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Preface

The research laid down in these notes began several years ago
with some questions about a particular bifurcation of periodic solutions
in the restricted problem of three bodies at the equilibrium Ly - This
particular bifurcation takes place when, for the linearized system, the
equilibrium L, changes from stable to unstable. This kind of bifur-

cation is called a Hamiltonian Hopf bifurcation.

During the research it became apparent that new methods had to be
developed and that existing methods had to be reformulated in order to
deal with the specific nature of the problem. The development of these
methods together with their application to the Hamiltonian Hopf bifur-
cation is the main topic of these notes. As a result a complete des-
cription is obtained of the bifurcation of periodic solutions for the

generic case of the Hamiltonian Hopf bifurcation.

This research was carried out at the Mathematical Institute of
the State University of Utrecht. I am very grateful to Prof. Hans
Duistermaat and Dr. Richard Cushman for their guidance and advice
during the years I worked on this subject. I also thank Richard
Cushman for his careful reading of the earlier drafts of the manu-
script. Thanks are also due to Prof. D. Siersma of the University of
Utrecht for the discussions we had on chapters 3 and 4 , and to
Prof. F. Takens of the University of Groningen for his remarks con-
cerning the final manuscript. Finally, I would like to thank Drs. H. van
der Meer for his assistence in plotting fig. 4.1 - 4. 14, and Jacqueline
Vermeij and Jeannette Guilliamse for their excellent typing of the manu-
script.

Jan-Cees van der Meer

June 1985
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Introduction

In this monograph the main topic is the study of periodic solutions
of a family of Hamiltonian systems of two degrees of freedom near an
equilibrium as the family passes through resonance. We concentrate on
the Hamiltonian Hopf bifurcation, that is, the passage through
nonsemisimple 1 : -1 resonance. The nonsemisimple 1 : -1 resonance
distinguishes itself from the other resonances in two ways: first, at
the resonance the linearized system is nonsemisimple having two equal
pairs of purely imaginary eigenvalues; second, when passing through
resonance, the equilibrium point changes from elliptic to hyperbolic
type. Although we have concentrated on a specific example, many parts
of the theory developed here have much wider applications, especially
to other two degree of freedom resonances.

The approach we take can be divided into four main parts:

(1) formal normal form theory; (2) equivariant theory of stability of
maps applied to energy-momentum maps to derive standard systems;

(3) geometric treatment of the standard system; and (4) Moser-Weinstein
reduction to extend the results to nonintegrable systems.

The general formal normal form theory for Hamiltonian systemsg is
treated first (chapter 2). Here we focus on the normalization of the
Hamiltonian function. We do not restrict ourselves to systems of two
degrees of freedom. The theory is illustrated by the classical examples
of Hamiltonian systems with purely imaginary eigenvalues.

If we consider the Hamiltonian H = H2 + H3 + ... of a Hamiltonian
system of two degrees of freedom then we may normalize H with respect
to H2 up to arbitrary order. Truncation then gives an integrable system
provided that the semisimple part S of the homogeneous quadratic term

H, is nonzero. If we consider the one parameter group S generated by



the flow of the Hamiltonian vector field XS corresponding to the integral
S then the truncated normalized Hamiltonian H is S-invariant. For the
system corresponding to H we consider the S-invariant energy-momentum
map B x S. To this energy-momentum map we apply the equivariant theory
of stability of maps. For the case of the nonsemisimple 1: -1 resonance
we show that this energy-momentum mapping is finitely determined. The
integrable system corregponding to the determining jet is called a
standard system for the resonance (chapter 3).

In applying the theory of stability of maps, we drop the condition
that the transformations used be symplectic. However much of the
qualitative behaviour of the standard system can be translated back to
the original system, especially the behaviour of periodic solutions.
Using the theory of unfoldings we are able to study the behaviour of
families of periodic solutions during the passage through resonance.

The unfolded standard system for the nonsemisimple 1 : -1 resonance is
studied in detail (chapter 4).

Finally we use some ideas of Weinstein and Moser to show how the
periodic solutions of an arbitrary family of nonintegrable systems
passing through resonance correspond to the periodic solutions of a
family of integrable systems to which we may apply the preceding theory.
This reduction from a nonintegrable to an integrable system in the search
for periodic solutions is called the Moser-Weinstein reduction (chapter 5).
The final result is a complete description of the behaviour of periodic
solutions of short period in the generic case of the Hamiltonian
Hopf bifurcation. Such a bifurcation appears in the restricted problem
of three bodies at an equilateral equilibrium when the mass parameter
passes through the critical value of Routh. It is this problem in the
restricted problem of three bodies which inspired this study . Although

combining all known results gave a fairly good description of the



behaviour of periodic solutions (partially based on numerical results),
a complete treatment and proof was nowhere to be found.

Because of the special properties of the nonsemisimple 1 : -1
resonance a new approach had to be followed. Many of the methods which
had been succesfully used for the other resonances did not apply in
this case. For the methods developed the nonsemisimple
1: -1 resonance is the simplest example in the hierarchy of resonances,
especially if one considers the computation of co-dimension and the
geometric treatment of the standard system. The application of the
normal form theory is a bit more complicated but the resulting normal
form takes a simpler form than in the other resonances.

The chapters are organized as follows. In the first chapter prelim-
inaries from the theory of Hamiltonian systems are treated. In the
second chapter one finds the theory of Hamiltonian normal forms. In the
third chapter the equivariant theory of stability of maps is applied
to energy-momentum maps invariant with respect to a symplectic
Sl~action. The fourth chapter deals with the geometry of the standard
integrable system for the Hamiltonian Hopf bifurcation. Chapters 2,3
and 4 can be read independently. In chapter five the Moser-Weinstein
reduction is applied to the Hamiltonian Hopf bifurcation. Together with
the results of chapters 2,3 and 4 this leads to the main theorem (ch. 5,
sect. 3). In chapter six we show how the theory applies to the restricted
problem of three bodies. We conclude with a discussion of the known

results concerning the nonsemisimple 1 : -1 resonance.






Chapter I
Preliminaries

0. Introduction

In this first chapter we will give a review of some facts from
Hamiltonian mechanics which are fundamental to what follows. Emphasis
is laid upon the relation between the symplectic geometric and the
Lie algebraic features induced by the presence of the symplectic form.
Also linear Hamiltonian systems are treated because they are basic for
many features of and techniques used for nonlinear systems.

Most definitions and theorems are stated without proof. For the
proofs and a more detailed treatment of the theory we refer to the text-

books of Arnold [1978] and Abraham and Marsden [138781].

1. Hamiltonian systems

Consider the following system of ordinary first order differential

equations on RQn

995 3H(q,p)

dt Bpi
(1.1
dbp.
i _ _ 3H(q,P) N
3t - T 3 1= 1,...,n.

where H(q,p) is some real valued function on F?n , at least once

differentiable. We call (1.1) a Hamiltonian system of differential
equations. The function H in (1.1) is called a Hamiltonian function.

The right hand side of (1.1) can be written as
(1.2) XH(q,p) = J.dH{q,p)

with



{0 I
(1.3) J = (~I 0n)
n

where I 1s the n x n identity matrix. We call X, the Hamiltonian

H
vector field associated to the Hamiltonian H.

The above is the classical definition of Hamiltonian systems
on RQn. This can also be obtained from the following more general
differential geometric approach defining a Hamiltonian system on a
manifold M.

Let w be a two~form on M. We say that w s nondegenerate if w is
a nondegenerate bilinear form on the tangent space of M at m for each
m € M. If there is a nondegenerate two form on M then M has even

dimension. Furthermore we say that a two-form w is closed if dw = 0

where d is the exterior derivative.

1.4, DEFINITION. A symplectic form w on a manifold M is a nondegenerate
closed two~form w on M. A symplectic manifold (M,w) is a manifold M

together with a symplectic form w on M.

1.5. DEFINITION, Let (M,w) be a symplectic manifold and H : M+ R a
Ck—function,l<> 1. The vector field XH determined by w(XH,Y) = dH.Y
is called the Hamiltonian vector field with Hamiltonian function H.

We call (M,w,H) a Hamiltonian system. We will suppose H to be c” in

the following.

The following theorem shows that locally definition 1.5. is

equivalent to the classical one.

1.6. THEOREM (Darboux). Let (M,w) be a symplectic manifold then there
is a chart (U,p) at m € M such that ¢o(m) = 0 and with

o(u) = (X15++5X 3Y 5000,y ) we have wlu

1
oM
[}

»
>
o

<



The charts (U,p) are called symplectic charts the coordinates
X;,y, are called symplectic or canonical coordinates. Notice that if

. . ~ 9H doH
X;,y, are canonical coordinates then XH(Xi’yi) = (ayi, 3% g

) = J.dH

with J given by (1.3).

We now define the notion of a flow of a Hamiltonian vector field
together with some related notions. The flow in fact gives us the
simultaneous motion in time of all points of M along the trajectories

of the vector field.

1.7. DEFINITION. Let y(t) be a curve in Rr?D . We say that y is an

integral curve for Xy if g% = XH(Y), that is, if Hamilton's equations

hold. Let (M,w,H) be a Hamiltonian system. The map ¢ : F~X‘R2n - HQXiRQn
such that w, ¢ t » @(t,m) is an integral curve at m for each m € M is
called the flow of XH' The curve t = @(t,m) is called the maximal

integral curve of X, at m or the orbit of XH through m. The picture

H
of M decomposed into orbits is known as the phase portrait of Xg-
Notice that the set {mtlt € R} is a one-parameter group of

diffeomorphisms of M, if every maximal integral curve is defined for all R.

1.8, DEFINITION. A Cm—map Y (Myw) + (M,w) is symplectic or

canontical if Y*w = w.

Here Y*w is the puil-back of w under ¢ defined by
w*w(m)(el,eQ,...,ezn) = w(w(m))@w(m)el,...,dw(m)ezn). For F € C (M, R)
Y*F = Foy. We have w*XH = Xw*H = XHow’ if ¢ is symplectic.

It is clear that ., t € R, defined by the fiow ¢ of the
Hamiltonian vectorfield XH is a symplectic diffeomorphism. Note that

H(y(t)) is constant int along integral curves y(t) of X This

H"

corresponds to conservation of energy.

The following definitions show how the presence of a symplectic



form on M induces a Lie algebra structure on CW(M,HU in a natural way.

1.9. DEFINITION. Let (M,w) be a symplectic manifold and let F,GE Cm(M,EU.

The Poisson bracket of F and G is
{G,r} = w(XF’XG)

In canonical coordinates

n “
(e,r} = 1 (JL 3E_BE 3G,
= 1 1

Notice that we have

{G,F} = dF.Xg

It follows directly that F is constant along orbits of X. (or G

G
constant along orbits of Xp) if and only if {F,6} = 0.{F,F} =0

corresponds to conservation of energy for the system (M,w,F).

1.10. DEFINITION. F € C (M,R) is an integral for the system (M,w,H) if

{H,F} = 0.

The notion of Poisson bracket allows us to consider the real vector

space C (M,R) as a Lie algebra.

1.11. DEFINITION. A Lie algebra is a vector space V with a bilinear
operation [,] satisfying:

[X,X] = 0 for all X € V and

[x,0y,z31 + Ly,[z,X31 + [Z,[X,Y]] = 0 (the "Jacobi identity™)

for all X,Y,2 € V.

It is now easily checked that Cm(M,HU considered as a real
vector space together with the Poisson bracket is a Lie algebra. Notice

that the fact that w is a closed two-form is essential in order to



establish the Jacobi identity.

If ¢ is symplectic then y*{F,G} = {y*F,y*G} for all F,G € C (M,R),
that is, ¢$* is a Lie algebra isomomorphism. In fact the converse also
holds.

On the space of Hamiltonian vector fields one has the usual Lie

bracket of vector fields making this space into a Lie algebra. We have

(1.12) [XF’XG] = X{F,G}

We call [XF’XG] the Iie bracket of Xp and XG' The Hamiltonian vector
fields with Lie bracket form a Lie subalgebra of the Lie algebra of all
vector fields. Notice that this Lie subalgebra is homomorphic to the Lie
algebra C (M,R) with Poisson bracket.

Returning to the Lie algebra Cm(M,HU we may define for each
F € CT(M,R) the map ad(F) : CT(M,R) + C (M,R) by ad(F)(G) = {F,G}.
The map ad : F + ad(F) is called the adjoint representation of
Cm(M,HU. Because of the Jacobi identity ad(F){G,H} = {ad(F)(G), Hl+
+ {G,ad(F)(H)} for each G,H € Cm(M,HU, ad(F) is an inner derivation of

¢”(M,R) for each F € C (M,R) .

1.13. REMARK. In the special case when M is a vector space we speak of
a symplectic vector space. As before we may introduce the notions of
Hamiltonian function, Hamiltonian vector field and Poisson bracket.
Here we have global coordinates so these notions can be defined in

terms of coordinates.

1.14%. REMARK. Notice that our definition of Poisson bracket (definition
1.9.) differs from the one in Abraham and Marsden {19781 by a minus
sign. This 1s done in order to obtain formula (1.12.) which gives rise
to the Lie algebra homomorphism between Hamiltonian functions and

Hamiltonian vector fields. Our definition agrees with Arnold [19781



if one takes into account that his standard symplectic form differs
from ours by a minus sign.

According to Dugas [1950] our conventions agree with those of
Poisson. Studying other literature it becomes clear that historically

both conventions for Poisson bracket have been used.

2. Symmetry, integrability and reduction

In this section we will restrict ourselves to F?r]with coordinates
(x,y) = (Xl""’xn’yl""’yn) and standard symplectic form
w = '2 dx; ady;. Then (F?n ,w) is a symplectic vector space as well
as al;;mplectic manifold and Cm(RQn,FJ with Poisson bracket as given by
definition 1.9. is a Lie algebra.

In the following proposition some statements about Lie series are
collected. The proofs are straight forward and left to the reader as an
exercise. We define the [ie series exp ad(H) = ZD é%»adn(H).

n=
1.15. PROPOSITION. (i) ad(H)(x,y) = XH(x,y) where ad(H)(x,y) is
defined as (ad(H)xl,...,ad(H)yn).
(ii) exp(t ad(H))(x,y) is the flow of XH
(iii) (Foexp(ad(H)))(x,y) = exp(ad(H))(F(x,y))
(iv) exp(ad(H)) and exp(ad(F)) commute if and only if {H,F} is

constant.

In the last statement of the above proposition one might replace
the condition {H,F} is constant by [XH’XF] = 0 where [,] is the Lie
bracket given by (1.12). Proposition 1.15.(iv) is then equivalent
to the statement that two Hamiltonian vector fields commute in the
Lie algebra of vector fields if and only if their flows commute.

Now recall that the space of all maps ad(F), F € Cm(]RQH,EC

is a Lie algebra with bracket [ad(F),ad(G)] = ad({F,G}). Therefore
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we have a group A generated by the exp(ad(F)), F ¢ Cm(IRQH,IR). Each
one-parameter groupexp(tad(F)), t € R forms a one-parameter subgroup

of A. On the symplectic space RrR2D each one-parameter group of diffeomor-
phisms is the flow of a Hamiltonian vector field. Thus we have found

all one-parameter subgroups of A because each generator of A is a
symplectic diffeomorphism which is the time one flow of a Hamiltonian
vector field by prop. 1.15.(ii).

2

On (JRQn, w) let @ :G x R’ > R?Pbe a symplectic action of the

. . 2 2
Lie group G on ]RQn , that is, for each ¢ € G the map @w R - R
x » $(px) is symplectic. In a natural way the action ¢ induces an action

¥:6 x CC(R,R) » CT(R,R) ¢ (9,H) Hoo  of G on (R, R). In

the following we will write @.H for ¥(p,H).

1.16. DEFINITION. A Lie group G acting symplectically on ]RQn is a

symmetry group for the system (]R2n ,w,H) if 9. H = H for all v € G.
Proposition 1.15, gives

1.17. PROPOSITION. If F is an integral for the system (]RQn,w,H) then
the one-parameter group exp(t ad(F)), t ¢ R, given by the flow of F,

is a symmetry group for (]RQn,w,H).

The converse of proposition 1.17. also holds in the sense that
each symmetry group of a Hamiltonian system gives rise to an integral.

To make this precise we first introduce the notion of momentum mapping.

1.18. DEFINITION. On (]RQn,w) let & be a symplectic action of the Lie
group G with Lie algebra 4. We say that a mapping J : ]RQn + 8% is a

momentum mapping for the action ¢ if for every £ € 8 we have

_d
ing) = 3T d(exp tg’X)It:O

where the right hand side is called the <afinitesimal generator of the



11

2n

action corresponding to &. J(§) : R + IR ig defined by J(&)(x) = J(x).E.

1.19. PROPOSITION. Let ¢ be a symplectic action on CRQn,w)of the Lie
group G having momentum mapping J. If 6 is a symmetry group for CRQn,w,H)

then {3(&),H} = 0.

If one considers a one-parameter symmetry group exp(t ad(F)), t € R
for (RQn,w,H)then one obtains a momentum mapping J such that
3(&) :iRQn + R 3 x #+ F(x). Consequently F is an integral for CRQn,w,H).
Let G be a Lie group and 8 its Lie algebra. If g € G then
I(g) : h» ghg_1 is a isomorphism of G onto itself. Put Ad(g) = dI(g)e
then Ad(g) is an automorphism of 8 . We have Ad(exp X) = exp ad(X) for

X € g. Ad*(g) is the corresponding automorphism of ¢ *, Also Ad*(g_1

)

iz an automorphism of g*, its action is called the co-adjoint action

of G.

"

1.20. DEFINITION. We say that a momentum mapping J is Ad*-equivariant

if J(@g(x)) = Ad*(g_l)hﬂx)) for every g € G.

It is clear that the momentum mapping for a one-parameter group
exp(t ad(F», t € R, F € Cm(an,HU is trivially Ad* -equivariant.

Under certain conditions the presence of a symmetry group for
a Hamiltonian system allows us to reduce our system to a system of
lower dimension. With some abuse of language one might say that the
reduced system is obtained by factoring out the symmetry group. We will
state the classical reduction theorem as it can be found in Abraham
and Marsden [19781 and Arnold [19781. Our own construction of reduced

systems in chapter 4 will be somewhat different.

1.21. THEOREM. Let GX denote the isotropy subgroup of G under the

coadjoint action Ad*, that is, GX = {g ¢ GiAd*(g_l)X:X}. Furthermore
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let G be a Lie group acting symplectically on CRQn,w)and let

J RQH + 8% be an Ad¥ -~equivariant momentum mapping for this action.

Assume X € g*is a regular value for J and that GX acts freely and

1

properly on J ~(X). Then MX = J_l(X)/GX has a unique symplectic form

. . -1 . .
* = * jsle)
Wy defined by TRy ifw where Ty J (X)) -~ MX is the canonical
projection and i J_l(u) -+ RQH is the inclusion, We call M, the

X X

reduced phase space. Furthermore suppose that G is a symmetry group

for CRQn,w,H).Then the flow ¢ of X, leaves J_l(X) invariant and

H
commutes with the action of GX on J_l(X). Therefore there is a
canonically induced flow @y on MX which satisfies Tyo@ = PyoTy.

This flow is symplectic with a Hamiltonian function HX which satisfies
HXOWX = HOiX. HX is called the reduced Hamiltonian function. The

system (M Hy) is called the reduced Hamiltonian system.

XSwXE

1.22. REMARK. The condition that X is a regular value is made in order
to assure that J_l(X) is a manifold. However if X is not a regular
value but part of J_i(X) is a manifold on which GX acts freely and

1

properly then one may still apply reduction to this part of J ~(X).

1.23. DEFINITION. A point p € F?n is called a relative equilibrium if
its projection nx(p) onto the reduced phase space MX is an equilibrium

point for the reduced system (M HX), where X = J(p). (This is

¥ Wy
equivalent to saying that the GX orbit is invariant under XH)'

1.24. DEFINITION. The map H x J : RQH + IR x 8* defined by the function
H and the momentum map J is called the energy-momentum mapping for

the system CRQn,w,H)with symmetry group G.

1.25. PROPOSITION. (i) p € J_l(X) is a relative equilibrium if and only
if p is a critical point of K x J.

(ii) If p € J_l(X) is a relative equilibrium then so is any element
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in the orbit of p under G given by 0,(p) = {g.plg € G}.

As we have seen the existence of an integral F for a system
CRQn,w,H) implies the existence of a one-parameter symmetry group. If
this symmetry group fulfils the conditions of the reduction theorem
1.21. then the existence of an integral implies the possibility of
constructing a reduced phase space. In general symmetries allow us
to investigate the topology and geometry of Hamiltonian systems by
considering reduced systems and energy~momentum maps. Because integrals
and symmetries play such an important role we will conclude this section
with some definitions and theorems concerning integrals and integrable

systems.

1.26. DEFINITION. Two functicns F,G € CM(RQH,HU are said to be in
involution if {F,G} = 0. F and G are said to be <ndependent if the
set of points where dF and dG are linearly dependent has Lebesgue

measure zero. The system (RQn,w,H)is called integrable if there are

n integrals Fi,i= 1,...,n for this system such that Fi and Fj are in
involution for all i,j = 1,...,n and such that Fi and Fj are independent
for i = j, 1,3 = 1,...40.

For integrable systems we have the following basic theorem.

1.27. THEOREM. (see Arnold [1978]) Let (}RQH,w,H) be an integrable

Hamiltonian system with integrals Fi’ i= 1,...,n as in definition
1,26, Suppose that the vector fields XF are complete, that is, the
i
flow of XF is defined for all t € R. In addition suppose that on
i

M = {x]Fi(x)=ci} the dF, are independent at each point. Then M is an

. . . oo
n=- nsior mani whose nnecte o ner = T (if compact)
n=dimensional manifold wh connected components are T

or R¥x ™. 1f M is a torus then in a neighbourhood of M there exist

symplectic coordinates Ii’mi’ i = 1,...,n such that the system
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CRzn,w,H) takes the form
dI. dep.
il i .
3T ° o, I ° Wi(I)’ i 1y...,0

These coordinates are called action-angle coordinates. The action

variables Ii are functions of the inegrals Fi'

In our applications (in two degrees of freedom, that is, n = 2)
the integrals F and G will be polynomials. Then independence is
equivalent to assuming that dF and dG are not everywhere linearly
dependent, that is, the set where they are dependent is an algebraic
subvariety of positive co-dimension. If dF and 4G are linearly

indpendent at every point of the surface M given by F = ¢, and G = ¢

1

then by theorem 1.27. M is a manifold consisting of tori and cylinders.

2

Notice that M is precisely a regular fibre of the 'energy-momentum'

map F x G.

3. Linear Hamiltonian systems

As in section two consider Eék} with coordinates
(x,y) = (Xl""’xn’yl""’yn) and standard symplectic form
w = 'g dxi A dy.. A Hamiltonian system CRQn,w,H) will be called linear
if X;Ei,y) is linear. In the following we will restrict ourselves to
systems with Hamiltonian function H in the space of homogeneous quadratic
polynomials PQ. Then XH(x,y) = A(;) with A a constant matrix. Moreover
A = DXH(O). The set of linear symplectic maps from F?n to F?n form
a group under composition called the symplectic group and denoted
Sp(n,R) . Because Sp(n,R) <« Gl(F?n,Egn) is a submanifold and composi-
tion is Cm,Sp(n,HU is a Lie group. The Lie algebra sp(n,R) of Sp(n,R)

is called the algebra of Znfinitesimally symplectic maps. sp(n,R)

is a subalgebra of gl(R’™,R’®) and has bracket [A,B] = AcB - BoA.
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Notice that the Lie algebra (sp(n,R) : [,1) is isomorphic to the Lie
algebra (P,,{,}) by the isomorphism H % DX_,(0).

Choosing the standard basis in R?nthe matrix of w is J given by
(1.3). Note that g1 - gt = -g. Furthermore J2 = =I. Relative to this
basis A is a symplectic matrix if and only if AtJA = J. B is an
infinitesimal symplectic matrix if and only if BYJ + JB = 0, that is, if
and only if JB is symmetric.

Concerning the eigenvalues of infinitesimally symplectic maps

we have the following.

1.28. PROPOSITION. Let B € sp(n,R). If X is an eigenvalue of B of
multiplicity k then so are -A,% and -X. If zero is an eigenvalue of B
then it has even multiplicity.

The possible configurations for the eigenvalues of elements of

sp(2,R) are given in fig. (1.1) in the complex plane.

. . * ?
[
. . * f
®
PRSP RN S ——

fig. (1.1). Configurations of the eigenvalues of sp(2,R) in the complex
plane
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Of course one may normalize infinitesimal symplectic matrices
with respect to conjugation by elements of Sp(n,R). Restricting to the
case of purely imaginary eigenvalues, in sp(2,R) we get the normal forms
given by (1.29) in the semisimple cases and by (1.30) in the nonsemi-

simple (and also non-nilpotent) cases (see Burgoyne and Cushman [19741).

0 0 Al
(1.29) Y
-Al 0 0 0
0 —AQ 0 0
0 -0 0 0
(1.30) o 00 0
€ 0 0 -0
0 € o 0
Here Al,AQ,a may be positive or negative and ¢ = t1. The corresponding

quadratic Hamiltonian functions are

2.2 2.2

(1.31) Al(x1+y1) + XQ(X2+y2)
€, .2 2
(1.32) a(xlyQ—Xle) - 7(xj+x2)

We say that a system with Hamiltonian (1.31) is in resonance, if
kl and AQ are dependent over the rationals. If there are p and q, in Z
with no common divisor (that is, g.c.d. (p,q) = 1) such that
qkl - Py = 0 then we say the system is in p : q resonance. In general
we will take p > 0. Also systems with Hamiltonian (1.32) are said to be
in resonance. Here one only considers the semisimple part of the Jordan
decomposition of the matrix (1.30). It is clear that in this case we have
a 1 : -1 resonance. This resonance is called non-semisimple

because of the presence of the nilpotent part in (1.30). Considering

a system in resonance one might construct the unfolding (versal
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deformation) of the corresponding matrix (see Arnold £19711). With

exception of the semisimple 1 : 1 and 1 : -1 resonances, we get
0 0 X1+u3 0
(1.33) 0 0 0 A2+u2
-Al—ul 0 0 0
0 -AQ—uQ 0 0
and
0 —a-v1 v2 0
(1.34) a+v, 0 0 v,
€ 0 0 -a-v1
0 € a+v1 0

for the unfolding of (1.29) and (1.30). Notice that unfolding is just
detuning the resonance. For the unfolding of the semisimple 1 : 1 and
1 : -1 resonance one will need more then two parameters. For the
semisimple 1 : -1 resonance one might take (1.34) as an unfolding
considering € as a parameter.

We shall treat the nonsemisimple case in a little more detail.
We will work in the space P2 of homogeneous quadratic polynomials on
Eﬁ. Recall that ad(H) with H given by (1.32) is an endomorphism of PQ.
Let Sp(2,R) act on P2 by composition. The tangent space to the orbit
through H is given by im ad(H). Therefore, to determine the unfolding,

we have to determine a complement to im ad(H). Such a complement C

2
1

1Yy = Xp¥q- Also €X and aS correspond to the nilpotent resp.

is given by the complement of im ad(X) in ker ad(S). Here X = %(x +xg)

and S = x
semisimple part of the Jordan decomposition of (1.30) (see van der Meer
[19823). Now ker ad(S8) (ad(S) considered as an endomorphism of P? is

S in

sp(2,R) which in turn is isomorphic to u(1,1). Therefore ker ad(S) is

just a tLie subalgebra of P, isomorphic to the centralizer of X

spanned by S,X,Y = %(yi+yg) and 7 =)<1yi + x2y2. Moreover, X,Y and

Z span a Lie subalgebra isomorphic to s1(2,R) , with X and Y correspond~-
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ing to its nilpotent generators. The adjoint representation of ker ad(S8)
on P2 is isomorphic to s1(2,R) x Rwith ad({X) and ad(Y) corresponding to

the nilpotent generators of s1(2,R). Moreover we have

P2 = ker ad(X) @& im ad(yY) = ker ad(y) ® im ad(X)

It follows that ¢ = ker ad(S) N ker ad(Y). Thus an unfolding of H is

given by

£, 2. 2 Vo 2 2
Catv ) (xyyo=xoyy ) = 2(xg+x5) + 5y +y,)

H

Hv(x,y)

which corresponds to (1.34). According to the sign of ev, the eigen-

values of (1.34) are given in fig. (1.2).

¢

¢ 2) L4 L]
1
®

b( 2 ) ° .
¢
€V2 <y £V, =0 EVQ >0

fig. (1.2) Eigenvalues of (1.34%) with multiplicity.

Because changing the sign of ev, from positive to negative gives the

2

Hamiltonian version of passage of the eigenvalues "through" the imaginary

axis, this resonance is referred to as the Hamiltonian Hopf bifurcation.
Consider a nonlinear system (RQn,w,H). Suppose that the Taylor

series of H at zero is H = H, + (terms of order greater then two) with

H, € P2 then CRQn,w,HQ)iS the linearized system corresponding to

(RQn,w,H).In addition we say that (RQn,w,H) is in resonance if CRQn,w,H?

is.






Chapter II

Normal forms for Hamiltonian functions

0. Introduction

In this chapter we will treat some aspects of the normalization of
Hamiltonian systems. We will focus on the normalization of the
Hamiltonian function. Clearly normalizing the Hamiltonlan induces a
normalization of the corresponding Hamlltonian vector field.

Let (M,w) be a symplectic manifold. To each F € Cm(M,HU we
associate a Hamiltonian system (M,w,F) and a Hamiltonian vector field XF'
Furthermore we define the Poisson bracket {.,.} as in definition 1.6.,
thus making Cm(M,HU a Lie algebra. For H € Cm(M,HU define ad(H) to be
the map which assigns to each F € Cm(M,HU the bracket {H,F}.

Let G be the group of symplectic diffeomorphisms on M (see
definition 1.5.). The action of G on M induces an action . on Cm(M,HU
given by @.F = Foyp for ¢ € G, F € Cm(M,HU. Because ¢.¢9. I = Fowol,
the group acting on Cm(M,HU is antihomomorphic to G. Howaver by
proposition 1.15.(ii1) this is a natural action. With abuse of language
we will speak of the action of G on Cm(M,HU. In fact the action of 9w € G
on Cm(M,HU is pull-back, that is, for F ¢ Cm(M,HU @.F = ¢*F. Therefore
the action of each ¢ € G on Cm(M,HU is a Lie algebra isomorphism.

Let OG(F) be the orbit of F under the action of G. Let N(K) be a
space complementary to the tangent space to OG(K) at K. The following

generalizes the classical definition of Hamiltonian normal form.

2.1. DEFINITION. Let H,K,F € Cm(M,HU . H is a K-normal form for F if
H € OG(F) n N{K).

Notice that this definition can be generalized to elements of an
arbitrary vector space V, given a group action on V.

From definition 2.1. it is clear that one has to choose K and N(K)
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before one starts normalization. Furthermore it is clear that, with an
arbitrary choice of K, a K-normal form for a given function F will in
general not exist. Classically one considers normalization of the Taylor
series of a Hamiltonian function at an isolated critical point. Such a
Taylor series starts with quadratic terms. For K one takes the homogeneous
quadratic terms in the Taylor-series. If K is semisimple N(K) can be
chosen as the centralizer of K in (CM(F?H,EO,{,}). Even in this case a
K~normal form is in general not convergent (see Slegel £19521, Brjuno
£19711), that is, a K-normal form in the sense of the definition does not
exist. However, one may develop a formal theory, which also shows how to
normalize Taylor series up to arbitrary order.

In the following we will restrict ourselves to the case of formal
power series Hamiltonians. This is in the following way related to
normalization up to arbitrary order of Taylor series of Hamiltonilans
at p € M. Let E(M,p) be the algebra of germs of c”-functions on M at p-
Define E; = {F € EMM,p){F(2) = OQ]z]k),z » pl and E_ = N E;. Notice

k20

e E;+m considering E(M,p) as an algebra, while

that we have E+.E
kK™ ™m

+

K +m=? using the Lie algebra structure. Now let P = E(M,p)/E_

+
(g ,E ) €E
be the space of formal power series. By a theorem of Borel every formal
power series, in local coordinates, is the Taylor series of an

¢”-function. By the theorem of Darboux (theorem 1.6.) in a neighborhood

of p € (M,w) we have coordinates (x,y) = (Xl""’xn’yl""’yn) such that
n

p = (0,0) and w = I dx; A dy;. We will use these local coordinates.
i=1

Then P; = E]:/E00 is the space of formal power series starting with terms

of order k and P; = P/P;;Jr1 is the space of polynomials of order < k.

Furthermore Pk = P;/P;+1 is the space of homogeneous polynomials of

order k. Notice that P_ o E/ED . and P, = er/Er

k+1 k' "k+1°

space of k-jets of germs in E(M,p), that is, in local coordinates

Thus P; is the

P; is the space of k-jets of Taylor series at zero of functions in
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Cm(F2n,EU. Thus normalizing k-jets of formal power series corresponds
to normalizing k-jets of Taylor series (or k-jets of germs).
, , , . +
We now restrict ourselves to looking at formal power series <in PQ;

o

henceforth let P = P2 = I Pk' Under Poisson bracket P is a Lie algebra
k=2

isomorphic to the Lie algebra of Hamiltonian formal power series vector
fields with the origin as equilibrium. Furthermore let G denote the group
of invertible origin preserving symplectic formal power series transfor-
mations on RQH. As before G induces an action on P by composition.

We now summarize the contents of this chapter. In the first section
we treat S-normal forms for H € P, where S 1s the semisimple part in the
Jordan~-Chevalley decomposition of the quadratic part H, of H. Notice

o

that we may write H = kEQ Hk with Hk € Pk’ k 2 2. We show how to
determine N(S). Furthermore we show that OG(H) N N(S) is the orbit of

an S-normal form for H under some subgroup of G. Thus in general S-normal
forms are not unique.

In the second section we study the orbit of H € P under G.

We show that further normalization of S-normal forms is possible,
although it is hard to perform. In particular we find H,-normal forms
for H € P, including the case when H2 has a nontrivial nilpotent part
in its Jordan-Chevalley decomposition.

In the third section we give several examples which illustrate the
theory of sections 1 and 2.

In section 4 we study what normal form theory implies about the
existence of integrals and the existence of Hamiltonian normal forms
for energy-momentum mappings.

Finally in section 5 we give a brief historical review of normal
form theory. An extensive bibliography follows the main lines in the
development of normal form theory. Because of the large number of

publications on this subject, this bibliography is not complete.
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1. Normalization with respect to the semisimple part of H,

Let H € P. Then according to definition 2.1. the process of
finding a normal form for H leads to making two choices. First we have to
choose K and second we have to choose N(K)

As is well known the tangent space TK to the G-orbit of K at K is
given by TK = K + {K,P} = K + imad(K). Therefore N(K) may be chosen as a
complement of imad(K) in P at K. Choose N(K) = K + H(K) where N(K)
is defined by N(K) & imad(K) = P. With this choice we have the following

lemmas.

2.2. LEMMA. If H is a K-normal form for F then Hop is a Kow-normal form for F,

Proof. For ¢ € G we have imad(Koyp) = ¢ .(imad(K)) because imad(Kew) =
= ad(KowiP = {Kogp,P} = m.{K,mal.P} = ¢.{K,P} because o

is a Lie algebra isomorphism. If we choose N(Kow) to be ¢.N(K) then
N(Koyw) & imad(Kog) = P. Because H € N(K) A OG(F) it follows that

Hoyw £ N(Koy) N OG(F). ®

The following lemma shows that, in general, normal forms are not

unique.

2.3. LEMMA. Let ¢ be in the subgroup of G which leaves K invariant, that
is, 9.K = K, then Hoyp 1is a K normal form for F if and only if H is a

K-normal form for F.
Proof. Follows directly from lemma 2.2.

We now choose K. Recall that P2 with Poisson bracket is isomorphic
to the semisimple Lie algebra sp(n,R) (see ch.1l, sect.3). Moreover the
Jordan-Chevalley decomposition (hereafter the § - N decomposition) of

elements in sp(n,R) carries over to elements of P that is, for

2

H, € P2 there is a unique decomposition Hy =8+ N with S semisimple
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N nilpotent and {N,S} = 0. For the rest of this section we will only
consider S-normal forms for H € P where S is the semisimple part of HQ,
Next we give a characterization of N(S) which in general allows us to
show what the normal form will look like (see the examples in section 3).

Let adm(F) denote the restriction of ad(F) to Pm'
2.4, LEMMA. A convenient choice for N(S) is kerad(S).

Proof. Now adQ(PQ) is the adjoint representation of P2 and thus is
isomorphic to PQ. Besides that, every adm(PQ) is a representation of

the semisimple Lie algebra PQ. By Humphreys [19721 corollary 6.4. the

S - N decomposition of Py carries over to the representations adm(PQ),
that is, ad (H,)) = adm(S) + adm(N) is the S - N decomposition of adm(HQ).
Thus adm(S) is iemisimple for m 2 2. Therefore Pm = keradm(S) 2] imadm(S).

o

Now imad(8) = I imadm(S) and kerad(S) = I keradm(S) because ad(S8)
m=2 m=2
acts linearly on P and preserves the degree. Hence imad(S) as well as

kerad(S) has a homogeneous basis. Since kerad(S) & imad(S) = P, we may

choose N(S) = kerad(S). But then N(S) = £ + N(S) = kerad(S). 2

The following algorithm shows how H € P can be transformed by

successive symplectic transformations into S-normal form up to arbitrary
k

order. Here H being in S-normal form up to order k means that I By is
m=2

in S-normal form. Consequently we may formally transform H into S-normal

form (up to infinite order) by an infinite succession of symplectic maps.

2.5. THEOREM. Let F € P and let S # 0 be the semisimple part of F Then

9*
for each k € W, k 2 2 there exlists a ¢ € G such that H = Foy is in
S-normal form up to order k.

proof. Clearly F2 is in S-normal form because F2 = 8§ + N with

N € kerad(S). Suppose that F is in normal form up to order k - 1. Then
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k-1

for P € P expad(P) F = © F_+F + {P,F,} + (terms of order greater
m=2

then k). Because Pk = keradk(S) (] 1madk(S) we may write F, = Fk + Fk

where Fk € keradk(S) and Fk

for P = P + P. This means that we can write the k-th order term of

€ imadk(S). Similarly we have a splitting

expad(P)F as ?k + ?k + {P,N} + {?,FQ}. Now {P,N} € im(adk(N)Ikeradk(S))=
= Imad (N) n kerad, (8). Thus {P,N} € kerad, (8). Furthermore
{?;Fz} € im(ad, (F,)[imad (8)) = imad, (S). (see the proof of lemma 2.2,

van der Meer [19821). Therefore we may choose P so that T, + {?,FQ} = 0.

k
The remaining k-th order terms then are ?k + {ﬁ,N} which are in keradk(Sl
Thus Fo expad(P) is in S-normal form up to order k. By induction the

theorem follows (cf. Chen [19631 prop. 8.1; Takens [19741, Th. 2.1;

Broer [19791 Th. 2.3.6). ®

From the proof of the above theorem it is clear that one will need
a formal transformation of the form expad(Pg)oexpad(Pu)o..oexpad(Pk)o...
to put F in S-normal form. Notice that at each step of the above
algorithm expad(P) is determined up to terms of P in keradk(S).
Starting with k = 3 this freedom of choice might lead to different
normal forms up to order greater then three. In the following we will
show that these normal forms can be transformed into each other. We

need the next lemma.

2.6. LEMMA. Let S be the semisimple part of Hy. Then for P_ € Pk,k > 2

k

{HQ’Pk} € kerad(S) if and only if P, € kerad(S).

k

proof. Let P = P + ﬁk, with P, € kerad;(S) and ﬁk € imad) (S), be the

splitting of Pk corresponding to Py ® keradk(S) & imadk(S). Then
{Hy,P b = {Hy, B} o+ {N,ﬁk}. If P, € kerad($) then B, = 0 and obviously
{HQ’Pk} € kerad(S8); which proves the "if" part. Now suppose

{H,,P 1 € kerad, (S). Because {N,%{}E kerad, (8) we have
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{HQ,ﬁk} € kerad; (8). Furthermore im(adk(HQ)]imadk(S)) = imad, (8)
which means that {H2>$k} € imad, (8) N kerad, (8), that is,
{HQ,ﬁk} = 0. But kerad, (H,) = keradk(S) n keradk(N).

Hence adk(S)?f]< = {sﬁk} = 0. Thus B, € kerad, (S) N imad, (8), that is,

k

~ B o ®
Pk = 0. Thus Pk Pk € keradk(S) < kerad(S).

2.7. THEOREM. Let P € P; and let H € kerad(S). Then expad(P).H€ kerad(s)

if and only if P € kerad(S).

proof. If P € kerad(8) then expad(P)S = S. Consequently if {S,H} = 0
then {S,expad(P).H} = 0, that is, expad(P).H € kerad(S). Next suppose

that expad(H).P€ kerad(S). Let LI P - Pm be the projection of elements
of P onto their m-th order term. Then expad(P).H€ kerad(S) is equivalent
to Wm(expad(P).H)E keradm(S) for all m » 3. We will prove by induction
that P € keradm(S) for all m 2 3. First consider ns(expad(P)H} =

= H3 + {Pa’HQ}‘ Because ns(expad(P)-H)E kerada(S) and Ha € kerads(s) we
have {Ps’HQ} € keradg(S) and thus by lemma 2.6. P3 € keradS(S). Now
suppose that Pk € keradk(S) for 3 € k € m-1 then nm(expad(P).H)=

= H o+ {Pm’HQ} + (brackets of elements in kerad(3)), hence{Pm,HQ} €

€ kerad (8). Thus P € kerad (8). By induction P € kerad(s). 8

The normal form algorithm (theorem 2.5.) only uses transformatlions

of the form expad(P), P € P;. If we want to normalize further using
only maps of the form expad(P), P € P!, then by theorem 2.7. we can

3 »
perform further normalization inside kerad(S). This approach does not
use the full action of G. However, we can formulate an analogue of
theorem 2.7. considering the full action of G. Before doing so we

need a more detailed description of the Lie algebra structure of P and
the Lie group structure of G.

we see that P is an

k+1-2 m+1
ideal in the Lie algebra P. Thus P/P;I;w1 o Pg is a Lie algebra. The

Consider P+

s+ Because {Pk,Pl} < P

Lie bracket on P% is just the restriction of the Poisson bracket on P.
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Let jm : P - P% be the projection of elements of P onto their m-jets.
Then on P% we have the Lie bracket j {.,.}. (cf. Sternberg [19611, sect.

1). For P € P; let adj (P) be the restriction of jmoad(P) to P;. Then

m
ad, (P) : Pm -> P; and ad. 1is the restriction to Pm of the adjoint
m m
representation of P. For m=® we have adj -+ ad.
m

2.8. DEFINITION. P € P% is semisimple (resp. nilpotent) if

adj (P) : P; - P; is semisimple (resp. nilpotent).
m

2.9. DEFINITION. P€ P is semisimple (resp. nilpotent) if ij is semi-

simple (resp. nilpotent) in P% for all m.

2.10. REMARK. Notice that each P € P; n P; is nilpotent in P%. Thus

each P € P; is nilpotent in P. It easily follows that P € P is nil-

potent if and only if P2 is nilpotent or zero. Consequently if P € P is

semisimple then P2 is nonzero and semisimple.

Consider the action of G on P; given by @.P = jm(Pom), P e P;

w € G. (Which is the action of G on P restricted to P% and then
truncated at order greater then m). It is clear that for this action only
the m-jet of ¢ € G is of any importance. Therefore let G% be the space
of formal power series transformations truncated after order m. If
composition in G is followed by truncation then G% becomes a
transformation group. (cf. Sternberg [19611, sect. 1)
If we consider P; as a Lie algebra then each P € P; has a § - N

decomposition corresponding to the S - N decomposition of adj (P). By

m

a transformation in G; each F € P; can be transformed to an 82—normal

form H, where 82 is the nonzero semisimple part of F,=H or is nil-

29

potent by remark 2.10. When F is nilpotent its § - N decomposition is
trivial. When F, (and thus F) is not nilpotent, we consider a S,-normal

form H of F. Clearly H=35, + N, with N = N, + H

and {SQ,N} = 0.
3

2

n™Me

k
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Thus H = 82 + N is the § - N decomposition of H € P;. Because the
transformation to the normal form H is a Lie algebra isomorphism we
have an S - N decomposition for F. Letting m go to infinity we obtain a
S - N decomposition for elements of P. More precisely, each P € P is
formally conjugate in G to an H € P such that the § - N decomposition
of H is S, + N with S, the semisimple part of H, = P, and 7, N = N, the
nilpotent part of F,. If the semisimple part SZ of P2 is zero then P
is nilpotent. (cf. Chen [19631, th. 8.1).

Next consider G; as a finite dimensional transformation group.
For each ¢ & G; there exists a unique decomposition @ = 9 00, with ¥
semisimple and 0, unipotent. Furthermore for each unipotent 0, there
exists a nilpotent N € P; such that @, = exp adjm(N). Letting m go to

infinity we obtain a semisimple-unipotent decomposition for ¢ € G. More-

over each unipotent 9 € G canbe writtenas g = exp ad(N) with N € Pnilpotent.

2.11. LEMMA. Any map ¢ € G can be written as expad(Pl)oA or A oexpad(PQ)

+
3"

with A € Sp(n,R) invertible and Pl’PQ <P
proof. Because 9 is invertible and origin preserving its linear part
A is invertible and thus ¢ = VoA Or @ = Ao\p2 with vy o= moA_l and

b, = A'lom. If we consider ¢ as a map from R to R?® then A is a

2n % 2n symplectic matrix since @ is a symplectic diffeomorphism. In
addition wl and @2 are unipotent with linear part the identity. There-

fore vy and ¥, can be written as expad(Pi) and expad(PQ) with P and P, in

1
+

Py Notice that because Aoee:xpad(P)OA“-1 = expad(PsA) we have P1°A = P

g
Lemma 2.11. allows us to determine the full group of transforma-
tions mapping S-normal forms to S-normal forms. Infact we can consider

linear mappings and mappings of the form expad(P), P € P; seperately

when dealing with the action of G.
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2.12. THEOREM. Suppose H is an SQ—normal form for F,H, = FQ, where S2

2

is the semisimple part of H, = F Then Hoy is an SQ—normal form for

2 2°
F if and only if ¢ = Aoexpad(Pl) = expad(P,)oA where A is a linear

symplectic map such that HQOA = H, and Pl’PQ € P; n kerad(SQ).

proof. If we want to normalize F € Pwe may suppose F, to be in normal

form. F, remains unchanged during the normalization procedure. Therefore

any map mapping a82~normal form H to an SQ—normal form must leave

F, = H, fixed. For ¢ only A acts on H

5 5 in P,. Thus we must have H20A=:H2

2 2

for Hoyp to be an SQ—normal form again.

When HQOA = H2 X

of kerad(SQ). Therefore expad(Pl) as well as expad(PQ) map

we also have 320A = 8 Thus A i1s an isomorphism

H € kerad(SQ) to an element of kerad(SQ). By theorem 2.7. we have P1
and P, € P; N kerad(S?). This proves the "only if part™.
The "if" part follows immediately if one realizes that if

HQOA = H2 then A is an isomorphism of kerad(SQ). Now use theorem 2.7. ®

2.13. REMARK. Suppose that H is an SQ*normal form for F € P. Let

(2) - _
GH’SQ = {9 € Glyp = Acexpad(P), HyoA = H,,

Then by theorem 2.12. all SQ*normal forms

(2)
H,S,

normalization of H we may restrict to studying the orbit structure of

(2)
H,S,

group of formal power series transformations equivariant with respect

P e P; N kerad(S,)} with

S, the semisimple part of H,.

for F are in the orbit of H under 6 That is, for studying further

P; € kerad(SQ) under the action of G (Note that GéQQ is just the
>72

to the flow of XS and preserving the two-jet of H).

2

2.1u. REMARK. When for F €°P S, = 0, that is, when F is nilpotent

+
3

= GéQ) the group of transformations ¢ in 6

then F is trivially in SQ—normal form because kerad(SQ) N P; =P

(2)
H,8,

that preserve the two-jet of F, that is, jQF = jQ(Fow).

Thus in this case G
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2. Further normalization

Before going into the further normalization of S-normal forms we
will make some general remarks about the structure of the orbit of H

under the action of G. First we consider what happens to H It is clear

9-
that for this we have only to look at the linear parts of G, that is,
G; (or le)which is just the linear symplectic group. Thus the change
of H, in P, is just given by its orbit under the linear symplectic

group. Fixing an element of the orbit of H, in P,, we then consider
)

the group GéQ = {p € GijQ(m.H) = jQH}. We are now interested in what

happens to H3 under the action of GéQ)

(2)

restricted to PS’ that is, in

(23 (2

(2) . _ . . ) .
WS(GH .H). Notice that WS(G CHY = Ws(GH .]3H) = ns(jQGH .jaH) where

- A(2 - . . .
jQGH ) [ GQ.Byeistandabd argument of group actions commutling with

projections, we see that G.H is a fibre bundle with base WQ(G.H) and
(2) (3)

fibre GH .H. Next consider Gg = {g ¢ G}js(m.H) = jSH}' In the same
way we obtain GéQ).H as a-fibre bundle with base n3(6é2).H) and fibre

Gés).H. Thus we obtain an iterated fibre bundle

(3)

(2)
WQ(G.H) < Trs(GH JHY « (GH

JHY .
Of course we may extend this construction to arbitrary order. Let

(m)
H

Pm. Then the orbit of H under G is given as the iterated fibre bundle

t

6{™ = {0 € 63 (¢.H) = j H} and let n_(6{™.H) be the orbit of H_in

(2)
H

(m-1)
H

(m)

WQ(G.H) < ns(G H

HY < Lo+ (G LHY < (6 LH)

Tm-1
At each step the fibre is just the orbit of H

(2)
H

can be written as Acexpad(P) with A the linear part of o.

. (m) .
o 1n Pk. Each GH is a
subgroup of G with ¢ » G > Gés) D... D Gém—l) > Gém). By lemma 2.11.

(m)

P € GH

2.15. LEMMA. There exists a P ¢ Pg such that Acexpad(P) € Gém) if and

only if j_((Acexpad(P3)).H) = j_(expad(P}).H).
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proof. In the right hand side of the last expression take the identity
in expad(Pg), Then there exists a P € P; such that jm((Aoexpad(P)).H)=
= ij, which proves sufficiency. Next suppose that jm((Aoexpad(P)).H) =
= ij. Rewriting the left hand side, using the action defined above, we
get jm(expad(P).(HoA)) = ij. Now apply the action of expad(Pg) to both
sides. Then we get jm(expad(Pgh(HoA)) = jm(expad(P;).H)which can be
written as j ((Acexpad(P})).H) = j_(expad(P}).H) ®
An immediate consequence of lemma 2.15. is

ol
of Sp(n,R) . Moreover if k > m then Aém) = Aék).

2.16. COROLLARY. The linear parts of Gém) (that is, ) form a

subgroup Aém)

This means that we can construct an infinite descending series of
subvarieties of Sp(n,R) . Since Sp(n,R) is finite dimensional, and
considered as an algebraic variety has only finitely many components,
after finitely many steps our descending series of subvarieties Aém)

must end up as some

Aém). More precisely,

2.17. PROPOSITION. There exists a m0 € N such that for each m 2 m
(m) _ (mD)
AH = AH .

0

Using lemma 2.15. it follows that for m > my the action of Gém)

is equal to the action of {expad(P)|P € P;, i&expad(P)iD = ij}.

We will consider this action now in a little more detail.
2.18. THEOREM. If P € P, then expad(P).H = H if and only if {P,H} = 0.

proof. If expad(P).H = H then I & ad“(P)H = 0. Thus
o k=1 o
1 k _ post 1 k . . .
(kzozETTﬁad (P))(ad(P)H) = 0. Now kEOTETTﬁ ad”(P) is an invertible
operator. Thus ad(P)H = {P,H} = 0. When {P,H} = 0 trivially

expad(P).H = H. 7]
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2.19. COROLLARY. If P € P; then j_(expad(P).H) = j H if and only if

j {P,H} = 0.

Notice that n_{P,H} = 0 is equivalent to I {p_,H } = 0.
m k71
k+l=m+?2
As a consequence of corollary 2.19. we have the following proposition

which describes the orbit of Hm m > m, in Pm

+1°? 0 +1°

2.20. PROPOSITION. If P € Pg and jm(expad(P).H) = ij then

JpeqCexpad(P).H)y = 3 H + @ {PH}.

proof. By corollary 2.19. j (ad(P)H) = 0 thus j__ (ad’(P)H) = O.

[es]
1 k . . . -
Now I T DT ad”(P) is an invertible operator on Pm

k=0

R Thus

. © 1 k 2 ) . 1k B
jm+1[(k§0 TE??TT‘ad (P))ad"(P)H]1 = 0. Therefore jm+1[k§2 ET-ad (PYHI = 0

which is equivalent to j_ . ((expad(P)-1I-ad(P)H)= 0. Thus

]m+1(expad(P)H) = jm+1H +]m+1{P,H} = jm+1H T {P,H}. ®

in P

Notice that proposition 2.20. shows that the orbit of Hm+1 nel

for m > m, is a linear variety. Therefore, for m > my, we see that the

0
(m) (m+1)

fibre bundle Trm(GH HY «om (GH .H) is an affine bundle. For m < m

m+1 0

the fibre will in general be some semialgebraic variety. Thus the fibre
bundle will be far more complicated.

The above description of the orbit of H€ P under the action
of G shows that normalization up to order k is nothing else than
successively choosing an element in the orbit of H in Pm for each
m = 2,...,k. Depending on the criteria one uses,this choice is in
general not uniquely determined; furthermore the choice at each level
depends on the choices made on lower levels. If one wants to transform
away as many terms as possible then one has to determine the invariants
of the action of G (restricted) on Pm’ or in other words determine the

orbits of the H in Pm. The examples below show that this is more
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easily said than done.

The situation is simplified if one only considers the subgroup
of G consisting of all expad(P), P € P; (or P £ P; n kerad(SQ) if one
starts with an S,-normal form). By proposition 2.20. the orbit of H
under this subgroup is an iterated fibre bundle which on each level

is an affine bundle. Therefore the orbits on each level are more easy

to determine.

(m)
H

orbit of H
m

Let P = {P € P;ijm{P,H} = 0}. Then by proposition 2.20. the

(m) (m)

in P q ad(ij)(PH ).

eq Under expad(P

(m) . . .
H so that Hm+1 consist of terms lylng in

ém))’ that is, H

) is H

+1 m+1 * T+l

Thus one may choose P € P

some complement of = ad(ij)(P is put into

m+1 m+1

ij—normal form.

(m-1)

Notice that imad N, < 7 ad(j__,H)(Py ) This allows us to put H

into H,-normal form. The following lemma characterizes a complement to

1madm(N2) in Pm and thus also to 1madm(N2) n keradm(SQ) in keradm(SQ).

2.21. LEMMA. There exists a Y € kerad(SQ) such that

Pm = keradm(Y) 8 1madm(N2).

proof. N2 € P2 and P? is a semisimple Lie algebra because P2 is iso-

morphic to sp(n,R) . Thus kerad(s,) is a reductive subalgebra of PQ.

By the Jacobson-Morosov lemma we may embed N, in a Lie subalgebra

2
of kerad(8,) isomorphic to s1(2,R). (see Jacobson [19621), that is,

there are elements Y and Z in keradQ(SQ)such that

7z} = 2N,, {Y,Z} = -2Y.

(2.22) {Ny,¥} = Z, (N )

29

By composing the embedding of sl1(2,R) in keradQ(S) with the adjoint

representation on P we may regard Pm as an sl1l(2,R) module. Hence

m+1 +1

there is a decomposition of P into irreducible s1(2,R) modules Vi.

m+1

On each Vi the complement to imad (NQ) is given by the lowest weight-

m+1
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space which is just keradm (Y). Therefore Pm = kerad (Y) @

+1 +1 m+1

(N,). ®

] 1madm+1 5

2.23. THEOREM. Let F €7P be in SQ—normal form. Then for each k € N, k 2 2

there is a ¢ € G such that H = Foy is in H2—normal form up to order k.

proof. Lemma 2.21. shows that W(HQ) = kerad(S) N kerad(Y), and by the
previous remarks one may by a sequence of transformations transform

j H into H, + N(H,D . =

Notice that also H,-normal forms are not unique. Even the sl1(2,R)
embedding need not be unique. At each level one might choose a different
Y. Suppose H is in H,-normal form up to order k then for 3 S m < k

Hm € kerad(SQ) A kerad(Y) for some Y, Consicder A.H Where A.H2 = H that

2)
is, A.S = S, A.N = N. Then ﬁm = A.H_ € kerad(S,) N kerad(A.Y). Thus H is
in HQ—normal form but for some different embedding. Of course one can

transform ﬁm back to kerad(SQ) N kerad(Y) but then one expects to obtain

a normal form different from H.

3. Examples of normal form computations

3.1. BASIC COMPUTATION. Consider a Hamiltonian system CRQn,w,H) with

oo 2,2
(2.24) H,(x,y) = I HA.(xi+y2) 3. € R
ARAER j=12]]y] 303
Then the matrix corresponding to XH has purely imaginary eigenvalues
2
iixj and is in normal form as an infinitesimal symplectic linear map.

It is easy to check that H, is semisimple. If we introduce complex

conjugate variables zj = xj + iyj, gj = Ej; 1 < 3jJ € n, then ad(H(x,y))
becomes
(2.25)  ad(H(z,0)) = -1 T A.(z. 2 - £, =20

' ’ PSRN I PO B I
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. k1 . 1 %9 Ky lp 1y 1y
Introduce the notation z¢7 for the monomial Z, z2, ...2_ L, L -«

1 72 n °1 °2 n
where k = (ky,...,k ), 1 = (1,,...,1 ) and kj,lj € N u {0}. Furthermore
let (x| = k, +...+ Xk and 1] = 1, *+e-ot 1. I fk| + |1} = m then
Zkgl is a monomial of order m.

Now ad(H(z,z)) acts diagonally on the space of homogeneous poly-
nomials of order m if we take the monomials zkgl as basis.The eigenvalues
of ad(H(z,z)) are

n
(2.26) i <A, k = 1> = -1 T A.(k.=1.)
N
J
. . . k,1
with corresponding eigenvectors z ¢ .

Because H, is semisimple we have N(HQ) = kerad(Hz). It is now

obvious that kerad(HQ) is spanned by those monomials for which

<A,k - 1> = 0.

3.2. NONRESONANT CASE. If the Aj are independent over § we speak of

a nonresonant system. In this case the only monomials Zkgl for which

<A,k - 1> = 0 are those where k = 1. Because ngj - x2 4 y§ it follows

J
immediately that kerad(HQ) is generated by the homogeneous polynomials

x§ + yg, 1 € j €£'n. Thus all elements in kerad(HQ) are of even order.
This is just the case considered by Birkhoff [19271 ch.III.8.

The linear symplectic maps which map H, to itself form the torus

2
group on RQn with generators expad(x§+y§), 1 < 3j < n. By theorem 2.12.
all symplectic diffeomorphisms stabilizing the space of normal forms

for H are of the form Acexpad(P) with A in the above defined torus group
and P € kerad(H,) N P;. Because kerad(HQ) is an abelian Lie algebra, we
may write these stabilizing maps as expad(P), P € kerad(HQ). It now
easily follows that the Birkhoff normal form in the nonresonant case

is unique. (cf. Birkhoff [19271 and the remark of Moser [19681 page

g and 13).
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3.3. RESONANT CASE IN TWO DEGREES OF FREEDOM. When the Aj are dependent
over § we speak of a resonant system. If we consider the case of two
degrees of freedom, that is, n = 2, then Hy(x,y) = %Aj(xi+y§) +

+ %AQ(xg+yg) with Al/AQ € . Without loss of generality we may take

Ay € N, A, € Z with g.c.d. (A;,1,) = 1. Suppose 1 < A, < Ix, | (that
is, the 1 : 1 resonances are excluded). Then (2.26) becomes
Kl(kl—ll) + AQ(kQ—lQ) = 0. Thus among the generators for kerad(H,) are

those given in the nonresonance case. We call those the Birkhoff
generators. In addition to the two Birkhoff generators we find two

resonance generators, which are given by (k1’k2’11’12) = (X 0,0,Al)

2)
and its complex conjugate (0, ,4,,0) if A, > 0, and (ikzi,xl,0,0)

and (0,0,]A,],x,) if A, < 0. In both the definite A, > 0 case and the

ol
indefinite AZ < 0 case, the above four generators are the generators
of kerad(HQ). Therefore we may consider kerad(Hz) as an algebra of
formal power series in four variables Bi’BQ’ s where B1 and B2

stand for Birkhoff generators (which are quadratic functions)

R, >R

while R1 and R2 stand for the resonance generators (which are functions
of order x, + }AQE). Writing Ay = pand X, = q in the definite case

we have:

(2.27%) ByGoy) = 2p0xiavp) = Falxpty))
Ry(xsy) = %<Z%cg+a§zg)
RyG,y) = gr(zfed-rdzd)

with the relation

B, +B.\d/B,-B.\P
(2.28) R? + RS = (_l__g) <_l__3)
b q

N
N

With Al = p and }A21 = q in the indefinite case we have:
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2

9)

1., 2.2 1,2
Bl(x,y) = HQ(x,y) = 7p(x1+y1) - 7q(x2+y
1., 2. 2 1,2 2
(2.27P) Bp(x,y) = Fp(x+y ) + 5q(xy+y,)
’ - 1,.9,p,.9.D
RyGoy) = glzgzgree))

. 1.,4p_,q,P
R2(x,y) = 7T(Z1Z2 §1§2)

with the same relation (2.28). Furthermore in both cases we have the
bracket relations
{BQ,Rl} = 2qu2

(2.29)

{B RQ} ==2pqR,

29

The action of expad(P) with P € kerad(HQ) on a function F € kerad(HQ)
is now completely determined by the bracket relations among the
generators Bl’ BQ, Rl’ R,. The subgroup of linear symplectic maps which
leave H2 fixed is generated by expad(Bl) and expad(BQ).

Consider tne formal power series case, that is, kerad(H?) =

= ﬂ{[[Bl,B R R2]] and suppose that H is in H,-normal form. Then

2°7°1° 2
He€R [[B1=BQ>R1=R2]]‘ Furthermore H has 'linear term'
(2.30) Hy + alR1 + aQRQ.

Supposc that a; * 0 and a, * 0. Clearly expad(Bl).H = H. We now describe

the effect of expad(AB?) on the linear term (2.30). We have

expad(KBQ).(H2+ alR1 + agRy) =

;e pad(ABQ).R1 +a, expaS(ABQ).R2 =

= H, + a X
© k
5 Y

2

k ok

= H, + a
2 1 K

REN

By (2.29) we have adQ“(BQ)R1 = (—1)n(2pq)2nR1 and ag?nt

= (-D™2pg) "R, while aa”(B)R, = (-1)™(2pq)*"R, and

ad2n+1(B2)R2 - (_1)n+ﬁ(2pq)2n+1R1. Therefore

(B,R, =
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expad(ABQ)(H2+ a1R1+ aQRQ) =

= H, + a cos(?qu)R1 + a

9 sin(2pqMIR, + aQOos(quA)R2 -

1
- aQSln(quA)R1 =

1

Hy + (alcos(quA) - aQSin(’quA))R1 + (alsin(quA) +

+ a2cos(2pq)\))R2

19B,>R R, then the action

of expad(ABQ) is nothing more then a rotation in the R, >R,-plane

If we consider the R-module with basis B

over an angle depending on A. Hence we may choose A so that

expad(ABQ)(H2+a1R1+a2R2) = Hy + aSRi' Thus with the appropriate choice

of A, ay = ay cos(2pgir) - a, sin(2pgX). We have proved

2.31. LEMMA. If H € Hi[[Bl,B R.,R,1] has linear term

2271272
L = HQ + alR1 + aQR2 , wWith at least one of the two coefficients a,,a,

nonzero then choosing A ¢ R so that alsin(quA) + aQOos(quA) = 0

implies that expad(AB,)L = Hy + a3R1 with ay = alcos(quA) -

- aQSin(quA).
R

Using the relation (2.28) we may write Hi[[Bl,B R2]] =

227172
R1]]. If H is in HQ—normal form then

H

RQ.ﬂ{[[Bl,B R1]] + RILB

22 1’B2’

H = H, + aR; + P1 + RQP2 with P, € EQEEBJ,B R1]] of degree 2 2 and

1

P, € RI[B,,B

1 27
2,R1]] of degree > 1. We will show that by an appropriate
transformation we may get rid of the terms in R?.H{[[Bl,B2,R1]]. Towards
this end we consider a transformation expad(P) with P of order m > 2 in
the (x,y) variables. On H this transformation has the effect that
terms of order m + p + g-2 in imad(Rl) are added to H (recall that
R, was of orderp + g in (x,y) variables). Just as in the normal form

theorem 2.5., it follows that we may find a transformation which

eliminates all terms in imad(Rl).
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2.32. LEMMA. All elements of RQ.H{[[Bl,BQ,Rlll are in imad(Rq).

proof. Consider RQB?B;Rg then ad(Rl)(_qu1Y+1 B%Bg+1R$) =
- R2B?B;Ri by (2.29).

2.33. THEOREM,., Suppose H is the Hamiltonian of a two degree of freedom
system in resonance. Furthermore suppose that H is in H,-normal form
and fulfills the condition of lemma 2.31. Then there exists a symplectic

formal power series transformation ¢ such that Hoy € ﬁi[[Bl,B2,R1]].
proof. Follows from lemmas 2.31 and 2.32.

2.34. REMARK. Of course the above also holds if we replace R; by R,.

2.35. REMARK. Theorem 2.33. in fact shows part of the normalization
of H with respect to Hy + ajR,. For a complete Hy, + agR, -normal form
for H we have to find an appropriate complement to imad(Rl). In general

such a complement is not easy to find.

2.36. REMARK. In lemma 2.31. we have used all the freedom of cholice
for the linear part of our transformations mapping normal forms to
normal forms. In this case this means that the constant mg of

proposition 2.17 is equal to p + q, p + q being the degree of R1 in

(x,y) coordinates.

3.4, RESONANT CASE IN n DEGREES OF FREEDOM. For resonant n degree

of freedom systems we only make some general remarks. Let H, be as in
(2.24) then H, is semisimple and consequently jm(kerad(HQ)) is a
reductive subalgebra of P; for all m. Thus we may write

jm(keradQHQ)) = C + jm{jm(kerad(HQ)), jm(kerad(HQ))} where C 1s the

center of jm(kerad(HQ)). If H isin H,-normal form and ij € C then

2

it is obvious that ij is unique by theorem 2.12. It is well known
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that among the generators of kerad(HQ) there are n Birkhoff generators.
Furthermore up to the order where the first resonance generators appear

H is a function of these Birkhoff generators alone

2.37. LEMMA. If H is in H,-normal form with H, as in (2.24) then H is

2 2
uniquely determined up to degree m - 1 if m is the minimal order where

resonance terms appear.

At the order where the resonance terms appear fo?¥ the first time
we may use the linear group of transformations which map H, to itself
to further normalize the resonance terms. This is illustrated in
Duistermaat [1983%1 for the 1 : 1 : 2 resonance and in Dell'Antonio
et al. for the 1 : 1 resonances.

Finally we will say something about the case of simple resonance,
that is, there is just one dependence relation (over {) among the eigen-
values A.. If this dependence relation involves only two of the eigen-
values then the normal form computations reduce to those of two degrees
of freedom because only the variables corresponding to these two Aj's
are involved. If the dependence relation involves more eigenvalues then
the computations become more complicated but one may proceed along the

same lines as in the case of two degrees of freedom.

3.5. THE NONSEMISIMPLE 1 : -1 RESONANCE. 1In this last part of section 3

we will treat the normalization of the Hamiltonian of a system of two
degrees of freedom in nonsemisimple 1 : -1 resonance. This is the case
which is the topic of the next chapters. The quadratic part of the

Hamiltonian (which differs in an essential way from the one given by

(2.24)) 1is given by

1,2, .2
(2.38) HQ(x,y) T d(X1y2“X2y1) + 7(x1+x2)
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As is easily checked the semisimple part of H, is a(xlyQ—Xle),
which is in 1 : -1 resonance. Furthermore H2 has a nonzero nilpotent
part %(xi+xg). For convenience take « = 1. Then the semisimple part

of H, is S(x,y) = x

2 1Yo T Y4
2 2

= %(x1+x2); furthermore {X,S} = 0.

and the nilpotent part is X(x,y) =

The generators of kerad(S) are again found by introducing complex
conjugate variables. However, because the normal form for S given above
is different from the one given by (2.24), the complex conjugate

coordinates diagonalizing ad(S) are different from the ones given in

subsection 3.1. In this case we take Z24 F Xq ¥t Ax,, 2, = Y4 iy,
gl = 24 and QQ = 22. Then
2 3 3
(2.39) ad(8(z,z)) =i ¥ (z. - . ) s
. 3z g -
j=1 3 %3 9%

kerad(s) is gemerated by S(x,y), X(x,y), Y(x,y) = =(yi+y3) and

Z(x,y) = XY F XYy which satisfy the relation
2 2
(2.40) S 4+ 2% = XY, X 20, Y 2 0.
Furthermore {Y,X} = Z, {7Z,X} = 2X, {z,Y} = -2Y, that is X,Y,Z span

a Lie subalgebra of keradQ(S) isomorphic to £1(2,R) . Hence the choice
of an embedding of X in a Lie algebra isomorphic to sl1(2,R) is
immediately clear. According to lemma 2.21., W(HQ) = kerad(S) n kerad(¥).
It is easy to check that W(HQ) = RILLS,Y31] when written as a space
of formal power series.

Any map in G which leaves S fixed is a Lie algebra isomorphism for
the s1(2,R) spanned by X,Y,Z. However the above choice of the span
of s1(2,R) is the most simple one. Any non-~identity Lie algebra
isomorphism will give rise to more complicated functions and thus to a
more complicated description of N(HQ). Let ¢ be a mapping, which takes

an H,-normal form to an H,-normal form. If we require that ¢ leaves Y
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fixed, then one may easily check that ¢ = Acexpad(P) with
P € ?g A kerad(S) n kerad(X) N kerad(¥Y) and A.S=S, A.X = X, A.Y = Y.
Thus ¢ is of the form expad(P) with P a polynomial in $ only. But then

@ acts as the identity on an H,-normal form.

2

2.41. LEMMA. Suppose H is in H,~normal form with H, given by (2.38).

2
Furthermore suppose that the s1(2,R) embedding of X is fixed throughout.

Then the H,-normal form is unique.

4. Integrals and energy-momentum maps

Suppose we have a formal Hamiltonian system CRQn,w,H)with H in

SH—normal form, where SH is the semisimple part of Hy»s SH # 0. Let F be

an integral for the system CRQn,w,H).

2.42. THEOREM. If F is an integral for (R°®,w,H) with H in S, -normal

H
form then F € kerad(SH).

proof. The proof is straight forward using induction. We have

0 = nQ{H,F}z {HQ,F }. Thus F, € kerad(SH). Alsc 0 = WS{H,F}= {HZ,FS} +

2 2
+ {HS,FQ}. Obviously {HS,FQ} c kerad(SH) and thus {HQ,Fa} € kerad(SH).

Therefore by lemma 2.6. we have F, € kerad(SH). Now suppose

3

F € kerad(S;). Then nk+1{H,F} = {HQ + (brackets of elements

5 1
jk aFk+1J

in kerad(SH)). As before it follows that F 41 € kerad(SH), which proves

k

the induction step. @

Thus F € kerad(SH). We may now normalize F with respect to F,

within kerad(SH). Such a normalizing transformation maps H to some
function ¥ which again is in SH—normal form. If the semisimple part SF
of F, is nonzero. Then putting F in SF—normal form within kerad(SH)

leads to the following.
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2.43. THEOREM. Suppose F is an integral for the Hamiltonian system

CRQn,w,H). Furthermore suppose that S, and SF are nonzero. Then there

H
exists a symplectic formal power series transformation g such that

w.H € kerad(SF) n kerad(SH) and ¢.F € kerad(SF) n kerad(SH).

Restricting to systems with two degrees of freedom, theorem 2.43.
has some direct consequences, which we now discuss. Consider a system
CRu,w,H) with integral F. Furthermore suppose that Sy and SF are nonzero
and independent. Let H x F be the energy-momentum map of CRu,w,H). For
@ € G define an action of G on the energy-momentum map by ¢@.(Hx F) =
= (How) * (Foy). Taking the normalizing transformation given by theorem
2.43. we obtain an energy-momentum map (Hoy) x (Foy) where Hoyp = H ana
Fop = T are formal power series in Sy and SF because SF and SH generate
a maximal abelian subalgebra and thus kerad(SF) n kerad(SH) is generated

by S, and SF only. Applying a formal power series diffeomorphism on the

H

target space R? of H x ¥ reduces # x ¥ to 8y * Sp. Thus working with

P
formal power series a right-left action reduces H x F to SH x SF (cf.
Eliasson [19841 and the theory of the next chapter ).

5. Historical notes

It is well known that mathematicians often try to simplify the
formulas in a problem in order to make it easier to find a solution.
Such a simplified formula is then called a "normal form'". From this
point of view a normal form is nothing more than a relatively simple
form for a formula (which for instance describes a map, function or
differential equation) which serves the purpose of the user best.

One of the best known examples of the development of a concept
of normalization of course is the theory of normal forms for matrices.
This theory has a close relation to the theory of normal forms for

linear differential equations or, in the Hamiltonian case, to the
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normal forms for homogeneous quadratic Hamiltonian functions (see
Burgoyne and Cushman [1974, 19761, Williamson [19361 and chapter 1).

For normal forms of ordinary differential equations one might
go back to a memoir of Briot and Bouquet [18541, although most people
give credit to Poincaré [18791 who made several important contributions.
Other important contributions were made by Liapunov [18921, Dulac [19121,
Siegel [19521 and Sternberg [1958,1959,19611. In Kelley [19631 one finds
a discussion of the developments until 1963. More recent contributions
are those of Brjuno £1971,19721, Takens [19741 and Broer [1979,19801.
Most of these papers treat the general case of ordinary differential
equations. As with Hamiltonians there are different cases to consider
according to the configuration of the eigenvajues of the linearized
system,

Sternberg [1958,1959,19611 extensively treats problems concerning
normalization and classification of vector fields. He uses the concepts
of formal power series, Lie groups and Lie algebras. Based on Sternberg's
work, Chen [19631 formulates some formal theorems (section 8 of the paper)
which very much resemble our approach. The aim of Chen's paper was to
find linear normal forms for systems having eigenvalues with nonzero
real part. A theorem similar to our theorem 2.5. can be found in
Takens [19741 who also refers to Sternberg as the source of the basic
ideas. In Brjuno [1971,19721 one finds a extensive treatment of normal
forms for wvector fields which treats all cases and deals with the
Hamiltonian case seperately. His work is mostly based on power series
methods. He also poses the question of uniqueness and the existence of
invariants. In fact he proves the only if part of our theorem 2.7.
Broer's work is based on Takens' theorem. His approach of normalizing
jets of vector fields is parallel to our formal approach.

If we consider papers which treat only nonlinear Hamiltonian systens,
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we may go back to Whittaker [19011 (also Whittaker [19171 ch. XVI)

who simplifies Hamilton's equations using canonical changes of
coordinates. His method, which was inspired by Delaunay's lunar theory,
makes use of trigonometric series. At present the main reference for
normal forms for Hamiltonian systems is Birkhoff [19273. Although not
explicitly stated, he uses the concept of Poisson bracket. Probably
because of his restricted purposes Birkhoff only states the theory for
the case in which the linearized system has nonresonant purely imaginary
eigenvalues. His theory is in terms of formal power series, as is ours.
In the same year Cherry [19271 published closely related results.

Also Siegel's [1952,19561 work on normal forms for Hamiltonian
systems has to be mentioned. His paper mostly deals with convergence
problems of the series involved. Siegel [19561 goes into the problem
of uniqueness for normal forms for area preserving mappings.

In 1958 Moser stated a normal form theorem in a setting of formal
power series, which was in fact an extension of the Birkhoff approach
to the resonant case. This was taken up by Gustavson [19661 in his
paper on formal integrals. Since then normal forms for Hamiltonian
systems in resonance are often referred to as Gustavson-normal forms.
Gustavson's approach in just a constructive treatment of the formal
statements of Chen [19631. (compare our subsections 3.3 and 3.4). In
Moser [19681 one can find a nice resumé of the theory of formal normal
forms for Hamiltonian systems. He also makes some remarks on the
uniqueness of Hamiltonian normal forms (the Birkhoff case) and considers
uniqueness of normal forms for area preserving maps.

Since 1968 a number of papers have appeared which deal with normal
forms, normalizing transformations and integrals in terms of formal
power series. For instance Deprit [19691 treats transformations of

formal power series, Deprit et al [19691 and Meyer [1974b] deal with
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normal form algorithms and Giorgilli and Galgani [19781 are concerned
with algorithms for finding formal integrals related to normalizing
transformations.

In Meyer and Schmidt [19711 one finds for the first time a normal
form for a Hamiltonian function whose quadratic terms are not semisimple.
Such a nonsemigsimple case arises in the restricted problem of three
bodies. A real variable method obtaining a normal form in this case is
given in van der Meer £1982]. In Cushman et al.[19831 this method is
extended using representation theory (compare our theorem 2.21and 2.23).
Also Deprit [19831 gives a normalizing algorithm for the nonsemisimple
case, based on the two preceding ones, but more fit for use on a
computer.

Other recent papers dealing with normal forms for Hamiltonian
functions in classical mechanical systems are Deprit [1981,19821 which
eliminates terms in power series in Delaunay variables, and Cushman
[1984% 1 which considers normalization of power series in € with smooth
coefficients with respect to a term of order zero whose corresponding
vector field has only periodic orbits.

The problem of uniqueness of rnormal forms of Hamiltomian functions
treated in this chapter occurs in Brjuno [19711. The area preserving map
case 1s treated in Siegel [19561 and Moser [19681. For the nonsemisimple
1 : -1 resonarice problem nonuniqueness became apparent in van der Meer

[19821 because of the freedom in choosing the complement of imad(HQ).






Chapter III

Fibration preserving normal forms for energy-momentum maps

0. Introduction

Consider a Hamiltonian system CR“,@,H), H € Cm(Ru,R). Let S be the
semisimple part of H, and suppose that H is in S-normal form. Thus the
system is integrable with integral S. Furthermore suppose that the action
of XS is a circle action. If we consider the action of the group of
symplecticCm—diffeomorphismscommutingwiththe action of XS on H, then
the w-jet of H will have infinitely many non zero terms. This means that
we cannot transform H to a finite part of its Taylor expansion by means
of such a symplectic transformation. If instead of the function H we
look at the energy-momentum map H *x 8 then we meet the same problem
using the right-action (that is, on the source) of the symplectic c”-
diffeomorphisms equivariant with respect to the action of XS. If we drop
the restriction that the diffeomorphisms be symplectic and consider a
right-left action then H x $ can be drastically simplified. Because
H x 3 is invariant with respect to the sl.actionof XS we are in the
framework of stability of invariant (or equivariant) maps.

In this chapter we will show how the theory of stability of maps in
the equivariant version by Poenaru [19761 and Bierstone [19801 (also see
Izumiya [19821 and Roberts [19831) can be used to obtain normal forms
for energy-momentum maps of Hamiltonian systems with Sl—symmetry. It turns
out that the resulting normal form again can be considered as an energy-
momentum map for a Hamiltonian system. The fibration of the normal form
and the original energy-momentum map are the same up to diffeomorphism,
that is, the normalization is fibration preserving. Therefore one can

obtain qualitative information about the original system from the system

corresponding to the normalized map.
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In the first section we state the basic facts from the theory of
stability of equivariant maps. In section 2 we show how these facts can be
applied to energy-momentum maps and what the consequences are for the
qualitative behaviour of the related Hamiltonian systems. In section 3
we apply the theory to the concrete example of the Hamiltonian Hopf
bifurcation. In the final section we discuss the results.

The theory of stability of functions and maps has been developed
by Mather [1968-19701 (see Martinet [19821 for a nice treatment). Its
extension to the case of equivariant real valued C”-functions is due to
Poenaru [19761 and Wassermann [19771; while the extension to equivariant
Cm-maps can be found in Poenaru [19761 and Bierstone [19801 (also see

Roberts [19831 and Izumiya [19821).

1. Preliminaries from the theory of stability of maps

In this section we state without proof some facts from the theory of
stability of maps which will be used in the following. The proofs and
further background can be found in the literature cited above.

Consider the space Cc”(R™) of smooth real valued functions on R .

If x -»X%_ are the coordinates on R" then R[x] = F{xl,...,xn] is the

EEE
subspace of polynomials on R™. Let S be a Lie group acting linearly on

n

R Then the S-action induces an action on C (R™) (and also of course

on the algebra of polynomials) defined by
(3.1) ©.Fa) = Flo"l(x)), o € 8, F e c™(RM.

3.2. DEFINITION. A function F € CT(R™ is S—invariant if ¢ .F = F for all

® € S.

This is equivalent with saying F = F o ¢ for all ¢ € S. Denote the space

of smooth S-invariant functions by Cm(ﬂfws and similarly the algebra of

S-invariant polynomials by R[x]S.We have the following theorem due
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to Hilbert (see Poenaru [19761 for a proof).

3.3. THEOREM. Let S be a compact Lie group acting linearly on R™. Then
there exist finitely many invariant polynomials pl(X)""’pk(X) € R[x]s

which gernerate R[x]s as an R-algebra.

An alternative formulation of this theorem is: there exists an

n *iRk defined by p(x) = (pl(x),...,pk(x)) = y such

algebraic map p: R
that the pull-back R[x]seig~jﬁ[y] is surjective. We call the polynomials
P; the Hilbert generators for F{x]s and the mapping p a Hilbert map for
the action of S. Notice that without loss of generality one may always
take the P to be homogeneous of degree greater than zero.

Schwarz [19751 proved an important extension of Hilbert's theorem

to the case of C -functions.

3.4. THEOREM, (Schwarz [19751) If p is a Hilbert map for the S-action

w *
then themap C CRn)SfiL—~C®(Fk) is surjective.

This means that every S-invariant smooth function can be written
as a smooth function in the finitely many Hilbert generators of R[x]s.
Theorem 3.4. together with the equivariant preparation theorem (see
Poenaru [19761) form the basis of the theory of equivariant stability
of equivariant maps. We will now state the main results of this theory
for the special case of invariant maps.

n

Let Cm(Fﬂ,RP) be the space of Cm—maps F: R" - RP. Furthermore let

S be a compact group acting linearly on R” as well as RP.

3.5. DEFINITION. A map F € C (R",RP) is S-equivartant if ¢ .F(x) = F(ox)
for all ¢ € S. In the left hand side we consider the action of S on Rp,

in the right hand side the action of S on Rr".

If S$ acts trivially on Rp, that is, if ¢ . x = x for all x € RP,
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@ € S, then definition 3.5. turns into the Cm(ﬂfngp) analogue of
definition 3.2. and the theory for S-equivariant maps naturally restricts
to a theory for S-invariant maps. We shall apply the equivariant theory
with the trivial action of S on RP.

Let cw(mﬁ,mP>S denote the subspace of Cm(Rn,RP) of S-invariant
maps. Furthermore let Diffs(]Rn) denote the space of S-equivariant
diffeomorphisms from R” to R" and let Diff (RP) denote the space of
diffeomorphisms from RP to ®P. There is a natural action of

DiffS(IRn) x Diff (RP) on C(R",RP)S defined by

(3.6) (9, ) .F =y o F o o 1.

In the following we will consider the local theory of invariant
maps, that is, we consider maps F € M(n,p) where M(n,p) = {F€ Cm(ﬂfngp);
F(0) = 0}, and the group of origin preserving diffeomorphisms on source

]Rn

and target RP which we denote by DiffS(Rﬁ)O % Diff(FP)O. Note that
each component of M(n,p) is the maximal ideal M(n), in c®(R™). Further-

more let M(n,p)s = M(n,p) N Cm(Rn,FP)S.

3.7. DEFINITION. Two elements F, F € M(n,p)s are equtvalent (sometimes
called right-left equivalence) if F and T are in the same

DiffS(IRn)O x Diff(]Rp)O orbit, that is, if there is a
(9,0) € Diffg(R™) x Diff (RP) such that ¥ = y o F o @ ',

3.8, DEFINITION. A map F € V « M(n,p)s is gtable <n V if there is a

neighbourhood U « V of F (in the appropriate topology) such that each

T € U is equivalent to F. If V = M(n,p)s then we say that F is stable.

In other words, F is stable, if the DiffS(JRn)O x Diff(]Rp)O -orbit
through F is open. Notice that the notions of equivalerce and stability

defined above depend on the group action, the group and the space on
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which the group acts.

For F € M(n,p), a smooth vector field along F is a smooth map &
of R” into the tangent bundle TRP of RP such that we £ = F. Here 7
denotes the canonical projection of TRY to RP . Let ©(F) denote the
Cm(Fé)S—module of smooth origin preserving S-equivariant vector fields
along F. O(F) can be identified with M(n,p)s. Furthermore let 0(R™)
be the Cm(Fh)S—module of smooth origin preserving S-equivariant vector
fields on R" and let 0(RP) be the CT(RP)-module of origin preserving

vector fields on RF. Define ap: O(R™) » 0(F)and By: 0(RP) » 0(F) by

-

aF(g) = -dF e § and BF(n) = nokf.
3.9. DEFINITION. F € M(n,p)s igs Infinitestimally stable if
(3.10) O(F) = ap(0(R™) +BL(8(RP)).

The right hand side of (3.10) is equal to the tangent space to the orbit

of F in the sense that a tangent vector is defined as é% wt OF‘om;1 t-0

where vy and @, are smooth curves in Diff(Rp)O and DiffS(Fﬁ)O with

wO = I and mO = I. The left hand side can be regarded as the tangent
space to M(n,p)s at F. Notice that the definition of aF(G(Rﬁ))for p =1
coincides with the definition of S-invariant Jacobian ideal as given in
Poenaru [19761 and Wasserman [1977]1 for the action of Diffs(an)O.
Therefore we will write aF(G(]Rn)) = J(F)S and speak of it as the
Jacobian module. Let Fp(Fl""’Fp> denote the space of smooth maps

B: R"

» RP such that the component functions Bi: i=1,...,p are smooth
functions in the component functions F. of F. If F ¢ M(n,p)s then
B € M(n,p)s and FP(Fl,...,FP) = BF(G(HQ)))C M (n,p)s. Thus we may

rephrase the definition of infinitesimal stability as

S S
(3.11) M(n,p)~ = J(E)™ + Fp(Fl""’Fp>'
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3.12. THEOREM. F € M(n,p)s is stable (in the sense of definition 3.8.)
if and only if F is infinitesimally stable (in the sense of definition

3.9.).

Theorem 3.12. is the main theorem of equivariant singularities
theory. The if-part has been proved by Poenaru [19761 and the only if
part by Bilerstone [19801 (ch.5).

If F is not infinitesimally stable then we may try to determine
for which F the codimension of J(F)S + FP(Fl,...,FP) in M(n,p)s is

finite.

3.13. DEFINITION. The codimension of F € M(n,p)s is

S
. HMn p)// 1
dim { ’ S
J(F F c..F :
(F)"+F (Fyy.oonF)) ]

Next consider the Taylor expansion of F € M(n,p)s. We speak of the

(kl,...,kp)*jet of F if we consider the kj~jet of Fj for j = 1,...,D.

3.14. DEFINITION. A map F is (kl,...,kp)~determined if any map with the
same (kl,...,kp)—jet as F is equivalent to F. A map F is finitely

determined if there are kl""’kp such that F is (kl,...,kp)—determined.
We have

3.15. PROPOSITION (cf. Roberts [19831, th. 3.1). F € M(n,p)s igs finitely

determined if and only if F is of finite codimension.

If a map F is (kl,...,kp)—determined then we may take its
(k],...,kp)~jet P as a representative for the orbit through F and
codim(P) = codim(F). The codimension of P can be determined by

considering only finite jets. Codim(P) is just the codimension of

S
I(PYS+F (P ,...,P) K Ko .
p 1 P/M(n,l)s) L x (M(n,1»Sy P in
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S
M(n,p) k k
’ AM(n,l)S) L ke,

If P has nonzero but finite codimension, Pis not stable. However
one can construct a stable deformation of P depending on finitely many

parameters.

3.16. DEFINITION. A map Pu € M(n,p)s depending smoothly on u =(u1,...,us)

is a deformation of F if Fg = F.

Let P be the (kl""’kp>_jet ofa (kl,...,kp)—determined map F.

S

Choose a basis b .,b_ of the complement of J(P)~ + FP(Pl,...,PP) in

EEE
M(n,p)s and consider the deformation Pu = P+ u,b, + ... + “sbs‘ One may

S

171

consider Pu as an element of the subspace M(n+s,p+s) of

Cm(HJXX]RS;RPX R®). Extend the action of the compact group S on R" to
an action of Su on R"x R® by letting Su act trivially on R®. Now
consider the action of Diffs(ﬂfxx RS)O % Diff(ﬂ@DXiRS)O on M(n+S,P+S)S.

We have

IS + F (P
u

pts Tu,1°°" 4

P = 1S e LE op

TR T

NI
wop’il 1 s

+ F (P R

_ S
pts P10 u,p’“l""’“8> = M(n+s,p+s)

Thus Pu is stable in M(n+s,p+s)s. Moreover s is the minimal number of
parameters needed to obtain such a stable deformation. The above result
is a straight forward extension of the theory of universal deformations
of Poenaru [19761 for equivariant right-action to the case of right-left-
action. Consequently the deformation Pu of P is a universal deformation

(or universal unfolding) of P.

3.17. DEFINITION. Gv is a universal deformation of G if for any other
deformation Gu of G there exists a smooth map ¥ between the parameter

spaces, x(u) = v, x(0) = 0, such that the pull-back y* G, of G, by x is
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equivalent to Gu by means of a u-dependent transformation (¢,¥) €

. n . . -1
€ Diff ((R™) x lef(IRP)O, that is, Yo Xx*G, 00 =~ = G .
3.18. PROPOSITION. Let F be a deformation of F. , with F (K, powosk )=
_— U Hg g 1 P
determined. Let Gv be the universal deformation of the (kl""°kp>_
jet G of Fu . Then there exists a smooth map x between the parameter
0
spaces, X(u) = vj x(uo) = 0 and a u-dependent transformation (o,y) €
€ DIff(R™) x Diff(RP), such that y o x*G oo ! o= -

This concludes our statement of results and definitions needed in
section 2 and 3.

Note that the complete theory of this section is in terms of S~
invariant maps. In the actual computations it is therefore convenient
to express all maps as functions or polynomials in the Hilbert generators
Py corresponding to the S-action. Consequently one has to know the Py

explicitly. This procedure is followed in section 3.

2. Standard forms for energy-momentum maps and invariant sets

In this section we will apply the theory of stability of equivariant
maps to the energy-momentum map of a Hamiltonian system having a
quadratic integral with periodic flow. Obviously the energy-momentum map
is invariant with respect to the flow of the quadratic integral which
gives rise to a compact one-parameter group. If the energy-momentum map
is finitely determined we need only consider a finite jet of this map.
When this finite jet takes a sufficiently simple form we will call it a
normal form for the energy-momentum map (rnotice that this notion of
normal form differs from the notion of normal form of a singularity as
defined by Arnold [19751). By construction such a simple finite jet still
contains a great deal of qualitative information about the original

system, especially when the Hamiltonian system has two degrees of freedom.
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Consider a Hamiltonian system CRQn,w,H)with w the standard
symplectic formonﬁRQn. Suppose that H(0) = dH(0) = 0. The space of
smooth functions whose 1-jet at zero vanishes will be denoted C:(IRQH,EU.
Suppose furthermore that the system CRQn,w,H) posesses an independent
quadratic integral S € C:(R?n,RJ such that the flow of Xg gives rise to
a linear Sl—action on IRQn. Let § be the compact one parameter group
generated by the flow of XS. Furthermore consider the energy-momentum
map H x S defined by H x S: z € R?n + (H(z),S8(z)) € RQ. Every fiber of
the map H *x S is an invariant set for XH. In particular every fiber is
S-invariant.

Next consider the groups DiffS(IRQn)O and Diff(RQ)O of origin
preserving diffeomorphisms acting on source and target of H x S
respectively. Following the theory of section 1 we may ask whether H x §
is finitely determined with respect to the induced action of
DiffS(IRQ“)O x Diff(]R2)0 on (R, R%)S. When H x S is finitely

determined we may normalize H x S by a map (@,y) €

Diffg(R°™), x DIiff(R%) . ¢ € DiffS(IRQ“)O maps a fibre of E x S to a
fibre of (H x 8) o, while ¢ € Diff(RQ)O only changes the base points.

We have

3.19. THEOREM. Normalizing maps in C:(R?n,RQ) preserves the fibration

of R?n up to a diffeomorphism ¢ € DiffS(RQH)O.

If we consider systems of two degrees of freedom, that is,
H € C:(Ru,ﬁﬂ, then the possible fibers of H x S are easily classified.
A regular value of H x § gives rise to a smooth two dimensional manifold
whose connected components must be either a torus or a cylinder due to
the Sl~symmetry (see the theory of chapter 4). A singular value of H x §
gives rise to a point, a one dimensional fibre or a critical two

dimensional fibre. In the case that the fibre is just a point, we have
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an equilibrium point for our system. Because the fibers are S-invariant
this point is an equilibrium point for Xg. If the fiber is connected and
one dimensional then, because of 81~symmetry, it must be a topological

circle: either a periodic solution of X, or a circle of critical points.

S
If we have a connected part of a two dimensional critical fiber then
this part is a variety whose singular set is just the critical locus.
This singular set is a point or one dimensional. Therefore the former
remarks apply (also cf. Smale [19701).

From the above discussion it is clear that the periodic and
stationary solutions of the system CRu,w,H), which are also solutions

of CRu,w,S), are the singular locus I, of the map H x S.

H

In the case of two degrees of freedom suppose we have a normal form

G x 8 for H x S. By theorem 3.19. Ty ig diffeomorphic to Zs

the family of common periodic solutions of (Ru,w,H)and (Ru,w,S)(also

that 1is,

the short periodic solutions of ﬂRu,w,H)) is diffeomorphic to the family
of commorn periodic solutions of (Ru,w,G) and CRu,w,S). Notice that
these common periodic solutions are just the relative equilibria of

(RY,w,H).

3,20. DEFINITION. Two S~invariant systems CRu,w,H)and CRu,w,G) are
equivalent if H x S and G x S are equivalent. Two S-invariant Hamiltonian

functions are equivalent if the corresponding systems are.
A direct consequence of theorem 3.19. is

3.21. COROLLARY. If CRu,w,H) and CRu,w,G) are two S-invariant
equivalent systems then the G-level sets are invariant sets of the

system (IRu,w,H).

In the case of two degrees of freedom the systems at resonance are
of particular interest. If one has a system (FH,w,H)at regonance then

it is ovious that the flow of the semisimple part S of Hy is an



56

S*-action. If H is invariant under this action, that is, if H is in
Hamiltonian normal form, then we may try to find a normal form for H x S.
It turns out that one can find a particular simple normal form G x 8
(as is shown in the next section the computations can be done in such
a way that the second component S is preserved, see also Duistermaat
[1983°1). As a consequence of theorem 3.19. the qualitative behaviour of
CRn,w,G) gives much information about the qualitative behaviour of
CRu,w,H), especially about the relative equilibria.

The construction of a versal deformation (unfolding) Gv x S allows
us to study the change of the qualitative behaviour when passing through
resonance. As a consequence of proposition 3.18. and theorem 3.189. we

have

3.22. THEOREM. Consider two S-invariant systems CRu,w,Gv) and CRu,w,Hu)
and suppose that Huo is equivalent to GO. Theri there is a smooth map ¥
between the parameter spaces, y(u) = v, x(uo) =0, such that the pull~back
under yx of a fibre of G, X S is diffeomorphic to a fiber of Fu x S by
means of a u-dependent S~equivariant diffeomorphism (that is, the S~

invariance is preserved). In particular energy level sets are mapped to

invariant sets and relative equilibria are mapped to relative equilibria.

3.23. DEFINITION. A Hamiltonian function G, obtained by constructing a
versal deformation Gv x S of a normal form G x S is called a standard

function for the particular resonarnce.

3. Computation of a standard function for the nonsemisimple 1:~1 resonance

This section is completely devoted to the computation of a standard
function for the nonsemisimple 1 : -1 resonance. The method we follow
also works for the other resonances in two degrees of freedom. However

from the computational point of view the resonance considered in this



57

section is the most simple one.
Let H € C”(RY) such that H(0) = dH(0) = 0 and consider a system
CRq,w,H) at nonsemisimple 1 : -1 resonance. If (x,y) = (Xl’XQ’yi’y2>

are the coordinates in R' then the normalized quadratic part of H is

2

2
(3.24) HQ(x,y) = a(x1y2~x2y1) + %(x1 X, )

with semisimple part aS(x,y) = a(x1y2~x2y1) and nilpotent part
X(x,y) = %(x12+x22). The Hilbert generators (see theorem 3.3.) for the
algebra of polynomials invariant under the action of the one parameter

group S corresponding to the flow of X, follow directly from the theory

S
of Hamiltonian normal forms. They are the four quadratic functions

S(x,y), X(X,y), Y(x,y) = %(y12+y22) and Z2(x,y)= X + X For these

171 Y-

functions we have the following relation:
(3.25) 4XY = Z° 4+ 8°, X2 0, Y > 0.

By theorem 3.4. the Taylor series at zero of anS-invariant function
can be written as a series in the Hilbert generators given above. For H

we have the following:
(3.26)  H(x,y) = oS + X + ka,¥’ + 2a,8Y + a,;8% + 0,(6,Y,2,8)

where 03(X,Y,Z,S)stand for terms in X, Y, Z and S of order three or more
(cf. van der Meer [19821). Notice that H is in Hy-normal form up to order
four.

Now introduce the map G x S with G given by

(3.27) G(x,y) = X + aY2 3 a2 = 1.

We will use the map G x S to prove that H x S 1s finitely determined

where H is given by (3.26) with a, # 0. This we do by showing that each

2

such map H x § is in the orbit of G x S.
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Let F(X,Y,Z,S) be the space of smooth real valued functions in
X, Y, Z an S. FQ(X,Y,Z,S) is the space of maps from H$+ to ]RQ with
components in F(X,Y,Z2,8). Let M(X,Y,Z,S5) be the maximal ideal in
F(X,Y,Z2,S8) considering X, Y, Z, S as variables. Furthermore let
My (X,Y,2,5) = M(X,Y,2,8) x M(X,¥,2,8). (In fact M,(X,Y,2,8) is M(4,2)°
in the variables X, Y, Z and S.) M(X,Y,Z,S)k is the k~th power of the
maximal ideal, that is, the functions with Taylor series starting with
terms of order k in X, Y, Z and S,

A sufficient condition for H x S to be finitely determined is that
J(G x S)S + MQ(G,S) > M(X,Y,Z,S)2 x M(X,Y,Z2,S). For then, by the theory
of section 1, the Diff CR“)O x DiffCRQ)O orbit of G x S contains H x 8.

In order to find J(G x S)S we first have to determine the space of
S-equivariant origin preserving vector fields XS(FH)O. Because we may
consider XS(FH)O as an F(X,Y,Z2,8)-module we need only to find a set of

generators of XS(RH)O‘ To simplify the computations, we introduce

complex conjugate variables zg = oxg % ix2, Z,= Yy + in, &y = 51 and
Ly = 22. In these coordinates the linear vector field XS is given by
I, 0 ,%1
V. (z,0) = if 2 )(22\
S \o 1 /\ey/
2 CQ
where I, is the 2 x 2 identity matrix. A general homogeneous vector field

of order n 1s given by

r -
z céé> 2% CB
|a+Bl=n
(2) _a B
z c z T
g lasg|=n 5
V(z,z) =
? 5 Oéé) 5 G CB
Ja+B]=n
(4) a _B
z c z g
]OH”B!‘-’H OLB

(with the notation conventions as in subsection 3.1). The generators of

the F(X,Y,Z,S)-module XS(HJUO are those vector fields V which do not
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contain a factor in M(X,Y,Z,S) and for which [V(z,z), XS(Z,c)] =

DV(Z,C) .?S(Z,c) - D?S(Z,C). Y(z,z) = 0.

(see chapter 1), Now [V,?S] =

(1)

OQB [(a1+a2~61-62)~1] =0
e 3T o ray=8,-8,)-17 = 0
cé§>[(al+a2-61-62)+1] =0
cég>[(al+a2~81~62)+1] = 0.

Thus all generators of XS(Ru)O

2 ) 2 3 2 3 3
oy 3 b - » -
1 841 2 az1 1 342 2 342

and their complex conjugates

are linear,

[.,.1 is the usual Lie bracket

0 if and only if

We obtain

as generators of XS(FH)O (writing vector fields as differential

operators). We obtain 2, ag by taking (a,8) = (1,0,0,0), céé> =1
1
and c(2> = o(3> = c(u> = 0. The other generators are obtained in an
B aB afB

analogous way.

following real generators:

By taking suitable iinear combinations we get the

= ¥ - 3 3 . 3 9 ., .8
ViGoyd = Vo (eat) = A0z g~ by v 2 3, " Ly )
1 1 2 2
o 3 3 3 3
Vo(x,y) = Vi (2,0) = (2, oo +0, =25 5— "5y =)
2 % 2% 13z, "*19e, T %25z, T P25,
e o 3 3
Vs(x,y) = V3(Z>C) = (Z1*§Z;+ C1325>
oy . _ 3 3
Vu(x,y) = Vg(z,c) = ZQazl-fCQSEZ
v o1 5 5 3 3
Ve (x,yd = Vg lz,t) 2oxlzy gty wp= = 2g q— + Ly )
1 1 2 2
.y ) 3 d 3 9
Vg (xay) = Vg(z,0) = (2 gt by ¥ 2, 5o+ Ly )
1 1 2 2
. - d
V7(x,y) = V7(z,c) = 1(z1322-+51325)
o P T
V8(x,y> = V8(z,c) = 1(z2 3Z1 52321)
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Note that in complex conjugate variables the functions X, Y, Z en S
become ¥(z,z) = %Z1C1’ ?(Z,c) = %ZQCQ, 7(z,z) = %(C1Z2+Z1C2) and
S(z,z) = f%(clz2~zlc2). Introducing the Poisson bracket {.,.} as in
definition 1.9. and the adjoint map ad on Cm(]Ru) we find that

vy = ad(sy, V, = ad(Z), Vg

vector fields corresponding to S, Z, X and Y (written as differential

= ad(X) and V, = ad(y) are just the Hamiltonia

operators). The action of the generators Vi on the Hilbert generators

X, Y, Z and S is given in table 3.1.

X Y Z S

V1 0 0 0 0

v, 2X -2Y 0 0

V3 0 A -2% 0
Table 3.1.

VL+ Z 0 2Y 0
The action of the

Ve 0 0 -3 Z
generators Vi on

Vs X Y Z S
X, Y, Z, and S.

\Y 0 S 0 2X

7
V8 S 0 0 2y

Thus as an F(X,Y,Z,S)~module J(E x S)S is generated by the following

functions:

= u(S) - ()
5, =08 - (5)

5 - v(8) - ()

= = ve(8) - (0%
5 - n(3) - (5F)
5 = 15($) = (3)-
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Here we use vector notation for (G x 8)(X,Y,z,8) = (G,S).

Let I be the F(X,Y,Z,S)-module generated by E2 and ES' Clearly 1 1is
a submodule of FQ(X,Y,Z,S). Also 1 is a submodule of J(G x S)S. Define
3 = J(G x S)S/I. Then } is just the F(X,Y,S8)-module generated by E,, EH’
ES and ES' Thus we have the

3.28. LEMMA. J(G x ©)5 + M,(6,8) > M(X,v,2,5)% x M(X,Y,2,8) if and only

if T+ My(6,5) > M(X,Y,$)7 x M(X,Y,8).

On FQ(X,Y,Z,S) we have the relation 4Xy = 32 + ZQ. Thus on

Fo(X,¥,2,8)/1 = F,(X,Y,S) we have the relation 4XY = s°.

Now let G(X,Y,S) be the projection onto the first component of the
subspace of } + MQ(G,S) which contains those furnctions into F? with zero
second component, The next lemma gives a precise description of G(X,Y,S)

as a subspace of F(X,Y,S). Here F(X,Y,S) . {E} denotes the F(X,Y,S)-module

generated by E.

3.29. LEMMA. U(X,Y,S) = F(X,Y,S) . {2X-ua¥y’} + F(G,S) . {3aYS}+

+ F(G,S) . (X+2aY¥%} + M(G,S).

proof. To determine G(X,Y,S) we have to determine all functions in

} + MQ(G,S) with zero second component. First we have all functions in

} with zero second component. These functions are in the F(¥,Y,S)-module
generated by E

SE, - 2YE; and SEL+ - 2XE.. This gives

1 6

F(X,Y,8) .{2X~4aY2} < G(X,Y,S). Second we have all functions in MQ(G,S)

with zero second component. This gives M(G,S) < G(X,Y,S). Finally we have
all functions in 3 with second component in M(G,S) because adding an

element in MQ(G,S) makes the second compornent zero. These functions form

precisely the F(G,S)-module gernerated by E, and Eg + aYEg. Consequently
F(G,8) . {3ays} + F(G,8) .{X+2aY2} - G(X,Y,S).(Note that the generators

3a¥s and X + 2aY2 of the F(G,S)~module can also be found by considering
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the S-equivariant vector fields mapping S to G resp. S to S). o
A direct consequence of lemma 3.29, is
3.30. LEMMA. If F € U(X,Y,S) then SF € U(X,Y,S).

The following lemma is fundamental in the proof of (2,1)-determinacy of

G x 8 in Fy(X,Y,2,5).
3.31. LEMMA. M(X,Y,$)° < U(X,Y,S).

Notice that lemma 3.31 is equivalent to the fact that the first component
is two-determined. To prove this it is sufficient to show that
jQM(X,Y,S)2 < jQG(X,Y,S) where j2 is the projection onto the two-jet.
This inclusion and thus lemma 3.31. is a consequence of the following
lemma which is expressed in terms of formal power series. We write
G[[X,Y,S]] for the formal power series version of G(X,Y,S) and Hm[X,Y,S]
for the homogeneous polynomials in X, Y, S. RI[X,Y,511 denotes the space
of formal power series in X, Y, $. Note that because of the relation

uxy = 8% we have RI[X,Y,8]] = RC[X,s1] + RC[Y,51] and H_[X,Y,s] =

= H [X,8) + H_[Y,s].

3.32. LEMMA. (a) H [X,8] < jmﬁ[[x,Y,SJJ,Vm

A%
[N

(b) H _[Y,s]  UCLX,Y,81],vn > 2.

proof of a. We have H__,[X,¥,5] . {2x-tvay?}

Ho_ 0X,81 . {2X-ua¥’} +

+ Ho_,0Y,8] . (2X-uay?} < UCCX,¥,833. Thus j_(H__ 0X,81 . {2X-yay’})

= H__,[X,81. (X} e 3 _ULLX,Y,8]] for m > 1. Furthermore S™ e ULLX,Y,51]
for m 2 1. Thus part (a) follows.

proof of b. (Using induction) RLLY,S11 . {2x-4ay’} < a[[X,Y,S]]and
RLLG,S1T . {x+2a¥%} < IAJ[[X,Y,S]] thus Y° € G[[X,Y,SJJ. From

RLLG,S1] . {3a¥S} e ULLX,Y,S1] we get ¥S € ULLX,Y,S1].Trivially
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s? € ULLX,¥,81). Thus H,[¥,s] e UCLX,Y,81]. Suppose H [Y,s] e ULLX,Y,s]].

Using this hypothesis and lemma 3.30. we see that all monomials
YQSB, a+ B8 =m+ 1, a <m + 1, lie in ULLX,Y,S]]. Finally consider

v 2x-yay?) = 2™ %s? - way™! ¢ ROCY,511. {2X-%aY’}. Using the

+1 ~
™€ Ullx,v,s1] and thus H_ ,[Y,8] <

induction hypothesis we obtain Y
ULLX,Y,S)). Thus part (b) follows by induction. Notice that the condition

a # 0 is essential. (This condition is a hypothesis in (3.27.).) o

Considering Eq - %El,ES,ES and using lemma 3.31. it follows straight-

forwardly that
3.33. LEMMA. (0,M(X,Y,S)) < J + 4, (G,8)
From lemmas 3.31., 3.33 and 3.28. we have

3.34. THEOREM. M(X,Y,2,5)° x M(X,Y,2,8) < J(G x $)° + M,(G,8) (provided

a £ 0).

3.35. THEOREM. Any energy momentum map for a system in nonsemisimple
1 : -1 resonance with S-invariant Hamiltonian H as given in (3.26.) is
(2,1)-determined in MQ(X,Y,Z,S) (that is, (4,2)-determined in Hﬁ* with

coordinates (x,y)) provided that the coefficient of Y2 in H is not =zero.
Moreover we have shown

3.36. THEOREM. The complement of J(G x S)S + MQ(G,S) in MQ(X,Y,Z,S) is

the element (Y,0), that is, the co-dimension of G x S is one.

proof. Up until now we have shown that J(G x S)S + MQ(G,S) contains every
map with first component in M(X,S) + M(Y,S)2 + 7 and arbitrary second
component. The complement of M(X,S) + M(Y,S)2 + 1 in M(X,Y,Z,8) is Y.
From the proof of lemma 3.32. it is clear that Y € G(X,Y,Z,S)-

This proves the theorem. o
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We now state a few corollaries which are in fact reformulations

of the theorems 3.34. - 3.36. using the theory of section 1 and 2.

3.37. COROLLARY. Suppose we have a system in nonsemisimple 1 : -1
resonance with S-invariant Hamiltonian H. If the coefficients of Y2 in
H is positive then H x S has normal form (X+Y2,S). If the coefficient of

Y2 in H is negative then H x S has normal form (X—YQ,S).

3.38. COROLLARY. The energy-momentum map G x S with G as in (3.27.) has

universal unfolding (X+vY+aY2,S).

3.39. COROLLARY. A standard function for the nonsemisimple 1 : -1

resonance is G, = X + VY + aYz, a2 = 1.

3.40. REMARK. In fact one should speak of standard functions, one for
a = 1 and one for a = ~1. Which one to take depends on the sign of the

2

coefficient of Y° of the original Hamiltonian function.

Because v can be considered as a detuning parameter for the
resonance, we can also say that Gv is a standard function for the
Hamiltonian Hopf bifurcation. Note that in this chapter we have restricted
ourselves to S-invariant functions, that is, we considered integrable
versions of the nonsemisimple 1 : -1 resonance and of the Hamiltonian
Hopf bifurcation. In chapter 5 we shall consider the nonintegrable

cases.

4. Discussion

The following is the basic idea of this chapter: to obtain standard
functions for circle symmetric Hamiltonian systems, one has to consider
the energy-momentum mapping instead of the Hamiltonian function alone.
Looking at energy-momentum maps one sees that right-left action is the

group action which one needs to obtain a maximal reduction of the
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Hamiltonian. The only condition on this action is that the group should
preserve the Sl—symmetry. In other words one has to consider equivariant
diffeomorphisms on the source-space of the energy-momentum mapping. The
normalization to standard form is now a straight forward application of
the equivariant theory of stability of maps.

Although the symmetry is preserved we have to drop the requirement
that the diffeomorphisms on the source space be symplectic. As a
consequence, the fibration of the map is preserved but the information
about the periods of the flow is lost if one translates the normalized
map back to a system with standard symplectic form. (Of course this is
not the case if one considers the transformed symplectic form.) However
it is very hard to obtain full information about the flow. Our main aim
was to preserve full information about the geometry of the periodic
solutions near the equilibrium in the case of systems with two degrees
of freedom. For this preserving the symplectic structures was not needed.

The theory treated in this chapter also applies to the other two
degree of freedomresonances as is shown by Duistermaat [1983b]. There
it is shown that the idea of considering energy-momentum maps leads
to a reduction of co-dimension by one from his earlier computations.
(Duistermaat [19821].)

One might also express the results of this chapter in the language
of singularities. Then what we did was to normalize a singularity in
d»CRu,RQ) invariant under the symplectic sl-action generated by the flow
of XS. We require that the first component of H x S has four jet
as + bX + cY2 + dsSy + eSQ, b # 0, ¢ # 0 while the second component must
be 8. The restriction on the first component H can be expressed by
saying that H is the S-~invariant Hamiltonian for a system in nonsemi=~

simmple 1 : -1 resonance such that the coefficient of Y2 in H is nonzero.



Chapter IV

The Hamiltonian Hopf bifurcation

0. Introduction

In this chapter we study the fibration of the normalized map G, * S.
In the context of Hamiltonian mechanics we may consider this map as an
energy-momentum map. Then the fibration of G, * S gives a fibration of
the phase space of the system (Rﬂ,w,@v) into invariant sets (cf.

Smale [19781).

The investigation of the fibers of G, X S may be simplified if
we consider the factorization of Gv %x S through the Hilbert map p for
the S-action generated by the flow of XS (see chapter 3 section 1). If
we suppose that Gv and S are functionally independent (which is necessary
for va S to be an energy-momentum map) then we might as well take Gv and
S as Hilbert generators. Thus Gv x S can be written as the composition of
p and a projection 7w, i.e. G, x 8 =mop. Now Q(FH) is the orbit space
for the S'-action S generated by the flow of Xg - Therefore we know the
fibration of G, xS if we know the fibration of the orbit space given
by w. Also p can be considered as a reduction map because p(S_l(s)) is
the reduced phase space and p*Gv is the reduced Hamiltonian. The fibers
of m on the orbit space are invariant sets for the reduced Hamiltonian
system.

In the case of a two degrees cf freedom system the fibers of 7 on
the orbit space are the trajectories of the reduced system. The critical
m fibers, which might be points, respectively, self intersecting loops,
then give rise to elliptic, respectively, hyperbolic relative equilibria
for the system CRu,w,Gv). To study the periodic solutions due to the
S-action one therefore has to study the singularities of the projection

ki
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In the case of the Hamiltonian Hopf bifurcation it turns out that
the family of relative equilibria is described by a part of the well-
known swallowtail surface (see figures 4.16 and 4.17). Here one has to
take care that the swallowtail surface is not confused with the
swallowtail singularity. The swallowtail surface obtained in this chapter
is the result of a combination of a fold and a cusp singularity (see
remark 4.12.).

The phenomena described in this chapter concern the qualitative
behaviour of the system CRu,w,Gv) and all of them have to do with the
fibration of Gv x S, Using theorems 3.19. and 3.22. and corollary 3.21.

these phenomena therefore hold for all equivalent systems (see definition

3.20.).

1. Symmetry and reduction

Consider a Hamiltonian system on Rzn with Hamiltonian H and
independent quadratic integral S. Let S be the linear one parameter
group given by the flow of XS' Suppose that S gives a free 81—

action on F?n\{O}, the origin being a stationary point for X.. Further-

g
more consider the Hilbert generators for the algebra of S-invariant

polynomials (see chapter 3 section 1). Call these generators s

1 € i< k, and define the Hilbert map p: (x,y) € RQn > (pl,...,pk) € Rk.

4.1. PROPOSITION. (Poenaru [1976]1). The map p has the following

properties P

RQ?————-v————ép(an) € Rk

(a) p is proper

(b) p separates the orbits of S . .
projJ °
(¢) The diagram commutes, p'

2n
being a homeomorphism. R™/S

By this proposition we may consider p(ngU as the orbit space for



68

the action of §, each point of p(R?n) representing a different orbit.
Generally pCRQn) is a semi-algebraic variety in Hﬁ< determined by

the relations and inequalities satisfied by the generators. Now we may
always choose S itself as one of the Hilbert generators. Then the variety
3—1(8) is mapped by p onto a semi-algebraic variety p(S—l(s)) in ]Rkﬁl.
To be more precise p(Sal(s)) is the intersection of p(F&) with the
hyperplane S = s in ﬂg<. We may consider p: S—l(s) - p(S—l(s)), s £ 0,
and p: sTon(oy - p(S—l(O))\{O} as a principle S-bundle.

Let J: ]RQn + &* be the momentum map for the action S. (g* is the
dual of the Lie algebra of S). Then J—l(u)/S, u € g* a regular value of
J, is called the reduced phase space. There exists a unique symplectic
form on the reduced phase space (see theorem 1.21.). If u is not a
regular value then the theory goes through but one has to consider J—l(u)

without its critical set. Following Kummer [1981] we have

4.2. PROPOSITION. The spaces p(S—l(s)), p(S—l(O))\{O} and the reduced

phase spaces J—l(u)fS are symplectomorphic.

Thus we may take p(S—l(s)), s # 0 and p(Sal(O)\{O} as a model for
the reduced phase spaces. Let Ms = p(S—l(s)) then the reduced phase
spaces are Ms and MO\{O}. Now p,H is the reduced Hamiltonian defining
a reduced system on M_, respectively, My, the origin on My being a
stationary point for the reduced system.

The above reduction can be performed for all two degree of freedom
resonances if one supposes the Hamiltonian to be invariant under the
action of the flow of the semisimple part S of the linearized system
(cf. Cushman and Rod [1982], Cushman [1983,198%], Churchill et al [19831).

Now consider the case of the 1 : £1 resonances. Let G be the group
of linear symplectic transformations that leave S invariant and let 8 be

the corresponding Lie algebra. Only in these cases can the Hilbert
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generators be chosen to be homogeneous quadratic polynomials. The set
of generators under the Poisson bracket forms a Lie algebra which can be

identified with the dual g* of In these cases one may establish that

3
the reduced phase spaces are coadjoint orbits of G on g¢* (Cushman and
Rod [1982], Cushman [1982%°°7).

We will treat the Hamiltonian Hopf bifurcation in detail. In
chapter 3 section 3 we found that the Hilbert generators are the four
homogeneous quadratic polynomials X(x,y) = %(xi+x§), Y(x,y) = %(y§+yg)a
Z(x,y) = XYy * XY, and S(x,y) = X1Yy = Xo¥q- ((x,y) = (Xi’XQ’yi’YQ)
being the coordinates on FH). Of course we may also take Y(x,y), Z(X,y),
S(x,y) and Gv(x,y) = X(x,y) + vY(x,y) + aYQ(x,y) as Hilbert generators.
In fact this change of generators is nothing more than a diffeomorphism
of the target space of p. The homogeneous generators satisfy the relation

UXY = 22 + 82, X > 0, Y 2 0 which is equivalent to

(4.3) 22 + 8% 4 wuv? + yay® - NYG = 0, ¥ 3 0, vY + ar’ - 6, < 0.

. . i .
The image M = p(Ru) of the new Hilbert map p: m“ > Ré defined by

(Xl’XQ’yl’YQ) s (GV,Y,Z,S) is given by equation (4.3), that is,

M o= {€6,,Y,2,8) € RY|2?+8”vuov?ruar’ouve =0, v > 0,
2

vY+a¥ -G < 0},

M is a deformed half cone with vertex at the origin. Let M_ be an S-

slice of M, that is,

Moo= (6,,Y,2) € R |27 suvy’enay’-uve, = ~s”, ¥ >0,
2

vY+ay -G < 0}

As before the reduced phase spaces are M, and MO\{O}. Notice that

M_ = M__. Furthermore on each M, we have an additional symmetry induced

by the antisymplectic reflection R on]Rl‘L defined by
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R: (Xi’XQ’yl’YQ) " (Xl"XQ’—yl’YQ)

The energy-momentum map G, X S is invariant under R. p,R gives a

reflection on the target space M of p defined by
PeR: (G ,Y,2,8) » (GV,Y,—Z,S)

Clearly Ms is invariant under p, R.

We state this symmetry because it will be helpful later in
visualizing the fibration of G, S. They will be explicitly used in
establishing the reduced potentials and the reduced vector fields in the

next section.

2. The fibres of G, x S§.

In this section we will determine the fibres of G, * S. Hereto
it is sufficient to determine the reduced fibres, that is, the fibres

of
i (GV,Y,Z,S) g (Gv,S)

These fibres are just the trajectories Yg.s of the reduced vector field
¥

with energy function Gv. More precisely the trajectories yg g are the
-

G, = g level sets on M. Because Mg is topologically contractible it
follows that the fibres of Gv x $ in H$+ are Yg s X 81. The topological
2

nature of Yg,s ©an be found by applying Morse theory to the function
b

Gv on MS.

Recall that Ms is symmetric with respect to pe R. Thus we only need
to look at the Z = 0 slice of Ms' Now the movement of the reduced vector
field takes place on G,~hyperplanes in (GV,Y,Z)—Space. Considering

Ms]Z:O as a graph of G, therefore gives us the potential of the reduced

system. If s # 0 we obtain from (4.3) the potential function
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VS(Y) = VY + aY2 + SQ/MY, y 2 03 while for s = 0 we obtain VO(Y) =

= VY + aY2 together with the positive half of the Y = 0 axis. In
figures (4.1)~(4.14) we give characteristic examples of the graph of
potential Vg (figures (4 1= (u.14%)) together with the corresponding
trajectories of the reduced vector field projected onto (Y,Z)-plane
(figures (u_1b)~(4.34b)). The topological type of the Yg,s is now
immediately clear. We have (Gv x S)*l(g,s) = Yg,s x 81 outside the
origin. Because the action S is free outside the origin and has a

stationary point at the origin we find that every fibre which contains

the origin has a singularity at the origin.

On the next pages:

fig. (4.1%) - (4.14%): The potentials VS(Y)

fig. (4.1b) - (4.14b): The trajectories of the reduced vector fields,
that is, the G,~level sets on Ms’ corresponding to the potentials
of the a-figures. The trajectories are projected perpendicularly
on the (Y,Z)-plane. (As a consequence all 8, > 0 levels pdass
through the origin if s = 0. Note that only the G, = 0 level
containg the origin in (Gv,Y,Z)—space.)
The parameter range for which the figures are characteristic is

indicated.
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3. Relative equilibria

The relative equilibria of the system (IRu,w,Gv) are the critical
points of the corresponding reduced system on MS' By proposition 1.25,
these relative equilibria form the singular locus of the energy-momentum
map Gv x S. On the image M of p this singular locus is characterized

by the extrema of the VS(Y), that is, by the extrema of M restricted to

sections S = constant and Z = 0 and considered as a graph of Gv' Let
F(Y,Z,g,8,v) = HaY3 + uvYQ - Lbg¥ + 22 + 52
Then M is defined by F = 0 together with Y 2 0, vY + aY2 - g < 0. The

relative equilibria on M are therefore given by

F(Y,03g,8,v) = 0

dF 2
ﬁ(Y,U;g,S,\)) 3

(4. 4)

"
[ew)
o
\Y%
[ew)
<
a9
+
%

1

o
N
[ew)

which is equivalent to

(4.85) vay® + yuy? - Lgy + s? = 0,
(4.5) 12av? + 8vY - 4g - 0O,
(4.7) Y >0, v+ a¥’ - g €0

Let E be the set of points in parameter space (g,v,s) for which
(4.5), (4.6) have common solutions. Then E is the set of (g,v,s) for
which (4.5) has zeroes with multiplicity greater than one. Thus E is

the discriminant locus Ag = 0, where Ay is the discriminant of (4.5)

4.8. LEMMA. Consider the equations

(4.9) Yy o- %%YQ + 2y 4 ﬁi + 2 7 =03 a >0
va a 16a
L v o,2 s v2
(4.,10) LA o Y+ui+ 5 =05 a<o,
v—a a 16a
Then AS = Ag if a > 0 and A5 = AlO if a < 0.
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The proof of this lemma is obtained by just writing down the equations

for the discriminant. o

The discriminant locus of (4.9) ((4.10)) is just the well known
swallowtail surface (see Poston and Stewart [19781) given in fig. (4.15)

for a > 0. If a < 0 the picture should be reflected in the (s,v)-plane.

G

fig. (4.15). The swallowtail

surface,

Because of the inequalities (4.7) the relative equilibria form a

part E of the swallowtail E. From (4.7) we obtain the following

2
restrictions: (1) a > 0, v > 0 then g > 0; (2) a » 0, v < 0 then g 2 “%33
2
(3 a<0, v > then g >0 and (4) a < 0, v < 0 then g 2 —%E. Therefore

we have

4.11. THEOREM. E is the part of the swallowtail surface indicated in

fig. (4.16) for a > 0 and in fig. (4.17) for a < O.

Taking s and v constant for each g the number of positive roots of
(4.5) can be read off from the graph of VS(Y). This root number is
directly related to the nature of the corresponding fibre (G, x S)“l(g,s)

as shown in table 4.1. In figures (4.18) and (4.19) the root number is
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indicated in sections v = constant of E. Also the stability type of the
relative equilibria is indicated with e standing for elliptic (stable),
h standing for hyperbolic (unstable) and t standing for transitional.
These are obtained from the potential VS; a maximum corresponds to an
unstable and a minimum to a stable relative equilibrium. Table 4.1 also
describes the fibres corresponding to the critical values of Gv x S.

These fibres are or contain the relative equilibria.

G
G
~ ,”
>
5
—e N e e e m S S
D,
fig. (4.16). E for a > O. fig. (4.17). E for a < O.
G G
e 2 2
e
0
S o L’ S
>0 V=0 V<0
fig. (4.18). v = constant slices with rootnumbers for a > 0.
G G
t 1 t
h 1
& fig, (4.19). v =
constant slices
S S with root numbers

V>0 vg0 for a < 0.
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table 4.1. The fibers of Gv x S,

(g,8) (6, x 8) (g8

root number O @

root number 1 81 x IR

root number 2 T2

root number 3 TQJL s« R (i means disjoint union)

elliptic point (e) st

hyperbolic point (h) T2 v 81 x IR attached along the relative equi~-
s : 1 : _ . Librium

transitional point (t) S x R with one critical circle

origin (1) point when a » 0, v 2 0 and a < 0, v > 0

(2) torus with one circle pinched to a point
when a > 0, v £ 0

(3) cylinder with one circle pinched to apoint
when a < 0, v <0

4.12. REMARK. The above results can also be obtained by transforming
(4.5) into the standard form 23 + pZ2 + q = 0 by putting ¥ = Z - v/a.
3

Then p = ~(V2/3a2+g/a) and q = g\)/Sa2 + SQ/Ha + 2v3/27a A, = 0 is the

5
pull-back under I': (g,s,v) # (p,q) of the usual cusp. On planes v =
constant I' is just a fold with the fold line tangent to the cusp and

moving along the cusp for changing v. Thus one obtains the swallowtail

surface from the combination of a fold singularity and a cusp singularity.

4.13. REMARK. Theorem 4.11. describes the set of singular values of the
map Gv x S, Because Gv x S is the universal unfolding of a normal form,
that is, a standard function, this result is genevic in the class of

S-invariant energy-momentum maps.

4. The Gv(x,y) level sets

In this section we will investigate the nature of the energy levels
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of the system (IRu,w,GV). By corollary 3.21 this gives us information
about all equivalent systems.
We will first consider the reduced level sets Mg = O(G;l(g)). By

equation (4.3)

M, = ((1,2,9) ¢ R® 122482 +uvyeuayiougy = 0, Y > 0, vy+avi-g<o}
Thus the surface Mg in (Y,Z,8)-space is obtained by rotating around the

Y~axis the part of the graph of ug =- HvYQ - L%aY2 defined by Y >

0,
2 f o s b b

vY + a¥® - g < 0. If one adds an S-axis to figures (4.17) = (4.67) one

can visualize the surfaces Mg by rotating the G-level lines around the

Y-axis. The results for the different parameter values are listed in table 4.2,

table 4.2, The reduced Gv level sets

conditions on the parameters Mg
I.a a> 0, v>0,g<o ¢
I.b , g =20 point
I.c , g>0 82
II.a a>» 0, v<go, g< —v2/4a )
II.b , g = —vz/ua point
II.c , -vi/ta< g< o0 |g?
I1.d , g =0 sphere with singular point
IT.e , 2> 0 s?
IIT.aja < 0, v> 0, g<o0 iRQ
III.b , g =0 point L IR2
IIT.c ,0< g< -vima |s?u ®
I77.4d , g = -vi/ua s? , R
IIT.e , g > —v2/4a RQ
IV.a a<0, v<0, g=20 F? with singular point
IV.b , g £ 0 R’
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We will now state some facts about the G(x,y) level sets in IR“. If we
consider p: R&\{O} > pCRu)\{O} as a principal S-bundle then the G—l(g)
are 81 bundles over 32 in the cases I.c, II.c and II.e. In case III.c
G;l(g) contains an 31 bundle over 82. In case II.c the 32 are contractible
in p(Ru)\{O}.ThuS G;l(g) is the trivial bundle st x s%. The origin is a
nondegenerate critical point for Gv(x,y) if v > 0. By Morse theory it
follows that for g small, g # C, G;l(g) has a compact component diffeo-
morphic to s3. Now the critical G(x,y) levels are those for which also
p(G—l(g)) is critical. Thus g = 0 and g = ~v?/4a are critical values of
G,. Therefore changing v gives rise to an isotopy of G, level sets (keeping
g sufficiently small in case IIl.c). Thus the 81~bundle G;l(g) must be 33

in the cases I.c, II.e and III.c. We obtain the Gv(x,y) level sets listed

in table 4.3 using table 4.2 and the above remarks.

table 4.3. The Gv(x,y) level sets

G, (g)
I.a ¢
I.b point
I.c 83
IT.a ¢
II.b circle of critical points
II.c s? x st
IT.d 81 bundle over 32 with one fibre pinched to a point
II.e 33
ITT.a | ®R? x st
III.b | (point) & R’ x &>
I1I.c | s°u ®r? x st
ITI.d 83 v RQ X 81 attached along 31
IIT.e P? X 81
IvV.a st bundle over ﬁg with one fibre pinched to a point

IV.b R™ x 8
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The information about the topology of the energy levels allows us
to draw some straight forward conclusions. Because in case II.c, d, e

the topology of G;l(g) changes if g passes through zero we have

4.1Y4. COROLLARY. In the case (a > 0, v < 0) there is nontrivial mono-
dromy, that is, the system admits no global action-angle coordinates

in a full neighbourhood of the origin.

For more details on the subject of monodromy see Duistermaat [13801

and Cushman [(1983].

4.15. COROLLARY. When (a > 0, v 2 0) or (a < 0, v > 0) the origin is a
Liapunov-stable stationary point for the system (IRu,w,Gv). In the case
(a > 0, v <0) the origin is a Liapunov-unstable but solutions starting
near zero are bounded. In the case (a < 0, v € 0) the origin is Liapunov-

unstable and solutions run off to infinity.

proof. The first statement follows from the fact that for g small
G;l(g) has a component 33 whose interior contains the origin, moreover
G;l(g) pulls into the origin for g + 0. The second statement follows
from the fact that in this case G;l(g) is an 33 which has the origin
inside for g large enough. The third statement follows using Liapunov=-

function Z(x,y). )

We note that the above corollaries also hold for equivalent systems.



Chapter V

Nonintegrable systems at resonance

0. Introduction

It is well known that some of the qualitative properties of an
integrable system are preserved when this system is perturbed to a
nonintegrable system. Conversely when considering nonintegrable systems
one might construct a nearby integrable system such that the integrable
gsystem has some of the qualitative properties of the nonintegrable one.
In this chapter we use the latter method to study families of periodic
orbits near an equilibrium of a nonintegrable system passing through
nonsemisimple 1 : ~1 resonance.

Following Duistermaat {1983b]we will use a method which is based on
ideas of Moser [19761 and Weinstein [1973,1978]1. This method, called the
Moser-Weinstein reduction, reduces the search for periodic solutions
of a family of nonintegrable systems to the search for periodic solutions
of a nearby family of integrable systems. In essence Moser-Weinstein
reduction comes down to proving the existence of a function E invariant
under the Sl-action of the semisimple part of the linearized system such
that the periodic solutions of the Hamiltonian system with Hamiltonian
E correspond to the periodic solutions of the original nonintegrable
system by means of a Ck~diffeomorphism.

The last section of this chapter discusses some open problems
concerning the nonintegrable phenomena of invariant tori and homoclinic
orbits. These problems arise if one perturbs the system considered in
chapter 4.

The main theorem concerning periodic solutions is stated in section

3. This theorem is a generalization of the results of chapter 3 and 4.
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1. Normal form and deformation

Consider a system CRu,w,Ri)where Fu is a deformation (see def.

3.12) of a Hamiltonian function of a system in nonsemisimple 1 : -1
resonance. In other words, the quadratic term Fg of FO has the normal
form

0 _ 1,.2,.72
FQ(x,y) = a(xlyQ-Xle) * 7(x1+x?).

As in the foregoing chapters we shall take the + sign.

We can consider FU as a perturbation of a S-invariant function
if we transform Fu to an S-normal form (up to some arbitrary order).
If Fg does not depend on u then Fg = Fg and we may apply the normal
form theorem of chapter 2 in a straight forward way. If F; does depend
on u,then it is possible that p detunes the resonance in such a way
that by changing p other resonances occur. This has consequences
for the normal form. We shall show that one can still transform Fu
to an S~normal form up to arbitrary order provided the parameter u
is restricted to some neighborhood of zero. This neighborhood shrinks

with growing order of the normal form.

By a parameter dependent linear symplectic transformation

depending smoothly on the parameter, F; can be transformed to

HyOoy) = Fo o+ vy SGGy) + vy Y(x,y)

2 1 2

which is a versal deformation of Fg (see van der Meer [19821). The

eigenvalues of the linear vector field X y are

1 H
- 1
(1+v1)[tit<-——z-7>2}
(1+v1)

2
For |u| < 8§, v, > 0 the eigenvalues are purely imaginary and may become
rationally dependent. The resonances that occur will be close to the

1: -1 resonance if § is small. Define mg € N to be the maximal number
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such that for all v with 0 < |v]| < & we have kerad, (8) < keradk(Hg)
for k < Mg This means that all resonances which occur when
0 < vl <38 have resonance terms of degree greater than mg. By

definition each H¥~normal form up to order mg for F, (0 < vl <8

is also an S-normal form. This gives:

AN R be a Hamiltonian function such that the

5.1. LEMMA. Let Fp : R
system (Ru,w,FO) is at nonsemisimple 1 : -1 resonance. Then there exists

a parameter dependent symplectic diffeomorphism such that Fu is

transformed to H , where, provided |v| < 6, H, is S-invariant up to

v - 1,.2 2 1 2. 2
order mg and Hy(x,y) = (a+v1)(x1y2~x2y1) + 7(x1+x2) + 5 vQ(y1+y2)-

In the following two sections we will show how to find an

S-invariant function Ev equal to H up to order m which has the

(S,
property that the periodic solutions of CRu,w,Ev)correspond to those of
CRu,w,Hv) by means of a parameter dependent Ck-diffeomorphism, where

k = Mg«

2. The Moser-Weinstein reduction

Consider the Hamiltonian system CRu,w,Hv)with H, as in lemma 5.1.

By scaling (x,y) = (eu,ev) we get a new Hamiltonian ﬁv(u,v,e) =

= e Hv(gu,ev). Now write ﬁv(u,v,e) = f(u,v,v,e) and introduce a

time scaling (u(tt),v(tt)) = (&(t),n(t)). Then the Hamiltonian function
becomes

ACE,n,v,1,e) = tH(E,n,v,e).

Note that a periodic solution of Xﬁ(g,n,v,T,e) of period one corresponds

to a periodic solution of X, of period T.

H
Let Per denote the space of periodic curves v : R/Z = Ru

Furthermore let Perk = Per n Ck(ﬂ{/Z,]Ru). On Pep1 we define the vector
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field %ﬁ(y,v,T,e) by

dy(t)

(5.2) Yﬁ(y,V,T,S)(t) = -

- Xﬁ(Y(t),V,T,S)

By construction a stationary point vy for %ﬁ(y,V,T,S) is a periodic

solution of Xpz. If we introduce on Perl the symplectic form & defined by

W(Sy,8v") = Jow(y () v (t))dt
R/Z

with §y(t)(8vy'(t)) an infinitesimal deformation of the periodic
function y(y'), then the Hamiltonian function corresponding to %ﬁ is

just the action integral for H given by

dg

(5.3) F(y) =/ I<GR0,n(0)> = HE(E) ,n(t),v,1,e)Idt

R/Z

where v(t) = (&£(t),n(t)). Thus on Per1 we have Xﬁ = Yﬁ'

Consider aS(x,y). Each solution of the linear Hamiltonian vector
field corresponding to this function is periodic with period 2u/a.
(with exception of the origin, which is a stationary point.) Let
T, = 27/a. Then §(£,n,TO) = 1, S(¢,n). 8 is the semisimple part of
QQ(E,n,O,TO,e) and each solution of Xg has period one.

Let Ag,Ay,A, be the infinitesimal symplectic matrices associated

to the Hamiltonian functions aS(x,y),X(x,y) and Y(x,y) respectively.

We have ASAX = AXAS’ ASAY = AYAS; kerAX = 1mAX; kerAY = 1mAy, that is,
A§ = Aé = 0. Furthermore kerAy @ kerAY = RH . Notice that the time 1

map of the flow of Xg, that is, eXp(TOAS), is just the identity map

on F&. A = AS + AY is the matrix of the linearized system.

Let N = {vy € Per[y(t):exp(TotAS)z with z € R'} and

1

Bk = {y € Perklf exp((l—s)TOAS)Y(S)ds =0}. It is easily verified that
0

Per = N & BX. Furthermore let ¥ = BO + R .Ay, with vy, € N.
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¥
5.4. LEMMA. ryf%(yo,o,%,m :8'« R - B, v, € N, is bijective.
2%q 1
Proof Write D(y,) =37§7?:7(Y0,0,TO,0).Then])@o):Per x R+ PerUis given by
(5.5) D(yo) (v, 1 () = T = ToAy (1) = TAy, (1)
where A is the matrix associated to XHV for v = 0. For each ¢ € Pero,
2

T € R we may solve D(y,)(y,T) = f getting

T
(5.6) y(t) = exp(t1,A)y(0) + J exp((t-s)T,A)(TAY,(8) + r(s))ds

0

Define N, © N by N1 = {y € Per[y(t):exp(TotAS)z with z € kerAy}

and N, © N by N, = {v € Per[y(t):exp(TOtAS)z with z € kerAY}. Then
it follows from kerAy ] kerAY = Ru that N1 ] N2 = N. Thus we have
(5.7) Per' x R= N, x {0} 8 N,x {0} @ B' x {0} @ {0} x R.

0

Moreover, D(y)X(N,x{0}) = 0, D(yo) (N x{0}) & N/, D(y,)(B'x{0}) c B

1’
and D(y,)({0}xR) = R .Ay,, which follows easily using (5.5). If
Yo € N then D(yo)(NQX{O}) N D(y,)({0}xR) = {0} which means that

there are elements in N, x R which belong to the kernel of D(y,). It is
clear that each nonzero element in ker(D(y,)) « N x IR has nonzero
N-component. Thus ker D(y,) N (8lxR) = {(0,00}. For v, € N, it is
obvious that ker D(yo) = N x {0} and thus ker D(y,) nel x ®R) = {(0,0)}.
Therefore for each v, € N,D(y,) : Bl « R~ B is injective.

For each element of B the inverse can be read off from (5.6), which
means that D(y,) : Bl x R % is also surjective. Thus D(y,) : B xR » B

igs bijective a

Let N be the orthogonal complement of R .Ay, in N with respect
to some suitable inner product. By averaging we can always take this
inner product to be S-invariant. In this case because $ is in normal

form we may just take the standard inner product. Then N 8 % = perl
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and we can write %ﬁ(Y,V,T,S) = Yﬁ(y,v,T,gﬁﬁ.+%H(y,v,1,g)§,

vV, of zero

5.8. LEMMA. For each v, € N there exist neighborhoods VsV,

in R, a neighborhood U1 of zero in 8l and a neighborhood U, of 1,

in R such that for ¢ € V v €V, Yﬁ(Yo+VB’V’T’€)§ = 0 has a unique

1,
solution (YB(YO,V,S), T(y,,V,€)) € U1 x U, depending smoothly on

YosVsE€.

proof. %H(YososTosg)g = 0. By lemma 5.4. we may apply the implicit

function theorem to obtain ¥gsT as smooth functions of v, ,,v,e. &

Recall that Perl = N @ B0 = X o R .Ay, ® B0 = ¥ @ B. If we consider

the equation.
(5.9) %ﬁ(Y,V,T,S) = 0

then by lemma 5.8. we may solve the B-part of this equation for T and
the Bl—part YR of v, Substituting yB(yo,v,e} and 1(y,,v,e) into (5.9)
Uﬂﬁtingnyor yB(yO,v,c) and 1 for t(vy,,v,e)) we obtain %ﬁ(yo+yB,v,T,€):O
with Yﬁ(yo+y8,v,1,€) € N because the ﬁ-part vanishes. Thus

Yﬁ(yo+yB,v,T,e)N + Yﬁ(yo+yB,v,T,e)B = Yﬁ(YO+YB,V,T,€) ¢ ¥, therefore

the B-part is zero. Thus %ﬁ(YO+YB,V,T;€) = 0 is equivalent to
(5.10) Yﬁ(Y°+YB’v’T’€)N = 0,
- - - - d‘\{o -
By definition we may write (5.10) as —- T X5(yo*+vYnsVs€)y using the
dt H B N
dyg dy,
fact that It ¢ B. Because I - Xg(yo) we get
(5.11) Xg(yo) :'rXﬁ(yO+yB,v,€)N
) . Shq sAg
Now consider the action of e . Then e Yo(t) = v,(t+s), Furthermore
SAS sA SAS SAS
e '{(‘YO’\)’S) = T(e ‘YO’\)’S) and e ‘YB(‘YO5\),€) = ‘YB(e ‘YO’\),S)

because Yp and 1 are locally unique solutions by lemma 5.8.

If follows that Xﬁ(yo+yB,v,g)N is invariant under the action of
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the flow of Xg on Per. Let By (t),v,e) = ﬁ(yo+y83v5€). Then E is
S-invariant. Furthermore we may write (5.11) as d8 = tdf. By the
identification vy, + v,(0) we obtain a function E(g,n,v,e) on RY. The
S-action on Per reduces to the S-action on Ru. Thus we obtain the

following equation
(5.12) as(g,n) = tdk(g,n,v,e)

which is equivalent to (5.11) and (5.10). Any solution (&,n,t(&,n,v,€))
of (5.12) corresponds to a solution y, + Yg» T(ys,v,e) of (5.39) and thus
to a periodic szlution Yo + yB(yO,v,e) of period t(vys,v,e) of Xﬁ

(Here vy, = eTOt S(C,n)). Thus we have proved the following lemma.

5.13. LEMMA. For ¢,v sufficiently small there is a S-invariant c”
function E(&,n,v,e), depending ¢” on € and v such that the set of

points, where dE(£,n,v,e) is a multiple 1 of dS(&,n), corresponds to the
set of periodic solutions of (Hﬁ",w,ﬁ(g,n,v,g)) by the Cm-map

(gy,n) » (E,n) + YB(g,n,v,e). The period of these solutions is equal to
1

5.14. REMARK., In the above lemma we are considering the scaled vector
field. The fact that the scaling is singular at the origin influences

the smoothness after rescaling. This will be studied in the next section.

3. Differentiability of E(x,y,v)

Suppose that H(x,y,v) is in S-normal form up to order m. Then it
is obvious that %ﬁ(yo,i,v,e) € N modulo O(e™). Recall that N is the
orthogonal complement toi&.Ay in Nwith respect to a suitable S-invariant
o

inner product. Denote this inner product by <.,.>». Then we may solve

<Ayo,%ﬁ(yo,v,1,c)> = 0 for 1 getting T(y,,v,e). It follows that

(5.15) Yﬁ(yo,?,V,e)ﬁ )
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From (5.15) and lemma 5.8. we find that yB(yo,v,e) = 0(e™) and
T(Yo,Vse) = T(ygsv,e) + OCe™).

Recall that ﬁ(yo,v,T,e) = 8—2

H(ey,,v,T). Running through the
reduction gives yB(yO,v,e) S yB(eyO,v), where yB(eyO,v) is a
function not depending on e. Now E(y,,v,e) is the Hamiltonian correspond-

ing to Xﬁ(yo+yB,v,e)N = 8-1 ﬁﬁ(eyo+yB(gyo,v),v)N. Thus E(yo,v,e) =

= e7? E(evo,v). By the identification vy, » v,(0) we may consider, E
and E as functions on Ef*, where we have the scaling (x,y) = (££,en).

This gives
_ -1 -1
(5.186) yB(x,y,v) = e.yB(g E,€ TN,Vv,E)

To analyze the smoothness of E it is sufficient to consider the
right hanad side of (5.16). Because yB(yo,v,e) = 0(e™) we find that the
derivatives of yB(x,y,v) with respect to (x,y) vanish up to order m - 1
at (x,y) = (0,0). Thus E(x,y,v) 1s at least c¢™ over (0,0). Notice that

on U* = {0 < |(x,y)| < d}, E(x,y,v) is C".

Furthermore we have that E(x,y,v) = H(x,y,v) + O([(x,yﬂm+1)

that is, E equals the S-normal form of H up to order m. We may now

rephrase lemma (5.14) in terms of functions on Hﬁ‘not depending on €.

5.17. THEOREM. For V sufficiently small there is a S-invariant function
E(x,y,V) with the following properties:
ajyup to order m E(x,y,v) is equal to the S-normal form of H(x,y,V)
(H can be normalized up to arbitrary order, provided v is sufficiently
small, see section 1),
b)On U* E is a C function depending c” on v.

c)on U = {(x,y) €iRuikx,y)E < d} E is a C™ function depending ¢” on v.
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d)The set of points where dE(x,y,v) is a multiple of dS(x,y) corresponds

to the set of periodic solutions of the system (]RL+ ﬂth) by a map

m+1

(x,y) » (x,y) + YB(x,y,v) which is C on U* and C on U for U¥* and

U sufficiently small. The period is the reciprocal of the multiple

and is close to wg-

Recall that the set of points where dE is a multiple of dS is just

the critical point set L of the energy-momentum map E x S. This allows

ExS

us to combine theorem 5.17. and the theory of chapter 3 to obtain the

main theorem of this thesis.

5.18. THEOREM. Suppose we have a system (lRu,w,Hu) depending c® on a
parameter u (possibly a vector) which for py = p, is in 1 : -1 nonsemi-

simple resonance (that is, H equals (3.24)). Furthermore suppose

2,1
that in the S-normal form of Hu for u = u, the coefficient of

Y2 = (yi+yg)2 is nonzero. Then there exists a C. map u > v(u), v(ug) =0

el

and a parameter dependent map wu (depending ¢® on u) such that for u
close to u, the set of periodic orbits of CRu,w,H ) near the origin
and with period close to T, = 1/a is equal to the mu—image of the set
Ig xS of points where de is a multiple of dS. By the result of section
1 ;or u sufficiently close to po,mu can be made to be C" for arbitrary

m with respect to the phase space variables.

5.19. REMARK. Notice that instead of the theory of chapter 3 we

in fact need a Ck-theory. However the main ingredients of this theory
such as the Ck-preparation theorem do exist (Lasalle [19731, Vegter
[19811). Furthermore because of the remarks made in section 1 we may
start with a function which is differentiable of arbitrary degree. There-
fore we can always deal with the loss of differentiability in the process

and obtain the same results as in chapter 3.
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5.20. REMARK. Starting with a general Hamiltonian H in 1 : -1 nonsemi-
simple resonance it follows from normal form theory that the coefficient
a of Y2 in the normal form of H is a polynomial function of the
coefficients of Hy»Hy and H, in H. Thus in the space of coefficients

of the original Hamiltonian the equation a = 0 determines an algebraic
variety. In theorem 5.18 we restrict ourselves to the complement of this
variety. Such a complement is open and dense. Thus 5.18. describes the

generic case.

5.21. REMARK. One might expect a reduction to the 2-dimensional space

of periodic solutions of the linearized system, instead of a reduction

to the 4-~dimensional space of periodic solutions of the semisimple part
of the linearized system.However, the variety of periodic solutions of
the system in normal form (as described in section 3 chapter 4) does

not fit into a smooth manifold containing the origin of dimension smaller

than four. So the weaker reduction performed here is essential.

4. Invariant tori, homoclinic orbits

From the preceding sections it is clear that the relative
equilibria of the integrable system (considered in chapter 4) survive
non integrable perturbations. The next question is what other features
of the integrable system or family of systems persist under perturbation.

Two features are of particular interest: first the foliation into
invariant tori and second the homoclinic orbits in the hyperbolic case
a » 0 when stable and unstable manifold coincide.

In chapter 4 above large parts of the energy-momentum plane we
found a foliation of phase space into invariant tori. If one does
consider the complete family of systems one finds a foliation into tori

above large parts of the energy-momentum-detuning space. For each



94

v = constant, v » 0 section one has the classically considered cases of
systems with purely imaginary eigenvalues which are not in resonance or
are in a high-order resonance. For these systems Pdschel [19821 proves
that the perturbed system possesses smooth invariant tori for a Cantor
set of frequencies. On sections v = constant, v < 0 the existence of
invariant tori is still open, although considering the geometric
equivalence with the situation for v > 0, one easily jumps to the
conjecture that also in these cases the same conclusions hold. For

the case v > 0 one has to deal with the stable and unstable manifold
and with the problem of monodromy. These questions come together in
studying the foliation of invariant tori over a neighborhood of the
origin in (G,S,v)-space. Here the problem is to prove the existence of
quasi periodic solutions for a one parameter family of perturbed
integrable systems.

So far we considered the question of existence of quasiperiodic
solutions near the origin. Another question is the existence of quasi-
periodic solutions near the perturbed elliptic relative equilibria.

Another interesting point found in chapter 4 is that for the
integrable system for v < 0, a » 0 (the hyperbolic equilibrium case).
the stable and unstable manifold coincide. The question is then which
homoclinic orbits persist under perturbation. In general we can make
the remark (see Robinson [19701) that transversal intersection of
stable and unstable manifolds is generic for Hamiltonian systems. Also
here we may pose similar questions concerning the homoclinic behaviour

near the hyperbolic relative equilibria.






Chapter VI

The restricted problem of three bodies

0. Introduction

In this final chapter it will be shown how the restricted three
body problem fits into the theory developed in the previous chapters.
First (section 1) we will show that the equations of motion of the
restricted problem of three bodies at the equilateral equilibrium point
Ly and for Routh critical mass ratio are of the type considered in the
foregoing chapters.In section?2 we will give some historical information
about the restricted three body problem which is over two centuries old.
During these two centuries many mathematicians, physicists and
astronomers have been occupied with the many aspects of the problem for
all kinds of reasons. We give a review of the papers concerning the non-
semisimple 1:-1 resonance and discuss their relation with our results.

For a more complete treatment of all aspects of the restricted
problem of three bodies, including an extensive bibliography, we refer

the reader to Szebehely [19671.

1. The equations of motion of the restricted three body problem

The restricted three body problem can be described as follows:

two bodies, called the primaries P1 and P move in circular orbits

93
around their common center of mass according to the laws of gravity of
Newton while a third body P with negligible mass moves in the same
plane. The problem is to describe the motion of the body P which is
acted upon by P1 and P2 according to Newton's laws but does not perturb
the motion of P1 and P2 because it is supposed to have no mass.

Sometimes this problem is called the planar circular restricted

problem of three bodies. This name refers to all the restrictions made
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when compared with the general problem of three bodies: three bodies
moving in three dimensional space according to Newton's laws. Planar
indicates that all bodies move in the same plane, circular stands for
the circular movement of the primaries, and restricted stands for the
fact that P is supposed to be without mass.

We fix the units of length,mass, and time as follows. As unit of
length we choose the distance between the two finite masses Pland PQ,
as the unit of mass the sum of the masses of P1 and PQ, and as the unit
of time we choose the angular velocity of P1 and PQ. With this choice
the gravitational constant becomes one. The motion of P will be referred
to in a co-ordinate frame whose origin is the center of mass of P1 and
P, and which rotates so that Py

P, having positive coordinates.

and P2 are on the horizontal axis with

fig. (6.1) E,

N

wlg

If we suppose P1 to have the larger mass we may call its value 1 - u,
P2 consequently having mass u, with 0 < u < %. Then the coordinates
of P1 and P2 are (0,-u) and (0,1-u) resp. (see fig. (6.1)).

The equations of motion can be put in Hamiltonian form with

Hamiltonian function
1, 2.2
(6.1) Hi(x,y) = ?(y1+y2) - (x1y2—x2y1) - ek - %

Here (Xl’XQ) are the coordinates of P in the plane, (yl’y2) are the

corresponding momenta, r and r, are the distances of P to P1 and PQ,
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that is,

ri = (X1+H)2 + Xg r, = (x1 -(1-u))2 + Xg
With w the standard symplectic form and H as in (6.1) we obtain a
Hamiltonian system CR“,@,H). XH has five stationary points. The points
E1,2,3 called the Euler equilibrium points or collinear equilibrium
points. These points were first described by Euler [1765]. In addition
to E1,2,3 we have LM,S’ the equilateral or Lagrange equilibrium points,
which were first computed by Lagrange [1772]. The Lagrange points form an
equilateral triangle with P1 and PQ. (see fig. (6.1)).

We are interested in the motion of P near the point L, having

"
coordinates (%(1~2u),1/§). This also gives us the motion near Ly because
of the symmetry with respect to the horizontal axis. A translation makes
LL+ the origin of our co-ordinate system. An additional rotation over an
angle B, with tan28 = v3(1-2w),finally gives us the Hamiltonian system with

Hamiltonian function H(g,n)

(6.2) H(E,n) = H (g,m) + & & w__ gPed
2 p=0 q=0 pa °1°2

where

(6.3) H,(g,n) = Tn?en?y - (eon-Eny - 10135y¢2 - 101,35y¢2
AR 1N2789Ny pll=3008, - (1+38)¢,

. 2 2 .
with 6% = 1 + 3(1-2u)“, see Deprit [196623. The matrix of the linearized

system is

0 1 1 0
A = . -13 0 0 1
7(1~76) 0 0 1
1 3
0 7(1‘?‘76) -1 0
. . . . I} 2 27 _
The characteristic equation of A is A7+ A e (1~w) = 0, For

1 1 . . . .
Mo g 7(1~§¢69) we find the eigenvalues il%/?, tl%/?. For 0 < u < Mg

we find four purely imaginary eigenvalues which are all different. For
1 . . . .
g < u < 5 we find four different eigenvalues all having nonzero real

and imaginary parts. In fact for u passing through vy the eigenvalues
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behave as described in fig. (1.2) ch.I sect.3.
In Burgoyne and Cushman [19741 a linear change of coordinates is

found which transformes the Hamiltonian vector field XH to its linear
2

normal form, that is, in the new coordinates H2 becomes:
_ 1 _ 1,.2..2
HyGoy) = 5v2 (xgy,=xpy4) + 5(X3+x5)

In van der Meer [19821 it was shown how to transform the higher

order terms to their normal form. Up to order four we have

1 1,2, 2
BOGY) = 5720 y,=%,y,) + 5(x4x))

2. 2.2 2 2 2
talyytyy)t + bly+y) (xyyy=xpy,) + clx y,=x,y,)

with a > 0 ( i.e. a = 59/864 ).

This shows that the restricted three body problem at L, for u-= Hg

i

is in nonsemisimple 1 : ~1 resonance. g is called the critical mass

value of Routh. Furthermore for u passing through Mg We have a

2.2 .
2) in

the normal form is positive, the behaviour of periodic solutions is,

Hamiltonian Hopf bifurcation. Because the coefficient of (yi+y

up to Ck~diffeomorphism, as described in chapter 4 for a > 0 (see

fig. 4.12).

2. History of the problem

The formulation of the general three body problem, made possible
by the theories of Kepler and Newton, goes back to Euler who stated
the problem as early as 1727 in his diary (see Volk [19761). In his
paper "Considerationes de motu corporum coelestium" (1764) Euler says
that the general three body problem is to hard to solve. Therefore he
restricts to "problema restricta" such as a Sun-Earth-Moon problem

with the Moon having zero mass and being in conjunction or opposition
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to Sun-Earth. (see Volk [19831) According to Szebehely [19671 and

others the restricted problem as we know it, was formulated by Euler
[17723. The collinear problem is formulated in Euler [17651. It is here
that the existence of the collinear libration points is established. These
points were rediscovered by Lagrange [17721 who treated a mcre general
problem and found also the equilateral equilibria. Also Jacobi [18361]
studied the restricted three body problem. Some people give him the
credit for its first formulation.

In those days the main interest was in the Sun-~Earth-Moon problem
because of the importance for navigation and geography. Already Euler
saw the three body problem as a pure mathematical model problem with
other astronomical applications. Beside Euler, Lagrange and Jacobi
of course many others were occupied with these problems.

Poincaré, another great name in the history of the three body
problem, used this problem as the main example to illustrate his more
general ideas. In his works the name restricted three body problem is
formally introduced for the problem described in section 1. In volume 1
page 11 of his "Méthodes Nouvelles'" he speaks of "cas particuliers
du Probleme des trois Corps" but in volume III page 69 he formally
introduces '"le probléme restreint". In his time and certainly in his
prize memoir (Poincaré [18901) the three body problem was an example in
considerations concerning the stability of the solar system.

In 1884 Gyldén began the study of infinitesimal orbits near
the equilateral equilibria. At the beginning of this century this
became of importance when in 1906 Achilles, the first of the Trojan
satellites, was discovered to be near to the Lagrange equilibrium of
the Sun~Jupiter system. Later this century the restricted three body
problem became again of interest in problems concerning artificial

satellites.
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Since the beginning of this century a number of people have
considered periodic solutions near the equilateral equilibria for all
mass ratios including the particular resonance at the critical mass
ratio of Routh considered in these notes. In Routh [18751 this critical
mass ratio is computed for the first time as an exceptional value among
the mass ratios

The first person, to my knowledge who studied the passage through
resonance was Brown [19111. Although he considers a slightly different
model placing the larger body in the origin with the other primary
rotating about it, the equations he obtained are analogous to
ours. He considers the series expansions for the solutions up to third
order. More precisely he considers the Hamiltonian function up to fourth
order, if we suppose that the solutions formally are given by exp(t ad(H)).
He found that for u > g the family of periodic solutions is no longer
attached to the origin, but to some limiting orbit (which in our
language is the relative equilibrium for $=20) lying on some distance
from the origin. That his analysis was sufficient to describe the
behaviour of these families of periodic solutions is obvious now we know
that the Hamiltonian is Y4-determined.

In Pedersen (19341 we find a more detailed description of the
behaviour near u = ug - He uses the same model as described in section
1 and again gives a third order analysis of the solutions. He adds
nothing new to the results of Brown.

In Buchanan [19391 we find a complex Jordan normal form for the
linearized system for u ug- In Buchanan [19411 the families of periodic
solutions at u = ug are computed.

In Deprit [1966b] we find a fourteenth order analysis of the
limiting orbits for u > Mg In Deprit and Henrard (19681, [19691 an

extensive treatment of the behaviour of periodic solutions in the
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restricted three body problem is given, including what is known up
until then about the behaviour at the critical mass ratio of Routh. In
the second paper an almost complete description of the behaviour of
periodic solutions during the passage through resonance is given as a
conjecture based on numerical results.

The problem is again taken up by Meyer and Schmidt {19701 who
actually prove the existence of families of periodic solutions at Ly
for mass ratios near Routh critical value. Their paper is followed by
a paper of Schmidt and Sweet [19731 who treat the problem at resonance
in a different way. Yet another way is given in Roels [1975]1. The three
last metioned papers all use complex normal forms which has the
disadvantage mentioned in Burgoyne and Cushman [1974]. In Meyer and
Schmidt 19701 and Schmidt and Sweet [19731 the scaling x - €2x,

y > £y, V > €2V is used. Such a scaling has the disadvantage that in a
neighborhood of the origin one restricts to a cusplike area having
contact of order two in y-direction. It is a priori not clear that the
phenomena to be studied take place in this area. In our terms this

L+G, S - SSS and v - SQV. Using the results of chapter

scaling gives G =+ ¢
4 it is now easily checked that in scaled variables the following
conclusions can be drawn: For a > 0, v > 0 one finds two families of
periodic orbits. Because one has to stay away from the G,v-plane, one

can only conclude that in the limit S » 0% these families are

attached to the origin. For a > 0, v < 0 these families persist and

do not contain the origin. All periodic orbits are elliptic. For

a< 0, v >0 again two families are found which do contain a transitional
orbit where the stability type changes from elliptic to hyperbolic. In
the limit S » 0% the hyperbolic families are connected and elliptic

families are attached to the origin. For v + 0 the families pull into

the origin. These results agree with theorem (A) in Meyer and Schmidt
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[19701. What is not found in this way is how the families are attached
to the origin, to each other, and to the 'organizing center' (the origin)
in &,8,v~space.

In Meyer [19741 a short survey of the behaviour of periodic
solutions is given. The pictures in this article show that, although
not all details of the behaviour at the passage through nonsemisimple
1: -1 resonance were proved, people did have a good picture of what
happens.

Recently Caprino, Maffei andNegrini [198u41, and Dell'Antonio and
D'Onofrio (19831 considered the Hamiltonian Hopf bifurcation as a special
case in a more general treatment of families of periodic solutions of
Hamiltonian systems. The first paper is devoted to establishing the
existence of families of periodic solutions. The second paper
concentrates on the number of periodic solutions.

Starting with the formulation of the restricted problem of three
bodies by Euler it is clear the the astronomical and mathematical
interest in this problem go hand in hand. The 'modern' mathematical
point of view might be illustrated by the following quotation of
Birkhoff 119151 which is still up to date.

"Thorough investigation of non-integrable dynamical problems is
essential for the further progress of dynamics. Up to the present time
only the periodic movements and certain closely allied movements have
been treated with any degree of success in such problems, but the final
goal of dynamics embraces the characterization of all types of movement,
and of their interrelation.

The so-called restricted problem of three bodies, in which a
particle of zero mass moves subject to the attraction of two other bodies
of positive mass rotating in circles about their centre of gravity,

affords a typical and important example of a non-integrable dynamical
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system".

The problem of non-integrability originates from Poincarés work.
It has finally led to the modern problems of invariant tori, homolinic
and heteroclinic behaviour. Although nowadays these topics are studied
extensively still many questions remain open concerning non-integrable

systems.
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