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Introduction and References

This book-broject contains my lectures on quantum field theory (QFT) which were delivered
during the academic years 2010-2011, 2011-2012 and 2012-2013 at the University of Annaba to
first year and second year master students in theoretical physics. Each part of the book covers
roughly a semester consisting of 13 weeks of teaching with 2 lectures and 1 recitation per week.
In our master program quantum field theory is formally organized as an anual course so either
part I and part IT can be used as the material for the course or part I and part III. Another
possibility is to merge part II and part III in such a way that the content fits within one semester
as we will discuss further below.

Part I is essential since we lay in it the foundations and the language of QF T, although I think
now the third chapter of this part should be shortened in some fashion. Part IT and part III are
independent unites so we can do either one in the second semester. Part II deals mainly with the
problem of quantization and renormalization of electrodynamics using the canonical approach
while part III deals with path integral formulation, gauge theory and the renormalization group.
[The last chapter on the renormalization group was not actually covered with the other two
chapters of part III in a single semester. In fact it was delivered informally to master and
doctoral students].

In my view now a merger of part I and part III in which the last chapter on the renormaliza-
tion group is completely suppressed (although in my opinion it is the most important chapter of
this book), the other two chapters of part III and the last two chapters of part II are shortened
considerably may fit within one single semester. Our actual experience has, on the other hand,
been as shown on table (1).

The three main and central references of this book were: Strathdee lecture notes for part
I and chapter two of part II, Peskin and Schroeder for part II especially the last chapter and
the second chapter of part III and Zinn-Justin for the last chapter on the renormalization group
of part III. Chapter one of part II on the canonical quantization of the electromagnetic field
follows Greiner and Reinhardt. Chapter one of part III on the path integral formulation and the
effective action follows Randjbar-Daemi lecture notes. I have also benefited from many other
books and reviews; I only mention here A.M.Polyakov and J.Smit books and K.Wilson and J.
Kogut review. A far from complete list of references is given in the bibliography.
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Year Spring Fall

2011 Part I with the exception Part II with the exception
of section 3.6. of sections 6.6, 7.4 and 7.8.

92012 Part I with the exception Part IIT with the exception

of section 3.6.

of section 8.5 and chapter 10.




(1]
2]

3]

4]
[5]

[6]
7]

18]

19]
[10]

[11]

[12]

[13]

[14]

[15]
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Part 1

Free Fields, Canonical Quantization
and Feynman Diagrams






Relativistic Quantum Mechanics

2.1 Special Relativity

2.1.1 Postulates

Classical mechanics obeys the principle of relativity which states that the laws of nature take
the same form in all inertial frames. An inertial frame is any frame in which Newton’s first law
holds. Therefore all other frames which move with a constant velocity with respect to a given
inertial frame are also inertial frames.

Any two inertial frames O and O’ can be related by a Galilean transformation which is of
the general form

’

t =t+7
7 = RT+ 0t +d. (2.1)

In above R is a constant orthogonal matrix, d and ¥ are constant vectors and T is a constant
scalar. Thus the observer O sees the coordinates axes of O rotated by R, moving with a velocity
U, translated by d and it sees the clock of O running behind by the amount 7. The set of all
transformations of the form (2.1) form a 10-parameter group called the Galilean group.

The invariance/covariance of the equations of motion under these transformations which
is called Galilean invariance/covariance is the precise statement of the principle of Galilean
relativity.

In contrast to the laws of classical mechanics the laws of classical electrodynamics do not
obey the Galilean principle of relativity. Before the advent of the theory of special relativity
the laws of electrodynamics were thought to hold only in the inertial reference frame which is
at rest with respect to an invisible medium filling all space known as the ether. For example
electromagnetic waves were thought to propagate through the vacuum at a speed relative to the
ether equal to the speed of light ¢ = 1/,/fip€g = 3 X 108m/s.

The motion of the earth through the ether creates an ether wind. Thus only by measuring
the speed of light in the direction of the ether wind we can get the value ¢ whereas measuring
it in any other direction will give a different result. In other words we can detect the ether by
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measuring the speed of light in different directions which is precisely what Michelson and Morley
tried to do in their famous experiments. The outcome of these experiments was always negative
in the sense that the speed of light was found exactly the same equal to ¢ in all directions.

The theory of special relativity was the first to accommodate this empirical finding by pos-
tulating that the speed of light is the same in all inertial reference frames, i.e. there is no ether.
Furthermore it postulates that classical electrodynamics (and physical laws in general) must
hold in all inertial reference frames. This is the principle of relativity although now its precise
statement can not be given in terms of the invariance/covariance under Galilean transformations
but in terms of the invariance/covariance under Lorentz transformations which we will discuss
further in the next section.

Einstein’s original motivation behind the principle of relativity comes from the physics of the
electromotive force. The interaction between a conductor and a magnet in the reference frame
where the conductor is moving and the magnet is at rest is known to result in an emotional
emf. The charges in the moving conductor will experience a magnetic force given by the Lorentz
force law. As a consequence a current will flow in the conductor with an induced motional emf
given by the flux rule & = —d®/dt. In the reference frame where the conductor is at rest and
the magnet is moving there is no magnetic force acting on the charges. However the moving
magnet generates a changing magnetic field which by Faraday’s law induces an electric field. As
a consequence in the rest frame of the conductor the charges experience an electric force which
causes a current to flow with an induced transformer emf given precisely by the flux rule, viz
E=—dd/dt.

So in summary although the two observers associated with the states of rest of the conductor
and the magnet have different interpretations of the process their predictions are in perfect
agreement. This indeed suggests as pointed out first by Einstein that the laws of classical
electrodynamics are the same in all inertial reference frames.

The two fundamental postulates of special relativity are therefore:

e The principle of relativity: The laws of physics take the same form in all inertial reference
frames.

e The constancy of the speed of light: The speed of light in vacuum is the same in all inertial
reference frames.

2.1.2 Relativistic Effects

The gedanken experiments we will discuss here might be called “The train-and-platform thought
experiments”.

Relativity of Simultaneity We consider an observer O in the middle of a freight car moving
at a speed v with respect to the ground and a second observer O standing on a platform. A light
bulb hanging in the center of the car is switched on just as the two observers pass each other.

It is clear that with respect to the observer o light will reach the front end A and the back
end B of the freight car at the same time. The two events “light reaches the front end” and “light
reaches the back end” are simultaneous.

According to the second postulate light propagates with the same velocity with respect to
the observer O. This observer sees the back end B moving toward the point at which the flash
was given off and the front end A moving away from it. Thus light will reach B before it reaches
A. In other words with the respect to O the event “ light reaches the back end” happens before
the event “light reaches the front end”.
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Time Dilation Let us now ask the question: How long does it take a light ray to travel from
the bulb to the floor?
Let us call h the height of the freight car. It is clear that with respect to O’ the time spent
by the light ray between the bulb and the floor is
af =1 (2.2)
c
The observer O will measure a time At during which the freight car moves a horizontal distance
vAt. The trajectory of the light ray is not given by the vertical distance h but by the hypotenuse
of the right triangle with h and vdt as the other two sides. Thus with respect to O the light ray
travels a longer distance given by Vh2 4+ v2At2 and therefore the time spent is

Vh? + v2At?

At = 2.3
- (23)
Solving for At we get
h /
At =~v— = vAt . (2.4)
c
The factor « is known as Lorentz factor and it is given by
1
y = - (2.5)
-z

Hence we obtain

’ ’1}2
At =4/1- ZAt <At (2.6)

The time measured on the train is shorter than the time measured on the ground. In other words
moving clocks run slow. This is called time dilation.

Lorentz Contraction We place now a lamp at the back end B of the freight car and a mirror
at the front end A. Then we ask the question: How long does it take a light ray to travel from
the lamp to the mirror and back?

Again with respect to the observer O’ the answer is simple. If Az’ is the length of the freight
car measured by O’ then the time spent by the light ray in the round trip between the lamp and
the mirror is

Af = 22T (2.7)
C

Let Az be the length of the freight car measured by O and At; be the time for the light ray to
reach the front end A. Then clearly

cAt; = Az + vAt. (2.8)

The term vAt; is the distance traveled by the train during the time At;. Let Ats be the time
for the light ray to return to the back end B. Then

cAty = Az — vAts. (2.9)
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The time spent by the light ray in the round trip between the lamp and the mirror is therefore

Az Az G Az
+ =2y —. (2.10)
c— c+v c

At = Aty + Aty =

The time intervals At and At are related by time dilation, viz
At = yAt . (2.11)
This is equivalent to
Az =yAz > Az (2.12)

The length measured on the train is longer than the length measured on the ground. In other
words moving objects are shortened. This is called Lorentz contraction.

We point out here that only the length parallel to the direction of motion is contracted while
lengths perpendicular to the direction of the motion remain not contracted.

2.1.3 Lorentz Transformations: Boosts

Any physical process consists of a collection of events. Any event takes place at a given point
(ac, Y, z) of space at an instant of time ¢. Lorentz transformations relate the coordinates (ac, Y, 2, t)
of a given event in an inertial reference frame O to the coordinates (z,, y,, z,, tl) of the same event
in another inertial reference frame O

Let (z,y, z,t) be the coordinates in O of an event E. The projection of E onto the z axis is
given by the point P which has the coordinates (x,0,0,t). For simplicity we will assume that
the observer O' moves with respect to the observer O at a constant speed v along the x axis. At
time ¢ = 0 the two observers O and O coincides. After time t the observer O moves a distance
vt on the z axis. Let d be the distance between O and P as measured by O. Then clearly

z=d+ut. (2.13)

Before the theory of special relativity the coordinate # of the event F in the reference frame O’
is taken to be equal to the distance d. We get therefore the transformation laws

’

T =z —vt

y =y

Z,:Z

t =t (2.14)

This is a Galilean transformation. Indeed this is a special case of (2.1).

As we have already seen Einstein’s postulates lead to Lorentz contraction. In other words
the distance between O and P measured by the observer O’ which is precisely the coordinate
z s larger than d. More precisely

x = vd. (2.15)
Hence

x =y(z —ot). (2.16)
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Einstein’s postulates lead also to time dilation and relativity of simultaneity. Thus the time of
the event E' measured by O is different from ¢. Since the observer O moves with respect to O
at a speed v in the negative x direction we must have

=z +ut). (2.17)
Thus we get

’ v

t =~(t— C—Qz) (2.18)

x =y(x — vt)

Yy =y

2=z

’ (%

t =~ — C—Qac) (2.19)

This is a special Lorentz transformation which is a boost along the = axis.
Let us look at the clock found at the origin of the reference frame O . We set then x =0 in
the above equations. We get immediately the time dilation effect, viz

t=-. (2.20)

At time ¢ = 0 the clocks in O read different times depending on their location since

/

{ = —7:—2:0. (2.21)

Hence moving clocks can not be synchronized.
We consider now two events A and B with coordinates (x4,t4) and (zp,tp) in O and
coordinates (z4,t,) and (zg,t5) in O . We can immediately compute

’ v
At = y(At — C—QA:L') (2.22)

Thus if the two events are simultaneous with respect to O, i.e. At = 0 they are not simultaneous
with respect to O since

At = 7’}/:—2ALL‘. (2.23)

2.1.4 Spacetime

The above Lorentz boost transformation can be rewritten as

2% = y(2° — Bzh)

J - 7@1 _ ﬁxo)

2 =22

¥ =15 (2.24)

In the above equation

D =ct,al=x, 2=y, 2® =z (2.25)
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ﬁ:%, N =+/1= B2 (2.26)

This can also be rewritten as

4
o =" Al (2.27)
v=0
¥y —B 00
-8 0 0
A= g Lo (2.28)
0 0 01

The matrix A is the Lorentz boost transformation matrix. A general Lorentz boost transforma-
tion can be obtained if the relative motion of the two inertial reference frames O and O is along
an arbitrary direction in space. The transformation law of the coordinates x# will still be given
by (2.27) with a more complicated matrix A. A general Lorentz transformation can be written
as a product of a rotation and a boost along a direction n given by

2% = 20 cosha — Ad'sinh o

i =7+ ﬁ((cosha — 1)ad — 2° sinh a) . (2.29)
v N
— =tanha 7. (2.30)
c

Indeed the set of all Lorentz transformations contains rotations as a subset.

The set of coordinates (2°, 21,22 2%) which transforms under Lorentz transformations as
o = A#z¥ will be called a 4—vector in analogy with the set of coordinates (x!, 22, 2%) which
is called a vector because it transforms under rotations as z% = Rgzb. Thus in general a
4—vector a is any set of numbers (a°, a', a?, a®) which transforms as (2%, 21, 22, 23) under Lorentz

transformations, viz
4
a” =Y Aba”. (2.31)
v=0

For the particular Lorentz transformation (2.28) we have

" =~(a® - Ba')

"’ =~(a' - Ba°)

a = a2

a® = a?. (2.32)

The numbers a* are called the contravariant components of the 4—vector a. We define the
covariant components a, by

ap=a’, ay=—a', aa=—a*, a3 = —a’. (2.33)

3 3 3
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By using the Lorentz transformation (2.32) we verify given any two 4—vectors a and b the identity
a¥b = a'bY — a2 — a¥ b = a%° — a'b' — a?b® — PP (2.34)
In fact we can show that this identity holds for all Lorentz transformations. We recall that under
rotations the scalar product ab of any two vectors @ and b is invariant, i.e.
a'b" 4+ a?b? +a¥b = a'b' + a®b? + dBbP. (2.35)
The 4-dimensional scalar product must therefore be defined by the Lorentz invariant combination
a’b% — a'b! — a2b? — a3b3, namely

ab = a®° —a'b! — a?b? — 3p?
3
= Z a, bt
pn=0
= aq,b". (2.36)

In the last equation we have employed the so-called Einstein summation convention, i.e. a
repeated index is summed over.

We define the separation 4—vector Az between two events A and B occurring at the points
(2%, 24y, 2%, 23) and (2%, 2}, 2%, %) by the components

Azt = aly — al. (2.37)

The distance squared between the two events A and B which is called the interval between A
and B is defined by

As? = Az, Azt = A — AT (2.38)

This is a Lorentz invariant quantity. However it could be positive, negative or zero.

In the case As? > 0 the interval is called timelike. There exists an inertial reference frame in
which the two events occur at the same place and are only separated temporally.

In the case As? < 0 the interval is called spacelike. There exists an inertial reference frame
in which the two events occur at the same time and are only separated in space.

In the case As? = 0 the interval is called lightlike. The two events are connected by a signal
traveling at the speed of light.

2.1.5 Metric

The interval ds? between two infinitesimally close events A and B in spacetime with position
4—vectors zy and ' = 2!y + dz# is given by

3
ds® = ) (xa—ap)u(ra—x5)"
n=0
= (da®)? - (d")? — (da?)? — (da?)?
= (dt)* — (d¥)%. (2.39)
We can also write this interval as (using also Einstein’s summation convention)
3
ds® = Z Nuvdxt dz” = ny,dxt de”
p,v=0
3
= Z ndx,dx, = n"dx,dx,. (2.40)

w,v=0
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The 4 x 4 matrix 7 is called the metric tensor and it is given by

1 0 0 0
u 0 -1 0 0
Ty == 10 0 -1 0
0 O 0 -1
Clearly we can also write
3
ds®> = Z n,dztdz, = n,dz"dz, .
w,v=0
In this case
nz = 5;.

The metric 7 is used to lower and raise Lorentz indices, viz

. v
Ty = N’

(2.41)

(2.42)

(2.43)

(2.44)

The interval ds? is invariant under Poincare transformations which combine translations ¢ with

Lorentz transformations A:
7’
ot — ¥ = A" +at.

We compute

ds? = nwdx/“dx/” = N datdz”.
This leads to the condition

N AGAG = Npe & ATpA = 7.

2.2 Klein-Gordon Equation

The non-relativistic energy-momentum relation reads

=2
=2 vy

2m
The correspondence principle is
9] h =
E—ih—,p— =V.
ot i

This yields immediately the Schrodinger equation

B, o
<%v +v)wm§.

We will only consider the free case,i.e. V = 0. We have then

R _, oY
—%V ’lp _ZhE

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)
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The energy-momentum 4—vector is given by
" 0,1 ,2 3 E
pi=00p 0 %) = (0. (2.52)
The relativistic momentum and energy are defined by
. mu mc?
p=—, F= (2.53)
% -4
The energy-momentum 4—vector satisfies
E2
P, = = — 2 =m? (2.54)
The relativistic energy-momentum relation is therefore given by
P2t +mct = B2 (2.55)
Thus the free Schrodinger equation will be replaced by the relativistic wave equation
82
(=h2AV? 4+ m2ct)p = 4126—5. (2.56)
This can also be rewritten as
1 92 2.2
<__+Vzmc>¢0_ (2.57)

c? ot? h?

This is Klein-Gordon equation. In contrast with the Schrodinger equation the Klein-Gordon

equation is a second-order differential equation. In relativistic notation we have

o 10

0 .
Eﬁlh—ﬁpoﬁlhao,aozﬁ—za.

ot

9
oxt’

| >t

ﬁ—> ﬁ@pi—Mh@i,&-:

~

In other words

Pu —>'Lhau 5 aH: @

1 02
2 2 2
pup“—>—h @L@“—ii (_0_2_5t2+v)

The covariant form of the Klein-Gordon equation is

2.2

m-c
(auau = )¢= 0.

Free solutions are of the form

t @) = e HPT z = p,x" = Et — pZ.
P(t, T) , PT =Dy P

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)



16 YDRI QFT

Indeed we compute

0,0 p(t, ) = —#(E2 — PP o(t, T). (2.64)
Thus we must have
E? — 2 = m2ct (2.65)
In other words
E? = +/p2c% + m2ct. (2.66)

There exists therefore negative-energy solutions. The energy gap is 2mc?. As it stands the
existence of negative-energy solutions means that the spectrum is not bounded from below and
as a consequence an arbitrarily large amount of energy can be extracted. This is a severe
problem for a single-particle wave equation. However these negative-energy solutions, as we will
see shortly, will be related to antiparticles.

From the two equations

N m2c?
0] (aua“ + 2 )qb =0, (2.67)
2.2
¢<aa +mc)¢ =0, (2.68)
we get the continuity equation
o"J, =0, (2.69)
where
th .,
Ju = 2m[¢ u¢ ¢au¢ ] (2-70)

We have included the factor ii/2m in order that the zero component Jy has the dimension of a
probability density. The continuity equation can also be put in the form

dp

5 V=0, (2.71)
where
g o o
p= c 2mc? [” ot ot ) (2.72)
F= = 15756 - 09 (273)
T 2me ’ '

Clearly the zero component Jy is not positive definite and hence it can be a probability density.
This is due to the fact that the Klein-Gordon equation is second-order.

The Dirac equation is a relativistic wave equation which is a first-order differential equation.
The corresponding probability density will therefore be positive definite. However negative-
energy solutions will still be present.
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2.3 Dirac Equation

Dirac equation is a first-order differential equation of the same form as the Schrodinger equation,
viz
oY
th— = Hq. 2.74
=y (274)
In order to derive the form of the Hamiltonian H we go back to the relativistic energy-momentum
relation

pup" —m?c® = 0. (2.75)

The only requirement on H is that it must be linear in spatial derivatives since we want space
and time to be on equal footing. We thus factor out the above equation as follows

pupt —m?c? = (y"p +me)(8p, —me)
= A*BYpupy — me(y* — B)p, — m2cE (2.76)
We must therefore have g* = ~*, i.e.
pu" = VY pupy. (2.77)
This is equivalent to
po—pi—py—ps = (0°)p5+ ()i + (v*)°p3 + (v7)?p3
+ (Ve + (v s + (P + Py )paps
+ (7" 0 )piwo + (P + %9 )p2po + (V34" + 47 )papo-
(2.78)
Clearly the objects v* can not be complex numbers since we must have
()2 =1, (")P=0*=0")=-1
YA+ =0. (2.79)
These conditions can be rewritten in a compact form as
YAyt = 2mt (2.80)

This algebra is an example of a Clifford algebra and the solutions are matrices v* which are
called Dirac matrices. In four-dimensional Minkowski space the smallest Dirac matrices must be
4 x 4 matrices. All 4 x 4 representations are unitarily equivalent. We choose the so-called Weyl
or chiral representation given by

0 1 ; 0 ot
0 __ 2 T )
The Pauli matrices are

alz((l)(l)),ﬁ:(goi),a?’:(é01). (2.82)

()T =2, ()T =" & ()T =429 (2.83)

Remark that
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The relativistic energy-momentum relation becomes
pupt —m* = (Ypu+me)(v'p, —me) = 0. (2.84)
Thus either v#p,, +mc = 0 or v*p, — mc = 0. The convention is to take
Ypu —me = 0. (2.85)
By applying the correspondence principle p, — ¢70,, we obtain the relativistic wave equation
(thy" 0y — me)yp = 0. (2.86)
This is the Dirac equation in a covariant form. Let us introduce the Feynamn "slash" defined by

P ="0,. (2.87)

(ihd — me)yp = 0. (2.88)

Since the v matrices are 4 x 4 the wave function ¥ must be a four-component object which we
call a Dirac spinor. Thus we have

U1
%= zz : (2.89)
Y4
The Hermitian conjugate of the Dirac equation (2.100) is
w+(ih(7“)+§“ + mc) = 0. (2.90)
In other words
¥ (i1 °74 9, + me) = 0. (2.91)

The Hermitian conjugate of a Dirac spinor is not 1™ but it is defined by
b =P, (2.92)
Thus the Hermitian conjugate of the Dirac equation is
&(imﬂ‘a_u +me) = 0. (2.93)

Equivalently

I
Y(ih @ + mc) = 0. (2.94)
Putting (2.88) and (2.94) together we obtain
N =
Y(ih @ +ihd)yp = 0. (2.95)
We obtain the continuity equation

OpJt =0, JH = pyHep. (2.96)



YDRI QFT 19

Explicitly we have

5 T VI =0. (2.97)

0 —_
p=T = 2 = Tyt (2.98)
J =93 = tay. (2.99)

The probability density p is positive definite as desired.

2.4 Free Solutions of The Dirac Equation
We seek solutions of the Dirac equation
(thy" 0y — me)yp = 0. (2.100)

The plane-wave solutions are of the form

W(z) = a e TP (p). (2.101)
Explicitly
W(t,T) = a e # PPN Y(E ). (2.102)
The spinor u(p) must satisfy
(Ypu —me)u = 0. (2.103)
We write
_ [ ua
uw= ( - ) : (2.104)
We compute
P - (2.105)
7 Pu B % +adp  —mc ‘ :
We get immediately
E_ zp
uy =< UpB. (2.106)
mce
E | ==
- To
ug = < UA. (2.107)
me
A consistency condition is
E _>>E | 2> E? =02
= _ = + =_
PRkl ikl Y ek L VY (2.108)
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Thus one must have
E2
= (6D)% = m?c® & B? = pPc? + m2ch. (2.109)
Thus we have a single condition
FE - =
= + o
upg = £ UA. (2.110)
mc
There are four possible solutions. These are
1
1 M — N0 0
ua=|{ & u =N B4 p3 . (2.111)
p'Fip?
0
1
up = ( (1) ) s u® =N [ L0 . (2.112)
g0
B8
e, 2
up = ( (1) > & u® =NG —p—imp . (2.113)
0
7]71 —ip2
0 255
1
The first and the fourth solutions will be normalized such that
au = utylu = ujguB + qug,uA = 2mec (2.115)
(2.116)

st

We obtain
NO _ y@ _ [ mie
PR

Clearly one must have F > 0 otherwise the square root will not be well defined. In other words
v and u(® correspond to positive-energy solutions associated with particles. The spinors

(2.117)

u)(p) can be rewritten as
U(z) = ( v O-'U'pﬂgz: ) .
V 5#]7“51
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The 2—dimensional spinors £ satisfy
(€)Fes = . (2.118)

The remaining spinors «(®) and «(* must correspond to negative-energy solutions which must
be reinterpreted as positive-energy antiparticles. Thus we flip the signs of the energy and the
momentum such that the wave function (2.102) becomes

Yt &) = aerPPy(—E —p). (2.119)
The solutions u? and u* become
E,pif' 0
M ®) | e @) ) ) !
v (Eam:u (7E7717):N mc , U (Eam:u (7E7717):N 7101—1'172
(1) 20
(2.120)
We impose the normalization condition
o = v Y% = vivg +viva = —2me. (2.121)
We obtain
2,2
N® = y@ = [ ¢ (2.122)
E_ 3" :
e D
The spinors v(Y (p) can be rewritten as
oo (VAT
v/ O',up#nZ
(2.123)
Again the 2—dimensional spinors 7’ satisfy
(") Fn* =0 (2.124)

2.5 Lorentz Covariance

In this section we will refer to the Klein-Gordon wave function ¢ as a scalar field and to the
Dirac wave function 1 as a Dirac spinor field although we are still thinking of them as quantum
wave functions and not classical fields.

Scalar Fields: Let us recall that the set of all Lorentz transformations form a group called
the Lorentz group. An arbitrary Lorentz transformation acts as

ot — P = AP 2 (2.125)

In the inertial reference frame O the Klein-Gordon wave function is ¢ = ¢(x). It is a scalar field.
Thus in the transformed reference frame O the wave function must be ¢ = ¢ (x ) where

¢ (x) = o(x). (2.126)
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For a one-component field this is the only possible linear transformation law. The Klein-Gordon
equation in the reference frame O if it holds is of the form

2.2
(aﬂa - >¢ (¢') = 0. (2.127)
It is not difficult to show that
9,0 = 9,0" (2.128)

The Klein-Gordon (2.127) becomes

m2c?

(a#au = )¢(z) —0. (2.129)

Vector Fields: Let V¥ = V#(z) be an arbitrary vector field (for example 0#¢ and the electro-
magnetic vector potential A*). Under Lorentz transformations it must transform as a 4—vector,
i.e. asin (2.125) and hence

Vi) = APV (2). (2.130)

This should be contrasted with the transformation law of an ordinary vector field V¥(x) under
rotations in three dimensional space given by

V'iz') = RV (). (2.131)

The group of rotations in three dimensional space is a continuous group. The set of infinitesimal
transformations (the transformations near the identity) form a vector space which we call the
Lie algebra of the group. The basis vectors of this vector space are called the generators of
the Lie algebra and they are given by the angular momentum operators J¢ which satisfy the
commutation relations

[J%, J7] = ihe'® J*. (2.132)
A rotation with an angle |f| about the axis 0 is obtained by exponentiation, viz
R=e 7" (2.133)

The matrices R form an n—dimensional representation with n = 25 + 1 where j is the spin
quantum number. The angular momentum operators J* are given by

Jt = —ihe* I ok (2.134)
This is equivalent to
Ji o — ik gk
= —ih(z'd —279"). (2.135)

Generalization of this result to 4—dimensional Minkowski space yields the six generators of the
Lorentz group given by

J = —in(z0” — v OM). (2.136)
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We compute the commutation relations
[JH7,JP7] = ih(n””J“" — P Jve — 7 JHP + n””J””). (2.137)

A solution of (2.137) is given by the 4 x 4 matrices
(T )ap = ih(3465 — 0505,). (2.138)

Equivalently we can write this solution as

(TH)> 5 = ih(n"*o5 — dn"®). (2.139)

This representation is the 4—dimensional vector representation of the Lorentz group which is
denoted by (1/2,1/2). It is an irreducible representation of the Lorentz group. A scalar field
transforms in the trivial representation of the Lorentz group denoted by (0,0). It remains to
determine the transformation properties of spinor fields.

Spinor Fields We go back to the Dirac equation in the form
(thy"9, — me)y = 0. (2.140)

This equation is assumed to be covariant under Lorentz transformations and hence one must
have the transformed equation

’

(if'wl”a; —me)p =0. (2.141)

The Dirac v matrices are assumed to be invariant under Lorentz transformations and thus

’

T = Vo (2.142)
The spinor 9 will be assumed to transform under Lorentz transformations linearly, namely
W) — (@) = S(M)Y(a). (2.143)
Furthermore we have
9, = (A"1H" ,0,. (2.144)
Thus equation (2.141) is of the form
(iR(A™Y)Y LS (A)Y " S(A)D, — me) = 0. (2.145)

We can get immediately

(A7) WSTHAWY S (A) =", (2.146)
Equivalently

(ATH” WSTHAN"S(A) =" (2.147)

This is the transformation law of the v matrices under Lorentz transformations. Thus the
matrices are invariant under the simultaneous rotations of the vector and spinor indices under
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Lorentz transformations. This is analogous to the fact that Pauli matrices o* are invariant under
the simultaneous rotations of the vector and spinor indices under spatial rotations.

The matrix S(A) form a 4—dimensional representation of the Lorentz group which is called
the spinor representation. This representation is reducible and it is denoted by (1/2,0)& (0,1/2).
It remains to find the matrix S(A). We consider an infinitesimal Lorentz transformation

1 1
A=1——wapT* |, A7t =14 —wapT . 2.14

e + s (2.148)

We can write S(A) as
e T §A) = 14 g TP
S(A) =1 QEwaﬁF L, ST A) =1+ 2hwagF . (2.149)

The infinitesimal form of (2.147) is

(TN v = [, T, (2.150)

The fact that the index p is rotated with J 28 means that it is a vector index. The spinor indices
are the matrix components of the v matrices which are rotated with the generators I'*?. A
solution is given by
ih
= 20, (2.151)

Explicitly

; ik i th (o8 0
re _[7077]_< 0 z>

g _ihe o 5 b (oted] 0\ _hop " 0
' = 4[’777]_ 4 0 [0_170]] _26 0 O’k .

Clearly I'¥ are the generators of rotations. They are the direct sum of two copies of the generators
of rotation in three dimensional space. Thus immediately we conclude that I'*? are the generators
of boosts.

(2.152)

2.6 Exercises and Problems

Scalar Product Show explicitly that the scalar product of two 4—vectors in spacetime is
invariant under boosts. Show that the scalar product is then invariant under all Lorentz trans-
formations.

Relativistic Mechanics

e Show that the proper time of a point particle -the proper time is the time measured by an
inertial observer flying with the particle- is invariant under Lorentz transformations. We
assume that the particle is moving with a velocity « with respect to an inertial observer O.

Define the 4—vector velocity of the particle in spacetime. What is the spatial component.

Define the energy-momentum 4—vector in spacetime and deduce the relativistic energy.

Express the energy in terms of the momentum.

Define the 4—vector force.
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Einstein’s Velocity Addition Rule Derive the velocity addition rule in special relativity.

Weyl Representation

e Show that the Weyl representation of Dirac matrices given by

0 _ 0 12 i 0 O'i
V= 12 0 y V= 70_1' 0 ’

solves Dirac-Clifford algebra.

e Show that
(Y =709
e Show that the Dirac equation can be put in the form of a schréodinger equation

0
ih—v = H
ih1 = H,
with some Hamiltonian H.

Lorentz Invariance of the D’Alembertian Show that

n=ATpA.

0,0 = 8,0"

Covariance of the Klein-Gordon equation Show that the Klein-Gordon equation is co-
variant under Lorentz transformations.

Vector Representations

e Write down the transformation property under ordinary rotations of a vector in three
dimensions. What are the generators J*. What is the dimensions of the irreducible repre-
sentations and the corresponding quantum numbers.

e The generators of rotation can be alternatively given by
JI = ik gk,
Calculate the commutators [J¥, J*!].

e Write down the generators of the Lorentz group J*¥ by simply generalizing J% and show
that

[JH, JPo] = m(nvpjw — P JVT — T JHP 4 nHUJVP).
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e Verify that
(T*)ap = ih(6565 — 0507),
is a solution. This is called the vector representation of the Lorentz group.
e Write down a finite Lorentz transformation matrix in the vector representation. Write down
an infinitesimal rotation in the xy—plane and an infinitesimal boost along the z—axis.

Dirac Spinors

e Introduce o# = (1,0%) and 6* = (1, —0*). Show that

(oupt)(Tupt) = m2c2.

e Show that the normalization condition @u = 2me for u*) and u® yields

m2c?
NO = §y©@) = — .
V< +p

e Show that the normalization condition 7o = —2mec for vV (p) = 4 (—p) and v?(p) =
u® (—p) yields

2.2
(B) _ gy _ | mc¢
NG = N*) = E 5

e Show that we can rewrite the spinors u and v as

O ( Ve )
vV 5#]7“51

o (V.
—Voup'n'
Determine ¢* and n'.

Spin Sums Let u(")(p) and v(")(p) be the positive-energy and negative-energy solutions of the
free Dirac equation. Show that

aMul®) = 2mes™ | 50 = —2mesm | @ =0, 5Mu) = 0.
L]
w0 = 2 s 0 Z 2B s
C C
uIH(E, P (E,—p) =0, o (E, —p)u(E, p) = 0.
L]

2 2
Z u) (B, p)a'®) (E, p) = v"p, +mec, Z v (B, p)5®) (B, p) = y*p, — me.
s=1

s=1
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Covariance of the Dirac Equation Determine the transformation property of the spinor
under Lorentz transformations in order that the Dirac equation is covariant.

Spinor Bilinears Determine the transformation rule under Lorentz transformations of W, P,
Uy, Yy, Yty and YIHY.
Clifford Algebra

e Write down the solution of the Clifford algebra in three Euclidean dimensions. Construct
a basis for 2 X 2 matrices in terms of Pauli matrices.

e Construct a basis for 4 x 4 matrices in terms of Dirac matrices.
Hint: Show that there are 16 antisymmetric combinations of the Dirac gamma matrices in

1 + 3 dimensions.

Chirality Operator and Weyl Fermions

e We define the gamma five matrix (chirality operator) by

75 _ 170717273.
Show that
5 i KUV aPAO
Y= 7z€,ul/pa’y AR A
()2 = 1
(") = P
{»°,7"} =0.
[y?, 7] =0.

e We write the Dirac spinor as

o= ()

By working in the Weyl representation show that Dirac representation is reducible.
Hint: Compute the eigenvalues of v° and show that they do not mix under Lorentz trans-
formations.

e Rewrite Dirac equation in terms of vy, and ¢)gr. What is their physical interpretation.
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Canonical Quantization of Free Fields

3.1 Classical Mechanics

3.1.1 D’Alembert Principle

We consider a system of many particles and let 7; and m; be the radius vector and the mass
respectively of the ith particle. Newton’s second law of motion for the ith particle reads

L _, - dp;

F=F" Fyi==". 3.1

R (3.1)
J

The external force acting on the ¢th particle is F;.(e) whereas F_Ez is the internal force on the ith

particle due to the jth partlcle (ﬁu = 0 and F;'j = —ﬁji). The momentum vector of the ith
particle is p; = m;v; = m; e dt Thus we have

—»

=F© 4+ Z . (3.2)

By summing over all particles we get

. d2F; 2R
OZF ZF( Zm d; - M—. (3.3)

K2

The total mass M is M = ). m; and the average radius vector Ris R = >, mi7i/M. This
is the radius vector of the center of mass of the system. Thus the internal forces if they obey
Newton’s third law of motion will have no effect on the motion of the center of mass.

The goal of mechanics is to solve the set of second order differential equations (3.2) for 7;
given the forces ﬁi(e) and ﬁﬂ This task is in general very difficult and it is made even more
complicated by the possible presence of constraints which limit the motion of the system. As an
example we take the class of systems known as rigid bodies in which the motion of the particles
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is constrained in such a way that the distances between the particles are kept fixed and do
not change in time. It is clear that constraints correspond to forces which can not be specified
directly but are only known via their effect on the motion of the system. We will only consider
holonomic constraints which can be expressed by equations of the form

T,y ey t) = 0. (3.4)

The constraints which can not be expressed in this way are called nonholonomic. In the example
of rigid bodies the constraints are holonomic since they can be expressed as

(7 —7)% — & = 0. (3.5)

The presence of constraints means that not all the vectors 7; are independent, i.e not all the
differential equations (3.2) are independent. We assume that the system contains N particles
and that we have k holonomic constraints. Then there must exist 3N — k independent degrees
of freedom ¢; which are called generalized coordinates. We can therefore express the vectors 7
as functions of the independent generalized coordinates ¢; as

— —

1="71(q1,92, -, 3N~k 1)

N =TN(q1,G2, -, 3Nk 1) (3.6)

Let us compute the work done by the forces F;.(e) and ﬁﬂ in moving the system from an initial
configuration 1 to a final configuration 2. We have

2 2 2
Wiz :Z/ Fds; :Z/ ﬁf)ds-HZ/ Fjids;. (3.7)
i /1 i /1 i V1

We have from one hand

2 2
Z = Z du; _,
W12 = i /1 Fldsl = . miﬁvidt

I
»\
)

QU

—
DO | =

E

<=

S~—

The total kinetic energy is defined by
T = Z lmivg. (3.9)
i 2 '

)

We assume that the external forces F;-(e are conservative, i.e they are derived from potentials V;

such that

F = v,V (3.10)
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Then we compute
2 . 2 .
Z/ F9ds; = - Z/ ViVids = — > Vilz. (3.11)
i 1 i 1 4

We also assume that the internal forces F' i are derived from potentials V;; such that
Fjy = —ViVi. (3.12)

Since we must have F;'j = —ﬁji we must take V;; as a function of the distance |7; — 7| only, i.e
Vij = Vji. We can also check that the force F;-j lies along the line joining the particles ¢ and j.

We define the difference vector by 75; = 7 — ;. We have then ﬁiVij = fﬁjvij = ﬁijVij.
We then compute

2 2
- 1 - -
Z/ Fyids; = ——Z/ (ViVijds; + V;Viyd3;)
— /, 24,
] 2,7
1 2 L
_§;/l Vlj‘/;](dsl—ds])
1 2
= 752/1 Vij‘/ideij
%,
1
—5 2 Vit (3.13)

i#j

Thus the work done is found to be given by
Wi = —-Vo+W. (314)

The total potential is given by

vexely 515

i#j

From the results Wi = T — T7 and W5 = —V5 + V4 we conclude that the total energy T+ V'
is conserved. The term % > +; Vij in V is called the internal potential energy of the system.

For rigid bodies the internal energy is constant since the distances |7; — ;| are fixed. Indeed in
rigid bodies the vectors dr;; can only be perpendicular to 7;; and therefore perpendicular to F;'j
and as a consequence the internal forces do no work and the internal energy remains constant.
In this case the forces F;j are precisely the forces of constraints, i.e. the forces of constraint do
no work.

We consider virtual infinitesimal displacements §7; which are consistent with the forces and
constraints imposed on the system at time ¢. A virtual displacement §7; is to be compared with
a real displacement di; which occurs during a time interval dt. Thus during a real displacement
the forces and constraints imposed on the system may change. To be more precise an actual
displacement is given in general by the equation

d7; = aﬁdt+3Nik%d : (3.16)
T = 0, 4 '
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A virtual displacement is given on the other hand by an equation of the form
3N—k oF,

= —0q;.
i 8qj q;

(3.17)

j=1
The effective force on each particle is zero, i.e F; off = F; — dﬁi = 0. The virtual work of this
effective force in the displacement 07 is therefore trivially zero. Summed over all particles we
get

> (F - %)5& =0. (3.18)

i

We decompose the force 15; into the applied force 15;-('1) and the force of constraint ﬁ, viz F; =
f‘i(a) + fi. Thus we have

—~(a d_; — P oo
Z(Fi( = d_]jf)éri + Zfi5Ti =0. (3.19)

K2

We restrict ourselves to those systems for which the net virtual work of the forces of constraints
is zero. In fact virtual displacements which are consistent with the constraints imposed on the
system are precisely those displacements which are prependicular to the forces of constraints in
such a way that the net virtual work of the forces of constraints is zero. We get then

Aa)  dpi o
;(Fi — )07 =0, (3.20)

This is the principle of virtual work of D’Alembert. The forces of constraints which as we have
said are generally unknown but only their effect on the motion is known do not appear explicitly
in D’Alembert principle which is our goal. Their only effect in the equation is to make the virtual
displacements 67 not all independent.

3.1.2 Lagrange’s Equations

We compute

A = Y RO T,
4

7 2,]
S0 (321
J
The @); are the components of the generalized force. They are defined by
Q= Zﬁﬁa)@. (3.22)
J - ) aqj

Let us note that since the generalized coordinates g; need not have the dimensions of lenght the
components (); of the generalized force need not have the dimensions of force.
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We also compute

dp; _ drzan
;E‘;” = Z — 8q5

4J
S EA LT AN NG
B v “ldt \ dt Oq; dt dt\aq; )|V
or; 81}1
= ; . 5 3.23
Zm th (U @qg) g } o (328)
By using the result 6”1 g;ﬁ we obtain

dﬁz = a’Uz _,aﬁz
of; ; ~ 5.2 |aq,
; at " Zm {dt< 5%‘) ° 5%} K

oT oT
— = 1) 3.24
;[dt(a‘jj) a‘b] o ( )
The total kinetic term is T' = Z 5MMV; v2. Hence D’Alembert’s principle becomes

~(a d z 8T 8T
Z(Fi() ;’ - Z[Qj t<—> aq]]éqjo (3.25)

4 8qj

Since the generalized coordinates g; for holonomic constraints can be chosen such that they are
all independent we get the equations of motion

d (0T oT
—0. 4+ — =) - == =0o. 3.26
Qjert(adj) 0q; (3.26)
In above j = 1,...,n where n = 3N k is the number of independent generalized coordinates.
For conservative forces we have F = —V V,ie
ov
Qi=——. 3.27
J 6(]] ( )

Hence we get the equations of motion

d (0L OL
Ly e I ) 2
dt(&b—) og; " (325)

These are Lagrange’s equations of motion where the Lagrangian L is defined by

L=T-V. (3.29)

3.1.3 Hamilton’s Principle: The Principle of Least Action

In the previous section we have derived Lagrange’s equations from considerations involving virtual
displacements around the instantaneous state of the system using the differential principle of
D’Alembert. In this section we will rederive Lagrange’s equations from considerations involving
virtual variations of the entire motion between times t; and t2 around the actual entire motion
between t; and t, using the integral principle of Hamilton.
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The instantaneous state or configuration of the system at time t is described by the n gen-
eralized coordinates qi1, g2,...,qn». This is a point in the n-dimensional configuration space with
axes given by the generalized coordinates ¢;. As time evolves the system changes and the point
(g1, 92, .-, ¢n) moves in configuration space tracing out a curve called the path of motion of the
system.

Hamilton’s principle is less general than D’Alembert’s principle in that it describes only
systems in which all forces (except the forces of constraints) are derived from generalized scalar
potentials U. The generalized potentials are velocity-dependent potentials which may also depend
on time, i.e U = U(q;, ¢;,t). The generalized forces are obtained form U as

ou d [oU
Qj = *a—qj + E <a—qj) (3.30)

Such systems are called monogenic where Lagrange’s equations of motion will still hold with

Lagrangians given by L = T — U. The systems become conservative if the potentials depend
only on coordinates. We define the action between times ¢; and t5 by the line integral

to

I[q]:/ Ldt , L=T-YV. (3.31)
t1

The Lagrangian is a function of the generalized coordinates and velocities ¢; and ¢; and of time

t,i.e L =L(q1,92, -, Gn,q1, G2, ---, Gn, t). The action I is a functional.

Hamilton’s principle can be states as follows. The line integral I has a stationary value, i.e
it is an extremum for the actual path of the motion. Therefore any first order variation of the
actual path results in a second order change in I so that all neighboring paths which differ from
the actual path by infintesimal displacements have the same action. This is a variational problem
for the action functional which is based on one single function which is the Lagrangian. Clearly
I is invariant to the system of generalized coordinates used to express L and as a consequence
the equations of motion which will be derived from I will be covariant. We write Hamilton’s
principle as follows

0

5 [t
ZIg==1 L sy 15 G2, ey Gy )L 3.32
7 [q] 5%_/ (q1:G25 -y @ns 1+ G2 ooy s ) (3.32)

t1

For systems with holonomic constraints it can be shown that Hamilton’s principle is a necessary
and sufficient condition for Lagrange’s equations. Thus we can take Hamilton’s principle as the
basic postulate of mechanics rather than Newton’s laws when all forces (except the forces of
constraints) are derived from potentials which can depend on the coordinates, velocities and
time.

Let us denote the soultions of the extremum problem by ¢;(¢,0). We write any other path
around the correct path ¢;(¢,0) as ¢;(t, &) = ¢;(t,0)+an;(t) where the 7; are arbitrary functions of
t which must vanish at the end points ¢; and ¢5 and are continuous through the second derivative
and « is an infinitesimal parameter which labels the set of neighboring paths which have the
same action as the correct path. For this parametric family of curves the action becomes an
ordinary function of « given by

to

(o) = / L(qi(t, @), 4i(t, o), t)dt. (3.33)
t1

We define the virtual displacements dq; by

aqi
dq; (8a ) |a—oda = n;da (3.34)
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Similarly the infinitesimal variation of I is defined by

dl
I = a=oda. 3.35
ot = (4 )la-ada (3.35)
We compute

dI t2

oL aqZ OL 9¢; it
Jq; O ﬁqi Oa

B / oL aqZ oL g dq; it
B dq; O ﬁqi Ot O«

B /t2 dL 0g; 8Li8qi it
n & \9q; O &ji dt O«

_ OL Oq; OL\ 0q; AL 9g: \ 2
a /tl (8qi Oa  dt (8(]1) 8a)dt + (3% aa)tl- (3.36)

The last term vanishes since all varied paths pass through the points (¢1, y;(t1,0) and (¢2, y;(t2,0)).

Thus we get
2 (0L d (OL
5T = /t ( 6%—E< aq,i>)6qidt. (3.37)

ol dl
oo < )mo (3.38)

This leads to the equations of motion

ta
[ (8 42 s

This should hold for any set of functions 7;. Thus by the fundamental lemma of the calculus of
variations we must have

da t

Hamilton’s principle reads

oL d (0L
- — =0. 3.40
dq;  dt <5(L‘ ) (3.40)
Formaly we write Hamilton’s principle as
ol L d L
o _ oL _d oLy _ (3.41)
0q; 9qi 9g;

These are Lagrange’s equations.

3.1.4 The Hamilton Equations of Motion

Again we will assume that the constraints are holonomic and the forces are monogenic, i.e they
are derived from generalized scalar potentials as in (3.30). For a system with n degrees of
freedom we have n Lagrange’s equations of motion. Since Lagrange’s equations are second order
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differential equations the motion of the system can be completely determined only after we also
supply 2n initial conditions. As an example of initial conditions we can provide the n ¢;s and
the n ¢;’s at an initial time #g.

In the Hamiltonian formulation we want to describe the motion of the system in terms of first
order differential equations. Since the number of initial conditions must remain 2n the number
of first order differential equation which are needed to describe the system must be equal 2n,
i.e we must have 2n independent variables. It is only natural to choose the first half of the 2n
independent variables to be the n generalized coordinates ¢;. The second half will be chosen to
be the n generalized momenta p; defined by

5. (3.42)

pi =

The pairs (g;, p;) are known as canonical variables. The generalized momenta p; are also known
as canonical or conjugate momenta.

In the Hamiltonian formulation the state or configuration of the system is described by the
point (q1,G2, .-, Gn, P1, P2, .., Pn) in the 2n-dimensional space known as the phase space of the
system with axes given by the generalized coordinates and momenta ¢; and p;. The 2n first
order differential equations will describe how the point (¢1, g2, ..., ¢n, P1, P2, .-, Pn) Moves inside
the phase space as the configuration of the system evolves in time.

The transition from the Lagrangian formulation to the Hamiltonian formulation corresponds
to the change of variables (g, ¢;,t) — (¢:, pi, t) which is an example of a Legendre transforma-
tion. Instead of the Lagrangian which is a function of ¢;,¢; and ¢, viz L = L(g;, ¢;,t) we will
work in the Hamiltonian formulation with the Hamiltonian H which is a function of ¢;, p; and t
defined by

We compute from one hand
OH OH OH
dH = —dg;, +=—dp; + —dt. 3.44
96" T op P T o (3.44)

From the other hand we compute

oL oL

oL
dH = qdp; +pidg; — 5—d¢; — 7—dg; — —dt
¢idp; + pidq EX q £ q ot
oL oL
= Gudpi — g — Lt
WP e e
oL
= Gidpi — pidg — - dt. (3.45)

By comparison we get the canonical equations of motion of Hamilton

0H OH
=, —pi = . 3.46
6=, =5 (3.46)
We also get
L H
0 = 8_ (3.47)

ot ot
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For a large class of systems and sets of generalized coordinates the Lagrangian can be decomposed
as L(qi, ¢i,t) = Lo(qi,t) + L1(qi, Giy t) + La(gi, Gi, t) where Lo is a homogeneous function of degree
2 in ¢; whereas Ly is a homogeneous function of degree 1 in ¢;. In this case we compute

oL 0Ls

Gipi = Qia—qil +iges = Li+ 2L (3.48)

Hence
H =L — Lo. (3.49)
If the transformation equations which define the generalized coordinates do not depend on time
explicitly, i.e 7 = 7i(q1, q2, .., @n) then ¥; = Zj gg ¢; and as a consequence T' = T where T is

a function of ¢; and ¢; which is quadratic in the ¢;’s. In general the kinetic term will be of the
form T = T5(q;, Gi, t) + T1(qi, Gir t) + To(qs, t). Further if the potential does not depend on the
generalized velocities ¢; then Ly =T, L1 =0 and Ly = —V. Hence we get

H=T+V. (3.50)

This is the total energy of the system. It is not difficult to show using Hamilton’s equations

that ‘fi—lf = %—If. Thus if V' does not depend on time explicitly then L will not depend on time

explicitly and as a consequence H will be conserved.

3.2 Classical Free Field Theories

3.2.1 The Klein-Gordon Lagrangian Density

The Klein-Gordon wave equation is given by

2.2
(aﬂau + mﬁ; )qs(z) = 0. (3.51)
We will consider a complex field ¢ so that we have also the independent equation
2.2
<aua# + mhj >¢* (z) = 0. (3.52)

From now on we will reinterpret the wave functions ¢ and ¢* as fields and the corresponding
Klein-Gordon wave equations as field equations.

A field is a dynamical system with an infinite number of degrees of freedom. Here the degrees
of freedom g¢z(t) and gz(t) are the values of the fields ¢ and ¢* at the points Z, viz

() = 6 (20, 7). (3.53)
Remark that
dgz dx’
4z = I cOpd + a0 0;¢
Iy = — = * 0. .54
5= congt + S0 (3.54)
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Thus the role of ¢z and ¢z will be played by the values of the derivatives of the fields d,,¢ and
0, ¢* at the points .

The field equations (3.51) and (3.52) should be thought of as the equations of motion of the
degrees of freedom ¢z and gz respectively. These equations of motion should be derived from
a Lagrangian density £ which must depend only on the fields and their first derivatives at the
point Z. In other words £ must be local. This is also the reason why L is a Lagrangian density
and not a Lagrangian. We have then

L=L(¢,¢" 0ud,0u0") = L(a°, ). (3.55)
The Lagrangian is the integral over ¥ of the Lagrangian density, viz
_ / dFL(20, 7). (3.56)

The action is the integral over time of L, namely

= /dtL = /d4z£. (3.57)

The Lagrangian density £ is thus a Lorentz scalar. In other words it is a scalar under Lorentz
transformations since the volume form d*xz is a scalar under Lorentz transformations. We com-
pute

08 = /d4x6£

[ oL oL
= [d'|s 5 +h.
/ T ¢¢+ a“(béauqﬁ c]
oL
= d*z 5 ) + h.
/ ‘% ! % e
0L
L (6 ) - h.c} 3.58
The surface term is zero because the field ¢ at infinity is assumed to be zero and hence
5 =0, a* — +oo. (3.59)
We get
oL
0SS = 1) h.c|. .
5 = [ate|oo(55 o)+l (360
The principle of least action states that
65 =0. (3.61)
We obtain the Euler-Lagrange equations
oL oL
— —0,——=0. 3.62
5¢ H 5aﬂ¢ ( )
oL oL

o g 0. (3.63)
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These must be the equations of motion (3.52) and (3.51) respectively. A solution is given by
h2
tre =y (0,000 - 200, (3.64)

The factor A? is included so that the quantity [ d®*zLkg has dimension of energy. The coefficient
1/2 is the canonical convention.

The conjugate momenta 7(z) and 7*(x) associated with the fields ¢(x) and ¢*(x) are defined
by

LkG () — kG
m(x) = 50,6 (x) = 500 (3.65)
We compute
h? h?
m(x) = 520", m () = 520t (3.66)
The Hamiltonian density H ¢ is the Legendre transform of Lx g defined by
Hke = m(@)0d(z) + 77 (2)0¢" (2) — Lka
52 m2e2
= (60q§*80¢ + Vo Ve + qb*qﬁ) . (3.67)
The Hamiltonian is given by
Hyxg = / BrHka. (3.68)
3.2.2 The Dirac Lagrangian Density
The Dirac equation and its Hermitian conjugate are given by
(thy"9, — me)y = 0. (3.69)
By 8, +me) = 0. (3.70)

The spinors ¢ and v will now be interpreted as fields. In other words at each point Z the
dynamical variables are 1(z°, &) and (2%, 7). The two ficld equations (3.69) and (3.70) will be
viewed as the equations of motion of the dynamical variables ¢ (2%, #) and (2%, Z). The local
Lagrangian density will be of the form

L= L1, 0,0, 8,1) = L(a°,F). (3.71)
The Euler-Lagrange equations are

5L 5L

-0 —— =0. 72
55~ O g = (3.72)
3LC 5L

b~ gy =0 (3.73)
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A solution is given by

Lpirac = Y(ihey" 0, — me?)ip. (3.74)
The conjugate momenta I1(x) and II(z) associated with the fields 1 (x) and () are defined by

. 5£Dirac . 5£Dirac

II(z) = (z) = — . 3.75
(@) = e M) = S (375)
We compute
(x) = ihy° , Ti(z) = 0. (3.76)
The Hamiltonian density Hpirac is the Legendre transform of Lp;ac defined by
HDirac = H(z)aﬂ/)($) + 8t1/7($)1:[(x) - EDirac
= Y(—ihcy'0; + mc® )y
= ot (—ihcaV + mcB)ip. (3.77)

3.3 Canonical Quantization of a Real Scalar Field

We will assume here that the scalar field ¢ is real. Thus ¢* = ¢. This is a classical field theory
governed by the Lagrangian density and the Lagrangian

h? m2c?
) (3.75)
LKG = /dBZL'EKc;. (379)
The conjugate momentum is
0Lxq B2
= = —0;0. 3.80
500 2? (3.80)
We expand the classical field ¢ as
0= _ ¢ d*p 0 ipa
o(z, %) = ﬁ/ (27Th)3Q(:c ,p)ent?. (3.81)
In other words Q(z°,p) is the Fourier transform of ¢(2°, ) which is given by
%Q(l‘o,ﬁ) = /d?’xqb(xo,f)e_%ﬁ. (3.82)

Since ¢* = ¢ we have Q(2°, —p) = Q* (2", p). We compute

3
Lo = 3 [ Gap 2976 POQED - w7 (07 Q")
3
/+ (2627];)3 {@Q*(”CO@@Q@O@ - w(ﬁ?QQ*(fcovﬁ)Q(wO@]. (3.83)
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1
Wi (p) = ﬁ(ﬁac2 +m2ch). (3.84)

The sign [, stands for the integration over positive values of p', p*> and p®. The equation of
motion obeyed by @ derived from the Lagrangian Lkg is

(07 + w(P)Q(°,p) = 0. (3.85)
The general solution is of the form
1

v 2w(p)

This satisfies Q(2°, —p) = Q*(2°, ). The conjugate momentum is

Q. p) = ) e a7, (3.:56)

- h d*p iz
w0 0) = 2 [ G PP P = 0Q°. 7). (3.87)
EP(JCO,}T) = /d3$ﬂ'($0,f)€_%ﬁ£. (3.88)
c

Since 7* = 7 we have P(2°, —p) = P*(2°,5). We observe that
0Lk

0 - —_—
The Hamiltonian is
3
fea = /+ (2(17{:)3 {P*(zo’ﬁ)P(xov@ + (PR (", NQ",7) |- (3.90)

The real scalar field is therefore equivalent to an infinite collection of independent harmonic
oscillators with frequencies w(p) which depend on the momenta 7 of the Fourier modes.

Quantization of this dynamical system means replacing the scalar field ¢ and the conjugate
momentum field 7 by operators ngS and 7 respectively which are acting in some Hilbert space. This
means that the coefficients a and a* become operators @ and a* and hence @Q and P become
operators Q and P. The operators qg and 7 will obey the equal-time canonical commutation
relations due to Dirac, viz

[p(z°, &), 7 (2, )] = ihd* (T — 7). (3.91)

[6(2°, @), $(a°, )] = [7(a°, ), 7(2°, 7)] = 0. (3.92)
These commutation relations should be compared with

[gi, p;] = iTiy;. (3.93)

[Qi,%‘] = [pz',pj] =0. (3.94)

The field operator ngS and the conjugate momentum operator 7 are given by

hooio oo Pp 0 ipE _ Pp 0 15T Pp 0 —i5E
soa 9= | iy 7P _/+<27rh)3@(”” P +/+(27rh)3@+($ P)e T3.95)
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C., 0 Ep &, 0 o g / Ep 5 0 o g / Bp s o o _ige
- = P pr — P px P P%(3.96
2.9) = [ G P et = [ P et [t pe i3 00

It is then not difficult to see that the commutation relations (3.91) and (3.92) are equivalent to
the equal-time commutation rules

[Q(2°,9), P* (2°, @)] = ih(2mh)*6° (7 — @) (3.97)
[Q(=°, 5), P(«°, )] = 0. (3.98)
Q" 1), Q=" ) = [P(a",7), P(z", )] = 0. (3.99)
We have
Q°,p) = 230(;7) [a(m e~ @@t 4 g(—p)t eiw@t]. (3.100)
P(a®,p) = - @ [a(ﬁ? em WDt _ G(—p)t eiw(ﬁ)t}. (3.101)

Since Q(z°, p) and P(2°, p) satisfy (3.97), (3.98) and (3.99) the annihilation and creation oper-
ators a(p) and a(p)™ must satisfy

[a(p), a(@)*] = h(2mh)*6° (7' — ). (3.102)

The Hamiltonian operator is

= / (d £ ) 0 <m+h<2wh>363<o>}

Hygg =

[ 0, 5)P(a ,mw?@@(mo,mw%m}

’@D?‘

5|4l + At |

/ (d P ) () + 5 (2n)*5%0). (3.103)

Let us define the vacuum (ground) state |0 > by
a(p)[0 >= 0. (3.104)

The energy of the vacuum is therefore infinite since

Higlo> = /(2‘%’) (]5){ (27h)36°(0 )] 0> . (3.105)

This is a bit disturbing. But since all we can measure experimentally are energy differences from
the ground state this infinite energy is unobservable. We can ignore this infinite energy by the
so-called normal (Wick’s) ordering procedure defined by

AP = A alp) i) aE) = o)t al). (3.106)
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We then get
tHge: = /(;T%w(ﬁ)a(ﬁ)m(ﬁ). (3.107)
Clearly
cHyq : 10> = 0. (3.108)

It is easy to calculate

[Hxa,a(0)"] = hw(@a(p)* , [H,a(@)] = —ho(Halp). (3.109)

This establishes that a(p)* and a(p) are raising and lowering operators. The one-particle states
are states of the form

7= /2Pl 10 > (3.110)

Indeed we compute
Hyal|p >= hw(p)|p >= E@|F> . E(p) = Ve +m2ch, (3.111)

The energy E(p) is precisely the energy of a relativistic particle of mass m and momentum p.
This is the underlying reason for the interpretation of [p'> as a state of a free quantum particle
carrying momentum p and energy FE(p). The normalization of the one-particle state |p > is
chosen such that

<plg>= %(2@)313(@53(5* 7). (3.112)

We have assumed that < 0|0 >= 1. The factor y/2w(p) in (3.110) is chosen so that the normal-
ization (3.112) is Lorentz invariant.
The two-particle states are states of the form (not bothering about normalization)

7, >= a(p)"a(@) "0 > . (3.113)
We compute in this case

Hyalp, § >= h(w(@) +w(@)]F > - (3.114)

Since the creation operators for different momenta commute the state |, ¢ > is the same as the
state |¢,7 > and as a consequence our particles obey the Bose-Einstein statistics. In general
multiple-particle states will be of the form a(p)*a(q)™...a(k)T|0 > with energy equal to A(w(p) +
w(@) + ... + w(k)).

Let us compute (with pz = cp’t — p7)

h o~ d3p A0 i o
— — - R PT
Yiw) = [ GOt e
dgp 1 ( i i
= ————a(p)e” P* + d(ﬁ)*eﬁpz) . (3.115)
/ (27h)* /2w (p) =B/

Finally we remark that the unit of 4 is [A] = M L?/T, the unit of ¢ is [¢] = 1/(L3/2M'/?),
the unit of 7 is [x] = (M3/2L'/?)/T, the unit of Q is [Q] = M/2L5/?, the unit of P is [P] =
(MY2L5/2)/T, the unit of a is [a] = (MY2L5/?)/T"/2, the unit of H is [H] = (ML?)/T? and
the unit of momentum p is [p] = (ML)/T.
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3.4 Canonical Quantization of Free Spinor Field

We expand the spinor field as

1 d3 i o
v ) = 1 [ e pet.

The Lagrangian in terms of x and x T is given by
LDirac = /dsx‘CDirac

= /dsxz/?(ihcv“au —me?)a

C dSP —/.0 2 0 i i 0
= 2 (%T—h)gx(x ,0)(ihy 0o — v'p" — mce)x(z”, p).

The classical equation of motion obeyed by the field x(2°, p) is
(ih %90 — 4'p" — me)x (2, p) = 0.

This can be solved by plane-waves of the form

x(a®,p) = e # ().
with

(v*pu —me)x(p) = 0.
We know how to solve this equation. The positive-energy solutions are given by

x+(0) = ul (B, 7).

The corresponding plane-waves are

x4 (@, ) = e =P (B (), 5) = e =P ()

E p2c2 + m2ct
- )

w(p) =3 =

The negative-energy solutions are given by

X—(ﬁ) = ’U(i)(_Ev _ﬁ)'

The corresponding plane-waves are
X+ (2, p) = PO (B(p), —p) = Pl ().

In the above equations

E(p) = E = ho(p).

Thus the general solution is a linear combination of the form

a7 = [ (PO @B + IO )

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)
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The spinor field becomes

& - . . P
(3.128)

The conjugate momentum field is

Iz, 2) = ihp™
d3p

- Z‘/Wx+(:c°,ﬁ)eéﬁ . (3.129)

After quantization the coefficients b(p,i) and d(—p,i)* and a s a consequence the spinors x(z°, p)
and xt (22, p) become operators b(p,i), d(—p,i)*, %(z°,p) and ¥+ (20, p) respectively. As we
will see shortly the quantized Poisson brackets for a spinor field are given by anticommutation
relations and not commutation relations. In other words we must impose anticommutation
relations between the spinor field operator 1[) and the conjugate momentum field operator II. In
the following we will consider both possibilities for the sake of completeness. We set then

[Ya (2, 2), T5(2°, )]+ = ihdapd® (7 — 7). (3.130)

The plus sign corresponds to anticommutator whereas the minus sign corresponds to commutator.
We can immediately compute

[Xa(2°,5), X5 (2°, )]+ = h?0ap(21h)*6% (5 — ). (3.131)
This is equivalent to
[b(5, 7). b(q, )T+ = hdij (27h)*6% (5 — @), (3.132)
[d(7,1)",d(d, )]+ = hoy; (2mh)*6° (5 — ), (3.133)
and
(5, 4), d(q, )]+ = [d(q, ), b(F, i) = 0. (3.134)

We go back to the classical theory for a moment. The Hamiltonian in terms of x and x* is given
by

3
HDirac = / d xHDirac

/dgmﬁ(—ihcvi@i +me?)y

= [ L@ 6 + mox(a®. )
- h2 (27Th)3x ’p ’yp X ’p

¢ d’p i
= 72 | @enpX @00+ max(a®, 5 (3.135)
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The eigenvalue equation (3.120) can be put in the form

o E
P+ meo)x(a®,p) = —x(a”, ). (3.136)
On the positive-energy solution we have

(ﬁ)

('’ + me)xy (a°,p) = X+ (20, ). (3.137)
On the negative-energy solution we have
i, p
(P +me)x— (2%, p) = — (7 x— (2%, ). (3.138)

Hence we have explicitly

O (p + me)x(a®,§) = WZ( D (G (7, i) — P (—p)d(—p >).
(3.139)

The Hamiltonian becomes

Home = 3 [ ook mz( W) ~ d- (7))

_ /%h @Z( )d(ﬁ,i)d(ﬁ,z‘)*). (3.140)

After quantization the Hamiltonian becomes an operator given by

fowe = [ e X (0700600 ~dg i)

At this stage we will decide once and for all whether the creation and annihilation operators of
the theory obey commutation relations or anticommutation relations. In the case of commutation
relations we see from the commutation relations (3.133) that d is the creation operator and d*
is the annihilation operator. Thus the second term in the above Hamiltonian operator is already
normal ordered. However we observe that the contribution of the d—particles to the energy is
negative and thus by creating more and more d particles the energy can be lowered without limit.
The theory does not admit a stable ground state.
In the case of anticommutation relations the above Hamiltonian operator becomes

A 3 A ~ ~
Hpirae = / (Q(i—gpw(ﬁ); <b(5,¢)+b(5,¢) + d(ﬁ,i)+d(ﬁ,i)). (3.142)

This expression is correct modulo an infinite constant which can be removed by normal ordering
as in the scalar field theory. The vacuum state is defined by

( )]0 >= d(p, )]0 >= 0. (3.143)
Clearly

Hpiracl0 > = 0. (3.144)
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We calculate

[IA{Diraca B(ﬁ’ Z)+] = hw(mg(ﬁa Z)+ ’ [IA{Diraca l;(ﬁa ’L)] = _hw(ﬁ)l;(ﬁa ’L) (3145)

[I:IDiracv dA(ﬁ; Z)+] = M(@J(ﬁ; Z)+ ’ [HDiracv dA(ﬁa 7’)] - 75"*](]5)&(13’7 Z) (3146)

Excited particle states are obtained by acting with B(ﬁ, i)™ on |0 > and excited antiparticle states
are obtained by acting with d(,7)T on |0 >. The normalization of one-particle excited states
can be fixed in the same way as in the scalar field theory, viz

|7, ib >= \/2w(@)b(F, )70 > , |F,id >= /2w (p)d(F,i)T|0 > . (3.147)
Indeed we compute

Hpirac|p,ib >= E(P)|p,ib > , Hpirac|p,id >= E(p)|p,id > . (3.148)

< p,ib|q, jb >=< p,id|q, jd >= 2E(p)0;;(2h)*6*(5 — ). (3.149)
Furthermore we compute

< 0 (@) |5, ib >=u (Fe~ 7", (3.150)

< Of(x) |7, id >= o9 (F)e~ 7", (3.151)

The field operator 1&(,7:) acting on the vacuum |0 > creates a particle at ¥ at time t = 29/c
whereas ¢)(z) acting on |0 > creates an antiparticle at & at time ¢ = 20 /c.

General multiparticle states are obtained by acting with b(7,4)* and d(5,i)* on |0 >. Since
the creation operators anticommute our particles will obey the Fermi-Dirac statistics. For ex-
ample particles can not occupy the same state, i.e. b(g,i)*b(p,i)*|0 >= 0.

The spinor field operator can be put in the form

7 3 C i ; A i . A
v = %/fgéﬁVmwﬁz;(g”wﬁwmwﬁw+eﬂ%@@w@nﬁ)

(3.152)

3.5 Propagators

3.5.1 Scalar Propagator

The probability amplitude for a scalar particle to propagate from the spacetime point y to the
spacetime x is

D(x —y) =< 0|¢(z)$(y)|0 > . (3.153)

We compute

c2 d3p / d3q e~ HPT Ry
h2 ) @2rh)® ) (27h)3 \/2w(p) \/2w(])

d3p 1 i
_ 2 —#p(E—y) 3.154
¢ / @eh? 28 (3.154

D(x—y) = < 0la(@a(q) |0 >




48 YDRI QFT

This is Lorentz invariant since d®p/E(p) is Lorentz invariant. Now we will relate this probability
amplitude with the commutator [¢(z), #(y)]. We compute

i d3p / d3q 1 1

r? ) (2rh)3 ) (27h)? | /2w(p) /2w ()

< (et a,am ] - ehre (. o))

= D(x—vy)— D(y—x). (3.155)

[P(2), 6(y)] =

- 2

In the case of a spacelike interval, i.e. (x —y)? = (2° — 3°)?2 — (¥ — #)? < 0 the amplitudes
D(z —y) and D(y — ) are equal and thus the commutator vanishes. To see this more clearly we
place the event z at the origin of spacetime. The event y if it is spacelike it will lie outside the
light-cone. In this case there is an inertial reference frame in which the two events occur at the
same time, viz y° = 2%. In this reference frame the amplitude takes the form

Bp 1 i
_ = 2 #P(@—7)
D(z —vy) c /(2#5)3 2E(17)6h . (3.156)

It is clear that D(z —y) = D(y — ) and hence
[B(x).d)] = 0, iff (x—y)* <0. (3.157)

In conclusion any two measurements in the Klein-Gordon theory with one measurement lying
outside the light-cone of the other measurement will not affect each other. In other words
measurements attached to events separated by spacelike intervals will commute.

In the case of a timelike interval, i.e. (z —y)? > 0 the event y will lie inside the light-cone of
the event . Furthermore there is an inertial reference frame in which the two events occur at
the same point, viz ¥ = Z. In this reference frame the amplitude is

dsp 1 _ip0(0_p0
D(z—y) = 02/(271%)3%6 P (@ =y, (3.158)

Thus in this case the amplitudes D(z — y) and D(y — x) are not equal. As a consequence the

commutator [¢(z), #(y)] does not vanish and hence measurements attached to events separated
by timelike intervals can affect each.
Let us rewrite the commutator as

< 0/[p(2), $(y)]|0 >

[6(2), 6(y)]

3 _ .
— 8/&# e~ #Pla—y) _ ip(z—y)
(2rh)? 2E(7)
1

3 ) .
_ 62/ﬂ<_e—g(’3§“(m°—y°>—ﬁ<f—m)

(2wh)3 \ 2E(p)
1 _i(_E(ﬁ)( o_ o)_a(a_a)))
+ ——e'"® o\ TY)TPETY) ) (3.159)
—2E(p)
Let us calculate from the other hand
0 ; _ 0 ; .
1 / dp” i ipe-w _ L / dp” 1 —iple-y)
c) 2m p?2—m2c? c) 2m (poy2 — %
0 v
_ l/‘;p - o=t (200 —y®)~ (=)
¢ ™ (p9)? — 2

(3.160)
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There are two poles on the real axis at p° = +E(p)/c. In order to use the residue theorem we
must close the contour of integration. In this case we close the contour such that both poles are
included and assuming that 2° —y° > 0 the contour must be closed below. Clearly for 2% —4° < 0
we must close the contour above which then yields zero. We get then

. . 0_ E® .
(a0 gy o N[ TE i (Pa-)-sE-)
c) 2w p%— m2c2° 271'6( 2mi) (p9)2 B2 © 0
- P*=E(p)/c
0 E® .
N ( P+ call e—%(p“(wo—yo)—ﬁ(i—ﬂ))) ]
(P°)? — = P=—E(p)/c
— 1( _) 67%(13(6;7) (xofy“)*ﬁ(ffg)) + 1 (_‘)67%‘ (7@(I07y0)7ﬁ(fig)).
2E(p —2FE(p
(3.161)
Thus we get
Dr(z—y) = 0(«°—y°) <0|[d(x),(y)]|0 >
dp i
_ p(z—y) 162
ch/ (27rh)4p27m2026 h (3.162)
Clearly this function satisfies
m2c? C oy
(00" + = )Dr(x —y) = fzﬁé (x —y). (3.163)

This is a retarded (since it vanishes for 2° < %) Green’s function of the Klein-Gordon equation.

In the above analysis the contour used is only one possibility among four possible contours.
It yielded the retarded Green’s function which is non-zero only for z° > 3°. The second contour
is the contour which gives the advanced Green’s function which is non-zero only for 2° < 7°.
The third contour corresponds to the so-called Feynman prescription given by

d'p ‘ —ip(z—y)
Dp(x—y) = ch GO : (3.164)

The convention is to take € > 0. The fourth contour corresponds to € < 0.

In the case of the Feynman prescription we close for z° > 4% the contour below so only the
pole p° = E(f)/c — i€ will be included. The integral reduces to D(z — ). For 20 < y° we close
the contour above so only the pole p’ = —E(p)/c + ie will be included. The integral reduces to
D(y — z). In summary we have

Dp(z—y) = 0" —y")D(z —y)+0(y" —a")D(y — )
= <0|Th(x)d(y)]0 > . (3.165)
The time-ordering operator is defined by
Té(z)d(y) = d(x)p(y) , 2° > y°
To(x)p(y) = d(y)o(x) ,2° < y°. (3.166)

By construction Dp(z — y) must satisfy the Green’s function equation (3.163). The Green’s
function Dp(x — y) is called the Feynman propagator for a real scalar field.



50 YDRI QFT

3.5.2 Dirac Propagator

The probability amplitudes for a Dirac particle to propagate from the spacetime point y to the
spacetime x is

Sup(x — ) =< Oftha(@)dp ()]0 > . (3.167)

The probability amplitudes for a Dirac antiparticle to propagate from the spacetime point = to
the spacetime y is

Sbaly — ) =< Ol (y) b (2)[0 > . (3.168)
We compute
1
Sap(x —y) = E(ih’y“aff + me)apD(x — y). (3.169)
5 1
Sbaly —x) = —— ("0 +me)ap Dy — ). (3.170)

The retarded Green’s function of the Dirac equation can be defined by
1
c

(Sr)av(z —y) = =(iMy"0; + mc)aDr(z —y). (3.171)

It is not difficult to convince ourselves that

(Sr)an(z —) = 0" —4°) < O[{tha(x), P ()} 10 > . (3.172)

This satisfies the equation

(ihv“@ff —mC)ea(SR)ap(® —y) = ihd*(x — y)dep. (3.173)

Another solution of this equation is the so-called Feynman propagator for a Dirac spinor field
given by

1
(SF)ap(x —y) = E(ihv“@fﬁ + me)aDr(z — y). (3.174)
We compute

(Sr)an(@ —y) = < O/Tda(x)dy()[0> . (3.175)
The time-ordering operator is defined by
T () (y) = P@)i(y) , 2° > 4°
Th(a)i(y) = —dyhi(z) ,2* <y’ (3.176)

By construction Sg(x — y) must satisfy the Green’s function equation (3.173). This can also be
checked directly from the Fourier expansion of Sg(xz — y) given by

d*p WY Py +me)ab _ iy
WD = nple=y) 3.177
2h)* p2 — m2c? + ice € ( )

(Sr)as(@ —y) = h/(
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3.6 Discrete Symmetries

In the quantum theory corresponding to each continuous Lorentz transformation A there is a
unitary transformation U(A) acting in the Hilbert space of state vectors. Indeed all state vectors
|o > will transform under Lorentz transformations as |[a >— U(A)|a >. In order that the

general matrix elements < S8]O(), 1))l > be Lorentz invariant the field operator (z) must
transform as

P(x) — ¥ (2) = UA) Y (a)U(A). (3.178)
Hence we must have
S(A)Y(A™ 2) = UA) T p(2)U(A). (3.179)

In the case of a scalar field ¢(z) we must have instead

d(Az) = UM T d(z)U(A). (3.180)

There are two discrete spacetime symmetries of great importance to particle physics. The first
discrete transformation is parity defined by

(t, %) — P(t, %) = (t, —Z). (3.181)
The second discrete transformation is time reversal defined by
(t, ) — T(t, %) = (—t, 7). (3.182)

The Lorentz group consists of four disconnected subroups. The subgroup of continuous Lorentz
transformations consists of all Lorentz transfomrations which can be obtained from the iden-
tity transformation. This is called the proper orthochronous Lorentz group. The improper
orthochronous Lorentz group is obtained by the action of parity on the proper orthochronous
Lorentz group. The proper nonorthochronous Lorentz group is obtained by the action of time
reversal on the proper orthochronous Lorentz group. The improper nonorthochronous Lorentz
group is obtained by the action of parity and then time reversal or by the action of time reversal
and then parity on the proper orthochronous Lorentz group.

A third discrete symmetry of fundamental importance to particle physics is charge conjugation
operation C. This is not a spacetime symmetry. This is a symmetry under which particles become
their antiparticles. It is well known that parity P, time reversal T and charge conjugation C are
symmetries of gravitational, electromagnetic and strong interactions. The weak interactions
violate P and C and to a lesser extent T and CP but it is observed that all fundamental forces
conserve CPT.

3.6.1 Parity

The action of parity on the spinor field operator is

~ 3 c i . ~
Uy i@UP) = ¢ [ e (<O eue) i ave)

+ eép%@)(mU(P)w(ﬁ,i)+U(P))

= S(P)p(P'x). (3.183)
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We need to rewrite this operator in terms of ¥ = P~lx = (29, —%). Thus pxr = pZ where

p= P txr = (p’ —p). We have also op = 6p and 5p = op. As a consequence we have

u? (@) = 7w () , oV (B) = =1 (B). (3.184)
Hence
Uy iUE) = 2 [ o = Z(W OG0 (P b7 iU (P)
— emP DG (P)Td(F, (P)) (3.185)

The parity operation flips the direction of the momentum but not the direction of the spin. Thus
we expect that

U(P)Tb(p,i)U(P) = mb(—p,i) , U(P)"d(p,i)U(P) = nad(—F, ). (3.186)
The phases 7, and 7, must clearly satisfy
n=1,n=1. (3.187)

Hence we obtain

V(PP U@UP) = (e FP O Gb0) — et 0 )
(3.188)
This should equal S(P)¢)(#). Immediately we conclude that we must have
Ng = —"p- (3.189)
Hence
UP)Y d(@)U(P) = 7 (). (3.190)
3.6.2 Time Reversal
The action of time reversal on the spinor field operator is
UT) () U(T) = 1 QM HZ ( e 1Py D (2)b(p, ) U (T)
+ U(T)+eéwu<i>(md(ﬁ,i)+U(T)>
= S(T)(T ') (3.191)

This needs to be rewritten in terms of # = T~1x = (-2, ¥). Time reversal reverses the direction

of the momentum in the sense that px = —p& where p = (p°, —p). Clearly if U(T) is an ordinary
unitary operator the phases e¥#P% will go to their complex conjugates e #P* under time reversal.
In other words if U(T') is an ordinary unitary operator the field operator U(T") T4 (z)U(T') can not
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be written as a constant matrix times ¢ (&). The solution is to choose U(T)) to be an antilinear
operator defined by

UT)Te=cUT)*. (3.192)
Hence we get
v = 1 [ o S (iU g
h) (27h)3\ 2w(p) - ’
+ e%ﬁ%@)*(ﬁ)U(Tﬁd(ﬁ,i)*U(T)) (3.193)
We recall that
& E-55 1
WWEH =N g5 ), oW =N T ). (3.194)
Cmu: g0 Tlo
Hence (by using o™ = —020%0?) we obtain
1 s 2¢1%
D _ 1 0 oA A1.3 —i0"g
™ (]7) - N( ) ( 2 Ecmc 0_251* ) - N( )7 Y ( E,;fﬁ(*iOQgé*) ) '
(3.195)
2—E455 9 14 —Ziep 2, 1%
o) = NO [T e 0| = NBIyla2 — (2w m*) .
Mo —io 770
(3.196)
We define
6% = —io%" , 1y = iy (3.197)

Note that we can take £, ° proportional to ng. We obtain then

* &' Vo
WP = N(1)7173< _%ﬂ?ﬁ.ggl ) < x/oipug 1 ) = 3D ().

(3.198)
7%4»55 —1 o, Dk -1 =
W p) = NPyl ( mg_l% ) =’ ( A gpﬁ,?nq ) = —7'7*% 0 ().
0 22
(3.199)

Similarly we can show that

(2)*(17) _ 71,73,“(*2)(5) ) U(Z)*(m _ _71731)(72)(15)- (3200)

In the above equations

1 X
gfs -5 _ 7]\](3)(7?53)7775 (3201)

o

¢ = N5



54 YDRI QFT

Let us remark that if £ is an eigenvector of & with spin s then &; ¢ is an eigenvector of 67 with
spin —s, viz

Nl = stl & Fagyt = —séy (3.202)

Now going back to equation (3.193) we get

R 35
UIH@UE) = o [ G [ S (G b g

— BRI GUT) i) ) ) (3.208)
Time reversal reverses the direction of the momentum and of the spin. Thus we write
U(T) b(p,i)U(T) = mb(—p, —i) , U(T)*d(p,i)U(T) = nad(—p, —i). (3.204)
We get then

In 3 C i =~ . oA o
U ()U(T) = %7173/ d . = Z <nbeﬁp””u“> B)b(p, —i)
et I GG, z'>+>. (3.205)

By analogy with £;° = —io?£5* we define

b(p, —i) = —(=i0)i;b(B, j) , d(B,—i) = —(—io”)i;d(B, j)- (3.206)
Also we choose
Na = —"- (3.207)
Hence
v@rEUm) = G [ i [ S (@G )+ G i)
= my' PP (-2, D). (3.208)

3.6.3 Charge Conjugation
This is defined simply by (with C* = C~! = O)

Cb(p,i)C = d(p,i) , Cd(p,i)C = b(p,i) (3.209)
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Let us remark that (by choosing NW¢y* = — NGl or equivalently ¢~% = 7))

——a E_z5
W) = ¢N<1>72< 7 pfo ) _ Z-N<3>72< —Jﬁn& ) — i ().

0 o
(3.211)
In other words
1)(]5») _ —WQUO)*(ZT) , v(l)(ﬁ) _ quu) (). (3.212)
Similarly we find
@ @) = —ir*v@*(E) , v (F) = —iv*u®* (). (3.213)

Thus we have
CP@)C = %(7 27Th \/ 2wﬁ)z< “Rro O (R)d(, i) + 7P ()b, 1) >

— iy (x). (3.214)

3.7 Exercises and Problems

Scalars Commutation Relations Show that

Q('TO’ —p) = Q+('T0’ﬁ)'
[Q(°,7), P (2°,q)] = ih(27h)*6° (5 — ).

[a(p), a(q)*] = h(27h)*6* (5 — q).

The One-Particle States For a real scalar field theory the one-particle states are defined by

7>= 2P 10 >

e Compute the energy of this state.
e Compute the scalar product < p|¢ > and show that it is Lorentz invariant.

e Show that ¢(z)]0 > can be interpreted as the eigenstate | > of the position operator at

time V.
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Momentum Operator

1) Compute the total momentum operator of a quantum real scalar field in terms of the
creation and annihilation operators a(p)™ and a(p).

2) What is the total momentum operator for a Dirac field.

Fermions Anticommutation Relations Show that

[Xa(aco,ﬁ), >A<2§ (woa 7+ = h25&ﬂ(277h)353(ﬁ_ q)-

[b(7,4),b(q, ) "]+ = [d(7,9)", d(, §)]+ = hdi;(2mh)*5% (7 — ).

Retarded Propagator The retarded propagator is

d*p 1 ip(p—
Dplx—y) = ch / b e e,

Show that the Klein-Gordon equation with contact term, viz

2.2

m-c
(6ﬂa# + h2

)Dr(z—y) = —i%54(w —y).

Feynman Propagator We give the scalar Feynman propagator by the equation

d4p ) i
D _ — h *EZD(I*Q)'
Fl@=y) ¢ / (2wh)* p2 — m2c? 4+ ic"
e Perform the integral over py and show that
_ 0 0 0 0
Dp(z—y) = 0" -y )D(x—y)+0(y" —z")D(y —x).

e Show that

Dp(z—y) = <O0|Td(x)d(y)|0 >,

where T is the time-ordering operator.
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The Dirac Propagator The probability amplitudes for a Dirac particle (antiparticle) to prop-
agate from the spacetime point y (x) to the spacetime x (y) are

Sap( = y) =< Oldba (2)dn(y)|0 > .

Sha(y — x) =< 0|y (y)da ()]0 > .
1) Compute S and S in terms of the Klein-Gordon propagator D(x — %) given by

d’p L —ipa—y)
b= = | GapaEg

2) Show that the retarded Green’s function of the Dirac equation is given by
(Sr)av(z —y) = <OHa(x), du(y)}|0 > .

3) Verify that Sy satisfies the Dirac equation
. - h
(iy" 0y — me)ea(SR)av(z —y) = 1254(50 — Y)0cb-

4) Derive an expression of the Feynman propagator in terms of the Dirac fields 7,/; and 7,/; and
then write down its Fourier Expansion.

Dirac Hamiltonian Show that the Dirac Hamiltonian
A. _ d3p A_,.+A_,. A_,.+ — .
HDlrac - W(‘d(m Z b(pa ’L) b(pa ’L) + d(pa Z) d(pa Z) ’
satisfies
[IA{DiraC; B(ﬁa 'L)Jr] = hw(ﬁ)l;(ﬁa i)+ ) [I:IDiraca CZ(ﬁ, Z)Jr] = M(md(ﬁa i)Jr-

Energy-Momentum Tensor Noether’s theorem states that each continuous symmetry trans-
formation which leaves the action invariant corresponds to a conservation law and as a conse-
quence leads to a constant of the motion.

We consider a single real scalar field ¢ with a Lagrangian density £(¢,0,¢). Prove Noether’s
theorem for spacetime translations given by

ot — 2 =2 4 o,
In particular determine the four conserved currents and the four conserved charges (constants of
the motion) in terms of the field ¢.
Electric Charge
1) The continuity equation for a Dirac wave function is
OpJt =0, JH = pytep.

The current J# is conserved. According to Noether’s theorem this conserved current (when
we go to the field theory) must correspond to the invariance of the action under a symmetry
principle. Determine the symmetry transformations in this case.
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2) The associated conserved charge is

Q= /d3:cJ0.

Compute @ for a quantized Dirac field. What is the physical interpretation of Q.

Chiral Invariance
1) Rewrite the Dirac Lagrangian in terms of ¢, and ¢ g.

2) The Dirac Lagrangian is invariant under the vector transformations

b — 'Y
Derive the conserved current j*.

3) The Dirac Lagrangian is almost invariant under the axial vector transformations

W) — e,

Derive the would-be current j*° in this case. Determine the condition under which this
becomes a conserved current.

4) Show that in the massless limit

3" =Jp iR 3" =0+ i
=Wy, = Uy U,
Jr LY La]R RY R

Parity and Time Reversal Determine the transformation rule under parity and time reversal
transformations of v, 11, ithy21, Yy*ah and PyHydap.

Angular Momentum of Dirac Field

e Write down the infinitesimal Lorentz transformation corresponding to an infintesimal ro-
tation around the z axis with an angle 6.

e From the effect of a Lorentz transformation on a Dirac spinor calculate the variation in the
field at a fixed point, viz

’

0 () = ¢ (x) = ¢ (x).

e Using Noether’s theorem compute the conserved current j# associated with the invariance
of the Lagrangian under the above rotation. The charge J2 is defined by

J = /d?’xjo.

Show that J?3 is conserved and derive an expression for it in terms of the Dirac field. What
is the physical interpretation of J3. What is the charge in the case of a general rotation.
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e In the quantum theory J® becomes an operator. What is the angular momentum of the
vacuum.

e What is the angular momentum of a one-particle zero-momentum state defined by

, ome? . -
10, sb >= 1/ ”;C b(T,5)t|0 > .

Hint: In order to answer this question we need to compute the commutator [J3, b(0, s)*].

e By analogy what is the angular momentum of a one-antiparticle zero-momentum state

defined by
- 2me? ~ o
10, sd >= 1/ ”;C d(0,5)"10 > .
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The S—Matrix and Feynman Diagrams For
Phi-Four Theory

4.1 Forced Scalar Field

4.1.1 Asymptotic Solutions

We have learned that a free neutral particle of spin 0 can be described by a real scalar field with
a Lagrangian density given by (with h=c=1)

2
Lo = 50,00"0 — "7, (@)

The free field operator can be expanded as (with p® = E(p) = Ep)

60) = [ e (e 4t e

(277)3\/2E(13)

&p - ipE
_ /(2@3@@,@@ . (4.2)
Ot = ﬁ(a@emﬁwa(@*emﬁ). (43)

The simplest interaction we can envisage is the action of an arbitrary external force J(x) on the
real scalar field ¢(x). This can be described by adding a term of the form J¢ to the Lagrangian
density Ly. We get then the Lagrangian density

1 2
L= 50,00"6 — 6" + Jo. (44)
The equations of motion become

(0,0" +m*)¢ = J. (4.5)
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We expand the source in Fourier modes as

3
J(z) = / (;lﬁl;gj(t,ﬁ)eiﬁ. (4.6)

We get then the equations of motion in momentum space

(0F + E)Q(t,p) = j(¢, D). (4.7)

By assuming that j(¢,p) vanishes outside a finite time interval we conclude that for early and
late times where j(t, ) is zero the field is effectively free. Thus for early times we have

(f P) = Qm(t p) = (din(ﬁ')emﬁt + din(—ﬁ)JreiEﬁt) , t — —o0. (4.8)

1
V2E5
For late times we have
1

V2E;

The general solution is of the form

Q(t,P) = Qous(t, p) = (dout(ﬁ)emﬁt + &out(—ﬁ)JreiEﬁt) , t — +o0. (4.9)

Qt,7) = Qin(t, P) + — / dat sin E( (t— )it ,p). (4.10)

Clearly for early times t — —oco we get Q — Q. On the other hand since for late times
t — +00 we have Q — Qout We must have

—+o0

Qout(t,szin(t,m+%/ dt sin Ex(t —¢)i(t ). (4.11)

— 00

We define the positive-energy and the negative-energy parts of Q by

QT (t.p) = a(pe=""", Q7 (¢,7) a(—p)*er. (4.12)

1
\ /2E~ - /2By

Equation (4.10) is equivalent to the two equations

. t , ,
Q) = QR (1) £ gy [l FED5 (113)

The Feynman propagator in one-dimension is given by

, el dE i —
Galt —t)=— - | ZZX__ " —iB(-t), 4.14
t=t) 28, /27r E? —EZtic (4.14)

Note that in our case t —t > 0. Hence

t

QF(t,p) = Qi (t,9) +i/ dt Gyt —t)j(t , 7). (4.15)

— 00

t

Q (t,p) = Q(t,p) —i dt Gyt —t)j(t . p). (4.16)

— 00
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For late times we get

A A +m !’ !’ /
Otn(t.7) = O (1,5 + / dt Gt — £)i(t . p). (4.17)
A A~ +m !’ !’ /
Q(?ut(tam = Q;(t’m -1 B dt Gﬁ(t - t)j(t am' (418)

These two equations are clearly equivalent to equation (4.11).
The above two equations can be rewritten as

. +o0

N A 7 ’ iE= N

Qoue(t.7) = Qi (t.9) + 2Eﬂ/ dt TP (t ). (4.19)
P J—0o0

In terms of the creation and annihilation operators this becomes

dout(m = CAlin(ﬁ) + E](P) 9 dout(er = din(er - \/ﬁﬁj(_p) (420)
i) = §(Ep ) = / dte B (1, 7). (4.21)

We observe that the "in" operators and the "out" operators are different. Hence there exists two
different Hilbert spaces and as a consequence two different vacua |0 in > and |0 out > defined
by

Gout(P)|0 out >=0, @iy (p)|0 in >= 0 Vp. (4.22)

4.1.2 The Schrodinger, Heisenberg and Dirac Pictures

The Lagrangian from which the equation of motion (4.7) is derived is

[r (dipB (atQ(t,ﬁ)*atQ(t,ﬁ) — Ef;Q(t,ﬁ)*Q(t’ﬁ) + it P)*Q(t, P) +j(t,ﬁ)Q(t,ﬁ)*).

2m)
(4.23)
The corresponding Hamiltonian is (with P(¢,p) = 9:Q(¢, D))
3
/ (;];3 (P(t,ﬁ?*P(t,m + E5Q(t,9)" QL. ) — (. 1) Q(t. 5) — j(t,ﬁ')Q(t,ﬁ)*).
i
(4.24)

The operators P(t,ﬁ') and Q(t,ﬁ) are the time-dependent Heisenberg operators. The time-
independent Schrodinger operators will be denoted by P(p) and Q(p). In the Schrodinger picture
the Hamiltonian is given by

/+ (gjf;a (P ()" P() + E3Q(5)" Q) — j(t,5)"Q(5) - j(t,m(m*). (4.25)
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This Hamiltonian depends on time only through the time-dependence of the source. Using box
normalization the momenta become discrete and the measure [ d®p/(27)% becomes the sum
Zﬁ /V. Thus the Hamiltonian becomes

SN Ha). (4.26)
pl>0p2>0p3>0

We recall the equal time commutation relations [Q(t,7), P(t, p)T] = i(2m)36% (p—q) and [Q(t, p), P(t,p)] =
[Q(t, D), Q(t,p)] = [P(t,p), P(t,p)] = 0. Using box normalization the equal time commutation
relations take the form

[Q(t,9), P(t, )] = iV b5

[Q(t,p), P(t,p)] = [Q(t,p), Q(t, )] = [P(t, p), P(t,p)] = 0. (4.27)

The Hamiltonian of a single forced oscillator which has a momentum p'is

He(t) = 3 (PGP + E2Q(°Q0) ) + V() (4.29)
The potential is defined by
vin = -~y (itarew +itneu). (1.29)

The unitary time evolution operator must solve the Schrodinger equation
i0,U(t) = Hap(t)U(2). (4.30)
The Heisenberg and Schrodinger operators are related by
Qt,p) = UWM'QWU®). (4.31)
We introduce the interaction picture through the unitary operator €2 defined by
U(t) = e eQ(t). (4.32)

In the above equation H; is the free Hamiltonian density, viz

1
e = 3 (Porre) + B Q). (4.33
The operator ) satisfies the Schrodinger equation
i0:Q(t) = Vi (t, QD). (4.34)
Vitp) = eVt pe e
1 A N
= 7?(](157]7)*621(@13‘) +](taﬁ‘)Q1(t7]§)+) (435)

The interaction, Schrodinger and Heisenberg operators are related by
QI (t, ﬁ’) — eitﬁﬁ@(ﬁ’)e—it}zﬁ
QUG R@U MR
QO P (4.36)
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We write this as
Qit,p) = QB)'Qs(t, L. (4.37)
It is not difficult to show that the operators Q 1(t,p) and 151(15, p) describe free oscillators, viz
(07 + E2)Qi(t,7) =0, (0} + EZPy(t,p) = 0. (4.38)

4.1.3 The S—Matrix

Single Oscillator: The probability amplitude that the oscillator remains in the ground state
is < 0 out|0 in >. In general the matrix of transition amplitudes is

S =< m out|n in > . (4.39)
We define the S—matrix S by
Spn =< m in|S|n in > . (4.40)
In other words
< m out|] =< m in|S. (4.41)

It is not difficult to see that S is a unitary matrix since the states |m in > and |m in > are
normalized and complete. Equation (4.41) is equivalent to

< 0 out|(Aeuwt (7)™ = <0 in|(am(P)™S
= <0 out|S  (am(p)™S
= < 0out|(S tam(p)S)™. (4.42)
Thus
aout(P) = S~ ain () S. (4.43)

This can also be written as

Qout(t,7) = S'Qul(t,D)S. (4.44)

From the other hand, the solution of the differential equation (4.34) can be obtained by
iteration as follows. We write

Q(ﬁ) =1+ Ql(t) + Qg(t) + Q3(t) + ... (445)

The operator €, (t) is proportional to the nth power of the interaction Vi (t). By substitution we
get the differential equations

W0 (t) = Vi(t,p) & Q(t) = —i / t dt, Vi (t1, ). (4.46)

— 00

100 (1) = Vi(t, ) _1(t) & Qu(t) = —i /t Aty Vi(t, 9) Q1 (t1) , n > 2. (4.47)

— 00
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Thus we get the solution

Qi) = 1i/t dtlf/f(tl,ﬂJr(i)?/t dtlf/l(tl,ﬁ)/tl dtaVi(te, )

— 00

t
+ (4)3/ dt1VI tl,ﬁ)/ dtQVI tg,ﬁ)/ dtgvf(tg,ﬂ+

/ dtl/ dfg/ At Vi(t1,9)...Vi(tn, ). (4.48)

This expression can be simplified by using the time-ordering operator T'. Let us first recall that
T(Vi(t)Vi(t2)) = Vi(t1)Vi(ta) , if t1 > ta
T(V[(tl)V](tQ)) = V](tg)V](tl) R if to > t4. (449)

For ease of notation we have suppressed momentarily the momentum-dependence of Vi Clearly
T(Vi(t1)Vi(t2)) is a function of t; and ¢t which is symmetric about the axis t; = to. Hence

L /_; it / ; AT (Vi () Vi ()

tl N N
/ d, / dt V1 (8 Vi (8).

The generalized result we will use is therefore given by

1t t . . N
. dtl.../ it T(Vi(t1)...V) / dtl/ dts.. / At V1 (0 Vi (£2). Vi ().
(4.51)
By substituting this identity in (4.48) we obtain
Q) = Z n,/ dtl/ dts.. / At T (Vi (1, 9)Vi (b2, 7)o Vi s 7))
- T(ﬁf dsvfsﬁ')) (4.52)
It is clear that
Q(—0) = 1. (4.53)

This can only be consistent with the assumption that j(¢,5) — 0 as t — —oo. As we will
see shortly we need actually to assume the stronger requirement that the source j(¢,p) vanishes
outside a finite time interval. Hence for early times ¢ — —oo we have Q(t) — 1 and as a
consequence we get Q(t,7) — Qr(t,p) from (4.37). However we know that Q(t, ) — Qin (%, P)
ast —» —oo. Since Qj(t,ﬁ) and Qin(t,ﬁ) are both free fields, i.e. they solve the same differential
equation we conclude that they must be the same field for all times, viz

Q1(t,p) = Qu(t,p) , Vt. (4.54)
Equation (4.37) becomes

Q) = Q) Qult, HAY). (4.55)

t1 t2
/ dtl/ dtQVI (t1) VI (t2) + / dtz/ dt1V1 (t2 ‘/I(tl)

(4.50)
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For late times ¢t — oo we know that Q(t,ﬁ) — Qout (t,p). Thus from the above equation we
obtain

Qout(t,7) = Q(+00) " Qin(t, P)QU+00). (4.56)

Comparing this equation with (4.44) we conclude that the S—matrix is given by

S = Q(+00) = T<e—i (A dSWS@). (4.57)

Scalar Field: Generalization of (4.57) is straightforward. The full S—matrix of the forced
scalar field is the tensor product of the individual S—matrices of the forced harmonic oscillators
one for each momentum p. Since Q(t, —p) = Q(t, )+ we only consider momenta 7 with positive
components. In the tensor product all factors commute because they involve momenta which are
different. We obtain then the evolution operator and the S—matrix

Q(t) = T(e_iftoo ds E;L71>0 Z;L72>0 Z133>0 VI(s’ﬁ))

= T

5/t (%)3 (J(s,p) Qr(s,9)+3(s,0)Q1(s,9) ))
e

— T(ezftoo dsfddm](acﬁm(x))

= pfeiltadsfd mz:,m(x)> (4.58)

S =Q(+o0) = T(eifd%‘:int(m)). (4.59)

The interaction Lagrangian density depends on the interaction field operator qg = (ﬁin, viz

Eint (SC) = ﬁint ({)in)
—  J(@)bm(2). (4.60)

4.1.4 Wick’s Theorem For Forced Scalar Field

Let us recall the Fourier expansion of the field giA)in given by

5 &p - ipE

¢in($) = WQin(t,ﬁ)e . (461)
We compute immediately

[#atu@) = 3305 Qule.p

_ i j(tam* a efi 5t i (— ez’ 5t
- Vzﬁ: \/2_Ep~( in (D)t 4 a5, (—p) T ) (4.62)
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Also we compute

+ (ap®asm@)* —ap(t) am<p>))

_ H( p(t)asn (7Y —arp ()" am@)) (4.63)
2

i 1 t _
(1) = — dsj iEps 4.64
Oé;D( ) v \/E/Oo 5.7(57]5')6 ( 6 )

It is clear that the solution €2(t) is of the form (including also an arbitrary phase 8z(t))

Q1) = H(eaﬁ(t)&in(ﬁ)+_Olﬁ(t)*liin(ﬁ)'f'iﬂﬁ(t)). (4.65)
12

We use the Campbell-Baker-Hausdorff formula
eATB = eAeBe 34 Bl if [A[A, B]] = [B,[A, B]] = 0. (4.66)

We also use the commutation relations

[ain (D), ain(9) 7] = V. (4.67)
Qi) = H (eaﬁ(t)&;n(ﬁﬁe—aﬁ(t)*&;n(ﬁ)e—%Va,;(t)lz-i-i,@ﬁ(t))
I
= J]%®. (4.68)
i
In the limit ¢ — oo we compute
1 2 _ 4 4 1 ip(xfx/)
2VZ|04P(+OO)| = /d /d:cJ )VZQE; .
P

(4.69)

We also need to compute the limit of i55(t) when t — +o00. After some calculation, we obtain

. 1 4 4. ! ! G(t — t/) 1 % (m—z/) G(t — t/) 1 —1 (m—z/)
ZZﬂﬁ(ﬁLOO) = §/dx/dzJ(z)J(:c)< v ZQ—EﬁeP —TZQ—Eﬁe p .
P P P
(4.70)
Putting (4.69) and (4.70) together we get finally

1 1 , L (O — 1 . /
,§VZ|aﬁ(+oo)|2 +iZﬂﬁ(+oo) _ ,§/d4x/d4x () )< (tV t) Z Lo
P P 7
+ G(t —1 ) Z 2;&6—11)(1 m/))

= /d4 /d4:c J(z)J (2 )Dp(z — ). (4.71)
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From this last equation and from equation (4.68) we obtain the S—matrix in its pre-final form
given by

S=0(+) = ][] <e“ﬁ<+°°>éin<ﬁ>*eaﬁ“”)*‘ii“(ﬁ ’>e% Jd'a [d'a' @)@ Dr (e=a"),
(4.72)
This expression is already normal-ordered since
: (625 (aﬁ<+oo>am(ﬁ)*—aﬁuoo)*am(ﬁ))) =TI (eaﬁwoo)am(m*eaﬁ<+oo>*ain<ﬁ>)_
2

(4.73)

In summary we have
§=0to0) = T(ezﬁ (a5<+oo>dm<m*—a5<+oo>*&m<ﬁ>))
- . (ezﬁ (aﬁ(+oo)ain(ﬁ)+aﬁ(+oo)*ain(m)) =% [d'a [d' J(@) I ) Dp(e—a)
(4.74)
More explicitly we write

S — T<eifd4x.](x)¢§in(x)) _. i f eI (@)din(e) . =% [de [d' J(2)I (") Dp(e—a) (4.75)

This is Wick’s theorem.

4.2 The ®—Four Theory

4.2.1 The Lagrangian Density

In this section we consider more general interacting scalar field theories. In principle we can
add any interaction Lagrangian density Ly to the free Lagrangian density Lg given by equation
(10.478) in order to obtain an interacting scalar field theory. This interaction Lagrangian density
can be for example any polynomial in the field ¢. However there exists only one single interacting
scalar field theory of physical interest which is also renormalizable known as the ¢—four theory.
This is obtained by adding to (10.478) a quartic interaction Lagrangian density of the form

Ling = —%fb‘*. (4.76)
The equation of motion becomes
@, +m)o =
= —%qﬁg. (4.77)
Equivalently
(07 + E2)Q(t,p) = /d%‘;g—;te*iﬁf. (4.78)
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We will suppose that the right-hand side of the above equation goes to zero as t — £oo. In
other words we must require that §Lin/d¢p — 0 as ¢ —> doo. If this is not true (which is
generically the case) then we will assume implicitly an adiabatic switching off process for the
interaction in the limits ¢ — +o00 given by the replacement

Ling — e~V L. (4.79)

With this assumption the solutions of the equation of motion in the limits ¢ — —oo and
t — 400 are given respectively by

~ 1 . .
Qin(t,p) = ﬁ (din(mGZEﬁt + &in(ﬁ)JreZEﬁt) , t — —00. (4.80)
2
~ 1 . —iEgt | » iEy
Qout(t,m = \/E, (aout (I;‘)e Ept —+ aOut(—ﬁ)+e Ept> s t—> —+00. (4.81)
7

4.2.2 The S—Matrix

The Hamiltonian operator in the Schrodinger picture is time-independent of the form

H = HO(Q)QJraPa er) + V(Q’QJr) (482)
3
10Q.07 PP = [ [P o + 3000
+ (2m)
= %}:ﬂﬁ (4.83)
70,07 = (s Y QA + i+ )

= —/dS,CEEint. (484)

The scalar field operator and the conjugate momentum field operator in the Schrodinger picture
are given by

3@) = 7 3 Qe (4.85)

#(F) = % > P (4.86)

The unitary time evolution operator of the scalar field must solve the Schrodinger equation
i U(t) = HU(t). (4.87)

The Heisenberg and Schrodinger operators are related by

o(t,7) = U@ op@U(®). (4.88)
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We introduce the interaction picture through the unitary operator €2 defined by
U(t) = e~ tHoQ(t), (4.89)

The operator € satisfies the Schrodinger equation

i0,0(t) = Vi (1), (4.90)

Vi) = V(0,07 1) = €thoy(Q,or)e o, (4.91)

The interaction, Schrodinger and Heisenberg operators are related by

bi(t.7) = etg(F)e
= QOUO @U@
= Q)o@ D))" (4.92)
We write this as
o(x) = Q) or(@)U). (4.93)
Similarly we should have for the conjugate momentum field #(z) = d,¢(z) the result
wr(z) = etfon(g)eith, (4.94)
#(x) = Q@) ar(2)Q(t). (4.95)

It is not difficult to show that the interaction fields qg 1 and 77 are free fields. Indeed we can show
for example that ¢; obeys the equation of motion

(02 = V2 +m?)ds(t, &) = 0. (4.96)

Thus all information about interaction is encoded in the evolution operator () which in turn is
obtained from the solution of the Schrodinger equation (4.90). From our previous experience this
task is trivial. In direct analogy with the solution given by the formula (4.52) of the differential
equation (4.34) the solution of (4.90) must be of the form

Q(t) — Z(Z)n%/t dtq /t dtg.../t dtnT(‘A/I(tl)‘A/I(tQ)VI(tn))

n=0

- T e—iffoo dsVI(s))

-7 (ei [todsS d3zLint(¢§I(s,f))) . (4.97)
Clearly this satisfies the boundary condition

Q(~00) = 1. (4.98)

As before this boundary condition can only be consistent with the assumption that Vi(¢) — 0
as t — —oo. This requirement is contained in the condition (4.79).
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The S—matrix is defined by

S =Q(+00) = T(e‘iﬁ:; dsWs))

_ T(ei fd4acﬁim(<2;1($)))_ (4.99)

Taking the limit ¢ — —oco in equation (4.93) we see that we have ¢(z) — ¢r(z). But we
already know that ¢(z) — ¢in(z) when ¢ — —oc. Since the fields ¢;(z) and ¢y, (z) are free
fields and satisfy the same differential equation we conclude that the two fields are identical at
all times, viz

$1(x) = din(z) , VL. (4.100)
The S—matrix relates the "in" vacuum |0 in > to the "out" vacuum |0 out > as follows
< 0 out| =< 0 in|S. (4.101)

For the ¢—four theory (as opposed to the forced scalar field) the vacuum is stable. In other
words the "in" vacuum is identical to the "out" vacuum, viz

|0 out >= 10 in >= |0 > . (4.102)
Hence
< 0] =<0|S. (4.103)

The consistency of the supposition that the "in" vacuum is identical to the "out" vacuum will
be verified order by order in perturbation theory. In fact we will also verify that the same holds
also true for the one-particle states, viz

|p'out >=|p'in > . (4.104)

4.2.3 The Gell-Mann Low Formula

We go back to equation

o) = Q) or(z)Qt). (4.105)
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We compute

o(z) = Q)" r(2)Qt)

= S1T<eiftﬂodSV‘“(S))Qg)in(x)T<e_iftoodSV‘“(s)>
+oo +oo +oo
— 5—1(1—¢/ dty Vin (1) / dtl/ dtoVin (t2) Vin (t1) + )qﬁm( )
t t1
t
(1 fi/ dty Vin(t1) / dtl/ dtoVin (t1) Vin (t2) + )

40 “+o00 +oo
= 571 Ain —1 d V;n in d d ‘/;n in
(¢ () l/t 11 Vi (1) fin ( / tl/ t2Vin (t2) Vin (1) fin ()
R t —+o0
id)m( )/ dtl‘/m tl / dtl/ dt2‘/1n tl ¢1n ) ( )

+ )2in (@ / dty / dtaVin(t1) Vin (t2) + ) (4.106)

We use the identities

400 R . . t R 400 R R
/ AT (om0 Vi (11)) = () / dty Vi (11) + / ity Vi (£1)n ().

— 00 — 00

X

(4.107)

/t = dty /t o dtoT (Vin(t2)Vin (1)) = /t o dty /t ! dtoT (Vin (t1) Vi (£2)). (4.108)
/:O dt, /; At T (Gin () Vin (t1) Vin(t2)) = /+oo dt /tl dta Vi (t1) Vin (t2) bin (2)
/t o dty [ . dts Vi (t1) din (2) Vin (£2)

t t1 R R
) [ it [ s Vi (41) Vi (£2)-

(4.109)

+

; s—lT(qBin(x)(1 —i/_:o dt V() + (—i)? /_:O dt, /_too dtgxzn(tl)xzn(t2)+...))

= ST (q@in(x)s). (4.110)

=
3
I

This result holds to all orders in perturbation theory. A straightforward generalization is

T@)dw)..) = s-lT(éinw)ém(y)...s). (4.111)

This is known as the Gell-Mann Low formula.
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4.2.4 LSZ Reduction Formulae and Green’s Functions
We start by writing equations (4.80) and (4.81) in the form

7 (10, + Ep)Qin(t, §) = /2By in(p (4.112)
"7 (i0; + Ep)Qout (t, ) = /2By Gout (D (4.113)

Now we compute trivially the integral

+oo
/ dto, (eiEﬁt(z'at + Ex)Q(t, m) V2Ej (out () — ain (D). (4.114)

— 00

From the other hand we compute

+oo +oo
/ dto, <eiEﬁt(z‘at+Eﬁ)Q(t, ﬁ)) = i / dte'®7 (0} + E2)Q(t, p)
0L;
_ . 4 int lPI
z/d 6 o (4.115)

We obtain then the identity

+oo
z/ dte'r (07 + E2)Q(t,9) = /2Ej (aout(P) — ain(p))- (4.116)

This is the first instance of LSZ reduction formulae. Generalizations of this result read

+oo
; / a0 + B2T(O(t Ot 1) Ot 2)...) =

V2E; (aout(ﬁ)T( (t1,71)Q(t2, 2)...) — T(Q(tl,ﬁl)Q(tg,ﬁg)...)din(ﬁ)). (4.117)

Next we put to use these LSZ reduction formulae. We are interested in calculating the matrix
elements of the S—matrix. We consider an arbitrary "in" state |p1p2... in > and an arbitrary
"out" state |1 ga... out >. The matrix elements of interest are

< Q1G>... out|p1pa... in >=< @1 Ga... in|S|p1pa... in > . (4.118)

We recall that
|Pip2... in > = apm(p1)Tam(p2)t...|0 > . (4.119)
|(71(72 out > = aout((j'l)+aout(¢j'2)+...|0 > (4120)

We also recall the commutation relations (using box normalization)

[a(p), a(@)"] = Vg, ap) a(@)] =[a@) ", a(@) "] =0. (4.121)

We compute by using the LSZ reduction formula (4.116) and assuming that the p; are different
from the ¢; the result

< q1Gs... 0ut|ﬁlﬁ2... in> = <g.. 0ut|d0ut("' |ﬁlﬁ2 .in >

—+oo
= < .. out|| Gin(q dtePatr (92 + E2\O(t , ¢
o ontl () + e [ e R+ )00 )

X |ﬁ1]32.. in >
1 e B, R
W/ dtlez 1614 (8?1 +E§1) < qé 0ut|Q(t1,q_'1)|ﬁ1]5’2... n > .
q1 v —

(4.122)
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From the LSZ reduction formula (4.117) we have

+oo R . R R
z/ dtre' it (07, + EZ)T(Q(t2, 32)Q(t1, 1)) = \/2E, (dout((ﬁ)Q(tlv(ﬁ) - Q(th(ﬁ)din((ﬁ)>-

(4.123)
Thus immediately
+OO . A A
z/ dtze'P 22 (07, + EZ)) < .. out|T(Q(t2, %)Q(t1, 1)) P15 in > =
V2Eg < Go.. out|Q(t1,q1)|prfa.. in > . (4.124)
Hence
< (ﬁ(TQ... 0ut|ﬁ1ﬁ2... in> = ;; /Jroo dtleiE’jltl’L'(ai + Eg»l) /Jroo dt2€iE52t2i(at22 =+ Egé)
2Eg \/2Eg, J_~ oo
x < (fg 0ut|T(Q(t1, (ﬁ)Q(tQ, (fg))|ﬁlﬁ2 in>. (4125)
By continuing this reduction of all "out" operators we end up with the expression
< Q... out|Fipa... in > = ! L /m dt e Patri(97 + E%)/m dtreP%"2i(07, + E3,)...
V2Ez \/2Eg, —oo oo
X < 0|T(Q(t1, (ﬁ)Q(tg, (TQ))|]71]72 in > . (4126)

In order to reduce the "in" operators we need other LSZ reduction formulae which involve the
creation operators instead of the annihilation operators. The result we need is essentially the
Hermitian conjugate of (4.117) given by

+oo
*Z'/ dte™ "7 (07 + E2)T(Q(t,9)TQt1, 71) T Q(t2, 72) T..) =

— 00

2% <aout<@+T<Q(t1,ﬁm@(tz,ﬁz)#..) - T(Q(h,]71)+Q(t2,]72)+---)&in(@+)-

(4.127)
By using these LSZ reduction formulae we compute
<0|T(Q(t1,d1)Q(t2, &)-..) |PiPo... in >
1 e Bt 2 A S5\ A SN A =N s
\/f dtle D1 1@(6t,1 +Eﬁ1) < OlT(Q(tl,ql)Q(tQ,QQ)...Q(tl,pl) )lpg... mn > .
p1 J —00
(4.128)

Full reduction of the "in" operators leads to the expression

< 0T (Q(t1, ¢1)Q(t2, @2).-.) [P1p2... in > =

1 1 T Bt a2 2 T Bt 2
—iEg ty,; —iEa to
/ dtle 71 1z(<9t/1 +EI3~1)/ dth 2 2Z(at/2 +Eﬁ2)"'
— 00

V2Ez \2E5; —oo

<O|T(Q(t1, @) Q(t2, @) .- Q(t1, 51) T Q(ty, o) ... [0 > .

X

(4.129)
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Hence by putting the two partial results (4.126) and (4.129) together we obtain

- S 1 1 e iBg t (92 2 T Bt a2 2
< {i...out|py... in > = ST yom /700 dtie 1i(0f, +E§1)...[m dt,e” "= n(at,l +E3)..
x < OT(Qtr, @1)..Q(ty, Fr)T..)0 > . (4.130)

The final (fundamental) result is that S—matrix elements < ... out|pj... in > can be recon-
structed from the so-called Green’s functions < 0|T(¢(x1)...¢(x})...)|0 >. Indeed we can rewrite
equation (4.130) as

< {q...out|py... in > = /d4x e T30 + m?).. /d4xlle_ip1$;i(512 +m?)...
V2 Eg \/ 2E:51
x < 0|T((x1)...p(x7)...)]0 > . (4.131)

The factor 1/4/2Eg,...1/+/2Ep, is only due to our normalization of the one-particle states given
in equations (4.119) and (4.120).

4.3 Feynman Diagrams For ¢—Four Theory

4.3.1 Perturbation Theory

We go back to our most fundamental result (4.111) and write it in the form (with Ly (¢in (2)) =
Lint ()

<OT(G(r1)d(z2).)0 > = < OIT(éinm)ém(m)...s) 0>
= < 0|T(Qgin(%)ﬂgin(m)...eifd4y£im(y)) [0 >
7;0 Zn_rl' /d4y1../d4yn < 0|T<§£in($1)§£in($2)..£int(yl)..ﬁint(yn)) |0 > .
(4.132)

These are the Green’s functions we need in order to compute the S—matrix elements. They are
written solely in terms of free fields and the interaction Lagrangian density. This expansion is
the key perturbative series in quantum field theory.

Another quantity of central importance to perturbation theory is the vacuum-to-vacuum
amplitude given by

< 0|0 >=<0[S|0> = Z % /d4y1../d4yn < 0|T<Eim(y1)..£im(yn)) |0 > .(4.133)
n=0 "

Naively we would have thought that this norm is equal to 1. However it turns out that this is not
the case and taking this fact into account will simplify considerably our perturbative calculations.



YDRI QFT 77

4.3.2 Wick’s Theorem For Green’s Functions

From the above discussion it is clear that the remaining task is to evaluate terms of the generic
form

< 0|T(gsin(xl)g%in(m)...q;n(mn)) 0>. (4.134)
To this end we rewrite the Wick’s theorem (4.75) in the form
< 0|T<eifd4x.](x)¢§in(x)) 0 >=¢ 3 Jd*z [ d*a' J(@)J (=) Dp(z—a") (4.135)

Because the scalar field is real we also have
< 0|T<eifd4x.](x)¢§in(x)) 0 >= o~ % [ d'e [ d*a' J(2) ) (&) Dp(z—2") (4.136)

This means that only even powers of J appear. We expand both sides in powers of J we get

-2n ~ ~
;%/d4x1...d4x2nJ(x1)...J(x2n) < O|T(¢in(x1)...q§in(x2n))|0 > =

1,1
Z —(7—)n/d41'1 /d41'2.../d4$2n,1 /d41'2n X
— nlt 2
J(.Tl)J(wg)...J(mgn_l)J(wgn)DF(ml — .Tg)...DF(.Tgn_l — .Tgn). (4137)
Let us look at few examples. The first non-trivial term is

i2

2' d4$1d $2J($1)J(l‘2) < 0|T(q3in(x1)q3in($2)) |0 > =

y 71)1/d41'1/d4$2J(ZE1)J($2)DF(:C1 — x). (4.138)

Immediately we get the known result

< 0|T(¢Aﬁin(l‘1)éin($2)> |0 >= DF($1 — $2). (4139)

The second non-trivial term is

:' Aoy dY o d ey dbe g J (21)J (22) T (23) T (24) < 0|T(éin(zl)éin(:cz)ém(:ca)ém(m)) 0> =
/ d*ry / d'zs / d'z; / dtry x
J(xl)J(zg)J(xg) 21)Dp (21 — 22)Dp (23 — 24).(4.140)
Equivalently
:' Aoy d o d ey d e J (21) T (22) T (23) T (24) <0|T(éin(zl)éin(xz)&n(xa)ém(m))|0> =

1 1,1
5(—5)25/d4$1/d4l‘2/d4l‘3/d4l‘4 X

J(x1)J (x2)J (x3)J (24) <Dp(x1 —x9)Dp(z3 —14) +

DF(.Tl — .T3)DF($2 — .T4) + DF(.Tl — .T4)DF($2 — .Z'3)> .(4.141)
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In the last equation we have symmetrized the right-hand side under the permutations of the
spacetime points x1, x2, x3 and x4 and then divided by 1/3 where 3 is the number of independent
permutations in this case. This is needed because the left-hand side is already symmetric under
the permutations of the z;’s. By comparing the two sides we then obtain

< 0|T(Qgin(ﬂh)Qgin(m)ﬂgin(m)ﬂgin(m)) 0> = Dp(x1—x2)Dp(x3 —x4) + Dp(x1 — 23)Dp (22 — 24)
+ DF(SC1 — SC4)DF(£L'2 — 563). (4142)

The independent permutations are called contractions and we write

< 0|T(qgin(wl)qgin(m)Qgin(m)ﬂgin(m)) 0> = Z HDF —xj). (4.143)

contraction

This generalizes to any Green’s function. In equation (4.137) we need to symmetrize the right-
hand side under the permutations of the spacetime points x;’s before comparing with the left-hand
side. Thus we need to count the number of independent permutations or contractions. Since
we have 2n points we have (2n)! permutations not all of them independent. Indeed we need to
divide by 2" since D (z; — ;) = Dp(z; — ;) and we have n such propagators. Then we need to
divide by n! since the order of the n propagators Dp(z1 — x2),...,Dp(Z2n—1 — T2y) is irrelevant.
We get then (2n)!/(2"n!) independent permutations. Equation (4.137) becomes

-2n R R
Tg)%/d4x1...d4x2nJ(x1)...J(x2n) < 0|T(¢in(x1)...q§in(x2n))|0 > =

2" !
Z - i /d4$1/d4$2 /d Ton— 1/d Top X
n—O

J(ml)J(.TQ)J(.TQn_l)J(.TQn) Z HDF —,TJ (4144)

contraction

By comparison we obtain

<0|T(q3in(x1)...¢3in(x2n))|0 >= > J[Dri—=). (4.145)

contraction

This is Wick’s theorem for Green’s functions.
An alternative more systematic way of obtaining all contractions goes as follows. First let us
define

< 0|T(¢3in(x1)...q3in(x2n)) |0 >=< 0|T(F(q3in)) 0> . (4.146)
We introduce the functional Fourier transform
F(di) = / DJIF(J) ¢t ) 4 eI (@) (4.147)

Thus

< o|T<q3in(x1)...q3in(x2n)> 0> < 0|T</DJF(J) eifd“m-f@)@in(f)) 0>

/ DIF(J)e—$ [d'e [ e J@Dr =) (4 148)
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We use the identity (starting from here we only deal with classical fields instead of field operators)

f(%)eif(#m(z)qs(z) _ f(ig)et ] A @)9() (4.149)

In particular we have

o2 e S e sy D= ) o [ dbed (@) ée) _ b fd4acfd4z/J(m)Dp(z—z,)J(z,)eifd4mJ(m)¢(f2L150)

Thus
< 0|T<<5in(:c1)...s?>in(z2n))|0 > = /DJF(J) [e%fd“zfd“r Fom Dr =8 )50 i ded ()9()
$=0
_ [eéj‘d“zfd“z ity Dr(@—= )ﬁF(qﬁ) _ (4.151)
$=0

We think of F' as a function in several variables which are the classical fields ¢(z;). Thus we
have
oF oF

:54($—x1)m+54(a@—x2)m+... (4.152)

6¢(x)

Hence

A N 1 9 Ty ) =2
< 0|T(¢in($1)---¢in($2n)) |0 S = |:62 Zi,j <':7<l5(mi)DF( i J)d¢(mj)F(¢):|
¢=0
1 9 Ty ) =2
- {62 2ii 73 PF(@i=2) 5507 (¢($1)-..¢($2n)):| @153)
¢=0

This is our last version of the Wick’s theorem.

4.3.3 The 2—Point Function
We have

OGN0 > = S5 [t [t < O (bl (03) Lo 1)Ll ) 0>
n=0
- < 0|T<$in(z1)éin(z2)> 0> +i/d4y1 < 0|T(éin(zl)éin(zz)ﬁim(yl)> 0>

+ ﬁ/dzxyl/déiyz <0|T<<26~ (1) fin(x2) Lint (y1) L t(yg)>|o> +.. (4.154)
21 n in in in .

By using the result (4.153) we have (since we are considering only polynomial interactions)

< OIT((Jgin(zl)(ﬁin(xz)ﬁim(y1)..£im (yn)> 0> = [eaDFa <¢(x1)qb(zz)ﬁmt(yl)..,cint (yn)ﬂ y

(4.155)
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1 9 o 1 9 9
0Dr0 = = — Dp(z; — ) —— + = — Dy — vy,
i 2 z} dote T T g5 T z} 33 Y ) g

0

0
+ — Dp(z; —y)) =——. 4.156
2 ey 2~ W) 550 (4150)
The Oth order term is the free propagator, viz
< 0|T<¢Sm(x1)¢3m(z2)> |0 >= Dp(x; — x2). (4.157)

We represent this amplitude by a line joining the external points z1 and x2 (figure 1). This is our
first Feynman diagram. Physically this represents a scalar particle created at x5 then propagates
in spacetime before it gets annihilated at z;.

The first order is given by

i [t <07 (Guteduted bt )10 = it=3) [ <07 (Guten)nte)dntn)? 0>
(4.158)

We apply the Wick’s theorem. There are clearly many possible contractions. For six operators
we can have in total 15 contractions which can be counted as follows. The first operator can
be contracted in 5 different ways. The next operator can be contracted in 3 different ways and
finally the remaining two operators can only be contracted in one way. Thus we get 5.3.1 = 15.
However there are only two distinct contractions among these 15 contractions. They are as
follows

a)— We can contract the two external points z; and xo together. The internal point z = y;
which we will call a vertex since it corresponds to an interaction corresponds to 4 internal
points (operators) which can be contracted in 3.1 = 3 different ways. We have therefore
three identical contributions coming from these three contractions. We get

3% i(—%)DF(xl - xg)/d4zDF(O)2 - %(—i)\)/d‘*sz(xl — 22)Dp(02.  (4.159)

b)— We can contract one of the external points with one of the internal points. There are four
different ways for doing this. The remaining external point must then be contracted with
one of the remaining three internal points. There are three different ways for doing this.
In total we have 4.3 = 12 contractions which lead to the same contribution. We have

12 x i(—%)/d4zDF(z1 —2)Dp (22 — 2)Dp(0) = %(fi)\)/d‘lzDF(zl — 2)Dp(z2 — 2)Dr(0).

The two amplitudes (4.159) and (4.160) stand for the 15 possible contractions which we found
at first order. These contractions split into two topologically distinct sets represented by the
two Feynman diagrams a) and b) on figure 2 with attached values given precisely by (4.159) and
(4.160). We observe in constructing these diagrams the following

e Each line (internal or external) joining two spacetime points x and y is associated with a
propagator Dp(x — y).

(4.160)
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e Interaction is represented by a vertex. Each vertex is associated with a factor —iA\.
e We multiply the propagators and vertices together then we integrate over the internal point.

e We divide by a so-called symmetry factor S. The symmetry factor is equal to the number
of independent permutations which leave the diagram invariant.

A diagram containing a line which starts and ends on the same vertex will be symmetric
under the permutation of the two ends of such a line. This is clear from the identity

/ d2Dp(0) = / it / duDp(z — ) (= — u). (4.161)

Diagram b) contains such a factor and thus the symmetry factor in this case is S = 2.
Diagram a) contains two such factors and thus one must divide by 2.2. Since this diagram
is also invariant under the permutation of the two Dr(0) we must divide by an extra factor
of 2. The symmetry factor for diagram a) is therefore S = 2.2.2 = 8.

The second order in perturbation theory is given by
2

2|

-3 /d4 /d Y2 < OIT<¢m(:c1)¢m(:cz)¢m(y1) Bin(y2) )lo > (4.162)

d4y1 /d Yo < 0|T<¢1n(1'1)¢1n(1'2) 1nt(y1)£1nt(y2)) |0 > =

Again we apply Wick’s theorem. There are in total 9.7.5.3 = 9.105 contractions which can be
divided into three different classes (figure 3) as follows

1) The first class corresponds to the contraction of the two external points x; and x5 to the
same vertex y; or ys. These contractions correspond to the two topologically different
contractions a); and b); on figure 3.

In a); we contract x; with one of the internal points in 8 different ways, then x5 can be
contracted in 3 different ways to the same internal point (say yi). If the two remaining
y1 points are contracted together the remaining internal points yo can then be contracted
together in 3 different ways. There are in total 8.3.3 contractions. The analytic expression
is

83 3 )\
22262 [dn [ ateDe(n — ) Drtes — DO -
—iA)
(1—6 /d4y1 /d4y2DF(x1 —41)Dp (2o — y1)Dr(0)3. (4.163)

In b); we consider the case where one of the remaining y; points is contracted with one of
the internal points yo in 4 different ways. The last y; must then also be contracted with
one of the y, in 3 different ways. This possibility corresponds to 8.3.4.3 contractions. The
analytic expression is

8343 )\
2
—z)\

/d4y1 /d4y2DF(iE1 —y1)Drp(z2 —y1)Dr(y1 — 42)°Dr(0) =

/d4y1 /d4y2DF(w1 —y1)Dr(w2 —y1)Dp(yr — y2)°Dr(0).  (4.164)
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2)

The second class corresponds to the contraction of the external point x; to one of the
vertices whereas the external point x5 is contracted to the other vertex. These contractions
correspond to the two topologically different contractions a)2 and b)2 on figure 3.

In a)y we contract x; with one of the internal points (say y1) in 8 different ways, then x4
can be contracted in 4 different ways to the other internal point (i.e. y2). There remains
three internal points y; and three internal points yo. Two of the y; can be contracted in
3 different ways. The remaining y; must be contracted with one of the ys in 3 different
ways. Thus we have in total 8.4.3.3 contractions. The expression is

8433 )\
2

/d4y1 /d4 2Dp(z1 — y1)Dr(z2 — y2) Dr(y1 — y2)Dr(0)* =

(_Z\ /d4y1 /d4y2DF(w1 —y1)Dp(x2 —y2)Dp(y1 — y2)Dp(0)*.  (4.165)

In b)5 we consider the case where the three remaining y; are paired with the three remaining
y2. The first y; can be contracted with one of the ys in 3 different ways, the second y;
can be contracted with one of the remaining - in 2 different ways. Thus we have in total
8.4.3.2 contractions. The expression is

8432 >\
2

/d4y1 /d Y2Dp (1 — y1)Dp(x2 — y2)Dp(yr — y2)® =
(_T /d4y1 /d4y2DF($1 — 1) Dr(z2 — y2) Dr(y1 — y2)*. (4.166)

The third class corresponds to the contraction of the two external points x1 and x5 together.
These contractions correspond to the three topologically different contractions a)s, b)s and
¢)2 on figure 3.

In a)3 we can contract the y; among themselves in 3 different ways and contract the ys
among themselves in 3 different ways. Thus we have 3.3 contractions. The expression is

33 )\
/d4y1/d ygDF X1 —$2)DF(O) =

128 /d4y1/d4y2DF($1 —.TQ)DF(O) . (4167)

In b)3 we can contract two of the y; together in 6 different ways, then contract one of the
remaining y; with one of the y, in 4 different ways, and then contract the last y; with one
of the yo in 3 different ways. Thus we have 6.4.3 contractions. The expression is

643 )\
- /d4y1/d y2Dp(z1 — 22)Dr(y1 — y2)>Dp(0)? =

72/\ /d4y1 /d4y2DF(:c1 — 22)Dp(y1 — y2)?Dr(0)2. (4.168)

In ¢)3 we can contract the first y; with one of the yo in 4 different ways, then contract the
second y; with one of the yo in 3 different ways, then contract the third y; with one of the
yo in 2 different ways. We get 4.3.2 contractions. The expression is

4 3. 2 )\
- /d4y1/d4y2DF(~’C1 —22)Dp(y1 —y2)* =

—z)\
/d4yl/d4y2DF($1 — x2)Dp(y1 — y2)*. (4.169)
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The above seven amplitudes (4.163), (4.164), (4.165), (4.166), (4.167), (4.168) and (4.169) can
be represented by the seven Feynman diagrams a)1, b)1, a)2, b)2, a)s, b)3 and ¢)s respectively.
We use in constructing these diagrams the same rules as before. We will only comment here on
the symmetry factor S for each diagram. We have

The symmetry factor for the first diagram is S = (2.2.2).2 = 16 where the first three
factors of 2 are associated with the three Dr(0) and the last factor of 2 is associated with
the interchange of the two Dr(0) in the figure of eight.

The symmetry factor for the second diagram is S = 2.2 = 4 where the first factor of 2 is
associated with D (0) and the second factor is associated with the interchange of the two
internal lines Dp(y1 — y2).

The symmetry factor for the third diagram is S = 2.2 where the two factors of 2 are
associated with the two Dg(0).

The symmetry factor of the 4th diagram is S = 3! = 6 which is associated with the
permutations of the three internal lines Dp(y1 — y2).

The symmetry factor of the 5th diagram is S = 27 = 128. Four factors of 2 are associated
with the four Dp(0). Two factors of 2 are associated with the permutations of the two
Dr(0) in the two figures of eight. Another factor of 2 is associated with the interchange of
the two figures of eight.

The symmetry factor of the 6th diagram is S = 2% = 16. Two factors of 2 comes from the
two Dp(0). A factor of 2 comes from the interchange of the two internal lines Dp(y; — y2).
Another factor comes from the interchange of the two internal points y; and ys.

The symmetry factor of the last diagram is S = 41.2 = 48. The factor 4! comes from the
permutations of the four internal lines D (y; — y2) and the factor of two comes from the
interchange of the two internal points y; and ys.

4.3.4 Connectedness and Vacuum Energy

From the above discussion we observe that there are two types of Feynman diagrams. These are

Connected Diagrams: These are diagrams in which every piece is connected to the external
points. Examples of connected diagrams are diagram b) on figure 2) and diagrams b), a)s2
and b)2 on figure 4.

Disconnected Diagrams: These are diagrams in which there is at least one piece which is
not connected to the external points. Examples of disconnected diagrams are diagram a)
on figure 2) and diagrams a)1, a)s, b)s and ¢)3 on figure 4.

We write the 2—point function up to the second order in perturbation theory as

The

<O|T(d(x1)p(22))[0 > = Dola1 — x2)[Vi + %Vf + Vo + V3] + Di(z1 — z2)[1 + V4]
+D%($1 — $2) + D%(l‘l — .Tg) + Dg’(xl — .Tg). (4170)

"connected" 2—point function at the 0th and 1st orders is given respectively by

Dy(z1 — x2) = diagram 1) = Dp(z1 — x2). (4.171)
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. 1,
Dy(x1 — x2) = diagram 2b) = 5(—1)\)/d4y1DF(z1 —y1)Dp(x2 —y1)Dr(0).(4.172)

The "connected" 2—point function at the 2nd order is given by the sum of the three propagators
D3, D2 and Dj. Explicitly they are given by

. —i\)?
D%(:cl — x9) = diagram 4b); = % /d4y1/d4y2DF(:c1 —y1)Dp(xe —y1)Dp(y1 — y2)2DF(O).
(4.173)

—z)\

D%(:cl — x9) = diagram 4a)e = /d4y1 /d4y2DF(:c1 —y1)Dp(xa — y2)Dp(y1 — yg)DF(O) .
(4.174)

. —i))2
Dg’(scl — x9) = diagram 4b)e = % /d4y1/d4y2DF(:c1 —y1)Dp(xs — y2)Dp(y1 — y2)3.
(4.175)

The connected 2—point function up to the second order in perturbation theory is therefore

< O|T(A(x1)P(22))|0 >comn = Dol(x1 — 22) + Di(x1 — ) + Di(x1 — 22) + D3(z1 — x) + D (1 — 22).

The corresponding Feynman diagrams are shown on figure 5. The disconnected diagrams are
obtained from the product of these connected diagrams with the so-called vacuum graphs which
are at this order in perturbation theory given by Vi, V5 and V3 (see (4.170)). The vacuum graphs
are given explicitly by

A
Vi = ; d*y1 Dr(0)*. (4.177)
fz)\ 4 "
Vo = d*y1 | d*y2Dp(y1 — y2)*Dr(0)>. (4.178)
fz)\ 4
= d'y1 [ d'yaDrp(yr — y2)*. (4.179)

The corresponding Feynman diagrams are shown on figure 6. Clearly the "full" and the "con-
nected" 2—point functions can be related at this order in perturbation theory as

< O|T(3(1)d(22))|0 >=< O[T ($(21)$(2))[0 >conn exp(vacuum graphs).  (4.180)

We now give a more general argument for this identity. We will label the various vacuum graphs
by Vi, i=1,2,3,.... A generic Feynman diagram will contain a connected piece attached to the
external points x1 and x3 call it W;, n; disconnected pieces given by Vi, ny disconnected pieces
given by V5, and so on. The value of this Feynman diagram is clearly

W, H V"l (4.181)

(4.176)
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The factor 1/n;! is a symmetry factor coming from the permutations of the n; pieces V; among
themselves. Next by summing over all Feynman diagrams (i.e, all possible connected diagrams
and all possible values of n;) we obtain

1. 1.
22 wllgve = 2w o v
J MlyeeeyMgyeen [3 J M1yeeeyMiyeen 2

S I v

7 T NG

> W [Texn(vi)

7 [

= ij exp(z Vi). (4.182)

This is the desired result. This result holds also for any other Green’s function, viz
< 0|T(p(z1)p(22)..)|0 >=< 0|T(d(z1)(22)...)|0 >conn exp(vacuum graphs).  (4.183)

Let us note here that the set of all vacuum graphs is the same for all Green’s functions. In
particular the 0—point function (the vacuum-to-vacuum amplitude) will be given by

< 0|0 >= exp(vacuum graphs). (4.184)
We can then observe that

< 0|T(¢(x1)d(22)..)|0 >comn = < 0T (¢(21)¢(2)...)|0 >

< 0|0 >
= sum of connected diagrams with n external points.
(4.185)
We write this as
<OT(d(21)d(22)..)]0 >eonn = < QT (d(x1)P(22)...)|Q > . (4.186)
Q5= AL> o tecnm manho)g (4.187)

\/< 0]0 >

The vacuum state |2 > will be interpreted as the ground state of the full Hamiltonian H in
contrast to the vacuum state |0 > which is the ground state of the free Hamiltonian Hy. The
vector state | > has non-zero energy Ey. Thus H|Q >= Ey|Q > as opposed to Hy|0 >= 0. Let
[n > be the other vector states of the Hamiltonian H, viz H|n >= E,|n >.

The evolution operator €(t) is a solution of the differential equation id,Q(t) = Vi (t)Q(t)
which satisfies the boundary condition Q(—oc0) = 1. A generalization of (t) is given by the
evolution operator

Qt,t) = T<eiff' dSWS)). (4.188)

This solves essentially the same differential equation as Q(t), viz

i0:Q(t,t) = Vi(t, o)1) (4.189)
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Vi (t, to) = etflo(t=to)jre—iHo(t—to) (4.190)

This evolution operator (¢, tl) satisfies obviously the boundary condition Q(¢,¢) = 1. Further-
more it is not difficult to verify that an equivalent expression for Q(¢,¢ ) is given by

Qft,t) = elo(t=to) =i t—t ) =il ~to) (4.101)
We compute
e*iﬁT|0 > = e*iﬁT|Q >< 00> + Z e*iﬁT|n ><n|0>
n#0
= ¢ BTI0>< Q0> + > "B Ty > < nj0 > . (4.192)
n#0

In the limit 7' — oo(1 — i€) the second term drops since E,, > Ey and we obtain

e HTI0> = ¢TI0 > 00> . (4.193)
Equivalently
emHto=(=T)|g 5 = Bt 5 < Q|0 > (4.194)
Thus
Q ifoltot?) Qto, —T)[0 4.195
= ———Q(tg, — . .
|2 > 0> (to, —1)[0 > ( )

By choosing to = T' and using the fact that Q(T, —T) = S we obtain

eiBo(2T)

Q>= —r—
| < Q0 >

0> . (4.196)

Finally by using the definition of | > in terms of |0 > and assuming that the sum of vacuum
graphs is pure imaginary we get

Ey _.vacuum graphs

vol ° 2T .vol (4.197)

Every vacuum graph will contain a factor (27)*3%(0) which in the box normalization is equal
exactly to 2T.vol where vol is the volume of the three dimensional space. Hence the normalized
sum of vacuum graphs is precisely equal to the vacuum energy density.

4.3.5 Feynman Rules For ®—Four Theory

We use Feynman rules for perturbative ¢—four theory to calculate the nth order contributions
to the Green’s function < 0|T(¢(x1)...¢(xn))|0 >. They are given as follows

1) We draw all Feynman diagrams with N external points z; and n internal points (vertices)
Yi-
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2) The contribution of each Feynman diagram to the Green’s function < 0[T(¢(z1)...¢(zn))[0 >
is equal to the product of the following three factors

— Each line (internal or external) joining two spacetime points z and y is associated with
a propagator Dp(x — y). This propagator is the amplitude for propagation between
the two points z and y.

— Each vertex is associated with a factor —iA. Interaction is represented by a vertex
and thus there are always 4 lines meeting at a given vertex. The factor —i\ is the
amplitude for the emission and/or absorption of scalar particles at the vertex.

— We divide by the symmetry factor S of the diagram which is the number of permuta-
tions which leave the diagram invariant.

3) We integrate over the internal points y;, i.e. we sum over all places where the underlying
process can happen. This is the superposition principle of quantum mechanics.

These are Feynman rules in position space. We will also need Feynman rules in momentum
space. Before we state them it is better we work out explicitly few concrete examples. Let us go
back to the Feynman diagram b) on figure 2. It is given by

1
S0 / d*2Dp(z1 — 2)Dp (s — 2)Di(0). (4.198)
We will use the following expression of the Feynman scalar propagator
d*p i -
Dp(z —y) = —ip(@—y), 4.199
F(:E y) /(27T)4 p27m2+iee ( )
We compute immediately
1 d*p, d*ps dtq (1
—(=i\) | d*2Dp(x1 — 2)D —2)D = —(—i\)(2m)*s*
5N [ atsDr(e —9Dr(ee - 2e0) = [ G0 [ G0 [ (L@ s + )
X eiplzlein“A(pl)A(pg)A(q)). (4.200)
Alp) = ———— (4.201)

Cop2—m2+ie
In the above equation p; and p, are the external momenta and ¢ is the internal momentum. We
integrate over all these momenta. Clearly we still have to multiply with the vertex —iA and divide
by the symmetry factor which is here 2. In momentum space we attach to any line which carries
a momentum p a propagator A(p). The new features are two things 1) we attach a plane wave
e~ PT o each external point x into which a momentum p is flowing and 2) we impose momentum
conservation at each vertex which in this case is (27)*5*(p1 +p2 +q — q) = (27)*3*(p1 + p2). See
figure 7.
We consider another example given by the Feynman diagram b)2 on figure 4). We find
(—iA)?

o /d4y1 /d4y2DF(ZE1 —y1)Dr(z2 — y2)Dp(y1 — y2)® =

4 4 4 4 4
[ | i [ [ o [ o (g en s e mem'ston — 01— -0

eiplmeiP2I2A(p1)A(p2)A(q1)A(QQ)A((B)) (4.202)
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This expression can be reconstructed from the same rules we have discussed in the previous case.
See figure 8.
In summary Feynman rules in momentum space read

1) We draw all Feynman diagrams with N external points z; and n internal points (vertices)
Yi-
2) The contribution of each Feynman diagram to the Green’s function < 0T(¢(z1)...¢(zx))[0 >
is equal to the product of the following five factors
— Each line (internal or external) joining two spacetime points = and y is associated
with a propagator A(p) where p is the momentum carried by the line.
— Each vertex is associated with a factor —iA.

— We attach a plane wave exp(—ipz) to each external point « where p is the momentum
flowing into z.

— We impose momentum conservation at each vertex.

— We divide by the symmetry factor S of the diagram.

3) We integrate over all internal and external momenta.

4.4 Exercises and Problems

Asymptotic Solutions

e Show that
t

Ot 5) = Ou(t,7) + Ei / dt’ sin Bx(t — £ )j(t 7).

— 00

is a solution of the equation of motion
(07 + BR)Q(t, ) = j(t, D).

e Show that
A A A +m 7 ’ ’
QD) = Qe + Qualt.P) +1 [t Gale ~ )i )
is also a solution of the above differential equation.
e Express the Feynman scalar propagator Dp(z — ') in terms of Gyt — ).

e Show that this solution leads to

’

Mx) = (@) +dmula) +i / d'z Dp(z — ') J(2).
Hint: Use

d [t [t af( )
- dtf(t,t)—/ dt ===+ [ (1,1).

— 00 — 00

(07 + B2)Gat —t') = —id(t —t).



YDRI QFT 89

Feynman Scalar Propagator Verify that the Feynman propagator in one-dimension is given
by

, dE - ) , —iEﬁ\t—t/\
e [
2 B2 —EﬁJrze 2E;

Fourier Transform Show that the Fourier transform of the Klein-Gordon equation of motion
(00" +m?)p = J
is given by

(atQ + E;)Q(tvﬁ) - j(taﬁ)'

Forced Harmonic Oscillator We consider a single forced harmonic oscillator given by the
equation of motion

(07 + E*)Q(t) = J(1).
e Show that the S—matrix defined by the matrix elements S,,,, =< m out|n in > is unitary.

e Determine S from solving the equation

S_ldins = CAlout = Qin + J(E)

i
V2FE
e Compute the probability | < n out|0 in > |2.

e Determine the evolution operator in the interaction picture (¢) from solving the Schrodinger
equation

10 Q1) = Vi()Q(t) , Vi(t) = —J()Q(t).

e Deduce from the fourth question the S—matrix and compare with the result of the second
question.

Interaction Picture Show that the fields Q; (¢, ) and Pr(t, p) are free fields.

Time Ordering Operator Show that

t1 to
/ dtl/ dtg/ dtsT( VI tl)VI(tQ)VI t3)) / dtl/ dtg/ dt3V1 (t1 VI(tQ)VI(tg)

Wick’s Theorem For Forced Scalar Field Show that

: 0t —t) 1 oy Ot—t) 1
. — 4 4 ip(x—x ) _ ip(z—z )
i3 By(oc) / it / d'z J( >( - Z e e z e |
P



90 YDRI QFT

Unitarity of The S—Matrix

e Show that
S*l _ T<ezf+:§ dsVI(s)>'
e Use the above result to verify that S is unitary.

Evolution Operator Q(¢) and Gell-Mann Low Formula Verify up to the third order in
perturbation theory the following equations

ot = T <ei S dSWS)) .

dz) = S7! <Tgf)in(z)S>.

Interaction Fields are Free Fields Show that the interaction fields ¢;(t, Z) and 7 (¢, &) are
free fields.

LSZ Reduction Formulae

e Show the LSZ reduction formulae

+o0 R . R
Z/ dte'"7H (0} + ENT(Qt, )Q(t, 71)Q(t2, P2)...) =

25 (6o (T Q01 )12, 72)-) = T(Ql01, 1), 7)) ).
e Show that
i / d'ze?" (0,0" + m*)T(d(x)d(x1)p(22)...) =
VB (G DT (@01)002)-0) ~ T(Ha)d(w2)- )i ).
e Derive the LSZ reduction formulae

+oo
< [ O} 4 BT QU 1) Qb)) =

V2Ez <dout(@+T(Q(t1,171)+Q(t27172)+---) - T(Q(tl7ﬁl)+Q(t2vﬁ2)+---)din(ﬁ)+> .
Hint: Start from

e_iEﬁt(f’L.at + Eﬁ)Qin(t7@+ =V 2Eﬁ din(m+'

™ (—i0; + Ep)Qout(t,9) " = /2E5 dou ().
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Wick’s Theorem Show that

e% Eii waeny Pr (@i=0) a5(eyy <¢(1'1)¢($2n)):| = Z HDF(%‘ - ;).

$=0 contraction

The 4—Point Function in ®—Four Theory Calculate the 4—point function in ¢—four theory
up to the second order in preturbation theory.

Evolution Operator (¢, tl) Show that the evolution operators

Ot,t) = T(eif; dsf/z(s)),
and
Qt,t) = oiflo(t—to) ,—iH (t—t ) —iHo(t —to)
solve the differential equation
i0:0(t,) = Vi(t, t0)Q(t).

Determine Vj(t, to).
®—Cube Theory The ¢—cube theory is defined by the interaction Lagrangian density
A
£int = _§¢3

Derive Feynman rules for this theory by considering the 2—point and 4—point functions up to
the second order in perturbation theory.



92

YDRI QFT




Part 11

Quantum Electrodynamics






The Electromagnetic Field

5.1 Covariant Formulation of Classical Electrodynamics

The Field Tensor The electric and magnetic fields E and B generated by a charge density p
and a current density J are given by the Maxwell’s equations written in the Heaviside-Lorentz

system as

VE = p, Gauss' s Law. (5.1)
VB =0 , No — Magnetic Monopole Law. (5.2)
_ - 19B
VX FE= fzaa—t , Faraday’ s Law. (5.3)
- - 1 - OE
VxB=-(J+ %—t) , Ampere — Maxwell’ s Law. (5.4)
c

The Lorentz force law expresses the force exerted on a charge ¢ moving with a velocity 4 in the
presence of an electric and magnetic fields £ and B. This is given by
. L1 .
F=q(E+ -ixB). (5.5)
c

The continuity equation expresses local conservation of the electric charge. It reads
ap - o
—+VJ=0. 5.6
5 T (5.6)

We consider now the following Lorentz transformation

z =~z —ot)

t =~(t— Eac). (5.7)
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In other words (with 2° = ct, 2! = z, 22 = y, 23 = 2 and signature (+ — ——))
Yy =B 00
Wk e a_ | =B v 00
ot =AY A 0 0 1 0 (5.8)
0 0 0 1

The transformation laws of the electric and magnetic fields E and B under this Lorentz trans-
formation are given by

B~ v By a8, 15 £ =5+ U5,
4 / v ’ v
B, =B, B,=1(B, +-E.), B.=(B. ~ - E,). (5.9)

Clearly E and B do not transform like the spatial part of a 4—vector. In fact E and B are the
components of a second-rank antisymmetric tensor. Let us recall that a second-rank tensor F*¥
is an abject carrying two indices which transforms under a Lorentz transformation A as

FM = AP AV L F. (5.10)

This has 16 components. An antisymmetric tensor will satisfy the extra condition F),, = —F),,
so the number of independent components is reduced to 6. Explicitly we write

0 FOI FO2 FO3
7F01 0 F12 F13

FH = 7F02 7F12 0 F23 (511)
7F03 7F13 7F23 0
The transformation laws (5.10) can then be rewritten as
FOI/ —_ FOI , FOQ/ —_ ,Y(FOQ - ﬂF12) , FO3/ —_ ,Y(FO3 + ﬂFsl)
23 _ 23 , 31— ’Y(F31 +ﬂF03) , 2 ’Y(Fu _ BFOQ). (5.12)

By comparing (5.9) and (5.12) we obtain
F"=-E,  ,F?=-E, F®=-E, 6 F?=-B,, F¥=-B,, F=-B,. (5.13)
Thus

0 -E, —-E, —FE,
E, 0 -B. B,

w
= E, B. 0 B, (5.14)
E, -B, B, 0
Let us remark that (5.9) remains unchanged under the duality transformation
E—B,B— —E. (5.15)
The tensor (9.69) changes under the above duality transformation to the tensor
0 -B, —B, —B,
~ B 0 —-F
py x z Y
F B, —E. 0 E, (5.16)
B, E, -E, 0
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It is not difficult to show that

. 1
FHv = ie“mﬁF“ﬁ : (5.17)

The 4—dimensional Levi-Civita antisymmetric tensor "B is defined in an obvious way.
The second-rank antisymmetric tensor F' is called the field tensor while the second-rank
antisymmetric tensor F' is called the dual field tensor.

Covariant Formulation The proper charge density pg is the charge density measured in the
inertial reference frame O where the charge is at rest. This is given by pg = Q/Vj where V} is the
proper volume. Because the dimension along the direction of the motion is Lorentz contracted
the volume V' measured in the reference frame O is given by V' = /1 — u?/c2Vj. Thus the charge
density measured in O is

p= % S — (5.18)

The current density J measured in O is proportional to the velocity @ and to the current density
p, Viz

J=pi=—22_ (5.19)
Vi-%
The 4—vector velocity n* is defined by
1
= ——=(c, 0). (5.20)
1— ¥
Hence we can define the current density 4—vector J* by
JH :POTI“ = (Cp, sz‘]yaJZ) (521)
The continuity equation VJ = —0p/ 0t which expresses charge conservation will take the form
O J" = 0. (5.22)
In terms of F),, and F;w Maxwell’s equations will take the form
1 ~
OuF" = =Jv , 0,F" =0. (5.23)
c

The first equation yields Gauss’s and Ampere-Maxwell’s laws whereas the second equation yields
Maxwell’s third equation VB = 0 and Faraday’s law.

It remains to write down a covariant Lorentz force. We start with the 4—vector proper force
given by

Kn =1y, e, (5.24)
c
This is called the Minkowski force. The spatial part of this force is

d @ x B). (5.25)
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We have also

dp
KH = C%. (5.26)
In other words
i = % -9 p- %F (5.27)
This leads precisely to the Lorentz force law
F=q(E+ %U x B). (5.28)

5.2 Gauge Potentials and Gauge Transformations

The electric and magnetic fields E and B can be expressed in terms of a scalar potential V' and
a vector potential A as

— —

B=VxA. (5.29)

. 1 = 0A
E=--(VV+ ). (5.30)

We construct the 4—vector potential A* as
AP = (V/e, A). (5.31)
The field tensor F),, can be rewritten in terms of A, as
F,, =0,A,—0,A,. (5.32)

This equation is actually equivalent to the two equations (9.74) and (9.75). The homogeneous
Maxwell’s equation J,F*" = 0 is automatically solved by this ansatz. The inhomogeneous
Maxwell’s equation 9, F* = J” /¢ becomes

1
DO A — 0D, AF = —J". (5.33)
C

We have a gauge freedom in choosing A* given by local gauge transformations of the form (with
A any scalar function)

Ay AT = AP 4 RN (5.34)
Indeed under this transformation we have
FM —y F'i = i (5.35)

These local gauge transformations form a (gauge) group. In this case the group is just the abelian
U(1) unitary group. The invariance of the theory under these transformations is termed a gauge
invariance. The 4—vector potential A* is called a gauge potential or a gauge field. We make
use of the invariance under gauge transformations by working with a gauge potential A* which



YDRI QFT 99

satisfies some extra conditions. This procedure is known as gauge fixing. Some of the gauge
conditions so often used are

0uA" =0, Lorentz Gauge. (5.36)
0;A" =0, Coulomb Gauge. (5.37)
A® =0, Temporal Gauge. (5.38)

A% =0, Axial Gauge. (5.39)

In the Lorentz gauge the equations of motion (9.78) become

0,0 AV = %J”. (5.40)

Clearly we still have a gauge freedom A* —s A'* = AH + §#¢ where 0,0*¢ = 0. In other
words if A" satisfies the Lorentz gauge 0, A" = 0 then A'r will also satisfy the Lorentz gauge,
ie. GHA/” = 0 iff 9,0"¢ = 0. This residual gauge symmetry can be fixed by imposing another
condition such as the temporal gauge A° = 0. We have therefore 2 constraints imposed on the
components of the gauge potential A* which means that only two of them are really independent.

5.3 Maxwell’s Lagrangian Density
The equations of motion of the gauge field A* is
1
0,0 AY — QYO A = =", (5.41)
&

These equations of motion should be derived from a local Lagrangian density £, i.e. a Lagrangian
which depends only on the fields and their first derivatives at the point &. We have then

L=L(A,,0,A). (5.42)
The Lagrangian is the integral over & of the Lagrangian density, viz

L- / diL. (5.43)
The action is the integral over time of L, namely
S = / dtL = / d*zL. (5.44)
We compute
55 = / d*zsL

5L 5L 5L
— 4 _ = -
_ /dx{(myé ey U+6H(6Al,58# )] (5.45)
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The surface term is zero because the field A, at infinity is assumed to be zero and thus

0A, =0, ¥ — +£oo. (5.46)
We get
oL oL
— 4 —— _y —
0S = /d x6A, {514,/ 8”55MAV . (5.47)
The principle of least action 6S = 0 yields therefore the Euler-Lagrange equations
oL oL
=y —=_ —0. 4
0A, O 00, A, 0 (5.48)

Firstly the Lagrangian density £ is a Lorentz scalar. Secondly the equations of motion (5.41)
are linear in the field A* and hence the Lagrangian density £ can at most be quadratic in A".
The most general form of £ which is quadratic in A* is

Lotaxwenl = (0, A*)? + B0, AY) (0" Ay) + V(0. AY) (8, A*) + A, A* + eJ, AF. (5.49)
We calculate
5£Maxwell o p p
5Ap = 20A° +eJ*. (5.50)
5£Maxwell o op m T AP P AC
——— =2an??0, A" + 2507 AP + 2v0P A°. (5.51)

00,4,
Thus

5£Maxwell 5£Maxwell
——————— = 0p——— =0 280,074 42 0P0,A° —20A° = eJ”’. 5.52
™ e 50,07 47 +2(a+7) . (55)
By comparing with the equations of motion (5.41) we obtain immediately (with ¢ an arbitrary
parameter)

1

25:7§,2(a+7):§,5:0,e:72§. (5.53)

We get the Lagrangian density

1
Lotaswell = a((auA“)Q - 6HAV6”A“) = (GMAVGHA” - 6HA1,8”A“) — =T, A
&

<
2
<

1
ad, (A“&VA” - A”&VA“) — S Fw " = G A (5.54)

The first term is a total derivative which vanishes since the field A, vanishes at infinity. Thus
we end up with the Lagrangian density

1
EMaxwell = _EFMVFMV - EgJMAH (555)

In order to get a correctly normalized Hamiltonian density from this Lagrangian density we
choose ( = 1. We get finally the result

1 1
EMaxwell = _ZFMVFMV - EJHAH' (556)
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5.4 Polarization Vectors

In this section we will consider a free electromagnetic gauge field A*, i.e. we take J* = 0. In the
Feynman gauge (see next section for detail) the equations of motion of the gauge field A* read

0,0"AY = 0. (5.57)
These are 4 massless Klein-Gordon equations. The solutions are plane-waves of the form
AP = FRPT (). (5.58)
The 4—momentum p* is such that

pupt = 0. (5.59)

There are 4 independent polarization vectors €y (p). The polarization vectors for A = 1,2 are
termed transverse , the polarization vector for A = 3 is termed longitudinal and the polarization
vector for A = 0 is termed scalar.

In the case of the Lorentz condition d,A* = 0 the polarization vectors €4 (p) are found to
satisfy p,e(p) = 0. By imposing also the temporal gauge condition A% =0 we get €3(p) =0
and the Lorentz condition becomes the Coulomb gauge p.€\(p) = 0.

Motivated by this we choose the polarization vectors e\ (p) as follows. We pick a fixed Lorentz
frame in which the time axis is along some timelike unit 4—vector n#, viz

nynt =1, n’>0. (5.60)

The transverse polarization vectors will be chosen in the plane orthogonal to n* and to the
4—momentum p*. The second requirement is equivalent to the Lorentz condition:

Pueh(P) =0, X =1,2. (5.61)
The first requirement means that
nueh(@) =0, X =1,2. (5.62)

The transverse polarization vectors will furthermore be chosen to be spacelike (which is equivalent
to the temporal gauge condition) and orthonormal, i.e.

6?(137 = (Oﬂgl(m) ) Gg(ﬁ) = (OagQ(m)a (5'63)

and

€(p)-€;(P) = 45 (5.64)
The longitudinal polarization vector is chosen in the plane (n*,p*) orthogonal to n*. More
precisely we choose

@) = 2= (np)n**

I
€3
np

(5.65)

For n* = (1,0,0,0) we get €4 (p) = (0,p/|p]). This longitudinal polarization vector satisfies

es(Pesu(P) = =1, (P =0, eg(Plexu(p) =0, A=1,2. (5.66)
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Let us also remark

puﬁé‘(ﬁ) = —n'p,. (5.67)

Indeed for a massless vector field it is impossible to choose a third polarization vector which
is transevrse. A massless particle can only have two polarization states regardless of its spin
whereas a massive particle with spin j can have 2j 4 1 polarization states.

The scalar polarization vector is chosen to be n* itself, namely

ey (p) = n*. (5.68)

In summary the polarization vectors €k (p) are chosen such that they satisfy the orthonormaliza-
tion condition

ey, (P) = my - (5.69)

They also satisfy

Pu€t (B) = puey(9) = 0, — pue5(P) = pue (§) = np". (5.70)

By choosing n* = (1,0,0,0) and p = (0,0, p) we obtain € (p) = (1,0,0,0), €/'(p) = (0,1,0,0),
4 (9) = (0,0,1,0) and €5(p) = (0,0,0,1).
We compute in the reference frame in which n* = (1,0,0,0) the completeness relations

Y S HR(D) = g (e (H) = 1. (5.71)

A=0

3
Y e (P (7) = e (#)eh(P) = 0. (5.72)

A=0

3

3
D> e @) == > @) D). (5.73)

A=0 A=1

The completeness relation for a 3—dimensional orthogonal dreibein is
> A = 6. (5.74)
A=1

This can be checked for example by going to the reference frame in which p' = (0,0, p). Hence
we get

3
D e @ @) =" (5.75)
A=0
In summary we get the completeness relations

3
> ek (@)es (@) = . (5.76)
A=0

From this equation we derive that the sum over the transverse polarization states is given by

v v P pint A ptn
> @) = -0 - + : (5.77)

= (np)? np
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5.5 Quantization of The Electromagnetic Gauge Field

We start with the Lagrangian density
1 , 1
EMaxwell = _ZFHVFM - _JHAH- (578)
c

The field tensor is defined by F,, = 9,4, — 0, A,. The equations of motion of the gauge field
A# derived from the Lagrangian density Lyiaxwen are given by

00" A” — 0V0, A" = %J”. (5.79)
There is a freedom in the definition of the gauge field A* given by the gauge transformations
APy AT = AP 4 9PN (5.80)
The form of the equations of motion (5.79) strongly suggest the Lorentz condition
9"A, = 0. (5.81)

We incorporate this constraint via a Lagrange multiplier ¢ in order to obtain a gauge-fixed
Lagrangian density, viz

1 1 1
‘Cgauge—ﬁxed = _ZFMVFW/ - 5((6'“14”)2 - EJMA#. (5.82)

The added extra term is known as a gauge-fixing term. This modification was proposed first by
Fermi. The equations of motion derived from this Lagrangian density are

1
D 0MAY — (1= ()"0, AP = = J". (5.83)
(&

These are equivalent to Maxwell’s equations in the Lorentz gauge. To see this we remark first
that

1
d, (GME)“A” — (- g)avauA#) ==8,J". (5.84)
C

Gauge invariance requires current conservation, i.e. we must have 9, J¥ = 0. Thus we obtain
0,0"9p =0, ¢ =0,A". (5.85)

This is a Cauchy initial-value problem for 9,A*. In other words if 9, A* = 0 and 9y(9,A*) =0
at an initial time ¢ = to then 0,A" = 0 at all times. Hence (5.83) are equivalent to Maxwell’s
equations in the Lorentz gauge.

We will work in the so-called Feynman gauge which corresponds to ¢ = 1 and for simplicity
we will set J# = 0. The equations of motion become the massless Klein-Gordon equations

8, 0" A” = 0. (5.86)

These can be derived from the Lagrangian density

1
L= —50.4,0M4" (5.87)



104 YDRI QFT

This Lagrangian density is equal to the gauge-fixed Lagrangian density Lgauge—fixed modulo a
total derivative term, viz

Loange—fixed = L+ total derivative term. (5.88)

The conjugate momentum field is defined by

oL
00, A+

01 A,. (5.89)

Ty =

2
The Hamiltonian density is then given by

H = m0A"—L

_ %aiA#aiAﬂ - %8014#80/1“
1 1\ 2 1 = 1\ 2 1 0\2 1 = 10\2
= S(@AP + S(TAP — S(@04°) - S(TAP (5.90)

The contribution of the zero-component A° of the gauge field is negative. Thus the Hamiltonian
density is not positive definite as it should be. This is potentially a severe problem which will
be solved by means of the gauge condition.

We have already found that there are 4 independent polarization vectors €k (p) for each
momentm p. The 4—momentum p# satisfies p*p, = 0, i.e. (p°)* = p*. We define w(p) = £p° =
71p]. The most general solution of the classical equations of motion in the Lorentz gauge can be
put in the form

A“:c/(;g_; zi:( —RP (B a(p, N) + e PPl (F)a(p, )\)*) : (5.91)

p°=|p]

We compute

1 i 2 d3ﬁ ii 3 N A — * N
: / N / CrtEwe z @y, () alF Na(7\)* + a(7, \) a(7,

%/8014“8014“ = ¢

+ et R (B N a(—p A )*). (5.93)
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The Hamiltonian becomes (since pp® = p'p?)

1 - 1
H = /d3x(§6iAM61A“ = 550/1”@0/1”)

3 - 0,0 3 / /
N _02/(2C7lri§)3 2w1(ﬁ)p7£ > 6?(@%’#(@(“@’)‘”(@)‘)*+a(ﬁ’)\)*a(ﬁ’)\))

AN\ =0

35w 3 , ,
‘/ e eﬁ(@emm(a(m)a(ﬁ,A>*+a<w>*“<w’>
AN\ =0

(2mh)3
35w 3
- / (;fr;z))s @ ;W <“(5’ Na(B )" + a(p; A)a(p, /\)>- (5.94)

In the quantum theory A* becomes the operator

A = /;fm J—Z( D, e%Pwe§<ma<ﬁ,A>+) 6

The conjugate momentum 7* becomes the operator

it

1 ~
_0_26“1“

— dgﬁ 3 @ : ef%pmeu a(p., _e%Pzeﬂ alp
- /(27rh)3c\/ 2 §< A(@)a@A) NP >p0_ﬁ. (5.96)

We impose the equal-time canonical commutation relations

[AF (20, 8), 7" (2°, )] = i 6 (T — §). (5.97)

(A4 (2%, 2), A (a°, )] = [#*(a°, &), 7" («, §)] = 0. (5.98)

The operators @™ and a are expected to be precisely the creation and annihilation operators. In
other words we expect that

[a(p, ), a(q. A)] = [a(p, A) ™, a(g; A )] = 0. (5.99)

We compute then

[ B Bg 1 W@ &=~ s
et w60 = i [ o [ S Y e @

AN =0

eTAPTT R [a(F, N), a(q, N )] + e IPTe T W [a(g, N ), a(p, )‘)Jr])'

We can immediately conclude that we must have

[a(F, ), a(@ N )] =~y B(2rh)?6% (5 — q). (5.101)



106 YDRI QFT

By using (5.99) and (5.101) we can also verify the equal-time canonical commutation relations
(5.98). The minus sign in (5.101) causes serious problems. For transverse (i = 1,2) and longi-
tudinal (i = 3) polarizations the number operator is given as usual by a(p,4)Ta(p,4). Indeed we
compute

[a(p. i) T a(p, i), a(q,9)*] = h(2nh)*6* (5 — d)a(q* ' (5.102)

In the case of the scalar polarization (A = 0) the number operator is given by —a(5,0)"a(p,0)
since

[—a(@,0)*a(p,0),a(q, 0)] = —h(2rh)*6° (7 — 7)a(7. 0)
[—a(@,0)*a(p,0),a(q, 0)*] = A(2mh)*6° (7 — §)a(7,0)*. (5.103)

In the quantum theory the Hamiltonian becomes the operator

A~ 3 w
o= /(2(17? 17)27%( a(p, Aa(p, >\)++d(ﬁ,>\)+d(ﬁ,>\)>. (5.104)

As before normal ordering yields the Hamiltonian operator

13[ - /(ds_‘ @ZUMG pa (pa/\)

- / (zfn; (m(2< >*d<ﬁ,i>—d<@0>*a<@o>). (5.105)

i=1

Since —a(p, 0)Ta(p,0) is the number operator for scalar polarization the Hamiltonian H can only
have positive eigenvalues. Let |0 > be the vacuum state, viz

a(p,A\)|0 >=0, Vp and V. (5.106)
The one-particle states are defined by
|7, A >=a(p, \)T0 > . (5.107)
Let us compute the expectation value
<P AH|F > . (5.108)
By using H|0 >= 0 and [H, (7, \) 1] = hw(p)a(,\)T we find

<FMHIFA> = <FMH, 6@ N0 >
= hw(p) <p,ADA> . (5.109)
However
<HABA> = <0la@A),a(@ )]0 >
= —nuh(2rh)383 (P — §) < 0[]0 >
= —nuh(2rh) 83 (5 - q). (5.110)

This is negative for the scalar polarization A\ = 0 which is potentially a severe problem. As a
consequence the expectation value of the Hamiltonian operator in the one-particle state with
scalar polarization is negative. The resolution of these problems lies in the Lorentz gauge fixing
condition which needs to be taken into consideration.
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5.6 Gupta-Bleuler Method

In the quantum theory the Lorentz gauge fixing condition d,A" = 0 becomes the operator
equation

9, A" = 0. (5.111)

Explicitly we have

~ 3_’ i
0,40 = —c [ L ¢_hpuz( AN - @) = a12)

pO=|p]
However
[0, A" (2%, &), A (2%, §)] = [9A°(2®, ), A¥(2°,7)] + [0, A" (2°, &), A" (2°, )]
= —[7°(2°, %), A (2°, )] + OF[A (a°, %), A (2°, §)]
= ihcn°”53( — 7). (5.113)

In other words in the quantum theory we can not impose the Lorentz condition as the operator
identity (5.111).

The problem we faced in the previous section was the fact that the Hilbert space of quantum
states has an indefinite metric, i.e. the norm was not positive-definite. As we said the solution
of this problem consists in imposing the Lorentz gauge condition but clearly this can not be
done in the operator form (5.111). Obviously there are physical states in the Hilbert space
associated with the photon transverse polarization states and unphysical states associated with
the longitudinal and scalar polarization states. It is therefore natural to impose the Lorentz
gauge condition only on the physical states |¢ > associated with the transverse photons. We
may require for example that the expectation value < ¢|8szl“|¢ > vanishes, viz

< ¢33, A >= 0. (5.114)

Let us recall that the gauge field operator is given by

~ 3_’ i
A#C/@d Z( TP (P)a(p, )+€hp””€§(@d(ﬁ,k)+) - (5.115)

This is the sum of a positive-frequency part Ai and a negative-frequency part A", viz

Ar = Al 4 AM (5.116)

These parts are given respectively by

A+ = / @p Z —EPr el (F)a(p, ). (5.117)
L=c 2h) \/_ e ~(D)a(p. .

A~ 3_’
Ar _C/(chrh Zenm (P)a(p, (5.118)
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Instead of (5.114) we choose to impose the Lorentz gauge condition as the eigenvalue equation
9, Al >=0. (5.119)
This is equivalent to
< 9|9, A" = 0. (5.120)

The condition (5.119) is stronger than (5.114). Indeed we can check that < ¢|d,A*|¢p >=<
¢|0u At Yo > 4+ < 6|0, A"|¢ >= 0. In this way the physical states are defined precisely as the

eigenvectors of the operator 6HA ! with eigenvalue 0. In terms of the annihilation operators
a(p, A) the condition (5.119) reads

d3—' 3 ;
C/(z Z o *_puf,\(ﬁ))d(l’, Ao >=0. (5.121)

Since pyel'(p) =0, i = 1,2 and p,es (p) = —puey (p) = —ntp, we get
d3*p 1 i ( )
R e SR LA Y >=0. 5.122
| Grip e e (68— a0 )10 (5.122)
We immediately conclude that
(d(ﬁ, 3) —a(p, 0)> |¢p >=0. (5.123)

Hence we deduce the crucial identity

< ¢la(p.3)"a(p,3)|¢ >=< ¢la(p,0) a(p,0)¢ > . (5.124)

. d3* 2
<olfio> = [oEs (Z BIa(F, ) (5, )lo > + < $la(7 3 a7, 3)|6 >

27h)3
- < ¢la(@0)"a(p,0)¢ > )
- [ 2L mz < 9lal, i) a7 i)l > (5125)

This is always positive definite and only transverse polarization states contribute to the expec-
tation value of the Hamiltonian operator. This same thing will happen for all other physical
observables such as the momentum operator and the angular momentum operator. Let us define

L(p) = a(p,3) — a(p, 0). (5.126)
We have

L(p)|¢ >= 0. (5.127)

It is trivial to show that

/

[L(p), L(p )] =0. (5.128)
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Thus
L(p)|¢e >= 0, (5.129)
where |¢. > is also a physical state defined by
|pe >= fo(LT)]g > . (5.130)
The operator f.(LT) can be expanded as
jxy7:1+/fpc t/ﬁ*/f 78 ) LE)TLE )T+ ... (5.131)
It is also trivial to show that
[fe(LT)F, fo (L)) = 0. (5.132)

The physical state |¢p. > is completely equivalent to the state |¢ > although |¢. > contains
longitudinal and scalar polarization states while |¢ > contains only transverse polarization states.
Indeed

<gelby > = < Olf(LT)Tfo (LT >
= <|fo (L) fe(LT)F o>
= <¢lp>. (5.133)

Thus the scalar product between any two states |¢. > and |¢. > is fully determined by the
norm of the state |¢ >. The state |¢. > constructed from a given physical state |¢ > defines an
equivalence class. Clearly the state |¢ > can be taken to be the representative of this equivalence
class. The members of this equivalence class are related by gauge transformations. This can be
checked explicitly as follows. We compute

< blAu|pe > = < Of(LT) AL, fo(LD)]6 > + < B|[fo(LH)F, AL)lo > + < 9| Aule > .
(5.134)

By using the fact that the commutators of A* with L(p) and L(p)* are c—numbers we obtain

< elAulpe > = / d*pe(p)[Ay, L)) + / d*pe(p)*[L(P), A+ < ¢l Ayl > . (5.135)

We compute

[Ar L(p) "] = — e~ 7P (e (5) + el (7). (5.136)
2w(p)
Thus
An — &°p —EDT | (D) erDT Au
<olAripe > = W( )+ @) ) (et 4 et )+ < ol >

d*p pH _i i A
= < > <c(13')e nPT 4 c(ﬁ)*eﬁpz>+ < ¢|A*|p >

P (L) (ctoremi = cpyeire ) < oldvlo >

= A+ < B|AM|p > . (5.137)
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A = ik \/‘2% (nip) (c(me—%w - c(m*eépw). (5.138)

Since p° = |p] we have §,0"A = 0, i.e. the gauge function A is consistent with the Lorentz gauge
condition.

5.7 Propagator

The probability amplitudes for a gauge particle to propagate from the spacetime point y to the
spacetime x is

iDM (z — y) =< 0| A*(z) A ()]0 > . (5.139)

We compute

d3q By 1 fop tioy
| DFY (x — = 2 ——qw +%pY © v
D (@ —y) ¢ / (2rh) / 2mh)? \/20(@) \/T e X;_OGA (D))
x < 0[[a(@\), a(@ N0 >
ey 1
— 232 p(z y)
<h /(27rh)3 2E(") Z —aex (X (P))
d°p 1 i
— 252 - p(T—y) (_ HV
ch /(m)B 2w )
= hD(x —y)(—n"). (5.140)

The function D(x—y) is the probability amplitude for a massless real scalar particle to propagate
from y to x. The retarded Green’s function of the gauge field can be defined by

iDR(x—y) = h*Dgr(z—y)(-n"")
= 0(z° —y°) < 0|[A"(z), A" ()]0 > . (5.141)

The second line follows from the fact that Dr(z —y) = 0(z° — y°) < 0|[¢(x), (1)]|0 >. In
momentum space this retarded Green’s function reads

- v d4p ’L —ip(x— v
iDY (x—y) = FLQ(CFL/ (27rh)4]?€ wp( y))(—n“ ). (5.142)

Since 0,0°Dr(x —y) = (—ic/h)d*(x — y) we must have

(Gac’?anuu)D?(w —y) = hed*(z—y)n). (5.143)

Another solution of this equation is the so-called Feynman propagator for a gauge field given by
Dy (z—y) = K Dp(z—y)(-n")

= < O|TA*(z)A" (y)|0 > . (5.144)

In momentum space this reads

: v d4p i —Ltp(z— v
iDY(x—y) = hQ(Ch/Wp2+iee wp( y))(—n“ ). (5.145)
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5.8 Exercises and Problems

Maxwell’s Equations

1) Derive Maxwell’s equations from
v 1 v [V
O FH = EJ , OuF* =0. (5.146)

2) Derive from the expression of the field tensor F),, in terms of A* the electric and magnetic
fields in terms of the scalar and vector potentials.

Noether’s Theorem

1) Prove Noether’s theorem for an infinitesimal transformation of the form

$(x) — ¢ (z) = $() + 36(x). (5.147)

2) Determine the conserved current of the Dirac Lagrangian density under the local gauge
transformation

Y —s ) =Y. (5.148)
3) What is the significance of the corresponding conserved charge.

Polarization Vectors
1) Write down the polarization vectors in the reference frame where n* = (1,0,0,0).

2) Verify that

v v_ P74 pTnt
D A D) = -0 — o T - : (5.149)
—~ p p

Gauge Invariance and Current Conservation

1) Show that current conservation 0*J, = 0 is a necessary and sufficient condition for gauge
invariance. Consider the Lagrangian density

1
L= —ZFWF‘“’ + J A (5.150)
2) The gauge-fixed equations of motion are given by
1
0 Ot A” — (1 —()0"0, A" = EJU' (5.151)

Show that for ¢ # 0 these equations of motion are equivalent to Maxwell’s equations in the
Lorentz gauge.
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Commutation Relations Verify
[@(B, A), a(@ X)) = = h(2TR)*6 (5~ ). (5.152)

Hamiltonian Operator

1) Show that the classical Hamiltonian of the electromagnetic field is given by
3y L A0 A* L A,0°A*
2) Show that in the quantum theory the Hamiltonian operator is of the form
A= [ (a0 e - a0 a(0) (5.154)
(27Th)3 : ) ) ) 3 N N

3) Impose the Lorentz gauge condition using the Gupta-Bleuler method. What are the phys-
ical states. What happens to the expectation values of H.

Physical States Let us define

L(p) = a(p,3) — a(p, 0). (5.155)
Physical states are defined by
L(p)|¢ >= 0. (5.156)
Define
¢ >= fe(LT)|d > . (5.157)

1) Show that the physical state |¢. > is completely equivalent to the physical state |¢ >.

2) Show that the two states |¢ > and |¢. > are related by a gauge transformation. Determine
the gauge parameter.

Photon Propagator

1) Compute the photon amplitude ;D" (z — y) =< 0|A*(z)A¥(y)|0 > in terms of the scalar
amplitude D(z — y).

2) Derive the photon propagator in a general gauge €.



Quantum Electrodynamics

6.1 Lagrangian Density

The Dirac Lagrangian density which describes a free propagating fermion of mass m is given by
the term

EDirac = "/)(Z'Y#a,u - m)’l/) (61)
The Maxwell’s Lagrangian density describing a free propagating photon is given by the term

1
ﬁMaxwell = 7ZF,U.VF'U(U- (62)

This density gives Maxwell’s equations in vacuum. It is therefore clear that the Lagrangian
density describing a photon interacting with a fermion of mass m is of the form

1
L = 7ZF'LWF#V — J“A‘u + LDirac- (6.3)

The term —J,, A* is dictated by the requirement that this Lagrangian density must give Maxwell’s

equations in the presence of sources. The corresponding current .J,, is a conserved 4—vector which
will clearly depend on the spinors ¢ and . A solution is given by

Ty = ey, (6.4)
The first term in the above Lagrangian density (6.3) is invariant under the gauge transformation
APy AP =AM 4 9P (6.5)

The second term will transform under this gauge transformation as

—J A — —J A = AP — TP (6.6)
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The Lagrangian density (6.3) is gauge invariant only if the spinor transforms under the gauge
transformation (6.5) in such a way that a) the current remains invariant and b) to cancel the
term —J, 0% \.

In order to find the transformation law of the spinor we recall that the current J, is the
Noether’s current associated with the following transformation

W —1p = exp(—ieA). (6.7)
Indeed

1/71(2'7”8” —m)y — 1/7 (i, — m)z// = 1;(1'7“5“ —m)p + O ATH. (6.8)

We remark that if we simultaneously transform the the photon and the Dirac fields according
to (6.5) and (6.7) respectively we find that the Lagrangian density (6.3) is invariant. We also
remark that the 0 component of the Noether’s current J* is the volume density of the electric
charge and hence gauge symmetry underlies the principle of conservation of electric charge.
The gauge-fixed Lagrangian density is then given by
1

1 _ _
L= =B " = (0" Au)" + Py 0 —m)y — ey A, (6.9)

The propagator of the photon field in a general gauge ( is given by the formula

DB (2 — y) = / (SZTZ)Z]%M ( 41— %)pgu) exp(—ip(z —1)). (6.10)

The propagator of the fermion field is given by

/ d'p i(v"Pu + m)ab
(2m)* p? — m? + e

(SF)ab(r —y) exp(—ip(z — y)). (6.11)

6.2 Review of ¢! Theory

The primary objects of interest are the probability amplitudes < ... out|p;... in > which are
equal to the S—matrix elements < ... out|p;... in >. They can be reconstructed from the

Green’s functions < 0|T(¢(z1)...¢(x})...)|0 > using the formula

< G@...out|py... in > = < G...in|S|pi... in >
/d4xleiq”1i(612 + m2).../d4x;e—wli(a;2 +m?)... < O|T(¢(x1)...4(x7)...)[0 > .
(6.12)

The "in" states are defined by

|ﬁlﬁg... in> = \/QEI;N/2E52...ain(ﬁ1)+ain(ﬁ2)+...|0 > . (613)

The Green’s functions < 0]T(¢(z1)...¢(x})...)|0 > are calculated using the Gell-Mann Low for-
mula and the S—matrix given by

T@)dy).) = slT(éinm)ém(y)...s). (6.14)
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5 = T(eifd%ﬁ““(‘z"“(w))). (6.15)
We obtain

<O|T(d(x1)p(x2)..)0> = < 0|T<¢Sm(x1)¢3m(x2)...s> 0>
= < O|T<€5in($1)¢§in(x2)...eif d4y£int(y)> 0>

-y / d'y.. / dhy, < o|T(asin(xl)qzin(m)..cim(yl)..cim(yn)) 0>
n=0

(6.16)
Clearly we need to evaluate terms of the generic form
< O|T<¢A)in(xl)(l;in(x?)---éin(x%z)) |0 > (617)
To this end we use Wick’s theorem
< 0|T<eifd4m.](m)¢§;n(x)) |0 —— 67% [diz [ d4x/.](I)J(I/)DF(I7I/). (6,18)

This is equivalent to the statement

< 0|T(éin($l)---$in(l‘2n>) |0 >= Z HDF(-rz — $j). (619)

contraction

6.3 Wick’s Theorem for Forced Spinor Field

6.3.1 Generating Function

We will construct a Wick’s theorem for fermions by analogy with the scalar case. First we recall
Wick’s theorem for scalar fields given by

< 0|T<eifd4zJ(z)(£i,,(z)) |0 >= 6_% j diz j d4z/J(z)J(z/)Dp(z—z/). (620)
This leads to the result

<0|T<¢Sm(x1)...$in(x2n)>|o> = Y JIpr@i—z). (6.21)

contraction

Let us now consider the evolution operator
Qi) = T(e_iftoo dsf’“”). (6.22)
We take the potential
Vv = dBxLing

2L (e + <t ). (6:23)

/
- [ (0wt + )
/

(
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We have used the Fourier expansions
3

d3p . d°p -
_ ¢ )P — t. 7)eiPr. 6.24
vie) = [ e o) = [ Sl (6:21)
We will assume that 7, and 7, = (n77°), are anticommuting c—numbers. We note that for
1,77 — 0 the spinor x becomes free given by

lt) = = 3 (7 PG )+ P () ) (6.25)

nsn

The potential Vi actually depends on Heisenberg fields which are precisely the free fields "in".
We compute then

—i / dsVi (s ZZ(%B i) + ;,Z-(oém(ﬁ,w+m<t>dm<—m++v;,i<t>c2in(—m).

(6.26)
azi(t) = v \/ﬁ/ dse™"Ersq(s, p)u’ (). (6.27)
Talt) = 35 ﬁ / dsei75i(s, 7 (~). (6.28)
We recall the anticommutation relations
[b(5,1), 5(@, 5) "]+ = [d(5,1), d(@. )] = 65,V by . (6.29)
[b(7, 1), d(d@, )]+ = [b(p.4),d(. 5) "] = 0. (6.30)
We immediately compute
) = <H H 025, (Obin(F0) T pag,s (O)bin (5.6) g ¥p,: (O)din (=5, T o 75 (8)din (— ﬁvi)e‘2/(ag,i(t)aﬁ,i(t)+75,i(t)7;,i(t))>

H H (eaﬁ s (®)bin (F,0) T O‘p,i(t)l;in (ﬁ,i)e’Yﬁ,i(t)tiin(—ﬁ7i)+eV;,i(t)liixl(—ﬁ7i)e‘2/(ag,i(t)aﬁ,i(t)‘f‘Vﬁ,i(t)Vg,i(t))eBﬁ,i(t)) .

(6.31)
Define
Qz(t) = H(eag,i(t)gixl(ﬁi)*eaﬁ,i(t)i?in(@i)eVﬁ,i(t)tim(—ﬁ,i)+e'y;»’i(t)liin(—ﬁ,i)e‘2/(oz;i(t)ozﬁyi(t)—i—vﬁwi(t)vgwi(t))e,@@i(t)).
(6.32)
We have
R OR =R Z<0ta;,i<t>-éin<zzz‘>++ea3i<t>bm<ﬁ*i>*atam<>6< i)em i O 7"

%

+ Oy (t).dAin(fﬁ, Ot + e'vﬁ,i(t)fzin(*ﬁﬁiﬁat,}/;ﬁ (t).dAin(*ﬁ, Z‘)e*’rﬁ,i(t)din(*ﬁﬁiﬁ
|4 * * * *
t 5 (Drai i (t).0p,i(t) + 0, (8)Dp i () + Opypi(E) v i (£) + 15, (1) Dey 4(1))

+ atﬁﬁ,i(t)) : (6.33)
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We use the identities

5 (Db 5,0 () bin (5, 1) = (ataﬁ,i(t).éin(@i) - va;i(t)ataﬁ,i(t))eaéﬂt)&n(ﬁvi)*. (6.34)

5O Gyt (). din(—, ) = ("’w;,xt).cim(—ﬁ,i)—wﬁ,xt)aw;,i(t))e”““”“*‘ﬁ’“*(ﬁ-ss)

We get then

B (). Q5 (8)

Il
N
N
Q

ST
j-\
=
_c~>
=]
SN~—
+
Q
Q
3
N~—
>
)

+ 5 (GG (t)-api(t) — o (B)0i0g(8) + 0vpa () 7,:(8) — 54 ()05 (1)

Let us recall that
i0:Q(t) = Vi (H)Q(1). (6.37)
This leads to
0051951 (1) = Vi(t,p)
= (WPt + Tt P07 )

= a2 (P ) — P e 7

+ Pt P (<) d (5 )T — eiEﬁtﬁi(ﬁ)n(t,ﬁ)tfin(zii)) (6.38)

By comparison we must have

ataﬁ,i(t)zv' ﬁe—lE*t 7t Pl (7). (6.39)
050) = e AP ) (6.40)

These equations are already satisfied by (6.27) and (6.28). By comparing (6.36) and (6.38) we
also obtain

O:Bpi(t) = *% (Orgi (1) (t) — g i (8)Orergi(t) + v (8).75,4(t) — v5.a (1) Devzi(1)). (6.41)

In other words

Bpi(t) = f% / ds (8504;7,1.(5).04571-(5) — a;i(s)asaﬁ,i(s) + 857571-(5).7;1.(5) — ’yﬁ,i(s)ﬁs'y;»,i(s)).

— 00

(6.42)

a(B,1) + 0y (t).din(—F, )T + O (£).din (—

(6.36)
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We compute in the limit ¢ — oo the following

%Z(agiu)aw()ﬂpz( )% (t)) - 2v/+°°ds/+°° { ot s )

X (\°Ey—+'pt +m)y (Sﬁ)+2E (= )i 5. )

x (VEz+9'p' - m)n(sl,ﬁ)} : (6.43)

7_/ dSZ( )-ai (S)QE’,i(S)asaﬁ,i(S)) - > / s LEq Byt s' )

X (VOEﬁ _ ,ylpz + m)n(s,m — Ee_iEﬁ(s_s )77](5,]57
p

x <v0Eﬁ¢pi+m>n<s’,@]. (6.44)
Vv t “+o00 -
D) dSZ (55%5,1'(5)-7%@(5) —Vﬁ,i(s)as%}i(s)) = - dS/ ds [— e'Frls—s )77(5 D)
)t ! 1 —iEz(s— s =
X (P By a'pt = mn(s B+ gme” P (s "7
p
x (VEz++'p - m)n(s,ﬁ?} : (6.45)
Thus
* 1 4 IR 1 ip(z—a')
—ZZ Do) + a0t ) = —5 [ d'e [ dan) 5 Y0 g (e + m)ee T ()
5
4 a /oL 1 ip(z—z')
+ 5 [dz dwn(w)VZQEﬂ(vp—m)e ()

YY) = 3
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/ /

Hence by using 0(s —s ) —0(s —s) —1=—20(s —s) and (s —s ) —0(s —s)+1=20(s—s)
we get

QZZ( ()i (t) + v ()75, (t )+ZZ§W _

[ d4z’ﬁ(z’>{e(s—vs)z2g (0= m)e W*””'LMZQ,{J )=o) =

r o [0(s—s) . 1 o—ip(e—c’ O(s —s),. i
4 4 nar ip(z—z ) nar ip(z—z ) _
/d z/d x (x )[ (iv"9; —m) E SE- + (iv"9; —m) Eﬁ 5 ﬁe n(x)

7

iz
O(s—s) 1 p—ipa—a’ 0(s' —s) 1 i
4 4 T ip(x—x ) ip(x—x )
/d /d x (2 )(iv"0) m)[ Z 2E~ P + —V zﬁ: 2E5€ p n(x). (6.48)
The Feynamn scalar and spinor propagators are given respectively by
’ 9(575/) 1 7-p( _ /) 9(5/75) 1 -p( _ /)
B _ ip(x—z ip(z—z ) 4
Dp(z—x) v Z 2Eﬁe + v Z 2Eﬁe (6.49)
P 7
Sp(x—a) = (v +m)Dp(x — z). (6.50)
We have
SF(:L', —x) = ("9 + m)DF(x/ —x)
= —(i7"92 —m)Dp(x — ). (6.51)

‘We obtain therefore

—ZZ< t)eui(t) + i (8) s (t > +ZZﬂp, f/d4:c/d4z/ﬁ(z/)SF(:cl — 2)n(2).
(6.52)

The final result is

oi J A (@) b @)t @n(@) | . i [ die@@)bn@) tdm@n@) . o~ [ d's [ d'a'5)Se @ —a)n(
e e 6.53)

The normal ordering is as usual defined by putting the creation operators to the left of the
annihilation operators. Explicitly we have in this case

i S A (@) Pin @)+ i (@)(2)) HH (e 5 (Db (B0)* s (i () s (i (=0) 75, ()i (= pz>)
(6.54)
Therefore we will have in the vacuum the identity

< 0|T(gfd%(n(mwm(z)wm(w)n(w))) 10 >= e~ [ d'e fd'e n@)Se@ —om(@), (6.55)
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6.3.2 Wick’s Theorem

Now we expand both sides of the above equations in n and 7. The left hand side becomes

e~ Jd'a [ de n(@)Sp(@—z)n(a) d*zy [ dizy.. | d*a, | daf(e)Se (e — 2y)n(x)) X

(@) SE (T — 2 )0(2,). (6.56)

It is obvious that only terms with equal numbers of 1 and 7 are present. Thus we conclude that

only expectation values with equal numbers of 1[) and 1[) are non-zero. The first few terms of the
expansion in 7 and 7 of the right hand side of the above identity are

;2
< O|T< i [ d (i) din (2) + i (@) >|0 > 1+%/d4x1/d4x1 < 0|T(L(z1)L(x4))]0 >

4
+ % d4z1/d4z1/d4z2/d4z2 < O|T(L(z1)L(xy)L(z2)L(zy))
X |0>+... (6.57)

In above L(z) = ij(z)tin(z) + zzin(x)n(x). The terms of order 1 and 3 (and in fact all terms

of order 2n + 1 where n is an integer) must vanish by comparison with the left hand side. We

conclude as anticipated above that all expectation values with a number of 7,/; not equal to the

number of ’L/AJ vanish identically. There are two contributions in the second term which are equal
by virtue of the T product. Similarly there are 6 contributions in the third term which are again
equal by virtue of the T" product. Hence we get

<0|T< A0 (5) i) >|o> _ 1+Z—(2> [t [t <O G )0 >

+ /d4z1/d4z1/d4z2/d4z2 < 0T (7(21)Pin (21)

X 22)in (22). wm(%)n(%) wm(% (952 )0 > +.. (6.58)

In general we should obtain

CE ?' T T Zn 4
<0|T( i J d ey din @)+ in ()0 >>>|0> _ Z(E)Q/d“wl/d‘*wl---/d“wn
X ( wm xn 'l/Jm $1 'l/Jm
= /d4z1/d4 /d Tn

x < OIT(wm(wl)--.win(wn>.win(w1>---¢in(wn>>|0 > (,).n()).
(6.59)

’

)|0 >

:c 7i(zn)...7(z1)

/ d*z,, < O|T ((21) i (21)...
/ !
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We rewrite now the left hand side as

effd4xfd%/ﬁ(z)sp(mfm/)n(x/) d4:c1 d4:c/1 d4zn d41‘;ﬂ7an (zn)---ﬁa1($1)SF(iE1 _ x’l)alﬁl
X SF(fEn —a,) P, (2)).., (2
= /d4 /d4x1 /d xn/d T ey, (T ) vy (21) S (21 — 3, )1 5n
x .--SF<xn — ), (2,)., (1) (6.60)

There are n! permutations of the indices 1, 2,...,n. Let p1,ps,...,pn be a given permutation of
1, 2,...,n with a parity J,. We recall that 6, = +1 for even permutations and §, = —1 for odd
permutations. Then because of the anticommutativity of 7s, (z}),...,s, (z,,) we can write the
above equation as

o= J dhe [ d*a (@) Sp(z—a" ()

dizy [ d*ay.. | dren | Al ie, (20). Ta, (21)

’

1 ’ ’ ’
x {E Z Sp Sp(xy —x, )P Sp(xn — )P |ng, (2,)..08, ().
permutations

(6.61)

/ /

This is clearly true because for a given permutation we can write ng, (., )...1s, () = o8y, (T, )M, (Tp,)-
By comparing (6.59) and (6.61) we get the final result

< O[T (1) b () D (2)) i @ N0 >= D 6, Sp(wr — @, )P Sp(zn — 3, )71

permutations

(6.62)

6.4 Wick’s Theorem for Forced Electromagnetic Field

The Lagrangian density for a forced electromagnetic field (in the Lorentz gauge ¢ = 1) is given
by

Lo :%M@mM—LM. (6.63)

We assume that the source J,(z) vanishes outside a finite time interval. Thus at early and late
times J, () — 0 and A* becomes a free field. We have then

. A d3* 1 <
A — Aﬁl :/ Z < me H maln(pv )+€ZPI #(ﬁ)am(pa ) ) ? t— 700(664)

3= 1 3
AH — Agut / d Z ( b H ﬁ)aout(p; >\) + ezpm #(ﬁ‘)aout(pa >\) > ) t — +o0.
(6.65)

This is a system equivalent to 4 independent massless Klein-Gordon fields. The corresponding
Wick’s theorem is therefore a straightforward generalization of (6.18). We have then
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< 0|T(eifd4zJu(z)Ai“n(x)) 0>=e 3 Jd*s [ d*a’ g, (@) du (@)D (v—a') (6.66)

As usual by expanding both sides of this equation in powers of the current J, we get Wick’s
theorem in the equivalent form

<0|T(A{;1(x1).../i;;2n(x2n))|o >= Y J[iDE" @i - =), (6.67)

contraction

6.5 The LSZ Reduction fromulas and The S—Matrix

6.5.1 The LSZ Reduction fromulas

We divide the QED Lagrangian into a free part and an interaction part. The free part (in the
Lorentz gauge ¢ = 1) is given by

1 T
Loee = 54u(0.0)4" + ("8 — m). (6.68)
The interaction part is given by

Ling = —eypA*. (6.69)

We are going to assume that the interaction part vanishes in the limits ¢ — £oo. Therefore the
spinor field in the limits t — +o0o will obey the free equation of motion

(iv*0, —m)y = 0. (6.70)

As usual we expand the field as

(t.7) e (6.71)
Thus the field x(¢,p) will obey the equation of motion

(i7°0; — v'p* —m)x = 0. (6.72)

In the limit ¢ — 00 we have then

Xin(t, P) = \/EZ( “Ety ) (§)bin (B, 5) + €70 (—p)din (— ) s)+) Lt — —oo. (6.73)

Xout (t,P) = \/ﬁz< Bty ) (D) bout (B, 8) 4 € P70 (=) dous (— ﬁ,s)+> , t — 400.(6.74)

The operator b(p,s)t creates a fermion of momentum § and polarization s whereas d(p,s)™
creates an antifermion of momentum p and polarization s. From the above expressions we
obtain

e B7 (10 + E)u® (p)Xinout(t, §) = 2m\/2E5 bin out (P, 5). (6.75)
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Bt = s 5 .
elEthin,out(t; —]7)(2 at + Eﬁ)’U (P) = —2m 2Eﬁ din,out(pa S) (676)

The full equations of motion obeyed by 3 and y are

. Ein
("0, —m)y = — 51/;' (6.77)
. Lt i
(%0 =5 = m)x(t.7) = — [ PatSE (6.75)
We compute
+m . ~ ~
/ dt Oy (e’Eﬁt(iat + Eﬁ)us(p)f((t,ﬁ)) = 2m+\/2E5 (bout (P, s) — bin(P, 5)). (6.79)
+oo ) — ~ A
/ dt Oy (eZEﬁt)_((t, —p)(i 0+ Eﬁ)vs(p)) = —2m+/2Ey (douwt (P, s) — din(D, s)). (6.80)
From the other hand we compute
+oo ) too .
/ dt o, (ezEﬁt (i0¢ + Eﬁ)u8<p)>z<t,m) = / dt e'"7(0} + Eg)u* (p)X(t,p)

= 3 / d'x e (9% + m*)as (p)y(x)
= —iw*(p)(Y"'pu +m)(Vpu — m)(—p)

= —2im@’(p)(Y'pu — m)i(—p)

— oim / d'z €5 (p) (i7" 0, — m)i(x)6.81)

oo iEst — Y s [t iE5t — T2 2\ s
dt Op( 7' x(t,—p)(i 0+ + Ez)v°(p) | = i dt e"7'x(t, —p)( 9 ¢ + Ez)v*(p)

= i/d4x eipwl/i(x)(%Q +m2)vs(p)
= —i(=p) (VP + ) (7 — m)v* (p)

= 2imi(—p) (Y, +m)v* (p)
= 2im/d4x eimi(a})(m“gu + m)v® (1§5.82)

By comparison we obtain

2Eﬁ (bout(ﬁa S) - Bin(ﬁa S))

7

E / d'z €5 (p) (iyh D) — m)i(a). (6.83)

27 (n(7.5) ~ dow(F5) = § [l 5@ (-0, —mpt ). (6589)
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These are the first two examples of Lehmann-Symanzik-Zimmermann reduction formulae. The
fields ¢(x) in the above equation is the interacting spinor field in the Heisenberg picture. Gen-
eralization of the above equations read

V2B (Bout(pis)T(---) T T(...)éin(ﬁ,s)) = % / d*z e a (p)(iy" 0y, — m)T (¢(x)...)6.85)

V2Ey (T(...)Jin(ﬁ,s) T dout (7, s)T(...)> = %/d% eim.T(...JJ(x))(fi'y“%# —m)v*(p).
(6.86)

The minus sign corresponds to the case where T'(...) includes an even number of spinor field
operators whereas the plus sign corresponds to the case where T'(...) includes an odd number of
spinor field operators. By taking essentially the hermitian conjugate of the above equations we
get the LSZ reduction formulas

V2Ey <T(...)B;;(ﬁ,s) T bk, (7, s)T(...)> = l/d‘*z e*im.T(...&(x))(fM%u —m)u®(p).

(6.87)

V2E; (cfiut(zis)T(---) ¥ T(---)di(zis)) = % / d*z e P25 (p) (ir" 0, — m)T(P(x).(5.88)

We recall in passing the anticommutation relations (using box normalization)

(5. ), b(q, §) "] = 6:;V 854, (6.89)
[d(p,i)*,d(G §))+ = 6V 5.4, (6.90)

and
(5, 4), d(q, )]+ = [d(q, )", b(F, i)+ = 0. (6.91)

Example I: e” +e™ — = +put

As an example we will consider the process of annihilation of an electron-positron pair into a
muon-antimuon pair given by

e (p1) + et (q) — p (p2) + 1" (). (6.92)

This is a process of fundamental importance in QED and collider physics. A related process
of similar fundamental relevance is the annihilation of an electron-positron pair into a quark-
antiquark pair given by

e +et — Q4+ Q. (6.93)
The normalization for one-particle excited states is fixed by !

7,5 >= \/2E; b(7,5)710 > | |§,5 >= \/2E; d(q,5)7]0 > . (6.94)

1Here we have changed the notation compared to the previous course.



YDRI QFT 125

The initial and final states are given by

initial state = |p1,s1 > |q1,7m1 >
= 2Bz \/2Ez b(p1,s1)Td(d,m1) 70 > . (6.95)
final state = |pa2,s2 > |G, re >

= \/2Eﬁ2\/2E§2 6(ﬁ2,82)+62(§2,T2)+|0 > . (696)

These states are precisely the "in" and "out" states which we also denote by |p1s1, ¢i71 in > and

|P2sa, gare out > respectively. The probability amplitude < pasa, gare out|pisi, @1r: in > is then
given by

< ﬁQSQ, (727‘2 0ut|ﬁlsl, (717‘1 in> = 4/ QEQ‘ < ]7282 0ut|ciout((j’2, r2)|ﬁlsl, §1T1 in > . (697)

By assuming that ¢o # g1 and ry # r; we obtain

L oL 1 ; . = . L
< Pasa, Garg Oout|pisy, iry in > = n /d4y2 €'?Y2 | < phse out|t(ya)|p1s1, Gir1 in >

X

A~ ro
(iv" O iy +mp)v ™ (q2). (6.98)

By also assuming that po # p; and s # s; we can similarly reduce the muon state. By using
the appropriate LSZ reduction formula we get

L. oL 1 ; S 5 - o
< pasa, ore out|pisy, ¢iry in > = Y 2E52 /d4y2 e"2Y2. < 0 out|bout (P2, 52)¥ (y2)|P151, Gir1 in >

X ( H y2 T mu) (q2)
= —/d4y ezqzyZ/d L2 eip2$2-a52(p2)(i7uauwz —my)

~ . 5 . . <
< 0 out|T (¢ ($2)1/J(y2))|p181, qiry in > (19" 0 .y, + mu)v

X

"2(g2)-

(6.99)

Next we reduce the initial electron and positron states. Again by using the appropriate LSZ
reduction formulae we obtain

< O|T(1/;($2)7Z(y2))|5181,517’1 in> = /2Ez <0 OUt|T(1/A)(SC2)ZZ(y2))CLn(¢71,7"1)+|I71S1 in >

1
S / dhyy NV () (i Dy — )
Z

x < 0 out|T($(y1) ()i (ys))Brs1 in >

x < 0 out|T(P(y1)d(wa)dh(y2))bin(Br, 51) 0 in >

- 7(_1@')2 /d_4$1 e_iplml/d%/l e MY (q1) (19" Opgy — )
X< 0 out|T(D(@ ) (s )(w2) (42))]0 in > (17D 0y + me)u

o (pl)-
(6.100)
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The probabilty amplitude is therefore given by

1 1 _ . ) .
< P2s2, Gar2 Out|pisy, qiry in > = e /d4y2 ezqwz/d%z 61p2“/d4$1 671p1x1/d4y1 e My,
12 (=14
(@0 s =) (@070, - )
a2 ﬁl
x <0 OUt|T(¢a1 (951)1/;61 (yl)l/;au ($2)¢ﬂ2 (yQ)) |0 in >
. < ro X <= 51
X <(z’y“ 0 pys +Mp)v (qg)) ((Z’y“ 0 iz + Me)u (pl)) . (6.101)
B2

aq

This depends on the Green’s function

Gay pr,00,6,(T1, Y1, T2,2) = <0 0ut|T(%1 (21)¥, (Y1) Vs (22) g, (92)) 0 in >

_ /d4p1 dtq d'py d'qo
(2m)* (2m)* (2m)* (2m)*

Goq Br.cs. B (pl; q1,p2, q2) eip1m1+iq1y1+ipzm+iqzy2 .
(6.102)
We get

(v” (q) (V' quu + me))

< PasS2, Gora Out|P1s1, iry in > = — (USZ (p2) (Y2, — mu))

a2

B1
X Ga1,517a27ﬂ2 (pla q1, —P2, —Q2)

(st e (@) (%0 = mou o) Jo103)

@l

X

B2

The Green’s function Ga, 8,,a,.8, (P1,q1, —P2, —g2) must be proportional to the delta function
(27)46%(p1 +q1 +p2+q2) by energy-momentum conservation. Furthermore it will be proportional
to the external propagators 1/(v*pa ,—my), 1/(Y*q1 p+me), 1/ (7" q2,u+my,) and 1/(v#p1 ,—me)
and thus they will be canceled. We write therefore

< Pasg, (orp out|pisy, qiry in > = —ui? (pg)ﬁgll (ql)GZT%‘;tZZe%Q (p1,q1, —p2, _qQ)ng (¢2)
X ug (p1)- (6.104)
GZT%TZ?%JPMQL*p2,*Q2) = /d4z1/d4y1/d4x2/d4y2 e P1T1—1q1Y1+ip22+iq2 Y2
x <0 OUt|T(1/A’a1 (xl)l/;ﬁl (y1)Pas (3@)12152 (yg)) |0 in >amputated

(6.105)

6.5.2 The Gell-Mann Low Formula and the S—Matrix
The S—matrix and T'—matrix elements are defined by
< 5282, JQTQ 0ut|ﬁlsl, qqu n> = < ]7282, JQTQ in|S|ﬁ151, (717“1 n >

= < Pasa, (ore in|Pisy, i1 in > 4 < pasa, qore in|iT|pisy, ¢iry in > .
(6.106)
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The second term (i.e. the T'—matrix element) is due entirely to interactions. By assuming that
the initial and final states are different we obtain simply

< Pas2, @arp out|pisy, iry in > = < pPasg, Gare in|iT|p1s1, qiry in >
2m)*6* (p1 + 1 — p2 — @2).iM(P1g1 — p2g2)(6.107)

The matrix element M is by construction Lorentz invariant and it is precisley the scattering
amplitude. It is almost obvious from the above discussion that

iM(p1g1 — p2g2) = sum of all connected amputated Feynman diagrams. (6.108)

In the following we will explicitly prove this result in the context of the scattering process
e~et — umput. B B

First we need to express the Green’s function < 0 0ut|T(1/AJO¢1 (21)1h5, (Y1) Van (22) 13, (y2))]0in >

in terms of free fields and the interaction. The starting point is to understand that 1[)(z), zZ(x)
and also A(z) are Heisenberg operators. The Schrédinger operators are defined by

Dt F) = U) @U ) , b(t, &) = Ul) @)U (). (6.109)

AP (t, &) = U(t)"LAM@)U (). (6.110)

The unitary time evolution operator solves the Schrodinger equation

i U(t) = HU(t). (6.111)

The Hamiltonian operator is
H=Hy+V. (6.112)
= 3 [T A AG+ [ SEE GG e, 61

3 3
Vo = —/d3zﬁint 6/(;171;3/(;17133)24‘(5)707#2(@‘4#(5»q»)' (6.114)

Let us recall the Fourier expansions of the different fields. We expand the spinor field as

3
(@) = / (gﬂﬁgx(@eiﬁ- (6.115)

The corresponding conjugate momentum field is

d3p
Pk

(%) = it = z/ x*(p)e P2 (6.116)

The gauge field is expanded as follows

A~ 3 ~ P
A”(:E)/(ZW];P’A“(@eW . (6.117)
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We introduce the unitary operator {2 in the interaction picture by

U(t) = e tHoQ(t). (6.118)
The operator € satisfies the Schrodinger equation
i00(t) = Vi(O)QU(t) , Vi(t) = eitHoye=itho, (6.119)
The interaction and Heisenberg operators are related by
Plx) = Q) (2)Q(t) , AM(x) = Q)T A (2)Q(1). (6.120)
The interaction and Schrodinger operators are related by
b (z) = etHog(F)e~Ho | Ak (z) = o Ak (z)e"Ho, (6.121)

The solution of the above last differential equation is

Q(t) _ T(eiftoo dSVI(s))

zfiao dsfdsxﬁint (1[)1(575),.41(5,:?))
= T<e > (6.122)
The S—matrix is defined by

S:Q(+OO> _ T(g—ier::dsVI(s))

i [ dYe Ly (ulz(s,f),Az(s@)

This is a unitary operator, viz
St=85"1 = T(e_i At dsWs)). (6.124)
This operator satisfies
< 0 out| =< 0 in|S. (6.125)
The "in" and "out" Hilbert spaces are related by

< ..out| =< ...in|S. (6.126)

The interaction fields ¢y and A} are free fields. In the limit ¢ — —oo we see that Q(t) — 1
and hence {(x) — ¢r(z) and A*(z) — A¥(x). But we know that ¢)(z) — tin(z) and
Ar(z) — A" (x) when t — —oo. Thus

Pr(x) = in(z) , Al(x) = A" (). (6.127)

Similarly to the case of the scalar field we can derive the identities

T(W(z)..d(y)..) = S'T (@in(x)...z&in(y)...s) . (6.128)

In general we must have

T(W(x)..(y).. A" (2)..) = S—IT(@in(x)..@in(y)...,zi;;(z)...s). (6.129)
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6.5.3 Perturbation Theory:Tree Level

We are now in a position to compute the perturbative expansion of the Green’s function <
0 Out|T("/)a1 (zl)wﬁl (y1)¢a2 (1'2)"/)[32 (yQ)) |0 in >. We have

< 0 out|T($ (21)07 (1) (22)9% ()0 in > = < 0 in|T (DG (21)P (y1)d52 (2)dl2 (42)8) [0 im > .
(6.130)

In the following we will set |0 out >= |0 in >= |0 > for simplicity. However it should be obvious
from the context which |0 > is |0 out > and which |0 > is |0 in >. The first few terms are

.2 .3
S = 144 / 02 Lion(2) + / i / @2 Line (1) L (22) + 55 / &2 / a2, / 25 Line (21) Cin (22)
4
X »Cint(ZB) +%/d4zl/d4z2/d423/d4z4£int(Zl)ﬁint(22)£int(23)£int(24) + ... (6.131)

Of course
Cant(2) = L0 (2) + L5 (2) = e@m(z)mn(z) T %(zmm(z))m(z). (6.132)

By using Wick’s theorem for the electromagnetic field we deduce that the second and the fourth
terms will lead to contributions to the probability amplitude (6.103) which vanish identically.
Indeed the vacuum expectation value of the product of an odd number of gauge field operators
is always zero.

By using Wick’s theorem for fermions the first term will lead to

< O[T (D2 (0 )02 (51 )22 (02) 2 (42)) |0 >= =8P (g1 — 21) S22 (wy —ya).  (6.133)

The even contraction will allow the electron to propagate into a muon which is not possible.
Recall that the electron is at 21 with spin and momentum (s1,p;), the positron is at y; with spin
and momentum (r1,q;), the muon is at xs with spin and momentum (ss, p2) and the antimuon
is at yo with spin and momentum (r3,g2). The contribution of this term to the probability
amplitude (6.103) is

< Pasg, Gore out|pisy, ¢iry in > = (U” (1) (v-q1 + me)u® (—q1).(2m) 6% (p1 + ql))

" (asz(qQ)(y.qz +my v (g2)-(2m) 0% (p2 + ‘12))

= 0. (6.134)

We have used (y.p —m)u"(p) = 0 and (y.p + m)v"(p) = 0.
The first two terms in the S—matrix which give non-vanishing contribution to the probability
amplitude (6.103) are therefore given by

,L'2

S = 5 d4zl/d422£int(2’1)£int(22)

-4
+ % dz / dz / Az / A2 Ling (21) Lint (22) Cint (23) Cing (24) + ... (6.135)
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The first term corresponds to the so-called tree level contribution. This is given by

'2

< 0|T(1Za1(501)15ﬁ1 (1) "2 (w2 ) (y2))I0> = 20 d'z /d4z2 < 0|T( 2 () ()02 (2)

X 1/}5]2 y2 Ling Zl Emt(ZQ))m >
— —/d4z1/d422 < O|T (2 (1)L (1) 022 (w2)

X O () Lo (21) L2 (22))]0 >

,L'2

= 2L ()2 (310 ()2 / dt / itz < O[T (AW (2y)

ol
x A" (2))]0 >< O[T (4, (m)zﬂfif(y) 5 (2098 (21))

X [0 >< OJT (857 (22943 (y2) 02 (22)857 (22)) [0 > (6.136)
In the second line we have dropped the terms corresponding to L5, (21) L8 (22) and Lf  (21) L, (22)

since they are zero by an argument similar to the one which led to (6.134). In the third line
we have used the fact that the total Hilbert space is the tensor product of the Hilbert spaces
associated with the electron, the muon and the photon. Using Wick’s theorems we get

< O|T(A*(21)AY (22))|0 >= 0D, (21 — 22). (6.137)

< 0|T( ()P (1) (1) (1) )0 >= =SSP (g1 — 21) SR (21 — 21) + Spr™ (1 — 21) SR (0).
(6.138)

< OIT (D22 ()02 (y2) U2 (22)0%2 (22)) 0 >= S22V (w5 — 22) S22 (25 — yo) — S22 (5 — 2)52272(0).

(6.139)
The propagator Sr(0) will lead to disconnected diagrams so we will simply drop it right from
the start. We get then
< O[T (9 (21)Y™ (y2)9h°2 (w2)9hP2 (y2)) [0 > = *21— - /d421/d422D“ (21— 22)[SP(y1 — 21)
X 'YHSF(ZI — $1)]B1 ! [SF($2 — ZQ)’YVSF(ZQ — yg)] 2'62.
(6.140)
We use the free propagators
. v d4p 71‘77}“/ —ip(z1—2
iDR (21 — 22) = /(2—)4])2—“6@ p(z1—22) (6.141)
d'p ity-p+m)™
S (x —y) = we=y), 6.142
F (:E y) / (27T)4 p2 —m?2 + i€e ( )

Thus
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_ _ -2 4 4 4 4
<O )i ()i @b @)l > = —2g(-ep [ Gl [ Sl [ S [
" (7-111 +me  —y.p1+ me>ﬁ1“1 —in <v P2 +my
¢t —m2 " pi—m? (@1 +p1)?\ p3—m2 "
» *’Y g2 + Zh)%ﬁz emiPLm iy —ipaea—ieyz (90464 (g1 4 py
(Z2 m
+ p2+qe). (6.143)

The Fourier transform of < O|T(1Za1 (1) (1 )eh2 (xg)zzﬂ2 (y2))|0 > is then

Gay p1,02.6:(P1,q1,D2,G2) = /d4$1/d4y1/d4$2/d4y2 < O|T (P (1) (1) 02 (22)™ (2)) |0 >

X e P1T1—iq1Y1—ip2T2—iq2y2

i of v Fme v+ m N\ i (—ypa+my,

¢t —mZ " pt—m? a+p)?\ ps—mpi
. + m a?ﬂZ
x LRI 2”) (2m)*6* (q1 + p1 + P2 + @) (6.144)
g3 —my,

The probability amplitude (6.103) at tree level becomes

—inhv

e (ﬁ (p2)(—iexy, )v" (q2)>

(2m)* 6% (q1 + p1 — P2 — g2)- (6.145)

< pasa, ore out|pisy, ¢iry in > = (ﬁh (%)(ie’m)usl(l’l)) (

X

This can be represented by the diagram TRE.

6.5.4 Perturbation Theory: One-Loop Corrections

The second term in (6.135) will lead to the first radiative corrections for the probability amplitude
(6.103) of the process e~ + et — pu~ + pT. We have

< O[T (G (1) (1) (22)0™ (92) [0 > = / diz.. / A2y < O[T (9 (1) (v )05 (22)907 (v2)
x Eint(zl)...ﬁint(24))|0>
= 5(6)4/d4zl.../d424 < O[T (AP (21)... AP (24))]0 >
x4 < O|T (Y (z0) i (1) L5, (21) L5, (22) L5, (23)|0>
X < O (P52 (202 (y2) 1, (24))]0 > +4 < O[T (3! (1)
X (1), (20)[0 > < 1T (52 (e2)042 (w2) £, (21) L (22)
XL (23))|0 > +6 < O|T (V8 (x1)bh! (y1) L5, (21) L5, (22)]0 >

X< O[T (22 ()2 (y2) L1 (2) L2, (24))]0 > |. (6.146)
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In the above equation we have defined £, (z) = z/rjin(z)fyﬂi/;in(z). We will use the result

< O|T(A”1 (Zl)...filM (24))|0 > = §DHMK2 (Zl — Zg).’L'D”B'M‘1 (Zg — 24) + §DH1H3 (Zl — 2:3).21)“2”4 (22 — Z4)
+  gDH1H4 (Zl — Z4).’L'DH2“3 (ZQ — 23). (6147)

1st term: By using Wick’s theorem we compute next the expression

< OIT (95 () (1) £5, (21)£6, (22) L5, (25)10 > . (6.148)

There are in total 24 contractions. By dropping those disconnected contractions which contain
Sr(0) we will only have 11 contractions left. Using then the symmetry between the points zq,
z2 and z3 (under the integral and the trace) the expression is reduced further to 3 terms. These
are

< O|T(q/jﬁ‘]1 (xl)i/;fill (y1) Ly, (21)L5,(22) L], (23)[0 > = —6 {Sp(yl — 21)Yu SF(21 — 22) Yo SF(22 — 23)Vus

Bro

Bray
X Sp(zg— 961)] +3 [SF(yl — 21) Y SF(z1 — $1)}
X tr |:SF(22 — 23) Vs SF (23 — 2:2)7“2}
4 280 - 20t Seler = 2o — 20

X SF(Zg — Zl):| . (6149)

The last term corresponds to a disconnected contribution.
We also need the expression

< OIT (4532 (w2) 4 (y2) L, (24))10 > (6.150)
Again by dropping the disconnected contraction we obtain
_ azf2
< O|T(’lb10;12 ($2),¢15n2 (y2)£54 (24))|0 >= |:SF(.T2 — Z4)'YM4SF(Z4 — yg):| . (6.151)

We have then the following two contributions to the first term. The first contribution consists
of the three terms

it A A
con; = I(—e)4(4)(—6)/d4z1.../d4z:4 < O|T (A" (21)...AM*(24))|0 > [Sp(yl — 21) Y SF(21 — 22) Vs
Broa azf2
X Sp(z2 = 23)Yus SF(23 — 551)] [SF(xg — 24) Yy SE (24 — y2)] (6.152)
The second contribution consists of the term
-4 ﬂlal
cong = %(76)4(4)(3.2)/(#21.../d424iD“1“2 (21 — 22).0 D314 (23 — z4) {Sp(yl — 21)Yu Sr(z1 — 1)

azf2
X tr |:SF(ZQ — Zg)’yus SF(Zg — ZQ)’YMZ:| |:SF(.T2 — Z4)’YM4SF(Z4 — yg):| . (6153)
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In this term we have used the fact that the two terms iDH1#2(zq — 29).iD*3H4 (25 — 2z4) and
iDFIE3 (29 — 23).iDH2H4(z9 — z4) in the photon 4—point function lead to identical contributions
whereas the term iD#1#14 (21 — z4).iDH23 (25 — 23) leads to a disconnected contribution and so it
is neglected. In momentum space we have

coms = 62 [ b [ b [ o [ o [ e | S0 H’”rm st

X S >r2ﬂ2”5< Vs S (03 pn e T 98y + 1 — g3 + ps)(2m) 154~
7#4 q2 q3 7#3 p3 7#2 (q1 +p1)2 (p2+q2)2 ql pl q3 p3 p2

— -3 +p3) e—iplﬂh—iQ1y1—i;D2962—itZ2y2. (6154)

In above we have defined

P - (6.155)
The corresponding Fourier transform and probability amplitude are

con i4 d4(13 d4P3 fro o2f2

G ramn) = -0 @62 [ G5 [ E0SCanusen]  [SCrims)

—ipganz _jphapa . ‘et

X trS S 2m)*0(—q1 — p1 — qs + 2m)%6

(q3)7u3 (p3)7,u2 ((h + p1)2 (p2 + q2)2 ( ) ( q1 D1 qs3 p3)( ) (p2

+ g2 —q3+p3). (6.156)

L L _ : —inthe d*qs [ d'ps

t con, = m - 51 A —= ).(—1).
< P282,Qq2r2 OU |p151,Q17’1 m > 2 <U (‘h)( 167#1)11’ (p1)> <(q1 +p1)2> ( ) / (271')4 (271')4

X (2m)*6(p1 + qu + g3 — ps)-tr(—iey,,)S(gs)(—ieyy,)S (ps)

4 ¢4 _inMSlM —So . T2
X (2m)70%(p2 + g2 + g3 — p3)- (W)(U (p2)(—ievu,)v (Q2))-
(6.157)
This can be represented by the diagram RADO.
1st term, Continued: The three terms in the first contribution of the first term are
it . s
coni = I(—e)4(4)(—6)/d4z1.../d424zD“1”2 (21 — 22).0DM3H4 (23 — z4) {Sp(yl — 21) Y SF(21 — 22) Vs

azf2

Bro
x  Sp(z2 = 23)Yus SF(23 — wl)] [SF(M — 24) Yy SF (24 — 92)]

o d4 1 d4 9 d4 1 d4 9 d4 d4
= i [ 5 [ [ e e [ e [ e S0 S St o
Braa az B2 —’L' L1 L2 —’L' 3 fLa
| starastm] S S o) 5 - 4920 82— - 0 - )

X e P1T1—iq1Y1—ip2T2—iq2y2 (6.158)

X
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q
conf = %(—6)4(4)(—6)/d421---/d4z4iD“1”3 (21 — 23). D" (22 — 24) |:SF(91 — 21) Y SF (21 = 22) Vo

azfB2

Braa
X Sp(z2 — 23)Vus Sr(23 — 961)] [SF(SCQ — 24) Vs SF (24 — yz)]

= i [ s [ i [ o e | e ] G S0 S0P o)

Broa @B opips _iopzpa
n n
X S S(=
] { (P27, qQ)} (1 —p3)? (p2 + q2)

3 (27T>454(*¢I1 +D3—q3 — p1)(27f)454(p2 +q2 + p3

_ q3)e*imzl7iq1y1*ipzr2*iqzyz_ (6.159)
3 i 4 4 4,0 ;
conj = I(—e) (4)(—6)/d Zl/d Z4ZD‘ul'u4 (21 — Z4).ZD#2'LL3 (22 — 23) SF(yl - Zl)’y;n SF(Zl - ZQ)WIM

azf2

Braa
x  Sp(za — 23)Yus SF(23 — :61)] [SF(wz — 24) Yy SF(2a — 92)]

= i [ e [ i [ oy s | e ] G S0 S0P o)

Bro @Bz opips _gopzps
1) )
] {S(M)%“S(_(p)} (g1 —p3)? (p3 — a3)

X e P1T1—iq1Y1—ip2T2—iqay2 (6.160)

X

5 (2m)* 64 (ps 4 p1)(27)*6* (@1 — p3 + P2 + q2)

The corresponding Fourier transforms are

con} 4 d4q3 d4p3 Braa
G by onpa (P01 D2, 02) = —(—ie) oni | @i S(=q1)7 S(P3) V25 (43) Vs S (1) S(=P2)Vua

—iptH2 _jpHsna
(g1 +p3)? (P2 + q2)?

azf2
X 5((12)] (2m)* 6% (@1 + 43)(2m) 6" (P2 + @2 + 1 + @1)-

(6.161)
conf . d4(Z3 d4p3 Fron
Gy broon o (P1: €1, P2, q2) = —(—16)4/(27T>4/W[S(—Ch)%l5(?3)%25(%)%35(?1) S(=P2)Vua

2Bz _opaps _jopopa
i il 454 454

S 2m) 0% (g1 + p1 + p3 — q3)(2m) 04 (—q2 —
( )] (1 + p3)? (p2+q2)2( )77 (1 4+ p1+p3 — 43)(27) 0" (—q2 — p2

+ p3—q) (6.162)

con? - \4 d4(13 d4P3 frea
Gy broon. o (P10, P2,q2) = —(—ie) @t | @ S(=q1)7 S (P3) V25 (43) Vs S (1) S(=P2)Vua

o2f2 —intihe _jpkaks

(1 +p3)* (p3 —q3)

5 (2m)*6* (p3 — p1)(2m)* 0% (q1 + p1 + g2 + p2).

(6.163)
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The corresponding probability amplitudes are

< Posnory outlpisnirs ey = [ 8 [ B (8 a0 (e ) ) i) S(a) (i)
< uﬁ(pl)) | (d—”p‘;)z) (26 (g1 + g).(20) 6 s + 02 — 1 — 1)
() (e @) ). (6164
< P2s2, Qo OUL|P1ST, G171 N Sep2 = / )i / d4p34 <T1 (q1)(—ievu,)S(p3)(—ievu,)S(q3)(—ievyu,)
x ) ( ;1171“:;;3 )-(2ﬂ)454((h +p1+p3 — 43)-(21)10" (p2 + g2
o) ) (i) @), (6.165)
< Pasz, Gar2 Out|Pis1, ity i >epr = /gif)i/g;p; <”(Ch)(—i@wl)S(Ps)(—i€%2)S(%)(—i@%m)
<o) ) ). 205 = )20 14— 2 o)

() (e @) ). (6.166)

P1— q3)
They are represented by the diagrams RAD1, RAD2 and RAD3 respectively.

2nd term: The calculation of the second term is identical to the calculation of the first term
except that the role of the electron and the positron is interchanged with the role of the muon
and antimuon. The result is represented by the sum of diagrams RAD4. This term contains
two contributions which are proportional to one virtual muon propagator and two contributions
which are proportional to two virtual muon propagators. Thus in the limit in which the muon
is much heavier than the electron (which is actually the case here since m. = 0.5 Mev and
my, = 105.7 Mev) we can neglect the second term compared to the first term. Indeed the second
term is proportional to 1/m,, whereas the first term is of order 0 in 1/m,, in the limit m, — oco.

3rd term: By using Wick’s theorem we compute the expression

< O[T (P2 ()DL (1)L, (1) L5, (22)]0 > . (6.167)

There are in total 6 contractions. By dropping disconnected contractions which contain S (0)
we will only have 3 contractions left. Using then the symmetry between the points z; and 29
(under the integral and the trace) the expression is reduced further to 2 terms. These are

_ Broa
< 0|T(’lﬂﬁ:l (.1'1)1/11'(11 (yl)ﬁfn (21)£i2 (z2)|0 > = =2 |:Sp(y1 — Zl)’yul SF(Zl — ZQ)’YMZSF(ZQ - $1):|

+ S (yr — @)ty [%1 Sr(z1 — 22) Vs SF(22 — 21)] :
(6.168)
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Similarly

. st
< OT (92 (2) 02 (g2 L2 ()8 ()0 > = 2 [SF<z2 — 25y S (2 — 2) s S (24 — yzﬂ

B 5;252 (22 — yo)tr ['Yus Sr(zs — 24)Vpu, Sr(za — 23)] )

(6.169)

The second terms in the above two equations correspond to disconnected contributions. Also the
first term ¢ D#1#2 (21 — z9).iD#314 (25 — z4) in the photon 4—point function leads to a disconnected
contribution. The second term iDHH3(z; — z3).iDH2H4 (29 — z4) gives on the other hand the
contribution

~f (% / (C;r])) / (C;rp;* / (C;rq>14 / (C;q; / (C;q;

Bray
[S<q1m15<pgms<p1>} {S(pz>ms<q3>mS<q2>

< OIT (9 ()97 (52)dh°2 ()b (2)) |0 >

X

o2z opaps __jimH2Ha
i L 4
X (2m)%6(q3 — g2 — p3 — p1)
] (@1 —p3)? (—g3 + q2)?

X (2m)10M(p1 + @1+ po + o) €T P TIBYITIP2ERTIE 2 (6,170)
Thus
. d4p3 d4Q3 Biraa
Gossrosssliranpna) = e [ G2 [ EE S Seamase0] | SCrmS-am
5 oz B2 —ipHiks —imhana o)l oryigh
X ™ +q2 —p3+ 2m +
@) e e @n) e + a2~ pa )20 01+
+ P2+ g2). (6.171)

The third term iD#1#4 (21 — z4).i D#2H3 (29 — z3) in the photon 4—point function gives the contri-
bution

<[ [ w | ar | w  w

Bray
[S<q1m15<pgms<p1>} {S(pz>ms<q3>mS<q2>

< OIT (9 ()9 (52)82 (w2) 5™ (2)) |0 >

X

77:77#1 Ha 71'77#2#3

a2 B2
y ] i
(@1 —p3)* (P2 + g3)
(2m)*0% (1 + g2 — g3 — p3) e~ PTITINYITIP22TIGY2 (6,179)

5 (2m)*6(p1 + p2 + g3 + p3)

X

Thus
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d'ps [ d'qs e
Gossrossslpranpna) = e [ G2 [ E S Seama8e0] | SCrS-mm

azf2 —iphita _jphans A i
X S(QQ):| ((J1 +p3)2 (p2 — q3)2 (27T) 5(]71 +p2—q3 — pg)(27r) d (‘h + q2

+ q3+p3). (6.173)

The two contributions (6.171) and (6.173) correspond to the diagrams RAD5 and RADG6 respec-
tively. They will be neglected under the assumption that the muon mass is very large compared
to the electron mass. These two diagrams in the limit of infinite muon mass go as 1/m,, which
corresponds to the single internal muon propagator.

6.6 LSZ Reduction formulas for Photons

6.6.1 ExampleIl: e-+v—e +7v

Let us consider now the process

e” (p1) +v(k1) — e (p2) +v(k2). (6.174)

The initial and final states are given by

initial state = |p1,s1 > |El, AL >

= 2Ey, b(p1, s1) alks, A)t[0 > (6.175)
final state = |pa,s2 > |E2, Ao >

= 2Ep, b(fa, s2) a(ka, Ae)t[0 > . (6.176)

The probability amplitude of interest in this case is
< ]7282, Eg)\g 0ut|ﬁlsl, ElAl in> = ./ 2Eﬁ2 < Eg)\g out|l;0ut(ﬁ2, 82)|5181, El)\l in >(6177)

By assuming that p; # py and s; # s and then using the appropriate LSZ reduction formulas
we get

< ﬁQSQ, k2>\2 out|]5'151, k1>\1 in> = \/2EI3'2 < kg)\g Out|i)out(ﬁ2, 52)|ﬁ151, k1>\1 in >

1 . . R .
= = /d4$261p212ﬂ52 (p2) (V" O,z — M) < koo out|t)(z2)|Pis1, k1A in >
i

TVEEg, [ dheac ™0 o) (1O, — m) < Fada out] ()

X bin(p1, 1) T k1A in >

= Z%/d‘lxgeip”? /d4x16_ip1:”1@52 (p2) (i7" 0y — ) < K Aa out|T'(

x D(@2)p(@1))[Fid in > (=" D ey — m)u (py). (6.178)

We need now to reduce the photon states. We need reduction formulas for photons. By analogy
with the scalar field case the reduction formulas for the electromagnetic field read

bous (k, NVT(...) — T(...)ain (k, \) = f/d4:ce“” e (k)id*T(A,(x)...). (6.179)
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adu (e, )T () = T()at (kN = /d‘*ze*i’“ H(k)id*T(A,(x)...). (6.180)
We have then
< Posa, Koo out|ﬁ151,ElA1 in> = %Q/d‘lxgeim“ /d4xleﬂ'p1xlas2 (p2) (V" O 2y —m) < 0 out|aout (K2,
x AQ)T(’(Z)(SCQ)?Z(SC1>>|E1)\1 in > (fiv“gwﬁl —m)u’ (p1). (6.181)

Again by assuming that k1 # ko and A\ # Ay we get

. . 1 . . .
< PaSa, kado out|pisy, k1A in > = —E’i/d4$261p212 /d4x16_“’”1a52 (p2) (V" O 2y — m)/d4yge’k2y2
i

X eh2(k2)dZ, < 0 out|T (A, (y2)th(w2) (1)) ain (k1, A1) 710 in >
s s

X (717:“‘ 0 w1 — m)u 1 (pl)

= i—212/d4x261p212/d4zle—zp1z1652(p2)(l~,yuau7m 7m)/d4y267,k2y2

X / dhyre™ TV k2 (kp)02, < 0 out|T (A, (y1)Au, (y2)0 (w2)(21))[0 in >

X () D2 (~i7" D iy — m)u (). (6.182)

1

This depends on the Green’s function

Ga17M110¢27N2 ($1, Y1, T2, y2) = <0 OUtlT(A/ﬂ (yl)/i;u (92)1&042 ('TQ)"/AJOQ (xl)) |0 in >

_ /d4p1 d4k1 d4p2 d4k‘2 ( i k:
(2m)% (2m)% (2m)d (2m)d TR P1, K1,P2, 2

) eiplzl +ik1y1tip2xa+ikay2

(6.183)
Thus we get
< Pasa, oMo out|pys1, ki) in> = k%k%e’ﬁ (kzl)ef\f (k2) (u52 (p2)(y.-p2 — m)) Goypnsom s (P15 k1, —p2, —k2)
s

x ((v-pl —mu (pl)) : (6.184)
6.6.2 Perturbation Theory
We need now to compute the Green’s function

<0 0ut|T(flm 1) Ay (42) Vg (22) 0, (xl)) |0in > . (6.185)

By using the Gell-Mann Low formula we have
<0 out|T(A“1 (1) A ()2 (scz)z/?a%:cl)) 0in> = <0 ian(Aﬁ; () AL (o) 52 (2) 053 (1)

X

S) 0in > . (6.186)
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As before we will set |0 out >= |0 in >= |0 > for simplicity. The first non-zero contribution
(tree level) is

;2

< 0|T(1‘i”1 (y1) A2 (y2)ih™ (fﬁz)im(wl))m > = %/d421/d4z2 < 0|T(1‘iﬁf (y1) AL (yz)lﬁﬁf(m)lzi? (z1)

X Eim(zl)ﬁinc(zz)) 0>

(71‘6)2 4 4 A1 A2 Avi
= d'z1 [ d 2o <O|T( A (y1) AL (v2) A (21)

2!

x Az <zQ>> 0>< OIT@ﬁf (2208 (21) Lo (21) Lo <zQ>> 0>
(6.187)

The only contribution in the fermion Green’s function < 0|T(1ﬁﬁ‘f (J:g)izlol‘]l (1)L, (21) L0y (22)]0 >
which will lead to connected diagrams is

< O|T(¢ﬁf (952)125;1 (x1)Ly, (21) L0y (22)]0 > = 2 |:SF($2 — 21) Y, SF(21 — 22) Y, SF (22 — 561)} :

(6.188)

The only contributions in the gauge field Green’s function < 0|T </Alfn1 (y1) A2 (o) AVY (21) A2 (22)) |0 >

which will lead to connected diagrams are

< 0|T<A¢; (52) A2 () A2 (21) A2 (zn) 0> = iDMYI(yy — 20) D" gy — )

+ 1DH1v2 (yl - ZQ).’L'D“ZVI (yQ - Zl)(6189)
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Hence

- OIT(A*“ (1) A% (42) 0 (2) 5 <x1>) 0>

(—ie)2/d4zl /d4z2iD‘“"1 (y1 — 2z1).4D*2"2 (yo — 2’2)|:
7 Q2 xq

Sr(xe — 21)Y, SF(z1 — 22)%, SF(22 — 21)

(*ie)Z/dAlZl /d422iD“1V2 (Y1 — 22).0D**"* (yg — 21){

RIS}

SF(962 - 21)%1 SF(Z1 - 22)%25}?(22 - 961)

ier [ s | oo | oy | e [0

201 71'77#11/1 ,in#w/z
S(kl +p2)7V2S(p1):| k2 k2
1 2

po + pl)e—imﬂh—iklyl —ip2x2—ikay2

io? [ taaye | s | oy ] o S0

Q20 71'77#11/2 71'77#21/1
S(kQ + p2),YV2S(p1):| k2 k2
1 2

(27T)454(l€2 + kl

(27T)454(l€2 + kl

P2 +pl)e*iplzl*iklylfipwﬁzfikz?ﬂ_ (6190)
We deduce therefore the Fourier expansion
) Q2L sV a2
GOVl (—py —ky —po, —ko) = (—ie)? {S(I’z)%ls(kfl +p2)%25(p1)} Zz Zz (2m)*6* (k2
1 2
+ ki1+p2+p1)
' Q20 _7;77“1’/2 —’L'T]luul
+ (_16)2 |:S(p2)'71/15(k2 +p2)'71/25(_p1):| 12 12 (27T)454(k2
1 2
+ Bt patpr). (6.191)
The probability amplitude of the process v+ e~ — v + e~ becomes
< Pasa, kado out|pisy, kidy in > = (—ie)®e} (k1) [U52 (P2) 7 S(=Fa +P2)%2U51(Pl)]€l§§ (k2)(27)*6" (ko

+ p2—ki—p1)

+  (—ie)’ey! (k1) [U52 (P2)Vpuo S (K2 + p2) vy, u™ (Pl)} eh? (ka) (2m)* 0% (ke

+ p2—ki—p1).

(6.192)

These two terms are represented by the two diagrams COMP1 and COMP?2 respectively.

6.7 Feynman Rules for QED

From the above two examples we can summarize Feynman rules for QED in momentum space
as follows. First we draw all connected Feynman graphs which will contribute to a given process
then we associate an expression for every diagram in the perturbative expansion by applying the

following rules:
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e Energy Conservation:

— We assign a 4—momentum vector to each line.
— We impose energy conservation at each vertex.

— We will integrate (at the end) over all undetermined, i.e. internal, momenta.
o External Legs:

— We attach a spinor u®(p) to any initial fermion state with incoming momentum p and
spin s.

— We attach a spinor @*(p) to any final fermion state with outgoing momentum p and
spin s.

— We attach a spinor 7°(p) to any initial antifermion fermion state with incoming mo-
mentum p and spin s.

— We attach a spinor v*(p) to any final antifermion fermion state with outgoing momen-
tum p and spin s.

— We attach a photon polarization 4—vector €y (k) to any photon state with momentum
k and polarization A.

— We will put arrows on fermion and antifermion lines. For fermions the arrow is in the
same direction as the momentum carried by the line. For antifermions the arrow is
opposite to the momentum carried by the line.

e Propagators:

— We attach a propagator S*?(p) = i(y.p + m)*?/(p? — m? + ie) to any fermion line
carrying a momentum p in the same direction as the arrow on the line. We will attach
a propagator S®#(—p) if the momentum p of the fermion is opposite to the arrow on
the line. Remark that antifermions are included in this rule automatically since any
antifermion line which will carry a momentum p opposite to the arrow on the line will
be associated with a propagator S*?(—p).

— We attach a propagator —in”/(p? + i€) to any photon line.
— External fermion and photon lines will not be associated with propagators. We say
that external lines are amputated.

e Vertex:

— The vector indices of photon propagators and photon polarization 4—vectors will be
connected together via interaction vertices. The value of QED vertex is —ie(y*)qz.
The spinor indices of the vertex will connect together spinor indices of fermion prop-
agators and fermion external legs.

— All spinor and vector indices coming from vertices, propagators and external legs must
be contracted appropriately.

e Fermion Loops:

— A fermion loop is always associated with an overall minus sign.
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6.8 Cross Sections

Transition Probability: In real experiments we measure cross sections and decay rates and
not probability amplitudes, S—matrix elements and correlation functions. The main point of
this section will be therefore to establish a relation between the cross section of the process

1(k1) 4 2(ks) — 1 (k) + ..+ N (ky), (6.193)
and the S—matrix element (probability amplitude) of this process given by
< f out|a in > . (6.194)

The "in" state consists of two particles 1 and 2 with momenta k; and ks respectively while the
"out" state consists of IV particles 1, ...,N with momenta k,,...,k, respectively. We will assume
that all these particles are scalar and thus we have

< B outla in >= \/2Ey, /2By, | 2By ..\ 2B < 0 outlaous (kiy ). dous (k1 )i, (k1 )ash (k2)[0 in > .

(6.195)
The S—matrix is given by
S = T(e—ifdtvf“)) ,Vi(t) = —/d3xcim(q3in(f, t)). (6.196)
We will introduce the T'—matrix by
S=1 +i/d4xT(x). (6.197)
In other words
T(x) = Lin($in(x)) + % / d4x1T(ﬁim(éin(x))zim(&n(zl))> ¥ (6.198)
Let P, be the 4—momentum operator. We have
[Py bin(2)] = —i0,udin- (6.199)
It is straightforward to show that
P, / 2 Lt (in(2))] = 0. (6.200)
Hence
[P, S]=0. (6.201)

We know that P, generates spacetime translations. This expression then means that the S—matrix
operator is invariant under spacetime translations. We expect therefore that S—matrix elements
conserve energy-momentum. To show this we start from

[P, T(x)] = —i,T(x). (6.202)
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By integrating both sides of this equation we get (use the fact that [P,, P,] = 0)
T(z) = eP*T(0)e ", (6.203)
Now we can compute
< Boutlain> = < fin|S|ain >
= < Binjain > +i(27)*6*(Py — P3) < B in|T(0)|ac in > . (6.204)

By assuming that the "in" and "out" states are different we get

< Boutlain> = i(2m)*6* (P, — Ps) < 8 in|T(0)|c in > . (6.205)

Thus the process conserve energy-momentum as it should. The invariance of the vacuum under
translations is expressed by the fact that the energy-momentum operator annihilates the vacuum,
namely

P,|0 in >=0. (6.206)

Let us now recall that when we go to the box normalization, i.e. when we impose periodic

boundary conditions in the spatial directions, the commutator [a(p),a" (q)] = (27)35%(F — @)
becomes [a(p),at(¢q)] = Vipz In other words when we go to the box normalization we make
the replacement

(27)°8° (P — @) — Viyg- (6.207)

By imposing periodic boundary condition in the time direction with a period T" we can similarly
replace the energy conserving delta function (27)5(p° — ¢°) with T'6,0 40, ,viz

2m)0°(p° — ¢°) — T6,0 0. (6.208)

It is understood that in the above two equations p?, ¢*, p° and ¢° are discrete variables. By
making these two replacements in the S—matrix element < 8 out|« in > we obtain

<Boutlain> = iTV8y0 0054 < ky...ky in|T(0)|kiks in > . (6.209)
Let us recall that the normalization of the one-particle states is given by
<plg> = 2E,Vipg (6.210)

Taking this normalization into account, i.e. by working only with normalized states, we get the
probability amplitude

1 1 1 1

<Boutlain> = TV 005 < kj...ky in|T(0)|k1ks in > .
r pq\/QEk/V \/QEk, V \2E.LV \2E,V T
1 N
(6.211)
The probability is then given by
| < Boutlain> > = T2V, 065 ! ! ! ! | < ky.ky in|T(0)|k1ky in > |?
PPE, VT 2By V2B,V 2B,V TN

1 1 1 1
2B,V 2E,, V2B,V 2E,V
1 N

TV (2m)*6* (P, — Pg)

X

| < ky...ky in|T(0)|ki kg in > |2 (6.212)
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The transition probability per unit volume and per unit time is defined by

1 1 1 1
2B,V "2E, V 2B,V 2E,V
1 N

1
W| <Boutlain>* = (2m)** (P, — Pp)

X

| < ky..ky in|T(0)|k1ksy in > |2, (6.213)

In real experiments we are interested in transitions to final states where the 4—momentum k;
of the ith particle is not well determined but it is only known that it lies in a volume d3k:;.
From the correspondence Y ; /V — [ d*k/(27)® we see that we have (Vdk)/(27)? states in
the volume d®k. Hence the transition probability per unit volume and per unit time of interest
to real experiments is

1 Vd3k, V3K
dv = —— tlo i 2 L N
v TV| < B out|a in > | GrpE 2
Bk, 1 Bky 1 L 1 1
= (@en)sP,-P L N ky..kn in|T(0)|ky ks i 2 —
( 7T) ( ﬁ)(2ﬂ_)3 2Ek; (27‘(‘)3 2Ek;\,| < Ry N 1H| (0)| 1k2 M > | 2Ek1V2Ek2V
(6.214)

Remark that d®k/((27)3\/2E},) is the Lorentz-invariant 3—dimensional measure. We also remark
that in the limit V' — oo this transition probability vanishes. In large volumes the interaction
between the two initial particles has a less chance of happening at all. In order to increase the
transition probability we increase the number of initial particles.

Reaction Rate and Cross Section: Let N; and N, be the number of initial particles of
types 1 and 2 respectively. Clearly the number of transitions (collisions) per unit volume per
unit time dNV divided by the total number of pairs N1 N> is the transition probability per unit
volume and per unit time dv. In other words

This is also called the reaction rate.

The 4—vector density is defined by J* = pu* where p is the density in the rest frame and
ut is the 4—vector velocity, viz u® = 1/v/1 —v2 and v’ = v'/v/1 —v2. Thus Jdz'dx?dz® is
the number of particles in the volume dz'dz?dz?® while J'dz?dz3dz® is the number of particles
which cross the area dz?dz?® during a time da®. Clearly J¢ = J%?® with v’ = k%/E). Using these
definitions we have

Ny =V Ny =V P, (6.216)
Thus
dN = V2V P dv. (6.217)
We introduce now the differential cross section by

I
AN = JWMJP_ o 6.218
o B B (6.218)

The Lorentz-invariant factor I is defined by

I =\/(kiks)? — k3k3. (6.219)
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We compute

I = EyEg, \/(?71 — U2)? + (1102)* — 0073
= EklEkz \/(’171 — ’172)2 — (’171 X 172)2. (6220)

The motivation behind this definition of the differential cross section goes as follows. Let us go
to the lab reference frame. This is the reference frame in which v5 = 0. In other words it is the
frame in which particles of type 1 play the role of incident beam while particles of type 2 play
the role of target. In this case we get

AN = J?1JD|do. (6.221)

The number of incident particles per unit area normal to the beam per unit time is |j (M|, Thus
|j MW|do is the number of particles which cross do per unit time. Since we have JO(Q) target

particles per unit volume, the total number of transitions (collisions or scattering events) per
unit volume per unit time is JéQ) x |JW|do. We will usually write do = (do/d€2)dS. Thus

d
N = J52)|f(1)|£d9. (6.222)

Hence dN is the number of particles per unit volume per unit time scattered into the solid angle
dQ). The differential cross section do = (do/dQ)dS) is therefore the number of particles per unit
volume per unit time scattered into the solid angle df) divided by the product of the incident

flux density [JM)| and the target density JéQ). From equations (6.217) and (6.218) we get

1 1
VEg, VEg,

dv = Ido (6.223)

By combining this last equation with (6.214) we obtain the result

Pk 1 dPhy 1 b _ 1
do = (2n)*6*(P, — Pp) (27r)13 TR _..(27T§\£ 2E,, | < kyi...ky in|T(0)|k1ks in > |2H
1 N

(6.224)

Fermi’s Golden Rule: Let us consider the case N = 2 (two particles in the final state) in the
center of mass frame (k1 + k2 = 0). We have

By 1 By, 1

do = (2m)6%(ky + ks — k) — ky) ot -
(27)° 2B, (27)3 2B,

’ ’ 1
| < klk/’Q 1D|T(0)|I{?1]{32 in > |QH

Bk, 1 By, 1
(2m)3 2B, (2m)3 2B,

—/ =/ ’ o, . 1
= (2m)"0° (ky + ky)d(Ek, + Bk, — By — Ey) | < kyky in|T(0)|k1ks in > |2E

(6.225)

The integral over l% can be done. We obtain

Pk 11 o :
do = |(2m)8(Ey, + By, — By — Ek;)ﬁ T E| < kyky in|T(0)|k1k in > |2

1
41 =i

(6.226)
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Since Ej, = \/ K2 +m2 and Ey =/ k2 + mi2 we compute E,dEy, = E, dE, = k'dk’ where

k' =y = |ky|- Thus By By d(Bys + Eyy) = (Ey + Eyy )k dk'. We have then

’ ’ ’ ’ ’ Ek/ Ek/ ’
k) = k*dkdQ =k —2—d(E,, + E,/ )dS) . (6.227)
E, +E, 1 2
1 2
We get then the result
do = — k dQ' || < Ky ky in|T(0)|k1ky in > [?
642 I(Ey, + Ei,) v i By
(6.228)

In this equation & should be thought of as a function of Ej, + Fj, obtained by solving the
equation \/k'2 +m2 + \/k'2 +m3 = Ey, + Ej,. In the center of mass system we have I =
Ey, By, |01 — U2| = Ex, Ex, (|01] + |U2]) = (Ex, + Ek,)k where k = |k1| = |k2|. Hence we get the
final result (with s = (Ey, + E,)? is the square of the center of mass energy)

1 kK o
do = ——=dQ ky ko in|T(0)| k1 ko i 2 ) .22
o 64725 & | < kyky in|T(0)[k1ks in > | i (6.229)

6.9 Tree Level Cross Sections: An Example

The tree level probability amplitude for the process e™ +et — u~ + ™ was found to be given
by

—iphv

< Pasz, orp out|pisy, iry in > = <UT1 (ql)(—iew)usl(m)) it a)?
1 1

X (2m)*0* (g1 + p1 — p2 — @2)- (6.230)

From the definition (6.205) we deduce the T'—matrix element (with ¢ = p1 + ¢1)

—inh

i < Pasz, Gorz in[T(0)|p1s1, ¢iry in > = <5T1 (%)(ie’m)usl(l’l)) o <ﬂs2 (p2)(—iey, )" (QQ))

ie?

=z <17” (q1)yuu®™ (p1)> (ﬁ (p2)y"v" (@))- (6.231)

In the formula of the cross section we need the square of this matrix element. Recalling that
(V) =1, (v ==L (") =1° (+')" = =" we get Yy¥x = x7*1. Thus
o4
(¢*)?
x (v” (g2)7"u™ (pz))-

| < 5252,62742 in|T(O)|ﬁ151,q_'1r1 in > |2

Unpolarized Cross Section: The first possibility which is motivated by experimental con-
siderations is to compute the cross section of the process e™ +e* — p~ + u* for unpolarized
initial and final spin states. In a real experiment initial spin states are prepared and so unpolar-
ized initial spin states means taking an average over the initial spins s; and r; of the electron and

s (@ )i (@)

(v” (q1)ypu™ (pl)) (USZ (p2)y" o™ (qz)) (usl (p1)y0™ (ql))

(6.232)
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positron beams. The final spin states are the output in any real experiment and thus unpolarized
final spin states means summing over all possible final spin states sy and 79 of the muon and
antimuon. This is equivalent to saying that the detectors do not care to measure the spins of
the final particles. So we really want to compute

5 Z ZZZ| < Pasz, @orz n|T(0)|Pis1, diry in > |2 (6.233)

T1 S2 T2

We have explicitly

et

—Z >3 Y01 < s @or T O)lfss, dirs in> P = g Ondanss (7)aass (00)ous (01 o

X0 ) o 0
X Z ufé P2)tes (p2) Z UBZ (‘Iz)ﬁzz (q2)-
S2 T2

T1 S2 T2

(6.234)
We recall the identities ) ug,(p)ug(p) = (v.p +m)ap and 3 v3(p)v5(p) = (v.p — m)ap. We
get then
2 et
3 Z S D | < Pasa, Gora n|T(0)[prsy, iry in > 7 = Wtrw(v-pl +me) v (7-q1 — me)

1 52 T2

Xty (7.2 — my )y (7-p2 + m,(6.235)
We can easily compute
tryt =
tryfy” = dn™”
try#y"y” =0
tryHy"yPy7 = 4(77“”77 — "7 + n““n”p). (6.236)
Using these identities we calculate
tryu (v-p1 + me) v (v-q1 — me) = 4Ap1uqiv + 4Ap1uqiy — Anuwprqn — 477#,,7713. (6.237)
Y (7.2 = )" (7-p2 + i) = Aph a5 + Apsal — 4" pa.ga — A" . (6.238)
We get then
2 8e* 2
5 Z ZZZ| < P2sa, Gere n[T(0)|prs1, g in > |7 = @7 (p1p2)(q192) + (P1g2)(q1p2) + myp1qn
Ty S2 T2 q
+ mipage + 2mim§>. (6.239)

Since we are assuming that m. << m, we obtain

_ o 8e?
> Z S DD | < Pasa, Gora n|T(0)[prs1, iry in > 7 = ) <(P1P2)(Q1Q2) + (p192)(q1p2) +miP1Q1>-

T1 S2 T2

(6.240)
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In the center of mass system we have p) = —@1 = k and Do = —Ga = k. We compute pips =
q1q2 = \/mg + EQ\/mi + k2 — kk and pigs = qips = \/mg + EQ\/mi + k2 + kk . Thus by
dropping terms proportional to m? we obtain

(p1p2)(q1¢2) + (Pra2)(qupa) + miprqr = 2(KE ) + 2k°K % + 4m> k>
= 2k%k 2cos? 0 + 2k%k 2 + 4m3/§2. (6.241)

Conservation of energy reads in this case 24/k'2 + m? = 24/k2 + m2. Hence we must have

e -
k?=k* —m? and as a consequence we get

- m? m?
(p1p2)(@1@2) + (Pra2)(@p2) + miprn = 2(k%)? (1 + E_: +(1- E_:) cos” 9)- (6.242)
Since ¢ = 4Kk? we get the result
1 1 R 5 . R o . 2 4 mi mi 2
3 Z B ZZZ| < Pasz, Gore n[T(0)|p1s1,qiry in > |° = e (1+ T2 +(1 - ﬁ)COS 0).
(6.243)
The differential cross section (6.229) becomes (with o = e?/4)
do o mﬁ mi mi 2
The high energy limit of this equation (m, << |k|) reads
d 2
% - % (1 + cos? 9). (6.245)

Polarized Cross Section: We can also compute the polarized cross section of the process
e~ +et — pu~ + pt as follows. It is customary to quantize the spin along the direction of
motion of the particle. In this case the spin states are referred to as helicity states. Since we are
assuming that m. << m, which is equivalent to treating the electron and positron as massless
particles the left-handed and right-handed helicity states of the electron and the positron will be
completely independent. They provide independent representations of the Lorentz group. In the
high energy limit where we can assume that m, << |E| the muon and antimuon too behave as if
they are massless particles and as a consequence the corresponding left-handed and right-handed
helicity states will also be independent.
We recall the definition of the spinors u and v given by

us = ( \/U#pﬂés ) v = ( \/Uup“ﬁs ) ) (6246)
Voupres ) =P’

In the limit of high energy we have o,p" = E — 0p ~ 2E0 where o is the two-dimensional

projection operator o = (1 —dp)/2 with p = p/|p]. Indeed we can check that o is an idempotent,

viz 0% = 0. Similarly we have in the high energy limit 5,p"* = E + &p ~ 2E where & is the

two-dimensional projection operator @ = (1 + &p)/2. Thus we find that

uszx/@(‘ffz ) : vszx/ﬁ( o ) (6.247)
o& —an
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The spinors g = d€° and ng = dn° are right-handed spinors in the sense that dpér = £g and
apnr = nr whereas £, = o&® and i, = on® are left-handed spinors in the sense that 6péy, = —&1,
and opnr, = —nr. We introduce the four-dimensional projection operators onto the right-handed
and left-handed sectors respectively by

1495 0 0 1= (10
Pp=——= (0 1),PL_ =10 0 ) (6.248)

Indeed we compute

uRzPRuszx/ﬁ( ),uRzPRvszx/ﬁ( 0 ) (6.249)

0
ER

uL:PLuS:\/ﬁ(%) ,’UL:PL’US:\/E(UOL ) (6250)

Now we go back to the probability amplitude

L Lo ie* [ _ _
i < PasSa, Gore In|T(0)|P151,q1m in > = Z (v” (ql)'yuusl(pl)) <u52 (p2)yHv"™ (qg)%"251)
We compute using u® = uy, + ugr and v" = v, + vg for any s and r that

5" (g (p) = vf (q)y v (1) + v (@) " vaur(pr)
= r(q1)ypuL(p1) + 00(q1)yuur(p1)- (6.252)

In the above equation we have used the fact that UZFVO = v and ’UIJ%’)/O = vr,. In other words left-
handed spinor v corresponds to a right-handed positron while right-handed spinor v corresponds
to left-handed positron. This is related to the general result that particles and antiparticles have
opposite handedness. The probability amplitude becomes then

2
. = o . = o . ie
i < Pasa, Gore n|T(0)|P181,q1r1 in > = (’UR q1)vuur(p1 (uR DP2)y “UL(qg))

)
( (q1)ypur(p1 )
+ - < (q1)vuur(p1 )
(et

+ ( (p2)v vR(qz))
< up(p2)y UL(q2)>
(sst

L HUR(Q2)>6.253)

q
ie
T

q Q1 'Y;LUR P1

The four terms correspond to the four processes

er + ek — up +uk
e ek — up+uf
ep+ef — g +ug
ept+er — up+ ;. (6.254)

In the square of the above T'—matrix element there will be 16 terms. Since left-handed and
right-handed spinors are orthogonal to each other most of these 16 terms will be zero except the
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4 terms corresponding to the above 4 processes. In a sense the above 4 processes are mutually
exclusive and so there is no interference between them. We have then

4

| < Pas2, Gora in|T(0)|p1s1, @ury in > ° = 50 (q1)vuuL (p1) G (p2)V v (g2)]?

A
o ],
N

+

5 [0r(q1)vuuL (p1) 4L (p2)y" vr(ge)]?

—

_Q
(&)

~—

+

@) 0L (q1)vuur(p1) g (p2)Y" VL (g2)?
+ (;T)QWL(%)WUR(M)-TLL(pz)v“vR(q2)|%6.255)

From now on we will concentrate only on the first term since the others are similar. We have

Z(ﬁR(ql)WUL(pl))(ﬁR(ql)%UL(pl))* = Z(T)((Jlml275U(p1))-(17(m)%1275U(p1))*
= 3 @)y i o) )t )
- tr§u1‘75<v.p1>vyl‘2”5%). (6:256)
3 (n(po) v (02)) Enl2) v (ae))” = Y (@) 5 0l () 5 ()
= T A0 ) TR0 T e )
= tr’v“l_%(v-qz)v”l_275(7192)- (6.257)

From the above two results it is obvious that all 12 interference terms in the square of the
T—matrix element < phss, gara in|T(0)|p1s1,@1r1 in > will indeed vanish because they will
involve traces of products of gamma matrices with one factor equal (1 + ~5)/2 and one factor
equal (1 —~;)/2.

Next we will use the results

tryty Py Ty = —diet P (6.258)
€upvo€” V7 = =2(n g —np 0y ). (6.259)
We compute
Z (T)R(‘h)'?/uuL (pl))(ﬁR(qﬂ’quL(pl))* = 2 (plu‘hu + P1vqip — MuwP1q1 — ieupuaptljﬁifi)mo)
spins

> (ar(p2)y"vr(g2)) (@r(p2)v v (g2))"

spins

=2 (qg P+ a5ph — 1" qap2 — ie“p””‘pﬂp?@%l)
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Hence

et _ p ) 16¢*
qg)g|UR(QI)'YHUL(p1)-UR(p2)'Y vp(g2)]? = 7 (p1Q2)(Q1p2)

—

(1 + cos ). (6.262)

The last line is in the center of mass system. The corresponding cross section of the process
ep +ef — pup +pfis

do, _ | _ 4 a? 2
Joler T er —np +pp) = | 1+cost ) . (6.263)
The other polarized cross sections are
do a? 2
dQ(eL+eR—>uR+uL) E(l—cos@) . (6.264)
do , = | _ X a? 2
d_Q(eR+eL — Uy +MR)=4—S 1—cosf | . (6.265)
do a? 2
dQ(eR+eL — Ut puf) = N 1+cosf) . (6.266)

The average of these four polarized cross sections obtained by taking their sum and then dividing
by the number of initial polarization states (2 x 2) gives precisely the unpolarized cross section
calculated previously.

6.10 Exercises and Problems

The LSZ Reduction Formulas for Fermions
o Verify equations (6.75) and (6.76).
o Verify equations (6.81) and (6.82).

e Prove the LSZ reduction formulas (6.85)-(6.88) for one fermion operator.

The LSZ Reduction Formulas for Photons

e Write down the electromagnetic field operator in the limits ¢ — +o00 where it is assumed
that the QED interaction vanishes.

Express the creation and annihilation operators a; Tk, N, ad o (K, X) and ain (K, N), Gous (K, X)
in terms of the field operators A, in(t, 7) and A, ous(t, p) defined by

At k) = / Brd,(z) e *E. (6.267)

Prove the LSZ reduction formulas (6.179) and (6.180) for zero photon operator.
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Wick’s Theorem

e Verify equation (6.36).

o Check equations (6.46),(6.47) and (6.52) .

e Verify explicitly that
é—ﬁ! da /d4x’1.../d4z3/d4x’3 < O|T(L(21)L(x))...L(x3) L(x3))|0 >= (;—jf /d4x1 /d4x’1...

[ s [ ate, < 0T @ b)) in ) i (1) ()]0 >
(6.268)

In this expression L(z) is given by the expression L(z) = 7j(z)tm () + iin(x)n(x).

e Use Wick’s theorem (6.62) to derive the 2—, 4— and 6—point free fermion correlators.

o Verify equation (6.149).

e Verify equation (6.168).

e Verify that equation (6.133) leads to equation (6.134).

Interaction Picture
e Write down the equation relating the Schrodinger and interaction fields.
e Write down the equation relating the Heisenberg and interaction fields.

e Show that the interaction fields ¢; and A% are free fields.

Gell-Mann Low Formula

e Show the Gell-Mann Low formula
h(x) = S‘1T<1/3in(z)S>. (6.269)
e Express @(m)@(y) in terms of @in (Jc)z/;in (y).

Energy-Momentum Conservation

e Solve the equation

[P, T(x)] = —i0,T (). (6.270)
e Show that
< Boutlain> = i(27)** (P, — Ps) < B8 in|T(0)|a in > . (6.271)
e Show that
I = /(kik2)? — K3K3

Ek1 Ekz \/(’Ul — ’172)2 — (171 X ’172)2. (6272)
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Trace Technology:

e Show that
tryt =
trytia” = 4n™”
try"y"y” =0
tryHy Py = 4<n"”n’” — Py 7P > (6.273)
e Show that
i v (o}
45 = 716#%67#7 AP (6.274)
e;wpg€#yp0 = —4l (6'275)
e Show that
try*y"y® =0
tryy Py Ty = —diet P (6.276)

Compton Scattering:

e The probability amplitude of the process v+ e~ — v+ e~ is given by

2

< ]7282, EQ)\Q 0ut|ﬁlsl, I;:l)\l n> = (—i€)26l;\1 (kl) [u” (pg)’yul S(—k/’l + pg)vuzusl (pl):| 6’;2 (k/’g)

X

(2m)*6* (ka2 + p2 — k1 — p1)
+  (—ie)’ey! (k1) [U52 (P2) Yz S (k2 + p2)yu, u™ (Pl)} e (k2)

(2m)*6* (ka + p2 — k1 — p1).- (6.277)

X

Derive the corresponding unpolarized cross section (Klein-Nishina formula).
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Renormalization of QED

7.1 Example Ill: e +py~ — e +pu~

The most important one-loop correction to the probability amplitude of the process e~ +et —
u~ + pT is given by the Feynamn diagram RAD2. This is known as the vertex correction as
it gives quantum correction to the QED interaction vertex —iey*. It has profound observable
measurable physical consequences. For example it will lead among other things to the infamous
anomalous magnetic moment of the electron. This is a generic effect. Indeed vertex correction
should appear in all electromagnetic processes.

Let us consider here as an example the different process

/

e (p)+um (k) — e (p) +pu (K). (7.1)

This is related to the process e™ + et — u~ + pu™ by the so-called crossing symmetry or
substitution law. Remark that the incoming positron became the outgoing electron and the
outgoing antimuon became the incoming muon. The substitution law is essentially the statement
that the probability amplitudes of these two processes can be obtained from the same Green’s
function. Instead of following this route we will simply use Feynman rules to write down the
probability amplitude of the above process of electron scattering from a heavy particle which is
here the muon.

For vertex correction we will need to add the probability amplitudes of the three Feynamn
diagrams VERTEX. The tree level contribution (first graph) is (with ¢ =p—p and ' =1 —q)

2 / /

@ (p )" u* ()@ (k )yuu” (k). (7.2)

N1

@2n)*ot(k+p—k —p )

The electron vertex correction (the second graph) is

2

C—etr [ dY 1 il +me (vl 4+ me
@2m)*'6t(k+p—k —p)—/( 2+i€(ué (» ) O )7" G )vw

q 2m)* (1 —p) I'2—=m2+ie’ 12—m2+ie

’

x (@ (kK )y’ (k).
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The muon vertex correction (the third graph) is similar to the electron vertex correction but
since it will be neglected in the limit m, — oo we will not write down here.
Adding the three diagrams together we obtain

'L’€2 ’ ’ ,

@m)iet(k+p—k — p/)q—Q(ﬂs )0, p)u* ) (@ (K )y’ (k). (7.4)

This is the same as the tree level term with an effective vertex —iel"“(p/, p) where F“(p/,p) is
given by

4 . / .
F“(p,p)zv“ﬂ‘e?/ dl 1 < Al A me) |, i(yL A+ me) > (7.5)

(2m) (I — p)? +ie 12 —m2+ie’ 12— m2+ie
If we did not take the limit m, — oo the muon vertex would have also been corrected in the
same fashion.

The corrections to external legs are given by the four diagrams WAVEFUNCTION. We only
write explicitly the first of these diagrams. This is given by

’

’ ’ 64 d4l 1 78/ ’ . —i—me .l+me s _p ’ r
en's =K )5 [ ¢ @ () L A e b o) @ (B Y ()

2m)4 (I — p)? +ie p?—m2 12 —m?

The last diagram contributing to the one-loop radiative corrections is the vacuum polarization
diagram shown on figure PHOTONVACUUM. It is given by

7:62 ’ ’

(¢%)?

’

(@ (0 )yuu® (W) ()@ (K )yu” (k). (7.7)

@r)*0t(k+p—k —p)

d*k i(y.k 4+ me)

T8 (q) = (71)/ @ tr(fiefyu)]# e i(y.(k+ q) + me)

(k+q)? —mZ +ie

(—iev”) (7.8)

7.2 Example IV : Scattering From External Electromag-
netic Fields

We will now consider the problem of scattering of electrons from a fixed external electromagnetic
field AzaCkgr, viz

e (p) — e () (7.9)

The transfer momentum which is here ¢ = p/ —p is taken by the background electromagnetic field
ABaCkgr. Besides this background field there will also be a fluctuating quantum electromagnetic
field A, as usual. This means in particular that the interaction Lagrangian is of the form

‘Cin - _e/lZin'yM'lZJin(AM + Au,backgr). (710)
The initial and final states in this case are given by

7,5 in >= \/2E5 bin(7,5)*[0 in > . (7.11)

7,5 out >= /2B bous(7,5 )]0 out > . (7.12)

(7.6)
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The probability amplitude after reducing the initial and final electron states using the appropriate
reduction formulas is given by

<ps out|psin> = — {u (P)vp — me)] y G (=D D) {('y.p - me)us(p)} R (7.13)

/

Here G/, (p , p) is the Fourier transform of the 2—point Green’s function < 0 out|T(z/A1a/ (2" )ha(2))|0 in >,
viz

NN d4p’ d , o
<0 OU.t|T(’L/Ja/ (x )1/1a($)) 0in> = / (27?)4 / (27:))4 Gy o(p,p) ePTTP T (7.14)

By using the Gell-Mann Low formula we get

<0 out|T<1/3a/ (:E/)J)a(z)) 0in> = <0 m|T<¢Q,7in(z/)12a,in(z)s> 0in>. (7.15)

Now we use Wick’s theorem. The first term in S leads 0. The second term in S leads to the
contribution

i/d4z <0 in|T(Q/Aja/7in(x/)ﬂa,in(ac)ﬁin(z)) 0in> = (—ie)/d4z <0 ian(’L/AJO/JD(-T/)’lﬁa,in(lﬂ).’l/]in(z)’yu

X ’l[}ln(z)> |0 in > Au,backgr(z)

’

= (ie) [ (S0~ it =) am(

’

= i) [ 5 [ (56 ) Ay

x T (7.16)

We read from this equation the Fourier transform

’
o o

Gualrp) = (-i0)(S6)sm) A (7.17)
The tree level probability amplitude is therefore given by
<ps out|ps in > = —ie <ﬁs/ (p/)'yuus(p)>A”’baCkgr(q). (7.18)
The Fourier transform A#Paker(¢) is defined by

d* -
A,u,backgr(x) — / (27:;4 A#,backgr(q) etz (719)

This tree level process corresponds to the Feynman diagram EXT-TREE.
The background field is usually assumed to be small. So we will only keep linear terms in
Awbacker () The third term in S does not lead to any correction which is linear in A#:Packer(z).
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The fourth term in S leads to a linear term in A#:Pa°ker(z) given by

—e 3 ~ ;o= = ~ = ~
(Zie) (3)/d421/d422/d423 <0 in|T<1/’a’,in(~T )0 ,in (T) - Win (21) 7 Pin (21) Pin (22) 0 Pin (22) Pin (23)

3!

X Wﬁin(%)) 0 in >< 0 out|T(A* (1) AY (22))]0 in > ANPIKEr (), (7.20)

We use Wick’s theorem. For the gauge fields the result is trivial. It is simply given by the photon
propagator. For the fermion fields the result is quite complicated. As before there are in total
24 contractions. By dropping those disconnected contractions which contain Sr(0) we will only
have 11 contractions left. By further inspection we see that only 8 are really disconnected. By
using then the symmetry between the internal points z; and zo we obtain the four terms

<0 in|T(1&&/,m<w’>¢a,m<w>.¢m<zl>wm<zlwm<z2>win<z2>.¢m<z3>mn<zg>) 0in >

’
o

= -2 {Sp(scl — 21)YuSF(z1 — ) try, Sp(z2 — 23)aSrk (23 — 22)

+ 2 Sp(ac, — 21)YuSF (21 — 22) Y SF (22 — 23) A SF(23 — 2)
+ 2 SF(:L'/ — 23) M SF (23 — 22)7 Sk (22 — 21)YuSF (21 — @)
+ 2 SF(:L', — 21)7uSF (21 — 23)aSF (23 — 22) 7 Sk (22 — ) . (7.21)

These four terms correspond to the four Feynman diagrams on figure EXT-RAD. Clearly only
the last diagram will contribute to the vertex correction so we will only focus on it in the rest
of this discussion. The fourth term in S leads therefore to a linear term in the background field
Ambacker (1) given by

’

(—ie)g/d4zl/d422/d423 {Sp(scl — 21)YuSF(z1 — 23) A SF (23 — 22)7 SF (22 — x)} iDR (21 — 22)

/

A,backgr Py _ 63 d4p/ d4p d4k/’/ d4k 1 , , B a a
A (za) / (27r)4/ (27r)4/ (2r)* / QM () — k)2 +ic (5(p 1S () S (k )y S(p))

% A)\,backgr(q) (27T)454(q —k+ k/) eipmfip’m/. (722)

The corresponding Fourier transform is

Gool=pp) = e3/ (gﬂl;l (p,_li)QHG <S(p')7u5(k)%5(kQ)W“S(p)) ANbacker ()

(7.23)
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The probability amplitude (including also the tree level contribution) is therefore given by

<7's outlfs in> = —ie (u (p/)wus(p))A*baCkgr(Q)
3 d4k 1 o o N
T i Eric\© @ISk F Sy e (p) JATEE )

’

ie(1° 0N ) ) 4Nk ), (7.24)

The effective vertex I'y (p/, p) is given by the same formula as before. This is a general result.
The quantum electron vertex at one-loop is always given by the function T'x(p , p).

7.3 Omne-loop Calculation I: Vertex Correction

7.3.1 Feynman Parameters and Wick Rotation

We will calculate 60%(p',p) = TH(p’,p) — 4*. First we use the identities y/y#y, = —2vH,
PPyt = 4nPt and
VAT = 297 — 29490 — 290y
= 27 (7.25)

We have
a* (p)oT" (0, p)us* (p) 2?/&1 : a0 (r Dt ()
u u = e u . .

PIOTP L PIEAP I pErioZ —m2ti® —m2tie) /7T

+ mZyH — 2me (1 + l/)”)us(p).

Feynman Parameters: Now we note the identity

1 ! (n—1)!
- = dxidzs...dx,0 n— 1 . (7.27
A1A2...An /0 T1dtz * (171 +$2+ +$ )(1'1A1+1'2A2++$n14n)n ( )
For n = 2 this is obvious since
! = /1 dr1dzed(ry + 1) !
A A, J RO TR T AL+ a4y
1
= / dl‘l !
0 (x1 41 + (1 —21)A2)?
1 A1/(Ar=Az) 4
- 72/ ety (7.28)
(A1 = A2)? Ja,/a,-a) 71

In general the identity can be proven as follows. Let € be a small positive real number. We start
from the identity

1 oo
— = dt e~ A+, 2
; /0 ¢ (7.29)
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Hence

A1 As. A,
Since t; > 0 we have also the identity

/OOO % 5(1— %Zti) =1 (7.31)

Inserting (7.31) into (7.30) we obtain

1 % .
= /0 dtydty...dt, e~ 2i=1ti(Aite), (7.30)

1 oo d\ 1 &
— - = dt,dts...dt, — 51 -= i(Aite), 7.32
A Ay A, /0 . /0 A g (7:32)
We change variables from ¢; to z; = t;/\. We obtain
1 o0 "
S — dzidzs...d, A1 5(1 e~ A Xz wi(Aite) 7.33
T [ e, [ -3 7:39)

We use now the integral representation of the gamma function given by (with Re(X) > 0)
L(n)=(n—1)! = X”/ AT e (7.34)
0

‘We obtain

oo n —1)!
14325 0 i=1 (E?_l xi(A; + e))

Since x; > 0 and Z _1%; =1 we must have 0 < 2; < 1. Thus

1 1 i —1)!
1£42:-n 0 i=1 (Al,fEl + AQZEQ + ...+ AnZCn)

The variables x; are called Feynman parameters.
This identity will allow us to convert a product of propagators into a single fraction. Let us
see how this works in our current case. We have

1 1
(I —p)2+ie)(l'? —m?2 +ie)(I2 — m? +ie) /

1
dedydz §(x+y+2z—1)—

o5 (187)

=2((l — p)® +ie) + y(I”> — m? +ie) + 2(1> — m> + ie). (7.38)

Let us recall that the variable of integration is the four-momentum [. Clearly we must try to
complete the square. By using = + y + z = 1 we have

D = 12— 2(xp+yo)l +ap? +yq® — (y+ 2)m2 +ie

2
(l —ap— yq) — 2°p® — y?q* — 2aypq + xp® + yq© — (y + 2)m? + ie

2
= (l —ap — yq) + z2p® + zyp 2 + y2q® — (y + 2)m? + ie. (7.39)
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/

Since this will act on u®(p) and @* (p') and since pu®(p) = m2u®(p) and p2a* (p') = m2a* (p)
we can replace both p? and p 2 in D with their on-shell value m2. We get then

2
D = (l —ap— yq) +yzq® — (1 — z)?m?2 + ie. (7.40)
We will define
A = —yzg®+ (1 —z)*m?. (7.41)

This is always positive since ¢? < 0 for scattering processes. We shift the variable [ as | — L =
Il —xp —yq. We get

D = L[*—A+ie (7.42)
Plugging this result into our original integral we get

;o , 1 4 o, ,
a® (p )oT"(p ,p)u’(p) = 4@'62/0 drdydz §(z +y + 2 — 1)/ (621754 (- i He)sﬁs (p )<(v-1)7“(7-l )

+ mZyt — 2me (1 + l/)“)us(p). (7.43)

In this equation | = L+ap +ygand ' = L+ ap + (y — 1)q. By dropping odd terms in L which
must vanish by summetry we get

4 d4L 1 Lo

@ (p )" (p ,p)u’(p) = 42’62/0 drdydz 6(x +y + 2 — 1)/ @i (TP~ A H-e)sﬁs (p )((v-L)v“(v-L)

+ m2y + (zy.p+ yv.g)y @y + (y — 1)7.9) — 2me(2zp + (2y — 1)(1)“) u®(p).

(7.44)
Again by using symmetry considerations quadratic terms in L must be given by
/ d'L LrLy B / 'L inL? (7.45)
(2m)4 (L2 — A +ie)3 ] (2m)4 (L2 — A +ie)3 '
Thus
@ (p)oT(p , pu(p) = 4'2/1ddd Sz +y+ 1)/ 'L . i () — Lyrr?
a® (p popjut(p) = die” | dedydz §(z+y+ 2 el (ATt ® 57

+ m2y* + (@yp 4 yr- )V @y + (y — 1)7.9) — 2me(2ap + (2y — 1)(1)“) u®(p).
(7.46)

’ , , ’

(P )yp = mea® (p) and y.py* = 2p* — iy, YHyp =

S

By using v.pu®(p) = meu®(p), @
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2pl“ - 'y.p,’y“ we can make the replacement

’ ’ ,

@ (p)|(@y.p+yr-a(@yp+ @y — Dy |u'p) — @ (p) <($+y)v-pyme>v“ <(:c+y L)me

- (- 1)7-pl)]u5(p)

— U (p)|me(z+y)(z+y—1)(2p" — mey")

- (z+yly-1) (2me(p +p )+ Pyt — 3mfﬁ“)

— mly(z+y— Dy +mey(y — 1)(2p* — mev“)}
X u®(p). (7.47)

After some more algebra we obtain the result

’

: , ! d*L 1 '’ 1
=5 TH s — 4 2 -1 —5 wl _ _L2
u’® (p )or*(p ,p)u®(p) e /0 drdydz 6(x +y + =z )/ (2m)* (L2 — A + ie)3u (p )|:’Y ( B

A==+ (- = 20m2 ) 4o - Dip )"
+ me(z—2)(z+2y— 1)meq“] u®(p). (7.48)

The term proportional to ¢* = p* — p,“ is zero because it is odd under the exchange y <> z since
x4+ 2y — 1 =y — z. This is our first manifestation of the so-called Ward identity. In other words
we have

1 4
d*L 1 o 1
sie 1 a* () [ — 5L
ie /O drdydz 6(x +y + 2 )/(2ﬁ)4(L27AH.6)3u (p)[v( 5

+ (1-2)1-y)@+(1-2®- Qw)mi) +mex(z —1)(p +p/)“} u®(p).  (7.49)

a (p))sT(p, p)u(p)

Now we use the so-called Gordon’s identity given by (with the spin matrices o#* = 2I'*" =
i, v"1/2)

' Lo (p’>[<p+p’># z‘oﬂ”qy} (). (7.50)

=S

@ (p )" (p) =

2me

This means that we can make the replacement

’ ’

& (0)(p+p Ve (p) — @ () [zmew i z‘awqy} “ (p). (7.51)

Hence we get

ro , ! d‘L 1 Lo 1
=5 TH s — 4 2 -1 —5 wl _ _L2
u® (p )or*(p ,p)u®(p) e /0 drdydz 6(x +y + =z )/ (2m)* (L2 — A + ie)3u (p )|:’Y ( B

+ (1=2)1-y@+ 1+ - 4ac)m§) +imex(z — 1)0””qu} u®(p). (7.52)
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Wick Rotation: The natural step at this stage is to actually do the 4—dimensional inte-
gral over L. Towards this end we will perform the so-called Wick rotation of the real inte-
gration variable LY to a pure imaginary variable L* = —iL% which will allow us to convert
the Minkowskian signature of the metric into an Euclidean signature. Indeed the Minkowski
line element dL? = (dL°)? — (dL")* becomes under Wick rotation the Euclid line element
dL? = —(dL*)? — (dL")?. In a very profound sense the quantum field theory integral becomes
under Wick rotation a statistical mechanics integral. This is of course possible because of the

location of the poles VL2 + A —ie and —V L2+ A + e of the L° integration and because
the integral over L® goes to 0 rapidly enough for large positive L. Note that the prescription
L* = —i LY corresponds to a rotation by m/2 counterclockwise of the L axis.

Let us now compute

L R () L G Dy B O L
/(27T)4 (L2 — A +ie)m  (27)4 (_1)m/d LE(LQE—i—A)m' (7.53)

In this equation Ly = (L', L2, L3, L*). Since we are dealing with Euclidean coordinates in four
dimensions we can go to spherical coordinates in four dimensions defined by (with 0 < r < oo,
0<0<7m0<¢p<2rand 0 <w <)

L' = rsinwsinécos¢
L? = rsinwsinfsing
L3 = rsinwcosf
L* = rcosw. (7.54)
We also know that
d* Ly = 13 sin® wsin Odrdfdgdw. (7.55)

We calculate then

d*L (L?)" i (=1 r2nt3dy .9
/ e (At — @0l / RN /sm w sin OdOdpdw
 2im? (1) / 2"Jrg’dr (7.56)
o @2m)A (=)™ r2 + A)m '
The case n = 0 is easy. We have
/ d*L 1 _ 2im? 1 / ridr
2m)4 (L2 — A+ie)m (2o (=1)m ) (r2+A)m
_in? 1 /°° (x — A)dx
G R C VN N
' -1 1
S — (=1 . (7.57)

(4m)2 (m —2)(m —1) Am=2
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The case n = 1 turns out to be divergent

/ d*L L? _ 2im? -1 / rodr
(2m)* (L2 — A +ie)™ @emt(=1)m ) (r2+A)m

_ s -1 xS—m _ oA 2—m N 9 xl—m S
2t (=)™ \3-m 2—m 1—m),
i (—1)m+l 2

- . (7.58)

This does not make sense for m = 3 which is the case of interest.

7.3.2 Pauli-Villars Regularization

We will now show that this divergence is ultraviolet in the sense that it is coming from integrating
arbitrarily high momenta in the loop integral. We will also show the existence of an infrared
divergence coming from integrating arbitrarily small momenta in the loop integral. In order to
control these infinities we need to regularize the loop integral in one way or another. We adopt
here the so-called Pauli-Villars regularization. This is given by making the following replacement

1 1 1
U—p2ric  (—p2—j2+ic (—p2_Atic

(7.59)

The infrared cutoff p will be taken to zero at the end and thus it should be thought of as a small
mass for the physical photon. The ultraviolet cutoff A will be taken to co at the end. The UV
cutoff A does also look like a a very large mass for a fictitious photon which becomes infinitely
heavy and thus unobservable in the limit A — oco.

Now it is not difficult to see that

(I—p)2 — 12 +ie)(? i mZ 1+ i)(12 — m2 + ie) = 2/01 dedydz 6(z +y+ 2z — 1)Diﬁ (7.60)
Dy=D—plz =L - A, +ic, Ay =A+pPe. (7.61)

1 1 .
((—p2 =N +ie)(I? —m2+ie) (2 —m2 +ie) 2/0 dadydz 6(x +y + 2 — 1)D—%. (7.62)
Dy=D—A%w =L~ Ay tie, Ay =A+ A% (7.63)

The result (7.52) becomes

d*L 1

1

w0 pplp) = 42‘62/0 dwdydz (= +y +2 - 1)/ (2m)* [(LQ — Ay +ie)? (L2 - A+ ie)3]

ro

x @ (p) [w ( - %L2 +(1=2)1 -y + (1 +2 - 4z)m§> + imex(z — 1)0”"%}

x  u®(p).

(7.64)



YDRI QFT 165

We compute now (after Wick rotation)

rodr

=5y sy

/°° (¢ — A%z /: (‘Tﬁif)m]

L2

J bl

(47)2

L2
(L2 — Ap + i6)3} B

N <4;>2 {

A, z?
i Ay
= ——In—. (7.65)
(am? A,

Clearly in the limit A — oo this goes as In A2. This shows explicitly that the divergence problem
seen earlier is a UV one,i.e. coming from high momenta. Also we compute

/ (C;rﬁ‘* [(LQ - Alu +ie) (L2 - AlA H'e)?’} N (43_:)2 [/gzidg#)g N / (T;fﬁ“s}
- _2(4;)2 (AL# - ALA) (7.66)

The second term vanishes

in the limit A — oo.

We get then the result

—s/ ! wi s _ - 2 [ ' *S, ' H ﬁ
u® (p)or*(p,plu*(p) = (die )(_W)/o dadydz §(x +y+ 2 — 1) (p)[v (1n A,
+ (1=2){ =y Z#(l tr 4x)me) + imex(:u — 1)0‘“’qu} u®(p)
= @) RE) -1 - LR ), (.67
F1(q2) — 1+%/0 dzdydz 5(-77+y+2—1)(1nAA—2$+ (1—2)(1_9)(]22_ (1—}—1;2_4,%)7’715).
(7.68)
Fy(q®) = %/0 dxdydz 6(Jc+y+z—1)%ﬁ_l’). (7.69)

The functions F}(¢®) and Fz(¢?) are known as the form factors of the electron. The form factor
Fi(q?) is logarithmically UV divergent and requires a redefinition which is termed a renormal-
ization. This will be done in the next section. This form factor is also IR divergent. To see this
recall that A, = —yz¢® + (1 — 2)?mZ + p?z. Now set ¢* = 0 and p? = 0. The term proportional
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to 1/A, is

1 1 1
1 24
0 0 0 (1-a)

1 1 1—y
o 1422 —4x
= ...+— dw/ dy/ dt §(z —t)——————
0 0 0 (1—x)?

a 1 1y 1+t2 4t
= ...+— dy/
0 0

(-2
a 1
_— /dy dt ( +———)
0 1
« 2
= .= — d 21 - —=3). 7.70
2 J, y (y+ ny+y ) (7.70)

As it turns out this infrared divergence will cancel exactly the infrared divergence coming from
bremsstrahlung diagrams. Bremsstrahlung is scattering with radiation, i.e. scattering with
emission of very low energy photons which can not be detected.

7.3.3 Renormalization (Minimal Subtraction) and Anomalous Mag-
netic Moment

Electric Charge and Magnetic Moment of the Electron: The form factors Fj(q¢?) and
F»(g?) define the charge and the magnetic moment of the electron. To see this we go to the prob-
lem of scattering of electrons from an external electromagnetic field. The probability amplitude
is given by equation (7.24) with ¢ = p — p. Thus

<P's outlps in> = —ieu® (p)Ta(p ,p)u’ (p). AN (g)

’

c —s () oy g s ackgr
iew ) | + B [0 .4 ). (r)

Firstly we will consider an electrostatic potential ¢(&), viz AMPaker(q) = (275(¢°)(§),0). We
have then

’

/o X , F _q2
<ps out|psin> = —ieu”(p)[Fl(—dQHM

T | 2ms(a)o@. (172
Me
We will assume that the electrostatic potential ¢(Z) is slowly varying over a large region so that
¢(q) is concentrated around ¢ = 0. In other words the momentum ¢ can be treated as small and
as a consequence the momenta p and 13/ are also small.

In the nonrelativistic limit the spinor u®(p) behaves as (recall that o,p" = E — &p and
oup" = E +3p)

us(p)z(%gj)zﬁ<(1—ﬂ+0(%

“mm"’

e ) (7.73)
(14 2=+ 0(&))¢

m

o)

We remark that the nonrelativistic limit is equivalent to the limit of small momenta. Thus by
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dropping all terms which are at least linear in the momenta we get

<f@s outlpsin> = —ieuS/Jr(p/)Fl(O)US(p).Qﬂ(S(qO)(b((j)
= —ieF;(0).2m.£° T€°.2m5(¢°)p(q)
= ieF (0)p()-2med* * 276 (). (7.74)

The corresponding T'—matrix element is thus
<Ps m|iT|psin> = —ieF(0)(7).2meo° °. (7.75)

This should be compared with the Born approximation of the probability amplitude of scattering
from a potential V(%) (with V(q) = [ d>2V (¥)e 1)

<@ mliT|Fin> = V(). (7.76)

The factor 2m, should not bother us because it is only due to our normalization of spinors and so
it should be omitted in the comparison. The Kronecker’s delta ¢° ¢ coincides with the prediction
of nonrelativistic quantum mechanics. Thus the problem is equivalent to scattering from the
potential

V(&) = —eF1(0)6(F). (7.77)

The charge of the electron in units of —e is precisely F7(0).
Next we will consider a vector potential A(F), viz AMPacker(q) = (0,275(q°) A(7)). We have

;o oy ’LO‘Z J .
<ps iniT|psin > = —ieu® (p ){’yiFl(—(jQ) + iFg(—f)] u®(p). ABPaksr () (7.78)

2Me

We will keep up to the linear term in the momenta. Thus

; / ’ . Py X
<ps infiT|psin > = —ieu® T(p)y° [%Fl (0) — %FQ(())] u®(p). ABPaksr () (7.79)

We compute

N . - N
s’+/ On,.,,8 _ S’+ 1_0’p il— ap _ op il op R
W) e (( 2me)0 ( 2me) (1+ 2me)a (1+ 2me) 3
= &7 ( —(p+p) + z‘eiikqjak)55. (7.80)
w N e et (p) = 2megt ( - 2ieijkqjok>§s. (7.81)
We get then
<ps mliT|psin> = —iet® [ — @+ P (0)} g5, Ai-backer ()

N [ieijkqiak(Fl(O) + FQ(O))] g5 Abbacker (g, (7.82)
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The first term corresponds to the interaction term 5/1 + flﬁ in the Schrédinger equation. The
second term is the magnetic moment interaction. Thus

< ﬁ/s/ in|’iT|ﬁS in >magn moment = _Z'egs + |:i€ijkqj0.k (Fl (0) + F2(0)):| Es_Ai,backgr((j»)

= 7i6§'5/+ |:O_k (Fl (0) + F2(0))] é-s'Bk,backgr(q»)

= —i<pb > . Bhbacker(@) om,
= iV(§).2me. (7.83)

The magnetic field is defined by BPaker (7) = V x APacker (7)) and thus B¥({) = ic'kqd Ai-backsr(q),
The magnetic moment is defined by

<t s et [ R0+ BO) e o pf = g T (7.84)
o e g ! 2 =9, 2 '
The gyromagnetic ratio (Landé g-factor) is then given by
g = 2(F1(0) + F»(0)). (7.85)

Renormalization: We have found that the charge of the electron is —eF} (0) and not —e. This
is a tree level result. Thus one must have F;(0) = 1. Substituting ¢*> = 0 in (7.68) we get

1 A2 1 2_4 2
Fi(0) = 1+%/0 dxdydz5(x+y+zl)(1n z 1+ ‘T)me)

A0 T A0
(7.86)

This is clearly not equal 1. In fact F1(0) — oo logarithmically when A — oo. We need
to redefine (renormalize) the value of Fi(¢?) in such a way that Fy(0) = 1. We adopt here a
prescription termed minimal subtraction which consists in subtracting from 6 F} (¢%) = Fy(¢?)—1
(which is the actual one-loop correction to the vertex) the divergence dF;(0). We define

Fi*(¢*) Fi(¢*) = 6F1(0)

L0)  (1T=2)1—-y)¢® | (142%—dz)m?

1
1+g/ d:cdydzé(m—i—y-i—z—l)(ln
2m Jo

(1+ 22 — 4z)m?
Au(0) >

2 +
Aulg®) Au(g?) Au(g?)

This formula satisfies automatically F;°"(0) = 1.

The form factor F»(0) is UV finite since it does not depend on A. It is also as point out
earlier IR finite and thus one can simply set ¢ = 0 in this function. The magnetic moment of
the electron is proportional to the gyromagnetic ratio g = 2F;(0) 4+ 2F5(0). Since F3(0) was
renormalized to FT°"(0) the renormalized magnetic moment of the electron will be proportional
to the gyromagnetic ratio

gt = 2FT(0) + 2F5(0)
= 24 2F5(0). (7.88)
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The first term is precisely the prediction of the Dirac theory (tree level). The second term which
is due to the quantum one-loop effect will lead to the so-called anomalous magnetic moment.

This is given by
o [t 1 1 "
F»(0) = —/ dx/ dy/ dz&(w—l—y—i—z—l)l_

= /dm/ dy/ dtéac—t)lix
1 1-y
= g/ dx/ dy/ dt 6(x —t) <
0 0 0 L—z
1-y
d

3

1

1-1¢

I
3|0
S—
&
S—

1
«
= —/ dy(y —1—Iny)
™ Jo
= (g yiy)
= —l5W y—y yo
(e

7.4 Exact Fermion 2—Point Function

For simplicity we will consider in this section a scalar field theory and then we will generalize to
a spinor field theory. As we have already seen the free 2—point function < 0|7 (¢ (2)din (y))[0 >
is the probability amplitude for a free scalar particle to propagate from a spacetime point y to
a spacetime z. In the interacting theory the 2—point function is < Q|T'(¢(x)d(y))[2 > where
|Q >=10> //< 0]0 > is the ground state of the full Hamiltonian H.

The full Hamiltonian H commutes with the full momentum operator P Let |Ao > be an
eigenstate of H with momentum 0. There could be many such states corresponding to one-
particle states with mass m, and 2—particle and multiparticle states which have a continuous
mass spectrum starting at 2m,.. By Lorentz invariance a generic state of H with a momentum
P # 0 can be obtained from one of the |A\g > by the application of a boost. Generic eigenstates
of H are denoted |Ap > and they have energy E,(\) = \/p? + m3 where m is the energy of the
corresponding |\g >. We have the completeness relation in the full Hilbert space

d3p 1
A

The sum over A runs over all the 0—momentum eigenstates |\g >. Compare this with the
completeness relation of the free one-particle states given by

d3p 1
1= | =2 _— |5 E, = /52 + m2. 91
/( ) 2E, p><pl, p?+m (7.91)

By inserting the completeness relation in the full Hilbert space, the full 2—point function becomes
(for z° > 4°)
<QT(P@)dW)I2 > = < Q)| >< QYd(y)|Q >

3 n A~
* Z/ (%B 2E§(A) < Qo)A >< Apld)[Q > . (7.92)
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The first term vanishes by symmetry (scalar field) or by Lorentz invariance (spinor and gauge
fields). By translation invariance ¢(z) = exp(iPz)$(0) exp(—iPz). Furthermore [Ap >= U|X\o >
where U is the unitary transformation which implements the Lorentz boost which takes the
momentum 0 to the momentum p. Also we recall that the field operator (5(0) and the ground
state |2 > are both Lorentz invariant. By using all these facts we can verify that < Q|¢(x)|\, >=
e~ < Q|p(0)|Ag >. We get then

< QTS ()b )Q >= Z/ R O (7.93)

In this expression p° = E,(\). We use the identity (the contour is closed below since z° > y)

d*p i - d3p 1 .
—ip(z—y) _ el —ip(z—y) 7.94
/ @m)t p? —m2 +ic / (2m)3 2E,(\) © (7.94)

Hence we get

<ArG@imIe> = 3 / i ¢V < OO >

ZDF v —y;ma)| < QUO)ho > I (7.95)
A

We get the same result for z° < y°. We put this result into the suggestive form

<OTG@IWNO >= [ GEDela =y M) (7.96)
p(M?) = (2m)6(M? — m3)| < QI$(0)[ X > |*. (7.97)

A

The distribution p(M?) is called Kéllén-Lehmann spectral density. The one-particle states will
contribute to the spectral density only a delta function corresponding to the pole at the exact
or physical mass m,. of the scalar ¢ particle, viz

p(M?) = (2m)6(M? —m2)Z + ... (7.98)

We note that the mass m appearing in the Lagrangian (the bare mass) is generally different from
the physical mass. The coeflicient Z is the so-called field-strength or wave function renormaliza-
tion and it is equal to the corresponding probability | < Q|$(0)|Ao > |*. We have then

< QT (¢(2)(y))|Q >= ZDp(x — y;m,) + /Oo AT 5 (= g M) (M), (7.99)

4m?2 27

The lower bound 4m?2 comes from the fact that there will be essentially nothing else between the
one-particle states at the simple pole p? = m? and the 2—particle and multiparticle continuum
states starting at p? = 4m?2 which correspond to a branch cut. Indeed by taking the Fourier
transform of the above equation we get

/ BP0 < QT (G@)dy)Q >= —— 2 4 / TAME i ey (7a00)
p? —m2 + e am2 2T p2 — M? + e
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For a spinor field the same result holds. The Fourier transform of the full 2—point function
< Q|T(1/A1(x)1/3(y))|Q > is precisely given by the free Dirac propagator in momentum space with
the physical mass m,. instead of the bare mass m times a field-strength normalization Zs. In
other words

iZs(y.p+ m;)
p? —m2 + e

/d‘*:ceip(z*y) < QT (2)d(y))|Q >= (7.101)

7.5 One-loop Calculation II: Electron Self-Energy

7.5.1 Electron Mass at One-Loop

From our discussion of the processes e~ + et — u~ +pu™, e~ +pu~ — e~ + = and electron
scattering from an external electromagnetic field we know that there are radiative corrections to
the probability amplitudes which involve correction to the external legs. From the corresponding
Feynman diagrams we can immediately infer that the first two terms (tree level+one-loop) in the

perturbative expansion of the fermion 2—point function [ d*ze@=¥) < Q|T(1h(x)1(y))|Q > is
given by the two diagrams 2POINTFER. By using Feynamn rules we find the expression

N "7 i(y.p+ me) i(yp+me) .
dAzeP(@—v) QlT Q — ityp et
[tz <arti@iee > = ZHELRA IR ey
/ Ak i(yk4+me)  —inu (i) i(y.p+me)
2m)* k2 —m?2 +ie (p — k)% + ie p* —m2 + ie

_ iyptme) | ilyptme) o i(p A me)
- 2 _ 2 272~(_Z2())272-'
p ms 4+ p mg + 1€ p mg + 1€
(7.102)
The second term is the so-called self-energy of the electron. It is given in terms of the loop
integral 3o (p) which in turn is given by
d*k i(y.k+me) —i
—i = —ie)? 12 € )
22(p) (—ie) /(27r)47 kangrieW“(pfk)QJrie
Sometimes we will also call this quantity the electron self-energy. The two-point function

[d*ze? =y < QIT()(x)P(y))|Q > is not of the form (7.101). To see this more clearly we
rewrite the above equation in the form

(7.103)

ip(x— P 7 i i ; i
/d4$e P < QT () d()|2 > = + (—i%a2(p) ———
YD — Me YD — Me YD — Me
) 1
" s ———. (7.104)
YD — Me YD — Me

By using now the fact that Ya(p) commutes with .p (see below) and the fact that it is supposed
to be small of order e? we rewrite this equation in the form

dze?@Y < QIT((@)0)0 > = ! . 7.105

/ TP ¥.p — me — Xa(p) ( )

This is almost of the desired form (7.101). The loop-integral Xs(p) is precisely the one-loop
correction to the electron mass.



172 YDRI QFT

Physically what we have done here is to add together all the Feynman diagrams with an
arbitrary number of insertions of the loop integral 3a(p). These are given by the Feynman
diagrams SELF. By using Feynamn rules we find the expression

+ (—i%2(p)) ———
YP—Me 7P —Me YD — Me
(—i%2(p)) ————(—i¥2(p))

Y-P— Me VP — Me Y-P— Me

/ dzeP@Y) < QIT(W(2)d(y))|Q >

+ o+

) 1 1
——— (14 So(p)———— + (2 (p)—————)? +
vP— Me VP — Me vP— Me

(7.106)

This is a geometric series. The summation of this geometric series is precisely (7.105).

The loop integral —iXs(p) is an example of a one-particle irreducible (1PI) diagram. The one-
particle irreducible diagrams are those diagrams which can not be split in two by cutting a single
internal line. The loop integral —i¥s(p) is the first 1PI diagram (order e?) in the sum —iX(p)
of all 1PI diagrams with 2 fermion lines shown on ONEPARTICLE. Thus the full two-point

function [ d*ze®@=¥) < QIT(4(x)1b(y))|Q > is actually of the form

Y-p 7 Me + Y.P— Me (_ZZ(p))’Yp — Me .
(S (p)) ———— (~iZ(p)) ——

Y-P— Me Y-P— Me Y-P— Me

/ Az < QIT()(@) ()2 >

+ +

i
y.p—me—X(p)

(7.107)
The physical or renormalized mass m,. is defined as the pole of the two-point function [ d*ze?E—Y) <
QT (P ()Y (y))|2 >, viz

(v-p = me = X(p))y.p=m, = 0. (7.108)

Since X(p) = X(7.p) (see below) we have

My — me — S(my) = 0. (7.109)
We expand (p) = 5(y.p) as
2(0) = mr) + (0 = ) e, + 00 = ). (7.110)
Hence
vp—me—=X(p) = (yp— mr)Zi2 —O((y.p —my)?)
= om0 ((rp = m) (7.111)
Zyt=1- d—2|7,p:mr. (7.112)
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Thus
/ dze? @Y < QIT(H(2) ()0 > = % (7.113)

This is the desired form (7.101). The correction to the mass is given by (7.109) or equivalently
dmy = my —me = X(m,.). (7.114)
We are interested in just the one-loop correction. Thus
dmy = m, —me = Sa(m,). (7.115)

We evaluate the loop integral Xo(p) by the same method used for the vertex correction, i.e. we
introduce Feynman parameters, we Wick rotate and then we regularize the ultraviolet divergence
using the Pauli-Villars method. Clearly the integral is infrared divergent so we will also add a
small photon mass. In summary we would like to compute

d*k , i(y.k+me) —i —1
— = —ie)? H = - :
i%2(p) (—ie) /(QW)N k2mg+ievu[(pk)zﬂ2+i€ (pk)2A2+i€:|
(7.116)

We have (with L=k — (1 —21)p, A, = —z1(1 — 21)p? + z1m? + (1 — 21)p?)

1 1 1
k? —m? +ie(p— k)2 — p? +ie /dﬂc1 . Nk
o182 2 i) 4 (1= ) (o= R g )
/d ! (7.117)
= Ll>—r Y= .
(L2 = A, +ie)?
Thus
—iXa(p) = / 57) 77 (*yk+me)'y#[/dz1( A oz /d:cl AA+'L€) }

_62/ (‘2’;’;4(_27.k+4m6)[/d$1( A P /d””1 AA+ze) }
= —e2/dx1(—2(1—$1)7-P+4me)/ (;lﬁ) [( 7A#+Ze) (L2 *AlAWLZE) ]
2/clxl(—2(1 —361)7-17+4me)/ ?gf)i {(L% JFIAH)Q (L% leAA)Q}

ie? 3 1 1
2 /d%l(_Q(1 —xl)v.p+4me)/T dr{(ﬂ +A,)? B (r? +AA)2]

I
|
.
(9]

AVN

dx1(—2(1 — z1)y.p+ 4me) In A (7.118)
m

(1 71‘1)A2
—1(1 = 21)p® + @1mZ + (1 — a1)p

olp) = %/dzl(—(l—xl)’y.erQme)ln S (7.119)
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This is logarithmically divergent. Thus the mass correction or shift at one-loop is logarithmically
divergent given by

ame x1A?
om, = Xa(y.p = m, dr1(2 — 1 . 7.120
me=Sap=m) = G e gt (1)
The physical mass is therefore given by
« x1A?
r = ell4+— [ dzi(2— 1 . 7.121
m m { + 27r/ 21(2—21)In A2 mZ o ( )

Clearly the bare mass m, must depend on the cutoff A in such a way that in the limit A — oo
the physical mass m,. remains finite.

7.5.2 The Wave-Function Renormalization 7,

At one-loop order we also need to compute the wave function renormalization. We have

_ d¥s
Zyt = 12 e
2 dv.ph'p_ -
[ 1—x1)A2
= 1*3/(11'1 7(17$1)1H (2 1'1) B Y
o | —z1(1 —z)p2 +ax1m2+ (1 —z1)p
1'1(171'1) :|
+ (—(1-— D+ 2me) (2.
( ( zl)’}/p m )( 7p)—$1(1—$1)p2+3€1m§+(1—3€1)u2 I
[ 1—x1)A? 2m2z (1 — 1
= 1—= [dn|—(1—21)ln— (1= 1) mle( T)UF21) 109
2 L zimZ + (1 — z1)p? rimg + (1 — z1)p?
Thus
Zy = 1+62,. (7.123)
1 2 2
1-— A 2 1-— 1
522:1/ dxl{(lscl)ln (ma)A L 2me (1 - ) +fl)} (7.124)
27 0 xlme+(1_$1)u xlme—i_(l_‘rl):u’

A very deep observation is given by the identity §Z2 = 6F;(0) = Fy(0) — 1 where F;(q?) is given
by (7.68). We have

A2 2 1 2_4
0F1(0) = %/dwdydz 5($+y+z_1)[1n z m2(1 +x x)]

(L= a)m? +an? | (1—a2)m2 +ap?
(7.125)

Clearly for = 0 we have fol dy fol dz 6(y+2z—1) = 1 whereas for z = 1 we have fol dy fol dz §(y+
z) = 0. In general

1 1
/dy/ dzé(x+y+z—1)=1—ua. (7.126)
0 0

The proof is simple. Since 0 < z < 1 we have 0 < 1—2 <1 and 1/(1 —z) > 1. We shift the
variables as y = (1 — z)y and z = (1 — )z . We have

1 1 Y(-2) | /0-z) 4 .
/dy/ dzd(z+y+2z—-1) = (1—:5)2/ dy/ dz My +2 —1)
0 0 0 0 -z

= 1-uz (7.127)
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By using this identity we get

! xA? m2(1 + 2% — 4z)
0F1(0) = — [de(1— 1 <
1(0) 27 & z)[ . (1—2)?m2+zp? (1 —2)?m2+ zp?
a [ xA? A2 m2(1 —x)(1 + 2% — 4x)
= 5 dxxlnl_ 53 5 +(1—2z)ln T 22 5 + T 22 2 }
@ L (L—2)*mg +zp (1 —2)*mg + xp (1 —x)*mZ + xp
a [ [ 1 A2 N d(z — 2?) 1 A2 m2(1 —2)(1 + 2 — 4x)
= — [dz|zln n
27 | (1 —2)?2m2 + xp? dx (1 —2)?m2 + ap? (1 —2)?2m2 + zp?
N [ 1 A2 N A2 m2(1 —x)(1 + 2 — 4x)
= oL [ T AT 2,2 ; — (@ —27) I 2 — 2m2 2
27 | (1—2)?’m2+zpu de (1 —x)?>m2+zu (1—x)?2m2 +zu
N P -xln A2 3 m2(1 —x2)(1 —2%)  m2(1 —2)(1 + 2% — 42)
27 | I=2)?m2+azp® (1 —1x)2m2 + zp? (1 —x)2m2 + zp?
N -x In A2 ~2miz(l—=)2 - =)
27 | (1 —2)?2m2 + zp? (1 —x)2m2 + zp?
a (1 —t)A? 2m2t(1 —t)(1 +t)
= — [dt|(1-1)] - < . 7.128
g [0 e e (7128)

We can immediately conclude that 6F;(0) = —6Z,.

7.5.3 The Renormalization Constant 7;

In our calculation of the vertex correction we have used the bare propagator i/(y.p — m.) which
has a pole at the bare mass m = m, which is as we have seen is actually a divergent quantity. This
calculation should be repeated with the physical propagator iZs/(y.p — m,). This propagator is
obtained by taking the sum of the Feynman diagrams shown on SELF and ONEPARTICLE.

We reconsider the problem of scattering of an electron from an external electromagnetic field.
The probability amplitude is given by the formula (7.13). We rewrite this formula as !

<Ps outlpsin> = — [ﬂs (p)(v.p — me)] /d4z/d4z, emivetin's o Q|T(1/A)a/ (2 ) (z))|Q >

x [Wp—mafwﬂ- (7.129)

(03

We sum up the quantum corrections to the two external legs by simply making the replacements

yp —me — (yp —my)/Za, v —me — (V.0 — M)/ Za. (7.130)

The probability for the spinor field to create or annihilate a particle is precisely Z, since <
Qip(0)|p,s >= /Zau®*(p). Thus one must also replace u*(p) and @ (p') by vVZyu*(p) and
Zai® ().
Furthermore from our previous experience we know that the 2-point function [ d*z [ d*z’ e—iretiv's o

QT (4, (x,)z/ia(ac))m > will be equal to the product of the two external propagators i Zs/(v.p —

I'n writing this formula in this form we use the fact that |0 out >= |0 in >= |0 > and |Q >= |0 > /4/< 0]0 >.
Recall that dividing by < 0|0 > is equivalent to taking into account only connected Feynman graphs.
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m,.) and iZg[(y.p, —m,) times the amputated electron-photon vertex [ d*z [ d*z’ e—ipetip's
QT (1), (2 )1 (2))]Q >amp. Thus we make the replacement

~ Y iZb ~ Y iZQ
< QT (Yo (2 )ha(2))|2 >— r —m <QUT (Y (2 )ha(z))[Q > pop— (7.131)

The formula of the probability amplitude < ]5/ s out|ps in > becomes

<ps out|ps in > = ZQ’Z_LS/ (p/)a/ /d4z/d4z/ emiprtin's o Q|T(1/A)a/ (z/)d:)a(z))m >amp 4 (P)a-
(7.132)

The final result is that the amputated electron-photon vertex I'y (p,, p) must be multiplied by
Zsy, Viz

<5 outlpsin> = —ze( Y (0) 22T p)u <>)A*b“kgf<q>. (7.133)

What we have done here is to add together the two Feynman diagrams VERTEXCOR. In the
one-loop diagram the internal electron propagators are replaced by renormalized propagators.
In general an amputated Green’s function with n incoming lines and m outgoing lines must
be multiplied by a factor (v/Z2)"™™ in order to yield correctly the corresponding S—matrix
element.
The calculation of the above probability amplitude will proceed exactly as before. The result
by analogy with equation (7.71) must be of the form

[ oo . —S/ ’ ’ 10 s .
<ps out|psin> = —iew® (p)|Fi(q?) + )‘—WqFQ(qQ) u®(p). ANPAKET () (7.134)

In other words

103y q"
2my,

10 q” 2 2 ioxq 2
——F AF, ——= AF . 1
o 5(q°) + MAFL(¢%) + o, 2(q7). (7.135)

ZoTA(p,p) = nwFi(¢®)+ Fy(q?)

= R+

We are interested in order «.. Since Zo = 14075 where 6Z5 = O(a) we have ZoI'y = T'\+3dZ-T) =
Ty 4+ 8Z3yx to order a. By using also the fact that F, = O(«) we must have AF, = 0. We
conclude that we must have AFy = §Z5. Since §Z3 = —§F1(0) we have the final result

Fi(@®) = Fi(d®) +AFR(d)
= Fi(¢®) + 62
= Fi(¢°) — 6F1(0)

= 14+ 6F(¢%) — 6F1(0)

= Fren(g). (7.136)

We introduce a new renormalization constant Z; by the relation
ZPA(g=0) = . (7.137)

The requirement that F7°"(0) = 1 is equivalent to the statement that Z; = Zs.
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7.6 Ward-Takahashi Identities

‘Ward-Takahashi Identities: Let us start by considering the 3—point function Q#T(j“(z)ﬂ;(y)ﬂ;(y/)
For yo > y/O we have explicitly

T @)d)i(y) = 6o —y0)i* @Py)b(y) + 6y — 20)d )iy )" @)
+ 0(yo — 20)0(z0 — yo)(y)j" (@)Y ). (7.138)

Recall that j’“ = e@v“z/}. We compute immediately that (using current conservation 0, j“ =0)

AT (@) by ) = 8(wo— o) @)d(y)d(y) — 5(y_o 20)0(y)d(y )i (@) )
— 6(yo — w0)O(wo — yo)¢(§l)ﬂo($)¢( y)+0(yo— )5(~To — o) ()7 (x)d(y)
= S0 —y0) 1), bW ) — S(yg — wo)b(w) [y ), 1°(x)]. (7.139)

We compute [j(x), ()] = —e6*(# — )i (y) and [$(y), j°(x)] = —ed*(@ — 7 Ji(y). Hence we
get

AT (" (x)d(y)d(y)) = —ed*(z—y)b(y)d(y) +edly —2)d(y)db(y).  (7.140)
The full result is clearly

TG @)dw)iy) = (_654<$_y>+65<y'_x))m(ym(y/». (7.141)

In general we would have

n —

OuT (" (@)D (y) b (u)) D)y A% (1)) = Y ( — ed(z — i) + ed(y; — x>)T<¢<y1>¢<y;>...

i=1
X (Y ) (y,) A% (1)) (7.142)
These are the Ward-Takahashi identities. Another important application of these identities is
9, T(7*(x) A% (21)...) = 0. (7.143)

Exact Photon Propagator: The exact photon propagator is defined by

iDM(x—y) = <0 out|T(A*(z)AY (y ))|o in >
= < 0in|T(AL (z )AV S)|0 in >
= DY (z /d4 /d42:2 < 0 in|T(A" (2) A%, (y) AP (21) AP (2))]0 in >

x <0 111|T(]1107p1 (zl)]u[w,2 (22))]0 in > +...

= D (x—y)+ (—i)? / d*z21iD (2 — 21) / d*22i DY (y — 22) < 0 in|T (Jin,p, (21)

X Jinps (22))]0 in > +.. (7.144)
This can be rewritten as

iDM(x—y) = iDE(z—y)—1i / d4zliD§ff’l (x—2)<0 in|T(jA'in,p1 (zl)fl;’n(y)< —4 / d%g/iﬁf (22)

X Jinps (zQ)))|0 in > +.. (7.145)
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This is indeed correct since we can write the exact photon propagator in the form

iDM(z—y) = iDE(z—y)— i/d4z1iD%p1 (z — 21) < 0 out|T(j,, (21) A" (y)|0 in > .

iDY (x —y) — z'/d‘l,zliD%p1 (21) < 0 out|T(J,, (21 + x) A (y)|0 in > .
(7.146)

See the Feynman diagram EXACTPHOTON. By using the identity (7.143) we see immediately
that

iOpaD" (@ —y) = i0u.DF (x—y). (7.147)
In momentum space this reads
WD (q) = quD¥ (9). (7.148)

This expresses transversality of the vacuum polarization (more on this below).

Exact Vertex Function: Let us now discuss the exact vertex function V* (p/, p) defined by

—w@m%%ﬁ—p—mvwﬁm%=/f%/ﬁ%{/¢we“5rwrw><Qﬁ@%@¢@ﬂ&m»M>.
(7.149)

See the Feynman graph VERTEXEXACT1. We compute (with D%’ (q) = —in” /(¢* + i€))

/ d*ze™"" < 0 out|T(A*(x)ih(21)d(y1))[0 in > = / d*ze™" < 0 in|T (A% (@)dhin(@1)in (1) )]0 in >
= —i/d4$efiqx/d4z < 0 in|T(AY (2) A% (2)Jinw (2)
X in(21)din(y2))|0 in > +.
= —i/d4xe_iql/d4ziD?V(:E —2) < 0 in|T(Jin(2)
X Gin(@1)din(11))[0 in > .
= —z‘D?”(q)/d%e‘m <0 in|T(3in,V(z)"Z)in(zl)
X Pin(y1))]0 in > +... (7.150)

This result holds to all orders of perturbation. In other words we must have

[dtae <@ @iEi@)R > = Do) [ e < QTG @ E)d)I0 >
(7.151)

It is understood that D*¥(q) is the full photon propagator. We must then have

—ie(2m)**(p —p— )V (P . p) = *iD“”(q)/d“w/d“m/d“yl i TPu=a) < QIT(, () (1)

D)2 > . (7.152)

X
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In terms of the vertex function I'* (pl, p) defined previously and the exact fermion propagators
S(p), S(p ) and the exact photon propagator D*”(q) we have

Vi p) = DM (q)S(p)Tu(p,p)S(p). (7.153)

This expression means that the vertex function can be decomposed into the QED proper vertex
dressed with the full electron and photon propagators. See the Feynman graph VERTEXEXACT.
We have then

—ie(2m)*0"(p" —p — @)D" (9)S(p )T (p ,p)S(p) = —iD“”(q)/d4x/d4x1/d4y1 B )
X < QT (o (@) (1)d(y1))Q > . (7.154)
We contract this equation with g, we obtain
—ie(2m)*6* (0 —p — 9)q. D" (9)S® )T (p ,p)S(p) = *iquDW(q)/d‘l:c/d‘lzl/d‘lyl 1P 21 -py1—2)
X < QT (o (@) (1) (11))]2 > . (7.155)
By using the identity g, D""(q) = ¢, D%’ (q) = —iq”/(q* + i€) we obtain
—ie(2m)'54(p' —p— q)S(B )" Tu(p,p)S(B) = —ig / d'z / d'y / dhyy &0 FPn—e)
X < QTG @) b)) >
= / d'z / d'zy [ d'y

x 9" < QT(, (2)d(x) zE(yl ) > . (7.156)

i(p Z1—py1—qx)

By using the identity (7.141) we get

—ie(2m)*0'(p —p— 9)S(P )’ Tu(p . p)S(p) = —/d4x/d4x1/d4y1 ¢#(P @1 —py1—g2)
X (—edt(x —a1) +ed(z — yl)) < QT () ()| >

/ dar / diyy @ —T c=IPY < QIT () D())|Q >
/ d'z, / dbyy €T eI < QT ()b (31))]Q >

= e2m)'ip —p—a)(Sp) — Sp)). (7.157)

In the above equation we have made use of the Fourier transform

. = d4k ik
< QT (1) b(y)|Q >= / S (k) e, (7.158)
We derive then the fundamental result
—iS® )T, (0 .p)SP) = Sk —Sk). (7.159)

Equivalently we have

—ig"T,(p,p) = S7'p)—S'() (7.160)
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For our purposes this is the most important of all Ward-Takahashi identities.

We know that for p near mass shell, i.e. p> = m?2, the propagator S(p) behaves as S(p) =
iZ/(y.p —m,). Since p/ = p + ¢ the momentum p/ is near mass shell only if p is near mass shell
and ¢ goes to 0. Thus near mass shell we have

—ig"Ty(p,p) = —iZ5'¢" W (7.161)
In other words
Lu(p.p) = Z3'y". (7.162)
The renormalization constant Z; is defined precisely by
Lu(p.p) = Z3'". (7.163)
In other words we have
7 = Zs. (7.164)

The above Ward-Takahashi identity guarantees F7°"(0) = 1 to all orders in perturbation theory.

7.7 Omne-Loop Calculation III: Vacuum Polarization

7.7.1 The Renormalization Constant 7Z; and Renormalization of the
Electric Charge

The next natural question we can ask is what is the structure of the exact 2—point photon
function. At tree level we know that the answer is given by the bare photon propagator, viz

— i
q? + e

/ dgcae=) < QIT(Ar@)A" (y))Q > = (7.165)
Recall the case of the electron bare propagator which was corrected at one-loop by the electron
self-energy —iXo(p). By analogy the above bare photon propagator will be corrected at one-loop
by the photon self-energy iI14”(g) shown on figure 2POINTPH. By using Feynman rules we have

d*k i(y.k+me)

I (q) = (_1)/ n tr(—iev“)kg e i(y.(k+q) +me)

(k+ )2 — m2 + ic

(—iey") (7.166)
This self-energy is the essential ingredient in vacuum polarization diagrams. See for example
(7.7).

Similarly to the electron case, the photon self-energy 114" (¢) is only the first diagram (which
is of order e?) among the one-particle irreducible (1PI) diagrams with 2 photon lines which we
will denote by iI1#¥(q). See figure 2POINTPHI. By Lorentz invariance I1#¥(g) must be a linear
combination of »* and ¢"*”. Now the full 2—point photon function will be obtained by the sum
of all diagrams with an increasing number of insertions of the 1PI diagram iII*¥(q). This is
shown on figure 2POINTPHE. The corresponding expression is

. R . MV _,L'nﬂ _,L'nll
d'ze 1Y) < QIT(AM@) A () > = 2T (g) 5 —lo
[ e [T (A% () 4 (9)) e 1 ()
—inly —iMox 1x —iny
179 (q) =——ilI1""(q) —— +(7.167
t i (Q)qQHGZ (q)qQH6 +( )
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By comparing with (7.146) we get

| . A i _in?
fi/d4:ce“1(m_y) /d4zliD§ff’l (z1) <0 owt|T(jp, (21 +2)A"(y)|0in > = 2 I’;Ginpa(q)ﬁ
+ .. (7.168)

By contracting both sides with ¢, and using current conservation GMJA'” = 0 we obtain the Ward
identity

¢y (q) = 0. (7.169)
Hence we must have
0" (q) = (¢*n"" — ¢"q")11(¢”). (7.170)

It is straightforward to show that the exact 2—point photon function becomes

. _ ~ ~ —amMV —“7” qpql/
Az < QIT(AR () A )0 > = L(p — LN+ 112 + ...
[dtacate copir@iraie> = St - T )
—ig'q” —1 1 w44
- - 7,171
(¢*)? +q2+i61*H(q2)( q* (L171)

This propagator has a single pole at ¢ = 0 if the function II(¢?) is regular at ¢ = 0. This is
indeed true to all orders in perturbation theory. Physically this means that the photon remains
massless. We define the renormalization constant Zs as the residue at the ¢ = 0 pole, viz

1

Zgim.

(7.172)

The terms proportional to ¢*¢” in the above exact propagator will lead to vanishing contributions
inside a probability amplitude, i.e. when we connect the exact 2—point photon function to at
least one electron line. This is another manifestation of the Ward-Takahashi identities. We give
an example of this cancellation next.

The contribution of the tree level plus vacuum polarization diagrams to the probability am-
plitude of the process e™ + et — u~ + p+ was given by

) 84 p = K =)@ 0 ) (T + T ) ) (0 (),
(7.173)
By using the exact 2—point photon function this becomes
—n) 84— K =)0 0 ) (T e T O ) ) @ 0 ()
(¢®)?  ¢*+iel—1II(¢?) q*

/

We can check that @° (p/)vuq“us(p) = a (p/)(vup“ - vup/“)us(p) = 0. We get then the proba-
bility amplitude

—REm) Sk p— K — )@ )y () (q;jie — 111 v nW) @ (K yyu” (). (7.175)
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For scattering with very low ¢ this becomes

~en) 8+ p =K )@ 0 0) (e ) @ O () =

—e2(2m) 10tk +p— K — p)@ (0 )yuut(d)) (q:ienﬂ”) @ (K yyu’ (k). (7.176)

This looks exactly like the tree level contribution with an electric charge er given by
er = e\ Z3. (7.177)

The electric charge ep is called the renormalized electric charge. This shift of the electric charge
relative to tree level is a general feautre since the amplitude for any process with very low
momentum transfer ¢> when we replace the bare photon propagator with the exact photon
propagator will appear as a tree level process with the renoramlized electric charge eg.

Using the definition of the renormalized electric charge er the above probability amplitude
can now be put in the form

’

—2@n)t stk p— K — )@ (p U

q® +iel—1I

4 /

(qg)w> @ Ky (K) =

/

o)

~h@n) 840 = K =)0 0 0) (e ) @ () =

20t o= K =)@ 0 o) e ) @ O () (1178)

The effective charge e.g is momentum dependent given by

1 —TI(0) e?
2 2
= = ) 1
i = R P) 1T (747
At one-loop order we have II = I, and thus the effective charge becomes
2 ¢k
eiqg = . 7.180
=TT () 1 (0) (7.180)
7.7.2 Dimensional Regularization
We now evaluate the loop integral I15(g?) given by
d*k (v.k 4+ m.) (v-(k+q) +me)
147 (q) = ie® tryH A < 7.181
2 () = ie /(27r)4 a k:Qfmquie7 (k+q)? —m2 +ie ( )
This integral is quadratically UV divergent as one can see from the rough estimate
A
11
5" (q) ~ k> dk——
1
~ 51\2. (7.182)

This can be made more precise using this naive cutoff procedure and we will indeed find that it
is quadratically UV divergent. This is a severe divergence which is stronger than the logarithmic
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divergences we encountered in previous calculations. In any case a naive cutoff will break the
Ward-Takahashi identity Z; = Zs. As in previous cases the Pauli-Villars regularization can be
used here and it will preserve the Ward-Takahashi identity Z; = Z>. However this method is
very complicated to implement in this case.

We will employ in this section a more powerful and more elegant regularization method known
as dimensional regularization. The idea is simply to compute the loop integral II5(¢g?) not in 4
dimensions but in d dimensions. The result will be an analytic function in d. We are clearly
interested in the limit d — 4.

We start as before by introducing Feynman parameters, namely

! ! /1d /y Sa+y—1) !
x r+y-—
k2 —m2+ie (k+q)2 —m?2 +ie 0 0 Y

2

w(k? —mZ +ie) + y((k + ¢)* — m + ie)

(k+(1—2)9)?+x(1 —x)¢g? — m2 +ie

= /de[

B
lQ—A—i—ie]

1
/d:c 1 5
*

We have defined | = k + (1 — 2)q and A = m? — z(1 — z)¢>. Furthermore

try (y.k +me)y” (v.(k +q) +me) = 4k (k+q)" + 4K (k + )" — 4" (k.(k + q) — mg)

= 4" - (1 —2)¢")(" + x¢") + 41" — (1 — 2)¢")(I* + x¢")

= (= A= 2)g).(1+ 2q) — mg)
= 4" —4(1 — x)zghq” + 4V — 4(1 — x)xq” q"

4t (12 — (1 — x)g® — m?) + ... (7.184)

We have now the d—dimensional loop integral

d
"(q) = 4@'62/ (;ﬂid (M” S 2(1 - 2)2g g — (P — a(1 — 2)g? — mi))
! 1
x /0 dv ﬁ (7.185)
12— A+ ie]

By rotational invariance in d dimensions we can replace [#I” by I?n** /d. Thus we get

HHV() _ 4'2/1d (2_1) uu/ ddl l2
2 )= R f e YT | end (2 A 1 ie)?

d
- (20— 2)zq"q” — " (x(1 — 2)g* + m?)) / (;wgd = Al 7|

(7.186)

(7.183)



184 YDRI QFT

Next we Wick rotate (d%l = id¥l and [? = —1%) to obtain

¥ (q) = —42/1d (_2+1) W/&L
S S A A OO LA WNE

dlp 1
o 2(1 — 7% 1 1— 2 2
(2(1 — z)zq"q” — 0" (2(1 — 2)q +me))/—(2ﬂ)d [CEwNE
(7.187)
We need to compute two d—dimensional integrals. These are
dlp 13, 1 r?
——— & ___ = _—_ [4Q L
/@mu%+AP (%w/ d/T NGEPNE
11 a 1
= — [ dQ )2 dr?
ayia | 0 [
11 1 ! a a
= - dQ) drz72(1—x)2. 7.188
(27r)d2A1—%/ d/o e (7155)
dg 1 g1
= dQ d
/ (2m)d (1, + A)? / d/ +A)
= Q
(2m) (2m)d 2 /d d/ T2 + A)
= (%)MN — /dﬂd/ do ' =% (1— )2 L. (7.189)

In the above two equations we have used the change of variable x = A/(r? + A) and dz/A =
—dr?/(r? + A)2. We can also use the definition of the so-called beta function

' L(a)l(B)
B(e,B) = [ do 2" '(1 —x)P 7t = =2, 7.190
@n = [ (1-ay = g (7.190)
Also we can use the area of a d—dimensional unit sphere given by
2 d
/de = W; (7.191)
ING))
We get then
d4l 12 1 1 T@2-4
/ L = dd (2 2). (7.192)
(2m)d (13, + A)? (4m)z A=z 5 -1
/ dlp 1 BN re-— é) (7.193)
2m)d (13 +A)2  (4m)%F A2-3 27 '

With these results the loop integral 15" (q) becomes

_d 1
5" (q) = —462%/0 dx o [ AtV — (2(1 —z)xg"q” — " (z(1 —x2)¢* + m ))
_ 2F(2_g) ! 2$(171‘) 2 v wov
= 4e (471_)% /0 d = (¢“n qa"q") (7.194)
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Therefore we conclude that the Ward-Takahashi identity is indeed maintained in dimensional
regularization. The function I12(q?) is then given by

2y 21—‘(2_%) ' 2(1 — z)
Iy(q®%) = —4e (an)? /Od:c PR (7.195)

We want now to take the limit d — 4. We define the small parameter ¢ = 4 — d. We use the
expansion of the gamma function near its pole z = 0 given by

re-9 -1 =2_14100. (7.196)
2 2 €
The number v is given by v = 0.5772 and is called the Euler-Mascheroni constant. It is not
difficult to convince ourselves that the 1/¢ divergence in dimensional regularization corresponds
to the logarithmic divergence In A2 in Pauli-Villars regularization.
Thus near d = 4 (equivalently ¢ = 0) we get

IL(¢*) = 7(411%)2(2 -7+ O(e))/o dz 2z(1 — x)(1 — glnAJr O(€?))
= —2?04 01 dr z(1 — x)(% —InA —v+0(e)
= —2?04 ; dx x(1 — z)(% —In(m? — 2(1 — 2)¢®) — v + O(¢)). (7.197)
We will also need
2a [* 2 )
I,(0) = -/, dx x(1 — x)(g —In(mZ) — v+ O(e)). (7.198)
Thus
(q%) — [,(0) = 7270‘ [ dw a1 fx)(lnm +0(e).  (7.199)

This is finite in the limit ¢ — 0. At very high energies (small distances) corresponding to
—q2 >> mi we get

Ma(g?) — T(0) = _270‘ [ o 2(1 - 2)(~ (1 + 2(1 - 1) =L ) + 0(e))
o - 5 m2
= G moE o)
_ag - 5 m?2
= S mlE - § o) (7:200)

g = °R . (7.201)
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The electromagnetic coupling constant depends therefore on the energy as follows

2

aff(_q ) _ aR
€ - 2
e T g - § 0]

(7.202)

The effective electromagnetic coupling constant becomes large at high energies. We say that the
electromagnetic coupling constant runs with energy or equivalently with distance.

7.8 Renormalization of QED

In this last section we will summarize all our results. The starting Lagrangian was
1 L -
L = —ZFWF“ + Y (ivH0, — m)y — ey P AL (7.203)

We know that the electron and photon two-point functions behave as

o N = 1z
/d4$61p(m v) < Q|T(’L/J($)’lb(y))|ﬂ >= W + (7204)
. R . —invZ
/ dize 1Y) < QIT(AM(2)AY ()0 > = ﬁ +o (7.205)

Let us absorb the field strength renormalization constants Zs and Z3 in the fields as follows

Ve =0/ 2y, A= A1)\ Zs, (7.206)
The QED Lagrangian becomes
L= R+ 2ol (i — ) — eZoy/Zalh, AL (7.207)
The renormalized electric charge is defined by
eZo\/Zs = erZ;. (7.208)
This reduces to the previous definition eg = e\/Z3 by using Ward identity in the form
7y = Zs. (7.209)
We introduce the counter-terms
Zy =146, Zo=1+4+62, Z3 =1+ 63. (7.210)

We also introduce the renormalized mass m, and the counter-term 9,,, by

Zom — o 4 6, (7.211)
We have
1 - . "
L = 4 THVF#U + %(W“au — My )Py — eRwT’yMwTAlTL
1) - _
— ZEpu F (057" 9 — S )tor — erdithyyuthr AL (7212)

4
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By dropping total derivative terms we find

1 o _
L = *ZF”LVF#V + 7/)7“(17#8# - mr)w’” - eRwTV“wTAﬁ

— %Am(f&a Y + 0*0") Ary + Yy (102740, — O )¥r — erO1 Yy R AR (7.213)
There are three extra Feynman diagrams associated with the counter-terms 41, d2, d3 and 6&,,
besides the usual three Feynman diagrams associated with the photon and electron propaga-
tors and the QED vertex. The Feynman diagrams of renormalized QED are shown on figure
RENQED.

The counter-terms will be determined from renormalization conditions. There are four
counter-terms and thus one must have 4 renormalization conditions. The first two renormaliza-
tion conditions correspond to the fact that the electron and photon field-strength renormalization
constants are equal 1. Indeed we have by construction

. LS i
/ dize’ 1Y) < QIT(AM(2)A% ()| > = /S (7.215)
T T qQ + i€ .

Let us recall that the one-particle irreducible (1PI) diagrams with 2 photon lines is I (q) =
i(n* ¢*—q"q")T1(g%). We know that the residue of the photon propagator at ¢> = 0is 1/(1—I1(0)).
Thus the first renormalization constant is

M(¢* =0) = 1. (7.216)

The one-particle irreducible (1PI) diagrams with 2 electron lines is —iX%(7.p). The residue of the
electron propagator at v.p = m, is 1/(1 — (dX(y.p)/dvy.p)|y.p=m,.). Thus the second renormal-
ization constant is

d¥(y.p)

pem. = 0. 7.217
oy lv.p (7.217)

Clearly the renormalized mass m, must be defined by setting the self-energy —iX(v.p) at v.p =
m,- to zero so it is not shifted by quantum effects in renormalized QED. In other words we must
have the renormalization constant

S(y.p=m,) =0. (7.218)
Lastly the renormalized electric charge er must also not be shifted by quantum effects in renor-

malized QED. The quantum correction to the electric charge is contained in the exact vertex
function (the QED proper vertex) —iel'*(p ,p). Thus we must impose

TH(p —p=0) =" (7.219)

7.9 Exercises and Problems

Mott Formula and Bhabha Scattering:
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e Use Feynman rules to write down the tree level probability amplitude for electron-muon
scattering.

e Derive the unpolarized cross section of the electron-muon scattering at tree level in the
limit m, — oo. The result is known as Mott formula.

e Repeat the above two questions for electron-electron scattering. This is known as Bhabha
scattering.

Scattering from an External Electromagnetic Field: Compute the Feynman diagrams
corresponding to the three first terms of equation (7.21).
Spinor Technology:

e Prove Gordon’s identity (with ¢ = p — pl)

@ (p )y ut (p) = 2;6 @ () [(p +p )M — ia‘“’qy] u® (p). (7.220)

e Show that we can make the replacement

’

@ () (fw-p+y7-q)v“(m-p+(y1)7-q)]us(p) o <p>[me<z+y><z+y1><2p“mew>

- (@+yl-1) <2me(p +p ) 4 Pyt — 3m?2

x 7“) —mZy(z+y— D" + mey(y

X (2p mev“)} u®(p).

Spheres in d Dimensions: Show that the area of a d—dimensional unit sphere is given by

vl

/de = EET%). (7.222)

Renormalization Constant Z;: Show that the probability for the spinor field to create or
annihilate a particle is precisely Z,.

Ward Identity: Consider a QED process which involves a single external photon with momen-
tum k and polarization €,,. The probability amplitude of this process is of the form iM*(k)e, (k).
Show that current conservation leads to the Ward identity k, M* (k) = 0.

Hint: See Peskin and Schroeder.

Pauli-Villars Regulator Fields: Show that Pauli-Villars regularization is equivalent to the
introduction of regulator fields with large masses. The number of regulator fields can be anything.
Hint: See Zinn-Justin.

—1)

(7.221)
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Pauli-Villars Regularization:
e Use Pauli-Villars Regularization to compute I15" (¢?).

e Show that the 1/€ divergence in dimensional regularization corresponds to the logarithmic
divergence In A% in Pauli-Villars regularization. Compare for example the value of the
integral (7.193) in both schemes.

Uehling Potential and Lamb Shift:

e Show that the electrostatic potential can be given by the integral

. d*q —e%e'®

e Compute the one-loop correction to the above potential due to the vacuum polarization.

e By approximating the Uehling potential by a delta function determine the Lamb shift of
the levels of the Hydrogen atom.

Hard Cutoff Regulator:
e Use a naive cutoff to evaluate 114" (¢%). What do you conclude.

e Show that a naive cutoff will not preserve the Ward-Takahashi identity Z; = Z5.

Dimensional Regularization and QED Counter-terms:
e Reevaluate the electron self-energy —iX(7.p) at one-loop in dimensional regularization.
e Compute the counter-terms §,, and ds at one-loop.

e Use the expression of the photon self-energy ¢II*¥ at one-loop computed in the lecture in
dimensional regularization to evaluate the counter term Js.

e Reevaluate the vertex function —iel'# (p/, p) at one-loop in dimensional regularization.
e Compute the counter-term §; at one-loop.

e Show explicitly that dimensional regularization will preserve the Ward-Takahashi identity
Zy = Zs.
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Part 111

Path Integrals, Gauge Fields and
Renormalization Group






Path Integral Quantization of Scalar Fields

8.1 Feynman Path Integral

We consider a dynamical system consisting of a single free particle moving in one dimension.
The coordinate is  and the canonical momentum is p = mi. The Hamiltonian is H = p?/(2m).
Quantization means that we replace x and p with operators X and P satisfying the canonical
commutation relation [X, P] = ih. The Hamiltonian becomes H = P?/(2m). These operators
act in a Hilbert space H. The quantum states which describe the dynamical system are vectors on
this Hilbert space whereas observables which describe physical quantities are hermitian operators
acting in this Hilbert space. This is the canonical or operator quantization.

We recall that in the Schrédinger picture states depend on time while operators are indepen-
dent of time. The states satisfy the Schrodinger equation, viz

H|s(t) >= z’h%hps(t) > (8.1)
Equivalently
[ihs () >= e R0, (1) > . (8:2)

Let |z > be the eigenstates of X, i.e X |z >= x|z >. The completness relation is [ dz|z >< x| =
1. The components of |1)s(¢) > in this basis are < z|¢)s(¢) >. Thus

s(t) > = /dm < alis(t) > |z > . (8.3)
<alps(t) > = <ale T (k) >
= /dmoG(m,t;xo,to) < $0|1/Js(t0) > (84)
In above we have used the completness relation in the form f dxglxg >< x| = 1. The Green

function G(z,t; xo, to) is defined by

i

Gz, t;xo,t0) = < axje” #HE)|z > (8.5)
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In the Heisenberg picture states are independent of time while operators are dependent of time.
The Heisenberg states are related to the Schrodinger states by the relation

[ >=er Tty (4) > | (8.6)

We can clearly make the identification |1y >= [1s(to) >. Let X (¢) be the position operator in
the Heisenberg picture. Let |x,t > be the eigenstates of X (¢) at time ¢, i.e X (¢)|z,t >= z|x,t >.
We set

|zt >= etz > | |azg,to >=eF0|zp > | (8.7)

From the facts X (t)|z,t >= z|z,t > and X|x >= z|r > we conclude that the Heisenberg
operators are related to the Schrodinger operators by the relation

X(t) = enHt X e #H, (8.8)
We immediately obtain the Heisenberg equation of motion

dX(t) _oim9X gy 0
o = e e Iy S X (1) (8.9)

The Green function (8.5) can be put into the form
G(.T,ﬁ;wo,to) = < .T,t|$0,t0 > (810)

This is the transition amplitude from the point zg at time ty to the point x at time ¢ which is
the most basic object in the quantum theory.

We discretize the time interval [to, ] such that t; = to+je, e = (t—to)/N, i =0,1,..., N, tn =
to + Ne = t. The corresponding coordinates are zg, z1, ...,y with £y = x. The corresponding
momenta are pg,p1, ...,PN—1. The momentum p; corresponds to the interval [z;,z;4+1]. We can
show

G(zat;x()vto) = <SC,t|ZL'0,tO >

/dl‘l < .T,t|$1,t1 > $1,t1|$0,t0 >

N-1

/d.Tld.Tg...dwN_lH‘ < .Tj+1,tj+1|$j,tj > . (8.11)
j=0

We compute (with < p|z >= exp(—ipz/h)/V2rh)

1
< :Cj+17tj+1|zj;tj > = < SCj+1|(1 — ﬁH€)|SCJ >

7
= /dpj < %‘+1|Pj >< pil(1— ;LHGN%‘ >

dp;(1 H(pj,xj)e) < wjp1lp; >< pjley >

= /dp] l H(p;,z;)e) eEPITiH o= FP5T;

2mh

dp] i H(x: p;
en (pjd;— (zj7p]))€_ 8.12
2ﬂ'h ( )
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In above &; = (z;4+1—x;)/e. Therefore by taking the limit N — oo, € — 0 keeping t—t( = fixed
we obtain

dpo dprdz,  dpN1dEN -1 SN iy~ H )
2rh  2mh 2mh

/Dstc e Jig B2 —HPp2)) (8.13)

G(xvt;ant()) =

Now & = dx/ds. In our case the Hamiltonian is given by H = p?/(2m). Thus by performing the
Gaussian integral over p we obtain !

G(x,t;z0,t0) = N/D:c et Jiy dsL(@.2)

N/D:c enSlel, (8.14)

In the above equation S[z] = [ dt L(z,&) = m [ dt i*/2 is the action of the particle. As it turns
out this fundamental result holds for all Hamiltonians of the form H = p*/(2m)+ V (x) in which
case S[z] = [dt L(z,&) = [dt (mi?/2 — V(z)) 2

This result is essentially the principle of linear superposition of quantum theory. The total
probability amplitude for traveling from the point zy to the point x is equal to the sum of
probability amplitudes for traveling from xg to x through all possible paths connecting these two
points. Clearly a given path between xo and x is defined by a configuration z(s) with z(tg) = xo
and z(t) = z. The corresponding probability amplitude (wave function) is e#S[*()]  In the
classical limit A — 0 only one path (the classical path) exists by the method of the stationary
phase. The classical path is clearly the path of least action as it should be.

We note also that the generalization of the result (8.14) to matrix elements of operators is
given by 3

<z, t|T(X (t1)... X (tn))|xo, to > = N/Dx a(ty)...a(ty) et S, (8.15)
The T is the time-ordering operator defined by

1Exercise:

e Show that

/dpe_apz‘H"’ = Ee%.
a
e Use the above result to show that

. 2 .
/Dp oF Sy dsoi=E0) _ (e Sy dsB a3 (s)
Determine the constant of normalization N .

2Exercise: Repeat the analysis for a non-zero potential. See for example Peskin and Schroeder
3Exercise: Verify this explicitly. See for example Randjbar-Daemi lecture notes.
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Let us now introduce the basis |[n >. This is the eigenbasis of the Hamiltonian, viz H|n >=
E,|n >. We have the completness relation ), |n >< n| = 1. The matrix elements (8.15) can
be rewritten as

ZeiitE"“toEm < zln >< mlxg >< n|T(X(t1).. X (tp))|m > = N/Dx x(t1)...x(ty) el
(8.18)
In the limit {p — —oo and ¢ —> oo we observe that only the ground state with energy Fjy

contributes, i.e. the rapid oscillation of the first exponential in this limit forces n = m = 0 *.
Thus we obtain in this limit

eFolto=t) 210 >< 0zg >< 0|T(X (t1)... X (¢ 0> = N | Dz a(t)..z(t enSlal,
0 1 n 1 n

(8.20)
We write this as
< OT(X(t) X ()]0 > = N’/m 2(t1).(ty) €Sl (8.21)
In particular
<00> = N’/Dx e Sl (8.22)

Hence

x x(t1)...x(Ty enSlel
< OT(X(t) X (0> = L2 f(tp)“%(g[z)] . (8.23)

We introduce the path integral Z[J] in the presence of a source J(t) by
21 = [poetshieisaves, (8.24)
This path integral is the generating functional of all the matrix elements < 0|T'(X (¢1)...X (¢,))[0 >.

Indeed

< OT(X(t) X ()]0 > = Zl[O] (?) 5J(t617;.Z..E£(tn)|J_O' (8.25)

From the above discussion Z[0] is the vacuum-to-vacuum amplitude. Therefore Z[J] is the
vacuum-to-vacuum amplitude in the presence of the source J(t).

4We consider the integral
0 .
I =/ dz F(z)e'®®), (8.19)
— 0o

The function ¢(x) is a rapidly-varying function over the range of integration while F(z) is slowly-varying by
comparison. Evaluate this integral using the method of stationary phase.
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8.2 Scalar Field Theory

8.2.1 Path Integral

A field theory is a dynamical system with N degrees of freedom where N — oco. The classical
description is given in terms of a Lagrangian and an action principle while the quantum descrip-
tion is given in terms of a path integral and correlation functions. In a scalar field theory the
basic field has spin 7 = 0 with respect to Lorentz transformations.

It is well established that scalar field theories are relevant to critical phenomena and to the
Higgs sector in the standard model of particle physics.

We start with the relativistic energy-momentum relation p*p, = M?c* where p* = (p°,p) =
(E/c,p). We adopt the metric (1,—1,—1,—1), i.e. p, = (po, —p) = (E/c, —p). Next we employ
the correspondence principle p,, — i%d,, where 9,, = (0, 0;) and apply the resulting operator
on a function ¢. We obtain the Klein-Gordon equation

M2c?

aﬂ'ap‘gb = *ngﬁ ) m2 = B2

(8.26)

As a wave equation the Klein-Gordon equation is incompatible with the statistical interpretation
of quantum mechanics. However the Klein-Gordon equation makes sense as an equation of motion
of a classical scalar field theory with action and Lagrangian S = [dtL, L = [ d®zL where the
lagrangian density L is given by

L= % L POM D — %m2¢2. (8.27)

So in summary ¢ is not really a wave function but it is a dynamical variable which plays the
same role as the coordinate = of the free particle discussed in the previous section.

The principle of least action applied to an action S = [dtL yields (with the assumption
8¢z, —+00 = 0) the result

5S oL 5L
L E )y —=_ —0. 8.28
5~ 56 50,0 (8.28)

It is not difficult to verify that this is the same equation as (8.26) if L = [ d3zL and L is given
by (8.27) 6.

The free scalar field theory is a collection of infinite number of decoupled harmonic oscillators.
To see this fact we introduce the fourier transform ¢ = g?)(t, E) of ¢ = ¢(t, ) as follows

Tr 507 5 | = (k) = / &% (t, ) e . (8.29)

b = 4(t,7) :/W J(t.F) ¢

Then the Lagrangian and the equation of motion can be rewritten as

BE (1 - = 1 -,
L- / s (580¢ao¢ ~ SuRds ) (8.30)
Ro+wip=0, wi =k +m? (8.31)

5Exercise: Verify this statement.
6Exercise: Verify this statement.
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This is the equation of motion of a harmonic oscillator with frequency wy. Using box normal-
ization the momenta become discrete and the measure [ d*k/(2m)* becomes >z /V. Reality of

the scalar field ¢ implies that d;(t, E) = ¢* (t, ,E) and by writing ¢ = VV(X) + 1Y) we end up
with the Lagrangian

L

TOIDIP I LRy

k1>0k2>0ks>0

I ((aOXk)2 — W2X2 + (0Yi)? —wiy,f). (8.32)

k1>0ko>0k3>0

The path integral of the two harmonic oscillators X and Y} is immediately given by

2 Ke] = /kapyk o b SIXRYil 4+ 5 [ a0 (D) Xk () + K (Yi(1) (8.33)
The action S[X}, Y] is obviously given by
t—>+o00
S[Xy, Yi] = / ds ((60Xk)2 —WEX? + (00Y3)? — w,%y,f) (8.34)
to—>—0o0

The definition of the measures DX}, and DY} must now be clear from our previous considerations.
We introduce the notation Xy (t;) = acz(-k), Yi(t:) = y(k)7 1=0,1,..., N — 1, N with the time step

e=t; —ti_1 = (t —to)/N. Then as before we have (with N — 00, € — 0 keeping t — ¢ fixed)
the measures

N-—1 N—-1
DXy = [ da” , Dvi = J] ™. (8.35)
=1 =1

The path integral of the scalar field ¢ is the product of the path integrals of the harmonic
oscillators X}, and Yy, with different k = (k1, ko, k3), viz

zl7.K) = [I TI 1I 2. &+l

k1>0ko>0k3>0

/ IT II II px:Dvi exp <% SN Y s v

k1>0ko>0ks>0 k1>0 k2>0 ks3>0

[ X X S Gox+ mono). (8.36)

k1>0k2>0k3>0

+

The action of the scalar field is precisely the first term in the exponential, namely

Slel = > )Y S[Xk YA

k1>0ko>0k3>0

t— 400
_ / I <<aoxk>2w,axg+(aoyk>2w,3y;)
t

07770 k3 >0ky>0ks>0
1 1
= /d4:c<58#¢8”¢ §m2¢2). (8.37)
We remark also that (with J(¢,Z) = fdgﬁ/(Qﬂ)3 J(t, k) eikT J = VV (Ji, +iK})) we have

S S (X () + K ()Yi(t) = / Bt 7)ot 7). (8.38)

k1>0ko>0k3>0
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We write therefore the above path integral formally as

Z[) = / D¢ e St [ dal@s@), (8.39)

This path integral is the generating functional of all the matrix elements < 0|7 (®(z1)...®(z,))|0 >
(also called n—point functions). Indeed

<O|T(®(x1)...B(2,))|0 > = Z}()] (?) 5J(£.Z..E£(xn)|‘]‘°

D () erSo]
_ D9 9lm). ) e#59 (5.40)
[ D¢ e75[d]
The intercations are added by modifying the action appropriately. The only renormalizable
interacting scalar field theory in d = 4 dimensions is the quartic * theory. Thus we will only
consider this model given by the action

A

ot (8.41)

Sl = [ | 30,00%0 - gme? -

8.2.2 The Free 2—Point Function

It is more rigorous to perform the different computations of interest on an Euclidean spacetime.
Euclidean spacetime is obtained from Minkowski spacetime via the so-called Wick rotation. This
is also called the imaginary time formulation which is obtained by the substitutions t — —i7,

1 =ct — —iz* = —icr, Oy — i04. Hence 0,00"¢ — —(0,¢)* and iS — —Sg where
a |1 2 1 90 Ay
Splél = [ d'z|5(0u9)" + 5m7¢" + 97| (8.42)
The path integral becomes
ZplJ] = /D¢ o A SEl8l+} [ d'ed (@) () (8.43)
The Euclidean n—point functions are given by
1 " " ZglJ)
0|7 (® . ®(z,))]0 = h -
<OT(@(@)--2@))0>r = Zg ( ) 57(@1)-00(@n) 70
D ~#5nle]
_ D6 6w)- o) REH (5.4
[ D¢ e~ #5el¢]
The action of a free scalar field is given by
4 |1 2, 1 955 1 4 2 2
Splgl = [ d'z | 5(8,9)" + 5m*¢”| = 3 d*z o[ — 0% +m?]¢. (8.45)

The corresponding path integral is (after completing the square)
ZglJ] = /D¢> e~ hSE[Pl+] [ diat()¢(x)

= o JA(JK () /D¢ o3 Jate(6-TK) (=02 +m?) (e-K7) (8.46)
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In above K is the operator defined by
K(-9°+m?) =(-0"+m’)K =1. (8.47)

After a formal change of variable given by ¢ — ¢ — K J the path integral Z[J] is reduced to
(see next section for a rigorous treatment)

Zpld] = N e Jd*a(JTKI) (@) — NS gz [ diad iy (2)K(z.) I (y), (8.48)

The A is an unimportant normalization factor. The free 2—point function (the free propagator)
is defined by

ID¢ o(x1)p(22) e~ 5E(¢]
[ D¢ e #5519
1, 6%ZglJ]

~ Z[0] n 6J(21)8J (22) l1=o- (8.49)

<0|T(®(x1)P(22))|0 > =

A direct calculation leads to
< 0|T(®(x1)P(22))|0 >p= hK (21, z2) (8.50)
Clearly
(=0 +m?)K(z,y) =6 (z —y). (8.51)
Using translational invariance we can write

K(z,y) =Kz —y) = /% f((k) etklz=y) (8.52)

By construction K (k) is the fourier transform of K (z,y). It is trivial to compute that

~ 1

The free euclidean 2—point function is therefore given by
d*k h ikl
< O|T(® (1) D(2))]0 >E:/W oy e (8.54)

8.2.3 Lattice Regularization

The above calculation of the 2—point function of a scalar field can be made more explicit and in
fact more rigorous by working on an Euclidean lattice spacetime. The lattice provides a concrete
non-perturbative definition of the theory.

We replace the Euclidean spacetime with a lattice of points x,, = an, where a is the lattice
spacing. In the natural units # = ¢ = 1 the action is dimensionless and hence the field is of
dimension mass. We define a dimensionless field ¢, by the relation ¢, = a¢, where ¢, = o(x).
The dimensionless mass parameter is m? = m2a?. The integral over spacetime will be replaced
with a sum over the points of the lattice, i.e

JEEETDSED DD D (3.55)
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The measure is therefore given by

/D¢ = Hndgbn , Hn = Han (8.56)

The derivative can be replaced either with the forward difference or with the backward difference
defined respectively by the equations

O = @ (8.57)
0, = %_aﬂ (8.58)

The fi is the unit vector in the direction z,. The Laplacian on the lattice is defined such that

1
06 = 3D (Suti + dnji — 200)- (8.59)
i
The free Euclidean action on the lattice is therefore
A 1
Seld) = 5 [ o[- 0>+ m?o
1 . .
= 3 > K pmbm. (8.60)
Kom == {5n+ﬂ7m + On—pm — 25,17,4 + 11280 (8.61)

m

The path integral on the lattice is

ZplJ] = /Hndén e 5B T, Tndn (8.62)

The n—point functions on the lattice are given by

PO 1 " ZglJ]
< 0T (Ps..2)|0 > = —m——=|J=
T(®s.-20)10 > Z0]5J,..60," "
anngn Qgs---ét e_SE[qg]
[T11,dbn e=Selél
The path integral of the free scalar field on the lattice can be computed in a closed form. We
find ”

7Exercise:

(8.63)

e Perform explicitly the Gaussian integral

N
I :/Hdmi e~®iDijzj (8.64)
i=1

Try to diagonalize the symmetric and invertible matrix D. It is also well advised to adopt an ie prescription
(i.e. make the replacement D — D + i¢) in order to regularize the integral.

e Use the above result to determine the constant of normalization N in equation (8.63).
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Zpll] = e Tam It / T[] dn 3 SnnG=IK K =K )

= N e% Zn,m JT?VK;',}L‘]W_

The 2—point function is therefore given by

. 1 827p]
<OT(D.))0>p = —22B
T(@:2)0 > Z[0] 5.7.6J, |10
- K;l

We fourier transform on the lattice as follows

IS

T d4]% I
K71 — zk(s—t)-
st / (27T) G(k) €

—T

For K (k) = G(k) = 1 we obtain the identity, viz

T Ak
St = zk(sft)'
=]

Furthermore we can show that Ksth_Tl = J4 using the equations

(2#)464(1% —p) = Z eilk=p)n

G(k) = K~(k)

Next we compute

Knm = - Z |:5n+ﬂ,m + 5n7ﬂ,m - 25n,m:| + mQ(Sn,m
n
™ d'k ik(n—m ikp —ikf A2
= /W(QT)ZLG( );[e Hte “2}+m/
Thus
Kk) = 4Zsin2(7“) + 2
7
Hence
1
G(k) =

(8.65)

(8.66)

(8.67)

(8.68)

(8.69)

(8.70)

(8.71)

(8.72)

(8.73)

(8.74)
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The 2—point function is then given by

.. T A4k 1 .A
<O|T(cI>S<I>t)|O>E:/ ( etk(s=1) (8.75)

1 .
x (2) 4%, sinQ(%“) + 1?2

In the continuum limit & — 0 we scale the fields as follows ®, = a¢(z), ®; = ap(y) where
x = as and y = at. The momentum is scaled as k = ak and the mass is scaled as m?2 = a?m?2. In
this limit the lattice mass 72 goes to zero and hence the correlation lenght é = 1/m diverges. In
other words the continuum limit is realized at a critical point of a second order phase transition.

The physical 2—point function is given by

<O|T($:9,)|0 >5

<0|T(®(x)®)|0 > = lime_0o =
> d4k 1 ik(x—

This is the same result obtain from continuum considerations in the previous section.

8.3 The Effective Action

8.3.1 Formalism

We are interested in the ¢* theory on a Minkowski spacetime given by the classical action
a |1 Loao Ay
Sl¢] = | d*z iamaw— P o — Egb . (8.77)
The quantum theory is given by the path integral
210 = / D Sl k[ ' I@)o@), (8.78)

The functional Z[J] generates all Green functions, viz

<O|T(B(x1)...B(2,))|0 > = Z}()] (?) 5J(£.Z..E£(xn)|‘]‘°

_ [D¢ ¢(x1)...0(wn) e?SE)
- [ D¢ e 519l : (8.79)

The path integral Z[J] generates disconnected as well as connected graphs and it generates
reducible as well as irreducible graphs. Clearly the disconnected graphs can be obtained by
putting togther connected graphs whereas reducible graphs can be decomposed into irreducible
components. All connected Green functions can be generated from the functional W[J] (vacuum
energy) whereas all connected and irreducible Green functions (known also as the 1—particle
irreducible) can be generated from the functional I'[¢.] (effective action). The vacuum energy
WJ] is defined through the equation

Z[J] = ex W], (8.80)



204 YDRI QFT

In order to define the effective action we introduce the notion of the classical field. This is defined

by the equation

OW[J]
be() = 8J(z) "

This is a functional of J. It becomes the vacuum expectation value of the field operator ® at

J = 0. Indeed we compute

(8.81)

Cho1 szl
¢c()]g=0 = 7 20 57(2) [7=0 =< 0]®(z)]0 > . (8.82)
The effective action I'[¢.] is the Legendre transform of W[J] defined by
Do = W) = [ d'as()o. (o) (5.59)

This is the quantum analogue of the classical action S[¢]. The effective action generates all the
1—particle irreducible graphs from which the external legs have been removed. These are the
connected, irreducible and amputated graphs.

The classical equations of motion are obtained from the principal of least action applied to
the classical action S[¢] + [ d*zJ(x)¢(z). We obtain

55[¢]
= —J(x). 8.84
S = @) (384)
Similarly the quantum equations of motion are obtained from the principal of least action applied
to the quantum action I'[¢.]. We obtain

T[]

=0. 8.85

50c(a) 559
In the presence of source this generalizes to
T[]

= —J(z). 8.86

soca) ) (550

The proof goes as follows:

L 5J(y) _
wm>6wmt/ Ysge() W) 7

_ oW _ 4 (y) oW _

= 5.0 /d5@@><w

= _J(2) (8.87)

A more explicit form of the quantum equation of motion can be obtained as follows. We start
from the identity

- e Slel+i [ d'ed(x)g(x)
0 / D¢ — - §¢ 3 n
oS

- £S[¢l++ [ d'zJ(x)g(x)
M/D¢<5m >+J)

_ ) LWI[J]
a <5¢($)¢_H +J) “

; b
= eﬁW[J]< 5 +J). (8.88)
) gt s 4 sw

5¢(x
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In the last line above we have used the identity
F(0,) €9 = 9@ F(d,9+ 8,). (8.89)
We obtain the equation of motion

05 0T (]
pr— —J e _ .
5¢($)¢:g%+% 0e (8.90)

By the chaine rule we have

4 _ 4 6¢c(y) 4
i@ / TV 57 () 500()

= /d4y G (z,y)

0
50e); (8.91)

The G®)(z,y) is the connected 2—point function in the presence of the source .J(z), viz

2 _ 0oe(y) . SW[J]
GO ew) = 550 = 5T (8.92)

The quantum equation of motion becomes

3s _ .
0P(2) =1 1 aty GO (2,9) 555 +oe(x) 00

5
Sdc(y)

(8.93)

The connected n—point functions and the proper n—point vertices are defined as follows. The
connected n—point functions are defined by

W J]

G (2y, .y an) = GHin = — — 8 8.94
(@1, s ) 37 (x1)00 () (8:94)
The proper n—point vertices are defined by
0" e
F(”)(:cl, ,$n) = Fﬁil---in [d) ] (895)

T 5he(71)-00c(Tn)

These are connected 1—particle irreducible n—point functions from which the external legs are
removed (amputated).

The proper 2—point vertex I'® (., ) is the inverse of the connected 2—point function G (z, ).
Indeed we compute

\ , ) B 1 00c(2)  0°T[p]
/d 2 G (2,2 (2,y) = /d * 57(2) 36e(2)00.(y)

[z 202 0
57 (2) 30.(2)
= iz —vy). (8.96)

We write this as

G*T 4 = —6L. (8.97)

J
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We remark the identities

5Gi1...in
0J;

ITn+1

— Qireining1 (8.98)

6T iy i Oy 4 ¥ i
(5:]; 1 - 5</15]§ oJ: :F,il,..z‘nka nHL, (8.99)

Tn+1

By differentiating (8.97) with respect to J; we obatin
G i+ G*T 4G = 0. (8.100)
Next by multiplying with G’% we get the 3—point connected function as
G = GFGQTIGIST 1o (8.101)
Now by differentiating (8.101) with respect to J,,, we obatin the 4—point connected function as
Gistm  _ (Gikarlst 1 GikGgrimGis 4 GikGrlstm>Fﬁij + GRGTGIT 4jpnGP™
(8.102)
By using again (8.101) we get
Gistm - = Fﬁk/errGik/ ij/ Gmr, G”GjSFﬁij + two permutations
+ GFGGIT gy G (8.103)

The diagrammatic representation of (8.94),(8.95),(8.97),(8.101) and (8.103) is shown on figure 1.

8.3.2 Perturbation Theory

In this section we will consider a general scalar field theory given by the action
. 1 o 1 o 1 o
S[Qﬂ = 59" + Esijﬂﬁz(ﬁj + §Sijk¢l¢]¢k + Esijkl(blqﬁjqﬁk(bl + ... (8.104)

We need the first derivative of S[¢] with respect to ¢?, viz

) 1 . 1 . 1 . 1 .
S[¢li = Si+ Sij¢’ + ESijkWéf’k + 5Sijkl¢]¢k¢l + ESiijmWéf’kéf’l(ﬁm + asijklmn‘bj Prol " +

Thus

F[¢c],i = S[¢]7

ilg,—portgio s = Sit Siidl + = ka &+ = GJJU oF
4’010 5¢C]0

1 ) FL
jjo k kko l
* 3' wkl <¢] 3¢ 6¢6J0 > <¢ i 6¢ck0 ) ¢
1

(8.105)

.. j 0 6 k h kko l m
* Eszjklm <¢é i 7" 6¢CJ0 ) <¢ i 6¢ck0 > <¢ ’L 6¢Clo ) ¢

(8.106)



YDRI QFT 207

We find upto the first order in A the result 3

1h 1 4 n\?
F[¢c],i = S[¢],z‘ $i=geit B G0 b = S[(bc]J' + iszk (Sijk + Sijklfbf; + §Sijklm¢¢]:¢;n + > + O<<;) >
cig
(8.107)
In other words
Lh A%
Llgcli = S[@lilg,—g..4 2 qito = = S[oe,i + 5;(; Spclije + O 7 . (8.108)
cig
We expand
h n\?
F:F()‘F;Fl‘i’ <;) Ty + ... (8109)
ij i g A% ij
G‘] == GO + _-Gl + - G2 + (8110)
i i
Immediately we find
Lolgeli = Slocl- (8.111)
1 ik
Tl = 56‘0 Sloel.ijk- (8.112)
Equation (8.111) can be trivially integrated. We obatin
Lolpe] = Slgcl- (8.113)
Let us recall the constraint G**T y; = —4%. This is equivalent to the constraints

Gy To; = =6
Gf)kflﬁkj + GzikFoykj =0

Gékrz,kj + Gzikrl,kj + Gékroakj =0

(8.114)
The first constarint gives G&¥ in terms of Ty = S as
Gy =-S5, (8.115)
The second constarint gives G4 in terms of 'y and I'; as
GY = GiFGIT . (8.116)

8Exercise: Verify this equation.
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The third constraint gives G in terms of 'y, I'; and I's. Hence the calculation of the 2—point
function G** to all orders in perturbation theory requires the calculation the effective action to
all orders in perturbation theory, viz the calculation of the I',,. In fact the knowledge of the
effective action will allow us to calculate all proper n—point vertices to any order in perturbation

theory.
We are now in a position to integrate equation (8.112). We have
1k 0S[de] ik
Tylo.]; = =GikZZrelik
1[¢ ]7 2 0 5¢cz
_Lagn 5(Gy n
2 0 6¢ci
1 4 _
= “35en Indet G5 ' (8.117)
Thus
1
ilpe] = —5 Indet Gyt (8.118)
The effective action upto the 1—loop order is
1h
F:F0+§—,1ndetG0+... (8119)
i

This is represented graphically by the first two diagrams on figure 2.

8.3.3 Analogy with Statistical Mechanics

We start by making a Wick rotation. The Euclidean vacuum energy, classical field, classical
equation of motion, effective action and quantum equation of motion are defined by

ZglJ] = e #WelJl, (8.120)
SWglJ]
d)c(l')L]:O = *T(x)b:o =< 0|(I)($)|0 >pg . (8.121)
35pl¢l _ 10,
55 J(z). (8.122)
Trlé] = WglJ] + / d*aJ(z)¢e(z). (8.123)
(Zﬂﬁ’;] = J(z). (8.124)

Let us now consider the following statistical mechanics problem. We consider a magnetic system
consisting of spins s(z). The spin energy density is H(s). The system is placed in a magnetic
field H. The partition function of the system is defined by
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21H) = [ Dy e 038 fasttonte), (8.125)

The spin s(x), the spin energy density H(s) and the magnetic field H(x) play in statistical
mechanics the role played by the scalar field ¢(x), the Lagrangian density £(¢) and the source
J(x) respectively in field theory. The free energy of the magnetic system is defined through the
equation

Z[H] = e PFHI, (8.126)

This means that F' in statistical mechanics is the analogue of W in field theory. The magnetiza-
tion of the system is defined by

oF 1
S AN - - =B [ dz(H(s)—Hs(z))
5}(|ﬁ:hxed Z/dSC/DS S(SC) €

= /dw < s(x) >
- M. (8.127)

Thus the magnetization M in statistical mechanics plays the role of the effective field —¢,. in
field theory. In other words ¢, is the order parameter in the field theory. Finally the Gibbs free
energy in statistical mechanics plays the role of the effective action I'[¢.] in field theory. Indeed
G is the Legendre transform of F' given by

G=F+MH. (8.128)
Furthermore we compute
0G
— =H. 8.129
oM ( )

The thermodynamically most stable state (the ground state) is the minimum of G. Similarly
the quantum mechanically most stable state (the vacuum) is the minimum of I". The thermal
fluctuations from one side correspond to quantum fluctuations on the other side.

8.4 The O(N) Model

In this section we will consider a generalization of the ¢* model known as the linear sigma model.
We are interested in the (¢?)? theory with O(N) symmetry given by the classical action

1 1 A
S¢] = /d4$ [§3u¢i3”¢i - §m2¢§ - Z(¢§)2 : (8.130)
This classical action is of the general form studied in the previous section, viz
1 1
Sle] = 551J¢I¢J + ESIJKLQﬁI(bJ(bK(bL- (8.131)

The index I stands for ¢ and the spacetime index z, i.e I = (i,z), J = (j,y), K = (k,2) and
L = (I,w). We have

Sty =—0i;(A+ m2)54(z —y)
A
SrikL = _56”“64@ — $)54(2 — .T)(54(’LU — x) , 6ijkl = 6ij6kl + 6ik5jl + 6i15jk.(8.132)
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The effective action upto the 1—loop order is

1h
I'lg] = S[g] + 5 7 Indet Go. (8.133)
The proper n—point vertex is defined now by setting ¢ = 0 after taking the n derivatives, viz
n onr
Fz('l.)..in (1,00 @) =T 1, = ] |¢=0- (8.134)

8.4.1 The 2—Point and 4—Point Proper Vertices
The proper 2—point vertex is defined by

2
(2) 5°T (o]
I (x, — o=
o (0= S e, )
825[4] h §°Ti[¢]
= WMZO"‘TWM:O
¢i(z) ¢](y) i 0¢pi(x) ¢j(y)
ko 6°T4[¢]
= 0 (A+m?)t(z —y)+ = ————|s—o0- 8.135
The one-loop correction can be computed using the result
1 mn 1 mimo Ynno
F1[¢],j0ko = §GO S[(b],jokomn + §GO CT‘O S[¢],j0mns[¢],komono- (8136)

We get by setting ¢ = 0 the result
1
Tilglrs = §G6nns[¢],ijmn

A
= =5 /d4zd4wG6”"(z, w) (6ij6mn + dimOjn + 5m5jm) 54(y — $)64(z — x)64(w — )

- -2 (&jcgm(x, y) + 263 (x, y)) 5z —y). (3.137)
We have
Gy = =575 (8.138)
Since S.;; = S;; and S;; = —6;;S(x,y) where S(z,y) = (A +m2)5(x — y) we can write
GY = 6;;Go(x,y). (8.139)
Clearly [ d'yGo(z,y)S(y,z) = 6*(z —y). We obtain
Dildlas = —2(N+2)55Go( )5 — ) (3.140)

Now we compute the 4—point proper vertex. Clearly the first contribution will be given
precisely by the second equation of (8.132). Indeed we have

54T
Lo (@1 s) = 5¢i1($1)---[§;]5i4($4)|¢_0
501, (1) 001, (1) “=° " i Oy, (21)...005, (2) "
2
S o+ h 52T [¢)]

i 6s, (x1)...06, (x4) [s=0- (8.141)
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In order to compute the first correction we use the identity

sGmn
/i Gg"™ Gy S[@el tmono- (8.142)
5¢cl ’
We compute
1 nno 1 mmo ~Mng
F1 [¢] ,Jokollo  — |:§ Gglmo G() S[¢],jok0mns[¢],llgmgno + §G0 G() S[¢],jolmns[¢],k0lgmono

1 mmo nno
+ G0 Go S[éf’],jolomns[fi’],kolmono]|¢—0-
(8.143)
Thus

3T [¢] |
6¢i1 (xl)"'6¢i4 ($4) =0

2
%) 8z — z2)54(z3 —Ty4) ((N + 2)8i,45 0050, + 251'11‘21'31‘4)(;0(117503)2

7N\

1
2
1A 4 4 2
+ 5l3) 0 (@ —23)0% (@2 — @a) { (N +2)0isis0isis + 20irisisis | Gol21,22)
Vo 4 4 2
+ 5 g 1) (.Tl - $4)5 ($2 — .T3) (N-‘r 2)61'11'461'21'3 + 251'11'21'31'4 GQ(.Tl,.Z'Q) .
(8.144)
8.4.2 Momentum Space Feynman Graphs
The proper 2—point vertex upto the 1—loop order is
hA
MY () = —05(A+m?)ota —y) = =2 (N +2)05Go(x,y)d" (v —y).  (8.145)
The proper 2—point vertex in momentum space 1"1(-]2-) (p) is defined through the equations
4, g4 1(2) iprtiky 454 (2)
[ dtadty T @) i = @mistp 4 E k)
= (2m)'' o+ (. -p)
= 2 (p+ k)T (p). (8.146)
The delta function is due to translational invariance.
From the definition S(z,y) = (A +m?)d*(z — y) we have
d4P 2 2\ _ip(z—
S(.9) = [ (ot m?) e, (8.147)
Then by using the equation [ d'y Go(z,y)S(y,z) = 6*(z — y) we obtain
d*p 1 .
_ ip(z—y)_ 14
Golw) = [ gt © (8.148)
We get
(2) o 2 2 h A / d4p1 1
T3 = —6i(— —ION42)6 | e~ 8.149
%] (p) ]( p +m) 26( + ) J (27T)4—p%+m2 ( )
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The corresponding Feynman diagrams are shown on figure 4.
The proper 4—point vertex upto the 1—loop order is

A 1/R\ /[ 2\°
T (@1, 2a) -3 (5¢j5kz + 0idji + 51'163‘]@)64(?/ — )6 (z — 2)6" (w — ) + 3 (;) (g)

X

|:(S4($1 - $2)54(l‘3 — .T4) ((N + 2)61'11'261'31'4 + 261'”'21'31'4) Go(l'l, .1'3)2 +
5 (w1 — a3)0* (22 — m4) <(N +2)8iyi50iniy + 251-”-21-31-4)67‘0(@, x2)? +

5 (w1 — 24)0" (22 — w3) <(N +2)8iyi4Oinig + 251-”-21-31-4) Go(w1, 962)2} :

(8.150)

The proper 4—point vertex in momentum space Fz('f.)..u (p1..-pa) is defined through the equation

/d4z1...d4z4 Fz('f.)..u (21 oy q) ePrEFiPaT (o)A () 4L +p4)Fz('12.)..i4 (P1, -y Da)-

(8.151)

We find (with p12 = p1 + p2 and p14 = p1 + pa, etc)

A
4
Fgl.)..u(pl’ ""p4) = *551'11'21'31'4
IO 1
1 (3) 2 (07 2o+ 200 ) [
+ 2 permutations] . (8.152)

The corresponding Feynman diagrams are shown on figure 5.

8.4.3 Cut-off Regularization

At the one-loop order we have then

hA
) = —8y(—p* +m?) - S SV +2)5,I(m?). (8.153)
A ONN!
FE?.)..M(Ph o D1) = —551'11'21'31'4 += (5) 3 K(N +2) 84145 0igiy + 261'11'21'31'4)&](]7%2,7”2)
+ 2 permutations] , (8.154)
where
1 d*k d*k
Alk) = ——— , Im?) = | —=A(k 2 2:/—AkA — k).
) = =+ 100%) = [ Gz ) Tohm) = [ G AmAGL—

(8.155)

It is not difficult to convince ourselves that the first integral I(m?) diverges quadratically whereas
the second integral J(p2,, m?) diverges logarithmically. To see this more carefully it is better we
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Wick rotate to Euclidean signature. Formally this is done by writing ky = ¢k4 which is consistent
with 20 = —iz?. As a consequence we replace k? = k3 — k? with —kf — k? = —k?. The Euclidean
expressions are

A
IPp) = 6 +m?) + B (N +2)0i1(m?). (8.156)
A A\ 21
4
FE1-)--i4(p1’ ""p4) = 551'11'21'31'4 - h<§> 5 {<(N + 2)51'11'251'31'4 + 251’11’21’31’4) J(pfg, m2)
+ 2 permutations] , (8.157)

where now
B 1
T k24 m2

A(k) I(m?) :/%A(/@), T (7, m?) :/(;’;A(/ﬂm(m — k). (8.158)

Explicitly we have

o0 —om? d*k g2
I(m2) = /o dae /(2@46 k

o0 1
- / dae o™ [ [3dke=o*
0 T

8 2
1 %  g-am’

To calculate the divergences we need to introduce a cut-off A. In principle we should use the
regularized propagator

k2
e AZ
Ak, A) = —. 8.160
(b A) = (5.160)
Alternatively we can introduce the cut-off A as follows
1 %  gmam?
2
= — d
I(m™,A) 1672 /; T2
A2
= 1 A2 —m? - daeiam
1672 2 e
A2
1 2 2y M
= 162 (A +m E1(—F)) (8.161)
This diverges quadratically. The exponential-integral function is defined by
x et
Ei(x) :/ ?dt. (8.162)
Also by using the same method we compute
7m2 a a _ajag 2 d4k/’
1 o~ (aatan) - T Pl
= —— [ dagda . 8.163
(4m)? / A (a1 + az)? (8.163)
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We introduce the cut-off A as follows

T m2A) = dard e~ (Cata2) — G P
(pT2,m™,A) = @nz /. a1aae (a1 + aaz)?

A2

TTQ P%2

S TR 8.164
= (477-)2/1 Tar9 ($+x2)2 . ( . )

The integral can be rewritten as 2 times the integral over the symmetric region zo > . We can
also perform the change of variables x5 = zy to obtain

2 dx dy _m? _ ey Py
J%,. m2 A) = /_/7 7 o(14+y) =155 3
(p1asm~, A) (4m? J, = J, 1 +y)? e 8

_ 2 de (% (ssp01-p)
= (471‘)2/1 33/0 dp e . (8.165)

2 2
In above a = %z and b = %. We have

2 2 ®dx _ (g _ )
2 2 _ AT —x(24b(1-p)
J(p127m aA) (477')2 /0 dp L T €
(NS
= g2 ; p El( ———(1- p)b) (8.166)
The exponential-integral function is such that
&+(1=p)b -t _ 1
Ei(_ﬂ_a_p)b):c+1n(ﬁ+(1—p)b)+/" dt < —. (8.167)
p P 0

The last term leads to zero in the limit A — oo since a,b — 0 in this limit. The exponential-
integral function becomes

Ei(—(l—p)b—%) =C+ln(\/@+\/§—\/5p)+1n(ﬂ—\/g+\/5p)—1np.

(8.168)
By using the integral fol dp n(A+ Bp) = & <(A +B)In(A+ B) — Aln A> — 1 we find
! 4 b1
/ dp Ei(—(l—p)b—g) =C+lna+/1+—1n (1+—+— b(b—|—4a)) +1.
0 p b 2a  2a
(8.169)
Hence we have
! a A2
—/ dp Ei(—(l—p)b——) =-—lna+..=In— +... (8.170)
0 P m
Equivalently
1 A2
J(piy, m?, A) 1 + ... (8.171)

1672 2m2
This is the logarithmic divergence.

In summary we have found two divergences at one-loop order. A quadratic divergence in the
proper 2—point vertex and a logarithmic divergence in the proper 4—point vertex. All higher
n—point vertices are finite in the limit A — oo.
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8.4.4 Renormalization at 1—Loop

To renormalize the theory, i.e. to remove the above two divergences we will assume that:

e 1) The theory comes with a cut-off A so that the propagator of the theory is actually given
by (8.160).

e 2) The parameters of the model m? and A which are called from now on bare parameters
will be assumed to depend implicitly on the cut-off A.

e 3) The renormalized (physical) parameters of the theory m% and Ag will be determined
from specific conditions imposed on the 2— and 4—proper vertices.

In the limit A — oo the renormalized parameters remain finite while the bare parameters
diverge in such a way that the divergences coming from loop integrals are canceled. In this way
the 2— and 4—proper vertices become finite in the large cut-off limit A — oo .

Since only two vertices are divergent we will only need two conditions to be imposed. We
choose the physical mass m% to correspond to the zero momentum value of the proper 2—point
vertex, viz

A
L2(0) = oym = o,ym? + BT (N +2)d;1(m* A). (8.172)

We also choose the physical coupling constant )\%2 to correspond to the zero momentum value of
the proper 4—point vertex, viz

4 AR A M2 N +8
Fgl.)..i4 (0’ M) 0) = ?51'11'21'31'4 = §6i1i2i3i4 —h g Téilizisu‘](oﬂ mQa A)
(8.173)
We solve for the bare parameters in terms of the renormalized parameters we find
2 2 AR 2
m :mehF(NJrQ)I(mR,A). (8.174)
A Ar M\ N +8 )
—=—=+4+hl — | — A). 1
3 3 + <3) 5 J(0,m%, A) (8.175)
The 2— and 4—point vertices in terms of the renormalized parameters are
IS e = 65" +mh). (8.176)

Ar
3

(4)
Fil...i4(p1a“'ap4)

+ 2 permutations] .

Ar\1
6i1i2i3i4 - h(?R) 5 |:((N + 2)61'11'261'31'4 + 26i1i2i3i4) (J(p%% m%’,a A) - J(Oa mQRa A))

(8.177)
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8.5 Two-Loop Calculations

8.5.1 The Effective Action at 2—Loop

By extending equation (8.107) to the second order in A we get °

R\ 1 (h\’[ ... 6GH 1
Iloc): = O1)+ O(;) + - (—) [Gm 5 (Sijkl + Sijkim®e + §Sijkzmn¢7cn¢? + )

6 (3 5 cjo
3 n ik ~lm h °
+ Z Sijklm + Sijklmn¢c + ... |GPFG + O ; . (8.178)
Equivalently
F[(b] — O(l)+O fb +l fb 2(;jj05ims[¢].. +§S[¢] Gk Glm +0 E ’
cl,i  — i 6\ 6¢c_jo cl,ijkl 4 cl,ijklm i .
(8.179)

We use the identity

5G* QM 5,
3bese  0Jm 00eso

_ _lemr7mj0
= —Grroglogmmor | ol mio- (8.180)
Thus

1/h\? y
) + 8 (—) [ — GIoGFRo Gl GmmoT 4 1 mo T mio Sl ijki

i

h

7

rode = ow+of
+ gswc]yijklmcﬂkdm}+0<<§)3>. (8.181)

By substituting the expansions (8.109) and (8.110) we get at the second order in % the equation

Dofgel: = §Gj1ks[¢c],ijk + 5 [ — GHPGER GHOGT ™ T otomo Lo.mio Sldel ijhi

3 ‘
+ ZS[%],iijme)kGlOm} (8.182)

Next we compute Gij . Therefore we must determine I'yy;. By differentiating equation (8.112)
with respect to ¢.; we get

1 16Go™
Fl[d)c],kl = §G70nns[¢c],klmn + 5 6¢0-l S[¢c],kmn (8183)
By using the identity
G mm, nng
5(250 = Gy Gy S[9cl imone- (8.184)
cl

9Exercise: Verify this equation.
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We get

1 1
I [¢C] Joko = §G70nns[¢c] Jokomn T §G70nm0 ngos[¢0]ajomns[¢c]7komono' (8185)

Hence
j 7 1 1 mmo nng
Gjlk = Géjo Glgko (§G6nns[¢0]7jokomn + §G0 GO S[¢C],jomn5[¢0],komono)- (8-186)

Equation (8.182) becomes

1 7 1 1 mmo ~Nng
Lo = GGH°GE™ | 5G5S0 s + FGT™ G5 SI0uL s ST umana | S1écL s
1 .. mmo 3 . m
b GG GG 100t S0 ST + 18 nin GG
(8.187)

Integration of this equation yields 19

1 ij 1 i mn
Lop] = gs[(bc],ijleolegl + ES[qsc],ikaojG’glGo Sée] jin- (8.188)

The effective action upto the 2—loop order is

1h A\?/1 1
=T+ 57 Indet Gy + <;) <§S[¢C],Z—jleoﬂG§l + ES[@],ikaOJG’gng”"S[@]’jm) + ...

(8.189)
This is represented graphically on figure 2.
8.5.2 The Linear Sigma Model at 2—Loop
The proper 2—point vertex upto 2—loop is given by !
2 2
(2) B h h 6T'2[¢]
Lij(z,y) = 01 +O<—.)+<—.) ——————|¢=0- 8.190
The 2—loop correction can be computed using the result
1 j 7 1 1 mmo nng
Lafgli = GE°Go™ [50?”S[¢],jokomn +5Go ™Gy S[¢],jomnS[¢],kom0no]S[sb],ijk
1 y 3 ;
+ 5 [ = GGy G Gy S 18] kotomo S18]mo S8 ijmt + ZS[(b},ijklmngGgm].
(8.191)
By setting ¢ = 0 we obtain
Ty = Lgioiogrogmngrg) S sio s — ~Giodo G0 Gllo Gmmo g :S[B].mjo S[¢) s
2lflrs = G Go Y GRS dokomnS[Biioki — gGo™ Go™* Go® Go™ 0] kotomas S[6]mio S ot
1/ N+2/A\?
= 1(3) @22t -Gt [atsale A6t + F 52 (3) Gt
(8.192)

10Exercise:verify this result.
U Exercise: Verify all equations of this section.
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We have then

M@0y = o) +o(§) 4 (E)QQ)QN;Q&U(N;Q&@ —y)Go(w,w)/d4zGo(x,z)Go(y,z)

+ Go(x,y)?’). (8.193)

Next we write this result in momentum space. The proper 2—point vertex in momentum space
Fg)(p) is defined through the equations

/ dedty TO (2,y) e = (20154 (o + HTD (p). (8.194)
We compute immediately

T N OO = e ——

/ d4p1 d4p2 1 :|
(@) @m) (92 + ) (B + m) (~(p — pr — pa)? + m?) |

+

(8.195)

The corresponding Feynman diagrams are shown on figure 4.

The 4—point proper vertex upto 2—loop is given by

T wa) = O) +O<§) i <§> i (jl)FQ([Sﬂz ($4)|¢:0' (8.196)

We compute

1 . .
_ Jini ~jono ki k mim
I'y [¢],ijkl|¢:0 = §G0 Go G’O1 0CTVO ! OS,jokomlmo Syiljlklsq‘jknlnﬂ + S,ikjlkl S7ljnln0 + Sqijjlkl S7kln1n0
L G Gloako G Gano g Sitjin S S.ikjik: S S.ijirk S
+ 7150 0 0 0 dokomani | 9ilj1k1 O jkmone T O,ikir k1O, jlmone T O,ijj1 k1O, klmono

1 ..

J1J k1 k mim nin
§G01 UGO1 0GO ! 0GOI ’ S,iljlkl SJjomlnl S7kkomon0 + S,ikj1k1 SJjomlnlSJkomono
Saijjlkl SJCjoml’M SJkomono + S7ij1k1n1 S,jkjomos,lm1k0n0 + Saijlklnl S7klj0mos7jm1kono

+ S,ijlkﬂhS7jljomos,km1kono:| . (8.197)
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Thus

3
O Ta[¢) - ] (%) [(N +2) <(N +2)8iy40inis + 251-”-21-31-4)54(951 — 24)0" (22 — x3)

5¢i1 ($1)...6¢i4($4)|¢:0 75
x  Go(x1,72) / d*2Go(z,2)Go (w1, 2)Go (w2, 2) + 2 permutati()ns]

3
i <§) K(N +2)(N +4)6iyi,0ipi5 + 451-11-21-31-4)54(331 — 24)6" (x2 — 3)

X /d4zG0(x1, 2)2Go(z2,2)* +2 permutations}

1/A\°
5 <§) K?(N +2)8i1i40izis + (N + 6)51'11'21'31'4)54(331 — x4)

x  Go(z1,12)Go(21,23)Go(w2,23)* + 5 permutations] . (8.198)
The proper 4—point vertex in momentum space Fz(l) i, (P1...p4) is defined through the equation
/d4$1 d*zy Fgf) s (X1, ey T4) eiPrT1itFipara (2#)454(])1 + ... +p4)1"512?”i4 (p1, .y D1)-
(8.199)

Thus we obtain in momentum space (with p1a = p1 + p2 and p14 = p1 + pa, ete)

h
P9 (o opy) = m>+0<)

A" N +2 1
— - _— N 4+ 2)0;,4,0i,. 20; iisia — 5
(’L) ( ) |:(( + )5111461213 + 61 ) /1712 +m2

+2 permutations}

/k —k?+m?)%(— p14f) +m?)

21 1
— — | = N 2 N 4 51114512“ 451”2“14
z) ()[( TN ) - )%fﬂ+m%(@uw+m%

+2 permutations]

X

K (k2 + m2)(*(p14 —k)? +m?)

= (1) 3(5) [(0v -2+ 00400 [
1

S N o e

The corresponding Feynman diagrams are shown on figure 5.

+5 permutations} . (8.200)

8.5.3 The 2—Loop Renormalization of the 2—Point Proper Vertex

The Euclidean expression of the proper 2—point vertex at 2—loop is given by

I(m2)J(O, m2) + K(pQ,mQ) .

>\>2N+2 [N+2
3

A
rg)(p) = &;(p>+m?) + hg(N +2)d;,I(m?) — h? (- 0

(8.201)
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We compute

Ak dY
(2m)* (2m)*

2 W) ___ @jasaz 2
K(p2,m2) = /dOzldOQdOég & m* (e taztas) ajagtaiagtagag? /
2 Qg3 2
1 / —m* (a1 toates) - grra A tagag P
= — daldagdag
(4m)4 (1ag + aras + asas)?

We have used the result

e

(8.202)

—(a1+as)k? e~

d*k 2 1
—— e = —— 8.204
/(2#)4 ‘ 1672a? ( )
We introduce the cut-off A as follows
2 Qajagag 2
1 e~ (artantas) — o e s P
K@(p*m?) = —/ dadasda
(» ) (4m)4 3 18200 (12 + aras + asas)?
= — dxidrod
(4m)* /7:22 F10L2aLs (x122 + T123 + T223)?
m2 P2 P,
We have
e—Zl—Zg—Zg
A = dxidzodx
/T—f P 312y + 213 + Tow3)?
A2 e—yx—j(z-i-ﬂcz-i-ﬂﬂs)
= W/dl‘dl‘gdmg (8.206)
1

The integrand is symmetric in the three variables x, o and x3. The integral can be rewritten
as 6 times the integral over the symmetric region x3 > x5 > x. We can also perform the change

of variables z2 = xy and x3 = xyz, i.e drodrs = x?ydydz to obtain

A? [dzdy e~ Bro(l+y+yz)

m? J, 22y : (14 2z+yz)?

< g
_ 6/m2 t—ﬁ et t).

A2

o dy [ —ty(1+2)
(t) = / _y/ dy &
1Y (1424 yz)?

A =

¢ y(y+2)
y yt

(xz2 + 223 + T223)2

Cyly+2)t

/°° dy e (e 1
ey — e y+1 +
1 yly+1) y+2 y+1

Ei(

y+1

)

(8.207)

(8.208)

araptajagtasag 2

altag

(8.203)



YDRI QFT 221

The most important contribution in the limit A — oo comes from the region ¢ ~ 0. Thus near
t = 0 we have

© gy o2ty yt tﬁ( y(y +2) ))
t = y+1 C 1 t 1 ——— Ot
v /1 yy +1) (y+2+y+1€ it y+1 +ow
= o+ Urtint + ot + ... (8.209)
o dy 1, 4
P :/ — = _Iln-. 8.210
T yy+ry+2) 23 ( )

* dy 1
_ ___ 2 8.211
& /1 (y+1)2 2 (8.211)
> dy * dy > dy y(y +2)
- 72/ 7+C/ +/ In
’ 1 W+ Dy +2) v w12 (w12 y+1
[e'e] 2_1
~ om2-m3)+ S+ d—glny
2 2 Y Yy
1 1
= 2(ln2—ln3)+g—§+gln3—§ln2
1
= (C—1-l3+3n2). (8.212)

We have then

dt dt dt
A = GwO/Z t_2 €_t+6’¢1/ — _tlnt+61/12/ 7 +
Az %

A2 A2

A? ot dt
= 61#0?4—6’(#1 lnt+6 lﬂg—wo ? +

2

?
A
A2 d _ m2 _mZy
67/)0w+61/)1 /m_ ik e tInt + 6(Ye — o) — e /1dt Int e 22" 4 ...

2

A2

2 2
6’(#0— - 3’(#1( —) 3’(/11 m dt e” (hlt) — G(wg — ’L/Jo)El( ) + ..

A2 2 A2
= 6’1/)0@ — < _2) 6(1p2 — o) 111(—2)
(8.213)



222

YDRI QFT

Now we compute

B

—X1—T2—XT
e 1 2 3

(122 + 2123 + 2223)3

/ 1'1$2£C3d$1d$2d$3

2
e~z (@taatws)

rxoxzdrdradr
/1 23 2008 (zxo + xX3 + T223)3

o S 67’/';—22(x+12+13)
—6 dx Todx T3dx
/1 / 2ne / sTe (xxo + 223 + T223)3

oo e—%z(l—i—y-{-yz)
/ s / = e
1 (1+z+yz)?

8

(8.214)

d e viHs 8.215
/ y/ 1+z+yz2)3 (8.215)

15 ol

It is not difficult to convince ourselves that only the constant part of ¢ leads to a divergence, i.e

Now we compute

C

¥(0) = 5. We get

B = 76/00 ﬂe*tqz}(()) = —61(0) m;\l—z. (8.216)

—T1—T2—T:
e~ T1—T2—T3

1

5/2($1$2$3)2d$1d$2d$3

m2 (:L'1:C2 +SC1:L'3 +£L'2:C3)4

m2
m2 e*ﬁ(1+mz+13)

2
— dxdzad
A2 1(xz2z3) Taraats (xxo + 223 + 2223)*
2
2 [>® oo o0 — 2> (z+x2tas)
22/ xQdac/ .T%dl‘g/ $§d$3 €’ 7
1 - o (xxo + xT3 + T23)
J J e~ A2 z(1+y+yz)
A2/ x/ yy/ dz 1+z+yz)

e—ty(1+2)
/ dt e~ / ydy/ (8.217)

1+z—|—yz)
A2

3

This integral is well defined in the limit A — co. Furthermore it is positive definite.
In summay we have found that both K(0,m?) and K (0,m?) are divergent in the limit

A — oo, i.e K(p?,m?) — K(0,m?) is divergent at the two-loop order. This means that I‘( )( )

and dFZ(-?) (p)/dp? are divergent at p? = 0 and hence in order to renormlaize the 2—point proper

vertex Fg)(p) at the two-loop order we must impose two conditions on it. The first condition
is the same as before namely we require that the value of the 2—point proper vertex at zero
momentum is precisely the physical or renormalized mass. The second condition is essentially a
renormalization of the coefficient of the kinetic term, i.e dFZ(-?) (p)/dp?. Before we can write these
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two conditions we introduce a renormalization of the scalar field ¢ known also as wave function
renormalization given by

¢ =VZ¢n. (8.218)

This induces a renormalization of the n—point proper vertices. Indeed the effective action be-
comes

F[Qﬂ = Z .F“ i xl;---;xn)(bil ('Tl)(bln(xn)
> %Fz('?.)..inR(xla s )iy R(21) e R (T (8.219)
n=0

n)

The renormalized n—point proper vertex 1"1(-1___ ;. g is given in terms of the bare n—point proper

(n)
vertex I'; . by
FEI n) iR r(@1, . x,) = Z%FE?_)_% (T1,.eey Tp)- (8.220)

Thus the renormalized 2—point proper vertex Fgﬁz( ) in momentum space is given by

T3 () = 215 (). (8.221)

Now we impose on the renormalized 2—point proper vertex F% (p) the two conditions given by

Tk (P)lp=0 = ZT (p)lp=o = dijm. (8.222)
d (o d (2
a2 Ej})?,(p”pzo = ZFI‘( )( )p=0 = 0ij- (8.223)

The second condition yields immediately

1 AN +2
7 = . = 1+Fﬂ(—) Ty (0,m?, A). (8.224)
1—12(3) Y22 K7 (0,m2, A) 3 2

The first condition gives then

A)2N+2[N+2
2

A
m? = m3%— hE(N +2)I(m? A) + i? <§ TI(m A)J(0,m?*, A) + K(0,m? A)

- m’K’ (O,mQ,A)}

AR PN +2

2

- — hZ (N +2)I(m?, A) +h2<>\3R> - { 3I(m%, A)J(0,m%, A) + K(0,m%, A)

- m%K/(O,m%{,A)]

= hA—R(N+2)I(mR,A)+h2<%R)

N+2[ N+8_
2 2

- meK’(o,m;,A)].

I(m%, A)J(0,m%, A) + K(0,m%, A)

(8.225)



224 YDRI QFT

In above we have used the relation between the bare coupling constant A and the renormalized
coupling constant Ar at one-loop given by equation (8.175). We have also used the relation
I(m?,A) = I(m%,A) + hA2(N + 2)I(m? A)J(0,m%,A) where we have assumed that m? =
m% — hAE(N +2)I(m?, A). We get therefore the 2—point proper vertex

AR\’ N +2 ,
ngl)z(p) = 5ij (p2 =+ m%) - h2 (?R> Téw <K(p2a m??a A) - K(07 m%{v A) - p2K (07 m%{v A)> .
(8.226)
8.5.4 The 2—Loop Renormalization of the 4—Point Proper Vertex
The Euclidean expression of the proper 4—point vertex at 2—loop is given by
A A1
FE?.).“ (P1;--pa) = §5i1i2i3i4 - h(g) 3 [((N +2)0iyiy Oigiy + 25¢1i2i3i4)J(pfg,m2)
+ 2 permutations
MNPN 2
+ (5) — ((N +2)0i1i40igis + 25i1i2i3i4)1(m2)L(P§4,m2)
+ 2 permutations
2 A 1T 2 22
+ h g Z (N + 2)(N =+ 4)5i1i45i2i3 + 45i1i2i3i4 J(p14,m )
+ 2 permutations}
2 A 1T 2 2 2
+ h g 5 2(N + 2)51'11'451'21'3 + (N + 6)51'11'21'31'4 M(p147p27m )
+ 5 permutations} . (8.227)
2 2 d*k 2
L(pis,m”) = —4A(k/’) A(k = p1a). (8.228)
(2m)
M@phm?) = [ AL S ADARIAC - p)AC- k 4 p2) (5.229)
o (2m)* (2m)*
For simplicity we will not write explicitly the dependence on the cut-off A in the following. The
renormalized 4—point proper vertex Fgfzz inia r(P1,p2,p3,p4) in momentum space is given by

4 4
F§122i3i4R(p1?p2?p3’p4) = Z2F7(;17?27;37;4 (p1)p2)p3)p4)- (8230)

We will impose the renormalization condition

4
Fz('l.)..i4R(0a - 0) = ?51'”'21'31'4- (8.231)
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We introduce a new renormalization constant Z, defined by

A
Zy00 1 (0,,0) = Sdiiigis (8.232)

3 11121314
Equivalently this means
Z
Z—‘g)\R = A\ (8.233)

The constant Z is already known at two-loop. The constant Z, at two-loop is computed to be

A M [(N +2)(N +8
Zy = 1+RS(N+8)7(0,m?) —hQ(g) {(LQ(*)I(WR)L(O,M)
N+2)(N+4)+12
(v +2)( 4+ )+ J(0,m?)? + (5N + 22)M (0,0, m?)|. (8.234)
We compute
@ ( ) = Z21@) ( )
irinizig R\P1, D2, P3, P4 i1inigiq \P1, P2, D3, P4
AR
= Z9?5i1i2i3i4 + Fz('ilzgigu (pl’p%p3ap4)|1*100p + FE’?ZZiSM (p15p25p35p4)|27100p-
(8.235)
By using the relation J(p3,, m?) = J(p}y, m%) + h’\TR(N + 2)I(m%)L(p3,, m%) we compute
AR Ak M\ N +8 e \?
Zg=3 Oirigizia = ?51'11'21'31'4"'5(?) T%msw}(oam%)—rﬂ(?) 51'11'21'31'4{
N+2)(N+4)+12 (N +38)2
(( + )(4+ J+12_{ ; ))J(O,m%{)Q+(5N+22)M(0,0,m%{)].
(8.236)
4 >\R 21
Fglzzism(p15p25p3ap4)|1—100p = _h<?> 5 |:<(N+2)5111261314 +26i1i2i3i4)J(p%2am2R)
4+ 2 permutations
A\’ N +8
- h2<?> T‘](Oam%)[<(]\7+2)5111251314 +25i1i2i3i4)‘](p§27m21%)
4+ 2 permutations
AR\’ N +2
- h2<?> Tl(m%’,)[<(]\7+2)5111251314 +25i1i2i3i4>L(p%2am%’,)

+ 2 permutations] . (8.237)
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We then find

A A
Fl('il-)--isz(pl’ ""p4) = R 11121314 - h(?R)

N)I»—l

+ 2 permutations

|:( N + 2)61'11'261'31'4 + 26i1i2i3i4) (J(p%Qa m%’,) - J(Oa m%’,))

A
+ ( ;) 1 |:((N + 2)(N +4)0iyiy0igis + 4611121314) (J(pi“mQR) - J(OamQR))Q

+ 2 permutations]

s\ 3
(50 | (207 D 4 (O + O, ) IO B T ) — IO, m)
+ 2 permutations

A\l
+ AK? <?R) 3 {(2(1\7 +2)0iyi40iis + (N + 6)51-”-21-31-4) (M (p3,, p3, m%) — M(0,0,m%))
+ 5 permutations|. (8.238)

In the above last equation the combination M (p3,, p3, m%)—M (0,0, m%)—J (0, m%)(J (p3s, m%)—
J(0,m%)) must be finite in the limit A — oo '?

8.6 Renormalized Perturbation Theory

The (¢?)? theory with O(NN) symmetry studied in this chapter is given by the action

S= /d4 [ 00" b; — ?—%(qﬁf)Q : (8.239)

This is called a bare action, the fields ¢; are the bare fields and the parameters m? and X are
the bare coupling constants of the theory.

Let us recall that the free 2—point function < 0|T(<§iyin(z)($jyin(y))|0 > is the probability
amplitude for a free scalar particle to propagate from a spacetime point y to a spacetime x. In the
interacting theory the 2—point function is < Q|T(¢;(x)d;(y))|2 > where |Q >= [0 > /1/< 0]0 >
is the ground state of the full Hamiltonian H. On general grounds we can verify that the 2—point
function < Q|T(i(x);(y))|Q > is given by

iZ6

_ 8.240
p? —m% + i€ ( )

/d%eip(mfy) < QT (6i(2)$; (1))|Q >=
The dots stands for regular terms at p> = m?% where mp is the physical or renormalized mass.
The residue or renormalization constant Z is called the wave function renormalization. Indeed
the renormalized 2—point function < QT (pr(x)pr(y))|Q > is given by

’L(Sw

_ 8.241
p? —m% +ie ( )

/d4zeip(z_y) < Q|T($1R(z)‘5yR(y))|Q >=

12Exercise:show this result.
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The physical or renormalized field ¢ is given by
¢ =VZ¢r. (8.242)

As we have already discussed this induces a renormalization of the n—point proper vertices.
Indeed the effective action becomes

e Z / d. / B2l (21, e )iy (21)- 1, ()
Z /d4$1 /d4$nr( om0, m) @i m (1) m (). (8.243)

n)

The renormalized n—point proper vertex FZ(-l___in g is given in terms of the bare n—point proper

vertex FE?)M by
D (@1 @) = ZETY | (1, ). (8.244)
We introduce a renormalized coupling constant Ar and a renormalization constant Z, by
ZyA\r = 7%\ (8.245)
The action takes the form

VA

S = /d43€ |:§au¢iRau¢iR - gm%ﬁ?]z - T(¢§R>2
= Sgr+6S. (8.246)
The renormalized action Sg is given by
Sr = /d4 E 1 PirO"  dir — 1mR¢zR )j ((b?R)Q- : (8.247)
The action 4.5 is given by
55 = [ Lo oin — gimdtn - 267 (5.248)
The counterterms dz, d,, and d) are given by
Sz=2—1,0m=2m>—m% , 5x=A2> - Ar = (Z, — 1)Ag. (8.249)

The new Feynman rules derived from Si and 4.5 are shown on figure 7.

The so-called renormalized perturbation theory consists in the following. The renormalized
or physical parameters of the theory mpr and Ar are always assumed to be finite whereas the
counterterms dz, d,, and d, will contain the unobservable infinite shifts between the bare pa-
rameters m and A\ and the physical parameters mpr and Ar. The renormalized parameters are
determined from imposing renormalization conditions on appropriate proper vertices. In this
case we will impose on the 2—point proper vertex 1"1(]3%( ) and the 4—point proper vertex 1"551)3 (p)

the three conditions given by

D (p)lp=o = dim3. (8.250)
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d (2
Wrz('j})?,(pﬂpzo = 0ij. (8.251)
4 >\R
Fz('l.)..i4R(Oa -5 0) *?51'11'21'31'4- (8.252)

As an example let us consider the 2—point and 4—point functions upto the 1—loop order. We
have immediately the results

h A
P00 = [0~ k) = TR 2T+ (020~ 0. s (8.253)
A AR h{Ar\’1
ngi)1...i4(p1’ ""p4) = 7?51'11'21'31'4 + ; ? 5 (N + 2)5i1i25i3i4 + 25i1i2i3i4 J(p%%mQR)
. O
+ 2 permutations| — ?67;17:21'31'4' (8.254)

The first two terms in both Fg) and Fg) come from the renormalized action Sr and they are
identical with the results obtained with the bare action S with the substitutions m — mp and
A —> Agr. The last terms in Fg) and F%) come from the action §.5. By imposing renormalization
conditions we get (including a cut-off A)

By 222
67=0, 6= f;FR(N +2)In(mh) , 6y = =N +8)Ja(0,m). (8.255)
In other words
T3 0) = (0 = mE)di;. (8.256)
AR A1
F(F;li)l---izl (pl’ ""p4) = 7?51'11'21'31'4 + ; <?) 5 |:<(N + 2)5i1i25i3i4 + 25i1i2i3i4> (J(p?Qa m%’,) - ‘](05 m%’,))

+ 2 permutations] .

It is clear that the end result of renormalized perturbation theory upto 1—loop is the same as
the somewhat "direct" renormalization employed in the previous sections to renormalize the
perturbative expansion of Fg) and F%) upto 1—loop. This result extends also to the 2—loop
order!'3.

Let us note at the end of this section that renormalization of higher n—point vertices should
proceed along the same lines discussed above for the 2—point and 4—point vertices. The detail
of this exercise will be omitted at this stage.

8.7 Effective Potential and Dimensional Regularization

Let us go back to our original O(N) action which is given by

2
Slg] = /d“w[%@m@%i + 507 = 267 + Jidn . (8.258)

I3Exercise:Try this explicitly.

(8.257)
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Now we expand the field as ¢; = ¢.; + 1; where ¢.; is the classical field. We can always choose
¢ to point in the N direction, viz ¢. = (0, ..., 0, ¢.). By translational invariance we may assume
that ¢.; is a constant. The action becomes (where V is the spacetime volume)

2 1 2
Slpe,n] = V {%Gﬁ - %(¢3i)2 + Ji¢ci:| + /d49€ [5@771'5”771' + %7712 + (1 — g8%))peini + Jin
g g
= S162m] + 26eimi)?] — g(dcimi)n — Z(m—?)?] (8.259)

In the spirit of renormalized perturbation theory we will think of the parameters u? and g as
renormalized parameters and add the counterterms

35161 = [ [ 1520,6.000 + 35,67 — TGV + 66 (8.260)

The counterterm ¢§.J; is chosen so that the 1—point vertex 1"1(-11) (x1) is identically zero to all orders
in perturbation theory. This is equivalent to the removal of all tadpole diagrams that contribute
to <1 >.

Let us recall the form of the effective action upto 1—loop and the classical 2—point function.
These are given by

1h
=5+~ IndetGo+ .. (8.261)

Gi = =57 o=0.- (8.262)

The effective action can always be rewritten as the spacetime integral of an effective Lagrangian
Leg. For slowly varying fields the most important piece in this effective Lagrangian is the so-
called effective potential which is the term with no dependence on the derivatives of the field.
The effective Lagrangian takes the generic form

Lot (e, 0de, 0000, ...) = =V (be) + Z(be) 00" e + ... (8.263)

For constant classical field we have
T(¢.) = —/d4xV(q§c) = —(/d4x)V(¢c). (8.264)

We compute immediately
S o= [ 0%+ — gl + 2600084 — )
oni(@)on; (y) "~ N v ekTi T St

= [ — 0% — mﬂ 504z —y). (8.265)

The masses m; are given by
mi = g¢s —p?, i,j # N and m? = 3g¢2 — p? | i=j=N. (8.266)

The above result can be put in the form

528 / d?p [2 2] ;
L = p? —m? §;:eP@=Y) 8.267
S () ()" 2n) j (8.267)
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We compute

1h 1h _
E;Indet Gy = —gzlndetGO !
ih 528 )
= —Indet| — ————|=0
7 e =
ih 528 )
= —Trln| — ——————|=
7 (- s
ih 528
= — [d*z<z ln(—i _0)x>
; @m0
ih d*p
= — — 1 —p? 2Y8;4
7V | e (1 )
ih d*p d*p
= —V|{(N-1 —In( —p* — 2 2 / In( —p*— 2 2)1.
QV{( )/(%)4H< pT—p+gos |+ A + 3g¢?
(8.268)
The basic integral we need to compute is
d*p
2y _ 2 2
I(m)/wln<p er). (8.269)
This is clearly divergent. We will use here the powerful method of dimensional regularization to
calculate this integral. This consists in 1) performing a Wick rotation k° — k* = —ik" and 2)
continuing the number of dimensions from 4 to d # 4. We have then
[ dpE
I(m?) =i / 2y In <p2E + m2). (8.270)
We use the identity
0]
%x70‘|a:0 =—Inuz. (8.271)
We get then
0 ddpE 1
I(m?) = —i— o
o) = =iz | i)
0 Qi vy
= —i— d a=0- 8.272
90 <(27r)d/ PE (p% + m?)™ la=o ( )

The Qg4_1 is the solid angle in d dimensions, i.e. the area of a sphere S¢~!. It is given by 4

2%
Qg1= —+. (8.273)
(%)
We make the change of variables x = p?% then the change of variables t = m?/(z + m?). We get
L0 Qa1 [ R
Im?) = —i—| 2= dr—"——)|o=
(m”) Z@a(2(27r)d/0 x(z+m2)0‘ =0
.0 Qd—1(m2)%70‘ /1 _1_d d_q
= —f—— dtt*  72(1—1t)2 a=0- 8.274
Z@a( 2207 J, 1=027" Jlao (8.274)

4 Derive this result.
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We use the result

Lo 1 _ D(@)l(B)
a—1 Y 1 _
EAdH (1-ppt= g2 (8.275)
We get then
o 0 (Qaa(mP)E e T(a—9I(9)
Im?) - = _’a_a( 2(27)d T(a )lo“o
_ - 0 1 2 %—al—‘(a — %)
Now we use the result that
FM)—+é,a—%O (8.277)
Thus
1 d d
I(m?) = fi(47r)%(m2)51“(f§). (8.278)
By using this result we have
1h _ iﬂ . 1 7C_l _ 2 2\ 4 2 2\ 4
giindenGo = V(i) [ - D g+ (00t
_d
= GV B0 - gt o+ 0ed) ] (3.279)
2 (4m)2

The effective potential including counterterms is given by

ot g hT(—42)
Vige) = *3@53 + Z(d)i)Q -3 (M)Q%

wla
+
0
=
[N
+
w
K
-
Qo
~—
ol
—_

[(N C 1) (i + g4?)
5062+ 16,(67)" (8.250)

Near d = 4 we use the approximation given by (with e = 4—d and v = 0.5772 is Euler-Mascheroni
constant)

— 7+ +0(e). (8.281)

This divergence can be absorbed by using appropriate renormalization conditions. We remark
that the classical minimum is given by ¢. = v = /u?/g. We will demand that the value of the
minimum of Veg remains given by ¢. = v at the one-loop order by imposing the condition

d
D

V(¢e)lgo=v = 0. (8.282)
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As we will see in the next section this is equivalent to saying that the sum of all tadpole diagrams
is 0. This condition leads immediately to

r1-4
8, — 64v* = hg ( f) 5 —. (8.283)
(4m)? (2p2) 3
The second renormalization condition is naturally chosen to be given by
o g
—V(¢e)|p.=0 = =4 8.284
This leads to the result 6
re-—4
5y = hg2(Af%—8)—£———7%2. (8.285)
(4m)2
As a consequence we obtain 17
re-4
5M=mm%N+2yi—gﬁ. (8.286)
(4m)2
After substituting back in the potential we get '8
V(o) = —g+ 9022 + s [ = 1)+ 962 In(—p + g0) - 2
c) = 5 Pe (P 1(dn)? BT g9, B+ 9o, 5
3
b o+ 3900° (m(u4300) - 3 )| (5.287)
In deriving this result we have used in particular the equation
d (mQ)% m* [2 9 3
r'(—= =——|—+Indr -1 — = . 2
( 2)(47r)% () 6+ ndr —Ilnm ’y+2+0(6) (8.288)

8.8 Spontaneous Symmetry Breaking

8.8.1 Example: The O(N) Model

We are still interested in the (¢?)? theory with O(N) symmetry in d dimensions (d = 4 is of
primary importance but other dimensions are important as well) given by the classical action
(with the replacements m? = —p? and \/4! = g/4)

ﬁ@Z/ﬁ%B%@W@+%ﬁﬁ—%w%2- (8.289)

This scalar field can be in two different phases depending on the value of m?. The "symmetric
phase" characterized by the "order parameter" ¢;.(J = 0) =< ¢; >= 0 and the "broken phase"
with ¢;. # 0. This corresponds to the spontaneous symmetry breaking of O(NN) down to O(N —1)

15Exercise: Verify explicitly.
16Exercise: Verify explicitly.
1TExercise: Verify explicitly.
18Exercise: Verify explicitly.
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and the appearance of massless particles called Goldstone bosons in d > 3. For N = 1, it is
the Zs symmetry ¢ — —¢ which is broken spontaneously. This is a very concrete instance of
Goldstone theorem. In "local" scalar field theory in d < 2 there can be no spontaneous symmetry
breaking according to the Wagner-Mermin-Coleman theorem. To illustrate these points we start
from the classical potential

Vgl = / dd:c[— S0+ 22 (8.290)

This has a Mexican-hat shape. The minimum of the system is a configuration which must
minimize the potential and also is uniform so that it minimizes also the Hamiltonian. The
equation of motion is

b5(—1? + go?) = 0. (8.201)

For p? < 0 the minimum is unique given by the vector ¢; = 0 whereas for y? > 0 we can have
as solution either the vector ¢; < 0 (which in fact is not a minimum) or any vector ¢; such that

@2 =1 (8.292)

As one may check any of these vectors is a minimum. In other words we have an infinitely
degenerate ground state given by the sphere SV~!. The ground state is conventionally chosen
to point in the N direction by adding to the action a symmetry breaking term of the form

AS = e/ddacqu , €>0. (8.293)

(—H® + 997)¢; = edjn. (8.294)
The solution is clearly of the form
¢ = voiN. (8.295)

The coefficient v is given by

2
(—p + g =e=v= % e — 0. (8.296)

We expand around this solution by writing
=7, k=1,..,.N—1, oy =v+o0. (8.297)

By expanding the potential around this solution we get

1 1
Vg = / d' [5(—u2 + gu)E + 5( +390%)0 + o= + 0o + guo® + guomd + SoPad + Dot 4 D22,

(8.298)

We have therefore one massive field (the o) and N — 1 massless fields (the pions 7y) for p? > 0.
Indeed

m2 =—p2+gv> =0, m2 = —p® + 3gv® = 24°. (8.299)

™ - o
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For 4? < 0 we must have v = 0 and thus m2 = m2 = —p?.
It is well known that the O(4) model provides a very good approximation to the dynamics of
the real world pions with masses m4 = m_ = 139.6 Mev, mo = 135Mev which are indeed much

less than the mass of the 4th particle (the sigma particle) which has mass m, = 900 Mev. The
0O(4) model can also be identified with the Higgs sector of the standard model.
The action around the "broken phase" solution is given by

1 1
Slg| = /ddx [§6Hﬂ'k6“ﬂ'k + 5%08“0 — p?o? — guo® — guomi — 30277,3 — %04 — %(77,3)2 )

We use the counterterms

st = [ dta| 3020,0,0%6: + 58,6 - 10,6

1 1 1
/dd:c[§5zama#m = 5(= 0, + d0% )12 + 5Za 00" — (=0 + 304 Ho?

1
— (=8, v+8,03 5va7r 51}0 — =4 71'-22——607r 60 8.301
1% g 49 2

We compute the 1—point proper vertex of the sigma field. We start from the result
=S, + - GJ’“SW +.. (8.302)

Gy = _S;j1|¢,:¢c. (8.303)
We compute immediately

or

£|a:m:0 = 0+ __[G US,UUU + Ggiﬂ'js,amﬂ'j]

LR [ dk 1 dk 5,
= 57| | mma a3 _ % -~
21 U (2myt K+ 222 3'gv)+/ ryd 2 el 29v0)

k1 k1
Szgvh/ (2m)? k2 — 22 igv( )h/ (2m)d k2 — €2 (8:304)

In the above equation we have added a small mass 2 for the pions to control the infrared
behavior. We need to compute

/ dk 1 _/ddkE 1

ar - Ly firE -

(2m)d k2 —m? (2m)4 k2, + m?
_ Q41 / z2! d
o 22m)d ) x+m?2 *

_ 8 m2) 41 ! Y

= et /O 51— t)F 1t
i 2141 7@

- (47r)% (m?) (1 2). (8.305)
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We get

( 7+ ?- (8.306)

By adding the contribution of the counterterms we get

6T r(1—4¢ 3 N-1
_|a:m:0 = _(_6uv+5g7}3) — gvh ( 42)( T T+ d
b0 (4m)z (2p2)'72  (M)'7%
The corresponding Feynman diagrams are shown on figure 8. We will impose the renormalization
condition

). (8.307)

ST
= =0 (8.308)

This is equivalent to the statement that the sum of all tadpole diagrams giving the 1—point
proper vertex for the o field vanishes. In other words we do not allow any quantum shifts in the
vacuum expectation value of ¢ which is given by < ¢n >= v. We get then

(=6, + 640°) = —gh

F(l — %) 3 N -1
2 a 7)- 8.309
(47)2 ((guz)l—E + (52)1_5) ( )

Next we consider the mw amplitude. We use the result
hil mn 1 mmo ,Ynng
F,J’oko = S,joko + ; §GO S[¢]7jokomn + §G0 GO S[¢],jomns[¢],komono : (8310)

We compute immediately (including again a small mass &2 for the pions)

Sijoke = —Ojoko (A + 38z — ). (8.311)

1 1
5G0 " Sljokemn = 5 /ddzddw[Gé’"(zv w)][~298jok, 8 (z — )8 (2 — 2)8%(z — w)]

+ % / d%2dWw[6,n GT™ (2, 0)] [73!95]-0,%%5% — 0%z — 2)6%(x — w)]
= —géjokoGg‘T(x,x)éd(m —y) — (N + 1)gdok, G5 (, x)éd(ac —y). (8.312)

1
SGE G S S WLty = o [tz [[atz0 [ o [ el G5 220 IGE? (0]
oo~ o 200 )5 )
= 4gPPGT (2, )GE (2,). (3:313)
Thus we get
h
Tae) = Oiaa(84 €005~ ) + 7| = aBir, G . 006~ 9) = (N + D G 0187~ )

+4ﬂ%mﬁwm%%w} (8.314)
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Recall also that

T ddp 1 ip(x— oo ddp 1 ip(x—
Go (x,y)z/wwep( v, G (x,y):/wmep( v, (8.315)

The Fourier transform is defined by

[ s [ atyrn, et = n) 5 + NI, ) (8.316)

We compute then

h dok 1 dok 1
T 2 2
Fjoko(p) = 5joko(p *5 ) + 25j0k0 {9/ (QT)dm — (N + l)g/ _

4
+ 4g2v2/ d’k 1 L . (8.317)
(2m)d —k2 4 &2 —(k + p)? + 2p?

By adding the contribution of the counterterms we get

h dik 1 dik 1
T _ X 2 2 s o v - v -
Joko (p) - 5]0]430 (p g ) + i(S]OkU |: g/ (27T)d —1{52 + 2/1/2 (N + l)g/ (27_‘_)(1 —k2 + €2

Lo 2/ d*k 1 1
v
g (2m)d —k2 4 &2 —(k + p)? + 2p?

} + (62P% + 0 — 6,0%)0joky-  (8.318)

The corresponding Feynman diagrams are shown on figure 8. After some calculation we obtain

T F(l - é) d__ d_
TT% () = Gjoke (P — €2) = 20980 ——22[(€3) 571 — (202) 271
(4m)3
I d*k 1 1
-0 4g39> 25 .. 31
+ i6J0k0|: gv /(QW)d 2+ —(k+p)?+2u2 +02P 6joko-  (8.319)

The last integral can be computed using Feynman parameters x1, xo intrdouced by the identity

1 . . 1
= d drg—————9§ —1). 8.320
1A, /0 961/0 T2 (@1 A, + 2245)2 (1 + 22 ) ( )

We have then (with s =2, 1 =k + (1 — x1)p and M? = 221 + 2u%(1 — 21) — p?x1(1 — 1) and
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after a Wick rotation)

/ddk : ; - /ddk /1dz /1dz : S +m2 — 1)
2m)d —k2+ & —(k+p)2+2u2 )d ! 0 2[:cl(k:2f§2)+z2((k+p)2*2ﬂ2)}s ' ’
1 d?l 1
dl‘l 1'25(501 + x2 — 1) (27‘() (l2 _ M2)s
d?l 1
= / dml/ dxed(xy + 29 — )/( J)Ed (12 + M?2)s
i(-1)°Qu s 15 'dlg
— 277 / dzl/ d$25 $1 + 22 — )/(12 +M2)

Q x2 lde
= d— 1/ dzl/ d1'25 SCl + 2o — )/(:C—FMQ)

. SQ
= (2(; d— 1 5 5/ d$1/ dl‘26 $1 —|—x2_1)/ (1_t)%71t57%71dt
7T

_ (1) L) / dzl/ da6(z1 + 3 — 1) (s——))r(g)

C202m)d

S F _ g
/ dwl/ d$25 .Tl + 19 — 1) ( )i (]\42)g SM. (8.321)
Using this result we have

ra-—4 _ a_
FFOTFICO( ) = 6j0k0 (p2 - 62) - 2h96j0k0(47); - (2:“2)g 1]
)

F( ! 2 201 _ — 21‘ —x
D@ [ g 20 ) 2 )

ol

-2

+ 4hg21)25j0k0 + 5Zp25j0k0-

(8.322)

By studying the amplitudes oo, conm and mrnm we can determine that the counterterm ¢ is
finite at one-loop whereas the counterterm §, is divergent '°. This means in particular that the
divergent part of the above remaining integral does not depend on p. We simply set p?> = 0 and
study

N

1
— @+ ang P, o2 [
(4m) 0

(8.323)

(%)

[SII<H ol

;roﬂ;co (0) = 5j0k0 (*52) - 2h95j0k0

x [Er+2p%(1—21)] 27

We get (using gv? = p?)

vl
(VBN

_ a_ rl-4) 242 4
- (2M2)2 1] + 2595]‘0]@0 %2 2

(47T) 2#2752[(5)_ _(2:“) _]‘
(8.324)

F(l
[T (0) = Gjoke(—E?) — 2hg8 o, —2>
j[)k[)( ) Joko( € ) 9030k (47T)

This vanishes exactly in the limit £ — 0 and therefore the pions remain massless at one-

9Exercise: Show this result explicitly. You need to figure out and then use two more renormalization conditions.
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loop?°. This is a manifestation of the Goldstone’s theorem which states that there must exist
N — 1 massless particles associated with the N — 1 broken symmetries of the breaking pattern
O(N) — O(N —1).

8.8.2 Glodstone’s Theorem

Spontaneous symmetry breaking of a continuous symmetry leads always to massless particles
called Goldstone bosons. The number of massless Goldstone bosons which appear is precisely
equal to the number of symmetry generators broken spontaneously. This is a general result
known as Goldstone’s theorem. For example in the case of the O(N) model studied in the
previous sections the continuous symmetries are precisely O(N) transformations, i.e. rotations
in N dimensions which rotate the different components of the scalar field into each other. There
are in this case N(N — 1)/2 independent rotations and hence N(N — 1)/2 generators of the
group O(N). Under the symmetry breaking pattern O(N) — O(N — 1) the number of broken
symmetries is exactly N(N —1)/2 — (N — 1)(N — 2)/2 = N — 1 and hence there must appear
N — 1 massless Goldstone bosons in the low energy spectrum of the theory which have been
already verified explicitly upto the one-loop order. This holds also true at any arbitrary order in
perturbation theory. Remark that for NV = 1 there is no continuous symmetry and there are no
massless Goldstone particles associated to the symmetry breaking pattern ¢ — —¢. We sketch
now a general proof of Goldstone’s theorem.
A typical Lagrangian density of interest is of the form

L(¢) = terms with derivatives(¢) — V(¢). (8.325)

The minimum of V' is denoted ¢y and satisfies

d
9¢a

Now we expand V around the minimum ¢q upto the second order in the fields. We get

V()lg=go = 0. (8.326)

2

V() = V(00 + 56— 00)al6 — badgp oV (Dllomsy +

1
= Vigo) + 5(¢ — do)a(¢ — o)y, (¢o) + .. (8.327)
The matrix m?2,(¢o) called the mass matrix is clearly a symmetric matrix which is also positive
since ¢ is assumed to be a minimum configuration.

A general continuous symmetry will transform the scalar field ¢ infinitesimally according to
the generic law

B — Gy = b+ ala(0). (8.328)

The parameter « is infinitesimal and A, are some functions of ¢. The invariance of the La-
grangian density is given by the condition
terms with derivatives(¢) — V(¢) = terms with derivatives(¢ + aA(¢)) — V(¢ + aA(9)).
(8.329)

20Exercise: Show this result directly. Start by showing that

Bl o o [ d% 1 1 ) 5 5 5 dek 1
— |4 = 2ihg[I(&?) —12p®)], I =] .
; { I | (omyd Zr2 4 €2 k2 4 o2 ihg1(§7) — 1(2p7)] , 1(m7) (2m)d k2 — m?
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For constant fields this condition reduces to

V(g) = V(¢ + al(9)). (8.330)
Equivalently
Aa(9) 82 V(¢) = 0. (8.331)

By differentiating with respect to ¢, and setting ¢ = ¢y we get

mey(¢0) Ay (do) = 0. (8.332)

The symmetry transformations, as we have seen, leave always the Lagrangian density invariant
which was actually our starting point. In the case that the above symmetry transformation
leaves also the ground state configuration ¢g invariant we must have A(¢g) = 0 and thus the
above equation becomes trivial. However, in the case that the symmetry transformation does not
leave the ground state configuration ¢ invariant, which is precisely the case of a spontaneously
broken symmetry, Ay(¢o) is an eigenstate of the mass matrix m?,(¢o) with 0 eigenvalue which
is exactly the massless Goldstone particle.
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Path Integral Quantization of Dirac and Vector
Fields

9.1 Free Dirac Field

9.1.1 Canonical Quantization

The Dirac field ¢ describes particles of spin /i/2. The Dirac field ¢ is a 4—component object
which transforms as spinor under the action of the Lorentz group. The classical equation of
motion of a free Dirac field is the Dirac equation. This is given by

(thy" 0y — me)yp = 0. (9.1)
Equivalently the complex conjugate field 1) = 1++° obeys the equation
&(ihy“a +mec) = 0. (9.2)
These two equations are the Euler-Lagrange equations derived from the action
S = /d4z1/_)(iﬁ6'y“8# —mc?)e. (9.3)
The Dirac matrices v* satisfy the usual Dirac algebra {v*,v"} = 2n*¥. The Dirac equation ad-

mits positive-energy solutions (associated with particles) denoted by spinors u(p) and negative-
energy solutions (associated with antiparticles) denoted by spinors v(p).

The spinor field can be put in the form (with w(p) = E/h = \/p?c? + m2c*/h)
v = 4 / Lo [ S (et (@n, ) + o @it ).
hJ (2mh)?\ 2w(p) < ’ ’

The conjugate field is I1(z) = ihy™T.

(9.4)
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In the quantum theory (canonical quantization) the coeflicients b(p,¢) and d(p,i) become
operators b(p,i) and d(f,i) and as a consequence the spinor field () and the conjugate field
II(z) become operators 1h(z) and II(z) respectively. In order to have a stable ground state the
operators 1(z) and II(z) must satisfy the anticommutation (rather than commutation) relations
given by

{tha(a®,2), Mg (2", )} = ih3asd™ (& — 7). (9-5)

Equivalently

{b(5,0),b(3.J)*} = hoi;(2mwh)*6* (5 — @)
{d(p, )", d(d, §)} = hoi; (2mh)* (5 — )

{b(5,7),d(7,9)} = {d(d, §)*, b(5,7)} = 0. (9.6)
We find that excited particle states are obtained by acting with B(ﬁ, i)™ on the vacuum |0 >

whereas excited antiparticle states are obtained by acting with J(ﬁ, i)*. The vacuum state |0 >
is the eigenstate with energy equal 0 of the Hamiltonian

Q‘)
[T}

d*p RPN P YN
= [ Geteo) S (i) 850 + d i) i) ). (0.7
The Feynman propagator for a Dirac spinor field is defined by

(Sk)a(e —y) = < OTda(e)n(y)|0 > (9.8)
The time-ordering operator is defined by
T(x)id(y) = +d(@)d(y) 5 «° >y’
To(x)y(y) = )y (e) , 2° <y’ (9.9)
Explicitly we have !

h d*p (P +me)ab i pae
(SF)ab(z —y) = E/(27rh)4 p27m202+l,€e wp(@=y), (9.10)

9.1.2 Fermionic Path Integral and Grassmann Numbers

Let us now expand the spinor field as

1 d? i o
(20, %) = ﬁ/ (QWI%B)((,%O,]S')@W . (9.11)

The Lagrangian in terms of x and x T is given by
L = / &zl
= /d%qﬁ(ihcv“@u — mc? )

¢ d’p _ : Qi
17 | Gy X P 0 = 'y = me)x(a”, 7). (9.12)

IThere was a serious (well not really serious) error in our computation of the scalar propagator in the first
semester which propagated to an error in the Dirac propoagtor. This must be corrected there and also in the
previous chapter of this current semester in which we did not follow the factors of 4 and ¢ properly. In any case
the coefficient //c apperaing in front of this propagator is now correct.
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We use the identity

Y (vp' 4+ me)x (2, p) = MT@X(xO,ﬁ). (9.13)
We get then
3
N %/ (Qig)Bx+($o’m(i5t — w(@)x(@", D). (9.14)

Using the box normalization the momenta become discrete and the measure [ d*p/(2mh)* be-
comes the sum > /V. Thus the Lagrangian becomes with 0,(t) = x (2%, 9)/VhV given by

L = Ze;(t)(iat—w(m)ep(t). (9.15)

For a single momentum p’ the Lagrangian of the theory simplifies to the single term

L, = 65 (1)i0 - w()b(t). (9.16)

We will simplify further by thinking of 6,(t) as a single component field. The conjugate variable

is m,(t) = 46, (t). In the quantum theory we replace 6, and 7, with operators ép and 7,. The
canonical commutation relations are

{9;0’7%1)} = ih, {917’ 91)} = {ﬁpaﬁp} = 0. (9.17)
There several remarks here:

e In the limit A — 0, the operators reduce to fields which are anticommuting classical func-
tions. In other words even classical fermion fields must be represented by anticommuting
numbers which are known as Grassmann numbers.

e There is no eigenvalues of the operators ép and 7, in the set of complex numbers except 0.
The non-zero eigenvalues must be therefore anticommuting Grassmann numbers.

e Obviously given two anticommuting Grassmann numbers « and 8 we have immediately
the following fundamental properties

aff = —pa, a? =p%2=0. (9.18)

The classical equation of motion following from the Lagrangian L,, is i9,0, = w(p)6,. An imme-
diate solution is given by

0,(t) = by exp(—iw(p)t). (9.19)
Thus
{bp, b5} = R, {by, by} = {b, b} =0. (9.20)

The Hilbert space contains two states |0 > (the vacuum) and |1 >= 13;; |0 > (the only exited

state). Indeed we clearly have B;ﬂl >=0 and l;p|1 >= R|0 >. We define the (coherent) states at
time ¢t = 0 by

10,(0) >= €% %00 > | < 0,(0)] =€ Ok < 0], (9.21)
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The number 6,(0) must be anticommuting Grassmann number, i.e. it must satisfy 6,(0)? = 0
whereas the number 67(0) is the complex conjugate of 8,,(0) which should be taken as independent
and hence (6,7 (0))* = 0 and ;7 (0)0,(0) = —6,(0)6;7 (0). We compute immediately that
0,(0)10,(0) >= 0,(0)16,(0) > , < 6,(0)[0,(0)" =< 6,(0)[6;5 (0). (9.22)
The Feynman propagator for the field 6,(t) is defined by
S(t—t) =< 0|T(0,()6; (£ )]0 > . (9.23)

We compute immediately (with € > 0) 2

’ 0 ) . ’
S(t—t) = he @@-t) = p2 L — G O (9.24)
2rh p° — hw(p) + ie ’

0 : _ ,
St —t)=0=h / L NP (9.25)
27h p0 — hw(p) + ie ’

The anticommuting Grassmann numbers have the following properties:

e A general function f(6) of a single anticommuting Grassmann number can be expanded as

f(6) = A+ Bo. (9.26)
e The integral of f(6) is therefore
/d@f(@) = /d@(A + B0). (9.27)

We demand that this integral is invariant under the shift § — 6+7. This leads immediately
to the so-called Berezin integration rules

a9 =0, [doo=1. (9.28)
oo |

e The differential df anticommutes with 0, viz

0o = —0do. (9.29)

e We have immediately
/d@dnn@ =1 (9.30)

The most general function of two anticommuting Grassmann numbers 6 and 67 is

F(0,07) = A+ B0+ COT + DO 0. (9.31)

e Given two anticommuting Grassmann numbers 6 and 7 we have

@)t =ntot. = -0y, (9.32)

2Exercise: Verify this result using the residue theorem.
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e We compute the integrals

/ d9tdoe?" = / dotdo(1 — 07 b0) = b. (9.33)

/ ot deeete=0" 0 = / dotdeeet (1 — 6+ be) = 1. (9.34)

It is instructive to compare the first integral with the bosonic integral

2
/dz+dze_z+bz = Tﬂ- (9.35)

e We consider now a general integral of the form
/ 11 d6;ao; 6", 0). (9.36)

Consider the unitary transformation 6; —s 6; = U;;6; where UTU = 1. Tt is rather obvious
that ?

[T d0; = det [ dé:. (9.37)

Hence [], d9;+d9; =TI, 0} db; since UtU = 1. On the other hand, by expanding the
function f(67F,0) and integrating out we immediately see that the only non-zero term will
be exactly of the form [], O;FOZ- which is also invariant under the unitary transformation U.
Hence

/Hd9;+d9;f(9’+,e’) - /Hd@jdeif(ete). (9.38)

e Consider the above integral for
FOF,0) =e 0T M (9.39)
M is a Hermitian matrix. By using the invariance under U(N) we can diagonalize the

matrix M without changing the value of the integral. The eigenvalues of M are denoted
m;. The integral becomes

/ [T do; doie=o" 216 = / [T a6; dtie=0 % = ] mi = detan. (9.40)

Again it is instructive to compare with the bosonic integral

2 n
/Hdz;rdzie_z+Mz (2m) . (9.41)

- detM

3Exercise: Verify this fact.
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e We consider now the integral
/H degrd@ie—@*Me—e*n—n*e _ /H d@{rdoie—(OJr—i—n*M’l)]\/1(9+]\/I’1n)+77+M’177
K3 K3
i i

detMen M 'n, (9.42)

e Let us consider now the integral

Hd@*d@ﬂk@*e—wM@ _ ii Hd(g{rdeie—WM@—e*n_yﬁe
i : o dm;t L

= detM(M ™). (9.43)

n=n+=0

In the above equation we have always to remember that the order of differentials and
variables is very important since they are anticommuting objects.

e In the above equation we observe that if the matrix M has eigenvalue 0 then the result is
0 since the determinant vanishes in this case.

We go back now to our original problem. We want to express the propagator S(t — tl) =<
0|T(ép(t)é;‘ (t'))|0 > as a path integral over the classical fields 6, () and 05 (t) which must be
complex anticommuting Grassmann numbers. By analogy with what happens in scalar field
theory we expect the path integral to be a functional integral of the probability amplitude
exp(iSp/h) where S, is the action S, = [ dtL,, over the classical fields () and 6, (¢) (which are
taken to be complex anticommuting Grassmann numbers instead of ordinary complex numbers).
In the presence of sources 7,(t) and 7 (t) this path integral reads

Znp, ] = /DH;DGP exp (ﬁ /dt@;(z&g —w(p))0, + 3 /dtn;,"@p += /dt@;np). (9.44)

By using the result (9.42) we know immediately that
. nt M-t i, i n iy
Znp,n, | = detMe , M:—%(z&g—w(ﬁ)) L N= s 0= (9.45)
In other words
+

Zlnp, ) = detMe 7 J dt S dtny (M@t (), (9.46)

From one hand we have

5 1 52 | Do+ D6, 9,,(1&)9;‘(15/) exp (% J dtof (0, — w(ﬁ))Hp)

<2)2<zmz>%_ﬁ_o B

IDH;FDGP exp (% fdt@;{ (i0y — w(ﬁ))ep)

< 0,105 (1) > . (9.47)

From the other hand

() o) a0 o
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Therefore
< 0,00 () >= M~V (t,1). (9.49)
We have
M(tt) = —%(i&t — w(@)s(t —t)
1 dp° p° —w(p) —ip0(t—t)
The inverse is therefore given by
< O,(t)0F () >= M~\(t,t) = h? /A —— (9.51)
P ’ 2h p¥ — w(p) + ie ' '
We conclude therefore that
o | Db Db, 9p(t)9;‘(t/) exp (% J dtof (10, — w(ﬁ'))ep)
< O|T(9p(t)9;{(t N0 >= (9.52)

[ D65 DO, exp (% [ dtoy (i0, — w(ﬁ))Hp)

9.1.3 The Electron Propagator

We are now ready to state our main punch line. The path integral of a free Dirac field in the
presence of non-zero sources must be given by the functional integral

Znil = [ Divw exp (g5l + 5 [ateno s [ dain) (95

So[w,ﬂ_)] = /d4x1/;(ih0’y“8u - mc2)1/). (9.54)

The Dirac spinor ¢ and its Dirac conjugate spinor ¢ = 1)*t~4° must be treated as independent
complex spinors with components which are Grassmann-valued functions of . Indeed by taking
Xi(z) to be an orthonormal basis of 4—component Dirac spinors (for example it can be con-
structed out of the u’(p) and v*(p) in an obvious way) we can expand ¢ and ¢ as ) = 3, 0;x;(z)
and ¢; = Do 9?;‘@ respectively. The coefficients 6; and 91* must then be complex Grassmann
numbers. The measure appearing in the above integral is therefore

DYDY = | [ DO} D; (9.55)
The path integral Z[n, 7] is the generating functional of all correlation functions of the fields
and . Indeed we have

J DIDY i, (21, (@) B3, (91 D, () exD 1 Solis, V]
JDUDY exp £ Solup, 0]

< Yo (1) Vo, (Tn) V5, (11)--Vp, (yn) > =

_ ( h?n 52nz[n, 77] >
Z[na 77] 6ﬁa1 (‘Tl)"'éﬁal (551)57751 (?Jl)---577ﬂ1 (yl) 77:77:0'
(9.56)
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For example the 2—point function is given by

7y — h? 62Z[77) ﬁ]
<Ya(@)Pply) > = ( 7] 87 ()68 (y))n_n_o. (9.57)

However by comparing the path integral Z[n, 7] with the path integral (9.42) we can make the
identification

M;; — f%(ihcwau —mc)apdtx —y) , mi — —%na , i — f%ﬁa_ (9.58)
We define
Mag(z,y) = —%(iﬁc*y“[?# —mc*)apdt(z —y)
= *%C (2(?5)4 (7P = me)age” BV
4 2 2.2 _
- & (Qif-:yi (ﬁupﬁnzckﬂe“‘”’- (9.59)

By using equation (9.42) we can deduce immediately the value of the path integral Z[n,7]. We
find

Zinil = dessrep (i [ [atymi ) (9.60)

Hence the electron propagator is

< Ya(@)dply) >= M 4 (z,y). (9.61)

From the form of the Laplacian (9.59) we get immediately the propagator (including also an
appropriate Feynman prescription)

_ hof _d'p ('PutmOap _ipay)
) _.h B o~ kp(a—y) 9.62
< Yal2)Ps(y) > e / @rh) p? —m2 +ie . (962

9.2 Free Abelian Vector Field

9.2.1 Maxwell’s Action

The electric and magnetic fields E and B generated by a charge density p and a current density
J are given by the Maxwell’s equations written in the Heaviside-Lorentz system as

VE = p, Gauss' s Law. (9.63)
VB =0, No — Magnetic Monopole Law. (9.64)
- - 10B
VX FE= f—aa—t , Faraday’ s Law. (9.65)
c

- o - 0
VxB==(J+ E) , Ampere — Maxwell’ s Law. (9.66)
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The Lorentz force law expresses the force exerted on a charge ¢ moving with a velocity @ in the
presence of an electric and magnetic fields £ and B. This is given by

F =q(E+ =i x B). (9.67)

ol

The continuity equation expresses local conservation of the electric charge. It reads

op =
— +VJ=0. 9.68
5 T (9.68)
The so-called field strength tensor is a second-rank antisymmetric tensor F),,, defined by

0 -E, —-E, —FE,
E, 0 -B. B,

my _
F E, B. 0 B, (9.69)
E, -B, B, 0
The dual field strength tensor is also a second-rank antisymmetric tensor F;w defined by
0 -B, -B, —-B,
~ B 0 E —-F 1
17120 x z Yy _ —_prap
P = B, —E. 0 B, = 3¢ Fop. (9.70)
B, E, -E, 0
In terms of F),, and F;w Maxwell’s equations will take the form
v 1 v nIN4
O FM = EJ , OuF" =0. (9.71)

The 4—vector current density J# is given by J* = (cp, Jy, Jy, J;). The first equation yields
Gauss’s and Ampere-Maxwell’s laws whereas the second equation yields Maxwell’s third equation
VB =0 and Faraday’s law. The continuity equation and the Lorentz force law respectively can
be rewritten in the covariant forms

OuJ" =0. (9.72)

qdx,
KH=Z2——FH, 9.73
c dr ( )

The electric and magnetic fields E and B can be expressed in terms of a scalar potential V' and
a vector potential A as

B=VxA (9.74)
L 1= 04
E=—-= —). :
(VW + 20 (9.75)

We construct the 4—vector potential A* as

AP = (V/e, A). (9.76)
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The field tensor F),, can be rewritten in terms of A, as
F,, =0,A,—0,A,. (9.77)

This equation is actually equivalent to the two equations (9.74) and (9.75). The homogeneous
Maxwell’s equation J,F*" = 0 is automatically solved by this ansatz. The inhomogeneous
Maxwell’s equation 9, F* = J" /c becomes

1
' A — 9O A = ", (9.78)

These equations of motion should be derived from a local Lagrangian density £, i.e. a Lagrangian
which depends only on the fields and their first derivatives at the point Z. Indeed it can be
easily proven that the above equations of motion are the Euler-Lagrange equations of motion
corresponding to the Lagrangian density

L = —iFWF“” — %JHA”. (9.79)
The free Maxwell’s action is

SolA] = —i / d*zF,, F". (9.80)
The total Maxwell’s action will include a non-zero source and is given by

1 1
S[A] = -3 / d*zF,, F" — . / d*zJ, A", (9.81)

9.2.2 Gauge Invariance and Canonical Quantization

We have a gauge freedom in choosing A* given by local gauge transformations of the form (with
A any scalar function)

AP s AT = AF 4 GHA. (9.82)
Indeed under this transformation we have
FM —y F'i = i (9.83)

These local gauge transformations form a (gauge) group. In this case the group is just the abelian
U(1) unitary group. The invariance of the theory under these transformations is termed a gauge
invariance. The 4—vector potential A* is called a gauge potential or a gauge field. We make
use of the invariance under gauge transformations by working with a gauge potential A* which
satisfies some extra conditions. This procedure is known as gauge fixing. Some of the gauge
conditions so often used are

0uA" =0, Lorentz Gauge. (9.84)
9;A* =0, Coulomb Gauge. (9.85)

A% =0, Temporal Gauge. (9.86)



YDRI QFT 251

A% =0, Axial Gauge. (9.87)

A% + A' =0, Light Cone Gauge. (9.88)

The form of the equations of motion (9.78) strongly suggest we impose the Lorentz condition.
In the Lorentz gauge the equations of motion (9.78) become

9,0 AY = %J”. (9.89)

Clearly we still have a gauge freedom A* — Ar = Ar 4 0*¢ where 0,0"¢ = 0. In other
words if A" satisfies the Lorentz gauge 0, A" = 0 then A'r will also satisfy the Lorentz gauge,
ie. 6HA/“ = 0 iff 9,0"¢ = 0. This residual gauge symmetry can be fixed by imposing another
condition such as the temporal gauge A% = 0. We have therefore 2 constraints imposed on the
components of the gauge potential A* which means that only two of them are really independent.
The underlying mechanism for the reduction of the number of degrees of freedom is actually more
complicated than this simple counting.

We incorporate the Lorentz condition via a Lagrange multiplier (, i.e. we add to the Maxwell’s
Lagrangian density a term proportional to (8" 4,,)? in order to obtain a gauge-fixed Lagrangian
density, viz

1 1 1
L; = fZFWF‘“’ - 5g(aﬂA#)2 - EJ#A“. (9.90)

The added extra term is known as a gauge-fixing term. The conjugate fields are

6L (¢ »
Ty = 6atAO == c(avo &Az). (991)
0L 1
T, = 58“41 = E(aoAl — GZ-AO). (992)

We remark that in the limit ( — 0 the conjugate field my vanishes and as a consequence
canonical quantization becomes impossible. The source of the problem is gauge invariance which
characterize the limit ( — 0. For ¢ # 0 canonical quantization (although a very involved
exercise) can be carried out consistently. We will not do this exercise here but only quote the
result for the 2—point function. The propagator of the photon field in a general gauge ( is given
by the formula (with i=c=1)

D —y) = <o (Ao >

- ﬂ; - _ Ly exp(—ip(x —
a /(2w)4pz+ie( "+ (1 §) pg) p(—ip(z —y)).  (9.93)

In the following we will give a derivation of this fundamental result based on the path integral
formalism.
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9.2.3 Path Integral Quantization and the Faddeev-Popov Method

The starting point is to posit that the path integral of an Abelian vector field A* in the presence of
a source J# is given by analogy with the scalar field by the functional integral (we set h =c¢ = 1)

Z[J] = / [I DA, expiS[A]

“w
/ [] DA exp ( - i / Ao F, PP — / d4xJMA“). (9.94)
“w

This is the generating functional of all correlation functions of the field A#(x). This is clear from
the result

S/ 1, DA, A# (21).... A2 (22) exp iSo[A]
J Hu DA, expiSo[A]

_ (" " Z[J)
- <Z[J] 0Jp, (1)...0J, (xn))J_O- (9.95)

< AP (xq)... AP (29) > =

The Maxwell’s action can be rewritten as
1
Sol4] = -1 / d*zF,, F"

1
1 / B A, (9,0 — 00N Ay (9.96)

[\

We Fourier transform A, (x) as

A (x) = / (gﬂl;ﬁﬂ(k)em. (9.97)
Then
SolA] = %/%Ay(m(—k?n“+k:”kk)ih(—k). (9.98)

We observe that the action is 0 for any configuration of the form A, (k) = k,f(k). Thus we
conclude that the so-called pure gauge configurations given by A, (z) = 9,A(x) are zero modes
of the Laplacian which means in particular that the Laplacian can not be inverted. More im-
portantly this means that in the path integral Z[J] these zero modes (which are equivalent to
A, = 0) are not damped and thus the path integral is divergent. This happens for any other
configuration A,. Indeed all gauge equivalent configurations Aﬁ = A, + 0,A have the same
probability amplitude and as a consequence the sum of their contributions to the path integral
will be proportional to the divergent integral over the Abelian U(1) gauge group which is here
the integral over A. The problem lies therefore in gauge invariance which must be fixed in the
path integral. This entails the selection of a single gauge configuration from each gauge orbit
Aﬁ = A, + 0, as a representative and using it to compute the contribution of the orbit to the
path integral.

In path integral quantization gauge fixing is done in an elegant and efficient way via the
method of Faddeev and Popov. Let us say that we want to gauge fix by imposing the Lorentz
condition G(A) = §,A* —w = 0. Clearly G(A") = 9,A" — w + 9,0 A and thus

/ DAS(G(AM)) = / DAS(9, A" — w + 0,0,). (9.99)
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By performing the change of variables A — A" = 0,0"A and using the fact that DA =

|(OA” JOA)|DA = det(d,0*)DA we get

/DA&(G(AA)) = /ﬁtaﬂ)é(@fl —w+A) = m

This can be put in the form

/DA(S(G(AA))det((SG;iA)) = 1

This is the generalization of
/Hda 5 <* )det(agi> = 1.
6aj

We insert 1 in the form (9.101) in the path integral as follows

/HDAH/DA(S(G(AA))det(%fA)) expiS[A]
= det(8,0") / DA / HDA#5<G(AA)) exp iS[A]
det(8,0") / DA / HDAﬁ&(G(AA)) expiS[AL].

Z1J]

(9.100)

(9.101)

(9.102)

(9.103)

Now we shift the integration varaible as Aﬁ — A,. We observe immediately that the integral

over the U(1) gauge group decouples, viz

det(9,,0") ( / DA) / HDAH(S(G(A)) exp iS[A]
det(9,0")( / DA) / HDAué(c’)uA“ —w) expiS|[A].

Z1J]

(9.104)

Next we want to set w = 0. We do this in a smooth way by integrating both sides of the above

equation against a Gaussian weighting function centered around w = 0, viz

/ Dw exp(— / d%i) [J]

det(9,0") /DA /HDA exp(— /d4 (8;2

ZlJ] = N/HDA exp(— /d4 (GM;?) ) expiS[4]

2
det(0,0") /DA /HDA /Dwexp /d4x—

2¢
u)2

) exp iS[A].

I I u €XP ;w 9.
o S

Therefore the end result is the addition of a term proportional to (9, A4*)? to the action which

fixes gauge invariance to a sufficient degree.

)6 (c’)uA“ - w) expiS[A]

(9.105)
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9.2.4 The Photon Propagator

The above path integral can also be put in the form

ZJ = N/HDA exp( /d TA, <aﬂauny/\+(%1)8V8A>A/\i/d4$J#A'u>-

(9.107)
We use the result
/Hdzie—zmmzj—ziji - eiiiM "'/Hdze (zat 556 My, ) My (2543 M i)
i=1
_ eijiM,;gljj/deie—yiMijyj
i=1
— 6‘11]1 ij ]J /dez —TiMmiT;
— 6431 i JJ H /
= eI My i (det M) *%. (9.108)
By comparison we have
i o VA 1 v al 4 . .
M;; — —3 0,0"n"" + (E - 1)0"0" 6% (x —y) , ji —> iy (9.109)
We define
M Mz,y) = —3 (@ﬁ“n Ay (E —-1)0 8’\)54(30 - )
i d*k 1 ,
= - By + (5 — 1)k EN) etk @), 9.110
5 [ G+ (g = DR (9110)

Hence our path integral is actually given by
Z[J] = Nnrz(detM)~ 2exp< —/d4 /d4yJ“ )M (:L' y)J" (y ))
N exp (— —/d4 /d4yJ“ o (2, 9) " (y )) (9.111)

The inverse of the Laplacian is defined by

[t e g ) = 8 ). (9.112)
For example the 2—point function is given by
i? §2Z1J)
A A, =
< Au(@) A (y) > (Z[J] 5Ju(z)5JV(y))J_O
1
= -M, (z,y). (9.113)

2
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It is not difficult to check that the inverse is given by

d*k 1 k. ky . .
Mt = 2 | ————— (g — (1 — &) iR zy), 114
pr (‘T’y) ’L/ (27T)4 k2+i6(77u ( €) k2 )6 (9 )
Hence the propagator is
Ak —i kuky | ik(o—y)
<Au(@)Au(y) > = /Wm(mw -(1-9¢) 12 Je : (9.115)

The most important gauges we will make use of are the Feynman gauge £ = 1 and the Landau
gauge & = 0.

9.3 Gauge Interactions

9.3.1 Spinor and Scalar Electrodynamics: Minimal Coupling

The actions of a free Dirac field and a free Abelian vector field in the presence of sources are
given by (with A =c=1)

Sl, 9] = /d“m/?(iv“@# —m)y + /d4:c(1/777 + ). (9.116)

1
S[A] = —Z/d‘*xFWFW—/d%JMAH. (9.117)

The action S[A] gives Maxwell’s equations with a vector current source equal to the external
vector current J#. As we have already discussed the Maxwell’s action (J# = 0) is invariant under
the gauge symmetry transformations

Ay — Al = Ay + O\ (9.118)

The action S[A] is also invariant under these gauge transformations provided the vector current
J# is conserved, viz 9,J" = 0.

The action describing the interaction of a photon which is described by the Abelian vector
field A* and an electron described by the Dirac field ¥ must be given by

S, 3. 4] = S, d]+ 5[4 - / daj, A", (9.119)

The interaction term —j,A* is dictated by the requirement that this action must also give
Maxwell’s equations with a vector current source equal now to the sum of the external vector
current J#* and the internal vector current j#. The internal vector current j# must clearly depend
on the spinor fields 1 and 1 and furthermore it must be conserved.

In order to ensure that j* is conserved we will identify it with the Noether’s current associated
with the local symmetry transformations

P — PN = exp(—ieN) , P — b = Pexp(iel). (9.120)

Indeed under these local transformations the Dirac action transforms as

S, 9] — S Y = Sk, d] e / A4z 0D, (7). (9.121)
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The internal current j# will be identified with ey, viz
G = eytep. (9.122)

This current is clearly invariant under the local transformations (9.120). By performing the
local transformations (9.118) and (9.120) simultaneously, i.e. by considering the transformations
(9.120) a part of gauge symmetry, we obtain the invariance of the action S[t/, 4, A]. The action
remains invariant under the combined transformations (9.118) and (9.120) if we also include a
conserved external vector current source J# and Grassmann spinor sources 1 and 7 which trans-
form under gauge transformations as the dynamical Dirac spinors, viz  — n®* = exp(—ieA)n
and 7 — 7" = fexp(ieA). We write this result as (with S, 5 s[v, 1, A] = S[v, ¥, A])

Sn,ﬁ,J[l/}a ’Jja A] — SnA,ﬁA,J[Q/JAa &Aa AA] = Sn,ﬁ,.][wa /lﬁa A] (9123)

The action S[, v, A] with the corresponding path integral define quantum spinor electrodynam-
ics which is the simplest and most important gauge interaction. The action S[i, v, A] can also
be put in the form

S[,, A] = /d%&(mﬂvu —m) — i/d“wa,F“” +/d4x(¢n+ﬁw) - /d4:cJMA“.
(9.124)
The derivative operator V,, which is called the covariant derivative is given by
V=0, +ieA,. (9.125)

The action S[t, 1), A] could have been obtained from the free action S[t, 4] + S[A] by making
the simple replacement 8,, — V,, which is known as the principle of minimal coupling. In flat
Minkowski spacetime this prescription always works and it allows us to obtain the most minimal
consistent interaction starting from a free theory.

As another example consider complex quartic scalar field given by the action

Slp. "] = /d4x (6,@*6% —m?¢T e — %(¢+¢)2). (9.126)

By applying the principle of minimal coupling we replace the ordinary &, by the covariant
derivative V,, = 0, + ieA,, and then add the Maxwell’s action. We get immediately the gauge
invariant action

Slp, ", Al = /d4:c (quﬁ*V“qb —-m?¢pte — %(qs*qb)?) — i/d“xFWF‘“’. (9.127)

This is indeed invariant under the local gauge symmetry transformations acting on A*, ¢ and
o1 as

Ay — Al = A+ 0,A |, ¢ — exp(—ieA)¢ , ¢T — ¢T exp(ieA). (9.128)

It is not difficult to add vector and scalar sources to the action (9.126) without spoiling gauge
invariance. The action (9.126) with the corresponding path integral define quantum scalar elec-
trodynamics which describes the interaction of the photon A* with a charged scalar particle ¢
whose electric charge is ¢ = —e.
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9.3.2 The Geometry of U(1) Gauge Invariance

The set of all gauge transformations which leave invariant the actions of spinor and scalar elec-
trodynamics form a group called U(1) and as a consequence spinor and scalar electrodynamics
are said to be invariant under local U(1) gauge symmetry. The group U(1) is the group of 1 x 1
unitary matrices given by

U(1) = {g = exp(—ieA),VA}. (9.129)

In order to be able to generalize the local U(1) gauge symmetry to local gauge symmetries based
on other groups we will exhibit in this section the geometrical content of the gauge invariance of
spinor electrodynamics. The starting point is the free Dirac action given by

S = / d*aip(iy" 0, — m)ip. (9.130)
This is invariant under the global transformations
P — e Y | — et (9.131)

We demand next that the theory must be invariant under the local transformations obtained by
allowing A to be a function of = in the above equations, viz

v —y? = g(a)y, P — 97 =Ygt (x). (9-132)

The fermion mass term is trivially still invariant under these local U(1) gauge transformations,i.e.

Pt — PIYI = . (9.133)

The kinetic term is not so easy. The difficulty clearly lies with the derivative of the field which
transforms under the local U(1) gauge transformations in a complicated way. To appreciate more
this difficulty let us consider the derivative of the field v in the direction defined by the vector
n* which is given by

(Y2 + en) — ()]

€

n*0,1 = lim , € — 0. (9.134)
The two fields 1 (x+en) and ¢ (z) transform under the local U(1) symmetry with different phases
given by g(x 4 en) and g(x) respectively. The point is that the fields ¢(z + en) and ¥(z) since
they are evaluated at different spacetime points x4+ en and = they transform independently under
the local U(1) symmetry. As a consequence the derivative n*0,1 has no intrinsic geometrical
meaning since it involves the comparison of fields at different spacetime points which transform
independently of each other under U(1).

In order to be able to compare fields ¢(y) and ¢ (x) at different spacetime points y and x
we need to introduce a new object which connects the two points y and z and which allows a
meaningful comparison between 1(y) and ¥(z). We introduce a comparator field U(y, ) which
connects the points y and = along a particular path with the properties:

e The comparator field U(y, z) must be an element of the gauge group U(1) and thus U(y, x)
is a pure phase, viz

Ul(y,x) = exp(—iep(y,z)) € U(1). (9.135)
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e Clearly we must have

U(z,z) =1« ¢(r,z) =0. (9.136)

e Under the U(1) gauge transformations ¢ (z) — ¢9(x) = g(z)y¥(z) and ¥ (y) — ¥9(y) =
9(y)¥(y) the comparator field transforms as

Uly,z) — U9y, z) = g(y)U(y, z)g™ (). (9.137)

e We impose the restriction

Uy,z)" = U(x,y). (9.138)

The third property means that the product U(y, z)y(z) transforms as

Uy, x)p(z) — U9y, 2)y? (z) = g(y)U (y, 2)g ™ (2)g(x)¢(z) = g(y)U (y, z)ip(z).  (9.139)

Thus U(y, )¢ (x) transforms under the U(1) gauge group with the same group element as the
field ¥ (y). This means in particular that the comparison between U(y,z)y¥(x) and ¥(y) is
meaningful. We are led therefore to define a new derivative of the field ¢ in the direction defined
by the vector n* by

[1/1(:0 +en) — Uz + en, x)1/1(:c)}

nt'V ¢ = lim , € — 0. (9.140)
This is known as the covariant derivative of ¢ in the direction n*.

The second property U(z,z) = 1 allows us to conclude that if the point y is infinitesimally
close to the point x then we can expand U(y,x) around 1. We can write for y = x + en the
expansion

Uz + en,x) = 1 — ieen, A" (z) + O(€?). (9.141)

The coefficient of the displacement vector y, — x, = en, is a new vector field A* which is
precisely, as we will see shortly, the electromagnetic vector potential. The coupling e will, on the
other hand, play the role of the electric charge. We compute immediately

Vb = (0, + ieA, ). (9.142)

Thus V,, is indeed the covariant derivative introduced in the previous section.

By using the language of differential geometry we say that the vector field A, is a connection
on a U(1) fiber bundle over spacetime which defines the parallel transport of the field ¢ from x
to y. The parallel transported field v is defined by

¥(y) = Uly, 2)¢(). (9.143)

The third property with a comparator U(y,z) with y infinitesimally close to z, for example
Yy = x + en, reads explicitly

1 —ideent Ay, (z) — 1 —ideen” Af(z) = g(y) (1 - ieen“AM(x)) gt (x). (9.144)
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Equivalently we have
A% = gAugt + éaug-f & AY = A, + 0uA. (9.145)

Again we find the gauge field transformation law considered in the previous section. For com-
pleteness we find the transformation law of the covariant derivative of the field ). We have

Vit = (O +ieAu)p — (Vu)? = (O +ieAf)y?
= (0, +ied, +ied, N)(e " )
= e Mo, +ieA )Y
= 9@)Vuy. (9.146)

Thus the covariant derivative of the field transforms exactly in the same way as the field itself.
This means in particular that the combination ;/Siwv“w is gauge invariant. In summary given
the free Dirac action we can obtain a gauge invariant Dirac action by the simple substitution
0y — V. This is the principle of minimal coupling discussed in the previous section. The
gauge invariant Dirac action is

S = /d‘%@(iv“vu —m). (9.147)

We need finally to construct a gauge invariant action which provides a kinetic term for the
vector field A*. This can be done by integrating the comparator Uy, z) along a closed loop. For
y = + en we write U(y, ) up to the order €* as

Uly,x) =1 —ieen, A" + i€’ X + O(%). (9.148)

The fourth fundamental property of U(y, x) restricts the comparator so that U(y,z)™ = U(x,y).
This leads immediately to the solution X = —enunl,ﬁ”A“/Q. Thus

Uly,z) = 1—ieen, A" — %eQn#nyal’Aﬂ +0(e?)
= 1—ieen, A" (x + %n) +0(e%)
= exp(—ieen, A*(z + %n)) (9.149)

We consider now the group element U(z) given by the product of the four comparators associated
with the four sides of a small square in the (1,2)—plane. This is given by

Uz) = trU(z,z + el)U(z + el, x4+ el + Q) U(x + el + 2,24+ 2)U(x + €2,2).  (9.150)

This is called the Wilson loop associated with the square in question. The trace tr is of course
trivial for a U(1) gauge group. The Wilson loop U(z) is locally invariant under the gauge group
U(1), i.e. under U(1) gauge transformations the Wilson loop U(z) behaves as

U(z) — Ud(x) = U(x). (9.151)

The Wilson loop is the phase accumulated if we parallel transport the spinor field ¢ from the
point x around the square and back to the point x. This phase can be computed explicitly.
Indeed we have
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U(x) = exp (z’ee {Al(z + %1) + A2(£E el gi) - Al(z + %i + ei) - A2(:L' + %Q)})
= exp(—iec’Fs)
eZet
= 1—iec’Fg — TFfQ + ... (9.152)

In the above equation Fio = 0142 — 02A;. We conclude that the field strength tensor F),, =
OuA, — 0, A, is locally gauge invariant under U(1) transformations. This is precisely the elec-
tromagnetic field strength tensor considered in the previous section.

The field strength tensor F,, = 0,A, — 0, A, can also be obtained from the commutator of
the two covariant derivatives V,, and V, acting on the spinor field 1. Indeed we have

Vi, Vo] = ie(0 Ay — 0, AL)Y. (9.153)
Thus under U(1) gauge transformations we have the behavior
[V, Vol — 9(2) [V, Vi . (9.154)

In other words [V,, V, ] is not a differential operator and furthermore it is locally invariant under
U(1) gauge transformations. This shows in a slightly different way that the field strength tensor
F,,, is the fundamental structure which is locally invariant under U(1) gauge transformations.
The field strength tensor F),, can be given by the expressions

F

pr =

%[VW Vo] = (0,4, — 0, A,). (9.155)
In summary we can conclude that any function of the vector field A* which depends on the
vector field only through the field strength tensor F,, will be locally invariant under U(1) gauge
transformations and thus can serve as an action functional. By appealing to the requirement
of renormalizability the only renormalizable U(1) gauge action in four dimensions (which also
preserves P and T' symmetries) is Maxwell’s action which is quadratic in F),, and also quadratic
in A*. We get then the pure gauge action

1
S = ~1 /d4:cFWF‘“’. (9.156)
The total action of spinor electrodynamics is therefore given by

S = / d* 2 (iv'V,, — m)p — % / d*zF,, F". (9.157)

9.3.3 Generalization: SU(N) Yang-Mills Theory

We can now immediately generalize the previous construction by replacing the Abelian gauge
group U (1) by a different gauge group G which will generically be non-Abelian, i.e the generators
of the corresponding Lie algebra will not commute. In this chapter we will be interested in the
gauge groups G = SU(N). Naturally we will start with the first non-trivial non-Abelian gauge
group G = SU(2) which is the case considered originally by Yang and Mills.

The group SU(2) is the group of 2 X 2 unitary matrices which have determinant equal 1. This
is given by

SU(2) = {uap,a,b=1,..,2 :uTu = 1,detu = 1}. (9.158)
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The generators of SU(2) are given by Pauli matrices given by

1 _ 0 1 2 0 —1 3 1 0
U_(IO)’U_(Z' 0),0—(01>. (9.159)

Thus any element of SU(2) can be rewritten as
N O.A
= —igh) , A=) A —. 9.160
u = exp(—igh) , EA 5 (9-160)

The group SU(2) has therefore 3 gauge parameters A“ in contrast with the group U(1) which
has only a single parameter. These 3 gauge parameters correspond to three orthogonal symmetry
motions which do not commute with each other. Equivalently the generators of the Lie algebra
su(2) of SU(2) (consisting of the Pauli matrices) do not commute which is the reason why we
say that the group SU(2) is non-Abelian. The Pauli matrices satisfy the commutation relations

O’A oB C

. g
[77 7] = ZfABC7 , faBc = €aBc. (9.161)

The SU(2) group element u will act on the Dirac spinor field . Since u is a 2 x 2 matrix the
spinor ¢ must necessarily be a doublet with components ¢*, a = 1,2. The extra label a will be

called the color index. We write
P! )
= . 9.162
o= % (9.162)

We say that 1 is in the fundamental representation of the group SU(2). The action of an element
u € SU(2) is given by

P — (1) =Y . (9.163)
B
We start from the free Dirac action

S = / d*z Z P(iy"D,, — m)®. (9.164)

Clearly this is invariant under global SU(2) transformations, i.e. transformations g which do not
depend on z. Local SU(2) gauge transformations are obtained by letting g depend on x. Under
local SU(2) gauge transformations the mass term remains invariant whereas the kinetic term
transforms in a complicated fashion as in the case of local U(1) gauge transformations. Hence
as in the U(1) case we appeal to the principle of minimal coupling and replace the ordinary
derivative n*0,, with the covariant derivative n*V, which is defined by

[1/1(:0 +en) — Uz + en, x)1/1($)}

nt'V 1 = lim
€

e — 0. (9.165)

Since the spinor field ¢ is a 2—component object the comparator U(y, 2) must be a 2 x 2 matrix
which transforms under local SU(2) gauge transformations as

Uy, z) — U9y, x) = u(y)U(y, x)ut (z). (9.166)
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In fact U(y,x) is an element of SU(2). We must again impose the condition that U(z,z) = 1.
Hence for an infinitesimal separation y — x = en we can expand U (y, z) as

A

Uz +en,a) =1— igmmﬁ(x)% +O(). (9.167)

In other words we have three vector fields Aﬁ (). They can be unified in a single object A, (x)
defined by

A (x) = Af(x)?. (9.168)

We will call A,(x) the SU(2) gauge field whereas we will refer to A}(z) as the components of
the SU(2) gauge field. Since A(x) is 2 x 2 matrix it will carry two color indices a and b in
an obvious way. The components of the SU(2) gauge field in the fundamental representation of
SU(2) are given by A" (x). The color index is called the SU(2) fundamental index whereas the
index A carried by the components A% (x) is called the SU(2) adjoint index. In fact A% (x) are
called the components of the SU(2) gauge field in the adjoint representation of SU(2).

First by inserting the expansion U(z + en, z) = 1 —igent Az ()0 /2+ O(€?) in the definition
of the covariant derivative we obtain the result

A
. AC
The spinor U(x + en, x)y(z) is the parallel transport of the spinor ¥ from the point x to the
point z+en and thus by construction it must transform under local SU(2) gauge transformations
in the same way as the spinor 1(x + en). Hence under local SU(2) gauge transformations the
covariant derivative is indeed covariant, viz

Vb — u(z)V . (9.170)

Next by inserting the expansion U(z+en,z) = 1 figen“Aﬁ(z)oA/QJrO(eQ) in the transformation
law U(y,z) — U9(y,x) = u(y)U(y, z)u™ (x) we obtain the transformation law

Ay — A% = uAut + 20,0t (9.171)
g

For infinitesimal SU(2) transformations we have u = 1 —igA. We get
Ay — Al = Ay + OuN +ig[Ay, Al (9.172)

In terms of components we have

c c c c A B
c9 el _ c9 c9 v BO
All?*)AN 7 = AM7+8#A 7+ZQ[AH7,A 7]
c
= (Ag + 0,0 +igATATi fABC) "7 (9.173)

In other words

AW = AT+ 0,A° — gfapc AP (9.174)
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The spinor field transforms under infinitesimal SU(2) transformations as
Y — " =9 —ighy. (9.175)
We can now check explicitly that the covariant derivative is indeed covariant, viz
Vit — (V)" = Vo —igAV 0. (9.176)

By applying the principle of minimal coupling to the free Dirac action (9.164) we replace the
ordinary derivative 0,1/ by the covariant derivative (V,,)ap1)®. We obtain the interacting action

S = /d4z azb: DIV (V) ab — MOap) . (9.177)

Clearly

O‘A

(v,u)ab = a,uéab + ZgAf( 2 )ab- (9178)

This action is by construction invariant under local SU(2) gauge transformations. It provides
obviously the free term for the Dirac field ¢ as well as the interaction term between the SU(2)
gauge field A* and the Dirac field v. There remains therefore to find an action which will provide
the free term for the SU(2) gauge field A*. As opposed to the U(1) case the action which will
provide a free term for the SU(2) gauge field A* will also provide extra interaction terms (cubic
and quartic) which involve only A*. This is another manifestation of the non-Abelian structure
of the SU(2) gauge group and it is generic to all other non-Abelian groups.

By analogy with the U(1) case a gauge invariant action which depends only on A* can only
depend on A* through the field strength tensor F),,. This in turn can be constructed from the
commutator of two covariant derivatives. We have then

1
FW = @[vw vv]
= 0,4, —0,A,+ig[A,, A (9.179)

F,, is also a 2 x 2 matrix. In terms of components the above equation reads

Fﬁ? = GMA§§ — aVA§§ + ig[Aﬁg,Afg]
= (@LAS —0,AS +igALAD fABC) % (9.180)
Equivalently
FS, = 0,A7 —0,AS — gfapcAL AL (9.181)

The last term in the above three formulas is of course absent in the case of U(1) gauge theory.
This is the term that will lead to novel cubic and quartic interaction vertices which involve
only the gauge field A*. We remark also that although F},, is the commutator of two covariant
derivatives it is not a differential operator. Since V1 transforms as V9 — uV 3 we conclude
that V,V, ¢ — uV,V,1 and hence

Fupth — uFy,0h. (9.182)
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This means in particular that
Fuy — Fy, = uFyu*. (9.183)

This can be verified explicitly by using the finite and infinitesimal transformation laws A4, —
wAyut +idunut /g and A, — A, + 9, A +ig[A,, A]*. The infinitesimal form of the above
transformation law is

Fly — F = Fu +ig[Fu, Al (9.184)

In terms of components this reads

FS, — FiC = FS, — gfapcF,A". (9.185)
Although the field strength tensor F),, is not gauge invariant its gauge transformation Fj,, —
uwF),,u™ is very simple. Any function of F),, will therefore transform in the same way as F,,, and
as a consequence its trace is gauge invariant under local SU(2) transformations. For example
trF),, F'*¥ is clearly gauge invariant. By appealing again to the requirement of renormalizability
the only renormalizable SU(2) gauge action in four dimensions (which also preserves P and T
symmetries) must be quadratic in F},,,. The only candidate is trF),, F*”. We get then the pure
gauge action

1
S=-3 / d*xtrF,, F*. (9.186)

We note that Pauli matrices satisfy

A _B
1
tr%% = S'%. (9.187)
Thus the above pure action becomes ®
1
§=-7 / d*zFS, Fre. (9.188)

This action provides as promised the free term for the SU(2) gauge field A" but also it will
provide extra cubic and quartic interaction vertices for the gauge field A*. In other words this
action is not free in contrast with the U(1) case. This interacting pure gauge theory is in fact
highly non-trivial and strictly speaking this is what we should call Yang-Mills theory.

The total action is the sum of the gauge invariant Dirac action and the Yang-Mills action.
This is given by

i 1
S = / d*z Y D (" (V) ab — map)t — 1 / d*xFS, Fre. (9.189)
a,b

The final step is to generalize further to SU(N) gauge theory which is quite straightforward.
The group SU(N) is the group of N x N unitary matrices which have determinant equal 1. This
is given by

SU(N) = {tap,a,b=1,... N : uTu=1,detu = 1}. (9.190)

4Exercise: Verify this.
5Exercise: Derive the equations of motion which follow from this action.
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The generators of SU(N) can be given by the so-called Gell-Mann matrices t4 = A4 /2. They
are traceless Hermitian matrices which generate the Lie algebra su(N) of SU(N). There are
N? — 1 generators and hence su(N) is an (N2 — 1)—dimensional vector space. They satisfy the
commutation relations

[t4,tP] = i fapctC. (9.191)

The non-trivial coefficients f4pc are called the structure constants. The Gell-Mann generators
t, can be chosen such that

1
trtAtP = 55"‘3. (9.192)
They also satisfy

1 1 .
T W(SAB + i(dABC + ’LfABc)tC. (9.193)

The coefficients dapc are symmetric in all indices. They can be given by dapc = 2trtA{t5 1€}

and they satisfy for example

N2 -4
N

dapcdaBp = dep- (9.194)

For example the group SU(3) is generated by the 8 Gell-Mann 3 x 3 matrices t* = A\ /2 given
by

010 0 —i 0 1 0 0
M= 1 00| ,XX=i 0 0] ,X=l0 -10
000 0 0 0 0 0 0
0 0 1 0 0 —i 0 0 0
M=o o0 0| ,XX=l00 o0 S X=(10 01
100 i 0 0 010
00 0 L (10 0
N=100 —i |, X¥=—01 0 |. (9.195)
0 i 0 V3\o 0 -2

The structure constants fapc and the totally symmetric coefficients d 4pc are given in the case
of the group SU(3) by

1 V3
fizz =1, fuar = —fis6 = faa6 = fos7 = faas = — fae7 = R fass = fers = 5 (9.196)
dirs = dass = dizs = —dsss = ——
118 = da2g = d33g 88 = 7

1
448 558 668 778 2\/§

1
dia6 = dis7 = —doar = dose = d3aa = d355 = —dzes = —dz77 = 3 (9.197)
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Thus any finite element of the group SU(N) can be rewritten in terms of the Gell-Mann matrices
t4 = \/2 as

)\A
u=exp(—igh), A = ZAAT' (9.198)
A

The spinor field ¢ will be an N—component object. The SU(N) group element u will act on
the Dirac spinor field ¥ in the obvious way ¥ — ui). We say that the spinor field transforms
in the fundamental representation of the SU(N) gauge group. The covariant derivative will be
defined by the same formula found in the SU(2) case after making the replacement o — \4,
viz (Vy)ab = Opdap + igAﬁl (t*)ap (recall also that the range of the fundamental index a changes
from 2 to N). The covariant derivative will transform covariantly under the SU(N) gauge
group. There are clearly N? — 1 components Aﬁ of the SU(N) gauge field, i.e. A, = AﬁtA.
The transformation laws of A, and Aﬁ remain unchanged (only remember that the structure
constants differ for different gauge groups). The field strength tensor F),,, will be given, as before,
by the commutator of two covariant derivatives. All results concerning F},,, will remain intact
with minimal changes involving the replacements ot —s )\A, eapc — fapc (recall also that
the range of the adjoint index changes from 3 to N2 —1). The total action will therefore be given
by the same formula (9.189). We will refer to this theory as quantum chromodynamics (QCD)
with SU(N) gauge group whereas we will refer to the pure gauge action as SU(N) Yang-Mills
theory.

9.4 Quantization and Renormalization at 1—Loop

9.4.1 The Fadeev-Popov Gauge Fixing and Ghost Fields
We will be interested first in the SU(N) Yang-Mills theory given by the action

1
S[A] = —3 /d4xtrFWF’“’
1 v
= —Z/d‘*xF;‘UFM 4, (9.199)
The corresponding path integral is given by
7= / [[PA? exp(is|a]) (9.200)
A

This path integral is invariant under finite SU(N) gauge transformations given explicitly by

Ay — A% = uAut + Lo,uut, (9.201)
g
Also it is invariant under infinitesimal SU(N) gauge transformations given explicitly by
Ay — Ay = Ay + 0 +ig[Ay, A= A, + [V, Al (9.202)

Equivalently
AT — AC = AT + 0,0 — gfapcASA" = AT + [V, AI°. (9.203)
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As in the case of electromagnetism we must fix the gauge before we can proceed any further
since the path integral is ill defined as it stands. We want to gauge fix by imposing the Lorentz
condition G(A) = 9,A* —w = 0. Clearly under infinitesimal SU(N) gauge transformations we
have G(A") = 9, A" — w + 9,[V*, A] and thus

/ DAS(G(AM))det (%) - / DAS(B, A" — w + 9,[V*, A])detd, [V, .]. (9.204)

By performing the change of variables A — A" = O0u[V#,A] and using the fact that DA =
|(OA” JOA)|DA = det(d,[V#,..]) DA we get

A ' /
/DA(S(G(AA))det((SG;f )) = /WZXV“,..D&@AA# —w+A )det(au[vu, ]) =1.

(9.205)

This can also be put in the form (with u near the identity)

u 0G(A")\ 0G(AY) u
/Dué(G(A ))det( S0 ) =1, Su ou[VH,.]. (9.206)
For a given gauge configuration A* we define
ATH(A) :/Dué(G(A“)). (9.207)

Under a gauge transformation 4, — Aj = vA T + vt /g we have Ay — A =
uvA, (uww)t +id,uv.(uwv)t /g and thus

A-1(AY) = / Dus(G(A™)) = / D(uv)5(G(A™)) = / Du'(G(AY ) = A~1(A).  (9.208)

In other words A~! is gauge invariant. Further we can write
1= /Dué(G(A“))A(A). (9.209)
As we will see shortly we are interested in configurations A, which lie on the surface G(A) =

0"A,, —w = 0. Thus only SU(N) gauge transformations u which are near the identity are
relevant in the above integral. Hence we conclude that (with u near the identity)

A(A4) = det<5G§Au)>. (9.210)

u

The determinant det(6G(A")/du) is gauge invariant and as a consequence is independent of w.
The fact that this determinant is independent of u is also obvious from equation (9.206).
We insert 1 in the form (9.209) in the path integral as follows

_ A " u expi
7= [ I]74; [ PustGramya@espisia
— [ o [ T]PAlsGA AW episie
A

= /Du/HDAZA(S(G(A“))A(A“)expiS[A“]. (9.211)
A
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Now we shift the integration varaible as AZ — A,,. The integral over the SU(N) gauge group
decouples an we end up with

zZ = (/Du)/HADAﬁa(G(A))A(A)eXpiS[A]. (9.212)

Because of the delta function we are interested in knowing A(A) only for configurations A*
which lie on the surface G(A) = 0. This means in particular that the gauge transformations
u appearing in (9.209) must be close to the identity so that we do not go far from the surface
G(A) = 0. As a consequence A(A) can be equated with the determinant det(6G(A")/du), viz

A(A) = det((SG(;:u)) = detd, [V*, ..]. (9.213)

In contrast with the case of U(1) gauge theory, here the determinant det(6G(A")/du) actually
depends on the SU(N) gauge field and hence it can not be taken out of the path integral. We
have then the result

( / Du) / [1PA6(0, A" — w)detd,[V*, ] expiS[Al. (9.214)

Clearly w must be an N x N matrix since A* is an N x N matrix. We want to set w = 0
by integrating both sides of the above equation against a Gaussian weighting function centered
around w = 0, viz

2 2
/Dw exp(— /d4xtr?)Z = /Du /HDAA/DweXp /d4xtr%)5(8MA“ — w)detd, [V#,

/ Du) / HDAA exp(— / d%tr%)detaﬁbw”,..] expiS[A].

The path integral of SU(N) Yang-Mills theory is therefore given by
9, Ar)?
zZ = N/ H DAA exp(— /cl‘lgctlr%)deta,L [V#,. ] expiS[A]. (9.216)

Let us recall that for Grassmann variables we have the identity

detM = /Hd9+doe 0 Mij0; (9.217)

Thus we can express the determinant detd,[V*,..] as a path integral over Grassmann fields ¢
and c as follows

detd, [V*, /Dch exp(— /d4x tréd, [V*, c]). (9.218)

The fields ¢ and ¢ are clearly scalar under Lorentz transformations (their spin is 0) but they are
anti-commuting Grassmann-valued fields and hence they can not describe physical propagating
particles (they simply have the wrong relation between spin and statistics). These fields are
called Fadeev-Popov ghosts and they clearly carry two SU(N) indices. More precisely since the
covariant derivative is acting on them by commutator these fields must be N x N matrices and

..]expiS[A]

(9.215)
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thus they can be rewritten as ¢ = ¢t4. We say that the ghost fields transform in the adjoint

representation of the SU(N) gauge group, i.e. as ¢ — ucu’ and ¢ — wcu™ which ensures
global invariance. In terms of ¢ the determinant reads

detd, [V*,.] = /HDEADCA exp (z‘/d4z et ( — 9,0"64P — ngBCa“Afj)cB). (9.219)
A

The path integral of SU(N) Yang-Mills theory becomes

2
zZ = N/HDA;?/HDEADCA eXp(—i/d‘lxtr(a”%u))exp(—i/d‘lx tred, [V, c]) exp iS[A]
w,A A

- N/HDAﬁ/HDaADcA expiSrplA, ¢, . (9.220)
A A

SrplA,c,c] = S[A] — /d‘&rtr@ - /d4z tréo, [VH, c]. (9.221)

The second term is called the gauge fixing term whereas the third term is called the Faddev-Popov
ghost term. We add sources to obtain the path integral

Z[J,bb) = N / [[»4; / [[Pe*De? exp (z‘SFp[A,c, a—i / draJ A 4 / d4z(5c+5b)>.
A A

(9.222)

In order to compute propagators we drop all interactions terms. We end up with the partition
function

- _ 1 » 1 y ) _
Z[J, b, b N/HDA;?/HDCADCA exp (§/d4xz4;4 (aua“n >y (E —1)d 8’\)14’;‘ — z/d4ch8M8”cA
A A

i/d“foA”A +i/d4x(bc+cb)).

The free SU(N) gauge part is N2 — 1 copies of U(1) gauge theory. Thus without any further
computation the SU(N) vector gauge field propagator is given by

d*k —ioAB kuky . .

Al (2)AE = | ————— (g — (1 — )22k E=y), 224

<AN@DAZW > = [ e e — (1- O (9.224)

The propagator of the ghost field can be computed along the same lines used for the propagator
of the Dirac field. We obtain ©

_ d*k 648
<Mzl y) > = /WkQJrieek( v), (9.225)

6Exercise: Perform this calculation explicitly.

(9.223)
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9.4.2 Perturbative Renormalization and Feynman Rules

The QCD action with SU(NN) gauge group is given by

SQCD[Z/}aZ/;aAvCa E] = S()[’l/),’l/_),A,C, E] +Sl[¢a7/;,A70a E] (9226)
_ _ 1
St Aed = [y e, - mvt - 1 [ 0,40 - 0,404 ~ 074
- 2—15 /d4x(8#A”A)2 — /d% c0,0t . (9.227)
S, 0, A e, @ = —gtl, / Az Py AL + g faso / dzo" AC A AT
a,b

2
— gZ fascfpec / d*z AL AT AP AYE — g fapc / d*z(@Por AT + e or P AG).

(9.228)

We introduce the renormalization constants Z3, Z and Z§ by introducing the renormalized fields
A, r and cp which are defined in terms of the bare fields A*, ¢ and ¢ respectively by the
equations

A gp= < (9.229)
> ¥YR= =, CR= —=- .
N Vs N4

The renormalization constants Z3, Zs and Z§ can be expanded in terms of the counter terms ds,
02 and 05 as

Al =

Z3=1+403, Zo=1+0s, Z5=1+65. (9.230)

Furthermore we relate the bare coupling constants g and m to the renormalized coupling gr and
mp through the counter terms é; and §,, by

gZQ\/ Zg :gR(1+51) , ng:mR+5m. (9231)

Since we have also AAA, AAAA and ccA vertices we need more counter terms 63, §f and 6§
which we define by

92} = gr(L+8) , 623 = Gh(L+31) . 9257/ Zs = gr(1 + 7). (9.22)

We will also define a "renormalized gauge fixing parameter" £r by
1 Z3
T

As we will see shortly this is physically equivalent to imposing the gauge fixing condition on the

renormalized gauge field A%, instead of the bare gauge field A*.
The action divides therefore as

(9.233)

S = SR + Scount ter: (9234)
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The action Sg is given by the same formula as S with the replacement of all fields and coupling
constants by the renormalized fields and renormalized coupling constants and also replacing &
by £r. The counter term action Scount ter iS given explicitly by

Seount ter = 0 / d'z Yy PHin" 9% — Om / d'z YRR - % / d*2(9, Aty — 0, Allg) (O AR* — 0¥ AR

- 5§/d4$ Epdu 0" ey —9351tfb/d4$2¢%7”¢%AﬁR +9R5§’fABc/d4$5“AECAZ‘RA5R

a,b
2 54
- gﬁ L faBcfDEC / d%AfRAfRA‘I;DAﬁE — grOSfaBc / d*z(Cpepd" ASy + er0"cRASR).

From the above discussion we see that we have eight counter terms &1, 82, 83, 95, 9, 0<, 07 and
5% and five coupling constants g, m, Za, Z3 and Z5. The counter terms will be determined in
terms of the coupling constants and hence there must be only five of them which are completely
independent. The fact that only five counter terms are independent means that we need five
renormalization conditions to fix them. This also means that the counter term must be related
by three independent equations. It is not difficult to discover that these equations are

3
ZoNZy 73

9r

— = = . 2
g 1+6 1+ (9:236)
9r _ LVl s (9.237)
g 1441 V1+ 61

gr _ Z2VZs _ Z3VZs (9.238)
g 1448 1+6¢° '

At the one-loop order we can expand Z3 = 1+ 93, Z3 = 1+ 2 and Z§ = 1+ 65 where d3, d2 and
55 as well as &1, 63, 07 and 6§ are all of order h and hence the above equations become

53 = 53+ 61 — 6o (9.239)
6411 = 03 + 261 — 205. (9240)
5¢ = 5 + 61 — 6. (9.241)

The independent counter terms are taken to be d1, d2, d3, 65, &,, which correspond respectively
to the coupling constants g, Z2, Z3, Z5 and m. The counter term 03 will be determined in the
following from the gluon self-energy, the counter terms d» and d,, will be determined from the
quark self-energy whereas the counter term ¢; will be determined from the vertex. The counter
term &5 should be determined from the ghost self-energy 7.

For ease of writing we will drop in the following the subscript R on renormalized quantities
and when we need to refer to the bare quantities we will use the subscript 0 to distinguish them
from their renormalized counterparts.

We write next the corresponding Feynman rules in momentum space. These are shown in
figure 11. In the next two sections we will derive these rules from first principle, i.e. starting
from the formula (8.136). The Feynman rules corresponding to the bare action are summarized
as follows:

"Exercise: Compute 05 following the same steps taken for the other counter terms.

(9.235)
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The quark propagator is

(VP +m)ga

b 7a ab
— =9 9.242
The gluon propagator is
A B AB 1 Kk
< A, (K)AJ (k) >=6 72 | +(E-1) 2| (9.243)
The ghost propagator is
1
<P (p)et(-p) >= 6" =. (9.244)
The quartic vertex is
SAJAJADAL > = ¢ [fABchEc(n”“n“” —n7"n?) + fepo fapc (0 —nPHn)
+  foacfeec™ 0™ — 00" )} - (9.245)
The cubic vertex is
<A(RAJDAS (@) > = igfapc {(21? + k)0 — (p+2k)" 0 + (k—p)n"™ |, q=—p—k.
(9.246)
The quark-gluon vertex is
< AﬁéA(k)cB > = gt ar(7")ap- (9.247)
The ghost-gluon vertex is
< Afizﬁ‘;w% > = —igfapck". (9.248)

Impose energy-momentum conservation at all vertices.
Integrate over internal momenta.

Symmetry factor. For example if the diagram is invariant under the permutation of two
lines we should divide by 1/2.

Each fermion line must be multiplied by —1.

All one-loop diagrams should be multiplied by A/i.
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9.4.3 The Gluon Field Self-Energy at 1—Loop

We are interested in computing the proper n—point vertices of this theory which are connected
1—particle irreducible n—point functions from which all external legs are amputated. The gen-
erating functional of the corresponding Feynman diagrams is of course the effective action. We
recall the formal definition of the proper n—point vertices given by

5" T[]

F(n) L1y.eey Ty :Fi1---in = =0- 9.249
( ) =T, 5¢c(z1)...5¢c(xn)|¢ (9.249)
The effective action upto the 1—loop order is
1 .
F=S+-T, Iy =IndetGy , GiF = -5 (9.250)
i ,

As our first example we consider the proper 2—point vertex of the non-Abelian vector field A,,.
This is defined by

521
4B =0 9.251
v (z,y) 5A“A($)5A”B(y)|A’¢’ =0 ( )
We use the powerful formula (8.136) which we copy here for convenience
1 mn 1 mim nn
Fl[d)]qjoko - §GO S[¢]7jokomn + §G0 0CTVO OS[Qb]qjomnS[(b],komono' (9252)

We have then immediately four terms contributing to the gluon propagator at 1—loop. These
are given by (with jo = (z, u, A) and ko = (y,v, B))

528 1 _a,.4

1(1 Ap A
AB _ Am A mo An Ang
L (ry) = [A.e=0 + =1 3G S 454k A A + 5Go Go "8 Ay A AnS, Ay Ay Ang

JArA(x)d AYB (y)

Cm Cm, Cn,Cn, "mem wn'lz)n
+ (1) X GG TS A emen S, Argempen, T (—1) X Gy CGo" S A B tbnS Ay g g |

The corresponding Feynman diagrams are shown on figure 9. The minus signs in the last two
diagrams are the famous fermion loops minus sign. To see how they actually originate we should
go back to the derivation of (9.252) and see what happens if the fields are Grassmann valued.
We start from the first derivative of the effective action I'y which is given by the unambigous
equation (8.112), viz

1
Py = 5G"5 jmn. (9.254)

Taking the second derivative we obtain

1 om 10GE™
Fl,ij = §GO S,z’jmn + iTﬁz jmn- (9255)
The first term is correct. The second term can be computed using the identity Gg"™°S 1on = —0/
which can be rewritten as
5Gmn
O = GP™ S imone GEO™ (9.256)

dpt

(9.253)
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We have then

Iy ij = _GmnS,Umn + 2GmmUGn0nS,zmonoS,J’mn

= §G6nns7jok0m" + §G6nUmG8nos,jomnS,komono' (9257)

Only the propagator Gy°™ has reversed indices compared to (9.252) which is irrelevant for
bosonic fields but reproduces a minus sign for fermionic fields.

The classical term in the gluon self-energy is given by

o ?s
,Joko — (SA'“‘A(SC)(SAVB (y) A,p,c=0

[apapnﬂ" + (% — 1)6“6”} 6485 (z — y)

4 1 )
_ _/ (d i [kQ W (g 1)/{%"]5,436“@—1/).

2m)4
(9.258)
We compute
; d*k 1 kHEY]
GJUkU - 5 / v ~1 ik(z—y)
0 AB (2m)* k2 4 ie e 1) K2 |©
d4
= 0o [ Gy (e
= 4Gy (z,y). (9.259)
The quartic vertex can be put into the fully symmetric form
2
_gZ fascefoec / d'zATAD AP A = 2 fABC fpEC / dz / d*y / d*z / d'wA (2) A (y) AP (2) AZ (w)
x 54( y)&*(z — 2)6% (& — w) (0™ —7tn)

= 4, d*z /d4 /d4 /d4wAA 2) AL ()AL (2) AL (w)d* (z — y)o* (z — 2)
x 6z —w) [fABchEc(np“n"” —n7"n"") + fepc fapc (0t —nPtn")
+ fpacfeec(n™'n® — 77“”77”’3)} (9.260)
In other words (with jo = (z, u, A), ko = (y,v, B), m = (z,p,D) and n = (w, 0, E))
S Ay Ay AmAn = —g 0z —y)dt(x — 2)6*(z — w) {fABCfDEC(Up#U(w —070"") + fepcfapc (0t —nPty)

+ fpacfeec(™'n® — n“”n"p)} : (9.261)
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We can now compute the first one-loop diagram as

1 2
§G64mA"S,AjOAk0AmAn = —%5DEGOM(90,$) |:fABCfDEC(77pM770V —n7"0") + fepcfapc (" —nPtn")

+  fpacfBec(n™'n® —n''n? )] 5z —y)

2
= f‘% [GSP(:E, )’ — Ggw(:c,:c):| [fBDcfADc — fpacfepc |6t (x —y)

= -7 [Ggp(w, z)n" — Gy (, x)} fepcfapcd(z —y).

The quantity fppcfapc is actually the Casimir operator in the adjoint representation of the
group. The adjoint representation of SU(N) is (N? — 1)—dimensional. The generators in the
adjoint representation can be given by (té) Bc = ifapc. Indeed we can easily check that these
matrices satisfy the fundamental commutation relations [té, tg] =ifa Bctg- We compute then
fBpcfapc = (tgtg)BA = (C3(G)dpa. These generators must also satisfy trgtétB = C(G)s48.
For SU(N) we have 8

fBpcfapc = CQ(G)(SBA = C(G)(SBA = Niga. (9.263)

Hence
1 Am A 2 14 N2 v 4
53G0S A Ay Anan = =97 C2(G)0aB | Gy (2, )™ — Gy (x,2) | 67(x — y). (9.264)

In order to maintain gauge invariance we will use the powerful method of dimensional regular-
ization. The above diagram takes now the form

dip 1

1 oV
FGI S s, = ~ClGan [ |+ = 2~ (€~ VEE o - ),

k2
(9.265)
This simplifies further in the Feynman gauge. Indeed for £ = 1 we get

d
(;lﬁj))d]% [(d — 1)77“”] 5z —y)

B ) dp 'k (p+k)°
= —g CQ(G)5AB/ (27r)d/(27r)d »2(p+ k)

1
§G64MAnsaAjoAkoAmAn = —9202(0)5,43/

v| jik(x—
2[(111)77” ]e (z—y)

(9.266)
We use now Feynman parameters, viz
1 ! ! 1
—_— = dz/ dyd(z +y—1)
(p + k)?p? /0 0 [(p+ k)2 + yp?] ?
1
1 2

8Exercise: Derive this result.

(9.262)
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We have then (using also rotational invariance)

1 AmAn _ 2 / d’k . pv | jik(z—y) /1 / dl (l + (1 — x)k)Q
2G0 S,AjoAkoAmAn = g°Ca(G)oan (2n)d (d—1)np" e ; dx @nd (2 —A)
d’k : ! it P
2 . pv | jik(z—y)
der@inn [ oalia- v e [asl [y
d?l 1
1 -2’k | —— . 2
- -0 [y (9:265)
The above two integrals over [ are given by (after dimensional regularization and Wick rotation)
/ dil 12 B —i/ dlg 1
(2m)d (12 — A2 (2m)? (1% 4+ A)?
1 1 re-4
= —i — < (2 2). (9.269)
(4m)z Al7E G -
/ d?l 1 / dilg 12,
- - | Z2=E_ B
(2m)d (12 — A)? (2m)4 (1% + A)?
1 1 d
= ———I'(2—-2). 9.270
ey (9.270)
We get the final result
1 4 a i dék T b dx 1
-Gym "’SﬁAjA A A, g-C: G5AB/ "k etk(z=y) — —d(d—1z(1 —x
d 9 d
X I‘(l—i)—(d—l)(l—x) 1"(2—5) . (9.271)

We compute now the second diagram. First we write the pure gauge field cubic interaction
in the totally symmetric form

ngBc/d‘lxa“A”CAﬁAf = gf’;—;gc/d4x/d4y/d%Aﬁ(x)Af(y)Af(z) [77’3” (6564(30—2:).64(30—3;)

o5 (x — y).0% (& — z)) — Pt (6564@ —2).0%x —y) — 8;’54(34 —x).6%z — y))

ntY <8§54(z —x).0%z —y) — 026%(z — y).0(x — z))] . (9.272)
Thus we compute (with jo = (z, u, A), ko = (y,v, B) and m = (z, p,C))
SvAjoAkoAm = ingBCS#Vp (:Ea Y, Z) (9273)
iSHP(x,y,2z) = 0 (6554(30 —2).0%z —y) — 040 (& —y).0 (& — z)) — Pt (6;’64@ —2).0%z —y)

0764 ( — y).64(y — z)) — (aga‘*@ —2).0My — 2) — 0P84 (y — 2).6%(w — z))

Z/ (;lﬁl)l / (;lﬂ];“ / (%4 S0 (k, p)(2m)" 64 (p + k + 1) exp(ika + ipy + ilz).
(9.274)
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SHP(k,p) = 2p + k)"n™ — (p+ 2k)"n™ + (k — p)"n*". (9.275)
The second diagram is therefore given by

1 A Ay ~AnAn 205(G)8 .
§GO OGO OSaAjoAmAnS7AkoAmoAno = _92(%/d42d4zod4wd4w0GOPP0(Z’ZO)GOUUU(w’wO)SHP (ZC,Z,’UJ)

X SVPOG'O(y,ZO,,wO)

_ _9C(G)as / (d o/ (dp Gopp (P)Goon ( + ) S*° (I, )

2 2m)4 2m)*
X SVPoo(—k —p)expik(z —y). (9.276)
In the Feynman gauge this becomes
1 A Ay ~AnA 9202(6‘)6,43/ d*k / d*p 1
=Gy ™G TS 4 S = — SHPI (L.
2 0 0 VAjo Am An D Akg Amg Ang 2 (27T)4 (27r)4p2(k+p)2 ( ap)
x SY ,o(—k,—p)expik(z —y). (9.277)

We use now Feynman parameters as before. We get

1 A Ay An Ay §*Co(GYoap [ d*k
3G G S A5 An AL S Ay Ao Ang = T 5 /(27T) expik(x / dfﬂ/ (CEYNE
X SHP (k1 — 2k)SY po(—k, —1 + k). (9 278)

Clearly by rotational symmetry only quadratic and constant terms in I# in the product S#*° (k, [—
rk)SY ,o(—k, —l + xk) give non-zero contribution to the integral over [. These are °

1 A Ay o AnAng P C(@)oan Ak _ 1 1 »
360G S Sty = G [ s eminte =) [ defolg -

a1 . -

a2 D0 = 2Pk 4 214 2)(2 - 2)kk

,kaQ 9 2 m,kQ 1 2 d4l 1 9979

n ( *1‘) - ( +SC) WW . ( . )

We now employ dimensional regularization and use the integrals (9.269) and (9.270). We obtain

1 A A AnA ngCg(G)éAB/ d®k , /1 dx {
GG S A A AL S, A = — expik(z —
270 0 o A A 7o Ao A 2(4m)% (2m) pikle =) 0 (—x(l—x)k2)2_%

— 3(d—1)p"T(1 — g)z(l —z)k? +T(2 - g) <(2 —d)(1 —2z)*k" K"

+ 2014 2)(2 — 2)k K — k2 (2 — 2)* — " KA (1 + x)Q) } (9.280)
We go now to the third diagram which involves a ghost loop. We recall first the ghost field
propagator

_ d*k 648
<A@)Py) > = /WkQJriee Ke—y), (9.281)

9Exercise: Derive explicitly these terms.
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However we will need

A \aB d*k 548
Gt @E W) _ / 077 ik(a—y) 9.282
0 @m)* k2 +ie" (9:282)

The interaction bteween the ghost and vector fileds is given by

7ngBc/d4:E(EACBaHAE+EAaMCBAi) = fngBc/d‘lx/ley/d4zEA(x)cB(y)AE(z)@ﬁ((ﬂ(zfy)54(:c—z)).

(9.283)
In other words (with jo = (2,C, p), m = (z, A) and n = (y, B))
S Ajemen = 9fapcOh(6*(x—y)6t(z — 2))
_ dk [ d'p [ dU - L
= *ngABC/ @) / @)t / (2#)4]{#(2”) 0*(p+ k — 1) exp(—ikx — ipy + ilz).
(9.284)
We compute the third diagram as follows. We have (with jo = (2,C, ), ko = (w, D,v), m =
(ZL',A), n= (yaB) and mo = (:C()vAO)a no = (yOaBO))
_ _ d4k? 6A°A ) d4p _6303
CmCm CnCn _ 4 4 4 4 ik(xo—x
Gy Gy 057,4],057”%5’,,4%6%5”0 = Z /d x/d xo/d y/d yo/ O etk (zo )/ (27r)4p—2

A1A01B7BU
P (g fapc0k(8*(x — y)d* (x — 2))) (= 9fBoacn0sy (3* (Yo — 20)6* (yo — w))
d*k d*p (p+ k)*p”
_ 2 ik(z—w)
S aveSann | 2m) / @n) (k)PP

X

(9.285
We use Feynman parameters as before. Also we use rotational invariance to bring the above loop
integral to the form
: . dk ! d*l 1
CmCm CnCn _ 2 ik(z—w v v
X G OS,AjUEmcnS,AkOCmUEno =g C’Q(G)(SCD/WQ ( )/0 d:c/ (271‘)4 (l“l +a(x — k" k )m

d*k ! 1 d4l 12
2 ik(z—w) Nz
ses@ien [ et [Laslr [ G ay

+ x(m—l)k“k”/%ﬁ}. (9.286)

Once more we employ dimensional regularization and use the integrals (9.269) and (9.270). Hence
we get the loop integral (with C — A, D — B, z — z, w —> y)

d

Cm Cm, CnCn Z ddk/’ ik(z— 1 v d v
G "G OS A emen S Argemginy = 9 Co(G) (47T)%5AB/ (%)de’“( y>< 5" K2T(1 — 3) FRET2 - 5))

/1 dr— 21 =) — (9.287)
0 (—z(1—2)k?)" 2

X
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By putting equations (9.271), (9.280) and (9.287) together we get

2 i d’k ik(z—y) ! dx V1.2 d
(9.271) + (9.280) — (9.287) = g¢°“Ca(G) —0AB € Y ek (d—2)I'(2 - o)
( 7{')5 (27T) 0 ( _ ZC(l _ ZC)I{/’Q)Q_E 2
V1.2 d 2, 1 2, 1 2
X x(l—x)+77“/<:l"(2—§) —(d-1)(1-2x) +§(2—$) +§(1+x)
v d d 2
— kPE'T(2 - 5) (1- 5)(1 —2x)*+2) . (9.288)
The pole at d = 2 cancels exactly since the gamma function I'(1 — d/2) is completely gone.
There remains of course the pole at d = 4. By using the symmetry of the integral over  under
r — 1 — x we can rewrite the above integral as
) 'k ! d d d
(9.271) + (9.280) — (9.287) = ¢2Ca(G)—— 5AB/ _e'k (@) / i . {n‘“’kQ(l —)re--)
(4r)> (2) 0 ( —z(1- z)k2)27§ 2 2
2 V.2 d v d d 2
X (1—=22)*+ (1 —2z) | +n*k F(2—§).4x—k“k 1"(2—5) (1—5)(1—290) +2 5.
(9.289)
Again by the symmetry z — 1 — 2 we can replace z in every linear term in = by 1/2°. We
obtain the final result
T2 -4 ik ! d
(9.271) + (9.280) — (9.287) = gQCQ(G)’(%ﬁ)aAB/ —e (@) (anP - k“k”) (k:2)%‘2/ < -
(4m)2 (2m) 0 (—a(l- x))275

X ((1 - g)u —2x)? + 2)

ire-4 dk 5
= gQCg(G)W&;B / Wezk(mfy) (n“l’kQ — k“k") (k:Q)%*2 (5 + regular terms).

(9.290)

The gluon field is therefore transverse as it should be for any vector field with an underlying
gauge symmetry. Indeed the exhibited the tensor structure n** k2 — k*kV is consistent with Ward
identity. This result does not depend on the gauge fixing parameter although the proportionality
factor actually does''.

There remains the fourth and final diagram which as it turns out is the only diagram which
is independent of the gauge fixing parameter. We recall the Dirac field propagator

a 7 :ca d'p (Y'Pu+M)aB  —ip(a
<gal@)Pply) > = zéb/(%)4 = _“mQer ple=y), (9.291)

However we will need something a little different. We have
528

_ . ab
SW&(E)@Z(ZJ) = Sypa (l.)&/’]g ) A, e=0 = (w“@g — m)ﬂa54(y —x)d

d'k n ik(z—y) sab
= 2n) (vHEky — m)gae . (9.292)

10Exercise: Why.
HExercise: Determine the corresponding factor for an arbitrary value of the gauge fixing parameter €.
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Thus we must have

Va@Phw)  _ sab / kO & m)es e 9.293
Go B (2m) k2 — m?2 + ie € . (6.298)

Indeed we can check

a0 (20)Bb
/d4y Z S,wg (m)djg(y) G'LO/JQU( O)wﬁ(y) — 6aa06aa064(x _ :CO)- (9294)
b8

The interaction bteween the Dirac and vector fileds is given by
~gtly [ @t S B AL = gt as [ d's [ty [ ateieeubw)Al )5 @ - 05t - o)
" (9.295)
In other words (with jo = (2, A, ), m = (z,a,«) and n = (y,b, B))
S Ay imion = Ttar(V)apd* (@ — y)6* (x — 2). (9.296)

By using these results we compute the fourth diagram is given by (with jo = (2, 4, u), ko =
(’U_), Ba V)7 m = (ZE, a, Oé), n= (yv ba /B)a mo = (:C()v ao, O[()), ng = (yOa bOa /30) and tI")/'u = 07 tY’Y“’YV =
A, eyt = 0, tryty Py = A 0T — 0ttt + ntn) )

b U, P d* d*k tr(vPp, + m)y* (" (p + k), + m)y” k(2w
ng v OGZJb v US,Ajo"Z’mwnS,Akod)mo'J’no = QQthAtB/ (27:;4 / (2m)* N 852 _ m);)(E; _ipk,)2 _)pmz) i e~
— 4gPtetAP / d'p / d*k p"(p+ k)" +p"(p + k)" — 0" (p* + pk —m?)
2m)* J (2m)* (p> =m?)((p + k)* —m?)
x e T, (9.297)

We use now Feynman parameters in the form

1 ! ! 1
= dr | dyd(z+y—1) 2
2 _m?2 k)2 —m?2
e v, [W 2t y((p 4 k)2 — m)

1
1
- /dwm’bpﬂl—w)k,A=m2—x<1—x>k2-
[ da
(9.298)
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By using also rotational invariance we can bring the integral to the form

1 4
d*k X
4g2trtAtB/ dx/ e~ h(z—w)
0 (2m)*

G'lopmwmo Gz)bn Png S,A

jo Bmtbn D, Ak Brmg B
1

/ (;%;4 [21%” = 20(1 = )RR = (17 = a(1 - 2)k? — mz)}

1 4
d‘k  _,
= 4g2trtAtB/ dx/ e~ th(z—w)
0 (2m)*

XA
/ (2d 34 [51277’“’ —2z(1 — 2)kMk” — " (17 — 2(1 — z)k* — mQ)}
™

™

1 4
492trtAtB/ dx/ (;l I§4 e_ik(z_w){ [w(l —2)(K*n" — 2kFEY) + m277“”]
0
/ d*l 1 _ 1 ul// d4l 1?
Cri@—A2 27 ) Gor@ AP

(12— A)?

(9.299)

After using the integrals (9.269) and (9.270), the fourth diagram becomes (with z — z, w — y)
- _ d d
VmPm PYnPn _ _ _ . 2F(2 B 5) A,B d k 2, uv T R% 71k2(17y)
GO OGO OS,AJmewnS,AkmeOwno = 8Zg Wtrt t W(k n — kPEk )6
< [ P Cl)
—d
° (f-al-@)T
4 ,I'(2-9) Ak k(o 4
= -g?——2C(N) K — krk e M) (52)2 72 (1
39"y (s [ it JemtHa ) (12)
+ regular terms). (9.300)

For ny flavors (instead of a single flavor) of fermions in the representation t¢ (instead of the
fundamental representation t,) we obtain (with also a change k — —k)

'l/;annL wn'(z)n _ _ _ 4 2F(2 — %) ddk . 2 v v 1k(I7 ) 2 272
GO OGO 0S1Aj0¢m¢nsqf4k0’¢}mo’¢}no = §nfg WC(T)éAB (27‘(‘)dz(k 77'“' — k*k )6 v (k )2 1

+ regular terms) .

(9.301)
By putting (9.290) and (9.301) together we get the final result
AB
L (zy) = (9.290) — (9.301)
d*k 1 .
. k2ptv Z _DEFEY S ik(z—y)
e (< + g = e

2F(2_ %) § i én r A’k 2, QU LULYV eik(zfy) 2\4-2
Tt <3CQ(G) =] )>/(2ﬁ)d(k W~ K R)S s (k) (1

+ regular terms) .

(9.302)
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The final step is to add the contribution of the counter terms. This leads to the one-loop result
in the Feynman-t’Hooft gauge given by

FAB(,I ) _ _/ ddkj k2 MV—F(l—l)k/’“kV S eik(m—y)
224 Y - (27T)d n 5 AB
r2-49)/s 4 dik . ]
22 27 Z0%(G) — =nsC / E20HY _ RS A« metR @) (p2)4-2( 1
T i (3 2(&) = 3ns00) | Gy Joane (k%)
A% (5 . 1 , k(o)
+ regular terms | — d3 on) knt —i—(g—l)kz“kz dape™\TTY), (9.303)
T
Equivalently
1
ral(k) = —(k2n“”+(E —1)k“k”)6AB
re-4 4
+ 92(75) (§O2(G) - —nfC(r)) (k*n — k“k”)(SAB(k2)%_2(1
(4m)?: \3 3
+ regular terms) — 03 <k277‘“’ — k“kz”) 0AB. (9.304)

Remark that the 1/£ term in the classical contribution (the first term) can be removed by undoing
the gauge fixing procedure. In 4 dimensions the coupling constant g2 is dimensionless.

In dimension d = 4 — € the coupling constant g is in fact not dimensionless but has dimension
of 1/ mass(?/2-2) The dimensionless coupling constant § can therefore be given in terms of an
arbitrary mass scale u by the formula

g=gnt e g® = g, (9.305)
We get then
1 2 e [4mp®\? (5 4
AB — 2 puv - B1.v = e = 2 UV LUV
P4 (k) (o g = 0 a0 (5) (T ) (50260 = gnsctr) ) e — kekyian (1

+ regular terms) — 03 <k:277‘“’ — k“k”) 0AB

2

_ (s (2 e s 9 (2 AV E 4 200 _ RS
= n +(£ DE*EY )dap + 2 6Jrln47r y 1n,u2 CQ(G)+3nfC(7’) (k*n k*EY)o AR

167 3

X

(1 + regular terms) — I3 (k277‘“’ — k“k”) 0AB

It is now clear that in order to eliminate the divergent term we need, in the spirit of minimal
subtraction, only subtract the logarithmic divergence exhibited here by the the term 2/e which
has a pole at ¢ = 0. In other words the counter term d3 is chosen such that

5 = 13; (2) (gcg(c) - gnfC(r)). (9.307)

€

(9.306)
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9.4.4 The Quark Field Self-Energy at 1—Loop
This is defined

P(ey) = —— |
(e ) = T A, ,C—=
4 00 ()00 (y) 0
528 1 5%T,
= _— A, ,c= —"——77 A7 ,c=0- 9308
wg(:c)éwg(y)' et zéng(x)éwg(y)' e (5.:308)
The first term is given by
528 . a
mM,w,c:o = ("0 — m)gad*(y — x)5
d'k k(z—y) gab
= W(’yuku — m)Baez =y 5(1 . (9309)
i

Again by using the elegant formula (9.257) we obtain (with jo = (z, @, a) and ko = (y, 5,b))
bmmg ~AnAn
Digoke = =Go™ ™G0 "5 ) A0S iy g Ang (9-310)
We recall the results

A s A1 kY]
CAA@ATEG) s /__ Wy e - VR ike—y) 9.311
0 AB (27’(’)4 k2 +Z€ Ui + (5 ) 1{32 € ( )

w2 ()35 (v) b / d*p (V'Pu +M)aB _ip(a
G s = e w(@=y), 9.312
0 (2m)* p? —m?2 +ie © ( )
S ana(2yis ) = Itas(1)asd’ (@ — y)8* (@ - 2). (9.313)
We compute then
dp d*k 5 1 kuko\ o
Fl,joko = *QQ(tAtA)ba/ (271’)4 / (27‘(‘)4 (’YH(’YppP + m)7 )ﬂa kQ(p2 _ m2) (77#1/ + (5 - 1) 22 )6 (e y)

(9.314)

This is given by the second diagram on figure 10. In the Feynman- t’"Hooft gauge this reduces to
(also using Y7y, = —(2 — )y, ¥, = d and (t*t*) 4 = Ca(7)d4 where Cx(r) is the Casimir
in the representation r)

9 d* d*k 1 ip(z—y

Pijoke = —9g 02(7’)5ba/#/W(’Y“WP(I’JFk)p+m)7u)ﬁak2((p+k)2_m2)e (=)
= —q?Cs5(r ﬂ ﬁ — (2 — €)nP m 1 etP(z—y)
el )%/ (27r)4/(27r)4( 2=+ K)o+ md) o Fa v b =) '
(9.315)

We employ Feynman parameters in the form

1
k2((p+k

1 1 , \
=, oy (TR, As sl s (e

(9.316)
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We obtain
d'p ! d*l 1
Lijoke = *9202(7’)517(1/ e””(x’y)/ d:c/ —— (-2 -y +xp), +md
J (2m)4 0 (2m)* (12 _ A)2( p )ﬁa
d*p ! d4l 1
) ip(z—y) _ _ P
= 9027”)5ba/ e’ /dac/ — 2 —€e)zy’p, + md) , .
( (2n)’ A e N e S A P

(9.317)

After Wick rotation and dimensional regularization we can use the integral (9.269). We get

ir2-—4 d* 1 (o e [ dzx
Tijoke = —g°Ca(r) ( d2)5ba/ p4 (= 5@ =7py +md) P (p?) / 74
(47)2 (2m)** 2 0 (—a(l—2)+(1-2)m)* "
2 ir(2 - %) / d'p LS ip(e—y) (n2)— %
= —g°Cy(r) 4’ Sba @n)i ( 5 (2 — €)v"p, + md) Baf (p*) 1 + regular terms |. (9.318)

The quark field self-energy at 1—loop is therefore given by

4
Fab (1, ) — ﬂ( I _ m) eip(mfy)(;ab
af Y (277)4 ,Y p,LL Ba

re-4 d* 1 : .
— 9202(7“)(7;)6[)@/ P (- 5(2 —e)Yp, + md)ﬂaelp(z_y)(pQ)_i (1 + regular terms).

(9.319)

We add the contribution of the counter terms. We obtain

Fab _ d4p m . ip(xfy)(;ab
aﬂ(zay) - (271')4 (7 p,u m)ﬁae
~2 d4 ) 2 )
— 1gﬂ2 C2(r)dpa / # (; +Indr —vy—1In %) ( —v°p, + md)ﬁae“’(m_y) (1 + regular terms)
4
dp s np s ip(z—y) gab 9.320
+ (27T)4 ( 27" Pu m)Boze . ( . )

In order to cancel the divergence we must choose the counter terms d and §,, to be

8y = —12;2 Ca(r) (%) (9.321)
S = Hg; Cz(r)<87m). (9.322)

These two counter terms allow us to determine the renormalized mass m in terms of the bare
mass up to the one-loop order.
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9.4.5 The Vertex at 1—Loop

The quark-gluon vertex at one-loop is given by

FG%A (ZC Y,z ) _ _ 63F |ch:0
o 00 ()00} ()AL (z)
_ 535 | 41 1 53F1 |
T S0a@)OUh AR ) T S (el (n)oA(s) T
_ A 4 4 l 531’\1
= 9t ar(Y)apd" (@ — y)d* (@ = 2) + - 51/73(x)5w%(y)5Aﬁ(z)|A’¢’C:°'

(9.323)

In this section we compute the one-loop correction using Feynman rules directly. We write

[dta [aty [atze o mtirdi oy = gt asn) s ke p s )+ 7 [ dta [ty [ dze e

53T,
0 ()ovs (y) Az (2)
1

|A,w,c:0

It is not difficult to convince ourselves that there are only two possible Feynman diagrams
contributing to this 3—point proper vertex which we will only evaluate their leading divergent
part in the Feynman-"t Hooft gauge. The first diagram on figure 12 is given explicitly by

d

. d%k
120, = _ngfCDA(tDtC)ab/W

((vk +m)y,)

© R )kt pr)2(k o+ p2)?
3 d
= 7%2(6‘)(#)% (gﬂl;d {(k +p1 = 2p2)’ — (k + 2p1 — p2) " + (2k + p1 + p2)
y (M(rk +m)70)
(k2 =m?2)(k +p1)%(k +p2)?

In the second line we have used the fact that fopatPtC = fopa[tP,t€]/2 = ifcpafpcret? /2.
We make now the approximation of neglecting the quark mass and all external momenta since

It (V) ap + = (Feynman diagrams)} (2m)* 6% (k 4+ p +1).(9.324)

[( k4 p1— 2p2) ™M — (k4 2p1 — p2) " + (2k + p1 + pz)”n“]

unkp}

(9.325)
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the divergence is actually independent of both 2. The result reduces to

3 d
120 = _9 C;(G) (tA)ab/(;lTl;:d{_kpnAu_kAnp#+2kunAP]
(K)o
ST
3 d
= %Q(G)(tA)ab/ (;lﬂ];d { 2(7“)a[3k2 —-2(2— e)k“k”(’yu)aﬁ] (k1)3
3 d e
- L, [ ] -2tk - s s
304(G A(d -1 k1
= gT()(tA)ab%('yu)aﬂ/(Qﬂ)d (k2)2
ig3Ch
= %ﬁ(t“‘)ab(v“)aﬂ@ - g). (9.326)

The second diagram on figure 12 is given explicitly by

dlk (I (=7-(k + p2) + m)y* (= (k +p1) +m))

120 = g?’(tctAtC)ab/

(2m)4 k2((k 4 p1)? — m?)((k + p2)* —m?)
(9.327)
We compute
t9tMC = GO Ot O]
= Cy(N)t* +ifacptt?
= Co(N)t* + %fACB[tcvtB]
1
— {CQ(N) - 5C2(G) 4, (9.328)

We get then

dik (M (=7-(k + p2) + m)y" (=y.(k +p1) +m)Y)
(2m)d k2((k +p1)? —m?)((k + p2)? — m?)

(9.329)

Again as before we are only interested at this stage in the leading divergent part and thus we
can make the approximation of dropping the quark mass and all external momenta'3. We obtain

12Exercise: Compute this integral without making these approximations and show that the divergence is indeed
independent of the quark mass and all external momenta.
I3Exercise: Compute this integral without making these approximations.
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thus
120 = gs(CQ(N)_%C2(G))(tA)ab/(;ljr];d (”(7"“)?;()37-’6)%)&{3
= P(CN) - 30@) s [ (;ljr’)fd Wﬂ”z};v;)aa’f”k“
= PO - 3@ [ (MZI:%’;WM
= PO - 566) () ;6)2 (7")as / éj:d <z§>2
- (Lgr; (Ca(N) — 302(0))(15’4)@(7“)&@(2 - g), (9.330)

By putting the two results 12a and 12b together we obtain

12a+12b = (if; (Co(N) + Co(G)) (t*)ap(7")asT(2 — g). (9.331)

Again if the quarks are in the representation t? instead of the fundamental representation t* we
would have obtained

120+ 120 = (if:;? (Ca(r) + Co(G)) () an(7*)asT(2 — g). (9.332)
The dressed quark-gluon vertex at one-loop is therefore given by
[ata [ty [atzetemmting s = (o600 + o (o) + Cal@) Nl asr 2 - §)
x  (2n)**(k+p+1)
= [0+ e (Calr) + o) s (24
x  (2m)iet(k+p+1)

Adding the contribution of the counter terms is trivial since the relevant counter term is of the
same form as the bare vertex. We get

3

/d4x/d4y/d4ze_ikw_ipy_ilzrg%ﬁ($ayaz) = [g(tA)ab(VM)aB + (fT)Q(Cg(r) +CQ(G))(tA)ab(’YH)aﬂ(

T &g(t/“)ab(waﬂ} (27) 5k + p + 1)

We conclude that, in order to subtract the logarithmic divergence in the vertex, the counter term
61 must be chosen such that

2

__ 9 . 2
5 = TSE (Ca(r) + C2(@)) (6) (9.335)

(9.333)

2
2 +)
€

(9.334)
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In a more careful treatment we should get 4
g9 2
0 =——"—(C Co(G)) | - ). 9.336
L (4@2( 2(r) + Ca( ))(6) ( )

We recall that the renormalized coupling g is related to the bare coupling gy by the relation

9 _ %
go 1+ 61

1
= 1—614‘52‘1’553

~2
B 9> 1 4
= 167r2 . |: 3 CQ(G) 371]00(7")
2
_e 9° 1]11 4
+ 1 62 [ 3 C1(Q) 3nfC(r) (9.337)
This is equivalent to
3
B | L P
g = got+u T6r7 < [ 3 C1(Q) 3nfC(r) . (9.338)
We compute then
99 . g [u 4
E Tom2 | 3 C2(@) — 30
3
_ 9 |u 4
= T6.-2 { 3 C2(G) SnfC(r)]. (9.339)

14This should become apparent if you solve the previous two exercises.
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The Renormalization Group

10.1 Critical Phenomena and The ¢* Theory

10.1.1 Ciritical Line and Continuum Limit

We are interested in the critical properties of systems which are ergodic at finite volume, i.e.
they can access all regions of their phase space with non zero probability. In the infinite volume
limit these systems may become non ergodic and as a consequence the phase space decomposes
into disjoint sets corresponding to different phases. The thermodynamical limit is related to the
largest eigenvalue of the so-called transfer matrix. If the system remains ergodic then the largest
eigenvalue of the transfer matrix is non degenerate while it becomes degenerate if the system
becomes non ergodic.

The boundary between the different phases is demarcated by a critical line or a second order
phase transition which is defined by the requirement that the correlation length, which is the
inverse of the smallest decay rate of correlation functions or equivalent the smallest physical
mass, diverges at the transition point.

The properties of these systems near the transition line are universal and are described
by the renormalization group equations of Euclidean scalar field theory. The requirement of
locality in field theory is equivalent to short range forces in second order phase transitions. The
property of universality is intimately related to the property of renormalizability of the field
theory. More precisely universality in second order phase transitions emerges in the regime in
which the correlation length is much larger than the macroscopic scale which corresponds, on the
field theory side, to the fact that renormalizable local field theory is insensitive to short distance
physics in the sense that we obtain a unique renormalized Lagrangian in the limit in which all
masses and momenta are much smaller than the UV cutoff A.

The Euclidean O(N) ¢* action is given by (with some change of notation compared to previous
chapters and sections)

ol = - [ ata( (0,6 + guta'sh + 366, (10.1
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We will employ lattice regularization in which z = an, [d%z =a?}" , ¢'(z) = ¢, and d,¢' =
#%)/a. The lattice action reads

d 2 d)\
Z( 4= QZw nin — 5 (mPa® + 2d)¢n, 8, __W w)

— Z (%Z@;@;W L DL — (DL D! — 1)2). (10.2)

2

(Dpgn —

S[e]

The mass parameter m* is replaced by the so-called hopping parameter x and the coupling
constant A is replaced by the coupling constant g where

1—2g A g
2.2 _
ma” = — —2d, s (10.3)

The fields ¢!, and ®!, are related by

a
1—-2g A g
2.2 _
ma” = — —2d, it (10.5)
The partition function is given by
Z = /qu); eSlel
— /dﬂ(q)) 0250 T Pn P (10.6)
The measure du(¢) is given by
o) = i, S isioacioi o)

- 11 (qu'Sn eé’ig@iw)
[T dun(@n). (10.7)

This is a generalized Ising model. Indeed in the limit ¢ — oo the dominant configurations are
such that ®% 4 ... + ®%, = 1, i.e. points on the sphere SV~!. Hence

J du(® f<<f> ) [dOn-1f(®,)
For N =1 we obtain
LB L) + 1) L g — o (10.9)
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Thus the limit ¢ — oo of the O(1) model is precisely the Ising model in d dimensions. The
limit ¢ — oo of the O(3) model corresponds to the Heisenberg model in d dimensions. The
O(N) models on the lattice are thus intimately related to spin models.

There are two phases in this model. A disordered (paramagnetic) phase characterized by
< ®! >= 0 and an ordered (ferromagnetic) phase characterized by < ®! >= v; # 0. This can
be seen in various ways. The easiest way is to look for the minima of the classical potential

1 . A
Vil = [ ddw(§m2¢z¢z T Z(W)?). (10.10)
The equation of motion reads
[m® + %qﬁjqﬁj]qﬁi = 0. (10.11)

For m? > 0 there is a unique solution ¢* = 0 whereas for m? < 0 there is a second solution given
by ¢/ ¢? = —2m?/\.

A more precise calculation is as follows. Let us compute the expectation value < ®¢ > on
the lattice which is defined by

[ du(®) ®i e POND DL S
f dp(®) PLLDDED DI L S
f du(®) @i e” PN DIC PR S

B ' ' ' : 10.12
Jdu(@) e 2o P 3 2 (Pt ) ( )

<> =

Now we approximate the spins ® at the 2d nearest neighbors of each spin ®¢ by the average
vl =< & > viz

O S A .
2l e 2 (10.13)

This is a crude form of the mean field approximation. Equation (10.12) becomes

J du(®) B; et o
J"dlu(q)) e4fidzn Di vt
J du(®,) @ et

= - —. 10.14
J dty) e .

’Ui

The extra factor of 2 in the exponents comes from the fact the coupling between any two nearest
neighbor spins on the lattice occurs twice. We write the above equation as

0

'Ui = ﬁ ln Z[J] Ji=4rdv- (1015)
zZlJ] = /d,u(@n) e’
- /qu>; e~ Pn 9P B DT T (10.16)
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The limit g — 0: In this case we have
21 = /d%; e~ _ Z]g]
In other words
0 = 2kedv’ = K. = >
The limit ¢ — oco: In this case we have

Z1J]

N/qu); 5(®L P — 1) ¥’

N/d%; S(PL DL —1) |1+ LT + SRS T 4
By using rotational invariance in N dimensions we obtain

/dN@; S(®L @I —1) @ =0.

n

5

/dN@; S(PL DL — 1) B! DI ~ dVN®l §(PL DL — 1) PR = —— T2

n-n

Hence
JEJi
ZlJl = Z|0]|1
Ul = 201+ Gy ]
Thus
i_J_i_émcdvi: _N
UTNTTN e = 4d

The limit of The Ising Model: In this case we have
N=1, g — oo.
We compute then
AR /\/'/d(l)n 5(®2 —1) e*/
= Z[0]coshJ.
Thus

v = tanh 4kdv.

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

(10.25)

(10.26)

A graphical sketch of the solutions of this equation is shown on figure 17. Clearly for x near k.

the solution v is near 0 and thus we can expand the above equation as

1
v =4dkdv — §(4Fad)3’l}2 + .

(10.27)
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The solution is
1
g(4d)2,{3@2 =K — Ke. (10.28)

Thus only for k > k. there is a non zero solution.
In summary we have the two phases

Kk > K. : broken, ordered, ferromagnetic (10.29)

Kk < k. : symmetric, disordered, paramagnetic. (10.30)

The critical line k. = k.(g) interpolates in the k — g plane between the two lines given by

KRe = — OQ. (10.31)
c 1 l ) g
Fee 2d

See figure 18.

For d = 4 the critical value at g = 0 is k. = 1/8 for all N. This critical value can be derived in
a different way as follows. From equation (8.172) we know that the renormalized mass at one-loop
order in the continuum ¢* with O(N) symmetry is given by the equation (with A — 6)

my = m?+ (N +2)A(m? A)
LI (VO L (DA
- 1672 A%+ 1672 mlnﬁ o2 ™ C + finite terms.

(10.33)

This equation reads in terms of dimensionless quantities as follows

N +2)A N+ 2)\ N +2)A
a2m2R = am?+ ( 1;);_2) + ( 1;T2) a’m®lna®m? + %anQC + a? x finite terms.
(10.34)
The lattice space a is formally identified with the inverse cut off 1/A, viz
1 (10.35)
a=—. .
A

Thus we obtain in the continuum limit a — 0 the result

N +2)\ N +2)\ N +2)\
a’m? — —( 1;);_2) ( 1;T2) a®>m?Ina’®m? + %anQC + a? x finite terms.
(10.36)
In other words (with ro = (N + 2)/87?)
a’*m? — a*m? = 7%0)\ +O0(\?). (10.37)

This is the critical line for small values of the coupling constant as we will now show. Expressing
this equation in terms of k and g we obtain

1—-2g
K

o g
8 — —50—2 +0(N\?). (10.38)

K
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This can be brought to the form

[F; — %(1 — 29)} i — 2%6 [1 + 16709 — 49] +O0(g?/K?). (10.39)

We get the result
K— ke ==+ (= —)g+0(g%). (10.40)

This result is of fundamental importance. The continuum limit @ — 0 corresponds precisely to
the limit in which the mass approaches its critical value. This happens for every value of the
coupling constant and hence the continuum limit ¢ — 0 is the limit in which we approach the
critical line. The continuum limit is therefore a second order phase transition.

10.1.2 Mean Field Theory

We start from the partition function of an O(1) model given by

200) = [ TLdu(@,) eSom botimot e, (10.41)

The positive matrix V,,, (for the case of ferromagnetic interactions with £ > 0) is defined by

Viim = £ Y (Smontji + Omonpi)- (10.42)
Q

The measure is defined by
dp(®,) = dd,, e~ Tn=9(Pn-17 (10.43)

We introduce the Hubbard transformation

/ [T X0 e % Znm XV Xt 20 X = P Vi, (10.44)
We obtain
Z(J) = %/Han e T Znm Xn Vi Xm /Hdu(@n) o n (XntJTn)®n
- %/Han e 1 Lnm Xn Vi X =3, A(Xn+Jn) (10.45)

The function A is defined by
AXp 4+ Jp) = —Inz2(X,+ J,) 5 2(Xn +Jn) = /du(d)n) eKntTn)on, (10.46)

In the case of the Ising model we have explicitly

/1 ,
z(Xn +Jp) = /d,u(@n) eXntJn)Pn _ [ 5(e(XnJrJn) + e—(Xn,+Jn)) =K cosh(Xn + Jn).

(10.47)
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We introduce a new variable ¢,, as follows
On = Xn + Jn. (10.48)
The partition function becomes (using also the fact that V and V=1 are symmetric matrices)
Z(J) /Hd¢ e T Znim O VmOmt3 X S0V Im =5 T In Vi I =32, A(¢n)
(10.49)
We replace Vi; by W;; = V;;/L and we replace every spin ®,, by P, = Zle @l i.e. by the sum

of L spins ®! which are assumed to be distributed with the same probability du(®!). We get
the partition function

Z(J)

/ [T dr(@L) e &nWomEnt 3, Jndn
n,l
- %/Han e X Xn W Xom /Hd“ WXt dn) @, )L

-L [i Sin S0 VamOm =3 X S0 Vi Imt § o In Vi I+, Adn)

= %/quﬁn e
%/quﬁn e LV(#n), (10.50)

In the limit . — oo we can apply the saddle point method. The partition function is dominated
by the configuration which solves the equation of motion

dA
=0e ¢ —Jn +2Zvnm p =0. (10.51)

dv
gy,

In other words we replace the field at each site by the best equivalent magnetic field. This ap-
proximation performs better at higher dimensions. Clearly steepest descent allows an expansion
in powers of 1/L. We see that mean field is the tree level approximation of the field theory
obtained from (10.50) by neglecting the quadratic term in J,, and redefining the current J, as
J:ledeﬁned — Zm Vnm}Jm/Q

The partition function becomes (up to a multiplicative constant factor)

Z(J) — eiLl:% En,WL d)"vnin},qui%Zn,WL ¢"1Vn7n11,']m+%2n,WL ']"Vn:r%']erEnA(d)")} |saddle point-

(10.52)

The vacuum energy (which plays the role of the thermodynamic free energy) is then given by

W) %mzm

_ E Y nVimm — % > on Vi T + % S IVikdm + > A(¢n)} lsaddle point-

(10.53)
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The order parameter is the magnetization which is conjugate to the magnetic field J,. It is

defined by

ow
0Jm,

1 -
= 3 ;wn = Jn)Vom

dA
dpm

(10.54)

The effective action (which plays the role of the thermodynamic energy) is the Legendre transform

of W(J) defined by

N(M) = > M,J,—W(J)

The function B(M,,) is the Legendre transform of A(¢,) given by
B(M,,) = Mydn + A(dy).
For the Ising model we compute (up to an additive constant)

A(¢dn) = —lIncosho,

1 —2¢n
— —¢,—In %

The magnetization in the Ising model is given by

M= g = e - 2 - )
" lge. T n) T n)-
Thus
1 1
A(gn) = 5 (1 + M) + 5 In(1 — M),
1 1
B(M,) = 5(1 + M,)In(1+ M,) + 5(1 — M) In(1 — M,,).

From the definition of the effective potential we get the equation of motion

or 0B
oM, *Q;Vanm t oL,
= Jn.

(10.55)

(10.56)

(10.57)

(10.58)

(10.59)

(10.60)

(10.61)
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Thus for zero magnetic field the magnetization is given by an extremum of the effective potential.
On the other hand the partition function for zero magnetic field is given by Z = exp(—LT)
and hence the saddle point configurations which dominate the partition function correspond to
extrema of the effective potential.

In systems where translation is a symmetry of the physics we can assume that the magne-
tization is uniform, i.e. M,, = M = constant and as a consequence the effective potential per
degree of freedom is given by

% = —vM? + B(M). (10.62)
The number A is the total number of degrees of freedom, viz A" =Y 1. The positive parameter
v is finite for short range forces and plays the role of the inverse temperature 5 = 1/T. It is
given explicitly by

p = Smm (10.63)

It is a famous exact result of statistical mechanics that the effective potential I'(M) is a convex
function of M, i.e. for M, My and M such that M = xM; + (1 — z)Ms with 0 < < 1 we must
have

I(M) < 2D(M;) + (1 — 2)T'(My). (10.64)

This means that a linear interpolation is always greater than the potential which means that
I'(M) is an increasing function of M for |M| — co. This can be made more precise as follows.
First we compute

d’A
PPl (- <®>)*>. (10.65)

Thus —d2A/d¢? > 0 and as a consequence A is a convex function of ¢ !. From the definition of
the partition function z(¢) and the explicit form of the measure du(®) we can see that ® — 0
for ¢ — +o0o0 and hence we obtain the condition

d’A
Since M =< ® > this condition also means that M?— < ®2 >— 0 for ¢ — £o00. Now by
differentiating M,, = OW/d.J,, with respect to M,, and using the result d.J,,/OM,, = 8?T /OM?
we obtain

_0*W 9T
= 9J2 M2

(10.67)

We compute (using V;,, = 0) the result 9°T'/OM?2 = d> B/dM?2. By recalling that ¢, = X,, + J,,
we also compute (using V! = 0) the result 9*W/0J2 = —d*A/d¢?. Hence we obtain

_ @B
TAMZdgE

(10.68)

IExercise: Verify this explicitly.
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Thus the function B is also convex in the variable M. Furthermore the condition (10.65) leads
to the condition that the function B goes to infinity faster than M? for M — +o00? (or else
that | M| is bounded as in the case of the Ising model).

The last important remark is to note that the functions A(¢) and B(M) are both even in
their respective variables.

There are two possible scenario we now consider:

e First Order Phase Transition: For high temperature (small value of v) the effective
action is dominated by the second term B(M) which is a convex function. The minimum
of (M) is M = 0. We start decreasing the temperature by increasing v. At some T = T,
(equivalently v = v.) new minima of I'(M) appear which are degenerate with M = 0. For
T < T, the new minima become absolute minima and as a consequence the magnetization
jumps discontinuously from 0 to a finite value corresponding to these new minima. See
figure 14.

In this case the second derivative of the effective potential at the minimum F”(O) is always
strictly positive and as a consequence the correlation length, which is inversely proportional
to the square root of I (), is always finite.

e Second Order Phase Transition: The more interesting possibility occurs when the
minimum at the origin M = 0 becomes at some critical temperature 7' = 7, a maximum
and simultaneously new minima appear which start moving away from the origin as we
decreasing the temperature. The critical temperature T is defined by the condition r’ (0) =
0 or equivalently

20. = B (0). (10.69)

Above T, we have only the solution M = 0 whereas below T, we have two minima moving
continuously away from the origin. In this case the magnetization remains continuous
at v = v, and as a consequence the transition is also termed continuous. Clearly the
correlation length diverges at T = T,. See figure 14.

10.1.3 Critical Exponents in Mean Field

In the following we will only consider the second scenario. Thus we assume that we have a second
order phase transition at some temperature 7' = T, (equivalently v = v.). We are interested in
the thermodynamic of the system for temperatures T" near T.. The transition is continuous and
thus we can assume that the magnetization M is small near 7" = T, and as a consequence we
can expand the effective action (thermodynamic energy) in powers of M. We write then

D(M) = = MyVamMuy+ Y B(M,)
= > MV M+ [%M§+ %M3+... . (10.70)

The function B(M,,) is the Legendre transform of A(¢,), i.e.

B(My) = Mnén + A(gn). (10.71)

2Exercise: Verify this explicitly.
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We expand A(¢,,) in powers of ¢, as

a b
A(dn) = 5@21 + zﬂfz + .. (10.72)
Thus
dA : v
We compute
d’A B [dQB -1
dez dM?
1 b
= 4 M?
a + 2a2 " +
1 b
= 75+T‘2a2¢3+... (10.74)

By integration this equation we obtain

_ 1 2 b '2 .4
A = 2a¢" + 4!a2a Oy + . (10.75)
Hence
/ 1 / b
=——,b=—. 10.76
“ a’ at ( )

The critical temperature is given by the condition I'' (0) = 0 (where T here denotes the effective
potential T'(M) = N(—vM? + B(M))). This is equivalent to the condition B" (0) = 2v. which
gives the value (recall that the coefficient a is positive since B is convex)

Ve =

a
. (10.77)

The equation of motion I (0) = 0 gives the condition B' (M) = 20M. For v < v, we have no
spontaneous magnetization whereas for v > v, we have a non zero spontaneous magnetization

given by
M = ,/1—;(@7%)1/2. (10.78)

The magnetization is associated with the critical exponent 3 defined for T near T, from below
by

M ~ (T. - T)". (10.79)

We have clearly

8= % (10.80)
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The inverse of the (magnetic) susceptibility is defined by (with J being the magnetic field)

X—l

We have the 2—cases

v < Ve,

v>v., M= \/ U*Ucl/Qi)(l 4(v — ve).

oM

aJ
52T
SM?

N(=2v+a+ gMQ).

—O:X b =2(v, — )

The susceptibility is associated with the critical exponent v defined by

Clearly we have

X~ T =T

v=1.

(10.81)

(10.82)

(10.83)

(10.84)

The quantum equation of motion (equation of state) relates the source (external magnetic field),
the temperature and the spontaneous magnetization. It is given by

J

ar

oM

= N(Q2(ve —v)M + %M3)
Nb

= —M>.
3

The equation of state is associated with the critical exponent ¢ defined by

Clearly we have

J ~ M?.

0 =3.

Let us derive the 2—point correlation function given by

Gl

Define

r

nm

52 -1
{6Mn6Mm ]

b —1
{ W + aOpm + 5M,%csnm )

b
= —2Vom + abpm + = M260m.

2

(10.85)

(10.86)

(10.87)

(10.88)

(10.89)
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The two functions Gg% and Fn%% can only depend on the difference n — m due to invariance

under translation. Thus Fourier transform is and its inverse are defined by

Pk

—T

Toddk . . :
Knm = / K(k) ezk(n—m) ’ K(k) = ZKnme_lk(n_m)- (1090)

For simplicity we assume a uniform magnetization, viz M = M,,. Thus

@) — ng%efik(nfm)
- b 9
= —2V(k) +a+ M2 (10.91)
Hence
T d
G2 = / LI etkn=m), (10.92)
nm —x (2m)T —2V(k) + a + 22

The function f/(kz) is given explicitly by

V(k) = Vope *r=m), (10.93)
We assume a short range interaction which means that the potential V,,,, decays exponentially
with the distance |n —m/|. In other words we must have

Vi < Me7xIn=ml o 5 0. (10.94)

This condition implies that the Fourier transform V (k) is analytic for [Im k| < « 3. Furthermore
positivity of the potential V,,,,, and its invariance under translation gives the requirement

V() <D Vi = V(0) =v. (10.95)

For small momenta k we can then expand V (k) as
V(k) = v(1 — p?k? + O(K*)). (10.96)

The 2—point function admits therefore the expansion

T dik G?(0) :
(2) _ zk(n—m)- 10.
Cm /_7, @2me1+e2k2 + 0(k*) © (10-97)

G2 (0) = (10.98)

2(v. —v) + EM?2

£ = : (10.99)

3Exercise: Construct an explicit argument.
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The length scale ¢ is precisely the so-called correlation length which measures the exponential
decay of the 2—point function. Indeed we can write the 2—point function as

@ [T A% sy 00 ek ik(nem)
Gy, = o )dG (0)e e . (10.100)
T iy

More generally it is not difficult to show that the denominator —2V (k) + a + bM?/2 is strictly
positive for v > v, and hence the 2—point function decays exponentially which indicates that
the correlation length is finite.

We have the two cases

2

v < Ve MzO:fQZL
Ve — U
12 vp?
>ve: M=y/—(—v)/? = =—F—. 10.101
v V30— = = g (10.101)
The correlation length £ is associated with the critical exponent v defined by
E~|T =T 7" (10.102)
Clearly we have
1
V=73 (10.103)

The correlation length thus diverges at the critical temperature T' = T..
A more robust calculation which shows this fundamental result is easily done in the contin-
uum. In the continuum limit the 2—point function (10.97) becomes

G®? = d% L ik(z=y) 10.104
(5073/) = @Tﬁme . ( . )

The squared mass parameter is given by

s 1 2we—v)+2M?

m=a s 207 ~ o —ve| ~ [T =T, (10.105)
We compute 4
2 2m _
G (x,y) = W(T)dm LKy o (mr). (10.106)

For large distances we obtain ®

1 m. ., e~ mr
G (x,y) = %(%)W 1>/2r(d_1)/2 , T —> 00. (10.107)

The last crucial critical exponent is the anomalous dimension 7. This is related to the behavior
of the 2—point function at T'=T,. At T' =T, we have v = v, and M = 0 and hence the 2—point

function becomes
T ad
= / d’k ! etkn=m)_ (10.108)

a2
= (2m)7 20c(p?k? = O(KY))

nm

4Exercise: Do this important integral.
5Exercise: Check this limit
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Thus the denominator vanishes only at k& = 0 which is consistent with the fact that the correlation
length is infinite at T" = T,.. This also leads to algebraic decay. This can be checked more easily
in the continuum limit where the 2—point function becomes

d
G(Q)(x,y) = / (g I)Cd% eF@=y) (10.109)
s
We compute ©
9 2d72

The critical exponent 7 is defined by the behavior
1

GO ay) ~ =5y (10.111)
The mean field prediction is therefore given by
n=0. (10.112)

In this section we have not used any particular form for the potential V,,,,,. It will be an interesting
exercise to compute directly all the critical exponents 3, 7, ¢, v and 7 for the case of the O(1)
model corresponding to the nearest-neighbor interaction (10.42) “. This of course includes the
Ising model as a special case.

10.2 The Callan-Symanzik Renormalization Group Equa-
tion

10.2.1 Power Counting Theorems

We consider a ¢" theory in d dimensions given by the action

2
Slel = /dde@m@% + %qﬁ? - %qﬁ’” : (10.113)

The case of interest is of course d = 4 and r = 4. In natural units where i = ¢ = 1 the action
is dimensionless, viz [S] = 1. In these units time and length has the same dimension whereas
mass, energy and momentum has the same dimension. We take the fundamental dimension to
be that of length or equivalently that of mass. We have clearly (for example from Heisenberg
uncertainty principle)

1
L=+ (10.114)
[t]=[x]=L=M"", [m]=[E]=p =M. (10.115)

It is clear that the Lagrangian density is of mass dimension M¢ and as a consequence the field is
of mass dimension M(¢=2)/2 and the coupling constant g is of mass dimension M¥~"4/2+" (use
the fact that [0] = M). We write

[¢] = M. (10.116)

6Exercise: Do this important integral.
"Exercise: Compute the exponents 3, v, §, v and 7 for the potential (10.42).
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—2 d—2
[g) = M™% =M% | 5, =d—r 5 (10.117)

The main result of power counting states that ¢" theory is renormalizable only in d. dimension
where d. is given by the condition

2r
O = d. = . 10.11
0& — (10.118)
The effective action is given by
=1
Dlgel =) H/ddgcl.../ddgcnr(")(gcl,...,gcn)qbc(gcl)...qﬁc(gcn). (10.119)
n=0

Since the effective action is dimensionless the n—point proper vertices F(”)(xl, .+, Tp,) have mass
dimension such that

1

1= Mnd

L) 2y, .., 20)]M™ 2 & [T (21, ..., 20)] = M5+, (10.120)
The Fourier transform is defined as usual by
/ddacl.../ddxnl"(") (21, .y ) @PrEVFA P — (9mydgd(p 4 4 p T (py, ..., pn)10.121)

From the fact that [ d?pd?(p) = 1 we conclude that [§%(p)] = M~ and hence
LT (py, ... pn)] = MA=7E D), (10.122)

The n—point function G™ (x1,...,2,) is the expectation value of the product of n fields and
hence it has mass dimension

(G (21, ..., 20)] = M. (10.123)

The Fourier transform is defined by
/ddxl.../ddan(") (21, ey ) €Pr8TFPnn — (9mydsd(p 1 4p VG (py, ..., pa(10.124)
Hence

(G (pr, ... pp)] = MAPEHD, (10.125)

We consider now an arbitrary Feynman diagram in a ¢" theory in d dimensions. This diagram
is contributing to some n—point proper vertex I'™ (py, ..., p,) and it can be characterized by the
following:

e L—number of loops.
e V—=number of vertices.
e P=number of propagators (internal lines).

e n=number of external lines (not to be considered propagators).
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We remark that each propagator is associated with a momentum variable. In other words we
have P momenta which must be constrained by the V delta functions associated with the V'
vertices and hence there can only be P —V momentum integrals in this diagram. However, only
one delta function (which enforces energy-momentum conservation) survives after integration
and thus only V' — 1 delta functions are actually used. The number of loops L must be therefore
given by

L=P—(V-1). (10.126)

Since we have 7 lines coming into a vertex the total number of lines coming to V vertices is V.
Some of these lines are propagators and some are external lines. Clearly among the V" lines we
have precisely n external lines. Since each propagator connects two vertices it must be counted
twice. We have then

rV =n+2P. (10.127)
It is clear that T'(™)(py, ..., p,) must be proportional to ¢V, viz

T (p1, .o pn) = 67 F(p1, s D) (10.128)

We have clearly
[f (1, e pn)] = M° 6=—V6r+d—n(g—1). (10.129)

The index § is called the superficial degree of divergence of the Feynman graph. The physical
significance of § can be unraveled as follows. Schematically the function f is of the form

A A
1 1 V-1
~ s ... d d - . 10.1
f(o1,pn) /0 d’ky /0 dkpkff;ﬂ k%ﬂLQ[(S S EDINI] (10.130)

If we neglect, in a first step,the delta functions than we can see immediately that the asymptotic
behavior of the integral f(pi,...,pn) is AP(?=2). This can be found by factoring out the depen-
dence of f on A via the rescaling k — Ak. By taking the delta functions into considerations
we see immediately that the number of independent variables reduces and hence the asymptotic
behavior of f(p1, ..., pn) becomes

FP1y e pn) ~ APV, (10.131)
By using P = (rV —n)/2 we arrive at the result

F@1yepn) ~ ATVEFTR(E-D)

~ A°. (10.132)

The index § controls therefore the ultraviolet behavior of the graph. From the last two equations
it is obvious that ¢ is the difference between the power of k in the numerator and the power of
k in the denominator, viz

0 = (power of k in numerator) — (power of k in denominator) (10.133)

Clearly a negative index § corresponds to convergence whereas a positive index § corresponds to
divergence. Since ¢ is only a superficial degree of divergence there are exceptions to this simple
rule. More precisely we have the following first power counting theorem:
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e For § > 0 the diagram diverges as A?. However symmetries (if present) can reduce/eliminate
divergences in this case.

e For § = 0 the diagram diverges as In A. An exception is the trivial diagram (P = L = 0).

e For § < 0 the diagram converges absolutely if it contains no divergent subdiagrams. In
other words a diagram with § < 0 which contains divergent subdiagrams is generically
divergent.

As an example let us consider ¢* in 4 dimensions. In this case
0=4—n. (10.134)

Clearly only the 2—point and the 4—point proper vertices are superficially divergent, i.e. they
have § > 0. In particular for n = 4 we have § = 0 indicating possible logarithmic divergence which
is what we had already observed in actual calculations. For n = 6 we observe that § = -2 < 0
which indicates that the 6—point proper vertex is superficially convergent. In other words the
diagrams contributing to the 6—point proper vertex may or may not be convergent depending
on whether or not they contain divergent subdiagrams. For example the one-loop diagram on
figure 13 is convergent whereas the two-loop diagrams are divergent.
The third rule of the first power counting theorem can be restated as follows:

e A Feynman diagram is absolutely convergent if and only if it has a negative superficial
degree of divergence and all its subdiagrams have negative superficial degree of divergence.

The ¢* theory in d = 4 is an example of a renormalizable field theory. In a renormalizable
field theory only a finite number of amplitudes are superficially divergent. As we have already
seen, the divergent amplitudes in the case of the ¢* theory in d = 4 theory, are the 2—point
and the 4—point amplitudes. All other amplitudes may diverge only if they contain divergent
subdiagrams corresponding to the 2—point and the 4—point amplitudes.

Another class of field theories is non-renormalizable field theories. An example is ¢* in D = 6.
In this case

5y =—-2,8=2V+6—2n. (10.135)

The formula for § depends now on the order of perturbation theory as opposed to what happens
in the case of D = 4. Thus for a fixed n the superficial degree of divergence increases by increasing
the order of perturbation theory, i.e. by increasing V. In other words at a sufficiently high order
of perturbation theory all amplitudes are divergent.

In a renormalizable field theory divergences occur generally at each order in perturbation
theory. For ¢* theory in d = 4 all divergences can be removed order by order in perturbation
theory by redefining the mass, the coupling constant and the wave function renormalization.
This can be achieved by imposing three renormalization conditions on f‘(2)(p), df‘@)(p) /dp? and
r® (p1,-..,p4) at 0 external momenta corresponding to three distinct experiments.

In contrast we will require an infinite number of renormalization conditions in order to remove
the divergences occurring at a sufficiently high order in a non-renormalizable field theory since
all amplitudes are divergent in this case. This corresponds to an infinite number of distinct
experiments and as a consequence the theory has no predictive power.

From the formula for the superficial degree of divergence § = —6,V 4+ d —n(d/2 — 1) we see
that 4, the mass dimension of the coupling constant, plays a central role. For §, = 0 (such as
¢* in d = 4 and ¢® in d = 6 we see that the index § is independent of the order of perturbation
theory which is a special behavior of renormalizable theory. For 8, < 0 (such as ¢* in d > 4)
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we see that § depends on V' in such a way that it increases as V' increases and hence we obtain
more divergencies at each higher order of perturbation theory. Thus d, < 0 defines the class of
non-renormalizable field theories as d,, = 0 defines the class of renormalizable field theories.

Another class of field theories is super-renormalizable field theories for which §, > 0 (such
as ¢3 in D = 4). In this case the superficial degree of divergence § decreases with increasing
order of perturbation theory and as a consequence only a finite number of Feynman diagrams
are superficially divergent. In this case no amplitude diverges.

The second (main) power counting theorem can be summarized as follows:

e Super-Renormalizable Theories: The coupling constant g has positive mass dimension.
There are no divergent amplitudes and only a finite number of Feynman diagrams super-
ficially diverge.

e Renormalizable Theories: The coupling constant g is dimensionless. There is a finite
number of superficially divergent amplitudes. However since divergences occur at each
order in perturbation theory there is an infinite number of Feynman diagrams which are
superficially divergent.

e Non-Renormalizable Theories: The coupling constant g has negative mass dimension. All
amplitudes are superficially divergent at a sufficiently high order in perturbation theory.

10.2.2 Renormalization Constants and Renormalization Conditions

We write the ¢* action in d = 4 as

Slel = /ddz[%ama“qs %m2¢2 - %(&)2 : (10.136)

The bare field ¢, the bare coupling constant A and the bare mass m? are given in terms of the

renormalized field ¢g, the renormalized coupling constant Arp and the renormalized mass m%
respectively by the relations

¢ =VZ¢r. (10.137)
\=Z,/Z*\g. (10.138)
m? = (m% + 6m)/Z. (10.139)

The renormalization constant Z is called wave function renormalization constant (or equivalently
field amplitude renormalization constant) whereas Z,/Z? is the coupling constant renormaliza-
tion constant.

The action S given by equation (10.136) can be split as follows

S = Srp+4dS. (10.140)
The renormalized action Sg is given by

1

Srlér] = /ddx[%auqma“qbg — §m23¢23 — Z—If(qbQR)Q : (10.141)
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The counter-term action 05 is given by

1) 1 )
6S[pr] = /d%[%@@ﬁﬂ% - §5m¢23 - 4—?(&{)2 : (10.142)
The counterterms dz, 6,, and J) are given by
Sz=2—1,0m=2m>—m% , 6y =M2> -~ A\r = (Z, — 1)\g. (10.143)
(n)

The renormalized n—point proper vertex I';” is given in terms of the bare n—point proper vertex
™ by

T (1,0 ) = Z5T0) (24, ., ). (10.144)

The effective action is given by (where ¢ denotes here the classical field)

Lrlor] = Z%F(}?’(xl,...,xn)be(xl)...gbR(zn). (10.145)

n=0

We assume a momentum cutoff regularization. The renormalization constants Z and Z, and the
counterterm §,, are expected to be of the form

O = a1 (M)A + ag(A)N + ...
Z =14 b1 (M)A +ba(A)N2 + ...
Zy=1+ci(MA +ca( AN+ ... (10.146)

All other quantities can be determined in terms of Z and Z, and the counterterm 6,,. We can
state our third theorem as follows:

e Renormalizability of the ¢* theory in d = 4 means precisely that we can choose the con-
stants a;, b; and ¢; such that all correlation functions have a finite limit order by order in
Ar when A — cc.

We can eliminate the divergences by imposing appropriate renormalization conditions at zero
external momentum. For example we can choose to impose conditions consistent with the tree
level action, i.e.

TP (0)]p2mo = m%

d (2
d_pgr( )(p)|pe—o = 1

T (p1, o, pa)l 20 = Ar- (10.147)

This will determine the superficially divergent amplitudes completely and removes divergences
at all orders in perturbation theory 8.

8Exercise:
e Show that the loopwise expansion is equivalent to an expansion in powers of A.
o Write down the one-loop effective action of the ¢* theory in d = 4. Use a Gaussian cutoff.
e Compute a1, by and c¢; at the one-loop order of perturbation theory.

e Consider one-loop renormalization of ¢3 in d = 6.
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It is well established that a far superior regularization method,than the simple cutoff used
above, is dimensional regularization in which case we use, instead of renormalization conditions,
the so-called minimal subtraction (MS) and modified minimal subtraction (MMS) schemes to
renormalize the theory. In minimal subtraction scheme we subtract only the pole term and
nothing else.

In dimension d # 4 the coupling constant A is not dimensionless. The dimensionless coupling
constant in this case is given by ¢ defined by

g=p N, e=4—d. (10.148)
The bare action can then be put in the form

me%
2

:uegRZg

i (¢%)?|. (10.149)

On —

Z
S /ddx[§8H¢RG”¢R—

The new renormalization condition Z,, is defined through the equation

Zm

The mass p? is an arbitrary mass scale parameter which plays a central role in dimensional
regularization and minimal subtraction. The mass p? will define the subtraction point. In other
words the mass scale at which we impose renormalization conditions in the form

~(2
TP (0)|pro = m%

d ~
d—p21—‘(2) (P)|p2=p2 =1

T (py, ... pa)lse = p g (10.151)

The symmetric point SP is defined by p;.p; = u?(49;; —1)/3. For massive theories we can simply
choose 1 = mp. According to Weinberg’s theorem (and other considerations) the only correlation
functions of massless ¢* which admit a zero momentum limit is the 2—point function. This means
in particular that the second and third renormalization conditions (10.147) do not make sense
in the massless limit m% — 0 and should be replaced by the second and third renormalization
conditions (10.151). This is also the reason why we have kept the first renormalization condition
unchanged. The renormalization conditions (10.151) are therefore better behaved.

As pointed above the renormalization prescription known as minimal subtraction is far supe-
rior than the above prescription of imposing renormalization conditions since it is intimately tied
to dimensional regularization. In this prescription the mass scale u? appears only via (10.148).
We will keep calling p? the subtraction point since minimal subtraction must be physically
equivalent to imposing the renormalization conditions (10.151) although the technical detail is
generically different in the two cases.

The renormalized proper vertices f‘gg) depend on the momenta pq,...,p, but also on the
renormalized mass m%, the renormalized coupling constant gr and the cutoff A. In the case of
dimensional regularization the cutoff is ¢ = 4 — d whereas in the case of lattice regularization the
cutoff is the inverse lattice spacing. The proper vertices 1:‘537) will also depend on the mass scale
p? explicitly and implicitly through m% and gr. The renormalized proper vertices are related to
the bare proper vertices as

T (is 1% m%, g, A) = Z5T™ (pizm?, g, A). (10.152)
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The renormalization constant Z (and also other renormalization constants Z;, Z,, and coun-
terterms 6z, 6,, and ) will only depend on the dimensionless parameters gr, m%/u?, A?/u?,
m%/A? as well as on A, viz

2 A2 2
my A mp

Z =17 —r Lt A). 10.153
(ng /L2 ) /L2’ A2 ) ) ( )
In dimensional regularization we have
(n) 2.2 z m%z A (n) 2
Lk’ (pi, w°smp, gr, €) = Z?(gR,F,e)F (pi;m*, g, €). (10.154)

Renormalizability of the ¢* theory in d = 4 via renormalization conditions (the fourth theorem)
can be stated as follows:

e The renormalized proper vertices f‘%l) (pi,/ﬂ;m%,gR,A) at fixed p;, u?, gr, m% have a
large cut-off limit f‘g)(pi, w2 m%, gr) which are precisely the physical proper vertices, viz
(In A)F

) (10.155)

U5 (piy 1% m%, gr A) = T8 (i, u2m%, gr) + O

The renormalized physical proper vertices f‘g)(pi, s m%, gr) are universal in the sense
that they do not depend on the specific cut-off procedure as long as the renormalization
conditions (10.151) are kept unchanged. In the above equation L is the number of loops.

10.2.3 Renormalization Group Functions and Minimal Subtraction

The bare mass m? and the bare coupling constant A are related to the renormalized mass m%
and renormalized coupling constant Ar by the relations

Zm
Z Z

In dimensional regularization the renormalization constants will only depend on the dimensionless
parameters gr, m%/u® as well as on e. We may choose the subtraction mass scale u? = m#%.
Clearly the bare quantities m? and A are independent of the mass scale p. Thus by differentiating

both sides of the above second equation with respect to ;2 keeping m? and ) fixed we obtain
oA 0
0= (p=— = B=—egp— | us—InZ,/2? : 10.158
(u aﬂ) - B 9r (u o q/ )AﬁngR ( )

The so-called renormalization group beta function § (also called the Gell-Mann Law function)
is defined by

_ my < %) 10.159
B = B(gr, ug) o . (10.159)

Let us define the new dimensionless coupling constant

4
G= Z—ggR. (10.160)
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Alternatively by differentiating both sides of equation (10.157) with respect to u keeping m? and
A fixed we obtain

0= uQ :>0:€G+ﬂiG+ uimR iG. (10.161)
o) \m2 d9r W ,

The last term is absent when y = mpg.
Next by differentiating both sides of equation (10.156) with respect to u keeping m? and A
fixed we obtain

8m2) ( Om?2 ) 0
0= p— =0= it +m2< —InZ, Z> ) 10.162
<ﬂ a,U/ A,m?2 : a'u’ A,m?2 f ‘uau / A,m?2 ( )

We define the renormalization group function v by

2
mp

0
Ym = '7m(gRa ) = (M— lnm2 )
i o) s
- —(,uian /Z) (10.163)
aﬂ " A,m?2

In the minimal subtraction scheme the renormalization constants will only depend on the di-
mensionless parameters gr and as a consequence the renormalization group functions will only
depend on ggr. In this case we find

_ d Zg -
d —1
= —e|-—1 : 10.164
E{ng HG(QR)] (10.164)
d — Znp
Ym(9r) = —ﬁ(gR)dg—Rln7. (10.165)

We go back to the renormalized proper vertices (in minimal subtraction) given by
T (pi, % m%, gro€) = 27 (gr, T (piym?, g €). (10.166)

Again the bare proper vertices must be independent of the subtraction mass scale, viz

0 ~
= ( p—T1 . 10.1

By differentiating both sides of equation (10.166) with respect to u keeping m? and \ fixed we
obtain

9 ~(n)) n< 9 ) F(n)
—r =—|lpu=—InZ I 10.168
<M8,U/ R am? 2 lual,l/ am? R ( )

Equivalently we have

2 ~ ~
( 0 ;,2me 9 +uagf"'i) rm=2 (,uian) i, (10.169)
A,m?2 A,m?2

Ma_u ou Om% O dgr
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We get finally

0 190 _ ﬁn) 0 = . (10.170)

9 2
(“a_u MR Ym om3, dgr 2

This is our first renormalization group equation. The new renormalization group function 7 (also
called the anomalous dimension of the field operator) is defined by

n(gr) = (uaian)
= ﬂ(gR)ian. (10.171)
R

Renormalizability of the ¢* theory in d = 4 via minimal subtraction (the fifth theorem) can be
stated as follows:

e The renormalized proper vertices f‘g)(pi,MQ;m%,gR,e) and the renormalization group
functions B(gr), v(gr) and n(gr) have a finite limit when e — 0.

By using the above the theorem and the fact that G(gr) = gr + .... we conclude that the beta
function must be of the form

Bgr) = —egr + Ba(€)g% + Ba(e)gp + - (10.172)

The functions f;(€) are regular in the limit € — 0. By using the result (10.164) we find

’

G _ _9r
gRG - - ﬂ
2
— 1+ ﬂQ(e)g}ﬁ (ﬂige) + 53(6))9% + (10.173)

€ €

The most singular term in e is captured by the function Ba(e). By integrating this equation we
obtain

-1
0

G(9r) = gr [1 — B )gR] + less singular terms. (10.174)
€

The function G(gr) can then be expanded as

G(gr) = gr+ Y _ grGnle). (10.175)
n=2
The functions G, (¢) behave as
: ~(0)
Gn(e) = 2n71 + less singular terms. (10.176)
€

Alternatively we can expand G as

Gn
G(9r) = gr + Z % + regular terms , Gn(gr) = O(gj5™). (10.177)
n=1
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This is equivalent to
Z H,
Z—‘g =1+ ; % + regular terms , H,(gr) = O(gR)- (10.178)

We compute the beta function

Blgr) = {QHZ%} [” > M]
G,

G

= —egr — Gi(gr) + grG1(gr) + Z @. (10.179)

n
n=1
The beta function is finite in the limit ¢ — 0 and as a consequence we must have b, (gr) = 0
for all n. The beta function must therefore be of the form

B(gr) = —egr —Gi(gr) + 9rG(gR)- (10.180)

The beta function S is completely determined by the residue of the simple pole of G, i.e. by
G1. In fact all the functions G,, with n > 2 are determined uniquely by G; (from the condition
by, = 0).
Similarly from the finiteness of 1 in the limit ¢ — 0 we conclude that the renormalization
constant Z is of the form
_ an(gr) _ n+1
Z(gr) =1+ Z ——— +regular terms , an(gr) = O(g ). (10.181)

€
n=1

We compute the anomalous dimension

d
n = 5(93)@—R InZ(gr)

[ — egr — G1(gr) + 9rG, (gR)] Eo/l + } : (10.182)

Since 7 is finite in the limit ¢ — 0 we must have

n = —gro,. (10.183)

10.2.4 CS Renormalization Group Equation in ¢* Theory

We will assume d = 4 in this section although much of what we will say is also valid in other
dimensions. We will also use a cutoff regularization throughout.

Inhomogeneous CS RG Equation: Let us consider now ¢* theory with ¢? insertions. We
add to the action (10.136) a source term of the form [ d%zK (z)¢?(x)/2, i.e.

A

— I(¢2)2 - %qu? : (10.184)

Sio.K] = [ | 30,000 - S
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Then we consider the path integral
Z[J, K] = /an exp(iS[p, K| + i / dzJo). (10.185)

It is clear that differentiation with respect to K (x) generates insertions of the operator —¢?/2.
The corresponding renormalized field theory will be given by the path integral

ZglJ, K] = /D¢Rexp(iS[¢R,K]+i/ddzJ¢R). (10.186)
Slon K] = [ da Bauqmaﬂm — ok~ SR (6h)? + %K&R} 165, (10.187)

Zs is a new renormalization constant associated with the operator [ d?zK (z)¢?(x)/2. We have
clearly the relations

J Zy

Wr[J, K] = W[ﬁ, A

K]. (10.188)

Trle, K] =T[VZ4,, %K]. (10.189)

The renormalized (I,n)—point proper vertex F%’") is given in terms of the bare (I,n)—point
proper vertex '™ by

F%’n) (Y1y ooy Y3 XLy evey Ty) = nglZéF(l’") (Y1y ooy Y3 X1y eny T (10.190)

The proper vertex I'(1:2) (y; 21, x2) is a new superficially divergent proper vertex which requires a
new counterterm and a new renormalization condition. For consistency with the tree level action
we choose the renormalization condition

=(1,2
052 (¢:p1,P2)lg=p=0 = 1. (10.191)
Let us remark that correlation functions with one operator insertion i¢?(y)/2 are defined by

11 b b
in Z[J, K] 6K (y) 6J (1) 6.J (z,)

< %¢2(y)¢(x1)---¢(xn) >= Z[J,K]|j=k=0.  (10.192)

This can be generalized easily to

it 5 11 5 5 5
< ggb (y1).--0° (y)p(x1)...0(xy) >= 7 2 K] 3K (g) " SR () 80 @n) " 57 (wn)

Z1J, K| k=0
(10.193)

From this formula we see that the generating functional of correlation functions with [ operator
insertions i¢?(y)/2 is defined by

1)
0K (y1) "'5K(?Jl)Z[

Zly1, e yis J] = J, K]|k=o. (10.194)
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The generating functional of the connected correlation functions with [ operator insertions
i¢?(y)/2 is then defined by

1)
0K (y1) 0K (y1)

W[yl,...,yl;J] = W[J;KHK:O (10195)

We write the effective action as

Pioe k] = 30 g [ e [ @00, i o) K ()oK (). 00(22)
l,n=0

(10.196)

The generating functional of 1PI correlation functions with [ operator insertions i¢?(y)/2 is
defined by

§'T ¢, K| d dg, 1) (y .
W Z /d xy.. /d I’ 1, --ayl,iEb---7$n)¢c($1)---¢c($n)-
(10.197)
Clearly
5l+nr[¢ K]
< = TG (Y, ey Ty ey ). 10.198
3K (y1) 0K (1)00e(1)...00c (2n) (s e Y301, 00 Tn) ( )
We also write
d¢ dip,, n - - - -
¢Ca Z l'n'/ ql / p)dl—‘(l’ )(qI;..-,q1;p1;..-,pn)K(ql)-..K(QZ)¢c(p1)---¢c(pn)_
(10.199)

We have defined

/ddyl.../ddxnf(l’”)(yl,...,yl;zl,...,xn) iYL | ltYi giPITL  oiPnTn :f(l’”)(ql,...,ql;pl,...,pn).

(10.200)

The definition of the proper vertex f‘(l’”)(ql, cees Q15 P15 --s D) In this equation includes a delta
function. We recall that

oW [J, K]

57007 (10.201)

Dloe K] = WK = [ dies@)oue) . ou(o) =
We calculate immediately

oW 4 OW or g or
. 2|)\A**/d SR éW|,\7A:—/d SR (10.202)

As a consequence

aF(l’n)(yh---vyl;zlv---vxn)b\[\ _ 7/dd 5F(l’”)(y1,...,yl;:cl,...,zn)
om? ’ 0K (2)

—/dsz(Hl’”)(z,yl,...,yl;zl,...,xn) (10.203)
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Fourier transform then gives

6f(l’n)(qla - 415 D1, ,pn) | A
om?2 »

By using equation (10.190) to convert bare proper vertices into renormalized proper vertices we
obtain

= UL 0, g1, qi 1y ooy D) (10.204)

7/ ) Sl (10.205)

0 7EGInZ 0lnZy/7 (L)
om?2 2 Om?2 om? A

The factor of —1 multiplying the right hand side of this equation will be absent in the Eu-
clidean rotation of the theory . The renormalized proper vertices f‘%’") depend on the momenta
q1-sq1,P1,---sPn, but also on the renormalized mass m%, the renormalized coupling constant Ag
and the cutoff A. They also depend on the subtraction mass scale u?. We will either assume

that u? =0 or u? = m%. We have then

amR 0 a)\R 0 _Eaan_ aanQ/Z f‘(l’") _ZZ—lf\(lJrl,n)
Om?2 Ompr Om20Ar 2 Om? om?2 \A R 2R '
(10.206)
We write this as
Ompg . o om? O g 0O _n om? oz m om? 0lnZy/Z pln) _
am2\" "omp ' TOmpom2org 2 "Omp Om? Bomp  omz ), B T
—mpZZy 'TET™10.207)
We define
MR om? O r
Ap. 2By gm 9AR
ﬂ( R, A ) (mRamR amQ))\,A
O\
= (mR—R> : (10.208)
Ompr MA
0 mR) ( om? 8111Z)
s T A = MR —— (7 5
AR 7y R@mR om?2 AA
0 0
= ——InZ —InZ . 10.2
(mRamR n +ﬂa)\R n )A7A (10.209)
mr, om? dlnZy/Z
e =) = (mRamR om? ), .
= (m 4 InZ /Z—l—ﬁian /Z (10.210)
o RamR 2 8>\R 2 /\,A- '
5 mr, 1 om?
mpo(Ar, A) = ZZ, (mRamR>)\,A. (10.211)

9Exercise: Check this.
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The above differential equation becomes with these definitions

0 0 ~(l,n = n
(mR_ gL, zm)r%’ b= —mZeli, (10.212)
m R 2

This is the original Callan-Symanzik equation. This equation represents only the response of the
proper vertices to rescaling (¢ — ¢r) and to reparametrization (m? — m%, A — Ag). We
still need to impose on the Callan-Symanzik equation the renormalization conditions in order to
determine the renormalization constants and show that the renormalized proper vertices have
a finite limit when A — oo. The functions 8, 1, 172 and o can be expressed in terms of
renormalized proper vertices and as such they have an infinite cutoff limit. The Callan-Symanzik
equation (10.212) can be used to provide an inductive proof of renormalizability of ¢* theory in
4 dimensions. We will not go through this involved exercise at this stage.

Homogeneous CS RG Equation-Massless Theory: The renormalization conditions for a
massless ¢* theory in d = 4 are given by

fg)(P”p?:o =0
d -~
wr‘@)(pﬂpzzuz =1
T (p1,....,pa)lsp = Ar. (10.213)

The renormalized proper vertices f‘g) depend on the momenta py,...,p,, the mass scale u?, the
renormalized coupling constant Ar and the cutoff A. The bare proper vertices N depend on
the momenta p1,...,p,, the bare coupling constant A and the cutoff A. The bare mass is fixed by
the condition that the renormalized mass is 0. We have then

~ n A2 -
PR %2, A) = 23 O 25 E) (pis ). (10.214)
The bare theory is obviously independent of the mass scale ;2. This is expressed by the condition
0 =~
(M—F(”) (pi; A, A)) =0. (10.215)
o MA

We differentiate equation (10.214) with respect to p? keeping A and A fixed. We get

0 = (n) OAR o} “(n) M olnZz 23 (n)
—T - — Iy == —— Z2T\", 10.21
op R +<au o ' T2\ o ), (10.216)
We obtain immediately the differential equation
0 0 n = (n)
— Ar)=—— — =n(Ar) IR’ = 0. 10.21
(13 + B30~ 10w )Y =0 (10.217)
a)\R olnZ
B(AR) = (,u—) , N(AR) = (u ) . 10.218
(Ar) 9 ) s a (Ar) i ) sa ( )

This is the Callan-Symanzik equation for the massless theory. The functions § and 1 do not
depend on A/pu since they can be expressed in terms of renormalized proper vertices and as such
they have an infinite cutoff limit.
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For the massless theory with ¢? insertions we need, as in the massive case, an extra renor-
malization constant Zs and an extra renormalization condition to fix it given by

D2 (gip1,92)] 2 opp o2 = 1. (10.219)
We will also need an extra RG function given by
0]
m(Ag) = | p=—InZy/Z . (10.220)
o \A

The Callan-Symanzik equation for the massless theory with ¢? insertions is then given (by the
almost obvious) equation

0 0 =(1n
(Ma—ﬂ + B(AR)m - gU(AR) - 1772()‘3))F%’ '=o0. (10.221)

Homogeneous CS RG Equation-Massive Theory: We consider again a massless ¢* theory
in d = 4 dimensions with ¢? insertions. The action is given by the massless limit of the action
(10.187), namely

Slén. K] = / ddeZ@mRa%R—éémq% Ay (522 +éK¢R (10.222)
The effective action is still given by
Tlpe, K] = Y l'n'/ yi- /dd WL Y1 g 21, @) K (1) K (1) e (1) b (00).
,n=0
(10.223)

An arbitrary proper vertex f‘gf) (p1, -, pn; K) can be expanded in terms of the proper vertices

F%’") (g1, -y Qi3 P15 -, Pn) as follows

= (n) 1 [ digq / dlq (z n) = -
T v K) = — e QL K LK (qp).
R (pla y Pns ) ; Tl / (27T)d (27T)d (qla , 415 P1, apn) (ql) (ql)
(10.224)
We consider the differential operator
0 0 n ~ )
D=p=—+ — =n(Ag) — n2(A /ddK — . 10.225
“on B(Ar )GAR 5 1(AR) = 12(AR) q (Q)éK(q) ( )

We compute

N 5 1
dYqK (Q)—T (p1, .. pn; K) = -
/ q (q)éK() (p1, s Pns K) 7]

\

=(ln
dd /ddQZF;’L )(qla'-'aql;pla-“vpn)

5

) ff(tn) K(q)

q lr(l n)(qla -5 415 P1, apn)

M \HM

\Q

19K (
l/
I
WK

(h

X
=T
-~ O

(q). (10.226)
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By using now the Callan-Symanzik equation (10.221) we get
0 0 n - ) .
= 4 B — o=y [ dqK(q)——— T (p1, ... pn; K) = 0. 10.227
(g + Pz = 51 [ Rl ) i B (10227

A massive theory can be obtained by setting the source —K (z) equal to a constant which will
play the role of the renormalized mass m%. We will then set

K(z) = —m% & K(q) = —m%(2m)%5%(q). (10.228)

We obtain therefore the Callan-Symanzik equation

0 0 n
(u— + B = 50— emp

5t P 2 )f;? (D1, -oes Py M%) = 0. (10.229)

2
oms,
This needs to be compared with the renormalization group equation (10.170) and as a conse-
quence the renormalization function —7, must be compared with the renormalization constant
Ym- The renormalized proper vertices I‘gg)
subtraction mass scale p and the cutoff A.

will also depend on the coupling constant Agr, the

10.2.5 Summary

We end this section by summarizing our main results so far. The bare action and with ¢?
insertion is

S[p, K] = /dd:c Bamaw — %m2¢2 — %(qs?)? + %K&]. (10.230)
The renormalized action is
d 1 1 2 42 AR 212 1 2
SR[¢R,K] = d T iaﬂd)Ra“(bR — §mR¢R — I(QZS ) + §Z2K¢R . (10231)

The dimensionless coupling gr and the renormalization constants Z, Z,; and Z,, are defined by
the equations

gr=u Ag, e=4—d. (10.232)
¢ =VZ¢g
Zg
)\ = )\Rﬁ
Zm

The arbitrary mass scale p defines the renormalization scale. For example renormalization con-
ditions must be imposed at the scale u as follows

(2) 2

IR (P20 = mi,

d - 2
d_pQF( )(p)|p2:u2 =1

TD(p1, ..., pa)lsp = pgr
T02 (¢ 01,02l gmpr 2 = 1. (10.234)
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However we will use in the following minimal subtraction to renormalize the theory instead of
renormalization conditions. In minimal subtraction, which is due to 't Hooft, the renormalization
functions B, v, n and 72 depend only on the coupling constant gr and they are defined by

Blgn) = 292 = el -L ) T g (10.235)
gR - ‘LL a/,// A7m2 - ng gR 9 - ZQgR .
0] d Z
m = p=—Inm7 =— — In—=. 10.236
ntan) = (g o) = ~Blow g (10.236)
(9r) <81Z) B( )dlZ (10.237)
=(pu=—In = —InZ. .
YR Mau - 9Rr dgn
0 ZQ d ZQ
= (u=—1mz= = —In —=. 10.238
wlon) = (ngpn %) = Blon)giom (10.238)
We may also use the renormalization function 7 defined simply by
_ n(gr)
Ygr) = =5 (10.239)
The renormalized proper vertices are given by
T (pis 123 M gr) = 27 (gr, 8™ (pism? A, €). (10.240)
f%’n)(%;m;ﬁ;m%agﬂi) = Z%_lzéf(l’n)(Qi;Pi;m2, A €). (10.241)
They satisfy the renormalization group equations
0] 5 0 0] N\ =(n)
— mMp=— — ——n |’ =0. 10.242
(uaquv mRam% +ﬂagR 277) R ( )
0 0 n = (1,n) 9 =(+1,n)
— — — ==l | T} = - T, . 10.243
(mRamR +ﬁ8)\R 2 772) R "MRITR ( )

In the first equation we have set K = 0 and in the second equation the renormalization scale is
1 = mpg. The renormalization function o is given by

(gr) Z 1 om®
IR Zym%, TR S m R/
z. z, }

= [2+6(9R)i1n— :

10.244
Z2 ng Z ( )
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An alternative renormalization group equation satisfied by the proper vertices f‘g) can be ob-
tained by starting from a massless theory, i.e. m = mgr = 0 with K # 0 and then setting
K= —m% at the end. We obtain

0 0 n 0 =(n
(5 + 5~ 57 g )T =0 o2)

In this form the massless limit is accessible. As we can see from (10.242) and (10.245) the
renormalization functions ~,,(gr) and —n2(gr) are essentially the same object. Indeed since the
two equations describe the same theory one must have

n2(9r) = —¥m(9gR)- (10.246)

Alternatively we see from equation (10.244) that the renormalization constant Z; is not an
independent renormalization constant since o is finite. In accordance with (10.246) we choose

Ty =7, (10.247)
Because Z3 = Z,,, equation (10.244) becomes

0
o(gr) = (mRalean)
A

= 2— 7. (10.248)

10.3 Renormalization Constants and Renormalization Func-
tions at Two-Loop

10.3.1 The Divergent Part of the Effective Action

The 2 and 4—Point Proper Vertices: Now we will renormalize the O(N) sigma model at the
two-loop order using dimensional regularization and (modified) minimal subtraction. The main
divergences in this theory occur in the 2—point proper vertex (quadratic) and the 4—point proper
vertex (logarithmic). Indeed all other divergences in this theory stem from these two functions.
Furthermore only the divergence in the 2—point proper vertex is momentum dependent.

The 2—point and 4—point (at zero momentum) proper vertices of the O(NN) sigma model at
the two-loop order in Euclidean signature are given by equations (8.201) and (8.227), viz

) 9, o L N+2 A N +2.2 AN +2
T = - —A— - —(— e . (10.24
Do) = ol e pI @ - L0 - ) o2
(4) 6i1i2i3i4 3N+8 2 3 3(N+2)(N+8)
I = 1234 - - - il s A S S
9 0.0.0.0) i [y - ST 4 S B HINE S )
N+2)(N+4 12 N + 22
+ ZAB( il )(27+ )+ (e)+3>\3527t(f)]. (10.250)

The Feynman diagrams corresponding to (a), (b), (¢), (d), (g), (e) and (f) are shown on figure
16. Explicitly we have

d
(@ =10 = [ i (10.251)
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o [ d 1

(d) = J(0,m") = / CRCETDE (10.252)
(b) = I(m?)J(0,m?) = (a)(d). (10.253)

N 1
(€)= K(p",m) = / 2 e G )R (ks my) 103

2 2\ _ dk 1 d?l 1

(g) = I(m*)L(0,m )_/(%)d k2+m2/(2ﬁ)d e (10.255)
(e) = J(0,m?*)* = (d)*. (10.256)

o [ AU d% 1
(£) = M(0,0,m") = / 2m) (2m)d (12 + m2) (k2 + m2)((l + k)2 + m?)’ (10257)

We remark that the two-loop graph (g) is a superposition of the one-loop graphs (a) and (d) and
thus it will be made finite once (a) and (d) are renormalized. At the two-loop order only the
diagram (c) is momentum dependent. We introduce the notation

©=200) = £30)+ 525 500) 4.
= m¥ 0L + p?*m2 8 4 . (10.258)
We will also introduce the notation
(a) =ma21,. (10.259)

All other integrals can be expressed in terms of I; and I5. Indeed we can show '°

(d) = —822 (a)=(1— g)md—‘lll. (10.260)
(b)=(1— g)de—Glf. (10.261)

(e)=(1 g)Qde—Slf. (10.262)

(f) = %%2@)(0) = f%(d —3)m?4=8,. (10.263)
(9) = —ga) 5y (d) = 51— (2~ Dm*=512 (10.264)

10Exercise: Derive these results.
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Calculation of The Poles: We have already met the integral I; before. We compute

o / dik 1
V) erdk
B 2 / ki-tdk
 (4mdrrd/2) ) k2 +1
) 1 d/271d
- . - / x ° (10.265)
(4m)d/2T'(d/2) 2 z+1
We use the formula
u®du plla+DI(B-a-1)
— = g~ . 10.266
/ (u+a)? “ L'(B) ( :

Thus (with d =4 —¢)

om? (m3)?
() = WWF(—l—i—e/Q) (10.267)

We use the result

2
I'(-1+¢/2)= - 14+~+ O(e). (10.268)
Hence we obtain
m? 2 m?
N | In — . 10.2
@ = go|-2- 1404 0] (10.269)

The first Feynman graph is then given by

2 2

2
Aa) = g% { ~—1l+y-Indr+n % + O(e)} : (10.270)

In minimal subtraction (MS) we subtract only the pole term —2/e whereas in modified minimal
subtraction (MMS) we subtract also any other extra constant such as the term —1 + vy — In 4.
We introduce
2

Ne= marriar)

(10.271)

We compute

L = %F(d/Q)F(l —d/2)
= (== +0(0). (10.272)

Then

+In=5 o+ 0(6) (10.273)
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From this formula it is now obvious that subtracting —N,/e is precisely the above modified
minimal subtraction.

We have also met the integral $£(2)(p) before (see (8.202)). By following the same steps that
led to equation (8.205) we obtain

2 2 1 —m?(z14@atas)— TLE2T3 p?
K(p*,m®) = —(47r)d /d$1d$2d$3 XIE . A= 2129 + 1173 + T2T3.
(10.274)
Thus
L o= K@)
1 e_(zl+$2+ls)
= ([ dndrades —xgE— (10.275)
0
IB = 6—]72K(p27 1)|p2:0
_ 1 X1 Towze” (F1tT2tes)

= - ) /d:C1d:C2d:C3 INETIE . (10.276)

We perform the change of variables z1 = stu, 2 = st(1—u) and z3 = s(1—t). Thus x; +z2+x3 =
s, drydradrs = s*tdsdtdu and A = s?t(1 — t + ut(1 — u)). The above integrals become

1 S - 1 1 H1-d/2
L = —— dse °s°~ d dt
’ <4w>d/o e / “/ (1=t + ut(l — )i

r@a—d [* 1 f1-d/2
W/o du/o T aa =) (10.277)

1 > ! ! t2=4/2(1 = ¢)
I3 = ———— d—”’—d/d 1— /dt
3 (47T)d /0 se °s ; uu( U) o (1 —t+ ut(l . u))1+d/2

- r4—d [* 1 $2-4/2(1 — )
- W/o duu(1 u)/o dt(l T ) (10.278)

We want to evaluate the integral

J

1 1
/ du/ dt =21 — t +ut(1 — u)) 2
0 0

/01 du /01 dt [tl—d/z + ((1 —tut(l )"~ 1)

+ (2 -1 ((1 —t+ut(l—u)"Y? - 1)} . (10.279)

The first term gives the first contribution to the pole term. The last term is finite at d = 4.
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Indeed with the change of variable z = t(u(1 — u) — 1) + 1 we calculate

/O1 du /01 dt(t™ —1) ((1 —t+ut(l—u))"2 - 1)

1
—/ dulnu(l — u)
0

1
—2/ dulnu
0

- 9 (10.280)
We have then
J = 2_14_ 1du 1dt(1—t—i—ut(l—u))fd/2+(2+01(€))
€ 0 0

- % -l 532/0 duu(l —1u) -1 ((u(l ) 1) 2+ 0:()

2 2 [t L/ 2 [t u(1l —u)

o ;_1_672/0 du((u(l—U)) N _1)+62/0 duu(l—u)*l

X <(u(1 —u))tm2 1) +(2+ O1(¢))

- §7H}3276324dwwﬂﬂmkwﬂ?%3@1+@@»+@+0ﬂm

- 2o G- SR S0 1 2 0i@) (081)

In the last line we have used the result (8.275) whereas in the third line we have used the fact
that the second remaining integral is finite at d = 4. From this result we deduce that

J= g + 3+ O(e). (10.282)
_ T(3-4d)
_ I(=1+¢)
- T !
1 6 9 6y
:-@W(—§—€+?+om) (10.283)

We compute I'(d/2) = 1+ ve/2 — €/2 + O(€?) and hence I'?(d/2) = 1+ ve — e + O(€?). Thus the
above result can be rewritten as

3 €
I, = — 3@(1+§)+0(1). (10.284)

Now we compute the integral I5. The only divergence has already been exhibited by the term
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I'(4 — d). Thus we have

1 1 1_¢
I; = _(47r)d/0 duu(l—u)/o dt(l—t+ut(17u))3+0(1)

= ——14100). (10.285)

10.3.2 Renormalization Constants

One-Loop Renormalization: We prefer to go back to the original expressions

1. N+2
TPm) = 6y[p*+m?+ ) (a)
J 2 3
1. N+2
Oiyinigi 3N +38
1-\(_4) ) _ 11421314 _ 2 2
11...14(0’070’0) 3 |:)\ ) 9 A (d)
5i1i2i3i4 3N +38 2 2
= /22 A-—=-—) . 10.2
3 579 J(0,m*) (10.287)
The renormalized mass and the renormalized coupling constant are given by
Zm Z
m? = m§7 , A= ARZ—Z. (10.288)
We will expand the renormalization constants as
Z=1+2%422, (10.289)
T =1+ ApZ + X322 (10.290)
Zg =1+ ArZ{ + 2320 (10.291)

At one-loop of course Z(2) = Zr(f ) = Zf) = 0. We will also define the massless coupling constant
by

g=2Am~°. (10.292)
The renormalized 2—point and 4—point proper vertices are given by
(2) _ (2)
(FR)ij (p) = Zrij ()

1N 42
= 6y |pt +mE+ AR(mBZ® + 22

53 I(m%))|. (10.293)
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(4) _ 21(4)
(FR)il...u (07 0,0, 0) = Z Fil...i4 (Oa 0,0, 0)
Oiyinisia 3N +8
= 2 g X (20 §T+J(o,m§)) . (10.294)
Minimal subtraction gives immediately

N +2I(m? N +2 N,
zw - N+ (mQR) e (10.295)

6 my 6 €

N+38 N+8 __Ng

The renormalized mass and the renormalized coupling constant at one-loop order are given by

., N42 N+8

ArI(m%) , A= Ar + A% J(0,m%,). (10.297)

Two-Loop Renormalization of The 2—Point Proper Vertex: The original expression of
the 2—point vertex reads

@) 9 s 1 N+2 A2 N +2.2 AN +2
DY = §;; Sy i — - —(—)" () = ——— . (10.298
We use the result
2 2 N +2 2 2 2
I(m?) =I(m%) + 5 ArI(m%)J(0,m%) + O(AR). (10.299)

By using the one-loop results we find the renormalized 2—point proper vertex to be given by

)P ) = 217 ()

N+2 N +2)?
= 4 [p2 +m% + ZON5p? + ZONEmE + %Z;”qul(miz) + (3%
A N +2.2 A2 N 42
- TR(T) ()R — ?R 3 (©r
N+2 AL N +2 _
= b [p? i+ ZONg? 4 2Ny == 2D Nyl () — S (m O

+ PQW?_%)} :

In the last equation we have used the results (b)g = I(m%)J(0,m%) and (c)g = m3 °I, +

pzm%dfglg. By requiring finiteness of the kinetic term we obtain the result

Cancellation of the remaining divergences gives

@ _NA2 a0, N+2 5 N
18

N+2_I(m%) N+2 5,
Z(Q) _ Z(l) R 2d SI
m 6 70 Tmy 13 R
_ (N42)(N+8) o Ni N+2 o Nj N+2 5 Nj
36 R 2 12 R e 24 R e
N+2)(N+5 N2 N+2 N2
_ 2V )mEQE—d——+m§2€—d. (10.302)

36 €2 24 €

Nl (mi)J (0, m)

(10.300)
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Two-Loop Renormalization of The 4—Point Proper Vertex:

the 4—point vertex reads

The original expression of

Oirimini 3N +8 3 3(N+2)(N+38)
' (0.0.0.0) = Zakisialy 2V TOy2y 2\3LT TEVNTO)
7,1...7,4( » ) 3 2 9 ( )+ 2 27 (g)
3.3 (N+2)(N+4)+12 30N + 22
+ 4)\ o7 (e) + 3 o (H1- (10.303)
We use the result
2 2 N+2 2 2 2
J(0,m*) = J(0,m%) + ——ArI(m%)L(0,m%) + O(A\%). (10.304)

By using the one-loop results we find the renormalized 4—point proper vertex to be given by

(@)

(FR)il,,,u(OvOaOvo) = ZQFE?.)..M(O’OvOaO)
Oiyigisia | N +38 (N +8)(N+2)
= 2l g X2 - S EEN 2O ) — e S TR (0, )
3 5 (N+2)(N+38) 3 5 (N+2)(N+4)+12 ON + 22
e NS L ) )3 RP ¢ Rk
+ 5 R 97 (9)r+ 1R o7 (e)r +3Xg 57 (Nr
61'11'21',1'4 [ 3 (2 N +8 3 (1 3 3 (N+2)(N+4) +12
= TJ_)\R—F)\RZé)——)\RZ; )(d)RJrZAR > (e)r
SN + 22
+ 3)\%727 (fr|. (10.305)
Cancellation of the remaining divergences gives
N +38 3(N+2)(N+4)+12 SN + 22
72 — 1%y, - 2 gt =~
g 3 ) ( )R 4 27 (G)R 27 (f)R
N +38 €, _ 3(N+2)(N+4)+12 € _ SN + 22 _
— ——Z(l)l—— 6[ 2 1__2 26[2 el Bl I 26[
3 %o (L= g)me'li— g 27 (=3 me i+ == = mp L
(N +38)? ,QE(Ng Ng) N2 46N + 20 ,QG(Ng Nj) 5N + 22 726(N3 Ng)
- T "R Va T e 36 R Va2 T 18 'R Ve T g
(N + 8)2 —2e ]\[d2 5N + 22 —2e ]\[d2
_ d - d. 10.306
36 R e 36 R e ( )
10.3.3 Renormalization Functions
The renormalization constants up to two-loop order are given by
N+2N?
Z = 1-g3 —4). 10.307
gR( 144 ¢ ) ( )
N+8 Ny 5 ((N+8)* N7 5N+22N3
Z, = 1 — — — — ). 10.308
g T IR +93< 36 e 36 ¢ ( )
N+2 Ng o ((N+2)(N+5)N; N+2N;
Im = 1 — e — ). 10.309
TR +9R( 36 224 e ( )
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The beta function is given by

€JR

Blgr) = - . (10.310)
1+ grg=InZ, — 2g9rz—1n Z
We compute
d N+8 Ng o ((N+82*N? 5N+22N3
—InZ,=—9gr— — — — ). 10.311
IR om0 = T IR TIR T3 e 18 ¢ ( )
d N+2 N3 d N+2 , N3
—InZ=- —£ = 2gp—InZ = —. 10.312
9R n 72 9r p nggR n 36 IR c ( )
We get then the fundamental result
N +38 3N + 14
B(gr) = —€gr + TQ%Nd - TQ%N; (10.313)
The second most important renormalization function is 7. It is defined by
() = Blon)-—InZ
UAYY = gr)7—n
R R don
N+8 , 3BN+14 45 N+2 N3
= — Ng— ———gpN, — —<
( €9R + 6 IriVd 12 IriVd 7o IR,
N +2
= 7—391221@. (10.314)

The renormalization constant Z,, is associated with the renormalization function ~,, defined by

d Z

m = — — In ==, 10.315
Yulor) = ~Alar) -7 (10.315)
We compute
d N +2N, N+2)(N+8 N? N+2N3
g, =N (N+2)(N+8) Ny N+2Ny ) (10.316)
dgr 6 36 €2 12 €
The renormalization function ~,, at the two-loop order is then found to be given by
N +2 5(N + 2
=~ Z N — wg}%Nj (10.317)
6 72
From this result we conclude immediately that
N +2 5(N +2
m= =~ 2 Nyg+ 2 D vy (10319

10.4 Critical Exponents

10.4.1 Critical Theory and Fixed Points

We will postulate that quantum scalar field theory, in particular ¢*, describes the critical domain
of second order phase transitions which includes the critical line T' = T, where the correlation
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length £ diverges and the scaling region with T near T, where the correlation length £ is large
but finite. This is confirmed for example by mean field calculations. From now on we will work
in Euclidean signature. We write the action in the form

Acg

n (#?)?]. (10.319)

1 1
Sl = (o) = [ a'a| 300" + Jue? -
In the above action the cutoff A reflects the original lattice structure, i.e. A = 1/a. The cutoff
procedure is irrelevant to the physics and as a consequence we will switch back and forth between
cutoff regularization and dimensional regularization as needed. The critical domain is defined by
the conditions

|m? —m?| << A?
momenta << A

< p(z) ><< A2 (10.320)

In above m? is the value of the mass parameter m? at the critical temperature T, where m% =0
or the correlation length ¢ diverges. Clearly m? is essentially mass renormalization. We will set
T-T,

m2=m?+t, tou = (10.321)

The critical theory should be renormalized at a scale p in such a way that the renormalized mass
remains massless, viz

fg) (p;ﬂangA)|p2:O =0
d - 2
d_p2r( )(p;/j/agRaA)po:p,Q =1
T (py, .., pai 1o g1, Mlsp = pgr- (10.322)

The renormalized proper vertices are given by
~(n) n/2 A r(n)
TR (pis s gr) = 2" (9, ;)F (Pis g, A). (10.323)

The bare proper vertices I'™ are precisley the proper vertices of statistical mechanics. Now

since the renormalized proper vertices 1:‘5,3? are independent of A we should have

(A%Z"/Qﬁ")) =0. (10.324)
H:9R

We obtain the renormalization group equation !

0 0 n \=
AL Z It — . 10.32
( 8A+ﬂag 277> 0 (10.325)
The renormalization functions are now given by
Bg) = (222} (10.326)
oA
IR,1

HExercise: Show this result.
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0
n(g)=—({A=—InZ . (10.327)
oA
gR.M
Clearly the functions 8 and 1 can not depend on the ratio A/u since '™ does not depend on L
We state the (almost) obvious theorem

e The renormalization group equation (10.325) is a direct consequence of the existence of a
renormalized field theory. Conversely the existence of a solution to this renormalization
group equation implies the existence of a renormalized theory.

The fixed point g = g, and the critical exponent w: The renormalization group equation
(10.325) can be solved using the method of characteristics. We introduce a dilatation parameter
A, a running coupling constant g(A) and an auxiliary renormalization function Z(\) such that

A 277 2O0F (i (), M) | = 0. (10.328)

We can verify that proper vertices T (p;; g(\), AA) solves the renormalization group equation
(10.325) provided that 8 and 7 solves the first order differential equations

d

Blg(N) = A59@) , 9(1) =g. (10.329)
d
n(g(\) = ’\ﬁ mzZ\), Z(1) = Z. (10.330)
‘We have the identification
T (pis g, A) = Z72 (N (pi5 g(N), AA). (10.331)
Equivalently
=(n) A —n/2(\\(n)
" (pi; g, X) = Z7" 2T (pis g(N), A). (10.332)

The limit A — oo is equivalent to the limit A — 0. The functions 8 and 7 are assumed to be
regular functions for g > 0.
The integration of (10.329) and (10.330) yields the integrated renormalization group equations

9N o
ln)\:/g m (10.333)
A
an()\):/1 dx—xn(g(x)) (10.334)

The zeros g = g. of the beta function 8 which satisfy 8(g.) = 0 are of central importance to
quantum field theory and critical phenomena. Let us assume that the a zero g = g, of the beta
function does indeed exist. We observe then that any value of the running coupling constant
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g(A) near g, will run into g, in the limit A — 0 regardless of the initial value g = g(1) which
can be either above or below g.. This can be made precise as follows. We expand 3(g) about
the zero as follows

B(g) = B(gx) + (9 — g)w + ... (10.335)

Blgs) =0, w=PB(gs) (10.336)
We compute

1g(\) — g.
ma— L9 —g

= g(A) — g ~ X, A —> 0. (10.337)
W g— g

If w > 0 then g(\) — g« when A — 0. The point g = g, is then called an attractive or stable
infrared (since the limit A — 0 is equivalent to the massless limit AA — 0) fixed point (since
d*g(N\)/d\"|,, = 0). If w < 0 then the point g = g. is called a repulsive infrared fixed point or
equivalently a stable ultraviolet fixed point since g(A) — g, when A — .

The slope w = 6, (g ) is our first critical exponent which controls leading corrections to scaling
laws.

As an example let us consider the beta function

Blg) = —eg+bg*, b= (10.338)

1672
There are in this case two fixed points the origin and g. = €/b with critical exponents w = —e < 0
(infrared repulsive) and w = +e¢ (infrared attractive) respectively. We compute immediately

1 VN gy g
ln)\:—/ = s g\)=— 10.339
€Jiyg  T—1/gx ) L+ A(g/g—1) ( )

Since e = 4 —d > 0, g(A\) — g» when A — 0 and as a consequence g, = €/b is a stable
infrared fixed point known as the non trivial (interacting) Wilson-Fisher fixed point. In the limit
A — oo we see that g(A\) — 0, i.e. the origin is a stable ultraviolet fixed point which is the
famous trivial (free) Gaussian fixed point. See figure 15.

The fact that the origin is a repulsive (unstable) infrared fixed point is the source of the
strong infrared divergence found in dimensions < 4 since perturbation theory in this case is an
expansion around the wrong fixed point. Remark that for d > 4 the origin becomes an attractive
(stable) infrared fixed point while g = g. becomes repulsive.

The critical exponent 7: Now we solve the second integrated renormalization group equation
(10.330). We expand 1 as n(g(A\)) = n(g«) + (g(A) — g+)n (g9«) +.... In the limit A — 0 we obtain

InZ(A\) =nlnA+...= Z(\) =\ (10.340)
The critical exponent 7 is defined by

n = n(gx)- (10.341)

The proper vertex (10.332) becomes

N A el
T (pizg. 3) = 5T (pi g (), A). (10.342)
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However from dimensional considerations we know the mass dimension of f‘(”)(pi; g, %) to be
Md=n(d/2=1) and hence the mass dimension of T'(") (Api; g, A) is (AM)4=(4/2=1)  We get therefore

~ A -
T (pisg, 3) = A~EEREDEO (Ap;: g, A). (10.343)

By combining these last two equations we obtain the crucial result

f‘(”)()\pi;g, A) = Atz (d=24n) P (n) (pi; g+, A) , A — 0. (10.344)

The critical proper vertices have a power law behavior for small momenta which is independent of
the original value ¢ of the ¢* coupling constant. This in turn is a manifestation of the universality
of the critical behavior. The mass dimension of the field ¢ has also changed from the canonical
(classical) value (d — 2)/2 to the anomalous (quantum) value

1
dg = 3(d—2+n). (10.345)

In the particular case n = 2 we have the behavior
@ (Ap; g, A) = X772 0@ (pr g, A) , A — 0. (10.346)

Hence the 2—point function must behave as

- 1
G (p) ~ P 0. (10.347)

The critical exponent v: The full renormalized conditions of the massless (critical) theory
when K # 0 are (10.322) plus the two extra conditions

~ (1,2
FER{ )(q;plap%,u/ngaA)|q2:pf:u2,p1p2:—%u2 =1
(10.348)

050 (g =@ 1, 9r, A) g2 =12 = 0. (10.349)

The first condition fixes the renormalization constant Zs while the second condition provides a
renormalization of the < ¢2¢? > correlation function.
The renormalized proper vertices are defined by (with [ +n > 2)

~(l.n o1, N A~
F% )(Qi;Pi;M,gR) = 7"y, ;)Zé(ga ;)F(l’ )(qispis g, N). (10.350)
We have clearly the condition
AL /2=t gt =0 (10.351)
A 4 . .

H9R

We obtain the renormalization group equation

PR § (R (10.352)
dg 2
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The renormalization functions § and » are still given by equations (10.326) and (10.327) while
the renormalization function 79 is defined by

0 | Zs
n(g) = — (A— In —) . (10.353)
on— Z ), .

As before we solve the above renormalization group equation (10.352) by the method of charac-
teristics. We introduce a dilatation parameter A, a running coupling constant g(A) and auxiliary
renormalization functions Z(X) and (2()) such that

d

A—
dA

270G NE im0 A)| =0, (10.354)
We can verify that proper vertices ') solves the above renormalization group equation (10.352)
provided that 3, n solve the first order differential equations (10.329) and (10.330) and 7 solves
the first order differential equation

d
12(9(N) = A G(A) , G(1) = G (10.355)
We have the identification
L™ (gspis 9, A) = 272 (NG TE™ (g3 pis g(V), AA). (10.356)
Equivalently
I A —-n — r(l,n
L™ (gispis g, X) = Z7"2NG TG (g5 pis (V) A). (10.357)
The corresponding integrated renormalization group equation is
A
dx
In (o :/ 7772(9(@)' (10.358)
1
We obtain in the limit A — 0 the behavior
Ca(N) =A™, (10.359)
The new critical exponent 75 is defined by
2 = 12(gs)- (10.360)
We introduce the mass critical exponent v by the relation
1
v=uv(g«), V(g) = ——. 10.361
(0:) . 119) = 35 (10.:361)
We have then the infrared behavior of the proper vertices given by
- A n ~
PO (gispis g, 5) = A7 27T (g5 ps; g (V), A). (10.362)

A
From dimensional considerations the mass dimension of the proper vertex T:™ (q;; pi; g, A/)) is
Md=m(d=2)/2=2l and hence

~ A n =
™) (g;3pi5 g, )= AT EE=DHAREN) (Ngi Apy; (), A). (10.363)

By combining the above two equations we obtain

TG (Agis Apis g, A) = M3 W@=20m =3 Fln) (g pig A) | A — 0. (10.364)
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10.4.2 Scaling Domain (7" > T,)

In this section we will expand around the critical theory. The proper vertices for T' > T, can be
calculated in terms of the critical proper vertices with ¢? insertions.

The correlation length: In order to allow a large but finite correlation length (non zero
renormalized mass) in this massless theory without generating infrared divergences we consider
the action

Acg
86l = m(0) = [ a'a| 3007 + G2+ KN - L@ (0309)
We want to set at the end
T—T,
K(z) =t T (10.366)
The n—point proper vertices are given by
n ddql n [ %
L) (ps; K, g, A Zl,/ / )dF(l a0 9: VK (@)K (@) (10.367)
We consider the differential operator
0 n - )
D=A—+B=——=n— /ddK —. 10.368
5A ﬁ 51— | d (Q)éK(q) ( )
We compute
- 5 =~ 1
d'gK (¢) —=—T"™(p;; K,9,A) = —/ddq ---/dszF(l ™ (qi; pis 9, N)
/ K (q) ; I!
. 5 - .
x| dqK(q)—=—K(q)--K(a)
/ 0K (q)
1 -
= g [ [ G g )R (@)K )
1=0
(10.369)
By using now the Callan-Symanzik equation (10.352) we get
0 0 n . ) .
A—+fB——=n— /ddK ~—)r<"> i K, g,A) = 0. 10.370
(M55 + 855 51— [ a2 )i g, (10.370)
We now set K (z) =t or equivalently K (q) = t(27)%3%(q) to obtain
0 0 n 0
A t— | (p, A) = 0. 10.371
(855 + 030 — 50 mtgy )EDpitig. 1) =0 (10371)

We employ again the method of characteristics in order to solve this renormalization group
equation. We introduce a dilatation parameter A, a running coupling constant g()), a running
mass t(A) and an auxiliary renormalization functions Z(A) such that

)\%[ 2\ <pi;t<A>,g<A>7AA>] =0. (10:372)



340 YDRI QFT

Then T (p;; t(\), g(A\), AA) will solve the renormalization group equation (10.371) provided the
renormalization functions [, n and 79 satisfy

d

Blg(N) = Aag(/\) , 9(1) =g. (10.373)
n(g(\) = A% mZ(\) , Z(1) = Z. (10.374)
n2(g(\)) = f)\%lnt()\) (1) =t (10.375)

The new definition of 79 given in the last equation is very similar to the definition of ~,, given
in equation (10.246). We make the identification

T (pist, g, A) = Z7"2 (D™ (pis t(N), g(N), AA). (10.376)

From dimensional considerations we have

i tA)

) (- A) = (AA)E— 5 (@=2)f(n) HA)
(put()‘)ag()‘)a)‘ ) ()‘ ) 2 ()\A’A2A2’

g(\), 1). (10.377)

Thus

pi (N

PO (piit. g, A) = Z="/2(\)md—% (@=2F(n)
(pa » 9 ) ( )m 2 (m m2

,g(N), 1). (10.378)
We have used the notation m = AA. We use the freedom of choice of A to choose
t(\) = m? = A2A2 (10.379)

The theory at scale A is therefore not critical since the critical regime is defined by the requirement
t << A%
The integrated form of the renormalization group equation (10.375) is given by

A
dx
t(A) :tepr/ —2(9(2))- (10.380)
1
This can be rewritten as
2 A
1
1ni:/ dr_1 (10.381)
t) iz v(g()
Equivalently
t A dx 1
In = :/ — . 10.382
N7 T ulg@) (10.382)

This is an equation for A. In the critical regime Int/A? — —oo. For v(g) > 0 this means that
A — 0 and hence g(\) — g.. By expanding around the fixed point g(\) = g. we obtain in the
limit A — 0 the result

A= ()" (10.383)
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By using this result in (10.378) we conclude that the proper vertices I'™ (p;;t, g, A = 1) must
have the infrared (A — 0) scaling

T (pist, g, A = 1) = md—3@=2empmPig 0 9yt o1 p<<. (10.384)
m
The mass m is thus the physical mass £~ where € is the correlation length. We have then
mA=1)=¢1=¢". (10.385)
Clearly £ — oo when t — 0 or equivalently 7" — T, since v > 0.

The critical exponents o and 7: At zero momentum the above proper vertices are finite
because of the non zero mass t. They have the infrared scaling

L(05t,9,A=1) = md- 802
plA=5d=24m) 4 o1 p<<]. (10.386)

The case n = 2 is of particular interest since it is related to the inverse susceptibility, viz
X o= P09, =1)
= 7. (10.387)
The critical exponent v is given by
y=v(2—7). (10.388)

The obvious generalization of the renormalization group equation (10.371) is
0 0 9\ -
(A— + ﬂ—g — Sl + t§)) L™ (gsspist, g, A) = 0. (10.389)

This is valid for all n + 1 > 2. The case [ = 2, n = 0 is special because of the non multiplicative
nature of the renormalization required in this case and as a consequence the corresponding
renormalization group equation will be inhomogeneous. However we will not pay attention to
this difference since the above renormalization group equation is sufficient to reproduce the
leading infrared behavior, and as a consequence the relevant critical exponent, of the proper
vertex with [ =2 and n = 0.

We find after some calculation, similar to the calculation used for the case [ = 0, the leading
infrared (A — 0) behavior

PO (gus ity g, A = 1) = b= 3@=24mplm) (B Piog o gy g g ca,
m m
(10.390)

By applying this formula naively to the case [ = 2, n = 0 we get the desired leading infrared
behavior of T(>9 which corresponds to the most infrared singular part of the energy-energy
correlation function. We obtain

f‘@’o)(q;t,g,/\ =1)= m7%+df(2’0)(i; 1,94,1), t<<1, g<< 1. (10.391)
m
By substituting K (¢) = t(27)%6%(q) in (10.367) we obtain

- t
L0 (pis K, g, A) = D 5T (0:pis g, A). (10.392)
=0
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Hence

O’T (K, g,\)

o =0 =TV (09, A). (10.393)

In other words I'®9 at zero momentum is the specific heat since ¢ is the temperature and T’
is the thermodynamic energy (effective action). The infrared behavior of the specific heat is
therefore given by

C, = TCO0;t,9,A=1)
t7oT20(0;1,¢,,1) , t << 1, g << 1. (10.394)

The new critical exponent « is defined by

a=2—uvd (10.395)

10.4.3 Scaling Below T,

In order to describe in a continuous way the ordered phase corresponding to T' < T, starting
from the disordered phase (T > T.) we introduce a magnetic field B, i.e. a source J = B. The
corresponding magnetization M is precisely the classical field ¢. =< ¢(z) >, viz

M(z) =< ¢(z) > . (10.396)

The Helmholtz free energy (vacuum energy) will depend on the magnetic field B, viz W =
W(B) = —InZ(B). We know that the magnetization and the magnetic field are conjugate
variables, i.e. M (x) = 0W(B)/0B(x). The Gibbs free energy or thermodynamic energy (effective
action) is the Legendre transform of W (B), viz I'(M) = [ d%zM (z)B(z) — W (B). We compute
then

or'(M)
B(x) = ) 10,
@) = 30 (10.397)
The effective action can be expanded as
F[M t A] = Zi/ ddp1 / ddpn f\(n)( ot A)M( ) M( ) (10 398)
0, G, P nl —(27T)d (27I')d bist, g, P1)--- Pn)- .
Thus
B(p) = Y, i/ dip, / dip,, T4 (p, pit, g, AM (p1)...M(p,).  (10.399)
o n! (27‘()‘1'" (27T)d Pyl 9, 1)... ). .

By assuming that the magnetization is uniform we obtain

M
I[M,t,g,A] = > Wf(") (pi = 0;t,9,A). (10.400)
n=0 ’
M & (1)
B[M,t,g,A] = Y L e =03t g, ). (10.401)

n=0
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By employing the renormalization group equation (10.371) we get

0 0 n+1 0 M o} 0 n+1
A— + B— — —mt=—|B = = (A= 48— — ot = | T HD
( or Pag T T 1T at> nz '< oh TPgg T Tz M at)
-0 (10.402)
Clearly
Zn r<"+1 (ps = 0;t,g,A). (10.403)

Hence the magnetic field obeys the renormalization group equation

d 1 d 9
(8—A+ﬁ——§(1+MaM)n ngtat)B = 0. (10.404)

By using the method of characteristics we introduce as before a running coupling constant g(\),
a running mass t(\) and an auxiliary renormalization functions Z(\) such as equations (10.373),
(10.374) and (10.375) are satisfied. However in this case we need also to introduce a running
magnetization M () such that

)\% InM(\) = —%n[g()\)]. (10.405)

By comparing (10.374) and (10.405) we obtain
M(\) =MZ™2(\) (10.406)
We must impose

)\% 1200 B(M(A), #(2), g(\), A | = 0. (10.407)

In other words we make the identification
B(M,t,9,A) = Z7 2 (N B(M(A), t(A), g(A), AA). (10.408)

From dimensional analysis we know that [[(™] = Md4=(d=2)/2 and [M] = M(@=2)/2 = ppi=</2
and hence [B] = M (4+2)/2 = \3-¢/2_ Hence

e M t
B(M,t,g,A) = A3 /QB(W, 129 1). (10.409)
By combining the above two equations we get
M(X t(A
B(M,t,g,A) = Z7Y2(\)(AA)3~/2B( () () g(\), 1). (10.410)

(AA)1=€/27 X272’

Again we use the arbitrariness of A to make the theory non critical and as a consequence avoid
infrared divergences. We choose A such that

M)

——=1. 10.411
(AA)1—¢/2 (10 )
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The solution of equation (10.405) then reads

A A
PRLCUE. /  p(g@) = oy = & / Tla—otno@). (0412

The critical domain is defined obviously by M << A'=¢/2. For d — 2 + n positive we conclude
that A must be small and thus g(\) is close to the fixed point g.. This equation then leads to
the infrared behavior

M d—24n
2

s = A (10.413)
From equation (10.381) we get the infrared behavior
i(/\—t? =\, (10.414)
We know also the infrared behavior
Z(\) = A" (10.415)
The infrared behavior of equation (10.410) is therefore given by
B(M, t,g,A) = NEFA3—/2B(1, L A1/ g 1), (10.416)
A2
This can also be rewritten as
B(M,t,g,1) = MO f(tM~%). (10.417)
This is the equation of state. The two new critical exponents 8 and ¢ are defined by
3= %(d72+n). (10.418)
5= %. (10.419)
From equations (10.413) and (10.414) we observe that
M= tﬂ(A—Q)ﬂ. (10.420)
t(A)

For negative ¢t (T < T.) the appearance of a spontaneous magnetization M # 0 at B = 0 means
that the function f(z), where z = tM~'/8 admits a negative zero zo. Indeed the condition
B =0, M # 0 around x = x( reads explicitly

0= f(x0) + (z — 20)f (z0) + .. (10.421)
This is equivalent to
M = [ao| P (=t)". (10.422)

We state without proof that correlation functions below 7T, have the same scaling behavior as
above T¢. In particular the critical exponents v, v and « below T, are the same as those defined
earlier above T,. We only remark that in the presence of a magnetic field B we have two mass
scales t¥ (as before) and m = M*/? where M is the magnetization which is the correct choice in
this phase. In the limit B — 0 (with T' < T.) the magnetization becomes spontaneous and m
becomes the physical mass
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10.4.4 Critical Exponents from 2—Loop and Comparison with Exper-
iment

The most important critical exponents are the mass critical exponent v and the anomalous
dimension 7. As we have shown these two critical exponents define the infrared behavior of
proper vertices. At T' =T, we find the scaling

D™ (Agss Api g, A) = A4 3 @20 =0 ) (gopig  A) ) A — 0. (10.423)
The critical exponent 7 provides the quantum mass dimension of the field operator, viz
[¢] = M | dy = %(d —2+417). (10.424)
The scaling of the wave function renormalization is also determined by the anomalous dimension,
viz
Z(A) =~ N\ (10.425)
The 2—point function at T' = T, behaves therefore as

1 1
@) (p) — @ () =
G (p) = oA GH(r) = = (10.426)

The critical exponent v determines the scaling behavior of the correlation length. For T" > T,
we find the scaling

. . ; T-T.,
T (pit, g, A =1) = md—3@=2mpmPiy -y 2 —Fc 9 o1 (10.427)

m c

The mass m is proportional to the mass scale t¥. From this equation we see that m is the physical
mass €1 where ¢ is the correlation length . We have then

m=¢& 1~ (10.428)

The 2—point function for T > T, behaves therefore as 2

GP(r) = rd_%ﬂ exp(—r/€). (10.429)

The scaling behavior of correlation functions for T' < T, is the same as for T' > T, except that
there exists a non zero spontaneous magnetization M in this regime which sets an extra mass
scale given by M/? besides t”. The exponent f is another critical exponent associated with the
magnetization M given by the scaling law

8= %(df 2+ 7). (10.430)
In other words for T close to T, from below we must have
M ~ (—t)? (10.431)
For T' < T, the physical mass m is given by

m =&t~ MY~ (—t). (10.432)

12Exercise: Give an explicit proof.
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There are three more critical exponents « (associated with the specific heat), v (associated with
the susceptibility) and § (associated with the equation of state) which are not independent but
given by the scaling laws

a=2-—uvd. (10.433)

vy=v(2—"n). (10.434)
d+2—n

0= ——. 10.435

d—2+n ( )

The last critical exponent of interest is w which is given by the slope of the beta function at the
fixed point and measures the approach to scaling.
The beta function at two-loop order of the O(N) sigma model is given by

N +38 3N + 14
B(9r) = —egr + 6 9N — TQ%N; (10.436)
The fixed point g, is defined by
3N + 14 N +38
Blgr«) =0= Tg%*Ng - gr«Ng+€e=0. (10.437)
The solution must be of the form
GreNg = ae + be? + ... (10.438)
We find the solution
6 18(3N + 14)
= = 10.439
“T“N+8° (N +8)3 ( )
Thus
6 18(3N + 14) ,
«Ng = 10.440
IrelNa = g€ (N 18)° e+ ( )
The critical exponent w is given by
w = ﬁ/ (gR*)
3(3N +14) ,
= - 10.441
¢ (N +8)2 et ( )
The critical exponent 7 is given by
n = 1(gr+)- (10.442)
The renormalization function 7(g) is given by
N +2
n(gr) = —5—9rNi. (10.443)
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We substitute now the value of the fixed point. We obtain immediately
N+2
= ——c°. 10.444
K 2(N +8)2° ( )
The critical exponent v is given by
1
v= : (10.445)
2+
v =v(gr«) , N2 = N2(gR+)- (10.446)
The renormalization function 72(g) is given by
N +2 5(N +2
N2 = —————Nagr + gg%Nﬁ. (10.447)
6 72
By substituting the value of the fixed point we compute immediately
N +2 (N +2)(13N +44) ,
= — — 10.448
= TN T8 2(N + 8)3 ( )
1 N +2 N +2)(N? +23N
L + (N +2)(N*+ 23N +60) , (10.449)

PRPTI TR S(N + 8)3

All critical exponents can be determined in terms of v and 7. They only depend on the dimension
of space d and on the dimension of the symmetry space N which is precisely the statement of
universality. The epsilon expansion is divergent for all ¢ and as a consequence a resummation is
required before we can coherently compare with experiments. This is a technical exercise which
we will not delve into here and content ourselves by using what we have already established and

also by quoting some results.

The most important predictions (in our view) correspond to d =3 (e =1) and N = 1,2, 3.

e The case N = 1 describes Ising-like systems such as the liquid-vapor transitions in classical

fluids. Experimentally we observe

v = 0.625 £ 0.006

~v=1.23-1.25. (10.450)
The theoretical calculation gives
1 1 7 203
=—4+—=4+—+4..=— +... = 0.6265 + 0.0432
Yottt Tt
1
=gt =0019 &y =p(2-n) =1.24L. (10.451)

The agreement for v and 1 up to order €2 is very reasonable and is a consequence of the
asymptotic convergence of the € series. The error is estimated by the last term available in
the epsilon expansion.
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e The case N = 2 corresponds to the Helium superfluid transition. This system allows precise
measurement near 7. of ¥ and « given by

v =0.672+0.001

a = —0.013 £ 0.003. (10.452)
The theoretical calculation gives
1+ L + 1 + 131+ 0.6550 £ 0.0550
v==-+4+—4+—+..=—+..=0. .
2 10 200 200
a=2—vd=—-0.035. (10.453)

Here the agreement up to order €2 is not very good. After proper resummation of the € ex-
pansion we find excellent agreement with the experimental values. We quote the improved
theoretical predictions

v =0.664 — 0.671
a = —(0.008 — 0.013). (10.454)

e The case N = 3 corresponds to magnetic systems. The experimental values are

v=0.7-0.725
v =1.36 —1.42. (10.455)
The theoretical calculation gives
1 5 345 903
=—4+—4+—+4+..= — + ... =0.6874 + 0.064
v 2+44 5324+ 1331+ 0.6874 £ 0.0648
n =0.021 & v = 1.36. (10.456)

T 242

There is a very good agreement.

10.5 The Wilson Approximate Recursion Formulas

10.5.1 Kadanoff-Wilson Phase Space Analysis

We start by describing a particular phase space cell decomposition due to Wilson which is largely
motivated by Kadanoff block spins.

We assume a hard cutoff 2A. Thus if ¢(z) is the field (spin) variable and ¢(k) is its Fourier
transform we will assume that ¢(k) is zero for k > 2A.

We expand the field as

$x) =D ()b (10.457)
=0

m

The wave functions ¥z () satisfy the orthonormality condition

[ et @ @) = S (10.458)
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The Fourier transform (k) is defined by

b (k) = /ddwwmz(:c) e (10.459)

The interpretation of [ and m is as follows. We decompose momentum space into thin spherical
shells, i.e. logarithmically as

L

1
<2< (10.460)

S

The functions (k) for a fixed [ are non zero only inside the shell [, i.e. for 1/2" < |k|/A <
1/ 2!=1 We will assume furthermore that the functions i (k) are constant within its shell and
satisfy the normalization condition

d ~
[ Gl =1 (10.461)

The functions zﬁml(k’) and Y (x) for a fixed | and a fixed m should be thought of as minimal
wave packets, i.e. if Ak is the width of zﬁml(k’) and Az is the width of ¥z (x) then one must
have by the uncertainty principle the requirement AzAk = (27)%. Thus for each shell we divide
position space into blocks of equal size each with volume inversely proportional to the volume
of the corresponding shell. The volume of the /th momentum shell is proportional to R¢ where
R =1/2!, viz Ak = (27)927"w where w is a constant. Hence the volume of the corresponding
position space box is Az = 2!9w~!. The functions 1,5 (x) are non zero (constant) only inside
this box by construction. This position space box is characterized by the index m as is obvious
from the normalization condition

/ddx|1/)ml(z)|2 :[ .. dx|hm (2)]? = 1. (10.462)
cbox m

x

In other words

/ dlz=>" / dlz. (10.463)
7 TE€box m

The normalization conditions in momentum and position spaces lead to the relations

(k)| = 214/2qp=1/2, 10.464
wml ) )

[t ()] = 2714/ 241/2, (10.465)

Obviously [¢,#;(0)] = 0. Thus [ d%mi(x) = s (0) = 0 and as a consequence we will assume
that ¢, (z) is equal to +274/21w'/2 in one half of the box and —27'%/2y!/2 in the other half.
The meaning of the index m which labels the position space boxes can be clarified further by
the following argument. By an appropriate scale transformation in momentum space we can scale
the momenta such that the Ith shell becomes the largest shell [ = 0. Clearly the correct scale
transformation is k — 2'k since 1 < |2'k|/A < 2. This corresponds to a scale transformation
in position space of the form x — x/2!. We obtain therefore the relation 1,3;(z) = wﬁo(x/?l

Next we perform an appropriate translation in position space to bring the box m to the box 0.
This is clearly given by the translation £ — Z — agmi. We obtain therefore the relation

() = g0 (/2" — agri). (10.466)
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The functions &ml(k) and ¥;7;(x) correspond to a single degree of freedom in phase space oc-
cupying a volume (27)?, i.e. a single cell in phase space is characterized by [ and 7. Each
momentum shell [ corresponds to a lattice in the position space with a lattice spacing given by

a; = (Ax)Y? = 2ag |, ag = w9, (10.467)

The largest shell [ = 0 correspond to a lattice spacing ag and each time [ is increased by 1 the
lattice spacing gets doubled which is the original spin blocking idea of Kadanoff.
We are interested in integrating out only the [ = 0 modes. We write then

$(x) =Y biio(@) o + d1(2), (10.468)

$1(x) =D (@) bt (10.469)
=1

From the normalization (10.465) and the scaling law (10.466) we have
V() = 2721 (2/2). (10.470)
We define ¢ (/2) by
$1(x) = 272000 (2/2). (10.471)
In other words

’

Vii-1(2/2) b1 5 b1 = g Dt (10.472)

NE

¢ (x/2) =

m

~

1

We have then

$(@) =D imo(@)mo + 2”20 (x/2). (10.473)

10.5.2 Recursion Formulas

We will be interested in actions of the form
K d d
Su(6() = 5 [ daRa0(2))0,0(2)0"6(a) + [ dizPuolz)). (10.474)

We will assume that Py and Ry are even polynomials of the field and that dRy/d¢ is much smaller
than P, for all relevant configurations. The partition function is

Zo = /D¢(w) ¢=S0(6(@))
/Dczﬁ'(x/?)/]_[daﬁmo e~ 5o (9(@)), (10.475)

The degrees of freedom contained in the fluctuation ¢ (2:/2) correspond to momentum shells
[ > 1 and thus correspond to position space wave packets larger than the box m by at least a



YDRI QFT 351

factor of 2. We can thus assume that ¢ (z/2) is almost constant over the box . If zg is the
center of the box m we can expand ¢ (x/2) as

¢ (2/2) = ¢ (x0/2) + (x — 20)"8ud (20/2) + %(50 — 20)(x — 20)" 0,009 (w0/2) + ...
(10.476)

The partition function becomes

Zy = /D¢’(x0/2)/Hd¢,ﬁ0 e~ 0(9@), (10.477)

The Kinetic Term: We compute

/ddeoam(z)aw(x) = /ddzRo{Zam,ﬁo(x)aﬂ%,o(x).%mm,o

+ 2172003 hin00uthino (2)0,0 (1/2) + 270300 (2/2)0" ¢ (x/2)].
(10.478)

The integral [d?z is Y. [ . - In the box 1 the function Ro(¢(2)) can be replaced by the

function Ro(¢mo(2)bmo + 2~ 2a0¢ (2/2)). In this box ¥mo(z) is approximated by +w'/2 in
one half of the box and by —w!/? in the other half, i.e. by a step function. Thus the third term

in the above equation can be approximated by (dropping also higher derivative corrections and
defining u,; = 2= 2ap¢ (20/2))

2_d_1a(2)w_1 Z {Ro(wlmq%ﬁo + um) + Ro(—w1/2¢mo + Um) 5;@/ (330/2)5”(/5/ (70/2).
(10.479)

The contribution of 9,90 (z) is however only appreciable when ¥50(x) = 0, i.e. at the center
of the box. In the first and second terms of the above equation we can then replace Ry(¢(z)) by
Ro(usm). The second term in the above equation (10.478) vanishes by conservation of momentum.
In the first term we can neglect all the coupling terms ¢p0¢,5,7, with 7 # M since Po(x) is
zero inside the box 7. We define the integral

p= [0, 0 ()0 Vo o). (10.480)

This is independent of m because of the relation (10.466). The first term becomes therefore
P> Ro(um)d2,,. Equation (10.478) becomes

/dd:cRoam(x)@“aﬁ(x) = p Rolum)ého
+ 27012yt Z [Ro(w1/2¢mo + um) + Ro(—w'?mo + i)

0ud (20/2)0" (20/2). (10.481)

X
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The Interaction Term: Next we want to compute

[ o dwPy(¢!™ (z)) = / 4w Py (Vim0 () dmo + 272000 (x/2)).  (10.482)

ZEbox m

We note again that within the box m the field is given by
"™ (2) = Yo (x)dmo + 272 a0¢ (2/2). (10.483)

Introduce zg = ¥m0()dmo + um. We have then

/i’ebox " B0 (@) = /iebox 7 d' [PO(ZO) + ((55 — x0)" Oy + %(96 — xo)H(x — xo)”)

dPy 1 v d* Py
a}uay’u,ﬁaho + 5(1‘ — :Co)'u'(,jc — 1'0) ('Lu,ﬁal,umﬁko + ...

X

(10.484)

As stated earlier 1,50(z) is approximated by +w'/? in one half of the box and by —w'/? in the
other half. Also recall that the volume of the box is w™!. The first term can be approximated
by

[ aten) =" {Poml%m )+ Po(—0 260 + Um)] . (10.485)
Febox m
We compute now the third term in (10.484). We start from the obvious identity

1 1 1
/ ddxi(zfxo)“(:c—zo)" = / ddz§(x—z0)“(zf:co)y+/ ddxi(xfxo)“(zfxo)".
box box4

box_

(10.486)

We will think of the box 1 as a sphere of volume w~!. Thus
d 1 v 1 v
dz=(x — zo)*(x — xg)" = =Vn*". (10.487)
box 2 2

We have the definitions

1
V= —/ rdiy  w! :/ dlz. (10.488)
d box box
Explicitly we have
O BT R (10.489)
d+2\ Qy_1 d ’

The above identity becomes then

1 1 1
SV = / de=(x — 20)*(x — z0)” + / dle=(x — x0)"(x — z0)". (10.490)
2 box 2 box_ 2

The sum of these two integrals is rotational invariant. As stated before we think of the box as
a sphere divided into two regions of equal volume. The first region (the first half of the box)
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is a concentric smaller sphere whereas the second region (the second half of the box) is a thin
spherical shell. Both regions are spherically symmetric and thus we can assume that

1 1
/ ddx—(z —xo)(x — )" = =Vanh”.
box 2

2

Clearly V' =V, 4+ V_. The integral of interest is

dP,

1
/feboxdd‘ri(w_‘ro)#(‘r_xo) a Oy U, —5— dz |zo

(10.491)

dPO d%a 1

5 (x — x0)H(x — x0)”

|w1/2¢m0+uma 9 um/

box

dP, 1
d—zo|,w1/2¢m+uﬁaﬂayuﬁ / d'a 5 (x — wo) (z — x0)”
box_
V. dP, V_ dP,
; e |w1/2¢m0+um8 Mum + 7d—|_w1/2¢m’0+u7ﬁ8#8“um
1 dP,
2 1 d/2O[0V+ d0|w1/2¢m0+um8 o+ ¢ (500/2)
dP,
9-1-d/2 d_o w12 4 Ou "D (20/2). (10.492)

Similarly the fourth term in (10.484) is computed as follows. We have

1 d?Py d?Py 1
d*z=(x — x0)"(z — 20)" Optum Oy tts ——5- = — ot Onm Oy, 'z~ (x — x0)"
/zebox " $2(x %0)!(x = w0)" O Ui g2 170 dz? hut26. 010 O " /box+ x2($ 7o)
x  (x —x9)"
d*P, g 1
+ WLwl/%mﬂﬁ@uum@um /bO)L d .T§($ — -TO)H
X  (x —x9)"
Vi d?Py
= T—dZQ |w1/2¢m0+u%auurﬁa”urﬁ
V_ d*Py
Sy w26t Outin O i
1 d*P,
= 27 dagV+ O|w1/2¢mo+um 0ud (20/2)0"¢ (w0/2)
i d2P
2T GV R i g O (20/2)0" (20/2).
(10.493)
Finally we compute the first term in (10.484). we have
dPy dPO
[ ) d%x(z — 20) Oyt —— - .y = |w1/2¢m0+u48 um/ d%a(z — 20)*
reEbox m box 4
dP,
+ d0| W'/ 0+um O um/b da(x — xo)".
(10.494)
Clearly we must have
/ d%a(x — xo)" + / da(x — xo)" = 0. (10.495)
box 4 box_
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We will assume that both integrals vanish again by the same previous argument. The linear
term is therefore 0, viz

dP,
/ A (z — o) Qg ——|.y = O. (10.496)
reEbox m dz
The final result is
-1
/ d*zPy(¢™ (z)) = wT {Po(wl/%%ﬁo + ) + Po(—w' 20 + um)}
reEbox m
1 dP, dP, /
+ 277 [Vm—lwwmum + v—|¢} 0 (w0/2)

The Action:

We get

So(o(x)) =

d*Py d*Py

b 2 VT g + Vbt | 06 (00/2046 (20/2).

By putting all the previous results together we obtain the expansion of the action.

5 [ dare@@)o,0@ot o) + [ aten(ota)

> Z Ro(um) b0

m

27d72Koz%w71 Z {Ro(wlmgbmo +um) + Ro(*w1/2¢rﬁ0 + Uvﬁ)} au‘b/ ($0/2)8#¢/ (z0/2)

w1
5 > (Po(w1/2¢mo + ) + Po(—w' o + Um))

L P, P, ,
9—1 d/2Oé() Z <V+ iz |’w1/2¢mo+um + VE|—’W1/2¢%0+UWL)8#8“¢ (:Co/2)

We introduce the variables

d PO d2P0 ’ ’
2 - daO (V+ dz2 |w1/2¢mg+um + V- dz 3.2 | wl/2¢50+um 6M¢ ($0/2)6#¢ (‘TO/Q)
(10.498)
The Path Integral: We need now to evaluate the path integral
/ [T déio e~ 5o, (10.499)
K
i — 2 = (50) . (10.500)
w
Kpi1/2
b0 — Y = (7) 26 0. (10.501)
2
Ry — Wy (@) = Ro((o)"?2). (10.502)

(10.497)
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2—w)1/2x).

Py — Qo(l‘) = wilPO((Kp

(10.503)

We compute then

_ - 2 \1/2 1 1
/Hd¢mo e ®l@r - 17 (K_p) / /dym exp (— Y Wo(zm) — 5Qoym + 2m) — 5Qo(—ym + 2i)

m

2= B+d)/20 (K pu)'/2 [V &(ym + z) dfo( Y + Zm)] 0,0"$ (20/2)
a2 p d?Qo d?Qo ’ '

2202k [w T -+ ) + V- G0 i+ ) |06 (202006 (30/2)

27%af { o(Ym + 2m) + Wo(—ym + zm)} 0ud (20/2)0"¢ (xO/Q)).

(10.504)

/dyﬁz exp ( Y Wo(zm) — lQo(ym +2m) — 1Qo(*ym + 2m)

9—(3+d)/2,, (pr)1/2 [V+ QO( Y + Zm) QO( Ym + Zm)] 8H8“¢/ (z0/2)

dym

2 2
—d— Qo d“Qo
9—d-2, Kp[v+d2 (ym + zm) + V_ i

(—ym +Zm)} 8,6 (20/2)0" (x0/2)

27 2af Kuw™! [Wo(ym + zm) + Wo(—ym + Zm)} O (20/2)0" ) (300/2))-

(10.505)
In this equation ¢ (z0/2) is given in terms of z by
/ 24/2 2 1/2
)= —(— - 10.506
o ao/2) = = ()% (10.506)

The remaining dependence on the box 1 is only through the center of the box xg. Then

[ démo e = ] (35)"*Malem)

" P

= HG)" eplin M)

m

Mo (2
= exp(zﬁ;ln IO((O))

)1 (Klp)l/QIo(O). (10.507)

The function Iy(z) is defined by

() = [ dy exp ( —PPWo(2) — 5@l +2) — 3Q@o(-y + z>). (10.508)
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In order to compute My we will assume that the derivative terms are small and expand the
exponential around the ultra local approximation. We compute

d /
Mo(zm) = Io(zm) [1 — 27D a0 (K pw)' PV < d;QO(ym + 2m) > 0,0"¢ (20/2)
Cde Vo d? _ , ,
271l K {% < dygo (Y + 2m) > +w™t < Wo(ym + 2m) > ]8#(15 (x0/2)0" ¢ (x0/2) + }
(10.509)
The path integral (10.499) becomes
/Hd‘%o O | (2)215(0) x exp (Zln To(zm) 26D 200 (K pu) 2V Y
= 5 Ke 7 Lo(0) =
dQo ' —d- pV _ d*Qo
X < e (Y + 2) > 0,0"¢ (v9/2) — 27 104%[(%: {7 < e (Y + 2m) >
< Wl + 2m) > |06 a0/20%9 (20/2) ) (10510)
We make the change of variable xy/2 — = (this means that the position space wave packet with
I =1 corresponding to the highest not integrated momentum will now fit into the box) to obtain
_ 2 \1/2 In(zm) _ oo (K pw)'/2V
- So((x)) it 20\ 9=(34d)/2Z0\ 2P P
/l;ldqﬁmoe 0 - I;I(KP) [O(O)xexp(%:ln L) 2 . ;
dQo / 41 @K oV d?Qq
X < e (Y + 2m) > 0,0 (z) — 2 1T 2 > <4 (Y + 2) >
+ w < Wolym + 2m) > ]Guqﬁ/ (2)0"¢ (m)). (10.511)
Now z7 is given by zm = (Kp/2w)/2279200¢ (x). Tt is clear that dQo(ym + zm)/dym =
dQo(ym + 2m)/dzm, etc. Recall that the volume of the box 77 is w™! and thus we can make the
identification w | dz =" .. However we have also made the rescaling o — 22 and hence we
must make instead the identification 29w [d?z =" .. We obtain
_ 2 (172 In(z) . _ ao(K pw)'/2V
- So(o(z)) LY d d L00) 9= (B3+d)/2Z0NT) T T od
/gd¢moe 0 = ln;[(Kp) IO(O)xeXp(2 w/d xlnlo(o) 2 1 2%w
dQo / 102K oV d2Qo
X /ddac < E(z) > 0,0"¢ (z) —27¢ 10T2dw/ddac 5 <52 (2) >
+ owt < Wo(z) > }aﬂa(x)aﬂa(z)). (10.512)

Now z is given by z = (K p/2w)"/22=4/2a4¢' (). The expectation values < O™(z) > are defined
by

<0 5= 1 [y <O(y“) i O(y“))"exp ( PIo(E) — 2 Qoly+2) — 2 Qo+ z>).

2
(10.513)
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Next we derive in a straightforward way the formula

on - d*Qo dQo 2 dQo
dz < @> = < 2()>f<(5)() +<E()>2

(10.514)

By integrating by part the second term in (10.512) we can see that the first term in (10.514)
cancels the 3rd term in (10.512). The last term can be neglected if we assume that dW,/dz is
much smaller than ¢y. We obtain then

_Se((x)) _ 1/2 Io(z)
/l;ld¢moe So(6(2))  — 1;[(Kp) IO(O)xexp< /dd In To(0)

- B [ (< (M2 > - < M2 et <) >

X 0,0 (x)0" (x)) : (10.515)

The Recursion Formulas: The full path integral is therefore given by

Zy = /D¢,($0/2)/Hd¢mo e~ 50(¢(@))
o /Dqﬁ'(m)/exp (de/ddxln 2?3 — agé{w /d%[%( < (%)2(2:) >—< %(z) >?)
+ wl < Wo(2) > ]Guqﬁ/(x)a”qb/(x)). (10.516)

We write this as
/D¢>’ () e~ 516" @) (10.517)

The new action S; has the same form as the action Sy, viz

/

516 (@) = 5 [ 'sRa(6 (@06 0)0"0' () + [ a6 (). (10.518)

The new polynomials P; and R; (or equivalently Q1 and W1) are given in terms of the old ones
Py and Ry (or equivalently Qo and Wy) by the relations

Wi(2%%a5'z) = Ri(¢'(x)

042 042
— OTC‘I(< (dio) (2 )>—<%(z)>2)+zo<wo(z)>.
(10.519)
Qi1(2%a5'z) = w'Pi(¢ (2))
_ _gdp Bo(®) (10.520)

Ip(0)
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The constant Cy is given by
Cq = wpV. (10.521)
Before we write down the recursion formulas we also introduce the notation

6@ =0, 90 =0

y (10.522)
The above procedure can be repeated to integrate out the momentum shell [ = 1 and get from
S1 to Ss. The modes with [ > 2 will involve a new constant «y and instead of Py, Ry, Sp and
Iy we will have Py, Ry, S1 and I;. Aside from this trivial relabeling everything else will be
the same including the constants w, V and Cy since [ = 1 can be mapped to [ = 0 due to the
scaling xo — 2z (see equations (10.470) and (10.472)). This whole process can be repeated an
arbitrary number of times to get a renormalization group flow of the action given explicitly by the
sequences Py — P, — P, — ... — P, and Ry — R; — Rs — ... — R,;. By assuming
that dR;/ dp® is sufficiently small compared to P; for all i the recursion formulas which relates
the different operators at the renormalization group steps ¢ and 7 + 1 are obviously given by

Wir1(27%a;'2) = Rin(0")(2))
_ %K (dd%i)?(z) .- %(z) >2)+%2 <Wilz) > .
(10.523)
Qir12%%a;2) = w Py (8" (@)
= _2dyy %8 (10.524)

The function I;(z) is given by the same formula (10.508) with the substitutions Iy — I,
Wy — W; and QO — Qz

The field ¢+ and the variable z are related by z = (Kp/2w)'/?2=%/20,;¢(+1) . The full
action at the renormalization group step i is

Si(¢W(x)) = g / d Ry (¢ ()0, 0D ()0 oD (z) + / dxP;(¢\ (). (10.525)
The constants «; will be determined from the normalization condition
Wi11(0) = 1. (10.526)
Since @ is even this normalization condition is equivalent to

o’
Il < Wz(z) > |z:0 = 1. (10527)

The Ultra Local Recursion Formula: This corresponds to keeping in the expansion (10.476)
only the first term. The resulting recursion formula is obtained from the above recursion formulas
by dropping from equation (10.523) the fluctuation term

dcgi)Q(z) >—< dg () >2. (10.528)

<
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The recursion formula (10.523) becomes
a?
Wi (242%a;12) = - <Wil2) > (10.529)

The solution of this equation together with the normalization condition (10.527) is given by
Wy=1, a; = 2. (10.530)
The remaining recursion formula is given by

Ii(2)

1 (2%2271) = _9d) .

(10.531)

We state without proof that the use of this recursion formula is completely equivalent to the use
in perturbation theory of the Polyakov-Wilson rules given by the approximations:

e We replace every internal propagator 1/(k? 4+ 13) by 1/(A? + 73).

e We replace every momentum integral f/f/z d?p/(2m)9 by the volume c/4 where ¢ = 4Q,_1 A% (1—

2-4)/(d(2m)%).

10.5.3 The Wilson-Fisher Fixed Point

Let us start with a ¢* action given by

Solo] = /ddz(%(amof + %Tofbg + uo¢3). (10.532)

The Fourier transform of the field is given by

= T 10.533
o) = [ (o) e (10.533)
We will decompose the field as

$o(x) = ¢ (z) + D(). (10.534)

The background field ¢ (x) corresponds to the low frequency modes qEO (p) where 0 < p < A/2
whereas the fluctuation field ®(z) corresponds to high frequency modes ¢o(p) where A/2 < p < A,
viz

"(x) = A/2dd_p~ ipr _ [t A s ipz
aiw) = [ o) ¢ 0@ = [ g e (10.535)

The goal is integrate out the high frequency modes from the partition function. The partition
function is given by

Zy = /D% e~ Sol¢o]

- /Dgz)’l/z)@ e=Solé1+e]

/Dqs’l e~ 51101, (10.536)
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The first goal is to determine the action S[¢;]. We have
S / J® ¢~ Solér+e)

— 6750[¢;] /d@ 6*50[4’]6*“0fdd1[4<1>3¢/1+4<1>¢/13+6<1>2¢/12]. (10.537)

We will expand in the field qbll up to the fourth power. We define expectation values with respect
to the partition function

Z = /dd) e~ Sol®], (10.538)
Let us also introduce
Vi = —dug / dlz®3 ¢,
Vi = —6ug / Az ®%p 2
Vs = —dug / dla®ep. (10.539)

Then we compute

By using the symmetry & — —® we obtain

/ ! 1 1 1
e Siltl = ge=Solal < [1 + Vo b 5 (V24 V5 4 2ViVR) 4 < (BVEVa) + Vi >

(10.541)

The term < V;V3 > vanishes by momentum conservation. We rewrite the different expectation
values in terms of connected functions. We have

< Vo >=< Vo >
<VE>=< V%>
< Vi >=< Vi >0+ < Vo >2
<VEVa >=< V3Vy >c0 + < V2 >c0< Va >e0
<V >=< V> +3< V2 >2 . (10.542)
By using these results the partition function becomes
6—51[51] - Ze—So[dﬁ] e<V2>cot 5 (V>0 t< V3 >e0)+ 5 <V Va>cot 55 <Vi'>eo

(10.543)

In other words the partition function is expressible only in terms of irreducible connected func-
tions. This is sometimes known as the cumulant expansion. The action S;[¢,] is given by

, / 1 1 1
Silea] = Soln]= < Ve >eo —5(< VE >co + < V5 >e0) — 5 < ViEVa > —51 < Vit > .
(10.544)

’ / 1 1 1
=Sl = Ze—Slonl < {1 VI Vo Vot S (VP +2ViVe + V' 4 2ViV5) + 2 (VP 4 3VPVa) + V| >

(10.540)
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We need the propagator

<P(x)P(y) >0 = < P(x)P(y) >0 —12u0/ddz < ®(2)0(2) >0< B(y)P(2) >0< D(2)P(2) >0 +O(ud).

(10.545)

The free propagator is obviously given by

< O(z)@(y) > /A @ 1 ip-y) (10.546)
T = ———€ . .
v Aj2 (2m)8 p% + 1o
Thus
d'pr 1 dpy d'ps 1 N -
< O(x)P > = /—7—12@5 / + O(u 61101(95 y)_
e > = | [ R o | G O
(10.547)
We can now compute
—< Vo>, = 6u0/ddx¢/12(ac) < ®%(x) >0
d'p - dipy 1 d?py d'ps 1
= 6 — 2 / - — 12 / +O(ud)|.
w [ G 0P| [ Gl 12 [ Gl e 00
(10.548)
1 7’ ’
-5 < VEi>e, = —8’ug/dd$1dd$2¢1 (21)0; (22) < ®3(21)P3(22) >eo

78u3/ddz1ddz2¢; (1) (22) [6 < B(21)B(x2) S5 +3 < B(21)D(22) >o< D(21)P(21) >0

X < D(x2)P(x2) >0}

2 dd_p PUND d'py d'p, 1 "
-5 [ G |8 | G o TG O

(10.549)

The second term of the second line of the above equation did not contribute because of momentum
conservation. Next we compute

1 ’ ’
—5 < Vi > = —18u(2)/ddxlddx2q§12(x1)¢12(x2) < O (21)D?(12) >co

= —36’[1/%/dd$1ddl‘2¢/12(l'1)¢/12(1'2) < O(x1)P(z2) >2

as d¥ps -~ ~ ~r dek 1
*12U3/ (2:;1---ﬁ%(p1)---¢1(p3)¢1(*p1 p2p3)[/(2T)dm

X +2 I)el X ]‘a‘l() IS+()( ) . (10 0)
D) U s;s;
(k pl p2) 0
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The last two terms of the cumulant expansion are of order u3 and ug respectively which we are
not computing. The action S1[¢;] reads then explicitly

, 1 M2 gy Ak 1 dky doks 1
S = = — 2 p? 12 / — 1440} /
= 3 [ b {st etz [ G [

“ (2
0 ) (2m)d (2m)d (k2 + 7o) (k3 +10)((p + k1 + k2)2 +70) 0

A/2 gd de - ., -, dek 1
+ /0 (Qf)ld---ﬁ%(?l)---%(m)%(—m —p2 —D3) [Uo — 12ug {/ iR 1o
1

(k4 p1+p2)?+10

+2 permutations} + O(ug)} . (10.551)

The Fourier mode @) (p) is of course equal ¢o(p) for 0 < p < A/2 and 0 otherwise. We scale now
the field as

61(p) = a1 (2p). (10.552)
The action becomes
1o g [N dip - oD / A% 1 2/ dky dks
= Z—a?2 = 12 - 14 - =
S1 [¢1] 2040 /0 (27T)d |¢1 (p)| 4 + 1o + 12ug (27T)d k% + 10 Ug (27T)d (27T)d
1 A%y dks 1
X — 96u2/ +O(ud }
(k% +170)2(k2 + o) O] (2m)d (2m)d (k2 +10) (k3 + 10)((3p + k1 + k2)? + 19) (o)

dek 1

o (Nl dips - - -
+ a2 Sd/o (2:)2---(Q:)Z(bl(pl)---%(ps)(bl(plp2p3)[uo12U8[/(2T)dm

ki + 1 1 1pa)2 + 7o +2 permutations} + O(ug)} (10.553)
2 2

In the above equation the internal momenta k; are still unscaled in the interval [A/2, A]. The
one-loop truncation of this result is given by

I Aadp - 5 [ P? /ddk1 1 )
sion) = g2t [ G a2 [ G 00d)
dk 1

_ay [N de dips -~ - -
+ aéQ 3d/0 (2:)2...(2733;¢1(p1)---¢1(173)¢1(—171—P2—P3)[U0—12U3[/Wm

+2 permutations} + O(ug)} . (10.554)

1
(k+ %pl + %pz)Q + 70

We bring the kinetic term to the canonical form by choose g as

o = 21H9/2, (10.555)

Furthermore we truncate the interaction term in the action by setting the external momenta to

zero since we are only interested in the renormalization group flow of the operators present in
the original action. We get then
1 A ddp 5 A ddp1 ddps 5 5 5
Silgn] = —/ ——= o ()*(0* + 1) + Ul/ 7 7o g ?1(P1)--01(p3)P1(—p1 — p2 — p3).
0 o (2m)4 (2m)

2 (2m)d
(10.556)
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The new mass parameter r; and the new coupling constant u; are given by

dik; 1 )

r = 4rg+ 8u0/ @m0 + O(ug) (10.557)

dk 1
=24 |y — 2/—7 D1 10.
uy [uo 36ud U CETE + O(ug) (10.558)

Now we employ the Wilson-Polyakov rules corresponding to the ultra local Wilson recursion
formula (10.531) consisting of making the following approximations:

e We replace every internal propagator 1/(k* +73) by 1/(A? + r3).

e We replace every momentum integral f/f/z d?p/(2m)9 by the volume c/4 where ¢ = 4Q,;_1 A% (1—
2-4)/(d(2m)%).

The mass parameter r; and the coupling constant u; become

Up
ro=4 {ro + 3Cm + O(u%)} . (10.559)
4—d ug 3

This is the result of our first renormalization group step. Since the action S1[¢1] is of the same
form as the action Sp[go] the renormalization group calculation can be repeated without any
change to go from r; and u; to a new mass parameter ro and a new coupling constant us. This
whole process can evidently be iterated an arbitrary number of times to define a renormalization
group flow (rg,ug) — (ri,u1) — .(ri, ) — (Pip1, Wig1)eeen The renormalization group
recursion equations relating (r;41, ui4+1) to (7, u;) are given precisely by the above equations, viz

U
=4 3c————|. 10.561
Tl41 {Tl + CA2 n TJ ( )
4—d uf
Uj4+1 = 2 |:Ul — 9CW:| . (10.562)
The fixed points of the renormalization group equations is define obviously by
= 4|r, + e — (10.563)
e = 4|7y ‘1z el )
4—d u?

We find the solutions

Gaussian fixed point : 7. =0, uy, =0, (10.565)
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and (by assuming that wu, is sufficiently small)

4euy, A?

—z o W= §(1 — 2074, (10.566)

Wilson — Fisher fixed point : r, =

For € = 4 — d small the non trivial (interacting) Wilson-Fisher fixed point approaches the trivial
(free) Gaussian fixed point as

4 At
Ty = —§A261n2 , Us = geln 2. (10.567)

The value u, controls the strength of the interaction of the low energy (infrared) physics of the
system.

10.5.4 The Critical Exponents v

In the Gaussian model the recursion formula reads simply ;41 = 4r; and hence we have two
possible solutions. At T' = T, the mass parameter ry must be zero and hence r; = 0 for all [, i.e.
ro = 0 is a fixed point. For T # T, the mass parameter g is non zero and hence 7, = 4'rg — 00
for | — oo (19 = oo is the second fixed point). For T near T, the mass parameter rq is linear
inT—"1T,.

In the ¢* model the situation is naturally more complicated. We can be at the critical
temperature T' = T, without having the parameters ro and ug at their fixed point values. Indeed,
as we have already seen, for any value ug there will be a critical value ro. = ro.(ug) of ro
corresponding to T'=T,.. At T' =T, we have r; — r, and u; — us for [ — oco. For T' # T,
we will have in general a different limit for large I.

The critical exponent v can be calculated by studying the behavior of the theory only for
T near T.. As stated above r(T.) — 7« and w;(T.) — us for I — oco. From the analytic
property of the recursion formulas we conclude that 7 (T) and u;(T") are analytic functions of
the temperature and hence near T, we should have r,(T) = r(T.) + (T — T.)r;(Te) + ... and
u(T) = wy(T.) + (T — Te)uy(Te) + ... and as a consequence 4(T') and u;(T) are close to the fixed
point values for sufficiently large [ and sufficiently small T'—T,. We are thus led in a natural way
to studying the recursion formulas only around the fixed point, i.e. to studying the linearized
recursion formulas.

The Linearized Recursion Formulas: Now we linearize the recursion formulas around the
fixed point. We find without any approximation

4 12cu. ( Jp 2 )12 1 !
A EE i TE— T — (UL — Us Cllyx - .
1+1 (A2+7)(A2+7y) l A2+, CE Ca
(10.568)
9cu(2A2 + 1y + 1) 9¢
— *:247d * * o 247(1177 ) ).
A (A2 +177)2(A2% +r,)? (re—ra) + (A2+rl)2(ul+u )| (ur — )
(10.569)

Keeping only linear terms we find

12cu, 12¢
Ti4+1 — T« = |:4 — W} (T[ — T*) + m(’lﬂ — U*) (10570)
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_ gid 180u3

e e =2 e

18cu,
T — 1) 4+ 2474 [1 - )2](1” — Usy). (10.571)

(A2 +r,

This can be put into the matrix form

e I VA (10.572)
Ul+1 — Ux Up — U ' .

The matrix M is given by

12cuy 12¢
M = 4= (Af;L*Z)Z A2+T*1 _ < 4— %ean Lo+ %ean) ) '
24id(A2+T:)3 247(1(1 — (A28J’c_7::)2) 0 1—€ln2

(10.573)

After n steps of the renormalization group we will have

( Tign = T ) - M" ( LT ) . (10.574)
Ul4n — Usx Up — Usx

In other words for large n the matrix M™ is completely dominated by the largest eigenvalue of
M.
Let A1 and Ao be the eigenvalues of M with eigenvectors w; and ws respectively such that
A1 > Ag. Clearly for u, = 0 we have
1
)\1 =4 , W1 = < 0 )

)\2:1,11)2:((1)). (10575)

The matrix M is not symmetric and thus diagonalization is achieved by an invertible (and not
an orthogonal) matrix U. We write

M =UDU. (10.576)

The eigenvalues A\; and Ay can be determined from the trace and determinant which are given
by

M+ Ao =My + Maz , MAa = M1 Moy — Mo Mo (10.577)
We obtain immediately
4
)\1:47561112, Ado=1—¢€ln2. (10.578)

The corresponding eigenvectors are

_dc(1.5
wy = ( (1) ) Cwy = ( AZ(“; geln2) ) (10.579)

We write the equation Mwy, = Aywy, as (with (wy); = wjk)

Mijwir = Apwig. (10.580)
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The identity M = >, Ax|A\x >< Ax| can be rewritten as

M;j = Z AkWikUkj = AMWi1v15 + Aowizva;. (10.581)
k

The vectors vy, are the eigenvectors of M1 with eigenvalues A respectively, viz (with (vg); = vk;)
Mgvkj = ’Uijji = )\kv;ﬂ-. (10.582)

We find explicitly

1 0
v = ( de (14 Beln2) ) , V2 = ( . ) (10.583)

The orthonormality condition is then

kajwjz = Op. (10.584)

J

From the result (10.581) we deduce immediately that

M, = ANwinvij + A wigva;
~ Auwnon, (10.585)

The linearized recursion formulas take then the form

Tian — Te =~ Awiy (011(7’1 —7y) +v12(uy — u*)) (10.586)

Upgn — Us > ATWwoy (Uu(m — ) +v12(ug — u*)) (10.587)

Since r; = r(T) and w; = w;(T) are close to the fixed point values for sufficiently large | and

sufficiently small T' — T, we conclude that r; — r, and u; — u, are both linear in T'— T, and as a
consequence

v11(ry — 1) Fvr2(u — us) = (T = Tp). (10.588)

The linearized recursion formulas become

Tien — 7w = AT w1 (T — Te). (10.589)

Uppn — Us =~ ATwor (T — Te). (10.590)

The Critical Exponent v: The correlation length corresponding to the initial action is given
by

&o(T) = X(ro(T), uo(T)). (10.591)
After | + n renormalization group steps the correlation length becomes

&en(T) = X (i 0 (T), i (T)). (10.502)
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At each renormalization group step we scale the momenta as p —> 2p which corresponds to
scaling the distances as © —» x/2. The correlation length is a measure of distance and thus one
must have

X (rigns wign) = 277" X (10, uo). (10.593)

From equations (10.589) and (10.590) we have

(TlJrnJrl - T*)|T—TC:T/)\1 = (TlJrn - 7’*)|T7TC:T 5 (UlJrnJrl - u*)|T—TC:T/)\1 = (ulJrn - U*)|T7TC:T-

(10
Hence
X (Mt 15 Want ) r=Totr /50 = X (Tigens Win) | T=T, 47 (10.595)
By using the two results (10.593) and (10.595) we obtain
2710 (T + 7/ M1) = 275 "60(T + 7). (10.596)
We expect
So(Te+71)ocT™". (10.597)
In other words
%(Ail)—" —rV e N =2cy= 1321. (10.598)

10.5.5 The Critical Exponent 7

The ultra local recursion formula (10.531) used so far do not lead to a wave function renor-
malization since all momentum dependence of Feynman diagrams has been dropped and as a
consequence the value of the anomalous dimension 7 within this approximation is 0. This can
also be seen from the field scaling (10.552) with the choice (10.555) which are made at every
renormalization group step and hence the wave function renormalization is independent of the
momentum.

In any case we can see from equation (10.554) that the wave function renormalization at the
first renormalization group step is given by

2
Qg

= 22+d :

Z (10.599)
From the other hand we have already established that the scaling behavior of Z()\) for small A
(the limit in which we approach the infrared stable fixed point) is A7. In our case A = 1/2 and
hence we must have

Z =27" (10.600)
Let a. be the fixed value of the sequence a;. Then from the above two equations we obtain the

formula

InZz _d+o 21n oy
In2 In2 °

n= (10.601)

594)
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As discussed above since o, = 2742 for the ultra local recursion formula (10.531) we get
immediately n = 0.

To incorporate a non zero value of the critical exponent 77 we must go to the more accu-
rate yet more complicated recursion formulas (10.523) and (10.524). The field scaling at each
renormalization group step is a different number a;. These numbers are determined from the
normalization condition (10.527).

Recall that integrating out the momenta 1 < |k|/A < 2 resulted in the field ¢1(z) =
S S (%) by which was expressed in terms of the field ¢ (z) = (V) which appears
in the final action as ¢ (z) = 2-%2ag¢ (x/2). After n renormalization group steps we integrate
out the momenta 2'~" < |k|/A < 2 which results in the field ¢, (z) = > D12 Y (z) P
However the action will be expressed in terms of the field gb, = ¢ defined by

bn(z) = 27" 2000 ..oy 1 ) (2/27). (10.602)

We are interested in the 2—point function

1 [ -
< ¢7ﬁl¢’rﬁ,l, > = E/ H Hd(z)mlll(ﬁmld)m/l/e So[d)] (10603)

11=0 my

Let us concentrate on the integral with {1 = [ and m; = m and assume that I' > 1. We have
then the integral

-1 ’
---/d¢ml¢ml/ H Hd¢m111€750[¢] = ---/d¢ml¢ml e~ Silel, (10.604)

11=0 my

We have ¢ = ¢ where ¢() contains the momenta |k|/A < 1/2!=1. Since ¢y is not integrated
we have ¢ = ag...cq_1(Kp/2)~ Y2y which is the generalization of ¢ = ozogb;m_l. We want
now to further integrate ¢;. The final result is similar to (10.504) except that we have an
extra factor of y, and z;; contains all the modes with [; > [. The integral thus clearly vanishes
because it is odd under y,; — —¥m.

We conclude that we must have I = [ and 7 = 17 otherwise the above 2—point function

vanishes. After few more calculations we obtain

ST i i, A, T, Mi(2m,)-Ri(zm)
f H11:z+1 Hml ddnz 1y Hml Mi(zm,)
(10.605)

2 2
< Paibmy > = 5”/5_‘7;,040...04171(

me

Kp

5 )

The function M; is given by the same formula (10.505) with the substitutions My, — M,
Wo — Wi and Q9 — @Q;. The variable z5 is given explicitly by

K
2n = (50) P27 Paig D (2o /2), (10.606)
The function R;(z) is defined by
Ri(z) = lel(z)/dny exp (...). (10.607)

The exponent is given by the same exponent of equation (10.505) with the substitutions My —
Ml, WO — Wl and QO — Ql.
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An order of magnitude formula for the 2—point function can be obtained by replacing the
function R;(z) by R;(0). We obtain then

< Gabgy > = Gy -, a%...al{l(%)_lRl(O). (10.608)
At a fixed point of the recursion formulas we must have
W, — W,., Qi — Q. R — R,, (10.609)
and
o] — Q. (10.610)
The 2—point function is therefore given by

Kp
21
< ¢’rﬁl¢7ﬁ/l/ > 08 5”/577175,04* (7

) LR (0). (10.611)
The modes < ¢z, > correspond to the momentum shell 27! < |k[/A < 27! ie. k ~ A27!. From
the other hand the 2—point function is expected to behave as

1

ot (10.612)

<¢7ﬁl¢n‘i’l’> X 5”/57?”5

where 7 is precisely the anomalous dimension. By substituting & ~ A2~ in this last formula we
obtain

< Giibgry > o< Gpd - ATT2IET), (10.613)

By comparing the [—dependent bits in (10.611) and (10.613) we find that the anomalous dimen-
sion is given by

21n oy

22 M=al=>n=2-
@0 In2

(10.614)

10.6 Exercises and Problems

Power Counting Theorems for Dirac and Vector Fields

e Derive power counting theorems for theories involving scalar as well as Dirac and vector
fields by analogy with what we have done for pure scalar field theories.

e What are renormalizable field theories in d = 4 dimensions involving spin 0, 1/2 and 1
particles.

e Discuss the case of QED.

Renormalization Group Analysis for The Effective Action

e In order to study the system in the borken phase we must perform a renormalization group
analysis of the effective action and study its behavior as a function of the mass parameter.
Carry out explicitly this program.
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Midterm Examination QFT
Master 2
2012-2013

2h

Solve 3 exercises out of 6 as follows:

o Choose between 1 and 2.
o Choose between 3 and 4.

e Choose between 5 and 6.

Exercise 1: We consider the two Euclidean integrals

d*k 1
2
Hm?) = / (2m)* k2 +m?

d*k 1 1
J(p?, m? :/ .
(p7,m”) (2m)* k2 +m? (p — k)2 + m?

e Determine in each case the divergent behavior of the integral.

e Use dimensional regularization to compute the above integrals. Determine in each case the
divergent part of the integral. In the case of J(p?, m?) assume for simplicity zero external
momentum p = 0.

Exercise 2: The two integrals in exercise 1 can also be regularized using a cutoff A. First we
perform Laplace transform as follows

1 > —a(k®+m?
o /0 dae™ .
e Do the integral over k in I(m?) and J(p?, m?). In the case of J(p?, m?) assume for simplicity

zero external momentum p = 0.

e The remaining integral over « is regularized by replacing the lower bound a = 0 by a =
1/A2. Perform the integral over a explicitly. Determine the divergent part in each case.

Hint: Use the exponential-integral function

—x _t x —t_l
Ei(—x):/ %dt:C—i—lnx—i—/O dt< —.

— 00

Exercise 3: Let z; be a set of complex numbers, 6; be a set of anticommuting Grassmann
numbers and let M be a hermitian matrix. Perform the following integrals

[Tt dmetiososmsiamit
: .
i

/ [ a0 dose 210 008 mi=mios,
7
i
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Exercise 4: Let S(r,0) be an action dependent on two degrees of freedom r and 6 which is
invariant under 2—dimensional rotations, i.e. ¥ = (r,6). We propose to gauge fix the following
2—dimensional path integral

W= / S g2,
We will impose the gauge condition

g(r,0) =0.

e Show that

200, | d¢5(g(r,9+¢)) -1

e Use the above identity to gauge fix the path integral W.

Exercise 5: The gauge fixed path integral of quantum electrodynamics is given by
0,AM)?2
ZlJ = /HDA# exp <z’/d4x(“27€) - i/d“zFWF‘“’ z'/d%JHA#).
w

e Derive the equations of motion.
e Compute Z[J] in a closed form.

e Derive the photon propagator.

Exercise 6: We consider phi-four interaction in 4 dimensions. The action is given by

A

o) = [ o[ 30,00 — Jmte? - 2677

e Write down Feynman rules in momentum space.

e Use Feynman rules to derive the 2—point proper vertex I'?(p) up to the one-loop order.
Draw the corresponding Feynman diagrams.

e Use Feynman rules to derive the 4—point proper vertex I'*(p1, p2, p3, p4) up to the one-loop
order. Draw the corresponding Feynman diagrams.

e By assuming that the momentum loop integrals are regularized perform one-loop renor-
malization of the theory. Impose the two conditions

I%(0) = m% , T*(0,0,0,0) = Ag.

Determine the bare coupling constants m? and X in terms of the renormalized coupling
constants m% and \gp.

e Determine I'?(p) and T'*(py, p2, p3, ps4) in terms of the renormalized coupling constants.
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Final Examination QFT
Master 2
2012-2013

2 h

Exercise 1: We consider the two Euclidean integrals
d*k 1
Im>= | — — .
(m”) / (2m)* k2 + m?

d*k 1 1
J(p*,m? :/ :
(p%,m%) 2m) k2 +m? (p— k)2 +m?

e Determine in each case the divergent behavior of the integral.

e Use dimensional regularization to compute the above integrals. Determine in each case the
divergent part of the integral. In the case of J(p?, m?) assume for simplicity zero external
momentum p = 0.

Exercise 2: The gauge fixed path integral of quantum electrodynamics is given by
0, AM)?
ZlJ] = /HDAH exp —i/d%w - f/d‘*:cFWFW —i/d‘*:cJMAH :
p 2¢ 4

e Derive the equations of motion.
e Compute Z[J] in a closed form.

e Derive the photon propagator.
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Midterm 1 Examination QFT
Master 1
2011-2012

2 h

Exercise 1:
e Write down an expression of the free scalar field in terms of creation and annihilation.

e Compute the 2—point function
Dp(z1 — 2) =< 0|Td(z1)(22)0 > .
e Compute in terms of Dp the 4—point function

D(x1, w2, 73, 74) =< 0|T(21)d(2)p(w3)(4)]0 > .

e Without calculation what is the value of the 3—point function < 0|T'¢(x;)d(x2)d(23)[0 >.
Explain.

Exercise 2: The electromagnetic field is a vector in four dimensional Minkowski spacetime
denoted by

-,

AP = (A°, A).

AV is the electric potential and Ais the magnetic vector potential. The Dirac Lagrangian density
with non zero external electromagnetic field is given

L =Py 0y — m)p — ey p A,

e Derive the Euler-Lagrange equation of motion. This will be precisely the Dirac equation
in an external electromagnetic field.

Exercise 3:

e Compute the integral over p°:

/dgﬁ/dpo 5(p* —m?).

What do you conclude for the action of Lorentz transformations on:

&y
2E,
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Exercise 1:
e Write down an expression of the free scalar field in terms of creation and annihilation.

e Compute for time like intervals (z — y)? > 0 the commutator

[¢(x), & (y)]-
Can we measure simultaneously the field at the two points = and y.

e What happens for space like intervals.

Exercise 2: The Yukawa Lagrangian density describes the interaction between spinorial and
scalar fields. It is given by

. 1 _
£ = Qi 0, = m)w + 5(8,00"6 — %) — gouv.
e Derive the Euler-Lagrange equation of motion.

Exercise 3:
e Show that Feynman propagator in one dimension is given by

, dE ; ) ’ 7iE5|t7t,|
2 B2 — Eﬁ + e 2E;

Exercise 4:

e What is the condition satisfied by the Dirac matrices in order for the Dirac equation to be
covariant.

e Write down the spin representation of the infinitesimal Lorentz transformations

1
A=1- §6MV\7#V.

Exercise 5:

e Show that gamma matrices in two dimensions are given by

o (0 —i A
()= ()

e Write down the general solution of Dirac equation in two dimensions in the massless limit.



YDRI QFT 377

Final Examination QFT
Master 1
2011-2012

2 h

Exercise 1:

Write down the vacuum stability condition.
Write down Gell-Mann-Low formulas.
Write down the scattering S—matrix.

Write down the Lehmannn-Symanzik-Zimmermann (LSZ) reduction formula which ex-
presses the transition probability amplitude between 1—particle states in terms of the
2—point function.

Write down the Lehmannn-Symanzik-Zimmermann (LSZ) reduction formula which ex-
presses the transition probability amplitude between 2—particle states in terms of the
4—point function.

Write down Wick’s theorem. Apply for 2, 4 and 6 fields.

Exercise 2: We consider phi-cube theory in four dimensions where the interaction is given by
the Lagrangian density

A
Eint = 75921)3

Compute the 0—point function up to the second order of perturbation theory and express
the result in terms of Feynman diagrams.

Compute the 1—point function up to the second order of perturbation theory and express
the result in terms of Feynman diagrams.

Compute the 2—point function up to the second order of perturbation theory and express
the result in terms of Feynman diagrams.

Compute the connected 2—point function up to the second order of perturbation theory
and express the result in terms of Feynman diagrams.

Exercise 3: We consider phi-four theory in four dimensions where the interaction is given by
the Lagrangian density

Ay
Lint = 0%
Compute the 4—point function up to the first order of perturbation theory and express the

result in terms of Feynman diagrams.
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Master 1
2010-2011

2.5h

Problem 1 For areal scalar field theory the one-particle states are defined by |7 >= 1/2F(p)a(p)*]0 >.

e Compute the energy of this state. We give
[a(p), a()*] = (2m)°6%(F — ).

e Show that the scalar product < p|g > is Lorentz invariant. We give

! 3’ 3

2 =~(a° = Bzt , 2V =~z — Ba0) , 2¥ =22, 2% =25

Problem 2 Show the Lorentz invariance of the D’Alembertian 9,0" = 82 — V2.

Problem 3 Determine the transformation rule under Lorentz transformations of 1, ¥, 1y .
We give

V() — ¥ (@) = S(A)(a).
Problem 4 (optional) Show that

dp 1

e~ (@—y)
(2m)% p%2 —m?2 + ie

< 0[TH(x)d(y)[0 >= /

We give

wﬂ=(/£$7$@@@fW+mwwﬂ.

Problem 5(optional) Compute the total momentum operator of a quantum real scalar field
in terms of the creation and annihilation operators a(p)™ and a(p). We give

E:/ﬁm&&
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2.5h

Problem 1 Show that the scalar field operator qAbj(ac) and the conjugate momentum field op-
erator 77 (xz) (operators in the interaction picture) are free field operators.

Problem 2 Calculate the 2—point function < 0T(¢(21)d(x2))[0 > in ¢—four theory up to
the second order in preturbation theory using the Gell-Mann Low formula and Wick’s theorem.
Express each order in perturbation theory in terms of Feynman diagrams.
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2.5h

Problem 1 We consider a single forced harmonic oscillator given by the equation of motion
(92 + EHQ() = J (). (A1)
1) Show that the S—matrix defined by the matrix elements S,,,, =< m out|n in > is unitary.
2) Determine S from solving the equation

Sildins = CA’/Ou‘n = Qjn + J(E) (AQ)

3) Compute the probability | < n out|0 in > |2

4) Determine the evolution operator in the interaction picture Q(¢) from solving the Schrodinger
equation

i0Qt) = Vi()Q(t) , Vi(t) = —=J()Q(t). (A.3)
5) Deduce from 4) the S—matrix and compare with the result of 2).

Problem 2 The probability amplitudes for a Dirac particle (antiparticle) to propagate from
the spacetime point y () to the spacetime x (y) are

Sup(@ — ) =< Oftha(2)tp ()]0 > . (A.4)

Spaly — ) =< Ofthy(y)tba ()]0 > . (A.5)

1) Compute S and S in terms of the Klein-Gordon propagator D(x — y) given by

d’p L ip—y
D(z—y) = /(%h)gwe wP@=y), (A.6)

2) Show that the retarded Green’s function of the Dirac equation is given by

(Sr)av(@ —y) = < Ota(@),vs(y)}0 > (A7)

3) Verify that Sk satisfies the Dirac equation
. = h
(zhv“@u —mc)ea(SR)ap(x —y) = 22(54(30 — Y)0cb- (A.8)

4) Derive an expression of the Feynman propagator in terms of the Dirac fields 7,/; and 7,/; and
then write down its Fourier Expansion.
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2.0h

Problem 1 We consider a single forced harmonic oscillator given by the equation of motion
(02 + E*)Q(t) = J(t). (A.9)

1) Determine S from solving the equation

1A ~ N
S ainS = Gout = Gin +

J(E). (A.10)

2) Compute the probability | < n out|0 in > |2

3) Determine the evolution operator in the interaction picture Q(¢) from solving the Schrodinger
equation

10:0(t) = Vi) , Vi) = —J (00 (0). (A11)
4) Deduce from 3) the S—matrix and compare with the result of 1).

Problem 2 Calculate the 2—point function < 0|7 (¢(z1)é(22))|0 > in ¢—four theory up to the
1st order in preturbation theory using the Gell-Mann Low formula and Wick’s theorem. Express
each order in perturbation theory in terms of Feynman diagrams.

Problem 3 Show that

d*p i

e~ w(T—y)
(2m)% p%2 —m?2 + ie

< 0[TH(x)d(y)[0 >= /

We give

dl) = / ;ljf;gﬁ(a(me-w+a(m+eim).
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Examination QFT
Master 2

2011-2012
Take Home

Problem 1:

1) Compute the electron 2—point function in configuration space up to one-loop using the
Gell-Mann Low formula and Wick’s theorem. Write down the corresponding Feynman
diagrams.

2) Compute the electron 2—point function in momentum space up to one-loop using Feynman
rules.

3) Use dimensional regularization to evaluate the electron self-energy. Add a small photon
mass to regularize the IR behvavior. What is the UV behavior of the electron self-energy.

4) Determine the physical mass of the electron at one-loop.

5) Determine the wave-function renormalization Z5 and the counter term 3 = 1 — Zs up to
one-loop.

Problem 2
1) Write down all Feynman diagrams up to one-loop which contribute to the probability
amplitude of the process e~ (p) 4+ = (k) — e~ (p) + p~ (k).

2) Write down using Feynman rules the tree level probability amplitude of the process e~ (p)+
p (k) — e (p)+ p (k). Write down the probability amplitude of this process at one-
loop due to the electron vertex correction.

3) Use Feynman parameters to express the product of propagators as a single propagator
raised to some power of the form

1

(L2 — A+id” (A2

Determine the shifted momentum L, the effective mass A and the power ¢q. Add a small
photon mass 1.

4) Verify the relations
(o) = 2p" — 4" (v.p)
Y (v.p) = 2p" = (v.p)Y*
(v (vp) =20"(vp ) — 29%pp + 20 (v.p) — (v-p )W (vp). (A13)

5) We work in d dimensions. Use Lorentz invariance, the properties of the gamma matrices
in d dimensions and the results of question 4) to show that we can replace !

Pl +me) (vl me)ya — YA+ (p+p)FB+(p—p)'C. (Al4)
Wery Difficult.
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Determine the coefficients A, B and C.
6) Use Gordon’s identity to show that the vertex function F(p,, p) is of the form

ot q,

-~ Fy(q?). (A.15)

I(p,p) = v"Fi(q®) +

Determine the form factors F; and Fs.

7) Compute the integrals

d'Lg L3 dLg 1
/(27T)d (LJQE + A3 /(271.)11 (L2E+A)3' (A.16)

8) Calculate the form factor Fj(q?) explicitly in dimensional regularization. Determine the
UV behavior.

9) Compute the renormalization constant Z; or equivalently the counter term d; = Z; — 1 at
one-loop.

10) Prove the Ward identity 6; = d5 2.

Problem 3
1) Write down using Feynman rules the photon self-energy 115" (g) at one-loop.
2) Use dimensional regularization to show that
15" (q) = Ma(¢*) (40" — q"q"). (A.17)
Determine I12(¢g?). What is the UV behavior.
3) Compute at one-loop the counter term ds = Z5 — 1.

4) Compute at one-loop the effective charge e?;. How does the effective charge behave at high
energies.

Problem 4 Compute the unpolarized differential cross section of the process e™ + et —
1~ + pt in the center of mass system.

2Difficult.
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2.5h

Problem 1:

1) Compute the electron 2—point function in configuration space up to one-loop using the
Gell-Mann Low formula and Wick’s theorem. Write down the corresponding Feynman
diagrams.

2) Compute the electron 2—point function in momentum space up to one-loop using Feynman
rules.

3) Use dimensional regularization to evaluate the electron self-energy. Add a small photon
mass to regularize the IR behvavior. What is the UV behavior of the electron self-energy.

4) Determine the physical mass of the electron at one-loop.

5) Determine the wave-function renormalization Z; and the counter term 6o = 1 — Zs up to
one-loop.

Problem 2
1) Write down using Feynman rules the photon self-energy iI15”(¢q) at one-loop.
2) Use dimensional regularization to show that
11" (q) = Ma(¢*) (@*n"” — a"¢"). (A.18)
Determine I12(g?). What is the UV behavior.
3) Compute at one-loop the counter term d3 = Z3 — 1.

4) Compute at one-loop the effective charge e?;. How does the effective charge behave at high
energies.

Problem 3 Compute the unpolarized differential cross section of the process e™ + et —
@~ -+ pT in the center of mass system.
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Problem 1:

1) Compute the electron 2—point function in momentum space up to one-loop using Feynman
rules.

2) Use dimensional regularization to evaluate the electron self-energy. Add a small photon
mass to regularize the IR behvavior. What is the UV behavior of the electron self-energy.

3) Determine the physical mass of the electron at one-loop.

4) Determine the wave-function renormalization Zs and the counter term d; = 1 — Z5 up to
one-loop.

Problem 2:
1) Write down using Feynman rules the photon self-energy iI15”(¢q) at one-loop.
2) Use dimensional regularization to show that
15" (q) = Ma(¢*) (¢*n"" — ¢"q").
Determine Il2(g?). What is the UV behavior.

3) Compute at one-loop the counter term ds = Z5 — 1.
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Problem Solutions

Chapter 1

Scalar Product Straightforward.

Relativistic Mechanics

e The trajectory of a particle in spacetime is called a world line. We take two infinitesimally
close points on the world line given by (2°, 2!, 22, 23) and (2° +da°, 2' +dat, 2® +da?, 23 +
dz3). Clearly dot = u'dt, do? = u?dt and da® = u?dt where i is the velocity of the particle
measured with respect to the observer O, viz

Iy
Codt’
The interval with respect to O is given by
ds® = —c2dt? + di® = (—c* +u?)dt>.

Let O’ be the observer or inertial reference frame moving with respect to O with the velocity
u. We stress here that « is thought of as a constant velocity only during the infinitesimal
time interval dt. The interval with respect to O is given by

ds® = —c?dr?. (B.1)

2
dr =\/1- Zat.
C

The time interval dr measured with respect to O" which is the observer moving with the
particle is the proper time of the particle.

Hence
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e The 4—vector velocity 7 is naturally defined by the components

dz*
po &
n dr -’

The spatial part of 7 is precisely the proper velocity 77 defined by

= dz - #g
dr - '
The temporal part is
o da® c

LT
c2

The law of conservation of momentum and the principle of relativity put together forces
us to define the momentum in relativity as mass times the proper velocity and not mass
time the ordinary velocity, viz
- . dr m
p=mnp=m—=———U
dr 1_ w2

(12

This is the spatial part of the 4—vector momentum

da*
pt =mn"* =m——.
dr
The temporal part is
0 0 da® mc E
p m'r] = nm—=——— = —
dr u2 c

The relativistic energy is defined by

mc
_u?
C‘Z

The 4—vector p* is called the energy-momentum 4—vector.

F =

We note the identity

E2
pupt = el +p° = —m?c.

Thus
E = +\/p?c? + m2ct.
The rest mass is m and the rest energy is clearly defined by

Ey = mc?.
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e The first law of Newton is automatically satisfied because of the principle of relativity.
The second law takes in the theory of special relativity the usual form provided we use the
relativistic momentum, viz

= dp
F=—.
dt
The third law of Newton does not in general hold in the theory of special relativity.
We can define a 4—vector proper force which is called the Minkowski force by the following
equation
dp*
Kt = —.
dr

The spatial part is

L dp 1 .
FE=2____ F

dr )
2

Einstein’s Velocity Addition Rule We consider a particle in the reference frame O moving
a distance dx in the x direction during a time interval dt. The velocity with respect to O is
dx
U= —.
dt

In the reference frame O the particle moves a distance dz’ in a time interval dt given by

dz’ = ~(dz — vdt).
’ v
dt =~(dt — c_de)

The velocity with respect to O’ is therefore

. da U —v
U = —F = .
dt 1-2

In general if V and V' are the velocities of the particle with respect to O and o respectively
and ¥ is the velocity of O with respect to O. Then

L, V-7
V= —.
1- Yo

Weyl Representation
e Straightforward.

e Straightforward.

e The Dirac equation can trivially be put in the form

I3 .
zﬁ%—qf = (76707181- +me?y2)ep. (B.2)
The Dirac Hamiltonian is
Be . .
H= TC‘W +mc?f, o' =%, B=1". (B.3)

This is a Hermitian operator as it should be.
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Lorentz Invariance of the D’Alembertian The invariance of the interval under Lorentz
transformations reads

Nuxhz” = nwxl“a@/” = Nu A" 2P A A
This leads immediately to
n=ATpA.
Explicitly we write this as

o= Ay AT,
= A, AP,

But we also have

In other words

Ap = (AT,
Since z# = (A~1)* ,z'” we have
"
=y,
Hence
0, = (A" 0y
Thus

9,0" = n"o,o,
= (AT (AT 10,0
= ™A, PA, 20,05
= (ATnA)"*9,0,
= 90"

Covariance of the Klein-Gordon equation Straightforward.

Vector Representations

e We have
Vi) = RV ().

The generators are given by the angular momentum operators J? which satisfy the com-
mutation relations

[JE, J7] = ihe* J*.
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Thus a rotation with an angle |f| about the axis 0 is obtained by exponentiation, viz
R=e""

The matrices R form an n—dimensional representation with n = 25 + 1 where j is the spin
quantum number. The quantum numbers are therefore given by j and m.

o The angular momentum operators J* are given by
Jt = —ihekgi gk,
Thus
J?,_] _ Giijk
= —ih(2'® —270").

We compute
[J”, Jkl] — Zh<n]kJ’Ll o n’Lijl o nleik 4 nZlJ]k> .

e Generalization to 4—dimensional Minkowski space yields
JH = —ih(xH OV — 2V OM).

Now we compute the commutation relations
[JH, JPe) = m(nVPJW —hP YT — P g 4 nHUJVP).

e A solution of is given by the 4 x 4 matrices
(T" )ap = ih(0h65 — 555;).

Equivalently

(TH)* g = ih(n**0f — 05n"*).

We compute

(T)° o(T*7)P \ = (ih)? (n”"‘n’”i — T, — g + 77”“77"“5§).

(jpa)oz B(juu)ﬁ N = (ZFL)Q (npanua(sz _ npanalléﬁ\b _ naanpué‘K + naanupéﬁ\b) )
Hence
(T TN s = (i) (77“" (78§, — P2 8%) — 0" [1265, — 6] — e [ 0% — 78]

)

7 (0 3T s T
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e A finite Lorentz transformation in the vector representation is

A = e_QLFLwI“’juV
wyy 1s an antisymmetric tensor. An infinitesimal transformation is given by

i v
Azlfﬁww,j“ .

A rotation in the zy—plane corresponds to wis = —ws; = —0 while the rest of the compo-
nents are zero, viz

1 0 00
o Loz | 0O 1 60 0
AB_(1+h9j)ﬂ_ 0 -6 1 0
0 0 01
A boost in the z—direction corresponds to wg; = —wig = —3 while the rest of the compo-
nents are zero, viz
1 —-p 0 0
[e% _ l 01\« _ _6 1 0 0
A =UH g8 =1 o 0 19
0 0 0 1
Dirac Spinors
e We compute
E it AN )
b Z 35— c
Oup - g ( (pl + ipz) % 4P

Thus
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uB<(1)) s u® =NO _%

_plfipz
B S

ot
uB<(1)) & u® =nN® mf

The normalization condition is

Uy = uJWOu = ujuB + ujguA = 2mec.

We obtain immediately

o Recall that

v (E,p) = u (~E, —p) = N

The normalization condition in this case is

v = vJ“yOv = UIUB + ’UE’UA = —2mec.
‘We obtain now
2.2
NG — y@ — [ e
E 3"
raa4

e Let us define

We have

1
4 — N < Efgﬁ ) _ oL < NG )

1

mc 0

(e )
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E_z5
W@ N [ 28 )y < VO > _ ( VouprE? ) ,
fg VOoupt VoupH&y
The spinors &' and &2 are defined by

vV a'upM£2

= N(l)#

1 oupt
\/W'fo = % e £o-
=N = |7
They satisfy
(€)Fes = o7e.
Similarly let us define

1
o = ( 0 >
Then we have
E_z5
L — NG < — ) — _N®
1
Mo

s ()
oupt

S

I
VR
— O
SN—

(v,
—\/@. P15 —\/a. 0t
2
1)(2) _ N(4) E’Z%~ _ N(4) 1 ( ,/Uﬁp“ng2 > _ < \/UBPHUQQ ) '
*Cm—cpﬁg Voupt \ —V0uP"1h —VOupP"n
g= N L

n = oupt n
= o — — B 0-
Voup* i
2 [ oupt o
o = I3 M-
Voupt P
Again they satisfy

Spin Sums

e We have

ul"(E,p) = < Voupre

We compute

el ) o) (B, §) = < Vot > .
O_Mpu r ’ ) . O.Mpunr
AU) = (10 (5) = pgrt

(ouph)(Gup¥)E° = 2mefTTES = 2med™E.
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7Mp) = pMH300) = _opr+ [(o,p#)(F,p7)0° = —2men"Tn® = —2med™.

‘We have used

(oup")(Tup") = m2c2.

§T+§S — (STS , nrJrns — (STS.
We also compute

a1l = w000 — —em+y [(o,p) (30" )n° + €7/ (0,pH) (300" )n° = 0.

A similar calculation yields

FOu) = (403 = 0,

e Next we compute

— S 2E T S 2E TSs
u(r)Jru(s) _ §T+(Uﬂp“ + Uﬂp“)f _ 75 +§ _ 75 )
oM Fy() = 77T+(Uupu +oupt)n® = —n'tn® = 75”-
We have used
ot =(1,0"), ot =(1,—0%).

We also compute

WO (B, 5 (B, ) = €4 (oup) @) — [ loup) @ ))E" =0
Similarly we compute that
V(B —p)u(E, p) = 0.
In the above two equation we have used the fact that

(B, —p) = iy >
S i

e Next we compute

> u (B, p)u (E, p)

3 u(EB, p)ul)* (B, 5)°

_ Z( VEDTEE O O /5, ) ( 0 1 )
. \/5MPH€S€S+\/UMPH \/5MPH§SES+\/5MPH 10

We use

Y et =1
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‘We obtain

)
Sl (B, p)at (B.p) = (-mc " )Zv“pwmc-

oup* mc

Similarly we use
S

to calculate

_ i3
R O ) R

oup* —mc

Covariance of the Dirac Equation Under Lorentz transformations we have the following
transformation laws

Y(z) — ¢ (@) = S(A)¥(x).
Yy — '7; = VYu-

8y — 0, = (A"1)" ,8,.

Thus the Dirac equation (ify*0,, — mc)y = 0 becomes

’

(iﬁ'ylﬂa; —me)y

0,

or equivalently
(H(A™Y) WS~ AW #S(A)D, — me)y = 0.
We must have therefore
(A™HY LSTHANMS(A) =77,
or equivalently
(A1) LS AW S(A) = 7.
We consider an infinitesimal Lorentz transformation
b aB A-l_q1, L aB
A 1 2hwa5j , A 1+ 2hwa5j .

The corresponding S(A) must also be infinitesimal of the form

i i
S(A) =1— —wagl® , S7HA) =14+ —wazD*P.

By substitution we get

*(jaﬂ)'u vl = [7V7Faﬁ]'
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Explicitly this reads

—ih(0yy* = 8377) = [y, T,

or equivalently

A solution is given by

ih
= I[W“ﬁ”]~

Spinor Bilinears The Dirac spinor ¢ changes under Lorentz transformations as

Since (y#)T = 49940 we get (I'*)* = T#”~0. Therefore
S(A)F =7"S(A) 71"

In other words

d(a) — 9 (2)) = d(a)S(A) L

AS a consequence
D — P Y =P
Py — G Y = P,
Py — Py = A Py,
PV — AP = A LDy .
We have used [y°, T#] = 0 and S™1y#S = A* 4. Finally we compute
PLMp — G Ty = PSTITM Sy

_ih
= DI85 Sy
= A" LAY TPy
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Clifford Algebra
e The Clifford algebra in three Euclidean dimensions is solved by Pauli matrices, viz
(V=28 , v ="

Any 2 x 2 matrix can be expanded in terms of the Pauli matrices and the identity. In other
words

Mayo = Mol + M;o;.

e Any 4 x 4 matrix can be expanded in terms of a 16 antisymmetric combinations of the
Dirac gamma matrices.

The 4—dimensional identity and the Dirac matrices provide the first five independent 4 x 4
matrices. The product of two Dirac gamma matrices yield six different matrices which
because of {y# 4"} = 2n*” can be encoded in the six matrices I'** defined by

ih
= I[W‘Lﬁy]-

There are four independent 4 x 4 matrices formed by the product of three Dirac gamma
matrices. They are

e e I e B AN A o RN A o
These can be rewritten as

Z-e,uuaﬁ,_yﬁ,yS.

The product of four Dirac gamma matrices leads to an extra independent 4 x4 matrix which
is precisely the gamma five matrix. In total there are 1 +44 6+ 4+ 1 = 16 antisymmetric
combinations of Dirac gamma matrices. Hence any 4 x 4 matrix can be expanded as

Myss = Mol + Myy" + My, T + Myyaie™*Prygy® + Msr®.

Chirality Operator and Weyl Fermions

e We have
A5 = in0n1n243,
Thus
i PAVaPu O i 0, a.b.c
— i Gues VT = —5(4)eoabc7 Yy y

= —5(4-3)60@37077]73

i
= 75(4-3-2)6012370717273
— iyl
P 75'
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‘We have used

0123
€0123 = —€ =—1.

We also verify

O e e e e e e e e

O e A0 B0 s
o 0 % o &
1.

()" = ()TN
—_ 7:73727170
— _i,yo,yB,YQ,yl

— _i,yo,yl,yg,yQ

= 01423
= "}/5'

A =0 =0 =" =0
From this last property we conclude directly that

[75,1"’“’] = 0.

Hence the Dirac representation is reducible. To see this more clearly we work in the Weyl
or chiral representation given by

0 _ 0 12 i 0 O'i
7= 12 0 V= *O’i 0 ’

In this representation we compute

5 [ oto?o? 0 (-1 0
= 0 olo?ed ) 0o 1 )/)°

Hence by writing the Dirac spinor as

_( YL
¢<w3)’

we get

and




400 YDRI QFT

In other words
VU, =V, Vg = Vg,

The spinors ¥y, and ¥ do not mix under Lorentz transformations since they are eigen-
spinors of v° which commutes with I'*?. In other words

Uy (z) — Uy (z) = S(A)U ().

’

W(z) — Wr(r') = S(A)Vn(x).
e The dirac equation is
(thy"0,, — me)y = 0.
In terms of v1, and g this becomes
ih(0o + 0'0;)r = mepy, , ih(Dy — 0'0;)Yr, = mcyg.
For a massless theory we get two fully decoupled equations
ih(0o + ' 0;)hr = 0 , ih(Dy — 0" 0;)r, = 0.

These are known as Weyl equations. They are relevant in describing neutrinos. It is clear
that ¢, describes a left-moving particles and 1z describes a right-moving particles.

Chapter 2

Scalars Commutation Relations Straightforward.

The One-Particle States

e The Hamiltonian operator of a real scalar field is given by (ignoring an infinite constant
due to vacuum energy)

. 3
ficc = | Gerae@i@ e,

It satisfies
Hygclo> = 0.
[Hya, a(p)"] = ho(@a@)* , [H,a(p)] = —hw(p)a(p).
Thus we compute

HKG|ﬁ>

%mﬁma@ﬂo >
_ %m[ﬁ}((},d(ﬁ)ﬂm >
_ %mwma(mﬂo >
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e Next we compute

< Pl >= S 2mh) B (- )

We have assumed that < 0|0 >= 1. This is Lorentz invariant since E(7)5°(F— §) is Lorentz
invariant. Let us consider a Lorentz boost along the z—direction, viz

’ ! ’ ’
2V =q(z® - B2t) , 2t =q(xt - BaY), 2% =2?, ¥ =23

The energy-momentum 4—vector p* = (p°,p') = (E/c,p') will transform as

" =" - Bpt), pt =t -0, P =2, PP =t
We compute
/ ’ dpll
§ 11 = 4 1

(" —q) (- —q) i

’ dpo
—_ 5 1 _

(" —a ) _dpl)

Hence we have
5@ -9 = p'6F — 7).

The completeness relation on the Hilbert subspace of one-particle states is

d3p 1
1one—nparticle = 2 —— P . B.4
one—particle = C /(27Tﬁ)3 QE(ﬁ) |p ><ﬁ| ( )

It is straightforward to compute

20 dp 1 _pE
¢($0,$)|0 >= CQ/W%|]7> €h(E(ﬁ)t p ) (B5)

This is a linear combination of one-particle states. For small p’ we can make the approxi-
mation E(p) ~ mc? and as a consequence

Y0 e%mct d3p . -
0>= nPT B.6
i D >= G [ i (B.6)

In this case the Dirac orthonormalization and the completeness relations read

< Pl >= 2m(27h)353 (p — §). (B.7)

1 d3p
Lone—particle = 7— —=P . B.8
e = 5= [ Gl ><71 (B5)
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The eigenstates |Z > of the position operator can be defined by

< PIZ >=2me ™ #P% (B.9)
Hence
B 20 5= S s (B.10)
2, 7 = > )
V2m

In other words in the relativistic theory the operator qg(aco, Z)|0 > should be interpreted
as the eigenstate |# > of the position operator. Indeed we can compute in the relativistic
theory

< 0|¢(z%, )|F >= e~ FP* | px = E(p)t — jiT. (B.11)

We say that the field operator ¢(z°, ) creates a particle at the point & at time ¢ = 29 /c.

Momentum Operator

e For a real scalar field

Pi = c/d?’xﬁaiq;

1 d
- h/(%;j)gp a5 ().

e For a Dirac field

Po= 4 [ s (b« iz

Fermions Anticommutation Relations

e We have

Z'O,p _ c <eiw(ﬁ)tu(i) P B ﬁ,l +eiw(ﬁ)tv(i) —p & 713’,7/ +)'
D) \/%@; (P)b(p; 1) (=p)d(—p,1)

We compute

DD () (@) (. ), b(d, ) ]

[)A(a(zoaﬁ)vf(g(zoaq)]:t = 2\/]7)7602

+ 3 er*w@wf u g (~) b ), d(~q )]
+ \/WZeZ(W(pr(q))t (l)( 17)“ () [d( —p,i)t, 6((T,j)+]i
- @Dty (— )" (~d(—5,) T, d(~F, )=

oA
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We impose

and

Thus we get

ch
2w(p)

ch 3 7)* -
) 2 A - )

[)2&(1,0,17)7>A(E(z0,®]i =

>l Bug” ()(27h)* 6% (5 - 4)

By using the completeness relations 3" u(®)(E, p)a'®) (E, p) = v*p,+mcand 3 v (E, p)o) (B, p) =

YHp — me we derive

i )% i )% QE(@
D>l (B Py (B, 5) + ol (B, =g (B, ) = — = bap.
We get then the desired result
[Xa(2°,2), X5 (2°, )+ = h?8ap(20h)*6° (7 — q).
e Straightforward.
Retarded Propagator Straightforward.
Feynman Propagator Straightforward.
The Dirac Propagator
e We compute
Sun(w—y) = c/ d3p / d3q 1 1 Ze%pye_%qzu(i)(q)ﬁ(j)(ﬁ) < §,ib|p, jb >
¢ (2mh)* ) (2mh)® 2E(p) 2B(q) 4 @ b T

_ C/ﬂ;e;puwzum(ﬁ)ﬁm@
(27h)3 2E(p) — b

/ d3p 1
= ¢| —=-———=¢
(2wh)3 2E(p)
d3p 1

= c(iﬁ’y“aﬁerc)ab/W%e%P(zy)

—ip(z—y) (VP + me)ap

1
E(ihv“@ﬁ + me)apD(x — y).
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Similarly

Spaly —7) = c/ &' / Pa L LS~ iweie, (@0l () < p.jd id >
“ (2mh)* ) (2mh)® 2E(p) 2B(q) 4 “ b T

= C/ﬂ;e%p(m_y)Zv(i)(ﬁ)v(i)(ﬁ')
(27h)3 2E(p) — e

d3p 1 i
= ZP(@=Y) (b
C/ ahpaEG) O e mea

= —c(ihy"d® + me) b/ﬂLe%p(w—y)
" ] (2mh)3 2E(p)

1
= fz(iﬁ'y”@i +me)apD(y — ).

e The retarded Green’s function of the Dirac equation can be defined by

(Sras(e —y) = (il 0f + me)a Dl — ).
We compute
(Srho—9) = Hit#5 + me)o (0020 1) <0[6). 5] > )
= 200 — )i + me)an < 0][3(2), S(u)]10 >

£ D050 ). < 0l[d(@), dlw)]j0 >

- %9(900 — y") ("0 + me)ay < 0[[é(x), G(y)][0 >

+ %ngé(xo =) < 0l[(x), 6(y)][0 >

By inspection we will find that the second term will vanish. Thus we get

(Sr)av(z —y) = %9(10 —y°) ("85, + me)ap < 0[d(x), b()][0 >
= %9(:00 — yo)(iﬁ'y“[?ﬁ + mc)apD(z — y)

1
- E@(:co - yo)(iﬁ'y“[?ﬁ +me)apD(y — )

= 0" = 4") < Ofa(@)(1)|0 > +0(2° = 4°) < Oy (y)hu ()]0 >
= 00 —¢°) < O{tha(x), ¢ ()}]0 >

e From the Fourier expansion of the retarded Green’s function Dg(x — y) we obtain

d4p Z.('Y'up,u +mc)ab —ip(z—y)
Swhale=9) = [ Gl TP ot
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We can immediately compute

. d*p i(v"pu = mE)ea(Y'Pu+MCab i pia
(ZhV“au_mc)ca(SR)ab(x_y) = h/ (2nh)’ . p27m2czu e~ nP@E=y)

= ihd*(x — y)dep-

e The Feynman propagator is defined by
1,
(SP)ap(z —y) = E(zhv“@u + me)apDr(z — y).

We compute

(Sl —y) = 6z — %) < 0da()ds()[0 > —0(y° — 2°) < Ofahy(y)dhu (2)]0 >
R
+ = 0")wdla’ —y") (D ~y) - Dy - 2)).
Again the last term is zero and we end up with

(SEav( —y) = < OTea()dy()[0 > .

T is the time-ordering operator. The Fourier expansion of Sp(z —y) is

d4p ’L(’yl“‘p,u. + mC)ab efép(xfy)'
2h)* p? — m2c? + ice

(Se)as(e—y) = h / :

Dirac Hamiltonian Straightforward.

Energy-Momentum Tensor We consider spacetime translations
ot s h = gt gt
The field ¢ transforms as
0 — ¢/ (¢) = d(a +a) = §(x) + a"0,0.
The Lagrangian density £ = L(¢, 0,,¢) is a scalar and therefore it will transform as ¢(x), viz

L—L =L+6LC, 55:5#%:&@5.

This equation means that the action changes by a surface term and hence it is invariant under
spacetime translations and as a consequence Euler-Lagrange equations of motion are not affected.
From the other hand the Lagrangian density £ = L(¢,0,¢) transforms as

oL oL

oL = géqﬁ + mé@,ﬂﬁ
oL oL oL
= — — Oy |00+ 0y (—=——=09).
(5 - i3 %% + 0ty
By using Euler-Lagrange equations of motion we get
0L = Ou( 0L 09).

5(0ue)
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Hence by comparing we get

oL
a”8“< - T]#VE + W&b) =0.
Equivalently
o1, = 0.

The four conserved currents j,(f)) = T),0 (which is associated with time translations) and j,(f) =T
(which are associated with space translations) are given by

oL
Tpl/ - _nplﬂc + Wau(b

The conserved charges are (with 7 = 6L£/5(0:¢))

0O — /d?’zjéo) — /d%TOO = /d?’z(vrataﬁfﬁ)-

QW = /d?’xjéi) = /d?’xTOi = C/d3-T7Tai¢-

Clearly Ty is a Hamiltonian density and hence Q(® is the Hamiltonian of the scalar field. By
analogy Tp; is the momentum density and hence Q) is the momentum of the scalar field. We
have then

QY =H,Q"="r.

We compute

dH 3 0T 3 i
—_ = = — ZT' == U.
7 dacat c/dm@ w0=20
Similarly
dpP; 0
a7

In other words H and P; are constants of the motion.

Electric Charge

e The Dirac Lagrangian density and as a consequence the action are invariant under the
global gauge transformations

P — e
Under a local gauge transformation the Dirac Lagrangian density changes by
5£Dirac = *hca,u (1/77“1/)05) + h’caﬂ (1/_)7”1/})0[

The total derivative leads to a surface term in the action and thus it is irrelevant. We get
then

6£Dirac = FLC@M (1%”1#)04-

Imposing 0 Lpirac = 0 leads immediately to d,J* = 0.
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e We compute

1 dgp Do N o . 5= NE G
@ = ¢ [ oS (b — dgi) i )
Q is the electric charge.

Chiral Invariance

e The Dirac Lagrangian in terms of 17, and g reads

EDirac = "/)(ihc/y'uau - mCQ)Z/J
= ihe (1/1;5(80 + 0" 0;) bR + Ui (9o — O’iai)'l/JL) —me? (’l/JIJg’l/JL + 1/121/13) )

e This Lagrangian is invariant under the vector transformations

P — " &y — €Yy and P — " Yg.
The variation of the Dirac Lagrangian under these transformations is
8Lpirac = he(9,5")a + surface term , j# = hyH.

According to Noether’s theorem each invariance of the action under a symmetry transfor-
mation corresponds to a conserved current. In this case the conserved current is the electric
current density

gt =y

e The Dirac Lagrangian is also almost invariant under the axial vector (or chiral) transfor-
mations

b — €77 &y — €7 %Py and Y — €7 Pp.
The variation of the Dirac Lagrangian under these transformations is
0LDirac = (hc(auj“‘r’) — 2imc21/7’y51/1>04 + surface term , j*° = pyH 5.
Imposing 6 Lpirac = 0 yields
O™ = 2.

Hence the current j#° is conserved only in the massless limit.

o In the massless limit we have two conserved currents j* and j#°. They can be rewritten as
G =314k 3" = =01+ R

=0y, gl = Upy Up.

These are electric current densities associated with left-handed and right-handed particles.
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Parity and Time Reversal Under parity we have
UP) (@) UPP) = my ().
Immediately we get
UP) (@) UP) = nidb(@)°
Hence

UP) @) U(P) = |ny2dbid(@) = did(@).
UP) iy (@) U(P) = —|np[ir (&) = —iy®b ().

UPY oy b@)U(P) = +mf2Pr" (@) = +7"9(@) , 4 =0
=~ Prad(E) = —dy (@) A0,

UPY iy d(@)U(P) = —Inp[*y"y (@) = —d"y*(@) , p=10
e PO (&) = () 75 0.

Under time reversal we have
UT) (@) U(T) = my'y*d(—2°, ).
We get
UM () U(T) = (=2, 8y
We compute

U(T) 0d(@)U(T) = |l dib(—a®, &) = (2P, 7).

UT) iy (@) U(T) = —iU(T )ﬂ/’w%() U(T)
— iy (—a0, &) = —ipy P (—a®, T).
U(D) 9" d(@)U(T) = U(T)*é(w)U(TW)*U(_T)%(@U(T)
= P (—a0, @) = +1/E7“1/3(*z°,f) , =0
= —[npf? ww 20, %) = —py'p(—a®,F) , p#£ 0.
U(T) "y " h(@)U(T) = U<T>+3Z<w>U<T>.< 1)U (T () U (T)
= +|nbl21/fv“751/3(* ) =+ (=2, &) , p=0
= |2y (20, &) = —dyPy(—a, F) , p £ 0.
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Angular Momentum of Dirac Field

e An infintesimal rotation aroun the z axis with an angle @ is given by the Lorentz transfor-

mation
1 0 0
B 1 12 0 1 6 0
A*Hfzw o -6 10
0 0 01
Clearly

’ ’

t =t, z/:er@y, y/:79z+y, z =z.

e Under this rotation the spinor transforms as

From one hand

W) = ¢ (tx+0yy— bz z)

= ¢(2) ~ 0(ady — ydu)¥ ()
= V) - DExpv @)

From the other hand

where
o 0
2= ( 0 o3 )
Hence
/ 0.,  hag
p(z) =9 (z) — Y(z) = %[90 X p+ 52] .

The quantity & x p'+ %f] is the total angular momentum.

e Under the change ¢)(z) — ' () = 1(z)+6¢(z) the Dirac Lagrangian Lpirac = ¥ (ificy"d,—
mc?)y changes by

_ 6£Dirac
6£D1rac - au(é(a#’l/)) 61/1) + h.c

= —cfduj" +h.c.
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The current j* is given by
. = = Nas
3" =y E x4 SR

Assuming that the Lagrangian is invariant under the above rotation we have §Lpjrac = 0
and as a consequence the current j* is conserved. This is an instance of Noether’s theorem.
The integral over space of the zero-component of the current j° is the conserved charge
which is identified with the angular momentum along the z axis since we are considering
the invariance under rotations about the z axis. Hence the angular momentum of the Dirac
field along the z direction is defined by

J = /d3zj0

— [ Eovt@E x5+ 5P
This is conserved since
dJ3 .
E = /dgxatjo

7/d31'81]1
—jéj'dis*.
s

The surface S is at infinity where the Dirac field vanishes and hence the surface integral
vanishes. For a general rotation the conserved charge will be the angular momentum of
the Dirac field given by

J = /d3zw+(x)[fxﬁ+ giw.

In the quantum theory the angular momentum operator of the Dirac field along the z
direction is

i+ D).

J = /dgm/AJJr(:c)[:g X p+
It is clear that the angular momentum of the vacuum is zero, viz

J30 >=0. (B.12)

Next we consider a one-particle zero-momentum state. This is given by

, ome? . -
10, 5b >= 1/ ”;C b(T,5)t|0 > .

Hence
2, = 2 2 Aos =
J30,sb> = %ng(0,5)+|0>
2mc? .

= T[jgvb(ﬁvs)Jr”O >
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Clearly for a Dirac particle at rest the orbital piece of the angular momentum operator
vanishes and thus

. / P (@) 25().
We have

We compute

R 1 d3p . R s
P o= g [ et R

Next we have

2%, p) = c (e‘iw(ﬁ)tu(i) b(p, i) + Pt (—p)d(—p,i +).
) \/QM(@; ()b(p.1) (=p)d(~p.1)

We get

) 3p
"= [ s vZZ{ O ()52 P, i) D7 ) + 0O (S0 (D)5, )7 )

+ PO (R3O (—p)b(p, i) (=5, §) T + e PP OF (=) S (R)d (-5, )b, ) |-
We can immediately compute

A~
=l
\.@)
—~
\.Ol
\_/
I

hds; (2mh)3 6% ()b(p, i)+
0

] = hdy; (2nh)36% (P)d(—p, ).
= (2B(0)¢" o 3«5 )/¢)

[j3,5(5,8)+]|0>=Z«£“r 65( )70 >

Thus (by using u()*(0)23u() (0

Ol

Hence

J30,sb >= Zg” §S|0 ib> .

a=(1) 4=(2)

Thus one-particle zero-momentum states have spins given by

Let us choose the basis

= - FI/ g ~ pd h —
J310,1b >= 5|o,1b> , J3|0,2b >= —§|O,2b>.
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e A similar calculation will lead to the result that one-antiparticle zero-momentum states
have spins given by

0,2d > .

S

PURN h - JONN
J310,1d >= —§|O,1d> , J3)0,2d >=

Chapter 3

Asymptotic Solutions
e Straightforward.

e Straightforward. This is a different solution in which we do not have the constraint t—t >0
in the Feynman Green’s function Gz(t —t ).

L]
3 ’ 3 0 ; ’ /
/ ’p Gyt —t)ePF=T)  — / d’p / dp ! e~ ip" (=t ) +ip(@-a)
(2m)3 F (2m)3 J (2m)3 (p°)2 — EZ +ie
_ / d4p i e—ip(z—z,)
(2m)% p%2 —m?2 + ie
= Dp(z—2).

e Thus the second solution corresponds to the causal Feynman propagator. Indeed by inte-
grating both sides of the equation over p' we obtain

~ ~ 3 s o +OO ’ ’ ’
ba) = ) +de)+i [ e [l G =05

— 00

3 U
= (@) + dou(@) +i / (;lﬂ’); / 0 Gyt — ) ()P,

In other words

’

B@) = @)+ ule) +1 [ ' Dea— I,
Feynman Scalar Propagator Perform the integral using the residue theorem.

Fourier Transform Straightforward.

Forced Harmonic Oscillator

e Verify that

> St Sin = bmn.
l
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o We get

~ ~ . + ks, co 1 2
S = expadf; — o, +if) = e"tne tne i Flal,

In this result 3 is still arbitrary. We use [aiy, @;] = 1 and the BHC formula
eAeB — eA-i—Bg%[A,B]'

In particular
. at at /a
aineaain — eaain (ain + a)

e We find

n
| < noutl0in>|*= z—'efz , = l|al?.
n!

We use |n in >= ((a;7)"/v/n!)|0 in > and < n injm in >= G-

o We use
Qr(t) = Qun(t) = \/%(dine’“ft T ateihy,
We find
Q1) = expla(t)al — a* (H)am, +iB(t)) = Dm0 Oam (1) =3 la(]*

at) = Wors /_OO dsJ(s)e'?.

The Schrodinger equation i9,Q(t) = V7 (t)Q(t) becomes
. o L 1 L1
10:Q = i| Oy, — Or0™Gin + 10,08 — 58,504.04 + 5&04 .o ) Q.
This reduces to
ap(t) = %(a@ta* — " O).

Thus

e In the limit ¢ — oo we obtain

{ oo 1Es { . _
a(+o00) = \/ﬁ/—oo dsJ(s)e™* = \/ﬁj(E) =«
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1 5 1 +oo +oo , , B( _),)
—§|a(+oo)| =~1E ds ds J(s)J(s )75,

Also

+oo +oo , ,
iB(+00) = —i ds/ ds J()J(s e~ E=g(s — 5)

+oo +o00 (s ,) ,
+ 4E/ ds/ ds J(s)J (s )e O(s—s).

Hence (by using 1 — (s —s') = 0(s" — s))
. 1 2 1 toe e ! —iE(s—s/) !
iB(+00) — §|a(+oo)| = 15 ds ds J(s)J(s )e O(s—s)

1 +oo too (s )
- 1) ds[m ds J(s)J (s )e (s — s)

— %/jds/jds'J(s)J(s')G(SS,)-

The Feynman propagator in one-dimension is

’ 1 . / ’ . / ’
G(s—s)= T (e_’E(s_s (s — 5 )+ PG )g(s — s))

The S—matrix is

S = ead:;e—a*dme*% fj:’ ds fj::’ ds/J(s).](s/)G(sfs/).

This is the same formula obtained in the second question except that g is completely fixed
in this case.

Interaction Picture From one hand we compute that

i0,Q1(t,7) = =[Q1(t,9), Vi(t, )] + Q1)id, Q1 (t, )2 (t).

From the other hand we compute
i0:Q(t,0) = U BQW), HeU (1) + U~ (1)[Q), V(£ DU (¢)
= Q_l(t)[QI(t’ma /Hﬁ]Q(t) + Q_l(t)[QI(t’ma VT (taﬁ)]ﬂ(t)
We can then compute immediately that
iat@] (tam = [QI (ta.ﬁ)a ﬁﬁ]
Next we compute
i0Q1(t,5) = [Qr(t.7). Hsl = Q) Hle "™

ieitﬂﬁp(ﬂe—itﬂﬁ
iPr(t,p).
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Similarly we compute

0 Pr(t.5) = [Pr(t.0), Hy] = o[P(p), Hyle "M
— _lE;eZtHﬁQA(me—ltHﬁ
= —iE2Q:(t,P).

Thus the operators Q;(t,p) and Py(t, ) describe free oscillators.

Time Ordering Operator We have

T(Vi(t)Vi(t2)Vi(ts)) = Vi(t1)Vi(t2)Vi(ts) , if t1 >ty > ts
T(Vi(t)Vi(t2)Vi(ts)) = Vi(ta)Vi(t1)Vi(ts) , if tg > t1 > ts
T(Vi(t1)Vi(t2)Vi(ts)) = Vi(t1)Vi(ts)Vi(ta) , if t1 > t5 > to
T(‘A/I(tl)vl(t2)‘71(t3)) = ‘71(153)‘71(151)‘71(152) , i ts >t >t
T(Vi(t1)Vi(t2)Vi(ts)) = Vi(t2)Vi(t3)Vi(tr) , if to > ts >ty
T(Vi(t1)Vi(t2)Vi(ts)) = Vi(ts)Vi(t2)Vi(t) , if t3 > t2 > ty.

Thus T(V;(t1) Vi (t2)Vi(ts)) is a function of ¢y, {2 and {3 which is symmetric about the axis t; =
to = t3. Therefore the integral of T'(V7(¢1)V7(t2)Vi(t3)) in the different six regions t1 > to > ts,
to > t1 > ts, etc gives the same result. Hence

%/; dt; /; dts /; dtsT(Vi(t)Vi(t2)Vi(ts)) = /; dt /; dts /; dts Vi () Vi () Vi (t3).

Wick’s Theorem For Forced Scalar Field In order to compute i35(t) when t — +o00 we
start from

_ . cw V.. V.o .
X))~ = dy ai(P) T — &y ain (P) + 2 5 a5 — 5 dp ag + ifp.

In deriving this last result we used
az(t)ain (P 4 — (5 ap(t)am ()T
P 40 (5) = (a4 (7) — Vag(t))e r®an (@)™
Clearly we must have
X)) = —iVi(t, ).
From the second line of (4.58) we have

Qt) = T (& [t ds S5 ame (j(sﬁ)*am(meiEﬁSﬂ(sﬁ)am(m*eiEﬁs))

The potential V[(t, p) can then be defined by

1 1

W) = g (005 e 0 P ).
p
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The differential equation 8tQﬁ(t)Qﬁ(t)’1 = —iVi(¢,p) yields then the results

G = — (t ﬁ)ezEﬂt
P V1/2E~
iV . .
b=~ (c oy — G ).

The first equation yields precisely the formula (4.64). The second equation indicates that the
phase f§(t) is actually not zero. The integration of the second equation gives

_ * 1By
B = 4ZVE/ s [ it e

] ss)
4ZVE / ds/ dsysﬁ)j( ,ﬁ)e

By summing over p and taking the limit £ — oo we obtain
, ot —t') 1 o 0t—t) 1
. _ 4 4 _— ip(z—x ) _ ip(z—z )
zZﬁp(-i-OO) = /d /d z J(x ( v Z 2E5€ p — ; 2E5€ p .
P

Unitarity of The S—Matrix

o The solution Q(t) can be written explicitly as

) = i(ﬂ-)n /t dty /tl dtg.../nil At Vi () Vi (t2).. Vi (tn).
n=0 —o o0

— 00

The first few terms of this expansion are

t t1
Q(t) =1 7’L'/ dtl‘/] tl / dtl/ dtQV] tl V](tg)

— 00

Let us rewrite the different terms as follows

t R +oo . +oo R
/ dt1Vi(ty) :/ dt1Vi(ty) f/ dt1 Vi(ty).
t

— 00 — 00

t t1 400 t1 “+ o0 400 R R
/ dtl/ dtQV[(tl)V[(tQ) = / dtl/ dtQV[(tl)V[(t2)+/ dtl/ dtQV](tl)V](tQ)

—00 —00 —00 —00 t t1
+o0 o0 . .
- / dt, / V1 (41) Vi (t).
t —0o0

Hence to this order we have

—+o0 —+o0 —+o0
(1 + Z/ dﬁ1V1(t1 +1 / dt1 / dtQVI(tl)V[(tg) )
t

—+o0 —+o0
(1 —Z/ dﬁ1V] fl / dtl/ dtQV] fl V](fg) >

_ T(ei S dsws)) S

Q(t)

X
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The operator T is the anti time-ordering operator, i.e. it orders earlier times to the left and
later times to the right. This result is actually valid to all orders in perturbation theory.
Taking the limit ¢ — —oo in this equation we obtain

S—l _ T(ez fj:oo dSVI(s)) )
e Recall that
Q(t) — T(e—iftoo dSVI(S))-

By taking the Hermitian conjugate we obtain

S+ — T(eif+§: dSV](s)).

In other words S is unitary as it should be. This is expected since by construction the
operators U(t) and Q(t) are unitary.

Evolution Operator (2(¢) and Gell-Mann Low Formula Straightforward.

Interaction Fields are Free Fields We compute

01 (t, )

[él(t’f)’ I:IO
(

A Sy 3 . . . .
= i [ SRsen [ S0, P @ P@e

(2m)3 (2m)3
By n
—_ Ze’LtH[) / (271-])73 eiP P(ﬁ)e itHo
_ ieitﬁgﬁ(f)efitﬁg
= ir(t,T)
Similarly
i (t, &) = [f(t,T), Ho)

_ eitﬁu [ﬁ(f),f{o]e_itﬁo

) 3z 3 R R . .
= eitHO/(;lﬂz))sezpz[r (;ﬂsté[P(@aQ+(®]Q(@6_”H°

. itHy dgﬁ 2 _ipEA —itHo
= —ie K Eze™Q(p)e

_ z(62 _ m2)eitﬁloq3(f)e—itﬁo
= (V2 —m?)ds(t, 7).
These last two results indicates that the interaction field Q%] is a free field since it obeys the

equation of motion

(07 = V2 +m?)oy(t, %) = 0.
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LSZ Reduction Formulae

e Let us consider the integral

+OO . A~ N A~
/ dt@t (elEﬁt (18,5 + Eﬁ)T(Q(t,mQ(tl,ﬁl)Q(tg,ﬁg))) .

— 00

We compute

+oo
/_ dt&t(eiEﬁt(ic’)t—|—Eﬁ)T(Q(t,ﬁ')Q(tl,ﬁl)Q(tg,ﬁg)...)) = 2E; (dout(@T(Q(tl,ﬁl)Q(tQ,ﬁQ)...)

- T(Q(t1,ﬁl)Q(tQ,ﬁg)...)ain(m).

On the other hand we compute

/_zo At (eiEﬁt(iat + Eﬁ)T(Q(t,ﬁ)Q(h,51)Q(t2,ﬁ2)---)) =
[ e 0+ BT Q).
Hence we obtain the LSZ reduction formulae
[ e 0+ BT I ) =
VB (a0 T Q0 3)Q002 7)) ~ T Q)i ).
e We use the identity (with the notation 6% = 9,0")
/ BT + m?)d(x) = (02 + E2Q(t. ).
The above LSZ reduction formulae can then be put in the form
i [ daer (9,08 + mAT(G()d(0)i(w).) =
25 (dons T 01)02)-.) = (61} 2) )i ) )
e Straightforward.

Wick’s Theorem Straightforward.

The 4—Point Function in ®—Four Theory The first order in perturbation theory is given
by

z‘/d4y1 < 0|T(g;m(xl)...éin(m)zim(yl)) 0> = z‘(—%)/d“yl < 0|T<éin(x1)...$in(z4)$in(y1)4) 0>

In total we 7.5.3 = 105 contractions which we can divide into three classes
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e We contract only two external points together and the other two external points are con-
tracted with the internal points. Here we have six diagrams corresponding to contracting
(x1,22), (x1,23), (x1,24), (T2,23), (T2,24) and (x3,z4). Each diagram corresponds to
12 contractions coming from the 4 possibilities opened to the first external point to be
contracted with the internal points times the 3 possibilities opened to the second external
point when contracted with the remaining internal points. See figure 9a). The value of
these diagrams is

12i(—%)/d4y1DF(0) X DF(.Tl — $2)DF(.T3 — yl)DF(.T4 — yl)

+Drp(x1 — 23)Dp (22 — y1)Dp (24 — y1)
+Drp(x1 — 24)Dp (23 — y1)Dp (22 — y1)
+Dp(z2 —23)Dp(z1 — y1)Dp(zs — 1)
+Dp(z2 —x4)Dp(zs —y1)Dp(z1 — 1)
+Dp(x3 —x4)Dp(z1 — 1) Dp(z2 — 1)

The corresponding Feynman diagram is shown on figure 10a).

e We can contract all the internal points among each other. In this case we have three distinct
diagrams corresponding to contracting x1 with x2 and x3 with x4 or x; with x3 and xo
with x4 or x1 with x4 and z2 with x3. Each diagram corresponds to 3 contractions coming
from the three possibilities of contracting the internal points among each other. See figure
9b). The value of these diagrams is

3i(-3p) [ A'nDe 02 | Do~ a2)Di(as — 1)+
Dp(x1 —x3)Dp(xs — x4) + Dp(x1 — 24)Dp(x2 — 23) |

The corresponding Feynman diagram is shown on figure 100).

e The last possibility is to contract all the internal points with the external points. The first
internal point can be contracted in 4 different ways with the external points, the second
internal point will have 3 possibilities, the third internal point will have two possibilities and
the fourth internal point will have one possibility. Thus there are 4.3.2 = 24 contractions
corresponding to a single diagram. See figure 9¢). The value of this diagram is

241'(*%)/‘14% {DF(ZH —y1)Dp(x2 —y1)Drp(xs — y1)Dp(xs — m)}

The corresponding Feynman diagram is shown on figure 10c¢).
The second order in perturbation theory is given by

,L'Q

3 d4y1/d4y2 < 0|T(qgin(m)---qgin(m)ﬁint(y1)£int(y2))|0 > =
—%(%)2/d4y1/d4y2 < OIT(q%n(xl)...éin(x4)q3in(y1)4¢3in(y2)4)|0 > .

There are in total 11.9.7.5.3 contractions.
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e We contract two of the internal points together whereas we contract the other two with

the external points. We have 6 possibilities corresponding to the 6 contractions (x1,x2),
(x1,23), (x1,24), (x2,23), (2,24) and (z3,24). Thus we have (6).8.7.5.3 contractions in
all involved. We focus on the contraction (z3,x4) since the other ones are similar. In this
case we obtain 4 contractions which are precisely a)1, b)1 ,a)2 and b)2 shown on figure 3).
The value of these diagrams is

1. A
—5(5)2/d4y1 /d4y2DF($3 — .T4) X 8.3.3DF(.T1 — yl)DF(.Tg — yl)DF(O)3

+8343DF($1 — yl)DF(.’L'Q — yl)DF(yl — y2)2DF(O)
+8433DF($1 — yl)DF(.’L'Q — yg)DF(yl — yg)DF 0)2
(

+8.4.3.2Dp(z1 — y1)Dp (22 — y2)Dr(yr — y2)? |

Clearly these diagrams are given by

DF(SC3 — 564) X <a)1 + b)l + a)g + b)2 of ﬁgure 4) .

To get the other 5 possibilities we should permute the points x1,x2,x3 and x4 appropriately.

Next we can contract the 4 internal points together giving
Dp(x1 — 22)Dp(x3 — 24) + Dp(x1 — 23)Dp (22 — 24) + Dp(x1 — 24)Dp(z2 — 23).

This should be multiplied by the sum of 7.5.3 contractions of the external points given on
figure 11. Compare with the contractions on figure 3a)s, 3b)s and 3c¢)s. The value of these
diagrams is

*%(%)2 (DF(ZE1 —29)Dp(x3 — x4) + Dr(x1 — 23)Dr(z2 — x4) +
DF(.Tl — .T4)DF($2 — $3)) /d4y1/d4y2 (33DF(0)4 +

643DF(0)2DF(Q1 — y2)2 + 432Dp(y1 — y2)4) .

The corresponding Feynman diagrams are shown on figure 12.

There remains 48.7.5.3 contractions which must be accounted for. These correspond to
the contraction of all of the internal points with the external points. The set of all these
contractions is shown on figure 13. The corresponding Feynman diagrams are shown on
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figure 14. The value of these diagrams is

—%(%)2/614?/1 /d4y2DF($1 — 1)

8.3.2.3.4Dp (w2 — y1)Dp (3 — y1)Dr (4 — y2) Dr(y1 — y2)Dp(0)
8.3.2.3Dp(x2 — y1)Dr(x3 — y1)Dp(zs — y1)Dp(0)?
8.3.4.2.3Dp(x2 — y1)Dp(xs — y2)Dp(xs — y1)Dr(y1 — y2)Dr(0)
8.3.4.3Dp(xo — y1)Dp(x3 — y2) D (x4 — y2) Dr(0)?
8.3.4.3.2Dp (2 — y1) Dr (w3 — y2) Dr(ra — y2) Dr(y1 — y2)°
8.4.3.3Dp(x2 — y2)Dr(x3 — y1)Dp(z4 — y2) Dp(0)?
8.4.3.3.2Dp(x2 — y2)Dp(x3 — y1)Dp (x4 — y2)Dr(y1 — yg)2
8.4.3.2.3Dp(x2 — y2) Dp (w3 — y1)Dp (x4 — y1)Dr(y1 — y2)Dr(0
8.4.3.3Dp(x2 — y2) Dr (23 — y2) D (x4 — y1)Dp(0)?
8.4.3.2.3Dp(x2 — y2)Dp(xs — y2)Dp(xs — y2)Dr(y1 — y2)Dr(0)

8.4.3.3.2Dp(x2 — y2) D (w3 — y2)Dr (24 — v1)Dr(y1 — y2)?|.

X

+ 4+

Evolution Operator (¢, tl) Straightforward.

®—Cube Theory Straightforward.

Examination QFT
Master 2

2011-2012
Take Home

Exercise 1:

1)

<T@ > = Splx—y) + (~ie)? / dz / dza D (21 — 22).5p (@ — 21)7uSr (21 — 22)
X YwSr(z2 —y). (B.13)
2)

[tz e <OEE@IMIR > = e (i)

N.p — M + i€
(B.14)

d*k v.k+m 1
Yo (p) = € H = : B.15
2(p) =e /(277-)4/7 k:2—m§+ie’y“(p—k)2+ie ( )
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3) By employing Feynman parameters, Wick rotation and gamma matrices in d dimensions
and then going to spherical coordinates we find

dk ’y,k+m 1
2 = 2 M (<
v / @m) ) K= mZ+ie " (p— k)2 +ic
2 1
4—¢)—(1— 2 — .
- e—dI‘(Q - ‘_l)/ d me(d—€) —(1—2)(2—¢€)vp (B16)
(4m)=2 27 Jo (xm2 4+ (1 — 2)p2 — (1 — z)p?)2~2
Since for d — 4 or equivalently e = 4 — d — 0 we have
d 2

The UV divergence is logarithmic.

4) The physical (renormalized) mass m, is the pole of the dressed propagator which near
p? = m? is known to behave as
[tz eren cqr@@imle > = — (B.18)
Y.p— My + 1€
By considering the one-particle irreducible (1PI) diagrams with two electron lines the exact
electron propagator becomes (by dropping the Feynman prescription)

d4xeip(zfy)<QT1/A):c1/§y Q> = ! + d —iX(p v
/ T @)dw) L (iE)
—(—i%(p)) ———(—i%(p)) —————
e (TS () e (iR
i
= — B.19
v.p = me — X(p) (B.19)
The pole is given by the equation
(v.p — me — E(p))|5.p=m, = 0. (B.20)
The renormalized mass at one-loop is thus
My = Me + Sa(me). (B.21)
5) It is not difficult to show that
. 7
! =2 (B.22)
Yp—me—3%(p)  vp—mr
The wave-function renormalization Z5 is given in terms of the electron self-energy by
_ dX(p)
Zyt=1— =", pm,. B.23
2 dv.p ly.p=m, ( )
At one-loop we get
. d%2(p)
Zy =1 d ly.p=m.
Y-P

e? d. ! dx
= 1+ —(47T)% INOES 5)/0 (i 1 (1)) [(1 —1x)(2—¢)

— z2;f2(ir_(1$)”;e)u2 (24 22 — ex)] . (B.24)

ol
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ex(l — x)m? B (11
+ e 2z —4+€(1 ))} . (B.25)

Exercise 2

1) There are 11 diagrams in total. Eight of them are given by VERTEX, WAVEFUNCTION
and PHOTONVACUUM. There is a digaram in which the electron internal loop in
PHOTONVACUUM is replaced by a muon internal loop. The remaining two diagrams
are of the same type as RAD5 and RADG.

2) The probability amplitude is

'L’€2 ’ ’

(@m)*6* (k+p =k —p) 7z (@ T (P ()@ (K )y’ (K)). (B.26)
/ , d*l 1 i(y +me) iyl 4 me)
e = yH +je? A =LAV = . (B.27
(p,p) =" +ie /(27T)4(lp)2+i6( 2 —m2+ic| B—m2+ie (B.27)
l'=l-q,q=p—p. (B.28)
3) We find
1 2/1 dedydz 6(x +y+ 2z —1) L
; - — = €T z 0(x z—1)——.
(=P =i —mz+io@—mz+ie Jo " ’ (12— Atid°
(B.29)
L=1—-xp—yq, A= (1—2z)’m?+zp® —yzq*. (B.30)

4) Straightforward.

5) By using Lorentz invariance we can make the replacement

’Y/\.Z'(’Y.l/ +me) YAyl +Fme)y — — é’y)"YP’Y“’YpVA.LQ - (@p + ¥0) (&P + Y0)e PV A
+ me(ep +ya)pr VI = p(@p + ya)ey YT

Mepy YV 4x + me(p + Y)Y Y 1+ mEY |

(B.31)
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By using the properties of the gamma matrices in d dimensions (equation (7.89) of Peskin
and Schroeder) we get

2 —¢)?
%’Y“-LQ + (e = 2)(zp + yq) p (xp + yq@) oV’

'y/\.i(’y.l, +me) iyl +me)y — —
+  2me(4 —€)(zp +yq)! — dmeq” — eqp(xp + yq) oy V7
+ 2¢,(zp + Y9) oV A Y + €megpy’ Y — (2 — €)miyt|.

(B.32)

’

This expression is sandwiched between @* (p') and u*(p) and thus we can use the on-

shell conditions ~v.pu®(p) = meu®(p) and @® (p)y.p = mea® (p). We recall also that
x+y+z=1. We then get

7’\.1'(7.1/ + me) iy I+ me)yn — — VL2 4 2me (4 — €)(xp + yg)* — dmeg”

=
+  me (2Z(z +y)—ex(z+y)+ 6) (vp)v"
£ me(z= Oyl = ) (224 clo )
=2t )+ (200 2 s ) )
} (B.33)
By using the results of question 4) we obtain
Pyl me) At a(vl+ mey — A [ - %LQ +m? (2(1 —a? = 2z) + (1 - x)2)

+ ¢ (2(1 —y)(1—2)— eyz)] + Me [230(30 —1) — ez — 1)2}
X (p+p )™ (B.34)

The term proportional to ¢ = (p — p/)“ vanishes by the symmetry y <> 2. This is Ward
identity in this case.

Next we use the Gordon’s identity

’ /

@ (p))(p+p )us(p) — @ (p) [Qmﬂ“ +igh "qu} w’(p)- (B.35)
We get then

, 2 —¢)?
(el A+ me) At iyl + me)y — w[—%L2+m5(2<1+w2—4w>—e(l—w)Q)

+ (2(1 —y)(1—2)— eyz)] +me [Qx(z —1) —e(z — 1)2}
X oM, (B.36)
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From here it is easy to see that

ot q,

T(p,p) =" Fi(q®) + o, 120 (B.37)
diL 1 (2 —¢)?
F(¢) = 1+2i62/dxdyd26$+y+z—1 / [— L?
1 ( ) @m)? (12 — A+id)’ d

+ m? <2(1 + 2% —4z) —e(1 - z)2> +q¢° (2(1 —y)(1—2)— eyzﬂ . (B.38)

d
F2(q2) — 2i62/dxdydz d(z4+y+z— 1)/ (Zwﬁd [L2 - i " i€}32m3 {2z(x 1) - e 1)2]'
(B.39)
7)
dihg Ly 1 1 L dd
| emiar - it 07T (B40)
d'Ly 1 1 1 . dl
/ G (BT AP~ amiari 073y (B.41)

8) The form factor Fj(q¢?) is given explicitly by

dLp 1 (2—¢)? ,
3 d LE

2y _ 2 _
Fi(¢°) = 1+2e /dwdydzé(x—i—y-i—z 1)/(2W)d[L%+A]

+ m? <2(1 + 2% —dx) —e(1 - z)2> +q¢° (2(1 —y)(1—2)— eyz)]

= 1+ (4?:)5 /dzdydz S(z+y+z— 1){(226)2 F(ZQ_;?)
L= (2 (20407 - ) -t ) w2 (20 -0 - ) -2 )|

(B.42)

The gamma function I'(2 — 4) has a pole at d = 4 which goes as 1/e. Thus Fi(¢?) is
logarithmically divergent.

9) The renormalization constant Z; is defined by
TH(p ,p)lg=0 =" Z; . (B.43)
We conclude that

Z7t = Fi(0). (B.44)
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The counter term 6; = Z; — 1 is therefore given at one-loop by (with §Fy(¢?) = 1 — Fi(¢?)

(B.45)

- d

and Ag = (1 — 2)?m?2 + zpu?)
2
/dxdydz 5(x+y+zl)[

0 =—-0F(0) =
' 1(0) (4m)?
rE-—4
%.mg<2(1+x24x)e(lx) )]
A 2
10) We use the identity
1 1
/dy/ dzé(z+y+z—1)=1—=z. (B.46)
0 0
Then
2 —e)2r2-4%) 13-4
i =~ [ [ ESEEEED L TE D e (s i ) - - )|
(47)% 2 A AR
2 re-4) rE-4
- __¢ d/dm(l—x)[@—e) ( f)+ ( d2).m§(2(1+x2—4x)—2(1—,73)2)}
(4m)% AyE Ay E
2 re-4 re-4 NGRS
- __° g/dx[x@—e) (2_;)—1—(1—235)(2—6) (2_12)—1—(1—,7:) (3_;)m X
(4m)2 A2 ALTE AR
(2(1 + 2% —4x) — 2(1 — x)Qﬂ
2 re-4 rEa-—4 rE-—4
- __° d/dw[m@—e) ( d2)—2m§(2—e)$(1—x)2 ( d2)+(1—x) ( d2)
(4m)* AyE Ay ® Ay
0 0 0
X (2(1+z24x)2(1z)2>}
2 re-4 NG
= __° d/dz[x(Qe) ( d2)+2m§x(1z)<2$4+6(1x)) ( f)}
(4m)* A Ay ?
- 5
Exercise 3
1) The self-energy of the photon at one-loop is
. d*k , i(yk+me) , . i(y.(k+q)+me)
HY () — A (et —ienV
™ (9) = 1)/(27r)4tr( ) i ) BT grm mE e
2.

2) We find
,T(2-19) /1d 21(
da €L d
3 0 A2—%

This is logarithmically divergent.

(B.48)

(B.49)
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3) We know that at one-loop Zs = 1/(1 —II3(0)) = 1 4 II3(0). Hence 63 = II3(0). In other

words
5y — _462F(2 7(1%) /1 - 2;5(14;130).
(4m)z  Jo Me
4) We know that
2 ch

er = ey Zs.
Thus
g = ch
€ —n2 2 *
1—g2[In Tk — 3+ 0(Z5))]

The effective charge becomes large at high energies —q? >> m?2.

Exercise 4 See lecture.

(B.50)

(B.51)

(B.52)

(B.53)



