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1
Introduction and References

This book-broject contains my lectures on quantum field theory (QFT) which were delivered
during the academic years 2010-2011, 2011-2012 and 2012-2013 at the University of Annaba to
first year and second year master students in theoretical physics. Each part of the book covers
roughly a semester consisting of 13 weeks of teaching with 2 lectures and 1 recitation per week.
In our master program quantum field theory is formally organized as an anual course so either
part I and part II can be used as the material for the course or part I and part III. Another
possibility is to merge part II and part III in such a way that the content fits within one semester
as we will discuss further below.

Part I is essential since we lay in it the foundations and the language of QFT, although I think
now the third chapter of this part should be shortened in some fashion. Part II and part III are
independent unites so we can do either one in the second semester. Part II deals mainly with the
problem of quantization and renormalization of electrodynamics using the canonical approach
while part III deals with path integral formulation, gauge theory and the renormalization group.
[The last chapter on the renormalization group was not actually covered with the other two
chapters of part III in a single semester. In fact it was delivered informally to master and
doctoral students].

In my view now a merger of part II and part III in which the last chapter on the renormaliza-
tion group is completely suppressed (although in my opinion it is the most important chapter of
this book), the other two chapters of part III and the last two chapters of part II are shortened
considerably may fit within one single semester. Our actual experience has, on the other hand,
been as shown on table (1).

The three main and central references of this book were: Strathdee lecture notes for part
I and chapter two of part II, Peskin and Schroeder for part II especially the last chapter and
the second chapter of part III and Zinn-Justin for the last chapter on the renormalization group
of part III. Chapter one of part II on the canonical quantization of the electromagnetic field
follows Greiner and Reinhardt. Chapter one of part III on the path integral formulation and the
effective action follows Randjbar-Daemi lecture notes. I have also benefited from many other
books and reviews; I only mention here A.M.Polyakov and J.Smit books and K.Wilson and J.
Kogut review. A far from complete list of references is given in the bibliography.
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Year Spring Fall

2011
Part I with the exception
of section 3.6.

Part II with the exception
of sections 6.6, 7.4 and 7.8.

2012
Part I with the exception
of section 3.6.

Part III with the exception
of section 8.5 and chapter 10.



Bibliography

[1] J. Strathdee, “Course on Quantum Electrodynamics,” ICTP Lecture Notes, 1995.

[2] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,” Reading,
USA: Addison-Wesley (1995) 842 p

[3] J. Zinn-Justin, “Quantum field theory and critical phenomena,” Int. Ser. Monogr. Phys.
113, 1 (2002).

[4] S. Randjbar-Daemi, “Course on Quantum Field Theory,” ICTP Lecture Notes, 1995.

[5] J. Smit, “Introduction to quantum fields on a lattice: A robust mate,” Cambridge Lect.
Notes Phys. 15, 1 (2002).

[6] H. Kleinert, “Critical Poperties of Phi4 Theories,” World Scientific, Singapore, 2004

[7] K. G. Wilson and J. B. Kogut, “The Renormalization group and the epsilon expansion,”
Phys. Rept. 12, 75 (1974).

[8] K. G. Wilson, “Renormalization group and critical phenomena. 2. Phase space cell analysis
of critical behavior,” Phys. Rev. B 4, 3184 (1971).

[9] A. M. Polyakov, “Gauge Fields And Strings,” Contemp. Concepts Phys. 3, 1 (1987).

[10] G. R. Golner, “Calculation of the Critical Exponent eta via Renormalization-Group Recur-
sion Formulas,” Phys. Rev. B 8, 339 (1973).

[11] C. Itzykson and J. M. Drouffe, “Statistical Field Theory. Vol. 1: From Brownian Motion To
Renormalization And Lattice Gauge Theory,” Cambridge, UK: Univ. Pr. (1989) 1-403

[12] C. Itzykson and J. B. Zuber, “Quantum Field Theory,” New York, Usa: Mcgraw-hill (1980)
705 P.(International Series In Pure and Applied Physics)

[13] W. Greiner and J. Reinhardt, “Quantum electrodynamics,” (Physics and astronomy online
library)

[14] V. Radovanovic, “Problem book in quantum field theory,” Berlin, Germany: Springer (2008)
243 p.

[15] D. Griffiths, “Introduction to elementary particles,” Weinheim, Germany: Wiley-VCH
(2008) 454 p



4 YDRI QFT



Part I

Free Fields, Canonical Quantization

and Feynman Diagrams





2
Relativistic Quantum Mechanics

2.1 Special Relativity

2.1.1 Postulates

Classical mechanics obeys the principle of relativity which states that the laws of nature take
the same form in all inertial frames. An inertial frame is any frame in which Newton’s first law
holds. Therefore all other frames which move with a constant velocity with respect to a given
inertial frame are also inertial frames.

Any two inertial frames O and O
′

can be related by a Galilean transformation which is of
the general form

t
′

= t+ τ

~x
′

= R~x+ ~vt+ ~d. (2.1)

In above R is a constant orthogonal matrix, ~d and ~v are constant vectors and τ is a constant
scalar. Thus the observer O

′

sees the coordinates axes of O rotated by R, moving with a velocity
~v, translated by ~d and it sees the clock of O running behind by the amount τ . The set of all
transformations of the form (2.1) form a 10-parameter group called the Galilean group.

The invariance/covariance of the equations of motion under these transformations which
is called Galilean invariance/covariance is the precise statement of the principle of Galilean
relativity.

In contrast to the laws of classical mechanics the laws of classical electrodynamics do not
obey the Galilean principle of relativity. Before the advent of the theory of special relativity
the laws of electrodynamics were thought to hold only in the inertial reference frame which is
at rest with respect to an invisible medium filling all space known as the ether. For example
electromagnetic waves were thought to propagate through the vacuum at a speed relative to the
ether equal to the speed of light c = 1/

√
µ0ǫ0 = 3× 108m/s.

The motion of the earth through the ether creates an ether wind. Thus only by measuring
the speed of light in the direction of the ether wind we can get the value c whereas measuring
it in any other direction will give a different result. In other words we can detect the ether by
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measuring the speed of light in different directions which is precisely what Michelson and Morley
tried to do in their famous experiments. The outcome of these experiments was always negative
in the sense that the speed of light was found exactly the same equal to c in all directions.

The theory of special relativity was the first to accommodate this empirical finding by pos-
tulating that the speed of light is the same in all inertial reference frames, i.e. there is no ether.
Furthermore it postulates that classical electrodynamics (and physical laws in general) must
hold in all inertial reference frames. This is the principle of relativity although now its precise
statement can not be given in terms of the invariance/covariance under Galilean transformations
but in terms of the invariance/covariance under Lorentz transformations which we will discuss
further in the next section.

Einstein’s original motivation behind the principle of relativity comes from the physics of the
electromotive force. The interaction between a conductor and a magnet in the reference frame
where the conductor is moving and the magnet is at rest is known to result in an emotional
emf. The charges in the moving conductor will experience a magnetic force given by the Lorentz
force law. As a consequence a current will flow in the conductor with an induced motional emf
given by the flux rule E = −dΦ/dt. In the reference frame where the conductor is at rest and
the magnet is moving there is no magnetic force acting on the charges. However the moving
magnet generates a changing magnetic field which by Faraday’s law induces an electric field. As
a consequence in the rest frame of the conductor the charges experience an electric force which
causes a current to flow with an induced transformer emf given precisely by the flux rule, viz
E = −dΦ/dt.

So in summary although the two observers associated with the states of rest of the conductor
and the magnet have different interpretations of the process their predictions are in perfect
agreement. This indeed suggests as pointed out first by Einstein that the laws of classical
electrodynamics are the same in all inertial reference frames.

The two fundamental postulates of special relativity are therefore:

• The principle of relativity: The laws of physics take the same form in all inertial reference
frames.

• The constancy of the speed of light: The speed of light in vacuum is the same in all inertial
reference frames.

2.1.2 Relativistic Effects

The gedanken experiments we will discuss here might be called “The train-and-platform thought
experiments”.

Relativity of Simultaneity We consider an observer O
′

in the middle of a freight car moving
at a speed v with respect to the ground and a second observer O standing on a platform. A light
bulb hanging in the center of the car is switched on just as the two observers pass each other.

It is clear that with respect to the observer O
′

light will reach the front end A and the back
end B of the freight car at the same time. The two events “light reaches the front end” and “light
reaches the back end” are simultaneous.

According to the second postulate light propagates with the same velocity with respect to
the observer O. This observer sees the back end B moving toward the point at which the flash
was given off and the front end A moving away from it. Thus light will reach B before it reaches
A. In other words with the respect to O the event “ light reaches the back end” happens before
the event “light reaches the front end”.
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Time Dilation Let us now ask the question: How long does it take a light ray to travel from
the bulb to the floor?

Let us call h the height of the freight car. It is clear that with respect to O
′

the time spent
by the light ray between the bulb and the floor is

∆t
′

=
h

c
. (2.2)

The observer O will measure a time ∆t during which the freight car moves a horizontal distance
v∆t. The trajectory of the light ray is not given by the vertical distance h but by the hypotenuse
of the right triangle with h and vdt as the other two sides. Thus with respect to O the light ray
travels a longer distance given by

√
h2 + v2∆t2 and therefore the time spent is

∆t =

√
h2 + v2∆t2

c
. (2.3)

Solving for ∆t we get

∆t = γ
h

c
= γ∆t

′

. (2.4)

The factor γ is known as Lorentz factor and it is given by

γ =
1

√

1− v2

c2

. (2.5)

Hence we obtain

∆t
′

=

√

1− v2

c2
∆t ≤ ∆t. (2.6)

The time measured on the train is shorter than the time measured on the ground. In other words
moving clocks run slow. This is called time dilation.

Lorentz Contraction We place now a lamp at the back end B of the freight car and a mirror
at the front end A. Then we ask the question: How long does it take a light ray to travel from
the lamp to the mirror and back?

Again with respect to the observer O
′

the answer is simple. If ∆x
′

is the length of the freight
car measured by O

′

then the time spent by the light ray in the round trip between the lamp and
the mirror is

∆t
′

= 2
∆x

′

c
. (2.7)

Let ∆x be the length of the freight car measured by O and ∆t1 be the time for the light ray to
reach the front end A. Then clearly

c∆t1 = ∆x+ v∆t1. (2.8)

The term v∆t1 is the distance traveled by the train during the time ∆t1. Let ∆t2 be the time
for the light ray to return to the back end B. Then

c∆t2 = ∆x− v∆t2. (2.9)
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The time spent by the light ray in the round trip between the lamp and the mirror is therefore

∆t = ∆t1 +∆t2 =
∆x

c− v +
∆x

c+ v
= 2γ2

∆x

c
. (2.10)

The time intervals ∆t and ∆t
′

are related by time dilation, viz

∆t = γ∆t
′

. (2.11)

This is equivalent to

∆x
′

= γ∆x ≥ ∆x. (2.12)

The length measured on the train is longer than the length measured on the ground. In other
words moving objects are shortened. This is called Lorentz contraction.

We point out here that only the length parallel to the direction of motion is contracted while
lengths perpendicular to the direction of the motion remain not contracted.

2.1.3 Lorentz Transformations: Boosts

Any physical process consists of a collection of events. Any event takes place at a given point
(x, y, z) of space at an instant of time t. Lorentz transformations relate the coordinates (x, y, z, t)
of a given event in an inertial reference frame O to the coordinates (x

′

, y
′

, z
′

, t
′

) of the same event
in another inertial reference frame O

′

.
Let (x, y, z, t) be the coordinates in O of an event E. The projection of E onto the x axis is

given by the point P which has the coordinates (x, 0, 0, t). For simplicity we will assume that
the observer O

′

moves with respect to the observer O at a constant speed v along the x axis. At
time t = 0 the two observers O and O

′

coincides. After time t the observer O
′

moves a distance
vt on the x axis. Let d be the distance between O

′

and P as measured by O. Then clearly

x = d+ vt. (2.13)

Before the theory of special relativity the coordinate x
′

of the event E in the reference frame O
′

is taken to be equal to the distance d. We get therefore the transformation laws

x
′

= x− vt
y

′

= y

z
′

= z

t
′

= t. (2.14)

This is a Galilean transformation. Indeed this is a special case of (2.1).
As we have already seen Einstein’s postulates lead to Lorentz contraction. In other words

the distance between O
′

and P measured by the observer O
′

which is precisely the coordinate
x

′

is larger than d. More precisely

x
′

= γd. (2.15)

Hence

x
′

= γ(x− vt). (2.16)
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Einstein’s postulates lead also to time dilation and relativity of simultaneity. Thus the time of
the event E measured by O

′

is different from t. Since the observer O moves with respect to O
′

at a speed v in the negative x direction we must have

x = γ(x
′

+ vt
′

). (2.17)

Thus we get

t
′

= γ(t− v

c2
x). (2.18)

In summary we get the transformation laws

x
′

= γ(x− vt)
y

′

= y

z
′

= z

t
′

= γ(t− v

c2
x). (2.19)

This is a special Lorentz transformation which is a boost along the x axis.
Let us look at the clock found at the origin of the reference frame O

′

. We set then x
′

= 0 in
the above equations. We get immediately the time dilation effect, viz

t
′

=
t

γ
. (2.20)

At time t = 0 the clocks in O
′

read different times depending on their location since

t
′

= −γ v
c2
x. (2.21)

Hence moving clocks can not be synchronized.
We consider now two events A and B with coordinates (xA, tA) and (xB , tB) in O and

coordinates (x
′

A, t
′

A) and (x
′

B , t
′

B) in O
′

. We can immediately compute

∆t
′

= γ(∆t− v

c2
∆x). (2.22)

Thus if the two events are simultaneous with respect to O, i.e. ∆t = 0 they are not simultaneous
with respect to O

′

since

∆t
′

= −γ v
c2

∆x. (2.23)

2.1.4 Spacetime

The above Lorentz boost transformation can be rewritten as

x0
′

= γ(x0 − βx1)
x1

′

= γ(x1 − βx0)
x2

′

= x2

x3
′

= x3. (2.24)

In the above equation

x0 = ct , x1 = x , x2 = y , x3 = z. (2.25)



12 YDRI QFT

β =
v

c
, γ =

√

1− β2. (2.26)

This can also be rewritten as

xµ
′

=
4
∑

ν=0

Λµνx
ν . (2.27)

Λ =









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1









. (2.28)

The matrix Λ is the Lorentz boost transformation matrix. A general Lorentz boost transforma-
tion can be obtained if the relative motion of the two inertial reference frames O and O

′

is along
an arbitrary direction in space. The transformation law of the coordinates xµ will still be given
by (2.27) with a more complicated matrix Λ. A general Lorentz transformation can be written
as a product of a rotation and a boost along a direction n̂ given by

x
′0 = x0 coshα− n̂~x sinhα
~x

′

= ~x+ n̂

(

(coshα− 1)n̂~x− x0 sinhα
)

. (2.29)

~v

c
= tanhα n̂. (2.30)

Indeed the set of all Lorentz transformations contains rotations as a subset.
The set of coordinates (x0, x1, x2, x3) which transforms under Lorentz transformations as

xµ
′

= Λµνx
ν will be called a 4−vector in analogy with the set of coordinates (x1, x2, x3) which

is called a vector because it transforms under rotations as xa
′

= Rabx
b. Thus in general a

4−vector a is any set of numbers (a0, a1, a2, a3) which transforms as (x0, x1, x2, x3) under Lorentz
transformations, viz

aµ
′

=

4
∑

ν=0

Λµνa
ν . (2.31)

For the particular Lorentz transformation (2.28) we have

a0
′

= γ(a0 − βa1)
a1

′

= γ(a1 − βa0)
a2

′

= a2

a3
′

= a3. (2.32)

The numbers aµ are called the contravariant components of the 4−vector a. We define the
covariant components aµ by

a0 = a0 , a1 = −a1 , a2 = −a2 , a3 = −a3. (2.33)
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By using the Lorentz transformation (2.32) we verify given any two 4−vectors a and b the identity

a0
′

b0
′ − a1′b1′ − a2′b2′ − a3′b3′ = a0b0 − a1b1 − a2b2 − a3b3. (2.34)

In fact we can show that this identity holds for all Lorentz transformations. We recall that under
rotations the scalar product ~a~b of any two vectors ~a and ~b is invariant, i.e.

a1
′

b1
′

+ a2
′

b2
′

+ a3
′

b3
′

= a1b1 + a2b2 + a3b3. (2.35)

The 4-dimensional scalar product must therefore be defined by the Lorentz invariant combination
a0b0 − a1b1 − a2b2 − a3b3, namely

ab = a0b0 − a1b1 − a2b2 − a3b3

=

3
∑

µ=0

aµb
µ

= aµb
µ. (2.36)

In the last equation we have employed the so-called Einstein summation convention, i.e. a
repeated index is summed over.

We define the separation 4−vector ∆x between two events A and B occurring at the points
(x0A, x

1
A, x

2
A, x

3
A) and (x0B , x

1
B, x

2
B , x

3
B) by the components

∆xµ = xµA − xµB . (2.37)

The distance squared between the two events A and B which is called the interval between A
and B is defined by

∆s2 = ∆xµ∆x
µ = c2∆t2 −∆~x2. (2.38)

This is a Lorentz invariant quantity. However it could be positive, negative or zero.
In the case ∆s2 > 0 the interval is called timelike. There exists an inertial reference frame in

which the two events occur at the same place and are only separated temporally.
In the case ∆s2 < 0 the interval is called spacelike. There exists an inertial reference frame

in which the two events occur at the same time and are only separated in space.
In the case ∆s2 = 0 the interval is called lightlike. The two events are connected by a signal

traveling at the speed of light.

2.1.5 Metric

The interval ds2 between two infinitesimally close events A and B in spacetime with position
4−vectors xµA and xµB = xµA + dxµ is given by

ds2 =

3
∑

µ=0

(xA − xB)µ(xA − xB)µ

= (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

= c2(dt)2 − (d~x)2. (2.39)

We can also write this interval as (using also Einstein’s summation convention)

ds2 =

3
∑

µ,ν=0

ηµνdx
µdxν = ηµνdx

µdxν

=

3
∑

µ,ν=0

ηµνdxµdxν = ηµνdxµdxν . (2.40)



14 YDRI QFT

The 4× 4 matrix η is called the metric tensor and it is given by

ηµν = ηµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (2.41)

Clearly we can also write

ds2 =
3
∑

µ,ν=0

ηνµdx
µdxν = ηνµdx

µdxν . (2.42)

In this case

ηνµ = δνµ. (2.43)

The metric η is used to lower and raise Lorentz indices, viz

xµ = ηµνx
ν . (2.44)

The interval ds2 is invariant under Poincare transformations which combine translations a with
Lorentz transformations Λ:

xµ −→ x
′µ = Λµνx

ν + aµ. (2.45)

We compute

ds2 = ηµνdx
′µdx

′ν = ηµνdx
µdxν . (2.46)

This leads to the condition

ηµνΛ
µ
ρΛ

ν
σ = ηρσ ⇔ ΛT ηΛ = η. (2.47)

2.2 Klein-Gordon Equation

The non-relativistic energy-momentum relation reads

E =
~p2

2m
+ V. (2.48)

The correspondence principle is

E −→ i~
∂

∂t
, ~p −→ ~

i
~∇. (2.49)

This yields immediately the Schrodinger equation
(

− ~
2

2m
∇2 + V

)

ψ = i~
∂ψ

∂t
. (2.50)

We will only consider the free case,i.e. V = 0. We have then

− ~
2

2m
∇2ψ = i~

∂ψ

∂t
. (2.51)
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The energy-momentum 4−vector is given by

pµ = (p0, p1, p2, p3) = (
E

c
, ~p). (2.52)

The relativistic momentum and energy are defined by

~p =
m~u

√

1− u2

c2

, E =
mc2

√

1− u2

c2

. (2.53)

The energy-momentum 4−vector satisfies

pµpµ =
E2

c2
− ~p2 = m2c2. (2.54)

The relativistic energy-momentum relation is therefore given by

~p2c2 +m2c4 = E2. (2.55)

Thus the free Schrodinger equation will be replaced by the relativistic wave equation

(−~2c2∇2 +m2c4)φ = −~2∂
2φ

∂t2
. (2.56)

This can also be rewritten as
(

− 1

c2
∂2

∂t2
+∇2 − m2c2

~2

)

φ = 0. (2.57)

This is Klein-Gordon equation. In contrast with the Schrodinger equation the Klein-Gordon
equation is a second-order differential equation. In relativistic notation we have

E −→ i~
∂

∂t
⇔ p0 −→ i~∂0 , ∂0 =

∂

∂x0
=

1

c

∂

∂t
. (2.58)

~p −→ ~

i
~∇ ⇔ pi −→ i~∂i , ∂i =

∂

∂xi
. (2.59)

In other words

pµ −→ i~∂µ , ∂µ =
∂

∂xµ
. (2.60)

pµp
µ −→ −~2∂µ∂µ = ~

2

(

− 1

c2
∂2

∂t2
+∇2

)

. (2.61)

The covariant form of the Klein-Gordon equation is

(

∂µ∂
µ +

m2c2

~2

)

φ = 0. (2.62)

Free solutions are of the form

φ(t, ~x) = e−
i
~
px , px = pµx

µ = Et− ~p~x. (2.63)
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Indeed we compute

∂µ∂
µφ(t, ~x) = − 1

c2~2
(E2 − ~p2c2)φ(t, ~x). (2.64)

Thus we must have

E2 − ~p2c2 = m2c4. (2.65)

In other words

E2 = ±
√

~p2c2 +m2c4. (2.66)

There exists therefore negative-energy solutions. The energy gap is 2mc2. As it stands the
existence of negative-energy solutions means that the spectrum is not bounded from below and
as a consequence an arbitrarily large amount of energy can be extracted. This is a severe
problem for a single-particle wave equation. However these negative-energy solutions, as we will
see shortly, will be related to antiparticles.

From the two equations

φ∗
(

∂µ∂
µ +

m2c2

~2

)

φ = 0, (2.67)

φ

(

∂µ∂
µ +

m2c2

~2

)

φ∗ = 0, (2.68)

we get the continuity equation

∂µJµ = 0, (2.69)

where

Jµ =
i~

2m
[φ∗∂µφ− φ∂µφ∗]. (2.70)

We have included the factor i~/2m in order that the zero component J0 has the dimension of a
probability density. The continuity equation can also be put in the form

∂ρ

∂t
+ ~∇ ~J = 0, (2.71)

where

ρ =
J0
c

=
i~

2mc2
[φ∗

∂φ

∂t
− φ∂φ

∗

∂t
]. (2.72)

~J = − i~

2mc
[φ∗~∇φ− φ~∇φ∗]. (2.73)

Clearly the zero component J0 is not positive definite and hence it can be a probability density.
This is due to the fact that the Klein-Gordon equation is second-order.

The Dirac equation is a relativistic wave equation which is a first-order differential equation.
The corresponding probability density will therefore be positive definite. However negative-
energy solutions will still be present.
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2.3 Dirac Equation

Dirac equation is a first-order differential equation of the same form as the Schrodinger equation,
viz

i~
∂ψ

∂t
= Hψ. (2.74)

In order to derive the form of the Hamiltonian H we go back to the relativistic energy-momentum
relation

pµp
µ −m2c2 = 0. (2.75)

The only requirement on H is that it must be linear in spatial derivatives since we want space
and time to be on equal footing. We thus factor out the above equation as follows

pµp
µ −m2c2 = (γµpµ +mc)(βνpν −mc)

= γµβνpµpν −mc(γµ − βµ)pµ −m2c2. (2.76)

We must therefore have βµ = γµ, i.e.

pµp
µ = γµγνpµpν . (2.77)

This is equivalent to

p20 − p21 − p22 − p23 = (γ0)2p20 + (γ1)2p21 + (γ2)2p22 + (γ3)2p23

+ (γ1γ2 + γ2γ1)p1p2 + (γ1γ3 + γ3γ1)p1p3 + (γ2γ3 + γ3γ2)p2p3

+ (γ1γ0 + γ0γ1)p1p0 + (γ2γ0 + γ0γ2)p2p0 + (γ3γ0 + γ0γ3)p3p0.

(2.78)

Clearly the objects γµ can not be complex numbers since we must have

(γ0)2 = 1 , (γ1)2 = (γ2)2 = (γ3)2 = −1
γµγν + γνγµ = 0. (2.79)

These conditions can be rewritten in a compact form as

γµγν + γνγµ = 2ηµν . (2.80)

This algebra is an example of a Clifford algebra and the solutions are matrices γµ which are
called Dirac matrices. In four-dimensional Minkowski space the smallest Dirac matrices must be
4× 4 matrices. All 4× 4 representations are unitarily equivalent. We choose the so-called Weyl
or chiral representation given by

γ0 =

(

0 12

12 0

)

, γi =

(

0 σi

−σi 0

)

. (2.81)

The Pauli matrices are

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (2.82)

Remark that

(γ0)+ = γ0 , (γi)+ = −γi ⇔ (γµ)+ = γ0γµγ0. (2.83)
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The relativistic energy-momentum relation becomes

pµp
µ −m2c2 = (γµpµ +mc)(γνpν −mc) = 0. (2.84)

Thus either γµpµ +mc = 0 or γµpµ −mc = 0. The convention is to take

γµpµ −mc = 0. (2.85)

By applying the correspondence principle pµ −→ i~∂µ we obtain the relativistic wave equation

(i~γµ∂µ −mc)ψ = 0. (2.86)

This is the Dirac equation in a covariant form. Let us introduce the Feynamn "slash" defined by

/∂ = γµ∂µ. (2.87)

(i~/∂ −mc)ψ = 0. (2.88)

Since the γ matrices are 4 × 4 the wave function ψ must be a four-component object which we
call a Dirac spinor. Thus we have

ψ =









ψ1

ψ2

ψ3

ψ4









. (2.89)

The Hermitian conjugate of the Dirac equation (2.100) is

ψ+(i~(γµ)+
←−
∂µ +mc) = 0. (2.90)

In other words

ψ+(i~γ0γµγ0
←−
∂µ +mc) = 0. (2.91)

The Hermitian conjugate of a Dirac spinor is not ψ+ but it is defined by

ψ̄ = ψ+γ0. (2.92)

Thus the Hermitian conjugate of the Dirac equation is

ψ̄(i~γµ
←−
∂µ +mc) = 0. (2.93)

Equivalently

ψ̄(i~
←−
/∂ +mc) = 0. (2.94)

Putting (2.88) and (2.94) together we obtain

ψ̄(i~
←−
/∂ + i~~/∂)ψ = 0. (2.95)

We obtain the continuity equation

∂µJ
µ = 0 , Jµ = ψ̄γµψ. (2.96)
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Explicitly we have

∂ρ

∂t
+ ~∇ ~J = 0. (2.97)

ρ =
J0

c
=

1

c
ψ̄γ0ψ =

1

c
ψ+ψ. (2.98)

~J = ψ̄~γψ = ψ+~αψ. (2.99)

The probability density ρ is positive definite as desired.

2.4 Free Solutions of The Dirac Equation

We seek solutions of the Dirac equation

(i~γµ∂µ −mc)ψ = 0. (2.100)

The plane-wave solutions are of the form

ψ(x) = a e−
i
~
pxu(p). (2.101)

Explicitly

ψ(t, ~x) = a e−
i
~
(Et−~p~x)u(E, ~p). (2.102)

The spinor u(p) must satisfy

(γµpµ −mc)u = 0. (2.103)

We write

u =

(

uA
uB

)

. (2.104)

We compute

γµpµ −mc =
(

−mc E
c − ~σ~p

E
c + ~σ~p −mc

)

. (2.105)

We get immediately

uA =
E
c − ~σ~p
mc

uB. (2.106)

uB =
E
c + ~σ~p

mc
uA. (2.107)

A consistency condition is

uA =
E
c − ~σ~p
mc

E
c + ~σ~p

mc
uA =

E2

c2 − (~σ~p)2

m2c2
uA. (2.108)
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Thus one must have

E2

c2
− (~σ~p)2 = m2c2 ⇔ E2 = ~p2c2 +m2c4. (2.109)

Thus we have a single condition

uB =
E
c + ~σ~p

mc
uA. (2.110)

There are four possible solutions. These are

uA =

(

1
0

)

⇔ u(1) = N (1)











1
0

E
c +p3

mc
p1+ip2

mc











. (2.111)

uA =

(

0
1

)

⇔ u(4) = N (4)











0
1

p1−ip2
mc

E
c −p3
mc











. (2.112)

uB =

(

1
0

)

⇔ u(3) = N (3)











E
c −p3
mc

− p1+ip2mc
1
0











. (2.113)

uB =

(

0
1

)

⇔ u(2) = N (2)











− p1−ip2mc
E
c +p3

mc
0
1











. (2.114)

The first and the fourth solutions will be normalized such that

ūu = u+γ0u = u+AuB + u+BuA = 2mc. (2.115)

We obtain

N (1) = N (2) =

√

m2c2

E
c + p3

. (2.116)

Clearly one must have E ≥ 0 otherwise the square root will not be well defined. In other words
u(1) and u(2) correspond to positive-energy solutions associated with particles. The spinors
u(i)(p) can be rewritten as

u(i) =

( √
σµpµξ

i

√
σ̄µpµξ

i

)

. (2.117)
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The 2−dimensional spinors ξi satisfy

(ξr)+ξs = δrs. (2.118)

The remaining spinors u(3) and u(4) must correspond to negative-energy solutions which must
be reinterpreted as positive-energy antiparticles. Thus we flip the signs of the energy and the
momentum such that the wave function (2.102) becomes

ψ(t, ~x) = a e
i
~
(Et−~p~x)u(−E,−~p). (2.119)

The solutions u3 and u4 become

v(1)(E, ~p) = u(3)(−E,−~p) = N (3)











−
E
c −p3
mc

p1+ip2

mc
1
0











, v(2)(E, ~p) = u(4)(−E,−~p) = N (4)











0
1

− p1−ip2mc

−
E
c −p3
mc











.

(2.120)

We impose the normalization condition

v̄v = v+γ0v = v+AvB + v+BvA = −2mc. (2.121)

We obtain

N (3) = N (4) =

√

m2c2

E
c − p3

. (2.122)

The spinors v(i)(p) can be rewritten as

v(i) =

( √
σµpµη

i

−√σ̄µpµηi
)

.

(2.123)

Again the 2−dimensional spinors ηi satisfy

(ηr)+ηs = δrs. (2.124)

2.5 Lorentz Covariance

In this section we will refer to the Klein-Gordon wave function φ as a scalar field and to the
Dirac wave function ψ as a Dirac spinor field although we are still thinking of them as quantum
wave functions and not classical fields.

Scalar Fields: Let us recall that the set of all Lorentz transformations form a group called
the Lorentz group. An arbitrary Lorentz transformation acts as

xµ −→ x
′µ = Λµ νx

ν . (2.125)

In the inertial reference frame O the Klein-Gordon wave function is φ = φ(x). It is a scalar field.
Thus in the transformed reference frame O

′

the wave function must be φ
′

= φ
′

(x
′

) where

φ
′

(x
′

) = φ(x). (2.126)
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For a one-component field this is the only possible linear transformation law. The Klein-Gordon
equation in the reference frame O

′

if it holds is of the form

(

∂
′

µ∂
′µ +

m2c2

~2

)

φ
′

(x
′

) = 0. (2.127)

It is not difficult to show that

∂
′

µ∂
′µ = ∂µ∂

µ (2.128)

The Klein-Gordon (2.127) becomes

(

∂µ∂
µ +

m2c2

~2

)

φ(x) = 0. (2.129)

Vector Fields: Let V µ = V µ(x) be an arbitrary vector field (for example ∂µφ and the electro-
magnetic vector potential Aµ). Under Lorentz transformations it must transform as a 4−vector,
i.e. as in (2.125) and hence

V
′µ(x

′

) = ΛµνV
ν(x). (2.130)

This should be contrasted with the transformation law of an ordinary vector field V i(x) under
rotations in three dimensional space given by

V
′i(x

′

) = RijV j(x). (2.131)

The group of rotations in three dimensional space is a continuous group. The set of infinitesimal
transformations (the transformations near the identity) form a vector space which we call the
Lie algebra of the group. The basis vectors of this vector space are called the generators of
the Lie algebra and they are given by the angular momentum operators J i which satisfy the
commutation relations

[J i, Jj ] = i~ǫijkJk. (2.132)

A rotation with an angle |θ| about the axis θ̂ is obtained by exponentiation, viz

R = e−iθ
iJi

. (2.133)

The matrices R form an n−dimensional representation with n = 2j + 1 where j is the spin
quantum number. The angular momentum operators J i are given by

J i = −i~ǫijkxj∂k. (2.134)

This is equivalent to

J ij = ǫijkJk

= −i~(xi∂j − xj∂i). (2.135)

Generalization of this result to 4−dimensional Minkowski space yields the six generators of the
Lorentz group given by

Jµν = −i~(xµ∂ν − xν∂µ). (2.136)
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We compute the commutation relations

[Jµν , Jρσ] = i~

(

ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ
)

. (2.137)

A solution of (2.137) is given by the 4× 4 matrices

(J µν)αβ = i~(δµαδ
ν
β − δµβδνα). (2.138)

Equivalently we can write this solution as

(J µν)α β = i~(ηµαδνβ − δµβηνα). (2.139)

This representation is the 4−dimensional vector representation of the Lorentz group which is
denoted by (1/2, 1/2). It is an irreducible representation of the Lorentz group. A scalar field
transforms in the trivial representation of the Lorentz group denoted by (0, 0). It remains to
determine the transformation properties of spinor fields.

Spinor Fields We go back to the Dirac equation in the form

(i~γµ∂µ −mc)ψ = 0. (2.140)

This equation is assumed to be covariant under Lorentz transformations and hence one must
have the transformed equation

(i~γ
′µ∂

′

µ −mc)ψ
′

= 0. (2.141)

The Dirac γ matrices are assumed to be invariant under Lorentz transformations and thus

γ
′

µ = γµ. (2.142)

The spinor ψ will be assumed to transform under Lorentz transformations linearly, namely

ψ(x) −→ ψ
′

(x
′

) = S(Λ)ψ(x). (2.143)

Furthermore we have

∂
′

ν = (Λ−1)µ ν∂µ. (2.144)

Thus equation (2.141) is of the form

(i~(Λ−1)ν µS
−1(Λ)γ

′µS(Λ)∂ν −mc)ψ = 0. (2.145)

We can get immediately

(Λ−1)ν µS
−1(Λ)γ

′µS(Λ) = γν . (2.146)

Equivalently

(Λ−1)ν µS
−1(Λ)γµS(Λ) = γν . (2.147)

This is the transformation law of the γ matrices under Lorentz transformations. Thus the γ
matrices are invariant under the simultaneous rotations of the vector and spinor indices under
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Lorentz transformations. This is analogous to the fact that Pauli matrices σi are invariant under
the simultaneous rotations of the vector and spinor indices under spatial rotations.

The matrix S(Λ) form a 4−dimensional representation of the Lorentz group which is called
the spinor representation. This representation is reducible and it is denoted by (1/2, 0)⊕(0, 1/2).
It remains to find the matrix S(Λ). We consider an infinitesimal Lorentz transformation

Λ = 1− i

2~
ωαβJ αβ , Λ−1 = 1 +

i

2~
ωαβJ αβ . (2.148)

We can write S(Λ) as

S(Λ) = 1− i

2~
ωαβΓ

αβ , S−1(Λ) = 1 +
i

2~
ωαβΓ

αβ . (2.149)

The infinitesimal form of (2.147) is

−(J αβ)µ νγµ = [γν ,Γ
αβ ]. (2.150)

The fact that the index µ is rotated with J αβ means that it is a vector index. The spinor indices
are the matrix components of the γ matrices which are rotated with the generators Γαβ . A
solution is given by

Γµν =
i~

4
[γµ, γν ]. (2.151)

Explicitly

Γ0i =
i~

4
[γ0, γi] = − i~

2

(

σi 0
0 −σi

)

Γij =
i~

4
[γi, γj] = − i~

4

(

[σi, σj ] 0
0 [σi, σj ]

)

=
~

2
ǫijk

(

σk 0
0 σk

)

.

(2.152)

Clearly Γij are the generators of rotations. They are the direct sum of two copies of the generators
of rotation in three dimensional space. Thus immediately we conclude that Γ0i are the generators
of boosts.

2.6 Exercises and Problems

Scalar Product Show explicitly that the scalar product of two 4−vectors in spacetime is
invariant under boosts. Show that the scalar product is then invariant under all Lorentz trans-
formations.

Relativistic Mechanics

• Show that the proper time of a point particle -the proper time is the time measured by an
inertial observer flying with the particle- is invariant under Lorentz transformations. We
assume that the particle is moving with a velocity ~u with respect to an inertial observer O.

• Define the 4−vector velocity of the particle in spacetime. What is the spatial component.

• Define the energy-momentum 4−vector in spacetime and deduce the relativistic energy.

• Express the energy in terms of the momentum.

• Define the 4−vector force.
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Einstein’s Velocity Addition Rule Derive the velocity addition rule in special relativity.

Weyl Representation

• Show that the Weyl representation of Dirac matrices given by

γ0 =

(

0 12

12 0

)

, γi =

(

0 σi

−σi 0

)

,

solves Dirac-Clifford algebra.

• Show that

(γµ)+ = γ0γµγ0.

• Show that the Dirac equation can be put in the form of a schrödinger equation

i~
∂

∂t
ψ = Hψ,

with some Hamiltonian H .

Lorentz Invariance of the D’Alembertian Show that

η = ΛT ηΛ.

Λρ
µ = (Λ−1)µ ρ.

∂
′

ν = (Λ−1)µ ν∂µ.

∂
′

µ∂
′µ = ∂µ∂

µ.

Covariance of the Klein-Gordon equation Show that the Klein-Gordon equation is co-
variant under Lorentz transformations.

Vector Representations

• Write down the transformation property under ordinary rotations of a vector in three
dimensions. What are the generators J i. What is the dimensions of the irreducible repre-
sentations and the corresponding quantum numbers.

• The generators of rotation can be alternatively given by

J ij = ǫijkJk.

Calculate the commutators [J ij , Jkl].

• Write down the generators of the Lorentz group Jµν by simply generalizing J ij and show
that

[Jµν , Jρσ] = i~

(

ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ
)

.
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• Verify that

(J µν)αβ = i~(δµαδ
ν
β − δµβδνα),

is a solution. This is called the vector representation of the Lorentz group.

• Write down a finite Lorentz transformation matrix in the vector representation. Write down
an infinitesimal rotation in the xy−plane and an infinitesimal boost along the x−axis.

Dirac Spinors

• Introduce σµ = (1, σi) and σ̄µ = (1,−σi). Show that

(σµp
µ)(σ̄µp

µ) = m2c2.

• Show that the normalization condition ūu = 2mc for u(1) and u(2) yields

N (1) = N (2) =

√

m2c2

E
c + p3

.

• Show that the normalization condition v̄v = −2mc for v(1)(p) = u(3)(−p) and v(2)(p) =
u(4)(−p) yields

N (3) = N (4) =

√

m2c2

E
c − p3

.

• Show that we can rewrite the spinors u and v as

u(i) =

( √
σµpµξ

i

√
σ̄µpµξ

i

)

.

v(i) =

( √
σµpµη

i

−√σ̄µpµηi
)

.

Determine ξi and ηi.

Spin Sums Let u(r)(p) and v(r)(p) be the positive-energy and negative-energy solutions of the
free Dirac equation. Show that

•

ū(r)u(s) = 2mcδrs , v̄(r)v(s) = −2mcδrs , ū(r)v(s) = 0 , v̄(r)u(s) = 0.

•

u(r)+u(s) =
2E

c
δrs , v(r)+v(s) =

2E

c
δrs.

u(r)+(E, ~p)v(s)(E,−~p) = 0 , v(r)+(E,−~p)u(s)(E, ~p) = 0.

•

2
∑

s=1

u(s)(E, ~p)ū(s)(E, ~p) = γµpµ +mc ,

2
∑

s=1

v(s)(E, ~p)v̄(s)(E, ~p) = γµpµ −mc.
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Covariance of the Dirac Equation Determine the transformation property of the spinor ψ
under Lorentz transformations in order that the Dirac equation is covariant.

Spinor Bilinears Determine the transformation rule under Lorentz transformations of ψ̄, ψ̄ψ,
ψ̄γ5ψ, ψ̄γµψ, ψ̄γµγ5ψ and ψ̄Γµνψ.

Clifford Algebra

• Write down the solution of the Clifford algebra in three Euclidean dimensions. Construct
a basis for 2× 2 matrices in terms of Pauli matrices.

• Construct a basis for 4× 4 matrices in terms of Dirac matrices.
Hint: Show that there are 16 antisymmetric combinations of the Dirac gamma matrices in
1 + 3 dimensions.

Chirality Operator and Weyl Fermions

• We define the gamma five matrix (chirality operator) by

γ5 = iγ0γ1γ2γ3.

Show that

γ5 = − i

4!
ǫµνρσγ

µγνγργσ.

(γ5)2 = 1.

(γ5)+ = γ5.

{γ5, γµ} = 0.

[γ5,Γµν ] = 0.

• We write the Dirac spinor as

ψ =

(

ψL
ψR

)

.

By working in the Weyl representation show that Dirac representation is reducible.
Hint: Compute the eigenvalues of γ5 and show that they do not mix under Lorentz trans-
formations.

• Rewrite Dirac equation in terms of ψL and ψR. What is their physical interpretation.
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3
Canonical Quantization of Free Fields

3.1 Classical Mechanics

3.1.1 D’Alembert Principle

We consider a system of many particles and let ~ri and mi be the radius vector and the mass
respectively of the ith particle. Newton’s second law of motion for the ith particle reads

~Fi = ~F
(e)
i +

∑

j

~Fji =
d~pi
dt
. (3.1)

The external force acting on the ith particle is ~F
(e)
i whereas ~Fji is the internal force on the ith

particle due to the jth particle (~Fii = 0 and ~Fij = − ~Fji). The momentum vector of the ith
particle is ~pi = mi~vi = mi

d~ri
dt . Thus we have

~Fi = ~F
(e)
i +

∑

j

~Fji = mi
d2~ri
dt2

. (3.2)

By summing over all particles we get

0
∑

i

~Fi =
∑

i

~F
(e)
i =

∑

i

mi
d2~ri
dt2

=M
d2 ~R

dt2
. (3.3)

The total mass M is M =
∑

imi and the average radius vector ~R is ~R =
∑

imi~ri/M . This
is the radius vector of the center of mass of the system. Thus the internal forces if they obey
Newton’s third law of motion will have no effect on the motion of the center of mass.

The goal of mechanics is to solve the set of second order differential equations (3.2) for ~ri

given the forces ~F
(e)
i and ~Fji. This task is in general very difficult and it is made even more

complicated by the possible presence of constraints which limit the motion of the system. As an
example we take the class of systems known as rigid bodies in which the motion of the particles
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is constrained in such a way that the distances between the particles are kept fixed and do
not change in time. It is clear that constraints correspond to forces which can not be specified
directly but are only known via their effect on the motion of the system. We will only consider
holonomic constraints which can be expressed by equations of the form

f(~r1, ~r2, ~r3, ..., t) = 0. (3.4)

The constraints which can not be expressed in this way are called nonholonomic. In the example
of rigid bodies the constraints are holonomic since they can be expressed as

(~ri − ~rj)2 − c2ij = 0. (3.5)

The presence of constraints means that not all the vectors ~ri are independent, i.e not all the
differential equations (3.2) are independent. We assume that the system contains N particles
and that we have k holonomic constraints. Then there must exist 3N − k independent degrees
of freedom qi which are called generalized coordinates. We can therefore express the vectors ~ri
as functions of the independent generalized coordinates qi as

~r1 = ~r1(q1, q2, ...., q3N−k, t)

.

.

.

~rN = ~rN (q1, q2, ...., q3N−k, t). (3.6)

Let us compute the work done by the forces ~F
(e)
i and ~Fji in moving the system from an initial

configuration 1 to a final configuration 2. We have

W12 =
∑

i

∫ 2

1

~Fid~si =
∑

i

∫ 2

1

~F
(e)
i d~si +

∑

i,j

∫ 2

1

~Fjid~si. (3.7)

We have from one hand

W12 =
∑

i

∫ 2

1

~Fid~si =
∑

i

∫ 2

1

mi
d~vi
dt
~vidt

=
∑

i

∫ 2

1

d(
1

2
miv

2
i )

= T2 − T1. (3.8)

The total kinetic energy is defined by

T =
∑

i

1

2
miv

2
i . (3.9)

We assume that the external forces ~F
(e)
i are conservative, i.e they are derived from potentials Vi

such that

~F
(e)
i = −~∇iVi. (3.10)
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Then we compute

∑

i

∫ 2

1

~F
(e)
i d~si = −

∑

i

∫ 2

1

~∇iVid~si = −
∑

i

Vi|21. (3.11)

We also assume that the internal forces ~Fji are derived from potentials Vij such that

~Fji = −~∇iVij . (3.12)

Since we must have ~Fij = − ~Fji we must take Vij as a function of the distance |~ri − ~rj | only, i.e

Vij = Vji. We can also check that the force ~Fij lies along the line joining the particles i and j.

We define the difference vector by ~rij = ~ri − ~rj . We have then ~∇iVij = −~∇jVij = ~∇ijVij .
We then compute

∑

i,j

∫ 2

1

~Fjid~si = −1

2

∑

i,j

∫ 2

1

(~∇iVijd~si + ~∇jVijd~sj)

= −1

2

∑

i,j

∫ 2

1

~∇ijVij(d~si − d~sj)

= −1

2

∑

i,j

∫ 2

1

~∇ijVijd~rij

= −1

2

∑

i6=j
Vij |21. (3.13)

Thus the work done is found to be given by

W12 = −V2 + V1. (3.14)

The total potential is given by

V =
∑

i

Vi +
1

2

∑

i6=j
Vij . (3.15)

From the results W12 = T2 − T1 and W12 = −V2 + V1 we conclude that the total energy T + V
is conserved. The term 1

2

∑

i6=j Vij in V is called the internal potential energy of the system.
For rigid bodies the internal energy is constant since the distances |~ri−~rj | are fixed. Indeed in

rigid bodies the vectors d~rij can only be perpendicular to ~rij and therefore perpendicular to ~Fij
and as a consequence the internal forces do no work and the internal energy remains constant.
In this case the forces ~Fij are precisely the forces of constraints, i.e. the forces of constraint do
no work.

We consider virtual infinitesimal displacements δ~ri which are consistent with the forces and
constraints imposed on the system at time t. A virtual displacement δ~ri is to be compared with
a real displacement d~ri which occurs during a time interval dt. Thus during a real displacement
the forces and constraints imposed on the system may change. To be more precise an actual
displacement is given in general by the equation

d~ri =
∂~ri
∂t
dt+

3N−k
∑

j=1

∂~ri
∂qj

dqj . (3.16)
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A virtual displacement is given on the other hand by an equation of the form

δ~ri =

3N−k
∑

j=1

∂~ri
∂qj

δqj . (3.17)

The effective force on each particle is zero, i.e ~Fi eff = ~Fi − d~pi
dt = 0. The virtual work of this

effective force in the displacement δ~ri is therefore trivially zero. Summed over all particles we
get

∑

i

(~Fi −
d~pi
dt

)δ~ri = 0. (3.18)

We decompose the force ~Fi into the applied force ~F
(a)
i and the force of constraint ~fi, viz ~Fi =

~F
(a)
i + ~fi. Thus we have

∑

i

(~F
(a)
i − d~pi

dt
)δ~ri +

∑

i

~fiδ~ri = 0. (3.19)

We restrict ourselves to those systems for which the net virtual work of the forces of constraints
is zero. In fact virtual displacements which are consistent with the constraints imposed on the
system are precisely those displacements which are prependicular to the forces of constraints in
such a way that the net virtual work of the forces of constraints is zero. We get then

∑

i

(~F
(a)
i − d~pi

dt
)δ~ri = 0. (3.20)

This is the principle of virtual work of D’Alembert. The forces of constraints which as we have
said are generally unknown but only their effect on the motion is known do not appear explicitly
in D’Alembert principle which is our goal. Their only effect in the equation is to make the virtual
displacements δ~ri not all independent.

3.1.2 Lagrange’s Equations

We compute

∑

i

~F
(a)
i δ~ri =

∑

i,j

~F
(a)
i

∂~ri
∂qj

δqj

=
∑

j

Qjδqj . (3.21)

The Qj are the components of the generalized force. They are defined by

Qj =
∑

i

~F
(a)
i

∂~ri
∂qj

. (3.22)

Let us note that since the generalized coordinates qi need not have the dimensions of lenght the
components Qi of the generalized force need not have the dimensions of force.



YDRI QFT 33

We also compute

∑

i

d~pi
dt
δ~ri =

∑

i,j

mi
d2~ri
dt2

∂~ri
∂qj

δqj

=
∑

i,j

mi

[

d

dt

(

d~ri
dt

∂~ri
∂qj

)

− d~ri
dt

d

dt

(

∂~ri
∂qj

)]

δqj

=
∑

i,j

mi

[

d

dt

(

~vi
∂~ri
∂qj

)

− ~vi
∂~vi
∂qj

]

δqj . (3.23)

By using the result ∂~vi
∂q̇j

= ∂~ri
∂qj

we obtain

∑

i

d~pi
dt
δ~ri =

∑

i,j

mi

[

d

dt

(

~vi
∂~vi
∂q̇j

)

− ~vi
∂~vi
∂qj

]

δqj

=
∑

j

[

d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj

]

δqj . (3.24)

The total kinetic term is T =
∑

i
1
2miv

2
i . Hence D’Alembert’s principle becomes

∑

i

(~F
(a)
i − d~pi

dt
)δ~ri = −

∑

j

[

Qj −
d

dt

(

∂T

∂q̇j

)

+
∂T

∂qj

]

δqj = 0. (3.25)

Since the generalized coordinates qi for holonomic constraints can be chosen such that they are
all independent we get the equations of motion

−Qj +
d

dt

(

∂T

∂q̇j

)

− ∂T

∂qj
= 0. (3.26)

In above j = 1, ..., n where n = 3N − k is the number of independent generalized coordinates.

For conservative forces we have ~F
(a)
i = −~∇iV , i.e

Qj = −
∂V

∂qj
. (3.27)

Hence we get the equations of motion

d

dt

(

∂L

∂q̇j

)

− ∂L

∂qj
= 0. (3.28)

These are Lagrange’s equations of motion where the Lagrangian L is defined by

L = T − V. (3.29)

3.1.3 Hamilton’s Principle: The Principle of Least Action

In the previous section we have derived Lagrange’s equations from considerations involving virtual
displacements around the instantaneous state of the system using the differential principle of
D’Alembert. In this section we will rederive Lagrange’s equations from considerations involving
virtual variations of the entire motion between times t1 and t2 around the actual entire motion
between t1 and t2 using the integral principle of Hamilton.
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The instantaneous state or configuration of the system at time t is described by the n gen-
eralized coordinates q1, q2,...,qn. This is a point in the n-dimensional configuration space with
axes given by the generalized coordinates qi. As time evolves the system changes and the point
(q1, q2, ..., qn) moves in configuration space tracing out a curve called the path of motion of the
system.

Hamilton’s principle is less general than D’Alembert’s principle in that it describes only
systems in which all forces (except the forces of constraints) are derived from generalized scalar
potentials U . The generalized potentials are velocity-dependent potentials which may also depend
on time, i.e U = U(qi, q̇i, t). The generalized forces are obtained form U as

Qj = −
∂U

∂qj
+
d

dt

(

∂U

∂q̇j

)

. (3.30)

Such systems are called monogenic where Lagrange’s equations of motion will still hold with
Lagrangians given by L = T − U . The systems become conservative if the potentials depend
only on coordinates. We define the action between times t1 and t2 by the line integral

I[q] =

∫ t2

t1

Ldt , L = T − V. (3.31)

The Lagrangian is a function of the generalized coordinates and velocities qi and q̇i and of time
t, i.e L = L(q1, q2, ..., qn, q̇1, q̇2, ..., q̇n, t). The action I is a functional.

Hamilton’s principle can be states as follows. The line integral I has a stationary value, i.e
it is an extremum for the actual path of the motion. Therefore any first order variation of the
actual path results in a second order change in I so that all neighboring paths which differ from
the actual path by infintesimal displacements have the same action. This is a variational problem
for the action functional which is based on one single function which is the Lagrangian. Clearly
I is invariant to the system of generalized coordinates used to express L and as a consequence
the equations of motion which will be derived from I will be covariant. We write Hamilton’s
principle as follows

δ

δqi
I[q] =

δ

δqi

∫ t2

t1

L(q1, q2, ..., qn, q̇1, q̇2, ..., q̇n, t)dt. (3.32)

For systems with holonomic constraints it can be shown that Hamilton’s principle is a necessary
and sufficient condition for Lagrange’s equations. Thus we can take Hamilton’s principle as the
basic postulate of mechanics rather than Newton’s laws when all forces (except the forces of
constraints) are derived from potentials which can depend on the coordinates, velocities and
time.

Let us denote the soultions of the extremum problem by qi(t, 0). We write any other path
around the correct path qi(t, 0) as qi(t, α) = qi(t, 0)+αηi(t) where the ηi are arbitrary functions of
t which must vanish at the end points t1 and t2 and are continuous through the second derivative
and α is an infinitesimal parameter which labels the set of neighboring paths which have the
same action as the correct path. For this parametric family of curves the action becomes an
ordinary function of α given by

I(α) =

∫ t2

t1

L(qi(t, α), q̇i(t, α), t)dt. (3.33)

We define the virtual displacements δqi by

δqi =

(

∂qi
∂α

)

|α=0dα = ηidα. (3.34)
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Similarly the infinitesimal variation of I is defined by

δI =

(

dI

dα

)

|α=0dα. (3.35)

We compute

dI

dα
=

∫ t2

t1

(

∂L

∂qi

∂qi
∂α

+
∂L

∂q̇i

∂q̇i
∂α

)

dt

=

∫ t2

t1

(

∂L

∂qi

∂qi
∂α

+
∂L

∂q̇i

∂

∂t

∂qi
∂α

)

dt

=

∫ t2

t1

(

∂L

∂qi

∂qi
∂α

+
∂L

∂q̇i

d

dt

∂qi
∂α

)

dt

=

∫ t2

t1

(

∂L

∂qi

∂qi
∂α
− d

dt

(

∂L

∂q̇i

)

∂qi
∂α

)

dt+

(

∂L

∂q̇i

∂qi
∂α

)t2

t1

. (3.36)

The last term vanishes since all varied paths pass through the points (t1, yi(t1, 0) and (t2, yi(t2, 0)).
Thus we get

δI =

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

δqidt. (3.37)

Hamilton’s principle reads

δI

dα
=

(

dI

dα

)

|α=0 = 0. (3.38)

This leads to the equations of motion

∫ t2

t1

(

∂L

∂qi
− d

dt

(

∂L

∂q̇i

))

ηidt = 0. (3.39)

This should hold for any set of functions ηi. Thus by the fundamental lemma of the calculus of
variations we must have

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)

= 0. (3.40)

Formaly we write Hamilton’s principle as

δI

δqi
=

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)

= 0. (3.41)

These are Lagrange’s equations.

3.1.4 The Hamilton Equations of Motion

Again we will assume that the constraints are holonomic and the forces are monogenic, i.e they
are derived from generalized scalar potentials as in (3.30). For a system with n degrees of
freedom we have n Lagrange’s equations of motion. Since Lagrange’s equations are second order
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differential equations the motion of the system can be completely determined only after we also
supply 2n initial conditions. As an example of initial conditions we can provide the n qis and
the n q̇i’s at an initial time t0.

In the Hamiltonian formulation we want to describe the motion of the system in terms of first
order differential equations. Since the number of initial conditions must remain 2n the number
of first order differential equation which are needed to describe the system must be equal 2n,
i.e we must have 2n independent variables. It is only natural to choose the first half of the 2n
independent variables to be the n generalized coordinates qi. The second half will be chosen to
be the n generalized momenta pi defined by

pi =
∂L(qj , q̇j , t)

∂q̇i
. (3.42)

The pairs (qi, pi) are known as canonical variables. The generalized momenta pi are also known
as canonical or conjugate momenta.

In the Hamiltonian formulation the state or configuration of the system is described by the
point (q1, q2, ..., qn, p1, p2, ..., pn) in the 2n-dimensional space known as the phase space of the
system with axes given by the generalized coordinates and momenta qi and pi. The 2n first
order differential equations will describe how the point (q1, q2, ..., qn, p1, p2, ..., pn) moves inside
the phase space as the configuration of the system evolves in time.

The transition from the Lagrangian formulation to the Hamiltonian formulation corresponds
to the change of variables (qi, q̇i, t) −→ (qi, pi, t) which is an example of a Legendre transforma-
tion. Instead of the Lagrangian which is a function of qi,q̇i and t, viz L = L(qi, q̇i, t) we will
work in the Hamiltonian formulation with the Hamiltonian H which is a function of qi, pi and t
defined by

H(qi, pi, t) =
∑

i

q̇ipi − L(qi, q̇i, t). (3.43)

We compute from one hand

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt. (3.44)

From the other hand we compute

dH = q̇idpi + pidq̇i −
∂L

∂q̇i
dq̇i −

∂L

∂qi
dqi −

∂L

∂t
dt

= q̇idpi −
∂L

∂qi
dqi −

∂L

∂t
dt

= q̇idpi − ṗidqi −
∂L

∂t
dt. (3.45)

By comparison we get the canonical equations of motion of Hamilton

q̇i =
∂H

∂pi
, − ṗi =

∂H

∂qi
. (3.46)

We also get

−∂L
∂t

=
∂H

∂t
. (3.47)
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For a large class of systems and sets of generalized coordinates the Lagrangian can be decomposed
as L(qi, q̇i, t) = L0(qi, t)+L1(qi, q̇i, t)+L2(qi, q̇i, t) where L2 is a homogeneous function of degree
2 in q̇i whereas L1 is a homogeneous function of degree 1 in q̇i. In this case we compute

q̇ipi = q̇i
∂L1

∂q̇i
+ q̇i

∂L2

∂q̇i
= L1 + 2L2. (3.48)

Hence

H = L2 − L0. (3.49)

If the transformation equations which define the generalized coordinates do not depend on time
explicitly, i.e ~ri = ~ri(q1, q2, ..., qn) then ~vi =

∑

j
∂~ri
∂qj

q̇j and as a consequence T = T2 where T2 is

a function of qi and q̇i which is quadratic in the q̇i’s. In general the kinetic term will be of the
form T = T2(qi, q̇i, t) + T1(qi, q̇i, t) + T0(qi, t). Further if the potential does not depend on the
generalized velocities q̇i then L2 = T , L1 = 0 and L0 = −V . Hence we get

H = T + V. (3.50)

This is the total energy of the system. It is not difficult to show using Hamilton’s equations
that dH

dt = ∂H
∂t . Thus if V does not depend on time explicitly then L will not depend on time

explicitly and as a consequence H will be conserved.

3.2 Classical Free Field Theories

3.2.1 The Klein-Gordon Lagrangian Density

The Klein-Gordon wave equation is given by

(

∂µ∂
µ +

m2c2

~2

)

φ(x) = 0. (3.51)

We will consider a complex field φ so that we have also the independent equation

(

∂µ∂
µ +

m2c2

~2

)

φ∗(x) = 0. (3.52)

From now on we will reinterpret the wave functions φ and φ∗ as fields and the corresponding
Klein-Gordon wave equations as field equations.

A field is a dynamical system with an infinite number of degrees of freedom. Here the degrees
of freedom q~x(t) and q̄~x(t) are the values of the fields φ and φ∗ at the points ~x, viz

q~x(t) = φ(x0, ~x)

q̄~x(t) = φ∗(x0, ~x). (3.53)

Remark that

q̇~x =
dq~x
dt

= c∂0φ+
dxi

dt
∂iφ

˙̄q~x =
dq̄~x
dt

= c∂0φ
∗ +

dxi

dt
∂iφ

∗. (3.54)
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Thus the role of q̇~x and ˙̄q~x will be played by the values of the derivatives of the fields ∂µφ and
∂µφ

∗ at the points ~x.
The field equations (3.51) and (3.52) should be thought of as the equations of motion of the

degrees of freedom q~x and q̄~x respectively. These equations of motion should be derived from
a Lagrangian density L which must depend only on the fields and their first derivatives at the
point ~x. In other words L must be local. This is also the reason why L is a Lagrangian density
and not a Lagrangian. We have then

L = L(φ, φ∗, ∂µφ, ∂µφ∗) = L(x0, ~x). (3.55)

The Lagrangian is the integral over ~x of the Lagrangian density, viz

L =

∫

d~xL(x0, ~x). (3.56)

The action is the integral over time of L, namely

S =

∫

dtL =

∫

d4xL. (3.57)

The Lagrangian density L is thus a Lorentz scalar. In other words it is a scalar under Lorentz
transformations since the volume form d4x is a scalar under Lorentz transformations. We com-
pute

δS =

∫

d4xδL

=

∫

d4x

[

δφ
δL
δφ

+ δ∂µφ
δL
δ∂µφ

+ h.c

]

=

∫

d4x

[

δφ
δL
δφ

+ ∂µδφ
δL
δ∂µφ

+ h.c

]

=

∫

d4x

[

δφ
δL
δφ
− δφ∂µ

δL
δ∂µφ

+ ∂µ

(

δφ
δL
δ∂µφ

)

+ h.c

]

. (3.58)

The surface term is zero because the field φ at infinity is assumed to be zero and hence

δφ = 0 , xµ −→ ±∞. (3.59)

We get

δS =

∫

d4x

[

δφ

(

δL
δφ
− ∂µ

δL
δ∂µφ

)

+ h.c

]

. (3.60)

The principle of least action states that

δS = 0. (3.61)

We obtain the Euler-Lagrange equations

δL
δφ
− ∂µ

δL
δ∂µφ

= 0. (3.62)

δL
δφ∗
− ∂µ

δL
δ∂µφ∗

= 0. (3.63)
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These must be the equations of motion (3.52) and (3.51) respectively. A solution is given by

LKG =
~
2

2

(

∂µφ
∗∂µφ− m2c2

~2
φ∗φ

)

. (3.64)

The factor ~2 is included so that the quantity
∫

d3xLKG has dimension of energy. The coefficient
1/2 is the canonical convention.

The conjugate momenta π(x) and π∗(x) associated with the fields φ(x) and φ∗(x) are defined
by

π(x) =
δLKG
δ∂tφ

, π∗(x) =
δLKG
δ∂tφ∗

. (3.65)

We compute

π(x) =
~
2

2c2
∂tφ

∗ , π∗(x) =
~
2

2c2
∂tφ. (3.66)

The Hamiltonian density HKG is the Legendre transform of LKG defined by

HKG = π(x)∂tφ(x) + π∗(x)∂tφ
∗(x) − LKG

=
~
2

2

(

∂0φ
∗∂0φ+ ~∇φ∗~∇φ+

m2c2

~2
φ∗φ

)

. (3.67)

The Hamiltonian is given by

HKG =

∫

d3xHKG. (3.68)

3.2.2 The Dirac Lagrangian Density

The Dirac equation and its Hermitian conjugate are given by

(i~γµ∂µ −mc)ψ = 0. (3.69)

ψ̄(i~γµ
←−
∂µ +mc) = 0. (3.70)

The spinors ψ and ψ̄ will now be interpreted as fields. In other words at each point ~x the
dynamical variables are ψ(x0, ~x) and ψ̄(x0, ~x). The two field equations (3.69) and (3.70) will be
viewed as the equations of motion of the dynamical variables ψ(x0, ~x) and ψ̄(x0, ~x). The local
Lagrangian density will be of the form

L = L(ψ, ψ̄, ∂µψ, ∂µψ̄) = L(x0, ~x). (3.71)

The Euler-Lagrange equations are

δL
δψ
− ∂µ

δL
δ∂µψ

= 0. (3.72)

δL
δψ̄
− ∂µ

δL
δ∂µψ̄

= 0. (3.73)
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A solution is given by

LDirac = ψ̄(i~cγµ∂µ −mc2)ψ. (3.74)

The conjugate momenta Π̄(x) and Π(x) associated with the fields ψ(x) and ψ̄(x) are defined by

Π(x) =
δLDirac

δ∂tψ
, Π̄(x) =

δLDirac

δ∂tψ̄
. (3.75)

We compute

Π(x) = ψ̄i~γ0 , Π̄(x) = 0. (3.76)

The Hamiltonian density HDirac is the Legendre transform of LDirac defined by

HDirac = Π(x)∂tψ(x) + ∂tψ̄(x)Π̄(x)− LDirac

= ψ̄(−i~cγi∂i +mc2)ψ

= ψ+(−i~c~α~∇+mc2β)ψ. (3.77)

3.3 Canonical Quantization of a Real Scalar Field

We will assume here that the scalar field φ is real. Thus φ∗ = φ. This is a classical field theory
governed by the Lagrangian density and the Lagrangian

LKG =
~
2

2

(

∂µφ∂
µφ− m2c2

~2
φ2
)

. (3.78)

LKG =

∫

d3xLKG. (3.79)

The conjugate momentum is

π =
δLKG

δ∂tφ
=

~
2

c2
∂tφ. (3.80)

We expand the classical field φ as

φ(x0, ~x) =
c

~

∫

d3p

(2π~)3
Q(x0, ~p)e

i
~
~p~x. (3.81)

In other words Q(x0, ~p) is the Fourier transform of φ(x0, ~x) which is given by

c

~
Q(x0, ~p) =

∫

d3xφ(x0, ~x)e−
i
~
~p~x. (3.82)

Since φ∗ = φ we have Q(x0,−~p) = Q∗(x0, ~p). We compute

LKG =
1

2

∫

d3p

(2π~)3

[

∂tQ
∗(x0, ~p)∂tQ(x0, ~p)− ω(~p)2Q∗(x0, ~p)Q(x0, ~p)

]

=

∫

+

d3p

(2π~)3

[

∂tQ
∗(x0, ~p)∂tQ(x0, ~p)− ω(~p)2Q∗(x0, ~p)Q(x0, ~p)

]

. (3.83)
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ω2(~p) =
1

~2
(~p2c2 +m2c4). (3.84)

The sign
∫

+ stands for the integration over positive values of p1, p2 and p3. The equation of
motion obeyed by Q derived from the Lagrangian LKG is

(∂2t + ω(~p))Q(x0, ~p) = 0. (3.85)

The general solution is of the form

Q(x0, ~p) =
1

√

2ω(~p)

[

a(~p) e−iω(~p)t + a(−~p)∗ eiω(~p)t
]

. (3.86)

This satisfies Q(x0,−~p) = Q∗(x0, ~p). The conjugate momentum is

π(x0, ~x) =
~

c

∫

d3p

(2π~)3
P (x0, ~p)e

i
~
~p~x , P (x0, ~p) = ∂tQ(x0, ~p). (3.87)

~

c
P (x0, ~p) =

∫

d3xπ(x0, ~x)e−
i
~
~p~x. (3.88)

Since π∗ = π we have P (x0,−~p) = P ∗(x0, ~p). We observe that

P (x0, ~p) =
δLKG

δ∂tQ∗(x0, ~p)
. (3.89)

The Hamiltonian is

HKG =

∫

+

d3p

(2π~)3

[

P ∗(x0, ~p)P (x0, ~p) + ω2(~p)Q∗(x0, ~p)Q(x0, ~p)

]

. (3.90)

The real scalar field is therefore equivalent to an infinite collection of independent harmonic
oscillators with frequencies ω(~p) which depend on the momenta ~p of the Fourier modes.

Quantization of this dynamical system means replacing the scalar field φ and the conjugate
momentum field π by operators φ̂ and π̂ respectively which are acting in some Hilbert space. This
means that the coefficients a and a∗ become operators â and â+ and hence Q and P become
operators Q̂ and P̂ . The operators φ̂ and π̂ will obey the equal-time canonical commutation
relations due to Dirac, viz

[φ̂(x0, ~x), π̂(x0, ~y)] = i~δ3(~x− ~y). (3.91)

[φ̂(x0, ~x), φ̂(x0, ~y)] = [π̂(x0, ~x), π̂(x0, ~y)] = 0. (3.92)

These commutation relations should be compared with

[qi, pj] = i~δij . (3.93)

[qi, qj ] = [pi, pj ] = 0. (3.94)

The field operator φ̂ and the conjugate momentum operator π̂ are given by

~

c
φ̂(x0, ~x) =

∫

d3p

(2π~)3
Q̂(x0, ~p)e

i
~
~p~x =

∫

+

d3p

(2π~)3
Q̂(x0, ~p)e

i
~
~p~x +

∫

+

d3p

(2π~)3
Q̂+(x0, ~p)e−

i
~
~p~x.(3.95)
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c

~
π̂(x0, ~x) =

∫

d3p

(2π~)3
P̂ (x0, ~p)e

i
~
~p~x =

∫

+

d3p

(2π~)3
P̂ (x0, ~p)e

i
~
~p~x +

∫

+

d3p

(2π~)3
P̂+(x0, ~p)e−

i
~
~p~x.(3.96)

It is then not difficult to see that the commutation relations (3.91) and (3.92) are equivalent to
the equal-time commutation rules

[Q̂(x0, ~p), P̂+(x0, ~q)] = i~(2π~)3δ3(~p− ~q). (3.97)

[Q̂(x0, ~p), P̂ (x0, ~q)] = 0. (3.98)

[Q̂(x0, ~p), Q̂(x0, ~q)] = [P̂ (x0, ~p), P̂ (x0, ~q)] = 0. (3.99)

We have

Q̂(x0, ~p) =
1

√

2ω(~p)

[

â(~p) e−iω(~p)t + â(−~p)+ eiω(~p)t
]

. (3.100)

P̂ (x0, ~p) = −i
√

ω(~p)

2

[

â(~p) e−iω(~p)t − â(−~p)+ eiω(~p)t
]

. (3.101)

Since Q̂(x0, ~p) and P̂ (x0, ~p) satisfy (3.97), (3.98) and (3.99) the annihilation and creation oper-
ators a(~p) and a(~p)+ must satisfy

[â(~p), â(~q)+] = ~(2π~)3δ3(~p− ~q). (3.102)

The Hamiltonian operator is

ĤKG =

∫

+

d3p

(2π~)3

[

P̂+(x0, ~p)P̂ (x0, ~p) + ω2(~p)Q̂+(x0, ~p)Q̂(x0, ~p)

]

=

∫

+

d3p

(2π~)3
ω(~p)

[

â(~p)+â(~p) + â(~p)â(~p)+
]

= 2

∫

+

d3p

(2π~)3
ω(~p)

[

â(~p)+â(~p) +
~

2
(2π~)3δ3(0)

]

=

∫

d3p

(2π~)3
ω(~p)

[

â(~p)+â(~p) +
~

2
(2π~)3δ3(0)

]

. (3.103)

Let us define the vacuum (ground) state |0 > by

â(~p)|0 >= 0. (3.104)

The energy of the vacuum is therefore infinite since

ĤKG|0 > =

∫

d3p

(2π~)3
ω(~p)

[

~

2
(2π~)3δ3(0)

]

|0 > . (3.105)

This is a bit disturbing. But since all we can measure experimentally are energy differences from
the ground state this infinite energy is unobservable. We can ignore this infinite energy by the
so-called normal (Wick’s) ordering procedure defined by

: â(~p)â(~p)+ := â(~p)+â(~p) , : â(~p)+â(~p) := â(~p)+â(~p). (3.106)
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We then get

: ĤKG : =

∫

d3p

(2π~)3
ω(~p)â(~p)+â(~p). (3.107)

Clearly

: ĤKG : |0 > = 0. (3.108)

It is easy to calculate

[ĤKG, â(~p)
+] = ~ω(~p)â(~p)+ , [Ĥ, â(~p)] = −~ω(~p)â(~p). (3.109)

This establishes that â(~p)+ and â(~p) are raising and lowering operators. The one-particle states
are states of the form

|~p >= 1

c

√

2ω(~p)â(~p)+|0 > . (3.110)

Indeed we compute

ĤKG|~p >= ~ω(~p)|~p >= E(~p)|~p > , E(~p) =
√

~p2c2 +m2c4. (3.111)

The energy E(~p) is precisely the energy of a relativistic particle of mass m and momentum ~p.
This is the underlying reason for the interpretation of |~p > as a state of a free quantum particle
carrying momentum ~p and energy E(~p). The normalization of the one-particle state |~p > is
chosen such that

< ~p|~q >= 2

c2
(2π~)3E(~p)δ3(~p− ~q). (3.112)

We have assumed that < 0|0 >= 1. The factor
√

2ω(~p) in (3.110) is chosen so that the normal-
ization (3.112) is Lorentz invariant.

The two-particle states are states of the form (not bothering about normalization)

|~p, ~q >= â(~p)+â(~q)+|0 > . (3.113)

We compute in this case

ĤKG|~p, ~q >= ~(ω(~p) + ω(~q))|~p > . (3.114)

Since the creation operators for different momenta commute the state |~p, ~q > is the same as the
state |~q, ~p > and as a consequence our particles obey the Bose-Einstein statistics. In general

multiple-particle states will be of the form â(~p)+â(~q)+...â(~k)+|0 > with energy equal to ~(ω(~p)+

ω(~q) + ...+ ω(~k)).
Let us compute (with px = cp0t− ~p~x)

~

c
φ̂(x) =

∫

d3p

(2π~)3
Q̂(x0, ~p)e

i
~
~p~x

=

∫

d3p

(2π~)3
1

√

2ω(~p)

(

â(~p)e−
i
~
px + â(~p)+e

i
~
px

)

p0=E(~p)/c

. (3.115)

Finally we remark that the unit of ~ is [~] = ML2/T , the unit of φ is [φ] = 1/(L3/2M1/2),
the unit of π is [π] = (M3/2L1/2)/T , the unit of Q is [Q] = M1/2L5/2, the unit of P is [P ] =
(M1/2L5/2)/T , the unit of a is [a] = (M1/2L5/2)/T 1/2, the unit of H is [H ] = (ML2)/T 2 and
the unit of momentum p is [p] = (ML)/T .
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3.4 Canonical Quantization of Free Spinor Field

We expand the spinor field as

ψ(x0, ~x) =
1

~

∫

d3p

(2π~)3
χ(x0, ~p)e

i
~
~p~x. (3.116)

The Lagrangian in terms of χ and χ+ is given by

LDirac =

∫

d3xLDirac

=

∫

d3xψ̄(i~cγµ∂µ −mc2)ψ

=
c

~2

∫

d3p

(2π~)3
χ̄(x0, ~p)(i~γ0∂0 − γipi −mc)χ(x0, ~p). (3.117)

The classical equation of motion obeyed by the field χ(x0, ~p) is

(i~γ0∂0 − γipi −mc)χ(x0, ~p) = 0. (3.118)

This can be solved by plane-waves of the form

χ(x0, ~p) = e−
i
~
Etχ(~p), (3.119)

with

(γµpµ −mc)χ(~p) = 0. (3.120)

We know how to solve this equation. The positive-energy solutions are given by

χ+(~p) = u(i)(E, ~p). (3.121)

The corresponding plane-waves are

χ+(x
0, ~p) = e−iω(~p)tu(i)(E(~p), ~p) = e−iω(~p)tu(i)(~p). (3.122)

ω(~p) =
E

~
=

√

~p2c2 +m2c4

~
. (3.123)

The negative-energy solutions are given by

χ−(~p) = v(i)(−E,−~p). (3.124)

The corresponding plane-waves are

χ+(x
0, ~p) = eiω(~p)tv(i)(E(~p),−~p) = eiω(~p)tv(i)(−~p). (3.125)

In the above equations

E(~p) = E = ~ω(~p). (3.126)

Thus the general solution is a linear combination of the form

χ(x0, ~p) =

√

c

2ω(~p)

∑

i

(

e−iω(~p)tu(i)(~p)b(~p, i) + eiω(~p)tv(i)(−~p)d(−~p, i)∗
)

. (3.127)
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The spinor field becomes

ψ(x0, ~x) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)
e

i
~
~p~x
∑

i

(

e−iω(~p)tu(i)(~p)b(~p, i) + eiω(~p)tv(i)(−~p)d(−~p, i)∗
)

.

(3.128)

The conjugate momentum field is

Π(x0, ~x) = i~ψ+

= i

∫

d3p

(2π~)3
χ+(x0, ~p)e−

i
~
~p~x. (3.129)

After quantization the coefficients b(~p, i) and d(−~p, i)∗ and a s a consequence the spinors χ(x0, ~p)

and χ+(x0, ~p) become operators b̂(~p, i), d̂(−~p, i)+, χ̂(x0, ~p) and χ̂+(x0, ~p) respectively. As we
will see shortly the quantized Poisson brackets for a spinor field are given by anticommutation
relations and not commutation relations. In other words we must impose anticommutation
relations between the spinor field operator ψ̂ and the conjugate momentum field operator Π̂. In
the following we will consider both possibilities for the sake of completeness. We set then

[ψ̂α(x
0, ~x), Π̂β(x

0, ~y)]± = i~δαβδ
3(~x− ~y). (3.130)

The plus sign corresponds to anticommutator whereas the minus sign corresponds to commutator.
We can immediately compute

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]± = ~

2δαβ(2π~)
3δ3(~p− ~q). (3.131)

This is equivalent to

[b̂(~p, i), b̂(~q, j)+]± = ~δij(2π~)
3δ3(~p− ~q), (3.132)

[d̂(~p, i)+, d̂(~q, j)]± = ~δij(2π~)
3δ3(~p− ~q), (3.133)

and

[b̂(~p, i), d̂(~q, j)]± = [d̂(~q, j)+, b̂(~p, i)]± = 0. (3.134)

We go back to the classical theory for a moment. The Hamiltonian in terms of χ and χ+ is given
by

HDirac =

∫

d3xHDirac

=

∫

d3xψ̄(−i~cγi∂i +mc2)ψ

=
c

~2

∫

d3p

(2π~)3
χ̄(x0, ~p)(γipi +mc)χ(x0, ~p)

=
c

~2

∫

d3p

(2π~)3
χ+(x0, ~p)γ0(γipi +mc)χ(x0, ~p). (3.135)



46 YDRI QFT

The eigenvalue equation (3.120) can be put in the form

γ0(γipi +mc)χ(x0, ~p) =
E

c
χ(x0, ~p). (3.136)

On the positive-energy solution we have

γ0(γipi +mc)χ+(x
0, ~p) =

~ω(~p)

c
χ+(x

0, ~p). (3.137)

On the negative-energy solution we have

γ0(γipi +mc)χ−(x
0, ~p) = −~ω(~p)

c
χ−(x

0, ~p). (3.138)

Hence we have explicitly

cγ0(γipi +mc)χ(x0, ~p) =
~ω(~p)
√

2ω(~p)

∑

i

(

e−iω(~p)tu(i)(~p)b(~p, i)− eiω(~p)tv(i)(−~p)d(−~p, i)∗
)

.

(3.139)

The Hamiltonian becomes

HDirac =
1

~

∫

d3p

(2π~)3
E(~p)

∑

i

(

b(~p, i)∗b(~p, i)− d(−~p, i)d(−~p, i)∗
)

=

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b(~p, i)∗b(~p, i)− d(~p, i)d(~p, i)∗
)

. (3.140)

After quantization the Hamiltonian becomes an operator given by

ĤDirac =

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b̂(~p, i)+b̂(~p, i)− d̂(~p, i)d̂(~p, i)+
)

. (3.141)

At this stage we will decide once and for all whether the creation and annihilation operators of
the theory obey commutation relations or anticommutation relations. In the case of commutation
relations we see from the commutation relations (3.133) that d̂ is the creation operator and d̂+

is the annihilation operator. Thus the second term in the above Hamiltonian operator is already
normal ordered. However we observe that the contribution of the d−particles to the energy is
negative and thus by creating more and more d particles the energy can be lowered without limit.
The theory does not admit a stable ground state.

In the case of anticommutation relations the above Hamiltonian operator becomes

ĤDirac =

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b̂(~p, i)+b̂(~p, i) + d̂(~p, i)+d̂(~p, i)

)

. (3.142)

This expression is correct modulo an infinite constant which can be removed by normal ordering
as in the scalar field theory. The vacuum state is defined by

b̂(~p, i)|0 >= d̂(~p, i)|0 >= 0. (3.143)

Clearly

ĤDirac|0 > = 0. (3.144)
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We calculate

[ĤDirac, b̂(~p, i)
+] = ~ω(~p)b̂(~p, i)+ , [ĤDirac, b̂(~p, i)] = −~ω(~p)b̂(~p, i). (3.145)

[ĤDirac, d̂(~p, i)
+] = ~ω(~p)d̂(~p, i)+ , [ĤDirac, d̂(~p, i)] = −~ω(~p)d̂(~p, i). (3.146)

Excited particle states are obtained by acting with b̂(~p, i)+ on |0 > and excited antiparticle states

are obtained by acting with d̂(~p, i)+ on |0 >. The normalization of one-particle excited states
can be fixed in the same way as in the scalar field theory, viz

|~p, ib >=
√

2ω(~p)b̂(~p, i)+|0 > , |~p, id >=
√

2ω(~p)d̂(~p, i)+|0 > . (3.147)

Indeed we compute

ĤDirac|~p, ib >= E(~p)|~p, ib > , ĤDirac|~p, id >= E(~p)|~p, id > . (3.148)

< ~p, ib|~q, jb >=< ~p, id|~q, jd >= 2E(~p)δij(2π~)
3δ3(~p− ~q). (3.149)

Furthermore we compute

< 0|ψ̂(x)|~p, ib >= u(i)(~p)e−
i
~
px. (3.150)

< 0| ¯̂ψ(x)|~p, id >= v̄(i)(~p)e−
i
~
px. (3.151)

The field operator
¯̂
ψ(x) acting on the vacuum |0 > creates a particle at ~x at time t = x0/c

whereas ψ̂(x) acting on |0 > creates an antiparticle at ~x at time t = x0/c.

General multiparticle states are obtained by acting with b̂(~p, i)+ and d̂(~p, i)+ on |0 >. Since
the creation operators anticommute our particles will obey the Fermi-Dirac statistics. For ex-
ample particles can not occupy the same state, i.e. b̂(~p, i)+b̂(~p, i)+|0 >= 0.

The spinor field operator can be put in the form

ψ̂(x) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxu(i)(~p)b̂(~p, i) + e

i
~
pxv(i)(~p)d̂(~p, i)+

)

.

(3.152)

3.5 Propagators

3.5.1 Scalar Propagator

The probability amplitude for a scalar particle to propagate from the spacetime point y to the
spacetime x is

D(x− y) =< 0|φ̂(x)φ̂(y)|0 > . (3.153)

We compute

D(x− y) =
c2

~2

∫

d3p

(2π~)3

∫

d3q

(2π~)3
e−

i
~
px

√

2ω(~p)

e
i
~
qy

√

2ω(~q)
< 0|â(~p)â(~q)+|0 >

= c2
∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y). (3.154)
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This is Lorentz invariant since d3p/E(~p) is Lorentz invariant. Now we will relate this probability

amplitude with the commutator [φ̂(x), φ̂(y)]. We compute

[φ̂(x), φ̂(y)] =
c2

~2

∫

d3p

(2π~)3

∫

d3q

(2π~)3
1

√

2ω(~p)

1
√

2ω(~q)

×
(

e−
i
~
pxe

i
~
qy[â(~p), â(~q)+]− e i

~
pxe−

i
~
qy [â(~q), â(~p)+]

)

= D(x− y)−D(y − x). (3.155)

In the case of a spacelike interval, i.e. (x − y)2 = (x0 − y0)2 − (~x − ~y)2 < 0 the amplitudes
D(x− y) and D(y−x) are equal and thus the commutator vanishes. To see this more clearly we
place the event x at the origin of spacetime. The event y if it is spacelike it will lie outside the
light-cone. In this case there is an inertial reference frame in which the two events occur at the
same time, viz y0 = x0. In this reference frame the amplitude takes the form

D(x− y) = c2
∫

d3p

(2π~)3
1

2E(~p)
e

i
~
~p(~x−~y). (3.156)

It is clear that D(x− y) = D(y − x) and hence

[φ̂(x), φ̂(y)] = 0 , iff (x− y)2 < 0. (3.157)

In conclusion any two measurements in the Klein-Gordon theory with one measurement lying
outside the light-cone of the other measurement will not affect each other. In other words
measurements attached to events separated by spacelike intervals will commute.

In the case of a timelike interval, i.e. (x− y)2 > 0 the event y will lie inside the light-cone of
the event x. Furthermore there is an inertial reference frame in which the two events occur at
the same point, viz ~y = ~x. In this reference frame the amplitude is

D(x − y) = c2
∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p0(x0−y0). (3.158)

Thus in this case the amplitudes D(x − y) and D(y − x) are not equal. As a consequence the

commutator [φ̂(x), φ̂(y)] does not vanish and hence measurements attached to events separated
by timelike intervals can affect each.

Let us rewrite the commutator as

< 0|[φ̂(x), φ̂(y)]|0 > = [φ̂(x), φ̂(y)]

= c2
∫

d3p

(2π~)3
1

2E(~p)

(

e−
i
~
p(x−y) − e i

~
p(x−y)

)

= c2
∫

d3p

(2π~)3

(

1

2E(~p)
e−

i
~

(

E(~p)
c (x0−y0)−~p(~x−~y)

)

+
1

−2E(~p)
e−

i
~

(

−E(~p)
c (x0−y0)−~p(~x−~y)

)

)

. (3.159)

Let us calculate from the other hand

1

c

∫

dp0

2π

i

p2 −m2c2
e−

i
~
p(x−y) =

1

c

∫

dp0

2π

i

(p0)2 − E(~p)2

c2

e−
i
~
p(x−y)

=
1

c

∫

dp0

2π

i

(p0)2 − E(~p)2

c2

e−
i
~

(

p0(x0−y0)−~p(~x−~y)
)

.

(3.160)
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There are two poles on the real axis at p0 = ±E(~p)/c. In order to use the residue theorem we
must close the contour of integration. In this case we close the contour such that both poles are
included and assuming that x0−y0 > 0 the contour must be closed below. Clearly for x0−y0 < 0
we must close the contour above which then yields zero. We get then

1

c

∫

dp0

2π

i

p2 −m2c2
e−

i
~
p(x−y) =

i

2πc
(−2πi)

[(

p0 − E(~p)
c

(p0)2 − E(~p)2

c2

e−
i
~

(

p0(x0−y0)−~p(~x−~y)
)

)

p0=E(~p)/c

+

(

p0 + E(~p)
c

(p0)2 − E(~p)2

c2

e−
i
~

(

p0(x0−y0)−~p(~x−~y)
)

)

p0=−E(~p)/c

]

=
1

2E(~p)
e−

i
~

(

E(~p)
c (x0−y0)−~p(~x−~y)

)

+
1

−2E(~p)
e−

i
~

(

−E(~p)
c (x0−y0)−~p(~x−~y)

)

.

(3.161)

Thus we get

DR(x − y) = θ(x0 − y0) < 0|[φ̂(x), φ̂(y)]|0 >

= c~

∫

d4p

(2π~)4
i

p2 −m2c2
e−

i
~
p(x−y). (3.162)

Clearly this function satisfies

(∂µ∂
µ +

m2c2

~2
)DR(x− y) = −i c

~
δ4(x− y). (3.163)

This is a retarded (since it vanishes for x0 < y0) Green’s function of the Klein-Gordon equation.
In the above analysis the contour used is only one possibility among four possible contours.

It yielded the retarded Green’s function which is non-zero only for x0 > y0. The second contour
is the contour which gives the advanced Green’s function which is non-zero only for x0 < y0.
The third contour corresponds to the so-called Feynman prescription given by

DF (x− y) = c~

∫

d4p

(2π~)4
i

p2 −m2c2 + iǫ
e−

i
~
p(x−y). (3.164)

The convention is to take ǫ > 0. The fourth contour corresponds to ǫ < 0.
In the case of the Feynman prescription we close for x0 > y0 the contour below so only the

pole p0 = E(~p)/c− iǫ′ will be included. The integral reduces to D(x− y). For x0 < y0 we close
the contour above so only the pole p0 = −E(~p)/c+ iǫ

′

will be included. The integral reduces to
D(y − x). In summary we have

DF (x− y) = θ(x0 − y0)D(x − y) + θ(y0 − x0)D(y − x)
= < 0|T φ̂(x)φ̂(y)|0 > . (3.165)

The time-ordering operator is defined by

T φ̂(x)φ̂(y) = φ̂(x)φ̂(y) , x0 > y0

T φ̂(x)φ̂(y) = φ̂(y)φ̂(x) , x0 < y0. (3.166)

By construction DF (x − y) must satisfy the Green’s function equation (3.163). The Green’s
function DF (x− y) is called the Feynman propagator for a real scalar field.
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3.5.2 Dirac Propagator

The probability amplitudes for a Dirac particle to propagate from the spacetime point y to the
spacetime x is

Sab(x− y) =< 0|ψ̂a(x) ¯̂ψb(y)|0 > . (3.167)

The probability amplitudes for a Dirac antiparticle to propagate from the spacetime point x to
the spacetime y is

S̄ba(y − x) =< 0| ¯̂ψb(y)ψ̂a(x)|0 > . (3.168)

We compute

Sab(x− y) =
1

c
(i~γµ∂xµ +mc)abD(x− y). (3.169)

S̄ba(y − x) = −1

c
(i~γµ∂xµ +mc)abD(y − x). (3.170)

The retarded Green’s function of the Dirac equation can be defined by

(SR)ab(x− y) =
1

c
(i~γµ∂xµ +mc)abDR(x − y). (3.171)

It is not difficult to convince ourselves that

(SR)ab(x − y) = θ(x0 − y0) < 0|{ψ̂a(x), ¯̂ψb(y)}+|0 > . (3.172)

This satisfies the equation

(i~γµ∂xµ −mc)ca(SR)ab(x− y) = i~δ4(x− y)δcb. (3.173)

Another solution of this equation is the so-called Feynman propagator for a Dirac spinor field
given by

(SF )ab(x− y) =
1

c
(i~γµ∂xµ +mc)abDF (x− y). (3.174)

We compute

(SF )ab(x − y) = < 0|T ψ̂a(x) ¯̂ψb(y)|0 > . (3.175)

The time-ordering operator is defined by

T ψ̂(x)ψ̂(y) = ψ̂(x)ψ̂(y) , x0 > y0

T ψ̂(x)ψ̂(y) = −ψ̂(y)ψ̂(x) , x0 < y0. (3.176)

By construction SF (x− y) must satisfy the Green’s function equation (3.173). This can also be
checked directly from the Fourier expansion of SF (x− y) given by

(SF )ab(x− y) = ~

∫

d4p

(2π~)4
i(γµpµ +mc)ab
p2 −m2c2 + iǫ

e−
i
~
p(x−y). (3.177)
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3.6 Discrete Symmetries

In the quantum theory corresponding to each continuous Lorentz transformation Λ there is a
unitary transformation U(Λ) acting in the Hilbert space of state vectors. Indeed all state vectors
|α > will transform under Lorentz transformations as |α >−→ U(Λ)|α >. In order that the

general matrix elements < β|O(ψ̂, ¯̂ψ)|α > be Lorentz invariant the field operator ψ̂(x) must
transform as

ψ̂(x) −→ ψ̂
′

(x) = U(Λ)+ψ̂(x)U(Λ). (3.178)

Hence we must have

S(Λ)ψ̂(Λ−1x) = U(Λ)+ψ̂(x)U(Λ). (3.179)

In the case of a scalar field φ̂(x) we must have instead

φ̂(Λ−1x) = U(Λ)+φ̂(x)U(Λ). (3.180)

There are two discrete spacetime symmetries of great importance to particle physics. The first
discrete transformation is parity defined by

(t, ~x) −→ P (t, ~x) = (t,−~x). (3.181)

The second discrete transformation is time reversal defined by

(t, ~x) −→ T (t, ~x) = (−t, ~x). (3.182)

The Lorentz group consists of four disconnected subroups. The subgroup of continuous Lorentz
transformations consists of all Lorentz transfomrations which can be obtained from the iden-
tity transformation. This is called the proper orthochronous Lorentz group. The improper
orthochronous Lorentz group is obtained by the action of parity on the proper orthochronous
Lorentz group. The proper nonorthochronous Lorentz group is obtained by the action of time
reversal on the proper orthochronous Lorentz group. The improper nonorthochronous Lorentz
group is obtained by the action of parity and then time reversal or by the action of time reversal
and then parity on the proper orthochronous Lorentz group.

A third discrete symmetry of fundamental importance to particle physics is charge conjugation
operation C. This is not a spacetime symmetry. This is a symmetry under which particles become
their antiparticles. It is well known that parity P, time reversal T and charge conjugation C are
symmetries of gravitational, electromagnetic and strong interactions. The weak interactions
violate P and C and to a lesser extent T and CP but it is observed that all fundamental forces
conserve CPT.

3.6.1 Parity

The action of parity on the spinor field operator is

U(P )+ψ̂(x)U(P ) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxu(i)(~p)U(P )+b̂(~p, i)U(P )

+ e
i
~
pxv(i)(~p)U(P )+d̂(~p, i)+U(P )

)

= S(P )ψ̂(P−1x). (3.183)
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We need to rewrite this operator in terms of x̃ = P−1x = (x0,−~x). Thus px = p̃x̃ where
p̃ = P−1x = (p0,−~p). We have also σp = σ̄p̃ and σ̄p = σp̃. As a consequence we have

u(i)(~p) = γ0u(i)(~̃p) , v(i)(~p) = −γ0v(i)(~̃p). (3.184)

Hence

U(P )+ψ̂(x)U(P ) = γ0
1

~

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

e−
i
~
p̃x̃u(i)(~̃p)U(P )+b̂(~p, i)U(P )

− e
i
~
p̃x̃v(i)(~̃p)U(P )+d̂(~p, i)+U(P )

)

. (3.185)

The parity operation flips the direction of the momentum but not the direction of the spin. Thus
we expect that

U(P )+b̂(~p, i)U(P ) = ηbb̂(−~p, i) , U(P )+d̂(~p, i)U(P ) = ηdd̂(−~p, i). (3.186)

The phases ηb and ηa must clearly satisfy

η2b = 1 , η2d = 1. (3.187)

Hence we obtain

U(P )+ψ̂(x)U(P ) = γ0
1

~

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

ηbe
− i

~
p̃x̃u(i)(~̃p)b̂(~̃p, i)− η∗de

i
~
p̃x̃v(i)(~̃p)d̂(~̃p, i)+

)

.

(3.188)

This should equal S(P )ψ̂(x̃). Immediately we conclude that we must have

η∗d = −ηb. (3.189)

Hence

U(P )+ψ̂(x)U(P ) = ηbγ
0ψ̂(x̃). (3.190)

3.6.2 Time Reversal

The action of time reversal on the spinor field operator is

U(T )+ψ̂(x)U(T ) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

U(T )+e−
i
~
pxu(i)(~p)b̂(~p, i)U(T )

+ U(T )+e
i
~
pxv(i)(~p)d̂(~p, i)+U(T )

)

= S(T )ψ̂(T−1x). (3.191)

This needs to be rewritten in terms of x̃ = T−1x = (−x0, ~x). Time reversal reverses the direction
of the momentum in the sense that px = −p̃x̃ where p̃ = (p0,−~p). Clearly if U(T ) is an ordinary

unitary operator the phases e∓
i
~
px will go to their complex conjugates e±

i
~
px under time reversal.

In other words if U(T ) is an ordinary unitary operator the field operator U(T )+ψ̂(x)U(T ) can not
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be written as a constant matrix times ψ̂(x̃). The solution is to choose U(T ) to be an antilinear
operator defined by

U(T )+c = c∗U(T )+. (3.192)

Hence we get

U(T )+ψ̂(x)U(T ) =
1

~

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

e−
i
~
p̃x̃u(i)∗(~p)U(T )+b̂(~p, i)U(T )

+ e
i
~
p̃x̃v(i)∗(~p)U(T )+d̂(~p, i)+U(T )

)

. (3.193)

We recall that

u(1)(~p) = N (1)

(

ξ10
E
c +~σ~p

mc ξ10

)

, v(1) = N (3)

(

−
E
c −~σ~p
mc η10
η10

)

. (3.194)

Hence (by using σi∗ = −σ2σiσ2) we obtain

u(1)∗(~p) = N (1)

(

ξ1∗0
σ2

E
c −~σ~p
mc σ2ξ1∗0

)

= N (1)γ1γ3

(

−iσ2ξ1∗0
E
c −~σ~p
mc (−iσ2ξ1∗0 )

)

.

(3.195)

v(1)∗(~p) = N (3)

(

σ2 −E
c +~σ~p

mc σ2η1∗0
η1∗0

)

= N (3)γ1γ3

(

−E
c +~σ~p

mc (−iσ2η1∗0 )
−iσ2η1∗0

)

.

(3.196)

We define

ξ−s0 = −iσ2ξs∗0 , η−s0 = iσ2ηs∗0 . (3.197)

Note that we can take ξ−s0 proportional to ηs0. We obtain then

u(1)∗(~p) = N (1)γ1γ3

(

ξ−1
0

E
c −~σ~p
mc ξ−1

0

)

= γ1γ3
( √

σµp̃µξ
−1

√

σ̄µp̃µξ
−1

)

= γ1γ3u(−1)(~̃p).

(3.198)

v(1)∗(~p) = −N (3)γ1γ3

(

−E
c +~σ~p

mc η−1
0

η−1
0

)

= −γ1γ3
( √

σµp̃µη
−1

−
√

σ̄µp̃µη
−1

)

= −γ1γ3v(−1)(~̃p).

(3.199)

Similarly we can show that

u(2)∗(~p) = γ1γ3u(−2)(~̃p) , v(2)∗(~p) = −γ1γ3v(−2)(~̃p). (3.200)

In the above equations

ξ−s = N (1)(−p̃3) 1
√

σµp̃µ
ξ−s0 , η−s = −N (3)(−p̃3) 1

√

σ̄µp̃µ
ηs0. (3.201)
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Let us remark that if ξi0 is an eigenvector of ~σn̂ with spin s then ξ−i0 is an eigenvector of ~σn̂ with
spin −s, viz

~σn̂ξi0 = sξi0 ⇔ ~σn̂ξ−i0 = −sξ−i0 . (3.202)

Now going back to equation (3.193) we get

U(T )+ψ̂(x)U(T ) =
1

~
γ1γ3

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

e−
i
~
p̃x̃u(−i)(~̃p)U(T )+b̂(~p, i)U(T )

− e
i
~
p̃x̃v(−i)(~̃p)U(T )+d̂(~p, i)+U(T )

)

. (3.203)

Time reversal reverses the direction of the momentum and of the spin. Thus we write

U(T )+b̂(~p, i)U(T ) = ηbb̂(−~p,−i) , U(T )+d̂(~p, i)U(T ) = ηdd̂(−~p,−i). (3.204)

We get then

U(T )+ψ̂(x)U(T ) =
1

~
γ1γ3

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

ηbe
− i

~
p̃x̃u(−i)(~̃p)b̂(~̃p,−i)

− η∗de
i
~
p̃x̃v(−i)(~̃p)d̂(~̃p,−i)+

)

. (3.205)

By analogy with ξ−s0 = −iσ2ξs∗0 we define

b̂(~̃p,−i) = −(−iσ2)ij b̂(~̃p, j) , d̂(~̃p,−i) = −(−iσ2)ij d̂(~̃p, j). (3.206)

Also we choose

η∗d = −ηb. (3.207)

Hence

U(T )+ψ̂(x)U(T ) =
ηb
~
γ1γ3

∫

d3p̃

(2π~)3

√

c

2ω(~̃p)

∑

i

(

e−
i
~
p̃x̃u(−i)(~̃p)b̂(~̃p,−i) + e

i
~
p̃x̃v(−i)(~̃p)d̂(~̃p,−i)+

)

= ηbγ
1γ3ψ̂(−x0, ~x). (3.208)

3.6.3 Charge Conjugation

This is defined simply by (with C+ = C−1 = C)

Cb̂(~p, i)C = d̂(~p, i) , Cd̂(~p, i)C = b̂(~p, i) (3.209)

Hence

Cψ̂(x)C =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxu(i)(~p)d̂(~p, i) + e

i
~
pxv(i)(~p)b̂(~p, i)+

)

.

(3.210)
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Let us remark that (by choosing N (1)ξ−i0 = −N (3)ηi0 or equivalently ξ−i = ηi)

u(1)∗(~p) = iN (1)γ2

(

−
E
c −~σ~p
mc ξ−1

0

ξ−1
0

)

= −iN (3)γ2

(

−
E
c −~σ~p
mc η10
η10

)

= −iγ2v(1)(~p).

(3.211)

In other words

u(1)(~p) = −iγ2v(1)∗(~p) , v(1)(~p) = −iγ2u(1)∗(~p). (3.212)

Similarly we find

u(2)(~p) = −iγ2v(2)∗(~p) , v(2)(~p) = −iγ2u(2)∗(~p). (3.213)

Thus we have

Cψ̂(x)C =
1

~
(−iγ2)

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxv(i)∗(~p)d̂(~p, i) + e

i
~
pxu(i)∗(~p)b̂(~p, i)+

)

=
1

~
(−iγ2)

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e
i
~
pxv(i)(~p)d̂(~p, i)+ + e−

i
~
pxu(i)(~p)b̂(~p, i)

)∗

= −iγ2ψ∗(x). (3.214)

3.7 Exercises and Problems

Scalars Commutation Relations Show that

•

Q̂(x0,−~p) = Q̂+(x0, ~p).

•

[Q̂(x0, ~p), P̂+(x0, ~q)] = i~(2π~)3δ3(~p− ~q).

•

[â(~p), â(~q)+] = ~(2π~)3δ3(~p− ~q).

The One-Particle States For a real scalar field theory the one-particle states are defined by

|~p >= 1

c

√

2ω(~p)â(~p)+|0 > .

• Compute the energy of this state.

• Compute the scalar product < ~p|~q > and show that it is Lorentz invariant.

• Show that φ̂(x)|0 > can be interpreted as the eigenstate |~x > of the position operator at
time x0.
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Momentum Operator

1) Compute the total momentum operator of a quantum real scalar field in terms of the
creation and annihilation operators â(~p)+ and â(~p).

2) What is the total momentum operator for a Dirac field.

Fermions Anticommutation Relations Show that

•

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]+ = ~

2δαβ(2π~)
3δ3(~p− ~q).

•

[b̂(~p, i), b̂(~q, j)+]+ = [d̂(~p, i)+, d̂(~q, j)]+ = ~δij(2π~)
3δ3(~p− ~q).

[b̂(~p, i), d̂(~q, j)]+ = [d̂(~q, j)+, b̂(~p, i)]± = 0.

Retarded Propagator The retarded propagator is

DR(x − y) = c~

∫

d4p

(2π~)4
i

p2 −m2c2
e−

i
~
p(x−y).

Show that the Klein-Gordon equation with contact term, viz

(∂µ∂
µ +

m2c2

~2
)DR(x− y) = −i c

~
δ4(x− y).

Feynman Propagator We give the scalar Feynman propagator by the equation

DF (x− y) = c~

∫

d4p

(2π~)4
i

p2 −m2c2 + iǫ
e−

i
~
p(x−y).

• Perform the integral over p0 and show that

DF (x− y) = θ(x0 − y0)D(x − y) + θ(y0 − x0)D(y − x).

• Show that

DF (x− y) = < 0|T φ̂(x)φ̂(y)|0 >,

where T is the time-ordering operator.
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The Dirac Propagator The probability amplitudes for a Dirac particle (antiparticle) to prop-
agate from the spacetime point y (x) to the spacetime x (y) are

Sab(x− y) =< 0|ψ̂a(x) ¯̂ψb(y)|0 > .

S̄ba(y − x) =< 0| ¯̂ψb(y)ψ̂a(x)|0 > .

1) Compute S and S̄ in terms of the Klein-Gordon propagator D(x− y) given by

D(x − y) =

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y).

2) Show that the retarded Green’s function of the Dirac equation is given by

(SR)ab(x− y) = < 0|{ψ̂a(x), ¯̂ψb(y)}|0 > .

3) Verify that SR satisfies the Dirac equation

(i~γµ∂xµ −mc)ca(SR)ab(x− y) = i
~

c
δ4(x − y)δcb.

4) Derive an expression of the Feynman propagator in terms of the Dirac fields ψ̂ and
¯̂
ψ and

then write down its Fourier Expansion.

Dirac Hamiltonian Show that the Dirac Hamiltonian

ĤDirac =

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b̂(~p, i)+b̂(~p, i) + d̂(~p, i)+d̂(~p, i)

)

,

satisfies

[ĤDirac, b̂(~p, i)
+] = ~ω(~p)b̂(~p, i)+ , [ĤDirac, d̂(~p, i)

+] = ~ω(~p)d̂(~p, i)+.

Energy-Momentum Tensor Noether’s theorem states that each continuous symmetry trans-
formation which leaves the action invariant corresponds to a conservation law and as a conse-
quence leads to a constant of the motion.

We consider a single real scalar field φ with a Lagrangian density L(φ, ∂µφ). Prove Noether’s
theorem for spacetime translations given by

xµ −→ x
′µ = xµ + aµ.

In particular determine the four conserved currents and the four conserved charges (constants of
the motion) in terms of the field φ.

Electric Charge

1) The continuity equation for a Dirac wave function is

∂µJ
µ = 0 , Jµ = ψ̄γµψ.

The current Jµ is conserved. According to Noether’s theorem this conserved current (when
we go to the field theory) must correspond to the invariance of the action under a symmetry
principle. Determine the symmetry transformations in this case.
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2) The associated conserved charge is

Q =

∫

d3xJ0.

Compute Q for a quantized Dirac field. What is the physical interpretation of Q.

Chiral Invariance

1) Rewrite the Dirac Lagrangian in terms of ψL and ψR.

2) The Dirac Lagrangian is invariant under the vector transformations

ψ −→ eiαψ.

Derive the conserved current jµ.

3) The Dirac Lagrangian is almost invariant under the axial vector transformations

ψ −→ eiγ
5αψ.

Derive the would-be current jµ5 in this case. Determine the condition under which this
becomes a conserved current.

4) Show that in the massless limit

jµ = jµL + jµR , jµ5 = −jµL + jµR.

jµL = Ψ̄Lγ
µΨL , j

µ
R = Ψ̄Rγ

µΨR.

Parity and Time Reversal Determine the transformation rule under parity and time reversal
transformations of ψ̄, ψ̄ψ, iψ̄γ5ψ, ψ̄γµψ and ψ̄γµγ5ψ.

Angular Momentum of Dirac Field

• Write down the infinitesimal Lorentz transformation corresponding to an infintesimal ro-
tation around the z axis with an angle θ.

• From the effect of a Lorentz transformation on a Dirac spinor calculate the variation in the
field at a fixed point, viz

δψ(x) = ψ
′

(x) − ψ(x).

• Using Noether’s theorem compute the conserved current jµ associated with the invariance
of the Lagrangian under the above rotation. The charge J3 is defined by

J3 =

∫

d3xj0.

Show that J3 is conserved and derive an expression for it in terms of the Dirac field. What
is the physical interpretation of J3. What is the charge in the case of a general rotation.
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• In the quantum theory J3 becomes an operator. What is the angular momentum of the
vacuum.

• What is the angular momentum of a one-particle zero-momentum state defined by

|~0, sb >=
√

2mc2

~
b̂(~0, s)+|0 > .

Hint: In order to answer this question we need to compute the commutator [Ĵ3, b̂(~0, s)+].

• By analogy what is the angular momentum of a one-antiparticle zero-momentum state
defined by

|~0, sd >=
√

2mc2

~
d̂(~0, s)+|0 > .
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4
The S−Matrix and Feynman Diagrams For

Phi-Four Theory

4.1 Forced Scalar Field

4.1.1 Asymptotic Solutions

We have learned that a free neutral particle of spin 0 can be described by a real scalar field with
a Lagrangian density given by (with ~ = c = 1)

L0 =
1

2
∂µφ∂

µφ− m2

2
φ2. (4.1)

The free field operator can be expanded as (with p0 = E(~p) = E~p)

φ̂(x) =

∫

d3p

(2π)3
1

√

2E(~p)

(

â(~p)e−ipx + â(~p)+eipx
)

=

∫

d3p

(2π)3
Q̂(t, ~p)ei~p~x. (4.2)

Q̂(t, ~p) =
1

√

2E~p

(

â(~p)e−iE~pt + â(−~p)+eiE~pt

)

. (4.3)

The simplest interaction we can envisage is the action of an arbitrary external force J(x) on the
real scalar field φ(x). This can be described by adding a term of the form Jφ to the Lagrangian
density L0. We get then the Lagrangian density

L =
1

2
∂µφ∂

µφ− m2

2
φ2 + Jφ. (4.4)

The equations of motion become

(∂µ∂
µ +m2)φ = J. (4.5)
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We expand the source in Fourier modes as

J(x) =

∫

d3p

(2π)3
j(t, ~p)ei~p~x. (4.6)

We get then the equations of motion in momentum space

(∂2t + E2
~p)Q(t, ~p) = j(t, ~p). (4.7)

By assuming that j(t, ~p) vanishes outside a finite time interval we conclude that for early and
late times where j(t, ~p) is zero the field is effectively free. Thus for early times we have

Q̂(t, ~p) = Q̂in(t, ~p) =
1

√

2E~p

(

âin(~p)e
−iE~pt + âin(−~p)+eiE~pt

)

, t −→ −∞. (4.8)

For late times we have

Q̂(t, ~p) = Q̂out(t, ~p) =
1

√

2E~p

(

âout(~p)e
−iE~pt + âout(−~p)+eiE~pt

)

, t −→ +∞. (4.9)

The general solution is of the form

Q̂(t, ~p) = Q̂in(t, ~p) +
1

E~p

∫ t

−∞
dt

′

sinE~p(t− t
′

)j(t
′

, ~p). (4.10)

Clearly for early times t −→ −∞ we get Q̂ −→ Q̂in. On the other hand since for late times
t −→ +∞ we have Q̂ −→ Q̂out we must have

Q̂out(t, ~p) = Q̂in(t, ~p) +
1

E~p

∫ +∞

−∞
dt

′

sinE~p(t− t
′

)j(t
′

, ~p). (4.11)

We define the positive-energy and the negative-energy parts of Q̂ by

Q̂+(t, ~p) =
1

√

2E~p
â(~p)e−iE~pt , Q̂−(t, ~p) =

1
√

2E~p
â(−~p)+eiE~pt. (4.12)

Equation (4.10) is equivalent to the two equations

Q̂±(t, ~p) = Q̂±
in(t, ~p)±

i

2E~p

∫ t

−∞
dt

′

e∓iE~p(t−t
′
)j(t

′

, ~p). (4.13)

The Feynman propagator in one-dimension is given by

G~p(t− t
′

) =
e−iE~p|t−t

′ |

2E~p
=

∫

dE

2π

i

E2 − E2
~p + iǫ

e−iE(t−t′ ). (4.14)

Note that in our case t− t′ > 0. Hence

Q̂+(t, ~p) = Q̂+
in(t, ~p) + i

∫ t

−∞
dt

′

G~p(t− t
′

)j(t
′

, ~p). (4.15)

Q̂−(t, ~p) = Q̂−
in(t, ~p)− i

∫ t

−∞
dt

′

G~p(t
′ − t)j(t′ , ~p). (4.16)
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For late times we get

Q̂+
out(t, ~p) = Q̂+

in(t, ~p) + i

∫ +∞

−∞
dt

′

G~p(t− t
′

)j(t
′

, ~p). (4.17)

Q̂−
out(t, ~p) = Q̂−

in(t, ~p)− i
∫ +∞

−∞
dt

′

G~p(t
′ − t)j(t′ , ~p). (4.18)

These two equations are clearly equivalent to equation (4.11).
The above two equations can be rewritten as

Q̂±
out(t, ~p) = Q̂±

in(t, ~p)±
i

2E~p

∫ +∞

−∞
dt

′

e∓iE~p(t−t
′
)j(t

′

, ~p). (4.19)

In terms of the creation and annihilation operators this becomes

âout(~p) = âin(~p) +
i

√

2E~p
j(p) , âout(~p)

+ = âin(~p)
+ − i

√

2E~p
j(−p). (4.20)

j(p) ≡ j(E~p, ~p) =
∫

dteiE~ptj(t, ~p). (4.21)

We observe that the "in" operators and the "out" operators are different. Hence there exists two
different Hilbert spaces and as a consequence two different vacua |0 in > and |0 out > defined
by

âout(~p)|0 out >= 0 , âin(~p)|0 in >= 0 ∀~p. (4.22)

4.1.2 The Schrodinger, Heisenberg and Dirac Pictures

The Lagrangian from which the equation of motion (4.7) is derived is

∫

+

d3p

(2π)3

(

∂tQ(t, ~p)∗∂tQ(t, ~p)− E2
~pQ(t, ~p)∗Q(t, ~p) + j(t, ~p)∗Q(t, ~p) + j(t, ~p)Q(t, ~p)∗

)

.

(4.23)

The corresponding Hamiltonian is (with P (t, ~p) = ∂tQ(t, ~p))

∫

+

d3p

(2π)3

(

P (t, ~p)∗P (t, ~p) + E2
~pQ(t, ~p)∗Q(t, ~p)− j(t, ~p)∗Q(t, ~p)− j(t, ~p)Q(t, ~p)∗

)

.

(4.24)

The operators P̂ (t, ~p) and Q̂(t, ~p) are the time-dependent Heisenberg operators. The time-
independent Schrodinger operators will be denoted by P̂ (~p) and Q̂(~p). In the Schrodinger picture
the Hamiltonian is given by

∫

+

d3p

(2π)3

(

P (~p)∗P (~p) + E2
~pQ(~p)∗Q(~p)− j(t, ~p)∗Q(~p)− j(t, ~p)Q(~p)∗

)

. (4.25)
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This Hamiltonian depends on time only through the time-dependence of the source. Using box
normalization the momenta become discrete and the measure

∫

d3p/(2π)3 becomes the sum
∑

~p /V . Thus the Hamiltonian becomes

∑

p1>0

∑

p2>0

∑

p3>0

H~p(t). (4.26)

We recall the equal time commutation relations [Q̂(t, ~p), P̂ (t, ~p)+] = i(2π)3δ3(~p−~q) and [Q̂(t, ~p), P̂ (t, ~p)] =
[Q̂(t, ~p), Q̂(t, ~p)] = [P̂ (t, ~p), P̂ (t, ~p)] = 0. Using box normalization the equal time commutation
relations take the form

[Q̂(t, ~p), P̂ (t, ~p)+] = iV δ~p,~q

[Q̂(t, ~p), P̂ (t, ~p)] = [Q̂(t, ~p), Q̂(t, ~p)] = [P̂ (t, ~p), P̂ (t, ~p)] = 0. (4.27)

The Hamiltonian of a single forced oscillator which has a momentum ~p is

H~p(t) =
1

V

(

P (~p)∗P (~p) + E2
~pQ(~p)∗Q(~p)

)

+ V (t, ~p). (4.28)

The potential is defined by

V (t, ~p) = − 1

V

(

j(t, ~p)∗Q(~p) + j(t, ~p)Q(~p)∗
)

. (4.29)

The unitary time evolution operator must solve the Schrodinger equation

i∂tU(t) = Ĥ~p(t)U(t). (4.30)

The Heisenberg and Schrodinger operators are related by

Q̂(t, ~p) = U(t)−1Q̂(~p)U(t). (4.31)

We introduce the interaction picture through the unitary operator Ω defined by

U(t) = e−itĤ~pΩ(t). (4.32)

In the above equation H~p is the free Hamiltonian density, viz

H~p =
1

V

(

P (~p)∗P (~p) + E2
~pQ(~p)∗Q(~p)

)

. (4.33)

The operator Ω satisfies the Schrodinger equation

i∂tΩ(t) = V̂I(t, ~p)Ω(t). (4.34)

V̂I(t, ~p) = eitĤ~p V̂ (t, ~p)e−itĤ~p

= − 1

V
(j(t, ~p)∗Q̂I(t, ~p) + j(t, ~p)Q̂I(t, ~p)

+). (4.35)

The interaction, Schrodinger and Heisenberg operators are related by

Q̂I(t, ~p) = eitĤ~pQ̂(~p)e−itĤ~p

= Ω(t)U(t)−1Q̂(~p)U(t)Ω(t)−1

= Ω(t)Q̂(t, ~p)Ω(t)−1. (4.36)
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We write this as

Q̂(t, ~p) = Ω(t)−1Q̂I(t, ~p)Ω(t). (4.37)

It is not difficult to show that the operators Q̂I(t, ~p) and P̂I(t, ~p) describe free oscillators, viz

(∂2t + E2
~p)Q̂I(t, ~p) = 0 , (∂2t + E2

~p)P̂I(t, ~p) = 0. (4.38)

4.1.3 The S−Matrix

Single Oscillator: The probability amplitude that the oscillator remains in the ground state
is < 0 out|0 in >. In general the matrix of transition amplitudes is

Smn =< m out|n in > . (4.39)

We define the S−matrix S by

Smn =< m in|S|n in > . (4.40)

In other words

< m out| =< m in|S. (4.41)

It is not difficult to see that S is a unitary matrix since the states |m in > and |m in > are
normalized and complete. Equation (4.41) is equivalent to

< 0 out|(âout(~p))m = < 0 in|(âin(~p))mS
= < 0 out|S−1(âin(~p))

mS

= < 0 out|(S−1âin(~p)S)
m. (4.42)

Thus

âout(~p) = S−1âin(~p)S. (4.43)

This can also be written as

Q̂out(t, ~p) = S−1Q̂in(t, ~p)S. (4.44)

From the other hand, the solution of the differential equation (4.34) can be obtained by
iteration as follows. We write

Ω(t) = 1 + Ω1(t) + Ω2(t) + Ω3(t) + ... (4.45)

The operator Ωn(t) is proportional to the nth power of the interaction V̂I(t). By substitution we
get the differential equations

i∂tΩ1(t) = V̂I(t, ~p)⇔ Ω1(t) = −i
∫ t

−∞
dt1V̂I(t1, ~p). (4.46)

i∂tΩn(t) = V̂I(t, ~p)Ωn−1(t)⇔ Ωn(t) = −i
∫ t

−∞
dt1V̂I(t, ~p)Ωn−1(t1) , n ≥ 2. (4.47)
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Thus we get the solution

Ω(t) = 1− i
∫ t

−∞
dt1V̂I(t1, ~p) + (−i)2

∫ t

−∞
dt1V̂I(t1, ~p)

∫ t1

−∞
dt2V̂I(t2, ~p)

+ (−i)3
∫ t

−∞
dt1V̂I(t1, ~p)

∫ t1

−∞
dt2V̂I(t2, ~p)

∫ t2

−∞
dt3V̂I(t3, ~p) + ...

=

∞
∑

n=0

(−i)n
∫ t

−∞
dt1

∫ t1

−∞
dt2...

∫ tn−1

−∞
dtnV̂I(t1, ~p)...V̂I(tn, ~p). (4.48)

This expression can be simplified by using the time-ordering operator T . Let us first recall that

T (V̂I(t1)V̂I(t2)) = V̂I(t1)V̂I(t2) , if t1 > t2

T (V̂I(t1)V̂I(t2)) = V̂I(t2)V̂I(t1) , if t2 > t1. (4.49)

For ease of notation we have suppressed momentarily the momentum-dependence of V̂I . Clearly
T (V̂I(t1)V̂I(t2)) is a function of t1 and t2 which is symmetric about the axis t1 = t2. Hence

1

2

∫ t

−∞
dt1

∫ t

−∞
dt2T (V̂I(t1)V̂I(t2)) =

1

2

∫ t

−∞
dt1

∫ t1

−∞
dt2V̂I(t1)V̂I(t2) +

1

2

∫ t

−∞
dt2

∫ t2

−∞
dt1V̂I(t2)V̂I(t1)

=

∫ t

−∞
dt1

∫ t1

−∞
dt2V̂I(t1)V̂I(t2). (4.50)

The generalized result we will use is therefore given by

1

n!

∫ t

−∞
dt1...

∫ t

−∞
dtnT (V̂I(t1)...V̂I(tn)) =

∫ t

−∞
dt1

∫ t1

−∞
dt2...

∫ tn−1

−∞
dtnV̂I(t1)V̂I(t2)...V̂I(tn).

(4.51)

By substituting this identity in (4.48) we obtain

Ω(t) =

∞
∑

n=0

(−i)n 1

n!

∫ t

−∞
dt1

∫ t

−∞
dt2...

∫ t

−∞
dtnT (V̂I(t1, ~p)V̂I(t2, ~p)...V̂I(tn, ~p))

= T

(

e−i
∫

t
−∞

dsV̂I(s,~p)

)

. (4.52)

It is clear that

Ω(−∞) = 1. (4.53)

This can only be consistent with the assumption that j(t, ~p) −→ 0 as t −→ −∞. As we will
see shortly we need actually to assume the stronger requirement that the source j(t, ~p) vanishes
outside a finite time interval. Hence for early times t −→ −∞ we have Ω(t) −→ 1 and as a
consequence we get Q̂(t, ~p) −→ Q̂I(t, ~p) from (4.37). However we know that Q̂(t, ~p) −→ Q̂in(t, ~p)
as t −→ −∞. Since Q̂I(t, ~p) and Q̂in(t, ~p) are both free fields, i.e. they solve the same differential
equation we conclude that they must be the same field for all times, viz

Q̂I(t, ~p) = Q̂in(t, ~p) , ∀t. (4.54)

Equation (4.37) becomes

Q̂(t, ~p) = Ω(t)−1Q̂in(t, ~p)Ω(t). (4.55)



YDRI QFT 67

For late times t −→ ∞ we know that Q̂(t, ~p) −→ Q̂out(t, ~p). Thus from the above equation we
obtain

Q̂out(t, ~p) = Ω(+∞)−1Q̂in(t, ~p)Ω(+∞). (4.56)

Comparing this equation with (4.44) we conclude that the S−matrix is given by

S = Ω(+∞) = T

(

e−i
∫+∞

−∞
dsV̂I (s,~p)

)

. (4.57)

Scalar Field: Generalization of (4.57) is straightforward. The full S−matrix of the forced
scalar field is the tensor product of the individual S−matrices of the forced harmonic oscillators
one for each momentum ~p. Since Q̂(t,−~p) = Q̂(t, ~p)+ we only consider momenta ~p with positive
components. In the tensor product all factors commute because they involve momenta which are
different. We obtain then the evolution operator and the S−matrix

Ω(t) = T

(

e−i
∫

t
−∞

ds
∑

p1>0

∑
p2>0

∑
p3>0 V̂I (s,~p)

)

= T

(

e

i
2

∫
t
−∞

ds
∫ d3p

(2π)3

(

j(s,~p)∗Q̂I(s,~p)+j(s,~p)Q̂I(s,~p)
+

)

)

= T

(

ei
∫ t
−∞

ds
∫
d3xJ(x)φ̂I(x))

= T

(

ei
∫

t
−∞

ds
∫
d3xLint(x)

)

. (4.58)

S = Ω(+∞) = T

(

ei
∫
d4xLint(x)

)

. (4.59)

The interaction Lagrangian density depends on the interaction field operator φ̂I = φ̂in, viz

Lint(x) = Lint(φ̂in)
= J(x)φ̂in(x). (4.60)

4.1.4 Wick’s Theorem For Forced Scalar Field

Let us recall the Fourier expansion of the field φ̂in given by

φ̂in(x) =

∫

d3p

(2π)3
Q̂in(t, ~p)e

i~p~x. (4.61)

We compute immediately

∫

d3xLint(x) =
1

V

∑

~p

j(t, ~p)∗Q̂in(t, ~p)

=
1

V

∑

~p

j(t, ~p)∗
√

2E~p

(

âin(~p)e
−iE~pt + âin(−~p)+eiE~pt

)

. (4.62)
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Also we compute

Ω(t) = T

(

e
∑

~p

(

α~p(t)âin(~p)
+−α~p(t)

∗âin(~p)
)

)

= T
∏

~p

(

eα~p(t)âin(~p)
+−α~p(t)

∗âin(~p)

)

. (4.63)

α~p(t) =
i

V

1
√

2E~p

∫ t

−∞
dsj(s, ~p)eiE~ps. (4.64)

It is clear that the solution Ω(t) is of the form (including also an arbitrary phase β~p(t))

Ω(t) =
∏

~p

(

eα~p(t)âin(~p)
+−α~p(t)

∗âin(~p)+iβ~p(t)

)

. (4.65)

We use the Campbell-Baker-Hausdorff formula

eA+B = eAeBe−
1
2 [A,B] , if [A, [A,B]] = [B, [A,B]] = 0. (4.66)

We also use the commutation relations

[âin(~p), âin(~q)
+] = V δ~p,~q. (4.67)

Ω(t) =
∏

~p

(

eα~p(t)âin(~p)
+

e−α~p(t)
∗âin(~p)e−

1
2V |α~p(t)|2+iβ~p(t)

)

=
∏

~p

Ω~p(t). (4.68)

In the limit t −→∞ we compute

−1

2
V
∑

~p

|α~p(+∞)|2 = −1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)
1

V

∑

~p

1

2E~p
eip(x−x

′
).

(4.69)

We also need to compute the limit of iβ~p(t) when t −→ +∞. After some calculation, we obtain

i
∑

~p

β~p(+∞) =
1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)

(

θ(t− t′)
V

∑

~p

1

2E~p
eip(x−x

′
) − θ(t− t′)

V

∑

~p

1

2E~p
e−ip(x−x

′
)

)

.

(4.70)

Putting (4.69) and (4.70) together we get finally

−1

2
V
∑

~p

|α~p(+∞)|2 + i
∑

~p

β~p(+∞) = −1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)

(

θ(t
′ − t)
V

∑

~p

1

2E~p
eip(x−x

′
)

+
θ(t− t′)

V

∑

~p

1

2E~p
e−ip(x−x

′
)

)

= −1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)DF (x− x
′

). (4.71)
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From this last equation and from equation (4.68) we obtain the S−matrix in its pre-final form
given by

S = Ω(+∞) =
∏

~p

(

eα~p(+∞)âin(~p)
+

e−α~p(+∞)∗âin(~p)

)

e−
1
2

∫
d4x

∫
d4x

′
J(x)J(x

′
)DF (x−x′

).

(4.72)

This expression is already normal-ordered since

:

(

e
∑

~p

(

α~p(+∞)âin(~p)
+−α~p(+∞)∗âin(~p)

)

)

: =
∏

~p

(

eα~p(+∞)âin(~p)
+

e−α~p(+∞)∗âin(~p)

)

.

(4.73)

In summary we have

S = Ω(+∞) = T

(

e
∑

~p

(

α~p(+∞)âin(~p)
+−α~p(+∞)∗âin(~p)

)

)

= :

(

e
∑

~p

(

α~p(+∞)âin(~p)
+−α~p(+∞)∗âin(~p)

)

)

: e−
1
2

∫
d4x

∫
d4x

′
J(x)J(x

′
)DF (x−x′

).

(4.74)

More explicitly we write

S = T

(

ei
∫
d4xJ(x)φ̂in(x)

)

=: ei
∫
d4xJ(x)φ̂in(x) : e−

1
2

∫
d4x

∫
d4x

′
J(x)J(x

′
)DF (x−x′

). (4.75)

This is Wick’s theorem.

4.2 The Φ−Four Theory

4.2.1 The Lagrangian Density

In this section we consider more general interacting scalar field theories. In principle we can
add any interaction Lagrangian density Lint to the free Lagrangian density L0 given by equation
(10.478) in order to obtain an interacting scalar field theory. This interaction Lagrangian density
can be for example any polynomial in the field φ. However there exists only one single interacting
scalar field theory of physical interest which is also renormalizable known as the φ−four theory.
This is obtained by adding to (10.478) a quartic interaction Lagrangian density of the form

Lint = −
λ

4!
φ4. (4.76)

The equation of motion becomes

(∂µ∂
µ +m2)φ =

δLint
δφ

= −λ
6
φ3. (4.77)

Equivalently

(∂2t + E2
~p)Q(t, ~p) =

∫

d3x
δLint
δφ

e−i~p~x. (4.78)
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We will suppose that the right-hand side of the above equation goes to zero as t −→ ±∞. In
other words we must require that δLint/δφ −→ 0 as t −→ ±∞. If this is not true (which is
generically the case) then we will assume implicitly an adiabatic switching off process for the
interaction in the limits t −→ ±∞ given by the replacement

Lint −→ e−ǫ|t|Lint. (4.79)

With this assumption the solutions of the equation of motion in the limits t −→ −∞ and
t −→ +∞ are given respectively by

Q̂in(t, ~p) =
1

√

2E~p

(

âin(~p)e
−iE~pt + âin(−~p)+eiE~pt

)

, t −→ −∞. (4.80)

Q̂out(t, ~p) =
1

√

2E~p

(

âout(~p)e
−iE~pt + âout(−~p)+eiE~pt

)

, t −→ +∞. (4.81)

4.2.2 The S−Matrix

The Hamiltonian operator in the Schrodinger picture is time-independent of the form

Ĥ = Ĥ0(Q̂, Q̂
+, P̂ , P̂+) + V̂ (Q̂, Q̂+). (4.82)

Ĥ0(Q̂, Q̂
+, P̂ , P̂+) =

∫

+

d3p

(2π)3

[

P̂+(~p)P̂ (~p) + E2
~pQ̂

+(~p)Q̂(~p)

]

=
1

2

∑

~p

Ĥ~p. (4.83)

V̂ (Q̂, Q̂+) = (+
λ

4!
)
1

V 3

∑

~p1,~p2,~p3

Q̂(~p1)Q̂(~p2)Q̂(~p3)Q̂(~p1 + ~p2 + ~p3)
+

= −
∫

d3xLint. (4.84)

The scalar field operator and the conjugate momentum field operator in the Schrodinger picture
are given by

φ̂(~x) =
1

V

∑

~p

Q̂(~p)ei~p~x. (4.85)

π̂(~x) =
1

V

∑

~p

P̂ (~p)ei~p~x. (4.86)

The unitary time evolution operator of the scalar field must solve the Schrodinger equation

i∂tU(t) = ĤU(t). (4.87)

The Heisenberg and Schrodinger operators are related by

φ̂(t, ~x) = U(t)−1φ̂(~x)U(t). (4.88)
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We introduce the interaction picture through the unitary operator Ω defined by

U(t) = e−itĤ0Ω(t). (4.89)

The operator Ω satisfies the Schrodinger equation

i∂tΩ(t) = V̂I(t)Ω(t). (4.90)

V̂I(t) ≡ V̂I(Q̂, Q̂+, t) = eitĤ0 V̂ (Q̂, Q̂+)e−itĤ0 . (4.91)

The interaction, Schrodinger and Heisenberg operators are related by

φ̂I(t, ~x) = eitĤ0 φ̂(~x)e−itĤ0

= Ω(t)U(t)−1φ̂(~x)U(t)Ω(t)−1

= Ω(t)φ̂(t, ~x)Ω(t)−1. (4.92)

We write this as

φ̂(x) = Ω(t)−1φ̂I(x)Ω(t). (4.93)

Similarly we should have for the conjugate momentum field π̂(x) = ∂tφ̂(x) the result

π̂I(x) = eitĤ0 π̂(~x)e−itĤ0 . (4.94)

π̂(x) = Ω(t)−1π̂I(x)Ω(t). (4.95)

It is not difficult to show that the interaction fields φ̂I and π̂I are free fields. Indeed we can show
for example that φ̂I obeys the equation of motion

(∂2t − ~∇2 +m2)φ̂I(t, ~x) = 0. (4.96)

Thus all information about interaction is encoded in the evolution operator Ω(t) which in turn is
obtained from the solution of the Schrodinger equation (4.90). From our previous experience this
task is trivial. In direct analogy with the solution given by the formula (4.52) of the differential
equation (4.34) the solution of (4.90) must be of the form

Ω(t) =

∞
∑

n=0

(−i)n 1

n!

∫ t

−∞
dt1

∫ t

−∞
dt2...

∫ t

−∞
dtnT (V̂I(t1)V̂I(t2)...V̂I(tn))

= T

(

e−i
∫

t
−∞

dsV̂I(s)

)

= T

(

ei
∫ t
−∞

ds
∫
d3xLint(φ̂I(s,~x))

)

. (4.97)

Clearly this satisfies the boundary condition

Ω(−∞) = 1. (4.98)

As before this boundary condition can only be consistent with the assumption that VI(t) −→ 0
as t −→ −∞. This requirement is contained in the condition (4.79).
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The S−matrix is defined by

S = Ω(+∞) = T

(

e−i
∫ +∞

−∞
dsV̂I (s)

)

= T

(

ei
∫
d4xLint(φ̂I(x))

)

. (4.99)

Taking the limit t −→ −∞ in equation (4.93) we see that we have φ̂(x) −→ φI(x). But we

already know that φ̂(x) −→ φ̂in(x) when t −→ −∞. Since the fields φ̂I(x) and φ̂in(x) are free
fields and satisfy the same differential equation we conclude that the two fields are identical at
all times, viz

φ̂I(x) = φ̂in(x) , ∀t. (4.100)

The S−matrix relates the "in" vacuum |0 in > to the "out" vacuum |0 out > as follows

< 0 out| =< 0 in|S. (4.101)

For the φ−four theory (as opposed to the forced scalar field) the vacuum is stable. In other
words the "in" vacuum is identical to the "out" vacuum, viz

|0 out >= |0 in >= |0 > . (4.102)

Hence

< 0| =< 0|S. (4.103)

The consistency of the supposition that the "in" vacuum is identical to the "out" vacuum will
be verified order by order in perturbation theory. In fact we will also verify that the same holds
also true for the one-particle states, viz

|~p out >= |~p in > . (4.104)

4.2.3 The Gell-Mann Low Formula

We go back to equation

φ̂(x) = Ω(t)+φ̂I(x)Ω(t). (4.105)
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We compute

φ̂(x) = Ω(t)+φ̂I(x)Ω(t)

= S−1T

(

e−i
∫

+∞

t
dsV̂in(s)

)

φ̂in(x)T

(

e−i
∫ t
−∞

dsV̂in(s)

)

= S−1

(

1− i
∫ +∞

t

dt1V̂in(t1) + (−i)2
∫ +∞

t

dt1

∫ +∞

t1

dt2V̂in(t2)V̂in(t1) + ...

)

φ̂in(x)

×
(

1− i
∫ t

−∞
dt1V̂in(t1) + (−i)2

∫ t

−∞
dt1

∫ t1

−∞
dt2V̂in(t1)V̂in(t2) + ...

)

= S−1

(

φ̂in(x) − i
∫ +∞

t

dt1V̂in(t1)φ̂in(x) + (−i)2
∫ +∞

t

dt1

∫ +∞

t1

dt2V̂in(t2)V̂in(t1)φ̂in(x)

− iφ̂in(x)

∫ t

−∞
dt1V̂in(t1) + (−i)2

∫ +∞

t

dt1

∫ t

−∞
dt2V̂in(t1)φ̂in(x)V̂in(t2)

+ (−i)2φ̂in(x)
∫ t

−∞
dt1

∫ t1

−∞
dt2V̂in(t1)V̂in(t2) + ...

)

. (4.106)

We use the identities
∫ +∞

−∞
dt1T (φ̂in(x)V̂in(t1)) = φ̂in(x)

∫ t

−∞
dt1V̂in(t1) +

∫ +∞

t

dt1V̂in(t1)φ̂in(x).

(4.107)

∫ +∞

t

dt1

∫ +∞

t1

dt2T (V̂in(t2)V̂in(t1)) =

∫ +∞

t

dt1

∫ t1

t

dt2T (V̂in(t1)V̂in(t2)). (4.108)

∫ +∞

−∞
dt1

∫ t1

−∞
dt2T (φ̂in(x)V̂in(t1)V̂in(t2)) =

∫ +∞

t

dt1

∫ t1

t

dt2V̂in(t1)V̂in(t2)φ̂in(x)

+

∫ +∞

t

dt1

∫ t

−∞
dt2V̂in(t1)φ̂in(x)V̂in(t2)

+ φ̂in(x)

∫ t

−∞
dt1

∫ t1

−∞
dt2V̂in(t1)V̂in(t2).

(4.109)

We get

φ̂(x) = S−1T

(

φ̂in(x)

(

1− i
∫ +∞

−∞
dt1V̂in(t1) + (−i)2

∫ +∞

−∞
dt1

∫ t1

−∞
dt2V̂in(t1)V̂in(t2) + ...

))

= S−1T

(

φ̂in(x)S

)

. (4.110)

This result holds to all orders in perturbation theory. A straightforward generalization is

T (φ̂(x)φ̂(y)...) = S−1T

(

φ̂in(x)φ̂in(y)...S

)

. (4.111)

This is known as the Gell-Mann Low formula.
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4.2.4 LSZ Reduction Formulae and Green’s Functions

We start by writing equations (4.80) and (4.81) in the form

eiE~pt(i∂t + E~p)Q̂in(t, ~p) =
√

2E~p âin(~p). (4.112)

eiE~pt(i∂t + E~p)Q̂out(t, ~p) =
√

2E~p âout(~p). (4.113)

Now we compute trivially the integral
∫ +∞

−∞
dt∂t

(

eiE~pt(i∂t + E~p)Q̂(t, ~p)

)

=
√

2E~p (âout(~p)− âin(~p)). (4.114)

From the other hand we compute
∫ +∞

−∞
dt∂t

(

eiE~pt(i∂t + E~p)Q̂(t, ~p)

)

= i

∫ +∞

−∞
dteiE~pt(∂2t + E2

~p)Q̂(t, ~p)

= i

∫

d4x
δLint
δφ

eipx. (4.115)

We obtain then the identity

i

∫ +∞

−∞
dteiE~pt(∂2t + E2

~p)Q̂(t, ~p) =
√

2E~p (âout(~p)− âin(~p)). (4.116)

This is the first instance of LSZ reduction formulae. Generalizations of this result read

i

∫ +∞

−∞
dteiE~pt(∂2t + E2

~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...) =

√

2E~p

(

âout(~p)T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)− T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)âin(~p)

)

. (4.117)

Next we put to use these LSZ reduction formulae. We are interested in calculating the matrix
elements of the S−matrix. We consider an arbitrary "in" state |~p1~p2... in > and an arbitrary
"out" state |~q1~q2... out >. The matrix elements of interest are

< ~q1~q2... out|~p1~p2... in >=< ~q1~q2... in|S|~p1~p2... in > . (4.118)

We recall that

|~p1~p2... in > = ain(~p1)
+ain(~p2)

+...|0 > . (4.119)

|~q1~q2... out > = aout(~q1)
+aout(~q2)

+...|0 > . (4.120)

We also recall the commutation relations (using box normalization)

[â(~p), â(~q)+] = V δ~p,~q , [â(~p), â(~q)] = [â(~p)+, â(~q)+] = 0. (4.121)

We compute by using the LSZ reduction formula (4.116) and assuming that the ~pi are different
from the ~qi the result

< ~q1~q2... out|~p1~p2... in > = < ~q2... out|âout(~q1)|~p1~p2... in >

= < ~q2.. out|
(

âin(~q1) +
i

√

2E~q1

∫ +∞

−∞
dt1e

iE~q1
t1(∂2t1 + E2

~q1 )Q̂(t1, ~q1)

)

× |~p1~p2.. in >

=
1

√

2E~q1

∫ +∞

−∞
dt1e

iE~q1
t1i(∂2t1 + E2

~q1 ) < ~q2... out|Q̂(t1, ~q1)|~p1~p2... in > .

(4.122)
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From the LSZ reduction formula (4.117) we have

i

∫ +∞

−∞
dt2e

iE~q2
t2(∂2t2 + E2

~q2)T (Q̂(t2, ~q2)Q̂(t1, ~q1)) =
√

2E~q2

(

âout(~q2)Q̂(t1, ~q1)− Q̂(t1, ~q1)âin(~q2)
)

.

(4.123)

Thus immediately

i

∫ +∞

−∞
dt2e

iE~q2
t2(∂2t2 + E2

~q2) < ~q3.. out|T (Q̂(t2, ~q2)Q̂(t1, ~q1))|~p1~p2.. in > =

√

2E~q2 < ~q2.. out|Q̂(t1, ~q1)|~p1~p2.. in > . (4.124)

Hence

< ~q1~q2... out|~p1~p2... in > =
1

√

2E~q1

1
√

2E~q2

∫ +∞

−∞
dt1e

iE~q1
t1 i(∂2t1 + E2

~q1)

∫ +∞

−∞
dt2e

iE~q2
t2i(∂2t2 + E2

~q2)

× < ~q3... out|T (Q̂(t1, ~q1)Q̂(t2, ~q2))|~p1~p2... in > . (4.125)

By continuing this reduction of all "out" operators we end up with the expression

< ~q1~q2... out|~p1~p2... in > =
1

√

2E~q1

1
√

2E~q2
...

∫ +∞

−∞
dt1e

iE~q1
t1i(∂2t1 + E2

~q1 )

∫ +∞

−∞
dt2e

iE~q2
t2 i(∂2t2 + E2

~q2)...

× < 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...)|~p1~p2... in > . (4.126)

In order to reduce the "in" operators we need other LSZ reduction formulae which involve the
creation operators instead of the annihilation operators. The result we need is essentially the
Hermitian conjugate of (4.117) given by

−i
∫ +∞

−∞
dte−iE~pt(∂2t + E2

~p)T (Q̂(t, ~p)+Q̂(t1, ~p1)
+Q̂(t2, ~p2)

+...) =

√

2E~p

(

âout(~p)
+T (Q̂(t1, ~p1)

+Q̂(t2, ~p2)
+...)− T (Q̂(t1, ~p1)+Q̂(t2, ~p2)

+...)âin(~p)
+

)

.

(4.127)

By using these LSZ reduction formulae we compute

< 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...)|~p1~p2... in > =

1
√

2E~p1

∫ +∞

−∞
dt

′

1e
−iE~p1

t
′

1 i(∂2
t
′

1

+ E2
~p1) < 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...Q̂(t

′

1, ~p1)
+)|~p2... in > .

(4.128)

Full reduction of the "in" operators leads to the expression

< 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...)|~p1~p2... in > =

1
√

2E~p1

1
√

2E~p2
...

∫ +∞

−∞
dt

′

1e
−iE~p1

t
′

1i(∂2
t
′

1

+ E2
~p1)

∫ +∞

−∞
dt

′

2e
−iE~p2

t
′

2 i(∂2
t
′

2

+ E2
~p2)... ×

< 0|T (Q̂(t1, ~q1)Q̂(t2, ~q2)...Q̂(t
′

1, ~p1)
+Q̂(t

′

2, ~p2)
+...)|0 > .

(4.129)
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Hence by putting the two partial results (4.126) and (4.129) together we obtain

< ~q1... out|~p1... in > =
1

√

2E~q1
...

1
√

2E~p1
...

∫ +∞

−∞
dt1e

iE~q1
t1 i(∂2t1 + E2

~q1)...

∫ +∞

−∞
dt

′

1e
−iE~p1

t
′

1 i(∂2
t
′

1

+ E2
~p1)...

× < 0|T (Q̂(t1, ~q1)...Q̂(t
′

1, ~p1)
+...)|0 > . (4.130)

The final (fundamental) result is that S−matrix elements < ~q1... out|~p1... in > can be recon-

structed from the so-called Green’s functions < 0|T (φ̂(x1)...φ̂(x
′

1)...)|0 >. Indeed we can rewrite
equation (4.130) as

< ~q1... out|~p1... in > =
1

√

2E~q1
...

1
√

2E~p1
...

∫

d4x1e
iq1x1i(∂21 +m2)...

∫

d4x
′

1e
−ip1x

′

1 i(∂
′2
1 +m2)...

× < 0|T (φ̂(x1)...φ̂(x
′

1)...)|0 > . (4.131)

The factor 1/
√

2E~q1 ...1/
√

2E~p1 is only due to our normalization of the one-particle states given
in equations (4.119) and (4.120).

4.3 Feynman Diagrams For φ−Four Theory

4.3.1 Perturbation Theory

We go back to our most fundamental result (4.111) and write it in the form (with Lint(φ̂in(x)) =
Lint(x))

< 0|T (φ̂(x1)φ̂(x2)...)|0 > = < 0|T
(

φ̂in(x1)φ̂in(x2)...S

)

|0 >

= < 0|T
(

φ̂in(x1)φ̂in(x2)...e
i
∫
d4yLint(y)

)

|0 >

=
∞
∑

n=0

in

n!

∫

d4y1..

∫

d4yn < 0|T
(

φ̂in(x1)φ̂in(x2)..Lint(y1)..Lint(yn)
)

|0 > .

(4.132)

These are the Green’s functions we need in order to compute the S−matrix elements. They are
written solely in terms of free fields and the interaction Lagrangian density. This expansion is
the key perturbative series in quantum field theory.

Another quantity of central importance to perturbation theory is the vacuum-to-vacuum
amplitude given by

< 0|0 >=< 0|S|0 > =

∞
∑

n=0

in

n!

∫

d4y1..

∫

d4yn < 0|T
(

Lint(y1)..Lint(yn)
)

|0 > . (4.133)

Naively we would have thought that this norm is equal to 1. However it turns out that this is not
the case and taking this fact into account will simplify considerably our perturbative calculations.
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4.3.2 Wick’s Theorem For Green’s Functions

From the above discussion it is clear that the remaining task is to evaluate terms of the generic
form

< 0|T
(

φ̂in(x1)φ̂in(x2)...φ̂in(x2n)

)

|0 > . (4.134)

To this end we rewrite the Wick’s theorem (4.75) in the form

< 0|T
(

ei
∫
d4xJ(x)φ̂in(x)

)

|0 >= e−
1
2

∫
d4x

∫
d4x

′
J(x)J(x

′
)DF (x−x′

). (4.135)

Because the scalar field is real we also have

< 0|T
(

e−i
∫
d4xJ(x)φ̂in(x)

)

|0 >= e−
1
2

∫
d4x

∫
d4x

′
J(x)J(x

′
)DF (x−x′

). (4.136)

This means that only even powers of J appear. We expand both sides in powers of J we get

∑

n=0

i2n

2n!

∫

d4x1...d
4x2nJ(x1)...J(x2n) < 0|T

(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =

∑

n=0

1

n!
(−1

2
)n
∫

d4x1

∫

d4x2...

∫

d4x2n−1

∫

d4x2n ×

J(x1)J(x2)...J(x2n−1)J(x2n)DF (x1 − x2)...DF (x2n−1 − x2n). (4.137)

Let us look at few examples. The first non-trivial term is

i2

2!

∫

d4x1d
4x2J(x1)J(x2) < 0|T

(

φ̂in(x1)φ̂in(x2)

)

|0 > =

1

1!
(−1

2
)1
∫

d4x1

∫

d4x2J(x1)J(x2)DF (x1 − x2). (4.138)

Immediately we get the known result

< 0|T
(

φ̂in(x1)φ̂in(x2)

)

|0 >= DF (x1 − x2). (4.139)

The second non-trivial term is

i4

4!

∫

d4x1d
4x2d

4x3d
4x4J(x1)J(x2)J(x3)J(x4) < 0|T

(

φ̂in(x1)φ̂in(x2)φ̂in(x3)φ̂in(x4)

)

|0 > =

1

2!
(−1

2
)2
∫

d4x1

∫

d4x2

∫

d4x3

∫

d4x4 ×

J(x1)J(x2)J(x3)J(x4)DF (x1 − x2)DF (x3 − x4).(4.140)

Equivalently

i4

4!

∫

d4x1d
4x2d

4x3d
4x4J(x1)J(x2)J(x3)J(x4) < 0|T

(

φ̂in(x1)φ̂in(x2)φ̂in(x3)φ̂in(x4)

)

|0 > =

1

2!
(−1

2
)2
1

3

∫

d4x1

∫

d4x2

∫

d4x3

∫

d4x4 ×

J(x1)J(x2)J(x3)J(x4)

(

DF (x1 − x2)DF (x3 − x4) +

DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3)
)

.(4.141)
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In the last equation we have symmetrized the right-hand side under the permutations of the
spacetime points x1, x2, x3 and x4 and then divided by 1/3 where 3 is the number of independent
permutations in this case. This is needed because the left-hand side is already symmetric under
the permutations of the xi’s. By comparing the two sides we then obtain

< 0|T
(

φ̂in(x1)φ̂in(x2)φ̂in(x3)φ̂in(x4)

)

|0 > = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4)

+ DF (x1 − x4)DF (x2 − x3). (4.142)

The independent permutations are called contractions and we write

< 0|T
(

φ̂in(x1)φ̂in(x2)φ̂in(x3)φ̂in(x4)

)

|0 > =
∑

contraction

∏

DF (xi − xj). (4.143)

This generalizes to any Green’s function. In equation (4.137) we need to symmetrize the right-
hand side under the permutations of the spacetime points xi’s before comparing with the left-hand
side. Thus we need to count the number of independent permutations or contractions. Since
we have 2n points we have (2n)! permutations not all of them independent. Indeed we need to
divide by 2n since DF (xi−xj) = DF (xj −xi) and we have n such propagators. Then we need to
divide by n! since the order of the n propagators DF (x1 − x2),...,DF (x2n−1 − x2n) is irrelevant.
We get then (2n)!/(2nn!) independent permutations. Equation (4.137) becomes

∑

n=0

i2n

2n!

∫

d4x1...d
4x2nJ(x1)...J(x2n) < 0|T

(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =

∑

n=0

1

n!
(−1

2
)n

2nn!

(2n)!

∫

d4x1

∫

d4x2...

∫

d4x2n−1

∫

d4x2n ×

J(x1)J(x2)...J(x2n−1)J(x2n)
∑

contraction

∏

DF (xi − xj). (4.144)

By comparison we obtain

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 >=
∑

contraction

∏

DF (xi − xj). (4.145)

This is Wick’s theorem for Green’s functions.
An alternative more systematic way of obtaining all contractions goes as follows. First let us

define

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 >=< 0|T
(

F (φ̂in)

)

|0 > . (4.146)

We introduce the functional Fourier transform

F (φ̂in) =

∫

DJF̃ (J) ei
∫
d4xJ(x)φ̂in(x). (4.147)

Thus

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 > = < 0|T
(
∫

DJF̃ (J) ei
∫
d4xJ(x)φ̂in(x)

)

|0 >

=

∫

DJF̃ (J) < 0|T
(

ei
∫
d4xJ(x)φ̂in(x)

)

|0 >

=

∫

DJF̃ (J)e− 1
2

∫
d4x

∫
d4x

′
J(x)DF (x−x′

)J(x
′
). (4.148)
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We use the identity (starting from here we only deal with classical fields instead of field operators)

f

(

δ

δφ

)

ei
∫
d4xJ(x)φ(x) = f(iJ)ei

∫
d4xJ(x)φ(x) (4.149)

In particular we have

e
1
2

∫
d4x

∫
d4x

′ δ
δφ(x)

DF (x−x′
) δ

δφ(x
′
) ei

∫
d4xJ(x)φ(x) = e−

1
2

∫
d4x

∫
d4x

′
J(x)DF (x−x′

)J(x
′
)ei

∫
d4xJ(x)φ(x).(4.150)

Thus

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =

∫

DJF̃ (J)

[

e
1
2

∫
d4x

∫
d4x

′ δ
δφ(x)

DF (x−x′
) δ

δφ(x
′
) ei

∫
d4xJ(x)φ(x)

]

φ=0

=

[

e
1
2

∫
d4x

∫
d4x

′ δ
δφ(x)DF (x−x′

) δ

δφ(x
′
)F (φ)

]

φ=0

. (4.151)

We think of F as a function in several variables which are the classical fields φ(xi). Thus we
have

δF

δφ(x)
= δ4(x− x1)

∂F

∂φ(x1)
+ δ4(x− x2)

∂F

∂φ(x2)
+ ... (4.152)

Hence

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =

[

e
1
2

∑
i,j

∂
∂φ(xi)

DF (xi−xj)
∂

∂φ(xj )F (φ)

]

φ=0

=

[

e
1
2

∑
i,j

∂
∂φ(xi)

DF (xi−xj)
∂

∂φ(xj )

(

φ(x1)...φ(x2n)

)]

φ=0

.(4.153)

This is our last version of the Wick’s theorem.

4.3.3 The 2−Point Function

We have

< 0|T (φ̂(x1)φ̂(x2))|0 > =

∞
∑

n=0

in

n!

∫

d4y1..

∫

d4yn < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)..Lint(yn)
)

|0 >

= < 0|T
(

φ̂in(x1)φ̂in(x2)

)

|0 > +i

∫

d4y1 < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)
)

|0 >

+
i2

2!

∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)Lint(y2)
)

|0 > +... (4.154)

By using the result (4.153) we have (since we are considering only polynomial interactions)

< 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)..Lint(yn)
)

|0 > =

[

e∂DF ∂

(

φ(x1)φ(x2)Lint(y1)..Lint(yn)
)]

φ=0

.

(4.155)
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∂DF∂ =
1

2

∑

i,j

∂

∂φ(xi)
DF (xi − xj)

∂

∂φ(xj)
+

1

2

∑

i,j

∂

∂φ(yi)
DF (yi − yj)

∂

∂φ(yj)

+
∑

i,j

∂

∂φ(xi)
DF (xi − yj)

∂

∂φ(yj)
. (4.156)

The 0th order term is the free propagator, viz

< 0|T
(

φ̂in(x1)φ̂in(x2)

)

|0 >= DF (x1 − x2). (4.157)

We represent this amplitude by a line joining the external points x1 and x2 (figure 1). This is our
first Feynman diagram. Physically this represents a scalar particle created at x2 then propagates
in spacetime before it gets annihilated at x1.

The first order is given by

i

∫

d4y1 < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)
)

|0 > = i(− λ
4!
)

∫

d4y1 < 0|T
(

φ̂in(x1)φ̂in(x2)φ̂in(y1)
4

)

|0 > .

(4.158)

We apply the Wick’s theorem. There are clearly many possible contractions. For six operators
we can have in total 15 contractions which can be counted as follows. The first operator can
be contracted in 5 different ways. The next operator can be contracted in 3 different ways and
finally the remaining two operators can only be contracted in one way. Thus we get 5.3.1 = 15.
However there are only two distinct contractions among these 15 contractions. They are as
follows

a)− We can contract the two external points x1 and x2 together. The internal point z = y1
which we will call a vertex since it corresponds to an interaction corresponds to 4 internal
points (operators) which can be contracted in 3.1 = 3 different ways. We have therefore
three identical contributions coming from these three contractions. We get

3× i(− λ
4!
)DF (x1 − x2)

∫

d4zDF (0)
2 =

1

8
(−iλ)

∫

d4zDF (x1 − x2)DF (0)
2. (4.159)

b)− We can contract one of the external points with one of the internal points. There are four
different ways for doing this. The remaining external point must then be contracted with
one of the remaining three internal points. There are three different ways for doing this.
In total we have 4.3 = 12 contractions which lead to the same contribution. We have

12× i(− λ
4!
)

∫

d4zDF (x1 − z)DF (x2 − z)DF (0) =
1

2
(−iλ)

∫

d4zDF (x1 − z)DF (x2 − z)DF (0).

(4.160)

The two amplitudes (4.159) and (4.160) stand for the 15 possible contractions which we found
at first order. These contractions split into two topologically distinct sets represented by the
two Feynman diagrams a) and b) on figure 2 with attached values given precisely by (4.159) and
(4.160). We observe in constructing these diagrams the following

• Each line (internal or external) joining two spacetime points x and y is associated with a
propagator DF (x − y).
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• Interaction is represented by a vertex. Each vertex is associated with a factor −iλ.

• We multiply the propagators and vertices together then we integrate over the internal point.

• We divide by a so-called symmetry factor S. The symmetry factor is equal to the number
of independent permutations which leave the diagram invariant.

A diagram containing a line which starts and ends on the same vertex will be symmetric
under the permutation of the two ends of such a line. This is clear from the identity

∫

d4zDF (0) =

∫

d4z

∫

d4uDF (z − u)δ4(z − u). (4.161)

Diagram b) contains such a factor and thus the symmetry factor in this case is S = 2.
Diagram a) contains two such factors and thus one must divide by 2.2. Since this diagram
is also invariant under the permutation of the two DF (0) we must divide by an extra factor
of 2. The symmetry factor for diagram a) is therefore S = 2.2.2 = 8.

The second order in perturbation theory is given by

i2

2!

∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)φ̂in(x2)Lint(y1)Lint(y2)
)

|0 > =

−1

2
(
λ

4!
)2
∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)φ̂in(x2)φ̂in(y1)
4φ̂in(y2)

4

)

|0 > . (4.162)

Again we apply Wick’s theorem. There are in total 9.7.5.3 = 9.105 contractions which can be
divided into three different classes (figure 3) as follows

1) The first class corresponds to the contraction of the two external points x1 and x2 to the
same vertex y1 or y2. These contractions correspond to the two topologically different
contractions a)1 and b)1 on figure 3.

In a)1 we contract x1 with one of the internal points in 8 different ways, then x2 can be
contracted in 3 different ways to the same internal point (say y1). If the two remaining
y1 points are contracted together the remaining internal points y2 can then be contracted
together in 3 different ways. There are in total 8.3.3 contractions. The analytic expression
is

−8.3.3

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (0)
3 =

(−iλ)2
16

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (0)
3. (4.163)

In b)1 we consider the case where one of the remaining y1 points is contracted with one of
the internal points y2 in 4 different ways. The last y1 must then also be contracted with
one of the y2 in 3 different ways. This possibility corresponds to 8.3.4.3 contractions. The
analytic expression is

−8.3.4.3

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (y1 − y2)2DF (0) =

(−iλ)2
4

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (y1 − y2)2DF (0). (4.164)
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2) The second class corresponds to the contraction of the external point x1 to one of the
vertices whereas the external point x2 is contracted to the other vertex. These contractions
correspond to the two topologically different contractions a)2 and b)2 on figure 3.

In a)2 we contract x1 with one of the internal points (say y1) in 8 different ways, then x2
can be contracted in 4 different ways to the other internal point (i.e. y2). There remains
three internal points y1 and three internal points y2. Two of the y1 can be contracted in
3 different ways. The remaining y1 must be contracted with one of the y2 in 3 different
ways. Thus we have in total 8.4.3.3 contractions. The expression is

−8.4.3.3

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)DF (0)
2 =

(−iλ)2
4

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)DF (0)
2. (4.165)

In b)2 we consider the case where the three remaining y1 are paired with the three remaining
y2. The first y1 can be contracted with one of the y2 in 3 different ways, the second y1
can be contracted with one of the remaining y2 in 2 different ways. Thus we have in total
8.4.3.2 contractions. The expression is

−8.4.3.2

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3 =

(−iλ)2
6

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3. (4.166)

3) The third class corresponds to the contraction of the two external points x1 and x2 together.
These contractions correspond to the three topologically different contractions a)3, b)3 and
c)2 on figure 3.

In a)3 we can contract the y1 among themselves in 3 different ways and contract the y2
among themselves in 3 different ways. Thus we have 3.3 contractions. The expression is

−3.3

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − x2)DF (0)
4 =

(−iλ)2
128

∫

d4y1

∫

d4y2DF (x1 − x2)DF (0)
4. (4.167)

In b)3 we can contract two of the y1 together in 6 different ways, then contract one of the
remaining y1 with one of the y2 in 4 different ways, and then contract the last y1 with one
of the y2 in 3 different ways. Thus we have 6.4.3 contractions. The expression is

−6.4.3

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − x2)DF (y1 − y2)2DF (0)
2 =

(−iλ)2
16

∫

d4y1

∫

d4y2DF (x1 − x2)DF (y1 − y2)2DF (0)
2. (4.168)

In c)3 we can contract the first y1 with one of the y2 in 4 different ways, then contract the
second y1 with one of the y2 in 3 different ways, then contract the third y1 with one of the
y2 in 2 different ways. We get 4.3.2 contractions. The expression is

−4.3.2

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − x2)DF (y1 − y2)4 =

(−iλ)2
48

∫

d4y1

∫

d4y2DF (x1 − x2)DF (y1 − y2)4. (4.169)
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The above seven amplitudes (4.163), (4.164), (4.165), (4.166), (4.167), (4.168) and (4.169) can
be represented by the seven Feynman diagrams a)1, b)1, a)2, b)2, a)3, b)3 and c)3 respectively.
We use in constructing these diagrams the same rules as before. We will only comment here on
the symmetry factor S for each diagram. We have

• The symmetry factor for the first diagram is S = (2.2.2).2 = 16 where the first three
factors of 2 are associated with the three DF (0) and the last factor of 2 is associated with
the interchange of the two DF (0) in the figure of eight.

• The symmetry factor for the second diagram is S = 2.2 = 4 where the first factor of 2 is
associated with DF (0) and the second factor is associated with the interchange of the two
internal lines DF (y1 − y2).

• The symmetry factor for the third diagram is S = 2.2 where the two factors of 2 are
associated with the two DF (0).

• The symmetry factor of the 4th diagram is S = 3! = 6 which is associated with the
permutations of the three internal lines DF (y1 − y2).

• The symmetry factor of the 5th diagram is S = 27 = 128. Four factors of 2 are associated
with the four DF (0). Two factors of 2 are associated with the permutations of the two
DF (0) in the two figures of eight. Another factor of 2 is associated with the interchange of
the two figures of eight.

• The symmetry factor of the 6th diagram is S = 24 = 16. Two factors of 2 comes from the
two DF (0). A factor of 2 comes from the interchange of the two internal lines DF (y1− y2).
Another factor comes from the interchange of the two internal points y1 and y2.

• The symmetry factor of the last diagram is S = 4!.2 = 48. The factor 4! comes from the
permutations of the four internal lines DF (y1 − y2) and the factor of two comes from the
interchange of the two internal points y1 and y2.

4.3.4 Connectedness and Vacuum Energy

From the above discussion we observe that there are two types of Feynman diagrams. These are

• Connected Diagrams: These are diagrams in which every piece is connected to the external
points. Examples of connected diagrams are diagram b) on figure 2) and diagrams b)1, a)2
and b)2 on figure 4.

• Disconnected Diagrams: These are diagrams in which there is at least one piece which is
not connected to the external points. Examples of disconnected diagrams are diagram a)
on figure 2) and diagrams a)1, a)3, b)3 and c)3 on figure 4.

We write the 2−point function up to the second order in perturbation theory as

< 0|T (φ̂(x1)φ̂(x2))|0 > = D0(x1 − x2)[V1 +
1

2
V 2
1 + V2 + V3] +D1(x1 − x2)[1 + V1]

+D1
2(x1 − x2) +D2

2(x1 − x2) +D3
2(x1 − x2). (4.170)

The "connected" 2−point function at the 0th and 1st orders is given respectively by

D0(x1 − x2) = diagram 1) = DF (x1 − x2). (4.171)
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D1(x1 − x2) = diagram 2b) =
1

2
(−iλ)

∫

d4y1DF (x1 − y1)DF (x2 − y1)DF (0).(4.172)

The "connected" 2−point function at the 2nd order is given by the sum of the three propagators
D1

2 , D
2
2 and D3

2. Explicitly they are given by

D1
2(x1 − x2) = diagram 4b)1 =

(−iλ)2
4

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y1)DF (y1 − y2)2DF (0).

(4.173)

D2
2(x1 − x2) = diagram 4a)2 =

(−iλ)2
4

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)DF (0)
2.

(4.174)

D3
2(x1 − x2) = diagram 4b)2 =

(−iλ)2
6

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3.

(4.175)

The connected 2−point function up to the second order in perturbation theory is therefore

< 0|T (φ̂(x1)φ̂(x2))|0 >conn = D0(x1 − x2) +D1(x1 − x2) +D1
2(x1 − x2) +D2

2(x1 − x2) +D3
2(x1 − x2).

(4.176)

The corresponding Feynman diagrams are shown on figure 5. The disconnected diagrams are
obtained from the product of these connected diagrams with the so-called vacuum graphs which
are at this order in perturbation theory given by V1, V2 and V3 (see (4.170)). The vacuum graphs
are given explicitly by

V1 =
−iλ
8

∫

d4y1DF (0)
2. (4.177)

V2 =
(−iλ)2
16

∫

d4y1

∫

d4y2DF (y1 − y2)2DF (0)
2. (4.178)

V3 =
(−iλ)2
48

∫

d4y1

∫

d4y2DF (y1 − y2)4. (4.179)

The corresponding Feynman diagrams are shown on figure 6. Clearly the "full" and the "con-
nected" 2−point functions can be related at this order in perturbation theory as

< 0|T (φ̂(x1)φ̂(x2))|0 >=< 0|T (φ̂(x1)φ̂(x2))|0 >conn exp(vacuum graphs). (4.180)

We now give a more general argument for this identity. We will label the various vacuum graphs
by Vi, i = 1, 2, 3, .... A generic Feynman diagram will contain a connected piece attached to the
external points x1 and x2 call it Wj , n1 disconnected pieces given by V1, n2 disconnected pieces
given by V2, and so on. The value of this Feynman diagram is clearly

Wj

∏

i

1

ni!
V ni

i . (4.181)
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The factor 1/ni! is a symmetry factor coming from the permutations of the ni pieces Vi among
themselves. Next by summing over all Feynman diagrams (i.e, all possible connected diagrams
and all possible values of ni) we obtain

∑

j

∑

n1,...,ni,...

Wj

∏

i

1

ni!
V ni

i =
∑

j

Wj

∑

n1,...,ni,...

∏

i

1

ni!
V ni

i

=
∑

j

Wj

∏

i

∑

ni

1

ni!
V ni

i

=
∑

j

Wj

∏

i

exp(Vi)

=
∑

j

Wj exp(
∑

i

Vi). (4.182)

This is the desired result. This result holds also for any other Green’s function, viz

< 0|T (φ̂(x1)φ̂(x2)...)|0 >=< 0|T (φ̂(x1)φ̂(x2)...)|0 >conn exp(vacuum graphs). (4.183)

Let us note here that the set of all vacuum graphs is the same for all Green’s functions. In
particular the 0−point function (the vacuum-to-vacuum amplitude) will be given by

< 0|0 >= exp(vacuum graphs). (4.184)

We can then observe that

< 0|T (φ̂(x1)φ̂(x2)...)|0 >conn =
< 0|T (φ̂(x1)φ̂(x2)...)|0 >

< 0|0 >
= sum of connected diagrams with n external points.

(4.185)

We write this as

< 0|T (φ̂(x1)φ̂(x2)...)|0 >conn = < Ω|T (φ̂(x1)φ̂(x2)...)|Ω > . (4.186)

|Ω >=
|0 >

√

< 0|0 >
= e−

1
2 (vacuum graphs)|0 > . (4.187)

The vacuum state |Ω > will be interpreted as the ground state of the full Hamiltonian Ĥ in
contrast to the vacuum state |0 > which is the ground state of the free Hamiltonian Ĥ0. The
vector state |Ω > has non-zero energy Ê0. Thus Ĥ |Ω >= Ê0|Ω > as opposed to Ĥ0|0 >= 0. Let
|n > be the other vector states of the Hamiltonian Ĥ , viz Ĥ |n >= Ên|n >.

The evolution operator Ω(t) is a solution of the differential equation i∂tΩ(t) = V̂I(t)Ω(t)
which satisfies the boundary condition Ω(−∞) = 1. A generalization of Ω(t) is given by the
evolution operator

Ω(t, t
′

) = T

(

e
−i

∫ t

t
′ dsV̂I(s)

)

. (4.188)

This solves essentially the same differential equation as Ω(t), viz

i∂tΩ(t, t
′

) = V̂I(t, t0)Ω(t). (4.189)
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V̂I(t, t0) = eiĤ0(t−t0)V̂ e−iĤ0(t−t0). (4.190)

This evolution operator Ω(t, t
′

) satisfies obviously the boundary condition Ω(t, t) = 1. Further-
more it is not difficult to verify that an equivalent expression for Ω(t, t

′

) is given by

Ω(t, t
′

) = eiĤ0(t−t0)e−iĤ(t−t′ )e−iĤ0(t
′−t0). (4.191)

We compute

e−iĤT |0 > = e−iĤT |Ω >< Ω|0 > +
∑

n6=0

e−iĤT |n >< n|0 >

= e−iÊ0T |Ω >< Ω|0 > +
∑

n6=0

e−iÊnT |n >< n|0 > . (4.192)

In the limit T −→∞(1− iǫ) the second term drops since Ên > Ê0 and we obtain

e−iĤT |0 > = e−iÊ0T |Ω >< Ω|0 > . (4.193)

Equivalently

e−iĤ(t0−(−T ))|0 > = e−iÊ0(t0+T )|Ω >< Ω|0 > . (4.194)

Thus

|Ω >=
eiÊ0(t0+T )

< Ω|0 > Ω(t0,−T )|0 > . (4.195)

By choosing t0 = T and using the fact that Ω(T,−T ) = S we obtain

|Ω >=
eiÊ0(2T )

< Ω|0 > |0 > . (4.196)

Finally by using the definition of |Ω > in terms of |0 > and assuming that the sum of vacuum
graphs is pure imaginary we get

Ê0

vol
= i

vacuum graphs

2T.vol
. (4.197)

Every vacuum graph will contain a factor (2π)4δ4(0) which in the box normalization is equal
exactly to 2T.vol where vol is the volume of the three dimensional space. Hence the normalized
sum of vacuum graphs is precisely equal to the vacuum energy density.

4.3.5 Feynman Rules For Φ−Four Theory

We use Feynman rules for perturbative φ−four theory to calculate the nth order contributions
to the Green’s function < 0|T (φ̂(x1)...φ̂(xN ))|0 >. They are given as follows

1) We draw all Feynman diagrams with N external points xi and n internal points (vertices)
yi.
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2) The contribution of each Feynman diagram to the Green’s function< 0|T (φ̂(x1)...φ̂(xN ))|0 >
is equal to the product of the following three factors

– Each line (internal or external) joining two spacetime points x and y is associated with
a propagator DF (x − y). This propagator is the amplitude for propagation between
the two points x and y.

– Each vertex is associated with a factor −iλ. Interaction is represented by a vertex
and thus there are always 4 lines meeting at a given vertex. The factor −iλ is the
amplitude for the emission and/or absorption of scalar particles at the vertex.

– We divide by the symmetry factor S of the diagram which is the number of permuta-
tions which leave the diagram invariant.

3) We integrate over the internal points yi, i.e. we sum over all places where the underlying
process can happen. This is the superposition principle of quantum mechanics.

These are Feynman rules in position space. We will also need Feynman rules in momentum
space. Before we state them it is better we work out explicitly few concrete examples. Let us go
back to the Feynman diagram b) on figure 2. It is given by

1

2
(−iλ)

∫

d4zDF (x1 − z)DF (x2 − z)DF (0). (4.198)

We will use the following expression of the Feynman scalar propagator

DF (x− y) =

∫

d4p

(2π)4
i

p2 −m2 + iǫ
e−ip(x−y). (4.199)

We compute immediately

1

2
(−iλ)

∫

d4zDF (x1 − z)DF (x2 − z)DF (0) =

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q

(2π)4

(

1

2
(−iλ)(2π)4δ4(p1 + p2)

× e−ip1x1e−ip2x2∆(p1)∆(p2)∆(q)

)

. (4.200)

∆(p) =
i

p2 −m2 + iǫ
. (4.201)

In the above equation p1 and p2 are the external momenta and q is the internal momentum. We
integrate over all these momenta. Clearly we still have to multiply with the vertex −iλ and divide
by the symmetry factor which is here 2. In momentum space we attach to any line which carries
a momentum p a propagator ∆(p). The new features are two things 1) we attach a plane wave
e−ipx to each external point x into which a momentum p is flowing and 2) we impose momentum
conservation at each vertex which in this case is (2π)4δ4(p1 + p2+ q− q) = (2π)4δ4(p1+ p2). See
figure 7.

We consider another example given by the Feynman diagram b)2 on figure 4). We find

(−iλ)2
6

∫

d4y1

∫

d4y2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3 =

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q1
(2π)4

∫

d4q2
(2π)4

∫

d4q3
(2π)4

(

1

6
(−iλ)2(2π)4δ4(p1 + p2)(2π)

4δ4(p1 − q1 − q2 − q3) ×

e−ip1x1e−ip2x2∆(p1)∆(p2)∆(q1)∆(q2)∆(q3)

)

.(4.202)
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This expression can be reconstructed from the same rules we have discussed in the previous case.
See figure 8.

In summary Feynman rules in momentum space read

1) We draw all Feynman diagrams with N external points xi and n internal points (vertices)
yi.

2) The contribution of each Feynman diagram to the Green’s function< 0|T (φ̂(x1)...φ̂(xN ))|0 >
is equal to the product of the following five factors

– Each line (internal or external) joining two spacetime points x and y is associated
with a propagator ∆(p) where p is the momentum carried by the line.

– Each vertex is associated with a factor −iλ.
– We attach a plane wave exp(−ipx) to each external point x where p is the momentum

flowing into x.

– We impose momentum conservation at each vertex.

– We divide by the symmetry factor S of the diagram.

3) We integrate over all internal and external momenta.

4.4 Exercises and Problems

Asymptotic Solutions

• Show that

Q̂(t, ~p) = Q̂in(t, ~p) +
1

E~p

∫ t

−∞
dt

′

sinE~p(t− t
′

)j(t
′

, ~p),

is a solution of the equation of motion

(∂2t + E2
~p)Q(t, ~p) = j(t, ~p).

• Show that

Q̂(t, ~p) = Q̂+
in(t, ~p) + Q̂−

out(t, ~p) + i

∫ +∞

−∞
dt

′

G~p(t− t
′

)j(t
′

, ~p),

is also a solution of the above differential equation.

• Express the Feynman scalar propagator DF (x− x
′

) in terms of G~p(t− t
′

).

• Show that this solution leads to

φ̂(x) = φ̂+in(x) + φ̂−out(x) + i

∫

d4x
′

DF (x− x
′

)J(x
′

).

Hint: Use

d

dt

∫ t

−∞
dt

′

f(t
′

, t) =

∫ t

−∞
dt

′ ∂f(t
′

, t)

∂t
+ f(t, t).

(∂2t + E2
~p)G~p(t− t

′

) = −iδ(t− t′).
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Feynman Scalar Propagator Verify that the Feynman propagator in one-dimension is given
by

G~p(t− t
′

) =

∫

dE

2π

i

E2 − E2
~p + iǫ

e−iE(t−t′) =
e−iE~p|t−t

′ |

2E~p
.

Fourier Transform Show that the Fourier transform of the Klein-Gordon equation of motion

(∂µ∂
µ +m2)φ = J

is given by

(∂2t + E2
~p)Q(t, ~p) = j(t, ~p).

Forced Harmonic Oscillator We consider a single forced harmonic oscillator given by the
equation of motion

(∂2t + E2)Q(t) = J(t).

• Show that the S−matrix defined by the matrix elements Smn =< m out|n in > is unitary.

• Determine S from solving the equation

S−1âinS = âout = âin +
i√
2E

j(E).

• Compute the probability | < n out|0 in > |2.

• Determine the evolution operator in the interaction picture Ω(t) from solving the Schrodinger
equation

i∂tΩ(t) = V̂I(t)Ω(t) , V̂I(t) = −J(t)Q̂I(t).

• Deduce from the fourth question the S−matrix and compare with the result of the second
question.

Interaction Picture Show that the fields Q̂I(t, ~p) and P̂I(t, ~p) are free fields.

Time Ordering Operator Show that

1

3!

∫ t

−∞
dt1

∫ t

−∞
dt2

∫ t

−∞
dt3T (V̂I(t1)V̂I(t2)V̂I(t3)) =

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3V̂I(t1)V̂I(t2)V̂I(t3).

Wick’s Theorem For Forced Scalar Field Show that

i
∑

~p

β~p(+∞) =
1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)

(

θ(t− t′)
V

∑

~p

1

2E~p
eip(x−x

′
) − θ(t− t′)

V

∑

~p

1

2E~p
e−ip(x−x

′
)

)

.
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Unitarity of The S−Matrix

• Show that

S−1 = T̄

(

ei
∫+∞

−∞
dsV̂I(s)

)

.

• Use the above result to verify that S is unitary.

Evolution Operator Ω(t) and Gell-Mann Low Formula Verify up to the third order in
perturbation theory the following equations

Ω(t) = T̄

(

ei
∫

+∞

t
dsV̂I(s)

)

S.

φ̂(x) = S−1

(

T φ̂in(x)S

)

.

Interaction Fields are Free Fields Show that the interaction fields φ̂I(t, ~x) and π̂I(t, ~x) are
free fields.

LSZ Reduction Formulae

• Show the LSZ reduction formulae

i

∫ +∞

−∞
dteiE~pt(∂2t + E2

~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...) =

√

2E~p

(

âout(~p)T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)− T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)âin(~p)

)

.

• Show that

i

∫

d4xeipx(∂µ∂
µ +m2)T (φ̂(x)φ̂(x1)φ̂(x2)...) =

√

2E~p

(

âout(~p)T (φ̂(x1)φ̂(x2)...)− T (φ̂(x1)φ̂(x2)...)âin(~p)
)

.

• Derive the LSZ reduction formulae

−i
∫ +∞

−∞
dte−iE~pt(∂2t + E2

~p)T (Q̂(t, ~p)
+Q̂(t1, ~p1)

+Q̂(t2, ~p2)
+...) =

√

2E~p

(

âout(~p)
+T (Q̂(t1, ~p1)

+Q̂(t2, ~p2)
+...)− T (Q̂(t1, ~p1)+Q̂(t2, ~p2)

+...)âin(~p)
+

)

.

Hint: Start from

e−iE~pt(−i∂t + E~p)Q̂in(t, ~p)
+ =

√

2E~p âin(~p)
+.

e−iE~pt(−i∂t + E~p)Q̂out(t, ~p)
+ =

√

2E~p âout(~p)
+.
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Wick’s Theorem Show that
[

e
1
2

∑
i,j

∂
∂φ(xi)

DF (xi−xj)
∂

∂φ(xj)

(

φ(x1)...φ(x2n)

)]

φ=0

=
∑

contraction

∏

DF (xi − xj).

The 4−Point Function in Φ−Four Theory Calculate the 4−point function in φ−four theory
up to the second order in preturbation theory.

Evolution Operator Ω(t, t
′

) Show that the evolution operators

Ω(t, t
′

) = T

(

e
−i

∫
t

t
′ dsV̂I(s)

)

,

and

Ω(t, t
′

) = eiĤ0(t−t0)e−iĤ(t−t′ )e−iĤ0(t
′−t0).

solve the differential equation

i∂tΩ(t, t
′

) = V̂I(t, t0)Ω(t).

Determine V̂I(t, t0).

Φ−Cube Theory The φ−cube theory is defined by the interaction Lagrangian density

Lint = −
λ

3!
φ3.

Derive Feynman rules for this theory by considering the 2−point and 4−point functions up to
the second order in perturbation theory.
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Part II

Quantum Electrodynamics





5
The Electromagnetic Field

5.1 Covariant Formulation of Classical Electrodynamics

The Field Tensor The electric and magnetic fields ~E and ~B generated by a charge density ρ
and a current density ~J are given by the Maxwell’s equations written in the Heaviside-Lorentz
system as

~∇ ~E = ρ , Gauss′ s Law. (5.1)

~∇ ~B = 0 , No−Magnetic Monopole Law. (5.2)

~∇× ~E = −1

c

∂ ~B

∂t
, Faraday′ s Law. (5.3)

~∇× ~B =
1

c
( ~J +

∂ ~E

∂t
) , Ampere−Maxwell′ s Law. (5.4)

The Lorentz force law expresses the force exerted on a charge q moving with a velocity ~u in the
presence of an electric and magnetic fields ~E and ~B. This is given by

~F = q( ~E +
1

c
~u× ~B). (5.5)

The continuity equation expresses local conservation of the electric charge. It reads

∂ρ

∂t
+ ~∇ ~J = 0. (5.6)

We consider now the following Lorentz transformation

x
′

= γ(x− vt)
y

′

= y

z
′

= z

t
′

= γ(t− v

c2
x). (5.7)
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In other words (with x0 = ct, x1 = x, x2 = y, x3 = z and signature (+−−−))

xµ
′

= Λµ νx
ν , Λ =









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1









. (5.8)

The transformation laws of the electric and magnetic fields ~E and ~B under this Lorentz trans-
formation are given by

E
′

x = Ex , E
′

y = γ(Ey −
v

c
Bz) , E

′

z = γ(Ez +
v

c
By)

B
′

x = Bx , B
′

y = γ(By +
v

c
Ez) , B

′

z = γ(Bz −
v

c
Ey). (5.9)

Clearly ~E and ~B do not transform like the spatial part of a 4−vector. In fact ~E and ~B are the
components of a second-rank antisymmetric tensor. Let us recall that a second-rank tensor Fµν

is an abject carrying two indices which transforms under a Lorentz transformation Λ as

Fµν
′

= Λµ λΛ
ν
σF

λσ. (5.10)

This has 16 components. An antisymmetric tensor will satisfy the extra condition Fµν = −Fµν
so the number of independent components is reduced to 6. Explicitly we write

Fµν =









0 F 01 F 02 F 03

−F 01 0 F 12 F 13

−F 02 −F 12 0 F 23

−F 03 −F 13 −F 23 0









. (5.11)

The transformation laws (5.10) can then be rewritten as

F 01′ = F 01 , F 02′ = γ(F 02 − βF 12) , F 03′ = γ(F 03 + βF 31)

F 23′ = F 23 , F 31′ = γ(F 31 + βF 03) , F 12′ = γ(F 12 − βF 02). (5.12)

By comparing (5.9) and (5.12) we obtain

F 01 = −Ex , F 02 = −Ey , F 03 = −Ez , F 12 = −Bz , F 31 = −By , F 23 = −Bx. (5.13)

Thus

Fµν =









0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0









. (5.14)

Let us remark that (5.9) remains unchanged under the duality transformation

~E −→ ~B , ~B −→ − ~E. (5.15)

The tensor (9.69) changes under the above duality transformation to the tensor

F̃µν =









0 −Bx −By −Bz
Bx 0 Ez −Ey
By −Ez 0 Ex
Bz Ey −Ex 0









. (5.16)
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It is not difficult to show that

F̃µν =
1

2
ǫµναβFαβ . (5.17)

The 4−dimensional Levi-Civita antisymmetric tensor ǫµναβ is defined in an obvious way.
The second-rank antisymmetric tensor F̃ is called the field tensor while the second-rank

antisymmetric tensor F̃ is called the dual field tensor.

Covariant Formulation The proper charge density ρ0 is the charge density measured in the
inertial reference frame O

′

where the charge is at rest. This is given by ρ0 = Q/V0 where V0 is the
proper volume. Because the dimension along the direction of the motion is Lorentz contracted
the volume V measured in the reference frame O is given by V =

√

1− u2/c2V0. Thus the charge
density measured in O is

ρ =
Q

V
=

ρ0
√

1− u2

c2

. (5.18)

The current density ~J measured in O is proportional to the velocity ~u and to the current density
ρ, viz

~J = ρ~u =
ρ0~u

√

1− u2

c2

. (5.19)

The 4−vector velocity ηµ is defined by

ηµ =
1

√

1− u2

c2

(c, ~u). (5.20)

Hence we can define the current density 4−vector Jµ by

Jµ = ρ0η
µ = (cρ, Jx, Jy, Jz). (5.21)

The continuity equation ~∇ ~J = −∂ρ/∂t which expresses charge conservation will take the form

∂µJ
µ = 0. (5.22)

In terms of Fµν and F̃µν Maxwell’s equations will take the form

∂µF
µν =

1

c
Jν , ∂µF̃

µν = 0. (5.23)

The first equation yields Gauss’s and Ampere-Maxwell’s laws whereas the second equation yields
Maxwell’s third equation ~∇ ~B = 0 and Faraday’s law.

It remains to write down a covariant Lorentz force. We start with the 4−vector proper force
given by

Kµ =
q

c
ηνF

µν . (5.24)

This is called the Minkowski force. The spatial part of this force is

~K =
q

√

1− u2

c2

( ~E +
1

c
~u× ~B). (5.25)
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We have also

Kµ =
dpµ

dτ
. (5.26)

In other words

~K =
d~p

dτ
=
dt

dτ
~F =

1
√

1− u2

c2

~F . (5.27)

This leads precisely to the Lorentz force law

~F = q( ~E +
1

c
~u× ~B). (5.28)

5.2 Gauge Potentials and Gauge Transformations

The electric and magnetic fields ~E and ~B can be expressed in terms of a scalar potential V and
a vector potential ~A as

~B = ~∇× ~A. (5.29)

~E = −1

c
(~∇V +

∂ ~A

∂t
). (5.30)

We construct the 4−vector potential Aµ as

Aµ = (V/c, ~A). (5.31)

The field tensor Fµν can be rewritten in terms of Aµ as

Fµν = ∂µAν − ∂νAµ. (5.32)

This equation is actually equivalent to the two equations (9.74) and (9.75). The homogeneous
Maxwell’s equation ∂µF̃

µν = 0 is automatically solved by this ansatz. The inhomogeneous
Maxwell’s equation ∂µF

µν = Jν/c becomes

∂µ∂
µAν − ∂ν∂µAµ =

1

c
Jν . (5.33)

We have a gauge freedom in choosing Aµ given by local gauge transformations of the form (with
λ any scalar function)

Aµ −→ A
′µ = Aµ + ∂µλ. (5.34)

Indeed under this transformation we have

Fµν −→ F
′µν = Fµν . (5.35)

These local gauge transformations form a (gauge) group. In this case the group is just the abelian
U(1) unitary group. The invariance of the theory under these transformations is termed a gauge
invariance. The 4−vector potential Aµ is called a gauge potential or a gauge field. We make
use of the invariance under gauge transformations by working with a gauge potential Aµ which
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satisfies some extra conditions. This procedure is known as gauge fixing. Some of the gauge
conditions so often used are

∂µA
µ = 0 , Lorentz Gauge. (5.36)

∂iA
i = 0 , Coulomb Gauge. (5.37)

A0 = 0 , Temporal Gauge. (5.38)

A3 = 0 , Axial Gauge. (5.39)

In the Lorentz gauge the equations of motion (9.78) become

∂µ∂
µAν =

1

c
Jν . (5.40)

Clearly we still have a gauge freedom Aµ −→ A
′µ = Aµ + ∂µφ where ∂µ∂

µφ = 0. In other

words if Aµ satisfies the Lorentz gauge ∂µA
µ = 0 then A

′µ will also satisfy the Lorentz gauge,

i.e. ∂µA
′µ = 0 iff ∂µ∂

µφ = 0. This residual gauge symmetry can be fixed by imposing another
condition such as the temporal gauge A0 = 0. We have therefore 2 constraints imposed on the
components of the gauge potential Aµ which means that only two of them are really independent.

5.3 Maxwell’s Lagrangian Density

The equations of motion of the gauge field Aµ is

∂µ∂
µAν − ∂ν∂µAµ =

1

c
Jν . (5.41)

These equations of motion should be derived from a local Lagrangian density L, i.e. a Lagrangian
which depends only on the fields and their first derivatives at the point ~x. We have then

L = L(Aµ, ∂νAµ). (5.42)

The Lagrangian is the integral over ~x of the Lagrangian density, viz

L =

∫

d~xL. (5.43)

The action is the integral over time of L, namely

S =

∫

dtL =

∫

d4xL. (5.44)

We compute

δS =

∫

d4xδL

=

∫

d4x

[

δAν
δL
δAν

− δAν∂µ
δL

δ∂µAν
+ ∂µ

(

δAν
δL

δ∂µAν

)]

. (5.45)
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The surface term is zero because the field Aν at infinity is assumed to be zero and thus

δAν = 0 , xµ −→ ±∞. (5.46)

We get

δS =

∫

d4xδAν

[

δL
δAν

− ∂µ
δL

δ∂µAν

]

. (5.47)

The principle of least action δS = 0 yields therefore the Euler-Lagrange equations

δL
δAν

− ∂µ
δL

δ∂µAν
= 0. (5.48)

Firstly the Lagrangian density L is a Lorentz scalar. Secondly the equations of motion (5.41)
are linear in the field Aµ and hence the Lagrangian density L can at most be quadratic in Aµ.
The most general form of L which is quadratic in Aµ is

LMaxwell = α(∂µA
µ)2 + β(∂µA

ν)(∂µAν) + γ(∂µA
ν)(∂νA

µ) + δAµA
µ + ǫJµA

µ. (5.49)

We calculate

δLMaxwell

δAρ
= 2δAρ + ǫJρ. (5.50)

δLMaxwell

δ∂σAρ
= 2αησρ∂µA

µ + 2β∂σAρ + 2γ∂ρAσ. (5.51)

Thus

δLMaxwell

δAρ
− ∂σ

δLMaxwell

δ∂σAρ
= 0⇔ 2β∂σ∂

σAρ + 2(α+ γ)∂ρ∂σA
σ − 2δAρ = ǫJρ. (5.52)

By comparing with the equations of motion (5.41) we obtain immediately (with ζ an arbitrary
parameter)

2β = −ζ , 2(α+ γ) = ζ , δ = 0 , ǫ = −1

c
ζ. (5.53)

We get the Lagrangian density

LMaxwell = α

(

(∂µA
µ)2 − ∂µAν∂νAµ

)

− ζ

2

(

∂µAν∂
µAν − ∂µAν∂νAµ

)

− 1

c
ζJµA

µ

= α∂µ

(

Aµ∂νA
ν −Aν∂νAµ

)

− ζ

4
FµνF

µν − 1

c
ζJµA

µ. (5.54)

The first term is a total derivative which vanishes since the field Aν vanishes at infinity. Thus
we end up with the Lagrangian density

LMaxwell = −ζ
4
FµνF

µν − 1

c
ζJµA

µ. (5.55)

In order to get a correctly normalized Hamiltonian density from this Lagrangian density we
choose ζ = 1. We get finally the result

LMaxwell = −1

4
FµνF

µν − 1

c
JµA

µ. (5.56)
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5.4 Polarization Vectors

In this section we will consider a free electromagnetic gauge field Aµ, i.e. we take Jµ = 0. In the
Feynman gauge (see next section for detail) the equations of motion of the gauge field Aµ read

∂µ∂
µAν = 0. (5.57)

These are 4 massless Klein-Gordon equations. The solutions are plane-waves of the form

Aµ = e±
i
~
pxǫµλ(~p). (5.58)

The 4−momentum pµ is such that

pµp
µ = 0. (5.59)

There are 4 independent polarization vectors ǫµλ(~p). The polarization vectors for λ = 1, 2 are
termed transverse , the polarization vector for λ = 3 is termed longitudinal and the polarization
vector for λ = 0 is termed scalar.

In the case of the Lorentz condition ∂µA
µ = 0 the polarization vectors ǫµλ(~p) are found to

satisfy pµǫ
µ
λ(~p) = 0. By imposing also the temporal gauge condition A0 = 0 we get ǫ0λ(~p) = 0

and the Lorentz condition becomes the Coulomb gauge ~p.~ǫλ(~p) = 0.
Motivated by this we choose the polarization vectors ǫµλ(~p) as follows. We pick a fixed Lorentz

frame in which the time axis is along some timelike unit 4−vector nµ, viz

nµn
µ = 1 , n0 > 0. (5.60)

The transverse polarization vectors will be chosen in the plane orthogonal to nµ and to the
4−momentum pµ. The second requirement is equivalent to the Lorentz condition:

pµǫ
µ
λ(~p) = 0 , λ = 1, 2. (5.61)

The first requirement means that

nµǫ
µ
λ(~p) = 0 , λ = 1, 2. (5.62)

The transverse polarization vectors will furthermore be chosen to be spacelike (which is equivalent
to the temporal gauge condition) and orthonormal, i.e.

ǫµ1 (~p) = (0,~ǫ1(~p)) , ǫ
µ
2 (~p) = (0,~ǫ2(~p)), (5.63)

and

~ǫi(~p).~ǫj(~p) = δij . (5.64)

The longitudinal polarization vector is chosen in the plane (nµ, pµ) orthogonal to nµ. More
precisely we choose

ǫµ3 (~p) =
pµ − (np)nµ

np
. (5.65)

For nµ = (1, 0, 0, 0) we get ǫµ3 (~p) = (0, ~p/|~p|). This longitudinal polarization vector satisfies

ǫµ3 (~p)ǫ3µ(~p) = −1 , ǫµ3 (~p)nµ = 0 , ǫµ3 (~p)ǫλµ(~p) = 0 , λ = 1, 2. (5.66)
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Let us also remark

pµǫ
µ
3 (~p) = −nµpµ. (5.67)

Indeed for a massless vector field it is impossible to choose a third polarization vector which
is transevrse. A massless particle can only have two polarization states regardless of its spin
whereas a massive particle with spin j can have 2j + 1 polarization states.

The scalar polarization vector is chosen to be nµ itself, namely

ǫµ0 (~p) = nµ. (5.68)

In summary the polarization vectors ǫµλ(~p) are chosen such that they satisfy the orthonormaliza-
tion condition

ǫµλ(~p)ǫλ′µ(~p) = ηλλ′ . (5.69)

They also satisfy

pµǫ
µ
1 (~p) = pµǫ

µ
2 (~p) = 0 , − pµǫµ3 (~p) = pµǫ

µ
0 (~p) = nµpµ. (5.70)

By choosing nµ = (1, 0, 0, 0) and ~p = (0, 0, p) we obtain ǫµ0 (~p) = (1, 0, 0, 0), ǫµ1 (~p) = (0, 1, 0, 0),
ǫµ2 (~p) = (0, 0, 1, 0) and ǫµ3 (~p) = (0, 0, 0, 1).

We compute in the reference frame in which nµ = (1, 0, 0, 0) the completeness relations

3
∑

λ=0

ηλλǫ
0
λ(~p)ǫ

0
λ(~p) = ǫ00(~p)ǫ

0
0(~p) = 1. (5.71)

3
∑

λ=0

ηλλǫ
0
λ(~p)ǫ

i
λ(~p) = ǫ00(~p)ǫ

i
0(~p) = 0. (5.72)

3
∑

λ=0

ηλλǫ
i
λ(~p)ǫ

j
λ(~p) = −

3
∑

λ=1

ǫiλ(~p)ǫ
j
λ(~p). (5.73)

The completeness relation for a 3−dimensional orthogonal dreibein is

3
∑

λ=1

ǫiλ(~p)ǫ
j
λ(~p) = δij . (5.74)

This can be checked for example by going to the reference frame in which ~p = (0, 0, p). Hence
we get

3
∑

λ=0

ηλλǫ
i
λ(~p)ǫ

j
λ(~p) = ηij . (5.75)

In summary we get the completeness relations

3
∑

λ=0

ηλλǫ
µ
λ(~p)ǫ

ν
λ(~p) = ηµν . (5.76)

From this equation we derive that the sum over the transverse polarization states is given by

2
∑

λ=1

ǫµλ(~p)ǫ
ν
λ(~p) = −ηµν −

pµpν

(np)2
+
pµnν + pνnµ

np
. (5.77)
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5.5 Quantization of The Electromagnetic Gauge Field

We start with the Lagrangian density

LMaxwell = −1

4
FµνF

µν − 1

c
JµA

µ. (5.78)

The field tensor is defined by Fµν = ∂µAν − ∂νAµ. The equations of motion of the gauge field
Aµ derived from the Lagrangian density LMaxwell are given by

∂µ∂
µAν − ∂ν∂µAµ =

1

c
Jν . (5.79)

There is a freedom in the definition of the gauge field Aµ given by the gauge transformations

Aµ −→ A
′µ = Aµ + ∂µλ. (5.80)

The form of the equations of motion (5.79) strongly suggest the Lorentz condition

∂µAµ = 0. (5.81)

We incorporate this constraint via a Lagrange multiplier ζ in order to obtain a gauge-fixed
Lagrangian density, viz

Lgauge−fixed = −1

4
FµνF

µν − 1

2
ζ(∂µAµ)

2 − 1

c
JµA

µ. (5.82)

The added extra term is known as a gauge-fixing term. This modification was proposed first by
Fermi. The equations of motion derived from this Lagrangian density are

∂µ∂
µAν − (1− ζ)∂ν∂µAµ =

1

c
Jν . (5.83)

These are equivalent to Maxwell’s equations in the Lorentz gauge. To see this we remark first
that

∂ν

(

∂µ∂
µAν − (1− ζ)∂ν∂µAµ

)

=
1

c
∂νJ

ν . (5.84)

Gauge invariance requires current conservation, i.e. we must have ∂νJ
ν = 0. Thus we obtain

∂µ∂
µφ = 0 , φ = ∂µA

µ. (5.85)

This is a Cauchy initial-value problem for ∂µA
µ. In other words if ∂µA

µ = 0 and ∂0(∂µA
µ) = 0

at an initial time t = t0 then ∂µA
µ = 0 at all times. Hence (5.83) are equivalent to Maxwell’s

equations in the Lorentz gauge.
We will work in the so-called Feynman gauge which corresponds to ζ = 1 and for simplicity

we will set Jµ = 0. The equations of motion become the massless Klein-Gordon equations

∂µ∂
µAν = 0. (5.86)

These can be derived from the Lagrangian density

L = −1

2
∂µAν∂

µAν . (5.87)
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This Lagrangian density is equal to the gauge-fixed Lagrangian density Lgauge−fixed modulo a
total derivative term, viz

Lgauge−fixed = L+ total derivative term. (5.88)

The conjugate momentum field is defined by

πµ =
δL

δ∂tAµ

= − 1

c2
∂tAµ. (5.89)

The Hamiltonian density is then given by

H = πµ∂tA
µ − L

=
1

2
∂iAµ∂

iAµ − 1

2
∂0Aµ∂

0Aµ

=
1

2
(∂0 ~A)

2 +
1

2
(~∇ ~A)2 − 1

2
(∂0A

0)2 − 1

2
(~∇A0)2. (5.90)

The contribution of the zero-component A0 of the gauge field is negative. Thus the Hamiltonian
density is not positive definite as it should be. This is potentially a severe problem which will
be solved by means of the gauge condition.

We have already found that there are 4 independent polarization vectors ǫµλ(~p) for each
momentm ~p. The 4−momentum pµ satisfies pµpµ = 0, i.e. (p0)2 = ~p2. We define ω(~p) = c

~
p0 =

c
~
|~p|. The most general solution of the classical equations of motion in the Lorentz gauge can be

put in the form

Aµ = c

∫

d3~p

(2π~)3
1

√

2ω(~p)

3
∑

λ=0

(

e−
i
~
pxǫµλ(~p)a(~p, λ) + e

i
~
pxǫµλ(~p)a(~p, λ)

∗
)

p0=|~p|
. (5.91)

We compute

1

2

∫

∂iA
µ∂iAµ = −c2

∫

d3~p

(2π~)3
1

4ω(~p)

pipi

~2

3
∑

λ,λ′=0

ǫµλ(~p)ǫλ′µ(~p)

(

a(~p, λ)a(~p, λ
′

)∗ + a(~p, λ)∗a(~p, λ
′

)

)

− c2
∫

d3~p

(2π~)3
1

4ω(~p)

pipi

~2

3
∑

λ,λ′=0

ǫµλ(~p)ǫλ′µ(−~p)
(

e−
2i
~
p0x0

a(~p, λ)a(−~p, λ′

)

+ e+
2i
~
p0x0

a(~p, λ)∗a(−~p, λ′

)∗
)

. (5.92)

1

2

∫

∂0A
µ∂0Aµ = c2

∫

d3~p

(2π~)3
1

4ω(~p)

p0p0

~2

3
∑

λ,λ′=0

ǫµλ(~p)ǫλ′µ(~p)

(

a(~p, λ)a(~p, λ
′

)∗ + a(~p, λ)∗a(~p, λ
′

)

)

− c2
∫

d3~p

(2π~)3
1

4ω(~p)

p0p0

~2

3
∑

λ,λ′=0

ǫµλ(~p)ǫλ′µ(−~p)
(

e−
2i
~
p0x0

a(~p, λ)a(−~p, λ′

)

+ e+
2i
~
p0x0

a(~p, λ)∗a(−~p, λ′

)∗
)

. (5.93)
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The Hamiltonian becomes (since p0p0 = pipi)

H =

∫

d3x

(

1

2
∂iAµ∂

iAµ − 1

2
∂0Aµ∂

0Aµ
)

= −c2
∫

d3~p

(2π~)3
1

2ω(~p)

p0p0

~2

3
∑

λ,λ′=0

ǫµλ(~p)ǫλ′µ(~p)

(

a(~p, λ)a(~p, λ
′

)∗ + a(~p, λ)∗a(~p, λ
′

)

)

= −
∫

d3~p

(2π~)3
ω(~p)

2

3
∑

λ,λ′=0

ǫµλ(~p)ǫλ′µ(~p)

(

a(~p, λ)a(~p, λ
′

)∗ + a(~p, λ)∗a(~p, λ
′

)

)

= −
∫

d3~p

(2π~)3
ω(~p)

2

3
∑

λ=0

ηλλ

(

a(~p, λ)a(~p, λ)∗ + a(~p, λ)∗a(~p, λ)

)

. (5.94)

In the quantum theory Aµ becomes the operator

Âµ = c

∫

d3~p

(2π~)3
1

√

2ω(~p)

3
∑

λ=0

(

e−
i
~
pxǫµλ(~p)â(~p, λ) + e

i
~
pxǫµλ(~p)â(~p, λ)

+

)

p0=|~p|
. (5.95)

The conjugate momentum πµ becomes the operator

π̂µ = − 1

c2
∂tÂ

µ

=

∫

d3~p

(2π~)3
i

c

√

ω(~p)

2

3
∑

λ=0

(

e−
i
~
pxǫµλ(~p)â(~p, λ)− e

i
~
pxǫµλ(~p)â(~p, λ)

+

)

p0=|~p|
. (5.96)

We impose the equal-time canonical commutation relations

[Âµ(x0, ~x), π̂ν(x0, ~y)] = i~ηµνδ3(~x − ~y). (5.97)

[Âµ(x0, ~x), Âν(x0, ~y)] = [π̂µ(x0, ~x), π̂ν(x0, ~y)] = 0. (5.98)

The operators â+ and â are expected to be precisely the creation and annihilation operators. In
other words we expect that

[â(~p, λ), â(~q, λ
′

)] = [â(~p, λ)+, â(~q, λ
′

)+] = 0. (5.99)

We compute then

[Âµ(x0, ~x), π̂ν(x0, ~y)] = −i
∫

d3~p

(2π~)3

∫

d3~q

(2π~)3
1

√

2ω(~p)

√

ω(~q)

2

3
∑

λ,λ′=0

ǫµλ(~p)ǫ
ν
λ′ (~q)

(

e−
i
~
pxe+

i
~
qy[â(~p, λ), â(~q, λ

′

)+] + e+
i
~
pxe−

i
~
qy[â(~q, λ

′

), â(~p, λ)+]

)

.

(5.100)

We can immediately conclude that we must have

[â(~p, λ), â(~q, λ
′

)+] = −ηλλ′ ~(2π~)3δ3(~p− ~q). (5.101)
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By using (5.99) and (5.101) we can also verify the equal-time canonical commutation relations
(5.98). The minus sign in (5.101) causes serious problems. For transverse (i = 1, 2) and longi-
tudinal (i = 3) polarizations the number operator is given as usual by â(~p, i)+â(~p, i). Indeed we
compute

[â(~p, i)+â(~p, i), â(~q, i)] = −~(2π~)3δ3(~p− ~q)â(~q, i)
[â(~p, i)+â(~p, i), â(~q, i)+] = ~(2π~)3δ3(~p− ~q)â(~q, i)+. (5.102)

In the case of the scalar polarization (λ = 0) the number operator is given by −â(~p, 0)+â(~p, 0)
since

[−â(~p, 0)+â(~p, 0), â(~q, 0)] = −~(2π~)3δ3(~p− ~q)â(~q, 0)
[−â(~p, 0)+â(~p, 0), â(~q, 0)+] = ~(2π~)3δ3(~p− ~q)â(~q, 0)+. (5.103)

In the quantum theory the Hamiltonian becomes the operator

Ĥ = −
∫

d3~p

(2π~)3
ω(~p)

2

3
∑

λ=0

ηλλ

(

â(~p, λ)â(~p, λ)+ + â(~p, λ)+â(~p, λ)

)

. (5.104)

As before normal ordering yields the Hamiltonian operator

Ĥ = −
∫

d3~p

(2π~)3
ω(~p)

3
∑

λ=0

ηλλâ(~p, λ)
+â(~p, λ)

=

∫

d3~p

(2π~)3
ω(~p)

( 3
∑

i=1

â(~p, i)+â(~p, i)− â(~p, 0)+â(~p, 0)
)

. (5.105)

Since −â(~p, 0)+â(~p, 0) is the number operator for scalar polarization the Hamiltonian Ĥ can only
have positive eigenvalues. Let |0 > be the vacuum state, viz

â(~p, λ)|0 >= 0 , ∀~p and ∀λ. (5.106)

The one-particle states are defined by

|~p, λ >= â(~p, λ)+|0 > . (5.107)

Let us compute the expectation value

< ~p, λ|Ĥ |~p, λ > . (5.108)

By using Ĥ|0 >= 0 and [Ĥ, â(~p, λ)+] = ~ω(~p)â(~p, λ)+ we find

< ~p, λ|Ĥ |~p, λ > = < ~p, λ|[Ĥ, â(~p, λ)+]|0 >
= ~ω(~p) < ~p, λ|~p, λ > . (5.109)

However

< ~p, λ|~p, λ > = < 0|[â(~p, λ), â(~p, λ)+]|0 >
= −ηλλ~(2π~)3δ3(~p− ~q) < 0|0 >
= −ηλλ~(2π~)3δ3(~p− ~q). (5.110)

This is negative for the scalar polarization λ = 0 which is potentially a severe problem. As a
consequence the expectation value of the Hamiltonian operator in the one-particle state with
scalar polarization is negative. The resolution of these problems lies in the Lorentz gauge fixing
condition which needs to be taken into consideration.
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5.6 Gupta-Bleuler Method

In the quantum theory the Lorentz gauge fixing condition ∂µA
µ = 0 becomes the operator

equation

∂µÂ
µ = 0. (5.111)

Explicitly we have

∂µÂ
µ = −c

∫

d3~p

(2π~)3
1

√

2ω(~p)

i

~
pµ

3
∑

λ=0

(

e−
i
~
pxǫµλ(~p)â(~p, λ)− e

i
~
pxǫµλ(~p)â(~p, λ)

+

)

p0=|~p|
= 0.(5.112)

However

[∂µÂ
µ(x0, ~x), Âν(x0, ~y)] = [∂0Â

0(x0, ~x), Âν(x0, ~y)] + [∂iÂ
i(x0, ~x), Âν(x0, ~y)]

= −c[π̂0(x0, ~x), Âν(x0, ~y)] + ∂xi [Â
i(x0, ~x), Âν(x0, ~y)]

= i~cη0νδ3(~x− ~y). (5.113)

In other words in the quantum theory we can not impose the Lorentz condition as the operator
identity (5.111).

The problem we faced in the previous section was the fact that the Hilbert space of quantum
states has an indefinite metric, i.e. the norm was not positive-definite. As we said the solution
of this problem consists in imposing the Lorentz gauge condition but clearly this can not be
done in the operator form (5.111). Obviously there are physical states in the Hilbert space
associated with the photon transverse polarization states and unphysical states associated with
the longitudinal and scalar polarization states. It is therefore natural to impose the Lorentz
gauge condition only on the physical states |φ > associated with the transverse photons. We
may require for example that the expectation value < φ|∂µÂµ|φ > vanishes, viz

< φ|∂µÂµ|φ >= 0. (5.114)

Let us recall that the gauge field operator is given by

Âµ = c

∫

d3~p

(2π~)3
1

√

2ω(~p)

3
∑

λ=0

(

e−
i
~
pxǫµλ(~p)â(~p, λ) + e

i
~
pxǫµλ(~p)â(~p, λ)

+

)

p0=|~p|
. (5.115)

This is the sum of a positive-frequency part Âµ+ and a negative-frequency part Âµ−, viz

Âµ = Âµ+ + Âµ−. (5.116)

These parts are given respectively by

Âµ+ = c

∫

d3~p

(2π~)3
1

√

2ω(~p)

3
∑

λ=0

e−
i
~
pxǫµλ(~p)â(~p, λ). (5.117)

Âµ− = c

∫

d3~p

(2π~)3
1

√

2ω(~p)

3
∑

λ=0

e
i
~
pxǫµλ(~p)â(~p, λ)

+. (5.118)
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Instead of (5.114) we choose to impose the Lorentz gauge condition as the eigenvalue equation

∂µÂ
µ
+|φ >= 0. (5.119)

This is equivalent to

< φ|∂µÂµ− = 0. (5.120)

The condition (5.119) is stronger than (5.114). Indeed we can check that < φ|∂µÂµ|φ >=<

φ|∂µÂµ+|φ > + < φ|∂µÂµ−|φ >= 0. In this way the physical states are defined precisely as the

eigenvectors of the operator ∂µÂ
µ
+ with eigenvalue 0. In terms of the annihilation operators

â(~p, λ) the condition (5.119) reads

c

∫

d3~p

(2π~)3
1

√

2ω(~p)

3
∑

λ=0

e−
i
~
px(− i

~
pµǫ

µ
λ(~p))â(~p, λ)|φ >= 0. (5.121)

Since pµǫ
µ
i (~p) = 0, i = 1, 2 and pµǫ

µ
3 (~p) = −pµǫµ0 (~p) = −nµpµ we get

c

∫

d3~p

(2π~)3
1

√

2ω(~p)
e−

i
~
px i

~
pµn

µ

(

â(~p, 3)− â(~p, 0)
)

|φ >= 0. (5.122)

We immediately conclude that

(

â(~p, 3)− â(~p, 0)
)

|φ >= 0. (5.123)

Hence we deduce the crucial identity

< φ|â(~p, 3)+â(~p, 3)|φ >=< φ|â(~p, 0)+â(~p, 0)|φ > . (5.124)

< φ|Ĥ |φ > =

∫

d3~p

(2π~)3
ω(~p)

( 2
∑

i=1

< φ|â(~p, i)+â(~p, i)|φ > + < φ|â(~p, 3)+â(~p, 3)|φ >

− < φ|â(~p, 0)+â(~p, 0)|φ >
)

=

∫

d3~p

(2π~)3
ω(~p)

2
∑

i=1

< φ|â(~p, i)+â(~p, i)|φ > . (5.125)

This is always positive definite and only transverse polarization states contribute to the expec-
tation value of the Hamiltonian operator. This same thing will happen for all other physical
observables such as the momentum operator and the angular momentum operator. Let us define

L(~p) = â(~p, 3)− â(~p, 0). (5.126)

We have

L(~p)|φ >= 0. (5.127)

It is trivial to show that

[L(~p), L(~p
′

)+] = 0. (5.128)
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Thus

L(~p)|φc >= 0, (5.129)

where |φc > is also a physical state defined by

|φc >= fc(L
+)|φ > . (5.130)

The operator fc(L
+) can be expanded as

fc(L
+) = 1 +

∫

d3~p
′

c(~p
′

)L(~p
′

)+ +

∫

d3~p
′

∫

d3~p
′′

c(~p
′

, ~p
′′

)L(~p
′

)+L(~p
′′

)+ + ... (5.131)

It is also trivial to show that

[fc(L
+)+, fc′ (L

+)] = 0. (5.132)

The physical state |φc > is completely equivalent to the state |φ > although |φc > contains
longitudinal and scalar polarization states while |φ > contains only transverse polarization states.
Indeed

< φc|φc′ > = < φ|fc(L+)+fc′ (L
+)|φ >

= < φ|fc′ (L+)fc(L
+)+|φ >

= < φ|φ > . (5.133)

Thus the scalar product between any two states |φc > and |φc′ > is fully determined by the
norm of the state |φ >. The state |φc > constructed from a given physical state |φ > defines an
equivalence class. Clearly the state |φ > can be taken to be the representative of this equivalence
class. The members of this equivalence class are related by gauge transformations. This can be
checked explicitly as follows. We compute

< φc|Âµ|φc > = < φ|fc(L+)+[Âµ, fc(L
+)]|φ > + < φ|[fc(L+)+, Âµ]|φ > + < φ|Âµ|φ > .

(5.134)

By using the fact that the commutators of Âµ with L(~p) and L(~p)+ are c−numbers we obtain

< φc|Âµ|φc > =

∫

d3~pc(~p)[Âµ, L(~p)
+] +

∫

d3~pc(~p)∗[L(~p), Âµ]+ < φ|Âµ|φ > . (5.135)

We compute

[Âµ, L(~p)+] =
~c

√

2ω(~p)
e−

i
~
px(ǫµ3 (~p) + ǫµ0 (~p)). (5.136)

Thus

< φc|Âµ|φc > = ~c

∫

d3~p
√

2ω(~p)

(

ǫµ3 (~p) + ǫµ0 (~p)

)(

c(~p)e−
i
~
px + c(~p)∗e

i
~
px

)

+ < φ|Âµ|φ >

= ~c

∫

d3~p
√

2ω(~p)

(

pµ

n.p

)(

c(~p)e−
i
~
px + c(~p)∗e

i
~
px

)

+ < φ|Âµ|φ >

= ~c(−~

i
∂µ)

∫

d3~p
√

2ω(~p)

(

1

n.p

)(

c(~p)e−
i
~
px − c(~p)∗e i

~
px

)

+ < φ|Âµ|φ >

= ∂µΛ+ < φ|Âµ|φ > . (5.137)
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Λ = i~2c

∫

d3~p
√

2ω(~p)

(

1

n.p

)(

c(~p)e−
i
~
px − c(~p)∗e i

~
px

)

. (5.138)

Since p0 = |~p| we have ∂µ∂
µΛ = 0, i.e. the gauge function Λ is consistent with the Lorentz gauge

condition.

5.7 Propagator

The probability amplitudes for a gauge particle to propagate from the spacetime point y to the
spacetime x is

iDµν(x− y) =< 0|Âµ(x)Âν (y)|0 > . (5.139)

We compute

iDµν(x − y) = c2
∫

d3~q

(2π~)3

∫

d3~p

(2π~)3
1

√

2ω(~q)

1
√

2ω(~p)
e−

i
~
qxe+

i
~
py

3
∑

λ′ ,λ=0

ǫµ
λ′ (~q)ǫ

ν
λ(~p)

× < 0|[â(~q, λ′

), â(~p, λ)+]|0 >

= c2~2
∫

d3~p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y)

3
∑

λ=0

(−ηλλǫµλ(~q)ǫνλ(~p))

= c2~2
∫

d3~p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y)(−ηµν)

= ~
2D(x − y)(−ηµν). (5.140)

The function D(x−y) is the probability amplitude for a massless real scalar particle to propagate
from y to x. The retarded Green’s function of the gauge field can be defined by

iDµν
R (x− y) = ~

2DR(x− y)(−ηµν)
= θ(x0 − y0) < 0|[Âµ(x), Âν (y)]|0 > . (5.141)

The second line follows from the fact that DR(x − y) = θ(x0 − y0) < 0|[φ̂(x), φ̂(y)]|0 >. In
momentum space this retarded Green’s function reads

iDµν
R (x− y) = ~

2

(

c~

∫

d4p

(2π~)4
i

p2
e−

i
~
p(x−y)

)

(−ηµν). (5.142)

Since ∂α∂
αDR(x− y) = (−ic/~)δ4(x− y) we must have

(

∂α∂
αηµν

)

Dνλ
R (x− y) = ~cδ4(x− y)ηλµ. (5.143)

Another solution of this equation is the so-called Feynman propagator for a gauge field given by

iDµν
F (x− y) = ~

2DF (x − y)(−ηµν)
= < 0|T Âµ(x)Âν (y)|0 > . (5.144)

In momentum space this reads

iDµν
F (x− y) = ~

2

(

c~

∫

d4p

(2π~)4
i

p2 + iǫ
e−

i
~
p(x−y)

)

(−ηµν). (5.145)
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5.8 Exercises and Problems

Maxwell’s Equations

1) Derive Maxwell’s equations from

∂µF
µν =

1

c
Jν , ∂µF̃

µν = 0. (5.146)

2) Derive from the expression of the field tensor Fµν in terms of Aµ the electric and magnetic
fields in terms of the scalar and vector potentials.

Noether’s Theorem

1) Prove Noether’s theorem for an infinitesimal transformation of the form

φ(x) −→ φ
′

(x) = φ(x) + δφ(x). (5.147)

2) Determine the conserved current of the Dirac Lagrangian density under the local gauge
transformation

ψ −→ ψ
′

= eiαψ. (5.148)

3) What is the significance of the corresponding conserved charge.

Polarization Vectors

1) Write down the polarization vectors in the reference frame where nµ = (1, 0, 0, 0).

2) Verify that

2
∑

λ=1

ǫµλ(~p)ǫ
ν
λ(~p) = −ηµν −

pµpν

(np)2
+
pµnν + pνnµ

np
. (5.149)

Gauge Invariance and Current Conservation

1) Show that current conservation ∂µJµ = 0 is a necessary and sufficient condition for gauge
invariance. Consider the Lagrangian density

L = −1

4
FµνF

µν + JµA
µ. (5.150)

2) The gauge-fixed equations of motion are given by

∂µ∂
µAν − (1− ζ)∂ν∂µAµ =

1

c
Jν . (5.151)

Show that for ζ 6= 0 these equations of motion are equivalent to Maxwell’s equations in the
Lorentz gauge.
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Commutation Relations Verify

[â(~p, λ), â(~q, λ
′

)+] = −ηλλ′ ~(2π~)3δ3(~p− ~q). (5.152)

Hamiltonian Operator

1) Show that the classical Hamiltonian of the electromagnetic field is given by

H =

∫

d3x

(

1

2
∂iAµ∂

iAµ − 1

2
∂0Aµ∂

0Aµ
)

. (5.153)

2) Show that in the quantum theory the Hamiltonian operator is of the form

Ĥ =

∫

d3~p

(2π~)3
ω(~p)

( 3
∑

i=1

â(~p, i)+â(~p, i)− â(~p, 0)+â(~p, 0)
)

. (5.154)

3) Impose the Lorentz gauge condition using the Gupta-Bleuler method. What are the phys-
ical states. What happens to the expectation values of Ĥ .

Physical States Let us define

L(~p) = â(~p, 3)− â(~p, 0). (5.155)

Physical states are defined by

L(~p)|φ >= 0. (5.156)

Define

|φc >= fc(L
+)|φ > . (5.157)

1) Show that the physical state |φc > is completely equivalent to the physical state |φ >.

2) Show that the two states |φ > and |φc > are related by a gauge transformation. Determine
the gauge parameter.

Photon Propagator

1) Compute the photon amplitude iDµν(x − y) =< 0|Âµ(x)Âν(y)|0 > in terms of the scalar
amplitude D(x− y).

2) Derive the photon propagator in a general gauge ξ.



6
Quantum Electrodynamics

6.1 Lagrangian Density

The Dirac Lagrangian density which describes a free propagating fermion of mass m is given by
the term

LDirac = ψ̄(iγµ∂µ −m)ψ. (6.1)

The Maxwell’s Lagrangian density describing a free propagating photon is given by the term

LMaxwell = −1

4
FµνF

µν . (6.2)

This density gives Maxwell’s equations in vacuum. It is therefore clear that the Lagrangian
density describing a photon interacting with a fermion of mass m is of the form

L = −1

4
FµνF

µν − JµAµ + LDirac. (6.3)

The term −JµAµ is dictated by the requirement that this Lagrangian density must give Maxwell’s
equations in the presence of sources. The corresponding current Jµ is a conserved 4−vector which
will clearly depend on the spinors ψ and ψ̄. A solution is given by

Jµ = eψ̄γµψ. (6.4)

The first term in the above Lagrangian density (6.3) is invariant under the gauge transformation

Aµ −→ A
′µ = Aµ + ∂µλ. (6.5)

The second term will transform under this gauge transformation as

−JµAµ −→ −JµA
′µ = −JµAµ − Jµ∂µλ. (6.6)
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The Lagrangian density (6.3) is gauge invariant only if the spinor transforms under the gauge
transformation (6.5) in such a way that a) the current remains invariant and b) to cancel the
term −Jµ∂µλ.

In order to find the transformation law of the spinor we recall that the current Jµ is the
Noether’s current associated with the following transformation

ψ −→ ψ
′

= exp(−ieλ)ψ. (6.7)

Indeed

ψ̄(iγµ∂µ −m)ψ −→ ψ̄
′

(iγµ∂µ −m)ψ
′

= ψ̄(iγµ∂µ −m)ψ + ∂µλJ
µ. (6.8)

We remark that if we simultaneously transform the the photon and the Dirac fields according
to (6.5) and (6.7) respectively we find that the Lagrangian density (6.3) is invariant. We also
remark that the 0 component of the Noether’s current Jµ is the volume density of the electric
charge and hence gauge symmetry underlies the principle of conservation of electric charge.

The gauge-fixed Lagrangian density is then given by

L = −1

4
FµνF

µν − 1

2
ζ(∂µAµ)

2 + ψ̄(iγµ∂µ −m)ψ − eψ̄γµψAµ. (6.9)

The propagator of the photon field in a general gauge ζ is given by the formula

iDµν
F (x− y) =

∫

d4p

(2π)4
i

p2 + iǫ

(

− ηµν + (1− 1

ζ
)
pµpν

p2

)

exp(−ip(x− y)). (6.10)

The propagator of the fermion field is given by

(SF )ab(x− y) =

∫

d4p

(2π)4
i(γµpµ +m)ab
p2 −m2 + iǫ

exp(−ip(x− y)). (6.11)

6.2 Review of φ4 Theory

The primary objects of interest are the probability amplitudes < ~q1... out|~p1... in > which are
equal to the S−matrix elements < ~q1... out|~p1... in >. They can be reconstructed from the

Green’s functions < 0|T (φ̂(x1)...φ̂(x
′

1)...)|0 > using the formula

< ~q1... out|~p1... in > = < ~q1... in|S|~p1... in >

=

∫

d4x1e
iq1x1 i(∂21 +m2)...

∫

d4x
′

1e
−ip1x

′

1i(∂
′2
1 +m2)... < 0|T (φ̂(x1)...φ̂(x

′

1)...)|0 > .

(6.12)

The "in" states are defined by

|~p1~p2... in > =
√

2E~p1
√

2E~p2 ...ain(~p1)
+ain(~p2)

+...|0 > . (6.13)

The Green’s functions < 0|T (φ̂(x1)...φ̂(x
′

1)...)|0 > are calculated using the Gell-Mann Low for-
mula and the S−matrix given by

T (φ̂(x)φ̂(y)...) = S−1T

(

φ̂in(x)φ̂in(y)...S

)

. (6.14)
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S = T

(

ei
∫
d4xLint(φ̂in(x))

)

. (6.15)

We obtain

< 0|T (φ̂(x1)φ̂(x2)...)|0 > = < 0|T
(

φ̂in(x1)φ̂in(x2)...S

)

|0 >

= < 0|T
(

φ̂in(x1)φ̂in(x2)...e
i
∫
d4yLint(y)

)

|0 >

=
∞
∑

n=0

in

n!

∫

d4y1..

∫

d4yn < 0|T
(

φ̂in(x1)φ̂in(x2)..Lint(y1)..Lint(yn)
)

|0 > .

(6.16)

Clearly we need to evaluate terms of the generic form

< 0|T
(

φ̂in(x1)φ̂in(x2)...φ̂in(x2n)

)

|0 > . (6.17)

To this end we use Wick’s theorem

< 0|T
(

ei
∫
d4xJ(x)φ̂in(x)

)

|0 >= e−
1
2

∫
d4x

∫
d4x

′
J(x)J(x

′
)DF (x−x′

). (6.18)

This is equivalent to the statement

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 >=
∑

contraction

∏

DF (xi − xj). (6.19)

6.3 Wick’s Theorem for Forced Spinor Field

6.3.1 Generating Function

We will construct a Wick’s theorem for fermions by analogy with the scalar case. First we recall
Wick’s theorem for scalar fields given by

< 0|T
(

ei
∫
d4xJ(x)φ̂in(x)

)

|0 >= e−
1
2

∫
d4x

∫
d4x

′
J(x)J(x

′
)DF (x−x′

). (6.20)

This leads to the result

< 0|T
(

φ̂in(x1)...φ̂in(x2n)

)

|0 > =
∑

contraction

∏

DF (xi − xj). (6.21)

Let us now consider the evolution operator

Ω(t) = T

(

e−i
∫

t
−∞

dsV̂I(s)

)

. (6.22)

We take the potential

V = −
∫

d3xLint

= −
∫

d3x

(

η̄(x)ψ(x) + ψ̄(x)η(x)

)

= −
∫

d3p

(2π)3

(

η̄(t, ~p)χ(t, ~p) + χ̄(t, ~p)η(t, ~p)

)

. (6.23)



116 YDRI QFT

We have used the Fourier expansions

ψ(x) =

∫

d3p

(2π)3
χ(t, ~p)ei~p~x , η(x) =

∫

d3p

(2π)3
η(t, ~p)ei~p~x. (6.24)

We will assume that ηα and η̄α = (η+γ0)α are anticommuting c−numbers. We note that for
η, η̄ −→ 0 the spinor χ becomes free given by

χ̂in(t, ~p) =
1

√

2E~p

∑

i

(

e−iE~ptui(~p)b̂in(~p, i) + eiE~ptvi(−~p)d̂in(−~p, i)+
)

. (6.25)

The potential V̂I actually depends on Heisenberg fields which are precisely the free fields "in".
We compute then

−i
∫ t

−∞
dsV̂I(s) =

∑

~p

∑

i

(

α~p,i(t)b̂in(~p, i) + α∗
~p,i(t)b̂in(~p, i)

+ + γ~p,i(t)d̂in(−~p, i)+ + γ∗~p,i(t)d̂in(−~p, i)
)

.

(6.26)

α~p,i(t) =
1

V

i
√

2E~p

∫ t

−∞
dse−iE~psη̄(s, ~p)ui(~p). (6.27)

γ~p,i(t) =
1

V

i
√

2E~p

∫ t

−∞
dseiE~psη̄(s, ~p)vi(−~p). (6.28)

We recall the anticommutation relations

[b̂(~p, i), b̂(~q, j)+]+ = [d̂(~p, i), d̂(~q, j)+] = δijV δ~p,~q. (6.29)

[b̂(~p, i), d̂(~q, j)]+ = [b̂(~p, i), d̂(~q, j)+] = 0. (6.30)

We immediately compute

Ω(t) = T

(

∏

~p

∏

i

eα
∗
~p,i(t)b̂in(~p,i)

+

eα~p,i(t)b̂in(~p,i)eγ~p,i(t)d̂in(−~p,i)
+

eγ
∗
~p,i(t)d̂in(−~p,i)e

V
2 (α∗

~p,i(t)α~p,i(t)+γ~p,i(t)γ
∗
~p,i(t))

)

=
∏

~p

∏

i

(

eα
∗
~p,i(t)b̂in(~p,i)

+

eα~p,i(t)b̂in(~p,i)eγ~p,i(t)d̂in(−~p,i)
+

eγ
∗
~p,i(t)d̂in(−~p,i)e

V
2 (α∗

~p,i(t)α~p,i(t)+γ~p,i(t)γ
∗
~p,i(t))eβ~p,i(t)

)

.

(6.31)

Define

Ω~p(t) =
∏

i

(

eα
∗
~p,i(t)b̂in(~p,i)

+

eα~p,i(t)b̂in(~p,i)eγ~p,i(t)d̂in(−~p,i)
+

eγ
∗
~p,i(t)d̂in(−~p,i)e

V
2 (α∗

~p,i(t)α~p,i(t)+γ~p,i(t)γ
∗
~p,i(t))eβ~p,i(t)

)

.

(6.32)

We have

∂tΩ~p(t).Ω
−1
~p (t) =

∑

i

(

∂tα
∗
~p,i(t).b̂in(~p, i)

+ + eα
∗
~p,i(t)b̂in(~p,i)

+

∂tα~p,i(t).b̂in(~p, i)e
−α∗

~p,i(t)b̂in(~p,i)
+

+ ∂tγ~p,i(t).d̂in(−~p, i)+ + eγ~p,i(t)d̂in(−~p,i)
+

∂tγ
∗
~p,i(t).d̂in(−~p, i)e−γ~p,i(t)d̂in(−~p,i)

+

+
V

2

(

∂tα
∗
~p,i(t).α~p,i(t) + α∗

~p,i(t)∂tα~p,i(t) + ∂tγ~p,i(t).γ
∗
~p,i(t) + γ~p,i(t)∂tγ

∗
~p,i(t)

)

+ ∂tβ~p,i(t)

)

. (6.33)
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We use the identities

eα
∗
~p,i(t)b̂in(~p,i)

+

∂tα~p,i(t).b̂in(~p, i) =

(

∂tα~p,i(t).b̂in(~p, i)− V α∗
~p,i(t)∂tα~p,i(t)

)

eα
∗
~p,i(t)b̂in(~p,i)

+

. (6.34)

eγ~p,i(t)d̂in(−~p,i)
+

∂tγ
∗
~p,i(t).d̂in(−~p, i) =

(

∂tγ
∗
~p,i(t).d̂in(−~p, i)− V γ~p,i(t)∂tγ∗~p,i(t)

)

eγ~p,i(t)d̂in(−~p,i)
+

.(6.35)

We get then

∂tΩ~p(t).Ω
−1
~p (t) =

∑

i

(

∂tα
∗
~p,i(t).b̂in(~p, i)

+ + ∂tα~p,i(t).b̂in(~p, i) + ∂tγ~p,i(t).d̂in(−~p, i)+ + ∂tγ
∗
~p,i(t).d̂in(−~p, i)

+
V

2

(

∂tα
∗
~p,i(t).α~p,i(t)− α∗

~p,i(t)∂tα~p,i(t) + ∂tγ~p,i(t).γ
∗
~p,i(t)− γ~p,i(t)∂tγ∗~p,i(t)

)

+ ∂tβ~p,i(t)

)

. (6.36)

Let us recall that

i∂tΩ(t) = V̂I(t)Ω(t). (6.37)

This leads to

i∂tΩ~p(t).Ω
−1
~p (t) = V̂I(t, ~p)

= − 1

V

(

η̄(t, ~p)χ̂in(t, ~p) + ¯̂χin(t, ~p)η(t, ~p)

)

= − 1

V

1
√

2E~p

∑

i

(

e−iE~ptη̄(t, ~p)ui(~p)b̂in(~p, i)− eiE~ptūi(~p)η(t, ~p)b̂+in(~p, i)

+ eiE~ptη̄(t, ~p)vi(−~p)d̂in(−~p, i)+ − e−iE~ptv̄i(−~p)η(t, ~p)d̂in(−~p, i)
)

. (6.38)

By comparison we must have

∂tα~p,i(t) =
i

V

1
√

2E~p
e−iE~ptη̄(t, ~p)ui(~p). (6.39)

∂tγ~p,i(t) =
i

V

1
√

2E~p
eiE~ptη̄(t, ~p)vi(−~p). (6.40)

These equations are already satisfied by (6.27) and (6.28). By comparing (6.36) and (6.38) we
also obtain

∂tβ~p,i(t) = −
V

2

(

∂tα
∗
~p,i(t).α~p,i(t)− α∗

~p,i(t)∂tα~p,i(t) + ∂tγ~p,i(t).γ
∗
~p,i(t)− γ~p,i(t)∂tγ∗~p,i(t)

)

. (6.41)

In other words

β~p,i(t) = −
V

2

∫ t

−∞
ds

(

∂sα
∗
~p,i(s).α~p,i(s)− α∗

~p,i(s)∂sα~p,i(s) + ∂sγ~p,i(s).γ
∗
~p,i(s)− γ~p,i(s)∂sγ∗~p,i(s)

)

.

(6.42)
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We compute in the limit t −→∞ the following

V

2

∑

i

(

α∗
~p,i(t)α~p,i(t) + γ~p,i(t)γ

∗
~p,i(t)

)

=
1

2V

∫ +∞

−∞
ds

∫ +∞

−∞
ds

′

[

− 1

2E~p
eiE~p(s−s

′
)η̄(s

′

, ~p)

× (γ0E~p − γipi +m)η(s, ~p) +
1

2E~p
eiE~p(s−s

′
)η̄(s, ~p)

× (γ0E~p + γipi −m)η(s
′

, ~p)

]

. (6.43)

Also

−V
2

∫ t

−∞
ds
∑

i

(

∂sα
∗
~p,i(s).α~p,i(s)− α∗

~p,i(s)∂sα~p,i(s)

)

=
1

2V

∫ +∞

−∞
ds

∫ s

−∞
ds

′

[

1

2E~p
eiE~p(s−s

′
)η̄(s

′

, ~p)

× (γ0E~p − γipi +m)η(s, ~p)− 1

2E~p
e−iE~p(s−s

′
)η̄(s, ~p)

× (γ0E~p − γipi +m)η(s
′

, ~p)

]

. (6.44)

−V
2

∫ t

−∞
ds
∑

i

(

∂sγ~p,i(s).γ
∗
~p,i(s)− γ~p,i(s)∂sγ∗~p,i(s)

)

=
1

2V

∫ +∞

−∞
ds

∫ s

−∞
ds

′

[

− 1

2E~p
eiE~p(s−s

′
)η̄(s, ~p)

× (γ0E~p + γipi −m)η(s
′

, ~p) +
1

2E~p
e−iE~p(s−s

′
)η̄(s

′

, ~p)

× (γ0E~p + γipi −m)η(s, ~p)

]

. (6.45)

Thus

V

2

∑

~p

∑

i

(

α∗
~p,i(t)α~p,i(t) + γ~p,i(t)γ

∗
~p,i(t)

)

= −1

2

∫

d4x

∫

d4x
′

η̄(x
′

)
1

V

∑

~p

1

2E~p
(γ.p+m)eip(x−x

′
)η(x)

+
1

2

∫

d4x

∫

d4x
′

η̄(x
′

)
1

V

∑

~p

1

2E~p
(γ.p−m)e−ip(x−x

′
)η(x).

(6.46)

∑

~p

∑

i

β~p,i(t) =
1

2

∫

d4x

∫

d4x
′

η̄(x
′

)
θ(s− s′)

V

∑

~p

1

2E~p

(

(γ.p+m)eip(x−x
′
) + (γ.p−m)e−ip(x−x

′
)

)

η(x)

− 1

2

∫

d4x

∫

d4x
′

η̄(x
′

)
θ(s

′ − s)
V

∑

~p

1

2E~p

(

(γ.p+m)eip(x−x
′
) + (γ.p−m)e−ip(x−x

′
)

)

η(x).

(6.47)
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Hence by using θ(s− s′)− θ(s′ − s)− 1 = −2θ(s′ − s) and θ(s− s′)− θ(s′ − s) + 1 = 2θ(s− s′)
we get

V

2

∑

~p

∑

i

(

α∗
~p,i(t)α~p,i(t) + γ~p,i(t)γ

∗
~p,i(t)

)

+
∑

~p

∑

i

β~p,i(t) =

∫

d4x

∫

d4x
′

η̄(x
′

)

[

θ(s− s′)
V

∑

~p

1

2E~p
(γ.p−m)e−ip(x−x

′
) − θ(s

′ − s)
V

∑

~p

1

2E~p
(γ.p+m)eip(x−x

′
)

]

η(x) =

∫

d4x

∫

d4x
′

η̄(x
′

)

[

θ(s− s′)
V

(iγµ∂xµ −m)
∑

~p

1

2E~p
e−ip(x−x

′
) +

θ(s
′ − s)
V

(iγµ∂xµ −m)
∑

~p

1

2E~p
eip(x−x

′
)

]

η(x) =

∫

d4x

∫

d4x
′

η̄(x
′

)(iγµ∂xµ −m)

[

θ(s− s′)
V

∑

~p

1

2E~p
e−ip(x−x

′
) +

θ(s
′ − s)
V

∑

~p

1

2E~p
eip(x−x

′
)

]

η(x). (6.48)

The Feynamn scalar and spinor propagators are given respectively by

DF (x− x
′

) =
θ(s− s′)

V

∑

~p

1

2E~p
e−ip(x−x

′
) +

θ(s
′ − s)
V

∑

~p

1

2E~p
eip(x−x

′
). (6.49)

SF (x− x
′

) = (iγµ∂xµ +m)DF (x − x
′

). (6.50)

We have

SF (x
′ − x) = (iγµ∂x

′

µ +m)DF (x
′ − x)

= −(iγµ∂xµ −m)DF (x− x
′

). (6.51)

We obtain therefore

V

2

∑

~p

∑

i

(

α∗
~p,i(t)α~p,i(t) + γ~p,i(t)γ

∗
~p,i(t)

)

+
∑

~p

∑

i

β~p,i(t) = −
∫

d4x

∫

d4x
′

η̄(x
′

)SF (x
′ − x)η(x).

(6.52)

The final result is

T

(

ei
∫
d4x(η̄(x)ψ̂in(x)+

¯̂
ψin(x)η(x))

)

=: ei
∫
d4x(η̄(x)ψ̂in(x)+

¯̂
ψin(x)η(x)) : e−

∫
d4x

∫
d4x

′
η̄(x

′
)SF (x

′−x)η(x).(6.53)

The normal ordering is as usual defined by putting the creation operators to the left of the
annihilation operators. Explicitly we have in this case

: ei
∫
d4x(η̄(x)ψ̂in(x)+

¯̂
ψin(x)η(x)) : =

∏

~p

∏

i

(

eα
∗
~p,i(t)b̂in(~p,i)

+

eα~p,i(t)b̂in(~p,i)eγ~p,i(t)d̂in(−~p,i)
+

eγ
∗
~p,i(t)d̂in(−~p,i)

)

.

(6.54)

Therefore we will have in the vacuum the identity

< 0|T
(

ei
∫
d4x(η̄(x)ψ̂in(x)+

¯̂
ψin(x)η(x))

)

|0 >= e−
∫
d4x

∫
d4x

′
η̄(x

′
)SF (x

′−x)η(x). (6.55)
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6.3.2 Wick’s Theorem

Now we expand both sides of the above equations in η and η̄. The left hand side becomes

e−
∫
d4x

∫
d4x

′
η̄(x)SF (x−x′

)η(x
′
) =

∑

n

(−1)n
n!

∫

d4x1

∫

d4x
′

1...

∫

d4xn

∫

d4x
′

nη̄(x1)SF (x1 − x
′

1)η(x
′

1)×

...η̄(xn)SF (xn − x
′

n)η(x
′

n). (6.56)

It is obvious that only terms with equal numbers of η and η̄ are present. Thus we conclude that

only expectation values with equal numbers of ψ̂ and
¯̂
ψ are non-zero. The first few terms of the

expansion in η and η̄ of the right hand side of the above identity are

< 0|T
(

ei
∫
d4x(η̄(x)ψ̂in(x)+

¯̂
ψin(x)η(x))

)

|0 > = 1 +
i2

2!

∫

d4x1

∫

d4x
′

1 < 0|T (L(x1)L(x
′

1))|0 >

+
i4

4!

∫

d4x1

∫

d4x
′

1

∫

d4x2

∫

d4x
′

2 < 0|T (L(x1)L(x
′

1)L(x2)L(x
′

2))

× |0 > +... (6.57)

In above L(x) = η̄(x)ψ̂in(x) +
¯̂
ψin(x)η(x). The terms of order 1 and 3 (and in fact all terms

of order 2n + 1 where n is an integer) must vanish by comparison with the left hand side. We

conclude as anticipated above that all expectation values with a number of ψ̂ not equal to the

number of
¯̂
ψ vanish identically. There are two contributions in the second term which are equal

by virtue of the T product. Similarly there are 6 contributions in the third term which are again
equal by virtue of the T product. Hence we get

< 0|T
(

ei
∫
d4x(η̄(x)ψ̂in(x)+

¯̂
ψin(x)η(x))

)

|0 > = 1 +
i2

2!
(2)

∫

d4x1

∫

d4x
′

1 < 0|T (η̄(x1)ψ̂in(x1).
¯̂
ψin(x

′

1)η(x
′

1))|0 >

+
i4

4!
(6)

∫

d4x1

∫

d4x
′

1

∫

d4x2

∫

d4x
′

2 < 0|T (η̄(x1)ψ̂in(x1)

× η̄(x2)ψ̂in(x2).
¯̂
ψin(x

′

1)η(x
′

1).
¯̂
ψin(x

′

2)η(x
′

2))|0 > +... (6.58)

In general we should obtain

< 0|T
(

ei
∫
d4x(η̄(x)ψ̂in(x)+

¯̂
ψin(x)η(x))

)

|0 > =
∑

n

(
in

n!
)2
∫

d4x1

∫

d4x
′

1...

∫

d4xn

∫

d4x
′

n < 0|T (η̄(x1)ψ̂in(x1)...

× η̄(xn)ψ̂in(xn).
¯̂
ψin(x

′

1)η(x
′

1)...
¯̂
ψin(x

′

n)η(x
′

n))|0 >

=
∑

n

(
in

n!
)2
∫

d4x1

∫

d4x
′

1...

∫

d4xn

∫

d4x
′

nη̄(xn)...η̄(x1)

× < 0|T (ψ̂in(x1)...ψ̂in(xn).
¯̂
ψin(x

′

1)...
¯̂
ψin(x

′

n))|0 > η(x
′

n)...η(x
′

1).

(6.59)
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We rewrite now the left hand side as

e−
∫
d4x

∫
d4x

′
η̄(x)SF (x−x′

)η(x
′
) =

∑

n

(−1)n
n!

∫

d4x1

∫

d4x
′

1...

∫

d4xn

∫

d4x
′

nη̄αn(xn)...η̄α1(x1)SF (x1 − x
′

1)
α1β1

× ...SF (xn − x
′

n)
αnβnηβ1(x

′

1)...ηβn(x
′

n)

=
∑

n

(−1)n
n!

∫

d4x1

∫

d4x
′

1...

∫

d4xn

∫

d4x
′

nη̄αn(xn)...η̄α1(x1)SF (x1 − x
′

n)
α1βn

× ...SF (xn − x
′

1)
αnβ1ηβn(x

′

n)...ηβ1(x
′

1). (6.60)

There are n! permutations of the indices 1, 2,...,n. Let p1,p2,...,pn be a given permutation of
1, 2,...,n with a parity δp. We recall that δp = +1 for even permutations and δp = −1 for odd

permutations. Then because of the anticommutativity of ηβ1(x
′

1),...,ηβn(x
′

n) we can write the
above equation as

e−
∫
d4x

∫
d4x

′
η̄(x)SF (x−x′

)η(x
′
) =

∑

n

(−1)n
n!

∫

d4x1

∫

d4x
′

1...

∫

d4xn

∫

d4x
′

nη̄αn(xn)...η̄α1(x1)

×
[

1

n!

∑

permutations

δp SF (x1 − x
′

pn)
α1βpn ...SF (xn − x

′

p1)
αnβp1

]

ηβn(x
′

n)...ηβ1(x
′

1).

(6.61)

This is clearly true because for a given permutation we can write ηβn(x
′

n)...ηβ1(x
′

1) = δpηβpn
(x

′

pn)...ηβp1
(x

′

p1 ).
By comparing (6.59) and (6.61) we get the final result

< 0|T (ψ̂α1

in (x1)...ψ̂
αn

in (xn).
¯̂
ψβ1

in (x
′

1)...
¯̂
ψβn

in (x
′

n))|0 >=
∑

permutations

δp SF (x1 − x
′

pn)
α1βpn ...SF (xn − x

′

p1)
αnβp1 .

(6.62)

6.4 Wick’s Theorem for Forced Electromagnetic Field

The Lagrangian density for a forced electromagnetic field (in the Lorentz gauge ζ = 1) is given
by

Lfree =
1

2
Aµ(∂.∂)A

µ − JµAµ. (6.63)

We assume that the source Jµ(x) vanishes outside a finite time interval. Thus at early and late
times Jµ(x) −→ 0 and Aµ becomes a free field. We have then

Âµ −→ Âµin =

∫

d3~p

(2π)3
1

√

2E~p

3
∑

λ=0

(

e−ipxǫµλ(~p)âin(~p, λ) + eipxǫµλ(~p)âin(~p, λ)
+

)

, t −→ −∞.(6.64)

Âµ −→ Âµout =

∫

d3~p

(2π)3
1

√

2E~p

3
∑

λ=0

(

e−ipxǫµλ(~p)âout(~p, λ) + eipxǫµλ(~p)âout(~p, λ)
+

)

, t −→ +∞.

(6.65)

This is a system equivalent to 4 independent massless Klein-Gordon fields. The corresponding
Wick’s theorem is therefore a straightforward generalization of (6.18). We have then
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< 0|T
(

ei
∫
d4xJµ(x)Â

µ
in(x)

)

|0 >= e−
1
2

∫
d4x

∫
d4x

′
Jµ(x)Jν(x

′
).iDµν

F (x−x′
). (6.66)

As usual by expanding both sides of this equation in powers of the current Jµ we get Wick’s
theorem in the equivalent form

< 0|T
(

Âµ1

in (x1)...Â
µ2n

in (x2n)

)

|0 >=
∑

contraction

∏

iD
µiµj

F (xi − xj). (6.67)

6.5 The LSZ Reduction fromulas and The S−Matrix

6.5.1 The LSZ Reduction fromulas

We divide the QED Lagrangian into a free part and an interaction part. The free part (in the
Lorentz gauge ζ = 1) is given by

Lfree =
1

2
Aµ(∂.∂)A

µ + ψ̄(iγµ∂µ −m)ψ. (6.68)

The interaction part is given by

Lint = −eψ̄γµψAµ. (6.69)

We are going to assume that the interaction part vanishes in the limits t −→ ±∞. Therefore the
spinor field in the limits t −→ ±∞ will obey the free equation of motion

(iγµ∂µ −m)ψ = 0. (6.70)

As usual we expand the field as

ψ =

∫

d3p

(2π)3
χ(t, ~p) ei~p~x. (6.71)

Thus the field χ(t, ~p) will obey the equation of motion

(iγ0∂t − γipi −m)χ = 0. (6.72)

In the limit t −→ ±∞ we have then

χ̂in(t, ~p) =
1

√

2E~p

∑

s

(

e−iE~ptu(s)(~p)b̂in(~p, s) + eiE~ptv(s)(−~p)d̂in(−~p, s)+
)

, t −→ −∞. (6.73)

χ̂out(t, ~p) =
1

√

2E~p

∑

s

(

e−iE~ptu(s)(~p)b̂out(~p, s) + eiE~ptv(s)(−~p)d̂out(−~p, s)+
)

, t −→ +∞.(6.74)

The operator b̂(~p, s)+ creates a fermion of momentum ~p and polarization s whereas d̂(~p, s)+

creates an antifermion of momentum ~p and polarization s. From the above expressions we
obtain

eiE~pt(i∂t + E~p)ū
s(p)χ̂in,out(t, ~p) = 2m

√

2E~p b̂in,out(~p, s). (6.75)
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eiE~ptχ̄in,out(t,−~p)(i
←−
∂ t + E~p)v

s(p) = −2m
√

2E~p d̂in,out(~p, s). (6.76)

The full equations of motion obeyed by ψ and χ are

(iγµ∂µ −m)ψ = −Lint
δψ̄

. (6.77)

(iγ0∂t − γipi −m)χ(t, ~p) = −
∫

d3x
δLint
δψ̄

e−i~p~x. (6.78)

We compute

∫ +∞

−∞
dt ∂t

(

eiE~pt(i∂t + E~p)ū
s(p)χ̂(t, ~p)

)

= 2m
√

2E~p (b̂out(~p, s)− b̂in(~p, s)). (6.79)

∫ +∞

−∞
dt ∂t

(

eiE~ptχ̄(t,−~p)(i←−∂ t + E~p)v
s(p)

)

= −2m
√

2E~p (d̂out(~p, s)− d̂in(~p, s)).(6.80)

From the other hand we compute

∫ +∞

−∞
dt ∂t

(

eiE~pt(i∂t + E~p)ū
s(p)χ̂(t, ~p)

)

= i

∫ +∞

−∞
dt eiE~pt(∂2t + E2

~p)ū
s(p)χ̂(t, ~p)

= i

∫

d4x eipx(∂2 +m2)ūs(p)ψ̂(x)

= −iūs(p)(γµpµ +m)(γµpµ −m)ψ̂(−p)
= −2imūs(p)(γµpµ −m)ψ̂(−p)

= −2im
∫

d4x eipxūs(p)(iγµ∂µ −m)ψ̂(x).(6.81)

∫ +∞

−∞
dt ∂t

(

eiE~ptχ̄(t,−~p)(i←−∂ t + E~p)v
s(p)

)

= i

∫ +∞

−∞
dt eiE~ptχ̄(t,−~p)(←−∂ 2

t + E2
~p)v

s(p)

= i

∫

d4x eipx
¯̂
ψ(x)(

←−
∂ 2 +m2)vs(p)

= −i ¯̂ψ(−p)(γµpµ +m)(γµpµ −m)vs(p)

= 2im
¯̂
ψ(−p)(γµpµ +m)vs(p)

= 2im

∫

d4x eipx
¯̂
ψ(x)(iγµ

←−
∂ µ +m)vs(p).(6.82)

By comparison we obtain

√

2E~p (b̂out(~p, s)− b̂in(~p, s)) =
1

i

∫

d4x eipxūs(p)(iγµ∂µ −m)ψ̂(x). (6.83)

√

2E~p (d̂in(~p, s)− d̂out(~p, s)) =
1

i

∫

d4x eipx.
¯̂
ψ(x)(−iγµ←−∂ µ −m)vs(p). (6.84)
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These are the first two examples of Lehmann-Symanzik-Zimmermann reduction formulae. The
fields ψ̂(x) in the above equation is the interacting spinor field in the Heisenberg picture. Gen-
eralization of the above equations read

√

2E~p

(

b̂out(~p, s)T (...)∓ T (...)b̂in(~p, s)
)

=
1

i

∫

d4x eipxūs(p)(iγµ∂µ −m)T (ψ̂(x)...).(6.85)

√

2E~p

(

T (...)d̂in(~p, s)∓ d̂out(~p, s)T (...)
)

=
1

i

∫

d4x eipx.T (...
¯̂
ψ(x))(−iγµ←−∂ µ −m)vs(p).

(6.86)

The minus sign corresponds to the case where T (...) includes an even number of spinor field
operators whereas the plus sign corresponds to the case where T (...) includes an odd number of
spinor field operators. By taking essentially the hermitian conjugate of the above equations we
get the LSZ reduction formulas

√

2E~p

(

T (...)b̂+in(~p, s)∓ b̂+out(~p, s)T (...)
)

=
1

i

∫

d4x e−ipx.T (...
¯̂
ψ(x))(−iγµ←−∂ µ −m)us(p).

(6.87)

√

2E~p

(

d̂+out(~p, s)T (...)∓ T (...)d̂+in(~p, s)
)

=
1

i

∫

d4x e−ipxv̄s(p)(iγµ∂µ −m)T (ψ̂(x)...).(6.88)

We recall in passing the anticommutation relations (using box normalization)

[b̂(~p, i), b̂(~q, j)+]± = δijV δ~p,~q, (6.89)

[d̂(~p, i)+, d̂(~q, j)]± = δijV δ~p,~q, (6.90)

and

[b̂(~p, i), d̂(~q, j)]± = [d̂(~q, j)+, b̂(~p, i)]± = 0. (6.91)

Example I: e− + e+ −→ µ− + µ+

As an example we will consider the process of annihilation of an electron-positron pair into a
muon-antimuon pair given by

e−(p1) + e+(q1) −→ µ−(p2) + µ+(q2). (6.92)

This is a process of fundamental importance in QED and collider physics. A related process
of similar fundamental relevance is the annihilation of an electron-positron pair into a quark-
antiquark pair given by

e− + e+ −→ Q + Q̄. (6.93)

The normalization for one-particle excited states is fixed by 1

|~p, s >=
√

2E~p b̂(~p, s)
+|0 > , |~q, s >=

√

2E~q d̂(~q, s)
+|0 > . (6.94)

1Here we have changed the notation compared to the previous course.
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The initial and final states are given by

initial state = |~p1, s1 > |~q1, r1 >
=

√

2E~p1
√

2E~q1 b̂(~p1, s1)
+d̂(~q1, r1)

+|0 > . (6.95)

final state = |~p2, s2 > |~q2, r2 >
=

√

2E~p2
√

2E~q2 b̂(~p2, s2)
+d̂(~q2, r2)

+|0 > . (6.96)

These states are precisely the "in" and "out" states which we also denote by |~p1s1, ~q1r1 in > and
|~p2s2, ~q2r2 out > respectively. The probability amplitude < ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > is then
given by

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > =
√

2E~q < ~p2s2 out|d̂out(~q2, r2)|~p1s1, ~q1r1 in > . (6.97)

By assuming that q2 6= q1 and r2 6= r1 we obtain

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > =
1

i

∫

d4y2 e
iq2y2 . < ~p2s2 out| ¯̂ψ(y2)|~p1s1, ~q1r1 in >

× (iγµ
←−
∂ µ,y2 +mµ)v

r2(q2). (6.98)

By also assuming that p2 6= p1 and s2 6= s1 we can similarly reduce the muon state. By using
the appropriate LSZ reduction formula we get

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > =
1

i

√

2E~p2

∫

d4y2 e
iq2y2 . < 0 out|b̂out(~p2, s2) ¯̂ψ(y2)|~p1s1, ~q1r1 in >

× (iγµ
←−
∂ µ,y2 +mµ)v

r2(q2)

=
1

i2

∫

d4y2 e
iq2y2

∫

d4x2 e
ip2x2 .ūs2(p2)(iγ

µ∂µ,x2 −mµ)

× < 0 out|T (ψ̂(x2) ¯̂ψ(y2))|~p1s1, ~q1r1 in > (iγµ
←−
∂ µ,y2 +mµ)v

r2(q2).

(6.99)

Next we reduce the initial electron and positron states. Again by using the appropriate LSZ
reduction formulae we obtain

< 0|T (ψ̂(x2) ¯̂ψ(y2))|~p1s1, ~q1r1 in > =
√

2E~q1 < 0 out|T (ψ̂(x2) ¯̂ψ(y2))d̂in(~q1, r1)+|~p1s1 in >

= −1

i

∫

d4y1 e
−iq1y1 .v̄r1(q1)(iγ

µ∂µ,y1 −me)

× < 0 out|T (ψ̂(y1)ψ̂(x2) ¯̂ψ(y2))|~p1s1 in >

= −1

i

√

2E~p1

∫

d4y1 e
−iq1y1 .v̄r1(q1)(iγ

µ∂µ,y1 −me)

× < 0 out|T (ψ̂(y1)ψ̂(x2) ¯̂ψ(y2))b̂in(~p1, s1)+|0 in >

= − 1

(−i)2
∫

d4x1 e
−ip1x1

∫

d4y1 e
−iq1y1 .v̄r1(q1)(iγ

µ∂µ,y1 −me)

× < 0 out|T ( ¯̂ψ(x1)ψ̂(y1)ψ̂(x2) ¯̂ψ(y2))|0 in > (iγµ
←−
∂ µ,x1 +me)u

s1(p1).

(6.100)
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The probabilty amplitude is therefore given by

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > =
−1
i2

1

(−i)2
∫

d4y2 e
iq2y2

∫

d4x2 e
ip2x2

∫

d4x1 e
−ip1x1

∫

d4y1 e
−iq1y1 .

×
(

ūs2(p2)(iγ
µ∂µ,x2 −mµ)

)

α2

(

v̄r1(q1)(iγ
µ∂µ,y1 −me)

)

β1

× < 0 out|T
(

¯̂
ψα1(x1)ψ̂β1(y1)ψ̂α2(x2)

¯̂
ψβ2(y2)

)

|0 in >

×
(

(iγµ
←−
∂ µ,y2 +mµ)v

r2(q2)

)

β2

(

(iγµ
←−
∂ µ,x1 +me)u

s1(p1)

)

α1

. (6.101)

This depends on the Green’s function

Gα1,β1,α2,β2(x1, y1, x2, y2) = < 0 out|T
(

¯̂
ψα1(x1)ψ̂β1(y1)ψ̂α2(x2)

¯̂
ψβ2(y2)

)

|0 in >

=

∫

d4p1
(2π)4

d4q1
(2π)4

d4p2
(2π)4

d4q2
(2π)4

Gα1,β1,α2,β2(p1, q1, p2, q2) e
ip1x1+iq1y1+ip2x2+iq2y2 .

(6.102)

We get

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > = −
(

ūs2(p2)(γ
µp2,µ −mµ)

)

α2

(

v̄r1(q1)(γ
µq1,µ +me)

)

β1

× Gα1,β1,α2,β2(p1, q1,−p2,−q2)

×
(

(γµq2,µ +mµ)v
r2(q2)

)

β2

(

(γµp1,µ −me)u
s1(p1)

)

α1

.(6.103)

The Green’s function Gα1,β1,α2,β2(p1, q1,−p2,−q2) must be proportional to the delta function
(2π)4δ4(p1+q1+p2+q2) by energy-momentum conservation. Furthermore it will be proportional
to the external propagators 1/(γµp2,µ−mµ), 1/(γ

µq1,µ+me), 1/(γ
µq2,µ+mµ) and 1/(γµp1,µ−me)

and thus they will be canceled. We write therefore

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > = −ūs2α2
(p2)v̄

r1
β1
(q1)G

amputated
α1,β1,α2,β2

(p1, q1,−p2,−q2)vr2β2
(q2)

× us1α1
(p1). (6.104)

Gamputated
α1,β1,α2,β2

(p1, q1,−p2,−q2) =

∫

d4x1

∫

d4y1

∫

d4x2

∫

d4y2 e
−ip1x1−iq1y1+ip2x2+iq2y2

× < 0 out|T
(

¯̂
ψα1(x1)ψ̂β1(y1)ψ̂α2(x2)

¯̂
ψβ2(y2)

)

|0 in >amputated .

(6.105)

6.5.2 The Gell-Mann Low Formula and the S−Matrix

The S−matrix and T−matrix elements are defined by

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > = < ~p2s2, ~q2r2 in|S|~p1s1, ~q1r1 in >

= < ~p2s2, ~q2r2 in|~p1s1, ~q1r1 in > + < ~p2s2, ~q2r2 in|iT |~p1s1, ~q1r1 in > .

(6.106)
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The second term (i.e. the T−matrix element) is due entirely to interactions. By assuming that
the initial and final states are different we obtain simply

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > = < ~p2s2, ~q2r2 in|iT |~p1s1, ~q1r1 in >

= (2π)4δ4(p1 + q1 − p2 − q2).iM(p1q1 −→ p2q2).(6.107)

The matrix element M is by construction Lorentz invariant and it is precisley the scattering
amplitude. It is almost obvious from the above discussion that

iM(p1q1 −→ p2q2) = sum of all connected amputated Feynman diagrams. (6.108)

In the following we will explicitly prove this result in the context of the scattering process
e−e+ −→ µ−µ+.

First we need to express the Green’s function< 0 out|T
( ¯̂
ψα1(x1)ψ̂β1(y1)ψ̂α2(x2)

¯̂
ψβ2(y2)

)

|0 in >
in terms of free fields and the interaction. The starting point is to understand that ψ̂(x),

¯̂
ψ(x)

and also Â(x) are Heisenberg operators. The Schrödinger operators are defined by

ψ̂(t, ~x) = U(t)−1ψ̂(~x)U(t) ,
¯̂
ψ(t, ~x) = U(t)−1 ¯̂ψ(~x)U(t). (6.109)

Âµ(t, ~x) = U(t)−1Âµ(~x)U(t). (6.110)

The unitary time evolution operator solves the Schrodinger equation

i∂tU(t) = ĤU(t). (6.111)

The Hamiltonian operator is

Ĥ = Ĥ0 + V̂ . (6.112)

Ĥ0 = −1

2

∫

d3p

(2π)3
pipi Â∗

µ(~p)Â
µ(~p) +

∫

d3p

(2π)3
χ̂+(~p)γ0(γipi +m)χ̂(~p). (6.113)

V̂ = −
∫

d3xLint = e

∫

d3p

(2π)3

∫

d3q

(2π)3
χ̂+(~p)γ0γµχ̂(~q)Âµ(~p− ~q). (6.114)

Let us recall the Fourier expansions of the different fields. We expand the spinor field as

ψ(~x) =

∫

d3p

(2π)3
χ(~p)ei~p~x. (6.115)

The corresponding conjugate momentum field is

Π(~x) = iψ+ = i

∫

d3p

(2π)3
χ+(~p)e−i~p~x. (6.116)

The gauge field is expanded as follows

Âµ(~x) =

∫

d3p

(2π)3
Âµ(~p)ei~p~x. (6.117)
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We introduce the unitary operator Ω in the interaction picture by

U(t) = e−itĤ0Ω(t). (6.118)

The operator Ω satisfies the Schrodinger equation

i∂tΩ(t) = V̂I(t)Ω(t) , V̂I(t) = eitĤ0 V̂ e−itĤ0 . (6.119)

The interaction and Heisenberg operators are related by

ψ̂(x) = Ω(t)−1ψ̂I(x)Ω(t) , Â
µ(x) = Ω(t)−1ÂµI (x)Ω(t). (6.120)

The interaction and Schrodinger operators are related by

ψ̂I(x) = eitĤ0 ψ̂(~x)e−itĤ0 , ÂµI (x) = eitĤ0 Âµ(~x)e−itĤ0 . (6.121)

The solution of the above last differential equation is

Ω(t) = T

(

e−i
∫ t
−∞

dsV̂I (s)

)

= T

(

e
i
∫

t
−∞

ds
∫
d3xLint

(

ψ̂I(s,~x),ÂI(s,~x)

)

)

. (6.122)

The S−matrix is defined by

S = Ω(+∞) = T

(

e−i
∫ +∞

−∞
dsV̂I(s)

)

= T

(

e
i
∫
d4xLint

(

ψ̂I (s,~x),ÂI(s,~x)

)

)

. (6.123)

This is a unitary operator, viz

S+ = S−1 = T̄

(

e−i
∫+∞

−∞
dsV̂I(s)

)

. (6.124)

This operator satisfies

< 0 out| =< 0 in|S. (6.125)

The "in" and "out" Hilbert spaces are related by

< ...out| =< ...in|S. (6.126)

The interaction fields ψI and AµI are free fields. In the limit t −→ −∞ we see that Ω(t) −→ 1

and hence ψ̂(x) −→ ψI(x) and Âµ(x) −→ ÂµI (x). But we know that ψ̂(x) −→ ψ̂in(x) and

Âµ(x) −→ Âµin(x) when t −→ −∞. Thus

ψ̂I(x) = ψ̂in(x) , Â
µ
I (x) = Âµin(x). (6.127)

Similarly to the case of the scalar field we can derive the identities

T (ψ̂(x)...
¯̂
ψ(y)...) = S−1T

(

ψ̂in(x)...
¯̂
ψin(y)...S

)

. (6.128)

In general we must have

T (ψ̂(x)...
¯̂
ψ(y)...Âµ(z)...) = S−1T

(

ψ̂in(x)...
¯̂
ψin(y)...Â

µ
in(z)...S

)

. (6.129)
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6.5.3 Perturbation Theory:Tree Level

We are now in a position to compute the perturbative expansion of the Green’s function <

0 out|T
( ¯̂
ψα1(x1)ψ̂β1(y1)ψ̂α2(x2)

¯̂
ψβ2(y2)

)

|0 in >. We have

< 0 out|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 in > = < 0 in|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)ψ̂
α2

in (x2)
¯̂
ψβ2

in (y2)S
)

|0 in > .

(6.130)

In the following we will set |0 out >= |0 in >= |0 > for simplicity. However it should be obvious
from the context which |0 > is |0 out > and which |0 > is |0 in >. The first few terms are

S = 1 + i

∫

d4zLint(z) +
i2

2!

∫

d4z1

∫

d4z2Lint(z1)Lint(z2) +
i3

3!

∫

d4z1

∫

d4z2

∫

d4z3Lint(z1)Lint(z2)

× Lint(z3) +
i4

4!

∫

d4z1

∫

d4z2

∫

d4z3

∫

d4z4Lint(z1)Lint(z2)Lint(z3)Lint(z4) + ... (6.131)

Of course

Lint(z) = Leint(z) + Lµint(z) = −e
(

¯̂
ψin(z)γµψ̂in(z) +

¯̂
ψin(z)γµψ̂in(z)

)

Âµ(z). (6.132)

By using Wick’s theorem for the electromagnetic field we deduce that the second and the fourth
terms will lead to contributions to the probability amplitude (6.103) which vanish identically.
Indeed the vacuum expectation value of the product of an odd number of gauge field operators
is always zero.

By using Wick’s theorem for fermions the first term will lead to

< 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)ψ̂
α2

in (x2)
¯̂
ψβ2

in (y2)
)

|0 >= −Sβ1α1

F (y1 − x1)Sα2β2

F (x2 − y2). (6.133)

The even contraction will allow the electron to propagate into a muon which is not possible.
Recall that the electron is at x1 with spin and momentum (s1, p1), the positron is at y1 with spin
and momentum (r1, q1), the muon is at x2 with spin and momentum (s2, p2) and the antimuon
is at y2 with spin and momentum (r2, q2). The contribution of this term to the probability
amplitude (6.103) is

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > =

(

v̄r1(q1)(γ.q1 +me)u
s1(−q1).(2π)4δ4(p1 + q1)

)

×
(

ūs2(−q2)(γ.q2 +mµ)v
r2(q2).(2π)

4δ4(p2 + q2)

)

= 0. (6.134)

We have used (γ.p−m)ur(p) = 0 and (γ.p+m)vr(p) = 0.

The first two terms in the S−matrix which give non-vanishing contribution to the probability
amplitude (6.103) are therefore given by

S =
i2

2!

∫

d4z1

∫

d4z2Lint(z1)Lint(z2)

+
i4

4!

∫

d4z1

∫

d4z2

∫

d4z3

∫

d4z4Lint(z1)Lint(z2)Lint(z3)Lint(z4) + ... (6.135)
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The first term corresponds to the so-called tree level contribution. This is given by

< 0|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 > =
i2

2!

∫

d4z1

∫

d4z2 < 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)ψ̂
α2

in (x2)

× ¯̂
ψβ2

in (y2)Lint(z1)Lint(z2)
)

|0 >

= 2
i2

2!

∫

d4z1

∫

d4z2 < 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)ψ̂
α2

in (x2)

× ¯̂
ψβ2

in (y2)Leint(z1)Lµint(z2)
)

|0 >

= 2
i2

2!
(−e)2(γµ)γ1δ1(γν)γ2δ2

∫

d4z1

∫

d4z2 < 0|T (Âµ(z1)

× Âν(z2))|0 >< 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)
¯̂
ψγ1in (z1)ψ̂

δ1
in (z1)

)

× |0 >< 0|T
(

ψ̂α2

in (x2)
¯̂
ψβ2

in (y2)
¯̂
ψγ2in (z2)ψ̂

δ2
in (z2)

)

|0 > .(6.136)

In the second line we have dropped the terms corresponding to Leint(z1)Leint(z2) and Lµint(z1)Lµint(z2)
since they are zero by an argument similar to the one which led to (6.134). In the third line
we have used the fact that the total Hilbert space is the tensor product of the Hilbert spaces
associated with the electron, the muon and the photon. Using Wick’s theorems we get

< 0|T (Âµ(z1)Âν(z2))|0 >= iDµν(z1 − z2). (6.137)

< 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)
¯̂
ψγ1in (z1)ψ̂

δ1
in (z1)

)

|0 >= −Sβ1γ1
F (y1 − z1)Sδ1α1

F (z1 − x1) + Sβ1α1

F (y1 − x1)Sδ1γ1F (0).

(6.138)

< 0|T
(

ψ̂α2

in (x2)
¯̂
ψβ2

in (y2)
¯̂
ψγ2in (z2)ψ̂

δ2
in (z2)

)

|0 >= Sα2γ2
F (x2 − z2)Sδ2β2

F (z2 − y2)− Sα2β2

F (x2 − y2)Sδ2γ2F (0).

(6.139)

The propagator SF (0) will lead to disconnected diagrams so we will simply drop it right from
the start. We get then

< 0|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 > = −2i i
2

2!
(−e)2

∫

d4z1

∫

d4z2D
µν(z1 − z2)

[

SF (y1 − z1)

× γµSF (z1 − x1)
]β1α1

[

SF (x2 − z2)γνSF (z2 − y2)
]α2β2

.

(6.140)

We use the free propagators

iDµν
F (z1 − z2) =

∫

d4p

(2π)4
−iηµν
p2 + iǫ

e−ip(z1−z2). (6.141)

SαβF (x− y) =
∫

d4p

(2π)4
i(γ.p+m)αβ

p2 −m2 + iǫ
e−ip(x−y). (6.142)

Thus
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< 0|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 > = −2 i
2

2!
(−e)2

∫

d4q1
(2π)4

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q2
(2π)4

×
(

γ.q1 +me

q21 −m2
e

γµ
−γ.p1 +me

p21 −m2
e

)β1α1 −iηµν
(q1 + p1)2

(

γ.p2 +mµ

p22 −m2
µ

γν

× −γ.q2 +mµ

q22 −m2
µ

)α2β2

e−ip1x1−iq1y1−ip2x2−iq2y2(2π)4δ4(q1 + p1

+ p2 + q2). (6.143)

The Fourier transform of < 0|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 > is then

Gα1,β1,α2,β2(p1, q1, p2, q2) =

∫

d4x1

∫

d4y1

∫

d4x2

∫

d4y2 < 0|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 >

× e−ip1x1−iq1y1−ip2x2−iq2y2

= −2 i
2

2!
(−e)2

(−γ.q1 +me

q21 −m2
e

γµ
γ.p1 +me

p21 −m2
e

)β1α1 −iηµν
(q1 + p1)2

(−γ.p2 +mµ

p22 −m2
µ

γν

× γ.q2 +mµ

q22 −m2
µ

)α2β2

(2π)4δ4(q1 + p1 + p2 + q2). (6.144)

The probability amplitude (6.103) at tree level becomes

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > =

(

v̄r1(q1)(−ieγµ)us1(p1)
) −iηµν
(p1 + q1)2

(

ūs2(p2)(−ieγν)vr2(q2)
)

× (2π)4δ4(q1 + p1 − p2 − q2). (6.145)

This can be represented by the diagram TRE.

6.5.4 Perturbation Theory: One-Loop Corrections

The second term in (6.135) will lead to the first radiative corrections for the probability amplitude
(6.103) of the process e− + e+ −→ µ− + µ+. We have

< 0|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 > =
i4

4!

∫

d4z1...

∫

d4z4 < 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)ψ̂
α2

in (x2)
¯̂
ψβ2

in (y2)

× Lint(z1)...Lint(z4)
)

|0 >

=
i4

4!
(−e)4

∫

d4z1...

∫

d4z4 < 0|T (Âµ1(z1)...Â
µ4 (z4))|0 >

[

× 4 < 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)Leµ1
(z1)Leµ2

(z2)Leµ3
(z3)|0 >

× < 0|T
(

ψ̂α2

in (x2)
¯̂
ψβ2

in (y2)Lµµ4
(z4)

)

|0 > +4 < 0|T
( ¯̂
ψα1

in (x1)

× ψ̂β1

in (y1)Leµ4
(z4)|0 >< 0|T

(

ψ̂α2

in (x2)
¯̂
ψβ2

in (y2)Lµµ1
(z1)Lµµ2

(z2)

× Lµµ3
(z3)

)

|0 > +6 < 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)Leµ1
(z1)Leµ2

(z2)|0 >

× < 0|T
(

ψ̂α2

in (x2)
¯̂
ψβ2

in (y2)Lµµ3
(z3)Lµµ4

(z4)
)

|0 >
]

. (6.146)
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In the above equation we have defined Lµ(z) = ¯̂
ψin(z)γµψ̂in(z). We will use the result

< 0|T (Âµ1(z1)...Â
µ4 (z4))|0 > = iDµ1µ2(z1 − z2).iDµ3µ4(z3 − z4) + iDµ1µ3(z1 − z3).iDµ2µ4(z2 − z4)

+ iDµ1µ4(z1 − z4).iDµ2µ3(z2 − z3). (6.147)

1st term: By using Wick’s theorem we compute next the expression

< 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)Leµ1
(z1)Leµ2

(z2)Leµ3
(z3)|0 > . (6.148)

There are in total 24 contractions. By dropping those disconnected contractions which contain
SF (0) we will only have 11 contractions left. Using then the symmetry between the points z1,
z2 and z3 (under the integral and the trace) the expression is reduced further to 3 terms. These
are

< 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)Leµ1
(z1)Leµ2

(z2)Leµ3
(z3)|0 > = −6

[

SF (y1 − z1)γµ1SF (z1 − z2)γµ2SF (z2 − z3)γµ3

× SF (z3 − x1)
]β1α1

+ 3

[

SF (y1 − z1)γµ1SF (z1 − x1)
]β1α1

× tr

[

SF (z2 − z3)γµ3SF (z3 − z2)γµ2

]

+ 2SF (y1 − x1)β1α1tr

[

γµ1SF (z1 − z2)γµ2SF (z2 − z3)γµ3

× SF (z3 − z1)
]

. (6.149)

The last term corresponds to a disconnected contribution.
We also need the expression

< 0|T
(

ψ̂α2

in (x2)
¯̂
ψβ2

in (y2)Lµµ4
(z4)

)

|0 > (6.150)

Again by dropping the disconnected contraction we obtain

< 0|T
(

ψ̂α2

in (x2)
¯̂
ψβ2

in (y2)Lµµ4
(z4)

)

|0 >=
[

SF (x2 − z4)γµ4SF (z4 − y2)
]α2β2

. (6.151)

We have then the following two contributions to the first term. The first contribution consists
of the three terms

con1 =
i4

4!
(−e)4(4)(−6)

∫

d4z1...

∫

d4z4 < 0|T (Âµ1(z1)...Â
µ4 (z4))|0 >

[

SF (y1 − z1)γµ1SF (z1 − z2)γµ2

× SF (z2 − z3)γµ3SF (z3 − x1)
]β1α1

[

SF (x2 − z4)γµ4SF (z4 − y2)
]α2β2

(6.152)

The second contribution consists of the term

con2 =
i4

4!
(−e)4(4)(3.2)

∫

d4z1...

∫

d4z4iD
µ1µ2(z1 − z2).iDµ3µ4(z3 − z4)

[

SF (y1 − z1)γµ1SF (z1 − x1)
]β1α1

× tr

[

SF (z2 − z3)γµ3SF (z3 − z2)γµ2

][

SF (x2 − z4)γµ4SF (z4 − y2)
]α2β2

. (6.153)
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In this term we have used the fact that the two terms iDµ1µ2(z1 − z2).iD
µ3µ4(z3 − z4) and

iDµ1µ3(z1 − z3).iDµ2µ4(z2 − z4) in the photon 4−point function lead to identical contributions
whereas the term iDµ1µ4(z1 − z4).iDµ2µ3(z2 − z3) leads to a disconnected contribution and so it
is neglected. In momentum space we have

con2 =
i4

4!
(−e)4(4)(3.2)

∫

d4q1
(2π)4

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q2
(2π)4

∫

d4q3
(2π)4

∫

d4p3
(2π)4

[

S(q1)γµ1S(−p1)
]β1α1

[

S(p2)

× γµ4S(−q2)
]α2β2

trS(q3)γµ3S(p3)γµ2

−iηµ1µ2

(q1 + p1)2
−iηµ3µ4

(p2 + q2)2
(2π)4δ(q1 + p1 − q3 + p3)(2π)

4δ4(−p2

− q2 − q3 + p3) e
−ip1x1−iq1y1−ip2x2−iq2y2 . (6.154)

In above we have defined

S(p) =
i(γ.p+m)

p2 −m2
. (6.155)

The corresponding Fourier transform and probability amplitude are

Gcon2

α1,β1,α2,β2
(p1, q1, p2, q2) =

i4

4!
(−e)4(4)(3.2)

∫

d4q3
(2π)4

∫

d4p3
(2π)4

[

S(−q1)γµ1S(p1)

]β1α1
[

S(−p2)γµ4S(q2)

]α2β2

× trS(q3)γµ3S(p3)γµ2

−iηµ1µ2

(q1 + p1)2
−iηµ3µ4

(p2 + q2)2
(2π)4δ(−q1 − p1 − q3 + p3)(2π)

4δ4(p2

+ q2 − q3 + p3). (6.156)

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in >con2
=

(

v̄r1(q1)(−ieγµ1)u
s1(p1)

)

.

( −iηµ1µ2

(q1 + p1)2

)

.(−1).
∫

d4q3
(2π)4

∫

d4p3
(2π)4

× (2π)4δ(p1 + q1 + q3 − p3).tr(−ieγµ2)S(q3)(−ieγµ3)S(p3)

× (2π)4δ4(p2 + q2 + q3 − p3).
( −iηµ3µ4

(p2 + q2)2

)

.

(

ūs2(p2)(−ieγµ4)v
r2(q2)

)

.

(6.157)

This can be represented by the diagram RAD0.

1st term, Continued: The three terms in the first contribution of the first term are

con11 =
i4

4!
(−e)4(4)(−6)

∫

d4z1...

∫

d4z4iD
µ1µ2(z1 − z2).iDµ3µ4(z3 − z4)

[

SF (y1 − z1)γµ1SF (z1 − z2)γµ2

× SF (z2 − z3)γµ3SF (z3 − x1)
]β1α1

[

SF (x2 − z4)γµ4SF (z4 − y2)
]α2β2

= −(−ie)4
∫

d4q1
(2π)4

∫

d4q2
(2π)4

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q3
(2π)4

∫

d4p3
(2π)4

[

S(q1)γµ1S(p3)γµ2S(q3)γµ3S(−p1)

×
]β1α1

[

S(p2)γµ4S(−q2)
]α2β2 −iηµ1µ2

(q1 − p3)2
−iηµ3µ4

(p2 + q2)2
(2π)4δ4(q1 − q3)(2π)4δ4(−p2 − q2 − q3 − p1)

× e−ip1x1−iq1y1−ip2x2−iq2y2 . (6.158)
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con21 =
i4

4!
(−e)4(4)(−6)

∫

d4z1...

∫

d4z4iD
µ1µ3(z1 − z3).iDµ2µ4(z2 − z4)

[

SF (y1 − z1)γµ1SF (z1 − z2)γµ2

× SF (z2 − z3)γµ3SF (z3 − x1)
]β1α1

[

SF (x2 − z4)γµ4SF (z4 − y2)
]α2β2

= −(−ie)4
∫

d4q1
(2π)4

∫

d4q2
(2π)4

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q3
(2π)4

∫

d4p3
(2π)4

[

S(q1)γµ1S(p3)γµ2S(q3)γµ3S(−p1)

×
]β1α1

[

S(p2)γµ4S(−q2)
]α2β2 −iηµ1µ3

(q1 − p3)2
−iηµ2µ4

(p2 + q2)2
(2π)4δ4(−q1 + p3 − q3 − p1)(2π)4δ4(p2 + q2 + p3

− q3)e
−ip1x1−iq1y1−ip2x2−iq2y2 . (6.159)

con31 =
i4

4!
(−e)4(4)(−6)

∫

d4z1...

∫

d4z4iD
µ1µ4(z1 − z4).iDµ2µ3(z2 − z3)

[

SF (y1 − z1)γµ1SF (z1 − z2)γµ2

× SF (z2 − z3)γµ3SF (z3 − x1)
]β1α1

[

SF (x2 − z4)γµ4SF (z4 − y2)
]α2β2

= −(−ie)4
∫

d4q1
(2π)4

∫

d4q2
(2π)4

∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4q3
(2π)4

∫

d4p3
(2π)4

[

S(q1)γµ1S(p3)γµ2S(q3)γµ3S(−p1)

×
]β1α1

[

S(p2)γµ4S(−q2)
]α2β2 −iηµ1µ4

(q1 − p3)2
−iηµ2µ3

(p3 − q3)2
(2π)4δ4(p3 + p1)(2π)

4δ4(q1 − p3 + p2 + q2)

× e−ip1x1−iq1y1−ip2x2−iq2y2 . (6.160)

The corresponding Fourier transforms are

G
con1

1

α1,β1,α2,β2
(p1, q1, p2, q2) = −(−ie)4

∫

d4q3
(2π)4

∫

d4p3
(2π)4

[

S(−q1)γµ1S(p3)γµ2S(q3)γµ3S(p1)

]β1α1
[

S(−p2)γµ4

× S(q2)

]α2β2 −iηµ1µ2

(q1 + p3)2
−iηµ3µ4

(p2 + q2)2
(2π)4δ4(q1 + q3)(2π)

4δ4(p2 + q2 + p1 + q1).

(6.161)

G
con2

1

α1,β1,α2,β2
(p1, q1, p2, q2) = −(−ie)4

∫

d4q3
(2π)4

∫

d4p3
(2π)4

[

S(−q1)γµ1S(p3)γµ2S(q3)γµ3S(p1)

]β1α1
[

S(−p2)γµ4

× S(q2)

]α2β2 −iηµ1µ3

(q1 + p3)2
−iηµ2µ4

(p2 + q2)2
(2π)4δ4(q1 + p1 + p3 − q3)(2π)4δ4(−q2 − p2

+ p3 − q3). (6.162)

G
con3

1

α1,β1,α2,β2
(p1, q1, p2, q2) = −(−ie)4

∫

d4q3
(2π)4

∫

d4p3
(2π)4

[

S(−q1)γµ1S(p3)γµ2S(q3)γµ3S(p1)

]β1α1
[

S(−p2)γµ4

× S(q2)

]α2β2 −iηµ1µ4

(q1 + p3)2
−iηµ2µ3

(p3 − q3)2
(2π)4δ4(p3 − p1)(2π)4δ4(q1 + p1 + q2 + p2).

(6.163)
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The corresponding probability amplitudes are

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in >con1
1

=

∫

d4q3
(2π)4

∫

d4p3
(2π)4

(

v̄r1(q1)(−ieγµ1)S(p3)(−ieγµ2)S(q3)(−ieγµ3)

× us1(p1)

)

.

( −iηµ1µ2

(q1 + p3)2

)

.(2π)4δ4(q1 + q3).(2π)
4δ4(p2 + q2 − p1 − q1)

×
( −iηµ3µ4

(p2 + q2)2

)

.

(

ūs2(p2)(−ieγµ4)v
r2(q2)

)

. (6.164)

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in >con2
1

=

∫

d4q3
(2π)4

∫

d4p3
(2π)4

(

v̄r1(q1)(−ieγµ1)S(p3)(−ieγµ2)S(q3)(−ieγµ3)

× us1(p1)

)

.

( −iηµ1µ3

(p1 − q3)2
)

.(2π)4δ4(q1 + p1 + p3 − q3).(2π)4δ4(p2 + q2

+ p3 − q3)
( −iηµ2µ4

(p2 + q2)2

)

.

(

ūs2(p2)(−ieγµ4)v
r2(q2)

)

. (6.165)

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in >con3
1

=

∫

d4q3
(2π)4

∫

d4p3
(2π)4

(

v̄r1(q1)(−ieγµ1)S(p3)(−ieγµ2)S(q3)(−ieγµ3)

× us1(p1)

)

.

( −iηµ1µ4

(p2 + q2)2

)

.(2π)4δ4(p3 − p1).(2π)4δ4(q1 + p1 − q2 − p2)

×
( −iηµ2µ3

(p1 − q3)2
)

.

(

ūs2(p2)(−ieγµ4)v
r2(q2)

)

. (6.166)

They are represented by the diagrams RAD1, RAD2 and RAD3 respectively.

2nd term: The calculation of the second term is identical to the calculation of the first term
except that the role of the electron and the positron is interchanged with the role of the muon
and antimuon. The result is represented by the sum of diagrams RAD4. This term contains
two contributions which are proportional to one virtual muon propagator and two contributions
which are proportional to two virtual muon propagators. Thus in the limit in which the muon
is much heavier than the electron (which is actually the case here since me = 0.5 Mev and
mµ = 105.7 Mev) we can neglect the second term compared to the first term. Indeed the second
term is proportional to 1/mµ whereas the first term is of order 0 in 1/mµ in the limit mµ −→∞.

3rd term: By using Wick’s theorem we compute the expression

< 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)Leµ1
(z1)Leµ2

(z2)|0 > . (6.167)

There are in total 6 contractions. By dropping disconnected contractions which contain SF (0)
we will only have 3 contractions left. Using then the symmetry between the points z1 and z2
(under the integral and the trace) the expression is reduced further to 2 terms. These are

< 0|T
( ¯̂
ψα1

in (x1)ψ̂
β1

in (y1)Leµ1
(z1)Leµ2

(z2)|0 > = −2
[

SF (y1 − z1)γµ1SF (z1 − z2)γµ2SF (z2 − x1)
]β1α1

+ Sβ1α1

F (y1 − x1)tr
[

γµ1SF (z1 − z2)γµ2SF (z2 − z1)
]

.

(6.168)
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Similarly

< 0|T
(

ψ̂α2

in (x2)
¯̂
ψβ2

in (y2)Lµµ3
(z3)Lµµ4

(z4)
)

|0 > = 2

[

SF (x2 − z3)γµ3SF (z3 − z4)γµ4SF (z4 − y2)
]α2β2

− Sα2β2

F (x2 − y2)tr
[

γµ3SF (z3 − z4)γµ4SF (z4 − z3)
]

.

(6.169)

The second terms in the above two equations correspond to disconnected contributions. Also the
first term iDµ1µ2(z1−z2).iDµ3µ4(z3−z4) in the photon 4−point function leads to a disconnected
contribution. The second term iDµ1µ3(z1 − z3).iD

µ2µ4(z2 − z4) gives on the other hand the
contribution

< 0|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 > = −e4
∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4p3
(2π)4

∫

d4q1
(2π)4

∫

d4q2
(2π)4

∫

d4q3
(2π)4

×
[

S(q1)γµ1S(p3)γµ2S(−p1)
]β1α1

[

S(p2)γµ3S(−q3)γµ4S(−q2)

×
]α2β2 −iηµ1µ3

(q1 − p3)2
−iηµ2µ4

(−q3 + q2)2
(2π)4δ(q3 − q2 − p3 − p1)

× (2π)4δ4(p1 + q1 + p2 + q2) e
−ip1x1−iq1y1−ip2x2−iq2y2 . (6.170)

Thus

Gα1,β1,α2,β2(p1, q1, p2, q2) = −e4
∫

d4p3
(2π)4

∫

d4q3
(2π)4

[

S(−q1)γµ1S(p3)γµ2S(p1)

]β1α1
[

S(−p2)γµ3S(−q3)γµ4

× S(q2)

]α2β2 −iηµ1µ3

(−q1 − p3)2
−iηµ2µ4

(−q3 − q2)2
(2π)4δ(q3 + q2 − p3 + p1).(2π)

4δ4(p1 + q1

+ p2 + q2). (6.171)

The third term iDµ1µ4(z1− z4).iDµ2µ3(z2− z3) in the photon 4−point function gives the contri-
bution

< 0|T
( ¯̂
ψα1(x1)ψ̂

β1(y1)ψ̂
α2(x2)

¯̂
ψβ2(y2)

)

|0 > = −e4
∫

d4p1
(2π)4

∫

d4p2
(2π)4

∫

d4p3
(2π)4

∫

d4q1
(2π)4

∫

d4q2
(2π)4

∫

d4q3
(2π)4

×
[

S(q1)γµ1S(p3)γµ2S(−p1)
]β1α1

[

S(p2)γµ3S(−q3)γµ4S(−q2)

×
]α2β2 −iηµ1µ4

(q1 − p3)2
−iηµ2µ3

(p2 + q3)2
(2π)4δ(p1 + p2 + q3 + p3)

× (2π)4δ4(q1 + q2 − q3 − p3) e−ip1x1−iq1y1−ip2x2−iq2y2 . (6.172)

Thus
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Gα1,β1,α2,β2(p1, q1, p2, q2) = −e4
∫

d4p3
(2π)4

∫

d4q3
(2π)4

[

S(−q1)γµ1S(p3)γµ2S(p1)

]β1α1
[

S(−p2)γµ3S(−q3)γµ4

× S(q2)

]α2β2 −iηµ1µ4

(q1 + p3)2
−iηµ2µ3

(p2 − q3)2
(2π)4δ(p1 + p2 − q3 − p3)(2π)4δ4(q1 + q2

+ q3 + p3). (6.173)

The two contributions (6.171) and (6.173) correspond to the diagrams RAD5 and RAD6 respec-
tively. They will be neglected under the assumption that the muon mass is very large compared
to the electron mass. These two diagrams in the limit of infinite muon mass go as 1/mµ which
corresponds to the single internal muon propagator.

6.6 LSZ Reduction formulas for Photons

6.6.1 Example II: e− + γ −→ e− + γ

Let us consider now the process

e−(p1) + γ(k1) −→ e−(p2) + γ(k2). (6.174)

The initial and final states are given by

initial state = |~p1, s1 > |~k1, λ1 >
=

√

2E~p1 b̂(~p1, s1)
+â(~k1, λ1)

+|0 > . (6.175)

final state = |~p2, s2 > |~k2, λ2 >
=

√

2E~p2 b̂(~p2, s2)
+â(~k2, λ2)

+|0 > . (6.176)

The probability amplitude of interest in this case is

< ~p2s2, ~k2λ2 out|~p1s1, ~k1λ1 in > =
√

2E~p2 <
~k2λ2 out|b̂out(~p2, s2)|~p1s1, ~k1λ1 in > .(6.177)

By assuming that p1 6= p2 and s1 6= s2 and then using the appropriate LSZ reduction formulas
we get

< ~p2s2, ~k2λ2 out|~p1s1, ~k1λ1 in > =
√

2E~p2 <
~k2λ2 out|b̂out(~p2, s2)|~p1s1, ~k1λ1 in >

=
1

i

∫

d4x2e
ip2x2 ūs2(p2)(iγ

µ∂µ,x2 −m) < ~k2λ2 out|ψ̂(x2)|~p1s1, ~k1λ1 in >

=
1

i

√

2E~p1

∫

d4x2e
ip2x2 ūs2(p2)(iγ

µ∂µ,x2 −m) < ~k2λ2 out|ψ̂(x2)

× b̂in(~p1, s1)
+|~k1λ1 in >

=
1

i2

∫

d4x2e
ip2x2

∫

d4x1e
−ip1x1 ūs2(p2)(iγ

µ∂µ,x2 −m) < ~k2λ2 out|T (

× ψ̂(x2)
¯̂
ψ(x1))|~k1λ1 in > (−iγµ←−∂ µ,x1 −m)us1(p1). (6.178)

We need now to reduce the photon states. We need reduction formulas for photons. By analogy
with the scalar field case the reduction formulas for the electromagnetic field read

âout(k, λ)T (...)− T (...)âin(k, λ) = −
∫

d4xeikx ǫµλ(
~k)i∂2T (Âµ(x)...). (6.179)
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â+out(k, λ)T (...)− T (...)â+in(k, λ) =
∫

d4xe−ikx ǫµλ(
~k)i∂2T (Âµ(x)...). (6.180)

We have then

< ~p2s2, ~k2λ2 out|~p1s1, ~k1λ1 in > =
1

i2

∫

d4x2e
ip2x2

∫

d4x1e
−ip1x1 ūs2(p2)(iγ

µ∂µ,x2 −m) < 0 out|âout(k2,

× λ2)T (ψ̂(x2)
¯̂
ψ(x1))|~k1λ1 in > (−iγµ←−∂ µ,x1 −m)us1(p1). (6.181)

Again by assuming that k1 6= k2 and λ1 6= λ2 we get

< ~p2s2, ~k2λ2 out|~p1s1, ~k1λ1 in > = − 1

i2
i

∫

d4x2e
ip2x2

∫

d4x1e
−ip1x1 ūs2(p2)(iγ

µ∂µ,x2 −m)

∫

d4y2e
ik2y2

× ǫµ2

λ2
( ~k2)∂

2
y2 < 0 out|T (Âµ2(y2)ψ̂(x2)

¯̂
ψ(x1))âin(~k1, λ1)

+|0 in >

× (−iγµ←−∂ µ,x1 −m)us1(p1)

=
1

i2
i2
∫

d4x2e
ip2x2

∫

d4x1e
−ip1x1 ūs2(p2)(iγ

µ∂µ,x2 −m)

∫

d4y2e
ik2y2

×
∫

d4y1e
−ik1y1 ǫµ2

λ2
( ~k2)∂

2
y2 < 0 out|T (Âµ1(y1)Âµ2(y2)ψ̂(x2)

¯̂
ψ(x1))|0 in >

× ǫµ1

λ1
( ~k1)
←−
∂ 2
y1(−iγµ

←−
∂ µ,x1 −m)us1(p1). (6.182)

This depends on the Green’s function

Gα1,µ1,α2,µ2(x1, y1, x2, y2) = < 0 out|T
(

Âµ1(y1)Âµ2 (y2)ψ̂α2(x2)
¯̂
ψα1(x1)

)

|0 in >

=

∫

d4p1
(2π)4

d4k1
(2π)4

d4p2
(2π)4

d4k2
(2π)4

Gα1,µ1,α2,µ2(p1, k1, p2, k2) e
ip1x1+ik1y1+ip2x2+ik2y2 .

(6.183)

Thus we get

< ~p2s2, ~k2λ2 out|~p1s1, ~k1λ1 in > = k21k
2
2ǫ
µ1

λ1
(k1)ǫ

µ2

λ2
(k2)

(

ūs2(p2)(γ.p2 −m)

)

α2

Gα1,µ1,α2,µ2(p1, k1,−p2,−k2)

×
(

(γ.p1 −m)us1(p1)

)

α1

. (6.184)

6.6.2 Perturbation Theory

We need now to compute the Green’s function

< 0 out|T
(

Âµ1(y1)Âµ2 (y2)ψ̂α2(x2)
¯̂
ψα1(x1)

)

|0 in > . (6.185)

By using the Gell-Mann Low formula we have

< 0 out|T
(

Âµ1(y1)Â
µ2(y2)ψ̂

α2(x2)
¯̂
ψα1(x1)

)

|0 in > = < 0 in|T
(

Âµ1

in (y1)Â
µ2

in (y2)ψ̂
α2

in (x2)
¯̂
ψα1

in (x1)

× S

)

|0 in > . (6.186)
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As before we will set |0 out >= |0 in >= |0 > for simplicity. The first non-zero contribution
(tree level) is

< 0|T
(

Âµ1(y1)Â
µ2 (y2)ψ̂

α2(x2)
¯̂
ψα1(x1)

)

|0 > =
i2

2!

∫

d4z1

∫

d4z2 < 0|T
(

Âµ1

in (y1)Â
µ2

in (y2)ψ̂
α2

in (x2)
¯̂
ψα1

in (x1)

× Lint(z1)Lint(z2)
)

|0 >

=
(−ie)2

2!

∫

d4z1

∫

d4z2 < 0|T
(

Âµ1

in (y1)Â
µ2

in (y2)Â
ν1
in (z1)

× Âν2in (z2)

)

|0 >< 0|T
(

ψ̂α2

in (x2)
¯̂
ψα1

in (x1)Lν1(z1)Lν2(z2)
)

|0 >

(6.187)

The only contribution in the fermion Green’s function < 0|T
(

ψ̂α2

in (x2)
¯̂
ψα1

in (x1)Lν1 (z1)Lν2(z2)|0 >
which will lead to connected diagrams is

< 0|T
(

ψ̂α2

in (x2)
¯̂
ψα1

in (x1)Lν1 (z1)Lν2(z2)|0 > = 2

[

SF (x2 − z1)γν1SF (z1 − z2)γν2SF (z2 − x1)
]α2α1

.

(6.188)

The only contributions in the gauge field Green’s function< 0|T
(

Âµ1

in (y1)Â
µ2

in (y2)Â
ν1
in (z1)Â

ν2
in (z2)

)

|0 >
which will lead to connected diagrams are

< 0|T
(

Âµ1

in (y1)Â
µ2

in (y2)Â
ν1
in (z1)Â

ν2
in (z2)

)

|0 > = iDµ1ν1(y1 − z1).iDµ2ν2(y2 − z2)

+ iDµ1ν2(y1 − z2).iDµ2ν1(y2 − z1).(6.189)



140 YDRI QFT

Hence

< 0|T
(

Âµ1(y1)Â
µ2 (y2)ψ̂

α2(x2)
¯̂
ψα1(x1)

)

|0 > = (−ie)2
∫

d4z1

∫

d4z2iD
µ1ν1(y1 − z1).iDµ2ν2(y2 − z2)

[

× SF (x2 − z1)γν1SF (z1 − z2)γν2SF (z2 − x1)
]α2α1

+ (−ie)2
∫

d4z1

∫

d4z2iD
µ1ν2(y1 − z2).iDµ2ν1(y2 − z1)

[

× SF (x2 − z1)γν1SF (z1 − z2)γν2SF (z2 − x1)
]α2α1

= (−ie)2
∫

d4k1
(2π)4

∫

d4k2
(2π)4

∫

d4p1
(2π)4

∫

d4p2
(2π)4

[

S(p2)γν1

× S(k1 + p2)γν2S(−p1)
]α2α1−iηµ1ν1

k21

−iηµ2ν2

k22
(2π)4δ4(k2 + k1

+ p2 + p1)e
−ip1x1−ik1y1−ip2x2−ik2y2

+ (−ie)2
∫

d4k1
(2π)4

∫

d4k2
(2π)4

∫

d4p1
(2π)4

∫

d4p2
(2π)4

[

S(p2)γν1

× S(k2 + p2)γν2S(−p1)
]α2α1−iηµ1ν2

k21

−iηµ2ν1

k22
(2π)4δ4(k2 + k1

+ p2 + p1)e
−ip1x1−ik1y1−ip2x2−ik2y2 . (6.190)

We deduce therefore the Fourier expansion

Gα1,µ1,α2,µ2(−p1,−k1,−p2,−k2) = (−ie)2
[

S(p2)γν1S(k1 + p2)γν2S(−p1)
]α2α1−iηµ1ν1

k21

−iηµ2ν2

k22
(2π)4δ4(k2

+ k1 + p2 + p1)

+ (−ie)2
[

S(p2)γν1S(k2 + p2)γν2S(−p1)
]α2α1−iηµ1ν2

k21

−iηµ2ν1

k22
(2π)4δ4(k2

+ k1 + p2 + p1). (6.191)

The probability amplitude of the process γ + e− −→ γ + e− becomes

< ~p2s2, ~k2λ2 out|~p1s1, ~k1λ1 in > = (−ie)2ǫµ1

λ1
(k1)

[

ūs2(p2)γµ1S(−k1 + p2)γµ2u
s1(p1)

]

ǫµ2

λ2
(k2)(2π)

4δ4(k2

+ p2 − k1 − p1)

+ (−ie)2ǫµ1

λ1
(k1)

[

ūs2(p2)γµ2S(k2 + p2)γµ1u
s1(p1)

]

ǫµ2

λ2
(k2)(2π)

4δ4(k2

+ p2 − k1 − p1). (6.192)

These two terms are represented by the two diagrams COMP1 and COMP2 respectively.

6.7 Feynman Rules for QED

From the above two examples we can summarize Feynman rules for QED in momentum space
as follows. First we draw all connected Feynman graphs which will contribute to a given process
then we associate an expression for every diagram in the perturbative expansion by applying the
following rules:
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• Energy Conservation:

– We assign a 4−momentum vector to each line.

– We impose energy conservation at each vertex.

– We will integrate (at the end) over all undetermined, i.e. internal, momenta.

• External Legs:

– We attach a spinor us(p) to any initial fermion state with incoming momentum p and
spin s.

– We attach a spinor ūs(p) to any final fermion state with outgoing momentum p and
spin s.

– We attach a spinor v̄s(p) to any initial antifermion fermion state with incoming mo-
mentum p and spin s.

– We attach a spinor vs(p) to any final antifermion fermion state with outgoing momen-
tum p and spin s.

– We attach a photon polarization 4−vector ǫµλ(k) to any photon state with momentum
k and polarization λ.

– We will put arrows on fermion and antifermion lines. For fermions the arrow is in the
same direction as the momentum carried by the line. For antifermions the arrow is
opposite to the momentum carried by the line.

• Propagators:

– We attach a propagator Sαβ(p) = i(γ.p + m)αβ/(p2 −m2 + iǫ) to any fermion line
carrying a momentum p in the same direction as the arrow on the line. We will attach
a propagator Sαβ(−p) if the momentum p of the fermion is opposite to the arrow on
the line. Remark that antifermions are included in this rule automatically since any
antifermion line which will carry a momentum p opposite to the arrow on the line will
be associated with a propagator Sαβ(−p).

– We attach a propagator −iηµν/(p2 + iǫ) to any photon line.

– External fermion and photon lines will not be associated with propagators. We say
that external lines are amputated.

• Vertex:

– The vector indices of photon propagators and photon polarization 4−vectors will be
connected together via interaction vertices. The value of QED vertex is −ie(γµ)αβ .
The spinor indices of the vertex will connect together spinor indices of fermion prop-
agators and fermion external legs.

– All spinor and vector indices coming from vertices, propagators and external legs must
be contracted appropriately.

• Fermion Loops:

– A fermion loop is always associated with an overall minus sign.
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6.8 Cross Sections

Transition Probability: In real experiments we measure cross sections and decay rates and
not probability amplitudes, S−matrix elements and correlation functions. The main point of
this section will be therefore to establish a relation between the cross section of the process

1(k1) + 2(k2) −→ 1
′

(k
′

1) + ...+N
′

(k
′

N ), (6.193)

and the S−matrix element (probability amplitude) of this process given by

< β out|α in > . (6.194)

The "in" state consists of two particles 1 and 2 with momenta k1 and k2 respectively while the
"out" state consists of N particles 1

′

, ...,N
′

with momenta k
′

1,...,k
′

N respectively. We will assume
that all these particles are scalar and thus we have

< β out|α in >=
√

2Ek1
√

2Ek2

√

2Ek′1
...
√

2Ek′N
< 0 out|âout(k

′

N )...âout(k
′

1)â
+
in(k1)â

+
in(k2)|0 in > .

(6.195)

The S−matrix is given by

S = T

(

e−i
∫
dtVI(t)

)

, VI(t) = −
∫

d3xLint(φ̂in(~x, t)). (6.196)

We will introduce the T−matrix by

S = 1 + i

∫

d4xT (x). (6.197)

In other words

T (x) = Lint(φ̂in(x)) +
i

2

∫

d4x1T

(

Lint(φ̂in(x))Lint(φ̂in(x1))
)

+ ... (6.198)

Let Pµ be the 4−momentum operator. We have

[Pµ, φ̂in(x)] = −i∂µφ̂in. (6.199)

It is straightforward to show that

[Pµ,

∫

d4xLint(φ̂in(x))] = 0. (6.200)

Hence

[Pµ, S] = 0. (6.201)

We know that Pµ generates spacetime translations. This expression then means that the S−matrix
operator is invariant under spacetime translations. We expect therefore that S−matrix elements
conserve energy-momentum. To show this we start from

[Pµ, T (x)] = −i∂µT (x). (6.202)
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By integrating both sides of this equation we get (use the fact that [Pµ, Pν ] = 0)

T (x) = eiPxT (0)e−iPx. (6.203)

Now we can compute

< β out|α in > = < β in|S|α in >

= < β in|α in > +i(2π)4δ4(Pα − Pβ) < β in|T (0)|α in > . (6.204)

By assuming that the "in" and "out" states are different we get

< β out|α in > = i(2π)4δ4(Pα − Pβ) < β in|T (0)|α in > . (6.205)

Thus the process conserve energy-momentum as it should. The invariance of the vacuum under
translations is expressed by the fact that the energy-momentum operator annihilates the vacuum,
namely

Pµ|0 in >= 0. (6.206)

Let us now recall that when we go to the box normalization, i.e. when we impose periodic
boundary conditions in the spatial directions, the commutator [â(p), â+(q)] = (2π)3δ3(~p − ~q)
becomes [â(p), â+(q)] = V δ~p,~q. In other words when we go to the box normalization we make
the replacement

(2π)3δ3(~p− ~q) −→ V δ~p,~q. (6.207)

By imposing periodic boundary condition in the time direction with a period T we can similarly
replace the energy conserving delta function (2π)δ(p0 − q0) with Tδp0,q0 , ,viz

(2π)δ3(p0 − q0) −→ Tδp0,q0 . (6.208)

It is understood that in the above two equations pi, qi, p0 and q0 are discrete variables. By
making these two replacements in the S−matrix element < β out|α in > we obtain

< β out|α in > = iTV δp0,q0δ~p,~q < k
′

1...k
′

N in|T (0)|k1k2 in > . (6.209)

Let us recall that the normalization of the one-particle states is given by

< ~p|~q > = 2EpV δ~p,~q. (6.210)

Taking this normalization into account, i.e. by working only with normalized states, we get the
probability amplitude

< β out|α in > = iTV δp0,q0δ~p,~q
1

√

2Ek′1
V
...

1
√

2Ek′N
V

1
√

2Ek1V

1
√

2Ek2V
< k

′

1...k
′

N in|T (0)|k1k2 in > .

(6.211)

The probability is then given by

| < β out|α in > |2 = T 2V 2δp0,q0δ~p,~q
1

2Ek′1
V
...

1

2Ek′N
V

1

2Ek1V

1

2Ek2V
| < k

′

1...k
′

N in|T (0)|k1k2 in > |2

= TV (2π)4δ4(Pα − Pβ)
1

2Ek′1
V
...

1

2Ek′N
V

1

2Ek1V

1

2Ek2V

× | < k
′

1...k
′

N in|T (0)|k1k2 in > |2. (6.212)
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The transition probability per unit volume and per unit time is defined by

1

TV
| < β out|α in > |2 = (2π)4δ4(Pα − Pβ)

1

2Ek′1
V
...

1

2Ek′N
V

1

2Ek1V

1

2Ek2V

× | < k
′

1...k
′

N in|T (0)|k1k2 in > |2. (6.213)

In real experiments we are interested in transitions to final states where the 4−momentum k
′

i

of the ith particle is not well determined but it is only known that it lies in a volume d3k
′

i.
From the correspondence

∑

~k /V −→
∫

d3k/(2π)3 we see that we have (V d3k)/(2π)3 states in
the volume d3k. Hence the transition probability per unit volume and per unit time of interest
to real experiments is

dν =
1

TV
| < β out|α in > |2V d

3k
′

1

(2π)3
...
V d3k

′

N

(2π)3

= (2π)4δ4(Pα − Pβ)
d3k

′

1

(2π)3
1

2Ek′1
...
d3k

′

N

(2π)3
1

2Ek′N
| < k

′

1...k
′

N in|T (0)|k1k2 in > |2 1

2Ek1V

1

2Ek2V
.

(6.214)

Remark that d3k/((2π)3
√
2Ek) is the Lorentz-invariant 3−dimensional measure. We also remark

that in the limit V −→ ∞ this transition probability vanishes. In large volumes the interaction
between the two initial particles has a less chance of happening at all. In order to increase the
transition probability we increase the number of initial particles.

Reaction Rate and Cross Section: Let N1 and N2 be the number of initial particles of
types 1 and 2 respectively. Clearly the number of transitions (collisions) per unit volume per
unit time dN divided by the total number of pairs N1N2 is the transition probability per unit
volume and per unit time dν. In other words

dN = N1N2dν. (6.215)

This is also called the reaction rate.
The 4−vector density is defined by Jµ = ρuµ where ρ is the density in the rest frame and

uµ is the 4−vector velocity, viz u0 = 1/
√
1− v2 and ui = vi/

√
1− v2. Thus J0dx1dx2dx3 is

the number of particles in the volume dx1dx2dx3 while J1dx2dx3dx0 is the number of particles
which cross the area dx2dx3 during a time dx0. Clearly J i = J0vi with vi = ki/Ek. Using these
definitions we have

N1 = V J
(1)
0 , N2 = V J

(2)
0 . (6.216)

Thus

dN = V 2J
(1)
0 J

(2)
0 dν. (6.217)

We introduce now the differential cross section by

dN = J
(1)
0 J

(2)
0

I

Ek1Ek2
dσ. (6.218)

The Lorentz-invariant factor I is defined by

I =
√

(k1k2)2 − k21k22 . (6.219)
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We compute

I = Ek1Ek2

√

(~v1 − ~v2)2 + (~v1~v2)2 − ~v21~v22
= Ek1Ek2

√

(~v1 − ~v2)2 − (~v1 × ~v2)2. (6.220)

The motivation behind this definition of the differential cross section goes as follows. Let us go
to the lab reference frame. This is the reference frame in which ~v2 = 0. In other words it is the
frame in which particles of type 1 play the role of incident beam while particles of type 2 play
the role of target. In this case we get

dN = J
(2)
0 | ~J (1)|dσ. (6.221)

The number of incident particles per unit area normal to the beam per unit time is | ~J (1)|. Thus

| ~J (1)|dσ is the number of particles which cross dσ per unit time. Since we have J
(2)
0 target

particles per unit volume, the total number of transitions (collisions or scattering events) per

unit volume per unit time is J
(2)
0 × | ~J (1)|dσ. We will usually write dσ = (dσ/dΩ)dΩ. Thus

dN = J
(2)
0 | ~J (1)| dσ

dΩ
dΩ. (6.222)

Hence dN is the number of particles per unit volume per unit time scattered into the solid angle
dΩ. The differential cross section dσ = (dσ/dΩ)dΩ is therefore the number of particles per unit
volume per unit time scattered into the solid angle dΩ divided by the product of the incident

flux density | ~J (1)| and the target density J
(2)
0 . From equations (6.217) and (6.218) we get

dν = Idσ
1

V Ek1

1

V Ek2
. (6.223)

By combining this last equation with (6.214) we obtain the result

dσ = (2π)4δ4(Pα − Pβ)
d3k

′

1

(2π)3
1

2Ek′1
...
d3k

′

N

(2π)3
1

2Ek′N
| < k

′

1...k
′

N in|T (0)|k1k2 in > |2 1

4I
.

(6.224)

Fermi’s Golden Rule: Let us consider the case N = 2 (two particles in the final state) in the

center of mass frame (~k1 + ~k2 = 0). We have

dσ = (2π)4δ4(k1 + k2 − k
′

1 − k
′

2)
d3k

′

1

(2π)3
1

2Ek′1

d3k
′

2

(2π)3
1

2Ek′2
| < k

′

1k
′

2 in|T (0)|k1k2 in > |2 1

4I

= (2π)4δ3(~k
′

1 +
~k

′

2)δ(Ek1 + Ek2 − Ek′1 − Ek′2)
d3k

′

1

(2π)3
1

2Ek′1

d3k
′

2

(2π)3
1

2Ek′2
| < k

′

1k
′

2 in|T (0)|k1k2 in > |2 1

4I
.

(6.225)

The integral over ~k
′

2 can be done. We obtain

dσ =

[

(2π)δ(Ek1 + Ek2 − Ek′1 − Ek′2)
d3k

′

1

(2π)3
1

2Ek′1

1

2Ek′2
| < k

′

1k
′

2 in|T (0)|k1k2 in > |2 1

4I

]

~k2=−~k1
.

(6.226)
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Since Ek′1
=

√

~k
′2
1 +m

′2
1 and Ek′2

=

√

~k
′2
1 +m

′2
2 we compute Ek′1

dEk′1
= Ek′2

dEk′2
= k

′

dk
′

where

k
′

= |~k′

1| = |~k
′

2|. Thus Ek′1
Ek′2

d(Ek′1
+ Ek′2

) = (Ek′1
+ Ek′2

)k
′

dk
′

. We have then

d3k
′

1 = k
′2
1 dk

′

1dΩ
′

= k
′ Ek′1

Ek′2
Ek′1

+ Ek′2
d(Ek′1

+ Ek′2
)dΩ

′

. (6.227)

We get then the result

dσ =
1

64π2

k
′

I(Ek1 + Ek2 )
dΩ

′

[

| < k
′

1k
′

2 in|T (0)|k1k2 in > |2
]

~k2=−~k1
.

(6.228)

In this equation k
′

should be thought of as a function of Ek1 + Ek2 obtained by solving the

equation
√

k′2 +m
′2
1 +

√

k′2 +m
′2
2 = Ek1 + Ek2 . In the center of mass system we have I =

Ek1Ek2 |~v1 − ~v2| = Ek1Ek2(|~v1| + |~v2|) = (Ek1 + Ek2)k where k = |~k1| = |~k2|. Hence we get the
final result (with s = (Ek1 + Ek2)

2 is the square of the center of mass energy)

dσ =
1

64π2s

k
′

k
dΩ

′

[

| < k
′

1k
′

2 in|T (0)|k1k2 in > |2
]

~k2=−~k1
. (6.229)

6.9 Tree Level Cross Sections: An Example

The tree level probability amplitude for the process e− + e+ −→ µ− +µ+ was found to be given
by

< ~p2s2, ~q2r2 out|~p1s1, ~q1r1 in > =

(

v̄r1(q1)(−ieγµ)us1(p1)
) −iηµν
(p1 + q1)2

(

ūs2(p2)(−ieγν)vr2(q2)
)

× (2π)4δ4(q1 + p1 − p2 − q2). (6.230)

From the definition (6.205) we deduce the T−matrix element (with q = p1 + q1)

i < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > =

(

v̄r1(q1)(−ieγµ)us1(p1)
)−iηµν

q2

(

ūs2(p2)(−ieγν)vr2(q2)
)

=
ie2

q2

(

v̄r1(q1)γµu
s1(p1)

)(

ūs2(p2)γ
µvr2(q2)

)

. (6.231)

In the formula of the cross section we need the square of this matrix element. Recalling that
(γ0)2 = 1, (γi)2 = −1, (γ0)+ = γ0, (γi)+ = −γi we get ψ̄γµχ = χ̄γµψ. Thus

| < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > |2 =
e4

(q2)2

(

v̄r1(q1)γµu
s1(p1)

)(

ūs2(p2)γ
µvr2(q2)

)(

ūs1(p1)γνv
r1(q1)

)

×
(

v̄r2(q2)γ
νus2(p2)

)

. (6.232)

Unpolarized Cross Section: The first possibility which is motivated by experimental con-
siderations is to compute the cross section of the process e− + e+ −→ µ− + µ+ for unpolarized
initial and final spin states. In a real experiment initial spin states are prepared and so unpolar-
ized initial spin states means taking an average over the initial spins s1 and r1 of the electron and
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positron beams. The final spin states are the output in any real experiment and thus unpolarized
final spin states means summing over all possible final spin states s2 and r2 of the muon and
antimuon. This is equivalent to saying that the detectors do not care to measure the spins of
the final particles. So we really want to compute

1

2

∑

s1

1

2

∑

r1

∑

s2

∑

r2

| < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > |2. (6.233)

We have explicitly

1

2

∑

s1

1

2

∑

r1

∑

s2

∑

r2

| < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > |2 =
e4

4(q2)2
(γµ)α1β1(γ

µ)α2β2(γν)ρ1γ1(γ
ν)ρ2γ2

×
∑

s1

us1β1
(p1)ū

s1
ρ1(p1)

∑

r1

vr1γ1(q1)v̄
r1
α1
(q1)

×
∑

s2

us2γ2(p2)ū
s2
α2
(p2)

∑

r2

vr2β2
(q2)v̄

r2
ρ2 (q2).

(6.234)

We recall the identities
∑

s u
s
α(p)ū

s
β(p) = (γ.p +m)αβ and

∑

s v
s
α(p)v̄

s
β(p) = (γ.p −m)αβ . We

get then

1

2

∑

s1

1

2

∑

r1

∑

s2

∑

r2

| < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > |2 =
e4

4(q2)2
trγµ(γ.p1 +me)γν(γ.q1 −me)

× trγµ(γ.q2 −mµ)γ
ν(γ.p2 +mµ).(6.235)

We can easily compute

trγµ = 0

trγµγν = 4ηµν

trγµγνγρ = 0

trγµγνγργσ = 4

(

ηµνηρσ − ηµρηνσ + ηµσηνρ
)

. (6.236)

Using these identities we calculate

trγµ(γ.p1 +me)γν(γ.q1 −me) = 4p1µq1ν + 4p1νq1µ − 4ηµνp1.q1 − 4ηµνm
2
e. (6.237)

trγµ(γ.q2 −mµ)γ
ν(γ.p2 +mµ) = 4pµ2q

ν
2 + 4pν2q

µ
2 − 4ηµνp2.q2 − 4ηµνm2

µ. (6.238)

We get then

1

2

∑

s1

1

2

∑

r1

∑

s2

∑

r2

| < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > |2 =
8e4

(q2)2

(

(p1p2)(q1q2) + (p1q2)(q1p2) +m2
µp1q1

+ m2
ep2q2 + 2m2

µm
2
e

)

. (6.239)

Since we are assuming that me << mµ we obtain

1

2

∑

s1

1

2

∑

r1

∑

s2

∑

r2

| < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > |2 =
8e4

(q2)2

(

(p1p2)(q1q2) + (p1q2)(q1p2) +m2
µp1q1

)

.

(6.240)
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In the center of mass system we have ~p1 = −~q1 = ~k and ~p2 = −~q2 = ~k
′

. We compute p1p2 =

q1q2 =

√

m2
e +

~k2
√

m2
µ + ~k′2 − ~k~k′

and p1q2 = q1p2 =

√

m2
e +

~k2
√

m2
µ + ~k′2 + ~k~k

′

. Thus by

dropping terms proportional to m2
e we obtain

(p1p2)(q1q2) + (p1q2)(q1p2) +m2
µp1q1 = 2(~k~k

′

)2 + 2~k2~k
′2 + 4m2

µ
~k2

= 2~k2~k
′2 cos2 θ + 2~k2~k

′2 + 4m2
µ
~k2. (6.241)

Conservation of energy reads in this case 2
√

~k′2 +m2
µ = 2

√

~k2 +m2
e. Hence we must have

~k
′2 = ~k2 −m2

µ and as a consequence we get

(p1p2)(q1q2) + (p1q2)(q1p2) +m2
µp1q1 = 2(~k2)2

(

1 +
m2
µ

~k2
+ (1− m2

µ

~k2
) cos2 θ

)

. (6.242)

Since q2 = 4~k2 we get the result

1

2

∑

s1

1

2

∑

r1

∑

s2

∑

r2

| < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > |2 = e4
(

1 +
m2
µ

~k2
+ (1− m2

µ

~k2
) cos2 θ

)

.

(6.243)

The differential cross section (6.229) becomes (with α = e2/4π)

dσ

dΩ
=
α2

4s

√

1− m2
µ

~k2

(

1 +
m2
µ

~k2
+ (1− m2

µ

~k2
) cos2 θ

)

. (6.244)

The high energy limit of this equation (mµ << |~k|) reads

dσ

dΩ
=
α2

4s

(

1 + cos2 θ

)

. (6.245)

Polarized Cross Section: We can also compute the polarized cross section of the process
e− + e+ −→ µ− + µ+ as follows. It is customary to quantize the spin along the direction of
motion of the particle. In this case the spin states are referred to as helicity states. Since we are
assuming that me << mµ which is equivalent to treating the electron and positron as massless
particles the left-handed and right-handed helicity states of the electron and the positron will be
completely independent. They provide independent representations of the Lorentz group. In the
high energy limit where we can assume that mµ << |~k| the muon and antimuon too behave as if
they are massless particles and as a consequence the corresponding left-handed and right-handed
helicity states will also be independent.

We recall the definition of the spinors u and v given by

us =

( √
σµpµξ

s

√
σ̄µpµξ

s

)

, vs =

( √
σµpµη

s

−√σ̄µpµηs
)

. (6.246)

In the limit of high energy we have σµp
µ = E − ~σ~p ≃ 2Eσ where σ is the two-dimensional

projection operator σ = (1−~σp̂)/2 with p̂ = ~p/|~p|. Indeed we can check that σ is an idempotent,
viz σ2 = σ. Similarly we have in the high energy limit σ̄µp

µ = E + ~σ~p ≃ 2Eσ̄ where σ̄ is the
two-dimensional projection operator σ̄ = (1 + ~σp̂)/2. Thus we find that

us =
√
2E

(

σξs

σ̄ξs

)

, vs =
√
2E

(

σηs

−σ̄ηs
)

. (6.247)
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The spinors ξR = σ̄ξs and ηR = σ̄ηs are right-handed spinors in the sense that ~σp̂ξR = ξR and
~σp̂ηR = ηR whereas ξL = σξs and ηL = σηs are left-handed spinors in the sense that ~σp̂ξL = −ξL
and ~σp̂ηL = −ηL. We introduce the four-dimensional projection operators onto the right-handed
and left-handed sectors respectively by

PR =
1 + γ5

2
=

(

0 0
0 1

)

, PL =
1− γ5

2
=

(

1 0
0 0

)

. (6.248)

Indeed we compute

uR = PRu
s =
√
2E

(

0
ξR

)

, vR = PRv
s =
√
2E

(

0
−ηR

)

. (6.249)

uL = PLu
s =
√
2E

(

ξL
0

)

, vL = PLv
s =
√
2E

(

ηL
0

)

. (6.250)

Now we go back to the probability amplitude

i < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > =
ie2

q2

(

v̄r1(q1)γµu
s1(p1)

)(

ūs2(p2)γ
µvr2(q2)

)

.(6.251)

We compute using us = uL + uR and vr = vL + vR for any s and r that

v̄r1(q1)γµu
s1(p1) = v+L (q1)γ

0γµuL(p1) + v+R(q1)γ
0γµuR(p1)

= v̄R(q1)γµuL(p1) + v̄L(q1)γµuR(p1). (6.252)

In the above equation we have used the fact that v+L γ
0 = v̄R and v+Rγ

0 = v̄L. In other words left-
handed spinor v corresponds to a right-handed positron while right-handed spinor v corresponds
to left-handed positron. This is related to the general result that particles and antiparticles have
opposite handedness. The probability amplitude becomes then

i < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > =
ie2

q2

(

v̄R(q1)γµuL(p1)

)(

ūR(p2)γ
µvL(q2)

)

+
ie2

q2

(

v̄R(q1)γµuL(p1)

)(

ūL(p2)γ
µvR(q2)

)

+
ie2

q2

(

v̄L(q1)γµuR(p1)

)(

ūR(p2)γ
µvL(q2)

)

+
ie2

q2

(

v̄L(q1)γµuR(p1)

)(

ūL(p2)γ
µvR(q2)

)

.(6.253)

The four terms correspond to the four processes

e−L + e+R −→ µ−
L + µ+

R

e−L + e+R −→ µ−
R + µ+

L

e−R + e+L −→ µ−
L + µ+

R

e−R + e+L −→ µ−
R + µ+

L . (6.254)

In the square of the above T−matrix element there will be 16 terms. Since left-handed and
right-handed spinors are orthogonal to each other most of these 16 terms will be zero except the
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4 terms corresponding to the above 4 processes. In a sense the above 4 processes are mutually
exclusive and so there is no interference between them. We have then

| < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > |2 =
e4

(q2)2
|v̄R(q1)γµuL(p1).ūR(p2)γµvL(q2)|2

+
e4

(q2)2
|v̄R(q1)γµuL(p1).ūL(p2)γµvR(q2)|2

+
e4

(q2)2
|v̄L(q1)γµuR(p1).ūR(p2)γµvL(q2)|2

+
e4

(q2)2
|v̄L(q1)γµuR(p1).ūL(p2)γµvR(q2)|2.(6.255)

From now on we will concentrate only on the first term since the others are similar. We have

∑

spins

(v̄R(q1)γµuL(p1))(v̄R(q1)γνuL(p1))
∗ =

∑

spins

(v̄(q1)γµ
1− γ5

2
u(p1)).(v̄(q1)γν

1− γ5
2

u(p1))
∗

=
∑

s1,r1

v̄r1α1
(q1)(γµ

1− γ5
2

)α1β1u
s1
β1
(p1).ū

s1
γ1(p1)(γν

1− γ5
2

)γ1δ1v
r1
δ1
(q1)

= trγµ
1− γ5

2
(γ.p1)γν

1− γ5
2

(γq1). (6.256)

∑

spins

(ūR(p2)γ
µvL(q2))(ūR(p2)γ

νvL(q2))
∗ =

∑

spins

(ū(p2)γ
µ 1− γ5

2
v(q2)).(ū(p2)γ

ν 1− γ5
2

v(q2))
∗

=
∑

s2,r2

ūs2α2
(p2)(γ

µ 1− γ5
2

)α2β2v
r2
β2
(q2).v̄

r2
γ2(q2)(γ

ν 1− γ5
2

)γ2δ2u
s2
δ2
(p2)

= trγµ
1− γ5

2
(γ.q2)γ

ν 1− γ5
2

(γp2). (6.257)

From the above two results it is obvious that all 12 interference terms in the square of the
T−matrix element < ~p2s2, ~q2r2 in|T (0)|~p1s1, ~q1r1 in > will indeed vanish because they will
involve traces of products of gamma matrices with one factor equal (1 + γ5)/2 and one factor
equal (1 − γ5)/2.

Next we will use the results

trγµγνγργσγ5 = −4iǫµνρσ. (6.258)

ǫµρνσǫ
µρ

′
νσ

′

= −2(ηρ
′

ρ η
σ
′

σ − ησ
′

ρ η
ρ
′

σ ). (6.259)

We compute

∑

spins

(v̄R(q1)γµuL(p1))(v̄R(q1)γνuL(p1))
∗ = 2

(

p1µq1ν + p1νq1µ − ηµνp1q1 − iǫµρνσpρ1qσ1
)

.(6.260)

∑

spins

(ūR(p2)γ
µvL(q2))(ūR(p2)γ

νvL(q2))
∗ = 2

(

qµ2 p
ν
2 + qν2p

µ
2 − ηµνq2p2 − iǫµρνσq2ρp2σ

)

.(6.261)
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Hence

e4

(q2)2
|v̄R(q1)γµuL(p1).ūR(p2)γµvL(q2)|2 =

16e4

(q2)2
(p1q2)(q1p2)

= e4(1 + cos θ)2. (6.262)

The last line is in the center of mass system. The corresponding cross section of the process
e−L + e+R −→ µ−

L + µ+
R is

dσ

dΩ
(e−L + e+R −→ µ−

L + µ+
R) =

α2

4s

(

1 + cos θ

)2

. (6.263)

The other polarized cross sections are

dσ

dΩ
(e−L + e+R −→ µ−

R + µ+
L) =

α2

4s

(

1− cos θ

)2

. (6.264)

dσ

dΩ
(e−R + e+L −→ µ−

L + µ+
R) =

α2

4s

(

1− cos θ

)2

. (6.265)

dσ

dΩ
(e−R + e+L −→ µ−

R + µ+
L) =

α2

4s

(

1 + cos θ

)2

. (6.266)

The average of these four polarized cross sections obtained by taking their sum and then dividing
by the number of initial polarization states (2 × 2) gives precisely the unpolarized cross section
calculated previously.

6.10 Exercises and Problems

The LSZ Reduction Formulas for Fermions

• Verify equations (6.75) and (6.76).

• Verify equations (6.81) and (6.82).

• Prove the LSZ reduction formulas (6.85)-(6.88) for one fermion operator.

The LSZ Reduction Formulas for Photons

• Write down the electromagnetic field operator in the limits t −→ ±∞ where it is assumed
that the QED interaction vanishes.

• Express the creation and annihilation operators â+in(k, λ), â
+
out(k, λ) and âin(k, λ), âout(k, λ)

in terms of the field operators Âµ,in(t, ~p) and Âµ,out(t, p) defined by

Âµ(t,~k) =

∫

d3xÂµ(x) e
−i~k~x. (6.267)

• Prove the LSZ reduction formulas (6.179) and (6.180) for zero photon operator.
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Wick’s Theorem

• Verify equation (6.36).

• Check equations (6.46),(6.47) and (6.52) .

• Verify explicitly that

i6

6!

∫

d4x1

∫

d4x
′

1...

∫

d4x3

∫

d4x
′

3 < 0|T (L(x1)L(x
′

1)...L(x3)L(x
′

3))|0 >= (
i3

3!
)2
∫

d4x1

∫

d4x
′

1...

∫

d4x3

∫

d4x
′

3 < 0|T (η̄(x1)ψ̂in(x1)...η̄(x3)ψ̂in(x3).
¯̂
ψin(x

′

1)η(x
′

1)...
¯̂
ψin(x

′

3)η(x
′

3))|0 > .

(6.268)

In this expression L(x) is given by the expression L(x) = η̄(x)ψ̂in(x) +
¯̂
ψin(x)η(x).

• Use Wick’s theorem (6.62) to derive the 2−, 4− and 6−point free fermion correlators.

• Verify equation (6.149).

• Verify equation (6.168).

• Verify that equation (6.133) leads to equation (6.134).

Interaction Picture

• Write down the equation relating the Schrödinger and interaction fields.

• Write down the equation relating the Heisenberg and interaction fields.

• Show that the interaction fields ψI and AµI are free fields.

Gell-Mann Low Formula

• Show the Gell-Mann Low formula

ψ̂(x) = S−1T

(

ψ̂in(x)S

)

. (6.269)

• Express ψ̂(x)ψ̂(y) in terms of ψ̂in(x)ψ̂in(y).

Energy-Momentum Conservation

• Solve the equation

[Pµ, T (x)] = −i∂µT (x). (6.270)

• Show that

< β out|α in > = i(2π)4δ4(Pα − Pβ) < β in|T (0)|α in > . (6.271)

• Show that

I =
√

(k1k2)2 − k21k22
= Ek1Ek2

√

(~v1 − ~v2)2 − (~v1 × ~v2)2. (6.272)
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Trace Technology:

• Show that

trγµ = 0

trγµγν = 4ηµν

trγµγνγρ = 0

trγµγνγργσ = 4

(

ηµνηρσ − ηµρηνσ + ηµσηνρ
)

. (6.273)

• Show that

γ5 = − i

4!
ǫµνρσγ

µγνγργσ. (6.274)

ǫµνρσǫ
µνρσ = −4!. (6.275)

• Show that

trγµγνγ5 = 0

trγµγνγργσγ5 = −4iǫµνρσ. (6.276)

Compton Scattering:

• The probability amplitude of the process γ + e− −→ γ + e− is given by

< ~p2s2, ~k2λ2 out|~p1s1, ~k1λ1 in > = (−ie)2ǫµ1

λ1
(k1)

[

ūs2(p2)γµ1S(−k1 + p2)γµ2u
s1(p1)

]

ǫµ2

λ2
(k2)

× (2π)4δ4(k2 + p2 − k1 − p1)

+ (−ie)2ǫµ1

λ1
(k1)

[

ūs2(p2)γµ2S(k2 + p2)γµ1u
s1(p1)

]

ǫµ2

λ2
(k2)

× (2π)4δ4(k2 + p2 − k1 − p1). (6.277)

Derive the corresponding unpolarized cross section (Klein-Nishina formula).
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7
Renormalization of QED

7.1 Example III: e− + µ− −→ e− + µ−

The most important one-loop correction to the probability amplitude of the process e−+ e+ −→
µ− + µ+ is given by the Feynamn diagram RAD2. This is known as the vertex correction as
it gives quantum correction to the QED interaction vertex −ieγµ. It has profound observable
measurable physical consequences. For example it will lead among other things to the infamous
anomalous magnetic moment of the electron. This is a generic effect. Indeed vertex correction
should appear in all electromagnetic processes.

Let us consider here as an example the different process

e−(p) + µ−(k) −→ e−(p
′

) + µ−(k
′

). (7.1)

This is related to the process e− + e+ −→ µ− + µ+ by the so-called crossing symmetry or
substitution law. Remark that the incoming positron became the outgoing electron and the
outgoing antimuon became the incoming muon. The substitution law is essentially the statement
that the probability amplitudes of these two processes can be obtained from the same Green’s
function. Instead of following this route we will simply use Feynman rules to write down the
probability amplitude of the above process of electron scattering from a heavy particle which is
here the muon.

For vertex correction we will need to add the probability amplitudes of the three Feynamn
diagrams VERTEX. The tree level contribution (first graph) is (with q = p− p′

and l
′

= l − q)

(2π)4δ4(k + p− k′ − p′

)
ie2

q2
(ūs

′

(p
′

)γµus(p))(ūr
′

(k
′

)γµu
r(k)). (7.2)

The electron vertex correction (the second graph) is

(2π)4δ4(k + p− k′ − p′

)
−e4
q2

∫

d4l

(2π)4
1

(l − p)2 + iǫ

(

ūs
′

(p
′

)γλ
i(γ.l

′

+me)

l′2 −m2
e + iǫ

γµ
i(γ.l+me)

l2 −m2
e + iǫ

γλu
s(p)

)

× (ūr
′

(k
′

)γµu
r(k)). (7.3)
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The muon vertex correction (the third graph) is similar to the electron vertex correction but
since it will be neglected in the limit mµ −→∞ we will not write down here.

Adding the three diagrams together we obtain

(2π)4δ4(k + p− k′ − p′

)
ie2

q2
(ūs

′

(p
′

)Γµ(p
′

, p)us(p))(ūr
′

(k
′

)γµu
r(k)). (7.4)

This is the same as the tree level term with an effective vertex −ieΓµ(p′

, p) where Γµ(p
′

, p) is
given by

Γµ(p
′

, p) = γµ + ie2
∫

d4l

(2π)4
1

(l − p)2 + iǫ

(

γλ
i(γ.l

′

+me)

l′2 −m2
e + iǫ

γµ
i(γ.l+me)

l2 −m2
e + iǫ

γλ

)

. (7.5)

If we did not take the limit mµ −→ ∞ the muon vertex would have also been corrected in the
same fashion.

The corrections to external legs are given by the four diagrams WAVEFUNCTION. We only
write explicitly the first of these diagrams. This is given by

(2π)4δ4(k + p− k′ − p′

)
e4

q2

∫

d4l

(2π)4
1

(l − p)2 + iǫ
(ūs

′

(p
′

)γµ
γ.p+me

p2 −m2
e

γλ
γ.l+me

l2 −m2
e

γλu
s(p))(ūr

′

(k
′

)γµu
r(k)).

(7.6)

The last diagram contributing to the one-loop radiative corrections is the vacuum polarization
diagram shown on figure PHOTONVACUUM. It is given by

(2π)4δ4(k + p− k′ − p′

)
ie2

(q2)2
(ūs

′

(p
′

)γµu
s(p))Πµν2 (q)(ūr

′

(k
′

)γνu
r(k)). (7.7)

iΠµν2 (q) = (−1)
∫

d4k

(2π)4
tr(−ieγµ) i(γ.k +me)

k2 −m2
e + iǫ

(−ieγν) i(γ.(k + q) +me)

(k + q)2 −m2
e + iǫ

. (7.8)

7.2 Example IV : Scattering From External Electromag-

netic Fields

We will now consider the problem of scattering of electrons from a fixed external electromagnetic
field Abackgr

µ , viz

e−(p) −→ e−(p
′

). (7.9)

The transfer momentum which is here q = p
′−p is taken by the background electromagnetic field

Abackgr
µ . Besides this background field there will also be a fluctuating quantum electromagnetic

field Aµ as usual. This means in particular that the interaction Lagrangian is of the form

Lin = −e ¯̂ψinγµψ̂in(Â
µ +Aµ,backgr). (7.10)

The initial and final states in this case are given by

|~p, s in >=
√

2E~p b̂in(~p, s)
+|0 in > . (7.11)

|~p′

, s
′

out >=
√

2E~p′ b̂out(~p
′

, s
′

)+|0 out > . (7.12)
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The probability amplitude after reducing the initial and final electron states using the appropriate
reduction formulas is given by

< ~p
′

s
′

out|~ps in > = −
[

ūs
′

(p
′

)(γ.p
′ −me)

]

α′

Gα′α(−p
′

, p)

[

(γ.p−me)u
s(p)

]

α

. (7.13)

HereGα′α(p
′

, p) is the Fourier transform of the 2−point Green’s function< 0 out|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|0 in >,

viz

< 0 out|T
(

ψ̂α′ (x
′

)
¯̂
ψα(x)

)

|0 in > =

∫

d4p
′

(2π)4

∫

d4p

(2π)4
Gα′ ,α(p

′

, p) eipx+ip
′
x
′

. (7.14)

By using the Gell-Mann Low formula we get

< 0 out|T
(

ψ̂α′ (x
′

)
¯̂
ψα(x)

)

|0 in > = < 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x)S

)

|0 in > . (7.15)

Now we use Wick’s theorem. The first term in S leads 0. The second term in S leads to the
contribution

i

∫

d4z < 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x)Lin(z)

)

|0 in > = (−ie)
∫

d4z < 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x).

¯̂
ψin(z)γµ

× ψ̂in(z)

)

|0 in > Aµ,backgr(z)

= (−ie)
∫

d4z

(

SF (x
′ − z)γµSF (z − x)

)α
′
α

Aµ,backgr(z)

= (−ie)
∫

d4p
′

(2π)4

∫

d4p

(2π)4

(

S(p
′

)γµS(p)

)α
′
α

Aµ,backgr(q)

× eipx−ip
′
x
′

. (7.16)

We read from this equation the Fourier transform

Gα′α(−p
′

, p) = (−ie)
(

S(p
′

)γµS(p)

)α
′
α

Aµ,backgr(q). (7.17)

The tree level probability amplitude is therefore given by

< ~p
′

s
′

out|~ps in > = −ie
(

ūs
′

(p
′

)γµu
s(p)

)

Aµ,backgr(q). (7.18)

The Fourier transform Aµ,backgr(q) is defined by

Aµ,backgr(x) =

∫

d4q

(2π)4
Aµ,backgr(q) e−iqx. (7.19)

This tree level process corresponds to the Feynman diagram EXT-TREE.
The background field is usually assumed to be small. So we will only keep linear terms in

Aµ,backgr(x). The third term in S does not lead to any correction which is linear in Aµ,backgr(x).
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The fourth term in S leads to a linear term in Aµ,backgr(x) given by

(−ie)3
3!

(3)

∫

d4z1

∫

d4z2

∫

d4z3 < 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x).

¯̂
ψin(z1)γµψ̂in(z1).

¯̂
ψin(z2)γν ψ̂in(z2).

¯̂
ψin(z3)

× γλψ̂in(z3)

)

|0 in >< 0 out|T (Âµ(z1)Âν(z2))|0 in > Aλ,backgr(z3). (7.20)

We use Wick’s theorem. For the gauge fields the result is trivial. It is simply given by the photon
propagator. For the fermion fields the result is quite complicated. As before there are in total
24 contractions. By dropping those disconnected contractions which contain SF (0) we will only
have 11 contractions left. By further inspection we see that only 8 are really disconnected. By
using then the symmetry between the internal points z1 and z2 we obtain the four terms

< 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x).

¯̂
ψin(z1)γµψ̂in(z1).

¯̂
ψin(z2)γν ψ̂in(z2).

¯̂
ψin(z3)γλψ̂in(z3)

)

|0 in >

= −2
[

SF (x
′ − z1)γµSF (z1 − x)

]α
′
α

trγνSF (z2 − z3)γλSF (z3 − z2)

+ 2

[

SF (x
′ − z1)γµSF (z1 − z2)γνSF (z2 − z3)γλSF (z3 − x)

]α
′
α

+ 2

[

SF (x
′ − z3)γλSF (z3 − z2)γνSF (z2 − z1)γµSF (z1 − x)

]α
′
α

+ 2

[

SF (x
′ − z1)γµSF (z1 − z3)γλSF (z3 − z2)γνSF (z2 − x)

]α
′
α

. (7.21)

These four terms correspond to the four Feynman diagrams on figure EXT-RAD. Clearly only
the last diagram will contribute to the vertex correction so we will only focus on it in the rest
of this discussion. The fourth term in S leads therefore to a linear term in the background field
Aµ,backgr(x) given by

(−ie)3
∫

d4z1

∫

d4z2

∫

d4z3

[

SF (x
′ − z1)γµSF (z1 − z3)γλSF (z3 − z2)γνSF (z2 − x)

]α
′
α

iDµν
F (z1 − z2)

× Aλ,backgr(z3) = e3
∫

d4p
′

(2π)4

∫

d4p

(2π)4

∫

d4k
′

(2π)4

∫

d4k

(2π)4
1

(p′ − k)2 + iǫ

(

S(p
′

)γµS(k)γλS(k
′

)γµS(p)

)α
′
α

× Aλ,backgr(q) (2π)4δ4(q − k + k
′

) eipx−ip
′
x
′

. (7.22)

The corresponding Fourier transform is

Gα′ ,α(−p
′

, p) = e3
∫

d4k

(2π)4
1

(p′ − k)2 + iǫ

(

S(p
′

)γµS(k)γλS(k − q)γµS(p)
)α

′
α

Aλ,backgr(q).

(7.23)
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The probability amplitude (including also the tree level contribution) is therefore given by

< ~p
′

s
′

out|~ps in > = −ie
(

ūs
′

(p
′

)γλu
s(p)

)

Aλ,backgr(q)

+ e3
∫

d4k

(2π)4
1

(p− k)2 + iǫ

(

ūs
′

(p
′

)γµS(k + q)γλS(k)γ
µus(p)

)

Aλ,backgr(q)

= −ie
(

ūs
′

(p
′

)Γλ(p
′

, p)us(p)

)

Aλ,backgr(q). (7.24)

The effective vertex Γλ(p
′

, p) is given by the same formula as before. This is a general result.
The quantum electron vertex at one-loop is always given by the function Γλ(p

′

, p).

7.3 One-loop Calculation I: Vertex Correction

7.3.1 Feynman Parameters and Wick Rotation

We will calculate δΓµ(p
′

, p) = Γµ(p
′

, p) − γµ. First we use the identities γνγµγν = −2γµ,
γλγργµγλ = 4ηρµ and

γλγργµγσγλ = 2γσγργµ − 2γµγργσ − 2γργµγσ

= −2γσγµγρ. (7.25)

We have

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 2ie2
∫

d4l

(2π)4
1

((l − p)2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
ūs

′

(p
′

)

(

(γ.l)γµ(γ.l
′

)

+ m2
eγ
µ − 2me(l + l

′

)µ
)

us(p). (7.26)

Feynman Parameters: Now we note the identity

1

A1A2...An
=

∫ 1

0

dx1dx2...dxnδ(x1 + x2 + ...+ xn − 1)
(n− 1)!

(x1A1 + x2A2 + ...+ xnAn)n
. (7.27)

For n = 2 this is obvious since

1

A1A2
=

∫ 1

0

dx1dx2δ(x1 + x2 − 1)
1

(x1A1 + x2A2)2

=

∫ 1

0

dx1
1

(x1A1 + (1− x1)A2)2

=
1

(A1 − A2)2

∫ A1/(A1−A2)

A2/(A1−A2)

dx1
x21

. (7.28)

In general the identity can be proven as follows. Let ǫ be a small positive real number. We start
from the identity

1

A
=

∫ ∞

0

dt e−t(A+ǫ). (7.29)
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Hence

1

A1A2...An
=

∫ ∞

0

dt1dt2...dtn e
−

∑n
i=1 ti(Ai+ǫ). (7.30)

Since ti ≥ 0 we have also the identity

∫ ∞

0

dλ

λ
δ(1 − 1

λ

n
∑

i=1

ti) = 1. (7.31)

Inserting (7.31) into (7.30) we obtain

1

A1A2...An
=

∫ ∞

0

dt1dt2...dtn

∫ ∞

0

dλ

λ
δ(1 − 1

λ

n
∑

i=1

ti) e
−∑n

i=1 ti(Ai+ǫ). (7.32)

We change variables from ti to xi = ti/λ. We obtain

1

A1A2...An
=

∫ ∞

0

dx1dx2...dxn

∫ ∞

0

dλλn−1 δ(1 −
n
∑

i=1

xi) e
−λ∑n

i=1 xi(Ai+ǫ). (7.33)

We use now the integral representation of the gamma function given by (with Re(X) > 0)

Γ(n) = (n− 1)! = Xn

∫ ∞

0

dλλn−1 e−λX . (7.34)

We obtain

1

A1A2...An
=

∫ ∞

0

dx1dx2...dxn δ(1 −
n
∑

i=1

xi)
(n− 1)!

(

∑n
i=1 xi(Ai + ǫ)

)n . (7.35)

Since xi ≥ 0 and
∑n

i=1 xi = 1 we must have 0 ≤ xi ≤ 1. Thus

1

A1A2...An
=

∫ 1

0

dx1dx2...dxn δ(1−
n
∑

i=1

xi)
(n− 1)!

(

A1x1 +A2x2 + ...+Anxn

)n . (7.36)

The variables xi are called Feynman parameters.
This identity will allow us to convert a product of propagators into a single fraction. Let us

see how this works in our current case. We have

1

((l − p)2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
= 2

∫ 1

0

dxdydz δ(x+ y + z − 1)
1

D3
. (7.37)

D = x((l − p)2 + iǫ) + y(l
′2 −m2

e + iǫ) + z(l2 −m2
e + iǫ). (7.38)

Let us recall that the variable of integration is the four-momentum l. Clearly we must try to
complete the square. By using x+ y + z = 1 we have

D = l2 − 2(xp+ yq)l + xp2 + yq2 − (y + z)m2
e + iǫ

=

(

l − xp− yq
)2

− x2p2 − y2q2 − 2xypq + xp2 + yq2 − (y + z)m2
e + iǫ

=

(

l − xp− yq
)2

+ xzp2 + xyp
′2 + yzq2 − (y + z)m2

e + iǫ. (7.39)
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Since this will act on us(p) and ūs
′

(p
′

) and since p2us(p) = m2
eu
s(p) and p

′2ūs
′

(p
′

) = m2
eū
s
′

(p
′

)
we can replace both p2 and p

′2 in D with their on-shell value m2
e. We get then

D =

(

l − xp− yq
)2

+ yzq2 − (1− x)2m2
e + iǫ. (7.40)

We will define

∆ = −yzq2 + (1 − x)2m2
e. (7.41)

This is always positive since q2 < 0 for scattering processes. We shift the variable l as l −→ L =
l − xp− yq. We get

D = L2 −∆+ iǫ. (7.42)

Plugging this result into our original integral we get

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0

dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)

(

(γ.l)γµ(γ.l
′

)

+ m2
eγ
µ − 2me(l + l

′

)µ
)

us(p). (7.43)

In this equation l = L+ xp+ yq and l
′

= L+ xp+ (y − 1)q. By dropping odd terms in L which
must vanish by summetry we get

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0

dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)

(

(γ.L)γµ(γ.L)

+ m2
eγ
µ + (xγ.p+ yγ.q)γµ(xγ.p+ (y − 1)γ.q)− 2me(2xp+ (2y − 1)q)µ

)

us(p).

(7.44)

Again by using symmetry considerations quadratic terms in L must be given by

∫

d4L

(2π)4
LµLν

(L2 −∆+ iǫ)3
=

∫

d4L

(2π)4

1
4η
µνL2

(L2 −∆+ iǫ)3
(7.45)

Thus

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0

dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)

(

− 1

2
γµL2

+ m2
eγ
µ + (xγ.p+ yγ.q)γµ(xγ.p+ (y − 1)γ.q)− 2me(2xp+ (2y − 1)q)µ

)

us(p).

(7.46)

By using γ.pus(p) = meu
s(p), ūs

′

(p
′

)γ.p
′

= meū
s
′

(p
′

) and γ.pγµ = 2pµ − γµγ.p, γµγ.p
′

=
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2p
′µ − γ.p′

γµ we can make the replacement

ūs
′

(p
′

)

[

(xγ.p+ yγ.q)γµ(xγ.p+ (y − 1)γ.q)

]

us(p) −→ ūs
′

(p
′

)

[(

(x + y)γ.p− yme

)

γµ
(

(x+ y − 1)me

− (y − 1)γ.p
′

)]

us(p)

−→ ūs
′

(p
′

)

[

me(x+ y)(x+ y − 1)(2pµ −meγ
µ)

− (x+ y)(y − 1)

(

2me(p+ p
′

)µ + q2γµ − 3m2
eγ
µ

)

− m2
ey(x+ y − 1)γµ +mey(y − 1)(2p

′µ −meγ
µ)

]

× us(p). (7.47)

After some more algebra we obtain the result

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0

dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)

[

γµ
(

− 1

2
L2

+ (1− z)(1− y)q2 + (1− x2 − 2x)m2
e

)

+mex(x− 1)(p+ p
′

)µ

+ me(x − 2)(x+ 2y − 1)meq
µ

]

us(p). (7.48)

The term proportional to qµ = pµ− p′µ is zero because it is odd under the exchange y ↔ z since
x+2y− 1 = y− z. This is our first manifestation of the so-called Ward identity. In other words
we have

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0

dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)

[

γµ
(

− 1

2
L2

+ (1− z)(1− y)q2 + (1− x2 − 2x)m2
e

)

+mex(x− 1)(p+ p
′

)µ
]

us(p). (7.49)

Now we use the so-called Gordon’s identity given by (with the spin matrices σµν = 2Γµν =
i[γµ, γν ]/2)

ūs
′

(p
′

)γµus(p) =
1

2me
ūs

′

(p
′

)

[

(p+ p
′

)µ − iσµνqν
]

us(p). (7.50)

This means that we can make the replacement

ūs
′

(p
′

)(p+ p
′

)µus(p) −→ ūs
′

(p
′

)

[

2meγ
µ + iσµνqν

]

us(p). (7.51)

Hence we get

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0

dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)

[

γµ
(

− 1

2
L2

+ (1− z)(1− y)q2 + (1 + x2 − 4x)m2
e

)

+ imex(x − 1)σµνqν

]

us(p). (7.52)
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Wick Rotation: The natural step at this stage is to actually do the 4−dimensional inte-
gral over L. Towards this end we will perform the so-called Wick rotation of the real inte-
gration variable L0 to a pure imaginary variable L4 = −iL0 which will allow us to convert
the Minkowskian signature of the metric into an Euclidean signature. Indeed the Minkowski
line element dL2 = (dL0)2 − (dLi)2 becomes under Wick rotation the Euclid line element
dL2 = −(dL4)2 − (dLi)2. In a very profound sense the quantum field theory integral becomes
under Wick rotation a statistical mechanics integral. This is of course possible because of the

location of the poles
√

~L2 +∆ − iǫ
′

and −
√

~L2 +∆ + iǫ
′

of the L0 integration and because
the integral over L0 goes to 0 rapidly enough for large positive L0. Note that the prescription
L4 = −iL0 corresponds to a rotation by π/2 counterclockwise of the L0 axis.

Let us now compute

∫

d4L

(2π)4
(L2)n

(L2 −∆+ iǫ)m
=

i

(2π)4
(−1)n
(−1)m

∫

d4LE
(L2

E)
n

(L2
E +∆)m

. (7.53)

In this equation ~LE = (L1, L2, L3, L4). Since we are dealing with Euclidean coordinates in four
dimensions we can go to spherical coordinates in four dimensions defined by (with 0 ≤ r ≤ ∞,
0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ω ≤ π)

L1 = r sinω sin θ cosφ

L2 = r sinω sin θ sinφ

L3 = r sinω cos θ

L4 = r cosω. (7.54)

We also know that

d4LE = r3 sin2 ω sin θdrdθdφdω. (7.55)

We calculate then

∫

d4L

(2π)4
(L2)n

(L2 −∆+ iǫ)m
=

i

(2π)4
(−1)n
(−1)m

∫

r2n+3dr

(r2 +∆)m

∫

sin2 ω sin θdθdφdω

=
2iπ2

(2π)4
(−1)n
(−1)m

∫

r2n+3dr

(r2 +∆)m
. (7.56)

The case n = 0 is easy. We have

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)m
=

2iπ2

(2π)4
1

(−1)m
∫

r3dr

(r2 +∆)m

=
iπ2

(2π)4
1

(−1)m
∫ ∞

∆

(x−∆)dx

xm

=
i

(4π)2
(−1)m

(m− 2)(m− 1)

1

∆m−2
. (7.57)
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The case n = 1 turns out to be divergent

∫

d4L

(2π)4
L2

(L2 −∆+ iǫ)m
=

2iπ2

(2π)4
−1

(−1)m
∫

r5dr

(r2 +∆)m

=
iπ2

(2π)4
−1

(−1)m
∫ ∞

∆

(x −∆)2dx

xm

=
iπ2

(2π)4
−1

(−1)m
(

x3−m

3−m − 2∆
x2−m

2−m +∆2 x
1−m

1−m

)∞

∆

=
i

(4π)2
(−1)m+1

(m− 3)(m− 2)(m− 1)

2

∆m−3
. (7.58)

This does not make sense for m = 3 which is the case of interest.

7.3.2 Pauli-Villars Regularization

We will now show that this divergence is ultraviolet in the sense that it is coming from integrating
arbitrarily high momenta in the loop integral. We will also show the existence of an infrared
divergence coming from integrating arbitrarily small momenta in the loop integral. In order to
control these infinities we need to regularize the loop integral in one way or another. We adopt
here the so-called Pauli-Villars regularization. This is given by making the following replacement

1

(l − p)2 + iǫ
−→ 1

(l − p)2 − µ2 + iǫ
− 1

(l − p)2 − Λ + iǫ
. (7.59)

The infrared cutoff µ will be taken to zero at the end and thus it should be thought of as a small
mass for the physical photon. The ultraviolet cutoff Λ will be taken to ∞ at the end. The UV
cutoff Λ does also look like a a very large mass for a fictitious photon which becomes infinitely
heavy and thus unobservable in the limit Λ −→∞.

Now it is not difficult to see that

1

((l − p)2 − µ2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
= 2

∫ 1

0

dxdydz δ(x+ y + z − 1)
1

D3
µ

. (7.60)

Dµ = D − µ2x = L2 −∆µ + iǫ , ∆µ = ∆+ µ2x. (7.61)

1

((l − p)2 − Λ2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
= 2

∫ 1

0

dxdydz δ(x+ y + z − 1)
1

D3
Λ

. (7.62)

DΛ = D − Λ2x = L2 −∆Λ + iǫ , ∆Λ = ∆+Λ2x. (7.63)

The result (7.52) becomes

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0

dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4

[

1

(L2 −∆µ + iǫ)3
− 1

(L2 −∆Λ + iǫ)3

]

× ūs
′

(p
′

)

[

γµ
(

− 1

2
L2 + (1− z)(1− y)q2 + (1 + x2 − 4x)m2

e

)

+ imex(x − 1)σµνqν

]

× us(p). (7.64)
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We compute now (after Wick rotation)

∫

d4L

(2π)4

[

L2

(L2 −∆µ + iǫ)3
− L2

(L2 −∆Λ + iǫ)3

]

=
2i

(4π)2

[ ∫

r5dr

(r2 +∆µ)3
−
∫

r5dr

(r2 +∆Λ)3

]

=
i

(4π)2

[ ∫ ∞

∆µ

(x−∆µ)
2dx

x3
−
∫ ∞

∆Λ

(x −∆Λ)
2dx

x3

]

=
i

(4π)2
ln

∆Λ

∆µ
. (7.65)

Clearly in the limit Λ −→∞ this goes as ln Λ2. This shows explicitly that the divergence problem
seen earlier is a UV one,i.e. coming from high momenta. Also we compute

∫

d4L

(2π)4

[

1

(L2 −∆µ + iǫ)3
− 1

(L2 −∆Λ + iǫ)3

]

= − 2i

(4π)2

[
∫

r3dr

(r2 +∆µ)3
−
∫

r3dr

(r2 +∆Λ)3

]

= − i

(4π)2

[ ∫ ∞

∆µ

(x−∆µ)dx

x3
−
∫ ∞

∆Λ

(x−∆Λ)dx

x3

]

= − i

2(4π)2

(

1

∆µ
− 1

∆Λ

)

. (7.66)

The second term vanishes in the limit Λ −→∞. We get then the result

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = (4ie2)(− i

2(4π)2
)

∫ 1

0

dxdydz δ(x+ y + z − 1)ūs
′

(p
′

)

[

γµ
(

ln
∆Λ

∆µ

+
(1− z)(1− y)q2 + (1 + x2 − 4x)m2

e

∆µ

)

+
i

∆µ
mex(x − 1)σµνqν

]

us(p)

= ūs
′

(p
′

)

(

γµ(F1(q
2)− 1)− iσµνqν

2me
F2(q

2)

)

us(p). (7.67)

F1(q
2) = 1 +

α

2π

∫ 1

0

dxdydz δ(x+ y + z − 1)

(

ln
Λ2x

∆µ
+

(1 − z)(1− y)q2 + (1 + x2 − 4x)m2
e

∆µ

)

.

(7.68)

F2(q
2) =

α

2π

∫ 1

0

dxdydz δ(x+ y + z − 1)
2m2

ex(1 − x)
∆µ

. (7.69)

The functions F1(q
2) and F2(q

2) are known as the form factors of the electron. The form factor
F1(q

2) is logarithmically UV divergent and requires a redefinition which is termed a renormal-
ization. This will be done in the next section. This form factor is also IR divergent. To see this
recall that ∆µ = −yzq2+ (1− x)2m2

e +µ2x. Now set q2 = 0 and µ2 = 0. The term proportional
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to 1/∆µ is

F1(0) = ...+
α

2π

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
1 + x2 − 4x

(1 − x)2

= ...+
α

2π

∫ 1

0

dx

∫ 1

0

dy

∫ 1−y

0

dt δ(x− t)1 + x2 − 4x

(1 − x)2

= ...+
α

2π

∫ 1

0

dy

∫ 1−y

0

dt
1 + t2 − 4t

(1− t)2

= ...− α

2π

∫ 1

0

dy

∫ y

1

dt (1 +
2

t
− 2

t2
)

= ...− α

2π

∫ 1

0

dy (y + 2 ln y +
2

y
− 3). (7.70)

As it turns out this infrared divergence will cancel exactly the infrared divergence coming from
bremsstrahlung diagrams. Bremsstrahlung is scattering with radiation, i.e. scattering with
emission of very low energy photons which can not be detected.

7.3.3 Renormalization (Minimal Subtraction) and Anomalous Mag-
netic Moment

Electric Charge and Magnetic Moment of the Electron: The form factors F1(q
2) and

F2(q
2) define the charge and the magnetic moment of the electron. To see this we go to the prob-

lem of scattering of electrons from an external electromagnetic field. The probability amplitude
is given by equation (7.24) with q = p

′ − p. Thus

< ~p
′

s
′

out|~ps in > = −ieūs
′

(p
′

)Γλ(p
′

, p)us(p).Aλ,backgr(q)

= −ieūs
′

(p
′

)

[

γλF1(q
2) +

iσλγq
γ

2me
F2(q

2)

]

us(p).Aλ,backgr(q). (7.71)

Firstly we will consider an electrostatic potential φ(~x), viz Aλ,backgr(q) = (2πδ(q0)φ(~q), 0). We
have then

< ~p
′

s
′

out|~ps in > = −ieus
′
+(p

′

)

[

F1(−~q2) +
F2(−~q2)
2me

γiqi
]

us(p).2πδ(q0)φ(~q). (7.72)

We will assume that the electrostatic potential φ(~x) is slowly varying over a large region so that
φ(~q) is concentrated around ~q = 0. In other words the momentum ~q can be treated as small and
as a consequence the momenta ~p and ~p

′

are also small.

In the nonrelativistic limit the spinor us(p) behaves as (recall that σµp
µ = E − ~σ~p and

σ̄µp
µ = E + ~σ~p)

us(p) =

( √
σµpµξ

s

√
σ̄µpµξ

s

)

=
√
me

(

(1− ~σ~p
2me

+O( ~p
2

m2
e
))ξs

(1 + ~σ~p
2me

+O( ~p
2

m2
e
))ξs

)

. (7.73)

We remark that the nonrelativistic limit is equivalent to the limit of small momenta. Thus by
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dropping all terms which are at least linear in the momenta we get

< ~p
′

s
′

out|~ps in > = −ieus
′
+(p

′

)F1(0)u
s(p).2πδ(q0)φ(~q)

= −ieF1(0).2meξ
s
′
+ξs.2πδ(q0)φ(~q)

= −ieF1(0)φ(~q).2meδ
s
′
s.2πδ(q0). (7.74)

The corresponding T−matrix element is thus

< ~p
′

s
′

in|iT |~ps in > = −ieF1(0)φ(~q).2meδ
s
′
s. (7.75)

This should be compared with the Born approximation of the probability amplitude of scattering
from a potential V (~x) (with V (~q) =

∫

d3xV (~x)e−i~q~x)

< ~p
′

in|iT |~p in > = iV (~q). (7.76)

The factor 2me should not bother us because it is only due to our normalization of spinors and so

it should be omitted in the comparison. The Kronecker’s delta δs
′
s coincides with the prediction

of nonrelativistic quantum mechanics. Thus the problem is equivalent to scattering from the
potential

V (~x) = −eF1(0)φ(~x). (7.77)

The charge of the electron in units of −e is precisely F1(0).

Next we will consider a vector potential ~A(~x), viz Aλ,backgr(q) = (0, 2πδ(q0) ~A(~q)). We have

< ~p
′

s
′

in|iT |~ps in > = −ieūs
′

(p
′

)

[

γiF1(−~q2) +
iσijq

j

2me
F2(−~q2)

]

us(p).Ai,backgr(~q).(7.78)

We will keep up to the linear term in the momenta. Thus

< ~p
′

s
′

in|iT |~ps in > = −ieus
′
+(p

′

)γ0
[

γiF1(0)−
[γi, γj ]q

j

4me
F2(0)

]

us(p).Ai,backgr(~q).(7.79)

We compute

us
′
+(p

′

)γ0γiu
s(p) = meξ

s
′
+

(

(1− ~σ~p
′

2me
)σi(1− ~σ~p

2me
)− (1 +

~σ~p
′

2me
)σi(1 +

~σ~p

2me
)

)

ξs

= ξs
′
+

(

− (p+ p
′

)i + iǫijkqjσk
)

ξs. (7.80)

us
′
+(p

′

)γ0[γi, γj]q
jus(p) = 2meξ

s
′
+

(

− 2iǫijkqjσk
)

ξs. (7.81)

We get then

< ~p
′

s
′

in|iT |~ps in > = −ieξs
′
+

[

− (pi + p
′i)F1(0)

]

ξs.Ai,backgr(~q)

− ieξs
′
+

[

iǫijkqjσk(F1(0) + F2(0))

]

ξs.Ai,backgr(~q). (7.82)
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The first term corresponds to the interaction term ~̂p
~̂
A +

~̂
A~̂p in the Schrödinger equation. The

second term is the magnetic moment interaction. Thus

< ~p
′

s
′

in|iT |~ps in >magn moment = −ieξs
′
+

[

iǫijkqjσk(F1(0) + F2(0))

]

ξs.Ai,backgr(~q)

= −ieξs
′
+

[

σk(F1(0) + F2(0))

]

ξs.Bk,backgr(~q)

= −i < µk > .Bk,backgr(~q).2me

= iV (~q).2me. (7.83)

The magnetic field is defined by ~Bbackgr(~x) = ~∇× ~Abackgr(~x) and thus Bk(~q) = iǫijkqjAi,backgr(~q).
The magnetic moment is defined by

< µk >=
e

me
ξs

′
+

[

σk

2
(F1(0) + F2(0))

]

ξs ⇔ µk = g
e

2me

σk

2
. (7.84)

The gyromagnetic ratio (Landé g-factor) is then given by

g = 2(F1(0) + F2(0)). (7.85)

Renormalization: We have found that the charge of the electron is −eF1(0) and not −e. This
is a tree level result. Thus one must have F1(0) = 1. Substituting q2 = 0 in (7.68) we get

F1(0) = 1 +
α

2π

∫ 1

0

dxdydz δ(x+ y + z − 1)

(

ln
Λ2x

∆µ(0)
+

(1 + x2 − 4x)m2
e

∆µ(0)

)

.

(7.86)

This is clearly not equal 1. In fact F1(0) −→ ∞ logarithmically when Λ −→ ∞. We need
to redefine (renormalize) the value of F1(q

2) in such a way that F1(0) = 1. We adopt here a
prescription termed minimal subtraction which consists in subtracting from δF1(q

2) = F1(q
2)−1

(which is the actual one-loop correction to the vertex) the divergence δF1(0). We define

F ren
1 (q2) = F1(q

2)− δF1(0)

= 1 +
α

2π

∫ 1

0

dxdydz δ(x + y + z − 1)

(

ln
∆µ(0)

∆µ(q2)
+

(1− z)(1− y)q2
∆µ(q2)

+
(1 + x2 − 4x)m2

e

∆µ(q2)

− (1 + x2 − 4x)m2
e

∆µ(0)

)

. (7.87)

This formula satisfies automatically F ren
1 (0) = 1.

The form factor F2(0) is UV finite since it does not depend on Λ. It is also as point out
earlier IR finite and thus one can simply set µ = 0 in this function. The magnetic moment of
the electron is proportional to the gyromagnetic ratio g = 2F1(0) + 2F2(0). Since F1(0) was
renormalized to F ren

1 (0) the renormalized magnetic moment of the electron will be proportional
to the gyromagnetic ratio

gren = 2F ren
1 (0) + 2F2(0)

= 2 + 2F2(0). (7.88)
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The first term is precisely the prediction of the Dirac theory (tree level). The second term which
is due to the quantum one-loop effect will lead to the so-called anomalous magnetic moment.
This is given by

F2(0) =
α

π

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
x

1− x

=
α

π

∫ 1

0

dx

∫ 1

0

dy

∫ 1−y

−y
dt δ(x − t) x

1− x

=
α

π

∫ 1

0

dx

∫ 1

0

dy

∫ 1−y

0

dt δ(x − t) x

1− x

=
α

π

∫ 1

0

dy

∫ 1−y

0

dt
t

1− t

=
α

π

∫ 1

0

dy(y − 1− ln y)

=
α

π

(

1

2
(y − 1)2 + y − y ln y

)1

0

=
α

2π
. (7.89)

7.4 Exact Fermion 2−Point Function

For simplicity we will consider in this section a scalar field theory and then we will generalize to
a spinor field theory. As we have already seen the free 2−point function < 0|T (φ̂in(x)φ̂in(y))|0 >
is the probability amplitude for a free scalar particle to propagate from a spacetime point y to
a spacetime x. In the interacting theory the 2−point function is < Ω|T (φ̂(x)φ̂(y))|Ω > where
|Ω >= |0 > /

√

< 0|0 > is the ground state of the full Hamiltonian Ĥ.

The full Hamiltonian Ĥ commutes with the full momentum operator
~̂
P . Let |λ0 > be an

eigenstate of Ĥ with momentum ~0. There could be many such states corresponding to one-
particle states with mass mr and 2−particle and multiparticle states which have a continuous
mass spectrum starting at 2mr. By Lorentz invariance a generic state of Ĥ with a momentum
~p 6= 0 can be obtained from one of the |λ0 > by the application of a boost. Generic eigenstates
of Ĥ are denoted |λp > and they have energy Ep(λ) =

√

~p2 +m2
λ where mλ is the energy of the

corresponding |λ0 >. We have the completeness relation in the full Hilbert space

1 = |Ω >< Ω|+
∑

λ

∫

d3p

(2π)3
1

2Ep(λ)
|λp >< λp|. (7.90)

The sum over λ runs over all the 0−momentum eigenstates |λ0 >. Compare this with the
completeness relation of the free one-particle states given by

1 =

∫

d3p

(2π)3
1

2Ep
|~p >< ~p| , Ep =

√

~p2 +m2. (7.91)

By inserting the completeness relation in the full Hilbert space, the full 2−point function becomes
(for x0 > y0)

< Ω|T (φ̂(x)φ̂(y))|Ω > = < Ω|φ̂(x)|Ω >< Ω|φ̂(y)|Ω >

+
∑

λ

∫

d3p

(2π)3
1

2Ep(λ)
< Ω|φ̂(x)|λp >< λp|φ̂(y)|Ω > . (7.92)



170 YDRI QFT

The first term vanishes by symmetry (scalar field) or by Lorentz invariance (spinor and gauge

fields). By translation invariance φ̂(x) = exp(iPx)φ̂(0) exp(−iPx). Furthermore |λP >= U |λ0 >
where U is the unitary transformation which implements the Lorentz boost which takes the
momentum ~0 to the momentum ~p. Also we recall that the field operator φ̂(0) and the ground

state |Ω > are both Lorentz invariant. By using all these facts we can verify that < Ω|φ̂(x)|λp >=
e−ipx < Ω|φ̂(0)|λ0 >. We get then

< Ω|T (φ̂(x)φ̂(y))|Ω >=
∑

λ

∫

d3p

(2π)3
1

2Ep(λ)
e−ip(x−y)| < Ω|φ̂(0)|λ0 > |2. (7.93)

In this expression p0 = Ep(λ). We use the identity (the contour is closed below since x0 > y0)

∫

d4p

(2π)4
i

p2 −m2
λ + iǫ

e−ip(x−y) =

∫

d3p

(2π)3
1

2Ep(λ)
e−ip(x−y). (7.94)

Hence we get

< Ω|T (φ̂(x)φ̂(y))|Ω > =
∑

λ

∫

d4p

(2π)4
i

p2 −m2
λ + iǫ

e−ip(x−y)| < Ω|φ̂(0)|λ0 > |2

=
∑

λ

DF (x− y;mλ)| < Ω|φ̂(0)|λ0 > |2. (7.95)

We get the same result for x0 < y0. We put this result into the suggestive form

< Ω|T (φ̂(x)φ̂(y))|Ω >=

∫ ∞

0

dM2

2π
DF (x− y;M)ρ(M2). (7.96)

ρ(M2) =
∑

λ

(2π)δ(M2 −m2
λ)| < Ω|φ̂(0)|λ0 > |2. (7.97)

The distribution ρ(M2) is called Källén-Lehmann spectral density. The one-particle states will
contribute to the spectral density only a delta function corresponding to the pole at the exact
or physical mass mr of the scalar φ particle, viz

ρ(M2) = (2π)δ(M2 −m2
r)Z + .... (7.98)

We note that the mass m appearing in the Lagrangian (the bare mass) is generally different from
the physical mass. The coefficient Z is the so-called field-strength or wave function renormaliza-
tion and it is equal to the corresponding probability | < Ω|φ̂(0)|λ0 > |2. We have then

< Ω|T (φ̂(x)φ̂(y))|Ω >= ZDF (x − y;mr) +

∫ ∞

4m2
r

dM2

2π
DF (x− y;M)ρ(M2). (7.99)

The lower bound 4m2
r comes from the fact that there will be essentially nothing else between the

one-particle states at the simple pole p2 = m2
r and the 2−particle and multiparticle continuum

states starting at p2 = 4m2
r which correspond to a branch cut. Indeed by taking the Fourier

transform of the above equation we get

∫

d4xeip(x−y) < Ω|T (φ̂(x)φ̂(y))|Ω >=
iZ

p2 −m2
r + iǫ

+

∫ ∞

4m2
r

dM2

2π

i

p2 −M2 + iǫ
ρ(M2).(7.100)
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For a spinor field the same result holds. The Fourier transform of the full 2−point function

< Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > is precisely given by the free Dirac propagator in momentum space with
the physical mass mr instead of the bare mass m times a field-strength normalization Z2. In
other words

∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω >=
iZ2(γ.p+mr)

p2 −m2
r + iǫ

+ ... (7.101)

7.5 One-loop Calculation II: Electron Self-Energy

7.5.1 Electron Mass at One-Loop

From our discussion of the processes e− + e+ −→ µ− + µ+, e− + µ− −→ e− + µ− and electron
scattering from an external electromagnetic field we know that there are radiative corrections to
the probability amplitudes which involve correction to the external legs. From the corresponding
Feynman diagrams we can immediately infer that the first two terms (tree level+one-loop) in the

perturbative expansion of the fermion 2−point function
∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > is
given by the two diagrams 2POINTFER. By using Feynamn rules we find the expression
∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
i(γ.p+me)

p2 −m2
e + iǫ

+
i(γ.p+me)

p2 −m2
e + iǫ

(−ieγµ)

×
∫

d4k

(2π)4
i(γ.k +me)

k2 −m2
e + iǫ

−iηµν
(p− k)2 + iǫ

(−ieγν) i(γ.p+me)

p2 −m2
e + iǫ

=
i(γ.p+me)

p2 −m2
e + iǫ

+
i(γ.p+me)

p2 −m2
e + iǫ

(−iΣ2(p))
i(γ.p+me)

p2 −m2
e + iǫ

.

(7.102)

The second term is the so-called self-energy of the electron. It is given in terms of the loop
integral Σ2(p) which in turn is given by

−iΣ2(p) = (−ie)2
∫

d4k

(2π)4
γµ

i(γ.k +me)

k2 −m2
e + iǫ

γµ
−i

(p− k)2 + iǫ
. (7.103)

Sometimes we will also call this quantity the electron self-energy. The two-point function
∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > is not of the form (7.101). To see this more clearly we
rewrite the above equation in the form

∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
i

γ.p−me
+

i

γ.p−me
(−iΣ2(p))

i

γ.p−me

=
i

γ.p−me

[

1 + Σ2(p)
1

γ.p−me

]

. (7.104)

By using now the fact that Σ2(p) commutes with γ.p (see below) and the fact that it is supposed
to be small of order e2 we rewrite this equation in the form

∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
i

γ.p−me − Σ2(p)
. (7.105)

This is almost of the desired form (7.101). The loop-integral Σ2(p) is precisely the one-loop
correction to the electron mass.
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Physically what we have done here is to add together all the Feynman diagrams with an
arbitrary number of insertions of the loop integral Σ2(p). These are given by the Feynman
diagrams SELF. By using Feynamn rules we find the expression
∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
i

γ.p−me
+

i

γ.p−me
(−iΣ2(p))

i

γ.p−me

+
i

γ.p−me
(−iΣ2(p))

i

γ.p−me
(−iΣ2(p))

i

γ.p−me

+ ...

=
i

γ.p−me

[

1 + Σ2(p)
1

γ.p−me
+ (Σ2(p)

1

γ.p−me
)2 + ...

]

.

(7.106)

This is a geometric series. The summation of this geometric series is precisely (7.105).
The loop integral −iΣ2(p) is an example of a one-particle irreducible (1PI) diagram. The one-

particle irreducible diagrams are those diagrams which can not be split in two by cutting a single
internal line. The loop integral −iΣ2(p) is the first 1PI diagram (order e2) in the sum −iΣ(p)
of all 1PI diagrams with 2 fermion lines shown on ONEPARTICLE. Thus the full two-point

function
∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > is actually of the form

∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
i

γ.p−me
+

i

γ.p−me
(−iΣ(p)) i

γ.p−me

+
i

γ.p−me
(−iΣ(p)) i

γ.p−me
(−iΣ(p)) i

γ.p−me

+ ...

=
i

γ.p−me − Σ(p)
. (7.107)

The physical or renormalized massmr is defined as the pole of the two-point function
∫

d4xeip(x−y) <

Ω|T (ψ̂(x) ¯̂ψ(y))|Ω >, viz

(γ.p−me − Σ(p))γ.p=mr = 0. (7.108)

Since Σ(p) = Σ(γ.p) (see below) we have

mr −me − Σ(mr) = 0. (7.109)

We expand Σ(p) = Σ(γ.p) as

Σ(p) = Σ(mr) + (γ.p−mr)
dΣ

dγ.p
|γ.p=mr +O((γ.p−mr)

2). (7.110)

Hence

γ.p−me − Σ(p) = (γ.p−mr)
1

Z2
−O((γ.p−mr)

2)

= (γ.p−mr)
1

Z2
(1 +O

′

((γ.p−mr))). (7.111)

Z−1
2 = 1− dΣ

dγ.p
|γ.p=mr . (7.112)
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Thus
∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
iZ2

γ.p−mr
. (7.113)

This is the desired form (7.101). The correction to the mass is given by (7.109) or equivalently

δmr = mr −me = Σ(mr). (7.114)

We are interested in just the one-loop correction. Thus

δmr = mr −me = Σ2(mr). (7.115)

We evaluate the loop integral Σ2(p) by the same method used for the vertex correction, i.e. we
introduce Feynman parameters, we Wick rotate and then we regularize the ultraviolet divergence
using the Pauli-Villars method. Clearly the integral is infrared divergent so we will also add a
small photon mass. In summary we would like to compute

−iΣ2(p) = (−ie)2
∫

d4k

(2π)4
γµ

i(γ.k +me)

k2 −m2
e + iǫ

γµ

[ −i
(p− k)2 − µ2 + iǫ

− −i
(p− k)2 − Λ2 + iǫ

]

.

(7.116)

We have (with L = k − (1 − x1)p, ∆µ = −x1(1− x1)p2 + x1m
2
e + (1− x1)µ2)

1

k2 −m2
e + iǫ

1

(p− k)2 − µ2 + iǫ
=

∫

dx1
1

[

x1(k2 −m2
e + iǫ) + (1− x1)((p− k)2 − µ2 + iǫ)

]2

=

∫

dx1
1

(L2 −∆µ + iǫ)2
. (7.117)

Thus

−iΣ2(p) = −e2
∫

d4k

(2π)4
γµ(γ.k +me)γµ

[ ∫

dx1
1

(L2 −∆µ + iǫ)2
−
∫

dx1
1

(L2 −∆Λ + iǫ)2

]

= −e2
∫

d4k

(2π)4
(−2γ.k + 4me)

[ ∫

dx1
1

(L2 −∆µ + iǫ)2
−
∫

dx1
1

(L2 −∆Λ + iǫ)2

]

= −e2
∫

dx1(−2(1− x1)γ.p+ 4me)

∫

d4L

(2π)4

[

1

(L2 −∆µ + iǫ)2
− 1

(L2 −∆Λ + iǫ)2

]

= −ie2
∫

dx1(−2(1− x1)γ.p+ 4me)

∫

d4LE
(2π)4

[

1

(L2
E +∆µ)2

− 1

(L2
E +∆Λ)2

]

= − ie
2

8π2

∫

dx1(−2(1− x1)γ.p+ 4me)

∫

r3dr

[

1

(r2 +∆µ)2
− 1

(r2 +∆Λ)2

]

= − ie2

16π2

∫

dx1(−2(1− x1)γ.p+ 4me) ln
∆Λ

∆µ
. (7.118)

The final result is

Σ2(p) =
α

2π

∫

dx1(−(1− x1)γ.p+ 2me) ln
(1− x1)Λ2

−x1(1− x1)p2 + x1m2
e + (1− x1)µ2

.(7.119)
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This is logarithmically divergent. Thus the mass correction or shift at one-loop is logarithmically
divergent given by

δmr = Σ2(γ.p = mr) =
αme

2π

∫

dx1(2− x1) ln
x1Λ

2

(1− x1)2m2
e + x1µ2

. (7.120)

The physical mass is therefore given by

mr = me

[

1 +
α

2π

∫

dx1(2− x1) ln
x1Λ

2

(1− x1)2m2
e + x1µ2

]

. (7.121)

Clearly the bare mass me must depend on the cutoff Λ in such a way that in the limit Λ −→∞
the physical mass mr remains finite.

7.5.2 The Wave-Function Renormalization Z2

At one-loop order we also need to compute the wave function renormalization. We have

Z−1
2 = 1− dΣ2

dγ.p
|γ.p=mr

= 1− α

2π

∫

dx1

[

− (1− x1) ln
(1 − x1)Λ2

−x1(1 − x1)p2 + x1m2
e + (1 − x1)µ2

+ (−(1− x1)γ.p+ 2me)(2γ.p)
x1(1 − x1)

−x1(1 − x1)p2 + x1m2
e + (1− x1)µ2

]

γ.p=mr

= 1− α

2π

∫

dx1

[

− (1− x1) ln
(1 − x1)Λ2

x21m
2
e + (1 − x1)µ2

+
2m2

ex1(1− x1)(1 + x1)

x21m
2
e + (1− x1)µ2

]

.(7.122)

Thus

Z2 = 1 + δZ2. (7.123)

δZ2 =
α

2π

∫ 1

0

dx1

[

− (1− x1) ln
(1− x1)Λ2

x21m
2
e + (1− x1)µ2

+
2m2

ex1(1− x1)(1 + x1)

x21m
2
e + (1 − x1)µ2

]

. (7.124)

A very deep observation is given by the identity δZ2 = δF1(0) = F1(0)− 1 where F1(q
2) is given

by (7.68). We have

δF1(0) =
α

2π

∫

dxdydz δ(x+ y + z − 1)

[

ln
xΛ2

(1 − x)2m2
e + xµ2

+
m2
e(1 + x2 − 4x)

(1 − x)2m2
e + xµ2

]

.

(7.125)

Clearly for x = 0 we have
∫ 1

0 dy
∫ 1

0 dz δ(y+z−1) = 1 whereas for x = 1 we have
∫ 1

0 dy
∫ 1

0 dz δ(y+
z) = 0. In general

∫ 1

0

dy

∫ 1

0

dz δ(x + y + z − 1) = 1− x. (7.126)

The proof is simple. Since 0 ≤ x ≤ 1 we have 0 ≤ 1 − x ≤ 1 and 1/(1 − x) ≥ 1. We shift the
variables as y = (1− x)y′

and z = (1− x)z′

. We have

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1) = (1 − x)2
∫ 1/(1−x)

0

dy
′

∫ 1/(1−x)

0

dz
′ 1

1− xδ(y
′

+ z
′ − 1)

= 1− x. (7.127)
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By using this identity we get

δF1(0) =
α

2π

∫

dx(1 − x)
[

ln
xΛ2

(1 − x)2m2
e + xµ2

+
m2
e(1 + x2 − 4x)

(1 − x)2m2
e + xµ2

]

=
α

2π

∫

dx

[

x ln
xΛ2

(1− x)2m2
e + xµ2

+ (1− 2x) ln
xΛ2

(1− x)2m2
e + xµ2

+
m2
e(1 − x)(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx

[

x ln
xΛ2

(1− x)2m2
e + xµ2

+
d(x− x2)

dx
ln

xΛ2

(1− x)2m2
e + xµ2

+
m2
e(1− x)(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx

[

x ln
xΛ2

(1− x)2m2
e + xµ2

− (x− x2) d
dx

ln
xΛ2

(1 − x)2m2
e + xµ2

+
m2
e(1− x)(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx

[

x ln
xΛ2

(1− x)2m2
e + xµ2

− m2
e(1− x)(1 − x2)

(1− x)2m2
e + xµ2

+
m2
e(1− x)(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx

[

x ln
xΛ2

(1− x)2m2
e + xµ2

− 2m2
ex(1 − x)(2 − x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dt

[

(1− t) ln (1− t)Λ2

t2m2
e + (1 − t)µ2

− 2m2
et(1− t)(1 + t)

t2m2
e + (1− t)µ2

]

. (7.128)

We can immediately conclude that δF1(0) = −δZ2.

7.5.3 The Renormalization Constant Z1

In our calculation of the vertex correction we have used the bare propagator i/(γ.p−me) which
has a pole at the bare massm = me which is as we have seen is actually a divergent quantity. This
calculation should be repeated with the physical propagator iZ2/(γ.p−mr). This propagator is
obtained by taking the sum of the Feynman diagrams shown on SELF and ONEPARTICLE.

We reconsider the problem of scattering of an electron from an external electromagnetic field.
The probability amplitude is given by the formula (7.13). We rewrite this formula as 1

< ~p
′

s
′

out|~ps in > = −
[

ūs
′

(p
′

)(γ.p
′ −me)

]

α′

∫

d4x

∫

d4x
′

e−ipx+ip
′
x
′

< Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >

×
[

(γ.p−me)u
s(p)

]

α

. (7.129)

We sum up the quantum corrections to the two external legs by simply making the replacements

γ.p
′ −me −→ (γ.p

′ −mr)/Z2 , γ.p−me −→ (γ.p−mr)/Z2. (7.130)

The probability for the spinor field to create or annihilate a particle is precisely Z2 since <

Ω|ψ̂(0)|~p, s >=
√
Z2u

s(p). Thus one must also replace us(p) and ūs
′

(p
′

) by
√
Z2u

s(p) and√
Z2ū

s
′

(p
′

).

Furthermore from our previous experience we know that the 2-point function
∫

d4x
∫

d4x
′

e−ipx+ip
′
x
′

<

Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω > will be equal to the product of the two external propagators iZ2/(γ.p−

1In writing this formula in this form we use the fact that |0 out >= |0 in >= |0 > and |Ω >= |0 > /
√

< 0|0 >.
Recall that dividing by < 0|0 > is equivalent to taking into account only connected Feynman graphs.
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mr) and iZ2/(γ.p
′ −mr) times the amputated electron-photon vertex

∫

d4x
∫

d4x
′

e−ipx+ip
′
x
′

<

Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >amp. Thus we make the replacement

< Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >−→ iZ2

γ.p′ −mr
< Ω|T (ψ̂α′ (x

′

)
¯̂
ψα(x))|Ω >

iZ2

γ.p−mr
. (7.131)

The formula of the probability amplitude < ~p
′

s
′

out|~ps in > becomes

< ~p
′

s
′

out|~ps in > = Z2ū
s
′

(p
′

)α′

∫

d4x

∫

d4x
′

e−ipx+ip
′
x
′

< Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >amp u

s(p)α.

(7.132)

The final result is that the amputated electron-photon vertex Γλ(p
′

, p) must be multiplied by
Z2, viz

< ~p
′

s
′

out|~ps in > = −ie
(

ūs
′

(p
′

)Z2Γλ(p
′

, p)us(p)

)

Aλ,backgr(q). (7.133)

What we have done here is to add together the two Feynman diagrams VERTEXCOR. In the
one-loop diagram the internal electron propagators are replaced by renormalized propagators.

In general an amputated Green’s function with n incoming lines and m outgoing lines must
be multiplied by a factor (

√
Z2)

n+m in order to yield correctly the corresponding S−matrix
element.

The calculation of the above probability amplitude will proceed exactly as before. The result
by analogy with equation (7.71) must be of the form

< ~p
′

s
′

out|~ps in > = −ieūs
′

(p
′

)

[

γλF
′

1(q
2) +

iσλγq
γ

2mr
F

′

2(q
2)

]

us(p).Aλ,backgr(q). (7.134)

In other words

Z2Γλ(p
′

, p) = γλF
′

1(q
2) +

iσλγq
γ

2mr
F

′

2(q
2)

= γλF1(q
2) +

iσλγq
γ

2mr
F2(q

2) + γλ∆F1(q
2) +

iσλγq
γ

2mr
∆F2(q

2). (7.135)

We are interested in order α. Since Z2 = 1+δZ2 where δZ2 = O(α) we have Z2Γλ = Γλ+δZ2Γλ =
Γλ + δZ2γλ to order α. By using also the fact that F

′

2 = O(α) we must have ∆F2 = 0. We
conclude that we must have ∆F1 = δZ2. Since δZ2 = −δF1(0) we have the final result

F
′

1(q
2) = F1(q

2) + ∆F1(q
2)

= F1(q
2) + δZ2

= F1(q
2)− δF1(0)

= 1 + δF1(q
2)− δF1(0)

= F ren
1 (q2). (7.136)

We introduce a new renormalization constant Z1 by the relation

Z1Γλ(q = 0) = γλ. (7.137)

The requirement that F ren
1 (0) = 1 is equivalent to the statement that Z1 = Z2.
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7.6 Ward-Takahashi Identities

Ward-Takahashi Identities: Let us start by considering the 3−point function ∂µT (ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

).

For y0 > y
′

0 we have explicitly

T (ĵµ(x)ψ̂(y)
¯̂
ψ(y

′

)) = θ(x0 − y0)ĵµ(x)ψ̂(y) ¯̂ψ(y
′

) + θ(y
′

0 − x0)ψ̂(y)
¯̂
ψ(y

′

)ĵµ(x)

+ θ(y0 − x0)θ(x0 − y
′

0)ψ̂(y)ĵ
µ(x)

¯̂
ψ(y

′

). (7.138)

Recall that ĵµ = e
¯̂
ψγµψ̂. We compute immediately that (using current conservation ∂µĵ

µ = 0)

∂µT (ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

)) = δ(x0 − y0)ĵ0(x)ψ̂(y) ¯̂ψ(y
′

)− δ(y′

0 − x0)ψ̂(y) ¯̂ψ(y
′

)ĵ0(x)

− δ(y0 − x0)θ(x0 − y
′

0)ψ̂(y)ĵ
0(x)

¯̂
ψ(y

′

) + θ(y0 − x0)δ(x0 − y
′

0)ψ̂(y)ĵ
0(x)

¯̂
ψ(y

′

)

= δ(x0 − y0)[ĵ0(x), ψ̂(y)] ¯̂ψ(y
′

)− δ(y′

0 − x0)ψ̂(y)[ ¯̂ψ(y
′

), ĵ0(x)]. (7.139)

We compute [ĵ0(x), ψ̂(y)] = −eδ3(~x − ~y)ψ̂(y) and [
¯̂
ψ(y

′

), ĵ0(x)] = −eδ3(~x − ~y′

)
¯̂
ψ(y

′

). Hence we
get

∂µT (ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

)) = −eδ4(x− y)ψ̂(y) ¯̂ψ(y′

) + eδ(y
′ − x)ψ̂(y) ¯̂ψ(y′

). (7.140)

The full result is clearly

∂µT (ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

)) =

(

− eδ4(x − y) + eδ(y
′ − x)

)

T (ψ̂(y)
¯̂
ψ(y

′

)). (7.141)

In general we would have

∂µT (ĵ
µ(x)ψ̂(y1)

¯̂
ψ(y

′

1)...ψ̂(yn)
¯̂
ψ(y

′

n)Â
α1(z1)...) =

n
∑

i=1

(

− eδ4(x− yi) + eδ(y
′

i − x)
)

T (ψ̂(y1)
¯̂
ψ(y

′

1)...

× ψ̂(yn)
¯̂
ψ(y

′

n)Â
α1 (z1)...). (7.142)

These are the Ward-Takahashi identities. Another important application of these identities is

∂µT (ĵ
µ(x)Âα1 (z1)...) = 0. (7.143)

Exact Photon Propagator: The exact photon propagator is defined by

iDµν(x− y) = < 0 out|T (Âµ(x)Âν (y))|0 in >

= < 0 in|T (Âµin(x)Âνin(y)S)|0 in >

= iDµν
F (x− y) + (−i)2

2

∫

d4z1

∫

d4z2 < 0 in|T (Âµin(x)Âνin(y)Âρ1in (z1)Âρ2in (z2))|0 in >

× < 0 in|T (ĵin,ρ1(z1)ĵin,ρ2(z2))|0 in > +...

= iDµν
F (x− y) + (−i)2

∫

d4z1iD
µρ1
F (x − z1)

∫

d4z2iD
νρ2
F (y − z2) < 0 in|T (ĵin,ρ1(z1)

× ĵin,ρ2(z2))|0 in > +... (7.144)

This can be rewritten as

iDµν(x− y) = iDµν
F (x− y)− i

∫

d4z1iD
µρ1
F (x− z1) < 0 in|T (ĵin,ρ1(z1)Âνin(y)

(

− i
∫

d4z2Â
ρ2
in (z2)

× ĵin,ρ2(z2)

)

)|0 in > +... (7.145)
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This is indeed correct since we can write the exact photon propagator in the form

iDµν(x − y) = iDµν
F (x − y)− i

∫

d4z1iD
µρ1
F (x− z1) < 0 out|T (ĵρ1(z1)Âν(y)|0 in > .

= iDµν
F (x − y)− i

∫

d4z1iD
µρ1
F (z1) < 0 out|T (ĵρ1(z1 + x)Âν(y)|0 in > .

(7.146)

See the Feynman diagram EXACTPHOTON. By using the identity (7.143) we see immediately
that

i∂µ,xD
µν(x − y) = i∂µ,xD

µν
F (x− y). (7.147)

In momentum space this reads

qµD
µν(q) = qµD

µν
F (q). (7.148)

This expresses transversality of the vacuum polarization (more on this below).

Exact Vertex Function: Let us now discuss the exact vertex function V µ(p
′

, p) defined by

−ie(2π)4δ4(p′ − p− q)V µ(p′

, p) =

∫

d4x

∫

d4x1

∫

d4y1 e
i(p

′
x1−py1−qx) < Ω|T (Âµ(x)ψ̂(x1) ¯̂ψ(y1))|Ω > .

(7.149)

See the Feynman graph VERTEXEXACT1. We compute (with Dµν
F (q) = −iηµν/(q2 + iǫ))

∫

d4xe−iqx < 0 out|T (Âµ(x)ψ̂(x1) ¯̂ψ(y1))|0 in > =

∫

d4xe−iqx < 0 in|T (Âµin(x)ψ̂in(x1)
¯̂
ψin(y1)S)|0 in >

= −i
∫

d4xe−iqx
∫

d4z < 0 in|T (Âµin(x)Âνin(z)ĵin,ν(z)

× ψ̂in(x1)
¯̂
ψin(y1))|0 in > +...

= −i
∫

d4xe−iqx
∫

d4ziDµν
F (x− z) < 0 in|T (ĵin,ν(z)

× ψ̂in(x1)
¯̂
ψin(y1))|0 in > +...

= −iDµν
F (q)

∫

d4xe−iqx < 0 in|T (ĵin,ν(x)ψ̂in(x1)

× ¯̂
ψin(y1))|0 in > +... (7.150)

This result holds to all orders of perturbation. In other words we must have
∫

d4xe−iqx < Ω|T (Âµ(x)ψ̂(x1) ¯̂ψ(y1))|Ω > = −iDµν(q)

∫

d4xe−iqx < Ω|T (ĵν(x)ψ̂(x1) ¯̂ψ(y1))|Ω > .

(7.151)

It is understood that Dµν(q) is the full photon propagator. We must then have

−ie(2π)4δ4(p′ − p− q)V µ(p′

, p) = −iDµν(q)

∫

d4x

∫

d4x1

∫

d4y1 e
i(p

′
x1−py1−qx) < Ω|T (ĵν(x)ψ̂(x1)

× ¯̂
ψ(y1))|Ω > . (7.152)
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In terms of the vertex function Γµ(p
′

, p) defined previously and the exact fermion propagators
S(p), S(p

′

) and the exact photon propagator Dµν(q) we have

V µ(p
′

, p) = Dµν(q)S(p
′

)Γν(p
′

, p)S(p). (7.153)

This expression means that the vertex function can be decomposed into the QED proper vertex
dressed with the full electron and photon propagators. See the Feynman graph VERTEXEXACT.

We have then

−ie(2π)4δ4(p′ − p− q)Dµν(q)S(p
′

)Γν(p
′

, p)S(p) = −iDµν(q)

∫

d4x

∫

d4x1

∫

d4y1 e
i(p

′
x1−py1−qx)

× < Ω|T (ĵν(x)ψ̂(x1) ¯̂ψ(y1))|Ω > . (7.154)

We contract this equation with qµ we obtain

−ie(2π)4δ4(p′ − p− q)qµDµν(q)S(p
′

)Γν(p
′

, p)S(p) = −iqµDµν(q)

∫

d4x

∫

d4x1

∫

d4y1 e
i(p

′
x1−py1−qx)

× < Ω|T (ĵν(x)ψ̂(x1) ¯̂ψ(y1))|Ω > . (7.155)

By using the identity qµD
µν(q) = qµD

µν
F (q) = −iqν/(q2 + iǫ) we obtain

−ie(2π)4δ4(p′ − p− q)S(p′

)qνΓν(p
′

, p)S(p) = −iqν
∫

d4x

∫

d4x1

∫

d4y1 e
i(p

′
x1−py1−qx)

× < Ω|T (ĵν(x)ψ̂(x1) ¯̂ψ(y1))|Ω >

= −
∫

d4x

∫

d4x1

∫

d4y1 e
i(p

′
x1−py1−qx)

× ∂ν,x < Ω|T (ĵν(x)ψ̂(x1) ¯̂ψ(y1))|Ω > . (7.156)

By using the identity (7.141) we get

−ie(2π)4δ4(p′ − p− q)S(p′

)qνΓν(p
′

, p)S(p) = −
∫

d4x

∫

d4x1

∫

d4y1 e
i(p

′
x1−py1−qx)

× (−eδ4(x− x1) + eδ4(x− y1)) < Ω|T (ψ̂(x1) ¯̂ψ(y1))|Ω >

= e

∫

d4x1

∫

d4y1 e
i(p

′−q)x1 e−ipy1 < Ω|T (ψ̂(x1) ¯̂ψ(y1))|Ω >

− e

∫

d4x1

∫

d4y1 e
ip

′
x1 e−i(p+q)y1 < Ω|T (ψ̂(x1) ¯̂ψ(y1))|Ω >

= e(2π)4δ4(p
′ − p− q)(S(p)− S(p′

)). (7.157)

In the above equation we have made use of the Fourier transform

< Ω|T (ψ̂(x1) ¯̂ψ(y1))|Ω >=

∫

d4k

(2π)4
S(k) e−ik(x1−y1). (7.158)

We derive then the fundamental result

−iS(p′

)qνΓν(p
′

, p)S(p) = S(p)− S(p′

). (7.159)

Equivalently we have

−iqνΓν(p
′

, p) = S−1(p
′

)− S−1(p). (7.160)
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For our purposes this is the most important of all Ward-Takahashi identities.
We know that for p near mass shell, i.e. p2 = m2

r, the propagator S(p) behaves as S(p) =
iZ2/(γ.p−mr). Since p

′

= p+ q the momentum p
′

is near mass shell only if p is near mass shell
and q goes to 0. Thus near mass shell we have

−iqνΓν(p, p) = −iZ−1
2 qνγν . (7.161)

In other words

Γν(p, p) = Z−1
2 γν . (7.162)

The renormalization constant Z1 is defined precisely by

Γν(p, p) = Z−1
2 γν . (7.163)

In other words we have

Z1 = Z2. (7.164)

The above Ward-Takahashi identity guarantees F ren
1 (0) = 1 to all orders in perturbation theory.

7.7 One-Loop Calculation III: Vacuum Polarization

7.7.1 The Renormalization Constant Z3 and Renormalization of the
Electric Charge

The next natural question we can ask is what is the structure of the exact 2−point photon
function. At tree level we know that the answer is given by the bare photon propagator, viz

∫

d4xeiq(x−y) < Ω|T (Âµ(x)Âν (y))|Ω > =
−iηµν
q2 + iǫ

+ .... (7.165)

Recall the case of the electron bare propagator which was corrected at one-loop by the electron
self-energy −iΣ2(p). By analogy the above bare photon propagator will be corrected at one-loop
by the photon self-energy iΠµν2 (q) shown on figure 2POINTPH. By using Feynman rules we have

iΠµν2 (q) = (−1)
∫

d4k

(2π)4
tr(−ieγµ) i(γ.k +me)

k2 −m2
e + iǫ

(−ieγν) i(γ.(k + q) +me)

(k + q)2 −m2
e + iǫ

. (7.166)

This self-energy is the essential ingredient in vacuum polarization diagrams. See for example
(7.7).

Similarly to the electron case, the photon self-energy iΠµν2 (q) is only the first diagram (which
is of order e2) among the one-particle irreducible (1PI) diagrams with 2 photon lines which we
will denote by iΠµν(q). See figure 2POINTPH1. By Lorentz invariance iΠµν(q) must be a linear
combination of ηµν and qµν . Now the full 2−point photon function will be obtained by the sum
of all diagrams with an increasing number of insertions of the 1PI diagram iΠµν(q). This is
shown on figure 2POINTPHE. The corresponding expression is

∫

d4xeiq(x−y) < Ω|T (Âµ(x)Âν (y))|Ω > =
−iηµν
q2 + iǫ

+
−iηµρ
q2 + iǫ

iΠρσ(q)
−iηνσ
q2 + iǫ

+
−iηµρ
q2 + iǫ

iΠρσ(q)
−iησλ
q2 + iǫ

iΠλη(q)
−iηνη
q2 + iǫ

+ ....(7.167)
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By comparing with (7.146) we get

−i
∫

d4xeiq(x−y)
∫

d4z1iD
µρ1
F (z1) < 0 out|T (ĵρ1(z1 + x)Âν (y)|0 in > =

−iηµρ
q2 + iǫ

iΠρσ(q)
−iηνσ
q2 + iǫ

+ ... (7.168)

By contracting both sides with qµ and using current conservation ∂µĵ
µ = 0 we obtain the Ward

identity

qµΠµν(q) = 0. (7.169)

Hence we must have

Πµν(q) = (q2ηµν − qµqν)Π(q2). (7.170)

It is straightforward to show that the exact 2−point photon function becomes

∫

d4xeiq(x−y) < Ω|T (Âµ(x)Âν(y))|Ω > =
−iηµν
q2 + iǫ

+
−iηµρ
q2 + iǫ

(ηρν − qρqν

q2
)(Π + Π2 + ...)

=
−iqµqν
(q2)2

+
−i

q2 + iǫ

1

1−Π(q2)
(ηµν − qµqν

q2
).(7.171)

This propagator has a single pole at q2 = 0 if the function Π(q2) is regular at q2 = 0. This is
indeed true to all orders in perturbation theory. Physically this means that the photon remains
massless. We define the renormalization constant Z3 as the residue at the q2 = 0 pole, viz

Z3 =
1

1−Π(0)
. (7.172)

The terms proportional to qµqν in the above exact propagator will lead to vanishing contributions
inside a probability amplitude, i.e. when we connect the exact 2−point photon function to at
least one electron line. This is another manifestation of the Ward-Takahashi identities. We give
an example of this cancellation next.

The contribution of the tree level plus vacuum polarization diagrams to the probability am-
plitude of the process e− + e+ −→ µ− + µ+ was given by

−e2(2π)4δ4(k + p− k′ − p′

)(ūs
′

(p
′

)γµu
s(p))

(−iηµν
q2

+
−iηµρ
q2

iΠρσ2 (q)
−iηνσ
q2

)

(ūr
′

(k
′

)γνu
r(k)).

(7.173)

By using the exact 2−point photon function this becomes

−e2(2π)4δ4(k + p− k′ − p′

)(ūs
′

(p
′

)γµu
s(p))

(−iqµqν
(q2)2

+
−i

q2 + iǫ

1

1−Π(q2)
(ηµν − qµqν

q2
)

)

(ūr
′

(k
′

)γνu
r(k)).

(7.174)

We can check that ūs
′

(p
′

)γµq
µus(p) = ūs

′

(p
′

)(γµp
µ − γµp

′µ)us(p) = 0. We get then the proba-
bility amplitude

−e2(2π)4δ4(k + p− k′ − p′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

1

1−Π(q2)
ηµν
)

(ūr
′

(k
′

)γνu
r(k)). (7.175)
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For scattering with very low q2 this becomes

−e2(2π)4δ4(k + p− k′ − p′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

1

1−Π(0)
ηµν
)

(ūr
′

(k
′

)γνu
r(k)) =

−e2R(2π)4δ4(k + p− k′ − p′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

ηµν
)

(ūr
′

(k
′

)γνu
r(k)). (7.176)

This looks exactly like the tree level contribution with an electric charge eR given by

eR = e
√

Z3. (7.177)

The electric charge eR is called the renormalized electric charge. This shift of the electric charge
relative to tree level is a general feautre since the amplitude for any process with very low
momentum transfer q2 when we replace the bare photon propagator with the exact photon
propagator will appear as a tree level process with the renoramlized electric charge eR.

Using the definition of the renormalized electric charge eR the above probability amplitude
can now be put in the form

−e2(2π)4δ4(k + p− k′ − p′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

1

1−Π(q2)
ηµν
)

(ūr
′

(k
′

)γνu
r(k)) =

−e2R(2π)4δ4(k + p− k′ − p′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

1−Π(0)

1−Π(q2)
ηµν
)

(ūr
′

(k
′

)γνu
r(k)) =

−e2eff(2π)4δ4(k + p− k′ − p′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

ηµν
)

(ūr
′

(k
′

)γνu
r(k)) (7.178)

The effective charge eeff is momentum dependent given by

e2eff = e2R
1−Π(0)

1−Π(q2)
=

e2

1−Π(q2)
. (7.179)

At one-loop order we have Π = Π2 and thus the effective charge becomes

e2eff =
e2R

1−Π2(q2) + Π2(0)
. (7.180)

7.7.2 Dimensional Regularization

We now evaluate the loop integral Π2(q
2) given by

Πµν2 (q) = ie2
∫

d4k

(2π)4
trγµ

(γ.k +me)

k2 −m2
e + iǫ

γν
(γ.(k + q) +me)

(k + q)2 −m2
e + iǫ

. (7.181)

This integral is quadratically UV divergent as one can see from the rough estimate

Πµν2 (q) ∼
∫ Λ

0

k3dk
1

k

1

k

∼ 1

2
Λ2. (7.182)

This can be made more precise using this naive cutoff procedure and we will indeed find that it
is quadratically UV divergent. This is a severe divergence which is stronger than the logarithmic
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divergences we encountered in previous calculations. In any case a naive cutoff will break the
Ward-Takahashi identity Z1 = Z2. As in previous cases the Pauli-Villars regularization can be
used here and it will preserve the Ward-Takahashi identity Z1 = Z2. However this method is
very complicated to implement in this case.

We will employ in this section a more powerful and more elegant regularization method known
as dimensional regularization. The idea is simply to compute the loop integral Π2(q

2) not in 4
dimensions but in d dimensions. The result will be an analytic function in d. We are clearly
interested in the limit d −→ 4.

We start as before by introducing Feynman parameters, namely

1

k2 −m2
e + iǫ

1

(k + q)2 −m2
e + iǫ

=

∫ 1

0

dx

∫ y

0

δ(x+ y − 1)
1

[

x(k2 −m2
e + iǫ) + y((k + q)2 −m2

e + iǫ)

]2

=

∫ 1

0

dx
1

[

(k + (1− x)q)2 + x(1− x)q2 −m2
e + iǫ

]2

=

∫ 1

0

dx
1

[

l2 −∆+ iǫ

]2 . (7.183)

We have defined l = k + (1− x)q and ∆ = m2
e − x(1 − x)q2. Furthermore

trγµ(γ.k +me)γ
ν(γ.(k + q) +me) = 4kµ(k + q)ν + 4kν(k + q)µ − 4ηµν(k.(k + q)−m2

e)

= 4(lµ − (1− x)qµ)(lν + xqν) + 4(lν − (1− x)qν)(lµ + xqµ)

− 4ηµν((l − (1− x)q).(l + xq) −m2
e)

= 4lµlν − 4(1− x)xqµqν + 4lνlµ − 4(1− x)xqνqµ
− 4ηµν(l2 − x(1− x)q2 −m2

e) + ... (7.184)

We have now the d−dimensional loop integral

Πµν2 (q) = 4ie2
∫

ddl

(2π)d

(

lµlν + lν lµ − 2(1− x)xqνqµ − ηµν(l2 − x(1− x)q2 −m2
e)

)

×
∫ 1

0

dx
1

[

l2 −∆+ iǫ

]2 . (7.185)

By rotational invariance in d dimensions we can replace lµlν by l2ηµν/d. Thus we get

Πµν2 (q) = 4ie2
∫ 1

0

dx

[

(
2

d
− 1)ηµν

∫

ddl

(2π)d
l2

(l2 −∆+ iǫ)2

−
(

2(1− x)xqµqν − ηµν(x(1 − x)q2 +m2
e)
)

∫

ddl

(2π)d
1

(l2 −∆+ iǫ)2

]

.

(7.186)
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Next we Wick rotate (ddl = iddlE and l2 = −l2E) to obtain

Πµν2 (q) = −4e2
∫ 1

0

dx

[

(−2

d
+ 1)ηµν

∫

ddlE
(2π)d

l2E
(l2E +∆)2

−
(

2(1− x)xqµqν − ηµν(x(1 − x)q2 +m2
e)
)

∫

ddlE
(2π)d

1

(l2E +∆)2

]

.

(7.187)

We need to compute two d−dimensional integrals. These are
∫

ddlE
(2π)d

l2E
(l2E +∆)2

=
1

(2π)d

∫

dΩd

∫

rd−1dr
r2

(r2 +∆)2

=
1

(2π)d
1

2

∫

dΩd

∫

(r2)
d
2 dr2

1

(r2 +∆)2

=
1

(2π)d
1

2

1

∆1− d
2

∫

dΩd

∫ 1

0

dx x−
d
2 (1− x) d

2 . (7.188)

∫

ddlE
(2π)d

1

(l2E +∆)2
=

1

(2π)d

∫

dΩd

∫

rd−1dr
1

(r2 +∆)2

=
1

(2π)d
1

2

∫

dΩd

∫

(r2)
d−2
2 dr2

1

(r2 +∆)2

=
1

(2π)d
1

2

1

∆2− d
2

∫

dΩd

∫ 1

0

dx x1−
d
2 (1− x) d

2−1. (7.189)

In the above two equations we have used the change of variable x = ∆/(r2 + ∆) and dx/∆ =
−dr2/(r2 +∆)2. We can also use the definition of the so-called beta function

B(α, β) =

∫ 1

0

dx xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α+ β)
. (7.190)

Also we can use the area of a d−dimensional unit sphere given by

∫

dΩd =
2π

d
2

Γ(d2 )
. (7.191)

We get then

∫

ddlE
(2π)d

l2E
(l2E +∆)2

=
1

(4π)
d
2

1

∆1− d
2

Γ(2− d
2 )

2
d − 1

. (7.192)

∫

ddlE
(2π)d

1

(l2E +∆)2
=

1

(4π)
d
2

1

∆2− d
2

Γ(2− d

2
). (7.193)

With these results the loop integral Πµν2 (q) becomes

Πµν2 (q) = −4e2Γ(2−
d
2 )

(4π)
d
2

∫ 1

0

dx
1

∆2− d
2

[

−∆ηµν −
(

2(1− x)xqµqν − ηµν(x(1 − x)q2 +m2
e)
)

]

= −4e2Γ(2−
d
2 )

(4π)
d
2

∫ 1

0

dx
2x(1 − x)
∆2− d

2

(q2ηµν − qµqν). (7.194)
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Therefore we conclude that the Ward-Takahashi identity is indeed maintained in dimensional
regularization. The function Π2(q

2) is then given by

Π2(q
2) = −4e2Γ(2−

d
2 )

(4π)
d
2

∫ 1

0

dx
2x(1− x)
∆2− d

2

. (7.195)

We want now to take the limit d −→ 4. We define the small parameter ǫ = 4 − d. We use the
expansion of the gamma function near its pole z = 0 given by

Γ(2− d

2
) = Γ(

ǫ

2
) =

2

ǫ
− γ +O(ǫ). (7.196)

The number γ is given by γ = 0.5772 and is called the Euler-Mascheroni constant. It is not
difficult to convince ourselves that the 1/ǫ divergence in dimensional regularization corresponds
to the logarithmic divergence ln Λ2 in Pauli-Villars regularization.

Thus near d = 4 (equivalently ǫ = 0) we get

Π2(q
2) = − 4e2

(4π)2
(
2

ǫ
− γ +O(ǫ))

∫ 1

0

dx 2x(1− x)(1 − ǫ

2
ln∆ +O(ǫ2))

= −2α

π

∫ 1

0

dx x(1 − x)(2
ǫ
− ln∆− γ +O(ǫ))

= −2α

π

∫ 1

0

dx x(1 − x)(2
ǫ
− ln(m2

e − x(1− x)q2)− γ +O(ǫ)). (7.197)

We will also need

Π2(0) = −2α

π

∫ 1

0

dx x(1− x)(2
ǫ
− ln(m2

e)− γ +O(ǫ)). (7.198)

Thus

Π2(q
2)−Π2(0) = −2α

π

∫ 1

0

dx x(1 − x)(ln m2
e

m2
e − x(1 − x)q2

+O(ǫ)). (7.199)

This is finite in the limit ǫ −→ 0. At very high energies (small distances) corresponding to
−q2 >> m2

e we get

Π2(q
2)−Π2(0) = −2α

π

∫ 1

0

dx x(1 − x)(− ln(1 + x(1− x)−q
2

m2
e

) +O(ǫ))

=
α

3π

[

ln
−q2
m2
e

− 5

3
+O(

m2
e

−q2 )
]

=
αR
3π

[

ln
−q2
m2
e

− 5

3
+O(

m2
e

−q2 )
]

. (7.200)

At one-loop order the effective electric charge is

e2eff =
e2R

1− αR

3π

[

ln −q2
m2

e
− 5

3 +O(
m2

e

−q2 )
]
. (7.201)
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The electromagnetic coupling constant depends therefore on the energy as follows

αeff(
−q2
m2
e

) =
αR

1− αR

3π

[

ln −q2
m2

e
− 5

3 +O(
m2

e

−q2 )
]

(7.202)

The effective electromagnetic coupling constant becomes large at high energies. We say that the
electromagnetic coupling constant runs with energy or equivalently with distance.

7.8 Renormalization of QED

In this last section we will summarize all our results. The starting Lagrangian was

L = −1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ − eψ̄γµψAµ. (7.203)

We know that the electron and photon two-point functions behave as
∫

d4xeip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω >=
iZ2

γ.p−mr + iǫ
+ ... (7.204)

∫

d4xeiq(x−y) < Ω|T (Âµ(x)Âν (y))|Ω > =
−iηµνZ3

q2 + iǫ
+ .... (7.205)

Let us absorb the field strength renormalization constants Z2 and Z3 in the fields as follows

ψ̂r = ψ̂/
√

Z2 , Â
µ
r = Âµ/

√

Z3. (7.206)

The QED Lagrangian becomes

L = −Z3

4
FrµνF

µν
r + Z2ψ̄r(iγ

µ∂µ −m)ψr − eZ2

√

Z3ψ̄rγµψrA
µ
r . (7.207)

The renormalized electric charge is defined by

eZ2

√

Z3 = eRZ1. (7.208)

This reduces to the previous definition eR = e
√
Z3 by using Ward identity in the form

Z1 = Z2. (7.209)

We introduce the counter-terms

Z1 = 1 + δ1 , Z2 = 1 + δ2 , Z3 = 1 + δ3. (7.210)

We also introduce the renormalized mass mr and the counter-term δm by

Z2m = mr + δm. (7.211)

We have

L = −1

4
FrµνF

µν
r + ψ̄r(iγ

µ∂µ −mr)ψr − eRψ̄rγµψrAµr

− δ3
4
FrµνF

µν
r + ψ̄r(iδ2γ

µ∂µ − δm)ψr − eRδ1ψ̄rγµψrAµr . (7.212)
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By dropping total derivative terms we find

L = −1

4
FrµνF

µν
r + ψ̄r(iγ

µ∂µ −mr)ψr − eRψ̄rγµψrAµr

− δ3
2
Arµ(−∂.∂ ηµν + ∂µ∂ν)Arν + ψ̄r(iδ2γ

µ∂µ − δm)ψr − eRδ1ψ̄rγµψrAµr . (7.213)

There are three extra Feynman diagrams associated with the counter-terms δ1, δ2, δ3 and δm
besides the usual three Feynman diagrams associated with the photon and electron propaga-
tors and the QED vertex. The Feynman diagrams of renormalized QED are shown on figure
RENQED.

The counter-terms will be determined from renormalization conditions. There are four
counter-terms and thus one must have 4 renormalization conditions. The first two renormaliza-
tion conditions correspond to the fact that the electron and photon field-strength renormalization
constants are equal 1. Indeed we have by construction

∫

d4xeip(x−y) < Ω|T (ψ̂r(x) ¯̂
rψ(y))|Ω >=

i

γ.p−mr + iǫ
+ ... (7.214)

∫

d4xeiq(x−y) < Ω|T (Âµr (x)Âνr (y))|Ω > =
−iηµν
q2 + iǫ

+ .... (7.215)

Let us recall that the one-particle irreducible (1PI) diagrams with 2 photon lines is iΠµν(q) =
i(ηµνq2−qµqν)Π(q2). We know that the residue of the photon propagator at q2 = 0 is 1/(1−Π(0)).
Thus the first renormalization constant is

Π(q2 = 0) = 1. (7.216)

The one-particle irreducible (1PI) diagrams with 2 electron lines is −iΣ(γ.p). The residue of the
electron propagator at γ.p = mr is 1/(1 − (dΣ(γ.p)/dγ.p)|γ.p=mr). Thus the second renormal-
ization constant is

dΣ(γ.p)

γ.p
|γ.p=mr = 0. (7.217)

Clearly the renormalized mass mr must be defined by setting the self-energy −iΣ(γ.p) at γ.p =
mr to zero so it is not shifted by quantum effects in renormalized QED. In other words we must
have the renormalization constant

Σ(γ.p = mr) = 0. (7.218)

Lastly the renormalized electric charge eR must also not be shifted by quantum effects in renor-
malized QED. The quantum correction to the electric charge is contained in the exact vertex
function (the QED proper vertex) −ieΓµ(p′

, p). Thus we must impose

Γµ(p
′ − p = 0) = γµ. (7.219)

7.9 Exercises and Problems

Mott Formula and Bhabha Scattering:
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• Use Feynman rules to write down the tree level probability amplitude for electron-muon
scattering.

• Derive the unpolarized cross section of the electron-muon scattering at tree level in the
limit mµ −→∞. The result is known as Mott formula.

• Repeat the above two questions for electron-electron scattering. This is known as Bhabha
scattering.

Scattering from an External Electromagnetic Field: Compute the Feynman diagrams
corresponding to the three first terms of equation (7.21).

Spinor Technology:

• Prove Gordon’s identity (with q = p− p′

)

ūs
′

(p
′

)γµus(p) =
1

2me
ūs

′

(p
′

)

[

(p+ p
′

)µ − iσµνqν
]

us(p). (7.220)

• Show that we can make the replacement

ūs
′

(p
′

)

[

(xγ.p+ yγ.q)γµ(xγ.p+ (y − 1)γ.q)

]

us(p) −→ ūs
′

(p
′

)

[

me(x + y)(x+ y − 1)(2pµ −meγ
µ)

− (x + y)(y − 1)

(

2me(p+ p
′

)µ + q2γµ − 3m2
e

× γµ
)

−m2
ey(x+ y − 1)γµ +mey(y − 1)

× (2p
′µ −meγ

µ)

]

us(p). (7.221)

Spheres in d Dimensions: Show that the area of a d−dimensional unit sphere is given by

∫

dΩd =
2π

d
2

Γ(d2 )
. (7.222)

Renormalization Constant Z2: Show that the probability for the spinor field to create or
annihilate a particle is precisely Z2.

Ward Identity: Consider a QED process which involves a single external photon with momen-
tum k and polarization ǫµ. The probability amplitude of this process is of the form iMµ(k)ǫµ(k).
Show that current conservation leads to the Ward identity kµMµ(k) = 0.

Hint: See Peskin and Schroeder.

Pauli-Villars Regulator Fields: Show that Pauli-Villars regularization is equivalent to the
introduction of regulator fields with large masses. The number of regulator fields can be anything.

Hint: See Zinn-Justin.
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Pauli-Villars Regularization:

• Use Pauli-Villars Regularization to compute Πµν2 (q2).

• Show that the 1/ǫ divergence in dimensional regularization corresponds to the logarithmic
divergence ln Λ2 in Pauli-Villars regularization. Compare for example the value of the
integral (7.193) in both schemes.

Uehling Potential and Lamb Shift:

• Show that the electrostatic potential can be given by the integral

V (~x) =

∫

d3~q

(2π)3
−e2ei~q~x
~q2

. (7.223)

• Compute the one-loop correction to the above potential due to the vacuum polarization.

• By approximating the Uehling potential by a delta function determine the Lamb shift of
the levels of the Hydrogen atom.

Hard Cutoff Regulator:

• Use a naive cutoff to evaluate Πµν2 (q2). What do you conclude.

• Show that a naive cutoff will not preserve the Ward-Takahashi identity Z1 = Z2.

Dimensional Regularization and QED Counter-terms:

• Reevaluate the electron self-energy −iΣ(γ.p) at one-loop in dimensional regularization.

• Compute the counter-terms δm and δ2 at one-loop.

• Use the expression of the photon self-energy iΠµν at one-loop computed in the lecture in
dimensional regularization to evaluate the counter term δ3.

• Reevaluate the vertex function −ieΓµ(p′

, p) at one-loop in dimensional regularization.

• Compute the counter-term δ1 at one-loop.

• Show explicitly that dimensional regularization will preserve the Ward-Takahashi identity
Z1 = Z2.
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Part III

Path Integrals, Gauge Fields and

Renormalization Group





8
Path Integral Quantization of Scalar Fields

8.1 Feynman Path Integral

We consider a dynamical system consisting of a single free particle moving in one dimension.
The coordinate is x and the canonical momentum is p = mẋ. The Hamiltonian is H = p2/(2m).
Quantization means that we replace x and p with operators X and P satisfying the canonical
commutation relation [X,P ] = i~. The Hamiltonian becomes H = P 2/(2m). These operators
act in a Hilbert spaceH. The quantum states which describe the dynamical system are vectors on
this Hilbert space whereas observables which describe physical quantities are hermitian operators
acting in this Hilbert space. This is the canonical or operator quantization.

We recall that in the Schrödinger picture states depend on time while operators are indepen-
dent of time. The states satisfy the Schrödinger equation, viz

H |ψs(t) >= i~
∂

∂t
|ψs(t) > . (8.1)

Equivalently

|ψs(t) >= e−
i
~
H(t−t0)|ψs(t0) > . (8.2)

Let |x > be the eigenstates of X , i.e X |x >= x|x >. The completness relation is
∫

dx|x >< x| =
1. The components of |ψs(t) > in this basis are < x|ψs(t) >. Thus

|ψs(t) > =

∫

dx < x|ψs(t) > |x > . (8.3)

< x|ψs(t) > = < x|e− i
~
H(t−t0)|ψs(t0) >

=

∫

dx0G(x, t;x0, t0) < x0|ψs(t0) > . (8.4)

In above we have used the completness relation in the form
∫

dx0|x0 >< x0| = 1. The Green
function G(x, t;x0, t0) is defined by

G(x, t;x0, t0) = < x|e− i
~
H(t−t0)|x0 > . (8.5)
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In the Heisenberg picture states are independent of time while operators are dependent of time.
The Heisenberg states are related to the Schrödinger states by the relation

|ψH >= e
i
~
H(t−t0)|ψs(t) > . (8.6)

We can clearly make the identification |ψH >= |ψs(t0) >. Let X(t) be the position operator in
the Heisenberg picture. Let |x, t > be the eigenstates of X(t) at time t, i.e X(t)|x, t >= x|x, t >.
We set

|x, t >= e
i
~
Ht|x > , |x0, t0 >= e

i
~
Ht0 |x0 > . (8.7)

From the facts X(t)|x, t >= x|x, t > and X |x >= x|x > we conclude that the Heisenberg
operators are related to the Schrödinger operators by the relation

X(t) = e
i
~
HtXe−

i
~
Ht. (8.8)

We immediately obtain the Heisenberg equation of motion

dX(t)

dt
= e

i
~
Ht ∂X

∂t
e−

i
~
Ht +

i

~
[H,X(t)]. (8.9)

The Green function (8.5) can be put into the form

G(x, t;x0, t0) = < x, t|x0, t0 > . (8.10)

This is the transition amplitude from the point x0 at time t0 to the point x at time t which is
the most basic object in the quantum theory.

We discretize the time interval [t0, t] such that tj = t0+jǫ, ǫ = (t−t0)/N , j = 0, 1, ..., N , tN =
t0 +Nǫ = t. The corresponding coordinates are x0, x1, ..., xN with xN = x. The corresponding
momenta are p0, p1, ..., pN−1. The momentum pj corresponds to the interval [xj , xj+1]. We can
show

G(x, t;x0, t0) = < x, t|x0, t0 >

=

∫

dx1 < x, t|x1, t1 >< x1, t1|x0, t0 >

=

∫

dx1dx2...dxN−1

∏N−1

j=0
< xj+1, tj+1|xj , tj > . (8.11)

We compute (with < p|x >= exp(−ipx/~)/
√
2π~)

< xj+1, tj+1|xj , tj > = < xj+1|(1 −
i

~
Hǫ)|xj >

=

∫

dpj < xj+1|pj >< pj |(1−
i

~
Hǫ)|xj >

=

∫

dpj(1−
i

~
H(pj , xj)ǫ) < xj+1|pj >< pj|xj >

=

∫

dpj
2π~

(1− i

~
H(pj, xj)ǫ) e

i
~
pjxj+1e−

i
~
pjxj

=

∫

dpj
2π~

e
i
~
(pj ẋj−H(xj ,pj))ǫ. (8.12)
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In above ẋj = (xj+1−xj)/ǫ. Therefore by taking the limitN −→∞, ǫ −→ 0 keeping t−t0 = fixed
we obtain

G(x, t;x0, t0) =

∫

dp0
2π~

dp1dx1
2π~

...
dpN−1dxN−1

2π~
e

i
~

∑N−1
j=0 (pj ẋj−H(pj ,xj))ǫ

=

∫

DpDx e
i
~

∫ t
t0
ds(pẋ−H(p,x))

. (8.13)

Now ẋ = dx/ds. In our case the Hamiltonian is given by H = p2/(2m). Thus by performing the
Gaussian integral over p we obtain 1

G(x, t;x0, t0) = N
∫

Dx e
i
~

∫
t
t0
dsL(ẋ,x)

= N
∫

Dx e i
~
S[x]. (8.14)

In the above equation S[x] =
∫

dt L(x, ẋ) = m
∫

dt ẋ2/2 is the action of the particle. As it turns
out this fundamental result holds for all Hamiltonians of the form H = p2/(2m)+V (x) in which
case S[x] =

∫

dt L(x, ẋ) =
∫

dt (mẋ2/2− V (x)) 2.

This result is essentially the principle of linear superposition of quantum theory. The total
probability amplitude for traveling from the point x0 to the point x is equal to the sum of
probability amplitudes for traveling from x0 to x through all possible paths connecting these two
points. Clearly a given path between x0 and x is defined by a configuration x(s) with x(t0) = x0
and x(t) = x. The corresponding probability amplitude (wave function) is e

i
~
S[x(s)]. In the

classical limit ~ −→ 0 only one path (the classical path) exists by the method of the stationary
phase. The classical path is clearly the path of least action as it should be.

We note also that the generalization of the result (8.14) to matrix elements of operators is
given by 3

< x, t|T (X(t1)...X(tn))|x0, t0 > = N
∫

Dx x(t1)...x(tn) e
i
~
S[x]. (8.15)

The T is the time-ordering operator defined by

T (X(t1)X(t2)) = X(t1)X(t2) if t1 > t2. (8.16)

T (X(t1)X(t2)) = X(t2)X(t1) if t1 < t2. (8.17)

1Exercise:

• Show that
∫

dpe−ap2+bp =

√

π

a
e

b2

4a .

• Use the above result to show that

∫

Dp e
i
~

∫ t
t0

ds(pẋ− p2

2m
)
= N e

i
~

∫ t
t0

dsm
2

ẋ2(s)
.

Determine the constant of normalization N .

2Exercise: Repeat the analysis for a non-zero potential. See for example Peskin and Schroeder
3Exercise:Verify this explicitly. See for example Randjbar-Daemi lecture notes.
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Let us now introduce the basis |n >. This is the eigenbasis of the Hamiltonian, viz H |n >=
En|n >. We have the completness relation

∑

n |n >< n| = 1. The matrix elements (8.15) can
be rewritten as

∑

n,m

e−itEn+it0Em < x|n >< m|x0 >< n|T (X(t1)...X(tn))|m > = N
∫

Dx x(t1)...x(tn) e
i
~
S[x].

(8.18)

In the limit t0 −→ −∞ and t −→ ∞ we observe that only the ground state with energy E0

contributes, i.e. the rapid oscillation of the first exponential in this limit forces n = m = 0 4.
Thus we obtain in this limit

eiE0(t0−t) < x|0 >< 0|x0 >< 0|T (X(t1)...X(tn))|0 > = N
∫

Dx x(t1)...x(tn) e
i
~
S[x].

(8.20)

We write this as

< 0|T (X(t1)...X(tn))|0 > = N ′

∫

Dx x(t1)...x(tn) e
i
~
S[x]. (8.21)

In particular

< 0|0 > = N ′

∫

Dx e i
~
S[x]. (8.22)

Hence

< 0|T (X(t1)...X(tn))|0 > =

∫

Dx x(t1)...x(tn) e
i
~
S[x]

∫

Dx e i
~
S[x]

. (8.23)

We introduce the path integral Z[J ] in the presence of a source J(t) by

Z[J ] =

∫

Dx e i
~
S[x]+ i

~

∫
dtJ(t)x(t). (8.24)

This path integral is the generating functional of all the matrix elements< 0|T (X(t1)...X(tn))|0 >.
Indeed

< 0|T (X(t1)...X(tn))|0 > =
1

Z[0]

(

~

i

)n
δnZ[J ]

δJ(t1)...δJ(tn)
|J=0. (8.25)

From the above discussion Z[0] is the vacuum-to-vacuum amplitude. Therefore Z[J ] is the
vacuum-to-vacuum amplitude in the presence of the source J(t).

4We consider the integral

I =

∫

∞

−∞

dx F (x)eiφ(x). (8.19)

The function φ(x) is a rapidly-varying function over the range of integration while F (x) is slowly-varying by
comparison. Evaluate this integral using the method of stationary phase.
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8.2 Scalar Field Theory

8.2.1 Path Integral

A field theory is a dynamical system with N degrees of freedom where N −→ ∞. The classical
description is given in terms of a Lagrangian and an action principle while the quantum descrip-
tion is given in terms of a path integral and correlation functions. In a scalar field theory the
basic field has spin j = 0 with respect to Lorentz transformations.

It is well established that scalar field theories are relevant to critical phenomena and to the
Higgs sector in the standard model of particle physics.

We start with the relativistic energy-momentum relation pµpµ =M2c2 where pµ = (p0, ~p) =
(E/c, ~p). We adopt the metric (1,−1,−1,−1), i.e. pµ = (p0,−~p) = (E/c,−~p). Next we employ
the correspondence principle pµ −→ i~∂µ where ∂µ = (∂0, ∂i) and apply the resulting operator
on a function φ. We obtain the Klein-Gordon equation

∂µ∂
µφ = −m2φ , m2 =

M2c2

~2
. (8.26)

As a wave equation the Klein-Gordon equation is incompatible with the statistical interpretation
of quantum mechanics. However the Klein-Gordon equation makes sense as an equation of motion
of a classical scalar field theory with action and Lagrangian S =

∫

dtL, L =
∫

d3xL where the
lagrangian density L is given by

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2. (8.27)

So in summary φ is not really a wave function but it is a dynamical variable which plays the
same role as the coordinate x of the free particle discussed in the previous section.

The principle of least action applied to an action S =
∫

dtL yields (with the assumption
δφ|xµ=±∞ = 0) the result 5

δS

δφ
=
δL
δφ
− ∂µ

δL
δ(∂µφ)

= 0. (8.28)

It is not difficult to verify that this is the same equation as (8.26) if L =
∫

d3xL and L is given
by (8.27) 6.

The free scalar field theory is a collection of infinite number of decoupled harmonic oscillators.
To see this fact we introduce the fourier transform φ̃ = φ̃(t,~k) of φ = φ(t, ~x) as follows

φ = φ(t, ~x) =

∫

d3~k

(2π)3
φ̃(t,~k) ei

~k~x , φ̃ = φ̃(t,~k) =

∫

d3~x φ(t, ~x) e−i
~k~x. (8.29)

Then the Lagrangian and the equation of motion can be rewritten as

L =

∫

d3~k

(2π)3

(

1

2
∂0φ̃∂0φ̃

∗ − 1

2
ω2
kφ̃φ̃

∗
)

. (8.30)

∂20 φ̃+ ω2
kφ̃ = 0 , ω2

k = ~k2 +m2. (8.31)

5Exercise: Verify this statement.
6Exercise: Verify this statement.
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This is the equation of motion of a harmonic oscillator with frequency ωk. Using box normal-
ization the momenta become discrete and the measure

∫

d3~k/(2π)3 becomes
∑

~k /V . Reality of

the scalar field φ implies that φ̃(t,~k) = φ̃∗(t,−~k) and by writing φ̃ =
√
V (Xk + iYk) we end up

with the Lagrangian

L =
1

V

∑

k1>0

∑

k2>0

∑

k3>0

(

∂0φ̃∂0φ̃
∗ − ω2

kφ̃φ̃
∗
)

=
∑

k1>0

∑

k2>0

∑

k3>0

(

(∂0Xk)
2 − ω2

kX
2
k + (∂0Yk)

2 − ω2
kY

2
k

)

. (8.32)

The path integral of the two harmonic oscillators Xk and Yk is immediately given by

Z[Jk,Kk] =

∫

DXkDYk e
i
~
S[Xk,Yk]+

i
~

∫
dt(Jk(t)Xk(t)+Kk(t)Yk(t)). (8.33)

The action S[Xk, Yk] is obviously given by

S[Xk, Yk] =

∫ t−→+∞

t0−→−∞
ds

(

(∂0Xk)
2 − ω2

kX
2
k + (∂0Yk)

2 − ω2
kY

2
k

)

(8.34)

The definition of the measures DXk and DYk must now be clear from our previous considerations.

We introduce the notation Xk(ti) = x
(k)
i , Yk(ti) = y

(k)
i , i = 0, 1, ..., N − 1, N with the time step

ǫ = ti − ti−1 = (t− t0)/N . Then as before we have (with N −→∞, ǫ −→ 0 keeping t− t0 fixed)
the measures

DXk =

N−1
∏

i=1

dx
(k)
i , DYk =

N−1
∏

i=1

dy
(k)
i . (8.35)

The path integral of the scalar field φ is the product of the path integrals of the harmonic
oscillators Xk and Yk with different k = (k1, k2, k3), viz

Z[J,K] =
∏

k1>0

∏

k2>0

∏

k3>0

Z[Jk,Kk]

=

∫

∏

k1>0

∏

k2>0

∏

k3>0

DXkDYk exp

(

i

~

∑

k1>0

∑

k2>0

∑

k3>0

S[Xk, Yk]

+
i

~

∫

dt
∑

k1>0

∑

k2>0

∑

k3>0

(Jk(t)Xk(t) +Kk(t)Yk(t))

)

. (8.36)

The action of the scalar field is precisely the first term in the exponential, namely

S[φ] =
∑

k1>0

∑

k2>0

∑

k3>0

S[Xk, Yk]

=

∫ t−→+∞

t0−→−∞
ds
∑

k1>0

∑

k2>0

∑

k3>0

(

(∂0Xk)
2 − ω2

kX
2
k + (∂0Yk)

2 − ω2
kY

2
k

)

=

∫

d4x

(

1

2
∂µφ∂

µφ− 1

2
m2φ2

)

. (8.37)

We remark also that (with J(t, ~x) =
∫

d3~k/(2π)3 J̃(t,~k) ei
~k~x, J̃ =

√
V (Jk + iKk)) we have

∑

k1>0

∑

k2>0

∑

k3>0

(Jk(t)Xk(t) +Kk(t)Yk(t)) =

∫

d3xJ(t, ~x)φ(t, ~x). (8.38)
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We write therefore the above path integral formally as

Z[J ] =

∫

Dφ e i
~
S[φ]+ i

~

∫
d4xJ(x)φ(x). (8.39)

This path integral is the generating functional of all the matrix elements< 0|T (Φ(x1)...Φ(xn))|0 >
(also called n−point functions). Indeed

< 0|T (Φ(x1)...Φ(xn))|0 > =
1

Z[0]

(

~

i

)n
δnZ[J ]

δJ(x1)...δJ(xn)
|J=0

=

∫

Dφ φ(x1)...φ(xn) e i
~
S[φ]

∫

Dφ e i
~
S[φ]

. (8.40)

The intercations are added by modifying the action appropriately. The only renormalizable
interacting scalar field theory in d = 4 dimensions is the quartic φ4 theory. Thus we will only
consider this model given by the action

S[φ] =

∫

d4x

[

1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4
]

. (8.41)

8.2.2 The Free 2−Point Function

It is more rigorous to perform the different computations of interest on an Euclidean spacetime.
Euclidean spacetime is obtained from Minkowski spacetime via the so-called Wick rotation. This
is also called the imaginary time formulation which is obtained by the substitutions t −→ −iτ ,
x0 = ct −→ −ix4 = −icτ , ∂0 −→ i∂4. Hence ∂µφ∂

µφ −→ −(∂µφ)2 and iS −→ −SE where

SE [φ] =

∫

d4x

[

1

2
(∂µφ)

2 +
1

2
m2φ2 +

λ

4!
φ4
]

. (8.42)

The path integral becomes

ZE[J ] =

∫

Dφ e− 1
~
SE [φ]+ 1

~

∫
d4xJ(x)φ(x). (8.43)

The Euclidean n−point functions are given by

< 0|T (Φ(x1)...Φ(xn))|0 >E =
1

Z[0]

(

~

)n
δnZE [J ]

δJ(x1)...δJ(xn)
|J=0

=

∫

Dφ φ(x1)...φ(xn) e−
1
~
SE[φ]

∫

Dφ e− 1
~
SE [φ]

. (8.44)

The action of a free scalar field is given by

SE [φ] =

∫

d4x

[

1

2
(∂µφ)

2 +
1

2
m2φ2

]

=
1

2

∫

d4x φ
[

− ∂2 +m2
]

φ. (8.45)

The corresponding path integral is (after completing the square)

ZE[J ] =

∫

Dφ e− 1
~
SE [φ]+ 1

~

∫
d4xJ(x)φ(x)

= e
1
2~

∫
d4x(JKJ)(x)

∫

Dφ e− 1
2~

∫
d4x
(

φ−JK
)(

−∂2+m2
)(

φ−KJ
)

. (8.46)
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In above K is the operator defined by

K
(

− ∂2 +m2
)

=
(

− ∂2 +m2
)

K = 1. (8.47)

After a formal change of variable given by φ −→ φ − KJ the path integral Z[J ] is reduced to
(see next section for a rigorous treatment)

ZE[J ] = N e
1
2~

∫
d4x(JTKJ)(x) = N e

1
2~

∫
d4xd4yJ(x)K(x,y)J(y). (8.48)

The N is an unimportant normalization factor. The free 2−point function (the free propagator)
is defined by

< 0|T (Φ(x1)Φ(x2))|0 >E =

∫

Dφ φ(x1)φ(x2) e−
1
~
SE [φ]

∫

Dφ e− 1
~
SE [φ]

=
1

Z[0]
~
2 δ2ZE[J ]

δJ(x1)δJ(x2)
|J=0. (8.49)

A direct calculation leads to

< 0|T (Φ(x1)Φ(x2))|0 >E= ~K(x1, x2) (8.50)

Clearly

(

− ∂2 +m2
)

K(x, y) = δ4(x − y). (8.51)

Using translational invariance we can write

K(x, y) = K(x− y) =
∫

d4k

(2π)4
K̃(k) eik(x−y). (8.52)

By construction K̃(k) is the fourier transform of K(x, y). It is trivial to compute that

K̃(k) =
1

k2 +m2
. (8.53)

The free euclidean 2−point function is therefore given by

< 0|T (Φ(x1)Φ(x2))|0 >E=
∫

d4k

(2π)4
~

k2 +m2
eik(x−y) (8.54)

8.2.3 Lattice Regularization

The above calculation of the 2−point function of a scalar field can be made more explicit and in
fact more rigorous by working on an Euclidean lattice spacetime. The lattice provides a concrete
non-perturbative definition of the theory.

We replace the Euclidean spacetime with a lattice of points xµ = anµ where a is the lattice
spacing. In the natural units ~ = c = 1 the action is dimensionless and hence the field is of
dimension mass. We define a dimensionless field φ̂n by the relation φ̂n = aφn where φn = φ(x).
The dimensionless mass parameter is m̂2 = m2a2. The integral over spacetime will be replaced
with a sum over the points of the lattice, i.e

∫

d4x = a4
∑

n

,
∑

n

=
∑

n1

...
∑

n4

. (8.55)
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The measure is therefore given by
∫

Dφ =
∏

n
dφn ,

∏

n
=
∏

n1

...
∏

n4

. (8.56)

The derivative can be replaced either with the forward difference or with the backward difference
defined respectively by the equations

∂µφ =
φn+µ̂ − φn

a
. (8.57)

∂µφ =
φn − φn−µ̂

a
. (8.58)

The µ̂ is the unit vector in the direction xµ. The Laplacian on the lattice is defined such that

∂2φ =
1

a2

∑

µ

(

φn+µ̂ + φn−µ̂ − 2φn
)

. (8.59)

The free Euclidean action on the lattice is therefore

SE [φ̂] =
1

2

∫

d4x φ
[

− ∂2 +m2
]

φ

=
1

2

∑

n,m

φ̂nKnmφ̂m. (8.60)

Knm = −
∑

µ

[

δn+µ̂,m + δn−µ̂,m − 2δn,m

]

+ m̂2δn,m. (8.61)

The path integral on the lattice is

ZE [J ] =

∫

∏

n
dφ̂n e

−SE[φ̂]+
∑

n Ĵnφ̂n . (8.62)

The n−point functions on the lattice are given by

< 0|T (Φ̂s...Φ̂t)|0 >E =
1

Z[0]

δnZE [J ]

δĴs...δĴt
|J=0

=

∫
∏

ndφ̂n φ̂s...φ̂t e
−SE[φ̂]

∫ ∏

ndφ̂n e
−SE [φ̂]

. (8.63)

The path integral of the free scalar field on the lattice can be computed in a closed form. We
find 7

7Exercise:

• Perform explicitly the Gaussian integral

I =

∫ N
∏

i=1

dxi e−xiDijxj . (8.64)

Try to diagonalize the symmetric and invertible matrix D. It is also well advised to adopt an iǫ prescription
(i.e. make the replacement D −→ D + iǫ) in order to regularize the integral.

• Use the above result to determine the constant of normalization N in equation (8.63).
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ZE[J ] = e
1
2

∑
n,m JnK

−1
nmJm

∫

∏

n
dφ̂n e

− 1
2

∑
n,m(φ̂−JK−1)nKnm(φ̂−K−1J)m

= N e
1
2

∑
n,m JnK

−1
nmJm . (8.65)

The 2−point function is therefore given by

< 0|T (Φ̂sΦ̂t)|0 >E =
1

Z[0]

δ2ZE [J ]

δĴsδĴt
|J=0

= K−1
st . (8.66)

We fourier transform on the lattice as follows

Kst =

∫ π

−π

d4k̂

(2π)4
K̂(k) eik̂(s−t). (8.67)

K−1
st =

∫ π

−π

d4k̂

(2π)4
G(k) eik̂(s−t). (8.68)

For K̂(k) = G(k) = 1 we obtain the identity, viz

δst =

∫ π

−π

d4k̂

(2π)4
eik̂(s−t). (8.69)

Furthermore we can show that KstK
−1
tr = δsr using the equations

(2π)4δ4(k̂ − p̂) =
∑

n

ei(k̂−p̂)n. (8.70)

G(k) = K̂−1(k) (8.71)

Next we compute

Knm = −
∑

µ

[

δn+µ̂,m + δn−µ̂,m − 2δn,m

]

+ m̂2δn,m

= −
∫ π

−π

d4k̂

(2π)4
eik̂(n−m)

∑

µ

[

eik̂µ̂ + e−ik̂µ̂ − 2

]

+ m̂2

∫

d4k̂

(2π)4
eik̂(n−m). (8.72)

Thus

K̂(k) = 4
∑

µ

sin2(
k̂µ
2
) + m̂2. (8.73)

Hence

G(k) =
1

4
∑

µ sin
2(
k̂µ
2 ) + m̂2

. (8.74)
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The 2−point function is then given by

< 0|T (Φ̂sΦ̂t)|0 >E=
∫ π

−π

d4k̂

(2π)4
1

4
∑

µ sin
2(
k̂µ
2 ) + m̂2

eik̂(s−t) (8.75)

In the continuum limit a −→ 0 we scale the fields as follows Φ̂s = aφ(x), Φ̂t = aφ(y) where

x = as and y = at. The momentum is scaled as k̂ = ak and the mass is scaled as m̂2 = a2m2. In
this limit the lattice mass m̂2 goes to zero and hence the correlation lenght ξ̂ = 1/m̂ diverges. In
other words the continuum limit is realized at a critical point of a second order phase transition.
The physical 2−point function is given by

< 0|T (Φ̂(x)Φ̂(y))|0 >E = lima−→0
< 0|T (Φ̂sΦ̂t)|0 >E

a2

=

∫ ∞

−∞

d4k

(2π)4
1

k2 +m2
eik(x−y). (8.76)

This is the same result obtain from continuum considerations in the previous section.

8.3 The Effective Action

8.3.1 Formalism

We are interested in the φ4 theory on a Minkowski spacetime given by the classical action

S[φ] =

∫

d4x

[

1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4
]

. (8.77)

The quantum theory is given by the path integral

Z[J ] =

∫

Dφ e i
~
S[φ]+ i

~

∫
d4xJ(x)φ(x). (8.78)

The functional Z[J ] generates all Green functions, viz

< 0|T (Φ(x1)...Φ(xn))|0 > =
1

Z[0]

(

~

i

)n
δnZ[J ]

δJ(x1)...δJ(xn)
|J=0

=

∫

Dφ φ(x1)...φ(xn) e
i
~
S[φ]

∫

Dφ e i
~
S[φ]

. (8.79)

The path integral Z[J ] generates disconnected as well as connected graphs and it generates
reducible as well as irreducible graphs. Clearly the disconnected graphs can be obtained by
putting togther connected graphs whereas reducible graphs can be decomposed into irreducible
components. All connected Green functions can be generated from the functional W [J ] (vacuum
energy) whereas all connected and irreducible Green functions (known also as the 1−particle
irreducible) can be generated from the functional Γ[φc] (effective action). The vacuum energy
W [J ] is defined through the equation

Z[J ] = e
i
~
W [J]. (8.80)
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In order to define the effective action we introduce the notion of the classical field. This is defined
by the equation

φc(x) =
δW [J ]

δJ(x)
. (8.81)

This is a functional of J . It becomes the vacuum expectation value of the field operator Φ at
J = 0. Indeed we compute

φc(x)|J=0 =
~

i

1

Z[0]

δZ[J ]

δJ(x)
|J=0 =< 0|Φ(x)|0 > . (8.82)

The effective action Γ[φc] is the Legendre transform of W [J ] defined by

Γ[φc] =W [J ]−
∫

d4xJ(x)φc(x). (8.83)

This is the quantum analogue of the classical action S[φ]. The effective action generates all the
1−particle irreducible graphs from which the external legs have been removed. These are the
connected, irreducible and amputated graphs.

The classical equations of motion are obtained from the principal of least action applied to
the classical action S[φ] +

∫

d4xJ(x)φ(x). We obtain

δS[φ]

δφ(x)
= −J(x). (8.84)

Similarly the quantum equations of motion are obtained from the principal of least action applied
to the quantum action Γ[φc]. We obtain

δΓ[φc]

δφc(x)
= 0. (8.85)

In the presence of source this generalizes to

δΓ[φc]

δφc(x)
= −J(x). (8.86)

The proof goes as follows:

δΓ

δφc(x)
=

δW

δφc(x)
−
∫

d4y
δJ(y)

δφc(x)
φc(y)− J

=
δW

δφc(x)
−
∫

d4y
δJ(y)

δφc(x)

δW

δJ(y)
− J

= −J(x) (8.87)

A more explicit form of the quantum equation of motion can be obtained as follows. We start
from the identity

0 =

∫

Dφ ~

i

δ

δφ(x)
e

i
~
S[φ]+ i

~

∫
d4xJ(x)φ(x)

=

∫

Dφ
(

δS

δφ(x)
+ J

)

e
i
~
S[φ]+ i

~

∫
d4xJ(x)φ(x)

=

(

δS

δφ(x)φ=~

i
δ
δJ

+ J

)

e
i
~
W [J]

= e
i
~
W [J]

(

δS

δφ(x)φ= ~

i
δ
δJ + δW

δJ

+ J

)

. (8.88)
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In the last line above we have used the identity

F (∂x) e
g(x) = eg(x) F (∂xg + ∂x). (8.89)

We obtain the equation of motion

δS

δφ(x)φ= ~

i
δ
δJ + δW

δJ

= −J =
δΓ[φc]

δφc
. (8.90)

By the chaine rule we have

δ

δJ(x)
=

∫

d4y
δφc(y)

δJ(x)

δ

δφc(y)

=

∫

d4y G(2)(x, y)
δ

δφc(y)
. (8.91)

The G(2)(x, y) is the connected 2−point function in the presence of the source J(x), viz

G(2)(x, y) =
δφc(y)

δJ(x)
=

δ2W [J ]

δJ(x)δJ(y)
. (8.92)

The quantum equation of motion becomes

δS

δφ(x)φ= ~

i

∫
d4y G(2)(x,y) δ

δφc(y)
+φc(x)

= −J =
δΓ[φc]

δφc
. (8.93)

The connected n−point functions and the proper n−point vertices are defined as follows. The
connected n−point functions are defined by

G(n)(x1, ..., xn) = Gi1...in =
δnW [J ]

δJ(x1)...δJ(xn)
. (8.94)

The proper n−point vertices are defined by

Γ(n)(x1, ..., xn) = Γ,i1...in =
δnΓ[φc]

δφc(x1)...δφc(xn)
. (8.95)

These are connected 1−particle irreducible n−point functions from which the external legs are
removed (amputated).

The proper 2−point vertex Γ(2)(x, y) is the inverse of the connected 2−point functionG(2)(x, y).
Indeed we compute

∫

d4z G(2)(x, z)Γ(2)(z, y) =

∫

d4z
δφc(z)

δJ(x)

δ2Γ[φc]

δφc(z)δφc(y)

= −
∫

d4z
δφc(z)

δJ(x)

δJ(y)

δφc(z)

= −δ4(x− y). (8.96)

We write this as

GikΓ,kj = −δij. (8.97)
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We remark the identities

δGi1...in

δJin+1

= Gi1...inin+1 . (8.98)

δΓ,i1...in
δJin+1

=
δΓ,i1...in
δφkc

δφkc
δJin+1

= Γ,i1...inkG
kin+1 . (8.99)

By differentiating (8.97) with respect to Jl we obatin

GiklΓ,kj +GikΓ,kjrG
rl = 0. (8.100)

Next by multiplying with Gjs we get the 3−point connected function as

Gisl = GikGrlGjsΓ,kjr . (8.101)

Now by differentiating (8.101) with respect to Jm we obatin the 4−point connected function as

Gislm =

(

GikmGrlGjs +GikGrlmGjs +GikGrlGjsm
)

Γ,kjr +GikGrlGjsΓ,kjrnG
nm.

(8.102)

By using again (8.101) we get

Gislm = Γ,k′ j′r′G
ik

′

Gkj
′

Gmr
′

GrlGjsΓ,kjr + two permutations

+ GikGrlGjsΓ,kjrnG
nm. (8.103)

The diagrammatic representation of (8.94),(8.95),(8.97),(8.101) and (8.103) is shown on figure 1.

8.3.2 Perturbation Theory

In this section we will consider a general scalar field theory given by the action

S[φ] = Siφ
i +

1

2!
Sijφ

iφj +
1

3!
Sijkφ

iφjφk +
1

4!
Sijklφ

iφjφkφl + ... (8.104)

We need the first derivative of S[φ] with respect to φi, viz

S[φ],i = Si + Sijφ
j +

1

2!
Sijkφ

jφk +
1

3!
Sijklφ

jφkφl +
1

4!
Sijklmφ

jφkφlφm +
1

5!
Sijklmnφ

jφkφlφmφn + ...

(8.105)

Thus

Γ[φc],i = S[φ],i|φi=φci+
~

iG
ii0 δ

δφci0

= Si + Sijφ
j
c +

1

2!
Sijk

(

φjc +
~

i
Gjj0

δ

δφcj0

)

φkc

+
1

3!
Sijkl

(

φjc +
~

i
Gjj0

δ

δφcj0

)(

φkc +
~

i
Gkk0

δ

δφck0

)

φlc

+
1

4!
Sijklm

(

φjc +
~

i
Gjj0

δ

δφcj0

)(

φkc +
~

i
Gkk0

δ

δφck0

)(

φlc +
~

i
Gll0

δ

δφcl0

)

φmc

+ ... (8.106)
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We find upto the first order in ~ the result 8

Γ[φc],i = S[φ],i|φi=φci+
~

iG
ii0 δ

δφci0

= S[φc],i +
1

2

~

i
Gjk

(

Sijk + Sijklφ
l
c +

1

2
Sijklmφ

j
cφ
m
c + ...

)

+O

((

~

i

)2)

.

(8.107)

In other words

Γ[φc],i = S[φ],i|φi=φci+
~

i G
ii0 δ

δφci0

= S[φc],i +
1

2

~

i
GjkS[φc],ijk +O

((

~

i

)2)

. (8.108)

We expand

Γ = Γ0 +
~

i
Γ1 +

(

~

i

)2

Γ2 + ... (8.109)

Gij = Gij0 +
~

i
Gij1 +

(

~

i

)2

Gij2 + ... (8.110)

Immediately we find

Γ0[φc],i = S[φc],i. (8.111)

Γ1[φc],i =
1

2
Gjk0 S[φc],ijk. (8.112)

Equation (8.111) can be trivially integrated. We obatin

Γ0[φc] = S[φc]. (8.113)

Let us recall the constraint GikΓ,kj = −δij. This is equivalent to the constraints

Gik0 Γ0,kj = −δij
Gik0 Γ1,kj +Gik1 Γ0,kj = 0

Gik0 Γ2,kj +Gik1 Γ1,kj +Gik2 Γ0,kj = 0

.

. (8.114)

The first constarint gives Gik0 in terms of Γ0 = S as

Gik0 = −S−1
,ik . (8.115)

The second constarint gives Gik1 in terms of Γ0 and Γ1 as

Gij1 = Gik0 G
jl
0 Γ1kl. (8.116)

8Exercise: Verify this equation.
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The third constraint gives Gik2 in terms of Γ0, Γ1 and Γ2. Hence the calculation of the 2−point
function Gik to all orders in perturbation theory requires the calculation the effective action to
all orders in perturbation theory, viz the calculation of the Γn. In fact the knowledge of the
effective action will allow us to calculate all proper n−point vertices to any order in perturbation
theory.

We are now in a position to integrate equation (8.112). We have

Γ1[φc],i =
1

2
Gjk0

δS[φc],jk
δφci

= −1

2
Gjk0

δ(G−1
0 )jk
δφci

= −1

2

δ

δφci
ln detG−1

0 . (8.117)

Thus

Γ1[φc] = −1

2
ln detG−1

0 . (8.118)

The effective action upto the 1−loop order is

Γ = Γ0 +
1

2

~

i
ln detG0 + ... (8.119)

This is represented graphically by the first two diagrams on figure 2.

8.3.3 Analogy with Statistical Mechanics

We start by making a Wick rotation. The Euclidean vacuum energy, classical field, classical
equation of motion, effective action and quantum equation of motion are defined by

ZE [J ] = e−
1
~
WE [J]. (8.120)

φc(x)|J=0 = −δWE [J ]

δJ(x)
|J=0 =< 0|Φ(x)|0 >E . (8.121)

δSE [φ]

δφ(x)
= J(x). (8.122)

ΓE [φc] =WE [J ] +

∫

d4xJ(x)φc(x). (8.123)

δΓE [φc]

δφc(x)
= J(x). (8.124)

Let us now consider the following statistical mechanics problem. We consider a magnetic system
consisting of spins s(x). The spin energy density is H(s). The system is placed in a magnetic
field H . The partition function of the system is defined by
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Z[H ] =

∫

Ds e−β
∫
dxH(s)+β

∫
dxH(x)s(x). (8.125)

The spin s(x), the spin energy density H(s) and the magnetic field H(x) play in statistical
mechanics the role played by the scalar field φ(x), the Lagrangian density L(φ) and the source
J(x) respectively in field theory. The free energy of the magnetic system is defined through the
equation

Z[H ] = e−βF [H]. (8.126)

This means that F in statistical mechanics is the analogue of W in field theory. The magnetiza-
tion of the system is defined by

− δF
δH
|β=fixed =

1

Z

∫

dx

∫

Ds s(x) e−β
∫
dx(H(s)−Hs(x))

=

∫

dx < s(x) >

= M. (8.127)

Thus the magnetization M in statistical mechanics plays the role of the effective field −φc in
field theory. In other words φc is the order parameter in the field theory. Finally the Gibbs free
energy in statistical mechanics plays the role of the effective action Γ[φc] in field theory. Indeed
G is the Legendre transform of F given by

G = F +MH. (8.128)

Furthermore we compute

δG

δM
= H. (8.129)

The thermodynamically most stable state (the ground state) is the minimum of G. Similarly
the quantum mechanically most stable state (the vacuum) is the minimum of Γ. The thermal
fluctuations from one side correspond to quantum fluctuations on the other side.

8.4 The O(N) Model

In this section we will consider a generalization of the φ4 model known as the linear sigma model.
We are interested in the (φ2)2 theory with O(N) symmetry given by the classical action

S[φ] =

∫

d4x

[

1

2
∂µφi∂

µφi −
1

2
m2φ2i −

λ

4!
(φ2i )

2

]

. (8.130)

This classical action is of the general form studied in the previous section, viz

S[φ] =
1

2!
SIJφ

IφJ +
1

4!
SIJKLφ

IφJφKφL. (8.131)

The index I stands for i and the spacetime index x, i.e I = (i, x), J = (j, y), K = (k, z) and
L = (l, w). We have

SIJ = −δij(∆ +m2)δ4(x − y)

SIJKL = −λ
3
δijklδ

4(y − x)δ4(z − x)δ4(w − x) , δijkl = δijδkl + δikδjl + δilδjk.(8.132)
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The effective action upto the 1−loop order is

Γ[φ] = S[φ] +
1

2

~

i
ln detG0. (8.133)

The proper n−point vertex is defined now by setting φ = 0 after taking the n derivatives, viz

Γ
(n)
i1...in

(x1, ..., xn) = Γ,I1...In =
δnΓ[φ]

δφi1 (x1)...δφin(xn)
|φ=0. (8.134)

8.4.1 The 2−Point and 4−Point Proper Vertices

The proper 2−point vertex is defined by

Γ
(2)
ij (x, y) =

δ2Γ[φ]

δφi(x)δφj(y)
|φ=0

=
δ2S[φ]

δφi(x)δφj(y)
|φ=0 +

~

i

δ2Γ1[φ]

δφi(x)δφj(y)
|φ=0

= −δij(∆ +m2)δ4(x− y) + ~

i

δ2Γ1[φ]

δφi(x)δφj(y)
|φ=0. (8.135)

The one-loop correction can be computed using the result

Γ1[φ],j0k0 =
1

2
Gmn0 S[φ],j0k0mn +

1

2
Gmm0

0 Gnn0
0 S[φ],j0mnS[φ],k0m0n0 . (8.136)

We get by setting φ = 0 the result

Γ1[φ],IJ =
1

2
Gmn0 S[φ],ijmn

= −λ
6

∫

d4zd4wGmn0 (z, w)

(

δijδmn + δimδjn + δinδjm

)

δ4(y − x)δ4(z − x)δ4(w − x)

= −λ
6

(

δijG
mm
0 (x, y) + 2Gij0 (x, y)

)

δ4(x − y). (8.137)

We have

GIJ0 = −S−1
,IJ . (8.138)

Since S,IJ = SIJ and SIJ = −δijS(x, y) where S(x, y) = (∆ +m2)δ4(x − y) we can write

GIJ0 = δijG0(x, y). (8.139)

Clearly
∫

d4yG0(x, y)S(y, z) = δ4(x− y). We obtain

Γ1[φ],IJ = −λ
6
(N + 2)δijG0(x, y)δ

4(x− y). (8.140)

Now we compute the 4−point proper vertex. Clearly the first contribution will be given
precisely by the second equation of (8.132). Indeed we have

Γ
(4)
i1...i4

(x1, ..., x4) =
δ4Γ[φ]

δφi1(x1)...δφi4 (x4)
|φ=0

=
δ4S[φ]

δφi1(x1)...δφi4 (x4)
|φ=0 +

~

i

δ4Γ1[φ]

δφi1(x1)...δφi4 (x4)
|φ=0

= SI1...I4 +
~

i

δ2Γ1[φ]

δφi1(x1)...δφi4 (x4)
|φ=0. (8.141)
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In order to compute the first correction we use the identity

δGmn0

δφcl
= Gmm0

0 Gnn0
0 S[φc],lm0n0 . (8.142)

We compute

Γ1[φ],j0k0ll0 =

[

1

2
Gmm0

0 Gnn0
0 S[φ],j0k0mnS[φ],ll0m0n0 +

1

2
Gmm0

0 Gnn0
0 S[φ],j0lmnS[φ],k0l0m0n0

+
1

2
Gmm0

0 Gnn0
0 S[φ],j0l0mnS[φ],k0lm0n0

]

|φ=0.

(8.143)

Thus

δ4Γ1[φ]

δφi1 (x1)...δφi4 (x4)
|φ=0 =

1

2

(

λ

3

)2

δ4(x1 − x2)δ4(x3 − x4)
(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

G0(x1, x3)
2

+
1

2

(

λ

3

)2

δ4(x1 − x3)δ4(x2 − x4)
(

(N + 2)δi1i3δi2i4 + 2δi1i2i3i4

)

G0(x1, x2)
2

+
1

2

(

λ

3

)2

δ4(x1 − x4)δ4(x2 − x3)
(

(N + 2)δi1i4δi2i3 + 2δi1i2i3i4

)

G0(x1, x2)
2.

(8.144)

8.4.2 Momentum Space Feynman Graphs

The proper 2−point vertex upto the 1−loop order is

Γ
(2)
ij (x, y) = −δij(∆ +m2)δ4(x − y)− ~

i

λ

6
(N + 2)δijG0(x, y)δ

4(x− y). (8.145)

The proper 2−point vertex in momentum space Γ
(2)
ij (p) is defined through the equations

∫

d4xd4y Γ
(2)
ij (x, y) eipx+iky = (2π)4δ4(p+ k)Γ

(2)
ij (p, k)

= (2π)4δ4(p+ k)Γ
(2)
ij (p,−p)

= (2π)4δ4(p+ k)Γ
(2)
ij (p). (8.146)

The delta function is due to translational invariance.
From the definition S(x, y) = (∆ +m2)δ4(x − y) we have

S(x, y) =

∫

d4p

(2π)4
(−p2 +m2) eip(x−y). (8.147)

Then by using the equation
∫

d4y G0(x, y)S(y, z) = δ4(x− y) we obtain

G0(x, y) =

∫

d4p

(2π)4
1

−p2 +m2
eip(x−y). (8.148)

We get

Γ
(2)
ij (p) = −δij(−p2 +m2)− ~

i

λ

6
(N + 2)δij

∫

d4p1
(2π)4

1

−p21 +m2
. (8.149)
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The corresponding Feynman diagrams are shown on figure 4.
The proper 4−point vertex upto the 1−loop order is

Γ
(4)
i1...i4

(x1, ..., x4) = −λ
3

(

δijδkl + δikδjl + δilδjk

)

δ4(y − x)δ4(z − x)δ4(w − x) + 1

2

(

~

i

)(

λ

3

)2

×
[

δ4(x1 − x2)δ4(x3 − x4)
(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

G0(x1, x3)
2 +

δ4(x1 − x3)δ4(x2 − x4)
(

(N + 2)δi1i3δi2i4 + 2δi1i2i3i4

)

G0(x1, x2)
2 +

δ4(x1 − x4)δ4(x2 − x3)
(

(N + 2)δi1i4δi2i3 + 2δi1i2i3i4

)

G0(x1, x2)
2

]

.

(8.150)

The proper 4−point vertex in momentum space Γ
(4)
i1...i4

(p1...p4) is defined through the equation

∫

d4x1...d
4x4 Γ

(4)
i1...i4

(x1, ..., x4) e
ip1x1+...+ip4x4 = (2π)4δ4(p1 + ...+ p4)Γ

(2)
i1...i4

(p1, ..., p4).

(8.151)

We find (with p12 = p1 + p2 and p14 = p1 + p4, etc)

Γ
(4)
i1...i4

(p1, ..., p4) = −λ
3
δi1i2i3i4

+
~

i

(

λ

3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)∫

k

1

(−k2 +m2)(−(p12 − k)2 +m2)

+ 2 permutations

]

. (8.152)

The corresponding Feynman diagrams are shown on figure 5.

8.4.3 Cut-off Regularization

At the one-loop order we have then

Γ
(2)
ij (p) = −δij(−p2 +m2)− ~

i

λ

6
(N + 2)δijI(m

2). (8.153)

Γ
(4)
i1...i4

(p1, ..., p4) = −λ
3
δi1i2i3i4 +

~

i

(

λ

3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

J(p212,m
2)

+ 2 permutations

]

, (8.154)

where

∆(k) =
1

−k2 +m2
, I(m2) =

∫

d4k

(2π)4
∆(k) , J(p212,m

2) =

∫

d4k

(2π)4
∆(k)∆(p12 − k).

(8.155)

It is not difficult to convince ourselves that the first integral I(m2) diverges quadratically whereas
the second integral J(p212,m

2) diverges logarithmically. To see this more carefully it is better we
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Wick rotate to Euclidean signature. Formally this is done by writing k0 = ik4 which is consistent
with x0 = −ix4. As a consequence we replace k2 = k20−~k2 with −k24−~k2 = −k2. The Euclidean
expressions are

Γ
(2)
ij (p) = δij(p

2 +m2) + ~
λ

6
(N + 2)δijI(m

2). (8.156)

Γ
(4)
i1...i4

(p1, ..., p4) =
λ

3
δi1i2i3i4 − ~

(

λ

3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

J(p212,m
2)

+ 2 permutations

]

, (8.157)

where now

∆(k) =
1

k2 +m2
, I(m2) =

∫

d4k

(2π)4
∆(k) , J(p212,m

2) =

∫

d4k

(2π)4
∆(k)∆(p12 − k). (8.158)

Explicitly we have

I(m2) =

∫ ∞

0

dαe−αm
2

∫

d4k

(2π)4
e−αk

2

=

∫ ∞

0

dαe−αm
2 1

8π2

∫

k3dke−αk
2

=
1

16π2

∫ ∞

0

dα
e−αm

2

α2
. (8.159)

To calculate the divergences we need to introduce a cut-off Λ. In principle we should use the
regularized propagator

∆(k,Λ) =
e−

k2

Λ2

k2 +m2
. (8.160)

Alternatively we can introduce the cut-off Λ as follows

I(m2,Λ) =
1

16π2

∫ ∞

1
Λ2

dα
e−αm

2

α2

=
1

16π2

(

Λ2 −m2

∫ ∞

1
Λ2

dα
e−αm

2

α

)

=
1

16π2

(

Λ2 +m2Ei(−m
2

Λ2
)

)

. (8.161)

This diverges quadratically. The exponential-integral function is defined by

Ei(x) =

∫ x

−∞

et

t
dt. (8.162)

Also by using the same method we compute

J(p212,m
2) =

∫

dα1dα2 e
−m2(α1+α2)− α1α2

α1+α2
p212

∫

d4k

(2π)4
e−(α1+α2)k

2

=
1

(4π)2

∫

dα1dα2
e
−m2(α1+α2)− α1α2

α1+α2
p212

(α1 + α2)2
. (8.163)
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We introduce the cut-off Λ as follows

J(p212,m
2,Λ) =

1

(4π)2

∫

1
Λ2

dα1dα2
e
−m2(α1+α2)− α1α2

α1+α2
p212

(α1 + αa2)2

=
1

(4π)2

∫

1

dxdx2
e−

m2

Λ2 (x+x2)− xx2
x+x2

p212
Λ2

(x+ x2)2
. (8.164)

The integral can be rewritten as 2 times the integral over the symmetric region x2 > x. We can
also perform the change of variables x2 = xy to obtain

J(p212,m
2,Λ) =

2

(4π)2

∫

1

dx

x

∫

1

dy

(1 + y)2
e−

m2

Λ2 x(1+y)− xy
1+y

p212
Λ2

=
2

(4π)2

∫

1

dx

x

∫ 1
2

0

dρ e−x
(

a
ρ+b(1−ρ)

)

. (8.165)

In above a = m2

Λ2 and b =
p212
Λ2 . We have

J(p212,m
2,Λ) =

2

(4π)2

∫ 1
2

0

dρ

∫ ∞

1

dx

x
e−x
(

a
ρ+b(1−ρ)

)

= − 1

8π2

∫ 1
2

0

dρ Ei

(

− a

ρ
− (1− ρ)b

)

. (8.166)

The exponential-integral function is such that

Ei

(

− a

ρ
− (1 − ρ)b

)

= C+ ln

(

a

ρ
+ (1− ρ)b

)

+

∫ a
ρ+(1−ρ)b

0

dt
e−t − 1

t
. (8.167)

The last term leads to zero in the limit Λ −→∞ since a, b −→ 0 in this limit. The exponential-
integral function becomes

Ei

(

− (1 − ρ)b− a

ρ

)

= C+ ln

(

√

a+
b

4
+

√

b

4
−
√
bρ

)

+ ln

(

√

a+
b

4
−
√

b

4
+
√
bρ

)

− ln ρ.

(8.168)

By using the integral
∫ 1

0
dρ ln(A+Bρ) = 1

B

(

(A+B) ln(A+B)−A lnA

)

− 1 we find

∫ 1

0

dρ Ei

(

− (1− ρ)b− a

ρ

)

= C+ ln a+

√

1 +
4a

b
ln

(

1 +
b

2a
+

1

2a

√

b(b+ 4a)

)

+ 1.

(8.169)

Hence we have

−
∫ 1

0

dρ Ei

(

− (1− ρ)b− a

ρ

)

= − ln a+ ... = ln
Λ2

m2
+ ... (8.170)

Equivalently

J(p212,m
2,Λ) =

1

16π2
ln

Λ2

2m2
+ ... (8.171)

This is the logarithmic divergence.
In summary we have found two divergences at one-loop order. A quadratic divergence in the

proper 2−point vertex and a logarithmic divergence in the proper 4−point vertex. All higher
n−point vertices are finite in the limit Λ −→∞.
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8.4.4 Renormalization at 1−Loop

To renormalize the theory, i.e. to remove the above two divergences we will assume that:

• 1) The theory comes with a cut-off Λ so that the propagator of the theory is actually given
by (8.160).

• 2) The parameters of the model m2 and λ which are called from now on bare parameters
will be assumed to depend implicitly on the cut-off Λ.

• 3) The renormalized (physical) parameters of the theory m2
R and λR will be determined

from specific conditions imposed on the 2− and 4−proper vertices.

In the limit Λ −→ ∞ the renormalized parameters remain finite while the bare parameters
diverge in such a way that the divergences coming from loop integrals are canceled. In this way
the 2− and 4−proper vertices become finite in the large cut-off limit Λ −→∞ .

Since only two vertices are divergent we will only need two conditions to be imposed. We
choose the physical mass m2

R to correspond to the zero momentum value of the proper 2−point
vertex, viz

Γ
(2)
ij (0) = δijm

2
R = δijm

2 + ~
λ

6
(N + 2)δijI(m

2,Λ). (8.172)

We also choose the physical coupling constant λ2R to correspond to the zero momentum value of
the proper 4−point vertex, viz

Γ
(4)
i1...i4

(0, ..., 0) =
λR
3
δi1i2i3i4 =

λ

3
δi1i2i3i4 − ~

(

λ

3

)2
N + 8

2
δi1i2i3i4J(0,m

2,Λ).

(8.173)

We solve for the bare parameters in terms of the renormalized parameters we find

m2 = m2
R − ~

λR
6
(N + 2)I(m2

R,Λ). (8.174)

λ

3
=
λR
3

+ ~

(

λR
3

)2
N + 8

2
J(0,m2

R,Λ). (8.175)

The 2− and 4−point vertices in terms of the renormalized parameters are

Γ
(2)
ij (p) = δij(p

2 +m2
R). (8.176)

Γ
(4)
i1...i4

(p1, ..., p4) =
λR
3
δi1i2i3i4 − ~

(

λR
3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)(

J(p212,m
2
R,Λ)− J(0,m2

R,Λ)

)

+ 2 permutations

]

. (8.177)
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8.5 Two-Loop Calculations

8.5.1 The Effective Action at 2−Loop

By extending equation (8.107) to the second order in ~ we get 9

Γ[φc],i = O(1) +O

(

~

i

)

+
1

6

(

~

i

)2[

Gjj0
δGkl

δφcj0

(

Sijkl + Sijklmφ
m
c +

1

2
Sijklmnφ

m
c φ

n
c + ...

)

+
3

4

(

Sijklm + Sijklmnφ
n
c + ...

)

GjkGlm
]

+O

((

~

i

)3)

. (8.178)

Equivalently

Γ[φc],i = O(1) +O

(

~

i

)

+
1

6

(

~

i

)2[

Gjj0
δGkl

δφcj0
S[φc],ijkl +

3

4
S[φc],ijklmG

jkGlm
]

+O

((

~

i

)3)

.

(8.179)

We use the identity

δGkl

δφcj0
=
δGkl

δJm

δJm
δφcj0

= −GklmΓ,mj0

= −Gkk0Gll0Gmm0Γ,k0l0m0Γ,mj0 . (8.180)

Thus

Γ[φc],i = O(1) +O

(

~

i

)

+
1

6

(

~

i

)2[

−Gjj0Gkk0Gll0Gmm0Γ,k0l0m0Γ,mj0S[φc],ijkl

+
3

4
S[φc],ijklmG

jkGlm
]

+O

((

~

i

)3)

. (8.181)

By substituting the expansions (8.109) and (8.110) we get at the second order in ~ the equation

Γ2[φc],i =
1

2
Gjk1 S[φc],ijk +

1

6

[

−Gjj00 Gkk00 Gll00 Gmm0
0 Γ0,k0l0m0Γ0,mj0S[φc],ijkl

+
3

4
S[φc],ijklmG

jk
0 G

lm
0

]

. (8.182)

Next we compute Gij1 . Therefore we must determine Γ1kl. By differentiating equation (8.112)
with respect to φcl we get

Γ1[φc],kl =
1

2
Gmn0 S[φc],klmn +

1

2

δGmn0

δφcl
S[φc],kmn. (8.183)

By using the identity

δGmn0

δφcl
= Gmm0

0 Gnn0
0 S[φc],lm0n0 . (8.184)

9Exercise:Verify this equation.
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We get

Γ1[φc],j0k0 =
1

2
Gmn0 S[φc],j0k0mn +

1

2
Gmm0

0 Gnn0
0 S[φc],j0mnS[φc],k0m0n0 . (8.185)

Hence

Gjk1 = Gjj00 Gkk00

(

1

2
Gmn0 S[φc],j0k0mn +

1

2
Gmm0

0 Gnn0
0 S[φc],j0mnS[φc],k0m0n0

)

. (8.186)

Equation (8.182) becomes

Γ2[φc],i =
1

2
Gjj00 Gkk00

[

1

2
Gmn0 S[φc],j0k0mn +

1

2
Gmm0

0 Gnn0
0 S[φc],j0mnS[φc],k0m0n0

]

S[φc],ijk

+
1

6

[

−Gjj00 Gkk00 Gll00 Gmm0
0 S[φc],k0l0m0S[φc],mj0S[φc],ijkl +

3

4
S[φc],ijklmG

jk
0 G

lm
0

]

.

(8.187)

Integration of this equation yields 10

Γ2[φc] =
1

8
S[φc],ijklG

ij
0 G

kl
0 +

1

12
S[φc],ikmG

ij
0 G

kl
0 G

mn
0 S[φc],jln. (8.188)

The effective action upto the 2−loop order is

Γ = Γ0 +
1

2

~

i
ln detG0 +

(

~

i

)2(
1

8
S[φc],ijklG

ij
0 G

kl
0 +

1

12
S[φc],ikmG

ij
0 G

kl
0 G

mn
0 S[φc],jln

)

+ ...

(8.189)

This is represented graphically on figure 2.

8.5.2 The Linear Sigma Model at 2−Loop

The proper 2−point vertex upto 2−loop is given by 11

Γ
(2)
ij (x, y) = O(1) +O

(

~

i

)

+

(

~

i

)2
δ2Γ2[φ]

δφi(x)δφj(y)
|φ=0. (8.190)

The 2−loop correction can be computed using the result

Γ2[φ],i =
1

2
Gjj00 Gkk00

[

1

2
Gmn0 S[φ],j0k0mn +

1

2
Gmm0

0 Gnn0
0 S[φ],j0mnS[φ],k0m0n0

]

S[φ],ijk

+
1

6

[

−Gjj00 Gkk00 Gll00 Gmm0

0 S[φ],k0l0m0S[φ],mj0S[φ],ijkl +
3

4
S[φ],ijklmG

jk
0 G

lm
0

]

.

(8.191)

By setting φ = 0 we obtain

Γ2[φ],IJ =
1

4
Gi0j00 Gkk00 Gmn0 S[φ],j0k0mnS[φ],ii0kj −

1

6
Gi0j00 Gkk00 Gll00 Gmm0

0 S[φ],k0l0m0jS[φ],mj0S[φ],ii0kl

=
1

4

(

λ

3

)2

(N + 2)2δijδ
4(x− y)G0(w,w)

∫

d4zG0(x, z)G0(y, z) +
N + 2

2

(

λ

3

)2

δijG0(x, y)
3.

(8.192)

10Exercise:verify this result.
11Exercise: Verify all equations of this section.
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We have then

Γ
(2)
ij (x, y) = O(1) +O

(

~

i

)

+

(

~

i

)2(
λ

3

)2
N + 2

2
δij

(

N + 2

2
δ4(x− y)G0(w,w)

∫

d4zG0(x, z)G0(y, z)

+ G0(x, y)
3

)

. (8.193)

Next we write this result in momentum space. The proper 2−point vertex in momentum space

Γ
(2)
ij (p) is defined through the equations

∫

d4xd4y Γ
(2)
ij (x, y) eipx+iky = (2π)4δ4(p+ k)Γ

(2)
ij (p). (8.194)

We compute immediately

Γ
(2)
ij (p) = O(1) +O

(

~

i

)

+

(

~

i

)2(
λ

3

)2
N + 2

2
δij

[

N + 2

2

∫

d4p1
(2π)4

d4p2
(2π)4

1

(−p21 +m2)(−p22 +m2)2

+

∫

d4p1
(2π)4

d4p2
(2π)4

1

(−p21 +m2)(−p22 +m2)(−(p− p1 − p2)2 +m2)

]

.

(8.195)

The corresponding Feynman diagrams are shown on figure 4.

The 4−point proper vertex upto 2−loop is given by

Γ
(4)
i1...i4

(x1, ..., x4) = O(1) +O

(

~

i

)

+

(

~

i

)2
δ2Γ2[φ]

δφi1 (x1)...δφi4 (x4)
|φ=0. (8.196)

We compute

Γ2[φ],ijkl |φ=0 =
1

2
Gj1n1

0 Gj0n0

0 Gk1k00 Gm1m0
0 S,j0k0m1m0

[

S,ilj1k1S,jkn1n0 + S,ikj1k1S,ljn1n0 + S,ijj1k1S,kln1n0

]

+
1

4
Gj1j00 Gk1k00 Gm1m0

0 Gn1n0
0 S,j0k0m1n1

[

S,ilj1k1S,jkm0n0 + S,ikj1k1S,jlm0n0 + S,ijj1k1S,klm0n0

]

+
1

2
Gj1j00 Gk1k00 Gm1m0

0 Gn1n0
0

[

S,ilj1k1S,jj0m1n1S,kk0m0n0 + S,ikj1k1S,jj0m1n1S,lk0m0n0

+ S,ijj1k1S,kj0m1n1S,lk0m0n0 + S,ij1k1n1S,jkj0m0S,lm1k0n0 + S,ij1k1n1S,klj0m0S,jm1k0n0

+ S,ij1k1n1S,jlj0m0S,km1k0n0

]

. (8.197)
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Thus

δ4Γ2[φ]

δφi1 (x1)...δφi4 (x4)
|φ=0 = −1

2

(

λ

3

)3[

(N + 2)

(

(N + 2)δi1i4δi2i3 + 2δi1i2i3i4

)

δ4(x1 − x4)δ4(x2 − x3)

× G0(x1, x2)

∫

d4zG0(z, z)G0(x1, z)G0(x2, z) + 2 permutations

]

− 1

4

(

λ

3

)3[(

(N + 2)(N + 4)δi1i4δi2i3 + 4δi1i2i3i4

)

δ4(x1 − x4)δ4(x2 − x3)

×
∫

d4zG0(x1, z)
2G0(x2, z)

2 + 2 permutations

]

− 1

2

(

λ

3

)3[(

2(N + 2)δi1i4δi2i3 + (N + 6)δi1i2i3i4

)

δ4(x1 − x4)

× G0(x1, x2)G0(x1, x3)G0(x2, x3)
2 + 5 permutations

]

. (8.198)

The proper 4−point vertex in momentum space Γ
(4)
i1...i4

(p1...p4) is defined through the equation
∫

d4x1...d
4x4 Γ

(4)
i1...i4

(x1, ..., x4) e
ip1x1+...+ip4x4 = (2π)4δ4(p1 + ...+ p4)Γ

(2)
i1...i4

(p1, ..., p4).

(8.199)

Thus we obtain in momentum space (with p12 = p1 + p2 and p14 = p1 + p4, etc)

Γ
(4)
i1...i4

(p1, ..., p4) = O(1) +O

(

~

i

)

−
(

~

i

)2
N + 2

2

(

λ

3

)3[(

(N + 2)δi1i4δi2i3 + 2δi1i2i3i4

)∫

l

1

−l2 +m2

×
∫

k

1

(−k2 +m2)2(−(p14 − k)2 +m2)
+ 2 permutations

]

−
(

~

i

)2
1

4

(

λ

3

)3[(

(N + 2)(N + 4)δi1i4δi2i3 + 4δi1i2i3i4

)∫

l

1

(−l2 +m2)(−(p14 − l)2 +m2)

×
∫

k

1

(−k2 +m2)(−(p14 − k)2 +m2)
+ 2 permutations

]

−
(

~

i

)2
1

2

(

λ

3

)3[(

2(N + 2)δi1i4δi2i3 + (N + 6)δi1i2i3i4

)∫

l

1

(−l2 +m2)(−(p14 − l)2 +m2)

×
∫

k

1

(−k2 +m2)(−(l − k + p2)2 +m2)
+ 5 permutations

]

. (8.200)

The corresponding Feynman diagrams are shown on figure 5.

8.5.3 The 2−Loop Renormalization of the 2−Point Proper Vertex

The Euclidean expression of the proper 2−point vertex at 2−loop is given by

Γ
(2)
ij (p) = δij(p

2 +m2) + ~
λ

6
(N + 2)δijI(m

2)− ~
2

(

λ

3

)2
N + 2

2
δij

[

N + 2

2
I(m2)J(0,m2) +K(p2,m2)

]

.

(8.201)
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K(p2,m2) =

∫

d4k

(2π)4
d4l

(2π)4
∆(k)∆(l)∆(k + l − p). (8.202)

We compute

K(p2,m2) =

∫

dα1dα2dα3 e
−m2(α1+α2+α3)− α1α2α3

α1α2+α1α3+α2α3
p2
∫

d4k

(2π)4
d4l

(2π)4
e−(α1+α3)k

2

e−
α1α2+α1α3+α2α3

α1+α3
l2

=
1

(4π)4

∫

dα1dα2dα3
e−m

2(α1+α2+α3)− α1α2α3
α1α2+α1α3+α2α3

p2

(α1α2 + α1α3 + α2α3)2
. (8.203)

We have used the result
∫

d4k

(2π)4
e−ak

2

=
1

16π2a2
. (8.204)

We introduce the cut-off Λ as follows

K(p2,m2) =
1

(4π)4

∫

1
Λ2

dα1dα2dα3
e−m

2(α1+α2+α3)− α1α2α3
α1α2+α1α3+α2α3

p2

(α1α2 + α1α3 + α2α3)2

=
m2

(4π)4

∫

m2

Λ2

dx1dx2dx3
e−x1−x2−x3− x1x2x3

x1x2+x1x3+x2x3

p2

m2

(x1x2 + x1x3 + x2x3)2

=
m2

(4π)4
(A+B

p2

m2
+ C(

p2

m2
)2 + ...). (8.205)

We have

A =

∫

m2

Λ2

dx1dx2dx3
e−x1−x2−x3

(x1x2 + x1x3 + x2x3)2

=
Λ2

m2

∫

1

dxdx2dx3
e−

m2

Λ2 (x+x2+x3)

(xx2 + xx3 + x2x3)2
. (8.206)

The integrand is symmetric in the three variables x, x2 and x3. The integral can be rewritten
as 6 times the integral over the symmetric region x3 > x2 > x. We can also perform the change
of variables x2 = xy and x3 = xyz, i.e dx2dx3 = x2ydydz to obtain

A =
Λ2

m2

∫

1

dx

x2
dy

y
dz

e−
m2

Λ2 x(1+y+yz)

(1 + z + yz)2

= 6

∫ ∞

m2

Λ2

dt

t2
e−tψ(t). (8.207)

ψ(t) =

∫ ∞

1

dy

y

∫ ∞

1

dz
e−ty(1+z)

(1 + z + yz)2

=

∫ ∞

1

dy

y(y + 1)
e−t

y2

y+1

∫ ∞

y+2

dz

z2
e−z

yt
y+1

=

∫ ∞

1

dy

y(y + 1)
e−t

y2

y+1

(

e−t
y(y+2)
y+1

y + 2
+

yt

y + 1
Ei(−y(y + 2)t

y + 1

)

. (8.208)
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The most important contribution in the limit Λ −→∞ comes from the region t ∼ 0. Thus near
t = 0 we have

ψ(t) =

∫ ∞

1

dy

y(y + 1)

(

e−2ty

y + 2
+

yt

y + 1
e−t

y2

y+1

(

C+ ln t+ ln
y(y + 2)

y + 1
+O(t)

))

= ψ0 + ψ1t ln t+ ψ2t+ ... (8.209)

ψ0 =

∫ ∞

1

dy

y(y + 1)(y + 2)
=

1

2
ln

4

3
. (8.210)

ψ1 =

∫ ∞

1

dy

(y + 1)2
=

1

2
. (8.211)

ψ2 = −2
∫ ∞

1

dy

(y + 1)(y + 2)
+C

∫ ∞

1

dy

(y + 1)2
+

∫ ∞

1

dy

(y + 1)2
ln
y(y + 2)

y + 1

= 2(ln 2− ln 3) +
C

2
+

∫ ∞

2

dy

y2
ln
y2 − 1

y

= 2(ln 2− ln 3) +
C

2
− 1

2
+

3

2
ln 3− 1

2
ln 2

=
1

2
(C− 1− ln 3 + 3 ln 2). (8.212)

We have then

A = 6ψ0

∫

m2

Λ2

dt

t2
e−t + 6ψ1

∫

m2

Λ2

dt

t
e−t ln t+ 6ψ2

∫

m2

Λ2

dt

t
e−t + ...

= 6ψ0
Λ2

m2
+ 6ψ1

∫

m2

Λ2

dt

t
e−t ln t+ 6(ψ2 − ψ0)

∫

m2

Λ2

dt

t
e−t + ...

= 6ψ0
Λ2

m2
+ 6ψ1

∫

m2

Λ2

dt

t
e−t ln t+ 6(ψ2 − ψ0)

m2

Λ2

∫

1

dt ln t e−
m2

Λ2 t + ...

= 6ψ0
Λ2

m2
− 3ψ1

(

ln
Λ2

m2

)2

+ 3ψ1

∫

m2

Λ2

dt e−t(ln t)2 − 6(ψ2 − ψ0)Ei(−
m2

Λ2
) + ...

= 6ψ0
Λ2

m2
− 3ψ1

(

ln
Λ2

m2

)2

+ 6(ψ2 − ψ0) ln(
Λ2

m2
) + ...

(8.213)
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Now we compute

B = −
∫

m2

Λ2

x1x2x3dx1dx2dx3
e−x1−x2−x3

(x1x2 + x1x3 + x2x3)3

= −
∫

1

xx2x3dxdx2dx3
e−

m2

Λ2 (x+x2+x3)

(xx2 + xx3 + x2x3)3

= −6
∫ ∞

1

xdx

∫ ∞

x

x2dx2

∫ ∞

x2

x3dx3
e−

m2

Λ2 (x+x2+x3)

(xx2 + xx3 + x2x3)3

= −6
∫ ∞

1

dx

x

∫ ∞

1

dy

∫ ∞

1

zdz
e−

m2

Λ2 x(1+y+yz)

(1 + z + yz)3

= −6
∫ ∞

m2

Λ2

dt

t
e−tψ̃(t). (8.214)

ψ̃(t) =

∫ ∞

1

dy

∫ ∞

1

zdz
e−ty(1+z)

(1 + z + yz)3
. (8.215)

It is not difficult to convince ourselves that only the constant part of ψ̃ leads to a divergence, i.e
ψ̃(0) = 1

12 . We get

B = −6
∫ ∞

m2

Λ2

dt

t
e−tψ̃(0) = −6ψ̃(0) ln Λ2

m2
. (8.216)

Now we compute

C =
1

2

∫

m2

Λ2

(x1x2x3)
2dx1dx2dx3

e−x1−x2−x3

(x1x2 + x1x3 + x2x3)4

=
m2

Λ2

∫

1

(xx2x3)
2dxdx2dx3

e−
m2

Λ2 (x+x2+x3)

(xx2 + xx3 + x2x3)4

= 6
m2

Λ2

∫ ∞

1

x2dx

∫ ∞

x

x22dx2

∫ ∞

x2

x23dx3
e−

m2

Λ2 (x+x2+x3)

(xx2 + xx3 + x2x3)4

= 6
m2

Λ2

∫ ∞

1

dx

∫ ∞

1

ydy

∫ ∞

1

z2dz
e−

m2

Λ2 x(1+y+yz)

(1 + z + yz)4

= 6

∫ ∞

m2

Λ2

dt e−t
∫ ∞

1

ydy

∫ ∞

1

z2dz
e−ty(1+z)

(1 + z + yz)4
. (8.217)

This integral is well defined in the limit Λ −→∞. Furthermore it is positive definite.
In summay we have found that both K(0,m2) and K

′

(0,m2) are divergent in the limit

Λ −→ ∞, i.e K(p2,m2)−K(0,m2) is divergent at the two-loop order. This means that Γ
(2)
ij (p)

and dΓ
(2)
ij (p)/dp2 are divergent at p2 = 0 and hence in order to renormlaize the 2−point proper

vertex Γ
(2)
ij (p) at the two-loop order we must impose two conditions on it. The first condition

is the same as before namely we require that the value of the 2−point proper vertex at zero
momentum is precisely the physical or renormalized mass. The second condition is essentially a

renormalization of the coefficient of the kinetic term, i.e dΓ
(2)
ij (p)/dp2. Before we can write these
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two conditions we introduce a renormalization of the scalar field φ known also as wave function
renormalization given by

φ =
√
ZφR. (8.218)

This induces a renormalization of the n−point proper vertices. Indeed the effective action be-
comes

Γ[φ] =
∑

n=0

1

n!
Γ
(n)
i1...in

(x1, ..., xn)φi1 (x1)...φin(xn)

=
∑

n=0

1

n!
Γ
(n)
i1...inR

(x1, ..., xn)φi1R(x1)...φinR(xn). (8.219)

The renormalized n−point proper vertex Γ
(n)
i1...inR

is given in terms of the bare n−point proper

vertex Γ
(n)
i1...in

by

Γ
(n)
i1...inR

(x1, ..., xn) = Z
n
2 Γ

(n)
i1...in

(x1, ..., xn). (8.220)

Thus the renormalized 2−point proper vertex Γ
(2)
ijR(p) in momentum space is given by

Γ
(2)
ijR(p) = ZΓ

(2)
ij (p). (8.221)

Now we impose on the renormalized 2−point proper vertex Γ
(2)
ijR(p) the two conditions given by

Γ
(2)
ijR(p)|p=0 = ZΓ

(2)
ij (p)|p=0 = δijm

2
R. (8.222)

d

dp2
Γ
(2)
ijR(p)|p=0 = Z

d

dp2
Γ
(2)
ij (p)|p=0 = δij . (8.223)

The second condition yields immediately

Z =
1

1− ~2
(

λ
3

)2N+2
2 K ′(0,m2,Λ)

= 1 + ~
2

(

λ

3

)2
N + 2

2
K

′

(0,m2,Λ). (8.224)

The first condition gives then

m2 = m2
R − ~

λ

6
(N + 2)I(m2,Λ) + ~

2

(

λ

3

)2
N + 2

2

[

N + 2

2
I(m2,Λ)J(0,m2,Λ) +K(0,m2,Λ)

− m2K
′

(0,m2,Λ)

]

= m2
R − ~

λR
6
(N + 2)I(m2,Λ) + ~

2

(

λR
3

)2
N + 2

2

[

− 3I(m2
R,Λ)J(0,m

2
R,Λ) +K(0,m2

R,Λ)

− m2
RK

′

(0,m2
R,Λ)

]

= m2
R − ~

λR
6
(N + 2)I(m2

R,Λ) + ~
2

(

λR
3

)2
N + 2

2

[

− N + 8

2
I(m2

R,Λ)J(0,m
2
R,Λ) +K(0,m2

R,Λ)

− m2
RK

′

(0,m2
R,Λ)

]

. (8.225)
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In above we have used the relation between the bare coupling constant λ and the renormalized
coupling constant λR at one-loop given by equation (8.175). We have also used the relation
I(m2,Λ) = I(m2

R,Λ) + ~
λR

6 (N + 2)I(m2,Λ)J(0,m2
R,Λ) where we have assumed that m2 =

m2
R − ~

λR

6 (N + 2)I(m2,Λ). We get therefore the 2−point proper vertex

Γ
(2)
ijR(p) = δij(p

2 +m2
R)− ~

2

(

λR
3

)2
N + 2

2
δij

(

K(p2,m2
R,Λ)−K(0,m2

R,Λ)− p2K
′

(0,m2
R,Λ)

)

.

(8.226)

8.5.4 The 2−Loop Renormalization of the 4−Point Proper Vertex

The Euclidean expression of the proper 4−point vertex at 2−loop is given by

Γ
(4)
i1...i4

(p1, ..., p4) =
λ

3
δi1i2i3i4 − ~

(

λ

3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

J(p212,m
2)

+ 2 permutations

]

+ ~
2

(

λ

3

)3
N + 2

2

[(

(N + 2)δi1i4δi2i3 + 2δi1i2i3i4

)

I(m2)L(p214,m
2)

+ 2 permutations

]

+ ~
2

(

λ

3

)3
1

4

[(

(N + 2)(N + 4)δi1i4δi2i3 + 4δi1i2i3i4

)

J(p214,m
2)2

+ 2 permutations

]

+ ~
2

(

λ

3

)3
1

2

[(

2(N + 2)δi1i4δi2i3 + (N + 6)δi1i2i3i4

)

M(p214, p
2
2,m

2)

+ 5 permutations

]

. (8.227)

L(p214,m
2) =

∫

d4k

(2π)4
∆(k)2∆(k − p14). (8.228)

M(p214, p
2
2,m

2) =

∫

d4l

(2π)4
d4k

(2π)4
∆(l)∆(k)∆(l − p14)∆(l − k + p2). (8.229)

For simplicity we will not write explicitly the dependence on the cut-off Λ in the following. The

renormalized 4−point proper vertex Γ
(4)
i1i2i3i4R

(p1, p2, p3, p4) in momentum space is given by

Γ
(4)
i1i2i3i4R

(p1, p2, p3, p4) = Z2Γ
(4)
i1i2i3i4

(p1, p2, p3, p4). (8.230)

We will impose the renormalization condition

Γ
(4)
i1...i4R

(0, ..., 0) =
λR
3
δi1i2i3i4 . (8.231)
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We introduce a new renormalization constant Zg defined by

ZgΓ
(4)
i1...i4

(0, ..., 0) =
λ

3
δi1i2i3i4 . (8.232)

Equivalently this means

Zg
Z2

λR = λ. (8.233)

The constant Z is already known at two-loop. The constant Zg at two-loop is computed to be

Zg = 1 + ~
λ

6
(N + 8)J(0,m2)− ~

2

(

λ

3

)2[
(N + 2)(N + 8)

2
I(m2)L(0,m2)

+
(N + 2)(N + 4) + 12

4
J(0,m2)2 + (5N + 22)M(0, 0,m2)

]

. (8.234)

We compute

Γ
(4)
i1i2i3i4R

(p1, p2, p3, p4) = Z2Γ
(4)
i1i2i3i4

(p1, p2, p3, p4)

= Zg
λR
3
δi1i2i3i4 + Γ

(4)
i1i2i3i4

(p1, p2, p3, p4)|1−loop + Γ
(4)
i1i2i3i4

(p1, p2, p3, p4)|2−loop.

(8.235)

By using the relation J(p212,m
2) = J(p212,m

2
R) + ~

λR

3 (N + 2)I(m2
R)L(p

2
12,m

2
R) we compute

Zg
λR
3
δi1i2i3i4 =

λR
3
δi1i2i3i4 + ~

(

λR
3

)2
N + 8

2
δi1i2i3i4J(0,m

2
R)− ~

2

(

λR
3

)3

δi1i2i3i4

[

×
(

(N + 2)(N + 4) + 12

4
− (N + 8)2

2

)

J(0,m2
R)

2 + (5N + 22)M(0, 0,m2
R)

]

.

(8.236)

Γ
(4)
i1i2i3i4

(p1, p2, p3, p4)|1−loop = −~
(

λR
3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

J(p212,m
2
R)

+ 2 permutations

]

− ~
2

(

λR
3

)3
N + 8

2
J(0,m2

R)

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

J(p212,m
2
R)

+ 2 permutations

]

− ~
2

(

λR
3

)3
N + 2

2
I(m2

R)

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

L(p212,m
2
R)

+ 2 permutations

]

. (8.237)
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We then find

Γ
(4)
i1...i4R

(p1, ..., p4) =
λR
3
δi1i2i3i4 − ~

(

λR
3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

(J(p212,m
2
R)− J(0,m2

R))

+ 2 permutations

]

+ ~
2

(

λR
3

)3
1

4

[(

(N + 2)(N + 4)δi1i4δi2i3 + 4δi1i2i3i4

)

(J(p214,m
2
R)− J(0,m2

R))
2

+ 2 permutations

]

− ~
2

(

λR
3

)3[(

2(N + 2)δi1i4δi2i3 + (N + 6)δi1i2i3i4

)

J(0,m2
R)(J(p

2
14,m

2
R)− J(0,m2

R))

+ 2 permutations

]

+ ~
2

(

λR
3

)3
1

2

[(

2(N + 2)δi1i4δi2i3 + (N + 6)δi1i2i3i4

)

(M(p214, p
2
2,m

2
R)−M(0, 0,m2

R))

+ 5 permutations

]

. (8.238)

In the above last equation the combinationM(p214, p
2
2,m

2
R)−M(0, 0,m2

R)−J(0,m2
R)(J(p

2
14,m

2
R)−

J(0,m2
R)) must be finite in the limit Λ −→∞ 12.

8.6 Renormalized Perturbation Theory

The (φ2)2 theory with O(N) symmetry studied in this chapter is given by the action

S =

∫

d4x

[

1

2
∂µφi∂

µφi −
1

2
m2φ2i −

λ

4!
(φ2i )

2

]

. (8.239)

This is called a bare action, the fields φi are the bare fields and the parameters m2 and λ are
the bare coupling constants of the theory.

Let us recall that the free 2−point function < 0|T (φ̂i,in(x)φ̂j,in(y))|0 > is the probability
amplitude for a free scalar particle to propagate from a spacetime point y to a spacetime x. In the
interacting theory the 2−point function is < Ω|T (φ̂i(x)φ̂j(y))|Ω > where |Ω >= |0 > /

√

< 0|0 >
is the ground state of the full Hamiltonian Ĥ . On general grounds we can verify that the 2−point
function < Ω|T (φ̂i(x)φ̂j(y))|Ω > is given by

∫

d4xeip(x−y) < Ω|T (φ̂i(x)φ̂j(y))|Ω >=
iZδij

p2 −m2
R + iǫ

+ .... (8.240)

The dots stands for regular terms at p2 = m2
R where mR is the physical or renormalized mass.

The residue or renormalization constant Z is called the wave function renormalization. Indeed
the renormalized 2−point function < Ω|T (φ̂R(x)φ̂R(y))|Ω > is given by

∫

d4xeip(x−y) < Ω|T (φ̂iR(x)φ̂jR(y))|Ω >=
iδij

p2 −m2
R + iǫ

+ .... (8.241)

12Exercise:show this result.
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The physical or renormalized field φR is given by

φ =
√
ZφR. (8.242)

As we have already discussed this induces a renormalization of the n−point proper vertices.
Indeed the effective action becomes

Γ[φ] =
∑

n=0

1

n!

∫

d4x1...

∫

d4xnΓ
(n)
i1...in

(x1, ..., xn)φi1 (x1)...φin(xn)

=
∑

n=0

1

n!

∫

d4x1...

∫

d4xnΓ
(n)
i1...inR

(x1, ..., xn)φi1R(x1)...φinR(xn). (8.243)

The renormalized n−point proper vertex Γ
(n)
i1...inR

is given in terms of the bare n−point proper

vertex Γ
(n)
i1...in

by

Γ
(n)
i1...inR

(x1, ..., xn) = Z
n
2 Γ

(n)
i1...in

(x1, ..., xn). (8.244)

We introduce a renormalized coupling constant λR and a renormalization constant Zg by

ZgλR = Z2λ. (8.245)

The action takes the form

S =

∫

d4x

[

Z

2
∂µφiR∂

µφiR −
Z

2
m2φ2iR −

λZ2

4!
(φ2iR)

2

]

= SR + δS. (8.246)

The renormalized action SR is given by

SR =

∫

d4x

[

1

2
∂µφiR∂

µφiR −
1

2
m2
Rφ

2
iR −

λR
4!

(φ2iR)
2

]

. (8.247)

The action δS is given by

δS =

∫

d4x

[

δZ
2
∂µφiR∂

µφiR −
1

2
δmφ

2
iR −

δλ
4!
(φ2iR)

2

]

. (8.248)

The counterterms δZ , δm and δλ are given by

δZ = Z − 1 , δm = Zm2 −m2
R , δλ = λZ2 − λR = (Zg − 1)λR. (8.249)

The new Feynman rules derived from SR and δS are shown on figure 7.
The so-called renormalized perturbation theory consists in the following. The renormalized

or physical parameters of the theory mR and λR are always assumed to be finite whereas the
counterterms δZ , δm and δλ will contain the unobservable infinite shifts between the bare pa-
rameters m and λ and the physical parameters mR and λR. The renormalized parameters are
determined from imposing renormalization conditions on appropriate proper vertices. In this

case we will impose on the 2−point proper vertex Γ
(2)
ijR(p) and the 4−point proper vertex Γ

(2)
ijR(p)

the three conditions given by

Γ
(2)
ijR(p)|p=0 = δijm

2
R. (8.250)
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d

dp2
Γ
(2)
ijR(p)|p=0 = δij . (8.251)

Γ
(4)
i1...i4R

(0, ..., 0) = −λR
3
δi1i2i3i4 . (8.252)

As an example let us consider the 2−point and 4−point functions upto the 1−loop order. We
have immediately the results

Γ
(2)
Rij(p) =

[

(p2 −m2
R)−

~

i

λR
6
(N + 2)I(m2

R) + (δZp
2 − δm)

]

δij . (8.253)

Γ
(4)
Ri1...i4

(p1, ..., p4) = −λR
3
δi1i2i3i4 +

~

i

(

λR
3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

J(p212,m
2
R)

+ 2 permutations

]

− δλ
3
δi1i2i3i4 . (8.254)

The first two terms in both Γ
(2)
R and Γ

(4)
R come from the renormalized action SR and they are

identical with the results obtained with the bare action S with the substitutions m −→ mR and
λ −→ λR. The last terms in Γ

(2)
R and Γ

(4)
R come from the action δS. By imposing renormalization

conditions we get (including a cut-off Λ)

δZ = 0 , δm = −~

i

λR
6
(N + 2)IΛ(m

2
R) , δλ =

~

i

λ2R
6
(N + 8)JΛ(0,m

2
R). (8.255)

In other words

Γ
(2)
Rij(p) = (p2 −m2

R)δij . (8.256)

Γ
(4)
Ri1...i4

(p1, ..., p4) = −λR
3
δi1i2i3i4 +

~

i

(

λR
3

)2
1

2

[(

(N + 2)δi1i2δi3i4 + 2δi1i2i3i4

)

(J(p212,m
2
R)− J(0,m2

R))

+ 2 permutations

]

. (8.257)

It is clear that the end result of renormalized perturbation theory upto 1−loop is the same as
the somewhat "direct" renormalization employed in the previous sections to renormalize the

perturbative expansion of Γ
(2)
R and Γ

(4)
R upto 1−loop. This result extends also to the 2−loop

order13.
Let us note at the end of this section that renormalization of higher n−point vertices should

proceed along the same lines discussed above for the 2−point and 4−point vertices. The detail
of this exercise will be omitted at this stage.

8.7 Effective Potential and Dimensional Regularization

Let us go back to our original O(N) action which is given by

S[φ] =

∫

d4x

[

1

2
∂µφi∂

µφi +
µ2

2
φ2i −

g

4
(φ2i )

2 + Jiφi

]

. (8.258)

13Exercise:Try this explicitly.
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Now we expand the field as φi = φci + ηi where φci is the classical field. We can always choose
φc to point in the N direction, viz φc = (0, ..., 0, φc). By translational invariance we may assume
that φci is a constant. The action becomes (where V is the spacetime volume)

S[φc, η] = V

[

µ2

2
φ2ci −

g

4
(φ2ci)

2 + Jiφci

]

+

∫

d4x

[

1

2
∂µηi∂

µηi +
µ2

2
η2i + (µ2 − gφ2cj)φciηi + Jiηi

− g

2

[

φ2ciη
2
j + 2(φciηi)

2
]

− g(φciηi)η2j −
g

4
(η2i )

2

]

. (8.259)

In the spirit of renormalized perturbation theory we will think of the parameters µ2 and g as
renormalized parameters and add the counterterms

δS[φ] =

∫

d4x

[

1

2
δZ∂µφi∂

µφi +
1

2
δµφ

2
i −

1

4
δg(φ

2
i )

2 + δJiφi

]

. (8.260)

The counterterm δJi is chosen so that the 1−point vertex Γ
(1)
i1

(x1) is identically zero to all orders
in perturbation theory. This is equivalent to the removal of all tadpole diagrams that contribute
to < ηi >.

Let us recall the form of the effective action upto 1−loop and the classical 2−point function.
These are given by

Γ = S +
1

2

~

i
ln detG0 + ... (8.261)

Gij0 = −S−1
,ij |φ=φc . (8.262)

The effective action can always be rewritten as the spacetime integral of an effective Lagrangian
Leff . For slowly varying fields the most important piece in this effective Lagrangian is the so-
called effective potential which is the term with no dependence on the derivatives of the field.
The effective Lagrangian takes the generic form

Leff(φc, ∂φc, ∂∂φc, ...) = −V (φc) + Z(φc)∂µφc∂
µφc + ... (8.263)

For constant classical field we have

Γ(φc) = −
∫

d4xV (φc) = −
(∫

d4x

)

V (φc). (8.264)

We compute immediately

δ2S

δηi(x)δηj(y)
|η=0 =

[

− ∂2δij + µ2δij − g[φ2ckδij + 2φciφcj ]

]

δ4(x− y)

=

[

− ∂2 −m2
i

]

δijδ
4(x − y). (8.265)

The masses mi are given by

m2
i = gφ2c − µ2 , i, j 6= N and m2

i = 3gφ2c − µ2 , i = j = N. (8.266)

The above result can be put in the form

δ2S

δηi(x)δηj(y)
|η=0 =

∫

ddp

(2π)d

[

p2 −m2
i

]

δije
ip(x−y). (8.267)
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We compute

1

2

~

i
ln detG0 = −1

2

~

i
ln detG−1

0

=
i~

2
ln det

(

− δ2S

δηi(x)δηj(y)
|η=0

)

=
i~

2
Tr ln

(

− δ2S

δηi(x)δηj(y)
|η=0

)

=
i~

2

∫

d4x < x| ln
(

− δ2S

δηi(x)δηj(y)
|η=0

)

|x >

=
i~

2
V

∫

d4p

(2π)4
ln

(

(−p2 +m2
i )δij

)

=
i~

2
V

[

(N − 1)

∫

d4p

(2π)4
ln

(

− p2 − µ2 + gφ2c

)

+

∫

d4p

(2π)4
ln

(

− p2 − µ2 + 3gφ2c

)]

.

(8.268)

The basic integral we need to compute is

I(m2) =

∫

d4p

(2π)4
ln

(

− p2 +m2

)

. (8.269)

This is clearly divergent. We will use here the powerful method of dimensional regularization to
calculate this integral. This consists in 1) performing a Wick rotation k0 −→ k4 = −ik0 and 2)
continuing the number of dimensions from 4 to d 6= 4. We have then

I(m2) = i

∫

ddpE
(2π)d

ln

(

p2E +m2

)

. (8.270)

We use the identity

∂

∂α
x−α|α=0 = − lnx. (8.271)

We get then

I(m2) = −i ∂
∂α

(∫

ddpE
(2π)d

1

(p2E +m2)α

)

|α=0

= −i ∂
∂α

(

Ωd−1

(2π)d

∫

dpE
pd−1
E

(p2E +m2)α

)

|α=0. (8.272)

The Ωd−1 is the solid angle in d dimensions, i.e. the area of a sphere Sd−1. It is given by 14

Ωd−1 =
2π

d
2

Γ(d2 )
. (8.273)

We make the change of variables x = p2E then the change of variables t = m2/(x+m2). We get

I(m2) = −i ∂
∂α

(

Ωd−1

2(2π)d

∫ ∞

0

dx
x

d
2−1

(x+m2)α

)

|α=0

= −i ∂
∂α

(

Ωd−1(m
2)

d
2−α

2(2π)d

∫ 1

0

dt tα−1− d
2 (1− t) d

2−1

)

|α=0. (8.274)

14Derive this result.
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We use the result

∫ 1

0

dt tα−1(1− t)β−1 =
Γ(α)Γ(β)

Γ(α+ β)
. (8.275)

We get then

I(m2) = −i ∂
∂α

(

Ωd−1(m
2)

d
2−α

2(2π)d
Γ(α− d

2 )Γ(
d
2 )

Γ(α)

)

|α=0

= −i ∂
∂α

(

1

(4π)
d
2

(m2)
d
2−α

Γ(α− d
2 )

Γ(α)

)

|α=0. (8.276)

Now we use the result that

Γ(α) −→ 1

α
, α −→ 0. (8.277)

Thus

I(m2) = −i 1

(4π)
d
2

(m2)
d
2 Γ(−d

2
). (8.278)

By using this result we have

1

2

~

i
ln detG0 =

i~

2
V

(

− i 1

(4π)
d
2

Γ(−d
2
)

)[

(N − 1)(−µ2 + gφ2c)
d
2 + (−µ2 + 3gφ2c)

d
2

]

=
~

2
V
Γ(− d2 )
(4π)

d
2

[

(N − 1)(−µ2 + gφ2c)
d
2 + (−µ2 + 3gφ2c)

d
2

]

. (8.279)

The effective potential including counterterms is given by

V (φc) = −µ
2

2
φ2c +

g

4
(φ2c)

2 − ~

2

Γ(− d2 )
(4π)

d
2

[

(N − 1)(−µ2 + gφ2c)
d
2 + (−µ2 + 3gφ2c)

d
2

]

− 1

2
δµφ

2
c +

1

4
δg(φ

2
c)

2. (8.280)

Near d = 4 we use the approximation given by (with ǫ = 4−d and γ = 0.5772 is Euler-Mascheroni
constant)

Γ(−d
2
) =

1
d
2 (
d
2 − 1)

Γ(
ǫ

2
)

=
1

2
[
2

ǫ
− γ +

3

2
+O(ǫ)]. (8.281)

This divergence can be absorbed by using appropriate renormalization conditions. We remark
that the classical minimum is given by φc = v =

√

µ2/g. We will demand that the value of the
minimum of Veff remains given by φc = v at the one-loop order by imposing the condition

∂

∂φc
V (φc)|φc=v = 0. (8.282)
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As we will see in the next section this is equivalent to saying that the sum of all tadpole diagrams
is 0. This condition leads immediately to 15

δµ − δgv2 = ~g
Γ(1− d

2 )

(4π)
d
2

3

(2µ2)1−
d
2

. (8.283)

The second renormalization condition is naturally chosen to be given by

∂4

∂φ4c
V (φc)|φc=v =

g

4
4!. (8.284)

This leads to the result 16

δg = ~g2(N + 8)
Γ(2− d

2 )

(4π)
d
2

. (8.285)

As a consequence we obtain 17

δµ = ~gµ2(N + 2)
Γ(2− d

2 )

(4π)
d
2

. (8.286)

After substituting back in the potential we get 18

V (φc) = −µ
2

2
φ2c +

g

4
(φ2c)

2 +
~

4(4π)2

[

(N − 1)(−µ2 + gφ2c)
2

(

ln(−µ2 + gφ2c)−
3

2

)

+ (−µ2 + 3gφ2c)
2

(

ln(−µ2 + 3gφ2c)−
3

2

)]

. (8.287)

In deriving this result we have used in particular the equation

Γ(−d
2
)
(m2)

d
2

(4π)
d
2

=
m4

2(4π)2

[

2

ǫ
+ ln 4π − lnm2 − γ +

3

2
+O(ǫ)

]

. (8.288)

8.8 Spontaneous Symmetry Breaking

8.8.1 Example: The O(N) Model

We are still interested in the (φ2)2 theory with O(N) symmetry in d dimensions (d = 4 is of
primary importance but other dimensions are important as well) given by the classical action
(with the replacements m2 = −µ2 and λ/4! = g/4)

S[φ] =

∫

ddx

[

1

2
∂µφi∂

µφi +
1

2
µ2φ2i −

g

4
(φ2i )

2

]

. (8.289)

This scalar field can be in two different phases depending on the value of m2. The "symmetric
phase" characterized by the "order parameter" φic(J = 0) ≡< φi >= 0 and the "broken phase"
with φic 6= 0. This corresponds to the spontaneous symmetry breaking of O(N) down to O(N−1)

15Exercise: Verify explicitly.
16Exercise: Verify explicitly.
17Exercise: Verify explicitly.
18Exercise: Verify explicitly.



YDRI QFT 233

and the appearance of massless particles called Goldstone bosons in d ≥ 3. For N = 1, it is
the Z2 symmetry φ −→ −φ which is broken spontaneously. This is a very concrete instance of
Goldstone theorem. In "local" scalar field theory in d ≤ 2 there can be no spontaneous symmetry
breaking according to the Wagner-Mermin-Coleman theorem. To illustrate these points we start
from the classical potential

V [φ] =

∫

ddx

[

− 1

2
µ2φ2i +

g

4
(φ2i )

2

]

. (8.290)

This has a Mexican-hat shape. The minimum of the system is a configuration which must
minimize the potential and also is uniform so that it minimizes also the Hamiltonian. The
equation of motion is

φj(−µ2 + gφ2i ) = 0. (8.291)

For µ2 < 0 the minimum is unique given by the vector φi = 0 whereas for µ2 > 0 we can have
as solution either the vector φi < 0 (which in fact is not a minimum) or any vector φi such that

φ2i =
µ2

g
. (8.292)

As one may check any of these vectors is a minimum. In other words we have an infinitely
degenerate ground state given by the sphere SN−1. The ground state is conventionally chosen
to point in the N direction by adding to the action a symmetry breaking term of the form

∆S = ǫ

∫

ddxφN , ǫ > 0. (8.293)

(−µ2 + gφ2i )φj = ǫδjN . (8.294)

The solution is clearly of the form

φi = vδiN . (8.295)

The coefficient v is given by

(−µ2 + gv2)v = ǫ⇒ v =

√

µ2

g
, ǫ −→ 0. (8.296)

We expand around this solution by writing

φk = πk , k = 1, ..., N − 1 , φN = v + σ. (8.297)

By expanding the potential around this solution we get

V [φ] =

∫

ddx

[

1

2
(−µ2 + gv2)π2

k +
1

2
(−µ2 + 3gv2)σ2 + v(−µ2 + gv2)σ + gvσ3 + gvσπ2

k +
g

2
σ2π2

k +
g

4
σ4 +

g

4
(π2
k)

2

]

.

(8.298)

We have therefore one massive field (the σ) and N − 1 massless fields (the pions πk) for µ2 > 0.
Indeed

m2
π = −µ2 + gv2 ≡ 0 , m2

σ = −µ2 + 3gv2 ≡ 2µ2. (8.299)
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For µ2 < 0 we must have v = 0 and thus m2
π = m2

σ = −µ2.
It is well known that the O(4) model provides a very good approximation to the dynamics of

the real world pions with masses m+ = m− = 139.6 Mev, m0 = 135Mev which are indeed much
less than the mass of the 4th particle (the sigma particle) which has mass mσ = 900 Mev. The
O(4) model can also be identified with the Higgs sector of the standard model.

The action around the "broken phase" solution is given by

S[φ] =

∫

ddx

[

1

2
∂µπk∂

µπk +
1

2
∂µσ∂

µσ − µ2σ2 − gvσ3 − gvσπ2
k −

g

2
σ2π2

k −
g

4
σ4 − g

4
(π2
k)

2

]

.

(8.300)

We use the counterterms

δS[φ] =

∫

ddx

[

1

2
δZ∂µφi∂

µφi +
1

2
δµφ

2
i −

1

4
δg(φ

2
i )

2

]

=

∫

ddx

[

1

2
δZ∂µπi∂

µπi −
1

2
(−δµ + δgv

2)π2
i +

1

2
δZ∂µσ∂

µσ − 1

2
(−δµ + 3δgv

2)σ2

− (−δµv + δgv
3)σ − δgvσπ2

i − δgvσ3 − 1

4
δg(π

2
i )

2 − 1

2
δgσ

2π2
i −

1

4
δgσ

4

]

. (8.301)

We compute the 1−point proper vertex of the sigma field. We start from the result

Γ,i = S,i +
1

2

~

i
Gjk0 S,ijk + ... (8.302)

Gij0 = −S−1
,ij |φ=φc . (8.303)

We compute immediately

δΓ

δσ
|σ=πi=0 = 0 +

1

2

~

i
[Gσσ0 S,σσσ +G

πiπj

0 S,σπiπj ]

=
1

2

~

i

[∫

ddk

(2π)d
1

−k2 + 2µ2
(−3!gv) +

∫

ddk

(2π)d
δij

−k2 + ξ2
(−2gvδij)

]

= −3igv~
∫

ddk

(2π)d
1

k2 − 2µ2
− igv(N − 1)~

∫

ddk

(2π)d
1

k2 − ξ2 . (8.304)

In the above equation we have added a small mass ξ2 for the pions to control the infrared
behavior. We need to compute

∫

ddk

(2π)d
1

k2 −m2
= −i

∫

ddkE
(2π)d

1

k2E +m2

= − iΩd−1

2(2π)d

∫

x
d
2−1

x+m2
dx

= − iΩd−1

2(2π)d
(m2)

d
2−1

∫ 1

0

t−
d
2 (1− t) d

2−1dt

= − i

(4π)
d
2

(m2)
d
2−1Γ(1− d

2
). (8.305)
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We get

δΓ

δσ
|σ=πi=0 = −gv~Γ(1−

d
2 )

(4π)
d
2

(
3

(2µ2)1−
d
2

+
N − 1

(ξ)1−
d
2

). (8.306)

By adding the contribution of the counterterms we get

δΓ

δσ
|σ=πi=0 = −(−δµv + δgv

3)− gv~Γ(1−
d
2 )

(4π)
d
2

(
3

(2µ2)1−
d
2

+
N − 1

(ξ2)1−
d
2

). (8.307)

The corresponding Feynman diagrams are shown on figure 8. We will impose the renormalization
condition

δΓ

δσ
= 0. (8.308)

This is equivalent to the statement that the sum of all tadpole diagrams giving the 1−point
proper vertex for the σ field vanishes. In other words we do not allow any quantum shifts in the
vacuum expectation value of φN which is given by < φN >= v. We get then

(−δµ + δgv
2) = −g~Γ(1−

d
2 )

(4π)
d
2

(
3

(2µ2)1−
d
2

+
N − 1

(ξ2)1−
d
2

). (8.309)

Next we consider the ππ amplitude. We use the result

Γ,j0k0 = S,j0k0 +
~

i

[

1

2
Gmn0 S[φ],j0k0mn +

1

2
Gmm0

0 Gnn0
0 S[φ],j0mnS[φ],k0m0n0

]

. (8.310)

We compute immediately (including again a small mass ξ2 for the pions)

S,j0k0 = −δj0k0(∆ + ξ2)δd(x− y). (8.311)

1

2
Gmn0 S[φ],j0k0mn =

1

2

∫

ddzddw[Gσσ0 (z, w)][−2gδj0k0δd(x − y)δd(x − z)δd(x− w)]

+
1

2

∫

ddzddw[δmnG
ππ
0 (z, w)][−3!g

3
δj0k0mnδ

d(x− y)δd(x− z)δd(x− w)]

= −gδj0k0Gσσ0 (x, x)δd(x− y)− (N + 1)gδj0k0G
ππ
0 (x, x)δd(x − y). (8.312)

1

2
Gmm0

0 Gnn0
0 S[φ],j0mnS[φ],k0m0n0 =

(2)

2

∫

ddz

∫

ddz0

∫

ddw

∫

ddw0[δmm0G
ππ
0 (z, z0)][G

σσ
0 (w,w0)]

× [−2gvδj0mδd(x− z)δd(x− w)][−2gvδk0m0δ
d(y − z0)δd(y − w0)]

= 4g2v2Gππ0 (x, y)Gσσ0 (x, y). (8.313)

Thus we get

Γππj0k0(x, y) = −δj0k0(∆ + ξ2)δd(x− y) + ~

i

[

− gδj0k0Gσσ0 (x, x)δd(x− y)− (N + 1)gδj0k0G
ππ
0 (x, x)δd(x− y)

+ 4g2v2δj0k0G
ππ
0 (x, y)Gσσ0 (x, y)

]

. (8.314)
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Recall also that

Gππ0 (x, y) =

∫

ddp

(2π)d
1

−p2 + ξ2
eip(x−y) , Gσσ0 (x, y) =

∫

ddp

(2π)d
1

−p2 + 2µ2
eip(x−y). (8.315)

The Fourier transform is defined by

∫

ddx

∫

ddyΓππj0k0(x, y)e
ipxeiky = (2π)dδd(p+ k)Γππj0k0(p). (8.316)

We compute then

Γππj0k0(p) = δj0k0(p
2 − ξ2) + ~

i
δj0k0

[

− g
∫

ddk

(2π)d
1

−k2 + 2µ2
− (N + 1)g

∫

ddk

(2π)d
1

−k2 + ξ2

+ 4g2v2
∫

d4k

(2π)d
1

−k2 + ξ2
1

−(k + p)2 + 2µ2

]

. (8.317)

By adding the contribution of the counterterms we get

Γππj0k0(p) = δj0k0(p
2 − ξ2) + ~

i
δj0k0

[

− g
∫

ddk

(2π)d
1

−k2 + 2µ2
− (N + 1)g

∫

ddk

(2π)d
1

−k2 + ξ2

+ 4g2v2
∫

d4k

(2π)d
1

−k2 + ξ2
1

−(k + p)2 + 2µ2

]

+ (δZp
2 + δµ − δgv2)δj0k0 . (8.318)

The corresponding Feynman diagrams are shown on figure 8. After some calculation we obtain

Γππj0k0(p) = δj0k0(p
2 − ξ2)− 2~gδj0k0

Γ(1− d
2 )

(4π)
d
2

[(ξ2)
d
2−1 − (2µ2)

d
2−1]

+
~

i
δj0k0

[

4g2v2
∫

d4k

(2π)d
1

−k2 + ξ2
1

−(k + p)2 + 2µ2

]

+ δZp
2δj0k0 . (8.319)

The last integral can be computed using Feynman parameters x1, x2 intrdouced by the identity

1

A1A2
=

∫ 1

0

dx1

∫ 1

0

dx2
1

(x1A1 + x2A2)2
δ(x1 + x2 − 1). (8.320)

We have then (with s = 2, l = k + (1 − x1)p and M2 = ξ2x1 + 2µ2(1 − x1) − p2x1(1 − x1) and
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after a Wick rotation)

∫

ddk

(2π)d
1

−k2 + ξ2
1

−(k + p)2 + 2µ2
=

∫

ddk

(2π)d

∫ 1

0

dx1

∫ 1

0

dx2
1

[

x1(k2 − ξ2) + x2((k + p)2 − 2µ2)
]s δ(x1 + x2 − 1)

=

∫ 1

0

dx1

∫ 1

0

dx2δ(x1 + x2 − 1)

∫

ddl

(2π)d
1

(l2 −M2)s

= i(−1)s
∫ 1

0

dx1

∫ 1

0

dx2δ(x1 + x2 − 1)

∫

ddlE
(2π)d

1

(l2E +M2)s

=
i(−1)sΩd−1

(2π)d

∫ 1

0

dx1

∫ 1

0

dx2δ(x1 + x2 − 1)

∫

ld−1
E dlE

(l2E +M2)s

=
i(−1)sΩd−1

2(2π)d

∫ 1

0

dx1

∫ 1

0

dx2δ(x1 + x2 − 1)

∫

x
d
2−1dx

(x+M2)s

=
i(−1)sΩd−1

2(2π)d
(M2)

d
2−s

∫ 1

0

dx1

∫ 1

0

dx2δ(x1 + x2 − 1)

∫ 1

0

(1− t) d
2−1ts−

d
2−1dt

=
i(−1)sΩd−1

2(2π)d
(M2)

d
2−s

∫ 1

0

dx1

∫ 1

0

dx2δ(x1 + x2 − 1)
Γ(s− d

2 )Γ(
d
2 )

Γ(s)

=

∫ 1

0

dx1

∫ 1

0

dx2δ(x1 + x2 − 1)
i(−1)s
(4π)

d
2

(M2)
d
2−s

Γ(s− d
2 )

Γ(s)
. (8.321)

Using this result we have

Γππj0k0(p) = δj0k0(p
2 − ξ2)− 2~gδj0k0

Γ(1− d
2 )

(4π)
d
2

[(ξ2)
d
2−1 − (2µ2)

d
2−1]

+ 4~g2v2δj0k0
Γ(2− d

2 )

(4π)
d
2

∫ 1

0

dx1
[

ξ2x1 + 2µ2(1 − x1)− p2x1(1− x1)
]

d
2−2

+ δZp
2δj0k0 .

(8.322)

By studying the amplitudes σσ, σσππ and ππππ we can determine that the counterterm δZ is
finite at one-loop whereas the counterterm δg is divergent 19. This means in particular that the
divergent part of the above remaining integral does not depend on p. We simply set p2 = 0 and
study

Γππj0k0(0) = δj0k0(−ξ2)− 2~gδj0k0
Γ(1− d

2 )

(4π)
d
2

[(ξ2)
d
2−1 − (2µ2)

d
2−1] + 4~g2v2δj0k0

Γ(2− d
2 )

(4π)
d
2

∫ 1

0

dx1

×
[

ξ2x1 + 2µ2(1− x1)
]

d
2−2

. (8.323)

We get (using gv2 = µ2)

Γππj0k0(0) = δj0k0(−ξ2)− 2~gδj0k0
Γ(1− d

2 )

(4π)
d
2

[(ξ2)
d
2−1 − (2µ2)

d
2−1] + 2~gδj0k0

Γ(1− d
2 )

(4π)
d
2

2µ2

2µ2 − ξ2 [(ξ
2)

d
2−1 − (2µ2)

d
2−1].

(8.324)

This vanishes exactly in the limit ξ −→ 0 and therefore the pions remain massless at one-

19Exercise: Show this result explicitly. You need to figure out and then use two more renormalization conditions.
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loop20. This is a manifestation of the Goldstone’s theorem which states that there must exist
N − 1 massless particles associated with the N − 1 broken symmetries of the breaking pattern
O(N) −→ O(N − 1).

8.8.2 Glodstone’s Theorem

Spontaneous symmetry breaking of a continuous symmetry leads always to massless particles
called Goldstone bosons. The number of massless Goldstone bosons which appear is precisely
equal to the number of symmetry generators broken spontaneously. This is a general result
known as Goldstone’s theorem. For example in the case of the O(N) model studied in the
previous sections the continuous symmetries are precisely O(N) transformations, i.e. rotations
in N dimensions which rotate the different components of the scalar field into each other. There
are in this case N(N − 1)/2 independent rotations and hence N(N − 1)/2 generators of the
group O(N). Under the symmetry breaking pattern O(N) −→ O(N − 1) the number of broken
symmetries is exactly N(N − 1)/2 − (N − 1)(N − 2)/2 = N − 1 and hence there must appear
N − 1 massless Goldstone bosons in the low energy spectrum of the theory which have been
already verified explicitly upto the one-loop order. This holds also true at any arbitrary order in
perturbation theory. Remark that for N = 1 there is no continuous symmetry and there are no
massless Goldstone particles associated to the symmetry breaking pattern φ −→ −φ. We sketch
now a general proof of Goldstone’s theorem.

A typical Lagrangian density of interest is of the form

L(φ) = terms with derivatives(φ)− V (φ). (8.325)

The minimum of V is denoted φ0 and satisfies

∂

∂φa
V (φ)|φ=φ0 = 0. (8.326)

Now we expand V around the minimum φ0 upto the second order in the fields. We get

V (φ) = V (φ0) +
1

2
(φ− φ0)a(φ − φ0)b

∂2

∂φa∂φb
V (φ)|φ=φ0 + ...

= V (φ0) +
1

2
(φ− φ0)a(φ − φ0)bm2

ab(φ0) + ... (8.327)

The matrix m2
ab(φ0) called the mass matrix is clearly a symmetric matrix which is also positive

since φ0 is assumed to be a minimum configuration.
A general continuous symmetry will transform the scalar field φ infinitesimally according to

the generic law

φa −→ φ
′

a = φa + α∆a(φ). (8.328)

The parameter α is infinitesimal and ∆a are some functions of φ. The invariance of the La-
grangian density is given by the condition

terms with derivatives(φ) − V (φ) = terms with derivatives(φ + α∆(φ)) − V (φ+ α∆(φ)).

(8.329)

20Exercise: Show this result directly. Start by showing that

~

i

[

4g2v2
∫

d4k

(2π)d
1

−k2 + ξ2
1

−k2 + 2µ2

]

= 2i~g[I(ξ2)− I(2µ2)] , I(m2) =

∫

ddk

(2π)d
1

k2 −m2
.
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For constant fields this condition reduces to

V (φ) = V (φ+ α∆(φ)). (8.330)

Equivalently

∆a(φ)
∂

∂φa
V (φ) = 0. (8.331)

By differentiating with respect to φb and setting φ = φ0 we get

m2
ab(φ0)∆b(φ0) = 0. (8.332)

The symmetry transformations, as we have seen, leave always the Lagrangian density invariant
which was actually our starting point. In the case that the above symmetry transformation
leaves also the ground state configuration φ0 invariant we must have ∆(φ0) = 0 and thus the
above equation becomes trivial. However, in the case that the symmetry transformation does not
leave the ground state configuration φ0 invariant, which is precisely the case of a spontaneously
broken symmetry, ∆b(φ0) is an eigenstate of the mass matrix m2

ab(φ0) with 0 eigenvalue which
is exactly the massless Goldstone particle.
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9
Path Integral Quantization of Dirac and Vector

Fields

9.1 Free Dirac Field

9.1.1 Canonical Quantization

The Dirac field ψ describes particles of spin ~/2. The Dirac field ψ is a 4−component object
which transforms as spinor under the action of the Lorentz group. The classical equation of
motion of a free Dirac field is the Dirac equation. This is given by

(i~γµ∂µ −mc)ψ = 0. (9.1)

Equivalently the complex conjugate field ψ̄ = ψ+γ0 obeys the equation

ψ̄(i~γµ
←−
∂µ +mc) = 0. (9.2)

These two equations are the Euler-Lagrange equations derived from the action

S =

∫

d4xψ̄(i~cγµ∂µ −mc2)ψ. (9.3)

The Dirac matrices γµ satisfy the usual Dirac algebra {γµ, γν} = 2ηµν . The Dirac equation ad-
mits positive-energy solutions (associated with particles) denoted by spinors ui(p) and negative-
energy solutions (associated with antiparticles) denoted by spinors vi(p).

The spinor field can be put in the form (with ω(~p) = E/~ =
√

~p2c2 +m2c4/~)

ψ(x) =
1

~

∫

d3p

(2π~)3

√

c

2ω(~p)

∑

i

(

e−
i
~
pxu(i)(~p)b(~p, i) + e

i
~
pxv(i)(~p)d(~p, i)+

)

.

(9.4)

The conjugate field is Π(x) = i~ψ+.
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In the quantum theory (canonical quantization) the coefficients b(~p, i) and d(~p, i) become

operators b̂(~p, i) and d̂(~p, i) and as a consequence the spinor field ψ(x) and the conjugate field

Π(x) become operators ψ̂(x) and Π̂(x) respectively. In order to have a stable ground state the

operators ψ̂(x) and Π̂(x) must satisfy the anticommutation (rather than commutation) relations
given by

{ψ̂α(x0, ~x), Π̂β(x0, ~y)} = i~δαβδ
3(~x − ~y). (9.5)

Equivalently

{b̂(~p, i), b̂(~q, j)+} = ~δij(2π~)
3δ3(~p− ~q)

{d̂(~p, i)+, d̂(~q, j)} = ~δij(2π~)
3δ3(~p− ~q)

{b̂(~p, i), d̂(~q, j)} = {d̂(~q, j)+, b̂(~p, i)} = 0. (9.6)

We find that excited particle states are obtained by acting with b̂(~p, i)+ on the vacuum |0 >
whereas excited antiparticle states are obtained by acting with d̂(~p, i)+. The vacuum state |0 >
is the eigenstate with energy equal 0 of the Hamiltonian

Ĥ =

∫

d3p

(2π~)3
ω(~p)

∑

i

(

b̂(~p, i)+b̂(~p, i) + d̂(~p, i)+d̂(~p, i)

)

. (9.7)

The Feynman propagator for a Dirac spinor field is defined by

(SF )ab(x − y) = < 0|T ψ̂a(x) ¯̂ψb(y)|0 > . (9.8)

The time-ordering operator is defined by

T ψ̂(x)ψ̂(y) = +ψ̂(x)ψ̂(y) , x0 > y0

T ψ̂(x)ψ̂(y) = −ψ̂(y)ψ̂(x) , x0 < y0. (9.9)

Explicitly we have 1

(SF )ab(x− y) =
~

c

∫

d4p

(2π~)4
i(γµpµ +mc)ab
p2 −m2c2 + iǫ

e−
i
~
p(x−y). (9.10)

9.1.2 Fermionic Path Integral and Grassmann Numbers

Let us now expand the spinor field as

ψ(x0, ~x) =
1

~

∫

d3p

(2π~)3
χ(x0, ~p)e

i
~
~p~x. (9.11)

The Lagrangian in terms of χ and χ+ is given by

L =

∫

d3xL

=

∫

d3xψ̄(i~cγµ∂µ −mc2)ψ

=
c

~2

∫

d3p

(2π~)3
χ̄(x0, ~p)(i~γ0∂0 − γipi −mc)χ(x0, ~p). (9.12)

1There was a serious (well not really serious) error in our computation of the scalar propagator in the first
semester which propagated to an error in the Dirac propoagtor. This must be corrected there and also in the
previous chapter of this current semester in which we did not follow the factors of ~ and c properly. In any case
the coefficient ~/c apperaing in front of this propagator is now correct.
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We use the identity

γ0(γipi +mc)χ(x0, ~p) =
~ω(~p)

c
χ(x0, ~p). (9.13)

We get then

L =
1

~

∫

d3p

(2π~)3
χ+(x0, ~p)(i∂t − ω(~p))χ(x0, ~p). (9.14)

Using the box normalization the momenta become discrete and the measure
∫

d3~p/(2π~)3 be-

comes the sum
∑

~p /V . Thus the Lagrangian becomes with θp(t) = χ(x0, ~p)/
√
~V given by

L =
∑

~p

θ+p (t)(i∂t − ω(~p))θp(t). (9.15)

For a single momentum ~p the Lagrangian of the theory simplifies to the single term

Lp = θ+p (t)(i∂t − ω(~p))θp(t). (9.16)

We will simplify further by thinking of θp(t) as a single component field. The conjugate variable

is πp(t) = iθ+p (t). In the quantum theory we replace θp and πp with operators θ̂p and π̂p. The
canonical commutation relations are

{θ̂p, π̂p} = i~, {θ̂p, θ̂p} = {π̂p, π̂p} = 0. (9.17)

There several remarks here:

• In the limit ~ −→ 0, the operators reduce to fields which are anticommuting classical func-
tions. In other words even classical fermion fields must be represented by anticommuting
numbers which are known as Grassmann numbers.

• There is no eigenvalues of the operators θ̂p and π̂p in the set of complex numbers except 0.
The non-zero eigenvalues must be therefore anticommuting Grassmann numbers.

• Obviously given two anticommuting Grassmann numbers α and β we have immediately
the following fundamental properties

αβ = −βα , α2 = β2 = 0. (9.18)

The classical equation of motion following from the Lagrangian Lp is i∂tθp = ω(~p)θp. An imme-
diate solution is given by

θ̂p(t) = b̂p exp(−iω(~p)t). (9.19)

Thus

{b̂p, b̂+p } = ~, {b̂p, b̂p} = {b̂+p , b̂+p } = 0. (9.20)

The Hilbert space contains two states |0 > (the vacuum) and |1 >= b̂+p |0 > (the only exited

state). Indeed we clearly have b̂+p |1 >= 0 and b̂p|1 >= ~|0 >. We define the (coherent) states at
time t = 0 by

|θp(0) >= eb̂
+
p θp(0)|0 > , < θp(0)| = eθ

+(0)b̂p < 0|. (9.21)
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The number θp(0) must be anticommuting Grassmann number, i.e. it must satisfy θp(0)
2 = 0

whereas the number θ+(0) is the complex conjugate of θp(0) which should be taken as independent
and hence (θ+p (0))

2 = 0 and θ+p (0)θp(0) = −θp(0)θ+p (0). We compute immediately that

θ̂p(0)|θp(0) >= θp(0)|θp(0) > , < θp(0)|θ̂p(0)+ =< θp(0)|θ+p (0). (9.22)

The Feynman propagator for the field θp(t) is defined by

S(t− t′) =< 0|T (θ̂p(t)θ̂+p (t
′

))|0 > . (9.23)

We compute immediately (with ǫ > 0) 2

S(t− t′) = ~e−iω(~p)(t−t
′
) ≡ ~

2

∫

dp0

2π~

i

p0 − ~ω(~p) + iǫ
e−

i
~
p0(t−t′ ) , t > t

′

. (9.24)

S(t− t′) = 0 ≡ ~
2

∫

dp0

2π~

i

p0 − ~ω(~p) + iǫ
e−

i
~
p0(t−t′ ) , t < t

′

. (9.25)

The anticommuting Grassmann numbers have the following properties:

• A general function f(θ) of a single anticommuting Grassmann number can be expanded as

f(θ) = A+Bθ. (9.26)

• The integral of f(θ) is therefore

∫

dθf(θ) =

∫

dθ(A +Bθ). (9.27)

We demand that this integral is invariant under the shift θ −→ θ+η. This leads immediately
to the so-called Berezin integration rules

∫

dθ = 0 ,

∫

dθθ = 1. (9.28)

• The differential dθ anticommutes with θ, viz

dθθ = −θdθ. (9.29)

• We have immediately
∫

dθdηηθ = 1. (9.30)

• The most general function of two anticommuting Grassmann numbers θ and θ+ is

f(θ, θ+) = A+Bθ + Cθ+ +Dθ+θ. (9.31)

• Given two anticommuting Grassmann numbers θ and η we have

(θη)+ = η+θ+. = −θ+η+. (9.32)

2Exercise: Verify this result using the residue theorem.
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• We compute the integrals

∫

dθ+dθe−θ
+bθ =

∫

dθ+dθ(1− θ+bθ) = b. (9.33)

∫

dθ+dθθθ+e−θ
+bθ =

∫

dθ+dθθθ+(1− θ+bθ) = 1. (9.34)

It is instructive to compare the first integral with the bosonic integral

∫

dz+dze−z
+bz =

2π

b
. (9.35)

• We consider now a general integral of the form

∫

∏

i

dθ+i dθif(θ
+, θ). (9.36)

Consider the unitary transformation θi −→ θ
′

i = Uijθj where U+U = 1. It is rather obvious
that 3

∏

i

dθ
′

i = detU
∏

i

dθi. (9.37)

Hence
∏

i dθ
′+
i dθ

′

i =
∏

i dθ
+
i dθi since U+U = 1. On the other hand, by expanding the

function f(θ+, θ) and integrating out we immediately see that the only non-zero term will
be exactly of the form

∏

i θ
+
i θi which is also invariant under the unitary transformation U .

Hence
∫

∏

i

dθ
′+
i dθ

′

if(θ
′+, θ

′

) =

∫

∏

i

dθ+i dθif(θ
+, θ). (9.38)

• Consider the above integral for

f(θ+, θ) = e−θ
+Mθ. (9.39)

M is a Hermitian matrix. By using the invariance under U(N) we can diagonalize the
matrix M without changing the value of the integral. The eigenvalues of M are denoted
mi. The integral becomes

∫

∏

i

dθ+i dθie
−θ+Mθ =

∫

∏

i

dθ+i dθie
−θ+i miθi =

∏

i

mi = detM. (9.40)

Again it is instructive to compare with the bosonic integral

∫

∏

i

dz+i dzie
−z+Mz =

(2π)n

detM
. (9.41)

3Exercise: Verify this fact.
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• We consider now the integral

∫

∏

i

dθ+i dθie
−θ+Mθ−θ+η−η+θ =

∫

∏

i

dθ+i dθie
−(θ++η+M−1)M(θ+M−1η)+η+M−1η

= detMeη
+M−1η. (9.42)

• Let us consider now the integral

∫

∏

i

dθ+i dθiθkθ
+
l e

−θ+Mθ =
δ

δηl

δ

δη+k

(∫

∏

i

dθ+i dθie
−θ+Mθ−θ+η−η+θ

)

η=η+=0

= detM(M−1)kl. (9.43)

In the above equation we have always to remember that the order of differentials and
variables is very important since they are anticommuting objects.

• In the above equation we observe that if the matrix M has eigenvalue 0 then the result is
0 since the determinant vanishes in this case.

We go back now to our original problem. We want to express the propagator S(t − t
′

) =<

0|T (θ̂p(t)θ̂+p (t
′

))|0 > as a path integral over the classical fields θp(t) and θ+p (t) which must be
complex anticommuting Grassmann numbers. By analogy with what happens in scalar field
theory we expect the path integral to be a functional integral of the probability amplitude
exp(iSp/~) where Sp is the action Sp =

∫

dtLp over the classical fields θp(t) and θ+p (t) (which are
taken to be complex anticommuting Grassmann numbers instead of ordinary complex numbers).
In the presence of sources ηp(t) and η+p (t) this path integral reads

Z[ηp, η
+
p ] =

∫

Dθ+p Dθp exp

(

i

~

∫

dtθ+p (i∂t − ω(~p))θp +
i

~

∫

dtη+p θp +
i

~

∫

dtθ+p ηp

)

. (9.44)

By using the result (9.42) we know immediately that

Z[ηp, η
+
p ] = detMeη

+M−1η , M = − i
~
(i∂t − ω(~p)) , η = − i

~
ηp , η

+ = − i
~
η+p . (9.45)

In other words

Z[ηp, η
+
p ] = detMe−

1
~2

∫
dt

∫
dt

′
η+p (t)M−1(t,t

′
)ηp(t

′
). (9.46)

From one hand we have

(

~

i

)2(
1

Z

δ2

δηp(t
′)δη+p (t)

Z

)

ηp=η
+
p =0

=

∫

Dθ+p Dθp θp(t)θ+p (t
′

) exp

(

i
~

∫

dtθ+p (i∂t − ω(~p))θp
)

∫

Dθ+p Dθp exp

(

i
~

∫

dtθ+p (i∂t − ω(~p))θp
)

≡ < θp(t)θ
+
p (t

′

) > . (9.47)

From the other hand

(

~

i

)2(
1

Z

δ2

δηp(t
′)δη+p (t)

Z

)

ηp=η
+
p =0

=M−1(t, t
′

). (9.48)
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Therefore

< θp(t)θ
+
p (t

′

) >=M−1(t, t
′

). (9.49)

We have

M(t, t
′

) = − i
~
(i∂t − ω(~p))δ(t− t

′

)

=
1

~2

∫

dp0

2π~

p0 − ω(~p)
i

e−
i
~
p0(t−t′ ). (9.50)

The inverse is therefore given by

< θp(t)θ
+
p (t

′

) >=M−1(t, t
′

) = ~
2

∫

dp0

2π~

i

p0 − ω(~p) + iǫ
e−

i
~
p0(t−t′). (9.51)

We conclude therefore that

< 0|T (θ̂p(t)θ̂+p (t
′

))|0 >=

∫

Dθ+p Dθp θp(t)θ+p (t
′

) exp

(

i
~

∫

dtθ+p (i∂t − ω(~p))θp
)

∫

Dθ+p Dθp exp

(

i
~

∫

dtθ+p (i∂t − ω(~p))θp
) . (9.52)

9.1.3 The Electron Propagator

We are now ready to state our main punch line. The path integral of a free Dirac field in the
presence of non-zero sources must be given by the functional integral

Z[η, η̄] =

∫

Dψ̄Dψ exp

(

i

~
S0[ψ, ψ̄] +

i

~

∫

d4xη̄ψ +
i

~

∫

d4xψ̄η

)

. (9.53)

S0[ψ, ψ̄] =

∫

d4xψ̄(i~cγµ∂µ −mc2)ψ. (9.54)

The Dirac spinor ψ and its Dirac conjugate spinor ψ̄ = ψ+γ0 must be treated as independent
complex spinors with components which are Grassmann-valued functions of x. Indeed by taking
χi(x) to be an orthonormal basis of 4−component Dirac spinors (for example it can be con-
structed out of the ui(p) and vi(p) in an obvious way) we can expand ψ and ψ̄ as ψ =

∑

i θiχi(x)
and ψ̄i =

∑

i θ
+
i χ̄i respectively. The coefficients θi and θ+i must then be complex Grassmann

numbers. The measure appearing in the above integral is therefore

Dψ̄Dψ =
∏

i

Dθ+i Dθi (9.55)

The path integral Z[η, η̄] is the generating functional of all correlation functions of the fields ψ
and ψ̄. Indeed we have

< ψα1(x1)...ψαn(xn)ψ̄β1(y1)...ψ̄βn(yn) > ≡
∫

Dψ̄Dψ ψα1(x1)...ψαn(xn)ψ̄β1(y1)...ψ̄βn(yn) exp
i
~
S0[ψ, ψ̄]

∫

Dψ̄Dψ exp i
~
S0[ψ, ψ̄]

.

=

(

~
2n

Z[η, η̄]

δ2nZ[η, η̄]

δη̄α1(x1)...δη̄α1(x1)δηβ1(y1)...δηβ1(y1)

)

η=η̄=0

.

(9.56)
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For example the 2−point function is given by

< ψα(x)ψ̄β(y) > ≡
(

~
2

Z[η, η̄]

δ2Z[η, η̄]

δη̄α(x)δηβ(y)

)

η=η̄=0

. (9.57)

However by comparing the path integral Z[η, η̄] with the path integral (9.42) we can make the
identification

Mij −→ −
i

~
(i~cγµ∂µ −mc2)αβδ4(x− y) , ηi −→ −

i

~
ηα , η

+
i −→ −

i

~
η̄α. (9.58)

We define

Mαβ(x, y) = − i
~
(i~cγµ∂µ −mc2)αβδ4(x− y)

= − ic
~

∫

d4p

(2π~)4
(γµpµ −mc)αβe−

i
~
p(x−y)

=
c

i~

∫

d4p

(2π~)4

(

p2 −m2c2

γµpµ +mc

)

αβ

e−
i
~
p(x−y). (9.59)

By using equation (9.42) we can deduce immediately the value of the path integral Z[η, η̄]. We
find

Z[η, η̄] = detM exp

(

− 1

~2

∫

d4x

∫

d4yη̄α(x)M
−1
αβ (x, y)ηβ(y)

)

. (9.60)

Hence the electron propagator is

< ψα(x)ψ̄β(y) >=M−1
αβ (x, y). (9.61)

From the form of the Laplacian (9.59) we get immediately the propagator (including also an
appropriate Feynman prescription)

< ψα(x)ψ̄β(y) > = i
~

c

∫

d4p

(2π~)4
(γµpµ +mc)αβ
p2 −m2c2 + iǫ

e−
i
~
p(x−y). (9.62)

9.2 Free Abelian Vector Field

9.2.1 Maxwell’s Action

The electric and magnetic fields ~E and ~B generated by a charge density ρ and a current density
~J are given by the Maxwell’s equations written in the Heaviside-Lorentz system as

~∇ ~E = ρ , Gauss′ s Law. (9.63)

~∇ ~B = 0 , No−Magnetic Monopole Law. (9.64)

~∇× ~E = −1

c

∂ ~B

∂t
, Faraday′ s Law. (9.65)

~∇× ~B =
1

c
( ~J +

∂ ~E

∂t
) , Ampere−Maxwell′ s Law. (9.66)
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The Lorentz force law expresses the force exerted on a charge q moving with a velocity ~u in the
presence of an electric and magnetic fields ~E and ~B. This is given by

~F = q( ~E +
1

c
~u× ~B). (9.67)

The continuity equation expresses local conservation of the electric charge. It reads

∂ρ

∂t
+ ~∇ ~J = 0. (9.68)

The so-called field strength tensor is a second-rank antisymmetric tensor Fµν defined by

Fµν =









0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0









. (9.69)

The dual field strength tensor is also a second-rank antisymmetric tensor F̃µν defined by

F̃µν =









0 −Bx −By −Bz
Bx 0 Ez −Ey
By −Ez 0 Ex
Bz Ey −Ex 0









=
1

2
ǫµναβFαβ . (9.70)

In terms of Fµν and F̃µν Maxwell’s equations will take the form

∂µF
µν =

1

c
Jν , ∂µF̃

µν = 0. (9.71)

The 4−vector current density Jµ is given by Jµ = (cρ, Jx, Jy, Jz). The first equation yields
Gauss’s and Ampere-Maxwell’s laws whereas the second equation yields Maxwell’s third equation
~∇ ~B = 0 and Faraday’s law. The continuity equation and the Lorentz force law respectively can
be rewritten in the covariant forms

∂µJ
µ = 0. (9.72)

Kµ =
q

c

dxν
dτ

Fµν . (9.73)

The electric and magnetic fields ~E and ~B can be expressed in terms of a scalar potential V and
a vector potential ~A as

~B = ~∇× ~A. (9.74)

~E = −1

c
(~∇V +

∂ ~A

∂t
). (9.75)

We construct the 4−vector potential Aµ as

Aµ = (V/c, ~A). (9.76)
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The field tensor Fµν can be rewritten in terms of Aµ as

Fµν = ∂µAν − ∂νAµ. (9.77)

This equation is actually equivalent to the two equations (9.74) and (9.75). The homogeneous
Maxwell’s equation ∂µF̃

µν = 0 is automatically solved by this ansatz. The inhomogeneous
Maxwell’s equation ∂µF

µν = Jν/c becomes

∂µ∂
µAν − ∂ν∂µAµ =

1

c
Jν . (9.78)

These equations of motion should be derived from a local Lagrangian density L, i.e. a Lagrangian
which depends only on the fields and their first derivatives at the point ~x. Indeed it can be
easily proven that the above equations of motion are the Euler-Lagrange equations of motion
corresponding to the Lagrangian density

L = −1

4
FµνF

µν − 1

c
JµA

µ. (9.79)

The free Maxwell’s action is

S0[A] = −1

4

∫

d4xFµνF
µν . (9.80)

The total Maxwell’s action will include a non-zero source and is given by

S[A] = −1

4

∫

d4xFµνF
µν − 1

c

∫

d4xJµA
µ. (9.81)

9.2.2 Gauge Invariance and Canonical Quantization

We have a gauge freedom in choosing Aµ given by local gauge transformations of the form (with
λ any scalar function)

Aµ −→ A
′µ = Aµ + ∂µΛ. (9.82)

Indeed under this transformation we have

Fµν −→ F
′µν = Fµν . (9.83)

These local gauge transformations form a (gauge) group. In this case the group is just the abelian
U(1) unitary group. The invariance of the theory under these transformations is termed a gauge
invariance. The 4−vector potential Aµ is called a gauge potential or a gauge field. We make
use of the invariance under gauge transformations by working with a gauge potential Aµ which
satisfies some extra conditions. This procedure is known as gauge fixing. Some of the gauge
conditions so often used are

∂µA
µ = 0 , Lorentz Gauge. (9.84)

∂iA
i = 0 , Coulomb Gauge. (9.85)

A0 = 0 , Temporal Gauge. (9.86)
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A3 = 0 , Axial Gauge. (9.87)

A0 +A1 = 0 , Light Cone Gauge. (9.88)

The form of the equations of motion (9.78) strongly suggest we impose the Lorentz condition.
In the Lorentz gauge the equations of motion (9.78) become

∂µ∂
µAν =

1

c
Jν . (9.89)

Clearly we still have a gauge freedom Aµ −→ A
′µ = Aµ + ∂µφ where ∂µ∂

µφ = 0. In other

words if Aµ satisfies the Lorentz gauge ∂µA
µ = 0 then A

′µ will also satisfy the Lorentz gauge,

i.e. ∂µA
′µ = 0 iff ∂µ∂

µφ = 0. This residual gauge symmetry can be fixed by imposing another
condition such as the temporal gauge A0 = 0. We have therefore 2 constraints imposed on the
components of the gauge potential Aµ which means that only two of them are really independent.
The underlying mechanism for the reduction of the number of degrees of freedom is actually more
complicated than this simple counting.

We incorporate the Lorentz condition via a Lagrange multiplier ζ, i.e. we add to the Maxwell’s
Lagrangian density a term proportional to (∂µAµ)

2 in order to obtain a gauge-fixed Lagrangian
density, viz

Lζ = −1

4
FµνF

µν − 1

2
ζ(∂µAµ)

2 − 1

c
JµA

µ. (9.90)

The added extra term is known as a gauge-fixing term. The conjugate fields are

π0 =
δLζ
δ∂tA0

= −ζ
c
(∂0A0 − ∂iAi). (9.91)

πi =
δLζ
δ∂tAi

=
1

c
(∂0Ai − ∂iA0). (9.92)

We remark that in the limit ζ −→ 0 the conjugate field π0 vanishes and as a consequence
canonical quantization becomes impossible. The source of the problem is gauge invariance which
characterize the limit ζ −→ 0. For ζ 6= 0 canonical quantization (although a very involved
exercise) can be carried out consistently. We will not do this exercise here but only quote the
result for the 2−point function. The propagator of the photon field in a general gauge ζ is given
by the formula (with ~ = c = 1)

iDµν
F (x − y) = < 0|T

(

Âµin(x)Â
ν
in(y)

)

|0 >

=

∫

d4p

(2π)4
i

p2 + iǫ

(

− ηµν + (1− 1

ζ
)
pµpν

p2

)

exp(−ip(x− y)). (9.93)

In the following we will give a derivation of this fundamental result based on the path integral
formalism.
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9.2.3 Path Integral Quantization and the Faddeev-Popov Method

The starting point is to posit that the path integral of an Abelian vector field Aµ in the presence of
a source Jµ is given by analogy with the scalar field by the functional integral (we set ~ = c = 1)

Z[J ] =

∫

∏

µ

DAµ exp iS[A]

=

∫

∏

µ

DAµ exp
(

− i

4

∫

d4xFµνF
µν − i

∫

d4xJµA
µ

)

. (9.94)

This is the generating functional of all correlation functions of the field Aµ(x). This is clear from
the result

< Aµ1(x1)....A
µ2 (x2) > ≡

∫ ∏

µDAµAµ1(x1)....A
µ2 (x2) exp iS0[A]

∫
∏

µDAµ exp iS0[A]

=

(

in

Z[J ]

δnZ[J ]

δJµ1(x1)...δJµn(xn)

)

J=0

. (9.95)

The Maxwell’s action can be rewritten as

S0[A] = −1

4

∫

d4xFµνF
µν

=
1

2

∫

d4xAν(∂µ∂
µηνλ − ∂ν∂λ)Aλ. (9.96)

We Fourier transform Aµ(x) as

Aµ(x) =

∫

d4k

(2π)4
Ãµ(k)e

ikx. (9.97)

Then

S0[A] =
1

2

∫

d4k

(2π)4
Ãν(k)(−k2ηνλ + kνkλ)Ãλ(−k). (9.98)

We observe that the action is 0 for any configuration of the form Ãµ(k) = kµf(k). Thus we
conclude that the so-called pure gauge configurations given by Aµ(x) = ∂µΛ(x) are zero modes
of the Laplacian which means in particular that the Laplacian can not be inverted. More im-
portantly this means that in the path integral Z[J ] these zero modes (which are equivalent to
Aµ = 0) are not damped and thus the path integral is divergent. This happens for any other
configuration Aµ. Indeed all gauge equivalent configurations AΛ

µ = Aµ + ∂µΛ have the same
probability amplitude and as a consequence the sum of their contributions to the path integral
will be proportional to the divergent integral over the Abelian U(1) gauge group which is here
the integral over Λ. The problem lies therefore in gauge invariance which must be fixed in the
path integral. This entails the selection of a single gauge configuration from each gauge orbit
AΛ
µ = Aµ + ∂µΛ as a representative and using it to compute the contribution of the orbit to the

path integral.
In path integral quantization gauge fixing is done in an elegant and efficient way via the

method of Faddeev and Popov. Let us say that we want to gauge fix by imposing the Lorentz
condition G(A) = ∂µA

µ − ω = 0. Clearly G(AΛ) = ∂µA
µ − ω + ∂µ∂

µΛ and thus
∫

DΛδ(G(AΛ)) =

∫

DΛδ(∂µAµ − ω + ∂µ∂µΛ). (9.99)
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By performing the change of variables Λ −→ Λ
′

= ∂µ∂
µΛ and using the fact that DΛ′

=

|(∂Λ′

/∂Λ)|DΛ = det(∂µ∂
µ)DΛ we get

∫

DΛδ(G(AΛ)) =

∫ DΛ′

det(∂µ∂µ)
δ(∂µA

µ − ω + Λ
′

) =
1

det(∂µ∂µ)
. (9.100)

This can be put in the form
∫

DΛδ
(

G(AΛ)

)

det

(

δG(AΛ)

δΛ

)

= 1. (9.101)

This is the generalization of
∫

∏

i

daiδ
(n)

(

~g(~a)

)

det

(

∂gi
∂aj

)

= 1. (9.102)

We insert 1 in the form (9.101) in the path integral as follows

Z[J ] =

∫

∏

µ

DAµ
∫

DΛδ
(

G(AΛ)

)

det

(

δG(AΛ)

δΛ

)

exp iS[A]

= det(∂µ∂
µ)

∫

DΛ
∫

∏

µ

DAµδ
(

G(AΛ)

)

exp iS[A]

= det(∂µ∂
µ)

∫

DΛ
∫

∏

µ

DAΛ
µδ

(

G(AΛ)

)

exp iS[AΛ]. (9.103)

Now we shift the integration varaible as AΛ
µ −→ Aµ. We observe immediately that the integral

over the U(1) gauge group decouples, viz

Z[J ] = det(∂µ∂
µ)
(

∫

DΛ
)

∫

∏

µ

DAµδ
(

G(A)

)

exp iS[A]

= det(∂µ∂
µ)
(

∫

DΛ
)

∫

∏

µ

DAµδ
(

∂µA
µ − ω

)

exp iS[A]. (9.104)

Next we want to set ω = 0. We do this in a smooth way by integrating both sides of the above
equation against a Gaussian weighting function centered around ω = 0, viz
∫

Dω exp(−i
∫

d4x
ω2

2ξ
)Z[J ] = det(∂µ∂

µ)
(

∫

DΛ
)

∫

∏

µ

DAµ
∫

Dω exp(−i
∫

d4x
ω2

2ξ
)δ

(

∂µA
µ − ω

)

exp iS[A]

= det(∂µ∂
µ)
(

∫

DΛ
)

∫

∏

µ

DAµ exp(−i
∫

d4x
(∂µA

µ)2

2ξ
) exp iS[A]. (9.105)

Hence

Z[J ] = N
∫

∏

µ

DAµ exp(−i
∫

d4x
(∂µA

µ)2

2ξ
) exp iS[A]

= N
∫

∏

µ

DAµ exp
(

−i
∫

d4x
(∂µA

µ)2

2ξ
− i

4

∫

d4xFµνF
µν − i

∫

d4xJµA
µ

)

.(9.106)

Therefore the end result is the addition of a term proportional to (∂µA
µ)2 to the action which

fixes gauge invariance to a sufficient degree.
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9.2.4 The Photon Propagator

The above path integral can also be put in the form

Z[J ] = N
∫

∏

µ

DAµ exp
(

i

2

∫

d4xAν

(

∂µ∂
µηνλ + (

1

ξ
− 1)∂ν∂λ

)

Aλ − i
∫

d4xJµA
µ

)

.

(9.107)

We use the result

∫ n
∏

i=1

dzie
−ziMijzj−ziji = e

1
4 jiM

−1
ij jj

∫ n
∏

i=1

dzie
−(zi+

1
2 jkM

−1
ki )Mij(zj+

1
2M

−1
jk jk)

= e
1
4 jiM

−1
ij jj

∫ n
∏

i=1

dyie
−yiMijyj

= e
1
4 jiM

−1
ij jj

∫ n
∏

i=1

dxie
−ximixj

= e
1
4 jiM

−1
ij jj

n
∏

i=1

√

π

mi

= e
1
4 jiM

−1
ij jjπ

n
2 (detM)−

1
2 . (9.108)

By comparison we have

Mij −→ −
i

2

(

∂µ∂
µηνλ + (

1

ξ
− 1)∂ν∂λ

)

δ4(x− y) , ji −→ iJµ. (9.109)

We define

Mνλ(x, y) = − i
2

(

∂µ∂
µηνλ + (

1

ξ
− 1)∂ν∂λ

)

δ4(x− y)

=
i

2

∫

d4k

(2π)4
(k2ηνλ + (

1

ξ
− 1)kνkλ)eik(x−y). (9.110)

Hence our path integral is actually given by

Z[J ] = Nπ n
2 (detM)−

1
2 exp

(

− 1

4

∫

d4x

∫

d4yJµ(x)M−1
µν (x, y)J

ν(y)

)

= N ′

exp

(

− 1

4

∫

d4x

∫

d4yJµ(x)M−1
µν (x, y)J

ν(y)

)

. (9.111)

The inverse of the Laplacian is defined by
∫

d4yMνλ(x, y)M−1
λµ (y, z) = ηνµδ

4(x− y). (9.112)

For example the 2−point function is given by

< Aµ(x)Aν (y) > =

(

i2

Z[J ]

δ2Z[J ]

δJµ(x)δJν (y)

)

J=0

=
1

2
M−1
µν (x, y). (9.113)



YDRI QFT 255

It is not difficult to check that the inverse is given by

M−1
µν (x, y) = −2i

∫

d4k

(2π)4
1

k2 + iǫ
(ηµν − (1− ξ)kµkν

k2
)eik(x−y). (9.114)

Hence the propagator is

< Aµ(x)Aν (y) > =

∫

d4k

(2π)4
−i

k2 + iǫ
(ηµν − (1− ξ)kµkν

k2
)eik(x−y). (9.115)

The most important gauges we will make use of are the Feynman gauge ξ = 1 and the Landau
gauge ξ = 0.

9.3 Gauge Interactions

9.3.1 Spinor and Scalar Electrodynamics: Minimal Coupling

The actions of a free Dirac field and a free Abelian vector field in the presence of sources are
given by (with ~ = c = 1)

S[ψ, ψ̄] =

∫

d4xψ̄(iγµ∂µ −m)ψ +

∫

d4x(ψ̄η + η̄ψ). (9.116)

S[A] = −1

4

∫

d4xFµνF
µν −

∫

d4xJµA
µ. (9.117)

The action S[A] gives Maxwell’s equations with a vector current source equal to the external
vector current Jµ. As we have already discussed the Maxwell’s action (Jµ = 0) is invariant under
the gauge symmetry transformations

Aµ −→ AΛ
µ = Aµ + ∂µΛ. (9.118)

The action S[A] is also invariant under these gauge transformations provided the vector current
Jµ is conserved, viz ∂µJ

µ = 0.
The action describing the interaction of a photon which is described by the Abelian vector

field Aµ and an electron described by the Dirac field ψ must be given by

S[ψ, ψ̄, A] = S[ψ, ψ̄] + S[A]−
∫

d4xjµA
µ. (9.119)

The interaction term −jµAµ is dictated by the requirement that this action must also give
Maxwell’s equations with a vector current source equal now to the sum of the external vector
current Jµ and the internal vector current jµ. The internal vector current jµ must clearly depend
on the spinor fields ψ and ψ̄ and furthermore it must be conserved.

In order to ensure that jµ is conserved we will identify it with the Noether’s current associated
with the local symmetry transformations

ψ −→ ψΛ = exp(−ieΛ)ψ , ψ̄ −→ ψ̄Λ = ψ̄ exp(ieΛ). (9.120)

Indeed under these local transformations the Dirac action transforms as

S[ψ, ψ̄] −→ S[ψΛ, ψ̄Λ] = S[ψ, ψ̄]− e
∫

d4xΛ∂µ(ψ̄γ
µψ). (9.121)
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The internal current jµ will be identified with eψ̄γµψ, viz

jµ = eψ̄γµψ. (9.122)

This current is clearly invariant under the local transformations (9.120). By performing the
local transformations (9.118) and (9.120) simultaneously, i.e. by considering the transformations
(9.120) a part of gauge symmetry, we obtain the invariance of the action S[ψ, ψ̄, A]. The action
remains invariant under the combined transformations (9.118) and (9.120) if we also include a
conserved external vector current source Jµ and Grassmann spinor sources η and η̄ which trans-
form under gauge transformations as the dynamical Dirac spinors, viz η −→ ηΛ = exp(−ieΛ)η
and η̄ −→ η̄Λ = η̄ exp(ieΛ). We write this result as (with Sη,η̄,J [ψ, ψ̄, A] ≡ S[ψ, ψ̄, A])

Sη,η̄,J [ψ, ψ̄, A] −→ SηΛ,η̄Λ,J [ψ
Λ, ψ̄Λ, AΛ] = Sη,η̄,J [ψ, ψ̄, A]. (9.123)

The action S[ψ, ψ̄, A] with the corresponding path integral define quantum spinor electrodynam-
ics which is the simplest and most important gauge interaction. The action S[ψ, ψ̄, A] can also
be put in the form

S[ψ, ψ̄, A] =

∫

d4xψ̄(iγµ∇µ −m)ψ − 1

4

∫

d4xFµνF
µν +

∫

d4x(ψ̄η + η̄ψ)−
∫

d4xJµA
µ.

(9.124)

The derivative operator ∇µ which is called the covariant derivative is given by

∇µ = ∂µ + ieAµ. (9.125)

The action S[ψ, ψ̄, A] could have been obtained from the free action S[ψ, ψ̄] + S[A] by making
the simple replacement ∂µ −→ ∇µ which is known as the principle of minimal coupling. In flat
Minkowski spacetime this prescription always works and it allows us to obtain the most minimal
consistent interaction starting from a free theory.

As another example consider complex quartic scalar field given by the action

S[φ, φ+] =

∫

d4x

(

∂µφ
+∂µφ−m2φ+φ− g

4
(φ+φ)2

)

. (9.126)

By applying the principle of minimal coupling we replace the ordinary ∂µ by the covariant
derivative ∇µ = ∂µ + ieAµ and then add the Maxwell’s action. We get immediately the gauge
invariant action

S[φ, φ+, A] =

∫

d4x

(

∇µφ+∇µφ−m2φ+φ− g

4
(φ+φ)2

)

− 1

4

∫

d4xFµνF
µν . (9.127)

This is indeed invariant under the local gauge symmetry transformations acting on Aµ, φ and
φ+ as

Aµ −→ AΛ
µ = Aµ + ∂µΛ , φ −→ exp(−ieΛ)φ , φ+ −→ φ+ exp(ieΛ). (9.128)

It is not difficult to add vector and scalar sources to the action (9.126) without spoiling gauge
invariance. The action (9.126) with the corresponding path integral define quantum scalar elec-
trodynamics which describes the interaction of the photon Aµ with a charged scalar particle φ
whose electric charge is q = −e.
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9.3.2 The Geometry of U(1) Gauge Invariance

The set of all gauge transformations which leave invariant the actions of spinor and scalar elec-
trodynamics form a group called U(1) and as a consequence spinor and scalar electrodynamics
are said to be invariant under local U(1) gauge symmetry. The group U(1) is the group of 1× 1
unitary matrices given by

U(1) = {g = exp(−ieΛ), ∀Λ}. (9.129)

In order to be able to generalize the local U(1) gauge symmetry to local gauge symmetries based
on other groups we will exhibit in this section the geometrical content of the gauge invariance of
spinor electrodynamics. The starting point is the free Dirac action given by

S =

∫

d4xψ̄(iγµ∂µ −m)ψ. (9.130)

This is invariant under the global transformations

ψ −→ e−ieΛψ , ψ̄ −→ ψ̄eieΛ. (9.131)

We demand next that the theory must be invariant under the local transformations obtained by
allowing Λ to be a function of x in the above equations, viz

ψ −→ ψg = g(x)ψ , ψ̄ −→ ψ̄g = ψ̄g+(x). (9.132)

The fermion mass term is trivially still invariant under these local U(1) gauge transformations,i.e.

ψ̄ψ −→ ψ̄gψg = ψ̄ψ. (9.133)

The kinetic term is not so easy. The difficulty clearly lies with the derivative of the field which
transforms under the local U(1) gauge transformations in a complicated way. To appreciate more
this difficulty let us consider the derivative of the field ψ in the direction defined by the vector
nµ which is given by

nµ∂µψ = lim

[

ψ(x+ ǫn)− ψ(x)
]

ǫ
, ǫ −→ 0. (9.134)

The two fields ψ(x+ǫn) and ψ(x) transform under the local U(1) symmetry with different phases
given by g(x + ǫn) and g(x) respectively. The point is that the fields ψ(x + ǫn) and ψ(x) since
they are evaluated at different spacetime points x+ǫn and x they transform independently under
the local U(1) symmetry. As a consequence the derivative nµ∂µψ has no intrinsic geometrical
meaning since it involves the comparison of fields at different spacetime points which transform
independently of each other under U(1).

In order to be able to compare fields ψ(y) and ψ(x) at different spacetime points y and x
we need to introduce a new object which connects the two points y and x and which allows a
meaningful comparison between ψ(y) and ψ(x). We introduce a comparator field U(y, x) which
connects the points y and x along a particular path with the properties:

• The comparator field U(y, x) must be an element of the gauge group U(1) and thus U(y, x)
is a pure phase, viz

U(y, x) = exp(−ieφ(y, x)) ∈ U(1). (9.135)
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• Clearly we must have

U(x, x) = 1⇔ φ(x, x) = 0. (9.136)

• Under the U(1) gauge transformations ψ(x) −→ ψg(x) = g(x)ψ(x) and ψ(y) −→ ψg(y) =
g(y)ψ(y) the comparator field transforms as

U(y, x) −→ Ug(y, x) = g(y)U(y, x)g+(x). (9.137)

• We impose the restriction

U(y, x)+ = U(x, y). (9.138)

The third property means that the product U(y, x)ψ(x) transforms as

U(y, x)ψ(x) −→ Ug(y, x)ψg(x) = g(y)U(y, x)g+(x)g(x)ψ(x) = g(y)U(y, x)ψ(x). (9.139)

Thus U(y, x)ψ(x) transforms under the U(1) gauge group with the same group element as the
field ψ(y). This means in particular that the comparison between U(y, x)ψ(x) and ψ(y) is
meaningful. We are led therefore to define a new derivative of the field ψ in the direction defined
by the vector nµ by

nµ∇µψ = lim

[

ψ(x+ ǫn)− U(x+ ǫn, x)ψ(x)
]

ǫ
, ǫ −→ 0. (9.140)

This is known as the covariant derivative of ψ in the direction nµ.
The second property U(x, x) = 1 allows us to conclude that if the point y is infinitesimally

close to the point x then we can expand U(y, x) around 1. We can write for y = x + ǫn the
expansion

U(x+ ǫn, x) = 1− ieǫnµAµ(x) +O(ǫ2). (9.141)

The coefficient of the displacement vector yµ − xµ = ǫnµ is a new vector field Aµ which is
precisely, as we will see shortly, the electromagnetic vector potential. The coupling e will, on the
other hand, play the role of the electric charge. We compute immediately

∇µψ = (∂µ + ieAµ)ψ. (9.142)

Thus ∇µ is indeed the covariant derivative introduced in the previous section.
By using the language of differential geometry we say that the vector field Aµ is a connection

on a U(1) fiber bundle over spacetime which defines the parallel transport of the field ψ from x
to y. The parallel transported field ψ‖ is defined by

ψ‖(y) = U(y, x)ψ(x). (9.143)

The third property with a comparator U(y, x) with y infinitesimally close to x, for example
y = x+ ǫn, reads explicitly

1− ieǫnµAµ(x) −→ 1− ieǫnµAgµ(x) = g(y)

(

1− ieǫnµAµ(x)
)

g+(x). (9.144)
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Equivalently we have

Agµ = gAµg
+ +

i

e
∂µg.g

+ ⇔ Agµ = Aµ + ∂µΛ. (9.145)

Again we find the gauge field transformation law considered in the previous section. For com-
pleteness we find the transformation law of the covariant derivative of the field ψ. We have

∇µψ = (∂µ + ieAµ)ψ −→ (∇µψ)g = (∂µ + ieAgµ)ψ
g

= (∂µ + ieAµ + ie∂µΛ)(e
−ieΛψ)

= e−ieΛ(∂µ + ieAµ)ψ

= g(x)∇µψ. (9.146)

Thus the covariant derivative of the field transforms exactly in the same way as the field itself.
This means in particular that the combination ψ̄iγµ∇µψ is gauge invariant. In summary given
the free Dirac action we can obtain a gauge invariant Dirac action by the simple substitution
∂µ −→ ∇µ. This is the principle of minimal coupling discussed in the previous section. The
gauge invariant Dirac action is

S =

∫

d4xψ̄(iγµ∇µ −m)ψ. (9.147)

We need finally to construct a gauge invariant action which provides a kinetic term for the
vector field Aµ. This can be done by integrating the comparator U(y, x) along a closed loop. For
y = x+ ǫn we write U(y, x) up to the order ǫ2 as

U(y, x) = 1− ieǫnµAµ + iǫ2X +O(ǫ3). (9.148)

The fourth fundamental property of U(y, x) restricts the comparator so that U(y, x)+ = U(x, y).
This leads immediately to the solution X = −enµnν∂νAµ/2. Thus

U(y, x) = 1− ieǫnµAµ −
ie

2
ǫ2nµnν∂

νAµ +O(ǫ3)

= 1− ieǫnµAµ(x+
ǫ

2
n) +O(ǫ3)

= exp(−ieǫnµAµ(x+
ǫ

2
n)). (9.149)

We consider now the group element U(x) given by the product of the four comparators associated
with the four sides of a small square in the (1, 2)−plane. This is given by

U(x) = trU(x, x+ ǫ1̂)U(x+ ǫ1̂, x+ ǫ1̂ + ǫ2̂)U(x+ ǫ1̂ + ǫ2̂, x+ ǫ2̂)U(x + ǫ2̂, x). (9.150)

This is called the Wilson loop associated with the square in question. The trace tr is of course
trivial for a U(1) gauge group. The Wilson loop U(x) is locally invariant under the gauge group
U(1), i.e. under U(1) gauge transformations the Wilson loop U(x) behaves as

U(x) −→ Ug(x) = U(x). (9.151)

The Wilson loop is the phase accumulated if we parallel transport the spinor field ψ from the
point x around the square and back to the point x. This phase can be computed explicitly.
Indeed we have
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U(x) = exp

(

ieǫ

[

A1(x+
ǫ

2
1̂) +A2(x+ ǫ1̂ +

ǫ

2
2̂)−A1(x+

ǫ

2
1̂ + ǫ2̂)−A2(x+

ǫ

2
2̂)

])

= exp(−ieǫ2F12)

= 1− ieǫ2F12 −
e2ǫ4

2
F 2
12 + ... (9.152)

In the above equation F12 = ∂1A2 − ∂2A1. We conclude that the field strength tensor Fµν =
∂µAν − ∂νAµ is locally gauge invariant under U(1) transformations. This is precisely the elec-
tromagnetic field strength tensor considered in the previous section.

The field strength tensor Fµν = ∂µAν − ∂νAµ can also be obtained from the commutator of
the two covariant derivatives ∇µ and ∇ν acting on the spinor field ψ. Indeed we have

[∇µ,∇ν ]ψ = ie(∂µAν − ∂νAµ)ψ. (9.153)

Thus under U(1) gauge transformations we have the behavior

[∇µ,∇ν ]ψ −→ g(x)[∇µ,∇ν ]ψ. (9.154)

In other words [∇ν ,∇ν ] is not a differential operator and furthermore it is locally invariant under
U(1) gauge transformations. This shows in a slightly different way that the field strength tensor
Fµν is the fundamental structure which is locally invariant under U(1) gauge transformations.
The field strength tensor Fµν can be given by the expressions

Fµν =
1

ie
[∇µ,∇ν ] = (∂µAν − ∂νAµ). (9.155)

In summary we can conclude that any function of the vector field Aµ which depends on the
vector field only through the field strength tensor Fµν will be locally invariant under U(1) gauge
transformations and thus can serve as an action functional. By appealing to the requirement
of renormalizability the only renormalizable U(1) gauge action in four dimensions (which also
preserves P and T symmetries) is Maxwell’s action which is quadratic in Fµν and also quadratic
in Aµ. We get then the pure gauge action

S = −1

4

∫

d4xFµνF
µν . (9.156)

The total action of spinor electrodynamics is therefore given by

S =

∫

d4xψ̄(iγµ∇µ −m)ψ − 1

4

∫

d4xFµνF
µν . (9.157)

9.3.3 Generalization: SU(N) Yang-Mills Theory

We can now immediately generalize the previous construction by replacing the Abelian gauge
group U(1) by a different gauge group G which will generically be non-Abelian, i.e the generators
of the corresponding Lie algebra will not commute. In this chapter we will be interested in the
gauge groups G = SU(N). Naturally we will start with the first non-trivial non-Abelian gauge
group G = SU(2) which is the case considered originally by Yang and Mills.

The group SU(2) is the group of 2×2 unitary matrices which have determinant equal 1. This
is given by

SU(2) = {uab, a, b = 1, ..., 2 : u+u = 1, detu = 1}. (9.158)
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The generators of SU(2) are given by Pauli matrices given by

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (9.159)

Thus any element of SU(2) can be rewritten as

u = exp(−igΛ) , Λ =
∑

A

ΛA
σA

2
. (9.160)

The group SU(2) has therefore 3 gauge parameters ΛA in contrast with the group U(1) which
has only a single parameter. These 3 gauge parameters correspond to three orthogonal symmetry
motions which do not commute with each other. Equivalently the generators of the Lie algebra
su(2) of SU(2) (consisting of the Pauli matrices) do not commute which is the reason why we
say that the group SU(2) is non-Abelian. The Pauli matrices satisfy the commutation relations

[
σA

2
,
σB

2
] = ifABC

σC

2
, fABC = ǫABC . (9.161)

The SU(2) group element u will act on the Dirac spinor field ψ. Since u is a 2 × 2 matrix the
spinor ψ must necessarily be a doublet with components ψa, a = 1, 2. The extra label a will be
called the color index. We write

ψ =

(

ψ1

ψ2

)

. (9.162)

We say that ψ is in the fundamental representation of the group SU(2). The action of an element
u ∈ SU(2) is given by

ψa −→ (ψu)a =
∑

B

uabψb. (9.163)

We start from the free Dirac action

S =

∫

d4x
∑

a

ψ̄a(iγµ∂µ −m)ψa. (9.164)

Clearly this is invariant under global SU(2) transformations, i.e. transformations g which do not
depend on x. Local SU(2) gauge transformations are obtained by letting g depend on x. Under
local SU(2) gauge transformations the mass term remains invariant whereas the kinetic term
transforms in a complicated fashion as in the case of local U(1) gauge transformations. Hence
as in the U(1) case we appeal to the principle of minimal coupling and replace the ordinary
derivative nµ∂µ with the covariant derivative nµ∇µ which is defined by

nµ∇µψ = lim

[

ψ(x+ ǫn)− U(x+ ǫn, x)ψ(x)
]

ǫ
, ǫ −→ 0. (9.165)

Since the spinor field ψ is a 2−component object the comparator U(y, x) must be a 2× 2 matrix
which transforms under local SU(2) gauge transformations as

U(y, x) −→ Ug(y, x) = u(y)U(y, x)u+(x). (9.166)
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In fact U(y, x) is an element of SU(2). We must again impose the condition that U(x, x) = 1.
Hence for an infinitesimal separation y − x = ǫn we can expand U(y, x) as

U(x+ ǫn, x) = 1− igǫnµAAµ (x)
σA

2
+ O(ǫ2). (9.167)

In other words we have three vector fields AAµ (x). They can be unified in a single object Aµ(x)
defined by

Aµ(x) = AAµ (x)
σA

2
. (9.168)

We will call Aµ(x) the SU(2) gauge field whereas we will refer to AAµ (x) as the components of
the SU(2) gauge field. Since Aµ(x) is 2 × 2 matrix it will carry two color indices a and b in
an obvious way. The components of the SU(2) gauge field in the fundamental representation of
SU(2) are given by Aµab(x). The color index is called the SU(2) fundamental index whereas the
index A carried by the components AAµ (x) is called the SU(2) adjoint index. In fact AAµ (x) are
called the components of the SU(2) gauge field in the adjoint representation of SU(2).

First by inserting the expansion U(x+ ǫn, x) = 1− igǫnµAAµ (x)σA/2+O(ǫ2) in the definition
of the covariant derivative we obtain the result

∇µψ = (∂µ + igAAµ
σA

2
)ψ. (9.169)

The spinor U(x + ǫn, x)ψ(x) is the parallel transport of the spinor ψ from the point x to the
point x+ǫn and thus by construction it must transform under local SU(2) gauge transformations
in the same way as the spinor ψ(x + ǫn). Hence under local SU(2) gauge transformations the
covariant derivative is indeed covariant, viz

∇µψ −→ u(x)∇µψ. (9.170)

Next by inserting the expansion U(x+ǫn, x) = 1−igǫnµAAµ (x)σA/2+O(ǫ2) in the transformation
law U(y, x) −→ Ug(y, x) = u(y)U(y, x)u+(x) we obtain the transformation law

Aµ −→ Auµ = uAµu
+ +

i

g
∂µu.u

+. (9.171)

For infinitesimal SU(2) transformations we have u = 1− igΛ. We get

Aµ −→ Auµ = Aµ + ∂µΛ + ig[Aµ,Λ]. (9.172)

In terms of components we have

ACµ
σC

2
−→ AuCµ

σC

2
= ACµ

σC

2
+ ∂µΛ

C σ
C

2
+ ig[AAµ

σA

2
,ΛB

σB

2
]

=

(

ACµ + ∂µΛ
C + igAAµΛ

BifABC

)

σC

2
. (9.173)

In other words

AuCµ = ACµ + ∂µΛ
C − gfABCAAµΛB. (9.174)
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The spinor field transforms under infinitesimal SU(2) transformations as

ψ −→ ψu = ψ − igΛψ. (9.175)

We can now check explicitly that the covariant derivative is indeed covariant, viz

∇µψ −→ (∇µψ)u = ∇µψ − igΛ∇µψ. (9.176)

By applying the principle of minimal coupling to the free Dirac action (9.164) we replace the
ordinary derivative ∂µψ

a by the covariant derivative (∇µ)abψb. We obtain the interacting action

S =

∫

d4x
∑

a,b

ψ̄a(iγµ(∇µ)ab −mδab)ψb. (9.177)

Clearly

(∇µ)ab = ∂µδab + igAAµ (
σA

2
)ab. (9.178)

This action is by construction invariant under local SU(2) gauge transformations. It provides
obviously the free term for the Dirac field ψ as well as the interaction term between the SU(2)
gauge field Aµ and the Dirac field ψ. There remains therefore to find an action which will provide
the free term for the SU(2) gauge field Aµ. As opposed to the U(1) case the action which will
provide a free term for the SU(2) gauge field Aµ will also provide extra interaction terms (cubic
and quartic) which involve only Aµ. This is another manifestation of the non-Abelian structure
of the SU(2) gauge group and it is generic to all other non-Abelian groups.

By analogy with the U(1) case a gauge invariant action which depends only on Aµ can only
depend on Aµ through the field strength tensor Fµν . This in turn can be constructed from the
commutator of two covariant derivatives. We have then

Fµν =
1

ig
[∇µ,∇ν ]

= ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (9.179)

Fµν is also a 2× 2 matrix. In terms of components the above equation reads

FCµν
σC

2
= ∂µA

C
ν

σC

2
− ∂νACµ

σC

2
+ ig[AAµ

σA

2
, ABν

σB

2
]

=

(

∂µA
C
ν − ∂νACµ + igAAµA

B
ν .ifABC

)

σC

2
. (9.180)

Equivalently

FCµν = ∂µA
C
ν − ∂νACµ − gfABCAAµABν . (9.181)

The last term in the above three formulas is of course absent in the case of U(1) gauge theory.
This is the term that will lead to novel cubic and quartic interaction vertices which involve
only the gauge field Aµ. We remark also that although Fµν is the commutator of two covariant
derivatives it is not a differential operator. Since ∇µψ transforms as ∇µψ −→ u∇µψ we conclude
that ∇µ∇νψ −→ u∇µ∇νψ and hence

Fµνψ −→ uFµνψ. (9.182)
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This means in particular that

Fµν −→ Fuµν = uFµνu
+. (9.183)

This can be verified explicitly by using the finite and infinitesimal transformation laws Aµ −→
uAµu

+ + i∂µu.u
+/g and Aµ −→ Aµ + ∂µΛ + ig[Aµ,Λ]

4. The infinitesimal form of the above
transformation law is

Fµν −→ Fuµν = Fµν + ig[Fµν ,Λ]. (9.184)

In terms of components this reads

FCµν −→ FuCµν = FCµν − gfABCFAµνΛB. (9.185)

Although the field strength tensor Fµν is not gauge invariant its gauge transformation Fµν −→
uFµνu

+ is very simple. Any function of Fµν will therefore transform in the same way as Fµν and
as a consequence its trace is gauge invariant under local SU(2) transformations. For example
trFµνF

µν is clearly gauge invariant. By appealing again to the requirement of renormalizability
the only renormalizable SU(2) gauge action in four dimensions (which also preserves P and T
symmetries) must be quadratic in Fµν . The only candidate is trFµνF

µν . We get then the pure
gauge action

S = −1

2

∫

d4xtrFµνF
µν . (9.186)

We note that Pauli matrices satisfy

tr
σA

2

σB

2
=

1

2
δAB. (9.187)

Thus the above pure action becomes 5

S = −1

4

∫

d4xFCµνF
µνC . (9.188)

This action provides as promised the free term for the SU(2) gauge field Aµ but also it will
provide extra cubic and quartic interaction vertices for the gauge field Aµ. In other words this
action is not free in contrast with the U(1) case. This interacting pure gauge theory is in fact
highly non-trivial and strictly speaking this is what we should call Yang-Mills theory.

The total action is the sum of the gauge invariant Dirac action and the Yang-Mills action.
This is given by

S =

∫

d4x
∑

a,b

ψ̄a(iγµ(∇µ)ab −mδab)ψb −
1

4

∫

d4xFCµνF
µνC . (9.189)

The final step is to generalize further to SU(N) gauge theory which is quite straightforward.
The group SU(N) is the group of N ×N unitary matrices which have determinant equal 1. This
is given by

SU(N) = {uab, a, b = 1, ..., N : u+u = 1, detu = 1}. (9.190)

4Exercise: Verify this.
5Exercise: Derive the equations of motion which follow from this action.
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The generators of SU(N) can be given by the so-called Gell-Mann matrices tA = λA/2. They
are traceless Hermitian matrices which generate the Lie algebra su(N) of SU(N). There are
N2 − 1 generators and hence su(N) is an (N2 − 1)−dimensional vector space. They satisfy the
commutation relations

[tA, tB] = ifABCt
C . (9.191)

The non-trivial coefficients fABC are called the structure constants. The Gell-Mann generators
ta can be chosen such that

trtAtB =
1

2
δAB . (9.192)

They also satisfy

tAtB =
1

2N
δAB +

1

2
(dABC + ifABC)t

C . (9.193)

The coefficients dABC are symmetric in all indices. They can be given by dABC = 2trtA{tB, tC}
and they satisfy for example

dABCdABD =
N2 − 4

N
δCD. (9.194)

For example the group SU(3) is generated by the 8 Gell-Mann 3 × 3 matrices tA = λA/2 given
by

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 . (9.195)

The structure constants fABC and the totally symmetric coefficients dABC are given in the case
of the group SU(3) by

f123 = 1 , f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
, f458 = f678 =

√
3

2
. (9.196)

d118 = d228 = d338 = −d888 =
1√
3

d448 = d558 = d668 = d778 = − 1

2
√
3

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
. (9.197)
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Thus any finite element of the group SU(N) can be rewritten in terms of the Gell-Mann matrices
tA = λA/2 as

u = exp(−igΛ) , Λ =
∑

A

ΛA
λA

2
. (9.198)

The spinor field ψ will be an N−component object. The SU(N) group element u will act on
the Dirac spinor field ψ in the obvious way ψ −→ uψ. We say that the spinor field transforms
in the fundamental representation of the SU(N) gauge group. The covariant derivative will be
defined by the same formula found in the SU(2) case after making the replacement σA −→ λA,
viz (∇µ)ab = ∂µδab + igAAµ (t

A)ab (recall also that the range of the fundamental index a changes
from 2 to N). The covariant derivative will transform covariantly under the SU(N) gauge
group. There are clearly N2 − 1 components AAµ of the SU(N) gauge field, i.e. Aµ = AAµ t

A.

The transformation laws of Aµ and AAµ remain unchanged (only remember that the structure
constants differ for different gauge groups). The field strength tensor Fµν will be given, as before,
by the commutator of two covariant derivatives. All results concerning Fµν will remain intact
with minimal changes involving the replacements σA −→ λA, ǫABC −→ fABC (recall also that
the range of the adjoint index changes from 3 to N2−1). The total action will therefore be given
by the same formula (9.189). We will refer to this theory as quantum chromodynamics (QCD)
with SU(N) gauge group whereas we will refer to the pure gauge action as SU(N) Yang-Mills
theory.

9.4 Quantization and Renormalization at 1−Loop

9.4.1 The Fadeev-Popov Gauge Fixing and Ghost Fields

We will be interested first in the SU(N) Yang-Mills theory given by the action

S[A] = −1

2

∫

d4xtrFµνF
µν

= −1

4

∫

d4xFAµνF
µνA. (9.199)

The corresponding path integral is given by

Z =

∫

∏

µ,A

DAAµ exp(iS[A]) (9.200)

This path integral is invariant under finite SU(N) gauge transformations given explicitly by

Aµ −→ Auµ = uAµu
+ +

i

g
∂µu.u

+. (9.201)

Also it is invariant under infinitesimal SU(N) gauge transformations given explicitly by

Aµ −→ AΛ
µ = Aµ + ∂µΛ + ig[Aµ,Λ] ≡ Aµ + [∇µ,Λ]. (9.202)

Equivalently

ACµ −→ AΛC
µ = ACµ + ∂µΛ

C − gfABCAAµΛB ≡ ACµ + [∇µ,Λ]C . (9.203)
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As in the case of electromagnetism we must fix the gauge before we can proceed any further
since the path integral is ill defined as it stands. We want to gauge fix by imposing the Lorentz
condition G(A) = ∂µA

µ − ω = 0. Clearly under infinitesimal SU(N) gauge transformations we
have G(AΛ) = ∂µA

µ − ω + ∂µ[∇µ,Λ] and thus

∫

DΛδ(G(AΛ))det

(

δG(AΛ)

δΛ

)

=

∫

DΛδ(∂µAµ − ω + ∂µ[∇µ,Λ])det∂µ[∇µ, ..]. (9.204)

By performing the change of variables Λ −→ Λ
′

= ∂µ[∇µ,Λ] and using the fact that DΛ′

=

|(∂Λ′

/∂Λ)|DΛ = det(∂µ[∇µ, ..])DΛ we get

∫

DΛδ(G(AΛ))det

(

δG(AΛ)

δΛ

)

=

∫ DΛ′

det(∂µ[∇µ, ..])
δ(∂µA

µ − ω + Λ
′

)det(∂µ[∇µ, ..]) = 1.

(9.205)

This can also be put in the form (with u near the identity)
∫

Duδ(G(Au))det
(

δG(Au)

δu

)

= 1 ,
δG(Au)

δu
= ∂µ[∇µ, ..]. (9.206)

For a given gauge configuration Aµ we define

∆−1(A) =

∫

Duδ(G(Au)). (9.207)

Under a gauge transformation Aµ −→ Avµ = vAµv
+ + i∂µv.v

+/g we have Auµ −→ Auvµ =
uvAµ(uv)

+ + i∂µuv.(uv)
+/g and thus

∆−1(Av) =

∫

Duδ(G(Auv)) =
∫

D(uv)δ(G(Auv)) =
∫

Du′

δ(G(Au
′

)) = ∆−1(A). (9.208)

In other words ∆−1 is gauge invariant. Further we can write

1 =

∫

Duδ(G(Au))∆(A). (9.209)

As we will see shortly we are interested in configurations Aµ which lie on the surface G(A) =
∂µAµ − ω = 0. Thus only SU(N) gauge transformations u which are near the identity are
relevant in the above integral. Hence we conclude that (with u near the identity)

∆(A) = det

(

δG(Au)

δu

)

. (9.210)

The determinant det(δG(Au)/δu) is gauge invariant and as a consequence is independent of u.
The fact that this determinant is independent of u is also obvious from equation (9.206).

We insert 1 in the form (9.209) in the path integral as follows

Z =

∫

∏

µ,A

DAAµ
∫

Duδ(G(Au))∆(A) exp iS[A]

=

∫

Du
∫

∏

µ,A

DAAµ δ(G(Au))∆(A) exp iS[A]

=

∫

Du
∫

∏

µ,A

DAuAµ δ(G(Au))∆(Au) exp iS[Au]. (9.211)
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Now we shift the integration varaible as Auµ −→ Aµ. The integral over the SU(N) gauge group
decouples an we end up with

Z = (

∫

Du)
∫

∏

µ,A

DAAµ δ(G(A))∆(A) exp iS[A]. (9.212)

Because of the delta function we are interested in knowing ∆(A) only for configurations Aµ

which lie on the surface G(A) = 0. This means in particular that the gauge transformations
u appearing in (9.209) must be close to the identity so that we do not go far from the surface
G(A) = 0. As a consequence ∆(A) can be equated with the determinant det(δG(Au)/δu), viz

∆(A) = det

(

δG(Au)

δu

)

= det∂µ[∇µ, ..]. (9.213)

In contrast with the case of U(1) gauge theory, here the determinant det(δG(Au)/δu) actually
depends on the SU(N) gauge field and hence it can not be taken out of the path integral. We
have then the result

Z = (

∫

Du)
∫

∏

µ,A

DAAµ δ(∂µAµ − ω)det∂µ[∇µ, ..] exp iS[A]. (9.214)

Clearly ω must be an N × N matrix since Aµ is an N × N matrix. We want to set ω = 0
by integrating both sides of the above equation against a Gaussian weighting function centered
around ω = 0, viz

∫

Dω exp(−i
∫

d4xtr
ω2

ξ
)Z = (

∫

Du)
∫

∏

µ,A

DAAµ
∫

Dω exp(−i
∫

d4xtr
ω2

ξ
)δ(∂µA

µ − ω)det∂µ[∇µ, ..] exp iS[A]

= (

∫

Du)
∫

∏

µ,A

DAAµ exp(−i
∫

d4xtr
(∂µA

µ)2

ξ
)det∂µ[∇µ, ..] exp iS[A]. (9.215)

The path integral of SU(N) Yang-Mills theory is therefore given by

Z = N
∫

∏

µ,A

DAAµ exp(−i
∫

d4xtr
(∂µA

µ)2

ξ
)det∂µ[∇µ, ..] exp iS[A]. (9.216)

Let us recall that for Grassmann variables we have the identity

detM =

∫

∏

i

dθ+i dθie
−θ+i Mijθj . (9.217)

Thus we can express the determinant det∂µ[∇µ, ..] as a path integral over Grassmann fields c̄
and c as follows

det∂µ[∇µ, ..] =
∫

Dc̄Dc exp(−i
∫

d4x trc̄∂µ[∇µ, c]). (9.218)

The fields c̄ and c are clearly scalar under Lorentz transformations (their spin is 0) but they are
anti-commuting Grassmann-valued fields and hence they can not describe physical propagating
particles (they simply have the wrong relation between spin and statistics). These fields are
called Fadeev-Popov ghosts and they clearly carry two SU(N) indices. More precisely since the
covariant derivative is acting on them by commutator these fields must be N ×N matrices and
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thus they can be rewritten as c = cAtA. We say that the ghost fields transform in the adjoint
representation of the SU(N) gauge group, i.e. as c −→ ucu+ and c̄ −→ uc̄u+ which ensures
global invariance. In terms of cA the determinant reads

det∂µ[∇µ, ..] =
∫

∏

A

Dc̄ADcA exp

(

i

∫

d4x c̄A
(

− ∂µ∂µδAB − gfABC∂µACµ
)

cB
)

. (9.219)

The path integral of SU(N) Yang-Mills theory becomes

Z = N
∫

∏

µ,A

DAAµ
∫

∏

A

Dc̄ADcA exp(−i
∫

d4xtr
(∂µA

µ)2

ξ
) exp(−i

∫

d4x trc̄∂µ[∇µ, c]) exp iS[A]

= N
∫

∏

µ,A

DAAµ
∫

∏

A

Dc̄ADcA exp iSFP [A, c, c̄]. (9.220)

SFP [A, c, c̄] = S[A]−
∫

d4xtr
(∂µA

µ)2

ξ
−
∫

d4x trc̄∂µ[∇µ, c]. (9.221)

The second term is called the gauge fixing term whereas the third term is called the Faddev-Popov
ghost term. We add sources to obtain the path integral

Z[J, b, b̄] = N
∫

∏

µ,A

DAAµ
∫

∏

A

Dc̄ADcA exp

(

iSFP [A, c, c̄]− i
∫

d4xJAµ A
µA + i

∫

d4x(b̄c+ c̄b)

)

.

(9.222)

In order to compute propagators we drop all interactions terms. We end up with the partition
function

Z[J, b, b̄] = N
∫

∏

µ,A

DAAµ
∫

∏

A

Dc̄ADcA exp

(

i

2

∫

d4xAAν

(

∂µ∂
µηνλ + (

1

ξ
− 1)∂ν∂λ

)

AAλ − i
∫

d4xc̄A∂µ∂
µcA

− i

∫

d4xJAµ A
µA + i

∫

d4x(b̄c+ c̄b)

)

. (9.223)

The free SU(N) gauge part is N2 − 1 copies of U(1) gauge theory. Thus without any further
computation the SU(N) vector gauge field propagator is given by

< AAµ (x)A
B
ν (y) > =

∫

d4k

(2π)4
−iδAB
k2 + iǫ

(ηµν − (1− ξ)kµkν
k2

)eik(x−y). (9.224)

The propagator of the ghost field can be computed along the same lines used for the propagator
of the Dirac field. We obtain 6

< cA(x)c̄B(y) > =

∫

d4k

(2π)4
iδAB

k2 + iǫ
eik(x−y). (9.225)

6Exercise: Perform this calculation explicitly.
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9.4.2 Perturbative Renormalization and Feynman Rules

The QCD action with SU(N) gauge group is given by

SQCD[ψ, ψ̄, A, c, c̄] = S0[ψ, ψ̄, A, c, c̄] + S1[ψ, ψ̄, A, c, c̄] (9.226)

S0[ψ, ψ̄, A, c, c̄] =

∫

d4x
∑

a

ψ̄a(iγµ∂µ −m)ψa − 1

4

∫

d4x(∂µA
A
ν − ∂νAAµ )(∂µAνA − ∂νAµA)

− 1

2ξ

∫

d4x(∂µA
µA)2 −

∫

d4x c̄A∂µ∂
µcA. (9.227)

S1[ψ, ψ̄, A, c, c̄] = −gtAab
∫

d4x
∑

a,b

ψ̄aγµψbAAµ + gfABC

∫

d4x∂µAνCAAµA
B
ν

− g2

4
fABCfDEC

∫

d4xAAµA
B
ν A

µDAνE − gfABC
∫

d4x(c̄AcB∂µACµ + c̄A∂µcBAcµ).

(9.228)

We introduce the renormalization constants Z3, Z2 and Zc2 by introducing the renormalized fields
AµR, ψR and cR which are defined in terms of the bare fields Aµ, ψ and c respectively by the
equations

AµR =
Aµ√
Z3

, ψR =
ψ√
Z2

, cR =
c

√

Zc2
. (9.229)

The renormalization constants Z3, Z2 and Zc2 can be expanded in terms of the counter terms δ3,
δ2 and δc2 as

Z3 = 1 + δ3 , Z2 = 1 + δ2 , Z
c
2 = 1 + δc2. (9.230)

Furthermore we relate the bare coupling constants g and m to the renormalized coupling gR and
mR through the counter terms δ1 and δm by

gZ2

√

Z3 = gR(1 + δ1) , Z2m = mR + δm. (9.231)

Since we have also AAA, AAAA and ccA vertices we need more counter terms δ31 , δ
4
1 and δc1

which we define by

gZ
3
2
3 = gR(1 + δ31) , g

2Z2
3 = g2R(1 + δ41) , gZ

c
2

√

Z3 = gR(1 + δc1). (9.232)

We will also define a "renormalized gauge fixing parameter" ξR by

1

ξR
=
Z3

ξ
. (9.233)

As we will see shortly this is physically equivalent to imposing the gauge fixing condition on the
renormalized gauge field AµR instead of the bare gauge field Aµ.

The action divides therefore as

S = SR + Scount ter. (9.234)
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The action SR is given by the same formula as S with the replacement of all fields and coupling
constants by the renormalized fields and renormalized coupling constants and also replacing ξ
by ξR. The counter term action Scount ter is given explicitly by

Scount ter = δ2

∫

d4x
∑

a

ψ̄aRiγ
µ∂µψ

a
R − δm

∫

d4x
∑

a

ψ̄aRψ
a
R −

δ3
4

∫

d4x(∂µA
A
νR − ∂νAAµR)(∂µAνAR − ∂νAµAR )

− δc2

∫

d4x c̄AR∂µ∂
µcAR − gRδ1tAab

∫

d4x
∑

a,b

ψ̄aRγ
µψbRA

A
µR + gRδ

3
1fABC

∫

d4x∂µAνCR AAµRA
B
νR

− g2Rδ
4
1

4
fABCfDEC

∫

d4xAAµRA
B
νRA

µD
R AνER − gRδc1fABC

∫

d4x(c̄ARc
B
R∂

µACµR + c̄AR∂
µcBRA

c
µR).

(9.235)

From the above discussion we see that we have eight counter terms δ1, δ2, δ3, δ
c
2, δm, δc1, δ

4
1 and

δ31 and five coupling constants g, m, Z2, Z3 and Zc2 . The counter terms will be determined in
terms of the coupling constants and hence there must be only five of them which are completely
independent. The fact that only five counter terms are independent means that we need five
renormalization conditions to fix them. This also means that the counter term must be related
by three independent equations. It is not difficult to discover that these equations are

gR
g
≡ Z2

√
Z3

1 + δ1
=

Z
3
2
3

1 + δ31
. (9.236)

gR
g
≡ Z2

√
Z3

1 + δ1
=

Z3
√

1 + δ41
. (9.237)

gR
g
≡ Z2

√
Z3

1 + δ1
=
Zc2
√
Z3

1 + δc1
. (9.238)

At the one-loop order we can expand Z3 = 1+ δ3, Z2 = 1+ δ2 and Zc2 = 1+ δc2 where δ3, δ2 and
δc2 as well as δ1, δ

3
1 , δ

4
1 and δc1 are all of order ~ and hence the above equations become

δ31 = δ3 + δ1 − δ2. (9.239)

δ41 = δ3 + 2δ1 − 2δ2. (9.240)

δc1 = δc2 + δ1 − δ2. (9.241)

The independent counter terms are taken to be δ1, δ2, δ3, δ
c
2, δm which correspond respectively

to the coupling constants g, Z2, Z3, Z
c
2 and m. The counter term δ3 will be determined in the

following from the gluon self-energy, the counter terms δ2 and δm will be determined from the
quark self-energy whereas the counter term δ1 will be determined from the vertex. The counter
term δc2 should be determined from the ghost self-energy 7.

For ease of writing we will drop in the following the subscript R on renormalized quantities
and when we need to refer to the bare quantities we will use the subscript 0 to distinguish them
from their renormalized counterparts.

We write next the corresponding Feynman rules in momentum space. These are shown in
figure 11. In the next two sections we will derive these rules from first principle, i.e. starting
from the formula (8.136). The Feynman rules corresponding to the bare action are summarized
as follows:

7Exercise: Compute δc2 following the same steps taken for the other counter terms.
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• The quark propagator is

< ψbβ(p)ψ̄
a
α(−p) >= δab

(γµpµ +m)βα
p2 −m2

. (9.242)

• The gluon propagator is

< AAµ (k)A
B
ν (−k) >= δAB

1

k2

[

ηµν + (ξ − 1)
kµkν
k2

]

. (9.243)

• The ghost propagator is

< cB(p)c̄A(−p) >= δAB
1

p2
. (9.244)

• The quartic vertex is

< AAµA
B
ν A

D
ρ A

E
σ > = −g2

[

fABCfDEC(η
ρµησν − ησµηρν) + fBDCfAEC(η

σρηµν − ηρµησν )

+ fDACfBEC(η
σµηρν − ηµνησρ)

]

. (9.245)

• The cubic vertex is

< AAµ (k)A
B
ν (p)A

C
ρ (q) > = igfABC

[

(2p+ k)µηρν − (p+ 2k)νηρµ + (k − p)ρηµν
]

, q = −p− k.

(9.246)

• The quark-gluon vertex is

< AAµ c̄
A(k)cB > = g(tA)ab(γ

µ)αβ . (9.247)

• The ghost-gluon vertex is

< ACµ ψ̄
a
αψ

b
β > = −igfABCkµ. (9.248)

• Impose energy-momentum conservation at all vertices.

• Integrate over internal momenta.

• Symmetry factor. For example if the diagram is invariant under the permutation of two
lines we should divide by 1/2.

• Each fermion line must be multiplied by −1.

• All one-loop diagrams should be multiplied by ~/i.
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9.4.3 The Gluon Field Self-Energy at 1−Loop

We are interested in computing the proper n−point vertices of this theory which are connected
1−particle irreducible n−point functions from which all external legs are amputated. The gen-
erating functional of the corresponding Feynman diagrams is of course the effective action. We
recall the formal definition of the proper n−point vertices given by

Γ(n)(x1, ..., xn) = Γ,i1...in =
δnΓ[φc]

δφc(x1)...δφc(xn)
|φ=0. (9.249)

The effective action upto the 1−loop order is

Γ = S +
1

i
Γ1 , Γ1 = ln detG0 , G

ik
0 = −S−1

,ik . (9.250)

As our first example we consider the proper 2−point vertex of the non-Abelian vector field Aµ.
This is defined by

ΓABµν (x, y) =
δ2Γ

δAµA(x)δAνB(y)
|A,ψ,c=0. (9.251)

We use the powerful formula (8.136) which we copy here for convenience

Γ1[φ],j0k0 =
1

2
Gmn0 S[φ],j0k0mn +

1

2
Gmm0

0 Gnn0
0 S[φ],j0mnS[φ],k0m0n0 . (9.252)

We have then immediately four terms contributing to the gluon propagator at 1−loop. These
are given by (with j0 = (x, µ,A) and k0 = (y, ν, B))

ΓABµν (x, y) =
δ2S

δAµA(x)δAνB(y)
|A,ψ,c=0 +

1

i

[

1

2
GAmAn

0 S,Aj0Ak0
AmAn +

1

2
G
AmAm0
0 G

AnAn0
0 S,Aj0AmAnS,Ak0

Am0An0

+ (−1)×Gc̄mcm0

0 G
cn c̄n0

0 S,Aj0 c̄mcn
S,Ak0

cm0 c̄n0
+ (−1)×Gψ̄mψm0

0 G
ψnψ̄n0

0 S,Aj0 ψ̄mψn
S,Ak0

ψm0 ψ̄n0

]

.

(9.253)

The corresponding Feynman diagrams are shown on figure 9. The minus signs in the last two
diagrams are the famous fermion loops minus sign. To see how they actually originate we should
go back to the derivation of (9.252) and see what happens if the fields are Grassmann valued.
We start from the first derivative of the effective action Γ1 which is given by the unambigous
equation (8.112), viz

Γ1,j =
1

2
Gmn0 S,jmn. (9.254)

Taking the second derivative we obtain

Γ1,ij =
1

2
Gmn0 S,ijmn +

1

2

δGmn0

δφi
S,jmn. (9.255)

The first term is correct. The second term can be computed using the identityGmm0
0 S,m0n = −δmn

which can be rewritten as

δGmn0

δφi
= Gmm0

0 S,im0n0G
n0n
0 . (9.256)
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We have then

Γ1,ij =
1

2
Gmn0 S,ijmn +

1

2
Gmm0

0 Gn0n
0 S,im0n0S,jmn

=
1

2
Gmn0 S,j0k0mn +

1

2
Gm0m

0 Gnn0
0 S,j0mnS,k0m0n0 . (9.257)

Only the propagator Gm0m
0 has reversed indices compared to (9.252) which is irrelevant for

bosonic fields but reproduces a minus sign for fermionic fields.

The classical term in the gluon self-energy is given by

S,j0k0 =
δ2S

δAµA(x)δAνB(y)
|A,ψ,c=0 =

[

∂ρ∂
ρηµν + (

1

ξ
− 1)∂µ∂ν

]

δABδ4(x− y)

= −
∫

d4k

(2π)4

[

k2ηµν + (
1

ξ
− 1)kµkν

]

δABe
ik(x−y).

(9.258)

We compute

Gj0k00 = δAB

∫

d4k

(2π)4
1

k2 + iǫ

[

ηµν + (ξ − 1)
kµkν

k2

]

eik(x−y)

= δAB

∫

d4k

(2π)4
Gµν0 (k)eik(x−y)

= δABG
µν
0 (x, y). (9.259)

The quartic vertex can be put into the fully symmetric form

−g
2

4
fABCfDEC

∫

d4xAAµA
B
ν A

µDAνE = −g
2

8
fABCfDEC

∫

d4x

∫

d4y

∫

d4z

∫

d4wAAµ (x)A
B
ν (y)A

D
ρ (z)A

E
σ (w)

× δ4(x− y)δ4(x− z)δ4(x− w)(ηρµησν − ησµηρν)

= −g
2

4!

∫

d4x

∫

d4y

∫

d4z

∫

d4wAAµ (x)A
B
ν (y)A

D
ρ (z)A

E
σ (w)δ

4(x− y)δ4(x− z)

× δ4(x− w)
[

fABCfDEC(η
ρµησν − ησµηρν) + fBDCfAEC(η

σρηµν − ηρµησν)

+ fDACfBEC(η
σµηρν − ηµνησρ)

]

. (9.260)

In other words (with j0 = (x, µ,A), k0 = (y, ν, B), m = (z, ρ,D) and n = (w, σ,E))

S,Aj0Ak0
AmAn = −g2δ4(x− y)δ4(x − z)δ4(x − w)

[

fABCfDEC(η
ρµησν − ησµηρν) + fBDCfAEC(η

σρηµν − ηρµησν)

+ fDACfBEC(η
σµηρν − ηµνησρ)

]

. (9.261)
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We can now compute the first one-loop diagram as

1

2
GAmAn

0 S,Aj0Ak0
AmAn = −g

2

2
δDEG0ρσ(x, x)

[

fABCfDEC(η
ρµησν − ησµηρν) + fBDCfAEC(η

σρηµν − ηρµησν)

+ fDACfBEC(η
σµηρν − ηµνησρ)

]

δ4(x− y)

= −g
2

2

[

Gρ0ρ(x, x)η
µν −Gµν0 (x, x)

][

fBDCfADC − fDACfBDC
]

δ4(x− y)

= −g2
[

Gρ0ρ(x, x)η
µν −Gµν0 (x, x)

]

fBDCfADCδ
4(x− y). (9.262)

The quantity fBDCfADC is actually the Casimir operator in the adjoint representation of the
group. The adjoint representation of SU(N) is (N2 − 1)−dimensional. The generators in the
adjoint representation can be given by (tAG)BC = ifABC . Indeed we can easily check that these
matrices satisfy the fundamental commutation relations [tAG, t

B
G] = ifABCt

C
G. We compute then

fBDCfADC = (tCGt
C
G)BA = C2(G)δBA. These generators must also satisfy trGt

A
Gt
B
G = C(G)δAB .

For SU(N) we have 8

fBDCfADC = C2(G)δBA = C(G)δBA = NδBA. (9.263)

Hence

1

2
GAmAn

0 S,Aj0Ak0
AmAn = −g2C2(G)δAB

[

Gρ0ρ(x, x)η
µν −Gµν0 (x, x)

]

δ4(x − y). (9.264)

In order to maintain gauge invariance we will use the powerful method of dimensional regular-
ization. The above diagram takes now the form

1

2
GAmAn

0 S,Aj0Ak0
AmAn = −g2C2(G)δAB

∫

ddp

(2π)d
1

p2

[

(d+ ξ − 2)ηµν − (ξ − 1)
pµpν

k2

]

δ4(x− y).

(9.265)

This simplifies further in the Feynman gauge. Indeed for ξ = 1 we get

1

2
GAmAn

0 S,Aj0Ak0
AmAn = −g2C2(G)δAB

∫

ddp

(2π)d
1

p2

[

(d− 1)ηµν
]

δ4(x− y)

= −g2C2(G)δAB

∫

ddp

(2π)d

∫

ddk

(2π)d
(p+ k)2

p2(p+ k)2

[

(d− 1)ηµν
]

eik(x−y).

(9.266)

We use now Feynman parameters, viz

1

(p+ k)2p2
=

∫ 1

0

dx

∫ 1

0

dyδ(x + y − 1)
1

[

x(p+ k)2 + yp2
]2

=

∫ 1

0

dx
1

(l2 −∆)2
, l = p+ xk , ∆ = −x(1− x)k2. (9.267)

8Exercise: Derive this result.
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We have then (using also rotational invariance)

1

2
GAmAn

0 S,Aj0Ak0
AmAn = −g2C2(G)δAB

∫

ddk

(2π)d

[

(d− 1)ηµν
]

eik(x−y)
∫ 1

0

dx

∫

ddl

(2π)d
(l + (1− x)k)2

(l2 −∆)2

= −g2C2(G)δAB

∫

ddk

(2π)d

[

(d− 1)ηµν
]

eik(x−y)
∫ 1

0

dx

{∫

ddl

(2π)d
l2

(l2 −∆)2

+ (1− x)2k2
∫

ddl

(2π)d
1

(l2 −∆)2

}

. (9.268)

The above two integrals over l are given by (after dimensional regularization and Wick rotation)
∫

ddl

(2π)d
l2

(l2 −∆)2
= −i

∫

ddlE
(2π)d

1

(l2E +∆)2

= −i 1

(4π)
d
2

1

∆1− d
2

Γ(2− d
2 )

2
d − 1

. (9.269)

∫

ddl

(2π)d
1

(l2 −∆)2
= i

∫

ddlE
(2π)d

l2E
(l2E +∆)2

= i
1

(4π)
d
2

1

∆2− d
2

Γ(2− d

2
). (9.270)

We get the final result

1

2
GAmAn

0 S,Aj0Ak0
AmAn =

i

(4π)
d
2

g2C2(G)δAB

∫

ddk

(2π)d
[

ηµνk2
]

eik(x−y)
∫ 1

0

dx
(

− x(1− x)k2
)2− d

2

(

− 1

2
d(d− 1)x(1 − x)

× Γ(1− d

2
)− (d− 1)(1− x)2Γ(2− d

2
)

)

. (9.271)

We compute now the second diagram. First we write the pure gauge field cubic interaction
in the totally symmetric form

gfABC

∫

d4x∂µAνCAAµA
B
ν =

gfABC
3!

∫

d4x

∫

d4y

∫

d4zAAµ (x)A
B
ν (y)A

C
ρ (z)

[

ηρν
(

∂µx δ
4(x− z).δ4(x− y)

− ∂µx δ
4(x− y).δ4(x− z)

)

− ηρµ
(

∂νy δ
4(y − z).δ4(x− y)− ∂νy δ4(y − x).δ4(z − y)

)

− ηµν
(

∂ρz δ
4(z − x).δ4(z − y)− ∂ρz δ4(z − y).δ4(x− z)

)]

. (9.272)

Thus we compute (with j0 = (x, µ,A), k0 = (y, ν, B) and m = (z, ρ, C))

S,Aj0Ak0
Am = igfABCS

µνρ(x, y, z). (9.273)

iSµνρ(x, y, z) = ηρν
(

∂µx δ
4(x− z).δ4(x− y)− ∂µx δ4(x− y).δ4(x − z)

)

− ηρµ
(

∂νy δ
4(y − z).δ4(x− y)

− ∂νy δ
4(x − y).δ4(y − z)

)

− ηµν
(

∂ρz δ
4(x− z).δ4(y − z)− ∂ρz δ4(y − z).δ4(x − z)

)

= i

∫

d4k

(2π)4

∫

d4p

(2π)4

∫

d4l

(2π)4
Sµνρ(k, p)(2π)4δ4(p+ k + l) exp(ikx+ ipy + ilz).

(9.274)
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Sµνρ(k, p) = (2p+ k)µηρν − (p+ 2k)νηρµ + (k − p)ρηµν . (9.275)

The second diagram is therefore given by

1

2
G
AmAm0

0 G
AnAn0

0 S,Aj0AmAnS,Ak0
Am0An0

= −g
2C2(G)δAB

2

∫

d4zd4z0d
4wd4w0G0ρρ0 (z, z0)G0σσ0 (w,w0)S

µρσ(x, z, w)

× Sνρ0σ0(y, z0, w0)

= −g
2C2(G)δAB

2

∫

d4k

(2π)4

∫

d4p

(2π)4
G0ρρ0 (p)G0σσ0 (k + p)Sµρσ(k, p)

× Sνρ0σ0(−k,−p) exp ik(x− y). (9.276)

In the Feynman gauge this becomes

1

2
G
AmAm0
0 G

AnAn0
0 S,Aj0AmAnS,Ak0

Am0An0
= −g

2C2(G)δAB
2

∫

d4k

(2π)4

∫

d4p

(2π)4
1

p2(k + p)2
Sµρσ(k, p)

× Sν ρσ(−k,−p) exp ik(x− y). (9.277)

We use now Feynman parameters as before. We get

1

2
G
AmAm0
0 G

AnAn0
0 S,Aj0AmAnS,Ak0

Am0An0
= −g

2C2(G)δAB
2

∫

d4k

(2π)4
exp ik(x− y)

∫ 1

0

dx

∫

d4l

(2π)4
1

(l2 −∆)2

× Sµρσ(k, l − xk)Sν ρσ(−k,−l+ xk). (9.278)

Clearly by rotational symmetry only quadratic and constant terms in lµ in the product Sµρσ(k, l−
xk)Sν ρσ(−k,−l+ xk) give non-zero contribution to the integral over l. These are 9

1

2
G
AmAm0
0 G

AnAn0
0 S,Aj0AmAnS,Ak0

Am0An0
= −g

2C2(G)δAB
2

∫

d4k

(2π)4
exp ik(x− y)

∫ 1

0

dx

{

6(
1

d
− 1)ηµν

×
∫

d4l

(2π)4
l2

(l2 −∆)2
+

(

(2− d)(1 − 2x)2kµkν + 2(1 + x)(2 − x)kµkν

− ηµνk2(2− x)2 − ηµνk2(1 + x)2
)∫

d4l

(2π)4
1

(l2 −∆)2

}

. (9.279)

We now employ dimensional regularization and use the integrals (9.269) and (9.270). We obtain

1

2
G
AmAm0
0 G

AnAn0
0 S,Aj0AmAnS,Ak0

Am0An0
= − ig

2C2(G)δAB

2(4π)
d
2

∫

ddk

(2π)d
exp ik(x− y)

∫ 1

0

dx
(

− x(1− x)k2
)2− d

2

{

− 3(d− 1)ηµνΓ(1− d

2
)x(1 − x)k2 + Γ(2− d

2
)

(

(2 − d)(1− 2x)2kµkν

+ 2(1 + x)(2 − x)kµkν − ηµνk2(2 − x)2 − ηµνk2(1 + x)2
)}

. (9.280)

We go now to the third diagram which involves a ghost loop. We recall first the ghost field
propagator

< cA(x)c̄B(y) > =

∫

d4k

(2π)4
iδAB

k2 + iǫ
eik(x−y). (9.281)

9Exercise: Derive explicitly these terms.
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However we will need

G
cA(x)c̄B(y)
0 =

∫

d4k

(2π)4
δAB

k2 + iǫ
eik(x−y). (9.282)

The interaction bteween the ghost and vector fileds is given by

−gfABC
∫

d4x(c̄AcB∂µACµ + c̄A∂µcBAcµ) = −gfABC
∫

d4x

∫

d4y

∫

d4zc̄A(x)cB(y)ACµ (z)∂
µ
x (δ

4(x− y)δ4(x− z)).

(9.283)

In other words (with j0 = (z, C, µ), m = (x,A) and n = (y,B))

S,Aj0 c̄mcn
= gfABC∂

µ
x (δ

4(x− y)δ4(x− z))

= −igfABC
∫

d4k

(2π)4

∫

d4p

(2π)4

∫

d4l

(2π)4
kµ(2π)4δ4(p+ k − l) exp(−ikx− ipy + ilz).

(9.284)

We compute the third diagram as follows. We have (with j0 = (z, C, µ), k0 = (w,D, ν), m =
(x,A), n = (y,B) and m0 = (x0, A0), n0 = (y0, B0))

G
c̄mcm0
0 G

cnc̄n0
0 S,Aj0 c̄mcn

S,Ak0
cm0 c̄n0

=
∑

A,A0,B,B0

∫

d4x

∫

d4x0

∫

d4y

∫

d4y0

∫

d4k

(2π)4
δA0A

k2
eik(x0−x)

∫

d4p

(2π)4
−δB0B

p2

× eip(y0−y)
(

gfABC∂
µ
x (δ

4(x − y)δ4(x− z))
)(

− gfB0A0D∂
ν
y0(δ

4(y0 − x0)δ4(y0 − w))
)

= g2fABCfABD

∫

d4k

(2π)4

∫

d4p

(2π)4
(p+ k)µpν

(p+ k)2p2
eik(z−w)

(9.285)

We use Feynman parameters as before. Also we use rotational invariance to bring the above loop
integral to the form

G
c̄mcm0

0 G
cnc̄n0

0 S,Aj0 c̄mcn
S,Ak0

cm0 c̄n0
= g2C2(G)δCD

∫

d4k

(2π)4
eik(z−w)

∫ 1

0

dx

∫

d4l

(2π)4
(

lµlν + x(x − 1)kµkν
) 1

(l2 −∆)2

= g2C2(G)δCD

∫

d4k

(2π)4
eik(z−w)

∫ 1

0

dx

{

1

4
ηµν

∫

d4l

(2π)4
l2

(l2 −∆)2

+ x(x − 1)kµkν
∫

d4l

(2π)4
1

(l2 −∆)2

}

. (9.286)

Once more we employ dimensional regularization and use the integrals (9.269) and (9.270). Hence
we get the loop integral (with C −→ A, D −→ B, z −→ x, w −→ y)

G
c̄mcm0

0 G
cnc̄n0

0 S,Aj0 c̄mcn
S,Ak0

cm0 c̄n0
= −g2C2(G)

i

(4π)
d
2

δAB

∫

ddk

(2π)d
eik(x−y)

(

− 1

2
ηµνk2Γ(1− d

2
) + kµkνΓ(2− d

2
)

)

×
∫ 1

0

dx
x(1 − x)

(

− x(1− x)k2
)2− d

2

. (9.287)
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By putting equations (9.271), (9.280) and (9.287) together we get

(9.271) + (9.280)− (9.287) = g2C2(G)
i

(4π)
d
2

δAB

∫

ddk

(2π)d
eik(x−y)

∫ 1

0

dx
(

− x(1− x)k2
)2− d

2

{

ηµνk2(d− 2)Γ(2− d

2
)

× x(1 − x) + ηµνk2Γ(2− d

2
)

(

− (d− 1)(1− x)2 + 1

2
(2− x)2 + 1

2
(1 + x)2

)

− kµkνΓ(2 − d

2
)

(

(1− d

2
)(1 − 2x)2 + 2

)}

. (9.288)

The pole at d = 2 cancels exactly since the gamma function Γ(1 − d/2) is completely gone.
There remains of course the pole at d = 4. By using the symmetry of the integral over x under
x −→ 1− x we can rewrite the above integral as

(9.271) + (9.280)− (9.287) = g2C2(G)
i

(4π)
d
2

δAB

∫

ddk

(2π)d
eik(x−y)

∫ 1

0

dx
(

− x(1− x)k2
)2− d

2

{

ηµνk2(1− d

2
)Γ(2 − d

2
)

×
(

(1− 2x)2 + (1− 2x)

)

+ ηµνk2Γ(2− d

2
).4x− kµkνΓ(2− d

2
)

(

(1− d

2
)(1− 2x)2 + 2

)}

.

(9.289)

Again by the symmetry x −→ 1 − x we can replace x in every linear term in x by 1/210. We
obtain the final result

(9.271) + (9.280)− (9.287) = g2C2(G)
iΓ(2 − d

2 )

(4π)
d
2

δAB

∫

ddk

(2π)d
eik(x−y)

(

ηµνk2 − kµkν
)

(k2)
d
2−2

∫ 1

0

dx
(

− x(1 − x)
)2− d

2

×
(

(1− d

2
)(1 − 2x)2 + 2

)

= g2C2(G)
iΓ(2 − d

2 )

(4π)
d
2

δAB

∫

ddk

(2π)d
eik(x−y)

(

ηµνk2 − kµkν
)

(k2)
d
2−2

(

5

3
+ regular terms

)

.

(9.290)

The gluon field is therefore transverse as it should be for any vector field with an underlying
gauge symmetry. Indeed the exhibited the tensor structure ηµνk2−kµkν is consistent with Ward
identity. This result does not depend on the gauge fixing parameter although the proportionality
factor actually does11.

There remains the fourth and final diagram which as it turns out is the only diagram which
is independent of the gauge fixing parameter. We recall the Dirac field propagator

< ψaα(x)ψ̄
b
β(y) > = iδab

∫

d4p

(2π)4
(γµpµ +m)αβ
p2 −m2 + iǫ

e−ip(x−y). (9.291)

However we will need something a little different. We have

S,ψa
α(x)ψ̄b

β(y)
≡ δ2S

δψaα(x)δψ̄
b
β(y)
|A,ψ,c=0 = (iγµ∂yµ −m)βαδ

4(y − x)δab

=

∫

d4k

(2π)4
(γµkµ −m)βαe

ik(x−y)δab. (9.292)

10Exercise: Why.
11Exercise: Determine the corresponding factor for an arbitrary value of the gauge fixing parameter ξ.



280 YDRI QFT

Thus we must have

G
ψa

α(x)ψ̄b
β(y)

0 = δab
∫

d4k

(2π)4
(γµkµ +m)αβ
k2 −m2 + iǫ

e−ik(x−y). (9.293)

Indeed we can check

∫

d4y
∑

b,β

S,ψa
α(x)ψ̄b

β(y)
G
ψa0

α0
(x0)ψ̄

b
β(y)

0 = δaa0δαα0δ
4(x− x0). (9.294)

The interaction bteween the Dirac and vector fileds is given by

−gtAab
∫

d4x
∑

a,b

ψ̄aγµψbAAµ = −gtAab(γµ)αβ
∫

d4x

∫

d4y

∫

d4zψ̄aα(x)ψ
b
β(y)A

A
µ (z)δ

4(x− y)δ4(x− z).

(9.295)

In other words (with j0 = (z, A, µ), m = (x, a, α) and n = (y, b, β))

S,Aj0 ψ̄mψn
= gtAab(γ

µ)αβδ
4(x− y)δ4(x− z). (9.296)

By using these results we compute the fourth diagram is given by (with j0 = (z, A, µ), k0 =
(w,B, ν), m = (x, a, α), n = (y, b, β), m0 = (x0, a0, α0), n0 = (y0, b0, β0) and trγµ = 0, trγµγν =
4ηµν , trγµγνγρ = 0, trγµγνγργσ = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ) )

G
ψ̄mψm0

0 G
ψnψ̄n0

0 S,Aj0 ψ̄mψn
S,Ak0

ψm0 ψ̄n0
= g2trtAtB

∫

d4p

(2π)4

∫

d4k

(2π)4
tr(γρpρ +m)γµ(γρ(p+ k)ρ +m)γν

(p2 −m2)((p+ k)2 −m2)
e−ik(z−w)

= 4g2trtAtB
∫

d4p

(2π)4

∫

d4k

(2π)4
pµ(p+ k)ν + pν(p+ k)µ − ηµν(p2 + pk −m2)

(p2 −m2)((p+ k)2 −m2)

× e−ik(z−w). (9.297)

We use now Feynman parameters in the form

1

(p2 −m2)((p+ k)2 −m2)
=

∫ 1

0

dx

∫ 1

0

dyδ(x+ y − 1)
1

[

x(p2 −m2) + y((p+ k)2 −m2)

]2

=

∫ 1

0

dx
1

(l2 −∆)2
, l = p+ (1− x)k , ∆ = m2 − x(1 − x)k2.

(9.298)
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By using also rotational invariance we can bring the integral to the form

G
ψ̄mψm0

0 G
ψnψ̄n0

0 S,Aj0 ψ̄mψn
S,Ak0

ψm0 ψ̄n0
= 4g2trtAtB

∫ 1

0

dx

∫

d4k

(2π)4
e−ik(z−w)

×
∫

d4l

(2π)4

[

2lµlν − 2x(1 − x)kµkν − ηµν
(

l2 − x(1 − x)k2 −m2
)

]

1

(l2 −∆)2

= 4g2trtAtB
∫ 1

0

dx

∫

d4k

(2π)4
e−ik(z−w)

×
∫

d4l

(2π)4

[

1

2
l2ηµν − 2x(1− x)kµkν − ηµν

(

l2 − x(1 − x)k2 −m2
)

]

1

(l2 −∆)2

= 4g2trtAtB
∫ 1

0

dx

∫

d4k

(2π)4
e−ik(z−w)

{[

x(1 − x)(k2ηµν − 2kµkν) +m2ηµν
]

×
∫

d4l

(2π)4
1

(l2 −∆)2
− 1

2
ηµν

∫

d4l

(2π)4
l2

(l2 −∆)2

}

(9.299)

After using the integrals (9.269) and (9.270), the fourth diagram becomes (with z −→ x, w −→ y)

G
ψ̄mψm0

0 G
ψnψ̄n0

0 S,Aj0 ψ̄mψn
S,Ak0

ψm0 ψ̄n0
= 8ig2

Γ(2 − d
2 )

(4π)
d
2

trtAtB
∫

ddk

(2π)d
(k2ηµν − kµkν)e−ik(x−y)

× (k2)
d
2−2

∫ 1

0

dx
x(1 − x)

(

m2

k2 − x(1 − x)
)2− d

2

=
4

3
g2

Γ(2− d
2 )

(4π)
d
2

C(N)δAB

∫

ddk

(2π)d
i(k2ηµν − kµkν)e−ik(x−y)(k2) d

2−2

(

1

+ regular terms

)

. (9.300)

For nf flavors (instead of a single flavor) of fermions in the representation tar (instead of the
fundamental representation ta) we obtain (with also a change k −→ −k)

G
ψ̄mψm0
0 G

ψnψ̄n0
0 S,Aj0 ψ̄mψn

S,Ak0
ψm0 ψ̄n0

=
4

3
nfg

2Γ(2− d
2 )

(4π)
d
2

C(r)δAB

∫

ddk

(2π)d
i(k2ηµν − kµkν)eik(x−y)(k2) d

2−2

(

1

+ regular terms

)

.

(9.301)

By putting (9.290) and (9.301) together we get the final result

ΓABµν (x, y) = (9.290)− (9.301)

−
∫

d4k

(2π)4

(

k2ηµν + (
1

ξ
− 1)kµkν

)

δABe
ik(x−y)

+ g2
Γ(2− d

2 )

(4π)
d
2

(

5

3
C2(G) −

4

3
nfC(r)

)∫

ddk

(2π)d
(k2ηµν − kµkν)δABeik(x−y)(k2)

d
2−2

(

1

+ regular terms

)

.

(9.302)



282 YDRI QFT

The final step is to add the contribution of the counter terms. This leads to the one-loop result
in the Feynman-t’Hooft gauge given by

ΓABµν (x, y) = −
∫

ddk

(2π)d

(

k2ηµν + (
1

ξ
− 1)kµkν

)

δABe
ik(x−y)

+ g2
Γ(2− d

2 )

(4π)
d
2

(

5

3
C2(G) −

4

3
nfC(r)

)∫

ddk

(2π)d
(k2ηµν − kµkν)δABeik(x−y)(k2)

d
2−2

(

1

+ regular terms

)

− δ3
∫

ddk

(2π)d

(

k2ηµν + (
1

ξ
− 1)kµkν

)

δABe
ik(x−y). (9.303)

Equivalently

ΓABµν (k) = −
(

k2ηµν + (
1

ξ
− 1)kµkν

)

δAB

+ g2
Γ(2 − d

2 )

(4π)
d
2

(

5

3
C2(G) −

4

3
nfC(r)

)

(k2ηµν − kµkν)δAB(k2)
d
2−2

(

1

+ regular terms

)

− δ3
(

k2ηµν − kµkν
)

δAB. (9.304)

Remark that the 1/ξ term in the classical contribution (the first term) can be removed by undoing
the gauge fixing procedure. In 4 dimensions the coupling constant g2 is dimensionless.

In dimension d = 4− ǫ the coupling constant g is in fact not dimensionless but has dimension
of 1/mass(d/2−2). The dimensionless coupling constant ĝ can therefore be given in terms of an
arbitrary mass scale µ by the formula

ĝ = gµ
d
2−2 ⇔ g2 = ĝ2µǫ. (9.305)

We get then

ΓABµν (k) = −
(

k2ηµν + (
1

ξ
− 1)kµkν

)

δAB +
ĝ2

16π2
Γ(
ǫ

2
)

(

4πµ2

k2

)
ǫ
2
(

5

3
C2(G)−

4

3
nfC(r)

)

(k2ηµν − kµkν)δAB
(

1

+ regular terms

)

− δ3
(

k2ηµν − kµkν
)

δAB

= −
(

k2ηµν + (
1

ξ
− 1)kµkν

)

δAB +
ĝ2

16π2

(

2

ǫ
+ ln 4π − γ − ln

k2

µ2

)(

5

3
C2(G) +

4

3
nfC(r)

)

(k2ηµν − kµkν)δAB

×
(

1 + regular terms

)

− δ3
(

k2ηµν − kµkν
)

δAB

(9.306)

It is now clear that in order to eliminate the divergent term we need, in the spirit of minimal
subtraction, only subtract the logarithmic divergence exhibited here by the the term 2/ǫ which
has a pole at ǫ = 0. In other words the counter term δ3 is chosen such that

δ3 =
ĝ2

16π2

(

2

ǫ

)(

5

3
C2(G)−

4

3
nfC(r)

)

. (9.307)
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9.4.4 The Quark Field Self-Energy at 1−Loop

This is defined

Γabαβ(x, y) =
δ2Γ

δψaα(x)δψ̄
b
β(y)
|A,ψ,c=0

=
δ2S

δψaα(x)δψ̄
b
β(y)
|A,ψ,c=0 +

1

i

δ2Γ1

δψaα(x)δψ̄
b
β(y)
|A,ψ,c=0. (9.308)

The first term is given by

δ2S

δψaα(x)δψ̄
b
β(y)
|A,ψ,c=0 = (iγµ∂yµ −m)βαδ

4(y − x)δab

=

∫

d4k

(2π)4
(γµkµ −m)βαe

ik(x−y)δab. (9.309)

Again by using the elegant formula (9.257) we obtain (with j0 = (x, α, a) and k0 = (y, β, b))

Γ1,j0k0 = −Gψ̄mψm0
0 G

AnAn0
0 S,ψj0 ψ̄mAn

S,ψ̄k0
ψm0An0

. (9.310)

We recall the results

G
AµA(x)AνB(y)
0 = δAB

∫

d4k

(2π)4
1

k2 + iǫ

[

ηµν + (ξ − 1)
kµkν

k2

]

eik(x−y). (9.311)

G
ψa

α(x)ψ̄b
β(y)

0 = δab
∫

d4p

(2π)4
(γµpµ +m)αβ
p2 −m2 + iǫ

e−ip(x−y). (9.312)

S,AµA(z)ψ̄a
α(x)ψb

β(y)
= gtAab(γ

µ)αβδ
4(x− y)δ4(x− z). (9.313)

We compute then

Γ1,j0k0 = −g2(tAtA)ba
∫

d4p

(2π)4

∫

d4k

(2π)4
(

γµ(γρpρ +m)γν
)

βα

1

k2(p2 −m2)

(

ηµν + (ξ − 1)
kµkν
k2

)

ei(k+p)(x−y).

(9.314)

This is given by the second diagram on figure 10. In the Feynman- t’Hooft gauge this reduces to
(also using γµγργµ = −(2− ǫ)γρ, γµγµ = d and (tAtA)ab = C2(r)δab where C2(r) is the Casimir
in the representation r)

Γ1,j0k0 = −g2C2(r)δba

∫

d4p

(2π)4

∫

d4k

(2π)4
(

γµ(γρ(p+ k)ρ +m)γµ
)

βα

1

k2((p+ k)2 −m2)
eip(x−y)

= −g2C2(r)δba

∫

d4p

(2π)4

∫

d4k

(2π)4
(

− (2− ǫ)γρ(p+ k)ρ +md
)

βα

1

k2((p+ k)2 −m2)
eip(x−y).

(9.315)

We employ Feynman parameters in the form

1

k2((p+ k)2 −m2)
=

∫ 1

0

dx
1

(

l2 −∆
)2 , l = k + (1− x)p , ∆ = −x(1− x)p2 + (1 − x)m2.

(9.316)
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We obtain

Γ1,j0k0 = −g2C2(r)δba

∫

d4p

(2π)4
eip(x−y)

∫ 1

0

dx

∫

d4l

(2π)4
1

(

l2 −∆
)2

(

− (2− ǫ)γρ(l + xp)ρ +md
)

βα

= −g2C2(r)δba

∫

d4p

(2π)4
eip(x−y)

∫ 1

0

dx

∫

d4l

(2π)4
1

(

l2 −∆
)2

(

− (2− ǫ)xγρpρ +md
)

βα
.

(9.317)

After Wick rotation and dimensional regularization we can use the integral (9.269). We get

Γ1,j0k0 = −g2C2(r)
iΓ(2 − d

2 )

(4π)
d
2

δba

∫

d4p

(2π)4
(

− 1

2
(2− ǫ)γρpρ +md

)

βα
eip(x−y)(p2)−

ǫ
2

∫ 1

0

dx
(

− x(1 − x) + (1− x)m2

p2

)2− d
2

= −g2C2(r)
iΓ(2 − d

2 )

(4π)
d
2

δba

∫

d4p

(2π)4
(

− 1

2
(2− ǫ)γρpρ +md

)

βα
eip(x−y)(p2)−

ǫ
2

(

1 + regular terms

)

. (9.318)

The quark field self-energy at 1−loop is therefore given by

Γabαβ(x, y) =

∫

d4p

(2π)4
(γµpµ −m)βαe

ip(x−y)δab

− g2C2(r)
Γ(2 − d

2 )

(4π)
d
2

δba

∫

d4p

(2π)4
(

− 1

2
(2 − ǫ)γρpρ +md

)

βα
eip(x−y)(p2)−

ǫ
2

(

1 + regular terms

)

.

(9.319)

We add the contribution of the counter terms. We obtain

Γabαβ(x, y) =

∫

d4p

(2π)4
(γµpµ −m)βαe

ip(x−y)δab

− ĝ2

16π2
C2(r)δba

∫

d4p

(2π)4

(

2

ǫ
+ ln 4π − γ − ln

p2

µ2

)

(

− γρpρ +md
)

βα
eip(x−y)

(

1 + regular terms

)

+

∫

d4p

(2π)4
(δ2γ

µpµ − δm)βαe
ip(x−y)δab. (9.320)

In order to cancel the divergence we must choose the counter terms δ2 and δm to be

δ2 = − ĝ2

16π2
C2(r)

(

2

ǫ

)

. (9.321)

δm = − ĝ2

16π2
C2(r)

(

8m

ǫ

)

. (9.322)

These two counter terms allow us to determine the renormalized mass m in terms of the bare
mass up to the one-loop order.
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9.4.5 The Vertex at 1−Loop

The quark-gluon vertex at one-loop is given by

ΓabAαβµ(x, y, z) =
δ3Γ

δψ̄aα(x)δψ
b
β(y)δA

A
µ (z)

|A,ψ,c=0

=
δ3S

δψ̄aα(x)δψ
b
β(y)δA

A
µ (z)

|A,ψ,c=0 +
1

i

δ3Γ1

δψ̄aα(x)δψ
b
β(y)δA

A
µ (z)

|A,ψ,c=0

= g(tA)ab(γ
µ)αβδ

4(x− y)δ4(x − z) + 1

i

δ3Γ1

δψ̄aα(x)δψ
b
β(y)δA

A
µ (z)

|A,ψ,c=0.

(9.323)

In this section we compute the one-loop correction using Feynman rules directly. We write

∫

d4x

∫

d4y

∫

d4ze−ikx−ipy−ilzΓabAαβµ(x, y, z) = g(tA)ab(γ
µ)αβ(2π)

4δ4(k + p+ l) +
1

i

∫

d4x

∫

d4y

∫

d4ze−ikx−ipy−ilz

× δ3Γ1

δψ̄aα(x)δψ
b
β(y)δA

A
µ (z)

|A,ψ,c=0

=

[

g(tA)ab(γ
µ)αβ +

1

i

(

Feynman diagrams

)]

(2π)4δ4(k + p+ l).(9.324)

It is not difficult to convince ourselves that there are only two possible Feynman diagrams
contributing to this 3−point proper vertex which we will only evaluate their leading divergent
part in the Feynman-’t Hooft gauge. The first diagram on figure 12 is given explicitly by

12a = −ig3fCDA(tDtC)ab
∫

ddk

(2π)d

[

(−k + p1 − 2p2)
ρηλµ − (k + 2p1 − p2)ληρµ + (2k + p1 + p2)

µηλρ
]

×
(

γλ(γ.k +m)γρ
)

αβ

(k2 −m2)(k + p1)2(k + p2)2

= −g
3C2(G)

2
(tA)ab

∫

ddk

(2π)d

[

(−k + p1 − 2p2)
ρηλµ − (k + 2p1 − p2)ληρµ + (2k + p1 + p2)

µηλρ
]

×
(

γλ(γ.k +m)γρ
)

αβ

(k2 −m2)(k + p1)2(k + p2)2
. (9.325)

In the second line we have used the fact that fCDAt
DtC = fCDA[t

D, tC ]/2 = ifCDAfDCEt
E/2.

We make now the approximation of neglecting the quark mass and all external momenta since
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the divergence is actually independent of both 12. The result reduces to

12a = −g
3C2(G)

2
(tA)ab

∫

ddk

(2π)d

[

− kρηλµ − kληρµ + 2kµηλρ
]

×
(

γλ(γ.k)γρ
)

αβ

(k2)3

= −g
3C2(G)

2
(tA)ab

∫

ddk

(2π)d

[

− 2(γµ)αβk
2 − 2(2− ǫ)kµkν(γν)αβ

]

1

(k2)3

= −g
3C2(G)

2
(tA)ab

∫

ddk

(2π)d

[

− 2(γµ)αβk
2 − 2(2− ǫ)

d
k2(γµ)αβ

]

1

(k2)3

=
g3C2(G)

2
(tA)ab

4(d− 1)

d
(γµ)αβ

∫

ddk

(2π)d
1

(k2)2

=
3ig3C2(G)

2(4π)2
(tA)ab(γ

µ)αβΓ(2−
d

2
). (9.326)

The second diagram on figure 12 is given explicitly by

12b = g3(tCtAtC)ab

∫

ddk

(2π)d

(

γλ(−γ.(k + p2) +m)γµ(−γ.(k + p1) +m)γλ
)

αβ

k2((k + p1)2 −m2)((k + p2)2 −m2)
.

(9.327)

We compute

tCtAtC = tCtCtA + tC [tA, tC ]

= C2(N)tA + ifACBt
CtB

= C2(N)tA +
i

2
fACB[t

C , tB]

=

[

C2(N)− 1

2
C2(G)

]

tA. (9.328)

We get then

12b = g3
(

C2(N)− 1

2
C2(G)

)

(tA)ab

∫

ddk

(2π)d

(

γλ(−γ.(k + p2) +m)γµ(−γ.(k + p1) +m)γλ
)

αβ

k2((k + p1)2 −m2)((k + p2)2 −m2)
.

(9.329)

Again as before we are only interested at this stage in the leading divergent part and thus we
can make the approximation of dropping the quark mass and all external momenta13. We obtain

12Exercise: Compute this integral without making these approximations and show that the divergence is indeed
independent of the quark mass and all external momenta.

13Exercise: Compute this integral without making these approximations.
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thus

12b = g3
(

C2(N)− 1

2
C2(G)

)

(tA)ab

∫

ddk

(2π)d

(

γλ(−γ.k)γµ(−γ.k)γλ
)

αβ

(k2)3

= g3
(

C2(N)− 1

2
C2(G)

)

(tA)ab

∫

ddk

(2π)d

(

γλγργ
µγσγ

λ
)

αβ
kρkσ

(k2)3

= g3
(

C2(N)− 1

2
C2(G)

)

(tA)ab
1

d

∫

ddk

(2π)d

(

γλγργ
µγργλ

)

αβ

(k2)2

= g3
(

C2(N)− 1

2
C2(G)

)

(tA)ab
(2− ǫ)2

d
(γµ)αβ

∫

ddk

(2π)d
1

(k2)2

=
ig3

(4π)2
(

C2(N)− 1

2
C2(G)

)

(tA)ab(γ
µ)αβΓ(2−

d

2
). (9.330)

By putting the two results 12a and 12b together we obtain

12a+ 12b =
ig3

(4π)2
(

C2(N) + C2(G)
)

(tA)ab(γ
µ)αβΓ(2−

d

2
). (9.331)

Again if the quarks are in the representation tar instead of the fundamental representation ta we
would have obtained

12a+ 12b =
ig3

(4π)2
(

C2(r) + C2(G)
)

(tA)ab(γ
µ)αβΓ(2−

d

2
). (9.332)

The dressed quark-gluon vertex at one-loop is therefore given by

∫

d4x

∫

d4y

∫

d4ze−ikx−ipy−ilzΓabAαβµ(x, y, z) =

[

g(tA)ab(γ
µ)αβ +

g3

(4π)2
(

C2(r) + C2(G)
)

(tA)ab(γ
µ)αβΓ(2−

d

2
)

]

× (2π)4δ4(k + p+ l)

=

[

g(tA)ab(γ
µ)αβ +

g3

(4π)2
(

C2(r) + C2(G)
)

(tA)ab(γ
µ)αβ

(

2

ǫ
+ ...

)]

× (2π)4δ4(k + p+ l)

(9.333)

Adding the contribution of the counter terms is trivial since the relevant counter term is of the
same form as the bare vertex. We get

∫

d4x

∫

d4y

∫

d4ze−ikx−ipy−ilzΓabAαβµ(x, y, z) =

[

g(tA)ab(γ
µ)αβ +

g3

(4π)2
(

C2(r) + C2(G)
)

(tA)ab(γ
µ)αβ

(

2

ǫ
+ ...

)

+ δ1g(t
A)ab(γ

µ)αβ

]

(2π)4δ4(k + p+ l). (9.334)

We conclude that, in order to subtract the logarithmic divergence in the vertex, the counter term
δ1 must be chosen such that

δ1 = − g2

(4π)2
(

C2(r) + C2(G)
)

(

2

ǫ

)

. (9.335)
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In a more careful treatment we should get 14

δ1 = − ĝ2

(4π)2
(

C2(r) + C2(G)
)

(

2

ǫ

)

. (9.336)

We recall that the renormalized coupling g is related to the bare coupling g0 by the relation

g

g0
=

Z2

√
Z3

1 + δ1

= 1− δ1 + δ2 +
1

2
δ3

= 1 +
ĝ2

16π2

1

ǫ

[

11

3
C2(G) −

4

3
nfC(r)

]

= 1 + µ−ǫ g2

16π2

1

ǫ

[

11

3
C2(G)−

4

3
nfC(r)

]

. (9.337)

This is equivalent to

g = g0 + µ−ǫ g30
16π2

1

ǫ

[

11

3
C2(G)−

4

3
nfC(r)

]

. (9.338)

We compute then

µ
∂g

∂µ
= −µ−ǫ g30

16π2

[

11

3
C2(G)−

4

3
nfC(r)

]

= − g3

16π2

[

11

3
C2(G)−

4

3
nfC(r)

]

. (9.339)

14This should become apparent if you solve the previous two exercises.
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A, µ B, ν

=
δAB

k2

[

ηµν + (ξ − 1)
kµkν
k2

]

.

ψ̄aα ψbβ

=
δab(γ.p+m)βα

p2 −m2
.

c̄A cB

=
δAB

p2
.

ψbβ

ψ̄aα

µ, A

= g(tA)ab(γ
µ)αβ .

µ, A, k

ν, B, p

ρ, C, q

= igfABC

[

(k + 2p)µηρν − (p+ 2k)νηρµ + (k − p)ρηµν
]

.

µ, A

ρ, D

ν, B

σ, E

= −g2
[

fABCfDEC(η
ρµησν − ησµηρν) + fBDCfAEC(η

σρηµν − ηρµησν)

+ fDACfBEC(η
σµηρν − ηµνησρ)

]

.



290 YDRI QFT

cB

c̄A

µ, C

= −igfABCkµ.

.

.

.

.

.
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.
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10
The Renormalization Group

10.1 Critical Phenomena and The φ4 Theory

10.1.1 Critical Line and Continuum Limit

We are interested in the critical properties of systems which are ergodic at finite volume, i.e.
they can access all regions of their phase space with non zero probability. In the infinite volume
limit these systems may become non ergodic and as a consequence the phase space decomposes
into disjoint sets corresponding to different phases. The thermodynamical limit is related to the
largest eigenvalue of the so-called transfer matrix. If the system remains ergodic then the largest
eigenvalue of the transfer matrix is non degenerate while it becomes degenerate if the system
becomes non ergodic.

The boundary between the different phases is demarcated by a critical line or a second order
phase transition which is defined by the requirement that the correlation length, which is the
inverse of the smallest decay rate of correlation functions or equivalent the smallest physical
mass, diverges at the transition point.

The properties of these systems near the transition line are universal and are described
by the renormalization group equations of Euclidean scalar field theory. The requirement of
locality in field theory is equivalent to short range forces in second order phase transitions. The
property of universality is intimately related to the property of renormalizability of the field
theory. More precisely universality in second order phase transitions emerges in the regime in
which the correlation length is much larger than the macroscopic scale which corresponds, on the
field theory side, to the fact that renormalizable local field theory is insensitive to short distance
physics in the sense that we obtain a unique renormalized Lagrangian in the limit in which all
masses and momenta are much smaller than the UV cutoff Λ.

The Euclidean O(N) φ4 action is given by (with some change of notation compared to previous
chapters and sections)

S[φ] = −
∫

ddx

(

1

2
(∂µφ

i)2 +
1

2
m2φiφi +

λ

4
(φiφi)2

)

. (10.1)
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We will employ lattice regularization in which x = an,
∫

ddx = ad
∑

n, φ
i(x) = φin and ∂µφ

i =
(φin+µ̂ − φin)/a. The lattice action reads

S[φ] =
∑

n

(

ad−2
∑

µ

φinφ
i
n+µ̂ −

ad−2

2
(m2a2 + 2d)φinφ

i
n −

adλ

4
(φinφ

i
n)

2

)

=
∑

n

(

2κ
∑

µ

ΦinΦ
i
n+µ̂ − ΦinΦ

i
n − g(ΦinΦin − 1)2

)

. (10.2)

The mass parameter m2 is replaced by the so-called hopping parameter κ and the coupling
constant λ is replaced by the coupling constant g where

m2a2 =
1− 2g

κ
− 2d ,

λ

ad−4
=

g

κ2
. (10.3)

The fields φin and Φin are related by

φin =

√

2κ

ad−2
Φin. (10.4)

m2a2 =
1− 2g

κ
− 2d ,

λ

ad−4
=

g

κ2
. (10.5)

The partition function is given by

Z =

∫

∏

n,i

dΦin e
S[φ]

=

∫

dµ(Φ) e2κ
∑

n

∑
µ Φi

nΦ
i
n+µ̂ . (10.6)

The measure dµ(φ) is given by

dµ(Φ) =
∏

n,i

dΦin e
−

∑
n

(

Φi
nΦ

i
n+g(Φ

i
nΦi

n−1)2
)

=
∏

n

(

dN ~Φn e
−~Φ2

n−g(~Φ2
n−1)2

)

≡
∏

n

dµ(Φn). (10.7)

This is a generalized Ising model. Indeed in the limit g −→ ∞ the dominant configurations are
such that Φ2

1 + ...+Φ2
N = 1, i.e. points on the sphere SN−1. Hence

∫

dµ(Φn)f(~Φn)
∫

dµ(Φn)
=

∫

dΩN−1f(~Φn)
∫

dΩN−1
, g −→∞. (10.8)

For N = 1 we obtain
∫

dµ(Φn)f(~Φn)
∫

dµ(Φn)
=

1

2
(f(+1) + f(−1)) , g −→∞. (10.9)
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Thus the limit g −→ ∞ of the O(1) model is precisely the Ising model in d dimensions. The
limit g −→ ∞ of the O(3) model corresponds to the Heisenberg model in d dimensions. The
O(N) models on the lattice are thus intimately related to spin models.

There are two phases in this model. A disordered (paramagnetic) phase characterized by
< Φin >= 0 and an ordered (ferromagnetic) phase characterized by < Φin >= vi 6= 0. This can
be seen in various ways. The easiest way is to look for the minima of the classical potential

V [φ] = −
∫

ddx

(

1

2
m2φiφi +

λ

4
(φiφi)2

)

. (10.10)

The equation of motion reads

[m2 +
λ

2
φjφj ]φi = 0. (10.11)

For m2 > 0 there is a unique solution φi = 0 whereas for m2 < 0 there is a second solution given
by φjφj = −2m2/λ.

A more precise calculation is as follows. Let us compute the expectation value < Φin > on
the lattice which is defined by

< φin > =

∫

dµ(Φ) Φine
2κ

∑
n

∑
µ Φi

nΦ
i
n+µ̂

∫

dµ(Φ) e2κ
∑

n

∑
µ Φi

nΦ
i
n+µ̂

=

∫

dµ(Φ) Φine
κ
∑

n Φi
n

∑
µ(Φ

i
n+µ̂+Φi

n−µ̂)

∫

dµ(Φ) eκ
∑

n Φi
n

∑
n

∑
µ(Φ

i
n+µ̂+Φi

n−µ̂)
. (10.12)

Now we approximate the spins Φin at the 2d nearest neighbors of each spin Φin by the average
vi =< Φin >, viz

∑

µ(Φ
i
n+µ̂ + Φin−µ̂)

2d
= vi. (10.13)

This is a crude form of the mean field approximation. Equation (10.12) becomes

vi =

∫

dµ(Φ) Φine
4κd

∑
n Φi

nv
i

∫

dµ(Φ) e4κd
∑

n Φi
nv

i

=

∫

dµ(Φn) Φ
i
ne

4κdΦi
nv

i

∫

dµ(Φin) e
4κdΦi

nv
i . (10.14)

The extra factor of 2 in the exponents comes from the fact the coupling between any two nearest
neighbor spins on the lattice occurs twice. We write the above equation as

vi =
∂

∂J i
lnZ[J ]|Ji=4κdvi . (10.15)

Z[J ] =

∫

dµ(Φn) e
Φi

nJ
i

=

∫

dNΦin e
−Φi

nΦ
i
n−g(Φi

nΦi
n−1)2+Φi

nJ
i

. (10.16)
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The limit g −→ 0: In this case we have

Z[J ] =

∫

dNΦin e
−Φi

nΦ
i
n+Φi

nJ
i

= Z[0] e
JiJi

4 . (10.17)

In other words

vi = 2κcdv
i ⇒ κc =

1

2d
. (10.18)

The limit g −→∞: In this case we have

Z[J ] = N
∫

dNΦin δ(Φ
i
nΦ

i
n − 1) eΦ

i
nJ

i

= N
∫

dNΦin δ(Φ
i
nΦ

i
n − 1)

[

1 + ΦinJ
i +

1

2
ΦinΦ

j
nJ

iJj + ...

]

. (10.19)

By using rotational invariance in N dimensions we obtain

∫

dNΦin δ(Φ
i
nΦ

i
n − 1) Φin = 0. (10.20)

∫

dNΦin δ(Φ
i
nΦ

i
n − 1) ΦinΦ

j
n =

δij

N

∫

dNΦin δ(Φ
i
nΦ

i
n − 1) ΦknΦ

k
n =

δij

N

Z[0]

N . (10.21)

Hence

Z[J ] = Z[0]

[

1 +
J iJ i

2N
+ ...

]

. (10.22)

Thus

vi =
J i

N
=

4κcdv
i

N
⇒ κc =

N

4d
. (10.23)

The limit of The Ising Model: In this case we have

N = 1 , g −→∞. (10.24)

We compute then

Z[J ] = N
∫

dΦn δ(Φ
2
n − 1) eΦnJ

= Z[0] coshJ. (10.25)

Thus

v = tanh 4κdv. (10.26)

A graphical sketch of the solutions of this equation is shown on figure 17. Clearly for κ near κc
the solution v is near 0 and thus we can expand the above equation as

v = 4κdv − 1

3
(4κd)3v2 + .... (10.27)
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The solution is

1

3
(4d)2κ3v2 = κ− κc. (10.28)

Thus only for κ > κc there is a non zero solution.
In summary we have the two phases

κ > κc : broken, ordered, ferromagnetic (10.29)

κ < κc : symmetric, disordered, paramagnetic. (10.30)

The critical line κc = κc(g) interpolates in the κ− g plane between the two lines given by

κc =
N

4d
, g −→∞. (10.31)

κc =
1

2d
, g −→ 0. (10.32)

See figure 18.
For d = 4 the critical value at g = 0 is κc = 1/8 for all N . This critical value can be derived in

a different way as follows. From equation (8.172) we know that the renormalized mass at one-loop
order in the continuum φ4 with O(N) symmetry is given by the equation (with λ −→ 6λ)

m2
R = m2 + (N + 2)λI(m2,Λ)

= m2 +
(N + 2)λ

16π2
Λ2 +

(N + 2)λ

16π2
m2 ln

m2

Λ2
+

(N + 2)λ

16π2
m2

C+ finite terms.

(10.33)

This equation reads in terms of dimensionless quantities as follows

a2m2
R = am2 +

(N + 2)λ

16π2
+

(N + 2)λ

16π2
a2m2 ln a2m2 +

(N + 2)λ

16π2
a2m2

C+ a2 × finite terms.

(10.34)

The lattice space a is formally identified with the inverse cut off 1/Λ, viz

a =
1

Λ
. (10.35)

Thus we obtain in the continuum limit a −→ 0 the result

a2m2 −→ − (N + 2)λ

16π2
+

(N + 2)λ

16π2
a2m2 ln a2m2 +

(N + 2)λ

16π2
a2m2

C+ a2 × finite terms.

(10.36)

In other words (with r0 = (N + 2)/8π2)

a2m2 −→ a2m2
c = −

r0
2
λ+O(λ2). (10.37)

This is the critical line for small values of the coupling constant as we will now show. Expressing
this equation in terms of κ and g we obtain

1− 2g

κ
− 8 −→ −r0

2

g

κ2
+O(λ2). (10.38)
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This can be brought to the form

[

κ− 1

16
(1− 2g)

]2

−→ 1

256

[

1 + 16r0g − 4g

]

+O(g2/κ2). (10.39)

We get the result

κ −→ κc =
1

8
+ (

r0
2
− 1

4
)g +O(g2). (10.40)

This result is of fundamental importance. The continuum limit a −→ 0 corresponds precisely to
the limit in which the mass approaches its critical value. This happens for every value of the
coupling constant and hence the continuum limit a −→ 0 is the limit in which we approach the
critical line. The continuum limit is therefore a second order phase transition.

10.1.2 Mean Field Theory

We start from the partition function of an O(1) model given by

Z(J) =

∫

∏

n

dµ(Φn) e
∑

n,m ΦnVnmΦm+
∑

n JnΦn . (10.41)

The positive matrix Vnm (for the case of ferromagnetic interactions with κ > 0) is defined by

Vnm = κ
∑

µ̂

(

δm,n+µ̂ + δm,n−µ̂
)

. (10.42)

The measure is defined by

dµ(Φn) = dΦn e
−Φ2

n−g(Φ2
n−1)2 . (10.43)

We introduce the Hubbard transformation
∫

∏

n

dXn e
− 1

4

∑
n,mXnV

−1
nmXm+

∑
n ΦnXn = Ke

∑
n,m ΦnVnmΦm . (10.44)

We obtain

Z(J) =
1

K

∫

∏

n

dXn e
− 1

4

∑
n,mXnV

−1
nmXm

∫

∏

n

dµ(Φn) e
∑

n(Xn+Jn)Φn

=
1

K

∫

∏

n

dXn e
− 1

4

∑
n,mXnV

−1
nmXm−

∑
n A(Xn+Jn). (10.45)

The function A is defined by

A(Xn + Jn) = − ln z(Xn + Jn) , z(Xn + Jn) =

∫

dµ(Φn) e
(Xn+Jn)Φn . (10.46)

In the case of the Ising model we have explicitly

z(Xn + Jn) =

∫

dµ(Φn) e
(Xn+Jn)Φn = K

′ 1

2

(

e(Xn+Jn) + e−(Xn+Jn)
)

= K
′

cosh(Xn + Jn).

(10.47)
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We introduce a new variable φn as follows

φn = Xn + Jn. (10.48)

The partition function becomes (using also the fact that V and V −1 are symmetric matrices)

Z(J) =
1

K

∫

∏

n

dφn e
− 1

4

∑
n,m φnV

−1
nmφm+ 1

2

∑
n,m φnV

−1
nmJm− 1

4

∑
n,m JnV

−1
nmJm−∑

n A(φn).

(10.49)

We replace Vij by Wij = Vij/L and we replace every spin Φn by Φ̂n =
∑L

l=1 Φ
l
n, i.e. by the sum

of L spins Φln which are assumed to be distributed with the same probability dµ(Φln). We get
the partition function

Z(J) =

∫

∏

n,l

dµ(Φln) e
∑

n,m Φ̂nWnmΦ̂m+
∑

n JnΦ̂n

=
1

K

∫

∏

n

dXn e
− 1

4

∑
n,mXnW

−1
nmXm

(

∫

∏

n

dµ(Φn) e
∑

n(Xn+Jn)Φn
)L

=
1

K

∫

∏

n

dφn e
−L

[

1
4

∑
n,m φnV

−1
nmφm− 1

2

∑
n,m φnV

−1
nmJm+ 1

4

∑
n,m JnV

−1
nmJm+

∑
n A(φn)

]

≡ 1

K

∫

∏

n

dφn e
−LV (φn). (10.50)

In the limit L −→∞ we can apply the saddle point method. The partition function is dominated
by the configuration which solves the equation of motion

dV

dφn
= 0⇔ φn − Jn + 2

∑

m

Vnm
dA

dφm
= 0. (10.51)

In other words we replace the field at each site by the best equivalent magnetic field. This ap-
proximation performs better at higher dimensions. Clearly steepest descent allows an expansion
in powers of 1/L. We see that mean field is the tree level approximation of the field theory
obtained from (10.50) by neglecting the quadratic term in Jn and redefining the current Jn as
J redefined
n =

∑

m V
−1
nmJm/2.

The partition function becomes (up to a multiplicative constant factor)

Z(J) = e−L
[

1
4

∑
n,m φnV

−1
nmφm− 1

2

∑
n,m φnV

−1
nmJm+ 1

4

∑
n,m JnV

−1
nmJm+

∑
n A(φn)

]

|saddle point.

(10.52)

The vacuum energy (which plays the role of the thermodynamic free energy) is then given by

W (J) =
1

L
lnZ[J ]

= −
[

1

4

∑

n,m

φnV
−1
nmφm −

1

2

∑

n,m

φnV
−1
nmJm +

1

4

∑

n,m

JnV
−1
nmJm +

∑

n

A(φn)

]

|saddle point.

(10.53)
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The order parameter is the magnetization which is conjugate to the magnetic field Jn. It is
defined by

Mm =
∂W

∂Jm

=
1

2

∑

n

(φn − Jn)V −1
nm

= − dA

dφm
. (10.54)

The effective action (which plays the role of the thermodynamic energy) is the Legendre transform
of W (J) defined by

Γ(M) =
∑

n

MnJn −W (J)

=
∑

n

MnJn +
∑

n,m

MnVnmMm +
∑

n

A(φn)

= −
∑

n,m

MnVnmMm +
∑

n

B(Mn). (10.55)

The function B(Mn) is the Legendre transform of A(φn) given by

B(Mn) =Mnφn +A(φn). (10.56)

For the Ising model we compute (up to an additive constant)

A(φn) = − ln coshφn

= −φn − ln
1 + e−2φn

2
. (10.57)

The magnetization in the Ising model is given by

Mn =
1− e−2φn

1 + e−2φn
⇔ φn =

1

2
ln(1 +Mn)−

1

2
ln(1 −Mn). (10.58)

Thus

A(φn) =
1

2
ln(1 +Mn) +

1

2
ln(1−Mn). (10.59)

B(Mn) =
1

2
(1 +Mn) ln(1 +Mn) +

1

2
(1−Mn) ln(1 −Mn). (10.60)

From the definition of the effective potential we get the equation of motion

∂Γ

∂Mn
= −2

∑

m

VnmMm +
∂B

∂Mn

= (Jn − φn) + φn

= Jn. (10.61)
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Thus for zero magnetic field the magnetization is given by an extremum of the effective potential.
On the other hand the partition function for zero magnetic field is given by Z = exp(−LΓ)
and hence the saddle point configurations which dominate the partition function correspond to
extrema of the effective potential.

In systems where translation is a symmetry of the physics we can assume that the magne-
tization is uniform, i.e. Mn = M = constant and as a consequence the effective potential per
degree of freedom is given by

Γ(M)

N = −vM2 +B(M). (10.62)

The number N is the total number of degrees of freedom, viz N =
∑

n 1. The positive parameter
v is finite for short range forces and plays the role of the inverse temperature β = 1/T . It is
given explicitly by

v =

∑

n,m Vnm

N . (10.63)

It is a famous exact result of statistical mechanics that the effective potential Γ(M) is a convex
function of M , i.e. for M , M1 and M2 such that M = xM1 +(1− x)M2 with 0 < x < 1 we must
have

Γ(M) ≤ xΓ(M1) + (1 − x)Γ(M2). (10.64)

This means that a linear interpolation is always greater than the potential which means that
Γ(M) is an increasing function of M for |M | −→ ∞. This can be made more precise as follows.
First we compute

d2A

dφ2
= − < (Φ− < Φ >)2 > . (10.65)

Thus −d2A/dφ2 > 0 and as a consequence A is a convex function of φ 1. From the definition of
the partition function z(φ) and the explicit form of the measure dµ(Φ) we can see that Φ −→ 0
for φ −→ ±∞ and hence we obtain the condition

d2A

dφ2
−→ 0 , φ −→∞. (10.66)

Since M =< Φ > this condition also means that M2− < Φ2 >−→ 0 for φ −→ ±∞. Now by
differentiating Mn = ∂W/∂Jn with respect to Mn and using the result ∂Jn/∂Mn = ∂2Γ/∂M2

n

we obtain

1 =
∂2W

∂J2
n

∂2Γ

∂M2
n

. (10.67)

We compute (using Vnn = 0) the result ∂2Γ/∂M2
n = d2B/dM2

n. By recalling that φn = Xn + Jn
we also compute (using V −1

nn = 0) the result ∂2W/∂J2
n = −d2A/dφ2n. Hence we obtain

−1 =
d2B

dM2
n

d2A

dφ2n
. (10.68)

1Exercise: Verify this explicitly.



302 YDRI QFT

Thus the function B is also convex in the variable M . Furthermore the condition (10.65) leads
to the condition that the function B goes to infinity faster than M2 for M −→ ±∞2 (or else
that |M | is bounded as in the case of the Ising model).

The last important remark is to note that the functions A(φ) and B(M) are both even in
their respective variables.

There are two possible scenario we now consider:

• First Order Phase Transition: For high temperature (small value of v) the effective
action is dominated by the second term B(M) which is a convex function. The minimum
of Γ(M) is M = 0. We start decreasing the temperature by increasing v. At some T = Tc
(equivalently v = vc) new minima of Γ(M) appear which are degenerate with M = 0. For
T < Tc the new minima become absolute minima and as a consequence the magnetization
jumps discontinuously from 0 to a finite value corresponding to these new minima. See
figure 14.

In this case the second derivative of the effective potential at the minimum Γ
′′

(0) is always
strictly positive and as a consequence the correlation length, which is inversely proportional
to the square root of Γ

′′

(), is always finite.

• Second Order Phase Transition: The more interesting possibility occurs when the
minimum at the origin M = 0 becomes at some critical temperature T = Tc a maximum
and simultaneously new minima appear which start moving away from the origin as we
decreasing the temperature. The critical temperature Tc is defined by the condition Γ

′′

(0) =
0 or equivalently

2vc = B
′′

(0). (10.69)

Above Tc we have only the solution M = 0 whereas below Tc we have two minima moving
continuously away from the origin. In this case the magnetization remains continuous
at v = vc and as a consequence the transition is also termed continuous. Clearly the
correlation length diverges at T = Tc. See figure 14.

10.1.3 Critical Exponents in Mean Field

In the following we will only consider the second scenario. Thus we assume that we have a second
order phase transition at some temperature T = Tc (equivalently v = vc). We are interested in
the thermodynamic of the system for temperatures T near Tc. The transition is continuous and
thus we can assume that the magnetization M is small near T = Tc and as a consequence we
can expand the effective action (thermodynamic energy) in powers of M . We write then

Γ(M) = −
∑

n,m

MnVnmMm +
∑

n

B(Mn)

= −
∑

n,m

MnVnmMm +
∑

n

[

a

2!
M2
n +

b

4!
M4
n + ...

]

. (10.70)

The function B(Mn) is the Legendre transform of A(φn), i.e.

B(Mn) =Mnφn +A(φn). (10.71)

2Exercise: Verify this explicitly.
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We expand A(φn) in powers of φn as

A(φn) =
a

′

2!
φ2n +

b
′

4!
φ4n + ... (10.72)

Thus

Mn = − dA

dφn
= −a′

φn −
b
′

6
φ3n + ... (10.73)

We compute

d2A

dφ2n
= −[ d

2B

dM2
n

]−1

= −1

a
+

b

2a2
M2
n + ...

= −1

a
+

b

2a2
a

′2φ2n + ... (10.74)

By integration this equation we obtain

A = − 1

2a
φ2n +

b

4!a2
a

′2φ4n + ... (10.75)

Hence

a
′

= −1

a
, b

′

=
b

a4
. (10.76)

The critical temperature is given by the condition Γ
′′

(0) = 0 (where Γ here denotes the effective
potential Γ(M) = N (−vM2 + B(M))). This is equivalent to the condition B

′′

(0) = 2vc which
gives the value (recall that the coefficient a is positive since B is convex)

vc =
a

2
. (10.77)

The equation of motion Γ
′

(0) = 0 gives the condition B
′

(M) = 2vM . For v < vc we have no
spontaneous magnetization whereas for v > vc we have a non zero spontaneous magnetization
given by

M =

√

12

b
(v − vc)1/2. (10.78)

The magnetization is associated with the critical exponent β defined for T near Tc from below
by

M ∼ (Tc − T )β. (10.79)

We have clearly

β =
1

2
. (10.80)
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The inverse of the (magnetic) susceptibility is defined by (with J being the magnetic field)

χ−1 =
∂M

∂J

=
δ2Γ

δM2

= N (−2v + a+
b

2
M2). (10.81)

We have the 2−cases

v < vc , M = 0⇒ χ−1 = 2(vc − v)

v > vc , M =

√

12

b
(v − vc)1/2 ⇒ χ−1 = 4(v − vc). (10.82)

The susceptibility is associated with the critical exponent γ defined by

χ ∼ |T − Tc|−γ . (10.83)

Clearly we have

γ = 1. (10.84)

The quantum equation of motion (equation of state) relates the source (external magnetic field),
the temperature and the spontaneous magnetization. It is given by

J =
∂Γ

∂M

= N (2(vc − v)M +
b

6
M3)

=
N b
3
M3. (10.85)

The equation of state is associated with the critical exponent δ defined by

J ∼M δ. (10.86)

Clearly we have

δ = 3. (10.87)

Let us derive the 2−point correlation function given by

G(2)
nm =

[

δ2Γ

δMnδMm

]−1

=

[

− 2Vnm + aδnm +
b

2
M2
nδnm

]−1

. (10.88)

Define

Γ(2)
nm = −2Vnm + aδnm +

b

2
M2
nδnm. (10.89)
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The two functions G
(2)
nm and Γ

(2)
nm can only depend on the difference n − m due to invariance

under translation. Thus Fourier transform is and its inverse are defined by

Knm =

∫ π

−π

ddk

(2π)d
K̃(k) eik(n−m) , K̃(k) =

∑

n

Knme
−ik(n−m). (10.90)

For simplicity we assume a uniform magnetization, viz M =Mn. Thus

Γ̃(2)(k) =
∑

n

Γ(2)
nme

−ik(n−m)

= −2Ṽ (k) + a+
b

2
M2. (10.91)

Hence

G(2)
nm =

∫ π

−π

ddk

(2π)d
1

−2Ṽ (k) + a+ b
2M

2
eik(n−m). (10.92)

The function Ṽ (k) is given explicitly by

Ṽ (k) =
∑

n

Vnme
−ik(n−m). (10.93)

We assume a short range interaction which means that the potential Vnm decays exponentially
with the distance |n−m|. In other words we must have

Vnm < Me−κ|n−m| , κ > 0. (10.94)

This condition implies that the Fourier transform Ṽ (k) is analytic for |Im k| < κ 3. Furthermore
positivity of the potential Vnm and its invariance under translation gives the requirement

|Ṽ (k)| ≤
∑

n

Vnm = Ṽ (0) = v. (10.95)

For small momenta k we can then expand Ṽ (k) as

Ṽ (k) = v(1− ρ2k2 +O(k4)). (10.96)

The 2−point function admits therefore the expansion

G(2)
nm =

∫ π

−π

ddk

(2π)d
G̃(2)(0)

1 + ξ2k2 +O(k4)
eik(n−m). (10.97)

G̃(2)(0) =
1

2(vc − v) + b
2M

2
. (10.98)

ξ2 =
2vρ2

2(vc − v) + b
2M

2
. (10.99)

3Exercise: Construct an explicit argument.
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The length scale ξ is precisely the so-called correlation length which measures the exponential
decay of the 2−point function. Indeed we can write the 2−point function as

G(2)
nm =

∫ π

−π

ddk

(2π)d
G̃(2)(0)e−ξ

2k2 eik(n−m). (10.100)

More generally it is not difficult to show that the denominator −2Ṽ (k) + a + bM2/2 is strictly
positive for v > vc and hence the 2−point function decays exponentially which indicates that
the correlation length is finite.

We have the two cases

v < vc : M = 0⇒ ξ2 =
vρ2

vc − v

v > vc : M =

√

12

b
(v − vc)1/2 ⇒ ξ2 =

vρ2

2(v − vc)
. (10.101)

The correlation length ξ is associated with the critical exponent ν defined by

ξ ∼ |T − Tc|−ν . (10.102)

Clearly we have

ν =
1

2
. (10.103)

The correlation length thus diverges at the critical temperature T = Tc.
A more robust calculation which shows this fundamental result is easily done in the contin-

uum. In the continuum limit the 2−point function (10.97) becomes

G(2)(x, y) =

∫

ddk

(2π)d
1

m2 + k2
eik(x−y). (10.104)

The squared mass parameter is given by

m2 =
1

ξ2
=

2(vc − v) + b
2M

2

2vρ2
∼ |v − vc| ∼ [T − Tc|. (10.105)

We compute 4

G(2)(x, y) =
2

(4π)d/2
(
2m

r
)d/2−1K1−d/2(mr). (10.106)

For large distances we obtain 5

G(2)(x, y) =
1

2m
(
m

2π
)(d−1)/2 e−mr

r(d−1)/2
, r −→∞. (10.107)

The last crucial critical exponent is the anomalous dimension η. This is related to the behavior
of the 2−point function at T = Tc. At T = Tc we have v = vc and M = 0 and hence the 2−point
function becomes

G(2)
nm =

∫ π

−π

ddk

(2π)d
1

2vc(ρ2k2 −O(k4))
eik(n−m). (10.108)

4Exercise: Do this important integral.
5Exercise: Check this limit
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Thus the denominator vanishes only at k = 0 which is consistent with the fact that the correlation
length is infinite at T = Tc. This also leads to algebraic decay. This can be checked more easily
in the continuum limit where the 2−point function becomes

G(2)(x, y) =

∫

ddk

(2π)d
1

k2
eik(x−y). (10.109)

We compute 6

G(2)(x, y) =
2d−2

(4π)d/2
Γ(d/2− 1)

1

rd−2
. (10.110)

The critical exponent η is defined by the behavior

G(2)(x, y) ∼ 1

rd−2+η
. (10.111)

The mean field prediction is therefore given by

η = 0. (10.112)

In this section we have not used any particular form for the potential Vmn. It will be an interesting
exercise to compute directly all the critical exponents β, γ, δ, ν and η for the case of the O(1)
model corresponding to the nearest-neighbor interaction (10.42) 7. This of course includes the
Ising model as a special case.

10.2 The Callan-Symanzik Renormalization Group Equa-

tion

10.2.1 Power Counting Theorems

We consider a φr theory in d dimensions given by the action

S[φ] =

∫

ddx

[

1

2
∂µφ∂

µφ+
µ2

2
φ2 − g

4
φr
]

. (10.113)

The case of interest is of course d = 4 and r = 4. In natural units where ~ = c = 1 the action
is dimensionless, viz [S] = 1. In these units time and length has the same dimension whereas
mass, energy and momentum has the same dimension. We take the fundamental dimension to
be that of length or equivalently that of mass. We have clearly (for example from Heisenberg
uncertainty principle)

L =
1

M
. (10.114)

[t] = [x] = L =M−1 , [m] = [E] = [p] =M. (10.115)

It is clear that the Lagrangian density is of mass dimension Md and as a consequence the field is
of mass dimension M (d−2)/2 and the coupling constant g is of mass dimension Md−rd/2+r (use
the fact that [∂] =M). We write

[φ] =M
d−2
2 . (10.116)

6Exercise: Do this important integral.
7Exercise: Compute the exponents β, γ, δ, ν and η for the potential (10.42).
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[g] =Md−r d−2
2 ≡M δr , δr = d− rd− 2

2
. (10.117)

The main result of power counting states that φr theory is renormalizable only in dc dimension
where dc is given by the condition

δr = 0⇔ dc =
2r

r − 2
. (10.118)

The effective action is given by

Γ[φc] =

∞
∑

n=0

1

n!

∫

ddx1...

∫

ddxnΓ
(n)(x1, ..., xn)φc(x1)...φc(xn). (10.119)

Since the effective action is dimensionless the n−point proper vertices Γ(n)(x1, ..., xn) have mass
dimension such that

1 =
1

Mnd
[Γ(n)(x1, ..., xn)]M

n d−2
2 ⇔ [Γ(n)(x1, ..., xn)] =M

nd
2 +n. (10.120)

The Fourier transform is defined as usual by

∫

ddx1...

∫

ddxnΓ
(n)(x1, ..., xn) e

ip1x1+...+ipnxn = (2π)dδd(p1 + ...+ pn)Γ̃
(n)(p1, ..., pn).(10.121)

From the fact that
∫

ddpδd(p) = 1 we conclude that [δd(p)] =M−d and hence

[Γ̃(n)(p1, ..., pn)] =Md−n(d
2−1). (10.122)

The n−point function G(n)(x1, ..., xn) is the expectation value of the product of n fields and
hence it has mass dimension

[G(n)(x1, ..., xn)] =Mnd−2
2 . (10.123)

The Fourier transform is defined by

∫

ddx1...

∫

ddxnG
(n)(x1, ..., xn) e

ip1x1+...+ipnxn = (2π)dδd(p1 + ...+ pn)G̃
(n)(p1, ..., pn).(10.124)

Hence

[G̃(n)(p1, ..., pn)] =Md−n(d
2+1). (10.125)

We consider now an arbitrary Feynman diagram in a φr theory in d dimensions. This diagram
is contributing to some n−point proper vertex Γ̃(n)(p1, ..., pn) and it can be characterized by the
following:

• L=number of loops.

• V=number of vertices.

• P=number of propagators (internal lines).

• n=number of external lines (not to be considered propagators).
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We remark that each propagator is associated with a momentum variable. In other words we
have P momenta which must be constrained by the V delta functions associated with the V
vertices and hence there can only be P −V momentum integrals in this diagram. However, only
one delta function (which enforces energy-momentum conservation) survives after integration
and thus only V − 1 delta functions are actually used. The number of loops L must be therefore
given by

L = P − (V − 1). (10.126)

Since we have r lines coming into a vertex the total number of lines coming to V vertices is rV .
Some of these lines are propagators and some are external lines. Clearly among the rV lines we
have precisely n external lines. Since each propagator connects two vertices it must be counted
twice. We have then

rV = n+ 2P. (10.127)

It is clear that Γ̃(n)(p1, ..., pn) must be proportional to gV , viz

Γ̃(n)(p1, ..., pn) = gV f(p1, ..., pn). (10.128)

We have clearly

[f(p1, ..., pn)] =M δ , δ = −V δr + d− n(d
2
− 1). (10.129)

The index δ is called the superficial degree of divergence of the Feynman graph. The physical
significance of δ can be unraveled as follows. Schematically the function f is of the form

f(p1, ..., pn) ∼
∫ Λ

0

ddk1...

∫ Λ

0

ddkP
1

k21 − µ2
...

1

k2P − µ2

[

δd(
∑

p−
∑

k)
]V−1

. (10.130)

If we neglect, in a first step,the delta functions than we can see immediately that the asymptotic
behavior of the integral f(p1, ..., pn) is ΛP (d−2). This can be found by factoring out the depen-
dence of f on Λ via the rescaling k −→ Λk. By taking the delta functions into considerations
we see immediately that the number of independent variables reduces and hence the asymptotic
behavior of f(p1, ..., pn) becomes

f(p1, ..., pn) ∼ ΛP (d−2)−d(V−1). (10.131)

By using P = (rV − n)/2 we arrive at the result

f(p1, ..., pn) ∼ Λ−V δr+d−n(d
2−1)

∼ Λδ. (10.132)

The index δ controls therefore the ultraviolet behavior of the graph. From the last two equations
it is obvious that δ is the difference between the power of k in the numerator and the power of
k in the denominator, viz

δ = (power of k in numerator)− (power of k in denominator) (10.133)

Clearly a negative index δ corresponds to convergence whereas a positive index δ corresponds to
divergence. Since δ is only a superficial degree of divergence there are exceptions to this simple
rule. More precisely we have the following first power counting theorem:
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• For δ > 0 the diagram diverges as Λd. However symmetries (if present) can reduce/eliminate
divergences in this case.

• For δ = 0 the diagram diverges as ln Λ. An exception is the trivial diagram (P = L = 0).

• For δ < 0 the diagram converges absolutely if it contains no divergent subdiagrams. In
other words a diagram with δ < 0 which contains divergent subdiagrams is generically
divergent.

As an example let us consider φ4 in 4 dimensions. In this case

δ = 4− n. (10.134)

Clearly only the 2−point and the 4−point proper vertices are superficially divergent, i.e. they
have δ ≥ 0. In particular for n = 4 we have δ = 0 indicating possible logarithmic divergence which
is what we had already observed in actual calculations. For n = 6 we observe that δ = −2 < 0
which indicates that the 6−point proper vertex is superficially convergent. In other words the
diagrams contributing to the 6−point proper vertex may or may not be convergent depending
on whether or not they contain divergent subdiagrams. For example the one-loop diagram on
figure 13 is convergent whereas the two-loop diagrams are divergent.

The third rule of the first power counting theorem can be restated as follows:

• A Feynman diagram is absolutely convergent if and only if it has a negative superficial
degree of divergence and all its subdiagrams have negative superficial degree of divergence.

The φ4 theory in d = 4 is an example of a renormalizable field theory. In a renormalizable
field theory only a finite number of amplitudes are superficially divergent. As we have already
seen, the divergent amplitudes in the case of the φ4 theory in d = 4 theory, are the 2−point
and the 4−point amplitudes. All other amplitudes may diverge only if they contain divergent
subdiagrams corresponding to the 2−point and the 4−point amplitudes.

Another class of field theories is non-renormalizable field theories. An example is φ4 in D = 6.
In this case

δr = −2 , δ = 2V + 6− 2n. (10.135)

The formula for δ depends now on the order of perturbation theory as opposed to what happens
in the case ofD = 4. Thus for a fixed n the superficial degree of divergence increases by increasing
the order of perturbation theory, i.e. by increasing V . In other words at a sufficiently high order
of perturbation theory all amplitudes are divergent.

In a renormalizable field theory divergences occur generally at each order in perturbation
theory. For φ4 theory in d = 4 all divergences can be removed order by order in perturbation
theory by redefining the mass, the coupling constant and the wave function renormalization.
This can be achieved by imposing three renormalization conditions on Γ̃(2)(p), dΓ̃(2)(p)/dp2 and
Γ̃(4)(p1, ..., p4) at 0 external momenta corresponding to three distinct experiments.

In contrast we will require an infinite number of renormalization conditions in order to remove
the divergences occurring at a sufficiently high order in a non-renormalizable field theory since
all amplitudes are divergent in this case. This corresponds to an infinite number of distinct
experiments and as a consequence the theory has no predictive power.

From the formula for the superficial degree of divergence δ = −δrV + d− n(d/2− 1) we see
that δr, the mass dimension of the coupling constant, plays a central role. For δr = 0 (such as
φ4 in d = 4 and φ3 in d = 6 we see that the index δ is independent of the order of perturbation
theory which is a special behavior of renormalizable theory. For δr < 0 (such as φ4 in d > 4)
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we see that δ depends on V in such a way that it increases as V increases and hence we obtain
more divergencies at each higher order of perturbation theory. Thus δr < 0 defines the class of
non-renormalizable field theories as δr = 0 defines the class of renormalizable field theories.

Another class of field theories is super-renormalizable field theories for which δr > 0 (such
as φ3 in D = 4). In this case the superficial degree of divergence δ decreases with increasing
order of perturbation theory and as a consequence only a finite number of Feynman diagrams
are superficially divergent. In this case no amplitude diverges.

The second (main) power counting theorem can be summarized as follows:

• Super-Renormalizable Theories: The coupling constant g has positive mass dimension.
There are no divergent amplitudes and only a finite number of Feynman diagrams super-
ficially diverge.

• Renormalizable Theories: The coupling constant g is dimensionless. There is a finite
number of superficially divergent amplitudes. However since divergences occur at each
order in perturbation theory there is an infinite number of Feynman diagrams which are
superficially divergent.

• Non-Renormalizable Theories: The coupling constant g has negative mass dimension. All
amplitudes are superficially divergent at a sufficiently high order in perturbation theory.

10.2.2 Renormalization Constants and Renormalization Conditions

We write the φ4 action in d = 4 as

S[φ] =

∫

ddx

[

1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
(φ2)2

]

. (10.136)

The bare field φ, the bare coupling constant λ and the bare mass m2 are given in terms of the
renormalized field φR, the renormalized coupling constant λR and the renormalized mass m2

R

respectively by the relations

φ =
√
ZφR. (10.137)

λ = Zg/Z
2λR. (10.138)

m2 = (m2
R + δm)/Z. (10.139)

The renormalization constant Z is called wave function renormalization constant (or equivalently
field amplitude renormalization constant) whereas Zg/Z

2 is the coupling constant renormaliza-
tion constant.

The action S given by equation (10.136) can be split as follows

S = SR + δS. (10.140)

The renormalized action SR is given by

SR[φR] =

∫

ddx

[

1

2
∂µφR∂

µφR −
1

2
m2
Rφ

2
R −

λR
4!

(φ2R)
2

]

. (10.141)
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The counter-term action δS is given by

δS[φR] =

∫

d4x

[

δZ
2
∂µφR∂

µφR −
1

2
δmφ

2
R −

δλ
4!
(φ2R)

2

]

. (10.142)

The counterterms δZ , δm and δλ are given by

δZ = Z − 1 , δm = Zm2 −m2
R , δλ = λZ2 − λR = (Zg − 1)λR. (10.143)

The renormalized n−point proper vertex Γ
(n)
R is given in terms of the bare n−point proper vertex

Γ(n) by

Γ
(n)
R (x1, ..., xn) = Z

n
2 Γ(n)(x1, ..., xn). (10.144)

The effective action is given by (where φ denotes here the classical field)

ΓR[φR] =
∑

n=0

1

n!
Γ
(n)
R (x1, ..., xn)φR(x1)...φR(xn). (10.145)

We assume a momentum cutoff regularization. The renormalization constants Z and Zg and the
counterterm δm are expected to be of the form

δm = a1(Λ)λr + a2(Λ)λ
2
r + ...

Z = 1 + b1(Λ)λr + b2(Λ)λ
2
r + ...

Zg = 1 + c1(Λ)λr + c2(Λ)λ
2
r + ... (10.146)

All other quantities can be determined in terms of Z and Zg and the counterterm δm. We can
state our third theorem as follows:

• Renormalizability of the φ4 theory in d = 4 means precisely that we can choose the con-
stants ai, bi and ci such that all correlation functions have a finite limit order by order in
λR when Λ −→∞.

We can eliminate the divergences by imposing appropriate renormalization conditions at zero
external momentum. For example we can choose to impose conditions consistent with the tree
level action, i.e.

Γ̃
(2)
R (p)|p2=0 = m2

R

d

dp2
Γ̃(2)(p)|p2=0 = 1

Γ̃(4)(p1, ..., p4)|p2i=0 = λR. (10.147)

This will determine the superficially divergent amplitudes completely and removes divergences
at all orders in perturbation theory 8.

8Exercise:

• Show that the loopwise expansion is equivalent to an expansion in powers of λ.

• Write down the one-loop effective action of the φ4 theory in d = 4. Use a Gaussian cutoff.

• Compute a1, b1 and c1 at the one-loop order of perturbation theory.

• Consider one-loop renormalization of φ3 in d = 6.
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It is well established that a far superior regularization method,than the simple cutoff used
above, is dimensional regularization in which case we use, instead of renormalization conditions,
the so-called minimal subtraction (MS) and modified minimal subtraction (MMS) schemes to
renormalize the theory. In minimal subtraction scheme we subtract only the pole term and
nothing else.

In dimension d 6= 4 the coupling constant λ is not dimensionless. The dimensionless coupling
constant in this case is given by g defined by

g = µ−ǫλ , ǫ = 4− d. (10.148)

The bare action can then be put in the form

S =

∫

ddx

[

Z

2
∂µφR∂

µφR −
Zmm

2
R

2
φ2R −

µǫgRZg
4!

(φ2R)
2

]

. (10.149)

The new renormalization condition Zm is defined through the equation

m2 = m2
R

Zm
Z
. (10.150)

The mass µ2 is an arbitrary mass scale parameter which plays a central role in dimensional
regularization and minimal subtraction. The mass µ2 will define the subtraction point. In other
words the mass scale at which we impose renormalization conditions in the form

Γ̃
(2)
R (p)|p2=0 = m2

R

d

dp2
Γ̃(2)(p)|p2=µ2 = 1

Γ̃(4)(p1, ..., p4)|SP = µǫgR. (10.151)

The symmetric point SP is defined by pi.pj = µ2(4δij−1)/3. For massive theories we can simply
choose µ = mR. According to Weinberg’s theorem (and other considerations) the only correlation
functions of massless φ4 which admit a zero momentum limit is the 2−point function. This means
in particular that the second and third renormalization conditions (10.147) do not make sense
in the massless limit m2

R −→ 0 and should be replaced by the second and third renormalization
conditions (10.151). This is also the reason why we have kept the first renormalization condition
unchanged. The renormalization conditions (10.151) are therefore better behaved.

As pointed above the renormalization prescription known as minimal subtraction is far supe-
rior than the above prescription of imposing renormalization conditions since it is intimately tied
to dimensional regularization. In this prescription the mass scale µ2 appears only via (10.148).
We will keep calling µ2 the subtraction point since minimal subtraction must be physically
equivalent to imposing the renormalization conditions (10.151) although the technical detail is
generically different in the two cases.

The renormalized proper vertices Γ̃
(n)
R depend on the momenta p1,...,pn but also on the

renormalized mass m2
R, the renormalized coupling constant gR and the cutoff Λ. In the case of

dimensional regularization the cutoff is ǫ = 4− d whereas in the case of lattice regularization the

cutoff is the inverse lattice spacing. The proper vertices Γ̃
(n)
R will also depend on the mass scale

µ2 explicitly and implicitly through m2
R and gR. The renormalized proper vertices are related to

the bare proper vertices as

Γ̃
(n)
R (pi, µ

2;m2
R, gR,Λ) = Z

n
2 Γ̃(n)(pi;m

2, g,Λ). (10.152)
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The renormalization constant Z (and also other renormalization constants Zg, Zm and coun-
terterms δZ , δm and δλ) will only depend on the dimensionless parameters gR, m2

R/µ
2, Λ2/µ2,

m2
R/Λ

2 as well as on Λ, viz

Z = Z(gR,
m2
R

µ2
,
Λ2

µ2
,
m2
R

Λ2
,Λ). (10.153)

In dimensional regularization we have

Γ̃
(n)
R (pi, µ

2;m2
R, gR, ǫ) = Z

n
2 (gR,

m2
R

µ2
, ǫ)Γ̃(n)(pi;m

2, g, ǫ). (10.154)

Renormalizability of the φ4 theory in d = 4 via renormalization conditions (the fourth theorem)
can be stated as follows:

• The renormalized proper vertices Γ̃
(n)
R (pi, µ

2;m2
R, gR,Λ) at fixed pi, µ

2, gR, m2
R have a

large cut-off limit Γ̃
(n)
R (pi, µ

2;m2
R, gR) which are precisely the physical proper vertices, viz

Γ̃
(n)
R (pi, µ

2;m2
R, gR,Λ) = Γ̃

(n)
R (pi, µ

2;m2
R, gR) +O

( (lnΛ)L

Λ2

)

. (10.155)

The renormalized physical proper vertices Γ̃
(n)
R (pi, µ

2;m2
R, gR) are universal in the sense

that they do not depend on the specific cut-off procedure as long as the renormalization
conditions (10.151) are kept unchanged. In the above equation L is the number of loops.

10.2.3 Renormalization Group Functions and Minimal Subtraction

The bare mass m2 and the bare coupling constant λ are related to the renormalized mass m2
R

and renormalized coupling constant λR by the relations

m2 = m2
R

Zm
Z
. (10.156)

λ =
Zg
Z2

λR =
Zg
Z2

µǫgR. (10.157)

In dimensional regularization the renormalization constants will only depend on the dimensionless
parameters gR, m2

R/µ
2 as well as on ǫ. We may choose the subtraction mass scale µ2 = m2

R.
Clearly the bare quantities m2 and λ are independent of the mass scale µ. Thus by differentiating
both sides of the above second equation with respect to µ2 keeping m2 and λ fixed we obtain

0 =

(

µ
∂λ

∂µ

)

λ,m2

⇒ β = −ǫgR −
(

µ
∂

∂µ
lnZg/Z

2

)

λ,m2

gR. (10.158)

The so-called renormalization group beta function β (also called the Gell-Mann Law function)
is defined by

β = β(gR,
m2
R

µ2
) =

(

µ
∂gR
∂µ

)

λ,m2

(10.159)

Let us define the new dimensionless coupling constant

G =
Zg
Z2

gR. (10.160)
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Alternatively by differentiating both sides of equation (10.157) with respect to µ keeping m2 and
λ fixed we obtain

0 =

(

µ
∂λ

∂µ

)

λ,m2

⇒ 0 = ǫG+ β
∂

∂gR
G+

(

µ
∂

∂µ
mR

)

λ,m2

∂

∂mR
G. (10.161)

The last term is absent when µ = mR.
Next by differentiating both sides of equation (10.156) with respect to µ keeping m2 and λ

fixed we obtain

0 =

(

µ
∂m2

∂µ

)

λ,m2

⇒ 0 =

(

µ
∂m2

R

∂µ

)

λ,m2

+m2
R

(

µ
∂

∂µ
lnZm/Z

)

λ,m2

. (10.162)

We define the renormalization group function γ by

γm = γm(gR,
m2
R

µ2
) =

(

µ
∂

∂µ
lnm2

R

)

λ,m2

= −
(

µ
∂

∂µ
lnZm/Z

)

λ,m2

. (10.163)

In the minimal subtraction scheme the renormalization constants will only depend on the di-
mensionless parameters gR and as a consequence the renormalization group functions will only
depend on gR. In this case we find

β(gR) = −ǫgR
[

1 + gR
d

dgR
ln
Zg
Z

]−1

= −ǫ
[

d

dgR
lnG(gR)

]−1

. (10.164)

γm(gR) = −β(gR)
d

dgR
ln
Zm
Z
. (10.165)

We go back to the renormalized proper vertices (in minimal subtraction) given by

Γ̃
(n)
R (pi, µ

2;m2
R, gR, ǫ) = Zn/2(gR, ǫ)Γ̃

(n)(pi;m
2, g, ǫ). (10.166)

Again the bare proper vertices must be independent of the subtraction mass scale, viz

0 =

(

µ
∂

∂µ
Γ̃(n)

)

λ,m2

. (10.167)

By differentiating both sides of equation (10.166) with respect to µ keeping m2 and λ fixed we
obtain

(

µ
∂

∂µ
Γ̃
(n)
R

)

λ,m2

=
n

2

(

µ
∂

∂µ
lnZ

)

λ,m2

Γ̃
(n)
R . (10.168)

Equivalently we have

(

µ
∂

∂µ
+ µ

∂m2
R

∂µ

∂

∂m2
R

+ µ
∂gR
∂µ

∂

∂gR

)

λ,m2

Γ̃
(n)
R =

n

2

(

µ
∂

∂µ
lnZ

)

λ,m2

Γ̃
(n)
R . (10.169)



316 YDRI QFT

We get finally

(

µ
∂

∂µ
+m2

Rγm
∂

∂m2
R

+ β
∂

∂gR
− n

2
η

)

Γ̃
(n)
R = 0. (10.170)

This is our first renormalization group equation. The new renormalization group function η (also
called the anomalous dimension of the field operator) is defined by

η(gR) =

(

µ
∂

∂µ
lnZ

)

λ,m2

= β(gR)
d

dgR
lnZ. (10.171)

Renormalizability of the φ4 theory in d = 4 via minimal subtraction (the fifth theorem) can be
stated as follows:

• The renormalized proper vertices Γ̃
(n)
R (pi, µ

2;m2
R, gR, ǫ) and the renormalization group

functions β(gR), γ(gR) and η(gR) have a finite limit when ǫ −→ 0.

By using the above the theorem and the fact that G(gR) = gR + .... we conclude that the beta
function must be of the form

β(gR) = −ǫgR + β2(ǫ)g
2
R + β3(ǫ)g

3
R + ... (10.172)

The functions βi(ǫ) are regular in the limit ǫ −→ 0. By using the result (10.164) we find

gR
G

′

G
= − ǫgR

β

= 1 +
β2(ǫ)

ǫ
gR + (

β2
2(ǫ)

ǫ2
+
β3(ǫ)

ǫ
)g2R + ... (10.173)

The most singular term in ǫ is captured by the function β2(ǫ). By integrating this equation we
obtain

G(gR) = gR

[

1− β2(0)

ǫ
gR

]−1

+ less singular terms. (10.174)

The function G(gR) can then be expanded as

G(gR) = gR +
∑

n=2

gnRG̃n(ǫ). (10.175)

The functions G̃n(ǫ) behave as

G̃n(ǫ) =
βn−1
2 (0)

ǫn−1
+ less singular terms. (10.176)

Alternatively we can expand G as

G(gR) = gR +
∑

n=1

Gn(gR)

ǫn
+ regular terms , Gn(gR) = O(gn+1

R ). (10.177)
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This is equivalent to

Zg
Z2

= 1 +
∑

n=1

Hn(gR)

ǫn
+ regular terms , Hn(gR) = O(gnR). (10.178)

We compute the beta function

β(gR) = −ǫ
[

gR +
∑

n=1

Gn(gR)

ǫn

][

1 +
∑

n=1

G
′

n(gR)

ǫn

]−1

= −ǫ
[

gR +
G1

ǫ
+ ...

][

1− G
′

1

ǫ
+

(G
′

1)
2

ǫ2
− G

′

2

ǫ2
+ ...

]

= −ǫgR −G1(gR) + gRG
′

1(gR) +
∑

n=1

bn(gR)

ǫn
. (10.179)

The beta function is finite in the limit ǫ −→ 0 and as a consequence we must have bn(gR) = 0
for all n. The beta function must therefore be of the form

β(gR) = −ǫgR −G1(gR) + gRG
′

1(gR). (10.180)

The beta function β is completely determined by the residue of the simple pole of G, i.e. by
G1. In fact all the functions Gn with n ≥ 2 are determined uniquely by G1 (from the condition
bn = 0).

Similarly from the finiteness of η in the limit ǫ −→ 0 we conclude that the renormalization
constant Z is of the form

Z(gR) = 1 +
∑

n=1

αn(gR)

ǫn
+ regular terms , αn(gR) = O(gn+1

R ). (10.181)

We compute the anomalous dimension

η = β(gR)
d

dgR
lnZ(gR)

=

[

− ǫgR −G1(gR) + gRG
′

1(gR)

][

1

ǫ
α

′

1 + ...

]

. (10.182)

Since η is finite in the limit ǫ −→ 0 we must have

η = −gRα
′

1. (10.183)

10.2.4 CS Renormalization Group Equation in φ4 Theory

We will assume d = 4 in this section although much of what we will say is also valid in other
dimensions. We will also use a cutoff regularization throughout.

Inhomogeneous CS RG Equation: Let us consider now φ4 theory with φ2 insertions. We
add to the action (10.136) a source term of the form

∫

ddxK(x)φ2(x)/2, i.e.

S[φ,K] =

∫

ddx

[

1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
(φ2)2 +

1

2
Kφ2

]

. (10.184)
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Then we consider the path integral

Z[J,K] =

∫

Dφ exp(iS[φ,K] + i

∫

ddxJφ). (10.185)

It is clear that differentiation with respect to K(x) generates insertions of the operator −φ2/2.
The corresponding renormalized field theory will be given by the path integral

ZR[J,K] =

∫

DφR exp(iS[φR,K] + i

∫

ddxJφR). (10.186)

S[φR,K] =

∫

ddx

[

1

2
∂µφR∂

µφR −
1

2
m2
Rφ

2
R −

λR
4!

(φ2R)
2 +

Z2

2
Kφ2R

]

+ δS. (10.187)

Z2 is a new renormalization constant associated with the operator
∫

ddxK(x)φ2(x)/2. We have
clearly the relations

WR[J,K] =W [
J√
Z
,
Z2

Z
K]. (10.188)

ΓR[φc,K] = Γ[
√
Zφc,

Z2

Z
K]. (10.189)

The renormalized (l, n)−point proper vertex Γ
(l,n)
R is given in terms of the bare (l, n)−point

proper vertex Γ(l,n) by

Γ
(l,n)
R (y1, ..., yl;x1, ..., xn) = Z

n
2 −lZ l2Γ

(l,n)(y1, ..., yl;x1, ..., xn). (10.190)

The proper vertex Γ(1,2)(y;x1, x2) is a new superficially divergent proper vertex which requires a
new counterterm and a new renormalization condition. For consistency with the tree level action
we choose the renormalization condition

Γ̃
(1,2)
R (q; p1, p2)|q=pi=0 = 1. (10.191)

Let us remark that correlation functions with one operator insertion iφ2(y)/2 are defined by

<
i

2
φ2(y)φ(x1)...φ(xn) >=

1

in
1

Z[J,K]

δ

δK(y)

δ

δJ(x1)
...

δ

δJ(xn)
Z[J,K]|J=K=0. (10.192)

This can be generalized easily to

<
il

2l
φ2(y1)...φ

2(yl)φ(x1)...φ(xn) >=
1

in
1

Z[J,K]

δ

δK(y1)
...

δ

δK(yl)

δ

δJ(x1)
...

δ

δJ(xn)
Z[J,K]|J=K=0.

(10.193)

From this formula we see that the generating functional of correlation functions with l operator
insertions iφ2(y)/2 is defined by

Z[y1, ..., yl; J ] =
δ

δK(y1)
...

δ

δK(yl)
Z[J,K]|K=0. (10.194)
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The generating functional of the connected correlation functions with l operator insertions
iφ2(y)/2 is then defined by

W [y1, ..., yl; J ] =
δ

δK(y1)
...

δ

δK(yl)
W [J,K]|K=0. (10.195)

We write the effective action as

Γ[φc,K] =
∑

l,n=0

1

l!n!

∫

ddy1...

∫

ddxnΓ
(l,n)(y1, ..., yl;x1, ..., xn)K(y1)...K(yl)φc(x1)...φc(xn).

(10.196)

The generating functional of 1PI correlation functions with l operator insertions iφ2c(y)/2 is
defined by

δlΓ[φc,K]

δK(y1)...δK(yl)
=

∑

n=0

1

n!

∫

ddx1...

∫

ddxnΓ
(l,n)(y1, ..., yl;x1, ..., xn)φc(x1)...φc(xn).

(10.197)

Clearly

δl+nΓ[φc,K]

δK(y1)...δK(yl)δφc(x1)...δφc(xn)
= Γ(l,n)(y1, ..., yl;x1, ..., xn). (10.198)

We also write

Γ[φc,K] =
∑

l,n=0

1

l!n!

∫

ddq1
(2π)d

...

∫

ddpn
(2π)d

Γ̃(l,n)(q1, ..., ql; p1, ..., pn)K̃(q1)...K̃(ql)φ̃c(p1)...φ̃c(pn).

(10.199)

We have defined
∫

ddy1...

∫

ddxnΓ
(l,n)(y1, ..., yl;x1, ..., xn) e

iq1y1 ...eiqlyleip1x1 ...eipnxn = Γ̃(l,n)(q1, ..., ql; p1, ..., pn).

(10.200)

The definition of the proper vertex Γ̃(l,n)(q1, ..., ql; p1, ..., pn) in this equation includes a delta
function. We recall that

Γ[φc,K] =W [J,K]−
∫

ddxJ(x)φc(x) , φc(x) =
δW [J,K]

δJ(x)
. (10.201)

We calculate immediately

∂W

∂m2
|λ,Λ = −

∫

ddz
δW

δK(z)
⇒ ∂Γ

∂m2
|λ,Λ = −

∫

ddz
δΓ

δK(z)
. (10.202)

As a consequence

∂Γ(l,n)(y1, ..., yl;x1, ..., xn)

∂m2
|λ,Λ = −

∫

ddz
δΓ(l,n)(y1, ..., yl;x1, ..., xn)

δK(z)

= −
∫

ddzΓ(l+1,n)(z, y1, ..., yl;x1, ..., xn) (10.203)
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Fourier transform then gives

∂Γ̃(l,n)(q1, ..., ql; p1, ..., pn)

∂m2
|λ,Λ = −Γ̃(l+1,n)(0, q1, ..., ql; p1, ..., pn). (10.204)

By using equation (10.190) to convert bare proper vertices into renormalized proper vertices we
obtain

(

∂

∂m2
− n

2

∂ lnZ

∂m2
− l ∂ lnZ2/Z

∂m2

)

λ,Λ

Γ̃
(l,n)
R = −ZZ−1

2 Γ̃
(l+1,n)
R . (10.205)

The factor of −1 multiplying the right hand side of this equation will be absent in the Eu-

clidean rotation of the theory 9. The renormalized proper vertices Γ̃
(l,n)
R depend on the momenta

q1,...,ql,p1,...,pn but also on the renormalized mass m2
R, the renormalized coupling constant λR

and the cutoff Λ. They also depend on the subtraction mass scale µ2. We will either assume
that µ2 = 0 or µ2 = m2

R. We have then

(

∂mR

∂m2

∂

∂mR
+
∂λR
∂m2

∂

∂λR
− n

2

∂ lnZ

∂m2
− l ∂ lnZ2/Z

∂m2

)

λ,Λ

Γ̃
(l,n)
R = −ZZ−1

2 Γ̃
(l+1,n)
R .

(10.206)

We write this as

∂mR

∂m2

(

mR
∂

∂mR
+mR

∂m2

∂mR

∂λR
∂m2

∂

∂λR
− n

2
mR

∂m2

∂mR

∂ lnZ

∂m2
− lmR

∂m2

∂mR

∂ lnZ2/Z

∂m2

)

λ,Λ

Γ̃
(l,n)
R =

−mRZZ
−1
2 Γ̃

(l+1,n)
R .(10.207)

We define

β(λR,
mR

Λ
) =

(

mR
∂m2

∂mR

∂λR
∂m2

)

λ,Λ

=

(

mR
∂λR
∂mR

)

λ,Λ

. (10.208)

η(λR,
mR

Λ
) =

(

mR
∂m2

∂mR

∂ lnZ

∂m2

)

λ,Λ

=

(

mR
∂

∂mR
lnZ + β

∂

∂λR
lnZ

)

λ,Λ

. (10.209)

η2(λR,
mR

Λ
) =

(

mR
∂m2

∂mR

∂ lnZ2/Z

∂m2

)

λ,Λ

=

(

mR
∂

∂mR
lnZ2/Z + β

∂

∂λR
lnZ2/Z

)

λ,Λ

. (10.210)

m2
Rσ(λR,

mR

Λ
) = ZZ−1

2

(

mR
∂m2

∂mR

)

λ,Λ

. (10.211)

9Exercise: Check this.
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The above differential equation becomes with these definitions
(

mR
∂

∂mR
+ β

∂

∂λR
− n

2
η − lη2

)

Γ̃
(l,n)
R = −m2

RσΓ̃
(l+1,n)
R . (10.212)

This is the original Callan-Symanzik equation. This equation represents only the response of the
proper vertices to rescaling (φ −→ φR) and to reparametrization (m2 −→ m2

R, λ −→ λR). We
still need to impose on the Callan-Symanzik equation the renormalization conditions in order to
determine the renormalization constants and show that the renormalized proper vertices have
a finite limit when Λ −→ ∞. The functions β, η, η2 and σ can be expressed in terms of
renormalized proper vertices and as such they have an infinite cutoff limit. The Callan-Symanzik
equation (10.212) can be used to provide an inductive proof of renormalizability of φ4 theory in
4 dimensions. We will not go through this involved exercise at this stage.

Homogeneous CS RG Equation-Massless Theory: The renormalization conditions for a
massless φ4 theory in d = 4 are given by

Γ̃
(2)
R (p)|p2=0 = 0

d

dp2
Γ̃(2)(p)|p2=µ2 = 1

Γ̃(4)(p1, ..., p4)|SP = λR. (10.213)

The renormalized proper vertices Γ̃
(n)
R depend on the momenta p1,...,pn, the mass scale µ2, the

renormalized coupling constant λR and the cutoff Λ. The bare proper vertices Γ̃(n) depend on
the momenta p1,...,pn, the bare coupling constant λ and the cutoff Λ. The bare mass is fixed by
the condition that the renormalized mass is 0. We have then

Γ̃
(n)
R (pi, µ

2;λR,Λ) = Z
n
2 (λ,

Λ2

µ2
,Λ)Γ̃(n)(pi;λ,Λ). (10.214)

The bare theory is obviously independent of the mass scale µ2. This is expressed by the condition
(

µ
∂

∂µ
Γ̃(n)(pi;λ,Λ)

)

λ,Λ

= 0. (10.215)

We differentiate equation (10.214) with respect to µ2 keeping λ and Λ fixed. We get

∂

∂µ
Γ̃
(n)
R +

(

∂λR
∂µ

)

λ,Λ

∂

∂λR
Γ̃
(n)
R =

n

2

(

∂ lnZ

∂µ

)

λ,Λ

Z
n
2 Γ̃(n). (10.216)

We obtain immediately the differential equation
(

µ
∂

∂µ
+ β(λR)

∂

∂λR
− n

2
η(λR)

)

Γ̃
(n)
R = 0. (10.217)

β(λR) =

(

µ
∂λR
∂µ

)

λ,Λ

, η(λR) =

(

µ
∂ lnZ

∂µ

)

λ,Λ

. (10.218)

This is the Callan-Symanzik equation for the massless theory. The functions β and η do not
depend on Λ/µ since they can be expressed in terms of renormalized proper vertices and as such
they have an infinite cutoff limit.
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For the massless theory with φ2 insertions we need, as in the massive case, an extra renor-
malization constant Z2 and an extra renormalization condition to fix it given by

Γ̃
(1,2)
R (q; p1, p2)|q2=p2i=µ2 = 1. (10.219)

We will also need an extra RG function given by

η2(λR) =

(

µ
∂

∂µ
lnZ2/Z

)

λ,Λ

. (10.220)

The Callan-Symanzik equation for the massless theory with φ2 insertions is then given (by the
almost obvious) equation

(

µ
∂

∂µ
+ β(λR)

∂

∂λR
− n

2
η(λR)− lη2(λR)

)

Γ̃
(l,n)
R = 0. (10.221)

Homogeneous CS RG Equation-Massive Theory: We consider again a massless φ4 theory
in d = 4 dimensions with φ2 insertions. The action is given by the massless limit of the action
(10.187), namely

S[φR,K] =

∫

ddx

[

1

2
Z∂µφR∂

µφR −
1

2
δmφ

2
R −

λRZg
4!

(φ2R)
2 +

Z2

2
Kφ2R

]

. (10.222)

The effective action is still given by

Γ[φc,K] =
∑

l,n=0

1

l!n!

∫

ddy1...

∫

ddxnΓ
(l,n)(y1, ..., yl;x1, ..., xn)K(y1)...K(yl)φc(x1)...φc(xn).

(10.223)

An arbitrary proper vertex Γ̃
(n)
R (p1, ..., pn;K) can be expanded in terms of the proper vertices

Γ
(l,n)
R (q1, ..., ql; p1, ..., pn) as follows

Γ̃
(n)
R (p1, ..., pn;K) =

∑

l=0

1

l!

∫

ddq1
(2π)d

...

∫

ddql
(2π)d

Γ̃
(l,n)
R (q1, ..., ql; p1, ..., pn)K̃(q1)...K̃(ql).

(10.224)

We consider the differential operator

D = µ
∂

∂µ
+ β(λR)

∂

∂λR
− n

2
η(λR)− η2(λR)

∫

ddqK̃(q)
δ

δK̃(q)
. (10.225)

We compute
∫

ddqK̃(q)
δ

δK̃(q)
Γ̃
(n)
R (p1, ..., pn;K) =

∑

l=0

1

l!

∫

ddq1...

∫

ddqlΓ̃
(l,n)
R (q1, ..., ql; p1, ..., pn)

×
∫

ddqK̃(q)
δ

δK̃(q)
K̃(q1)...K̃(ql)

=
∑

l=0

1

l!

∫

ddq1...

∫

ddqllΓ̃
(l,n)
R (q1, ..., ql; p1, ..., pn)

× K̃(q1)...K̃(ql). (10.226)
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By using now the Callan-Symanzik equation (10.221) we get
(

µ
∂

∂µ
+ β

∂

∂λR
− n

2
η − η2

∫

ddqK̃(q)
δ

δK̃(q)

)

Γ̃
(n)
R (p1, ..., pn;K) = 0. (10.227)

A massive theory can be obtained by setting the source −K(x) equal to a constant which will
play the role of the renormalized mass m2

R. We will then set

K(x) = −m2
R ⇔ K̃(q) = −m2

R(2π)
dδd(q). (10.228)

We obtain therefore the Callan-Symanzik equation
(

µ
∂

∂µ
+ β

∂

∂λR
− n

2
η − η2m2

R

∂

∂m2
R

)

Γ̃
(n)
R (p1, ..., pn;m

2
R) = 0. (10.229)

This needs to be compared with the renormalization group equation (10.170) and as a conse-
quence the renormalization function −η2 must be compared with the renormalization constant

γm. The renormalized proper vertices Γ̃
(n)
R will also depend on the coupling constant λR, the

subtraction mass scale µ and the cutoff Λ.

10.2.5 Summary

We end this section by summarizing our main results so far. The bare action and with φ2

insertion is

S[φ,K] =

∫

ddx

[

1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
(φ2)2 +

1

2
Kφ2

]

. (10.230)

The renormalized action is

SR[φR,K] =

∫

ddx

[

1

2
∂µφR∂

µφR −
1

2
m2
Rφ

2
R −

λR
4!

(φ2)2 +
1

2
Z2Kφ

2
R

]

. (10.231)

The dimensionless coupling gR and the renormalization constants Z, Zg and Zm are defined by
the equations

gR = µ−ǫλR , ǫ = 4− d. (10.232)

φ =
√
ZφR

λ = λR
Zg
Z2

m2 = m2
R

Zm
Z
. (10.233)

The arbitrary mass scale µ defines the renormalization scale. For example renormalization con-
ditions must be imposed at the scale µ as follows

Γ̃
(2)
R (p)|p2=0 = m2

R

d

dp2
Γ̃(2)(p)|p2=µ2 = 1

Γ̃(4)(p1, ..., p4)|SP = µǫgR

Γ̃
(1,2)
R (q; p1, p2)|q=pi=µ2 = 1. (10.234)
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However we will use in the following minimal subtraction to renormalize the theory instead of
renormalization conditions. In minimal subtraction, which is due to ’t Hooft, the renormalization
functions β, γm, η and η2 depend only on the coupling constant gR and they are defined by

β(gR) =

(

µ
∂gR
∂µ

)

λ,m2

= −ǫ
[

d

dgR
lnG(gR)

]−1

, G =
Zg
Z2

gR. (10.235)

γm(gR) =

(

µ
∂

∂µ
lnm2

R

)

λ,m2

= −β(gR)
d

dgR
ln
Zm
Z
. (10.236)

η(gR) =

(

µ
∂

∂µ
lnZ

)

λ,m2

= β(gR)
d

dgR
lnZ. (10.237)

η2(gR) =

(

µ
∂

∂µ
ln
Z2

Z

)

λ,m2

= β(gR)
d

dgR
ln
Z2

Z
. (10.238)

We may also use the renormalization function γ defined simply by

γ(gR) =
η(gR)

2
. (10.239)

The renormalized proper vertices are given by

Γ̃
(n)
R (pi, µ

2;m2
R, gR) = Zn/2(gR, ǫ)Γ̃

(n)(pi;m
2, λ, ǫ). (10.240)

Γ̃
(l,n)
R (qi; pi;µ

2;m2
R, gR) = Z

n
2 −lZ l2Γ̃

(l,n)(qi; pi;m
2, λ, ǫ). (10.241)

They satisfy the renormalization group equations

(

µ
∂

∂µ
+ γmm

2
R

∂

∂m2
R

+ β
∂

∂gR
− n

2
η

)

Γ̃
(n)
R = 0. (10.242)

(

mR
∂

∂mR
+ β

∂

∂λR
− n

2
η − lη2

)

Γ̃
(l,n)
R = −m2

RσΓ̃
(l+1,n)
R . (10.243)

In the first equation we have set K = 0 and in the second equation the renormalization scale is
µ = mR. The renormalization function σ is given by

σ(gR) =
Z

Z2

1

m2
R

(

mR
∂m2

∂mR

)

λ

=
Zm
Z2

[

2 + β(gR)
d

dgR
ln
Zm
Z

]

. (10.244)
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An alternative renormalization group equation satisfied by the proper vertices Γ̃
(n)
R can be ob-

tained by starting from a massless theory, i.e. m = mR = 0 with K 6= 0 and then setting
K = −m2

R at the end. We obtain

(

µ
∂

∂µ
+ β

∂

∂λR
− n

2
η − η2m2

R

∂

∂m2
R

)

Γ̃
(n)
R = 0. (10.245)

In this form the massless limit is accessible. As we can see from (10.242) and (10.245) the
renormalization functions γm(gR) and −η2(gR) are essentially the same object. Indeed since the
two equations describe the same theory one must have

η2(gR) = −γm(gR). (10.246)

Alternatively we see from equation (10.244) that the renormalization constant Z2 is not an
independent renormalization constant since σ is finite. In accordance with (10.246) we choose

Z2 = Zm. (10.247)

Because Z2 = Zm equation (10.244) becomes

σ(gR) =

(

mR
∂

∂mR
lnm2

)

λ

= 2− γm. (10.248)

10.3 Renormalization Constants and Renormalization Func-

tions at Two-Loop

10.3.1 The Divergent Part of the Effective Action

The 2 and 4−Point Proper Vertices: Now we will renormalize the O(N) sigma model at the
two-loop order using dimensional regularization and (modified) minimal subtraction. The main
divergences in this theory occur in the 2−point proper vertex (quadratic) and the 4−point proper
vertex (logarithmic). Indeed all other divergences in this theory stem from these two functions.
Furthermore only the divergence in the 2−point proper vertex is momentum dependent.

The 2−point and 4−point (at zero momentum) proper vertices of the O(N) sigma model at
the two-loop order in Euclidean signature are given by equations (8.201) and (8.227), viz

Γ
(2)
ij (p) = δij

[

p2 +m2 +
1

2
λ
N + 2

3
(a)− λ2

4

(N + 2

3

)2
(b)− λ2

6

N + 2

3
(c)

]

. (10.249)

Γ
(4)
i1...i4

(0, 0, 0, 0) =
δi1i2i3i4

3

[

λ− 3

2

N + 8

9
λ2(d) +

3

2
λ3

(N + 2)(N + 8)

27
(g)

+
3

4
λ3

(N + 2)(N + 4) + 12

27
(e) + 3λ3

5N + 22

27
(f)

]

. (10.250)

The Feynman diagrams corresponding to (a), (b), (c), (d), (g), (e) and (f) are shown on figure
16. Explicitly we have

(a) = I(m2) =

∫

ddk

(2π)d
1

k2 +m2
. (10.251)
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(d) = J(0,m2) =

∫

ddk

(2π)d
1

(k2 +m2)2
. (10.252)

(b) = I(m2)J(0,m2) = (a)(d). (10.253)

(c) = K(p2,m) =

∫

ddk

(2π)d
ddl

(2π)d
1

(l2 +m2)(k2 +m2)((l + k + p)2 +m2)
. (10.254)

(g) = I(m2)L(0,m2) =

∫

ddk

(2π)d
1

k2 +m2

∫

ddl

(2π)d
1

(l2 +m2)3
. (10.255)

(e) = J(0,m2)2 = (d)2. (10.256)

(f) =M(0, 0,m2) =

∫

ddl

(2π)d
ddk

(2π)d
1

(l2 +m2)(k2 +m2)((l + k)2 +m2)
. (10.257)

We remark that the two-loop graph (g) is a superposition of the one-loop graphs (a) and (d) and
thus it will be made finite once (a) and (d) are renormalized. At the two-loop order only the
diagram (c) is momentum dependent. We introduce the notation

(c) = Σ(2)(p) = Σ(2)(0) + p2
∂

∂p2
Σ(2)(0) + ...

= m2d−6I2 + p2m2d−8I3 + ... (10.258)

We will also introduce the notation

(a) = md−2I1. (10.259)

All other integrals can be expressed in terms of I1 and I2. Indeed we can show 10

(d) = − ∂

∂m2
(a) = (1− d

2
)md−4I1. (10.260)

(b) = (1− d

2
)m2d−6I21 . (10.261)

(e) = (1− d

2
)2m2d−8I21 . (10.262)

(f) = −1

3

∂

∂m2
Σ(2)(0) = −1

3
(d− 3)m2d−8I2. (10.263)

(g) = −1

2
(a)

∂

∂m2
(d) =

1

2
(1− d

2
)(2 − d

2
)m2d−8I21 . (10.264)

10Exercise: Derive these results.
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Calculation of The Poles: We have already met the integral I1 before. We compute

I1 =

∫

ddk

(2π)d
1

k2 + 1

=
2

(4π)d/2Γ(d/2)

∫

kd−1dk

k2 + 1

=
2

(4π)d/2Γ(d/2)

1

2

∫

xd/2−1dx

x+ 1
. (10.265)

We use the formula
∫

uαdu

(u+ a)β
= aα+1−β Γ(α+ 1)Γ(β − α− 1)

Γ(β)
. (10.266)

Thus (with d = 4− ǫ)

(a) =
m2

16π2

(m2)−ǫ/2

(4π)−ǫ/2
Γ(−1 + ǫ/2) (10.267)

We use the result

Γ(−1 + ǫ/2) = −2

ǫ
− 1 + γ +O(ǫ). (10.268)

Hence we obtain

(a) =
m2

16π2

[

− 2

ǫ
− 1 + γ + ln

m2

4π
+O(ǫ)

]

. (10.269)

The first Feynman graph is then given by

λ(a) = g
m2

16π2

[

− 2

ǫ
− 1 + γ − ln 4π + ln

m2

µ2
+O(ǫ)

]

. (10.270)

In minimal subtraction (MS) we subtract only the pole term −2/ǫ whereas in modified minimal
subtraction (MMS) we subtract also any other extra constant such as the term −1 + γ − ln 4π.

We introduce

Nd =
2

(4π)d/2Γ(d/2)
. (10.271)

We compute

I1 =
Nd
2
Γ(d/2)Γ(1− d/2)

=
Nd
2
(−2

ǫ
+O(ǫ)). (10.272)

Then

λ(a) = gµǫ(m2)d/2−1I1

= gm2(
µ

m
)ǫI1

=
Nd
2
[−2

ǫ
+ ln

m2

µ2
+O(ǫ)]. (10.273)
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From this formula it is now obvious that subtracting −Nd/ǫ is precisely the above modified
minimal subtraction.

We have also met the integral Σ(2)(p) before (see (8.202)). By following the same steps that
led to equation (8.205) we obtain

K(p2,m2) =
1

(4π)d

∫

dx1dx2dx3
e−m

2(x1+x2+x3)− x1x2x3
∆ p2

∆d/2
, ∆ = x1x2 + x1x3 + x2x3.

(10.274)

Thus

I2 = K(0, 1)

=
1

(4π)d

∫

dx1dx2dx3
e−(x1+x2+x3)

∆d/2
. (10.275)

I3 =
∂

∂p2
K(p2, 1)|p2=0

= − 1

(4π)d

∫

dx1dx2dx3
x1x2x3e

−(x1+x2+x3)

∆1+d/2
. (10.276)

We perform the change of variables x1 = stu, x2 = st(1−u) and x3 = s(1−t). Thus x1+x2+x3 =
s, dx1dx2dx3 = s2tdsdtdu and ∆ = s2t(1− t+ ut(1− u)). The above integrals become

I2 =
1

(4π)d

∫ ∞

0

dse−ss2−d
∫ 1

0

du

∫ 1

0

dt
t1−d/2

(1 − t+ ut(1− u))d/2

=
Γ(3− d)
(4π)d

∫ 1

0

du

∫ 1

0

dt
t1−d/2

(1− t+ ut(1− u))d/2 . (10.277)

I3 = − 1

(4π)d

∫ ∞

0

dse−ss3−d
∫ 1

0

duu(1− u)
∫ 1

0

dt
t2−d/2(1− t)

(1− t+ ut(1− u))1+d/2

= −Γ(4− d)
(4π)d

∫ 1

0

duu(1− u)
∫ 1

0

dt
t2−d/2(1− t)

(1 − t+ ut(1− u))1+d/2 . (10.278)

We want to evaluate the integral

J =

∫ 1

0

du

∫ 1

0

dt t1−d/2(1− t+ ut(1− u))−d/2

=

∫ 1

0

du

∫ 1

0

dt

[

t1−d/2 +

(

(1− t+ ut(1− u))−d/2 − 1

)

+ (t1−d/2 − 1)

(

(1− t+ ut(1− u))−d/2 − 1

)]

. (10.279)

The first term gives the first contribution to the pole term. The last term is finite at d = 4.
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Indeed with the change of variable x = t
(

u(1− u)− 1
)

+ 1 we calculate

∫ 1

0

du

∫ 1

0

dt(t−1 − 1)

(

(1 − t+ ut(1− u))−2 − 1

)

= −
∫ 1

0

du lnu(1− u)

= −2
∫ 1

0

du lnu

= 2. (10.280)

We have then

J =
2

ǫ
− 1 +

∫ 1

0

du

∫ 1

0

dt(1 − t+ ut(1− u))−d/2 + (2 +O1(ǫ))

=
2

ǫ
− 1 +

2

ǫ− 2

∫ 1

0

du
1

u(1− u)− 1

(

(u(1− u))1−d/2 − 1

)

+ (2 +O1(ǫ))

=
2

ǫ
− 1− 2

ǫ− 2

∫ 1

0

du

(

(u(1− u))1−d/2 − 1

)

+
2

ǫ− 2

∫ 1

0

du
u(1− u)

u(1− u)− 1

×
(

(u(1− u))1−d/2 − 1

)

+ (2 +O1(ǫ))

=
2

ǫ
− 1 +

2

ǫ− 2
− 2

ǫ− 2

∫ 1

0

du(u(1− u))1−d/2 + 2

ǫ − 2
(−1 +O2(ǫ)) + (2 +O1(ǫ))

=
2

ǫ
− 1 +

2

ǫ− 2
− 2

ǫ− 2

Γ2(2 − d/2)
Γ(4 − d) +

2

ǫ− 2
(−1 +O2(ǫ)) + (2 +O1(ǫ)) (10.281)

In the last line we have used the result (8.275) whereas in the third line we have used the fact
that the second remaining integral is finite at d = 4. From this result we deduce that

J =
6

ǫ
+ 3 +O(ǫ). (10.282)

I2 =
Γ(3− d)
(4π)d

J

=
Γ(−1 + ǫ)

(4π)d
J

=
1

(4π)d

(

− 6

ǫ2
− 9

ǫ
+

6γ

ǫ
+O(1)

)

. (10.283)

We compute Γ(d/2) = 1+ γǫ/2− ǫ/2+O(ǫ2) and hence Γ2(d/2) = 1+ γǫ− ǫ+O(ǫ2). Thus the
above result can be rewritten as

I2 = −N2
d

3

2ǫ2
(1 +

ǫ

2
) +O(1). (10.284)

Now we compute the integral I3. The only divergence has already been exhibited by the term
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Γ(4− d). Thus we have

I3 = − Γ(ǫ)

(4π)d

∫ 1

0

duu(1− u)
∫ 1

0

dt
1− t

(1− t+ ut(1− u))3 +O(1)

= − Γ(ǫ)

(4π)d

∫ 1

0

du
1

2
+O(1)

= −N
2
dΓ

2(d/2)

8
Γ(ǫ) +O(1)

= −N
2
d

8ǫ
+O(1). (10.285)

10.3.2 Renormalization Constants

One-Loop Renormalization: We prefer to go back to the original expressions

Γ
(2)
ij (p) = δij

[

p2 +m2 +
1

2
λ
N + 2

3
(a)

]

= δij

[

p2 +m2 +
1

2
λ
N + 2

3
I(m2)

]

. (10.286)

Γ
(4)
i1...i4

(0, 0, 0, 0) =
δi1i2i3i4

3

[

λ− 3

2

N + 8

9
λ2(d)

]

=
δi1i2i3i4

3

[

λ− 3

2

N + 8

9
λ2J(0,m2)

]

. (10.287)

The renormalized mass and the renormalized coupling constant are given by

m2 = m2
R

Zm
Z

, λ = λR
Zg
Z2

. (10.288)

We will expand the renormalization constants as

Z = 1 + λ2RZ
(2). (10.289)

Zm = 1 + λRZ
(1)
m + λ2RZ

(2)
m . (10.290)

Zg = 1 + λRZ
(1)
g + λ2RZ

(2)
g . (10.291)

At one-loop of course Z(2) = Z
(2)
m = Z

(2)
g = 0. We will also define the massless coupling constant

by

g = λm−ǫ. (10.292)

The renormalized 2−point and 4−point proper vertices are given by

(ΓR)
(2)
ij (p) = ZΓ

(2)
ij (p)

= δij

[

p2 +m2
R + λR

(

m2
RZ

(1)
m +

1

2

N + 2

3
I(m2

R)
)

]

. (10.293)
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(ΓR)
(4)
i1...i4

(0, 0, 0, 0) = Z2Γ
(4)
i1...i4

(0, 0, 0, 0)

=
δi1i2i3i4

3

[

λR + λ2R
(

Z(1)
g −

3

2

N + 8

9
J(0,m2

R))

]

. (10.294)

Minimal subtraction gives immediately

Z(1)
m = −N + 2

6

I(m2
R)

m2
R

=
N + 2

6
m−ǫ
R

Nd
ǫ
. (10.295)

Z(1)
g =

N + 8

6
J(0,m2

R) =
N + 8

6
m−ǫ
R

Nd
ǫ
. (10.296)

The renormalized mass and the renormalized coupling constant at one-loop order are given by

m2 = m2
R −

N + 2

6
λRI(m

2
R) , λ = λR +

N + 8

6
λ2RJ(0,m

2
R). (10.297)

Two-Loop Renormalization of The 2−Point Proper Vertex: The original expression of
the 2−point vertex reads

Γ
(2)
ij (p) = δij

[

p2 +m2 +
1

2
λ
N + 2

3
(a)− λ2

4

(N + 2

3

)2
(b)− λ2

6

N + 2

3
(c)

]

. (10.298)

We use the result

I(m2) = I(m2
R) +

N + 2

6
λRI(m

2
R)J(0,m

2
R) +O(λ2R). (10.299)

By using the one-loop results we find the renormalized 2−point proper vertex to be given by

(ΓR)
(2)
ij (p) = ZΓ

(2)
ij (p)

= δij

[

p2 +m2
R + Z(2)λ2Rp

2 + Z(2)
m λ2Rm

2
R +

N + 2

6
Z(1)
g λ2RI(m

2
R) +

(N + 2)2

36
λ2RI(m

2
R)J(0,m

2
R)

− λ2R
4

(N + 2

3

)2
(b)R −

λ2R
6

N + 2

3
(c)R

]

= δij

[

p2 +m2
R + Z(2)λ2Rp

2 + Z(2)
m λ2Rm

2
R +

N + 2

6
Z(1)
g λ2RI(m

2
R)−

λ2R
6

N + 2

3
(m2d−6

R I2

+ p2m2d−8
R I3)

]

. (10.300)

In the last equation we have used the results (b)R = I(m2
R)J(0,m

2
R) and (c)R = m2d−6

R I2 +

p2m2d−8
R I3. By requiring finiteness of the kinetic term we obtain the result

Z(2) =
N + 2

18
m2d−8
R I3 = −N + 2

144
m−2ǫ
R

N2
d

ǫ
. (10.301)

Cancellation of the remaining divergences gives

Z(2)
m = −N + 2

6
Z(1)
g

I(m2
R)

m2
R

+
N + 2

18
m2d−8
R I2

=
(N + 2)(N + 8)

36
m−2ǫ
R

N2
d

ǫ2
− N + 2

12
m−2ǫ
R

N2
d

ǫ2
− N + 2

24
m−2ǫ
R

N2
d

ǫ

=
(N + 2)(N + 5)

36
m−2ǫ
R

N2
d

ǫ2
− N + 2

24
m−2ǫ
R

N2
d

ǫ
. (10.302)
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Two-Loop Renormalization of The 4−Point Proper Vertex: The original expression of
the 4−point vertex reads

Γ
(4)
i1...i4

(0, 0, 0, 0) =
δi1i2i3i4

3

[

λ− 3

2

N + 8

9
λ2(d) +

3

2
λ3

(N + 2)(N + 8)

27
(g)

+
3

4
λ3

(N + 2)(N + 4) + 12

27
(e) + 3λ3

5N + 22

27
(f)

]

. (10.303)

We use the result

J(0,m2) = J(0,m2
R) +

N + 2

3
λRI(m

2
R)L(0,m

2
R) +O(λ2R). (10.304)

By using the one-loop results we find the renormalized 4−point proper vertex to be given by

(ΓR)
(4)
i1...i4

(0, 0, 0, 0) = Z2Γ
(4)
i1...i4

(0, 0, 0, 0)

=
δi1i2i3i4

3

[

λR + λ3RZ
(2)
g −

N + 8

3
λ3RZ

(1)
g (d)R −

(N + 8)(N + 2)

18
λ3RI(m

2
R)L(0,m

2
R)

+
3

2
λ3R

(N + 2)(N + 8)

27
(g)R +

3

4
λ3R

(N + 2)(N + 4) + 12

27
(e)R + 3λ3R

5N + 22

27
(f)R

]

=
δi1i2i3i4

3

[

λR + λ3RZ
(2)
g −

N + 8

3
λ3RZ

(1)
g (d)R +

3

4
λ3R

(N + 2)(N + 4) + 12

27
(e)R

+ 3λ3R
5N + 22

27
(f)R

]

. (10.305)

Cancellation of the remaining divergences gives

Z(2)
g =

N + 8

3
Z(1)
g (d)R −

3

4

(N + 2)(N + 4) + 12

27
(e)R − 3

5N + 22

27
(f)R

= −N + 8

3
Z(1)
g (1− ǫ

2
)m−ǫ

R I1 −
3

4

(N + 2)(N + 4) + 12

27
(1− ǫ

2
)2m−2ǫ

R I21 +
5N + 22

27
(1 − ǫ)m−2ǫ

R I2

=
(N + 8)2

18
m−2ǫ
R (

N2
d

ǫ2
− N2

d

2ǫ
)− N2 + 6N + 20

36
m−2ǫ
R (

N2
d

ǫ2
− N2

d

ǫ
)− 5N + 22

18
m−2ǫ
R (

N2
d

ǫ2
− N2

d

2ǫ
)

=
(N + 8)2

36
m−2ǫ
R

N2
d

ǫ2
− 5N + 22

36
m−2ǫ
R

N2
d

ǫ
. (10.306)

10.3.3 Renormalization Functions

The renormalization constants up to two-loop order are given by

Z = 1− g2R
(

N + 2

144

N2
d

ǫ

)

. (10.307)

Zg = 1 +
N + 8

6
gR
Nd
ǫ

+ g2R

(

(N + 8)2

36

N2
d

ǫ2
− 5N + 22

36

N2
d

ǫ

)

. (10.308)

Zm = 1 +
N + 2

6
gR
Nd
ǫ

+ g2R

(

(N + 2)(N + 5)

36

N2
d

ǫ2
− N + 2

24

N2
d

ǫ

)

. (10.309)
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The beta function is given by

β(gR) = −
ǫgR

1 + gR
d
dgR

lnZg − 2gR
d
dgR

lnZ
. (10.310)

We compute

gR
d

dgR
lnZg =

N + 8

6
gR
Nd
ǫ

+ g2R

(

(N + 8)2

36

N2
d

ǫ2
− 5N + 22

18

N2
d

ǫ

)

. (10.311)

d

dgR
lnZ = −N + 2

72
gR
N2
d

ǫ
⇒ −2gR

d

dgR
lnZ =

N + 2

36
g2R
N2
d

ǫ
. (10.312)

We get then the fundamental result

β(gR) = −ǫgR +
N + 8

6
g2RNd −

3N + 14

12
g3RN

2
d . (10.313)

The second most important renormalization function is η. It is defined by

η(gR) = β(gR)
d

dgR
lnZ

=

(

− ǫgR +
N + 8

6
g2RNd −

3N + 14

12
g3RN

2
d

)(

− N + 2

72
gR
N2
d

ǫ

)

=
N + 2

72
g2RN

2
d . (10.314)

The renormalization constant Zm is associated with the renormalization function γm defined by

γm(gR) = −β(gR)
d

dgR
ln
Zm
Z
. (10.315)

We compute

d

dgR
lnZm =

N + 2

6

Nd
ǫ

+ gR

(

(N + 2)(N + 8)

36

N2
d

ǫ2
− N + 2

12

N2
d

ǫ

)

. (10.316)

The renormalization function γm at the two-loop order is then found to be given by

γm =
N + 2

6
NdgR −

5(N + 2)

72
g2RN

2
d . (10.317)

From this result we conclude immediately that

η2 = −γm = −N + 2

6
NdgR +

5(N + 2)

72
g2RN

2
d . (10.318)

10.4 Critical Exponents

10.4.1 Critical Theory and Fixed Points

We will postulate that quantum scalar field theory, in particular φ4, describes the critical domain
of second order phase transitions which includes the critical line T = Tc where the correlation
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length ξ diverges and the scaling region with T near Tc where the correlation length ξ is large
but finite. This is confirmed for example by mean field calculations. From now on we will work
in Euclidean signature. We write the action in the form

S[φ] = βH(φ) =
∫

ddx

[

1

2
(∂µφ)

2 +
1

2
m2φ2 − Λǫg

4!
(φ2)2

]

. (10.319)

In the above action the cutoff Λ reflects the original lattice structure, i.e. Λ = 1/a. The cutoff
procedure is irrelevant to the physics and as a consequence we will switch back and forth between
cutoff regularization and dimensional regularization as needed. The critical domain is defined by
the conditions

|m2 −m2
c | << Λ2

momenta << Λ

< φ(x) ><< Λ
d
2−1. (10.320)

In above m2
c is the value of the mass parameter m2 at the critical temperature Tc where m2

R = 0
or the correlation length ξ diverges. Clearly m2

c is essentially mass renormalization. We will set

m2 = m2
c + t , t ∝ T − Tc

Tc
. (10.321)

The critical theory should be renormalized at a scale µ in such a way that the renormalized mass
remains massless, viz

Γ̃
(2)
R (p;µ, gR,Λ)|p2=0 = 0

d

dp2
Γ̃(2)(p;µ, gR,Λ)|p2=µ2 = 1

Γ̃(4)(p1, ..., p4;µ, gR,Λ)|SP = µǫgR. (10.322)

The renormalized proper vertices are given by

Γ̃
(n)
R (pi;µ, gR) = Zn/2(g,

Λ

µ
)Γ̃(n)(pi; g,Λ). (10.323)

The bare proper vertices Γ̃(n) are precisley the proper vertices of statistical mechanics. Now

since the renormalized proper vertices Γ̃
(n)
R are independent of Λ we should have

(

Λ
∂

∂Λ
Zn/2Γ̃(n)

)

µ,gR

= 0. (10.324)

We obtain the renormalization group equation 11

(

Λ
∂

∂Λ
+ β

∂

∂g
− n

2
η

)

Γ̃(n) = 0. (10.325)

The renormalization functions are now given by

β(g) =

(

Λ
∂g

∂Λ

)

gR,µ

. (10.326)

11Exercise: Show this result.
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η(g) = −
(

Λ
∂

∂Λ
lnZ

)

gR,µ

. (10.327)

Clearly the functions β and η can not depend on the ratio Λ/µ since Γ̃(n) does not depend on µ.
We state the (almost) obvious theorem

• The renormalization group equation (10.325) is a direct consequence of the existence of a
renormalized field theory. Conversely the existence of a solution to this renormalization
group equation implies the existence of a renormalized theory.

The fixed point g = g∗ and the critical exponent ω: The renormalization group equation
(10.325) can be solved using the method of characteristics. We introduce a dilatation parameter
λ, a running coupling constant g(λ) and an auxiliary renormalization function Z(λ) such that

λ
d

dλ

[

Z−n/2(λ)Γ̃(n)(pi; g(λ), λΛ)

]

= 0. (10.328)

We can verify that proper vertices Γ̃(n)(pi; g(λ), λΛ) solves the renormalization group equation
(10.325) provided that β and η solves the first order differential equations

β(g(λ)) = λ
d

dλ
g(λ) , g(1) = g. (10.329)

η(g(λ)) = λ
d

dλ
lnZ(λ) , Z(1) = Z. (10.330)

We have the identification

Γ̃(n)(pi; g,Λ) = Z−n/2(λ)Γ̃(n)(pi; g(λ), λΛ). (10.331)

Equivalently

Γ̃(n)(pi; g,
Λ

λ
) = Z−n/2(λ)Γ̃(n)(pi; g(λ),Λ). (10.332)

The limit Λ −→∞ is equivalent to the limit λ −→ 0. The functions β and η are assumed to be
regular functions for g ≥ 0.

The integration of (10.329) and (10.330) yields the integrated renormalization group equations

lnλ =

∫ g(λ)

g

dx

β(x)
. (10.333)

lnZ(λ) =

∫ λ

1

dx

x
η(g(x)). (10.334)

The zeros g = g∗ of the beta function β which satisfy β(g∗) = 0 are of central importance to
quantum field theory and critical phenomena. Let us assume that the a zero g = g∗ of the beta
function does indeed exist. We observe then that any value of the running coupling constant
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g(λ) near g∗ will run into g∗ in the limit λ −→ 0 regardless of the initial value g = g(1) which
can be either above or below g∗. This can be made precise as follows. We expand β(g) about
the zero as follows

β(g) = β(g∗) + (g − g∗)ω + ... (10.335)

β(g∗) = 0 , ω = β
′

(g∗). (10.336)

We compute

lnλ =
1

ω

g(λ)− g∗
g − g∗

⇒ g(λ)− g∗ ∼ λω , λ −→ 0. (10.337)

If ω > 0 then g(λ) −→ g∗ when λ −→ 0. The point g = g∗ is then called an attractive or stable
infrared (since the limit λ −→ 0 is equivalent to the massless limit λΛ −→ 0) fixed point (since
dng(λ)/dλn|g∗ = 0). If ω < 0 then the point g = g∗ is called a repulsive infrared fixed point or
equivalently a stable ultraviolet fixed point since g(λ) −→ g∗ when λ −→∞.

The slope ω = β
′

(g∗) is our first critical exponent which controls leading corrections to scaling
laws.

As an example let us consider the beta function

β(g) = −ǫg + bg2 , b =
3

16π2
. (10.338)

There are in this case two fixed points the origin and g∗ = ǫ/b with critical exponents ω = −ǫ < 0
(infrared repulsive) and ω = +ǫ (infrared attractive) respectively. We compute immediately

ln λ =
1

ǫ

∫ 1/g(λ)

1/g

dx

x− 1/g∗
⇒ g(λ) =

g∗
1 + λǫ(g∗/g − 1)

. (10.339)

Since ǫ = 4 − d > 0, g(λ) −→ g∗ when λ −→ 0 and as a consequence g∗ = ǫ/b is a stable
infrared fixed point known as the non trivial (interacting) Wilson-Fisher fixed point. In the limit
λ −→ ∞ we see that g(λ) −→ 0, i.e. the origin is a stable ultraviolet fixed point which is the
famous trivial (free) Gaussian fixed point. See figure 15.

The fact that the origin is a repulsive (unstable) infrared fixed point is the source of the
strong infrared divergence found in dimensions < 4 since perturbation theory in this case is an
expansion around the wrong fixed point. Remark that for d > 4 the origin becomes an attractive
(stable) infrared fixed point while g = g∗ becomes repulsive.

The critical exponent η: Now we solve the second integrated renormalization group equation
(10.330). We expand η as η(g(λ)) = η(g∗)+(g(λ)−g∗)η

′

(g∗)+ .... In the limit λ −→ 0 we obtain

lnZ(λ) = η lnλ+ ...⇒ Z(λ) = λη. (10.340)

The critical exponent η is defined by

η = η(g∗). (10.341)

The proper vertex (10.332) becomes

Γ̃(n)(pi; g,
Λ

λ
) = λ−

n
2 ηΓ̃(n)(pi; g(λ),Λ). (10.342)
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However from dimensional considerations we know the mass dimension of Γ̃(n)(pi; g,
Λ
λ ) to be

Md−n(d/2−1) and hence the mass dimension of Γ̃(n)(λpi; g,Λ) is (λM)d−n(d/2−1). We get therefore

Γ̃(n)(pi; g,
Λ

λ
) = λ−d+n(

d
2−1)Γ̃(n)(λpi; g,Λ). (10.343)

By combining these last two equations we obtain the crucial result

Γ̃(n)(λpi; g,Λ) = λ−d+
n
2 (d−2+η)Γ̃(n)(pi; g∗,Λ) , λ −→ 0. (10.344)

The critical proper vertices have a power law behavior for small momenta which is independent of
the original value g of the φ4 coupling constant. This in turn is a manifestation of the universality
of the critical behavior. The mass dimension of the field φ has also changed from the canonical
(classical) value (d− 2)/2 to the anomalous (quantum) value

dφ =
1

2
(d− 2 + η). (10.345)

In the particular case n = 2 we have the behavior

Γ̃(2)(λp; g,Λ) = λη−2Γ̃(2)(p; g∗,Λ) , λ −→ 0. (10.346)

Hence the 2−point function must behave as

G̃(2)(p) ∼ 1

p2−η
, p −→ 0. (10.347)

The critical exponent ν: The full renormalized conditions of the massless (critical) theory
when K 6= 0 are (10.322) plus the two extra conditions

Γ̃
(1,2)
R (q; p1, p2;µ, gR,Λ)|q2=p2i=µ2,p1p2=− 1

3µ
2 = 1.

(10.348)

Γ̃
(2,0)
R (q;−q;µ, gR,Λ)|q2= 4

3µ
2 = 0. (10.349)

The first condition fixes the renormalization constant Z2 while the second condition provides a
renormalization of the < φ2φ2 > correlation function.

The renormalized proper vertices are defined by (with l + n > 2)

Γ̃
(l,n)
R (qi; pi;µ, gR) = Zn/2−l(g,

Λ

µ
)Z l2(g,

Λ

µ
)Γ̃(l,n)(qi; pi; g,Λ). (10.350)

We have clearly the condition
(

Λ
∂

∂Λ
Zn/2−lZ l2Γ̃

(l,n)

)

µ,gR

= 0. (10.351)

We obtain the renormalization group equation

(

Λ
∂

∂Λ
+ β

∂

∂g
− n

2
η − lη2

)

Γ̃(l,n) = 0. (10.352)
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The renormalization functions β and η are still given by equations (10.326) and (10.327) while
the renormalization function η2 is defined by

η2(g) = −
(

Λ
∂

∂Λ
ln
Z2

Z

)

gR,µ

. (10.353)

As before we solve the above renormalization group equation (10.352) by the method of charac-
teristics. We introduce a dilatation parameter λ, a running coupling constant g(λ) and auxiliary
renormalization functions Z(λ) and ζ2(λ) such that

λ
d

dλ

[

Z−n/2(λ)ζ−l2 (λ)Γ̃(l,n)(qi; pi; g(λ), λΛ)

]

= 0. (10.354)

We can verify that proper vertices Γ̃(l,n) solves the above renormalization group equation (10.352)
provided that β, η solve the first order differential equations (10.329) and (10.330) and η2 solves
the first order differential equation

η2(g(λ)) = λ
d

dλ
ln ζ2(λ) , ζ2(1) = ζ2. (10.355)

We have the identification

Γ̃(l,n)(qi; pi; g,Λ) = Z−n/2(λ)ζ−l2 (λ)Γ̃(l,n)(qi; pi; g(λ), λΛ). (10.356)

Equivalently

Γ̃(l,n)(qi; pi; g,
Λ

λ
) = Z−n/2(λ)ζ−l2 (λ)Γ̃(l,n)(qi; pi; g(λ),Λ). (10.357)

The corresponding integrated renormalization group equation is

ln ζ2 =

∫ λ

1

dx

x
η2(g(x)). (10.358)

We obtain in the limit λ −→ 0 the behavior

ζ2(λ) = λη2 . (10.359)

The new critical exponent η2 is defined by

η2 = η2(g∗). (10.360)

We introduce the mass critical exponent ν by the relation

ν = ν(g∗) , ν(g) =
1

2 + η2(g)
. (10.361)

We have then the infrared behavior of the proper vertices given by

Γ̃(l,n)(qi; pi; g,
Λ

λ
) = λ−

n
2 η−lη2 Γ̃(l,n)(qi; pi; g(λ),Λ). (10.362)

From dimensional considerations the mass dimension of the proper vertex Γ̃(l,n)(qi; pi; g,Λ/λ) is
Md−n(d−2)/2−2l and hence

Γ̃(l,n)(qi; pi; g,
Λ

λ
) = λ−d+

n
2 (d−2)+2lΓ̃(l,n)(λqi;λpi; g(λ),Λ). (10.363)

By combining the above two equations we obtain

Γ̃(l,n)(λqi;λpi; g,Λ) = λd−
n
2 (d−2+η)− l

ν Γ̃(l,n)(qi; pi; g∗,Λ) , λ −→ 0. (10.364)
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10.4.2 Scaling Domain (T > Tc)

In this section we will expand around the critical theory. The proper vertices for T > Tc can be
calculated in terms of the critical proper vertices with φ2 insertions.

The correlation length: In order to allow a large but finite correlation length (non zero
renormalized mass) in this massless theory without generating infrared divergences we consider
the action

S[φ] = βH(φ) =
∫

ddx

[

1

2
(∂µφ)

2 +
1

2
(m2

c +K(x))φ2 − Λǫg

4!
(φ2)2

]

. (10.365)

We want to set at the end

K(x) = t ∝ T − Tc
Tc

. (10.366)

The n−point proper vertices are given by

Γ̃(n)(pi;K, g,Λ) =
∑

l=0

1

l!

∫

ddq1
(2π)d

...

∫

ddql
(2π)d

Γ̃(l,n)(qi; pi; g,Λ)K̃(q1)...K̃(ql). (10.367)

We consider the differential operator

D = Λ
∂

∂Λ
+ β

∂

∂g
− n

2
η − η2

∫

ddqK̃(q)
δ

δK̃(q)
. (10.368)

We compute
∫

ddqK̃(q)
δ

δK̃(q)
Γ̃(n)(pi;K, g,Λ) =

∑

l=0

1

l!

∫

ddq1...

∫

ddqlΓ̃
(l,n)(qi; pi; g,Λ)

×
∫

ddqK̃(q)
δ

δK̃(q)
K̃(q1)...K̃(ql)

=
∑

l=0

1

l!

∫

ddq1...

∫

ddql(lΓ̃
(l,n)(qi; pi; g,Λ))K̃(q1)...K̃(ql).

(10.369)

By using now the Callan-Symanzik equation (10.352) we get

(

Λ
∂

∂Λ
+ β

∂

∂g
− n

2
η − η2

∫

ddqK̃(q)
δ

δK̃(q)

)

Γ̃(n)(pi;K, g,Λ) = 0. (10.370)

We now set K(x) = t or equivalently K̃(q) = t(2π)dδd(q) to obtain

(

Λ
∂

∂Λ
+ β

∂

∂g
− n

2
η − η2t

∂

∂t

)

Γ̃(n)(pi; t, g,Λ) = 0. (10.371)

We employ again the method of characteristics in order to solve this renormalization group
equation. We introduce a dilatation parameter λ, a running coupling constant g(λ), a running
mass t(λ) and an auxiliary renormalization functions Z(λ) such that

λ
d

dλ

[

Z−n/2(λ)Γ̃(n)(pi; t(λ), g(λ), λΛ)

]

= 0. (10.372)
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Then Γ̃(n)(pi; t(λ), g(λ), λΛ) will solve the renormalization group equation (10.371) provided the
renormalization functions β, η and η2 satisfy

β(g(λ)) = λ
d

dλ
g(λ) , g(1) = g. (10.373)

η(g(λ)) = λ
d

dλ
lnZ(λ) , Z(1) = Z. (10.374)

η2(g(λ)) = −λ
d

dλ
ln t(λ) , t(1) = t. (10.375)

The new definition of η2 given in the last equation is very similar to the definition of γm given
in equation (10.246). We make the identification

Γ̃(n)(pi; t, g,Λ) = Z−n/2(λ)Γ̃(n)(pi; t(λ), g(λ), λΛ). (10.376)

From dimensional considerations we have

Γ̃(n)(pi; t(λ), g(λ), λΛ) = (λΛ)d−
n
2 (d−2)Γ̃(n)(

pi
λΛ

;
t(λ)

λ2Λ2
, g(λ), 1). (10.377)

Thus

Γ̃(n)(pi; t, g,Λ) = Z−n/2(λ)md−n
2 (d−2)Γ̃(n)(

pi
m
;
t(λ)

m2
, g(λ), 1). (10.378)

We have used the notation m = λΛ. We use the freedom of choice of λ to choose

t(λ) = m2 = λ2Λ2. (10.379)

The theory at scale λ is therefore not critical since the critical regime is defined by the requirement
t << Λ2.

The integrated form of the renormalization group equation (10.375) is given by

t(λ) = t exp−
∫ λ

1

dx

x
η2(g(x)). (10.380)

This can be rewritten as

ln
tλ2

t(λ)
=

∫ λ

1

dx

x

1

ν(g(x))
. (10.381)

Equivalently

ln
t

Λ2
=

∫ λ

1

dx

x

1

ν(g(x))
. (10.382)

This is an equation for λ. In the critical regime ln t/Λ2 −→ −∞. For ν(g) > 0 this means that
λ −→ 0 and hence g(λ) −→ g∗. By expanding around the fixed point g(λ) = g∗ we obtain in the
limit λ −→ 0 the result

λ =
( t

Λ2

)ν
. (10.383)
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By using this result in (10.378) we conclude that the proper vertices Γ̃(n)(pi; t, g,Λ = 1) must
have the infrared (λ −→ 0) scaling

Γ̃(n)(pi; t, g,Λ = 1) = md−n
2 (d−2+η)Γ̃(n)(

pi
m
; 1, g∗, 1) , t << 1 , p << 1. (10.384)

The mass m is thus the physical mass ξ−1 where ξ is the correlation length. We have then

m(Λ = 1) = ξ−1 = tν . (10.385)

Clearly ξ −→∞ when t −→ 0 or equivalently T −→ Tc since ν > 0.

The critical exponents α and γ: At zero momentum the above proper vertices are finite
because of the non zero mass t. They have the infrared scaling

Γ̃(n)(0; t, g,Λ = 1) = md−n
2 (d−2+η)

= tν(d−
n
2 (d−2+η)) , t << 1 , p << 1. (10.386)

The case n = 2 is of particular interest since it is related to the inverse susceptibility, viz

χ−1 = Γ̃(2)(0; t, g,Λ = 1)

= tγ . (10.387)

The critical exponent γ is given by

γ = ν(2 − η). (10.388)

The obvious generalization of the renormalization group equation (10.371) is
(

Λ
∂

∂Λ
+ β

∂

∂g
− n

2
η − η2(l + t

∂

∂t
)

)

Γ̃(l,n)(qi; pi; t, g,Λ) = 0. (10.389)

This is valid for all n+ l > 2. The case l = 2, n = 0 is special because of the non multiplicative
nature of the renormalization required in this case and as a consequence the corresponding
renormalization group equation will be inhomogeneous. However we will not pay attention to
this difference since the above renormalization group equation is sufficient to reproduce the
leading infrared behavior, and as a consequence the relevant critical exponent, of the proper
vertex with l = 2 and n = 0.

We find after some calculation, similar to the calculation used for the case l = 0, the leading
infrared (λ −→ 0) behavior

Γ̃(l,n)(qi; pi; t, g,Λ = 1) = m− l
ν+d−n

2 (d−2+η)Γ̃(l,n)(
qi
m
;
pi
m
; 1, g∗, 1) , t << 1 , q, p << 1.

(10.390)

By applying this formula naively to the case l = 2, n = 0 we get the desired leading infrared
behavior of Γ̃(2,0) which corresponds to the most infrared singular part of the energy-energy
correlation function. We obtain

Γ̃(2,0)(q; t, g,Λ = 1) = m− 2
ν+dΓ̃(2,0)(

q

m
; 1, g∗, 1) , t << 1 , q << 1. (10.391)

By substituting K̃(q) = t(2π)dδd(q) in (10.367) we obtain

Γ̃(n)(pi;K, g,Λ) =
∑

l=0

tl

l!
Γ̃(l,n)(0; pi; g,Λ). (10.392)
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Hence

∂2Γ(K, g,Λ)

∂t2
|t=0 = Γ̃(2,0)(0; g,Λ). (10.393)

In other words Γ̃(2,0) at zero momentum is the specific heat since t is the temperature and Γ
is the thermodynamic energy (effective action). The infrared behavior of the specific heat is
therefore given by

Cv = Γ̃(2,0)(0; t, g,Λ = 1)

= t−αΓ̃(2,0)(0; 1, g∗, 1) , t << 1 , q << 1. (10.394)

The new critical exponent α is defined by

α = 2− νd. (10.395)

10.4.3 Scaling Below Tc

In order to describe in a continuous way the ordered phase corresponding to T < Tc starting
from the disordered phase (T > Tc) we introduce a magnetic field B, i.e. a source J = B. The
corresponding magnetization M is precisely the classical field φc =< φ(x) >, viz

M(x) =< φ(x) > . (10.396)

The Helmholtz free energy (vacuum energy) will depend on the magnetic field B, viz W =
W (B) = − lnZ(B). We know that the magnetization and the magnetic field are conjugate
variables, i.e. M(x) = ∂W (B)/∂B(x). The Gibbs free energy or thermodynamic energy (effective
action) is the Legendre transform of W (B), viz Γ(M) =

∫

ddxM(x)B(x) −W (B). We compute
then

B(x) =
∂Γ(M)

∂M(x)
. (10.397)

The effective action can be expanded as

Γ[M, t, g,Λ] =
∑

n=0

1

n!

∫

ddp1
(2π)d

...

∫

ddpn
(2π)d

Γ̃(n)(pi; t, g,Λ)M(p1)...M(pn). (10.398)

Thus

B(p) =
∑

n=0

1

n!

∫

ddp1
(2π)d

...

∫

ddpn
(2π)d

Γ̃(n+1)(pi, p; t, g,Λ)M(p1)...M(pn). (10.399)

By assuming that the magnetization is uniform we obtain

Γ[M, t, g,Λ] =
∑

n=0

Mn

n!
Γ̃(n)(pi = 0; t, g,Λ). (10.400)

B[M, t, g,Λ] =
∑

n=0

Mn

n!
Γ̃(n+1)(pi = 0; t, g,Λ). (10.401)
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By employing the renormalization group equation (10.371) we get

(

Λ
∂

∂Λ
+ β

∂

∂g
− n+ 1

2
η − η2t

∂

∂t

)

B =
∑

n=0

Mn

n!

(

Λ
∂

∂Λ
+ β

∂

∂g
− n+ 1

2
η − η2t

∂

∂t

)

Γ̃(n+1)

= 0. (10.402)

Clearly

M
∂

∂M
B =

∑

n=0

n
Mn

n!
Γ̃(n+1)(pi = 0; t, g,Λ). (10.403)

Hence the magnetic field obeys the renormalization group equation

(

Λ
∂

∂Λ
+ β

∂

∂g
− 1

2
(1 +M

∂

∂M
)η − η2t

∂

∂t

)

B = 0. (10.404)

By using the method of characteristics we introduce as before a running coupling constant g(λ),
a running mass t(λ) and an auxiliary renormalization functions Z(λ) such as equations (10.373),
(10.374) and (10.375) are satisfied. However in this case we need also to introduce a running
magnetization M(λ) such that

λ
d

dλ
lnM(λ) = −1

2
η[g(λ)]. (10.405)

By comparing (10.374) and (10.405) we obtain

M(λ) =MZ− 1
2 (λ) (10.406)

We must impose

λ
d

dλ

[

Z−1/2(λ)B(M(λ), t(λ), g(λ), λΛ)

]

= 0. (10.407)

In other words we make the identification

B(M, t, g,Λ) = Z−1/2(λ)B(M(λ), t(λ), g(λ), λΛ). (10.408)

From dimensional analysis we know that [Γ̃(n)] = Md−n(d−2)/2 and [M ] = M (d−2)/2 = M1−ǫ/2

and hence [B] =M (d+2)/2 =M3−ǫ/2. Hence

B(M, t, g,Λ) = Λ3−ǫ/2B(
M

Λ1−ǫ/2 ,
t

Λ2
, g, 1). (10.409)

By combining the above two equations we get

B(M, t, g,Λ) = Z−1/2(λ)(λΛ)3−ǫ/2B(
M(λ)

(λΛ)1−ǫ/2
,
t(λ)

λ2Λ2
, g(λ), 1). (10.410)

Again we use the arbitrariness of λ to make the theory non critical and as a consequence avoid
infrared divergences. We choose λ such that

M(λ)

(λΛ)1−ǫ/2
= 1. (10.411)
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The solution of equation (10.405) then reads

ln
M(λ)

M
= −1

2

∫ λ

1

dx

x
η(g(x))⇒ ln

M

Λ1−ǫ/2 =
1

2

∫ λ

1

dx

x
[d− 2 + η(g(x))]. (10.412)

The critical domain is defined obviously by M << Λ1−ǫ/2. For d − 2 + η positive we conclude
that λ must be small and thus g(λ) is close to the fixed point g∗. This equation then leads to
the infrared behavior

M

Λ1−ǫ/2 = λ
d−2+η

2 . (10.413)

From equation (10.381) we get the infrared behavior

t(λ)

tλ2
= λ−

1
ν . (10.414)

We know also the infrared behavior

Z(λ) = λη. (10.415)

The infrared behavior of equation (10.410) is therefore given by

B(M, t, g,Λ) = λ
2+d−η

2 Λ3−ǫ/2B(1,
t

Λ2
λ−1/ν , g∗, 1). (10.416)

This can also be rewritten as

B(M, t, g, 1) =M δf(tM− 1
β ). (10.417)

This is the equation of state. The two new critical exponents β and δ are defined by

β =
ν

2
(d− 2 + η). (10.418)

δ =
d+ 2− η
d− 2 + η

. (10.419)

From equations (10.413) and (10.414) we observe that

M = tβ(
λ2

t(λ)
)β . (10.420)

For negative t (T < Tc) the appearance of a spontaneous magnetization M 6= 0 at B = 0 means
that the function f(x), where x = tM−1/β, admits a negative zero x0. Indeed the condition
B = 0, M 6= 0 around x = x0 reads explicitly

0 = f(x0) + (x− x0)f
′

(x0) + .. (10.421)

This is equivalent to

M = |x0|−β(−t)β . (10.422)

We state without proof that correlation functions below Tc have the same scaling behavior as
above Tc. In particular the critical exponents ν, γ and α below Tc are the same as those defined
earlier above Tc. We only remark that in the presence of a magnetic field B we have two mass
scales tν (as before) and m =Mν/β where M is the magnetization which is the correct choice in
this phase. In the limit B −→ 0 (with T < Tc) the magnetization becomes spontaneous and m
becomes the physical mass
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10.4.4 Critical Exponents from 2−Loop and Comparison with Exper-
iment

The most important critical exponents are the mass critical exponent ν and the anomalous
dimension η. As we have shown these two critical exponents define the infrared behavior of
proper vertices. At T = Tc we find the scaling

Γ̃(l,n)(λqi;λpi; g,Λ) = λd−
n
2 (d−2+η)− l

ν Γ̃(l,n)(qi; pi; g∗,Λ) , λ −→ 0. (10.423)

The critical exponent η provides the quantum mass dimension of the field operator, viz

[φ] =Mdφ , dφ =
1

2
(d− 2 + η). (10.424)

The scaling of the wave function renormalization is also determined by the anomalous dimension,
viz

Z(λ) ≃ λη. (10.425)

The 2−point function at T = Tc behaves therefore as

G(2)(p) =
1

p2−η
⇔ G(2)(r) =

1

rd−2+η
. (10.426)

The critical exponent ν determines the scaling behavior of the correlation length. For T > Tc
we find the scaling

Γ̃(n)(pi; t, g,Λ = 1) = md−n
2 (d−2+η)F (n)(

pi
m
) , t =

T − Tc
Tc

<< 1 , pi << 1. (10.427)

The massm is proportional to the mass scale tν . From this equation we see that m is the physical
mass ξ−1 where ξ is the correlation length ξ. We have then

m = ξ−1 ∼ tν . (10.428)

The 2−point function for T > Tc behaves therefore as 12

G(2)(r) =
1

rd−2+η
exp(−r/ξ). (10.429)

The scaling behavior of correlation functions for T < Tc is the same as for T > Tc except that
there exists a non zero spontaneous magnetization M in this regime which sets an extra mass
scale given by M1/β besides tν . The exponent β is another critical exponent associated with the
magnetization M given by the scaling law

β =
ν

2
(d− 2 + η). (10.430)

In other words for T close to Tc from below we must have

M ∼ (−t)β (10.431)

For T < Tc the physical mass m is given by

m = ξ−1 ∼Mν/β ∼ (−t)ν . (10.432)

12Exercise: Give an explicit proof.
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There are three more critical exponents α (associated with the specific heat), γ (associated with
the susceptibility) and δ (associated with the equation of state) which are not independent but
given by the scaling laws

α = 2− νd. (10.433)

γ = ν(2 − η). (10.434)

δ =
d+ 2− η
d− 2 + η

. (10.435)

The last critical exponent of interest is ω which is given by the slope of the beta function at the
fixed point and measures the approach to scaling.

The beta function at two-loop order of the O(N) sigma model is given by

β(gR) = −ǫgR +
N + 8

6
g2RNd −

3N + 14

12
g3RN

2
d . (10.436)

The fixed point g∗ is defined by

β(gR∗) = 0⇒ 3N + 14

12
g2R∗N

2
d −

N + 8

6
gR∗Nd + ǫ = 0. (10.437)

The solution must be of the form

gR∗Nd = aǫ+ bǫ2 + ... (10.438)

We find the solution

a =
6

N + 8
, b =

18(3N + 14)

(N + 8)3
. (10.439)

Thus

gR∗Nd =
6

N + 8
ǫ+

18(3N + 14)

(N + 8)3
ǫ2 + ... (10.440)

The critical exponent ω is given by

ω = β
′

(gR∗)

= ǫ− 3(3N + 14)

(N + 8)2
ǫ2 + ... (10.441)

The critical exponent η is given by

η = η(gR∗). (10.442)

The renormalization function η(g) is given by

η(gR) =
N + 2

72
g2RN

2
d . (10.443)
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We substitute now the value of the fixed point. We obtain immediately

η =
N + 2

2(N + 8)2
ǫ2. (10.444)

The critical exponent ν is given by

ν =
1

2 + η2
. (10.445)

ν = ν(gR∗) , η2 = η2(gR∗). (10.446)

The renormalization function η2(g) is given by

η2 = −N + 2

6
NdgR +

5(N + 2)

72
g2RN

2
d . (10.447)

By substituting the value of the fixed point we compute immediately

η2 = −N + 2

N + 8
ǫ− (N + 2)(13N + 44)

2(N + 8)3
ǫ2 + .... (10.448)

ν =
1

2
+

N + 2

4(N + 8)
ǫ+

(N + 2)(N2 + 23N + 60)

8(N + 8)3
ǫ2 + .... (10.449)

All critical exponents can be determined in terms of ν and η. They only depend on the dimension
of space d and on the dimension of the symmetry space N which is precisely the statement of
universality. The epsilon expansion is divergent for all ǫ and as a consequence a resummation is
required before we can coherently compare with experiments. This is a technical exercise which
we will not delve into here and content ourselves by using what we have already established and
also by quoting some results.

The most important predictions (in our view) correspond to d = 3 (ǫ = 1) and N = 1, 2, 3.

• The case N = 1 describes Ising-like systems such as the liquid-vapor transitions in classical
fluids. Experimentally we observe

ν = 0.625± 0.006

γ = 1.23− 1.25. (10.450)

The theoretical calculation gives

ν =
1

2
+

1

12
+

7

162
+ ... =

203

324
+ ... = 0.6265± 0.0432

η =
1

54
+ .... = 0.019⇔ γ = ν(2− η) = 1.241. (10.451)

The agreement for ν and η up to order ǫ2 is very reasonable and is a consequence of the
asymptotic convergence of the ǫ series. The error is estimated by the last term available in
the epsilon expansion.
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• The case N = 2 corresponds to the Helium superfluid transition. This system allows precise
measurement near Tc of ν and α given by

ν = 0.672± 0.001

α = −0.013± 0.003. (10.452)

The theoretical calculation gives

ν =
1

2
+

1

10
+

11

200
+ ... =

131

200
+ ... = 0.6550± 0.0550

α = 2− νd = −0.035. (10.453)

Here the agreement up to order ǫ2 is not very good. After proper resummation of the ǫ ex-
pansion we find excellent agreement with the experimental values. We quote the improved
theoretical predictions

ν = 0.664− 0.671

α = −(0.008− 0.013). (10.454)

• The case N = 3 corresponds to magnetic systems. The experimental values are

ν = 0.7− 0.725

γ = 1.36− 1.42. (10.455)

The theoretical calculation gives

ν =
1

2
+

5

44
+

345

5324
+ ... =

903

1331
+ ... = 0.6874± 0.0648

η =
5

242
= 0.021⇔ γ = 1.36. (10.456)

There is a very good agreement.

10.5 The Wilson Approximate Recursion Formulas

10.5.1 Kadanoff-Wilson Phase Space Analysis

We start by describing a particular phase space cell decomposition due to Wilson which is largely
motivated by Kadanoff block spins.

We assume a hard cutoff 2Λ. Thus if φ(x) is the field (spin) variable and φ̃(k) is its Fourier
transform we will assume that φ̃(k) is zero for k > 2Λ.

We expand the field as

φ(x) =
∑

~m

∞
∑

l=0

ψ~ml(x)φ~ml. (10.457)

The wave functions ψ~ml(x) satisfy the orthonormality condition

∫

ddxψ∗
~m1l1(x)ψ~m2l2(x) = δ~m1 ~m2

δl1l2 . (10.458)



YDRI QFT 349

The Fourier transform ψ̃~ml(k) is defined by

ψ̃~ml(k) =

∫

ddxψ~ml(x) e
ikx. (10.459)

The interpretation of l and ~m is as follows. We decompose momentum space into thin spherical
shells, i.e. logarithmically as

1

2l
≤ |k|

Λ
≤ 1

2l−1
. (10.460)

The functions ψ̃~ml(k) for a fixed l are non zero only inside the shell l, i.e. for 1/2l ≤ |k|/Λ ≤
1/2l−1. We will assume furthermore that the functions ψ̃~ml(k) are constant within its shell and
satisfy the normalization condition

∫

ddk

(2π)d
|ψ̃~ml(k)|2 = 1. (10.461)

The functions ψ̃~ml(k) and ψ~ml(x) for a fixed l and a fixed ~m should be thought of as minimal
wave packets, i.e. if ∆k is the width of ψ̃~ml(k) and ∆x is the width of ψ~ml(x) then one must
have by the uncertainty principle the requirement ∆x∆k = (2π)d. Thus for each shell we divide
position space into blocks of equal size each with volume inversely proportional to the volume
of the corresponding shell. The volume of the lth momentum shell is proportional to Rd where
R = 1/2l, viz ∆k = (2π)d2−ldw where w is a constant. Hence the volume of the corresponding
position space box is ∆x = 2ldw−1. The functions ψ~ml(x) are non zero (constant) only inside
this box by construction. This position space box is characterized by the index ~m as is obvious
from the normalization condition

∫

ddx|ψ~ml(x)|2 =

∫

~x∈box ~m

ddx|ψ~ml(x)|2 = 1. (10.462)

In other words
∫

ddx =
∑

~m

∫

~x∈box ~m

ddx. (10.463)

The normalization conditions in momentum and position spaces lead to the relations

|ψ̃~ml(k)| = 2ld/2w−1/2. (10.464)

|ψ~ml(x)| = 2−ld/2w1/2. (10.465)

Obviously |ψ̃~ml(0)| = 0. Thus
∫

ddxψ~ml(x) = ψ̃~ml(0) = 0 and as a consequence we will assume
that ψ~ml(x) is equal to +2−ld/2w1/2 in one half of the box and −2−ld/2w1/2 in the other half.

The meaning of the index ~m which labels the position space boxes can be clarified further by
the following argument. By an appropriate scale transformation in momentum space we can scale
the momenta such that the lth shell becomes the largest shell l = 0. Clearly the correct scale
transformation is k −→ 2lk since 1 ≤ |2lk|/Λ ≤ 2. This corresponds to a scale transformation
in position space of the form x −→ x/2l. We obtain therefore the relation ψ~ml(x) = ψ~m0(x/2

l).
Next we perform an appropriate translation in position space to bring the box ~m to the box ~0.
This is clearly given by the translation ~x −→ ~x− a0 ~m. We obtain therefore the relation

ψ~ml(x) = ψ~00(x/2
l − a0 ~m). (10.466)
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The functions ψ̃~ml(k) and ψ~ml(x) correspond to a single degree of freedom in phase space oc-
cupying a volume (2π)d, i.e. a single cell in phase space is characterized by l and ~m. Each
momentum shell l corresponds to a lattice in the position space with a lattice spacing given by

al = (∆x)1/d = 2la0 , a0 = w−1/d. (10.467)

The largest shell l = 0 correspond to a lattice spacing a0 and each time l is increased by 1 the
lattice spacing gets doubled which is the original spin blocking idea of Kadanoff.

We are interested in integrating out only the l = 0 modes. We write then

φ(x) =
∑

~m

ψ~m0(x)φ~m0 + φ1(x). (10.468)

φ1(x) =
∑

~m

∞
∑

l=1

ψ~ml(x)φ~ml. (10.469)

From the normalization (10.465) and the scaling law (10.466) we have

ψ~ml(x) = 2−d/2ψ~ml−1(x/2). (10.470)

We define φ
′

(x/2) by

φ1(x) = 2−d/2α0φ
′

(x/2). (10.471)

In other words

φ
′

(x/2) =
∑

~m

∞
∑

l=1

ψ~ml−1(x/2)φ
′

~ml−1 , φ
′

~ml−1 = α−1
0 φ~ml. (10.472)

We have then

φ(x) =
∑

~m

ψ~m0(x)φ~m0 + 2−d/2α0φ
′

(x/2). (10.473)

10.5.2 Recursion Formulas

We will be interested in actions of the form

S0(φ(x)) =
K

2

∫

ddxR0(φ(x))∂µφ(x)∂
µφ(x) +

∫

ddxP0(φ(x)). (10.474)

We will assume that P0 and R0 are even polynomials of the field and that dR0/dφ is much smaller
than P0 for all relevant configurations. The partition function is

Z0 =

∫

Dφ(x) e−S0(φ(x))

=

∫

Dφ′

(x/2)

∫

∏

~m

dφ~m0 e
−S0(φ(x)). (10.475)

The degrees of freedom contained in the fluctuation φ
′

(x/2) correspond to momentum shells
l ≥ 1 and thus correspond to position space wave packets larger than the box ~m by at least a
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factor of 2. We can thus assume that φ
′

(x/2) is almost constant over the box ~m. If x0 is the
center of the box ~m we can expand φ

′

(x/2) as

φ
′

(x/2) = φ
′

(x0/2) + (x − x0)µ∂µφ
′

(x0/2) +
1

2
(x− x0)µ(x− x0)ν∂µ∂νφ

′

(x0/2) + ...

(10.476)

The partition function becomes

Z0 =

∫

Dφ′

(x0/2)

∫

∏

~m

dφ~m0 e
−S0(φ(x)). (10.477)

The Kinetic Term: We compute

∫

ddxR0∂µφ(x)∂
µφ(x) =

∫

ddxR0

[

∑

~m,~m′

∂µψ~m0(x)∂
µψ~m′0(x).φ~m0φ~m′0

+ 21−d/2α0

∑

~m

φ~m0∂µψ~m0(x)∂µφ
′

(x/2) + 2−dα2
0∂µφ

′

(x/2)∂µφ
′

(x/2)

]

.

(10.478)

The integral
∫

ddx is
∑

~m

∫

~x∈box ~m
. In the box ~m the function R0(φ(x)) can be replaced by the

function R0(ψ~m0(x)φ~m0 + 2−d/2α0φ
′

(x/2)). In this box ψ~m0(x) is approximated by +w1/2 in
one half of the box and by −w1/2 in the other half, i.e. by a step function. Thus the third term
in the above equation can be approximated by (dropping also higher derivative corrections and
defining u~m = 2−d/2α0φ

′

(x0/2))

2−d−1α2
0w

−1
∑

~m

[

R0(w
1/2φ~m0 + u~m) +R0(−w1/2φ~m0 + u~m)

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2).

(10.479)

The contribution of ∂µψ~m0(x) is however only appreciable when ψ~m0(x) = 0, i.e. at the center
of the box. In the first and second terms of the above equation we can then replace R0(φ(x)) by
R0(u~m). The second term in the above equation (10.478) vanishes by conservation of momentum.
In the first term we can neglect all the coupling terms φ~m0φ~m′0 with ~m 6= ~m

′

since ψ~m′0(x) is
zero inside the box ~m. We define the integral

ρ =

∫

ddx∂µψ~m0(x)∂
µψ~m0(x). (10.480)

This is independent of ~m because of the relation (10.466). The first term becomes therefore
ρ
∑

~mR0(u~m)φ2~m0. Equation (10.478) becomes

∫

ddxR0∂µφ(x)∂
µφ(x) = ρ

∑

~m

R0(u~m)φ2~m0

+ 2−d−1α2
0w

−1
∑

~m

[

R0(w
1/2φ~m0 + u~m) +R0(−w1/2φ~m0 + u~m)

]

× ∂µφ
′

(x0/2)∂
µφ

′

(x0/2). (10.481)
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The Interaction Term: Next we want to compute

∫

~x∈box ~m

ddxP0(φ
(m)(x)) =

∫

~x∈box ~m

ddxP0(ψ~m0(x)φ~m0 + 2−d/2α0φ
′

(x/2)). (10.482)

We note again that within the box ~m the field is given by

φ(m)(x) = ψ~m0(x)φ~m0 + 2−d/2α0φ
′

(x/2). (10.483)

Introduce z0 = ψ~m0(x)φ~m0 + u~m. We have then

∫

~x∈box ~m

ddxP0(φ
(m)(x)) =

∫

~x∈box ~m

ddx

[

P0(z0) +

(

(x− x0)µ∂µu~m +
1

2
(x− x0)µ(x− x0)ν

)

× ∂µ∂νu~m
dP0

dz
|z0 +

1

2
(x− x0)µ(x− x0)ν∂µu~m∂νu~m

d2P0

dz2
|z0 + ...

]

.

(10.484)

As stated earlier ψ~m0(x) is approximated by +w1/2 in one half of the box and by −w1/2 in the
other half. Also recall that the volume of the box is w−1. The first term can be approximated
by

∫

~x∈box ~m

ddxP0(z0) =
w−1

2

[

P0(w
1/2φ~m0 + u~m) + P0(−w1/2φ~m0 + u~m)

]

. (10.485)

We compute now the third term in (10.484). We start from the obvious identity

∫

box

ddx
1

2
(x− x0)µ(x− x0)ν =

∫

box+

ddx
1

2
(x− x0)µ(x− x0)ν +

∫

box−

ddx
1

2
(x − x0)µ(x− x0)ν .

(10.486)

We will think of the box ~m as a sphere of volume w−1. Thus

∫

box

ddx
1

2
(x− x0)µ(x− x0)ν =

1

2
V ηµν . (10.487)

We have the definitions

V =
1

d

∫

box

r2ddx , w−1 =

∫

box

ddx. (10.488)

Explicitly we have

V =
1

d+ 2

(

dw−1

Ωd−1

)(d+2)/d
Ωd−1

d
. (10.489)

The above identity becomes then

1

2
V ηµν =

∫

box+

ddx
1

2
(x− x0)µ(x− x0)ν +

∫

box−

ddx
1

2
(x− x0)µ(x − x0)ν . (10.490)

The sum of these two integrals is rotational invariant. As stated before we think of the box as
a sphere divided into two regions of equal volume. The first region (the first half of the box)



YDRI QFT 353

is a concentric smaller sphere whereas the second region (the second half of the box) is a thin
spherical shell. Both regions are spherically symmetric and thus we can assume that

∫

box±

ddx
1

2
(x− x0)µ(x− x0)ν =

1

2
V±η

µν . (10.491)

Clearly V = V+ + V−. The integral of interest is
∫

~x∈box

ddx
1

2
(x− x0)µ(x− x0)ν∂µ∂νu~m

dP0

dz
|z0 =

dP0

dz
|w1/2φ~m0+u~m

∂µ∂νu~m

∫

box+

ddx
1

2
(x− x0)µ(x − x0)ν

+
dP0

dz
|−w1/2φ~m0+u~m

∂µ∂νu~m

∫

box−

ddx
1

2
(x− x0)µ(x− x0)ν

=
V+
2

dP0

dz
|w1/2φ~m0+u~m

∂µ∂
µu~m +

V−
2

dP0

dz
|−w1/2φ~m0+u~m

∂µ∂
µu~m

= 2−1−d/2α0V+
dP0

dz
|w1/2φ~m0+u~m

∂µ∂
µφ

′

(x0/2)

+ 2−1−d/2α0V−
dP0

dz
|−w1/2φ~m0+u~m

∂µ∂
µφ

′

(x0/2). (10.492)

Similarly the fourth term in (10.484) is computed as follows. We have
∫

~x∈box ~m

ddx
1

2
(x− x0)µ(x− x0)ν∂µu~m∂νu~m

d2P0

dz2
|z0 =

d2P0

dz2
|w1/2φ~m0+u~m

∂µu~m∂νu~m

∫

box+

ddx
1

2
(x− x0)µ

× (x− x0)ν

+
d2P0

dz2
|−w1/2φ~m0+u~m

∂µu~m∂νu~m

∫

box−

ddx
1

2
(x− x0)µ

× (x− x0)ν

=
V+
2

d2P0

dz2
|w1/2φ~m0+u~m

∂µu~m∂
µu~m

+
V−
2

d2P0

dz2
|−w1/2φ~m0+u~m

∂µu~m∂
µu~m

= 2−1−dα2
0V+

d2P0

dz2
|w1/2φ~m0+u~m

∂µφ
′

(x0/2)∂
µφ

′

(x0/2)

+ 2−1−dα2
0V−

d2P0

dz2
|−w1/2φ~m0+u~m

∂µφ
′

(x0/2)∂
µφ

′

(x0/2).

(10.493)

Finally we compute the first term in (10.484). we have
∫

~x∈box ~m

ddx(x− x0)µ∂µu~m
dP0

dz
|z0 =

dP0

dz
|w1/2φ~m0+u~m

∂µu~m

∫

box+

ddx(x− x0)µ

+
dP0

dz
|−w1/2φ~m0+u~m

∂µu~m

∫

box−

ddx(x− x0)µ.

(10.494)

Clearly we must have
∫

box+

ddx(x− x0)µ +

∫

box−

ddx(x − x0)µ = 0. (10.495)
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We will assume that both integrals vanish again by the same previous argument. The linear
term is therefore 0, viz

∫

~x∈box ~m

ddx(x− x0)µ∂µu~m
dP0

dz
|z0 = 0. (10.496)

The final result is
∫

~x∈box ~m

ddxP0(φ
(m)(x)) =

w−1

2

[

P0(w
1/2φ~m0 + u~m) + P0(−w1/2φ~m0 + u~m)

]

+ 2−1−d/2α0

[

V+
dP0

dz
|w1/2φ~m0+u~m

+ V−
dP0

dz
|−w1/2φ~m0+u~m

]

∂µ∂
µφ

′

(x0/2)

+ 2−1−dα2
0

[

V+
d2P0

dz2
|w1/2φ~m0+u~m

+ V−
d2P0

dz2
|−w1/2φ~m0+u~m

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2).

(10.497)

The Action: By putting all the previous results together we obtain the expansion of the action.
We get

S0(φ(x)) =
K

2

∫

ddxR0(φ(x))∂µφ(x)∂
µφ(x) +

∫

ddxP0(φ(x))

=
Kρ

2

∑

~m

R0(u~m)φ2~m0

+ 2−d−2Kα2
0w

−1
∑

~m

[

R0(w
1/2φ~m0 + u~m) +R0(−w1/2φ~m0 + u~m)

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2)

+
w−1

2

∑

~m

(

P0(w
1/2φ~m0 + u~m) + P0(−w1/2φ~m0 + u~m)

)

+ 2−1−d/2α0

∑

~m

(

V+
dP0

dz
|w1/2φ~m0+u~m

+ V−
dP0

dz
|−w1/2φ~m0+u~m

)

∂µ∂
µφ

′

(x0/2)

+ 2−1−dα2
0

∑

~m

(

V+
d2P0

dz2
|w1/2φ~m0+u~m

+ V−
d2P0

dz2
|−w1/2φ~m0+u~m

)

∂µφ
′

(x0/2)∂
µφ

′

(x0/2).

(10.498)

The Path Integral: We need now to evaluate the path integral
∫

∏

~m

dφ~m0 e
−S0(φ(x)). (10.499)

We introduce the variables

u~m −→ z~m =
(Kρ

2w

)1/2
u~m. (10.500)

φ~m0 −→ y~m =
(Kρ

2

)1/2
φ~m0. (10.501)

R0 −→W0(x) = R0(
( 2w

Kρ

)1/2
x). (10.502)
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P0 −→ Q0(x) = w−1P0(
( 2w

Kρ

)1/2
x). (10.503)

We compute then

∫

∏

~m

dφ~m0 e
−S0(φ(x)) =

∏

~m

( 2

Kρ

)1/2
∫

dy~m exp

(

− y2~mW0(z~m)− 1

2
Q0(y~m + z~m)− 1

2
Q0(−y~m + z~m)

− 2−(3+d)/2α0(Kρw)
1/2

[

V+
dQ0

dy~m
(y~m + z~m) + V−

dQ0

dy~m
(−y~m + z~m)

]

∂µ∂
µφ

′

(x0/2)

− 2−d−2α2
0Kρ

[

V+
d2Q0

dy2~m
(y~m + z~m) + V−

d2Q0

dy2~m
(−y~m + z~m)

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2)

− 2−d−2α2
0Kw

−1

[

W0(y~m + z~m) +W0(−y~m + z~m)

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2)

)

.

(10.504)

Define

M0(z~m) =

∫

dy~m exp

(

− y2~mW0(z~m)− 1

2
Q0(y~m + z~m)− 1

2
Q0(−y~m + z~m)

− 2−(3+d)/2α0(Kρw)
1/2

[

V+
dQ0

dy~m
(y~m + z~m) + V−

dQ0

dy~m
(−y~m + z~m)

]

∂µ∂
µφ

′

(x0/2)

− 2−d−2α2
0Kρ

[

V+
d2Q0

dy2~m
(y~m + z~m) + V−

d2Q0

dy2~m
(−y~m + z~m)

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2)

− 2−d−2α2
0Kw

−1

[

W0(y~m + z~m) +W0(−y~m + z~m)

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2)

)

.

(10.505)

In this equation φ
′

(x0/2) is given in terms of z~m by

φ
′

(x0/2) =
2d/2

α0

( 2w

Kρ

)1/2
z~m. (10.506)

The remaining dependence on the box ~m is only through the center of the box x0. Then

∫

∏

~m

dφ~m0 e
−S0(φ(x)) =

∏

~m

( 2

Kρ

)1/2
M0(z~m)

=
∏

~m

( 2

Kρ

)1/2
exp(lnM0(z~m))

= exp
(

∑

~m

ln
M0(z~m)

I0(0)

)

∏

~m

( 2

Kρ

)1/2
I0(0). (10.507)

The function I0(z) is defined by

I0(z) =

∫

dy exp

(

− y2W0(z)−
1

2
Q0(y + z)− 1

2
Q0(−y + z)

)

. (10.508)
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In order to compute M0 we will assume that the derivative terms are small and expand the
exponential around the ultra local approximation. We compute

M0(z~m) = I0(z~m)

[

1− 2−(3+d)/2α0(Kρw)
1/2V <

dQ0

dy~m
(y~m + z~m) > ∂µ∂

µφ
′

(x0/2)

− 2−d−1α2
0K

[

ρV

2
<
d2Q0

dy2~m
(y~m + z~m) > +w−1 < W0(y~m + z~m) >

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2) + ...

]

.

(10.509)

The path integral (10.499) becomes

∫

∏

~m

dφ~m0 e
−S0(φ(x)) =

∏

~m

( 2

Kρ

)1/2
I0(0)× exp

(

∑

~m

ln
I0(z~m)

I0(0)
− 2−(3+d)/2α0(Kρw)

1/2V
∑

~m

× <
dQ0

dy~m
(y~m + z~m) > ∂µ∂

µφ
′

(x0/2)− 2−d−1α2
0K
∑

~m

[

ρV

2
<
d2Q0

dy2~m
(y~m + z~m) >

+ w−1 < W0(y~m + z~m) >

]

∂µφ
′

(x0/2)∂
µφ

′

(x0/2)

)

. (10.510)

We make the change of variable x0/2 −→ x (this means that the position space wave packet with
l = 1 corresponding to the highest not integrated momentum will now fit into the box) to obtain

∫

∏

~m

dφ~m0 e
−S0(φ(x)) =

∏

~m

( 2

Kρ

)1/2
I0(0)× exp

(

∑

~m

ln
I0(z~m)

I0(0)
− 2−(3+d)/2α0(Kρw)

1/2V

4

∑

~m

× <
dQ0

dy~m
(y~m + z~m) > ∂µ∂

µφ
′

(x)− 2−d−1α
2
0K

4

∑

~m

[

ρV

2
<
d2Q0

dy2~m
(y~m + z~m) >

+ w−1 < W0(y~m + z~m) >

]

∂µφ
′

(x)∂µφ
′

(x)

)

. (10.511)

Now z~m is given by z~m = (Kρ/2w)1/22−d/2α0φ
′

(x). It is clear that dQ0(y~m + z~m)/dy~m =
dQ0(y~m + z~m)/dz~m, etc. Recall that the volume of the box ~m is w−1 and thus we can make the
identification w

∫

ddx =
∑

~m. However we have also made the rescaling x0 −→ 2x and hence we
must make instead the identification 2dw

∫

ddx =
∑

~m. We obtain

∫

∏

~m

dφ~m0 e
−S0(φ(x)) =

∏

~m

( 2

Kρ

)1/2
I0(0)× exp

(

2dw

∫

ddx ln
I0(z)

I0(0)
− 2−(3+d)/2α0(Kρw)

1/2V

4
2dw

×
∫

ddx <
dQ0

dz
(z) > ∂µ∂

µφ
′

(x)− 2−d−1α
2
0K

4
2dw

∫

ddx

[

ρV

2
<
d2Q0

dz2
(z) >

+ w−1 < W0(z) >

]

∂µφ
′

(x)∂µφ
′

(x)

)

. (10.512)

Now z is given by z = (Kρ/2w)1/22−d/2α0φ
′

(x). The expectation values < On(z) > are defined
by

< On(z) >=
1

I(z)

∫

dy

(

O(y + z) +O(−y + z)

2

)n

exp

(

− y2W0(z)−
1

2
Q0(y + z)− 1

2
Q0(−y + z)

)

.

(10.513)
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Next we derive in a straightforward way the formula

d

dz
<
dQ0

dz
(z) > = <

d2Q0

dz2
(z) > − <

(dQ0

dz

)2
(z) > + <

dQ0

dz
(z) >2

+
dW0

dz

(

<
dQ0

dz
(z) >

1

I0(z)

∫

dyy2e... − 1

I0(z)

∫

dy
dQ0

dz
(y + z)y2e...

)

.

(10.514)

By integrating by part the second term in (10.512) we can see that the first term in (10.514)
cancels the 3rd term in (10.512). The last term can be neglected if we assume that dW0/dz is
much smaller than Q0. We obtain then

∫

∏

~m

dφ~m0 e
−S0(φ(x)) =

∏

~m

( 2

Kρ

)1/2
I0(0)× exp

(

2dw

∫

ddx ln
I0(z)

I0(0)

− α2
0Kw

8

∫

ddx

[

ρV

2

(

<
(dQ0

dz

)2
(z) > − < dQ0

dz
(z) >2

)

+ w−1 < W0(z) >

]

× ∂µφ
′

(x)∂µφ
′

(x)

)

. (10.515)

The Recursion Formulas: The full path integral is therefore given by

Z0 =

∫

Dφ′

(x0/2)

∫

∏

~m

dφ~m0 e
−S0(φ(x))

∝
∫

Dφ′

(x)

∫

exp

(

2dw

∫

ddx ln
I0(z)

I0(0)
− α2

0Kw

8

∫

ddx

[

ρV

2

(

<
(dQ0

dz

)2
(z) > − < dQ0

dz
(z) >2

)

+ w−1 < W0(z) >

]

∂µφ
′

(x)∂µφ
′

(x)

)

. (10.516)

We write this as

Z1 =

∫

Dφ′

(x) e−S1(φ
′
(x)). (10.517)

The new action S1 has the same form as the action S0, viz

S1(φ
′

(x)) =
K

2

∫

ddxR1(φ
′

(x))∂µφ
′

(x)∂µφ
′

(x) +

∫

ddxP1(φ
′

(x)). (10.518)

The new polynomials P1 and R1 (or equivalently Q1 and W1) are given in terms of the old ones
P0 and R0 (or equivalently Q0 and W0) by the relations

W1(2
d/2α−1

0 z) = R1(φ
′

(x))

=
α2
0Cd
8

(

<
(dQ0

dz

)2
(z) > − < dQ0

dz
(z) >2

)

+
α2
0

4
< W0(z) > .

(10.519)

Q1(2
d/2α−1

0 z) = w−1P1(φ
′

(x))

= −2d ln I0(z)
I0(0)

. (10.520)
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The constant Cd is given by

Cd = wρV. (10.521)

Before we write down the recursion formulas we also introduce the notation

φ(0) = φ , φ(1) = φ
′

. (10.522)

The above procedure can be repeated to integrate out the momentum shell l = 1 and get from
S1 to S2. The modes with l ≥ 2 will involve a new constant α1 and instead of P0, R0, S0 and
I0 we will have P1, R1, S1 and I1. Aside from this trivial relabeling everything else will be
the same including the constants w, V and Cd since l = 1 can be mapped to l = 0 due to the
scaling x0 −→ 2x (see equations (10.470) and (10.472)). This whole process can be repeated an
arbitrary number of times to get a renormalization group flow of the action given explicitly by the
sequences P0 −→ P1 −→ P2 −→ ... −→ Pi and R0 −→ R1 −→ R2 −→ ... −→ Ri. By assuming
that dRi/dφ

(i) is sufficiently small compared to Pi for all i the recursion formulas which relates
the different operators at the renormalization group steps i and i+ 1 are obviously given by

Wi+1(2
d/2α−1

i z) = Ri+1(φ
(i+1)(x))

=
α2
iCd
8

(

<
(dQi
dz

)2
(z) > − < dQi

dz
(z) >2

)

+
α2
i

4
< Wi(z) > .

(10.523)

Qi+1(2
d/2α−1

i z) = w−1Pi+1(φ
(i+1)(x))

= −2d ln Ii(z)
Ii(0)

. (10.524)

The function Ii(z) is given by the same formula (10.508) with the substitutions I0 −→ Ii,
W0 −→Wi and Q0 −→ Qi.

The field φ(i+1) and the variable z are related by z = (Kρ/2w)1/22−d/2αiφ(i+1). The full
action at the renormalization group step i is

Si(φ
(i)(x)) =

K

2

∫

ddxRi(φ
(i)(x))∂µφ

(i)(x)∂µφ(i)(x) +

∫

ddxPi(φ
(i)(x)). (10.525)

The constants αi will be determined from the normalization condition

Wi+1(0) = 1. (10.526)

Since Q is even this normalization condition is equivalent to

α2
i

4
< Wi(z) > |z=0 = 1. (10.527)

The Ultra Local Recursion Formula: This corresponds to keeping in the expansion (10.476)
only the first term. The resulting recursion formula is obtained from the above recursion formulas
by dropping from equation (10.523) the fluctuation term

<
(dQi
dz

)2
(z) > − < dQi

dz
(z) >2 . (10.528)
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The recursion formula (10.523) becomes

Wi+1(2
d/2α−1

i z) =
α2
i

4
< Wi(z) > . (10.529)

The solution of this equation together with the normalization condition (10.527) is given by

Wi = 1 , αi = 2. (10.530)

The remaining recursion formula is given by

Qi+1(2
d/22−1z) = −2d ln Ii(z)

Ii(0)
. (10.531)

We state without proof that the use of this recursion formula is completely equivalent to the use
in perturbation theory of the Polyakov-Wilson rules given by the approximations:

• We replace every internal propagator 1/(k2 + r20) by 1/(Λ2 + r20).

• We replace every momentum integral
∫ Λ

Λ/2
ddp/(2π)d by the volume c/4 where c = 4Ωd−1Λ

d(1−
2−d)/(d(2π)d).

10.5.3 The Wilson-Fisher Fixed Point

Let us start with a φ4 action given by

S0[φ0] =

∫

ddx

(

1

2
(∂µφ0)

2 +
1

2
r0φ

2
0 + u0φ

4
0

)

. (10.532)

The Fourier transform of the field is given by

φ0(x) =

∫ Λ

0

ddp

(2π)d
φ̃0(p) e

ipx. (10.533)

We will decompose the field as

φ0(x) = φ
′

1(x) + Φ(x). (10.534)

The background field φ
′

1(x) corresponds to the low frequency modes φ̃0(p) where 0 ≤ p ≤ Λ/2
whereas the fluctuation field Φ(x) corresponds to high frequency modes φ̃0(p) where Λ/2 < p ≤ Λ,
viz

φ
′

1(x) =

∫ Λ/2

0

ddp

(2π)d
φ̃0(p) e

ipx , Φ(x) =

∫ Λ

Λ/2

ddp

(2π)d
φ̃0(p) e

ipx. (10.535)

The goal is integrate out the high frequency modes from the partition function. The partition
function is given by

Z0 =

∫

Dφ0 e−S0[φ0]

=

∫

Dφ′

1

∫

DΦ e−S0[φ
′

1+Φ]

=

∫

Dφ′

1 e
−S1[φ

′

1]. (10.536)
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The first goal is to determine the action S1[φ
′

1]. We have

e−S1[φ
′

1] =

∫

dΦ e−S0[φ
′

1+Φ]

= e−S0[φ
′

1]

∫

dΦ e−S0[Φ]e−u0

∫
ddx[4Φ3φ

′

1+4Φφ
′3
1 +6Φ2φ

′2
1 ]. (10.537)

We will expand in the field φ
′

1 up to the fourth power. We define expectation values with respect
to the partition function

Z =

∫

dΦ e−S0[Φ]. (10.538)

Let us also introduce

V1 = −4u0
∫

ddxΦ3φ
′

1

V2 = −6u0
∫

ddxΦ2φ
′2
1

V3 = −4u0
∫

ddxΦφ
′3
1 . (10.539)

Then we compute

e−S1[φ
′

1] = Ze−S0[φ
′

1] <

[

1 + V1 + V2 + V3 +
1

2
(V 2

1 + 2V1V2 + V 2
2 + 2V1V3) +

1

6
(V 3

1 + 3V 2
1 V2) +

1

24
V 4
1

]

> .

(10.540)

By using the symmetry Φ −→ −Φ we obtain

e−S1[φ
′

1] = Ze−S0[φ
′

1] <

[

1 + V2 +
1

2
(V 2

1 + V 2
2 + 2V1V3) +

1

6
(3V 2

1 V2) +
1

24
V 4
1

]

> .

(10.541)

The term < V1V3 > vanishes by momentum conservation. We rewrite the different expectation
values in terms of connected functions. We have

< V2 >=< V2 >co

< V 2
1 >=< V 2

1 >co

< V 2
2 >=< V 2

2 >co + < V2 >
2
co

< V 2
1 V2 >=< V 2

1 V2 >co + < V 2
1 >co< V2 >co

< V 4
1 >=< V 4

1 >co +3 < V 2
1 >2

co . (10.542)

By using these results the partition function becomes

e−S1[φ
′

1] = Ze−S0[φ
′

1] e<V2>co+
1
2 (<V

2
1 >co+<V

2
2 >co)+

1
2<V

2
1 V2>co+

1
24<V

4
1 >co .

(10.543)

In other words the partition function is expressible only in terms of irreducible connected func-
tions. This is sometimes known as the cumulant expansion. The action S1[φ

′

1] is given by

S1[φ
′

1] = S0[φ
′

1]− < V2 >co −
1

2
(< V 2

1 >co + < V 2
2 >co)−

1

2
< V 2

1 V2 >co −
1

24
< V 4

1 >co .

(10.544)
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We need the propagator

< Φ(x)Φ(y) >co = < Φ(x)Φ(y) >0 −12u0
∫

ddz < Φ(x)Φ(z) >0< Φ(y)Φ(z) >0< Φ(z)Φ(z) >0 +O(u20).

(10.545)

The free propagator is obviously given by

< Φ(x)Φ(y) >0 =

∫ Λ

Λ/2

ddp

(2π)d
1

p2 + r0
eip(x−y). (10.546)

Thus

< Φ(x)Φ(y) >co =

[ ∫

ddp1
(2π)d

1

p21 + r0
− 12u0

∫

ddp1
(2π)d

ddp2
(2π)d

1

(p21 + r0)2(p22 + r0)
+O(u20)

]

eip1(x−y).

(10.547)

We can now compute

− < V2 >co = 6u0

∫

ddxφ
′2
1 (x) < Φ2(x) >co

= 6u0

∫

ddp

(2π)d
|φ̃′

1(p)|2
[∫

ddp1
(2π)d

1

p21 + r0
− 12u0

∫

ddp1
(2π)d

ddp2
(2π)d

1

(p21 + r0)2(p22 + r0)
+O(u20)

]

.

(10.548)

−1

2
< V 2

1 >co = −8u20
∫

ddx1d
dx2φ

′

1(x1)φ
′

1(x2) < Φ3(x1)Φ
3(x2) >co

= −8u20
∫

ddx1d
dx2φ

′

1(x1)φ
′

1(x2)

[

6 < Φ(x1)Φ(x2) >
3
0 +3 < Φ(x1)Φ(x2) >0< Φ(x1)Φ(x1) >0

× < Φ(x2)Φ(x2) >0

]

= −8u20
∫

ddp

(2π)d
|φ̃′

1(p)|2
[

6

∫

ddp1
(2π)d

ddp2
(2π)d

1

(p21 + r0)(p22 + r0)((p+ p1 + p2)2 + r0)
+O(u0)

]

.

(10.549)

The second term of the second line of the above equation did not contribute because of momentum
conservation. Next we compute

−1

2
< V 2

2 >co = −18u20
∫

ddx1d
dx2φ

′2
1 (x1)φ

′2
1 (x2) < Φ2(x1)Φ

2(x2) >co

= −36u20
∫

ddx1d
dx2φ

′2
1 (x1)φ

′2
1 (x2) < Φ(x1)Φ(x2) >

2
0

= −12u20
∫

ddp1
(2π)d

...
ddp3
(2π)d

φ̃
′

1(p1)...φ̃
′

1(p3)φ̃
′

1(−p1 − p2 − p3)
[ ∫

ddk

(2π)d
1

k2 + r0

× 1

(k + p1 + p2)2 + r0
+ 2 permutations +O(u0)

]

. (10.550)
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The last two terms of the cumulant expansion are of order u30 and u40 respectively which we are
not computing. The action S1[φ

′

1] reads then explicitly

S1[φ
′

1] =
1

2

∫ Λ/2

0

ddp

(2π)d
|φ̃′

1(p)|2
{

p2 + r0 + 12u0

∫

ddk1
(2π)d

1

k21 + r0
− 144u20

∫

ddk1
(2π)d

ddk2
(2π)d

1

(k21 + r0)2(k22 + r0)

− 96u20

∫

ddk1
(2π)d

ddk2
(2π)d

1

(k21 + r0)(k22 + r0)((p+ k1 + k2)2 + r0)
+O(u30)

}

+

∫ Λ/2

0

ddp1
(2π)d

...
ddp3
(2π)d

φ̃
′

1(p1)...φ̃
′

1(p3)φ̃
′

1(−p1 − p2 − p3)
[

u0 − 12u20

[ ∫

ddk

(2π)d
1

k2 + r0

× 1

(k + p1 + p2)2 + r0
+ 2 permutations

]

+O(u30)

]

. (10.551)

The Fourier mode φ̃
′

1(p) is of course equal φ̃0(p) for 0 ≤ p ≤ Λ/2 and 0 otherwise. We scale now
the field as

φ̃
′

1(p) = α0φ̃1(2p). (10.552)

The action becomes

S1[φ1] =
1

2
α2
02

−d
∫ Λ

0

ddp

(2π)d
|φ̃1(p)|2

{

p2

4
+ r0 + 12u0

∫

ddk1
(2π)d

1

k21 + r0
− 144u20

∫

ddk1
(2π)d

ddk2
(2π)d

× 1

(k21 + r0)2(k22 + r0)
− 96u20

∫

ddk1
(2π)d

ddk2
(2π)d

1

(k21 + r0)(k22 + r0)((
1
2p+ k1 + k2)2 + r0)

+O(u30)

}

+ α4
02

−3d

∫ Λ

0

ddp1
(2π)d

...
ddp3
(2π)d

φ̃1(p1)...φ̃1(p3)φ̃1(−p1 − p2 − p3)
[

u0 − 12u20

[∫

ddk

(2π)d
1

k2 + r0

× 1

(k + 1
2p1 +

1
2p2)

2 + r0
+ 2 permutations

]

+O(u30)

]

. (10.553)

In the above equation the internal momenta ki are still unscaled in the interval [Λ/2,Λ]. The
one-loop truncation of this result is given by

S1[φ1] =
1

2
α2
02

−d
∫ Λ

0

ddp

(2π)d
|φ̃1(p)|2

{

p2

4
+ r0 + 12u0

∫

ddk1
(2π)d

1

k21 + r0
+O(u20)

}

+ α4
02

−3d

∫ Λ

0

ddp1
(2π)d

...
ddp3
(2π)d

φ̃1(p1)...φ̃1(p3)φ̃1(−p1 − p2 − p3)
[

u0 − 12u20

[∫

ddk

(2π)d
1

k2 + r0

× 1

(k + 1
2p1 +

1
2p2)

2 + r0
+ 2 permutations

]

+O(u30)

]

. (10.554)

We bring the kinetic term to the canonical form by choose α0 as

α0 = 21+d/2. (10.555)

Furthermore we truncate the interaction term in the action by setting the external momenta to
zero since we are only interested in the renormalization group flow of the operators present in
the original action. We get then

S1[φ1] =
1

2

∫ Λ

0

ddp

(2π)d
|φ̃1(p)|2(p2 + r1) + u1

∫ Λ

0

ddp1
(2π)d

...
ddp3
(2π)d

φ̃1(p1)...φ̃1(p3)φ̃1(−p1 − p2 − p3).

(10.556)
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The new mass parameter r1 and the new coupling constant u1 are given by

r1 = 4r0 + 48u0

∫

ddk1
(2π)d

1

k21 + r0
+O(u20). (10.557)

u1 = 24−d
[

u0 − 36u20

∫

ddk

(2π)d
1

(k2 + r0)2
+O(u30)

]

. (10.558)

Now we employ the Wilson-Polyakov rules corresponding to the ultra local Wilson recursion
formula (10.531) consisting of making the following approximations:

• We replace every internal propagator 1/(k2 + r20) by 1/(Λ2 + r20).

• We replace every momentum integral
∫ Λ

Λ/2
ddp/(2π)d by the volume c/4 where c = 4Ωd−1Λ

d(1−
2−d)/(d(2π)d).

The mass parameter r1 and the coupling constant u1 become

r1 = 4

[

r0 + 3c
u0

Λ2 + r0
+O(u20)

]

. (10.559)

u1 = 24−d
[

u0 − 9c
u20

(Λ2 + r0)2
+O(u30)

]

. (10.560)

This is the result of our first renormalization group step. Since the action S1[φ1] is of the same
form as the action S0[φ0] the renormalization group calculation can be repeated without any
change to go from r1 and u1 to a new mass parameter r2 and a new coupling constant u2. This
whole process can evidently be iterated an arbitrary number of times to define a renormalization
group flow (r0, u0) −→ (r1, u1) −→ ....(rl, ul) −→ (rl+1, ul+1)..... The renormalization group
recursion equations relating (rl+1, ul+1) to (rl, ul) are given precisely by the above equations, viz

rl+1 = 4

[

rl + 3c
ul

Λ2 + rl

]

. (10.561)

ul+1 = 24−d
[

ul − 9c
u2l

(Λ2 + rl)2

]

. (10.562)

The fixed points of the renormalization group equations is define obviously by

r∗ = 4

[

r∗ + 3c
u∗

Λ2 + r∗

]

. (10.563)

u∗ = 24−d
[

u∗ − 9c
u2∗

(Λ2 + r∗)2

]

. (10.564)

We find the solutions

Gaussian fixed point : r∗ = 0 , u∗ = 0, (10.565)
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and (by assuming that u∗ is sufficiently small)

Wilson− Fisher fixed point : r∗ = −4cu∗
Λ2

, u∗ =
Λ4

9c
(1− 2d−4). (10.566)

For ǫ = 4− d small the non trivial (interacting) Wilson-Fisher fixed point approaches the trivial
(free) Gaussian fixed point as

r∗ = −4

9
Λ2ǫ ln 2 , u∗ =

Λ4

9c
ǫ ln 2. (10.567)

The value u∗ controls the strength of the interaction of the low energy (infrared) physics of the
system.

10.5.4 The Critical Exponents ν

In the Gaussian model the recursion formula reads simply rl+1 = 4rl and hence we have two
possible solutions. At T = Tc the mass parameter r0 must be zero and hence rl = 0 for all l, i.e.
r0 = 0 is a fixed point. For T 6= Tc the mass parameter r0 is non zero and hence rl = 4lr0 −→∞
for l −→ ∞ (r0 = ∞ is the second fixed point). For T near Tc the mass parameter r0 is linear
in T − Tc.

In the φ4 model the situation is naturally more complicated. We can be at the critical
temperature T = Tc without having the parameters r0 and u0 at their fixed point values. Indeed,
as we have already seen, for any value u0 there will be a critical value r0c = r0c(u0) of r0
corresponding to T = Tc. At T = Tc we have rl −→ r∗ and ul −→ u∗ for l −→ ∞. For T 6= Tc
we will have in general a different limit for large l.

The critical exponent ν can be calculated by studying the behavior of the theory only for
T near Tc. As stated above rl(Tc) −→ r∗ and ul(Tc) −→ u∗ for l −→ ∞. From the analytic
property of the recursion formulas we conclude that rl(T ) and ul(T ) are analytic functions of
the temperature and hence near Tc we should have rl(T ) = rl(Tc) + (T − Tc)r

′

l(Tc) + ... and

ul(T ) = ul(Tc) + (T − Tc)u
′

l(Tc) + ... and as a consequence rl(T ) and ul(T ) are close to the fixed
point values for sufficiently large l and sufficiently small T −Tc. We are thus led in a natural way
to studying the recursion formulas only around the fixed point, i.e. to studying the linearized
recursion formulas.

The Linearized Recursion Formulas: Now we linearize the recursion formulas around the
fixed point. We find without any approximation

rl+1 − r∗ =

[

4− 12cu∗
(Λ2 + rl)(Λ2 + r∗)

]

(rl − r∗) +
12c

Λ2 + r∗
(ul − u∗) + 12cu∗

[

1

Λ2 + rl
− 1

Λ2 + r∗

]

.

(10.568)

ul+1 − u∗ = 24−d
9cu2∗(2Λ

2 + r∗ + rl)

(Λ2 + rl)2(Λ2 + r∗)2
(rl − r∗) + 24−d

[

1− 9c

(Λ2 + rl)2
(ul + u∗)

]

(ul − u∗).

(10.569)

Keeping only linear terms we find

rl+1 − r∗ =

[

4− 12cu∗
(Λ2 + r∗)2

]

(rl − r∗) +
12c

Λ2 + r∗
(ul − u∗). (10.570)
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ul+1 − u∗ = 24−d
18cu2∗

(Λ2 + r∗)3
(rl − r∗) + 24−d

[

1− 18cu∗
(Λ2 + r∗)2

]

(ul − u∗). (10.571)

This can be put into the matrix form

(

rl+1 − r∗
ul+1 − u∗

)

=M

(

rl − r∗
ul − u∗

)

. (10.572)

The matrix M is given by

M =

(

4− 12cu∗

(Λ2+r∗)2
12c

Λ2+r∗

24−d 18cu2
∗

(Λ2+r∗)3
24−d(1 − 18cu∗

(Λ2+r∗)2
)

)

=

(

4− 4
3ǫ ln 2

12c
Λ2 (1 +

4
9ǫ ln 2)

0 1− ǫ ln 2

)

.

(10.573)

After n steps of the renormalization group we will have

(

rl+n − r∗
ul+n − u∗

)

=Mn

(

rl − r∗
ul − u∗

)

. (10.574)

In other words for large n the matrix Mn is completely dominated by the largest eigenvalue of
M .

Let λ1 and λ2 be the eigenvalues of M with eigenvectors w1 and w2 respectively such that
λ1 > λ2. Clearly for u∗ = 0 we have

λ1 = 4 , w1 =

(

1
0

)

λ2 = 1 , w2 =

(

0
1

)

. (10.575)

The matrix M is not symmetric and thus diagonalization is achieved by an invertible (and not
an orthogonal) matrix U . We write

M = UDU−1. (10.576)

The eigenvalues λ1 and λ2 can be determined from the trace and determinant which are given
by

λ1 + λ2 =M11 +M22 , λ1λ2 =M11M22 −M12M21. (10.577)

We obtain immediately

λ1 = 4− 4

3
ǫ ln 2 , λ2 = 1− ǫ ln 2. (10.578)

The corresponding eigenvectors are

w1 =

(

1
0

)

, w2 =

(

− 4c
Λ2 (1 +

5
9ǫ ln 2)

1

)

. (10.579)

We write the equation Mwk = λkwk as (with (wk)j = wjk)

Mijwjk = λkwik. (10.580)
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The identity M =
∑

k λk|λk >< λk| can be rewritten as

Mij =
∑

k

λkwikvkj = λ1wi1v1j + λ2wi2v2j . (10.581)

The vectors vk are the eigenvectors of MT with eigenvalues λk respectively, viz (with (vk)j = vkj)

MT
ijvkj = vkjMji = λkvki. (10.582)

We find explicitly

v1 =

(

1
4c
Λ2 (1 +

5
9ǫ ln 2)

)

, v2 =

(

0
1

)

. (10.583)

The orthonormality condition is then

∑

j

vkjwjl = δkl. (10.584)

From the result (10.581) we deduce immediately that

Mn
ij = λn1wi1v1j + λn2wi2v2j

≃ λn1wi1v1j . (10.585)

The linearized recursion formulas take then the form

rl+n − r∗ ≃ λn1w11

(

v11(rl − r∗) + v12(ul − u∗)
)

. (10.586)

ul+n − u∗ ≃ λn1w21

(

v11(rl − r∗) + v12(ul − u∗)
)

. (10.587)

Since rl = rl(T ) and ul = ul(T ) are close to the fixed point values for sufficiently large l and
sufficiently small T − Tc we conclude that rl − r∗ and ul − u∗ are both linear in T − Tc and as a
consequence

v11(rl − r∗) + v12(ul − u∗) = cl(T − Tc). (10.588)

The linearized recursion formulas become

rl+n − r∗ ≃ clλn1w11(T − Tc). (10.589)

ul+n − u∗ ≃ clλn1w21(T − Tc). (10.590)

The Critical Exponent ν: The correlation length corresponding to the initial action is given
by

ξ0(T ) = X(r0(T ), u0(T )). (10.591)

After l + n renormalization group steps the correlation length becomes

ξl+n(T ) = X(rl+n(T ), ul+n(T )). (10.592)
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At each renormalization group step we scale the momenta as p −→ 2p which corresponds to
scaling the distances as x −→ x/2. The correlation length is a measure of distance and thus one
must have

X(rl+n, ul+n) = 2−l−nX(r0, u0). (10.593)

From equations (10.589) and (10.590) we have

(rl+n+1 − r∗)|T−Tc=τ/λ1
= (rl+n − r∗)|T−Tc=τ , (ul+n+1 − u∗)|T−Tc=τ/λ1

= (ul+n − u∗)|T−Tc=τ .

(10.594)

Hence

X(rl+n+1, ul+n+1)|T=Tc+τ/λ1
= X(rl+n, ul+n)|T=Tc+τ . (10.595)

By using the two results (10.593) and (10.595) we obtain

2−l−n−1ξ0(Tc + τ/λ1) = 2−l−nξ0(Tc + τ). (10.596)

We expect

ξ0(Tc + τ) ∝ τ−ν . (10.597)

In other words

1

2
(
τ

λ1
)−ν = τ−ν ⇔ λν1 = 2⇔ ν =

ln 2

lnλ1
. (10.598)

10.5.5 The Critical Exponent η

The ultra local recursion formula (10.531) used so far do not lead to a wave function renor-
malization since all momentum dependence of Feynman diagrams has been dropped and as a
consequence the value of the anomalous dimension η within this approximation is 0. This can
also be seen from the field scaling (10.552) with the choice (10.555) which are made at every
renormalization group step and hence the wave function renormalization is independent of the
momentum.

In any case we can see from equation (10.554) that the wave function renormalization at the
first renormalization group step is given by

Z =
α2
0

22+d
. (10.599)

From the other hand we have already established that the scaling behavior of Z(λ) for small λ
(the limit in which we approach the infrared stable fixed point) is λη. In our case λ = 1/2 and
hence we must have

Z = 2−η. (10.600)

Let α∗ be the fixed value of the sequence αi. Then from the above two equations we obtain the
formula

η = − lnZ

ln 2
= d+ 2− 2 lnα∗

ln 2
. (10.601)
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As discussed above since α∗ = 21+d/2 for the ultra local recursion formula (10.531) we get
immediately η = 0.

To incorporate a non zero value of the critical exponent η we must go to the more accu-
rate yet more complicated recursion formulas (10.523) and (10.524). The field scaling at each
renormalization group step is a different number αi. These numbers are determined from the
normalization condition (10.527).

Recall that integrating out the momenta 1 ≤ |k|/Λ ≤ 2 resulted in the field φ1(x) =
∑

~m

∑∞
l=1 ψ~ml(x)φ~ml which was expressed in terms of the field φ

′

(x) = φ(1) which appears

in the final action as φ1(x) = 2−d/2α0φ
′

(x/2). After n renormalization group steps we integrate
out the momenta 21−n ≤ |k|/Λ ≤ 2 which results in the field φn(x) =

∑

~m

∑∞
l=n ψ~ml(x)φ~ml.

However the action will be expressed in terms of the field φ
′

= φ(n) defined by

φn(x) = 2−nd/2α0α1....αn−1φ
(n)(x/2n). (10.602)

We are interested in the 2−point function

< φ~mlφ~m′ l′ > =
1

Z

∫ ∞
∏

l1=0

∏

~m1

dφ~m1l1φ~mlφ~m′ l′ e
−S0[φ]. (10.603)

Let us concentrate on the integral with l1 = l and ~m1 = ~m and assume that l
′

> l. We have
then the integral

...

∫

dφ~mlφ~ml

∫ l−1
∏

l1=0

∏

~m1

dφ~m1l1e
−S0[φ] = ...

∫

dφ~mlφ~ml e
−Sl[φ

′
]. (10.604)

We have φ
′

= φ(l) where φ(l) contains the momenta |k|/Λ ≤ 1/2l−1. Since φ~ml is not integrated
we have φ~ml = α0...αl−1(Kρ/2)

−1/2y~m which is the generalization of φ~ml = α0φ
′

~ml−1. We want
now to further integrate φ~ml. The final result is similar to (10.504) except that we have an
extra factor of y~m and z~m contains all the modes with l1 > l. The integral thus clearly vanishes
because it is odd under y~m −→ −~y~m.

We conclude that we must have l
′

= l and ~m
′

= ~m otherwise the above 2−point function
vanishes. After few more calculations we obtain

< φ~mlφ~m′ l′ > = δll′ δ~m ~m′α
2
0...α

2
l−1(

Kρ

2
)−1

∫
∏

l1=l+1

∏

~m1
dφ ~m1l1

∏

~m1
Ml(z~m1

).Rl(z~m)
∫ ∏

l1=l+1

∏

~m1
dφ ~m1l1

∏

~m1
Ml(z~m1

)
.

(10.605)

The function Ml is given by the same formula (10.505) with the substitutions M0 −→ Ml,
W0 −→Wl and Q0 −→ Ql. The variable z~m is given explicitly by

z~m =
(Kρ

2w

)1/2
2−d/2αlφ

(l+1)(x0/2). (10.606)

The function Rl(z) is defined by

Rl(z) =M−1
l (z)

∫

dyy2 exp
(

...
)

. (10.607)

The exponent is given by the same exponent of equation (10.505) with the substitutions M0 −→
Ml, W0 −→ Wl and Q0 −→ Ql.
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An order of magnitude formula for the 2−point function can be obtained by replacing the
function Rl(z) by Rl(0). We obtain then

< φ~mlφ~m′ l′ > = δll′ δ~m ~m′α
2
0...α

2
l−1(

Kρ

2
)−1Rl(0). (10.608)

At a fixed point of the recursion formulas we must have

Wl −→W∗ , Ql −→ Q∗ ⇔ Rl −→ R∗, (10.609)

and

αl −→ α∗. (10.610)

The 2−point function is therefore given by

< φ~mlφ~m′ l′ > ∝ δll′ δ~m ~m′α
2l
∗ (
Kρ

2
)−1R∗(0). (10.611)

The modes < φ~ml > correspond to the momentum shell 2−l ≤ |k|/Λ ≤ 21−l, i.e. k ∼ Λ2−l. From
the other hand the 2−point function is expected to behave as

< φ~mlφ~m′ l′ > ∝ δll′ δ~m ~m′

1

k2−η
, (10.612)

where η is precisely the anomalous dimension. By substituting k ∼ Λ2−l in this last formula we
obtain

< φ~mlφ~m′ l′ > ∝ δll′ δ~m ~m′Λ
η−22l(2−η). (10.613)

By comparing the l−dependent bits in (10.611) and (10.613) we find that the anomalous dimen-
sion is given by

22−η = α2
∗ ⇒ η = 2− 2 lnα∗

ln 2
. (10.614)

10.6 Exercises and Problems

Power Counting Theorems for Dirac and Vector Fields

• Derive power counting theorems for theories involving scalar as well as Dirac and vector
fields by analogy with what we have done for pure scalar field theories.

• What are renormalizable field theories in d = 4 dimensions involving spin 0, 1/2 and 1
particles.

• Discuss the case of QED.

Renormalization Group Analysis for The Effective Action

• In order to study the system in the borken phase we must perform a renormalization group
analysis of the effective action and study its behavior as a function of the mass parameter.
Carry out explicitly this program.
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Midterm Examination QFT

Master 2

2012-2013
2 h

Solve 3 exercises out of 6 as follows:

• Choose between 1 and 2.

• Choose between 3 and 4.

• Choose between 5 and 6.

Exercise 1: We consider the two Euclidean integrals

I(m2) =

∫

d4k

(2π)4
1

k2 +m2
.

J(p2,m2) =

∫

d4k

(2π)4
1

k2 +m2

1

(p− k)2 +m2
.

• Determine in each case the divergent behavior of the integral.

• Use dimensional regularization to compute the above integrals. Determine in each case the
divergent part of the integral. In the case of J(p2,m2) assume for simplicity zero external
momentum p = 0.

Exercise 2: The two integrals in exercise 1 can also be regularized using a cutoff Λ. First we
perform Laplace transform as follows

1

k2 +m2
=

∫ ∞

0

dαe−α(k
2+m2).

• Do the integral over k in I(m2) and J(p2,m2). In the case of J(p2,m2) assume for simplicity
zero external momentum p = 0.

• The remaining integral over α is regularized by replacing the lower bound α = 0 by α =
1/Λ2. Perform the integral over α explicitly. Determine the divergent part in each case.

Hint: Use the exponential-integral function

Ei(−x) =
∫ −x

−∞

et

t
dt = C+ lnx+

∫ x

0

dt
e−t − 1

t
.

Exercise 3: Let zi be a set of complex numbers, θi be a set of anticommuting Grassmann
numbers and let M be a hermitian matrix. Perform the following integrals

∫

∏

i

dz+i dzie
−Mijz

+
i zj−z

+
i ji−j

+
i zi .

∫

∏

i

dθ+i dθie
−Mijθ

+
i θi−θ

+
i ηi−η

+
i θi .
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Exercise 4: Let S(r, θ) be an action dependent on two degrees of freedom r and θ which is
invariant under 2−dimensional rotations, i.e. ~r = (r, θ). We propose to gauge fix the following
2−dimensional path integral

W =

∫

eiS(~r)d2~r.

We will impose the gauge condition

g(r, θ) = 0.

• Show that

|∂g(r, θ)
∂θ

|g=0

∫

dφδ

(

g(r, θ + φ)

)

= 1.

• Use the above identity to gauge fix the path integral W .

Exercise 5: The gauge fixed path integral of quantum electrodynamics is given by

Z[J ] =

∫

∏

µ

DAµ exp
(

−i
∫

d4x
(∂µA

µ)2

2ξ
− i

4

∫

d4xFµνF
µν − i

∫

d4xJµA
µ

)

.

• Derive the equations of motion.

• Compute Z[J ] in a closed form.

• Derive the photon propagator.

Exercise 6: We consider phi-four interaction in 4 dimensions. The action is given by

S[φ] =

∫

d4x

[

1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
(φ2)2

]

.

• Write down Feynman rules in momentum space.

• Use Feynman rules to derive the 2−point proper vertex Γ2(p) up to the one-loop order.
Draw the corresponding Feynman diagrams.

• Use Feynman rules to derive the 4−point proper vertex Γ4(p1, p2, p3, p4) up to the one-loop
order. Draw the corresponding Feynman diagrams.

• By assuming that the momentum loop integrals are regularized perform one-loop renor-
malization of the theory. Impose the two conditions

Γ2(0) = m2
R , Γ4(0, 0, 0, 0) = λR.

Determine the bare coupling constants m2 and λ in terms of the renormalized coupling
constants m2

R and λR.

• Determine Γ2(p) and Γ4(p1, p2, p3, p4) in terms of the renormalized coupling constants.
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Final Examination QFT

Master 2

2012-2013
2 h

Exercise 1: We consider the two Euclidean integrals

I(m2) =

∫

d4k

(2π)4
1

k2 +m2
.

J(p2,m2) =

∫

d4k

(2π)4
1

k2 +m2

1

(p− k)2 +m2
.

• Determine in each case the divergent behavior of the integral.

• Use dimensional regularization to compute the above integrals. Determine in each case the
divergent part of the integral. In the case of J(p2,m2) assume for simplicity zero external
momentum p = 0.

Exercise 2: The gauge fixed path integral of quantum electrodynamics is given by

Z[J ] =

∫

∏

µ

DAµ exp
(

−i
∫

d4x
(∂µA

µ)2

2ξ
− i

4

∫

d4xFµνF
µν − i

∫

d4xJµA
µ

)

.

• Derive the equations of motion.

• Compute Z[J ] in a closed form.

• Derive the photon propagator.
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Midterm 1 Examination QFT

Master 1

2011-2012
2 h

Exercise 1:

• Write down an expression of the free scalar field in terms of creation and annihilation.

• Compute the 2−point function

DF (x1 − x2) =< 0|T φ̂(x1)φ̂(x2)|0 > .

• Compute in terms of DF the 4−point function

D(x1, x2, x3, x4) =< 0|T φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4)|0 > .

• Without calculation what is the value of the 3−point function < 0|T φ̂(x1)φ̂(x2)φ̂(x3)|0 >.
Explain.

Exercise 2: The electromagnetic field is a vector in four dimensional Minkowski spacetime
denoted by

Aµ = (A0, ~A).

A0 is the electric potential and ~A is the magnetic vector potential. The Dirac Lagrangian density
with non zero external electromagnetic field is given

L = ψ̄(iγµ∂µ −m)ψ − eψ̄γµψAµ.

• Derive the Euler-Lagrange equation of motion. This will be precisely the Dirac equation
in an external electromagnetic field.

Exercise 3:

• Compute the integral over p0:

∫

d3~p

∫

dp0 δ(p2 −m2).

What do you conclude for the action of Lorentz transformations on:

d3~p

2Ep
.
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Midterm 2 Examination QFT

Master 1

2011-2012
2 h

Exercise 1:

• Write down an expression of the free scalar field in terms of creation and annihilation.

• Compute for time like intervals (x − y)2 > 0 the commutator

[φ̂(x), φ̂(y)].

Can we measure simultaneously the field at the two points x and y.

• What happens for space like intervals.

Exercise 2: The Yukawa Lagrangian density describes the interaction between spinorial and
scalar fields. It is given by

L = ψ̄(iγµ∂µ −m)ψ +
1

2
(∂µφ∂

µφ− φ2)− gφψ̄ψ.

• Derive the Euler-Lagrange equation of motion.

Exercise 3:

• Show that Feynman propagator in one dimension is given by

G~p(t− t
′

) =

∫

dE

2π

i

E2 − E2
~p + iǫ

e−iE(t−t′) =
e−iE~p|t−t

′ |

2E~p
.

Exercise 4:

• What is the condition satisfied by the Dirac matrices in order for the Dirac equation to be
covariant.

• Write down the spin representation of the infinitesimal Lorentz transformations

Λ = 1− i

2
ǫµνJ µν .

Exercise 5:

• Show that gamma matrices in two dimensions are given by

γ0 =

(

0 −i
i 0

)

, γ1 =

(

0 i
i 0

)

.

• Write down the general solution of Dirac equation in two dimensions in the massless limit.
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Final Examination QFT

Master 1

2011-2012
2 h

Exercise 1:

• Write down the vacuum stability condition.

• Write down Gell-Mann-Low formulas.

• Write down the scattering S−matrix.

• Write down the Lehmannn-Symanzik-Zimmermann (LSZ) reduction formula which ex-
presses the transition probability amplitude between 1−particle states in terms of the
2−point function.

• Write down the Lehmannn-Symanzik-Zimmermann (LSZ) reduction formula which ex-
presses the transition probability amplitude between 2−particle states in terms of the
4−point function.

• Write down Wick’s theorem. Apply for 2, 4 and 6 fields.

Exercise 2: We consider phi-cube theory in four dimensions where the interaction is given by
the Lagrangian density

Lint = −
λ

3!
φ3.

• Compute the 0−point function up to the second order of perturbation theory and express
the result in terms of Feynman diagrams.

• Compute the 1−point function up to the second order of perturbation theory and express
the result in terms of Feynman diagrams.

• Compute the 2−point function up to the second order of perturbation theory and express
the result in terms of Feynman diagrams.

• Compute the connected 2−point function up to the second order of perturbation theory
and express the result in terms of Feynman diagrams.

Exercise 3: We consider phi-four theory in four dimensions where the interaction is given by
the Lagrangian density

Lint = −
λ

4!
φ4.

• Compute the 4−point function up to the first order of perturbation theory and express the
result in terms of Feynman diagrams.
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First Examination QFT

Master 1

2010-2011
2.5h

Problem 1 For a real scalar field theory the one-particle states are defined by |~p >=
√

2E(~p)â(~p)+|0 >.

• Compute the energy of this state. We give

[â(~p), â(~q)+] = (2π)3δ3(~p− ~q).

• Show that the scalar product < ~p|~q > is Lorentz invariant. We give

x0
′

= γ(x0 − βx1) , x1′ = γ(x1 − βx0) , x2′ = x2 , x3
′

= x3.

Problem 2 Show the Lorentz invariance of the D’Alembertian ∂µ∂
µ = ∂2t − ~∇2.

Problem 3 Determine the transformation rule under Lorentz transformations of ψ̄, ψ̄ψ, ψ̄γµψ.
We give

ψ(x) −→ ψ
′

(x
′

) = S(Λ)ψ(x).

Problem 4 (optional) Show that

< 0|T φ̂(x)φ̂(y)|0 >=
∫

d4p

(2π)4
i

p2 −m2 + iǫ
e−ip(x−y).

We give

φ̂(x) =

∫

d3p

(2π)3
1

√

2E(~p)

(

â(~p)e−ipx + â(~p)+eipx
)

.

Problem 5(optional) Compute the total momentum operator of a quantum real scalar field
in terms of the creation and annihilation operators â(~p)+ and â(~p). We give

P̂i =

∫

d3xπ̂∂iφ̂.
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Second Examination QFT

Master 1

2010-2011
2.5h

Problem 1 Show that the scalar field operator φ̂I(x) and the conjugate momentum field op-
erator π̂I(x) (operators in the interaction picture) are free field operators.

Problem 2 Calculate the 2−point function < 0|T (φ̂(x1)φ̂(x2))|0 > in φ−four theory up to
the second order in preturbation theory using the Gell-Mann Low formula and Wick’s theorem.
Express each order in perturbation theory in terms of Feynman diagrams.
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Final Examination QFT

Master 1

2010-2011
2.5h

Problem 1 We consider a single forced harmonic oscillator given by the equation of motion

(∂2t + E2)Q(t) = J(t). (A.1)

1) Show that the S−matrix defined by the matrix elements Smn =< m out|n in > is unitary.

2) Determine S from solving the equation

S−1âinS = âout = âin +
i√
2E

j(E). (A.2)

3) Compute the probability | < n out|0 in > |2.

4) Determine the evolution operator in the interaction picture Ω(t) from solving the Schrodinger
equation

i∂tΩ(t) = V̂I(t)Ω(t) , V̂I(t) = −J(t)Q̂I(t). (A.3)

5) Deduce from 4) the S−matrix and compare with the result of 2).

Problem 2 The probability amplitudes for a Dirac particle (antiparticle) to propagate from
the spacetime point y (x) to the spacetime x (y) are

Sab(x− y) =< 0|ψ̂a(x) ¯̂ψb(y)|0 > . (A.4)

S̄ba(y − x) =< 0| ¯̂ψb(y)ψ̂a(x)|0 > . (A.5)

1) Compute S and S̄ in terms of the Klein-Gordon propagator D(x− y) given by

D(x − y) =

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y). (A.6)

2) Show that the retarded Green’s function of the Dirac equation is given by

(SR)ab(x− y) = < 0|{ψ̂a(x), ¯̂ψb(y)}|0 > . (A.7)

3) Verify that SR satisfies the Dirac equation

(i~γµ∂xµ −mc)ca(SR)ab(x− y) = i
~

c
δ4(x − y)δcb. (A.8)

4) Derive an expression of the Feynman propagator in terms of the Dirac fields ψ̂ and
¯̂
ψ and

then write down its Fourier Expansion.
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Recess Examination QFT

Master 1

2010-2011
2.0h

Problem 1 We consider a single forced harmonic oscillator given by the equation of motion

(∂2t + E2)Q(t) = J(t). (A.9)

1) Determine S from solving the equation

S−1âinS = âout = âin +
i√
2E

j(E). (A.10)

2) Compute the probability | < n out|0 in > |2.

3) Determine the evolution operator in the interaction picture Ω(t) from solving the Schrodinger
equation

i∂tΩ(t) = V̂I(t)Ω(t) , V̂I(t) = −J(t)Q̂I(t). (A.11)

4) Deduce from 3) the S−matrix and compare with the result of 1).

Problem 2 Calculate the 2−point function < 0|T (φ̂(x1)φ̂(x2))|0 > in φ−four theory up to the
1st order in preturbation theory using the Gell-Mann Low formula and Wick’s theorem. Express
each order in perturbation theory in terms of Feynman diagrams.

Problem 3 Show that

< 0|T φ̂(x)φ̂(y)|0 >=
∫

d4p

(2π)4
i

p2 −m2 + iǫ
e−ip(x−y).

We give

φ̂(x) =

∫

d3p

(2π)3
1

√

2E(~p)

(

â(~p)e−ipx + â(~p)+eipx
)

.
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Examination QFT

Master 2

2011-2012
Take Home

Problem 1:

1) Compute the electron 2−point function in configuration space up to one-loop using the
Gell-Mann Low formula and Wick’s theorem. Write down the corresponding Feynman
diagrams.

2) Compute the electron 2−point function in momentum space up to one-loop using Feynman
rules.

3) Use dimensional regularization to evaluate the electron self-energy. Add a small photon
mass to regularize the IR behvavior. What is the UV behavior of the electron self-energy.

4) Determine the physical mass of the electron at one-loop.

5) Determine the wave-function renormalization Z2 and the counter term δ2 = 1 − Z2 up to
one-loop.

Problem 2

1) Write down all Feynman diagrams up to one-loop which contribute to the probability
amplitude of the process e−(p) + µ−(k) −→ e−(p

′

) + µ−(k
′

).

2) Write down using Feynman rules the tree level probability amplitude of the process e−(p)+
µ−(k) −→ e−(p

′

) + µ−(k
′

). Write down the probability amplitude of this process at one-
loop due to the electron vertex correction.

3) Use Feynman parameters to express the product of propagators as a single propagator
raised to some power of the form

1
[

L2 −∆+ iǫ
]q . (A.12)

Determine the shifted momentum L, the effective mass ∆ and the power q. Add a small
photon mass µ2.

4) Verify the relations

(γ.p)γµ = 2pµ − γµ(γ.p)
γµ(γ.p) = 2pµ − (γ.p)γµ

(γ.p)γµ(γ.p
′

) = 2pµ(γ.p
′

)− 2γµp.p
′

+ 2p
′µ(γ.p)− (γ.p

′

)γµ(γ.p). (A.13)

5) We work in d dimensions. Use Lorentz invariance, the properties of the gamma matrices
in d dimensions and the results of question 4) to show that we can replace 1

γλ.i(γ.l
′

+me).γ
µ.i(γ.l+me)γλ −→ γµA+ (p+ p

′

)µB + (p− p′

)µC. (A.14)

1Very Difficult.
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Determine the coefficients A, B and C.

6) Use Gordon’s identity to show that the vertex function Γ(p
′

, p) is of the form

Γµ(p
′

, p) = γµF1(q
2) +

iσµνqν
2me

F2(q
2). (A.15)

Determine the form factors F1 and F2.

7) Compute the integrals

∫

ddLE
(2π)d

L2
E

(L2
E +∆)3

,

∫

ddLE
(2π)d

1

(L2
E +∆)3

. (A.16)

8) Calculate the form factor F1(q
2) explicitly in dimensional regularization. Determine the

UV behavior.

9) Compute the renormalization constant Z1 or equivalently the counter term δ1 = Z1 − 1 at
one-loop.

10) Prove the Ward identity δ1 = δ2
2.

Problem 3

1) Write down using Feynman rules the photon self-energy iΠµν2 (q) at one-loop.

2) Use dimensional regularization to show that

Πµν2 (q) = Π2(q
2)(q2ηµν − qµqν). (A.17)

Determine Π2(q
2). What is the UV behavior.

3) Compute at one-loop the counter term δ3 = Z3 − 1.

4) Compute at one-loop the effective charge e2eff . How does the effective charge behave at high
energies.

Problem 4 Compute the unpolarized differential cross section of the process e− + e+ −→
µ− + µ+ in the center of mass system.

2Difficult.
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Final Examination QFT

Master 2

2011-2012
2.5 h

Problem 1:

1) Compute the electron 2−point function in configuration space up to one-loop using the
Gell-Mann Low formula and Wick’s theorem. Write down the corresponding Feynman
diagrams.

2) Compute the electron 2−point function in momentum space up to one-loop using Feynman
rules.

3) Use dimensional regularization to evaluate the electron self-energy. Add a small photon
mass to regularize the IR behvavior. What is the UV behavior of the electron self-energy.

4) Determine the physical mass of the electron at one-loop.

5) Determine the wave-function renormalization Z2 and the counter term δ2 = 1 − Z2 up to
one-loop.

Problem 2

1) Write down using Feynman rules the photon self-energy iΠµν2 (q) at one-loop.

2) Use dimensional regularization to show that

Πµν2 (q) = Π2(q
2)(q2ηµν − qµqν). (A.18)

Determine Π2(q
2). What is the UV behavior.

3) Compute at one-loop the counter term δ3 = Z3 − 1.

4) Compute at one-loop the effective charge e2eff . How does the effective charge behave at high
energies.

Problem 3 Compute the unpolarized differential cross section of the process e− + e+ −→
µ− + µ+ in the center of mass system.
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Recess Examination QFT

Master 2

2011-2012
2 h

Problem 1:

1) Compute the electron 2−point function in momentum space up to one-loop using Feynman
rules.

2) Use dimensional regularization to evaluate the electron self-energy. Add a small photon
mass to regularize the IR behvavior. What is the UV behavior of the electron self-energy.

3) Determine the physical mass of the electron at one-loop.

4) Determine the wave-function renormalization Z2 and the counter term δ2 = 1 − Z2 up to
one-loop.

Problem 2:

1) Write down using Feynman rules the photon self-energy iΠµν2 (q) at one-loop.

2) Use dimensional regularization to show that

Πµν2 (q) = Π2(q
2)(q2ηµν − qµqν).

Determine Π2(q
2). What is the UV behavior.

3) Compute at one-loop the counter term δ3 = Z3 − 1.
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B
Problem Solutions

Chapter 1

Scalar Product Straightforward.

Relativistic Mechanics

• The trajectory of a particle in spacetime is called a world line. We take two infinitesimally
close points on the world line given by (x0, x1, x2, x3) and (x0+dx0, x1+dx1, x2+dx2, x3+
dx3). Clearly dx1 = u1dt, dx2 = u2dt and dx3 = u3dt where ~u is the velocity of the particle
measured with respect to the observer O, viz

~u =
d~x

dt
.

The interval with respect to O is given by

ds2 = −c2dt2 + d~x2 = (−c2 + u2)dt2.

Let O
′

be the observer or inertial reference frame moving with respect to O with the velocity
~u. We stress here that ~u is thought of as a constant velocity only during the infinitesimal
time interval dt. The interval with respect to O

′

is given by

ds2 = −c2dτ2. (B.1)

Hence

dτ =

√

1− u2

c2
dt.

The time interval dτ measured with respect to O
′

which is the observer moving with the
particle is the proper time of the particle.
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• The 4−vector velocity η is naturally defined by the components

ηµ =
dxµ

dτ
.

The spatial part of η is precisely the proper velocity ~η defined by

~η =
d~x

dτ
=

1
√

1− u2

c2

~u.

The temporal part is

η0 =
dx0

dτ
=

c
√

1− u2

c2

.

• The law of conservation of momentum and the principle of relativity put together forces
us to define the momentum in relativity as mass times the proper velocity and not mass
time the ordinary velocity, viz

~p = m~η = m
d~x

dτ
=

m
√

1− u2

c2

~u.

This is the spatial part of the 4−vector momentum

pµ = mηµ = m
dxµ

dτ
.

The temporal part is

p0 = mη0 = m
dx0

dτ
=

mc
√

1− u2

c2

=
E

c
.

The relativistic energy is defined by

E =
mc2

√

1− u2

c2

.

The 4−vector pµ is called the energy-momentum 4−vector.

• We note the identity

pµp
µ = −E

2

c2
+ ~p2 = −m2c2.

Thus

E =
√

~p2c2 +m2c4.

The rest mass is m and the rest energy is clearly defined by

E0 = mc2.
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• The first law of Newton is automatically satisfied because of the principle of relativity.
The second law takes in the theory of special relativity the usual form provided we use the
relativistic momentum, viz

~F =
d~p

dt
.

The third law of Newton does not in general hold in the theory of special relativity.

We can define a 4−vector proper force which is called the Minkowski force by the following
equation

Kµ =
dpµ

dτ
.

The spatial part is

~K =
d~p

dτ
=

1
√

1− u2

c2

~F .

Einstein’s Velocity Addition Rule We consider a particle in the reference frame O moving
a distance dx in the x direction during a time interval dt. The velocity with respect to O is

u =
dx

dt
.

In the reference frame O
′

the particle moves a distance dx
′

in a time interval dt
′

given by

dx
′

= γ(dx− vdt).

dt
′

= γ(dt− v

c2
dx).

The velocity with respect to O
′

is therefore

u
′

=
dx

′

dt′
=

u− v
1− vu

c2
.

In general if ~V and ~V
′

are the velocities of the particle with respect to O and O
′

respectively
and ~v is the velocity of O

′

with respect to O. Then

~V
′

=
~V − ~v
1− ~V ~v

c2

.

Weyl Representation

• Straightforward.

• Straightforward.

• The Dirac equation can trivially be put in the form

i~
∂ψ

∂t
= (

~c

i
γ0γi∂i +mc2γ0)ψ. (B.2)

The Dirac Hamiltonian is

H =
~c

i
~α~∇+mc2β , αi = γ0γi , β = γ0. (B.3)

This is a Hermitian operator as it should be.
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Lorentz Invariance of the D’Alembertian The invariance of the interval under Lorentz
transformations reads

ηµνx
µxν = ηµνx

′µx
′ν = ηµνΛ

µ
ρx
ρΛν λx

λ.

This leads immediately to

η = ΛT ηΛ.

Explicitly we write this as

ηµν = Λρ
µηρβΛ

β
ν

= Λρ
µΛρ ν .

But we also have

δµν = (Λ−1)µ ρΛ
ρ
ν .

In other words

Λρ
µ = (Λ−1)µ ρ.

Since xµ = (Λ−1)µ νx
′ν we have

∂xµ

∂x′ν
= (Λ−1)µ ν .

Hence

∂
′

ν = (Λ−1)µ ν∂µ.

Thus

∂
′

µ∂
′µ = ηµν∂

′

µ∂
′

ν

= ηµν(Λ−1)ρ µ(Λ
−1)λ ν∂ρ∂λ

= ηµνΛµ
ρΛν

λ∂ρ∂λ

= (ΛT ηΛ)ρλ∂ρ∂λ

= ∂µ∂
µ.

Covariance of the Klein-Gordon equation Straightforward.

Vector Representations

• We have

V
′i(x

′

) = RijV j(x).

The generators are given by the angular momentum operators J i which satisfy the com-
mutation relations

[J i, Jj ] = i~ǫijkJk.
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Thus a rotation with an angle |θ| about the axis θ̂ is obtained by exponentiation, viz

R = e−iθ
iJi

.

The matrices R form an n−dimensional representation with n = 2j+1 where j is the spin
quantum number. The quantum numbers are therefore given by j and m.

• The angular momentum operators J i are given by

J i = −i~ǫijkxj∂k.

Thus

J ij = ǫijkJk

= −i~(xi∂j − xj∂i).

We compute

[J ij , Jkl] = i~

(

ηjkJ il − ηikJjl − ηjlJ ik + ηilJjk
)

.

• Generalization to 4−dimensional Minkowski space yields

Jµν = −i~(xµ∂ν − xν∂µ).

Now we compute the commutation relations

[Jµν , Jρσ] = i~

(

ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ
)

.

• A solution of is given by the 4× 4 matrices

(J µν)αβ = i~(δµαδ
ν
β − δµβδνα).

Equivalently

(J µν)α β = i~(ηµαδνβ − δµβηνα).

We compute

(J µν)α β(J ρσ)β λ = (i~)2
(

ηµαηρνδσλ − ηµαησνδρλ − ηναηρµδσλ + ηναησµδρλ

)

.

(J ρσ)α β(J µν)β λ = (i~)2
(

ηραηµσδνλ − ηραησνδµλ − ησαηρµδνλ + ησαηνρδµλ

)

.

Hence

[J µν ,J ρσ]α λ = (i~)2
(

ηµσ
[

ηναδρλ − ηραδνλ
]

− ηνσ
[

ηµαδρλ − ηραδ
µ
λ

]

− ηµρ
[

ηναδσλ − ησαδνλ
]

+ ηνρ
[

ηµαδσλ − ησαδµλ
]

)

= i~

[

ηµσ(J νρ)α λ − ηνσ(J µρ)α λ − ηµρ(J νσ)α λ + ηνρ(J µσ)α λ

]

.
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• A finite Lorentz transformation in the vector representation is

Λ = e−
i
2~ωµνJ µν

.

ωµν is an antisymmetric tensor. An infinitesimal transformation is given by

Λ = 1− i

2~
ωµνJ µν .

A rotation in the xy−plane corresponds to ω12 = −ω21 = −θ while the rest of the compo-
nents are zero, viz

Λα β = (1 +
i

~
θJ 12)α β =









1 0 0 0
0 1 θ 0
0 −θ 1 0
0 0 0 1









.

A boost in the x−direction corresponds to ω01 = −ω10 = −β while the rest of the compo-
nents are zero, viz

Λα β = (1 +
i

~
βJ 01)α β =









1 −β 0 0
−β 1 0 0
0 0 1 0
0 0 0 1









.

Dirac Spinors

• We compute

σµp
µ =

E

c
− ~σ~p =

(

E
c − p3 −(p1 − ip2)

−(p1 + ip2) E
c + p3

)

.

σ̄µp
µ =

E

c
+ ~σ~p =

(

E
c + p3 p1 − ip2
p1 + ip2 E

c − p3
)

.

Thus

(σµp
µ)(σ̄µp

µ) = m2c2.

• Recall the four possible solutions:

uA =

(

1
0

)

⇔ u(1) = N (1)











1
0

E
c +p3

mc
p1+ip2

mc











.

uA =

(

0
1

)

⇔ u(4) = N (4)











0
1

p1−ip2
mc

E
c −p3
mc











.
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uB =

(

1
0

)

⇔ u(3) = N (3)











E
c −p3
mc

− p1+ip2mc
1
0











.

uB =

(

0
1

)

⇔ u(2) = N (2)











− p1−ip2mc
E
c +p3

mc
0
1











.

The normalization condition is

ūu = u+γ0u = u+AuB + u+BuA = 2mc.

We obtain immediately

N (1) = N (2) =

√

m2c2

E
c + p3

.

• Recall that

v(1)(E, ~p) = u(3)(−E,−~p) = N (3)











−
E
c −p3
mc

p1+ip2

mc
1
0











,

v(2)(E, ~p) = u(4)(−E,−~p) = N (4)











0
1

− p1−ip2mc

−
E
c −p3
mc











.

The normalization condition in this case is

v̄v = v+γ0v = v+AvB + v+BvA = −2mc.

We obtain now

N (3) = N (4) =

√

m2c2

E
c − p3

.

• Let us define

ξ10 =

(

1
0

)

, ξ20 =

(

0
1

)

.

We have

u(1) = N (1)

(

ξ10
E
c +~σ~p

mc ξ10

)

= N (1) 1√
σµpµ

( √
σµpµξ

1
0√

σ̄µpµξ
1
0

)

=

( √
σµpµξ

1

√
σ̄µpµξ

1

)

.
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u(2) = N (2)

(

E
c −~σ~p
mc ξ20
ξ20

)

= N (2) 1√
σ̄µpµ

( √
σµpµξ

2
0√

σ̄µpµξ
2
0

)

=

( √
σµpµξ

2

√
σ̄µpµξ

2

)

.

The spinors ξ1 and ξ2 are defined by

ξ1 = N (1) 1√
σµpµ

ξ10 =

√

σ̄µpµ

E
c + p3

ξ10 .

ξ2 = N (2) 1√
σ̄µpµ

ξ20 =

√

σµpµ

E
c + p3

ξ20 .

They satisfy

(ξr)+ξs = δrs.

Similarly let us define

η10 =

(

1
0

)

, η20 =

(

0
1

)

.

Then we have

v(1) = N (3)

(

−
E
c −~σ~p
mc η10
η10

)

= −N (3) 1√
σ̄µpµ

( √
σµpµη

1
0

−√σ̄µpµη10

)

=

( √
σµpµη

1

−√σ̄µpµη1
)

.

v(2) = N (4)

(

η20

−
E
c +~σ~p

mc η20

)

= N (4) 1√
σµpµ

( √
σµpµη

2
0

−√σ̄µpµη20

)

=

( √
σµpµη

2

−√σ̄µpµη2
)

.

η1 = −N (3) 1√
σ̄µpµ

η10 = −
√

σµpµ

E
c − p3

η10 .

η2 = N (4) 1√
σµpµ

η20 =

√

σ̄µpµ

E
c − p3

η20 .

Again they satisfy

(ηr)+ηs = δrs.

Spin Sums

• We have

u(r)(E, ~p) =

( √
σµpµξ

r

√
σ̄µpµξ

r

)

, v(r)(E, ~p) =

( √
σµpµη

r

−√σ̄µpµηr
)

.

We compute

ū(r)u(s) = u(r)+γ0u(s) = 2ξr+
√

(σµpµ)(σ̄νpν)ξ
s = 2mcξr+ξs = 2mcδrs.
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v̄(r)v(s) = v(r)+γ0v(s) = −2ηr+
√

(σµpµ)(σ̄νpν)η
s = −2mcηr+ηs = −2mcδrs.

We have used

(σµp
µ)(σ̄νp

ν) = m2c2.

ξr+ξs = δrs , ηr+ηs = δrs.

We also compute

ū(r)v(s) = u(r)+γ0v(s) = −ξr+
√

(σµpµ)(σ̄νpν)η
s + ξr+

√

(σµpµ)(σ̄νpν)η
s = 0.

A similar calculation yields

v̄(r)u(s) = u(r)+γ0v(s) = 0.

• Next we compute

u(r)+u(s) = ξr+(σµp
µ + σ̄µp

µ)ξs =
2E

c
ξr+ξs =

2E

c
δrs.

v(r)+v(s) = ηr+(σµp
µ + σ̄µp

µ)ηs =
2E

c
ηr+ηs =

2E

c
δrs.

We have used

σµ = (1, σi) , σµ = (1,−σi).

We also compute

u(r)+(E, ~p)v(s)(E,−~p) = ξr+(
√

(σµpµ)(σ̄νpν)−
√

(σµpµ)(σ̄νpν))ξ
s = 0.

Similarly we compute that

v(r)+(E,−~p)u(s)(E, ~p) = 0.

In the above two equation we have used the fact that

v(r)(E,−~p) =
( √

σ̄µpµη
r

−√σµpµηr
)

.

• Next we compute

∑

s

u(s)(E, ~p)ū(s)(E, ~p) =
∑

s

u(s)(E, ~p)u(s)+(E, ~p)γ0

=
∑

s

( √
σµpµξ

sξs+
√
σµpµ

√
σµpµξ

sξs+
√
σ̄µpµ√

σ̄µpµξ
sξs+
√
σµpµ

√
σ̄µpµξ

sξs+
√
σ̄µpµ

)(

0 1
1 0

)

.

We use
∑

s

ξsξs+ = 1.
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We obtain

∑

s

u(s)(E, ~p)ū(s)(E, ~p) =

(

mc σµp
µ

σ̄µp
µ mc

)

= γµpµ +mc.

Similarly we use

∑

s

ηsηs+ = 1,

to calculate

∑

s

v(s)(E, ~p)v̄(s)(E, ~p) =

(

−mc σµp
µ

σ̄µp
µ −mc

)

= γµpµ −mc.

Covariance of the Dirac Equation Under Lorentz transformations we have the following
transformation laws

ψ(x) −→ ψ
′

(x
′

) = S(Λ)ψ(x).

γµ −→ γ
′

µ = γµ.

∂µ −→ ∂
′

ν = (Λ−1)µ ν∂µ.

Thus the Dirac equation (i~γµ∂µ −mc)ψ = 0 becomes

(i~γ
′µ∂

′

µ −mc)ψ
′

= 0,

or equivalently

(i~(Λ−1)ν µS
−1(Λ)γ

′µS(Λ)∂ν −mc)ψ = 0.

We must have therefore

(Λ−1)ν µS
−1(Λ)γµS(Λ) = γν ,

or equivalently

(Λ−1)ν µS
−1(Λ)γµS(Λ) = γν .

We consider an infinitesimal Lorentz transformation

Λ = 1− i

2~
ωαβJ αβ , Λ−1 = 1 +

i

2~
ωαβJ αβ .

The corresponding S(Λ) must also be infinitesimal of the form

S(Λ) = 1− i

2~
ωαβΓ

αβ , S−1(Λ) = 1 +
i

2~
ωαβΓ

αβ .

By substitution we get

−(J αβ)µ νγµ = [γν ,Γ
αβ ].
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Explicitly this reads

−i~(δβν γα − δαν γβ) = [γν ,Γ
αβ ],

or equivalently

[γ0,Γ
0i] = i~γi

[γj ,Γ
0i] = −i~δijγ0

[γ0,Γ
ij ] = 0

[γk,Γ
ij ] = −i~(δjkγi − δikγj).

A solution is given by

Γµν =
i~

4
[γµ, γν ].

Spinor Bilinears The Dirac spinor ψ changes under Lorentz transformations as

ψ(x) −→ ψ
′

(x
′

) = S(Λ)ψ(x).

S(Λ) = e−
i
2~ωαβΓ

αβ

.

Since (γµ)+ = γ0γµγ0 we get (Γµν)+ = γ0Γµνγ0. Therefore

S(Λ)+ = γ0S(Λ)−1γ0.

In other words

ψ̄(x) −→ ψ̄
′

(x
′

) = ψ̄(x)S(Λ)−1.

As a consequence

ψ̄ψ −→ ψ̄
′

ψ
′

= ψ̄ψ.

ψ̄γ5ψ −→ ψ̄
′

γ5ψ
′

= ψ̄ψ.

ψ̄γµψ −→ ψ̄
′

γµψ
′

= Λµ νψ̄γ
νψ.

ψ̄γµγ5ψ −→ ψ̄
′

γµγ5ψ
′

= Λµ ν ψ̄γ
νγ5ψ.

We have used [γ5,Γµν ] = 0 and S−1γµS = Λµ νγ
ν . Finally we compute

ψ̄Γµνψ −→ ψ̄
′

Γµνψ
′

= ψ̄S−1ΓµνSψ

= ψ̄
i~

4
[S−1γµS, S−1γνS]ψ

= Λµ αΛ
ν
βψ̄Γ

αβψ.
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Clifford Algebra

• The Clifford algebra in three Euclidean dimensions is solved by Pauli matrices, viz

{γi, γj} = 2δij , γi ≡ σi.

Any 2×2 matrix can be expanded in terms of the Pauli matrices and the identity. In other
words

M2×2 =M01+Miσi.

• Any 4 × 4 matrix can be expanded in terms of a 16 antisymmetric combinations of the
Dirac gamma matrices.

The 4−dimensional identity and the Dirac matrices provide the first five independent 4× 4
matrices. The product of two Dirac gamma matrices yield six different matrices which
because of {γµ, γν} = 2ηµν can be encoded in the six matrices Γµν defined by

Γµν =
i~

4
[γµ, γν].

There are four independent 4 × 4 matrices formed by the product of three Dirac gamma
matrices. They are

γ0γ1γ2 , γ0γ1γ3 , γ0γ2γ3 , γ1γ2γ3.

These can be rewritten as

iǫµναβγβγ
5.

The product of four Dirac gamma matrices leads to an extra independent 4×4 matrix which
is precisely the gamma five matrix. In total there are 1+ 4+6+4+ 1 = 16 antisymmetric
combinations of Dirac gamma matrices. Hence any 4× 4 matrix can be expanded as

M4×4 =M01+Mµγ
µ +MµνΓ

µν +Mµναiǫ
µναβγβγ

5 +M5γ
5.

Chirality Operator and Weyl Fermions

• We have

γ5 = iγ0γ1γ2γ3.

Thus

− i

4!
ǫµνρσγ

µγνγργσ = − i

4!
(4)ǫ0abcγ

0γaγbγc

= − i

4!
(4.3)ǫ0ij3γ

0γiγjγ3

= − i

4!
(4.3.2)ǫ0123γ

0γ1γ2γ3

= iγ0γ1γ2γ3

= γ5.
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We have used

ǫ0123 = −ǫ0123 = −1.

We also verify

(γ5)2 = −γ0γ1γ2γ3.γ0γ1γ2γ3
= γ1γ2γ3.γ1γ2γ3

= −γ2γ3.γ2γ3
= 1.

(γ5)+ = −i(γ3)+(γ2)+(γ1)+(γ0)+
= iγ3γ2γ1γ0

= −iγ0γ3γ2γ1
= −iγ0γ1γ3γ2
= iγ0γ1γ2γ3

= γ5.

{γ5, γ0} = {γ5, γ1} = {γ5, γ2} = {γ5, γ3} = 0.

From this last property we conclude directly that

[γ5,Γµν ] = 0.

• Hence the Dirac representation is reducible. To see this more clearly we work in the Weyl
or chiral representation given by

γ0 =

(

0 12

12 0

)

, γi =

(

0 σi

−σi 0

)

.

In this representation we compute

γ5 = i

(

σ1σ2σ3 0
0 σ1σ2σ3

)

=

(

−1 0
0 1

)

.

Hence by writing the Dirac spinor as

ψ =

(

ψL
ψR

)

,

we get

ΨR =
1 + γ5

2
ψ =

(

0
ψR

)

,

and

ΨL =
1− γ5

2
ψ =

(

ψL
0

)

.
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In other words

γ5ΨL = −ΨL , γ5ΨR = ΨR.

The spinors ΨL and ΨR do not mix under Lorentz transformations since they are eigen-
spinors of γ5 which commutes with Γab. In other words

ΨL(x) −→ Ψ
′

L(x
′

) = S(Λ)ΨL(x).

ΨR(x) −→ Ψ
′

R(x
′

) = S(Λ)ΨR(x).

• The dirac equation is

(i~γµ∂µ −mc)ψ = 0.

In terms of ψL and ψR this becomes

i~(∂0 + σi∂i)ψR = mcψL , i~(∂0 − σi∂i)ψL = mcψR.

For a massless theory we get two fully decoupled equations

i~(∂0 + σi∂i)ψR = 0 , i~(∂0 − σi∂i)ψL = 0.

These are known as Weyl equations. They are relevant in describing neutrinos. It is clear
that ψL describes a left-moving particles and ψR describes a right-moving particles.

Chapter 2

Scalars Commutation Relations Straightforward.

The One-Particle States

• The Hamiltonian operator of a real scalar field is given by (ignoring an infinite constant
due to vacuum energy)

ĤKG =

∫

d3p

(2π~)3
ω(~p)â(~p)+â(~p).

It satisfies

ĤKG|0 > = 0.

[ĤKG, â(~p)
+] = ~ω(~p)â(~p)+ , [Ĥ, â(~p)] = −~ω(~p)â(~p).

Thus we compute

ĤKG|~p > =
1

c

√

2ω(~p)ĤKGâ(~p)
+|0 >

=
1

c

√

2ω(~p)[ĤKG, â(~p)
+]|0 >

=
1

c

√

2ω(~p)~ω(~p)â(~p)+|0 >
= ~ω(~p)|~p > .
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• Next we compute

< ~p|~q >= 2

c2
(2π~)3E(~p)δ3(~p− ~q).

We have assumed that < 0|0 >= 1. This is Lorentz invariant since E(~p)δ3(~p−~q) is Lorentz
invariant. Let us consider a Lorentz boost along the x−direction, viz

x0
′

= γ(x0 − βx1) , x1′ = γ(x1 − βx0) , x2′ = x2 , x3
′

= x3.

The energy-momentum 4−vector pµ = (p0, pi) = (E/c, pi) will transform as

p0
′

= γ(p0 − βp1) , p1′ = γ(p1 − βp0) , p2′ = p2 , p3
′

= p3.

We compute

δ(p1 − q1) = δ(p1
′ − q1′)dp

1′

dp1

= δ(p1
′ − q1′)γ(1− β dp

0

dp1
)

= δ(p1
′ − q1′)γ(1− β p

1

p0
)

= δ(p1
′ − q1′)p

0′

p0
.

Hence we have

p0δ(~p− ~q) = p0
′

δ(~p
′ − ~q′

).

• The completeness relation on the Hilbert subspace of one-particle states is

1one−particle = c2
∫

d3p

(2π~)3
1

2E(~p)
|~p >< ~p|. (B.4)

It is straightforward to compute

φ̂(x0, ~x)|0 >= c2
∫

d3p

(2π~)3
1

2E(~p)
|~p > e

i
~
(E(~p)t−~p~x). (B.5)

This is a linear combination of one-particle states. For small ~p we can make the approxi-
mation E(~p) ≃ mc2 and as a consequence

φ̂(x0, ~x)|0 >= e
i
~
mc2t

2m

∫

d3p

(2π~)3
|~p > e−

i
~
~p~x. (B.6)

In this case the Dirac orthonormalization and the completeness relations read

< ~p|~q >= 2m(2π~)3δ3(~p− ~q). (B.7)

1one−particle =
1

2m

∫

d3p

(2π~)3
|~p >< ~p|. (B.8)
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The eigenstates |~x > of the position operator can be defined by

< ~p|~x >=
√
2me−

i
~
~p~x. (B.9)

Hence

φ̂(x0, ~x)|0 >= e
i
~
mc2t

√
2m
|~x > . (B.10)

In other words in the relativistic theory the operator φ̂(x0, ~x)|0 > should be interpreted
as the eigenstate |~x > of the position operator. Indeed we can compute in the relativistic
theory

< 0|φ̂(x0, ~x)|~p >= e−
i
~
px , px = E(~p)t− ~p~x. (B.11)

We say that the field operator φ̂(x0, ~x) creates a particle at the point ~x at time t = x0/c.

Momentum Operator

• For a real scalar field

P̂i = c

∫

d3xπ̂∂iφ̂

=
1

~

∫

d3p

(2π~)3
~pâ(~p)+â(~p).

• For a Dirac field

P̂i =
1

~

∫

d3p

(2π~)3
~p
∑

i

(

b̂(~p, i)+b̂(~p, i) + d̂(~p, i)+d̂(~p, i)

)

.

Fermions Anticommutation Relations

• We have

χ̂(x0, ~p) =

√

c

2ω(~p)

∑

i

(

e−iω(~p)tu(i)(~p)b̂(~p, i) + eiω(~p)tv(i)(−~p)d̂(−~p, i)+
)

.

We compute

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]± =

c

2
√

ω(~p)ω(~q)

∑

i,j

ei(ω(~p)−ω(~q))tu(i)α (~p)u
(j)∗
β (~q)[b̂(~p, i), b̂(~q, j)+]±

+
c

2
√

ω(~p)ω(~q)

∑

i,j

e−i(ω(~p)+ω(~q))tu(i)α (~p)v
(j)∗
β (−~q)[b̂(~p, i), d̂(−~q, j)]±

+
c

2
√

ω(~p)ω(~q)

∑

i,j

ei(ω(~p)+ω(~q))tv(i)α (−~p)u(j)∗β (~q)[d̂(−~p, i)+, b̂(~q, j)+]±

+
c

2
√

ω(~p)ω(~q)

∑

i,j

ei(ω(~p)−ω(~q))tv(i)α (−~p)v(j)∗β (−~q)[d̂(−~p, i)+, d̂(−~q, j)]±.
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We impose

[b̂(~p, i), b̂(~q, j)+]± = ~δij(2π~)
3δ3(~p− ~q),

[d̂(~p, i)+, d̂(~q, j)]± = ~δij(2π~)
3δ3(~p− ~q),

and

[b̂(~p, i), d̂(~q, j)]± = [d̂(~q, j)+, b̂(~p, i)]± = 0.

Thus we get

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]± =

c~

2ω(~p)

∑

i

u(i)α (~p)u
(i)∗
β (~p)(2π~)3δ3(~p− ~q)

+
c~

2ω(~p)

∑

i

v(i)α (−~p)v(i)∗β (−~p)(2π~)3δ3(~p− ~q).

By using the completeness relations
∑

s u
(s)(E, ~p)ū(s)(E, ~p) = γµpµ+mc and

∑

s v
(s)(E, ~p)v̄(s)(E, ~p) =

γµpµ −mc we derive

∑

i

u(i)α (E, ~p)u
(i)∗
β (E, ~p) +

∑

i

v(i)α (E,−~p)v(i)∗β (E,−~p) = 2E(~p)

c
δαβ .

We get then the desired result

[χ̂α(x
0, ~p), χ̂+

β (x
0, ~q)]± = ~

2δαβ(2π~)
3δ3(~p− ~q).

• Straightforward.

Retarded Propagator Straightforward.

Feynman Propagator Straightforward.

The Dirac Propagator

• We compute

Sab(x− y) = c

∫

d3p

(2π~)3

∫

d3q

(2π~)3
1

2E(~p)

1

2E(~q)

∑

i,j

e
i
~
pye−

i
~
qxu(i)a (~q)ū

(j)
b (~p) < ~q, ib|~p, jb >

= c

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y)

∑

i

u(i)a (~p)ū
(i)
b (~p)

= c

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y)(γµpµ +mc)ab

= c(i~γµ∂xµ +mc)ab

∫

d3p

(2π~)3
1

2E(~p)
e−

i
~
p(x−y)

=
1

c
(i~γµ∂xµ +mc)abD(x− y).
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Similarly

S̄ba(y − x) = c

∫

d3p

(2π~)3

∫

d3q

(2π~)3
1

2E(~p)

1

2E(~q)

∑

i,j

e−
i
~
pye

i
~
qxv(i)a (~q)v̄

(j)
b (~p) < ~p, jd|~q, id >

= c

∫

d3p

(2π~)3
1

2E(~p)
e

i
~
p(x−y)

∑

i

v(i)a (~p)v̄
(i)
b (~p)

= c

∫

d3p

(2π~)3
1

2E(~p)
e

i
~
p(x−y)(γµpµ −mc)ab

= −c(i~γµ∂xµ +mc)ab

∫

d3p

(2π~)3
1

2E(~p)
e

i
~
p(x−y)

= −1

c
(i~γµ∂xµ +mc)abD(y − x).

• The retarded Green’s function of the Dirac equation can be defined by

(SR)ab(x − y) =
1

c
(i~γµ∂xµ +mc)abDR(x− y).

We compute

(SR)ab(x− y) =
1

c
(i~γµ∂xµ +mc)ab

(

θ(x0 − y0) < 0|[φ̂(x), φ̂(y)]|0 >
)

=
1

c
θ(x0 − y0)(i~γµ∂xµ +mc)ab < 0|[φ̂(x), φ̂(y)]|0 >

+
i~

c
γ0ab∂

x
0 θ(x

0 − y0). < 0|[φ̂(x), φ̂(y)]|0 >

=
1

c
θ(x0 − y0)(i~γµ∂xµ +mc)ab < 0|[φ̂(x), φ̂(y)]|0 >

+
i~

c
γ0abδ(x

0 − y0). < 0|[φ̂(x), φ̂(y)]|0 > .

By inspection we will find that the second term will vanish. Thus we get

(SR)ab(x− y) =
1

c
θ(x0 − y0)(i~γµ∂xµ +mc)ab < 0|[φ̂(x), φ̂(y)]|0 >

=
1

c
θ(x0 − y0)(i~γµ∂xµ +mc)abD(x− y)

− 1

c
θ(x0 − y0)(i~γµ∂xµ +mc)abD(y − x)

= θ(x0 − y0) < 0|ψ̂a(x) ¯̂ψb(y)|0 > +θ(x0 − y0) < 0| ¯̂ψb(y)ψ̂a(x)|0 >
= θ(x0 − y0) < 0|{ψ̂a(x), ¯̂ψb(y)}|0 > .

• From the Fourier expansion of the retarded Green’s function DR(x− y) we obtain

(SR)ab(x − y) = ~

∫

d4p

(2π~)4
i(γµpµ +mc)ab
p2 −m2c2

e−
i
~
p(x−y).
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We can immediately compute

(i~γµ∂xµ −mc)ca(SR)ab(x− y) = ~

∫

d4p

(2π~)4
i(γµpµ −mc)ca(γµpµ +mc)ab

p2 −m2c2
e−

i
~
p(x−y)

= i~δ4(x − y)δcb.

• The Feynman propagator is defined by

(SF )ab(x − y) =
1

c
(i~γµ∂xµ +mc)abDF (x− y).

We compute

(SF )ab(x− y) = θ(x0 − y0) < 0|ψ̂a(x) ¯̂ψb(y)|0 > −θ(y0 − x0) < 0| ¯̂ψb(y)ψ̂a(x)|0 >

+
i~

c
(γ0)abδ(x

0 − y0)(D(x − y)−D(y − x)).

Again the last term is zero and we end up with

(SF )ab(x− y) = < 0|T ψ̂a(x) ¯̂ψb(y)|0 > .

T is the time-ordering operator. The Fourier expansion of SF (x− y) is

(SF )ab(x− y) = ~

∫

d4p

(2π~)4
i(γµpµ +mc)ab
p2 −m2c2 + iǫ

e−
i
~
p(x−y).

Dirac Hamiltonian Straightforward.

Energy-Momentum Tensor We consider spacetime translations

xµ −→ x
′µ = xµ + aµ.

The field φ transforms as

φ −→ φ
′

(x
′

) = φ(x+ a) = φ(x) + aµ∂µφ.

The Lagrangian density L = L(φ, ∂µφ) is a scalar and therefore it will transform as φ(x), viz

L −→ L′

= L+ δL , δL = δxµ
∂L
∂xµ

= aµ∂µL.

This equation means that the action changes by a surface term and hence it is invariant under
spacetime translations and as a consequence Euler-Lagrange equations of motion are not affected.

From the other hand the Lagrangian density L = L(φ, ∂µφ) transforms as

δL =
δL
δφ
δφ+

δL
δ∂µφ

δ∂µφ

=

(

δL
δφ
− ∂µ

δL
δ(∂µφ)

)

δφ+ ∂µ(
δL

δ(∂µφ)
δφ).

By using Euler-Lagrange equations of motion we get

δL = ∂µ(
δL

δ(∂µφ)
δφ).
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Hence by comparing we get

aν∂µ
(

− ηµνL+
δL

δ(∂µφ)
δφ

)

= 0.

Equivalently

∂µTµν = 0.

The four conserved currents j
(0)
µ = Tµ0 (which is associated with time translations) and j

(i)
µ = Tµi

(which are associated with space translations) are given by

Tµν = −ηµνL+
δL

δ(∂µφ)
∂νφ.

The conserved charges are (with π = δL/δ(∂tφ))

Q(0) =

∫

d3xj
(0)
0 =

∫

d3xT00 =

∫

d3x(π∂tφ− L).

Q(i) =

∫

d3xj
(i)
0 =

∫

d3xT0i = c

∫

d3xπ∂iφ.

Clearly T00 is a Hamiltonian density and hence Q(0) is the Hamiltonian of the scalar field. By
analogy T0i is the momentum density and hence Q(i) is the momentum of the scalar field. We
have then

Q(0) = H , Q(i) = Pi.

We compute

dH

dt
=

∫

d3x
∂T00
∂t

= −c
∫

d3x∂iTi0 = 0.

Similarly

dPi
dt

= 0.

In other words H and Pi are constants of the motion.

Electric Charge

• The Dirac Lagrangian density and as a consequence the action are invariant under the
global gauge transformations

ψ −→ eiαψ.

Under a local gauge transformation the Dirac Lagrangian density changes by

δLDirac = −~c∂µ(ψ̄γµψα) + ~c∂µ(ψ̄γ
µψ)α.

The total derivative leads to a surface term in the action and thus it is irrelevant. We get
then

δLDirac = ~c∂µ(ψ̄γ
µψ)α.

Imposing δLDirac = 0 leads immediately to ∂µJ
µ = 0.
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• We compute

Q̂ =
1

~

∫

d3p

(2π~)3

∑

i

(

b̂(~p, i)+b̂(~p, i)− d̂(~p, i)+d̂(~p, i)
)

.

Q̂ is the electric charge.

Chiral Invariance

• The Dirac Lagrangian in terms of ψL and ψR reads

LDirac = ψ̄(i~cγµ∂µ −mc2)ψ

= i~c

(

ψ+
R(∂0 + σi∂i)ψR + ψ+

L (∂0 − σi∂i)ψL
)

−mc2
(

ψ+
RψL + ψ+

LψR

)

.

• This Lagrangian is invariant under the vector transformations

ψ −→ eiαψ ⇔ ψL −→ eiαψL and ψR −→ eiαψR.

The variation of the Dirac Lagrangian under these transformations is

δLDirac = ~c(∂µj
µ)α+ surface term , jµ = ψ̄γµψ.

According to Noether’s theorem each invariance of the action under a symmetry transfor-
mation corresponds to a conserved current. In this case the conserved current is the electric
current density

jµ = ψ̄γµψ.

• The Dirac Lagrangian is also almost invariant under the axial vector (or chiral) transfor-
mations

ψ −→ eiγ
5αψ ⇔ ψL −→ eiγ

5αψL and ψR −→ eiγ
5αψR.

The variation of the Dirac Lagrangian under these transformations is

δLDirac =

(

~c(∂µj
µ5)− 2imc2ψ̄γ5ψ

)

α+ surface term , jµ5 = ψ̄γµγ5ψ.

Imposing δLDirac = 0 yields

∂µj
µ5 = 2i

mc

~
ψ̄γ5ψ.

Hence the current jµ5 is conserved only in the massless limit.

• In the massless limit we have two conserved currents jµ and jµ5. They can be rewritten as

jµ = jµL + jµR , jµ5 = −jµL + jµR.

jµL = Ψ̄Lγ
µΨL , j

µ
R = Ψ̄Rγ

µΨR.

These are electric current densities associated with left-handed and right-handed particles.
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Parity and Time Reversal Under parity we have

U(P )+ψ̂(x)U(P ) = ηbγ
0ψ̂(x̃).

Immediately we get

U(P )+
¯̂
ψ(x)U(P ) = η∗b

¯̂
ψ(x̃)γ0.

Hence

U(P )+
¯̂
ψψ̂(x)U(P ) = |ηb|2 ¯̂ψψ̂(x̃) = ¯̂

ψψ̂(x̃).

U(P )+i
¯̂
ψγ5ψ̂(x)U(P ) = −|ηb|2i ¯̂ψγ5ψ̂(x̃) = −i ¯̂ψγ5ψ̂(x̃).

U(P )+
¯̂
ψγµψ̂(x)U(P ) = +|ηb|2 ¯̂ψγµψ̂(x̃) = +

¯̂
ψγµψ̂(x̃) , µ = 0

= −|ηb|2 ¯̂ψγµψ̂(x̃) = − ¯̂
ψγµψ̂(x̃) , µ 6= 0.

U(P )+
¯̂
ψγµγ5ψ̂(x)U(P ) = −|ηb|2 ¯̂ψγµγ5ψ̂(x̃) = − ¯̂

ψγµγ5ψ̂(x̃) , µ = 0

= +|ηb|2 ¯̂ψγµγ5ψ̂(x̃) = +
¯̂
ψγµγ5ψ̂(x̃) , µ 6= 0.

Under time reversal we have

U(T )+ψ̂(x)U(T ) = ηbγ
1γ3ψ̂(−x0, ~x).

We get

U(T )+
¯̂
ψ(x)U(T ) = η∗b

¯̂
ψ(−x0, ~x)γ3γ1.

We compute

U(T )+
¯̂
ψψ̂(x)U(T ) = |ηb|2 ¯̂ψψ̂(−x0, ~x) = ¯̂

ψψ̂(−x0, ~x).

U(T )+i
¯̂
ψγ5ψ̂(x)U(T ) = −iU(T )+

¯̂
ψγ5ψ̂(x)U(T )

= −|ηb|2i ¯̂ψγ5ψ̂(−x0, ~x) = −i ¯̂ψγ5ψ̂(−x0, ~x).

U(T )+
¯̂
ψγµψ̂(x)U(T ) = U(T )+

¯̂
ψ(x)U(T ).(γµ)∗.U(T )+ψ̂(x)U(T )

= +|ηb|2 ¯̂ψγµψ̂(−x0, ~x) = +
¯̂
ψγµψ̂(−x0, ~x) , µ = 0

= −|ηb|2 ¯̂ψγµψ̂(−x0, ~x) = − ¯̂
ψγµψ̂(−x0, ~x) , µ 6= 0.

U(T )+
¯̂
ψγµγ5ψ̂(x)U(T ) = U(T )+

¯̂
ψ(x)U(T ).(γµ)∗γ5.U(T )+ψ̂(x)U(T )

= +|ηb|2 ¯̂ψγµγ5ψ̂(−x0, ~x) = +
¯̂
ψγµγ5ψ̂(−x0, ~x) , µ = 0

= −|ηb|2 ¯̂ψγµγ5ψ̂(−x0, ~x) = − ¯̂
ψγµγ5ψ̂(−x0, ~x) , µ 6= 0.
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Angular Momentum of Dirac Field

• An infintesimal rotation aroun the z axis with an angle θ is given by the Lorentz transfor-
mation

Λ = 1 +
i

~
θJ 12 =









1 0 0 0
0 1 θ 0
0 −θ 1 0
0 0 0 1









.

Clearly

t
′

= t , x
′

= x+ θy , y
′

= −θx+ y , z
′

= z.

• Under this rotation the spinor transforms as

ψ
′

(x
′

) = S(Λ)ψ(x).

From one hand

ψ
′

(x
′

) = ψ
′

(t, x+ θy, y − θx, z)
= ψ

′

(x)− θ(x∂y − y∂x)ψ
′

(x)

= ψ
′

(x)− iθ

~
(~x× ~p)3ψ′

(x).

From the other hand

ψ
′

(x
′

) = S(Λ)ψ
′

(x)

= ψ(x) − i

2~
ωαβΓ

αβψ(x)

= ψ(x) − i

~
ω12Γ

12ψ(x)

= ψ(x) +
i

~
θΓ12ψ(x)

= ψ(x) + iθ
Σ3

2
ψ(x),

where

Σ3 =

(

σ3 0
0 σ3

)

.

Hence

δψ(x) = ψ
′

(x) − ψ(x) = iθ

~
[~x× ~p+ ~

2
~Σ]3ψ.

The quantity ~x× ~p+ ~

2
~Σ is the total angular momentum.

• Under the change ψ(x) −→ ψ
′

(x) = ψ(x)+δψ(x) the Dirac LagrangianLDirac = ψ̄(i~cγµ∂µ−
mc2)ψ changes by

δLDirac = ∂µ

(

δLDirac

δ(∂µψ)
δψ

)

+ h.c

= −cθ∂µjµ + h.c.
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The current jµ is given by

jµ = ψ̄γµ[~x× ~p+ ~

2
~Σ]3ψ.

Assuming that the Lagrangian is invariant under the above rotation we have δLDirac = 0
and as a consequence the current jµ is conserved. This is an instance of Noether’s theorem.
The integral over space of the zero-component of the current j0 is the conserved charge
which is identified with the angular momentum along the z axis since we are considering
the invariance under rotations about the z axis. Hence the angular momentum of the Dirac
field along the z direction is defined by

J3 =

∫

d3xj0

=

∫

d3xψ+(x)[~x × ~p+ ~

2
~Σ]3ψ.

This is conserved since

dJ3

dt
=

∫

d3x∂tj
0

= −
∫

d3x∂ij
i

= −
∮

S

~j ~dS.

The surface S is at infinity where the Dirac field vanishes and hence the surface integral
vanishes. For a general rotation the conserved charge will be the angular momentum of
the Dirac field given by

~J =

∫

d3xψ+(x)[~x × ~p+ ~

2
~Σ]ψ.

• In the quantum theory the angular momentum operator of the Dirac field along the z
direction is

Ĵ3 =

∫

d3xψ̂+(x)[~̂x × ~̂p+ ~

2
Σ3]ψ̂(x).

It is clear that the angular momentum of the vacuum is zero, viz

Ĵ3|0 >= 0. (B.12)

• Next we consider a one-particle zero-momentum state. This is given by

|~0, sb >=
√

2mc2

~
b̂(~0, s)+|0 > .

Hence

Ĵ3|~0, sb > =

√

2mc2

~
Ĵ3b̂(~0, s)+|0 >

=

√

2mc2

~
[Ĵ3, b̂(~0, s)+]|0 > .
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Clearly for a Dirac particle at rest the orbital piece of the angular momentum operator
vanishes and thus

Ĵ3 =

∫

d3xψ̂+(x)[
~

2
Σ3]ψ̂(x).

We have

ψ̂(x0, ~x) =
1

~

∫

d3p

(2π~)3
χ̂(x0, ~p)e

i
~
~p~x.

We compute

Ĵ3 =
1

~2

∫

d3p

(2π~)3
χ̂+(x0, ~p)[

~

2
Σ3]χ̂(x0, ~p).

Next we have

χ̂(x0, ~p) =

√

c

2ω(~p)

∑

i

(

e−iω(~p)tu(i)(~p)b̂(~p, i) + eiω(~p)tv(i)(−~p)d̂(−~p, i)+
)

.

We get

Ĵ3 =

∫

d3p

(2π~)3
c

4E(~p)

∑

i

∑

j

[

u(i)+(~p)Σ3u(j)(~p)b̂(~p, i)+b̂(~p, j) + v(i)+(~p)Σ3v(j)(~p)d̂(~p, i)d̂(~p, j)+

+ e2iω(~p)tu(i)+(~p)Σ3v(j)(−~p)b̂(~p, i)+d̂(−~p, j)+ + e−2iω(~p)tv(i)+(−~p)Σ3u(j)(~p)d̂(−~p, i)b̂(~p, j)
]

.

We can immediately compute

[b̂(~p, i)+b̂(~p, j), b̂(~0, s)+] = ~δsj(2π~)
3δ3(~p)b̂(~p, i)+

[d̂(~p, i)d̂(~p, j)+, b̂(~0, s)+] = 0

[b̂(~p, i)+d̂(−~p, j)+, b̂(~0, s)+] = 0

[d̂(−~p, i)b̂(~p, j), b̂(~0, s)+] = ~δsj(2π~)
3δ3(~p)d̂(−~p, i).

Thus (by using u(i)+(~0)Σ3u(s)(~0) = (2E(~0)ξi+σ3ξs)/c)

[Ĵ3, b̂(~0, s)+]|0 >=
∑

i

ξi+
~σ3

2
ξsb̂(~0, i)+|0 > .

Hence

Ĵ3|~0, sb >=
∑

i

ξi+
~σ3

2
ξs|~0, ib > .

Let us choose the basis

ξ10 =

(

1
0

)

, ξ20 =

(

0
1

)

.

Thus one-particle zero-momentum states have spins given by

Ĵ3|~0, 1b >= ~

2
|~0, 1b > , Ĵ3|~0, 2b >= −~

2
|~0, 2b > .
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• A similar calculation will lead to the result that one-antiparticle zero-momentum states
have spins given by

Ĵ3|~0, 1d >= −~

2
|~0, 1d > , Ĵ3|~0, 2d >= ~

2
|~0, 2d > .

Chapter 3

Asymptotic Solutions

• Straightforward.

• Straightforward. This is a different solution in which we do not have the constraint t−t′ > 0
in the Feynman Green’s function G~p(t− t

′

).

•

∫

d3p

(2π)3
G~p(t− t

′

)ei~p(~x−~x
′
) =

∫

d3p

(2π)3

∫

dp0

(2π)3
i

(p0)2 − E2
~p + iǫ

e−ip
0(t−t′)+i~p(~x−~x′

)

=

∫

d4p

(2π)4
i

p2 −m2 + iǫ
e−ip(x−x

′
)

= DF (x− x
′

).

• Thus the second solution corresponds to the causal Feynman propagator. Indeed by inte-
grating both sides of the equation over ~p we obtain

φ̂(x) = φ̂+in(x) + φ̂−out(x) + i

∫

d3p

(2π)3
ei~p~x

∫ +∞

−∞
dt

′

G~p(t− t
′

)j(t
′

, ~p)

= φ̂+in(x) + φ̂−out(x) + i

∫

d3p

(2π)3

∫

d4x
′

G~p(t− t
′

)J(x
′

)ei~p(~x−~x
′
).

In other words

φ̂(x) = φ̂+in(x) + φ̂−out(x) + i

∫

d4x
′

DF (x− x
′

)J(x
′

).

Feynman Scalar Propagator Perform the integral using the residue theorem.

Fourier Transform Straightforward.

Forced Harmonic Oscillator

• Verify that

∑

l

S∗
lmSln = δmn.



YDRI QFT 413

• We get

S = exp(αâ+in − α∗âin + iβ) = eαâ
+
ine−α

∗âine+iβ−
1
2 |α|

2

.

α =
i√
2E

j(E).

In this result β is still arbitrary. We use [âin, â
+
in] = 1 and the BHC formula

eAeB = eA+Be
1
2 [A,B].

In particular

âine
αâ+in = eαâ

+
in(âin + α).

• We find

| < n out|0 in > |2 =
xn

n!
e−x , x = |α|2.

We use |n in >= ((â+in)
n/
√
n!)|0 in > and < n in|m in >= δnm.

• We use

Q̂I(t) = Q̂in(t) =
1√
2E

(âine
−iEt + â+ine

iEt).

We find

Ω(t) = exp(α(t)â+in − α∗(t)âin + iβ(t)) = eα(t)â
+
ine−α

∗(t)âine+iβ(t)−
1
2 |α(t)|

2

.

α(t) =
i√
2E

∫ t

−∞
dsJ(s)eiEs.

The Schrodinger equation i∂tΩ(t) = V̂I(t)Ω(t) becomes

i∂tΩ = i

(

∂tαâ
+
in − ∂tα∗âin + i∂tβ −

1

2
∂tα.α

∗ +
1

2
∂tα

∗.α

)

Ω.

This reduces to

∂tβ(t) =
i

2
(α∂tα

∗ − α∗∂tα).

Thus

β(t) =
i

2

∫ t

−∞
ds(α∂sα

∗ − α∗∂sα).

• In the limit t −→∞ we obtain

α(+∞) =
i√
2E

∫ +∞

−∞
dsJ(s)eiEs =

i√
2E

j(E) = α.
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−1

2
|α(+∞)|2 = − 1

4E

∫ +∞

−∞
ds

∫ +∞

−∞
ds

′

J(s)J(s
′

)eiE(s−s′ ).

Also

iβ(+∞) = − 1

4E

∫ +∞

−∞
ds

∫ +∞

−∞
ds

′

J(s)J(s
′

)e−iE(s−s′ )θ(s− s′)

+
1

4E

∫ +∞

−∞
ds

∫ +∞

−∞
ds

′

J(s)J(s
′

)eiE(s−s′ )θ(s− s′).

Hence (by using 1− θ(s− s′) = θ(s
′ − s))

iβ(+∞)− 1

2
|α(+∞)|2 = − 1

4E

∫ +∞

−∞
ds

∫ +∞

−∞
ds

′

J(s)J(s
′

)e−iE(s−s′ )θ(s− s′)

− 1

4E

∫ +∞

−∞
ds

∫ +∞

−∞
ds

′

J(s)J(s
′

)eiE(s−s′ )θ(s
′ − s)

= −1

2

∫ +∞

−∞
ds

∫ +∞

−∞
ds

′

J(s)J(s
′

)G(s− s′).

The Feynman propagator in one-dimension is

G(s− s′) = 1

2E

(

e−iE(s−s′ )θ(s− s′) + eiE(s−s′ )θ(s
′ − s)

)

.

The S−matrix is

S = eαâ
+
ine−α

∗âine−
1
2

∫
+∞

−∞
ds

∫
+∞

−∞
ds

′
J(s)J(s

′
)G(s−s′ ).

This is the same formula obtained in the second question except that β is completely fixed
in this case.

Interaction Picture From one hand we compute that

i∂tQ̂I(t, ~p) = −[Q̂I(t, ~p), V̂I(t, ~p)] + Ω(t)i∂tQ̂I(t, ~p)Ω
−1(t).

From the other hand we compute

i∂tQ̂(t, ~p) = U−1(t)[Q̂(~p), Ĥ~p]U(t) + U−1(t)[Q̂(~p), V̂ (t, ~p)]U(t)

= Ω−1(t)[Q̂I(t, ~p), Ĥ~p]Ω(t) + Ω−1(t)[Q̂I(t, ~p), V̂I(t, ~p)]Ω(t).

We can then compute immediately that

i∂tQ̂I(t, ~p) = [Q̂I(t, ~p), Ĥ~p].

Next we compute

i∂tQ̂I(t, ~p) = [Q̂I(t, ~p), Ĥ~p] = eitĤ~p [Q̂(~p), Ĥ~p]e−itĤ~p

= ieitĤ~p P̂ (~p)e−itĤ~p

= iP̂I(t, ~p).
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Similarly we compute

i∂tP̂I(t, ~p) = [P̂I(t, ~p), Ĥ~p] = eitĤ~p [P̂ (~p), Ĥ~p]e−itĤ~p

= −iE2
~pe
itĤ~pQ̂(~p)e−itĤ~p

= −iE2
~pQ̂I(t, ~p).

Thus the operators Q̂I(t, ~p) and P̂I(t, ~p) describe free oscillators.

Time Ordering Operator We have

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t1)V̂I(t2)V̂I(t3) , if t1 > t2 > t3

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t2)V̂I(t1)V̂I(t3) , if t2 > t1 > t3

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t1)V̂I(t3)V̂I(t2) , if t1 > t3 > t2

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t3)V̂I(t1)V̂I(t2) , if t3 > t1 > t2

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t2)V̂I(t3)V̂I(t1) , if t2 > t3 > t1

T (V̂I(t1)V̂I(t2)V̂I(t3)) = V̂I(t3)V̂I(t2)V̂I(t1) , if t3 > t2 > t1.

Thus T (V̂I(t1)V̂I(t2)V̂I(t3)) is a function of t1, t2 and t3 which is symmetric about the axis t1 =
t2 = t3. Therefore the integral of T (V̂I(t1)V̂I(t2)V̂I(t3)) in the different six regions t1 > t2 > t3,
t2 > t1 > t3, etc gives the same result. Hence

1

6

∫ t

−∞
dt1

∫ t

−∞
dt2

∫ t

−∞
dt3T (V̂I(t1)V̂I(t2)V̂I(t3)) =

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3V̂I(t1)V̂I(t2)V̂I(t3).

Wick’s Theorem For Forced Scalar Field In order to compute iβ~p(t) when t −→ +∞ we
start from

∂tΩ~p(t)Ω~p(t)
−1 = α̇~p âin(~p)

+ − α̇∗
~p âin(~p) +

V

2
α̇∗
~p α~p −

V

2
α̇~p α

∗
~p + iβ̇~p.

In deriving this last result we used

eα~p(t)âin(~p)
+

âin(~p) = (âin(~p)− V α~p(t))eα~p(t)âin(~p)
+

.

Clearly we must have

∂tΩ~p(t)Ω~p(t)
−1 = −iVI(t, ~p).

From the second line of (4.58) we have

Ω(t) = T

(

e
i
V

∫ t
−∞

ds
∑

~p
1√
2E~p

(

j(s,~p)∗âin(~p)e
−iE~ps

+j(s,~p)âin(~p)
+e

iE~ps
)
)

.

The potential V̂I(t, ~p) can then be defined by

V̂I(t, ~p) = − 1

V

1
√

2E~p

(

j(t, ~p)∗âin(~p)e
−iE~pt + j(t, ~p)âin(~p)

+eiE~pt

)

.
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The differential equation ∂tΩ~p(t)Ω~p(t)
−1 = −iVI(t, ~p) yields then the results

α̇~p =
i

V

j(t, ~p)
√

2E~p
eiE~pt.

β̇~p =
iV

2

(

α̇∗
~p α~p − α̇~p α∗

~p

)

.

The first equation yields precisely the formula (4.64). The second equation indicates that the
phase β(t) is actually not zero. The integration of the second equation gives

β~p =
1

4iV E~p

∫ t

−∞
ds

∫ s

−∞
ds

′

j(s, ~p)j(s
′

, ~p)∗eiE~p(s−s
′
)

− 1

4iV E~p

∫ t

−∞
ds

∫ s

−∞
ds

′

j(s, ~p)∗j(s
′

, ~p)e−iE~p(s−s
′
).

By summing over ~p and taking the limit t −→∞ we obtain

i
∑

~p

β~p(+∞) =
1

2

∫

d4x

∫

d4x
′

J(x)J(x
′

)

(

θ(t− t′)
V

∑

~p

1

2E~p
eip(x−x

′
) − θ(t− t′)

V

∑

~p

1

2E~p
e−ip(x−x

′
)

)

.

Unitarity of The S−Matrix

• The solution Ω(t) can be written explicitly as

Ω(t) =

∞
∑

n=0

(−i)n
∫ t

−∞
dt1

∫ t1

−∞
dt2...

∫ tn−1

−∞
dtnV̂I(t1)V̂I(t2)...V̂I(tn).

The first few terms of this expansion are

Ω(t) = 1− i
∫ t

−∞
dt1V̂I(t1) + (−i)2

∫ t

−∞
dt1

∫ t1

−∞
dt2V̂I(t1)V̂I(t2) + ...

Let us rewrite the different terms as follows
∫ t

−∞
dt1V̂I(t1) =

∫ +∞

−∞
dt1V̂I(t1)−

∫ +∞

t

dt1V̂I(t1).

∫ t

−∞
dt1

∫ t1

−∞
dt2V̂I(t1)V̂I(t2) =

∫ +∞

−∞
dt1

∫ t1

−∞
dt2V̂I(t1)V̂I(t2) +

∫ +∞

t

dt1

∫ +∞

t1

dt2V̂I(t1)V̂I(t2)

−
∫ +∞

t

dt1

∫ +∞

−∞
dt2V̂I(t1)V̂I(t2).

Hence to this order we have

Ω(t) =

(

1 + i

∫ +∞

t

dt1V̂I(t1) + i2
∫ +∞

t

dt1

∫ +∞

t1

dt2V̂I(t1)V̂I(t2) + ...

)

×
(

1− i
∫ +∞

−∞
dt1V̂I(t1) + (−i)2

∫ +∞

−∞
dt1

∫ t1

−∞
dt2V̂I(t1)V̂I(t2) + ...

)

= T̄

(

ei
∫ +∞

t
dsV̂I (s)

)

S.
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The operator T̄ is the anti time-ordering operator, i.e. it orders earlier times to the left and
later times to the right. This result is actually valid to all orders in perturbation theory.
Taking the limit t −→ −∞ in this equation we obtain

S−1 = T̄

(

ei
∫+∞

−∞
dsV̂I(s)

)

.

• Recall that

Ω(t) = T

(

e−i
∫

t
−∞

dsV̂I(s)

)

.

By taking the Hermitian conjugate we obtain

S+ = T̄

(

ei
∫+∞

−∞
dsV̂I(s)

)

.

In other words S is unitary as it should be. This is expected since by construction the
operators U(t) and Ω(t) are unitary.

Evolution Operator Ω(t) and Gell-Mann Low Formula Straightforward.

Interaction Fields are Free Fields We compute

i∂tφ̂I(t, ~x) = [φ̂I(t, ~x), Ĥ0]

= eitĤ0 [φ̂(~x), Ĥ0]e
−itĤ0

= eitĤ0

∫

d3~p

(2π)3
ei~p~x

∫

+

d3~q

(2π)3
[Q̂(~p), P̂+(~q)]P̂ (~q)e−itĤ0

= ieitĤ0

∫

d3~p

(2π)3
ei~p~xP̂ (~p)e−itĤ0

= ieitĤ0 π̂(~x)e−itĤ0

= iπ̂I(t, ~x).

Similarly

i∂tπ̂I(t, ~x) = [π̂I(t, ~x), Ĥ0]

= eitĤ0 [π̂(~x), Ĥ0]e
−itĤ0

= eitĤ0

∫

d3~p

(2π)3
ei~p~x

∫

+

d3~q

(2π)3
E2
~q [P̂ (~p), Q̂

+(~q)]Q̂(~q)e−itĤ0

= −ieitĤ0

∫

d3~p

(2π)3
E2
~pe
i~p~xQ̂(~p)e−itĤ0

= i(~∇2 −m2)eitĤ0 φ̂(~x)e−itĤ0

= i(~∇2 −m2)φ̂I(t, ~x).

These last two results indicates that the interaction field φ̂I is a free field since it obeys the
equation of motion

(∂2t − ~∇2 +m2)φ̂I(t, ~x) = 0.
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LSZ Reduction Formulae

• Let us consider the integral

∫ +∞

−∞
dt∂t

(

eiE~pt(i∂t + E~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...)

)

.

We compute

∫ +∞

−∞
dt∂t

(

eiE~pt(i∂t + E~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...)

)

=
√

2E~p

(

âout(~p)T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)

− T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)âin(~p)

)

.

On the other hand we compute

∫ +∞

−∞
dt∂t

(

eiE~pt(i∂t + E~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...)

)

=

i

∫ +∞

−∞
dteiE~pt(∂2t + E2

~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...).

Hence we obtain the LSZ reduction formulae

i

∫ +∞

−∞
dteiE~pt(∂2t + E2

~p)T (Q̂(t, ~p)Q̂(t1, ~p1)Q̂(t2, ~p2)...) =

√

2E~p

(

âout(~p)T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)− T (Q̂(t1, ~p1)Q̂(t2, ~p2)...)âin(~p)

)

.

• We use the identity (with the notation ∂2 = ∂µ∂
µ)

∫

d3xe−i~p~x(∂2 +m2)φ̂(x) = (∂2t + E2
~p)Q̂(t, ~p).

The above LSZ reduction formulae can then be put in the form

i

∫

d4xeipx(∂µ∂
µ +m2)T (φ̂(x)φ̂(x1)φ̂(x2)...) =

√

2E~p

(

âout(~p)T (φ̂(x1)φ̂(x2)...)− T (φ̂(x1)φ̂(x2)...)âin(~p)
)

.

• Straightforward.

Wick’s Theorem Straightforward.

The 4−Point Function in Φ−Four Theory The first order in perturbation theory is given
by

i

∫

d4y1 < 0|T
(

φ̂in(x1)...φ̂in(x4)Lint(y1)
)

|0 > = i(− λ
4!
)

∫

d4y1 < 0|T
(

φ̂in(x1)...φ̂in(x4)φ̂in(y1)
4

)

|0 > .

In total we 7.5.3 = 105 contractions which we can divide into three classes
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• We contract only two external points together and the other two external points are con-
tracted with the internal points. Here we have six diagrams corresponding to contracting
(x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4) and (x3, x4). Each diagram corresponds to
12 contractions coming from the 4 possibilities opened to the first external point to be
contracted with the internal points times the 3 possibilities opened to the second external
point when contracted with the remaining internal points. See figure 9a). The value of
these diagrams is

12i(− λ
4!
)

∫

d4y1DF (0) ×
[

DF (x1 − x2)DF (x3 − y1)DF (x4 − y1)

+DF (x1 − x3)DF (x2 − y1)DF (x4 − y1)
+DF (x1 − x4)DF (x3 − y1)DF (x2 − y1)
+DF (x2 − x3)DF (x1 − y1)DF (x4 − y1)
+DF (x2 − x4)DF (x3 − y1)DF (x1 − y1)

+DF (x3 − x4)DF (x1 − y1)DF (x2 − y1)
]

.

The corresponding Feynman diagram is shown on figure 10a).

• We can contract all the internal points among each other. In this case we have three distinct
diagrams corresponding to contracting x1 with x2 and x3 with x4 or x1 with x3 and x2
with x4 or x1 with x4 and x2 with x3. Each diagram corresponds to 3 contractions coming
from the three possibilities of contracting the internal points among each other. See figure
9b). The value of these diagrams is

3i(− λ
4!
)

∫

d4y1DF (0)
2

[

DF (x1 − x2)DF (x3 − x4) +

DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3)
]

.

The corresponding Feynman diagram is shown on figure 10b).

• The last possibility is to contract all the internal points with the external points. The first
internal point can be contracted in 4 different ways with the external points, the second
internal point will have 3 possibilities, the third internal point will have two possibilities and
the fourth internal point will have one possibility. Thus there are 4.3.2 = 24 contractions
corresponding to a single diagram. See figure 9c). The value of this diagram is

24i(− λ
4!
)

∫

d4y1

[

DF (x1 − y1)DF (x2 − y1)DF (x3 − y1)DF (x4 − y1)
]

.

The corresponding Feynman diagram is shown on figure 10c).

The second order in perturbation theory is given by

i2

2!

∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)...φ̂in(x4)Lint(y1)Lint(y2)
)

|0 > =

−1

2
(
λ

4!
)2
∫

d4y1

∫

d4y2 < 0|T
(

φ̂in(x1)...φ̂in(x4)φ̂in(y1)
4φ̂in(y2)

4

)

|0 > .

There are in total 11.9.7.5.3 contractions.
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• We contract two of the internal points together whereas we contract the other two with
the external points. We have 6 possibilities corresponding to the 6 contractions (x1, x2),
(x1, x3), (x1, x4), (x2, x3), (x2, x4) and (x3, x4). Thus we have (6).8.7.5.3 contractions in
all involved. We focus on the contraction (x3, x4) since the other ones are similar. In this
case we obtain 4 contractions which are precisely a)1, b)1 ,a)2 and b)2 shown on figure 3).
The value of these diagrams is

−1

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x3 − x4) ×
[

8.3.3DF (x1 − y1)DF (x2 − y1)DF (0)
3

+8.3.4.3DF (x1 − y1)DF (x2 − y1)DF (y1 − y2)2DF (0)

+8.4.3.3DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)DF (0)
2

+8.4.3.2DF (x1 − y1)DF (x2 − y2)DF (y1 − y2)3
]

.

Clearly these diagrams are given by

DF (x3 − x4)×
(

a)1 + b)1 + a)2 + b)2 of figure 4

)

.

To get the other 5 possibilities we should permute the points x1,x2,x3 and x4 appropriately.

• Next we can contract the 4 internal points together giving

DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3).

This should be multiplied by the sum of 7.5.3 contractions of the external points given on
figure 11. Compare with the contractions on figure 3a)3, 3b)3 and 3c)3. The value of these
diagrams is

−1

2
(
λ

4!
)2
(

DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +

DF (x1 − x4)DF (x2 − x3)
)∫

d4y1

∫

d4y2

(

3.3DF (0)
4 +

6.4.3DF (0)
2DF (y1 − y2)2 + 4.3.2DF (y1 − y2)4

)

.

The corresponding Feynman diagrams are shown on figure 12.

• There remains 48.7.5.3 contractions which must be accounted for. These correspond to
the contraction of all of the internal points with the external points. The set of all these
contractions is shown on figure 13. The corresponding Feynman diagrams are shown on
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figure 14. The value of these diagrams is

−1

2
(
λ

4!
)2
∫

d4y1

∫

d4y2DF (x1 − y1) ×
[

8.3.2.3.4DF (x2 − y1)DF (x3 − y1)DF (x4 − y2)DF (y1 − y2)DF (0) +

8.3.2.3DF (x2 − y1)DF (x3 − y1)DF (x4 − y1)DF (0)
2 +

8.3.4.2.3DF (x2 − y1)DF (x3 − y2)DF (x4 − y1)DF (y1 − y2)DF (0) +

8.3.4.3DF (x2 − y1)DF (x3 − y2)DF (x4 − y2)DF (0)
2 +

8.3.4.3.2DF (x2 − y1)DF (x3 − y2)DF (x4 − y2)DF (y1 − y2)2 +

8.4.3.3DF (x2 − y2)DF (x3 − y1)DF (x4 − y2)DF (0)
2 +

8.4.3.3.2DF (x2 − y2)DF (x3 − y1)DF (x4 − y2)DF (y1 − y2)2 +

8.4.3.2.3DF (x2 − y2)DF (x3 − y1)DF (x4 − y1)DF (y1 − y2)DF (0) +

8.4.3.3DF (x2 − y2)DF (x3 − y2)DF (x4 − y1)DF (0)
2 +

8.4.3.2.3DF (x2 − y2)DF (x3 − y2)DF (x4 − y2)DF (y1 − y2)DF (0) +

8.4.3.3.2DF (x2 − y2)DF (x3 − y2)DF (x4 − y1)DF (y1 − y2)2
]

.

Evolution Operator Ω(t, t
′

) Straightforward.

Φ−Cube Theory Straightforward.

Examination QFT

Master 2

2011-2012
Take Home

Exercise 1:

1)

< Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > = SF (x− y) + (−ie)2
∫

dz1

∫

dz2D
µν
F (z1 − z2).SF (x − z1)γµSF (z1 − z2)

× γνSF (z2 − y). (B.13)

2)

∫

d4x eip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
i

γ.p−me + iǫ
+

i

γ.p−me + iǫ
(−iΣ2(p))

i

γ.p−me + iǫ
.

(B.14)

iΣ2(p) = e2
∫

d4k

(2π)4
γµ

γ.k +me

k2 −m2
e + iǫ

γµ
1

(p− k)2 + iǫ
. (B.15)
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3) By employing Feynman parameters, Wick rotation and gamma matrices in d dimensions
and then going to spherical coordinates we find

Σ2(p) = e2
∫

ddk

(2π)d
γµ

γ.k +me

k2 −m2
e + iǫ

γµ
1

(p− k)2 + iǫ

=
e2

(4π)
d
2

Γ(2− d

2
)

∫ 1

0

dx
me(4 − ǫ)− (1− x)(2 − ǫ)γ.p

(xm2
e + (1− x)µ2 − x(1− x)p2)2− d

2

. (B.16)

Since for d −→ 4 or equivalently ǫ = 4− d −→ 0 we have

Γ(2− d

2
) =

2

ǫ
− γ +O(ǫ). (B.17)

The UV divergence is logarithmic.

4) The physical (renormalized) mass mr is the pole of the dressed propagator which near
p2 = m2

r is known to behave as
∫

d4x eip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
iZ2

γ.p−mr + iǫ
. (B.18)

By considering the one-particle irreducible (1PI) diagrams with two electron lines the exact
electron propagator becomes (by dropping the Feynman prescription)
∫

d4x eip(x−y) < Ω|T (ψ̂(x) ¯̂ψ(y))|Ω > =
i

γ.p−me
+

i

γ.p−me
(−iΣ(p)) i

γ.p−me

+
i

γ.p−me
(−iΣ(p)) i

γ.p−me
(−iΣ(p)) i

γ.p−me
+ ...

=
i

γ.p−me − Σ(p)
. (B.19)

The pole is given by the equation

(γ.p−me − Σ(p))|γ.p=mr = 0. (B.20)

The renormalized mass at one-loop is thus

mr = me +Σ2(me). (B.21)

5) It is not difficult to show that

i

γ.p−me − Σ(p)
=

iZ2

γ.p−mr
. (B.22)

The wave-function renormalization Z2 is given in terms of the electron self-energy by

Z−1
2 = 1− dΣ(p)

dγ.p
|γ.p=mr . (B.23)

At one-loop we get

Z−1
2 = 1− dΣ2(p)

dγ.p
|γ.p=mr

= 1 +
e2

(4π)
d
2

Γ(2− d

2
)

∫ 1

0

dx

(x2m2
e + (1− x)µ2)2−

d
2

[

(1− x)(2 − ǫ)

− ǫx(1− x)m2
e

x2m2
e + (1− x)µ2

(2 + 2x− ǫx)
]

. (B.24)
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δ2 = − e2

(4π)
d
2

Γ(2− d

2
)

∫ 1

0

dx

(x2m2
e + (1− x)µ2)2−

d
2

[

(1− x)(2 − ǫ)

− ǫx(1 − x)m2
e

x2m2
e + (1 − x)µ2

(2 + 2x− ǫx)
]

= − e2

(4π)
d
2

Γ(2− d

2
)

∫ 1

0

dx

((1 − x)2m2
e + xµ2)2−

d
2

[

x(2 − ǫ)

+
ǫx(1 − x)m2

e

(1− x)2m2
e + xµ2

(2x− 4 + ǫ(1− x))
]

. (B.25)

Exercise 2

1) There are 11 diagrams in total. Eight of them are given by VERTEX, WAVEFUNCTION
and PHOTONVACUUM. There is a digaram in which the electron internal loop in
PHOTONVACUUM is replaced by a muon internal loop. The remaining two diagrams
are of the same type as RAD5 and RAD6.

2) The probability amplitude is

(2π)4δ4(k + p− k′ − p′

)
ie2

q2
(ūs

′

(p
′

)Γµ(p
′

, p)us(p))(ūr
′

(k
′

)γµu
r(k)). (B.26)

Γµ(p
′

, p) = γµ + ie2
∫

d4l

(2π)4
1

(l − p)2 + iǫ

(

γλ
i(γ.l

′

+me)

l′2 −m2
e + iǫ

γµ
i(γ.l+me)

l2 −m2
e + iǫ

γλ

)

. (B.27)

l
′

= l − q , q = p− p′

. (B.28)

3) We find

1

((l − p)2 − µ2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
= 2

∫ 1

0

dxdydz δ(x+ y + z − 1)
1

[

L2 −∆+ iǫ
]3 .

(B.29)

L = l − xp− yq , ∆ = (1− x)2m2
e + xµ2 − yzq2. (B.30)

4) Straightforward.

5) By using Lorentz invariance we can make the replacement

γλ.i(γ.l
′

+me).γ
µ.i(γ.l +me)γλ −→ −

[

1

d
γλγργµγργλ.L

2 + (xp+ yq)ρ(xp+ yq)σγ
λγργµγσγλ

+ me(xp+ yq)ργ
λγργµγλ − qρ(xp+ yq)σγ

λγργµγσγλ

− meqργ
λγργµγλ +me(xp+ yq)ργ

λγµγργλ +m2
eγ
λγµγλ

]

.

(B.31)



424 YDRI QFT

By using the properties of the gamma matrices in d dimensions (equation (7.89) of Peskin
and Schroeder) we get

γλ.i(γ.l
′

+me).γ
µ.i(γ.l +me)γλ −→ −

[

(2− ǫ)2
d

γµ.L2 + (ǫ− 2)(xp+ yq)ρ(xp+ yq)σγ
ργµγσ

+ 2me(4− ǫ)(xp+ yq)µ − 4meq
µ − ǫqρ(xp+ yq)σγ

ργµγσ

+ 2qρ(xp+ yq)σγ
σγµγρ + ǫmeqργ

ργµ − (2 − ǫ)m2
eγ
µ

]

.

(B.32)

This expression is sandwiched between ūs
′

(p
′

) and us(p) and thus we can use the on-

shell conditions γ.pus(p) = meu
s(p) and ūs

′

(p
′

)γ.p
′

= meū
s
′

(p
′

). We recall also that
x+ y + z = 1. We then get

γλ.i(γ.l
′

+me).γ
µ.i(γ.l +me)γλ −→ −

[

(2− ǫ)2
d

γµ.L2 + 2me(4− ǫ)(xp+ yq)µ − 4meq
µ

+ me

(

2z(x+ y)− ǫz(x+ y) + ǫ

)

(γ.p)γµ

+ me(2− ǫ)y(1− y)γµ(γ.p
′

) +m2
eγ
µ

(

− 2y − 2 + ǫ(x+ y)

− (ǫ− 2)y(x+ y)

)

+

(

− 2(1− y)(1− z) + ǫyz

)

(γ.p)γµ(γ.p
′

)

]

. (B.33)

By using the results of question 4) we obtain

γλ.i(γ.l
′

+me).γ
µ.i(γ.l +me)γλ −→ γµ

[

− (2− ǫ)2
d

L2 +m2
e

(

2(1− x2 − 2x) + ǫ(1− x)2
)

+ q2
(

2(1− y)(1− z)− ǫyz
)]

+me

[

2x(x− 1)− ǫ(x− 1)2
]

× (p+ p
′

)µ. (B.34)

The term proportional to qµ = (p − p′

)µ vanishes by the symmetry y ↔ z. This is Ward
identity in this case.

6) Next we use the Gordon’s identity

ūs
′

(p
′

)(p+ p
′

)µus(p) −→ ūs
′

(p
′

)

[

2meγ
µ + iσµνqν

]

us(p). (B.35)

We get then

γλ.i(γ.l
′

+me).γ
µ.i(γ.l +me)γλ −→ γµ

[

− (2− ǫ)2
d

L2 +m2
e

(

2(1 + x2 − 4x)− ǫ(1− x)2
)

+ q2
(

2(1− y)(1− z)− ǫyz
)]

+me

[

2x(x− 1)− ǫ(x− 1)2
]

× iσµνqν . (B.36)
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From here it is easy to see that

Γµ(p
′

, p) = γµF1(q
2) +

iσµνqν
2me

F2(q
2). (B.37)

F1(q
2) = 1 + 2ie2

∫

dxdydz δ(x+ y + z − 1)

∫

ddL

(2π)d
1

[

L2 −∆+ iǫ
]3

[

− (2− ǫ)2
d

L2

+ m2
e

(

2(1 + x2 − 4x)− ǫ(1− x)2
)

+ q2
(

2(1− y)(1 − z)− ǫyz
)]

. (B.38)

F2(q
2) = 2ie2

∫

dxdydz δ(x + y + z − 1)

∫

ddL

(2π)d
1

[

L2 −∆+ iǫ
]3 2m

2
e

[

2x(x− 1)− ǫ(x− 1)2
]

.

(B.39)

7)

∫

ddLE
(2π)d

L2
E

(L2
E +∆)3

=
1

(4π)
d
2

1

∆2− d
2

Γ(2− d

2
).
d

4
. (B.40)

∫

ddLE
(2π)d

1

(L2
E +∆)3

=
1

(4π)
d
2

1

∆3− d
2

Γ(3− d

2
).
1

2
. (B.41)

8) The form factor F1(q
2) is given explicitly by

F1(q
2) = 1 + 2e2

∫

dxdydz δ(x+ y + z − 1)

∫

ddLE
(2π)d

1
[

L2
E +∆

]3

[

(2− ǫ)2
d

L2
E

+ m2
e

(

2(1 + x2 − 4x)− ǫ(1− x)2
)

+ q2
(

2(1− y)(1− z)− ǫyz
)]

= 1 +
e2

(4π)
d
2

∫

dxdydz δ(x + y + z − 1)

[

(2− ǫ)2
2

Γ(2− d
2 )

∆2− d
2

+
Γ(3− d

2 )

∆3− d
2

(

m2
e

(

2(1 + x2 − 4x)− ǫ(1− x)2
)

+ q2
(

2(1− y)(1− z)− ǫyz
))]

.

(B.42)

The gamma function Γ(2 − d
2 ) has a pole at d = 4 which goes as 1/ǫ. Thus F1(q

2) is
logarithmically divergent.

9) The renormalization constant Z1 is defined by

Γµ(p
′

, p)|q=0 = γµZ−1
1 . (B.43)

We conclude that

Z−1
1 = F1(0). (B.44)
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The counter term δ1 = Z1− 1 is therefore given at one-loop by (with δF1(q
2) = 1−F1(q

2)
and ∆0 = (1 − x)2m2

e + xµ2)

δ1 = −δF1(0) = − e2

(4π)
d
2

∫

dxdydz δ(x+ y + z − 1)

[

(2− ǫ)2
2

Γ(2− d
2 )

∆
2− d

2
0

+
Γ(3− d

2 )

∆
3− d

2
0

.m2
e

(

2(1 + x2 − 4x)− ǫ(1− x)2
)]

. (B.45)

10) We use the identity

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1) = 1− x. (B.46)

Then

δ1 = − e2

(4π)
d
2

∫

dx(1 − x)
[

(2 − ǫ)2
2

Γ(2− d
2 )

∆
2− d

2
0

+
Γ(3− d

2 )

∆
3− d

2
0

.m2
e

(

2(1 + x2 − 4x)− ǫ(1− x)2
)]

= − e2

(4π)
d
2

∫

dx(1 − x)
[

(2 − ǫ)Γ(2−
d
2 )

∆
2− d

2
0

+
Γ(3− d

2 )

∆
3− d

2
0

.m2
e

(

2(1 + x2 − 4x)− 2(1− x)2
)]

= − e2

(4π)
d
2

∫

dx

[

x(2 − ǫ)Γ(2−
d
2 )

∆
2− d

2
0

+ (1 − 2x)(2− ǫ)Γ(2−
d
2 )

∆
2− d

2
0

+ (1− x)Γ(3 −
d
2 )

∆
3− d

2
0

m2
e ×

(

2(1 + x2 − 4x)− 2(1− x)2
)]

= − e2

(4π)
d
2

∫

dx

[

x(2 − ǫ)Γ(2−
d
2 )

∆
2− d

2
0

− 2m2
e(2− ǫ)x(1 − x)2

Γ(3− d
2 )

∆
3− d

2
0

+ (1 − x)Γ(3−
d
2 )

∆
3− d

2
0

m2
e ×

×
(

2(1 + x2 − 4x)− 2(1− x)2
)]

= − e2

(4π)
d
2

∫

dx

[

x(2 − ǫ)Γ(2−
d
2 )

∆
2− d

2
0

+ 2m2
ex(1 − x)

(

2x− 4 + ǫ(1− x)
)

Γ(3− d
2 )

∆
3− d

2
0

]

= δ2. (B.47)

Exercise 3

1) The self-energy of the photon at one-loop is

iΠµν2 (q) = (−1)
∫

d4k

(2π)4
tr(−ieγµ) i(γ.k +me)

k2 −m2
e + iǫ

(−ieγν) i(γ.(k + q) +me)

(k + q)2 −m2
e + iǫ

. (B.48)

2) We find

Π2(q
2) = −4e2Γ(2−

d
2 )

(4π)
d
2

∫ 1

0

dx
2x(1− x)
∆2− d

2

, ∆ = m2
e − x(1 − x)q2. (B.49)

This is logarithmically divergent.
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3) We know that at one-loop Z3 = 1/(1 − Π2(0)) = 1 + Π2(0). Hence δ3 = Π2(0). In other
words

δ3 = −4e2Γ(2−
d
2 )

(4π)
d
2

∫ 1

0

dx
2x(1 − x)
m4−d
e

. (B.50)

4) We know that

e2eff =
e2R

1− Π2(q2) + Π2(0)
. (B.51)

eR = e
√

Z3. (B.52)

Thus

e2eff =
e2R

1− αR

3π

[

ln −q2
m2

e
− 5

3 +O(
m2

e

−q2 )
]
. (B.53)

The effective charge becomes large at high energies −q2 >> m2
e.

Exercise 4 See lecture.


