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Chapter 1

Introduction

1.1 General

For physics students the computational physics courses are recommended prerequi-
sites for any computationally oriented semester thesis, proseminar, diploma thesis or
doctoral thesis.

For computational science and engineering (RW) students the computa-
tional physics courses are part of the “Vertiefung” in theoretical physics.

1.1.1 Lecture Notes

All the lecture notes, source codes, applets and supplementary material can be found
on our web page http://www.itp.phys.ethz.ch/lectures/RGP/.

1.1.2 Exercises

Programming Languages

Except when a specific programming language or tool is explicitly requested you are
free to choose any programming language you like. Solutions will often be given either
as C++ programs or Mathematica Notebooks.

If you do not have much programming experience we recommend to additionally
attend the“Programmiertechniken” lecture on Wednesday.

Computer Access

The lecture rooms offer both Linux workstations, for which accounts can be requested
with the computer support group of the physics department in the HPR building, as
well as connections for your notebook computers. In addition you will need to sign up
for accounts on the supercomputers.
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1.1.3 Prerequisites

As a prerequisite for this course we expect knowledge of the following topics. Please
contact us if you have any doubts or questions.

Computing

• Basic knowledge of UNIX

• At least one procedural programming language such as C, C++, Pascal, Modula
or FORTRAN. C++ knowledge is preferred.

• Knowledge of a symbolic mathematics program such as Mathematica or Maple.

• Ability to produce graphical plots.

Numerical Analysis

• Numerical integration and differentiation

• Linear solvers and eigensolvers

• Root solvers and optimization

• Statistical analysis

Physics

• Classical mechanics

• Classical electrodynamics

• Classical statistical physics
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1.1.4 References

1. J.M. Thijssen, Computational Physics, Cambridge University Press (1999) ISBN
0521575885

2. Nicholas J. Giordano, Computational Physics, Pearson Education (1996) ISBN
0133677230.

3. Harvey Gould and Jan Tobochnik, An Introduction to Computer Simulation Meth-

ods, 2nd edition, Addison Wesley (1996), ISBN 00201506041

4. Tao Pang, An Introduction to Computational Physics, Cambridge University Press
(1997) ISBN 0521485924

5. D. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical

Physics, Cambridge University Press (2000), ISBN 0521653665

6. Wolfgang Kinzel und Georg Reents Physik per Computer, Spektrum Akademischer
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1.2 Overview

1.2.1 What is computational physics?

Computational physics is a new way of doing physics research, next to experiment and
theory. Traditionally, the experimentalist has performed measurements on real physical
systems and the theoretical physicist has explained these measurements with his theo-
ries. While this approach to physics has been extremely successful, and we now know
the basis equations governing most of nature, we face the problem that an exact solu-
tion of the basic theories is often possible only for very simplified models. Approximate
analytical methods, employing e.g. mean-field approximations or perturbation theory
extend the set of solvable problems, but the question of validity of these approximation
remains – and many cases are known where these approximations even fail completely.

The development of fast digital computers over the past sixty years has provided
us with the possibility to quantitatively solve many of these equations not only for
simplified toy models, but for realistic applications. And, indeed, in fields such as
fluid dynamics, electrical engineering or quantum chemistry, computer simulations have
replaced not only traditional analytical calculations but also experiments. Modern
aircraft (e.g. the new Boeing and Airbus planes) and ships (such as the Alinghi yachts)
are designed on the computer and only very few scale models are built to test the
calculations.

Besides these fields, which have moved from “physics” to “engineering”, simulations
are also of fundamental importance in basic physics research to:

• solve problems that cannot be solved analytically

• check the validity of approximations and effective theories

• quantitatively compare theories to experimental measurements

• visualize complex data sets

• control and perform experimental measurements

In this lecture we will focus on the first three applications, starting from simple classical
one-body problems and finishing with quantum many body problems in the summer
semester.

Already the first examples in the next chapter will show one big advantage of nu-
merical simulations over analytical solutions. Adding friction or a third particle to
the Kepler problem makes it unsolvable analytically, while a program written to solve
the Kepler problem numerically can easily be extended to cover these cases and allows
realistic modelling.
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1.2.2 Topics

In this lecture we will focus on classical problems. Computational quantum mechanics
will be taught in the summer semester.

• Physics:

– Classical few-body problems

– Classical many-body problems

– Linear and non-linear wave equations

– Other important partial differential equations

– Monte Carlo integration

– Percolation

– Spin models

– Phase transitions

– Finite Size Scaling

– Algorithms for N -body problems

– Molecular Dynamics

• Computing:

– Mathematica

– Vector supercomputing

– Shared memory parallel computing

– Distributed memory parallel computing

5



1.3 Programming Languages

There have been many discussions and fights about the “perfect language” for numerical
simulations. The simple answer is: it depends on the problem. Here we will give a short
overview to help you choose the right tool.

1.3.1 Symbolic Algebra Programs

Mathematica and Maple have become very powerful tools and allow symbolic manip-
ulation at a high level of abstraction. They are useful not only for exactly solvable
problems but also provide powerful numerical tools for many simple programs. Choose
Mathematica or Maple when you either want an exact solution or the problem is not
too complex.

1.3.2 Interpreted Languages

Interpreted languages range from simple shell scripts and perl programs, most useful for
data handling and simple data analysis to fully object-oriented programming languages
such as Python. We will regularly use such tools in the exercises.

1.3.3 Compiled Procedural Languages

are substantially faster than the interpreted languages discussed above, but usually need
to be programmed at a lower level of abstraction (e.g. manipulating numbers instead
of matrices).

FORTRAN (FORmula TRANslator)

was the first scientific programming languages. The simplicity of FORTRAN 77 and
earlier versions allows aggressive optimization and unsurpassed performance. The dis-
advantage is that complex data structures such as trees, lists or text strings, are hard
to represent and manipulate in FORTRAN.

Newer versions of FORTRAN (FORTRAN 90/95, FORTRAN 2000) converge to-
wards object oriented programming (discussed below) but at the cost of decreased
performance. Unless you have to modify an existing FORTRAN program use one of
the languages discussed below.

Other procedural languages: C, Pascal, Modula,. . .

simplify the programming of complex data structures but cannot be optimized as ag-
gressively as FORTRAN 77. This can lead to performance drops by up to a factor of
two! Of all the languages in this category C is the best choice today.

1.3.4 Object Oriented Languages

The class concept in object oriented languages allows programming at a higher level of
abstraction. Not only do the programs get simpler and easier to read, they also become

6



easier to debug. This is usually paid for by an “abstraction penalty”, sometimes slowing
programs down by more than a factor of ten if you are not careful.

Java

is very popular in web applications since a compiled Java program will run on any
machine, though not at the optimal speed. Java is most useful in small graphics applets
for simple physics problems.

C++

Two language features make C++ one of the best languages for scientific simulations:
operator overloading and generic programming. Operator overloading allows to define
mathematical operations such multiplication and addition not only for numbers but
also for objects such as matrices, vectors or group elements. Generic programming,
using template constructs in C++, allow to program at a high level of abstraction,
without incurring the abstraction penalty of object oriented programming. We will
often provide C++ programs as solutions for the exercises. If you are not familiar with
the advanced features of C++ we recommend to attend the “Programmiertechniken”
lecture on Wednesday.

1.3.5 Which programming language should I learn?

We recommend C++ for three reasons:

• object oriented programming allows to express codes at a high level of abstraction

• generic programming enables aggressive optimization, similar to FORTRAN

• C++-knowledge will help you find a job.
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Chapter 2

The Classical Few-Body Problem

2.1 Solving Ordinary Differential Equations

2.1.1 The Euler method

The first set of problems we address are simple initial value problems of first order
ordinary differential equations of the form

dy

dt
= f(y, t) (2.1)

y(t0) = y0 (2.2)

where the initial value y0 at the starting time t0 as well as the time derivative f(y, t) is
given. This equations models, for example, simple physical problems such as radioactive
decay

dN

dt
= −λN (2.3)

where N is the number of particles and λ the decay constant, or the “coffee cooling
problem”

dT

dt
= −γ(T − Troom) (2.4)

where T is the temperature of your cup of coffee, Troom the room temperature and γ
the cooling rate.

For these simple problems an analytical solution can easily be found by rearranging
the differential equation to

dT

T − Troom
= −γdt, (2.5)

integrating both sides of this equation

∫ T (t)

T (0)

dT

T − Troom
= −γ

∫ t

0
dt, (2.6)

evaluating the integral

ln(T (t)− Troom)− ln(T (0)− Troom) = −γt (2.7)
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and solving this equation for T (t)

T (t) = Troom + (T (0)− Troom) exp(−γt). (2.8)

While the two main steps, evaluating the integral (2.6) and solving the equation (2.7)
could easily be done analytically in this simple case, this will not be the case in general.

Numerically, the value of y at a later time t+ ∆t can easily be approximated by a
Taylor expansion up to first order

y(t0 + ∆t) = y(t0) + ∆t
dy

dt
= y0 + ∆tf(y0, t0) + O(∆τ 2) (2.9)

Iterating this equation and introducing the notation tn = t0 + n∆t and yn = y(tn) we
obtain the Euler algorithm

yn+1 = yn + ∆tf(yn, tn) + O(∆τ 2) (2.10)

In contrast to the analytical solution which was easy for the simple examples given
above but can be impossible to perform on more complex differential equations, the
Euler method retains its simplicity no matter which differential equation it is applied
to.

2.1.2 Higher order methods

Order of integration methods

The truncation of the Taylor expansion after the first term in the Euler method intro-
duces an error of order O(∆t2) at each time step. In any simulation we need to control
this error to ensure that the final result is not influenced by the finite time step. We
have two options if we want to reduce the numerical error due to ths finite time step
∆t. We can either choose a smaller value of ∆t in the Euler method or choose a higher

order method.
A method which introduces an error of order O(∆tn) in a single time step is said to

be locally of n-th order. Iterating a locally n-th order method over a fixed time interval
T these truncation errors add up: we need to perform T/∆t time steps and at each
time step we pick up an error of order O(∆tn). The total error over the time T is then:

T

∆t
O(∆tn) = O(∆tn−1) (2.11)

and the method is globally of (n− 1)-th order.
The Euler method, which is of second order locally, is usually called a first order

method since it is globally of first order.

Predictor-corrector methods

One straightforward idea to improve the Euler method is to evaluate the derivative
dy/dt not only at the initial time tn but also at the next time tn+1:

yn+1 ≈ yn +
∆t

2
[f(yn, tn) + f(yn+1, tn+1)] . (2.12)
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This is however an implicit equation since yn+1 appears on both sides of the equation.
Instead of solving this equation numerically, we first predict a rough estimate ỹn+1 using
the Euler method:

ỹn+1 = yn + ∆tf(yn, tn) (2.13)

and then use this estimate to correct this Euler estimate in a second step by using ỹn+1

instead of yn+1 in equation (2.12):

yn+1 ≈ yn +
∆t

2
[f(yn, tn) + f(ỹn+1, tn+1)] . (2.14)

This correction step can be repeated by using the new estimate for yn+1 instead of ỹn+1

and this is iterated until the estimate converges.
Exercise: determine the order of this predictor-corrector method.

The Runge-Kutta methods

The Runge-Kutta methods are families of systematic higher order improvements over
the Euler method. The key idea is to evaluate the derivative dy/dt not only at the end
points tn or tn+1 but also at intermediate points such as:

yn+1 = yn + ∆tf
(

tn +
∆t

2
, y
(

tn +
∆t

2

))

+ O(∆t3). (2.15)

The unknown solution y(tn + ∆t/2) is again approximated by an Euler step, giving the
second order Runge-Kutta algorithm:

k1 = ∆tf(tn, yn)

k2 = ∆tf(tn + ∆t/2, yn + k1/2)

yn+1 = yn + k2 + O(∆t3) (2.16)

The general ansatz is

yn+1 = yn +
N
∑

i=1

αiki (2.17)

where the approximations ki are given by

ki = ∆tf(yn +
N−1
∑

j=1

νijki, tn +
N−1
∑

j=1

νij∆t) (2.18)

and the parameters αi and νij are chosen to obtain an N -th order method. Note that
this choice is usually not unique.

The most widely used Runge-Kutta algorithm is the fourth order method:

k1 = ∆tf(tn, yn)

k2 = ∆tf(tn + ∆t/2, yn + k1/2)

k3 = ∆tf(tn + ∆t/2, yn + k2/2)

k4 = ∆tf(tn + ∆t, yn + k3)

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+ O(∆t5) (2.19)
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in which two estimates at the intermediate point tn + ∆t/2 are combined with one
estimate at the starting point tn and one estimate at the end point tn = t0 + n∆t.

Exercise: check the order of these two Runge-Kutta algorithms.

2.2 Integrating the classical equations of motion

The most common ordinary differential equation you will encounter are Newton’s equa-
tion for the classical motion for N point particles:

mi
d~vi

dt
= ~Fi(t, ~x1, . . . , ~xN , ~v1, . . . , ~vN) (2.20)

d~xi

dt
= ~vi, (2.21)

where mi, ~vi and ~xi are the mass, velocity and position of the i-th particle and ~Fi the
force acting on this particle.

For simplicity in notation we will restrict ourselves to a single particle in one di-
mension, before discussing applications to the classical few-body and many-body prob-
lem. We again label the time steps tn+1 = tn + ∆t, and denote by xn and vn the
approximate solutions for x(tn) and v(tn) respectively. The accelerations are given by
an = a(tn, xn, vn) = F (tn, xn, vn)/m.

The simplest method is again the forward-Euler method

vn+1 = vn + an∆t

xn+1 = xn + vn∆t. (2.22)

which is however unstable for oscillating systems as can be seen in the Mathematica
notebook on the web page. For a simple harmonic oscillator the errors will increase
exponentially over time no matter how small the time step ∆t is chosen and the forward-
Euler method should thus be avoided!

For velocity-independent forces a surprisingly simple trick is sufficient to stabilize
the Euler method. Using the backward difference vn+1 ≈ (xn+1 − xn)/∆t instead of a
forward difference vn ≈ (xn+1 − xn)/∆t we obtain the stable backward-Euler method:

vn+1 = vn + an∆t

xn+1 = xn + vn+1∆t, (2.23)

where the new velocity vn+1 is used in calculating the positions xn+1.
A related stable algorithm is the mid-point method, using a central difference:

vn+1 = vn + an∆t

xn+1 = xn +
1

2
(vn + vn+1)∆t. (2.24)

Equally simple, but surprisingly of second order is the leap-frog method, which is
one of the commonly used methods. It evaluates positions and velocities at different
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times:

vn+1/2 = vn−1/2 + an∆t

xn+1 = xn + vn+1/2∆t. (2.25)

As this method is not self-starting the Euler method is used for the first half step:

v1/2 = v0 +
1

2
a0∆t. (2.26)

For velocity-dependent forces the second-order Euler-Richardson algorithm can be
used:

an+1/2 = a
(

xn +
1

2
vn∆t, vn +

1

2
an∆t, tn +

1

2
∆t
)

vn+1 = vn + an+1/2∆t (2.27)

xn+1 = xn + vn∆t+
1

2
an+1/2∆t

2.

The most commonly used algorithm is the following form of the Verlet algorithm
(“velocity Verlet”):

xn+1 = xn + vn∆t+
1

2
an(∆t)2

vn+1 = vn +
1

2
(an + an+1)∆t. (2.28)

It is third order in the positions and second order in the velocities.

2.3 Boundary value problems and “shooting”

So far we have considered only the initial value problem, where we specified both the
initial position and velocity. Another type of problems is the boundary value problem
where instead of two initial conditions we specify one initial and one final condition.
Examples can be:

• We lanuch a rocket from the surface of the earth and want it to enter space (defined
as an altitude of 100km) after one hour. Here the initial and final positions are
specified and the question is to estimate the required power of the rocket engine.

• We fire a cannon ball from ETH Hnggerberg and want it to hit the tower of the
university of Zürich. The initial and final positions as well as the initial speed of
the cannon ball is specified. The question is to determine the angle of the cannon
barrel.

Such boundary value problems are solved by the “shooting” method which should
be familiar to Swiss students from their army days. In the second example we guess an
angle for the cannon, fire a shot, and then iteratively adjust the angle until we hit our
target.

More formally, let us again consider a simple one-dimensional example but instead of
specifying the initial position x0 and velocity v0 we specify the initial position x(0) = x0

and the final position after some time t as x(t) = xf . To solve this problem we
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1. guess an initial velocity v0 = α

2. define x(t;α) as the numerically integrated value of for the final position as a
function of α

3. numerically solve the equation x(t;α) = xf

We thus have to combine one of the above integrators for the equations of motion
with a numerical root solver.

2.4 Numerical root solvers

The purpose of a root solver is to find a solution (a root) to the equation

f(x) = 0, (2.29)

or in general to a multi-dimensional equation

~f(~x) = 0. (2.30)

Numerical root solvers should be well known from the numerics courses and we will
just review three simple root solvers here. Keep in mind that in any serious calculation
it is usually best to use a well optimized and tested library function over a hand-coded
root solver.

2.4.1 The Newton and secant methods

The Newton method is one of best known root solvers, however it is not guaranteed to
converge. The key idea is to start from a guess x0, linearize the equation around that
guess

f(x0) + (x− x0)f
′(x0) = 0 (2.31)

and solve this linearized equation to obtain a better estimate x1. Iterating this procedure
we obtain the Newton method:

xn+1 = xn −
f(xn)

f ′(xn)
. (2.32)

If the derivative f ′ is not known analytically, as is the case in our shooting problems,
we can estimate it from the difference of the last two points:

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

(2.33)

Substituting this into the Newton method (2.32) we obtain the secant method:

xn+1 = xn − (xn − xn−1)
f(xn)

f(xn)− f(xn−1)
. (2.34)
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The Newton method can easily be generalized to higher dimensional equations, by
defining the matrix of derivatives

Aij(~x) =
∂fi(~x)

∂xj
(2.35)

to obtain the higher dimensional Newton method

~xn+1 = ~xn − A−1 ~f(~x) (2.36)

If the derivatives Aij(~x) are not known analytically they can be estimated through finite
differences:

Aij(~x) =
fi(~x+ hj~ej)− fi(~x)

hj
with hj ≈ xj

√
ε (2.37)

where ε is the machine precision (about 10−16 for double precision floating point num-
bers on most machines).

2.4.2 The bisection method and regula falsi

Both the bisection method and the regula falsi require two starting values x0 and x1

surrounding the root, with f(x0) < 0 and f(x1) > 0 so that under the assumption of a
continuous function f there exists at least one root between x0 and x1.

The bisection method performs the following iteration

1. define a mid-point xm = (x0 + x1)/2.

2. if signf(xm) = signf(x0) replace x0 ← xm otherwise replace x1 ← xm

until a root is found.
The regula falsi works in a similar fashion:

1. estimate the function f by a straight line from x0 to x1 and calculate the root of
this linearized function: x2 = (f(x0)x1 − f(x1)x0)/(f(x1)− f(x0)

2. if signf(x2) = signf(x0) replace x0 ← x2 otherwise replace x1 ← x2

In contrast to the Newton method, both of these two methods will always find a
root.

2.4.3 Optimizing a function

These root solvers can also be used for finding an extremum (minimum or maximum)
of a function f(~x), by looking a root of

∇f(~x) = 0. (2.38)

While this is efficient for one-dimensional problems, but better algorithms exist.
In the following discussion we assume, without loss of generality, that we want to

minimize a function. The simplest algorithm for a multi-dimensional optimization is
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steepest descent, which always looks for a minimum along the direction of steepest
gradient: starting from an initial guess ~xn a one-dimensional minimization is applied
to determine the value of λ which minimizes

f(~xn + λ∇f(~xn)) (2.39)

and then the next guess ~xn+1 is determined as

~xn+1 = ~xn + λ∇f(~xn) (2.40)

While this method is simple it can be very inefficient if the “landscape” of the
function f resembles a long and narrow valley: the one-dimensional minimization will
mainly improve the estimate transverse to the valley but takes a long time to traverse
down the valley to the minimum. A better method is the conjugate gradient algo-
rithm which approximates the function locally by a paraboloid and uses the minimum
of this paraboloid as the next guess. This algorithm can find the minimuim of a long
and narrow parabolic valley in one iteration! For this and other, even better, algorithms
we recommend the use of library functions.

One final word of warning is that all of these minimizers will only find a local
minimum. Whether this local minimum is also the global minimum can never be
decided by purely numerically. A necessary but never sufficient check is thus to start
the minimization not only from one initial guess but to try many initial points and
check for consistency in the minimum found.

2.5 Applications

In the last section of this chapter we will mention a few interesting problems that can be
solved by the methods discussed above. This list is by no means complete and should
just be a starting point to get you thinking about which other interesting problems you
will be able to solve.

2.5.1 The one-body problem

The one-body problem was already discussed in some examples above and is well known
from the introductory classical mechanics courses. Here are a few suggestions that go
beyond the analytical calculations performed in the introductory mechanics classes:

Friction

Friction is very easy to add to the equations of motion by including a velocity-dependent
term such as:

d~v

dt
= ~F − γ|~v|2 (2.41)

while this term usually makes the problem impossible to solve analytically you will see
in the exercise that this poses no problem for the numerical simulation.

Another interesting extension of the problem is adding the effects of spin to a thrown
ball. Spinning the ball causes the velocity of airflow differ on opposing sides. This in
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turn exerts leads to differing friction forces and the trajectory of the ball curves. Again
the numerical simulation remains simple.

Relativistic equations of motion

It is equally simple to go from classical Newtonian equations of motion to Einsteins
equation of motion in the special theory of relativity:

d~p

dt
= ~F (2.42)

where the main change is that the momentum ~p is no longer simply m~v but now

~p = γm0~v (2.43)

where m0 is the mass at rest of the body,

γ =

√

√

√

√1 +
|~p|2
m2

0c
2

=
1

√

1− |~v|2
c2

, (2.44)

and c the speed of light.
These equations of motion can again be discretized, for example in a forward-Euler

fashion, either by using the momenta and positions:

~xn+1 = ~xn +
~pn

γm0
∆t (2.45)

~pn+1 = ~pn + ~Fn∆t (2.46)

or using velocities and positions

~xn+1 = ~xn + ~vn∆t (2.47)

~vn+1 = ~vn +
~Fn

γm0
∆t (2.48)

The only change in the program is a division by γ, but this small change has large
consequences, one of which is that the velocity can never exceed the speed of light c.

2.5.2 The two-body (Kepler) problem

While the generalization of the integrators for equations of motion to more than one
body is trivial, the two-body problem does not even require such a generalization in
the case of forces that depend only on the relative distance of the two bodies, such as
gravity. The equations of motion

m1
d2~x1

dt2
= ~F (~x2 − ~x1) (2.49)

m2
d2~x2

dt2
= ~F (~x1 − ~x2) (2.50)
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where ~F (~x2 − ~x1) = −~F (~x2 − ~x1) we can perform a transformation of coordinates to
center of mass and relative motion. The important relative motion gives a single body
problem:

m
d2~x

dt2
= ~F (~x) = −∇V (|~x|), (2.51)

where ~x = ~x2 − ~x1 is the distance, m = m1m2/(m1 +m2) the reduced mass, and V the
potential

V (r) = −Gm
r

(2.52)

In the case of gravity the above problem is called the Kepler problem with a force

~F (~x) = −Gm ~x

|~x|3 (2.53)

and can be solved exactly, giving the famous solutions as either circles, ellipses,
parabolas or hyperbolas.

Numerically we can easily reproduce these orbits but can again go further by adding
terms that make an analytical solution impossible. One possibility is to consider a
satellite in orbit around the earth and add friction due to the atmosphere. We can
calculate how the satellite spirals down to earth and crashes.

Another extension is to consider effects of Einsteins theory of general relativity.
In a lowest order expansion its effect on the Kepler problem is a modified potential:

V (r) = −Gm
r



1 +
~L2

r2



 , (2.54)

where ~L = m~x×~v is the angular momentum and a constant of motion. When plotting
the orbits including the extra 1/r3 term we can observe a rotation of the main axis of
the elliptical orbit. The experimental observation of this effect on the orbit of Mercury
was the first confirmation of Einsteins theory of general relativity.

2.5.3 The three-body problem

Next we go to three bodies and discuss a few interesting facts that can be checked by
simulations.

Stability of the three-body problem

Stability, i.e. that a small perturbation of the initial condition leads only to a small
change in orbits, is easy to prove for the Kepler problem. There are 12 degrees of
freedom (6 positions and 6 velocities), but 11 integrals of motion:

• total momentum: 3 integrals of motion

• angular momentum: 3 integrals of motion

• center of mass: 3 integrals of motion
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• Energy: 1 integral of motion

• Lenz vector: 1 integral of motion

There is thus only one degree of freedom, the initial position on the orbit, and stability
can easily be shown.

In the three-body problem there are 18 degrees of freedom but only 10 integrals
of motion (no Lenz vector), resulting in 8 degrees of freedom for the orbits. Even
restricting the problem to planar motions in two dimensions does not help much: 12
degrees of freedom and 6 integrals of motion result in 6 degrees of freedom for the orbits.

Progress can be made only for the restricted three-body problem, where the mass
of the third body m3 → 0 is assumed to be too small to influence the first two bodies
which are assumed to be on circular orbits. This restricted three-body problem has four
degrees of freedom for the third body and one integral of motion, the energy. For the
resulting problem with three degrees of freedom for the third body the famous KAM
(Kolmogorov-Arnold-Moser) theorem can be used to prove stability of moon-like orbits.

Lagrange points and Trojan asteroids

In addition to moon-like orbits, other (linearly) stable orbits are around two of the
Lagrange points. We start with two bodies on circular orbits and go into a rotating
reference frame at which these two bodies are at rest. There are then five positions, the
five Lagrange points, at which a third body is also at rest. Three of these are colinear
solutions and are unstable. The other two stable solutions form equilateral triangles.

Astronomical observations have indeed found a group of asteroids, the Trojan as-
teroids on the orbit of Jupiter, 60 degrees before and behind Jupiter. They form an
equilateral triangle with the sun and Jupiter.

Numerical simulations can be performed to check how long bodies close to the perfect
location remain in stable orbits.

Kirkwood gaps in the rings of Saturn

Going farther away from the sun we next consider the Kirkwood gaps in the rings of
Saturn. Simulating a system consisting of Saturn, a moon of Saturn, and a very light
ring particle we find that orbits where the ratio of the period of the ring particle to that
of the moon are unstable, while irrational ratios are stable.

The moons of Uranus

Uranus is home to an even stranger phenomenon. The moons Janus and Epimetheus
share the same orbit of 151472 km, separated by only 50km. Since this separation is
less than the diameter of the moons (ca. 100-150km) one would expect that the moons
would collide.

Since these moons still exist something else must happen and indeed a simulation
clearly shows that the moons do not collide but instead switch orbits when they ap-
proach each other!
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2.5.4 More than three bodies

Having seen these unusual phenomena for three bodies we can expect even stranger
behavior for four or five bodies, and we encourage you to start exploring them with
your programs.

Especially noteworthy is that for five bodies there are extremely unstable orbits
that diverge in finite time: five bodies starting with the right initial positions and finite
velocities can be infinitely far apart, and flying with infinite velocities after finite time!
For more information see http://www.ams.org/notices/199505/saari-2.pdf
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Chapter 3

Partial Differential Equations

In this chapter we will present algorithms for the solution of some simple but widely used
partial differential equations (PDEs), and will discuss approaches for general partial
differential equations. Since we cannot go into deep detail, interested students are
referred to the lectures on numerical solutions of differential equations offered by the
mathematics department.

3.1 Finite differences

As in the solution of ordinary differential equations the first step in the solution of a
PDE is to discretize space and time and to replace differentials by differences, using
the notation xn = n∆x. We already saw that a first order differential ∂f/∂x can be
approximated in first order by

∂f

∂x
=
f(xn+1)− f(xn)

∆x
+ O(∆x) =

f(xn)− f(xn−1)

∆x
+ O(∆x) (3.1)

or to second order by the symmetric version

∂f

∂x
=
f(xn+1)− f(xn−1)

2∆x
+ O(∆x2), (3.2)

From these first order derivatives can get a second order derivative as

∂2f

∂x2
=
f(xn+1) + f(xn−1)− 2f(xn)

∆x2
+ O(∆x2). (3.3)

To derive a general approximation for an arbitrary derivative to any given order use
the ansatz

l
∑

k=−l

akf(xn+k), (3.4)

insert the Taylor expansion

f(xn+k) = f(xn) + ∆xf ′(xn) +
∆x2

2
f ′′(xn) +

∆x3

6
f ′′′(xn) +

∆x4

4
f (4)(xn) + . . . (3.5)

and choose the values of ak so that all terms but the desired derivative vanish.
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As an example we give the fourth-order estimator for the second derivative

∂2f

∂x2
=
−f(xn−2) + 16f(xn−1)− 30f(xn) + 16f(xn+1)− f(xn+2)

12∆x2
+ O(∆x4). (3.6)

and the second order estimator for the third derivative:

∂3f

∂x3
=
−f(xn−2) + 2f(xn−1)− 2f(xn+1) + f(xn+2)

∆x3
+ O(∆x2). (3.7)

Extensions to higher dimensions are straightforward, and these will be all the dif-
ferential quotients we will need in this course.

3.2 Solution as a matrix problem

By replacing differentials by differences we convert the (non)-linear PDE to a system
of (non)-linear equations. The first example to demonstrate this is determining an
electrostatic or gravitational potential Φ given by the Poisson equation

∇2Φ(~x) = −4πρ(~x), (3.8)

where ρ is the charge or mass density respectively and units have been chosen such that
the coupling constants are all unity.

Discretizing space we obtain the system of linear equations

Φ(xn+1, yn, zn) + Φ(xn−1, yn, zn)

+Φ(xn, yn+1, zn) + Φ(xn, yn−1, zn) (3.9)

+Φ(xn, yn, zn+1) + Φ(xn, yn, zn−1)

−6Φ(xn, yn, zn) = −4πρ(xn, yn, zn)∆x2,

where the density ρ(xn, yn, zn) is defined to be the average density in the cube with
linear extension ∆x around the point ρ(xn, yn, zn).

The general method to solve a PDE is to formulate this linear system of equations
as a matrix problems and then to apply a linear equation solver to solve the system of
equations. For small linear problems Mathematica can be used, or the dsysv function
of the LAPACK library.

For larger problems it is essential to realize that the matrices produced by the
discretization of PDEs are usually very sparse, meaning that only O(N) of the N2

matrix elements are nonzero. For these sparse systems of equations, optimized iterative
numerical algorithms exist1 and are implemented in numerical libraries such as in the
ITL library.2

1R. Barret, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods (SIAM, 1993)

2J.G. Siek, A. Lumsdaine and Lie-Quan Lee, Generic Programming for High Performance Numerical
Linear Algebra in Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing (OO’98) (SIAM, 1998); the library is availavle on the web at:
http://www.osl.iu.edu/research/itl/
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This is the most general procedure and can be used in all cases, including boundary
value problems and eigenvalue problems. The PDE eigenvalue problem maps to a
matrix eigenvalue problem, and an eigensolver needs to be used instead of a linear
solver. Again there exist efficient implementations3 of iterative algorithms for sparse
matrices.4

For non-linear problems iterative procedures can be used to linearize them, as we
will discuss below.

Instead of this general and flexible but brute-force method, many common PDEs
allow for optimized solvers that we will discuss below.

3.3 The relaxation method

For the Poisson equation a simple iterative method exists that can be obtained by
rewriting above equation as

Φ(xn, yn, zn) =
1

6
[Φ(xn+1, yn, zn) + Φ(xn−1, yn, zn) + Φ(xn, yn+1, zn)

+Φ(xn, yn−1, zn) + Φ(xn, yn, zn+1) + Φ(xn, yn, zn−1)]

−2

3
πρ(xn, yn, zn)∆x2, (3.10)

The potential is just the average over the potential on the six neighboring sites plus
a term proportinal to the density ρ.

A solution can be obtained by iterating equation 3.10:

Φ(xn, yn, zn) ← 1

6
[Φ(xn+1, yn, zn) + Φ(xn−1, yn, zn) + Φ(xn, yn+1, zn)

+Φ(xn, yn−1, zn) + Φ(xn, yn, zn+1) + Φ(xn, yn, zn−1)]

−2

3
πρ(xn, yn, zn)∆x2, (3.11)

This iterative solver will be implemented in the exercises for two examples:

1. Calculate the potential between two concentric metal squares of size a and 2a.
The potential difference between the two squares is V . Starting with a potential
0 on the inner square, V on the outer square, and arbitrary values in-between,
a two-dimensional variant of equation 3.11 is iterated until the differences drop
below a given threshold. Since there are no charges the iteration is simply:

Φ(xn, yn)← 1

4
[Φ(xn+1, yn) + Φ(xn−1, yn) + Φ(xn, yn+1) + Φ(x, yn−1)]. (3.12)

2. Calculate the potential of a distribution of point charges: starting from an ar-
bitrary initial condition, e.g. Φ(xn, yn, zn) = 0, equation 3.11 is iterated until
convergence.

3http://www.comp-phys.org/software/ietl/
4Z. Bai, J. Demmel and J. Dongarra (Eds.), Templates for the Solution of Algebraic Eigenvalue

Problems: A Practical Guide (SIAM, 2000).
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Since these iterations are quite slow it is important to improve them by one of two
methods discussed below.

3.3.1 Gauss-Seidel Overrelaxtion

Gauss-Seidel overrelaxtion determines the change in potential according to equation
3.11 but then changes the value by a multiple of this proposed change:

∆Φ(xn, yn, zn) =
1

6
[Φ(xn+1, yn, zn) + Φ(xn−1, yn, zn) + Φ(xn, yn+1, zn)

+Φ(xn, yn−1, zn) + Φ(xn, yn, zn+1) + Φ(xn, yn, zn−1)]

−2

3
πρ(xn, yn, zn)∆x2 − Φ(xn, yn, zn)

Φ(xn, yn, zn) ← Φ(xn, yn, zn) + w∆Φ(xn, yn, zn) (3.13)

with an overrelaxation factor of 1 < w < 2. You can easily convince yourself, by
considering a single charge and initial values of Φ(xn, yn, zn) = 0 that choosing value
w ≥ 2 is unstable.

3.3.2 Multi-grid methods

Multi-grid methods dramatically accelerate the convergence of many iterative solvers.
We start with a very coarse grid spacing ∆x∆x0 and iterate

• solve the Poisson equation on the grid with spacing ∆x

• refine the grid ∆x← ∆x/2

• interpolate the potential at the new grid points

• and repeat until the desired final fine grid spacing ∆x is reached.

Initially convergence is fast since we have a very small lattice. In the later steps
convergence remains fast since we always start with a very good guess.

3.4 Solving time-dependent PDEs by the method

of lines

3.4.1 The diffusion equation

Our next problem will include a first order time-derivative, with a partial differential
equation of the form

∂f(~x, t)

∂t
= F (f, t) (3.14)

where f contains only spatial derivatives and the initial condition at time t0 is given by

f(~x, t0) = u(~x). (3.15)
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One common equation is the diffusion equation, e.g. for heat transport

∂T (~x, t)

∂t
= − K

Cρ
∇2T (~x, t) +

1

Cρ
W (~x, t) (3.16)

where T is the temperature, C the specific heat, ρ the density and K the thermal
conductivity. External heat sources or sinks are specified by W (~x, t).

This and similar initial value problems can be solved by the method of lines: af-
ter discretizing the spatial derivatives we obtain a set of coupled ordinary differential
equations which can be evolved fort each point along the time line (hence the name)
by standard ODE solvers. In our example we obtain, specializing for simplicity to the
one-dimensional case:

∂T (xn, t)

∂t
= − K

Cρ∆x2
[T (xn+1, t) + T (xn−1, t)− 2T (xn, t)] +

1

Cρ
W (xn, t) (3.17)

Using a forward Euler algorithm we finally obtain

T (xn, t+ ∆t) = T (xn, t)−
K∆t

Cρ∆x2
[T (xn+1, t) + T (xn−1, t)− 2T (xn, t)] +

∆t

Cρ
W (xn, t)

(3.18)
This will be implemented in the exercises and used in the supercomputing examples.

3.4.2 Stability

Great care has to be taken in choosing appropriate values of ∆x and ∆t, as too long
time steps ∆t immediately lead to instabilities. By considering the case where the
temperature is 0 everywhere except at one point it is seen immediately, like in the case
of overrelaxation that a choice of K∆t/Cρ∆x2 > 1/2 is unstable. A detailed analysis,
which is done e.g. in the lectures on numerical solutions of differential equations, shows
that this heat equation solver is only stable for

K∆t

Cρ∆x2
<

1

4
. (3.19)

We see that, for this PDE with second order spatial and first order temporal derivatives,
it is not enough to just adjust ∆t proportional to ∆x, but ∆t ≪ O(∆x2) is needed.
Here it is even more important to check for instabilities than in the case of PDEs!

3.4.3 The Crank-Nicolson method

The simple solver above can be improved by replacing the forward Euler method for
the time integration by a midpoint method:

T (x, t+∆t) = T (x, t)+
K∆t

2Cρ

[

∇2T (x, t) +∇2T (x, t+ ∆t)
]

+
∆t

2Cρ
[W (x, t) +W (x, t+ ∆t)]

(3.20)
Discretizing space and introducing the linear operator A defined by

AT (xn, t) =
K∆t

Cρ∆x2
[T (xn+1, t) + T (xn−1, t)− 2T (xn, t)] (3.21)
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to simplify the notation we obtain an implicit algorithm:

(2 · 1− A)~T (t+ ∆t) = (2− A)~T (t) +
∆t

Cρ

[

~W (t) + ~W (t+ ∆t)
]

, (3.22)

where 1 is the unit matrix and

~T (t) = (T (x1, t), . . . T (xN , t)) (3.23)

~W (t) = (W (x1, t), . . .W (xN , t)) (3.24)

are vector notations for the values of the temperature and heat source at each point.
In contrast to the explicit solver (3.18) the values at time t+∆t are not given explicitly
on the right hand side but only as a solution to a linear system of equations. After
evaluating the right hand side, still a linear equation needs to be solved. This extra
effort, however, gives us greatly improved stability and accuracy.

Note that while we have discussed the Crank-Nicolson method here in the context
of the diffusion equation, it can be applied to any time-dependent PDE.

3.5 The wave equation

3.5.1 A vibrating string

Another simple PDE is the wave equation, which we will study for the case of a string
running along the x-direction and vibrating transversely in the y-direction:

∂2y

∂t2
= c2

∂2y

∂x2
. (3.25)

The wave velocity c =
√

T/µ is a function of the string tension T and the mass density
µ of the string.

As you can easily verify, analytic solutions of this wave equation are of the form

y = f+(x+ ct) + f−(x− ct). (3.26)

To solve the wave equation numerically we again discretize time and space in the
usual manner and obtain, using the the second order difference expressions for the
second derivative:

y(xi, tn+1) + y(xi, tn−1)− 2y(xi, tn)

(∆t)2
≈ c2

y(xi+1, tn) + y(xi−1, tn)− 2y(xi, tn)

(∆x)2
. (3.27)

This can be transformed to

y(xi, tn+1) = 2(1− κ2)y(xi, tn)− y(xi, tn−1) + κ2 [y(xi+1, tn) + y(xi−1, tn)] , (3.28)

with κ = c∆t/∆x.
Again, we have to choose the values of ∆t and ∆x carefully. Surprisingly, for the

wave equation when choosing κ = 1 we obtain the exact solution without any error! To
check this, insert the exact solution (3.26) into the difference equation (3.27).
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Decreasing both ∆x and ∆t does not increase the accuracy but only the spatial and
temporal resolution. This is a very special feature of the linear wave equation.

Choosing smaller time steps and thus κ < 1 there will be solutions propagating
faster than the speed of light, but since they decrease with the square of the distance
r−2 this does not cause any major problems.

On the other hand, choosing a slightly larger time step and thus κ > 1 has catas-
trophic consequences: these unphysical numerical solution increase and diverge rapidly,
as can be seen in the Mathematica Notebook posted on the web page.

3.5.2 More realistic models

Real strings and musical instruments cause a number of changes and complications to
the simple wave equation discussed above:

• Real strings vibrate in both the y and z direction, which is easy to implement.

• Transverse vibrations of the string cause the length of the string and consequently
the string tension T to increase. This leads to an increase of the velocity c and
the value of κ. The nice fact that κ = 1 gives the exact solution can thus no
longer be used and special care has to be taken to make sure that κ < 1 even for
the largest elongations of the string.

• Additionally there will be longitudinal vibrations of the string, with a much higher
velocity c|| ≫ c. Consequently the time step for longitudinal vibrations ∆t|| has
to be chosen much smaller than for transverse vibrations. Instead of of simulating
both transverse and longitudinal vibrations with the same small time step ∆t||
one still uses the larger time step ∆t for the transverse vibrations but updates the
transverse positions only every ∆t/∆t|| iterations of the longitudinal positions.

• Finally the string is not in vacuum and infinitely long, but in air and attached to
a musical instrument. Both the friction of the air and forces exerted by the body
of the instrument cause damping of the waves and a modified sound.

For more information about applications to musical instruments I refer to the article
by N. Giordano in Computers in Phsyics 12, 138 (1998). This article also discusses
numerical approaches to the following problems

• How is sound created in an acoustic guitar, an electric guitar and a piano?

• What is the sound of these instruments?

• How are the strings set into motion in these instruments?

The simulation of complex instruments such as pianos still poses substantial unsolved
challenges.
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3.6 The finite element method

3.6.1 The basic finite element method

While the finite difference method used so far is simple and straightforward for regular
mesh discretizations it becomes very hard to apply to more complex problems such as:

• spatially varying constants, such as spatially varying dielectric constants in the
Poisson equation.

• irregular geometries such as airplanes or turbines.

• dynamically adapting geometries such as moving pistons.

In such cases the finite element method has big advantages over finite differences
since it does not rely on a regular mesh discretization. We will discuss the finite element
method using the one-dimensional Poisson equation

φ′′(x) = −4πρ(x) (3.29)

with boundary conditions
φ(0) = φ(1) = 0. (3.30)

as our example.
The first step is to expand the solution φ(x) in terms of basis functions {vi}, i =

1, . . . ,∞ of the function space:

φ(x) =
∞
∑

i=1

aivi(x). (3.31)

For our numerical calculation the infinite basis set needs to be truncated, choosing a fi-
nite subset {ui}, i = 1, . . . , N of N linearly independent, but not necessarily orthogonal,
functions:

φN(x) =
N
∑

i=1

aiui(x). (3.32)

The usual choice are functions localized around some mesh points xi, which in contrast
to the finite difference method do not need to form a regular mesh.

The coefficients ~a = (a1, . . . , aN) are chosen to minimize the residual

φ′′
N(x) + 4πρ(x) (3.33)

over the whole interval. Since we can choose N coefficients we can impose N conditions

0 = gi

∫ 1

0
[φ′′

N(x) + 4πρ(x)]wi(x)dx, (3.34)

where the weight functions wi(x) are often chosen to be the same as the basis functions
wi(x) = ui(x). This is called the Galerkin method.

In the current case of a linear PDE this results in a linear system of equations

A~a = ~b (3.35)
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with

Aij = −
∫ 1

0
u′′i (x)wj(x)dx =

∫ 1

0
u′i(x)w

′
j(x)dx

bi = 4π
∫ 1

0
ρ(x)wi(x)dx, (3.36)

where in the first line we have used integration by parts to circumvent problems with
functions that are not twice differentiable.

A good and simple choice of local basis functions fulfilling the boundary conditions
(3.30) are local triangles centered over the points xi = i∆x with ∆x = 1/(n+ 1):

ui(x) =











(x− xi−1)/∆x for x ∈ [xi − 1, xi]
(xi+1 − x)/∆x for x ∈ [xi, xi + 1]

0 otherwise
, (3.37)

but other choices such as local parabolas are also possible.
With the above choice we obtain

Aij = −
∫ 1

0
u′′i (x)uj(x)dx =

∫ 1

0
u′i(x)u

′
j(x)dx =











2/∆x
−1/∆x

0

for i = j
for i = j ± 1

otherwise
(3.38)

and, choosing a charge density ρ(x) = (π/4) sin(πx)

bi = 4π
∫ 1

0
ρ(x)ui(x)dx =

1

∆x
(2 sin πxi − sin πxi−1 − sin πxi+1) (3.39)

In the one-dimensional case the matrix A is tridiagonal and efficient linear solvers for
this tridiagonal matrix can be found in the LAPACK library. In higher dimensions the
matrices will usually be sparse band matrices and iterative solvers will be the methods
of choice.

3.6.2 Generalizations to arbitrary boundary conditions

Our example assumed boundary conditions φ(0) = φ(1) = 0. These boundary con-
ditions were implemented by ensuring that all basis functions ui(x) were zero on the
boundary. Generalizations to arbitrary boundary conditions φ(0) = φ0 and φ(1) = φ1

are possible either by adding additional basis functions that are non-zero at the bound-
ary or be starting from a generalized ansatz that automatically ensures the correct
boundary conditions, such as

φN(x) = φ0(1− x) + φ1x
N
∑

i=1

aiui(x). (3.40)

3.6.3 Generalizations to higher dimensions

Generalizations to higher dimensions are done by

• creating higher-dimensional meshes
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• and providing higher-dimensional basis functions, such as pyramids centered on
a mesh point.

While the basic principles remain the same, stability problems can appear at sharp
corners and edges and for time-dependent geometries. The creation of appropriate
meshes and basis functions is an art in itself, and an important area of industrial
research. Interested students are referred to advanced courses on the subject of finite
element methods

3.6.4 Nonlinear partial differential equations

The finite element method can also be applied to non-linear partial differential equations
without any big changes. Let us consider a simple example

φ(x)
d2φ

dx2
(x) = −4πρ(x) (3.41)

Using the same ansatz, Eq. (3.32) as before and minimizing the residuals

gi =

1
∫

0

[φφ′′(x) + 4πρ(x)]wi(x)dx (3.42)

as before we now end up with a nonlinear equation instead of a linear equation:

∑

i,j

Aijkaiaj = bk (3.43)

with

Aijk = −
1
∫

0

ui(x)u
′′
j (x)wk(x)dx (3.44)

and bk defined as before.
The only difference between the case of linear and nonlinear partial differential

equations is that the former gives a set of coupled linear equations, while the latter
requires the solution of a set of coupled nonlinear equations.

Often, a Picard iteration can be used to transform the nonlinear problem into a
linear one. In our case we can start with a crude guess φ0(x) for the solution and use
that guess to linearize the problem as

φ0(x)
d2φ1

dx2
(x) = −4πρ(x) (3.45)

to obtain a better solution φ1. Replacing φ0 by φ1 an iterating the procedure by solving

φn(x)
d2φn+1

dx2
(x) = −4πρ(x) (3.46)

for ever better solutions φn+1 we converge to the solution of the nonlinear partial dif-
ferential equation by solving a series of linear partial differential equations.
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3.7 Maxwell’s equations

The last linear partial differential equation we will consider in this section are Maxwell’s
equations for the electromagnetic field. We will first calculate the field created by a
single charged particle and then solve Maxwell’s equations for the general case.

3.7.1 Fields due to a moving charge

The electric potential at the location ~R due to a single static charge q at the position
~r can directly be written as

V (~R) =
q

|~r − ~R|
, (3.47)

and the electric field calculated from it by taking the gradient ~E = −∇V .
When calculating the fields due to moving charges one needs to take into account

that the electromagnetic waves only propagate with the speed of light. It is thus
necessary to find the retarded position

rret =
∣

∣

∣

~R− ~r(tret)
∣

∣

∣ (3.48)

and time

tret = t− rret(tret)

c
(3.49)

so that the distance rret of the particle at time tret was just ctret. Given the path of the
particle this just requires a root solver. Next, the potential can be calculated as

V (~R, t) =
q

rret (1− r̂ret · ~vret/c)
(3.50)

with the retarded velocity given by

~vret =
d~r(t)

dt

∣

∣

∣

∣

∣

t=tret

(3.51)

The electric and magnetic field then work out as

~E(~R, t) =
qrret
~rret~uret

[

~uret

(

c2 − v2
ret

)

+ ~rret × (~uret × ~aret)
]

(3.52)

~B(~R, t) = r̂ret × ~E(~R, t) (3.53)

with

~aret =
d2~r(t)

dt2

∣

∣

∣

∣

∣

t=tret

(3.54)

and
~uret = cr̂ret − ~vret. (3.55)
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Figure 3.1: Definition of charges and currents for the Yee-Vischen algorithm

3.7.2 The Yee-Vischen algorithm

For the case of a single moving charge solving Maxwell’s equation just required a root
solver to determine the retarded position and time. In the general case of many particles
it will be easier to directly solve Maxwell’s equations, which (setting ǫ0 = µ0 = c = 1)
read

∂ ~B

∂t
= −∇× ~E (3.56)

∂ ~E

∂t
= ∇× ~B − 4π~j (3.57)

∂ρ

∂t
= −∇ ·~j (3.58)

The numerical solution starts by dividing the volume into cubes of side length ∆x,
as shown in figure 3.7.2 and defining by ρ(~x) the total charge inside the cube.

Next we need to define the currents flowing between cubes. They are most naturally
defined as flowing perpendicular to the faces of the cube. Defining as jx(~x) the current
flowing into the box from the left, jy(~x) the current from the front and jz(~x) the current
from the bottom we can discretize the continuity equation (3.58) using a half-step
method

ρ(~x, t+ ∆t/2) = ρ(~x, t+ ∆t/2)− ∆t

∆x

6
∑

f=1

jf(~x, t). (3.59)

The currents through the faces jf (~x, t) are defined as

j1(~x, t) = −jx(~x, t)
j2(~x, t) = −jy(~x, t)
j3(~x, t) = −jz(~x, t) (3.60)

j4(~x, t) = jx(~x+ ∆xêx, t)

j5(~x, t) = jy(~x+ ∆xêy, t)

j6(~x, t) = jz(~x+ ∆xêz , t).

Be careful with the signs when implementing this.
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Figure 3.2: Definition of electric field and its curl for the Yee-Vischen algorithm.
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Figure 3.3: Definition of magnetic field and its curl for the Yee-Vischen algorithm.

Next we observe that equation (3.57) for the electric field ~E contains a term propor-
tional to the currents j and we define the electric field also perpendicular to the faces,
but offset by a half time step. The curl of the electric field, needed in equation (3.56) is
then most easily defined on the edges of the cube, as shown in figure 3.7.2, again taking
care of the signs when summing the electric fields through the faces around an edge.

Finally, by noting that the magnetic field term (3.56) contains terms proportional
to the curl of the electric field we also define the magnetic field on the edges of the
cubes, as shown in figure 3.7.2. We then obtain for the last two equations:

~E(~x, t+ ∆t/2) = ~E(~x, t+ ∆t/2) +
∆t

∆x

[

4
∑

e=1

~Be(~x, t)− 4π~j(~x, t)

]

(3.61)

~B(~x, t+ ∆t) = ~B(~x, t)− ∆t

∆x

4
∑

f=1

~Ef (~x, t+ ∆t/2) (3.62)

which are stable if ∆t/∆x ≤ 1/
√

3.
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3.8 Hydrodynamics and the Navier Stokes equation

3.8.1 The Navier Stokes equation

The Navier Stokes equation is one of the most famous, if not the most famous set of
partial differential equations. They describe the flow of a classical Newtonian fluid.

The first equation describing the flow of the fluid is the continuity equation, describ-
ing conservation of mass:

∂ρ

∂t
+∇ · (ρ~v) = 0 (3.63)

where ρ is the local mass density of the fluid and ~v its velocity. The second equation is
the famous Navier-Stokes equation describing the conservation of momentum:

∂

∂t
(ρ~v) +∇ · Π = ρ~g (3.64)

where ~g is the force vector of the gravitational force coupling to the mass density, and
Πij is the momentum tensor

Πij = ρvivj − Γij (3.65)

with

Γij = η [∂ivj + ∂jvi] +
[(

ζ − 2η

3

)

∇ · ~v − P
]

δij. (3.66)

The constants η and ζ describe the shear and bulk viscosity of the fluid, and P is the
local pressure.

The third and final equation is the energy transport equation, describing conserva-
tion of energy:

∂

∂t

(

ρǫ+
1

2
ρv2

)

+∇ ·~je = 0 (3.67)

where ǫ is the local energy density, the energy current is defined as

~je = ~v
(

ρǫ+
1

2
ρv2

)

− ~v · Γ− κ∇kBT, (3.68)

where T is the temperature and κ the heat conductivity.
The only nonlinearity arises from the momentum tensor Πij in equation (3.65).

In contrast to the linear equations studied so far, where we had nice and smoothly
propagating waves with no big surprises, this nonlinearity causes the fascinating and
complex phenomenon of turbulent flow.

Despite decades of research and the big importance of turbulence in engineering
it is still not completely understood. Turbulence causes problems not only in en-
gineering applications but also for the numerical solution, with all known numerical
solvers becoming unstable in highly turbulent regimes. Its is then hard to distinguish
the chaotic effects caused by turbulence from chaotic effects caused by an instabil-
ity of the numerical solver. In fact the question of finding solutions to the Navier
Stokes equations, and whether it is even possible at all, has been nominated as one of
the seven millennium challenges in mathematics, and the Clay Mathematics Institute
(http:/www.claymath.org/) has offered a prize money of one million US$ for solving
the Navier-Stokes equation or for proving that they cannot be solved.
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Just keep these convergence problems and the resulting unreliability of numerical
solutions in mind the next time you hit a zone of turbulence when flying in an airplane,
or read up on what happened to American Airlines flight AA 587.

3.8.2 Isothermal incompressible stationary flows

For the exercises we will look at a simplified problem, the special case of an isothermal
(constant T ) static (∂/∂T = 0) flow of an incompressible fluid (constant ρ). In this
case the Navier-Stokes equations simplify to

ρ~v · ∇~v +∇P − η∇2~v = ρ~g (3.69)

∇ · ~v = 0 (3.70)

In this stationary case there are no problems with instabilities, and the Navier-Stokes
equations can be solved by a linear finite-element or finite-differences method combined
with a Picard-iteration for the nonlinear part.

3.8.3 Computational Fluid Dynamics (CFD)

Given the importance of solving the Navier-Stokes equation for engineering the numer-
ical solution of these equations has become an important field of engineering called
Computational Fluid Dynamics (CFD). For further details we thus refer to the special
courses offered in CFD.

3.9 Solitons and the Korteveg-de Vries equation

As the final application of partial differential equations for this semester – quantum
mechanics and the Schrödinger equation will be discussed in the summer semester – we
will discuss the Korteveg-de Vries equations and solitons.

3.9.1 Solitons

John Scott Russell, a Scottish engineer working on boat design made a remarkable
discovery in 1834:

I was observing the motion of a boat which was rapidly drawn along a narrow

channel by a pair of horses, when the boat suddenly stopped - not so the mass

of water in the channel which it had put in motion; it accumulated round

the prow of the vessel in a state of violent agitation, then suddenly leaving

it behind, rolled forward with great velocity, assuming the form of a large

solitary elevation, a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without change of form or

diminution of speed. I followed it on horseback, and overtook it still rolling

on at a rate of some eight or nine miles an hour, preserving its original

figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it
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in the windings of the channel. Such, in the month of August 1834, was my

first chance interview with that singular and beautiful phenomenon which I

have called the Wave of Translation.

John Scott Russell’s “wave of translation” is nowadays called a soliton and is a wave
with special properties. It is a time-independent stationary solution of special non-
linear wave equations, and remarkably, two solitions pass through each other without
interacting.

Nowadays solitons are far from being just a mathematical curiosity but can be used
to transport signal in specially designed glass fibers over long distances without a loss
due to dispersion.

3.9.2 The Korteveg-de Vries equation

The Korteveg-de Vries (KdV) equation is famous for being the first equation found
which shows soliton solutions. It is a nonlinear wave equation

∂u(x, t)

∂t
+ ǫu

∂u(x, t)

∂x
+ µ

∂3u(x, t)

∂x3
= 0 (3.71)

where the spreading of wave packets due to dispersion (from the third term) and the
sharpening due to shock waves (from the non-linear second term) combine to lead to
time-independent solitons for certain parameter values.

Let us first consider these two effects separately. First, looking at a linear wave
equation with a higher order derivative

∂u(x, t)

∂t
+ c

∂u(x, t)

∂x
+ β

∂3u(x, t)

∂x3
= 0 (3.72)

and solving it by the usual ansatz u(x, t) = exp(i(kx ± ωt) we find dispersion due to
wave vector dependent velocities:

ω = ±ck ∓ βk3 (3.73)

Any wave packet will thus spread over time.
Next let us look at the nonlinear term separately:

∂u(x, t)

∂t
+ ǫu

∂u(x, t)

∂x
= 0 (3.74)

The amplitude dependent derivative causes taller waves to travel faster than smaller
ones, thus passing them and piling up to a large shock wave, as can be seen in the
Mathematica Notebook provided on the web page.

Balancing the dispersion caused by the third order derivative with the sharpening
due to the nonlinear term we can obtain solitions!
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3.9.3 Solving the KdV equation

The KdV equation can be solved analytically by making the ansatz u(x, t) = f(x− ct).
Inserting this ansatz we obtain an ordinary differential equation

µf (3) + ǫff ′ − cf ′ = 0, (3.75)

which can be solved analytically in a long and cumbersome calculation, giving e.g. for
µ = 1 and ǫ = −6:

u(x, t) = −c
2
sech2

[

1

2

√
c (x− ct− x0)

]

(3.76)

In this course we are more interested in numerical solutions, and proceed to solve
the KdV equation by a finite difference method

u(xi, t+ ∆t) = u(xi, t−∆t) (3.77)

− ǫ
3

∆t

∆x
[u(xi+1, t) + u(xi, t) + u(xi−1, t)] [u(xi+1, t)− u(xi−1, t)]

−µ ∆t

∆x3
[u(xi+2, t) + 2u(xi+1, t)− 2u(xi−1, t)− u(xi−2, t)] .

Since this integrator requires the wave at two previous time steps we start with an
initial step of

u(xi, t0 + ∆t) = u(xi, t0) (3.78)

− ǫ
6

∆t

∆x
[u(xi+1, t) + u(xi, t) + u(xi−1, t)] [u(xi+1, t)− u(xi−1, t)]

−µ
2

∆t

∆x3
[u(xi+2, t) + 2u(xi+1, t)− 2u(xi−1, t)− u(xi−2, t)]

This integrator is stable for

∆t

∆x

[

|εu|+ 4
|µ|
∆x2

]

≤ 1 (3.79)

Note that as in the case of the heat equation, a progressive decrease of space steps or
even of space and time steps by the same factor will lead to instabilities!

Using this integrator, also provided on the web page as a Mathematica Notebook
you will be able to observe:

• The decay of a wave due to dispersion

• The creation of shock waves due to the nonlinearity

• The decay of a step into solitons

• The crossing of two solitons
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Chapter 4

The classical N-body problem

4.1 Introduction

In this chapter we will discuss algorithms for classical N -body problems, whose length
scales span many orders of magnitudes

• the universe (≈ 1026m)

• galaxy clusters (≈ 1024m)

• galaxies (≈ 1021m)

• clusters of stars (≈ 1018m)

• solar systems (≈ 1013m)

• stellar dynamics (≈ 109m)

• climate modeling (≈ 106m)

• gases, liquids and plasmas in technical applications (≈ 10−3 . . . 102m)

On smaller length scales quantum effects become important. We will deal with them
later.

The classical N -body problem is defined by the following system of ordinary differ-
ential equations:

mi
d~vi

dt
= ~Fi = −∇iV (~x1, . . . , ~xN)

d~xi

dt
= ~vi, (4.1)

where mi, ~vi and ~xi are the mass, velocity and position of the i-the particle.
The potential V (~x1, . . . , ~xN ) is often the sum of an external potential and a two-body

interaction potential:

V (~x1, . . . , ~xN) =
∑

i

Vext(~xi) +
∑

i<j

Uij(|~xi − ~xj |) (4.2)

The special form U(|~xi − ~xj |) of the two-body potential follows from translational and
rotational symmetry.
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4.2 Applications

There are many different forms of the potential U :

1. In astrophysical problems gravity is usually sufficient, except in dense plasmas,
interiors of stars and close to black holes:

U
(gravity)
ij (r) = −Gmimj

r
. (4.3)

2. The simplest model for non-ideal gases are hard spheres with radius ai:

U
(hard sphere)
ij (r) =

{

0 for r >= ai + aj

∞ for r < ai + aj
(4.4)

3. Covalent crystals and liquids can be modeled by the Lennard-Jones potential

U
(LJ)
ij (r) = 4ǫij

[

(
σ

r

12

)− (
σ

r
)6
]

. (4.5)

The r−6-term describes the correct asymptotic behavior of the covalent van der
Waals forces. The r−12-term models the hard core repulsion between atoms.
The special form r−12 is chosen to allow for a fast and efficient calculation as
square of the r−6 term. Parameters for liquid argon are ǫ = 1.65 × 10−21J and
σ = 3.4× 10−10m.

4. In ionic crystals and molten salts the electrostatic forces are dominant:

U
(ionic)
ij (r) = bijr

−n + e2
ZiZj

r
, (4.6)

where Zi and Zj are the formal charges of the ions.

5. The simulation of large biomolecules such as proteins or even DNA is a big
challenge. For non-bonded atoms often the 1-6-12 potential, a combination of
Lennard-Jones and electrostatic potential is used:

U
(1−6−12)
ij (r) = e2

ZiZj

r
+ 4ǫij

[

(
σ

r

12

)− (
σ

r
)6
]

. (4.7)

For bonded atoms there are two ways to model the bonding. Either the distances
between two atoms can be fixed, or the bonding can be described by a harmonic
oscillator:

U
(bond)
ij (r) =

1

2
Kij(r − bij)2. (4.8)

The modeling of fixed angles between chemical bonds (like in water molecules) is
a slightly more complex problem. Again, either the angle can be fixed, or modeled
by a harmonic oscillator in the angle θ. Note that the angle θ is determined by the
location of three atoms, and that this is thus a three-body-interaction! Students
who are interested in such biomolecules are referred to the research group of Prof.
van Gunsteren in the chemistry department.
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6. More complex potentials are used in the simulation of dense plasmas and of col-
lisions of heavy atomic nuclei.

7. The Car-Parrinello method combines a classical simulation of the molecular dy-
namics of the motion of atomic nuclei with a quantum chemical ab-initio calcula-
tion of the forces due to electronic degrees of freedom. This gives more accurate
forces than a Lennard-Jones potential but is possible only on rather small sys-
tems due to the large computational requirements. If you are interested in the
Car-Parrinello method consider the research group of Prof. Parrinello in Lugano.

4.3 Solving the many-body problem

The classical many-body problem can be tackled with the same numerical methods that
we used for the few-body problems, but we will encounter several additional difficulties,
such as

• the question of boundary conditions

• measuring thermodynamic quantities such as pressure

• performing simulations at constant temperature or pressure instead of constant
energy or volume

• reducing the scaling of the force calculation for long-range forces from O(N2) to
O(N lnN)

• overcoming the slowing down of simulations at phase transitions

4.4 Boundary conditions

Open boundary conditions are natural for simulations of solar systems or for collisions of
galaxies, molecules or atomic nuclei. For simulations of crystals, liquids or gases on the
other hand, effects from open boundaries are not desired, except for the investigation
of surface effects. For these systems periodic boundary conditions are better. As we
discussed earlier, they remove all boundary effects.

In the calculation of forces between two particle all periodic images of the simulation
volume have to be taken into account. For short range forces, like a Lennard-Jones force,
the “minimum image” is the method of choice. Here the distance between a particle
and the nearest of all periodic images of a second particle is chosen for the calculation
of the forces between the two particles.

For long range forces on the other hand (forces that as r−d or slower) the minimum
image method is not a good approximation because of large finite size effects. Then the
forces caused by all the periodic images of the second particle have to be summed over.
The electrostatic potential acting on a particle caused by other particles with charge qi
at sites ~ri is

Φp =
∑

~n

∑

i

qi
|~r~n − ~ri|

, (4.9)
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where ~n is an integer vector denoting the periodic translations of the root cell and ~r~n
is the position of the particle in the corresponding image of the root cell.

This direct summation converges very slowly. It can be calculated faster by the
Ewald summation technique1, which replaces the sum by two faster converging sums:

Φp =
∑

~n

∑

i

qi
erfc(α|~r~n − ~ri|)
|~r~n − ~ri|

+

+
1

πL

∑

i

∑

~h6=0

qi exp

(

−π|h|2
αL2

)

cos
(

2π

L
~h · (~ro − ~ri)

)

. (4.10)

In this sum the ~h are integer reciprocal lattice vectors. The parameter α is arbitrary
and can be chosen to optimize convergence.

Still the summation is time-consuming. Typically one tabulates the differences
between Ewald sums and minimum image values on a grid laid over the simulation
cell and interpolates for distances between the grid points. For details we refer to the
detailed discussion in M.J. Sangster and M. Dixon, Adv. in Physics 25, 247 (1976).

4.5 Molecular dynamics simulations of gases, liq-

uids and crystals

4.5.1 Ergodicity, initial conditions and equilibration

In scattering problems or in the simulation of cosmological evolution the initial condi-
tions are usually given. The simulation then follows the time evolution of these initial
conditions. In molecular dynamics simulations on the other hand one is interested in
thermodynamic averages 〈A〉. In an ergodic system the phase space average is equivalent
to the time average:

〈A〉 :=

∫

A(Γ)P [Γ]dΓ
∫

P [Γ]dΓ
= lim

τ→∞
1

τ

∫ τ

0
A(t)dt. (4.11)

Initial conditions are best chosen as a regular crystal lattice. The velocities are
picked randomly for each component, according to a Maxwell distribution

P [vα] ∝ exp

(

−mv2
α

2kBT

)

. (4.12)

Finally the velocities are all rescaled by a constant factor to obtain the desired total
energy.

An important issue is that the system has to be equilibrated (thermalized) for some
time before thermal equilibrium is reached and measurements can be started. This
thermalization time is best determined by observing time series of physical observables,
such as the kinetic energy (temperature) or other quantities of interest.

1P.P. Ewald, Ann. Physik 64, 253 (1921).
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4.5.2 Measurements

A simple measurement is the self-diffusion constant D. In a liquid or gaseous system it
can be determined from the time dependence of the positions:

∆2(t) =
1

N

N
∑

i=1

[~ri(t)− ~ri(0)]2 = 2dDt+ ∆2
0 (4.13)

In a crystal the atoms remain at the same location in the lattice and thus D = 0.
A measurement of D is one way to observe melting of a crystal.

Another quantity that is easy to measure is the mean kinetic energy

〈Ek〉 =
1

2
〈

N
∑

i=1

mi~v
2
i 〉. (4.14)

〈Ek〉 is proportional to the mean temperature

〈Ek〉 =
G

2
kBT, (4.15)

where G = d(N − 1) ≈ dN is the number of degrees of freedom.
In a system with fixed boundaries the particles are reflected at the boundaries. The

pressure P is just the force per area acting on the boundary walls of the system In the
case of periodic boundary conditions there are no walls. The pressure P can then be
measured using the following equation, derived from the virial theorem:

P =
NkBT

V
+

1

dV

∑

i<j

~rij · ~Fij(t), (4.16)

where ~Fij denotes the force between particles i and j and ~rij is their distance.
The first term of equation (4.16) is the kinetic pressure, due to the kinetic energy of

the particles. This term alone gives the ideal gas law. The second term is the pressure
(force per area) due to the interaction forces.

More information can usually be extracted from the pair correlation function

g(~r) =
1

ρ(N − 1)

〈

∑

i6=j

δ(~r + ~ri − ~rj)

〉

(4.17)

or its Fourier transform, the static structure factor S(~k)

g(~r)− 1 =
1

(2π)dρ

∫

[S(~k)− 1] exp(i~k · ~r)d~k (4.18)

S(~k)− 1 = ρ
∫

[g(~r)− 1] exp(−i~k · ~r)d~r (4.19)

If the angular dependence is of no interest, a radial pair correlation function

g(r) =
1

4π

∫

g(~r) sin θdθdφ (4.20)
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and corresponding structure factor

S(k) = 4πρ
∫ ∞

0

sin kr

kr
[g(r)− 1]r2dr (4.21)

can be used instead.
This structure factor can be measured in X-ray or neutron scattering experiments.

In a perfect crystal the structure factor shows sharp δ-function like Bragg peaks and a
periodic long range structure in g(~r). Liquids still show broad maxima at distances of
nearest neighbors, second nearest neighbors, etc., but these features decay rapidly with
distance.

The specific heat at constant volume cV can in principle be calculated as a tempera-
ture derivative of the internal energy. Since such numerical derivatives are numerically
unstable the preferred method is a calculation from the energy fluctuations

cv =
〈E2〉 − 〈E〉2

kBT 2
. (4.22)

4.5.3 Simulations at constant energy

The equations of motion of a disspiationless system conserve the total energy and the
simulation is thus done in the microcanonical ensemble. Discretization of the time
evolution however introduces errors in the energy conservation, and as a consequence
the total energy will slowly change over time. To remain in the microcanonical ensemble
energy corrections are necessary from time to time. These are best done by a rescaling
of all the velocities with a constant factor. The equations are easy to derive and will
not be listed here.

4.5.4 Constant temperature

The canonical ensemble at constant temperature is usually of greater relevance than the
microcanonical ensemble at constant energy. The crudest, ad-hoc method for obtaining
constant temperature is a rescaling like we discussed for constant energy. This time
however we want rescale the velocities to achieve a constant kinetic energy and thus,
by equation (4.15) constant temperature. Again the equations can easily be derived.

A better method is the Nosé-Hoover thermostat. In this algorithm the system is
coupled reversibly to a heat bath by a friction term η:

mi
d~vi

dt
= ~Fi − η~vi

d~ri

dt
= ~vi (4.23)

(4.24)

The friction term η is chosen such that constant temperature is achieved on average.
We want this term to heat up the system if the temperature is too low and to cool it
down if the temperature is too high. One way of doing this is by setting

dη

dt
=

1

ms

(

Ek −
1

2
GkBT

)

, (4.25)

where ms is the coupling constant to the heat bath.
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4.5.5 Constant pressure

Until now we always worked at fixed volume. To perform simulations at constant
pressure we need to allow the volume to change. This can be done by rescaling the
coordinates with the linear size L of the system:

~r = L~x. (4.26)

The volume of the system is denoted by Ω = LD. We extend the Lagrangian by
including an external pressure P0 and an inertia M for pressure changes (e.g. the mass
of a piston):

L =
N
∑

i=1

mi

2
L2

(

d~xi

dt

)2

−
∑

i<j

V (L(~xi − ~xj)) +
M

2

(

dΩ

dt

)2

+ P0Ω (4.27)

The Euler equations applied to above Lagrangian give the equations of motion:

d2~xi

dt2
=

1

miL
~Fi −

2

DΩ

dΩ

dt

d~xi

dt

d2Ω

dt2
=

P − P0

M
, (4.28)

where P turns out to be just the pressure defined in equation (4.16). These equations
of motion are integrated with generalizations of the Verlet algorithm.

Generalizations of this algorithm allow changes not only of the total volume but
also of the shape of the simulation volume.

4.6 Scaling with system size

The time intensive part of a classical N -body simulation is the calculation of the forces.
The updating of positions and velocities according to the forces is rather fast and scales
linearly with the number of particles N .

For short range forces the number of particles within the interaction range is limited,
and the calculation of the forces, while it might still be a formidable task, scales with
O(N) and thus poses no big problems.

Rapidly decaying potentials, like the Lennard-Jones potential can be cut off at a
distance rc. The error thus introduced into the estimates for quantities like the pressure
can be estimated from equations (4.16) using equation (4.17) as:

∆P = −2πρ2

3

∫ ∞

rc

∂V

∂r
g(r)r3dr (4.29)

where a common two-body potential V (r) between all particle pairs was assumed. If
V (R) decays faster than r−3 (in general r−d, where d is the dimensionality) this correc-
tion becomes small as rc is increased.

Long range forces, like Coulomb forces or gravity, on the other hand, pose a big
problem. No finite cut-off may be introduced without incurring substantial errors.
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Each particle asserts a force onto every other particle, thus requiring (N − 1)N/2 ∼
O(N2) force calculations. This is prohibitive for large scale simulations. In numerical
simulations there is a solution to this problem. Due to discrete time steps ∆t we cannot
avoid making errors in the time integration. Thus we can live with a small error in the
force calculations and use one of a number of algorithms that, while introducing small
controllable errors in the forces, need only O(N logN) computations.

4.6.1 The Particle-Mesh (PM) algorithm

The Particle-Mesh (PM) algorithm maps the force calculation to the solution of a
Poisson equation which can be done in a time proportional to O(N logN). It works as
follows:

1. A regular mesh with M ∼ N mesh points is introduced in the simulation volume

2. The masses of the particles are assigned – in a clever way – to nearby mesh points.

3. The potential equation (often a Poisson equation) is solved on the mesh using a
fast solver in O(M logM) ∼ O(N logN) steps.

4. The potential at the position of each particle is interpolated – again in a clever
way – from the potential at the nearby mesh points and the force upon the particle
calculated from the gradient of the potential.

The charge assignment and potential interpolation are the tricky parts. They should
be done such that errors are minimized. The standard textbook “Computer Simulations
Using Particles” by R.W. Hockney and J.W. Eastwood discusses the PM method in
great detail.

We want to fulfill at least the following conditions

1. At large particle separations the errors should become negligible

2. The charge assigned to the mesh points and the forces interpolated from mesh
points should vay smoothly as the particle position changes.

3. Total momentum should be conserved, i.e. the force ~Fij acting on particle i from

particle j should fulfill ~Fij = −~Fji.

The simplest scheme is the NGP scheme (neasrest grid point), where the full particle
mass is assigned to the nearest grid point and the force is also evaluated at the nearest
grid point. More elaborate schemes like the CIC (cloud in cell) scheme assign the charge
to the 2d nearest grid points and also interpolate the forces from these grid points. The
algorithm becomes more accurate but also more complex as more points are used. For
detailed discussions read the book by Hockney and Eastwood.

In periodic systems and for forces which have a Greens function g(~r) (e.g. solutions
of a Poisson equation) one of the best methods is the fast Fourier method, which we
will describe for the case of gravity, where the potential can be calculated as

Φ(~r) =
∫

d3~r′ρ(~r′)g(~r − ~r′), (4.30)
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where ρ(~r) is the charge distribution and the Greens function is

g(~r) =
G

||~r|| (4.31)

in three space dimension. The convolution in equation (4.30) is best performed by
Fourier transforming the equation, which reduces it to a multiplication

Φ̂(~k) = ρ̂(~k)ĝ(~k) (4.32)

On the finite mesh of the PM method, the discrete charge distribution is Fourier trans-
formed in O(M logM) steps using the Fast Fourier Transform (FFT) algorithm. The
Fourier transform of the Greens function in equation (4.31) is

ĝ(~k) =
G

||~k||2
. (4.33)

Using this equation gives the “poor man’s Poisson solver”. A suitably modified Greens
function, such as

ĝ(~k) ∝ 1

sin2(kxL/2) + sin2(kyL/2) + sin2(kzL/2)
, (4.34)

where L is the linear dimension of the simulation volume can reduce the discretization
errors caused by the finite mesh. In contrast to equation (4.33) this form differentiable
also at the Brillouin zone boundary, e.g. when kx = ±π/L or ky = ±π/L or kz = ±π/L.
Before writing any program yourself we recommend that you study the textbooks and
literature in detail as there are many subtle issues you have to take care of.

The PM algorithm is very efficient but has problems with

• non-uniform particle distributions, such as clustering of stars and galaxies.

• strong correlations effects between particles. Bound states, such as binary stars,
will never be found in PM simulations of galaxies.

• complex geometries.

The first two of these problems can be solved by the P3M and AP3M algorithms

4.6.2 The P3M and AP3M algorithms

The PM method is good for forces due to far away particles but bad for short ranges.
The P3M method solves this problem by splitting the force ~F into a long range force
~Fl and a short range force ~Fs:

~F = ~Fl + ~Fs (4.35)

The long range force ~Fl is chosen to be small and smoothly varying for short dis-
tances. It can be efficiently computed using the particle-mesh (PM) method. The

short range force ~Fs has a finite interaction radius R is calculated exactly, summing

45



up the particle-particle forces. Thus the name particle-particle/particle mesh (P3M)
algorithm.

For nearly uniform particle distributions the number of particles within the range
of ~Fs is small and independent of N . The P3M algorithm then scales as O(N) +
O(M logM) with M ∼ N .

Attractive long range forces, like gravity, tend to clump particles and lead to ex-
tremely non-uniform particle distribution. Just consider solar systems, star clusters,
galaxies and galaxy clusters to see this effect. Let us consider what happens to the
P3M method in this case. With a mesh of N ≈M points it will happen that almost all
particles (e.g. a galaxy) clump within the range R of the short range force ~Fs. Then the
PP part scales like O(N2). Alternatively we can increase the number of mesh points
M to about M ≫ N , which again is non-optimal.

The solution to this problem refining the mesh in the regions of space with a high
particle density. In a simulation of a collision between two galaxies we will use a fine
mesh at the location of the galaxies and a coarse mesh in the rest of the simulation
space. The adaptive P3M method (AP3M) automatically refines the mesh in regions of
space with high particle densities and is often used, besides tree codes, for cosmological
simulations.

4.6.3 The tree codes

Another approach to speeding up the force calculation is by collecting clusters of far
away particles into effective pseudoparticles. The mass of these pseudo particles is
the total mass of all particles in the cluster they represent. To keep track of these
clusters a tree is constructed. Details of this method are explained very well in the
book “Many-Body Tree Methods in Physics” by Susanne Pfalzner and Paul Gibbon.

4.6.4 The multipole expansion

In more or less homogeneous systems another algorithm can be used which at first sight
scales like O(N) The “Fast Multipole Method” (FMM) calculates a high order multipole
expansion for the potential due to the particles and uses this potential to calculate the
forces. The calculation of the high order multipole moments is a big (programming)
task, but scales only like O(N).

Is this the optimal method? No! There are two reasons. First of all, while the calcu-
lation of the multipole moments takes only O(N) time we need to go to about O(logN)-
th order to achieve good accuracy, and the overall scaling is thus also O(N logN). Sec-
ondly, the calculation of the multipole moments is a computationally intensive task and
the prefactor of the N logN term much larger than in tree codes.

The multipole method is still useful in combination with tree codes. Modern tree
codes calculate not only the total mass of a cluster, but also higher order multipole
moments, up to the hexadecapole. This improves the accuracy and efficiency of tree
codes.

46



4.7 Phase transitions

In the molecular dynamics simulations of a Lennard-Jones liquid in the exercises we
can see the first example of a phase transition: a first order phase transition between
a crystal and a solid. Structural phase transitions in continuous systems are usually of
first order, and second order transition occur only at special points, such as the critical
point of a fluid. We will discuss second order phase transitions in more detail in the
later chapter on magnetic simulations and will focus here on the first order melting
transition.

In first order phase transitions both phases (e.g. ice and water) can coexist at the
same time. There are several characteristic features of first order phase transitions
that can be used to distinguish them from second order ones. One such feature is the
latent heat for melting and evaporation. If the internal energy is increased, e.g. by
a a heat source, the temperature first increases until the phase transition. Then it
stays constant as more and more of the crystal melts. The temperature will rise again
only once enough energy is added to melt the whole crystal. Alternatively this can be
seen as a jump at the transition temperature of the internal energy as a function of
temperature. Similarly, at constant pressure a volume change can be observed at the
melting transition. Another indication is a jump in the self diffusion constant at Tc.

A more direct observation is the measurement of a quantity like the structure factor
in different regions of the simulation volume. At first order phase transitions regions of
both phases (e.g. crystal and liquid or liquid and gas) can be observed at the same time.
In second order phase transitions (like in crystal structure changes from tetragonal to
orthorhombic), on the other hand a smooth change as a function of temperature is
observed, and the whole system is always either in one phase or in the other.

When simulating first order phase transitions one encounters a problem which is
actually a well-known phenomenon. To trigger the phase transition a domain of the new
phase has to be formed. As this formation of the domain can cost energy proportional
to its boundary the formation of such new domains can be suppressed, resulting in
undercooled or overheated liquids. The huge time scales for melting (just watch an ice
cube melt!) are a big problem for molecular dynamics simulations of first order phase
transitions. Later we will learn how Monte Carlo simulations can be used to introduce
a faster dynamics, speeding up the simulation of phase transitions.

4.8 From fluid dynamics to molecular dynamics

Depending on strength and type of interaction different algorithms are used for the
simulation of classical systems.

1. Ideal or nearly ideal gases with weak interaction can be modeled by the Navier-
Stokes equations.

2. If the forces are stronger, the Navier-Stokes equations are no longer appropriate.
In that case particle-in-cell (PIC) algorithms can be used:

• Like in the finite element method the simulation volume is split into cells.
Here the next step is not the solution of a partial differential equation on
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this mesh, but instead the fluid volume in each cell is replaced by a pseudo-
particle. These pseudo-particles, which often correspond to millions of real
fluid particles, carry the total mass, charge and momentum of the fluid cell.

• The pseudo-particle are then propagated using molecular dynamics.

• Finally, the new mass, charge and momentum densities on the mesh are
interpolated from the new positions of the pseudoparticles.

3. If interactions or correlations are even stronger, each particle has to be simulated
explicitly, using the methods discussed in this chapter.

4. In astrophysical simulations there are huge differences in density and length scales
- from interstellar gases to neutron stars or even black holes. For these simulations
hybrid methods are needed. Parts of the system (e.g. interstellar gases and dark
matter) are treated as fluids and simulated using fluid dynamics. Other parts (e.g.
galaxies and star clusters) are simulated as particles. The border line between fluid
and particle treatment is fluid and determined only by the fact that currently not
more than 108 particles can be treated.

4.9 Warning

Tree codes and the (A)P3M methods accept a small error in exchange for a large
speedup. However, when simulating for several million time steps these errors will
add up. Are the results reliable? This is still an open question.
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Chapter 5

Integration methods

In thermodynamics, as in many other fields of physics, often very high dimensional
integrals have to be evaluated. Even in a classical N -body simulation the phase space
has dimension 6N , as there are three coordinates each for the location and position
of each particle. In a quantum mechanical problem of N particles the phase space is
even exponentially large as a function of N . We will now review what we learned last
semester about integration methods and Monte Carlo integrators.

5.1 Standard integration methods

A Riemannian integral f(x) over an interval [a, b] can be evaluated by replacing it by
a finite sum:

∫ b

a
f(x)dx =

N
∑

i=1

f(a+ i∆x)∆x + O(∆x2), (5.1)

where ∆x = (a − b)/N . The discretization error decreases as 1/N for this simple
formula. Better approximations are the trapezoidal rule

∫ b

a
f(x)dx = ∆x

[

1

2
f(a) +

N−1
∑

i=1

f(a+ i∆x) +
1

2
f(b)

]

+ O(∆x2), (5.2)

or the Simpson rule

∫ b

a
f(x)dx =

∆x

3



f(a) +
N/2
∑

i=1

4f(a+ (2i− 1)∆x) +
N/2−1
∑

i=1

2f(a+ 2i∆x) + f(b)



+O(∆x4),

(5.3)
which scales like N−4.

For more elaborate schemes like the Romberg method or Gaussian integration we
refer to textbooks.

In higher dimensions the convergence is much slower though. With N points in
d dimensions the linear distance between two points scales only as N−1/d. Thus the
Simpson rule in d dimensions converges only as N−4/d, which is very slow for large d.
The solution are Monte Carlo integrators.
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5.2 Monte Carlo integrators

With randomly chosen points the convergence does not depend on dimensionality. Using
N randomly chosen points xi the integral can be approximated by

1

Ω

∫

f(x)dx ≈ f :=
1

N

N
∑

i=1

f(xi), (5.4)

where Ω :=
∫

dx is the integration volume. As we saw in the previous chapter the errors
of such a Monte Carlo estimate the errors scale as N−1/2. In d ≥ 9 dimensions Monte
Carlo methods are thus preferable to a Simpson rule.

5.2.1 Importance Sampling

This simple Monte Carlo integration is however not the ideal method. The reason is
the variance of the function

Varf = Ω−1
∫

f(x)2dx−
[

Ω−1
∫

f(x)dx
]2

≈ N

N − 1
(f 2 − f 2

). (5.5)

The error of the Monte Carlo simulation is

∆ =

√

Varf

N
≈

√

√

√

√

f 2 − f 2

N − 1
. (5.6)

In phase space integrals the function is often strongly peaked in a small region of
phase space and has a large variance. The solution to this problem is “importance
sampling”, where the points xi are chosen not uniformly but according to a probability
distribution p(x) with

∫

p(x)dx = 1. (5.7)

Using these p-distributed random points the sampling is done according to

〈f〉 = Ω−1
∫

A(x)dx = Ω−1
∫

f(x)

p(x)
p(x)dx ≈ 1

N

N
∑

i=1

f(xi)

p(xi)
(5.8)

and the error is

∆ =

√

Varf/p

N
. (5.9)

It is ideal to choose the distribution function p as similar to f as possible. Then the
ratio f/p is nearly constant and the variance small.

As an example, the function f(x) = exp(−x2) is much better integrated using
exponentially distributed random numbers with p(x) = exp(−λx) instead of uniformly
distributed random numbers.

A natural choice for the weighting function p is often given in the case of phase
space integrals or sums, where an observable A is averaged over all configurations x in
phase space where the probability of a configuration is p(x). The phase space average
〈A〉 is:

〈A〉 =

∫

A(x)p(x)dx
∫

p(x)dx
. (5.10)
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5.3 Pseudo random numbers

The most important ingredient for a Monte Carlo calculation is a source of random
numbers. The problem is: how can a deterministic computer calculate true random
numbers. One possible source of random numbers is to go to a casino (not necessarily
in Monte Carlo) and obtain random numbers from the roulette wheel.

Since this is not a useful suggestion the best remaining solution is to calculate pseudo
random numbers using a numerical algorithm. Despite being deterministic these pseudo
random number generators can produce sequences of numbers that look random if one
does not know the underlying algorithm. As long as they are sufficiently random (you
might already see a problem appearing here), these pseudo random numbers can be
used instead of true random numbers.

5.3.1 Uniformly distributed random numbers

A popular type of random number generator producing uniformly distributed is the
linear congruential generator (LCG)

xn = (axn−1 + c) mod m, (5.11)

with positive integer numbers a, c and m. The quality of the pseudo random numbers
depends sensitively on the choice of these parameters. A common and good choice is
a = 16807, c = 0, m = 231− 1 und x0 = 667790. The main problem of LCG generators
is that, because the next number xn+1 depends only on one previous number xn the
sequence of numbers produced is at most m. Current computers with gigahertz clock
rates can easily exhaust such a sequence in seconds. LCG generators should thus no
longer be used.

Modern generators are usually based on lagged Fibonacci methods, such as the
generator

xn = xn−607 + xn−253 mod m (5.12)

The first 607 numbers need to be produced by another generator, e.g. an LCG generator.
Instead of the shifts (607, 253) other good choices can be (2281, 1252),(9689, 5502) or
(44497, 23463). By calculating the next number from more than one previous numbers
these generator can have extremely long periods.

One of the most recent generators is the Mersenne Twister, a combination of a
lagged Fibonacci generator with a bit twister, shuffling around the bits of the random
numbers to improve the quality of the generator.

Instead of coding a pseudo random number generator yourself, use one of the libraries
such as the SPRNG library in Fortran or C or the Boost random number library in C++.

5.3.2 Testing pseudo random numbers

Before using a pseudo random number generator you will have to test the generator to
determine whether the numbers are sufficiently random for your application. Standard
tests that are applied to all new generators include the following:

• The period has to be longer than the number of pseudo random numbers required.
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• The numbers have to be uniformly distributed. This can be tested by a χ2 or a
Kolmogorov-Smirnov test.

• Successive number should not be correlated. This can be tested by a χ2 test or
by a simple graphical test: fill a square with successive points at the coordinates
(x2i−1, x2i) and look for structures.

All of these tests, and a large number of similar tests are necessary but by no
means sufficient, as Landau, Ferrenberg und Wong have demonstrated. They showed
that standard and well tested generators gave very wrong results when applied to a
simulation of the Ising model. The reason were long-range correlations in the generators
that had not been picked up by any test. The consequence is that no matter how many
tests you make, you can never be sure about the quality of the pseudo random number
generator. After all, the numbers are not really random. The only reliable test is to
rerun your simulation with another random number generator and test whether the
result changes or not.

5.3.3 Non-uniformly distributed random numbers

Non-uniformly distributed random numbers can be obtained from uniformly distributed
random numbers in the following way. Consider the probability that a random number
y, distributed with a distribution f is less than x. This probability is just the integral

Pf [y < x] =
∫ x

−∞
f(y)dy =: F (x). (5.13)

But this is also just the probability that a uniformly distributed random number u is
less than F (x):

Pf [y < x] = F (x) = Pu[u < F (x)] (5.14)

If the integrated probability distribution function F can easily be inverted one can
obtain an f -distributed random number x from a uniformly distributed random number
u through x = F−1(u).

This can be used, e.g. to obtain exponentially distributed random numbers with a
distribution f(x) ∝ exp(−λx) through

xexp = −1

λ
ln(1− u). (5.15)

The normal distribution cannot easily be inverted in one dimension, but this can
be done in two dimensions, leading to the Box-Muller method in which two normally
distributed numbers n1 and n2 are calculated from two uniformly distributed numbers
u1 and u2.

n1 =
√

−2 ln(1− u1) cos 2πu2 (5.16)

n2 =
√

−2 ln(1− u1) sin 2πu2.

For general but bounded distributions f(x) ≤ h, with arbitrary h < ∞ defined on
an interval [a, b[ the rejectance method can be used. One picks a uniformly distributed
random number u in the interval [a, b[ and accepts it with probability f(g)/h. If the
number is rected, a new uniformly distributed random number u is chosen and tested.
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5.4 Markov chains and the Metropolis algorithm

The methods for non-uniformly distributed random numbers discussed above are useful
for simple distributions in low dimensions. In general the integrated probability dis-
tribution function F cannot be inverted, and the rejectance methods will almost never
accept a uniformly drawn number. Then a Markov process can be used to create pseudo
random numbers distributed with a arbitrary distribution p.

Starting from an initial point x0 a Markov chain of states is generated:

x0 → x1 → x2 → . . .→ xn → xn+1 → . . . (5.17)

A transition matrix Wxy gives the transition probabilities of going from state x to state
y in one step of the Markov process. As the sum of probabilities of going from state x
to any other state is one, the columns of the matrix W are normalized:

∑

y

Wxy = 1 (5.18)

A consequence is that the Markov process conserves the total probability. Another
consequence is that the largest eigenvalue of the transition matrix W is 1 and the cor-
responding eigenvector with only positive entries is the equilibrium distribution which
is reached after a large number of Markov steps.

We want to determine the transition matrix W so that we asymptotically reach the
desired probability px for a configuration i. A set of sufficient conditions is:

1. Ergodicity: It has to be possible to reach any configuration x from any other
configuration y in a finite number of Markov steps. This means that for all x and
y there exists a positive integer n <∞ such that (W n)xy 6= 0.

2. Detailed balance: The probability distribution p(n)
x

changes at each step of the
Markov process:

∑

x

p(n)
x
Wxy = p(n+1)

y
. (5.19)

but converges to the equilibrium distribution px. This equilibrium distribution px
is an eigenvector with left eigenvalue 1 and the equilibrium condition

∑

x

pxWxy = py (5.20)

must be fulfilled. It is easy to see that the detailed balance condition

Wxy

Wyx

=
py
px

(5.21)

is sufficient.

The simplest Monte Carlo algorithm is the Metropolis algorithm:

• Starting with a point xi choose randomly one of a fixed number N of changes ∆x,
and propose a new point x′ = xi + ∆x.
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• Calculate the ratio os the probabilities P = px′/pxi
.

• If P > 1 the next point is xi+1 = x′

• If P < 1 then xi+1 = x′ with probability P , otherwise xi+1 = xi. We do that by
drawing a random number r uniformly distributed in the interval [0, 1[ and set
xi+1 = x′ if r < P .

• Measure the quantity A at the new point xi+1.

The algorithm is ergodic if one ensures that the N possible random changes allow all
points in the integration domain to be reached in a finite number of steps. If additionally
for each change ∆x there is also an inverse change −∆x we also fulfill detailed balance:

Wij

Wji
=

1
N

min(1, p(j)/p(i))
1
N

min(1, p(i)/p(j))
=
p(j)

p(i)
. (5.22)

As an example let us consider summation over integers i. We choose N = 2 possible
changes ∆i=±1 and fulfill both ergodicity and detailed balance as long as p(i) is nonzero
only over a finite contiguous subset of the integers.

To integrate a one-dimensional function we take the limit N → ∞ and pick any
change δ ∈ [−∆,∆] with equal probability. The detailed balance equation (5.22) is
only modified in minor ways:

Wij

Wji
=

dδ
2∆

min(1, p(j)/p(i))
dδ
2∆

min(1, p(i)/p(j))
=
p(j)

p(i)
. (5.23)

Again, as long as p(x) is nonzero only on a finite interval detailed balance and ergodicity
are fulfilled.

5.5 Autocorrelations, equilibration and Monte Carlo

error estimates

5.5.1 Autocorrelation effects

In the determination of statistical errors of the Monte Carlo estimates we have to take
into account correlations between successive points xi in the Markov chain. These
correlations between configurations manifest themselves in correlations between the
measurements of a quantity A measured in the Monte Carlo process. Denote by A(t)
the measurement of the observable A evaluated at the t-th Monte Carlo point xt. The
autocorrelations decay exponentially for large time differences ∆:

〈AtAt+∆〉 − 〈A〉2 ∝ exp(−∆/τ
(exp)
A ) (5.24)

Note that the autocorrelation time τA depends on the quantity A.
An alternative definition is the integrated autocorrelation time τ

(int)
A , defined by

τ
(int)
A =

∑∞
∆=1 (〈AtAt+∆〉 − 〈A〉2)
〈A2〉 − 〈A〉2 (5.25)
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As usual the expectation value of the quantity A can be estimated by the mean
A, using equation (5.4). The error estimate [equation (5.6)] has to be modified. The
error estimate (∆A)2 is the expectation value of the squared difference between sample
average and expectation value:

(∆A)2 = 〈(A− 〈A〉)2〉 = 〈
(

1

N

N
∑

t=1

A(t)− 〈A〉
)2

〉

= 〈 1

N2

N
∑

i=1

(

A(t)2 − 〈A〉2 〉
)

+
2

N2

N
∑

t=1

N−t
∑

∆=1

(

〈A(t)A(t+ ∆)〉 − 〈< A >2〉
)

≈ 1

N
VarA (1 + 2τ

(int)
A )

≈ 1

N − 1
〈A2 −A2〉(1 + 2τ

(int)
A ) (5.26)

In going from the second to third line we assumed τ
(int)
A ≪ N and extended the summa-

tion over ∆ to infinity. In the last line we replaced the variance by an estimate obtained
from the sample. We see that the number of statistical uncorrelated samples is reduced
from N to N/(1 + 2τ

(int)
A ).

In many Monte Carlo simulations the error analysis is unfortunately not done ac-
curately. Thus we wish to discuss this topic here and in the exercises.

5.5.2 The binning analysis

The binning analysis is a reliable way to estimate the integrated autocorrelation times.
Starting from the original series of measurements A

(0)
i with i = 1, . . . , N we iteratively

create “binned” series by averaging over to consecutive entries:

A
(l)
i :=

1

2

(

A
(l−1)
2i−1 + A

(l−1)
2i

)

, i = 1, . . . , Nl ≡ N/2l. (5.27)

These bin averages A
(l)
i are less correlated than the original values A

(0)
i . The mean value

is still the same.
The errors ∆A(l), estimated incorrectly using equation (5.6)

∆A(l) =

√

VarA(l)

Nl − 1
≈ 1

Nl

√

√

√

√

Nl
∑

i=1

(

A
(l)
i − A(l)

)2
(5.28)

however increase as a function of bin size 2l. For 2l ≫ τ
(int)
A the bins become uncorrelated

and the errors converge to the correct error estimate:

∆A = lim
l→∞

∆A(l). (5.29)

This binning analysis gives a reliable recipe for estimating errors and autocorrelation
times. One has to calculate the error estimates for different bin sizes l and check if they
converge to a limiting value. If convergence is observed the limit ∆A is a reliable error
estimate, and τ

(int)
A can be obtained from equation (5.26) as

τ
(int)
A =

1

2

[

(

∆A

∆A(0)

)2

− 1

]

(5.30)
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If however no convergence of the ∆A(l) is observed we know that τ
(int)
A is longer than

the simulation time and we have to perform much longer simulations to obtain reliable
error estimates.

To be really sure about convergence and autocorrelations it is very important to start
simulations always on tiny systems and check convergence carefully before simulating
larger systems.

For the projects we will provide you with a simple observable class that implements
this binning analysis.

5.5.3 Jackknife analysis

The binning procedure is a straightforward way to determine errors and autocorrelation
times for Monte Carlo measurements. For functions of measurements like U = 〈A〉/〈B〉
it becomes difficult because of error propagation and cross-correlations.

Then the jackknife procedure can be used. We again split the measurements into M
bins of size N/M ≫ τ (int) that should be much larger than any of the autocorrelation
times.

We could now evaluate the complex quantity U in each of the M bins and obtain
an error estimate from the variance of these estimates. As each of the bins contains
only a rather small number of measurements N/M the statistics will not be good. The
jackknife procedure instead works with M+1 evaluations of U . U0 is the estimate using
all bins, and Ui for i = 1, . . .M is the value when all bins except the i-th bin are used.
That way we always work with a large data set and obtain good statistics.

The resulting estimate for U will be:

U = U0 − (M − 1)(U − U0) (5.31)

with a statistical error

∆U =
√
M − 1

(

1

M

M
∑

i=1

(Ui)
2 − (U)2

)1/2

, (5.32)

where

U =
1

M

M
∑

i=1

Ui, (5.33)

5.5.4 Equilibration

Thermalization is as important as autocorrelations. The Markov chain converges only
asymptotically to the desired distribution. Consequently, Monte Carlo measurements
should be started only after a large number Neq of equilibration steps, when the distri-
bution is sufficiently close to the asymptotic distribution. Neq has to be much larger
than the thermalization time which is defined similar to the autocorrelation time as:

τ
(eq)
A =

∑∞
∆=1(〈A0A∆〉 − 〈A〉2)
〈A0〉〈A〉 − 〈A〉2

(5.34)
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It can be shown that the thermalization time is the maximum of all autocorrelation
times for all observables and is related to the second largest eigenvalue Λ2 of the Markov
transition matrix W by τ (th) = −1/ log Λ2. It is recommended to thermalize the system
for at least ten times the thermalization time before starting measurements.
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Chapter 6

Percolation

6.1 Introduction

While the molecular dynamics and Monte Carlo methods can, in principle, be used
to study any physical system, difficulties appear close to phase transitions. In our
investigation of phase transitions we will start with percolation, a very simple and
purely geometric topic.

Although there is no dynamics of any kind involved, percolation nevertheless exhibits
complex behavior and a phase transition. This simple model will allow us to introduce
many concepts that we will need later for the simulation of dynamic systems. These
concepts include:

• Phase transitions

• Scaling

• Finite size effects and finite size scaling

• Monte Carlo Simulations

• Analytic and numeric renormalization group methods

• Series expansion methods

Percolation models can be applied to a variety of problems:

• Oil fields: The ”swiss cheese model” can be used as a simplified model for the
storage and flow of liquids in porous media. The porous stone is modeled by
spherical cavities distributed randomly in the surrounding medium. If the density
of cavities gets larger they start to overlap and form large cluster of cavities.
Important questions that can be asked include:

– For oil drilling we want to know how the amount of oil stored varies with the
size of the oil field.

– Fluids can only flow through the medium of there is a cluster connecting
opposite sides. Such a cluster is called a “percolating” cluster. What density
of cavities we need to create a percolating cluster.
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– Next we want to know how the the speed of fluid flow through the medium
depends on the density.

• Forest fires: We model forest fires by assuming that a tree neighboring a burning
tree catches fire with a probability p. Fire fighters will want to know:

– How much of the forest will burn?

– Will the fire spread throughout the whole forest?

• Spread of diseases: The spread of diseases can be modeled in a simplified way
similar to the forest fire model. Now the important question is: what part of the
population will fall ill? Will the disease by an epidemic, spreading throughout
the whole country, or even an endemic, spreading over the whole world?

• Conductance of wire meshes:

– How many links can be cut in a wire mesh so that it is still’ conducting?

– What is the resistivity as a function of the ratio of cut links?

• Vulnerability of the internet: The internet was designed in 1964 to make
computer networks reliable even in the case of attacks in war time. The ’ most
urgent question is:

– What portion of the internet is still connected if a fraction p of switches fails?

• Gelation of liquids: Gelation of liquids can be modeled by allowing a molecule to
form a bond with a neighboring molecule with probability p. Again the interesting
questions are:

– What is the average size of molecule clusters as a function of p?

– What is the critical concentration at which the largest molecule cluster per-
colates and the liquid solidifies?

• Baking of cookies: A nice household example is given in the textbook by Gould
and Tobochnik. Distribute several drops of dough randomly on a cookie tray.
When baking the dough will spread and cookies that are close will bake together.
If the number of drops is too large we will obtain a percolating cookie, spanning
the baking tray from one edge to the other.

For a detailed discussion we refer to the book by Stauffer and Aharony.

6.2 Site percolation on a square lattice

In this lecture we will discuss in detail the simplest of percolation models: site percola-
tion on a two dimensional square lattice. Each square shall be occupied with probability
p. Occupied squares that share edges form a cluster.

As can be seen in figure 6.1 or by playing with the Java apples on our web page, for
large p there is a percolating cluster, i.e. a cluster that spans the lattice from one
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a) b) c)

Figure 6.1: Examples of site percolation on a 16 × 16 square lattice for several proba-
bilities: a) p = 0.2, b) p = pc = 0.5927, and c) p = 0.8. It can be sen that for p ≥ pc

there is a spanning cluster, reaching from the top to the bottom edge.

edge to the other. In the infinite lattice limit there is a sharp transition at a critical
density pc. For p < pc there is never a percolating cluster and for p > pc there is always

a percolating cluster.
We will ask the following questions:

• What is the critical concentration pc?

• How do the number of clusters and average cluster size S depend on p?

• What is the probability P that a site is on the percolating cluster?

• What is the resistivity/conductance of the percolating cluster?

• How does a finite lattice size L change the results?

• How do the results depend on the lattice structure and on the specific percolation
model used?

The answer to the last question will be, that close to the critical concentration pc the
properties depend only on the dimensionality d and on the type (continuum or lattice)
but not on the lattice structure or specific percolation model. Thus our results obtained
for the percolation transition on the square lattice will be ”universal” in the sense that
they will apply also to all other two-dimensional percolation models, like the forest fire
model, the spread of diseases and the problems encountered when baking cookies.

6.3 Exact solutions

6.3.1 One dimension

In one dimension the percolation problem can be solved exactly. We will use this exactly
soluble case to introduce some quantities of interest.

A percolating cluster spans the whole chain and is not allowed to contain any empty
site, thus pc = 1.
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The probability that a site is the left edge of a cluster of finite size s is simply

ns = (1− p)2ps (6.1)

as the cluster consists of s occupied sites neighbored by two empty ones. The probability
that a random site is anywhere on an s-site cluster is sns. The sum over all cluster sizes
s leads to a sum rule which is valid not only in one dimension. The probability that a
site is on a cluster of any size is just p:

P +
∑

s

sns = p, (6.2)

where P is the probability that a site is on one of the the infinite percolating cluster.
In one dimension P = 1 for p = pc and P = 0 otherwise.

The average cluster size is

S =

∑

s s
2ns

∑

s sns

=
1 + p

1− p ≃ (pc − p)−1, (6.3)

where the last expression is the universal asymptotic form near pc.
The pair correlation function g(r) gives the probability that for an occupied site a

site at distance r belongs to the same cluster. In one dimensions it is

g(r) = p|r| = exp(−|r|/ξ), (6.4)

where

ξ = − 1

log p
≃ (pc − p)−1. (6.5)

is called the correlation length. Again there is a sum rule for the pair correlation
function: ∞

∑

r=−∞
g(r) = S (6.6)

6.3.2 Infinite dimensions

Another exact solution is available in infinite dimensions on the Bethe lattice, shown in
figure 6.2. It is a tree which, starting from one site branches out, with every site having
z ≥ 3 neighbors.

Why is this lattice infinite dimensional? In d dimensions the volume scales like
Ld and the surface like Ld−1, thus surface ∝ volume1−1/d. The Bethe lattice with R
generations of sites has a boundary of z(z − 1)R−1 sites and a volume of 1 + z[(z −
1)R− 1]/(z− 2) sites. For large R we have surface ≃ volume× (z− 2)/(z− 1) and thus
d =∞.

As the Bethe lattice contains no loops everything can again be calculated exactly.
Let us follow a branch in a cluster. At each site it is connected to z sites and branches
out to z − 1 new branches. At each site the cluster branches into p(z − 1) occupied
branches. If p(z − 1) < 1 the number of branches decreases and the cluster will be
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Figure 6.2: Part of the infinite dimensional Bethe lattice for z = 3. In this lattice each
site is connected to z neighbors.

finite. If p(z − 1) > 1 the number of branches increases and the cluster will be infinite.
Thus

pc =
1

z − 1
(6.7)

P can be calculated exactly for z = 3 using simple arguments that are discussed
in detail in the book by Aharony and Stauffer. We define by Q the probability that a
cluster starting at the root of one of the branches does not connect to infinity. This is
the case if either (i) the root of the branch is empty or (ii) it is occupied but neither of
the branches connected to it extends to infinity. Thus for z = 3

Q = 1− p + pQ2 (6.8)

This equation has two solutions: Q = 1 and Q = (1− p)/p. The probability that a site
is not on the percolating cluster is then 1− p + pQ3, as it is either empty or occupied
but not connected to infinty by any of the z = 3 branches connected to the site. This
gives P = 0, corresponding to p < pc and

P = 1− (1− p+ pQ3) = p



1−
(

1− p
p

)3


 ≃ (p− pc) (6.9)

for p > pc = 1/2 and P = 0 for p < pc. Similar calculations can also be performed
analytically also for larger z, always leading to the same power law.

A similar argument can be found for the mean cluster size for p < pc. Let us
call the size of a cluster on a branch T . This is 0 if the root of the branch is empty
and 1 + (z − 1)T if it is occupied. Thus: T = p(1 + (z − 1)T ), with the solution
T = p/(p+ 1− pz). The size of the total cluster is the root plus the three branches:

S = 1 + zT =
1 + p

1− (z − 1)p
≃ (p− pc)

−1 (6.10)

What about the cluster probabilities ns? A cluster of s sites has 2+(z−2)s neighboring
empty sites. By looking at the ratio ns(p)/ns(pc) we get rid of prefactors and obtain:

ns(p)

ns(pc)
=

(

p

pc

)s (
1− p
1− pc

)2+(z−2)s

(6.11)
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For z = 3 this is asymptotically is asymptotically

ns(p)

ns(pc)
≃ exp(−cs) with c = − log[1− 4(p− pc)

2] ≃ (p− pc)
2. (6.12)

All that is missing now is an expression for ns(pc). Unfortunately this cannot be
obtained exactly for arbitrary n. Instead we make an educated guess. As S =
∑

s s
2ns(p)/

∑

s sns(p) must diverge at p = pc and p =
∑

s sns(p) + P is finite, ns(pc)
must decay faster than s−2 but slower than s−3. We make the ansatz first suggested by
M.E. Fisher:

ns(pc) ≃ s−τ (6.13)

with 2 < τ ≤ 3.
From the summation

S =

∑

s s
2ns(p)

∑

s sns(p)
≃ (pc − p)2τ−6 (6.14)

we obtain by comparing with equation (6.10) that

τ = 5/2. (6.15)

By using equations (6.12) and (6.13) we can re-derive the asymptotic power laws of
equations (6.9) and (6.10).

6.4 Scaling

We have seen that in both exactly solvable cases the interesting quantities have power
law singularities at pc. The generalization of this to arbitrary lattices is the ”scaling
ansatz”, which cannot be proven. However it can be motivated from the fractal behavior
of the percolating cluster, from renormalization group arguments and from the good
agreement of this ansatz with numerical results.

6.4.1 The scaling ansatz

We generalize the scaling for the average cluster size S to:

S ∝ |p− pc|γ (6.16)

where γ need not be equal to 1 in general. In the calculation of the average cluster size
we omit, as done before, any existing percolating cluster, as that would give an infinite
contribution.

The correlation length ξ can be defined as

ξ2 =

∑

r r
2g(r)

∑

r g(r)
, (6.17)
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which is equivalent to the previous definition from the exponential decay of the correla-
tion function. The sum over all distances can be split into sums over all clusters adding
the contribution of each cluster:

ξ2 =
2
∑

cluster R
2
clustern(cluster)2

∑

cluster n(cluster)2
, (6.18)

where

R2
cluster =

1

2n(cluster)2

∑

i,j∈cluster

|ri − rj|2 (6.19)

is the average radius of the cluster, n(cluster) the size of the cluster and ri the location
of the i-th site . The definition 6.18) through the cluster “moment of inertia” is the
most natural one for simulations.

Also for the correlation length ξ we define an exponent ν:

ξ ∝ |p− pc|−ν (6.20)

The pair correlation function g(r) for p 6= pc decays exponentially with the corre-
lation length ξ. At the critical concentration p = pc however the correlation length ξ
diverges and we assume a power law:

g(r) ∝ r−(d−2+η) (6.21)

For the probability P that a site is on the percolating cluster we make the ansatz:

P ∝ (p− pc)
β (6.22)

Finally we define an exponent for the cluster density M0 =
∑

s ns which scales as

M0 ∝ |p− pc|2−α (6.23)

Fortunately we do not have to calculate all five exponents, as there exist scaling relations
between them. To derive them we start from an ansatz for the cluster numbers ns which
is motivated from the previous exact results:

ns(p) = s−τf [(p− pc)s
σ], (6.24)

where f is a scaling function that needs to be determined and σ and τ are two universal
exponents. Both the one-dimensional as well as the infinite-dimensional results can be
cast in that scaling form.

Starting from that ansatz we can – using some series summation tricks presented in
the exercises – calculate P , S, and M0 similar to what we did in one dimension. We
obtain:

β =
τ − 2

σ
(6.25)

γ =
3− τ
σ

(6.26)

2− α =
τ − 1

σ
(6.27)

from which we can derive the scaling law:

2− α = 2β + γ (6.28)
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6.4.2 Fractals

For the further discussion we need to introduce the concept of fractal dimensions, which
should be familiar to all of you. As you can see by looking at pictures or playing with
the applet on the web page, the percolating cluster at criticality is a complex object
and self-similar on all length scales.

This self-similarity follows naturally from the divergence of the dominant length
scale ξ at the critical point and is reflected in the power-law behavior of all properties
at the critical point. Power laws are the only scale-invariant functions f(r/l) ∝ f(r),
as rζ ∝ (r/l)ζ .

Thus self-similarity and fractal behavior are intimately related to the scaling ansatz.
Whether you use the scaling ansatz to motivate fractal behavior, or use apparent fractal
behavior to motivate the scaling ansatz is a matter of taste.

Self-similar objects like the percolating cluster at criticality are called fractals, since
their dimension D defined by the relationship of volume to linear dimension:

V (R) ∝ RD (6.29)

is a non-integral fraction D. This is in contrast to simple objects like lines, squares or
cubes which have integer dimension.

Applying these idea to clusters we make the ansatz

Rs ∝ s1/D (6.30)

for the average radius of a cluster of s sites. This allows us to evaluate equation
(6.18) as:

ξ2 =
2
∑

s R
2
ss

2ns
∑

s s2ns

, (6.31)

since a) Rs is the mean distance between two sites in a cluster b) a site is connected
to s other sites, and c) nss is the probability of the site belonging to an s-site cluster.
The summation can again be performed analogous to the ones used to obtain Eqs.
(6.25)-(6.27). Using these equations to replace σ and τ by the other exponents we find:

D = (β + γ)/ν = d− β/ν, (6.32)

where the last equality will be derived later using finite size scaling.
By integrating equation (6.21) one can also obtain the fractal dimension, leading to

another scaling law:
d− 2 + η = 2β/ν (6.33)

6.4.3 Hyperscaling and upper critical dimension

Finally, we wish to mention the“hyper scaling” - law:

dν = γ + 2β = 2− α (6.34)

which is obtained combining several of the previously derived scaling relations The
scaling laws involving dimensions are usually called “hyper scaling” laws. While the
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other scaling laws hold for-all dimensions this one will eventually break down for large
d as it is clearly not valid for the Bethe lattice. It holds up to the “upper critical
dimension” du = 6 in the case of percolation. For d ≥ du the exponents are always the
same as those of the infinite dimensional Bethe lattice, but hyperscaling breaks down
for d > du = 6. As the most interesting physical problems are in dimensions below du.
we will not discuss this issue further but instead concentrate on methods to calculate
properties of percolation models below du.

6.5 Renormalization group

The renormalization group method is intricately linked to the self similarity of the
percolating cluster and to the scaling ansatz. It also provides a “motivation” for the
scaling ansatz.

The idea is to ignore unimportant microscopic details and to concentrate on the
important physics on large scales. We do that by replacing a b× b square of our square
lattice by a single square. We choose it to be filled if a percolating cluster exists on the
b × b square and empty otherwise. This process is iterated until we are left with just
one single square which is either filled or empty.

6.5.1 The square lattice

As the simplest example let us choose b = 2. On a 2× 2 square there are two vertically
spanning clusters with 2 occupied sites, four spanning clusters with three occupied sites
and one spanning-cluster with four occupied sites. The total probability R(p) for a
vertically spanning cluster on a 2 x 2 is thus

R(p) = 2p2(1− p)2 + 4p3(1− p)3 + p4 (6.35)

The renormalization group transformation

p← R(p) = 2p2(1− p)2 + 4p3(1− p) + p4 (6.36)

has two trivial fixed points p = 0 and p = 1 as well as one non-trivial fixed point

p∗2 = (
√

(5)− 1)/2 ≈ 0.6180. This is surprisingly close to the correct result pc = 0.5927
To obtain better accuracy one needs to work with larger cell sizes b. In the limit

b→∞ we have p∗b → pc and the renormalization group calculation becomes exact.
It is important to note that the choice of percolation criterion is ambiguous. Here

we have chosen to define a percolating cluster as one that spans the lattice vertically.
We can as well choose that the lattice should be spanned horizontally, obtaining the
identical results. The other choices, while giving the same results in the limit b → ∞
have larger finite size corrections. If we define a cluster as percolating if it spans
horizontally or vertically, the renormalization group transformation is

R(p) = 4p2(1− p)2 + 4p3(1− p) + p4 (6.37)

with a fixed point at (3 −
√

5)/2 ≈ 0.382. If on the other hand we define a perco-
lating cluster as spanning both horizontally and vertically, the renormalization group
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transformation is
R(p) = 4p3(1− p)3 + p4 (6.38)

with a fixed point at (
√

13− 1)/6 ≈ 0.768. Both these estimates are much farther from
pc. Our first choice thus turns out to have been the best.

The renormalization group method provides us not only with an estimate for pc but
also with estimates for the exponents. In one step we transform:

p′ = R(p) (6.39)

ξ′ = ξ/b (6.40)

At the same time the scaling law (6.20) is valid and we obtain:

(p′ − p∗b)−ν = ξ′ =
ξ

b
=

1

b
(p− p∗b)−ν (6.41)

By expanding R(p) in a Taylor series around p∗b we obtain after a few algebraic trans-
formations:

ν =
log b

log dR
dp

∣

∣

∣

p∗
b

. (6.42)

For b = 2 this gives the very crude estimate ν ≈ 1.635, compared to the exact value
ν = 4/3.

6.5.2 The triangular lattice

A better estimate is obtained on the triangular lattice. There we replace three sites by
one (thus b2 = 3), obtaining the transformation

p← R(p) = 3p2(1− p) + p3 (6.43)

with fixed points at 0, 1/2 and 1. In this case surprisingly the value p∗√
3

= pc is
exact.

Also the estimate for ν is much better: 1.355. It will be necessary to go to larger
values of b if we want to improve the accuracy of our results. Up to b = 6 we might
be able to determine the RG equations exactly. For larger b we have to use numerical
methods, which will be the topic of the next section.

6.6 Monte Carlo simulation

Monte Carlo simulations are the simplest method to investigate percolation and can
be done, for example, by visual inspection using our applet or by a more extended
simulation. We will focus on three types of questions that can be answered by Monte
Carlo simulations:

1. What is the p-dependence of an arbitrary quantity X?

2. What is the critical probability pc?
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3. What are the values of the universal critical exponents?

X can be a quantity like ξ, S, P or any other interesting observable.
For now we treat only with finite lattices of linear dimension L <∞. The problem

of extrapolation to L→∞ will be discussed later.
The expectation value of the quantity X can be calculated exactly for small lattices

by a sum over all possible configurations on a system with N = Ld sites:

〈X〉 =
N
∑

n=0

∑

c∈CN,n

pn(1− p)N−nX(c) (6.44)

where CN,n is the set of configurations of n occupied sites in a lattice with N sites, and
X(c) is the value of the quantity X measured in the configuartion c. It is obvious that
this sum can be performed exactly only for small lattice sizes up to N ≈ 30 sites, as
the number of terms increases exponentially like 2N .

6.6.1 Monte Carlo estimates

Larger lattice sizes with N up to 106 can no longer be done exactly, but Monte CarIo
summation can provide estimates of this average to any desired accuracy. The av-
erage over the complete set of configurations is replaced by a random sample of M ≈
106 . . . 1012 configurations ci drawn randomly with the correct probabilities pn(1−p)N−n

for a configuration with n occupied sites.
To create configurations wth the correct probabilities we draw a pseudo-random

number u, uniformly distributed in [0, 1[ for each site j. We set the site occupied if
u < p and empty otherwise. This corresponds to importance sampling, where each
configuration is created with the correct probability.

6.6.2 Cluster labeling

Next we identify clusters using, for example, the Hoshen-Kopelman cluster labeling
algorithm, which works the following way:

• Allocate an array of size N to store the cluster label for each site.

• Loop through all sites i in the lattice. For occupied sites check if a cluster label
has already been assigned to any occupied neighboring sites.

– If no neighboring site is occupied or has a label assigned, assign a new cluster
label to this site.

– If one neighboring site is occupied and has a cluster label assigned, assign
the same label to this site.

– If more than one neighboring sites are occupied and all have the same label
assigned, assign this same label to the current site.
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Figure 6.3: Probability P for a site to be on the percolating cluster, as a function of
lattice size L for different concentrations p.

– If more than one neighboring site is occupied and the sites have different
labels assigned, we have a problem. The current site connects two cluster
parts which until now were disconnected and labeled as different clusters.
We take the smallest of label numbers as the proper label and assign this to
the current site. For the other, larger, labels we would need to relabel all
wrongly labeled sites.

• We use the following trick to avoid relabeling all wrongly labeled sites. For each
label we keep a list of the ”proper” labels, initialized originally to the label itself.
To obtain the cluster label of a site we first obtain the label number assigned to
the site. Next we check its proper label. If the two agree we are done. Otherwise
we replace the label by the stored proper label and repeat this process until the
label agrees with its proper label. This way we avoid relabeling all wrongly labeled
sites.

Having thus created a configuration and identified the existing clusters we can mea-
sure the value of any quantity of interest. Care must be taken that in the averages over
clusters for S and other quantities any existing percolating cluster is always excluded
since its contribution is infinite in the thermodynamic limit L→∞.
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6.6.3 Finite size effects

In figure 6.3 we show Monte Carlo results obtained for P in a series of Monte Carlo
simulations. We plot P as a function of p for several different system sizes L. It can be
seen that for p ≪ pc P converges rapidly to zero as L is increased. For p ≫ pc on the
other hand it converges rapidly to a finite value, as expected since P is the probability
of a site belonging to the percolating cluster, which exists for p > pc. We can also see
that as L is increased a singularity starts to develop at pc and it is plausible that P
follows a power law P ∝ (p− pc)

β in the infinite system.
However we also see that convergence is slow around pc and we have no good way

to directly estimate pc nor the exponents. The problem is that the correlation length ξ
diverges as |p− pc|−ν and we would need lattices L≫ ξ →∞, which is impossible. We
thus need a new idea.

6.6.4 Finite size scaling

The new idea is to extend scaling so that it also contains the system size L as a
parameter. The motivation is simple. A finite system size L introduces a cutoff for all
length scales. Then on the finite system ξ cannot grow larger than L. This means that
a finite system size L has the same effect as a finite distance from the critical point,
related by L ∼ ξ ∝ (p− pc)

−ν . Thus, for example, at the critical point

P (L) ≃ (p− pc)
β ∝ L−β/ν . (6.45)

More formally we can make the following scaling ansatz. Close to criticality the only
important length scale is ξ. The effects of finite system sizes are thus determined only
by the ratio L/ξ. For a quantity X, which diverges as (p − pc)

−χ for L ≫ ξ we make
the ansatz:

X(L, p) = (p− pc)
−χF̃1(L/ξ) = (p− pc)

−χF1((p− pc)L
1/ν) (6.46)

or equivalently

X(L, ξ) = ξχ/νF2(L/ξ) ∝
{

ξχ/ν for L≫ ξ
Lχ/ν for ξ ≫ L

(6.47)

Applying this scaling ansatz to the size of the percolating cluster LdP we immedi-
ately derive the second expression for the fractal dimension D in equation (6.32):

LD = LdP (L, ξ) = Ldξ−β/νf(L/ξ) ∝ Ld−β/ν (6.48)

where we have chosen L = const×ξ, allowing us to replace ξ by L, and giving a constant
value for the scaling function f(L/ξ).

Thus we see that finite size scaling allows us to determine the ratio of exponents
like β/ν by calculating the L-dependence of P at p = pc.

One problem however still remains: how can we determine pc on a finite lattice?
The answer is again finite size scaling. Consider the probability Π(p) for the existence
of a percolating cluster. In the infinite system it is

Π(p) = Θ(p− pc). (6.49)

70



In a finite system the step function is smeared out. We can make the usual finite size
scaling ansatz using equation (6.46)

Π(p, L) = Φ((p− pc)L
1/ν). (6.50)

The derivative dΠ/dp gives the probability for first finding a percolating cluster at
concentrations in the interval [p, p + dp[. The probability p at which a percolating
cluster appears can easily be measured in a Monte Carlo simulation. Its average

pav =
∫

p
dΠ

dp
dp (6.51)

is slightly different from the exact value pc on any finite lattice, but converges like

pav − pc ∝ L−1/ν (6.52)

as can be seen by integrating the scaling ansatz 6.50. Similarly the variance

∆2 =
∫

(p̃− pav)
2dΠ

dp
dp (6.53)

decreases as
∆ ∝ L−1/ν (6.54)

That we we can obtain ν and pc from the finite size scaling of the average p at which a
percolating cluster appears on a finite lattice.

We do this by drawing a pseudo-random number uj, uniformly distributed in [0, 1[
for each site j. Next we use a binary search to determine the probability p̃ where a
percolating cluster appears for this realization of the ujs. We start by checking p̃ = 0.5.
We occupy all squares with uj < p̃. If a percolating cluster exists we set p̃ = 0.25,
otherwise p̃ = 0.75. Next we check if there is a percolating cluster for the same ujs and
the new p̃. By repeating this bisection we improve the accuracy by a factor of two in
each step and obtain the desired value in a logarithmic number of steps − log ǫ/ log 2,
where ǫ is the desired accuracy. This gives us one sample for p̃. By repeating the whole
procedure with new sets of ujs we can obtain good estimates for pav and ∆.

Finally we fit the results obtained for several lattice sizes L to obtain pc and ν as
fitting parameters.

Once we have a good estimate for pc we can also use equation (6.45) to get estimates
for further exponents. By measuring P (pc) as a function of lattice size L and fitting to
equation (6.45) we estimate the ratio of exponents β/ν. Similarly, by fitting S(pc) as a
function of L we estimate γ/ν. The scaling laws which relate the exponents can be used
as a check on our simulations and as a tool to increase the accuracy of our estimates.

6.7 Monte Carlo renormalization group

Higher precision than in simple Monte Carlo simulations can be obtained by using
Monte Carlo estimates to perform renormalization group calculations for huge block
sizes b, often b ≈ 500.
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To determine the renormalization group transformation R(p) in a Monte Carlo sim-
ulation we write it as:

R(p) =
N
∑

n=0

(

N
n

)

pn(1− p)N−nP (n), (6.55)

where N = b2 is the number of sites in the block and P (n) is the probability that a
percolating cluster exists if n sites are occupied. The easiest way to calculate P (n) is
to start from an empty lattice and to add occupied sites until at a certain number of
s sites a percolating cluster is formed. Then we set P (n) = 1 for n ≥ s and P (n) = 0
for n < s. Averaging over many configurations provides us with a good Monte Carlo
estimate for P (n). The critical point p∗b is found by looking for the fixed point with
R(p∗b) = p∗b . The exponents, like ν are obtained from the derivatives of R(p) using
equation (6.42), as we did in the analytic RG calculation.

The corrections due to finite block sizes b can be extrapolated using the following
equations, again determined by finite size scaling:

ν(b)− ν ∝ 1/ log b, (6.56)

p∗b − pc ∝ b−
1
ν (6.57)

Using b ≈ 500 one can obtain estimates for the exponents that are accurate to four
digits!

6.8 Series expansion

Series expansion is a very different method, trying to make maximum use of analytically
known results for small systems to obtain high precision e xtrapolations to large systems.
The basis is an exact calculation for the probability ns(p) of small clusters. For example,
on a square lattice we have

n1(p) = p(1− p)4 (6.58)

n2(p) = 2p2(1− p)6 (6.59)

n3(p) = 2p3(1− p)8 + 4p3(1− p)7 (6.60)
... (6.61)

In the calculation of these probabilities we needed to enumerate the different geometries
of s-site clusters and calculate the number of times they can be embedded into a square
lattice. Once we have calculated the cluster numbers ns for clusters up to size s we
can calculate the first s terms of a Taylor expansion in p for any quantity of interest.
This Taylor series can be used as the basis of several analysis procedures, of which we
mention only two often used approaches.

The ratio method determines critical points and exponents from ratios of successive
expansion coefficients. Look, for example, at the Taylor series expansion for a function
like ξ ∝ (pc − p)−ν :

(pc − p)−ν = p−ν
c

∞
∑

i=0

aip
i = p−ν

c

(

1 +
ν

pc

p+
ν(ν + 1)

2p2
c

p2 + . . .

)

(6.62)
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Table 6.1: Critical exponents for percolation in any dimension
functional form exponent d = 1 d = 2 d = 3 d = 4 d = 5 d ≥ 6
M0 ∝ |p− pc|2−α α 1 -2/3 -0.62 -0.72 -0.86 - 1
ns(p = pc) ∝ s−τ τ 2 187/91 2.18 2.31 2.41 5/2
S ∝ |p− pc|−γ γ 1 43/18 1.80 1.44 1.18 1
ξ ∝ |p− pc|−ν ν 1 4/3 0.88 0.68 0.57 1/2

g(r, p = pc) ∝ r−(d−2+η) η 1 5/24 -0.07 -0.12 -0.05 0
P ∝ (p− pc)

β β – 5/36 0.41 0.64 0.84 1
fractal dimension D 1 91/48 2.53 3.06 3.54 4

with the following simple relation between the coefficients:

ai

ai−1

=
1

pc

(

1 +
ν − 1

i

)

(6.63)

As ξ(p) is asymptotically proportional to (p − pc)
−ν the series will be dominated by

this asymptotic behavior for large coefficients and a fit of the ratios to above equation
(6.63) will give estimates for pc and ν.

The other, often more accurate method is the Dlog-Padé method. Its basis is that
a function like ξ ≃ (p− pc)

−ν has a logarithmic derivative

d

dp
log ξ(p) ≃ d

dp
log(p− pc)

−ν =
ν

p− pc

(6.64)

The logarithmic derivative of ξ with respect to p will thus have a pole at pc with
residuum ν, refecting the singularity at pc. To estimate the pole and residuum we use
Padé approximants to represent the series for ξ as a rational function:

ξ ≈
N
∑

i=0

aip
i =

∑L
j=0 bjp

j

∑M
k=0 ckp

k
(6.65)

with L+M = N . The coefficients are determined by matching the first N terms in the
Taylor series of the left and right hand sides.

The zeroes of the polynomial in the denominator give the poles, one of which will be
a good estimate for pc. By using different values L and M the accuracy of the resulting
estimates can be checked. This was the method of choice before large computers became
available and is still in use today, when computers are used to obtain ns symbolically
for large values of s.

6.9 Listing of the universal exponents

In table 6.1 we give an overview over the various exponents calculated for dimensions
d < du = 6 as well as the Bethe lattice results, valid for any d ≥ du.

We wish to point out that besides the exponents there exist further universal quan-
tities, like the universal amplitude ratios

Γ =
S(pc − ǫ)
S(pc + ǫ)

(6.66)
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Finally we wish to repeat that these exponents are universal in the sense that they
depend only on dimensionality, but not on the specific percolation model used. Thus
all the examples mentioned in the introduction to this chapter: forest fires, oil reser-
voirs, gelation, spreading of diseases, etc., share the same exponents as long as the
dimensionality is the same.

Thus, although we have considered only toy models we get widely applicable results.
This is a common thread that we will encounter again. While performing numerical
simulations for specific models is nice, being able to extract universally valid results
from specific model simulations is the high art of computer simulations.
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Chapter 7

Magnetic systems

In this chapter we move away from the ’static’ problem of percolation to the more
dynamic problem of evaluating thermodynamic averages through phase space integrals.
In this context we will encounter many of the same problems as in percolation.

7.1 The Ising model

The Ising model is the simplest model for a magnetic system and a prototype statistical
system. We will use it for our discussion of thermodynamic phase transitions. It consists
of an array of classical spins σi = ±1 that can point either up (σi = +1) or down
(σi = −1). The Hamiltonian is

H = −J
∑

〈i,j〉
σiσj , (7.1)

where the sum goes over nearest neighbor spin pairs.
Two parallel spins contribute an energy of −J while two antiparallel ones contribute

+J . In the ferromagnetic case the state of lowest energy is the fully polarized state
where all spins are aligned, either pointing up or down.

At finite temperatures the spins start to fluctuate and also states of higher energy
contribute to thermal averages. The average magnetization thus decreases from its full
value at zero temperature. At a critical temperature Tc there is a second order phase
transition to a disordered phase, similar to the one we discussed in the percolation
problem.

The Ising model is the simplest magnetic model exhibiting such a phase transition
and is often used as a prototype model for magnetism. To discuss the phase transition
the scaling hypothesis introduced in the context of percolation will again be used.

As is known from the statistical mechanics course the thermal average of a quantity
A at a finite temperature T is given by a sum over all states:

〈A〉 =
1

Z

∑

i

Ai exp(−βEi), (7.2)

where β = 1/kBT is the inverse temperature. Ai is the value of the quantity A in the
configuration i. Ei is the energy of that configuration.
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The partition function (“Zustandssumme”)

Z =
∑

i

exp(−βEi) (7.3)

normalizes the probabilities pi = exp(−βEi)/Z.
For small systems it is possible to evaluate these sums exactly. As the number of

states grows like 2N a straight-forward summation is possible only for very small N . For
large higher dimensional systems Monte Carlo summation/integration is the method of
choice.

7.2 The single spin flip Metropolis algorithm

As was discussed in connection with integration it is usually not efficient to estimate
the average (7.2) using simple sampling. The optimal method is importance sampling,
where the states i are not chosen uniformly but with the correct probability pi, which
we can again do using the Metropolis algorithm.

The simplest Monte Carlo algorithm for the Ising model is the single spin flip
Metropolis algorithm which defines a Markov chain through phase space.

• Starting with a configuration ci propose to flip a single spin, leading to a new
configuration c′.

• Calculate the energy difference ∆E = E[c′]− E[ci] between the configurations c′

and ci.

• If ∆E < 0 the next configuration is ci+1 = c′

• If ∆E > 0 then ci+1 = c′ with probability exp(−β∆E), otherwise ci+1 = ci. We
do that by drawing a random number r uniformly distributed in the interval [0, 1[
and set ci+1 = c′ if r < exp(−β∆E).

• Measure all the quantities of interest in the new configuration.

This algorithm is ergodic since any configuration can be reached from any other in
a finite number of spin flips. It also fulfills the detailed balance condition.

7.3 Systematic errors: boundary and finite size ef-

fects

In addition to statistical errors due to the Monte Carlo sampling our simulations suffer
from systematic errors due to boundary effects and the finite size of the system.

In contrast to the percolation problems boundary effects can be avoided completely
by using periodic boundary conditions. The lattice is continued periodically, forming a
torus. The left neighbor of the leftmost spin is just the rightmost boundary spin, etc..

Although we can thus avoid boundary effects, finite size effects remain since now
all correlations are periodic with the linear system size as period. In the context of the
percolation problem we have already learned how to deal with finite size effects:
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• Away from phase transitions the correlation length ξ is finite and finite size effects
are negligible if the linear system size L ≫ ξ. Usually L > 6ξ is sufficient, but
this should be checked for each simulation.

• In the vicinity of continuous phase transitions we encounter the same problem as
in percolation: the correlation length ξ diverges. Again finite size scaling comes
to the rescue and we can obtain the critical behavior as discussed in the chapter
on percolation.

7.4 Critical behavior of the Ising model

Close to the phase transition at Tc again scaling laws characterize the behavior of all
physical quantities. The average magnetization scales as

m(T ) = 〈|M |/V 〉 ∝ (Tc − T )β, (7.4)

where M is the total magnetization and V the system volume (number of spins).
The magnetic susceptibility χ = dm

dh
|h=0 can be calculated from magnetization fluc-

tuations and diverges with the exponent γ:

χ(T ) =
〈M2/V 〉 − 〈|M |〉2/V

T
∝ |Tc − T |−γ. (7.5)

The correlation length ξ is defined by the asymptotically exponential decay of the
two-spin correlations:

〈σ0σr〉 − 〈|m|〉2 ∝ exp(−r/ξ). (7.6)

It is best calculated from the structure factor S(q) , defined as the Fourier transform
of the correlation function. For small q the structure factor has a Lorentzian shape:

S(q) =
1

1 + q2ξ2
+ O(q4). (7.7)

The correlation length diverges as

ξ(p) ∝ |T − Tc|−ν . (7.8)

At the critical point the correlation function again follows the same power law as in
the percolation problem:

〈σ0σr〉 ∝ r−(d−2+η) (7.9)

where η = 2β/ν − d+ 2, derived from the same scaling laws as in percolation.
The specific heat C(T ) diverges logarithmically in two dimensions:

C(T ) ∝ ln |T − Tc| ∝ |T − Tc|−α (7.10)

and the critical exponent α = 0.
Like in percolation, finite size scaling is the method of choice for the determination

of these exponents.

77



Table 7.1: Critical exponents for the Ising model in two and three dimensions.

quantity functional form exponent Ising d = 2 Ising d = 3
magnetization m ∝ (Tc − T )β β 1/8 0.3258(44)
susceptibility χ ∝ |T − Tc|−γ γ 7/4 1.2390(25)
correlation length ξ ∝ |T − Tc|−ν ν 1 0.6294(2)
specific heat C(T ) ∝ |T − Tc|−α α 0

inverse critical temp. 1/Tc
1
2
ln(1 +

√
2) 0.221657(2)

A good estimate of Tc is obtained from the Binder cumulant

U = 1− 〈M4〉
3〈M2〉2 . (7.11)

Just as the function Π(L, p) in the percolation problem has a universal value at pc,
also the Binder cumulant has a universal value at Tc. The curves of U(T ) for different
system sizes L all cross in one point at Tc. This is a consequence of the finite size scaling
ansatz:

〈M4〉 = (T − Tc)
4βu4((T − Tc)L

1/ν)

〈M2〉 = (T − Tc)
2βu2((T − Tc)L

1/ν). (7.12)

Thus

U(T, L) = 1− u4((T − Tc)L
1/ν)

3u2((T − Tc)L1/ν)2
, (7.13)

which for T = Tc is universal and independent of system size L:

U(Tc, L) = 1− u4(0)

3u2(0)2
(7.14)

High precision Monte Carlo simulations actually show that not all lines cross exactly
at the same point, but that due to higher order corrections to finite size scaling the
crossing point moves slightly, proportional to L−1/ν , allowing a high precision estimate
of Tc and ν. 1

In the table we show the exponents and critical temperature of the Ising model in
two and three dimensions.

7.5 “Critical slowing down” and cluster Monte Carlo

methods

The importance of autocorrelation becomes clear when we wish to simulate the Ising
model at low temperatures. The mean magnetization 〈m〉 is zero on any finite cluster,

1See, e.g., A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44 5081 (1991); K. Chen, A. M.
Ferrenberg and D. P. Landau, Phys. Rev. B 48 3249 (1993).
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as there is a degeneracy between a configuration and its spin reversed counterpart. If,
however, we start at low temperatures with a configuration with all spins aligned up it
will take extremely long time for all spins to be flipped by the single spin flip algorithm.
This problem appears as soon as we get close to the critical temperature, where it was
observed that the autocorrelation times diverge as

τ ∝ [min(ξ, L)]z. (7.15)

with a dynamical critical exponents z ≈ 2 for all local update methods like the single
spin flip algorithm.

The reason is that at low temperatures it is very unlikely that even one spin gets
flipped, and even more unlikely for a large cluster of spins to be flipped.

The solution to this problem was found in 1987 and 1989 by Swendsen and Wang2

and by Wolff.3

Instead of flipping single spins they propose to flip big clusters of spins and choose
them in a clever way so that the probability of flipping these clusters is large.

7.5.1 Kandel-Domany framework

We use the Fortuin-Kastelyn representation of the Ising model, as generalized by Kandel
and Domany. The phase space of the Ising model is enlarged by assigning a set G of
possible “graphs” to each configuration C in the set of configurations C. We write the
partition function as

Z =
∑

C∈C

∑

G∈G
W (C,G) (7.16)

where the new weights W (C,G) > 0 are chosen such that Z is the partition function of
the original model by requiring

∑

G∈G
W (C,G) = W (C) := exp(−βE[C]), (7.17)

where E[C] is the energy of the configuration C.
The algorithm now proceeds as follows. First we assign a graph G ∈ G to the

configuration C, chosen with the correct probability

PC(G) = W (C,G)/W (C). (7.18)

Then we choose a new configuration C ′ with probability p[(C,G) → (C ′, G)], keeping
the graph G fixed; next a new graph G′ is chosen

C → (C,G)→ (C ′, G)→ C ′ → (C ′, G′)→ . . . (7.19)

What about detailed balance? The procedure for choosing graphs with probabilities
PG obeys detailed balance trivially. The non-trivial part is the probability of choosing
a new configuration C ′. There detailed balance requires:

W (C,G)p[(C,G)→ (C ′, G)] = W (C ′, G)p[(C ′, G)→ (C,G)], (7.20)

2R.H. Swendsen and J-S. Wang, Phys. Rev. Lett. 58, 86 (1987).
3U. Wolff, Phys. Rev. Lett. 62, 361 (1989)
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Table 7.2: Local bond weights for the Kandel-Domany representation of the Ising model.

c =↑↑ c =↓↑ c =↑↓ c =↓↓ V(g)
∆(c, discon.) 1 1 1 1 exp(−βJ)
∆(c, con.) 1 0 0 1 exp(βJ)− exp(−βJ)
w(c) exp(βJ) exp(−βJ) exp(−βJ) exp(βJ)

which can be fulfilled using either the heat bath algorithm

p[(C,G)→ (C ′, G)] =
W (C ′, G)

W (C,G) +W (C ′, G)
(7.21)

or by again using the Metropolis algorithm:

p[(C,G)→ (C ′, G)] = min(W (C ′, G)/W (C,G), 1) (7.22)

The algorithm simplifies a lot if we can find a graph mapping such that the graph
weights do not depend on the configuration whenever it is nonzero in that configuration.
This means, we want the graph weights to be

W (C,G) = ∆(C,G)V (G), (7.23)

where

∆(C,G) :=

{

1 if W (C,G) 6= 0,
0 otherwise.

. (7.24)

Then equation (7.21) simply becomes p = 1/2 and equation (7.22) reduces to p = 1 for
any configuration C ′ with W (C ′, G) 6= 0.

7.5.2 The cluster algorithms for the Ising model

Let us now show how this abstract and general algorithm can be applied to the Ising
model. Our graphs will be bond-percolation graphs on the lattice. Spins pointing
into the same direction can be connected or disconnected. Spins pointing in opposite
directions will always be disconnected. In the Ising model we can write the weights
W (C) and W (C,G) as products over all bonds b:

W (C) =
∏

b

w(Cb) (7.25)

W (C,G) =
∏

b

w(Cb, Gb) =
∏

b

∆(Cb, Gb)V (Gb) (7.26)

where the local bond configurations Cb can be one of {↑↑, ↓↑, ↑↓, ↓↓}
and the local graphs can be “connected” or “disconnected”. The graph selection

can thus be done locally on each bond.
Table 7.2 shows the local bond weights w(c, g), w(c), ∆(c, g) and V (g). It can easily

be checked that the sum rule (7.17) is satisfied.
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The probability of a connected bond is [exp(βJ) − exp(−βJ)]/ exp(βJ) = 1 −
exp(−2βJ) if two spins are aligned and zero otherwise. These connected bonds group
the spins into clusters of aligned spins.

A new configuration C ′ with the same graph G can differ from C only by flipping
clusters of connected spins. Thus the name “cluster algorithms”. The clusters can be
flipped independently, as the flipping probabilities p[(C,G)→ (C ′, G)] are configuration
independent constants.

There are two variants of cluster algorithms that can be constructed using the rules
derived above.

7.5.3 The Swendsen-Wang algorithm

The Swendsen-Wang or multi-cluster algorithm proceeds as follows:

i) Each bond in the lattice is assigned a label “connected” or “disconnected” ac-
cording to above rules. Two aligned spins are connected with probability 1 −
exp(−2βJ). Two antiparallel spins are never connected.

ii) Next a cluster labeling algorithm, like the Hoshen-Kopelman algorithm is used to
identify clusters of connected spins.

iii) Measurements are performed, using improved estimators discussed in the next
section.

iv) Each cluster of spins is flipped with probability 1/2.

7.5.4 The Wolff algorithm

The Swendsen Wang algorithm gets less efficient in dimensions higher than two as the
majority of the clusters will be very small ones, and only a few large clusters exist.
The Wolff algorithm is similar to the Swendsen-Wang algorithm but builds only one
cluster starting from a randomly chosen point. As the probability of this point being
on a cluster of size s is proportional to s the Wolff algorithm builds preferedly larger
clusters. It works in the following way:

i) Choose a random spin as the initial cluster.

ii) If a neighboring spin is parallel to the initial spin it will be added to the cluster
with probability 1− exp(−2βJ).

iii) Repeat step ii) for all points newly added to the cluster and repeat this procedure
until no new points can be added.

iv) Perform measurements using improved estimators.

v) Flip all spins in the cluster.
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We will see in the next section that the linear cluster size diverges with the corre-
lation length ξ and that the average number of spins in a cluster is just χT . Thus the
algorithm adapts optimally to the physics of the system and the dynamical exponent
z ≈ 0, thus solving the problem of critical slowing down. Close to criticality these
algorithms are many orders of magnitudes (a factor L2) better than the local update
methods. Away from criticality sometimes a hybrid method, mixing cluster updates
and local updates can be the ideal method.

7.6 Improved Estimators

In this section we present a neat trick that can be used in conjunction with cluster
algorithms to reduce the variance, and thus the statistical error of Monte Carlo mea-
surements. Not only do these “improved estimators” reduce the variance. They are
also much easier to calculate than the usual “simple estimators”.

To derive them we consider the Swendsen-Wang algorithm. This algorithm divides
the lattice into Nc clusters, where all spins within a cluster are aligned. The next
possible configuration is any of the 2Nc configurations that can be reached by flipping
any subset of the clusters. The idea behind the “improved estimators” is to measure
not only in the new configuration but in all equally probable 2Nc configurations.

As simplest example we consider the average magnetization 〈m〉. We can measure
it as the expectation value 〈σ~i〉 of a single spin. As the cluster to which the spin belongs
can be freely flipped, and the flipped cluster has the same probability as the original
one, the improved estimator is

〈m〉 = 〈1
2
(σ~i − σ~i)〉 = 0. (7.27)

This result is obvious because of symmetry, but we saw that at low temperatures a
single spin flip algorithm will fail to give this correct result since it takes an enormous
time to flip all spins. Thus it is encouraging that the cluster algorithms automatically
give the exact result in this case.

Correlation functions are not much harder to measure:

〈σ~iσ~j〉 =

{

1 if ~i und ~j are on the same cluster
0 otherwise

(7.28)

To derive this result consider the two cases and write down the improved estimators by
considering all possible cluster flips.

Using this simple result for the correlation functions the mean square of the mag-
netization is

〈m2〉 =
1

N2

∑

~i,~j

〈σ~iσ~j〉 =
1

N2
〈
∑

cluster

S(cluster)2〉, (7.29)

where S(cluster) is the number of spins in a cluster. The susceptibility above Tc is
simply given by β〈m2〉 and can also easily be calculated by above sum over the squares
of the cluster sizes.
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In the Wolff algorithm only a single cluster is built. Above sum (7.29) can be
rewritten to be useful also in case of the Wolff algorithm:

〈m2〉 =
1

N2
〈
∑

cluster

S(cluster)2〉

=
1

N2

∑

~i

1

S(cluster containing ~i)
S(cluster containing ~i)2

=
1

N2

∑

~i

S(cluster containing ~i) =
1

N
〈S(cluster)〉. (7.30)

The expectation value for m2 is thus simply the mean cluster size. In this derivation
we replaced the sum over all clusters by a sum over all sites and had to divide the
contribution of each cluster by the number of sites in the cluster. Next we can replace
the average over all lattice sites by the expectation value for the cluster on a randomly
chosen site, which in the Wolff algorithm will be just the one Wolff cluster we build.

Generalizations to other quantities, like the structure factor S(~q) are straightfor-
ward. While the calculation of S(~q) by Fourier transform needs at least O(N logN)
steps, it can be done much faster using improved estimators, here derived for the Wolff
algorithm:

〈S(~q)〉 =
1

N2

∑

~r,~r′

σ~rσ~r′ exp(i~q(~r − ~r′))

=
1

NS(cluster)

∑

~r,~r′∈cluster

σ~rσ~r′ exp(i~q(~r − ~r′))

=
1

NS(cluster)

∣

∣

∣

∣

∣

∣

∑

~r∈cluster

exp(i~q~r)

∣

∣

∣

∣

∣

∣

2

, (7.31)

This needs only O(S(cluster)) operations and can be measured directly when construct-
ing the cluster.

Care must be taken for higher order correlation functions. Improved estimators
for quantities like m4 contain terms of the form 〈S(cluster1)S(cluster2)〉, which need
at least two clusters and cannot be measured in an improved way using the Wolff
algorithm.

7.7 Generalizations of cluster algorithms

Cluster algorithms can be used not only for the Ising model but for a large class of
classical, and even quantum spin models. The quantum version is the “loop algorithm”,
which will be discussed later in the course. In this section we discuss generalizations to
other classical spin models.

Before discussing specific models we remark that generalizations to models with
different coupling constants on different bonds, or even random couplings are straight-
forward. All decisions are done locally, individually for each spin or bond, and the
couplings can thus be different at each bond.
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7.7.1 Potts models

q-state Potts models are the generalization of the Ising model to more than two states.
The Hamilton function is

H = −J
∑

〈i,j〉
δsi,sj

, (7.32)

where the states si can take any integer value in the range 1, . . . , q. The 2-state Potts
model is just the Ising model with some trivial rescaling.

The cluster algorithms for the Potts models connect spins with probability 1− e−βJ

if the spins have the same value. The clusters are then “flipped” to any arbitrarily
chosen value in the range 1, . . . , q.

7.7.2 O(N) models

Another, even more important generalization are the O(N) models. Well known exam-
ples are the XY -model with N = 2 and the Heisenberg model with N = 3. In contrast
to the Ising model the spins can point into any arbitrary direction on the N -sphere.
The spins in the XY model can point into any direction in the plane and can be char-
acterized by a phase. The spins in the Heisenberg model point into any direction on a
sphere.

The Hamilton function is:
H = −J

∑

〈i,j〉

~Si
~Sj, (7.33)

where the states ~Si are N -dimensional unit vectors.
Cluster algorithms are constructed by projecting all spins onto a random direction

ê. The cluster algorithm for the Ising model can then be used for this projection. Two
spins ~Si and ~Sj are connected with probability

1− exp
(

min[0,−2βJ(ê · ~Si)(ê · ~Sj)]
)

. (7.34)

The spins are flipped by inverting the projection onto the ê-direction:

~Si → ~Si − 2(ê · ~Si)ê. (7.35)

In the next update step a new direction ê on the unit sphere is chosen.

The Heisenberg model

Table 7.3 lists the critical exponents and temperature for the three dimensional Heisen-
berg model.

In two dimensions models with a continuous symmetry, like the O(N) models with
N ≥ 2 do not exhibit a phase transition at a finite critical temperature, as is proven by
the Mermin-Wagner theorem. The reason are the Goldstone-modes, long wavelength
spin waves that have vanishingly low excitation energies at long wavelengths. As a
consequence the two-dimensional Heisenberg model has Tc = 0 and an exponentially
growing correlation length at low temperatures ξ ∝ exp(2πJ/T ). We will learn more
about this model and finite size scaling from one of the projects.
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Table 7.3: Critical properties of the three-dimensional classical Heisenberg model.

quantity functional form exponent
magnetization m ∝ (Tc − T )β β 0.3639(35)
susceptibility χ ∝ |T − Tc|−γ γ 1.3873(85)
correlation length ξ ∝ |T − Tc|−ν ν 0..7048(30)
specific heat C(T ) ∝ |T − Tc|−α α 0.1144(90)
inverse critical temperature simple cubic 1/Tc 0.693035(37)

bc cubic 0.486798(12)

The XY -model

The only exception to the just stated rule that models with N ≥ 2 do not exhibit any
finite temperature phase transition in two dimensions is the XY model which has a
finite temperature Kosterlitz-Thouless transition.

This is a very special kind of phase transition. In accordance with the Mermin-
Wagner theorem there is no finite magnetization at any finite temperature. However
the vorticity remains finite up to a critical temperature Tc > 0. At Tc it jumps from the
universal value 2Tc/π to 0. This model will be investigated in another of the projects.

7.7.3 Generic implementation of cluster algorithms

The cluster algorithms for many models, including the models discussed above, can
be implemented in a very generic way using template constructs in C++. This generic
program, as well as performance comparisons which show that the generic program is on
average as fast (and sometimes even faster) than a specific optimized Fortran program
will be presented at the end of the course - after you have written your versions of the
algorithms.

7.8 The Wang-Landau algorithm

7.8.1 Flat histograms

While the cluster algorithms discussed in this section solve the problem of critical
slowing down at second order (continuous) phase transitions they do not help at all
at first order phase transitions. At first order phase transitions there is no divergence
of any quantity and both the disordered and the ordered phase remain (meta)-stable
throughout the transition. The most famous example is the solid/liquid transition
where you can every day observe the coexistence of both (meta)-stable phases, e.g.
water and ice. Water remains liquid even when cooled below the freezing temperature,
until some ice crystal nucleates in the super-cooled water when it starts freezing. There
is a large free energy, the surface energy of the first ice crystal, which has to be overcome
before freezing sets in. This leads to macroscopically tunneling times between the two
coexistent phases at the phase transition.
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Figure 7.1: The probability P (E, T ) = ρ(E) exp(−E/kBT ) of visiting a state with
energy E in a q = 10-state Potts model at the critical temperature. The tunneling
probability between the two phases (the dip between the two maxima) becomes expo-
nentially small for large systems. This figure is taken from the paper: F. Wang and
D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

The simplest lattice model showing such a first order thermal phase transition is
a two-dimensional Potts model with large q, e.g. q = 10. For this model we show in
Fig. 7.1 the probability P (E, T ) of visiting a configuration with energy E. This is:

P (E, T ) = ρ(E)p(E) = ρ(E)e−E/kBT , (7.36)

where the density of states ρ(E) counts the number of states with energy E. At the
critical temperature there are two coexisting phases, the ordered and disordered ones
with different energies. In order to tunnel from one to the other one has to continuously
change the energy and thus go through the probability minimum between the two
peeks. This probability decreases exponentially with system size and we thus have a
real problem!

The Wang-Landau algorithm is the latest in a series of attempts at solving this
problem4 It starts from the simple observation that the probability minimum vanishes
if we choose p(E) ∝ 1/ρ(E) instead of the Boltzmann weight p(E) ∝ exp(−E/kBT ):

P (E, T ) = ρ(E)p(E) ∝ ρ(E)/ρ(E) = const. (7.37)

During our sampling we thus get a “flat histogram” in the energy.

7.8.2 Determining ρ(E)

The only problem now is that ρ(E) is not known, since it requires a solution of the full
problem. The approach by Wang and Landau is crude but simple. They start with a

4F. Wang and D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E 64, 056101 (2001).
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(very bad guess) ρ(E) = 1 for all energies an iteratively improve it:

• Start with ρ(E) = 1 and f = e

• Repeat

– Reset a histogram of energies H(E) = 0

– Perform simulations until a histogram of energies H(E) is “flat”

∗ pick a random site

∗ attempt a local Metropolis update using p(E) = 1/ρ(E)

∗ increase the histogram at the current energy E: H(E)← H(E) + 1

∗ increase the estimate for ρ(E) at the current energy E: ρ(E)← ρ(E) · f
– once H(E) is “flat” (e.g. the minimum is at least 80% of the mean), reduce
f ←

√
f

• stop once f ≈ 1 + 10−8

As you can see, only a few lines of code need to be changed in your local update
algorithm for the Ising model, but a few remarks are necessary:

1. Check for flatness of the histogram not at very step but only after a reasonable
number of sweeps Nsweeps. One sweep is defined as one attempted update per site.

2. The initial value for f needs to be carefully chosen, f = e is only a rough guide.
As discussed in the papers a good choice is picking the initial f such that fNsweeps

is approximately the total number of states (e.g. qN for a q-state Potts model
with N sites).

3. The flatness criterion is quite arbitrary and some research is still necessary to find
the optimal choice.

4. The density of states ρ(E) can become very large and easily exceed 1010000. In
order to obtain such large numbers the multiplicative increase ρ(E)← ρ(E) · f is
essential. A naive additive guess ρ(E) ← ρ(E) + f would never be able to reach
the large numbers needed.

5. Since ρ(E) is so large, we only store its logarithm. The update step is thus
ln ρ(E)← ln ρ(E) + ln f . The Metropolis acceptance probability will be

P = min[1, exp(ln ρ(Eold)− ln ρ(Enew))] (7.38)

7.8.3 Calculating thermodynamic properties

Another advantage of the Wang-Landau algorithm is that, once we know the density
of states ρ(E), we can directly calculate the partition function

Z =
∑

c

Ece
−Ec/kBT =

∑

E

ρ(E)e−E/kBT (7.39)
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and the free energy

F = −kBT lnZ = −kBT ln
∑

E

ρ(E)e−E/kBT (7.40)

which are both not directly accessible in any other Monte Carlo algorithm. All other
thermodynamic properties such as the susceptibility or the specific heat can now be
calculated simply as derivatives of the free energy.

In evaluating these sums one has to be careful on how to avoid exponent overflow
in the exponentials. More details on how to do that will be given in the exercises.

7.8.4 Optimized ensembles

Instead of choosing a flat histogram, any arbitrary ensemble can actually be simu-
lated using generalizations of the Wang-Landau algorithm. And indeed, as realized by
Prakash Dayal5 the flat histogram ensemble is not yet optimal. Simon Trebst 6 has
then derived an optimal ensemble and an algorithm to determine it. He will talk about
this algorithm later during the semester.

7.9 The transfer matrix method

7.9.1 The Ising chain

As a last method we wish to discuss the transfer matrix method which gives exact
numerical results for Ising models on infinite strips of small width W . The partition
function of a periodic Ising chain of length L can be written as:

Z =
∑

{(σ1,...,σL)}

L
∏

i=1

exp(βJσiσi+1), (7.41)

where the sum goes over all configurations (σ1, . . . , σL) and periodic boundary condi-
tions are implemented by defining σL+1 ≡ σ1. The partition function can be rewritten
as a trace over a product of transfer matrices U

U =

(

exp(βJ) exp(−βJ)
exp(−βJ) exp(βJ)

)

. (7.42)

Using these transfer matrices the partition function becomes:

Z = Tr





∑

σ1=↑,↓

∑

σ2=↑,↓
· · ·

∑

σL=↑,↓

L
∏

i=1

exp(βJσiσi+1)



 = TrUL (7.43)

For strips of finite width W transfer matrices of dimension 2W can be constructed in a
similar fashion, as we will see in the next section.

5P. Dayal et al., Phys. Rev. Lett. 92, 097201 (2004)
6S. Trebst, D. Huse and M. Troyer, Phys. Rev. E 70, 046701 (2004)
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The free energy density is:

f = − 1

βL
lnZ = − 1

βL
ln TrUL (7.44)

In the limit L → ∞ only the largest eigenvalues of the transfer matrix U will be
important. We label the eigenvalues λi, with i = 1, . . . , D := 2W , with |λ1| > |λ2| ≥
|λ3| ≥ . . .. Then the free energy density can be written as

f = − 1

βL
ln TrUL = − 1

βL
ln(

D
∑

i=1

λL
i )

= − 1

βL
ln(λL

1

D
∑

i=1

λL
i /λ

L
1 ) = − 1

βL

[

lnλL
1 + ln(

D
∑

i=1

λL
i /λ

L
1 )

]

(7.45)

In the limit L → ∞ all λL
i /λ

L
1 converge to zero except for the i = 1 term, which gives

1. Thus we obtain

f = − 1

β
lnλ1. (7.46)

In a similar way we can show that correlations decay like (λ2/λ1)
r, which gives a cor-

relation length

ξ =
1

lnλ1 − lnλ2
(7.47)

7.9.2 Coupled Ising chains

The same procedure also works for infinitely long strips of W coupled Ising chains. In
that case the transfer matrix has dimension N = 2W and is constructed just as before.

To obtain the eigenvalues of the transfer matrix we will use three tricks:

1. Representation of the dense transfer matrix U as a product of sparse matrices.

2. Calculation of the eigenvalues of the transfer matrix by iterative methods

3. Calculation of the matrix elements by multi-spin coding

The Hamilton function is

H =
∞
∑

x=−∞
H(x) (7.48)

with

H(x) = −J
W
∑

y=1

σx,yσx+1,y − J
W−1
∑

y=1

σx,yσx,y+1 (7.49)

The corresponding transfer matrix U is a dense matrix, with all elements non-zero.
We can however write is as a product of sparse matrices:

U(x) =
W−1
∏

y=1

U
1/2
(x,y)−(x,y+1)

W
∏

y=1

U(x,y)−(x+1,y) ×
W−1
∏

y=1

U
1/2
(x,y)−(x,y+1) (7.50)
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where the partial transfer matrices U(x1,y1)−(x2,y2) arise from the terms σx1,y1
σx2,y2

in the

Hamiltonian. The square roots U
1/2
(x,y)−(x,y+1) are used to make the matrix U Hermitian,

which will be necessary for the Lanczos algorithm.
All of these transfer matrices are sparse. The matrices U(x,y)−(x,y+1) are diagonal

as they act only on the configuration at fixed x. The matrices U(x,y)−(x+1,y) contain
a diagonal entry for σx,y = σx+1,y and additionally an off-diagonal entry when σx,y =
−σx+1,y.

We can thus replace a matrix-vector multiplication U~v, which would need N2 = 22W

operations by W − 1 multiplications with diagonal matrices U(x,y)−(x,y+1) and W multi-
plications with sparse matrices U(x,y)−(x+1,y). This requires only (4W −2)N operations,
significantly less than N2!

In the next section we will discuss how the matrix-vector multiplications can be
coded very efficiently. Finally we will explain the Lanczos algorithm which calculates
the extreme eigenvalues of a sparse matrix.

7.9.3 Multi-spin coding

Multi-spin coding is an efficient technique to map a configuration of Ising spins to an
array index. We interpret the bit pattern of an integer number as a spin configuration.
A bit set to 1 corresponds to an up spin, a bit set to 0 corresponds to a down spin.

Let us now consider the matrices U(x,y)−(x,y+1). As mentioned before, they are diago-
nal as they do not propagate in the x-direction, but just give the Boltzmann weights of
the current configuration. For a given y we loop over all N configurations c = 0 . . .N−1.
In each configuration c we consider the bits y and y+1. If they are the same, the spins
are aligned and the diagonal matrix element is exp(βJ), otherwise the matrix element
is exp(−βJ).

The matrices U(x,y)−(x+1,y) are not much harder to compute. For each configuration
c there is a diagonal element exp(βJ). This corresponds to the case when the spin
configuration does not change and the two spins at (x, y) and (x+ 1, y) are aligned. In
addition there is one off-diagonal element exp(−βJ), corresponding to a change in spin
orientation. It connects the state c with a state c′, which differs from c only by the bit
y.

This bit-representation of the Ising spins thus allows a very simple end efficient
way of performing these sparse matrix-vector products, as illustrated in this C++ code
fragment:

unsigned int W=6; // the width of the strip

unsigned int N=1<<W; // 2^W = number of configurations on one crosssection

void transfer_matrix_multiply(vector<double>& v1) {

vector<double> v2(N);

double w1 = exp(-beta*J);

double w2 = exp(+beta*J);
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double w1_root = exp(-0.5*beta*J);

double w2_root = exp(+0.5*beta*J);

// (x,y) - (x,y+1) terms

for (int y=0; y<W-1; y++)

for (int c=0 ; c<N; c++)

v1[c]*=( ((c>>1) ^ c)&(1<<y) == 0 ? w1_root : w2_root);

// (x,y) - (x+1,y) terms

for (int y=0; y<W; y++ ) {

for (int c=0 ; c<N; c++)

v2[c]=v1[c]*w2+v1[c^(1<<y)]*w1;

y++;

if(y<W)

for (int c=0 ; c<N; c++)

v1[c]=v2[c]*w2+v2[c^(1<<y)]*w1;

else

v1=v2;

}

// (x,y) - (x,y+1) terms

for (int y=0; y<W-1; y++)

for (int c=0 ; c<N; c++)

v1[c]*=( ((c>>1) ^ c)&(1<<y) == 0 ? w1_root : w2_root);

}

7.10 The Lanczos algorithm

Sparse matrices with only O(N) non-zero elements are very common in scientific simu-
lations. We have already encountered them in the winter semester when we discretized
partial differential equations. Now we have reduced the transfer matrix of the Ising
model to a sparse matrix product. We will later see that also the quantum mechanical
Hamilton operators in lattice models are sparse.

The importance of sparsity becomes obvious when considering the cost of matrix
operations as listed in table 7.4. For large N the sparsity leads to memory and time
savings of several orders of magnitude.

Here we will discuss the iterative calculation of a few of the extreme eigenvalues of
a matrix by the Lanczos algorithm. Similar methods can be used to solve sparse linear
systems of equations.

To motivate the Lanczos algorithms we will first take a look at the power method
for a matrix A. Starting from a random initial vector u1 we calculate the sequence

un+1 =
Aun

||Aun||
, (7.51)
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Table 7.4: Time and memory complexity for operations on sparse and dense N × N
matrices
operation time memory
storage
dense matrix — N2

sparse matrix — O(N)
matrix-vector multiplication
dense matrix O(N2) O(N2)
sparse matrix O(N) O(N)
matrix-matrix multiplication
dense matrix O(N ln 7/ ln 2) O(N2)
sparse matrix O(N) . . .O(N2) O(N) . . .O(N2)
all eigen values and vectors
dense matrix O(N3) O(N2)
sparse matrix (iterative) O(N2) O(N2)
some eigen values and vectors
dense matrix (iterative) O(N2) O(N2)
sparse matrix (iterative) O(N) O(N)

which converges to the eigenvector of the largest eigenvalue of the matrix A. The
Lanczos algorithm optimizes this crude power method.

Lanczos iterations

The Lanczos algorithm builds a basis {v1, v2, . . . , vM} for the Krylov-subspace KM =
span{u1, u2, . . . , uM}, which is constructed by M iterations of equation (7.51). This is
done by the following iterations:

βn+1vn+1 = Avn − αnvn − βnvn−1, (7.52)

where
αn = v†nAvn, βn = |v†nAvn−1|. (7.53)

As the orthogonality condition
v†i vj = δij (7.54)

does not determine the phases of the basis vectors, the βi can be chosen to be real and
positive. As can be seen, we only need to keep three vectors of size N in memory, which
makes the Lanczos algorithm very efficient, when compared to dense matrix eigensolvers
which require storage of order N2.

In the Krylov basis the matrix A is tridiagonal

T (n) :=



















α1 β2 0 · · · 0

β2 α2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βn

0 · · · 0 βn αn



















. (7.55)
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The eigenvalues {τ1, . . . , τM} of T are good approximations of the eigenvalues of A.
The extreme eigenvalues converge very fast. Thus M ≪ N iterations are sufficient to
obtain the extreme eigenvalues.

Eigenvectors

It is no problem to compute the eigenvectors of T . They are however given in the
Krylov basis {v1, v2, . . . , vM}. To obtain the eigenvectors in the original basis we need
to perform a basis transformation.

Due to memory constraints we usually do not store all the vi, but only the last three
vectors. To transform the eigenvector to the original basis we have to do the Lanczos
iterations a second time. Starting from the same initial vector v1 we construct the
vectors vi iteratively and perform the basis transformation as we go along.

Roundoff errors and ghosts

In exact arithmetic the vectors {vi} are orthogonal and the Lanczos iterations stop after
at most N − 1 steps. The eigenvalues of T are then the exact eigenvalues of A.

Roundoff errors in finite precision cause a loss of orthogonality. There are two ways
to deal with that:

• Reorthogonalization of the vectors after every step. This requires storing all of
the vectors {vi} and is memory intensive.

• Control of the effects of roundoff.

We will discuss the second solution as it is faster and needs less memory. The main
effect of roundoff errors is that the matrix T contains extra spurious eigenvalues, called
“ghosts”. These ghosts are not real eigenvalues of A. However they converge towards
real eigenvalues of A over time and increase their multiplicities.

A simple criterion distinguishes ghosts from real eigenvalues. Ghosts are caused by
roundoff errors. Thus they do not depend on on the starting vector v1. As a consequence
these ghosts are also eigenvalues of the matrix T̃ , which can be obtained from T by
deleting the first row and column:

T̃ (n) :=



















α2 β3 0 · · · 0

β3 α3
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βn

0 · · · 0 βn αn



















. (7.56)

From these arguments we derive the following heuristic criterion to distinguish ghosts
from real eigenvalues:

• All multiple eigenvalues are real, but their multiplicities might be too large.

• All single eigenvalues of T which are not eigenvalues of T̃ are also real.

Numerically stable and efficient implementations of the Lanczos algorithm can be
obtained from netlib. As usual, do not start coding your own algorithm but use existing
optimal implementations.
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7.11 Renormalization group methods for classical

spin systems

Just as in the percolation problem renormalization group methods can also be applied
to spin systems. A block of b spins is replaced by a single spin, and the interaction
is renormalized by requiring that physical expectation values are invariant under the
transformation.

Again, Monte Carlo renormalization group can be used for larger block sizes b. As
we have already learned the basics of renormalization in the percolation problem we
will not discuss any details here. Interested students are referred to the text book by
Tao Pang and to references therein.
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Chapter 8

The quantum one-body problem

8.1 The time-independent one-dimensional Schrödinger

equation

We will start the discussion of quantum problems with the time-indepent one-dimensional
Schrödinger equation for a particle with mass m in a Potential V (x). For this problem
the time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ, (8.1)

can be simplified to an ordinary differential equation using the ansatz ψ(x, t) = ψ(x) exp(−iEt)

Eψ = − h̄2

2m

∂2ψ

∂x2
+ V (x)ψ. (8.2)

8.1.1 The Numerov algorithm

After rewriting this second order differential equation to a coupled system of two first
order differential equations, any ODE solver such as the Runge-Kutta method could be
applied, but there exist better methods.

For the special form
ψ′′(x) + k(x)ψ(x) = 0, (8.3)

of the Schrödinger equation, with k(x) = 2mV (x)/h̄2 we can derive the Numerov algo-
rithm by starting from the Taylor expansion of ψn = ψ(n∆x):

ψn±1 = ψn ±∆xψ′
n +

∆x2

2
ψ′′

n ±
∆x3

6
ψ(3)

n +
∆x4

24
ψ(4)

n ±
∆x5

120
ψ(5)

n + O(∆x6) (8.4)

Adding ψn+ and ψn− we obtain

ψn+1 + ψn−1 = 2ψn + (∆x)2ψ′′
n

(∆x)4

12
ψ(4)

n . (8.5)

Replacing the fourth derivatives by a finite difference second derivative of the second
derivatives

ψ(4)
n =

ψ′′
n+1 + ψ′′

n−1 − 2ψ′′
n

∆x2
(8.6)
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and substituting −k(x)ψ(x) for ψ′′(x) we obtain the Numerov algorithm
(

1 +
(∆x)2

12
kn+1

)

ψn+1 = 2

(

1− 5(∆x)2

12
kn

)

ψn

−
(

1 +
(∆x)2

12
kn−1

)

ψn−1 + O(∆x6), (8.7)

which is locally of sixth order!

Initial values

To start the Numerov algorithm we need the wave function not just at one but at two
initial values and will now present several ways to obtain these.

For potentials V (x) with reflection symmetry V (x) = V (−x) the wave functions
need to be either even ψ(x) = ψ(−x) or odd ψ(x) = −ψ(−x) under reflection, which
can be used to find initial values:

• For the even solution we use a half-integer mesh with mesh points xn+1/2 =
(n + 1/2)∆x and pick intiial values ψ(x−1/2) = ψ(x1/2) = 1.

• For the odd solution we know that ψ(0) = −ψ(0) and hence ψ(0) = 0, specifying
the first starting value. Using an integer mesh with mesh points xn = n∆x we
pick ψ(x1) = 1 as the second starting value.

In general potentials we need to use other approaches. If the potentials vanishes for
large distances: V (x) = 0 for |x| ≥ a we can use the exact solution of the Schrdinger
equation at large distances to define starting points, e.g.

ψ(−a) = 1 (8.8)

ψ(−a−∆x) = exp(−∆x
√

2mE/h̄). (8.9)

Finally, if the potential never vanishes we need to begin with a single starting value
ψ(x0) and obtain the second starting value ψ(x1) by performing an integration over the
first time step ∆τ with an Euler or Runge-Kutta algorithm.

8.1.2 The one-dimensional scattering problem

The scattering problem is the numerically easiest quantum problem since solutions
exist for all energies E > 0, if the potential vanishes at large distances (V (x) → 0 for
|x| → ∞. The solution becomes particularly simple if the potential is nonzero only
on a finite interval [0, a]. For a particle approaching the potential barrier from the left
(x < 0) we can make the following ansatz for the free propagation when x < 0:

ψL(x) = A exp(−ikx) +B exp(ikx) (8.10)

where A is the amplitude of the incoming wave and B the amplitude of the reflected
wave. On the right hand side, once the particle has left the region of finite potential
(x > a), we can again make a free propagation ansatz,

ψR(x) = C exp(−ikx) (8.11)
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The coefficients A, B and C have to be determined self-consistently by matching to a
numerical solution of the Schrödinger equation in the interval [0, a]. This is best done
in the following way:

• Set C = 1 and use the two points a and a+ ∆x as starting points for a Numerov
integration.

• Integrate the Schrödinger equation numerically – backwards in space,from a to 0
– using the Numerov algorithm.

• Match the numerical solution of the Schrödinger equation for x < 0 to the free
propagation ansatz (8.10) to determine A and B.

Once A and B have been determined the reflection and transmission probabilities R
and T are given by

R = |B|2/|A|2 (8.12)

T = 1/|A|2 (8.13)

8.1.3 Bound states and solution of the eigenvalue problem

While there exist scattering states for all energies E > 0, bound states solutions of the
Schrödinger equation with E < 0 exist only for discrete energy eigenvalues. Integrating
the Schrödinger equation from −∞ to +∞ the solution will diverge to ±∞ as x→∞
for almost all values. These functions cannot be normalized and thus do not constitute
solutions to the Schrödinger equation. Only for some special eigenvalues E, will the
solution go to zero as x→∞/

A simple eigensolver can be implemented using the following shooting method, where
we again will assume that the potential is zero outside an interval [0, a]:

• Start with ann initial guess E

• Integrate the Schrödinger equation for ψE(x) from x = 0 to xf ≫ a and determine
the value ψE(xf )

• use a root solver, such as a bisection method, to look for an energy E with
ψE(xf ) ≈ 0

This algorithm is not ideal since the divergence of the wave function for x ± ∞ will
cause roundoff error to proliferate.

A better solution is to integrate the Schrödinger equation from both sides towards
the center:

• We search for a point b with V (b) = E

• Starting from x = 0 we integrate the left hand side solution ψL(x) to a chosen point
b and obtain ψL(b) and a numerical estimate for ψ′

L(b) = (ψL(b)−ψL(b−∆x))/∆x.

• Starting from x = a we integrate the right hand solution ψR(x) down to the same
point b and obtain ψR(b) and a numerical estimate for ψ′

R(b) = (ψR(b + ∆x) −
ψR(b))/∆x.
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• At the point b the wave functions and their first two derivatives have to match,
since solutions to the Schrödinger equation have to be twice continuously differen-
tiable. Keeping in mind that we can multiply the wave functions by an arbitrary
factor we obtain the conditions

ψL(b) = αψR(b) (8.14)

ψ′
L(b) = αψ′′

R(b) (8.15)

ψ′′
L(b) = αψ′′

R(b) (8.16)

The last condition is automatically fulfilled since by the choice V (b) = E the
Schrödinger equation at b reduces to ψ′′(b) = 0. The first two conditions can be
combined to the condition that the logarithmic derivatives vanish:

d logψL

dx
|x=b =

ψ′
L(b)

ψL(b)
=
ψ′

R(b)

ψR(b)
=
d logψR

dx
|x=b (8.17)

• This last equation has to be solved for in a shooting method, e.g. using a bisection
algorithm

8.2 The time-independent Schrödinger equation in

higher dimensions

The time independent Schrödinger equation in more than one dimension is a partial
differential equation and cannot, in general, be solved by a simple ODE solver such as
the Numerov algorithm. Before employing a PDE solver we should thus always first try
to reduce the problem to a one-dimensional problem. This can be done if the problem
factorizes.

A first example is a three-dimensional Schrdinger equation in a cubic box with
potential V (~r) = V (x)V (y)V (z) with ~r = (x, y, z). Using the product ansatz

ψ(~r) = ψx(x)ψy(y)ψz(z) (8.18)

the PDE factorizes into three ODEs which can be solved as above.
Another famous trick is possible for spherically symmetric potentials with V (~r) =

V (|~r|) where an ansatz using spherical harmonics

ψl,m(~r) = ψl,m(r, θ, φ) =
u(r)

r
Ylm(θ, φ) (8.19)

can be used to reduce the three-dimensional Schrödinger equation to a one-dimensional
one for the radial wave function u(r):

[

− h̄2

2m

d2

dr2
+
h̄2l(l + 1)

2mr2
+ V (r)

]

u(r) = Eu(r) (8.20)

in the interval [0,∞[. Given the singular character of the potential for r → 0, a
numerical integration should start at large distances r and integrate towards r = 0, so
that the largest errors are accumulated only at the last steps of the integration.
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8.2.1 Variational solutions using a finite basis set

In the case of general potentials, or for more than two particles, it will not be possible to
reduce the Schrödinger equation to a one-dimensional problem and we need to employ
a PDE solver. One approach will again be to discretize the Schrödinger equation on a
discrete mesh using a finite difference approximation. A better solution is to expand
the wave functions in terms of a finite set of basis functions

|φ〉 =
N
∑

i=1

ai|ui〉, (8.21)

as we did in the finite element method in section 3.6.
To estimate the ground state energy we want to minimize the energy of the varia-

tional wave function

E∗ =
〈φ|H|φ〉
〈φ|φ〉 . (8.22)

Keep in mind that, since we only chose a finite basis set {|ui〉} the variational estimate
E∗ will always be larger than the true ground state energy E0, but will converge towards
E0 as the size of the basis set is increased, e.g. by reducing the mesh size in a finite
element basis.

To perform the minimization we denote by

Hij = 〈ui|H|uj〉 =
∫

d~rui(~r)
∗
(

− h̄2

2m
∇2 + V

)

uj(~r) (8.23)

the matrix elements of the Hamilton operator H and by

Sij = 〈ui|uj〉 =
∫

d~rui(~r)
∗uj(~r) (8.24)

the overlap matrix. Note that for an orthogonal basis set, Sij is the identity matrix δij .
Minimizing equation (8.22) we obtain a generalized eigenvalue problem

∑

j

Hijaj = E
∑

k

Sikak. (8.25)

or in a compact notation with ~a = (a1, . . . , aN)

H~a = ES~a. (8.26)

If the basis set is orthogonal this reduces to an ordinary eigenvalue problem and we can
use the Lanczos algorithm.

In the general case we have to find orthogonal matrices U such that UTSU is the
identity matrix. Introducing a new vector~b = U−1~a. we can then rearrange the problem
into

H~a = S~a

HU~b = ESU~b

HU~b = ESU~b

UTHU~b = EUTSU~b = E~b (8.27)
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and we end up with a standard eigenvalue problem for UTHU . Mathematica and
LAPACK both contain eigensolvers for such generalized eigenvalue problems.

The final issue is the choice of basis functions. While a general finite element basis
can be used it iss advantageous to make use of known solutions to similar problem as
we will illustrate in the case of an anharmonic oscillator with Hamilton operator

H = H0 + λq4

H0 =
1

2
(p2 + q2), (8.28)

where the momentum operator is p = ih̄ ∂
∂q

. The eigenstates |n〉 and eigenvalues ǫn =

(n + 1/2)ω0 of H0 are be known from the basic quantum mechanics lectures. In real
space the eigenstates are given by

φn(q) =
1

√

2nn!
√
π

exp
(

−1

2
q2
)

Hn(q), (8.29)

where the Hn are the Hermite polynomials. Using these eigenstates as a basis set, the
operator H0 becomes a diagonal matrix. The position operator becomes

q =
1√
2
(a† + a), (8.30)

where the raising and lowering operators a† and a only have the following nonzero
matrix elements:

〈n+ 1|a†|n〉 = 〈n|a|n+ 1〉 =
√
n+ 1. (8.31)

The matrix representation of the anharmonic term λq4 is a banded matrix. Aftwer
truncation of the basis set to a finite number of states N , a sparse eigensolver such as
the Lanczos algorithm can again be used to calculate the spectrum. Note that since we
use the orthonormal eigenstates of H0 as basis elements, the overlap matrix S here is
the identity matrix and we have to deal only with a standard eigenvalue problem. A
solution to this problem is provided in a Mathematica notebook on the web page.

8.3 The time-dependent Schrödinger equation

Finally we will reintroduce the time dependence to study dynamics in non-stationary
quantum systems.

8.3.1 Spectral methods

By introducing a basis and solving for the complete spectrum of energy eigenstates we
can directly dolve the time-dependent problem in the case of a stationary Hamiltonian.
This is a consequence of the linearity of the Schrödinger equation.

To calculate the time evolution of a state |ψ(t0)〉 from time t0 to t we first solve
the stationary eigenvalue problem H|φ〉 = E|φ〉 and calculate the eigenvectors |φn〉 and

100



eigenvaluesǫn. Next we represent the initial wave function |ψ〉 by a spectral decompo-
sition

|ψ(t0)〉 =
∑

n

cn|φn〉. (8.32)

Since each of the |φn〉 is an eigenvector of H , the time evolution e−ih̄H(t−t0) is trivial
and we obtain at time t:

|ψ(t)〉 =
∑

n

cne
−ih̄ǫn(t−t0)|φn〉. (8.33)

8.3.2 Direct numerical integration

If the number of basis states is too large to perform a complete diagonalization of
the Hamiltonian, or if the Hamiltonian changes over time we need to perform a direct
integration of the Schrödinger equation.

The main novelty, compared to the integration of classical wave equations is that
the exact quantum mechanical time evolution conserves the normalization

∫

|ψ(x, t)|2dx = 1 (8.34)

of the wave function and the numerical algorithm should also have this property: the
approximate time evolution needs to be unitary.

We first approximate the time evolution

ψ(x, t+ ∆t) = e−ih̄H∆tψ(x, t). (8.35)

by a forward Euler approximation

e−ih̄H∆t ≈ 1− ih̄H∆t+ O(∆t2). (8.36)

This is neither unitary nor stable and we need a better integrator. The simplest stable
and unitary integrator can be obtained by the following reformulation

e−ih̄H∆t =
(

eih̄H∆t/2
)−1

e−ih̄H∆t/2 ≈
(

1 + ih̄H
∆t

2

)−1 (

1− ih̄H∆t

2

)

+ O(∆t3). (8.37)

This gives an algorithm

ψ(x, t+ ∆t) =
(

1 + ih̄H
∆t

2

)−1 (

1− ih̄H∆t

2

)

ψ(x, t) (8.38)

or equivalently
(

1 + ih̄H
∆t

2

)

ψ(x, t+ ∆t) =
(

1− ih̄H∆t

2

)

ψ(x, t). (8.39)

After introducing a basis as above, we realize that we need to solve a linear system
of equations. For one-dimensional problems the matrix representation of H is often
tridiagonal and a tridiagonal solver can be used.

In higher dimensions the matrix H will no longer be simply tridiagonal but still very
sparse and we can use iterative algorithms, similar to the Lanczos algorithm for the
eigenvalue problem. For details about these algorithms we refer to the nice summary at
http://mathworld.wolfram.com/topics/Templates.html and especially the bicon-
jugate gradient (BiCG) algorithm. Implementations of this algorithm are available, e.g.
in the Iterative Template Library (ITL).
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Chapter 9

The quantum N body problem:
quantum chemistry methods

After treating classical problems in the first chapters, we will turn to quantum problems
in the last two chapters. In the winter semester we saw that the solution of the classical
one-body problem reduced to an ordinary differential equation, while that of quantum
one-body problem was a partial differential equation.

Many body problems are intrinsically harder to simulate. In the last chapter we
saw how the computational complexity of the classical N -body problem can be reduced
from O(N2) to O(N lnN), thus making even large systems with 108 particles accessible
to simulations.

The quantum many body problem is much harder than the classical one. While the
dimension of the classical phase space grew linearly with the number of particles, that of
the quantum problem grows exponentially. Thus the complexity is usually O(exp(N)).
Exponential algorithms are the nightmare of any computational scientist, but they
naturally appear in quantum many body problems. In this chapter we will discuss
approximations used in quantum chemistry that reduce the problem to an polynomial
one, typically scaling like O(N4). These methods map the problem to a single-particle
problem and work only as long as correlations between electrons are weak. In the
next chapter we will thus discuss exact methods - without any approximation - which
are needed for the simulation of strongly correlated systems, such as high temperature
superconductors, heavy electron materials and quantum magnets.

9.1 Basis functions

All approaches to solutions of the quantum mechanical N -body problem start by choos-
ing a suitable basis set for the wave functions. The Schrödinger equation then maps to
an eigenvalue equations, which is solved using standard linear algebra methods. Before
attempting to solve the many body problem we will discuss basis sets for single particle
wave functions.
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9.1.1 The electron gas

For the free electron gas with Hamilton operator

H = −
N
∑

i=1

h̄2

2m
∇2 + e2

∑

i<j

vee(~ri, ~rj) (9.1)

vee(~r, ~r
′) =

1

|~r − ~r′| (9.2)

the ideal choice for basis functions are plane waves

ψ~k(~r) = exp(−i~k~r). (9.3)

At low temperatures the electron gas forms a Wigner crystal. Then a better choice of
basis functions are eigenfunctions of harmonic oscillators centered around the classical
equilibrium positions.

9.1.2 Electronic structure of molecules and atoms

The Hamilton operator for molecules and atoms contains extra terms due to the atomic
nuclei:

H =
N
∑

i=1

(

− h̄2

2m
∇2 + V (~ri)

)

+ e2
∑

i<j

vee(~ri, ~rj) (9.4)

where the potential of the M atomic nuclei with charges Zi at the locations ~Ri is given
by

V (~r) = −e2
M
∑

i=1

Zi

|~Ri − ~r|
. (9.5)

Here we use the Born-Oppenheimer approximation and consider the nuclei as stationary
classical particles. This approximation is valid since the nuclei are many orders of mag-
nitude heavier than the electrons. The Car-Parinello method for molecular dynamics,
which we will discuss later, moves the nuclei classically according to electronic forces
that are calculated quantum mechanically.

As single particle basis functions we choose L atomic basis functions fi, centered on
the nuclei. In general these functions are not orthogonal. Their scalar products define
a matrix

Sij =
∫

d3~rf ∗
i (~r)fj(~r), (9.6)

which is in general not the identity matrix. The associated annihilation operators aiσ

are defined formally as scalar products

aiσ =
∑

j

(S−1)ij

∫

d3~rf ∗
j (~r)ψσ(~r), (9.7)

where σ =↑, ↓ is the spin index and ψσ(~r) the fermion field operator.
The non-orthogonality causes the commutation relations of these operators to differ

from those of normal fermion creation- and annihilation operators:

{a†iσ, ajσ′} = δσσ′(S−1)ij

{aiσ, ajσ′} = {a†iσ, a†jσ′} = 0. (9.8)
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Due to the non-orthogonality the adjoint a†iσ does not create a state with wave function
fi. This is done by the operator â†iσ, defined through:

â†iσ =
∑

j

Sjia
†
iσ, (9.9)

which has the following simple commutation relation with ajσ:

{â†iσ, ajσ} = δij . (9.10)

The commutation relations of the â†iσ and the âjσ′ are:

{â†iσâjσ′} = δσσ′Sij

{âiσ, âjσ′} = {â†iσ, â†jσ′} = 0. (9.11)

When performing calculations with these basis functions extra care must be taken
to account for this non-orthogonality of the basis.

In this basis the Hamilton operator (9.4) is written as

H =
∑

ijσ

tija
†
iσajσ +

1

2

∑

ijklσσ′

Vijkla
†
iσa

†
kσ′alσ′ajσ. (9.12)

The matrix elements are

tij =
∫

d3~rf ∗
i (~r)

(

h̄2

2m
∇2 + V (~ri)

)

fj(~r) (9.13)

Vijkl = e2
∫

d3~r
∫

d3~r′f ∗
i (~r)fj(~r)

1

|~r − ~r′|f
∗
k (~r′)fl(~r

′) (9.14)

Which functions should be used as basis functions? Slater proposed the Slater-
Type-Orbitals (STO):

fi(r, θ, φ) ∝ rn−1e−ζirYlm(θ, φ). (9.15)

The values ζi are optimized so that the eigenstates of isolated atoms are reproduced
as good as possible. The main advantage of STOs is that they exhibit the correct
asymptotic behavior for small distances r. Their main disadvantage is in the evaluation
of the matrix elements in equation (9.14).

The Gaussian-Type-Orbitals (GTO)

fi(~r) ∝ xlymzne−ζir2

(9.16)

simplify the evaluation of matrix elements, as products of Gaussian functions centered
at two different nuclei are again Gaussian functions and can be integrated easily. In
addition, the term 1

|~r−~r′| can also be rewritten as an integral over a Gaussian function

1

|~r − ~r′| =
2√
π

∫ ∞

0
dte−t2(~r−~r′)2 . (9.17)

Then the six-dimensional integral (9.14) is changed to a seven-dimensional one, albeit
with purely Gaussian terms and this can be carried out analytically as we have seen in
the exercises.

As there are O(L4) integrals of the type (9.14), quantum chemistry calculations
typically scale as O(N4). Modern methods
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9.2 Pseudo-potentials

The electrons in inner, fully occupied shells do not contribute in the chemical bindings.
To simplify the calculations they can be replaced by pseudo-potentials, modeling the
inner shells. Only the outer shells (including the valence shells) are then modeled using
basis functions. The pseudo-potentials are chosen such that calculations for isolated
atoms are as accurate as possible.

9.3 Hartree Fock

The Hartree-Fock approximation is based on the assumption of independent electrons.
It starts from an ansatz for the N -particle wave function as a Slater determinant of N
single-particle wave functions:

Φ(~r1, σ1; . . . ;~rN , σN) =
1√
N

∣

∣

∣

∣

∣

∣

∣

∣

φ1(~r1, σ1) · · · φN(~r1, σ1)
...

...
φ1(~rN , σN) · · · φN(~rN , σN)

∣

∣

∣

∣

∣

∣

∣

∣

. (9.18)

The single particle wave functions φµ are orthogonal. For numerical calculations a finite
basis has to be introduced, as discussed in the previous section. Quantum chemists
distinguish between the self-consistent-field (SCF) approximation in a finite basis set
and the Hartree-Fock (HF) limit, working in a complete basis. In physics both are
known as Hartree-Fock approximation.

The functions φµ are chosen so that the energy The ground state energy is:

〈Φ|H|Φ〉 =
N
∑

µ=1

〈φµ|
h̄2

2m
∇2 + V |φµ〉+

1

2
e2

N
∑

ν,µ=1

(〈φµφν |vee|φµφν〉 − 〈φµφν |vee|φνφµ〉) .

(9.19)
is minimized, constrained by the normalization of the wave functions. Using Lagrange
multipliers ǫµ we obtain the variational condition

δ

(

〈Φ|H|Φ〉 −
∑

µ

ǫµ〈φµ|φµ〉
)

= 0. (9.20)

Performing the variation we end up with the Hartree-Fock equation

F |φµ〉 = ǫµ|φµ〉, (9.21)

where the matrix elements fνµ of the Fock matrix F are given by

fνµ = 〈φν|
h̄2

2m
∇2 + V |φµ〉+ e2

N
∑

τ=1

(〈φνφτ |vee|φµφτ 〉 − 〈φνφτ |vee|φτφµ〉) . (9.22)

The Hartree-Fock equation looks like a one-particle Schrödinger equation. However,
the potential depends on the solution. The equation is used iteratively, always using
the new solution for the potential, until convergence to a fixed point is achieved.
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The eigenvalues ǫµ of F do not directly correspond to energies of the orbitals, as the
Fock operator counts the v-terms twice. Thus we obtain the total ground state energy
from the Fock operator eigenvalues by subtracting the double counted part:

E0 =
N
∑

µ=1

ǫµ −
1

2
e2

N
∑

ν,µ=1

(〈φµφν |vee|φµφν〉 − 〈φµφν |vee|φνφµ〉) . (9.23)

How do we calcuate the functions φn in our finite basis sets, introduced in the
previous section? To simplify the discussion we assume closed-shell conditions, where
each orbital is occupied by both an electron with spin ↑ and one with spin ↓.

We start by writing the Hartree Fock wave function (9.18) is second quantized form:

|Φ〉 =
∏

µ,σ

c†µσ|0〉, (9.24)

where |φµσ〉 creates an electron in the orbital φµ(r, σ). As these wave functions are
orthogonal the c†µσ satsify the usual fermion anticommutation relations.

Next we expand the c†µσ in terms of our finite basis set:

c†µσ =
L
∑

n=1

dµnâ
†
nσ (9.25)

and find that
ajσ|Φ〉 = ajσ

∏

µ,σ′

c†µσ′ |0〉 =
∑

ν

dνj

∏

µσ′ 6=νσ

c†µσ′ |0〉. (9.26)

In order to evaluate the matrix elements 〈Φ|H|Φ〉 of the Hamiltonian (9.12) we introduce
the bond-order matrix

Pij =
∑

σ

〈Φ|a†iσajσ|Φ〉 = 2
∑

ν

d∗νidνj, (9.27)

where we have made use of the closed-shell conditions to sum over the spin degrees of
freedom. The kinetic term ofH is now simply

∑

ij Pijtij . Next we rewrite the interaction

part 〈Φ|a†iσa†kσ′alσ′ajσ|Φ〉 in terms of the Pij . We find that if σ = σ′

〈Φ|a†iσa†kσalσajσ|Φ〉 = 〈Φ|a†iσajσ|Φ〉〈Φ|a†kσalσ|Φ〉 − 〈Φ|a†iσalσ|Φ〉〈Φ|a†kσajσ|Φ〉 (9.28)

and if σ 6= σ′:
〈Φ|a†iσa†kσ′alσ′ajσ|Φ〉 = 〈Φ|a†iσajσ|Φ〉〈Φ|a†kσ′alσ′ |Φ〉 (9.29)

Then the energy is (again summing over the spin degrees of freedom):

E0 =
∑

ij

tijPij +
1

2

∑

ijkl

(

Vijkl −
1

2
Vilkj

)

PijPkl. (9.30)

We can now repeat the variational arguments, minimizing E0 under the condition that
the |φµ〉 are normalized:

1 = 〈φµ|φµ〉 =
∑

i,j

d∗µidµjSij. (9.31)
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Using Lagrange multipliers to enforce this constraint we finally end up with the Hartree-
Fock equations for a finite basis set:

L
∑

j=1

(fij − ǫµSij)dµj = 0, (9.32)

where

fij = tijPij +
∑

kl

(

Vijkl −
1

2
Vilkj

)

Pkl. (9.33)

This is a generalized eigenavlue problem of the form Ax = λBx for which library
routines exist. They first diagonalize B and then solve a standard eigenvalue problem
in the basis which diagonalizes B.

9.4 Density functional theory

Another commonly used method, for which the Nobel prize in chemistry was awarded to
Walter Kohn, is the density functional theory. It is based on two fundamental theorems
by Hohenberg and Kohn. The first theorem states that the ground state energy E0 of
an electronic system in an external potential V is a functional of the electron density
ρ(~r) :

E0 = E[ρ] =
∫

d3~rV (~r)ρ(~r) + F [ρ], (9.34)

with a universal functional F . The second theorem states that the density of the ground
state wave function minimizes this functional. I will prove both theorems in the lecture.

Until now everything is exact. The problem is that, while the functional F is univer-
sal, it is also unknown! Thus we need to find good approximations for the functional.
One usually starts from the ansatz:

F [ρ] = Eh[ρ] + Ek[ρ] + Exc[ρ]. (9.35)

The Hartree-term Eh given by the Coulomb repulsion between two electrons:

Eh[ρ] =
e2

2

∫

d3~rd3~r′
ρ(~r)ρ(~r′)

|~r − ~r′| . (9.36)

The kinetic energy Ek[ρ] is that of a non-interacting electron gas with the same density.
The exchange- and correlation term Exc[ρ] contains the remaining unknown contribu-
tion.

To determine the ground state wave function we again make an ansatz for the wave
function, using N/2 single-electron wave function, which we occupy with spin ↑ and
spin ↓ electrons:

ρ(~r) = 2
N/2
∑

µ=1

|χµ(~r)|2. (9.37)

The single-electron wave functions are again normalized. Variation of the functional,
taking into account this normalization gives an equation, which looks like a single-
electron Schrödinger equation

(

− h̄2

2m
∇2 + Veff(~r)

)

χµ(~r) = ǫµχµ(~r), (9.38)
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with an effective potential

Veff(~r) = U(~r) + e2
∫

d3~r′
ρ(~r′)

|~r − ~r′| + vxc(~r), (9.39)

and an exchange-correlation potential defined by

vxc(~r) =
δExc[ρ]

δρ(~r)
. (9.40)

The form (9.38) arises because we have separated the kinetic energy of the non-interacting
electron system from the functional. The variation of this kinetic energy just gives the
kinetic term of this Schrödinger-like equation.

This non-linear equation is again solved iteratively, where in the ansatz (9.37) the
χµ with the lowest eigenvalues ǫµ are chosen.

In finite (and non-orthogonal) basis sets the same techniques as for the Hartree-Fock
method are used to derive a finite eigenvalue problem.

9.4.1 Local Density Approximation

Apart from the restricted basis set everything was exact up to this point. As the
functional Exc[ρ] and thus the potential vxc(~r) is not known, we need to introduce
approximations.

The simplest approximation is the “local density approximation” (LDA), which
replaces vxc by that of a uniform electron gas with the same density:

vxc = −0.611

rs

β(rs) [a.u.]

β(rs) = 1 + 0.0545rs ln(1 + 11.4/rs)

r−1
s = aB

(

4π

3
ρ
)1/3

(9.41)

9.4.2 Improved approximations

Improvements over the LDA have been an intense field of research in quantum chemistry.
I will just mention two improvements. The “local spin density approximation” (LSDA)
uses separate densities for electrons with spin ↑ and ↓. The “generalized gradient
approximation” (GGA) and its variants use functionals depending not only on the
density, but also on its derivatives.

9.5 Car-Parinello method

Roberto Car and Michele Parinello have combined density functional theory with molec-
ular dynamics to improve the approximations involved in using only Lennard-Jones
potentials. This method allows much better simulations of molecular vibration spectra
and of chemical reactions.
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The atomic nuclei are propagated using classical molecular dynamics, but the elec-
tronic forces which move them are estimated using density functional theory:

Mn
d2 ~Rn

dt2
= −∂E[ρ(~r, t), ~Rn]

∂ ~Rn

. (9.42)

Here Mn and ~Rn are the masses and locations of the atomic nuclei.
As the solution of the full electronic problem at every time step is a very time

consuming task it is performed only once at the start. The electronic degrees of freedoms
are then updated using an artificial dynamics:

m
d2χµ(~r, t)

dt2
= −1

2

δE[ρ(~r, t), ~Rn]

δχ†
µ(~r, t)

+
∑

ν

Λµνχν(~r, t), (9.43)

The Lagrange multipliers Λµν ensure proper orthonormalization of the wave functions.

9.6 Configuration-Interaction

The approximations used in Hartree-Fock and density functional methods are based
on non-interacting electron pictures. They do not treat correlations and interactions
between electrons correctly. To improve these methods, and to allow the calculation of
excited states, often the “configuration-interaction” (CI) method is used.

Starting from the Hartree-Fock ground state

|ψHF 〉 =
N
∏

µ=1

c†µ|0〉 (9.44)

one or two of the c†µ are replaced by other orbitals c†i :

|ψ0〉 =



1 +
∑

i,µ

αi
µci†cµ +

∑

i<j,µ<ν

αij
µνci†cj†cµcν



 |ψHF 〉. (9.45)

The energies are then minimized using this variational ansatz. In a problem with
N occupied and M empty orbitals this leads to a matrix eigenvalue problem with
dimension 1+NM+N2M2. Using the Lanczos algorithm the low lying eigenstates can
then be calculated in O((N +M)2) steps.

Further improvements are possible by allowing more than only double-substitutions.
The optimal method treats the full quantum problem of dimension (N + M)!/N !M !.
Quantum chemists call this method “full-CI”. Physicists simplify the Hamilton operator
slightly to obtain simpler models with fewer matrix elements, and call that method
“exact diagonalization”. This method will be discussed in the final chapter.

9.7 Program packages

As the model Hamiltonian and the types of basis sets are essentially the same for all
quantum chemistry applications flexible program packages have been written. There
is thus usually no need to write your own programs – unless you want to implement a
new algorithm.
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Chapter 10

The quantum N body problem:
exact algorithms

The quantum chemical approaches discussed in the previous chapter simplify the prob-
lem of solving a quantum many body problem. The complexity of a problem with
N particles in M = O(N) orbitals is then only O(N4) or often better, instead of
O(exp(N)).

This enormous reduction in complexity is however paid for by a crude approximation
of electron correlation effects. This is acceptable for normal metals, band insulators and
semi-conductors but fails in materials with strong electron correlations, such as almost
all transition metal ceramics.

In the last category many new materials have been synthesized over the past twenty
years, including the famous high temperature superconductors. In these materials the
electron correlations play an essential role and lead to interesting new properties that are
not completely understood yet. Here we leave quantum chemistry and enter quantum
physics again.

10.1 Models

To understand the properties of these materials the Hamilton operator of the full quan-
tum chemical problem (9.4) is usually simplified to generic models, which still contain
the same important features, but which are easier to investigate. They can be used to
understand the physics of these materials, but not directly to quantitatively fit experi-
ments.

10.1.1 The tight-binding model

The simplest model is the tight-binding model, which concentrates on the valence bands.
All matrix elements tij in equation (9.13), apart from the ones between nearest neighbor
atoms are set to zero. The others are simplified, as in:

H =
∑

〈i,j〉,σ
(tijc

†
i,σcj,σ + H.c.). (10.1)

This model is easily solvable by Fourier transforming it, as there are no interactions.
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10.1.2 The Hubbard model

To include effects of electron correlations, the Hubbard model includes only the often
dominant intra-orbital repulsion Viiii of the Vijkl in equation (9.14):

H =
∑

〈i,j〉,σ
(tijc

†
i,σcj,σ + H.c.)) +

∑

i

Uini,↑ni,↓. (10.2)

The Hubbard model is a long-studied, but except for the 1D case still not completely
understood model for correlated electron systems.

In contrast to band insulators, which are insulators because all bands are either
completely filled or empty, the Hubbard model at large U is insulating at half filling,
when there is one electron per orbital. The reason is the strong Coulomb repulsion U
between the electrons, which prohibit any electron movement in the half filled case at
low temperatures.

10.1.3 The Heisenberg model

In this insulating state the Hubbard model can be simplified to a quantum Heisenberg
model, containing exactly one spin per site.

H =
∑

〈i,j〉
Jij
~Si
~Sj (10.3)

For large U/t the perturbation expansion gives Jij = 2t2ij(1/Ui +1/Uj). The Heisenberg
model is the relevant effective models at temperatures T ≪ tij , U ( 104 K in copper
oxides).

10.1.4 The t-J model

The t-J model is the effective model for large U at low temperatures away from half-
filling. Its Hamiltonian is

H =
∑

〈i,j〉,σ

[

(1− ni,−σ)tijc
†
i,σcj,σ(1− nj,−σ) + H.c.

]

+
∑

〈i,j〉
Jij(~Si

~Sj − ninj/4). (10.4)

As double-occupancy is prohibited in the t-J model there are only three instead of four
states per orbital, greatly reducing the Hilbert space size.

10.2 Algorithms for quantum lattice models

10.2.1 Exact diagonalization

The most accurate method is exact diagonalization of the Hamiltonian matrix using the
Lanczos algorithm which was discussed in section 7.10. The size of the Hilbert space of
an N -site system [4N for a Hubbard model , 3N for a t-J model and (2S+1)N for a spin-
S model] can be reduced by making use of symmetries. Translational symmetries can
be employed by using Bloch waves with fixed momentum as basis states. Conservation
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of particle number and spin allows to restrict a calculation to subspaces of fixed particle
number and magnetization.

As an example I will sketch how to implement exact diagonalization for a simple
one-dimensional spinless fermion model with nearest neighbor hopping t and nearest
neighbor repulsion V :

H = −t
L−1
∑

i=1

(c†ici+1 + H.c.) + V
L−1
∑

i=1

nini+1. (10.5)

The first step is to construct a basis set. We describe a basis state as an unsigned
integer where bit i set to one corresponds to an occupied site i. As the Hamiltonian
conserves the total particle number we thus want to construct a basis of all states with
N particles on L sites (or N bits set to one in L bits). The function state(i) returns
the state corresponding to the i-th basis state, and the function index(s) returns the
number of a basis state s.

#include <vector>

#include <alps/bitops.h>

#include <limits>

#include <valarray>

class FermionBasis {

public:

typedef unsigned int state_type;

typedef unsigned int index_type;

FermionBasis (int L, int N);

state_type state(index_type i) const {return states_[i];}

index_type index(state_type s) const {return index_[s];}

unsigned int dimension() const { return states_.size();}

private:

std::vector<state_type> states_;

std::vector<index_type> index_;

};

FermionBasis::FermionBasis(int L, int N)

{

index_.resize(1<<L); // 2^L entries

for (state_type s=0;s<index_.size();++s)

if(alps::popcnt(s)==N) {

// correct number of particles

states_.push_back(s);

index_[s]=states_.size()-1;

}

else
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// invalid state

index_[s]=std::numeric_limits<index_type>::max();

}

Next we have to implement a matrix-vector multiplication v = Hw for the Hamil-
tonian:

#include <cassert>

class HamiltonianMatrix : public FermionBasis {

public:

HamiltonianMatrix(int L, int N, double t, double V)

: FermionBasis(L,N), t_(t), V_(V), L_(L) {}

void multiply(std::valarray<double>& v, const std::valarray<double>& w);

private:

double t_, V_;

int L_;

};

void HamiltonianMatrix::multiply(std::valarray<double>& v,

const std::valarray<double>& w)

{

// check dimensions

assert(v.size()==dimension());

assert(w.size()==dimension());

// do the V-term

for (int i=0;i<dimension();++i)

{

state_type s = state(i);

// count number of neighboring fermion pairs

v[i]=w[i]*V_*alps::popcnt(s&(s>>1));

}

// do the t-term

for (int i=0;i<dimension();++i)

{

state_type s = state(i);

for (int r=0;r<L_-1;++r) {

state_type shop = s^(3<<r); // exchange two particles

index_type idx = index(shop); // get the index

if(idx!=std::numeric_limits<index_type>::max())

v[idx]+=w[i]*t_;

}
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}

}

This class can now be used together with the Lanczos algorithm to calculate the
energies and wave functions of the low lying states of the Hamiltonian.

In production codes one uses all symmetries to reduce the dimension of the Hilbert
space as much as possible. In this example translational symmetry can be used if
periodic boundary conditions are applied. The implementation gets much harder then.

In order to make the implementation of exact diagonalization much easier we have
generalized the expression templates technique developed by Todd Veldhuizen for array
expression to expressions including quantum operators. Using this expression template
library we can write a multiplication

|ψ〉 = H|φ〉 = (−t
L−1
∑

i=1

(c†ici+1 + H.c.) + V
L−1
∑

i

nini+1)|φ〉 (10.6)

simply as:

Range i(1,L-1);

psi = sum(i,(-t*(cdag(i)*c(i+1)+HC)+V*n(i)*n(i+1))*phi);

The advantage of the above on-the-fly calculation of the matrix in the multipli-
cation routine is that the matrix need not be stored in memory, which is an advan-
tage for the biggest systems where just a few vectors of the Hilbert space will fit into
memory. If one is not as demanding and wants to simulate a slightly smaller system,
where the (sparse) matrix can be stored in memory, then a less efficient but more
flexible function can be used to create the matrix, since it will be called only once at
the start of the program. Such a program is available through the ALPS project at
http://alps.comp-phys.org/.

10.2.2 Quantum Monte Carlo

Path-integral representation in terms of world lines

All quantum Monte Carlo algorithms are based on a mapping of a d-dimensional quan-
tum system to a (d+1)-dimensional classical system using a path-integral formulation.
We then perform classical Monte Carlo updates on the world lines of the particles. I will
introduce one modern algorithm for lattice models, the “loop-algorithm” which is a gen-
eralization of the cluster algorithms to lattice models. Other (non-cluster) algorithms
are avaliable also for continuum models. The interested student will find descriptions
of those algorithms in many text books on computational physics.

I will discuss the loop algorithm for a spin-1/2 quantum XXZ model with the
Hamiltonian

H = −
∑

〈i,j〉

(

JzS
z
i S

z
j + Jxy(S

x
i S

x
j + Sy

i S
y
j )
)

= −
∑

〈i,j〉

(

JzS
z
i S

z
j +

Jxy

2
(S+

i S
−
j + S−

i S
+
j )
)

. (10.7)
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For J ≡ Jz = Jxy we have the Heisenberg model (J > 0 is ferromagnetic, J < 0
antiferromagnetic). Jxy = 0 is the (classical) Ising model and Jz = 0 the quantum XY
model.

In the quantum Monte Carlo simulation we want to evaluate thermodynamic aver-
ages such as

〈A〉 =
TrAe−βH

Tre−βH
. (10.8)

The main problem is the calculation of the exponential e−βH . The straightforward
calculation would require a complete diagonalization, which is just what we want to
avoid. We thus discretize the imaginary time (inverse temperature) direction1 and
subdivide β = M∆τ :

e−βH =
(

e−∆τH
)M

= (1−∆τH)M +O(∆τ) (10.9)

In the limit M → ∞ (∆τ → 0) this becomes exact. We will take the limit later, but
stay at finite ∆τ for now.

The next step is to insert the identity matrix, represented by a sum over all basis
states 1 =

∑

i |i〉〈i| between all operators (1−∆τH):

Z = Tre−βH = Tr (1−∆τH)M +O(∆τ)

=
∑

i1,...,iM

〈i1|1−∆τH|i2〉〈i2|1−∆τH|i3〉 · · · 〈iM |1−∆τH|i1〉+O(∆τ)

=: Pi1,...,iM (10.10)

and similarly for the measurement, obtaining

〈A〉 =
∑

i1,...,iM

〈i1|A(1−∆τH)|i2〉
〈i1|1−∆τH|i2〉

Pi1,...,iM +O(∆τ). (10.11)

If we choose the basis states |i〉 to be eigenstates of the local Sz operators we end
up with an Ising-like spin system in one higher dimension. Each choice i1, . . . , iM
corresponds to one of the possible configurations of this classical spin system. The
trace is mapped to periodic boundary conditions in the imaginary time direction of this
classical spin system. The probabilities are given by matrix elements 〈in|1−∆τH|in+1〉.
We can now sample this classical system using classical Monte Carlo methods.

However, most of the matrix elements 〈in|1−∆τH|in+1〉 are zero, and thus nearly all
configurations have vanishing weight. The only non-zero configurations are those where
neighboring states |in〉 and |in+1〉 are either equal or differ by one of the off-diagonal
matrix elements in H , which are nearest neighbor exchanges by two opposite spins. We
can thus uniquely connect spins on neighboring “time slices” and end up with world
lines of the spins, sketched in Fig. 10.1. Instead of sampling over all configurations of
local spins we thus have to sample only over all world line configurations (the others
have vanishing weight). Our update moves are not allowed to break world lines but
have to lead to new valid world line configurations.

1Time evolution in quantum mechanics is e−itH . The Boltzman factor e−βH thus corresponds to
an evolution in imaginary time t = −iβ

115



space

im
ag

in
ar

y 
tim

e

0

β

Figure 10.1: Example of a world line configuration for a spin-1/2 quantum Heisenberg
model. Drawn are the world lines for up-spins only. Down spin world lines occupy the
rest of the configuration.

Table 10.1: The six local configurations for an XXZ model and their weights.

configuration weight

Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

, Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

1 + Jz

4
dτ

Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

, Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

1− Jz

4
dτ

Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

, Si(τ)

Si(τ+dτ)

Sj(τ)

Sj(τ+dτ)

Jxy

2
dτ

The loop algorithm

Until 1993 only local updates were used, which suffered from a slowing down like in
the classical case. The solution came as a generalization of the cluster algorithms to
quantum systems.2

This algorithm is best described by first taking the continuous time limit M → ∞
(∆τ → dτ) and by working with infinitesimals. Similar to the Ising model we look at
two spins on neigboring sites i and j at two neighboring times τ and τ +dτ , as sketched
in Tab. 10.1. There are a total of six possible configurations, having three different
probabilities. The total probabilities are the products of all local probabilities, like in
the classical case. This is obvious for different time slices. For the same time slice it
is also true since, denoting by Hij the term in the Hamiltonian H acting on the bond
between sites i and j we have

∏

〈i,j〉(1 − dτHij) = 1 − dτ
∑

〈i,j〉Hij = 1 − dτH . In
the following we focus only on such local four-spin plaquettes. Next we again use the

2H. G. Evertz et al., Phys. Rev. Lett. 70, 875 (1993); B. B. Beard and U.-J. Wiese, Phys. Rev.
Lett. 77, 5130 (1996); B. Ammon, H. G. Evertz, N. Kawashima, M. Troyer and B. Frischmuth, Phys.
Rev. B 58, 4304 (1998).
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a) , b) , c) , d)

Figure 10.2: The four local graphs: a) vertical, b) horizontal c) crossing and d) freezing
(connects all four corners).

Table 10.2: The graph weights for the quantum-XY model and the ∆ function speci-
fying whether the graph is allowed. The dash – denotes a graph that is not possible for
a configuration because of spin conservation and has to be zero.

G ∆( , G) ∆( , G) ∆( , G)

= ∆( , G) = ∆( , G) = ∆( , G) graph weight

1 1 – 1− Jxy

4
dτ

– 1 1 Jxy

4
dτ

1 – 1 Jxy

4
dτ

0 0 0 0

total weight 1 1 Jxy

2
dτ

Kandel-Domany framework and assign graphs. As the updates are not allowed to break
world lines only four graphs, sketched in Fig. 10.2 are allowed. Finally we have to find
∆ functions and graph weights that give the correct probabilities. The solution for the
XY -model, ferromagnetic and antiferromagnetic Heisenberg model and the Ising model
is shown in Tables 10.2 - 10.5.

Let us first look at the special case of the Ising model. As the exchange term is
absent in the Ising model all world lines run straight and can be replaced by classical
spins. The only non-trivial graph is the “freezing”, connecting two neighboring world
lines. Integrating the probability that two neighboring sites are nowhere connected
along the time direction we obtain: times:

β
∏

τ=0

(1− dτJ/2) = lim
M→∞

(1−∆τJ/2)M = exp(−βJ/2) (10.12)

Taking into account that the spin is S = 1/2 and the corresponding classical cou-
pling Jcl = S2J = J/4 we find for the probability that two spins are connected:
1 − exp(−2βJcl). We end up exactly with the cluster algorithm for the classical Ising
model!
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Table 10.3: The graph weights for the ferromagnetic quantum Heisenberg model and
the ∆ function specifying whether the graph is allowed. The dash – denotes a graph
that is not possible for a configuration because of spin conservation and has to be zero.

G ∆( , G) ∆( , G) ∆( , G)

= ∆( , G) = ∆( , G) = ∆( , G) graph weight

1 1 – 1− J
4
dτ

– 0 0 0

1 – 1 J
2
dτ

0 0 0 0

total weight 1 + J
4
dτ 1− J

4
dτ J

2
dτ

Table 10.4: The graph weights for the antiferromagnetic quantum Heisenberg model
and the ∆ function specifying whether the graph is allowed. The dash – denotes a
graph that is not possible for a configuration because of spin conservation and has to
be zero. To avoid the sign problem (see next subsection) we change the sign of Jxy,
which is allowed only on bipartite lattices.

G ∆( , G) ∆( , G) ∆( , G)

= ∆( , G) = ∆( , G) = ∆( , G) graph weight

1 1 – 1− |J |
4
dτ

– 1 1 |J |
2
dτ

0 – 0 0

0 0 0 0

total weight 1− |J |
4
dτ 1 + |J |

4
dτ |J |

2
dτ
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Table 10.5: The graph weights for the ferromagnetic Ising model and the ∆ function
specifying whether the graph is allowed. The dash – denotes a graph that is not possible
for a configuration because of spin conservation and has to be zero.

G ∆( , G) ∆( , G) ∆( , G)

= ∆( , G) = ∆( , G) = ∆( , G) graph weight

1 1 – 1− Jz

4
dτ

– 0 0 0

0 – 0 0

1 0 0 Jz

2
dτ

total weight 1 + Jz

4
dτ 1− Jz

4
dτ 0

The other cases are special. Here each graph connects two spins. As each of these
spins is again connected to only one other, all spins connected by a cluster form a
closed loop, hence the name “loop algorithm”. Only one issue remains to be explained:
how do we assign a horizontal or crossing graph with infinitesimal probability, such
as (J/2)dτ . This is easily done by comparing the assignment process with radioactive
decay. For each segment the graph runs vertical, except for occasional decay processes
occuring with probability (J/2)dτ . Instead of asking at every infinitesimal time step
whether a decay occurs we simply calculate an exponentially distributed decay time t
using an exponential distribution with decay constant J/2. Looking up the equation
in the lecture notes of the winter semester we have t = −(2/J) ln(1 − u) where u is a
uniformly distributed random number.

The algorithm now proceeds as follows (see Fig. 10.3): for each bond we start at
time 0 and calculate a decay time. If the spins at that time are oriented properly and an
exchange graph is possible we insert one. Next we advance by another randomly chosen
decay time along the same bond and repeat the procedure until we have reached the
extent β. This assigns graphs to all infinitesimal time steps where spins do not change.
Next we assign a graph to all of the (finite number of) time steps where two spins
are exchanged. In the case of the Heisenberg models there is always only one possible
graph to assign and this is very easy. In the next step we identify the loop-clusters and
then flip them each with probability 1/2. Alternatively a Wolff-like algorithm can be
constructed that only builds one loop-cluster.

Improved estimators for measurements can be constructed like in classical models.
The derivation is similar to the classical models. I will just mention two simple ones
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world lines world lines + 
decay graphs

world lines
after flips of some 
loop clusters

Figure 10.3: Example of a loop update. In a first step decay paths are inserted where
possible at positions drawn randomly according to an exponential distribution and
graphs are assigned to all exchange terms (hoppings of world lines). In a second stage
(not shown) the loop clusters are identified. Finally each loop cluster is flipped with
probability 1/2 and one ends up with a new configuration.

for the ferromagnetic Heisenberg model. The spin-spin corelation is

Sz
i (τ)S

z
j (τ

′) =

{

1 if (i, τ) und (j, τ ′) are on the same cluster
0 otherwise

(10.13)

and the uniform susceptibilty is

χ =
1

Nβ

∑

c

S(c)2, (10.14)

where the sum goes over all loop clusters and S(c) is the length of all the loop segments
in the loop cluster c.

The negative sign problem

Now that we have an algorithm with no critical slowing down we could think that
we have completely solved the problem of quantum many body problems. Indeed the
scaling of the loop algorithm is O(Nβ) where N is the number of lattice sites and β
the inverse temperature – this is optimum scaling.

There is however the negative sign problem which destroys our dreams. We need to
interpret the matrix elements 〈in|1 − ∆τH|in+1〉 as probablities, which requires them
to be positive. However all off-diagonal positive matrix elements of H give rise to a
negative probability!

The simplest example is the exchange term −(Jxy/2)(S+
i S

−
j + S−

i S
+
j ) in the Hamil-

tonian (10.7) in the case of an antiferromagnet with Jxy < 0. For any bipartite lattice,
such as chains, square lattices or cubic lattices with there is always an even number
of such exchanges and we get rescued once more. For non-bipartite lattices (such as a
triangular lattice), on which the antiferromagnetic order is frustrated there is no way
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around the sign problem. Similarly a minus sign occurs in all configurations where two
fermions are exchanged.

Even when there is a sign problem we can still do a simulation. Instead of sampling

〈A〉p :=

∫

A(x)p(x)dx
∫

p(x)dx
(10.15)

we rewrite this equation as

〈A〉p =

∫

A(x)sign(p(x))|p(x)|dx
∫

|p(x)|dx
∫

sign(p(x))|p(x)|dx
∫

|p(x)|dx

=
〈A · signp〉|p|
〈signp〉|p|

. (10.16)

We sample with the absolute values |p| and include the sign in the observable. The “sign
problem” is the fact that the errors get blown up by an additional factor 1/〈signp〉|p|,
which grows exponentially with volume and inverse temperature β, as 〈signp〉|p| ∝
exp(−const × βN). Then we are unfortunately back to exponential scaling.

The sign problem occurs not only for frustrated magnets, but for any fermionic
quantum system in moer than one dimension: the wave function changes sign when
two fermions are exchanged and hence any world line configuration where two fermions
exchange their positions during the propagation from imaginary time 0 to β will con-
tribute with a negative weight. Many people have tried to solve the sign problem using
basis changes or clever reformulations, but – except for special cases – nobody has suc-
ceeded yet. If you want you can try your luck: the person who finds a general solution
to the sign problem will surely get a nobel prize. Unfortunately it was recently shown
that the negative sign problem is NP-hard and thus almost certainly unsolvable in the
general case. 3

10.2.3 Density Matrix Renormalization Group methods

The density matrix renormalization group (DMRG) method uses a clever trick of reduc-
ing the Hilbert space size by selecting important states. The idea is to grow the lattice
by just a few sites in each renormalization step. If all basis states are kept, this leads to
the well-known exponential increase in size. Instead of keeping all basis functions, the
DMRG method selects a number of m “important” states according to their density
matrix eigenvalue. A good reference is the paper by S.R. White in Phys. Rev. B 48,
10345 (1993), as well as the doctoral thesis of B. Ammon.

10.3 Lattice field theories

We did not talk much about field theories since a discussion of algorithms for lattice
field theories requires a good knowledge of analytical approaches for field theories first.
Here I just want to sketch how a classical or quantum field theory can be simulated.

3M. Troyer and U.J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).

121



10.3.1 Classical field theories

As an example I choose the classical O(N) nonlinear sigma model in d dimensions, with
an action:

S = g
∫

ddx|∇~Ω(x)|2 with |~Ω(x)| = 1 (10.17)

living in a finite box of size Ld. To simulate this field theory we introduce a finite lattice
spacing a and obtain a grid of dimension Md with M = L/a. Let us denote the value of

the field ~Ω on the grid points by ~Ωi. Discretizing the action S by replacing derivatives
by differences we obtain, making use of |~Ω(x)| = 1

Sa =
2g

a2

∑

〈i,j〉

~Ωi
~Ωj . (10.18)

This is nothing but the action of a claccisal O(N) lattice model in d dimension with
βJ = 2g/a2 and we can again use the cluster algorithms. N = 1 is the Ising model,
N = 2 the XY -model and N = 3 the Heisenberg model. One calls the model (10.17)
the “effective field theory” of the O(N) lattice models.

There is however a subtle but important difference. In statistical mechanics we had
a fixed lattice spacing a and let L→ ∞ to approach the thermodynamic limit. In the
field theory we keep L fixed and let a → 0, while scaling βJ like 2g/a2. This leads to
different interpretations of the results.

10.3.2 Quantum field theories

Quantum field theories can be treated similarly. Using a path integral formulation like
we introduced it for quantum lattice models the d-dimensional quantum field theory is
mapped to a (d+ 1)-dimensional classical one: Let us consider the quantum nonlinear
sigma model, a Lorentz invariant field theory with an effective action:

S = g
∫ β

0
dτ
∫

ddx
(

|∇~Ω(x, τ)|2 +
1

c2
|∂~Ω(x, τ)/∂τ |2

)

with |~Ω(x, τ)| = 1,

(10.19)
where β is the inverse temperature and the velocity c relates the spatial and temporal
scales. Introducing a lattice spacing a in the spatial direction and a lattice spacing
a/c in the temporal direction we obtain a classical O(N) lattice model with couplings
βclJ = 2g/a2. The extent in the space direction is L/a and in the temporal direction
βc/a. Thus we see that the coupling constant of the quantum model gets mapped to the
classical temperature and the temperature gets mapped to the extent in imaginary time.
Again we can use the classical cluster algorithms to study this quantum field theory.

For details and simulation algorithms for other field theories the interested student
is refered to the book by J.M. Thijssen.
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Enjoy your holidays!
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