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Goal of the talk

 The goal of this talk is to show that programming
languages can be both concise and powerful

 We will show how adding a few powerful
concepts can greatly increase the expressiveness
of a programming language

 At the same time, we will give a comprehensive
overview of concurrent programming and how
simple it can be if done properly

 The language we will use is called Oz
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Prerequisites

 I assume some familiarity with programming
 Preferably, in at least two languages
 Familiarity with algorithmic thinking

 I am going to cover a lot of ground quickly
 I hope some concepts will be new to you

 Some may be familiar concepts in a new jacket

 I will use simple examples to make everything intuitive

 For many more examples and techniques, see the book
“Concepts, Techniques, and Models of Computer
Programming”, MIT Press, March 2004
 All the example programs run on the Mozart system,

available at http://www.mozart-oz.org
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Programming language power

 How do programming languages get their expressive power?
 There are two main ways:

 By libraries: with a large number of libraries that provide extra
functionality

 By design: with a small number of concepts that can be
combined in many ways

 The library approach soon hits a brick wall
 It is limited by the underlying language, e.g., Java always uses

objects with mutable state

 The concept approach can go much further
 We have used this approach since the early 1990s to design the

Oz language
 This talk is a practical introduction to the approach
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Choosing the right concepts

 Oz provides a large set of basic concepts
 Choose the concepts you need, for the paradigm you need

 Functional programming
 Declarative concurrency
 Lazy functional programming
 Message-passing concurrency
 Asynchronous dataflow programming
 Relational programming
 Constraint programming
 Object-oriented programming
 …

 All these paradigms work together well because they differ in
just a few concepts
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Symbolic
data structures
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Symbolic data structures

 Lists: the simplest linear structure
[france belgium colombia]

 Records: a way to group data together
nations(france:paris belgium:brussels colombia:bogota)

 Atoms: simple constants
nations, france, paris, belgium, brussels, colombia, bogota

 Numbers: integers (true integers) or floating point

 All these data structures are first-class values
 First class: Full range of operations to calculate with them

 Values: They are constants (this is very important!)
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Lists

 Lists: the simplest linear structure
 A list is either an empty list or an element followed by a list

L=nil % Empty list
L=john|nil % Element followed by a list
L=john|(paul|nil)
L=john|(paul|(george|(ringo|nil)))

 Lists are used so often that we give them special syntax
L=john|paul|george|ringo|nil
L=[john paul george ringo]

 List operations
 First element: L.1 (sometimes known as “head” or “car”)
 Rest of list: L.2 (sometimes known as “tail” or “cdr”)

john paul george ringo

nil
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Records

 Records: a way of grouping data together
R=suit(shirt:beige pants:ochre socks:coral)

 Records have a label (“suit”) and a set of field
names (“shirt”, “pants”, “socks”) and their values
(“beige”, “ochre”, “coral”)

 Calculations with records
{Browse R.shirt} % Displays beige
{Browse {Label R}} % Displays suit
{Browse {Arity R}} % Displays [pants shirt socks]
{Browse {Width R}} % Displays 3 (number of fields)
R2={AdjoinAt R shirt mauve} % Record with new field

 Browse is a tool for displaying data structures

shirt socks
pants

beige ochre coral

suit
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Functional
programming
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Functional programming

 We use a simple functional language as the
starting point
 (Actually it is a process calculus with procedures, but you

don’t really need to know that yet)

 This is a powerful way to begin a programming
language

 Functions are building blocks
 This is called higher-order functional programming and it

gives an enormous expressive power (the whole area of
functional programming is based on this)

 A function is a value in the language (like an integer),
sometimes called a “lexically scoped closure”
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Examples of functions

 Here is a simple factorial function
fun {Fact N}
     if N==0 then 1 else N*{Fact N-1} end
end

 We can use it to define combinations
fun {Comb N K}
     {Fact N} div ({Fact K} * {Fact N-K})
end

 This follows exactly the mathematical definition of combinations
 Because Oz integers are true integers (arbitrary precision), this

definition really works!
 For example, {Comb 52 5} returns 2598960 (number of poker hands)
 This does not work in C++ or Java since Comb will overflow (they only

have integers modulo 232)
 This shows why a language should have a simple semantics

n
k

n!
k! (n-k)!( ) =
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Pattern matching

 Pattern matching takes apart a data
structure by matching it against a
corresponding shape

 {Sum [1 2 3]} will try to match [1 2 3]
first against nil and then against H|T

 Matching [1 2 3] against nil fails
(no way to make them equal)

 Matching [1 2 3] against H|T
succeeds and gives H=1 and
T=2|3|nil
 Remember that [1 2 3]=1|2|3|nil

 H+{Sum T} becomes 1+{Sum [2 3]}

 Final result is 1+(2+(3+0))=6

fun {SumList L}
    case L
    of nil then 0
    [] H|T then H+{SumList T}
    end
end

1 2 3

nil

H

TPattern

L
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Higher-order programming
in one slide
 Higher-order programming uses functions of any order!

 A function whose arguments and results are not functions is of first order
 fun {$ X Y} X+Y end is a first-order function (note: this function has no name!)

 A function that has a function of order n in an argument or result is of order n+1

 A function that returns a function that adds N to a number:
fun {MakeAdder N}
     fun {$ X} N+X end
end
Add1={MakeAdder 1}

(Note that the Add1 function has memorized the value of N, which is 1)
 A function that takes a function F of two arguments and an argument N, and returns a

function of one argument X that does F on N and X
fun {MakeOneArg F N}
     fun {$ X} {F N X} end
end
Add1={MakeOneArg fun {$ X Y} X+Y end 1}

(This Add1 function has memorized the values of F and N)
 What is the order of MakeAdder and the order of MakeOneArg?
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Generic programming
in one slide

 Summing the elements of a list:
fun {SumList L}
     case L of nil then 0
     [] H|T then H+{SumList T} end
end

 We make this generic by replacing 0 and +:
fun {FoldR L F U}
     case L of nil then U
     [] H|T then {F H {FoldR T F U}} end
end

Why FoldR?  It associates to the right: {F X0 {F X1 {F X2 … {F Xn-1 U}…}}}
 Now we can define many variations:

fun {SumList L} {FoldR L fun {$ X Y} X+Y end 0} end
fun {ProdList L} {FoldR L fun {$ X Y} X*Y end 1} end
fun {Some L} {FoldR L fun {$ X Y} X orelse Y end false} end
fun {All L} {FoldR L fun {$ X Y} X andthen Y end true} end
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Dataflow and
concurrency
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Dataflow variables

 Single-assignment store
 Variables are initially unbound and can be bound to just one value

declare X in
{Browse X} % Displays “X”
X=100 % X is bound, display becomes “100”

 Data structures with holes that are filled in later (“partial values”)
declare X K V L R in
X=tree(K V L R) % Build tree with holes in it
K=dog V=chien % Fill key and value
L=tree(cat chat leaf leaf) % Fill left subtree
R=tree(mouse souris leaf leaf) % Fill right subtree

 This is an important concept for many paradigms
 Functional programs can be simpler and more efficient (tail recursion)

 Declarative concurrency becomes possible (streams)
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Concurrency

 Concurrency is a language concept that allows to
express when two computations are independent
 This is very important and should be taught early

 Concurrency should be easy to use
 It’s hard in the usual object-oriented languages

 We will see just how easy concurrency can be
 Let us add just one concept: the thread

 Declarative concurrency

 Message-passing concurrency

 Asynchronous dataflow programming
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Dataflow computation

 A calculation proceeds when its inputs become
available

thread Z=X+Y {Browse Z} end
thread {Delay 1000} X=25 end
thread {Delay 2000} Y=144 end

 When this is executed, nothing is displayed right
away

 After 1000 milliseconds, X is bound
 Still nothing is displayed!

 After 2000 milliseconds, Y is bound
 X+Y can proceed, and the Browse then displays 169
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Dataflow with streams

 Eager producer/consumer example with dataflow synchronization

fun {Ints N Max}
   if N<Max then
      {Delay 1000}
      N|{Ints N+1 Max}
   else nil end
end

fun {Sum S Xs}
   case Xs of X|Xr then
      S|{Sum S+X Xr}
   [] nil then nil end
end

local Xs Ys in
   thread Xs={Ints 1 1000} end
   thread Ys={Sum 0 Xs} end
end

 Ints and Sum threads share the dataflow
variable Xs, which is a list with unbound tail
(stream)

 Monotonic dataflow behavior of case
statement (synchronize on data availability)
gives stream communication

 No race conditions

Xs Ys
Ints Sum
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Concurrency can be cheap

 You might wonder whether this is practical
 Aren’t threads expensive?
 They are expensive in some languages (e.g., Java), but that

is an artifact of their implementation

 Threads are cheap in Oz; you can use them whenever you
need them

fun {Fibo N}
     if N=<2 then 1 else
          thread {Fibo N-1} end + {Fibo N-2}
     end
end

 {Fibo N} creates an exponential number of threads without
changing the result of the calculation
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Sieve of Eratosthenes (1)

 Let us build a pipeline that implements a prime-number sieve
 At one end, we introduce a sequence of integers starting from 2
 Each pipe element removes multiples of some number
 Only primes will come out the other end

Filter Filter Filter Filter…

2 3 5 313

Xs {Sieve Xs 316}
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Sieve of Eratosthenes (2)

 Take input stream Xs, decompose into first element X and rest of stream Xr
 Create a filter element with input stream Xr that removes multiples of X
 Call Sieve recursively with output Ys of filter
 Combine X with output Zs of inner Sieve, to make output of outer Sieve

Filter Sieve

Sieve

Xs X|Zs
X

Xr

Ys

Zs
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Sieve of Eratosthenes (3)

fun {Sieve Xs}
case Xs of nil then nil
[] X|Xr then Ys in

thread Ys={Filter Xr fun {$ Y} Y mod X \= 0 end} end
X|{Sieve Ys}

end
end

Filter Sieve

Sieve

Xs X|Zs
X

Xr

Ys

Zs

function to check multiple
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Sieve of Eratosthenes (4)

 We can make the definition shorter by nesting
the call to Filter

 We don’t really need to declare Ys explicitly

fun {Sieve Xs}
case Xs of nil then nil
[] X|Xr then
     X|{Sieve thread {Filter Xr fun {$ Y} Y mod X \= 0 end} end}
end

end
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Sieve of Eratosthenes (5)

 Generating primes up to n only requires √n filter elements
 This version of Sieve does this optimization
 Most of the work is done in the early filters!

fun {Sieve Xs M}
case Xs of nil then nil
[] X|Xr then
     if X=<M then Ys in
           thread Ys={Filter Xr fun {$ Y} Y mod X \= 0 end} end
           X|{Sieve Ys M}
     else
           Xs
     end
end

end
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Lazy evaluation
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Lazy functional programming

 Lazy evaluation is another natural way to evaluate a
functional program
 Do a calculation only if we need the result

 Control flows from the output to the input (!)

 Lazy evaluation can be added easily to declarative
concurrency: just add one concept “wait until needed”
 {WaitNeeded X} : wait until X is needed by another calculation

 We can sprinkle calls to WaitNeeded in a program to make it
lazy
 The sprinkling will not change the results of the program.  It will

only change how much computation is done and when.  A very
nice way to make a program incremental!
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Lazy functions
 A lazy function is executed only when its result is needed

fun lazy {Fact N}
     if N==0 then 1 else N*{Fact N-1} end
end
F={Fact 100} % F is not needed yet
Y=F+1 % F is needed

 Lazy functions can be implemented with threads and WaitNeeded
proc {Fact N F}
     thread
          {WaitNeeded F}
          F=(if N==0 then 1 else N*{Fact N-1} end)
     end
end

 Note that function syntax is short-hand for a procedure with one more
argument that is bound to the output (“fun {Fact N}” is short-hand for
“proc {Fact N F}”)
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Lazy producer/consumer

 With lazy functions we can calculate with infinite data structures

fun lazy {Ints N}
     N|{Ints N+1}
end

 Lazy list of factorials: each factorial is only calculated once!

fun lazy {Facts F N}
     F|{Facts F*N N+1}
end
FactList={Facts 1 2}
{Browse {Nth FactList 69}} % Get 69th element
{Browse {Nth FactList 52}} % Get 52nd element (no extra work!)
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Lazy producer/consumer

 Lazy producer/consumer example with dataflow synchronization

fun lazy {Ints N}
      {Delay 1000}
      N|{Ints N+1}
end

fun lazy {Sum S Xs}
   case Xs of X|Xr then
        S|{Sum S+X Xr}
   [] nil then nil end
end

local Xs Ys in
   thread Xs={Ints 1} end
   thread Ys={Sum 0 Xs} end
   {Browse {Nth 1000 Ys}}
end

 Difference with eager version: it is the
final consumer that decides how much to
calculate, not the initial producer

 Stream communication with shared
dataflow variable Xs, just like before

 No race conditions, just like before

Xs Ys
Ints Sum
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Eager producer/consumer

 Eager producer/consumer example with dataflow synchronization

fun {Ints N Max}
   if N<Max then
      {Delay 1000}
      N|{Ints N+1 Max}
   else nil end
end

fun {Sum S Xs}
   case Xs of X|Xr then
        S|{Sum S+X Xr}
   [] nil then nil end
end

local Xs Ys in
   thread Xs={Ints 1 1000} end
   thread Ys={Sum 0 Xs} end
end

 Ints and Sum threads share the dataflow
variable Xs, which is a list with unbound tail
(stream)

 Monotonic dataflow behavior of case
statement (synchronize on data availability)
gives stream communication

 No race conditions

Xs Ys
Ints Sum
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Hamming problem

 The problem is to generate all integers of the form
2a3b5c in increasing order

 Here is one way to generate the stream
 Assume we know a finite part, h, of the stream
 Take the smallest x of h such that 2x is bigger than all of h
 Do the same for 3 and 5, giving y and z
 Then the next element of h is min(2x,3y,5z)

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, …

2×

3×
5×
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Hamming problem

 We can program this with streams
 We take the stream h, multiply it by 2, 3, and 5, and merge the

results into a single output
 The calculation has to be lazy, otherwise it goes into an infinite loop

2 ×

3 ×

5 ×

Merge
h

1
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Hamming problem

 At first, all the calls to Merge
and Times will wait

 When the second value of H is
needed, then some calculation
will be done
 The first Merge is activated
 This will activate Times and the

second Merge
 The second Merge will activate

the last two Times
 This will cause the second

value to be calculated

H=1|{Merge {Times 2 H}
                    {Merge {Times 3 H}
                                {Times 5 H}}}

fun lazy {Times N H}
     case H of X|H2 then
          N*X|{Times N H2}
     end
end

fun lazy {Merge Xs Ys}
     case Xs#Ys of (X|Xr)#(Y|Yr) then
          if X<Y then X|{Merge Xr Ys}
          elseif X>Y then Y|{Merge Xs Yr}
          else X|{Merge Xr Yr} end
     end
end
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Importance of
declarative

concurrency
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Why is declarative
concurrency important?

 Declarative concurrency is much easier to program
with than more standard paradigms (e.g., Java style
with monitors)
 Programs have no race conditions, i.e., results that depend

on exact timing, which makes them unpredictable
 Programs have no memory, i.e., internal state that can get a

wrong value

 It does have a limitation, though
 It cannot express nondeterminism, e.g., when programs have

multiple independent inputs from the external world
 This is not usually a problem, because nondeterminism can

be isolated to a small part of the program
 We recommend this programming style!
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Declarative concurrent model

skip
<s>1 <s>2

proc {<x> <x>1 … <x>n} <s> end
{<x> <x>1 … <x>n}

thread <s> end

local <x> in <s> end 
<x>=<value>
if <x> then <s>1 else <s>2  end
case <x> of <p> then <s>1 else <s>2 end

{WaitNeeded <x>}

<s> ::=
Empty statement
Sequential composition
Procedure creation
Procedure invocation

Thread creation

Variable creation
Variable binding
Conditional (synchronizes on bind)
Pattern matching (synchronizes on bind)

By-need synchronization

 Declarative concurrency adds threads and single-assignment variables
with dataflow synchronization to a simple functional language
 This is a process calculus that is a subset of Oz
 Declarative concurrency adds “slack” between producer and consumer

 Lazy evaluation adds by-need synchronization
 Lazy evaluation does coroutining between producer and consumer
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Message passing and
multiagent systems
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Message-passing concurrency

 Multiagent systems
 In this paradigm, programs consist of independent entities

(called “agents”) that communicate through asynchronous
message passing

 The agents work together to achieve a common goal

 We can implement agents by adding just one new
concept, a communication channel
 Note that this removes the limitation of the declarative

concurrent model: the channel can accept inputs from the
external world
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Communication channel

 We add a simple communication channel, called
a port

declare S P in
{NewPort S P}

 A port P has a corresponding stream S

 Messages sent to the port will appear on S
{Browse S}
{Send P alpha} % S is alpha|_
{Send P beta} % S is alpha|beta|_

 With a port and a thread we can make an agent
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Defining an agent (1)

 We define an agent with a port, a thread, and a function
 The thread reads messages M from the port’s stream Msgs and calls the

function Fun for each message
 The function has two arguments, the agent’s internal state State and the

message M, and it returns the new agent state
 fun {NewAgent Init Fun}

proc {AgentLoop State Msgs}
     case Msgs of M|Msgs2 then
          {AgentLoop {Fun State M} Msgs2}
     [] nil then skip end
end
Msgs

in
thread {AgentLoop Init Msgs} end
% The NewPort call returns the port as its result:
{NewPort Msgs}

end
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Defining an agent (2)

 A clever programmer will realize that we can define NewAgent
with FoldL

fun {NewAgent Init Fun}
Msgs Out in
     thread {FoldL Msgs Fun Init Out} end
     {NewPort Msgs}
end

 FoldL is exactly a loop with accumulator: it starts with Init, the
second value is {Fun Init M1}, the third value is {Fun {Fun Init
M1} M2}, and so forth
 Each new value Mi on the message stream is accumulated

 Out is the final state when the stream terminates
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Three agents playing ball

 Let us define a simple multiagent system with three agents
 Each agent upon receiving a ball(N) message will send a ball(N+1)

message to a randomly chosen other player
 Each agent will count the number of ball(N) messages it has

received and keep track of N
 Each agent also accepts a getstate(S) message and will bind its

internal state to S.  This lets us observe the agent’s behavior.

Player
1

Player
2

Player
3

ball(N) ball(N)

ball(N)
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A ball-playing agent

fun {Player Others}
{NewAgent state(0 0)

fun {$ state(M B) Msg}
     case Msg of ball(N) then
          Ran=({OS.rand} mod {Width Others})+1
     in
          {Send Others.Ran ball(N+1)}
          state(M+1 N)
     [] getstate(S) then S=state(M B)
          state(M B)
     end
end

end}
end
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Playing a game

 Create the three players
P1={Player others(P2 P3)}
P2={Player others(P1 P3)}
P3={Player others(P1 P2)}

 Start the game by tossing in a ball
{Send P1 ball(0)}

 Observe a game in progress
{Browse {Send P1 getstate($)}}
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Functional building blocks
as concurrency patterns

 We can combine the expressive power of functional
programming with message-passing concurrency

 Functional building blocks
 {ForAll L F}: Apply a function to all elements of a list
 L2={Map L1 F}: Transform all elements of a list
 X={Fold L F U}: Merge elements of a list together
 L2={Filter L1 F}: Filter out elements of a list

 We can use these building blocks in message-passing
programs
 They were originally designed for sequential programs, but used

in a dataflow setting they become powerful concurrency patterns

 Let us show one example: a contract net protocol
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Contract net protocol (1)

 A contract net protocol is a simple negotiation
protocol
 A buyer sends a query to a set of sellers
 Each seller sends a response with the price
 The buyer then chooses the best price, sends an accept to

that seller, and a cancel to the others

Buyer

Sellers

Round 1
query

Round 2
response

Round 3
accept/cancel

d d d d d d
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Contract net protocol (2)

 Assume that Sellers is a list of sellers
 Then we can program a contract net protocol in just four lines of code:

% Send queries and collect seller/price responses
Rs={Map Sellers fun {$ S} S#{Send S query($)} end}

% Find seller/price pair with lowest price
S1#R1={FoldL Rs.2 fun {$ S1#R1 S#R}

if R<R1 then S#R else S1#R1 end end Rs.1}

% Send accept to best seller, cancel to others
for S#R in Rs do {Send S if S==S1 then accept else cancel end} end

 Map is both a broadcast and convergecast (send and collect responses)
 FoldL combines all the results
 ForAll (for) is a broadcast
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Contract net protocol (3)

 This example may seem straightforward, but there is more here than
meets the eye
 Everything is asynchronous

 For example, the Map causes messages to be sent and responses
to be collected in a list right away, without waiting for them to arrive
 What happens if the FoldL is executed before all the responses arrive?

Some of the elements in the list Rs can still be unbound variables when
FoldL executes.

 This is not a problem: the FoldL operation will suspend and wait
whenever it encounters a response that is not available yet

 So everything works out right, even though the messages are sent
asynchronously and the responses can come at any time

 The reason why everything works out right is the dataflow
synchronization
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Asynchronous dataflow
programming

 The programming style illustrated by the contract net is quite
general and useful
 A combination of asynchronous communication, dataflow

synchronization, and functional programming
 Asynchronous communication (messages between independent

entities) ensures loose coupling
 Dataflow synchronization exactly where needed and not before

(implicit synchronization when the variable values are needed, no
explicit synchronization operations)

 Functional programming makes the code compact and easy to
reason about (higher-order building blocks and symbolic data
structures)

 This style deserves to be more widely used
 It should be supported by the language
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State and objects
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Mutable state

 Mutable state consists of variables that can be
assigned multiple times
 We have avoided them so far

 Most languages use them from square one
 We don’t, because they make life complicated, especially

in concurrent programs!
 The usual object-oriented techniques rely too much on

them

 Why do we need them?
 Their main use is for achieving modularity
 They don’t really have another use
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Modularity

 A program is a set of building blocks (“components”)
that communicate with each other

 A component can have an internal memory (the
mutable state) and a way to change that memory

 If done right, changing the internal memory lets us
update the component without changing the rest of
the system
 This is what we mean by modularity
 Mutable state allows to change components and

reconfigure the system

 This is explained in detail in the textbook
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Object-oriented programming

 We have almost reached the end of the talk and I have not
mentioned object-oriented programming
 What’s going on here?
 Since we’re talking about concurrency, where are the monitors

(synchronized objects, in Java terminology)?

 Object-oriented programming is a way to structure programs
 I have given only small examples, which don’t need these

structuring mechanisms
 Larger programs use object-oriented techniques

 Modularity comes from using objects with mutable state
 Polymorphism helps to apportion responsibility
 Inheritance helps to organize data abstractions

 Monitors are cumbersome and error-prone
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Conclusions
 We have shown how to pack a lot of power into a few concepts

 Functions and higher-order programming
 Symbolic data structures
 Dataflow variables
 Threads and declarative concurrency
 Lazy evaluation
 Communication channels and multiagent systems
 Asynchronous dataflow programming
 Mutable state, modularity, and object-oriented programming

 These concepts and many others are explained in our programming
textbook

 There are many other concepts that we have not touched in this talk; they
are ongoing work
 Software transactional memory
 Functional reactive programming
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Appendix
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Teaching programming
as a unified discipline
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Goal of the talk revisited

 This talk has given a fast overview of many programming
concepts
 We emphasized intuition and expressiveness

 But there is much more: these concepts and others are part of
a comprehensive programming framework and they can be
used to teach programming
 We have developed a way to teach programming based on

gradually introducing new concepts and showing what they are
good for

 We show how all major programming paradigms fit in a uniform
framework

 This appendix explains and motivates the approach
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Teaching programming (1)

 What is programming?
 We define it broadly as “extending or changing a computer

system’s functionality” or “the activity that starts from a specification
and leads to a running system over its lifetime”

 How can we teach programming without being affected by
historical accidents of current languages and systems?

 We can teach programming by starting with a simple language
and adding features (Holt 1977)

 A more principled approach is to add programming concepts,
not language features, e.g., Abelson & Sussman (1985, 1996)
in “Structure and Interpretation of Computer Programs”: add
mutable state to a functional language, leading to object-
oriented programming
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Teaching programming (2)

 In 1999, Seif Haridi and I realized that we could apply this approach in
a very broad way by using the Oz language
 The Oz language was explicitly designed to contain many concepts in a

factored way (long-term design effort by Gert Smolka and many others)
 For example, we realized that a good second concept is concurrency

(Kahn 1974).  This lets us keep the good properties of functional
programming in a concurrent setting.  It works well when there are no
external sources of nondeterminism.

 We have written a textbook that reconstructs Oz in a layered way
according to a general principle that indicates when to add a concept
and what concepts to add
 Our reconstruction can be seen as a partially ordered set of process

calculi based on programmer-significant concepts: they avoid the
clutter of the encodings needed by compilers (to map to physical
architectures) and by other process calculi (to map program abstractions)

 Textbook: “Concepts, Techniques, and Models of Computer Programming”,
MIT Press, 2004, 929 pages
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Creative extension principle

 A general principle to design a language in layered fashion by
overcoming limitations in expressiveness

 With a given language, when programs start getting complicated for
technical reasons unrelated to the problem being solved (non-local
changes are needed), then there is a new programming concept
waiting to be discovered
 Adding this concept to the language recovers simplicity (local changes)

 A typical example is exceptions
 If the language does not have them, all routines on the call path need to

check and return error codes (non-local changes)
 With exceptions, only the ends need to be changed (local changes)

 We rediscovered this principle when writing our textbook
 Originally defined by (Felleisen 1990)

 This principle applies to all the programming concepts we cover
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Example of
creative extension principle

proc {P1 … E1}
   {P2 … E2}
   if E2 then … end
   E1=…
end

proc {P2 … E2}
   {P3 … E3}
   if E3 then … end
   E2=…
end

proc {P3 … E3}
   {P4 … E4}
   if E4 then … end
   E3=…
end

proc {P4 … E4}
    if (error) then E4=true
    else E4=false end
end

proc {P1 …}
   try
      {P2 …}
   catch E then … end
end

proc {P2 …}
   {P3 …}
end

proc {P3 …}
   {P4 …}
end

proc {P4 …}
    if (error) then
       raise myError end
    end
end

Language
without exceptions

Language
with exceptions

Error occurs here

Error treated here

All procedures on
path are modified

Only procedures at
ends are modified

Error occurs here

Error treated here

Unchanged
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Complete set of concepts (so far)

skip
<x>1=<x>2 
<x>=<record> | <number> | <procedure>
<s>1 <s>2

local <x> in <s> end

if <x> then <s>1 else <s>2  end
case <x> of <p> then <s>1 else <s>2 end
{<x> <x>1 … <x>n}
thread <s> end
{WaitNeeded <x>}

{NewName <x>}
<x>1= !!<x>2

try <s>1 catch <x> then <s>2 end
raise <x> end
{NewPort <x>1 <x>2}
{Send <x>1 <x>2}

<space>

<s> ::=
Empty statement
Variable binding
Value creation
Sequential composition
Variable creation

Conditional
Pattern matching
Procedure invocation
Thread creation
By-need synchronization

Name creation
Read-only view
Exception context
Raise exception
Port creation
Port send

Encapsulated search

Descriptive
declarative

Declarative

Less and less
declarative
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Complete set of concepts (so far)

skip
<x>1=<x>2 
<x>=<record> | <number> | <procedure>
<s>1 <s>2

local <x> in <s> end

if <x> then <s>1 else <s>2  end
case <x> of <p> then <s>1 else <s>2 end
{<x> <x>1 … <x>n}
thread <s> end
{WaitNeeded <x>}

{NewName <x>}
<x>1= !!<x>2

try <s>1 catch <x> then <s>2 end
raise <x> end
{NewCell <x>1 <x>2}
{Exchange <x>1 <x>2 <x>3}

<space>

<s> ::=
Empty statement
Variable binding
Value creation
Sequential composition
Variable creation

Conditional
Pattern matching
Procedure invocation
Thread creation
By-need synchronization

Name creation
Read-only view
Exception context
Raise exception
Cell creation
Cell exchange

Encapsulated search

Alternative
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Taxonomy of paradigms
Declarative programming
Strict functional programming, Scheme, ML
Deterministic logic programming, Prolog

  + concurrency
  + by-need synchronization
  Declarative (dataflow) concurrency
  Lazy functional programming, Haskell

    + nondeterministic choice
    Concurrent logic programming, FCP
    Functional reactive programming

      + exceptions
      + explicit state
      Object-oriented programming, Java, C++, C#

        + search
        Nondeterministic logic prog., Prolog

 

Concurrent OOP
(message passing, Erlang, E)
(shared state, Java, C#)

+ computation spaces
Constraint programming

 This diagram shows some of
the important paradigms and
how they relate according to
the creative extension principle

 Each paradigm has its pluses
and minuses and areas in
which it is best
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History of Oz

 The design of Oz distills the results of a long-term research collaboration
that started in the early 1990s, based on concurrent constraint
programming (Saraswat, Maher, Ueda)
 ACCLAIM project 1991-94: SICS, Saarland University, Digital PRL, …

 AKL (SICS): unifies the concurrent and constraint strains of logic
programming, thus realizing one vision of the Japanese FGCS

 LIFE (Digital PRL): unifies logic and functional programming using logical
entailment as a delaying operation (logic as a control flow mechanism)

 Oz (Saarland U): breaks with Horn clause tradition, is higher-order,
factorizes and simplifies previous designs

 After ACCLAIM, several partners decided to continue with Oz
 Mozart Consortium since 1996: SICS, Saarland University, UCL

 The current language is Oz 3
 Both simpler and more expressive than previous designs
 Distribution support (transparency), constraint support (computation spaces),

component-based programming
 High-quality open source implementation: Mozart Programming System,

http://www.mozart-oz.org


