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Preface

The original purpose of the present lecture notes on Classical Mechanics was to sup-
plement the standard undergraduate textbooks (such as Marion and Thorton’s Classical
Dynamics of Particles and Systems) normally used for an intermediate course in Classi-
cal Mechanics by inserting a more general and rigorous introduction to Lagrangian and
Hamiltonian methods suitable for undergraduate physics students at sophomore and ju-
nior levels. The outcome of this effort is that the lecture notes are now meant to provide
a self-consistent introduction to Classical Mechanics without the need of any additional
material.

It is expected that students taking this course will have had a one-year calculus-based
introductory physics course followed by a one-semester course in Modern Physics. Ideally,
students should have completed their three-semester calculus sequence by the time they
enroll in this course and, perhaps, have taken a course in ordinary differential equations.
On the other hand, this course should be taken before a rigorous course in Quantum
Mechanics in order to provide students with a sound historical perspective involving the
connection between Classical Physics and Quantum Physics. Hence, the second semester
of the sophomore year or the fall semester of the junior year provide a perfect niche for this
course.

The structure of the lecture notes presented here is based on achieving several goals.
As a first goal, I originally wanted to model these notes after the wonderful monograph
of Landau and Lifschitz on Mechanics, which is often thought to be too concise for most
undergraduate students. One of the many positive characteristics of Landau and Lifschitz’s
Mechanics is that Lagrangian mechanics is introduced in its first chapter and not in later
chapters as is usually done in more standard textbooks used at the sophomore/junior
undergraduate level. Consequently, Lagrangian mechanics becomes the centerpiece of the
course and provides a continous thread throughout the text.

As a second goal, the lecture notes introduce several numerical investigations of dynam-
ical equations appearing throughout the text. These numerical investigations present an
interactive pedagogical approach, which should enable students to begin their own numer-
ical investigations. As a third goal, an attempt was made to introduce relevant historical
facts (whenever appropriate) about the pioneers of Classical Mechanics. Much of the his-
torical information included in the Notes is taken from René Dugas (History of Mechanics,
1955), Wolfgang Yourgrau and Stanley Mandelstam (Variational Principles in Dynamics
and Quantum Theory, 1968), or Cornelius Lanczos (The Variational Principles of Me-
chanics, 1970). In fact, from a pedagogical point of view, this historical perspective helps
educating undergraduate students in establishing the deep connections between Classical
and Quantum Mechanics, which are often ignored or even inverted (as can be observed
when undergraduate students are surprised to hear that Hamiltonians have an indepen-
dent classical existence). As a fourth and final goal, I wanted to keep the scope of these
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notes limited to a one-semester course in contrast to standard textbooks, which often in-
clude an extensive review of Newtonian Mechanics as well as additional material such as
Hamiltonian chaos.

The standard topics covered in these notes are listed in order as follows: Introduction
to the Calculus of Variations (Chapter 1), Lagrangian Mechanics (Chapter 2), Hamiltonian
Mechanics (Chapter 3), Motion in a Central Field (Chapter 4), Collisions and Scattering
Theory (Chapter 5), Motion in a Non-Inertial Frame (Chapter 6), Rigid Body Motion
(Chapter 7), Normal-Mode Analysis (Chapter 8), and Continuous Lagrangian Systems
(Chapter 9). Each chapter contains a problem set with variable level of difficulty; sections
identified with an asterisk may be omitted for a one-semester course. Lastly, in order
to ensure a self-contained presentation, a summary of mathematical methods associated
with linear algebra, and trigonometic and elliptic functions is presented in Appendix A.
Appendix B presents a brief summary of the derivation of the Schrödinger equation based
on the Lagrangian formalism developed by R. P. Feynman.

Several innovative topics not normally discussed in standard undergraduate textbooks
are included throughout the notes. In Chapter 1, a complete discussion of Fermat’s Princi-
ple of Least Time is presented, from which a generalization of Snell’s Law for light refrac-
tion through a nonuniform medium is derived and the equations of geometric optics are
obtained. We note that Fermat’s Principle proves to be an ideal introduction to variational
methods in the undergraduate physics curriculum since students are already familiar with
Snell’s Law of light refraction.

In Chapter 2, we establish the connection between Fermat’s Principle and Maupertuis-
Jacobi’s Principle of Least Action. In particular, Jacobi’s Principle introduces a geometric
representation of single-particle dynamics that establishes a clear pre-relativistic connection
between Geometry and Physics. Next, the nature of mechanical forces is discussed within
the context of d’Alembert’s Principle, which is based on a dynamical generalization of the
Principle of Virtual Work. Lastly, the fundamental link between the energy-momentum
conservation laws and the symmetries of the Lagrangian function is first discussed through
Noether’s Theorem and then Routh’s procedure to eliminate ignorable coordinates is ap-
plied to a Lagrangian with symmetries.

In Chapter 3, the problem of charged-particle motion in an electromagnetic field is
investigated by the Lagrangian method in the three-dimensional configuration space and
the Hamiltonian method in the six-dimensional phase space. This important physical
example presents a clear link between the two methods.
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Chapter 1

Introduction to the Calculus of

Variations

A wide range of equations in physics, from quantum field and superstring theories to
general relativity, from fluid dynamics to plasma physics and condensed-matter theory, are
derived from action (variational) principles. The purpose of this chapter is to introduce the
methods of the Calculus of Variations that figure prominently in the formulation of action
principles in physics.

1.1 Foundations of the Calculus of Variations

1.1.1 A Simple Minimization Problem

It is a well-known fact that the shortest distance between two points in Euclidean (“flat”)
space is calculated along a straight line joining the two points. Although this fact is
intuitively obvious, we begin our discussion of the problem of minimizing certain integrals
in mathematics and physics with a search for an explicit proof. In particular, we prove
that the straight line y0(x) = mx yields a path of shortest distance between the two points
(0, 0) and (1, m) on the (x, y)-plane as follows.

First, we consider the length integral

L[y] =
∫ 1

0

√
1 + (y′)2 dx, (1.1)

where y′ = y′(x) and the notation L[y] is used to denote the fact that the value of the
integral (1.1) depends on the choice we make for the function y(x) (L[y] is, thus, called a
functional of y); we insist, however, that the function y(x) satisfy the boundary conditions

1
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y(0) = 0 and y(1) = m. Next, by introducing the modified function

y(x; ε) = y0(x) + ε δy(x),

where y0(x) = mx and the variation function δy(x) is required to satisfy the prescribed
boundary conditions δy(0) = 0 = δy(1), we define the modified length integral

L[y0 + ε δy] =
∫ 1

0

√
1 + (m+ ε δy′)2 dx

as a function of ε and a functional of δy. We now show that the function y0(x) = mx
minimizes the integral (1.1) by evaluating the following derivatives

(
d

dε
L[y0 + ε δy]

)

ε=0

=
m√

1 +m2

∫ 1

0
δy′ dx =

m√
1 +m2

[ δy(1)− δy(0)] = 0,

and (
d2

dε2
L[y0 + ε δy]

)

ε=0

=
∫ 1

0

(δy′)2

(1 +m2)3/2
dx > 0,

which holds for a fixed value of m and for all variations δy(x) that satisfy the conditions
δy(0) = 0 = δy(1). Hence, we have shown that y(x) = mx minimizes the length integral
(1.1) since the first derivative (with respect to ε) vanishes at ε = 0, while its second
derivative is positive. We note, however, that our task was made easier by our knowledge of
the actual minimizing function y0(x) = mx; without this knowledge, we would be required
to choose a trial function y0(x) and test for all variations δy(x) that vanish at the integration
boundaries.

Another way to tackle this minimization problem is to find a way to characterize the
function y0(x) that minimizes the length integral (1.1), for all variations δy(x), without
actually solving for y(x). For example, the characteristic property of a straight line y(x)
is that its second derivative vanishes for all values of x. The methods of the Calculus of
Variations introduced in this Chapter present a mathematical procedure for transforming
the problem of minimizing an integral to the problem of finding the solution to an ordinary
differential equation for y(x). The mathematical foundations of the Calculus of Variations
were developed by Joseph-Louis Lagrange (1736-1813) and Leonhard Euler (1707-1783),
who developed the mathematical method for finding curves that minimize (or maximize)
certain integrals.

1.1.2 Methods of the Calculus of Variations

Euler’s First Equation

The methods of the Calculus of Variations transform the problem of minimizing an integral
of the form

F [y] =
∫ b

a
F (y, y′; x) dx (1.2)
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Figure 1.1: Virtual displacement

(with fixed boundary points a and b) into the solution of a differential equation for y(x)
expressed in terms of derivatives of the integrand F (y, y′; x), assumed to be a smooth
function of y(x) and its first derivative y′(x), with a possible explicit dependence on x.

The problem of minimizing the integral (1.2) will be treated in analogy with the problem
of finding the minimum value of any (smooth) function f(x), i.e., finding the value x0 where

f ′(x0) = lim
ε→0

1

ε

(
f(x0 + ε) − f(x0)

)
≡ 1

h

(
d

dε
f(x0 + ε h)

)

ε=0

= 0,

where h is an arbitrary constant factor. First, we introduce the first-order functional
variation δF [y; δy] defined as

δF [y; δy] ≡
(
d

dε
F [y + ε δy]

)

ε=0

=

[
d

dε

(∫ b

a
F (y + ε δy, y′ + ε δy′, x) dx

) ]

ε=0

, (1.3)

where δy(x) is an arbitrary smooth variation of the path y(x) subject to the boundary
conditions δy(a) = 0 = δy(b), i.e., the end points of the path are not affected by the
variation (see Figure 1.1). By performing the ε-derivatives in the functional variation (1.3),
which involves partial derivatives of F (y, y′, x) with respect to y and y′, we find

δF [y; δy] =
∫ b

a

[

δy(x)
∂F

∂y(x)
+ δy′(x)

∂F

∂y′(x)

]

dx,

which, when the second term is integrated by parts, becomes

δF [y; δy] =
∫ b

a
δy

[
∂F

∂y
− d

dx

(
∂F

∂y′

) ]

dx +

[

δyb

(
∂F

∂y′

)

b

− δya

(
∂F

∂y′

)

a

]

.
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Here, since the variation δy(x) vanishes at the integration boundaries (δyb = 0 = δya), the
last terms involving δyb and δya vanish explicitly and we obtain

δF [y; δy] =
∫ b

a
δy

[
∂F

∂y
− d

dx

(
∂F

∂y′

) ]

dx ≡
∫ b

a
δy

δF
δy

dx, (1.4)

where δF/δy is called the functional derivative of F [y] with respect to the function y. The
stationarity condition δF [y; δy] = 0 for all variations δy yields Euler’s First equation

d

dx

(
∂F

∂y′

)

≡ y′′
∂2F

∂y′ ∂y′
+ y′

∂2F

∂y ∂y′
+

∂2F

∂x ∂y′
=

∂F

∂y
, (1.5)

representing a second-order ordinary differential equation for y(x). According to the Cal-
culus of Variations, the solution y(x) to this ordinary differential equation, subject to the
boundary conditions y(a) = ya and y(b) = yb, yields a solution to the problem of minimiz-
ing the integral (1.2). Lastly, we note that Lagrange’s variation operator δ, while analogous
to the derivative operator d, commutes with the integral operator, i.e.,

δ
∫ b

a
P (y(x)) dx =

∫ b

a
P ′(y(x)) δy(x) dx,

for any smooth function P .

Extremal Values of an Integral

Euler’s First Equation (1.5) results from the stationarity condition δF [y; δy] = 0, which
does not necessarily imply that the Euler path y(x), in fact, minimizes the integral (1.2).
To investigate whether the path y(x) actually minimizes Eq. (1.2), we must evaluate the
second-order functional variation

δ2F [y; δy] ≡
(
d2

dε2
F [y + ε δy]

)

ε=0

.

By following steps similar to the derivation of Eq. (1.4), the second-order variation is
expressed as

δ2F [y; δy] =
∫ b

a

{

δy2

[
∂2F

∂y2
− d

dx

(
∂2F

∂y∂y′

) ]

+ (δy′)
2 ∂2F

∂(y′)2

}

dx. (1.6)

The necessary and sufficient condition for a minimum is δ2F > 0 and, thus, the sufficient
conditions for a minimal integral are

∂2F

∂y2
− d

dx

(
∂2F

∂y∂y′

)

> 0 and
∂2F

(∂y′)2
> 0, (1.7)
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Figure 1.2: Jacobi deviation from two extremal curves

for all smooth variations δy(x). For a small enough interval (a, b), the (δy′)2-term will
normally dominate over the (δy)2-term and the sufficient condition becomes ∂2F/(∂y′)2 >
0.

Because variational problems often involve finding the minima or maxima of certain
integrals, the methods of the Calculus of Variations enable us to find extermal solutions
y0(x) for which the integral F [y] is stationary (i.e., δF [y0] = 0), without specifying whether
the second-order variation is positive-definite (corresponding to a minimum), negative-
definite (corresponding to a maximum), or with indefinite sign (i.e., when the coefficients
of (δy)2 and (δy′)2 have opposite signs).

Jacobi Equation*

Carl Gustav Jacobi (1804-1851) derived a useful differential equation describing the devi-
ation u(x) = y(x) − y(x) between two extremal curves (see Figure 1.2) that solve Euler’s
First Equation (1.5) for a given function F (x, y, y′). Upon Taylor expanding Euler’s First
Equation (1.5) for y = y + u and keeping only linear terms in u (which is assumed to be
small), we easily obtain the linear ordinary differential equation

d

dx

(

u′
∂2F

(∂y′)2
+ u

∂2F

∂y∂y′

)

= u
∂2F

∂y2
+ u′

∂2F

∂y′∂y
. (1.8)

By performing the x-derivative on the second term on the left side, we obtain a partial
cancellation with the second term on the right side and find the Jacobi equation

d

dx

(
∂2F

(∂y′)2

du

dx

)

= u

[
∂2F

∂y2
− d

dx

(
∂2F

∂y∂y′

) ]

. (1.9)

We can, thus, immediately see that the extremal properties (1.7) of the solutions of Euler’s
First Equation (1.5) are intimately connected to the behavior of the deviation u(x) between
two nearby extremal curves.
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For example, if we simply assume that the coefficients in Jacobi’s equation (1.9) are
both positive (or both negative) constants ±α2 and ±β2, respectively (i.e., the extremal
curves are either minimal or maximal), then Jacobi’s equation becomes α2 u′′ = β2 u,
with exponential solutions u(x) = a eγ x + b e−γ x, where (a, b) are determined from initial
conditions and γ = β/α. On the other hand, if we assume that the coefficients are constants
±α2 and ∓β2 of opposite signs (i.e., the extremals are neither minimal nor maximal), then
Jacobi’s equation becomes α2 u′′ = −β2 u, with periodic solutions u(x) = a cos(γ x) +
b sin(γ x), where (a, b) are determined from initial conditions and γ = β/α. The special
case where the coefficient on the right side of Jacobi’s equation (1.9) vanishes (i.e., F is
independent of y) yields a differential equation for u(x) whose solution is independent of
the sign of the coefficient ∂2F/∂(y′)2 (i.e., identical solutions are obtained for minimal and
maximal curves).

We note that the differential equation (1.8) may be derived from the variational principle
δ
∫
J(u, u′) dx = 0 as the Jacobi-Euler equation

d

dx

(
∂J

∂u′

)

=
∂J

∂u
, (1.10)

where the Jacobi function J(u, u′; x) is defined as

J(u, u′) ≡ 1

2

(
d2

dε2
F (y + ε u, y′ + ε u′)

)

ε=0

≡ u2

2

∂2F

∂y2
+ uu′

∂2F

∂y∂y′
+

u′2

2

∂2F

(∂y′)2
. (1.11)

For example, for F (y, y′) =
√

1 + (y′)2 =
√

1 +m2 ≡ Λ, then ∂2F/∂y2 = 0 = ∂2F/∂y∂y′

and ∂2F/∂(y′)2 = Λ−3, and the Jacobi function becomes J(u, u′) = 1
2
Λ−3(u′)2. The Jacobi

equation (1.9), therefore, becomes (Λ−3 u′)′ = 0, or u′′ = 0, i.e., deviations diverge linearly.

Lastly, the second functional variation (1.6) can be combined with the Jacobi equation
(1.9) to yield the expression

δ2F [y; δy] =
∫ b

a

∂2F

(∂y′)2

(

δy′ − δy
u′

u

)2

dx,

where u(x) is a solution of the Jacobi equation (1.9). We note that the minimum condition
δ2F > 0 is now clearly associated with the condition ∂2F/∂(y′)2 > 0. Furthermore, we
note that the Jacobi equation describing space-time geodesic deviations plays a fundamental
role in Einstein’s Theory of General Relativity. We shall return to the Jacobi equation in
Sec. 1.4 where we briefly discuss Fermat’s Principle of Least Time and its applications to
the general theory of geometric optics.
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Euler’s Second Equation

Under certain conditions (∂F/∂x ≡ 0), we may obtain a partial solution to Euler’s First
Equation (1.5). This partial solution is derived as follows. First, we write the exact x-
derivative of F (y, y′; x) as

dF

dx
=

∂F

∂x
+ y′

∂F

∂y
+ y′′

∂F

∂y′
,

and substitute Eq. (1.5) to combine the last two terms so that we obtain Euler’s Second
equation

d

dx

(

F − y′
∂F

∂y′

)

=
∂F

∂x
. (1.12)

This equation is especially useful when the integrand F (y, y′) in Eq. (1.2) is independent
of x, for which Eq. (1.12) yields the solution

F (y, y′) − y′
∂F

∂y′
(y, y′) = α, (1.13)

where the constant α is determined from the condition y(x0) = y0 and y′(x0) = y′0. Here,
Eq. (1.13) is a partial solution (in some sense) of Eq. (1.5), since we have reduced the
derivative order from second-order derivative y′′(x) in Eq. (1.5) to first-order derivative
y′(x) in Eq. (1.13) on the solution y(x). Hence, Euler’s Second Equation has produced an
equation of the form G(y, y′;α) = 0, which can often be integrated by quadrature as we
shall see later.

1.1.3 Path of Shortest Distance and Geodesic Equation

We now return to the problem of minimizing the length integral (1.1), with the integrand

written as F (y, y′) =
√

1 + (y′)2. Here, Euler’s First Equation (1.5) yields

d

dx

(
∂F

∂y′

)

=
y′′

[1 + (y′)2]3/2
=

∂F

∂y
= 0,

so that the function y(x) that minimizes the length integral (1.1) is the solution of the
differential equation y′′(x) = 0 subject to the boundary conditions y(0) = 0 and y(1) = m,
i.e., y(x) = mx. Note that the integrand F (y, y′) also satisfies the sufficient minimum
conditions (1.7) so that the path y(x) = mx is indeed the path of shortest distance between
two points on the plane.

Geodesic equation*

We generalize the problem of finding the path of shortest distance on the Euclidean plane
(x, y) to the problem of finding geodesic paths in arbitrary geometry because it introduces
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important geometric concepts in Classical Mechanics needed in later chapters. For this
purpose, let us consider a path in space from point A to point B parametrized by the
continuous parameter σ, i.e., x(σ) such that x(A) = xA and x(B) = xB. The length
integral from point A to B is

L[x] =
∫ B

A

(

gij
dxi

dσ

dxj

dσ

)1/2

dσ, (1.14)

where the space metric gij is defined so that the squared infinitesimal length element is
ds2 ≡ gij(x) dxi dxj (summation over repeated indices is implied throughout the text).
Next, using the definition (1.3), the first-order variation δL[x] is given as

δL[x] =
1

2

∫ B

A

[
∂gij
∂xk

δxk
dxi

dσ

dxj

dσ
+ 2 gij

dδxi

dσ

dxj

dσ

]
dσ

ds/dσ

=
1

2

∫ b

a

[
∂gij
∂xk

δxk
dxi

ds

dxj

ds
+ 2 gij

dδxi

ds

dxj

ds

]

ds,

where a = s(A) and b = s(B) and we have performed a parametrization change: x(σ) →
x(s). By integrating the second term by parts, we obtain

δL[x] = −
∫ b

a

[
d

ds

(

gij
dxj

ds

)

− 1

2

∂gjk
∂xi

dxj

ds

dxk

ds

]

δxi ds

= −
∫ b

a

[

gij
d2xj

ds2
+

(
∂gij
∂xk

− 1

2

∂gjk
∂xi

)
dxj

ds

dxk

ds

]

δxi ds. (1.15)

We now note that, using symmetry properties under interchange of the j-k indices, the
second term in Eq. (1.15) can also be written as

(
∂gij
∂xk

− 1

2

∂gjk
∂xi

)
dxj

ds

dxk

ds
=

1

2

(
∂gij
∂xk

+
∂gik
∂xj

− ∂gjk
∂xi

)
dxj

ds

dxk

ds

= Γi|jk
dxj

ds

dxk

ds
,

using the definition of the Christoffel symbol

Γ`jk = g`i Γi|jk =
g`i

2

(
∂gij
∂xk

+
∂gik
∂xj

− ∂gjk
∂xi

)

≡ Γikj, (1.16)

where gij denotes a component of the inverse metric (i.e., gij gjk = δi k). Hence, the first-
order variation (1.15) can be expressed as

δL[x] =
∫ b

a

[
d2xi

ds2
+ Γijk

dxj

ds

dxk

ds

]

gi` δx
` ds. (1.17)
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The stationarity condition δL = 0 for arbitrary variations δx` yields an equation for the
path x(s) of shortest distance known as the geodesic equation

d2xi

ds2
+ Γijk

dxj

ds

dxk

ds
= 0. (1.18)

Returning to two-dimensional Euclidean geometry, where the components of the metric
tensor are constants (either 0 or 1), the geodesic equations are x′′(s) = 0 = y′′(s) which
once again leads to a straight line.

Geodesic equation on a sphere

For example, geodesic curves on the surface of a sphere of radius R are expressed in terms
of extremal curves of the length functional

L[ϕ] =
∫

R

√√√√1 + sin2 θ

(
dϕ

dθ

)2

dθ ≡ R
∫
L(ϕ′, θ) dθ, (1.19)

where the azimuthal angle ϕ(θ) is an arbitrary function of the polar angle θ. Since the
function L(ϕ′, θ) in Eq. (1.19) is independent of the azimuthal angle ϕ, its corresponding
Euler equation is

∂L

∂ϕ′ =
sin2 θ ϕ′

√
1 + sin2 θ (ϕ′)2

= sinα,

where α is an arbitrary constant angle. Solving for ϕ′ we find

ϕ′(θ) =
sinα

sin θ
√

sin2 θ − sin2 α
,

which can, thus, be integrated to give

ϕ − β =
∫

sinα dθ

sin θ
√

sin2 θ − sin2 α
= −

∫
tanα du√

1 − u2 tan2 α
,

where β is another constant angle and we used the change of variable u = cot θ. A simple
trigonometric substitution finally yields

cos(ϕ− β) = tanα cot θ,

which describes a great circle on the surface of the sphere; you should check this for yourself
by generating (using Maple or Mathematica) a three-dimensional parametric plot of the unit
vector r̂(ϕ) = sin θ(ϕ) ρ̂(ϕ) + cos θ(ϕ) ẑ.
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1.2 Classical Variational Problems

The development of the Calculus of Variations led to the resolution of several classical op-
timization problems in mathematics and physics. In this section, we present two classical
variational problems that were connected to its original development. First, in the Isoperi-
metric problem, we show how Lagrange modified Euler’s formulation of the Calculus of
Variations by allowing constraints to be imposed on the search for finding extremal values
of certain integrals. Next, in the Brachistochrone problem, we show how the Calculus of
Variations is used to find the path of quickest descent for a bead sliding along a frictionless
wire under the action of gravity.

1.2.1 Isoperimetric Problem

Isoperimetric problems represent some of the earliest applications of the variational ap-
proach to solving mathematical optimization problems. Pappus (ca. 290-350) was among
the first to recognize that among all the isoperimetric closed planar curves (i.e., closed
curves that have the same perimeter length), the circle encloses the greatest area.1 The
variational formulation of the isoperimetric problem requires that we maximize the area

integral A =
∫
y(x) dx while keeping the perimeter length integral L =

∫ √
1 + (y′)2 dx

constant.

The isoperimetric problem falls in a class of variational problems called constrained
variational principles, where a certain functional

∫
f(y, y′, x) dx is to be optimized under

the constraint that another functional
∫
g(y, y′, x) dx be held constant (say at value G).

The constrained variational principle is then expressed in terms of the functional

Fλ[y] =
∫
f(y, y′, x) dx + λ

(
G −

∫
g(y, y′, x) dx

)

=
∫ [

f(y, y′, x) − λ g(y, y′, x)
]
dx + λG, (1.20)

where the parameter λ is called a Lagrange multiplier. Note that the functional Fλ[y] is
chosen, on the one hand, so that the derivative

dFλ[y]

dλ
= G −

∫
g(y, y′, x) dx = 0

enforces the constraint for all curves y(x). On the other hand, the stationarity condition
δFλ = 0 for the functional (1.20) with respect to arbitrary variations δy(x) (which vanish
at the integration boundaries) yields Euler’s First Equation:

d

dx

(
∂f

∂y′
− λ

∂g

∂y′

)

=
∂f

∂y
− λ

∂g

∂y
. (1.21)

1Such results are normally described in terms of the so-called isoperimetric inequalities 4π A ≤ L2,
where A denotes the area enclosed by a closed curve of perimeter length L; here, equality is satisfied by
the circle.
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Here, we assume that this second-order differential equation is to be solved subject to
the conditions y(x0) = y0 and y′(x0) = 0; the solution y(x;λ) of Eq. (1.21) is, however,
parametrized by the unknown Lagrange multiplier λ.

If the integrands f(y, y′) and g(y, y′) in Eq. (1.20) are both explicitly independent of x,
then Euler’s Second Equation (1.13) for the functional (1.20) becomes

d

dx

[ (

f − y′
∂f

∂y′

)

− λ

(

g − y′
∂g

∂y′

) ]

= 0. (1.22)

By integrating this equation we obtain
(

f − y′
∂f

∂y′

)

− λ

(

g − y′
∂g

∂y′

)

= 0,

where the constant of integration on the right is chosen from the conditions y(x0) = y0 and
y′(x0) = 0, so that the value of the constant Lagrange multiplier is now defined as

λ(x0) =
f(y0, 0)

g(y0, 0)
.

Hence, the solution y(x) of the constrained variational problem (1.20) is now uniquely
determined.

We return to the isoperimetric problem now represented in terms of the constrained
functional

Aλ[y] =
∫

y dx + λ
(
L −

∫ √
1 + (y′)2 dx

)

=
∫ [

y − λ
√

1 + (y′)2

]
dx + λL, (1.23)

where L denotes the value of the constant-length constraint. From Eq. (1.21), the station-
arity of the functional (1.23) with respect to arbitrary variations δy(x) yields

d

dx



− λy′
√

1 + (y′)2



 = 1,

which can be integrated to give

− λy′
√

1 + (y′)2
= x − x0, (1.24)

where x0 denotes a constant of integration associated with the condition y′(x0) = 0. Since

the integrands f(y, y′) = y and g(y, y′) =
√

1 + (y′)2 are both explicitly independent of x,

then Euler’s Second Equation (1.22) applies, and we obtain

d

dx



y − λ
√

1 + (y′)2



 = 0,
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Figure 1.3: Brachistrochrone problem

which can be integrated to give
λ

√
1 + (y′)2

= y. (1.25)

Here, the constant of integration is chosen, with y′(x0) = 0, so that y(x0) = λ. By
combining Eqs. (1.24) and (1.25), we obtain y y′ + (x − x0) = 0, which can lastly be
integrated to give y2(x) = λ2 − (x − x0)

2. We immediately recognize that the maximal
isoperimetric curve y(x) is a circle of radius r = λ with perimeter length L = 2π λ and
maximal enclosed area A = π λ2 = L2/4π.

1.2.2 Brachistochrone Problem

The brachistochrone problem is a least-time variational problem, which was first solved in
1696 by Johann Bernoulli (1667-1748). The problem can be stated as follows. A bead
is released from rest (at the origin in Figure 1.3) and slides down a frictionless wire that
connects the origin to a given point (xf , yf). The question posed by the brachistochrone
problem is to determine the shape y(x) of the wire for which the frictionless descent of the
bead under gravity takes the shortest amount of time.

Using the (x, y)-coordinates shown above, the speed of the bead after it has fallen a ver-
tical distance x along the wire is v =

√
2g x (where g denotes the gravitational acceleration)

and, thus, the time integral

T [y] =
∫

ds

v
=

∫ xf

0

√
1 + (y′)2

2 gx
dx =

∫ xf

0
F (y, y′, x) dx, (1.26)
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Figure 1.4: Brachistochrone solution

is a functional of the path y(x). Note that, in the absence of friction, the bead’s mass
does not enter into the problem. Since the integrand of Eq. (1.26) is independent of the
y-coordinate (∂F/∂y = 0), Euler’s First Equation (1.5) simply yields

d

dx

(
∂F

∂y′

)

= 0 → ∂F

∂y′
=

y′
√

2 gx [1 + (y′)2]
= α,

where α is a constant, which can be rewritten in terms of the scale length λ = (2α2g)−1 as

(y′)2

1 + (y′)2
=

x

λ
. (1.27)

Integration by quadrature of Eq. (1.27) yields the integral solution

y(x) =
∫ x

0

√
s

λ− s
ds,

subject to the initial condition y(x = 0) = 0. Using the trigonometric substitution (with
λ = 2a)

s = 2a sin2(θ/2) = a (1 − cos θ),

we obtain the parametric solution x(θ) = a (1 − cos θ) and

y(θ) =
∫ θ

0

√
1 − cos θ

1 + cos θ
a sin θ dθ = a

∫ θ

0
(1 − cos θ) dθ = a (θ − sin θ). (1.28)

This solution yields a parametric representation of the cycloid (Figure 1.4) where the bead
is placed on a rolling hoop of radius a.

1.3 Fermat’s Principle of Least Time

Several minimum principles have been invoked throughout the history of Physics to explain
the behavior of light and particles. In one of its earliest form, Hero of Alexandria (ca. 75
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Figure 1.5: Reflection (a) and refraction (b) of light

AD) stated that light travels in a straight line and that light follows a path of shortest
distance when it is reflected. In 1657, Pierre de Fermat (1601-1665) stated the Principle of
Least Time, whereby light travels between two points along a path that minimizes the travel
time, to explain Snell’s Law (Willebrord Snell, 1591-1626) associated with light refraction
in a stratified medium. Using the index of refraction n0 ≥ 1 of the uniform medium, the
speed of light in the medium is expressed as v0 = c/n0 ≤ c, where c is the speed of light in
vacuum. This straight path is not only a path of shortest distance but also a path of least
time.

The laws of reflection and refraction as light propagates in uniform media separated
by sharp boundaries (see Figure 1.5) are easily formulated as minimization problems as
follows. First, for the law of light reflection (as shown in Figure 1.5(a)), the time taken by
light to go from point A = (0, h) to point B = (L, h) after being reflected at point (x, 0) is
given by

TAB(x) =
n0

c

[ √
x2 + h2 +

√
(L− x)2 + h2

]
,

where n0 denotes the index of refraction of the medium. We easily evaluate the derivative
of TAB(x) to find

T ′
AB(x) =

n0

c



 x√
x2 + h2

− (L − x)
√

(L − x)2 + h2



 =
n0

c

(
sin θ − sin θ′

)
,

where the angles θ and θ′ are defined in Figure 1.5(a). Here, the law of reflection is expressed
in terms of the extremum condition T ′

AB(x) = 0, which implies that the path of least time
is obtained when the reflected angle θ′ is equal to the incidence angle θ (or x = L/2).
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Next, the law of light refraction (as shown in Figure 1.5(b)) involving light travelling
from point A = (0, h) in one medium (with index of refraction n1) to point B = (L,−h)
in another medium (with index of refraction n2) is similarly expressed as a minimization
problem based on the time function

TAB(x) =
1

c

[
n1

√
x2 + h2 + n2

√
(L− x)2 + h2

]
,

where definitions are found in Figure 1.5(b). Here, the extremum condition T ′
AB(x) = 0

yields Snell’s law
n1 sin θ = n2 sin θ′. (1.29)

Note that Snell’s law implies that the refracted light ray bends toward the medium with
the largest index of refraction. In what follows, we generalize Snell’s law to describe light
refraction in a continuous nonuniform medium.

1.3.1 Light Propagation in a Nonuniform Medium

According to Fermat’s Principle, light propagates in a nonuniform medium by travelling
along a path that minimizes the travel time between an initial point A (where a light ray
is launched) and a final point B (where the light ray is received). Hence, the time taken
by a light ray following a path γ from point A to point B (parametrized by σ) is

T [x] =
∫

c−1n(x)

∣∣∣∣∣
dx

dσ

∣∣∣∣∣ dσ = c−1 Ln[x], (1.30)

where Ln[x] represents the length of the optical path taken by light as it travels in a medium
with refractive index n and

∣∣∣∣∣
dx

dσ

∣∣∣∣∣ =

√√√√
(
dx

dσ

)2

+

(
dy

dσ

)2

+

(
dz

dσ

)2

.

We now consider ray propagation in two dimensions (x, y), with the index of refraction
n(y), and return to general properties of ray propagation in Sec. 1.4.

For ray propagation in two dimensions (labeled x and y) in a medium with nonuni-
form refractive index n(y), an arbitrary point (x, y = y(x)) along the light path x(σ)
is parametrized by the x-coordinate [i.e., σ = x in Eq. (1.30)], which starts at point
A = (a, ya) and ends at point B = (b, yb) (see Figure 1.6). Along the path y : x 7→ y(x),

the infinitesimal length element is ds =
√

1 + (y′)2 dx and the optical length

Ln[y] =
∫ b

a
n(y)

√
1 + (y′)2 dx (1.31)

is a functional of y (i.e., changing the path y changes the value of the integral Ln[y]).
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Figure 1.6: Light path in a nonuniform medium

We now apply the variational principle δLn[y] = 0 for the case where F (y, y′) =

n(y)
√

1 + (y′)2, from which we find

∂F

∂y′
=

n(y) y′
√

1 + (y′)2
and

∂F

∂y
= n′(y)

√
1 + (y′)2,

so that Euler’s First Equation (1.5) becomes

n(y) y′′ = n′(y)
[
1 + (y′)2

]
. (1.32)

Although the solution of this (nonlinear) second-order ordinary differential equation is
difficult to obtain for general functions n(y), we can nonetheless obtain a qualitative picture
of its solution by noting that y′′ has the same sign as n′(y). Hence, when n′(y) = 0 for
all y (i.e., the medium is spatially uniform), the solution y′′ = 0 yields the straight line
y(x;ϕ0) = tanϕ0 x, where ϕ0 denotes the initial launch angle (as measured from the
horizontal axis). The case where n′(y) > 0 (or < 0), on the other hand, yields a light path
which is concave upwards (or downwards) as will be shown below.

Note that the sufficient conditions (1.7) for the optical path are expressed as

∂2F

(∂y′)2
=

n

[1 + (y′)2]3/2
> 0,

which is satisfied for all refractive media, and

∂2F

∂y2
− d

dx

(
∂2F

∂y∂y′

)

= n′′
√

1 + (y′)2 − d

dx



 n′ y′
√

1 + (y′)2



 =
n2

F

d2 lnn

dy2
,
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whose sign is indefinite. Hence, the sufficient condition for a minimal optical length for
light traveling in a nonuniform refractive medium is d2 lnn/dy2 > 0; note, however, that
only the stationarity of the optical path is physically meaningful and, thus, we shall not
discuss the minimal properties of light paths in what follows.

Since the function F (y, y′) = n(y)
√

1 + (y′)2 is explicitly independent of x, we find

F − y′
∂F

∂y′
=

n(y)
√

1 + (y′)2
= constant,

and, thus, the partial solution of Eq. (1.32) is

n(y) = α
√

1 + (y′)2, (1.33)

where α is a constant determined from the initial conditions of the light ray. We note that
Eq. (1.33) states that as a light ray enters a region of increased (decreased) refractive index,
the slope of its path also increases (decreases). In particular, by substituting Eq. (1.32)
into Eq. (1.33), we find

α2 y′′ =
1

2

dn2(y)

dy
,

and, hence, the path of a light ray is concave upward (downward) where n′(y) is positive
(negative), as previously discussed. Eq. (1.33) can be integrated by quadrature to give the
integral solution

x(y) =
∫ y

0

α ds
√

[n(s)]2 − α2
, (1.34)

subject to the condition x(y = 0) = 0. From the explicit dependence of the index of
refraction n(y), one may be able to perform the integration in Eq. (1.34) to obtain x(y)
and, thus, obtain an explicit solution y(x) by inverting x(y).

1.3.2 Snell’s Law

We now show that the partial solution (1.33) corresponds to Snell’s Law for light refraction
in a nonuniform medium. Consider a light ray travelling in the (x, y)-plane launched
from the initial position (0, 0) at an initial angle ϕ0 (measured from the x-axis) so that
y′(0) = tanϕ0 is the slope at x = 0. The constant α is then simply determined from
Eq. (1.33) as α = n0 cosϕ0, where n0 = n(0) is the refractive index at y(0) = 0. Next, let

y′(x) = tanϕ(x) be the slope of the light ray at (x, y(x)), so that
√

1 + (y′)2 = secϕ and

Eq. (1.33) becomes n(y) cosϕ = n0 cosϕ0. Lastly, when we substitute the complementary
angle θ = π/2 − ϕ (measured from the vertical y-axis), we obtain the local form of Snell’s
Law:

n[y(x)] sin θ(x) = n0 sin θ0, (1.35)
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properly generalized to include a light path in a nonuniform refractive medium. Note that
Snell’s Law (1.35) does not tell us anything about the actual light path y(x); this solution
must come from solving Eq. (1.34).

1.3.3 Application of Fermat’s Principle

As an application of Fermat’s Principle, we consider the propagation of a light ray in a
medium with linear refractive index n(y) = n0 (1 − β y) exhibiting a constant gradient
n′(y) = −n0 β. Substituting this profile into the optical-path solution (1.34), we find

x(y) =
∫ y

0

cosϕ0 ds√
(1 − β s)2 − cos2 ϕ0

. (1.36)

Next, we use the trigonometric substitution

y(ϕ) =
1

β

(

1 − cosϕ0

cosϕ

)

, (1.37)

with ϕ = ϕ0 at (x, y) = (0, 0), so that Eq. (1.36) becomes

x(ϕ) = − cosϕ0

β
ln

(
secϕ+ tanϕ

secϕ0 + tanϕ0

)

. (1.38)

The parametric solution (1.37)-(1.38) for the optical path in a linear medium shows that
the path reaches a maximum height y = y(0) at a distance x = x(0) when the tangent
angle ϕ is zero:

x =
cosϕ0

β
ln(secϕ0 + tanϕ0) and y =

1 − cosϕ0

β
.

Figure 1.7 shows a graph of the normalized solution y(x; β)/y(β) as a function of the
normalized coordinate x/x(β) for ϕ0 = π/3.

Lastly, we obtain an explicit solution y(x) for the optical path by solving for secϕ as a
function of x from Eq. (1.38):

secϕ = cosh

[
β x

cosϕ0
− ln(secϕ0 + tanϕ0)

]

.

Substituting this equation into Eq. (1.37), we find the light path

y(x; β) =
1

β
− cosϕ0

β
cosh

[
β x

cosϕ0
− ln(secϕ0 + tanϕ0)

]

. (1.39)

We can check that, in the uniform case (β = 0), we recover the expected straight-line result
limβ→0 y(x; β) = (tanϕ0)x.
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Figure 1.7: Light-path solution for a linear nonuniform medium

1.4 Geometric Formulation of Ray Optics∗

1.4.1 Frenet-Serret Curvature of Light Path

We now return to the general formulation for light-ray propagation based on the time
integral (1.30), where the integrand is

F

(

x,
dx

dσ

)

= n(x)

∣∣∣∣∣
dx

dσ

∣∣∣∣∣ ,

and light rays are allowed to travel in a three-dimensional refractive medium with a general
index of refraction n(x). Euler’s First equation in this case is

d

dσ

(
∂F

∂(dx/dσ)

)

=
∂F

∂x
, (1.40)

where
∂F

∂(dx/dσ)
=

n

Λ

dx

dσ
and

∂F

∂x
= Λ ∇n,

with Λ = |dx/dσ|. Euler’s First Equation (1.40), therefore, becomes

d

dσ

(
n

Λ

dx

dσ

)

= Λ ∇n. (1.41)

Euler’s Second Equation, on the other hand, states that

H(σ) ≡ F

(

x,
dx

dσ

)

− dx

dσ
·

∂F

∂(dx/dσ)
= 0
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Figure 1.8: Light-path curvature and Frenet-Serret frame.

is a constant of motion. Note that, while Euler’s Second Equation (1.33) was very useful
in providing an explicit solution (Snell’s Law) to finding the optical path in a nonuniform
medium with index of refraction n(y), it appears that Euler’s Second Equation H(σ) ≡ 0
now reveals no information about the optical path. Where did the information go? To
answer this question, we apply the Euler-Fermat equation (1.41) to the two-dimensional

case where σ = x and Λ =
√

1 + (y′)2 with ∇n = n′(y) ŷ. Hence, the Euler-Fermat equation

(1.41) becomes
d

dx

[
n

Λ
(x̂ + y′ ŷ)

]
= Λn′ ŷ,

from which we immediately conclude that Euler’s Second Equation (1.33), n = αΛ, now
appears as a constant of the motion associated with a symmetry of the optical medium
(i.e., the optical properties of the medium are invariant under translation along the x-axis).
The association of symmetries with constants of the motion will later be discussed in terms
of Noether’s Theorem (see Sec. 2.5).

We now look at how the Euler-Fermat equation (1.41) can be simplified by an appro-
priate choice of parametrization. First, we can choose a ray parametrization such that Λ =
ds/dσ = n, so that the Euler-Fermat equation (1.41) becomes d2x/dσ2 = n∇n = 1

2
∇n2

and, thus, the light ray is accelerated toward regions of higher index of refraction (see Fig-
ure 1.8). Next, by choosing the ray parametrization dσ = ds (so that Λ = 1), we find that
the ray velocity dx/ds = k̂ is a unit vector which defines the direction of the wave vector
k. With this parametrization, the Euler-Fermat equation (1.41) is now replaced with the
light-curvature equation

dk̂

ds
= k̂ ×

(
∇ lnn× k̂

)
≡ κ n̂, (1.42)

where n̂ defines the principal normal unit vector and the Frenet-Serret curvature κ of the
light path is κ = |∇ lnn× k̂ | (see Appendix A). Note that for the one-dimensional problem
discussed in Sec. 1.3.1, the curvature is κ = |n′|/(nΛ) = |y′′|/Λ3 in agreement with the
Frenet-Serret curvature (see Appendix A).
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Lastly, we introduce the general form of Snell’s Law (1.35) as follows. First, we define the
unit vector ĝ = ∇n/(|∇n|) to be pointing in the direction of increasing index of refraction
and, after performing the cross-product of Eq. (1.41) with ĝ, we obtain the identity

ĝ ×
d

ds

(

n
dx

ds

)

= ĝ ×∇n = 0.

Using this identity, we readily evaluate the s-derivative of n ĝ × k̂:

d

ds

(

ĝ ×n
dx

ds

)

=
dĝ

ds
×

(

n
dx

ds

)

=
dĝ

ds
×n k̂.

Hence, if the unit vector ĝ is constant along the path of a light ray (i.e., dĝ/ds = 0), we
then find the conservation law

d

ds

(
ĝ ×n k̂

)
= 0, (1.43)

which implies that the vector quantity n ĝ × k̂ is a constant along the light path. Note
that, when a light ray progagates in two dimensions, this conservation law implies that the
quantity |ĝ ×n k̂| = n sin θ is also a constant along the light path, where θ is the angle
defined as cos θ ≡ ĝ · k̂. The conservation law (1.43), therefore, represents a generalization
of Snell’s Law (1.35).

1.4.2 Light Propagation in Spherical Geometry

By using the general ray-orbit equation (1.42), we can also show that for a spherically-
symmetric nonuniform medium with index of refraction n(r), the light-ray orbit r(s) sat-
isfies the conservation law

d

ds

(

r×n(r)
dr

ds

)

= r×
d

ds

(

n(r)
dr

ds

)

= r×∇n(r) = 0. (1.44)

Here, we use the fact that the ray-orbit path is planar and, thus, we write

r×
dr

ds
= r sinϕ ẑ, (1.45)

where ϕ denotes the angle between the position vector r and the tangent vector dr/ds (see
Figure 1.9). The conservation law (1.44) for ray orbits in a spherically-symmetric medium
can, therefore, be expressed as n(r) r sinϕ(r) = N a, which is known as Bouguer’s formula
(Pierre Bouguer, 1698-1758), where N and a are constants (see Figure 1.9); note that the
condition n(r) r ≥ N a must also be satisfied since sinϕ(r) ≤ 1.

An explicit expression for the ray orbit r(θ) is obtained as follows. First, since dr/ds is
a unit vector, we find

dr

ds
=

dθ

ds

(

r θ̂ +
dr

dθ
r̂

)

=
r θ̂ + (dr/dθ) r̂
√
r2 + (dr/dθ)2

,
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Figure 1.9: Light path in a nonuniform medium with spherical symmetry

so that
dθ

ds
=

1
√
r2 + (dr/dθ)2

and Eq. (1.45) yields

r×
dr

ds
= r sinϕ ẑ = r2 dθ

ds
ẑ → sinϕ =

r
√
r2 + (dr/dθ)2

=
Na

nr
,

where we made use of Bouguer’s formula. Next, integration by quadrature yields

dr

dθ
=

r

Na

√
n(r)2 r2 −N2 a2 → θ(r) = N a

∫ r

r0

dρ

ρ
√
n2(ρ) ρ2 −N2 a2

,

where we choose r0 so that θ(r0) = 0. Lastly, a change of integration variable η = Na/ρ
yields

θ(r) =
∫ Na/r0

Na/r

dη
√
n2(η) − η2

, (1.46)

where n(η) ≡ n(Na/η). Hence, for a spherically-symmetric medium with index of refraction
n(r), we can compute the light-ray orbit r(θ) by inverting the integral (1.46) for θ(r).

Consider, for example, the spherically-symmetric refractive index n(r) = n0

√
2 − (r/R)2,

where n0 = n(R) denotes the refractive index at r = R (see Figure 1.10). Introducing the
dimensional parameter ε = a/R and the transformation σ = η2, Eq. (1.46) becomes

θ(r) =
∫ Na/r0

Na/r

η dη
√

2n2
0 η

2 − n2
0N

2ε2 − η4
=

1

2

∫ (Na/r0)
2

(Na/r)2

dσ
√
n4

0 e2 − (σ − n2
0)

2
,
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Figure 1.10: Elliptical light path in a spherically-symmetric refractive medium.

where e =
√

1 −N2ε2/n2
0 (assuming that n0 > N ε). Next, using the trigonometric substi-

tution σ = n2
0 (1 + e cosχ), we find θ(r) = 1

2
χ(r) or

r2(θ) =
r2
0 (1 + e)

1 + e cos 2θ
,

which represents an ellipse of major radius and minor radius r1 = R (1 + e)1/2 and r0 =
R (1− e)1/2, respectively. This example shows that, surprisingly, it is possible to trap light!

1.4.3 Geodesic Representation of Light Propagation

We now investigate the geodesic properties of light propagation in a nonuniform refractive
medium. For this purpose, let us consider a path AB in space from point A to point B
parametrized by the continuous parameter σ, i.e., x(σ) such that x(A) = xA and x(B) =
xB. The time taken by light in propagating from A to B is

T [x] =
∫ B

A

dt

dσ
dσ =

∫ B

A

n

c

(

gij
dxi

dσ

dxj

dσ

)1/2

dσ, (1.47)

where dt = nds/c denotes the infinitesimal time interval taken by light in moving an
infinitesimal distance ds in a medium with refractive index n and the space metric is
denoted by gij . The geodesic properties of light propagation are investigated with the
vacuum metric gij or the medium-modified metric gij = n2 gij .
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Vacuum-metric case

We begin with the vacuum-metric case and consider the light-curvature equation (1.42).
First, we define the vacuum-metric tensor gij = ei · ej in terms of the basis vectors (e1, e2, e3),
so that the ray velocity is

dx

ds
=

dxi

ds
ei.

Second, using the definition for the Christoffel symbol (1.16) and the relations

dej
ds

≡ Γijk
dxk

ds
ei,

we find
dk̂

ds
≡ d2x

ds2
=

d2xi

ds2
ei +

dxi

ds

dei
ds

=

(
d2xi

ds2
+ Γijk

dxj

ds

dxk

ds

)

ei.

By combining these relations, light-curvature equation (1.42) becomes

d2xi

ds2
+ Γijk

dxj

ds

dxk

ds
=

(

gij − dxi

ds

dxj

ds

)
∂ lnn

∂xj
. (1.48)

This equation shows that the path of a light ray departs from a vacuum geodesic line as a
result of a refractive-index gradient projected along the tensor

hij ≡ gij − dxi

ds

dxj

ds

which, by construction, is perpendicular to the ray velocity dx/ds (i.e., hij dxj/ds = 0).

Medium-metric case

Next, we investigate the geodesic propagation of a light ray associated with the medium-
modified (conformal) metric gij = n2 gij , where c2dt2 = n2ds2 = gij dx

idxj. The derivation
follows a variational formulation similar to that found in Sec. 1.1.3. Hence, the first-order
variation δT [x] is expressed as

δT [x] =
∫ tB

tA

[
d2xi

dt2
+ Γ

i
jk

dxj

dt

dxk

dt

]

gi` δx
` dt

c2
, (1.49)

where the medium-modified Christoffel symbols Γ
i
jk include the effects of the gradient in

the refractive index n(x). We, therefore, find that the light path x(t) is a solution of the
geodesic equation

d2xi

dt2
+ Γ

i
jk

dxj

dt

dxk

dt
= 0, (1.50)

which is also the path of least time for which δT [x] = 0.
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Jacobi equation for light propagation

Lastly, we point out that the Jacobi equation for the deviation ξ(σ) = x(σ) − x(σ) be-
tween two rays that satisfy the Euler-Fermat ray equation (1.41) can be obtained from the
Jacobian function

J(ξ, dξ/dσ) ≡ 1

2

[
d2

dε2

(

n(x + ε ξ)

∣∣∣∣∣
dx

dσ
+ ε

dξ

dσ

∣∣∣∣∣

) ]

ε=0

≡ n

2Λ3

∣∣∣∣∣
dξ

dσ
×
dx

dσ

∣∣∣∣∣

2

+
ξ ·∇n

Λ

dξ

dσ
·
dx

dσ
+

Λ

2
ξξ : ∇∇n, (1.51)

where the Euler-Fermat ray equation (1.41) was taken into account and the exact σ-
derivative, which cancels out upon integration, is omitted. Hence, the Jacobi equation
describing light-ray deviation is expressed as the Jacobi-Euler-Fermat equation

d

dσ

(
∂J

∂(dξ/dσ)

)

=
∂J

∂ξ
,

which yields

d

dσ

[
n

Λ3

dx

dσ
×

(
dξ

dσ
×
dx

dσ

) ]

= Λ ξ ·∇∇n ·

(

I − 1

Λ2

dx

dσ

dx

dσ

)

+

[
dξ

dσ
− (ξ ·∇ lnn)

dx

dσ

]

×

(
∇n
Λ

×
dx

dσ

)

. (1.52)

The Jacobi equation (1.52) describes the property of nearby rays to converge or diverge in
a nonuniform refractive medium. Note, here, that the terms involving Λ−1∇n× dx/dσ in
Eq. (1.52) can be written in terms of the Euler-Fermat ray equation (1.41) as

∇n
Λ

×
dx

dσ
=

1

Λ2

d

dσ

(
n

Λ

dx

dσ

)

×
dx

dσ
=

n

Λ3

(
d2x

dσ2
×
dx

dσ

)

,

which, thus, involve the Frenet-Serret ray curvature.

1.4.4 Eikonal Representation

The complementary picture of rays propagating in a nonuniform medium was proposed by
Christiaan Huygens (1629-1695) in terms of wavefronts. Here, a wavefront is defined as the
surface that is locally perpendicular to a ray. Hence, the index of refraction itself (for an
isotropic medium) can be written as

n = |∇S| =
ck

ω
or ∇S = n

dx

ds
=

ck

ω
, (1.53)
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Figure 1.11: Eikonal surface.

where S is called the eikonal function (i.e., a wavefront is defined by the surface S =
constant). To show that this definition is consistent with Eq. (1.42), we easily check that

d

ds

(

n
dx

ds

)

=
d∇S
ds

= ∇
(
dS
ds

)

= ∇n,

where dS = nds. This definition, therefore, implies that the wavevector k is curl-free.

∇×k = ∇×∇
(
ω

c
S
)

≡ 0, (1.54)

where we used the fact that the frequency of a wave is unchanged by refraction. Hence, we
find that ∇× k̂ = k̂ ×∇ lnn, from which we obtain the light-curvature equation (1.42).

A light wave is characterized by a polarization (unit) vector ê that is tangent to the
eikonal surface S = constant, i.e., ê ·∇S = 0. We may, thus, write the polarization vector
as

ê ≡ cosϕ n̂ + sinϕ b̂, (1.55)

where the normal and binormal unit vectors n̂ and b̂ are perpendicular to the wave-vector
k of a light ray that crosses the eikonal surface. Using the Frenet-Serret equations dn̂/ds =
τ b̂ − κ k̂ and db̂/ds = − τ n̂, where κ and τ denote the curvature and torsion of the light
ray, we find that the polarization vector satisfies the following evolution equation along a
light ray:

dê

ds
= − κ cosϕ k̂ +

(
dϕ

ds
+ τ

)

ĥ, (1.56)

where ĥ ≡ k̂ × ê = ∂ê/∂ϕ.
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Note that, in the absence of sources and sinks, the light energy flux entering a finite
volume bounded by a closed surface is equal to the light energy flux leaving the volume
and, thus, the intensity of light I satisfies the conservation law

0 = ∇ · (I ∇S) = I ∇2S + ∇S ·∇I. (1.57)

Using the definition ∇S ·∇ ≡ n∂/∂s, we find the intensity evolution equation

∂ ln I

∂s
= − n−1 ∇2S,

whose solution is expressed as

I = I0 exp

(

−
∫ s

0
∇2S dσ

n

)

, (1.58)

where I0 is the light intensity at position s = 0 along a ray. This equation, therefore,
determines whether light intensity increases (∇2S < 0) or decreases (∇2S > 0) along a ray
depending on the sign of ∇2S. Lastly, in a refractive medium with spherical symmetry,
with S ′(r) = n(r) and k̂ = r̂, the conservation law (1.57) becomes

0 =
1

r2

d

dr

(
r2 I n

)
,

which implies that the light intensity satisfies the inverse-square law: I(r)n(r) r2 = I0n0 r
2
0.
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1.5 Problems

Problem 1

Find Euler’s first and second equations following the extremization of the integral

F [y] =
∫ b

a
F (y, y′, y′′) dx.

State whether an additional set of boundary conditions for δy′(a) and δy′(b) are necessary.

Problem 2

Find the curve joining two points (x1, y1) and (x2, y2) that yields a surface of revolution
(about the x-axis) of minimum area by minimizing the integral

A[y] =
∫ x2

x1

y
√

1 + (y′)2 dx.

Problem 3

Show that the time required for a particle to move without friction to the minimum

point of the cycloid solution of the Brachistochrone problem is π
√
a/g.

Problem 4

A thin rope of massm (and uniform density) is attached to two vertical poles of heightH
separated by a horizontal distanceD; the coordinates of the pole tops are set at (±D/2, H).
If the length L of the rope is greater than D, it will sag under the action of gravity and
its lowest point (at its midpoint) will be at a height y(x = 0) = y0. The shape of the
rope, subject to the boundary conditions y(±D/2) = H, is obtained by minimizing the
gravitational potential energy of the rope expressed in terms of the functional

U [y] =
∫ −D/2

D/2
mg y

√
1 + (y′)2 dx.

Show that the extremal curve y(x) (known as the catenary curve) for this problem is

y(x) = c cosh

(
x− b

c

)

,

where b = 0 and c = y0.
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Problem 5

A light ray travels in a medium with refractive index

n(y) = n0 exp (−β y),

where n0 is the refractive index at y = 0 and β is a positive constant.

(a) Use the results of the Principle of Least Time contained in the Notes distributed in
class to show that the path of the light ray is expressed as

y(x; β) =
1

β
ln

[
cos(β x− ϕ0)

cosϕ0

]

, (1.59)

where the light ray is initially travelling upwards from (x, y) = (0, 0) at an angle ϕ0.

(b) Using the appropriate mathematical techniques, show that we recover the expected
result limβ→0 y(x; β) = (tanϕ0) x from Eq. (1.59).

(c) The light ray reaches a maximum height y at x = x(β), where y′(x; β) = 0. Find
expressions for x and y(β) = y(x; β).

Problem 6

Consider the path associated with the index of refraction n(y) = H/y, where the height
H is a constant and 0 < y < H α−1 ≡ R to ensure that, according to Eq. (1.33), n(y) > α.
Show that the light path has the simple semi-circular form:

(R− x)2 + y2 = R2 → y(x) =
√
x (2R − x).

Problem 7

Using the parametric solutions (1.37)-(1.38) of the optical path in a linear refractive
medium, calculate the Frenet-Serret curvature coefficient

κ(ϕ) =
|r′′(ϕ)× r′(ϕ)|

|r′(ϕ)|3 ,

and show that it is equal to |k̂ ×∇ lnn|.

Problem 8

Assuming that the refractive index n(z) in a nonuniform medium is a function of z only,
derive the Euler-Fermat equations (1.42) for the components (α, β, γ) of the unit vector
k̂ = α x̂ + β ŷ + γ ẑ.
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Problem 9

In Figure 1.10, show that the angle ϕ(θ) defined from the conservation law (1.44) is
expressed as

ϕ(θ) = arcsin

[
1 + e cos 2θ√

1 + e2 + 2 e cos 2θ

]

,

so that ϕ = π
2

at θ = 0 and π
2
, as expected for an ellipse.

Problem 10

Find the light-path trajectory r(θ) for a spherically-symmetric medium with index of
refraction n(r) = n0 (b/r)2, where b is an arbitrary constant and n0 = n(b).

Problem 11

Derive the Jacobi equation (1.52) for two-dimensional light propagation in a nonuniform
medium with index of refraction n(y). (Hint: choose σ = x) Compare your Jacobi equation
with that obtained from Eq. (1.9).



Chapter 2

Lagrangian Mechanics

In this Chapter, we present four principles by which single-particle dynamics may be de-
scribed. Here, each principle provides an algorithm by which dynamical equations are
derived.

2.1 Maupertuis-Jacobi’s Principle of Least Action

The publication of Fermat’s Principle of Least Time in 1657 generated an intense contro-
versy between Fermat and disciples of René Descartes (1596-1650) involving whether light
travels slower (Fermat) or faster (Descartes) in a dense medium as compared to free space.

In 1740, Pierre Louis Moreau de Maupertuis (1698-1759) stated (without proof) that,
in analogy with Fermat’s Principle of Least Time for light, a particle of mass m under the
influence of a force F = −∇U moves along a path which satisfies the Principle of Least
Action: δS = 0, where the action integral is defined as

S[x] =
∫

p · dx =
∫
mv ds, (2.1)

where v = ds/dt denotes the magnitude of particle velocity, which can also be expressed as

v(s) =
√

(2/m) [E − U(s)], (2.2)

with the particle’s kinetic energy K = mv2/2 written in terms of its total energy E and its
potential energy U(s).

2.1.1 Maupertuis’ principle

In 1744, Euler proved Maupertuis’ Principle of Least Action δ
∫
mv ds = 0 for particle

motion in the (x, y)-plane as follows. For this purpose, we use the Frenet-Serret curvature

31
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Figure 2.1: Frenet-Serret frame

formula for the path y(x), where we define the tangent unit vector t̂ and the principal
normal unit vector n̂ as

t̂ =
dx

ds
=

x̂ + y′ ŷ
√

1 + (y′)2
and n̂ =

y′ x̂ − ŷ
√

1 + (y′)2
≡ (− ẑ)× t̂, (2.3)

where y′ = dy/dx and ds = dx
√

1 + (y′)2. The Frenet-Serret formula for the curvature of

a two-dimensional curve (see Appendix A) is

dt̂

ds
=

|y′′| n̂

[1 + (y′)2]3/2
= κ n̂,

where the instantaneous radius of curvature ρ is defined as ρ = κ−1 (see Figure 2.1). First,
by using Newton’s Second Law of Motion and the Energy conservation law, we find the
relation

F = mv

(
dv

ds
t̂ + v

dt̂

ds

)

= t̂
(
t̂ ·∇K

)
+ mv2 κ n̂ = ∇K (2.4)

between the unit vectors t̂ and n̂ associated with the path, the Frenet-Serret curvature
κ, and the kinetic energy K = 1

2
mv2(x, y) of the particle. Note that Eq. (2.4) can be

re-written as
dt̂

ds
= t̂ ×

(
∇ ln v× t̂

)
, (2.5)

which hightlights a deep connection with Eq. (1.42) derived from Fermat’s Principle of Least

Time, where the index of refraction n is now replaced by the speed v =
√

(2/m)[E − U(s)].

Lastly, we point out that the type of dissipationless forces considered in Eq. (2.4) involves
active forces (defined as forces that do work), as opposed to passive forces (defined as forces
that do no work, such as constraint forces).

Next, the action integral (2.1) is expressed as

S =
∫
mv(x, y)

√
1 + (y′)2 dx =

∫
F (y, y′; x) dx, (2.6)
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so that the Euler’s First Equation (1.5) corresponding to Maupertuis’ action integral (2.6),
with

∂F

∂y′
=

mv y′
√

1 + (y′)2
and

∂F

∂y
= m

√
1 + (y′)2

∂v

∂y
,

yields the Maupertuis-Euler equation

m v y′′

[1 + (y′)2]3/2
=

m
√

1 + (y′)2

∂v

∂y
− m y′

√
1 + (y′)2

∂v

∂x
≡ m n̂ ·∇v, (2.7)

which can also be expressed as mv κ = m n̂ ·∇v. Using the relation F = ∇K and the
Frenet-Serret formulas (2.3), the Maupertuis-Euler equation (2.7) becomes

mv2 κ = F · n̂,

from which we recover Newton’s Second Law (2.4).

2.1.2 Jacobi’s principle

Jacobi emphasized the connection between Fermat’s Principle of Least Time (1.30) and
Maupertuis’ Principle of Least Action (2.1) by introducing a different form of the Principle
of Least Action δS = 0, where Jacobi’s action integral is

S[x] =
∫ √

2m (E − U) ds = 2
∫
K dt, (2.8)

where particle momentum is written as p =
√

2m (E − U). To obtain the second expression

of Jacobi’s action integral (2.8), Jacobi made use of the fact that, by introducing a path
parameter τ such that v = ds/dt = s′/t′ (where a prime, here, denotes a τ -derivative), we
find

K =
m (s′)2

2 (t′)2
= E − U,

so that 2K t′ = s′ p, and the second form of Jacobi’s action integral results. Next, Jacobi
used the Principle of Least Action (2.8) to establish the geometric foundations of particle
mechanics. Here, the Euler-Jacobi equation resulting from Jacobi’s Principle of Least
Action is expressed as

d

ds

(√
E − U

dx

ds

)

= ∇
√
E − U ,

which is identical in form to the light-curvature equation (1.42), with the index of refraction
n substituted with

√
E − U .

Note that the connection between Fermat’s Principle of Least Time and Maupertuis-
Jacobi’s Principle of Least Action involves the relation n = γ |p|, where γ is a constant.
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This connection was later used by Prince Louis Victor Pierre Raymond de Broglie (1892-
1987) to establish the relation |p| = h̄|k| = n (h̄ω/c) between the momentum of a particle
and its wavenumber |k| = 2π/λ = nω/c. Using de Broglie’s relation p = h̄ k between the
particle momentum p and the wave vector k, we note that

|p|2
2m

=
h̄2|k|2
2m

≡ h̄2

2m
|∇Θ|2 = E − U, (2.9)

where Θ is the dimensionless (eikonal) phase. Letting Θ = lnψ, so that ∇Θ = ∇ lnψ,
Eq. (2.9) becomes

h̄2

2m
|∇ψ|2 = (E − U) ψ2.

Lastly, by taking its variation

h̄2

m
∇ψ ·∇δψ − δψ (E − U) ψ = 0,

and integrating over space (upon integration by parts), we obtain

0 =
∫

V
δψ

[

(E − U) ψ +
h̄2

2m
∇2ψ

]

d3x,

which yields (for arbitrary variations δψ) the time-independent Schrödinger equation

− h̄2

2m
∇2ψ + U ψ = E ψ.

Further historical comments concerning the derivation of Schrödinger’s equation can be
found in Yougrau and Mandelstam’s (Variational Principles in Dynamics and Quantum
Theory, 1968).

2.2 D’Alembert’s Principle

So far, we have studied the Maupertuis-Jacobi principles (2.1) and (2.8), which make use of
the length variable s as the orbit parameter to describe particle motion. We now turn our
attention to two principles that will provide a clear path toward the ultimate variational
principle called Hamilton’s Principle, from which equations of motion are derived in terms
of generalized spatial coordinates.

First, within the context of Newtonian mechanics, we distinguish between two classes of
forces, depending on whether a force is able to do work or not. In the first class, an active
force Fw is involved in performing infinitesimal work dW = Fw · dx evaluated along the
infinitesimal displacement dx; the class of active forces includes conservative (e.g., gravity)
and nonconservative (e.g., friction) forces. In the second class, a passive force (labeled F0)
is defined as a force not involved in performing work, which includes constraint forces such
as normal and tension forces. Here, the infinitesimal work performed by a passive force is
F0 · dx = 0 because the infinitesimal displacement dx is required to satisfy the constraints.
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Figure 2.2: Static equilibrium of a lever

2.2.1 Principle of Virtual Work

The Principle of Virtual Work is one of the oldest principle in Physics that may find its
origin in the work of Aristotle (384-322 B.C.) on the static equilibrium of levers. The
Principle of Virtual Work was finally written in its current form in 1717 by Jean Bernoulli
(1667-1748) and states that a system composed of N particles is in static equilibrium if the
virtual work

δW =
N∑

i=1

Fi · δx
i = 0 (2.10)

for all virtual displacements (δx1, ..., δxN) that satisfy physical constraints.

As an application of the Principle of Virtual Work (2.10), we consider the static equi-
librium of a lever (see Figure 2.2) composed of two masses m1 and m2 placed on a massless
rod at distances R1 and R2, respectively, from the fulcrum point O. Here, the only active
forces acting on the masses are due to gravity: Fi = −mi g ŷ, and the position vectors of
m1 and m2 are

r1 = R1 (− cos θ x̂ + sin θ ŷ) and r2 = R2 (cos θ x̂ − sin θ ŷ) ,

respectively (see Fig. 2.2). By using the virtual displacements δxi = εẑ× ri (where ε is an
infinitesimal angular displacement and the axis of rotation is directed along the z-axis),
the Principle of Virtual Work (2.10) yields the following condition for static equilibrium:

0 = ε cos θ (m1g R1 − m2g R2) → m1R1 = m2R2.

Note that, although the static equilibrium of the lever is based on the concept of torque
(moment of force) equilibrium, the Principle of Virtual Work shows that all static equilibria
are encompassed by the Principle.
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2.2.2 Lagrange’s Equations from D’Alembert’s Principle

It was Jean Le Rond d’Alembert (1717-1783) who generalized the Principle of Virtual Work
(in 1742) by including the accelerating force −mi ẍ

i in the Principle of Virtual Work (2.10):

N∑

i=1

(

Fi − mi
d2xi

dt2

)

· δxi = 0 (2.11)

so that the equations of dynamics could be obtained from Eq. (2.11). Hence, d’Alembert’s
Principle, in effect, states that the work done by all active forces acting in a system is
algebraically equal to the work done by all the acceleration forces (taken to be positive).

As a simple application of d’Alembert’s Principle (2.11), we return to the lever problem
(see Fig. 2.2), where we now assume m2R2 > m1R1. Here, the particle accelerations are

ẍi = − (θ̇)2 ri − θ̈ ẑ × ri,

so that d’Alembert’s Principle (2.11) yields (with δxi = ε ẑ × ri)

0 = ε
[

(m1g R1 − m2g R2) cos θ +
(
m1R

2
1 + m2R

2
2

)
θ̈
]
.

Hence, according to d’Alembert’s Principle, the angular acceleration θ̈ of the unbalanced
lever is

θ̈ =
g cos θ

I
(m2R2 − m1R1) ,

where I = m1R
2
1 + m2R

2
2 denotes the moment of inertia of the lever as it rotates about

the fulcrum point O. Thus, we see that rotational dynamics associated with unbalanced
torques can be described in terms of d’Alembert’s Principle.

The most historically significant application of d’Alembert’s Principle (2.11), however,
came from Lagrange who transformed it as follows. Consider, for simplicity, the following
infinitesimal-work identity

0 =

(

F − m
d2x

dt2

)

· δx = δW − d

dt

(

m
dx

dt
· δx

)

+ m
dx

dt
·
d δx

dt
, (2.12)

where F denotes an active force applied to a particle of mass m so that δW = F · δx denotes
the virtual work calculated along the virtual displacement δx. We note that if the position
vector x(q1, ..., qk; t) is a time-dependent function of k generalized coordinates, then we find

δx =
k∑

i=1

∂x

∂qi
δqi,

and

v =
dx

dt
=

∂x

∂t
+

k∑

i=1

∂x

∂qi
q̇i.
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Next, we introduce the variation of the kinetic energy K = mv2/2:

δK = m
dx

dt
·
d δx

dt
=

∑

i

δqi
∂K

∂qi
,

since the virtual variation operator δ (introduced by Lagrange) commutes with the time
derivative d/dt, and we introduce the generalized force

Qi ≡ F ·
∂x

∂qi
,

so that δW =
∑
i Q

i δqi. We shall also use the identity

m
d2x

dt2
·
∂x

∂qi
=

d

dt

(

mv ·
∂x

∂qi

)

− mv ·
d

dt

(
∂x

∂qi

)

,

with
d

dt

(
∂x

∂qi

)

≡ ∂2x

∂t ∂qi
+ q̇j

∂2x

∂qj ∂qi
≡ ∂v

∂qi
,

and
∂v

∂q̇i
=

∂x

∂qi
.

Our first result derived from D’Alembert’s Principle (2.12) is now expressed in terms of the
generalized coordinates (q1, ..., qk) as

0 =
∑

i

δqi

[
d

dt

(
∂K

∂q̇i

)

− ∂K

∂qi
− Qi

]

.

Since this relation must hold for any variation δqi (i = 1, ..., k), we obtain Lagrange’s
equation

d

dt

(
∂K

∂q̇i

)

− ∂K

∂qi
= Qi, (2.13)

where we note that the generalized force Qi is associated with any active (conservative or
nonconservative) force F. Hence, for a conservative active force derivable from a single
potential energy U (i.e., F = −∇U), the ith-component of the generalized force is Qi =
− ∂U/∂qi, and Lagrange’s equation (2.13) becomes

d

dt

(
∂K

∂q̇i

)

− ∂K

∂qi
= − ∂U

∂qi
. (2.14)

We shall soon return to this important equation.

Our second result based on D’Alembert’s Principle (2.12), now expressed as

δK + δW =
d

dt

(

m
dx

dt
· δx

)

, (2.15)
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Figure 2.3: The two-dimensional pendulum problem.

is obtained as follows. For a conservative active force derivable from a single potential
energy U (i.e., F = −∇U), the virtual work is δW = − δU , so that time integration of
Eq. (2.15) yields an important principle known as Hamilton’s Principle

∫ t2

t1

(
δK − δU

)
dt ≡ δ

∫ t2

t1
Ldt = 0, (2.16)

where δx vanishes at t = t1 and t2 and the function L = K − U , obtained by substracting
the potential energy U from the kinetic energy K, is known as the Lagrangian function of
the system.

2.3 Hamilton’s Principle and Euler-Lagrange Equa-

tions

2.3.1 Constraint Forces

To illustrate Hamilton’s Principle (2.16), we consider a pendulum composed of an object
of mass m and a massless string of constant length ` in a constant gravitational field with
acceleration g. We first investigate the motion of the pendulum as a dynamical problem in
two dimensions with a single constraint (i.e., constant length) and later reduce this problem
to a single dimension by carefully choosing a single generalized coordinate.

Using Cartesian coordinates (x, y) for the pendulum mass shown in Figure 2.3, the
kinetic energy is K = 1

2
m(ẋ2 + ẏ2) and the gravitational potential energy is U = mg y,
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where the length of the pendulum string ` is constrained to be constant (i.e., `2 = x2 + y2).
Hence, the constrained action integral is expressed as

Aλ[x] =
∫ [

1

2
m
(
ẋ2 + ẏ2

)
− mg y + λ

(
` −

√
x2 + y2

) ]
dt ≡

∫
F (x, ẋ;λ) dt,

where λ represents a Lagrange multiplier used to enforce the constant-length constraint
(see Sec. 1.2.1) so that, by definition, we find ∂F/∂λ = 0 for all x. Euler’s equations for x
and y, respectively, are

mẍ = − λ
x

`
and m ÿ = −mg − λ

y

`
,

so that, using the constant-length constraint, the Lagrange multiplier is defined by the
relation

λ ≡ − m

`
[ g y + (x ẍ + y ÿ) ] . (2.17)

Next, using the second time derivative of the constant-length constraint `2 = x2 + y2, we
obtain

x ẍ + y ÿ = −
(
ẋ2 + ẏ2

)
,

so that Eq. (2.17) becomes

λ =
m

`

(
ẋ2 + ẏ2

)
− mg

y

`
.

Hence, the physical interpretation of the Lagrange multiplier λ is given in terms of the
tension force in the pendulum string, where the first term (quadratic in velocities) represents
the centrifugal force while the second term represents the component of the gravitational
force along the pendulum string.

It turns out that a constraint force in a dynamical system can most often be represented
in terms of a constraint involving spatial coordinates. On the other hand, we shall now
see that each constraint force can be eliminated from the dynamical problem by making
use of new spatial coordinates that enforce the constraint. For example, in the case of the
pendulum problem discussed above, we note that the constant-length constraint can be
enforced by expressing the Cartesian coordinates x = ` sin θ and y = − ` cos θ in terms of
the angle θ (see Figure 2.3).

2.3.2 Generalized Coordinates in Configuration Space

The configuration space of a mechanical system with constraints evolving in n-dimensional
space, with spatial coordinates x = (x1, x2, ..., xn), can sometimes be described in terms
of generalized coordinates q = (q1, q2, ..., qk) in a k-dimensional configuration space, with
k ≤ n. Each generalized coordinate is said to describe motion along a degree of freedom of
the mechanical system.
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Figure 2.4: Configuration space

For example, consider a mechanical system composed of two particles (see Figure 2.4),
with masses (m1, m2) and three-dimensional coordinate positions (x1,x2), tied together
with a massless rigid rod (so that the distance |x1 − x2| is constant). The configuration of
this two-particle system can be described in terms of the coordinates

xCM ≡
∑
i mi xi∑
i mi

=
m1 x1 +m2 x2

m1 +m2
(2.18)

of the center-of-mass (CM) in the Laboratory frame (O) and the orientation of the rod
in the CM frame (O’) expressed in terms of the two angles (θ, ϕ). Hence, as a result of
the existence of a single constraint (` = |x1 − x2|), the generalized coordinates for this
system are (xCM ; θ, ϕ) and we have reduced the number of coordinates needed to describe
the state of the system from six to five. Each generalized coordinate is said to describe
dynamics along a degree of freedom of the mechanical system; for example, in the case
of the two-particle system discussed above, the generalized coordinates xCM describe the
arbitrary translation of the center-of-mass while the generalized coordinates (θ, ϕ) describe
arbitrary rotation about the center-of-mass.

Constraints are found to be of two different types refered to as holonomic and non-
holonomic constraints. For example, the differential (kinematical) constraint equation
dq(r) = B(r) · dr is said to be holonomic (or integrable) if the vector field B satisfies
the integrability condition

0 = ∇×B, (2.19)

so that the function q(r) can be explicitly constructed and, thus, the number of indepen-
dent coordinates can be reduced by one. For example, consider the differential constraint
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equation

dz = Bx(x, y) dx + By(x, y) dy,

where an infinitesimal change in the x and y coordinates produce an infinitesimal change
in the z coordinate. This differential constraint equation is integrable if the components
Bx and By satisfy the integrability condition ∂Bx/∂y = ∂By/∂x, which implies that there
exists a function f(x, y) such that Bx = ∂f/∂x and By = ∂f/∂y. Hence, under this
integrability condition, the differential constraint equation becomes dz = df(x, y), which
can be integrated to give z = f(x, y) and, thus, the number of independent coordinates has
been reduced from 3 to 2.

If the vector field B does not satisfy the integrability condition (2.19), however, the
condition dq(r) = B(r) · dr is said to be non-holonomic. An example of non-holonomic
condition is the case of the rolling of a solid body on a surface. Moreover, we note that
a kinematical condition is called rheonomic if it is time-dependent, otherwise it is called
scleronomic.

In summary, the presence of holonomic constraints can always be treated by the in-
troduction of generalized coordinates. The treatment of nonholonomic constraints, on the
other hand, requires the addition of constraint forces on the right side of Lagrange’s equa-
tion (2.13), which falls outside the scope of this introductory course.

2.3.3 Constrained Motion on a Surface

As an example of motion under an holonomic constraint, we consider the general problem
associated with the motion of a particle constrained to move on a surface described by the
relation F (x, y, z) = 0. First, since the velocity dx/dt of the particle along its trajectory
must be perpendicular to the gradient ∇F , the displacement dx is required to satisfy the
constraint condition dx ·∇F = 0. Next, any point x on the surface F (x, y, z) = 0 may be
parametrized by two surface coordinates (u, v) such that

∂x

∂u
(u, v) ·∇F = 0 =

∂x

∂v
(u, v) ·∇F.

Hence, we may write

dx =
∂x

∂u
du +

∂x

∂v
dv and

∂x

∂u
×
∂x

∂v
= J ∇F,

where the function J depends on the surface coordinates (u, v). It is, thus, quite clear that
the surface coordinates (u, v) are the generalized coordinates for this constrained motion.

For example, we consider the motion of a particle constrained to move on the surface
of a cone of apex angle α (see Fig. 2.5). Here, the constraint is expressed as F (x, y, z) =√
x2 + y2 − z tanα = 0 with ∇F = ρ̂ − tanα ẑ, where ρ2 = x2 + y2 and ρ̂ = (x x̂ + y ŷ)/ρ.
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Figure 2.5: Motion on the surface of a cone

The surface coordinates can be chosen to be the polar angle θ and the function

s(x, y, z) =
√
x2 + y2 + z2 ≡

√
ρ2 + z2,

which measures the distance from the apex of the cone (defining the origin), so that

∂x

∂θ
= ρ θ̂ = ρ ẑ × ρ̂ and

∂x

∂s
= sinα ρ̂ + cosα ẑ = ŝ,

with
∂x

∂θ
×
∂x

∂s
= ρ cosα ∇F

and J = ρ cosα. We shall return to this example in Sec. 2.5.4.

2.3.4 Euler-Lagrange Equations

Hamilton’s principle (sometimes called THE Principle of Least Action) is expressed in terms
of a function L(q, q̇; t) known as the Lagrangian, which appears in the action integral

S[q] =
∫ tf

ti
L(q, q̇; t) dt, (2.20)

where the action integral is a functional of the generalized coordinates q(t), providing a
path from the initial point qi = q(ti) to the final point qf = q(tf). The stationarity of the
action integral

0 = δS[q; δq] =

(
d

dε
S[q + ε δq]

)

ε=0

=
∫ tf

ti
δq ·

[
∂L

∂q
− d

dt

(
∂L

∂q̇

) ]

dt,
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where the variation δq is assumed to vanish at the integration boundaries (δqi = 0 = δqf),
yields the Euler-Lagrange equation for the generalized coordinate qj (j = 1, ..., k):

d

dt

(
∂L

∂q̇j

)

=
∂L

∂qj
. (2.21)

The Lagrangian also satisfies the second Euler equation:

d

dt

(

L − q̇ ·
∂L

∂q̇

)

=
∂L

∂t
, (2.22)

and thus, for time-independent Lagrangian systems (∂L/∂t = 0), we find that L−q̇ · ∂L/∂q̇
is a conserved quantity whose interpretation will be discussed shortly.

Note that, according to d’Alembert’s Principle (2.11), or Eq. (2.16), the form of the
Lagrangian function L(r, ṙ; t) is dictated by our requirement that Newton’s Second Law
m r̈ = −∇U(r, t), which describes the motion of a particle of mass m in a nonuniform
(possibly time-dependent) potential U(r, t), be written in the Euler-Lagrange form (2.21).
One easily obtains the form

L(r, ṙ; t) =
m

2
|ṙ|2 − U(r, t), (2.23)

for the Lagrangian of a particle of mass m, which is simply the kinetic energy of the
particle minus its potential energy. The minus sign in Eq. (2.23) is important; not only
does this form give us the correct equations of motion but, without the minus sign, energy
would not be conserved. In fact, we note that Jacobi’s action integral (2.8) can also be
written as A =

∫
[(K − U) + E] dt, using the Energy conservation law E = K + U ; hence,

Energy conservation is the important connection between the Principles of Least Action of
Maupertuis-Jacobi and Euler-Lagrange.

For a simple mechanical system, the Lagrangian function is obtained by computing the
kinetic energy of the system and its potential energy and then construct Eq. (2.23). The
construction of a Lagrangian function for a system of N particles, therefore, proceeds in
four steps as follows.

• Step I. Define k generalized coordinates {q1(t), ..., qk(t)} that represent the instanta-
neous configuration of the mechanical system of N particles at time t.

• Step II. For each particle, construct the position vector ra(q; t) in Cartesian coordinates
and its associated velocity

va(q, q̇; t) =
∂ra
∂t

+
k∑

j=1

q̇j
∂ra
∂qj

for a = 1, ..., N .
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• Step III. Construct the kinetic energy

K(q, q̇; t) =
∑

a

ma

2
|va(q, q̇; t)|2

and the potential energy
U(q; t) =

∑

a

U(ra(q; t), t)

for the system and combine them to obtain the Lagrangian

L(q, q̇; t) = K(q, q̇; t) − U(q; t).

• Step IV. From the Lagrangian L(q, q̇; t), the Euler-Lagrange equations (2.21) are
derived for each generalized coordinate qj:

∑

a

d

dt

(
∂ra
∂qj

·ma va

)

=
∑

a

(

ma va ·
∂va
∂qj

− ∂ra
∂qj

·∇aU

)

, (2.24)

where we have used the identity ∂va/∂q̇
j = ∂ra/∂q

j.

Note that in the presence of k time-dependent constraints Φj(r1, ..., rn; t) = 0 (j =
1, ..., k) among n point particles, the Euler-Lagrange equation for the ith-coordinate xi` of
the `th-particle is expressed as

d

dt

(
∂L

∂ẋi`

)

− ∂L

∂xi`
=

k∑

j=1

λj(t)
∂Φj

∂xi`
,

where λj(t) (j = 1, ..., k) denote the Lagrange multipliers needed to impose the constraints.

2.3.5 Lagrangian Mechanics in Curvilinear Coordinates∗

The Euler-Lagrange equation (2.24) can be framed within the context of Riemannian ge-
ometry as follows; Jacobi was the first to investigate the relation between particle dynamics
and Riemannian geometry. The kinetic energy of a single particle of mass m, with gener-
alized coordinates q = (q1, ..., qk), is expressed as

K =
m

2
|v|2 =

m

2

∂r

∂qi
·
∂r

∂qj
q̇i q̇j ≡ m

2
gij q̇

i q̇j,

where gij denotes the metric tensor on configuration space. When the particle moves in a
potential U(q), the Euler-Lagrange equation (2.24) becomes

d

dt

(
mgij q̇

j
)

= mgij q̈
j +

m

2

(
∂gij
∂qk

+
∂gik
∂qj

)

q̇j q̇k

=
m

2

∂gjk
∂qi

q̇j q̇k − ∂U

∂qi
,
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or

mgij

(
d2qj

dt2
+ Γjk`

dqk

dt

dq`

dt

)

= − ∂U

∂qi
, (2.25)

where the Christoffel symbol (1.16) is defined as

Γjk` ≡ gij

2

(
∂gik
∂q`

+
∂gi`
∂qk

− ∂gk`
∂qi

)

.

Thus, the concepts associated with Riemannian geometry that appear extensively in the
theory of General Relativity have natural antecedents in classical Lagrangian mechanics.

2.4 Lagrangian Mechanics in Configuration Space

In this Section, we explore the Lagrangian formulation of several mechanical systems listed
here in order of increasing complexity. As we proceed with our examples, we should realize
how the Lagrangian formulation maintains its relative simplicity compared to the appli-
cation of the more familiar Newton’s method (Isaac Newton, 1643-1727) associated with
the vectorial composition of forces. Here, all constraint forces are eliminated in terms of
generalized coordinates and all active conservative forces are expressed in terms of suitable
potential energies.

2.4.1 Example I: Pendulum

As a first example, we reconsider the pendulum (see Sec. 2.3.1) composed of an object
of mass m and a massless string of constant length ` in a constant gravitational field
with acceleration g. Although the motion of the pendulum is two-dimensional, a single
generalized coordinate is needed to describe the configuration of the pendulum: the angle
θ measured from the negative y-axis (see Figure 2.6). Here, the position of the object is
given as

x(θ) = ` sin θ and y(θ) = − ` cos θ,

with associated velocity components

ẋ(θ, θ̇) = ` θ̇ cos θ and ẏ(θ, θ̇) = ` θ̇ sin θ.

Hence, the kinetic energy of the pendulum is

K =
m

2

(
ẋ2 + ẏ2

)
=

m

2
`2θ̇2,

and choosing the zero potential energy point when θ = 0 (see Figure 2.6), the gravitational
potential energy is

U = mg` (1 − cos θ).
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Figure 2.6: Generalized coordinates for the pendulum problem

The Lagrangian L = K − U is, therefore, written as

L(θ, θ̇) =
m

2
`2θ̇2 − mg` (1 − cos θ),

and the Euler-Lagrange equation for θ is

∂L

∂θ̇
= m`2 θ̇ → d

dt

(
∂L

∂θ̇

)

= m`2 θ̈

∂L

∂θ
= −mg` sin θ

or
θ̈ +

g

`
sin θ = 0. (2.26)

The pendulum problem (2.26) is solved in the next Chapter through the use of the Energy
method (a simplified version of the Hamiltonian method). Note that, whereas the tension
in the pendulum string must be considered explicitly in the Newtonian method, the string
tension is replaced by the constraint ` = constant in the Lagrangian method.

2.4.2 Example II: Bead on a Rotating Hoop

As a second example, we consider a bead of mass m sliding freely on a hoop of radius R
rotating with angular velocity Ω in a constant gravitational field with acceleration g. Here,
since the bead of the rotating hoop moves on the surface of a sphere of radius R, we use
the generalized coordinates given by the two angles θ (measured from the negative z-axis)
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Figure 2.7: Generalized coordinates for the bead-on-a-rotating-hoop problem

and ϕ (measured from the positive x-axis), where ϕ̇ = Ω. The position of the bead is given
in terms of Cartesian coordinates as

x(θ, t) = R sin θ cos(ϕ0 + Ωt),

y(θ, t) = R sin θ sin(ϕ0 + Ωt),

z(θ, t) = − R cos θ,

where ϕ(t) = ϕ0 + Ω t, and its associated Cartesian velocity components are

ẋ(θ, θ̇; t) = R
(
θ̇ cos θ cosϕ − Ω sin θ sinϕ

)
,

ẏ(θ, θ̇; t) = R
(
θ̇ cos θ sinϕ + Ω sin θ cosϕ

)
,

ż(θ, θ̇; t) = R θ̇ sin θ,

so that the kinetic energy of the bead is

K(θ, θ̇) =
m

2
|v|2 =

mR2

2

(
θ̇2 + Ω2 sin2 θ

)
.

The gravitational potential energy is

U(θ) = mgR (1 − cos θ),

where the zero-potential energy point is chosen at θ = 0 (see Figure 2.7).

The Lagrangian L = K − U is, therefore, written as

L(θ, θ̇) =
mR2

2

(
θ̇2 + Ω2 sin2 θ

)
− mgR (1 − cos θ),



48 CHAPTER 2. LAGRANGIAN MECHANICS

Figure 2.8: Numerical solutions for bead-on-a-rotating-hoop problem for θ0 = π/3 and
θ̇0 = 0 (with ϕ0 = 0 and R = 1): (a) Ω2 < g/R; (b) Ω2 = g/R; and (c) Ω2 > g/R.
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and the Euler-Lagrange equation for θ is

∂L

∂θ̇
= mR2 θ̇ → d

dt

(
∂L

∂θ̇

)

= mR2 θ̈

∂L

∂θ
= −mgR sin θ

+ mR2Ω2 cos θ sin θ

or

θ̈ + sin θ
(
g

R
− Ω2 cos θ

)
= 0

Note that the support (constraint) force provided by the hoop (necessary in the Newtonian
method) is now replaced by the constraint R = constant in the Lagrangian method. Fur-
thermore, although the motion intrinsically takes place on the surface of a sphere of radius
R, the azimuthal motion is completely determined by the equation ϕ(t) = ϕ0 + Ω t and,
thus, the motion of the bead takes place in one dimension.

Lastly, we note that this equation displays bifurcation behavior which is investigated in
Chapter 8. For Ω2 < g/R, the equilibrium point θ = 0 is stable while, for Ω2 > g/R, the
equilibrium point θ = 0 is now unstable and the new equilibrium point θ = arccos(g/Ω2R)
is stable (see Figure 2.8).

2.4.3 Example III: Rotating Pendulum

As a third example, we consider a pendulum of mass m and length b attached to the edge
of a disk of radius a rotating at angular velocity ω in a constant gravitational field with
acceleration g. Placing the origin at the center of the disk, the coordinates of the pendulum
mass are

x = − a sinωt + b cos θ

y = a cosωt + b sin θ

so that the velocity components are

ẋ = − aω cosωt − b θ̇ sin θ

ẏ = − aω sinωt + b θ̇ cos θ

and the squared velocity is

v2 = a2ω2 + b2θ̇2 + 2ab ω θ̇ sin(θ − ωt).

Setting the zero potential energy at x = 0, the gravitational potential energy is

U = −mg x = mga sinωt − mgb cos θ.
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Figure 2.9: Generalized coordinates for the rotating-pendulum problem

The Lagrangian L = K − U is, therefore, written as

L(θ, θ̇; t) =
m

2

[
a2ω2 + b2θ̇2 + 2ab ω θ̇ sin(θ − ωt)

]

− mga sinωt + mgb cos θ, (2.27)

and the Euler-Lagrange equation for θ is

∂L

∂θ̇
= mb2 θ̇ +mabω sin(θ − ωt) →

d

dt

(
∂L

∂θ̇

)

= mb2 θ̈ + mabω (θ̇ − ω) cos(θ − ωt)

and
∂L

∂θ
= mabω θ̇ cos(θ − ωt) − mg b sin θ

or

θ̈ +
g

b
sin θ − a

b
ω2 cos(θ − ωt) = 0

We recover the standard equation of motion for the pendulum when a or ω vanish.

Note that the terms
m

2
a2 ω2 − mga sinωt

in the Lagrangian (2.27) play no role in determining the dynamics of the system. In fact,
as can easily be shown, a Lagrangian L is always defined up to an exact time derivative,



2.4. LAGRANGIAN MECHANICS IN CONFIGURATION SPACE 51

Figure 2.10: Generalized coordinates for the compound-Atwood problem

i.e., the Lagrangians L and L′ = L − df/dt, where f(q, t) is an arbitrary function, lead to
the same Euler-Lagrange equations (see Section 2.5). In the present case,

f(t) = [(m/2) a2ω2] t+ (mga/ω) cosωt

and thus this term can be omitted from the Lagrangian (2.27) without changing the equa-
tions of motion.

2.4.4 Example IV: Compound Atwood Machine

As a fourth (and penultimate) example, we consider a compound Atwood machine com-
posed three masses (labeled m1, m2, and m3) attached by two massless ropes through two
massless pulleys in a constant gravitational field with acceleration g.

The two generalized coordinates for this system (see Figure 2.10) are the distance x of
mass m1 from the top of the first pulley and the distance y of mass m2 from the top of the
second pulley; here, the lengths `a and `b are constants. The coordinates and velocities of
the three masses m1, m2, and m3 are

x1 = x → v1 = ẋ,

x2 = `a − x + y → v2 = ẏ − ẋ,

x3 = `a − x + `b − y → v3 = − ẋ− ẏ,

respectively, so that the total kinetic energy is

K =
m1

2
ẋ2 +

m2

2
(ẏ − ẋ)2 +

m3

2
(ẋ+ ẏ)2 .
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Placing the zero potential energy at the top of the first pulley, the total gravitational
potential energy, on the other hand, can be written as

U = − g x (m1 −m2 −m3) − g y (m2 −m3) ,

where constant terms were omitted. The Lagrangian L = K − U is, therefore, written as

L(x, ẋ, y, ẏ) =
m1

2
ẋ2 +

m2

2
(ẋ− ẏ)

2
+

m3

2
(ẋ+ ẏ)

2

+ g x (m1 −m2 −m3) + g y (m2 −m3) .

The Euler-Lagrange equation for x is

∂L

∂ẋ
= (m1 +m2 +m3) ẋ+ (m3 −m2) ẏ →

d

dt

(
∂L

∂ẋ

)

= (m1 +m2 +m3) ẍ+ (m3 −m2) ÿ

∂L

∂x
= g (m1 −m2 −m3)

while the Euler-Lagrange equation for y is

∂L

∂ẏ
= (m3 −m2) ẋ + (m2 +m3) ẏ →

d

dt

(
∂L

∂ẏ

)

= (m3 −m2) ẍ + (m2 +m3) ÿ

∂L

∂y
= g (m2 −m3) .

We combine these two Euler-Lagrange equations

(m1 +m2 +m3) ẍ+ (m3 −m2) ÿ = g (m1 −m2 −m3) , (2.28)

(m3 −m2) ẍ + (m2 +m3) ÿ = g (m2 −m3) , (2.29)

to describe the dynamical evolution of the Compound Atwood Machine. This set of equa-
tions can, in fact, be solved explicitly as

ẍ = g

(
m1m+ − (m2

+ −m2
−)

m1m+ + (m2
+ −m2

−)

)

and ÿ = g

(
2 m1m−

m1m+ + (m2
+ −m2

−)

)

,

where m± = m2 ±m3. Note also that, by using the energy conservation law E = K + U
it can be shown that the position z of the center of mass of the mechanical system (as
measured from the top of the first pulley) satisfies the relation

Mg (z − z0) =
m1

2
ẋ2 +

m2

2
(ẏ − ẋ)2 +

m3

2
(ẋ+ ẏ)2 > 0, (2.30)
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Figure 2.11: Generalized coordinates for the oscillating-pendulum problem

where M = (m1 + m2 + m3) denotes the total mass of the system and we have assumed
that the system starts from rest (with its center of mass located at z0). This important
relation tells us that, as the masses start move (ẋ 6= 0 and ẏ 6= 0), the center of mass must
fall: z > z0.

Before proceeding to our next (and last) example, we introduce a convenient technique
(henceforth known as Freezing Degrees of Freedom) for checking on the physical accuracy
of any set of coupled Euler-Lagrange equations. Hence, for the Euler-Lagrange equation
(2.28), we may freeze the degree of freedom associated with the y-coordinate (i.e., we set
ẏ = 0 = ÿ or m− = 0) to obtain ẍ = g (m1 − m+)/(m1 + m+), in agreement with
the analysis of a simple Atwood machine composed of a mass m1 on one side and a mass
m+ = m2 + m3 on the other side. Likewise, for the Euler-Lagrange equation (2.29), we
may freeze the degree of freedom associated with the x-coordinate (i.e., we set ẋ = 0 = ẍ
or m1m+ = m2

+ −m2
−) to obtain ÿ = g (m−/m+), again in agreement with the analysis of

a simple Atwood machine.

2.4.5 Example V: Pendulum with Oscillating Fulcrum

As a fifth and final example, we consider the case of a pendulum of mass m and length
` attached to a massless block which is attached to a fixed wall by a massless spring of
constant k; of course, we assume that the massless block moves without friction on a set of
rails. Here, we use the two generalized coordinates x and θ shown in Figure 2.11 and write
the Cartesian coordinates (y, z) of the pendulum mass as y = x+ ` sin θ and z = − ` cos θ,
with its associated velocity components vy = ẋ + `θ̇ cos θ and vz = `θ̇ sin θ. The kinetic
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energy of the pendulum is thus

K =
m

2

(
v2
y + v2

z

)
=

m

2

(
ẋ2 + `2θ̇2 + 2 ` cos θ ẋθ̇

)
.

The potential energy U = Uk + Ug has two terms: one term Uk = 1
2
kx2 associated with

displacement of the spring away from its equilibrium position and one term Ug = mgz
associated with gravity. Hence, the Lagrangian for this system is

L(x, θ, ẋ, θ̇) =
m

2

(
ẋ2 + `2θ̇2 + 2 ` cos θ ẋθ̇

)
− k

2
x2 + mg` cos θ.

The Euler-Lagrange equation for x is

∂L

∂ẋ
= m

(
ẋ + ` cos θ θ̇

)
→

d

dt

(
∂L

∂ẋ

)

= m ẍ + m`
(
θ̈ cos θ − θ̇2 sin θ

)

∂L

∂x
= − k x

while the Euler-Lagrange equation for θ is

∂L

∂θ̇
= m`

(
` θ̇ + ẋ cos θ

)
→

d

dt

(
∂L

∂θ̇

)

= m`2 θ̈ + m`
(
ẍ cos θ − ẋθ̇ sin θ

)

∂L

∂θ
= − m` ẋθ̇ sin θ − mg` sin θ

or

m ẍ + k x = m`
(
θ̇2 sin θ − θ̈ cos θ

)
, (2.31)

θ̈ + (g/`) sin θ = − (ẍ/`) cos θ. (2.32)

Here, we recover the dynamical equation for a block-and-spring harmonic oscillator from
Eq. (2.31) by freezing the degree of freedom associated with the θ-coordinate (i.e., by setting
θ̇ = 0 = θ̈) and the dynamical equation for the pendulum from Eq. (2.32) by freezing the
degree of freedom associated with the x-coordinate (i.e., by setting ẋ = 0 = ẍ). It is
easy to see from this last example how powerful and yet simple the Lagrangian method is
compared to the Newtonian method.
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Numerical Box

By introducing the frequencies ωk =
√
k/m and ωg =

√
g/`, with Ω ≡ ωk/ωg and d/dt =

ωg d/dτ , the coupled equations (2.31) and (2.32) are now expressed in dimensionless form
as

s′′ + Ω2 s = (θ′)2 sin θ − θ′′ cos θ

θ′′ + sin θ = − s′′ cos θ,

where a prime denotes a derivative with respect to the dimensionless time τ = ωgt and
s = x/` denotes the dimensionless displacement of the spring. Note that these coupled
equations now involve the single parameter Ω, where Ω � 1 represents the weak-spring
limit while Ω � 1 represents the strong-spring limit.

2.5 Symmetries and Conservation Laws

We are sometimes faced with a Lagrangian function that is either independent of time,
independent of a linear spatial coordinate, or independent of an angular spatial coordinate.
The Noether theorem (Amalie Emmy Noether, 1882-1935) states that for each symmetry of
the Lagrangian there corresponds a conservation law (and vice versa). When the Lagrangian
L is invariant under a time translation, a space translation, or a spatial rotation, the
conservation law involves energy, linear momentum, or angular momentum, respectively.

We begin our discussion with a general expression for the variation δL of the Lagrangian
L(q, q̇, t):

δL = δq ·

[
∂L

∂q
− d

dt

(
∂L

∂q̇

) ]

+
d

dt

(

δq ·
∂L

∂q̇

)

,

obtained after re-arranging the term δq̇ · ∂L/∂q̇. Next, we make use of the Euler-Lagrange
equations for q (which enables us to drop the term δq · [· · ·]) and we find

δL =
d

dt

(

δq ·
∂L

∂q̇

)

. (2.33)

Lastly, the variation δL can only be generated by a time translation δt, since

0 = δ
∫
L dt =

∫ [ (

δL + δt
∂L

∂t

)

dt + L dδt

]

=
∫ [

δL − δt

(
dL

dt
− ∂L

∂t

) ]

dt
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so that

δL = δt

(
dL

dt
− ∂L

∂t

)

By combining this expression with Eq. (2.33), we find

δt

(
dL

dt
− ∂L

∂t

)

=
d

dt

(

δq ·
∂L

∂q̇

)

, (2.34)

which we, henceforth, refer to as the Noether equation for finite-dimensional mechanical
systems [see Eq. (9.10) in Chapter 9 for the infinite-dimensional case].

We now apply Noether’s Theorem, based on the Noether equation (2.34), to investigate
the connection between symmetries of the Lagrangian with conservation laws.

2.5.1 Energy Conservation Law

First, we consider time translations, t→ t+δt and δq = q̇ δt, so that the Noether equation
(2.34) becomes Euler’s Second Equation for the Lagrangian:

− ∂L

∂t
=

d

dt

(

q̇ ·
∂L

∂q̇
− L

)

.

Noether’s Theorem states that if the Lagrangian is invariant under time translations, i.e.,
∂L/∂t = 0, then energy is conserved, dE/dt = 0, where

E = q̇ ·
∂L

∂q̇
− L

defines the energy invariant.

2.5.2 Momentum Conservation Laws

Next, we consider invariance under spatial translations, q → q+ε (where δq = ε denotes a
constant infinitesimal displacement and δt = 0), so that the Noether equation (2.34) yields
the linear momentum conservation law

0 =
d

dt

(
∂L

∂q̇

)

=
dP

dt
,

where P denotes the total linear momentum of the mechanical system. On the other
hand, when the Lagrangian is invariant under spatial rotations, q → q + (δϕ×q) (where
δϕ = δϕ ϕ̂ denotes a constant infinitesimal rotation about an axis along the ϕ̂-direction),
the Noether equation (2.34) yields the angular momentum conservation law

0 =
d

dt

(

q×
∂L

∂q̇

)

=
dL

dt
,

where L = q×P denotes the total angular momentum of the mechanical system.
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2.5.3 Invariance Properties of a Lagrangian

Lastly, an important invariance property of the Lagrangian is related to the fact that the
Euler-Lagrange equations themselves are invariant under the gauge transformation

L → L +
dF

dt
(2.35)

on the Lagrangian itself, where F (q, t) is an arbitrary time-dependent function so that

dF (q, t)

dt
=

∂F

∂t
+
∑

j

q̇j
∂F

∂qj
.

To investigate the invariance property (2.35), we call L′ = L + dF/dt the new Lagrangian
and L the old Lagrangian, and consider the new Euler-Lagrange equations

d

dt

(
∂L′

∂q̇i

)

=
∂L′

∂qi
.

We now express each term in terms of the old Lagrangian L and the function F . Let us
begin with

∂L′

∂q̇i
=

∂

∂q̇i



L +
∂F

∂t
+
∑

j

q̇j
∂F

∂qj



 =
∂L

∂q̇i
+

∂F

∂qi
,

so that
d

dt

(
∂L′

∂q̇i

)

=
d

dt

(
∂L

∂q̇i

)

+
∂2F

∂t∂qi
+
∑

k

q̇k
∂2F

∂qk∂qi
.

Next, we find

∂L′

∂qi
=

∂

∂qi



L +
∂F

∂t
+
∑

j

q̇j
∂F

∂qj



 =
∂L

∂qi
+

∂2F

∂qi∂t
+
∑

j

q̇j
∂2F

∂qi∂qj
.

Using the symmetry properties

q̇j
∂2F

∂qi∂qj
= q̇j

∂2F

∂qj∂qi
and

∂2F

∂t∂qi
=

∂2F

∂qi∂t
,

we easily verify that

d

dt

(
∂L′

∂q̇i

)

− ∂L′

∂qi
=

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
= 0.

Hence, since L and L′ = L + dF/dt lead to the same Euler-Lagrange equations, they are
said to be equivalent.
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Using this invariance property, for example, we note that the Lagrangian is also invariant
under the Galilean velocity transformation v → v + α, so that the Lagrangian variation

δL = α ·

(

v
∂L

∂v2

)

≡ α ·
dx

dt

∂L

∂v2
,

using the kinetic identity ∂L/∂v2 = m/2, can be written as an exact time derivative

δL =
d

dt

(
α ·

m

2
x

)
≡ dδF

dt
.

Hence, because Lagrangian mechanics is invariant under the gauge transformation (2.35),
the Lagrangian L is said to be Galilean invariant.

2.5.4 Lagrangian Mechanics with Symmetries

As an example of Lagrangian mechanics with symmetries, we return to the motion of a
particle of mass m constrained to move on the surface of a cone of apex angle α (such that√
x2 + y2 = z tanα) in the presence of a gravitational field (see Figure 2.5 and Sec. 2.3.3).

The Lagrangian for this constrained mechanical system is expressed in terms of the
generalized coordinates (s, θ), where s denotes the distance from the cone’s apex (labeled O
in Figure 2.5) and θ is the standard polar angle in the (x, y)-plane. Hence, by combining the
kinetic energy K = 1

2
m(ṡ2+s2 θ̇2 sin2 α) with the potential energy U = mgz = mg s cosα,

we construct the Lagrangian

L(s, θ; ṡ, θ̇) =
1

2
m
(
ṡ2 + s2 θ̇2 sin2 α

)
− mg s cosα. (2.36)

Since the Lagrangian is independent of the polar angle θ, the canonical angular momentum

pθ =
∂L

∂θ̇
= ms2 θ̇ sin2 α (2.37)

is a constant of the motion (as predicted by Noether’s Theorem). The Euler-Lagrange
equation for s, on the other hand, is expressed as

s̈ + g cosα = s θ̇2 sin2 α =
p2
θ

m2 s3 sin2 α
, (2.38)

where g cosα denotes the component of the gravitational acceleration parallel to the surface
of the cone. The right side of Eq. (2.38) involves s only after using θ̇ = pθ/(ms2 sin2 α),
which follows from the conservation of angular momentum.
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Figure 2.12: Particle orbits on the surface of a cone

Numerical Box

By introducing the frequency ωg =
√

(g/s0) cosα, with d/dt = ωg d/dτ , the dynamical

equations (2.37) and (2.38) become

σ′′ = − 1 +
1

σ3
and θ′ =

1

σ2 sinα
,

where σ ≡ s/s0, a prime denotes a derivative with respect to the dimensionless time
τ = ωgt, and

s0 =

(
p2
θ

m2g sin2 α cosα

) 1

3

.

Figure 2.12 shows the results of the numerical integration of the dimensionless Euler-
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Lagrange equations for θ(τ ) and σ(τ ); see Numerical Box. The top figure in Figure 2.12
shows a projection of the path of the particle on the (x, z)-plane (side view), which clearly
shows that the motion is periodic as the σ-coordinate oscillates between two finite values
of σ. The bottom figure in Figure 2.12 shows a projection of the path of the particle on
the (x, y)-plane (top view), which shows the slow precession motion in the θ-coordinate. In
the next Chapter, we will show that the doubly-periodic motion of the particle moving on
the surface of the inverted cone is a result of the conservation law of angular momentum
and energy (since the Lagrangian system is also independent of time).

2.5.5 Routh’s Procedure for Eliminating Ignorable Coordinates

Edward John Routh (1831-1907) introduced a simple procedure for eliminating ignorable
degrees of freedom while introducing their corresponding conserved momenta. Consider,
for example, two-dimensional motion on the (x, y)-plane represented by the Lagrangian
L(r; ṙ, θ̇), where r and θ are the polar coordinates. Since the Lagrangian under consid-
eration is independent of the angle θ, the canonical momentum pθ = ∂L/∂θ̇ is conserved.
Routh’s procedure for deriving a reduced Lagrangian involves the construction of the Routh-
Lagrange function (or Routhian) R(r, ṙ; pθ) defined as

R(r, ṙ; pθ) = L(r; ṙ, θ̇) − pθ θ̇, (2.39)

where θ̇ is expressed as a function of r and pθ.

For example, for the constrained motion of a particle on the surface of a cone in the pres-
ence of gravity, the Lagrangian (2.36) can be reduced to the Routh-Lagrange (or Routhian)
function

R(s, ṡ; pθ) =
1

2
mṡ2 −

(

mg s cosα +
p2
θ

2ms2 sin2 α

)

=
1

2
mṡ2 − V (s), (2.40)

and the equation of motion (2.38) can be expressed in Euler-Lagrange form

d

ds

(
∂R

∂ṡ

)

=
∂R

∂s
→ m s̈ = − V ′(s),

in terms of the effective potential

V (s) = mg s cosα +
p2
θ

2ms2 sin2 α
.

Here, the effective potential V (s) has a single minimum at s = s0, where

s0 =

(
p2
θ

m2g sin2 α cosα

)1

3

and V0 ≡ V (s0) = 3
2
mg s0 cosα.
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Figure 2.13: Center-of-Mass frame

2.6 Lagrangian Mechanics in the Center-of-Mass Frame

An important frame of reference associated with the dynamical description of the motion
of interacting particles and rigid bodies is provided by the center-of-mass (CM) frame. The
following discussion focuses on the Lagrangian for an isolated two-particle system expressed
as

L =
m1

2
|ṙ1|2 +

m2

2
|ṙ2|2 − U(r1 − r2),

where r1 and r2 represent the positions of the particles of mass m1 and m2, respectively,
and U(r1, r2) = U(r1 − r2) is the potential energy for an isolated two-particle system (see
Figure 2.13).

Let us now define the position R of the center of mass

R =
m1 r1 +m2 r2

m1 +m2
,

and define the relative inter-particle position vector r = r1−r2, so that the particle positions
can be expressed as

r1 = R +
m2

M
r and r2 = R − m1

M
r,

where M = m1 + m2 is the total mass of the two-particle system (see Figure 2.13). The
Lagrangian of the isolated two-particle system, thus, becomes

L =
M

2
|Ṙ|2 +

µ

2
|ṙ|2 − U(r),
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where

µ =
m1m2

m1 +m2

=
(

1

m1

+
1

m2

)−1

denotes the reduced mass of the two-particle system. We note that the angular momentum
of the two-particle system is expressed as

L =
∑

a

ra ×pa = R×P + r×p, (2.41)

where the canonical momentum of the center-of-mass P and the canonical momentum p

of the two-particle system in the CM frame are defined, respectively, as

P =
∂L

∂Ṙ
= M Ṙ and p =

∂L

∂ṙ
= µṙ.

For an isolated system (∂L/∂R = 0), the canonical momentum P of the center-of-mass is
a constant of the motion. The CM reference frame is defined by the condition R = 0, i.e.,
we move the origin of our coordinate system to the CM position.

In the CM frame, the Lagrangian for an isolated two-particle system is

L(r, ṙ) =
µ

2
|ṙ|2 − U(r), (2.42)

which describes the motion of a fictitious particle of mass µ at position r, where the positions
of the two real particles of masses m1 and m2 are

r1 =
m2

M
r and r2 = − m1

M
r. (2.43)

Hence, once the Euler-Lagrange equation for r

d

dt

(
∂L

∂ṙ

)

=
∂L

∂r
→ µ r̈ = −∇U(r)

is solved, the motion of the two particles in the CM frame is determined through Eqs. (2.43).

The angular momentum L = µ r× ṙ in the CM frame satisfies the evolution equation

dL

dt
= r×µr̈ = − r×∇U(r). (2.44)

Here, using spherical coordinates (r, θ, ϕ), we find

dL

dt
= − ϕ̂

∂U

∂θ
+

θ̂

sin θ

∂U

∂ϕ
.

If motion is originally taking place on the (x, y)-plane (i.e., at θ = π/2) and the potential
U(r, ϕ) is independent of the polar angle θ, then the angular momentum vector is L = ` ẑ

and its magnitude ` satisfies the evolution equation

d`

dt
= − ∂U

∂ϕ
.
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Hence, for motion in a potential U(r) that depends only on the radial position r, the
angular momentum remains along the z-axis L = ` ẑ represents an additional constant of
motion. Motion in such potentials is refered to as motion in a central-force potential and
will be studied in Chap. 4.
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2.7 Problems

Problem 1

Consider a physical system composed of two blocks of mass m1 and m2 resting on incline
planes placed at angles θ1 and θ2, respectively, as measured from the horizontal.

The only active forces acting on the blocks are due to gravity (g = − g ŷ): Fi = −mi g ̂̂y
and, thus, the Principle of Virtual Work implies that the system is in static equilibrium if
0 = m1g ŷ · δx1 +m2g ŷ · δx2. Find the virtual displacements δx1 and δx2 needed to show
that, according to the Principle of Virtual Work, the condition for static equilibrium is
m1 sin θ1 = m2 sin θ2.

Problem 2

A particle of mass m is constrained to slide down a curve y = V (x) under the action of
gravity without friction. Show that the Euler-Lagrange equation for this system yields the
equation

ẍ = − V ′
(
g + V̈

)
,

where V̇ = ẋ V ′ and V̈ = (V̇ )· = ẍ V ′ + ẋ2 V ′′.

Problem 3

Derive Eq. (2.30).

Problem 4

A bead (of mass m) slides without friction on a wire in the shape of a cycloid: x(θ) =
a (θ − sin θ) and y(θ) = a (1 + cos θ). (a) Find the Lagrangian L(θ, θ̇) and derive the
Euler-Lagrange equation for θ. (b) Find the equation of motion for u = cos(θ/2).
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Problem 5

A cart of mass M is placed on rails and attached to a wall with the help of a massless
spring with constant k (as shown in the Figure below); the spring is in its equilibrium state
when the cart is at a distance x0 from the wall. A pendulum of mass m and length ` is
attached to the cart (as shown).

(a) Write the Lagrangian L(x, ẋ, θ, θ̇) for the cart-pendulum system, where x denotes the
position of the cart (as measured from a suitable origin) and θ denotes the angular position
of the pendulum.

(b) From your Lagrangian, write the Euler-Lagrange equations for the generalized coordi-
nates x and θ.

Problem 6

An Atwood machine is composed of two masses m and M attached by means of a
massless rope into which a massless spring (with constant k) is inserted (as shown in the
Figure below). When the spring is in a relaxed state, the spring-rope length is `.

(a) Find suitable generalized coordinates to describe the motion of the two masses (allowing
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for elongation or compression of the spring).

(b) Using these generalized coordinates, construct the Lagrangian and derive the appropri-
ate Euler-Lagrange equations.



Chapter 3

Hamiltonian Mechanics

In the previous Chapter, the Lagrangian method was introduced as a powerful alternative
to the Newtonian method for deriving equations of motion for complex mechanical systems.
In the present Chapter, a complementary approach to the Lagrangian method, known as the
Hamiltonian method, is presented. Although much of the Hamiltonian method is outside
the scope of this course (e.g., the canonical and noncanonical Hamiltonian formulations of
Classical Mechanics and the Hamiltonian formulation of Quantum Mechanics), a simplified
version (the Energy method) is presented here as a practical method for solving the Euler-
Lagrange equations by quadrature.

3.1 Canonical Hamilton’s Equations

The k second-order Euler-Lagrange equations on configuration space q = (q1, ..., qk)

d

dt

(
∂L

∂q̇j

)

=
∂L

∂qj
, (3.1)

can be written as 2k first-order differential equations, known as Hamilton’s equations
(William Rowan Hamilton, 1805-1865), on a 2k-dimensional phase space with coordinates
z = (q1, ..., qk; p1, ..., pk), where

pj(q, q̇; t) =
∂L

∂q̇j
(q, q̇; t) (3.2)

defines the jth-component of the canonical momentum. In terms of these new coordinates,
the Euler-Lagrange equations (3.1) are transformed into Hamilton’s canonical equations

dqj

dt
=

∂H

∂pj
and

dpj
dt

= − ∂H

∂qj
, (3.3)

67
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where the Hamiltonian functionH(q,p; t) is defined from the Lagrangian function L(q, q̇; t)
by the Legendre transformation (Adrien-Marie Legendre, 1752-1833)

H(q,p; t) = p · q̇(q,p, t) − L[q, q̇(q,p, t), t]. (3.4)

We note that Hamilton’s equations (3.3) can also be derived from a variational principle
as follows. First, we use the inverse of the Legendre transformation

L(z, ż; t) = p · q̇ −H(z; t) (3.5)

to obtain an expression for the Lagrangian function in phase space. Next, we calculate the
first-variation of the action integral

δ
∫
L(q,p; t) dt =

∫ [

δp ·

(

q̇ − ∂H

∂p

)

+

(

p · δq̇ − δq ·
∂H

∂q

) ]

dt,

where the variations δqi and δpi are now considered independent (and they are both as-
sumed to vanish at the end points). Lastly, by integrating by parts the term p · δq̇, we
find

δ
∫

L(q,p; t) dt =
∫ [

δp ·

(

q̇ − ∂H

∂p

)

− δq ·

(

ṗ +
∂H

∂q

) ]

dt,

so that the Principle of Least Action
∫
δLdt = 0 now yields Hamilton’s equations (3.3).

3.2 Legendre Transformation*

Before proceeding with the Hamiltonian formulation of particle dynamics, we investigate
the conditions under which the Legendre transformation (3.4) is possible. It turns out that
the condition under which the Legendre transformation can be used is associated with the
condition under which the inversion of the relation p(r, ṙ, t) → ṙ(r,p, t) is possible. To
simplify our discussion, we focus on motion in two dimensions (labeled x and y).

The general expression of the kinetic energy term of a Lagrangian with two degrees of
freedom L(x, ẋ, y, ẏ) = K(x, ẋ, y, ẏ) − U(x, y) is

K(x, ẋ, y, ẏ) =
α

2
ẋ2 + β ẋ ẏ +

γ

2
ẏ2 =

1

2
ṙT · M · ṙ, (3.6)

where ṙ> = (ẋ, ẏ) denotes the transpose of ṙ (see Appendix A for additional details con-
cerning linear algebra) and the mass matrix M is

M =




α β

β γ



 .
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Here, the coefficients α, β, and γ may be function of x and/or y. The canonical momentum
vector (3.2) is thus defined as

p =
∂L

∂ṙ
= M · ṙ →




px

py



 =




α β

β γ



 ·




ẋ

ẏ





or
px = α ẋ + β ẏ

py = β ẋ + γ ẏ





. (3.7)

The Lagrangian is said to be regular if the matrix M is invertible, i.e., if its determinant

∆ = α γ − β2 6= 0.

In the case of a regular Lagrangian, we readily invert (3.7) to obtain

ṙ(r,p, t) = M−1 · p →




ẋ

ẏ



 =
1

∆




γ − β

− β α



 ·




px

py





or
ẋ = (γ px − β py)/∆

ẏ = (αpy − β px)/∆





, (3.8)

and the kinetic energy term becomes

K(x, px, y, py) =
1

2
p> · M−1 · p.

Lastly, under the Legendre transformation, we find

H = p> ·
(
M−1 · p

)
−
(

1

2
p> · M−1 · p − U

)

=
1

2
p> · M−1 · p + U.

Hence, we clearly see that the Legendre transformation is applicable only if the mass matrix
M in the kinetic energy (3.6) is invertible.

Lastly, we note that the Legendre transformation is also used in other areas in physics
such as Thermodynamics. Indeed, we begin with the First Law of Thermodynamics

dU(S, V ) = T dS − P dV

expressed in terms of the internal energy function U(S, V ), where entropy S and volume V
are the independent variables while temperature T (S, V ) = ∂U/∂S and pressure P (S, V ) =
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− ∂U/∂V are dependent variables. It is possible, however, to choose other independent
variables by defining new thermodynamic functions as shown in the Table below.

Pressure P Volume V Temperature T Entropy S

Pressure P × × G = H − T S H = U + P V
Volume V × × F = U − T S U

Temperature T G = H − T S F = U − T S × ×
Entropy S H = U + P V U × ×

For example, if we choose volume V and temperature T as independent variables, we
introduce the Legendre transformation from the internal energy U(S, V ) to the Helmholtz
free energy F (V, T ) = U − T S, such that the First Law of Thermodynamics now becomes

dF (V, T ) = dU − T dS − S dT = − P dV − S dT,

where pressure P (V, T ) = − ∂F/∂V and entropy S(V, T ) = − ∂F/∂T are dependent vari-
ables. Likewise, enthalpy H(P, S) = U + P V and Gibbs free energy G(T, P ) = H − T S
are introduced by Legendre transformations whenever one chooses (P, S) and (T, P ), re-
spectively, as independent variables.

3.3 Hamiltonian Optics and Wave-Particle Duality*

Historically, the Hamiltonian method was first introduced as a formulation of the dynamics
of light rays. Consider the following phase integral

Θ[z] =
∫ t2

t1
[ k · ẋ − ω(x,k; t) ] dt, (3.9)

where Θ[z] is a functional of the light-path z(t) = (x(t), k(t)) in ray phase space, expressed
in terms of the instantaneous position x(t) of a light ray and its associated instantaneous
wave vector k(t); here, the dispersion relation ω(x,k; t) is obtained as a root of the disper-
sion equation det D(x, t; k, ω) = 0, and a dot denotes a total time derivative: ẋ = dx/dt.

Assuming that the phase integral Θ[z] acquires a minimal value for a physical ray orbit
z(t), henceforth called the Principle of Phase Stationarity δΘ = 0, we can show that Euler’s
First Equation leads to Hamilton’s ray equations:

dx

dt
=

∂ω

∂k
and

dk

dt
= − ∇ω. (3.10)

The first ray equation states that a ray travels at the group velocity while the second ray
equation states that the wave vector k is refracted as the ray propagates in a non-uniform
medium (see Chapter 1). Hence, the frequency function ω(x,k; t) is the Hamiltonian of
ray dynamics in a nonuniform medium.
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It was de Broglie who noted (as a graduate student well versed in Classical Mechanics)
the similarities between Hamilton’s equations (3.3) and (3.10), on the one hand, and the
Maupertuis-Jacobi (2.1) and Euler-Lagrange (2.20) Principles of Least Action and Fermat’s
Principle of Least Time (1.30) and Principle of Phase Stationarity (3.9), on the other hand.
By using the quantum of action h̄ = h/2π defined in terms of Planck’s constant h and
Planck’s energy hypothesis E = h̄ω, de Broglie suggested that a particle’s momentum p

be related to its wavevector k according to de Broglie’s formula p = h̄ k and introduced
the wave-particle synthesis based on the identity S[z] = h̄Θ[z] involving the action integral
S[z] and the phase integral Θ[z]:

Particle Wave

phase space z = (q,p) z = (x,k)
Hamiltonian H(z) ω(z)

Variational Principle I Maupertuis − Jacobi Fermat
Variational Principle II Hamilton Stationary − Phase

The final synthesis between Classical and Quantum Mechanics came from Richard
Philips Feynman (1918-1988) who provided a derivation of Schroedinger’s equation by
associating the probability that a particle follow a particular path with the expression

exp
(
i

h̄
S[z]

)

where S[z] denotes the action integral for the path (see Appendix B for a short derivation
of Schroedinger’s equation).

3.4 Particle Motion in an Electromagnetic Field*

Although the problem of the motion of a charged particle in an electromagnetic field is
outside the scope of the present course, it represents a paradigm that beautifully illustrates
the connection between Lagrangian and Hamiltonian mechanics and is well worth studying.

3.4.1 Euler-Lagrange Equations

The equations of motion for a charged particle of mass m and charge e moving in an
electromagnetic field represented by the electric field E and magnetic field B are

dx

dt
= v (3.11)

dv

dt
=

e

m

(

E +
dx

dt
×

B

c

)

, (3.12)
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where x denotes the position of the particle and v its velocity.1

By treating the coordinates (x,v) as generalized coordinates (i.e., δv is treated inde-
pendently from δx), we can show that the equations of motion (3.11) and (3.12) can be
obtained as Euler-Lagrange equations from the Lagrangian (3.5)

L(x, ẋ, v, v̇; t) =
(
mv +

e

c
A(x, t)

)
· ẋ −

(
eΦ(x, t) +

m

2
|v|2

)
, (3.13)

where Φ and A are the electromagnetic potentials in terms of which electric and magnetic
fields are defined

E = −∇Φ − 1

c

∂A

∂t
and B = ∇×A. (3.14)

Note that these expressions for E and B satisfy Faraday’s law ∇×E = − c−1 ∂B/∂t and
the divergenceless property ∇ ·B = 0 of the magnetic field.

First, we look at the Euler-Lagrange equation for x:

∂L

∂ẋ
= mv +

e

c
A → d

dt

(
∂L

∂ẋ

)

= m v̇ +
e

c

(
∂A

∂t
+ ẋ ·∇A

)

∂L

∂x
=

e

c
∇A · ẋ − e∇Φ,

which yields Eq. (3.12), since

m v̇ = − e

(

∇Φ +
1

c

∂A

∂t

)

+
e

c
ẋ×∇×A = eE +

e

c
ẋ×B, (3.15)

where the definitions (3.14) were used.

Next, we look at the Euler-Lagrange equation for v:

∂L

∂v̇
= 0 → d

dt

(
∂L

∂v̇

)

= 0 =
∂L

∂v
= m ẋ − mv,

which yields Eq. (3.11). Because ∂L/∂v̇ = 0, we note that we could use Eq. (3.11) as a
constraint which could be imposed a priori on the Lagrangian (3.13) to give

L(x, ẋ; t) =
m

2
|ẋ|2 +

e

c
A(x, t) · ẋ − eΦ(x, t). (3.16)

The Euler-Lagrange equation for x in this case is identical to Eq. (3.15) with v̇ = ẍ.

1Gaussian units are used whenever electromagnetic fields are involved.
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3.4.2 Energy Conservation Law

We now show that the second Euler equation (i.e., the energy conservation law), expressed
as

d

dt

(

L − ẋ ·
∂L

∂ẋ

)

=
∂L

∂t
,

is satisfied exactly by the Lagrangian (3.16) and the equations of motion (3.11) and (3.12).
First, from the Lagrangian (3.16), we find

∂L

∂t
=

e

c

∂A

∂t
·v − e

∂Φ

∂t

L − ẋ ·
∂L

∂ẋ
= L −

(
mv +

e

c
A

)
·v

= −
(
m

2
|v|2 + eΦ

)
.

Next, we find

d

dt

(

L − ẋ ·
∂L

∂ẋ

)

= − mv · v̇ − e

(
∂Φ

∂t
+ v ·∇Φ

)

= −e ∂

∂t

(
Φ − v

c
·A

)
.

Using Eq. (3.11), we readily find mv · v̇ = eE ·v and thus

− eE ·v − e

(
∂Φ

∂t
+ v ·∇Φ

)

=
e

c

∂A

∂t
· v − e

∂Φ

∂t
,

which is shown to be satisfied exactly by substituting the definition (3.14) for E.

3.4.3 Gauge Invariance

The electric and magnetic fields defined in (3.14) are invariant under the gauge transfor-
mation

Φ → Φ − 1

c

∂χ

∂t
and A → A + ∇χ, (3.17)

where χ(x, t) is an arbitrary scalar field. Although the equations of motion (3.11) and (3.12)
are manifestly gauge invariant, the Lagrangian (3.16) is not manifestly gauge invariant since
the electromagnetic potentials Φ and A appear explicitly. Under a gauge transformation
(3.17), however, we find

L → L +
e

c
ẋ ·∇χ − e

(

− 1

c

∂χ

∂t

)

= L +
d

dt

(
e

c
χ
)
.

Since Lagrangian Mechanics is invariant under the transformation (2.35), we find that the
Lagrangian (3.16) is invariant under a gauge transformation.



74 CHAPTER 3. HAMILTONIAN MECHANICS

3.4.4 Canonical Hamilton’s Equations

The canonical momentum p for a particle of mass m and charge e in an electromagnetic
field is defined as

p(x,v, t) =
∂L

∂ẋ
= mv +

e

c
A(x, t). (3.18)

The canonical Hamiltonian function H(x,p, t) is now constructed through the Legendre
transformation

H(x,p, t) = p · ẋ(x,p, t) − L[x, ẋ(x,p, t), t]

= eΦ(x, t) +
1

2m

∣∣∣∣ p − e

c
A(x, t)

∣∣∣∣
2

, (3.19)

where v(x,p, t) was obtained by inverting p(x,v, t) from Eq. (3.18). Using the canonical
Hamiltonian function (3.19), we immediately find

ẋ =
∂H

∂p
=

1

m

(
p − e

c
A

)
,

ṗ = − ∂H

∂x
= − e ∇Φ − e

c
∇A · ẋ,

from which we recover the equations of motion (3.11) and (3.12) once we use the definition
(3.18) for the canonical momentum.

3.5 One-degree-of-freedom Hamiltonian Dynamics

In this Section, we investigate Hamiltonian dynamics with one degree of freedom in a time-
independent potential. In particular, we show that such systems are always integrable (i.e.,
they can always be solved by quadrature).

The one degree-of-freedom Hamiltonian dynamics of a particle of mass m is based on
the Hamiltonian

H(x, p) =
p2

2m
+ U(x), (3.20)

where p = mẋ is the particle’s momentum and U(x) is the time-independent potential
energy. The Hamilton’s equations (3.3) for this Hamiltonian are

dx

dt
=

p

m
and

dp

dt
= − dU(x)

dx
. (3.21)

Since the Hamiltonian (and Lagrangian) is time independent, the energy conservation law
states that H(x, p) = E. In turn, this conservation law implies that the particle’s velocity
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Figure 3.1: Bounded and unbounded energy levels in a cubic potential U(x) = x− x3/3.

ẋ can be expressed as

ẋ(x,E) = ±
√

2

m
[E − U(x)], (3.22)

where the sign of ẋ is determined from the initial conditions.

It is immediately clear that physical motion is possible only if E ≥ U(x); points where
E = U(x) are known as turning points since the particle velocity ẋ vanishes at these points.
In Figure 3.1, which represents the dimensionless potential U(x) = x−x3/3, each horizontal
line corresponds to a constant energy value (called an energy level). For the top energy
level, only one turning point (labeled a in Figure 3.1) exists and a particle coming from the
right will be reflected at point a and return to large (positive) values of x; the motion in this
case is said to be unbounded (see orbits I in Figure 3.2). As the energy value is lowered, two
turning points (labeled b and f) appear and motion can either be bounded (between points
b and f) or unbounded (if the initial position is to the right of point f); this energy level
is known as a separatrix level since bounded and unbounded motions share one turning
point (see orbits II and III in Figure 3.2). As energy is lowered below the separatrix level,
three turning points (labeled c, e, and g) appear and, once again, motion can either be
bounded (with turning points c and e) or unbounded if the initial position is to the right of
point g (see orbits IV and V in Figure 3.2).2 Lastly, we note that point d in Figure 3.1 is
actually an equilibrium point (as is point f), where ẋ and ẍ both vanish; only unbounded
motion is allowed as energy is lowered below point d (e.g., point h) and the corresponding
unbounded orbits are analogous to orbit V in Figure 3.2.

The dynamical solution x(t;E) of the Hamilton’s equations (3.21) is first expressed an

2Note: Quantum tunneling establishes a connection between the bounded and unbounded solutions.
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Figure 3.2: Bounded and unbounded orbits in the cubic potential shown in Figure 3.1:
the orbits I correspond to the energy level with turning point a; the bounded orbit II and
unbounded orbit III correspond to the separatrix energy level with turning points b and f ;
the bounded orbits IV correspond to the energy level with turning points c and e; and the
unbounded orbit V corresponds to the energy level with turning point g.

integration by quadrature using Eq. (3.22) as

t(x;E) =

√
m

2

∫ x

x0

ds
√
E − U(s)

, (3.23)

where the particle’s initial position x0 is between the turning points x1 < x2 (allowing
x2 → ∞) and we assume that ẋ(0) > 0. Next, inversion of the relation (3.23) yields the
solution x(t;E).

Lastly, for bounded motion in one dimension, the particle bounces back and forth
between the two turning points x1 and x2 > x1, and the period of oscillation T (E) is a
function of energy alone

T (E) = 2
∫ x2

x1

dx

ẋ(x,E)
=

√
2m

∫ x2

x1

dx
√
E − U(x)

. (3.24)

Thus, Eqs. (3.23) and (3.24) describe applications of the Energy Method in one dimension.
We now look at a series of one-dimensional problems solvable by the Energy Method.
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3.5.1 Simple Harmonic Oscillator

As a first example, we consider the case of a particle of mass m attached to a spring of
constant k, for which the potential energy is U(x) = 1

2
kx2. The motion of a particle with

total energy E is always bounded, with turning points

x1,2(E) = ±
√

2E/k = ± a.

We start with the solution (3.23) for t(x;E) for the case of x(0;E) = +a, so that ẋ(t;E) < 0
for t > 0, and

t(x;E) =

√
m

k

∫ a

x

ds√
a2 − s2

=

√
m

k
arccos

(
x

a

)
. (3.25)

Inversion of this relation yields the well-known solution x(t;E) = a cos(ω0t), where ω0 =√
k/m. Next, using Eq. (3.24), we find the period of oscillation

T (E) =
4

ω0

∫ a

0

dx√
a2 − x2

=
2π

ω0
,

which turns out to be independent of energy E.

3.5.2 Pendulum

Our second example involves the case of the pendulum of length ` and mass m in a gravi-
tational field g (see Sec. 2.4.1). The Hamiltonian in this case is

H =
1

2
m`2 θ̇2 + mg` (1 − cos θ).

The total energy of the pendulum is determined from its initial conditions (θ0, θ̇0):

E =
1

2
m`2 θ̇2

0 + mg` (1 − cos θ0),

where the potential energy term is mg` (1 − cos θ) ≤ 2mg` and, thus, solutions of the
pendulum problem are divided into three classes depending on the value of the total energy
of the pendulum (see Figure 3.3): Class I (rotation) E > 2mg`, Class II (separatrix)
E = 2mg`, and Class III (libration) E < 2mg`.

In the rotation class (E > 2mg`), the kinetic energy can never vanish and the pendulum
keeps rotating either clockwise or counter-clockwise depending on the sign of θ̇0. In the
libration class (E < 2mg`), on the other hand, the kinetic energy vanishes at turning
points easily determined by initial conditions if the pendulum starts from rest (θ̇0 = 0) –
in this case, the turning points are ± θ0, where

θ0 = arccos

(

1 − E

mg`

)

.
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Figure 3.3: Normalized pendulum potential U(θ)/(mg`) = 1 − cos θ.

In the separatrix class (E = 2mg`), the turning points are θ0 = ±π. The numerical
solution of the normalized pendulum equation θ̈+ sin θ = 0 subject to the initial condition

θ0 and θ̇0 = ±
√

2 (ε− 1 + cos θ0) yields the following curves (see Fig. 3.3). Here, the three

classes I, II, and III are easily seen (with ε = 1 − cos θ0 and θ̇0 = 0 for classes I and II and
ε > 1 − cos θ0 for class III). Note that for rotations (class III), the pendulum slows down
as it approaches θ = ±π (the top part of the circle) and speeds up as it approaches θ = 0
(the bottom part of the circle). In fact, since θ = π and θ = −π represent the same point
in space, the lines AB and A′B ′ in Figure 3.4 should be viewed as being identical (i.e., they
should be glued together) and the geometry of the phase space for the pendulum problem
is actually that of a cylinder.

Libration Class (E < 2mg`)

We now look at an explicit solution for pendulum librations (class I), where the angular
velocity θ̇ is

θ̇(θ;E) = ±ω0

√
2 (cos θ − cos θ0) = ± 2ω0

√
sin2(θ0/2) − sin2(θ/2), (3.26)

where ω0 =
√
g/` denotes the characteristic angular frequency and, thus, ± θ0 are the

turning points for this problem. By making the substitution sin θ/2 = k sinϕ, where

k(E) = sin[ θ0(E)/2] =

√
E

2mg`
< 1 (3.27)
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Figure 3.4: Phase space of the pendulum

and ϕ = ±π/2 when θ = ± θ0, the libration solution of the pendulum problem is thus

ω0 t(θ;E) =
∫ π/2

Θ(θ;E)

dϕ
√

1 − k2 sin2 ϕ
, (3.28)

where Θ(θ;E) = arcsin(k−1 sin θ/2). The inversion of this relation yields θ(t;E) expressed
in terms of Jacobi elliptic functions (see Appendix A.3.2 for more details), while the period
of oscillation is defined as

ω0 T (E) = 4
∫ π/2

0

dϕ
√

1 − k2 sin2 ϕ
= 4

∫ π/2

0
dϕ

(

1 +
k2

2
sin2 ϕ + · · ·

)

,

= 2π

(

1 +
k2

4
+ · · ·

)

= 4 K(k), (3.29)

where K(k) denotes the complete elliptic integral of the first kind (see Figure 3.5 and
Appendix A.3.2).

We note here that if k � 1 (or θ0 � 1) the libration period of a pendulum is nearly
independent of energy, T ' 2π/ω0. However, we also note that as E → 2mg` (k → 1 or
θ0 → π), the libration period of the pendulum becomes infinitely large, i.e., T → ∞ in
Eq. (3.29) (see Figure 3.5).

Separatrix Class (E = 2mg`)

In the separatrix case (θ0 = π), the pendulum equation (3.26) yields the separatrix equa-
tion ϕ̇ = ω0 cosϕ, where ϕ = θ/2. The separatrix solution is expressed in terms of the
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Figure 3.5: Normalized pendulum period ω0 T (E)/2π as a function of the normalized energy
k2 = E/(2mg`) for Libration Class I (k2 < 1) and Rotation Class III (k2 > 1); note that,
for the Separatrix Class II (k2 = 1), the period is infinite.

transcendental equation

secϕ(t) = cosh(ω0t+ γ), (3.30)

where cosh γ = secϕ0 represents the initial condition. We again note that ϕ → π/2 (or
θ → π) only as t→ ∞. Separatrices are associated with turning points s0 where U ′(s0) = 0
and U ′′(s0) < 0, which are quite common in periodic dynamical systems as will be shown
in Secs. 3.6 and 7.2.3.

Rotation Class (E > 2mg`)

The solution for rotations (class III) associated with the initial conditions θ0 = ±π and

1

2
θ̇2
0 = ω2

0

(
E

mg`
− 2

)

=
1

2
θ̇2 − ω2

0

(
1 + cos θ

)
,

or

θ̇ = ±
√
θ̇2
0 + 2ω2

0 (1 + cos θ),

which shows that θ̇ does not vanish for rotations. We now write cos θ = 1 − 2 sin2(θ/2)
and define Ω2

0 = θ̇2
0 + 4ω2

0 , with so that

θ̇ = ±Ω0

√
1 − k−2 sin2(θ/2),
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where k(E) is defined in Eq. (3.27). Hence, the solution for rotations is expressed as

Ω0 t =
∫ θ

−π

dθ′
√

1 − k−2 sin2(θ′/2)
,

and the rotation period is defined as

ω0 T (E) =
4ω0

Ω0

∫ π/2

0

dϕ
√

1 − k−2 sin2 ϕ
=

4ω0

Ω0
K(k−1).

Figure 3.5 shows the plot of the normalized pendulum period as a function of k2 for the
Libration Class I and Rotation Class III (two cases are shown: θ̇0/ω0 = 2 and 0.5).

3.5.3 Constrained Motion on the Surface of a Cone

The constrained motion of a particle of mass m on a cone in the presence of gravity was
shown in Sec. 2.5.4 to be doubly periodic in the generalized coordinates s and θ. The fact
that the Lagrangian (2.36) is independent of time leads to the conservation law of energy

E =
m

2
ṡ2 +

(
`2

2m sin2 α s2
+ mg cosα s

)

=
m

2
ṡ2 + V (s), (3.31)

where we have taken into account the conservation law of angular momentum ` = ms2 sin2 α θ̇.
The effective potential V (s) has a single minimum V0 = 3

2
mgs0 cosα at

s0 =

(
`2

m2g sin2 α cosα

) 1

3

,

and the only type of motion is bounded when E > V0. The turning points for this problem
are solutions of the cubic equation

3

2
ε =

1

2σ2
+ σ,

where ε = E/V0 and σ = s/s0. Figure 3.6 shows the evolution of the three roots of this
equation as the normalized energy parameter ε is varied. The three roots (σ0, σ1, σ2) satisfy
the relations σ0σ1σ2 = −1

2
, σ0 + σ1 + σ2 = 3

2
ε, and σ−1

1 + σ−1
2 + σ−1

0 = 0. We see that
one root (labeled σ0) remains negative for all normalized energies ε; this root is unphysical
since s must be positive (by definition). On the other hand, the other two roots (σ1, σ2),
which are complex for ε < 1 (i.e., for energies below the minumum of the effective potential
energy V0), become real at ε = 1, where σ1 = σ2, and separate (σ1 < σ2) for larger values
of ε (in the limit ε � 1, we find σ2 ' 3

2
ε and σ−1

1 ' −σ−1
0 '

√
3ε). Lastly, the period of

oscillation is determined by the definite integral

T (ε) = 2

√
s0

g cosα

∫ σ2

σ1

σ dσ√
3ε σ2 − 1 − 2σ3

,

whose solution is expressed in terms of Weierstrass elliptic functions (see Appendix A.3.2).



82 CHAPTER 3. HAMILTONIAN MECHANICS

Figure 3.6: Roots of a cubic equation

3.6 Charged Spherical Pendulum in a Magnetic Field∗

The following sophisticated example shows the power of the Hamiltonian method, where
a system with three degrees of freedom is reduced to a system with one degree of freedom
(which is, thus, integrable) as a result of the existence of two constants of motion: en-
ergy (the system is time independent) and azimuthal canonical momentum (the system is
azimuthally symmetric).

A spherical pendulum of length ` and massm carries a positive charge e and moves under
the action of a constant gravitational field (with acceleration g) and a constant magnetic
field B (see Figure 3.7). The position vector of the pendulum is x = `(sin θ ρ̂ − cos θ ẑ),
and, thus, its velocity v = ẋ is

v = ` θ̇ (cos θ ρ̂ + sin θ ẑ) + ` sin θ ϕ̇ ϕ̂,

and the kinetic energy of the pendulum is

K =
m`2

2

(
θ̇2 + sin2 θ ϕ̇2

)
.

3.6.1 Lagrangian and Routhian

Because the charged pendulum moves in a magnetic field B = −B ẑ, we must include the
magnetic term v · eA/c in the Lagrangian [see Eq. (3.16)]. Here, the vector potential A
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Figure 3.7: Charged pendulum in a magnetic field

must be evaluated at the position of the pendulum and is thus expressed as

A = − B`

2
sin θ ϕ̂,

and, hence, we find
e

c
A · v = − eB`2

2c
sin2 θ ϕ̇.

Note that this term is equivalent to a charged particle moving in the magnetic potential
(−µ ·B = µz B), where

µ =
e

2mc
(x×v)

denotes the magnetic moment of a charge e moving about a magnetic field line. Lastly, the
charged pendulum is under the influence of the gravitational potential mg` (1 − cos θ), so
that by combining the various terms, the Lagrangian for the system is

L(θ, θ̇, ϕ̇) = m`2
[
θ̇2

2
+ sin2 θ

(
ϕ̇2

2
− ωL ϕ̇

) ]

− mg` (1 − cos θ), (3.32)

where the Larmor frequency ωL is defined as ωL = eB/2mc. We note that, as a result of
the azimuthal symmetry of the Lagrangian (3.32), the following Routh-Lagrange function
R(θ, θ̇; pϕ)

R(θ, θ̇; pϕ) ≡ L − ϕ̇
∂L

∂ϕ̇
=

m`2

2
θ̇2 − V (θ; pϕ)

may be constructed, where

V (θ; pϕ) = mg` (1 − cos θ) +
1

2m`2 sin2 θ

(
pϕ + m`2ωL sin2 θ

)2
(3.33)
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represents an effective potential under which the charged spherical pendulum moves.

3.6.2 Routh-Euler-Lagrange equations

The Routh-Euler-Lagrange equation for θ is expressed in terms of the effective potential
(3.33) as

d

dt

(
∂R

∂θ̇

)

=
∂R

∂θ
→ m`2 θ̈ = − ∂V

∂θ
,

which yields

θ̈ +
g

`
sin θ = sin θ cos θ

[ (
pϕ

m`2 sin2 θ

)2

− ω2
L

]

. (3.34)

Not surprisingly the integration of this second-order differential equation for θ is complex
(see below). It turns out, however, that the Hamiltonian formalism gives us glimpses into
the gobal structure of general solutions of this equation.

3.6.3 Hamiltonian

The Hamiltonian for the charged pendulum in a magnetic field is obtained through the
Legendre transformation (3.4):

H = θ̇
∂L

∂θ̇
+ ϕ̇

∂L

∂ϕ̇
− L

=
p2
θ

2m`2
+

1

2m`2 sin2 θ

(
pϕ + m`2ωL sin2 θ

)2
+ mg` (1 − cos θ). (3.35)

The Hamilton’s equations for (θ, pθ) are

θ̇ =
∂H

∂pθ
=

pθ
m`2

ṗθ = − ∂H

∂θ
= − mg` sin θ + m`2 sin θ cos θ

[ (
pϕ

m`2 sin2 θ

)2

− ω2
L

]

,

while the Hamilton’s equations for (ϕ, pϕ) are

ϕ̇ =
∂H

∂pϕ
=

pϕ
m`2 sin2 θ

+ ωL

ṗϕ = − ∂H

∂ϕ
= 0.

It is readily seen that these Hamilton equations lead to the same equations as the Euler-
Lagrange equations for θ and ϕ.
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So what have we gained? It turns out that a most useful application of the Hamiltonian
formalism resides in the use of the constants of the motion to plot Hamiltonian orbits in
phase space. Indeed, for the problem considered here, a Hamiltonian orbit is expressed in
the form pθ(θ; E, pϕ), i.e., each orbit is labeled by values of the two constants of motion
E (the total energy) and pϕ the azimuthal canonical momentum (actually an angular
momentum):

pθ = ±
[

2m`2 (E − mg` + mg` cos θ) − 1

sin2 θ

(
pϕ + m`2 sin2 θ ωL

)2
]1/2

.

Hence, for charged pendulum of given mass m and charge e with a given Larmor frequency
ωL (and g), we can completely determine the motion of the system once initial conditions
are known (from which E and pϕ can be calculated).

Numerical Box

By using the following dimensionless parameters Ω = ωL/ωg and α = pϕ/(m`
2ωg) (which

can be positive or negative), we may write the effective potential (3.33) in dimensionless
form V (θ) = V (θ)/(mg`) as

V (θ) = 1 − cos θ +
1

2

(
α

sin θ
+ Ω sin θ

)2

.

The normalized Euler-Lagrange equations are

ϕ′ = Ω +
α

sin2 θ
and θ′′ + sin θ = sin θ cos θ

(
α2

sin4 θ
− Ω2

)

(3.36)

where τ = ωgt denotes the dimensionless time parameter and the dimensionless parame-
ters are defined in terms of physical constants.

Figure 3.8 shows the dimensionless effective potential V (θ) for α = 1 and several values
of the dimensionless parameter Ω. When Ω is below the threshold value Ωth = 1.94204...
(for α = 1), the effective potential has a single local minimum (point a′ in Figure 3.8).
At threshold (Ω = Ωth), an inflection point develops at point b′. Above this threshold
(Ω > Ωth), a local maximum (at point b) develops and two local minima (at points a and
c) appear. Note that the local maximum at point b implies the existence of a separatrix
solution, which separates the bounded motion in the lower well and the upper well.

Figures 3.9 show three-dimensional spherical projections (first row) and (x, y)-plane
projections (second row) for three cases above threshold (Ω > Ωth): motion in the lower
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Figure 3.8: Effective potential of the charged pendulum in a magnetic field

Figure 3.9: Orbits of the charged pendulum in a magnetic field.
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Figure 3.10: Orbit projections

well (left column), separatrix motion (center column), and motion in the upper well (right
column). Figure 3.10 shows the (x, z)-plane projections for these three cases combined
on the same graph. These Figures clearly show that a separatrix solution exists which
separates motion in either the upper well or the lower well.

Note that the equation (3.36) for ϕ′ does not change sign if α > −Ω, while its sign
can change if α < −Ω (or pϕ < −m`2 ωL). Figures 3.11 show the effect of changing
α→ −α by showing the graphs θ versus ϕ (first row), the (x, y)-plane projections (second
row), and the (x, z)-plane projections (third row). One can clearly observe the wonderfully
complex dynamics of the charged pendulum in a uniform magnetic field, which is explicitly
characterized by the effective potential V (θ) given by Eq. (3.33).
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Figure 3.11: Retrograde motion
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3.7 Problems

Problem 1

A particle of mass m and total energy E moves periodically in a one-dimensional po-
tential given as

U(x) = F |x| =






F x (x > 0)

−F x (x < 0)

where F is a positive constant.

(a) Find the turning points for this potential.

(b) Find the dynamical solution x(t;E) for this potential by choosing a suitable initial
condition.

(c) Find the period T (E) for the motion.

Problem 2

A block of mass m rests on the inclined plane (with angle θ) of a triangular block of
mass M as shown in the Figure below. Here, we consider the case where both blocks slide
without friction (i.e., m slides on the inclined plane without friction and M slides without
friction on the horizontal plane).

(a) Using the generalized coordinates (x, y) shown in the Figure above, construct the La-
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grangian L(x, ẋ, y, ẏ).

(b) Derive the Euler-Lagrange equations for x and y.

(c) Calculate the canonical momenta

px(x, ẋ, y, ẏ) =
∂L

∂ẋ
and py(x, ẋ, y, ẏ) =

∂L

∂ẏ
,

and invert these expressions to find the functions ẋ(x, px, y, py) and ẏ(x, px, y, py).

(d) Calculate the Hamiltonian H(x, px, y, py) for this system by using the Legendre trans-
formation

H(x, px, y, py) = px ẋ + py ẏ − L(x, ẋ, y, ẏ),

where the functions ẋ(x, px, y, py) and ẏ(x, px, y, py) are used.

(e) Find which of the two momenta found in Part (c) is a constant of the motion and
discuss why it is so. If the two blocks start from rest, what is the value of this constant of
motion?

Problem 3

Consider all possible orbits of a unit-mass particle moving in the dimensionless potential
U(x) = 1−x2/2 + x4/16. Here, orbits are solutions of the equation of motion ẍ = −U ′(x)
and the dimensionless energy equation is E = ẋ2/2 + U(x).

(a) Draw the potential U(x) and identify all possible unbounded and bounded orbits (with
their respective energy ranges).

(b) For each orbit found in part (a), find the turning point(s) for each energy level.

(c) Sketch the phase portrait (x, ẋ) showing all orbits (including the separatrix orbit).

(d) Show that the separatrix orbit (with initial conditions x0 =
√

8 and ẋ0 = 0) is expressed
as x(t) =

√
8 sech(t) by solving the integral

t(x) =
∫ √

8

x

ds
√
s2 (1 − s2/8)

.

(Hint: use the hyperbolic trigonometric substitution s =
√

8 sech ξ.)

(e) Write a numerical code to solve the second-order ordinary differential equation ẍ =
x−x3/4 by choosing appropriate initial conditions needed to obtain all the possible orbits.
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Problem 4

When a particle (of mass m) moving under the potential U(x) is perturbed by the
potential δU(x), its period (3.24) is changed by a small amount defined as

δT = −
√

2m
∂

∂E




∫ x2

x1

δU(x) dx
√
E − U(x)



 ,

where x1,2 are the turning points of the unperturbed problem. Calculate the change in
the period of a particle moving in the quadratic potential U(x) = mω2 x2/2 introduced by
the perturbation potential δU(x) = ε x4. Here, ω denotes the unperturbed frequency, the
particle is trapped in the region −a ≤ x ≤ a, and ε is a constant that satisfies the condition
ε� mω2/(2a2).
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Chapter 4

Motion in a Central-Force Field

4.1 Motion in a Central-Force Field

A particle moves under the influence of a central-force field F(r) = F (r) r̂(θ, ϕ) if the force
on the particle is independent of the angular position (θ, ϕ) of the particle about the center
of force and depends only on its distance r from the center of force. Here, the magnitude
F (r) (which is positive for a repulsive force and negative for an attractive force) is defined
in terms of the central potential U(r) as F (r) = −U ′(r). Note that, for a central-force
potential U(r), the angular momentum L = ` ẑ in the CM frame is a constant of the motion
since r×∇U(r) = 0.

4.1.1 Lagrangian Formalism

The motion of two particles in an isolated system takes place on a two-dimensional plane,
which we, henceforth, take to be the (x, y)-plane and, hence, the constant angular mo-
mentum is L = ` ẑ. When these particles move in a central-force field, the center-of-mass
Lagrangian is simply

L =
µ

2

(
ṙ2 + r2 θ̇2

)
− U(r), (4.1)

where µ denotes the reduced mass for the two-particle system and polar coordinates (r, θ)
are most conveniently used, with x = r cos θ and y = r sin θ. Since the potential U is
independent of θ, the canonical angular momentum

pθ =
∂L

∂θ̇
= µr2 θ̇ ≡ ` (4.2)

93
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is a constant of motion (labeled `). The Euler-Lagrange equation for r, therefore, becomes
the radial force equation

µ
(
r̈ − r θ̇2

)
= µ r̈ − `2

µr3
= F (r) ≡ −U ′(r). (4.3)

In this description, the planar orbit is parametrized by time, i.e., once r(t) and θ(t) are
obtained, a path r(θ) onto the plane is defined.

Since θ̇ = `/µr2 does not change sign on its path along the orbit (as a result of the
conservation of angular momentum), we may replace ṙ and r̈ with r′(θ) and r′′(θ) as follows.
First, we begin with

ṙ = θ̇ r′ =
` r′

µr2
= − `

µ

(
1

r

)′
= − (`/µ) s′,

where we use the conservation of angular momentum and define the new dependent variable
s(θ) = 1/r(θ). Next, we write r̈ = − (`/µ) θ̇ s′′ = − (`/µ)2 s2 s′′, so that the radial force
equation (4.3) becomes

s′′ + s = − µ

`2 s2
F (1/s) ≡ − dU (s)

ds
, (4.4)

where
U(s) =

µ

`2
U(1/s) (4.5)

denotes the normalized central potential expressed as a function of s.

Note that the form of the potential U(r) can be calculated from the function s(θ) =
1/r(θ). For example, consider the particle trajectory described in terms of the function
r(θ) = r0 sec(α θ), where r0 and α are constants. The radial equation (4.4) then becomes

s′′ + s = −
(
α2 − 1

)
s = − dU(s)

ds
,

and thus

U(s) =
1

2

(
α2 − 1

)
s2 → U(r) =

`2

2µr2

(
α2 − 1

)
.

We note here that, as expected, the central potential is either repulsive for α > 1 or
attractive for α < 1 (see Figure 4.1). Note also that the function θ(t) is determined from
the relation

θ̇ =
`

µr2(θ)
→ t(θ) =

µ

`

∫ θ

0
r2(φ) dφ.

Hence, we find

t(θ) =
µr2

0

α`

∫ αθ

0
sec2 φ dφ =

µr2
0

α`
tan(αθ) → r(t) = r0

√√√√1 +

(
α` t

µr2
0

)2
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Figure 4.1: Repulsive (α > 1) and attractive (α < 1) orbits for the central-force potential
U(r) = (`2/2µ) (α2 − 1) r−2.

and the total energy

E =
α2 `2

2µr2
0

,

is determined from the initial conditions r(0) = r0 and ṙ(0) = 0.

4.1.2 Hamiltonian Formalism

The Hamiltonian for the central-force problem (4.1) is

H =
p2
r

2µ
+

`2

2µr2
+ U(r),

where pr = µ ṙ is the radial canonical momentum and ` is the conserved angular momentum.
Since energy is also conserved, we solve the energy equation

E =
µ ṙ2

2
+

`2

2µr2
+ U(r)

for ṙ(r;E, `) as

ṙ = ±
√

2

µ
[ E − V (r) ], (4.6)

where

V (r) =
`2

2µr2
+ U(r) (4.7)
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is the effective potential for central-force problems and the sign ± in Eq. (4.6) depends on
initial conditions. Hence, Eq. (4.6) yields the integral solution

t(r;E, `) = ±
∫

dr
√

(2/µ) [E − V (r)]
. (4.8)

We can also the energy equation

µE/`2 =
s′2

2
+

s2

2
+ U(s), (4.9)

to obtain
s′(θ) = ±

√
ε− 2U (s) − s2, (4.10)

where the normalized energy ε is defined as

ε =
2µE

`2
. (4.11)

Hence, for a given central-force potential U(r), we can solve for r(θ) = 1/s(θ) by integrating

θ(s) = −
∫ s

s0

dσ
√
ε− 2U (σ) − σ2

, (4.12)

where s0 defines θ(s0) = 0, and performing the inversion θ(s) → s(θ) = 1/r(θ).

4.1.3 Turning Points

Eq. (4.10) yields the following energy equation

E =
µ

2
ṙ2 +

`2

2µr2
+ U(r) =

`2

2µ

[
(s′)2 + s2 + 2U (s)

]
,

where s′ = −µṙ/`. Turning points are those special values of rn (or sn) (n = 1, 2, ...) for
which

E = U(rn) +
`2

2µr2
n

=
`2

µ

[

U(sn) +
s2
n

2

]

,

i.e., ṙ (or s′) vanishes at these points. If two non-vanishing turning points r2 < r1 < ∞
(or 0 < s1 < s2) exist, the motion is said to be bounded in the interval r2 < r < r1 (or
s1 < s < s2), otherwise the motion is unbounded. If the motion is bounded, the angular
period ∆θ is defined as

∆θ(s) = 2
∫ s2

s1

ds
√
ε− 2U (s) − s2

. (4.13)

Here, the bounded orbit is closed only if ∆θ is a rational multiple of 2π.
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4.2 Homogeneous Central Potentials∗

An important class of central potentials is provided by homogeneous potentials that satisfy
the condition U(λ r) = λn U(r), where λ denotes a rescaling parameter and n denotes the
order of the homogeneous potential.

4.2.1 The Virial Theorem

The Virial Theorem is an important theorem in Celestial Mechanics and Astrophysics. We
begin with the time derivative of the quantity S =

∑
i pi · ri:

dS

dt
=

∑

i

(
dpi
dt

· ri + pi ·
dri
dt

)

, (4.14)

where the summation is over all particles in a mechanical system under the influence of a
self-interaction potential

U =
1

2

∑

i, j 6=i
U(ri − rj).

We note, however, that since Q itself can be written as a time derivative

S =
∑

i

mi
dri
dt

· ri =
d

dt

(
1

2

∑

i

mi |ri|2
)

=
1

2

dI
dt
,

where I denotes the moment of inertia of the system and that, using Hamilton’s equations

dri
dt

=
pi

mi
and

dpi
dt

= −
∑

j 6=i
∇i U(ri − rj),

Eq. (4.14) can also be written as

1

2

d2I
dt2

=
∑

i



 |pi|2
mi

− ri ·
∑

j 6=i
∇iUij



 = 2 K −
∑

i, j 6=i
ri ·∇iUij, (4.15)

where K denotes the kinetic energy of the mechanical system. Next, using Newton’s Third
Law, we write

∑

i, j 6=i
ri ·∇iUij =

1

2

∑

i, j 6=i
(ri − rj) ·∇U(ri − rj),

and, for a homogeneous central potential of order n, we find r ·∇U(r) = n U(r), so that

1

2

∑

i, j 6=i
(ri − rj) ·∇U(ri − rj) = n U.
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Hence, Eq. (4.15) becomes the virial of Clausius (Rudolph Clausius, 1822-1888)

1

2

d2I
dt2

= 2 K − n U. (4.16)

If we now assume that the mechanical system under consideration is periodic in time, then
the time average (denoted 〈· · ·〉) of Eq. (4.16) yields the Virial Theorem

〈K〉 =
n

2
〈U〉, (4.17)

so that the time-average of the total energy of the mechanical system, E = K + U , is
expressed as

E =






(1 + n/2) 〈U〉

(1 + 2/n) 〈K〉
since 〈E〉 = E. For example, for the Kepler problem (n = −1), we find

E =
1

2
〈U〉 = − 〈K〉 < 0, (4.18)

which means that the total energy of a bounded Keplerian orbit is negative (see Sec. 4.3.1).

4.2.2 General Properties of Homogeneous Potentials

We now investigate the dynamical properties of orbits in homogeneous central potentials
of the form U(r) = (k/n) rn (n 6= −2), where k denotes a positive constant. Note that the
central force F = −∇U = − k rn−1 r̂ is attractive if k > 0.

First, the effective potential (4.7) has an extremum at a distance r0 = 1/s0 defined as

rn+2
0 =

`2

kµ
=

1

sn+2
0

.

It is simple to show that this extremum is a maximum if n < −2 or a minimum if n > −2;
we shall, henceforth, focus our attention on the latter case, where the minimum in the
effective potential is

V0 = V (r0) =
(
1 +

n

2

)
k

n
rn0 =

(
1 +

n

2

)
U0.

In the vicinity of this minimum, we can certainly find periodic orbits with turning points
(r2 = 1/s2 < r1 = 1/s1) that satisfy the condition E = V (r).

Next, the radial equation (4.4) is written in terms of the potential U (s) = (µ/`2)U(1/s)
as

s′′ + s = − dU

ds
=

sn+2
0

sn+1
,
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and its solution is given as

θ(s) =
∫ s2

s

dσ
√
ε− (2/n) sn+2

0 /σn − σ2
, (4.19)

where s2 denotes the upper turning point in the s-coordinate. The solution (4.19) can be
expressed in terms of closed analytic expressions obtained by trigonometric substitution
only for n = −1 or n = 2 (when ε 6= 0), which we now study in detail below (the cases
n = −3 and −4, for example, are solved in terms of elliptic functions as is briefly discussed
in Appendix A).

4.3 Kepler Problem

In this Section, we solve the Kepler problem where the central potential U(r) = − k/r is
homogeneous with order n = −1 and k is a positive constant. The Virial Theorem (4.17),
therefore, implies that periodic solutions of the Kepler problem have negative total energies
E = −〈K〉 = (1/2) 〈U〉.

We now turn to the general solution of the Kepler problem

µ r̈ =
`2

µr3
− k

r2
and θ̇ =

`

µ r2
,

whose orbits are either periodic or aperiodic (see Figure 4.2). To obtain an analytic solution
r(θ) for the Kepler problem, as expressed by the radial force equation (4.4), we use the
normalized central potential U(s) = − s0s, where s0 = µk/`2, and Eq. (4.4) becomes
s′′ + s = s0. Next, the turning points for the Kepler problem are solutions of the quadratic
equation

s2 − 2 s0 s − ε = 0,

which can be written as s1,2 = s0 ±
√
s2
0 + ε:

s1 = s0 (1 − e) and s2 = s0 (1 + e),

where the eccentricity is defined as

e =
√

1 + ε/s2
0 =

√
1 + 2 E`2/µk2.

We clearly see from the Figure 4.2 that the effective potential

V (r) =
`2

2µr2
− k

r

for the Kepler problem has a single minimum at r0 = `2/(kµ) and that V0 = − k/(2r0).
We note that motion is bounded (i.e., orbits are periodic) when E0 = − k/(2r0) ≤ E < 0
(0 ≤ e < 1), and the motion is unbounded (i.e., orbits are aperiodic) when E ≥ 0 (e ≥ 1)
(see Figure 4.2).
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Figure 4.2: Effective potential for the Kepler problem

4.3.1 Bounded Keplerian Orbits

We look at the bounded case (ε < 0 or e < 1) first. We define θ(s2) = 0, so that for the
Kepler problem, Eq. (4.12) becomes

θ(s) = −
∫ s

s0 (1+e)

dσ
√
s2
0e

2 − (σ − s0)2
, (4.20)

which can easily be integrated to yield (see Appendix A)

θ(s) = arccos
(
s− s0

s0 e

)
,

and we easily verify that ∆θ = 2π, i.e., the bounded orbits of the Kepler problem are
closed. This equation can be inverted to yield

s(θ) = s0 (1 + e cos θ), (4.21)

where we readily check that this solution also satisfies the radial force equation (4.4).

Kepler’s First Law

The solution for r(θ) is now trivially obtained from s(θ) as

r(θ) =
r0

1 + e cos θ
, (4.22)
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Figure 4.3: Elliptical orbit for the Kepler problem

Figure 4.4: Keplerian two-body orbit
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Figure 4.5: Eccentric anomaly

where r0 = 1/s0 denotes the position of the minimum of the effective potential V ′(r0) = 0.

Eq. (4.22) generates an ellipse of semi-major axis

2a =
r0

1 + e
+

r0
1 − e

→ a =
r0

1 − e2
=

√
k

2 |E|

and semi-minor axis b = a
√

1 − e2 =
√
`2/(2µ |E|) and, therefore, yields Kepler’s First

Law. When we plot the positions of the two objects (of mass m1 and m2, respectively) by
using Kepler’s first law (4.22), with the positions r1 and r2 determined by Eqs. (2.43), we
obtain Figure 4.4. It is interesting to note that by detecting the small wobble motion of
a distant star (with mass m2), it has been possible to discover extra-solar planets (with
masses m1 < m2).

Note that by using the eccentric anomaly angle ψ (see Figure 4.5), we find a cosψ =
a e + r cos θ from which we obtain cosψ = (e + cos θ)/(1 + e cos θ) or cos θ = (cosψ −
e)/(1 − e cosψ). By substituting this last expression into Kepler’s First Law (4.22), we
obtain r(ψ) = a (1 − e cosψ).

Kepler’s Second Law

Using Eq. (4.2), we find

dt =
µ

`
r2 dθ =

2µ

`
dA(θ),
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where dA(θ) = (
∫
r dr) dθ = 1

2
[r(θ)]2 dθ denotes an infinitesimal area swept by dθ at radius

r(θ). When integrated, this relation yields Kepler’s Second law

∆t =
2µ

`
∆A, (4.23)

i.e., equal areas ∆A are swept in equal times ∆t since µ and ` are constants.

Kepler’s Third Law

The orbital period T of a bound system is defined as

T =
∫ 2π

0

dθ

θ̇
=

µ

`

∫ 2π

0
r2 dθ =

2µ

`
A =

2π µ

`
a b

where A = π ab denotes the area of an ellipse with semi-major axis a and semi-minor axis
b; here, we used the identity

∫ 2π

0

dθ

(1 + e cos θ)2
=

2π

(1 − e2)3/2
.

Using the expressions for a and b found above, we find

T =
2π µ

`
· k

2|E| ·
√√√√ `2

2µ |E| = 2π

√√√√ µk2

(2 |E|)3
.

If we now substitute the expression for a = k/2|E| and square both sides of this equation,
we obtain Kepler’s Third Law

T 2 =
(2π)2µ

k
a3. (4.24)

In Newtonian gravitational theory, where k/µ = G (m1 + m2), we find that, although
Kepler’s Third Law states that T 2/a3 is a constant for all planets in the solar system,
which is only an approximation that holds for m1 � m2 (true for all solar planets).

4.3.2 Unbounded Keplerian Orbits

We now look at the case where the total energy is positive or zero (i.e., e ≥ 1). Eq. (4.22)
yields r (1 + e cos θ) = r0 or the hyperbola equation

(√
e2 − 1 x − e r0√

e2 − 1

)2

− y2 =
r2
0

e2 − 1
.

For e = 1, the particle orbit is a parabola x = (r2
0 − y2)/2r0, with distance of closest

approach at x(0) = r0/2.
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Figure 4.6: Bounded and unbounded orbits for the Kepler problem

4.3.3 Laplace-Runge-Lenz Vector∗

Since the orientation of the unperturbed Keplerian ellipse is constant (i.e., it does not
precess), it turns out there exists a third constant of the motion for the Kepler problem
(in addition to energy and angular momentum); we note, however, that only two of these
three invariants are independent.

Let us now investigate this additional constant of the motion for the Kepler problem.
First, we consider the time derivative of the vector p×L, where the linear momentum p

and angular momentum L are

p = µ
(
ṙ r̂ + rθ̇ θ̂

)
and L = ` ẑ = µr2θ̇ ẑ.

The time derivative of the linear momentum is ṗ = −∇U(r) = −U ′(r) r̂ while the angular
momentum L = r×p is itself a constant of the motion so that

d

dt
(p×L) =

dp

dt
×L = − µ ∇U × (r× ṙ)

= − µṙ ·∇U r + µr ·∇U ṙ.

By re-arranging some terms (and using ṙ ·∇U = dU/dt for time-independent potentials),
we find

d

dt
(p×L) = − d

dt
(µU r) + µ (r ·∇U + U) ṙ,

or
dA

dt
= µ (r ·∇U + U) ṙ, (4.25)
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where the Laplace-Runge-Lenz (LRL) vector is defined as

A = p× L + µU(r) r. (4.26)

We immediately note that the LRL vector (4.26) is a constant of the motion if the potential
U(r) satisfies the condition

r ·∇U(r) + U(r) =
d(r U)

dr
= 0.

For the Kepler problem, with U(r) = − k/r, the vector (4.26) becomes

A = p×L − kµ r̂ =

(
`2

r
− kµ

)

r̂ − ` µṙ θ̂, (4.27)

which is a constant of the motion since r ·∇U = −U .

Since the vector A is constant in both magnitude and direction, its magnitude is a
constant

|A|2 = 2µ `2
(
p2

2µ
+ U

)

+ k2µ2 = k2µ2

(

1 +
2`2E

µk2

)

= k2µ2e2.

Here, we choose its direction to be along the x-axis (A = kµe x̂) and its constant amplitude
(|A| = kµe) is determined at the distance of closest approach rmin = r0/(1 + e). We can
easily show that (

`2

r
− k µ

)

= A · r̂ ≡ (kµ e) cos θ

leads to the Kepler solution

r(θ) =
r0

1 + e cos θ
,

where r0 = `2/kµ and the orbit’s eccentricity is e = |A|/kµ.

Note that if the Keplerian orbital motion is perturbed by the introduction of an addi-
tional potential term δU(r), we find

dA

dt
= (δU + r ·∇δU) p,

where A = A0 + µ δU r and, thus, we obtain the cross product (to lowest order in δU)

A0 ×
dA

dt
= (δU + r ·∇δU)

(
p2 + µU

)
L,

where U = − k/r is the unperturbed Kepler potential. Next, using the expression for the
unperturbed total energy

E =
p2

2µ
+ U = − k

2a
,
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Figure 4.7: Perturbed Kepler problem

we define the precession frequency

ωp(θ) = ẑ ·
A0

|A0|2
×
dA

dt
= (δU + r ·∇δU)

` µ

(µke)2
(2E − U)

= (δU + r ·∇δU)
`µk

(µke)2

(
1

r
− 1

a

)
.

Hence, using a = r0/(1 − e2), the precession frequency is

ωp(θ) =
1

`

(
1 + e−1 cos θ

)
(δU + r ·∇δU) .

and the net precession shift δθ of the Keplerian orbit over one unperturbed period is

δθ =
∫ 2π

0
ωp(θ)

dθ

θ̇
=

∫ 2π

0

(
1 + e−1 cos θ

1 + e cos θ

) [

r
d

dr

(
r δU

k

) ]

r=r(θ)

dθ.

For example, if δU = − ε/r2, then r d(rδU/k)/dr = ε/kr and the net precession shift is

δθ =
ε

kr0

∫ 2π

0

(
1 + e−1 cos θ

)
dθ = 2π

ε

kr0
.

Figure 4.7 shows the numerical solution of the perturbed Kepler problem for the case where
ε ' kr0/16.
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Figure 4.8: Effective potential for the isotropic simple harmonic oscillator problem

4.4 Isotropic Simple Harmonic Oscillator

As a second example of a central potential with closed bounded orbits, we now investigate
the case when the central potential is of the form

U(r) =
k

2
r2 → U(s) =

µk

2`2 s2
. (4.28)

The turning points for this problem are expressed as

r1 = r0

(
1 − e

1 + e

)1

4

=
1

s1

and r2 = r0

(
1 + e

1 − e

)1

4

=
1

s2

,

where r0 =
√
r1 r2 = (`2/µk)1/4 = 1/s0 is the radial position at which the effective potential

has a minimum, i.e., V ′(r0) = 0 and V0 = V (r0) = k r2
0 and

e =

√√√√1 −
(
kr2

0

E

)2

=

√

1 −
(
V0

E

)2

.

Here, we see from Figure 4.8 that orbits are always bounded for E > V0 (and thus
0 ≤ e ≤ 1). Next, using the change of coordinate q = s2 in Eq. (4.12), we obtain

θ =
− 1

2

∫ q

q2

dq
√
ε q − q2

0 − q2
, (4.29)
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Figure 4.9: Effective potential for the internal hard sphere

where q2 = (1+e) ε/2 and q0 = s2
0. We now substitute q(ϕ) = (1+e cosϕ) ε/2 in Eq. (4.29)

to obtain

θ =
1

2
arccos

[
1

e

(
2 q

ε
− 1

) ]
,

and we easily verify that ∆θ = π and bounded orbits are closed. This equation can now
be inverted to give

r(θ) =
r0 (1 − e2)1/4

√
1 + e cos 2θ

, (4.30)

which describes the ellipse x2/b2 + y2/a2 = 1, with semi-major axis a = r2 and semi-minor
axis b = r1. Note that this solution x2/b2 + y2/a2 = 1 may be obtained from the Cartesian
representation for the Lagrangian L = 1

2
µ (ẋ2+ẏ2)− 1

2
k (x2+y2), which yields the solutions

x(t) = b cosωt and y(t) = a sinωt, where the constants a and b are determined from the
conservation laws E = 1

2
µω2 (a2 + b2) and ` = µω a b.

Lastly, the area of the ellipse is A = π ab = π r2
0 while the physical period is

T (E, `) =
∫ 2π

0

dθ

θ̇
=

2µA

`
= 2π

√
µ

k
;

note that the radial period is T/2 since ∆θ = π. We, therefore, find that the period of an
isotropic simple harmonic oscillator is independent of the constants of the motion E and
`, in analogy with the one-dimensional case.

4.5 Internal Reflection inside a Well

As a last example of bounded motion associated with a central-force potential, we consider
the constant central potential

U(r) =






− U0 (r < R)

0 (r > R)
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Figure 4.10: Internal reflections inside a hard sphere

where U0 is a constant and R denotes the radius of a sphere. The effective potential
V (r) = `2/(2µr2) + U(r) associated with this potential is shown in Figure 4.9. Orbits are
unbounded when E > Vmax = `2/(2µR2). For energy values

Vmin =
`2

2µR2
− U0 < E < Vmax =

`2

2µR2
,

on the other hand, Figure 4.9 shows that bounded motion is possible, with turning points

r1 = rt =

√√√√ `2

2µ (E + U0)
and r2 = R.

When E = Vmin, the left turning point reaches its maximum value rt = R while it reaches
its minimum value rt/R = (1 + U0/E)−

1

2 < 1 when E = Vmax.

Assuming that the particle starts at r = rt at θ = 0, the particle orbit is found by
integration by quadrature as

θ(s) =
∫ st

s

dσ
√
s2
t − σ2

,

where st = 1/rt, which is easily integrated to yield

θ(s) = arccos
(
s

st

)
→ r(θ) = rt sec θ (for θ ≤ Θ),

where the maximum angle Θ defines the angle at which the particle hits the turning point
R, i.e., r(Θ) = R and

Θ = arccos





√√√√ `2

2µR2 (E + U0)



 .
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Subsequent motion of the particle involves an infinite sequence of internal reflections as
shown in Figure 4.10. The case where E > `2/2µR2 involves a single turning point and is
discussed in Sec. 5.6.2.
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4.6 Problems

Problem 1

Consider a comet moving in a parabolic orbit in the plane of the Earth’s orbit. If the
distance of closest approach of the comet to the sun is β rE , where rE is the radius of the
Earth’s (assumed) circular orbit and where β < 1, show that the time the comet spends

within the orbit of the Earth is given by
√

2 (1 − β) (1 + 2β) × 1 year/(3π).

Problem 2

Find the effective potential V (r) = U(r) + `2/2µr2 that allows a particle to move in a
spiral orbit given by r = k θ2, where k is a constant. Once this potential is determined,
find the energy level corresponding to this unbounded orbit and solve for r(t) and θ(t).

Problem 3

Consider the perturbed Kepler problem in which a particle of mass m, energy E < 0,
and angular momentum ` is moving in the central-force potential

U(r) = − k

r
+

α

r2
,

where the perturbation potential α/r2 is considered small in the sense that the dimension-
less parameter ε = 2mα/`2 � 1 is small.

(a) Show that the energy equation for this problem can be written using s = 1/r as

E =
`2

2m

[
(s′)2 + γ2 s2 − 2 s0s

]
,
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where s0 = mk/`2 and γ2 = 1 + ε.

(b) Show that the turning points are

s1 =
s0

γ2
(1 − e) and s2 =

s0

γ2
(1 + e),

where e =
√

1 + 2 γ2`2E/mk2.

(c) By solving the integral

θ(s) = −
∫ s

s2

dσ
√

(2mE/`2) + 2 s0σ − γ2 σ2
,

where θ(s2) = 0, show that

r(θ) =
γ2 r0

1 + e cos(γθ)
,

where r0 = 1/s0.

Problem 4

A Keplerian elliptical orbit, described by the relation r(θ) = r0/(1+ e cos θ), undergoes
a precession motion when perturbed by the perturbation potential δU(r), with precession
frequency

ωp(θ) = ẑ ·
dA

dt
×

A

|A|2 = − 1

`

(
1 + e−1 cos θ

)
(δU + r ·∇δU)

where A = p× L−µk r̂ denotes the Laplace-Runge-Lenz vector for the unperturbed Kepler
problem.

Show that the net precession shift δθ of the Keplerian orbit over one unperturbed period
is

δθ =
∫ 2π

0
ωp(θ)

dθ

θ̇
= − 6π

α

kr2
0

.

if the perturbation potential is δU(r) = −α/r3, where α is a constant.
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Problem 5

In Kepler’s work, angles are refered to as anomalies. In the Figure below, an ellipse
(with eccentricity e < 1) of semi-major axis a and semi-minor axis b is inscribed by a circle
of radius a. Here, the lengths of the segments CQ, CS, SR, and RQ are, respectively, a,
a e, r(θ) cos θ, and a sinψ.

Show that the orbit of the planet (at point P ) is described in terms of the eccentric
anomaly ψ as

r(ψ) = a (1 − e cosψ),

and the true anomaly θ is defined in terms of ψ as

cos θ(ψ) =

(
cosψ − e

1 − e cosψ

)

.
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Chapter 5

Collisions and Scattering Theory

In the previous Chapter, we investigated two types of orbits (bounded and unbounded)
for two-particle systems evolving under the influence of a central potential. In the present
Chapter, we focus our attention on unbounded orbits within the context of elastic collision
theory. In this context, a collision between two interacting particles involves a three-step
process: Step I – two particles are initially infinitely far apart (in which case, the energy of
each particle is assumed to be strictly kinetic); Step II – as the two particles approach each
other, their interacting potential (repulsive or attractive) causes them to reach a distance
of closest approach; and Step III – the two particles then move progressively farther apart
(eventually reaching a point where the energy of each particle is once again strictly kinetic).

These three steps form the foundations of Collision Kinematics and Collision Dynamics.
The topic of Collision Kinematics, which describes the collision in terms of the conservation
laws of momentum and energy, deals with Steps I and III; here, the incoming particles
define the initial state of the two-particle system while the outgoing particles define the
final state. The topic of Collision Dynamics, on the other hand, deals with Step II, in
which the particular nature of the interaction is taken into account.

5.1 Two-Particle Collisions in the LAB Frame

Consider the collision of two particles (labeled 1 and 2) of masses m1 and m2, respectively.
Let us denote the velocities of particles 1 and 2 before the collision as u1 and u2, respectively,
while the velocities after the collision are denoted v1 and v2. Furthermore, the particle
momenta before and after the collision are denoted p and q, respectively.

To simplify the analysis, we define the laboratory (LAB) frame to correspond to the
reference frame in which m2 is at rest (i.e., u2 = 0); in this collision scenario, m1 acts as
the projectile particle and m2 is the target particle. We now write the velocities u1, v1, and

115
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Figure 5.1: Collision kinematics in the LAB frame

v2 as
u1 = u x̂

v1 = v1 (cos θ x̂ + sin θ ŷ)
v2 = v2 (cosϕ x̂ − sinϕ ŷ)





, (5.1)

where the deflection angle θ and the recoil angle ϕ are defined in Figure 5.1. The conser-
vation laws of momentum and energy

m1u1 = m1v1 + m2v2 and
m1

2
u2 =

m1

2
|v1|2 +

m2

2
|v2|2

can be written in terms of the mass ratio α = m1/m2 of the projectile mass to the target
mass as

α (u − v1 cos θ) = v2 cosϕ, (5.2)

αv1 sin θ = v2 sinϕ, (5.3)

α (u2 − v2
1) = v2

2. (5.4)

Since the three equations (5.2)-(5.4) are expressed in terms of four unknown quantities
(v1, θ, v2, ϕ), for given incident velocity u and mass ratio α, we must choose one post-
collision coordinate as an independent variable. Here, we choose the recoil angle ϕ of
the target particle, and proceed with finding expressions for v1(u, ϕ;α), v2(u, ϕ;α) and
θ(u, ϕ;α); other choices lead to similar formulas (see problem 1).

First, adding the square of the mometum components (5.2) and (5.3), we obtain

α2 v2
1 = α2 u2 − 2α uv2 cosϕ + v2

2. (5.5)

Next, using the energy equation (5.4), we find

α2 v2
1 = α

(
αu2 − v2

2

)
= α2 u2 − α v2

2, (5.6)

so that these two equations combine to give

v2(u, ϕ;α) = 2
(

α

1 + α

)
u cosϕ. (5.7)
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Once v2(u, ϕ;α) is known and after substituting Eq. (5.7) into Eq. (5.6), we find

v1(u, ϕ;α) = u

√
1 − 4

µ

M
cos2 ϕ , (5.8)

where µ/M = α/(1 + α)2 is the ratio of the reduced mass µ and the total mass M .

Lastly, we take the ratio of the momentum components (5.2) and (5.3) in order to
eliminate the unknown v1 and find

tan θ =
v2 sinϕ

αu − v2 cosϕ
.

If we substitute Eq. (5.7), we easily obtain

tan θ =
2 sinϕ cosϕ

1 + α − 2 cos2 ϕ
,

or

θ(ϕ;α) = arctan

(
sin 2ϕ

α − cos 2ϕ

)

. (5.9)

In the limit α = 1 (i.e., a collision involving identical particles), we find v2 = u cosϕ and
v1 = u sinϕ from Eqs. (5.7) and (5.8), respectively, and

tan θ = cotϕ → ϕ =
π

2
− θ,

from Eq. (5.9) so that the angular sum θ + ϕ for like-particle collisions is always 90o (for
ϕ 6= 0).

We summarize by stating that, after the collision, the momenta q1 and q2 in the LAB
frame (where m2 is initially at rest) are

q1 = p

[

1 − 4α

(1 + α)2
cos2 ϕ

]1/2

(cos θ x̂ + sin θ ŷ)

q2 =
2 p cosϕ

1 + α
(cosϕ x̂ − sinϕ ŷ)

where p1 = p x̂ is the initial momentum of particle 1. We note that these expressions for
the particle momenta after the collision satisfy the law of conservation of (kinetic) energy
in addition to the law of conservation of momentum.

5.2 Two-Particle Collisions in the CM Frame

In the center-of-mass (CM) frame, the elastic collision between particles 1 and 2 is described
quite simply; the CM velocities and momenta are, henceforth, denoted with a prime. Before
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Figure 5.2: Collision kinematics in the CM frame

the collision, the momenta of particles 1 and 2 are equal in magnitude but with opposite
directions

p′
1 = µu x̂ = − p′

2,

where µ is the reduced mass of the two-particle system. After the collision (see Figure 5.2),
conservation of energy-momentum dictates that

q′
1 = µu (cosΘ x̂ + sinΘ ŷ) = − q′

2,

where Θ is the scattering angle in the CM frame and µu = p/(1 + α). Thus the particle
velocities after the collision in the CM frame are

v′
1 =

q′
1

m1
=

u

1 + α
(cosΘ x̂ + sinΘ ŷ) and v′

2 =
q′

2

m2
= − α v′

1.

It is quite clear, thus, that the initial and final kinematic states lie on the same circle in
CM momentum space and the single variable defining the outgoing two-particle state is
represented by the CM scattering angle Θ.

5.3 Connection between the CM and LAB Frames

We now establish the connection between the momenta q1 and q2 in the LAB frame and
the momenta q′

1 and q′
2 in the CM frame. First, we denote the velocity of the CM as

w =
m1 u1 +m2 u2

m1 +m2

=
α u

1 + α
x̂,
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Figure 5.3: CM collision geometry

so that w = |w| = α u/(1 + α) and |v′
2| = w = α |v′

1|.
The connection between v′

1 and v1 is expressed as

v′
1 = v1 − w →






v1 cos θ = w (1 + α−1 cosΘ)

v1 sin θ = wα−1 sinΘ

so that

tan θ =
sinΘ

α+ cos Θ
, (5.10)

and
v1 = v′1

√
1 + α2 + 2α cosΘ,

where v′1 = u/(1 + α). Likewise, the connection between v′
2 and v2 is expressed as

v′
2 = v2 − w →






v2 cosϕ = w (1 − cos Θ)

v2 sinϕ = w sinΘ

so that

tanϕ =
sinΘ

1 − cos Θ
= cot

Θ

2
→ ϕ =

1

2
(π − Θ),

and

v2 = 2 v′2 sin
Θ

2
,

where v′2 = α u/(1 + α) = w.
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Figure 5.4: Collision kinematics and dynamics

5.4 Scattering Cross Sections

In the previous Section, we investigated the connection between the initial and final kine-
matic states of an elastic collision described by Steps I and III, respectively, introduced
earlier. Here, the initial kinematic state is described in terms of the speed u of the projec-
tile particle in the Laboratory frame (assuming that the target particle is at rest), while
the final kinematic state is described in terms of the velocity coordinates for the deflected
projectile particle (v1, θ) and the recoiled target particle (v2, ϕ). In the present Section,
we shall investigate Step II, namely, how the distance of closest approach influences the
deflection angles (θ, ϕ) in the LAB frame and the deflection angle Θ in the CM frame.

5.4.1 Definitions

First, we consider for simplicity the case of a projectile particle of mass m being deflected
by a repulsive central-force potential U(r) > 0 whose center is at rest at the origin (or
α = 0). As the projectile particle approaches from the right (at r = ∞ and θ = 0) moving
with speed u, it is progressively deflected until it reaches a minimum radius ρ at θ = χ
after which the projectile particle moves away from the repulsion center until it reaches
r = ∞ at a deflection angle θ = Θ and again moving with speed u. From Figure 5.5, we
can see that the scattering process is symmetric about the line of closest approach (i.e.,
2χ = π − Θ, where Θ is the CM deflection angle). The angle of closest approach

χ =
1

2
(π − Θ) (5.11)

is a function of the distance of closest approach ρ, the total energy E, and the angular
momentum `. The distance ρ is, of course, a turning point (ṙ = 0) and is the only root of
the equation

E = U(ρ) +
`2

2mρ2
, (5.12)
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Figure 5.5: Scattering geometry

where E = mu2/2 is the total initial energy of the projectile particle.

The path of the projectile particle in Figure 5.5 is labeled by the impact parameter b (the
distance of closest approach in the non-interacting case: U = 0) and a simple calculation
(using r×v = bu ẑ) shows that the angular momentum is

` = mub =
√

2mE b. (5.13)

It is, thus, quite clear that ρ is a function of E ≡ `2/(2mb2), m, and b. Hence, the angle
χ is defined in terms of the standard integral

χ =
∫ ∞

ρ

(`/r2) dr
√

2m [E − U(r)] − (`2/r2)
=
∫ b/ρ

0

dx
√

1 − x2 − b2 U(x/b)
. (5.14)

Once an expression Θ(b) is obtained from Eq. (5.14), we may invert it to obtain b(Θ).

5.4.2 Scattering Cross Sections in CM and LAB Frames

We are now ready to discuss the likelyhood of the outcome of a collision by introducing the
concept of differential cross section σ′(Θ) in the CM frame. The infinitesimal cross section
dσ′ in the CM frame is defined in terms of b(Θ) as dσ′(Θ) = π db2(Θ). Physically, dσ/dΣ
measures the ratio of the number of incident particles per unit time scattered into a solid
angle dΩ to the incident flux

Using Eqs. (5.11) and (5.14), the differential cross section in the CM frame is defined
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as

σ′(Θ) =
dσ′

2π sinΘ dΘ
=

b(Θ)

sinΘ

∣∣∣∣∣
db(Θ)

dΘ

∣∣∣∣∣ , (5.15)

and the total cross section is, thus, defined as

σT = 2π
∫ π

0
σ′(Θ) sinΘ dΘ.

We note that, in Eq. (5.15), the quantity db/dΘ is often negative and, thus, we must take
its absolute value to ensure that σ′(Θ) is positive.

The differential cross section can also be written in the LAB frame in terms of the
deflection angle θ as

σ(θ) =
dσ

2π sin θ dθ
=

b(θ)

sin θ

∣∣∣∣∣
db(θ)

dθ

∣∣∣∣∣ . (5.16)

Since the infinitesimal cross section dσ = dσ′ is the same in both frames (i.e., the likelyhood
of a collision should not depend on the choice of a frame of reference), we find

σ(θ) sin θ dθ = σ′(Θ) sinΘ dΘ,

from which we obtain

σ(θ) = σ′(Θ)
sinΘ

sin θ

dΘ

dθ
, (5.17)

or

σ′(Θ) = σ(θ)
sin θ

sinΘ

dθ

dΘ
. (5.18)

Eq. (5.17) yields an expression for the differential cross section in the LAB frame σ(θ) once
the differential cross section in the CM frame σ′(Θ) and an explicit formula for Θ(θ) are

known. Eq. (5.18) represents the inverse transformation σ(θ) → σ′(Θ). We point out
that, whereas the CM differential cross section σ′(Θ) is naturally associated with theo-
retical calculations, the LAB differential cross section σ(θ) is naturally associated with
experimental measurements. Hence, the transformation (5.17) is used to translate a theo-
retical prediction into an observable experimental cross section, while the transformation
(5.18) is used to translate experimental measurements into a format suitable for theoretical
analysis.

We note that these transformations rely on finding relations between the LAB deflection
angle θ and the CM deflection angle Θ given by Eq. (5.10), which can be converted into

sin(Θ − θ) = α sin θ. (5.19)

For example, using these relations, we now show how to obtain an expression for Eq. (5.17)
by using Eqs. (5.10) and (5.19). First, we use Eq. (5.19) to obtain

dΘ

dθ
=

α cos θ + cos(Θ − θ)

cos(Θ − θ)
, (5.20)
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where

cos(Θ − θ) =
√

1 − α2 sin2 θ .

Next, using Eq. (5.10), we show that

sinΘ

sin θ
=

α+ cos Θ

cos θ
=

α + [cos(Θ − θ) cos θ −
= α sin θ︷ ︸︸ ︷

sin(Θ − θ) sin θ]

cos θ

=
α (1 − sin2 θ) + cos(Θ − θ) cos θ

cos θ
= α cos θ +

√
1 − α2 sin2 θ . (5.21)

Thus by combining Eqs. (5.20) and (5.21), we find

sinΘ

sin θ

dΘ

dθ
=

[α cos θ +
√

1 − α2 sin2 θ]2√
1 − α2 sin2 θ

= 2α cos θ +
1 + α2 cos 2θ√
1 − α2 sin2 θ

, (5.22)

which is valid for α < 1. Lastly, noting from Eq. (5.19), that the CM deflection angle is
defined as

Θ(θ) = θ + arcsin(α sin θ ),

the transformation σ′(Θ) → σ(θ) is now complete. Similar manipulations yield the trans-
formation σ(θ) → σ′(Θ). We note that the LAB-frame cross section σ(θ) are generally
difficult to obtain for arbitrary mass ratio α = m1/m2.

5.5 Rutherford Scattering

As an explicit example of the scattering formalism developed in this Chapter, we investigate
the scattering of a charged particle of mass m1 and charge q1 by another charged particle
of mass m2 � m1 and charge q2 such that q1 q2 > 0 and µ ' m1. This situation leads to
the two particles experiencing a repulsive central force with potential

U(r) =
k

r
,

where k = q1q2/(4π ε0) > 0.

The turning-point equation in this case is

E = E
b2

ρ2
+

k

ρ
,

whose solution is the distance of closest approach

ρ = r0 +
√
r2
0 + b2 = b

(
ε +

√
1 + ε2

)
, (5.23)
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where 2 r0 = k/E is the distance of closest approach for a head-on collision (for which the

impact parameter b is zero) and ε = r0/b; note, here, that the second solution r0−
√
r2
0 + b2

to the turning-point equation is negative and, therefore, is not allowed. The problem of
the electrostatic repulsive interaction between a positively-charged alpha particle (i.e., the
nucleus of a helium atom) and positively-charged nucleus of a gold atom was first studied
by Rutherford and the scattering cross section for this problem is known as the Rutherford
cross section.

The angle χ at which the distance of closest approach is reached is calculated from
Eq. (5.14) as

χ =
∫ b/ρ

0

dx√
1 − x2 − 2 ε x

=
∫ b/ρ

0

dx
√

(1 + ε2) − (x+ ε)2
, (5.24)

where
b

ρ
=

1

ε+
√

1 + ε2
= − ε +

√
1 + ε2.

Making use of the trigonometric substitution x = − ε+
√

1 + ε2 cosψ, we find that

χ = arccos

(
ε√

1 + ε2

)

→ ε = cotχ,

which becomes
b

r0
= tanχ. (5.25)

Using the relation (5.11), we now find

b(Θ) = r0 cot
Θ

2
, (5.26)

and thus db(Θ)/dΘ = − (r0/2) csc2(Θ/2). The CM Rutherford cross section is

σ′(Θ) =
b(Θ)

sinΘ

∣∣∣∣∣
db(Θ)

dΘ

∣∣∣∣∣ =
r2
0

4 sin4(Θ/2)
,

or

σ′(Θ) =

(
k

4E sin2(Θ/2)

)2

. (5.27)

Note that the Rutherford scattering cross section (5.27) does not depend on the sign of
k and is thus valid for both repulsive and attractive interactions. Moreover, we note (see
Figure 5.6) that the Rutherford scattering cross section becomes very large in the forward
direction Θ → 0 (where σ′ → Θ−4) while the differential cross section as Θ → π behaves
as σ′ → (k/4E)2.
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Figure 5.6: Rutherford scattering cross-section

5.6 Hard-Sphere and Soft-Sphere Scattering

Explicit calculations of differential cross sections tend to be very complex for general central
potentials and, therefore, prove unsuitable for an undergraduate introductory course in
Classical Mechanics. In the present Section, we consider two simple central potentials
associated with a uniform central potential U(r) 6= 0 confined to a spherical region (r < R).

5.6.1 Hard-Sphere Scattering

We begin by considering the collision of a point-like particle of mass m1 with a hard sphere
of mass m2 and radius R. In this particular case, the central potential for the hard sphere
is

U(r) =






∞ (for r < R)

0 (for r > R)

and the collision is shown in Figure 5.7. From Figure 5.7, we see that the impact parameter
is

b = R sinχ, (5.28)

where χ is the angle of incidence. The angle of reflection η is different from the angle of
incidence χ for the case of arbitrary mass ratio α = m1/m2. To show this, we decompose
the velocities in terms of components perpendicular and tangential to the surface of the
sphere at the point of impact, i.e., we respectively find

αu cosχ = v2 − α v1 cos η
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Figure 5.7: Hard-sphere scattering geometry

αu sinχ = α v1 sin η.

From these expressions we obtain

tan η =
α u sinχ

v2 − α u cosχ
.

From Figure 5.7, we also find the deflection angle θ = π − (χ + η) and the recoil angle
ϕ = χ and thus, according to Chap. 5,

v2 =
(

2α

1 + α

)
u cosχ,

and thus

tan η =
(

1 + α

1 − α

)
tanχ. (5.29)

We, therefore, easily see that η = χ (the standard form of the Law of Reflection) only if
α = 0 (i.e., the target particle is infinitely massive).

In the CM frame, the collision is symmetric with a deflection angle χ = 1
2
(π − Θ), so

that

b = R sinχ = R cos
Θ

2
.

The scattering cross section in the CM frame is

σ′(Θ) =
b(Θ)

sinΘ

∣∣∣∣∣
db(Θ)

dΘ

∣∣∣∣∣ =
R cos(Θ/2)

sinΘ
·
∣∣∣∣−

R

2
sin(Θ/2)

∣∣∣∣ =
R2

4
, (5.30)
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and the total cross section is

σT = 2π
∫ π

0
σ′(Θ) sin Θ dΘ = π R2, (5.31)

i.e., the total cross section for the problem of hard-sphere collision is equal to the effective
area of the sphere.

The scattering cross section in the LAB frame can also be obtained for the case α < 1
using Eqs. (5.17) and (5.22) as

σ(θ) =
R2

4

(

2α cos θ +
1 + α2 cos 2θ√
1 − α2 sin2 θ

)

, (5.32)

for α = m1/m2 < 1. The integration of this formula must yield the total cross section

σT = 2π
∫ π

0
σ(θ) sin θ dθ,

where θmax = π for α < 1.

5.6.2 Soft-Sphere Scattering

We now consider the scattering of a particle subjected to the attractive potential considered
in Sec. 4.5

U(r) =






− U0 (for r < R)

0 for r > R
(5.33)

where the constant U0 denotes the depth of the attractive potential well and E > `2/2µR2

involves a single turning point. We denote β the angle at which the incoming particle enters
the soft-sphere potential (see Figure 5.8), and thus the impact parameter b of the incoming
particle is b = R sin β. The particle enters the soft-sphere potential region (r < R) and
reaches a distance of closest approach ρ, defined from the turning-point condition

E = −U0 + E
b2

ρ2
→ ρ =

b
√

1 + U0/E
=

R

n
sinβ,

where n =
√

1 + U0/E denotes the index of refraction of the soft-sphere potential region.
From Figure 5.8, we note that an optical analogy helps us determine that, through Snell’s
law, we find

sinβ = n sin
(
β − Θ

2

)
, (5.34)

where the transmission angle α is given in terms of the incident angle β and the CM
scattering angle −Θ as Θ = 2 (β − α).
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Figure 5.8: Soft-sphere scattering geometry

Figure 5.9: Soft-sphere scattering cross-section in the soft-sphere limit (n → 1) and the
hard-sphere limit (n� 1); here, note that σ(0) = n2/(n − 1)2.
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The distance of closest approach is reached at an angle χ is determined as

χ = β +
∫ R

ρ

b dr

r
√
n2r2 − b2

= β + arccos

(
b

nR

)

− arccos

(
b

nρ

)

︸ ︷︷ ︸
= 0

= β + arccos

(
b

nR

)

=
1

2
(π + Θ), (5.35)

and, thus, the impact parameter b(Θ) can be expressed as

b(Θ) = nR sin
(
β(b) − Θ

2

)
→ b(Θ) =

nR sin(Θ/2)
√

1 + n2 − 2n cos(Θ/2)
, (5.36)

and its derivative with respect to Θ yields

db

dΘ
=

nR

2

[n cos(Θ/2) − 1] [n− cos(Θ/2)]

[1 + n2 − 2n cos(Θ/2)]3/2
,

and the scattering cross section in the CM frame is

σ′(Θ) =
b(Θ)

sinΘ

∣∣∣∣∣
db(Θ)

dΘ

∣∣∣∣∣ =
n2R2

4

|[n cos(Θ/2) − 1] [n− cos(Θ/2)]|
cos(Θ/2) [1 + n2 − 2n cos(Θ/2)]2

.

Note that, on the one hand, when β = 0, we find χ = π/2 and Θmin = 0, while on the other
hand, when β = π/2, we find b = R and

1 = n sin
(
π

2
− Θmax

2

)
= n cos(Θmax/2) → Θmax = 2 arccos

(
n−1

)
.

Moreover, when Θ = Θmax, we find that db/dΘ vanishes and, therefore, the differential
cross section vanishes σ′(Θmax) = 0, while at Θ = 0, we find σ′(0) = [n/(n− 1)]2 (R2/4).

Figure 5.9 shows the soft-sphere scattering cross section σ(Θ) (normalized to the hard-
sphere cross sectionR2/4) as a function of Θ for four cases: n = (1.1, 1.15) in the soft-sphere
limit (n → 1) and n = (10, 20, 50, 1000) in the hard-sphere limit (n → ∞). We clearly see
the strong forward-scattering behavior as n → 1 (or U0 → 0) in the soft-sphere limit and
the hard-sphere limit σ → 1 as n → ∞. We note that the total scattering cross section
(using the substitution x = n cosΘ/2)

σT = 2π
∫ Θmax

0
σ′(Θ) sinΘ dΘ = 2π R2

∫ n

1

(x− 1) (n2 − x) dx

(1 + n2 − 2x)2
= π R2

is independent of the index of refraction n and equals the hard-sphere total cross section
(5.31).
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Figure 5.10: Scattering by a hard surface ρ(z).

The opposite case of a repulsive soft-sphere potential, where −U0 is replaced with U0 in
Eq. (5.33), is treated by replacing n = (1 +U0/E)

1

2 with n = (1−U0/E)−
1

2 and Eq. (5.36)
is replaced with

b(Θ) = n−1 R sin
(
β(b) +

Θ

2

)
→ b(Θ) =

R sin(Θ/2)
√

1 + n2 − 2n cos(Θ/2)
, (5.37)

while Snell’s law (5.34) is replaced with

sin
(
β +

Θ

2

)
= n sinβ.

5.7 Elastic Scattering by a Hard Surface

We generalize the hard-sphere scattering problem by considering scattering by a smooth
hard surface ρ(z) with maximal radial extent R (see Figure 5.10). Here, a particle of mass
m, initially traveling along the z-axis with velocity u with an impact parameter b, collides
with the hard surface and is scattered with deflection angle Θ. The particle hits the surface
at a distance b = ρ(z) from its axis of symmetry and the angle of incidence θ = π/2 − ϕ
(measured from the normal to the surface) is defined in terms of the complementary angle
ϕ, where cosϕ = [1 + (ρ′)2]−1/2. Since the deflection angle Θ is defined in terms of ϕ as
Θ = π − 2 θ = 2ϕ, we find

tanϕ = ρ′(z) = tan
Θ

2
. (5.38)
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By using the identity b(Θ) = ρ(z), we can solve for z(Θ) [or Θ(z)], we can now calculate
the differential cross-section (5.15).

First, we use the identity

db

dΘ
= ρ′

dz

dΘ
= ρ′

(
dΘ

dz

)−1

,

where Θ(z) = 2 arctan(ρ′) yields

dΘ

dz
=

2 ρ′′

[1 + (ρ′)2]
,

and, hence, ∣∣∣∣∣
db

dΘ

∣∣∣∣∣ =
ρ′

2 |ρ′′|
[
1 + (ρ′)2

]
.

Lastly, using

sinΘ = 2 cosϕ sinϕ =
2 ρ′

[1 + (ρ′)2]
,

we find the differential scattering cross-section

σ(Θ(z)) =
ρ

4 |ρ′′|
[
1 + (ρ′)2

]2 ≡
(
ρ

4κ

)
sec

Θ

2
, (5.39)

where κ ≡ |ρ′′|/[1 + (ρ′)2]3/2 denotes the Frenet-Serret curvature of the curve ρ(z) in the
(ρ, z)-plane.

For example, we revisit the hard-sphere scattering problem studied in Sec. 5.6.1, with
ρ(z) =

√
R2 − z2 for −R ≤ z ≤ 0. Here, the Frenet-Serret curvature is κ = 1/R and

z = − ρ tan
Θ

2
→ ρ = R cos

Θ

2
,

so that the differential cross-section (5.39) yields the standard hard-sphere result (5.30):

σ(Θ(z)) =

(
R2

4
cos

Θ

2

)

sec
Θ

2
=

R2

4
.

Lastly, elastic scattering by hard surface ρ(z) = C
√
z, where C is a constant, yields the

Rutherford formula

σ =
C4

16 sin4 Θ
2

,

where z = 1
4
C2 cot2 Θ

2
.
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5.8 Problems

Problem 1

(a) Using the conservation laws of energy and momentum, solve for v1(u, θ; β), where
β = m2/m1 and

u1 = u x̂

v1 = v1 (cos θ x̂ + sin θ ŷ)

v2 = v2 (cosϕ x̂ − sinϕ ŷ)

(b) Discuss the number of physical solutions for v1(u, θ; β) for β < 1 and β > 1.

(c) For β < 1, show that physical solutions for v1(u, θ; β) exist for θ < arcsin(β) = θmax.

Problem 2

Show that the momentum transfer ∆p′
1 = q′

1 − p′
1 of the projectile particle in the CM

frame has a magnitude

|∆p′
1| = 2µu sin

Θ

2
,

where µ, u, and Θ are the reduced mass, initial projectile LAB speed, and CM scattering
angle, respectively.

Problem 3

Show that the differential cross section σ′(Θ) for the elastic scattering of a particle of
mass m from the repulsive central-force potential U(r) = k/r2 with a fixed force-center at
r = 0 (or an infinitely massive target particle) is

σ′(Θ) =
2π2 k

mu2

(π − Θ)

[Θ (2π − Θ)]2 sin Θ
,

where u is the speed of the incoming projectile particle at r = ∞.

Hint : Show that b(Θ) =
r0 (π −Θ)√
2πΘ − Θ2

, where r2
0 =

2k

mu2
.

Problem 4

By using the relations tan θ = sinΘ/(α + cos Θ) and/or sin(Θ − θ) = α sin θ, where
α = m1/m2, show that the relation between the differential cross section in the CM frame,
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σ′(Θ), and the differential cross section in the LAB frame, σ(θ), is

σ′(Θ) = σ(θ) · 1 + α cos Θ

(1 + 2α cosΘ + α2)3/2
.

Problem 5

Consider the scattering of a particle of mass m by the localized repulsive central poten-
tial

U(r) =






− kr2/2 r ≤ R

0 r > R

where the radius R denotes the range of the interaction.

(a) Show that for a particle of energy E > 0 moving towards the center of attraction with
impact parameter b = R sinβ, the distance of closest approach ρ for this problem is

ρ =

√
E

k
(e − 1), where e =

√

1 +
2kb2

E

(b) Show that the angle χ at closest approach is

χ = β +
∫ R

ρ

(b/r2) dr
√

1 − b2/r2 + kr2/2E

= β +
1

2
arccos

(
2 sin2 β − 1

e

)

(c) Using the relation χ = 1
2
(π+ Θ) between χ and the CM scattering angle Θ, show that

e =
cos 2β

cos(2β −Θ)
< 1.

Problem 6

Consider elastic scattering by a hard ellipsoid ρ(z) = ρ0

√
1 − (z/z0)2 (− z0 ≤ z ≤ 0),

where ρ0 = z0

√
1 − e2 ≤ z0 and 0 ≤ e < 1 denotes the eccentricity of the ellipse in the

(ρ, z)-plane.
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(a) Show that the differential scattering cross-section is expressed as

σ(Θ) =
ρ2

0 (1 − e2)

4 (1 − e2 cos2 Θ
2
)
.

(b) Show that the total cross-section σT is

σT = 2π
∫ π

0
σ(Θ) sinΘ dΘ = π ρ2

0

[ (
1

e2
− 1

)
ln
(

1

1 − e2

) ]
.

(c) Show that we recover the hard-sphere result σT = π ρ2
0 in the limit e → 0.



Chapter 6

Motion in a Non-Inertial Frame

A reference frame is said to be an inertial frame if the motion of particles in that frame
is subject only to physical forces (i.e., forces are derivable from a physical potential U
such that m ẍ = −∇U). The Principle of Galilean Relativity (Sec. 2.5.3) states that the
laws of physics are the same in all inertial frames and that all reference frames moving at
constant velocity with respect to an inertial frame are also inertial frames. Hence, physical
accelerations are identical in all inertial frames.

In contrast, a reference frame is said to be non-inertial if the motion of particles in that
frame of reference violates the Principle of Galilean Relativity. Such non-inertial frames
include all rotating frames and accelerated reference frames.

6.1 Time Derivatives in Fixed and Rotating Frames

To investigate the relationship between inertial and non-inertial frames, we consider the
time derivative of an arbitrary vector A(t) in two reference frames. The first reference frame
is called the fixed (inertial) frame and is expressed in terms of the Cartesian coordinates
r′ = (x′, y′, z′). The second reference frame is called the rotating (non-inertial) frame and
is expressed in terms of the Cartesian coordinates r = (x, y, z). In Figure 6.1, the rotating
frame shares the same origin as the fixed frame (we relax this condition later) and the
rotation angular velocity ω of the rotating frame (with respect to the fixed frame) has
components (ωx, ωy, ωz).

Since observations can also be made in a rotating frame of reference, we decompose the
vector A in terms of components Ai in the rotating frame (with unit vectors x̂i). Thus,
A = Ai x̂i (using the summation rule) and the time derivative of A as observed in the fixed
frame is

dA

dt
=

dAi

dt
x̂i + Ai

dx̂i

dt
. (6.1)

135
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Figure 6.1: Rotating and fixed frames

The interpretation of the first term is that of the time derivative of A as observed in the
rotating frame (where the unit vectors x̂i are constant) while the second term involves the
time-dependence of the relation between the fixed and rotating frames. We now express
dx̂i/dt as a vector in the rotating frame as

dx̂i

dt
= ω × x̂i, (6.2)

where ω denotes the angular velocity of the rotating frame. Hence, the second term in
Eq. (6.1) becomes

Ai
dx̂i

dt
= ω ×A. (6.3)

The time derivative of an arbitrary rotating-frame vector A in a fixed frame is, therefore,
expressed as (

dA

dt

)

f

=

(
dA

dt

)

r

+ ω ×A, (6.4)

where (d/dt)f denotes the time derivative as observed in the fixed (f) frame while (d/dt)r
denotes the time derivative as observed in the rotating (r) frame. An important application
of this formula relates to the time derivative of the rotation angular velocity ω itself. One
can easily see that (

dω

dt

)

f

= ω̇ =

(
dω

dt

)

r

,

since the second term in Eq. (6.4) vanishes for A = ω; the time derivative of ω is, therefore,
the same in both frames of reference and is denoted ω̇ in what follows.
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Figure 6.2: General rotating frame

6.2 Accelerations in Rotating Frames

We now consider the general case of a rotating frame and fixed frame being related by
translation and rotation. In Figure 6.2, the position of a point P according to the fixed
frame of reference is labeled r′, while the position of the same point according to the
rotating frame of reference is labeled r, and

r′ = R + r, (6.5)

where R denotes the position of the origin of the rotating frame (e.g., the center of mass)
according to the fixed frame. Since the velocity of the point P involves the rate of change
of position, we must now be careful in defining which time-derivative operator, (d/dt)f or
(d/dt)r, is used.

The velocities of point P as observed in the fixed and rotating frames are defined as

vf =

(
dr′

dt

)

f

and vr =

(
dr

dt

)

r

, (6.6)

respectively. Using Eq. (6.4), the relation between the fixed-frame and rotating-frame
velocities is expressed as

vf =

(
dR

dt

)

f

+

(
dr

dt

)

f

= V + vr + ω × r, (6.7)

where V = (dR/dt)f denotes the translation velocity of the rotating-frame origin (as
observed in the fixed frame).
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Figure 6.3: Centrifugal and Coriolis accelerations in a rotating frame of reference.

Using Eq. (6.7), we are now in a position to evaluate expressions for the acceleration of
point P as observed in the fixed and rotating frames of reference

af =

(
dvf
dt

)

f

and ar =

(
dvr
dt

)

r

, (6.8)

respectively. Hence, using Eq. (6.7), we find

af =

(
dV

dt

)

f

+

(
dvr
dt

)

f

+

(
dω

dt

)

f

× r + ω ×

(
dr

dt

)

f

= A + (ar + ω ×vr) + ω̇ × r + ω × (vr + ω × r) ,

or
af = A + ar + 2ω ×vr + ω̇ × r + ω × (ω × r) , (6.9)

where A = (dV/dt)f denotes the translational acceleration of the rotating-frame origin
(as observed in the fixed frame of reference). We can now write an expression for the
acceleration of point P as observed in the rotating frame as

ar = af − A − ω × (ω × r) − 2ω ×vr − ω̇ × r, (6.10)

which represents the sum of the net inertial acceleration (af − A), the centrifugal accel-
eration −ω × (ω × r) and the Coriolis acceleration − 2ω ×vr (see Figures 6.3) and an
angular acceleration term − ω̇ × r which depends explicitly on the time dependence of
the rotation angular velocity ω. The centrifugal acceleration (which is directed outwardly
from the rotation axis) represents a familiar non-inertial effect in physics. A less familiar
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non-inertial effect is the Coriolis acceleration discovered in 1831 by Gaspard Gustave de
Coriolis (1792-1843). Figure 6.3 shows that an object falling inwardly also experiences an
eastward acceleration.

6.3 Lagrangian Formulation of Non-Inertial Motion

We can recover the expression (6.10) for the acceleration in a rotating (non-inertial) frame
from a Lagrangian formulation as follows. The Lagrangian for a particle of mass m moving
in a non-inertial rotating frame (with its origin coinciding with the fixed-frame origin) in
the presence of the potential U(r) is expressed as

L(r, ṙ) =
m

2
|ṙ + ω × r|2 − U(r), (6.11)

where ω is the angular velocity vector and we use the formula

|ṙ + ω × r|2 = |ṙ|2 + 2 ω · (r× ṙ) +
[
ω2 r2 − (ω · r)2

]
.

Using the Lagrangian (6.11), we now derive the general Euler-Lagrange equation for r.
First, we derive an expression for the canonical momentum

p =
∂L

∂ṙ
= m (ṙ + ω × r) , (6.12)

and
d

dt

(
∂L

∂ṙ

)

= m (r̈ + ω̇ × r + ω × ṙ) .

Next, we derive the partial derivative

∂L

∂r
= − ∇U(r) − m [ ω × ṙ + ω × (ω × r) ] ,

so that the Euler-Lagrange equations are

m r̈ = − ∇U(r) − m [ ω̇ × r + 2 ω × ṙ + ω × (ω × r) ] . (6.13)

Here, the potential energy term generates the fixed-frame acceleration, −∇U = m af , and
thus the Euler-Lagrange equation (6.13) yields Eq. (6.10).

6.4 Motion Relative to Earth

We can now apply these non-inertial expressions to the important case of the fixed frame of
reference having its origin at the center of Earth (point O′ in Figure 6.4) and the rotating
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Figure 6.4: Earth frame

frame of reference having its origin at latitude λ and longitude ψ (point O in Figure 6.4).
We note that the rotation of the Earth is now represented as ψ̇ = ω and that ω̇ = 0.

We arrange the (x, y, z) axis of the rotating frame so that the z-axis is a continuation
of the position vector R of the rotating-frame origin, i.e., R = R ẑ in the rotating frame
(where R = 6378 km is the radius of a spherical Earth). When expressed in terms of the
fixed-frame latitude angle λ and the azimuthal angle ψ, the unit vector ẑ is

ẑ = cosλ (cosψ x̂′ + sinψ ŷ′) + sin λ ẑ′,

i.e., ẑ points upward. Likewise, we choose the x-axis to be tangent to a great circle passing
through the North and South poles, so that

x̂ = sinλ (cosψ x̂′ + sinψ ŷ′) − cos λ ẑ′,

i.e., x̂ points southward. Lastly, the y-axis is chosen such that

ŷ = ẑ × x̂ = − sinψ x̂′ + cosψ ŷ′,

i.e., ŷ points eastward.

We now consider the acceleration of a point P as observed in the rotating frame O by
writing Eq. (6.10) as

d2r

dt2
= g0 − R̈f − ω × (ω × r) − 2ω ×

dr

dt
. (6.14)

The first term represents the pure gravitational acceleration due to the graviational pull of
the Earth on point P (as observed in the fixed frame located at Earth’s center)

g0 = − GM

|r′|3 r′,
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where r′ = R + r is the position of point P in the fixed frame and r is the location of
P in the rotating frame. When expressed in terms of rotating-frame spherical coordinates
(r, θ, ϕ):

r = r [ sin θ (cosϕ x̂ + sinϕ ŷ) + cos θ ẑ ] ,

the fixed-frame position r′ is written as

r′ = (R+ r cos θ) ẑ + r sin θ (cosϕ x̂ + sinϕ ŷ) ,

and thus

|r′|3 =
(
R2 + 2 R r cos θ + r2

)3/2
.

The pure gravitational acceleration is, therefore, expressed in the rotating frame of the
Earth as

g0 = − g0

[
(1 + ε cos θ) ẑ + ε sin θ (cosϕ x̂ + sinϕ ŷ)

(1 + 2 ε cos θ + ε2)3/2

]

, (6.15)

where g0 = GM/R2 = 9.789 m/s2 and ε = r/R � 1.

The angular velocity in the fixed frame is ω = ω ẑ′, where

ω =
2π rad

24 × 3600 sec
= 7.27 × 10−5 rad/s

is the rotation speed of Earth about its axis. In the rotating frame, we find

ω = ω (sinλ ẑ − cosλ x̂) . (6.16)

Because the position vector R rotates with the origin of the rotating frame, its time deriva-
tives yield

Ṙf = ω ×R = (ωR cosλ) ŷ,

R̈f = ω × Ṙf = ω × (ω ×R) = − ω2R cos λ (cos λ ẑ + sinλ x̂) ,

and thus the centrifugal acceleration due to R is

− R̈f = − ω × (ω ×R) = αg0 cos λ (cosλ ẑ + sinλ x̂) , (6.17)

where ω2R = 0.0337 m/s2 can be expressed in terms of the pure gravitational acceleration
g0 as ω2R = αg0, where α = 3.4 × 10−3 is the normalized centrifugal acceleration. We
now define the physical gravitational acceleration as

g = g0 − ω × (ω ×R)

= g0

[
−
(
1 − α cos2 λ

)
ẑ + (α cosλ sin λ) x̂

]
, (6.18)

where terms of order ε = r/R have been neglected. For example, a plumb line experiences
a small angular deviation δ(λ) (southward) from the true vertical given as

tan δ(λ) =
gx
|gz|

=
α sin 2λ

(2 − α) + α cos 2λ
.
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This function exhibits a maximum at a latitude λ defined as cos 2λ = −α/(2−α), so that

tan δ =
α sin 2λ

(2 − α) + α cos 2λ
=

α

2
√

1 − α
' 1.7 × 10−3,

or

δ ' 5.86 arcmin at λ '
(
π

4
+

α

4

)
rad = 45.05o.

We now return to Eq. (6.14), which is written to lowest order in ε and α as

d2r

dt2
= − g ẑ − 2ω ×

dr

dt
, (6.19)

where

ω ×
dr

dt
= ω [ (ẋ sinλ + ż cosλ) ŷ − ẏ (sin λ x̂ + cosλ ẑ) ] .

Thus, we find the three components of Eq. (6.19) written explicitly as

ẍ = 2ω sinλ ẏ
ÿ = − 2ω (sinλ ẋ + cosλ ż)
z̈ = − g + 2ω cos λ ẏ





. (6.20)

A first integration of Eq. (6.20) yields

ẋ = 2ω sinλ y + Cx
ẏ = − 2ω (sinλ x + cos λ z) + Cy
ż = − g t + 2ω cos λ y + Cz





, (6.21)

where (Cx, Cy, Cz) are constants defined from initial conditions (x0, y0, z0) and (ẋ0, ẏ0, ż0):

Cx = ẋ0 − 2ω sinλ y0

Cy = ẏ0 + 2ω (sinλ x0 + cosλ z0)
Cz = ż0 − 2ω cos λ y0





. (6.22)

A second integration of Eq. (6.21) yields

x(t) = x0 + Cx t + 2ω sinλ
∫ t

0
y dt,

y(t) = y0 + Cy t − 2ω sinλ
∫ t

0
x dt − 2ω cos λ

∫ t

0
z dt,

z(t) = z0 + Cz t − 1

2
g t2 + 2ω cosλ

∫ t

0
y dt,

which can also be rewritten as

x(t) = x0 + Cx t + δx(t)
y(t) = y0 + Cy t + δy(t)
z(t) = z0 + Cz t − 1

2
g t2 + δz(t)





, (6.23)
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where the Coriolis drifts are

δx(t) = 2ω sinλ
(
y0 t +

1

2
Cy t

2 +
∫ t

0
δy dt

)
(6.24)

δy(t) = − 2ω sinλ
(
x0 t +

1

2
Cx t

2 +
∫ t

0
δx dt

)

− 2ω cos λ
(
z0 t +

1

2
Cz t

2 − 1

6
g t3 +

∫ t

0
δz dt

)
(6.25)

δz(t) = 2ω cosλ
(
y0 t +

1

2
Cy t

2 +
∫ t

0
δy dt

)
. (6.26)

Note that each Coriolis drift can be expressed as an infinite series in powers of ω and that
all Coriolis effects vanish when ω = 0.

6.4.1 Free-Fall Problem Revisited

As an example of the importance of Coriolis effects in describing motion relative to Earth,
we consider the simple free-fall problem, where

(x0, y0, z0) = (0, 0, h) and (ẋ0, ẏ0, ż0) = (0, 0, 0),

so that the constants (6.22) are

Cx = 0 = Cz and Cy = 2ω h cos λ.

Substituting these constants into Eqs. (6.23) and keeping only terms up to first order in ω,
we find

x(t) = 0, (6.27)

y(t) =
1

3
gt3 ω cos λ, (6.28)

z(t) = h − 1

2
gt2. (6.29)

Hence, a free-falling object starting from rest touches the ground z(T ) = 0 after a time

T =
√

2h/g after which time the object has drifted eastward by a distance of

y(T ) =
1

3
gT 3 ω cos λ =

ω cos λ

3

√
8h3

g
,

which is maximum at the equator. At a height of 100 m and latitude 45o, for example, we
find an eastward drift of 1.55 cm.
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Figure 6.5: Foucault pendulum

6.4.2 Foucault Pendulum

In 1851, Jean Bernard Léon Foucault (1819-1868) was able to demonstrate, in a classic
experiment demonstrating Earth’s rotation, the role played by Coriolis effects in his inves-
tigations of the motion of a pendulum (of length `and mass m) in the rotating frame of
the Earth. His analysis showed that, because of the Coriolis acceleration associated with
the rotation of the Earth, the motion of the pendulum exhibits a precession motion whose
period depends on the latitude at which the pendulum is located.

The equation of motion for the pendulum is given as

r̈ = af − 2 ω × ṙ, (6.30)

where af = g+T/m is the net fixed-frame acceleration of the pendulum expressed in terms
of the gravitational acceleration g and the string tension T (see Figure 6.5). Note that
the vectors g and T span a plane Π in which the pendulum moves in the absence of the
Coriolis acceleration − 2ω × ṙ. Using spherical coordinates (r, θ, ϕ) in the rotating frame
and placing the origin O of the pendulum system at its pivot point (see Figure 6.5), the
position of the pendulum bob is

r = ` [ sin θ (sinϕ x̂ + cosϕ ŷ) − cos θ ẑ ] = ` r̂(θ, ϕ). (6.31)

From this definition, we construct the unit vectors θ̂ and ϕ̂ as

∂r̂

∂θ
= θ̂,

∂r̂

∂ϕ
= sin θ ϕ̂, and

∂θ̂

∂ϕ
= cos θ ϕ̂. (6.32)
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Note that, whereas the unit vectors r̂ and θ̂ lie on the plane Π, the unit vector ϕ̂ is
perpendicular to it and, thus, the equation of motion of the pendulum perpendicular to the
plane Π is

r̈ · ϕ̂ = − 2 (ω × ṙ) · ϕ̂. (6.33)

The pendulum velocity is obtained from Eq. (6.31) as

ṙ = `
(
θ̇ θ̂ + ϕ̇ sin θ ϕ̂

)
, (6.34)

so that the azimuthal component of the Coriolis acceleration is

− 2 (ω × ṙ) · ϕ̂ = 2 `ω θ̇ (sinλ cos θ + cosλ sin θ sinϕ) .

If the length ` of the pendulum is large, the angular deviation θ of the pendulum can be
small enough that sin θ � 1 and cos θ ' 1 and, thus, the azimuthal component of the
Coriolis acceleration is approximately

− 2 (ω × ṙ) · ϕ̂ ' 2 ` (ω sin λ) θ̇. (6.35)

Next, the azimuthal component of the pendulum acceleration is

r̈ · ϕ̂ = `
(
ϕ̈ sin θ + 2 θ̇ ϕ̇ cos θ

)
,

which for small angular deviations (θ � 1) yields

r̈ · ϕ̂ ' 2 ` (ϕ̇) θ̇. (6.36)

By combining these expressions into Eq. (6.33), we obtain an expression for the precession
angular frequency of the Foucault pendulum

ϕ̇ = ω sin λ (6.37)

as a function of latitude λ. As expected, the precession motion is clockwise in the Northern
Hemisphere and reaches a maximum at the North Pole (λ = 90o). Note that the precession
period of the Foucault pendulum is (1 day/ sinλ) so that the period is 1.41 days at a
latitude of 45o or 2 days at a latitude of 30o.

The more traditional approach to describing the precession motion of the Foucault pen-
dulum makes use of Cartesian coordinates (x, y, z). The motion of the Foucault pendulum
in the (x, y)-plane is described in terms of Eqs. (6.30) as

ẍ + ω2
0 x = 2ω sinλ ẏ

ÿ + ω2
0 y = − 2ω sinλ ẋ

}

, (6.38)

where ω2
0 = T/m` ' g/` and ż ' 0 if ` is very large. Figure 6.6 shows the numerical

solution of Eqs. (6.38) for the Foucault pendulum starting from rest at (x0, y0) = (0, 1)
with 2 (ω/ω0) sinλ = 0.05 at λ = 45o. The left figure in Figure 6.6 shows the short time
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Figure 6.6: Numerical solution of the Foucault pendulum

Figure 6.7: Projection of the Foucault pendulum along East-West and North-South direc-
tions.
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behavior (note the different x and y scales) while the right figure in Figure 6.6 shows the
complete Foucault precession. Figure 6.7 shows that, over a finite period of time, the
pendulum motion progressively moves from the East-West axis to the North-South axis.
We now define the complex-valued function

q = y + i x = ` sin θ eiϕ, (6.39)

so that Eq. (6.38) becomes

q̈ + ω2
0 q − 2i ω sinλ q̇ = 0.

Next, we insert the eigenfunction q(t) = ρ exp(iΩt) into this equation and find that the
solution for the eigenfrequency Ω is

Ω = ω sinλ ±
√
ω2 sin2 λ + ω2

0,

so that the eigenfunction is

q = ρ eiω sinλ t sin
(√

ω2 sin2 λ + ω2
0 t
)
.

By comparing this solution with Eq. (6.39), we finally find

ρ sin
(√

ω2 sin2 λ + ω2
0 t
)

= ` sin θ ' ` θ(t),

and
ϕ(t) = (ω sinλ) t,

from which we recover the Foucault pendulum precession frequency (6.37).
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6.5 Problems

Problem 1

(a) Consider the case involving motion on the (x, y)-plane perpendicular to the angular
velocity vector ω = ω ẑ with the potential energy

U(r) =
1

2
k
(
x2 + y2

)
.

Using the Euler-Lagrange equations (6.13), derive the equations of motion for x and y.

(b) By using the equations of motion derived in Part (a), show that the canonical angular
momentum ` = ẑ · (r×p) is a constant of the motion.

Problem 2

If a particle is projected vertically upward to a height h above a point on the Earth’s
surface at a northern latitude λ, show that it strikes the ground at a point

4ω

3
cos λ

√
8h3

g

to the west. (Neglect air resistance, and consider only small vertical heights.)

Problem 3

For the potential
U(r, ṙ) = V (r) + σ · r× ṙ,

where V (r) denotes an arbitrary central potential and σ denotes an arbitrary constant
vector, derive the Euler-Lagrange equations of motion in terms of spherical coordinates.

Problem 4

The Lagrangian for the Foucault-pendulum equations (6.38) is

L(x, y; ẋ, ẏ) =
1

2

(
ẋ2 + ẏ2

)
− ω2

0

2

(
x2 + y2

)
+ ω sin λ (x ẏ − ẋ y) .

(a) By using the polar transformation x(t) = ρ(t) cosϕ(t) and y(t) = ρ(t) sinϕ(t), derive
the new Lagrangian L(ρ; ρ̇, ϕ̇).

(b) Since the new Lagrangian L(ρ; ρ̇, ϕ̇) is independent of ϕ, derive an expression for the
conserved momentum pϕ and find the Routhian R(ρ, ρ̇; pϕ) and the Routh-Euler-Lagrangian
equation for ρ.



Chapter 7

Rigid Body Motion

7.1 Inertia Tensor

7.1.1 Discrete Particle Distribution

We begin our description of rigid body motion by considering the case of a rigid discrete
particle distribution in which the inter-particle distances are constant. The position of each
particle α as measured from a fixed laboratory (LAB) frame is

r′α = R + rα,

where R is the position of the center of mass (CM) in the LAB and rα is the position of
the particle in the CM frame. The velocity of particle α in the LAB frame is

v′
α = V + ω × rα, (7.1)

where ω is the angular velocity vector associated with the rotation of the particle distribu-
tion about an axis of rotation which passes through the CM and V is the CM velocity in
the LAB frame. The total linear momentum in the LAB frame is equal to the momentum
of the center of mass since

P′ =
∑

α

mαv
′
α = M V + ω ×

(
∑

α

mαrα

)

= M V,

where we have used the definition of the total mass of the particle distribution

M =
∑

α

mα and
∑

α

mαrα = 0. (7.2)

Hence, the total momentum of a rigid body in its CM frame is zero. The total angular
momentum in the LAB frame, however, is expressed as

L′ =
∑

α

mα r′α ×v′
α = M R×V +

∑

α

mα rα × (ω × rα) , (7.3)

149
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Figure 7.1: Discrete distribution of mass

where we have used the identities (7.2).

The kinetic energy of particle α (with mass mα) in the LAB frame is

K ′
α =

mα

2
|v′
α|2 =

mα

2

(
|V|2 + 2 V · ω × rα + |ω × rα|2

)
,

and thus, using the identities (7.2), the total kinetic energy K ′ =
∑
α K

′
α of the particle

distribution is

K ′ =
M

2
|V|2 +

1

2

{

ω2

(
∑

α

mα r
2
α

)

− ωω :

(
∑

α

mα rαrα

) }

. (7.4)

Looking at Eqs. (7.3) and (7.4), we now introduce the inertia tensor of the particle
distribution

I =
∑

α

mα

(
r2
α 1 − rα rα

)
, (7.5)

where 1 denotes the unit tensor (i.e., in Cartesian coordinates, 1 = x̂x̂ + ŷŷ + ẑẑ). The
inertia tensor can also be represented as a matrix

I =





∑
α mα (y2

α + z2
α) − ∑

α mα (xαyα) − ∑
α mα (xαzα)

− ∑
α mα (yαxα)

∑
α mα (x2

α + z2
α) − ∑

α mα (yαzα)

− ∑
α mα (zαxα) − ∑

α mα (zαyα)
∑
α mα (x2

α + y2
α)




, (7.6)

where the symmetry property of the inertia tensor (I ji = I ij) is readily apparent. In terms
of the inertia tensor (7.5), the angular momentum of a rigid body in the CM frame and its
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Figure 7.2: Parallel-axes theorem

rotational kinetic energy are

L = I ·ω and Krot =
1

2
ω · I · ω. (7.7)

7.1.2 Parallel-Axes Theorem

A translation of the origin from which the inertia tensor is calculated leads to a different
inertia tensor. Let Qα denote the position of particle α in a new frame of reference (with
its origin located at point P in Figure 7.2) and let ρ = rα − Qα is the displacement from
point CM to point P . The new inertia tensor

J =
∑

α

mα

(
Q2
α 1 − QαQα

)

can be expressed as

J =
∑

α

mα

(
ρ2 1 − ρ ρ

)
+
∑

α

mα

(
r2
α 1 − rα rα

)

−
{

ρ ·

(
∑

α

mα rα

) }

1 +

{

ρ

(
∑

α

mα rα

)

+

(
∑

α

mα rα

)

ρ

}

.

Since M =
∑
α mα and

∑
α mαrα = 0, we find

J = M
(
ρ2 1 − ρ ρ

)
+ ICM . (7.8)

Hence, once the inertia tensor ICM is calculated in the CM frame, it can be calculated
anywhere else. Eq. (7.8) is known as the Parallel-Axes Theorem.
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Figure 7.3: Continuous distribution of mass

7.1.3 Continuous Particle Distribution

For a continuous particle distribution the inertia tensor (7.5) becomes

I =
∫
dm

(
r2 1 − rr

)
, (7.9)

where dm(r) = ρ(r) d3r is the infinitesimal mass element at point r, with mass density
ρ(r).

Consider, for example, the case of a uniform cube of mass M and volume b3, with
dm = (M/b3) dx dy dz. The inertia tensor (7.9) in the LAB frame (with the origin placed
at one of its corners) has the components

J11 =
M

b3

∫ b

0
dx

∫ b

0
dy

∫ b

0
dz ·

(
y2 + z2

)
=

2

3
M b2 = J22 = J33 (7.10)

J12 = − M

b3

∫ b

0
dx

∫ b

0
dy

∫ b

0
dz · x y = − 1

4
M b2 = J23 = J31 (7.11)

and thus the inertia matrix for the cube is

J =
M b2

12





8 − 3 − 3

− 3 8 − 3

− 3 − 3 8




. (7.12)
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Figure 7.4: Cube

On the other hand, the inertia tensor calculated in the CM frame has the components

I11 =
M

b3

∫ b/2

− b/2
dx

∫ b/2

− b/2
dy

∫ b/2

− b/2
dz ·

(
y2 + z2

)
=

1

6
M b2 = I22 = I33(7.13)

I12 = − M

b3

∫ b/2

− b/2
dx

∫ b/2

− b/2
dy

∫ b/2

− b/2
dz · x y = 0 = I23 = I31 (7.14)

and thus the CM inertia matrix for the cube is

I =
M b2

6





1 0 0

0 1 0

0 0 1




. (7.15)

The displacement vector ρ from the CM point to the corner O is given as

ρ = − b

2
(x̂ + ŷ + ẑ) ,

so that ρ2 = 3b2/4. By using the Parallel-Axis Theorem (7.8), the inertia tensor

M
(
ρ2 1 − ρ ρ

)
=

M b2

4





2 −1 −1

−1 2 −1

−1 −1 2





when added to the CM inertia tensor (7.15), yields the inertia tensor (7.12)
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7.1.4 Principal Axes of Inertia

In general, the CM inertia tensor I can be made into a diagonal tensor with components
given by the eigenvalues I1, I2, and I3 of the inertia tensor. These components (known as
principal moments of inertia) are the three roots of the cubic polynomial

I3 − Tr(I) I2 + Ad(I) I − Det(I) = 0, (7.16)

obtained from Det(I − I 1) = 0, with coefficients

Tr(I) = I11 + I22 + I33,

Ad(I) = ad11 + ad22 + ad33,

Det(I) = I11 ad11 − I12 ad12 + I13 ad13,

where adij is the determinant of the two-by-two matrix obtained from I by removing the
ith-row and jth-column from the inertia matrix I.

Each principal moment of inertia Ii represents the moment of inertia calculated about
the principal axis of inertia with unit vector êi. The unit vectors (ê1, ê2, ê3) form a new
frame of reference known as the Body frame. The unit vectors (ê1, ê2, ê3) are related by a
sequence of rotations to the Cartesian CM unit vectors (x̂1, x̂2, x̂3) by the relation

êi = Rij x̂j, (7.17)

where Rij are components of the rotation matrix R. By denoting as I′ the diagonal inertia
tensor calculated in the body frame of reference (along the principal axes), we find

I′ = R · I ·RT =




I1 0 0
0 I2 0
0 0 I3



 , (7.18)

where RT denotes the transpose of R, i.e., (RT)ij = Rji. In the body frame, the inertia
tensor is, therefore, expressed in dyadic form as

I′ = I1 ê1 ê1 + I2 ê2 ê2 + I3 ê3 ê3, (7.19)

and the rotational kinetic energy (7.7) is

K ′
rot =

1

2
ω · I′ · ω =

1

2

(
I1 ω

2
1 + I2 ω

2
2 + I3 ω

2
3

)
. (7.20)

Note that general rotation matrices have the form

Rn(α) = n̂ n̂ + cosα (1 − n̂ n̂) + sinα n̂ × 1, (7.21)
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Figure 7.5: Dumbbell

where the unit vector n̂ defines the axis of rotation about which an angular rotation of
angle α is performed according to the right-hand-rule.

A rigid body can be classified into one of three different categories. First, a rigid
body can be said to be a spherical top if its three principal moments of inertia are equal
(I1 = I2 = I3), i.e., the three roots of the cubic polynomial (7.16) are triply degenerate.
Next, a rigid body can be said to be a symmetric top if two of its principal moments of
inertia are equal (I1 = I2 6= I3), i.e., I3 is a single root and I1 = I2 are doubly-degenerate
roots of the cubic polynomial (7.16). Lastly, when the three roots (I1 6= I2 6= I3) are all
single roots of the cubic polynomial (7.16), a rigid body is said to be an asymmetric top.

Before proceeding further, we consider the example of a dumbbell composed of two
equal point masses m placed at the ends of a massless rod of total length 2 b and rotating
about the z-axis with angular frequency ω. Here, the positions of the two masses are
expressed as

r± = ± b [sin θ (cosϕ x̂ + sinϕ ŷ) + cos θ ẑ ] ,

so that the CM inertia tensor is

I = 2mb2





1 − cos2 ϕ sin2 θ − cosϕ sinϕ sin2 θ − cosϕ cos θ sin θ

− cosϕ sinϕ sin2 θ 1 − sin2 ϕ sin2 θ − sinϕ cos θ sin θ

− cosϕ cos θ sin θ − sinϕ cos θ sin θ 1 − cos2 θ




. (7.22)

After some tedious algebra, we find Tr(I) = 4mb2, Ad(I) = (2mb2)2, and Det(I) = 0,
and thus the cubic polynomial (7.16) has the single root I3 = 0 and the double root
I1 = I2 = 2mb2, which makes the dumbbell a symmetric top.
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The root I3 = 0 clearly indicates that one of the three principal axes is the axis of
symmetry of the dumbbell (ê3 = r̂). The other two principal axes are located on the
plane perpendicular to the symmetry axis (i.e., ê1 = θ̂ and ê2 = ϕ̂). From these choices,
we easily recover the rotation matrix

R = R2(− θ) · R3(ϕ) =




cosϕ cos θ sinϕ cos θ − sin θ
− sinϕ cosϕ 0
cosϕ sin θ sinϕ sin θ cos θ



 ,

so that, using the spherical coordinates (r, θ, ϕ), we find

ê1 = cos θ (cosϕ x̂ + sinϕ ŷ) − sin θ ẑ = θ̂,

ê2 = − sinϕ x̂ + cosϕ ŷ = ϕ̂,

ê3 = sin θ (cosϕ x̂ + sinϕ ŷ) + cos θ ẑ = r̂.

Indeed, the principal moment of inertia about the r̂-axis is zero, while the principal moments
of inertia about the perpendicular θ̂- and ϕ̂-axes are equally given as 2mb2.

7.2 Eulerian Method for Rigid-Body Dynamics

7.2.1 Euler Equations

The time derivative of the angular momentum L = I · ω in the fixed (LAB) frame is given
as (

dL

dt

)

f

=

(
dL

dt

)

r

+ ω ×L = N,

where N represents the external torque applied to the system and (dL/dt)r denotes the
rate of change of L in the rotating frame. By choosing the body frame as the rotating
frame, we find

(
dL

dt

)

r

= I · ω̇ = (I1 ω̇1) ê1 + (I2 ω̇2) ê2 + (I3 ω̇3) ê3, (7.23)

while

ω ×L = − ê1 { ω2 ω3 (I2 − I3) } − ê2 { ω3 ω1 (I3 − I1) } − ê3 { ω1 ω2 (I1 − I2) } .
(7.24)

Thus the time evolution of the angular momentum in the body frame of reference is de-
scribed in terms of

I1 ω̇1 − ω2 ω3 (I2 − I3) = N1

I2 ω̇2 − ω3 ω1 (I3 − I1) = N2

I3 ω̇3 − ω1 ω2 (I1 − I2) = N3





, (7.25)
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which are known as the Euler equations. Lastly, we note that the rate of change of the
rotational kinetic energy (7.7) is expressed as

dKrot

dt
= ω · I · ω̇ = ω · (−ω ×L + N) = N · ω. (7.26)

We note that in the absence of external torque (N = 0), not only is kinetic energy conserved
but also L2 =

∑3
i=1 (Iiωi)

2, as can be verified from Eq. (7.25).

7.2.2 Euler Equations for a Force-Free Symmetric Top

As an application of the Euler equations (7.25) we consider the case of the dynamics of
a force-free symmetric top, for which N = 0 and I1 = I2 6= I3. Accordingly, the Euler
equations (7.25) become

I1 ω̇1 = ω2 ω3 (I1 − I3)
I1 ω̇2 = ω3 ω1 (I3 − I1)
I3 ω̇3 = 0





, (7.27)

The last Euler equation states that if I3 6= 0, we have ω̇3 = 0 or that ω3 is a constant of
motion. Next, after defining the precession frequency

ωp = ω3

(
I3
I1

− 1
)
, (7.28)

which may be positive (I3 > I1) or negative (I3 < I1), the first two Euler equations yield

ω̇1(t) = − ωp ω2(t) and ω̇2(t) = ωp ω1(t). (7.29)

The general solutions for ω1(t) and ω2(t) are

ω1(t) = ω0 cos(ωpt+ φ0) and ω2(t) = ω0 sin(ωpt+ φ0), (7.30)

where ω0 is a constant and φ0 is an initial phase associated with initial conditions for ω1(t)
and ω2(t). Since ω3 and ω2

0 = ω2
1(t)+ω2

2(t) are constant, then the magnitude of the angular
velocity ω,

ω =
√
ω2

1 + ω2
2 + ω2

3 ,

is also a constant. Thus the angle α between ω and ê3 is constant, with

ω3 = ω cosα and
√
ω2

1 + ω2
2 = ω0 = ω sinα.

Since the magnitude of ω is also constant, the ω-dynamics simply involves a constant
rotation with frequency ω3 and a precession motion of ω about the ê3-axis with a precession
frequency ωp; as a result of precession, the vector ω spans the body cone with ωp > 0 if
I3 > I1 (for a pancake-shaped or oblate symmetric top) or ωp < 0 if I3 < I1 (for a cigar-
shaped or prolate symmetric top).
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Figure 7.6: Body cone

For example, to a good approximation, Earth is an oblate spheroid with

I1 =
1

5
M

(
a2 + c2

)
= I2 and I3 =

2

5
M a2 > I1,

where 2 c = 12, 714 km is the Pole-to-Pole distance and 2a = 12, 756 km is the equatorial
diameter, so that

I3
I1

− 1 =
a2 − c2

a2 + c2
= 0.003298... = ε.

The precession frequency (7.28) of the rotation axis of Earth is, therefore, ωp = ε ω3, where
ω3 = 2π rad/day is the rotation frequency of the Earth, so that the precession motion
repeats itself every ε−1 days or 303 days; the actual period is 430 days and the difference is
partially due to the non-rigidity of Earth and the fact that the Earth is not a pure oblate
spheroid. A slower precession motion of approximately 26,000 years is introduced by the
combined gravitational effect of the Sun and the Moon on one hand, and the fact that
the Earth’s rotation axis is at an angle 23.5o to the Ecliptic plane (on which most planets
move).

The fact that the symmetric top is force-free implies that its rotational kinetic energy
is constant [see Eq. (7.26)] and, hence, L ·ω is constant while ω ×L · ê3 = 0 according to
Eq. (7.24). Since L itself is constant in magnitude and direction in the LAB (or fixed)
frame, we may choose the ẑ-axis to be along L (i.e., L = ` ẑ). If at a given instant, ω1 = 0,
then ω2 = ω0 = ω sinα and ω3 = ω cosα. Likewise, we may write L1 = I1 ω1 = 0, and

L2 = I2 ω2 = I1 ω sinα = ` sin θ,

L3 = I3 ω3 = I3 ω cosα = ` cos θ,



7.2. EULERIAN METHOD FOR RIGID-BODY DYNAMICS 159

where L ·ω = `ω cos θ, with θ represents the space-cone angle. From these equations, we
find the relation between the body-cone angle α and the space-cone angle θ to be

tan θ =
(
I1
I3

)
tanα, (7.31)

which shows that θ > α for I3 < I1 and θ < α for I3 > I1.

7.2.3 Euler Equations for a Force-Free Asymmetric Top

We now consider the general case of an asymmetric top moving under force-free conditions.
To facilitate our discussion, we assume that I1 > I2 > I3 and thus Euler’s equations (7.25)
for a force-free asymmetric top are

I1 ω̇1 = ω2 ω3 (I2 − I3)
I2 ω̇2 = − ω3 ω1 (I1 − I3)
I3 ω̇3 = ω1 ω2 (I1 − I2)





. (7.32)

As previously mentioned, the Euler equations (7.32) have two constants of the motion:
kinetic energy

K =
1

2

(
I1 ω

2
1 + I2 ω

2
2 + I3 ω

2
3

)
, (7.33)

and the squared magnitude of the angular momentum

L2 = I2
1 ω

2
1 + I2

2 ω
2
2 + I3

3 ω
2
3. (7.34)

Figure 7.7 shows the numerical solution of the Euler equations (7.32) subject to the
initial condition (ω10, ω20, ω30) = (2, 0, 1) for different values of the ratios I1/I3 and I2/I3.
Note that in the limit I1 = I2 (corresponding to a symmetric top), the top evolves solely
on the (ω1, ω2)-plane at constant ω3. As I1 increases from I2, the asymmetric top exhibits
doubly-periodic behavior in the full (ω1, ω2, ω3)-space until the motion becomes restricted to
the (ω2, ω3)-plane in the limit I1 � I2. One also clearly notes the existence of a separatrix
which appears as I1 reaches the critical value

I1c =
I2
2

+

√
I2
2

4
+ I3 (I2 − I3)

(
ω30

ω10

)2

,

at constant I2 and I3 and given initial conditions (ω10, ω20, ω30).

We note that the existence of two constants of the motion, Eqs. (7.33) and (7.34), for
the three Euler equations (7.32) means that we may express the Euler equations in terms
of a single equation. For this purpose, we introduce the constants

σ = 2 I1K − L2 and ρ = L2 − 2 I3K,
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Figure 7.7: Orbits of an asymmetric top with initial condition (ω10, ω20, ω30) = (2, 0, 1) for
different values of the ratio I1/I3 for a fixed ratio I2/I3
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from which we obtain expressions for ω1 (taken here to be negative) and ω3 in terms of ω2:

ω1 = −
√√√√ρ − I2(I2 − I3)ω2

2

I1 (I1 − I3)
and ω3 =

√√√√σ − I2(I1 − I2)ω2
2

I3 (I1 − I3)
. (7.35)

When we substitute these expressions in the Euler equation for ω2, we easily obtain

ω̇2 = α
√

(Ω2
1 − ω2

2) (Ω2
3 − ω2

2), (7.36)

where α is a positive dimensionless constant defined as

α =

√(
1 − I2

I1

) (
I2
I3

− 1
)
, (7.37)

while the constant frequencies Ω1 and Ω3 are defined as

Ω2
1 =

2 I1K − L2

I2(I1 − I2)
and Ω2

3 =
L2 − 2 I3K

I2(I2 − I3)
. (7.38)

We immediately note that the evolution of ω2 is characterized by the two frequencies Ω1

and Ω3, which also represent the turning points at which ω̇2 vanishes. Next, by introducing
a dimensionless frequency ν = ω2/Ω3 (here, we assume that Ω1 ≥ Ω3) and a dimensionless
time τ = αΩ1 t, the Euler equation (7.36) becomes

ν ′(τ ) =
√

(1 − ν2) (1 − k2 ν2),

which can now be integrated to yield

τ (ν) =
∫ ν

0

ds
√

(1 − s2) (1 − k2 s2)
, (7.39)

where k2 = Ω2
3/Ω

2
1 ≤ 1 and we assume that ω2(t = 0) = 0; the solution for ω2(τ ) = Ω3 ν(τ ),

as well as ω1(τ ) and ω3(τ ) can be expressed in terms of the Jacobi elliptic functions (as
shown in Appendix A). Lastly, we note that the separatrix solution of the force-free
asymmetric top (see Figure 7.7) corresponding to I1 = I1c is associated with k = 1 (i.e.,
Ω1 = Ω3).

7.2.4 Hamiltonian Formulation of Rigid Body Motion

In the absence of external torque, the Euler equations (7.25) can be written as

dLi
dt

= {Li, Krot} = − î · ω ×L = − εijk ωj (Ik ωk), (7.40)
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Figure 7.8: Euler angles

where the Poisson bracket { , } is defined in terms of two arbitrary functions F (L) and
G(L) as

{F, G} = − L ·
∂F

∂L
×
∂G

∂L
. (7.41)

Note that, for a general function F (L) of angular momentum and in the absence of external
torque, we find

dF

dt
= − L ·

∂F

∂L
×
∂Krot

∂L
= − ∂F

∂L
· ω ×L,

and thus any function of |L| is a constant of the motion for rigid body dynamics.

7.3 Lagrangian Method for Rigid-Body Dynamics

7.3.1 Eulerian Angles as generalized Lagrangian Coordinates

To describe the physical state of a rotating object with principal moments of inertia
(I1, I2, I3), we need the three Eulerian angles (ϕ, θ, ψ) in the body frame of reference (see
Figure 7.8). The Eulerian angle ϕ is associated with the rotation of the fixed-frame unit
vectors (x̂, ŷ, ẑ) about the z-axis. We thus obtain the new unit vectors (x̂′, ŷ′, ẑ′) defined as




x̂′

ŷ′

ẑ′



 =

= R3(ϕ)
︷ ︸︸ ︷


cosϕ sinϕ 0

− sinϕ cosϕ 0
0 0 1



 ·




x̂

ŷ

ẑ



 (7.42)

The rotation matrix R3(ϕ) has the following properties associated with a general rotation
matrix Rn(α), defined in Eq. (7.21), where a rotation of axes about the xn-axis is performed
through an arbitrary angle α. First, the matrix Rn(−α) is the inverse matrix of Rn(α), i.e.,

Rn(−α) · Rn(α) = 1 = Rn(α) · Rn(−α).
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Next, the determinant of Rn(α) is + 1 and the eigenvalues of Rn(α) are +1, eiα, and e− iα

(see Appendix A.2 for further details).

The Eulerian angle θ is associated with the rotation of the unit vectors (x̂′, ŷ′, ẑ′) about
the x′-axis. We thus obtain the new unit vectors (x̂′′, ŷ′′, ẑ′′) defined as




x̂′′

ŷ′′

ẑ′′



 =

= R1(θ)︷ ︸︸ ︷


1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 ·




x̂′

ŷ′

ẑ′



 (7.43)

The Eulerian angle ψ is associated with the rotation of the unit vectors (x̂′′, ŷ′′, ẑ′′) about
the z′′-axis. We thus obtain the body-frame unit vectors (ê1, ê2, ê3) defined as




ê1

ê2

ê3



 =

= R3(ψ)
︷ ︸︸ ︷


cosψ sinψ 0

− sinψ cosψ 0
0 0 1



 ·




x̂′′

ŷ′′

ẑ′′



 (7.44)

Hence, the relation between the fixed-frame unit vectors (x̂, ŷ, ẑ) and the body-frame
unit vectors (ê1, ê2, ê3) involves the matrix R = R3(ψ) · R1(θ) · R3(ϕ), such that êi = Rij x̂j ,
or

ê1 = cosψ ⊥̂ + sinψ (cos θ ϕ̂+ sin θ ẑ)

ê2 = − sinψ ⊥̂ + cosψ (cos θ ϕ̂+ sin θ ẑ)

ê3 = − sin θ ϕ̂ + cos θ ẑ






, (7.45)

where ϕ̂ = − sinϕ x̂ + cosϕ ŷ and ⊥̂ = cosϕ x̂ + sinϕ ŷ = ϕ̂× ẑ.

7.3.2 Angular Velocity in terms of Eulerian Angles

The angular velocity ω represented in the three Figures above is expressed as

ω = ϕ̇ ẑ + θ̇ x̂′ + ψ̇ ê3.

The unit vectors ẑ and x̂′ are written in terms of the body-frame unit vectors (ê1, ê2, ê3) as

ẑ = sin θ (sinψ ê1 + cosψ ê2) + cos θ ê3,

x̂′ = x̂′′ = cosψ ê1 − sinψ ê2.

The angular velocity can, therefore, be written exclusively in the body frame of reference
in terms of the Euler basis vectors (7.45) as

ω = ω1 ê1 + ω2 ê2 + ω3 ê3, (7.46)
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where the body-frame angular frequencies are

ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ

ω2 = ϕ̇ sin θ cosψ − θ̇ sinψ

ω3 = ψ̇ + ϕ̇ cos θ





. (7.47)

Note that all three frequencies are independent of ϕ (i.e., ∂ωi/∂ϕ = 0), while derivatives
with respect to ψ and ψ̇ are

∂ω1

∂ψ
= ω2,

∂ω2

∂ψ
= −ω1, and

∂ω3

∂ψ
= 0,

and
∂ω1

∂ψ̇
= 0 =

∂ω2

∂ψ̇
and

∂ω3

∂ψ̇
= 1.

The relations (7.47) can be inverted to yield

ϕ̇ = csc θ (sinψ ω1 + cosψ ω2),

θ̇ = cosψ ω1 − sinψ ω2,

ψ̇ = ω3 − cot θ (sinψ ω1 + cosψ ω2).

7.3.3 Rotational Kinetic Energy of a Symmetric Top

The rotational kinetic energy (7.7) for a symmetric top can be written as

Krot =
1

2

{
I3 ω

2
3 + I1

(
ω2

1 + ω2
2

) }
,

or explicitly in terms of the Eulerian angles (ϕ, θ, ψ) and their time derivatives (ϕ̇, θ̇, ψ̇) as

Krot =
1

2

{
I3
(
ψ̇ + ϕ̇ cos θ

)2
+ I1

(
θ̇2 + ϕ̇2 sin2 θ

) }
. (7.48)

We now briefly return to the case of the force-free symmetric top for which the Lagrangian
is simply L(θ, θ̇; ϕ̇, ψ̇) = Krot. Since ϕ and ψ are ignorable coordinates, i.e., the force-free
Lagrangian (7.48) is independent of ϕ and ψ, their canonical angular momenta

pϕ =
∂L

∂ϕ̇
= I3 (ψ̇ + ϕ̇ cos θ) cos θ + I1 sin2 θ ϕ̇, (7.49)

pψ =
∂L

∂ψ̇
= I3 (ψ̇ + ϕ̇ cos θ) = I3 ω3 (7.50)

are constants of the motion. By inverting these relations, we obtain

ϕ̇ =
pϕ − pψ cos θ

I1 sin2 θ
and ψ̇ = ω3 − (pϕ − pψ cos θ) cos θ

I1 sin2 θ
, (7.51)
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Figure 7.9: Symmetric top with one fixed point

and the rotational kinetic energy (7.48) becomes

Krot =
1

2

{

I1 θ̇
2 + I3 ω

2
3 +

(pϕ − pψ cos θ)2

I1 sin2 θ

}

. (7.52)

The motion of a force-free symmetric top can now be described in terms of solutions of the
Euler-Lagrange equation for the Eulerian angle θ:

d

dt

(
∂L

∂θ̇

)

= I1 θ̈ =
∂L

∂θ
= ϕ̇ sin θ (I1 cos θ ϕ̇ − pψ)

= − (pϕ − pψ cos θ)

I1 sin θ

(pψ − pϕ cos θ)

sin2 θ
. (7.53)

Once θ(t) is solved for given values of the principal moments of inertia I1 = I2 and I3
and the invariant canonical angular momenta pϕ and pψ, the functions ϕ(t) and ψ(t) are
determined from the time integration of Eqs. (7.51).

7.3.4 Symmetric Top with One Fixed Point

We now consider the case of a spinning symmetric top of mass M and principal moments of
inertia (I1 = I2 6= I3) with one fixed point O moving in a gravitational field with constant
acceleration g. The rotational kinetic energy of the symmetric top is given by Eq. (7.48)
while the potential energy for the case of a symmetric top with one fixed point is

U(θ) = Mgh cos θ, (7.54)
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Figure 7.10: Orbits of heavy top – Case I

where h is the distance from the fixed point O and the center of mass (CM) of the symmetric
top. The Lagrangian for the symmetric top with one fixed point is

L(θ, θ̇; ϕ̇, ψ̇) =
1

2

{
I3
(
ψ̇ + ϕ̇ cos θ

)2
+ I1

(
θ̇2 + ϕ̇2 sin2 θ

) }
− Mgh cos θ. (7.55)

A normalized form of the Euler equations for the symmetric top with one fixed point (also
known as the heavy symmetric top) is expressed as

ϕ′ =
(b− cos θ)

sin2 θ
and θ′′ = a sin θ − (1 − b cos θ)(b− cos θ)

sin3 θ
, (7.56)

where time has been rescaled such that (· · ·)′ = (I1/pψ) (· · ·) · and the two parameters a
and b are defined as

a =
MghI1
p2
ψ

and b =
pϕ
pψ
.

The normalized heavy-top equations (7.56) have been integrated for the initial condi-
tions (θ0, θ

′
0; ϕ0) = (1, 0; 0). The three Figures shown below correspond to three different

cases (I, II, and III) for fixed value of a (here, a = 0.1), which exhibit the possibility of
azimuthal reversal when ϕ′ changes sign for different values of b = pϕ/pψ; the azimuthal
precession motion is called nutation.

The Figures on the left show the normalized heavy-top solutions in the (ϕ, θ)-plane
while the Figures on the right show the spherical projection of the normalized heavy-top
solutions (θ, ϕ) → (sin θ cosϕ, sin θ sinϕ, cos θ), where the initial condition is denoted
by a dot (•). In Case I (b > cos θ0), the azimuthal velocity ϕ′ never changes sign and
azimuthal precession occurs monotonically. In Case II (b = cos θ0), the azimuthal velocity
ϕ′ vanishes at θ = θ0 (where θ′ also vanishes) and the heavy symmetric top exhibits a cusp
at θ = θ0. In Case III (b < cos θ0), the azimuthal velocity ϕ′ vanishes for θ > θ0 and the
heavy symmetric top exhibits a phase of retrograde motion. Since the Lagrangian (7.55)
is independent of the Eulerian angles ϕ and ψ, the canonical angular momenta pϕ and pψ,
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Figure 7.11: Orbits of heavy top – Case II

Figure 7.12: Orbits of heavy top – Case III
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respectively, are constants of the motion. The solution for θ(t) is then most easily obtained
by considering the energy equation

E =
1

2

{

I1 θ̇
2 + I3 ω

2
3 +

(pϕ − pψ cos θ)2

I1 sin2 θ

}

+ Mgh cos θ, (7.57)

where pϕ and pψ = I3 ω3 are constants of the motion. Since the total energy E is itself a
constant of the motion, we may define a new energy constant

E ′ = E − 1

2
I3 ω

2
3 ,

and an effective potential energy

V (θ) =
(pϕ − pψ cos θ)2

2I1 sin2 θ
+ Mgh cos θ, (7.58)

so that Eq. (7.57) becomes

E ′ =
1

2
I1 θ̇

2(t) + V (θ), (7.59)

which can be formally solved as

t(θ) = ±
∫

dθ
√

(2/I1) [E ′ − V (θ)]
. (7.60)

Note that turning points θtp are again defined as roots of the equation E ′ = V (θ).

A simpler formulation for this problem is obtained as follows. First, we define the
following quantities

Ω2 =
2Mgh

I1
, ε =

2E ′

I1Ω2
=

E ′

Mgh
, α =

pϕ
I1Ω

, and β =
pψ
I1Ω

, (7.61)

so that Eq. (7.60) becomes

τ (u) = ±
∫ du
√

(1 − u2)(ε− u) − (α − β u)2
= ±

∫ du
√

(1 − u2)[ε−W (u)]
, (7.62)

where τ (u) = Ω t(u), u = cos θ, and the energy equation (7.59) becomes

ε =
1

(1 − u2)




(
du

dτ

)2

+ (α − β u)2



 + u = (1 − u2)−1

(
du

dτ

)2

+ W (u), (7.63)

where the effective potential is

W (u) = u +
(α− β u)2

(1 − u2)
.
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Figure 7.13: Effective potential for the heavy top

We note that the effective potential W (u) is infinite at u = ±1 and has a single minimum
at u = u0 (or θ = θ0) defined by the quartic equation

W ′(u0) = 1 + 2u0

(
α − β u0

1 − u2
0

)2

− 2β

(
α − β u0

1 − u2
0

)

= 0. (7.64)

This equation has four roots: two roots are complex roots, a third root is always greater
than one for α > 0 and β > 0 (which is unphysical since u = cos θ ≤ 1), while the fourth
root is less than one for α > 0 and β > 0; hence, this root is the only physical root
corresponding to a single minimum for the effective potential W (u) (see Figure 7.13). Note
how the linear gravitational-potential term u is apparent at low values of α and β.

We first investigate the motion of the symmetric top at the minimum angle θ0 for which
ε = W (u0) and u̇(u0) = 0. For this purpose, we note that when the dimensionless azimuthal
frequency

dϕ

dτ
=

α− β u

1 − u2
= ν(u)

is inserted in Eq. (7.64), we obtain the quadratic equation 1 + 2u0 ν
2
0 − 2β ν0 = 0, which

has two solutions for ν0 = ν(u0):

ν(u0) =
β

2u0

(

1 ±
√

1 − 2u0

β2

)

.

Here, we further note that these solutions require that the radicand be positive, i.e.,

β2 > 2u0 or I3 ω3 ≥ I1Ω
√

2u0,



170 CHAPTER 7. RIGID BODY MOTION

Figure 7.14: Turning-point roots

if u0 ≥ 0 (or θ0 ≤ π/2); no conditions are applied to ω3 for the case u0 < 0 (or θ0 > π/2)
since the radicand is strictly positive in this case.

Hence, the precession frequency ϕ̇0 = ν(u0)Ω at θ = θ0 has a slow component and a
fast component

(ϕ̇0)slow =
I3ω3

2 I1 cos θ0



 1 −

√√√√1 − 2
(
I1Ω

I3ω3

)2

cos θ0



 ,

(ϕ̇0)fast =
I3ω3

2 I1 cos θ0



 1 +

√√√√1 − 2
(
I1Ω

I3ω3

)2

cos θ0



 .

We note that for θ0 < π/2 (or cos θ0 > 0) the two precession frequencies (ϕ̇0)slow and (ϕ̇0)fast
have the same sign while for θ0 > π/2 (or cos θ0 < 0) the two precession frequencies have
opposite signs (ϕ̇0)slow < 0 and (ϕ̇0)fast > 0.

Next, we investigate the case with two turning points u1 < u0 and u2 > u1 (or θ1 > θ2)
where ε = W (u) (see Figure 7.14), where the θ-dynamics oscillates between θ1 and θ2. The
turning points u1 and u2 are roots of the function

F (u) = (1 − u2) [ε−W (u)] = u3 − (ε+ β2)u2 − (1 − 2αβ)u + (ε− α2). (7.65)

Although a third root u3 exists for F (u) = 0, it is unphysical since u3 > 1. Since the
azimuthal frequencies at the turning points are expressed as

dϕ1

dτ
=

α− β u1

1 − u2
1

and
dϕ2

dτ
=

α − β u2

1 − u2
2

,
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where α−β u1 > α−β u2, we can study the three cases for nutation numerically investigated
below Eqs. (7.56); here, we assume that both α = b β and β are positive. In Case I
(α > β u2), the precession frequency dϕ/dτ is strictly positive for u1 ≤ u ≤ u2 and
nutation proceeds monotonically. In Case II (α = β u2), the precession frequency dϕ/dτ is
positive for u1 ≤ u < u2 and vanishes at u = u2; nutation in this Case exhibits a cusp at θ2.
In Case III (α < β u2), the precession frequency dϕ/dτ reverses its sign at ur = α/β = b
or θ2 < θr = arccos(b) < θ1.

7.3.5 Stability of the Sleeping Top

Let us consider the case where a symmetric top with one fixed point is launched with
initial conditions θ0 6= 0 and θ̇0 = ϕ̇0 = 0, with ψ̇0 6= 0. In this case, the invariant canonical
momenta are

pψ = I3 ψ̇0 and pϕ = pψ cos θ0.

These initial conditions (u0 = α/β, u̇0 = 0), therefore, imply from Eq. (7.63) that ε = u0

and that the energy equation (7.63) now becomes

(
du

dτ

)2

=
[

(1 − u2) − β2 (u0 − u)
]

(u0 − u). (7.66)

Next, we consider the case of the sleeping top for which an additional initial condition
is θ0 = 0 (and u0 = 1). Thus Eq. (7.66) becomes

(
du

dτ

)2

=
(
1 + u − β2

)
(1 − u)2. (7.67)

The sleeping top has the following equilibrium points (where u̇ = 0): u1 = 1 and u2 = β2−1.
We now investigate the stability of the equilibrium point u1 = 1 by writing u = 1− δ (with
δ � 1) so that Eq. (7.67) becomes

dδ

dτ
=
(
2 − β2

) 1

2 δ.

The solution of this equation is exponential (and, therefore, u1 is unstable) if β2 < 2
or oscillatory (and, therefore, u1 is stable) if β2 > 2. Note that in the latter case, the
condition β2 > 2 implies that the second equilibrium point u2 = β2 − 1 > 1 is unphysical.
We, therefore, see that stability of the sleeping top requires a large spinning frequency ω3;
in the presence of friction, the spinning frequency slows down and ultimately the sleeping
top becomes unstable.
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7.4 Problems

Problem 1

Consider a thin homogeneous rectangular plate of mass M and area ab that lies on the
(x, y)-plane.

(a) Show that the inertia tensor (calculated in the reference frame with its origin at point
O in the Figure above) takes the form

I =




A −C 0
−C B 0
0 0 A +B



 ,

and find suitable expressions for A, B, and C in terms of M , a, and b.

(b) Show that by performing a rotation of the coordinate axes about the z-axis through an
angle θ, the new inertia tensor is

I′(θ) = R(θ) · I · RT (θ) =




A′ −C ′ 0

−C ′ B ′ 0
0 0 A′ +B ′



 ,

where

A′ = A cos2 θ + B sin2 θ − C sin 2θ

B ′ = A sin2 θ + B cos2 θ + C sin 2θ

C ′ = C cos 2θ − 1

2
(B − A) sin 2θ.
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(c) When

θ =
1

2
arctan

(
2C

B − A

)
,

the off-diagonal component C ′ vanishes and the x′− and y′−axes become principal axes.
Calculate expressions for A′ and B ′ in terms of M , a, and b for this particular angle.

(d) Calculate the inertia tensor ICM in the CM frame by using the Parallel-Axis Theorem
and show that

IxCM =
M b2

12
, IyCM =

M a2

12
, and IzCM =

M

12

(
b2 + a2

)
.

Problem 2

(a) The Euler equation for an asymmetric top (I1 > I2 > I3) with L2 = 2 I2K is

ω̇2 = α
(
Ω2 − ω2

2

)
,

where

Ω2 =
2K

I2
and α =

√(
1 − I2

I1

)(
I2
I3

− 1
)

Solve for ω2(t) with the initial condition ω2(0) = 0.

(b) Use the solution ω2(t) found in Part (a) to find the solutions ω1(t) and ω3(t) given by
Eqs. (7.35).

Problem 3

(a) Consider a circular cone of height H and base radius R = H tanα with uniform mass
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density ρ = 3M/(π HR2).

Show that the non-vanishing components of the inertia tensor I calculated from the
vertex O of the cone are

Ixx = Iyy =
3

5
M

(

H2 +
R2

4

)

and Izz =
3

10
M R2

(b) Show that the principal moments of inertia calculated in the CM frame (located at a
height h = 3H/4 on the symmetry axis) are

I1 = I2 =
3

20
M

(

R2 +
H2

4

)

and I3 =
3

10
M R2

Problem 4

Show that the Euler basis vectors (ê1, ê2, ê3) are expressed as shown in Eq. (7.45).

Problem 5

Since the Lagrangian (7.55) for the motion of a symmetric top with one fixed point is
independent of the Euler angles ϕ and ψ, derive the Routhian

R(θ, θ̇; pϕ, pψ) = L − pϕ ϕ̇ − pψ ψ̇,

and find the corresponding Routh-Euler-Lagrange equation for θ.



Chapter 8

Normal-Mode Analysis

8.1 Stability of Equilibrium Points

A nonlinear force equation mẍ = f(x) has equilibrium points (labeled x0) when f(x0)
vanishes. The stability of the equilibrium point x0 is determined by the sign of f ′(x0): the
equilibrium point x0 is stable if f ′(x0) < 0 or it is unstable if f ′(x0) > 0. Since f(x) is also
derived from a potential V (x) as f(x) = −V ′(x), we say that the equilibrium point x0 is
stable (or unstable) if V ′′(x0) is positive (or negative).

8.1.1 Bead on a Rotating Hoop

In Chap. 2, we considered the problem of a bead of mass m sliding freely on a hoop of
radius r rotating with angular velocity ω0 in a constant gravitational field with acceleration
g. The Lagrangian for this system is

L(θ, θ̇) =
m

2
r2θ̇2 +

(
m

2
r2ω2

0 sin2 θ + mgr cos θ
)

=
m

2
r2θ̇2 − V (θ),

where V (θ) denotes the effective potential, and the Euler-Lagrange equation for θ is

mr2 θ̈ = −V ′(θ) = − mr2ω2
0 sin θ (ν − cos θ), (8.1)

where ν = g/(r ω2
0). The equilibrium points of Eq. (8.1) are θ = 0 (for all values of ν) and

θ = arccos(ν) if ν < 1. The stability of the equilibrium point θ = θ0 is determined by the
sign of

V ′′(θ0) = mr2ω2
0

[
ν cos θ0 −

(
2 cos2 θ0 − 1

) ]
.

Hence,

V ′′(0) = mr2ω2
0 (ν − 1) (8.2)

175
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Figure 8.1: Bifurcation tree for the bead on a rotating-hoop problem

is positive (i.e., θ = 0 is stable) if ν > 1 or negative (i.e., θ = 0 is unstable) if ν < 1. In
the latter case, when ν < 1 and the second equilibrium point θ0 = arccos(ν) is possible, we
find

V ′′(θ0) = mr2ω2
0

[
ν2 −

(
2 ν2 − 1

) ]
= mr2ω2

0

(
1 − ν2

)
> 0, (8.3)

and thus the equilibrium point θ0 = arccos(ν) is stable when ν < 1. The stability of the
bead on a rotating hoop is displayed on the bifurcation diagram (see Figure 7.14) which
shows the stable regime bifurcates at ν = 1.

8.1.2 Circular Orbits in Central-Force Fields

The radial force equation

µ r̈ =
`2

µr3
− k rn−1 = −V ′(r),

studied in Chap. 4 for a central-force field F (r) = − k rn−1 (here, µ is the reduced mass
of the system, the azimuthal angular momentum ` is a constant of the motion, and k is a
constant), has the equilibrium point at r = ρ defined by the relation

ρn+2 =
`2

µk
. (8.4)

The second derivative of the effective potential is

V ′′(r) =
`2

µr4

(

3 + (n − 1)
k µ

`2
rn+2

)

,
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which becomes

V ′′(ρ) =
`2

µρ4
(2 + n). (8.5)

Hence, V ′′(ρ) is positive if n > −2, and, thus, circular orbits are stable in central-force
fields F (r) = − k rn−1 if n > −2.

8.2 Small Oscillations about Stable Equilibria

Once an equilibrium point x0 is shown to be stable, i.e., f ′(x0) < 0 or V ′′(x0) > 0, we may
expand x = x0 + δx about the equilibrium point (with δx� x0) to find the linearized force
equation

m δẍ = − V ′′(x0) δx, (8.6)

which has oscillatory behavior with frequency

ω(x0) =

√
V ′′(x0)

m
.

We first look at the problem of a bead on a rotating hoop, where the frequency of small
oscillations ω(θ0) is either given in Eq. (8.2) as

ω(0) =

√
V ′′(0)

mr2
= ω0

√
ν − 1

for θ0 = 0 and ν > 1, or is given in Eq. (8.3) as

ω(θ0) =

√
V ′′(θ0)

mr2
= ω0

√
1 − ν2

for θ0 = arccos(ν) and ν < 1.

Next, we look at the frequency of small oscillations about the stable circular orbit in a
central-force field F (r) = − k r−n (with n < 3). Here, from Eq. (8.5), we find

ω =

√
V ′′(ρ)

µ
=

√
k (3 − n)

µρn+1
,

where `2 = µk ρ3−n was used. We note that for the Kepler problem (n = 2), the period of
small oscillations T = 2π/ω is expressed as

T 2 =
(2π)2 µ

k
ρ3,

which is precisely the statement of Kepler’s Third Law for circular orbits. Hence, a small
perturbation of a stable Keplerian circular orbit does not change its orbital period.
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Figure 8.2: Bead on a rotating parabolic wire.

As a last example of linear stability, we consider the case of a time-dependent equilib-
rium. A rigid parabolic wire having equation z = k r2 is fastened to a vertical shaft rotating
at constant angular velocity θ̇ = ω. A bead of mass m is free to slide along the wire in the
presence of a constant gravitational field with potential U(z) = mg z (see Figure 8.2). The
Lagrangian for this mechanical system is given as

L(r, ṙ) =
m

2

(
1 + 4k2r2

)
ṙ2 + m

(
ω2

2
− g k

)

r2,

and the Euler-Lagrange equation of motion is easily obtained as
(
1 + 4k2r2

)
r̈ + 4k2r ṙ2 =

(
ω2 − 2 gk

)
r.

Note that when ω2 < 2 gk we see that the bead moves in an effective potential represented

by an isotropic simple harmonic oscillator with spring constant
√
m (2 gk − ω2) (i.e., the

radial position of the bead is bounded), while when ω2 > 2 gk, the bead appears to move
on the surface of an inverted paraboloid and, thus, the radial position of the bead in this
case is unbounded.

We now investigate the stability of the linearized motion r(t) = r0 + δr(t) about an
initial radial position r0. The linearized equation for δr(t) is

δr̈ =

(
ω2 − 2 gk

1 + 4k2r2
0

)

δr,

so that the radial position r = r0 is stable if ω2 < 2 gk and unstable if ω2 > 2 gk. In the
stable case (ω2 < 2 gk), the bead oscillates back and forth with 0 ≤ r(t) ≤ r0, although the
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Figure 8.3: Normalized orbits for the nonlinear r-dynamics for the stable case (ω2 < 2 gk),
the marginal case (ω2 = 2 gk), and the unstable case (ω2 > 2 gk).

motion can be rather complex (see Figure 8.3 for orbits inside the radius r0, with initial
condition ṙ0 = 0). For the special case ω2 = 2 gk, the linearized equation δr̈ = 0 implies
that the radial dynamics r(t) = r0 is marginally stable. In the unstable case (ω2 > 2 gk),
the radial position of the bead increases exponentially as it spirals outward away from the
initial radial position r0.

8.3 Coupled Oscillations and Normal-Mode Analysis

8.3.1 Coupled Simple Harmonic Oscillators

We begin our study of linearily-coupled oscillators by considering the following coupled
system comprised of two block-and-spring systems, with identical mass m and identical
spring constant k, coupled by means of a spring of constant K (see Figure 8.4). The
coupled equations are

mẍ = − (k +K)x + K y and m ÿ = − (k +K) y + K x. (8.7)

The solutions for x(t) and y(t) by following a method known as the normal-mode analysis.
First, we write x(t) and y(t) in the normal-mode representation

x(t) = x e− iωt and y(t) = y e− iωt, (8.8)

where x and y are constants and the eigenfrequency ω is to be solved in terms of the system
parameters (m, k,K). Next, substituting the normal-mode representation into Eq. (8.7),
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Figure 8.4: Coupled identical masses and springs

we obtain the following normal-mode matrix equation
(
ω2m− (k +K) K

K ω2 m− (k +K)

)(
x
y

)

= 0. (8.9)

To obtain a non-trivial solution x, y 6= 0, the determinant of the matrix in Eq. (8.9) is
required to vanish, which yields the characteristic polynomial

[ω2m− (k +K)]2 − K2 = 0,

whose solutions are the eigenfrequencies

ω2
± =

(k +K)

m
± K

m
.

If we insert ω2
+ = (k + 2K)/m into the matrix equation (8.9), we find

(
K K
K K

)(
x
y

)

= 0,

which implies that y = −x, and thus the eigenfrequency ω+ is associated with an anti-
symmetric coupled motion. If we insert ω2

− = k/m into the matrix equation (8.9), we
find (

−K K
K −K

)(
x
y

)

= 0,

which implies that y = x, and thus the eigenfrequency ω− is associated with a symmetric
coupled motion.

Figures 8.5 and 8.6 show the normalized solutions of the coupled equations (8.7), where

time is normalized as t →
√
k/m t, for the weak coupling (K < k) and strong coupling

(K > k) cases, respectively. Note that the two eigenfrequencies are said to be commen-

surate if the ratio ω+/Ω− =
√

1 + 2K/k is expressed as a rational number ρ for values of
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Figure 8.5: Weak-coupling normalized solutions of the coupled equations (8.7) for K/k =
5/8 (top graphs) and K/k = 0.1 (bottom graphs).

the ratio K/k = (ρ2 − 1)/2 and that for commensurate eigenfrequencies, the graph of the
solutions on the (x, y)-plane generates the so-called Lissajou figures. For noncommensu-
rate eigenfrequencies, however, the graph of the solutions on the (x, y)-plane shows more
complex behavior.

Lastly, we construct the normal coordinates η+ and η−, which satisfy the condition
η̈± = −ω2

± η±. From the discussion above, we find

η−(t) = x(t) + y(t) and η+(t) = x(t)− y(t). (8.10)

Figure 8.7 shows the graphs of the normal coordinates η±(t) = x(t) ∓ y(t), which clearly
displays the single-frequency behavior predicted by the present normal-mode analysis. The
solutions η±(t) are of the form

η± = A± cos(ω±t+ ϕ±),

where A± and ϕ± are constants (determined from initial conditions). The general solution
of Eqs. (8.7) can, therefore, be written explicitly in terms of the normal coordinates η± as
follows (

x(t)
y(t)

)

=
A−
2

cos(ω−t+ ϕ−) ± A+

2
cos(ω+t+ ϕ+).
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Figure 8.6: Strong-coupling normalized solutions of the coupled equations (8.7) for K/k =
3/2 (top graphs) and K/k = 2 (bottom graphs).

Figure 8.7: Normal coordinates η−(t) and η+(t) as a function of normalized time for the
case K/k = 2 with normalized frequencies 1 and

√
5, respectively.
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Figure 8.8: Coupled pendula

8.3.2 Nonlinear Coupled Oscillators

We now consider the following system composed of two pendula of identical length ` but
different masses m1 and m2 coupled by means of a spring of constant k in the presence of a
gravitational field of constant acceleration g (see Figure 8.8). Here, the distance D between
the two points of attach of the pendula is equal to the length of the spring in its relaxed
state and we assume, for simplicity, that the masses always stay on the same horizontal
line.

Using the generalized coordinates (θ1, θ2) defined in Figure 8.8, the Lagrangian for this
system is

L =
`2

2

(
m1 θ̇

2
1 +m2 θ̇

2
2

)
− g` [ m1 (1 − cos θ1) +m2 (1 − cos θ2) ]

− k`2

2
(sin θ1 − sin θ2)

2
,

and the nonlinear coupled equations of motion are

m1 θ̈1 = − m1 ω
2
g sin θ1 − k (sin θ1 − sin θ2) cos θ1,

m2 θ̈2 = − m2 ω
2
g sin θ2 + k (sin θ1 − sin θ2) cos θ2,

where ω2
g = g/`.

It is quite clear that the equilibrium point is θ1 = 0 = θ2 and expansion of the coupled
equations about this equilibrium yields the coupled linear equations

m1 q̈1 = − m1 ω
2
g q1 − k (q1 − q2),
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m2 q̈2 = − m2 ω
2
g q2 + k (q1 − q2),

where θ1 = q1 � 1 and θ2 = q2 � 1. The normal-mode matrix associated with these
coupled linear equations is

(
(ω2 − ω2

g)m1 − k k
k (ω2 − ω2

g)m2 − k

)(
q1
q2

)

= 0,

and the characteristic polynomial is

M
[

(ω2 − ω2
g)µ − k

]
(ω2 − ω2

g) = 0,

where µ = m1m2/M is the reduced mass for the system and M = m1 + m2 is the total
mass. The eigenfrequencies are thus

ω2
− = ω2

g and ω2
+ = ω2

g +
k

µ
.

The normal coordinates η± are expressed in terms of (q1, q2) as η± = a± q1+b± q2, where
a± and b± are constant coefficients determined from the condition η̈± = −ω2

± η±. From
this condition we find

(
k

m1
+ ω2

g

)

− b±
a±

k

m2
= ω2

± =

(
k

m2
+ ω2

g

)

− a±
b±

k

m1
.

For the eigenfrequency ω2
− = ω2

g , we find b−/a− = m2/m1, and thus we may choose

η− =
m1

M
q1 +

m2

M
q2,

which represents the center of mass position for the system. For the eigenfrequency ω2
+ =

ωg + k/µ, we find b+/a+ = − 1, and thus we may choose

η+ = q1 − q2.

Lastly, we may solve for q1 and q2 as

q1 = η− +
m2

M
η+ and q2 = η− − m1

M
η+,

where η± = A± cos(ω± t + ϕ±) are general solutions of the normal-mode equations η̈± =
−ω2

± η±.
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8.4 Problems

Problem 1

The following compound pendulum is composed of two identical masses m attached
by massless rods of identical length ` to a ring of mass M , which is allowed to slide up
and down along a vertical axis in a gravitational field with constant g. The entire system
rotates about the vertical axis with an azimuthal angular frequency ωϕ.

(a) Show that the Lagrangian for the system can be written as

L(θ, θ̇) = `2θ̇2
(
m+ 2M sin2 θ

)
+ m`2 ω2

ϕ sin2 θ + 2 (m+M)g` cos θ

(b) Identify the equilibrium points for the system and investigate their stability.

(c) Determine the frequency of small oscillations about each stable equilibrium point found
in Part (b).

Problem 2

Consider the same problem as in Sec. (8.3.1) but now with different masses (m1 6= m2).
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Calculate the eigenfrequencies and eigenvectors (normal coordinates) for this system.

Problem 3

Find the eigenfrequencies associated with small oscillations of the system shown below.

Problem 4

Two blocks of identical mass m are attached by massless springs (with identical spring
constant k) as shown in the Figure below.

The Lagrangian for this system is

L(x, ẋ; y, ẏ) =
m

2

(
ẋ2 + ẏ2

)
− k

2

[
x2 + (y − x)2

]
,

where x and y denote departures from equilibrium.

(a) Derive the Euler-Lagrange equations for x and y.

(b) Show that the eigenfrequencies for small oscillations for this system are

ω2
± =

ω2
k

2

(
3 ±

√
5
)
,
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where ω2
k = k/m.

(c) Show that the eigenvectors associated with the eigenfrequencies ω± are represented by
the relations

y± =
1

2

(
1 ∓

√
5
)
x±

where (x±, y±) represent the normal-mode amplitudes.

Problem 5

An infinite sheet with surface mass density σ has a hole of radius R cut into it. A
particle of mass m sits (in equilibrium) at the center of the circle. Assuming that the
sheet lies on the (x, y)-plane (with the hole centered at the origin) and that the particle
is displaced by a small amount z � R along the z-axis, calculate the frequency of small
oscillations.

Problem 6

Two identical masses are connected by two identical massless springs and are con-
strained to move on a circle (see Figure below). Of course, the two masses are in equilibrium
when they are diametrically opposite points on the circle.

Solve for the normal modes of the system.
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Problem 7

Consider a pendulum of mass m attached at a point O with the help of a massless rigid
rod on length `. Here, point O is located at a distance R > ` from a axis of rotation and
is rotating at an angular velocity Ω about the axis of rotation (see Figure below).

(a) Show that there are two equilibrium configurations to this problem, which are obtained
from finding the roots to the transcendental equation

(R − ` sin θ) Ω2 cos θ = g sin θ.

(b) Show that one equilibrium configuration is stable while the other is unstable.



Chapter 9

Continuous Lagrangian Systems

9.1 Waves on a Stretched String

9.1.1 Wave Equation

The equation describing waves propagating on a stretched string of constant linear mass
density ρ under constant tension T is

ρ
∂2u(x, t)

∂t2
= T

∂2u(x, t)

∂x2
, (9.1)

where u(x, t) denotes the amplitude of the wave at position x along the string at time t.

General solutions to this equation involve arbitrary functions g(x± v t), where v =
√
T/ρ

represents the speed of waves propagating on the string. Indeed, we find

ρ ∂2
t g(x± v t) = ρ v2 g′′ = T g′′ = T ∂2

xg(x± v t).

The interpretation of the two different signs is that g(x−v t) represents a wave propagating
to the right while g(x+v t) represents a wave propagating to the left. The general solution
of the wave equation (9.1) is

u(x, t) = A− g(x− v t) + A+ g(x+ v t),

where A± are arbitrary constants.

9.1.2 Lagrangian Formalism

The question we now ask is whether the wave equation (9.1) can be derived from a varia-
tional principle

δ
∫

L(u, ∂tu, ∂xu; x, t) dx dt = 0, (9.2)

189
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where the Lagrangian density L(u, ∂tu, ∂xu; x, t) is a function of the dynamical variable
u(x, t) and its space-time derivatives. Here, the variation of the Lagrangian density L is
expressed as

δL = δu
∂L
∂u

+ ∂tδu
∂L

∂(∂tu)
+ ∂xδu

∂L
∂(∂xu)

,

where δu(x, t) is a general variation of u(x, t) subject to the condition that it vanishes at
the integration boundaries in Eq. (9.2). By re-arranging terms, the variation of L can be
written as

δL = δu

{
∂L
∂u

− ∂

∂t

(
∂L

∂(∂tu)

)

− ∂

∂x

(
∂L

∂(∂xu)

)}

+
∂

∂t

(

δu
∂L

∂(∂tu)

)

+
∂

∂x

(

δu
∂L

∂(∂xu)

)

. (9.3)

When we insert this expression for δL into the variational principle (9.2), we obtain

∫
dx dt δu

{
∂L
∂u

− ∂

∂t

(
∂L

∂(∂tu)

)

− ∂

∂x

(
∂L

∂(∂xu)

)}

= 0, (9.4)

where the last two terms in Eq. (9.3) cancel out because δu vanishes on the integration
boundaries. Since the variational principle (9.4) is true for general variations δu, we obtain
the Euler-Lagrange equation for the dynamical field u(x, t):

∂

∂t

(
∂L

∂(∂tu)

)

+
∂

∂x

(
∂L

∂(∂xu)

)

=
∂L
∂u

. (9.5)

9.1.3 Lagrangian Description for Waves on a Stretched String

The question we posed earlier now focuses on deciding what form the Lagrangian density
must take. Here, the answer is surprisingly simple: the kinetic energy density of the wave
is ρ (∂tu)

2/2, while the potential energy density is T (∂xu)
2/2, and thus the Lagrangian

density for waves on a stretched string is

L(u, ∂tu, ∂xu; x, t) =
ρ

2

(
∂u

∂t

)2

− T

2

(
∂u

∂x

)2

. (9.6)

Since ∂L/∂u = 0, we find

∂

∂t

(
∂L

∂(∂tu)

)

=
∂

∂t

(

ρ
∂u

∂t

)

= ρ
∂2u

∂t2
,

∂

∂x

(
∂L

∂(∂xu)

)

=
∂

∂x

(

− T
∂u

∂x

)

= − T
∂2u

∂x2
,



9.2. GENERAL VARIATIONAL PRINCIPLE FOR FIELD THEORY* 191

and Eq. (9.1) is indeed represented as an Euler-Lagrange equation (9.5) in terms of the
Lagrangian density (9.6).

The energy density E of a stretched string can also be calculated by using the Legendre
transformation

E ≡ ∂u

∂t

∂L
∂(∂tu)

− L =
ρ

2

(
∂u

∂t

)2

+
T

2

(
∂u

∂x

)2

.

By using the wave equation (9.1), we readily find that the time derivative of the energy
density

∂E
∂t

=
∂

∂x

(

T
∂u

∂t

∂u

∂x

)

can be expressed as an energy conservation law ∂tE + ∂S = 0, where the energy-density
flux is defined as S ≡ −T ∂xu ∂tu. The next Section will present the general variational
formulation of classical field theory, which will enable to show that the wave equation (9.1)
also satisfies the momentum conservation law ∂tP+∂xE = 0, where the momentum density
is P ≡ S/v2.

9.2 General Variational Principle for Field Theory*

The simple example of waves on a stretched string allows us to view the Euler-Lagrange
equation (9.5) as a generalization of the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)

=
∂L

∂qi
,

in terms of the generalized coordinates qi. We now spend some time investigating the
Lagrangian description of continuous systems, in which the dynamical variables are fields
ψ(x, t) instead of spatial coordinates x.

9.2.1 Action Functional

Classical and quantum field theories rely on variational principles based on the existence
of action functionals. The typical action functional is of the form

A[ψ] =
∫
d4x L(ψ, ∂µψ), (9.7)

where the wave function ψ(x, t) represents the state of the system at position x and time
t while the entire physical content of the theory is carried by the Lagrangian density L.
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The variational principle is based on the stationarity of the action functional

δA[ψ] = A[ψ + δψ] − A[ψ] =
∫
δL(ψ, ∂µψ) d4x,

where ∂µ = (c−1∂t, ∇) and the metric tensor is defined as gµν = diag(−1,+1,+1,+1).1

Here, the variation of the Lagrangian density is

δL =
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
∂µδψ

≡ δψ

[
∂L
∂ψ

− ∂

∂xµ

(
∂L

∂(∂µψ)

) ]

+
∂Λµ

∂xµ
, (9.8)

where
∂L

∂(∂µψ)
∂µδψ =

∂L
∂(∇ψ)

·∇δψ +
∂L

∂(∂tψ)
∂tδψ,

and the exact space-time divergence ∂µΛ
µ is obtained by rearranging terms, with

Λµ = δψ
∂L

∂(∂µψ)
and

∂Λµ

∂xµ
=

∂

∂t

(

δψ
∂L

∂(∂tψ)

)

+ ∇ ·

(

δψ
∂L

∂(∇ψ)

)

.

The variational principle δA[ψ] = 0 then yields

0 =
∫
d4x δψ

[
∂L
∂ψ

− ∂

∂xµ

(
∂L

∂(∂µψ)

)]

,

where the exact divergence ∂µΛ
µ drops out under the assumption that the variation δψ van-

ish on the integration boundaries. Following the standard rules of Calculus of Variations,
the Euler-Lagrange equation for the wave function ψ is

∂

∂xµ

(
∂L

∂(∂µψ)

)

=
∂

∂t

(
∂L

∂(∂tψ)

)

+ ∇ ·

(
∂L

∂(∇ψ)

)

=
∂L
∂ψ

. (9.9)

9.2.2 Noether Method and Conservation Laws

Since the Euler-Lagrange equations (9.9) hold true for arbitrary field variations δψ, the
variation of the Lagrangian density L is now expressed as the Noether equation

δL ≡ ∂µΛ
µ =

∂

∂xµ

[

δψ
∂L

∂(∂µψ)

]

. (9.10)

which associates symmetries with conservation laws ∂µJ µ
a = 0, where the index a denotes

the possibility of conserved four-vector quantities (see below).

1For two four-vectors Aµ = (A0, A) and Bµ = (B0, B), we have A ·B = Aµ Bµ = A ·B−A0 B0 , where
A0 = −A0.
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Energy-Momentum Conservation Law

The conservation of energy-momentum (a four-vector quantity!) involves symmetry of the
Lagrangian with respect to constant space-time translations (xν → xν + δxν). Here, the
variation δψ is no longer arbitrary but is required to be of the form

δψ = − δxν ∂νψ (9.11)

while the variation δL is of the form

δL = − δxν
[
∂νL − (∂νL)ψ

]
, (9.12)

where (∂νL)ψ denotes a explicit space-time derivative of L at constant ψ. The Noether
equation (9.10) can now be written as

∂

∂xµ

(

L gµν − ∂L
∂(∂µψ)

∂νψ

)

=

(
∂L
∂xν

)

ψ

.

If the Lagrangian is explicitly independent of the space-time coordinates, i.e., (∂νL)ψ = 0,
the energy-momentum conservation law ∂µ T

µ
ν = 0 is written in terms of the energy-

momentum tensor

T µν ≡ L gµν − ∂L
∂(∂µψ)

∂νψ. (9.13)

We note that the derivation of the energy-momentum conservation law is the same for
classical and quantum fields. A similar procedure would lead to the conservation of angular
momentum but this derivation is beyond the scope of the present Notes and we move on
instead to an important conservation in wave dynamics.

Wave-Action Conservation Law

Waves are known to exist on a great variety of media. When waves are supported by a
spatially nonuniform or time-dependent medium, the conservation law of energy or momen-
tum no longer apply and instead energy or momentum is transfered between the medium
and the waves. There is however one conservation law which still applies and the quantity
being conserved is known as wave action.

The derivation of a wave-action conservation law differs for classical fields and quan-
tum fields. The difference is related to the fact that whereas classical fields are generally
represented by real-valued wave functions (i.e., ψ∗ = ψ), the wave functions of quantum
field theories are generally complex-valued (i.e., ψ∗ 6= ψ).

The first step in deriving a wave-action conservation law in classical field theory involves
transforming the real-valued wave function ψ into a complex-valued wave function ψ. Next,
variations of ψ and its complex conjugate ψ∗ are of the form

δψ ≡ iε ψ and δψ∗ ≡ − iε ψ∗, (9.14)
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Lastly, we transform the classical Lagrangian density L into a real-valued Lagrangian den-
sity LR(ψ, ψ∗) such that δLR ≡ 0. The wave-action conservation law is, therefore,
expressed in the form ∂µJ µ = 0, where the wave-action four-density is

J µ ≡ 2 Im

[

ψ
∂LR
∂(∂µψ)

]

, (9.15)

where Im[· · ·] denotes the imaginary part.

9.3 Variational Principle for Schroedinger Equation*

A simple yet important example for a quantum field theory is provided by the Schroedinger
equation for a spinless particle of mass m subjected to a real-valued potential energy
function V (x, t). The Lagrangian density for the Schroedinger equation is given as

LR = − h̄2

2m
|∇ψ|2 +

ih̄

2

(

ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)

− V |ψ|2. (9.16)

The Schroedinger equation for ψ is derived as an Euler-Lagrange equation (9.9) in terms
of ψ∗, where

∂LR
∂(∂tψ∗)

= − ih̄

2
ψ → ∂

∂t

(
∂LR

∂(∂tψ∗)

)

= − ih̄

2

∂ψ

∂t
,

∂LR
∂(∇ψ∗)

= − h̄2

2m
∇ψ → ∇ ·

(
∂LR

∂(∇ψ∗)

)

= − h̄2

2m
∇2ψ,

∂LR
∂ψ∗ =

ih̄

2

∂ψ

∂t
− V ψ,

so that the Euler-Lagrange equation (9.9) for the Schroedinger Lagrangian (9.16) becomes

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ, (9.17)

where the Schroedinger equation for ψ∗ is as an Euler-Lagrange equation (9.9) in terms of
ψ, which yields

− ih̄
∂ψ∗

∂t
= − h̄2

2m
∇2ψ∗ + V ψ∗, (9.18)

which is simply the complex-conjugate equation of Eq. (9.17).

The energy-momentum conservation law is now derived by Noether method. Because
the potential V (x, t) is spatially nonuniform and time dependent, the energy-momentum
contained in the wave field is not conserved and energy-momentum is exchanged between
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the wave field and the potential V . For example, the energy transfer equation is of the
form

∂E
∂t

+ ∇ ·S = |ψ|2 ∂V
∂t
, (9.19)

where the energy density E and energy density flux S are given explicitly as

E = − LR +
ih̄

2

(

ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)

S = − h̄2

2m

(
∂ψ

∂t
∇ψ∗ +

∂ψ∗

∂t
∇ψ

)

.

The momentum transfer equation, on the other hand, is

∂P

∂t
+ ∇ ·T = − |ψ|2 ∇V, (9.20)

where the momentum density P and momentum density tensor T are given explicitly as

P =
ih̄

2
(ψ ∇ψ∗ − ψ∗ ∇ψ)

T = LR I +
h̄2

2m
(∇ψ∗ ∇ψ + ∇ψ ∇ψ∗) .

Note that Eqs. (9.19) and (9.20) are exact equations.

Whereas energy-momentum is transfered between the wave field ψ and potential V , the
amount of wave-action contained in the wave field is conserved. Indeed the wave-action
conservation law is

∂J
∂t

+ ∇ ·J = 0, (9.21)

where the wave-action density J and wave-action density flux J are

J = h̄ |ψ|2 and J =
ih̄2

2m
(ψ ∇ψ∗ − ψ∗ ∇ψ) (9.22)

Thus wave-action conservation law is none other than the law of conservation of probability
associated with the normalization condition

∫
|ψ|2 d3x = 1

for bounds states or the conservation of the number of quanta in a scattering problem.
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Appendix A

Basic Mathematical Methods

Appendix A introduces, first, an explicit derivation of the Frenet-Serret formulas for an
arbitrary curve in three-dimensional space used in Chapters 1 and 2. Next, some basic
concepts in linear algebra that a student may have acquired before taking this course are
summarized. Hopefully, this material will assist the student in following the presentation in
Chapters 7 and 8. Lastly, some general integrals involving the trigonometric substitution
are also solved explicitly, while the optional Section A.3.2 summarizes the properties of
the Jacobi and Weierstrass elliptic functions and integrals involved in solutions of various
differential equations throughout the text.

A.1 Frenet-Serret Formulas

Consider a curve
r(t) = x(t) x̂ + y(t) ŷ + z(t) ẑ (A.1)

in three-dimensional space parametrized by time t. The infinitesimal length element along
the curve ds(t) = v(t) dt is also parametrized by time t, with v(t) ≡ |ṙ| denoting the speed
along the curve.

The Frenet-Serret formulas associated with the curvature κ and torsion τ of the curve
(A.1) are defined in terms of the right-handed set of unit vectors (̂t, n̂, b̂), where t̂ denotes
the tangent unit vector, n̂ denotes the normal unit vector, and b̂ denotes the binormal unit
vector. First, by definition, the tangent unit vector is defined as

t̂ ≡ dr

ds
=

ṙ(t)

v(t)
. (A.2)

The definitions of the curvature κ and the normal unit vector n̂ are defined as

dt̂

ds
=

r̈

v2
− v̇

v2
t̂ =

t̂

v2
×

(
r̈× t̂

)
=
(
ṙ× r̈

v3

)
× t̂ = κ

(
b̂× t̂

)
≡ κ n̂, (A.3)

197
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where v̇ ≡ d|ṙ|/dt = t̂ · r̈, so that the curvature is defined as

κ ≡ |ṙ× r̈|
v3

, (A.4)

while the normal and binormal unit vectors are defined as

n̂ ≡ ṙ× (r̈× ṙ)

κ v4
= t̂ ×

(
r̈× ṙ

|r̈× ṙ|

)

, (A.5)

and

b̂ ≡ ṙ× r̈

|ṙ× r̈| . (A.6)

Hence, the curve (A.1) exhibits curvature if its velocity ṙ and acceleration r̈ are not colinear.

Next, we obtain the following expression for the derivative of the normal unit vector
(A.5):

dn̂

ds
=

dt̂

ds
×

(
r̈× ṙ

|r̈× ṙ|

)

+ t̂ ×
d

ds

(
r̈× ṙ

|r̈× ṙ|

)

=
[

t̂ ×

(
r̈× ṙ

v3

) ]
×

(
r̈× ṙ

|r̈× ṙ|

)

+
t̂

v
×



 b̂×





(
˙̈r × ṙ

)
× b̂

|r̈× ṙ|









= κ
(
t̂ × b̂

)
× b̂ +




t̂ ·

[(
˙̈r× ṙ

)
× b̂

]

v |r̈× ṙ|



 b̂ ≡ − κ t̂ + τ b̂, (A.7)

where the torsion

τ ≡
t̂ ·

[(
˙̈r× ṙ

)
× b̂

]

v |r̈× ṙ| =
n̂ ·

(
˙̈r× ṙ

)

κ v4
=

ṙ ·

(
r̈ × ˙̈r

)

κ2 v6
(A.8)

is defined in terms of the triple product ṙ · (r̈× ˙̈r). Hence, the torsion requires that the rate
of change of acceleration ˙̈r = dr̈/dt (known as jerk) along the curve have a nonvanishing
component perpendicular to the plane constructed by the velocity ṙ and the acceleration
r̈.

Lastly, we obtain the expression for the derivative of the normal unit vector (A.6):

db̂

ds
=

b̂ ×

[(
ṙ× ˙̈r

)
× b̂

]

v |ṙ× r̈| = α t̂ + β n̂ ≡ − τ n̂, (A.9)

where

α ≡ t̂ ·
db̂

ds
=

t̂ ·

(
ṙ× ˙̈r

)

κ v4
≡ 0,
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and

β ≡ n̂ ·
db̂

ds
=

n̂ ·

(
ṙ× ˙̈r

)

κ v4
=

[
ṙ× (r̈× ṙ)

κ2 v8

]

·

(
ṙ× ˙̈r

)
=

r̈ ·

(
ṙ × ˙̈r

)

κ2 v6
= − τ.

The equations (A.3), (A.7), and (A.9) are refered to as the Frenet-Serret formulas, which
describes the evolution of the unit vectors (̂t, n̂, b̂) along the curve (A.1) in terms of the
curvature (A.4) and the torsion (A.8). Note that by introducing the Darboux vector (Gaston
Darboux, 1842-1917) ω ≡ τ t̂ + κ b̂, the Frenet-Serret equations (A.3), (A.7), and (A.9)
may be written as

dêi
ds

≡ ω × êi, (A.10)

where êi = (̂t, n̂, b̂) denotes a component of the so-called Frenet frame. Hence, curvature
is a measure of the rotation of the Frenet frame about the binormal unit vector b̂, while
torsion is the measure of the rotation of the Frenet frame about the tangent unit vector t̂.

We now compute the Frenet-Serret formulas for the helical path

r(θ) = a (cos θ x̂ + sin θ ŷ) + b θ ẑ (A.11)

parametrized by the angle θ. Here, the distance s along the helix is simply given as s = c θ,
where c =

√
a2 + b2. Hence, the tangent unit vector is defined as

t̂ =
dr

ds
= cosα (− sin θ x̂ + cos θ ŷ) + sinα ẑ, (A.12)

where (a, b) ≡ (c cosα, c sinα) and 0 ≤ α < π/2 denotes the pitch of the helix (e.g., a
circle is a helical path with pitch α = 0). Next, the derivative of the tangent unit vector
yields

dt̂

ds
= − cosα

c
(cos θ x̂ + sin θ ŷ) ≡ κ n̂, (A.13)

so that the normal unit vector is

n̂ = − (cos θ x̂ + sin θ ŷ) (A.14)

and the curvature is κ = c−1 cosα (i.e., a circle of radius a has a scalar curvature κ = a−1).
Lastly, note that the binormal vector is

b̂ = t̂ × n̂ = sinα (− sin θ x̂ + cos θ ŷ) + cosα ẑ, (A.15)

so that its derivative yields

db̂

ds
=

sinα

c
(cos θ x̂ + sin θ ŷ) ≡ − τ n̂, (A.16)

where the torsion is τ = c−1 sinα. We can now easily verify that

dn̂

ds
=

1

c
(sin θ x̂ − cos θ ŷ) ≡ − κ t̂ + τ b̂.
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We point out that for a two-dimensional curve r = x(s) x̂ + y(s) ŷ, we find

t̂ =
dr

ds
= x′ x̂ + y′ ŷ ≡ cos φ x̂ + sinφ ŷ,

where φ(s) denotes the tangential angle. With this definition, we readily show that the
curvature is defined as

κ ≡
∣∣∣∣∣
dt̂

ds

∣∣∣∣∣ =
dφ

ds
.

Exercise: Calculate the Darboux vector ω = τ t̂ + κ b̂ for the helical path (A.11).

A.2 Linear Algebra

A fundamental object in linear algebra is the m × n matrix A with components (labeled
Aij) distributed on m rows (i = 1, 2, ..., m) and n columns (j = 1, 2, ..., n); for simplicity of
notation, we write A(m×n) when we want to specify the order of the matrix A and we say
that a matrix is square if m = n.

A.2.1 Matrix Algebra

We begin with a discussion of general properties of matrices and later focus our attention
on square matrices (in particular 2 × 2 matrices). First, we can add (or subtract) two
matrices only if they are of the same order; hence, the matrix C = A ± B has components
Cij = Aij ± Bij . Next, we can multiply a matrix A by a scalar a and obtain the new
matrix B = aA with components Bij = aAij. Lastly, we introduce the transpose operation
(denoted >): A → A> such that (A>)ij ≡ Aji, i.e., the transpose of a m × n matrix is a
n ×m matrix. Note that the vector

v =





v1
...
vn





is a n× 1 matrix while its transpose v> = (v1, ..., vn) is a matrix of order 1× n. With this
definition, we now introduce the operation of matrix multiplication

C(m×k) = A(m×n) · B(n×k),

where C(m×k) is a new matrix of order m× k with components

Cij =
n∑

`=1

Ai` B`j .
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Note that the matrix multiplication

u> · v =
n∑

i=1

ui vi = u · v

coincides with the standard dot product of two vectors.

The remainder of this Section will now exclusively deal with square matrices. First, we
introduce two important operations on square matrices: the determinant det(A) and the
trace Tr(A) defined, respectively, as

det(A) ≡
n∑

i=1

(−1)i+j Aij adij ≡
n∑

j=1

(−1)i+j Aij adij, (A.17)

Tr(A) ≡
n∑

i=1

Aii, (A.18)

where adij denotes the determinant of the reduced matric obtained by removing the ith-row
and jth-column from A. Next, we say that the matrix A is invertible if its determinant
∆ ≡ det(A) does not vanish and we define the inverse A−1 with components

(A−1)ij ≡ (−1)i+j

∆
adji,

which, thus, satisfies the identity relation

A · A−1 = I = A−1 · A,

where I denotes the n× n identity matrix. Note, here, that the matrix multiplication

A · B 6= B · A

of two matrices A and B is generally not commutative.

Lastly, fundamental properties of a square n× n matrix A are discussed in terms of its
eigenvalues (λ1, ..., λn) and eigenvectors (e1, ..., en) which satisfy the eigenvalue equation

A · ei = λi ei, (A.19)

for i = 1, ..., n. Here, the determinant and the trace of the n× n matrix A are expressed in
terms of its eigenvalues (λ1, ..., λn) as

det(A) = λ1 × ...× λn and Tr(A) = λ1 + ...+ λn.

In order to continue our discussion of this important problem, we now focus our attention
on 2 × 2 matrices.
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A.2.2 Eigenvalue analysis of a 2 × 2 matrix

Consider the 2 × 2 matrix

M =

(
a b
c d

)

, (A.20)

where (a, b, c, d) are arbitrary real (or complex) numbers and introduce the following two
matrix invariants:

∆ ≡ det(M) = a d− b c and σ ≡ Tr(M) = a + d, (A.21)

which denote the determinant and the trace of matrix M, respectively.

Eigenvalues of M

The eigenvalues λ and eigenvectors e of matrix M are defined by the eigenvalue equation

M · e = λe. (A.22)

This equation has nontrivial solutions only if the determinant of the matrix M−λ I vanishes
(where I denotes the 2 × 2 identity matrix), which yields the characteristic quadratic
polynomial:

det(M − λ I) = (a− λ) (d − λ) − b c ≡ λ2 − σ λ + ∆, (A.23)

and the eigenvalues λ± are obtained as the roots of this characteristic polynomial:

λ± =
σ

2
±
√
σ2

4
− ∆. (A.24)

Here, we note that the matrix invariants (σ,∆) are related to the eigenvalues λ±:

λ+ + λ− ≡ σ and λ+ · λ− ≡ ∆. (A.25)

Lastly, the eigenvalues are said to be degenerate if λ+ = λ− ≡ σ/2, i.e.,

∆ =
σ2

4
or b c = −

(
a− d

2

)2

.

Eigenvectors of M

Next, the eigenvectors e± associated with the eigenvalues λ± are constructed from the
eigenvalue equations M · e± = λ± e±, which yield the general solutions

e± ≡
(

1
µ±

)

ε±, (A.26)
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where ε± denotes an arbitrary constant and

µ± =
λ± − a

b
=

c

λ± − d
. (A.27)

The normalization of the eigenvectors e± (|e±| = 1), for example, can be achieved by
choosing

ε± =
1

√
1 + (µ±)2

.

We note that the eigenvectors e± are not automatically orthogonal to each other (i.e., the
dot product e+ · e− may not vanish). Indeed, we find

e+ · e− = ε+ ε− (1 + µ+ µ−), (A.28)

where

1 + µ+ µ− = 1 +
1

b2
(λ+ − a) (λ− − a) = 1 +

(
a− d

2 b

)2

− 1

b2

(
σ2

4
− ∆

)

,

whose sign is indefinite. By using the Gram-Schmidt orthogonalization procedure, however,
we may construct two orthogonal vectors (e1, e2):

e1 = α e+ + β e−

e2 = γ e+ + δ e−





, (A.29)

where the coefficients (α, β, γ, δ) are chosen to satisfy the orthogonalization condition
e1 · e2 ≡ 0; it is important to note that the vectors (e1, e2) are not themselves eigenvectors
of the matrix M. For example, we may choose α = 1 = δ, β = 0, and

γ = −
(

e+ · e−
|e+|2

)

,

which corresponds to choosing e1 = e+ and constructing e2 as the component of e− that
is orthogonal to e+.

Lastly, we point out that any two-dimensional vector u may be decomposed in terms
of the eigenvectors e±:

u =
∑

i=±
ui ei ≡

∑

i=±

(
u · ei

|ei|2
)

ei, (A.30)

where we assumed, here, that the eigenvectors are orthogonal to each other. Furthermore,
the transformation M · u generates a new vector

v = M · u =
∑

i=±
ui M · ei ≡

∑

i=±
vi ei,

where the components of v are vi ≡ ui λi.
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Inverse of matrix M

The matrix (A.20) has an inverse, denoted M−1, if its determinant ∆ does not vanish. In
this nonsingular case, we easily find

M−1 =
1

∆

(
d − b
− c a

)

, (A.31)

so that M−1 · M = I = M · M−1. The determinant of M−1, denoted ∆′, is

∆′ =
d a− b c

∆2
≡ 1

∆
=

1

λ+ · λ−
,

while its trace, denoted σ′, is

σ′ =
d+ a

∆
≡ σ

∆
=

1

λ+
+

1

λ−
.

Hence, the eigenvalues of the inverse matrix (A.31) are

λ′± ≡ 1

λ±
=

λ∓
∆
,

and its eigenvectors e± are identical to e± since

M · e± = λ± e± → e± = λ± M−1 · e± → M−1 · e± = λ−1
± e± ≡ λ′± e±.

We note that once the inverse M−1 of a matrix M is known, then any inhomogeneous linear
system of equations of the form M · u = v may be solved as u ≡ M−1 · v.

Special case I: Real Hermitian Matrix

A real matrix is said to be Hermitian if its transpose, denoted M> (i.e.,M>
ij = Mji), satisfies

the identity M> = M, which requires that c = b in Eq. (A.20). In this case, the eigenvalues
are automatically real

λ± =

(
a + d

2

)

±

√√√√
(
a− d

2

)2

+ b2,

and the associated eigenvectors (A.26), which are defined with

µ± = −
(
a− d

2b

)

±

√√√√1 +

(
a− d

2

)2

,

are automatically orthogonal to each other (e+ · e− = 0) since µ+ µ− ≡ − 1.
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Special case II: Rotation Matrix

Another special matrix is given by the rotation matrix

R =

(
cos θ sin θ

− sin θ cos θ

)

, (A.32)

with determinant det(R) = 1 and trace Tr(R) = 2 cos θ = eiθ + e−iθ. The rotation matrix
(A.32) is said to be unitary since its transverse R> is equal to its inverse R−1 = R> (which
is possible only if its determinant is one).

The eigenvalues of the rotation matrix (A.32) are e±iθ and the eigenvectors are

e± =

(
1
± i

)

.

Note that the rotation matrix (A.32) can be written as R = exp(iθσ), where the matrix

σ =

(
0 −i
i 0

)

(also known as the Pauli spin matrix σ2) satisfies the properties σ2n = I and σ2n+1 = σ

and, thus, we find

exp(iθσ) =
∞∑

n=0

(iθ)n

n!
σn = cos θ I + i sin θ σ = R.

Note that the time derivative of the rotation matrix (A.32) satisfies the property

R−1 · Ṙ = i θ̇ σ =

(
0 θ̇

−θ̇ 0

)

.

Lastly, we note that the rotation matrix (A.32) can be used to diagonalize a real Her-
mitian matrix

M =

(
a b
b d

)

,

by constructing the new matrix

M = R>·M·R =




a+ (d − a) sin2 θ − b sin 2θ b cos 2θ − 1

2
(d− a) sin 2θ

b cos 2θ − 1
2
(d− a) sin 2θ d − (d − a) sin2 θ + b sin 2θ



 . (A.33)

Next, by setting (assuming that d > a)

tan 2θ =
2b

d − a
→






cos 2θ = (d − a)/
√
σ2 − 4∆

sin 2θ = 2b/
√
σ2 − 4∆

,
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where σ = a + d and ∆ = ad− b2 denote the trace and determinant of M, respectively, M

becomes a diagonal matrix

M =

(
λ− 0
0 λ+

)

, (A.34)

where the diagonal components are

λ± =
σ

2
± 1

2

√
σ2 − 4∆.

Note that the trace and determinant of M are the same as that of M, i.e., the trace and de-
terminant of any real Hermitian matrix are invariant under the congruence transformation
(A.33).

A.3 Important Integrals

The present Section summarizes the integral representation of trigonometric functions,
which is used extensively in the integration by quadrature of several dynamical problems,
e.g., light-ray propagation in a nonuniform medium, time-independent Hamiltonian sys-
tems, and scattering problems. In addition, the basic theory of elliptic functions is in-
troduced, so that the complete solution of some important dynamical problems (e.g., the
force-free evolution of an asymmetric top) can be presented.

A.3.1 Trigonometric Functions and Integrals

Trigonometric functions with period τ

Functions that are periodic, with period τ , are all related to trigonometric functions (with
period 2π). Indeed, a periodic function f(t) can be represented in terms of a (Fourier)
series involving cos(2πn t/τ ) and sin(2πn t/τ ), where n = 1, 2, ... represents the Fourier
harmonic number.

Hence, the study of singly-periodic functions can focus its attention on the trigonometric
functions sin z and cos z, defined in terms of the inverse formulas

z =
∫ y

0

dx√
1 − x2

= sin−1 y

=
∫ 1

y

dx√
1 − x2

= cos−1 y

Here, the period τ of the trigonometric functions sin z and cos z is defined as

1

4
τ ≡

∫ 1

0

dx√
1 − x2

=
π

2

with the periodicity conditions: sin(z + n τ ) = sin z and cos(z + n τ ) = cos z.
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Trigonometric integrals

Trigonometric functions are often involved in the evaluation of integrals of the form
∫ x

x0

dy√
a y2 + b y + c

, (A.35)

where x0 denotes one of the roots of the quadratic equation a x2+b x+c = 0 and we assume
that a x2 + b x + c ≥ 0 over the interval between x0 and x, for a given set of parameters
(a, b, c). The solution for integrals of this type depend on the sign of a: a > 0 (case I) or
a < 0 (case II).

For case I (a > 0), we choose the parameters a = 1 and b = −2 in Eq. (A.35), so that
we need to solve the following integral:

τ (x; x0) =
∫ x

x0

dy√
y2 − 2 y + c

. (A.36)

First, the roots (1 ±
√

1 − c ≡ 1± e) of the quadratic polynomial x2−2x+ c = 0 are both
real (if c < 1) or complex-valued (if c > 1); for c < 1, the radicand is positive for x < 1− e

and x > 1 + e. Next, by completing the square y2 − 2 y + c = (y − 1)2 − e2 and using the
trigonometric substitution y = 1 + e sec θ in Eq. (A.36), with Θ(x) = sec−1[(x− 1)/e] and
Θ(1 + e) = sec−1(1) = 0, we solve the integral (A.36) as

τ (x; c) =
∫ x

1+e

dy√
y2 − 2 y + c

=
∫ Θ(x)

0
sec θ dθ = ln

[
x− 1

e
+

1

e

√
x2 − 2x+ c

]
.

By inverting this function, we finally obtain the solution

x(τ ; e) = 1 + e cosh τ ≡ 1 +
e

2

(
eτ + e−τ

)
,

where the hyperbolic cosine function cosh τ ≡ cos(iτ ) is defined in terms of the cosine of
an imaginary argument. Hence, this solution is periodic along the imaginary axis (with
period 2πi), i.e., cosh(τ + 2π i) = cosh τ .

For case II (a < 0), we choose the parameters a = −1 and b = 2 in Eq. (A.35), so that
we need to solve the following integral:

τ (x; x0) =
∫ x

x0

dy√
c+ 2 y − y2

. (A.37)

First, the roots (1 ±
√

1 + c ≡ 1 ± e) of the quadratic polynomial x2 − 2x − c = 0 are
both real (if c > −1) or complex-valued (if c < −1); for c > −1, the radicand is positive
for 1− e < x < 1+ e. Next, by completing the square c+2 y− y2 = e2 − (y− 1)2 and using
the trigonometric substitution y = 1 + e cos θ in Eq. (A.37), with Θ(x) = cos−1[(x− 1)/e]
and Θ(1 + e) = cos−1(1) = 0, we solve the integral (A.37) as

τ (x; c) =
∫ 1+e

x

dx√
c+ 2 y − y2

=
∫ Θ(x)

0
dθ = cos−1

(
x− 1

e

)
.
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Figure A.1: Unit cell for a doubly-periodic elliptic function with periods τ1 and τ2.

By inverting this function, we easily obtain the solution

x(τ ; e) = 1 + e cos τ,

which is periodic along the real axis with period 2π.

A.3.2 Elliptic Functions and Integrals*

A function f(z) is doubly periodic, with periods τ1 and τ2 (where the ratio τ2/τ1 is complex-
valued), if

f(z +mτ1 + n τ2) = f(z),

for m,n = 0,±1,±2, ... (but not m = 0 = n). Figure A.1 shows the unit cell with corners
at z = 0, τ1, τ2, and τ1 + τ2 in the complex plane. Here, we note that, in the limit |τ2| → ∞,
the function f(z) becomes singly-periodic with period τ1.

Elliptic functions (of second order) are doubly-periodic functions with 2 simple zeroes
per unit cell and either a second-order pole (Weierstrass elliptic function) or two first-order
poles (Jacobi elliptic function). Note that there are no elliptic functions of first order and
that there are no multiply-periodic functions with more than two periods. Elliptic functions
are defined in terms of integrals of the form

∫ x

x0

dy√
a4 y4 + a3 y3 + a2 y2 + a1 y + a0

,

where x0 is a real root of the quartic polynomial a4 x
4 + a3 x

3 + a2 x
2 + a1 x+ a0 = 0 (with

a0 6= 0); Jacobi elliptic functions are defined in terms of quartic polynomials with a4 6= 0
while Weierstrass elliptic functions are defined in terms of cubic polynomials with a4 = 0.
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Figure A.2: Plots of sn(u|k) and −i sn(iu|k) for k = 1
4
.

Jacobi Elliptic Functions

The Jacobi elliptic function sn(u | k) is defined in terms of the inverse-function formula

u =
∫ ϕ

0

dθ√
1 − k2 sin2 θ

=
∫ sinϕ

0

dt
√

(1 − t2) (1 − k2 t2)
≡ sn−1(sinϕ | k), (A.38)

where 0 ≤ k ≤ 1 and the amplitude ϕ varies from 0 to 2π so that

snu ≡ sn(u|k) = sinϕ.

From this definition, we easily check that sn−1(sinϕ | 0) = sin−1(sinϕ) = ϕ.1

The function sn u has a purely-real period 4K, defined as

K ≡ K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

and a purely-imaginary period 4 iK ′, defined as (with k′2 ≡ 1 − k2)

iK ′ ≡ iK(k′) = i
∫ π/2

0

dθ√
1 − k′2 sin2 θ

.

Figure A.2 shows plots of snu and −i sn(iu) for k = 1
4
, which exhibit both a real period and

an imaginary period. Note that, while the Jacobi elliptic function sn u alternates between
−1 and +1 for real values of u, it also exhibits singularities for imaginary values of u at
(2n + 1) iK ′ (n = 0, 1, ...). Furthermore, as k → 0 (and k′ → 1), we find K → π/2 and
|K ′| → ∞, and snu becomes singly-periodic. By comparing Figure A.2 with Figure A.3,
which shows plots of sinx and −i sin(ix) = sinhx, we see that as k → 0, the real period
K → π/2 and the imaginary period |K ′| → ∞.

1An alternate definition for the Jacobi elliptic function (A.38) replaces k2 with m: sn(u|k) = sn(u, m).
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Figure A.3: Plots of sinx and −i sin(ix) = sinhx exhibiting a real period 2π and an infinite
imaginary period.

Additional Jacobi elliptic functions cn(u | k) and dn(u | k) are defined as

u =
∫ 1

cn(u|k)

dt
√

(1 − t2) (k′2 + k2 t2)
, (A.39)

=
∫ 1

dn(u|k)

dt
√

(1 − t2) (t2 − k′2)
, (A.40)

with the properties

cnu ≡ cn(u|k) = cosϕ, dn u ≡ dn(u|k) =
√

1 − k2 sin2 ϕ,

and sn2u+ cn2u = 1 = dn2u+ k2 sn2u. The Jacobi elliptic functions cnu and dnu are also
doubly-periodic with periods 4K and 4iK ′. The following properties are useful. First, we
find the limiting definitions




sn(u|0)
cn(u|0)
dn(u|0)



 =




sinu
cos u

1



 and




sn(u|1)
cn(u|1)
dn(u|1)



 =




tanh u
sechu
sechu



 . (A.41)

Next, the derivatives with respect to u are

sn′(u|k) = cn(u|k) dn(u|k)
cn′(u|k) = − sn(u|k) dn(u|k)
dn′(u|k) = − k2 cn(u|k) sn(u|k)





. (A.42)

Lastly, if k > 1, we use the identities

sn(u|k) = k−1 sn(k u|k−1)
cn(u|k) = dn(k u|k−1)
dn(u|k) = cn(k u|k−1)





. (A.43)
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Figure A.4: Seiffert Spherical Spiral: Plot of the unit vector r̂(s) = sn(s) cos(ks) x̂ +
sn(s) sin(ks) ŷ + cn(s) ẑ for k = 0.15 from s = 0 to (a) s = 2K, (b) s = 4K, (c) s = 6K,
and (d) s = 8K.

A simple example that clearly shows the periodicity properties of the Jacobi elliptic
functions snu and cnu is given by the Seiffert spherical spiral, defined as a curve on
the unit sphere and constructed as follows. First, we use the cylindrical metric ds2 =
dρ2 + ρ2 dθ2 + dz2, with z =

√
1 − ρ2 and the polar angle θ(s) ≡ k s parametrized by the

arc length s with 0 < k < 1 (assuming that the initial point of the curve is ρ = 0, θ = 0,
and z = 1). Hence, we readily find

ds2 =
dρ2

(1 − ρ2) (1 − k2 ρ2)
→ s =

∫ ρ

0

dt
√

(1 − t2) (1 − k2t2)
≡ sn−1(ρ|k),

and, thus, we obtain the Jacobi elliptic solutions

ρ(s) = sn(s|k) and z(s) =
√

1 − ρ2(s) = cn(s|k).

The Seiffert spherical spiral is generated by plotting the path of the unit vector r̂(s) =
sn(s) cos(ks) x̂ + sn(s) sin(ks) ŷ + cn(s) ẑ as a function of s (see Figure A.4). Note that at
each value 4nK (n = 1, 2, ...), the orbit returns to the initial point.

Our next example looks at orbits in the quartic potential U(x) = 1 − x2/2 + x4/16
shown in Figure A.5. Here, the turning points xt for E ≡ e2 are

xt =






± 2
√

1 + e (e > 1)

0, ±
√

8 (e = 1)
± 2

√
1 − e, ± 2

√
1 + e (e < 1)
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Figure A.5: Quartic potential U(x) = 1 − x2/2 + x4/16 showing orbits with E > 1, E = 1
(separatrix) and E < 1.

Figure A.6: Phase portait for orbits (A.45)-(A.47) of the quartic potential U(x) = 1 −
x2/2 + x4/16 for (a) e = 2, (b) e = 1.5, (c) e = 1 (separatrix), and (d) e = 0.5.
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Each orbit is solved in terms of the integral

t(x) = −
∫ x

2
√

1+e

ds
√

2 (e2 − 1) + s2 (1 − s2/8)

= −
∫ x

2
√

1+e

√
8 ds

√
[4 (e + 1) − s2] [s2 + 4 (e − 1)]

=
1√
e

∫ Φ(x)

0

dϕ
√

1 − k2 sin2 ϕ
, (A.44)

where k2 ≡ (1+e)/2e while we used the trigonometric substitution s = 2
√

1 + e cosϕ with

Φ(x) ≡ cos−1[x/(2
√

1 + e)]. For e > 1 (k =
√

(1 + e)/2e < 1), we use Eq. (A.38) to find

sinΦ(x) = sn(
√

e t|k),

which yields the phase-portrait coordinates (x, ẋ):

x(t) = 2
√

1 + e cn(
√

e t|k)
ẋ(t) = − 2

√
e (1 + e) sn(

√
e t|k) dn(

√
e t|k)

}

, (A.45)

where the velocity ẋ(t) is derived from Eq. (A.42). For e = 1, these phase-portrait coordi-
nates become

x(t) =
√

8 sech t

ẋ(t) = −
√

8 sech t tanh t

}

, (A.46)

where the limits (A.41) were used. Lastly, for e < 1 (k > 1), we use the relations (A.43) to
obtain

x(t) = 2
√

1 + e dn(t
√

(1 + e)/2 |k−1)

ẋ(t) = −
√

8 e sn(t
√

(1 + e)/2 |k−1) cn(t
√

(1 + e)/2 |k−1)




 . (A.47)

The orbits (A.45)-(A.47) are combined to yield the phase portrait for the quartic potential
shown in Figure A.6.

As a first physical example, we now consider the case of the pendulum with a normalized
energy ε ω2 expressed as

ε ω2 =
1

2
θ̇2 + ω2 (1 − cos θ) = 2ω2

(
ϕ′2 + sin2 ϕ

)
,

where ϕ ≡ θ/2 and ϕ′(τ ) ≡ ω−1ϕ̇, with the normalized time τ ≡ ωt. Hence, we find that ε
can either be (I) 0 < ε < 2 or (II) ε > 2 and (assuming that ϕ = 0 at τ = 0)

τ =
∫ ϕ

0

dφ
√

(ε/2) − sin2 φ
.
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In case (I), where ε ≡ 2 sin2 α, we set sinφ = sinα sinχ and obtain (with k ≡ sinα)

τ =
∫ sin−1(k−1 sinϕ)

0

dχ
√

1 − k2 sin2 χ
≡ sn−1(k−1 sinϕ | k).

Hence, the solution for case (I) is expressed in terms of the Jacobi elliptic function

ϕ(τ ) = sin−1 [ k sn(τ | k) ] ,

and in the limit k � 1, we find the simple harmonic solution ϕ(τ ) = α sin τ , where α
denotes the amplitude of simple harmonic motion. In case (II), we have k−2 = 2/ε < 1 and
obtain

τ = k−1
∫ ϕ

0

dφ
√

1 − k−2 sin2 φ
≡ k−1 sn−1(sinϕ | k−1).

Hence, the solution for case (II) is expressed in terms of the Jacobi elliptic function

ϕ(τ ) = sin−1
[
sn(kτ | k−1)

]
.

Note that, in the limit k → 1, both solutions coincide with the separatrix solution (3.30),
which is expressed in terms of singly-periodic trigonometric functions.

As a second physical example, we consider the Euler’s equations (7.25) for a force-free
asymmetric top (with I1 > I2 > I3), where conservation laws of kinetic energy (7.33) and
angular momentum (7.34) lead to the following expressions

ω1(τ ) = −
√√√√I2 (I2 − I3)

I1 (I1 − I3)
Ω3

√
1 − ν2(τ ), (A.48)

ω2(τ ) = Ω3 ν(τ ), (A.49)

ω3(τ ) =

√√√√I2 (I1 − I2)

I3 (I1 − I3)
Ω1

√
1 − k2 ν2(τ ), (A.50)

where Ω1 and Ω3 are defined in Eq. (7.38), with k2 = Ω2
3/Ω

2
1 ≤ 1, and τ = αΩ1 t, with α

defined in Eq. (7.37). When we substitute these expressions in the Euler equation (7.36)
for ω2, we easily obtain

ν ′(τ ) =
√

(1 − ν2) (1 − k2 ν2), (A.51)

which can now be integrated to yield

τ =
∫ ν

0

ds
√

(1 − s2) (1 − k2 s2)
≡ sn−1(ν | k), (A.52)

or
ω2(τ ) = Ω3 sn(τ | k), (A.53)
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Figure A.7: Plots of (ω1, ω2, ω3) at different times: (a) τ = K, (b) τ = 2K, (c) τ = 3K,
and (d) τ = 4K.

while ω1 and ω3 are expressed as

ω1(τ ) = −
√√√√I2 (I2 − I3)

I1 (I1 − I3)
Ω3 cn(τ | k), (A.54)

ω3(τ ) =

√√√√I2 (I1 − I2)

I3 (I1 − I3)
Ω1 dn(τ | k). (A.55)

These solutions are shown in Figure A.7, where the 4K-periodicity is clearly observed.

Weierstrass Elliptic Functions

A different kind of elliptic function is provided by the Weierstrass2 elliptic function P(z; g2, g3)
defined in terms of the differential equation

(σ′)2 = 4σ3 − g2 σ − g3 ≡ 4 (σ − e1) (σ − e2) (σ − e3), (A.56)

2Karl Theodor Wilhelm Weierstrass (1815-1897)
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where (e1, e2, e3) denote the roots of the cubic polynomial 4σ3 − g2 σ − g3 = 0 (such that
e1 + e2 + e3 = 0) and the parameters g2 and g3 are defined in terms of the cubic roots as

g2 = −4 (e1 e2 + e2 e3 + e3 e1) = 2 (e2
1 + e2

2 + e2
3)

g3 = 4 e1 e2 e3

}

. (A.57)

Since physical values for the cubic parameters g2 and g3 are always real (and g2 > 0), then
either all three roots are real (where we assume that e3 < e2 < e1 for g3 > 0) or one root
ea is real and we have a conjugate pair of complex roots (eb, e

∗
b) with Re(eb) = − ea/2. In

general, the roots (ra, rb, rc) of the cubic polynomial in Eq. (A.56) are expressed as




ra
rb
rc



 =

√
g2

12




(
ε+

√
ε2 − 1

)−1/3




1

− e−iπ/3

− eiπ/3



 +
(
ε+

√
ε2 − 1

)1/3




1

− eiπ/3

− e−iπ/3







 ,

where ε ≡ (3/g2)
3/2 g3 and ra + rb + rc = 0.

When −1 < ε < 1, we may set ε = cosφ, so that 0 < φ < π/2 for 0 < g3 < (g2/3)
3/2

and π/2 < φ < π for − (g2/3)
3/2 < g3 < 0, and the roots are expressed as




ra
rb
rc



 =




e1

e2

e3



 =

√
g2

3




cos(φ/3)

− cos[(φ+ π)/3]
− cos[(φ− π)/3]



 .

Note that e2 = 0 (and e3 = − e1) for g3 = 0 (i.e., φ = π/2). Next, when ε < − 1, we set
ε = − coshψ and




ra
rb
rc



 =




e1

e2

e3



 =
√
g2

12




cosh(ψ/3) − i

√
3 sinh(ψ/3)

− 2 cosh(ψ/3)

cosh(ψ/3) + i
√

3 sinh(ψ/3)



 ,

whereas for ε > 1, we set ε = coshψ and




ra
rb
rc



 =




e2

e3

e1



 =

√
g2

12




2 cosh(ψ/3)

− cosh(ψ/3) − i
√

3 sinh(ψ/3)

− cosh(ψ/3) + i
√

3 sinh(ψ/3)



 ,

where the root labels have been changed to coincide with standard mathematical definitions
(e.g., M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Chapter 18).
Lastly, we note that when g3 < 0, then

P(z; g2, g3) = − P(iz; g2,− g3), (A.58)

as can be derived from the definition (A.56). Note that when ∆ ≡ g3
2 (1 − ε2) > 0, all

three roots are real and e1 > 0 ≥ e2 > e3 (for 0 < ε < 1) while for ε > 1, e2 > 0 and
e1 = − 1

2
e2 + i β = e∗3.
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Figure A.8: Plots of (a) P(u) > 0 and (b) P(i u) < 0 for g2 = 3 and g3 = 0.5 (with ε = 0.5);
each plot shows three complete periods.

Figure A.8 shows that, for 0 < ε < 1, P(u) has different periods 2ω and 2ω′ along the
real and imaginary axes, respectively, where the half-periods ω and ω′ are defined as

ω(g2, g3) =
∫ ∞

e1

dt√
4t3 − g2 t− g3

and ω′(g2, g3) = i
∫ e3

−∞

dt
√
|4t3 − g2 t− g3|

.

For ε > 1, on the other hand, P(u) has different periods 2Ω and 2Ω′ along the real and
imaginary axes, respectively, where the half-periods Ω and Ω′ are defined as

Ω(g2, g3) =
∫ ∞

e2

dt√
4t3 − g2 t− g3

and Ω′(g2, g3) = i
∫ e2

−∞

dt
√
|4t3 − g2 t− g3|

.

Note that, for 0 < ε < 1, P(u) is infinite at Ωm,n ≡ 2mω + 2nω′ (for m,n = 0,±1, ...).
By defining the half-periods ω1 = ω, ω2 = ω + ω′, and ω3 = ω′, we find the identities (for
i = 1, 2, 3)

P(ωi) = ei
P(z + ωi) = ei + (ei − ej) (ei − ek) [P(z) − ei]

−1

P(z + 2ωi) = P(z)





, (A.59)

where i 6= j 6= k so that P(ωi + ωj) = ek. Figure A.9 shows the plots of P(u + ω2) and
P(u+ ω3) for one complete period from u = 0 to 2ω1, which clearly satisfies the identities
(A.59). For ε > 1, the half-periods are ω1 = Ω′, ω2 = Ω, and ω3 = Ω + Ω′.

As a first example, we return to the one-dimensional problem with a cubic potential
U(x) = x− x3/3 described in Figure 3.1. Here, the (dimensionless) energy equation is

E =
ẋ2

2
+ x − x3

3
, (A.60)
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Figure A.9: Plots of (a) P(u + ω2) and (b) P(u + ω3) for g2 = 3 and g3 = 0.5 (with
ε = 0.5) over one complete period from 0 to 2ω1. Note that P(ωj) = ej for j = 2 or 3 and
P(ωi + ωj) = ek, for i = 1 and (j, k) = (2, 3) or (j, k) = (3, 2).

and the turning points (x1, x2, x3) are shown in Figure A.10.

By writing x(t) = 6σ(t), Eq. (A.60) becomes the standard Weierstrass elliptic equation
σ̇2 = 4σ3 − g2 σ − g3, where

g2 =
1

3
, g3 = − E

18
, and ∆ =

1

27

(
1 − 9

4
E2
)
.

Note that bounded orbits exist only for − 2
3
< E < 2

3
(i.e., ∆ > 0). The solution for

x(t) = 6σ(t) is x(t) = 6P(t + γ), where the constant γ is determined from the initial
condition x(0). Figure A.11 shows the plots of (x, ẋ) for various values of energy E, where
∆ < 0 and φ is imaginary for cases (a)-(b) while ∆ > 0 and φ is real for cases (c)-(d);
compare this Figure with the numerical integration of ẍ = −1 + x2 shown in Figure 3.2.

Here, in cases (a) and (b), where E > 2/3, one root e1 is positive while the roots e2 = e∗3
are complex-valued; the half-period ω1 is imaginary while ω2 and ω3 are complex-valued;
and P(ωi) = − ei. Next, in case (c), where 0 < E < 2/3, all roots are real e3 < e2 < 0 < e1;
the half-period ω1 is imaginary, ω3 is real, and ω2 is complex-valued; and P(ωi) = − ei.
Lastly, in case (d), where −2/3 < E < 0, all roots are real e3 < e2 < 0 < e1; the half-period
ω1 is real, ω3 is imaginary, and ω2 is complex-valued; and P(ωi) = ei.

The motion of a symmetric top with one fixed point was discussed in Section 7.3.4 and
its solution was expressed in terms of the differential equation

(u′)2 = (1 − u2)(ε− u) − (α− β u)2, (A.61)
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Figure A.10: Roots xi (i = 1, 2, 3) of the cubic polynomial E = x−x3/3. When |E| < 2/3,
the three roots are real, with x1 > x2 > x3 and x1 + x2 + x3 = 0, whereas when |E| > 2/3,
one root xa is real and the other two roots (xb, x

∗
b) form a complex-conjugate pair, with

xb = − 1
2
xa + i Im(xb). When |E| = 2/3, the three roots are x1 = 2c, x2 = −c = x3 (stable

equilibrium at E = − 2/3) and x1 = c = x2, x3 = − 2c (separatrix at E = 2/3).

Figure A.11: Plots of ẋ(t) = 6P ′(t + γ) versus x(t) = 6P(t + γ) for (a) E > 2/3 with
γ = ω1 (unbounded orbit), (b) E = 2/3+ with γ = ω1 (separatrix orbit), (c) 0 < E < 2/3
with γ = ω1 (bounded orbit) or γ = ω3 (unbounded orbit), and (d) −2/3 < E < 0 with
γ = ω2 (bounded orbit) or γ = ω1 (unbounded orbit).
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where the constants (ε, α, β) were defined in Section 7.3.4. By using the change of integra-
tion variable u = 4σ + γ, where γ = (ε+ β2)/3, the differential equation (A.61) becomes
the standard differential equation (A.56) for the Weierstrass elliptic function, with

g2 =
1

4

[
(1 − 2αβ) + 3γ2

]
,

g3 =
1

16

[
α2 − ε + γ (1 − 2αβ) + 2γ3

]
.

Hence, the solution is expressed in terms of the Weierstrass elliptic function as

u(τ ) = 4P(τ + δ) + γ,

where δ is determined initial conditions, and we denote the three roots e1 > e2 > e3 of the
cubic polynomial 4σ3−g2 σ−g3 = 0. Assuming that 4 e1 +γ > 1, then at τ = 0, we choose
u(0) = u1 = 4 e3 + γ so that δ ≡ ω3 and, hence, at τ = ω1, we find

u(ω1) = 4P(ω1 + ω3) + γ = 4 e2 + γ = u2.



Appendix B

Notes on Feynman’s Quantum

Mechanics

B.1 Feynman postulates and quantum wave function

Feynman1 makes use of the Principle of Least Action to derive the Schroedinger equation
(9.17) by, first, introducing the following postulates.

Postulate I: Consider the initial and final states a and b of a quantum system and
the set M of all paths connecting the two states. The conditional probability amplitude
K(b|a) of finding the system in the final state b if the system was initially in state a is
expressed as

K(b|a) ≡
∑

M
φ[X], (B.1)

where the summation is over all paths X(t) from a to b and the partial conditional proba-
bility amplitude associated with path X(t) is

φ[X] ∝ exp
(
i

h̄
S[X]

)
, (B.2)

with

S[X] =
∫ tb

ta
L(X, Ẋ ; t) dt

corresponding to the classical action for this path for a particle moving in a time-dependent
potential U(x, t). If we take the two states to be infinitesimally close to each other, i.e.,
whenever the points a ≡ xa (at time ta) and b ≡ xa+∆x (at time ta+∆t) are infinitesimally

1The material presented in this Appendix is adapted from the book Quantum Mechanics and Path

Integrals by R.P. Feynman and A.R. Hibbs (McGraw-Hill, New York, 1965).
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close, Eqs. (B.1)-(B.2) yield

K(xa + ∆x, ta + ∆t|xa, ta) =
1

A
exp

i

h̄

[
m(∆x)2

2∆t
− ∆t U

(
xa +

∆x

2
, ta +

∆t

2

) ]

, (B.3)

where A is a normalization constant and the classical action integral

S[x] =
∫ ta+∆t

ta



 m
2

(
dx

dt

)2

− U(x, t)



 dt =
m(∆x)2

2∆t
− U

(
xa +

∆x

2
, ta +

∆t

2

)
∆t

is a function of ∆x and ∆t as well as the initial space-time point (xa, ta); here, the potential
energy U is evaluated at the mid-point between xa and xb at a time ta + ∆t/2.

Postulate I provides the appropriate explanation for the mystery behind the Principle
of Least Action (“act locally, think globally”). Indeed, in the classical limit (h̄ → 0), we
find that the variations δX around the paths X(t) which are far away from the physical
path x(t) yield changes δS for which δS/h̄ is large. Consequently, such contributions tend
to average out to zero because of the corresponding wild oscillations in φ[X]. On the other
hand, for variations δX near the physical path x(t), we get δS ∼ 0 (to first order) and,
consequently, paths X(t) for which S[X] is within h̄ of Scl will contribute strongly. The
resulting effect is that only paths in the neighborhood of the physical path x(t) have a
nonvanishing probability amplitude. In the strict limit h̄ → 0, the only such path with a
nonvanishing probability amplitude is the physical path.

Postulate II: The quantum wave function ψ(x, t) is defined as the probability ampli-
tude for the particle to be at the location x at time t, i.e., ψ(x, t) ≡ K(x, t|•), where we
are not interested in the previous history of the particle (its previous location is denoted
by •) but only on its future time evolution. The Second Postulate states that the integral
equation relating the wave function ψ(x2, t2) to the wave function ψ(x1, t1) is given as

ψ(x2, t2) ≡
∫ ∞

−∞
dx1 K(x2, t2|x1, t1) ψ(x1, t1). (B.4)

If we set in Eq. (B.4): t1 = t and t2 = t+ ε, x2 = x and x1 = x+ η, then for small enough
values of ε, the conditional probability amplitude (B.3) can be used in (B.4) to yield

ψ(x, t+ ε) ≡
∫ ∞

−∞
dη K(x, t+ ε|x+ η, t) ψ(x+ η, t) (B.5)

=
∫ ∞

−∞

dη

A
exp

[
i

h̄

(
mη2

2ε
− ε U(x+ η/2, t+ ε/2)

) ]

ψ(x+ η, t),

where a time-dependent potential U(x, t) is considered.
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B.2 Derivation of the Schroedinger equation

We will now derive the Schroedinger equation by expanding both sides of Eq. (B.5), up to
first order in ε (and neglect all higher powers). First, on the left side of Eq. (B.5), we have

ψ(x, t+ ε) = ψ(x, t) + ε
∂ψ(x, t)

∂t
. (B.6)

Next, on the right side of Eq. (B.5), we note that the exponential

exp

[ (
im

2h̄

)
η2

ε

]

oscillates wildly as ε → 0 for all values of η except those for which mη2/(2h̄ε) ∼ 1. We,
therefore, conclude that the contribution from the integral in Eq. (B.5) will come from
values η = O(ε1/2) and, consequently, we may expand the remaining functions appearing
on the right side of Eq. (B.5) up to η2. Thus, we may write

ψ(x+ η, t) = ψ(x, t) + η
∂ψ(x, t)

∂x
+

η2

2

∂2ψ(x, t)

∂x2
,

while

exp
[
− iε

h̄
U(x+ η/2, t+ ε/2)

]
= 1 − iε

h̄
U(x, t).

Expanding the right side of Eq. (B.5) to first order in ε, therefore, yields

[
1 − iε

h̄
U(x, t)

]
ψ(x, t) +

(
I1
I0

)
∂ψ(x, t)

∂x
+
(
I2
2 I0

)
∂2ψ(x, t)

∂x2
, (B.7)

where A = I0 and

In ≡
∫ ∞

−∞
dη ηn e−aη

2

, a ≡ m

2ih̄ε

with I0 =
√
π/a, I1 = 0, and I2 = 1/2a = (ih̄/m) ε.

Lastly, we find that the terms of first order in ε in Eqs. (B.6) and (B.7) must be equal,
and we obtain

∂ψ(x, t)

∂t
= − i

h̄
U(x, t) ψ(x, t) +

ih̄

2m

∂2ψ(x, t)

∂x2
,

or

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
+ U(x, t) ψ(x, t). (B.8)

This equation is known as the Schroedinger equation and it describes the time evolution
of the wave function ψ(x, t).


