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Abstract:

I discuss the reasons for believing that phase transitions occurred in the very early history of the universe, and the topological structures that
may have been generated thereby—in particular, the strings and monopoles. The aim is mainly pedagogical, with special emphasis on unsolved
problems.

1. Introduction

One of the most intriguing recent developments in particle physics is its interaction with cosmology.
At least tentative answers have been found to several of the basic questions of cosmology, and
cosmology in turn has been shown to yield rather stringent limits on some of the parameters of particle
physics.

Many features of the early universe have analogues in condensed matter physics. It is my hope, in
giving.this talk, that condensed matter physicists may be encouraged to take an interest in what was,
after all, the largest condensed matter system ever. Perhaps they can see how to resolve some of the
outstanding problems.

I shall assume for most of this talk that the standard cosmological picture, the hot big bang, is
correct. The most basic question of all - why the big bang? — remains unanswered. Moreover, we have
no real explanation of the initial state. The simplest assumption is that soon after the Planck time
(t =10"*s) the universe was in a state of thermal equilibrium at a temperature not far below the Planck
mass (10*®eV). Why regions that can have had no previous causal contact should have been in
equilibrium is quite unclear, and for the moment must be taken as an axiom. To trace evolution back so
far is audacious; to go further is, at present, impossible, for beyond the Planck mass quantum gravity
effects must dominate, and as yet we have no understanding of such an environment.

Given the initial state, however, we can do quite well. There is now at least a plausible explanation
for the generation of baryon number [1], yielding a numerical estimate of the baryon-to-photon number
ratio that is at least in the right ballpark to fit the experimental value 107,

Going to a much later stage in the evolutionary history, we have a good understanding of
nucleosynthesis and, in particular, the helium-to-hydrogen ratio [2]. The requirement that our fun-
damental theory should not spoil the agreement here gives severe limits on total numbers of particles of
various types which in turn restrict the fundamental theory.

Similarly, the observed isotropy of the 3 K background radiation [3] gives strong constraints on any
mechanism that generates inhomogeneities in the early universe. Some inhomogeneities are, however,
badly needed, to allow us to explain the formation of galaxies which presumably evolved by gravita-
tional condensation from an earlier near-homogenous state [4].
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At first sight it may seem that discussions of the state of the universe at far above nuclear densities
involve such enormous extrapolation of our theories that we can have little confidence in the results.
This may be true but there is also some reason to assert that it is precisely in this situation that our
theories are most trustworthy. If one believes the currently popular dogma of asymptotic freedom —and
avoids a theory with too many fermions — then at the temperatures involved, all interactions should be
effectively weak, so that low-order perturbation theory should be a reliable guide. Moreover, in contrast
to quantum chromodynamics at laboratory energies, our theory has none of the complexities of
confinement. At such densities quarks can never get far enough apart to form individual hadrons.

I shall begin (in sections 2 and 3) by reviewing, briefly, spontaneously broken gauge theories and the
early history of the universe. Then, in section 4, I will try to explain why phase transitions should have
occurred and what happens at such transitions. In particular, we are interested in topological sin-
gularities of various kinds — domain walls, strings or monopoles. Their classification will be discussed in
section 5. Strings, and how they evolve in time are the subject of section 6. In particular, I shall examine
their possible relevance to the problem of galaxy formation. Section 7 will deal with monopoles,
especially possible ways of avoiding the disaster of over-population by monopoles. One specific
possibility involves the assumption that the phase transitions may be strongly first-order. Finally, in
section 8, I examine some implications of the effective cosmological term induced by symmetry
restoration.

2. Spontaneously broken gauge theories

There is now very good reason to believe that elementary particles and their interactions are
described by a spontaneously broken gauge theory. It is a very attractive hypothesis that the weak,
electromagnetic and strong interactions are all united at extremely high energies in a grand unified
theory [5, 6], described by a group such as SU(S). Then there are at least two distinct stages in the
spontaneous symmetry breaking. At a grand unification mass, around 10'* GeV, we have

SUB)—>SUEB)x SUR)x U(1)
colour Weinberg-Salam

while at the much lower scale of 10° GeV, the Weinberg-Salam symmetry is broken:

SUB)xSUR2)xU1)-SUB)xU(1).
colour electromagnetism

This is of course only the simplest of many possible scenarios. Which one nature chooses, we do not
know, but the general idea is probably correct.

The grand unification mass is obtained from a renormalization-group calculation which shows that all
three coupling constants, associated with the three separate groups SU(3), SU(2) and U(1) come
together at this mass at a value of about [6]

a = g*l4r == )

I shall suppose for pedagogical reasons that the spontaneous symmetry breaking mechanism is via
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the acquisition of a non-zero vacuum expectation value by a Higgs scaler field. However, this is an
inessential assumption. It would really make little difference to our arguments if this fundamental scalar
field were replaced by a composite structure, like a Cooper pair [7].

Moreover, I shall ignore fermions altogether. Provided the number cf species is reasonably small,
they have little effect on the qualitative behaviour of the universe in its early stages. Too many
fermions, however, would spoil the asymptotic freedom, changing the sign of the renormalization group
function B(g) so that g - rather than tending to zero at high energies [8]. I shall assume that such a
catastrophe does not occur. (If it does, all bets are off: we can calculate nothing at all about the early
universe.)

Let us consider a typical gauge theory, described by the lagrangian density

S =3rF, F* +3D,¢ - D*¢ — U(d). @

Here ¢ belongs to a representation of the gauge group G with real anti-symmetric generators T,
satisfying

tr T,T, = —36.-

The covariant derivative of ¢ is
D.é = d.¢ — gAu¢,

where A, = AL T,, and g is the gauge coupling constant. Also
E,.=dA,-0,A +glA., Al

Finally, U(¢) is a polynomial in ¢ of degree 4 (to ensure renormalizability) which is assumed invariant
under G.

A pedagogically convenient, though physically unrealistic, example is obtained by taking ¢ to belong
to the N-dimensional vector representation of O(N), with

U($)=3sh*(¢* - 7Y, 6)

where h? is the Higgs coupling constant [9).

Because of the form of this potential, with a maximum at ¢ =0, ¢ tends to acquire a nonzero
vacuum expectation value (¢). This may be calculated by minimizing the effective potential V(¢), which
is simply the minimum free-energy density for states in which (¢) has a value equal to the argument of
V. We have, in a suitably chosen gauge,

Vg)=U(@)+a( ")

so that in the tree approximation

(¢ =n
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This equation does not fix the direction of (¢), only its magnitude. We have, in fact, a degenerate set of
vacuum states, labelled by N — 1 angle variables.

In the general case, the set of degenerate vacua forms a quotient space M. If H is the subgroup of G
which leaves a particular (¢) unaltered, then M = G/H, the set of all right cosets of H in G. In our
example, H is O(N — 1) and

M = O(N)/O(N —1) =S,

the (N — 1)-dimensional sphere (in N-dimensional space).

The magnitude of (¢) fixes the masses of the various particles in the theory. For instance, in the
example we have one Higgs particle with mass ms=hn and (N — 1) massive vectors with my = gn,
together with (N — 1)(N —2) massless vectors, the gauge bosons associated with the unbroken sym-
metry subgroup H [9, 10].

Note that in the case N =2, this is the Landau-Ginzburg model [11]. Of course, the correlation
length which is the chief determinant of the size of fluctuations in the magnitude of ¢ is £ = 1/ms, while
the penetration depth is A = 1/my. The model will correspond to a type 1 superconductor if h <g or
ms<my and type 2 in the contrary case. It is interesting to note that some supersymmetric theories
have h = g and so fall exactly on the boundary between the two.

To study the behaviour of these theories at high temperature, we need to compute the one-loop
correction to the effective potential. The leading terms at high T are [12]

2 4 1 2 2 1
V(9) = U@)— N gg T*+57 M) T+ 0T, @

where N is the total number of distinct helicity states of low-mass particles (i.e. those with m < T),
counting fermions with a factor 7/8, while > is the sum of squared masses of boson helicity states plus
half that for fermions. (Strictly speaking, V is gauge-dependent, but at least for our present purposes we
can ignore this complication.) Though ¥ is a constant, /> depends on the vacuum expectation value ¢
because the masses do. For instance, in our example

N=N?
M) = INR (B~ 1)+ 27+ 3(N — 1)g’6”.

Since /> generally contains a positive term in ¢ there will be a critical temperature T. above which
={() is a minimum of V. In the example
p

T2 = 12h%n?
¢ (N +2)*~+6(N —1)g°

and more generally one finds (as a rough order-of-magnitude estimate)

T.~n~mylg
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Then for T < T, we have the ordered phase with
(¢F =7°(0-T°IT?) ©)

while for T > T, (¢) =0, we are in the symmetric phase.

It is possible when there are several coupling constants to so arrange matters that there are several
phase transitions, sometimes going the “wrong” way [13] - more symmetry at lower temperature - but
the situation described above may be regarded as the norm.

3. The early universe

Let R(¢) be the radius of a spherical volume expanding with the general expansion of the universe (a
“comoving” sphere). Assuming isotropy and homogeneity, i.e. the standard Friedmann-Robertson-
Walker universe, its time development is governed by Einstein’s equation [14],

(R/IRY=57Gp —K/R*+ A (6)

where p is the energy density and K and A are constants. For the moment let us set the cosmological
constant A equal to zero, which is indeed the experimental value to a good approximation, at least in
the present phase of the universe [15]. I shall return to the question of whether it had a different value
in earlier phases in section 8.

It is interesting to rewrite (6) in the form of an energy conservation equation for a particle on the
surface of our sphere [14]:

iR*- GpGnR>)/R = -3K. (7

We see then that K >0 corresponds to a bound orbit. This is the case of a closed universe that will
eventually reverse its expansion and contract to a new singularity. Similarly the unbound case K <0
corresponds to an open universe that will expand for ever.

In any case, at early times p increases as R —0 like R™, so that K becomes relatively unimportant.
In fact, although this curvature term in (6) increases as R —0, it does so less rapidly than the density
term, so that flat space becomes a better approximation.

Let us also assume that in the very early universe we have thermal equilibrium at a temperature T
much larger than all particle masses. (We ignore the alternative scenario of Hagedorn [16] which
envisages an exponentially rising spectrum of particle masses and a corresponding upper limit to the
temperature.) Under these conditions the matter may be treated as an ideal relativistic gas undergoing
adiabatic expansion. The density is then given by

2

_T 4
P=35 NT?,
so that from (7)

Ro Tt
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It is useful to introduce the Planck mass
me=1/G"?=1.22x10* eV
in terms of which the time-temperature relation may be written

0-3 2.4
= = V2,
t \/F me \/F s Me (8)

The number W is of order 10°. In the simplest SU(5) grand unified theory A = 160.75.
For each helicity state of each bosonic species, the number density is the same,

n, =£§;) T2
-

(For fermions we have an extra factor 3.) Thus at any time a sphere whose radius is the thermal
wavelength 1/T would contain approximately one particle of each species. Since all cross sections have
a similar value,

o~a’T?
where «a is given by (1), the mean free path A is
A =1/no ~ 1/Na®T.

But Na?=1/15, so A is large compared to the thermal wavelength, and a fortiori to the average
interparticle spacing. This, of course, helps to justify the ideal-gas approximation.

It may be useful to provide a table of the most significant events in the early history of the universe,
starting from the Planck time. For the purposes of constructing the table, which also lists the values of &
at different epochs, I have assumed the simplest possible grand unified model. The two phase transitions
are marked by asterisks. Before the first, at T = Ty ~ 10" GeV, all particle states count in V. Below it,
we must exclude those particles that acquire masses of order Tgy which are no longer present in
significant numbers. In fact, it is the decay of some of these particles that is thought to yield the baryon
number asymmetry [1].

After the Weinberg—Salam transition at T = Tys~ 10° GeV, & drops once more: it now includes
only the quarks and gluons associated with SU(3), the leptons and the photon. The ensuing hadronic era
is in some ways the one of which we know least. During it, the confinement mechanism must come into
play, as we pass from a quark—gluon soup to a system of separate hadrons. As the temperature falls
below 1 GeV (when the universe has roughly nuclear density) the nucleon pairs annihilate, leaving only
the small baryon excess. By the time we reach 100 MeV the only particles contributing to 4 are the
leptons and photon. Finally when the muons and electron pairs have disappeared we are left with just
photons and neutrinos, giving A =7.25. (Effectively, however, it would be less than this, because the
neutrinos go out of equilibrium before the photons and end up with a lower temperature [17].)

The number of neutrinos is very important in determining the rate of expansion at this epoch [18],
which affects the temperature 7T at which the neutron-to-proton ratio “freezes out”-at a value
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Table 1
t(s) T V) R/Rpow N
107% 10% 1073 Planck time
160.75
0% 10* 1073 sennns GU
106.75
o 10" 1071 LT wS
96.75
107 10° 10743 7 N pairs \
14.25
10 10 1072 — N
10.75
1 100 10710 —_— e*\
725
101 1 1073 (effect. ~5) recombination
1018 3K 1 present

exp(—Am/T) of about 1/3. More neutrinos mean faster expansion, and hence more surviving neutrons,
which in turn means more helium. Roughly, each extra neutrino species would add 1% to the helium
abundance of around 25%. Astrophysicists are sufficiently confident of the validity of their helium-
production scenario to assert that there can be, in all, no more than four or perhaps five species of
low-mass neutrinos. There are, however, some possible, though unattractive, avenues of escape: for
example, more neutrinos could be accommodated if there were a large asymmetry between neutrinos
and antineutrinos [19, 2].

The last important epoch in cosmic history is the time of recombination of hydrogen, when the
universe is about a million years old. It is only after this point that galaxies can start to form. I shall
come back to this episode in section 6.

4. Structure at the phase transitions

Let us assume for the moment, in conformity with the simple theory of section 2, that the phase
transitions are second-order. As T falls and passes through T., ¢ will tend to acquire a nonzero
expectation value. But (5) fixes only the magnitude of (¢); its direction is arbitrary. The situation is
analogous to that of a perfectly isotropic ferromagnetic cooled through its Curie point. It must acquire
nonzero magnetization but the magnetization direction is arbitrary, determined in practice by any small
external field or, in the absence of such fields by the random fluctuations.

In the same way the universe must choose a direction for {¢), i.e. a point on the manifold M of
equivalent vacua. The choice is random, and may be different in different regions of space. Indeed,
there can surely be no correlation extending beyond the current “horizon”, at a distance ct. More
remote parts of the universe can have no prior causal contact, at any rate in the conventional picture.
In any event, the expected range of correlations is shorter than this, for reasons I shall try to explain
[20].

Just below the critical temperature, the system is still subject to large fluctuations, large enough to
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bring it back to (¢) = 0. Such fluctuations are probable so long as
EAsT, )

where ¢ is the correlation length and Af the difference in free energy density between the two phases.
(Here and below, we generally ignore all factors of order unity.) The temperature at which equality
holds in (9) is the Ginzburg temperature T, given approximately by [21]

(T.— Ts)IT.=h.

For weak coupling, therefore, T is not far below T..
The scale of the initial structure formed by spatial variations in (¢) is thus the correlation length &5
at the Ginzburg temperature, which is roughly [20]

6 =1/h*T.=1/hms. (10)

Of course, much of this structure will rapidly disappear. For energetic reasons {(¢) will tend towards

spatial uniformity unless prevented from so doing by trapped singularities of some kind. Thus the scale

on which (¢) varies will certainly grow, while the correlation length £ falls to its zero-temperature value
0=1/mg.

Before proceeding, it may be well to remark that this argument could be wrong for phase transitions
at very high temperature, close to the Planck mass [22]. Formally, the correlation length ¢ should
become infinite at T, but this, of course, would mean that it is growing faster than the velocity of light.
Because the universe goes through the transition at a finite rate, it cannot actually achieve an infinite
correlation length. Instead, its growth is effectively cut off at the point, say £, where d¢/dt = 1. Thereafter,
it may continue to grow no faster than this until it intersects the falling curve of ¢ after the transition, but this
further growth is, in fact, negligible. A straightforward calculation of the cut off point yields

§’ =( mP )1/3
¢ \Vumir?/

which could, in principle, be less than &, but only if mp/T. were close to unity. So for our present
purposes it seems adequate to take & as the quantity that defines the initial scale of structure in (¢).

As remarked above, much of this structure will rapidly disappear, with (¢) tending to uniformity
except where singularities are trapped. The possible types of singularities are governed by the topology
of the manifold M of degenerate vacua.

First of all, if M contained two or more disconnected pieces, corresponding to spontaneous breaking
of a discrete symmetry, we might have domain walls [23]. An example of a model with this behaviour is
the model of section 2 with N =1 (and no gauge fields) which has two vacuum states with (¢) = =7 (at
T =0). In such a case (once T has fallen well below T.) there would be walls separating the regions with
(¢) = 7 from these with (¢) = —n. The thin wall where (¢) ~ 0 cannot be eliminated. Its width is of order &
so the mass per unit area of wall is approximately

& Af ~ hn’. (11)
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As pointed out by Zel’dovich Kobzarev and Okun [23], the existence of such walls can easily be ruled
out. They are so massive —even for n ~ 100 GeV - that just one such wall stretched across the universe
would be over 10° times more massive than all other known matter. Its gravitational effect would
introduce an impossibly large anisotropy into the 3K blackbody radiation. We can, therefore,
confidently rule out any model that exhibits spontaneous breaking of a discrete symmetry, unless
accompanied by an explicit breaking that would preferentially select one type of domain rather than
the other.

This is a remarkable constraint on our freedom to construct fundamental particle theories. It would
rule out, for instance, a spontaneous symmetry breaking explanation for CP violation. This is interesting
because we have other reasons for doing so. The mechanism of baryon-number generation, as currently
understood, requires that CP must already be violated at the grand-unification phase transition [24].

Domain walls, then, can be ruled out, so let us pass on to the more physically interesting possibilities
of singularities of lower dimension.

Linear singularities, or strings, can appear if M contains unshrinkable loops. A familiar example is
the N =2 case, the Landau-Ginzburg model. Here, if the angle of (¢) changes by a nonzero multiple of
27 as one goes around the string, it cannot be eliminated: a thin tube with (¢) ~ 0 is trapped within the
ordered phase. If we assume that the radius is approximately the zero-temperature correlation length &,
we may estimate the mass per unit length (which in this relativistic situation is the same thing as the tension)
as

p~EA ~ 7. (12)

When h <g it is more accurate to take the radius to be the penetration depth my', but the result
u ~ n? still holds. More precisely, (12) should contain a factor f(h/g) of order unity.

If we compare the mass of a single string stretched across the universe, when its age or horizon
distance is ¢, to the mass of the whole, we obtain the ratio

wtlpt® ~n’Im3,
which even for strings arising at the grand unification transition is only in the range 107 to 107"°.
Significant numbers of strings could thus be accommodated without introducing unacceptable gravita-
tional effects.
Finally, if M contains closed two-dimensional surfaces that cannot be shrunk to a point (within M),

then monopoles can exist. Their mass, following the same procedure that led to (11) and (12), would be
estimated as Mumon ~ &6 Af ~ n/h. In this case, however, a better estimate is [25]

Muyon~ 471/g (13)

though again there should be a factor f(h/g) of order unity.

5. Classification of singularities

In each case the existence of singular structures requires that one of the homotopy groups of M be
non-trivial, and the elements of that group then serve to classify the possible singularities [26]. Strings,
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for instance, are classified by the elements of 7,(M), i.e. equivalence classes of loops in M. The possibilities
are summarised in table 2. Textures are topologically stable structures involving no singularity [27]. Though
certainly of interest, I shall not discuss them further in this talk.

One of the virtues of table 2 is that the homotopy groups of relevant spaces are well known.

Since we are not interested in breaking discrete symmetries, we may assume that the gauge symmetry
group G is connected (i.e. wo(G), which counts the number of disconnected pieces, is trivial, my(G) = ).
Moreover, we can always choose it to be simply connected (m,(G) = 1), by working with the covering

group - for example, using not SO(N), but its two fold covering group m = Spin(N). Finally, let us
assume that G is a simple group. There are isomorphisms between the relevant homotopy groups of the
manifold of vacuum states M = G/H and the unbroken symmetry subgroup H, namely

mM)=mMH).  mM)=mH) (14)
For the classification of monopoles, (14) gives
‘ITQ(M) =7 k x K

where k is the number of U(1) factors in H, Z denotes the group of integers, and K is a finite group.
(Typically, K may be the group of integers modulo 2, or a power thereof: its elements label the mod-2
monopoles which can appear in certain cases. I shall not discuss them further.in this talk.) The
important thing about this result is that monopoles MUST appear if H contains at least one U(1) factor.
Whatever grand unification theory we adopt, we know that the last and second last phases have
symmetry groups containing a U(1) factor. So threre certainly is some phase transition, above the
Weinberg-Salam one, at which monopoles make an appearance. The problems this raises I will return
to.

Next let us consider the classification of strings. Here the Landau-Ginzburg model is a special case
whose symmetry group U(1) is non-simple. For that case, w,(M)=Z, so the strings are labelled by an
integer. When G is simple, however, w(M) is usually a finite group. Let me illustrate with two
examples, in which ¢ is chosen to belong to the five-dimensional symmetric tensor representation of
SO(3),and G = SO(3). First, if the potential is chosen so that a typical value of the vacuum expectation value
is

n
Hr={ - n - (15)

Table 2
Structure Dimension of  Classified by
singularity
Domain walls 2 wo(M)
Strings 1 mi(M)
Monopoles 0 w(M)

Textures wi(M)
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then H is isomorphic to O(2). Since this group has two disjoint pieces, 7,(M) = Z,. This model contains
“mod-2 strings”.

The second case illustrates an intriguing possibility raised, in the context of condensed matter
physics, by Toulouse and Poénaru [28], namely the existence of non-commuting strings. Suppose that in
place of (15), (¢) takes the form

a - .
@=(- b - )
- —a-b

Then one finds that the group H is a non-abelian group of order 8, isomorphic to the “quaternion
group” Q. Here we have m(M)=H=Q. Thus there are different types of strings, which cannot, in
general, pass through one another. These strings can have junctions, vertices where three different types
join together. Models with this feature do not seem to arise very naturally in particle physics, though
they can certainly be constructed [29].

6. Evolution of strings

In this section I want to discuss how the system of strings, once formed, will evolve in time.

Consider first a section of string moving with velocity v (assumed < 1) through a medium of relativistic
particles or radiation. Assuming that the string presents an effective cross section &, per unit length, it
will experience a retarding force of order £pv. Thus the effective damping time for the string velocity is

[20]
ta~ pléop ~ h‘ns/JVT“. (16)

Suppose that initially this section of string is at rest, with a local radius of curvature r. It will
experience an initial acceleration ~u/ur = 1/r. If the medium is dense, so that 74 <r (an assumption to
be verified later) then the string will acquire a limiting velocity ~f4/r, and hence the kink will be
straightened out in a time of order r*/t,.

Let us suppose that initially we have a random tangle of strings. From the arguments in section 4, we
expect the length scale L to be initially of order

L~¢&6~1/hT.. 7

String tension will cause small kinks to straighten out. From time to time this process will lead to strings
crossing, when (in the commutative case at least) they can exchange partners, thus yielding new sharp
kinks which straighten out in turn. Occasionally, small loops may shrink to a point and disappear. All in
all, we have a decrease in the total length of string, which means an increase in the length scale.
(Roughly, the length of string per unit volume is L™2))

From (16) and (17) one sees that initially #, < L, thus validating the assumption made earlier. It seems
reasonable to assume that the time scale for growth of L is L?/t,, i.e.

1dL ¢
La I 9
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Initially, therefore, L grows like ¢/, rapidly increasing the ratio L/f,. Over a longer period of time,
however, (16) shows that ¢, « * whence (18) yields L « £, Eventually, therefore, ¢, will catch up with
L. 1t is not hard to check that this will happen when both 5 and L are of the same order as the age of
the universe ¢; in fact when [20]

ta~L~t~m3/hn’ =t (19)

say.

For strings appearing at the grand unification transition, we have 7« = 10"’ s, so that this stage is reached
long before the Weinberg-Salam transition. However, ¢« depends sensitively on 7. For  ~ 100 GeV, one
would get t« =10"s. The Weinberg-Salam transition itself presumably does not generate strings, but if
there were an intermediate transition not too far above it, one might get strings lasting in fair numbers to a
relatively late stage. This may be relevant to theories of galaxy formation.

We see then that what happens is that the scale size L of the tangle of strings grows until it is of the
same order of magnitude as the distance ¢ to the causal horizon. Thereafter L cannot grow faster than ¢,
but #; continues to grow, so that strings move with little damping and presumably acquire relativistic
speeds.

One interesting question that seems rather hard to answer is whether the kind of “knotted spaghetti”
that would be generated if there were non-commuting strings would evolve in much the same way, or
substantially more slowly.

The most intriguing possibility raised by this idea is that it might provide the basis for a theory of
galaxy formation. This is at present a major unsolved problem in cosmology. Let me briefly review
some features of the problem.

The basic mechanism of gravitational condensation was discussed by Jeans who showed that in any
gravitating system there is a minimum length scale required for a density perturbation to grow [30]. This
is the Jeans length

Ly=¢/VGp=cy,

where ¢, is the sound velocity. In the early radiation-dominated era, and before the time of electron-
proton recombination, ¢, = 1/\/§, so that ¢, is a substantial fraction of the radius of the universe. Thus
only very large-scale perturbations could start to grow in amplitude. They can grow essentially linearly
before coming within the causal horizon, but will continue to grow for only a short time thereafter, until
the Jeans length becomes too large.

After the recombination era, ¢, drops quite suddenly to the value

¢;=(T3my)'"?

typical of hot hydrogen gas. From then on masses larger than 10° solar masses can start to contract.

What one needs to trigger the process of galaxy formation are initial perturbations, with 8p/p ~ 1072,
present at the recombination era [4]. The problem is to find a mechanism that will generate such initial
perturbations — of course without affecting the isotropy of the 3 K background radiation, which shows
that at this epoch temperature fluctuations were limited to §7/7T < 107>

In one respect this may not be as hard to achieve as it sounds. During the plasma era, which lasts
from about ¢ ~1s to 10'*s, photon scattering maintains isothermal conditions. The “adiabatic” part of
any initial perturbation on a galactic scale or less will rapidly die out, but any ““isothermal” part - a pure
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density fluctuation - will remain. There is no damping mechanism for such fluctuations that operates on a
short enough time scale to be relevant [31].

The earliest possible time at which an initial perturbation can be created by any local mechanism (rather
than simply inserted in the initial conditions) is the time at which the relevant mass comes within the causal
horizon. This is about 1 year for a galactic mass and 10 s for a stellar cluster. However, nonlocal mechanisms
may exist. A very interesting possibility has been suggested by Press [38].

It is certainly possible that strings might provide the essential mechanism for generating these initial
perturbations. The difficulty is to make their interactions sufficiently effective. The heavy strings typical
of the grand unification transition would by this time be interacting rather weakly; whereas strings
generated later may be too light. However it may well be that these conclusions would be changed by a
better understanding of the string interactions.

7. Monopoles

The mass of a monopole generated in the grand unification transition is more than 10> GeV. The
initial density of monopoles may be estimated to be roughly of order

Rmon~ 1/£6~ h°n? (20)

corresponding to the same initial scale size as in the case of strings.

The subsequent evolution, however, is very different. Monopoles (at least the lightest ones) are stable
particles which can be removed only by annihilation. Since monopoles and anti-monopoles attract one
another strongly, any that are close should rapidly annihilate. Later annihilation depends, however, on
the diffusion of monopoles to anti-monopoles through the surrounding medium. This is a slow process.
It is difficult to avoid the conclusion that at the time relevant for helium synthesis, the total mass density
of monopoles would exceed that of all other matter by many orders of magnitude [32]. This is a disaster
because it would completely destroy the agreement between observed and calculated abundances for
helium and other light elements. (It is, perhaps, also puzzling that no evidence of monopoles has been
seen if they are in fact so common, but it may well be possible to show that they would preferentially
collect in stellar cores where they could hardly be seen. This is not, therefore, a very strong argument.)
One possible answer to this problem is to make the phase transition strongly first order [33]. This can be
done in at least two ways.

Firstly, if the coupling constants are of very different magnitudes, radiative corrections may do the
trick. For example, if & ~ g* then the single vector loop contribution, of order g*, should be included
along with terms of order h*. This contribution is of the form [34]

(m%/8w) In(m%/u?), 21

where u is a renormalization point. It is easily seen that such a term will lead to an effective potential
typical of a first-order transition, with two minima separated by a barrier.

Secondly, we may consider models with an explicit ¢* term. Consider for example, an SU(S) theory
with ¢ in the 24-dimensional adjoint representation. Here

U@)=a(tr¢’V’+btrop*+ctrp’>+dtr p’+e. (22)
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This model (with d < 0) can give rise to two distinct phase transitions [35, 6, 33] provided that b >0 and
a > —b/5. At the higher transition, SU(5) is broken to

H, =SU@#)xU(1)
while at the second H, changes to
H, =SU@B)xSU(2)xUQ).

Note that H, is NOT a subgroup of H,. The situation is curious because both the second and third
phases have monopoles, but of different types, with different expressions for the monopole charge.

One thing that is not immediately clear is whether monopoles of the first type, which necessarily
disappear at the second transition, tend, in doing so, to generate monopoles of the second type. If so,
then having two distinct transitions does not help much. On the other hand, the first-order character of
the transition may help, by delaying the time of the transition.

This is actually a rather unusual kind of first-order transition. As always there are 3 relevant
temperatures. Highest is the temperature T, at which an asymmetric minimum first appears in the
effective potential. At the true critical temperature T, this minimum has dropped to the level of the
central minimum. Finally at 7, the central minimum itself disappears.

As the universe cools, nothing happens until after it has passed T.. Even then, none of the new phase
will appear until it can be nucleated. However, the probability of tunneling through the barrier, which
depends on the exponential of the action integrated along a “most probable escape path” [36], is
exceedingly small until we are almost at T,. In fact, there is essentially zero probability of generating a
bubble of ordered phase by tunneling. The system in effect reaches T, in a state of extreme
supercooling. At T, there is a sudden transition, almost simultaneously in all parts of the universe, a
transition that releases a huge latent heat, reheating the universe, perhaps nearly to T.. It seems to be
difficult in this situation to estimate the length scale of the resulting structure, and hence the monopole
density. Thus it is not clear whether such a mechanism can allow us to escape the problem of
overproduction of monopoles.

Note too, that such a strongly first-order transition generates a lot of entropy, which could drastically
change the computed photon-to-baryon ratio (or entropy per baryon).

There is yet another effect, related to the induced cosmological term, to which I now turn.

8. Cosmological term

Observations on the present rate of recession of galaxies place rather stringent limits [15] on the
magnitude of the cosmological constant A appearing in (6). Since a constant added to the potential U(¢)
would effectively contribute to A, we must assume that the minimum value of U is in fact close to zero.
It seems reasonable to suppose that at 7 =0 the minimum value of the effective potential (i.e. the
energy density of the vacuum) should be precisely zero. This then fixes the constant in U to have the
value chosen in (3).

However, it is clear that with this choice, there is in the high-temperature phase a nonzero constant
term in U, namely gh’n*. This term contributes a constant to the free energy density f, or the energy
density p. Lorentz invariance of the vacuum suggests that such a term must represent part of a
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contribution to the energy-momentum tensor T,,, that is proportional to g,,. This means in particular a
negative contribution to the pressure. Such a term would be indistinguishable in its effects from a
cosmological term A.

It is easy to verify that such a term is present. If we calculate the free energy densities f_ and f. of
the lower and upper phase (i.e. the minimum values of V) for the model in section 2, we obtain
expressions of the form

fo=—bT>—c'T, | 23)

fo=a—bT?—cT* 24
where a = sh*n*. Correspondingly the energy density in the upper phase is

p:=a+bT?*+3cT". (25)

Recalling that the pressure is simply p = —f, we see that a does indeed yield a contribution proportional
to +ag.., i.. in effect a cosmological term.

There is no objection to such a term. The observational evidence requires A to be zero or near zero
in the present phase of the universe, but there is no reason to exclude a large cosmological term in
earlier phases However, Bludman [37] has pointed out an interesting dynamical effect that such a term
might have, in the case where the relevant transition is strongly first-order.

Suppose we follow R back in time. Once we have reached the radiation-dominated era, but st111
below the critical temperature, (6) yields

(R/RY = y'|R*—K/R>.

The first term dominates increasingly as R decreases. If K is positive (i.e. for a closed universe), there is
a time, still far in the future, at which R vanishes, but as we go back in time it increases monotonically.

Now consider what happens when we go through a first-order transition, at R = R.. Corresponding
to the sudden change from (23) to (24) we find that the equation for R changes to

(RIRY =y/R*~K/R*+« (26)

where a and y come respectively from a and ¢ in (25). (We ignore for simplicity the effect of the
change from b’ to b in the coefficient of T2.) By energy conservation one has

a=(y -y)R:

The intriguing thing is that if y is small enough, then the right hand side of (26) may vanish for some
R < R.. This would mean that as we follow R back in time we never reach R =0. Instead, at some
minimum value, the universe “bounces”.

This possibility would only be realised for rather extreme values of the parameters. Firstly one needs
K >0 which means that the density in the universe now must exceed the critical density required for
closure. Current observational limits do not favour such a high density universe. Moreover, one needs a
very strongly first-order transition, caused for instance by very unequal couplings, corresponding to the
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case where the Higgs particles are much lighter than the gauge particles. Nevertheless, the possibility
clearly deserves further study.
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