute to the advancement of engineering
education and that it will serve as a general reference book on digital signal
processing.

May 2009 Prof. Zahir M. Hussain
Amin Z. Sadik
Peter J. O’Shea

Preface ix

Prerequisites:
Basic knowledge in calculus, programming, and circuit theory is recommended.

Objectives:

The book aims to facilitate the development of expertise in analyzing and
synthesizing signals, both natural and synthetic. It provides various tools which
can reveal the critical information contained in the time and frequency structure of
signals of interest. The book also provides advanced applications and topics in
signal processing, with MATLAB experiments to give practical experience in
implementing analog and digital signal processing systems.

References:

1. Carlson, G.: Signal and Linear System Analysis. Wiley, New york (1998)

2. Williams, A.B., Taylor, F.J.: Electronic Filter Design Handbook: LC, Active,
and Digital Filters, 2nd edn. McGraw-Hill, New York (1988)

3. Ambardar, A.: Analog and Digital Signal Processing, Brooks/Cole, Monterey
(1999)

4. Oppenheim, A.V., Schafer, R.: Discrete-Time Signal Processing, Prentice-
Hall, Englewood Cliffs (1989)

5. Haykin, S., Veen, B.V.: Signals and Systems. Wiley, New York (1999)

6. Proakis, J.G. Manolakis, D.G.: Digital Signal Processing: Principles, Algo-
rithms and Applications, Macmillan, New York (1996)

7. Proakis, J.G. Salehi, M.: Contemporary Communication Systems, Brooks/
Cole, Monterey (2000)

8. Hsu, H.: Signals and Systems, Schaum’s Outline Series, McGraw-Hill, New
York (1995)

Contents

Part I Theory and Selected Applications

1 Analog Signals and Systems
1.1 Definitions, Classifications, and Overview
1.1.1 Definitions
1.1.2 Representation of Signals and Systems
1.1.3 Examples of Signals
1.1.4 Classification of Signals.
1.1.5 Analog and Digital Signal Processing
1.1.6 Digital Signal Processing versus
Analog Signal Processing.
1.1.7 System Modeling
1.1.8 Classification of Systems.
1.1.9 Linear Time-Invariant Systems.
1.2 Time-Domain / Frequency-Domain Representations.
1.2.1 Basic Functions and Relations
1.2.1.1 The Convolution Integral
1.2.1.2 The Dirac Delta Function.
1.2.1.3 The Unit Step Function
1.2.2 Time-Domain Representation
1.2.2.1 Mathematical Time-Domain
Representation
1.2.2.2 Stability of Analog LTI Systems in the
Time Domain
1.2.3 Frequency-Domain Representation
1.2.3.1 Fourier Series Representation
of Periodic Signals
1.2.3.2 The Fourier Transform.
1.2.33 The Laplace Transform
1.2.3.4 Mathematical Frequency-Domain
Representation

AN B W W W W W

(e RN |

Xii

1.2.3.5

1.2.5.1
1.2.5.2
1253
1254

1.3 Random Signals

1.3.1 Definition

1.3.2 Overview
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.3.2.5
1.3.2.6
1.3.2.7
1.3.2.8
1.3.2.9
1.3.2.10

1.3.3 Signals in
1.3.3.1
1.3.3.2
1.333
1334
1335

1.3.3.6
1.3.3.7

1.3.3.8
1.3.3.9

1421
1422

1423
14.2.4

Stability of Analog LTI Systems-Frequency

Domain
1.2.4 Signal Correlation and Its Applications
1.2.5 Signal Power and Energy
Power in Periodic Signals.
Parseval’s Theorem
The Wiener—Kinchin Theorem
Examples

of Probability and Statistics.
Probability and Sample Space.
Random Variables.
Joint Probability
Conditional Probability
Independent Events
Probability Density Function.
Statistical Mean
The Second Moment
The Variance
The Gaussian pdf
NOISe . .. voie
Gaussian Noise
Signals in Gaussian Noise
Power Spectral Density of Random Signals. . .
Stationary Random Signals.

The Autocorrelation Function

of Random Signals
Wide-Sense Stationary Signals

Wiener—Kinchin Theorem for

Random Signals
White Noise

Effect of Ideal Low-Pass Filter

on White Noise.
1.4 Applications of Analog Signal Analysis
1.4.1 Signal Detection in Noise
1.4.2 The Matched Filter

The Output of the Matched Filter

at the Time of Optimal SNR
The Matched Filter is a Correlator
The Optimal Receiver

Conclusion.

Contents

29
29
31
32
32
33
33
35
35
35
35
36
36
36
37
37
37
38
38
38
39
39
39
40
40

40
40

41
41

42
43
43
44
47

47
48
48

Contents

1.5 AnalogFilters.

References

2.1

2.2

23

1.5.1
1.5.2
1.5.3
1.5.4

1.5.5

1.5.6
1.5.7
1.5.8
1.5.9

The Ideal Low-Pass Filter
Butterworth LPF.
Chebychev-ILPF
Design of Butterworth and Chebychev-I LPF’s.
1.5.4.1 Example of a Low-pass

Filter Design.
1.542 Circuit Design
Design of Butterworth and Chebychev-I High-pass,
Band-Pass and Band-Stop Filters
1.5.5.1 Circuit Design.
1.552 Impedance Matching
1.5.5.3 Hardware Filter Design Rules Using

Normalized LPF Standard Circuits
1.5.5.4 Example of a High-pass Filter Design
Chebychev-Il Filters
Elliptic Filters.
MATLAB Analog Filter Design
Active Filters
1.59.1 Overview of Active Amplifiers.
1.59.2 The Active Buffer.
1.59.3 The Active Inductance.
1.59.4 Butterworth Active Filters

Discrete and Digital Signals and Systems

Introduction

2.1.1

Digital Systems.

Ideal Sampling and Reconstruction

2.2.1

222

Ideal Uniform Sampling.
22.1.1 Definitions for Some Important
Discrete-Time Signals
Ideal Reconstruction
2.2.2.1 Stage 1.
2222 Stage 2. . . .
2223 Frequency Aliasing

Time-Domain / Frequency-Domain Representations.

23.1

Time-Domain Representation of Digital Signals

and SyStems

2.3.1.1 Discrete Linear Convolution.

2.3.1.2 Mathematical Representation of Digital
Signals and Systems in the Time Domain . . .

Xiii

48
49
50
50
51

52
53

53
54
54

55
55
56
57
57
58
58
59
60
60
62

63
63
64
64
64

65
68
68
69
70
71

71
71

73

Xiv

232

233

234

24.1

25.1

2.6.1

Frequency-Domain Representation of Digital

Signals and Systems

23.2.1 Discrete-Time Fourier Series for

Periodic Digital Signals

2322 The Discrete-Time Fourier Transform

for Non-Periodic Digital Signals........
The z-Transform.
2.3.3.1 The Single-Sided ZT
2.3.3.2 The Time-Shift Property of the ZT

2333 Relationship Between the FT and ZT

of a Discrete-Time Signal

2334 Relationship Between the LT and the ZT

for Discrete-Time Signals.

Mathematical Representation of Signals and Systems

in the Frequency Domain.

2.3.4.1 Relationship Between the ZT Transfer

Function and the Frequency Response. . . .

2342 Stability of Digital Systems in

the z-Domain
2.4 A Discrete-Time and Discrete-Frequency Representation
The Discrete Fourier Transform
24.1.1 Approximation of the FT Using DFT.

24.1.2 Relationship Between the DFT

and the DFS Coefficients.
24.1.3 The Fast Fourier Transform

24.14 Circular Convolution and Its Relation

to the Linear Convolution

2.4.1.5 I/O Relations Using Circular Convolution

andthe DFT.
2.5 Signal Correlation, Power, and Energy

2.5.1.1 Autocorrelation of Non-Periodic

Discrete-Time Energy Signals.

2512 Autocorrelation for Periodic Discrete-Time

Power Signals.

2.5.13 Energy in Non-Periodic Discrete-Time

Energy Signals

25.14 Power in Periodic Discrete-Time

Power Signals.
2.5.1.5 Parseval’s Theorem
2.5.1.6 The Wiener-Kinchin Theorem.
2.6 Digital Filters and Their Applications
Ideal Digital Filters.
2.6.1.1 Mathematical Formulation

Definitions e

Contents

.. 15

.. 15
.. 176
.o T
.. 18

.. 18
.. 18
... 19
.. 80
.. 80
.. 82
.. 82
.. 84

.. 84
.. 84

.. 8

.. 8
.. 86
.. 86

.. 86

.. 87

.. 87

.. 87
.. 87
.. 88
.. 88
.. 88
.. 88

Contents

2.6.2
2.63
2.6.4

2.6.5

2.6.6

2.6.7

2.6.8

2.6.9

XV

Linear-Phase Systems 90
Classification of Digital Filters. 91
FIR Digital Filters. 91
2.6.4.1 Structure and Implementation

of FIRFilters 91
2.6.4.2 Software Implementation of FIR Filters. 91
2.64.3 FIR Filtering of Long Data Sequences. 92
2.6.4.4 Pole-Zero Diagram and Stability

of FIR Filters 92
2.6.4.5 Linear-Phase FIR Filters 93
2.6.4.6 Efficient Hardware Implementation

of Linear Phase FIR Filters 94
Design of FIR Digital Filters 95
2.6.5.1 Time-Domain Design. 95
2.6.5.2 Frequency-Domain Design.............. 99
Applications of FIR Digital Filters 102
2.6.6.1 Communication Channel Equalization 102
2.6.6.2 The Moving Average Filter 102
2.6.6.3 The Digital Differentiator. 103
2.6.6.4 The Digital Matched Filter. 106
IIR Digital Filters 108
2.6.7.1 Structure and Implementation of IIR

Digital Filters 108
2672 IR versus FIRFilters 108
2.6.7.3 Direct Form Implementation

of IIR Digital Filters 109
2.6.7.4 Practical Implementation

of IIR Digital Filters 110
Design of IIR Digital Filters. 111
2.6.8.1 Time-Domain Design: Impulse

Response Matching 111
2.6.8.2 Frequency-Domain Design:

Frequency Response Matching 114
2.6.8.3 MATLAB IIR Filter Design Using

the Bilinear Transformation 117
2.6.84 MATLAB FIR/ IIR Filter Design

and Analysis Toolbox 118
Applications of IIR Digital Filters. 119
2.6.9.1 The Digital Integrator 119
2.6.9.2 The Alpha Filter 120
2.6.9.3 The Sinusoidal Digital Oscillator. 120
2.69.4 The Digital Resonator 122

2.6.9.5 A Digital DC Blocker 124

XVi

Contents

2.6.9.6 An Application of FIR / IIR Digital Filters:
Simulation of Acoustic Effects

References e

Part II Applied Signal Processing

3 Selected Topics in Applied Signal Processing

3.1
3.2

33

34

35

Introduction
Binary Signal Transmission
3.2.1 Binary Transmission Using Orthogonal Signals
32.1.1 Probability of Error.
3.2.2 Binary Transmission Using Antipodal Signals
The Hilbert Transform and the Analytic Signal.
3.3.1 The Analog and Digital Hilbert Transform.
3.3.1.1 The Analog Hilbert Transform
3.3.1.2 The Digital Hilbert Transform
3.3.2 The Analytic Signal
3.3.3 Applications of the Hilbert Transform
and the Analytic Signal
3.3.3.1 Spectral Economy and Computation
of the Instantaneous Frequency...........
3332 Single Side-Band Amplitude
Modulation. L oo
3333 Spectrum of the SSBSC AM Signal
3.3.34 Demodulation of SSBSC AM Signals
Phase-Locked Loops oot
3.4.1 Analog Phase-Locked Loops
3.4.2 Digital Phase-Locked Loops.
34.2.1 The Sinusoidal DPLL (SDPLL)
34.2.2 Operation of the SDPLL
3423 The First-Order Noise-Free SDPLL.
3424 The Second-Order Noise-Free SDPLL.
3425 PM Demodulation Using the SDPLL.
Linear Estimation and Adaptive Filtering.
3.5.1 Non-adaptive FIR LMS Filter.
352 Adaptive Filters
3.5.3 Choice of the Desired Signal
3.5.4 The Adaptive LMS Algorithm
3.5.5 Choice of Adaptation (Convergence) Coefficient
and Filter Length
3.5.6 Hardware Implementation of Adaptive FIR Filters
3.5.7 An Example of LMS Filtering
3.5.8 Application of Adaptive Filtering to Noise Reduction in
Narrow-Band Signals.

Contents

XVvii
3.5.9 Application of Adaptive Filtering to
Channel Equalization. 163
3591 Reducing Intersymbol Interference 163
3.5.9.2 The Adaptive Channel Equalizer. 165
3.6 Sigma-Delta Modulation & Noise Shaping. 165
3.6.1 Quantization.t 166
3.6.1.1 Uniform Quantization 166
3.6.1.2 Nonuniform Quantization. 168
3.6.2 Oversampling and Its Applications 168
3.6.2.1 Quantization SNR Improvement 168
3.6.2.2 Relaxing Conditions on the
Anti-Aliasing Filter 168
3.6.3 Delta Modulation 169
3.6.3.1 Digital DM System 172
3.6.3.2 Sigma-Delta Modulation 172
3.7 Non-Stationary Signal Analysis. 174
3.7.1 The Need for Time-Frequency Analysis. 174
372 Some Important TFRs 176
3.7.2.1 The Short-Time Fourier Transform 177
3.7.2.2 Cohen’s Class of TFRs 177
3.7.3 The Discrete Cosine Transform 179
3.7.3.1 An Application of the DCT:
Data Compression. 181
References 182
Part III Advanced Topics
4 The Impact of Finite Wordlength Implementaion 185
4.1 Introductionttt 185
4.2 Overview of Number Formats. 185
4.2.1 Fixed-Point Format........... 186
4.2.2 Floating-Point Format 187
4.3 The Quantization Process. 187
4.3.1 Quantization of Fixed-Point Numbers 188
43.1.1 The Rounding Method 188
43.1.2 Truncation Method 189
4.3.2 Quantization of Floating-Point Numbers 190
4.3.3 Impact of Quantization on DSP
System Implementation 191
4.4 Coefficient Quantization Error in Digital Filters 193
4.4.1 Coefficient Quantization Error in IIR Filters 193

4.4.2 Coefficient Quantization Error in FIR filter 197

Xviii Contents

4.5 Quantization Errors in Arithmetic Operations 198
4.5.1 Multiplier and Accumulator Errors

in Fixed-Point Arithmetic. 199

45.1.1 Multiplier Error. 199

45.1.2 Accumulator Error. L. L. 199

4.5.2 Scaling in Fixed-Point Arithmetic. 199

4.5.2.1 Scaling of Direct Form IIR Filter 200

4522 Scaling of Cascade-Form IIR Filters 202

4523 Scaling of Direct-Form FIR Filters 203

4.6 Limit Cycle Phenomena. 205

References 208

5 Multirate Digital Signal Processing 209

5.1 Introduction, 209

5.2 Basic Elements of Multirate Processing 209

5.2.1 The Down-Sampler and the Up-Sampler 210

5.2.2 Frequency-Domain Representation 212

5.3 Sampling Rate Conversion Using Multirate Structures. 215

5.3.1 Decimation. 215

5.32 Interpolation. 216

5.3.3 Rational Number Sampling Rate Conversion 218

5.4 Efficient Implementation of Multirate Systems 220

5.4.1 Noble Identitiesc.. ... 220

5.4.2 Polyphase Decomposition 220

5.4.3 Multistage Implementation. 224

543.1 Interpolated FIR filter design 225

Reference. 227

Appendix A: Tutorials. 229

Appendix B: Miscellaneous Exercises. 291

Appendix C: Tables and Formulas. 303

Appendix D: Dsp Lab Experiments 319

Authors’ Biographies. 349

Acronyms, Symbols and Abbreviations

=
meoE

Q0@

T

ARSI N Y
B

AC

ADC (or A/D)
ak.a.

AM

ASP

AWGN

BIBO

B-BPF

bps Bits
B-HPF

For all n

nth-Order Chebychev polynomial
Dirac delta function

Expectation functional

Fourier transform (FT)

Maximum filter gain

Filter gain at cutoff

Filter gain at DC

Hilbert transform

Laplace transform (LT)

Double Laplace Transform (DLT)
Time—frequency distribution (TFD)

Vector of an FIR impulse response coefficients

at sample time n

Vector of an adaptive FIR filter coefficients
at sample time n

Filter cutoff (radian) frequency

Complex conjugate of z

z-Transform

Alternating current
Analog-to-digital converter
Also known as

Amplitude modulation

Analog signal processing
Additive White Gaussian noise
Bounded-input bounded-output
Butterworth band-pass filter
Per second

Butterworth high-pass filter

Xix

XX

B-LPF
BPF
BP
BS
BSF
BW
CFS
C-BPF
C-HPF
C-LPF
D/A (or DAC)
DC (or DC)
DCO
DCT
DFS
DFT
DLT
DM
DSB/ DSBTC
DSP
DTFT
ECG
EEG
EM
EOG
ESD
FDM
FFT
FIR
FM
FT

FS

HP
HPF
HT
Hz
IDFT
IFFT
IIR
/0
ILT
ISI
1zT
LHS
LMS

Acronyms, Symbols and Abbreviations

Butterworth low-pass filter
Band-pass filter

Band-pass

Band-stop

Band-stop filter

Bandwidth

Complex Fourier series
Chebychev band-pass filter
Chebychev high-pass filter
Chebychev low-pass filter
Digital to analog converter
Direct current

Digital controlled oscillator
Discrete cosine transform
Discrete Fourier series

Discrete FT (finite length N)
Double-sided Laplace transform
Delta modulator

Double side-band transmitted carrier
Digital signal processing
Discrete-time FT
Electrocardiogram
Electroencephalogram
Electromagnetic
Electrooculogram

Energy spectral density
Frequency division multiplexing
Fast FT (algorithm to compute DFT)
Finite impulse response
Frequency modulation

Fourier transform

Fourier series

High-pass

High-pass filter

Hilbert transform

Hertz

Inverse discrete FT

Inverse fast FT (algorithm to compute IDFT)
Infinite impulse response
Input/output

Inverse Laplace transform
Inter-symbol interference
Inverse z-transform

Left-hand side

Least mean-square

Acronyms, Symbols and Abbreviations XX1

LP
LPF
LSB
LT
LTI
MF
mse
Mux
NBC
PAM
PCM
PDF
PLL, DPLL
PM
P/S
PSD
RF
RHS
ROC
Rx
SDM
SH (or S/H)
SLT
SNR
snr
SP
S/P
sps
SSBSC
TDM
TFD
TFS
Tx
USB
Var
VCO
WKT
w.rI.t
ZT

Low-pass

Low-pass filter

Lower sideband

Laplace transform

Linear time-invariant

Matched filter

Mean-square error

Multiplexer

Natural binary code
Pulse—amplitude modulation
Pulse code modulation
Probability density function
Phase-locked loop, digital PLL
Phase modulation
Parallel-to-serial converter
Power spectral density

Radio frequency

Right-hand side

Region of convergence
Receiver

Sigma-delta modulator
Sample-and-hold

Single-sided Laplace transform
Signal-to-noise ratio

Signal to noise ratio = E, = N,, (digital comms)
Signal processing
Serial-to-parallel converter
Symbol per second

Single side-band suppressed carrier
Time division multiplexing
Time—frequency distribution
Trigonometric Fourier series
Transmitter

Upper sideband

Variance

Voltage-controlled oscillator
Wiener—Kinchin theorem

With respect to

z-Transform

Part 1
Theory and Selected Applications

Chapter 1
Analog Signals and Systems

1.1 Definitions, Classifications, and Overview
1.1.1 Definitions

A signal is a parcel of information (natural or synthetic) expressed as a function of
time and perhaps other variables such as the dimensions x, y, and z. This infor-
mation can be conveyed in various ways, e.g. by a sequence of amplitude values
corresponding to regularly spaced intervals of time.

A system is a physical or mathematical entity, typically realized in hardware or
software, which performs operations on signals to extract or modify information.
A low-pass filter is a system that removes high frequency content from a signal.

1.1.2 Representation of Signals and Systems

Signals and systems can be represented or characterized in various ways. A
common way is to express or approximate them with mathematical models—such
models facilitate relatively simple implementation of the relevant signals and
systems in hardware and/or software.

1.1.3 Examples of Signals

Some sample signals are provided below.

1. The angular displacement 6(¢) of an oscillating pendulum (see Fig. 1.1). This
signal corresponds to simple harmonic motion provided that the pendulum does
not deviate too far from the equilibrium or rest position [1].

Z. M. Hussain et al., Digital Signal Processing, 3
DOI: 10.1007/978-3-642-15591-8_1, © Springer-Verlag Berlin Heidelberg 2011

4 1 Analog Signals and Systems

0(f=6__ cos(o_f); o_=\(g/L); g = 9.8m/s’

Oscillating Pendulum o
Y
-
c
o
£
3
& Equilibrium
Q. -----|- t
2
(a]
B
s
]
o
c
<
Equilibrium Time, sec
(a) (b)
Fig. 1.1 a Oscillating pendulum, b the displacement signal for the oscillating pendulum
A bird sound A whale sound
o [}
o° o
2 2
o =)
g £
< <
© ©
c c
2 o
(7] (2]
Time, sec Time, sec

Fig. 1.2 Sounds of animals

Profit as a function of time and market variables.

Trend of a stock price as a function of time.

Brain (EEG), heart (ECG), or eye (EOQG) signals.

Speech, music, or other naturally occurring sounds (see Fig. 1.2).

Video signals.

Atmospheric pressure as a function of time.

Unemployment ratio as a function of social, political, and economic variables.
Electronic image signals sent from a satellite or space station.

00N U AW

1.1.4 Classification of Signals

A signal can belong to one or more of the following categories.

1.1

Definitions, Classifications, and Overview 5

. Analog, discrete, and digital signals:

An analog signal is represented as a continuous function of time, and at any
point in time can have a continuum of values.

A discrete-time signal is represented only at discrete time instants, but at those
time instances can have a continuum of values.

A digital signal is a discrete-time signal which is quantized to specific (discrete)
levels (see Fig. 1.3).

Analog signals are typically processed only by physical systems (hardware),
while digital signals can be processed by hardware or software systems.

. Real and complex signals: complex representation of signals and systems is a

useful mathematical abstraction which can help to simplify the analysis of
signals and systems. This kind of representation is particularly useful for
finding or analyzing information pertaining to delays (timing) and phase rela-
tionships. For example, suppose that there is an AC circuit with a voltage
source, v(f) = sin(wt) Volts, connected to a series combination of a resistor and
a capacitance. Suppose also that the resistor has a resistance of R Ohms and that
the capacitor has a capacitance, of C Farads). One can define a complex
impedance (i.e., a generalization or abstraction of conventional resistance) for
the resistor capacitor combination. This impedance is given by Z =R — j/
(wC). The advantage of using this kind of complex representation is that the
phase relationships between the current and the voltage in the circuit can be
easily obtained using Ohm’s law: V = IZ. It is easy to show that the current
leads the voltage by an angle of tanflllmag(Z))/Real(Z)l) = tanfl[l/(w RO)].

. Periodic and non-periodic signals: a periodic time signal repeats its value at

time instants which are multiples of the “period” of the signal. For example,
the signal x(f) = cos(2nf,t) + sin(2nf,t) is periodic with a period T, = 1/f,
(corresponding to the inverse of the lowest frequency present in the signal). The
signal, x(f) = ¢~ ', on the other hand, is non-periodic.

. Deterministic and random signals: a deterministic signal is a time function

with a known and perfectly predictable structure. For example,
x(#) = sin(w,t) is deterministic—its exact value is known at any point in time.
A random signal cannot be perfectly predicted. One can only estimate (or
“guess”) its value based on its statistical properties. For example, the thermal
noise, n(t), that occurs naturally in many electrical devices is a random signal,
as it cannot be predicted exactly. This kind of unpredictability often presents a
practical design and analysis challenge for engineers.

. Single-channel and multi-channel signals: single channel signals are asso-

ciated with a single source, whereas multi-channel signals are associated with
multiple sources. For example, a black- and-white TV picture is a single-
channel signal, whereas a color TV picture is a three-channel signal.

. Power and energy signals: Power is defined as the time average of energy.

A power signal is a signal with finite power over the time interval (—oo, 00),
ie.,

6 1 Analog Signals and Systems

T

.1 2

P:]lggo? / ‘x(t) ’dt<oo. (1.1)
7

Hence, the energy E = Tlim ffT lx(¢)[*dt should be infinite for power signals. An

energy signal is a signal with finite energy over the time interval (—oo, o0), i.e.,

T
E= Jim / (12 |dr < . (12)
-T

It necessarily follows that P = 0 for energy signals. An example of a power signal

is x(t) = sin(w,?), and the power of this signal is P = 0.5 W. For this same signal

E = 0. An example of an energy signal is x(f) = e " For this signal E = 1 J and

P=0.

7. Mono-component and multi-component signals: if only one (possibly time-
varying) frequency component is present in a signal then that signal is said to be
mono-component. If more than one component is present then the signal is
referred to as multi-component. For example, the signal x(f) = sin(w,f) +
cos(Sw,t) is a 2-component signal; its spectrum (Fourier transform magnitude)
is shown in Fig. 1.4 for f, = 1 Hz. The two components are represented by
spikes at the relevant frequencies.

1.1.5 Analog and Digital Signal Processing

Most signals in nature are analog. To process those signals using digital systems,
analog-to-digital (A/D) conversion is first required. Once the analog signal has
been digitized it is typically processed by a digital signal processing (DSP) unit.
Subsequent to that, digital-to-analog (D/A) conversion is applied to recover the

(a) Analog (b) Discrete-time (c) Digital

Fig. 1.3 A sinusoid in different versions: a analog, b discrete-time, and ¢ digital version

1.1 Definitions, Classifications, and Overview

0.6

05

Spectrum, |X ()]
o o o
nN w £

©
Y
T

o

o

4 5

6

Frequency, Hz

Fig. 1.4 Spectrum of the two-component signal, x(f) = sin(w,t) + cos(5 w,t)

x(1),
Analog
Input
Signal

Fig. 1.5 Block diagram of a generic signal processing system

—

Processed

Digital Digital

Signal Signal
r?n) pjn) v
Analo
A/D DSP D/A |—> 9
Output
Signal

modified analog signal. A diagrammatic view of a general digital signal processing

system is shown in Fig. 1.5.

1.1.6 Digital Signal Processing Versus Analog Signal Processing

Digital signal processing has a number of advantages over analog signal pro-
cessing (ASP), namely:

b

DSP is less susceptible to noise and power supply disturbances than ASP.
DSP can more accurately and reliably represent signals and systems.

Storage of signals is easier in DSP.
DSP is more flexible and versatile, especially in changing the system param-

eters to accommodate changing environments (e.g., in adaptive filtering).

1.1.7 System Modeling

A single input—single output system can be represented mathematically in the time
domain as an operator or transformation 7 on the input signal, as shown in

Fig. 1.6.

8 1 Analog Signals and Systems

x(t), y(t),

Input Output
System, T

Signal Signal

y(t)=T[x(1)]

Fig. 1.6 Signal processing system as an operator

1.1.8 Classification of Systems

A system can belong to one or more of the following categories.

1. Analog, discrete-time, and digital (discrete-time quantized) systems. Analog
systems operate on continuous-time signals, discrete-time systems operate on
discrete-time signals and digital signals operate on discrete-time quantized
signals.

2. Time-varying (non-stationary) and time-invariant (stationary) systems: in a
time-invariant system, shifts in the input produce corresponding shifts in the
output. That is, if a system input x(¢), gives an output y(¢), then an input of
x(t — t,) will give an output of y(t — ,). This can be expressed more formally
as:

If

then
y(t— tr)) = T[x(l - t{))]

where t, is a constant positive time-shift.

3. Causal and non-causal systems: the output of a causal system at time, ¢, is
only dependent on values of the input up to and including time ¢. The output is
not dependent on input values beyond #. Practically realizable systems must be
causal— otherwise they would need to be able to predict the future to generate
outputs.

4. Static (memoryless) and dynamic (with memory) systems: a system whose
output does not depend on either a previous or future value of the input signal
x(¢) is called memoryless, i.e., y(7) is a function only of x(#). In a dynamic
system the output depends on inputs at either past or future values of time. An
inductor which has voltage as input and current as output is an example of a
system which is dynamic. The voltage across the inductor is v(f) = L-di/dt and
the current is i, = (1/L) [*__ vi(¢)dr. Hence the inductor has a memory. The
same argument is applicable to a capacitor, which has current as input and

1.1 Definitions, Classifications, and Overview 9

voltage as output, since ve = (1/C) fioc ic(t)dt. On the other hand, a squarer
is a memoryless system, since y(f) = [x()]>

5. Stable and unstable systems: if a system takes a bounded input signal (i.e.,
Ix(#)l < oo) and always produces a bounded output signal y(f), the system is said
to be bounded-input, bounded-output (BIBO) stable.

6. Linear and non-linear systems: a system which produces an operation 7 on a
signal is called homogeneous if it satisfies the scaling property:

Tle-x(1)] = cTx(1)];

where c is an arbitrary constant. A system is referred to as additive if it satisfies
the additivity condition:

T 1 (1) + x2(2)] = T x1 ()] + T [x2(2)].

A linear system satisfies the superposition property, which is the combination
of scaling (homogeneity) and additivity:

Tla-xi1(t) +b-x2(8)] = aT [x1(£)] + bT [x2(2)],
where a and b are arbitrary constants.
Example 1 The system represented mathematically by y(T) = x(T) + 2 is not

linear. To see this more clearly, assume that x(¥) = a- x,(¢#) + b-x,(¢), where a and
b are constants. Then it follows that:

Tla-x1(t)+b-x0)]=Tkx(t)]=xt)+2=a-x1(t) +b-x2(t) + 2,
whereas

a-Tx(t)]+b-Tx(t)] = alx(¢) + 2] + bxa(7) + 2]
=a-x(t) +b-x(t) + 2a +2b.

Example 2 The system represented mathematically by y(f) = In[x(#)] is non-
linear since In[c -x(£)] # c¢ ‘In[x(?)].

Example 3 The system y(f) = dx(¢)/dt is linear since it can be shown to satisfy
both homogeneity and additivity.

1.1.9 Linear Time-Invariant Systems

Linear time-invariant (LTI) systems are of fundamental importance in practical
analysis firstly because they are relatively simple to analyze and secondly because
they provide reasonable approximations to many real-world systems. LTI sys-
tems exhibit both the linearity and time-invariance properties described
above.

10 1 Analog Signals and Systems

1.2 Time-Domain / Frequency-Domain Representations

There are two approaches to analyzing signals and systems: the time-domain
approach and the frequency-domain approach. The two approaches are equivalent,
with both domains being connected by the well known Fourier transform [2].

This chapter focuses on analog signals and LTI systems. There are similar
representations and relationships for discrete-time and digital signals, and such
systems will be covered later in Chap. 2.

Within the time domain, LTI systems are typically characterized and analyzed
with the following alternative approaches:

1. representation with constant-coefficient differential equations,
2. formulation with constant-coefficient state-space matrix equations,
3. characterization with impulse responses.

This book will focus on the impulse response approach for the time-domain
representations of LTI systems.

1.2.1 Basic Functions and Relations

1.2.1.1 The Convolution Integral

The convolution of two functions A(f) and x(¢), denoted by h(f)*x(¢), is defined by:
o0
3(t) = h(s) % x(1) = / h(2) - x(t — D) (1.3)

As seen in the above equation, convolution performs integration on the product of
the first function and a shifted and reflected version of the second function.

It will be seen later that the output of any LTI system can be obtained by
computing the convolution of the input signal and the impulse response of the
system.

Properties of the Convolution Integral

Convolution is:

1. Commutative: A(?) *x(t) = x(t) *h(t)

2. Associative: h(f) *[x(t) *v(£)] = [h(®) *x(®)] * v(r)

3. Distributive: h(f) *[x(t) + v(£)] = h(t) *x(t) + h(®) * v(7).

The above properties are important in predicting the behavior of various
combinations of LTI systems.

1.2 Time-Domain / Frequency-Domain Representations 11
1.2.1.2 The Dirac Delta Function

The Dirac delta function, denoted in the time-domain by J(¢), is invoked frequently
in signal analysis. It is a generalized function, not an ordinary mathematical
function, and rigorous study of this function is complicated. It can be defined in
conjunction with an arbitrary continuous function x(f) by the integral:

/ ()3t — 1,)dr = x(1,),

where ¢, is a constant.

In plain engineering language, 4(¢) is an even, tall, narrow spike of infinite
height with zero width concentrated at + = 0. Hence, d(t — ¢,) is concentrated at
t = t,. A loose engineering definition can be given by:

5(1—[0):{ 0, t#1,

00, t=t,.

In practical diagrams, one normally represents d(¢) by an arrow of unit length,

while a scaled delta function a () is represented by an arrow of height = a (see
Fig. 1.7).

Properties of the Delta Function

The delta function has the following properties:

1. P1: [*_6(t)dt = 1 (unit area), or more generally,

b
1, a<t,<b
/ Ot = to)dt = { 0, otherwise.

Amplitude
3 (t+3) 1.0 3 (B
e \
T 05] 0.5 § (t-3)
T _x3 T T 0 1w \LZ é T Tlme, t
-8 (t-2)

Fig. 1.7 Representation of the delta function and shifted versions thereof

12 1 Analog Signals and Systems

2. P2: 6(r) = 6(—1) (even).
3. P3: x(¢) * 6(f) = x(¢), or, more generally, x(f) * o(t — t,) = x(t — t,), where t,
is a constant. That is, the convolution of a function x(¢) with 6(¢) yields x(z).

Alternative Representations of the Delta Function

The Dirac delta function can also be defined as the limit of several even functions
that satisfy the above properties in the limit. These definitions include:

1. The limit of the weighted rectangular pulse (box), Il,,(7) (see Fig. 1.8, left):

L1, [ff<a

.1 i
5(,) = l]g(])z—aHZa(t) - [1113(1)%{07 |t| > a.

2. The limit of the weighted absolutely-decaying exponential:

3. The limit of the weighted triangular pulse (see Fig. 1.8, right):

1 1 b i <a
O(t) = lim — Ay, (¢) = lim— a’ =
(1) = lim 57 A2a(1) a‘i%a{ 0" >a

1.2.1.3 The Unit Step Function

The unit step function is defined as:
1, t>0
u(r) = {0, £ <0.

[1/(2a)] 11, () (1/a) A, (1)

1/(2a) 1/a

Fig. 1.8 Weighted rectangular and triangular pulses

1.2 Time-Domain / Frequency-Domain Representations 13

This function has a discontinuity at t = 0, where its value is undefined. If u(0) is
chosen as 0.5, u(?) is called the Heaviside unit step. The above definition is
equivalent to the following integral relation:

u(t) = / S(t)dr. (1.4)

Hence, it follows that 6(r) = du(t)/dt (see Tables, Formula 7).

1.2.2 Time-Domain Representation

This section discusses representation of analog signals and systems in the time
domain.

1.2.2.1 Mathematical Time-Domain Representation

An analog signal is represented in the time domain By simply defining its values
for all time. An LTI analog system is usually characterized in the time domain by
defining its impulse response for all values of time. The impulse response is the
output of the system when the input is the Dirac delta function, d(f). Typically the
impulse response is denoted by A(#), as shown in Fig. 1.9.

It can be shown that the input/output (I/O) relationship for the system is
described by the convolution of the impulse response A(f) and the input signal
x(¢) [3]. This is expressed mathematically below:

y(t) = h(t) % x(r) = / h(2)x(t — 2)d. (1.5)

Note: for causal systems h(f) = 0 for ¢t < 0, otherwise instantaneous antic-
ipating quantities like A(—1)x(¢ + 1), T > 0, can appear in the above integral when
A = —1 <0, this in turn implies that the system needs to predict future values of
the input in order to form the output.

LTI Analog System

IX(t), }6 (1),
nput S S utput
Signal h(t) Signal

y(t)=h(t)*x(t)

Fig. 1.9 Time-domain representation of an LTI system

14 1 Analog Signals and Systems
Practical Measurement of the Impulse Response

It can often be difficult to generate an analog impulse function accurately in
hardware. It is typically easier to generate the unit-step function. One can show
that the impulse response of the system /A(¢) is related to the unit-step response
according to (see Tutorial 8):

h(t) = dp(t)/dr. (1.6)

1.2.2.2 Stability of Analog LTI Systems in the Time Domain

An analog system is BIBO stable if its impulse response is absolutely summable,
ie., if

[i< (17)

—00

Example 1 Consider the system described by the impulse response

e, >0
h(’>:{ 0, 1<0

where a is a positive constant. This system is causal (since k() = O for t < 0) and
stable since [|h(f)] = 1/a<oo. This system can be representative of a series
capacitor-resistor circuit.

Exercise. Find the output of the above system when the input is x(¢) = cos(?).

Izl

Example 2 The system e~ is non-causal since i(f) # 0 for t < 0O, but it is stable

since [~ |h(1)] =2 <oo.

Although a time domain approach can be used for predicting the stability of
systems, it tends to be difficult to do so for complicated systems. The frequency
domain approach using the Laplace transform turns out to be more practical.
Frequency domain analysis is therefore considered next.

1.2.3 Frequency-Domain Representation

This section considers the representation and analysis of analog signals and sys-
tems in the frequency domain. Analysis in this domain is achieved with the help of
suitable transformations, which yield equivalent results to those that would be
obtained if time domain methods were used. The frequency domain, however, can
reveal further characteristics of signals and systems which are useful in dealing

1.2 Time-Domain / Frequency-Domain Representations 15

with practical systems. As suggested already, for example, stability analysis is
easier to perform in the frequency domain.

Ideally, transformations which are used in frequency domain analysis should be
unitary, i.e., they should be invertible, they should be energy preserving and they
should preserve the four key arithmetic operations (in the general sense).

The most important transformations in frequency domain analysis are:

1. The Fourier Transform: which is a transformation from the time domain to
the frequency domain.

2. The Laplace Transform (LT): which is a transformation from the time
domain to the generalized (complex) frequency domain.

Both the Fourier and Laplace transforms are unitary. That is, they are
invertible and energy is preserved in transiting from one domain to the other.

The Fourier transform of a signal is normally referred to as the spectrum of the
signal.

The Fourier series (FS) is a specific transform that is used only for periodic
signals.

The transforms above can be used to analyze all signals and systems under
some basic conditions that are met in almost all practical applications.

1.2.3.1 Fourier Series Representation of Periodic Signals

A periodic time signal x(r) with period T, repeats its values every T, seconds (see
Fig. 1.10). The Fourier series (FS) is a decomposition of a periodic time signal
into a linear combination of sine and cosine functions. The frequencies of these
functions are multiples of the fundamental frequency of the signal, f, = 1/T,. Such
a representation of sines and cosines is called a trigonometric Fourier series.
Using Euler’s formula e * j0 = cos(0) =+ jsin(), one can obtain the “expo-
nential” or “complex” Fourier series from the trigonometric series. (As a point of
interest, Euler’s formula provides a connection between algebra and geometry, and
can be proved using a Taylor series expansion of ejo, cos(), and sin(0) around

\

VY,

Amplitude

Time

Fig. 1.10 A periodic signal

16 1 Analog Signals and Systems
Note that although the Fourier series reveals the frequency content of the signal,

it is not strictly speaking a frequency transform as the representation is still in
the time domain.

Trigonometric Fourier Series

If x(?) is a periodic signal with fundamental period T,, then it can be expanded as
follows:

x(2) = a, + aj cos(wyt) + az cos(2wyt) + - - - + bysin(w,yt) + bysin(2w,t) + - - -

o0
=a,+ Z[an cos(wyt) + bysin(wyt)],

n=1
(1.8)
where w, = 27nf, = 2T—f, and:
T,
a, = Ti,,/ x(t)dt, (the constant term) (1.9)
0
T,
a, = T%/x(t) cos(nw,t)dt, (1.10)
0
7,
b, = T%/x(t)sin(nw(,t)dt. (1.11)
0

Special Cases

1. If x(¢) is odd, then x(#)cos(nw,t) is odd, hence a, = a,, = 0, and the Fourier
series is a series of sines without a constant (zero frequency) term.

2. If x(¢) is even, then x(7)sin(nw,t) is odd, hence, b,, = 0 and the Fourier series is
a series of cosines.

Example Consider the signals x(f) and s(f) depicted in Fig. 1.11. The signal
x(t) — 1/2 is odd, so one can use results related to odd functions in deducing the
Fourier series. The signal s(f) is even. The fundamental period of both signals is
T, = 2. Using the formulae in (1.9)—(1.11), the Fourier series of these two signals
are found to be:

1 2 1 1
x(r) = 3 + - sin(w,t) + gsin(3wot) + gsin(Swgt) +-, (1.12)

1.2 Time-Domain / Frequency-Domain Representations 17

x(t) s(t)

0. nnin.

-10 1 2 3 4

Fig. 1.11 Two square waves

and

1 2 1 1
s(t) = 5 + - cos(wyt) — gcos(3w(,t) +§cos(5a)ot) +--, (1.13)

where 0, =2 = 7.

Complex Fourier Series

Using Euler’s formula, one can write the trigonometric Fourier series in complex
exponential form. This form is:

X(1) = D0 X = 37 X P (1.14)
where,
T, 7,
1 , 1 o
Xy=— [edt=— | e ?™lgr, n=0,1,2,... (1.15)
T, T,
0 0

Relationship Between CFS and TFS Coefficients

The coefficients of the CFS and the TFS are related as follows:

X, = a,, (1.16)
1 .
X, = E(an —Jjbu), (1.17)
and,
1 .

Exercise: Verify the above relations using Euler’s formula.

18 1 Analog Signals and Systems
1.2.3.2 The Fourier Transform

The Fourier Series (FS) is applicable only to periodic signals, with period 7, and
fundamental frequency f, = 1/T,. One can adapt the FS to be able to analyze non-
periodic signals by setting T, in the FS definition to 7,, — co. With this setting the
FS tends to the Fourier transform (FT). The time domain signal and its FT are
often referred to as a Fourier transform pair, since the two quantities can be
obtained from one another by transformation/inverse transformation:

X(f) = F{x(t)} = / x(t)e ™ dt (1.19)

x(t) = FHX()} = / X(f)e ™ ar (1.20)

The Fourier transform (FT) reveals the frequency content of an arbitrary a-
periodic (or non-periodic) signal, and is often referred to as the spectrum. If the
Fourier transform is applied to the system impulse response, one obtains the
Jfrequency response or transfer function of the system. This function describes
the ratio of the system output to the system input as a function of frequency.

The Fourier transform X(f) of a real signal x(¢) is generally complex. To plot the
Fourier transform spectrum, one typically plots a magnitude spectrum and a phase
spectrum. The magnitude spectrum is a plot of IX(f)l versus frequency f, while the
phase spectrum is a plot of ZX(f) versus frequency.If the signal which has been
Fourier transformed happens to be the impulse response of the system, the mag-
nitude and phase spectra are referred to as the system magnitude response and the
system phase response respectively.

Although the Fourier transform was initially introduced to analyze non-peri-
odic signals, it can be used to analyze periodic signals as well. For such signals
one obtains Fourier transform expressions containing Dirac delta functions.

Note: The CFS pair (1.14)—(1.15) is similar in structure to the FT pair (1.19)—
(1.20). For periodic signals with a period of T,, it is easy to see that
X, = TLOX 1p(f) |f:nﬁ], where X,,(f) is the FT of one period of x(¢), hence, X;,()/T, is
the envelope of the CFS coefficients.

Example 1 Consider the signal x(f) = e_z’u(t) (a decaying exponential). Its FT is:

T ; 7] 1

X(f) _ / 672t e*jZTIftdt — / e*t(2+12nf)dt -
2+)27

)) Jj2nf

1

NZEwrTE

Amplitude spectrum = |X(f)| =

1.2 Time-Domain / Frequency-Domain Representations 19

2
Phase spectrum = /X (f) = tan™" (72Tf>

Implementation in MATLAB:

In MATLAB, Fourier transforms can be implemented with the help of the Fast
Fourier Transform (FFT) algorithm. While the FFT is, strictly speaking, applicable
only to digital signals, it can be used to give good approximations to FTs for analog
signals as well. An example of a signal and its spectra are shown in Fig. 1.12.

%Implementation of Fourier Transform

clear,clc,clf % clear all variables, command line, and figure

L=5; % Total signal time (in seconds)

Ts=0.001; % Time step-size (in seconds)

% The less Ts the better is the implementation accuracy.
t=0:Ts:L-Ts; N=length(t); % Time vector

fs=1/Ts; % Sampling Frequency

F=fs/N; % Frequency step-size (in Hertz)

f=-fs/2:F:fs/2-F; % Implementation frequency range

% The time-domain signal

a=2; x=exp(-axt);

% Spectra
X=fftshift (fft(x))/fs; % FT centered at f=0 Hz.

AX=abs(X); % FT Magnitude

20 1 Analog Signals and Systems
PX=angle(X); % Phase, restricted to (-pi,pi).

% You can also use PX=atan2(imag(X),real(X));

% Checking with theoretical formulas
Xth=1./(a+j*2*pi*f); AXth=abs(Xth); 7’ Theoretical FT (see Tables)

PXth=angle(Xth); % Theoretical phase. Should be identical with PX.

figure(1),clf

set(gcf,’units’, ’centimeters’), set(gcf,’position’,[1 1 22 5])
subplot(1,3,1)

plot(t,x,’k’,’linewidth’,2), hold on,

plot([-L LI, [0 0],°k’,[0 0],[0 1.2],°k’,’linewidth’,1), hold off
axis([-56 5 0 1.2])

xlabel (’\bf Time, sec’,’fontsize’,12)

ylabel (’\bf Signal Amplitude’,’fontsize’,12)

text (0,1.0,°\bf {\itx}({\itt})’, ’fontsize’,14)

subplot(1,3,2)

plot(f,AX,’k’,’linewidth’,2), hold on

plot([-12 12],[0 0],’k’,[0 0], [-4 4],°k’)

axis([-56 5 0 .6])

xlabel(’\bf Frequency, Hz’,’fontsize’,12)

ylabel(’\bf FT Magnitude’,’fontsize’,12)

text(0,.5,°\bf [{\itX}({\itf})|’,’fontsize’,14)

subplot(1,3,3) plot(f,PX,’k’,’linewidth’,2),hold on

plot([-12 12],[0 0],’k’,[0 0], [-4 4],°k’) ,hold on

1.2 Time-Domain / Frequency-Domain Representations 21
axis([-10 10 -pi pil)
xlabel (’\bf Frequency, Hz’,’fontsize’,12)
ylabel(’\bf FT Phase (rad)’,’fontsize’,12)

text (0,2.5,°\bf \angle{\itX}({\itf})’,’fontsize’,14)

] —_
g X(t) 8 xn | g e 2X(1)
- £ 04 by
3 5 8
<os g 2
= - 0.2 o
=) =2
] * w
0 0
-5 0 5 -5 0 5 -10 -5 0 5 10
Time, sec Frequency, Hz Frequency, Hz
Fig. 1.12 A decaying exponential signal with its magnitude and phase spectra
- x(t) - X(f) - 1X(F)]
1 1
0
' t arar T
-T2 | T2 T

Fig. 1.13 A rectangular time pulse with its spectra

Example 2 Consider the rectangular time pulse x(f) = IIx(f). Its FT is obtained
as:

/2
_ 1 a1 T/2 1 . .
X(f) = J2nft gy — J2mft — JnfT _ T
(f) //2 e *joCf [e]—T/z 7]'27.[](‘ [e]
-7
1 & — e inT i fT
=—. hd _ sin(xfT) (Using Euler’s Formula)
nf 2j
sin(zfT) :
= Ti = T .
T sinc(nfT)

The signal, along with its FT and magnitude spectrum, are shown in Fig. 1.13.

22 1 Analog Signals and Systems

x(H=5(t) X(H =1
«~FT—> 1

t, sec f, Hz

0

Fig. 1.14 The time-domain delta function and its spectrum

Example 3 If x(r) = (¢), then its spectrum is given by:

X(f) = / 5(t) et — g(0) = 1.
—00 g(r)

(using the definition of the delta function from Tables, Formula 16) (see Fig. 1.14).
It is seen that for the infinitely narrow time domain delta function the corre-
sponding spectrum is infinitely wide. In general, if the time duration of a signal is
narrow, its frequency spread tends to be wide, and vise versa.

Properties of the FT

The properties of the FT are detailed in the Tables at the end of this book. The
reader should prove properties himself/herself as a means of deepening their
understanding of the Fourier transform (These proofs can be found in standard
references such as [3]). Some of these properties are discussed below.

1. Duality of the FT:

Ifx(t)LX(f) is a FT pair, then:
X(Z)Lx(—f) is a FT pair

Note that the time and frequency variables are exchanged in the above relations. If
x(?) is even, then the duality relations become even simpler:

X(1)<Zox(f)
Example 1 Previously it has been shown that
F o
II7(t)«—T sinc(fT).
Using the duality property it follows that:

Bsinc(Bt) <~ I(f)

1.2 Time-Domain / Frequency-Domain Representations 23

Hence, a time-domain sinc function will be transformed into a frequency rectan-
gular box function in the frequency domain.

Example 2 It has previously been seen that:

By duality it follows that:

2. Time shift:
7 ~j2nfi,
x(t —t,)—X(f)e
3. Frequency shift:

If x(£)<=X(f), then x(r)e® X (f — £,).

Example 3 Since

li>5(f) (as shown in Example 2 above)
then
TS ~ fo),
Hence, the Fourier transform of a complex exponential is a frequency-shifted delta

function.

Fourier Transform of Sinusoids

From Euler’s formula one can write:

e = cos(0) + jsin(0) (1.21)

e = cos(0) — jsin(0) (1.22)
L@ 4 e sin(0) = 2 (& — &)
2 ’ 2j ’

1. . .
. cos(w,t) = cos(2nf,t) = 5 (ol 4 g2t

. cos(0) =

~ Fleosoan)} = 300 ~ o) + 500 + 1),

24 1 Analog Signals and Systems

Time signals Magnitude Spectra

055(f+f) 055(f-f)

I {4) T T
T T v\ 1]t sec) -2 f,Hz

! o
1

o
-

sin(o _t), cos (u)ot)
o

o (6, -
o
[¢,]

-1 -0.5 0 0.5 1 -5 0 5
Fig. 1.15 Sine and cosine (with the same f,) have identical magnitude spectra
using the result from the previous example. Similarly,

Flsintw,)} =5 |0 1) = 300 1)

Hence, the magnitude spectra of sin(w,f) and cos(w,f) are identical, as shown in
Fig. 1.15. The phase spectra, however, would be different.

Fourier Transform of Periodic Signals

A periodic signal x(¢) can be represented by a Fourier Series Expansion according
to:

00
x(r) = Z Xye 2ot

k=—00

where {X,} are the FS coefficients. Taking the Fourier transform of both sides
yields:

]:{X(t)} = .7:{ i Xkef/Znnf(,r}

k=—00
= 3 XY =3 X6~ k).
k=—00 k=—00

Hence, the FT of a periodic signal x(f) with period 7, is a sum of frequency
impulses at integer multiples of the fundamental frequency f, (i.e., at f = kf,),
weighted by the FS coefficients.

Example The complex Fourier series expansion and Fourier transform of the
square wave shown in Fig. 1.16 are given respectively by:

- 5 [= 0= Es(s-2)

k=—00

X

1.2 Time-Domain / Frequency-Domain Representations 25

X(h
x(1) £ 0-58(
0.3183 5 (f+1/4) To.3183 8 (F-1/4)
01 2 5 t,sec — \l/ \|/ — f,Hz
-0.1061 5 (f-3/4)

Fig. 1.16 A square wave and its Fourier transform (full line) and the envelope of the Fourier
transform (dotted line)

Here T, = 4 sec, f, = 1/4 Hz. The envelope of the X; coefficients in the frequency
domain is obtained by substituting ffor kf,, = k/4, hence (1/2)sinc(k/2) becomes (1/
2)sinc(2f).

The above rectangular pulse is useful in many applications. Its general form is
given by: > 2 AIly(t—nT,), and its Fourier coefficients are X; = (AT/
T,){sinc(kf,T), where T is the duration of the “ON” state. The envelope of these
coefficients is given by E(f) = (AT/T,)sinc (fT) = X,,(H)/T,, where X, =
F{IIr(t)} = FT of one period.

MATLAB: The rectangular pulse train can be simulated in MATLAB as fol-
lows:

r=T/To*x100;
fo=1/To;
wo=2*pixfo;

x=Ax0.5* (1+square (wo* (t+T/2),r));

1.2.3.3 The Laplace Transform

The Laplace transform (LT) is a generalization of the Fourier transform in which
one decomposes a signal into the sum of decaying complex exponentials, rather
than simply complex exponentials. The incorporation of amplitude as well as
frequency information into the basis functions of the LT introduces a number of
advantages. Firstly, it enables the LT to deal with a wider class of signals—
including many signals which have no FT (such as the unit ramp 7'u(f)). Secondly,
the LT formulation is more naturally suited to analyzing the stability of a system.
Because of these advantages, the LT is the main tool for representing and ana-
lyzing analog (continuous-time) feedback systems, where stability is of extreme
importance. There are two definitions of the LT as detailed below.

26 1 Analog Signals and Systems
The Double-Sided Laplace Transform

The double-sided Laplace transform (DLT) definition incorporates an integral
which is evaluated across all possible values of time (both negative and positive):

Xy(s) = La{x(8)} = / x(1)e™"dt,

where s = ¢ + jo is the complex frequency variable. Note that:
La{x(t)} = F{x(t)e™}.
The inverse DLT, L;l{Xd(s)}, can be used to recover x(¢) as follows:

0) = £ (X)) = 5 | xateas

g —0o0

where o) is any arbitrary value of ¢. Note that L’;l requires integration in the
complex plane.

The Single-Sided Laplace Transform

In real-world applications one normally deals with casual systems in which the
impulse response is only non-zero for positive values of time. In recognition of this
fact, the single-sided Laplace transform (SLT) is defined to allow for only causal
signals and systems. That is, the integral within its definition is only evaluated for
positive and zero values of time. The SLT is very useful in calculating the response
of a system to a causal input, especially when the system is described by a linear
constant coefficient differential equation with non-zero initial conditions.

Note that the properties of the DLT are not exactly the same as those of SLT.
This book will concentrate only on the SLT, which will be referred to hereafter
simply as the Laplace Transform (LT). Its definition is:

[o.¢]

X(s) = L{x(2)} = / x(r)e™"dt,

0-

Note that O™ is used in the above definition rather than O to allow for analyzing
delta functions x(f) = 6(¢). The inverse transform (ILT) is given by:

x(t) = L7HX(s)} = 2%1] / Xa(s)e'ds.

g1 —00

1.2 Time-Domain / Frequency-Domain Representations 27
Properties of the LT

The properties of the LT can be found in Tables. Some of the most useful prop-
erties are:

MED ¢ ox(s) - x(07)
(2)/x()h)d/u<i>@

0-

These properties effectively transform differentiation and integration into
algebraic quantities. Because of these properties the LT can be used to transform
differential equations into algebraic equations. This has application in many areas,
most notably the analysis of electric circuits.

Region of Convergence of the LT
The region of convergence (ROC) is the region of the s-plane in which the LT is
convergent (i.e., has finite values).

Example Find the Laplace transform and its ROC for the signal x(¢) = e”tu(s),
where o is a constant.

Solution:
X(s) = / x(t)e dt = / e Medt
0- 0-
v ~(a+s)r] >
_ / o0+ gy — [6’ o]
a“t+s |q
b
— _ 1 [hm {e—(ot+a)t X e—jo)z} _ 60}
o+ § Lt—oo
The term e " is always bounded, the ROC therefore depends on only the term
—(a+o)t
e . Now,

lim e™

t—00

(HU),:{OO, when — (¢ +0) > 0ora< — « (1.23)

0, when— (24 0)<0org> —u

Hence, the ROC is the region defined by ¢ = Re{s} > —a (see Fig. 1.17). For
values of « which do lead to a convergent LT, the LT is given by:

1
X(s) = n (note that o can be positive or negative).
o

28 1 Analog Signals and Systems

Fig. 1.17 Region of

convergence (shaded) of the 5
Laplace transform for

x(1) = e “tu(®)

0
-5 0 5
c=-0
LTI Analog System
X(f), Y(1),
Input S S Output
Spectrum H(1) Spectrum

Y(f)=H(f)-X(f)

Fig. 1.18 Frequency-domain representation of an LTI system

1.2.3.4 Mathematical Frequency-Domain Representation

An analog time-domain signal x(#) can be represented equivalently in the fre-
quency domain by its Fourier transform. Similarly, an LTI system with impulse
response h(f) can be represented equivalently in the frequency domain by its
transfer function, H(f) (see Fig. 1.18).

Recall that the system output can be described in the time domain as the
convolution of the input signal and the impulse response of the system:

y(t) = h(t) * x(1)

Recall also that convolution in the time domain is transformed into multiplication
in the frequency domain, and vise versa (see Tables, Laplace Transform Pairs and
Theorems). In the frequency domain, therefore, the system output is given by the
multiplication of the transfer function by the Fourier transform of the input signal:

Y(f) = H(f) - X(f)

where Y(f) = F{y(¢)} and X(f) = F{x(¢)}. Similar results are obtained if one
uses the Laplace transform:

Y(s) = H(s) - X(s)

1.2 Time-Domain / Frequency-Domain Representations 29
Eigenfunctions of LTI Analog Systems

If the input signal to an LTI analog system is x(r) = ¢/, then

y(2) = h(r) x x(t) = x() = h(z)

r . — 4 1.24
= / h(2)* A d) = & / h(2)e " d), (124)

If one defines H(w) = ffooo h(1)e*d}, then y(t) = ¢“tH(w). That is, the
output of the system is just a scaled version of the input. In other words, ¢/t is an
eigenfunction of the system, and the associated eigenvalue is H(w).

1.2.3.5 Stability of Analog LTI Systems-Frequency Domain

In a previous subsection system stability in the time domain was addressed. Here
system stability is considered in the framework of the complex frequency domain.
In this latter domain an analog system is typically characterized by its transfer
function, H(s) (i.e. by the Laplace transform of its impulse response A(t)). It can be
shown that any practical transfer function H(s), can be re-expressed as the ratio of
two polynomial functions of s: H(s) = N(s)/D(s). It can also be shown that an
analog system is BIBO stable if and only if [3]:

1. The degree of N(s) < degree of D(s).
2. All poles (i.e., zeros of the denominator D(s)) are in the left half of the s-plane.

Example Plot the pole-zero diagram of the system

s(s+1)

1= 26+

and conclude whether the system is BIBO stable or not.

Solution: Zeros are located at s = 0, —1; poles are located at s = —2 (double) and
s = —3. The numerator polynomial is of a lower order than the denominator
polynomial, All poles are in the left half of the s plane. See the pole-zero diagram
in Fig. 1.19. The system is therefore stable.

1.2.4 Signal Correlation and Its Applications

The correlation between two deterministic energy signals s(¢) and r(¢), is defined
by the integral:

30 1 Analog Signals and Systems

Fig. 1.19 Pole-zero diagram j®
of the system

H(s) = s(s + Di(s + 2)°
(s +3)
s - plane
X—¥—60—©& (o)
-3 -2 -1 0
Ry = / s(A)r(t+ A)dA (1.25)

When the two signals being correlated are different it is common to refer to the
correlation integral as the cross-correlation function, If the two signals are the
same, the integral is typically referred to as the auto-correlation function.

This cross-correlation function is of the same form as the convolution integral
in (1.3), but the argument of the second function has a “+” sign in place of a “—”
sign and also incorporates the time-delay t instead of the true time variable, ¢. Note
also that R;,(t) = R,,(1). The correlation gives an indication of how the two sig-
nals are “related” to each other when the time difference between them is 7. In
other words, it is a measure of similarity between two signals separated by t. If
r(f) equals s(f), the correlation is referred to as the auto-correlation function of the
signal s(f), and is denoted by R(t). For a periodic deterministic signal x(#) with
period T, the auto-correlation function is defined as:

T,
1

Ri(t) == / x()x(t + 2)d)
0

S}

There are also correlation formulas for random signals that will be defined later.
It can be shown that the auto-correlation function has the following properties
(see Tutorial 26):

P1: R.(7) is even (or symmetric about time-delay axis), R(t) = R (—1).
P2: R,(1) always has its absolute maximum at the origin, t = 0.

(see, for example, Fig. 1.20, which shows the autocorrelation function of a non-
periodic signal).

The correlation integral between two signals tends to have a large maximum
value at T = 0 if the signals are exactly the same (auto-correlation), and has a finite
non-zero value over some range of t when the two signal are somewhat similar. It
tends to be approximately zero if the two signals are very dissimilar (as would be
the case, say, if one of the signals was a deterministic signal and the other was

1.2 Time-Domain / Frequency-Domain Representations 31

30 —
G
5 x
< c
2 A :
H /'\v] g [l
5 \/ 10 « 10
2 Time (1), sec & Time-delay
5 o T (sec)
> o
<]
8
]
<
=30 —

Fig. 1.20 The signal x(r) = 7 e 2005(31) and its autocorrelation function

random noise). These properties of the correlation function are frequently used as
the basis for detecting signals in noise.

1.2.5 Signal Power and Energy

If x(¢) is a signal, then its instantaneous power at any time ¢, is denoted by p(¢), and
is defined as the power dissipated in a 1Q-resistor when a voltage of amplitude
x(t) volts is applied. This power is given by the multiplication of the voltage and
the current as defined below:

p() = Ix(0)P,

where absolute value is used to cater for the possibility of complex signals.
Since energy is defined as the integral of power w.r.t. time, the instantaneous
energy (e(?)), of the signal at any time instant 7, is given by:

e(t) = p(t)dt = |x(1) e,
and the total energy E of the signal is given by:

T/2
E = lim / x(1)*dt.
)

The total average power is the time average of the total Energy, and is given by:

T/2
P= lim = = lim — / lx(1)|dt
T—o0 T—oo T
-T2

Signals are classified as power signals, energy signals, or neither. Power signals
have finite power (hence, infinite energy, according to the above definitions).

32 1 Analog Signals and Systems

Energy signals, on the other hand, have finite energy (hence, zero power). Most
signals in practice are either power or energy signals. There are signals, however,
that are neither power nor energy signals. The unit ramp x(¢f) = r(f) = tu(?), is one
such signal—it has infinite power and infinite energy.

1.2.5.1 Power in Periodic Signals

If x(¢) is a periodic signal with a period T, then the total energy in this signal is:

T,/2

E= lim [x(1)|*dt — oo,

To—00

~T,/2

but the signal power is finite. Periodic signals are therefore power signals, and the
power within them can be expressed as:

Tn/2 7‘1)
1 1
P—y / (1)t = - / x(0) .
-T,/2 0

Example If x(f) = Asin(w,t), then the signal power is given by:

B C x T
P= T, / A”sin”(w,t)dt = ot) |27 2cos(Zw(,z‘) w,dt (Tables, Formula 3).
0 0

Letting ¢ = wqt and w,T, = 27 in the above equation yields

2n
= A2 {1 — 1005(24{))} dp = —

A2 1 2n 2
2 2 271{

1. A
—¢— 4sm(2¢)} =3 W/Ohm

C2n 2 0
0

The same result is obtained for the signal x(f) = Acos(w,f).

1.2.5.2 Parseval’s Theorem

Parseval’s Theorem states that the power in periodic signals and the energy in non-
periodic signals can equivalently be obtained from the frequency domain
according to the following relations:

1. For periodic signals: P=3% .2 IX:|* where the {X;} are the CFS
coefficients.

1.2 Time-Domain / Frequency-Domain Representations 33

2. For non-periodic signals: E = [~ _|X(f) %df, where X(f) is the FT of the signal.
A plot of IX,/* versus f (defined at discrete frequencies f = kf,, f, being the
fundamental frequency) is known as the power spectrum, or the power spec-
tral density (PSD) of the signal. The function IX(HI* versus f is called the
energy spectrum or energy spectral density (ESD) of the signal.

1.2.5.3 The Wiener-Kinchin Theorem

The Wiener—Kinchin Theorem states that for a periodic signal x(7), its PSD is the
FT of its autocorrelation function:
T,

Rx(f)zi/ <(x(e + DL S (XS — k).

T,
0 k=—00

PSD

For an energy signal x(f), the ESD is the FT of its autocorrelation:

Ru(x) = / H(D)x(t + LX)
—00 ESD

A similar relation for random signals will be presented later.

1.2.5.4 Examples

Example 1: A periodic current signal x(7) flowing through a 1Q resistor has the
form:

x(t) = 10 cos(2¢) + 4sin(6t) A

Determine whether x(f) is a power or energy signal.

Find the complex Fourier series of x(¢).

Find the fundamental period T, and the fundamental radian frequency, w,.
Find the Fourier transform of the signal.

Plot the magnitude spectrum of the signal.

Plot the power spectrum of the signal.

Find the signal power from the time domain and from the frequency domain.

NoUnsE R -

Solution:

1. Since x(¢) is periodic, it is a power signal.
2. Since x(¢) is already in the form of a trigonometric FS, one can just use Euler’s
formula (Tables, Formula 1) to obtain the complex FS:

34 1 Analog Signals and Systems

x(1) =10 B (e + eﬂ’)} +4 EJ (% — efﬁf)] :

3. The fundamental frequency o, is determined by the lowest frequency in the
signal, i.e., w, = 2 (rad/s) = 2nf, = 2n/T,, hence, the fundamental period is
T, = n (s), and f, = 1/n (Hz). Note that if the two frequencies are not multiples
of each other, one cannot use the above method and the two components are in
fact two different periodic signals.

4. Using Fourier transform Tables, the following expression is obtained:

=3fo-Y o]+ 4-)

. See Fig. 1.21 (left).
. See Fig. 1.21 (right).
7. In the time domain, power is given by:

T,
P = % fo
signal yields:

P = 10%2 + 4*/2 = 58 W. In the frequency domain one can apply Parseval’s
theorem to get: P = > X7 =22 + 52 4 5> + 22 =58 W.

AN

x(t)|*dt. Using the well-known result for the power in a sinusoidal

Example 2 A current signal x(#) flowing through 1Q resistor has the form
x(1) = e~ "Ou@r) A.

1. Determine whether x(¢) is a power or energy signal.
2. Find the Fourier transform of x(¢).
3. Find the ESD of x().

Solution:

1. E= [%_x*(r)dt = [° e=/1%t = 5 Joules, hence, x(7) is an energy signal.

2. From Tables-Fourier Transform Pairs, X(f) = ;-5

0.1-+j2nf"
3. ESD(f) = |X(f)* = 5557 (/H2).
Magnitude Spectrum, X, PSD, |Xk|2
/\5A N /25A N
4
3A
2A
1 4
I T f, Hz T . T fHe
-3/r -1/=m0 1/n 3/n -3/n -1/m0 1/r 3/n

Fig. 1.21 Magnitude spectrum and PSD of x(r) = 10 cos(2t) + 4 sin(6¢)

1.3 Random Signals 35

1.3 Random Signals
1.3.1 Definition

A random signal is a signal whose values cannot be perfectly predicted or known
a priori. Rather, the signal values need to be characterized by a probability
function.

To understand and analyze such signals, it is necessary to use tools which are
derived from the theory of probability and statistics.

1.3.2 Overview of Probability and Statistics

1.3.2.1 Probability and Sample Space
Probability

Probability is a mathematical construct that describes the statistical regularity of
the outcomes of a repeating situation or experiment.

Sample space

The sample space is the set of all possible outcomes of a repeating experiment.

Example 1 In a coin-tossing experiment, outcomes are either “heads” or “tails”,
hence the sample space is S = {A, t}. If tossing is repeated a large number of
times, then there will be approximately 50% heads and 50% tails. Mathematically
this is expressed as: p(h) = 0.5, p(r) = 0.5.

Note: 1If the sample space of a countable set of events {e;} is
S = {elk =1, ..., N}, then Zivzl p(ex) =1, ie., the summation of the probabil-
ities of all possible events (outcomes) should be 1 (100%).

Example 2 In a die-tossing experiment, the possible outcomes are:

S = {1 —dot,2 — dots, 3 — dots, 4 — dots, 5 — dots, 6 — dots}.

If a die is tossed a large number of times N, then the expected number of each
possible outcome is N/6. Alternatively, one can say that the probability of each
possible outcome is 1/6.

Example 3 Consider a DC signal which is contaminated by random additive
noise. There is a change in amplitude from one sample to the next. The set of all
possible changes is given by S, where these changes depend on the probability

36 1 Analog Signals and Systems

function (distribution) of the noise process. Typically for a random noise signal,
S = R (the set of real numbers).

1.3.2.2 Random Variables

A random variable X is a real-valued function whose domain is the set of all
possible events (i.e., the sample space S) of a repeating experiment.

X:S— M, where M CR (M is a subset of R)

Example In a coin-tossing experiment, if one defines X(h) = 1, X(r) = —1, then
X:{h, t}: - {1, —1} is a random variable.

Notes:
1. Random variables can be discrete (as in the above example) or continuous (as
in the amplitude of Gaussian noise).

2. In case of noise where S = R, one can define the random variable X as the noise
amplitude itself. That is:

X:R—-R|X(r)=rvreR

1.3.2.3 Joint Probability

Assume that one has two experiments, Experiment 1 and Experiment 2. Assume
also that A is a possible outcome (or event) for Experiment 1 and that B is a
possible outcome for Experiment 2. Then the joint probability of A and B (denoted
by p(A N B)) is the probability that A is the outcome of Experiment 1 and B the
outcome of Experiment 2.

Example If n(r) is noise, and one defines the events A = {n(¢;) > 0.1} and
B = {n(t;) > 0.5}, then

p(ANB) =p{n(t;) > 0.1 and n(z,) > 0.5}.

that is, p(A N B) is the probability that the sample of noise at ¢, is greater than 0.1
and the sample of noise at f, is greater than 0.5.

1.3.2.4 Conditional Probability

Conditional probability (CP) is the probability of an event A given that an event
B has already occurred. CP is denoted by the expression p(AlB). The conditional
probability and the joint probability are related to one another according to:

1.3 Random Signals 37

1.3.2.5 Independent Events

The events A and B are independent when p(AlB) = p(A). Hence, using the above
formula: p(A N B) = p(A)-p(B).

Example 1 A box contains 20 cubes, 15 of them red and 5 of them blue. Two
cubes are to be selected randomly (without replacement). What is the probability
that the 1st is red and the 2nd is blue?

Solution: Let R = {1st cube is red}; B = {2nd cube is blue}.
15 3 5

p(R) =355=7: PBIR) =15

>

19

p(BNR) =p(R) - p(B|R) = "

3
4
Example 2 Two coins are tossed. What is the probability that the first one is a
head and the second is a tail?

Solution: p(HNT)=p(H)-p(T)=4%-1=1 (because they are independent
events). If one had asked for the probability that a head and a tail was obtained
from two consecutive coin tosses (without specifying the order in which they were
obtained), the answer would be 2(1/4) = 1/2.

1.3.2.6 Probability Density Function

The pdf of a random variable X, px(X), is a non-negative function (with a total area
of 1) that shows how the values of X would be distributed if a large number of
experiments (trials) were conducted. The constraints on the pdf are expressed
mathematically as:

PX(X)EO,/px(x)dx:I

X
px(x1 <X <x) = /px(x)dx.

X1

Note that x, x, and x, are values attained by the random variable X.

1.3.2.7 Statistical Mean

The statistical mean (or expected value) of a random variable X is defined as

38 1 Analog Signals and Systems

my =E(X) = / xpx (x)dx (1.26)

and it represents the center around which the values of X are expected to be
distributed.

1.3.2.8 The Second Moment

The second moment of a random variable X is defined as
m{) = E(X?) = / Cpy(x)dx (1.27)

and it represents the expected value of the square of the deviations of a random
variable X from its mean value my.

1.3.2.9 The Variance

The second central moment (or variance) of a random variable is defined as

o® = var(X) = 8{(X - mx)z} = / (x — mx)’px (x)dx.
—00
The quantity gx = \/var(X) is called the standard deviation of X. The variance

indicates how far the values of X are spread around the mean. Hence, the vari-
ance gives a measure of the randomness of a random signal. The quantity

ox = \/var(X) is called the standard deviation of X.
Note:

oy = E{X* —2mx + my } = E(X*) — 2mxE(X) + my = E(X*) —my (1.28)

1.3.2.10 The Gaussian pdf

The Gaussian pdf is an important probability density function which is often
encountered in real-world applications. A random variable X is said to be Gaussian
if its pdf is given by:

1.3 Random Signals 39

P, (%), p{X) P (%), p{X)

Fig. 1.22 Gaussian pdf’s with different means and variances

where m = the statistical mean, and ¢ = the variance. Plots of this pdf for dif-
ferent values of mean and variance are shown in Fig. 1.22.

1.3.3 Signals in Noise

1.3.3.1 Gaussian Noise

Noise, n(t), that is encountered in electrical systems frequently has a Gaussian pdf
with zero mean, m, = 0. The pdf of this type of signal has the form:

)

1 0

p(n) =~ o

9

Note that the power of zero-mean Gaussian noise is 8{(n - mn)z} =&{n*}

(since m, = 0) = noise variance = ¢2. (Prove this as an exercise!)

If there are two Gaussian noise signals, n;, and n,, with the variance of n, being
greater than the variance of ny, then the pdf of n, (pdf-2) has a wider spread around
its mean than n,’s pdf (pdf-1) (see Fig. 1.22, left). Furthermore, n, has more power
than the first.

1.3.3.2 Signals in Gaussian Noise

If s(7) is a deterministic signal and n(¢) is noise, then z(f) = s(¢) + n(¢) is a random
signal. Consider now the case where s(f) = a (a constant). If n(¢) is Gaussian noise
with zero mean and variance = o2, then the random variable z(1) is also Gaussian
with mean and variance given at any time by:

my = E{z(1)} = E{(s(t) + n(1))} = E{(a + n(1))} = E{a} + E{n(1)}

=a+0=a,

Z

40 1 Analog Signals and Systems
and

var(z) = 5{(z(t) - mz)Z} = E{n(t)z} =%
Hence, the pdf of the signal z(¢) at any time ¢ is given by:

p@) ==)

While the above result was derived above for the case where s() is a constant, its
general form is actually valid for any time signal s(¢). For example, if
s() = sin(w,t), then 7 = m, = s(¢) = sin(w,t) while the variance is still o’

1.3.3.3 Power Spectral Density of Random Signals

A random signal n(f) can be classified as a power signal, and like other power
signals, has a PSD. This PSD is often denoted by G,(f), and is defined as:

.1 .1
Gulf) = Tlgﬂolcff\f{n(f)ﬂr(f)}lé TlgngofleT(f)|27

where £ denotes the expected value.

1.3.3.4 Stationary Random Signals

Signals whose statistics (i.e., mean, variance and other higher order moments) do
not change with time are referred to as stationary.

1.3.3.5 The Autocorrelation Function of Random Signals

The autocorrelation function of a random signal x(¢) is defined by:

R(t1,12) = E{x(tn)x(r2) }-

In the above definition, the £ denotes expected value, and this expected value
needs to be obtained by doing many experiments and averaging the results of all
those experiments. This kind of average is referred to as an ensemble average.

R, (t1,t) provides an indication of how strongly the signal values at two dif-
ferent time instants are related to one another.

1.3.3.6 Wide-Sense Stationary Signals

A random signal is WSS if its mean and autocorrelation are time-invariant, i.e.,

1.3 Random Signals 41

E{X(t)} = mx = constant,
and
Rx(t1,12) = Rx(ti — 1) = Rx(1),

where T = t; — 1,.
Every stationary signal is WSS, but the converse is not true.

1.3.3.7 Wiener—Kinchin Theorem for Random Signals

If x(r) is a WSS random signal, then:
Gilf) 7 Rilx),

where G,(f) is the PSD of the signal and R,(7) is its autocorrelation function, i.e.,

R(7) = E{x(t)x(t + 1)}.

1.3.3.8 White Noise

A common type of noise encountered in nature is thermal noise, which is typically
Gaussian-distributed. If thermal noise has a PSD which is constant over all fre-
quencies (i.e. if the noise is “white”), then its autocorrelation function is a
weighted delta function (according to the Wiener—Kinchin Theorem) (see
Fig. 1.23); this means that the values of the noise at different instances of time are
completely uncorrelated with each other. In practice, noise is rarely white; it is
normally band-limited. A more realistic model for the PSD of many practical noise
sources is therefore PSD = (1/2) Il,(f), with 1 being a constant. The use of the
arbitrary constant #/2 rather than 7 is a convention which is meant to signal to a
reader that a double-sided PSD (with positive and negative frequencies) is being
used. Only half of the total power appears in the positive side of the PSD.

G R (1)

«~FT -
WKB [n/2]3(x)

n/2

f, Hz T, Sec

0

o

Fig. 1.23 PSD of white noise with its autocorrelation function

42 1 Analog Signals and Systems
1.3.3.9 Effect of Ideal Low-Pass Filter on White Noise

When a random signal enters a system with transfer function H(f), the output
signal is also random. The PSD of the output is equal to the input PSD multiplied
by the power transfer function of the system. i.e., the PSD of the output is the PSD
of the input multiplied by .[H(f)*). Now assume a white noise input n(r) with
constant PSD is entering an ideal LPF as shown in Fig. 1.24. The output noise PSD
is then given by:

n
Go(f) = [H(F)PGa(f) = 5 s (f).
Hence, using the WKT, the autocorrelation function of the output noise is:
Ruo(t) = FHGpo(f)} = ng sinc(2B7) (see Fig. 1.25).

Therefore, the values of the output noise are no longer uncorrelated, except when
T = k/2B.k being an integer.

n(t), LPF n, (1),
Input Output
Noise H(T) Noise
G, (f) H(f) G, (f)
n/2 1 n/2
0 f B 0 B ' B 0 B '

Fig. 1.24 Ideal LP filtering of white noise

R (1)

[n/2]5(x)

T, SecC

-1/2B) 1/2B) 1/B

Fig. 1.25 The autocorrelation function of white noise before (left) and after (right) ideal LP
filtering

1.4 Applications of Analog Signal Analysis 43

1.4 Applications of Analog Signal Analysis
1.4.1 Signal Detection in Noise

In Sect. 1.2.4 the autocorrelation function was defined for deterministic periodic
and non-periodic signals. The autocorrelation function of random signals was
defined in Sect. 1.3.3.5; that definition, however, requires ensemble averaging, and
in many practical situations, an ensemble of experimental realizations is not
available. For this reason it is common in practice to compute the autocorrelation
function of random signals using the definition in Sect. 1.2.4—that definition uses
a time average in its formulation rather than an ensemble average. This practice is
strictly valid only when the random signals are ergodic; i.e., for signals whose
ensemble average equals the time average. There are many signals for which this
represents a reasonable approximation to reality. With this approach, the definition
for the autocorrelation function of random signals becomes:

) T/2
R.(7) = T / x(A)x(t + A)dA,
_7

while the cross-correlation between two random signals is defined as:

T/2
1

Ro(r) =1 / H(A)y(c + A)di.

-1)2

Naturally occurring noise is often un-correlated with deterministic signals. It is
also often very nearly uncorrelated with itself (i.e., almost white), so that its
autocorrelation function is almost a delta function (see Sect. 1.3.3.8). These
properties are exploited in many practical schemes for detecting signals in noise.
Consider, for example, the scenario in which a deterministic signal x(#) is trans-
mitted across a communication channel, and a corrupted signal y(¢) =
x(t) 4+ n(¢) is received, One often has to decide whether or not there is a message
present inside the received signal or not. One simple way to inform this decision is
to correlate y(¢) with itself. The autocorrelation of the signal with itself is:

/2
Ry(7) = % / x(2) + n(A)]x(2 + 7) + (A + 0)]dA.
T

= R.(1) + R,(7) + 2R, (7)

(1.29)

If the noise is white then R,(7) is a spike and R,,,(7) is approximately zero. Now for
most communication signals, R,(t) exhibits a shape which is more than simply a
spike and/or a negligibly small background noise. If such a shape is present in the
received signal, then, one can infer that a true message is present.

44 1 Analog Signals and Systems

10 ~ 10 = 10
~ S
- 5 ~ 5 + 5
- < =
~ 0 TS~ — 50 0
x @ X
-5 2 -5 = -5
-10 -10 ~s—10
0 5 10 0 5 10 0 5 10
Time (i), sec Time (1), sec Time (f), sec
10 10 30
© L o 20
~x 5 S 5 ~
x X <
x 'S T
0 (VS 0
-10 0 10 -10 0 10 -10 0 10
Delay (1), sec Delay (1), sec Delay (1), sec
10
=
~_ 5
>
c
0
-10 0 10

Delay (1), sec

Fig. 1.26 Signal detection in noise using a correlator

Example Consider the sinusoidal signal x(f) = sin(w,f), with frequency
f, = 0.1 Hz. The power of this signal is 1?/2 = 0.5 W. The signal and the absolute
value of its autocorrelation R (t) are shown in Fig. 1.26. A random white noise
signal n(f) with noise power 5 dB (=3.1623 W) is added to corrupt the sinusoid,
giving a noisy signal y(r) = x(f) + n(f). The resulting signal-to-noise-ratio is
SNR = 0.1581, or —8.0103 dB. This represents quite a strong level of noise
interference. Nonetheless, when the noisy signal is correlated with itself, it is
possible to identify a regular non-random pattern with an absolute maximum around
the origin. This indicates that there is a deterministic signal imbedded in the noise.

MATLAB: The cross-correlation function can be simulated in MATLAB using
the command xcorr (x,y) *Ts.

1.4.2 The Matched Filter

The matched filter is a linear filter which is often used in detecting signals
embedded in random noise. When the matched filter is applied to a received signal,

1.4 Applications of Analog Signal Analysis 45

Transmitter (Tx) AWGN Channel : Receiver (Rx)

n(f) [Sa:n:plctar]
atit=
Mh=s+nd —° T D = s 0+ n (0
s(9 A1) H(H >
SNR(f) = |s(f|? / o SNR (0 = [s (B2 / o
s(t) G,(n s (1) = o/p message
n/2 no(t) = o/p noise
o1t ' o f

Fig. 1.27 Matched filter and associated waveforms in a communication system

it produces the maximum signal-to-noise-ratio (SNR) enhancement possible for
any linear filter. To determine the form the matched filter must take to produce this
optimal enhancement, the problem of interest must first be properly defined.
Consider that the problem is to detect a particular symbol s(¢) of finite duration
T. The following derivation will seek to determine the shape of the impulse
response for the required matched filter. It will actually be found that the optimal
impulse response h(f) is dependent on the symbol shape, and hence the name
matched filter.

Figure 1.27 shows a communication system with a matched filter. It should be
noted that the matched filter is applicable only when the receiving station knows
the symbol library at the transmitter.

The PSD of the output noise n,(¢) in Fig. 1.27 is:

G, (f) = Gu(F)H()I. (1.30)

The output noise power is therefore:
o0
= / G, (f)df. (1.31)

The output signal component is:

oo
solt) = FHHOSO} = [OIS ar (13)
The output instantaneous SNR is:)
SNR, (1) = |s,(t)]* /o> (which is time-dependent). (1.33)

Now it is necessary to find the H(f) that maximizes SNR,(¢) when ¢ = t,,, where
t, is a specific time instant chosen by the sampler. This time instant is either O or
T. From (1.33) it follows that:

SNR,(t,) = |S"Z;’)|2. (1.34)

46 1 Analog Signals and Systems

From (1.32) one obtains:

so(t)? = / HIF) S(F) e dff (1.35)
% alf gz(f)
Now the Schwartz inequality (Tables) states that:
oo 2 - 2 N)
[anend) <(| [ava (| [ena). 030

where equality holds in (1.36) only if:
g1(f) = kg (f) (1.37)

and where £ is a constant. * means complex conjugation. Using (1.35) and (1.36), a
maximum value for Isg(t)l2 is obtained as follows:

500 = /) Par / sokar).
Using (1.31), (1.34), and (1.38) it follows that:

(/o5 1H)Par) (S S0Pdr) 5

SNR,(t,) = = . (1.39)
LI HGPaf n/2
where E = [~ (1)[dr = I, IS(f)|?df is the symbol energy. Using (1.37), this
maximum is obtalned only when one chooses H(f) to be:
H(f) =k |S(f)e*™ e | = kS*(f)e ™", (1.40)
—— —

&1(f) a(f)

Hence, the impulse response of this filter is given by:
h(t) = F YH()} = F ' {kS* (fle ™} = kp(t — 1,).

(using the time-shift property of the Fourier transform (see Tables). Note also that
p(t) = F~Y{S*(f)}). From the conjugation property of the Fourier transform:

p(t) = s*(—1t) = s(—1) [since s(?) is real]. Hence, the impulse response of the
matched filter is:

h(t) = ks(t—1t,). (1.41)

1.4 Applications of Analog Signal Analysis 47
s(t) h(t)=s(-1t)
(if t = 0)
0 T ! T 0 t
s(-1) h(t)=s(T-1)
(if to=T)

-T 0 0 T t
s(t,-1) h(t)=s(t, -t)

//\ //\)

-T+ t 0 t -T+ t 0 t

Fig. 1.28 Matched filter impulse response with various modifications of the original symbol
waveform

That is, the impulse response of a filter matched for a symbol is a scaled time-
reversed version of the symbol itself. Frequently k is chosen to be 1 in practical
applications (see Fig. 1.28).

1.4.2.1 Conclusion
If one wants a filter H(f) to give maximum SNR enhancement for a specific symbol
s(t) at t = t,,, one should match the filter to the symbol, such thath(t) = ks(t, — 1).

1.4.2.2 The Output of the Matched Filter at the Time of Optimal SNR

Assuming the system of interest is LTI, the output y(#) of the matched filter in
Fig. 1.27 is given by:

t+T—t,

y(t) = r(7) * h(1) =

r(A)h(t — 2)di = ” r(A)kslt — (t — A))dz, (1.42)

t—t, =1,

At the sampling instant ¢ = 7, one obtains:

W(t,) = k / H)s(D)d) = k / F(D)s(A)d. (1.43)

That is, the output of the matched filter at the time of optimal SNR, 7 = ¢,, is
simply the integration overTof the scaled product of the symbols(t) with the
received signalr(t).

48 1 Analog Signals and Systems

1.4.2.3 The Matched Filter is a Correlator

From (1.42) it is possible to write that:
(1) =k / r(M)s((t —t,) + A)dA = kRs(t — 1,), (1.44)

where R,(7) is the cross-correlation between the symbol and the received version
of it. Hence the matched filter is essentially a correlator. If » = s (noise-free
condition), kR(7) will have a symmetric shape with a maximum at T = 0, i.e., f —
t, = 0 or t = t,. This value is y(z,) as in (1.43).

1.4.2.4 The Optimal Receiver

If there is a finite set of M symbols to be transmitted, {s ()l i = 1, 2, ..., M} and
one wants optimal reception for these symbols, one should use a bank of M filters,
each matched to one symbol only (see Fig. 1.29). If the ith symbol s;(f) was
transmitted, then the ith matched filter will have a maximum at the time of optimal
reception, while the other filters will have small values. Hence the receiver will
decide that si(r) was transmitted. In binary communication systems (such as
computer networks), one needs only two filters, matched to the two symbols that
represent logic “0” and logic “1”.

1.5 Analog Filters

Filters play a significant role in signal processing and communication engineering.
This section will consider them in some detail.

\flﬂs#) Comparatorat t=T
JT y,0
'\>_</ 0
Received sff Decision
Signal (T |20 Jmax{¥%};| ate=r:
) —> X . 0 where - —> s, was sent
: y “') I where:
: i = yl = -
s, (0 i1, 2‘MT k = arglmax{Y}]
\flﬂ - jT Yl OR: Y, = max{Y}
Go—{ 7 |40 :

Fig. 1.29 The optimal receiver for a finite set of symbols

1.5 Analog Filters 49

H(f) h(t)
2BA
A
~5 0 B f,Hz o t, sec

-1/2B) | 1/2B)

Fig. 1.30 Transfer function and impulse response of an ideal low-pass filter

h(t-T)

: A~ t sec
é N =T S

Fig. 1.31 Quasi-ideal low-pass filter impulse response—it is a time shifted version of the ideal
low-pass filter impulse response

1.5.1 The Ideal Low-Pass Filter

The transfer function of an ideal LPF with cutoff frequency B Hz and gain A is a
rectangular box function in the frequency domain of width 2B. Using Tables, its
impulse response is found to be a sinc function:

H(f) = 2BIL>5(f)—h(r) = 2AB sinc(2Br)

This impulse response is shown in Fig. 1.30.

Since h(f) includes negative values, the ideal LPF is non-causal, and hence
unrealizable. If one allows a time-delay 7T in the system, the delayed impulse
response is shifted right by 7, and one gets i(r — T), as shown in Fig. 1.31. This
introduces a linear phase into the transfer function. Since linear phase is a result of
only delaying the signal, it corresponds to a harmless phase changes in the transfer
function. Note that phase distortion only occurs when there are different delays
for different frequencies, while amplitude distortion occurs when there are dif-
ferent gains for different frequencies. Since h(f) has infinite length, there is still a
negative-time portion of A(t — T) despite the delay, but it is of small magnitude,
and approximation is possible by truncation.

There are many approximations to the ideal LPF that can be implemented in
practice. Two of these, the Butterworth and Chebychev-I filters will be studied in
the following subsections.

50 1 Analog Signals and Systems

[H(®)|

-, 0 0,
Fig. 1.32 The magnitude frequency response of a Butterworth LPF

1.5.2 Butterworth LPF

The magnitude frequency response of a Butterworth LPF (B-LPF) is given by:

H(w)| = ——2m (1.45)

2n’
1+ (2)

where G,, is the maximum gain, n is the filter order, and ., is the cutoff frequency
(see Fig. 1.32). The Butterworth LPF’s magnitude function is maximally flat at
o = 0, 1i.e., all its 2n — 1 derivatives are equal to 0 at = 0. At = 0 (DC), the
filter gain=G,,, and the power gain GP, = IH(0)I* = G%—this is the maximum
power gain of the filter. At ® = @, (cutoff), the filter gain = G,/ v/2, and the power
gain GP, = |H(w,)|* = G2 /2 = half the maximum power gain GP,. In dB terms:

GP(dB) = 10log,o(GP,/2) = GP,(dB) — 10log,,2 = GP,(dB) — 3

The cutoff frequency is also called the 3-dB frequency because the power is 3 dB
down from the power at DC.

As n increases, the cutoff becomes sharper, but more circuit components are
needed to build the filter. The Butterworth LPF has a flat response at @ = 0. Its
transfer function for different orders can be obtained from Tables. The nth-order
B-LPF has n poles and no zeros in its transfer function.

1.5.3 Chebychev-I LPF

Chebychev-1 filters tend to have sharper roll-off than Butterworth filters but have
ripple in the passband, as illustrated in Fig. 1.33. The magnitude frequency
response of a Chebychev-I LPF (C-LPF) is given by:

H(w)| = ——n

1+a2¢(2)

1.5 Analog Filters 51

|H(®)|

: f, Hz
0 f=f

Fig. 1.33 The magnitude frequency response of a Chebychev-1 LPF

where G,, is the maximum gain, 7 is the filter order, w, is the cutoff frequency, ¢ is
a constant that determines the ripple in the passband of the magnitude response,
and C,, is the nth order Chebychev Polynomial defined by the iterations:

C,(x) =1, Ci(x) = x, Cpy1(x) = 2xCp(x) — Cy—1(x)

For example, Cy(x) = 232 — 1, Ci(x) = 4 — 3x, Ciyx) = 8x* — 8x% + 1.
At v = 0 (DC), the gain G, is:

Gy, n odd
Go = {Gm/\/l +¢&2, neven (1.46)

while at w = o, (cutoff), the gain is:

G. = Gn/V1+eVn. (1.47)

For 0 < o < w,, the gain fluctuates between G,, and G. = G,,/V'1 + &* (see
Fig. 1.33). The maximum power gain variation, called ripple, is given by:

r (dB) = 101log,,(1 + &*).

Like the B-LPF, the nth-order C-LPF has n poles and no zeros. However, for
the same order n, the C-LPF has a sharper cutoff than the B-LPF. Hence, if the
ripple is not disadvantageous in a specific application, Chebychev filters are
preferred over Butterworth filters. This is so because with Chebychev filters one
typically needs a lower order and hence, less hardware to achieve the same cutoff
sharpness.

1.5.4 Design of Butterworth and Chebychev-1 LPF’s

This subsection addresses the design of both the filter transfer function H(s) and
physical hardware components needed for building Butterworth and Chebychev
filters. The physical components are an appropriate combination of resistors (R),

52 1 Analog Signals and Systems

inductors (I), and capacitors (C). That is, for the design considered here, the filters
are built up as passive RLC networks. Design using active components (op-amp’s)
is also possible, but will not be considered in this subsection.

Based on the required filter specifications (e.g., cutoff sharpness and stop-band
attenuation) the goal is to can find H(s) and a suitable RLC combination. The first
step in the design process is to determine the filter order N from standard tables.
Since Tables are usually only available for filters with a cutoff frequency of
w. = 1 rad/s, the filter specifications must first be transformed using frequency
denormalization. This is achieved by dividing all the critical frequency points (cut-
off frequency, stop edge frequency, etc.) by .. This process is illustrated in the
example which follows.

1.5.4.1 Example of a Low-pass Filter Design

Example 1 Design a LPF with G,, = 1, af. = 50 Hz, and stop-band gain <—
40 dB w.r.t G,, for frequencies >140 Hz. Find the minimum order n required, if
the ripple < 1 dB and R, = 100Q.

Solution: w, = 2n(50) = 100 n, ; = (2n)140 = 2807, hence wy = W,/
w. = 2.8. Initially, a butterworth design will be trailed. Use the Gain vs. Nor-
malized frequency plots to determine the minimum order to achieve —40 dB for
wy > 2.8 (see Tables and the left hand side of Fig. 1.34). It is seen that n = 4 s
not adequate to meet the 40 dB attenuation at wy > 2.8 but n = 5 is. If a but-
terworth filter is used, therefore, one would need a fifth order filter to meet
specifications.

Stopband gain vs. norm. freq. for B-LPF Stopband gain vs. norm. freq. for C-LPF (r= 0.5 dB)

0 L i 0 . .
(R n=1
l:n :1 o .
ELUEER \\\ N e
) I ~ .
— 1 .
m . .
T ANgE2 T ;
1) X
£ . . .
O =30\ \- PN NG] :
~ n=3 :
—40 - X\ -\ NS\ :
W X
T R W EN2LNC N\ NN NN
S\ :
] W Lo
w\ N\ n=4
-60 -60
1 2 3 4 5 6 78910 1 2 3 4 5 6 78910
Normalized frequency, o/ (l)c Normalized frequency, o/ (,Oc

Fig. 1.34 Gain plots versus normalized LPF’s for different filter orders

1.5 Analog Filters 53

Now a Chebychev filter will be tried. The specifications state the ripple must be
less than or equal to 1 dB. Potential designs for both 0.5 and 1 dB ripple will be
considered. Checking the C-LPF gain plot for r = 0.5 dB in Fig. 1.34 (right), it is
found that n = 4 is the minimum order which is adequate to meet specifications.
Checking the C-LPF gain plot for r = 1 dB shows that the minimum order
required is also n = 4. The r = 0.5 dB alternative is chosen as it corresponds to
the minimum ripple(hence, from Tables, ¢2 = 0.122). The normalized transfer
function is obtained from Tables as follows:

a()
H(sy) = .
(%) = 03791 + 1.0255y + 1.7169s% + 1.1974s3, + 54

Since n = 4 is even:

G, = Gu/\/1+ & =1/V1.122 =0.9441 = H(sy = 0) = a,/0.3791 — a,

= 0.3579.
The denormalized frequency response is given by:
ao
H(S) = s s \2 s \3 s \4
0.3791 + 1.0255 13- + 1.7169 (135-) " +1.1974 (385:) + (152)

1.5.4.2 Circuit Design

From Tables one arrives at the circuit in Fig. 1.35 (left). It uses impedance and
frequency denormalization given by ISF: Z=R;, =100 and FSF:
W = o, = 1007.

1.5.5 Design of Butterworth and Chebychev-1 High-Pass, Band-
Pass, and Band-Stop Filters

Standard Tables are also only available for LPF design, but can be adapted via
standard transformations to designing high-pass filters (HPFs), band-pass filters
(BPFs) and band-stop filters (BSFs),

Denormalize:
R =1.98Q 2.58H 1.82H Z=100 R =198Q2 0.82H 0.4H
s AAAA s AAAA
LAAJ W=100n LAAJ
&
G) e T 0.92F-|— 1.3F t'c'u C~) Vs Toaou F-|- 41y F 2 R =100Q

Fig. 1.35 Circuit Design of a 4th-order C-LPF

54 1 Analog Signals and Systems

The required transformations are:

LP — HP: oy = &; SIN = Le [w, is the HP cutoff]
) s

w? — a)§ §2 + w§
LP — BP: wy = D SIN = [y = 0y — wp; Wy = WO
wwyp Sp
wwyp Sy,

LP BS:w = : =
- LN wz IR (,{)§ 5 SIN S2 + (,l)§
(1.48)

An example filter design is presented later in this subsection to illustrate the use of
these transformations in filter design.

Note: Although Butterworth and Chebychev-I LPF’s have no zeros, the above
transformations indicate that BP, HP, and BS filters do have zeros.

1.5.5.1 Circuit Design

Standard Tables provide not only filter transfer functions, but also suitable circuits
for implementing those transfer functions. After obtaining the transfer functions
and circuit diagrams from the Tables, one needs to perform appropriate transfor-
mations to suit the original filter specifications. The standard transformations for
physical implementation are shown in Fig. 1.36.

1.5.5.2 Impedance Matching

For maximum power transfer in the passband, the load impedance R; should equal
(be matched to) the source impedance. In LPF design Tables, the values of R, L,
and C are given for R, = 1, w = 1, hence these circuits are normalized. For
impedance matching, normalized filter circuits should be denormalized by scaling
all R, L, and C values as follows:

Z C
R—RZ;, L—-L—; C— 5=,
w VA
L
c 2
o “=1/(L
tp e I < i: L—:/TZ)ZC)
&HP > BS L L ¢ —»
e - - and C=1/(0L)
c ,=1/¢C
—— - e.g.if C=2F,
L 1 then L =1/2H

s

Fig. 1.36 Hardware analog filter transformations

1.5 Analog Filters 55

where:

Z = Impedance Scaling Factor (ISF) = Ry,
w,, For LP and HP

W = Frequency Scaling Factor (FSF) =
q Y & (FSE) { wp, For BP and BS

Note: To denormalize the transfer function H(s;y) of a normalized LPF, one
simply uses the transformation s — s/w. (o, being the required LPF cutoff fre-
quency) to get the true transfer function H(s). There is no need within this process
to find the true transfer function of the HP, BP, and BS filters—if the above
transformations from LPF are used withs;y — s, the denormalization is included
implicitly.

1.5.5.3 Hardware Filter Design Rules Using Normalized LPF Standard
Circuits

o HPF Design:

1. Transform LPy — HP,y circuit components (Fig. 1.36).
2. Denormalize HPy, — HP (using ISF, FSF).

¢ BPF Design:

1. Denormalize LPy — LP (using ISF, FSF).
2. Transform LP — BP circuit components (Fig. 1.36).

e BSF Design:

1. Transform LPy — HPy circuit components (Fig. 1.36).
2. Denormalize HPy, — HP(using ISF, FSF).
3. Transform HP — BS circuit components (Fig. 1.36).

1.5.5.4 Example of a High-pass Filter Design

Example 2 Design a Butterworth HPF with G,, = 1, f. = 1 MHz, and stopband
gain < 20 dB for f < 500 kHz. True load resistance is R; = 300€2.

Solution:

w,. = 2nM rad/sec; w. = 27r% = 7 rad/sec. From LP-HP transformations obtain
the normalized LP frequency that corresponds to the HP frequency w;, which is
o = oJw; = 2.

From Butterworth curves in Tables check the order n that gives stop-band gain
<—20 dB for w;y > 2 [note that “<” for HPF is now “>" for LPF]. This yields
n = 4. This same result can also be reached mathematically as follows:

56 1 Analog Signals and Systems

n>[0.5log(A> —1)/log(ww)] = [3.314] = 4,

where A = A(wpy) = 10¥4#/29) From Tables we get the normalized transfer
function as follows:

a()
H = .
) = 361310y + 341425 12613153 £,

For B-LPF, G, = G,,. Hence, G, =1 =a,/1— . a, = 1.
The true transfer function will be given by:

=1 2.6131(2) 4 3.4142(24)° 12 6131 (22)° 4 (220 ¢
4
N

T s+ 16.4Ms® + 134.8M25% + 648.2M3s + 1558.5M*

H(s

The resulting filter has four poles and four zeros.

Circuit Design:
Z = R; = 300 and FSF: W = o, = 27M (see Fig. 1.37).

1.5.6 Chebychev-II Filters

The Chebychev-II Filter (a.k.a. the inverse Chebycheyv filter) has a maximally flat
pass band (no ripples) and an equiripple stopband. Its magnitude response is given
by:

R=1Q 18H 0.76H LPHP R=1Q 1/1.84F 1/0.76F
S

1/0.76 $1/1.84 RL=1OOQ
H H

NXZMn
00€=Z
wJiouaq

300 288pF 698 pF

259 33000

Fig. 1.37 Design of a Butterworth HPF

1.5 Analog Filters 57

1.5.7 Elliptic Filters

Elliptic filters have equiripple passband and stopband. As such, they provide the
lowest possible filter order for given specifications. However, they have worse
phase response (which is highly non-linear). Their magnitude response is given by:

G

1+ ¢%E, (%)

where E,, is the Jacobian elliptic function of order n.

|H(w)| =

)

1.5.8 MATLAB Analog Filter Design

Butterworth, Chebychev, and Elliptic filters (analog or digital) can be designed in
MATLAB using the commands butter, chebyl, cheby?2, and ellip. The
maximum gain is always assumed to be 1. The filter order can be determined using
buttord, cheblord, cheb2ord, and ellipord—however, these latter
commands impose a cutoff frequency rather than allowing for an arbitrary one to
be specified.

Example:

1. Design an analog B-LPF with f. = 1 kHz and a stopband gain <—20 dB for
f> 3 kHz.

2. Design an analog Butterworth BPF with cutoff frequencies f; = 1 kHz and
f. = 2 kHz. Stopband gain is —20 dB for f < f; = 0.5k and f, > 2.5k Hz.

Solution:

1. First, the lowest possible order is found:
[nwo] = buttord(wl,w2,RdB,AdB, 's’) ;
where RAB is the maximum gain loss (below 0 dB) in the passband (defined at
the edge radian frequency w = wl), w2 is the edge of the stopband with
attenuation AdB or less, and wo is the (imposed by MATLAB) cutoff frequency
(rad/s).
Typically one takes wl = @, and RAB = 3. The letter ‘s’ indicates an analog
filter (if omitted MATLAB would design a digital filter). In this example the
relevant parameters and commands are:

58 1 Analog Signals and Systems

fc = 1000;
wc = 2xpixfc;
f2 = 3000;
w2 = 2*xpixf2;

[n wol]= buttord(wc,w2,3,-20,’s’);

which yields n = 3, f, = 1,400 Hz. The filter can now be designed using: [A
B] = butter(n,wo, 's’);

2. Following similar steps:
fcbp=[1000 20007 ;
wcbp=2*xpixfcbp;
£2bp=[500 2500] ;
w2bp=2*pix*xf2bp;
[n wobp] = buttord(wcbp,w2bp,3,-20,’s’);
[A B]=butter(n,wobp,’s’);

H=freqs(A,B,w);
1.5.9 Active Filters

Inductors require more space in circuits than capacitors and resistors and are
generally less accurate. Active filters enable filters to be constructed without
inductors, simply by incorporating active components such as op-amps. As well as
eliminating the need for inductors, active filters have the advantage that they
can produce a gain, while passive filters cannot. Active filters are considered
briefly in what follows.

1.5.9.1 Overview of Active Amplifiers

This section very briefly reviews the key results from the theory of op amps. For a
detailed explanation of op-amps, the reader should consult standard Op-Amp
references such as [4]. The conventional inverting and non-inverting active
amplifier configurations are shown in Fig. 1.38.

1.5 Analog Filters 59

Fig. 1.38 The inverting and 22
non-inverting active 1
amplifiers 7z
1 —
x ——1v i
+ — Y
v
+

e YiX=-2,12,
Inverting Amplifier

Z
1
—J
V4 4 _
l 1 v
'|| I, -
+ v
X V +
YIX= 1+ 22/ V4 p
Non-inverting Amplifier
For the inverting amplifier:
X
Vi~0,>-~ — Ra
Z Z

(i.e. the current in Z; continues almost totally to Z, without entering the OP-AMP).
Hence:

y__ %
X Z] '
For the non-inverting amplifier:
x y—x _ Y 2
=t =>>=14+=.
Z1 Zz X + Z]

1.5.9.2 The Active Buffer

The voltage follower shown in Fig. 1.39 has very nearly a unity gain since:
y=(V"=VI)A=(x—y)A;
where A is the no-load voltage gain of the OP-AMP (normally very large). Hence:
y A

L= ~ 1
x 14A
The role of this circuit is to buffer the load from the signal generator—this

buffering is achieved because there is a very high input impedance with a unity

60 1 Analog Signals and Systems

Fig. 1.39 The active buffer

v (>
+ A — Y
X L4 +
Y = X
The voltage follower
Fig. 1.40 The active i
i 1 R —
inductor 2 v >
i (o) + — Y
x = |] v
- +
i2
R

Active Inductor

gain. This circuit concept will be used to generate active inductance in the fol-
lowing paragraphs.

1.5.9.3 The Active Inductance

Using an OP-AMP as shown in Fig. 1.40, it is possible to produce inductance
without the need for an actual coil as follows:

R,

1

R, +jw_C
xR
=i 4= 2y ol _ T RT1/Ga0) x
'TRTE TR TR, + 1/(joC) R R, + 1/(jwC)

y &~ V' (voltage follower) = x

Hence:

x R+4joCRR, R+ R,K*
ii 14+joCR 1+K?

K(R, — R)
1+ K2

+J

Input impedance = z; =

where K = wCR.
If R, > R and K < 1, then K* ~ 0 and:

z = R+ joL with L ~ CRR,.

1.5.9.4 Butterworth Active Filters

The transfer function of the circuit in Fig. 1.41 corresponds to a first-order But-
terworth LPF, as illustrated by the following mathematics:

1.5 Analog Filters 61
Fig. 1.41 Active first-order R
Butterworth LPF '\/\/6/‘
R1 —
| A—L V]
(o) + — Y
X || V4
R
Fig. 1.42 Active first-order H2
Butterworth HPF AN\
R, -
| AMI—LV
R V+ — Y
X A% % +
— o1

1/(joC) _x 1

N I R S .
v+ o) TR+X.
YV

14
Y + R,
o= = (1432
X VtXx (+R1)

1+—Qg)2

where w, =

1
vVRC

R+ 1/(joC) 1 +jwRC
Gm . R
- = - with G,, = 1 + 2.
1+ joRC 1+ joRC R,

is the cutoff frequency.

Comparing this with the known form for the B-LPF magnitude gain:

|H(0)] = Gu/\/ 1+ (0 w0),

the above is seen to be a first-order B-LPF. Exchanging R and C as in Fig. 1.42
gives the B-HPF with magnitude response:

H(w)| =

Gu(o/w,)

L+ (2)
W,

This is the standard form for the B-HPF as can be found from Tables:

G’Tl
H =
|Hrp(sn)] .

, hence |Hyp(s)]

1 tw,/s

62 1 Analog Signals and Systems

or,

Gu(o/w,)
1+ (0/w,)’

D e

1+ w,/jo o/w, + 1/j

Note that the capacitor will be a disconnected element at DC (zero frequency) but
a short circuit at high frequency.

References

1. Bueche, F.J., Hecht, E.: College Physics. Schaum’s Outline Series. McGraw-Hill, New York
(2000)

2. Carlson, G.: Signal and Linear System Analysis. Wiley, London (1998)

. Hsu, H.: Signals and Systems. Schaum’s Outline Series. McGraw-Hill, New York (1995)

4. Franco, S.: Design with Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill,
New York (2001)

[SN]

Chapter 2
Discrete and Digital Signals and Systems

2.1 Introduction

Before an analog signal can be processed with a digital computer chip, the signal
need to be converted into digital form.

The first phase of the digitization process is to sample the analog signal at
discrete time instants t = nT, where n is an integer (1, 2, 3,...) and where T} is the
sampling period (i.e., the time interval between successive samples). Note that this
kind of sampling is uniform in the sense that 7 is constant, and the sampling
frequency is also constant at f; = 1/7;. The result of sampling an analog signal in
this fashion is a discrete-time signal, also known as a pulse amplitude modulation
(PAM) signal.It should be noted that while uniform sampling is simple and
intuitively appealing, it is not always the most suitable way to perform sampling.
Non-uniform sampling can in some cases actually increase the range of frequen-
cies which can be processed. Nonetheless, for the sake of simplicity, this book will
focus only on uniformly sampled signals.

The second phase of the digitization process is to quantize the discrete-time
signal. The term quantization refers to the approximation of the sampled analog
values using a finite set of values. For example, in M-bit quantization there are 2"
allowable levels, and the signal amplitude must be approximated to one of these
levels. If, for example, the expected analog voltage limits are &3 volts, the input
signal can be quantized in steps of A = 6/2" volts. Typically the voltage quan-
tization levels are chosen to be symmetric around O volts.

In the quantization process approximation via rounding or truncation normally
occurs and some information is lost. The quantized signal therefore consists of a
true signal plus an error signal which is referred to as quantization noise. The
power of this noise is dependent on the quantization step, A; with this power being
given by A?/12 (see Sect. 3.6.1.1).

The third phase of the digitization process involves an encoding of the multibit
binary sequence into a practical and convenient form before it is used or trans-
mitted. This process is known as pulse code modulation (PCM), and the resulting

Z. M. Hussain et al., Digital Signal Processing, 63
DOI: 10.1007/978-3-642-15591-8_2, © Springer-Verlag Berlin Heidelberg 2011

64 2 Discrete and Digital Signals and Systems

signal is known as a PCM signal. In PCM, each sample is represented by one of 2
codewords, each of length M bits. If f; is the sampling rate, the data rate would be
Mf; bps. The binary encoding may correspond to the natural binary code (NBC),
which is a straightforward decimal-to-binary mapping of the index of the voltage
level (between 0 and 2" — 1). Alternatively the encoding may use one of the Gray
Codes, which, because it reduces bit transmission errors, is particularly relevant
for long range transmission.

Practical multibit analog-to-digital converter (ADC) tend to perform all three
phases mentioned above within the one device: sampling, quantization, and binary
encoding. The accuracy (resolution) of multibit ADCs is strongly dependent on the
number of bits M, and increasing the number of bits typically improves accuracy.

2.1.1 Digital Systems

Digital systems are hardware or software systems that process digital signals. Most
digital systems are built up using binary or “on—off” logic, and so the operation of
digital processors can be described using binary arithmetic.

In contrast to the resistors, capacitors and inductors which make up analog
systems, the common building blocks for DSP systems are shift registers, adders
and multipliers. These building blocks may be realized in either hardware or
software, and if implemented in hardware, usually incorporate flip-flops, logic
gates and synchronously controlled clocks. Like analog systems, discrete-time and
digital systems can be analyzed in either the time or frequency domains. Both
forms of analysis are considered later in this book.

2.2 Ideal Sampling and Reconstruction

Sampling is the process of selecting (and possibly storing) the values of a con-
tinuous-time signal x(f) at specific time instants which can be indexed by the ring
of integers Z = {..., =2, —1, 0, 1, 2, 3,... }. As long as the sampling arrangement
has been well designed, the discrete-time signal, denoted by x(n), reliably repre-
sents the original signal, at least under certain assumptions. In other words, with
appropriate design of the sampling strategy, it is possible to process analog signals
using digital systems without any loss of information.

2.2.1 Ideal Uniform Sampling

Suppose that an analog signal x(¢) is sampled uniformly at a rate of f; = 1/T§, One
can represent this kind of sampling mathematically as multiplication of x(f) by the

2.2 Ideal Sampling and Reconstruction 65

p(1)
X0 ,\Aé > X0
—— I
. t
p(?)
'I‘ 'I‘ sl s-1) 'I‘
T, o T, 2T, t
x (f) - ., =
r"T"‘(’ L3 T 1\ A\\\ ,/ \\~,/ \\
T, o T, 2T,
x(n) .
T PURRCEA AN
[T v [
1 o0 1 2 n

Fig. 2.1 The sampling process in the time domain

impulse train p(t) = ° _ 6(t — nT,) (See Fig. (2.1)). The resulting sampled
signal in the continuous-time domain is x,(¢), which corresponds to a train of delta
functions weighted by the values of x() at integer multiples of T, i.e., weighted by
x(nT). The discrete-time representation of the same sampled signal is x(r), which
is the sequence of actual values of x(7) at the discrete-time instants t = nT,. (Note
that x(n) is actually x(nTy), although, T is normally omitted from the notation for
simplicity). In practical DSP, the discrete-time representation (x(n)) is more

commonly used than the continuous-time representation of sampled signals (x,(?)).

2.2.1.1 Definitions for Some Important Discrete-Time Signals

Formal definitions for two important discrete-time signals are presented below.

The Discrete-Time Unit Pulse

The discrete-time counterpart for the continuous-time unit impulse (delta function)
is the discrete-time unit pulse. It is defined as:

66 2 Discrete and Digital Signals and Systems

Fig. 2.2 The discrete-time 3(n) u(n)
delta and unit-step functions
| | T T T
n 000 n
-2-101 2 3 -2-101 2 3
1 n=20
on) =<’
(n) 0, n # 0.

The Discrete-Time Unit-Step Function

The discrete-time counterpart for the continuous-time unit step function is the
discrete-time unit step function. Its definition is:

I, n>0
um)=10" 20,

Figure (2.2) shows graphical representations of the above two functions.

Time- and Frequency-Domain Interpretation of Sampling

The sampling process can be illuminated by using various properties from
Table 2.1. One of the key results from these Tables is that multiplication “-” in the
time domain is transformed into convolution “*” in the frequency domain and
vice-versa. With these properties the following time domain and frequency domain
mathematical descriptions can be obtained:

Time Domain

(1) = x(1) - p(1)
x(z) - Z o(t — nTy)

n=-—00
o0
= Z x(nTy)o(t — nTy)
n=—0oQ

Table 2.1 Some common time windows

a b c Comment
Rectangular 1 0 0 Harsh Gibbs effect (strong oscillations)
Hanning 0.5 -0.5 0 Mild oscillations
Hamming 0.5 —0.46 0 Mild oscillations
Blackman 0.42 -0.5 0.08 Mild oscillations

2.2 Ideal Sampling and Reconstruction

Frequency Domain
X(f) = X(f) * P(f)
() xf Y 8 —Kf)

kn=—00

=1 i X(f — kf)8(t — nT,)

n=—0o0

where we have been used Tables to find that:

S ae—nt)op 3 6l - k),

n=—o00 k=—00
X(f) * o(f — kfs) = X(f = kf),
x(t) - 6(t — nTy) = x(nTy)0(t — nTy).

67

(2.1)

(2.2)

(2.3)

The sampling process in the frequency domain is illustrated in Fig. (2.3). From
the above equations and Fig. (2.3) one can deduce that X(f) is essentially a col-
lection of repeated versions of X(f) scaled by f;. These repeated versions are often
referred to as “images”. Hence, when a signal x(¢) is sampled, its spectrum X(f) is:

1. scaled by f; and
2. repeated every f.

Cintinuous-time Spectrum

X(n
A
B 0 B

Spectrum of Sampled Signal

fX(F+1.f) Nﬂ £ X(f-1.f)
ANAN A N

~f /2
Normalised-frequency Spectrum X (V)
of Sampled Signal fX(v+ 1) f X() f X(V 1)
Note: b=B/f_ -0.5 0.5 1

Fig. 2.3 The discrete-time Fourier transform (DTFT) of a sampled signal

f, Hz

z

68 2 Discrete and Digital Signals and Systems

Due to the periodicity of X(f), there is redundant frequency information in the
spectrum or “discrete-time Fourier transform” (DTFT) of x,(#). All the non-
redundant information in X(f) is fully contained in the interval f € {—f;/2,/;/2}
Hz, or equivalently fe {0f;}. In the literature X (f) is normally plotted as a
function of the normalized frequency v = fif;, or the normalized radian frequency,
Q =2nv = 2xf /f;, = Ty [see Fig. (2.3)]. Note that v and Q have no units, and the
period of X(f) is 1.

For real signals the frequency content (information) in the interval [—f,/2,0) is a
reflected copy of the frequency content in [0, +f,/2), and therefore many authors
display only the frequency interval [0, +f/2) or the normalized frequency interval
[0, 1/2] of discrete-time signal spectra.

Note also that X,(f) is still continuous in the frequency variable. From a prac-
tical perspective one cannot compute X (f) for a continuous range of frequency
values on a digital computer—one can only compute it for a finite number of
frequency positions. For this reason, X,(f) is usually only evaluated in practice at a
finite set of discrete frequencies. This discretization of the frequency domain of the
DTFT gives rise to the so-called discrete Fourier transform (DFT), which will be
studied later in Sect. 2.4.1.

2.2.2 Ideal Reconstruction

Consider the discrete-time Fourier transform (DTFT) of the sampled signal
x,(f) shown graphically in Fig. (2.3). It is not hard to see that one can reconstruct
the original spectrum X(f) from X,(f) [and hence, the original signal x(¢) from x(#)]
by filtering the sampled signal with an ideal low-pass filter whose cutoff frequency
is B Hz.

Often in practice reconstruction occurs in a two stage process—the first
involves using a digital to analog converter (DAC) which applies a sample and
hold function, and the second stage involves applying a low-pass reconstruction
filter. Both stages are considered in more detail below.

2.2.2.1 Stage 1

When a digital signal is ready to be converted back to the analog domain, the
sequence of digitally stored values is usually fed synchronously into a DAC.
Almost all DACs apply a zero-order hold (sample-and-hold) function to the
sequence of input values [see Fig. (2.4)]. The sample and hold function is effec-
tively a filter with a rectangular impulse response h(t) = IIr,(t — T,/2). This
circuit simply holds the sample x(nT,) for T, seconds. The corresponding filter
transfer function is a sinc function, as shown in Fig. (2.4).

2.2 Ideal Sampling and Reconstruction 69

- X
x ()

Sample & Hold (S&H)

FT
x(t) —Ah(t) & HF) —> X (1)

I t sec
H(f)=|T_sinc(T_1)]
T
s
h(f)
1_|
t, sec f, Hz
0T, 0

Fig. 2.4 Sample-and-Hold: operation, impulse response, and transfer function

2.2.2.2 Stage 2

Note that the DAC converts the digital signal into an analog stair-step waveform,
which contains many high-frequency artefacts. This is because the sample and
hold is effectively a filter with a very slow roll off, and it does not fully eliminate
the energy in all the unwanted spectral images. To reconstruct a smooth replica of
the original signal, the stair-step function must be passed through a low-pass filter,
often called an anti-imaging filter. This filter ideally removes all frequency content
above the upper frequency limit, B.

For perfect reconstruction of the analog signal to occur within this two stage
process, three criteria must be satisfied. The first criteria is that there is no
quantization noise in the digital signal. The second criterion is that the sampling
frequency should be greater than twice the signal bandwidth B, i.e., greater than
twice the highest frequency present in the signal:

B<l

(2.4)

This requirement is necessary so that the repeating spectra shown in Fig. (2.3) do
not “run into other”. The minimum sampling rate needed to avoid reconstruction
errors (f; = 2B) is called the Nyquist rate. The third criteria is that the filtering
provided by the combination of the sample and hold function and the subsequent

70 2 Discrete and Digital Signals and Systems

low-pass filter is ideal. That is, those two filters combine to form a filter with
a perfectly flat pass-band and a perfectly sharp cutoff at f = B Hz.

In practice none of the three criteria above are met perfectly. There is usually
a very small amount of quantization noise, there is typically a small amount of
spectral energy in the original analog signal above f,/2 and the reconstruction filter
is usually not ideal. The errors due to these imperfections, however, are often
small.

2.2.2.3 Frequency Aliasing

If B > f,/2, replicas of the signal spectrum X(f) within the DTFT overlap, and part
of the information content from the input signal is lost [See Fig. (2.5) and compare
it with Fig. (2.3)]. This overlap is called frequency aliasing. To avoid aliasing one
normally band-limits the signal before sampling to remove the high frequency
content that may cause aliasing. This can be achieved using a LPF, which is often
called an anti-aliasing filter in this scenario.

One technique which is often used in practice to help reduce errors in recon-
struction is to increase the sampling rate of the digital system well above the
Nyquist rate. When this is done the spectral images in the DTFT are well separated
from each other, and when it is necessary reconstruct the analog signal, it is not as
difficult to filter out the unwanted images. In particular, the requirements on the
sharpness of the anti-imaging filter are relaxed when one increases the sampling
rate. Increasing the sampling rate not only relaxes the requirements on the anti-
imaging filter, but also on the front-end anti-aliasing filter—i.e., the increase in the
fi/2 value effectively allows the transition band of the anti-aliasing filter to be
wider.

Figure (2.6) shows a practical signal processing system which incorporates
the anti-aliasing filter, the sampling and ADC, the digital processing, the DAC and
the anti-imaging filter.

X(f)
1
B 0 B f Hz
X_(f)
f
S,
_B 0 r-B B f 8512
S S
f —f/2 f/2 f
S s S S

Fig. 2.5 Frequency aliasing B > f,/2

2.3 Time-Domain / Frequency-Domain Representations 71

Fig. 2.6 Block diagram of a Digital Digital

practical signal processing Signal Signal

system x(t), r(n) p(n) y(t),
Analog __.| LPF & D/A > Analog
Input A/D & LPF Output
Signal Signal

2.3 Time-Domain / Frequency-Domain Representations

Like analog signals and systems, digital signals and systems can be analyzed either
in the time-domain or in the frequency domain. The two domains are equivalent,
provided that suitable transformations are used. The most common time-to-fre-
quency transformations for continuous-time signals are the Fourier transform and
the Laplace transform. The counterparts of these transforms for sampled signals
are the discrete-time Fourier transform (DTFT) and the z-transform. The DTFT is
useful for analyzing the frequency content of signals, while the z-transform
is useful for both analyzing the frequency content of signals and analyzing the
stability of systems. The DTFT and z-transforms will be defined and studied in
more detail in Sects. 2.3.2.2 and 2.3.3.

2.3.1 Time-Domain Representation of Digital Signals and Systems

This section considers the representation and analysis of digital signals and sys-
tems. Fundamental to time domain analysis of discrete-time signals is discrete-
time convolution, which is defined in what follows.

2.3.1.1 Discrete Linear Convolution

If x(n) and y(n) are two discrete signals, their discrete linear convolution w(n) is
given by:

o0

w(n) =x(n) xy(n) = Y x(k)y(n — k).

k=—00

Note that k is a dummy variable of summation. The above formula is similar to
that of continuous-time linear convolution, except that summation is used instead
of integration.

If both x(n) and y(n) are finite signals of lengths N, and N, samples, respectively,
the length of w(n) is finite and Is given by L = N; + N, — 1. Hence, if x(n) and
y(n) are of equal length N, then the result of the convolution is L = 2N — 1
samples long.

72 2 Discrete and Digital Signals and Systems

Example (1) If x(n) = (0.8)" u(n) and y(n) = (0.4)" u(n), then their convolution
is:

w(n) = x(n) * y(n) = sum; > x(k)y(n — k) (2.5)

Since the variable of summation is k, x and y should be re-expressed as functions
of k:

k
o) = {(0.4) . k>0

0, k<0;
k
) >
X(k) = (0.8)", k>0
0, k<0

04)" % n—k>0= - k<n
Sy(m—k) = (04)
0, n—k<0= . k>n

Examination of Fig. (2.7) reveals that the product x(k)y(n — k), is non-zero
only when n > 0. Hence it follows that:

x(k)=(0.8) u(k)

1% """"" Proogeg
2 3

-2 -1 0 1

y(k)=(0.4)u(k)

1 % B
° o o L 9o - .)
-2 1 0 1 > 3
y(-k)
Qi Q ittt ? e .)) k
-2 -1 0 1 > 3
y(2-k)
l 1
’ ° PORY WS e] o
-2 1 0 1 . 3

« Overlap —

Fig. 2.7 Convolution of x(n) = (0.8)" u(n) with y(n) = (0.84)" u(n)

2.3 Time-Domain / Frequency-Domain Representations 73

w(n) = Xn:(o.S)’f(OA)"*"; n>0
k=0

L 1-2
= (04)" ;f = (04)" 5 [Tables, Formula 10)

= (0.4)"2"™" = Du(n).

Example (2) If there are two finite duration signals x(n) = {2,3,4} and

y(n) = {—1,5}, where “’” indicates that the sample is taken at n = 0, then their
convolution can be found directly from the general formula as follows:

2.3.1.2 Mathematical Representation of Digital Signals and Systems
in the Time Domain

While analog signals are normally specified as a function of continuous-time,
uniformly sampled digital signals are normally represented in the time domain as a
function of the sample number (or the sample count integer). Digital systems are
typically characterized in ways that are similar to those used in the continuous-
time domain. Rather than being represented by a continuous-time impulse
response, a digital system is fully specified by a discrete-time impulse response.
This impulse response is the output of the digital system when the input is the
discrete delta function, d(n). Within this book, the discrete-time impulse response
is denoted by h(n).

The system input/output (I/O) relationship is specified by the discrete linear
convolution of the impulse response i(n) and the input signal x(n):

74 2 Discrete and Digital Signals and Systems

Fig. 2.8 Discrete-time Digital System
domain representation of a x(n), y(n),

digital system ISnlslrj\;I ﬁl h(n) '_> gil,gl;r;‘)ault

y(n)=h(n)*x(n)

o]

y(n) = x(n) x h(n) = Z x(k)h(n — k) (2.6)

k=—o00

Note For causal digital systems h(n) = 0 for n < 0.
A graphical illustration of a digital system is shown in Fig. (2.8).

Eigenfunctions of LTI Digital Systems

If the input signal to an LTI digital system is x(n) = &> = ¢, then the output
is given by:

o0

y(n) = x(n) x h(n) = h(n) xx(n) = Z h(k)ej(n—k)ﬂ — 2 i h(k)e 7.

k=—o00 k=—00

If one defines H(e/?) = Y77 h(k)e/*, then for an input of ¢ one obtains the
output y(n) = ¢"?H (/). Hence, ¢ is an eigenfunction, and the associated
eigenvalue is H(¢/?) (Compare with the analogous result obtained for continuous-
time systems in Sect. 1.2.3.4).

Analyzing the Stability of Digital Systems in the Time Domain
For a digital system to be BIBO stable, the output y(n) should be bounded when
the input x(n) is bounded, i.e.,

[y(n)] <oo when |x(n)| <A(which is a finite constant), Vn.

Using the inequality la + bl < lal + 1bl, it follows that

o0

IS xh— K< S k)G — K.
k=—00

k=—00
If Ix(k)l < AVk, then
) =1 x(h(n—k)| <A > |h(n—k)|<A D |h(m)),
k=—00 k=—00 m=—o00

where m = n — k. Hence, a digital system is BIBO-stable if > 2 _ |h(k)| <oo.
(Compare with the condition for stability of analog systems found in Sect. 1.2.3.5).

2.3 Time-Domain / Frequency-Domain Representations 75

2.3.2 Frequency-Domain Representation of Digital Signals
and Systems

2.3.2.1 Discrete-Time Fourier Series for Periodic Digital Signals

In the analog domain the continuous-time signal and the Fourier Series are related
according to:

e o 1 [T N
M) = 3 Ko P = /O x(t)e P gy (2.7)

k=—00

If the analog signal x(¢) is sampled with a rate of f; (sampling interval = T, = 1/f)),
a discrete-time signal x(n) is obtained:

x(1) =x(n) = > x(t =nT)d(r). (2.8)

k=—00

It will be assumed that the period of the above discrete-time signal is N sam-
ples, where N = T,/T, = fJ/f,. If x,(¢) is fed into the formula for the Fourier Series
in Sect. 1.2.3.1 one obtains:

1 N—-1

N

n=»

X, =Xk) = x(n)e2™/N " [DES pair]

The above expression is obtained with the result that fOT” o(t)dr = 1. The equation
linking time domain signals with Fourier series for discrete-time signals is
therefore given by:

N-1 ' 1 =l
x(n) =Y X(k)*™N o X(k) = —
=0 N =

x(n)e *™"/N|DFS pair].

Note that, unlike the continuous-time FS, the summation for x(n) in the DFS
does not need to go from —oo to oo due to the periodicity of both X(k) and the
discrete exponential &7 KN in k. That is, the DFS coefficients are periodic (with
period N).

2.3.2.2 The Discrete-Time Fourier Transform for Non-Periodic Digital
Signals

Recall from Sect. 2.2 that the formula for the discrete-time Fourier transform
(DTFT) for non-periodic signals is:

76 2 Discrete and Digital Signals and Systems

Xi(f) = X(f) * P(f)

o0 o0

=X f; Y o~k =D X k)

kn=—o00 k=—00

The DTFT consists of a sum of scaled and infinitely repeated versions of the
spectrum of the original analog signal, x(7). This is depicted in Fig. (2.3).

2.3.3 The z-Transform

The Laplace transform (LT) was previously seen to be very useful for stability
analysis of continuous-time signals. One can obtain similar stability analysis
capabilities for discrete-time signals by using a discrete-time counterpart to the
LT. If one substitutes the expression for a discrete-time signal, x,(f) into the
expression for the LT in Sect. 1.2.3.3 and simplifies, one obtains the discrete-time
Laplace transform (DTLT):

X(s) = X(eT) = Y x(n)e ™" (2.9)

The DTLT is, like the DTFT, periodic, and can be shown to have the equivalent
alternative expression:

o0

Xs(s) =f D> X(s — jkay).

k=—00

where X(s) is the LT of the original analog signal. It is convenient to define a new
variable z = ¢*">, which can be substituted into (2.9) to obtain the following
transform:

X(z) = f: x(n)z™". (2.10)

The above relation is called the z-transform (ZT). It is evident that the z-transform
is reduced to the Fourier transform if one substitutes z = &/,

Unlike the DTFT the ZT is not necessarily periodic in the frequency variable.
This non-periodicity is due to the additional factor « in the exponent (¢'7*) which
results in a decaying or expanding factor (e”) in the overall transform.

Under certain conditions (that are normally satisfied in practical signals and
systems), the ZT exists as a pair, i.e., there is a z-transform and an inverse
z-transform (IZT). Like the LT, the ZT has a region of convergence (ROC).

2.3 Time-Domain / Frequency-Domain Representations 77
Computation of the IZT can be quite involved as it requires integration in the
complex z-plane. For this reason, it is advisable to use Tables to determine the
IZT.

2.3.3.1 The Single-Sided ZT

As with the LT, one can define double-sided and single-sided transforms. Mim-

icking the approach used for the LT, this book will focus only on the single-sided
ZT, which is defined as:

X(2) = ix(n)z_” . (2.11)

n=0

Example (1) If x(n) = a" u(n), then its ZT is given by:

X =D w7 = Y =3 a1
n=0 n=0 n=0
1— (az™H)™ 1
= lfa—jz*? [from Tables, Formula 10] = =i~ j , (if |z| > a).

Figure (2.9) shows this function for a = 3.

Example (2) If x(n) = u(n), then from Example (1), its ZT is given by z/(z — 1)
for Izl > 1, i.e., the ROC is Izl > 1).

Example (3) If x(n) = d(n), then it ZT is given by X(z) =) - d(n)z" =
14+0+0+- =1

Fig. 2.9 A plot of the mag- | X(z)]
nitude of the z-transform
X(z) = 72/(z — a) fora =13

Re(z)

78 2 Discrete and Digital Signals and Systems
2.3.3.2 The Time-Shift Property of the ZT

Assume that y(n) = x(n — M), i.e., assume that y(n) is a time delayed version of
x(n) with the delay being M samples. Then:

Y(z) = iy(n)f" = iX(n M)z ™",
n=0 n=0

Letting k = n — M and assuming that x(k) = 0 for k < 0 gives

Y(z) = i x(k)zFM =M ix(k)z’k =7YX(z) .
k=—M n=0

That is, a delay of M samples in the time-domain corresponds to a multiplication
by z ™ in the z-domain.

2.3.3.3 Relationship Between the FT and ZT of a Discrete-Time Signal

It has been seen previously that to retrieve the FT from the LT, one substitutes
s = jo. In similar fashion one can recover the DTFT from the ZT by putting
7z =T = /T, Since || = 1, the DTFT is effectively the ZT evaluated along
the unit circle of the complex z-plane, i.e., along Izl = 1.

It should be noted that FT plots are in general 2-D, while LT and ZT plots are
3-D. The extra dimension is due to the additional variable, o« in the LT and ZT
formulations.

2.3.3.4 Relationship Between the LT and the ZT for Discrete-Time Signals

Recall that the ZT is obtained from the LT by making the assignment z = ¢’

ST, (o+j)T,

= e(*HO)T | Since z =T =e s = ¢"T:e/*Ts | the magnitude of z is r = |z

= "> and the phase of 7 is:

0= tan"! [Z"Ei] ~ tan”! [%] _ o,

(using Euler’s formula to expand &/®7+).
Hence, the z = e'Ts = ()75 assignment inherent in the Laplace to z-trans-
form mapping causes the imaginary axis in the s-plane (i.e., s = 0 + j) to map to
the circumference of the unit circle in the z-plane (i.e., Izl = 1). This is illustrated
graphically in Fig. (2.10). The left half of the s-plane (with « < 0) is transformed
into the interior of the unit circle in the z-plane (i.e., Izl < 1), while the right half of

the s-plane is transformed into the exterior of the unit circle (i.e., Izl > 1).

2.3 Time-Domain / Frequency-Domain Representations 79

e Im (z)
s-plane lz|=1 z-plane

Unit Circle

Re(z)

T,

Fig. 2.10 Mapping the s-plane onto the z-plane using z = ¢°

Note that this relation is not a general relation between analog and digital
representations. It is only applicable to s-plane and z-plane representations of
discrete-time signals, since it is based on the relation between the DTLT and
ZT.

2.3.4 Mathematical Representation of Signals and Systems
in the Frequency Domain

A discrete-time signal x(n) can be represented by its DTFT in the frequency
domain . Similarly, a digital system with impulse response /(n) can be represented
in the frequency domain by its transfer function, H,(f) = H(e/*T) = H(e/®) =
which is the DTFT of its impulse response hi(n) [See Fig. (2.11)].

Recall that characterization of the system function is achieved in the time
domain via the impulse response. The output of a system can be obtained for a
given input via discrete linear convolution of the impulse response with the input:

y(n) = h(n) * x(n)

In the frequency domain, the system function information is contained in the
transfer function. The system output for a given input is found by multiplying the
transfer Hy(f) by the DTFT of the input signal X,(f):

Yé(f) = Ha(f) 'Xs(f)7

where Y (f) = DTFT[y(#)] and X,{) = DTFT[x(#)]. This relation can also be
written with the alternative notation Y (e/?) = H(e/) - X(&/?), where Q = wT,. A
similar relation is obtained in the z-domain:

80 2 Discrete and Digital Signals and Systems

) Digital System)
X, (f)=Y(e), Y (f)=Xx(?),

Input s H (f)=H(e® > Output
Spectrum s (1) (e™) Spectrum

Y, (f)=H_(f).X_(f)

for: Y (i) = H(e!). X(el); where Q = 0T]

Fig. 2.11 Frequency-domain representation of a discrete-time system

Again, analogously to the continuous-time case, convolution in the discrete-
time domain is transformed into multiplication in both the frequency domain and
the z-domain:

x(n) *y(n) <> X(z) - Y(2) (2.12)

x(n) - y(n) <= X(2) * Y(2) (2.13)

(See also Tables, z-Transform Pairs and Theorems).

2.3.4.1 Relationship Between the ZT Transfer Function and the Frequency
Response

The (periodic) frequency response H,(w) = H(e/Ts) of a digital system can be
obtained from its ZT-transfer function H(z) with the substitution z = &7 as
follows:

H(") = H(z)]

7=eioTs -

2.3.4.2 Stability of Digital Systems in the z-Domain

It has been shown previously that a digital system is BIBO-stable if its impulse
response is absolutely summable, i.e., if Y, |h(k)| <oo. Practically it is often
difficult to analyze the system stability in this way. Equivalently, a causal digital
system is BIBO-stable if and only if all the poles of its z-transfer function H(z) are
inside the unit circle (i.e., Iz,| < 1, where z, is the location of the pth pole in the z-
plane). [Note that this condition is for causal digital systems only, otherwise the
condition would be that the ROC of H(z) should contain the unit circle].

Example (1) If the system impulse response is i(n) = a" u(n), then its z-transfer
function is H(z) = z/(z — a) [from Tables. This system has a zero at z = 0, and a
pole at z = a. It is BIBO-stable if lal < 1, i.e., if the pole is within the unit circle

2.3 Time-Domain / Frequency-Domain Representations 81

Fig. 2.12 An example of a +
recursive digital system x(n) —|— y(n)
(leaky integrator)

+

Example (2)) The difference equation that describes the recursive system in Fig.
(2.12) is given by:

y(n) = x(n) + by(n — 1), (2.14)

where, b is a multiplicative constant (gain). Taking the ZT of both sides of (2.14)
yields:

Y(z) = X(2) + bz 'Y (2).
Re-arranging terms leads to
[1—bz7"Y(2) = X(2).

(z
(z

From Tables (z-Transform Pairs), the IZT is h(n) = b"u(n).

1 Z

1—bz! z—-b

SH(z) :; ; =

The system frequency response is:

H(CU) = H(Z)|z:exp(jmT,-)
e/'(uTV ejZﬂfT.v ej2nf/fs
TPl _p o2l _p g2k _ b
ej21rv ejQ

7ej2nv_b_ej9_b

where v = fIf; and Q = 2nv are the normalized cyclic frequency and normalized
angular frequency, respectively. The magnitude and phase responses are:

_ | eij.\- | B 1

~|e®Ts —b| |[cos(wTy) — b] — jsin(wTy)|

= ! ZH(w)

\/[cos(wTS) — b)* — [sin(wTy))

: | bsin(w-Ty)
_ T — _ 1 s
= ZH(") tan {—1 ~heos(@ Ts):|

H(o)| = |H("")

As a special case, letb = 0.5 andf, = 1 Hz (i.e,, T, = 1s). Atf = 0.1 Hz (i.e,,
o = 2m(0.1) = 0.6283rad/s), the magnitude response is |H(e/®T)| = 1.506 and

82 2 Discrete and Digital Signals and Systems

IH(el2™ V)| 0, rad/s
2 T N
v=f/f v=Ff/f
s s
-1-05 05 1 \
=TT

-1-05 05 1

Fig. 2.13 Magnitude and phase response of a leaky integrator

the phase response is ZH(e/*Ts) = —0.458 rad. Figure (2.13) shows the magnitude
and phase response of this system as a function of the normalized frequency.
If one needs to recover the actual response versus frequency from the normalized
frequency response one simply scales the frequency axis by fi.

From Fig. (2.13) one can see that the shape of the transfer function is that of a
LPF; the circuit is in fact what is sometimes referred to as a leaky integrator. If
b = 1, it would be an integrator, as will be seen later.

2.4 A Discrete-Time and Discrete-Frequency Representation

The DTFT of a discrete-time signal x(n) is still continuous in the frequency var-
iable, and hence it is not possible to implement with practical digital technologies
such as computers. It is necessary, then, to find a discrete-time and discrete-
frequency representation for practical analysis. This doubly discrete representation
will be referred to as the Discrete Fourier Transform (DFT).

2.4.1 The Discrete Fourier Transform

In practice one has to restrict oneself to computing the Fourier transform at a
limited number of representative sample frequencies. It was seen previously that
with appropriate precautions no information is lost provided that certain require-
ments on the sampling rate are met. In particular, it is necessary that the sample
rate in the time domain is at least twice as high as the highest frequency com-
ponent present in the analog signal. It will be seen here that there is an analogous
result for frequency domain sampling—one does not lose any information by
sampling in the frequency domain, provided that certain conditions are met on the
frequency sampling rate.

2.4 A Discrete-Time and Discrete-Frequency Representation 83

Consider now the problem of sampling the DTFT in the frequency domain. It is
assumed that the frequency sampling is uniform, and that the spacing between
samples is F,. Now it is critical that this frequency domain sampling does not lead
to information loss. That is, it is necessary for the time domain signal to still be
perfectly recoverable, despite this sampling.

It is now required to determine the maximum frequency sampling interval
which ensures no loss of information. Assume initially that this rate is F, = f/
N. This choice implies that the number of samples in the frequency domain is the
same as the number of samples in the time domain. Then the resulting DFT is
defined by:

N-1

X (k) = xi(n)e 2N,

n=0

Now consider the inverse Fourier Transform of X (k). By using an analysis very
similar to that done in Sect. 2.3.2.1 it is possible to show that the inverse is given
by:

1 &) N—1 _
XI,(n) = N Z Xs<k)812nkn/N — Xs(k) _ pr(n)ef_/ann/N
n=0

k=—00

Now it is important to realize that both X (k) and e ™ knIN are periodic, and
because of this periodicity, x,(?) is also periodic, with period N. This indicates that
just as sampling in the time domain causes periodicity in the frequency domain, so
sampling in the frequency domain causes periodicity in the time domain. Fur-
thermore, with a frequency sampling interval of F; = f;/N the periodicity is seen
to be N, which is just adequate to prevent the time domain images from “running
into each other”. That is, the frequency sampling interval of F, = f/N is just
enough to prevent time-domain aliasing. If the sampling interval were any greater
aliasing in the time domain would occur.

In summary then, sampling in the time and frequency domains causes repetition
in both domains. The DFT is normally obtained from the DTFT by sampling at a
rate of Fy = f,/N, because this is just enough to avoid time-domain aliasing. With
this sample rate the number of samples in both the time and frequency domains is
N. Although the time and frequency domains both repeat doubly discredited
systems, it is common to only display one image. With this in mind the usual
definitions for the DFT and inverse DFT (IDFT) are:

1 N—1 ok N—1]
_ nkn/N _ —j2mkn/N
x(n) = 2 X(k)e = X(k) = ;x(n)e J : (2.15)
Note that
IDFT{DFT|x(n)]} = 1; (2.16)

that is, the DFT and IDFT are reversible transforms.

84 2 Discrete and Digital Signals and Systems
2.4.1.1 Approximation of the FT Using DFT

The DFT can be used to approximate the original (continuous-time) FT. The
quality of the approximation depends largely on the sampling rate used in the time
domain. As long as the time domain sampling rate is greater than the highest
frequency present in the original analog signal, and the frequency domain sam-
pling rate is F, = f,/N, the approximation is perfect.

The effectiveness of the DFT for approximating the Fourier Transform derives
from the fact that the DFT is simply a sampled version of the DTFT, which is in
turn a scaled and periodic version of the FT (see Sect. 2.3.2.2).

2.4.1.2 Relationship Between the DFT and the DFS Coefficients

A simple comparison between the DFS of a periodic sequence (with period N) and
the DFT of one period of this sequence reveals that the two related by a simple
multiplicative constant:

Xi.ors = Xeprr /N, (2.17)

where X, prs is the pertinent DFS coefficient and Xy prr is the corresponding DFT
sample. This is reminiscent of a similar relation in the analog domain, where the
FS coefficients of a periodic signal (of period =7,,) are related to the FT of a single
period of the same signal according to:

Xi = X1, (F)/To |p=i, (2.18)

where X is the pertinent FS coefficient DFS and X, (f) |r—f, is the corresponding
FT value.

2.4.1.3 The Fast Fourier Transform

Calculation of the Discrete-Fourier Transform directly according to the definition
in (2.15) requires of the order of N computations, i.e, it requires O(N?) arithmetic
operations. These calculations cannot normally be done in real-time, as is required
for many practical applications. For this reason many scientists and engineers have
sought alternative techniques for rapidly calculating the DFT. The first to devise an
efficient algorithm was probably Gauss, but his work went largely un-noticed until
about 1990. In 1965, however, the so-called Fast Fourier Transform (FFT) was re-
invented and popularized. [see J. W. Cooley and J. W. Tukey, “An algorithm for
the machine calculation of complex Fourier series,” Mathematics of Computation,
vol. 19, pp. 297-301, 1965]. In contrast to calculation via the direct definition, the
FFT algorithm can be implemented in O(N log(N)) operations. This algorithm
provided not only economy of time in run-time operation, but also economy of
computational and storage elements in hardware for DFT implementation.

2.4 A Discrete-Time and Discrete-Frequency Representation 85

The FFT algorithm can generally support real-time processing (at least on
modern computers and DSP chips).

MATLAB the Fast Fourier Transform algorithm is available on MATLAB as
fft.

2.4.1.4 Circular Convolution and Its Relation to the Linear Convolution

In time and frequency discretized systems the time domain signal and the fre-
quency domain signal are both periodic. Within these doubly discretized systems,
it is not only the input signal which is periodic, but also the impulse response and
frequency transfer function. To appreciate the implications of this last fact, con-
sider two time-domain signals x(n) and h(n) which are both periodic. Their linear
convolution

o0

x(n) * h(n) = Y x(k)h(n — k) (2.19)

k=—00

diverges in general (i.e., does not exist). This is because both signals are infinitely
long and so the sum within (2.19) can easily be infinite. With periodic signals,
therefore, it is more natural to define a modified form of convolution known as
circular convolution. As will be seen subsequently, this is the kind of convolution
which is implemented implicitly in doubly discretized systems.

Assuming that two signals have identical periods of length N, then one con-
siders only one period of each signal and defines circular convolution as:

N-1

x(n) ® h(n) =Y x(k)h(n — k)],

k=0

where py = p modulo N for any integer p. The circular convolution x(n) ®
h(n)]] > is also periodic with the same period N.

Recall that the linear convolution of two non-periodic finite-length signals
x(n)*h(n) has length L = N, + N, — 1. If one desires therefore to have x(n) ®
y(n) = x(n) * h(n) over one period of the periodic signals x(n) and h(n), then one
has to artificially extend the length of both signals by zero-padding both x(n) and
h(n) to be of length L = N, + N, — 1. That is, one adds extra samples to x(n) and
h(n), with these samples having the value 0.

2.4.1.5 1/0 Relations Using Circular Convolution and the DFT

One of the key areas of application for the DFT is digital filtering. In DFT based
digital filtering one has an input signal x(n) and an impulse response /(n), and the
filtered output y(n) is given by the convolution of x(n) and A(n). Implementation of
the filtering in the time domain, however, requires O(N*) operations, assuming
both x(n) and h(n) have N samples. One can take advantage of the efficiency of the

86 2 Discrete and Digital Signals and Systems

Fig. 2.14 1/O relations in a
digital system

Digital System

x(n) y(n)

—>H(k)=DFT[h(n)] ———>

X(k) Y(k)

y(n)=x(n)®h(n)
Y(k)=X(k). H(k)

FFT algorithm and implement the filtering in the frequency domain instead. This
alternative is discussed in the following paragraphs (Fig. 2.14).

Since convolution in the time domain is equivalent to multiplication in the
frequency domain, it is tempting to

1. take the FFTs of x(n), and h(n) to obtain X(k) and H(k), respectively,
2. multiply X(k) and H(k) together to obtain Y(k), and
3. then take the inverse FFT to obtain y.(n).

This three-step procedure, however, would yield the wrong result in general. To
see why the procedure is flawed, imagine that x(n) and h(n) are both N samples
long. Then X(k), H(k), Y(k) and y.(n) would all be N samples long as well. Since
y.(n) is supposed to be the convolution of x(n) and A(n), however, it should be
N + N — 1 samples long rather than N samples.

The reason for the flaw in the three step procedure above is that multiplication in
the DFT (or FFT) domain implicitly corresponds to circular convolution in the time
domain. For true filtering to occur, one must have linear convolution rather than
circular convolution, and so one must zero-pad both x(n) and h(n) to be of at least
length L = N, + N, — 1, where N, is the length of x(n) and N, is the length of h(n).
If one performs this zero-padding, the circular convolution inherently implemented
in the FFT domain becomes equivalent to linear convolution in the time domain.

2.5 Signal Correlation, Power, and Energy
2.5.1 Definitions

This subsection presents formulae for correlation, power, and energy of discrete-
time signals. These formulae are analogous to those for analog signals, but with
integrations changed to summations. The formulae are presented below.

2.5.1.1 Autocorrelation of Non-Periodic Discrete-Time Energy Signals

2.5 Signal Correlation, Power, and Energy 87
2.5.1.2 Autocorrelation for Periodic Discrete-Time Power Signals

1N—l

N

n=

R.(k) = x(n)x*(n+ k),

where N is the signal period.

2.5.1.3 Energy in Non-Periodic Discrete-Time Energy Signals

00

Ri(k)= > Tfx(n)f?

n=—0o0

Compare the above formula with the corresponding formula for analog signals:
00 2
E= [_|x(t)"dr.

2.5.1.4 Power in Periodic Discrete-Time Power Signals

= ,
P= g3 o)
2.5.1.5 Parseval’s Theorem
1=t , ,
F iodic signals: P = — = X(k)|”.
or periodic signals N; |x(n)| kz:;| (k)|

PSD

L - 2 S 2 2
For non-periodic signals: E = Z Ty|x(n) :/0 T2 X (f)| df,
ESD

n=-—0oo

where X,(f) = X(¢/*"f T,) is the DTFT.

88 2 Discrete and Digital Signals and Systems

2.5.1.6 The Wiener-Kinchin Theorem

For periodic signals: Ry (k)— [X|*.

~——
PSD

For non-periodic signals: Rx(k)<—>Ts2\Xs(f)|2,'
N—_——
ESD

2.6 Digital Filters and Their Applications

The advancement of digital computers during the 1960s paved the way for many
analog electronic circuits to be emulated in digital computers. The advantages of
this kind of digital emulation are many—greater accuracy, greater flexibility,
lower cost, lower power requirements, greater reproducibility, etc. This section of
the book focuses on a particular type of digital emulation-namely the emulation of
conventional filters with digital computer hardware. This type of emulation is
commonly referred to as digital filtering.

2.6.1 Ideal Digital Filters

Ideal digital LP, HP, BP, and BS filters can be defined by simple analogy with
analog filters. In exploiting the similarities between digital and analog filters,
however, it is also important to keep in mind that there are some key differences.
One of the key differences is that there is a periodicity in the frequency response of
digital filters.

2.6.1.1 Mathematical Formulation
The Digital LPF

The transfer function of a digital LPF over the principal frequency domain
(— f/2, f/2) is given by

mi = =g 7

[see Fig. (2.15)].

2.6 Digital Filters and Their Applications 89

H, (f)
LPF - | 1 | f
1 . [T] . [..
: 1 1 : ’
-f —f/2 .0 K /2 f
s s s s
H, (f)
: 1 q 1 :
HPF . ‘ | ' | :
: I I | ! ~ f Hz
: ! 0 f/2-f ' f/2+f :
s y Y fs
’ Hap () . ’
BPF : 1 ‘ :<7f°=(f1+f2)/2 I
J : I 5 l : I L f, Hz
: 1 : 1 : ’
- —f/2 f, 0 1'%, f/2 f
s s s s
Hos (1)

A,

-f)

s s s

-
N
-
N
w™h

Fig. 2.15 Transfer functions of ideal digital filters

Digital Filter Transformations in the Time-Domain

Similar definitions to that of the LPF can be created for HPF, BPF, and BSF filters,
These definitions are provided below, and illustrative plots for the corresponding
transfer functions are provided in Fig. (2.15).

1. LP — HP : from Fig. (2.15) it is seen that the transfer function of a HPF with
cutoff frequency f, is a spectrally-shifted version of a LPF with the same cutoff
frequency, i.e.,

Hy(f) = H(f £1/2),

hH(n)e—jZnnfo — hL(n)e—./?nn(er.f;/Z)T,\-
n:z—:oc n;oo (2.20)
< -
= Y huln)(=1)e

noting that e #*™n (f,/2)T; = ¢ #"™ = (— 1)". A simple examination of the above
equation indicates that:

hH(n) = (—1)"hL(n)

i.e., the impulse response of a highpass filter can be obtained from a lowpass one
by simply inverting every second sample.
2. LP — BP: from Fig. (2.15) it is apparent that:

90 2 Discrete and Digital Signals and Systems

Hpp(f) = HL(f + o) + HL(f — fo)-
where f, = (f; + f>)/2 and the cutoff frequency of the LPF H;(f) is f. = (5 — f1)/2.

.. hgp(n) = 2 cos(2znnf, /f;)hy(n)|from Tables).
3. BP — BS: From Fig. (2.15) one can see that Hg(f) = 1 — Hpgp(f), hence,

hgs(n) = 6(n) — hgp(n) = { l:hgﬁlgr(l())’>7 Z;:é(())

2.6.2 Linear-Phase Systems

Ideally, it would be convenient if a filter had

1. a magnitude response which did not vary with frequency,and so introduced no
amplitude distortion,
2. a zero phase response and hence had no phase distortion.

However, these ideals are not achievable in practical filters. A zero phase
response implies that the filter’s impulse response is symmetric about n = 0 and
this in turn implies that the filter is non-causal (see Sect. 1.5.1). Practical filters
cannot be non-causal and cannot therefore have zero phase response.

A practical impulse response can be obtained from the ideal (non-causal)
impulse response by inserting a delay which positions all (or nearly all) of the
impulse response after n = 0. This delay introduces a linear phase shift to the
transfer function according to Fourier and z-transform Tables:

h(n — Py ToH(2)z = H(T)d T = H(PT) VT,

The introduced phase shift is linear with negative slope.

Since a linear phase change in the frequency domain corresponds to a simple
time-delay in the time domain, it does not cause any change to the overall shape of
the filtered signal. This essentially means that no phase distortion occurs. On the
other hand, a non-linear phase response can damage the information content of a
signal. Therefore, it is desirable in the practical design of a digital filter to aim for a
linear phase. Generally, the transfer function of a linear phase digital system is
given by:

H(eﬂuﬂ) — |H(é‘inA) 20T — A(eijJ)ejm

where A (/) is real (i.e., is a zero-phase system), and the phase shift is linear and
is given by ¢ = wrt, where 7 is a constant).

2.6 Digital Filters and Their Applications 91

2.6.3 Classification of Digital Filters

Digital filters can be classified into two major categories according to their impulse
response length:

1. A finite impulse response (FIR) digital filter: has an impulse response with a
finite number of non-zero samples.

2. An infinite impulse response (IIR) digital filter: has an impulse response with an
infinite number of non-zero samples.

2.6.4 FIR Digital Filters

2.6.4.1 Structure and Implementation of FIR Filters

A causal FIR filter can be specified mathematically by the following difference
equation [see Fig. (2.16)]:

¥(n) = h(n) * x(n),
N-1
h(k)x(n — k)

Il
I
(=)

I
hox(n) + hix(n — 1) + - - + hy_1x[n — (N — 1)]

where & is used in place of h(k) for notational simplicity. Taking the z-transform
of both sides yields:

Y(z) = hoX(2) + iz 'X(z) + - - - + hy_12- V"V X(z) [Using Tables].

Hence, the transfer function is given by:

H(z) = Y(2)/X(2) =ho + iz "+ 4 hy 77V (2.21)

Remembering that a z~! corresponds to a single sample delay, one can imple-

ment the causal FIR filter using delay elements and digital multipliers as shown in
Fig. (2.16).

2.6.4.2 Software Implementation of FIR Filters

The I/O relation in (2.6) could easily be implemented using a software program on
a DSP chip or a digital computer. However, implementation according to the
definition in (2.6) would require O(N, N,) operations. As suggested in
Sect. 2.4.1.5, a more efficient implementation is possible in the frequency domain
with the use of FFTs. One uses the relations:

92 2 Discrete and Digital Signals and Systems

Fig. 2.16 A finite impulse Digital FIR Filter
response (FIR) digital filter x(n) y(n)
and its implementation (with y(n)=x(n)*h(n)

N = 2M + 1) being odd

Y(k) = X() - H) Dy (n) = v~ (k).

remembering that it is necessary to zero-pad both the input signal and impulse
response up to N, + N, — 1 samples so as to avoid undesirable circular convo-
lution effects.

2.6.4.3 FIR Filtering of Long Data Sequences

In many applications (e.g., speech processing), the signal x(n) can be very long. In
this case, one cannot perform FIR filtering using the above technique efficiently
since the fft computation time would be very large. Also, saving all of the input
data would put a significant strain on the computer memory. Furthermore, real-
time processing would be impossible since it would be necessary to wait until the
end of the signal to start processing. Instead one can exploit the fact that an FIR
filter is a linear system, and obeys the superposition property. Hence, one can
partition the data record x into a sequence of blocks, each of relatively small length
K, noting that K >> M, M being the filter length. Each of these blocks can be
filtered separately and the resulting outputs combined to yield an overall output.
The process is called the overlap-add method and is illustrated in Fig. (2.17).

MATLAB the above overlap-add method could be implemented on MATLAB
using the instruction £ftfilt (x,h), where x is the signal and h is the FIR filter
impulse response.

2.6.4.4 Pole-Zero Diagram and Stability of FIR Filters

The FIR transfer function in (2.21) can be written as:
1
H(Z) = Y(Z)/X(Z) = (ZN—1> [hoZN71 +h]ZN72 + - +hN_]],
which shows that an FIR filter with impulse response of length N has N — 1 zeros

and a multiple pole of order N — 1 at the origin (z = 0) (Since this multiple pole is
inside the unit circle, it poses no stability problems).

2.6 Digital Filters and Their Applications 93

K LK LK |
Input —
Data x1 ! x2 ! x3
" B
z1 1 0
- M1
-
z2 Pox2 0 P
1 M-
z3 x3 0
Output P P
Data M-1;
y1 i yi2 N
w -
v2 [yz1]| 22 y23 o
i
y3 y31 y32 y33

y=[yl1 y12+y21 y22 y23+y31 y32 y33]

Fig. 2.17 Overlap-add method for processing long data sequence

MATLAB the pole-zero diagram can be plotted on MATLAB using
zplane (A, B), where A and B are the numerator and the denominator polyno-
mials coefficients (in descending powers of 7). See also the example pole-zero plot
for the Digital Differentiator in Sect. 2.6.6.3.

2.6.4.5 Linear-Phase FIR Filters

A sufficient (but not necessary) condition that a FIR filter of impulse response
h(n) with length N is a linear-phase system is that i(n) is either:

1. that the impulse response is symmetric around the midpoint of the filter, i.e.,
h(n) = (N — n — 1), or:

2. that the impulse response is anti-symmetric around the mid-point of the filter,
ie, h(n)= — h(N —n — 1).

94 2 Discrete and Digital Signals and Systems

h(n) n =m=3 h(n)p =m-1 =21
o o - 2 2
Y ‘ Y N = 7 (odd) N =6 (even)
T T ? i T ? T ? n
01 2 3 4 5 6 01 2 3 4 5
(a) (b)

Fig. 2.18 Symmetric impulse response for a FIR filter. a odd length. b even length

If N is an odd integer, i.e., N =2M + 1, the midpoint of symmetry is
n, =M. If N is an even integer, i.e., N = 2M, the midpoint of symmetry is
n,=M —% [see Fig. (2.18)].

The frequency response of a linear phase FIR filter (symmetric or anti-sym-
metric) is given by:

H<d'wTA) = H(Z) ‘z:exP(/‘wa)
B {Ao(w)ej”T»‘M““, N =2M + 1(odd), e =0 or = (2.22)
A (w)eFOTsM=1/24iB, N =2M(even), =0or &
where A,(w) and A.(w) are arbitrary real-valued functions.

Example If h(n) = 6(n) + 6(n — 1), then:

1
N=2,M=1n=(@N~1)/2=M/2=7 and
H(ej’“T‘) =1+ e—j(uTx — ze—j(z)Ty/Z[(eijv/Z + e_ij“/2)/2}
= 2¢77T/2 cos(wTy /2).

Hence, the magnitude response is given by A,(e/“T) = 2| cos(wT/2)|, and the
phase response is ¢ = — wT/2.

In the z-domain, the system functionis H(z) = 1 + 2! = (z + 1)/z, sothat there

isapoleatz = Oandazeroatz = — 1 [see Fig. (2.19)]. Itis essentially a LPF. [As
an exercise plot the frequency response vs. true frequency f (Hz) or w (rad/s)!]. The
pole-zero diagram can be found on MATLAB using zplane (A,B), where
A=[11] andB=[10].

2.6.4.6 Efficient Hardware Implementation of Linear Phase FIR Filters

Recall that the transfer function of a general FIR filter of length N is:

2.6 Digital Filters and Their Applications

(a) Impulse Response (b) Magnitude Frequency Response

95

h(n) 2
o
o
S
1 =
c
o
T]
| n = Q=
0 1 2 - 0 7T (J)Ts
(¢) P-z Diagram (d) Magnitude Phase Response

Re(z)

Im(z)
Phase

. N

=T/2
-7 T

Fig. 2.19 Impulse and frequency response of the filter h(n) = d(n) + o(n — 1)

H(z) =Y(2)/X(z) = ho + hmz '+ Ay WD,

A straightforward hardware implementation which follows directly from the
expression in (2.21) is shown in Fig. (2.16). If the filter is designed to have linear
phase (as many FIR filters are), then its impulse response is typically symmetric or
anti-symmetric and one can exploit this symmetry to halve the number of coef-
ficient multipliers. These elements are generally costly and consume a lot of
hardware resources. An efficient implementation which takes advantage of the
coefficient symmetry is shown in Fig. (2.20) for odd and even length impulse

responses.

2.6.5 Design of FIR Digital Filters

2.6.5.1 Time-Domain Design

The frequency response of an ideal digital LPF over the principal frequency

domain (— fi/2,f,/2) is given by:

HL(f) = HL(ejznfTY) = {(1): (])ccgglfl]lfgf}s/z

The impulse response of this filter can be obtained from (see Tables to be:

This impulse response and its Fourier transform are depicted in Fig. (2.21).

—~ I

96 2 Discrete and Digital Signals and Systems

Fig. 2.20 Efficient imple-
mentation of a linear-phase
FIR digital filter with sym-
metric impulse response
h(n) a with odd length

N = 2M + 1, b with even
length N = 2M

x(n)

y(n)

x(n)

y(n)

(b)

Since there are non-zero values of h(n) for for n < 0, the ideal LPF is non-
causal, and is hence physically unrealizable. It cannot therefore be used to process
real-time signals. In addition, Y |h;(n)| — oo, and so the filter is also unstable.
Since —o0 < n < o0, the ideal LPF is an IIR filter. A practical 2M + 1 sample
FIR approximation to the ideal LPF can be obtained by first shifting %, (n) right by
M samples to get H,(n) = h;(n — M). Note that this time-shift causes only a phase
shift in the frequency domain (see Tables, Fourier Transform Properties), and
hence |H,(f)l = |H.(f)l. Second, h(n) needs to be truncated (symmetrically around
n = M) by putting h;(n) = 0 for n < 0 or n > 2M (total length is N = 2M + 1).
This process yields a finite impulse response h;(n), which is symmetric about
n = M, as shown in Fig. (2.22) for the scenario where M = 5, N = 11, f. = 1.25,
and f; = 5 Hz.

As would be expected intuitively, larger values of M tend to give rise to
better approximations of the ideal impulse response. It is important to note that
when the original infinite length time domain impulse response is truncated, the

2.6 Digital Filters and Their Applications 97

H (f)=H (e"'T,)

1 1
1 1 1
1 1
1 1
t t f, Hz
| -f 0 f |
c c
-f -f /2 f/2 f
s S S S
h (n)
Envelope:(2fc/fs)sinc(2fct) 2 2fc/fs Time,
, t=nT_ (sec)
o g 3 = <
-e-—ﬁae-qg?eéte\é e $< é),edLe—.w_—-esﬁ—-e-

n
(sample count)

Fig. 2.21 Transfer function of the ideal digital LPF and its impulse response

th(n)

<« Rectangular window
- Time,
t=n Ts (sec)
n
(sample count)
_ jenfT
|H, (f)|=]H, (eT)]

1 1
| |
1 1
1 1
T T f,Hz
1 1

~f -2 f/2 f
s s

s s

Fig. 2.22 Magnitude and impulse responses of a practical digital LPF, where the impulse
response is obtained by truncating the ideal response using a rectangular time window

effect on the frequency domain is a reduction in the sharpness of the transition
band. In particular there is an introduction of ripples into the transfer function
H;(f), with the appearance of these ripples often being referred to as the Gibbs
Phenomenon [see (Fig. 2.23)]. This phenomenon is discussed further in the next
subsection.

98 2 Discrete and Digital Signals and Systems

TYTTTT Y T < Rectangular window
(N=11)
Time, t=nT_(sec)
4 5

: T =0.2 sec
- S

0—0—60—60—0—0—6—60-—60—60—0
10 n, Sample count

|W.(1)]

~f -f/2
s

s

f/2 f =5
s

Fig. 2.23 The rectangular time window and its magnitude spectrum (with total length N = 11
points, mid-point M = (N — 1)/2 = 5 points, and sampling frequency f; = 5 Hz)

Gibbs Phenomenon

The Gibbs phenomenon pertains to the oscillatory behavior in the frequency
response corresponding to a truncated digital impulse response sequence. In
the previous subsection the approximated impulse response was obtained by
truncating a shifted version of the ideal low-pass impulse response (h(n) =
h;(n — M)) to get the truncated impulse response /;,(n).This truncation process is
equivalent to multiplying 4(n) in the time domain by a rectangular time window
wn) = IIpy(n — M). This time window has a Fourier transform of the form

_ oy SICNE/E) iy
WO =N Geerm ¢

which is a sinc-like frequency function with a major lobe and many side lobes as
seen in Fig. (2.23). This multiplication in the time domain is equivalent to con-
volving H,(f) with W,(f) in the frequency domain. This convolution with a function
having substantial side-lobes is the reason for the oscillations which appear in the
magnitude response.

To reduce the effect of the oscillations in H,(f), one can multiply the ideal
impulse response with a non-rectangular window which has lower amplitude side-
lobes. Some suitable windows include the Hamming window, the Hanning win-
dow, the Blackman window, the Gaussian window and the Kaiser window [1] If
one does use this kind of smooth windowing one typically needs a longer impulse
response to have an equivalent quality of approximation.

2.6 Digital Filters and Their Applications 99
General formula

A general formula may be used to describe many smooth windows used in
practice. This formula is: w(n) = a+ b - cos(nn/M) + c - cos(2nn/M), 0<n
<2M length 2M + 1

Some common smooth windows conforming to this formula are listed in
Table 2.1 and Fig. (2.24).

2.6.5.2 Frequency-Domain Design

So far the design of FIR filters has focused on approximating the desired impulse
response (i.e., the time-domain characterization of the filter). An alternative
approach is to design the filter by approximating the desired filter transfer function
(or frequency representation). This is the approach that is used in the so-called
frequency sampling method described next.

hL (n) [Ideal LPF impulse response shifted by 10 samples]
1

(a)

S0 Q. ?T? Q o o o o
) O 10 o) T O

0 20 ~ n, Sa?ﬁple c;unt

Voot (n) [rectangular window impulse response shifted by 10 samples]

e [[ITTATATTATAL.

-

0 10 20 CEEEEEEE “n, Sample count
Wan (n) [hanning window impulse response shifted by 10 samples]
1
(c) 7
_ ?le
0 10 20 n, Sample count
[H, (Al (solid) & |H, (f]: 21pt W (dashed)
A Cal < B R s S }
‘ 1 ’ A) I
(d) :
; - f, Hz
[s s
(e) :
- f, Hz
s

Fig. 2.24 Rectangular and Hanning windowing of the impulse response of an ideal digital LPF

100 2 Discrete and Digital Signals and Systems
A. Design of FIR Digital Filters by Frequency-Sampling

A intuitively appealing approach to designing a FIR filter is to simply take the
desired frequency transfer function and then inverse Fourier transform to find the
filter’s impulse response. Within a digital computer, however, one cannot specify
the Fourier transform, only the samples of the desired Fourier transform. In other
words one can define the samples of a desired frequency response H,(e/®Ts) =
Hy(e’?), then use the IDFT to find the impulse response A(n). Often in digital
filters it is the transition band which is particularly critical and so it is necessary
to specify this portion of the transfer function most accurately. This implies that
one needs to have one or more samples within the transition band if one is to
achieve good filter designs. It is also important to note that if one seeks to
specify too sharp a transition band one will be confronted by the Gibbs Phe-
nomenon-substantial ripple will then manifest in both the pass-band and the stop-
band.

Example The goal is to design a 33rd order LPF with cutoff frequency f. = f,/4
(or, Q. = 2n/4 = n/2). With the frequency sampling method it is necessary to use
a 33-point DFT to define the samples of the desired frequency response Hy(e/“T).
This desired response is the ideal rectangular response over the principal domain
0 < f < f, which is sampled to yield the set of samples {H,(k) | k=0,1,...,32}.
The frequency sampling method is illustrated in Fig. (2.25) for two scenarios, The
first scenario is where no samples are specified in the transition band, and the
second is where one sample is specified in the transition band. Once the samples
have been specified the IDFT can be taken to recover the filter’s impulse response.
Figure (2.25) shows the DTFT magnitudes of the impulse response so obtained. It
is seen in Fig. (2.25) that when no transition band sample is specified the ripple in
both the pass and stop bands is significantly greater [Note that H,(9) and H,24)
are the transition samples, chosen to be 0.5].

B. Optimal Frequency-Sampling FIR Filter Design

The frequency-sampling method described above is straightforward but it is an ad
hocl method. It is possible to design filters which are optimal in the sense of
minimizing the maximum error between the desired frequency response and the
actual frequency response. These types of filters are referred to as equiripple, and
can be designed using the. Parks-McClellan algorithm. The latter utilizes Remez
and Chebychev approximation theories to design optimal equiripple linear-phase
FIR filters.
MATLAB the Parks-McClellan algorithm is available on MATLAB as:

h = remez(N — 1,Fd, Ad).

2.6 Digital Filters and Their Applications

101

fis)

T

a

o

:'_:-60 — ! ! — Q
0 Qc=n/2 T 2n

z 1000000000 : 00000000

T

T :
012345678910 16 24° 2 k
0 Q2=n Q =2n

S S

m

o

=

a

sy

o

N

I

z 1<>oooooooc§ ;oooooooo
0123456780910 16 24° 32 Kk
0 Q2= Q =2n

s

Fig. 2.25 FIR filter design using frequency-sampling method. Above without a transition sam-
ple. Below with two transition samples (dotted curve for the first case without transition samples)

This command yields the impulse response of a length-N (i.e., order N — 1)
linear phase FIR filter with desired magnitude response, given by the vectors Fd
and Ad. Fd is a vector of normalized frequency points, ranging from 0 to 1
(corresponding to the range 0 < f < f,/2 Hz), and Ad contains the desired mag-
nitudes for points in Fd. Example: To design an optimal FIR filter in MATLAB
with the specifications in the previous example, one can use:

h =remez(N—1,[00.50.61],[1100])

Figure (2.26) shows the actual frequency response as compared to the ad-hoc
frequency-sampling approach described in Sect. 2.6.5.2-A.

102 2 Discrete and Digital Signals and Systems

- - Q
0 Q T 2n

Fig. 2.26 Frequency response of a LPF designed by remez (dotted curve for ad-hoc frequency-
sampling design)

2.6.6 Applications of FIR Digital Filters

2.6.6.1 Communication Channel Equalization

Telephone and wireless channels often behave like band-limited filters with fre-
quency response H(f). This filtering is in general an undesirable frequency
dependent distortion which needs to be eliminated - it can be removed via the use
of an equalizer as explained below.

The transfer function of the channel can be estimated by sending a training
signal [e.g., a unit pulse function d(n) along the channel and then measuring the
impulse response i(n) and the corresponding transfer function H(f) = F{h(n)}].
An equalizer (or inverse filter) with a frequency response H,.(f) = 1/H(f) is then
applied to counteract the channel distortion. Normally one chooses an FIR filter
(also called a transversal filter), and the frequency sampling approach is often used
to design H.,(f).

2.6.6.2 The Moving Average Filter

Sometimes it is necessary to smooth data before making a decision or interpre-
tation about that data. Averaging is a commonly used smoothing technique and
this averaging can be implemented with simple FIR filters. For example, the stock
market prices fluctuate from day to day, and even sometimes hour to hour, To
observe trends some form of smoothing or averaging is necessary. Typically, one
takes an average of the stock price over several days before deciding the actual
trend of prices. Note that the global average is misleading in these cases and
cannot be used—rather, local or moving average should be used. (See Fig. (2.27)).

Since data x(n) is assumed to be continuously flowing in for the stock market
scenario, local averaging is done at each instant n. If, for example, averaging is
performed over three consecutive samples, the output becomes:

2.6 Digital Filters and Their Applications 103

Fig. 2.27 Moving average of 15
a stock price over 35 days
using a 10-tap FIR filter. Note
that the first M — 1 =9 “ 10
samples are inaccurate due to ,§ N ~ Global Average
insufficient information at z A
start 8 5
7]
~
0 10 20 Time (days)
1
¥(n) = 5 [x(n) + x(n — 1) +x(n — 2)] (2.23)

3

For example, at n=2,y(2) =1[x(2) +x(1) + x(0)], at n =3,y(3) =1[x(3) +
x(2) + x(1)]. Comparing the above Eq. (2.23) with the general FIR equation:

N—

y(n) = h(n) xx(n) = Zh(k)x(n —k)

k=0
= ho(n) + hyx(n — 1) + -+ hy_xfn — (N — 1)]

—_

it is seen that (2.23) represents an FIR filter with N = 3 taps: h(0) = k(1) =
h(2) = % Although these filter coefficients are all equal in this case they can be
different in general. For example, in the stock market studies one may give more
weight (importance) to the current sample [i.e., x(n)] than to others, e.g.,

h(0) = 0.5, 50% weight to the current price (today)
h(1) =0.3, 30% weight to the previous price (yesterday)
h(2) =0.2, 20% weight to the first price (2 days ago)

Figure (2.27) shows an example of a changing price over 35 days along with the
overall average and the moving average with A(n) = [.1 .1.1.1.1.1.1.1.1 .1]
(M = 10 taps with equal weight).

2.6.6.3 The Digital Differentiator
Time Domain Approach

The derivative of a signal x(f), dx(¢)/dt, can be approximated in the digital domain
(when the sampling period T is small and x(¢) is slowly varying) by the relation:

y(n) = x(n) = x(n — D]/T; (2.24)

as shown in Fig. (2.28). Comparing with the general form of an FIR filter:

104 2 Discrete and Digital Signals and Systems

§al
2
T
n
o
o3
o<}
>
n
]
3
Magnitude
e}
1

s
> y(n)
n/2
P-z 2 T~
Dia 2 Re(z) @ ~ @

gram = 0 :

E a :

- T - m/2 T

Fig. 2.28 Digital differentiator-I with frequency response and p-z diagram

N-1

y(n) = h(n) xx(n) = Z h(k)x(n —

=0
=ho(n) + hix(n—1)+ -+ hy_1x[n — (N — 1)]

It can be seen that (2.32) represents a FIR filter with two non-zero samples impulse
response {h(n) = (1/T)d(n) — (1/T)o(n — 1)}, i.e., h(0) = — h(1) = 1/T,. From
this one can find the system transfer function by taking the z-transform of both
sides of (2.32):

V(o) = Ti X(2) — X(@) "] = [(1 - =)/ TIX()
- =y =

Now consider the magnitude and phase response:

. 1 s
H(EIQ) = H(Z) |z:exp(jQ): ? [1 —e jQ]

Hence, the magnitude response is given by:

()] = (2) sin(32) 1 = 2

and the phase response is:

sin (; wn) \ — of | sin(af /£,

2.6 Digital Filters and Their Applications 105

Q =
¢ = <—§+§) +c,

where ¢ = 7 is to compensate for the change of sign in sin(Q).
The magnitude and phase responses are plotted in Fig. 2.28. It is seen that the
digital differentiator is a high-pass filter.

Frequency Domain Approach

From Fourier transform Tables one can find the transfer function of the continu-
ous-time differentiator as:

H, (o) = jo (2.25)
which can be transformed into the digital domain as follows:
H(?) = jQ/T; —n<Q<m (2.26)

Figure (2.29) shows the magnitude and phase responses of the above transfer
functions (compare with Fig. (2.28)). Note that Fig. (2.29a) represents a theoretical
magnitude response, as practical differentiators are band-limited within a cutoff
frequency w..

The impulse response of the above filter can be found to be:

1 [7jQ
h(n) = %/]F " Q)

1 cos(nm) sin(nm)
=

(2.27)

—00<n <00
T, n mn

For a practical design, the above impulse response should be shifted by 2M + 1
samples and then truncated. The shifting operation is described by:

1 — M) si -M
h(n) = 1 cos[(n) sin(n)zn] ; —oo<n<oo, (2.28)
I, (n—M/2) n(n— M)
while the truncation window w(n) is specified by:
hy(n) =w(n) -h(n); 0<n<2M (2.29)

If a linear phase is required, then the truncation window should be symmetric so
that one can get h(n) = — h(2M — n). The filter in (2.29) can be implemented
using the approach in Sect. 2.6.4.6.

106 2 Discrete and Digital Signals and Systems

w 7T|#(ei‘”)|
‘0 [0} _ - s n Q:(loTs
(a) | ()
< IH (o)l 2 |HE®)]
/2 /2
0 © 0 Q
-T/2 - 1/2
(b) (d)

Fig. 2.29 Frequency response for an analog and digital differentiator-II

2.6.6.4 The Digital Matched Filter

Recall from Sect. 1.4.2 that in the analog domain the impulse response A(?) of the
optimum filter for receiving a transmitted symbol b(¢) (0 < t < T) is given by the
T-shifted (delayed) mirror image of the symbol, i.e.,

h(t) =b(T — t)II7(t — T/2).

For orthogonal binary transmission, two matched filters are needed, one mat-
ched to the “0” and the other matched to the “1”. Figure (2.30) shows a digital
matched filter for orthogonal binary signalling with the sampling frequency at the
receiver equal to five times the bit rate. If bipolar signalling is used (i.e., +Vcc
represents “1” and —Vcc represents “0”), then one sample per bit is possible, but
in practical signalling schemes there are normally at least 4 samples per bit.
Increasing the sample rate increases the accuracy of detection, especially in noise,
and it does not affect the transmission bandwidth (which depends on the data rate
1/T only). If the sample rate is N samples per bit, then an N-stage shift register is
needed to store the samples before each symbol is detected for each filter (see Fig.
(2.30)).

In digital matched filters it is necessary to have good synchronization between
the transmitter and the receiver to decide the start time (r = 0). The coefficients of
the ith matched filter {h;(n) | n =0,1,...,N — 1}, which is matched to the ith
symbol (bit), are given by:

hi(n)=b(N—1—n), n=0,1,.. ,N—1

2.6 Digital Filters and Their Applications 107

bn(t) 1 - bo(t) represents physical transmission of logic "0"
o - - - 1 ¢
.
b1 (t) ; b1 (t) represents physical transmission of logic "1"
- t
-+ - ;]
Tz- - s(t)=b (t)b_(t)b (t)..=Txdata: 101 ..
1 2 3 4 0 kmod5 °
1 - - N N r - - - - - - - N N N -
s(t) ﬁ : : Tl : : : : : : : l : : : Ts =T/5 t
-+ = 1 - - - - - ke =
oo T2 - o oo o oooR2T o o o o 3T
0o 1 2 38 4 o 1 2 3 4 0 1 L. k mod 5 (k = sample index)

Mo is matched
to so(t)

Decision at
mod 5 =4:

i — A AT H Erf
kTT _h7 4

0" it M>M,
"1"if M >M

17 o
Clk from Sych. Ct.

M1 is matched
to s,(t)

Fig. 2.30 Digital matched filter for orthogonal binary signaling with Ty = 7/5. Above wave-
forms for transmitting logic “0” and logic “1”. The transmitted signal s(#) represents the data
string 1 0 1. Below digital matched filter receiver

The output of the ith matched filter at the kth sampling instant is given by the
convolution:

where r(f) is the received signal. Decisions (comparisons) are made only when
kN = N — 1 [every 5 samples for the scenario represented in Fig. (2.30)]. Note that
in Fig. (2.30) the simpler notation ks, = hy(n) and c¢,, = hy(n) is used-under noise-
free condition and full synchronization with the transmitter at k = 4 (after 5
samples) the shift register has the following contents: a = 1,b =1, ¢ =1,
d= —1,e= — 1.Hence, M, =1, M; =5 > M,, and the decision is that “1”
was transmitted. As an exercise try to find the decision of the circuit after 10 and
15 samples.

108 2 Discrete and Digital Signals and Systems

2.6.7 IIR Digital Filters

2.6.7.1 Structure and Implementation of IIR Digital Filters

An IIR digital filter is a system whose impulse response A(n) has an infinite
number of non-zero samples. To implement IIR filters in practice, recursion is
often used. That is, to create the output, not only are previous values of the input
used, but also previous values of the output. This kind of recursive implementation
is essentially a feedback system. The general formula for the I/O relations of a
recursive IIR filter are:

y(n) = box(n) + bix(n — 1) + - - - + byx(n — M)

—ayy(n—1) — - —ayy(n —N). (2.30)

The above equation is often referred to as a difference equation. Taking the
z-transform of both sides of the equation yields:

Y(n) = b,X(z) + blz*IX(Z) 4 szfMX(z)

—az'Y() = —ayz VY (2). (231)
(e = Y@ btz by Sty biz!
o X(z) lHaz!'—-—avz?¥ 14+ gt

Hence, unlike FIR filters, IIR filters can have poles at locations other than z = 0.
In fact, the above equations can also represent a FIR filter if one puts
a; = a, = ... = 0. Normally, the number of poles N is larger than the number of
zeros M, and the order of the filter is decided by the number of its poles. For the
IIR filter to be stable, all poles should be inside the unit circle.

2.6.7.2 IIR versus FIR Filters

IIR filters usually have lower orders than FIR filters with similar performance
with respect to sharpness of cutoff, passband ripple, etc. Because of the lower
orders IIR filters tend to require fewer delay elements and digital multipliers for
hard-ware implementation, and they require fewer computations in software
implementations.

One of the key disadvantages of IIR filters is that because of their inherent
use of feedback, they can have stability problems. Quantization effects are also
much more serious in IIR filters, again due to their use of feedback. Addition-
ally, it is generally not possible to have a linear phase transfer function with IIR
filters.

2.6 Digital Filters and Their Applications 109
2.6.7.3 Direct Form Implementation of IIR Digital Filters

From the general equation for an IIR filter:

Y(n) = b,X(z) + blzle(Z) 4t szfMX(z)

— a]Z_]Y(Z) e — aNZ_NY(Z),

one can readily construct a hardware realization, as shown in Fig. (2.31). The
structure shown is called the direct form-I, realization. This form requires
M + N + 1 multipliers, M + N adders, and M 4+ N memory locations.

Now the transfer function for an IIR filter can also be written as:

DY 1SN o VUL Y S D
H(z) = A (; biz) (1 +30 akzk> :
= H,(z)H>(z) = H2(2)H:(2) .

The above expression suggests an alternative realization for the filter, and the new
realization is called the direct form-II implementation (Fig. 2.32). Importantly the
direct form-II requires only max(M, N) memory locations (or delay elements) in
contrast to the direct form-I, requires M + N + 1. The new realization needs the
same number of adders and multipliers as the direct form-1. The coefficients {a;}
and {b;} are usually chosen to be real to avoid complex processing. It can be
shown that with real coefficients the poles and zeros are either real or in complex-
conjugate pairs.

Direct Form - |

y(n)

H1(z)[TheZeros] Hz(z)[ThePoIes]

Fig. 2.31 Direct form-I implementation of IIR digital filters

110 2 Discrete and Digital Signals and Systems

Fig. 2.32 Direct form-II Direct Form - Il
implementation of IIR digital

filters. Note to find the poles x(n)
and zeros of any transfer

function H(z), it is normal to

write it as a function of z, but

for implementation it is nor-

mal to write it as a function of

z~'. The use of ™' terms in
the implementation is due to
the correspondence of the 7~
term to a delay element

1

2.6.7.4 Practical Implementation of IIR Digital Filters

Since the feedback structure of IIR filters exaggerate quantization errors, these
filters are often built up in practice as cascaded first- and second-order units rather
than in direct forms - this can be shown to reduce the vulnerability to quantization
errors. Ideally one would use only first order sections, but this would necessitate
using complex arithmetic. To avoid this latter possibility it is necessary to use
second order sections wherever there are complex conjugate poles or zeros.

Example Implement the IIR digital filter whose transfer function is given by:

22— 1)(z+2)(z+3)
HE) = 05 @103+ 0.0

It is seen that there are two complex conjugate poles since z* + 0.3z 4 0.1 has
two complex conjugate roots. Hence, it is best to use a cascaded form of imple-
mentation and write the transfer function as follows:

2(zz—1)(z+2)(z+3)

H(z) =
) 2(z+0.5)(z2 + 0.3z +0.1)
o 1—z! 145z 46772
| T¥05 || 1403z +0.122
———
1st—order unit 2nd—order unit

The implementation diagram is shown in Fig. (2.33).

2.6 Digital Filters and Their Applications 111

Poles Zeros

Fig. 2.33 Implementation of 2(z — 1)(z +2)(z + 3)/[z(z + 0.5)(z* + 0.3z + 0.1)]

2.6.8 Design of IIR Digital Filters

Often IIR digital filters are designed by converting analog prototype filters (such as
Butterworth, Chebychev, and Elliptic filters) into digital filters via suitable
transformation methods. The basic prototype filter type is an analog low-pass filter,
and filter transformations are necessary to obtain LP, HPF, BPF, or BSF digital
filters.

Typically the required digital filter specifications are initially transformed into
their analog counterparts to help in designing the proper analog prototype. For this
to be effective the transformation should:

1. preserve stability and
2. map the jo axis into the circumference of the unit circle &/.

There are two approaches for transforming digital IIR filters into analog
prototypes:

1. Time-domain matching using the impulse response,
2. Frequency-domain matching using the frequency response.

2.6.8.1 Time-Domain Design: Impulse Response Matching

In the impulse response matching method (a.k.a. the impulse invariance method),
the impulse response of the digital IIR filter is simply taken to be a sampled
version of the impulse response of the analog prototype filter. That is,

h(n) = hy(nTy), n=0,1,2,....

If the transfer function of the analog prototype filter H,(f) is bandlimited to
(— B, B) and f,/2 > B, then there would be no aliasing. This in turn would imply
that the digital transfer function H(e/?) would be a scaled and repeated copy of
H,(f). With this understanding it becomes apparent that the impulse response
matching method is not suitable to design a digital HPF, due to aliasing problems.

112 2 Discrete and Digital Signals and Systems

The analog filter s-domain transfer function is H,(s) = LT{h,(¢#)}. Now the
poles of H,(s) are transformed to the poles of H(z) through the relation z = *T.
The method can be summarized as follows (see, for example, A. V. Oppenheim
and R. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989):

1. Expand the analog transfer function by partial fractions as Zf::l Sf’}; . Note that

Pm’ S can be non-distinct.
2. The required transfer function is

M

M
Cm Z
H@ =T Z:] I —ernTig 1 g Z:lcm Z— Zm

where z,, = e’»> are the poles in the z-domain.

Note 1 1f there is no aliasing, H(e/®) = H,(w) when —n <Q < 7.

Note 2 Since the relation Q = wT is applicable, the jw axis is transformed into
the circumference of the unit circle ¢/? = &7,

Note 3 Since the poles are transformed according to z =e
preserved.

sTs | stability is

Example Using the impulse invariance method, design a digital Butterworth LPF
with the following specifications:

1. Ty = 0.01 sec (hence, f; = 100 Hz),
2. f. = 10 Hz (therefore w. = 20 & rad/sec),
3. G, =1, gain < 0.1 (i.e., —20 dB) for 20 < f < f,/2 = 50 Hz).

Solution:
It is necessary to first find an analog Butterworth LPF with the above specifica-
tions. The gain should be less than —20 dB for a normalized frequency of f. >
20/10 = 2 (normalized w.r.t f.). From the graph in Tables—Stopband gain for a
B-LPF, the filter order is found to be n = 4. From Tables—Denominator Poly-
nomial Coefficients for Normalized LPF’s, the transfer function of this normalized
filter is seen to be:

HN (S) al)

T 14261315y + 3414253 + 2.6131sy + 54

Now H(p($)l;=0 = a9 = G4. = G,, = 1, and sy = s/w.. Substituting these val-
ues for a, and sy into the above equation, yields:

1.55¢€7

H,(s) = .
(8) = 15567 4 6.48¢5s & 1 344y’ + 164 157 7 5°

H,(s) can then be expanded using partial fractions. This can be easily done in
MATLAB using B = [1164.11.34e4 6.48e51.55e7],A=[1.55e7],
[R,P,K] =residue (A, B) where R gives the coefficients c,,, P gives the poles

2.6 Digital Filters and Their Applications 113

Pm» and K is empty if degree(A)<degree(B). For the Butterworth filter above, the
poles and coefficients are found to be the following complex conjugate pairs:

¢ = —27.8+4j11.6,
p1 = —23.6 +j58.3,
c=c’,
p2=pi,
c3 =278 —j73.7,
ps = —58.4 +j22.3,
Cy = Cs*,
pa=p3".
The z-domain poles are:
71 = exp(p1Ty) = 0.65 +0.43,
2 = 71" [since(e)* = ™)),
73 = 0.54 +j0.12,

and z4 = z;:. Therefore,

c1z c1¥z C32 ¥z

H(z):Ts{ 1 i 1 . 3 n 3 *}
Z—221 Z—2 ZI—3 I—23

2 2
rz- —nz =2
—T 21 2 + 26]1 q2
2F—rz+trs ZF—q3z+tqa
where rn= —055mrn= —0206r=13r=0.06,qg =0.55, g =047,

gz = 1.08, and g4 = 0.3. The above grouping of terms is to have real coefficients
for easier hardware implementation.

MATLAB the above problem can also be solved using the MATLAB command
[Az Bz] = impinvar (A,B, fs).

To check that the impulse responses are similar use:

t=0:Ts:1

sysl = tf (A, B)

hl = impulse(sysl, t)
sys2 = tf(Az/Ts,Bz,Ts)
h2 = impulse(sys2,t)
plot(t,hl,t, h2’:")

Note In filter design the following MATLAB commands may prove useful:
B = roots (A) : Finds the roots of a polynomial whose coefficients are in A [e.g.,
B=roots ([1 2 3]) finds the roots of (descending order)].

A = poly (B): Converts the roots (in B) to a polynomial.

C = conv (A, B): Multiply two polynomials A and B (Also, find the convo-
lution sum).

114 2 Discrete and Digital Signals and Systems

X =fzero ('’ fun’,xo): Finds a zero of the function “fun” (which is either
a library function or defined in another file) near xo [e.g., fzero(’'x/3-
sin(x) ' ,pi/2) gives 2.2789].

zplane (A, B): Plots the pole-zero diagram of a transfer function H(z) =
A(2)/B(2).

h = fregs (A, B, w) : computes the complex frequency response of the analog
filter H(s) = A(s)/B(s) at the angular frequencies in the vector w.

h = freqgz (A, B, £, £s): computes the complex frequency response of the
digital filter H(z) = A(z)/B(z) at the frequencies in the vector £, with sampling
frequency fs.

2.6.8.2 Frequency-Domain Design: Frequency Response Matching

The impulse invariance method enforced a time-domain correspondence between
the analog and digital impulse responses. The frequency response matching
approach enforces a frequency-domain correspondence between the analog and
digital transfer functions. Assume that one starts with an analog filter transfer
function H,(s), which needs to be transformed into a digital transfer function H(z).
Unlike the time domain matching approach, it is not possible to achieve an exact
correspondence between H,(s) and H(z)-this is because the H(z) displays repetition
in frequency whereas H,(s) does not.

As a first attempt at achieving a frequency domain correspondence between the
digital and analog filters, one can use the natural mapping:

H(eST‘) =H,(s) for—n<ol,<m.
Hence,

H(ei“’T“) =H,(w) for—n<ol;<m.

ST

The relationship z = ¢*'s is enforced in this approach. Thus,

It is apparent that this transformation is non-linear and it is therefore impossible in
general to obtain H(z) as a rational function of z. However, an approximation
to this relation is possible. If z is near 1, the Taylor expansion of In(z) is (z — 1) —
(z — 1’2 + O{(x — 1)*}, while the expansion of (z —)/(z + 1) is [(z — 1) —
(z — D?* + 0{(x — 1)*}1/2. Hence, ignoring the smaller terms, the following
approximation can be used: Inx 2(z — 1)/(z 4+ 1). Then s can be approximated
by:

2z—1
S ——.
Tiz+1

2.6 Digital Filters and Their Applications 115

This relation is called the bilinear transform. It should be noted that the
approximation in used above is true only when z is near 1, which means that the
low frequency region maps quite reliably from the analog domain to the digital
domain. At higher frequencies, however, there is considerable error in the
approximation. It will be seen subsequently that the bilinear transform actually
introduces a warping of the analog frequency axis, and the warping is most severe
at high frequencies. This warping causes the analog frequency range 0 — oo to be
mapped into the digital frequency range 0 — 7.

To gain further insights into the nature of the bilinear transform one can put
7 = re’® [recall that the frequency response of any digital system H(z) can be
found by substituting z = re/*]. Substituting the polar form for z (= re/?) in the
bilinear transform s = (2/T;)(z — 1)/(z + 1) gives:

2 re — 1
TP 1
_ 2 [rcos(Q) — 1] +jrsin(Q)
T Ty [rcos(Q) + 1] + jrsin(Q)
2 r?—1 . 2rsin(Q)
T T, 1+ 2+ 2rcos(Q) e + 2rcos(Q)]’

Since s =0 + jow :

2 r?—1
o=—
Ty 1+ r2 + 2rcos(Q)

2 2rsin(Q)
Ty 1+ r2 + 2rcos(Q)

and w=

Now for ¢ = 0, Izl = r = 1 and so z = ¢. Hence, the s = Jjo axis in the analog
domain is transformed into the z = ¢ unit circle, where the new relation between
Q and o is given by:

2 sin(Q) 2t
= Ty 14cos(Q) T, a3 (2.32)
Q= 2tan(wT,/2).

The above equation is non-linear, as illustrated graphically in Fig. (2.34). The
infinite analog frequency domain (w = 0 — o0) is mapped onto the principle
digital frequency range Q = 0—.

If 0 <0, then r < 1 (hence the LHS of the s-plane is mapped inside the unit
circle), and for ¢ > 0, r > 1.

It can be shown that filter design using the bilinear transform is independent of
T, [2]; hence, one can put 7y = 2 (for convenience) and use the following trans-
form instead:

z—1

— : _ 100y — -1
S= [with Q@ =2tan"'(w) = 2tan"' (27f)]. (2.33)

116 2 Discrete and Digital Signals and Systems

Digital frequency, Q
1
1

T
1
Analog
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘frequency
-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 f(H2
I|=T

Fig. 2.34 Frequency domain relationship between analog frequency and digital frequency under
the natural transformation z = ¢'”s, where Q = w7, (dashed curve, Ts = 2) and the bilinear
approximation s = (2/Ts)(z — 1)/(z + 1), where Q = 2tan~!(w) (solid curve)

The bilinear transformation can be applied to transform all analog Filters, while
the impulse invariance method cannot be applied to HPFs. This is so because there
is no problem with aliasing, as this transform maps the whole jw axis to the unit
circle. That is, it is a /-to-1 mapping. The impulse invariance transform z = &*Ts,
on the other hand maps every sector of length 27 on the jw axis to the unit circle -
it is a multi-to-1. The price paid for the resilience to aliasing problems is the
deformation or warping of the original analog frequency response. It should be
noted that this warping is for the frequency response of the transformed analog
filter only; it does not imply that the input signal spectrum is also warped.

Example Design a low-pass digital IIR filter with cutoff frequency Q. = 0.6 using
a third order Butterworth analog filter.

Solution: From Tables-Denominator Polynomial Coefficients for Normalized
LPF’s, the transfer function of the analog B-LPF is given by:

1
H, =
(sw) 1+ 28y + 253, + 53

De-normalizing yields,

1
14 2(s/we) +2(s/w)* + (s/w.)’

H,(s)

The cutoff frequency is obtained as follows: w. = tan(€./2) =tan(0.3) =
0.3093 ~ 0.3 rad/s. Hence,

2.6 Digital Filters and Their Applications 117

H(z) = !

1+ 6,65t +222(

z—1 2 z—1 3
;4—1) +37(2TI)

2.6.8.3 MATLAB IIR Filter Design Using the Bilinear Transformation

one can design IIR digital filters in MATLAB using analog prototypes selected
according to our requirements. The most important MATLAB filters are but-
ter, chebyl, cheby2, and ellip.

Example Using MATLAB, design the following digital IIR filters. Use the
bilinear transform and start with either a Butterworth, Chebychev or Elliptic
prototype filter:

1.

LPF at f; = 10 kHz with cutoff f, = 2,000 Hz, maximum ripple allowed in the
passband is r = 1 dB, and minimum stopband attenuation = 60 dB starting at
3,000 Hz. Sharpest transition with lowest order is required.

. HPF with f. = 2,000 Hz, minimum stopband attenuation= 60 dB for frequen-

cies below 1,000 Hz, and other specifications as above.

. BPF with passband 2,000—3,000 Hz, minimum stopband attenuation = 60 dB

for frequencies below f; = 1,000 Hz or above f, = 4,000 Hz, and other
specifications as above.

. BSF with stopband 1,000—4,000 Hz, minimum stopband attenuation= 60 dB

for frequencies between 2,000 and 3,000 and other specifications as above.

Solution:

. Since the specification requires the sharpest transition and lowest possible

order, an elliptic filter is the appropriate choice for the prototype. The corre-
sponding digital IIR digital elliptic filter has F. = f/(f/2) = 2000/(10k/2) =
0.4, Fr, = f5/(f/2) = 0.6, r; = 1, and Az = 60. The order is obtained as fol-
lows:

[n fo] =ellipord(Fc,F2,3,AdB)

which gives n = 5 and fo = 0. 4. Having found the order one can determine
the filter transfer function:

[b al=ellip(n,1,60,fo)

where b and a are vectors representing the numerator and the denominator
coefficients, respectively.

. F, = f/(f/2) = 0.2, F. = 0.4, Since the other specifications are as for the

previous example, an elliptic prototype filter must again be used. Its order is
found with the command:

[n fon] = ellipord(fcn, £f2n,3,AdB)

which gives n = 4, f, = 0.4. The filter transfer function is determined with the
command:

[b a] =ellip(n,rdB,AdB, [F1 F2], "high’)

118 2 Discrete and Digital Signals and Systems

3. The solution to this and the following examples proceed similarly to the pre-
vious ones. F.y =04, F, =06, F.=[F, Fyl, F1=02,F, =08, F =
[F1 F3],
[n fo] = ellipord(Fc,F,3,AdB)
which gives n = 3 and f, = [0.4 0.6].
[b a] =ellip(n,rdB,AdB, fo)
4. F.,.=02,F, =08, F.=[F., F.,], F;=04,F, =0.6, F = [F1 F2],
[n fo] = ellipord(Fc,F,3,AdB)
which gives n = 3 and fo = [0.4 0.6]
[b a] =ellip(n,rdB,AdB, fo, "stop’)

Figure (2.35) shows the magnitude response of the above filters plotted against
the normalized frequency v = f/f; [note that normalization in MATLAB is dif-
ferent from many other parts of the literature; in its plots MATLAB typically uses
the ratio f/(f,/2) for normalized frequency instead of f/f;.

2.6.8.4 MATLAB FIR/ IIR Filter Design and Analysis Toolbox

If the following statement is entered on the MATLAB command line:

> fdatool

a filter design toolbox will pop up. This toolbox supports many different digital
filter design techniques and provides a user-friendly filter design interface. It also
enables the user to export the designed filter coefficients to the MATLAB
workplace.

O I 1 0 I 1
m]] m]]
T I 1 ke I 1
N I I - I I
£ I I £ | |
S -60 : ! & -60 : !
]]

v=Ff/f | I vEf/f

-100 S -100 ! ! s

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

O I 1 0 I 1
m]] m]]
el I I kel I |
n I I - I I
£ I | £ | |
S -60 ' ! S -60 ! !
]]

v =|f/f | | v=Ff/f

-100 s -100 1 ! s

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fig. 2.35 Magnitude response of elliptic IIR filters: LPF, HPF, BPF, and BSF

2.6 Digital Filters and Their Applications 119

2.6.9 Applications of IIR Digital Filters

2.6.9.1 The Digital Integrator

If the sampling interval 7, is small, then a digital summer provides a good
approximation to an integrator. That is:

/x(t)dt ~ ix(n)Ts = TSZN:x(n) (where N = T/Ty). (2.34)
0 n=0 n=0
Now
k k-1
y(k) =Y x(n) =x(k) + Y _x(n) = x(k) + y(k — 1). (2.35)
n=0 n=0
Hence,

1 (2.36)

Therefore, the integrator transfer function is H;(z) = Ty H(z). The transfer function
magnitude and phase is plotted in Fig. (2.36) and it is apparent from the magnitude
plot that the digital integrator is low-pass in nature. It is the inverse of the digital
differentiator, which is a high-pass filter.

MATLAB the pole-zero diagram can be plotted in MATLAB using
zplane (A, B), where A is the vector of numerator coefficients and B is the
vector of denominator coefficients. In the above example A = [1 0] and B= [1 —
1] since H(z) = z/(z — 1).

)
-]
2
:E” T/2
I
= ° Q=
- 0 T ol
- /2
P-Zz = @ Q
Diagram E Re{z) £ V
o
-7/2

-T T

Fig. 2.36 The digital integrator with its frequency response and p-z diagram

120 2 Discrete and Digital Signals and Systems
2.6.9.2 The Alpha Filter

It was seen in Sect. 2.6.9.1 that the integrator difference equation is y(n) =
Ti[x(n) + y(n — 1)]. If properly scaled, the integrator can be adapted to become
an averager. Modifying (2.35) to introduce this scaling yields:

y(n) = (1 —a)x(n) + ay(n — 1). (2.37)
where o is a real positive integer which is less than 1. The choice of « depends on

the importance of the current sample x(n) as compared to the previous average of
data. The transfer function is given by:

l—a (1 —0a)z

H(z)

)

T l-o0z!' z—uw

with one pole at z = o and one zero at z = 0. The implementation of the alpha
filter is depicted in Fig. (2.37). Using Tables-z Transform Pairs and Theorems, the
impulse response of this filter is given by

h(n) = (1 — a)o"u(n),
hence, the output of the system in the time-domain is specified by:

¥(n) = x(n) ¥ h(n) = Y x(n — k)h(k)
k=—00
= (1 —a)[x(n) + ax(n — 1) + o?x(n — 2) + - -]

Noting that (1 — o)[1 + « 4+ o* + ---] = 1, the above I/O formula is remi-
niscent of the moving average FIR filter, except that the number of “coefficients”
is now infinite. This IIR averager is much easier to build than the N-tap FIR
moving average filter, with almost similar performance. See Fig. (2.37) for a
comparison using the same financial data as was used in Fig. (2.27). As in the FIR
example of moving average, a few early samples in the plot should be ignored.

Like the integrator, this system behaves as a LPF. Since averaging is not
sensitive to whether the phase response is linear or not, the alpha filter has a great
deal of appeal for many applications (e.g., in SNR estimation for communication
systems).

2.6.9.3 The Sinusoidal Digital Oscillator

An oscillator is a system that generates a specific waveform without an input,
except perhaps for an initial impulse or a particular setup of the initial conditions.

2.6 Digital Filters and Their Applications 121

[
S
2
c
(o]
©

E e

-

P-2 a
Diagram Re(z) £

-7

Legend: = == Alpha Filter Averaging (o =0.8)
15 -~ Moving Average (10 taps, 0.1 each)

Stock Price, $

0 10 20 Time (days)

Fig. 2.37 Alpha filter. Above Circuit and its frequency response. Below data averaging

To design a digital sinusoidal oscillator, one essentially needs a filter whose
impulse response is sinusoidal. From Tables- z Transform Pairs and Theorems,
such a filter transfer function is specified by:

hn) = sin(bmyuln) 2 HGz) = — z(b(ij)z +1 (238)

To build H(z), one can write it as H(z) = sin(b)z~'/[1 — 2cos(b)z~! + 772, the
implementation of which is shown in Fig. (2.38). In this expression b corresponds
to the normalized radian frequency Q, = w,Ts, and hence the frequency of
oscillation is:

Jfo=0,/2n = (b/T;)/2n = (b/2n)f, Hz,

provided that 10l < . The two poles of this system are the roots of the equation
7> — 2cos(b)z + 1 = 0, which are given by:

P12 = cos(b) + \/cos?(b) — 1 = cos(b) + jsin(h) = ™. (2.39)

Hence, the poles are exactly on the circumference of the unit circle, as shown in
Fig. (2.39), and the system is strictly speaking, neither stable nor unstable.

122 2 Discrete and Digital Signals and Systems

Fig. 2.38 Implementation sin(b)
schemes for a sinusoidal dig- 3 (n)
ital oscillator

y(n)

~1
2cos(b) Elj

Im(z)

Magnitude

-1 _QO 0 QO T oT

Fig. 2.39 Magnitude response and pole-zero diagram of the digital oscillator

2.6.9.4 The Digital Resonator

The magnitude response of the digital oscillator was seen to consist of two very
sharp two spikes. Analogously, one can design a digital resonator, which is a
narrowband BPF centered around a resonant frequency f,. Such a resonator could
be useful for extracting a fundamental sinusoid (with frequency f,) corrupted by
harmonics or other sinusoids. Note that if one attempts to design a resonator using
classical filter design techniques, one needs a prohibitively large filter order. To

ensure stability, the poles should be inside the unit circle, i.e., pj» = reiQ”, with
r very near to 1. A possible transfer function for the resonator can then be:
1 1
H(z) = = (2.40)

(z—p1)(z—p2) 22 —2rcos(Q,)z+r*

The magnitude response for this resonator is shown in Fig. (2.40) as the dotted
curve. Note that this curve has non-zero values well beyond the frequency of
interest, Q,.

A transfer function which also satisfies the above criteria with better stopband
attenuation is:

2.6 Digital Filters and Their Applications

(z—z)z—22)

(z—z21)(z—22)

H(z) =

(z—p1)(z—p2) 22 —2rcos(Q)z+r?

123

(2.41)

Note that he transfer function in (2.41) has in addition to a pair of poles, two zeros.
These zeros are chosen to null the frequency response H(e*?) at the digital fre-

quency borders f = 0 and f =

=+ f/2. That is:

1. H(¢® = H(1) = 0 can be enforced by putting z; = 1.
H(—1) = 0 can be enforced by putting z, = —1.
Having the two zeros at these two positions, the frequency response is “pulled
down” more effectively away from the positions of frequency resonance. That
is, the stopband attenuation improves.

2. H(eijOmegas/Z) _ H(eijn)

To facilitate implementation of the resonator, it is helpful to write its transfer

1

function as a function of z~ ":

2?1

Z-1

H(z)

Fig. 2.40 A digital resona-
tor. a Magnitude response
with f, =2 Hz, r = 0.9,

fs = 10 Hz (Solid with 2
zeros; dotted: without zeros).
b Implementation using
Direct Form-II

T 22— 2rcos(Q)z + 12 T1-2r cos(Q,)z7! +r2z72"

Magnitude

-1 —Q 0 Q T

x(n) +

124 2 Discrete and Digital Signals and Systems

This transfer function can be implemented as shown in Fig (2.40). If r is very close
to 1, then the 3-dB (half-power) bandwidth B and the maximum gain G,, of this
system are approximated, respectively, by:
B~ " r(Hz) and G

-~ ——f;(Hz) an N

/ T (1 —r2)sin(Q,)
Equivalently, the bandwidth can be written as:

B, =2n.By = 2(1 — r)f; (rad/s), (where w = 2nf, radian frequency), B, =

Br/fs = %, (where v = ff;, normalized frequency), and Bq = B, /f; = 2(1 —r),
(where Q = w/f, = 2nf/f; = 2nv, normalized frequency).

2.6.9.5 A Digital DC Blocker

In some applications an undesirable DC voltage can appear in the information
signal. For example, in some audio applications a DC offset can be added to the
recoded sound from the microphone. The ADC may also add some unwanted DC
to the digitized signal. This DC component carries no information, and in audio
applications cannot even be heard. Nonetheless, in some cases it can hinder pro-
cessing and cause instabilities. For example, the DC component may drive the
signal outside the dynamic range of the processing system which will cause signal
clipping. Hence, DC removal is often desirable before other forms of processing
are pursued.

For DC removal, it is necessary for the magnitude response to be zero at
f=0Hz and unity elsewhere. This kind of frequency response can only be
approximated in practice. To block DC one can place a zero at z = 1, and to
ensure that there is approximately unity gain for non-zero frequencies, one addi-
tionally needs a pole very near to the zero at z = 1, and inside the unit circle. The
following transfer function has the necessary form:

1—z!

H(z) = T close to 1. (2.42)
— oz

Fig. 2.41 A digital DC x(n)
Blocker

y(n)

Direct Form |

Direct Form Il

2.6 Digital Filters and Their Applications

125

5 T
T T T I T T S ST e e T f, Hz
I 4 .
_O
O;' .
o
< fs =44.1 kHz 7
c o = 0.999 -
® R s
© sor 0 =0.98 -
m Y
B g 0=0.95 .
4
_40 i Il Il Il Il Il Il Il Il Il
-100 0 100 200 300 400 500 600 700 800 900 1000
fs =441 kHz, 0=0.99, DC component =4v, fi= 400 Hz
6 Input signal (DC - shifted) 1
|
4 MY !
|
2 Output signal (DC - free) 1
0
_2 Il Il Il Il Il Il Il Il Il
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time, sec
fs =441 kHz, 0=0.99, DC component =4v, fi= 20 Hz
6 - .

Input signal (DC - shifted)

2 Output signal (DC - free, but attenuated)
0 b ————
_2 Il Il Il Il Il Il Il Il Il
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time, sec

Fig. 2.42 Frequency and time-domain performance of the DC Blocker

126 2 Discrete and Digital Signals and Systems

[
-]
2
=
£
<
|I"||| I1s21 Time
Direct Echoes Reverberations
sound
x(n) i x(n)
Equalizer |H,(2) Direct sound +) Listener

- y(n
—>| A bank of echo filters

s(n)
c(n) —>|A bank of reverb filter

Audio source

Fig. 2.43 Audio effects. Above an audio signal and its reflections in a listening venue. Below
simulation of specific acoustics in another venue

Figure (2.41) shows a block diagram of a DC blocker, while Fig. (2.42) shows
its practical performance with sinusoidal dc-shifted signals. It is evident that this
performance is dependent on how close « is to 1. When o = 0.99, the filter
removes the DC from the (low-frequency) 20 Hz sinusoid, but it also introduces a
phase change and an attenuation.

2.6.9.6 An Application of FIR / IIR Digital Filters: Simulation of Acoustic
Effects

A piece of music played in a concert hall does not sound the same as if it is played
in a living room. This is due to the echoes (early reflections) and the reverberations
(late reflections) which vary from setting to setting. One can actually simulate a
concert hall in a living room using the following steps:

1. Equalize the audio transfer function of the room, H,(z). That is, eliminate any
special effects that the living room is inherently creating. This is done by first
sending an audio impulse d(n), and then measuring the impulse response 4,(n).
The transfer function is then given by H,(z) = fft{h,(n)}. Then one designs an
equalizing filter H,(z) = 1/H,(z), with say the Remez algorithm.

2. Simulate the echoes and the reverberations as follows:

e For echoes: y(n) = x(n) + ax(n — N). This is so because an echo is a direct
reflection of the delayed input signal. Hence, H(z) = 1 4+ az . This is an
FIR filter. In practice, choose NT; > 0.05

2.6 Digital Filters and Their Applications 127

e For reverberations: s(n) = x(n) + ff-s(n — M). This is so because a rever-
beration is an accumulation of previous reflections of the signal. Hence,
H(z) = 1/(1 — p z™). This is an IIR filter with M poles.

Figure (2.43) shows a block diagram of the above procedure.

References

1. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform.

Proc. IEEE 66, 51-83 (1978)
2. Oppenheim, A.V., Schafer R.: Discrete-Time Signal Processing, Prentice-Hall, USA (1989)

Part 11
Applied Signal Processing

Chapter 3
Selected Topics in Applied Signal
Processing

3.1 Introduction

Signal processing has found application in hugely diverse areas. It is used, for
example, to

e decode and receive signals in mobile telephony,

e monitor and guide airborne vehicles,

detect geological structures which might signal the presence of oil and other
minerals,

automatically tune televisions,

create special audio effects such as surround sound,
construct intelligent voice mail systems,

facilitate computer-based person identification,
automate ploughing and irrigation in agriculture,
create special effects in robotic toys,

provide location information for GPS,

etc.

This chapter will explore a number of sample applications.

3.2 Binary Signal Transmission

In many applications signals are transmitted from one location to another in
baseband mode (i.e., as signals whose spectra have only low frequency content).
Baseband transmission cannot be used, however, if the signal has to be transmitted
through the air via antennas. In such cases modulation is needed so that the signal
can be converted to a form which can be effectively radiated from an antenna. This
section will consider baseband binary signal transmission, which is important in
many applications, especially in communications between computers and digital
signal processors operating in the same neighborhood.

Z. M. Hussain et al., Digital Signal Processing, 131
DOI: 10.1007/978-3-642-15591-8_3, © Springer-Verlag Berlin Heidelberg 2011

132 3 Selected Topics in Applied Signal Processing

3.2.1 Binary Transmission Using Orthogonal Signals

In binary communication systems, binary data (which is a sequence of ‘on’ or ‘off’
signals) is transmitted through a channel. The signals which are used to convey the
on or off information are normally orthogonal (or uncorrelated) signals, and will
be denoted by so(f) and s(¢). One possible pair of orthogonal signals for sy(f) and
s1(#) is shown in Fig. 3.1.

If the data rate is R (bps), then the time duration of sy(?) and s,(¢) is T = 1/R. If
the number of data bits transmitted over the channel is large, then the on’s and
off’s are equally probable and p(on) = p(off) = 1/2. As the data moves through
the channel it almost invariably acquires noise. For many channels encountered in
practice, this added noise can be well modeled as additive white Gaussian noise
(AWGN). As the name suggests, this noise is Gaussian noise and is wideband (i.e.
approximately white) to the data. It will be assumed here that the power spectral
density (PSD) of the added noise is = 5/2 (Watts/Hz). Hence, the received signal
has the following form:

r(t) = si(t) +n(t), i€{0,1}, 0<r<T.

In binary transmission systems, the receiving station knows the shape of the two
possible signals being transmitted, and hence optimal detection in noise can be
achieved through a bank of two matched filters. It will be assumed that sq and s,
are as shown in Fig. 3.1, and that s, is transmitted, starting at time # = 0. Then the

outputs of the two matched filters (correlators) at t = T are:
T T

ro = /r(t)s()(t)dl‘ = /[So(f) + n(t)]so(t)dt

0 0

T T
/s(z)(t)dt + /n(l)so(t)dt =E +n
0 0

Fig. 3.1 Two signals which s (t)
are orthogonal (uncorrelated) °
over the period T 1 I
t
0 T
s, (1)
1 T
I t
-1

T2

3.2 Binary Signal Transmission 133

It is seen from the above that output of the filter matched to s;(¢) is simply
noise, whereas the output of the filter matched to so(7) is equal to the autocorre-
lation of sy(#) plus noise.

The discrepancy in outputs of the two different matched filters provides the
basis for deciding whether the on or off signal has been transmitted. Further
analysis is provided below.

Since at every time instant ¢ the noise n(f) is a sample function of a AWGN
process with PSD = #/2, both ng and n; are Gaussian. (Note that integration is
essentially a summation, and the sum of weighted Gaussian random variables is
also Gaussian (see [1]). Also, both ng and n; have zero means since:

E{no()} =€ /so(t)n(t)dt = /SO(I)E{n(I)}dt =0=E&{nm ()} W,
0 0

where £{-} is the expectation functional, i.e., E{x} = [xp(x)dx. The variances of
no and ny, o;(i € {1, 2}), are given by:

where E is the energy of the signals sy and s; [remembering that sH0) = s3(0)].

The above statistics can be used to estimate the reliability of detecting the
correct symbol in a binary transmission system. The derivation of this reliability
measure is done below.

134 3 Selected Topics in Applied Signal Processing

3.2.1.1 Probability of Error

The matched filter based receiver compares r and ry. It will decide that an “off”
was transmitted if ry > rq, and that an “on” was transmitted if r; > ry. If an “off”
was transmitted, then an error will occur only if r; > ry. The probability of such an
error is given by:

P, = Pr(r; > ry) = Pr(my > E + ng) = Pr(ny —nyg > E).

Let x = ny — ngy. Since ng and n; are zero-mean Gaussian variables, x is also a
zero-mean Gaussian random variable, with variance given by:

6. = E{(m —no)*} = E{m} + E{m} — 26{mne} = 2(En/2) = En. (3.1)

Note that to obtain the result in (3.1) the following result was used:
T T
E{mny} = 5{ / / so(t)s1 (D)n(O)n(x)drd
0 0

_ / / s0(1)s1 (1) {n()n(z) }didz = 0.
0 0

Hence, the pdf of the random variable x is given by:
0=

X)) =——=

p V2no,

From (3.2) it is possible to find the probability of error. More detail in this process
is provided in the following [see also Fig. 3.2].

e—x2/2a')2(.

o0

1
\2moy
E

P, =Pr(x>E) = /P(x)dx = e 2% gy,
E

Now let r = x/a,, then

r 1 r 2
P, =Pr(x>E)= /p(x)dx =— / e dr
2
/ V2r

SN

=
—
e
[\
=

where the error function erf(y) = % ﬁ; ¢~ du is a reference function in MATLAB,
and SNR is the signal-to-noise ratio defined by:

3.2 Binary Signal Transmission 135

Fig. 3.2 Gaussian pdf. Note p(x)
that the shaded area repre-
sents Pr(x > E)

E
SNR = —,
n

The probability of error P, in correctly detecting a data symbol is often used as the
basis for performance evaluation of communication systems. Although the prob-
ability of error P, in (3.2) was obtained under the assumption that an “off” was
transmitted, the same kind of result would have obtained if an “on” was trans-
mitted. Hence, the average probability of error is given by:

P,, = P..

Cay

Figure 3.3 shows the general shape of P, versus SNR.

3.2.2 Binary Transmission Using Antipodal Signals

Two signals so(#) and s,(f) are said to be antipodal if sy(t) = —s;(t) = s(¢). One
possible antipodal configuration is the use of 4+ V as the two different signals. An
alternative configuration is depicted in Fig. 3.4.

If one uses orthogonal signals for transmission, normally a bank of two matched
filters are needed for optimum reception. However, if one uses two antipodal
signals, only one matched filter is needed. The received signal is r(f) =
+ s(¢) + n(¢), and the matched filter is matched to s().

Assume that two antipodal signals are used for transmission in a binary base-
band communication system. Following the same kind of analysis as was used for
orthogonal signals, the following result can be obtained (see [2]):

Output of the matched filter = +E + n,,

where n, = fOT n(t) & s(t)dt, and the variance of n, = 2 E (i.e., the same as that of
no and n, for orthogonal transmission). The decision process used for antipodal
transmission is as follows: if » > 0, then s(¢) was assumed to be transmitted (which
represents the “on” symbol), otherwise —s(¢) is assumed to have been transmitted.

136 3 Selected Topics in Applied Signal Processing

Fig. 3.3 Probability of error 100
P, versus SNR in a baseband
binary communications
system 10-1L
102}
n.ﬂ.l
1073}
1074}
1078 :
2 4 6 8 10 12
SNR, dB
Fig. 3.4 Two antipodal s (t)
signals o
1]
t
-1 T
T2
s (t)
1
1 T
| '
-1 —
T2

The probability of error in reception for the antipodal signals can be shown to be
(see [2]):

P, = % - %erf(VSNR). (3.3)
Comparison of (3.3) with (3.2) reveals that P, for antipodal signal transmission is
less than P, for orthogonal signal transmission at the same SNR. Therefore,
antipodal signal transmission is more efficient for baseband binary communica-
tions. However, orthogonal signals are more efficient (and in fact, optimal) in non-
baseband modulation schemes where random phase is introduced to the signal
during the transmission process. In such schemes antipodal transmission is inap-
propriate because the phase scrambling makes it very difficult to reliably dis-
criminate symbols at the receiver (see, for example, [3, Sect. 2.5]).

3.3 The Hilbert Transform and the Analytic Signal 137

3.3 The Hilbert Transform and the Analytic Signal
3.3.1 The Analog and Digital Hilbert Transform

3.3.1.1 The Analog Hilbert Transform

The ideal Hilbert transform filter (HT) is an all-pass filter which changes the phase
of the input signal by —90°. The transfer function of the analog HT is given by:

i ={ 7 120 b= isen

Using Tables (Fourier Transform Pairs), the transfer function can be inverted to
obtain the impulse response:

W) = F M) = (34)

Figure 3.5 shows the magnitude and phase responses of an ideal analog HT.

For a Hilbert Transform filter, the input signal is often referred to as the in
phase signal and the output is known as the quadrature signal. The quadrature
signal is often used in communications applications and can be obtained for any
arbitrary signal x(¢) according to the relation:

1

¥(t) = HT{x(1)} = (s) = — »x(0). (3.5)

The Fourier transform of X(¢) is given by:

Y(f) = X(f) = —j sen(HX(f). (3.6)
from which it is evident that [X(f)| = |X(f)|.
The Inverse HT

Since H2(f) = [—j sgn(f)]* = —1, a succession of two HT’s will be equivalent to
a scalar multiplication by (—1). That is,

Fig. 3.5 The magnitude and |H(A) o (h
phase responses of an ideal 1 + /2
analog HT
f f
0 1]
- m/2

138 3 Selected Topics in Applied Signal Processing

HT[HT{x(t)}] = —x(¢)
S HT{x(t)} = HT Y{—x(1)} = —HT'{x(1)} (3.7)
S HT Yx(1)} = —HT{x(1)}.

In other words, the inverse Hilbert Transform is simply the negative HT.
Q : As an exercise show that the HTs of cos(w,t), sin(w,t), and 5(r) are given
respectively by sin(w,t), — cos(w,t), and 1/(nf).

3.3.1.2 The Digital Hilbert Transform

In the digital domain the HT is defined as:

! _ —jv OSfSﬂI
Ha(e) = {+j, —n<f<0. }

with:

n=

. _ 1 : iQ\ _inQ o ZM’ n;«éO
..hd(n)—zn/'Hd(e’)e’ dQ{n (;l 0. (3.8)

)

MATLAB

The HT can be implemented in the digital domain either as an /IR filter or as a FIR
filter. For IIR based implementation the following instruction can be invoked:
[numden]l=hilbiir(Ts, Delay, BW, TOL).IIR based implementation has
the advantage of being lower order, and hence giving less delay, but it is vul-
nerable to instability. FIR based implementation results in greater delay but has no
instability problems. It can be implemented using the following statements:

F=[.01 .991;.

g=[11];

h=remez (M-1,F,g, 'hilbert’);
num=h;den=[1 zeros(1,M-1)];
H=freqgz (num,den, £, fs) ;

Alternatively one can perform an FIR based implementation by first designing
the impulse response with a truncation and widowing of the ideal response %,(n).
This kind of implementation can be realized in MATLAB with the following
commands:

M=1999;n=0:M-1;

b=(M-1)/2;

hd=(2/pi) * ((sin((pi/2)* (n-b))-2)./(n-b));
hd (b+1)=0;w_han=hanning (M) .’ ;

3.3 The Hilbert Transform and the Analytic Signal 139

|H(e)|
1 .
f, Hz
—f./2=-500 0 f_ /2 =500

s s

(a)
;’}(t):sin(mot)
\\ ”, \\
~ ~
‘\\ ,/ 0.2 \ t

x (f) = cos(mot) (b)

Fig. 3.6 FIR implementation of the digital HT. a The HT magnitude response. b HT applied to
the sinusoid x(¢) = cos(w,t), which results in a 90° phase shift. Note that the first few samples of
X(t) are incorrect, hence ignored in the plot

h=hd. *w_han;

num=h;

den=[1 zeros(1l,M-1)1;
H=freqgz (num, den, £, fs) ;

Figure 3.6 shows the results of this implementation and its application to a
sinusoid.

3.3.2 The Analytic Signal

Most practical signals are real and have a positive frequency spectrum as well as a
mirror image negative frequency spectrum. It is possible to synthesize a so-called
analytic signal which has a no negative frequency content. The analytic signal
z(t) associated with a real signal x(¢) is defined as:

2(1) = x(t) + HT{x(1)} = x(t) +j - X(1) (3.9)
" Z(f) = X(f) +jl=jsgn(N)IX(f) = X(F)[1 + sgn(f)]

. 2X(f), f=0
.Z(f):{ o(,f) f<0.} (3.10)

The analytic signal z(#) associated with the original signal z(f) can be generated
in MATLAB using the command:

z=x+j*hilbert (x)

140 3 Selected Topics in Applied Signal Processing

3.3.3 Applications of the Hilbert Transform and the Analytic
Signal

3.3.3.1 Spectral Economy and Computation of the Instantaneous
Frequency

Since the analytic signal has only half the spectral bandwidth of the original real
signal, it is spectrally economical and is therefore often used in communications
applications. It is used, for example, in single sideband suppressed carrier mod-
ulation schemes (see Sect. 3.3.3.2).

The analytic signal also plays an important role in giving a meaningful general
definition for the instantaneous frequency of a signal x(¢) with a continuously time-
varying frequency. Assume that z(7) = x(¢) + jx(¢) = a(¢) exp[jp(¢)] is the analytic
signal associated with a general amplitude and frequency modulated signal x(¢).
The instantaneous frequency (IF) of z(¢) is given by:

(1) :%Et) (3.11)

3.3.3.2 Single Side-Band Amplitude Modulation

Natural information-bearing signals normally have relatively low frequency content.
For example, the frequency content of human speech signal ranges from about 200 to
3k Hz, while audio signals in general can reach up to approximately 20k Hz. For long-
range transmission of speech and audio from one antenna to another, it is often
necessary to do a transformation to the radio-frequency portion of the spectrum.

Therefore, one needs to increase the frequency of the signal (without changing
the information content) before radio transmission. This translation of the signal
information from the low frequency region to the high frequency region is called
modulation. Practically important examples of modulation are found in mobile
phone systems, which translate baseband speech signals up to around 900 MHz
before transmitting these signals through the air. Similarly, TVs which operate in
the range 300-800 MHz region, and satellite links operate in the frequency range
from a few hundred MHz to more than 40 GHz.

Amplitude modulation (AM) is widely used in communication systems. The AM
modulator multiplies the message x(f) by a high-frequency sinusoid called the
carrier, c(t) = cos(w,t), to get the AM signal y(¢) = x(¢) cos(w.t). The spectrum
of this signal is (Tables—Fourier Transform Pairs):

Y(f)=05X({f—f.)+05X(F+1.)

This type of modulation is called double-sideband suppressed-carrier (DSBSC) AM,
since the negative part of the original spectrum appears now in the effective positive
frequency part, hence consuming a place in the active bandwidth (BW). Since x(¢) is

3.3 The Hilbert Transform and the Analytic Signal 141

X(1)— - (}X\D p(t)=y(t) [in-phase]
cos(mct) +
-90° | HT + s(t)=y,(1)
sin(mct) +
X

q(t) [quadrature]

Fig. 3.7 SSBSC AM generation

real, its magnitude spectrum is symmetric, hence the negative frequency part in the
original spectrum is redundant. For spectral economy it is better to remove
the redundant part of the spectrum [which is called the lower sideband (LSB), while
the original positive part is called the upper sideband (USB)]. This is accomplished
by using a Hilbert transformer and forming an analytic sign The resulting system is
called single-sideband suppressed-carrier (SSBSC) amplitude modulation. Figure 3.7
shows a circuit diagram for implementing SSBSC AM generation.

3.3.3.3 Spectrum of the SSBSC AM Signal

From Fig. 3.7 one can write that:

p(t) = x(¢) cos(w,t) (3.12)
and

q(t) = x(t) sin(w,t). (3.13)

The USB is given by y;(f) = p(¢) +j * g(¢) and the LSB is given by yy(f) =
p(t) — jq(t). Figure (3.8) shows the spectra associated with SSBSC AM.

3.3.3.4 Demodulation of SSBSC AM Signals

Figure 3.9 shows the SSBSC AM signal demodulator. Assuming noise-free and
Doppler-free conditions, the multiplier produces the following mathematical
transformations:

r(1) = yi(t) cos(wet)
= x(1) cos®(w,t) + x(t) sin(w,t) cos(wt)
= 0.5x(¢) 4+ 0.5x(¢) cos(2w,t) + 0.5x(¢) sin(2ewt)
Using Tables (Useful Formulas-3)

(3.14)

142 3 Selected Topics in Applied Signal Processing

Fig. 3.8 Spectra associated X(f)
with SSBSC AM generator 1
0 f
P(f)
T 05 4 1| B f
- 0
fC fc
Q(f)
[T 0.5 il
— -0540 L f
—f f
c [
Y, (f)

r(t)
s(t)=y, (1)

LPF ————> 0.5x(t)

=09

cos ((”ct)

Fig. 3.9 SSBSC AM signal demodulation

The LPF in Fig. 3.9 will then filter out all the signal terms given in (3.14) except
the 0.5x(f) term. This remaining term is simply a scaled version of the original
signal.

3.4 Phase-Locked Loops

The phase-locked loop (PLL) represents a very important application in signal
processing and communications. The initial idea for the PLL came as early as 1919
in the context of synchronization of oscillators. The theory of PLL was based
initially on the theory of feedback amplifiers, and found early application in
communications and motor servo systems. Due to the rapid development of
integrated circuits (ICs) subsequent to the 1970s, PLLs gained a strong foothold in
many areas of applications. Some of these applications include filtering, frequency
synthesis, motor-speed control, frequency modulation, demodulation, signal
detection, frequency tracking, etc.

The PLL is basically a device that tracks the phase and frequency of an
incoming signal. It is a feedback system that adjusts the phase and frequency

3.4 Phase-Locked Loops 143

PED

x(t) e(r) LPF y(t)

v_(t)
e vCo

Fig. 3.10 A block diagram of a generic analog phase-locked loop

slowly according to a feedback error signal. Because it adjusts slowly it is unable
to follow perturbations due to noise—it is therefore quite resilient to the effects of
noise. There are two major categories of PLLs, namely, analog PLLs (APLLs) and
digital PLLs (DPLLs). Both of these are covered below.

3.4.1 Analog Phase-Locked Loops

Figure 3.10 shows a block diagram of an analog phase-locked loop. A PLL is a
feedback system that essentially tries to replicate the oscillation present in the
input signal but shifted down by the carrier frequency, and without the random
noise present in the input. It also tries to ensure that the output phase is as near as
possible to the input phase. As will be seen subsequently, the PLL is very useful
for demodulating frequency modulated (FM) signals.

The PLL consists of three major parts: the phase-error detector (PED), the loop
filter which is a LPF which diminishes random noise, and the voltage-controlled
oscillator (VCO).

Consider a frequency-modulated input signal with the following form:

x(t) = cos|(1)] = cos|2nfit + 0(1)] = cos | 2nfut + 27 / mndt| (3.15)
0

where m(t) is the message signal which must be transmitted in a communications
system. The instantaneous frequency (IF) of the signal is given by:

1 do()]

1) = 2n dt

= fo + om(t) (3.16)
Hence, the frequency of the signal is varied in proportion to the message signal,
i.e., x(¢) is a frequency modulated (FM) signal. Note that if the phase ¢(z) were to
vary linearly with the message, i.e., if 6(f) = am(¢), then x(¢) would be a phase-
modulated (PM) signal.

The VCO in the PLL is an oscillator whose output frequency varies linearly
with its input voltage, as specified by the following equation:

144 3 Selected Topics in Applied Signal Processing

t

volt) = sin[2nft + 0,(1)] = sin | 2t + 277 / Y(t)de (3.17)
0

where 7 is a constant. Hence, the VCO frequency is given by:

fvco :fc+yy(t) (318)
Note that if 0,(f) = 0(z), then from Egs. 3.16 and 3.18 it follows that:

y(1) =2 m()

i.e., if the output phase follows the input phase the PLL will demodulate the FM
signal. The following analysis will show that this is exactly what does happen—
the output phase locks to the input phase and authentic FM demodulation occurs.
This occurs (as will be seen in the analysis) provided that some non-restrictive
conditions are met.

From Fig. 3.10, Egs. 3.15, 3.17, and Tables (Useful Formulas—4), it is possible
to write:

e(t) = x(t)v,(1) = %Sin(4nfct +0,+0)+ %Sin(ﬂa —0)

The LPF rejects the high frequency component of e(f) , giving the following filter
output:

y(t) = %Sin(Oo —0) (3.19)

Then from (3.18) and (3.19) one gets:

do,
dt

=K sin(0, — 0)
where K = my. For small differences between the input and output phases (i.e., for
small phase errors) the following approximation can be made:

do,
dt

~K (6, —0).
Taking the Laplace transform of both sides yields:
50,(s) =K (0, — 9). (3.20)

From Tables-Laplace Transform Pairs, and Eqs. 3.16 and 3.18 one gets:

Y(s) O,(s) M(s) O(s)
S T M T (3:21)

3.4 Phase-Locked Loops 145

Equations 3.20 and 3.21 give:

B —a/yK

Y(s) P

For a large value of the loop gain, i.e., if IKI > 1, Eq. 3.22 can be re-written as:

M(s) (3.22)

Y(s) ~ ’V"‘M(s) = (1) z’T"‘m(r). (3.23)

Equation 3.23 indicates that under the assumptions made in the previous para-
graphs, the PLL produces a scaled version of the message signal at the output.
Demodulation of the FM signal therefore occurs.

3.4.2 Digital Phase-Locked Loops

Digital phase-locked loops (DPLLs) were introduced in the 1970s to alleviate
some of the inaccuracies associated with analog systems. They are analogous in
structure to analog PLLs (APLLs) (see Fig. 3.11). APLLs are still widely used, but
DPLLs are attracting more attention due to the significant advantages of digital
systems compared to their analog counterparts. These advantages include superior
accuracy, faster locking speed, greater reliability, and reduction in size and cost.
A more detailed discussion of the advantages brought by DPLLs is provided
below.

1. APLLs suffer from the sensitivity of the VCO which decides the center fre-
quency to temperature and power supply variations. They therefore need initial
calibration and periodic adjustments. DPLLs do not suffer from such problems.

2. The most common error detectors used in APLLs utilize analog multipliers
which are sensitive to d.c. drifts, a problem that does not exist in DPLLs.

3. DPLLs can operate at frequencies much higher than APLLs. Also, DPLLs can
operate at very low frequencies, whereas the latter pose serious problems for
APLLs. These problems are related to the reliable operation of the analog low-
pass filter in extracting the lower frequency component. These problems also
dictate that longer times are needed for effective filtering, and so the locking
speed of the PLL is reduced.

PED
x(n) X DF y(m)

v,(n)

DCO

Fig. 3.11 A block diagram of a generic digital phase-locked loop

146 3 Selected Topics in Applied Signal Processing
Fig. 3.12 A block diagram Input Signal, x(k)
of a generic sinusoidal digital x(t) Sampler & DF
phase-locked loop ADC N-bits

DCO

y(k)

Output Pulses, v, (k)

There are many kinds of DPLLs. The interested reader is referred to [4, 5] for
more details.

3.4.2.1 The Sinusoidal DPLL (SDPLL)

Among DPLLs, non-uniform sampling sinusoidal PLLs are particularly popular.
Thy are simple to implement and suitable for relatively wide locking ranges. Fig-
ure 3.12 shows a block diagram of a generic SDPLL. It consists of a sampler/ADC
unit which serves effectively as a PED, a digital low-pass filter (DF), and a digital
voice-controlled oscillator (DCO) which produces a constant amplitude (but variable
frequency) output pulses that control the sampling instants of the Sampler/ADC unit.
Different SDPLLs can be obtained by having different D-LPFs. First and
second-order filters are both commonly used in practice for SDPLLs. The first-
order SDPLL uses a digital filter of zero-order, i.e., it consists of just a multipli-
cative constant G;. A second-order " typically uses a digital filter with the
following transfer function (see also Fig. 3.13):
1
H(Z) =G +G21_7171.
where G and G, are appropriately chosen constants. This transfer function can be
implemented in parallel form as shown in Fig. 3.13. The output of this filter is
given by:

k
y(k) = Gix(k) + G2 Y _ x(i)
i=0

Fig. 3.13 The digital filter of
the 2nd-order SDPLL |

x(——(+) > vk

3.4 Phase-Locked Loops 147

(Fixed Number)

- M, f (Clock)
Digital Subtracter l C\L

: ’ Programm-

- | 2s compl- : Zero

: é Full Adder -% able é

. | ement W - MCounter Detector

N N o

T T : Load M_- N

\4
I
N DCO Pulses
(Input Number)
M-N,
5
=
8 M-N,
E M-N,
5 o
3 R M-N,
T =1/,
Time, t
DCO
Pulses | |
Time

Fig. 3.14 Above A block diagram of the DCO. Below The DCO output waveforms

The output of the DF modifies the input of the DCO to vary its phase (also its
frequency) such that it Jocks onto the phase (and frequency) of the input analog signal
x(?). If no input is applied to the DCO, it has a free running frequency equal to f, Hz.

The Digital Controlled Oscillator

The Digital Controlled Oscillator consists of a programmable counter, a binary
subtracter, and a zero detector as shown in Fig. 3.14. Subtraction is performed
using a 2’s complementer and a full adder.

When the input number is N =0, the DCO period between pulses is
T, = MT. = M,lf,, where f, is the clock frequency and M, is a constant number.
Hence, the DCO frequency is f, = 1/T,, the free running frequency (or the center
frequency). If N # 0, the DCO periodis T = (M, — M)T. = T, — NT,, hence the
DCO frequency is f = 1/T (See Fig. 3.14). The SDPL adjusts itself such that, after
a few sampling instants, the DCO frequency f matches the input signal frequency.

3.4.2.2 Operation of the SDPLL

When the sampler takes a sample of x(7) at the kth sampling instant, the ADC
converts the analog value x(k) into an N-bit digital value x(k). Then the DF

148 3 Selected Topics in Applied Signal Processing

x(t)
T mM) H/’I\% T2) %’F\
Time
t(0) t(1) 1(2)
x (k) x(1) x(2) x(3)
1 l_

vo(t) | |

Fig. 3.15 Waveforms associated with the SDPLL

modifies x(k) to yield y(k), which in turn modifies the DCO input number. As the
DCO input is changed, so is the sampling period 7(k) of the ADC. Note that the
sampling process is non-uniform, i.e., f; is not constant. Under certain conditions,
convergence or locking will occur such that 7(k) approaches T,, = 1/f,, (where f,,
is the carrier frequency of the input analog signal x(#)). Figure 3.15 shows the
waveforms associated with the SDPLL.

Analysis of the SDPLL

Assume that the input signal x(¢) is a sinusoidal signal with the form:
x(t) = A sin(wt + 6,) + n(t),

where A is the signal amplitude, @ = 2xf is the signal instantaneous frequency,
0, is a constant phase, and n(f) is additive noise. The locking range of the loop is
the range of instantaneous frequencies that the loop can track. Since the locking
range is dependent on the deviation of w from the loop center frequency w,, it is
more convenient to write the above equation in the following form:

x(t) = A sin[wot + 0(1)] + n(t), (3.24)
where 0(¢) is the information-bearing phase given by:
0(t) = (0 — wp)t + 0, = Awt + 0,,.

After sampling, the input signal at the kth sampling instant #(k) the input signal will
have the following form:

x(k) = Asin[w,t(k) + 0(k)] + n(k), (3.25)

where the input phase at the kth sampling instant is defined as follows:

d(k) = wot(k) + 0(k). (3.26)

3.4 Phase-Locked Loops 149

The sampling interval of the DCO at the kth sampling instant is given by:
Tk)=T,—y(k—1) (3.27)

(see Figs. 3.12 and 3.14).

Note that the kth output sample of the DF, y(k), effectively determines the
sampling period, T(k + 1). The kth sampling instant #(k) is given by the cumu-
lative sum of all sampling periods:

For simplicity it is assumed that the initial time instant is zero, i.e., #(0) = 0.
Hence, the kth sampling instant is:

H) = KT, = 3 ¥(0) (3.28)
0

From Egs. 3.26 and 3.28, the input signal phase at the kth sampling instant can be
written as follows:

k—1
(k) = 0K) — 0, > ¥(i). (3.29)

0
Hence, at the (k + 1)th sampling instant, the input signal phase is given by:
k
Gk +1) =0k + 1) — w, > _y(0). (3.30)
0
The phase equations (3.29) and (3.30) will determine the system difference
equation for the SDPLL of any order.
3.4.2.3 The First-Order Noise-Free SDPLL
The first-order SDPLL is widely used, although it gives a non-zero steady-state

phase error. Its digital filter transfer function is H(z) = G; (constant), hence its
output is given by:

y(k) = Gix(k) = GA sin[p(k)] (3.31)
From Egs. 3.29 and 3.30 the following phase difference equation is obtained:

Pk +1) = (k) = 0(k + 1) — 0(k) — woy(k). (3.32)

150 3 Selected Topics in Applied Signal Processing

Using Eqgs. 3.28 and 3.31 gives the following difference equation:
p(k +1) = (k) — Ky sin[¢(k)] + 4, (3.33)

where A, = 2n(w — w,)/w, and K, = o G1A. If K| is defined to be K| = w,G| A,
and W is defined as the frequency ratio W = w,/o, then K, = K| (w/w,) =
K/W. The parameters W and K, control the system operation range as discussed
below.

Locking Conditions

If locking occurs, then ¢k + 1) = ¢p(k) = ¢, (¢, being the steady-state phase
error). Using Eq. 3.33 it follows that:

A, = Ky sin(py) = ¢y, = sin~'(4,/K>) (3.34)
s A,/ K| <1 (3.35)
Equation 3.35 leads to the following condition (prove as an exercise!):

Ki > 271 — W] (3.36)

Now the theory of Fixed Point Analysis states that the equation g(y) = s has a
solution " only if the following condition is satisfied (see [6]):

HUBIES! (3.37)

Hence, Eq. 3.33 has a solution as in Eq. 3.31 only if:

‘1 - K Cos(d)ss” <1

~.‘1—\/K§—A§

- Ky —A2<4

<1

which gives the following condition:

Ky <+\/(4+ 42)W2 — 8m2W + 472 (3.38)

Equations 3.35 and 3.38 specify the frequency locking region of the 1st-order
SDPLL as illustrated in Fig. 3.16. Hence, if the frequency of the incoming signal is
such that w/w, = 1/W € R, where R is the region of locking in the (W,K) plane,
then the SDPLL is capable of tracking this frequency. It is then also capable of
eventually locking on the input phase. Note that as K; approaches 2, the locking
range becomes wider. Practically, locking occurs when |¢p(k + 1) — ¢(k)| <e,
where ¢ is a small positive number.

3.4 Phase-Locked Loops 151

Fig. 3.16 Locking region of
the 1st-order SDPLL

Loop Gain, K s
N
T

1 2
Frequency ratio, W = (Do/(l)

Phase Plane Diagram

Phase plane diagrams represent the phase at the (k + 1)th sampling instant, ¢
(k + 1), as a function of the phase at the kth sampling instant, ¢ (k). Such diagrams
are useful for studying the convergence behavior of the SDPLL.

For the first-order SDPLL, the system equation is given by (see Eq. 3.33):

¢k + 1) = ¢(k) — Ky sin[p(k)] + 4.
If one puts x = ¢(k) and y = ¢p(k + 1), one gets the following simple equation:
y=g(x) =x— Ky sin(x) + 4,.

If one assigns a value for ¢ (0), then successive phase errors {¢ (k)lk = 1— o0 }
can be found and plotted (modulo 27) by successive projections on the curves
y=x and y = g(x). This is shown in Fig. 3.17 for 0, =2.5rad, t, =0,
K, = 1.7, center frequency f, = 1 Hz, and input frequency f; = 0.83 Hz (hence
W = 1.2). The locking point is a point of infersection between the two curves.
Note that the values of W and K, are inside the locking region R. Figure 3.17
also shows the sampling process with the phase error process for the same
parameters. Figure 3.18 depicts the frequency tracking process under the above
circumstances.

SDPLL in Noise

Figure 3.19 shows the frequency tracking probability density function for the same
circuit parameters as above in the presence of AWGN noise. It is seen that the pdf
() has a maximum at approximately f = f;. Hence, the SDPLL can detect the input
frequency in the presence of noise, even for low SNRs. Figure 3.20 shows the
variance of this frequency estimate as a function of the SNR. As expected, it
decreases when SNR increases.

152

3 Selected Topics in Applied Signal Processing

o (k+1), rad

¢ (k), rad

H0) 1) #(2) 13

WA
VAAVAVAVEVAY

1) 1) #(2) 13)

0

t, sec

Fig. 3.17 Locking process of the lst-order SDPLL for 0, =25rad, t, =0, K; = 1.7,
f, = 1Hz, and f; = 0.83 Hz (hence W = 1.2). Above phase plane diagram. Middle sampling
process. Below phase error process

Fig. 3.18 Frequency track-
ing process using the
Ist-order SDPLL with
0,=25rad, 1, =0,

K, =1.7,f,=1Hz, and
fi = 0.83 Hz (hence

W=12)

H0) t(1) (2 (3)

Loop frequency, Hz

3.4.2.4 The Second-Order Noise-Free SDPLL

The first-order SDPLL locks on a non-zero steady-state phase error ¢, = sin™

t, sec

(A4,/K3). This can be an unwanted characteristic when the PLL is used for syn-
chronization. In such a case the second-order loop may be necessary as it locks on
zero phase error. The second-order SDPLL utilizes a proportional and an accu-
mulation path digital filter:

3.4 Phase-Locked Loops 153

SNR = -5dB MM SNR = 0dB
f,Hz - f,Hz

f ’ f ’

i i

ﬂ\u SNR = 5dB
f,- f, Hz

Fig. 3.19 Frequency tracking pdf using the Ist-order SDPLL with 0, = 2.5 rad, 7, =0,
K, =17, f,=1Hz, and f; = 0.83 Hz (hence W = 1.2) in AWGN for different SNRs

pdf (f)
pdf (f)

SNR = 30dB

pdf (1)
pdf (f)

f, Hz

f.

1

Fig. 3.20 Variance of the
Ist-order SDPLL estimation
(in AWGN) of the input fre-
quency f; as a function of the
SNR for 0, = 2.5 rad,
t,=0,K, =17,f,=1Hz,
and f; = 0.83 Hz (hence SNR, dB
W=12)

k
y(k) = Gix(k) + G2 Y _ x(i).
i=0

Following the same steps as for the first-order loop, it can be shown that:
Pk +2) —2¢(k+ 1) + ¢(k) = Ky sin[¢p(k)] — rKz sin[¢p(k + 1)] (3.39)

where r=1 —|—%. Recall that K, = wG A, K| = 0oG1A, W = w,/0, K, =

Ki(o/w,) =K /W.
At locking it is true that ¢k + 2) = ¢k + 1) = ¢ (k) = ¢, hence the above
equation becomes:

0=Ky(1—r) sin[¢,] (3.40)

which implies that the locking phase ¢y, is zero.

Lock Range

To apply fixed-point analysis as for the first order SDPLL, one must have an
expression of the form g(x) = x. Since the 2nd-order SDPLL is characterized by a
2nd-order equation, one will need to have a vector expression: g(x) = x. To obtain
this type of expression, one can write:

154 3 Selected Topics in Applied Signal Processing

e [¢<(/€@1>] - {Lvﬂ

Then, using Eq. 3.40 one has:

wet= o] =[]

- {m — e+ K> sir‘:éuk) —rK» sin(vk)} - ngci” = g(xx)

The problem is now expressed in a form which can be analyzed with fixed point
analysis:

gr) = x with x= m and g(x) = [f (x)]; where f(x) =v and h(x) =

2v — u+ K sin(u) — rK; sin(v).
As there is a function of two variables, one should use the Jacobian (instead of
the derivative):

o [of/ou of fov
g0 = {ah/au ah/av}

0 1
o {—1 + Kycos(u) 2—rK, cos(v)}

The fixed point is x* = [5*} = [8] (mod 27), at which:

/(x*) _ 0 1
EWIT 14k 2-1k |
For this system to have a fixed point as above, one should have:

where /; are the eigenvalues of L = g’ (x*), i.e., roots of IA I — LI = 0. Hence we
get:
r>1

and

O0<Kh<——
P

which define the locking range of SDPLL2.

3.4.2.5 PM Demodulation Using the SDPLL

Using Eq. 3.29 for the 1st-order SDPLL yields:

k—1

k—1
$(k) = 0(k) — o Y ¥(i) = 0(k) — K1) _sin[o(i)] (3.41)
i=0

i=0

3.4 Phase-Locked Loops 155

If one puts K; = 1 and assumes that ¢ (i) is small near locking, then it follows that:
k

0(k) = > (i) (3.42)
i—0

Equation 3.42 suggests that the information-bearing phase 0 (¢) can be recovered
by summing the phase errors.
If x(r) is a PM signal, then it has the following form:
x(t) = Asin[¢(r)] = A sin[w,t + o - m(1))
——
0(1)

where m(¢) is the message and o is a constant (the modulation index). It is clear
that ¢(¢) is varying linearly with m(¢), and that 0(f) = a-m(¢) is the information-
bearing phase previously considered in the study of the SDPLL.

Now consider a single-tone message m(?), i.e.,

m(t) = asin(wyt).
In this case:
x(r) = sin[w,t + B sin(w,,t)] (where f = o - a).
—_——
0(1)
The instantaneous frequency (IF) of any sinusoidal PM signal is given by:

do

Hence, for the signal x(7) above:
o(t) = wo + B+ 0, cos(wpyt).
The maximum and minimum values of this frequency are given by:
Omax = O+ f- 0y and Opex = @y — f - Oy

From Eq. 3.36 using K; = 1 with a first-order loop:

2n <2 - 27 N 2n wo £ P, - 27
2n+1 wy 2m—1 2n+ 1 o 2n — 1
0<pPm < ~0.13 (3.43)
- wy 2m+1 '

Hence, f w,, should be specified by the above range, otherwise the SDPLL will not
be able to demodulate the PM signal. Equation 3.38 is not effective here as its
range exceeds K; = 1 (see Fig. 3.16).

156 3 Selected Topics in Applied Signal Processing

Input PM Signal, (k) B =x* X s(0=6(D

Sampler & DAC &
o— + —

LPF

x(1) = A sin[w,t+6(1)] -1

[6(f) =am()]

v, (k)

Fig. 3.21 Circuit diagram for PM demodulation using SDPLL1

Figure 3.21 shows the circuit diagram for PM demodulation using 1st-order
SDPLL.

3.5 Linear Estimation and Adaptive Filtering

A transmitted signal x(n) is normally corrupted by random noise during the
transmission process so that the received signal y(n) may be relatively difficult to
detect. To enhance detectability, it is advisable to use the best possible means to
reduce the effects of the noise. If one knows the sent signal exactly, one can use
matched filtering. In many situations, however, only partial (as opposed to exact)
information about the signal is available. The general process of forming an
approximation to the noise free signal based on partial information is called
estimation. This section deals with the issue of estimation, and in particular esti-
mation based on the use of linear filters. Throughout the section the estimated
signal will be denoted by i(n).

There are various different forms of partial information which may be avail-
able. One may, for example, know the spectral region occupied by the sent signal,
and the spectral region occupied by the undesirable noise. Often the noise will
occupy a wider bandwidth than the signal and so one can simply use a BPF to
remove all noise outside the band of the sent signal—the filtered signal could then
be considered to be the estimated signal. This is a very simplistic approach to
estimation, and one that may well not be optimal. During the 1940s Norbert
Wiener studied the problem of how to optimally estimate a sent signal, given a
knowledge of the sent signal’s spectrum and the received signal’s spectrum. He
found that the optimal estimate is given by the output of the filter whose transfer
function is:

Syx (S) os
H,(s) = Sus) e (3.44)
where o is the delay of the Wiener filter H,(s), S.(s) is the PSD of the original
signal, Sy,(s) is the cross spectral density (CSD) between the original and observed
signals.

3.5 Linear Estimation and Adaptive Filtering 157

Observed Estimate of x(n)
A
Channel signal) x(n)
x(n) —>{ distortion/ Optimum
i Filter
noise y(n)

Error, e(n)

+
d(n)
Reference signal

Fig. 3.22 Generic linear estimation model

The so-called Wiener filtering formulation in (3.44) is a frequency domain
solution, and is difficult to implement in practice because it requires a knowledge
of both the sent signal’s spectrum and the cross-spectrum between the sent and
received signals. A time-domain implementation of Wiener filtering turns out to be
much more amenable to practical implementation. This time-domain solution is
discussed in the following paragraphs.

Because of the Wiener—Kinchin theorem, the spectral formulation given in
(3.44) can be re-expressed with auto- and cross-correlation functions rather than
spectra. This re-formulation is based on the minimization of the mean-squared
error between the observed signal y(n) and a reference signal d(n), which is ideally
equal to the original signal x(n). In practice it often differs from x(7) by some error
signal. That is, the time domain approach still needs prior knowledge of the
autocorrelation function of the observed signal autocorrelation R, and the
observed/desired signal’s cross-correlation, R,,. The time-domain FIR Wiener
filtering solution is given by:

hop = [R);}Ryd} ! (3.45)

In itself, the solution presented in (3.45) has limited usefulness because of the
unavailability of the autocorrelation functions needed a priori to implement (3.45).
By using adaptive implementations however, it is possible to adaptively estimate
the initially unknown quantities and so arrive at a solution which is very close to
that provided in (3.45). In what follows, both non-adaptive and adaptive imple-
mentations of Wiener filter will be considered.

Figure 3.22 shows a general model for linear estimation.

3.5.1 Non-adaptive FIR LMS Filter

There are two kinds of filters for implementing the Wiener solution. These are FIR
nd IIR versions of the so-called least mean-square (LMS) filters. This book will
concentrate on the FIR LMS filter, largely because of the advantage they have with
respect to stability. If the filter length is M 4 1, then from Fig. 3.22 it follows that:

158 3 Selected Topics in Applied Signal Processing

i(n) =Y h(k)y(n — k) (3.46)

k=0

Often it is convenient to write the above equation in matrix form as follows:

&(n) =hy'(n) = y(n)h" (3.47)
where
h = [1(0) A(1) h(2), ..., (M)],
which is the impulse response vector, and
y(n) =) y(n = 1) y(n = 2),...,y(n = M)],
which is the observed signal vector at the time instant n. The error is given by:
e(n) =d(n) — x(n) (3.48)

and the mean-squared error (MSE) is given by:

emse = E{le()*} = E{[d(n) —3(n)]"} = E{[d(n) =Y _my(n =K'} (3.49)
k=0

To minimize e, it is necessary that:

aemse

on;

=0 V) (3.50)

where for simplicity, the designation 4; = h(j) is made. From Egs. 3.47, 3.49, and
3.50 it is possible to write:

O€mse Oe(n)
o, = S{Ze(n). o, }
= —2&{e(n)y(n —j)}
= —2&{y(n —j)ld(n) —y(m)h']} =0; j=0,1,...M

(3.51)

Now Eq. 3.51 can be written in matrix form as follows:

—2&{y" (n)ld(n) — y(mh']} =0
S EY (m)d(n)} — E{y" (n)y(m)h']} =0
Ry =R,h"

where R,, is the observed signal autocorrelation, while R, is the observed signal
cross-correlated with the desired signal. Hence, the optimal filter coefficients (in
the MSE sense) are given by:

3.5 Linear Estimation and Adaptive Filtering 159

T
hop = [R;Ryd} (3.52)

which is known as the Wiener—Hopf Equation.

3.5.2 Adaptive Filters

An adaptive filter is a programmable filter whose coefficients (i.e., impulse
response values, {h(k)}) are changed or adapted. Normally one seeks to adapt the
coefficients so as to give an optimal estimate X(n) of the original signal {x(n)} at
the time instant n, and an adaptive feedback algorithm is used to update the filter
coefficients. The measure of optimality is typically based on the information
available for the given application. Illustrative examples will be presented later in
this Sect. 3.5.7.

Because of their ability to adapt the coefficients, adaptive filters cannot only be
used for “homing in” on the optimal Wiener solution for time-invariant scenarios,
they are also useful for applications in which conditions are continuously varying.
They can, for example, be used to compensate for time-varying channel condi-
tions. Figure 3.23 shows a generic adaptive filter structure.

3.5.3 Choice of the Desired Signal

In communications systems, a “training sequence” is sent before transmission of
data. The receiver knows this signal and utilizes a copy of it as the desired signal
d(n). As such the adaptive filter can adapt coefficients to the point of near opti-
mality during the short period in which the training sequence is transmitted.

In noise cancelers, d(n) can be selected to be the observed data y(n), or a
delayed version thereof. This signal differs from the true signal x(n) in that it
contains additive random noise. In such a scenario, the adaptive filter is usually

Observed Estimate of x(n)
A
Channel signal X X(n)
x(n) —>{ distortion/ Adaptive
i Filter
noise y(n)

Error, e(n)

+
d(n)
Reference signal

Fig. 3.23 Generic adaptive filter configuration

160 3 Selected Topics in Applied Signal Processing

specified to adapt slowly, so that it cannot respond very effectively to the rapid
changes inherently present in the noise component of the signal, only to the
relatively slowly changing components of the true desired signal. For this reason
the choice of y(n) as a reference signal often serves as a very reasonable
replacement for the ideal signal x(n).

3.5.4 The Adaptive LMS Algorithm

The adaptive LMS algorithm is probably the most popular adaptive filtering
technique is use today. In this algorithm the filter coefficients are adapted
according to the 6-line procedure given in the following paragraph. This algorithm
was developed by Widrow & Hoff, and can be shown to realize the optimal Wiener
filtering solution which minimizes the MSE: ene = E{[e(n)]*} = E{[d(n) —
%(n))*} at every time instant n (see [7]).

Definition of the Adaptive LMS Algorithm:

h(k) = [h,(k) hi(k) hy(k),..., hy(k)], the filter coefficients at the kth instant.

y(k) = [y(k) y(k—1) y(k—2),...,y(k — M)], observed signal vector at kth
instant.

The algorithm can be described in vector form (MATLAB-like code) as follows:

h(0) = 0; % Initialize the filter coefficients.

forn = 1: N % N = length(y);
%(n) = h(n — 1)y" (n); % Filter output (this is matrix multiplication).
e(n) = d(n) — X(n);

h(n) =h(n— 1) + uxe(n)y(n); % u is the step-size.

end

3.5.5 Choice of Adaptation (Convergence) Coefficient
and Filter Length

The choice of the adaptation coefficient pu affects the estimation accuracy and the
convergence speed of the algorithm. Small values of u give better final accuracy
but slower convergence. Large values do the contrary. Very small or very large
values for u can cause significant errors, and hence, a compromise between these
two extremes is desirable. Because quick convergence is achieved by making u
large, and good final accuracy is attained by making ¢ small, many authors have
proposed that u itself be adapted as the filter runs. At the start of the algorithm u is
made large, and after (approximate) convergence is reached, u is made small. For
the sake of simplicity, however, this book will assume that p is invariant once the
algorithm commences.

3.5 Linear Estimation and Adaptive Filtering 161

As well as having to select u, one needs to select an appropriate filter length.
A larger filter length M + 1 is likely to give better estimation, but it also intro-
duces more delay into the output. Again, a compromise is desirable.

3.5.6 Hardware Implementation of Adaptive FIR Filters

The adaptive LMS algorithm can be implemented in either digital hardware or
software. A digital hardware implementation is depicted in Fig. 3.24. Note that
adaptive filters really only became practical with the advent of digital signal
processing—the intelligence required to implement these algorithms is generally
problematical for analog hardware.

3.5.7 An Example of LMS Filtering

Example Consider a 2-tap FIR adaptive LMS filter. If y(4) = 0.25, y(5) =
0.5, d(4) = 1.03, d(5) = —0.27, and h(4) = [1.2 3.7], use the LMS algorithm
with 4 = 0.02 to update the impulse response of the filter.

Solution: Applying the LMS filter algorithm to the above data specifications gives:

h(5) = h(5) + [0.5 0.25]e(5)
e(5) = d(5) —x(5) = d(5) —h(4)y' (5)

=-027—[12 3] [(?'255} =—1.79
h(5) = h(4) 4 0.02[0.5 0.25)(—1.79)
=[1.2 3.7) = [0.0179 0.0089] = [1.18 3.69].

Observed signal

yn)

yn)

uy(n)e(n) uy(n-1)e(n)

Fig. 3.24 Hardware implementation of the adaptive LMS filter

162 3 Selected Topics in Applied Signal Processing

Fig. 3.25 Noise reduction] Adaptive
using an adaptive filter y(n) z filter

d(n) + —

3.5.8 Application of Adaptive Filtering to Noise Reduction
in Narrow-Band Signals

x(n)

For noise removal in narrowband signals of unknown frequency one can use
adaptive LMS filters. In such applications one can set the desired signal d(n) to be
equal to the observed signal (d(n) = y(n)), as shown in Fig. 3.25. Note that with
this arrangement: i) the filter operates only on previous samples of the signal (not
the current one) and ii) the filter coefficients are adapted until the current output
from the filter matches the current observed sample as closely as possible. Now
ideally the desired signal should not be derived from the (noisy) observed signal
but from a noise free version of the observed signal. However, if the filter coef-
ficients are forced to adapt slowly, the filter will be unable to adapt to the rapid
fluctuations of the noise component of the observation—they will adapt mostly to
the noise-free version of the observed signal. The adaptive filter therefore func-
tions reasonably effectively. The arrangement is illustrated in Fig. 3.26 which
shows adaptive noise reduction for a sinusoid with unknown frequency.

{x(K)} {x(K)+n(k)}
2 2
0 0
-2 -2
0 5 10 0 5 10
Estimated {x(k)}, u=.00001 Estimated {x(k)}, u=.002
2 2
: oAV,
_2 -2
0 5 10 0 5 10

Estimated {x(k)}, u=.01

2 i)
0 u 0.2
-2
0
0 5 10 0 0.005 0.01

u

Fig. 3.26 Noise reduction for a sinusoid of unknown frequency using a 100-taps adaptive FIR filter

3.5 Linear Estimation and Adaptive Filtering 163

3.5.9 Application of Adaptive Filtering to Channel
Equalization

3.5.9.1 Reducing Intersymbol Interference

A communication channel can introduce noise and other forms of distortion which
adversely affect the transmitted data. One kind of distortion which is particularly
important in communication systems is so-called intersymbol interference.

Consider the scenario where it is desired to transmit a square pulse across a
communications channel. This pulse has a sinc function spectrum, which has an
infinite bandwidth. The square pulse is therefore compact in time, but infinite in
frequency extent. If the square pulse enters a communications channel which
acts as an ideal low-pass filter, the output signal will be bandlimited in fre-
quency, but it will be stretched in the time-domain. In fact it will have infinite
extent in the time-domain, due to the fact that the output is the convolution of
the input with the filter impulse response, and the latter is infinitely long. This is
in accord with the fact that any signal with finite frequency spectrum is infinitely
long in the time domain. As will be seen in the following paragraphs, this fact
has significant implications for digital pulse transmission in communication
systems.

A communication channel has normally a limited bandwidth, B, and hence acts
like a LPF (with transfer function H. (f)). Consider for simplicity a baseband
antipodal signal transmission, where rectangular data bits are transmitted as &+ 1,
with symbol duration T (see Sect. 3.2.2). The channel will cause each data symbol
to be stretched in time beyond its allocated interval 7, and this stretching will
interfere with the receiver’s ability to reliably detect the true data value at any given
time. This kind of interference is referred to as intersymbol interference (ISI). ISI
tends to become worse as the data rate R = 1/7 bps increases. The number of other
‘parasitic’ symbols incorporated into the current symbol period depends on the data
rate R and the channel bandwidth B,. The higher the data rate the worse the ISI, and
the lower the bandwidth the more the ISI becomes a problem.

In practice, there is a significant effect on ISI from only a finite number of
symbols on either side of the current symbol. The practical effect of the ISI can
therefore be modeled via a distortion or filtering with a finite impulse response. i.e.
one can model the ISI as a filtering produced by a tapped delay line with a finite
number of taps {h,, 1, ..., hy}. If the channel is distortionless, then &, = 1 and
hy = 0 Vk # 0. For practical channels which have some distortion, at least some
of the h; Vk # 0 are non-zero.

In the case of baseband antipodal binary transmission, the distortionless channel
output (i.e., the observed signal seen at the matched filter detector) would be
y(k) = &£ 1 + noise, assuming a sampling rate at the receiver similar to that at the
transmitter. A decision here can be made as follows: if y(k) > 0, then +1 was
transmitted, otherwise —1 was transmitted. This decision is not reliable if sig-
nificant if ISI exists; and the matched filter is insufficient for detection.

164 3 Selected Topics in Applied Signal Processing

In practice, ISI is negligible in telephone channels for data rates less than 2400 bps.
For higher data rates, ISI is a problem that degrades the system performance.

One way to reduce the effect of ISI is to smooth the corners of the rectangular
pulses (that represent the symbols) to reduce the effective bandwidth of each
symbol. This is called pulse shaping, and this shaping is done by filtering the
original rectangular pulses with special-purpose filters such as the raised-cosine
filter. This filter has a transfer function which is given by:

r 0<|fl<
H(f) = q 5[0 +cosZH(If| =59 5 <Ifl< 5
0 |>%

where the constant 0 < a < 1 is called the roll-off factor and T is the symbol period.
This filter is useful in reducing ISI as long as the data rate R = 1/T < 2W,W being
the channel bandwidth. The rate R = 2W is called the Nyquist rate.

The impulse response A(t) of the raised-cosine filter is given by:

nft
t\ COS(—
h(t) = sinc (—) (Tz)
T 1 _ 4ﬁ 2
T2

Not only does the raised cosine filter reduce the time extent of the ISI, but it also
shapes the interference intelligently. In particular, the raised cosine filter transforms
the rectangular pulse into an oscillating pulse which happens to be zero at all
symbol detection points before and after the current data symbol as shown in
Fig. 3.27. That is, whenever a data symbol needs to be detected, the interference
from all prior and subsequent symbols is zero at that point. This is so because the
impulse response A(f) is zero at all nT (where n is an integer), except at n = 0.
Therefore, if the transmitted waveform is correctly sampled at the receiver at
t = nT, the original symbol values can be recovered exactly in the absence of noise.
Note that a matched filer is necessary at the receiver to reduce the effect of noise.

Fig. 3.27 Successive data Rx Pulses
impulses (train of 1s) filtered
using a raised-cosine filter

3.5 Linear Estimation and Adaptive Filtering 165

Fig. 3.28 Channel estima-
tion using an 11-taps adaptive
LMS filter 1/Hc(f)—

-2 0 £/2

3.5.9.2 The Adaptive Channel Equalizer

Pulse shaping using a raised-cosine filter can alleviate the ISI problem, but it does
not adequately deal with noise. As discussed in Sect. 3.5.8, an effective way to
reduce noise (as well as IS]) is to use an LMS adaptive filter to equalize the effects
of the channel distortion and noise.

An efficient approach to design an equalizer is to utilize an adaptive FIR Filter.
Such filters are called adaptive transversal filters) in communications, and they
adapt their coefficients during the transmission of a known initial training signal to
counterbalance the effect of the channel, i.e., they adapt the filter so as to produce
an equalizing transfer function H.(f) = 1/H.(f).

The adaptive LMS filter algorithm can be used to design an efficient channel
equalizer, with the length M of the filter depending on the number of symbols the
ISI can span. Of course, larger M tends to give better equalization, but more delay,
so a compromise is necessary. Figure 3.28 shows channel estimation/equalisation
using an adaptive LMS filter with M = 11, SNR = 30 dB, and a data length of
500 symbols. The transmitted symbols are a pseudo-random (training) sequence of
the form %1, known to the receiver, and hence are used as the desired signal, d(n).

After the initial adjustment (training mode), the receiver switches to the deci-
sion-directed mode, where the receiver starts to process actual data rather than
simply training the equalizer.

3.6 Sigma-Delta Modulation & Noise Shaping

In this section the topic of single-bit signal processing is addressed, along with the
related topics of quantization and oversampling.

166 3 Selected Topics in Applied Signal Processing

3.6.1 Quantization

Sampling is the first step to preparing an analog signal for processing with digital
techniques. After a signal is sampled it is often referred to as a pulse amplitude
modulation (PAM) signal. Sampling alone is not enough to fully prepare an analog
signal for digital processing, since the amplitude can take an infinite number of
possible values; quantization therefore needs to be subsequently applied. This
process involves representing the analog amplitudes using a finite number of
levels.

After quantization, data is typically encoded into a multibit binary sequence
before it is transmitted. This process is known as pulse code modulation (PCM),
and the resulting signal is known as PCM signal. In PCM, each sample is repre-
sented by one of 2 code words, each of length M bits. If £, is the sampling rate,
the data rate is Mf; bps.

Normally multibit analog-to-digital converters (ADCs) perform all of the
above-mentioned operations: sampling, quantization and binary encoding. The
accuracy (resolution) of multibit ADC depends on the number of bits, M. This
accuracy can be increased by increasing the number of bits, M, but this obviously
requires more sophisticated hardware.

Quantization can be uniform or nonuniform, as discussed below.

3.6.1.1 Uniform Quantization

In uniform quantization, the quantization levels are uniformly distributed over the
full allowable range. For example, if the input voltage is limited to £V volts, then
the whole range 2V is divided into N = 2" steps that represent any analog voltage
between —V and +V. The approximation accuracy is dependent on the quantization
step A =2V /N. The quantization error e is given by:

A ces A
——<e<—.
2 2
If it is assumed that the analog signal takes all values between —V and +V with
equal probability, then the quantization error e is uniformly distributed over
(—A/2,A/2). Hence, the pdf of e is:

/ e(1/A)de =0 (3.53)

—A/2 —A/2

3.6 Sigma-Delta Modulation & Noise Shaping 167

Compressed y (Output) y (Output)
5
o
5
e
(Input) (Input) (Input)
(a) (c)

Fig. 3.29 Nonuniform quantization: compression followed by uniform quantization

Since the mean is zero, the quantization noise power is equal to the variance, and is
given by:

A2 AJ2 ,
2 2 _A
07, = / e“p(e)de = / 2(1/A)de T (3.54)
—A/2 —AJ2

which is independent of the number of bits M.

3.6.1.2 Nonuniform Quantization

For some applications (such as speech communications), uniform quantization is
not efficient. In voice communication channels, very low speech amplitudes are
common, while large amplitudes are rare. From Eq. 3.54 above, the quantization
noise power af] is constant for constant step-size A, hence, the quantization signal-
to-noise ratio SNR, is worse for low amplitudes than for large amplitudes. In
speech communications, therefore, smaller quantization steps should be used for
weaker amplitudes, and larger steps for larger amplitudes. This is the basis of
nonuniform quantization. It can be achieved by first distorting the original signal
using a logarithmic compression transfer function as shown in Fig. 3.29a, then
using a uniform quantizer with a linear transfer function as shown in Fig. 3.29b.
The final transfer function is shown in Fig. 3.29c. The compression curve has
steeper slope for weak amplitudes, hence, it magnifies them more than large ones.

The compression law currently used in North America for speech is given by:

In(1 + x| /¥max)

(1 + 0 sgn(x),

y / Ymax =
where p is a parameter whose standard value = 225. The sgn function is used to
handle negative inputs. In the receiver, inverse compression, also called expansion,
is performed to counteract the distortion of data by compression.

168 3 Selected Topics in Applied Signal Processing

3.6.2 Oversampling and Its Applications

In many applications it is advantageous to increase the sampling rate f; of a signal
above the Nyquist rate. In this subsection two applications for this type of
‘oversampling’ are explored.

3.6.2.1 Quantization SNR Improvement

It was shown in Sect. 3.6.1.1 that the (uniform) quantization noise power is given
by p, = 05 = A? /12. Quantization noise, like other kinds of noise, is broadband.
After sampling, all of the noise power will be spread over one frequency period,
with this period being equal to f;. If it is assumed that there is a flat spectrum for
the quantization noise, then the quantization noise PSD will be as follows:

(A*/12)
o
Now if the sampling frequency in increased to f;, = 2f;, then the spectrum will be

of period f;, = 2f;. Hence, the noise power (which is unchanged) will be spread
over 2f; rather than f;, and the new PSD of the noise will be given by:

Gq(f) =

_(A12) (A1) 1
Galf) =1 = =37 = 3G,(f).

If one passes this noise through a low-pass filter with pass band in the interval
(—f/2, f/2), the output noise power will be:

fi/2 1 fi/2 1
pe= [Gatar=;5 [Gnar =
—£/2 /2

Hence, the quantization noise power is halved by oversampling by two and then
low-pass filtering. An oversampling ratio (OSR) of R followed by LPF will
decrease the quantization noise power by R, and will hence improve the SNR,
by R.

3.6.2.2 Relaxing Conditions on the Anti-Aliasing Filter
Suppose one wishes to sample an analog signal at f; = 2BHz. It is then ideally

necessary to use an anti-aliasing filter to ensure that all frequencies above BHz
are removed, while all frequencies below BHz are removed. The most obvious

3.6 Sigma-Delta Modulation & Noise Shaping 169

1.2 T
1 X ()]

0.8
0.6
04}

0.2

0
-10 0 10 20 30 40 50

f, kHz

Fig. 3.30 Anti-aliasing cutoff and attenuation in CD. Shaded areas should be removed by an
analog filter, while the area in between can be removed later by a digital filter

way to achieve this filtering is use an ideal analog ‘brick wall’ filter, but such
filters are impossible to implement in practice. Fortuitously, increasing the
sampling rate relaxes the conditions on the LPF, enabling a lower order filter to
be used.

As an illustration of the advantages of oversampling, consider the audio
compact disc (CD). The audible spectrum extends up to 20 kHz. Hence, one needs
a sampling frequency of at least 40 kHz. CD’s use f; = 44.1 kHz and 16-bits
quantization. The stop band for this system extends from 20 to 22.05 kHz, and
within this band the filter must produce an 80 dB drop (so as to prevent aliasing).
This requires a 50th-order analog Butterworth filter (with a cutoff frequency of
20 kHz). Such a large order Butterworth filter is highly impractical. In addition to
space problems, large filter orders are very difficult to realize because they are
more vulnerable to errors due to the tolerances of the filter components.

The solution to the above problem is to increase the sampling rate to
4f, = 176.4 kHz. Now to prevent aliasing, there needs to be an 80 dB roll-off
between 88.2 and 20 kHz. This requires only a 5th-order Butterworth filter with a
cutoff frequency of 20 kHz, which is a significant reduction in analog components.
After the analog anti-aliasing filtering is applied a digital filtering is applied to
achieve a very sharp cutoff. Subsequent to that filtering, downsampling to
f; = 44.1 kHz occurs. This downsampling is necessary for reduction of storage
requirements without any loss of information. Figure 3.30 explains the above
process.

3.6.3 Delta Modulation

In multibit A/D conversion the signal samples are quantized and encoded. The
samples are usually coded into M bit code words, where M is typically 16. As an
alternative to conventional multi-bit conversion, one can quantize just the

170 3 Selected Topics in Applied Signal Processing

difference between the current sample and the previous sample; with such an
approach, a smaller number of bits is required for encoding. The disadvantage of
using this type of differential quantization is that a memory is needed to maintain
knowledge of the previous sample. A slightly different approach involves com-
paring the current sample to its predicted value (determined from previous sam-
ples) rather than the previous sample, then encoding the difference. The encoding
here is called differential PCM (DPCM). The disadvantage of DPCM is that it
needs a feedback loop and associated memory.

One way to achieve DPCM is the delta modulation (DM) system shown in
Fig. 3.31. This DM is a first-order analog feedback system that consists of a
quantizer clocked at the sampling rate f; and an integrator (I). The integrator does a
linear prediction x(n) of the current sample x(n), based on the previous sample
x(n — 1) and the most recent error. The quantized output is a comparator that
gives either 1 (logic-1) if x(n) > x(n) and —1 (logic-0) if x(rn) <x(n). Only a I-bit
word is needed for encoding, since the output is either logic-0 or logic-1. The
integrator has a scaling factor A4, which is referred to as the step-size.

The operation of the DM can be further explored with an example. Consider the
input analog signal shown as a dotted curve in Fig. 3.32. It is x(r) =
0.8 sin[27(0.1)¢ + 0.1] volt. The sampling frequency is f; = 10 Hz (i.e., T, = 0.1

Clock (f.)

N
+ e(t) mr
x(1) + _1,'? y(ty->[al pLrrfox(1)

- Quantizer
X (t)| Integrator [DM Decoder]
Aly(t).dt

[estimate of x(t)]

[DM Encoder]

Fig. 3.31 Delta modulator and demodulator

->T «
1T 1T AP ™~ AN~ M™~ANTM™@A™@T“<""T™™A@ @ M@©<@©“M™@
L NNVNTYVNVIYVY VI NN
u\/\//\/\//
kT
R i et e i i B
k 012345 30

Fig. 3.32 Delta modulation waveforms

3.6 Sigma-Delta Modulation & Noise Shaping 171

sec), and the quantization step is A = 0.21 volt. It is assumed that at t = 0, the
integrator output is zero (i.e., x(0) = 0), and the quantizer output is 1. At 7 = 0, the
integrator starts integrating, and since its input is 1, the output grows linearly with
time. Its output is Afé 1.dt = t. At the next sample instant ¢ = T, the error is
e(t) = x(r) — x(¢) <0 since the estimate X(f) = A = 0.21 is more than the signal
x(t) = sin(0.2x - Ty 4+ 0.1) = 0.162. Accordingly, the quantizer output flips to —1
and remains at that value until the next sampling instant ¢ = 27;. In the mean-
while, because the integrator input is negative, its output decreases linearly with
time until ¢ = 27,. At t = 2T, x(¢) > X(¢), hence e(r) > 0, and the quantizer output
flips to +1. This causes the integrator to linearly increase again. At t = 3T}, the
error remains positive and so there is no change in the quantizer output, etc.

The 1-bit output of the DM effectively turns out to be a pulse width modulated
waveform. That is, the greater the amplitude of the input signal, the more often the
binary output is “on”. To demodulate the output signal one needs to take the signal
estimate X(n), and then use a low-pass filter to remove the heavy quantization
noise.

The accuracy of A/D conversion increases when either (i) the step-size is
decreased, or (ii) when successive samples are highly correlated as is normally
achieved if the samples are closely-spaced in time. Now the samples will be
closely spaced if a high sampling rate is used, and for this reason DMs and other
low-bit quantization systems usually use high sampling rates. These rates are
typically much higher than the Nyquist rate corresponding to the input signal,
hence the name oversampling A/D converters.

Because timing can be controlled much more easily and accurately than voltage
levels, increasing the sampling rate tends to be less expensive than increasing the
word length. For this reason 1-bit ADCs are less expensive than multibit ADCs,
and are widely used for audio applications.

If the step-size is decreased to the point where the slope of the DM integrator
(i.e., A/Ty) is less than the slope of the input signal, a slope-overload distortion
will occur. In this case, the DM is unable to correctly encode the signal, as
illustrated in Fig. 3.33 for the scenario where x(f) = 2sin[27(0.1)f 4+ 0.1], f; =
10Hz, and step-size A = 0.1. On the other hand, if a large A is used such that the
DM slope is much larger than the signal slope in some interval, another kind of

M|
L

Fig. 3.33 Slope-overload distortion in DM

-1

172 3 Selected Topics in Applied Signal Processing

distortion known as granular noise) occurs. The solution for these two problems is
to use a DM with adaptive step-size.

3.6.3.1 Digital DM System

The discrete version of the DM system operates in a similar fashion to the analog
one, and is depicted in Fig. 3.34.

3.6.3.2 Sigma-Delta Modulation

An sigma-delta modulator (SDM) is a 1-bit processing system which is based on
the DM, but which has greater resilience to slope overload and granular noise.
Recall that slope overload occurs when successive samples are not sufficiently
correlated. Now low frequency signals tend to have low correlation between
samples, but high frequency ones do not. To reduce problems with the processing
of high frequency signals, one can simply place an integrator in front of the DM.
The integrator tends to attenuate high frequency components, so that they are more
amenable to coding with a single bit. A block diagram for the Sigma DM (SDM) is
shown in Fig. 3.35.

Clock (f)

I” ” Integrator
y(m—{E> x(1)

[DM Decoder]

x(t) ="

T,

uantizer

[DM Encoder]

" Integrator

Fig. 3.34 First-order digital delta modulator and demodulator

Clock (f.)
+ e(t) 1\|'
x(t) —s(+ | —t y(1))
- Quantizer

[SDM Decoder]

[SDM Encoder]

Fig. 3.35 Sigma-delta modulation system

3.6 Sigma-Delta Modulation & Noise Shaping 173

It is not hard to show that the representation in Fig. 3.35 has an equivalent
input/output relationship to that in Fig. 3.35; the former is more hardware efficient.
and so it more frequently used in practice for implementing SDMs. An analysis of
the SDM is performed below. It will be seen that the SDM has the remarkable
property of being able to shape the quantization noise away from the spectral band
occupied by the signal. This means that the SNR in the band of interest can be
made very high.

The SDM can be represented in the s-domain as shown in Fig. 3.36. The
quantization noise can be represented as additive noise with transfer function N(s).

Since fioo r(t)dt R LR(s) [Tables—Laplace Transform Pairs and Theorems], the
integrator is represented as 1/s.

From Fig. 3.36 one can write:
E(s)

v(s) = 29 4 iy XD Y0

. . +N(s)

Hence,

1)

Y(S):l+sx(s)+l+s

N(s) = Hi(s)X(s) + Ha(s)N(s),

where the signal transfer function H;(s) = ILH is a LP function, while the noise

transfer function H(s) = 755 is a HP function (see Fig. 3.37). Since the input
signal is restricted to having low-frequency content, the band of interest is the low
frequency band. From this it is clear that the SDM passes the signal energy but
attenuates the quantization noise in the band of interest. That is, the noise transfer
function is a HP function, and the quantization noise accumulates outside the band
of interest, as shown in Fig. 3.38. This highly advantageous property of the SDM

is known as noise shaping.

Fig. 3.36 Sigma-delta N(s)
modulation system in the
s-domain + E(s)
X(s) Ll —> Y(s)
S
- Quantizer

[SDM Encoder]

Fig. 3.37 Signal and noise |H1(f)| |H2()‘)|
transfer functions in SDM

174 3 Selected Topics in Applied Signal Processing

Fig. 3.38 Signal and noise 2"_order SDM
magnitude spectra in SDM
for a sinusoidal input

3.7 Non-Stationary Signal Analysis

The Fourier transform (FT) is an important signal processing tool. In computa-
tion, the FT can convert the somewhat complicated convolution operation into
the relatively simple multiplication operation. For signals, the FT acts like a
prism that reveals the frequency spectrum of the signal and the weight of its
frequency components. Note that the frequency spectrum given by the FT is the
average spectrum over all time, from —oo to +oo. This is quite useful for signals
whose frequency content is stationary (not changing with time). i.e., it is useful
for single-tone sinusoids, a sum of single-tones, a square wave, a rectangular
pulse, etc. However, for frequency modulated signals, speech, and biomedical
signals, the FT often fails to reveal the time-varying characteristics of the signal.
The averaging process inherent in the FT smears the time varying spectral fea-
tures. Although the FT is still important in studying these signals, it may not be
sufficient in itself.

3.7.1 The Need for Time-Frequency Analysis

The finite-length linear frequency-modulated signals:

x(t) = sin2n(fot + er*) |1 (t — T/2)

and

¥(t) = sin2n{fy(T — 1) + e(T —) })Ir(t = T/2),

3.7 Non-Stationary Signal Analysis 175

where f, = 1 Hz, T = 10 s, and the modulation index is e = 0.2. The instanta-
neous frequency (IF) of x is f. = (1/2n)d¢. /dt = f, + 2et (which is a linear
function of time), while the instantaneous frequency of y is f, = I(1/2m)d¢,/
dil = f, + 2e(T — t). The magnitude of the FT’s of these two signals are identical,
as shown in Fig. 3.39.

In this case the magnitude spectrum is not sufficient to reveal the underlying
characteristics of the signal. No information is in the FT, since one can reconstruct
the signal using the inverse FT. The time information is hidden in the phase
response, but it is not easy to deduce much information about the time-varying
nature of the signal from the complicated phase-magnitude relations. Using a time-
frequency representation (TFR), however, it is possible to obtain the contour plots
shown in Figs. 3.40 and 3.41, which reveal the true IF laws of the two Linear FM
signals. (The particular time-frequency distribution is the Choi—Williams distri-
bution, with parameter ¢ = 11 [8].)

In addition to the above dilemma of the FT, there is a more important problem
that the FT cannot deal with. If the signal is composed of more than one FM
component, it is even more difficult to observe the underlying structure from the
FT. Many practical sounds do indeed consist of multiple time-varying frequency
components (eg. EEG, ECG, and animal sound signals).

In particular, consider first the two sinusoidal pulses with the same frequency
occurring at different times as shown in Fig. 3.42. It is evident that the magnitude
Fourier spectrum cannot reveal the time-frequency structure of the signal, while

~ 05 ~ 05
-~ ~
-~ 0 -~ 0
x >
-0.5 -0.5
-1 -1
0 2 4 6 8 10 0 2 4 6 8 10

[X(F)]
[Y(H)I

N
N

< <
- 0 — 0
< =y
-2 -2
-10 -5 0 5 10 -10 -5 0 5 10

Fig. 3.39 Two different Linear FM signals with identical Fourier magnitude spectra

176 3 Selected Topics in Applied Signal Processing

Time, sec

Time, sec
o n B o @ o

Frequency, Hz

Fig. 3.40 TFR of the FM signal x(¢) = sin[2n(f,t + et?)|II(t — T/2) withf, = 1 Hz, T = 10 s,
and e = 0.2. Top contour plot of the TFD. Bottom the TFR, with red color representing highest
amplitude

the time-frequency distribution shows the number of components as well as their
frequencies and durations.

Second, consider the sum of the two Linear FM signals r(f) = x(#) + y(f), where
x(1) =sin[2n(fit + e,)| I (t — T/2), y(t) = sin2n(fat + ex)| I (t — T/2), fi=
2Hz,f, =3Hz,e; =0.1,e; = 0.2, and T = 10 s. The FT cannot reveal the mul-
ticomponent nature of this signal, while the 7FR can, as shown in Fig. 3.43. Here
the Choi—Williams distribution is used, with ¢ = 41.

Third, consider a bird sound represented in Fig. 3.44. The TFR can reveal
the IF laws of the signal components, while one cannot get this information
from the FT.

3.7.2 Some Important TFRs

A TFR is a two-dimensional transform of the signal into the time-frequency
(=) plane. Signal components are typically observed in the 7—f plane by
ridges around the IF laws of the components.

Below some of the commonly used TFRs are introduced.

3.7 Non-Stationary Signal Analysis 177

Time, sec

0 Il Il Il Il Il
0 1 2 3 4 5 6

Frequency, Hz

Time, sec

Frequency, Hz

Fig. 3.41 Time-frequency distribution of the linear FM signal y(¢) = sin2n{f,(T — 1)+
e(T —)Y I+(t — T/2) withf, = 1 Hz, T = 10 s, ¢ = 0.2. Top contour plot of the TFR. Bottom
the TFR, with red color representing highest amplitude

3.7.2.1 The Short-Time Fourier Transform

The short-time FT, or windowed FT, is the simplest TFR. Instead of transforming the
whole signal s(¢) all at once using the FT, it is transformed on a block-by-block basis
using a moving time-window, centered at the time instant ¢, The STFT is defined as:

p(t.f) = / s(ADh(L —1)e P d) = }i’l}{s(i)h(i —1)}

where h(7) is a suitable time-window such as a hamming window. Usually one
refers to the above TFR as the STFT(, f).

The spectrogram is obtained from the STFT by simply taking the squared
magnitude of the STFT.

3.7.2.2 Cohen’s Class of TFRs

Many of the TFRs used in common practice can be shown to be members of a
generalized class known as Cohen’s class, or the quadratic class. The general
formula for this class is:

178 3 Selected Topics in Applied Signal Processing

10 E 15
o
o
5 2
S 1
=
0 /\/ /\/ -
2 5
L
0.
_5 g
('8
-10 0 A0
0 1 2 3 4 0 10 20 30
Time, sec Frequency, Hz
4
3 3 - 3
(7] (7]
[y [y
£ ° £
= - =~
1
0
0 1 2 3 4 5
Frequency, Hz Frequency, Hz

Fig. 3.42 Two sinusoidal pulses (Top-Left) and their Fourier (Top-Right) and time-frequency
(Bottom-Right) spectra. Bottom-Left represents the contour plot of the TFR in Bottom-Right

R(f)

Time, sec
[6)]
T
|

Time, sec

Frequency, Hz

Fig. 3.43 FT (Top) and TFR (Bottom) of a sum of two LFM signals. Middle is the contour plot
of the TFR in the Bottom

3.7 Non-Stationary Signal Analysis 179

A bird sound
1 T T
3
>
s O
T
2
o 1t i
£
<
_2 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Time, sec
0.015 R
< oot
>
~0.005
0
0 0.1 0.2 0.3 0.4 0.5
Normalized frequency
3
:u: Yo7 ——
N
<
S
=]
°
(3]
[]
£
=

0 0.1 0.2 0.3 0.4 05
normalized frequency

Fig. 3.44 A bird sound signal (Top) with its FT (Middle) and TFD (Bottom)

p(t.f) = fgc{p(t, 7)}

where: p(t,7) = G(t, 1) (*) K. (t,7),K,(t,7) = z(t + t/2)z*(t — 1/2) is the instanta-
t

neous autocorrelation, z(¢) is the analytic signal associated with the original signal
s(t), and G(t, 7) is known as the kernel of the TFR. The kernel completely char-
acterizes the particular TFR and is in general a symmetric 2D low-pass shaped
function in the time-lag (¢,) domain. Further details on Cohen’s Class and TFRs
in general can be found in the book [8].

3.7.3 The Discrete Cosine Transform

In multimedia communications it is often necessary to transmit a large amount of
data in a short period of time. This is one of the challenges for 4G mobile

180 3 Selected Topics in Applied Signal Processing

communications, and one of the ways to meet this challenge is to compress data
efficiently. This section briefly discusses data compression using the discrete
cosine transform (DCT).

Many popular transforms in signal processing decompose a given time-domain
signal x(7) into a weighted sum of elementary functions or signals. This group of
elementary functions is known as the basis of the transform. Often transforms are
chosen to have basis functions which are orthogonal (or uncorrelated), because of
the many advantages that such basis functions bring. These advantages include:

i. reduced computation compared to that required with non-orthogonal basis
functions,
ii. good immunity to noise,
iii. invertibility, and
iv. compact representations for many naturally occurring signals.

The general class of invertible orthogonal transforms is defined using an
orthogonal basis {¢p(k)|k =0,1,...,N — 1} as follows:

where:

1A s 1, m=k
W dmann ={g i)
For the DFT ¢, (n) = exp(j2mkn/N). Note that in the case of the DFT, X(k) is a
complex function even if x(n) is real. In some applications, it is preferable to have
a real transform for a real signal. One such real transform is the Discrete Cosine
Transform (DCT). The definition for the DCT and its inverse is:

N—1
2
X(k) \/> x(n [wl\;—)}kzo,l,...,N—l

n=!

TRTYES S AR RS PR
2N

where w(k) = { 1/1\,/_ k= 1]f..:.,ON -1 }

This transform is given in MATLAB® as dct(x) and idct(X). It is closely related
to the DFT/IDFT and can be calculated using a similarly efficient algorithm. It is
worth noting that Parseval’s Theorem is preserved by the DCT as reflected in the
following equation:

3.7 Non-Stationary Signal Analysis 181

N—1 N—1
200 =YX
n=0 k=0

3.7.3.1 An Application of the DCT: Data Compression

The DCT is used in speech and image compression due to its tendency to compress
much of the signal energy in its low-indexed (informally, low-frequency) coeffi-
cients. This enables higher indexed coefficients to be discarded or transmitted with
a reduced number of bits. In many applications, more than 50% compression of the
data can be achieved without virtually any loss of information.

To transmit the FFT information, one needs N/2 real numbers from the real part
and N/2 from the imaginary part (using the symmetry of the FFT), or a total of N
numbers. However, for the DCT, one needs only N/2 real numbers. In audio and
video compression, since the human eye and ear are less sensitive to high fre-
quencies, it is often possible to transmit just N/5 of the coefficients or even less, as
shown in Fig. 3.45

Original Image Reconstructed, % R=5

Tl 1 x7.

S EEE BT
! iy f famtindy

50 50

100 100}

150 150

; 200f
4 250

50 100 150 200 250

200

250

Reconstructed, % R = 16

e
ettty aey

50 50
100 F PO 100 [
150 & b TRRE R
200} . E 200}

250 il 250 f

50 100 150 200 250 50 100 150 200 250
Fig. 3.45 Image compression using the DCT, with R indicating the % ratio of the number of
transmitted coefficients to the total number of DCT coefficients, assuming noise-free channel.
The image is obtained from MATLAB using “load woman”

182 3 Selected Topics in Applied Signal Processing

References

3

. Peebles, P.: Probability, Random Variables, and Random Signal Principles. McGraw-Hill,

New York (2000)

. Proakis, J.G., Salehi, M.: Contemporary Communication Systems. Brooks/Cole, Pacific Grove,

CA (2000)

. Ipatov, V.: Spread Spectrum and CDMA: Principles and Applications. Wiley, Chichester

(2005)

. Osborne, H.C.: Stability analysis of an Nth power digital phase-locked loop—parts I & II.

IEEE Trans. Commun. COM-28(8), 1343-1364 (1980)

. Gill, G.S., Gupta, S.C.: First-order discrete phase-locked loop with applications to

demodulation of angle-modulated carrier. IEEE Trans. Commun. Technol. Com-20(7),
454-462 (1972)

. Jeffrey, A.: Advanced Engineering Mathematics. Harcourt Academic Press, San Diego, (2002)
. Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs (2001)
. Cohen, L.: Time-Frequency Analysis: Theory and Applications. Prentice-Hall, Englewood

Cliffs, NJ (1995)

Part III
Advanced Topics

Chapter 4
The Impact of Finite Wordlength
Implementation

4.1 Introduction

In the practical implementation of DSP systems, whether in hardware or software,
one needs to take into account the effects of finite wordlength. If the wordlength is
very long (say 32 bits) then these effects may be minimal, but for a shorter
wordlength the limitations can be significant. In assessing the importance of finite
wordlength effects three different factors need to be considered, namely:

i. the intended application and the cost of failure of the DSP system,
ii. the type of host architecture, and
iii. the arithmetic format used in the implementation, e.g., fixed- point or
floating- point.

There are various sources of errors arising from finite wordlength effects. The
first chief source of errors is the quantization error which arises when A/D con-
version occurs. As seen previously, the power of the quantization noise is deter-
mined by the number of bits of the A/D converter. The second chief source of error is
“roundoff or truncation” errors that arise when arithmetic operations are performed
inside the DSP processor(s). For instance, an error typically occurs when one takes
the product of a signal sample rounded to b bits and a filter coefficient, which is also
rounded to b bits. The overall product is 2b bits length, but the product is typically
rounded to b bits to accommodate the internal register/data bus size. This overall
error is dependent upon the type of number format (i.e., fixed-point or floating-point
representation). Note that there are also various different forms of fixed-point
representation, with each yielding its own particular quantization error contribution.

4.2 Overview of Number Formats

Typically, DSP processors, general-purpose computers, and special-purpose digital
VLSI systems use binary number representations. Generally, the binary number

Z. M. Hussain et al., Digital Signal Processing, 185
DOI: 10.1007/978-3-642-15591-8_4, © Springer-Verlag Berlin Heidelberg 2011

186 4 The Impact of Finite Wordlength Implementation

format consist of two parts: the integer part and the fractional part, with a binary
point separating them:

10111 o 101 (4.1)
—— ~—
integer fraction

where ¢ represents the binary point. Generally, the decimal equivalent of a binary
number ag_j ag_;...apod_ja_,...a_, consisting of B integer bits and b fractional
bits is obtained as follows

B—1
> a2, (4.2)

n=—b

where a; € {0,1}. There are two main types of binary representations: fixed-point
and floating-point, with these being discussed below.

4.2.1 Fixed-Point Format

The binary point in this representation is fixed at a specific location as suggested
by its name. This representation is often used in implementing DSP algorithms
because of its simplicity. In implementing DSP algorithms, fixed-point numbers
are frequently scaled to be represented as fractions, as shown in Fig. 4.1. The
scaling followed by fractional representation helps to ensure that overflow and loss
of crucial information does not occur when arithmetic operations are performed.
The leftmost bit s represents the ‘sign’ bit, where the number is positive if s = 0
and it is negative if s = 1. The b bits to the right of the binary point represent the
other signal information.

The exact signal value represented by the non-sin bit in fixed point represen-
tation depends on the type of format used. There are several fixed-point conven-
tions commonly used, namely, the 2’s complement, the sign-magnitude and the
offset binary conventions [1]. The offset binary convention, which is mainly used
in bipolar D/A converters, can be converted to the 2’s complement convention by
simply complementing the sign bit.

Binary point

Fig. 4.1 Fractional fixed-point format

4.2 Overview of Number Formats 187

The dynamic range of a fixed- point number conforming to the format in
Fig. 4.1 ranges between —1 and +1. The least-significant bit (LSB), which also
corresponds to the quantization step A is equal to 277,

4.2.2 Floating-Point Format

One can expand the effective dynamic range of numbers by using floating-point
format. That is, for the same number of bits, floating-point representation provides
wider dynamic range than is possible with fixed-point format. This improved range
is due to the fact that floating-point representation provides a variable resolution.
The general format for floating-point number representation is

B =M2E, (4.3)

where M is a fractional part (M € [—1,1)) that represents the so-called mantissa,
and E is the exponent. Both the mantissa and the exponent are signed numbers.
Therefore, the dynamic range is determined in large part by the exponent E.

IEEE standard 754 floating-point formats for 32-bits (single-precision) and
64-bits (double-precision) are widely adopted in most modern floating-point DSP
processors. Figure 4.2 shows the IEEE single precision format, where, in addition
to the sign bit, there is a 23 bit mantissa and a B = 8 bit exponent. When the sign
bit (bit 32) S = 0, the number is positive while it is negative when S = 1. The
mantissa M is a 2’s complement positive binary fraction (bits 0-22) such that it
occupies the range 0 < M < 1. The exponent field contains the value, E — 127
and is 8 bits long, i.e., the exponent field supports exponent values between —127
and 126. Then, using the IEEE single-precision floating-point scheme, a number
can be represented as follows

p=(=1°% (1-m) 287127, (4.4)

where 0 < E < 255. With this format, the range of a number is from 1.18 x 107
to 3.4 x 10",

4.3 The Quantization Process

Quantization can be defined as the process of mapping infinite-precision (or high-
precision) numbers into lower-precision ones, with the purpose of creating more

31 30 23 22 0

S Exponent Mantissa

Fig. 4.2 IEEE single-precision floating-point format

188 4 The Impact of Finite Wordlength Implementation

compact representations. This compactness is achieved at the expense of an
induced error (quantization noise), which is expressed as

eq(n) = Qx(n)] — x(n), (4.5)

where Q[x(n)] represents the quantized value of x(n).

The quantization error depends on the representation format (in particular,
fixed-point or floating-point) and on the method of quantization being used, spe-
cifically, whether truncation or rounding is used [1].

4.3.1 Quantization of Fixed-Point Numbers

A common practice in DSP is to represent data in a digital machine either as a
fixed-point fraction or as a floating-point binary number with the mantissa as
fraction. In each of these formats, three different forms can be used to represent a
negative number.

As indicated in Fig. 4.1, the fixed-point format assumes that a number is rep-
resented with b + 1 bits, with the most significant bit (MSB) conveying the sign of
the number and the remainder of the bits constituting a binary fraction. That is, the
binary point is just to the right to the sign bit. With this format the LSB is
equivalent to 277 and represents the quantization step-size.

Several different variants of fixed-point representation are commonly
used. These variants include 1’s complement, 2’s complement, sign-magnitude,
and offset binary (see, for example, Mitra [1]). When one converts from one
format to another, it is frequently necessary to quantize. This quantization is
usually performed with a simple rounding or truncation, as discussed more fully
below.

4.3.1.1 The Rounding Method

In rounding, the number is quantized to the nearest quantization level. Assum-
ing b bits are used to represent the number’s magnitude, then the quantization step
is 277, After rounding, therefore, the maximum rounding error is 27%/2. Conse-
quently, the range of the rounding error e, is

1 . 1 :
—5(2—” —2 ") <e, < 2(2—” —274). (4.6)

Figure 4.3a shows the transfer characteristics of the rounding quantization
method, where A = 2% is the quantization step. Notice that the rounding error is
independent of the format being used to represent the negative fractions. This is so
because the rounding operation is decided by the magnitude of the number.

4.3 The Quantization Process 189

0(x)
A
4 X
A
7 2
(a)
0(x) 0(x)
X X
(b)
Legend
Quantized

— — - Infinite-precision

Fig. 4.3 Transfer characteristics of a quantizer for (a) rounding; b 1’s complement and sign-
magnitude truncation; ¢ 2’s complement truncation.True signal is dashed line, quantized signal is
full line

4.3.1.2 Truncation Method

This method is achieved by truncating a fixed-point number of wordlength A + 1
bits to b + 1 bits. The quantization error (e, = Q[x] — x) would depend on the
polarity of the number x. For positive x, the error e, will be always less than or
equal to O (i.e., e, < 0). Therefore, the range of the error is given as

—(27" —27%) <e, <0. (4.7)

On the other hand, for negative number x, the truncation error depends on
the negative number convention used to represent x. Three negative number
conventions are commonly adopted: 1’s complement, 2’s complement, or sign-
magnitude notation.

190 4 The Impact of Finite Wordlength Implementation

It can be shown for negative fraction x in 1’s complement notation that the
truncation error is always positive and spread over the range

0<e,<(27"—27%). (4.8)

The same truncation error is found in the sign-magnitude notation as the
magnitude of the truncated number Q[x] is smaller than that of the original neg-
ative number x. The truncation error of the 1’s complement and sign-magnitude
notations is shown in Fig. 4.3b.

However, negative numbers represented in 2’s complement notation has dif-
ferent truncation error as it is always negative. It can be shown that the error range
in this case is

(27" —27) <eu <0, (4.9)

as shown in Fig. 4.3c.

4.3.2 Quantization of Floating-Point Numbers

In fixed-point variables, the increment between adjacent numbers is always the
same. In floating-point format, on the other hand, the increment between adjacent
numbers varies considerably over the allowable number range. Therefore, it is
much more informative to consider what is known as the relative quantization
error e Considering the floating-point format in Fig. 4.2, it is apparent that the
quantization error is given by Q(x) = 2EQ(M). The relative quantization error, ey,
is defined as

o =——" . (4.10)

It can be shown that the relative rounding error ey of a floating-point number
(regardless of whether one uses 1’s complement, 2’s complement, or sign-mag-
nitude format) has the range

—A<ep <A, (4.11)

for all positive and negative numbers. On the other hand, the relative truncation
error using the 1’s complement and sign-magnitude conventions is given by

—2A<e; <0, (4.12)

for all positive and negative numbers. Finally, the relative truncation error for 2’s
complement convention is

_ <
efr{ 2A<ep, <0, for x>0 (4.13)

0§€f,<2A, for x<O

For more details, see Porat [3].

4.3 The Quantization Process 191

4.3.3 Impact of Quantization on DSP System Implementation

Quantization is known to have several undesirable effects on the practical
implementation of LTI systems. These effects are conveniently explained by
considering an example. Consider the first-order IIR digital filter as shown in
Fig. 4.4a, whose constant coefficient difference equation is

y(n) = ay(n = 1) + x(n), (4.14)

where the input signal x(n) is a digitized version of a bandlimited analog signal
x,(f). The output signal y(n) is ultimately fed into an ideal reconstruction filter to
yield the bandlimited analog signal y,(#), while « is a gain parameter. Ideally, all
discrete-time parameters and signal variables would have infinite-precision. In
such a case, the corresponding transfer function would be given by
1
T

HE) =

(4.15)
In real-world DSP implementations, the system shown in Fig. 4.4a is commonly
implemented using a finite-wordlength fixed-point digital machine. This discreti-
zation process, in fact, transitions the system from being linear to nonlinear.
Figure 4.4b shows a realistic model of that non-linear system, in which various

S/H & x(”)/'\

X1 = Jpe (+) pAC > V(1)
v(n)
<]
(a)
2(n) ~) .
0, DAC > V(1)

x(n) > ©; +
(from ADC) \7(”)\{
o

Fig. 4.4 DSP system implementation. a Ideal, b practical

192 4 The Impact of Finite Wordlength Implementation

quantizers have been introduced to represent the appropriate round-off/truncatoin
effects. The origins of these different types of quantization sources are:

. A/D conversion Q.

. D/A conversion Q.

. Coefficient quantization Qc.

. Arithmetic operation quantization Qy.

AW =

Because of the nonlinearity introduced into DSP systems via quantization,
spontaneous oscillations can sometimes occur, and these oscillations are often
referred to as limit cycles. Conveniently, these limit cycles only tend to occur in
recursive (IIR) digital filters with poles that are operating close to the margin of
stability.

Unfortunately, precise analysis of the model given in Fig. 4.4b is almost
impossible, since the quantization is a nonlinear process and depends on the input.
The latter, of course, is unknown a priori. In addition, the possibility of overflow
exacerbates the difficulty of analysis. One can perform an approximate analysis
through the adoption of some assumptions based on using a stochastic model that
eventually linearizes the problem. This, however, is only an approximation and
needs to be used with care.

MATLAB: The Fixed-point numeric object fi can be used to convert the
double-precision representation normally used in MATLAB to fixed-point format.
The fi object has the following three general types of properties:

e Data Properties.
e Mathematical (fimath) Properties.
e Numeric type (numerictype) Properties

Each one of these classes of properties automatically generates several relevant
options that can be accessed to set the required fixed-point operations.

Example 1 Design an FIR digital lowpass filter using fixed-point representation
with 12 bit wordlength and a 32-bit accumulator. The required filter specifications
are as follows:

Sampling frequency fs = 4000 Hz

The passband-edge frequency, fpass = 300 Hz
The stopband-edge frequency, fstop = 1000 Hz
maximum peak-to-peak ripple, Rpass = 0.015
minimum stopband attenuation, Rstop = 0.2

Solution : The first step is to design the filter in the default MATLAB double-
precision representation. The Parks-McClellan optimal equiripple FIR order esti-
mator firpmord can be used to find the approximate order M (see MATLAB
signal processing toolbox documentation):

[M,fo,A,W] = firpmord([fpass fstopl,[1 0], [Rpass Rstop],fs);

h = firpm(order,fo,A,W);

4.3 The Quantization Process 193

Note that if the filter does not satisfy the required specifications, then the order
should be increased.

Next, convert the filter coefficient to fixed-point representation with the
required fixed-point parameters:

reset (fipref);
hfi = fi(h,1,12);
F = fimath(’ProductMode’, ’KeepLSB’,
’ProductWordLength’, 32,...
’SumMode’, ’KeepLSB’,
’SumWordLength’, 32,...
’OverFlowMode’, ’wrap’,...

’Roundmode’, ’nearest’);

hfi.fimath = F;

Display the fixed-point coefficients:

hfi

4.4 Coefficient Quantization Error in Digital Filters

When one seeks to implement a desired digital filter transfer function H(z) (FIR or
IIR) one generally implements a modified transfer function H(z), due to the effects
of quantization of the filter parameters. For this reason it is important to try and
design digital filter structures that exhibit minimal sensitivity to coefficient
quantization errors. The following subsections discuss this issue in more detail.

4.4.1 Coefficient Quantization Error in IIR Filters

Quantization of the coefficients of a rational function results in the movement of
the poles and zeros of that transfer function from their original, infinite-precision
locations. Consequently, the actual system frequency response will be different
from the desired one. An extreme scenario is that some of the poles overshoot the
unit circle boundary in the z-transform, resulting in an unstable IIR structure.

A very important question to answer is: How can the harmful effects due to
quantization of IIR filter coefficients be minimized?

194 4 The Impact of Finite Wordlength Implementation

To begin to answer this question, it is useful to recall the expression for the
Direct Form transfer function of an IIR filter, assuming infinite-precision
coefficients:

H(z) = Xy bt (4.16)

Now, the modified transfer function which arises as a result of quantized
coefficients is given by:

I

. M1} 7

H(z):—Z’:‘;,_f § (4.17)
1 =270 diz

where a; = a; + Aa; and Bi = b; + Ab; are the quantized coefficients. Note, the
locations of the zeros and poles are affected by the errors Ab; and Ag;, respec-
tively. Detailed analysis in Ref. [2] shows that direct-form implementations such
as those given in (4.17) exacerbate problems due to coefficient quantization. These
problems are particularly significant when the poles/zeros are tightly clustered.
Moreover, as the order of the IIR transfer function increases, the sensitivity to
coefficient quantization errors increases accordingly.

It has been found that one can significantly improve the problems due to
coefficient quantization by realizing the overall filter as a conglomerate of first-
and second-order filter sections. Note that one needs both first and second order
sections in general so as to avoid complex filter coefficients.

The realization of the filter can be achieved by either (i) doing a partial fraction
expansion of the overall transfer function, and then operating all of the first and
second order sections in parallel, or (ii) factorizing the overall transfer function
into first and second order sections and then operating all of these sections in
sequential cascade.

When an overall filter is implemented as a conglomerate of first and second
order sections, each pole or pair of poles (zeros) is realized independently of the
remaining poles (zeros), and thus the movement occuring in a certain pole or pair
of poles does not affect the others. Hence, cascade-form implementation is much
less sensitive to coefficient quantization errors than direct-form implementation.

Now, in considering the coefficient quantization sensitivity, one may also
wonder whether the type of structure used to implement the second-order section
itself would make any difference. The answer is ‘yes’. To understand this more
fully, consider the following example.

Example 2 A second—order IIR filter has the transfer function:

1

H(z) = .
(2) l—aiz7' +axz?

(4.18)

4.4 Coefficient Quantization Error in Digital Filters 195

One can easily show that this second-order system is stable as long as la;| < 2
and la,l < 1. To graphically appraise the sensitivity of the filter implementation,
one can do the following:

(a) Assume Direct Form—I realization: Plot all the possible locations of the
complex stable poles when the coefficients @, and a, are represented in sign-
magnitude format with 5-bit word-length.

(b) Realize the second-order IIR filter using coupled form and repeat the z-plane
plot as in (a).

This second-order system is stable as long as la;l < 2 and la,|l < 1. There are a
number of possibilities for implementing this filter. The first way to implement it is
with a Direct Form—I realization, with this realization being illustrated in Fig. 4.5.
An alternative way to implement the filter is with the so-called coupled form
realization. This form uses the real and imaginary parts of the filters pole locations
explicitly in the transfer function expression. The real part of the pole pair is
rsin(0), the imaginary part of the pole pair is rsin(f) and the coupled-form
expression is:

rsin(6)

H(z) = . 4.1
(@) 1 —2rcos(0)z7! + r?z2 (4.19)

The coupled-form implementation structure is shown in Fig. 4.6. To implement
this structure, the coefficients rcos(f) and rsin(8) must be quantized. A plot of all
possible stable pole positions is shown in Fig. 4.7, assuming that 5-bit quantization
is used. As can be seen in the figure, the pole positions are distributed uniformly
within the unit circle. On the other hand, Fig. 4.8 shows the set of all possible pole
locations when one uses 5-bit quantization in a direct form realization. The pole
locations are seen to be non-uniformly distributed, i.e., there is a bias in the
distribution of pole locations when one uses direct form filter implementations. For
this reason, coupled- form representations give rise to more reliable implemen-
tations than direct form realizations. However, there is a price to be paid for this
advantage, namely, more hardware complexity, as the multipliers are doubled in
number when compared to the direct-form implementation.

Fig. 4.5 Direct form—i
realization of an IIR filter x(n) +) T y(n)
z -1
<+\+ p’
=
= ¥
Z =1

1
a>

196

Fig. 4.6 Coupled-form real-
ization of a second-order IIR
filter

Fig. 4.7 Possible locations
of all stable pole pairs,
assuming 5-bit quantization:
coupled-form realization

Fig. 4.8 Possible locations
of all stable pole pairs,
assuming 5-bit quantization:
direct form realization

4 The Impact of Finite Wordlength Implementation

> y(n)

x(n) —>®

/
®

Imaginary z

Imaginary z

4.4 Coefficient Quantization Error in Digital Filters 197

4.4.2 Coefficient Quantization Error in FIR filter

As an FIR filter contains only zeros, one only needs to be concerned about the
zeros, rather than both the poles and zeros. Consider an Mth order linear-phase FIR
filter with infinite-precision impulse response coefficients {h(i) YN, Suppose the
quantized version of this impulse response is the set {A(i)}. Then the corre-
sponding quantized transfer function can be expressed as

() = 3 (hm) + qm))e™ = H(Z) + 0(2), (4.20)

m=0

—_

where g(m) represents the quantization error. A reasonable assumption is to let
q(m) be an uncorrelated zero mean random Gaussian process with variance 02.
This means that the quantized coefficients can be modeled as a linear combination
of the original coefficients and their quantization error (see Fig. 4.9). This suggests
that the actual filter is comprised of an ideal filter plus an ‘error filter’. The
frequency response of this error FIR filter is

() = i q(m)e™om, (4.21)
m=0

This filter has a number of interesting properties. First, the mean of the filter
coefficients in the frequency domain is zero:

£(0()} = 5{2 q(m)e-f“”"} -0, (422)

m=0

where £{.} is the expectation operator. Second, since the original, infinite-preci-
sion FIR filter is symmetrical (due to its linear-phase property), Q(w) will also
have this property. Therefore, because M is odd, (4.22) can be re-written as

M-3
M e M—1 M—1
O(w) = e 257 g(m) cos [(T - m) w] +q (T) . (4.23)
m=0
Fig. 4.9 Quantized-coeffi-
cient model of an FIR filter 0(2)

H(2)

198 4 The Impact of Finite Wordlength Implementation

The variance of the error filter frequency response O'2Q can then be calculated as

o= st0we o) =143 | (5 n)o)

2l sir.l(Mcu)
a sin(w)

(4.24)

where an is the variance of the error as a result of coefficients quantization. It can
be shown that (4.24) reduces to

oy <0, (2M — 1), (4.25)

(See Ref. [2])

Equation 4.25 gives us a bounding formula for the error in the frequency
response. Assume now that each coefficient is quantized to b bits via rounding, and
that there is a uniformly distributed error in each of the frequency domain coef-
ficients given by 03 = A?/12, where A = Full-scale/2” is the quantization step.
With these assumptions, the error bounding relation becomes

2 A?
oo <(2M - 1) B (4.26)

The bound given in (4.26) is useful for estimating accuracies in filter design. It
can be seen that for a certain level of tolerable error in the frequency response, the
larger the FIR filter length M the finer the quantization step A should be. Similarly,
as in the case of high-order IIR filters, improved high-order FIR filter operation
can be achieved by realizing the filter as a cascade of short (second-order) sections
rather than with one large FIR filter. However, as usual, the price paid to obtain the
cascade structure is more multiplication operations compared to that of the direct
form structure. Additionally, the errors induced by quantization are less dangerous
than in the case of IIR filters, because they do not have the potential to send the
filter into unstable modes.

MATLAB: The Matlab object dfilt provides a convenient means to realize
and simulate both FIR and IIR filters in a variety of structures. The possible
structures include direct-form, second-order sections, lattices, and state-space
formulations. Readers interested in further detail are referred to Mitra [1].

4.5 Quantization Errors in Arithmetic Operations

The key elemental processing operations used in DSP are multiplication and
accumulation. Note that accumulation is effectively addition to an existing sum.
As these mathematical operation are commonly carried out using fixed-point
digital machines, additional errors can be introduced with each operation. As each

4.5 Quantization Errors in Arithmetic Operations 199

weighted sample accumulates, the result becomes larger and hence needs more
integer bits for perfect accommodation. When overflow is possible, there is a need
to intervene. To prevent accumulator overflow, there needs to be truncation (shift-
right operation) to a smaller wordlength.

For analysis purposes, the following assumptions are adopted. First, the arith-
metic error sequence {g,(n)} is considered to be a wide-sense stationary white
process which is uniformly distributed over the range of the quantization error.
Second, {ga(n)} is uncorrelated with both any relevant input sequences and all
other quantization error sources. To facilitate understanding, the possible sources
of arithmetic errors are introduced in the following subsections.

4.5.1 Multiplier and Accumulator Errors in Fixed-Point
Arithmetic

4.5.1.1 Multiplier Error

When a sample is multiplied by some constant - coefficient value, there will be a
scaling of the noise present on the signal sample. Additionally, there is a possible
error due to the fact that the product is often truncated after a multiplication. This
truncation occurs because the multiplication of two arbitrary numbers creates a
product which is the sum of the wordlength of the multiplier and the multiplicand.

4.5.1.2 Accumulator Error

The accumulation of error due to the addition of noisy samples depends on the
type of noise involved. Generally, the addition operation of two binary numbers
would result in one bit increase in the integer part, no increase in the number of
bits of the fractional part, and the impact on the noise will depend on the nature of
the noise. If the noise is not a white random process, the signal-to-quantization
ratio (SQR) could be very substantially degraded. Additionally, when digital
registers cannot accommodate all the bits of the final accumulated result, the least-
significant bit(s) of the result must be discarded. Therefore, if some of these
truncated bits are noise- free bits, the SQR can deteriorate accordingly.

4.5.2 Scaling in Fixed-Point Arithmetic

A major pitfall in practical implementation of digital filters in fixed-point arith-
metic is the possibility of overflow. An overflow in 2’s complement arithmetic, for
instance, causes polarity reversal, which can lead to very harmful consequences.
Therefore, careful attention should be paid to mitigate against overflows. One also

200 4 The Impact of Finite Wordlength Implementation

needs to devise strategies to deal with overflows properly if and when they do take
place. It is worth noting that floating-point implementation of digital filters
overcomes the problem of overflow. However, fixed-point implementation is still
the more popular implementation option due to its attractiveness in terms of cost
and speed.

By scaling in fixed-point arithmetic, one seeks to ensure that the signals do not
overflow the dynamic range permitted by the number system. This scaling can
effectively be implemented by adopting the fixed-point fractional representation.

4.5.2.1 Scaling of Direct Form IIR Filter

To illustrate the scaling technique, consider a first-order IIR filter as shown in
Fig. 4.10. To be consistent with the fixed-point fractional format, let x(n) be in the
range [—1,1) and let its impulse response and transfer function be i(n) and H(z),
respectively. Then, the output signal w(n) at node d is given by the convolution

w(n) = f(n—k)x(k), (4.27)

where f(n) is the impulse response from the input to the node d (which is equals
h(n) in this simple case). The signal w(n) will not in general be in the required
range. One may put a general bound for w(n) as follows

W) < 3 bl = RFE] < e S) (4.28)
k=0 k=0

where x,,, represents the upper bound of the input signal.
Now in the case at hand, x,,,x < 1, and so the bound reduces to

< ij £ (k). (4.29)

Now, for lw(n)l < 1, the summation Y 72y If(ik)] must be less than unity, and
therefore the node d must be scaled down by a factor of ¢ such that

1
c=—— (4.30)
>0 f (0]
Fig. 4.10 First-order IR node d
filter x(n) /;\ y(n)

4.5 Quantization Errors in Arithmetic Operations 201

ig. 4.11 Nodes to be scaled w(n) dl
x(n) e >

— y(n)

A A A
@V PV _QV SQY&

For instance, in the first-order IIR filter shown in Fig. 4.10, fin) = &" U(n).
Then the summation in (4.30) is reduced to

(4.31)

For o = 0.975, the scale will be ¢ = 1/40. The price to be paid for this
avoidance of overflow is a reduction in the SNR which accompanies the scaling.

In practice, the digital filter structures are much more sophisticated than the
first-order IIR filter considered above. Therefore, one typically needs to scale
several nodes to ensure no computational overflow. So, to put (4.30) in a general
form, let f,,(n) and F,,(z) denote the impulse response from the input to the mth
internal node and its corresponding transfer function, respectively. Then, the
scaling factor for the mth node is given by

1 (4.32)
M ITAO) |
If all nodes satisfy this scaling condition, then the entire structure is said to be
scaled. However, it can be shown that normally, only those nodes that are inputs to
multipliers must be scaled [4]. Consider the system depicted in Fig. 4.11, for
example. In this system every “multiplier” is merely a delay version of the signal
w(n). Hence, it is adequate to simply scale node d; along with the output node d.
It is worth mentioning that there are several approaches for scaling. The scaling
technique described in (4.32) is both necessary and sufficient to guarantee a
complete overflow free structure, however, it is relatively strict. A less stringent
scaling technique can be realized by ensuring that the following condition is
verified

202 4 The Impact of Finite Wordlength Implementation

1
G

While the above structure is less strict than that in (4.32), overflows are still
possible [3].

(4.33)

Cm

4.5.2.2 Scaling of Cascade-Form IIR Filters

For the cascade implementation of a high-order IIR filter, scaling is required to
avoid overflow in individual second and first-order sections in addition to the final
output node. A systematic rule, known as the ‘pole-zero pairing rule’, has been
developed to minimize the output noise power. The idea behind this rule is that
grouping a pole with an adjacent zero tends to reduce the peak gain of the relevant
section (Fig. 4.12).

In brief, the pole-zero pairing rule states the following Porat [3]. First, in the
z-plane, the complex pole pair that is closest to the unit circle should be paired
with its nearest complex zero pair. This procedure of matching pole and zeros pairs
is repeated until all the poles and zeros are paired. Second, the second-order
sections developed from the pairing process are ordered according to their peak
magnitude response either in descending or ascending order.

Imaginary z

-0.2

| | |
-1 -0.8 -0.6 -04 -02 0 0.2 0.4 0.6 0.8 1

Fig. 4.12 Pole-zero pairing and ordering rule

4.5 Quantization Errors in Arithmetic Operations 203

MATLAB: The conversion of the zero-pole-gain filter parameters to second-
order sections form with optimum pole-zero pairing can be achieved by using the
MATLAB function zp2sos. This function generates the following L x 6 matrix

boi byi by 1 ap an
byy by by 1 app ax

SOS =

bo, by by 1 ayp ap

where the rows contain the numerator coefficients (b’s) and the denominators
coefficients a’s of the second-order sections that constitute H(z).

Example 3 A sixth-order elliptic low-pass filter has the following specifications:

Pass-band peak-to-peak ripple = 0.4 dB
Minimum stop-band attenuation = 40 dB

The pass-band-edge frequency = 0.3

Implement this filter using second-order sections.

Solution: First, the required elliptic filter can be designed to determine the poles,
zeros, and the gain. This can be achieved readily using the MATLAB function
[Z, P, G] =ellip (6, 0.4, 40, 0.3). Then, convert zero-pole-gain filter
parameters to second-order sections form using the function sos = zp2sos (Z,
P, G). Now, the matrix sos contains the coefficients of three second-order
sections. The overall filter transfer function is then given by

H(z) = [[Hi(), (4.34)

where,
1+0.916377! + 772
H(z) = I ;)
1 —1.215z71 4 0.4474z
1 -0.6758z7! + 772
H(z) = 4.35
2(9) = 77774991 1 075682 (4.35)
1—0.9713z7! + 772
H;(2)

T 1 1.1301z1 1 0.94447 2"

4.5.2.3 Scaling of Direct-Form FIR Filters

The scaling rules are similar to those already discussed for IIR filters. However,
the the case of FIR filter design is simpler because the transfer function is confined
to zeros only. i.e. there are no poles.

204 4 The Impact of Finite Wordlength Implementation

Consider the FIR direct-form structure shown in Fig. 4.13(a), which assumes
that every coefficient multiplier output is quantized before the addition operation is
performed. According to the linear noise model shown in Fig. 4.13(b), the total
noise will be equal to the superposition of all the noise components. Accordingly,
the output noise variance is given by

ol = Maé, (4.36)
where ¢?, is the quantizer noise variance. Recall that under the assumption of
round-off based arithmetic, qu = 272b/12. For a symmetric linear-phase FIR
filter, the output noise variance would be approximately half of that value, as the
number of required multipliers is halved.

As the input to each multiplier branch in the FIR structure is just a delayed
version of the original input signal x(n), the coefficients could be scaled if an
overflow is expected. Otherwise, only the output node needs to be scaled. Cascade
form implementation of FIR filters is reduced to ordering of zero-pair sections
(since FIR filters have no poles), rather than pairing and ordering, as was the case
for IIR filters.

(b)

Fig. 4.13 Direct-form implementation of FIR filter, a the effect of arithmetic quantization, b the
linear noise model

4.5 Quantization Errors in Arithmetic Operations 205

Modern digital signal processors are equipped with optimized hardware
structures to deal with multiply-accumulate operations. These structures include
such things as double-length accumulators and pipelined multipliers.

4.6 Limit Cycle Phenomena

In the absence of any applied signal, the output of a stable IIR filter, implemented
with infinite-precision arithmetic, decays asymptotically to zero. On the contrary,
the same IIR filter implemented with finite-wordlength arithmetic can under some
circumstances, exhibit sustained oscillations with periodic patterns. The potential
instabilities exist due to the fact that quantization is a nonlinear process.

The phenomena of instability in the absence of applied input is sometimes
called ‘zero-input limit cycles’, and tends to take place when there is feedback in
the filter. For that reason, limit cycles do not tend to appear in FIR filters; this fact
constitutes a significant advantage of FIR filters over IIR filters.

Limit cycles typically manifest as periodic patterns or oscillations and are
highly undesirable. They are particularly problematical in audio applications as
they can be audible and highly distracting.

There are two basic types of limit cycles: quantization and overflow limit
cycles. Both of these types are described further below.

Limit cycles due to quantization arise as a result of successive truncation or
rounding of products of an IIR structure. This type is also known as ’granular’
limit cycles. The following example provides an illustration of the phenomenon.

Example 4 Consider the first-order IIR filter shown in Fig. 4.13, which can be
represented by the following infinite-precision difference equation

y(n) = ay,(n— D] +x(n), |a]<L. (4.37)

Use signed 5-bit fractional arithmetic to implement this filter. Compare the
output of the filter after and before quantization. Assume the quantization type is
rounding.

Solution: The above difference equation becomes nonlinear and can be
re-written as

Fig. 4.14 A first-order IIR
filter with product rounding x(m) + l y,(n)
quantizer Q(.)

0()—d|

206 4 The Impact of Finite Wordlength Implementation

Yg(n) = Qlayy(n — 1)] + x(n), (4.38)

where QJ.] represents the rounding operation with a quantization step of
A =2-6-D=2"" Figure 4.14 shows the equivalent structure. In this case, both the
actual output y,(n) and the coefficient a are represented by signed fractional 5-bit
numbers. Their product is a signed 9-bit number being rounded to a signed 5-bit
number to accommodate the internal registers length. For a = 001101 = 0.8125,
Fig. 4.15a shows the infinite-precision output which is decaying asymptotically to
zero. Figure 4.15b, on the other hand, depicts a steady-state oscillatory output
Y4(n) of period 1 and magnitude 0.125.

For a < 0, Fig. 4.16a and b show the zero-input response of infinite-precision
arithmetic implementation of a first-order IIR filter and its quantized version,
respectively. The limit cycle period in Fig. 4.16b is 2 with magnitudes of +0.125.

It is worth mentioning that the appearance of limit cycles in y,(n) can be
represented by a linear system with a pole on the unit circle, specifically at
z = sgn(a). The amplitude intervals to which the limit cycles are restricted are
known as ’dead bands’. To define the dead band of the first-order IIR filter under
consideration, recall (4.38) which can be re-written as

Qlay,(n—1)] = sgn(a) y4(n), (4.39)
(a) (b)
0.4 : ‘ : 0.4 ‘ ‘
0.35 | : 035}
© 00]
0.3} : 0.3 1]
025¢ . 025H |0
o -
S o2f S 02f]
X ° > ¢
015 | | o : 0.15 |
0.1} : 0.1H
0.05 | TT 1 0.05 |
. TT?W .
5 10 15 20 5 10 15 20
n n

Fig. 4.15 Zero-input response of a first-order IIR filter with a = 0.815, a infinite-precision,
b fixed-point 1 + 4 bits

4.6 Limit Cycle Phenomena 207

(a) (b)
0.4 w w \ 0.4 ‘ :
03 ff 1 03 Y
0.2 1 0.2 |
0.1 T 0.1
= T ? ool &
c 0 0] ~ 0
S [138°7) &
-0.1 -0.1
-0.2} -0.2
-03 1 -0.3
-0.4 -0.4
5 10 15 20 5 10 15 20
n n
Fig. 4.16 Zero-input response of a first-order IIR filter with a = —0.815, a infinite-precision,

b fixed-point 1 + 4 bits

as x(n) = 0. Since the rounding error is bounded by +A/2, then

(Olayy(n — 1] ~ay,n— <5 (4.40)

Substituting (4.39) into (4.40), yields

A

|)’q(" = 1)] §m~

(4.41)
or, for a steady-state output y,

A
[—

This relation imposes an upper limit on the magnitude of granular limit cycles.
Recall that in Example (4), y,(n — 1) < 0.1689. This result satisfies the condition
given in (4.42). Notice that granular limit cycles occur due to the small error
introduced by rounding quantization. According to (4.42), the magnitude of this
oscillation is proportional to the quantization step size A, and this magnitude can
therefore be reduced by increasing the number of precision bits.

208 4 The Impact of Finite Wordlength Implementation

Limit Cycles Due to Overflow This type of oscillation takes place when the
quantizer input exceeds the dynamic range. The magnitude of these limit cycles is
large and can not be mitigated by adding more bits of precision as with granular
limit cycles.

Recall that in the 2’s-complement arithmetic system, if one adds two numbers
whose sum is greater than the allowable dynamic range, the carry will propagate
into the sign bit. Therefore, overflow tends to create very large errors due to the
switching of the result’s sign. To avoid this type of oscillation, an alternative
addition characteristic, called ’saturation-overflow’, is adopted. With this approach
steps are taken to ensure that the size of the error does not increase unexpectedly.
Saturation-overflow is achieved simply by clipping the result of accumulation if an
overflow is detected. This strategy limits the overflow error and prevents a change
of sign. This method is commonly used in signal processors and A/D converters
that use 2’s-complement numbers.

References

1. Mitra, S.: Digital Signal Processing: A Computer Based Approach, 3rd edn. McGraw-Hill,
New York (2006)

2. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing, 2nd edn.
Prentice Hall Inc., NJ (1999)

3. Porat, B.: A Course in Digital Signal Processing. Wiley, New York (1997)

4. Vaidyanathan, P.P.: Multirtae Systems and Filter Banks, Prentice Hall Inc., NJ (1993)

Chapter 5
Multirate Digital Signal Processing

5.1 Introduction

The digital signal processing systems presented to date in this book have been
single-rate systems, as the sampling rate has been fixed. There are, however, many
applications where it is necessary to change the sampling rate of the signal at
different stages in the signal processing chain. Such discrete-time systems are
referred to as Multirate Systems. There are varying reasons for wanting to change
the sample rate. In some applications it is changed to reduce computation, while at
other times it is changed to improve accuracy and mitigate against quantization
errors. At other times again, the sample rate may be changed to conserve band-
width. In all sampling rate alterations, however, it will be assumed that the Nyquist
criterion is always met and that there is therefore no aliasing.

Multirate systems play a particularly pivotal role in the areas of filter banks,
digital to analog conversion, de-noising, and compression.

This chapter reviews the fundamentals of multirate signal processing and
introduces some important multirate DSP applications.

5.2 Basic Elements of Multirate Processing

Multirate DSP systems require sampling-rate conversion at various stages of the
processing chain, and this conversion is usually achieved with either decimation
(i.e., sample rate reduction) or interpolation (sample rate increase). To perform
decimation and interpolation one typically uses three basic building blocks,
namely linear time invariant (LTI) low-pass filters, down-samplers and the up-
samplers.

The following sub-sections discuss the implementation of decimation and
interpolation, in both the time domain and frequency domains. Throughout these
sub-sections it will be assumed that the sampling rate of the original signal is f;.

Z. M. Hussain et al., Digital Signal Processing, 209
DOI: 10.1007/978-3-642-15591-8_5, © Springer-Verlag Berlin Heidelberg 2011

210 5 Multirate Digital Signal Processing

5.2.1 The Down-Sampler and the Up-Sampler

A reduction in the sampling rate by a factor of M (where M is a positive integer) is
achieved by retaining every Mth sample and discarding the other samples. The
device that performs this operation is called a down-Sampler, and the output of this
downsampler is a sequence whose sampling rate is 1/M times that of the input
sequence. Figure 5.1 shows a block diagram of the down-sampler. Its operation in
the time-domain can be described mathematically as

y(n) = x(nM). (5.1)

According to the above equation, all input samples with indices equal to integer
multiple of M are kept, while all others are discarded.

MATLAB: down-sampling can be achieved using either the “downsample”
command, or equivalently, the vector command: y =x(1:M :length(x)).
Figure 5.2 shows a sinusoid with frequency = 0.0356 Hz downsampled by a factor
of M = 3. It is obvious that the sampling interval T of the downsampled signal
(Fig. 5.2b) is M = 3 times larger than the the original signal period, 7.

An increase in the sampling rate by a factor of L (where L is a positive integer)
is achieved by inserting L — 1 zero samples between each of the existing input
signal samples. Mathematically, up-sampling can be expressed as

v 0, otherwise (5:2)

(n) = {x(n/L), n=0,+L +2L,...
From (5.2) it is apparent that the number of samples in the upsampled signal is
L times the number of input signal samples. Figure 5.3 shows the block diagram of
an up-sampler.

MATLAB: Up-sampling (expanding) can be implemented in MATLAB using
the command “up-sample”, or alternatively, by using the following vector com-
mand scripts:

¥ = zeros(1, L x length(x));
(1 : L :length(y)) = x;

Fig. 5.1 Block diagram of a
down-sampler
s — | M s v =xm)
1 A fe 1
fe = T
T, M MI,

5.2 Basic Elements of Multirate Processing 211

(a)

O@?TTT TTT?E%

3 6 9 12 15 18 21 24
Absolute time index, n

(b) O T

] :

1 2 3 4 5 6 7 8 9
Absolute time index, n

Fig. 5.2 Downsampling process (M = 3)

Fig. 5.3 Block diagram of
an up-sampler "
x(n) —) L L y(n)= x(z) , where

n=0, L, 2L,...

1 A L

=— =Lfi = —
/s T fs =Lf; T

As an illustration of the upsampling process, Fig. 5.4 depicts the input sequence
x(n) = sin(0.057n) being up-sampled by a factor of L = 3.

Important properties of down-sampling and up-sampling are summarized as
follows.

Upsampling and downsampling are:

e linear operations.
e time variant operations.
e commutative provided that M and L are relatively prime.

Note that the integers M and L are said to be “relatively prime” if they share no
common factor in their prime factorization.

Down-sampling and up-sampling can be viewed as modifications of the existing
sampled signal by eliminating sample values and inserting zero valued samples,
respectively.

212 5 Multirate Digital Signal Processing

o 0 0
(a) OO OO

OT1345[T?

7 8 9 1011 12 13 14 15 16 17 18 19
n

(b) R T B I

o o o

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57
n

Fig. 5.4 Up-sampling process (L = 3)

5.2.2 Frequency-Domain Representation

As mentioned earlier, although down-sampling and up-sampling are linear oper-
ations, they are time variant. They therefore do not conform to standard LTI
transfer function relationships. It is nonetheless informative to examine the input
and output spectra of the down-sampling and up-sampling processes. Consider the
z-transform of the downsampler defined in (5.1), yields

N—1

Y(z) = Zx(Mn)zf". (5.3)

n=

One can not get a useful input-output relationship from (5.3) because of the way
the input signal is expressed. To solve this problem, one may introduce the
sampling sequence cy(n) as

— , 1, forn=0,+M,+2M,...
cu(n) = Z o(n —iM) = {O, otherwise (54)

i=—00

which can equivalently be expressed as (See Miscellaneous DSP Problems-D, Q1)

1=
cey(n) = " Z ek, (5.5)
k=0

5.2 Basic Elements of Multirate Processing 213

Then, the down-sampled signal can be expressed as

y(n) = x(Mn) ¢y (Mn), (5.6)
and its z-transform is
Y(z) = i x(Mn) cpy(Mn)z™" (5.7)

As cp(n) is zero for any n that is not an integer multiple of M, (5.7) can be
simplified to

Y(x) = > x(n)cu(n)z . (5.8)
n=—0o0o
Substituting (5.5) into (5.8) yields
1 oo M-—1 k
= :Z x(n) etz (5.9)

n=—00 k=0

which can be simplified to

§ M & o
Y(z)=— x(n) (7'M ik 5.10
(2) MM{”ZOC (n) (z) } (5.10)
That is,
Y(z) = iIV[flx(zl/Mef’vz”k) (5.11)
Mk:O .

To clarify the implications of (5.11), it is convenient to switch to the Fourier
transform representation by letting z = ¢/

M

V() = Z T (5.12)

=0

According to (5.12), the spectrum of the down-sampled signal ¥ (/) is composed
of a scaled (by 1/M) summation of M shifted and frequency stretched versions of
X(€/). This implies that if the input spectrum X(¢/”) extends from —= to 7 as
shown in Fig. 5.5a, then its down-sampled spectra X (e’%) with M = 3 suffers
from aliasing as shown in Fig. 5.5b. Then, the output spectrum Y (e/®) is different
from the original spectrum shape due to the aliasing effect.

Because of the inherent potential for aliasing when downsampling is used, it is
necessary to force a prior bandlimiting X(¢/) to w € [—n/M, n/M] by using low-
pass (anti-aliasing) filtering. This situation is illustrated in Fig. 5.6 where the
output spectrum of M = 3 fold down-sampling is alias-free because the input

214 5 Multirate Digital Signal Processing

@ X(e’®)
SN TN

-3n - 0 T 3rn o
(b) ‘‘‘‘‘ X(ej(m—an)/M) -
k2 7 T k=1"
-3n - 0 T 3rn ®

Fig. 5.5 The effect of down-sampling on signal spectrum: a original, b down-sampled

(@) X(e’)
[\ A\ [\

-3n -t w303 = 3r o
(b) X(ej(w—an)/3)
k=2 k=0 k=
-3n - 0 T 3rn [0

Fig. 5.6 Properly bandlimited spectrum prior to down-sampling

spectrum that is limited to £=7/3. This situation is similar to case of using an anti-
alias filter to band limit the continuous-time signal before sampling.

Generally, to avoid aliasing when downsampling low-pass signals, the input
signal bandwidth before down-sampling wp is kept within the limit wp €
[~wg/M, wp/M]. The same principle applies for the case of bandpass signals with
asymmetrical shape spectrums. (See Miscellaneous DSP Problems-D, Q2).

In contrast to down-sampling, up-sampling process is much easier to analyze in
the frequency domain. Referring to (5.2), the z-transform of a signal which is
up-sampled signal by a factor of L is

Y@ =) $m)” (5.13)

n=—00

As the non-zero samples occur only when n = =+ mL (where m is an integer)
then (5.13) can be re-written as

Y(2) =) x(m)z ™ =X("), (5.14)

5.2 Basic Elements of Multirate Processing 215

(@) X(e’)

_ T o)
R Ve aVan

- n o

Fig. 5.7 Up-sampling by a factor of L = 3

By letting z = ¢/, (5.14) becomes ¥ () = X(e/*L), which implies that the up-
sampled spectrum is compressed and repeated L times in the frequency range
[—m, 7). This is illustrated in Fig. 5.7 for L = 3.

The spectrum repetition phenomenon which occurs in upsampling is called
“imaging”, as it contains L — 1 undesired replicas in the baseband. These images
need to be removed with an anti-image low-pass filter or “interpolation filter”.
This low-pass filtering has the effect of “interpolating” the zero-valued samples
that have been inserted during the up-sampling process.

Fractional changes L/M of the sampling rate can be achieved by combining a
down-sampler with factor M, followed by an up-sampler with factor L. as will be
discussed later.

5.3 Sampling Rate Conversion Using Multirate Structures

5.3.1 Decimation

A decimator includes both a down-sampler and a lowpass filter to ensure that no
aliasing occurs when the sampling rate is changed. A block diagram of the deci-
mator is shown in Fig. 5.8. The output of the decimator is at a lower sampling rate

Fig. 5.8 Decimator u,(n)
1

x(n) —| H(2) lM YO

=

216 5 Multirate Digital Signal Processing

than the input, and thus has a lower bandwidth (f,/2) than the input (£/2). To
avoid aliasing and thus ensure correct reproduction of the signal spectrum in f /2,
the input signal bandwidth must be limited to |wp|<m/M. The output of the
decimation filter is given by

o0

ui(n) = Z x(Dh(n — i), (5.15)

i=—00

where h(n) is the impulse response of the LTI low-pass filter H(z). According to
(5.1), y(n) = u1(Mn). Then, the decimator output in the time-domain can be
expressed as

¥(n) = > x(i)h(Mn —i) = Y h(i)x(Mn — i). (5.16)

Compared to traditional convolution, the operation in (5.16) corresponds to a

reduction computation by a factor of M (since only 1-out-of every M outputs is
needed from the filter).

From (5.11), the decimator output in the z-domain can be simplified to obtain

> 1 M-l sk 21k
Y(2) ZMZH(ZI/MeW)X(ZI/Me’W). (5.17)
k=0

Example 1 An audio signal is sampled at f; = 22,050 Hz. Its spectrum is shown in
Fig. 5.9a. This signal is to be decimated by a factor of M = 3. Therefore, prior to
down-sampling, it is necessary to limit its spectrum to +f,/2 = +f;/(2 x 3) =
4+3675Hz. This is done by passing the signal through an appropriate low-pass
filter as shown in Fig. 5.9a (the dotted line). The threefold decimated spectrum is
depicted in Fig. 5.9b which represents a zoomed in version of the original spec-
trum in the frequency band £3675 Hz. If one listens to the decimated signal, the
loss of high frequency components can clearly be detected, but the decimated
signal is faithful to the lowpass portion of the original one.

5.3.2 Interpolation

The reverse process to decimation is “interpolation”. The first stage in the
interpolation process is up-sampling by an integer factor L, which is realized by
inserting L — 1 zero samples between adjacent input signal samples. This up-
sampled signal has a sampling rate which is L times the original sampling rate

(f, = Lf;), and a spectrum that correspondingly has L times as many repeated
images of the original signal spectrum (see Fig. 5.4). To correctly obtain the
interpolated signal, one needs to low-pass filter the upsampled signal. This fil-
tering eliminates all the extra spectral images introduced by the upsampling.

5.3 Sampling Rate Conversion Using Multirate Structures 217

400 T T
300
200

100

-15 -1
x 104

150 \

100 b

50 b

0
—4000 4000

-3000

-2000 -1000 0 1000

Frequency, Hz

2000 3000

Fig. 5.9 Example 1: decimation of an audio signal

This so-called interpolation filter should be an ideal low-pass filter with a cutoff
frequency of n/L. The block diagram of an interpolator is shown in Fig. 5.10.

In the time-domain the L-times up-sampling operation is characterised in (5.2).
This operation can be re-written as

up(Lp) = x(p), where p=0,£1,42,... (5.18)
The final interpolation filter output is
00
$(n) =Y x(p)h(n—Lp). (5.19)
p=—00
Fig. 5.10 Interpolator w,(n)
x(n) —] T L = SH () y»

~K
~
3

218 5 Multirate Digital Signal Processing

The output in the z-domain can be expressed as
Y(z) = H(z) X(z5). (5.20)

As with the case of decimation, interpolation filters can be implemented rela-
tively efficiently. Many of the input samples are zero and so there is a reduction by
a factor L in the number of add-multiply operations needed for realizing the filter.

5.3.3 Rational Number Sampling Rate Conversion

The sampling rate conversions that have been considered so far have involved
integer changes in sampling rate (via either decimation or interpolation). There are
many applications, however, that require the alteration of the sampling rate by
some rational number, i.e., by L/M, where both L and M are arbitrary positive
integers. There are even some applications (such as the pitch control of audio
signals) that require irrational factor sampling rate conversion. This subsection
will address only rate conversion by rational numbers. As shown in Fig. 5.11, a
sampling rate change of L/M should be realized by cascading an L-fold interpolator
with an M-fold decimator. As decimation destroys information while interpolation
does not, the decimator should be preceded by the interpolator. In this case the
time-domain expression of the output is

o0

Y(2) = Y h(Mn—pL)x(p), (5.21)

p=—00

where p is as defined in (5.18).

For computationally efficient implementation of the structure shown in
Fig. 5.11, the interpolation filter H,(z) and the decimation filter H,(z) can be
replaced by an equivalent single filter H(z). This replacement is achievable since

Fig. 5.11 Rational-rate x(n) y(n)
(L/M) sampling rate conver- — T L H, (2) H,(2) l M
sion scheme; R = max(M, L)

—> H(Z)—»

@

o

5.3 Sampling Rate Conversion Using Multirate Structures 219

both H,(z) and H,(z) are operating with the same sampling rate. The H(z) design
parameters, though, depend on the exact change in sample rate required. The filter
must be able to perform both the interpolation and decimation effectively. To
achieve this it is necessary that the normalized cutoff frequency of H(z) be
n/max{L, M}.

MATLAB: Sampling rate conversion of a sequence can be achieved using the
following MATLAB functions:

e decimate and interpolate: to decimate and interpolate a sequence by an
integer factor, respectively.

e re-sample and upfirdn: to decimate/interpolate a sequence by a rational
ratio. These functions offer several options.

Example 2 Three different sampling rates are employed in digital audio appli-
cations, specifically, 44.1 kHz for digital music CDs, 48 kHz for digital audio tape,
and 32 kHz for broadcasting. Down-converting from 48 to 44.1 kHz is equivalent
to a sample-rate conversion by a rational factor of L/M = 44.1/48 = 147/160. The
scheme shown in Fig. 5.11 can be used for the conversion. In this case M > L and
therefore the Low-pass filter design specification is dominated by the decimation
process. That is, after being up-sampled by a factor of 147, the signal should be
bandwidth limited to +n/160 before down-sampling. Figure 5.12 compares the
input and the output sequences.

It is worth noting that the complexity of the rational sampling rate convertor is
dependent on the complexity of the ratio L/M. For instance, when transferring
digitally recorded music from digital tape to CD, the interpolated signal bandwidth
will be 147 x 48 kHz = 7.056 MHz. From a practical perspective, moving audio
signals to the megahertz range is undesirable. The techniques presented in the next
section provide a means to overcome this kind of problem.

Fig. 5.12 Down-converting 1 - T ——

from 48 to 44.1 kHz —oinput
0.8t —e output ||
0.6 1

0.4+

. 1’ﬂ hnl
110

04}

-06
-0.81

Amplitude

0 0.2 0.4 0.6 0.8 1
Time (sec) x 1078

220 5 Multirate Digital Signal Processing

5.4 Efficient Implementation of Multirate Systems
5.4.1 Noble Identities

Two important identities are presented here for facilitating flexibility in the
implementation of multirate systems. These identities relate to decimation and
interpolation, and are shown in Fig. 5.13a and b, respectively. These identities are
useful for simplifying the analysis and design of sophisticated multirate systems.
They allow the different components of decimators/interpolators to be commuted as
needed. As will be seen subsequently, these identities pave the way for significant
computational savings to be obtained in multi-rate system implementations.

5.4.2 Polyphase Decomposition

Consider the following z-transform domain input signal:
X(z) =142 " +3z2+47 + 57 +677° +777°6.

To perform a polyphase decomposition of this signal into two components, one
just regroups the terms into even and odd powers of z:

X(z)=[1+43z2+5"Y + z'[2+477+621.
Xo(2) Xi(2)
or equivalently,
X(z)=[1+3272457% + z[2z?+47*+629.
Xo(2) Xi(2)

where Xy(z*) and X,(z%) are the polyphase components of the original signal. These
components are functions of 2%, and it can easily be shown that X(z) = Xo(zz) + 77!
X,(z%). This polyphase decomposition can be viewed as the decomposition of the

Fig. 5.13 Useful identities:a x(n) Iy y(n) x(n) y(n)
decimation identity, b inter- —H(z")}~ l Ml = 3 lM — H ()|~
polation identity

(@)

(n) (n) (1)
Xil—» T L —»H(ZL)—)Ln = X(Q»H(Z)—»TL _)»n

(b)

5.4 Efficient Implementation of Multirate Systems 221

original sequence into two subsequences, with each subsequence being a sequen-
tially shifted version of the original sequence. Furthermore, because each of these
two subsequences incorporates every second sample, they may be considered to be
downsampled subsequences of the original input sequence.

More generally, for any sequence {x(n)} with a z-transform given by

n=-—00

a re-arrangement into M components can be achieved according to
M
X(2) =Y X2, (5.22)
k=0

where
Xe(2)= Y x(Mn+k)z", 0<k<M—1. (5.23)
This decomposition of the input is illustrated in Fig. 5.14, where {x;(n)} is the

kth subset of the parent sequence and the sub-sequences are related to each other
according to

Fig. 5.14 M-band polyphase
decomposition of a sequence x(n) 1 M b x () =x(Mn)

1 M x,(n)=x(Mn +1)

Z > x(n)

1 M x,(n) =x(Mn +2)

1 Mb x, (n)=xMn+M -1)

222 5 Multirate Digital Signal Processing

x(n) =x(Mn+k), 0<k<M-—1. (5.24)
or,
x(n) = z_:x(Mn + k). (5.25)
k=0

FIR based decimators can be implemented very efficiently by replacing the
conventional low-pass FIR filter with its polyphase decomposition. To understand
this more fully, recall the decimation structure shown in Fig. 5.8. The M-band
polyphase decomposition of the filter transfer function H(z) can be represented as

H(z) = z_: R H (M), (5.26)
k=0

and the direct realization of (5.26) is depicted in Fig. 5.15. According to the
decimation noble identities (Fig. 5.13a), this M-band FIR polyphase filter can be
replaced by its equivalent structure as shown in Fig. 5.16. As illustrated in
Fig. 5.16, the FIR sub-band filter Hy(z) is the M-fold decimated version of Hy(M),
and H,(z) is the M-fold decimated version of H,(z") and so on. By using this
polyphase decomposition approach the computational requirements can be
reduced by a factor of M, since the FIR filter can work at the lower (down-
sampled) sampling rate f;/M.

Similar to the case of decimation, the interpolator shown in Fig. 5.10 can be
implemented using the polyphase decomposition technique. Utilizing the Noble
identity for interpolation (see Fig. 5.13), an efficient L-band interpolation structure

01, @i |

x(n) S| H ()| —

-
I_> H (ZM)J

M-

Fig. 5.15 Polyphase decomposition of an FIR decimation filter

5.4 Efficient Implementation of Multirate Systems 223

Fig. 5.16 Efficient imple-
mentation of the polyphase
decimation FIR filter shown

in Fig. 5.15 x(n) y(n)

Fig. 5.17 Efficient imple-
mentation of the polyphase
interpolation FIR filter

xm) L[H (2) y(n)

can be realized as illustrated in Fig. 5.17. Generally, the computation can be
reduced by a factor of L compared to the traditional (single-rate) FIR filter real-
ization. It is worth noting that in the case of linear-phase FIR filters, further
reduction in the computation requirements can be gained due to the symmetry of
the filter coefficients.

224 5 Multirate Digital Signal Processing

It can be shown that polyphase decomposition filters are, in fact, all-pass filters
with variable phase-shifts [1] and this is the genesis of the term “polyphase”
filters.

Example 3 Consider the following linear-phase FIR low-pass filter of length
N = 6. Note that the filter has a symmetric impulse response.

H(z) = h(0) + h(1)z7 " + h(2)z7 2 + h(2)z > + h(1)z™* + h(0)z

Implement an M = 3-fold decimation filter using the polyphase decomposition
technique.

Solution:
The three sub-filters can be obtained by inspection as:

H, h(0) + h(2)z73,
Hy(z) = h(1) + h(1)z 73,
H, h(2) +h(0)z.

Note that Hy(z) and H(z) have mirror image impulse responses while H(z) has
a symmetric impulse response. These relations can be utilized to further reduce the
computational requirements.

These sub-filters operate on the input sequence according to the structure shown
in Fig. 5.15.

5.4.3 Multistage Implementation

So far only single-stage decimation and interpolation structures have been con-
sidered. In many applications requiring large decimation/interpolation factors,
however, single-stage implementation is often computationally too inefficient. In
addition, for rational sampling rate conversion applications the intermediate
sampling frequency after interpolation may be very high, making implementation
problematical. This was evident in Example 3. To tackle these problems, multi-
stage implementation can be utilized. As an illustration, Fig. 5.18 shows an r stage
implementation of a M-fold decimator. This multi-stage realization is achieved by
splitting M into factors M = MM, M,. Obviously, in order to do that, M should be
a composite integer. The filters H,(z), H»(z), and H3(z) should be designed such

> H,(2)|—> lMl —H, ()~ le ->---->Hr(z)—> lM >

r

Fig. 5.18 Multistage implementation of an M-fold decimator

5.4 Efficient Implementation of Multirate Systems 225

|H(2)|
—\ (@)
) pa
G(@)] | P stop
j (b)
! —
IG(23)| 30)p 3wstop :)stop_> b
1 1 1 J 0)
[0 2
\
. —
(l)p T

- (2 |5 G(Z°) > — H(2) | (e)

Fig. 5.19 Multistage implementation of a threefold decimator using IFIR approach. a The
desired frequency response, b the threefold stretched filter response G(z), ¢ the threefold
upsampled version of G(z), i.e., G(z3), d the required lowpass filter response /(z), e the overall
IFIR filter

that aliasing is avoided and overall pass-band and stop-band tolerances are
satisfied.

5.4.3.1 Interpolated FIR Filter Design

Interpolated FIR (IFIR) design technique is a common approach to realise filters
within multistage sampling rate converters. The rationale behind IFIR design is as
follows. One normally requires many filter taps to obtain very sharp cutoffs with
FIR filters. One can, however, use an elegant “slight of hand” to get sharp cutoffs
without a large number of taps. To achieve this one first up-samples—recall that
after up-sampling by a factor M there are M times as many images. Because these
images must fit in a relatively small spectral area (i.e., they are compressed rep-
licas), they tend to have sharp cutoffs. The second stage in the IFIR approach is to
filter out the additional images using a low order filter. Then only the single
transfer function image (with a sharp cutoff) is left.

To illustrate the IFIR approach, consider an example in which a M = 3-fold
single-stage decimation filter H(z) is required. The desired frequency response of
this filter is shown in Fig. (5.19a), where), and wy,, are the pass-band and stop-
band normalized frequency edges, respectively. In this case, the transition band

226 5 Multirate Digital Signal Processing

will be wgop — ,. The equivalent IFIR design is begun by assuming a threefold
“pre-stretched” filter G(z) as shown in Fig. (5.19b). Then, G(z) is upsampled by
the same factor M = 3. This yields the filter G(z*), which has the desired mag-
nitude response (H(z)) along with M — 1 image replicas, as shown in Fig. (5.19¢).
To eliminate the unwanted image replicas, another low-pass filter 1(z) should be
cascaded with G(z%). The pass-band of 1(z) should be the same as the original one
(with a cutoff of w,), while the stop-band edge would extend from w), to the edge
of the adjacent image, that is at 27” — Wyop (see Fig. (5.19d)). This second stage
filter therefore has very relaxed cutoff requirements and can be implemented
without a great deal of computation.

For a given filter specification, the overall order of IFIR designed filters tends to
be significantly lower than for conventional filter designs.

MATLAB: The MATLAB function ifir can be used to design both G(z")
(where L is the interpolation factor) and the image-suppressor filter 1(z).

Example 4 The conventional decimator shown in Fig. 5.20a is to be implemented
as a cascaded structure using the IFIR technique. The input signal x(n) is originally
sampled at 210 kHz and needs to be down-sampled to 7 kHz. The pass-band and
stop-band frequencies are 3 and 3.5 kHz, respectively. The anti-aliasing filter
H(z) needs to be designed as an equiripple linear-phase FIR filter with the fol-
lowing specifications: The pass-band ripple is 6, = 0.02 and stop-band ripple is
dy = 0.001. Compare the computation complexity of the conventional and cas-
caded implementations.

Solution:
The MATLAB function firpmord (Parks-Maclellan FIR order estimator) is
used to obtain the order of the FIR filters. According to the given specifications,

Fig. 5.20 Multistage imple-

mentation of the decimator in x(n) — H(z) l 30 > Y
Example 4 using IFIR design

technique fg =210kHz S new = TkHZ

(b)
x(n) — 1(z) l15 T G(2) _>l 7 =y
f, = 210kHz f, = 14KkHz S5 o = TKHZ

5.4 Efficient Implementation of Multirate Systems 227

Table 5.1 Specifications of

the IFIR filters in Example 4 Filter f, (kH2) fuop (KH2) % Ostop Order
G(2) 45 52.5 0.01 0.001 91
1(z) 3 10.5 0.01 0.001 91

the order of the conventional single-stage anti-aliasing filter H(¢/”) is
Niingle = 1279.

Now the conventional single-stage filter H(¢/®) is to be replaced by the cascade
implementation of G(¢/'>”)I(¢/”) using the IFIR approach as explained above. To
meet the desired specifications, the pass-band ripple of G(¢/'>”) and I(¢/*) should
sum up at most to that of H(¢/”). Then, one may assume that the peak pass-band
ripple is taken as J,/2. On the other hand, to be conservative, the stop-band ripples
of G(¢"°?) and 1(¢/) are assumed to be equal to that of H(¢/”). In this case, the
specifications of the IFIR cascaded filters are as given in Table 5.1.

The order of the pre-stretched low-pass filter G(¢/*) is found to be Ng = 91.
Thus, the order of its interpolated version is multiplied by a factor of 15, i.e.,
G(ejls“’), will be N(I;5 = 15 x 19 = 1365. Then, the order of the anti-imaging filter
1(¢) is N; = 91. This new IFIR equivalent combination I(¢/”) G(¢/'>®), as
illustrated in Fig. 5.20b, has a total of N5’ + N; = 1365 + 91 = 1456 coefficients.
This, obviously, seems an increase in the order as compared to the single-stage one
Ny = 1279. However, if one utilizes the decimation Noble identity, as shown in
Fig. 5.13a, then the filter G(¢/'>®) and the the subsequent 15-fold down-sampler
can be replaced by the same down-sampler followed by the filter G(¢/). This is
shown in Fig. 5.20c. By doing that, the overall filter order reduces to Nyyeran =
Ng +Nr+91+91 =182. Thus a reduction in the overall filter order of
Ny /Noveran = 1279/182 ~ 7 is achieved.

The IFIR technique leads to the design of a cascaded implementation (G(z) and
I(z)) which meets the required specifications using a much lower order. If a
multiple stage approach is preferred, one may repeat this approach on the multiple
stages. The different stages are obtained by factorizing M = MMMy

Note that the multistage implementation approach can be applied for interpo-
lation filters as well.

Reference

1. Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Prentice Hall, USA (1993)

Appendix A: Tutorials

Tutorial 1

Q: Plot the unit step function u(f). Also plot the functions u(—¢), u(t — 3),
u(—t — 3) u(t +5), u(—t + 5), and y(¢¥) = u(t) — u(t — 1).

Solution:
u(t) = I, t>0 = u(—t) = I, —t>0| [1, <0
10, t<0[’ o 10, —t<O0f 10, t>0
Generally we have:
{1, t—azO} {
u(t—a) = =
0, t—a<0

1
0
u(—t—a):{l’ —t—aZO}:{l, tg—a}
0, —t—a<0 0, t> —a

Shift rules:

If g(r) is a function and a > 0, then the direction of horizontal shift from
original location is found as follows:

Function Shift direction
gt +a) — (Left)
gt — a) + (Right)
g(—t+a) + (Right)
g(—t —a) — (Left)

229

230 Appendix A: Tutorials

u(t)
1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 t

u(-t)

-6 -5 -4 -3 -2 - 0 1 2 3 4 5 6
‘ u(t-3) (right shift)

6 5 -4 -3 -2 -1 0 1 2 3 4 5 &6
‘ u(~1-3)=u[~(t+3)] (left shift)

6 5 -4 3 2 1 0 1 2z 3 4 15 &
| u(t+5)

S S .

6 5 4 3 2 1 o0 1 2 3 4 5 6
| u(~t+5)

- :

6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

VO=U(D)= U(t=1) pm oo ul

6 5 4 3 2 1 o0 1..2..3.4.5..6

-u(t-1)

Tutorial 2

Q1: Find the I/O (input—output) relation of the system shown below.

x(t) Time—delay,To y(t)
Input Output
signal signal

Solution: First, we should define the important internal points as shown below:

+ r(t) r(tT)

x(t) y(t)

Now we write the system equations as follows:

y(t)=r(t—T,); r(t) =x(t) —2y(1),
y(t) =x(t = T,) —2y(t = T,).

Appendix A: Tutorials 231

This is a feedback system since the I/O equation includes a delayed version of

the output itself.

Q2: Find the I/O (input—output) relation of the system shown below.

|

x(t) — + Delay, T, — y(t)

+ +

Ans. y(t) = x() + x(t — T,) — y(t — T,).

Tutorial 3

Q: Determine whether the analog time-delay T, (T, is constant) is:
1. Memoryless, 2. causal, 3. linear, 4. time-invariant, 5. stable.

x(t) —> Time-delay, T, ———>y(1)

Solution:

1.

2.

Since y(¢) = x(t — Ty), the output equals the input at a past time instant, t — T,
hence it is a memory system.

The output y(¥) is not a function of x(r + 1), ty > 0, hence it is causal (does not
depend on future values of the input).

. Let T represents the system transformation.

For the input x(¢) = ap(¥) + br(t) we have:

(1) = T{x()} =x(t = To) = a-p(t — To) + b r(t — To)
=a-T{p(")} +b -T{r(t)}

Hence, the system is linear.

T{x(t —t0)} = x(t —to — Tp) (1)
We have: y(¢) = x(t — Tp), hence,
y(t—to) = x(t — to — To) (2)

From Egs. 1 and 2 we get:
y(t = to) = T{x(t = 10)}.

Hence, T is time-invariant.

232 Appendix A: Tutorials

5. If x(9)l < ¢ Vt (bounded), then we have Ix(t — Ty)l < ¢ Vt.
Hence, ly(#)l < ¢ V¢ and the system is BIBO-stable.

Tutorial 4

Q: Find the output of the following linear time-invariant system for a unit-step
input (i.e., find the step response). Verify that the impulse response is the time
derivative of the step response.

h(t)=e?u(t)
(a>0)

—> y(1)

x(t)=u(t)

Solution: We have: y(t) = u(t) h(t) = [*°_u(A)h(t — 2)dA.

o U

Step 1: Formulas of functions using #:

1, t>0 —a e >0
u(t):{o t<0} and h(t) =e ’u(t):{ 0 t<0}'

Step 2: Formulas of functions using 4:

1, >0
u(d) = and
0, A<0

—a(t—/l) — 1> <
h(t—),):{e . , /1;0>—t>/1t}.

Step 3: Integrate to find the convolution. The range of integration can be found
graphically as the zone of non-zero overlap between the two functions.
This can be done by moving A(t — 1) from left to right (i.e., by varying
t from —oo to co) while keeping u(4) fixed (see the plot below).

Case l: t>0

¥(1) = / expl—a(t — 2)|dJ
0
— (1/a)lexp{~a(t —)}, = (1/a)[1 — exp(—ar)].

Case 2: t<0
No overlap = w(A)h(t — 1) = 0 Vi = y@) = 0.

Appendix A: Tutorials 233

u(t)
1
L L L L L L I I I I L L t
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
u(n)
1
L L L L L L I I I I L L A
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
h@®
1
L L L L L L L T - t
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
h()
1
L L L L L L 1 T A

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

>

T

<
>

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

L=t h(t-1) [Case 2:t < 0]
. — | A
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
o
1/a

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Tutorial 5

Q: Evaluate y(r) = x(¢) * h(t), where x(¢) and h(¢) are as shown.

] x(f)] h(?)
AAAAAA AAIAAA t el e—eb—_— 1) I — t
-5 0123456 -5 0123456

Solution: The convolution is given by y(f) = x(r) * h(f) = jfoox(ﬂh)h(t — A)dA.

234 Appendix A: Tutorials

Step I: Equations of x(¢) and h(?):
<r< <<
x@):{é’ 0l3} amlh@):{é’ 0’2}.

elsewhere elsewhere

Step 2: Equations in terms of A:

1, 0<i<3
x(4) = {07 elsewhere} and

I, 0<i—i<2 Loig2sis
h(l — j.) = 0 clsewhere = start end
’) 0, elsewhere

Step 3: Integrate to find y(?).
Case I: t<0ort>5— y(t) =0 (no overlap).
Case2: 0<t<2—y(t)= [ydt =1.
Case 3: 2<t<3 —y(1)= [,dt=2.
Case 4 3<1<5—y(t)= [’ di=5—1.

x (%)
L e—
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 A
h(2)
1.
n n n n I I 1 I i e e e)\’
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
|_1.h(-?~)
n n n I 1 i i i e e e 7\/
6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
start end h(t-L)[Case1:t<0]
- y - - Py

-6 -5 -4 372 -1T0 1 2 3 4 5 6
-2 t
start end h(t-))[Case2:0<t<2]
T 1. . X . . 2

—‘6—‘5—‘4—‘3—‘2—‘1T0 172 3 4 5 &

h(t-1)[Case3:2<t<3] \start end
[1 A
6 5 4 3 =2 1 0711 213 4 5 6
-2 t
h(t-\ Case4 3<t<5 start end
(1-7)[Case4:3<1<8 \ strt_end)
r— -4 -3 -2 -1 0 1T22 3Tt4 5 6

h(t-1)[Cases: t>5] \ start___end

% 5 4 3 -2 1 0 1 2 314 5Tté

6 5 4 3 -2 1 0 1 2 3 4 5 6

Appendix A: Tutorials 235

Tutorial 6

Q: Find the convolution of the functions x(¢) and h(f) as shown below.

r(t) 2 s(t)

1.
M S S “I“‘ t [1 | [
-5 0123456 -5 0123456

Solution: The convolution of r(f) and s(¢) is given by:

y(t) = r(t) x s(t) = / r(A)s(t — A)dA.

Step I: Write the equations of 7(¢) and s(¢) as follows:

1) = {g 0<r<2 }

elsewhere

To find the equation of s(¢), we consider 2 points (as it is a straight line):
(t1, s1) = (=2, 0) and (23, 52) = (2, 2).
s§—5 - S2 — 81
t—t th—1f

t —2<t<
:>S2+1:>s(t){t/2+1’ 2—t—2}

0, elsewhere

Step 2: Write the above equations in terms of A, then sketch r(4) and s(t — 1):

r(A) _ |2 0=<i<2 and
“ 10, elsewhere
B =241, —2<t—1L2
s(t=2) - { 0, elsewhere .
_{(t—i)/Z—i—l, r—2 §2L§t+2}
= start end
0, elsewhere

[Note: 2<t—A4 <2=> 2—t<-A1<2—-t=>t—-2<.1<
t+2].

236 Appendix A: Tutorials

-6 -5

-6 -5

s(t-2) 24
| ! ’\\ | | | ! | | by

6 5904 -3 -2 170 1 2 3 4 5 6

t-2 t+2
(start) (end)

Step 3: Integrate to find y(7). Consider the intervals of overlap between r(1) and
s(t — A). These intervals can be defined using the endpoints of r(4)
(which is fixed here) and s(t — A) (which is moving according to the
shift ¢, noting that positive ¢ gives positive shift).

Case 1: End of s(t — A) < Start of r(A) = t+2 <0 =t < —2. No overlap,
hence, y(t) = 0.

Case 1: t< - 2, no overlap.

2<
r(i)
1
| | | | | 2
o 1 2 3 4 5 6
T T
t-2 t+2 (start-1) (end-1)
(start-2) (end-2)

Case 2: As the end of s(t — 1) [i.e., A = ¢ + 2] moves right (when ¢ increases),
s(t — A) moves right as well. The first overlap with (1) occurs when the
end of s(t — A) [i.e., A =t + 2] exceeds the start of r(A) [i.e., 1 = 0].
Now consider that the end of s(r — /) is inside r(1), hence,
0<t+2<3, ortJrezquivalently —2 <t < 1. In this case we have:

y:/ (1] [(t—2)/2+ 1] di=2/4+1+1
-~
0 () S(1—7)

(where —2 <t < 1, as shown above).

Appendix A: Tutorials 237

Case2: -2<1t<1.

s(t-21) 24
Iy
L r00)
| | | | | | | | | | A
-6 -5 -4 -3 -2 - 0 1 2 3 4 5 6
T T
t-2 t+2
Case 3. As the end of s(t — A) [i.e., A =t + 2] exceeds the end of r(2) [ie.,
A = 3], st — A) will fully overlap r(2) until the start of s(t — 1) [i.e.,
A =t — 2] reaches the start of (1) [i.e., A = 0]. Hence, we consider
two conditions: t + 2 > 3 and r — 2 < 0, which giver > 1 and f < 2, or
equivalently 1 < ¢ < 2. In this case we have:
3
y:/ 1] [(r=2)/2+ 1]dA = (3/2)t + 3/4
————
0 r(2) s(t—=7)
(where 1 <t < 2, as shown above).
Case3:1<t<2.
42
s-0
| | | | | | | 1\ | | | A
-6 -5 -4 -3 -2 - 0 1 2 3 4
))
t-2 t+2
Case 4: As the start of s(t — 1) [i.e., A =t — 2] moves beyond the start of r(1)

[i.e., 4 = 0], overlap takes place only between A =1t — 2 [start of
s(t — A)] and A2 = 3 [end of r(1)]. Hence, we consider the condition
0 <t — 2 <3, or equivalently, 2 <t < 5. Here we have:

~N N—
r(4) s(t—17)

y:/] [(t—=2)/2+ 1]di=15/4+1/2—1)2

where 2 <t < 5, as shown above).

Appendix A: Tutorials

238
Case 4:2<t<5.
2. %7\')
r(a)
| | | | | | | \ | A
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
T T
t-2 t+2
Case 5: 1If the start of s(t — J) [i.e., . =t — 2] moves past the end of r(2) [i.e.,

A = 3], no overlap occurs. The condition here is written as t — 2 > 3,
or equivalently 7 > 5. Here y(r) = 0.

Case 5: t> 5, no overlap.

Summary of Results

2lA+t+1, -2<<1

3(t) = (3/2)t+3/4, 1<t<?2
(15/4) +t/2 —2/4, 2<t<5

0 elsewhere

Q: Solve the above problem as y(t) = s(t) * r(1) = [s()r(t — Z)dA. You

should get the same answer, since convolution is commutative.

y(t)=r(t)* s(t)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Appendix A: Tutorials 239

Tutorial 7

Q: Show that 6(7) = lima_,oiﬂza(t) [a > 0]. What is the importance of this
result?

Solution: We should prove that the function g(r) = 5-TIp,(¢) (shown below)
satisfies the definition and properties of the delta function as a — 0.

t-t
g(t)=(12a) 10, (t) g(t-t)

1/(2a) 1/(2a) m
t - t

0
—-a a -a to a
The delta function is defined as [~ x(2)8(t — t,)dt = x(t,) for any continuous

function x(7) [see Tables]. Applying the same integral to g(f) we get:

tota

/x(t)g(t—to)dt:%/ x(t)dt (1)

t,—a

The Mean Value Theorem for integrals states that for any continuous function
s(1) we have:
d

/s(t)dt = [d — c]s(tn),

c

where t,, is a number between ¢ and d (¢ < t,, < d). Applying this theorem to Eq. 1
above we get:

[xste =t =5 [st =510+ 0) = (0 = @x(t) = x0)

where 1, —a <t, <t,+ a. As a — 0, we have t,, — t,; and hence

/ﬂwmw—mmﬂg/n%me=mMMhmw

240 Appendix A: Tutorials

The distinguishing Properties of the delta function are evenness, unit area, and
spiky shape (Tables). These properties are satisfied by the above function:

Evenness: we have g(— 1) = g(?).
Unit area: [~ g(t)dt = (1/2a)(2a) = 1.

ot % <a _ oo i=0
. . — 2a =
Spiky shape: lim g (1) ‘11125{ 0 elsewhere 0 elsewhere |-

This result justifies the use of narrow pulse to approximate the delta function in
practical applications, noting that it is impossible to generate an exact delta function.

Tutorial 8

Q: Show that the unit-step response p(f) of any LTI system is related to its
impulse response h(z) by: h(t) = %').

Solution: The 1/O relation for LTI systems gives: p(t) = h(r) « u(r) = [h(%)
u(t — 2)dA.

The unit-step function is given by:

1, A>0
u(Z) = {0, elsewhere}

1, t—A>0=1<_1t
Hence, u(t — 1) = (end)
0, elsewhere

Now we have p(t) = [*__ h(2)d..
Therefore, p'(f) = h(r) [see Tables].

u(i)

1

0 A
1| w(-n)

o A
1| u(t-2)

|
0 A=t A

(end)

Appendix A: Tutorials 241

Tutorial 9

Q: For the periodic square wave x(f) shown below, find:
(A) The complex Fourier series, (B) the trigonometric Fourier series.

x(t)

1 [T [1

-T -T /2 0 T /2 T 3T /2
o o o o o

t, sec

Solution:
(A) Since x(?) is periodic, it has Fourier series expansion [Tables]:

o]
— E XkeJernkfgt

k=—00

From the above figure, the signal fundamental frequency is f, = 1/7, Hz. The
Fourier coefficients (for k#0) are given by [see Tables]:

To 7,
2 7
1 ; 1 .
Xk = — x([)esznkfatdt I e*jznkf(,tdt
T, T,
0 0
_ (L 1 [eijkavt]Tz_n: - 1-(-1)
T,) \—j2nkf, 07 2nk 2k
[Note that we used f, T, = 1 and e /" = cos(n) — jsin (1) = —1].
For k = 0 we have: X, = - [x(1)dt =

Now:
1. If kis even, i.e., k = 2n, then X;, = X5, = 0 (if n # 0)

2. If kis odd, i.e., k = 2n + 1, then X = Xp,41 :m.

_ 1 RS 2n+l)2nfot
_2 Jr, Z n+1

(B) From above we have:

Z X, e+j2nkfot X0+Z e}2nkf0t+X e ﬂnkfot:l

k=—00

=aq+ Z{akcos(anfot) + bysin(27kfor) }
=1

242 Appendix A: Tutorials

where we used Euler’s formula to get:
ao=Xo, ar=Xp+X, br=jXp—X).

Hence, a, = Xy = 1/2.
If k is even (k#0), then a; = by = 0 (see above).
If k is odd, then:

2

ax = a1t = Xon1) T X_ny) =0 and - by = byyyy = 2n+)’

Therefore, we can write the signal x(¢) as follows:

Q: If x(r) above is passed through the system shown below, find the output
y(¢) and the average power in x(¢) and y(?).
Ans. P, =0.5; P, = 047.

x(1) v

H(f)
1

[| .

—4/T 0 4/T
o o

Tutorial 10

Q1: Show that x(1)o(t — t,) = x(t,)0(t — t,).
Solution: Let g(f) be any function that is continuous at =1, and let ¢
(f) = g(H)x(¢). Then using Tables we get:

/ S(OR(0)3(t — 1,)]di = / (006t — 1,)dt = / P13t — 1,)dt = B(1,)

Appendix A: Tutorials 243
Now: (1) = g(to)x(to) = x(1) [, 8(1)0(t — 10)dt = |7 g(1)[x(t0)8(r — 15))dt

Hence we have: [~ g(1) [x(1)0(r — t,)] dr = [*_ g(1) [x(1,)0(r — 1,)] dt
s(1) r(t)

Since g(¢) is arbitrary, the above equation implies that:
s(t) =r(1), or x(1)d(r—1,) = x(t,)0(t — 1,).

Q2: Consider the cascaded and parallel systems shown in Figs. a and b. Find the
equivalent impulse responses for the equivalent system shown in Fig. c.

(c)

x() y()

(@)

x(t) =3 h.(t) (= h (1) > y(t)

Solution:
(@) Lety, () = x(t) * hy (0).

(1) = 30 (0) # a(e) = [x(0) % B (0] 5) = x(0) % [1) 5 ()] = h(o)

h(r)
= l’ll(t) * hz(l)

where we used the associative property of convolution.

(b) Let y; (1) = x(1) * hy (1), y2 (1) = x(2) * hy (1).

() = 300+ 92 (0) = (1) 5 I (1) + (1) 5 o) = x(2) [(1) + Pa(6)] = (1)

h(r)
= hi(t) + hy(1)

where we used the distributive property of convolution.

244 Appendix A: Tutorials

Tutorial 11

Q: For the periodic pulse train p(t) = Y2 6(t — kT) find:
(A) Complex Fourier series (FS), (B) trigonometric FS, (C) Fourier Transform
(FT).

p(t)
1

HESREREEY

4T -3T -2T_ -T
o o o o

Solution:

(A) p(t) = 00 PretP™et - where , = 2nf, = ZT—” is the fundamental
frequency, T, being the fundamental period, and the Fourier coefficients are
given by [see Tables]:

T,/2 T,/2
1 1 1
P,=— fdt = — o(t)dt = —
= [eoa=g [sma—7
-1, 1,2
T,/2 T,/2
1 P 1 o f 1
Pr=— t)e 2 gy = — / S(t)e i gp = —
=7 | ploe = [e -
-1,/ ~1,/2
) RS 2rkfyr

(B) p(t) = a, + > i laxcos(kw,t) + bysin(kw,t)], where [see Tables]:

2
y =P+ P =—

by, =j(P, —P_x) =0.
T,’ k J(k k)

(C) Using part (A) we have [using Tables]:

Fip(t)} :-7:{,; Z eiznkﬁ’t} :Ti Z]:{eﬂnkﬁ;f}

0 k=—on0 0 k=—00

e ST AR LS
0k _0o k—oo

Hence, a pulse train in the time domain is Fourier-transformed to a pulse train in
the frequency domain.

Appendix A: Tutorials 245
P(f)

1/T

1 ,

—4f -3f —2f -f

N
o‘h
w
°‘h
£
0‘

Tutorial 12

Q1: Show that x(t)coswotL%X(f —fo) +3X(f + /o).
Solution: From Tables we have:

1 1
coswot R Eé(f —fo) + 55(f +fo)-

Let ¢(r) = coswot, C(f) = F{coswyt}. Using Tables we have:
PLX0) ()} = X(1) x C) = X() ¢ 300 i) + 5300 +50)

= 2X(o) + X+ o)

where we used the relation X(f) * o(f — fy) = X(f — f,,) from Tables.

Q2: (A) Find F{x(r) = e~ a > 0}. (B) Using part (A), find F {1+r2}

Solution:
(A)
X(f) = / x(1)e M dr = / e W21 gy
; b 1 1 2
= e P gt = / e M P gt = . + - = ‘ :
/ / a—j2nf a+j2nf @+ (2nf)
(B)

x(1) I X(F) = X(1) <2 x(—f) [duality (Tables)]
= X(1) Lo x(f) [if x(t) is even]

246 Appendix A: Tutorials

} — o Ifl

Using duality of FT and part (A) above we get: F {

1+
From Tables (scaling property) we have: s(kt) « S(’%)
Applying this to the above result we get:

Tutorial 13

Q: Determine the impulse response of the ideal bandstop filter whose frequency
response is shown below.

H(f)

|] I]]
f,Hz
-1, -, 0 f f

Solution: It is better that we arrange H(f) in terms of well-known functions. In
this question it can be written as follows:

H(f) = 1 - G(),

where G(f) is shown below.
To find an explicit formula for G(f), let fj :f‘;—fz ,B=fH —fi.

=TI =%) + [[+fo) = X(f —fo) + X(f + 1),
where X(f) = [[5(f)-

Now from Tables we have:

1. sinc(Lt) L%HL(]‘) = L - sinc(Lt) < [1.(f) [multiply both sides by L]
Hence, for this question we have: Bsinc(Bt) N HB(f) .
—— [
x) X(f)
]:
2. x(t)cos(2nf0t) <—>%X(f —fo) =+ %X(f —i—f())7

2x(t)cos(2nfot) <o X(f — fo) + X(f + /o)
——_— —
g(t)=2B ssinc(Bt)cos(2nfot) G(f)
h(t) =FH{1-G()} =F {1} —F {G(f)} = () — g(1)
= 6(t) — 2B sinc(Br) cos(2mnfyr).

Appendix A: Tutorials 247

G(f)
[| 14 [] f, Hz
- - 0 f, f ’
X(f)
—
f,Hz
-B2 0 B2

Tutorial 14

Q: (A) Determine the impulse response of the ideal band-stop filter whose
frequency response is shown in Fig. 1 below.

(B) Determine the impulse response of the ideal band-stop filter whose frequency
response is shown in Fig. 2 below.

H(f) H(f)

- - f, Hz -
- fc 0 fc

1 :
- f, Hz
- ch - fc 0 fc 2fc
(1) (2)

Solution:
(A) The frequency response H(f) can be written as:
H(f) = 1 — G(f), where G(f) = Az, (f) [see the figure below].

H(f) G(f)

From Tables we have: Az(f) L%sincz(%f), and:

x(1) L X(F) = X(1) 2o x(—f) [duality(Tables)]

= X(1) <2 x(f)[If x(r) is even]

P G(f)
h(r) = F-HH(f)} = F~{1 = G(f)} = 0(t) — fe sinc®(fet).

248 Appendix A: Tutorials

(B) In this part, the frequency response reminds us of the modulation property. It
can be written as:

H(f) = G(f —fo) + G(f + o).
Hence, using Tables or Tutorial 13 we get:

h(t) = 2g(t)cos(2nft) = 2f.sinc?(f.t) - cos(2nf.t).

Tutorial 15

Q: Show that:

(A) x(t) - (1) < X(f) * Y(F)
(B) x(1) % y(1) <= X(f) - Y(f)

Solution:

(A)

Flaly(n)} = / x(O)y(1)e >y

—00
o0

= [FrEepoea

—00

= / {/ X(i)e*jzni’d%y(t)eﬂ"ﬂdt

—00

= /Oox(/l) [/OO y(t)eﬂ““"“vﬁdt] di

—00

Y(r-4)

- / X(AY(f — 2)di. = X(f) Y(f).

Appendix A: Tutorials 249

(B)

8\3 é\g

F{x(t) xy(t)} / x(A)y(t — A)di) e > dy

Ye 2ar d.

8\3
\<

y()e 2T gy d)

Let v=r—1

8\3
8\8

x(/
= /x(i)e_ﬂ”ﬁdi /y(v)e_ﬂ”fvdv

[since A and v are independent]

=Fx(0)} - Fiy@)}) = X() - Y(f)

Tutorial 16

Q: Find the s-domain voltage transfer function and the voltage impulse response
for the analog systems shown below. Assume zero initial conditions (IC’s).

L=4H R=2Q R=2Q
w__l:v‘):\}c
Vi "c):|—0=2F

Solution:

vp(t) = Ldi(t)/dt%»VL(s) =L[si(s) —i(07)] =Ls-I(s) [zero IC’s].
—— e~ Tables
voltage across L

Hence, inductor impedance is represented in the complex-frequency domain as:

X.(s) = Vi(s)/I(s) = sL [zero IC's].

250 Appendix A: Tutorials

Now vg(t) =R - i(1) & Vr(s) = RI(s) = Xg(s) = Vr(s)/I(s) = R.
—————

voltage across R

ic(f) = Cdvel(r) /dt Tﬁszc(s) = C - [sVe(s) —ve(07)] = Cs - Ve(s) [zero ICs]

current through C

= Xc(s) = Vel(s)/Ic(s) = 1/sC.

To summarize impedance transformations to the s-domain (zero 1C’s):

R=R; L= sL;, C= 1/(sC).

Now we can transform the above circuits to the s-domain using £-Tables:

(a) H(s) = Vo(s)/Vils) = 2/[4s +2] = h(s) = L7 {(1/2)[1/(s + 0.5)]} =
0'5670.5t

(b) H(s) = gy =257 = | — gy = h(1) = 8(1) — (1/2)e 7.

1,—4

_ Y@y _ — —
© H(s) = g2 = T = %m = h(1) =ge7.

4s 2 2
+V, (s) +V, (s) —V\M—-EVO(S)
+ + +
V.(s) 2 V.(s) 4s V.(s) il
1 1 1 | 25

(a) (b) (c)

Tutorial 17

Q: Find the current and voltage across the capacitor below after the switch is

closed at t = 0.
+
v(de) _— Y D —— ¢

Appendix A: Tutorials 251

Solution: Let the capacitor initial voltage be V,, (volts). After the switch is closed,
a d.c. voltage of V volts will suddenly be applied, hence, v; (f) = Vu(t) volts.

. . dve(t) ¢ B
i(t) =ic(t) = C%ml(s) =C - [sVc(s) —ve(07)] = C[sVe(s) — V),
current through C
or simply:
I=C-[sVc—V,] (1)
Ve = Vi — iREsVe = Vi— IR = V/s — IR (2)
From (1), (2) we get:
1 V-V, 1
3)

“Rs+1/RC_ s+ 1/RC

[where I, = (V — V,)/R.]
From Tables: i(r) = 1, e R u(t) amperes.
Substituting (3) in (2) we get: Ve = V[— m] + HYW
From Tables: v, (1) = [V(1 — e "B + vV, e "™ u(r) volts.

Tutorial 18

Q: The switch S in Fig. 1 below has been closed for a long time. Find the current
across the capacitor after the switch is opened at t = 0.

AMM———AN— 4 v,
+ | i(t)
v(dc) =/ Vv, s(L ——t
_ ~Y'N -
- v, o+
(1)

Solution: As the switch was closed for a long time, both v¢ (07) and i, (07) are
zero. Even if there was an initial voltage V,, on C and an initial current 7, in L when
S was closed, the final current and voltages in the right loop will all be zero. This is
due to the consumption of energy by R,. To prove this, consider the right loop
where the switch has been closed as shown in Fig. 2.

252 Appendix A: Tutorials

+ R2 -
AN\ + V,
i(t)
j— c
L
-V, o+
(2)
Let R = R,. Now Vr = IR.
ch _
i(t) = Cd—<—>l() ClsVc(s) =ve(07)] = I = ClsVe — V,)
1 Vv,
Vee—4-2
—re Cs
di(t
vL(t):Ld—(t) ELVi(s) = LisI(s) — i(07)] — Vi = L[sI — 1)
1 v,
Vc+VL+VR:Oﬁa-i-T—I—SLI—LIo—FIR:O
_ LCls—CV,
~ LCs> +RCs + 1
v, A
I S =1t _ s—ﬁ—i-(i—%) _ [s—i—a_fwg]
s2+Ls+LC (5+ﬂ) ‘*‘(ﬁ_%) F(s) "F(s)
where
_R 2 __ 1 R2 _ 2 2 _ V, R
=30 @~ reap FO=bFar e, S=|\gtap)/on

i(t) = Le ™ [cos(w,t) — Esin(w,t)|u(t).

If Iy, then i(t) = —(V,/Lw,)e” “sin(w,t)u(t).

IfD= R—z — Ll > 0, we use partial fractions to get :
L* LC ’

i(t) = [kie ™" + ke "' Ju(r), with:

R 1 R 4
b= oV e
kl = —Io(k — bl)/b (where k= VO/(LIO)J? = b2 — b])
ko =1,(k —by)/b forl, #0,
b (where A = V,/L) and k, = A/b for I, = 0.
Unless R = 0, all above expressions for i(f) tend to zero after a long time, so are
the expressions for v, (f) = Ldi(t)/dt and vg = i(f)R. Hence, ve = —(v, 4+ vg) — 0
as well.

while ky = —A

Appendix A: Tutorials 253

Now back to the main question. Let R = R; + R,. We have v;(t) = Vu(t) —
Vi(s) = 1/s. Using L rules with zero IC’s we get:

Ve =1/(Cs), Vi = Lsl.
vi(t) =vr+vc+ve — 1/s =IR+1/(Cs) + LsI

(/L)
s+ (R/L)s+ 1/(LC)

— [=

If D <0, we get: [= (1/w,L)[w,/F(s)] — i(t) = (1/w,L)e“sin(w,t)u(t).
If D >0, we get I = (1/L)[ai/(s + by) + ax/(s + by)] where a, = 1/b, a» = —1/b,
hence

i(t) = (1/bL)[e™" — e~*"u(s).

Tutorial 19

Q1: Find the transfer function of the feedback system shown below. All signals
are voltages.

-+
X(s) /—D D(s) Y(s)
x(t) + y(t)

G(s)

Solution: First, we define important auxiliary points [i.e., e(f) and r(f)] as shown
below.

-+ E(s)
X(s) */—_|—\ " D(s) Y(s)
x(t) e(t y(t)
+ R(s)
G(s)

r(t)

Now we write the system equations as follows:

e(r) = x(1) + r(1) (1)

This equation is in the time-domain. It is easier to transform to the s-domain using
L, since the convolution in the 7-domain would be transformed into a simple
multiplication in the s-domain. Taking the £ of both sides of (1) we get:

E(s) = X(s) + R(s) (2)

254 Appendix A: Tutorials

Similarly,
R(s) = G(s)Y (s) (3)
Y(s) = D(s)E(s) (4)
Using (2), (3), and (4) we get: Y(s)[1 — D(s)G(s)] = D(s)X(s)
s Y0 _ D

X(s) 1-D(s)G(s)’

Q2: Find the transfer function of the following feedback system.

+ +
X(s) (+) || R(s) |' (+) || D(s) || Y(s)
x(t) + :jg y(t)
|| G(s) |'
Tutorial 20

Q: The relationship between F{x(#)} and L{x(¢)} is given by:

F{x(0)} = L{x(1) } o,

or : X(w) = X(s)|s—jor
where «» = 27f. This holds on the condition that:

/ |x(7)|dt<oo [i.e.,x(t) is absolutely integrable].

Now decide whether X(w) can be found from X(s) for the functions:
1. 6(0), 2. u(®), 3. ¢" u(r), n is integer >0.

Solution:
1 [% |x(t)|dt = [~ 6(r)dt = 1 <infty. Hence, X(w) = X(8)l,zje-
From Tables: A(s) = L{5(1)} = 1. .. A(®) = A(s)|s—jo = 1.
20 % |u(@)ldt =[S u(t)dr = [° 1.dt — oo.
Hence, we cannot use X(®) = X(5)ls=jc-
Note that the Laplace transform of u(z) is: U(s) = % (Tables), and the Fourier
transform of u(t) is: U(f) = 346(f) —|—j2+rf (Tables).

Appendix A: Tutorials 255

Therefore, U(w) = nd(w)+;; [Using the relation &(2nf) =-0(f) from
Tables.]
It is apparent that U(w) # U()ls=je-

3. The function #'u(f) has no Fourier transform, but it has Laplace transform

. !
given by i

Tutorial 21

Q: Expand the following expression using partial fraction expansion, then find

Yz S
V() Y (s) = A

Solution: To find the inverse Laplace transform (£~') for an expression of the
form:
N(s) ap+ays+ -+ a,s"

M) = D) == pG—p) 5 —pn)

we apply partial fraction expansion rules as follows:

C1 (&) Cn
— 4 4+t .
s — D1 Nl 2} S — Pn

Y(s)

Notes:

1. If m = degree [N(s)] > n = degree [D(s)], perform long division first.
2. For complex conjugate poles p;,; = p,t we have cp = cz.
3. For a pole of multiplicity r at s = p; there will be r terms:

cal(s — po) + crol(s — p)* + -~ + cil(s — pp) in the expansion.

Now back to the main question.

Ys) 25 + 135+ 12 S i6o0o —54+V532—4x6
S) = Ky Ky = =
5+ Ds—p)(s—p2) 2 2

=-2,-3.

2574135412 _ b .
HCHCC, Y(S) = % Let Y(S) = 4—11+H—2+ﬁ

25 + 135+ 12 a b c

(s+1D)(s+2)(s+3) s—|—1+s+2+s—|—3

To find a do the following:

. s2 s b(s+1 c(s+1
1. Multiply by (s+ 1) : (Sf‘l)fsfz%lf_a =a+ ijz) + §?r3).

2. PutSZ—I:%:aJ’—O—FO—)a:%_

256 Appendix A: Tutorials

Similarly we get: b = 6 and ¢ = —9/2.
From Tables we find £~! of ¥(s) as follows:

1 9
y(t) =ae ' +be H +ce ' = Ee" + 6e 7 — 56_3’.

MATLAB: The above question can be solved on MATLAB® as follows:
A=[21312]; B=[16116]; [R,P,K] =residue(A,B)

where R gives the coefficients c;, P gives the poles p;, and K is empty if degree(a)
< degree(B). Note that B can be obtained using B = conv ([1 1],[15 61])
{multiplication of two polynomials}.

Tutorial 22

Q: A linear electrical system is described by the second-order differential
equation:

(1) + 5y'(1) + 6y(1) = x(1) (1)
with initial conditions:
¥(0) = 2;y'(0) = 1.
If the input voltage is given by x(f) = e~ u(¢), find the output y(¢).
Solution: From £ Tables we have:
¥ (1)=5¥ () = 3(07) = s¥(s) —2
Y/(0<s[s¥ () = 3(07)] = y/(07) = 7¥(s) 25— 1

x(t) = e u(t) Lo X (s) = si 1

Taking £ of both sides of Eq. 1, we get:

[s°Y(s) — 25 — 1] + 5[s¥(s) — 2] + 6Y(s) = erLl

1 28+ 135412
+1 s+1

252 + 135+ 12
(s+ 1)(s*>+55+6)
1

Y(s)[s* + 55+ 6] =25 + 11 +
N

Y(s) =

9
y(1) e+ 6e7 2 — Ee_3t (From Tutorial 21)

[\S]

Appendix A: Tutorials 257

Tutorial 23

Q: Find the autocorrelation function of x(¢) = [[,(r — 0.5).

Note that x(¢) is a deterministic signal.

Solution: From Tables: R(t) = (%, x(A)x(t + A)dA. Note that R(t) = x(1) * x(—1).
We follow the same steps that are necessary to find the convolution of two signals.

I, —T/2<t<T/2
From Tables: [[(1) = {0 e/lsewhere / }

I, —05<41-05<0.5 I, 0<i<1
*2) = H‘(/l —05)= {0, elsewhere } B { }

0, elsewhere

L f1 0<t4i<l R
x(‘[,' + A) _ = start end
0, elsewhere 0 elsewhere

Note that since we have x(z + 1) inside the integral, a positive A-shift t will give
negative shift to the function w.r.t the y-axis (contrary to the case of convolution).
Now we move the function x(t + A) from left to right while x(4) is fixed. We get
the following cases:

1 | H(2)
| I I | 7\'
-1 0 1
x(x)=n1(x-0.5)
L 1 I 7\,
-1 0 1
x(t+X)[t>0]
[1 1 | N
T -1 7 (] 1
-1 1-1
(Start) (End)
1 | R(7)
\/\\ T
-1 0 1

Case I: 1—1<0 (ie.,r>1)= R(r) =0 [no overlap].
Case 22 0<1-1<1 (ie,0<t<1)=R(1)= [y ‘di=1-1.
Case 31 0< —1<1 (ie,~1<1<0)=R(t)= [di=1+
Case 4: —t>1 (ie.,7< —1)= R(r) =0 [no overlap].

258 Appendix A: Tutorials

Notice that R(7) is Case even, with an Case absolute maximum at t© = 0.
MATLAB: The above question can be solved on MATLAB® as follows:

x = stepfun(t,0) — stepfun(t,1); y = xcorr(x)x*Ts;

Tutorial 24

Q: A white noise signal n(7) is passed through a RC circuit as shown. Find the
autocorrelation function of the output noise.

n,(t)

Solution:
1
X vel 1
Hf) =5 = Cl - : ,
R+Xc R+:1: 1+j2nfCR
_ F _h
Gu(f) = ﬂ/z‘W—KT’Rn(T) = 25(1')7
GuF) = H(IPG(F) = 1L =1
no = n 1 + 47'[2f2R2C2 - 2R21C2 + (27If)2
o 2ze
- 5 _
4RC (7e) +(2nf)?

R, (7) = FYG,(f)} = &e’% [Tables; Wiener—Kinchin Theorem].
Note that R,,(t) = E{n(#)n(t + 1)}, where & is the statistical expectation functional
[Compare with the deterministic signal in Tutorial 22].

Appendix A: Tutorials 259

Tutorial 25

Q1: A random telegraph signal x(r) with autocorrelation function R, (7) =
—altl

e , a being a constant, is applied to an RC circuit as shown. Find the power
spectral density (PSD) of the output random signal y(#).

'\/\I;\/‘ J: y(t)

+

)_((t) —[c

Solution: We have: H(f) = e +j2]nfRC

2a
a® + (2nf)?

1 2a
Gy(f) = IHPG.(f) = {1 + (an)zRZCZ}{“Z + <2“f>2}'

Q2: A random noise current signal x(¢) has a Case double-sided PSD normalized
to unit resistance given by:

Gi(f) = F{R(1)} = F{e I} = [Tables; using WKT].

G (f) = ¢ *W W/Hz/Q (Amp?/Hz).

The signal is passed through an ideal BPF with lower cutoff frequency at 1 kHz
and upper cutoff frequency at 5 kHz as shown. Determine the noise power at the
output if the load resistance is 100 Q.

x(t) y(t)
[
H(f) 2R =1000Q
H(f)
1 ‘4 —
-5 -1 0 1 5 f, kHz

Solution: The normalized output power is:

Sk

P, = / G,(f)df = / G (NIH(f)|*df =2 / e "V df = 0.008 W/Q.

1k

The total output noise power is 100 P, = 0.8 W.

260 Appendix A: Tutorials
Tutorial 26
Q: The autocorrelation function of a signal x(f) is defined as follows:

[x(A)x(z + A)dA, If x is an energy signal
R
L[x(A)x(x+ A)d2, If x is a periodic power signal

T,
R.(1) = ~T,/2
E{x(t)x(t + 1)}, If x is WSS random signal
/2
{= Jim + [x(A)x(x+ 2)d2 when x is ergodic}
T T2

with the following properties:

1. R, (—7) = R, (1) [i.e., it is an even function].

E(signal energy), If x is an energy signal
P(average signal power), If x is a periodic power signal
2. R.(0) = { P (average signal power) E{x*()}, If xis WSS random signal

ereode hm j /2 x2(t)dt

R, (1) has an absolute maximum at 7 = 0, i.e., IR, (1)] < R, (0)
Wiener—Kinchin Relations:

IX(F)| If x is an energy signal
N

ESD
F Xy 2 If x is a periodic power signal

Ri(r) <) Xl p p g

G.(f) If x is WSS random signal

PSD

Prove properties 1, 2, and 3 for energy signals.

Solution:
L Ro(—) = [% x(i)x(~ v+)da = [x(t + v)x(v)dv = Ry(x).
2 R (0) © X ())d/l = E (always posmve)
() < [k()P [= x(t+ 2)7dh = [|x(A)) a2 [using
Schwarz s mequahty, Tables.]

For real signals: |x(t)*= x2(1) — R2(1) <R%*(0) — |R(7)| < R,(0).

Appendix A: Tutorials 261

Tutorial 27

Q: A random current signal x(f) has a two-sided, normalized (to unit resistance)
power spectral density (PSD) given by:

0, O0<]|fl<lHz

— 2
Gx(f) = {0-}’17 1<|f]<o0 Hz}Amp /Hz

The signal is passed through a filter whose transfer function is H(s) = %

1. Determine the magnitude transfer function of the filter.
2. Determine the power transfer function of the filter.
3. Determine the average power (normalized to 1 Q) of the output signal y(?).

Solution:

L H()] = HS)| o= o = 5 or [H()| = oL

s=jo " |jo|) — 2nf”

2. |H()P= -

3. P= [, G H()Pdf =2 [° 20 L df = 0.000253 W/Q.

Tutorial 28

Q: A signal x(f) = 4cos(wy ?) is transmitted through two additive white Gaussian
noise (AWGN) channels and received as s; (f) = x(¢) + n; (¢) and s, (£) = x(¢) +
n, (1), where SNR; = 10 dB and SNR, = 0 dB. Find:

1. The expected values of s;() and s,(¢).

2. Noise power in both cases.

3. Roughly plot the pdf of n;(f) and n,(f). Which one has more spread around the
mean?

Solution:

1. Since we have AWGN, then E{n;(¢)} = E{n,(¢)} = 0 [at any time 7].
Note that &{n(t)} = statistical mean of n(r) = m = [*,.np(n)dn, while the
time mean is m, =+ fOT n(t)dt, T being the total time. If ¢ is discrete, then

m; = %Zg;ol n(k). If n(r) is ergodic, then m = m,.

262 Appendix A: Tutorials

0

——
Efsi(t)} = E{x(t) + ni ()} = E{x(0)} + E{mi (1)} = x(2).
Similarly: E{s,(1)} = x(¢).

2. SNR, dB = 101og;,(SNR;) — SNR; = 10SNR1(B)/10 — ¢
SNR, = P,/P,, = P, = P,/SNR, = P,/10.
P, =4*/2=8= P, =8/10 = 0.8 = —00.96dB.
Similarly: P,, = 8 =9dB.

1 ef(nfm)z/Za2
2no

3. Gaussian pdf is given by: P(n) = where m = mean,

o2 = variance.

Both n; and n, have zero means. Their variances are:
o2 =P, =08 -0, ~09 and o3 =P, =8 — gy ~28.

Since n, has more power, i.e., more variance, we expect that it has wider spread
as shown.

Tutorial 29

Q: Range Estimation by Radar: A narrow pulse s(¢) is transmitted by the radar
station towards the airplane. The pulse will hit the plane and reflect back to the
radar, where a matched filter (correlator) is utilized to estimate the distance
between the plane and the radar. Explain how the correlator is used for range
estimation.

Appendix A: Tutorials 263

R(t-t)
. correlator A t,
b r(t) y(t) b
—> —
h(t)=s(-t)
» » I t »
0a 0t t+a 0 tra tya

Solution: The received signal r(¢) is a delayed version of the transmitted signal
s(t), which is also corrupted by noise. It is given by: r(¢) = s(t — to) + n(?).
The correlator is a matched filter with impulse response given by:

h(t) = s(—t) [A reflected version of s(z) around vertical axis].

o0 o0

$(1) = r(1) * h(r) = / F(2)h(t — A)di = / H(2)s(i — 1)d
_ / 52 — 1,) + n(A)]s(4 — 1)d2
e / s(v 41— 1,)s(v)dv + / n(v+1)s(v)dv = Ry(t — 1,) + R(1).

Note: since h(f) = s(— 1), the system convolution is essentially a correlation.
Since the correlation is a measure of similarity, R,(¢) ~ 0.

From Tutorial 21, the autocorrelation Ry (¢t — t,) of a square pulse s(f) is a
triangular function with a maximum at r — ¢, = 0, or t = t,. Hence, if the pulse
width a is very small, we have just a pulse at the time instant ¢ = 7, at the receiver,
from which we can decide the time delay 7,,.

Now 2d = ct, (where ¢ = velocity of signal propagation ~ 10% m/s).

Hence, the distance to the airplane is d = ct,/2.

Tutorial 30

Q: In binary baseband communication, binary data (a sequence of 0’s and 1°s)
are transmitted through a channel using two orthogonal signals, s((t) [to represent

264 Appendix A: Tutorials

logic 0] and s, (#) [to represent logic 1]. If the data rate is R bps, then the time
duration of sy and s; is 7 = 1/R (s). A bank of two matched filters and a
comparator are used at the receiver for optimal detection of signals in noise. In this
question assume noise-free transmission, with sy and s, as shown, and R = 1 kbps.

1. Find the energy of sy and s, over T s.

2. Show that sy and s, are orthogonal.

3. Find the outputs of the two matched filters at the receiver as functions of time
over (0, T), knowing logic 0 was transmitted and received as r(f).

4. What is the decision of the receiver in step (3) above at r = 77

s, (t)
1 |
t
0 T
s, (1)
1 T ;
1= I
T2
Solution:
1. E, = [§ s3(hdt = T = 0.001 J; E, = [§ s7 (dt = 0.001 J.

2. fOT so(t)s1(t)dt = OT/2 dt — fTT/2 dt = 0 — s, and sjare orthogonal.

3
t t

ro = Output of the Ist correlator = /r(t)so(t)dt = /sz(t)dt =t

o

0
t

0
t
r1 = Output of the 2nd correlator = /r(t)sl(t)dt = /s(,(t)sl(t)dt
0

0

t
[dt =1, 0<1<T/2
0
= T/2 t
[dt— [dt=T—1, T/2<t<T
0 T/2

4. Att = T, the receiver makes a decision based on the output of the comparator.
Since r, (T) = T > ry (T) = 0, the decision is that logic 0 was transmitted. No
error is expected since we considered a noise-free condition.

T/2f el -
0 T/2 T

Appendix A: Tutorials 265

Tutorial 31

Q: A random signal frequently encountered in application is a sinusoid with

random phase as follows: s(f) = Acos(w, t + 0) where 0 is a random variable

uniformly distributed over (0, 27). Find the autocorrelation function of s(z).
p(6)

b

0 2n 0

Solution: Uniform distribution implies that: 2zb = 1; hence, b = 1/(2n). The pdf
of 0 is given by:

p(6) = { 1/(2n), 0<9<2n}.

0, elsewhere

Since s(¢) is a random signal, its autocorrelation is given by:

Ry(t) = E{s(t)s(t + 1)} = £ A%cos (w, + 0) cos[w, (t + 1) + 0]
———— ——

x y
AZ
=¢£ 5 [cos(2wot + w,T 4 20) + cos(w,T)] (using Tables)
x+y y—x

A? A?
= 7€{cos(2w0t + w,T+20)} + 78{003((001)}

2n

2 1 A2
= 7/ cos(2w,t + w,T + 20) 7 do + Ecos(wor)
0 ~—~
p(0)

A2
=3 cos(w,1)

Note: If we sample s(rf) with a sampling rate of f; = 1/T; = 1/(T,/4) = 4f,, the
resulting samples are uncorrelated since R, (Ty) = R, (T,/4) = 0.

UJ°T=1T/2 m°r=n/2
[i.e.,T= To/4] [i.e,t= To]

D i Na

266 Appendix A: Tutorials

Tutorial 32

Q: The pulse x(f) shown in Fig. a below is sent along a communication line. At
the receiver, a matched filter h(f) = x(—¢) is used for optimal detection.

1. Assume that the noise at the receiver has a flat spectrum, but is bandlimited to
10 kHz. The variance of noise is 2. What is the maximum signal power to
noise power ratio (SNR) at the input of the matched filter (i.e., what is SNR; at
the time of optimal detection)?

2. What is the maximum SNR at the output of the matched filter, SNR,?

What is the ratio (SNRy|,,.x)/ (SNR;|;ax)?

4. Repeat the above steps for s(7) in Fig. b.

w

(a) (b)

x(t) s(t)

— S |

0 T=1 0 T=1

Transmitter (Tx) AWGN Channel : Receiver (Rx)

0 s
M=xineny @ M Ag =y 0
X1 >(+) < HN >
SNR(f) = (B> / o SNR () = 2/ ci
x(t) G (f) h(t)
1 n/2 1
L, T 1, _ [.
01 B 0 B 10

Solution: Since h(f) = x(¢, —) will maximize SNR, at r =1, we expect.
SNR,|max at £ = 0O here, as #, = 0. Note that 7, is the time of optimal reception. We
can reach this result from x(¢) * h(f) as follows:

——
=x(A—t)

0 =) <hl) = [(yho =)"

|
=
<
|
=
=
=5
I
z

Following Tutorial 23, we find y(#) as shown below.

y(t)

1

-1 0 1

Appendix A: Tutorials 267

L.

SNR;(1) = |x(t)]*/a®> = 1/a® Vi€ (0,T) (1)

SNR, (1) 1ax = |y(0)\2/(7§ =1/0> (using the figure above) (2)

Now we find a3 as follows:

00 B
P=c= [Gnar= [Jar—us 0
B

—00

P=g= [Gnar= [aomnra =1 [Hoka @

Since h(f) = x(— t), we have

Hf) = X(~f) [Tables 5
Since x(t) is real, we have
X(-) =X"(f) G
H)P= HGH () =X ()X() = IX())
From (4) and (7) we have:
=1 [ix)Par)

Since IX(f) is a sinc function [Tables], then IX(f)I* decays rapidly and we have:

o]

2l / X(F) 9)

—00

Using Parseval’s theorem we have:

1

/|X(f|df— /|x)Pt = g/ dt:g (10)

—00

From (2) and (10) we have:

SNR, (1) | = 1/0% =2/1 (11)

268 Appendix A: Tutorials

3. From (1), (2), (3) and (11) we have:

SNR,(1)|
SNR,(I)l

1 2 2 .B
max __ /6020-_2:11_:28:20000
1/a*> o5 1n/2

max

Tutorial 33

Q1: Find the magnitude and phase response of the constant time-delay system.

x(t) —m—m—> Time-delay, T —> y(t)

Solution: The time-delay I/O equation is y(f) = x(— 7).
Taking the Fourier transform we get: Y(f) = X()e 7™ [Tables].

H(f) = Y(f)/X(f) = e [, h(t) = 6(t — T),using Tables).
Hence, the magnitude response is IH(f)l = 1 (constant), i.e., the time-delay is an all

pass filter. The phase response is ¢(f) = ZH(f) = —2= - fT. Note that the phase is
frequency dependent in a linear relationship (hence the name linear phase).

|H(f)l o= (-2 f 0 (F)

1
’ f 0’\f

Q2: Find the magnitude and phase response of the Hilbert transformer defined by:

o-(7 721}

x(t) ——> Hilbert Transformer, H(f) ——=> y(t)

Solution: H(f) = —jsgn(f) — h(z) = 1/(n-) [Tables, Duality of F].
|H(f)| = | —jsgn(f)] =1 (constant), i.e., Hilbert transformer (HT) is an
all-pass filter.

Appendix A: Tutorials 269

0 = 2a(r) = 2o —jsenis)] = { 5 () o= 8 S0

Hence ¢(f) is constant for physical frequencies f > 0.

Comparison: A constant time-delay 7 gives a constant (frequency-independent)
time-delay and a frequency-dependent phase shift ¢(f); HT gives frequency-
independent (constant) phase shift (90°) and frequency-dependent time-delay
[t; = (®2)lw].

|H(f)| o(f)
1 + 11/2

0

0

- T/2

Tutorial 34

Q1: Design a BP Chebychev-I 1 dB ripple filter with center frequency
fo = 10 kHz, bandwidth BW = 1 kHz, maximum gain G,, = 1, and stopband
gain <—10 dB for f < f; = 7 kHz and f > f, = 13 kHz. True load resistance is
R, =10Q.

Solution:

w, = wo + wp/2 = 2r(10k) + 2x(1k)/2 = 217k rad/s
where w, = BW = 0, — w;.
w; = wy — wp/2 =2n(10k) — 2n(1k)/2 = 197k rad/s.

Wy = o, = +/(217k)(197k) = 19.97nk rad/s.

22
o —w,

Using LP — BP transformation (Tables): oy = , we find the normalized LP

wwy
frequencies that correspond to f; and f, as follows:

wiy = —7.25 and w,y = 5.32.

We check the order n that gives gain <—10 dB for lwonl < oy < lopl; or
5.32 < wy < 7.25. From Chebychev-I curves (Tables), n = 1 gives gain <—
10 dB for wy = 7.25, but not for wy = 5.32. Hence, n = 2 is the suitable choice.

From Tables we obtain the normalized transfer function as follows:

ap GM 1
= =G
L1+ 1.09sy + 53 €

D 4o = 0.98.

HS = — —
(sw) Vite J1+025 L1

270 Appendix A: Tutorials

Using the transformation LPN — BP (Tables), we obtain the final transfer
function:

0.98
s2+w? 242 2
L1+ 109(50%) + ()

2 2
which is a 4th-order filter. Note that since sy — SJ::H

H(s) =

is quadratic, number of

poles is doubled by using this transformation.
Circuit Design: Using Tables, the scaling factors Z = 10 and F = w, = 2nk, and
the relation w§ = 1/(LC), we design the BPF circuit as shown below.

Rs=3Q 3.13H Denorm. Rs=3OQ 4.8mH LP—BP 300 4.8mH 52nF

- |_
® 057 :R=10 (O 9uF 2R =100 28 9uF 2400
F L L HH 3

Tutorial 35

Q: Find the values of k for which the analog system shown below is stable (k is
real).

+ N\
1
x(t) ,+i s(s7 1) y(t)
Constant gain, k

Solution: Using same approach as in Tutorial 19, we find the transfer function of
the system as follows:

H(s) = 1 - 1
' _s2+s+k7(s—p1)(s—p2)

—1+v1-4 1 /
Pra=——F"—"— :——i \/1— k———:l: ——

For the system to be stable, its poles p; and p, should be in the left half of the
s-plane.

Appendix A: Tutorials 271

Since k is real, % — k is either real (if % > k) or pure imaginary (but not complex)

(if § <k). If | /3 — k is imaginary, then both p; and p, will be in the left half of the

s-plane and the system is always stable.

Now assume 4/} —k is real, i.e., k<. For stability we need the following

condition:
1 1
54 Z_k<0 (to keep p; <0).

1 1

Combining k < § and k > 0 gives 0 <k < } as the overall condition in this case.
Now we summarize the real and imaginary cases above:

1. Case 1 (the root is imaginary): k > %
2. Case 2 (the root is real): 0<k < §

The combination of the two cases gives the final condition k& > 0.

Tutorial 36

Design a passive bandpass Butterworth filter with the following specifications:

Q:
1. 4th-order

2. Center frequency = 10 kHz

3. Bandwidth = 3 kHz

4. True load impedance = 600 Q
5. Maximum gain = 1.

Solution:
W = wy — % = 17km; @, = agm; = 19.77kn

The scaling factors are: ISF = Z = 600 and FSF = F = w, = 6kn.
Since LP — BP transformation is quadratic (Tables), we need a 2nd-order LPF as
the LP-prototype. Its transfer function is found from Tables as follows:

ao

H ==—> h b, =1 d b =141
(sw) T a——) where an |

Gd.cZszlza—OHa,,zb,,zl.

272 Appendix A: Tutorials

2 2
ST+,
NJA

Using the LP — BP transformation sy =
function of the BPF as follows:

(from Tables), we get the transfer

1
o 14+ 1.41 s2+0? 4 (serwf,)z

Swp SWp

H(s)

Circuit Design: Using Tables, the scaling factors Z = 600 and F' = w,, = 67k,
and the relation a)f, = 1/(LC), we design the BPF circuit as shown below.

RA1Q 141H poporm, 600 45mH b .gp gooq 45MH 5.76uF
N

Q R=120 01252 o0 2,073 70125 2 gpoq
F mH uF

Tutorial 37

Q: Find the transfer function of the following active filter and explain its function.

RZ
A%
R1 v
| %% -
R vt Y
X A% +
—_—c
Solution: i
Y R,
— = (1+=
ve= (k)
X. 1/(j 1
R+ X, R+ 1/(jwC) 1+ joRC
Y Yvt 1+R2 1 G,
X vVtx Ri) 1+ joRC 1+ jowRC

where G,, = 1 + Ry/R; is the gain of the filter.

Appendix A: Tutorials 273

The magnitude response is:

Gm
[H(w)| = 2
@)
—_1
where o, = TRC
Now we have:
H(0) = Gy;
0

Hence, the system is a LPF with cutoff frequency w, = JRE

Tutorial 38

Q: Determine and plot the spectrum at all points shown in the signal processing
system below. Consider only the frequency range 0—40 Hz.

Anti-aliasing Sampler Reconstruction
LPF & ADC DspP LPF
x() = —> H[(s) 0 i H(2) o H® —> v
sin(10nf)

100/(s + 100) f =40Hz leferentlator (1/f)sinc(f'f)
-z
Solution: The signal frequency is 2nf, = 10n — f, = SHz.

X() = 500) = 5:6(f +£,) (Tables) = [X()] = 337 ~£) +50(F +1£).

For IR()l we have: A = 0.5|H,(j2nf,) |—05’ 109 ‘ 0.47 (see the figure

/1014100
below).
For IV(f)l we have: B; = 18.8|H(e>™7)| = 18.8|1 — ¢72™/%| = 14.4, and
B, = 18.8|H (&>)Te)| = 18.8|H (/2 2%T0))| = 18.8|H(e7*™T)| = By.

For 1Y(f)| we have:

5
C = B |H,(fo)| = 14. 4‘—smc <40>’ =0.35 and D = B,|H,(35)| = 0.05.

Note: no need here to divide (1 — z~') by T, for accurate differentiation, since the
sampler performs this function.

274 Appendix A: Tutorials

IX(f) | 0.5 R | A
1 1 f 1 1 f
0 5 20 40 0 5 20 40
0.47f =18.8 18.8
IP(f)| s I vl | B fz
1 1
0 5 20 35 40 f 0 5 20 35 40 f, Hz
Y@l | €
T D
1 A f
0 5 20 35 40
Tutorial 39

Q: If the interest rate r is fixed and there are no account fees, then a savings
account in a bank represents an LTI system. Let x(n) denote the amount of money
deposited (or withdrawn) in the nth day, and y(n) be the total amount of money in
the account at the end of the nth day. Assume r is compounded daily.

1.
. Find the system output [using A(n)] at the nth day.

Find the impulse response A(n) of the system using a time-domain approach.

Find the system difference equation, the transfer function H(z), and the impulse
response h(n). Can we use the fft to find the output y(n)?

Solution:

1.

We need an input which is a delta function 6(n). Put $1 in the opening day
(n = 0) and $0 afterwards. Now we have:

¥(0) =x(0) =6(0) =1; y(I) =1+
¥(2) = y(1) + ry(1) = y(1)(1 +r) = (1 4 r)*. Similarly: y(n) = (1 +r)".

This is the impulse response of the system, {(n)}.

- y(n) = x(n) * h(n) = g x(k)h(n — k) = Soi_ox(R)[1 + 1",

For example, if r = 0.01% = 0.0001 and we put $100 in the opening day, $50
in the next day, $50 in the 3rd day, and nothing afterwards, then at the end of
the year we have: y(365) = x(0)(1 + r)*® + x(1)(1 + r)** + x(1)(1 + r)*® =
$207.41.

. New balance = old + r - old + new deposit

Appendix A: Tutorials 275

ym)=yn—1)+ry(n—1)+x(n) = (1 +r)y(n—1) +x(n)
Y(2) =1+ 'Y(@) +X(2) = Y@@l - (1 +r)z '] =X(2)

Y(z) 1 - < — h(n) = (14 r)" (Tables).

HO =X =T trneT e=(+n

This is an IIR filter, with a pole at z = 1 + r and a zero at z = 0. It is unstable.
We can use the FFT if {x(n)} has finite length and we are interested in y(n) for a
finite range of n, i.e., if 0 < n < M, where M is a finite number.

+
x(n) + y(n)

qﬂ

Tutorial 40

Q: An engineer wants to make a decision about the trend of a fluctuating stock
price. Based on a study of the stock market, he found that a period of 3 days is
sufficient for a temporary decision, where the importance (weight) of the price at
any day is twice that at the previous day. How can this engineer use the fft
algorithm to estimate the weighted average of the stock price over the last week,
knowing that the last seven prices were {12, 9, 10, 13, 8, 6, 9} dollars?
Solution: We need a 3-tap moving average FIR filter (N = 3). We should find its
impulse response first.

Assume that the percentage weight of today’s price is a = h(0) = a.

The weight of yesterday’s price will be a/2 =h(1) = a/2.

The weight of the price 2 days ago will be (a/2)/2 = al4 =h(2) = a/4.

Now we have 1 =a+§+94, from which a = 0.57. Hence, the tap weights are:
ho = 0.57, hy = 0.28, and h, = 0.14. The average price suitable for a decision
will be the output of the FIR filter:

¥(n) = h(n) < x(n) = 3 A(K)x(n— k); where = [, y] and
k=0
12 9 10 13 8 6 9

X =
0 1 2 3 45 6

The length of {y(n)} sequence is L=N, +N, — 1 =3+7—-1=09.
For efficient computation (especially in real applications, where N}, and N, can be
very large), we should use the fft as follows:

276 Appendix A: Tutorials

1. Zero-pad hto geth, = [h, hy h,000000]and xto getx, =[1291013869
0 0].
2. Compute: H, = fft(h,), X, = fft(x,), and Y, = X, H..
3. Find v, = ifft(Y,) to get
y,=y= [68 85 10 11.5 97 7.5 8 34 1.2]
0 1 2 3 4 5 6 17 8

Consider only the central 5 values of {y(n)}, i.e., items no. 2, 3, ..., 6.
Note: the coefficients {#(n)} can be adaptive based on change of market variables.

Tutorial 41

Q: Find x(n) if

(A) X(2) = 25,
(B) X(2) = 77553

Solution:

A) X(z) = Z%Z =3z} 5= 377 'R(2).

From Tables we find: rin) =2" u(n) and
7RG S (= 1) = 2 tu(n — 1).
Hence we have x(n) = 3r(n — 1) =3 - 2" u(n — 1).

—(— - 27
(B) 22—3z+2=0=pip = 2= 2((13)) e]
X(z) = (z—m)l(zfpz) = (z—l)l(z—Z) =45+ z—LZ (where we used partial fraction
expansion).

To find a:

1. Multiply by z— 1 : =il = a + b=}

2. Putzzl:ﬁ:aqLOHa:fl.

Similarly we find b = 1.

z—1+z—2_
From Tables and (A) above we find:
x(n) = —u(n — 1)+ 2" u(n — 1) = 2" = u(n - 1).

Note: Normally in such questions, it is better to expand X(z)/z rather than X(z).
Applying this to Q2 above, we get x(n) = $6(n) + [2"' — 1]u(n). Show that the
two answers are equivalent.

Appendix A: Tutorials 277

Tutorial 42

Q: Find the values of b for which the system shown below is stable, knowing that
b is real.

+ +
@

y(n)

Solution: We first define intermediate signals r(n), g(n) as shown below.

+ r(n) + ~

+ y(n)
,}(
g(n)

We write the system equations as follows:

y(n) =r(n) +g(n) (1)
g(n) =y(n—1) 2)
r(n) = x(n) — by(n —2) (3)
From (1), (2), and (3) we get:
y(n) = x(n) + y(n — 1) = by(n - 2) (4)

Taking the ZT of both sides of (4) and re-arranging terms we get:

_ ~ Y(z) 1 z
Y[l —z ' 46773 =X(z) = H(z) = = =
(Z)[z +0z] (Z) (Z) X(Z) 1—zl4bz2 2_z4b
1+v1-4b

The system has two poles at pj, = =5—=.

Since b is real, then /1 — 4b is either real or pure imaginary, but not complex.

C 1
CET A 1> 4b (e, VI—4b is real positive), then |g)|<1= —3< +

VI—ab<l. 3+<V1\/41‘b;411i0<2b<b}$0<b (intersection of
A ST —AF

b>—-2and b > 0.

278 Appendix A: Tutorials

Case 2: 1f1 < 4b (i.e., v'1 — 4b is pure imaginary), then

ool <1 = [1£jVa = 1| <2 > b<1.

Hence, combining Case 1 and Case 2 we get 0 < b < 1.

MATLAB: try > b =0.8; r = roots([1 —1 b]); a = abs(r)

Tutorial 43

Q: Find the values of b for which the system shown below is stable, knowing that

b is real.
+ +
x(n) n >(+) y(n)
+ E::| +
b/2I Ib/3
| |

Solution: It is better to define some auxiliary points on such diagrams. In this
question we define r(n), hence the other side of 27! will be r(n — 1).

+ +
x(n) ¥ rin) f+\ y(n)
=+ Ejlil
b/2

r(n-1)
y(n) = r(n) + (b/3)r(n - 1) (1)
r(n) = x(n) + (b/2)r(n — 1) 2)

It is not easy to find the I/O relationship from the time domain equations. Hence,
take the z-transform of (1) and (2) as follows:

e = RG)+ 55 RG) = |14 52 R ®)

R(2) = X(2) + 52 'R(E) = X(2) = [1 - ’;zl} R(2))

Appendix A: Tutorials 279

Y(z) 1+ b/3)z" z+4(b/3)

H(z) :X(Z) 1= (b/2)z7! Tz (b/2)

The system has a zero at z = —b/3 and a pole at z = b/2.
For stability we should have: |b/2| <1 — -, |b| <2.

Q: From Egq. 5 above, find the impulse response /i(n) and the difference equation
of the above system.

Tutorial 44

Q: Using the impulse invariance method, design a digital Chebychev LPF with
the following specifications:

1. T; = 0.01 s (hence, f; = 100 Hz),

2. f.=10Hz (. . = 20nrad/s),

3. G,, =1, gain < 0.1 (i.e., =20 dB) for 30 < f < f/2 = 50 Hz),
4. 3 dB ripple is allowed in the passband.

Solution: We need an analog Chebychev filter with the above specifications,
with gain less than —20 dB for normalized frequency f,, > 30/10 = 3 (normalized
w.r.t f.). From Tables we find the filter order n = 2, with normalized transfer
function:

o

H =
V) = 57079+ 0.64495y + 52

Since n is even, we have Gyg. = G,,/V'1 + & = 1/v/1.9953 = 0.7079.
Hence, a,/0.7079 = 0.7079 =-a, = 0.5. The denormalized analog transfer
function is obtained by the substitution sy = s/, = s/(207) to get:

1974

H,(s) =
() = 3705 T 40.55 1 52

Using Partial Fraction Expansion (Tutorial 19), we can write H,(s) as follows:
__a @ 7

S — D1 Nl 2}

where p; = —20.25 + 48.18i, p, =p; = —20.25 —48.18i, ¢ = —20.2i,
c; = ¢ = 20.2i1.
The z-domain poles are:

H,(s)

71 = exp(p1Ty) = 0.68 + 0.45i, z, = exp(pT;s) =71 = 0.68 — 0.45i.

280 Appendix A: Tutorials

Hence, the transfer function of the digital filter would be:

Z Z
H(Z) =T |:C1 + 2 :|
i—2 iI—22

e

=Tsz|cy + ¢ —

Z—2 Z2—2
|:CI(Z_H)+C1(Z_Z|):|

=Tz —

(z—z1)(z—71)

(cr +¢1)z— (e1z1 +¢121)

2—(z+m)z+ |zl

B 0.15z

22— 1362+ 0.667°

- s

Tutorial 45

Q: Using the impulse invariance method, design a digital filter with sampling
frequency 100 Hz and impulse response that matches the response of the following
3rd-order analog Butterworth filter:

H(s) = !

(s+1D(s=p)s=p)’

where p = —0.5 + 0.866i1

Solution: Using Partial Fraction Expansion, we write the transfer function as
follows:
1 c c

H,(s) =
(s) s—|—1+s—p+s—ﬁ

)

where ¢ = —0.5 — 0.28i.
The z-domain poles are:

z1 = exp (p1 Ty) = exp (— T) = 0.99,
2 = exp (pTy) = 0.995 + 0.0086i,
73 =72 = 0.995 — 0.0086i.

< < _ <

H(z) =T, +c +c —
() z—0.99 Z—2 ZI—2

Appendix A: Tutorials 281

Tutorial 46

Q: Using the bilinear transform, design a 4th-order BP Butterworth digital filter
with center frequency Q, = 1.5, maximum gain G,, = 1, and bandwidth €, = 0.4.
Solution: Since the transformation LP — BP is quadratic (Tables), we need a
2nd-order prototype analog LPF. The transfer function of this filter is given by
(Tables):

Qo

H(sy) = ——
(?N) bo +b1SN +S12V

where b, = 1 and b; = 1.41.

a, 1
Gie=Gp=1=200 g —by=1. > H(sy) = ———
& b, ¢ (sn) L+ Lalsy + 55

w, = tan(€,/2) = tan [(Q + g;”> /2] = tan(1.7/2) = 1.14

Q
w; = tan(€/2) = tan KQ - 2b> /2] =tan(1.3/2) = 0.76
wp = o, —w; = 0.38; wy = \/wym, =0.93

2 2
Using the LP — BP transformation sy = . ;:;g (from Tables), we get the transfer

function of the analog BPF as follows:

1
H(S) =)
1+ 1.41 s2+a? n (s2+w§)

Swp Swp

Using the bilinear transformation s = (z — 1)/(z + 1), we obtain the transfer
function of the required BP digital filter as follows:

1
(e=1)/(z+)P +0? <[<z1>/(z+1)]2+w;)2

H(z) =

o= 2
L+ 14 e, T Tenee,

Tutorial 47

Q: A radar station received the two signals at two different time intervals. A
correlator is used to analyze these signals using their autocorrelations. The
correlator outputs are as shown below. Comment on the structure of these signals.

282 Appendix A: Tutorials

(a) (b)

Solution: Figure a shows approximately a delta function with some disturbance,
hence the first signal is just a broadband noise. The pdf, mean, and variance
(power) of this noise can be found from the input signal itself.

Figure b shows a symmetric shape with disturbance everywhere and a maximum at
the origin, along with a narrow spike at the origin, hence the second signal is a
piece of information corrupted by broadband noise.

Tutorial 48

Q:

(A) Find the Hilbert transform of x(#) = sin (w,?). signals.

(B) Find the Hilbert transform of x(z) = sin (w,t) + (¢).

(C) Find the analytic signal z(7) associated with the real signal x(f) = cos (w, ?).
(D) Compare the spectra of these signals and comment.

Solution:
(A) Let H[sin(w,t)] = y(¢).
The transfer function of H is H(f) = {ejn,/z =-j [> 0} = —jsgn(f).
etim/2 =j f<0
From Tables: X(f) = 2%5(]‘ —fo) — zljé(f +f,). Hence we have:

Y(f) = Hf) - X(f) = —jsen(f) [zijcxf . zijcxf)

= _%5(}‘ —f) — %5(}‘ +f,) = y(t) = —cos(w,t) (Tables)

(B) Let H[d(2)] = d(¢), H[sin(w,?)] = y(), and H[x(z)] = z(¢).
From Tables, A(f) = FT{J()} =1

D(f) = —jsen(f) - A(f) = —jsgn(f)

Appendix A: Tutorials 283

From Tables we have: d(1) = 1/(n-t); an from (A) we have: y(f) = —cos

(w, t).
Since H is a linear system, we have: z(t) = y(t) + d(t) = —cos(w,t) + 1/(m - t).

(©) z(r) = x(1) + jH{x(1)}.
Using an approach similar to that in (A) above, we have
H{cos(w,t)} = sin(w,t).

Hence, z(1) = cos(w,t) + jsin(w,t) = &,

Now from Tables we have:
1 1
X(F) = 500 —fo) + 500 +£,); 2(6) = 6 —).

(D) Using the analytic signal, the negative part of spectrum is removed, while the
positive part is scaled by 2. This indicates that the use of the analytic signal
will lead to spectrum economy.

Tutorial 49

Q: Consider a first-order sinusoidal DPLL (SDPLL) under noise-free conditions,
center frequency f, = 1 Hz, and input signal x(f) = sin (6t + 7/4).

Find the system equation in terms of the digital filter gain G;.

Find the steady-state phase error ¢ in terms of Gjy.

Find the range of G, that ensures locking on the above incoming frequency.
Choose a value for G, inside the locking range and find the corresponding ¢ss.
Assuming #(0) = 0, plot x(¢) with the first three DCO pulses for the abovevalue
of G,.

M

Solution:
1. From Tables we find the system equation as follows:

Pk +1) = (k) — 0.Gisin[p(k)] + (& —)T,)

We have: w = 6 rad/s, w, = 2n rad/s, and T, = 1 s.
Hence, the system equation will be given by:

Bk +1) = ¢(k) — 6G,sin[¢ (k)] — 0.28 (2)
2. From (2) we have:
by = ¢, — 6Gsin¢] —0.28 = ¢, = sin~ ' (—0.047/G,) (3)

3. Locking conditions are as follows:
Condition I: From (3) we have:

| —0.047/Gy| <1 = G > 0.047 (4)

284 Appendix A: Tutorials

Condition 2: From (2) we have:
g(Y) = — 6G;sin(y) — 0.28
g () =1—6Gcos(¥).

If a solution ¢, of (5) exists, then g'(¢y,) = 1 — 6Gcos (¢pyy).
Fixed point analysis says that (Tables):

¢ exists if|g' (¢,)| <1 = |1 — 6Gicos(oy,)| <1

From Tables: cos(¢,,) = £1/1 — sin’(¢,).
From (3) we have

|pys| <7/2 = cos(¢y) > 0

Hence, using (3) and (7) we have:

cos(dy) = —I—\/l — sin®(¢y,) = \/1 (0.047/Gy)*.

Now substituting (8) in (6) we get:

11— 6Gi\/1—0.0022/G2| <1 = |1 — /36G% —0.08| <1
= —1<1—4/36G? —0.08<1
= —2< —4/36G; — 0.08 <0
= 0<4/36G7 — 0.08<2

= 0<36G3 — 0.08<4
= 0.047<G,<0.33

4. We have ¢ (0) = /4, x(0) = sin (n/4) = 0.7.
Using (9), let G; = 0.1. Hence:

(0)
()=T,—y(0)=1-0.07=0.93s,
(1)=T(1) =0.93s,
(1) = w.t(1) + n/4 = 0.08 rad,

x(1) = sin[¢(1)] = 0.08,
(1) = Gix(1) = 0.1(0.08) = 0.008,
(2)=T,—y(1) =1-0.008 = 0.99,
(2) =T(1) + T(2) = 1.92,
(2) = wt(2) + /4 = —0.26 rad.

Appendix A: Tutorials

£0)

n2)

t(2)

/N

Tutorial 50

t(1)
1

aNpa

N\

A S

t, sec

285

Q: The phase equation of a first-order sinusoidal DPLL is shown below. Find
approximately the steady-state phase error ¢,,.

o (k+1), rad

7

-7

¢ (k), rad

Solution: First, we plot the curve y = x. If there is a steady-state, this curve will
have two intersections with phase equation curve; one of them is the steady-state
point, where its projection on the y-axis gives ¢g. To determine which one is the
steady-state point, we choose randomly some value for the initial phase ¢ (0), and
then plot the phase plane diagram by successive projections on the equation and

y = x. For the above figure we choose ¢(0) = —1.5 and we find ¢, =~ —0.5.

o (k+1), rad

T -
7
+ .7
4
A1
7
e
7
7
o, .
¢ /J
q>1 // ss

-7

¢ (k), rad

286 Appendix A: Tutorials

Tutorial 51

Q: Design a digital controlled oscillator (DCO) with a clock rate of 1 MHz and a
center frequency of 10 kHz. Draw the block diagram and the output signal for an
input sequence of 0, 30, —30, 70,.... Indicate sampling times.

(Fixed Number)

.. Mo f_(Clock)
Digital Subtracter \I/ °\|/
' _ Programm- Zero
2s compl- ol Flll Adder e able e
ement M — MCounter Detector
o
’I\ Load Mo -N
\4
S I I

N DCO Pulses

(Input Number)

Solution: We have f. = 1 MHz, hence, T, = 1/f. = lus.

The center frequency is f, = f./M, = 10 kHz.

Hence, the free-running input number is M, = f./f, = 100.

For the given sequence, the values of the counter initial number are R, = 100 —
0 = 100; 100 — 30 = 70; 100 — (—=30) = 130; and 100 — 70 = 30;
respectively.

Hence, the sampling times are

0 (initial), 100 7. = 100u s, 170 u s, 300 u s, and 330 u s.

An illustrative (not to scale) diagram is shown below.

n:_ 130

5

s

3 100

2 70

c

g - —

o 30

T =14,
Time, t

Dco

Pulses | |

tus
0 100 170 300 330

Appendix A: Tutorials 287

Tutorial 52

Q: A block diagram of a delta modulation system is shown below, along with the
input signal. The step of the integrator is arranged to be 0.2 V, while the sampling
frequency is f; = 1 kHz. Plot on the same figure the estimated signal and the
output waveform. Assume that the integrator output was initially zero and the
quantizer output is 1. Suggest a demodulation circuit.

Clock (f,)

1
x(1) + _,'_1 y(t)

- Quantizer

x(t)| Integrator

J

Solution: The sampling period is 7y = 1/f; = 1/1000 = 1 ms. The plots are as
shown below.

288 Appendix A: Tutorials

Tutorial 53

Q: Use MATLAB to design a fourth -order elliptic lowpass filter with the
following specifications:

Pass-band peak-to-peak ripple, R, = 0.6 dB

Minimum stop-band attenuation R; = 18 dB

The normalized pass-band-edge frequency w, = 0.63 Then, implement this filter
by changing the filter properties to fixed-point representation.

Solution: We may use the dfilt object for this purpose.
The first step is to design the filter using the Matlab default double-precision
format:

M=4;Rp = .6;Rs = 18; wp = .63; [Den,Num| = ellip(M,Rp,Rs,wp);

Digital filter implementation using direct form—I:
H = dfilt.df1(Den, Num)

Second step is to convert the filter coefficients to fixed point format:

H.Arithmetic = 'fixed’
get (H)
H.FilterInternals = ’'SpecifyPrecision’

Note: “SpecifyPrecision” enables you to set your own wordlength and fraction
length for the output and accumulator-related properties.
Now set the hardware specifications:

set (H, ' InputWordlength’, 16, ...
'InputFracLength’, 13, ...
'ProductWordLength’, 24, ...
'AccumulatorWordLength’, 28, ...
"OutputWordLength’, 16);

H

Verify that the object dfilt has made an appropriate auto-scaling (Hint: check the
range of the filter coefficients).

Tutorial 54

Q: Verify the equivalence of the identities shown in the figure below. What is the
potential of these identities?

Appendix A: Tutorials 289

x(i)> Z-M ﬂlM _yin)E X(leM N Z-l _y}(n)

(@)

x(n) _; |y - (n)
—PTLE)DZL—D EX(Q»Z] —>TL _y}n

(b)

Solution: In both cases H(z) = z ', that is a time delay. In Fig. a, the right-hand
side can be expressed as

y(n+ 1) = x(Mn)
y(n) =x(M(n—1)) =x(Mn—M)

while the left-hand side is

v(n) =x(n—M)
v(Mn)) = x(Mn — M)

that is, both sides are of Fig. a are equivalent. The up-sampler shown in Fig. b
can be verified similarly. In both cases the right-hand side implementation is more
computationally efficient since after the down-sampler or before the up-sampler
the filter H(z) will operate at lower sampling rate. On the other hand, the left-hand
side implementation is wasteful as it processes a lot of zero terms.

Appendix B: Miscellaneous Exercises

Miscellaneous DSP Exercises—A

Q1:
Q2:
Q3:
Q4:

Qs:
Qeé6:
Q7:
Q8:

Q9:

Q10:
Q11:
Q12:

Q13:
Q14:

Q1s:
Q1e:

Explain the meaning of a “signal”. Give five examples of real-life signals.
State five classes of signals with brief explanations.

Draw a block diagram for an analog/digital signal processing system.
Show whether the Hilbert transform [that gives constant 90° phase shift for
all sinusoidal signals of the form x(f) = sin(w? + ¢)] is:

(a) Memoryless, (b) causal, (c) linear, (d) time-invariant, (¢) BIBO stable.
Define the Dirac delta function. How can we approximate it in applications?
How can we represent an analog system and its I/O relationship?

Both Fourier and Laplace Transforms are used to represent analog systems.
Which one is the more general?

State the conditions in the time-domain that an analog system is BIBO
stable. What are the equivalent conditions in the frequency domain?
Explain what is the physical meaning of the cross-correlation integral. State
an application for this integral.

What kind of signals can Fourier series represent? Is the Fourier series a
frequency transform? Can it reveal the frequency content of the signal?
How does the trigonometric Fourier series of an odd periodic signal look
like?

Can we use Fourier series to represent energy signals?

Can we use Fourier transform to represent periodic signals? How?

From the basic definition of Fourier transform, find and plot the amplitude
and phase spectra of the signal x(f) = exp(—5f)u(?). Is this an energy or
power signal? Why?

What is meant by the duality of the Fourier transform?

Using Tables, find the Fourier transform of the following signals and plot
their magnitude spectra:

1. sin(2z + 1), 2. cos(51), 3. 1, (4) 6(9), 5. u(r), 6. sgn(50), 7. I1; (), 8.
sinc(r — 5), 9. sinc(¢) cos(20¢).

291

292

Q17:
Q18:
Q19:
Q20:

Q21:

Q22:
Q23:
Q24:

Q25:

Q26:
Q27:
Q28:
Q29:
Q30:

Q31:
Q32:

Q33:
Q34:
Q3s:
Q36:

Q37:

Q38:

Q39:

Appendix B: Miscellaneous Exercises

State Parseval’s theorem for periodic and non-periodic analog signals and
define the power and energy spectra and spectral densities.

Explain why the single-sided Laplace transform is sufficient for engineering
applications.

From the basic definition, find the Laplace transform and its ROC for the
signal x(¢) = exp(t)u(?).

Plot the pole-zero diagram of the system H(s) = s(s + 1)/
[(s2 + 55 + 6)(s + 5)]. Is the system stable? Justify your answer.

What is the sample space of the die tossing experiment? How can we
represent outcomes of this experiment using a random variable? Is this
random variable continuous or discrete? Plot the pdf of this random variable.
Two dies are tossed. What is the probability that the first is 1 and the second
is 67

Explain the physical meaning of the statistical mean and variance of a
random variable.

Plot and find the mean and the variance of the following Gaussian pdf

1,7

p(x) = /=€
Two Gaussian noise processes n;(f) and n,(f), where the first has more
power than the second. Approximately plot the pdf’s of the two noise
random variables. Are n; and n, energy or power signals?

Find the mean and variance of the random signal x(f) = sin(wf) + n(f),
where n(f) is Gaussian noise with variance = 0.1.

State the Wiener—Kinchin theorem for WSS random signals.

Define the autocorrelation function of a random variable X(7).

Explain the meaning of white noise. What is the effect of an ideal LPF on
the correlation between white noise samples?

Outline the principle of a matched filter. State an application for matched
filters in binary communications (Plot the block diagram).

Show that the matched filter is essentially a correlator.

Show that the ideal analog LPF is a non-causal system. How can we modify
this theoretical system to be practically realizable?

What are the advantages of active filters over passive filters?

What is the importance of impedance matching between successive stages
of an electrical system? How can we attain this aim when designing analog
passive filters?

What does the 3-dB point of a filter mean?

If a sixth-order analog BPF is required, what is the order of the prototype
normalized LPF? Why?

Find the transfer function and draw the circuit diagram of a second-order
Butterworth LPF with cutoff frequency f. = 50 Hz, maximum gain
G, =1,and RL = 10 Q.

What is the function of the following circuit? Find the transfer function and
plot approximately its magnitude frequency response (Fig. B.1).

What does uniform sampling mean?

Appendix B: Miscellaneous Exercises 293

R
Fig. B.1 Problem Q38 %%
1 RT V_
It A% —
R —Y
X ANAN +

Q40:

Q41:
Q42:

Q43:

Q44:

Q45:

Q46:
Q47:

Q48:

Q49:
Q50:

Q51:

Q52:
Q53:

Q54:
Q55:

Q56:

T
1

The signal x(f) = sinc(t — 5) is sampled with f; =2 Hz. Plot the
magnitude spectrum of the digitized signal x(n). Is there aliasing? How
can we reconstruct x(¢) from x(n)?

Explain what frequency aliasing means.

Find the convolution of the two signals: x(n)={2,3,4} and
y(n) = {1,-5}.

Explain the meaning of the DTFT and the DFT. How can we represent
digital systems and their I/O relationships in the time and the frequency
domains using these transforms? Which transform is more useful in
practice?

Which is more general: the DFT or the ZT? How can we represent digital
systems and their I/O relationships using the ZT? How is the ZT related to
DTFT?

State the conditions in the time-domain that a system is BIBO stable. What
are the equivalent conditions in the z-domain?

What is the relationship between the s-plane and the z-plane?

Explain why the single-sided z-transform is sufficient for engineering
applications.

Explain why the digital subsystem H(z) = z~' represents a unit delay for
causal systems. How can we implement this system using digital hardware?
What is meant by the FFT?

Find the difference equation, the transfer function, the impulse response,
and the frequency response of the digital system shown in figure below,
noting that fs = 1 Hz. Is it FIR or IIR filter? LP or HP? What do you expect
the function of this system? Does it have an exact linear phase? Plot the
pole-zero diagram. Is the system stable?

a) What is the energy of the digital signal x(n) = 0.5 n Ty u(n), knowing that
fs = 100 Hz? (Ans. 0.726 J) (Hint: use Tables for summation.)

What is the energy of the analog signal x(f) = 0.5 ¢ u(7)? (Ans. 0.721 J)
How can we make the circular convolution of two finite digital sequences
x(n) (length N;) and h(n) (length N,) equal to their linear convolution?
State the advantages of DSP over ASP.

Explain the function of the moving average digital filter. Is it FIR or IIR?
State a real-life application for this filter.

Design a digital integrator. Is it FIR or IIR? LP or HP?

294 Appendix B: Miscellaneous Exercises

Fig. B.2 Problem Q50

x(n) Az

y(n)

Q57: Implement the following digital system in cascade:

(2z—-5)(z+1)

HE)=ise e

Q58: Why do we normally choose complex poles as conjugates in digital

systems?

Q59: How can we equalize the distorting effect of a communication channel?
Q60: What are the advantages of FIR over IIR filters?

Q61: Explain Gibbs phenomenon and how it can be dealt with in digital systems.
Q62: Design an ideal FIR HPF with cutoff frequency = 20 Hz, knowing that the

sampling frequency is f; = 100 Hz. (Hint: use Tables fo find h(n) for LPF,
then convert to HPF).

Q63: Plot the pole diagram of the sinusoidal digital oscillator. How can we

deduce the frequency of oscillation from these poles?

Q64: Simulate the following DSP systems using MATLAB (find the output time

signal for arbitrary causal input x(n) and the frequency response of the
system):
(a) The system shown in Fig. B.3 (b) The system shown in Fig. B.2.

Q65: Design a digital DC blocker with f; = 20 kHz that attenuates the frequency

f =20 Hz by —0.1 dB.

Q66: A signal x(f) = sin(¢) is corrupted by AWGN n(r) with SNR = 0 dB.

Simulate the noisy signal s(f) = x(¢) + n(f) using MATLAB and find the
spectra of all signals. Design a Butterworth analog LPF to reduce noise and
find the output of this filter.

Q67: A random signal n(r) is received and saved as a data file with f; = 1 kHz

and length N = 1000 samples. Write a MATLAB code to find the pdf of
this signal.

Q68: An analog signal has a time duration of 3 ms. How long would be the

frequency range of this signal?

Answer to Q4 (Hilbert Transformer):

1.

We have y(1) = x(wt — 1/2) = x [a) (t - ﬂ)] . Hence, there is a time-delay of

(&)

2 . .. 2
%, where the new time axisis t, =t — % Therefore, the system has memory.
It is causal since there is no time-advance.

. Consider only positive frequencies, hence the phase shift is —n/2 [see Tutorial

33]. Consider sinusoids in complex exponential form.
Let z(7) = ae/(®*¢) 4 be/(@21+4) where a, b, ¢ and d are constants. We have:

Appendix B: Miscellaneous Exercises 295

x(n) =¥ @% y(n)

Fig. B.3 Problem Q64

T[z(1)] = z(t)e ™2,
T |:aej(m]t+c):| 4T |:bej(wzt+d):| _ ae/'((u,t«kc)efjn/Z + be/‘(wthrd)efjn/Z

= [ae’<‘”"+c) + bej<‘”2’+d)] e 7™? = T[z(1)]. Hence, it is linear.
4. Let y(f) = Tx(1)] = ¢ * <~ ™ (output of HT). Now
Th(t —1,)] = T[ej[(u(tftn)+c]:| — Jloli—t)+e—m/2] _ Yt —1,).

Hence, it is time-invariant.
5. Clearly it is BIBO stable, as it does not affect the magnitude of the signal.

Miscellaneous DSP Exercises—B

Q1: Explain why we cannot use the impulse invariance method to design high
pass digital filters (Hint: due to aliasing).

Q2: Show that the bilinear transformation preserves stability between the analog
prototype filter and the digital filter (Hint: show that the LHS of the s-plane
is transformed inside the unit circle in the z-plane, as shown in the Lecture
Notes).

Q3: Can we use the bilinear transformation to design a digital HPF from an
analog prototype HPF? (Hint: yes, since there is no aliasing).

Q4: Explain how the analog frequency is transformed using the bilinear
transformation (see Tables).

Q5: Can we use the global average to find the trend of prices in a stock market?
Why? What kind of filter do you suggest for this purpose? Why? (Hint: no,
since the price trend is non-stationary, i.e., time-varying. We use either an
FIR moving average filter, or an alpha filter. We prefer the alpha filter for its
simple structure).

Q6: Explain how we estimate a communication channel transfer function using
an FIR filter.

296

Q7:

Q8:

Q9:

Q10:

Qll:

Q12:
Q13:

Ql4:

Appendix B: Miscellaneous Exercises

Where do you expect the poles of a digital resonator to be located in the z-
plane?

(a) Draw a block diagram for a generic FIR filter of order N.

(b) Plot the impulse response of this filter.

(c) What is the condition on this filter to have a linear phase transfer
function?

(d) Plot the impulse response of a linear FIR filter and draw an
efficient block diagram assuming N is odd.

Two digital filters have impulse responses given by h(n)={1,2,—1,—1,2,1}
(starting at n = 9) and hy(n) = {1, 2, —1, 5, —1, 2, 1} (starting at n = 0).

(a) Which one is an FIR filter? (Ans. both)

(b) Which one have a linear phase transfer function? (Ans. both, as they
have symmetric impulse response.)

(c) Plot the above impulse responses.

(d) Draw the efficient implementation diagrams of these filters.

(a) Plot the transfer function of an ideal digital LPF with cutoff frequency
10 Hz and sampling frequency 50 Hz. Use the frequency range [-100,
100 Hz].

(b) Roughly plot the impulse response of this filter.

(c) repeat part (a) for a high-pass filter with cutoff 10 Hz.

Explain Gibbs phenomenon. How can we alleviate the effect of this
phenomenon? (Hint: when we truncate the infinite impulse response of an
ideal digital filter using a time window, we get magnitude ripples in the
filter transfer function, with maxima at the ends of the transfer function.
This ripple is significant when we use a rectangular widow.)

Explain why we need just one matched filter at the receiver of a binary
communication system with antipodal signals (symbols).

Explain the basic operation of the optimal receiver in a binary communication
system with orthogonal signals. [Hint: it consists of two matched filters, one
matched to the symbol that represents logic “0”, the other to “1” (explain how
we choose the impulse responses). If “0” was transmitted, the output of the
first matched filter (which is matched to “0”) will be higher than that of the
second (which is matched to “1”). This is because the matched filter is a
correlator. Hence, the comparator will decide that “0” was transmitted.
Similar reasoning if “1” was transmitted, where the output of the second filter
will be higher this time. Draw a block diagram.]

A signal x(¢) = sin(w f) was corrupted by a white Gaussian noise n(f) with
variance 0.1. Find the statistical mean, time mean, and variance of the
signal s(f) = x(¢) + n(?). [Ans. Statisticalmean = mean {x(t) + n(t)} = mean
{x(®)} + mean {n(t)} = x(t) + 0 = x(¢), thetimemean = mean{x(t)} + mean
{n(®} = 0 + 0 = 0. Note that since n(¢) is ergodic, its time mean = its
statistical mean.]

Appendix B: Miscellaneous Exercises 297

x(1) >§§ p(t)=y(t) [in-phase]
cos(mct) +
—90° | HT + s(t)=y, (1)
sin(mct) +
X

q(t) [quadrature]

Fig. B4 Problem Q18

Q15:

Qle:

Q17:

Q18:

Q19:

Q20:

Q21:
Q22:

Q23:

Q24:

Q25:

Q26:

The analog Hilbert transform is a linear system that shifts the phase of the
input signal by —90°. Explain the operation of this system in the frequency
domain and in the time domain.

Define the analytic signal and explain how it can be used for spectral
economy.

Explain with an example why we modulate signals before radio
transmission.

The figure below shows SSBSC AM generator. Show how this structure is
used for spectral economy. Suggest a demodulation circuit (Fig. B.4).
Explain the operation of the first-order sinusoidal DPLL with a sinusoidal
input. State and comment on the system equations. Draw the block diagram
and the sampling process.

What are the main advantages of digital PLLs over analog PLLs?

Draw the block diagrams of a generic analog PLL and a generic DPLL.
Explain the meaning of the locking range of a DPLL.

Explain how can the DPLL track the frequency of a sinusoidal signal
corrupted by noise. [Hint: the peak of the PLL frequency pdf will estimate
the input frequency, if the original frequency is inside the loop locking
range.]

How do you expect the relation between the variance of the PLL frequency
and the input SNR? [Ans. the variance decreases when SNR increases; it
approaches zero (hence the frequency pdf will approach a spike over the
true input frequency) if the SNR is very high.]

For a sinusoidal input signal x(f) = A sin [w,f + 0 (?)], the phase equation in a
first-order SDPLL is given by ¢ (k) = 0(k) — w, Zf:ol y(i), where y(i) is the
output of the digital filter at the ith sampling instant, and 0(k) is the
information-bearing phase. Explain (with a block diagram) how to
demodulate PM signals using SDPLL.

Find the system equation for the second-order SDPLL.

298

Appendix B: Miscellaneous Exercises

Clock (f,)

+ y

1
x(t) J _’T y(t)

Fig. B.5 Problem Q37

Q27:

Q28:

Q29:

Q30:

Q31:
Q32:

Q33:

Q34:

Q35:

Explain the basic operation of an adaptive filter. State how can we choose
the reference signal in communications and noise reduction. Draw a block
diagram for an adaptive noise canceler.

The algorithm for adaptive Wiener filter is as follows:

Define:

h(k) = [ho(k)hy (k) ha(k) - - - hy(k)], the filter coefficients at the kth instant.
y(n) = [y(n)y(n — 1) ---y(n — M)], the observed signal vector at the time
instant n. The algorithm can be described in vector form (MATLAB-like
code) as follows:

h(0) = 0; % Initialize the filter coefficients.

For n = 1: N % N = length(y);

X(n) = h(n — 1) * yT(n); % Filter output (this is matrix multiplication).
e(n) = d(n) - x(n);

h(n) =h(nh — 1) + ¢ * e(n) y(n); % u is the convergence-accuracy
coefficient.

end Show how to implement this algorithm using DSP hardware.

What is the basis of finding the coefficients of the Wiener filter? [Ans.
minimizing the mean-squared error between the estimated signal and the
reference signal.]

What is meant by the intersymbol interference (ISI)? Explain how an
adaptive filter with a training sequence can be used for ISI reduction.
What are the mean and variance of uniform quantization noise?

Explain why we need non-uniform quantization for audio applications, and
how to achieve this kind of quantization.

How can we improve the signal-to-quantization noise ratio? Explain [Hint:
by oversampling.]

Explain how the oversampling process can assist in reducing the order of
the anti-aliasing filter of the compact disc system.

With a block diagram, explain the operation of the analog delta modulation
system. Suggest a demodulation circuit. What is the slope overload? What
is the granular noise? How can we improve the accuracy of this system?
Implement the system in the digital domain.

Appendix B: Miscellaneous Exercises 299

Q36: Why do we need an adaptive delta modulation system? An adaptive

algorithm for the step size is given by: A, = A, K*"»"=1) where K > 1
is a constant. Implement this algorithm using DSP hardware. Draw the
block diagram of the adaptive modulator and the demodulator.

Q37: A block diagram of a sigma-delta modulator is shown below. Suggest a

decoder. Represent this system in Laplace domain and show how it can be
used for noise shaping (Fig. B.5).

Q38: Why is the sigma-delta modulator more appropriate for audio applications

than the delta modulator?

Q39: Design a circuit for DC blocking.
Q40: Design a digital SD modulator and demodulator.

Miscellaneous DSP Exercises: C

Ql:

Q2:

Q3:

Q4:

A fifth-order elliptic low-pass filter with the following specifications:

Pass-band peak-to-peak ripple = 0.5 dB

Minimum stop-band attenuation = 40 dB

The pass-band-edge frequency = 0.3n Use Matlab to implemented this filter
with second-order sections.

A 12-bit A/D converter is used to sample an analog signal. The sampled
signal x(n) is stored in the lower bits of DSP processor such that the
corresponding maximum dynamic range will be 1/16. Then x(n) is to be
passed to a 16-bit IIR filter whose transfer function is

1

H(&) =15 og1

Scale the output signal such that its upper limit does not exceed unity.
Consider the first-order IIR filter described by the infinite-precision difference
equation

y(n) = —0.625y(n — 1) + x(n).

Show whether this system would trap into limit cycle when implemented
using 4-bit (a) rounding arithmetic, (b) truncation arithmetic. Let x(n) = 0 and
y(0) = 3/8. Find the magnitude and frequency of the oscillation for each case,
if any.

A second-order IIR filter described by the following infinite-precision
difference equation

y(n) = —a1y(n — 1) — azy(n — 2) + x(n).

Derive the dead band bound that govern the occurrence of limit cycles in this
structure when implemented using rounding arithmetic.

300

Appendix B: Miscellaneous Exercises

Miscellaneous DSP Exercises: D

Ql:
Q2:

Q3:
Q4:

Qs:
Q6:

Q7:

Q8:

Qo:

Prove that ¢y (n) = LS 10, e 72mn/M,

Figure B.6 shows the spectrum of a band-pass signal. Show that down-
sampling this signal by M = 3 produces an alias-free spectrum.

Write a MATLAB code to change the sampling rate from 48 to 44.1 kHz as
explained in Example (2), Chap. 5.

Consider the sinusoidal signal x(n) = cos (0.1 nn). Determine the frequency
spectrum of the 3-fold down-sampled version.

Prove the decimation and interpolation identities shown in Fig. 5.13.
Given the following specifications of the sampling rate conversion DSP
system shown in Fig. 5.11: L = 2, M = 3 and the input audio signal is
sampled at 6 kHz, whereas the output signal sampling rate should be 9 kHz.
Determine the filter length and cutoff frequencies for the required filter
(window design method could be used).

The signal x(n) was sampled at a frequency f; = 10 kHz. Consider the
following two cases: (a) Resample x(n) at a new sampling frequency f;; = 22
kHz. (b) The signal signal x(n) is to be resampled to a new sampling
frequency f;> = 8 kHz.

Consider the transfer function of a FIR filter: H(z) = 0.25 + 0.5 7' + 0.75
22472+ 1.257* + 1.5 77°. Use polyphase decomposition technique to
implement a factor of M = 3 decimator.

A single stage decimator structure is used to reduce the sampling rate of a
signal from 12000 to 500 Hz. The specifications of the single-stage
decimator low-pass FIR filter H(z) are: pass-band edge = 225 Hz, stop-band
edge = 250 Hz, pas-band ripple = 0.004, and stop-band attenuation = 0.001.
Assume H(z) as an equiripple linear-phase FIR filter.

X(e ™)

- 0 T 3n

Fig. B.6 Problem 2

Appendix B: Miscellaneous Exercises 301

Q10: To convert the CD audio at the sampling rate of 44.1 kHz to the MP3
sampling rate of 48 kHz, a conversion factor of L/M = 160/147 is needed.
Single-stage scheme would require an unfeasible FIR filter sizes for
interpolation and decimation. How would you tackle this problem?

Appendix C: Tables and Formulas

Basic Definitions

<
The rectangular pulse: II(¢/T) { ’ flltle_wié r2e }
<
The triangular pulse: A(#/T) { l‘/ T, ejltle;vﬁé r2e }

1, t>0
The unit step function: u(t) = { 0. 1<0 }

The sinc function: sinc(f) = (”)>

>
The signum function: sgn(f) = { _li Z<8}

Useful Formulas

1. €% = cos(¢) + jsin(¢) (Euler);
|eij<f>| =1;
cos(x) = cosh(jx) = (¢ + e) /2;
sin(x) = (1/7)sinh(ix) = (¢ — e7%)/(2);

2. cos’(¢) + sin’(¢)
tan(x) = sin(x)/cos

=1
(%);

cos’(¢) = (1/2) + (1/2)cos(24);
sin(¢) = (1/2) = (1/2)cos(2¢)

303

304 Appendix C: Tables and Formulas

3. cos(x £y) = cos(x)cos(y) F sin(x)sin(y);
sin(x £ y) = sin(x)cos(y) £ cos(x)sin(y);
tan(x £ y) = [tan(x) & tan(y)]/[1 F tan(x)tan(y)];
(

sin(2x) = 2sin(x)cos(x); cos(2x) = 2cos?(x) — 1.

4. cos(x)cos(y) = (1/2)[cos(x — y) + cos(x + y)];
sin(x)sin(y) = (1/2)[cos(x — y) — cos(x +)]
sin(x)cos(s) = (1/2)[sin(x —) + sinx +)}

5. tan(x/2) = sin(x)/[1 + cos(x)] = [1 — cos(x)]/sin(x);
sin(x/2) = £4/[1 — cos(x)]/2;
cos(x/2) = £+/[1 + cos(x)]/2.

6. sinh(x) = (e —e™)/2;
cosh(x) = (e +e7)/2;

tanh(x) = sinh(x)/cosh(x);
sinh ™! (x) = In(x + Va2 — 1);
cosh™' (x) = In(x + Va2 — 1);
tanh= (x) = 2In "~

7. df(y)/dx = [df (y)/dy][dy/dx];

d [/f(u)du} /dt =f(t), where a is constant

a

Appendix C: Tables and Formulas

8. dx'/dx= ax*

/x“dx =x"(a+1),(a#-1);
dln(x)/dx = 1/x;

/x_ldx = In(x);

9. df(y)/dx = [df(y)/dy][dy/dx];
dsin(x)/dx = cos(x);

dcos(x)/dx = —sin(x);
dtan(x)/dx = —1/cos*(x);
de*[dx = €*;

dc* [dx = In(c)c;

dtan™'(x)/dx = 1/(1 + x*);
dtanh™' (x) /dx = 1/(1 — x%);
dsinh~'(x) /dx = 1/v/x2 + 1

dcosh™ (x)/dx = 1/Vx® — 1;
dsin™!(x) = —dcos™! (x) = 1/V1 — 2.

=

10.

i

‘lrn:{urN])V/’(l—r), 71

=z 3
i

N
(a—i—nr)fz

Il
=}

n

11. If log,(y) =x <y =10
log,, (xy) = log, (x) + log, (v);
log,,(x/y) = log,(x) — log,(y);
log,, (x") = nlog,(x); x" =1;
log, b = 1;
log, (v) = log.(y)/ log.(b);
log,(a") = x.

Ra+(N—1)r] = % first + last].

305

306

12.

13.
14.

15.
16.

17.

18.
19.

20.

Appendix C: Tables and Formulas

Natural logarithm: In(x) = log,(x), e ~ 2.718281828459 - - -;

Common logarithm: log;o (x).

Power series expansion: 1/(1 —x) =1+x+x>+x> +--- (for [x|<1);
sin(x) =x—x*/3!+x° /5! -

sin™!(x) =x+x° /6 +3x° /40 +5x7 /112 +35x° /11524 --+;

cos(x) 1—x? /204 x* /4! —

os H(x)=n/2—x—x*/6—3x°/40—5x" /112 —--- (for|x|<1);
tan(x):x+x3/3+2x5/15+17x7/315+62x9/2835+--- (for |x| <m/2)
tan”'(x) =x—x*/3+x°/5—--- (for|x|<1);

tan ' (14+x)=n/4+x/2—x*/4+x°/12+x° /40 +---

e =x+x*/2!4+x° /3! +--- (for x| <o0);
In(14x)=x—x*/24x"/3—x*/4+- (for|x|<1)

The convolution integral: x(¢) h(t) = f (Va(t — A)d2;

The correlation integral: Ry (1) = [~ + 1)dt;

Autocorrelation: R, (1) = f ()x(t +)

Discrete convolution: x(n) « h(n) =Y ;= x(k)h(n —k);
Dirac delta function, 6(¢): It is defined by the integral

/ ()3t — 1,)dr = x(1,),

where x(f) is any continuous function
Note that: é(at) = (1/|a])d(); 6 0); [, 0t

x() % 0(t —t,) = x(t — 1,);x(2)0(¢ — 1,) = x(8,)0(t — 1,)

Gaussian distribution: p(1) = ﬁe (3—m)* /2

Schwarz’s inequality: | [g1 (x)ga(x)d)c|*2 < ([le1(x)]*dx) ([|g2(x) [dx)
(equality holds only when g, (x) = kg, (x), k being a constant.)
Roots of the quadratic equation: ax® + bx + ¢ = 0 are given by

2 .
, m =mean, c- = variance

—b £+ Vb? —4ac

n2= 2a

Appendix C: Tables and Formulas

307

21. Complex cubic roots of 1: Call them {ulk = 0, 1, 2}. Let z = 1. Then:

z=1=1" = V7 =

— k)3 _ {1791‘211/3,6;‘41:/3} _ {1’

(@*)' 3k =0,1,2,..

3
—-1£V3

} = {ulk = 0,1,2}.

Complex cubic roots of a real number a = h? are {re=hu 1 k=0,1,2}.

22. Roots of the cubic equation: x> + ax® + bx + ¢ = 0.

Letp=b——;
2a% — 9ab

g=c+—m—;
3q q° p*

h=Al24+ /2 +5
2 127

I'e = huk{k == 07 1,2}

Then: x; =
23. (x+y)"

i Bl

- Zk:() (n,

p = 0 so that i # 0;

Laplace transform pairs and theorems

(&£ : take either 4+ or —; but choose carefully when

k)x"~*yk where C(n,k) = n!/[k!(n — k)!].

x(1) X(s) Property Transform pair
o) 1 Linearity ax(t) + by(t)HaX($) + bY(s)
1 .
u(t) < Scaling x(ar) <—>X(s/a)/\a|
Z" M(Z) ‘”% Time shift (delay) X(t _ lo) <L>X(s)e_‘“”, t, > 0
. .
M(I) e s-Shift x(t)e"" (i}x(s + a)
o) G Convolution x(1) * y(1) é»X(s)Y(s)
sin(w, Hu(r) A-zafiug Conjugation x(1) L X*(s%)
cos(m, Hu(r) ool Initial value theorem limy_o x(¢) = lim,_, sX(s)
t sin(w, Hu(t) (T—Y)Z Final value theorem limy— oox(#) = lim,_,o sX(s)
5° w,;
W,
t cos(w,, u(t) rer? Time differentiation dx(7) / dt<—> sX() — x(07)
—at _: w, . . .
e sin(w, Hu(t) orar1en Time integration fo u)du (_) ()
—at s+a s 1: : n
e cos(w, Hu(t) T TR Multiplication by ¢ t”x(l) {_}(71)71 d" jfg)7 n= integer

308

Fourier transform pairs and theorems

Appendix C: Tables and Formulas

x(2) X Properties

0T =Ty () T sinc(T)) ax(t) + by(t) <= aX(f) + bY(f)
A@W/T) = Ar(t) % sinc*(%f) xat) < X(f/a)/|al

sinc(Lf) LITL(f) x(—t) <L X(—f)

e un,a>0 L x*(t)éx*(—f), X (=1) = X"(f)
te:‘: ut), a>0 (a+j12nf)2 X(1) <2 x(—f) X (1) <2 x(f), x even
e a>0 UZHZ#/)Z x(t—1t,) <_>X(f)e*12nﬂn
el x(1)e1 Lo X (f ~)

o x(t)cos(2nf, 1) < SX(F—1o) +5X(F+1o)
50 1 d"x(t)/dt" L(ﬁnf)"X)
sgn(®) o S oo x{u)di D 4 1X(0)6(F)
u(t) 5() + g x(1) # (1) <= X()Y ()
cos@afy t+0,) 3&"O(f —fo) +3e770(+1) x(r)y(r) Lo X(F) * Y(F)

sin(2nﬁ, t+0,)
n— 5(t
= j2nf, t

nTy) fy 3 - 0(f

$eo(f —f,) —he o +1,)

o)

— kf,), where f, = -

If x(r) is real, then X(—) = X~ (f)

z-Transform pairs and theorems

x(n) X(2) Property Transform pair
o(n) 1 Linearity ax(n) + by() 2, aX(z) + bY(2)
u(n) = z-Scaling a"x(n) 2 X(z/a)
a" u(n) = Convolution x(n) *y(n) <—>X(2)Y() x(n)-
y(n) —X(2) ¥ (z)
na" u(n) (Zfza)z Conjugation x*(n) <i>X*(z*)
(n + Da" u(n) (zia)z z-Differentiation nx(n) 2z, —2dX(2)/dz
: sin(b)z i 1 i n zZ
sin(bn)u(n) #@()h)jrl Time integration 1 x(k) # (2)
cos(bn)u(n) :22;2)0;((:))Z+| Time differentiation x(n) —x(n— 1) <i>(l _ z’l)X(z)
Time shift (delay) (}’l _ m) (_)mex()

Initial value
theorem

If x(n) = 0 for n < 0, then
x(0) = lim, . X(z)

Appendix C: Tables and Formulas 309
Denominator polynomial coefficients for normalized LPF’s

n b, b, b, b by bs bg
Butterworth

1 1.0

2 1.0 1.4142

3 1.0 2.0 2.0

4 1.0 2.6131 3.4142 2.6131

5 1.0 3.2361 5.2361 5.2361 3.2361

6 1.0 3.8637 7.4641 9.1416 7.4641 3.8637

7 1.0 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940
0.5-dB passband ripple Chebychev (2 = 0.1220)

1 2.8628

2 1.5162 1.425

3 0.7157 1.5349 1.2529

4 0.3791 1.0255 1.7169 1.1974

5 0.1789 0.7525 1.3096 1.9374 1.1725

6 0.0948 0.4324 1.1719 1.5898 2.1718 1.1592

7 0.0447 0.2821 0.7557 1.6479 1.8694 24127 1.1512
1.0-dB passband ripple Chebychev (&2 = 0.2589)

1 1.9652

2 1.1025 1.0977

3 0.4913 1.2384 0.9883

4 0.2756 0.7426 1.4539 0.9528

5 0.1228 0.5805 0.9744 1.6888 0.9368

6 0.0689 0.3071 0.9393 1.2021 1.9308 0.9283

7 0.0307 0.2137 0.5486 1.3575 1.4288 2.1761 0.9231
3-dB passband ripple Chebychev (¢ = 0.9953)

1 1.0024

2 0.7079 0.6449

3 0.2506 0.9283 0.5972

4 0.1770 0.4048 1.1691 0.5816

5 0.0626 0.4080 0.5489 1.4150 0.5745

6 0.0442 0.1634 0.6991 0.6906 1.6628 0.5707

7 0.0157 0.1462 0.3000 1.0518 0.8314 1.9116 0.5684

310

Appendix C: Tables and Formulas

Normalized low-pass filter LC element values

n R, c L, Cs L, Cs Lo c,
LPF Butterworth LC element values (R, = 1Q)
2 1.0 1.4142 1.412
3 1.0 1.0 2.0 1.0
4 1.0 0.7654 1.8478 1.8478 0.7654
5 1.0 0.6180 1.6180 2.0 1.6180 0.6180
6 1.0 0.5176 1.4142 1.9319 1.9319 1.4142 0.5176
7 1.0 0.4450 1.2470 1.8019 2.0 1.8019 1.2470 0.4450
LPF 0.5-dB ripple Chebychev LC element values (R, = 1Q)
2 1.9841 0.9827 1.9497
3 1.0 1.8636 1.2804 1.8636
4 1.9841 0.9202 2.5864 1.3036 1.8258
5 1.0 1.8068 1.3025 2.6914 1.3025 1.8068
6 1.9841 0.9053 2.5774 1.3675 2.7133 1.2991 1.7961
7 1.0 1.7896 1.2961 2.7177 1.3848 2.7177 1.2961 1.7896
LPF 1-dB ripple Chebychev LC element values (R, = 1Q)
2 3.0 0.5723 3.1317
3 1.0 2.2160 1.0883 2.2160
4 3.0 0.6529 4.4110 0.8140 2.5346
5 1.0 2.2072 1.1279 3.1025 1.1279 2.2072
6 3.0 0.6729 3.8725 0.7706 4.7107 0.9692 2.4060
7 1.0 2.2043 1.1311 3.1472 1.1942 3.1472 1.1311 2.2043
R, L
Vs -|-C1 -|-Cs 1Q]:Cn 3519
n even n odd

Stopband gain vs. norm. freq. for B-LPF

-20 n=2

G/G, (dB)
8

-40

2\
A\
\\—‘)
2 3 4 5 6 7 8910

Normalized frequency, w/m,

Appendix C: Tables and Formulas 311

Stopband gain vs. norm. freq. for C-LPF (r= 0.5 dB)

)
=
g
S
~
]
2 3 4 5 6 7 8910
Normalized frequency, w/m,
Stopband gain vs. norm. freq. for C-LPF (r=1 dB)
o
o)
g
S
~
S

2 3 4 5 6 7 82910
Normalized frequency, w/m,

312 Appendix C: Tables and Formulas

Stopband gain vs. norm. freq. for C-LPF (r=3 dB)

G/G, (dB)

2 3 4 5 6 7 80910
Normalized frequency, /o,

Useful Definitions and Relations

Complex Fourier Series (FS):

1
X, =— t)dt,
T, / (1)
0
T()
1 .
X = — [x(t)e 2™l gt
T,
0

Trigonometric FS:

x(t) =a, + Z:O:l a,cos(2nnf,t) + bysin(2nnf,t), where:
a, = X()a a, = Xn + X—na bn :](Xn - X—n)~

[Note that X,,’s are the coefficients of the Complex FS.]

Appendix C: Tables and Formulas 313

Fourier Transform (FT) pair:

[o¢]

X(f) = /x(t)e_ﬂ”ﬁdt,

—00
]

X(t) = / X(F)e 2 af

—00
(Single-sided) Laplace Transform (LT):

o0

X(s) = / x(r)e™*dt, where:
4
s=0+jo, o=2nf.

Discrete-Time Fourier Transform (DTFT) pair:

X () =" x(n)e ™,

Js
1

) =5 [Xlp)e e ar
N 0

Some important DTFT pairs:

1. 3,—{ sinc (%n)wﬂzﬂ(f),—% <f<%

(Periodic rectangular pulse, period = f;)
2. HN(n)[ENsinc(Nf/fs)/ sinc(f/f;) [a sinc-like function]

The DTFT modulation property:

If x(n) 2t X, (f), then: x(n)cos(2nf, /f;) s X, (f — £,) + Xs(F +f,)

Discrete Fourier Transform (DFT) pair:

X(k) _ ZHN;OI x(’,l)efjhrkn/N7
1 - .
x(n) _ _ZN 1X(k)e+12nkn/N

k=0
(Single-sided) z-Transform (ZT):
00 —n
X = 3
Low-pass to band-pass transformations
_ (.2 2 _ (2 2 .
0N = (w - cog)/(wa)b), SIN = (s + wg)/(swb), where:

wpl =, —w;, Wy = /w0

314

Low-pass to high-pass transformations

Appendix C: Tables and Formulas

OIN = O] ®; Sy = O/,

Low-pass to band-stop transformations

ON = wwb/(wz — wz), sy = swp/ (s2 + a)f,), where:

wp = Wy, — Wy, Wg = /W, D).
Circuit denormalization

R—RZ; L—L%; C— 5 where:

Z = Impedance scaling factor (ISF)
W = Frequency scaling factor (FSF)

Hardware analog filter transformations

LP%BP_"_ - _m_

& HP — BS L

=1/C
L C1=1/L
s

LP > HP

2—
o =1/(L0)
ie, L=1 /(wQZC)
and C=1/(cugzL)

e.g., if C=2F,
then L1=1/2H

%

Hardware filter design rules (using normalized LPF standard circuits)

HPF design:

1. Transform LPy — HPy circuit components
2. Denormalize HPy — HP

BPF design:

. Denormalize LPy — LP
. Transform LP — BP circuit components

BSF design:

N =

1. Transform LP, — HPjy circuit components
2. Denormalize HPy — HP
3. Transform HP — BS circuit components

Magnitude response of Butterworth LPF:

|H(w)| = Gu/y/1 + (w/wc‘)zn

where G,, = maximum gain.

Appendix C: Tables and Formulas 315

Butterworth DC gain: G,;. = G,,
Magnitude response of Chebychev-I LPF:

|Hwncﬁ/w1+¥@(§)

where C,(x) = 1, Ci(x) = x, C,1(x) = 2xC,,(x) — C,i1(X).
Chebychev DC gain:

G — G n odd
“7 U Gu/VI+ e neven

Matched filter: h(t) = s(T — t).
Inverting and non-inverting amplifiers:

2 2
z
X |
— Y — Y
X
YiX=-2,/2Z, YIX=1+2Z,/Z,
= Inverting Amplifier Non-inverting Amplifier

Hilbert Transformer (HT): H(f) = —jsgn(f) with k() = 1/(x - 7).

Hilbert Transform of x(7) is: %(t) = x(1) * h(t) or: ¥ (f) = —j sgn(f)X(f).
The analytic associate of x(r) is: z(r) = x(¢) + jx ()

Digital HT:

o _ R
H(e™) = —j sgn(Q), Q| <m; h(n) = {n 6 elsewhere

Bilinear Transform: s = 5 with Q = 2tan™'(w) = 2tan™' (27f).
Impulse invariant transform:

M M
H,(s) = Z Em = H(z) =T ZC’" < where 7, = ePnTs.

Digital domain frequency: Q =2n-v =2 - f/f, = o/f, = 0T
Sinusoidal PLL system equation: ¢ (k) = 0(k) — wo >+ y(i)
Sinusoidal PLL: 1st-order system equation:

Pk +1) = ¢(k) — Kasin[p(k)] + A,
where A, = 2n(w — w,)/w, and KywGA.
If KiwGiA and W = o,/w, then K, = K (w,/w) = K| /W.

316 Appendix C: Tables and Formulas

Note that G, = 0 in this case.
Sinusoidal PLL: 2nd-order system equation:

Glk+2) = 260k + 1) + (k) = Kasin[p(k)] — rKasin[g(k + 1)),
wherer = 1 + G,/G;.

Fixed point analysis: g(x) = x has a solution x* only if |g’'(x*)|<1.
Ou/0x Ou/Qy
Ov/0x Ov/Ou
Eigenvalues {1} of a matrix X:

Jacobian matrix: 24Y) —
o(x,y)

} where u, v are functions of x, y.

|Al — X| =0; where [is the identity matrix.

Input Signal, x (k)
x(t) DF
N-bits
y(k)
DCO
Output Pulses, va(k)

Integrator H(z) = 1/(1 — z~'); Differentiator H(z) = (1 — z~ /T,
Error functions:

erf(x) = %/evzdv
0

1 T 2 1 X 1 1 X
_ /24 _ ° —__ - e
Ox) = Tn/e dv—zerfc (ﬂ)_Z 2erf<\/§)

For x > 0 we have:

1 2y
~ X2 k.
X) &~ e E brg"; where
O(x) o - k8

g=1/(1+0.2316419x),
by = 03198, by = —0.3565, by = 1.7814,
by = —1.8212, bs = 1.3302

Direct forms of IIR implementation:

y(n) =box(n) + bix(n—1)+ -+ byx(n—M) —ary(n—1) —--- —anyy(n — N)

() = 2P (S) <%> = H\(2)H() = H:()H 2)

Sl ZkN:I az* 1+ Zszl az*

Appendix C: Tables and Formulas

Direct Form - |

H, (z)[The Zeros] H,(z)[The Poles]

Direct Form -l

Poles Zeros

317

Appendix D: DSP Lab Experiments

Experiment # 1: Computing the Convolution Integral

Introduction

The convolution integral of two functions x(#) and h(f) is one of the most
significant topics in signal processing. This is so because the output y(f) of any
linear time-invariant system is given by the convolution integral of the input signal
x(#) and the system impulse response A(f) as follows:

oo [o.¢]

y(t) = x(t) x h(t) = / x(W)h(t — 2)dA = h(t) x x(t) = / h(A)x(t — A)dA.

—00 —00

Steps of finding the convolution can be found in the tutorials. In this experiment
we discuss the numerical implementation of this integral.

Due to the finite word-length and memory on the computer, we can only deal
with finite length discrete-time signals. Analog signals and systems should be
approximated by their discrete counterparts. This approximation should be
mathematically well founded.

First, we should note that if x(7) and h(#) are finite-length functions defined over
the intervals a; <t <b; and a, <t < b,, respectively, then the interval of their
convolution y(f) will be a; + a, <t < b + b;.

From Calculus we have:

o]
o0

Y1) = / X(2)h(t = 2)dh = Jim " K(kAD(t = kAZ)AL.
) k=—00

—00
Hence, we can approximate the above continuous-time convolution as follows:

o0

> x(kAX)h(t — kA7) |.

k=—00

y(1) =~ AL

319

320 Appendix D: DSP Lab Experiments

The variable ¢ is considered as a constant in the above integration and
summation. It has the characteristics of the dummy variable A, hence, it can be
approximated as ¢ ~ nAA/, for some integer n. The above equation will be better
written as follows:

y(n) =~ A/ll 200: x(k)h(n — k)] ,

k=—00

where A4 has been removed from expressions of the form kAZ for easier
notation and suitability for implementation on the digital computer.

MATLAB® is currently the best tool for mathematical modeling. In addition to
the basic mathematical features, it has some dedicated toolboxes like the signal
processing toolbox, the communications toolbox, and the control toolbox. Also,
symbolic solutions are possible through the MATLAB symbolic toolbox. In this
book we adopt MATLAB for DSP simulations.

Straightforward calculation of the above discrete convolution using for-next
loops is time-consuming and not suitable for DSP purposes, especially for real-
time processing of long signals (like speech signals). As we will see later in this
course, this problem is closely related to that of calculating the Fourier transform
of a signal. Scientists have discovered efficient algorithms for calculating the
above summation by making use of symmetric terms in the discrete Fourier
transform. This algorithm is called the Fast Fourier Transform (FFT), which is
available on MATLAB as fft and ifft (for inverse Fourier Transform).

The above discrete convolution can be implemented on MATLAB as follows:

y = Ts % conv(x,h);

where vy is the output vector, Ts is the time step (equivalent to AZ), x and h are
two vectors representing the two signals to be convolved. Note that * on MATLAB
means scalar or matrix multiplication, while .* means vector multiplication (i.e.,
multiplication of corresponding elements in the two vectors).

The accuracy of computation would be dependent on Ts. However, the less T's
the more computation time. Therefore, there is a compromise between speed and
accuracy.

Using y = Ts * conv (x,h) gives a function whose length is larger than
both x and h. In many applications we need to fit all signals using the same word
length. In this case, we can use the following fft-based algorithm:

y =Ts* ifft(fft(x) « £ft(h)); % If we do not allow negative time,
or

y =Ts* fftshift(ifft(fft(x)* £ft(h))); % If we allow negative time.

Appendix D: DSP Lab Experiments 321

MATLAB Simulation

Task 1

Write a MATLAB code to find the convolution of the two continuous-time
finite-length signals x(¢) and A(f) as shown in Fig. D.1.

e Open a new m-file and give it a name (e.g., DSP_Expl.m) and save it in your
directory.

e Choose a unified interval for x and h (i.e.,al = a2 = -10, bl = b2 = 10).

e Take Ts = 0.01 and define the time vector t.

e Express x and h first in terms of the unit step function, which is denoted in
MATLAB as stepfun(t, to). On MATLAB command line, type >help
stepfun to see how this function works. Plot all step functions associated with
the functions x and h, then plot x, h, and their convolution y on the same
graph.

o Plot the theoretical convolution (see the Note below) and the numerical result on
another graph.

e Define all axes using xlabel and ylabel commands.

e Limit the axes lengths using axis([x_min x_max y_min y_max])
command.

e Define all functions using text (a,b, ‘text’) command to write on figures.

e Find the convolution using the fft-based algorithm and compare with the first
method.

Note: Using Fig. D.1 we have:

0

00 3
y(1) =h(t) *x(t) = / h(2)x(t = 2)dA= / x(t—2)di= / 3¢ 20" Ay(t — 1)d)
—00 0

0
t—3 t

vif:—/ 3e u(v)dv = / 3¢ >u(v)dv
t =3
0, t<0[Since u(v) =0 for v<0]
t
3fePdv=(3/2)(1—e) 1>0&t—3<0—0<r<3
=4 0

t
3 [e Pdva(3/2)e 0 1>0&t—3>0—1>3.

=3

322 Appendix D: DSP Lab Experiments

h(f=T1,(t-1.5) x(H=3 exp(-2f)u()
3

| ——— L1 I t, sec | ———— L) S t, sec
-5 0 3 5 -5 0 3 5

Fig. D.1 A plot of signals h(f) = 15 (t — 1.5) and x(¢) = 3¢ u(p)

Task 2

Write a code to invert the function x(¢) around the y-axis to get x(— 7). Then a
code to find the shifted versions x(¢ + t,) and x(— ¢ + t,). Take t, = 3 and —3. Plot
all functions on the same graph. Comment on these operations.

Task 3

The Dirac delta function (¢) is an important tool in signal processing. Roughly
speaking, it is equivalent to a pulse of infinite height and very narrow width
(approaching zero). It is defined by the following integral:

/ g(1)o(t — t,)dr = g(t,)

where g(7) is a continuous function, 7, is a constant. The delta function has the
following properties:

P1: [%_d(t)dt =1 (unit area),

P2: 6(r) = o6(—1) (even),

P3: x(¢) * 6(f) = x(¢), or, generally, x(£)*o(t — t,) = x(t — t,), where ¢, is a
constant.

The Dirac delta function can also be defined as the limit of several even
functions that can satisfy the above properties in the limit. These definitions
include:

1. Limit of the weighted rectangular pulse (box), I1,,(f) (see Fig. D.2, left):

o1 — gim L L [=a
5(1‘) = llm—aHZa(t) - ([11141?(1))% { 07 |t| > 0}

2. Limit of the weighted absolutely-decaying exponential:

Appendix D: DSP Lab Experiments 323

[1/(2a)] 1, (1) (1) A, (1)

1/(2a) 1/a

3. Limit of the weighted triangular pulse Ay, (7) (see Fig. D.2, right):

1 1 _ It <a
o(t) = lim —Ay,(2) = lim — a’ =
(1) (a—0) a 2a(1) (aHO)(l{ 0, |t| > O}
The above definitions are of practical importance since they can be used for
approximating the delta function.

On MATLAB, use stepfun to define a weighted rectangular pulse that
approximates 6(z) and call it d. Choose a = 11 * Ts. Replace h in the above
code with d. To see whether this approximation is successful, convolve d with x.
According to P3 above, you should obtain y ~ x. Plot your results and comment.

Task 4

In Task 3 we chose the pulse width as a = 11 * Ts. This choice will decide
the accuracy of approximating the delta function. To see the effect of this choice,
consider different widths for the rectangular pulse (hence, different
approximations for the delta function). Let the width parameter a = r * Ts,
where r is an integer ranging from 1 to R. Take R = 100. For each value of r
(hence, for each approximation of the delta function), find the mean squared error
(MSE), which is defined as follows:

e(r) = 3 D) = x(m)]

where N is the total number of samples in each signal. Use the function mean in
MATLAB (type >help mean) to find the above summation. If you use
y = conv (d, x), the interval of y is larger than that of x, you should extend x
range (by zero padding) to be able to find the above summation. Plot MSE versus
a = r * Ts and comment on the shape of the resulting curve.

324 Appendix D: DSP Lab Experiments
Task 5

In the above code, use the other two approximations for the delta function and
repeat the procedure in Task 4. Plot the three MSE curves on one figure and
compare your results. Decide which approximation is better for practical
implementation of the delta function. Take Ts = 0.005, repeat the same steps,
and see whether the MSE is reduced.

Experiment # 2: Generation and Demodulation of AM Signals

Introduction

Information-bearing signals are normally of low-frequency nature. For example,
the frequency content of the human speech signal ranges from 200 to 4 kHz, while
audio signals (in general) can reach up to 20 kHz. For long-range transmission of
signals, we should convert them to radio waves and transmit them through
antennas. The antenna dimensions [length or diameter (for dish antenna)] should be
proportional to 4/4 or A/2, /. being the wavelength, where ¢ = Af = 3 x 10® m/s.
Hence, for baseband radio transmission of a speech signal through, we need an
antenna of length ¢/(4 x 4000) =~ 18.7km. Therefore, we should increase the
frequency of the signal (without changing the information) before radio
transmission. This is called modulation. In fact, high frequency is also more
resistive to noise in space. Mobile phones operate near 900 MHz, UHF TV operates
in the range 300—-800 MHz, and satellite links operate in the frequency range from
few hundred MHz to 40 GHz or more.

Amplitude modulation (AM) is widely used in communication systems. The
standard AM modulator multiplies the message m(f) by a scaling factor f (called
the modulation index) and a high-frequency sinusoid called the carrier,
c(t) = Accos(w.t), and then add the result to the carrier (for synchronization
purposes) to get the standard AM signal

x(t) = Ac[1 + pm(t)]cos(w.t) (1)

The magnitude spectrum of this signal is given by:

X(f) =A. (2)

%{50‘ S+ 5<f+ﬁ.->} +§{M<f)+ MG +fc)}

For demodulation of the AM signal at the receiver, an envelope detector is
usually used. However, if the AM signal is weak and the modulation index is
small, it is better to use a square-law device followed by a low-pass filter as shown
in Fig. D.3 below, where r(?) is the received AM signal and s(f) is the demodulated
signal.

Appendix D: DSP Lab Experiments 325

y(t)

r(t) [T LPF |——= s(t)

Fig. D.3 Demodulation of standard AM signals using a square-law device

Under noise-free conditions, we have r(f) = x(f). Hence, the squarer output will
be as follows:

¥(t) = (1) = A1 + pm(0))*[cos(wer)]*

= AZ[1 +2Pm(t) + [;2m2(t)] B + ;cos(cht)} .

The LPF will remove the high frequency components. Hence, the output signal
will be given by
s(t) = 0.5A% + A2B.m(1) + 0.5A% F*m? (1),

which contains a d.c. term, the original message (scaled by A2 f), and an error

term 0.5A.2 % m” (), which we cannot get rid of by filtering. The relative error is
given by:

0.5A2%m> (1)

e oL A N 1)/2 3

gl =m0/ ()

To reduce error, we should have |fm(r)/2|< <1 Vr. Hence, this method is
efficient only if the message is weak and the modulation index is small.

MATLAB Simulation

In this experiment we will simulate the generation and demodulation of standard
AM signals as explained above.

Task 1

Write a MATLAB code to generate a standard AM signal. First, generate a
sinusoid with frequency f, = 2 Hz and a carrier with frequency 10 Hz. Take all
amplitudes to be 1. Select a value for the modulation index and generate the
modulated signal that would be transmitted. Plot all time signals and their spectra.

Task 2

Write a code to simulate the function of the receiver. First comes the square-law
device, followed by the LPF. Use an ideal LPF with a carefully chosen cutoff

326 Appendix D: DSP Lab Experiments

frequency f; (Take f; = 3f,). Filter the squared received signal, then plot the
demodulated signal in the time and frequency domains. Compare with the original
signal. Change the modulation index and comment on the results.

Task 3

Repeat Tasks 1 and 2 above for the rectangular pulse IT,(z — 2), using the same
carrier.

Experiment # 3: Random Signal Analysis

Introduction

A random process is a function of two variables: an event and time. A realization
of the random process is called a “sample function”. All sample functions
constitute an “ensemble”. At a specific time instant ¢ = 7, the values of sample
functions are represented by a “random variable”. For example, noise n(f)is a
random process.

If we have a signal x(f) = acos (w, t) and this signal is corrupted by noise n(?),
then the result would be the random signal y(f) = acos(w, t) + n(?).
To study the statistical properties of noise and noisy signals, we may repeat the
realization of the random signal y(#) many times. If we have three realizations
(repetitions) of the noise process n(f) with a given noise power, we get the sample
functions or “Realizations” as shown in Fig. D.4.

The “ensemble average” at t = ¢, is given by:

Nay = [n1(to) + n2(t,) + n3(1,)]/3

If we have a large number of realizations and the process is stationary, then we

have:
may have Ensemble average (m) = Time average (m;)

In this case we call the process “ergodic”. For ergodic processes we can calculate
the ensemble mean using the time mean, which is much easier and does not require
more than one realization. On MATLAB, this is obtained by using the instruction
“mean”. Note that the ensemble mean for the above signal at the time instant ¢ is
given by:

m=E&{n(t)} = / np(n)dn

where p(n) is the probability density function (pdf) of noise, and £{.} is the
statistical expectation.

Appendix D: DSP Lab Experiments 327

AAAIL AN

Realization 3 PyVHiMw! "y (] "‘v‘ WM ”""“‘V" \/ lv"vllV'v"y" T INAVAY, t, sec
Realization 2 || m.wl ’M“'A."' /M ."”",l 'rlﬂL“l'xl ' A ‘;"."' ! VA“‘ n'lt‘ t, sec
Realization 1 WYL\ ‘r“vv"""‘v"y‘ Tv‘-“-w W T vvly“v‘vlvyvy“"“‘v‘w t sec

t=0 t=t

o

Fig. D.4 Sample functions of a noise process

MATLAB Simulation

In this experiment we will study the statistical properties of a sinusoidal signal
imbedded in AWGN (additive white Gaussian noise) at different SNRs (signal-to-
noise-ratios).

Task 1

Write a MATLAB code to generate M = 10 realizations of a sinusoidal signal
x(f) = acos (w, t) corrupted by AWGN process n(f) to give the noisy signal
y(t) = acos (w, 1) + n(t). Take f, = 0.2 Hz, a = 1, and SNR = 1 dB. Show that
the ensemble mean of noise is approximately zero, and the ensemble mean of the
noisy signal is the deterministic signal s(f). This approximation is improved if we
take a larger number of realizations M (e.g., 50, 100). Plot the time signals and
their spectra for the first realization; also plot the ensemble means.

Repeat the above steps for different SNR values (e.g., —5, —1, 0, 1, 3, 10).

Task 2

For each realization in Task 1, find the pdf of noise p,, (n) and take the average of
all realizations. Compare this pdf with the theoretical pdf given by:

1 67112/2(72

pa(n) = \/2—7;()_

Show practically that

oo
/ pn(n)dn = 1

328 Appendix D: DSP Lab Experiments

Compare this result with the theoretical result, which is 1 exactly.
Find the mean and variance of one realization and compare with the theoretical
values. As in Task 1, consider different SNRs.

Task 3

Find the autocorrelation function of the signals x(¢), n(¢), and y(¢). Find the cross-
correlation R,, (1) between the signal x(#) and the noise process n(t).

Experiment # 4: Filter Design with Application to Noise Reduction

Introduction

MATLAB provides built-in codes for designing analog and digital filters. In this
experiment we will consider Butterworth and Chebychev-I filters. You can type on
the command line >help butter and > help chebyl to know the design
parameters of these filters. As an application of filtering, we will design a filter for
the purpose of reducing noise that corrupts a narrowband signal of known
frequency (if the signal frequency is unknown, then this approach fails and we
need an adaptive filter for noise reduction).

White Gaussian noise n(t) is a broadband signal since it is uncorrelated (i.e. its
autocorrelation function is a weighted delta function, hence its power spectral
density is constant for all frequencies as shown in Fig. D.5.

Normally, we are interested in a specific frequency band (—B < f < B) for
practical applications. For example, in speech signal processing, the important
frequency band is about 4 kHz, and the whole audible spectrum is less than
20 kHz. Since noise power is given by

Pn= /OOGn(f)dﬁ

x(h=3(t) X(H =1

«FT—>

t, sec f,Hz

0

Fig. D.5 Spectrum of a time delta function

Appendix D: DSP Lab Experiments 329

then we can reduce this power by applying a filter (LPF or BPF) to extract only the
area of interest in the spectrum.

MATLAB Simulation

In this experiment we will design filters for the purpose of noise reduction in
narrowband signals.

Task 1

Consider a signal x(#) corrupted by additive Gaussian noise n(f), where x(f) = asin
(w,t), with a = 1,f, = 1 Hz,0<t<10s, and SNR = 2 dB. Plot the time signals
x(#) and s(f) = x(¢t) + n(¢#) with their spectra. Design a LPF (Butterworth and
Chebychev 3 dB ripple) of minimum possible order K such that the attenuation is
less than —80 dB for f > 10 Hz. You should carefully specify the appropriate cut-
off frequency f.. Plot the filter transfer function given by

H(f)dB = 201og, |H(f)|,

and vary K until you reach the proper order. Then filter s(r) and plot the time
output signal y(f) with its spectrum and compare with s(7).

Task 2

In this task we study the effect of the sampling frequency on a recorded signal, and
we conclude that if we want to process a recorded signal, we should know its
sampling frequency. Listen to any test audio signal, e.g., Ohno.wav (can be
downloaded from http://free-loops.com/download-free-loop-3022.html), using a
media player (just double-click on the file icon). On MATLAB use x = wav-
read ('Ohno’) to convert the audio file to a vector of numerical values (volt-
ages) suitable for mathematical processing. The sampling frequency of Ohno can
be read from the media player; itis £s = 22 kHz. Try changing fs to 35 kHz then
re-write the signal on another file using the statement

Ohnol = wavwrite(x, fs, ‘Ohnol.wav’);

Now listen to the new file. Change the sampling frequency to 15 kHz and repeat
the process.

Task 3

In this task we consider audio effects as explained in the lecture notes. Implement
an FIR filter with 4 coefficients to simulate echoes, and then listen to the resulting
audio signal. Change the magnitude of the coefficients and listen again.

330 Appendix D: DSP Lab Experiments

Task 4

Now listen to a single-tone test audio signal saved as “stone” (e.g., 440 Hz sound
from http://www.mediacollege.com/audio/tone/download/). Find its sampling
frequency fs (it is 44.1k Hz). Read the signal as x. Add Gaussian noise n (of
power = —20 dB) to the signal and write the result as s = x + n in your directory
as an audio signal using wavwrite (s, fs, 'stonen.wav’). Listen to the
corrupted signal and compare with the original one. Plot the time signals x and s
with their spectra versus the normalized frequency ranges fn = f£/fs and
fN = £/ (£s/2). Now design a digital filter (LPF Butterworth) of order 10 and
normalized cut-off frequency wcr=wc/ (£s/2), where wer is the cut-off fre-
quency which should be chosen carefully to reduce noise. Plot the frequency
response of the digital filter using freqz. Then filter the discrete signal s to get the
signal y. Plot v and its spectrum Y, then compare with the original and noisy
signals.

Experiment # 5: A Sinusoidal Digital Oscillator
Introduction

A digital oscillator is a system that generates an output waveform (like a sinusoid)
without a need for an input signal, except for a D.C. supply and perhaps a trigger
(like a delta function) at the starting time. The theory of operation is based on the
fact that a digital system with poles on the circumference of the unit circle in the z-
plane is neither stable nor divergent, but oscillatory (or, marginally stable).

To design a digital sinusoidal oscillator, we need a transfer function in the z-
domain whose impulse response is a sinusoid. Using Tables we can reach at the
following z-transform pair:

h(n) = sin[(n + 1)b] = H(z) = sin(b)z’

72 —2cos(b)z+ 1 (1)

Since n represents the time count, b would represent the normalized radian
frequency Q, = w,T;, hence the frequency of oscillation is f, = w,/2n =
(b/Ty)/2m = (b/27)f; Hz, and we should have |b| <.

Note that the two poles of this system are the roots of z> — 2cos (b)z + 1 = 0,
which are given by:

p12 = cos(b) + \/cos?(b) — 1 = cos(b) £ jsin(b) = ™" (2)

Hence, the poles are exactly on the circumference of the unit circle, and the system
is neither stable nor unstable (oscillatory). Figure D.6 shows the implementation

Appendix D: DSP Lab Experiments 331

Fig. D.6 Implementation of
the sinusoidal digital § (n)
oscillator

Magnitude

Q=
-1 —QOD QO ™ oT

Fig. D.7 PZ-diagram and frequency response of the sinusoidal digital oscillator

diagram of this system. The pole-zero diagram and frequency response are shown
in Fig. D.7.

MATLAB Simulation

In this experiment we will design a second-order IIR filter to perform as a
sinusoidal oscillator.

Task 1

The generated sinusoid has an amplitude A = 1 and frequency f, = 1 Hz. Choose
the sampling frequency of the system as f; = 100 Hz (f; > f,). Write the transfer
function of the system as in Eq. 1 above, from which find the frequency response
of the system and plot it.

Task 2Now analyze the system using zplane function on MATLAB. Find the
poles of the system using roots. Find the angles of these poles, from which find
the frequency of the oscillator.

332 Appendix D: DSP Lab Experiments
Task 3

Define the system true time and plot the theoretical impulse response as in Eq. 1.
Task 4

Analyze the system using tf, impulse, and fregz. Plot all results.

Task 5

Now simulate the oscillator circuit as shown in Fig. D.6. Enter a delta signal and
find the output. Plot and compare with previous methods of finding the impulse
response.

Task 6

Find the effect of changing the sampling frequency on the system. Reduce the
sampling frequency to 10 Hz and compare.

Task 7

With f; = 100 Hz and A = 1, try to generate 2, 10, 45, 60, and 70 Hz sinusoids.
See what happen if f, > f/2. Change the amplitude and plot the resulting output
signals.

Experiment # 6: Sampling and Reconstruction

Introduction

To process analog (i.e., continuous-time) signals using digital technology, we
should convert these signals into digital signalsthrough sampling and A/D
conversion. In most applications, sampling is uniform, i.e., the sampling interval T
and the sampling frequency, f; = 1/T,, are constant. Ideal sampling can be
formulated as multiplication of the analog signal x(f) by the a train of time
impulses p(t) = > 2 d(t — nTy) as shown in Fig. D.8 The spectrum of this
time impulse train is the frequency impulse train P(f) =f, > 1o . 0(f — kf;).

The above multiplication in the time domain would be a convolution in the
frequency domain between the frequency impulse train and the spectrum of the
analog signal, X(f), which results in the scaling (by f;) and repetition (every f;) of
this spectrum as shown in Fig. D.9, where we used the normalized frequency
v = fIf;. The new spectrum is called the discrete-time Fourier transform (DTFT).
Reconstruction of the sampled signal (back to the analog signal) is possible

Appendix D: DSP Lab Experiments 333

p()

x(t) % > x (1)
x(
wt
(t)
1t TT Y
o T PO
(i T l o TT Ny
—T o T, 2T,

- } " ;)-\ R0 A
T e T

Fig. D.8 Sampling process in the time-domain

through an analog low-pass filter on the condition that the sampling frequency is
more than twice the signal bandwidth B, i.e.,

s<t

The sampling rate f; = 2B is called the Nyquist rate, which is the minimum rate
for safe sampling. If B > f/2, replicas of the signal spectrum X(f) that constitute
the DTFT will overlap, and part of the information is damaged. This overlap is
called frequency aliasing. Hence, in practice, we normally bandlimit the signal
before sampling to remove the unimportant frequency content that may cause
aliasing. This can be achieved using a LPF (which is called anti-aliasing filter). If
the sampling frequency is near the Nyquist rate, the anti-aliasing filter should have
a sharp cutoff at f = B, otherwise aliasing may occur. If f; > 2B, we can relax this
condition on the anti-aliasing filter. This is important in hardware implementation
to reduce the LPF complexity.

334 Appendix D: DSP Lab Experiments
X(
)’N
B 0 B f, Hz
fX(f+1.1) Nt‘) fX(f-1.)
/\ /\ .

+B z
—f/2 2fs
X V)
fX(v+1) %\X(v) fX(v—1) st(v—2)
2 NAN VANWAY
Note: b=B/f, -0.5 0.5 1 2

Fig. D.9 Spectra of an analog signal and its digitized version

MATLAB Simulations
Task 1

Write a MATLAB code to simulate the sampling process of an analog signal.
Since analog signals are approximated on the computer, you should distinguish
between the simulation sampling period (frequency) and the actual sampling
period (frequency). Take the system sampling period to be T = le—4 s. With a
time limit of 10 s, generate the global time and frequency vectors. Sinusoidal and
linear FM signals are important in applications. Simulate a sinusoid of frequency
20 Hz (hence, to avoid aliasing, the sampling frequency should be more than
40 Hz). Plot the time signal and its spectrum.

Task 2

Use the MATLAB function square to simulate the time impulse train. Its duty
cycle (the “ON”/“OFF” duration ratio) should be very small to simulate impulses.
Its frequency would be the actual sampling frequency. Plot it in the time and the
frequency domains and verify the theoretical formulas stated above.

Task 3
Now multiply the analog signal by the sampling signal (the impulse train). Plot the

resulting spectrum for a sampling frequency of 25, 100, and 500 Hz and check for
aliasing.

Appendix D: DSP Lab Experiments 335
Task 4

Design an analog 9th-order Butterworth LPF with cutoff frequency of 50 Hz and
filter the sampled signal. Plot the output signal and its spectrum and compare with
the original analog signal for sampling frequency of 50, 100, and 500 Hz and
check for aliasing.

Task 5

Now generate a LFM signal of initial frequency 10 Hz and modulation index of
0.7. Note that the sinusoid is a periodic function (hence, its spectrum is impulses)
while the LFM is non-periodic (hence, its spectrum is a continuous function of
frequency). From the spectrum we see that the maximum frequency in the LFM is
about 50 Hz, hence, we expect the sampling frequency to be at least 100 Hz to
avoid aliasing. Try £s = 50, 100, and 500 Hz then compare the results.

Task 6

In this task we study the audio effect of aliasing. Download and listen to an audio
signal such as Ohno.wav which was used before in Experiment 4. On MATLAB use
[x,fs,bits] = wavread('Ohno’) to convert the audio file Ohno.wav to a
vector of numerical values (and know its original sampling frequency and number
of quantization bits). The sampling frequency of Ohno can be read £s = 22 kHz.
Try downsampling Ohno to £k = f£s/k (k integer) then re-write the signal on
another file using the statement wavwrite (x, fs1, *Ohnol.wav’). Now
listen to Ohnol.wav. At what value of k does aliasing start to occur? Why?

Experiment # 7: Binary Signal Transmission

Introduction

In binary communication systems, binary data (which is a sequence of 0’s and 1°s)
are often transmitted through a channel using two orthogonal signals, s¢ (f) and s,
(7). One possible signal configuration is shown in Fig. D.10.

If data is large, then 0’s and 1’s are equally probable (p(1) = p(0) = 1/2) and
statistically independent. The AWGN channel adds Gaussian noise (wideband,
approximately white) with power spectral density (PSD) = #/2 (W/Hz). Hence, the
received signal will be in the following form:

r(t) = s;(t) + n(t),i € {0,1},0<¢<T.

336 Appendix D: DSP Lab Experiments

s, (1)
1 I t
0 T
s, (1)
1 T
t
1k I

T2

Fig. D.10 Orthogonal signals for binary transmission

Assuming that sy and s; are as shown in Fig. D.10, and that s, was transmitted,
the outputs of the two matched filters at the time instant ¢ = T are as follows:

=

&

Il
o\\]

ro = [so(t) + n(t)]so(t)dt
T
= s% dt+/n so(t)dt = E + ng
0
ro= [r(t)s = [[so(t) + n(t)]si(r)d

Both ny and n; are Gaussian and have zero means. The variances of ng and
ny, (i = € {1, 2}), are given by:

where E is the energy of the signals sy and s; [Note that slz (1 = s02 (0].
Now if s; () was transmitted, then ry = ng, r; = E + n; with same statistics as
above.

Probability of Error

The matched filter compares rq and ry. It will decide that a “0” was transmitted if
ro > ry, and that “1” was transmitted if ry < rq. If “0” was transmitted, then error
will occur only if r| > ry.

It can be shown that the above probability of error can be expressed as follows:

Appendix D: DSP Lab Experiments 337

where the error function erf(y) = % g e “du is a reference function in
MATLAB, and SNR is the signal-to-noise ratio defined by:

SNR = E/n,

and is normally given in dB as SNR 3, where SNR;3 = 101log,;,(SNR).
The probability of error P, is the basis for performance evaluation of
communication systems.
The same probability of error P, is obtained if “1” was transmitted. Hence, the
average probability of error is given by:

Pe,av :Pe'

Figure D.11 shows the general shape of P, against SNR.

Binary Transmission Using Antipodal Signals

Two signals sy (f) and s; (f) are said to be antipodal if sy (f) = —s; (f). One
possible configuration is to use two voltage levels, V. Figure D.12 shows another
configuration.

Using orthogonal signals, we need a bank of two matched filters for optimum
reception. However, if we use two antipodal signals, we need only one matched
filter. The received signal is r(¢#) = =£s(¢) + n(¢). Following the same analysis as for
orthogonal signals, we find the following results:

¢ Output of the matched filter z = £E + n, (where n, = fOT n(t)s(t)de),
e Variance of n, = gE (same as that of n; and n, for orthogonal transmission).
e Probability of error = P, = § — 1erf(+v/SNR). The decision will be as follows: if

z > 0, then s(¢) was transmitted (which may represent “1”), otherwise —s(f) was
transmitted.

Hence, P, using antipodal signals is less than P, using orthogonal signals for the
same SNR. Therefore, if no modulation is used later in the system, antipodal signal
transmission is more efficient for baseband binary communications.

MATLAB Simulation

In this experiment we will consider simulation of baseband binary signal
generation and transmission, as well as performance analysis using the error

338 Appendix D: DSP Lab Experiments

100

107" |

102 |

1078 |

1074 |

2 4 6 8 10 1
SNR, dB

Fig. D.11 Probability of error versus SNR in baseband binary communications

function. This is important in many applications like communications between
computers operating in the same neighborhood.

Task 1

Simulate a binary communication system with two orthogonal signals. Use the
flowchart shown in Fig. D.13. Take E = 1 and generate N = 1000 bits data
sequence {d(n)}. To generate a sequence of equiprobable 1’s and 0’s, use “rand”
function on MATLAB, which gives you a random number uniformly distributed
over the interval (0,1). Use the simple rule: if rand >0.5, then d(n) is “17,
otherwise “0”. However, you should use a smart algorithm for data generation that
avoids the use of loops. Mix data with noise to simulate transmission and matched
filter reception, then find the probability of error as a function of the SNR. Better to
use a separate function for the probability of error calculation. Compare with the
theoretical curve.

s, (1)
Fig. D.12 Two antipodal signals 1
t
-1 T
T2
s, (1)
1 T
t
1k |

T2

Appendix D: DSP Lab Experiments 339

AWGN
Filter
matched
Binary to "0" Received data
Decision >
data ’\-D l
Random L
number
generator .
Original data
Comparator

Error Counter

Fig. D.13 Flow chart of a binary communication system simulator

Task 2

Using the same approach (but one matched filter), simulate a binary
communication system with two antipodal signals. Find the probability of error
versus SNR. Compare with the theoretical result and with orthogonal signal
transmission.

Task 3

Simulate the above system without matched filters and compare with results in
Tasks 1 and 2 above.

Experiment # 8: Simulation of the Sinusoidal Digital
Phase-Locked Loop

Introduction

The sinusoidal DPLL (SDPLL) is an important system in signal processing and
communications. Like other PLLs, the SDPLL is a feedback system that arranges
its local frequency to be equal to the input frequency. It can be used for signal
detection, frequency tracking, and synchronization. Unless the incoming frequency
o is equal to the center frequency w,, the first-order SDPLL (which utilizes a
multiplication constant G, only in its filter) has always a non-zero steady-state
phase error, ¢,,. The 2nd-order SDPLL [which utilizes a first-order digital filter
H() = G+ G,/(1 — z_l)] always locks on zero ¢g. A block diagram of the
SDPLL is shown in Figure D.14 below. The sampler here operates as phase error
detector (PED).

340 Appendix D: DSP Lab Experiments

Input Signal,
x(t)

x(k)
DF ——

N-bits
y(k)

DCO

Output Pulses, vo(k)

x(t)

EN Time
t(0) \/ t(1) \/ t(2)

x(k)

—

x(1) x(2) x(3)

v, (1)

Fig. D.14 Block diagram of the SDPLL with associated waveforms

The input x(7) is assumed to be a sinusoidal signal as follows:
x(t) = Asin(wt + 6,) + n(1).
The phase difference equation for the 1st-order SDPLL is given by:
Pk + 1) = ¢ (k) — Kosin[p (k)] + A,

where A, = 2n(w — w,)/w, and K, = o G,A. If we define K; = wyG, A, and
the frequency ratio W = w,/w, then we have K, = K| (w/w,) = K/W.
The locking range is determined by the conditions:

K, > 27|l — W|

and

Ki<\/(4 +4n2)W2 — 8n2W + 4n2.

It should be noted that extreme points in this range does not ensure locking for
all values of the initial phase error. The steady-state phase error is given by:

¢, = sin" ' (A, /K>).

Appendix D: DSP Lab Experiments 341

MATLAB Simulations
Task 1

Write a MATLAB code to simulate the locking process of the 1st-order
SDPLL. First, plot the locking range. Then, let A = 1, w, = 2x (rad/s), W = 0.9,
K, = 0.8 and take 0, = ¢ (0) = 0 rad. Hence, the incoming frequency is f = f,/
W = 1/0.9 = 1.1 Hz. Make sure that the loop is inside the lock range. As we
expect locking normally in less than 50 cycles, consider only 50 samples. Plot the
input signal and the sampled signal. Also plot the phase ¢(k) and the instantaneous
frequency [w(k) = 2n/T(k)] as functions of time. Check with the theoretical value
of ¢,. Vary the initial phase ¢ (0) = 0, to take on the values —3, —2, —
1, 0, 1, 2, 3 and see the difference in the locking process. Does the initial phase
affect ¢,?

Task 2

Repeat Tasks 1 and 2 for various combinations of (W,K;) as follows: (0.9,1.5),
(1.2,1.7), and (1.4,3). Let (W,K,) be outside the locking range and plot the phase
and frequency transients.

Task 3

Plot the phase plane diagram of the 1st-order SDPLL for Tasks 1 and 2.

Experiment # 9: Adaptive Wiener Filter for Noise Reduction
and Channel Estimation

Introduction

Wiener filter is an optimum filter for estimation or prediction signals corrupted by
noise or distorted by the transmission channel. Adaptive Wiener filter is a
programmable filter whose coefficients [i.e., its impulse response non-zero values,
{h(k)}] are changed (adapted) according to the current available samples of the
observed signal {y(n)} and a desired (reference) signal {d(n)}, to give an optimal
estimate x(n) of the original signal {x(n)} at the time instant n [see Fig. D.15]. An
adaptive filter utilize s a feedback algorithm to update the filter coefficients at each
time instant n; hence, it can compensate for time-varying channel conditions.
The filter coefficients are adapted according to an algorithm, which can be
implemented by hardware or simulated on a microprocessor or a computer. The
adaptive FIR Wiener filter algorithm is a least mean-squared (LMS) error

342 Appendix D: DSP Lab Experiments

Estimate of x(n)

Observed R
Channel signal . x(n)
x(n) —>| distortion/ Ada.ptlve
R Filter
noise y(n)
TError, e(n)
+
+
d(n)

Reference signal

Fig. D.15 Adaptive filter configuration

algorithm, based on minimizing the MSE error e, = E{[e(n)]*} = £{[d(n) —
%(n))*} at every time instant n as we have shown earlier.

Define:

h(k) = [h,(k) hy (k) hy(k)- - -hp ()], the filter coefficients at the kth instant.

y(k) = [y(k) y(k — 1) y(k — 2)- - -y(k — M)], observed signal vector at kth
instant.The algorithm can be described in vector form (MATLAB-like code)
as follows:

h(0) = 0; % Initialize the filter coefficients.

forn =1 :N % N = length(y);

%(n) = h(n — 1)y (n); % Filter output (this is matrix multiplication).
e(n) = d(n) — x(n);

h(n) =h(n — 1) + u * e(n)y(n); % u is the step-size.

end

The choice of u will affect the estimation accuracy and the convergence speed
of the algorithm. Small values of ¢ will give better accuracy but slower
convergence. Large values will do the contrary. Very small or very large values
for p will cause significant errors. Hence, a compromise would be optimal.

Larger filter length M + 1 gives better estimation, but more delay.

Application 1: Noise reduction in narrowband signals: For estimation of
narrowband signals (like single-tone sinusoids) with known frequency band, we
can use a normal LPF for noise reduction, but for unknown frequency band, we use
adaptive Wiener filter with d(n) = y(n) and input sequence {y(n — 1)}, as shown
in Fig. D.16.

Application 2: Channel estimation: In mobile communications, a “training
sequence” is sent before transmission of data. The receiver knows this signal and
utilizes a copy of it as the desired signal d(n). The adaptive Wiener filter can
arrange its optimal coefficients during the short period of transmitting the training
sequence before actual data are transmitted. Hardware or software implementation
of the above algorithm is possible.

Appendix D: DSP Lab Experiments 343

Adaptive
\ -1
y(n) z filter

d(n) + -

Fig. D.16 Noise reduction using an adaptive filter

v
x>
S

MATLAB Simulation
Task 1

On MATLAB simulate the signal y(k) = x(k) + n(k), where x(k) = sin (o,
kT,), T, = 0.01, the time vector is 0 <t < 10 (s), f, = 2 Hz, n(¢) is Gaussian
noise, SNR = 2 dB. Assume that you know f, and try to reduce noise using a LPF
(choose the cutoff frequency carefully).

Task 2

Now assume you don’t know the signal frequency. Implement the adaptive
Wiener filter for the purpose of noise reduction as shown in Fig. 2. Choose the
number of taps M + 1 = 101, u = 0.001 and plot all signals. Vary M + 1 to 5, 10
and compare.

Task 3

With M + 1 = 101, vary u to take the values le—4, 2e—4, Se—4, le—3, 2e—3,
5e—3, le—2, 2e—2 and find the mean-squared error (MSE) as a function of u.
Find pt;,, the value of p that gives minimum MSE, and plot the corresponding
signals and spectra.

Task 4

Assume that the communication channel causes ISI that spans 11 symbols,
where the channel transfer function is

Hc = [.05 — .063.088 — .126 — .25.9047.250.0.126.038.088] ;

Assume channel noise of variance —40 dB. Generate a random sequence of
length N = 20 binary symbols of 0’s and 1’s (take number of realizations R = 20
and R = 200) and use them as the transmitted signal which will pass through the
channel Hc, also use them as a reference signal (the receiver knows these
sequences). The channel estimated transfer function will be given by the inverse of
the filter updated transfer function, H.(z). Plot I1/H.(f)| and |H,(f)l and compare.
Plot the mean-squared error signal (MSE) used by the filter versus the number of
realizations. Compare this with the MSE in H, estimation.

344 Appendix D: DSP Lab Experiments
Task 5

Re-run Task 4 several times (for R = 20 and 200) and check how this affects
the MSE of the adaptive filter error signal. Change channel noise to —20 dB and
check the MSE for a given R and N.

Task 6
Take R = 200 and N = 50, 500, 1000 and compare the MSEs.
Task 7

Change the channel noise to —20 dB with R = 200, N = 500 and check the
MSE. Re-run the code and check this result.

Experiment # 10: Delta Modulation System

Introduction

Delta modulation (DM) system is a single-bit differential PCM system that utilizes
higher sampling rates to reduce the number of bits necessary for quantization,
hence it reduces the cost of the system since increasing the sampling frequency is
less expensive than increasing the word length. This makes DM suitable as ADC
for audio applications, where the signal band is 20 kHz, hence the DM can use
moderately high sampling frequencies.

DM system can be built in the analog domain or in the digital domain.
However, it is not possible to implement an adaptive analog DM, hence we prefer
the digital DM. Figure D.17 shows a digital DM system that consists of a 2-level
quantizer and an integrator in the feedback loop. If the step A is small and the input
signal has a steep slope, the DM can loose tracking and a slope overload occur. To
avoid this problem, adaptive DM should be used. Figure D.18 shows an adaptive
DM system.

Clock ()
\|, + I” ” Integrator
e(n)
x(t) >+ ;|:_1 y(m—{A> X(1)

[DM Decoder]

T g [DM Encoder]

Fig. D.17 DM configuration

Appendix D: DSP Lab Experiments 345
MATLAB Simulation

In this experiment we will simulate DM and adaptive DM systems and compare
their performance using sinusoidal and LFM input signals.

Task 1

On MATLAB generate the signal x(k) = Asin(w,kT), with sampling period
T, =0.02 s, amplitude A =0.5 V, frequency f, =1 Hz, and time vector
0 <1< 10 (s). With a step of A =0.07, simulate the delta modulation system
in Fig. D.17. Plot the input signal, the estimated signal, and the output of the DM
system along with their spectra. Can you find the effect of quantization on the
output signal spectrum? The output signal is a square wave, however, its spectrum
reveals a sinusoidal content.

Task 2

Implement the DM demodulator shown in Fig. D.17. Use a digital 4th-order
Butterworth low-pass filter. Plot the demodulated signal and its spectrum and
compare with the original signal.

Task 3

Vary the quantization step to 0.03, 0.1, and 0.2. Check the quantization noise
and the slope overload.

Task 4

Repeat Tasks 1, 2, and 3 for a linear FM signal with amplitude 0.2 V, initial
frequency 0.5 Hz, and modulation index of 0.5.

Task 5

Now implement the adaptive delta modulation system as shown in Fig. D.18,
with an initial step of 0.03 and a step modification constant K = 1.3. For
sinusoidal and LFM inputs, plot the input signal and its modulated version along
with their spectra. Compare with the non-adaptive DM system.

346 Appendix D: DSP Lab Experiments

Clock (£.)

\I/ _|_ e(n) - ||| ” Integrator
x(t) —>—/—ﬁ@ :|:1 y(n) > PILPF> x ()

x(n) Quantizer Adzptlve

[Adaptive DM Decoder]

x(n)

Integrator,z) [Adaptive DM Encoder]

Fig. D.18 Adaptive DM system

DSP Project

Part 1: Problem Solving Using MATLAB

(A) Prime numbers

(A-1) A prime number (p) is an integer that has no factors or divisors except 1
and itself. The first 12 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, and 37. Note that 2 is the only even prime number. Prime
numbers play a significant role in coding and computation algorithms
and circuits.

(A-2) Write a MATLAB code to find whether a given integer x is a prime.

(A-3) Write a MATLAB code to find the number of primes less than or equal to
a given real number x (not necessarily an integer). This is called “prime
counting function, n(x)”. For example, 7(10) = ©(10.9) = 4.

(A-4) Prime number theorem As x becomes large, m (x) approaches x/ In(x).
Prove using MATLAB simulation.

(B) Non-linear equations
Using MATLAB, find whether the equation cos(x) = x* has a solution over
the interval [— 3, + 3].

Appendix D: DSP Lab Experiments 347

(C) 3D plotting
Plot the function z(x, y) = cos(x)exp(— lyl) and its first derivatives. Plot a few
2D cross-sections of z.

(D) Computation algorithms are of fundamental importance in designing new
generations of faster and more efficient computers and digital signal
processors (DSP). Mersenne primes (MP’s) are important in computation
algorithms and hardware as they enable binary arithmetic while using
“Number Theoretic Transforms”. An integer m is a Mersenne Primeif it is a
prime number of the form m = 2p — 1, where p is a prime. There are only 44
MP’s discovered so far. The first 9 MP’s are 3, 7, 31, 127, 8191, 131071,
524287, 2147483647, 2305843009213693951 (corresponding to p = 2, 3, 5,
7, 13, 17, 19, 31, 61), while the last known MP is m44 = 232582657 — 1
(discovered in 2006 and is composed of 9808358 digits). Write a MATLAB
code to find the first 5 MP’s.

Part 2: System Implementation

Choose Project-2a or Project-2b as follows.

Project-2a: Hardware Design of Digital Systems

I. Design a digital integrating or differentiating circuit. Using ADC/DAC,
apply analog sinusoids (from a signal generator) with different frequencies
and find the magnitude and phase spectra. Verify the function of the circuit
on the oscilloscope.

II. Design a first-order digital phase-locked loop or a digital delta modulation
system and verify the circuit operation using a sinusoidal signal generator
and an oscilloscope.

Project-2b: Software Analysis of the Sinusoidal Digital Phase-Locked Loop

A: Frequency Tracking of a Sinusoid

Task 1: Noise-Free Analysis

Using MATLAB, simulate the 1st-order sinusoidal DPLL shown in Fig. D.19
Consider a sinusoidal input signal, plot the locking range of the loop, and study the
loop behavior for different circuit parameters. Consider the phase plane, the
sampling process and the transient phase and frequency. For a fixed frequency
ratio W and initial phase (but different combinations), find the effect of the loop
gain K; on the locking speed. Locking is practically reached when the difference

348 Appendix D: DSP Lab Experiments
Input Signal,
P g Sampler & x(k)
x(t) DF
ADC | N-bits

DCO

y(k)

Output Pulses, v, (k)

Fig. D.19 Block diagram of the SDPLL

between successive phase errors is smaller than some positive number (e.g., 0.01).
Also find the effect of the initial phase error on the locking speed assuming the
frequency ratio and the loop gain are fixed.

Task 2: Noise Analysis

Consider a sinusoidal input signal corrupted by an AWGN noise. Find the pdf
of the SDPLL output frequency for different SNRs. Discuss whether the SDPLL
can estimate the input frequency in noisy environments. Take several
combinations of the loop gain and the frequency ratio. Plot the variance of the
loop frequency estimate as a function of SNR.

B: Demodulation of PM Signals Using SDPLL

The first-order SDPLL can demodulate PM signals as shown in Fig. D.20
below. Using MATLAB, simulate the PM demodulation circuit and study its
behavior under noise-free conditio ns for different values of the modulation index.

C: Second-Order SDPLL

The second-order SDPLL utilizes a proportional-plus-accumulation filter and
locks on zero phase. Simulate this loop and study its performance (as a frequency
estimator) in Gaussian noise. Note that two initial phases should be considered.

Input PM Signal,

X(——

B - 3¢ s (H=6(t)
6=y x) "

+ >

LPF

Sampler &
ADC

x() = A sin[o_t +6(f)] ~1

[6(f)=am(f)]

N

v

Fig. D.20 Circuit diagram for PM demodulation using Ist-order SDPLL

Authors’ Biographies

Zahir M. Hussain took the first rank in Iraq
in the General Baccalaureate Examinations
1979 with an average of 99%. He received the
B.Sc. and M.Sc. degrees in electrical
engineering from the University of Baghdad
in 1983 and 1989, respectively, and the
PhD degree in electrical engineering from
Queensland University of Technology,
Brisbane, Australia, in 2002. From 1989 to
1998 he researched and lectured on elec-trical
engineering and mathematics. In 2001 he
joined the School of Electrical and Computer
Engineering (SECE), RMIT University,
Melbourne, Australia, as a researcher then
lecturer of signal process-ing and communi-
cations. He was the academic leader of a 3G commercial communications project at
RMIT 2001-2002. In 2002 he was promoted to Senior Lecturer. Since 2001 he has
been the senior supervisor for 15 PhD candidates at RMIT (with 9 completions
between 2001 and 2009); also the second supervisor for another 7 PhD candidates. Dr.
Hussain has over 200 internationally refereed technical publications on signal
processing, communications, and electronics. His joint work on single-bit processing
with Professor Peter O’Shea has led to an Australian Research Council (ARC)
Discovery Grant (2005-2007). In 2005 he was promoted to Associate Professor of
Signal Processing. He got the RMIT 2005 and 2006 Publication Awards (also shared
the 2004 Publication Award with Professor Richard Harris, now Chair of
Telecommunications at Massey University, NZ). In 2006 he was the Head of the
Communication Engineering Discipline at SECE, RMIT. In 2007 he won the RMIT
Teaching Award. Dr. Hussain is a member of Engineers Australia (formerly IEAust),
IET (formerly IEE), and a senior member of IEEE and the Australian Computer
Society (ACS). He worked on the technical program committees of many conferences

349

350 Authors’ Biographies

and served as a reviewer for leading IEEE and Elsevier journals. Prof. Hussain has
recently joined Kufa University, staying as Adjunct Professor at RMIT. .

Amin Z. Sadik received the B.Sc.
(1983) and M.Sc. degrees (1988) in
electrical engineering from the University
of Baghdad, Iraq, and Baghdad University
of Technology, Iraq, respectively. From
1989 to 1995, he was a lecturer in the
School of Electrical Engineering, Univer-
sity of Technology, Baghdad, Iraq. From
1995 to 2001 he was a lecturer at the
University of Salahuddin, Erbil, Iraq, and
from 2001 to 2004 he was a lecturer at the
University of Al-Balqa, Jordan. In 2006 he
received his PhD degree in Electrical
Engineering from the School of Electrical
and Computer Engineering, RMIT Univer-
sity, Melbourne, Australia. Since then, he
worked as a Research Fellow in RMIT
University and as a Senior Research Fellow (Digital Signal Processing) in QUT.
Dr. Sadik received the Best Paper Award in IEEE TENCON 2005 and DSPCDC
2006. He contributed to the technical committees of several international
conferences and to the review process in Elsevier and other journals. In Feb.
2009 he joined the School of Engineering and Physical Sciences, Heriot-Watt
University, Dubai Campus. His research interests include digital signal processing
and digital communications.

Peter O’Shea received the B.E.,
Dip.Ed., and Ph.D. degrees, all from the
University of Queensland, Australia. He has
worked as an engineer at the Overseas
Telecommunications Commission for 3 years,
at University of Queensland for 4 years, at
Royal Melbourne Institute of Technology
(RMIT) for 7 years, and at Queensland
University of Technology (QUT) for 9
years, where he is currently a Professor.
He has received awards in Student
Centered Teaching from the Faculty of
Engineering and the University President at
both RMIT and QUT. His interests are in
signal processing for communications,
power systems and biomedicine, and reconfigurable computing.

	Cover
	Digital Signal Processing
	ISBN 9783642155901
	Preface
	Contents
	Acronyms, Symbols and Abbreviations
	Part I
Theory and Selected Applications
	1 Analog Signals and Systems
	1.1…Definitions, Classifications, and Overview
	1.1.1 Definitions
	1.1.2 Representation of Signals and Systems
	1.1.3 Examples of Signals
	1.1.4 Classification of Signals
	1.1.5 Analog and Digital Signal Processing
	1.1.6 Digital Signal Processing Versus Analog Signal Processing
	1.1.7 System Modeling
	1.1.8 Classification of Systems
	1.1.9 Linear Time-Invariant Systems

	1.2…Time-Domain / Frequency-Domain Representations
	1.2.1 Basic Functions and Relations
	1.2.1.1 The Convolution Integral
	Properties of the Convolution Integral

	1.2.1.2 The Dirac Delta Function
	Properties of the Delta Function
	Alternative Representations of the Delta Function

	1.2.1.3 The Unit Step Function

	1.2.2 Time-Domain Representation
	1.2.2.1 Mathematical Time-Domain Representation
	Practical Measurement of the Impulse Response

	1.2.2.2 Stability of Analog LTI Systems in the Time Domain

	1.2.3 Frequency-Domain Representation
	1.2.3.1 Fourier Series Representation of Periodic Signals
	Trigonometric Fourier Series
	Special Cases
	Complex Fourier Series
	Relationship Between CFS and TFS Coefficients

	1.2.3.2 The Fourier Transform
	Implementation in MATLAB:
	Properties of the FT
	Fourier Transform of Sinusoids
	Fourier Transform of Periodic Signals

	1.2.3.3 The Laplace Transform
	The Double-Sided Laplace Transform
	The Single-Sided Laplace Transform
	Properties of the LT
	Region of Convergence of the LT

	1.2.3.4 Mathematical Frequency-Domain Representation
	Eigenfunctions of LTI Analog Systems

	1.2.3.5 Stability of Analog LTI Systems-Frequency Domain

	1.2.4 Signal Correlation and Its Applications
	1.2.5 Signal Power and Energy
	1.2.5.1 Power in Periodic Signals
	1.2.5.2 Parseval’s Theorem
	1.2.5.3 The Wiener--Kinchin Theorem
	1.2.5.4 Examples

	1.3…Random Signals
	1.3.1 Definition
	1.3.2 Overview of Probability and Statistics
	1.3.2.1 Probability and Sample Space
	Probability
	Sample space

	1.3.2.2 Random Variables
	1.3.2.3 Joint Probability
	1.3.2.4 Conditional Probability
	1.3.2.5 Independent Events
	1.3.2.6 Probability Density Function
	1.3.2.7 Statistical Mean
	1.3.2.8 The Second Moment
	1.3.2.9 The Variance
	1.3.2.10 The Gaussian pdf

	1.3.3 Signals in Noise
	1.3.3.1 Gaussian Noise
	1.3.3.2 Signals in Gaussian Noise
	1.3.3.3 Power Spectral Density of Random Signals
	1.3.3.4 Stationary Random Signals
	1.3.3.5 The Autocorrelation Function of Random Signals
	1.3.3.6 Wide-Sense Stationary Signals
	1.3.3.7 Wiener--Kinchin Theorem for Random Signals
	1.3.3.8 White Noise
	1.3.3.9 Effect of Ideal Low-Pass Filter on White Noise

	1.4…Applications of Analog Signal Analysis
	1.4.1 Signal Detection in Noise
	1.4.2 The Matched Filter
	1.4.2.1 Conclusion
	1.4.2.2 The Output of the Matched Filter at the Time of Optimal SNR
	1.4.2.3 The Matched Filter is a Correlator
	1.4.2.4 The Optimal Receiver

	1.5…Analog Filters
	1.5.1 The Ideal Low-Pass Filter
	1.5.2 Butterworth LPF
	1.5.3 Chebychev-I LPF
	1.5.4 Design of Butterworth and Chebychev-I LPF’s
	1.5.4.1 Example of a Low-pass Filter Design
	1.5.4.2 Circuit Design

	1.5.5 Design of Butterworth and Chebychev-I High-Pass, Band-Pass, and Band-Stop Filters
	1.5.5.1 Circuit Design
	1.5.5.2 Impedance Matching
	1.5.5.3 Hardware Filter Design Rules Using Normalized LPF Standard Circuits
	1.5.5.4 Example of a High-pass Filter Design

	1.5.6 Chebychev-II Filters
	1.5.7 Elliptic Filters
	1.5.8 MATLAB Analog Filter Design
	1.5.9 Active Filters
	1.5.9.1 Overview of Active Amplifiers
	1.5.9.2 The Active Buffer
	1.5.9.3 The Active Inductance
	1.5.9.4 Butterworth Active Filters

	References

	2 Discrete and Digital Signals and Systems
	2.1…Introduction
	2.1.1 Digital Systems

	2.2…Ideal Sampling and Reconstruction
	2.2.1 Ideal Uniform Sampling
	2.2.1.1 Definitions for Some Important Discrete-Time Signals
	The Discrete-Time Unit Pulse
	The Discrete-Time Unit-Step Function
	Time- and Frequency-Domain Interpretation of Sampling

	2.2.2 Ideal Reconstruction
	2.2.2.1 Stage 1
	2.2.2.2 Stage 2
	2.2.2.3 Frequency Aliasing

	2.3…Time-Domain / Frequency-Domain Representations
	2.3.1 Time-Domain Representation of Digital Signals and Systems
	2.3.1.1 Discrete Linear Convolution
	2.3.1.2 Mathematical Representation of Digital Signals and Systems in the Time Domain
	Eigenfunctions of LTI Digital Systems
	Analyzing the Stability of Digital Systems in the Time Domain

	2.3.2 Frequency-Domain Representation of Digital Signals and Systems
	2.3.2.1 Discrete-Time Fourier Series for Periodic Digital Signals
	2.3.2.2 The Discrete-Time Fourier Transform for Non-Periodic Digital Signals

	2.3.3 The z-Transform
	2.3.3.1 The Single-Sided ZT
	2.3.3.2 The Time-Shift Property of the ZT
	2.3.3.3 Relationship Between the FT and ZT of a Discrete-Time Signal
	2.3.3.4 Relationship Between the LT and the ZT for Discrete-Time Signals

	2.3.4 Mathematical Representation of Signals and Systems in the Frequency Domain
	2.3.4.1 Relationship Between the ZT Transfer Function and the Frequency Response
	2.3.4.2 Stability of Digital Systems in the z-Domain

	2.4…A Discrete-Time and Discrete-Frequency Representation
	2.4.1 The Discrete Fourier Transform
	2.4.1.1 Approximation of the FT Using DFT
	2.4.1.2 Relationship Between the DFT and the DFS Coefficients
	2.4.1.3 The Fast Fourier Transform
	2.4.1.4 Circular Convolution and Its Relation to the Linear Convolution
	2.4.1.5 I/O Relations Using Circular Convolution and the DFT

	2.5…Signal Correlation, Power, and Energy
	2.5.1 Definitions
	2.5.1.1 Autocorrelation of Non-Periodic Discrete-Time Energy Signals
	2.5.1.2 Autocorrelation for Periodic Discrete-Time Power Signals
	2.5.1.3 Energy in Non-Periodic Discrete-Time Energy Signals
	2.5.1.4 Power in Periodic Discrete-Time Power Signals
	2.5.1.5 Parseval’s Theorem
	2.5.1.6 The Wiener-Kinchin Theorem

	2.6…Digital Filters and Their Applications
	2.6.1 Ideal Digital Filters
	2.6.1.1 Mathematical Formulation
	The Digital LPF
	Digital Filter Transformations in the Time-Domain

	2.6.2 Linear-Phase Systems
	2.6.3 Classification of Digital Filters
	2.6.4 FIR Digital Filters
	2.6.4.1 Structure and Implementation of FIR Filters
	2.6.4.2 Software Implementation of FIR Filters
	2.6.4.3 FIR Filtering of Long Data Sequences
	2.6.4.4 Pole-Zero Diagram and Stability of FIR Filters
	2.6.4.5 Linear-Phase FIR Filters
	2.6.4.6 Efficient Hardware Implementation of Linear Phase FIR Filters

	2.6.5 Design of FIR Digital Filters
	2.6.5.1 Time-Domain Design
	Gibbs Phenomenon
	General formula

	2.6.5.2 Frequency-Domain Design
	A. Design of FIR Digital Filters by Frequency-Sampling
	B. Optimal Frequency-Sampling FIR Filter Design

	2.6.6 Applications of FIR Digital Filters
	2.6.6.1 Communication Channel Equalization
	2.6.6.2 The Moving Average Filter
	2.6.6.3 The Digital Differentiator
	Time Domain Approach
	Frequency Domain Approach

	2.6.6.4 The Digital Matched Filter

	2.6.7 IIR Digital Filters
	2.6.7.1 Structure and Implementation of IIR Digital Filters
	2.6.7.2 IIR versus FIR Filters
	2.6.7.3 Direct Form Implementation of IIR Digital Filters
	2.6.7.4 Practical Implementation of IIR Digital Filters

	2.6.8 Design of IIR Digital Filters
	2.6.8.1 Time-Domain Design: Impulse Response Matching
	2.6.8.2 Frequency-Domain Design: Frequency Response Matching
	2.6.8.3 MATLAB IIR Filter Design Using the Bilinear Transformation
	2.6.8.4 MATLAB FIR/ IIR Filter Design and Analysis Toolbox

	2.6.9 Applications of IIR Digital Filters
	2.6.9.1 The Digital Integrator
	2.6.9.2 The Alpha Filter
	2.6.9.3 The Sinusoidal Digital Oscillator
	2.6.9.4 The Digital Resonator
	2.6.9.5 A Digital DC Blocker
	2.6.9.6 An Application of FIR / IIR Digital Filters: Simulation of Acoustic Effects

	References

	Part II
Applied Signal Processing
	3 Selected Topics in Applied Signal Processing
	3.1…Introduction
	3.2…Binary Signal Transmission
	3.2.1 Binary Transmission Using Orthogonal Signals
	3.2.1.1 Probability of Error

	3.2.2 Binary Transmission Using Antipodal Signals

	3.3…The Hilbert Transform and the Analytic Signal
	3.3.1 The Analog and Digital Hilbert Transform
	3.3.1.1 The Analog Hilbert Transform
	The Inverse HT

	3.3.1.2 The Digital Hilbert Transform
	MATLAB

	3.3.2 The Analytic Signal
	3.3.3 Applications of the Hilbert Transform and the Analytic Signal
	3.3.3.1 Spectral Economy and Computation of the Instantaneous Frequency
	3.3.3.2 Single Side-Band Amplitude Modulation
	3.3.3.3 Spectrum of the SSBSC AM Signal
	3.3.3.4 Demodulation of SSBSC AM Signals

	3.4…Phase-Locked Loops
	3.4.1 Analog Phase-Locked Loops
	3.4.2 Digital Phase-Locked Loops
	3.4.2.1 The Sinusoidal DPLL (SDPLL)
	The Digital Controlled Oscillator

	3.4.2.2 Operation of the SDPLL
	Analysis of the SDPLL

	3.4.2.3 The First-Order Noise-Free SDPLL
	Locking Conditions
	Phase Plane Diagram
	SDPLL in Noise

	3.4.2.4 The Second-Order Noise-Free SDPLL
	Lock Range

	3.4.2.5 PM Demodulation Using the SDPLL

	3.5…Linear Estimation and Adaptive Filtering
	3.5.1 Non-adaptive FIR LMS Filter
	3.5.2 Adaptive Filters
	3.5.3 Choice of the Desired Signal
	3.5.4 The Adaptive LMS Algorithm
	3.5.5 Choice of Adaptation (Convergence) Coefficient and Filter Length
	3.5.6 Hardware Implementation of Adaptive FIR Filters
	3.5.7 An Example of LMS Filtering
	3.5.8 Application of Adaptive Filtering to Noise Reduction in Narrow-Band Signals
	3.5.9 Application of Adaptive Filtering to Channel Equalization
	3.5.9.1 Reducing Intersymbol Interference
	3.5.9.2 The Adaptive Channel Equalizer

	3.6…Sigma-Delta Modulation & Noise Shaping
	3.6.1 Quantization
	3.6.1.1 Uniform Quantization
	3.6.1.2 Nonuniform Quantization

	3.6.2 Oversampling and Its Applications
	3.6.2.1 Quantization SNR Improvement
	3.6.2.2 Relaxing Conditions on the Anti-Aliasing Filter

	3.6.3 Delta Modulation
	3.6.3.1 Digital DM System
	3.6.3.2 Sigma-Delta Modulation

	3.7…Non-Stationary Signal Analysis
	3.7.1 The Need for Time-Frequency Analysis
	3.7.2 Some Important TFRs
	3.7.2.1 The Short-Time Fourier Transform
	3.7.2.2 Cohen’s Class of TFRs

	3.7.3 The Discrete Cosine Transform
	3.7.3.1 An Application of the DCT: Data Compression

	References

	Part III
Advanced Topics
	4 The Impact of Finite Wordlength Implementation
	4.1…Introduction
	4.2…Overview of Number Formats
	4.2.1 Fixed-Point Format
	4.2.2 Floating-Point Format

	4.3…The Quantization Process
	4.3.1 Quantization of Fixed-Point Numbers
	4.3.1.1 The Rounding Method
	4.3.1.2 Truncation Method

	4.3.2 Quantization of Floating-Point Numbers
	4.3.3 Impact of Quantization on DSP System Implementation

	4.4…Coefficient Quantization Error in Digital Filters
	4.4.1 Coefficient Quantization Error in IIR Filters
	4.4.2 Coefficient Quantization Error in FIR filter

	4.5…Quantization Errors in Arithmetic Operations
	4.5.1 Multiplier and Accumulator Errors in Fixed-Point Arithmetic
	4.5.1.1 Multiplier Error
	4.5.1.2 Accumulator Error

	4.5.2 Scaling in Fixed-Point Arithmetic
	4.5.2.1 Scaling of Direct Form IIR Filter
	4.5.2.2 Scaling of Cascade-Form IIR Filters
	4.5.2.3 Scaling of Direct-Form FIR Filters

	4.6…Limit Cycle Phenomena
	References

	5 Multirate Digital Signal Processing
	5.1…Introduction
	5.2…Basic Elements of Multirate Processing
	5.2.1 The Down-Sampler and the Up-Sampler
	5.2.2 Frequency-Domain Representation

	5.3…Sampling Rate Conversion Using Multirate Structures
	5.3.1 Decimation
	5.3.2 Interpolation
	5.3.3 Rational Number Sampling Rate Conversion

	5.4…Efficient Implementation of Multirate Systems
	5.4.1 Noble Identities
	5.4.2 Polyphase Decomposition
	5.4.3 Multistage Implementation
	5.4.3.1 Interpolated FIR Filter Design

	Reference

	Appendix A: Tutorials
	Tutorial 1
	Tutorial 2
	Tutorial 3
	Tutorial 4
	Tutorial 5
	Tutorial 6
	Tutorial 7
	Tutorial 8
	Tutorial 9
	Tutorial 10
	Tutorial 11
	Tutorial 12
	Tutorial 13
	Tutorial 14
	Tutorial 15
	Tutorial 16
	Tutorial 17
	Tutorial 18
	Tutorial 19
	Tutorial 20
	Tutorial 21
	Tutorial 22
	Tutorial 23
	Tutorial 24
	Tutorial 25
	Tutorial 26
	Tutorial 27
	Tutorial 28
	Tutorial 29
	Tutorial 30
	Tutorial 31
	Tutorial 32
	Tutorial 33
	Tutorial 34
	Tutorial 35
	Tutorial 36
	Tutorial 37
	Tutorial 38
	Tutorial 39
	Tutorial 40
	Tutorial 41
	Tutorial 42
	Tutorial 43
	Tutorial 44
	Tutorial 45
	Tutorial 46
	Tutorial 47
	Tutorial 48
	Tutorial 49
	Tutorial 50
	Tutorial 51
	Tutorial 52
	Tutorial 53

	Appendix B: Miscellaneous Exercises
	Miscellaneous DSP Exercises—A
	Miscellaneous DSP Exercises—B
	Miscellaneous DSP Exercises: C
	Miscellaneous DSP Exercises: D

	Appendix C: Tables and Formulas
	Basic Definitions
	Useful Formulas
	Useful Definitions and Relations

	Appendix D: DSP Lab Experiments
	Experiment # 1: Computing the Convolution Integral
	Experiment # 2: Generation and Demodulation of AM Signals
	Experiment # 3: Random Signal Analysis
	Experiment # 4: Filter Design with Application to Noise Reduction
	Experiment # 5: A Sinusoidal Digital Oscillator
	Experiment # 6: Sampling and Reconstruction
	Experiment # 7: Binary Signal Transmission
	Experiment # 8: Simulation of the Sinusoidal Digital
Phase-Locked Loop
	Experiment # 9: Adaptive Wiener Filter for Noise Reduction
and Channel Estimation
	Experiment # 10: Delta Modulation System
	DSP Project
	Part 1: Problem Solving Using MATLAB
	Part 2: System Implementation

	Authors’ Biographies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

