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PREFACE

This short monograph is based on lectures which I presented at the Los Alamos
Scientific Laboratory, the National Bureau of Standards and the sixth Oaxtepec
symposium on statistical mechanics.

I have tried to keep the material as self-contained as possible. The contents
can be divided into three parts: part A consists of sections 1-7, part B of sections
8-18, and part C of sections 19 - 28. These three parts have been written in such a
way that each of them forms an independent unit. Part A will appeal to readers
primarily interested in statistical thermodynamics, part B to chemical physicists,
and part C to biophysicists. Although most of the text is devoted to the development
of the theory, I have made an effort to compare some of the predicted phenomena with
experimental data.

The models which form the basis of the following calculations are phenomenological.
The material in this booklet, therefore, will complement the a priori calculations
which form the subject of two review papers in print: "Theories of Lipid Monolayers",
by F.W. Wiegel and A.J. Kox, to appear in ADVANCES IN CHEMICAL PHYSICS, and
"Conformational Phase :Transitions in a Macromolecule: Exactly Solvable Models", by
F.W. Wiegel, to appear in Volume 8 of PHASE TRANSITIONS AND CRITICAL PHENOMENA,
edited by C. Domb and M.S. Green,

I am indebted to George Bell, Walter Goad and Byron Goldstein of the Los Alamos
Laboratory and to Alan Perelson of Brown University for their constructive criticism
of the biophysical relevance of the models studied here. I also want to acknowledge
discussions with Bob Rubin and Ed DiMarzio of the National Bureau of Standards.

I also owe a lot to Piet Mijnlieff for interesting me in the porous medium problem
and for tutoring me in some of the chemical physics that is part of it. Last but not
least I am indebted to E1ly Reimerink for careful typing of the manuscript.



1. INTRODUCTION

The problem of describing the flow of a viscous fluid through a macromolecular
system plays a role in several branches of chemical physics and biophysics. As a
special case of the more general problem of fluid flow through permeable media its
history goes back to Darcy (1856).

For purposes of illustration, consider a system which consists of an in-
compressible fluid with mass density 0o and viscosity g in a porous medium. The
medium might consists of the repeating units of a macromolecule (considered in part
B of this monograph) or of a set of cross-linked macromolecules (considered in part
C). It will always be assumed that the porous medium moves as a rigid object but
this assumption can easily be relaxed by including the equations of motion of the
medium in the set of differential equations.

The "microscopic" velocity V(r,t) and pressure p(¥,t) form that solution of the
Navier-Stokes equation

o0 5t *op(VT)V = ~Fpengal (1.1)
and the incompressibility equation

divVv =0 (1.2)

which obeys the complicated boundary conditions at the highly irregular interface
between fluid and medium. These boundary conditions can be "stick" boundary
conditions, which require the velocities of fluid and medium to be the same at the
interface, or "slip" boundary conditions, which only impose this condition on the
component of the velocity normal to the interface. The choice of stick, slip, or
mixed boundary conditions depends on the dimensions of the constituents of the porous
medium and on other details of the fluid- medium interaction.

Under most conditions of practical interest the non-linear term po(?.ﬁ)v in
(1.1) can be neglected with respect to the viscosity term nOAV. The ratio of these
terms is of the order of the Reynolds number zvpo/no, where % denotes a typical
linear dimension of a repeating unit of a macromolecule and v a typical velocity.

For a macromolecular coil in water & o 168 cm; ppvlg a3, Ny 0.01gem! 571,
With a typical velocity v o lcms'1 the Reynolds number is found to be as small as
10_6. Consequently (1.1) can almost always be replaced by the linearized equation

<y

3
P05

|

= -Tp+nyal. (1.3)

t

The unusual properties of 1life at low Reynolds numbers have been discussed in an
elegant paper by Purcell (1977). For related estimates read also Berg and Purcell
(1977) .

The microscopic fields are rapidly varying functions of the position in space



(¥) and time (t) and are, therefore, not accessible to direct observation. Hence v
and p will not be useful variables to describe the observed motion of the fluid. The
"macroscopic" velocity V(?,t) and pressure P(?,t) are defined as the averages of the
corresponding microscopic variables over a small space-time region (QT) around

(Fst)

RO R J VLRt (1.4)
QT

P(F,t) =0 771 [ J p(F',t ) dtr (1.5)
QT

Now Tet the linear dimension of © be large as compared to the size (%)
of a repeating unit, but small as compared to a characteristic macroscopic length
(L) .

p<< 0’ << L. (1.6)

If, in the same way, we choose T to be large as compared to the relaxation times
associated with a single repeating unit but small as compared to a characteristic
time of the imposed macroscopic motion, then the macroscopic fields V and P will be
slowly varying functions of space and time. It will be shown in the following pages
that these macroscopic fields form the solution of a partial differential equation
usually connected with the names of Debye, Brinkman and Bueche, who where the first
to write it down. In Part A (sections 1-7) we shall discuss this fundamental
equation and derive it first from irreversible thermodynamics, then from statistical
mechanics. The properties of the medium enter into the fundamental equation only
through a single phenomenological parameter (the hydrodynamic permeability). The
experimental determination of the permeability of a macromolecular system will be
discussed in some detail.

Part B (sections 8-18) 1is devoted to the flow of a viscous fluid through and
around an isolated macromolecular coil. Here one can essentially distinguish the
following three cases. (1) The coil is in a state of uniform rotation with respect
to the fluid at infinity. (2) The coil is in a state of uniform translation. (3) The
fluid is asymptotically in a state of uniform shear flow. These three cases will
lead to the rotational diffusion coefficient, the translational diffusion
coefficient and the intrinsic viscosity. The use of the Debye-Brinkman-Bueche
equation Teads to a considerable simplification of the standard theory of polymer
solutions, as expounded, for example, in the book by Yamakawa (1971). A comparison
with experiments shows satisfactory agreement in those cases for which data are
available.

In part C (sections 19 - 28) the applications of the Debye-Brinkman-Bueche
equation to the Tateral diffusion of complexes consisting of cross-1inked macro-



molecules in the cell membrane are discussed. First the hydrodynamical properties
of cell membranes are reviewed in a qualitative way. The consequences of the
Bretscher (1976) flow hypothesis are quantitatively deduced. This is followed by

a short study of brownian motion in the presence of a flow field. The discussion of
the biophysics of patch- and cap formation demonstrates that Bretscher's hypothesis
leads to a quantitative criterion for cap formation. Next, the rotational- and
translational lateral diffusion coefficients of a permeable patch of cross-linked
immunoglobulins in the cell membrane are calculated. Some space is devoted to a
detailed review of the experimental situation.

The macromolecules which play a role in the following sections are long chain-
1ike molecules consisting of a large number of repeating units (monomers). The
number of monomers in a single macromolecule is of the order of 10 to 105 or larger.
The molecular weight of a monomer is of the order 10 to 100; hence the molecular
weight of the polymer is of the order 102 to 107 or larger.

Sometimes only one monomer (A) is present and the polymer has the structure

..-A-A-A-A-... Sometimes the molecule consists of different monomers which can be
distributed either periodically or in some random sequence (see, for example,
Lehninger 1972 for specific biochemical details).

The linear dimension 2 of a monomer is of the order of a few A. Thus, when a
polymer consisting of N monomers is fully stretched it can reach a length of the
order N2, i.e. 1045 if N= 104 and 2= 15 = 10_8cm This length is of the order of
the Tinear dimension of a small biological cell. Often polymers occur in the shape
of a random coil, the linear dimension of which is of the order sz For our example
this gives 100 R, which is comparable to the thickness of the membrane around the
cell.

Macromolecular systems can be classified roughly into three categories, depending
on their concentration. One should of course distinguish between the monomer
concentration CM’ defined as the number of monomers per unit volume, and the polymer
concentration CP’ defined as the number of polymers per unit volume. If all the
polymers in the system consist of the same number (N) of monomers these two
concentrations are connected by

CM = NCp. (1.7)

The three concentration regimes are: (a) dilute systems; (b) semidilute systems;

(c) concentrated systems.

(a) Dilute systems. In the Timit C-+O one has an ideal gas of polymer coils; for
small concentrations C one has a d11ute fluid of coils. Since a polymer coil can

be represented roughly b/ a "c]oud" of radius sz the monomers concentration inside
the coil is of order CM:=N(N22) d, where d= 3 denotes the dimension of space. When
the various coils in the system just begin to touch the concentration reaches a

value which is comparable to the monomer concentration C; inside a single coil,



Hence the dilute regime is characterized by

C,, << C;4=N1'%d 5,

y (1.8)

Note that Ca is very small for d=3 provided N is large as compared to unity; for
d=2, C; does not depend on N.

(b) Semidilute systems. These systems are characterized by overlap between different

coils, but the concentration should still be much smaller than the close-packing
concentration

5 ¢, <<279, (1.9)

*
cM M

(c) Concentrated systems. When CM becomes comparable to Q"d the polymers are packed
very closely. These system are often Tocally in a crystalline phase.



2. OPERATIONAL DEFINITION OF THE PERMEABILITY

Operationally the permeability is defined by the following experiment. A
cylindrical tube is filled with a porous medium which is kept at rest and which has
a constant density. The fluid is pushed through the medium under the influence of a
constant pressure gradient -VP. A stationary state results in which the fluid has a
velocity V which is practically constant throughout the tube, apart from some small
boundary effects (the exact velocity profile will be discussed in section 5).
Empirically V turns out to be proportional to -VP as Tong as the pressure gradient
is not too large. The proportionality factor is written in the form no/k, where k
is called the hydrodynamic permeability. This leads to the empirical law of Darcy
(1856):

n
0w
T(_V' (2.1)

-¥p =
The permeability is a function of temperature and of the constitution of fluid and
medium. This law should be added to the 1ist of phenomenological equations which,
together with the Onsager reciprocal relations, forms the basis of irreversible
thermodynamics.

The dimension of the permeability is [k] = [1ength]2. Table I gives the
permeability of homogeneously distributed poly-a-methylstyrene with mass density
p,=1.64 x 107
Jaspers (1971)). It can be seen from these data that for a dilute polymer-solvent
mixture, k is roughly of the order (IOOA)Z; the characteristic length of 1004 which
is found here is of the same order of magnitude as the radius of an isolated polymer

g cm_3 in cyclohexane and toluene (data taken from Mijnlieff and

coil or as the thickness of a biological membrane.

Darcy's law has the following important consequence. If we consider a unit
volume of the fluid it will be subject to two forces: (1) a force -VP due to the
macroscopic pressure in the fluid; (2) a frictional force T exerted by the porous
medium on the fluid. As the fluid element is not accelerated these two forces must
cancel. Hence

F=4+VP. (2.2)
Combination with Darcy's Taw gives
n
Fa-20 (2.3)

for the force exerted on the fluid by the medium, per unit volume. It should be
pointed out that this expression has been derived under the assumption that the
porous medium occupies only a negligible fraction of space; the empirical law (2.1)
of Darcy holds for any value of this space fraction.

If the porous medium is not at rest, but has a constant macroscopic velocity U,



then the frictional force equals
n
F---0({1-7). (2.4)

This is easily demonstrated by considering the situation in a frame of reference

which moves with a constant velocity U.

Temp (°C) 1012 k(cmz) Temp (°C) 1012 k(cmz)
In cyclohexane In toluene
35 1.06 25 0.33
40 0.89 45 0.34
50 0.70 65 0.36
80 0.60 85 0.36
95 0.56 105 0.37
110 0.60 120 0.40
125 0.61 '

Table I. Permeability of homogeneous poly-a-methylstyrene at p1= 1.64 x 10"2 g cm"3

in cyclohexane and toluene at different temperatures. From Mijnlieff and Jaspers
(1971).



3. RELATION BETWEEN THE PERMEABILITY AND THE SEDIMENTATION COEFFICIENT

From a practical point of view the experiment described in the preceding section
cannot be expected to lead to accurate results. In this section we shall, therefore,
derive a relation between the permeability and the sedimentation coefficient which
leads to more accurate results. This relation was first found by Mijnlieff and
Jaspers (1971). The derivation presented here follows Wiegel (1977) and is based on
the following fictitious experiment.

Consider a vertical infinite cylindrical tube in which are contained: (1) fluid
with mass pg ber unit volume; (2) porous material which is homogeneous on a macro-
scopic scale and which has mass pp per unit volume. A constant gravitational field
of acceleration g acts along the axis of the cylinder and a constant pressure
gradient - 7P drives the fluid through the tube. Let V and U denote the average
velocities of fluid c.q. medium in the stationary state. We consider this situation
in two different frames of reference.

In a frame of reference which moves along the axis of the cylinder with velocity
U one observes Darcy's experiment. Consequently the frictional force which the fluid
exerts on the porous medium per unit volume equals

S =00 oy (3.1)

according to (2.4).
Next, consider the situation in a frame of reference which moves along the
cylinder with a velocity W equal to the "mean volume velocity". The mean volume

velocity is defined as:
> >
W= oVl + ppvy U, (3.2)

where Vo denotes the volume of a unit mass of the fluid and vy the volume of a unit
mass of the medium. Hence oV denotes the fluid volume per unit volume of the
mixture and P1Y1 the volume occupied by the medium per unit volume of the mixture.
Obviously

Pg¥p *P1YV1 = L. (3.3)

In this frame of reference the mean volume velocity vanishes, the fluid flows up
with a velocity V-¥ and the porous material sediments with a velocity U-T¥. Hence
in this frame of reference one observes a sedimentation experiment in which the
sedimentation coefficient s is defined by

s = |0-W/g. ' (3.4)

The velocity U-¥W with which the medium sediments is determined by the balance
of the external force and the frictional force (3.1). The external force exerted on
the medium in a unit volume equals the force of gravity minus the weight of an equal



volume of fluid: 019 - plvlg/VO' This gives the equality
n -
p9(1-vy/vg) = ¢ [V-T1. (3.5)

Elimination of redundant quantities between the Tast four equations leads to the
relation

Tlo f1
—R_ - _—S— (]' - V]./VO)DOVO’ (3.6)
which enables one to calculate the permeability from the sedimentation coefficient.
In practical applications P1Y1 will often be very small as compared to unity (at most
about 1%); hence Pg¥p s very close to 1 and this factor can be omitted from (3.6).
In this monograph it is always assumed that p1Vq << 1, which means that the medium
occupies only a negligeable fraction of space.



4. EXPERIMENTAL DETERMINATION OF THE PERMEABILITY

As a consequence of (3.6) a measurement of the permeability amounts to a
measurement of the sedimentation coefficient. In the case of homogeneous macromolecular
material one has to determine the sedimentation coefficient of homogeneously
distributed macromolecular material at some fixed mass density -

More specifically, suppose the polymer is poly-a-methylstyrene and the fluid is
cyclohexane or toluene. Prepare a sequence of pure samples of this polymer of in-
creasing molecular masses mp<my<my<... and measure the sedimentation coefficient
S(mi’pl) of the monodisperse polymer of molecular mass m. at fixed mass density Jp

The quantity

s(pq) = lim s(m.,pq) (4.1)

i+
gives the desired sedimentation coefficient for a uniform distribution of polymeric
material at density p;. This is the case because in the Timit m. >« the different
polymer coils will overlap and their separate contributions to the density will be
washed out, Teading to a uniform total density.

The curves s(mi,pl) were measured by Mijnlieff and Jaspers (1971); their results
are qualitatively indicated in figure 1. The resulting curves k(pl) for poly-o-
methylstyrene in cyclohexane and toluene are drawn in figure 2. These curves were
calculated from the s(mi,pl) curves using (4.1) and (3.6). The temperature dependence
of k has also been measured by these authors and can be found in the publication
cited and in Mijnlieff, Jaspers, Ooms and Beckers (1970). Their results are summarized
in table I.

A glance at figure 2 shows that the permeability of one and the same polymer is
about three times higher in the "poor" solvent cyclohexane than in the "good" solvent
toluene. This remarkable solvent effect is due to a Tocal clustering of the repeating
units of the polymer when in contact with a poor solvent. As a result the pores
between these clusters, through which the solvent has to find its way, become wider,
which leads to a higher permeability.

The experimental technique described in this section enables one to measure the
value of k fairly accurately. It is instructive to discuss briefly the theoretical
expression for k. The theory of Felderhof and Deutch (1975), which we shall review
in section 7, predicts the value '

1G] (4.2)
where the medium is represented by a collection of mass points, which space density
v(?) and a translational friction coefficient f each. If each mass point is represented
by a very small sphere of radius a Stokes' formula gives

f:6ﬂn0a. (4.3)



s
3
2
1
p1
Fig. 1
k
cyclohexane
s
/
toluene
p
Fig, 2

Experimental results on poly-a-methylstyrene (discussion in section 4)



Combination of the last two eguations gives the expression

K(¥) = {mav (F) 1L (4.4)
This formula shows that local clustering of the monomers in a poor solvent can have
a considerable effect on the value of the hydrodynamic permeability: as the mass of
a cluster of radius a increases proportional to a3 the number density of clusters
v(?) must decrease as a_3 in order to keep the total mass density of polymer constant

at the value CIp Equation (4.4) indicates that the permeability will increase
proportional to a".



12

5. MACROSCOPIC DERIVATION OF THE FUNDAMENTAL EQUATION

Following the results of the last three sections it is now straightforward to
derive an equation of motion for the macroscopic velocity V and the macroscopic
pressure P (compare section 1 for their definition). For these macroscopic fields
the Navier-Stokes equation holds in its usual form

22,

> > > >
o +p0(v-v)v--vp+n0Av+?, (5.1)
where F denotes the external force exerted on the fluid .per unit volume. According
to (2.4) the external force is a frictional force which equals

F.-0 gy, (5.2)

] > > > >
szt ogT -V = -TP +nga¥ - = (V-0), (5.3)

which has to be combined with the incompressibility condition:

div V= 0. (5.4)

The derivation given here is taken from Wiegel and Mijnlieff (1976). Usually
one considers flow at Tow Reynolds numbers (compare our estimate of Reynolds numbers
in section 1), in which case the convective term pO(V'.%)V is negligible as compared
to the term nozxv. For the stationary state this gives

n
0
-‘v’P+n0W--k—(V-U)=o. (5.5)

In this form the equation is usually connected with the names of Debye, Brinkman and
Bueche.

It was published for the first time by Brinkman (1947a) in a letter to the editor
of Physica. This letter was followed by three papers - Brinkman (1947b, 1949a,b) -
devoted to important applications. In the following year Debye and Bueche (1948)
published an equation similar to (5.5) and results for the intrinsic viscosity and
sedimentation coefficient of permeable polymers in solution. They refer to an earlier
note by Debye (1947), but this note does not contain any equations at all. Hence,
on the basis of his 1947 Tetter, equation (5.5) should strictly speaking be called
the Brinkman equation. It is also remarkable that Debye and Bueche never published
the actual derivation of their expressions for the intrinsic viscosity and
sedimentation coefficient; this was done for the first time by Felderhof (1975a,b).

In the remaining part of this section we apply the fundamental equation to two
simple geometries. In both cases the medium is homogeneous (k(?) equals a constant ko)
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and at rest (U=0). In the first example the medium is present in a half-space, the
fluid permeates this medium and has a constant velocity V0 in the rest of space. If
the distance between a point of the porous medium and the (macroscopic.) fluid-medium
interface is denoted by z the fundamental equation reduces to the form

2 n

d 0
ng SV 2 0y, (5.6)
0422 ko

with the solution

-

V(z) =V, exp(—z//?b). (5.7)

This situation would apply roughly to the flow of water through sand underneath the
bed of a river. The result shows that the quantity /?b, which has the dimension of
a length, measures the distance by which the flow effectively penetrates the medium.
We shall, therefore, sometimes call /FO the penetration length. As shown in section
2, this length is of the order 100R for typical polymer-solvent mixtures.

The second application of the fundamental equation consists of the quantitative
description of the plug flow which we encountered in section 2. In this cylindrical
geometry the pressure gradient is a constant. Transforming (5.5) to cylindrical
coordinates (r,$,z) around the axis of the tube the cylindrically symmetric solution
can be solved from the ordinary differential equation

42

dr

-

1
dz

= = constant, (5.8)
0 0

8
+
'Sh—\
o.lo.
S
=<

where V(r) denotes the z-component of the velocity. The incompressibility equation
(5.4) 1is satisfied automatically. A special solution of the inhomogeneous equation is

k
0 dpP
V= -~ 47 - (5.9)
0
The homogeneous equation
2
dv , 1dv v
s=2L Y g (5.10)
a2 Tdr Tk

has the general solution

r r

V(r) = A 10'(;425) + BKy 6;3;;) . (5.11)

where the Iv and the Kv denote the modified Bessel functions of order v. The constant

B=0 because V(r) has to be finite for r=0 and KO(V%:) diverges there. Thus, the
general solution of (5.8) reads 0
k
vir) = - 29 a1 (. (5.12)

Ry 42 0(;f3

The value of the constant A is determined by the requirement thét V should vanish on
the wall of the tube (r=R). This gives:



kg dp Iy(r//ky)

Mg T Ty

For /?b of the order of 100R and a macroscopic value of R the resulting velocity will

(5.13)

be practically equal to the homogeneous value
_ 0 4 (5.14)

throughout most of the tube, apart from in a narrow layer close to the wall with a
width of the order of the penetration depth /Fb. On the other hand, in the free
draining regime in which /Fb>> R we can use eq. 9.6.12 of Abramowitz and Stegun
(1970) to expand the modified Bessel function. This leads to

) g g B R /Ry, (5.15)

which is Poiseulle's formula for the flow of a viscous fluid through a cylindrical
tube.



6. THE OSEEN TENSOR

In the next section a microscopic derivation of the fundamental equation is
presented. As a preliminary to that presentation this section is devoted to the
following problem: Consider an incompressible Newtonian fluid at Tow Reynolds numbers,
under the influence of an external force field F(¥) of the form

F(F) = + 8(F-T)1, (6.1)
where T denotes some unit vector and where ?0 denotes the point where the force
"works". We want to calculate the resulting velocity and pressure fields in the
stationary state.

In order to solve the time independent Tinearized Navier-Stokes equation

-Vp +ngav + 8(F-F)T=0 (6.2)

- v 3 > . . -
one proceeds as if the pressure were a given function of r. In this case it is
convenient first to solve the simpler scalar equation

AG = 8(F). (6.3)
Writing
> - v > >
6(¥) = (2m)° J (%) exp (i k-7) &°K, (6.4)
>y -3 .o 3
s(r) = (2m) exp (i ker) d7k, (6.5)
one finds upon substitution into (6.3)
&®) = - %72 (6.6)

Hence G(?) is given by the Fourier transform

G(F) = -(2m)"3 J K172 exp(+ i 7) K = 75, (6.7)

where we used eq. 4.3.142 of Abramowitz and Stegun (1970) to evaluate the integral.
As a consequence of this result the solution of the equation

8 = f(¥F), (6.8)
where f(?) denotes an arbitrary function which vanishes sufficiently rapidly at

infinity, is given by

oF) = - 3 | (6.9)
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Now consider the original problem (6.2). As all three components can be written
in the form (6.8) the solution is

I. >
- J ]- >y '“]- 8p r‘I) 3_’1
v.(r) = + A - J|r—r[ d7r', (6.10)
Jj 47TT]0| - r0| Zﬁmo Z)rj
where j=1,2,3 denotes the component along the Cartesian axis. The pressure, which
still appears as an unknown quantity on the right hand side of this equation, can be

determined from the condition of incompressibility

. > 1 > o -1
0=dW\/=+zﬁG MVHr—%[ I)
1 g L T -1 3_’1
_ij(r)A Fov %, (6.11)

where a partial integration was performed and where A' denotes the Laplace operator
with respect to r'. With the use of (6.3) and (6.7) this equation can be written in
the form

1 _o-l . > & -1z
ﬁa-p(r) = T div (|r —r0| I). (6.12)
Consequently the pressure is given by the expression

. (6.13)

p(F) =+ ] O;(F-Tg) I

j J
where the Oseen vector Q has components

R.

0:(R) =

] (i=1,2,3). (6.14)

4W|E|3

The velocity field is found upon substitution of the pressure into (6.10).
Performing two partial integrations one obtains

I, R
vi(#) = —— 4 1 2 2.1 f F-F T R T L (6.15)
4mmg| T - r0| 16ﬂ2n0 j or

In order to evaluate the integral imagine a plane through ¥ and ?0 and introduce

-
polar coordinates p E|?'~?0|,¢ in this plane which are centered at ro- With a cut-
off at some very large but constant value fo of the polar radius vector one finds

= 4oy - 2n|7-Fol. (6.16)
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When this result is substituted back into (6.15) the dependence on pd drops out as a
result of the differentiations. Hence one can formally take the limit pg and find

Ij 1 I, 3 (rk—ro’k)(rj—r0 )

* J sd
v,(r) = — -5 5% =L I s Y. (6.17)
J Mmdr—rd Mo |r—%| k=1 |r—rd
This is usually written in the form
vj(r) = E Tj,k (r-—ro) Ik’ (6.18)
where the Oseen tensor T has components
. R.R
1 J ok
. = . - }. 6.19
TJ,k(ﬁ) Brg {65+ Ok } (6.19)
2

Note that the pressure field drops off proportional to R™ at large distances, but
that the velocity field is'broportiona1 only to L

The Oseen vector 6 and the Oseen tensor T describe the hydrodynamic interactions
between mass points in a viscous fluid. For more complicated models the hydrodynamic
interaction has been analyzed also. The interested reader is referred especially to
three papers by Jones (1978a,b,c) and a paper by Reuland, Felderhof and Jones (1978)
in which the hydrodynamic interaction between two permeable spherically symmetric

polymers is studied.



18

7. MICROSCOPIC DERIVATION OF THE FUNDAMENTAL EQUATION

We are now in a position to derive the fundamental equation (5.5) from the
microscopic equations of motion of the field. This was done for the first time by
Felderhof and Deutch (1975), whose method will be followed here.

The porous medium is represented by a collection of mass points Tocated at
positions ?j and with frictional coefficients fj. Note that this model assumes that
only a negligible fraction of space is occupied by the porous medium. The mass points
move with a prescribed velocity U(?). Let 70(?) and po(?) denote the velocity and
pressure in the absence of the mass points; for small Reynolds numbers these fields
are the solution of

Uy + mgavy = 0, (7.1)

div VO =0, (7.2)

which obeys the proper boundary conditions. In the presence of the mass points a
total force with space density

'a(?—?j), (7.3)

2=t OGF) - () 74

works on the fluid. The velocity V(¥) equals the sum of the unperturbed field VO(?)

and the perturbations due to all the mass points. Using (6.18) this gives

mj) = VO(?J.) + g %(?j—?k)fk[ﬁ(?k)—V(?k)]. (7.5)

Combination of the last two equations gives

Fo=fo (0(F)-V(F)1 -1 i %(?J.—?k)l?k. (7.6)

This equation has to be combined with the microscopic equation of motion

~Vp + ngav + ¥(F) = 0, (7.7)

div v = 0. (7.8)

In order to obtain the macroscopic description of the system one has to study
the behavior of the average quantities

>

V() =" <v(r)>, (7.9)



P(F) = <p(¥) >, (7.10)

iy
:j
i

FF) >, (7.11)

where the average <> is taken over all those different ways to distribute the point
masses which are consistent with the macroscopic distribution of mass. Taking the
average of (7.7) and (7.8) gives

>

-TP sV + F(F) = 0, (7.12)
div V = 0. (7.13)

This set of equations still has to be "closed" by espressing ?(?) in terms of V(?).
Multiplying (7.6) with 6(?-—?j) and summing over j gives the exact relation

F(F) = [0(F)-v,(F)2 % f a(?—?j)
§ 5 a(?-?j) ET(?-?k)?k. (7.14)

1 E-RF, = [TE-FoRee (719
k

F(r) = t0(r)-v(M) < ] f a(?-?j)>
J
- <] f5 8(F-F)) J—T’(?—?')f(?')d%s. (7.16)

The first term on the right side Teads to the microscopic definition of the
permeability

n
0 > >
— = <) f. 8(r-r;)>. 7.17
TR R (7.17)
In the special case in which the mass points are small spheres with radius a and
space density v(?) the last equation predicts a permeability

-1

k(F) ={6ma v(r)} (7.18)

E

compare our comments at the end of section 4.
The average of the product in the second term of (7.16) is approximated by the
product of the averages
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<V f.8(r-7.)> J %(?-?')< s . (7.19)

he

This ad-hoc approximation is analogous to the mean-field approximation in equilibrium
statistical mechanics. A further simplification of this theory has been studied by
Deutch and Felderhof (1975).

Combination of the Tast four equations gives the integral equation

> n n 3 >

> 0 i S 0 > > > 3>
F(r) = U(r)-va(r)] - —~ J T(r-r")F(r')dr'. (7.20
) o7 1 )

At this point in the derivation it should be noted that equation (7.12) has already
been formally solved in the previous section. The solution is found by adding to
70(?) an integral of an expression of the form (6.18); in a continuous notation

>

1

Q)

-

U (F) + J OO (7.21)
Combination of the last two equations gives

- n g >,
e k(g) LU -V (7.22)

and substitution of this result back into (7.12) gives the fundamental equation in
the form

> > n > > >
-VP+n0A V+ —L[U(r)-V(r)] = 0. (7.23)

This equation is identical to (5.5) which resulted from irreversible thermo-
dynamics. In the same way the expression (7.22) for the force exerted on the fluid
is identical to (2.4). Before we turn to some important applications of the equation
we want to remind the reader that three assumptions have been made in the derivation
of this section: (1) the relevant Reynolds numbers are small as compared to unity;
(2) the fraction of space occupied by the medium is small as compared to unity; (3)
the mean-field approximation (7.19) is valid.
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8. THE EINSTEIN RELATIONS

In the next six sections the diffusion coefficients of an isolated macromolecule

in a viscous fluid will be calculated. The Einstein relation

0 - kBT (8.1)
T ‘?}_ :
relates the translational diffusion coefficient DT to the translational friction
coefficient fT, which is defined as the drag force on the macromolecule per unit
relative velocity. Boltzmann's constant is denoted by kg and the absolute temperature
by T. In the same way the Einstein relation

kT
D, = -8 (8.2)

R fR
relates the rotational diffusion coefficient DR to the rotational friction coefficient
fR’ defined as the torque on the coil per unit angular velocity. Because of these
relations the determination of the diffusion coefficients amounts to the determination
of the corresponding friction coefficients.

Relation (8.1) was first derived by Einstein (1905, 1956). A slightly modernized
version of his derivation runs as follows. Consider a large number of these polymers,
without interactions, in a cylindrical volume, under the influence of an external
force K which acts along the axis of the cylinder. In thermodynamic equilibrium the
spacial density v(x) of the polymers will be a function of the coordinate x along
the axis of the cylinder, which can be found in the following way. As a result of
. the force K the particles will have an average velocity K/fT along the axis of the
cylinder; this results in a flux Kv(x)/fT. Also, because of the definition of the
diffusion coefficient, the density gradient dv/dx leads to a second flux -DTdv/dx.
Hence the density obeys the equation

Kv dv _
o0 (8.3)

which has the solution:
_ Kx
v(x) = v(0) exp (F5)- (8.4)
TT
But statistical mechanics gives the equilibrium distribution in the form
_ Kx
v(x) = v(0) exp (FET)' (8.5)
Identification of the last two equations gives the Einstein relation (8.1). The

second relation can be proved in a similar way.
From a theoretical point of view the Einstein relations are very handy because
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with their help the calculation of a diffusion coefficient (a statistical quantity)
is immediately reduced to the calculation of the friction coefficient which is a
hydrodynamic quantity.

Experimentally the translational diffusion coefficient is determined by measuring
the average squared displacement <?2> of the polymer during a time interval t and
applying the relation

% = 24Dt (8.6)
where d denotes the dimension of space. For a typical polymer in a solvent at room
temperature D is of the order 1077 cm? s_loand fr is of the order 5 x 10_79 s_l. The
polymer will diffuse over a distance of 100A (the order of its radius of gyration)
in a time of the order 10_6 s. The interested reader is referred to a paper by Berg
and Purcell (1977) for order of magnitude estimations of diffusion processes which
play a role in the theory of chemoreception.

In the following sections we calculate fT and fR for an isolated macromolecule
by representing the macromolecular coil by a rigid but porous sphere with a
permeability which is a function k(r) of the radial distance to the center of the
sphere. The validity of this so called porous sphere model has recently been
discussed extensively by Mi;n]ieff and Wiegel (1978).
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9. ROTATIONAL DIFFUSION COEFFICENT: GENERAL THEORY

Imagine a porous macromolecular coil which rotates with constant angular velocity

wg around the z-axis of a Cartesian set of coordinates. The velocity components of
the sphere are

Uy = -wgys (9.1)
Uy = +uwgXs (9.2)
Ug =0, (9.3)

where Uz (U;,U,,U5) . In the stationary state the velocity V= (V1,V,V3) of the fluid
is the solution of (5.4) and (5.5). One expects that the pressure will be constant
throughout the volume and that each fluid elements rotates around the z-axis. This
type of flow automatically satisfies the incompressibility condition (5.4). The x

and y components of the velocity have to be solved from

U, (i=1,2). (9.4)

==

1 _
AV - Vys -

It will turn out to be convenient to introduce spherical coordinates (r,6,$) by

X = r sing coso, (9.5)
y = r sing sing, (9.6)
z = r cos8. (9.7)

In these variables the Laplace operator becomes

A=—i+g-3—+-l—32+COtge -3—+-—~—7—1 ch (9.8)
ar2 roar r2 Sg? r2 3 rzsin 8 3_7

Denoting the angular velocity of the fluid at a distance r from the origin by w(r)
the velocity components are

Vl(r,e) = -r w(r) sind sing , (9.9)
Vz(r,e) = +r w(r) sind cosé. (9.10)

Substitution into (9.4) shows that these equations give the solution provided the
unknown function w(r) is the solution of the ordinary differential equation

@ 24 2

1 _ 20"
[;2+FW—?-m](rw)—-my. (9'11)

The boundary conditions are w(~) =0 and |w(0) <.
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In the next section this equation will be solved for a coil of uniform
permeability. In this section we show that the rotational diffusion coefficient is
determined uniquely by the asymptotic behavior at large distances of the solution of
(9.11).

Outside the coil the permeability is infinite, 56 the equation simplifies to

L. 722] (rw) = 0. (9.12)

This equation hasa solution of the form w~r® with a=-3 or 0. Because of the
boundary condition at infinity the second solution has to be rejected and one has
the asymptotic solution
Aw
w(r) = — (outside coil), (9.13)

which holds outside the cail. The constant A has to be determined from the behavior
of the solution inside the coil.

The total torque which has to be exerted on the coil to keep it in a state of
uniform rotation is equal to

7= J PxE dF, (9.14)

where F is given by (5.2). The only non-vanishing component fis T3- Substituting (5.2)
and (5.5) one finds

3=
T3=n0J(yAV1-xAV2) d”r. (9.15)

Using Green's theorem the volume integral can be written as a surface integral
av av
- 1 2 3y X 2
T3‘”0%(y_an—x‘a’n“ Vign * V2 ) 45 (9.16)

This integral can be extended over any surface which completely contains the coil.
For this surface we choose a sphere with some large radius r. Using (9.9), (9.10)
and (9.13) one finds

- 2.2
T3 = 3nguy A 2 % sine d°s. (9.17)

As d28= r2 sing do d¢ the surface integral can be performed in a straightforward

way. The result is

T3 = 8mawgA. ; (9.18)

Hence the rotational friction coefficient is
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'3
fp = 55 = 8mpA (9.19)

and the rotational diffusion coefficient equals:
kBT

Dy - ot (9. 20)

where the second Einstein relation (8.2) was used. The elegant result (9.19) was
published for the first time by Felderhof and Deutch (1975). It shows that the
rotational diffusion. coefficient is only determined by the asymptotic behavior of
the flow pattern at large distances from the coil.

For the record, we note here the dimensions of these transport coefficients:
[F] = [energy] [time] and [Dy] = [timel ..

An interesting general result has also been derived by Felderhof and Jones
(1978) who prove a Faxén theorem for the force and torque exerted by the fluid on
permeable spherically symmetric macromolecule, using the most general slip-stick
boundary conditions. Related work has been reported by Jones (1978b). Felderhof
(1976a,b) has studied the concentration dependence of fR for a suspension of
permeable macromolecules.
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10. ROTATIONAL DIFFUSION COEFFICIENT OF A UNIFORM SPHERE

The simplest and most important application of the general theory of the
preceeding section is to the case where the macromolecular coil is represented by a
sphere of radius R and constant permeability k0

k(r) = k (r<mr), (10.1)
= {r>R). (10.2)

The finite discontinuity in k(r) at r=R will generally lead to finite discontinuities
in the second derivatives of the velocity and in the first derivatives of the pressure
(compare eq. (5.5)). The pressure, velocity and the first derivatives of the velocity
should be continuous at r=R.

For r>R the solution has already been given in {9.13)

w(r) = — (r>R). (10.3)

The substitutions

r=¢ /Ky, (10.6)

transform the homogeneous equation into the equation

2
d°f | 2 df 2 _
——2+E—§— (1+—7)f-0. (10.8)
dg €
The solution which vanishes for £+0 is
h inh
F(g) = B/ Ry(S2E - ﬂg—”gﬁ), (10.9)
where B is a constant. Hence inside the coil the solution is given by
k kr vk
0 r 0" "0 . r
= + B - —). 10.10
u)(r) u)o (;2' COSh}/—k-O —'-7:3— sinh /k_d) ( )

At r=R both w and w' must be continuous. This Teads to two conditions
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wAA .
0 cosho  sinho '
= wy + B ( - M9y, (10.11)
R0 2
3wnA . .
0 B ,sinho coshg sinhg
7 = ( -3 + 3 ) (10.12)
R /Eb 02 03 04
where
o= 7=E= (10.13)
0

is a dimensionless quantity which measures the ratio between the radius R and the
distance /KB by which the fluid effectively penetrates the porous medium (compare
the discussion in section 5). Solving (10.11) and (10.12) one finds for the two
constants the explicit values

A= R (1+ 3 -3 cotgno), . (10.14)
a
3u)OO
B = - -‘S—ﬁ—h-o— . (].0.].5)

Using (9.19) and (9.20) one finds the rotational friction coefficient

3 3 3
fR=8ﬂn0R(l+O—2—Ecotgho), (10.16)

and the rotational diffusion coefficient

knT

B 3 3 -1
DR=—§——3(1+—7—6cotgho) . (10.17)
ﬂnOR a

These results were first found by Felderhof and Deutch (1975).

It is of some interest to discuss the two 1imiting cases o+« and o0 of these
formulae. In the Timit o= the porous sphere becomes an impermeable sphere and one
obtains the rotational friction coefficient of a hard sphere with stick boundary
conditions

3

fR(w) = 87rn0R - (10.18)

If o<<1 the expression (10.16) simplifies to

8 3 2
fp & TeTNQR” O (o<< 1), (10.19)

where we used eq. 4.5.67 of Abramowitz and Stegun (1970). The correctness of this
formula can be verified independently using the following argument. For o<<1 Tittle
interaction exists between the fluid and the porous sphere, hence V will be negligible
as compared to U and (5.2) gives
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ng
= U. (10.20)

Fo

Substituting this approximation into (9.14) one finds for the torgue:
n
0 3>
T3 FE J (xU, -yUl)d r, (10.21)
where the integration is restricted to the interior of the sphere. When (9.1,2) are
substituted into the right-hand side of this eauation the torque is found to equal

n
0 8 5

" this leads to the result (10.19). The regime g<<1 is called the free draining regime
for reasons which will be obvious from this derivation.
In table II the correction factor in (10,16) due to the finite permeability of
the sphere has been calculated using table 4.15 of Abramowitz and Stegun (1970).
Experimentally ¢ is typically of order unity and neither the free-draining 1imit nor
the impermeable sphere Timit can be used.

Felderhof and Deutch (1975) also calculate the rotational friction coefficient
of a hollow spherical shell with a constant permeability at the surface. A biophysical
application of these results can be found in a paper by McCammon, Deutch and Felder-
hof (1975). Experimental results for DR are scarce. This probably accounts for the
fact that the general formalism of section 9 has not been applied to more realistic

models for the macromolecular coil, like the Gaussian model to be discussed shortly.

Q

Gl(o)

0
0.0609

0.1940

0.3284

0.4370

0.5195

0.5833

0.6327

0.6719

0.7037

0.7300 .
1

W W ~N U RN = O

—_
o

[e<]

Table II. Values of the correction factor Gl(o) = (1+ 5%'- g-cotgh g) in eq. (10.16)
due to a finite permeability of the porous sphere.rNoteOthe $sTow convergence to the
1imit value 1 for large values of o.
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11. TRANSLATIONAL DIFFUSION COEFFICIENT: GENERAL THEORY

The calculation of the translational diffusion coefficient is similar to the
calculation in section 9, but the Ansatz to be made is somewhat Tess straightforward.
When an impermeable sphere of radius R moves through a viscous fluid with constant
relative velocity Vo the drag force on the sphere is given by Stokes' formula

F = 6ﬂn0RV0. (11.1)
This gives a translational friction coefficient
fT - 67rn0R, ’ (11,2)

and a translational diffusion coefficient
kgT

07 = ETE?%;R . (11.3)
These formulae are often used to assign an "effective hydrodynamic radius" to a
macromolecule the diffusion coefficient of which has been measured. However, a
polymer in solution cannot be represented by an impermeable sphere because the solvent
~can flow through as well as around the coil. Hence the flow has to be solved from the
fundamental equation (5.5) in conjunction with (5.4). In this section we shall present
the details of this calculation for the general case of a porous coil, following
Felderhof (1975a) and Wiegel and Mijnlieff (1977b).

Consider an isolated macromolecule at rest in the origin of a Cartesian system
of coordinates (x,y,z). In the absence of the coil the fluid would be in a state of
uniform flow with a velocity

>

D (0,0,vg) (11.4)

and the pressure would equal a constant Po throughout the fluid. Owing to the presence
of the coil the actual velocity and pressure will be the solutions of (5.4) and (5.5),
with U= 0, which approach the unperturbed fields at large distances from the origin.
For these solutions one makes the Ansatz

P = pg - g Stk (7). | (11.5)
V=u(r)v-vr) rx(rxv), (11.6)

where £(r), w(r) and v(r) are unknown scalar functions of the radial distance to the
origin. This Ansatz, which was first used by Felderhof (1975a), is inspired by the
following observations: (a) the pressure is a scalar and the velocity a vector; (b)
the velocity and the excess pressure should be 1linear in v; (c) the only vectors in
the problem are ¥ and v. These conditions lead uniquely to (11.5) and somewhat 1imit
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the possibilities for V.

It is tedious but straightforward to verify by substitution that the Ansatz
solves (5.4) and (5.5) provided the three unknown functions are the solutions of the
three coupled ordinary differential equations

_L o
V=t (11.7)
vty ity e = o, (11.8)
n 2 1 2 -1,
g+ - =z g- (k") v=0, (11.9)

where the prime denotes differentiation with respect to r. The boundary conditions
are that velocity and pressure stay finite in the origin and approach the unperturbed
fields if r-w, This implies

p(0)  finite, (11.10)
g(0) finite, (11.11)
p(=) = 1, (11.12)
g(w) = 0. (11.13)

As in the case of the rotational diffusion coefficient one shows easily that the
translational diffusion coefficient is determined by the asymptotic behavior of the
solution at large distances. Outside the coil kl-o and (11.8,9) become

VrE =0, (11.14)

sl

g -Se-o0. (11.15)
r
The last equation, with boundary condition (11.13), has the solution
g(r) = 5% (outside coil). (11.16)
r

Substituting into (11.14) and using the boundary condition (11.12) one finds

slo

or)=1-2+ 2 (outside coil), (11.17)
r
where C and D are constants to be determined shortly.
Now the z-component of the total force which the fluid exerts on the coil follows
from (5.2)
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f_]__> - 3>
-F3 = ng J k “(r) Vg (r) d7r. (11.18)
The integration is over all space. Using (5.5) this can be written as
_ 3P 3>
—F3 = { (- =t nOAV3)d r
(11.19)
av aVv 3V
_ x '3,y "3 .2°3 2
- %f'P—”o(?—x’*F—y*r—z”ds

In the second equality we used Gauss' theorem to replace the volume integral by a
surface integral over the surface of a sphere with some large radius r. Substituting
(11.16) and (11.17) into (11.5) and (11.6) gives the solution

P =py - Mg¥oC 5 » (11.20)
r

voC vOCz2 -3

V3= VO '7?-'—2‘;3'—1'0(?‘ ) (11.21)

outside the coil. If this is combined with (11.19) and if the 1limit r-e is taken

one finds
—F3 = 41Tn0C Yo (11.22)

for the drag force on the coil. Consequently the translational friction coefficient
is given by

f = 470, (11.23)

and the translational diffusion coefficient by
kBT

DT:W.

(11.24)
In the next section this formalism will be applied to the uniform coil. The dimensions
of these important transport coefficients are: [fT] = [mass]. [time]_1 and‘[DT] =
[1ength]2 [time]-l.

Further general results on the translational diffusion coefficient are given
by Felderhof and Jones (1978) who prove a Faxén theorem for the drag force exerted
on a permeable macromolecule. Jones (1978b) has calculated fT using the hydrodynamic
interaction of permeable coils and-Felderhof (1976a,b) studied the concentration
dependence of fT for a suspension of permeable polymers.
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12. TRANSLATIONAL DIFFUSION COEFFICIENT OF A UNIFORM SPHERE

For the uniform sphere model of section 10 the derivative (k_l)' of the inverse
permeability vanishes both inside and outside the sphere. This implies that in this
case the solution of (11.9) is given by

gr) =5 (r<R), (12.1)
r
- Er (r<R), (12.2)

where E is a constant. The function y(r) is given by (11.17) outside the sphere and
has to be solved from

w"+—i‘-w' —k51w+E=0 (12.3)

inside the sphere,
The solution of this equation which is finite at r=0 is

w(r) = Bk, + F (& cosh—f—-ﬂ% sinh —/— ) (r<R) (12.4)
0 r2 \/k—o —rg_ \/k—o

as can be verified by substitution.

The boundary cenditions at r=R have been discussed in section 10. The continuity
of the pressure implies, through (11.5), that £(r) should be continuous in R. The
continuity of the velocity and its first derivatives implies, through (11.6) and
(11.7) that ¢, ¢' and " should be continuous in R, This gives the set of relations

%: ER, (12.5)
R
C D ‘/k—

1 - —ﬁ+E3=Ek +F(—7 cosho-—3—s1nh a), (12.6)
%-%:F{-%cosho+(o+3)—gsho} (12.7)
R R R
-g%+1—25|1=F{i4(12+02) cosho-%(ScH%g) sinhao}, (12.8)

R R R R

where o was defined in (10.13). It is straightforward, but tedious, to solve the
four constants C, D, E, F from these four equations. One finds

C =5 RGy (o) {1+ Z}ZGO(O)} , (12.9)

1
GO(O) = 1——0— tgho . (12.10)
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The translational friction coefficient now follows from (11.23)
-1

fr= 6TngRG o(0) { 1+ 537 G} (12.11)

and the diffusion coefficient is given by the first Einstein relation

kT
_ B 3
Dy = 57r55ﬁ§5T5) {1+ E;? GO(O)} . (12.12)

These results were first given by Debye and Bueche (1948) but the first
derivation was published by Felderhof (1975a), who also treated the spherical shell.
In the impermeable sphere 1imit o+ the function GO(O) tends to unity and one
recovers Stokes' formulae (11.2) and (11.3). In the free draining regime one finds
Go(o) g-% % and

4 2
fT X3 R ¢°, (o << 1). (12.13)

This result can be verified immediately with the use of Towest order perturbation

theory as discussed in section 10. In table III we have tabulated the correction

factor Go(o) {l-r—ég Go(o)}_1 in (12.11) due to the finite permeabilty of the sphere.
20

The translational diffusion coefficient has alo been calculated by Jones,
Felderhof and Deutch (1975) for a polymer which is constrained to move along the
interface between two fluids. These authors consider two polymer models: rigid rods
oriented at right angles to the interface and porous spheres with their center in
the interface and with a permeability which is constant in each hemisphere.

The uniform porous sphere, although better than the impermeable sphere, is
still somewhat unsatisfactory as a model for a real macromolecular coil. In the next
two sections we shall discuss a more realistic model (the Gaussian model) and
calculate its translational diffusion coefficient.

3 -1l

Gr(o) { 1+—5 G,(0)}
olo) £ 14777 Gylo)

Q

.1756
.4337
.6013
.7009
.7634
.8054
.8352
.8574
.8745
.8880

._‘
g OVENOTPRWNRFO

RFOOOO0OO0OOO0COOOoOO

1

Table III. Values of the correction factor G,(o) {1+ 3 GA(0)} " in eq. (12.11) due
0 E;? 0

to the finite permeability of the sphere.
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13. THE FREE RANDOM WALK MODEL AND THE GAUSSIAN COIL

In a real isolated macromolecule in a solvent the permeability will be some
function k(r) of the radial distance (r) to the center of mass of the coil. This
function is related in a complicated way to the Tocal mass density pl(r) of macro-
molecular material (compare the discussion in section 4). A fairly accurate form of
the curve k(r) can be found by: (1) using free random walk statistics to determine
the function pl(r); (2) using the experimentally determined curve k(pl). In this
section we shall first derive the main consequences of the free random walk model
for macromolecular chain statistics. Next, we shall discussthe Gaussian coil. The
section ends with some general considerations concerning the conformational phase
transitions in a macromolecular chain and with comments on the role of space dimension
in the escape probability and the excluded volume effect.

Whereas the successive repeating units of a macromolecule are strongly bound,
so that their mutual distance is fixed, in many cases the units can be easily rotated
with respect to one another. These two features of real macromolecules form the basis
of the random walk model for macromolecular statistics, in which a configuration of
a macromolecule consisting of N repeating units is represented by a random walk
consisting of N steps, each of length &, where 2 equals the average distance between
two successive repeating units in the macromolecule. Depending on the interactions
between the repeating units of the macromolecule one should impose certain constraints
on these random walks. In first approximation such effects are neglected altogether;
consequently the random walks considered here are free. In this free random walk
model the length of each step is constant, and no correlations exist between the
directions of successive steps. At the end of this section we shall consider briefly
the case in which strong repulsive interactions between the monomers are taken into
account (the excluded volume problem; also compare the Appendix).

Denote the probability density that a free random walk which starts at the
origin will reach the point ¥ after N steps by P(?,N). The first of these probability
distributions is

p(7,1) = (4md) 7L 5|7 - 9), (13.1)
and the higher ones can be found from the first one by an integration over the N-1
coordinates ?1’?2""’?N-1 of the endnoints of the 15t, an,...,(N-l)St step

> 3 3 3 Nl e >

P(r,N) = J d’ry [ d7r,... J d N-1 igo (4me™) 6([r1+1 - ril -2).  (13.2)
Here ?0 =0, ?N =7 and §(x) denotes Dirac's delta function. .

The Fourier transform of P(?,l), which will be denoted by P(?,l), can be
calculated directly



-1

k1) = J (4m2?) (13.3)

where k denotes the length of the vector k. As P(?,N) is related to P(?,l) by an N-1
fold convolution product its Fourier transform is the Nth power of 5(?,1)

KN) = J PNy KT 43 - SN - 1,2, (13.4)

0f course the Fourier transform contains the same information as the probability
distribution itself, because an inverse Fourier transform

.

BFN) = (2m)73 J (i kN o= TK-F 438 (N = 1,2,3...) (13.5)

gives an integral representation for the probability distribution.

Instead of the explicit representation (13.5) for the probability distribution
of free random walks, it is often convenient to use the asymptotic form of this exact
expression for N»> 1. This can be obtained from the asymptotic form of the Fourier
transforms for kg << 1. Expanding (13.3) for small k& one finds
1,22 4 4

L - k%% + 0(k'e")

P(k,1)
(13.6)

=e# + 0(k424).

Substituting this expansion into (13.4) gives the asymptotic form of the Fourier
transform

2,2
> -1
e~gNk™% (N>>1) (13.7)
Taking the inverse Fourier transform and performing the integration over K one finds
the asymptotic form of the probability distribution

>

220 2
PEEN) 2 (%ﬂNgz)-a/z oI M

(N>>1) (13.8)
The Tast equation displays the well known Gaussian character of the probability
distribution of free random walks, a direct consequence of the central Timit theorem
of probability theory. For a further discussion of random walks the reader should
consult Chandrasekhar (1943), Wax (1954) or Barber and Ninham (1970).

It is straightforward to derive the corresponding results for random walks 1in
a plane. For future reference we need only quote the asymptotic forms of the
probability distribution and its Fourier transform. Instead of (13.6) one now has
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P(E1) = 1-3k%2 0 (k*eHh
13.9)
2,2 (
N T T
This gives the asymptotic form of the Fourier transform of the probability
distribution
N Cinb2,2
P(RN) = e dNKT (N>>1) (13.10)
and the asymptotic form of the probability distribution itself
5 2,-1 -¥2/Ng?
P(r,N) ~ (mN2®) " e . (N>>1) (13.11)

Whereas the last three results for walks in the plane are quite similar to the
corresponding results for random walks in space, there is a difference between the
case of dimension 2 and the case of dimension 3 that has significance to the type of
conformational phase transitions which occur in macromolecules. This will be discussed
at the end of this section.

Note that both in two and in three dimensions the quantity

pg=52,/N (13.12)
is the root of the average squared end to end distance. The reader is warned that
this quantity is often called the "radius of gyration" in the chemical physical
literature, contrary to the formal definition of the radius of gyration in classical
mechanics.

Returning now to the free random walk model eq. (13.8) it turns out that, even
for this simple case, the distribution of mass around the center of gravity has not
been calculated analytically (compare.the discussion in section 8 of Yamakawa (1971)).
A fair approximation is

o1 (F) = mP(F,N), (13.13)

where m denotes the total mass of the macromolecule. Combining this with a k(pl)
curve which qualitatively has the form indicated in figure 2 one finds that the k(r)
curve can be approximated by the expression

k(r) = K exp (Qr?), (13.14)

where K and Q are positive constants. An isolated macromolecular coil with this
distribution of the permeability will be called a Gaussian coil. The determination
of the constants K and Q, which are different for every polymer-solvent pair, has
been discussed by Mijnlieff and Wiegel (1978). An appropriate choice is to identify
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K with the permeability
K K (pq(0)) (13.15)

which corresponds with the density

2 -3/2

2
p1(0) = m (5 o) (13.16)
in the center of the coil, and to take
3
Qn -7 - ' (13.17)
2pg

The values of m and pg can be determined empirically for every polymer-solvent pair
from sedimentation and light scattering experiments The first application of the
Gaussian coil model to the theory of the transport properties of a dilute polymer
solution is the paper by Ooms, Mijnlieff and Beckers (1970) in which for a few
specific polymer-solvent pairs DT is calculated with a purely numerical procedure.

A warning is in place here. Under certain conditions a macromolecule can go
through a configurational phase transition of some kind of another. This would Tead
to replacement of the random coil (13.8) by a helix, a folded conformation, a
globule or some other drastically different conformation. These conformational phase
transitions have recently been discussed in detail by Wiegel (1979d); they all lead
to the breakdown of both the free random walk model and the Gaussian coil.

We end this section with a discussion of the role of the dimension of space.
The peculiar effect of space dimension (d) is most easily demonstrated in a
calculation of the escape probability. Suppose we imagine an infinitesimal volume
element d2 around the origin and ask for the probability UN that a randomwalk which
starts from the origin has returned to some point inside d@ after N steps. This
probability is given according to (13.8) and (13.11) by

(mNe2) 7L gq, (d=2)
Uy 2 (13.18)
G ane?) % ga. (d=3)

UN gives the probability that the endpoint ?N of the last step of»ths randoT walk
belongs to dQ, regardless of whether or not any of the endpoints Pialpse -l 1

of the intermediate steps belonged to dQ. Let VN denote the probability that

?N belongs to d but that none of the endpoints of intermediate steps belonged to dq.
Thus VN gives the probability that the random walk enters dQ for the first time at
the Nth step; whereas UN gives the probability that the random walk is in dQ after
N steps, maybe after several previous visits. We want to calculate VN.
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The relation between UN and VN can be found if one orders the random walks which
are in dQ after N steps according to the number of the ?1’?2""’?N~1 which belonged
to d

Uy=Vy + v Vy vN2+ 7 Vg Vo Vot e (13.19)
N1+N2=N N1+N2+N3=N

For example the second term on the right hand side gives the contribution to UN of
all random walks which have visited dQ twice: once after N1 steps, then again after
another N2 steps. The constraints on the Nl’NZ"" which are indicated under the-
summation signs make it very difficult to solve the unknown VN from the known UN'
The method of generating functions has especially been designed to eliminate
constraints of the type which occur in the last equation. Introducing the generating

functions
U(z) =1y, (13.20)
N=1
V(z) =3 szN, (13.21)
N1

multiplying both sides of (13.19) with ZN and summing N from 1 to «, one finds

U(z) = (2) +Ve2) + V3 (2) + ... - T!;%%Ey . (13.22)

From this relation V(z) can be solved in terms of U(z)
V(z) = 2L, (13.23)
and VN can be calculated by complex integration

vy = (2ni)! § Wz) Ny (13.24)
where the contour C encircles the origin of the complex z-plane once in counter-
clockwise direction. ‘

In order to demonstrate the role of the dimension of the space in which the
random walk proceeds we use the relations (13.20 - 24) to calculate the probability
wo that a random walk of infinite lenath will ever return to the volume element dQ
in which it originated. Obviously, WO is the sum of the probabilities VN to return
to dQ for the first time after N steps. According to (13.21) this sum can be expressed
in the generating function V(z) for z=1

W, =

: =V(1). (13.25)

7oV
NEp o N

Using (13.23) one finds
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u(1)

NO T30 (13.26)

Now with the explicit expressions (13.11) and (13.8) one has
_ 0241 s oyl _
U(l) = (m " da § N =, (d=2) (13.27)
N=1
u(l) = Cmy)y¥2aqy NI ca, (d=3) (13.28)
N=1

Substituting these results into (13.26) one finds

Wy = 1s (d=2) (13.29)

Wy < 1. (d=3) (13.30)

Consequently, a continuing random walk in a plane will always return to a narrow
vicinity d@ of the point where it started, but a random walk in three-dimensional
space has a finite probability (1-w0) >0 to "escape" from d forever. This influence
of dimension on the escape probability can qualitatively be understood as follows.

A macromolecular coil consisting of N repeating units, each of length &, can roughly
be represented by a cloud with a radius of the order N%z Hence the probability to
return to the vicinity dQ of rg after N steps drops off with increasing N as N ~2d and

U(1) is proportinal to Z N 2. This series diverges if d< 2 and converges if d> 2.
N=1
Hence, according to (13.26) the escane probability 1- N will be 0 if d<2 and >0

if d>2. Note that these qualitative estimates are a]so mean1ngfu1 if d is interpreted
as a real continuous parameter.

Finally, we want to point out that excluded volume effects lead to some
corrections to the free random walk statistics (13.8), but these corrections - although
important from a conceptual point of view - are negligeably small from a quantitative
point of view. This problem has recently been reviewed in detail by McKenzie (1976)
and by Lifshitz, Grosberg and Khokhlov (1978). Until now the excluded volume problem
has resisted all attempts at an analytic solution, although there are some indications
that the two-dimensional problem can be solved analytically (Wiegel, 1979e). It can
also be shown in the following way that the excluded volume effect is of no consequence
for d> 4. In the free random walk model the interactions between the different
monomers are ignored. Let us estimate qualitatively when this is permitted. Assume
that two monomers have a large positive interaction energy E0 when their distance
is smaller than some threshold distance. The monomer density in the ideal coil will
be of the order Nl"%d 2~d, hence the energy of self-interaction will be of the order
EQN*29. For N>> 1 this will be very small if d>4 but it will be very large if d< 4.
Hence, the excluded volume effect, due to the self-interaction, can be neglected if
d> 4 but has to be taken into account for d<4,
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The considerations in this section show that two dimensions play a special role
in the statistical mechanicé\of isolated macromolecules: d=2 above which the escape
probability becomes non-zero, and d =4 below which the excluded volume effect has
to be taken into account. The real world, with d= 3, seems to be the most complex
of all possible worlds. Further comments on the excluded volume problem have been

collected in the Appendix.
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14, TRANSLATIONAL DIFFUSION COEFFICIENT OF A GAUSSIAN COIL

In this section the general formalism of section 11 will be applied to the
model for which

k(r) = K exp (Qrz). (14.1)

We shall follow the paper by Wiegel and Mijnlieff (1977b). When (14.1) is substituted
into (11.8) and (11.9) one finds equations which can be brought into a dimensionless
form by introducing the dimensionless variables

x=rvQ, (14.2)
h(x) = ¥(r), (14.3)
a(x) = %r—) . (14.4)
Q
The dimensionless equations are
2 2
9—% + é %§~~ ae”* h + %%v= 0, (14.5)
dx
2 2
d 2d 2 -
y + §-8%~~ —5q+ 20xe”™ h = 0, (14.6)
X X
where
o= Kt (14.7)

The boundary conditions (11. 12, 13) imply h(=) =1, q(«)=0. The other boundary
conditions (11.10) and (11.11) imply that q(0) and h(0) should be finite. As h(0) is
finite the Tast term on the left hand side of (14.6) vanishes for x+0. Consequently
the behavior of q(x) close to the origin can be solved from

0 (x+0). (14.8)

5
o
+
x[ro
oo
18

e

N

2
-5 9
2

[=8

X

The solution which gives a finite value for q(0) is x; this gives the alternative
boundary condition

q(0) = 0 : (14.9)

and (dq/dx)X=0 will be finite. Using this information in (14.5) one finds that
h(x) behaves near the origin Tike the solution of

2

o

h . 4 dh
t Y constant (x+0). (14.10)

"
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The solution of this equation which gives a finite value for h(0) is c1+-c2x2,
hence
dh = Q. (14.11)
(dx)x=0
The boundary conditions (14.9) and (14.11) turn out to be much easier to use that
the two original ones.
Whereas an analytic solution of (14.5,6) seems impossible to obtain a numerical

solution can be found in the following way. Using (11.16) and (11.17) one has for the
solution outside the coil

q~(><) == (14.12)

h(x) = 1 -

xio

d
+ 4 (14.13)
X

where c and d are constants to be determined. We may use the last two results for
x> Xg where Xg is some large positive constant. Then use (14.5,6) to calculate q(0)
and h*'(0) numerically. In general the values found will violate (14.9) and/or
(14.11). The values of c and d are now adjusted till both boundary conditions are
satisfied within some error margin.

Denoting the correct value of ¢ by a¥(a) one has

C=cQ 2 =Q2 a¥a). (14.14)

Using the general results (11.23,24) one finds

-1
f.l- = 41Tn0 Q2 ov(a), (14.15)
1
kBTQz

The values of the function ¥(a) have been calculated in this way for o up to 17; the
results, which were first published by Wiegel and Mijnlieff (1977a,b), are Tisted

in table IV. The Gaussian model leads to values of DT which are in satisfactory
agreement with experimental data; this will be the subject of section 18.



a ¥ (a) o(a)

0 0.443 0.332
1 0.359 0.321
2 0.303 0.311
3 0.263 0.301
4 0.233 0.292
5 0.209 0.284
6 0.190 0.277
7 0.175 0.270
8 0.162 0.263
9 0.151 0.257
10 0.141 0.251
11 0.133 0.246
12 0.125 0.241
13 0.119 0.236
14 0.113 0.231
15 0.108 0.227
16 0.103 0.223
17 0.099 0.219

Table IV. The functions ¥(a) and &(a) which determine the translational diffusion
coefficient and the intrinsic viscosity of Gaussian coils, according to egs. (14.16)
and (17.11).
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15. VISCOSITY: GENERAL THEORY

In a ce]ebfated paper Einstein (1906) calculated the viscosity of a dilute
suspensidh’of impermeable spheres. For purposes.of comparison, the interested reader
is also referred to Einstein (1911, 1956). Einstein's expression is often used to
interpret the viscosity of a solution of macromolecules in terms of an "effective
hydrodynamic radius". However, the same criticism applies here as was applied in the
case of the translational diffusion coefficient. In this section we calculate the
intrinsic viscosity of permeable macromolecules in solution, following Felderhof
(1975b) and Wiegel and Mijnlieff (1977b).

Let the macromolecule be Tocated at the origin of coordinates. At large distances
from the coil the fluid is in a state of uniform shear flow ‘

Vo= (64y,0,0), (15.1)

with shear rate GO. The coil, which is represented by a rigid porous sphere, will
rotate around the z-axis as a result of the interaction with the fluid

U = (-wy,wx,0). ‘ (15.2)

The angular velocity w can be found by imposing the requirement that in the stationary
state the total torque of the forces which the fluid exerts on the coil should vanish.
It can be shown that this implies that the angular velocity equals half the shear

rate
w= -1 Gg- (15.3)
For the actual velocity and pressure fields one makes the Ansatz
r > > \ |
P=py -1y (rev), | (15.4)
r
\ |
V=0+o(r)(-0)-u(r)rx(rx [v-01), (15.5)

where x(r), ¢(r) and u(r) are unknown scalar functions of the distance to the origin
of the coil. This Ansatz, attributable to Felderhof (1975b), is similar to egs.
(11.5,6). After substitution and a tedious, somewhat unelegant calculation, one finds
the solution provided :

I S

H = 73 ¢ s (15-6)
u 6 1 -1 X' -

¢ +_F¢ -k ¢+_r_ =0, (].5.7)
vy 2 o8 vk e 0 (15.8)

X F X E? X . .
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The boundary conditions are that V and P are finite in the origin and approach the
unperturbed fields at large distances; this implies

9(0)  finite, (15.9)
x(0) = 0, (15.10)
(=) = 1, (15.11)
1im X0 o, (15.12)
P oo

For r—« the permeability goes to infinity and the fourth term on the left-hand
side of (15.8) vanishes. The resulting equation has the solution

x(r) = =3 (outside coil). (15.13)
Upon substitution into eq. (15.7) one finds

¢p(r) =1 - l% + J% (outside coil), (15.14)
r r

where the boundary conditions were used and where the third term on the Teft-hand
side of (15.7) was set equal to zero. By substituting into (15.5) one finds the
asymptotic form of the three components of the ve]ocity/

2

Y

-4
V]. = - GOA?—‘FGO‘\/‘FO(Y’

>

)s (15.15)

-4
r

2
-GOA%+0(
r

)s (15.16)

Vy = - GoA 5;5& +0(r ), (15.17)
which formulae determine the viscosity in the following way.

Consider a dilute solution which contains n_ of these macromolecules per unit
volume. Let the solution be contained between two parallel walls situated at y=+L
and Tet these walls move with equal but opposite velocities (+GL) along the x-axis
in such a way that the macroscopic velocity field has a shear rate G. We calculate
the viscosity of the solution following the method of Burgers (1938). The macroscopic
velocity field should be distinguished from the Tocal velocity field in the vicinity
of a macromolecule. The velocity field which would be found at the position (?1) of
a particular macromolecule, when that molecule has first been removed, has a shear
rate GO. The presence of the molecule at ?i will add to this unperturbed velocity
a small correction given by (15.15-17), and these corrections have to be summed over
all the coils in the fluid.
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To be more specific, we calculate the correction to the velocity in some point
(x,y,z) due to all coils present in a thin sTice of fluid parallel to the x,z-plane
and with thickness dy'. As the coils are distributed with number density np the
correction to V1 can be found from the integral
aVy = - GOAlwpdy‘ [ dx* _[ dz‘(x~x‘)2(y~y‘)l?-?'l~5

—~00

(15.18)

I g
*“é‘ﬂGOAandy .

Note that BAV1/3y= 0, so the molecules in this slice do not change the local shear

rate; therefore, the shear at the upper and lower plates still equals G.. Hence, the

0
x-component of the force which the fluid exerts on a unit area of the upper surface
equals ”OGO' By integrating (15.18) over y' and adding the local velocity field one

finds the macroscopic velocity field V(M) described by

M)

V(l - oy, (15.19)
M

v <o, (15.20)
M

v -0 (15.21)

Carrying out the integration one finds

4
6= (1-37n A G (15.22)

0
The viscosity n of the solution is operationally defined by measuring the force per
unit area and dividing by the shear rate. But as the force per unit area has an x-
component equal to nOGO this gives

n6 = nySq- (15.23)

Combining the last two equations one finds for the relative increase of the viscosity

SIS (15.24)

This relation expresses the viscosity of a dilute solution of permeable macromolecules
in terms of the asymptotic behavior of the flow field around one macromolecule.

In this section we have followed the method of Burgers (1938) and Hermans (1953)
to calculate the viscosity of the solution from the asymptotic flow fields (15.15-17).
Other methods are due to Einstein (1906, 1911, 1956), Kramers (1946), Kirkwood and
Riseman (1948), Yamakawa (1971), Landau and Lifshitz (1959) and Peterson and Fixman
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(1963). Several of these methods have been discussed by Felderhof (1975b). Felderhof
(1976a,b) also has studied the concentration dependence of the increase in the
viscosity of a suspension of spherically symmetric polymers.
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16. VISCOSITY OF A DILUTE SOLUTION OF UNIFORMLY POROUS SPHERES

For the uniform sphere model, discussed in sections 10 and 12, the derivative
(k“l) vanishes inside and outside the sphere. This immediately gives the fields

x(r) =g% (r>R), (16.1)
r
o(r) =1- —Ag+—35 (r>R). (16.2)
r r

Inside the coil the solution of (15.8) is

2

x(r) = Dr (r<R), (16.3)

where we used the boundary condition (15.10). The function ¢ inside the coil has to
be solved from

o+ 8o s gl gram=o. (16.4)

The solution of this equation which is finite at r=0 is given by

®(r) = 2Dk +C {(75—) sinh (=)

kg /ko
-4 r p o r
-3 (L) cosh () +3(-5)  sinh (—)F  (r<R), (16.5)
/ko /ko /ko /ko

as can be verified by substitution.
The continuity of x,¢,¢' and ¢" at r=R leads to four identities

2 e, | (16.6)
R

1- B B2k 40 (0704307 sinho- 307" coshol, (16.7)

5 R

M5B L (607 +150%) sinho + (070 +1507) cosha, (16.8)
R R YK

J12h 308 _ € 573439675 4 90077) sinho - (907 +9007%) cosho},  (16.9)

R R Ko

Gy (o) {1+ Gy(0)} » (16.10)
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alw

3
Gl(o) =1+ ;7 - = cotgho. (16.11)
Note that this function also plays a role in the rotational diffusion coefficient
of a porous sphere, eq. (10.17).
With (15.24) this gives for the relative increase of the viscosity of a dilute
solution of uniformly porous spheres

- -1

3529 TS n Gy(0) {1+ i% 6,(0)} . (16.12)
Just as in the case of the translational diffusjon coefficient this result was first
published by Debye and Bueche (1948), but the first derivation was given by Felder-
hof (1975b). Introducing the fraction of the volume occupied by the spheres

=378 n (16.13)
one can write (16.12) in the more popularized form

T]-T]O 5 10 -1
o3 (o){1+;—2~G1(o)} . (16.14)

In the Timit g+« the spheres become impermeable. As Gl(w)= 1 this gives

Mo _ 5

— =50 (impermeable spheres), (16.15)
o

the result originally found by Einstein (1906, 1911, 1956). In the free draining

regime one finds

n-n
_ 0. f%WTR3 n o2, (o<<1). (16.16)

-1
In table V we give the values of the correctjon factor Gl(o) {1+ lg»Gl(o)}
a

due to the finite permeability of the spheres.



o 6,(0) {1+ lg»el(o)}'l
a
0 0
1 0.0378
2 0.1306
3 0.2406
4 0.3432
5 0.4301
6 0.5020
7 0.5603
8 0.6081
9 0.6475
10 0.6803
o 1

Table V. Correction factor for the relatjve increase in the viscosity due to a
finite permeability of the suspended spheres, eq. (16.12).
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17. VISCOSITY OF GAUSSIAN COILS

In this sectijon we study the case of Gaussian coils

k(r) = KeXP(QrZ), (17.1)

which also formed the subject of sections 13 and 14. The treatment given here follows
Wiegel and Mijnlieff (1977b). The appropriate dimensijonless variables are

x = r ¥Q, (17.2)
f(x) = o(r), (17.3)
g(x) = x(r). (17.4)

In terms of these varjables the equations (15.7,8) become

2 2

d%f 6 df  -x 1dg _

oz *ya coe fHrige =0 (17.5)
2 2

d™g , 2 dg 6 2 =X _

o2 fe - 7 g+ 2ax%e”" f =0, (17.6)

where o was defined by (14.7). The boundary conditions are: f(0) finite, g(0)=0,
f(¢)=1 and 1im gxx) = 0. An analysis similar to the one in section 14 shows that

X+
g'(0) =0 and that f'(0)=0.
A numerical solution of the equations can be found in a straightforward way.
Outside the coil (15.13,14) give

9(x) = 2—§ ; (17.7)
X

F(x) = 1-2 40 17.8

(x) ;g’f;’g ( )

The two constants a and b are adjusted til1 the solutjon satisfies the boundary
conditions g(0) =0, f'(0) =0. Denoting the correct value of a by a@(a) one finds

o(a). (17.9)

Q" 2 o(a). (17.10)

The values of @(a) have been calculated in this way for o up to 17; the results are
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Tisted in table IV.

For the record, it should be pointed out that in chemjcal physics the change in
the viscosity is usually expressed in terms of the intrinsic viscosity [n] which is
defined as the relative increase in the viscosity divided by the mass density of
macromolecules in the mixture. Denoting the mass of a single coil by m one finds

- - -}
M= $rn kTt Q7R e(a). (17.11)

This result was given by Wiegel and Mijnlieff (1977a,b); its comparison with the
experimental data is discussed briefly in the next section.
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18. COMPARISON WITH EXPERIMENTAL DATA

The theory of the translational friction coefficient and intrinsic viscosity
of Gaussian coils, developed in sections 14 and 17, has been compared by Mijnlijeff
and Wiegel (1978) with experimental data on two polymer solvent pajrs. These two
systems were (A) poly-a-methylstyrene in cyclohexane at 35.50C; (B) poly-o-
methylstyrene in toluene at 259 C. Note that cyclohexane is a poor solvent, but
toTuene a good solvent for poly-a-methylstyrene. The physical consequences of this
fact have been discussed at the end of section 4. System A is at its theta temperature,
but system B is far from theta conditions. Hence the two systems represent very
different sijtuatjons.

The *radius of gyration® Pq and the molecular mass m of the macromolecule follow
from sedimentation and 1ight scattering experiments. Using Pq and m in equations
(13.16,17) one finds Q and the mass density pl(O) in the center of the coil. Eq.
(13.15) then leads to the value of K.

The theoretical values of fT and [n] thus calculated turn out to be in satis-
factory agreement with the experimental data. Calculated and directly measured values
agree within 5% tot 15%. This js satisfactory in view of the fact that no a priorj
information on fT or [n] has been used, and that no adjustable parameters occur {n
the theory. It should be pointed out also that the uncertainty in the experimental
values of these transport coefficients is of the order of 10%.
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19. SOME GENERAL PROPERTIES OF CELL MEMBRANES

The flow of a viscous fluid through a porous macromolecular system also plays a
role in the bjophysics of the cell membrane. One of the most important examples is
the case in which the porous medjum consists of a patch of cross-Tinked *
jmmunoglobulins through and around which exists a lateral flow of 1ipids. Before
embarking upon any calculations we shall discuss the two systems involved (the 1ipid
bilayer and the crq§s‘T§hked jmmunogiobulins) in a qualitative fashjon.

It is now genéra11y beljeved that most bijological membranes consist of a 1lipid
bilayer in which a Targe number of proteins are embedded (Singer and Nicolson, 1972).
Upon varijation of the temperature or of some other appropriate variable the bilayer
can be "pushed" into one of several phases. The current theories of these phases and
the corresponding phase transitions have recently been reviewed in detail by Wiegel
and Kox (1979). The interested reader is referred to this paper and the references
cited therein. At physiological condijtions the bijlayer is in a fluid phase.

The 1ipid bilayer has a thickness

h~ 40 A (19.1)

and a viscosity

nv2g en! s-1 (19.2)

at 25°¢ (PriJes and Shinitzky, 1977). Note that this viscosity is quite large as
compared to the viscosity n' of the fluid on eijther side of the membrane; n' is of
the order of the viscosity of water

na0.0lgem st (19.3)

at 25° ¢ (Weast, 1974). The 1ipids in each of the two monolayers can be represented
roughly by hard disks of a radius

an 4 A (19.4)

and a height approximately equal to half the thickness of the membrane. As Tipids
which are opposite to each other in the two monolayers interact strongly with each
other through entanglements of the ends of their hydrocarbon tails we can imagine

the membrane to consist of hard rods (of length h), which are constrained to move in
the plane of the membrane and which are always oriented perpendiculary to its surface,
This model was first used by Huang (1973).

If the bjological cell under consideration is a lymphocyte the Tipid bilayer
will be interrupted by immunoglobulin molecules. A detailed discussion of these
proteins can be found in De Lisi (1976) and in the references quoted there.
Mathematical immunology also forms the subject of a recent textbook by Bell,
Perelson and Pimbley (1978), where the reader will find much related material. For
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our purposes the following three observations are crucial: 1. The immunoglobulin
molecules (specifically the IgG molecules) are large Y shaped proteins which are
embedded in the lymphocyte membrane with thejr Fc fragment, j.e. with the "stem"

of the Y. 2. These immunoglobulins are often cross-1linked in a patch consisting

of hundreds or thousands of them. The cross-linking occurs through binding of other
compounds (antigens) outside the membrane to the two "prongs" of the Y. 3. As the
Tinear dimension of an IgG molecule is of the order of 100 K the distance between
the stems of neighboring immunoglobulins in a patch 1is of order of 100 R too. As
this is large compared to the size (19.4) of a Tipid the patches are permeable for
lateral flow in the plane of the Tipid bilayer.
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20, THE BRETSCHER FLOW HYPOTHESIS

An interesting addition to the concept of the fluid membrane is due to Bretscher
(1976). This author assumed that "new" 1ipids are inserted at certain sites of the
membrane and that "old" 1ipids are removed through endocytosis at one specific site
(or a few specific sites). This continuous recycling of the Tipids leads to a
continuous oriented lateral flow in the plasma membrane. As a consequence of this
flow all objects in the membrane (isolated proteins or complexes of cross-linked
proteins) are subject to a drag force which is directed towards the specific site
where Tipids are removed. This sweeping actjon of membrane flow is counteracted by
the Brownian motion and the resulting distribution of the objects in the membrane
is the result of the competition between these two effects.

In the following sections we pursue some of the more important consequences of
the Bretscher flow hypothesis in a quantitative way. We shall base our considerations
on a model with the following simplifying features: 1. The cell membrane is a sphere
of constant radius R. Typically R is of the order 104 to 105ﬂ. 2. The system is 1in
the stationary state. 3. Lipids are removed at only one specific site. 4. Lipids are
jnserted at random positions. 5. The interactions between the different diffusing
objects are neglected. The calculations in this and the following sections follow
a paper by Wiegel (1979a).

It is convenijent to use polar coordinates 6,4 on the surface of the cell in
such a way that the specific point at which 1ipijds are removed from the membrane
through endocytosis corresponds to the “"North Pole" 6=0. New 1ipids are inserted
in the membrane at random positions in such a way that in the statjonary state a
fractjon o of the total area is renewed per unijt of time. Hence a roughly measures
the intensity of the 1ipid metabolism of the cell. The local velocity v(6) is
directed tangentially to the membrane, in the direction of decreasing values of 6.
The surface element of the sphere equals

d% = 27 R% sinodo. (20.1)

As the Tipid bilayer flows as an jncompressible fluid a consideration of conservation

of mass gjves
v(8) =aR(1l+cos6)/sine . (20.2)

The average magnitude of this velocity over the entire surface of the cell is

H

ws = (47R%)] Jv(e)dzs

it

3TaR. (20.3)

6

Bretscher (1976) gives <v> 1 5x 10 cm s'1 as a typical average velocity.

If one generalizes the model under consideratjon - for example by permitting
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two or more 1ipid "sinks" - the Bretscher hypothesis leads to problems related to
two-dimensional incompressible hydrodynamics on a spherijcal surface. This problem
has recently been considered by Buas (1977) in some detail.
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21. EQUILIBRIUM DISTRIBUTION OF DIFFUSING PARTICLES

Suppose there are N particles embedded in the cell membrane, each with the same
translational diffusjon coefficient DT’ The particles have no jnteractijons; for
example: no coagulation occurs. What is their equilibrium distribution over the
membrane?

In order to answer this question first cohsﬁder the sjtuation in which the
particles under consideration are embedded in a membrane which flows with some time
independent velocity VO(?). If a tagged particle has the instantaneous velocity V(t)
jts motion can be described by the Langevin equation

m %%~= - fT(v -VO) +e(t). (21.1)

In this equation m denotes the mass of the particle, 1 its translational friction
coefficient and E(t) a rapidly fluctuating stochastic force in the plane of the
membrane (compare the detailed discussion of the Langevin equation in Chandrasekhar
(1943), reprinted in Wax (1954)). The last equation can be written also in the form

<¥

d > >
mgf = fTvo-fTV+e(U. (21.2)

In this form, however, the equatjon is identical to the equation which would describe
the movement of the same particle immersed in a fluid at rest, but subject to an

external force equal to fTVO. The potential @(?) corresponding to this external force -
is given by the line integral

o(F) = - f; f 70(?') . dr! (21.3)

taken along a contour which ends in the point r. According to statistical mechanics
the local surface density p(?) of particles (the number of particles per unit area)
is proportional to the Boltzmann factor

o(F) ~ exp {-0(F)/kgT}. (21.4)

In the special case (20.2) the potential is given by

H

0
o(6) - fr [ ar? LLOSE dg

sin g
(21.5)

H

2<1R2 fran (sin%9) + constant.

Combination of the last two equations gives the number density p(6) of the diffusing
particles

2
p(8) = o(m) (sin %)'Z“R Pr, (21.6)
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where p(m) denotes the number density of diffusing particles at the "South Pole" and
where the Einstein relation (8.1) was used to express the friction coefficient in
terms of the diffusion coefficient.

The calculatijon leading to this result shows that the equilibrium distribution
of diffusing particles can be derived explicitly provided the interactions between
the particles can be neglected. In some cases of biophysical interest, as in the case
of patches of coagulating jmmunoglobulins, the interactions between the diffusing
particles are essential. Aggregate formation on lymphocyte membranes in the absence
of diffusjon- and convection processes has been studied by Perelson and De Lisi
(1975) and by De Lisi and Perelson (1976); the theory has been reviewed by Pérelson
(1979). Aggregate formation in the presence of diffusion- and convection processes
forms the subject of current work by Perelson and Wiegel (1979).
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22. CAP FORMATION

According to the preceeding section the diffusing particles are distributed
over the cell surface with a density which increases from a finite value p(m) at the
South Pole to infinity at the North Pole. The actual divergence of p(8) if 6+0 is
an artefact of a model in which the mutual interactions between the diffusing
particles are neglected. If the particles are assumed to have a finite djameter, or
if endocytosis is assumed to occur in a finite neighborhood or 6=0, the divergence
in p(6) should be replaced by a sharp peak of finite height. To the author's
knowledge no results have been published for particles with interactijons, as for
example hard disks diffusing in the surface of a sphere.

In any case the result (21.6) can be accepted as a rough approximation to the
exact distribution. The density (21.6) has the remarkable property that its integral
over the whole membrane surface will diverge if 2<1R2/DT2 2. This divergence implies
that a Brownian particle, if picked at random, will be found in an infinitesimal
vicinity of 6=0 with probability unity. The resulting clustering phenomenon can be
interpreted to mean that the Brownian particles form a cap at 6=0. This leads to a
quantitative criterion for cap formation

(cap formation) < (aR%= Dy). (22.1)

From a biophysical point of view this criterjon implies that the cell can form
a cap from globular proteins or permeable patches of cross-Tinked jmmunoglobulins
by increasing its 1ipid metabolism (recall that 4ﬂwa2 equals the total area of the
cell membrane which gets renewed per unit of time). The same can be accomplished by
a decrease of the diffusion coefficient, which itself results from an increase in
membrane viscosity. We can proceed now to the theory of the translational and
rotatjonal diffusjon coefficients of small objects.immersed in a viscous Tipid
membrane.

The mechanism suggested in this section by no means represents the only theory
of cap formation. A discussion of the wealth of observations related to cap formation
is beyond the Timited scope of these lectures. The interested reader is refered to
the review paper by Schreiner and Unanue (1976).
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23. GENERAL THEORY OF THE ROTATIONAL DIFFUSION COEFFICIENT

In this section we consider a porous cylinder of infinite length and uniform
permeability immersed in an incompressible fluid (viscosity n) and rotating with a
constant angular velocity wg around its axis. We calculate the rotational friction
coefficient fR’ which is defined as the ratijo 13/w0, where T denotes the total torque
of the forces per unit of length which the cylinder exerts on the fluid. The results
of this and the next sectjon were published by Wiegel (1979a,b). The situation
corresponds to the h=« 1imit of figure 3 which shows a membrane of thickness h and
viscosity n, embedded on both sides in a fluid of much lower viscosity n'. The porous
cylinder (radius a) is a model for a permeable patch of cross-Tinked immunoglobulins.
The problem is determined by the dimensionless parameter an'/hn. In this section we
consider only the 1imiting case in which an'/hn=0; correction terms (which are small
because n'/n ~ 0.005) should not be difficult to calculate.

Consider a cartesian system of coordinates (x,y,z) with the z-axis along the
axis of the cylinder (we shall also use cylindrical coordinates r,¢,z). Let V and P
denote the average local velocity and pressure of the fluid and ﬁ the local velocity
of the cylinder. The fluid fTow has to be solved from the fundamental equation (5.5)

-vp+nﬂ+%(ﬁ‘-7)=o (23.1)
together with the incompressibility equation (5.4)
div V = 0. (23.2)

The x- and y components of U are
Up = —wyr sing , : (23.3)

Uy = +wgr cos¢ . (23.4)

For the pressure and the velocity we make the Ansatz

P = constant, (23.5)
Vi = - V(r) sin¢, (23.6)
Vy =+ V(r) cos¢, (23.7)

where V(r) denotes an unknown function - the magnitude of the velocity - which has
cylindrical symmetry. Upon substitution of (23.5-7) into (23.1,2) one finds that all
equations are satisfied provided V(r) s the solution of the ordinary differential
equation
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77/

Basic geometry for the hydrodynamics of the cell
membrane (discussion in section 23).
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] 1 ]- V

vt + =V -—2V='E- (23.8)
The prime denotes differentiation with respect to the radjus r. The boundary
conditions are |V(0)|<« and V(«)=0. In the next section we solve this equation
for the important case of the uniform cylinder.
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24. ROTATIONAL DIFFUSION COEFFICIENT OF A UNIFORM DISK

For the uniform disk of radius a one has
k(r) = k (r<a), (24.1)
= (r>a). (24'2)

Substituting into the last equation of the previous section one finds a differential
equation with the solution

v(r) = A h (r>a), (24.3)
=wd~+Bllw/f%) (0O<r<a). (24.4)

In these and the following equations the I, denote the modified Bessel functions.
The constants A and B follow from the condition that V(r) and V'(r) should be
continuous at r=a (compare the discussion in section 10). This gives

2 12(0)
A= u)Oa 'fam N (24.5)
—Zu)Oa
B = ) (24.6)
gln{o
0
Here
a
0= — , 24,7
“—kB ( )

analogous to (10.13). _

The torque of the forces which the cylinder exerts on the fluid, per unit of

length, has a z-component equal to
a

I,(0)
_ _ 2mB 2 r - 2
T3 = - kO J r I]. (‘7k_.—0—) dr = 4']TT](1)0a To—(o—y . (24'8)
0

Hence the rotatjonal friction coefficient for a cylinder of length h is given by

2 Tplo) )
fo = 47nha T (24.9)
Finally, the Einstein relation (8.2) gives for the rotational diffusion coefficient
kT I.(0)
B 0
D. = . (24.10)
R 41Tnha2 IZ(O)

The application of this result to the rotational diffusion of globular proteins or
patches of immunoglobulins in the cell membrane is the subject of section 27.
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In the 1imit o~ the cylinder becomes impermeable and one recovers the trivial

result
- 2
- fR(m) = 4nnha (24.11)

which holds for a hard cylinder. If, on the other hand, o <<1 the expression (24.9)
simplifies to

foudmnhal of, (0<<1); (24.12)

here we used eq. 9.6.7 of Abramowitz and Stegun (1970). This also can be derijved
independently with perturbation theory as o <<1 corresponds to the free draining
regime. Using table 9.8 of Abramowitz and Stegun (1970) we have tabulated the
correction factor IZ(O)/IO(O) due to the finite permeability of the cylinder (tableV).

.1072
.3022
.4600
.5682
.6426
.6958
. 7355
. 7662
. 7905
.8103

W & ~N O g p»ow D= O

—_
o
= O O O O O O O O o O o

Table V. Correction factor in the rotational friction coefficient of a porous
cylinder, eq. (24.9), due to a finjte permeability of the cylinder.
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25, GENERAL THEQRY OF THE TRANSLATIONAL DIFFUSION COEFFICIENT

In order to calculate the translatjonal friction coefficient we must consider
the following problem. A cylinder (radius a and height h) with given permeability
k(r) is in a state of uniform translatjon with respect to a viscous fluid (viscosity
n). This fluid forms a Tayer of constant thickness h in which the cylinder is
constrained to move. The fluid sheet is embedded on both sides in another fluid of
a much Tower viscosity (n'). The situation is drawn in figure 3. One wants to
calculate the translational friction coefficient fT.

For an impermeable cylinder in the limit (an'/hn) -0 this problem has no
solution due to the Stokes paradox (compare the discussjon in §20 of Landau and
Lifshitz (1959) and in Buas (1977)). It follows from the analysis in this and the
next section that there also is no solutjon in the 1imit (an'/hn) -0 for any finite
value of the permeability, j.e. even when the cylinder has a certain porosity the
Stokes paradox still obtains,

In the case an'/hn >0, however, the sjtuation is quite different. It was pointed
out by Saffman and Delbriick (1975) for the case of an impermeable cylinder, that
the problem does have a solution as long as an'/hn>0. Saffman (1976) has presented
the details of this calculation using singular perturbation theory (Van Dyke, 1975).
In this section and the next we consider the case in which the cylinder has finite
permeability, and we calculate the leading term {n fT' The results have been published
by Wiegel (1979a,b,c). As in section 24 we use a Cartesian system of coordinates
(x,¥.z) with the z-axis along the axjs of the cylinder, and later on also
cylindrical coordinates (r,¢,z). The sheet of fluid with viscosity n is located at
-h<z<0, the other fluid with much lower viscosity n' js located at z<-h and at
z>0.

First, we consider the pressure (p) and velocity V= (V1=V2’V3) of the fluid in
the half space z>0. Putting the cylinder at rest we have to solve the linearjzed,
time - independent Navier - Stokes equation

~Tp+niav=0 (25.1)
and the incompressibility equation

divv=0 (25.2)

under the boundary condition that at large distances from the z-axis Vi~ Vpo
v2»>0,v3»>0. For pressure and velocity we use the Ansatz

ViE - vp t {s(r,z) +t (r,z)} c052¢- t(r,z), (25.3)

Vo = {s(r,z)+t (r,z)} cos¢ sing , (25.4)
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vy =0, (25.5)

p = constant, (25.6)

where s and t denote unknown functions with cylindrical symmetry which vanish for
r-w or z-+®, Physically (dv)rE s(r,z) cos¢ equals the component in the direction
of increasing r- values of the perturbation of the asymptotic velocity field, and
(6v)¢ =t(r,z) sing equals the component in the direction of increasing ¢ -values.
Substitution into the continuity equation (25.2) jmmediately leads to

= —g-r 35
t= -s-r == (25.7)
which relation reduces the number of unknown functions to one. Substituting the

Ansatz into (25.1) and eliminating t(r,z) with the Tast relatjon we find

2 . 2

3 3 3 ]
0——? += =+ —%) s(r,z) = 0. (25.8)
or " ar 322

exp (-kz)dk, (25.9)

where the J denote the Bessel functions of the first kind and where f(k) still has
to be determined from the boundary conditjon at the fluid-flujd interface at z=0.
Second, we consider the fluid in the sheet -h<z<0. In applications to the cell
membrane this fluid consists of 1ipids directed along the z-axis. Hence the flow in
the sheet is truly two-dimensjonal (compare the discussion in section 19).
In the presence of a porous cylinder we describe the fluid in the sheet in
terms of the (space-time) average pressure P and the average local velocity V. If the
two fluids did not interact at their interfaces z=0 and z=-h the flow would follow
from the Debye-Brinkman-Bueche equation (5.5)

>

-YP+n AV

=

1V =0, (25.10)

|

where k=k(r) denotes the permeability which is assumed to have cylindrical symmetry.
In the presence of interactjon between the two fluids at thejr interfaces the
fluid located at z>0 exerts a force o (per unit area) on the fluid in the sheet
which is given by
> Wy
g = n' (—)" (25.].].)
oz 7=0
an identical force derjves from the second interface at z=-h. Hence P and V have to
be solved from
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=0, (25.12)

=8,

—§P+nAV—DkV+
div V = 0. (25.13)
The shear forced should of course not be confused with the dimensionless parameter o

which was used in (24.7) and (10.13).
For pressure and velocity in the sheet we make the Ansatz

V) = vg (S(r) +T (1)} cos?p - T(r), (25.14)
Vy = {S(r) +T (r)} cospsing, (25.15)
P=nll(r) coso¢, (25.16)

where S, T and T denote unknown functions with cylindrical symmetry which vanish in
the 1imit r->«, This Ansatz is similar to (25.3-6). Substitution into the continuity
equation (25,13) leads to
ds
T= -S-r I - (25.17)
Substitution of the Ansatz into (25.12) leads to two ecuatjons whijch, after some
straightforward but tedijous algebra, can be rewritten in the form

C o en 3 .S, Y0 2t 0s )
ST 4 SY 4SS "kt K Y (iz“) ) =0, (25.18)
z=0
n 1 H ']- 1 -]. 1
-rmt - T+ -r(k )'S+r(k ) Vg = 0, (25.19)

where the prime denotes differentiation with respect to r.

These equations have to be solved under the boundary conditions: (i) M(0) and
S(0) should be finite; (ii) M(») = S(=)=0; (iii) s(r,0)=S(r), which condjtion
expresses the centinuity of the flow field in the sheet with the flow fijelds outside
the sheet at the jnterfaces at z=0 and z=-h. The last term on the Teft hand side
of (25.18) 1is determined uniquely by the function S(r) through (25.9) and boundary
condition (i§3). In the next section we solve these equatijons for the jmportant
case of a cylinder of constant permeability. Even.in this simple case the solution
can be found only in the asymptotic regime an'/hn<<1,
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26. TRANSLATIONAL DIFFUSION COEFFICIENT OF A UNIFORM DISK

The uniform disk was defined in equations (24.1-2). With a discontinuity in
k(r) at r=a eq. (25.12) shows that pressure, velocity and all first derivatives of
the velocity should be continuous at the surface of the disk, but that the derivative
of the pressure and/or the second derijvatives of the velocity may be discontinuous.
Equation (25.19) now reads

rein - Ln=o, (26.1)
r

with the solution

I(r) =Lr (0<r<a), (26.2)
Lo 26.3
- ke (a<r), (26.3)

where L is a constant. Equations (25.9) and (25.18) together with boundary condition
(i47) of sectjon 25 now give

1 3 1 S VO 21’]l ;
-L+S +—r-S- 'R + X - Fﬁ—rj J f(k)Jl(kr)dk =0 (0<r< a), (26.4)
0 0 0
22 w3 2 [
=+ SUH+D S - s f(k)Jl(kr)dk =0 (a<r), (26.5)
r
0
Jl(kr)
S(r) = J F(k) e dk. (26.6)
0

It js easy to verify that these equations have no solution which satisfies the
boundary conditions at r=0 and r=« in the Timit (an'/hm)->0. Hence the Stokes
paradox also holds for a porous cylinder of infinite length. For 0<~%E% <<1, however,
the equations do have a solutjon which cap be found with singular perturbation theory
(compare Van Dyke, 1975).

For r>>a the force density - E—V'in (25.12) can be replaced by a sharply peaked
force density F in the origin, with x- and y-components

Fy

L]
Os
—
~
~—
-

(26.7a)

Fp = 0. (26.7b)

Here F denotes the magnitude of the total force which the cylinder exerts on the
fluid; we also made use of the fact that the delta functjon §(r) is an even function,
The asymptotic behavior of the flow field for r>>a can thus be solved from the

much simpler equation



70

-
SLERVS SR (26.8)
It s straightforward, but somewhat tedious, to solve this equation using the methods

of the previous sectjon. Instead of (25.18,19) one finds the equations

Tt i 3 i F$ r) 21']l 3s _

T+ 8"+ S +——(—~1mhr * Fn (3z)z=0 =0, (26.9)
" v, I F (r)y' _

~r" -1 +F+_‘ITT]h r ( " ) = 0. (26.10)

The last equation can be integrated immediately; using the boundary condition on Il
at infinity we find

TR L1 L)

e (26.11)

=

The solution of this ecuatijon which has the appropriate behavior near r=0 is given

by

T(r) v =t (r>>a). (26.12)

= Zmmhr
Note that this asymptotic behavior of the pressure has the same form as the exact
result (26.3).
Upon substitution of the last two equations (26.9) takes the form
w o, 3 e F 2n' ,3s
S"+ 2 S+ + = () = 0. (26.13)
r 2mhr? MM T920, g
Taking the Hankel transform and using (25.9) and (26.6) we find the solutjon in the
form of a definite integral
S(r) i | (%4 2ntre/hm)
= Zmmh
0
This will be called the outer asymptotic expansion. This solution also obeys the

-1 3,(£)de (r>>a). (26.14)

proper boundary condition for r-«, Using the recurrence relatjons for the Bessel
functions (Abramowitz and Stegun, 1970, eq. 9.1.27) the integral can be written as
the sum of two terms

8

[ &ranrmm) ™oy =3 [ (erantmm Tt ag(e)ae +
0

O (26.15)
b [ (eranem) Tt age)de.
0
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The second jntegral on the right hand side converges even for r=0, and has the
value (Gradshteyn and Rvzhik, 1965, eq. 6.561,17)

0

3 J (g+2n'r/hn)
0
The first integral on the right hand side of (26.15) has the value (Gradshteyn and
Ryzhik, 1965, eq. 6.562.2)

1 a,e)de

e

) (r << ). (26.16)

-1

(€+2n'r/tm) = Jy(€)dE =

=
O3

(26.17)
CHy(2n'r/m) = Ng(2n'r/hn)]

ENE

where the Nv denote the Neumann functions and the Hv the Struve functions. Using the
asymptotic expansijons of these functions for small arqguments, as given by Gradshteyn
and Ryzhik (1965) eq. 8.550 and 8.403.2, and combining the last four equations we
find for the inner 1imit of the outer asymptotic expansjon of the flow

S(r);ﬁFn-h{ L - y+2n (%.Dr)} (a<<r<< %), (26.18)

where y=0.5772 denotes Euler's constant. The constant F will be determined shortly.
For r<<hn/n' the Tast term on the Teft hand side of (26.4) and (26.5) can be
neglected with respect to the terms S”4»% S'. Hence the inner asymptotic expansion

can be solved from the equations

A
Lestr g oS0 0 (0<r<a), (26.19)
r k0 k0
La2 3
73T + 58" + ¥ S'=0 (a<r). (26.20)

The solution of these equations which js finite for r+0 (the inner asymptotic
expansion) equals

Il(r//ko)
S(r) = vg- Lky + A" (0<r<a), (26.21)
Y|
r/ k0
o 2
S(r) == +B8-3La" anr (a<r), (26.22)
r

where A, o and g are constants.

As was noted in the beginning of this section the pressure, velocity and all
first derivatives of the velocity should be continuous at r=a. With (25.14-17) this
jmplies that S, S' and $" should be continuous at r=a. With the explicit results
(26.21) and (26.22) this leads to three ecuations from which the three constants a,
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g8 and A can be solved as functions of L. The solutjon of these equations is given by

2
La
- , (26.23)
011205
I4(0)
20, 2 2 0
== -La" {i+5 - }, (26.24)
a2 2 O2 oI(o
2, 1 ., . Tl 2 2
B=vy+la {-:Z+§2na+4-m)—}, (26.25)

where o is given by (24.7). The outer 1imit of the inner asymptotic expansion is
found from (26.22)

S(r) v B - %La2 oy (a<<re<<hm/m'). (26.26)

The unknown constant L can now be determined as follows. In the regime
a<<r<<hn/n' both asymptotic solutjons (26.18) and (26.26) are valid. This gives
two equations between the two unknown quantities L and F, which can be solved to give

. . nh, , 2
F = 4‘!TT]hV0 { Yy + an (H,—a-) + 02 + El_lm } » (26.27)
I.(0) -1
2 _ nh 2 0
La” = 2v0 {~y+2an (T]_'—E) + ;’Z + 51,(0 . (26.28)

These results are correct if nh/n'a>>1, hence in this regime the translational
friction coefficient js given by

nh
f-l- ; 4‘!TT]h {"Y+/Q,n (W) + ;7 + W } . (26.29)

kBT nh 2 IO(O) 2.3 N
Dr &gy -y +dn (n_'-a)Jr?er}’ (26.30)

which result too holds asymptotically for hn/an' >>1. These formulae are from Wiegel
(1979a,b,c).

In the Timit o~ the cylindrical disk becomes impermeable and we recover the
result of Saffman and Delbruck (1975) and Saffman (1976) for the translational
friction coefficient of a hard disk

h -1

fr(=) 2 4mh {-y+4n (']:]Dr—a‘) b, (26.31)

In the free draining regime one finds
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fr & mho’, (0<<1). (26.32)
: 2 . %ol - - -
The correction term E?»+ BEETET due to the finite permeability of the disk is
tabulated in table VI.

.2402
.2166
.6337
L4145
.3039

g B~ w N e O
o o O = &

.2382
.1952
.1649
.1426

10 .1254

WO 0 ~N O
o O O O O o

Table VI. Correction term in the translational transport coefficients (26.29,30)
due to a finite permeability of a disk.
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27. EXPERIMENTS ON MEMBRANE DIFFUSION

As expounded in part C, the experimental determination of the diffusion
coefficjents of globular proteins and permeable patches in the cell membrane is of
considerable jinterest. ‘

We now briefly review the data. When comparing with the theoretijcal predictions
we always shall use the values of n, n' and h given by (19.1-3).

The smallest objects found in the membrane are the Tipids themselves. Although
the Tipid bilayer is described in our model as a continuum we can, nevertheless,
extrapolate (26.30) to hold for a single 1ipid. Using

kgl 2 4.14x 1071 e gs72 (27.1)
at T= 300 OK ~ 27 OC, and (19.4) for the radjus of a 1ipid, eq. (26.30) with o=
gives

Dy 2 2.9x107 en? 7L, (27.2)

The translational diffusion coefficient of 1ipids in synthetic black 1ipid membranes
has been measured by Fahey et al. (1977); these authors find
-1

D ;2x10-7 cn’ s

T (27.3)

at 25 0

the unusually high diffusion coefficient of 1ipids in black 1ipid membranes is due

C. The experiment has been analyzed recently by Webb (1978) who argues that

to retained solvent. In this same paper Webb gives for the diffusion coefficient of
lipids in natural cell membranes values of the order of magnitude

8 -1

v 1x1078 m? 71, (27.4)

Dy
in fair agreement with the theoretical result (27.2). The experimental data (27.4)
are taken from Schlessinger et al. (1976), Schlessinger et al. (1977), and from

Fahey and Webb (1978).
For the record, the leading factor in (26.30) and (24.10) has the value

kpT

zﬁ]—h v 0.41x1078 m? 7! - (27.5)
at 300 OK. A glance at these two equations shows that DR-strong1y depends on the

radius, roughly Tike a-z, but that DT depends on the radius only through a
logarithmic term.

Both the rotatijonal- and the translational diffusion coefficient have been
measured for rhodopsin in the frog photoreceptor membrane (Cone, 19723 Poo and Cone,
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1974)
Dy 2 3.5x107 o s, (27.6)
Dg & 0.5x10° s71 (27.7)
at 20 OC. This protein has a radius
a 20 A. (27.8)
The theoretical estimations are
D v 2.2x107 an? 71, (27.9)
Dp v 1x10% s71, (27.10)

In view of the considerable uncertainty in the experimental values, agreement between
theory and experiment is fair. The fact that the theoretical values are somewhat too
large could be due to either of the following two effects: 1. Some 1ipids are tightly
bound to the rhodopsin molecule. This would lead to a larger value of a, hence to
smaller values of DT and DR' 2. The rhodopsin molecule is tethered, either to the
cytoskeleton or to other membrane proteins.

Even smaller diffusjon coefficients have been measured for integral proteins in
the human erythrocyte membrane. Fowler and Branton (1977) find

Dy 3x107M en® 571 (27.11)
at 30 ¢, and Cherry et al. (1976) find

Dp & 1x10% 57 (27.12)

0

at 22
The measured diffusion coefficients are now considerably smaller than the predicted

C. These proteins have a radijus which js estimated to be approximately 40 A.

values. This almost certainly implies that these proteins are attached to other
objects inside the cell. Some of the effects of tethering of proteins through cross-
Tinking with antigens have been studied experimentally by Wolf et al. (1977), but

to date no theoretical studies have been completed.
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28. DISCUSSION AND OUTLOOK

It seems appropriate to conclude this booklet with a 1ist of problems which
could be frujtful topics for further research. The general physical situation of
fluid flow in a porous medium js of considerable practical importance and much
useful work can still be done.

For the historjan of science there is the remarkable fact that the publication
by Darcy (1856) in which the hydrodynamic permeability was first introduced appeared
almost simultaneous with an early paper by Maxwell (1856) on the electromagnetic
field, in which he developed an analogy for Tines of force in terms of fluid flow
through a resistive medium (compare the discussion of Maxwell's ideas by Wise, 1979).
One wonders if the hydrodynamic permeability served as a model for jts electromagnetic
counterparts?

At the end of section 7 we Tisted the three assumptions under which the
fundamental equation (5.5) has been derived. If these assumptions are not satisfied
most of our results could break down. For example, in sjtuations in which the relevant
Reynolds numbers are not small as compared to unity the non-linear term in the Navier-
Stokes equation has to be retained and the linear structure of the theory is lost.
Although this does not happen in typical biophysical applications (compare the
estimates in section 1) other applications are possible in which the Reynolds
numbers are not small.

When the fractjon of space occupied by the medjum is not negligeably small the
Felderhof-Deutch formalism of sectijon 7 should be corrected with terms which result
from the boundary conditions at the flujd-medjum interface. This question is related
to the problem of calculating the concentration dependence of fR, fT and [nl. This
problem is very difficult but progress has been made recently by Felderhof (1976a,b),
Jones (1978a,b,c; 1979) and Reuland, Felderhof and Jones (1978).

The mean-field approximation (7.19) is ad-hoc. Still, in view of the macroscopic
derijvation of the fundamental eguation given in section 5 one expects that this is
an excellent approximation as Tong as the problem is dominated by two lengths % andL
such that the order of magnitude estimate (1.6) holds. However, when the macroscopic
scale L becomes comparable to the microscopic scale & our coarse-grained description
will break down. This will only be the case in a shock-wave or under similar extreme
circumstances.,

In these Tlectures the permeable medium has always been represented as a rigid
object, similar.to a piece of chalk. Under certain conditions the medium will suffer
deformations of its own. In those cases one could describe the medium as being elastic
and governed by the equations of elasticity theory. This description would Tead to
a set of coupled partial differential equations for two time-dependent velocity fields
U(r,t) and V(¥,t)
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oV o >
p0ﬁ=-—§ P+n0AV+T(U-V), (28.1)
divV=0 (28.2)
>
o, S% = FLUTT, (28.3)

where F denotes the total force exerted on the elastic medijum, per unit volume. The
explicit form of the functional FEH,V] depends on the rheological details of the
medium; in any case F will contain an additive term T?»(V3—U) due to the interaction
with the fluid. To the author's knowledge no applications of this type have been
made.

To date no one has calculated fR and DR of Gaussijan coils. A numerical solution
of this problem should be straightforward. In general it should not be too difficult
to write a computer program for polymer coils in a fluid with input k(r), the radial
dependence of the hydrodynamic permeability, and with output DR’ DT and [nl.

It also could be of interest to contemplate the inverse problem in which one
gives the values of, for example, DT(m) for polymers of the same type but different
molecular mass m and asks for the function k(r). This might be a "cheap" way to
determine the molecular characteristics of polymer coils.

It would be of some interest to generalize the calculation of the rotational
friction coefficient of a uniform disk in sections 23 and 24 to the case of non-
zero values of an'/hn. This leads to a set of dual integral equations which are not
easy to solve. A more interesting question jis to generalize the calculation in section
26 of DT(an'/hn) to all values of its argument; from a bjophysical point of view the
regime in which an'/hn is of order unity is of interest. This problem also leads to
dual integral eguations.

Finally one should extend the calculatjons in part C in such a way that the
effects of the "tethering" OT proteins are taken into account. This problem is
related to the question of whether a system of filaments is present inside the cell
which can actually exert forées on specific objects in the cell membrane. These
forces might play an essential role in cap formation and other events in the immune
system.
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APPENDIX. COMMENTS ON ENTANGLEMENTS AND THE EXCLUDED VOLUME PROBLEM

A. Importance of these problems. The aim of this appendix is to supplement the

material in the book with comments pertinent to certain characteristic problems which
arise in the statistical mechanics of macromolecules. These problems, which are
caused by the Tinear character of a macromolecule, are related to questijons of a
topological nature and have not (yet) been encountered in other branches of
theoretical physics.

The simplest problem in this category consists of calculating the probability
that a macromolecule will be n-times entangled with a straight line. This "simple
entanglement problem" arises from the mutual entanglement of two chains when one
chain is replaced by a straight line. The simple entanglement problem, and some of
its generalizations, has been studied in detail by Prager and Frisch (1967), Edwards
(1967, 1978), Saito and Chen (1973), Wiegel (1977b) and Alexander-Katz and Edwards
(1972); a review can by found in section V of Wiegel (1979d).

A second problem which is characteristic for the statistical mechanics of
macromolecules is the excluded volume problem. This problem, which consists of
calculating the corrections to the free random walk chain statistics (13.8,10) due
to the finite volume of a macromolecule, has already been discussed briefly at the
end of section 13 where we cited the review papers of McKenzie (1976) and of Lifshitz,
Grosberg and Kokhlov (1978).

Recently it has been shown that a profound relation exists between certain
entanglement problems and the two-dimensional excluded volume problem (Wiegel 1979%e,f).
In order to put this relation on a firm basis one has to consider the entanglement
problem for two-dimensional random walks with a complex weight. It is remarkable
that two-dimensional random walks with exactly the same complex weights play a role
in the combinatorial solution of the Ising model and the "free~fermion" model, as has
been shown by Kac and Ward (1952), Sherman (1960, 1963), Burgoyne (1963), Vdovichenko
(1965) and Wiegel (1972, 1975a).

B. The two-dimensional simple entanglement problem. The macromolecule is

represented by N freely hinged rods, each of fixed length &, with end points at
positions ?0’?1""?N' We consider only the two-dimensional case in which the molecule
is constrained to a plane perpendicular to the Tine and in which we calculate the
configuration sum Qn(?N,N|?0,0) over those configurations which are n-times entangled
with the origin
0 (FyalFgu0) = [ 6%y [ &% [ PRy €, (Foafya .y

N-1 (B.1)
I (2mR)
i=0

1
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where En(C)= 1 if the configuration C E(?O,?l,...?N) is n-times entangled with the
origin, and En(C)= 0 in all other cases. In order to precisely define the number of
times C is entangled with the origin we draw. some continuous curve T which starts at
the origin, does not contain any self-intersections and ends at infinity. Let n+(C)
denote the number of times that C crosses T going in one direction (the "positive"
direction) and Tet n_(C) denote the number of times that C crosses T going in the
opposite “negativé" direction. The entanglement index n is defined as

C)-n_(C), (B.2)

and the molecule is said to be n-times entangled with the origin.

In this case, if the configuration (?0’?1""’?N-1’?N) has an entanglement index
n, then the configuration (?0’?1""?N-1) has the same entanglement index n, unless
?N has a distance to T which is smaller than &. This Teads to the integral equation

- > -1 > > > > 2>
Qn(rN,N|r0,0)=(2n2) J Qn(rN_l,N-1|r0,0) 6|rN-rN_1|-2)d PN-1- (B.3)

For N>>1 the dependence of the functions Qn(?N,N|?0,0) on N and ?N will be smooth,
hence each of these functions can be expanded in a Taylor series around the point
(?N,N). This procedure Teads to the differential equation

2
] 2 > >
[W-TA?N 1 Qn(rN,N|r0,0) =0, (B.4)

where AF zaz/axﬁ + az/ayﬁ. The initial condition is
N

8(Fy=1n) s (n=0),
. > > N0

Tim Q_(ry,N|ry.0) = l

Neo MoNTo \

0 , (n#0).

(B.5)

It is important to note that the functions Qn are related to each other by boundary
conditions which hold at the curve T. These conditions can be written in the form

Tim Qn(?N,N|?0,0) = 1im

rN+T rN¢T

Qn+1(?N’N|?0:0): (B.6)

where the symbol ?N+T indicates the limit in which ?N approaches some point FeT in
such a way that ?N moves in the positive direction; similarly ?N¢T means that ?N
approaches the same point‘Fe T in such a way that ?N now moves in the negative
direction. Relations similar to (B.6) also hold for all derivatives.

In order to calculate the functions Q, we introduce polar coordinates: ?N = (r,8)
with O<r<w, -m+2m <6 <+7+2mn. The curve T is choosen to correspond to
g=+m+2mn; 0<r<e, Writing Qn(r,e,N) for the function Qn(?N,NI?O,O) we can introduce
a function q(r,0,N) which is defined for -w<f <+ by
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q(r,6,N) = Qn(r,e,N), -T+2TN< O <+7+27MN ,

(B.7)
(n=0,+1,42,...).

The boundary conditions (B.6) and the equations (B.4) guarantee that g(r,8,N) will
satisfy the differential equation :

2 2 2
3 % 3 1 3 1 3
-2 — (s +=- =+ —5)1 g(r,6,N) =0 (B.8)
oN — & 3r2 r ar. r2 392
for -w<g <+w. Note that another choice for T would have led to the same equation
(B.8) provided the regime of validity -m+2m<6<+7m+2mn of (B.7) is modified in

the appropriate way. The boundary conditions on q are

q(0,6,N) = 0, (ro < <te), (B.9)
q(«,6,N) = 0, (-2 <6 <+, (B.10)
g(r,+=,N) = 0, (0 < r<tw), (B.11)

It is now straightforward to show (see Wiegel 1977b for details) that q can be
expanded in the eigenfunctions of the differential operator on the left hand side
of (B.8). One finds for the configuration sum over the n-times entangled configurations

e
1 .

Qn(r,e,N) = J dk % Fm(r)F;(rO)exp{—Am(k)N+ (e—eo)k1}. (B.12)
In this equation _FO has polar coordinates (ro,eo) with -m<fy<+m and 6 lies in the
interval -m+2mn<6<+7m+2mn. The Fm(r) have to be solved from the equations

2

2
d 1d k& 4
[ +=5--—5+—5 A 1F(r)=0, (B.13)
er r dr r2 22 mom
Fm(O) =0, Fm(oo) =0, (B.14,15)
J r Fm(r)F;].(r)dr = Sm,m' . (B.16)
0

The solution of (B.13,14) can be given in terms of Bessel functions of the first
kind

(£ /A% ), (B.17)

F (r) = Ad T/

m k|

where A is a constant. In order to determine Ay Ve impose the boundary condition
Fm(R) = 0 at some very large radius R; at the end of the calculation R+, If xp mn
denotes the mth zero on the positive real x axis of Jp(x) = 0 this boundary condition

gives
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R/—.

B.18
X1k ,m (B.18)
so the eigenvalues are
2
2 2
)\m(k) -_——‘——2‘ | | . (B.].g)

In order to evaluate the summation over m in (B.12) one has to determine the
normalization constant A, which follows from

R

rd L (5 x dr = A% (B.20)
|k| 'R |k|,m Ik ® X[k}, m,m* - ’

0

The integral is given in eq. 6.521.1 of Gradshteyn and Rvzhik (1965): the integral
vanishes for m#m'; for m=m' one has
R

P32k ) dr= 3RE 9% (xqur ) (B.21)
[k|*R k| .m 2 [k[+1 7| k] ,m’ .
0
The normalized ejgenfunctions are now given by
I ®el )
_ V2 1kl ‘R7|k],m
Falr) =% I (B.22)

PRSI

Upon substitution of this expression and (B.19) into (B.12) one is Tled to
evaluate the series

r
* (—X )
%Fm(r)Fm(rO)eXP(-AmN)=§Zmzl ol (& IkLm I R e
- |k|+1 Xk| m
22N 2
exp( 4R2 X|k|,m)' (B.23)

At this point it is convenient to take the limit R+, In this Timit the sum over n

will be dominated by those terms for which x| is of order R/&/N>>1. This

k|,m
enables us to use the asymptotic formula
) v /ﬂi: cos(x-3mv - 7), (x>>1). (B.24)

The zero's are asymptotically given by

%Jng%ﬂv+%1»@FUﬂ+%, (B.25)
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hence

2 2
J X oL B.26
PERATIE 2T (B.26)
For large values of R the variable

-2
= R X|k|,m (B.27)

behaves as a continuous variable. If g(g)dz denotes the number of z-values in the
interval dg one finds

(%) ;§5 5 (R/2>>1). (B.28)

Ie

Substituting these results into (B.23) we find

Qim ) Folr) F; (rO) exp (—AmN)=
> m

2 r "o 2

This integral can be found as eq. 6.633.2 of Gradshteyn and Ryzhik (1965) and the
right hand side of (B.29) equals

2 r2+r2 2rar
—5 exp (- —) I, ) (B.30)
Ng2 T LI ITY

where the I, are the modified Bessel functions. Combinations of (B.12) and (B.29,30)
gives the solution of the two-dimensional simple entanglement problem in the form of
a definite integral

2 2
ratr
0, (ra8.N) = (1M28) " exp (- 2.
. Ny
2r0r _
J I|k| (]LJT) exp {(9—90)k1 }odk. (B.31)

-0

Some applications of.this result can be found in a forthcoming paper by the author
(Wiegel, 1979d). We shall now consider the excluded volume problem, returning to the
solution (B.31) in a later stage of our discussion.

C. Role of dimension in the excluded volume problem. At the-end of section 13

we invoked a qualitative argument which indicated the role of the dimensionality d.
For d >4 the excluded volume effect is negligible if N>>1; for d<4 the self-
interaction of a polymer dominates the statistics of its configurations. The case
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d=4 is somewhat marginal in the sense that if some effect is present it should Tead
to a quantitative rather than a qualitative change in the chain statistics. As the
one-dimensional problem is trivial the cases d=2 and d=3 represent the only cases
in which the excluded volume problem is a relevant problem.

D. The critical exponent v. For historical reasons the theory has concentrated

on the calculation of the "critical exponent" v which is defined by

<R1% v mAY (N>> 1), (D.1)

where R denotes the vector connecting the two end points of the chain and where the
average is taken over all the self-avoiding chain configurations; A is a numerical
constant. The self-avoiding walk constraint models the purely geometric steric
hindrance of the polymer chain, i.e. the chain is represented by a "necklace"

of hard spheres. For ideal chains v=1% in any dimension. Numerical experiments
(McKenzie,1976) suggest that v ~v 0.60 for chains with excluded volume in three
dimensions. We shall now consider a self-consistent field approach to find an
approximate solution to the excluded volume problem.

E. The self-consistent field approximation. Consider all self-avoiding random

walks of N steps, in a d-dimensional continuous space, which start in the origin
of space. Around each endpoint we imagitie a small hard sphere of radius % < % , i.e.
around each endpoint there is a volume Y4 which is forbidden for all other endpoints.
Here Yo = naz, Y3 =-%na3 , etc. Let f(?) denote the average volume fraction which is
thus excluded; the average 1is taken over all these self-avoiding walks. This function
will have radial symmetry around the origin: f(¥) = f(r), and will be monotonically
decreasing at large distances.

The self-consistent field approach assumes that the statistical properties of
the self-avoiding walks are the same as those of free random walks in a medium in
which a volume fraction f(r) of space is occupied by some perfectly absorbing material.
The statistical properties of this second system can be calculated as follows.

The probability that a specific free random walk g, ?1, ?2, e ?N does not hit
upon absorbing material anywhere along its path equals

N N

ir_[l (1-F(F;)) ~ exp {- j f(¥(n))dn}, (E.1)

N 0

where we used the fact that f<<l and the fact that f will be practically constant
over distances of order % provided N>>1. The number of free random walk configurations
in which the shape of the polymer is near to the curve ?(n) is proportional to



N
exp {- i J (%)2 dn}, (E.2)
0
1,2 1,2 . . ,
where D2 = zz s D3 =g (compare Wiegel, 1975b, section 3). Hence, the number of

free random walks of shape ¥(n) which do not hit any absorbing material is
proportional to

N
exp - [ - (407 + £(7) 1em, (£.3)
0

>k

The most probable configuration (¥"(n)) of the polymer in this absorbing medium is
found by minimizing the exponential; it is a solution of the diffential equation

2% >k
1 dr af (r
i &

under the boundary condition

¥%0) =10 . (E.5)

This is the equation of motion of a fictitious classical particle with coordinate ¥ %,
mass (2Dd)'1 and time n, moving in an external potential equal to —f(?*). The total

energy E is a constant of the motion, hence

1 dry
4D, dn

2 f(F*) +E. (E.6)

The motion of the particle proceeds along a radius vector in the direction of
(d?*/dn)nzo. The value of E has to be determined from the constraint on the total

length of the chain
r

max
dr :
N = —r ., E.7
i 4Dd(f+57 (E.7)

where L follows from

f(r )= -E. (E.8)

max

Hence E will be negative and very small for N>>1. Putting En0 in (E.6) one finds

ar - Vi Fr. (E.9)

The function f(r) can now be determined in a self-consistent way by the following
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argument attributable to de Gennes (1969). Consider a spherical shell around the
origin with radius r and thickness dr. The average number of monomers inside this
shell equals (Ad/yd)rdnlf(r)dr where Ad rd_l denotes the area of a d-dimensional
sphere of radius r. On the other hand, the average number of monomers is approximately
equal to the number of monomers of the most probable configuration r*(n) which are
inside this shell; this number equals dn= dr(dr*/dn)'l. One. finds

A
4ty = et (E.10)
Yd
so that
2 2
vg 3 3(1-d)
f(r) = (—= r . E.1l
(r) (A/@.) (E.11)
d d
The most probable trajectory is now found upon substitution into (E.9)
1 1
dr* e Yd 5 x3(1-d)
ﬁ = 4Dd (m—) r 3 . (E.].Z)
d""d
Solving this differential equation for r*(n) one finds
1
Z(d+2
RELCI N (E.13)

where the proportionality constant has not been written down explicity. Thus, the
most probable trajectories have the form

r*(n) un ¥/ (442) (E.14)

Putting n=N, comparing with (D.l) and always identifving the average over the chain
configurations with the behavior of the most probable chain configuration one finds
the value

v =g (d<4). (E.15)

For d>4 this would give a value smaller than the free random walk value v=3%, hence
(E.15) has to be amended with

=

v= (d=4). (E.16)

3 and 2 for 1, 2 and 3 dimensions are in satisfactory agreement with

computer enumerations (compare McKenzie (1976) and the papers quoted in that

reference). An older derivation of (E.15) is due to Edwards (1965a,b) and uses the
somewhat esoteric language of path integration; for this approach the reader might
find it instructive to compare Wiegel (1975b). A1l these calculations rely on two

The v-values 1,
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ad-hoc assumptions: (1) The constraint of self-avoidingness is replaced by an
absorbing medium; (2) The average of a function over all chain configurations is
replaced by the value of the function for the most probable configuration.

F. The cluster expansion. More than ten years ago the author attempted to get
a clue to the solution of the excluded volume problem by studying the cluster
expansion for a macromolecule with self-interaction (Wiegel; 1969). The idea was to

expand the configuration sum

> > 3 3 3> > >
G(rN,N|r0,0) = J d ry J d Foues J d rN-1 €XP {-8 7 V(r.-r.)}-

i<y v
N-1 5 -1 R R (F.1)
. 120 (4m2") 6(|r1+1-r1|—2)
in a series in terms of the Mayer function
f(r) = exp {-8V(F)} -1. - (F.2)

Here 8= (kBT)_1 and V(?) denotes the potential of the interaction between the end
points of the N Tlinks. The resulting cluster diagrams have been discussed elsewhere

(Wiegel 1975b, section 3).
The cluster series leads to a "Dyson eguation" in the following way. Take the

Fourier transform

v > >

G(k,N) EJ G(¥,N|D,0) exp (ik+)dk (F.3)
and the generating function

4%
G(k,z) =
N

TR (F.4)
1

W~ g

These functions depend only on k = |K| because of the spherical symmetry of G(?,N|3,0).
It can now be shown that a Dyson equation holds which has the form

v

Y oY v -1
G(k,z) = Go(k,z) {1 —H(k,z)GO(k,z)} . (F.5)
Y N

Here GO denotes the equivalent of G in the free random walk model and

ﬁ(k,z) EJH (?,z) exp (if-r) d°r
(F.6)

= (4n/k) ( ri(r,z)sinkrdr.
0
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The function H(?,z) is defined as a series of irreducible cluster diagrams, i.e.

H(?,z) equals the sum of all cluster diagrams which cannot be separated into two

disconnected diagrams by cutting a single propagator line.

G. Conjecture about the non-Gaussian statistics. It can be seen from (F.3) that

for r/%>>1 the contributions to the conf1gurat1on sum G( r N|3 0) come from those
values of k for which k<< 1. We can replace H(k z) by the first two terms in its
Taylor series (assuming that such an expansion exists)

v " 2N
n(k,z) =1(0,z) +3 k- 11"(0,z), (G.1)
where
@
v 2
m(0,z) =4n J r'l(r,z)dz (G.2)
0
and w
v 4
n"(0,z) = =47 J r(r,z) dz (G.3)
0

are unknown functions of z. Note that (13.7) implies

&l k2) =7 exp (2kBD)-1. (6.4)

N

Substitution of (G.4) and (G.1l) into (F.5) gives

52
o1 1.7 m(0,2)} + {_ -3 1(0,2) 1K, (6.5)

6 (ko2) v &5

provided k& << 1, The configuration sum is given by the inverse Fourier transform

-ikr
6(r.2) = (207 [ g e g
{—-1 H(O z)}+{6 -?H“(O,z)}k
= (4rry(2) L exp {-ro(2)}, (6.6)
where 1
1-z- zﬁ(o z)
o(z) = 2 G.7
2876 -221(0,2) (6.7)
2
v(z) = & - 110.2). (6.8)

It is now tempting to conjecture where the non-Gaussian statistics come from
(Wiegel, 1969). Let us assume that the singularity of the function ¢(z) which is nearest



88
to the origin of the complex z-plane consists of a branchline along the positive

real z-axis from Z4 to «. Suppose ¢ behaves asymptotically as

o(z) v a(ZO-Z)b, (zt2z5). | (6.9)

In this case G(r,N) can be calculated using the saddlepoint method

G(r,N) = (2n1)7L % 6(r,2)z N 1gz. (6.10)
One finds that the leading terms are given by

6(roN) v N exp (-d (LH)TB Y, (N, £ 1), (6.11)
oN

where ¢ and d are constants. Hence the non-Gaussian statistics can be represented
by a function of the "scaled" distance —EB , and b 0.60 would Tead to agreement

with the experimental estimates. .

H. The renormalization group approach. The scaling properties of a polymer with

excluded volume have been studied extensively, during the Tast five years, with the
method of the renormalization group. This method, which leads to rather accurate
results for the critical exponent v and related quantities, lies outside the scope
of this appendix. Some of the more important older contributions are found in de
Gennes (1972), des Cloizeaux (1974,1975), Emery (1975) and Hilhorst (1976). This
part of the literature is still expanding rapidly.

1. Markovian character of the two-dimensional excluded volume problem. It has

recently been shown by the author (Wiegel, 1979e,f) that a profound relation exists
between certain entanglement problems and the two-dimensional self-avoiding random
walk problem. This relation is a byproduct of a demonstration of the Markovian nature
of the latter problem. The Markovian nature of the two-dimensional self-avoiding
random walk problem can be shown by a combination of two methods which have been
used in the past to count random walks subject to certain global constraints:

(a) the combinatorial method, which has been used to solve a certain class of models
for cooperative behavior in two dimensions;(b) a method used to count random walks
which are entangled with a point in the plane (full references to the Titerature

were given in subsection A).

Represent the configuration (self-avoiding random walk, macromolecule with
excluded volume) by a set of N freely hinged 1inks, each of Tength &, with end
points in ?0’?1""’?N' All ?j are restricted to a plane. The sum over all self-
avoiding configurations which start at ?0 and end at ?N is given by the multiple
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integral
N-1
> -> _ 2 2 2 -1
0y M Fg0) = [ &5y [ @y [ ¥Ry LNCERE
constraint
X 5(|?J.+_1-?j|-2), (1.1)

where the 'constraint' indicates the requirement that the polygon which passes
through ?0’?1""’?N will have no self-intersections. The integral (I.1) immediately
exemplifies a profound difference between the two- and three-dimensional cases of
this problem: in order to get non-Gaussian behavior in three dimensions one has to
imagine a small hard sphere of diameter d >0 around each of the ?j' In the limit
d+0 the set of configurations with self-intersections becomes a set of measure
zero and Q becomes Gaussian. In contrast with this behavior the two-dimensional
problem will produce non-Gaussian statistics even in the limit d-0 because self-
intersecting polygons in the plane form a finite fraction of all polygons. Hence
the two-dimensional problem differs essentially from the three-dimensional one.

Denote by A a configuration (?O,?l,...,?N) without self-intersections, by B a
configuration with at least one self-intersection and by C an arbitrary configuration.
Suppose one could find a complex weight function W(C) with the three following
properties:

1. W(A) = 1.

2. W(B) is arbitrary, but such that

N-1

I (2n2)
j=0

J d(B) W(B) -1

(IF5417751-2) = 0. , (I.2)
Here we used a somewhat hybrid notation, in which the integration over all self-
intersecting polygons with end points fixed at ?0 and ?N has been denoted by

J d(B).

3. W(C) is a product of N factors such that the j-th factor only depends on the
position and orientation of the j-th 1ink and its immediate predecessor.
If a complex weight with these three properties exists one can write
N-1 -1

Q(FN[F.0) = | d(C) W(C) T (22
(RyN[7:0) = [ d(©) w(e) ERCORE

X 6(|?J‘+1_?jl_2)’ (I.3)

and the evaluation of the multiple integral leads to a Markovian problem because of
property 3. We shall now construct a complex weight function with the desired
properties.
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Fig. 4

Three typical configurations of a polymer chain which is constrained to a
plane (discussion in subsection I).



91

Let ¢j(_ﬂ‘<¢j <+7) denote the increase in Ehe ang]i which the tangent to the
polygon makes with the straight line connecting ro with ™ when the polygon passes
through the point ?j' In Fig. 4 the end points ?0 and ?N have been drawn, and three
configurations connecting them. It is convenient to use Cartesian coordinates (X,y)
with ?O= (0,0) and ?N= (R,0). Two Tines T'= (x,0) with x<0 and T"= (x,0) with x>R
have also been drawn in this figure: their union will be denoted by T. For the proper
definition of ¢ we assume that a configuration C comes in along T', continues along
C and leaves along T". With these provisions the total accumulated increase in the
angle which the tangent to C makes with the positive x-axis is uniquely defined and
equals

N
o0 = I o (=< (C) <+=). (1.4)

j J

Let moreover n(C) = 0,1,2... denote the number of times that C crosses T. Then the
complex weight

W(C) = W (CIH,(C)s (1.5)
W (C) = exp {5 o(C)I, ( (1.6)
Hy(0) = (1", (1.7)

has the three desired properties 1-3. A proof of this can be found in a paper by the
author (Wiegel, 1979e); its details will not be reproduced here.

Let qN(x,y,¢), with —w<¢ <+, denote the sum of the complex weights W(C) over
all those configurations which (1) consist of N steps, (2) reach the point (x,y) at
the end of the N-th step and (3) enter (x,y) with a total accumulated phase equal to
¢. This function is of the form

a(Xsy50) = Py(xys0) exp (56), (1.8)

where the functions PN take real values and are recurrently defined by the integral
relation

pN(x,y,¢) = S(x-% COs ¢, Y=L Sin ¢,0) -
+1T
-é% J pN;l(x-z cos ¢, y=& sin ¢, ¢-a)da, (-e<¢<+w), (1.9)
=T
where S(x-% cos ¢, y-% sin ¢,0) = -1 if the Tine connecting the point
(x-%cos¢, y-2 sin ¢) with the point (x,y) crosses T, and S(x-% cos ¢, y-% sin ¢, o)
= +1 otherwise. Opvious1y po(x,y,¢) = &(x) 8(y) 8(¢).
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In terms of the eigenvalues AS and orthonormal eigenfunctions fs of the integral

equation 4T
S(x-% cos ¢, y-& sin ¢, ¢) é% J fs(x—z cos ¢, y-% sin ¢, o-a)da =
-
= Ag fo(x:y0) (moo< ¢ < o) (1.10)

the solution is given by the expansion

py(Xy0) = T AN F (xys0) £1(0,0,0). (1.11)
S

Once the integral equation has been solved the number of self-avoiding random walks

can be calculated from

oo 2mn+r
QWiNF0) = T (D" [ py(R0.6) do. (1.12)
== 2mn-T

The last three eguations once more demonstrate the Markovian nature of this problem.

It should be remarked that it will only be permitted to treat the configurations
as continuous curves - as was done in this subsection - if the loops and segments
between successive intersections always consist of a large number of links. This
will be the case asymptotically for N>>1.

In most of the current computer enumerations, as reviewed by McKenzie (1976),

a discrete model is employed in which the configurations are restricted to the
bonds and vertices of some lattice. However, as the non-Gaussian features of the
statistics are believed to be universal, the continuum model studied here should
give results which are qualitatively identical to those of the discrete models.

It is easy to show that the method of this subsection can be generalized by
some minor modifications to self-avoiding random walks in the plane in the presence
of an external potential, or to such walks on a curved surface.

It is perhaps appropriate to end this subsection with the conjecture that the
two-dimensional self-avoiding random-walk problem can be solved analytically in the
large N Timit. Yet the innocent appearance of the integral equation (I.10) is
misleading and a solution of this equation might still be a formidable task.

J. On a remarkable class of two-dimensional random walks. In this subsection we

study for their own sake the properties of random walks in the plane which have a
weight which is related (but not identical) to the weight used in subsection I

W(C) = Wy (C)H,(C). (J.1)
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Here wO(C) denotes the a priori weight of a configuration C in the standard case of
free random walks in the plane, and WZ(C) is defined by (I.7). As W(C) can be negative
the usual probabilistic interpretation does not apply. In this subsection we take
for T the collection of points (x,0) with x<0, often called "the branchline". The
random walks to be discussed in this subsection are restricted in two respects as
compared to the random walks of subsection I: (1) the walks have real rather than
complex weights; (2) the sign of the weight W(C) is determined by the number n(C) of
times that C crosses a single branchline rather than a set of two branchlines.

Let p(x,v,N) denote the sum of the real weights (J.1) over all configurations
which: (1) consist of N steps; (2) start at (xo,yo); (3) reach (x,y) at the end of
the N-th step. These functions take real values and are recurrently defined by

p(x,y,0) = 5(X'X0)5(.‘/".'/0): (9.2)
+T

p(xsy,N) = é% J S(x-% cos a, y-& sin a, a) -
=T

«p(x-2 cos s y-% sin a, N-1)da, (J.3)

where S is defined as in subsection I.
Let B denote those points in the plane whose shortest distance to T is <&. If
* ¢ B the integral relation (J.3) simplifies to
+m
p(xayoN) = o f P(x-% oS o, v-£ sin o, N-1)da. (3.4)

=T

If p(x,¥,N) is a slowly varying function of x,y and N the 1ntegrénd can be expanded
in a Taylor series and the integral relation can be replaced by a differential
equation

2 2

ap 2t 3%, 2 (3.5)
N~ 7 aXz Z)—yg

Tim p(x,y,N) = 8(x-xq)8(y-yq) - (J.6)
N0

Now consider the integral relation (J.3) in the case in which FeB is part of
the branchline T. In this case, because of the definition of S, the integral relation
gives

Tim  p(x,y,N) = = 1im p(x,y.N), (x<0). (0.7)
yv0 y+0

Moreover, if the walks start on the x-axis, then every walk from (xO,O) to an
arbitrary point (x,y) leads - after reflection in the x-axis - to a mirror image
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which leads from (xO,O) to (x,-y) and which has exactly the same number of inter-
sections with the branchline. Hence

P(x5y,N) = p(x,-y,N), (v5=0). (J.8)
Combination of the Tast two equations gives the boundary condition

p(x,0,N) =0, (x<0,y0=0L (J.9)

A peculiar consequence of this boundary condition arises in the case x=0. According
to (J.9) one has

Tim p(x,0,N) = O, (y0= 0). (9.10)
x40

But according to (J.3) one also has
+T

Tim p(x,0,N) = 5 J p(X-2 cos a, y-2 sin a, N-1)da # 0. (J.11)

x40

=T

Hence the end point (0,0) of T is a point in which these functions have a finite
.discontinuity; this jump is a consequence of the geometric definition of the function
'S. ;

We can now calculate the function p(x,y,N). We shall use polar coordinates

(r,6) with -m<8<+r and 0 <r <w; the initial point with Cartesian coordinates

(xo,y0= 0) has po]ér coordinates (r0,90= 0). From the definitions of p(r,6,N) and

the functions Qn(r,e,N) which were introduced in subsection B it can be shown that

the following relation holds

p(r,0,N) =+§ Qn(r,e+2nn,N)(—1)n. (J.12)

N==-co

Substitution of the explicit result (B.31) for the entanglement probabilities gives

2,2 4w
57 e (- 00 [ 1, G
p(r,e,N) = (wNg exp (- J .
T LU
+oo n
+ 7 (-1)" exp (2mnki + 6ki). (9.13)
N=—w

The summation over n can be performed explicitly with the use of the relation

o +oo
3 exp(2mnki + mni) = 7 8(k+i-s). (J.14)

N==~o S==

This enables one to perform the integration over k in (J.13) and to find
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9. -1 r2+r2 +oo 2rar
p{r,e,N) = (mN27) exp (- ];;2“)52€m ey (]&;7)'
- exp {(s+})6i}. (4.15)

This formula determines p(r,6,N) everywhere in the plane, apart from very close to
the origin of coordinates. Note that (J.15) can be written in the alternative way

2 rg+r2 ; 2r0r
p(rs6,N) = ——exp (- —) I, (=) cos (s+3)6- (J.16)
N Noo  s20 STE N

The value of p(r,0,N) in the 1imit r + 0 can now be approximated by combination of
(J.16) and (J.11)

2 r2+5L2 © (_1)5 2r0
P(0,0,N) T2 exp {- 1 9’2}550 547 lsn (qeTye) -

(J.17)

The Tast two formulae determine the statistics of the random walks in the case of a
single branchline. Further generalizations of these results, along the Tines
indicated in the beginning of this subsection, form the subject of current research..
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