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Preface 

This book is intended as an introduction to those who are new to neural network 
hydrological modelling and as a useful update for those who have been experimenting 
with different tools and techniques in this area. The scope for applying neural network 
modelling to hydrological forecasting and prediction is considerable and it is only really 
in the last five to ten years that it has been tried and tested. The various chapters show 
that while rainfall runoff forecasting is the main area of research, neural networks are 
also used in ecological, fisheries, water quality, sediment, groundwater and many other 
water related applications. The scope is considerable because a neural network works in 
an equation free environment so that economic, social, hydrological and chemical data 
can be integrated on an equal basis. Neural networks are often denigrated as black box 
solutions, but they are sophisticated black boxes, which can produce very useful results. 
We hope that this book will encourage further users to get involved and experiment. 

Each of the chapters has been the subject of an independent review and we are grateful 
for the many comments and time involved. We are also grateful to the authors for 
responding to our comments and the reviewers’ input and for making the changes 
requested. 
Robert Abrahart Pauline Kneale Linda See 

Nottingham Leeds Leeds 



 



1 
Why Use Neural Networks?  

PAULINE E.KNEALE, LINDA M.SEE  
School of Geography, University of Leeds, UK 

ROBERT J.ABRAHART  
School of Geography, University of Nottingham, UK 

ABSTRACT: Neural networks are one computational methodology for 
hydrological forecasting. Although widely used in other research and 
application fields they are employed less by hydrologists than might be 
expected given the data driven nature of the applied problems to be 
solved. Neural networks provide a modelling route that can be helpful 
when there is enough data to link x to y and especially where results are 
needed in real time. This chapter introduces neural network issues 
generally, setting them in a wider modelling context and provides a 
framework link to later chapters which handle neural network topics in 
detail. 

1 INTRODUCTION 

Neural networks (NN) are an alternative and complementary set of techniques to 
traditional models. NN can be thought of as computational pattern searching and 
matching procedures that permit forecasting without an intimate knowledge of the 
physical or chemical processes. For the hydrologist this technique has considerable 
appeal, provided the absence of a detailed process explanation can be borne. 

NN rely on the provision of adequate data sets, and where these are available, NN may 
be programmed to search for patterns within the data. On the basis of this pattern-
matching, forecasts are made on independent data sets first for model validation and then 
for operational purposes. NN are one approach within the broader hydroinformatics 
framework which emerged in the 1990s as a route to managing information overload in 
an effective way (Govindaraju & Rao, 2000). Price (2000) recognises four strands to 
hydroinformatics, the mathematical and physical sciences understanding, the handling of 
data and the human cultural element. One of the significant strengths of the NN approach 
is that it can handle all data types. 

The challenge of managing water in its many dimensions and applications calls for 
techniques which can link a myriad of components, from the complexity of hydraulics 
and water quality, to financial planning and social agendas. This is a move towards a 
holistic or integrated approach to modelling. The techniques available to the hydrologist 
are many and varied, each with their own advantages and drawbacks. The vision of 1970s 
modellers (Freeze & Harlan, 1969) that forecasting problems would be cracked when 



computers became powerful enough to handle very complex equations and infinitely 
large data sets has become a receding, but by no means disappearing, target. Natural 
environmental variability, the uniqueness of catchments, system chaos and the 
complexities of scale integration, together with the expense of data acquisition, make the 
forecasting task challenging. Flood modelling at the basin scale with fine mesh models 
requires prodigious amounts of computer time, but Beven and Feyen (2002) consider that 
these goals are coming nearer as visualisation and virtual game technologies advance, so 
the ambitions for catchment-wide 4D modelling are getting closer. NN do not in any way 
aim to replace such models but they can provide a very fast forecasting system that is 
operationally available in very short time frames. NN do not compete with distributed 
models but rather offer alternative and complementary ways of tackling forecasting 
problems. 

This text is aimed both at those using NN in research for the first time and at those 
wanting to review recent examples of NN hydrological applications. It is not intended as 
a manual but should be used as a supportive guide for anyone wanting to experiment with 
this type of modelling. This chapter introduces some of the basic ideas and background 
behind the NN approach, particularly for those who are new to this methodology If you 
are already familiar with NN techniques then skipping to later chapters may be helpful. 
The sections that follow provide a link to the more detailed materials in the main chapters 
and to broader applications. 

2 THE BASIC IDEAS OF THE NN APPROACH 

To understand the basic ideas behind the NN approach, let’s look at a simple 
hydrological example. Imagine that you could access data banks of hydrological 
information. Suppose that the databases contain stage data recorded every ten minutes at 
4 points on a river (C-F), precipitation data from a gauge (A) collated every fifteen 
minutes from a radar system (B) and weekly soil moisture data (G) (Fig. 1.1). Your first 
task is to decide which station you want to model. In a conventional approach you might 
choose to model stage at F using all the data sets including past records from site F as 
inputs. Alternatively you might (eccentrically) decide to forecast precipitation at B using 
all the data (Fig. 1.2). The point is that the NN has no knowledge of the spatial 
relationship between the sites as seen on a map nor any idea about what it is being 
modelled. The NN only seeks the relationships between the input and output data and 
then creates its own equations to match the patterns in an iterative manner.  
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Fig. 1.1. Catchment X. 

 

Fig. 1.2. Potential models. 

Continuing with this example, a forecaster might choose to start modelling with all the 
data, and look to eliminate those data sets that are not contributing significantly to the 
output to find the most parsimonious approach, thereby saving data collection and data 
processing time. It may be that operationally the best forecasting model for stage at 
station E is the stage at station E in previous time steps. In forecasting terms this may be 
the cheapest and most accurate model, but a user might choose a less optimal model that 
includes an upstream site in real-time forecasting in case there are data transfer problems 
during a real-time event. The ‘best’ computational solution may not be the ideal practical 
solution. This is a forecasting approach where there are many decisions to be made by the 
user. 

NN models are variously described as mimicking the parallel-information processes of 
the brain. However, a typical human brain is thought to contain 1011 neurons, each 
receiving input from an additional 5000 to 15000 neurons. The average worm has 
approximately 103 connections. A NN is likely to have connection numbers in the 10–
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1000 range so a NN would be considered to be of sub-worm complexity (Openshaw, 
1997). Comparisons of this kind are illuminating at one level but do not inspire 
immediate confidence in the technical merits of NN as a sophisticated analytical 
technique. It is important to see why they are so described and evaluate this description 
(see Chapters 2, 3 and 4). 

The brain analogy is helpful for new users. NN are a mathematical representation of a 
process that operates like nerve cells. Each network is made up of nodes and links, much 
like the nerve cells and messages in a nervous system. The user defines the architecture 
of the network and following trial and error runs, this mathematical representation of the 
NN becomes the model framework. For example, trials may show that the radar data at B 
(Fig. 1.2) may not be contributing useful additional information so that node would then 
be removed in further model trials. 

Forecasting should follow in three clearly separate stages of NN development, stages 
that are kept separate to make comparisons as accurate as possible. In ‘training mode’ the 
output pattern at say station F (Fig. 1.1) is linked to as many of the input nodes (A-G) as 
desired and the patterns are defined. In the training phase, part of the total data set is 
used. Conjusingly, NN scientists may also refer to a ‘validation’ dataset used at this stage 
to ensure the model is not overtrained. The data may be temporally contiguous or it may 
be selected as being representative across the whole period. This can be important if it is 
thought that there may be systematic change on a catchment across the whole period, 
arising for example from land use change. This is followed by a ‘testing phase’ when the 
model is tested using data sets that were not used in training. If the forecasts are 
satisfactory then the model may be used in an ‘operational’ or ‘real time mode’ to 
generate live forecasts. These live forecasts are evaluated against real events. Measures of 
accuracy of a model should ideally refer to forecast performance in the real-time mode or 
independent validation mode. 

Once established the NN can be developed or updated as more data become available. 
In this sense NN are dynamic in that the operator can adjust and adapt them as change 
occurs, which makes them potentially very valuable in hydrological operational modes. 
In this simple hydrological example it would be logical for an operator to update the 
forecasting networks at the end of each wet season to take account of recent precipitation 
events and thus give the users additional confidence in the modelling. Because the 
processing speeds of NN are very high, in practice a model can be updated and 
redeveloped in real time to take account of new or changing circumstances if required 
(Abrahart, 2003). 

NN may be regarded as data driven techniques but it is argued here that their 
flexibility in data handling and the ability to solve problems where it is effectively 
impossible to get primary data, as in groundwater modelling solutions (Ouenes, 2000; 
Zio, 1997) and with the added complexity of groundwater chemistry (Gumrah et al., 
2000), or where processes are highly non-linear and spatially and temporally variant 
(Islam & Kothari, 2000), makes these techniques well worth exploring. If a distributed 
modelling solution is not available but the data are, then this may be a useful approach. 
Certainly many NN applications have been prompted by unsatisfactory results with 
regression and time series techniques.  
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3 SOME ANTECEDENTS 

The pattern for classifying hydrological modelling approaches was articulated by Dooge 
(1977). His three phase black box empirical, lumped and physically-based distributed 
model distinction is very widely recognised. This lead to an acceptance of an apparent 
hierarchy in quality of approach with the ‘simple black box’ considered to be less 
acceptable than the more mathematically rigorous, theoretically based distributed 
approach. While this distinction is academically valid, it is not always helpful in practical 
terms. The advice to use the simplest tool that will do the job is appropriate in practical 
and operational modelling. If the data are available and the problem is linear then using 
linear regression is fine. The unit hydrograph and rational formulas survive because they 
are practical tools that supply useful answers. 

While NN are a relatively recent technique for hydrologists they have an established 
antecedence which Govindaraju and Rao (2000) acknowledge as starting in the 1940s. 
NN concepts arrived with McCulloch and Pitts’ (1943) work but their practical use 
followed Rumelhart et al.’s (1986) development of the back propagation neural network 
(BPNN) algorithm which lead to a plethora of applications in many subjects. Various text 
books in the 1990s generated some interest (Masters, 1993; Cruz, 1991) and the first 
hydrological applications were probably Daniell (1991), French et al. (1992) and Hall 
and Minns (1993). So for hydrologists this is a young technique with a short pedigree. 
But there has been a rapid uptake and a positive blossoming in conferences and 
publications. Good generic texts on the subject include Bishop (1995), Haykin (1998) and 
Picton (2000) but there are many other sources available. 

Various authors describe NN models as black box and dismiss them as empirical, and 
therefore by definition, as inferior. Certainly the calculations are ‘set-up’ by the modeller 
but the nature of the relationship between variables is found by the computer (see Chapter 
2). So in this sense NN are input-output models. They are therefore vulnerable to the 
problems of inadequate data and a less than thoughtful forecaster. However, they have 
the strength when compared for example with ARMA and regression approaches that 
non-linearity in relationships will be captured (Hsu et al., 1995) and the black box can be 
looked into in detail if the forecaster wishes (Abrahart et al., 2001; Wilby et al., 2003). 
The early hydrological literature is dominated by rainfall-runoff forecasting applications, 
probably because these represent a conceptually straight-forward starting point. There are 
some lengthy records for both variables for training and validation, and the solutions are 
evidently non-linear; this theme is well reviewed in this text in Abrahart (Chapter 2), by 
Minns and Hall (Chapter 9), and in the GIS application of rainfall modelling discussed by 
Ball and Luk (Chapter 10). 

Alternative introductions to NN modelling in hydrological contexts include Maier and 
Dandy (2001b) who provide a sound introductory overview in the context of 
cyanobacterium and salinity modelling in River Murray, and Dawson and Wilby (2001). 
In a Special Issue of Computers and Operations Research, Gupta and Smith (2000) cover 
a significant range of non-hydrological examples, and the business applications 
considered are of interest to those considering modelling economic and management 
aspects of water supply and water management. 

The hydrological applications from the last seven years fall into a series of broad 
categories and styles of modelling. There are three main types of NN: backpropagation 
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(BPNN), radial basis function network (RBFN) and the self-organising feature map 
(SOFM). Abrahart addresses each style in detail in Chapter 2 and as later chapters will 
indicate, backpropagation neural networks (BPNN) dominate for forecasts at specified 
points such as river stage, whereas SOFM mapping algorithms are employed to predict 
spatial patterns. 

Running models with multiple inputs implies the availability of appropriate data sets, a 
problem for any field-based hydrological work. However where data are captured in 
remote sensing operations and GIS programmes the NN approach can be very powerful 
as Foody’s Chapter 14 indicates. Gautam et al. (2000) have the advantage of a well 
instrumented catchment at Tono, Japan, providing meteorological, runoff and soil 
moisture content data for their stream flow forecasts. This is a luxury not available in 
most areas; however, the results are satisfactory indicating that the NN technique may be 
of benefit for small catchment forecasts and perhaps in agricultural applications. To 
forecast soil texture from remotely sensed maps Chang and Islam (2000) use brightness 
temperature and remotely sensed soil moisture. The soils are classified into six classes. 
Forecasting the permeability of oil reservoirs, Bruce and Wong (2002) use an evolution 
NN algorithm to solve a forecasting problem bedevilled by solutions that can be trapped 
in local minima using backpropagation. 

NN are not necessarily run in isolation. In linking NN within their models Maskey et 
al. (2000) for example show how NN can be used with process models to calculate travel 
times of groundwater pollution plumes in response to well injections and pumping in an 
experiment to optimise a groundwater clean up programme. The flexibility to use a NN 
within a broader modelling framework is an attractive use of the technology. 

While hydroinfomatics primarily concentrates on aquatic forecasting, for some authors 
NN technologies assist in the objective inclusion of social and economic dimensions. 
Jonoski (2002) looks towards a sociotechnological role for the hydrological forecaster 
where these additional dimensions are an integral part of the modelling process in what 
they define as Network Distributed Decision Support Systems. 

The reported use of NN models is broad and considerable in statistical and engineering 
applications (Ma et al., 2001; Venkateswaran et al., 2002). Their operational rather than 
research use is also extensive in a wide range of industries: in mining to identify rocks 
that can be obstructive (Cabello et al., 2002), converting speech to text (Wang et al., 
2002), monitoring wear on machine tools (Scheffer & Heynes, 2001), automating 
wastewater treatment and chemical monitoring (Zyngier et al., 2001), forecasting sea ice 
conditions in Canadian waters (El-Rabbany et al., 2002), coffee bean blending 
(Tominaga et al., 2002), flavour of blackcurrants (Boccorh & Paterson, 2002) and 
identifying corrosion rates on aircraft parts (Pidaparti et al., 2002).  

Govindaraju and Rao (2000) suggest that the adoption of NN techniques by 
hydrologists has been constrained by the relative newness of the technique, and its 
position as an empirical methodology in a subject which struggled to get rid of its soft 
empirical subject image and emerge as an accepted physics-based discipline. Maier and 
Dandy (2000) reiterate the essential need for thoughtful applications: ‘In many 
applications, the model building process is described poorly, making it difficult to assess 
the optimality of the results obtained’. Flood and Kartam (1994) also add a relevant 
observation: ‘There is a tendency among users to throw a problem blindly at a NN in the 
hope that it will formulate an acceptable solution’. Maier and Dandy’s (2000) paper 
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would be a great place for many modellers to start. The authors review the issues for 
modelling with a wide range of practical examples. 

Much of this text exemplifies the need for a systematic approach to thinking through 
the methodological approaches and constraints. Then to apply these approaches to 
relevant hydrological issues. We would argue that it represents an opportunity to model 
with greater freedom and speed some of the ‘difficult’ multifaceted problems in 
hydrology. 

However, it is important to point out that NN are not magic boxes. There is an 
extensive mathematical background and theory that has underpinned their development 
and for those mathematically inclined this is a rich area of investigation. The NN 
technique cannot be criticised as theoretically unsupported and therefore unsound. Users 
can decide to try the NN approach without exploring the mathematics in detail and to 
take advantage of the plethora of freeware or shareware off-the-shelf packages. This is 
really no different to users taking some of the more advanced codes in SPSS for partial 
canonical correlation. Caveat emptor always applies, and as the authors of Chapters 2–5 
which look at the basics of different types of modelling approaches emphasise, it is vital 
to understand the data and programming decisions involved. But these are explained in 
practical terms and are on a par with understanding that 3 samples are not enough for 
multiple regression with 6 variables and that ANOVA values require significance tests. In 
other words try it for yourself. 

4 WHERE DO I FIND THEM? NN PLATFORMS 

Individual chapters in the book direct you to specific software sources, while this section 
provides a brief overview of the sites available. There are a very substantial number of 
companies and web sites offering NN software and a range of product support packages. 
The most useful starting point might be ; a users site that is updated monthly. As it says: 
‘its purpose is to provide basic information for individuals who are new to the field of 
neural networks’. There are software programs to download via ftp sites, for use on 
multiple platforms. Table 1.1 provides a short starting list of websites that you might 
check out, while later chapters point users to particular software packages. 

You can also find NN embedded within data mining software such as Clementine or 
IBM’s Intelligent Data Miner. Data mining is a popular term in  

Table 1.1. NN software suppliers and web sites, a 
starting list. 

Software name and company Web sites 

Free or Share ware   

Ainet—Freeware Neural Network www.ainet-sp.si/ 

GENESIS and PGENESIS 2.2 http://www.bbb.caltech.edu/GENESIS 

KarstenKutza— http://www.geocities.com/CapeCanaveral/1624/ 

NEURALFUSION— http://www.neuralfusion.com/ 
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PDP Plus, MIT Press http://www.cnbc.cmu.edu/PDP++/PDP++.html 

   

SNNS, Stuttgarter Neural Network Simulator, 
University of Tuebingen, Germany 

http://www-ra.informatik.uni-tuebingen.de/SNNS 

Commercial packages   

Brain Maker, California Scientific Software 
Company 

www.calsci.com 

Cortex-Pro www.reiss.demon.co.uk/webctx/detail.html 

IBM Neural Network Utility, IBM Company nninfo@vnet.ibm.com 

NeuralWorks Professional II Plus, 
NeuralWare Inc. 

http://www.neuralware.com/ 

Neuro Genetic Optimizer (NGO), Bio Comp 
Systems Inc. 

www.bio-
comp.com/pages/neuralnetworkoptimizer.htm 

Neuro Shell Predictor, Ward Systems Group 
Inc. 

www.wardsystems.com 

NeuroSolutions v3.0, Neuro Dimension, Inc. http://www.nd.com/ 

QNET v2000 www.qnetv2k.com 

STATISTICA: Neural Networks version 4.0, 
Statsoft Inc. 

http://www.statsoft.com/ 

Neural Connection, SPSS Inc. http://www.spss.com/ 

the business world for all techniques that can be used to turn large amounts of data into 
useful information, of which NN are only one example. Clearly any package needs 
evaluation and for the novice the array of software available is confusing. The 
hydrological NN literature is not awash with citations of software used; some users will 
have written their own programmes but given the availability of packages this seems as 
unnecessary today as writing a program to calculate regression. A starter suggestion is the 
SNNS, Stuttgarter Neural Network Simulator which is well documented and user 
friendly. 

Rather than re-inventing program codes for backpropagation it would seem to be more 
useful for hydrological forecasters to develop a suitable suite of quality testing 
procedures. Kneale and See (2003) testing Time Delay Neural Network (TDNN) 
forecasts use ten tests to compare hydrograph forecast accuracy. It is critical that the tests 
chosen include those normally used in hydrological model evaluation, such as the Nash 
and Sutcliffe (1970) index. This permits users to evaluate the forecasts in a consistent and 
objective manner and compare them to results obtained from traditional hydrological 
forecasting procedures.  
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5 SUMMARY 

Essentially NN are one of many tools at the disposal of the hydrological researcher. The 
user defines the independent and dependent variables and has all the normal modelling 
problems of locating suitable data sets to develop, test and validate the models. 

One major advantage the NN approach has over traditional input-output modelling is 
that it makes fewer demands on the data. Unlike multiple regression, where the 
constraints of normality in the data distributions are often simply ignored, NN do not 
make assumptions about the statistical properties of a data set. Data for different variables 
can be of all types and available on different time or spatial scales. This allows for a 
flexible approach to data collection and model development. In management models for 
example weather related, soil dynamic, crop development and agricultural management 
information can be used as inputs using parameters that are recorded on hourly, weekly, 
monthly, m2, hectare and currency scales. 

A second major advantage is that in searching for patterns and links in the data sets 
there are no assumptions of linearity. NN are non-linear pattern identification tools, 
which is why they are potentially so attractive for tackling the non-linear problems of 
hydrology. 

The powerful potential of NN models to solve ‘hard computational problems’ 
including those where the underlying ecological relations are not understood was cited by 
Lek and Guegan (1999). There is a wealth of understanding of hydrological processes at 
a range of scales from laboratory to hillslope and catchment. But it is not always clear 
how to write the equations to link processes that are understood at the m2 scale so that 
they scale up to the basin scale. NN search for the patterns in the data and therefore have 
the potential to create the equations that describe the processes operating on the 
catchment under study As with all modelling an ill-specified NN will generate inadequate 
to useless forecasts. A good hydrological understanding of the relevant field processes is 
a pre-requisite of good modelling. That together with enough understanding of the NN to 
have the confidence to eliminate inessential variables and so define, through 
experimentation, the most parsimonious but efficient model. The relationship that a NN 
defines must be sought again in data for different catchments, the chosen model reflects 
the complex interactions within the specified data sets. However the final selection of 
parameters, model architectures and training times for any model will be helpful 
guidance for forecasters applying the NN approach in comparable catchments, speeding 
up the development of future models. 

The potential speed of model development is a factor that most NN users find 
attractive. Forecasting algorithms are available from a range of web and shareware 
sources. Data acquisition is part of every modelling process but the forecaster then moves 
into model development and testing. Our experience of river stage modelling is that 
computational run times are a matter of minutes and validation and independent 
forecasting is effectively instantaneous (Kneale et al., 2000). A forecaster should not find 
this element of the hydrologist’s toolbox more difficult to apply than partial Canonical 
Correspondence Analysis, a GIS system, an ARMA model or complex process-based 
software applications. 
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It may be that the role of NN is as part of a larger modelling framework, where the NN 
is one element in a data handling and management tool. Most of this text is concerned 
with the application of NN to solving specific hydrological problems with the NN as the 
primary technique, but this is just one potential role. The considerable scope for links to 
GIS models is made explicit in Foody’s Chapter 14. There is a dominance of rainfall 
runoff applications which are explored more fully in various chapters. NN were 
developed to mirror biological activities, their non-linear flexibility makes them very 
attractive for forecasting complex multi-disciplinary hydrological problems like crop and 
fish stock management, pesticide leaching and runoff from hill-slopes, and groundwater 
pollution and abstraction interactions (Freissinet et al., 1999; Tansel et al., 1999; 
Morshed & Powers, 2000; Tingsanchali & Gautam, 2000). 

Where the NN fits in the mosaic of techniques for the hydrologist is still uncertain but 
we hope these chapters will encourage each reader to see its relevance in a range of 
applications and to try the techniques. 
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Neural Network Modelling: Basic Tools and 

Broader Issues  
ROBERT J.ABRAHART  

School of Geography, University of Nottingham, UK 

ABSTRACT: The purpose of this chapter is to define and illustrate the 
basic terms and concepts involved in neural network modelling. The main 
neurohydrological modelling tools used to date are introduced. The 
chapter also includes an insight for new users into the scope and function 
of potential neural network hydrological modelling applications with 
respect to the broader hydrological picture. 

1 INTRODUCTION 

This chapter discusses the main elements in the neural network (NN) toolbox; it also 
addresses the ‘what’ and ‘when’ of NN hydrological modelling. Section 2 contains a brief 
introduction to the mechanisms and procedures involved—which includes a discussion 
on architectures and learning; while Section 3 contains a detailed description of the most 
popular tools that have been used in the field of water related research. Sections 2 and 3 
are intended to complement one another and are designed to impart the minimum amount 
of information that would be required to understand the various operations and processes 
that are adopted in neurohydrological modelling. There are several respected sources that 
can be consulted for a more authoritative and comprehensive discussion on generic NN 
modelling items or issues of interest. Bishop (1995) and Masters (1995) are good 
academic texts; each book contains a copious amount of in-depth material. Reed and 
Marks (1999) is oriented towards the developer and practitioner. It describes selected 
techniques in sufficient detail, such that real-world solutions could be implemented, and 
technical issues or operational problems could be resolved. Section 4 illustrates the range 
of different hydrological possibilities and potentials that exist in which to develop and 
implement a neural solution. Section 5 highlights the numerous opportunities and benefits 
that are on offer and further strengthens the argument for increased research into the 
provision of data-driven models. Sections 4 and 5 are thus intended to bolster appeal and 
to encourage uptake amongst interested parties; the exploration and testing of unorthodox 
strategies and alternative mindsets can indeed be a rewarding experience that leads to 
fresh insights and discoveries. 



2 WHAT IS A NEURAL NETWORK? 

NN are structures which forecast and predict through pattern matching and comparison 
procedures. NN tools are, in most cases, non-linear adaptive information processing 
structures that can be ‘described mathematically’ (Fischer, 1998). NN can exist as real-
time hard-wired mechanisms, software simulators, optical processors and specialized 
neurocomputing chips (Taylor, 1993) and their computational elements are generic. NN 
software simulation programs, written in a standard high-level language, are the most 
common form. 

There are a number of commercial and public domain simulators that users can select 
from, depending upon their preferred computer platform, and the sophistication offered in 
such packages provides a significant attraction. Catalogues of established software and 
shareware can be found on the World Wide Web e.g. NEuroNet (2001) or Sarle (2002). 
See Table 1.1 for a more comprehensive list. It is both an advantage and a potential 
drawback that users can download and install powerful NN products and packages with 
little or no real effort e.g. Stuttgart Neural Network Simulator (SNNS Group, 2003). 
Trained NN solutions can also be converted into dedicated 3GL (Third Generation 
Language e.g. C++) functions, for amalgamation into home-grown software products, or 
linked to commercial applications using a run-time connection based on standard 
software libraries (e.g. DLL). This is a major advantage for users, and especially new 
users wishing to experiment with the technique, but all users must be clear about the pros 
and cons of this modelling procedure. 

2.1 Network architecture 

NN are constructed from two basic building blocks: processing units (also referred to as 
elements or nodes or neurons) and weighted connections (also referred to as arcs or edges 
or links). These components and their respective organisation, into a set of interconnected 
items, form the ‘network architecture’. 

Maren (1991) has suggested that the architectural configuration can be described at 
three basic levels and this framework is used to explain the com ponents here: 

(a) Microstructure. The characteristics of each processing unit in a network. 
(b) Mesostructure. The manner in which a network is organised, including such features 

as the number of layers, the pattern of connections, and the flow of information.  
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Fig. 2.1. The microstructure of a neural 
network model in terms of processing 
units. 

(c) Macrostructure. The manner in which a number of ‘networks’ are linked together, 
interacting with each other to build a more complex solution, for more demanding 
tasks. 

Figure 2.1 illustrates the standard organization of an individual processing unit—which is 
the microstructure. Each processing unit can have numerous incoming connections, that 
arrive from other processing units, or from the ‘outside world’ X1…Xn. The ‘outside 
world’ could be raw input data, or outputs produced from another forecasting model, that 
exports data to the NN. The connections function as unidirectional paths that conduct 
signals or data, and transmit their information in a predetermined direction. These are the 
user-defined ‘input connections’ and there is no upper limit on their number. There is 
also a program default input, termed bias, that is a constant X0=1. Each processing unit 
first computes an intermediate value that comprises the weighted sum of all its inputs 
I=∑Wji Xj. This value is then passed through a transfer function f(I), which performs a 
non-linear ‘squashing operation’. The user can opt for default transfer functions or in 
certain software packages define their own—the standard options being logistic, sigmoid, 
linear, threshold, gaussian and hyperbolic tangent—with the selection of an appropriate 
transfer function being dependant upon the nature of each specific problem and its 
proposed solution. Shamseldin et al. (2002) explored the application of several different 
transfer functions to the amalgamation of multi-model hydrological forecasts and found 

Neural networks for Hydrological modelling     16



that in most cases a logistic function provided the best results and an arctan function 
produced the worst results. Each processing unit can have numerous output connections, 
that lead to other processing units or to the ‘outside world’, and again there is no 
restriction on their number. Each  

 

Fig. 2.2. The mesostructure of a neural 
network model in terms of processing 
units. 

output connection carries identical copies of each numerical output, or signal, which is 
the state, or activation level, of that processing unit Yj. The weights are termed 
‘connection parameters’. It is these weights that are adjusted during the learning process, 
to determine the overall behaviour of the neural solution, and that in combination 
generate the so-called ‘network function’.  

Figure 2.2 illustrates the standard organisation of a network architecture—which is the 
mesostructure. The basic structure consists of a number of processing units, arranged in a 
number of layers, and connected together to form a network. Data enters the network 
through the input units (left). It is then passed forward, through successive intermediate 
hidden layers, to emerge from the output units (right). The outer layer, where information 
is presented to the network, is called the input layer and contains the input units. These 
units disperse their input values to units in the next layer and serve no other function or 
purpose. The layer on the far side, where processed information is retrieved, is called the 
output layer and contains the output units. The layers in between the two outer layers are 
called hidden layers, being hidden from direct contact with the outside world, and contain 
the hidden units. Full connection is said to exist if each node in each layer is connected to 
all nodes in each adjacent layer. To avoid confusion the recommended method for 
describing a NN is based on the number of hidden layers. Figure 2.2 thus depicts a one-
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hidden-layer feedforward architecture with no feedback loops. However, it is also 
possible to have connections that transfer information backwards from output units to 
input units, from output units to hidden units, or from a unit to itself. These are termed 
partial-recurrent networks (PRNN)—see Van den Boogaard (Chapter 7) and Ball and 
Luk (Chapter 10). If the internal connections circulate information from each node to all 
other nodes then it is a recurrent network. 

The use of storage tanks and chronological updating procedures is a familiar concept 
to the hydrologist and such items comprise an integral part of most conceptual models 
and distributed modelling solutions. Thus far, however, in direct contrast most published 
NN hydrological modelling applications have been based on static models that contain no 
explicit consideration of time, previous events, antecedent conditions or state-space 
evolution—with no attempt being made to account for the complex interaction that 
should in fact occur between sequential representations of different but related input-
output ‘snapshots’. It is therefore argued that feedback loops could perhaps be used to 
address this issue, through the addition and circulation of dedicated variables that change 
or update specific factors in response to previous computations, and thus provide a 
dynamic and responsive solution that is better suited to modelling hydrological processes. 

The number of processing units in the input and output layers is fixed according to the 
number of variables in the training data and is specific to each individual problem 
depending on the number of predictors and predictands. But the selection of an optimal 
number of hidden layers and hidden units will in all cases depend on the nature of the 
application. Intuition suggests that ‘more is better’—but there are limits on the extent to 
which this is true. In certain instances a small(er) number of hidden units is 
advantageous. The number of hidden units and layers is important, since a larger 
architecture will extend the power of the model to perform more complex modelling 
operations, but there is an associated trade-off between the amount of training involved 
and the level of generalisation achieved. The use of large hidden layers can also be 
counterproductive since an excessive number of free parameters encourages the 
overfitting of the network solution to the training data, and so reduces the generalisation 
capabilities of the final product (Fig. 2.3). The other question that needs to be addressed 
is the number of hidden layers and the relative organisation of their hidden units. 
Practical methods to establish an ‘optimum’ set of hidden features range from best guess 
(e.g. Cheng & Noguchi, 1996) or trial and error (e.g. Shamseldin, 1997) to the application 
of sophisticated computational solutions e.g. cascade correlation which is a constructive 
algorithm (Imrie et al., 2000; Lekkas et al., 2001); weight or node based pruning which is 
a destructive algorithm (Abrahart et al., 1999); or evolution-based approaches using a 
dedicated genetic algorithm package (Abrahart et al., 1999). In the first instance 
inexperienced users might opt for one hidden layer with the number of hidden units equal 
to the number of inputs. More experienced users might match the number of hidden units 
to an anticipated number of empirical functions. 

2.2 Learning considerations 

NN ‘learning’ is defined as ‘deliberate or directed change in the knowledge structure of a 
system that allows it to perform better or later repetitions of some given type or task’ 
(Fischler & Firschein, 1987). Specific information on a particular topic or task is thus 
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encoded in order for the solution to produce a suitable response on subsequent occasions. 
The two most common types of learning are supervised and unsupervised: the difference 
between them is that supervised learning requires each input pattern to have an associated 
output pattern. In  

 

Fig. 2.3. The training trilemma 
(adapted from Flood & Kartam, 1994). 

supervised training the model input might be discharge data collected at one or more 
upstream gauges with the output being forecast discharge at a downstream station. 
Cameron et al. (2002), for example, used a combination of river stage at two upstream 
stations and two local variables to estimate future river stage at a downstream station. In 
unsupervised training the output is in most cases a set of clusters; for instance river level 
series can be partitioned into different categories of event (Abrahart & See, 2000); 
rainfall and river series records can be partitioned to establish combined clusters that span 
the total input space (Hsu et al., 2002); catchments can be clustered into homogeneous 
categories that possess similar geomorphological and climatological characteristics (Hall 
et al., 2002).  

Each combination of input and output data is referred to as a training pair and the 
complete set of training pairs is the training set. The training period for the presentation 
of an entire training set is one epoch. The goal of training is to minimise the output error, 
which is achieved through the use of different algorithms that ‘search the error surface’ 
and ‘descend the gradient’. Inputs (predictors) are passed through the network to become 
the outputs (predictands) and through the learning process the internal connection 
weights are modified in response to computed error—the equation that specifies this 
change is termed the ‘learning law’ or ‘learning rule’. There are a large number of 
different learning methods and the learning process is often complex, with numerous 
options, variables, and permutations to choose from. 

The learning process is continued until such time as an acceptable solution is arrived 
at. This is accomplished through numerous repeated iterations of data presentation and 
weight updates, until such time as an acceptable pre-specified stopping condition is met, 
and the underlying function has been ‘discovered’. However, it is important to ensure that 
the network does not become over-familiarised with the training data, and thus lose its 
power to generalise to unseen data sets. Figures 2.3 and 2.4 illustrate the basic problem of 
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underfitting (undertraining) and overfitting (overtraining). The data set used in this 
process may be referred to as a ‘validation’ set. 

If a neural solution has insufficient complexities, or has been underfitted, it will fail to 
detect the full signal in a complicated data set. If the neural solution is too complex, or 
has been overfitted, it will fit the noise as well as the signal. To differentiate between 
these opposing situations in an effective manner  

 

Fig. 2.4. Two possible scenarios for a 
plot of network error against training 
cycles. In each case overfitting arises 
when the solution learns the exact 
nuances of each individual case in the 
training data such that the final product 
has limited or no real interpolation 
capabilities (a) after Flood and Kartam 

Neural networks for Hydrological modelling     20



(1994) (b) after Caudhill and Butler 
(1992). 

is problematic and continuous assessment would be required throughout the different 
stages of construction and development. Several techniques are avail able to prevent 
overfitting:  

(a) Jitter: addition of artificial noise to the input data during training that will produce a 
smoother final mapping between inputs and outputs e.g. Abrahart and White (2001). 

(b) Weight Decay: addition of an extra term to the error function that penalises large 
weights in order to create a smoother final mapping between inputs and outputs—but 
no hydrological modelling investigation of this method has been reported. 

(c) Early Stopping: use of split-sample validation, cross-validation or bootstrapping 
techniques to determine that point at which a sufficient degree of learning has taken 
place. For a comparison between continuous cross-validation and continuous 
bootstrapping applied to discharge forecasting see Abrahart (2003). 

(d) Structural Control: restrict the number of hidden units and weighted connections 
such that a limited number of free parameters is available during the ‘fitting process’. 
Each hidden node in each solution will attempt to + represent a discrete input-output 
association; so in the case of discharge forecasting simple functions such as 
‘quickflow’ and ‘baseflow’ will be assigned to specific hidden nodes, whereas more 
complex entities such as ‘soil moisture switches’, would be assigned to one or more of 
the unclaimed units. Wilby et al. (2003) illustrate the inner workings of this 
mechanism, in a series of river-level forecasting experiments, in which a conceptual 
model is cloned with a number of neural solutions. 

3 MAIN CATEGORIES OF MODEL 

Neural networks are often promoted as a one-stop-shop but caveat emptor applies; users 
must recognise that there are several important decisions that must be taken to select an 
appropriate class of model. Certain forms of solution might be better suited to modelling 
specific hydrological functions or processes—although this notion is still quite novel and 
extensive testing will be required before indicative outcomes could be converted into a 
set of definitive guidelines. Different types of solution can nevertheless be differentiated 
in terms of: 

(a) node characteristics i.e. properties of the processing units; 
(b) network topologies i.e. the pattern of connections; and 
(c) the learning algorithm and its associated parameters. 

The number of possible combinations and permutations that could be implemented is 
enormous and to perform a detailed and comprehensive analysis is impractical. However, 
for hydrological modelling purposes, the three most common tools are: 

(a) BPNN—backpropagation neural network; 
(b) RBFN—radial basis function network; 
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(c) SOFM—self-organising feature map. 

3.1 Backpropagation neural network (BPNN) 

The most popular ‘default’ training algorithm is ‘backpropagation’ (Rumelhart et al., 
1986; Tveter, 2003). This technique offers an efficient computational procedure for 
evaluating the derivatives of the network performance function, with respect to a given 
set of network parameters, and corresponds to a propagation of errors backwards through 
the network. The term has however been extended to describe feedforward multi-layered 
networks trained using the backpropagation algorithm—which causes confusion. BPNN 
have emerged as major workhorses in various areas of business and commerce; such 
tools are also the most popular mechanism that has been applied to ‘difficult’ 
hydrological modelling problems (Maier & Dandy, 2000). The first port-of-call for most 
users will be a standard backpropagation network—but should initial trials prove 
inadequate—then see Imrie et al. (2000) who adopted non-standard activation functions 
or Mason et al. (1996) who examined different options in terms of the number of epochs 
to convergence.  

Backpropagation for a multi-layered network works as follows: 
The weighted input to each processing unit is: 

 (1) 

The output from each processing element is a sigmoid function, the most common being: 

 
(2) 

with the derivative: 

 (3) 

Weight updates are based on a variation of the generalised delta rule: 

 (4) 

where β is the learning rate, E is the error, f(I) is the output from a processing unit in the 
previous layer (incoming transmission), a is the momentum factor, and where 0.0<β<1.0 
and 0.0<α<1.0. Error for the output layer is desired output minus actual output: 

 (5) 

whereas error for a hidden processing unit is derived from error that has been passed back 
from each processing unit in the next forward layer. This error is weighted using the same 
connection weights that modified the forward output activation value, and the total error 
for a hidden unit is thus the weighted sum of the error contributions from each individual 
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unit in the next forward layer. To ensure a stable mathematical solution the total error for 
each unit is then multiplied using the derivative of the output activation, for that unit, in 
the forward pass: 

 
(6) 

which is an operation that is propagated backwards across the network. Following 
training, input data are then passed through the trained network in recall mode, where the 
presented data are transformed within the hidden layers to provide the required modelling 
output values. 

BPNN are used to perform non-linear regression operations; such mechanisms will 
develop a function that relates a set of inputs to a set of outputs in a data-driven 
environment. This tool is well suited to several different kinds of hydrological modelling, 
with reported applications that range from rainfall-runoff forecasting (Minns & Hall, 
1996) and algal growth prediction (Whitehead et al., 1997), to the construction of rating 
curves (Tawfik et al., 1997; Jain, 2001) and the provision of error updates (Shamseldin & 
O’Connor, 2001) or multi-model data fusions (Abrahart & See, 2002). For more 
information on the mathematics involved see Bishop (1995). 

3.2 Radial basis function network (RBFN) 

The second most popular model is a radial basis function network (RBFN). This form of 
network has three layers: input, hidden, and output. The main architectural differences 
between an RBFN and a standard BPNN is that in the former the connections between 
the input units and the hidden units are not weighted and the transfer functions in the 
hidden units possess radial-symmetric properties (as opposed to sigmoidal). The hidden 
units perform a fixed non-linear transformation with no adjustable parameters and the 
output layer combines these results in a linear fashion, in most cases, using a simple 
summation (Leonard et al., 1992). 

Figure 2.5 provides a schematic diagram of an RBFN. The activation function in each 
hidden unit is not critical to the performance of the network (Chen et al., 1991) and 
several forms of basis function have to date been considered. The most common form is 
the gaussian kernel. There are N inputs, L hidden layer units, and M output layer units for 
the general transformation of ND points X(X1,…, Xi,…, XND) in the input space to ND 
points Y(Y1,…, Yi,…, YND) in the output space. The parameters of the network consist of 
the centers (Uj) and the spread (σj) of the basis functions in the hidden layer units and the 
synaptic weights (Ekj) of the output layer units. The function centres are also points in the 
input space; so to have a unit at each distinct point on the input space would be the ideal 
solution. But for most problems a few inputs points will be selected from the full set of 
all available points using a clustering process.  
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Fig. 2.5. Schematic diagram of a radial 
basis function network (after 
Jayawardena & Fernando, 1998). 

For an input vector Xi the jth hidden unit produces the following response: 

 

(7) 

where ||Xi−Uj|| is the distance between the point representing the input Xi and the centre 
of the jth hidden unit as measured according to some norm. Euclidian distance is the 
common measure. 

The output of the network at the kth output unit will then be: 

 (8) 

Training is carried out using a hybrid learning procedure that contains both unsupervised 
and supervised methods. First, in the unsupervised phase, statistical clustering techniques 
are used for the estimation of kernel positions and kernel widths e.g. a k-means based 
clustering algorithm. Training of the hidden layer involves determination of the radial 
basis functions by specifying appropriate Uj and σj values for each unit. Clustering 
provides an effective method to reduce the number of centres from the ideal ND input 
points such that each point then falls into one of several hyperspheres, which on a 
collective basis, span the entire input space. The value of σj is computed as the mean 
distance from the centre of a cluster to the other points that form that cluster. The number 
of hidden units is therefore equal to the number of clusters. 

Second, in the supervised learning phase, adjustment of the second layer of 
connections is implemented using linear regression or a gradient-descent technique. The 
output unit functions are in most cases linear, so the application of an initial non-iterative 
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algorithm is commonplace, and often sufficient. However, if need be, a supervised 
gradient-based algorithm can be utilised in a further step to refine the connection 
parameters. The appropriate connection weights, between units in the hidden and the 
output layers, would thus be determined for example using either least mean squares or 
the backpropagation algorithm. 

RBFN (in comparison to BPNN) have fast convergence properties and do not suffer 
from the problematic effects of local minima. However, although the training process 
could indeed be orders of magnitude faster, such networks require more training data and 
more hidden units, to achieve the same levels of approximation. The nature of their two 
non-linear activations is also quite different: RBFN non-linearities are derived from data 
in the training set; BPNN non-linearities are a fixed function of the pre-determined 
sigmoid transfer equation. 

RBFN are also used to perform non-linear regression operations and can be applied to 
several different kinds of hydrological modelling task. RBFN and BPNN are thus similar 
in the sense of what can or cannot be achieved; the main difference between the two 
algorithms is in the method of construction. RBFN are much quicker to train, which 
could save a vast amount of time and effort, and will be of particular benefit for solutions 
that must be developed on massive (e.g. global) data sets. The two are often compared 
and contrasted; the initial findings from such investigations are mixed, but comparative 
results suggest that the fast build solution is a viable option in terms of forecasting skill. 
Example applications in the field of runoff forecasting can be found in Mason et al. 
(1996); Jayawardena and Fernando (1998); and Dawson and Wilby (1999). For more 
information on the mathematics involved, again see Bishop (1995). 

3.3 Self-organising feature map (SOFM) 

The third most popular model is a self-organising feature map (SOFM) (Kohonen, 1995). 
This network algorithm is based on unsupervised classification in which the processing 
units compete against each other, to discover the important relationships that exist within 
a data set. There is no prior knowledge to assist in the clustering process. The traditional 
architecture contains two layers of processing units, a one-dimensional input layer and a 
two-dimensional competitive layer. The competitive layer, or feature map, is organised 
into a regular grid of processing units and each unit in the input layer is connected to each 
unit in the competitive layer. The feature map has connections between the competitive 
units and each competitive unit also has one or more additional weights, or reference 
vectors, that will be trained to represent the fundamental pattern associated with each 
class group. Training consists of (i) random weight initialisation; (ii) presenting a data 
pattern to the network; (iii) determining which unit has the closest match; and then (iv) 
updating both the winning unit and those around it. This process is repeated over 
numerous epochs until a stopping condition is reached. The training rule is: 

 (9) 

where wi is the weight on the ith reference vector, β is the learning rate, xi is the 
transmission along the ith weighted reference vector and where 0.0<β<1.0. 
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The winning unit and its neighbours will adapt their reference vectors to better fit the 
current pattern, in proportion to the strength of the learning coefficient, whereas other 
units are either inhibited or experience no learning whatsoever. Lateral interaction is 
introduced between neighbouring units within a certain distance using excitors; beyond 
this area, a processing unit either (i) inhibits the response of other processing units or (ii) 
does not influence them at all. Two popular examples are (i) the Mexican Hat Function 
(Caudill & Butler, 1992 p.84) and (ii) the Square Block Function (Openshaw, 1994 p.64). 
The weight adjustment of the neighbouring units is instrumental in preserving the 
topological ordering of the input space. The neighbourhood for updating is then reduced, 
as is the learning coefficient, in two broad stages: (i) a short initial training phase in 
which a feature map is trained to reflect the coarser and more general details; and (ii) a 
much longer, fine-tuning stage, in which the local details of the organisation are refined. 
This process continues until the network has stabilised and weight vectors associated with 
each unit define a multidimensional partitioning of the input data. 

SOFM will perform unsupervised clustering and classification operations, to produce a 
set of clustered inputs, and for each cluster a set of internal vectors ordered in either one- 
or two-dimensional topological space. Two main applications are evident: ‘divide and 
conquer’ clustering in which a bigger problem is split into several smaller problems; and 
‘partner identification’ clustering in which similar items are matched together for various 
purposes. The use of divide and conquer clustering involves the construction of less 
challenging and easier to model relationships, that can be resolved on an individual basis, 
taking a multi-model approach. For instance, river level series data can be partitioned into 
different categories of event, that are then modelled to produce a combined forecast 
(Abrahart & See, 2000); rainfall and river series records can be partitioned to establish 
combined records that span the total input space and which are then modelled to produce 
a combined forecast (Hsu et al., 2002). The use of partner identification clustering is 
about common properties and mutual associations. For instance, in regional flood 
estimation activities, catchments can be clustered into homogeneous categories 
possessing similar climatological, geomorphological, vegetation or soil characteristics 
(Hall et al., 2002). Clothiaux and Batchmann (1994) explore the relevant mathematics in 
detail. 

4 WHAT USE IS A NEURAL NETWORK? 

NN can be described as a generic ‘solution in-waiting’; the burden is thus placed on the 
hydrologist to discover what can and cannot be done with these tools. This section 
examines the broad range and nature of the potential opportunities that are on offer to the 
hydrologist in terms of: 

(a) implementation strategies with respect to standard tools (Section 4.1). 
(b) the types of processing operation that can be undertaken and the manner in which 

specific problems can be resolved (Section 4.2). 

4.1 Different implementation methods 
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There are three different methods of implementation that can be envisaged with respect to 
a traditional hydrological modelling solution. This breakdown is intended to provide a 
formal nomenclature and categorisation of several alternative possibilities, which is 
important, since given that neural solutions are at this time being brought into 
hydrological modelling, not just for straightforward linking of input (e.g. rainfall) to 
output (e.g. discharge at outfall, level of flooding, etc.), but also for example to clone 
traditional modelling mechanisms. Such replication, in turn, speeds up the process of 
computation so that items such as long time series analyses or Monte Carlo simulations 
can be done in a much faster and more efficient manner (Abebe et al., 2000; Gautam, 
1998; Khindker et al., 1998; Liu & Lin, 1998). Neural solutions also demonstrate 
considerable promise for efficient real time operational control, in which optimised 
scenarios can be selected at a particular stage/moment, depending on rainfall or other 
types of input-output forecast (Price, 2000; Bazartseren, 1999; Rahman, 1999). 

4.1.1 Replacement option 

Direct replacement involves using a neural model to perform an identical operation to 
something that would otherwise be performed with a traditional solution. Neural 
alternatives can for instance be developed to formulate rating curves that link stage and 
discharge under conditions of strong hysteresis (Tawfik et al., 1997), to simulate 
catchment response from environmental inputs associated with simple conceptual models 
(Shamseldin, 1997), or to produce a direct data-driven solution to the complex task of 
forecasting typhoon-related runoff events in a heterogeneous watershed (Chang & 
Hwang, 1999). Neural replacements can also facilitate the inclusion of additional data 
sources, irrespective of our comprehension about their relative hydrological roles. This 
offers considerable potential for exploring meaningful relationships where process data 
are inadequate for conventional deterministic forecasting. In situations where the 
theoretical understanding is limited, where equations are difficult to code, where data are 
nonstationary (Minns, 1996) or where data are limited to isolated points rather than areal 
distributions (Lorrai & Sechi, 1995), neurocomputation provides modelling alternatives 
that deserve exploration. 

4.1.2 Enhancement option 

Enhancement is the process of building hybrid mechanisms that contain an integrated 
bundle of traditional solution(s) and neural model(s). Enhancement could involve 
intelligent data pre-processing or post-processing operations, or be used to connect two or 
more existing models, as a simple filter which corrects inconsistencies in either input or 
output data streams, or to combine multi-model forecasts (Xiong et al., 2001; Abrahart & 
See, 2002; Shamseldin et al., 2002). The neural model might also function as a direct 
replacement for some internal component, or could be trained on residual data from an 
existing model, and then run in parallel acting as an error corrector or real-time output 
updating mechanism (Shamseldin & O’Connor, 2001). The basic idea is that through the 
adoption of neural plug-ins or add-ons it is possible to improve upon traditional 
techniques. Modern neural software will also facilitate the inclusion of trained solutions 
in other software packages, through the use of dynamic links, or will export the finished 
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product as a function that can be compiled as part and parcel of a bespoke program (Van 
den Boogaard & Kruisbrink, 1996; Abrahart, 1998; Abrahart et al., 2001). 

4.1.3 Cloning option 

Cloning is the process of using a neural model to mimic an existing equation-based 
solution—including inherent imperfections. In addition to offering rapid improvement in 
processing speed and data handling capabilities, for instance in an integrated optimisation 
procedure (Rogers & Dowla, 1994; Solomatine & Avila Torres, 1996), such clones could 
also be used to reduce existing model calibration time through building a response 
surface that relates internal parameters to original output (Liong & Chan, 1993). Clones 
can also be constructed to include additional variables or to omit certain variables in 
those instances where one or more standard inputs are not available (Abrahart, 2001). It is 
also possible to mimic the internal functions of an existing model, for model reduction 
purposes, or for rapid prototyping, sensitivity analysis, and bootstrapping operations. 
Less obvious is the use of neural clones to mimic spatial distributions, thus making 
redundant our existing problems of storing and accessing copious amounts of spatial 
input, and enabling models to switch from file-based data retrieval (slower) to chip-based 
data computation (faster) operations. 

4.2 Different types of processing operations 

Fischer and Abrahart (2000) proposed a five-fold classification of NN applications based 
on the type of modelling that is being performed. This breakdown provides a useful 
insight into some of the different kinds of functions and operations that could be 
considered as suitable targets for a NN hydrological modelling implementation. Each 
model could operate alone, or in combination with other modelling constructs, as part and 
parcel of a hybrid formulation. 

4.2.1 Pattern classification/recognition 

The task of pattern classification is to assign an input pattern to one of several pre-
specified class groups, (either user-defined, or determined from an automated clustering 
exercise). This is a decision making process that will often involve the use of ‘hard’ 
boundaries in which the class groups represent a set of discrete and exclusive entities. 
However, hard boundaries are not appropriate for continuous hydrological variables that 
inter-grade. These demand a ‘softer’ approach—one that is able to encapsulate a certain 
degree of natural fuzziness. 

Classification is employed in spectral pattern recognition where ground-truth 
information is utilised for the transformation of individual pixel values on multispectral 
images into given land cover categories (Kanellopoulos et al., 1997; for an appraisal of 
progress with respect to remote sensing of hydrological processes see Islam and Kothari 
2000 or Foody (Chapter 14)). It is also possible to perform pattern recognition of an 
entire image to determine different weather patterns, or to differentiate between cloud 
patterns that are cumuliform and stratiform, in order to switch between different short 
range meteorological forecasting tools (Pankiewicz, Chapter 13). 
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4.2.2 Clustering/categorisation 

In clustering operations (also known as unsupervised pattern classification) there are no 
pre-specified, or accepted, class group labels attached to the training data. The clustering 
algorithm is used to explore the data and to determine the intrinsic similarities that exist 
between the various patterns which make up a particular data set. Each item in that data 
set is then identified as belonging to a cluster of similar patterns. Popular clustering 
applications would include data mining, data compression, and partitioning of the 
hydrograph. 

Hall and Minns (1999) performed neural clustering on flood data to produce 
homogeneous regions that facilitated the subsequent transfer of information from gauged 
to ungauged catchments (not between neighbouring catchments based on geographical 
proximities). Abrahart and See (2000) used neural clustering to divide river level data 
into different hydrograph sectors or components. These component clusters were then 
used to illustrate the benefits of multi-network modelling applications. 

4.2.3 Function approximation 

Numerous hydrological problems require non-linear function approximation. The task of 
function approximation is to create a generalised model of some known or unknown 
function. Suppose a set of n training patterns (input-output pairs) have been collected and 
are associated with an unidentified function f(x) which are subject to noise. Then the task 
of function approximation would be to build a (descriptive or mathematical or 
computational) model which is able to reproduce that, in most cases, continuous function. 

Examples include the provision of numerical solutions for: flood quantiles in 
ungauged catchments based on data from neighbouring areas (Liong et al., 1994); two-
year peak stream discharge based on geographical and meteorological variables (Muttiah 
et al., 1997); soil water retention curves based on soil sample data (Schaap & Bouten, 
1996): unit hydrographs related to small catchments in Bavaria (Lange, 1999); and the 
relationship between rainfall-runoff and sediment transfer in Malawi (Abrahart & White, 
2001). 

4.2.4 Time series forecasting 

In mathematical terms given a set of n samples Yt1, Yt2, …, Ytn in a time sequence t1, t2, 
…, tn then the role of forecasting would be to estimate the sample Y(t) at some future 
point in time (often tn+1). Time series prediction is an important requirement and the final 
product can have a significant impact on decision-making with respect to operational 
forecasting, for example in reservoirs and power plants, and in life threatening real-time 
flood warning assessment. The estimation of associated sediment, ecological and 
pollution variables is also important. 

Examples include modelling stream output from a conceptual model, based on a time 
series of simulated storm events, in which the sequence generator was calibrated to 
represent linear and non-linear catchment response (Minns & Hall, 1996); modelling real 
hydrological and meteorological time series data on a fifteen minute time step with a six 
hour lead time for flood forecasting purposes (Dawson & Wilby, 1998); and a solution to 
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address particular hydrological issues associated with modelling low-flow periods 
(Campolo et al., 1999).  

4.2.5 Optimisation 

Certain types of hydrological modelling can be posed as a (non-linear) optimisation 
problem, in which the goal is to find a solution that satisfies a set of constraints, such that 
some objective function is maximised or minimised. The solution will depend on a 
number of factors or possibilities; with an enormous number of possible combinations 
often rendering such problems either insoluble or too time consuming for more 
conventional methods of analysis and modelling. Traditional model calibration 
procedures are a case in point. 

Liong and Chan (1993) describe a neural optimisation process for the calibration of a 
traditional model based on the inherent relationship between model parameters and 
output. Hybrid implementations are also possible in which the speed of a neural solution 
can be exploited e.g. in combination with a genetic algorithm to establish optimal 
groundwater remediation (Rogers & Dowla, 1994; Rao & Jamieson, 1997); or as an 
integrated part of a larger multi-criteria reservoir optimisation exercise (Solomatine & 
Avila Torres, 1996). 

5 POTENTIAL BENEFITS TO BE EXPLOITED 

Neurocomputing will never become a universal panacea and there is no question of it 
making conventional computer methodologies or traditional modelling procedures 
obsolete. These modern tools are not in all cases better than conventional statistical 
methods or traditional mathematical models; although it is often possible to get 
equivalent good results, in a fast and efficient manner, working with minimum sized data 
sets. Neural solutions do however possess a number of distinctive features and 
properties—which should, at least in principle, enable these automated tools to exceed 
various inherent limitations or drawbacks associated with standard information 
processing techniques. It is the strength of these specific items that should therefore be 
investigated, understood, and exploited to their full potential. The main potential with 
respect to neural modelling opportunities in this field of science is considered to fall 
within the following categories. 

5.1 Power to handle complex non-linear functions 

If a function can be represented as a mapping between two or more vectors then it can 
also be approximated, albeit with uncertain precision, using a neural solution. Such 
opportunities would be of particular benefit in all cases where relationships are difficult 
to determine or in situations where hard and fast rules cannot be applied. 

5.2 Power to perform model-free function estimation 
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Nothing is assumed or enforced in NN. There are no pre-specified relationships, 
constraints, or single solution conditions. This has obvious advantages for modelling 
situations in which there is limited available information on the nature of the data 
distribution functions, when the data are non-gaussian, or when different levels of 
generalisation are required.  

5.3 Power to learn from training data 

No prior knowledge of the underlying mechanisms is needed. The modelled relationships 
are derived from a synergistic combination of training data and learning procedures. This 
is important since certain functions and processes are not fully understood in the field or 
laboratory. Some processes also suffer from poor definition or are misunderstood. In 
other cases the process might be well understood but algorithms for their implementation 
do not exist, or full data sets to operationalise such equations cannot be obtained at a 
commensurate level of detail. 

5.4 Power to adapt to changing environments 

The solution is not static. It can adapt to accommodate alternative data, processes or 
constraints, to produce a different model. This form of dynamic adaptation would be 
useful in a fast-changing environment, to resolve a problem using anticipated trends, to 
take account of changes in the nature of the problem, or help to resolve an old problem in 
a fresh manner. 

5.5 Power to handle incomplete, noisy and fuzzy information 

Distributed processing means that each specific component is responsible for one small 
part of the total input-to-output ‘mapping operation’. The neural solution will thus 
possess substantial ‘fault tolerant’ characteristics; it would generate an acceptable 
response, plus exhibit graceful degradation, based on incomplete, imprecise or noise-
ridden data. 

5.6 Power to effect multi-level generalisation 

Solutions are developed through the process of ‘construction’. This process can be halted 
at different stages as the solution moves from a more general, to a more specific, 
representation. If the relationship can be described using some sort of rule then it will 
tend to discover that rule; with high levels of noise it will extract the central trend, or 
prototype, of that particular data set. 

5.7 Power to perform high speed information processing 

Neural models are fast. Their inherent parallelism and simple algorithms can provide 
rapid throughput. Speed is crucially important in most real-time hydrological applications 
where real-time response is required to events. Other operations can be made viable with 
this technique: production of bootstrap confidence intervals; replacement of ‘number 
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crunching’ with ‘model crunching’; detailed research on vast data sets for example at the 
scale and magnitude of global warming. 

6 CONCLUSIONS 

There can be little doubt, following a decade or so of essential groundwork, that neural 
solutions are well suited to the challenging task of hydrological forecasting and 
prediction. The most important item for the successful implementation of each solution 
will be the acquisition of appropriate and representative data (Tokar & Johnson, 1999; 
Smith & Eli, 1995) and the proper division of this material into training, validation and 
testing data sets (Bowden et al., 2002). From then on the implementation of an effective 
model will be to a large extent dependent upon the skill and experience of each individual 
neurohydrologist. The modeller is faced with a number of potential opportunities and 
alternative strategies at each stage of the model building process and this search space 
must henceforth be reduced. Future advances will thus be contingent upon (i) the creation 
of detailed working protocols that (ii) contain objective guidelines for the development 
and application of each individual modelling solution. These guidelines must distinguish 
between those circumstances, under which a particular approach should be adopted, and 
the manner in which to best optimise the numerous procedures and parameters that exist 
therein. Effort should also be directed towards the identification of specific tasks and 
circumstances in which particular strategies might under-perform or might perhaps fail—
to delimit the boundaries of their application. 
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ABSTRACT: Artificial neural networks have been applied to the problem 
of rainfall-runoff modelling and flood forecasting since the late 1980s. 
However, despite the extensive literature base which has built up in this 
field, there is not a systematic method that the neural network engineer 
can use to develop such models. This chapter introduces such a method 
and explains, through the use of a case study experiment, how each of the 
stages of this process are executed to develop a single network modelling 
solution. 

1 INTRODUCTION 

Before developing artificial neural network (NN) rainfall-runoff models, it is important to 
have a fundamental understanding of both the application area (hydrology) and the 
modelling tool. The field of NN research is diverse, which makes it difficult but 
nevertheless essential to: (i) grasp the fundamental workings of this ‘tool’ and (ii) 
develop an appreciation of the broad range of NN models available, the different training 
approaches that can be used and, perhaps most importantly, understand their strengths 
and limitations. 

Hydrological forecasting and NN are discussed elsewhere within this book. It is the 
purpose of this chapter to provide an ‘instruction handbook’ on how to build a NN model 
of rainfall-runoff processes and how to evaluate the model(s) thus developed. 

The NN field is constantly evolving and new network types and training algorithms 
are constantly being discovered, defined and refined (for example, ‘support vector 
machines’ are an area of current research—see Haykin, 1999). However, while these 
areas provide interesting fields of exploration, such tools are of limited value to the 
‘neurohydrologist’ until they become established and accessible. For this reason, the case 
study presented in this chapter is based on an established NN model and training 
algorithm—the multi-layer perceptron (MLP), trained using the popular error 
backpropagation algorithm (BPNN). This is used in the majority of hydrological 
applications and is probably the best starting point for building NN models of a specific 
river catchment. 

When developing NN to model rainfall-runoff processes, a number of decisions must 
be made. For example, as implied above, one must choose a suitable network from the 



plethora of different types available and then go on to choose an associated training 
algorithm. One must also decide how to process the available data. A number of 
considerations must be made in terms of partitioning the data into training, validation and 
test data sets, identifying predictors, defining network outputs and on standardising or 
normalising the data. While some of these operations may be automated using 
appropriate modifications to the training algorithm, many decisions must still be made 
through a process of trial-and-error. A full discussion of these topics is beyond the scope 
of this chapter and interested readers are directed towards authoritative texts such as 
Bishop (1995). 

The remainder of this chapter is divided as follows. First, an overview of the NN 
model development process is introduced. Second, an introduction to the case study is 
presented. Third, this case study is used as a vehicle to explain the process stages 
outlined. Finally, a summary is presented and areas for future research are discussed. 

2 THE PROCESS 

Dawson and Wilby (2001) introduced a seven stage process to develop NN models for 
hydrological applications. This has been reduced to the following six stages: 

1. Data selection: gather an appropriate data set. 
2. Select an appropriate predictand: decide what is to be modelled (flow volume, flow 

stage or depth, changes in flow, etc.) and the accompanying lead time. 
3. NN selection: select an appropriate type of network and choose a suitable training 

algorithm. 
4. Data preprocessing: process the original data in terms of identifying suitable network 

inputs (predictors) and perform data cleansing (i.e. remove or reduce problematic 
artefacts) as appropriate—for example, if necessary, remove trends or seasonal 
components. In addition, one must normalise or standardise the data and split the data 
into training, validation and testing data sets. 

5. Training: train a number of networks using the chosen training algorithm and 
preprocessed data. 

6. Using appropriate assessment criteria, evaluate the model(s) produced and select the 
‘best’ solution for subsequent implementation. 

This process is represented in Figure 3.1, adapted from Dawson and Wilby (2001). Solid 
lines show the process flow, dashed lines indicate influences of one process stage on 
another, and subprocesses are identified by rectangles with double-lined sides.  
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Fig. 3.1. NN model development 
process advocated by Dawson and 
Wilby (2001). 

It is difficult to identify which of these stages is the most important. Without an adequate 
data set (gathered in Stage 1), a meaningful study would be impossible. However, even if 
a suitable data set is available, should any of the other stages of the process be performed 
badly, unsuitable models and poor evaluation results will be produced. Each of these 
stages is discussed in more detail in the case study below. 

3 CASE STUDY 

3.1 Introduction 

The purpose of this section is to apply the NN development process model outlined above 
to a case study in order to show how the stages are implemented in practice. This case 
study is based on the ANNEXG (Artificial Neural Network Experiment Group) 
experiments undertaken during 2001/2002 by thirteen  
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Table 3.1. Case study catchment descriptors. 

Descriptor Description 

Catchment area 
(Ha) 

66.2 

Elevation(m) 150–250 

Geology Pre-Cambrian outcrops comprising granites, pyroclastics, quartzites and syenites 

Soils Brown rankers, acid brown soils and gleys 

Land use Bracken heathland (39%), mixed deciduous woodland (28%), open grassland 
(23%), coniferous plantation (6%), open deciduous and bracken under-storey 
(2%), surface waters (<1%), urban (<1%) 

Annual rainfall 
(mm) 

700 

Annual runoff 
(mm) 

120 

Runoff(%) 17 

Drainage Mainly open channel, with tile drains and soil piping at 50 cm 

neurohydrologists worldwide. The concept behind the ANNEXG experiments was to 
provide a benchmark data set to a number of participants in an attempt to compare and 
contrast several different modelling approaches that are used by neurohydrologists and to 
evaluate the forecasting skill of the different models produced. Initial results from the 
ANNEXG experiments are reported in Dawson (2002). The results of the authors’ 
contributions to the ANNEXG case study and the thinking behind the model development 
is presented in this chapter. Two contrasting approaches to data preprocessing 
operations—a complex method and a simple method—using the ANNEXG data set are 
described. 

3.2 Catchment description 

Table 3.1 provides the characteristics of the river catchment used in the ANNEXG study. 
The modelling was undertaken ‘blindly’ by all groups in order that none were 
disadvantaged through lack of first hand knowledge of the catchment. The site receives 
on average 700 mm of precipitation per year, distributed evenly across the seasons. 
However, the drainage network is restricted to the lowest part of the catchment, and 
comprises an ephemeral system of small inter-connected ponds and subsurface tile drains. 
Furthermore, a network of naturally occurring soil pipes at about 50 cm below the surface 
promotes rapid lateral flow during winter storms. The flow regime, therefore, ranges 
from zero flow during dry summer months to a ‘flashy’ response following rainfall (and 
occasional snow-melt) events in winter. 
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3.3 Stage 1: Gather data 

‘The success of an ANN application depends both on the 
quality and the quantity of data available’ (ASCE, 
2000:121) 

It is paramount to the effective development of data driven models, such as NN, that 
sufficient data are available for model development. Sufficient in this context means that 
the data are of high quality (i.e. free of errors, omissions, conflicts) and available in 
adequate quantity for a meaningful model. In other words, the information content is 
paramount (Tokar & Johnson, 1999). There is little point, for example, in using a data set 
that contains few historical flood events if flood forecasting is the primary objective of 
the model. In this case the NN model that is developed will not have been exposed to 
sufficient training examples to adequately predict flood events in the future. However, 
how we measure ‘information content’ and how we define ‘sufficient examples’ is 
unclear and is an area for further research. Other examples where data may be 
inappropriate for training include: direct transfer of data from another catchment; using 
data from different seasons; or using data gathered prior to fundamental changes in the 
catchment’s properties (for example, urbanisation or deforestation). How models can be 
adopted and adapted, having been developed using a non-representative data set, is also 
an area for future research. 

In the example presented in this chapter, three years of daily data were made available 
for a small experimental catchment in central England (see previous section). These data 
included stage (mm), precipitation (mm) and maximum daily air temperature (°C) for the 
period 1 January 1988 to 31 December 1990. This data series contained some missing 
values for each of the three variables—represented in the data set as -999. Two years of 
data were used for model development (1989 and 1990) and one year for independent 
testing (1988). 1988 was chosen as the testing period as this contained values outside the 
range of the data used in model development and thus provides a severe test of model 
skill. How the remaining data for 1989 and 1990 were split for training and validation 
purposes is discussed later. 

3.4 Stage 2: Select predictand(s) 

It is important to understand exactly what is to be modelled within the catchment and this 
must be stated clearly at the outset. Is it the intention, for example, to model flow volume 
or flow depth? If a flood forecasting model is required, what is an appropriate lead 
time—days or possibly weeks for large catchments? It might be better to model ‘changes 
in flow’ if the data contain a large variance (and model development data may be 
unrepresentative of long-term extremes). Some authors use change in flow rather than 
flow per se to reduce the likelihood of problems in extrapolating beyond the range of the 
model development data (e.g. Minns & Hall, 1997). 
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In the ANNEXG experiments, the intention was to evaluate model skill for forecasting 
depth of flow (or stage) at t+1 and t+3 days ahead. For simplicity and clarity, in this 
chapter only a t+1 day ahead model is reproduced and presented as the case study. 

3.5 Stage 3: NN selection 

Since NN were repopularised in the 1980s, a plethora of different types (e.g. BPNN, 
radial basis function networks (RBFN), support vector machines, probabilistic neural 
networks, etc.) and training algorithms (e.g. backpropagation, conjugate gradient, cascade 
correlation, skeletonisation, etc.) have been developed or rediscovered. In addition, there 
are numerous NN tools available to the neurohydrologist that automate the development 
and implementation of different networks and provide the user with a selection of 
training algorithms. Many software packages are available as either shareware or 
freeware that can be easily downloaded from the Internet. Further details are provided in 
Table 1.1. Alternatively, many researchers develop their own tools in their favourite 
programming language—enabling them to adapt their models more easily to different 
problems and ensuring that they understand, more clearly, the inner workings of the 
model. 

It is beyond the intended scope of this chapter to discuss the full range of alternative 
architectures, training algorithms and tools that are available. However, as a starting 
point, it is best for the ‘budding’ neurohydrologist to choose a tool that is tried and tested. 
We advocate a simple BPNN, which can be used as a ‘baseline’ that should only be 
modified or replaced if more sophisticated models prove to be more accurate. This type 
of network and training algorithm are included within most NN tools and packages or 
can, if preferred, be programmed using no more than one or two pages of code. This is 
the approach taken in the case study reported in this chapter—a simple BPNN has been 
implemented (written in Pascal) and has been trained using backpropagation. 

3.6 Stage 4: Data preprocessing 

Data preparation involves a number of processes such as data ‘cleansing’, identifying 
appropriate predictors (using data reduction techniques), standardising or normalising the 
data, and finally, dividing the data into training, validation and testing data sets. 

3.6.1 Data ‘cleansing’ 

NN can, theoretically, handle incomplete, noisy and non-stationary data (Zealand et al., 
1999), but with suitable data preparation beforehand, it is possible to improve their 
performance (Masters, 1995). Data cleansing involves identifying and removing trends 
and non-stationary components (in terms of the mean and variance) within a data set. For 
example, trends can be removed by differencing the time series and the data can be 
centred using rescaling techniques. Seasonal variability can be accommodated by using, 
for example, moving averages (Janacek & Swift, 1993). To date, data cleansing 
techniques have not been widely used in NN rainfall-runoff modelling so there is much 
scope for development in this area (Maier & Dandy, 1996). 
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As the test data used in the case study covered an entire year (1988), it was not 
necessary to remove any seasonal components from the data set. In addition, because the 
testing and model development periods were adjacent (1988, 1989–1990 respectively), 
there was no need to remove long term trends or cycles. However, the data set did contain 
missing values that required some preprocessing and two approaches were used. First, 
during training and validation, any days containing missing values were simply ignored 
and removed from the data set. During testing, if a day contained missing data, then no 
prediction was attempted. This is a simple solution but one must question the 
acceptability of such an approach for real time implementation if the model cannot 
provide a prediction when data are unavailable (for example, if a rain gauge should fail). 

As an alternative, a second, more complicated solution was investigated. In this case 
an additional input driver was added to the data set called ‘missing data identifier’. This 
was set to zero when all predictors were available and one when one or more predictors 
were missing. Thus, during development, it was anticipated that the NN model would 
‘learn’ to deal with missing inputs having been warned that data were missing by the 
extra input parameter. 

Another approach that can be used is to infill missing data by interpolating between 
the last and next available data point. This is acceptable during model development but 
during testing in real time there is no ‘next available’ data point to work with. In such 
cases, monthly averages or a moving average could be used or even a value from the 
same day on a previous year. Each of these techniques has advantages and disadvantages 
and there is no one ‘right’ solution for dealing with missing data. 

3.6.2 Identifying suitable predictors 

In order to improve model performance it is useful if the most ‘powerful’ predictors can 
be identified. The majority of studies in the literature focus on predicting flow (as either 
discharge or stage) using antecedent or concurrent catchment conditions. In this case the 
NN is attempting to model a process of the form: 

 (1) 

in which Qt+x is future flow (at x time steps in the future), Qt−n is antecedent flow (at t, 
t−1, t−2,…, t−n time steps), Rt−n is antecedent rainfall (at t, t−1, t−2,…, t−n), and Xt−n 
represents any other factors identified as affecting Qt+x, e.g. year type such as wet or dry 
(Tokar & Johnson, 1999); percentage impervious area (Minns, 1996); or storm 
occurrence (Dawson & Wilby, 1998). 

In order to improve performance, the neurohydrologist must first establish the optimal 
lag-interval between input and response. This can be achieved through the use of NN 
(e.g. Furundzic, 1998), ARMA models (Refenes et al., 1997) or autocorrelation 
functions. Auto Regressive Moving Average (ARMA) models are often used to 
determine appropriate variables, lead times and the optimal window(s) for averaging 
(Maier & Dandy, 2000). Alternatively, correlation testing may be used to identify the 
strongest causal relationships from a set of possible predictor variables (as in Dawson & 
Wilby, 1998). The chosen predictor variables are then applied as either individual inputs 
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to multiple nodes (e.g. predictors are Q, Qt−1, Qt−2, Qt−3, etc.) and/or as lumped averages 
(in which case an input node receives a moving average). 

If the available data comprise many input variables but few points, it is important to 
attempt some form of data reduction. Otherwise, the model will  

Table 3.2. Fourteen model predictors (M14) 
identified by preprocessing analysis for the t+1 day 
ahead model. 

Precipitation (t) 

Temperature (t−7) 

Stage (t) 

Sin Clock 

Cos Clock 

Precipitation minus temperature (t−5) 

Stage plus precipitation (t) 

Stage minus temperature (t) 

10 day moving average precipitation (t) 

10 day moving average temperature (t−9) 

10 day moving average precipitation minus temperature (t) 

6 day moving average stage plus precipitation (t) 

6 day moving average stage minus temperature (t) 

Missing data identifier (0—no data missing, 1—data missing) 

have more free parameters to establish than data to constrain individual parameter values. 
Data reduction techniques might involve statistical manipulations, such as extracting 
principal components (e.g. Masters, 1995), or reducing physical data sets, by averaging 
rainfall data from several rain gauges (e.g. Chang & Hwang, 1999). 

In our case study, two approaches have been used to determine appropriate input 
drivers for flow forecasting in the test catchment. First, data preprocessing and analysis 
were used in which moving averages (ranging from one to fifty days were calculated) and 
lags (also from one to fifty days) were correlated against flow. Those lagged and moving 
average variables that were most strongly correlated with flow were chosen as inputs to 
the model. In addition, two clock variables were included (Sine and Cosine of the Julian 
day number) to represent the seasonal cycle, along with a missing data flag (as discussed 
in the previous section). Further preprocessing of the data was undertaken to incorporate 
the interaction between variables. In this case, precipitation minus temperature, and stage 
minus temperature, were calculated to capture some sense of net loss through 
evapotranspiration from the catchment. Also, precipitation plus stage was calculated to 
provide some indication of ‘wetness’ within the catchment. These analyses led to the 
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selection of the 14 input drivers shown in Table 3.2 (henceforth referred to as the M14 
inputs). 

A second, less sophisticated approach to identifying suitable inputs was used for 
comparison. In this case it was decided that antecedent variables for the previous three 
days would be used as input drivers (stage, precipitation and maximum air temperature). 
No attempt would be made, in this case, to deal with missing data and so missing data 
days were simply removed from the training, validation and testing data sets (as 
discussed in the previous section). This led to the nine inputs shown in Table 3.3 
(henceforth referred to as the M9 inputs). No analyses were performed with these data—
the lagged inputs were merely chosen ‘intuitively’.  

Table 3.3. Nine model predictors (M9) chosen for 
the t+1 day ahead model. 

Stage (t, t−1, t−2) 

Precipitation (t, t−1, t−2) 

Temperature (t, t−1, t−2) 

3.6.3 Data standardisation 

All variables should be standardised to ensure that they receive equal weight during the 
training process (Maier & Dandy, 2000). Without standardisation, input variables 
measured on different scales will dominate training to a greater or lesser extent because 
initial weights within a network are randomised to the same finite range. 

Data standardisation is also important for the efficiency of training algorithms. For 
example, error backpropagation used to train BPNN is particularly sensitive to the scale 
of the data used. Due to the nature of this algorithm, large values slow training because 
the gradient of the sigmoid function at extreme values approximates zero. To avoid this 
problem, data are rescaled using an appropriate transformation. In general, data are 
rescaled to the intervals [−1, 1], [0.1, 0.9] or [0, 1] (referred to as standardisation). 
Another approach is to rescale values to a Gaussian function with a mean of zero and unit 
standard deviation (referred to as normalisation). The advantage of using [0.1, 0.9] for 
runoff modelling is that extreme (high and low) flow events, occurring outside the range 
of the training and validation data, may be accommodated (Hsu et al., 1995). Other 
authors advocate [0.1, 0.85] (e.g. Shamseldin, 1997) or [−0.9, 0.9] (e.g. Braddock et al., 
1998). In the present study, data were standardised to the range [0.1, 0.9] as logistic 
sigmoid transfer functions were used. 

3.6.4 Data sets 

Provided one does not become caught in local error minima (which can be avoided using 
certain techniques), theoretically one could continue training NN indefinitely, steadily 
improving the accuracy of the model with respect to the training data. However, while the 
network might become very adept at modelling the training data, it may well lose its 
ability to generalise to new and unseen situations. Figure 3.2 highlights this situation and 
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shows that after training a network for e0 epochs, the network begins to lose its ability to 
generalise and its performance with respect to unseen data begins to deteriorate. Thus, as 
training progresses, a validation set is used to halt training if it appears that the network is 
becoming over-trained on the training data. Ideally then, three data sets should be used 
for a rigorous analysis of NN skill: a training set, a validation set and a test set (called 
‘cross validation’). The training set is used to develop a number of different NN model 
configurations. The validation set is used to decide when to stop training (to avoid over-
fitting) and also to determine which of the networks is the most accurate. Finally, the test 
set is used to evaluate the chosen model against independent data. 

Lachtermacher and Fuller (1994) identify a number of problems with using three data 
sets. First, if there are limited data available, it can be impractical to  

 

Fig. 3.2. Overfitting on the training 
data. 

create three independent data sets. Second, the method of dividing the data can 
significantly affect the results. Third, when using a validation set to cease training, it is 
not always clear when a network is beginning to ‘learn’ the noise inherent to the time 
series. 

With finite data availability, it is often prudent to use a ‘cross training’ technique. This 
method involves splitting the available data into S equal sized segments. NN models are 
then trained using all the data in S-1 of these segments and validated on the remaining 
segment of unseen data. The procedure is repeated S times so that S models are built and 
tested for each model type and configuration. This ensures that each data segment is used 
only once for validation. Thus, when the validation segments are recombined, one has a 
validation set equal to the entire data set. Typical values for S are 5 and 10 (Schalkoff, 
1997). An alternative is to use the ‘hold-one-out’ or ‘jack-knife’ method, in which S=n−1 
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(where n is the number of data points in the entire data set). Thus, for a data set 
containing n data points, one would have to create and test n NN models. 

In the case study presented here, three years of daily data were available—1989 and 
1990 were used for model development, and 1988 for model testing purposes. In order to 
create a training and validation set, to avoid over-training, it was decided that the model 
development data should be split thus: 1989 was used as training data and 1990 as 
validation data. By using a full year of data for training, all seasonal variations were 
captured. 

3.7 Stage 5: Network training 

During training, the NN developer is trying to ‘optimise’ a number of things—the 
network architecture (number of hidden layers, number of nodes in each layer), the 
weights connecting neurons and the biases that are applied. As discussed earlier, there are 
a number of algorithms that exist that can be used to (i) identify an appropriate 
architecture (quite often a trial-and-error approach is used) and/or (ii) optimise the 
interconnecting weights. 

During training with the case study data, a simple trial-and-error approach was used to 
identify an optimal network structure. Thus, a number of networks were constructed with 
3, 5, 10, 15, 20, 30 hidden nodes (single hidden layer), each being trained from 100 to 
2000 epochs in steps of 100 epochs. After each period of 100 epochs, the network 
weights were saved and evaluated with respect to the unseen validation data. The network 
configuration (in terms of hidden nodes and epochs) that performed best against the 
validation data was chosen as the best NN model and thus used for the final evaluation 
(with the test data set). In this exercise, using the M14 predictor set, a network with five 
hidden nodes trained for 100 epochs proved most accurate with respect to the validation 
data. For the M9 predictor set, a network with 15 hidden nodes trained for 1300 epochs 
proved to be most accurate with respect to the validation data. In all cases BPNN was 
used, trained using error backpropagation, with the learning parameter fixed at 0.1 and 
the momentum value set at 0.9. 

3.8 Stage 6: Evaluation 

Dawson and Wilby (2001) provide a detailed discussion of assessment criteria and the 
evaluation of rainfall-runoff models. This discussion is reproduced here with some 
modification. 

There is a general lack of objectivity and consistency in the way in which rainfall-
runoff models are assessed or compared (Legates & McCabe, 1999). This also applies to 
the more specific case of NN model assessment and arises for several reasons. First, there 
are no standard error measures (although some have been more widely applied than 
others). Second, the diversity of catchments studied (in terms of area, topography, land 
use, climate regime, etc.) hinders direct comparisons. Third, different aspects of flow 
may be modelled (e.g. discharge, stage, change in discharge, etc.). Finally, there are 
broad differences between studies with respect to lead times (ranging from 0 to +24 
model time steps) and the temporal granularity of forecasts (from seconds to months). 
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When NN are trained using algorithms such as backpropagation, they are generally 
optimised in such a way as to minimise their global error. While this is a useful general 
target, it does not necessarily lead to a network that is proficient for both low flow 
(drought) and high flow (flood) forecasting. The squared error, which is used in many 
training algorithms, does provide a general measure of model performance, but it does 
not identify specific regions where a model is deficient. Other error measures are, 
therefore, employed to quantify these deficiencies (see the review of Watts, 1997). 

The most commonly employed error measures are: the mean squared error (MSE), the 
mean squared relative error (MSRE), the coefficient of efficiency (CE), and the 
coefficient of determination (r2) (see Equations 2, 3, 4, and 5 respectively): 

 
(2) 

 
(3) 

 

(4) 

 

(5) 

where Qi are the n modelled flows, are the n observed flows, is the mean of the 

observed flows, and is the mean of the modelled flows. 
According to Karunanithi et al. (1994), squared errors (MSE) provide a good measure 

of the goodness-of-fit at high flows, whilst relative errors (MSRE) provide a more 
balanced perspective of the goodness of fit at moderate flows. However, the 
appropriateness of these measures are strongly affected by the nature of the flow regime, 
and so care must be taken when comparing results between sites. 

CE and r2, on the other hand, provide useful comparisons between studies since 
standardised measures are independent of the scale of the data used (i.e. flow, catchment, 
temporal granularity, etc.). These are correlation statistics that assess the goodness of fit 
of modelled data with respect to observed data. CE is referred to by some authors as the 
‘determination coefficient’ (e.g. Cheng & Noguchi, 1996), the ‘efficiency index’, E 
(Sureerattanan & Phien, 1997; Abrahart & Kneale, 1997), the F index (Minns & Hall, 
1996), and R2 (Nash & Sutcliffe, 1970). Care must be taken not to confuse R2 with the 
coefficient of determination, r2, which some authors also refer to as R2 (e.g. Furundzic, 
1998, Legates & McCabe, 1999, Lorrai & Sechi, 1995). 

The CE statistic provides a measure of the ability of a model to predict flows that are 
different from the mean [i.e. the proportion of the initial variance accounted for by the 
model (Nash & Sutcliffe, 1970)], and r2 measures the variability of observed flow that is 
explained by the model (see the evaluation of Legates & McCabe, 1999). CE ranges from 
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negative infinity in the worst case to +1 for a perfect correlation. According to 
Shamseldin (1997), a CE of 0.9 and above is very satisfactory, 0.8 to 0.9 represents a 
fairly good model, and below 0.8 is deemed unsatisfactory. r2 ranges from –1 (perfect 
negative correlation), through 0 (no correlation) to +1 (perfect positive correlation). 

Legates and McCabe (1999) highlight a number of deficiencies with relative measures 
such as CE and r2. They note that r2 is particularly sensitive to outliers and insensitive to 
additive and proportional differences between modelled and observed data. For example, 
a model could grossly, but consistently, overestimate the observed data values and still 
return an acceptable r2 statistic. Although CE is an improvement over r2 (in that it is more 
sensitive to differences in modelled and observed means and variances), it is still 
sensitive to extreme values. The index of agreement measure, d (Equation 6), has been 
proposed as a possible alternative (Legates & McCabe, 1999) but owing to the use of 
squared differences, it is still sensitive to extreme values. Modified versions of d and CE 
have also been described which are both baseline adjusted (adjusted to the time series 
against which the model is compared) and adapted from squared to absolute differences. 
The second adaptation reduces the sensitivity of these measures to outliers. For a more 
thorough discussion, the interested reader is directed to Legates and McCabe (1999). 

 

(6) 

Another error measure that has been used is S4E (presented as MS4E in Equation 7) by 
Abrahart and See (2000). This higher order measure places more emphasis on peak flows 
than the lower order MSE. Alternatively, the mean absolute error (MAE, Equation 8), 
which computes all deviations from the original data regardless of sign, is not weighted 
towards high flow events. 

 
(7) 

 
(8) 

Other measures that have been employed in only a limited number of cases include 
RMSE/µ [RMSE as a percentage of the observed mean (Fernando & Jayawardena, 1998; 
Jayawardena et al., 1997)]; %MF [percent error in modelled maximum flow relative to 
observed data (Hsu et al., 1995; Furundzic, 1998)]; %VE [percent error in modelled 
runoff volume (Hsu et al., 1995)]; %NRMSE [percentage of values exceeding the RMSE 
(Campolo et al., 1999)]; and RMSNE [root mean squared normalised error (Atiya et al., 
1996) defined as the square root of the sum squared errors divided by the square root of 
the sum squared desired outputs (Equation 9)]. 

 

(9) 
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Lachtermacher and Fuller (1994) identified other measures for time series analysis such 
as the Average Relative Variance (Nowlan & Hinton, 1992) and the Mean Error (Gorr et 
al., 1992). Another measure often used in time series analysis is Theil’s U-statistic (Theil, 
1966) which provides a relative basis for comparing complex and naïve models. 
However, these measures have yet to be used in the evaluation of NN rainfall-runoff 
models. 

Classification approaches are also used to evaluate predictive models. For example, 
Colman and Davy (1999) used a classification technique to evaluate seasonal weather 
forecasts. In this technique the observed data were assigned to one of three equiprobable 
sets, or terces (in this case, below average, average and above average temperatures). 
Model skill (relative to chance) is then assessed using a Chi-square test of the modelled 
versus expected frequencies in each category. Similarly, Abrahart and See (2000) 
classified predictions according to: % correct; % predictions within ±5, 10, 25% of 
observed and % predictions greater than ±25% of observed. This allows direct 
comparisons to be made between different models irrespective of the predictand and 
model time step. 

While the above discussion relates more generally to rainfall-runoff modelling, flood 
forecasting systems need to employ additional error measures. For example, P-P 
(Dawson et al., 2000) is a measure of the error in the timing of a predicted flood peak 
[Chang and Hwang (1999) refer to this as Etp], Abrahart and See (2000) use MAEpp and 
RMSEpp which measure equivalent values to MAE and RMSE for all predicted peak 
flood events in a data set. These authors also employed a classification criteria which 
measures % early, % late and % correct occurrences of individual predicted peaks 
(although they do not indicate what discrepancy constitutes a ‘late’ peak). A further 
measure used for flood forecasting is total volume but this measure provides no 
indication of temporal accuracy (Zealand et al., 1999). 

The measures introduced above take no account of the parsimony of the models. One 
would expect a model with many parameters to provide a better ‘fit’ to the data than one 
with fewer degrees of freedom. However, more complex models do not necessarily lead 
to proportionate increases in accuracy and one must question whether the additional 
effort is justifiable. Too many parameters may also result in over-fitting to the training 
data. Fortunately, several performance measures take into account the number of 
parameters used in a model. For example, the A Information Criteria—AIC (Akaike, 
1974); the B Information Criteria—BIC (Rissanen, 1978); the Schwarz Information 
Criteria—SIC (Schwarz, 1978); the Vapnik-Chervonenkis dimension (Abu-Mostafa, 
1989); or the Network Information Criteria—NIC (Murata et al., 1994). The AIC and 
BIC measures are defined as follows: 

 
(10) 

 
(11) 

in which m is the number of data points and p is the number of free parameters in the 
model. These measures take into account the number of parameters used within a model 
and give credit to models that are more parsimonious. In both cases, lower scores indicate 
a more parsimonious model.  
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Fig. 3.3. Hydrographs of four 
hypothetical models (from Dawson & 
Wilby, 2001). 

Given this assortment of performance measures, the problem then becomes one of 
deciding which (if any) are most appropriate to a particular application. For example, 
Figure 3.3 shows different types of model error produced by four hypothetical rainfall-
runoff models. Model A, which is somewhat naïve, predicts the shape of the hydrograph 
well but consistently overestimates flow and predicts the flood peak late. Model B 
predicts low flows accurately but returns poor estimates of the flood peak. Model C 
simulates flow generally well but contains a lot of ‘noise’, and Model D reproduces flood 
events very well but performs poorly for low flows. Table 3.4 reports the error measures 
associated with each model. Model B may be selected in preference to model D based on 
the MSRE or MAE statistic. However, model D would be selected in preference to model 
B from the RMSE, CE, d and r2 statistics. Model C consistently outperforms all other 
models based on the error statistics, but it is not as accurate as Model B during low flow 
periods, or Model D during flood events. Model A appears relatively weak when assessed 
using most of the error statistics, but it performs very well according to r2. This echoes 
the results of Legates and McCabe (1999) who point out the imperfections of the r2 
statistic (which does not penalise additive and proportional differences). 

The results in Table 3.4 emphasise the importance of not relying on individual error 
measures to assess model performance. Thus, goodness-of-fit error measures (e.g. CE, d, 
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and r2) and absolute error measures (RMSE and MAE) should be used in combination 
(Legates & McCabe, 1999).  

Table 3.4. Error measures of four hypothetical 
models (reproduced from Dawson & Wilby, 2001). 

  MSRE RMSE r2 CE d MS4E MAE 

Model A 0.0510 61.24 0.827 44% 0.871 215 56 

Model B 0.0243 72.28 0.397 21% 0.558 2003 34 

Model C 0.0123 29.78 0.885 87% 0.968 14 26 

Model D 0.0430 50.89 0.785 61% 0.922 152 39 

Table 3.5. Comparative results of case study 
models. 

Predictors Parameters RMSE r2 CE AIC BIC 

M14 81 1.3517 0.948 93.96% 252 552 

M9 166 1.3065 0.944 94.37% 409 1018 

 

Fig. 3.4. Time series hydrograph of 
M14 model versus observed during 
test period. 
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3.9 Case study results 

Table 3.5 presents summary statistics for the two NN models developed from the case 
study data. Note that the MSRE has not been calculated in this case because extremely 
low values of observed stage (often zero) overly skew the results. The M9 model was not 
tested on days when data were missing; hence, the M14 model was also evaluated on the 
same (reduced) testing period in order to provide a fair comparison of both models. 

Figures 3.4 and 3.5 show the hydrographs of these two models for the test period. 
Comparing these two hydrographs, it appears that the M9 model is predicting flood peaks 
more closely than the more complex M14 model. Because  

 

Fig. 3.5. Time series hydrograph of 
M9 model versus observed during test 
period. 

the M14 model is based on antecedent moving average values, it has tended to 
underestimate the falling limb of the September event as the predictors from the drier 
summer period are influencing the model ahead of more recent events. This is not a 
problem with the M9 model as it is using data from only three days beforehand. These 
results emphasise the reliance such models have on the data upon which they are 
developed and tested. In other words, the models become dependent upon the 
relationships ‘identified’ during data preprocessing which may lead to the models being 
‘tuned’ to specific seasons and catchment conditions. When the models are then applied 
to test data covering a range of events, overemphasis on particular situations becomes 
apparent and a model’s ability to generalise appears to be weakened. 
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4 SUMMARY/CONCLUSIONS 

The results of the case study indicate that it is not always necessary to employ complex 
data preprocessing techniques in order to improve model performance. Indeed, in this 
example, additional model predictors actually degraded the model according to certain 
evaluation statistics (i.e. RMSE and CE). This could be due to the fact that certain 
combinations of predictor variables were not in hydrological terms a sensible selection at 
particular times of the year—for example, precipitation minus temperature. More 
complex preprocessing is only helpful when valid hydrological insight is conveyed 
through data manipulation and/or input selection. The relatively poor performance of the 
M14 model may be due to poor combinations or non-sensible combinations of predictors 
rather than the act of preprocessing per se. However, this may not always be the case and 
the NN developer should always try alternative predictors and different NN models 
before selecting the ‘best’ one. 

Having identified an accurate NN model, the final stage (not discussed as part of the 
process here) is the implementation of this model in the field. How such models are 
integrated within packages, linked to telemetry data and implemented with appropriate 
graphical user interfaces is beyond the intended scope of this chapter. 

In summary, a development process model has been presented, which consists of, at 
the top level, six simple to follow, sequential stages. However, what cannot be explicitly 
defined are the subjective rules and the complex decisions that the NN developer must 
consider at each stage of the process. Due to the complex nature of the problem domain 
and the extensive range of NN tools that are discussed in the literature, with countless 
variations and minor modifications, the NN developer is also plagued with a number of 
options at each stage. For this reason it is recommended that those new to the practice 
should attempt to implement simple, tried and tested solutions such as a BPNN. Indeed, 
as shown in the example presented here, it is not necessarily the case that more complex 
models provide more accurate results. 

While the literature accumulates more examples of NN applications in different 
catchments worldwide (with increasingly minor adjustments to the basic approaches), 
there has been relatively little attention paid to more fundamental questions. For example, 
does the internal configuration of a trained NN in anyway represent the physical 
processes that are at work within a catchment (see Wilby et al., 2003)? The answer to this 
question may lead to improved confidence in network performance and increasing 
respect for such models across the wider hydrological community. Can NN—once 
trained—be transferred to other (ungauged) catchments without extensive retraining—
perhaps using generalised catchment indices? Finally, could network weights be modified 
in the light of new information in real time, for example, through an understanding of the 
physical processes represented by the neurons? In this way, such tools could become 
much more appealing to environmental organisations attempting to estimate flow in real 
time with useful lead times and forecasting horizons. 

NN models of the river flow process, as far as we are aware, have still not been 
implemented as full working versions in a real time operational context. Indeed, until the 
above raised fundamental issues have been properly addressed in a thorough and 
consistent manner, the use of neural tools for water-related applications will continue to 

Single Network Modelling Solutions     55



be restricted to a small band of proactive neurohydrologists and computer scientists 
working in a research environment. 
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4 
Hybrid Neural Network Modelling Solutions 

ASAAD Y.SHAMSELDIN  
School of Engineering, Department of Civil Engineering, University of  

Birmingham, UK 

ABSTRACT: This chapter deals with hybrid neural network models in 
which neural networks are integrated with other models to produce better 
solutions. The different hybrid neural network combinations that are used 
in the field of river flow forecasting and the underlying theory behind 
their development are discussed. Hybrid neural network models can be 
classified into modular or non-modular depending on the manner in which 
the modelling problem is partitioned and examples taken from both sub-
sets are considered. Broader issues related to the practical application of 
hybrid neural network models are also discussed with particular emphasis 
on training issues and the assessment of uncertainties. 

1 INTRODUCTION 

Artificial neural networks (NN) can be applied in the form of stand-alone models, or 
combined with other tools including other NN, to provide hybrid modelling solutions. 
Hybrid neural network (HNN) models can be defined as the integration of a number of 
different models, but with the proviso that one or more of the constituent models is a NN. 
The underlying principle of the hybrid model is that it exploits the strength of the 
individual component models in a synergistic manner to produce a better forecasting 
solution. The hybrid model offers opportunities for integrating conventional hydrological 
models with those based on artificial intelligence techniques, such as neurocomputing 
and fuzzy logic. Moreover, in hybrid modelling, conventional models and the artificial 
intelligence solutions are intended to complement rather than compete with each other. 

Hybrid models can be modular or non-modular. In the case of modular hybrid models 
a complex forecasting problem is divided into a number of simpler modelling sub-tasks, 
appropriate models are used to solve these sub-tasks, and their results are integrated to 
produce the hybrid forecast. In non-modular hybrid modelling, a number of component 
models are used to provide an independent solution to the exact same problem and the 
hybrid forecast (temporal) or prediction (non-temporal) is a combination of individual 
outputs from the individual component models. 

The idea of developing HNN models was discussed in Van den Boogaard and 
Kruisbrink (1996). The authors presented several avenues for the integration. Some of 
these approaches were discussed in Chapter 2 and include using NN to estimate some of 
the inputs to the numerical model and the enhancement of the numerical model outputs 
by using NN to forecast the errors in the numerical model outputs. 



This chapter provides several examples that illustrate the potential benefits and use of 
HNN. The river flow forecasting applications discussed here, cover both non-modular 
and modular approaches to problems associated with river flow forecasting, and the 
results of their use on catchments of various sizes and different climatic conditions in 
different parts of the world. The final section is a discussion on training issues and 
uncertainties related to modelling with HNN. 

2 NON-MODULAR NEURAL NETWORK SOLUTIONS 

2.1 Neuro-combination technique for river flow forecasting 

The essence of a combination non-modular river flow forecasting system is the 
synchronous use of the discharge forecasts from a number of individual competing river 
flow forecasting models in order to provide an overall combined forecast which is more 
accurate and reliable than each individual model output (see Fig. 4.1). The objective of 
the combination system is not the development of a new single individual model, based 
on combining the different structural features of various models, but the provision of a 
shell for blending the forecasts of the different models. 

The theoretical background behind this combination process is that each constituent 
model is regarded as providing an important source of information, which in certain 
aspects might provide different information from that contained in the other models. 
Thus, it is logical to assume that the intelligent combination of  

 

Fig. 4.1. River flow combination 
system. 

information from these different sources can be used to provide more reliable discharge 
forecasts. 

There is also a practical justification for the use of combination river flow forecasting 
systems since, at the present time, there is no superior individual river flow forecasting 
model providing discharge forecasts that are better under all circumstances with respect 
to alternative competing models. This fact has been echoed in a number of inter-
comparison studies of river flow forecasting models, which showed that neither simple 
nor complex models are free from failure (WMO, 1992; Ye et al., 1997; Perrin et al., 
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2001). These inter-comparison studies have also affirmed the equifinality principle of 
river flow forecasting models, which is a further illustration of the fact that the 
construction of a single superior river flow forecasting model is at best improbable. This 
principle states that different models with identical or different structures and 
complexities can generate quite equivalent results (Loague & Freeze, 1985; Hughes, 
1994; Franchini & Pacciani, 1991; Michaud & Sorooshian, 1994; Ye et al., 1997; Beven 
& Freer, 2001; Mein & Brown, 1978; Kachroo, 1992; O’Connor, 1995; Lidén & Harlin, 
2000). 

The recurrent emergence of publications on improvements to existing models and on 
the development of new models is further evidence that a single superior model has still 
to be developed. Consequently, there is considerable risk in depending on the results of 
one river flow model in an operational flood forecasting system, and the failure of a 
model to produce reliable flood forecasts will weaken the integrity of such tools. 
Moreover, unreliable river flow forecasts can lead to unreliable flood warnings, which 
could prove to be expensive in terms of socio-economic or environmental damage and 
losses (as reported in Chapter 10). 

The combination river flow forecasting system addresses such deficiencies in 
traditional flood forecasting systems, which exclusively depend upon the output from a 
single model, through the simultaneous application of a suite of alternative individual 
models. However, the use of combination forecasting, although very well established and 
regarded as standard practice in diverse fields such as economics, business, statistics and 
meteorology (Clemen, 1989), has seen limited uptake in the field of river flow 
forecasting (Shamseldin et al., 2002). There are a small number of publications in this 
area notwithstanding the fact that the first attempt at river forecasting combinations can 
be traced back to the pioneering efforts of McLeod et al. (1987). This initial work sought 
to combine monthly river flows obtained from different time series models; such ideas 
were further developed and investigated to combine daily discharge forecasts from 
different rainfall-runoff models in Shamseldin (1996), Shamseldin et al. (1997), 
Shamseldin and O’Connor (1999) and Xiong et al. (2001), and to combine hourly 
discharge forecasts from different rainfall-runoff models in See and Openshaw (2000), 
See and Abrahart (2001) and Abrahart and See (2002). 

The recent studies mentioned above, although limited in number, demonstrate the 
tremendous potential and capabilities of combination methodologies to provide more 
accurate and more reliable forecasts. The results show that in most cases the combined 
forecasts were more accurate than the forecasts of the best individual model used in 
producing the combined solution.  

The most popular approaches to produce the combined river flow forecasts that users 
will find useful include linear-based, fuzzy-based and NN-based methods. To produce a 
linear combination, the combined forecast is obtained from the forecasts of the individual 
models using either a simple average (SAM) or a weighted average (WAM) method. The 
combined forecast obtained by simple averaging is often regarded as a naïve forecast and 
used as a benchmark against which the forecasts of the more sophisticated combination 
methods can be compared; persistence is another well-liked universal benchmark. 

Fuzzy-based combination methods are based on fuzzy logic and fuzzy systems, which 
are powerful in the approximation of non-linear time variant functions, and for dealing 
with imprecise and uncertain knowledge (Goonatilake & Khebbal, 1995; Khan, 1999). 
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Each fuzzy system is a collection of if-then rules that transform a set of inputs into a set 
of outputs. The rules and sets are developed using the fuzzy set theory of Zadeh (1965), 
which is regarded as an extension to classical set theory, and the use of such methods for 
the combination of river flow forecasts is established in See and Openshaw (2000), Xiong 
et al. (2001) and Abrahart and See (2002). 

In the NN combination method, as the name indicates, NN are used to build 
combination river flow forecasting systems. This offers a novel approach that differs 
from other hydrological applications. In combination systems, NN work synergistically 
with the constituent models to produce better river flow forecasts, while in other 
hydrological applications NN contend with traditional hydrological models. Shamseldin 
et al. (1997) advocated the use of NN as a complex method for the combination of river 
flow forecasts obtained from different rainfall-runoff models. NN combinations are in 
most cases better than those of WAM and SAM (Shamseldin et al., 1997; Abrahart & 
See, 2002). Xiong et al. (2001) also found that neuro-combination forecasting was often 
more accurate and more reliable than linear and fuzzy-based combination systems, 
although Abrahart and See (2002) report that neuro-combinations perform well on certain 
categories of error, but do less well on others, given shorter time steps and forecasting 
horizons. NN combinations of differenced data were also observed to provide the best 
solution for a stable regime—whereas a fuzzified probabilistic solution produced superior 
results in a more volatile environment. 

NN, as described in Chapter 2, can be classified into different types depending upon 
the arrangement of their internal neurons and the pattern of the interconnections between 
them. The neurons are the computational pro cessing elements of the network, which 
operate on the external inputs to produce the final network outputs, and, in the context of 
river flow combination, the external inputs at each time step are the forecasts of the 
individual models while the network output is the combined forecast. 

There are various different types of NN that can be used in a neuro-combination river 
flow forecasting system. However, the common multi-layer perceptron (MLP) has to date 
been the only NN type used in river flow forecast combination systems, in part due to the 
dominance of this solution in all other forms of river flow forecasting applications 
(Dawson & Wilby, 2001; Maier & Dandy, 2000, Chapter 2).  

Each neuron can have multiple inputs but produces a single output, which becomes an 
input to other neurons in the next layer. The process of input-output transformation is 
governed by a mathematical function known as the neuron transfer function. A linear 
transfer function is used in the input layer while a non-linear transfer function is used in 
the hidden and output layers. The logistic function is the most common non-linear 
transfer function. Shamseldin et al. (2002) examined the significance of using different 
non-linear transfer functions for the hidden and output layers in an MLP when used in the 
context of the river flow forecast combination method. Five neuron transfer functions 
were used in the investigation: the logistic function; the bipolar function; the hyperbolic 
tangent function; the arctan function; and the scaled arctan function. The results of the 
investigation showed that the logistic function generated the best results while the arctan 
function often produced the worst results. 

The field of combination river flow systems is a new and challenging area of research. 
There is tremendous scope for investigation, e.g. to test if the use of different types of 
NN, other than MLP, will lead to further improvements in the performance of the neuro-
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combination method. Future applications of neuro-combination river-flow forecasting 
systems will also need to be tested over a wide range of catchments with different 
characteristics to develop general guidelines about their use in different catchment types 
with respect to area, land use, soil type and relief. The complexity of the combination 
system will also be increased, commensurate with an increase in the number of 
constituent models, and there is a need to determine the optimum number of the 
constituent models for each combination system. However, the increase in complexity 
does not always guarantee a significant improvement in the system performance, and it is 
necessary to provide guidance on the optimal number of models beyond which the 
performance of the system does not substantially improve. This optimal number would 
therefore maintain a balance between the complexity of the system and the performance 
of the system, which is a recurring theme in the field of applied hydrological science, and 
which is of particular significance with respect to neurocomputation where there is a 
strong danger of over-modelling. 

The results obtained so far with the combination river flow forecasting system are very 
encouraging in terms of forecast reliability and accuracy. The implication of these results 
is that users of modern flood forecasting systems, who use a suite of river flow 
forecasting models, should seriously consider switching to the synchronous combination 
of alternative forecasts. Indeed, the implementation of combination procedures in flood 
forecasting centres that use an existing suite of forecasting models would be a simple and 
inexpensive operation. 

3 MODULAR HYBRID NEURAL NETWORK SOLUTIONS 

3.1 Neuro-updating technique for river flow forecasting 

In real-time river flow forecasting systems, the substantive simulation rainfall-runoff 
model operates on-line on the basis of the latest available data, with auxiliary updating 
procedures being used to compensate for the errors that arise between the simulated and 
observed discharge hydrographs. These errors are due to numerous factors, which include 
inadequacy of the model structure, poor estimation of the model parameters and inherent 
errors (systematic or random) in both rainfall and discharge data. 

There are different categories of updating procedure but there is no common or 
universal agreement on the best method to be used in river flow forecasting (WMO, 
1992; Refsgaard, 1997). The common task of different updating procedures is to provide 
the substantive simulation model with feedback information based on the latest river flow 
data observed prior to the time of issuing the forecast. This feedback information is then 
used to offset a significant proportion of the errors that occur between the observed and 
the simulated discharge hydrographs, thereby refining the discharge forecasts. In general, 
the use of an updating procedure considerably improves the forecasting accuracy for 
short-term forecasting. Such considerable improvements are essential for the reliable 
management of the routine operation of real-time river flow forecasting systems. Such 
systems provide reliable information that can be used to help mitigate the impacts of 
floods for real-time operation. 
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The substantive rainfall-runoff model, coupled to its discharge updating procedure, is 
termed a real-time river flow forecasting model (Becker & Serban, 1990). The estimated 
discharges produced by the substantive simulation model prior to the application of the 
updating procedures are known as simulation-mode (or design mode) forecasts; the 
estimated discharges obtained after applying the updating procedures are known as 
updating-mode forecasts. The real-time forecasting model is an example of a modular 
hybrid model in which the real-time forecasting problem is divided into two modelling 
sub-problems: (i) simulation and (ii) updating. NN can be used for modelling either or 
both of these two sub-problems. 

Moore (1986) classified real-time river flow updating procedures into four types 
depending on the nature of the substantive model variables to be modified. These 
variables are the input variables to the model, the water content of the various storage 
elements in the model, the internal parameters of the model, and the output variables 
from the model. The four possible updating procedure types are thus: (i) input updating 
procedures; (ii) storage content updating procedures; (iii) parameter updating procedures; 
and (iv) output updating procedures. There is no restriction on the number or type of 
procedures that can be applied to updating and more than one type of updating procedure 
can be used to produce a set of output forecasts (Becker & Serban, 1990; Serban & 
Askew, 1991; WMO, 1992). NN could also, therefore, be used to update one or more 
such variables, either alone, or in a combination. 

Input updating is based on adjusting the hydro-meteorological input variables to the 
model, e.g. rainfall or upstream discharge. The input adjustment is made such that re-
running the substantive river flow forecasting model with the modified inputs produces 
near-correct discharge forecasts. The input updating is in essence an inverse modelling 
problem in which the model inputs are expressed as an explicit or implicit function of the 
model outputs. However, since most river flow forecasting models have complex 
structures, it is not always possible to derive the implicit inverse function. For this reason, 
input  

 

Fig. 4.2. The NN input updating 
procedure (adapted from Refsgaard, 
1997). 
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updating is normally performed on a trial-and-error basis. NN could also be trained to 
explicitly approximate the inverse function. Figure 4.2 shows a schematic diagram of 
how NN can be used for an input updating procedure in conjunction with a substantive 
rainfall-runoff model. 

The operation of storage content updating depends on real-time or run-time recursive 
adjustment of the water content in the various storage elements to enhance the forecasts. 
In a quasi-physical conceptual rainfall-runoff model, such enhanced forecasts could be 
achieved by modifying the water content of the water balance part and/or of routing 
reservoir elements. The raison d’être of storage updating is that errors in the physical 
input variables to the model accumulate and appear as corresponding errors in the water 
content of the storage elements. Therefore, if these water contents are adjusted in 
accordance with identified discrepancies between simulated and observed discharge, then 
better discharge forecasts can be obtained (Moore, 1986). The storage contents are 
usually adjusted using two methods: (i) the Kalman filter which has a strong hydrological 
tradition and (ii) empirical state updating procedures. In both methods the adjusted 
storage content is the sum of the current storage content value and the model error 
multiplied by a gain coefficient. In the case of the Kalman filter, the gain coefficient is 
statistically defined, while in the case of the empirical adjusting procedures, the empirical 
gain coefficient is found from off-line optimisation. NN can also be used for storage 
updating, as such tools can be trained to produce either the gain coefficient, or the final 
adjusted content itself. 

The parameter updating procedure involves real-time or run-time adjustments to 
parameter values of the model using the recursive least squares method and the Kalman 
filter (O’Connell & Clarke, 1981). This updating procedure is con-sidered less attractive 
than the other updating procedure categories and the degree of parameter variation 
normally demonstrates the extent of structural unsuitability of the substantive model 
(Moore, 1986). It is also hard to substantiate that such considerable variations in 
parameter values can occur in such a short time as the observation interval. NN-based 
parameter updating procedures can be developed in a similar fashion to the NN storage 
updating procedures to produce the final adjusted parameters. 

In the output updating procedures, the updated discharge forecasts are obtained from 
external adjustment of the simulation mode discharges. This external adjustment is 
performed without interfering with the internal operation of the simulation model in the 
sense that the updates do not alter the model parameters. Furthermore, there is no need to 
re-run the substantive simulation model to obtain the updated forecasts. For the 
aforementioned reasons, in comparison to other types of updating procedure, the 
application of output-updating procedures is regarded as a simple and straightforward 
operation. 

Output updating procedures can be classified as direct or indirect. The indirect output 
updating procedure is based on forecasting the errors in simulation mode discharge 
forecasts. The final updated discharge forecast is then the sum of non-updated 
(simulation-mode) discharge values and the corresponding error forecast. The forecast 
updating via error predictions is perhaps the most popular updating procedure, which has 
been extensively used in applied hydrology in conjunction with numerous different 
rainfall-runoff models (Serban & Askew, 1991). Such procedures, which are normally 
used for indirect updating, are the uni-variate linear stationary time series solutions of 
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Box and Jenkins (1976), e.g. the autoregressive (AR) models and autoregressive moving 
average (ARMA) models. These time series models generally exploit the time persistence 
structure of the error series to forecast future errors. NN can thus be implemented as a 
more general non-linear form of these time series models, which are used for error 
forecasting. For example, Xiong and O’Connor (2002) developed an NN error-forecast 
updating procedure based on the structure of a multi-layer feed forward neural network 
(MLFN). The external inputs to the NN, for one-step ahead error forecasting, are the 
simulation mode errors of the substantive model up to the time of issuing the forecasts. 
Figure 4.3 shows a schematic diagram of the NN updating procedure operating in parallel 
in conjunction with a substantive rainfall-runoff model. Babovic et al. (2001) used the 
NN error updating procedure for updating the forecast of a hydrodynamic model. The 
authors concluded that the NN error updating procedure ‘provides very good forecasting 
skills that can be extended over a forecasting horizon of a significant length’ (p. 181). 
Xiong and O’Connor (2002) compare the NN error updating procedure with the standard 
AR error updating procedure, using the simulation mode discharges of a conceptual 
rainfall-runoff model on eleven selected catchments. The results of their comparison 
illustrated that the complex NN error updating procedure offers no significant merits in 
terms of enhancing the real-time flow forecast performance over the simple AR error 
updating procedure. 

The direct procedure is in most applications based on the input-output structure of the 
linear and non-linear Auto-Regressive eXogenous-input Model (ARXM), which 
encompasses a self-correcting mechanism that can be exploited for direct updating of the 
forecasts of the substantive model. Some of the indirect output can be regarded as a 
special case of the direct output updating procedure. For example, Shamseldin and 
O’Connor (1999) show that the AR updating procedure is a limiting case of the linear 
ARXM updating procedure.  
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Fig. 4.3. The NN error updating 
procedure. 

In general, the linear ARXM updating procedure can lead to better real-time forecasting 
results than those produced from AR and ARMA error updating procedures (Shamseldin, 
1996). 

Traditionally, the linear ARXM is used as a river flow forecasting model in its own 
right where the exogenous inputs to the model are the conventional physical inputs such 
as rainfall and the upstream inflow hydrograph. In the case of direct output updating, the 
autoregressive component of the ARXM provides a feedback information mechanism in 
the form of the latest observed discharges. In the direct output updating procedures, the 
exogenous inputs to the ARXM are the simulation mode discharge forecasts of the 
substantive model. These exogenous inputs are used in combination with the latest 
observed discharges prior to the time of issuing the forecast to produce the updated 
discharge forecasts as direct outputs of the linear ARXM. The first apparent application 
of an implicit use of the linear ARXM in the context of output updating was in the 
unpublished work of Peetanonchai (1995). Further investigation into the use of the 
ARXM in this context was later reported in Abdelrahman (1995), Shamseldin (1996), 
Suebjakla (1996), Shamseldin and O’Connor (1999) and Shamseldin and O’Connor 
(2001). 

Shamseldin and O’Connor (2001) developed a Non-linear Auto-Regressive 
eXogenous-input Model (NARXM), which is based on the structure of the MLP. This 
NARXM updating mechanism presents new avenues for the integration of substantive 
rainfall-runoff models with NN. The overall operation of a NARXM-NN output updating 
procedure is shown in Figure 4.4. For one-step ahead forecasting, the external inputs to 
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the NN are simulation-mode discharge forecasts, up to the time of issuing the forecasts, 
and the current or the latest observed discharges, prior to the time of issuing the forecasts. 
The NN output, after suitable transformation, constitutes the updated discharge forecast. 
The performance of  

 

Fig. 4.4. The NARXM-NN output 
updating procedure (adapted from 
Shamseldin et al., 2002). 

the NARXM-NN output updating procedure was tested using the daily discharge 
forecasts of a conceptual rainfall-runoff model for five catchments that had different 
climatic conditions. The results of the NARXM-NN output updating procedure were 
compared with a linear ARXM updating procedure. The results of this comparison 
indicate that the NARXM generally performed better than the linear ARXM. The results 
also show that the highest improvement in performance was obtained for semi-arid 
catchments where the time persistence structure (i.e. autocorrelation) of the simulation 
mode error time series was very weak. 

3.2 Modular neural networks 

Modular neural networks MNN are based on the concept of divide and conquer. 
According to this concept, a complex non-linear computational problem is divided into a 
number of simple computational sub-tasks thus splitting the input space into regions, with 
the solution for one or more specific sub-tasks or modules being assigned to a different 
NN. It is assumed that different constituent solutions will work best in different regions 
of the solution space (Haykin, 1999). Modular solutions will also have an integrating 
unit. The main function of the integrating unit is to combine the results of the constituent 
modules. MNN, undoubtedly, will be very complex in contrast to standard NN. MNN 
will also have a large number of parameters (i.e. they are not parsimonious) and can 
therefore be quite difficult to train. There are several publications that deal with the use of 
the MNN in rainfall-runoff studies (e.g. See & Openshaw, 1999; Zhang & Govindaraju, 
2000; Hu et al., 2001; Hsu et al., 2002). 

See and Openshaw (1999) developed a MNN model for river flow forecasting on the 
River Ouse in the UK. In this case the ‘divide and conquer’ element involved breaking up 
the hydrographs into their component parts: rising flow limb, peak flow, falling limb and 
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low flows. Independent NN models were then produced for each hydrograph section and 
their outputs reintegrated. The integration of the different MNN modules was achieved 
using a sophisticated fuzzy logic rule-based model. It was concluded that the developed 
MNN model ‘may provide a well performing, low-cost solution, which may be readily 
integrated into existing operational flood forecasting and warning systems’ (See & 
Openshaw, 1999 p. 763).  

Zhang and Govindaraju (2000) used MNN to perform rainfall-runoff transformations 
for three medium sized catchments in the USA. There were three NN modules in each 
MNN to simulate low, medium and high flow events. The justification for using three 
modules is that, in the chosen catchments, different runoff generating mechanisms are 
dominated by different physical processes depending on the magnitude of each runoff 
event. The MNN used a linear function to combine the three individual outputs and the 
results were compared against those obtained using a standard MLP. This comparison 
showed that, while MLP are capable of adequately simulating the average events, such 
tools fail to capture extreme events, whereas MNN appear to be more successful at 
simulating such items. Similarly, Hu et al. (2001) found that MNN were more successful 
than MLP in reproducing low flow events. 

Hsu et al. (2002) also developed an MNN in which the input domain is partitioned 
into different regions using a Self-Organising Feature Map (SOFM) (Kohonen, 1984), 
which is a specific type of NN—for more details see Chapter 2. These regions correspond 
to different hydrological situations such as base flow, increasing rainfall, peaking 
hydrograph, etc. The output is then calculated using a set of piecewise linear regression 
equations, one for each node in the SOFM, which relates the model inputs to an 
estimation of flow at the next time step. The linear regression coefficients were calculated 
using a least square error solution. Hsu et al. (2002) found that the performance of the 
MNN was better than those of other commonly used river flow forecasting models such 
as MLP, ARMX and conceptual rainfall-runoff models. 

4 BROADER ISSUES 

This section of the chapter discusses issues of training and uncertainties in the 
development of modelling solutions based on HNN. It outlines practical difficulties 
associated with these issues and provides an outline of several methods that can be used 
for training and the quantification of uncertainty. The discussion is of a general nature 
since most of the items considered in this section are also valid for both traditional 
hydrological models and NN. 

4.1 Training of hybrid solutions 

The use of standard and hybrid NN models for river flow forecasting in a specific 
catchment requires the estimation of numerical values for the parameters that control the 
overall operation of the model. This is achieved through training. For MLP, the 
connection weights assigned to the connection paths that link the neurons, together with 
the neuron threshold values, constitute the parameters of the network. Hence, the 
objective of the training process is to find a set of parameter values for a particular 
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catchment that can provide the best possible fit between the simulated and the observed 
outputs. Thus, the training process is essentially equivalent to the traditional process of 
model calibration. 

For hydrological applications of NN and HNN models, the issue of their training has 
received less attention, to the extent that most publications do not quote the number of 
model parameters. The calibration process has a considerable role in testing the 
appropriateness of the model for a specific catchment. The use of an inadequate set of 
model parameter values would generally produce poor predictions and, consequently, this 
may lead the model developer to abandon the use of a model when, properly optimised, it 
might be quite adequate. 

Estimation of the parameters entails the specification of an estimation criterion to 
quantify how good the simulated outputs are in replicating the actual observed outputs 
(i.e. a goodness-of-fit criterion). The estimation criterion is also known as the objective 
function and could be a single criterion or a combination or weighting of several criteria 
for goodness-of-fit. Several forms of objective function have been used in a hydrological 
context (Sorooshian & Gupta, 1995). However, the most widely used objective function 
for the estimation of parameters in the context of NN and hydrological models is the least 
squares criterion. The least squares objective function is the sum of the squares of 
deviations between the estimated model outputs and the actual observed outputs. The 
choice of a particular objective function will, in most cases, mainly depend on the 
purpose of the model and on what results the model is expected to produce. As an 
example, if the emphasis is on the estimation of the flood peaks, then a greater weight to 
peaks could be incorporated in the objective function to reflect this emphasis. 

The training of a hybrid model involves the calibration of both the constituent models 
and the integration unit. In most cases, the constituent models and the integration unit are 
developed as individual and unrelated solutions (Shamseldin et al., 1997). However, this 
separate development may not yield the best results. On the other hand, combined 
calibration of both constituent models and the integration unit will most often be a 
problematic undertaking that involves the estimation of a large number of parameters. 

In most of the cases, the constituent models and the integration unit in the hybrid 
model are non-linear, and their calibration or training with observed input-output data 
involves the optimisation of a non-linear objective function. There are several different 
deterministic local search methods and global stochastic search methods that can be used 
to solve this non-linear optimisation problem. 

‘Local search methods are defined as those that are designed to efficiently find the 
minimum of unimodal functions—functions for which any strategy that seeks to 
continuously proceed downhill (a direction of improving function value) must eventually 
arrive at the location of the function minimum, irrespective of where in the parameters 
space the search procedure is started’ (Sorooshian & Gupta, 1995, pp. 31–32). Depending 
on whether or not the derivatives of the objective function are used, the local search 
methods can be further classified as direct search methods or gradient search methods. 
The gradient search methods (e.g. the backpropagation and conjugate gradient 
algorithms) are the most widely used methods for training NN. Direct search methods 
such as the Simplex Method (Nelder & Mead, 1965) and the Rosen-brock Method 
(Rosenbrock, 1960), which have been widely used for decades in calibrating rainfall-
runoff models, can also in principle be used for calibrating HNN.  
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Stochastic global optimisation methods offer efficient tools that can be used to 
discover a global minimum, and adopt probabilistic rules to search the response surface 
of the objective function. These methods will guarantee the convergence of each solution 
to the global optimum in a probabilistic sense (Duan et al., 1992). Examples of stochastic 
global optimisation methods are genetic algorithms and simulated annealing algorithms. 
There are also global optimisation methods, which are developed based on the integration 
of concepts drawn from local search (deterministic) and stochastic optimisation methods, 
which have been found to be successful in calibrating rainfall-runoff models. For 
example, Duan et al. (1992) developed the complex shuffled evolution method to 
combine the strength of the simplex method with the concept of information sharing and 
concepts drawn from evolution-based biological theories that are similar to those used in 
genetic algorithms. 

The parameters of the hybrid model can also be estimated by a sequential optimisation 
procedure. This sequential optimisation involves the successive use of a stochastic global 
search method and a local search method. The final optimised parameters of the 
stochastic global search method are used to produce the initial starting values for a local 
search method (Shamseldin et al., 2002). The sequential optimisation procedure 
combines the strength of the stochastic method in locating the global solution with the 
efficient convergence of a local search technique, which is used to fine-tune the results of 
the stochastic method. Wang (1991) found that further sequential tuning of the final 
optimised parameters from a genetic algorithm, using the simplex method, is a robust and 
efficient method for the calibration of conceptual models. 

The NN and HNN models are in most cases too complex, having a large number of 
parameters (i.e. not parsimonious), in contrast with traditional river flow forecasting 
models. For example, a simple MLP rainfall-runoff model can have more than a dozen or 
so parameters. Such over complex solutions can cause numerous difficulties in the 
process of model identification and in finding the true optimum set of parameters. The 
extent of these difficulties is much greater for NN and HNN models, compared to those 
reported for traditional conceptual rainfall-runoff models, which possess far less 
parameters. Difficulties in the calibration of traditional models can be attributed to (Ibbitt 
& O’Donnell, 1974; Johnston & Pilgrim, 1976; Moore & Clarke, 1980): i) parameter 
interdependence, in which numerous parameters produce the same optimum value from 
the objective function, i.e. equifinality ii) discontinuities in the objective function causing 
numerical problems for gradient-based optimisation methods iii) scaling of the 
parameters resulting in narrow elongated valleys in objective function response surfaces, 
along which the search progress is generally very slow iv) indifference of the objective 
function to the parameter values causing the optimisation algorithm to end in a premature 
fashion v) local minima causing the search algorithm to be terminated at a point at which 
the objective function is lower than all surrounding points in a local neighbourhood, but 
at a higher value than a point in another region of the objective response surface, which is 
the true minimum.  

4.2 Uncertainties of hybrid solutions 

Most reported NN hydrological forecasting applications, including HNN applications, do 
not provide a measure of forecast uncertainties (Maier & Dandy, 2000). The uncertainty 
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analysis on the forecast of each HNN and NN model, however, is quite important given 
the internal complexities involved. It will be interesting to see whether or not the use of 
such models can lead to a reduction in forecast uncertainties when compared to 
traditional hydrological models. 

The uncertainties in the forecasts of river flow models can be attributed to a number of 
different factors such as model structure, poor estimation of the model parameters and 
errors in the input data (Lei & Schilling, 1996). The estimation of such uncertainties is 
important because a single deterministic model prediction will be always be wrong 
(Beven et al., 2001). The analysis of river flow forecast uncertainties will enhance the 
utility of the forecasting system as it will enable the estimation of potential flooding 
probabilities, which has numerous benefits, such as to enable the setting of risk-based 
criteria for flood warning codes (e.g. flooding possible, flooding expected, severe 
flooding expected and all clear) and emergency response plans (Krzysztofowicz, 2001). 

There are various simple and complex methods, such as the Mean Value First Order 
Method (MVFOM) and Monte Carlo simulation methods, which can be used to perform 
uncertainty analysis (Melching, 1992; Yu et al., 2001). MVFOM is the most common 
method as it is simpler to apply than the other methods of uncertainty analysis. MVFOM 
is based on a linearisation of the model output equation around the mean value or other 
convenient central value, or around other basic variables such as parameters and inputs 
(Melching, 1992; Lei & Schilling, 1996). This method yields information about the 
expected value and the variance of the forecast as well as the contribution of each 
variable to the variance (output uncertainties) of the forecast. However, its application 
requires the specification of the mean and the variance of the basic variables. 

The Monte Carlo method involves randomly generating a large number of basic 
variable sets from their corresponding probability distributions. The model is run 
repeatedly with a new randomly generated set of basic variables in each run. In this way, 
a large number of model forecast samples are generated and these samples are used to 
calculate the mean and the variance of the forecast. Thus, the operation of this method 
requires knowledge of the probability distribution of the basic variables. The results of 
the Monte Carlo method are often used as a benchmark against which the results from 
other uncertainty analysis methods can be compared. 

As noted above, the use of uncertainty methods such as MVFOM and the Monte Carlo 
method requires the specification of the statistical moments (i.e. mean and variance) and 
the probability distributions of the basic variables. In the case of model parameters, the 
statistical moments can be estimated by repeated model calibration to different time 
periods. The nature of the probability distributions can also be inferred from the results of 
the repeated model calibration to different time periods (Melching, 1992). From the 
results of the uncertainty analysis, a model reliability index can be calculated, and used to 
compare the results of different models. The results of this approach, together with an 
appropriate assumption about the distribution of the model forecasts, can also be used to 
construct a set of forecast confidence intervals. 

5 CONCLUSIONS 
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In this chapter, the use of hybrid neural network (HNN) models in the context of river 
flow forecasting is examined. HNN models offer frameworks for the integration of 
traditional hydrological models with modern soft computing models, such as NN models 
and fuzzy logic models. They also offer good opportunities for enhancing the forecast 
accuracy. The literature review presented in the chapter suggests that the use of HNN 
models is not wide spread. However, the number of publications dealing with their 
applications is increasing. 

The literature review reveals that the issue of training HNN models is often 
overlooked. The primary focus of most HNN modelling studies has been to demonstrate 
the potential capabilities of HNN models for improving the output forecasts, compared to 
stand-alone models. This chapter has discussed the various methods that can be used for 
training HNN models. It is envisaged that many of the long-reported problems faced 
during the calibration of traditional rainfall-runoff models could be exacerbated in the 
calibration of HNN rainfall runoff models due to their inherent complexities. There is a 
need to determine whether or not the current procedure for calibrating HNN, which 
involves the separate calibration of the individual constituent units, is the best calibration 
solution. 

The forecasts of HNN and NN models are not at present usually issued with measures 
of forecast uncertainties. This is not acceptable as a practice; rectifying this omission is 
thus a research priority that is needed to give confidence to future modellers. This 
omission could be due in part to the structure of existing NN software source codes taken 
from ‘off-the-shelf’ packages, which does not allow room for further development as 
source code is often concealed from the user. Using off-the-shelf code is sensible but the 
adoption of open source code would permit further refinement or the addition of user-
constructed modules, which can systematically examine the output quality. Many of the 
methods used for uncertainty analysis in traditional hydrological models can and should 
be used in conjunction with HNN models to aid the critical evaluation of the results, and 
to provide better modelling developments. 
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5 
The Application of Time Delay Neural 
Networks to River Level Forecasting 

LINDA M.SEE AND PAULINE E.KNEALE  
School of Geography, University of Leeds, UK 

ABSTRACT: This chapter considers the use of time delay neural 
networks for river flow forecasting. These tools have an advantage over 
feedforward networks trained with backpropagation because such 
mechanisms are responsive to time-varying behaviours. This has 
relevance for the inclusion of information from upstream stations, in 
which the input data set must be lagged, using average travel times, when 
used with a feedforward network trained with backpropagation. However, 
this average travel time is not an accurate representation of the time-
varying behaviour of the flood wave as it moves down the channel. To 
compare the performance of both types of neural network, a series of 
models to forecast lead times of 2 and 4 hours ahead were developed for 
the River Tyne in Northumbria. The networks were trained on 22 storm 
events and validated on an additional 14 events over a 10 year period. 
Global and flood specific evaluation measures were used to assess and 
compare the performance of the different models. The time delay neural 
networks performed slightly better overall relative to neural networks 
trained with backpropagation at a 2 hour lead times but showed a greater 
overall improvement at 4 hour lead times, suggesting that these models 
become more effective at longer forecasting horizons. These preliminary 
results suggest that time delay neural network models should be examined 
in more depth for use in river flow forecasting. 

1 INTRODUCTION 

There are many different artificial neural networks (NN) (Shepherd, 1997) but as 
mentioned in Chapters 2 and 9, NN for forecasting river flow are almost always trained 
using backpropagation (BPNN). This may be due in part to the fact that BPNN were the 
first successful models to be implemented (Rumelhart et al., 1986), and because the 
algorithm is simple to program and apply. Within hydrology there are many examples of 
the successful application of these network types, e.g. as rainfall-runoff models (Abrahart 
& Kneale, 1997; Campolo et al., 2003; Minns & Hall, 1996; Salas et al., 2000; 
Shamseldin, 1997; Smith & Eli, 1995), for predicting water quality (Brion et al., 2001; 
Gumrah et al., 2000, Maier & Dandy, 1996) and in estimating rainfall (Dell’Acqua & 
Gamba, 2003; French et al., 1992; Hsu et al., 2000). 



Despite the frequent use of BPNN, a major limitation of the standard backpropagation 
algorithm is that it can only learn an input-output mapping that is static (Haykin, 1994), 
rendering it well suited to time-independent pattern recognition problems. When time is 
added in the form of time series data, it is possible to develop a forecasting model using a 
BPNN provided that the data are stationary, i.e. there are no time varying behaviours in 
the mean or the variance of the series. River level data are generally nonstationary but 
this can usually be corrected by pre-processing the data using a single point differencing 
operation (Masters, 1995). The real difficulty arises when data from upstream gauging 
stations are used as inputs in the forecasting model. It is then necessary to calculate a 
travel time between stations which represents the average time difference for a peak flow 
passing between the two stage gauges. This average travel time is used to lag the 
upstream station inputs before training the network. If the average travel time does not 
vary with each storm event, the BPNN should not have any problems in forecasting 
levels. However, this is not necessarily the case. For example, the average travel time 
between Bywell and Reaverhill on the River Tyne (Fig. 5.1)  

 

Fig. 5.1. Location map of the River 
Tyne. 
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has been calculated at 2 hours but this can vary by ±1 hour. Travel times vary with storm 
event size and duration; therefore, instead of using a BPNN for forecasting river levels, a 
time delay neural network (TDNN) (Lang & Hinton, 1988) might be more appropriate. 
TDNN are dynamic feedforward networks that are designed to capture time-varying 
behaviour through the addition of time delays in the architecture of the network. These 
time delays are analogous to adding memory capability (Elman, 1990). This is another 
example of the application of biological inspiration to NN, as signal delays are important 
in processing information in the brain (Haykin, 1994). 

This chapter considers the feasibility of using TDNN for river level forecasting and 
contrasts them to BPNN. Both types of model were developed and tested on the River 
Tyne at Bywell in Northumbria (Fig. 5.1), forecasting levels at lead times of 2 and 4 
hours ahead. The networks were trained and validated on a series of storm events over a 
10 year period. Global and flood specific evaluation measures were used to compare the 
different model types. Hydrographs of validation events were also examined. 

2 TIME DELAY NEURAL NETWORKS (TDNN) 

TDNN have been used to date for a range of different applications including time series 
analysis of both the stock market (Sitte & Sitte, 2000) and ionospheric conditions 
(Wintoft & Cande, 1999), image sequence analysis (Cancelliere & Gemello, 1996; 
Wöhler & Anlauf, 1999), speech recognition and analysis (Waibel et al., 1989; 
Lavagetto, 1997), the regulation of anesthetic dosages to patients (Vefghi & Linkens, 
1999), traffic in Banff National Park (Lingras et al., 2003) and in wastewater treatment 
(Zhu et al., 1998; Belanche et al., 1999). Previous hydrological research includes the use 
of TDNN to estimate rainfall (Luk et al., 2001) and some preliminary explorations of 
river flow forecasting on the River Tyne (Smith, 2000). Luk et al. (2001) developed 
BPNN, TDNN and PRNN (partial recurrent neural network) models to forecast rainfall 
one step ahead. These authors found that the models produced comparable results. It was 
thought that these rainfall time series have very short-term memory characteristics, which 
might explain why neither TDNN nor PRNN improved upon the performance of BPNN. 
Smith (2000) compared the performance of TDNN and BPNN for a range of forecasting 
horizons ranging from 3 to 24 hours ahead. He developed models to predict levels at 
Bywell using only stations from the North Tyne. This simultaneously addressed the 
question of whether NN developed on information from the North Tyne would be good 
enough for flood prediction in the event that the telemetry on the South Tyne failed. The 
results showed that for the majority of cases, TDNN outperformed BPNN. 

2.1 Network architecture 

TDNN are a type of feedforward network, i.e. the information travels forward so there 
are no feedback loops as one would find, for example, in recurrent neural networks 
(Pineda, 1987). TDNN, as with BPNN, have neurons arranged  
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Fig. 5.2. Backpropagation neural 
network. 

in three layers: the input, hidden and output layer, and there are weighted 
interconnections between the neurons in each layer; these get updated during the training 
phase. The difference between the two network types can be found in:  

• the inputs to the network 
• the interconnectivity between neurons 
• the training algorithm 

As mentioned previously, when using upstream station information as inputs to the 
BPNN, the average travel time is used to lag the inputs. Figure 5.2 illustrates an example 
of using two input stations (one at the point of prediction, station A, and one upstream, 
station B) to predict the level at time t+x. If we calculate the average travel time to be 3 
hours between station A and station B, we might input the current and two previous level 
readings at station A and the same number of inputs at the upstream station but lagged by 
three hours. Abrahart et al. (2001) showed using saliency analysis that the three most 
recent river level inputs are the most important in predicting future river levels. Thus, 
there are 6 inputs to the model and all neurons in each layer are fully interconnected. This 
would be the configuration for the BPNN. 

Figure 5.3 shows a three dimensional representation of a TDNN for the same stations 
in Figure 5.2, which illustrates the difference in network inputs between the BPNN and 
TDNN. The inputs are arranged in a matrix where the x-axis is the station and the y-axis 
is time, and the inputs are not lagged. The number of elements in the y-axis is referred to 
as the total delay length. In the example given in Figure 5.3a, the total delay length is 
five, which covers the same inputs as provided to the BPNN in Figure 5.2. 

The second difference between the network types involves neuron interconnectivity 
and is also illustrated in Figure 5.3, which shows three views of the TDNN. These have 
been separated out to allow a clearer view of the interconnections but such items are all 
part of a single TDNN. Connectivity is determined by the size of the receptive field, 
which is shown as a dashed box in Figure 5.3. The size of the receptive field is 
determined by the input to hidden delay length, which is chosen to be three in this 
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situation. This again matches the findings of Abrahart et al. (2001). The first receptive 
field is completely  

 

Fig. 5.3. Time delay neural network. 

connected to the first neuron in the hidden layer. The second receptive field, which is 
shown in Figure 5.3b, can be thought of as a window in time that has moved backwards 
one step. This window is only connected to the second neuron of the hidden layer. Finally 
in Figure 5.3c, the third and final receptive field is connected to the third neuron of the 
hidden layer. The length of the hidden layer is specifically chosen to match the number of 
receptive fields in the network but the width, which in this case is 1, can vary. 

2.2 Network training 

TDNN are trained using an algorithm similar to backpropagation. The modification to 
this algorithm is necessary to account for what are referred to as coupled links. These are 
the links that are duplicated in each receptive field and are treated as a single link during 
the network training. As in standard backpropagation, a forward pass is performed and an 
output value is calculated. This is compared to the actual output value and the difference 
or error term is propagated backwards. A single error term is then calculated for each set 
of coupled links, by averaging the error terms, and this is then applied to the entire set of 
coupled links. These links are, therefore, changed according to the average of the changes 
they would experience if treated separately. This method does tend to lead to slower 
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convergence than backpropagation as applied to BPNN and hence a longer training 
period is required.  

3 NEURAL NETWORK EXPERIMENTS 

This section outlines the NN experiments undertaken on the River Tyne data. Information 
on the study area is provided as well as the nine evaluation measures used to compare the 
models. 

3.1 Study area 

The study area comprises the non-tidal section of the River Tyne, North East England 
(Fig. 5.1). The Tyne basin has an area of approximately 2,920 km2. The lowest non-tidal 
stage gauge is located at Bywell, west of Newcastle. Historic data of stage gauge and 
rainfall values are available, measured at six stations throughout the Tyne catchment. 
Telemetered data at 15 minute intervals for the years 1992 to 2001 were provided by the 
Environment Agency for Bywell and three upstream stations on the River Tyne: 
Reaverhill, Haydon Bridge and Featherstone. 

The average travel times between stations were calculated by plotting hydrographs of 
historical storm events. The average travel time from Reaverhill to Bywell is 2 hours, 
from Haydon Bridge to Bywell is 4 hours and from Feather-stone to Haydon Bridge 1 
hour. Data from the upstream stations were offset by the average travel time before 
training with backpropagation (BPNN), but the TDNN were not provided with lagged 
data. 

Every major river under the jurisdiction of the Environment Agency has between one 
and four flood risk warning levels associated with its stage gauges. Each warning level 
indicates a point where forecasters may need to take action, from alerting emergency 
services to evacuation of residents. The alarm levels at Bywell are 3.5 m, 4.4 m, 5.3 m 
and 5.8 m, respectively. These alarm levels were used in devising the TDNN operational 
evaluation measures. 

3.2 Level vs. flow modelling 

In this chapter the NN models use river levels. River forecasting may be based on 
modelling level (stage) or flow volumes. The choice for the modeller is likely to depend 
on data availability and the reason for forecasting. Stage is the height of flow above a 
datum at the gauging station and is the variable measured by traditional gauges. The stage 
data are then converted to flow volumes via the gauging station rating curve. This has 
problems of accuracy and is transforming the data. Flow has the advantage that it is a 
variable that increases downstream as the river widens and tributaries add to the 
discharge. Stage in likely to be a more accurate value, and for the flood forecaster it is 
helpful because at a specific height above the datum the river will start to flow over bank. 
In practical terms this is very useful. However, for the modeller looking at changing 
regimes downstream, the datum heights will not necessarily increase (or increase in 
proportion) to the flow volume. A narrow weir in the upper reaches may record higher 
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absolute stages than a wider, shallower weir downstream with higher flow volumes. The 
advantage of NN modelling is that it treats each set of inputs independently so modelling 
on the stage data is practical, eliminating errors associated with the rating curve. If the 
modeller has doubts about the rating curve, then using stage data is sensible. It is an 
advantage that NN independently treat data since a series of forecasts along a channel 
could be based on a combination of stage data from some traditional gauges and 
volumetric data from, for example, a sonic gauging station. 

3.3 Outline of experimental runs 

A series of feedforward BPNN and TDNN were trained on historical data covering the 
period 1992 to 2001 to forecast levels at Bywell for lead times of 2 and 4 hours ahead. 
From this time period, 47 flood events were selected where a flood event was defined as 
an event which reached the first alarm level at Bywell of 3.5 m. A three day period 
around the peak of the flood event was selected. These 47 flood events were then divided 
into training and validation data sets where 23 storms were selected for the training data 
set and 14 storms were selected for the validation data set. The highest flood event was 
placed in the training data set to ensure that each network would see the full range of 
events and not be forced to extrapolate to heights never seen before. When choosing the 
training and validation data sets, flood events were selected from each year and from both 
winter and summer to ensure a good balance between the two. 

NN model inputs for all experiments were the levels at Bywell and upstream stations 
on both the North and South Tyne including Reaverhill, Haydon Bridge and 
Featherstone. No rainfall information was used. The BPNN had 12 inputs, which covered 
three previous levels at Bywell and 3 lagged inputs from the three upstream stations. 
There were 6 neurons in the hidden layer and the output was to predict the level at 
Bywell at 2 and 4 hours ahead. The TDNN was given a matrix of inputs from the 4 
stations at the current time t to t–5. This covered the entire travel time of the BPNN. The 
width of the hidden layer was 6 neurons and the length was 4, to match the number of 
receptive fields in the input data set with an input to hidden delay of 3 and a total delay 
length of 6. 

Two different data pre-processing operations were applied prior to training. The first 
involved normalising the absolute values of the input data between the range 0.1 to 0.9 
while the second applied a single point differencing operation prior to normalisation. A 
continuous river level data set is normally nonstationary but storm events were selected 
over a 10 year period. Therefore, it is more difficult to determine whether the data set is 
still nonstationary so both data sets were provided to the different models. NN were 
trained using backpropagation with momentum (in the BPNN) and backpropagation for a 
time delay neural network (in the TDNN). Training was stopped when the errors in both 
the training and validation data sets were at a minimum to avoid problems with 
overfitting of the data. 

3.4 Evaluation measures 

A series of global and flood specific evaluation measures were calculated on the 
predictions made by the BPNN and TDNN for the training and validation data sets. 
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Hydrographs of events from the validation data set were also examined. The following 
global goodness-of-fit statistics were calculated: 

(a) Root Mean Squared Error (RMSE) 

 
(1) 

where Oi is the observed value at time i, Pi is the predicted value at time i and N is the 
total number of observations. 

(b) Mean Absolute Error (MAE) 

 (2) 

(c) A modified Coefficient of Efficiency 

 

(3) 

where Ō is the mean of O over N and is the mean of P over N. This measure was 
introduced by Nash and Sutcliffe (1970) and is widely used in the hydrological literature 
but Legates and McCabe (1999) suggest a modification to the coefficient in which the 
squared terms are changed to absolute values. They argue that this modification will 
reduce the influence of outliers. 

(d) A modified Index of Agreement 

 

(4) 

which was originally proposed by Willmott (1981) as an adaptation of the Nash and 
Sutcliffe efficiency index but with the squared terms still in place. The change to the 
denominator acts to penalise the differences in the mean predicted and observed values. 
Legates and McCabe (1999) once again suggest changing the squared term to an absolute 
value to reduce the sensitivity to outliers in the data set. 

(e) Difference of means 

 
(5) 

(f) Difference of standard deviations 

 (6) 
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These measures, although not fully descriptive goodness-of-fit statistics, do provide a 
useful measure of the model performance. These are also recommended by Legates and 
McCabe (1999). 

The following are a list of additional evaluation measures that are specifically aimed at 
measuring flood forecasting performance: 

(g) Proportion of false alarms 

(7) 

It is useful to assess the proportion of the time that a model falsely predicts an alarm 
level. The lower this value, the more useful the model will be for operational purposes. 

Measures (h) and (i) were originally suggested by Smith (2000) in his investigation of 
NN forecasting models for the River Tyne. These were found to be useful indicators in 
combination with the other measures outlined above. 

(h) Root Mean Flow Weighted Error (RM_FWE) 

 
(8) 

The absolute difference between the observed and predicted values is weighted by the 
observed level. Although this weighting assumes a linear importance, the error term will 
be biased towards storm events. There are very few measures designed to capture an 
accurate picture of errors at high flows as most global statistics average out the results 
and are biased towards low flow performance. 

(i) Root Mean Gradient Weighted Error 

 

(9) 

This is another measure designed to characterise errors at high flows. It adds an extra 
dimension beyond the RM_FWE, which is insensitive to the errors in the lower part of 
the rising limb of the hydrograph. This measure takes the gradient, which is the absolute 
difference between the observed and predicted value, and multiplies it by the absolute 
error. In this way the sensitivity of the error calculation is increased for periods of rapid 
change in levels and reduced for periods of stable flow. However, this measure also 
penalises a model that inaccurately predicts the falling limb of the hydrograph, which is 
less important for flood forecasting purposes.  

4 RESULTS AND DISCUSSION 

The Application of Time Delay     87



The goodness-of-fit statistics are provided in Table 5.1 corresponding to lead times of 2 
and 4 hours. Note that for the BPNN, the statistics for the undifferenced data are provided 
while for the TDNN, the statistics for the differenced data are provided, as they produced 
the best overall results for comparison. However, there was not a great deal of difference 
between them. 

The results for both models generally show an increase in RMSE, MAE, the false 
alarm rate, RM_FWE and FM_GWE as the lead time increases, which is to be expected. 
However, the TDNN had lower values for both lead times compared to the BPNN, 
especially at the longer lead time, indicating that these networks are handling the data 
better. The RM_FWE and RM_GWE are more difficult measures to interpret than the 
RMSE and MAE so such items are best used for comparing model performance. It might 
be more useful to calculate the RMSE and MAE at certain river level intervals so that the 
variation in the ability of the model to predict at different levels would be clearer. 

E1 and d1 also follow the same expected pattern, decreasing as the lead time increases. 
Similarly, the TDNN generally had higher values for all lead times compared to the 
BPNN. The average differences are very small for the entire data set so there is little 
indication of a general over or underprediction. The difference in standard deviations 
indicates a difference in the variation of predictions relative to the observed data. These 
numbers are also very small,  

Table 5.1. Error measures for BPNN and TDNN 
with a 2 and 4 hour lead time. The top value in each 
row is the statistic for the training data set while the 
bottom value is the statistic for the validation data 
set. 

  BPNN TDNN 

Measure 2 hr 4 hr 2 hr 4 hr 

0.0764 0.2413 0.0735 0.1376 RMSE (m) 

0.0960 0.2766 0.0754 0.1366 

0.0432 0.1335 0.0374 0.0773 MAE (m) 

0.0537 0.1687 0.0403 0.0814 

0.9499 0.8444 0.9565 0.9090 E1 

0.9376 0.8034 0.9531 0.9042 

0.9748 0.9216 0.9783 0.9542 d1 

0.9686 0.9023 0.9765 0.9516 

0.1243 0.3148 0.1000 0.1588 False Alarms 

0.1474 0.3626 0.1158 0.2210 

−0.0007 0.0028 0.0037 −0.0077 Difference in Mean 

−0.0056 −0.0648 0.0089 0.0034 
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0.0053 0.0279 0.0039 0.0113 Difference in Std Dev 

0.0053 −0.0361 0.0063 0.0196 

0.3384 0.6072 0.3207 0.4597 RM_FWE (m) 

0.3871 0.6907 0.3419 0.4865 

0.1024 0.1948 0.0937 0.1368 RM_GWE (m) 

0.1117 0.1871 0.0968 0.1340 

showing a difference in variation of a few millimetres or less. These measures did not 
provide very much information to differentiate model performance. 

Overall, the goodness-of-fit statistics, with the exception of the differences in the 
average and standard deviation, showed that the TDNN performed better than the BPNN 
but that the increase in performance was more noticeable at the longer lead time. This has 
positive implications for operational flood forecasting. 

Figures 5.4 to 5.7 show hydrographs from two events in the validation data set. Figure 
5.4 shows an event in the winter of 1995 for a lead time of 2 hours. Both the BPNN and 
TDNN capture the hydrograph well but the BPNN  

 

Fig. 5.4. Validation hydrograph (Feb 
21 to 23 1995) 2 hr lead time. 
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Fig. 5.5. Validation hydrograph (Feb 
21 to 23 1995) 4 hr lead time. 

 

Fig. 5.6. Validation hydrograph (Nov 5 
to 7 2000) 2 hr lead time. 

is better in terms of the timing of prediction of the first and second alarm (i.e. 3.5 m and 
4.4 m) levels. The BPNN predicts the next level (5.3 m) early while the TDNN predicts it 
on time. The highest level (5.8 m) is not reached. The peak is better predicted by the 
TDNN, and both models predict the falling limb well although the BPNN is early in its 
predictions. 
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Figure 5.5 shows the same event for a lead time of 4 hours. The alarm level is 
predicted well by the BPNN and one hour late by the TDNN but after this point the 
behaviour of the BPNN is very poor. The timing is completely wrong with the predicted 
hydrograph shifted by a few hours. The TDNN predicts the third alarm level (5.3 m) on 
time but overpredicts the peak. The TDNN is better at predicting the falling limb than the 
BPNN. Thus, the TDNN shows better performance at a 4 hour lead time relative to the 
BPNN. This is also reflected in the goodness-of-fit statistics in Table 5.2. 

Figures 5.6 and 5.7 show an event in the winter of 2000 for both 2 and 4 hour lead 
times. The 2000/2001 winter period was one of the worst for flooding in the UK on 
record. This event does not reach the maximum ever recorded but is nevertheless still an 
event of considerable magnitude. Figure 5.6 shows that both models predict the 
hydrograph well although in overall terms the TDNN is better than the BPNN (which is a 
little bit late). Alarm levels are predicted very well by both models but there is a slight 
underprediction of the peak by the TDNN. The falling limb is also well predicted by both 
models. 

Figure 5.7 shows the same event for a lead time of 4 hours. The TDNN is a bit late on 
the rising limb, missing the alarm by an hour but predicts the next alarm level on time. 
The higher alarm levels were not triggered. The peak is well predicted but there is a 
sharper decline in the falling limb. For the BPNN, the rising limb is well predicted 
although the alarm level is out by one hour. After this point, the same behaviour occurs as 
in Figure 5.5. The hydrograph is shifted and  

 

Fig. 5.7. Validation hydrograph (Nov 5 
to 7 2000) 4 hr lead time. 

the peak is over predicted, with a false prediction of the third alarm level (5.3 m) that did 
not occur in practice. Finally, the falling limb is poorly characterised. 

The BPNN is better than the TDNN at predicting the initial alarm level (3.5 m) but 
after this point it appears to break down at a lead time of 4 hours. There may be a change 
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in the travel time of the flood wave as the storm progresses. The TDNN is able to pick up 
this behaviour but the BPNN with its static mapping is incapable of adapting to this 
change. As both models are quick to train on storm events, as opposed to a continuous 
data set, it would be possible to use both models in a multi-modelling approach whereby 
the early part of the rising limb, which appears to be better predicted by the BPNN, could 
be used to make initial predictions, with a switch to the TDNN when later predictions or 
longer lead times are needed. More investigation is required to determine whether this 
pattern is consistent. 

5 CONCLUSIONS 

This chapter has compared the performance of TDNN with conventional feedforward 
networks trained with backpropagation (BPNN). These networks were trained to forecast 
stage on the River Tyne, Northumbria using only upstream stations. The networks were 
trained on a series of flood events over a 10 year period for lead times of 2 and 4 hours. 
An examination of the goodness-of-fit statistics showed that the TDNN marginally 
outperformed the BPNN at a 2 hour lead time. This was confirmed when examining the 
hydrographs of 2 validation events although the BPNN appeared to be better at predicting 
the initial alarm level. However, at a 4 hour lead time, the TDNN considerably 
outperformed the BPNN. The validation hydrographs illustrated the poor performance of 
the BPNN after reaching the alarm levels, which may indicate a change in the travel time 
between stations and the inability of the BPNN to respond to this change. These results 
are encouraging and suggest that TDNN may be able to play an important operational 
role in forecasting floods at longer lead times. 
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ABSTRACT: The cascade correlation learning architecture (Falman & 
Lebiere, 1990) is a constructive neural network algorithm which 
automatically determines the structure of the neural network by adding 
hidden neurons throughout the training process. At present, it is more 
commonly used for classification tasks than for regression tasks, as the 
learning process tends to saturate the units (Hwang et al., 1996). 
However, despite this limitation, it has been successfully employed in a 
number of river flow forecasting applications (Karunanithi et al., 1994; 
Muttiah et al., 1997; Imrie et al., 2000; Lekkas et al., 2001). 

This chapter provides an insight into the background and the motivation that led to the 
development of cascade correlation. The mechanics of the algorithm are described in 
some detail, as is the quickprop (Falman, 1988) update rule that is often used in 
conjunction with cascade correlation. This is followed by a number of suggested 
modifications that may render the algorithm more suitable for regression tasks such as 
river flow forecasting. Finally there is a flow-routing case study using the River Trent in 
the UK. 

1 BACKGROUND AND MOTIVATION 

Artificial neural networks (NN) provide a potential alternative to statistical methods as a 
data-driven approach to environmental modelling. Multi-layer feedforward networks 
(MLFN), which in most environmental applications are used for prediction and 
forecasting purposes (Maier & Dandy, 2000), are able to approximate non-linear 
functions through learning procedures such as the error backpropagation algorithm 
(Rumelhart et al., 1986). However, although NN have the computational ability to 
outperform statistical techniques, there are a number of disadvantages that have restricted 
their application to the research environment. 

If the backpropagation neural network (BPNN) architecture is used for training, the 
network’s size and structure must be predefined, although network pruning can be 
incorporated as part of the training algorithm (Abrahart et al., 1999). The optimal 



architecture will have sufficient parameters to capture the relevant processes, but too few 
for the network to readily over-train. However, it is impossible to identify the correct size 
for a NN without having prior knowledge of the rules it will have to learn (Lee, 1997). 
Although a number of studies have been conducted, there is at present no standard 
method of determining the most suitable configuration of hidden units. As such, a trial 
and error approach is usually employed in finding the optimum architecture (Maier & 
Dandy, 2000). However, this process may be somewhat frustrating and time-consuming 
(Karunanithi et al., 1994). 

One approach towards surmounting this problem may be to search the space of 
network structures using a genetic algorithm (Miller et al., 1989; Yao, 1993; Blanco et 
al., 2000). This process, however, would be time and CPU intensive (Russell & Norvig, 
1995). Maren et al. (1990) suggest that where the outputs must be continuous functions 
of the input, two layers of hidden units should be used. A number of guidelines for 
determining the optimum number of hidden units empirically have arisen through 
experimentation. For example, Hecht-Nielsen (1987) suggests an upper limit of 2I+1, 
where I is the number of input units. Other suggestions relate the number of hidden units 
to the number of training patterns available (Weigend et al., 1990). 

Various ‘pruning’ methods have been developed whereby training commences with a 
large network structure and weights are gradually removed, reducing the network’s size. 
Optimal brain damage (Le Cun et al., 1990), for example, calculates the saliencies 
(importance) of the weights when a specified error level is reached and removes those 
connections with the lowest values. The network is trained again and this process of 
elimination is repeated until no further improvement is observed. Karnin (1990) also 
suggests beginning with a large number of hidden units and pruning these until an 
optimal architecture is found. A method for weight pruning using genetic algorithms was 
more recently forwarded by Bebis et al. (1997). 

In practice, however, it is more computationally efficient and therefore more practical 
to begin with a minimal network and add units one at a time (Hsu et al., 1995). To locate 
an optimal architecture in this manner, a number of ‘constructive’ algorithms have been 
developed (Fahlman & Lebiere, 1990; Hirose et al., 1991; Setiono & Hui, 1995). 

Besides the need to pre-specify the architecture of the NN before training, another 
problem that is associated with the error backpropagation algorithm is caused by the fact 
that all the weights in the network are adjusted at the same time. Each unit tries to detect 
a feature defined by the error signal propagated backwards. However, since a unit’s 
weights change independently to those of the others, the error signal, and hence the 
problem, are constantly being redefined. This leads to a ‘complex dance’ amongst the 
units, increasing the time taken to reach a stable condition (Fahlman & Lebiere, 1990). 

The problems discussed above inspired the development of the cascade correlation 
learning architecture (Fahlman & Lebiere, 1990), which constructively builds the 
network by adding one hidden unit at a time. Once fully installed in the network each 
new hidden unit acts as an individual ‘feature detector’, thus eliminating the moving 
target problem. 

A final point to make here concerns another aspect of generalisation. An important 
criterion when developing environmental forecasting models is that the models can 
perform well in the event of an extreme occurrence. However, it has been found in 
previous studies (Minns & Hall, 1996; See et al., 1997; Dawson & Wilby, 1998; 
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Campolo et al., 1999) that NN tend to perform poorly outside the calibration range, and 
therefore cannot be reliably used in situations where significant events are of the most 
concern. Obviously, flow forecasting is one such application since we are often interested 
in the extremes and are often faced with a limited amount of calibration data. The main 
reason for the poor performance of the popular BPNN is that all the data are routed 
through one or more layers of sigmoidal functions, which ultimately means that the 
maximum output value attainable is proportional to the number of hidden units in the 
final layer. Although the cascade correlation algorithm is largely overlooked by NN 
modellers, it surmounts this problem to a large degree as the input units have direct 
connections to the output units, and so the restriction does not apply. 

2 THE CASCADE CORRELATION LEARNING ARCHITECTURE 

2.1 Training procedure 

The training of a NN using the cascade correlation (CC) learning architecture proceeds as 
follows: 

1. The algorithm begins with a one-layer network comprising an input layer and an 
output layer. The interconnecting weights are trained until a pre-specified or minimum 
error level is reached. 

2. The input-output weights are then frozen, and a pool of ‘candidate’ units is connected 
to the input layer. 

3. The data patterns are propagated forwards through the CC network both to the output 
layer and to the layer of candidate units. 

4. The activation of each candidate cp is compared with the residual error E0 summed 
over the output layer upon the presentation of each pattern p. 

5. The covariance C between each candidate’s activation and the error signal is calculated 
as follows: 

 
(1) 

where and Ē0 are the values of c and E0 averaged over the pattern set.  
6. The input-candidate weights are trained so that the covariance C is maximised, using 

the following update rule: 

 
(2) 

where wi are the candidate’s incoming weights, and for each pattern p, is the 
derivative of the candidate’s activation with respect to the sum of its inputs, and 
Ii,p is the input each receives from unit i. The value of σo is [−1] if C is negative 
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and [+1] if C is positive. The weights are adjusted until no further improvement is 
observed, or until a specified maximum number of iterations has been reached. 

7. The covariances calculated for each candidate are compared, and the candidate which 
is deemed most highly correlated with the residual error is installed into the network 
as a hidden unit. Its input weights are frozen and new weights connect it to the units in 
the output layer. 

8. A second round of error minimisation is undertaken, as in Step 1. After these weights 
have been frozen, a second pool of candidate units is connected to both the input layer 
and the newly-installed hidden unit, and the procedure continues as before. 

Hidden units are incorporated in this way until the output error has reached a satisfactory 
level. The final network will therefore have a multi-layer structure, with each hidden 
layer containing a single hidden unit. The topology of a cascade correlation neural 
network is illustrated in Figure 6.1.  

 

Fig. 6.1. The cascade correlation 
learning architecture. 

As can be seen in Figure 6.1, the input units of a CCNN have direct connections with 
the output units, and as such the data are not forced through hidden layers of limiting 
sigmoidal functions. If linear activation functions are used at the output layer, an indirect 
advantage of this is that there is no limit to the network’s output. 
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A standard rule such as the gradient descent method can be used to update the 
network’s weights. However, due to the fact that only one layer of weights is trained at a 
time, the learning algorithm Quickprop (Fahlman, 1988) can be used instead. This allows 
faster convergence to be observed (Fausett, 1994). This update rule is described in detail 
below. 

2.2 Quickprop 

An alternative to the gradient descent method of calculating the weight increments is the 
use of quickprop (Fahlman, 1988). This algorithm was developed to speed up the NN 
training process. In brief, the quickprop algorithm uses information about the error 
surface curvature to take larger steps towards the solution. For each weight, a copy of the 
previous error derivative, as well as the difference between the current and previous 
weight value, are stored. Fahlman assumed that the error versus weight curve could be 
approximated by a parabola for each weight. Another assumption was that the change in 
the slope of the error curve is not affected by the simultaneous changing of the other 
weights. The weight increments ∆w(t) are calculated as follows: 

 

(3) 

A number of parameters were added to the algorithm in order to make it work properly. 
For example, to avoid the possible scenario whereby an infinite step is taken, or the 
algorithm begins instead to search for a local maximum, the ‘maximum growth factor’, µ 
was introduced. The algorithm specifies that no step greater than µ multiplied by the 
previous step for that weight can be taken. 

An additional parameter, ε, is used as a momentum factor, and a weight decay term is 
used to avoid excessive growth of the weight values. Due to the inclusion of the previous 
weight update in the algorithm, the quickprop learning process has to be started by 
making a single update using the gradient descent method. 

It should also be noted that a number of alternative update rules may be used, besides 
quickprop and the gradient descent method. One such rule is resilient backpropagation, 
which is a local adaptive learning scheme (Riedmiller & Braun, 1993) whereby the 
weight update values change according to the behaviour or the error function.  

The cascade correlation learning architecture and the quickprop update rule are 
provided as part of the well-established neural network software package SNNS. The 
Stuttgart Neural Network Simulator (SNNS) is a freeware package (SNNS Group, 2002). 
The package includes a wide range of neural network architectures and algorithms, and 
provides a graphical user interface through which neural networks can be designed and 
trained. Its use has been reported in a number of applications (Abrahart & Kneale, 1997; 
Tchaban et al., 1998; See & Openshaw, 1998; Campolo et al., 1999; Hasenauer et al., 
2001). 

The cascade correlation algorithm provided in SNNS does not include an automatic 
method for early stopping using cross-validation. This means that a manual process of 
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cross-validation must be employed to ensure generalisation, whereby training is 
temporarily stopped after the addition of each hidden neuron so that the performance of 
the NN can be checked against a separate data set. Such a procedure was described by 
Hasenauer et al. (2001). This tedious process can however be automated, as demonstrated 
by Imrie et al. (2000) with a number of additional modifications to improve model 
generality. These modifications are described in the next section. 

3 MODIFIED CASCADE CORRELATION 

3.1 Ensuring model generality 

In order to ensure that the network will generalise and the final model will perform 
adequately when confronted with fresh data, a ‘guidance system’ may be incorporated 
(Imrie et al., 2000). This involves the use of a cross-validation method whereby the 
available data are split into three sets: a training set, used by the algorithm to build the 
network and update the weights; a testing set, used to periodically check the performance 
of the network during the training procedure; and a validation set, by which the 
performance of the final NN model is assessed. 

The training and testing patterns are first loaded into the computer’s memory. Input-
output weight arrays are constructed and initialised with random values between −1.0 and 
1.0. The training process is kick-started by adjusting the input-output weights with a 
single round of gradient descent. The weights are then trained using the quickprop 
algorithm over a pre-specified maximum number of weight updates. The procedure to 
automatically check for over-training has been incorporated as follows. Before training 
commences, a parameter fail is set to zero. When the weights have been adjusted 24 
times, the residual error E24 is calculated over the testing pattern array. This is repeated 
after the next weight update, and if the test set error E25 is greater than E24, fail is 
incremented by 1. The update counter is reset to 1 and training is allowed to proceed for 
another 24 updates, whereupon the error E24 is calculated and compared with the previous 
E25. If the new E24 is greater than the old E25 fail is incremented by 1, otherwise it is reset 
to zero. Each time a lower test set error is encountered the current weights are saved in a 
temporary array. The training process is stopped when the condition (fail=2 AND 
E25>E24) is satisfied.  

The first hidden unit can then be added to the network. An array of input-candidate 
weights is initialised so that their values lie between −1.0 and 1.0. The procedure of 
maximising the covariance between the output residual error and the activation of the 
candidate units is kick-started as before with a round of gradient descent. Quickprop is 
then used to update the candidate weights. Each update involves two ‘sweeps’ through 
the training patterns: the candidate covariance is calculated first, and this is then used to 
compute the weight increments during the second sweep. 

An automatic stopping procedure is also included in the candidate training phase. 
After every 25 weight updates the testing patterns are used to calculate the covariance 
between the candidate activations and the residual output errors. Each time a higher test 
set covariance is observed, the corresponding weights are saved in a temporary array. 
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Once the test set covariances for all the candidate units have stopped increasing, the 
temporary weight array is used to install a new hidden unit. 

A hidden unit activation array is then constructed for the training and testing patterns. 
An array of hidden-output weights is initialised randomly with values between −1.0 and 
1.0, and a round of output weight training commenced. The training phase proceeds as 
described above, adjusting both the input-output weight array and the hidden-output 
weights to minimise the residual error at the output layer. 

The algorithm continues to build the network architecture in this way until a specified 
maximum number of hidden units have been installed. A parameter best_error is updated 
every time a lower total error is calculated for the testing data. The configuration of 
weights that has given rise to this network should be saved in an external network file, so 
that this ‘best model’ can be retrieved at the end of training. The performance of this 
model can then be evaluated using the validation data set. 

Further modifications can be implemented to increase the chance of an optimal model 
being obtained. One such modification involves the undertaking of a number of ‘trials’ at 
each stage of the algorithm. The network saved at stage t is used as a starting point for the 
trials undertaken in stage t+1, where each stage commences at the covariance update 
phase. Figure 6.2 outlines the progress of the cascade correlation learning algorithm with 
these changes implemented. 

3.2 Improved Candidate Selection Procedure 

Through experimentation with the SNNS software and the version of cascade correlation 
with the modifications implemented, it has been observed that the performances of the 
resulting NN were relatively insensitive to the number of candidates involved in the 
correlation phase. In addition, it appeared that the magnitude of the covariances 
calculated with respect to the test set had little bearing on the ensuing reduction in the test 
set residual error. Indeed, Prechelt (1997) noted that the “covariance is an ill-suited target 
function for training the candidates”. This was attributed to the resulting tendency for the 
algorithm to  
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Fig. 6.2. Flow chart showing training 
procedure with modified cascade 
correlation algorithm. 

over-compensate for errors, leading to the conclusion that cascade correlation was more 
suitable for classification tasks than for regression. 
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Furthermore, the correlation phase of the cascade correlation learning architecture 
requires two passes through the training data prior to each weight update and is therefore 
time-consuming. Reducing the size of the candidate pool and the number of trials 
undertaken would allow the training process to progress at a greater speed. It was 
therefore considered that if an improved method of candidate selection could be 
identified, the modified cascade correlation algorithm would be rendered more efficient. 

Maximisation of the cross-correlation between the candidate activations and the 
residual error would be extremely computationally expensive, and therefore impractical. 
The original cascade correlation algorithm of Fahlman and Lebiere (1990) assumes that 
maximising the covariance will make an acceptable alternative. Experimentation with the 
algorithm, however, revealed that the candidate unit with the highest covariance is not 
necessarily that with the highest cross-correlation. Bearing this in mind, together with the 
previous observation that the candidate unit with the highest covariance was not 
necessarily the best choice, an alternative candidate selection procedure was developed. 

Intensive experimentation revealed that the candidate covariance was typically 
positively correlated with the test set residual error, suggesting that the higher the 
covariance of a candidate, the worse it was likely to perform when installed as a hidden 
unit. The highest negative correlation was obtained for a combination of two parameters: 
the sum of the training and test set cross-correlations between the candidate activation 
and the residual error. The candidate selection procedure implemented in the cascade 
correlation algorithm can therefore be altered to operate as follows: 

• After the 25th weight update, the cross-correlations with respect to the training and 
testing data are calculated and summed for each candidate unit. 

• Once all the cross-correlation sums have stopped increasing, the covariance-maximising 
phase is stopped. 

• The candidate with the highest cross-correlation sum is installed as a hidden unit. 

Furthermore, the algorithm was found to converge more quickly when output weights for 
the new hidden units were initialised with the cross-correlation coefficient calculated 
with respect to the training data. A similar procedure was suggested by Phatak and Koren 
(1994). Liang and Dai (1998) suggest using a genetic algorithm to search for the 
optimum weights, although this method is likely to be time-consuming and may 
encourage NN over-training. As a final note, Prechelt (1997) suggests that for regression 
tasks, the covariance maximisation procedure should be replaced by a direct error 
minimisation. This is an option for future research. 

4 RECURRENT MODIFIED CASCADE CORRELATION 
ALGORITHM 

The majority of NN forecasting applications in hydrology involve the construction of 
input patterns that contain a length of lagged values representing time series windows of 
the determinant of interest and other pertinent variables (e.g. Hsu et al., 1995; Minns & 
Hall, 1997; Campolo et al., 1999; Zealand et al., 1999).  
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Fig. 6.3. The recurrent architecture of 
Elman networks. 

However, when the forecast lead-time is greater than one time-step, it may be useful to 
use the NN forecast of the modelled variable as an additional input to the next time step. 
This principle is used in recurrent neural networks, which were first conceived by Jordan 
(1986). These tools are now commonly employed to do temporal processing tasks (Wang 
et al., 1996), although their application in hydrological modelling is not widely reported.  

The simplest form of a partial recurrent NN is the Elman network (Elman, 1988), 
whose architecture is presented in Figure 6.3. These networks assume that the NN 
operates in discrete time-steps. The activations of the hidden units at time t are fed 
backwards and used as inputs to ‘context units’ at time t+1, representing a kind of short-
term memory. The importance and influence of these lag 1 inputs are determined during 
the training of the network. 

A recurrent version of the original cascade correlation algorithm has also been 
developed (Fahlman, 1991). In this case the hidden unit activations are no longer fed 
back to all of the other hidden units. Instead, every hidden unit has only one self-
recurrent link, which is trained along with the candidate unit’s other input weights to 
maximize the correlation. When the candidate unit is added to the active network as a 
hidden unit, the recurrent link is frozen along with all other links. 

The majority of recurrent NN algorithms were originally designed for tasks associated 
with temporal sequences, such as natural language processing and recognising characters 
from Morse Code (Fahlman, 1991; Wang et al., 1996). As such, the hidden unit 
activations are recycled as internal state variables, and the resulting NN are used to map 
sequences of inputs into desired corresponding sequences of outputs. The problem posed 
in river flow forecasting differs in that the aim is to provide a continuous sequence of 
forecasts with lead times of greater than one time step. For this reason, the recurrent 
modified cascade correlation algorithm developed in this chapter recycles the output of 
the network instead of the activations of the hidden units. There are a number of 
advantages to this simple implementation: the number of input units does not grow as the 
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hidden units are added; and it would be possible to directly determine the relative 
importance of the recycled values in a sensitivity analysis.  

It should be noted that there are also a number of possible drawbacks to the use of 
recurrent NN. Firstly, the procedure of training the weights in recurrent neural networks 
is much less orderly than in simple feedforward networks (Russell & Norvig, 1995). The 
networks can become unstable and chaotic. In particular, for a NN that uses its outputs as 
additional inputs on the next pattern, each input pattern will change after each weight 
update. This constitutes a moving target problem, as the error surface is continually 
changing as training proceeds. Furthermore, the benefits of recycling the output 
predictions will ultimately depend on the quality of the predictions themselves. However, 
results obtained in previous research showed that the recurrent version performed better 
in various river flow prediction applications than the modified cascade correlation 
algorithm alone (Lekkas et al., 2001). 

5 CASE STUDY: 12-HOUR FLOW FORECASTING ON THE 
RIVER TRENT, UK 

All the modifications to the original CC algorithm suggested above are assessed in this 
case study. The example was first discussed in Lekkas et al. (2001) where the cascade 
correlation neural networks (CCNN) were found to perform well in comparison with 
traditional ARMA and state-of-the-art transfer function methods of river flow routing. 
Here, the following different NN algorithms will be compared: 

• SNNS backpropagation 
• SNNS cascade correlation 
• Modified cascade correlation 
• Recurrent modified partial cascade correlation. 

River flow data for 1996, 1997 and 1998 were obtained from the Environment Agency of 
England and Wales for a number of gauging stations located within the catchment of the 
River Trent, as shown in Figure 6.4. 

The aim was to create models that could forecast the flow at Colwick with a lead-time 
of 12 hours. The size of the catchment upstream of Colwick is 7486 km2. Drought during 
1995 and 1996 (Smith & Crymble, 1998) means that the flows during this period were 
unusually low. Although 1997 saw a greater number of high flow events, the highest and 
most numerous flood peaks were observed in 1998. Therefore, in order to test the 
performance of the methods for significantly higher flows than those present in the 
calibration period, it was considered most informative to use the years 1996 and 1997 as 
calibration data, and to validate the models using the data from 1998. The Colwick flow 
time-series for all three years is plotted in Figure 6.5, which also shows the division of 
the data into training, testing and validation sets. 

A correlation analysis was performed on the data, to identify suitable lags to be 
applied to each upstream gauging station time series in order to form the NN input 
patterns. The intention was to provide the models with a snapshot of the current (t=0 
hours) and antecedent (t=−1, −2,…−n hours) conditions  
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Fig. 6.4. Map of River Trent catchment 
showing positions of gauging stations. 
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Fig. 6.5. Discharge data record for 
Colwick gauging station. 

at each of the selected gauging stations, which could then be used to predict the flow at 
Colwick at t=12 hours. For Hopwas Bridge and Izaac Walton, lags up to t=−14 hours 
were considered appropriate, whereas at Littlethorpe, which is closer to Colwick, lags up 
to t=−12 hours were used. 

Four NN models were developed, based upon the input data described above. All the 
NN incorporated linear activation functions at the output layer. 

• SNNS backpropagation: the traditional feed-forward BPNN was trained with the 
gradient descent method and used the cross-validation method implemented in SNNS. 
This involved a periodic quantification of the residual error over the test set data. 
When the test set error was observed to increase, the training procedure was stopped. 
The best BPNN obtained had one layer of 15 hidden units. 

• SNNS cascade correlation: This was developed using the original CC learning 
architecture as implemented in SNNS. The software provides no means of performing 
automatic cross-validation and no attempt was made to do it manually. The maximum 
number of hidden units was limited to three, in a simple attempt to reduce the 
possibility of over-training. It should be noted that with CC the hidden units are 
connected to the previously installed hidden units, so that a network with three hidden 
units is comparable to one with three hidden layers containing one unit each, and 
therefore allows a greater level of model complexity. 

• Modified cascade correlation: This implementation of the CC algorithm containing the 
procedures for automatic cross-validation developed above. The algorithm was set to 
install a maximum of twenty hidden units, and include five trials at each stage. 

• Recurrent modified partial cascade correlation: The maximum number of hidden units 
was again set to twenty and five trials were performed at each stage. The algorithm 
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was found to perform best when it included one recurrent output, that is, the forecast 
representing time t+11 was appended to the input pattern for forecasting the flow at 
time t+12. 

6 RESULTS AND DISCUSSION 

The overall performance of each model obtained was judged with respect to the 
validation data on the basis of the coefficient of efficiency, R2, defined as follows: 

 

(4) 

where yp, and dp are the model predictions and target values for each pattern (sample) p 
respectively, and is the mean target output. The R2 coefficient is a useful statistic in that 
it provides a measure of the proportion of variance that is explained by the model. The 
closer its value is to unity, the better the fit of the model. 

The results obtained using each of the NN algorithms over the training, testing and 
validation data periods are presented in Table 6.1. It can be seen that in this application, 
there is little difference in the performances obtained using  

Table 6.1. Flow forecasting results at Colwick with 
a lead-time of 12 hours. 

NN Algorithm R2 (Training) R2 (Testing) R2 (Validation) 

SNNS backpropagation 0.984 0.792 0.906 

SNNS cascade correlation 0.991 0.762 0.917 

Modified cascade correlation 0.963 0.892 0.955 

0.962 0.897 0.961 Recurrent modified partial cascade correlation 
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Fig. 6.6. Graph of measured flow 
against 12-hour predictions made by 
original cascade correlation NN. 

the implementations of the commonly used backpropagation algorithm and cascade 
correlation. This suggests that the cascade correlation algorithm can be used as 
effectively as backpropagation to model river flow. 

The BPNN and original CCNN give the poorest results with respect to the validation 
data set, while the modified CCNN give the best results. Correspondingly, the 
performance over the training data set is poorer with the modified CCNN than it is using 
the BPNN and original CCNN. It is possible that a modeller with more time and patience, 
might produce better models from these algorithms, but the results nevertheless 
emphasise the benefits of an effective and automated method for ensuring model 
generalisation. 

The best model was obtained using the recurrent version of the modified cascade 
correlation algorithm, whereby the network’s output is recycled as an additional input for 
the next prediction. Although the improvement here is small, the algorithm can be 
adapted so that the NN can continuously produce output when the input data form an 
irregular or incomplete series.  
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Fig. 6.7. Graph of measured flow 
against 12-hour forecasts made by 
recurrent modified CCNN. 

Figure 6.6 shows the 12-hour flow predictions made by the original CCNN, while Figure 
6.7 plots those made by the recurrent modified partial CCNN. Only a portion of the time 
series is shown for reasons of clarity. Although both models perform similarly during the 
period of low flow, the recurrent modified partial CCNN performs far better over the 
peak flows at the end of October. These results further demonstrate the importance of 
implementing a good generalisation procedure. 

7 SUMMARY AND DISCUSSION 

This chapter has described the cascade correlation learning architecture, and offers a 
number of possible modifications to render it more suitable for environmental modelling. 
The potential advantages of using CCNN are immediately clear in that by using a 
constructive algorithm there is no need to implement a trial and error procedure for 
finding the optimal network architecture. A further advantage was identified: that the 
structure of the CC network allows direct connections between the input and output units, 
which avoids saturation of the hidden units. This means that the resulting models are less 
likely to perform poorly when predicting events which lie outside the range of values 
included in the calibration data. 

One of the factors that have caused cascade correlation to be largely over-looked in 
river flow forecasting is their reputation to be ill-suited to regression problems. This 
stems from the fact that the hidden units are prone to saturation. However, the 
modifications to the CC algorithm suggested above include early-stopping criteria, which 
should alleviate this problem to some extent. The case study demonstrates that when a 
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suitable method for ensuring generalisation was implemented, the algorithm could 
produce highly effective river flow prediction models. 
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7 
The Use of Partial Recurrent Neural Networks 

for Autoregressive Modelling of Dynamic 
Hydrological Systems 

HENK F.P.VAN DEN BOOGAARD  
WL/Delft Hydraulics, Delft, Netherlands 

ABSTRACT: This chapter deals with partial recurrent neural networks 
and their application to the non-linear autoregressive modelling of 
dynamic systems. This particular type of neural network can be seen as a 
data-driven model in state space, where a standard neural network model 
is used for the description of the non-linear transfer function. Each 
solution will thus possess the same generic form of time propagation 
mechanism that appears in conceptual dynamic models and linear black 
box models of type ARMAX. In this chapter, the theoretical background 
to partial recurrent neural networks is provided, together with two 
applications that demonstrate the practical relevance of these tools for 
modelling dynamic hydrological systems. 

1 INTRODUCTION 

In numerous disciplines related to applied science and technology, an increasing trend is 
observed towards the use of artificial neural networks (NN) for non-linear modelling, 
control, optimisation, design, data analysis and classification. For recent applications in 
areas such as meteorology, oceanography, hydraulics, hydrology and ecology the reader 
is referred to: Wüst (1995), Minns (1996), Minns and Hall (1996), Scardi (1996), 
Abrahart and Kneale (1997), Recknagel et al. (1997), Clair and Ehrman (1998), Hsieh 
and Tang (1998), Lange (1998), Sanchez et al. (1998), Shen et al. (1998), Van Gent and 
Van den Boogaard (1998), Wen and Lee (1998) or See and Openshaw (1999). NN are in 
most cases used to perform an identification of input-output relations and multi layer 
perceptrons (MLP) or radial basis function networks (RBFN) are the two most popular 
types of tool for studies; see Haykin (1994), Beale and Jackson (1990) or Abrahart 
(Chapter 2). 

Data-driven modelling, which includes NN, is often used when there is a lack of 
system understanding or process knowledge that prevents the development of conceptual 
models. Conceptual modelling requires system description and physical principles that 
must be formulated and quantified. The black box approach, with an appropriate level of 
robustness, can provide a more flexible and efficient solution with associated savings—in 
terms of time, cost and effort—for defining and refining the detailed information that is 



required to implement a conceptual model. NN can be used either as part of a conceptual 
model or to establish an alternative standalone solution. NN can also offer an attractive 
technique for emulating existing conceptual models since such tools will perform faster 
digital processing at higher computational speeds. Emulators make good sense (i) when 
for some reason a large number of model evaluations must be carried out, e.g. to perform 
sensitivity or uncertainty analysis, scenario evaluation, risk assessment, optimisation, or 
inverse modelling and/or (ii) when single model runs must be super fast e.g. to perform 
rapid assessment, decision support, real-time forecasting, or operational management and 
control. For examples of model emulation in practice see Solomatine and Avila Torres 
(1996) and Proaño et al. (1998). 

The flexibility, efficiency and emulation capacity of data-driven models is particularly 
relevant within the fields of hydrology, meteorology and hydraulics. However, in these 
disciplines, an important modelling issue is the need to deal with dynamic systems and 
processes that can evolve over time. This leads to a serious limitation for ‘standard’ 
NN—these models are static and there is no explicit mechanism that accounts for time 
propagation or facilitates ‘system memory’ in terms of previous states and past events. 
Indeed, in both network training, and network application operations, the input-output 
patterns are processed in an independent manner such that the modelling response to 
previous input patterns has no direct influence on the modelling response to current input 
patterns. The input-output data set must be available beforehand and the order of pattern 
presentation is not important although random order is preferred. This situation also 
applies to common linear or non-linear regression methods and to interpolation 
techniques where curves or manifolds are fitted to a given set of data points. Thus 
‘standard’ NN are in fact little more than universal function approximators (Cybenko, 
1989; Hornik et al., 1989) and as such form part of a set of generalised regression 
techniques. Such tools are static non-linear regression models that offer no explicit 
consideration of time, past events, time evolution and/or the complex interaction that 
should occur between different or sequential patterns of input-output material. This 
problem of adopting static solutions for time series modelling is also addressed in other 
chapters; Chapter 5, for instance, considers the use of time delay neural networks 
(TDNN). 

For dynamic systems, neither dependencies, nor the interaction of input-output 
patterns should be ignored. This is perhaps most recognisable in the state space (or phase 
space) mechanism of dynamic models. In discrete time, a state space model is 
characterised with a time propagation mechanism, wherein the system state at time t is 
based upon a combination of the system state at time t−1 and/or previous time steps, 
together with the set of external forcings that impact on this system. In continuous time, 
typical state space models will have the form of one or more coupled partial differential 
equations, such as flow models, based on the Saint Venant equations, or transport 
models, which use advection diffusion equations. 

In this chapter the state space mechanism of dynamic models is extended into the 
neural modelling environment to obtain data-driven models that are better suited to non-
linear modelling and for the analysis of dynamic systems and time series data. This 
extension results in the development of partial recurrent neural networks (PRNN). Such 
models are equipped with a time propagation mechanism that involves feedback of 
computed outputs as opposed to observed outputs. Sections 2.1 and 2.2 consider the state 
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space properties of discrete time dynamic conceptual models and linear black box models 
of type ARMAX. PRNN are discussed in Section 3 and their practical relevance is 
demonstrated using two hydrological applications in Section 4. Section 5 contains 
summarised conclusions and provides some suggestions for related research and 
development in this field. 

2 THEORETICAL BACKGROUND 

2.1 Dynamic conceptual models in discrete time 

Many dynamic conceptual models (as used in the fields of oceanography, meteorology, 
hydraulics, hydrology, ecology) are state space mechanisms that offer state space 
solutions. For continuous spatial and temporal coordinates the evolution of the ‘system 
state’ is governed by one or more coupled partial differential equations. The usual order 
of presentation in such equations is: left-hand side contains first and/or higher order 
temporal derivatives for all state variables; right-hand side contains all other model terms. 

The complex nature and extent of these partial differential equations will in most 
instances prevent the derivation of analytical solutions. Difficulties will often arise from, 
or be related to, the occurrence of marked non-linearities, non-constant and/or non-
uniform coefficients, irregular spatial domain, etc. Therefore, one must instead turn to 
numerical techniques, where the differential equations are discretised in terms of 
temporal and spatial coordinates. This results in a discrete time model that is of the 
following generic form: 

 (1) 

The discretised model of Equation 1 is in state space form and can be solved through 

numerical integration of the state space equations. The output vector denotes the 
system state at discrete time t. It consists of the state variables at all spatial grid points 

and could have a large dimension. Note that the ‘old’ states on the right 
hand side of Equation 1, can be seen as part of the model input which will be propagated 

to the ‘new’ state at time t. The orders M and N in the discretised model are related to 
the order of the temporal derivatives in each partial differential equation. If present, 
partial derivatives with respect to the spatial coordinates, are absorbed in the transfer 
function Φt(·) as well as in the model coefficients and in the other terms of this equation. 

The vectors are also inputs for the model and represent the non-
autonomous part of the equation. These vectors originate from one or more external 
system forcings: wind drag in flow or wave models, sources or sinks in transport models, 
etc. It is also common for boundary conditions to be modelled as external inputs. 

The (non-linear) function Φt(·) is a transfer function that governs the time propagation 
of the system state from discrete time t−1 to time t. For conceptual models this function 
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should be derived from physical principles such as the laws of conservation with respect 
to mass, momentum, energy, heat, etc. The transfer function Φt(·) thus attempts to 
incorporate all system and physical knowledge, although such activities will to some 
extent also depend on the degree to which encapsulation is possible, and on the numerical 
scheme that was adopted for the discretisation of each continuous process. 

The vector represents one or more uncertain parameters in the conceptual model. 
These uncertainties may include unknown parameters in the bed and/or surface friction 
coefficients, parameters in dispersion, reaction or exchange coefficients, parameters in 
the boundary or initial conditions, etc. Such parameters are in practice often determined 
from calibration based on observations of the model state. For conceptual models the 
number of unknown parameters will in general be small compared to the dimension of 
the system state and/or the total number of state variables. The calibrated model is in 
consequence, still for the most part based on physical principles and system knowledge, 
and to a minor extent on data. 

2.2 Linear black box models in discrete time (ARMAX) 

ARMAX (Autoregressive Moving Average with eXterior or eXogeneous input) models 
are often used to provide linear dynamic black box solutions for the processing and 
analysis of time series data. For a general discussion on such matters see Ljung and 
Söderström (1983); for hydrological applications of ARMAX models see Gourbesville 
and Lecluse (1994). In discrete time, and for a univariate case, such models will have the 
following form: 

 
(2) 

where Xt is the autoregressive model output, Ut is the deterministic external forcing input, 
and Zt is a write random process with zero mean that is included to account for model 

uncertainties, i.e. and are independent for t1 ≠ t2. This random noise represents 
non-modelled sub-grid processes, discretisation errors, or errors in the external forcings.  

The model in Equation 2 is time invariant if its parameters are 
constant over time. Generalisation of this univariate ARMAX model to a multivariate 
(and/or time variant) system is straightforward, leading to: 

(3) 

This is again a state space model, albeit that the revised model is stochastic, and involves 

a linear transfer function So, in contrast to the conceptual model that is 
described in Section 2.1, all aspects of the transfer function are derived from 
parameterisation and nothing is based on physical principles. The end product from this 
data-driven modelling operation could also contain a large number of unknown 
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parameters that must be identified using calibration procedures, based on an 
appropriate set of observed input-output patterns. For further details and methods of 
parameter identification on ARMAX models the interested reader is again referred to 
Ljung and Söderström (1983). 

3 PARTIAL RECURRENT NEURAL NETWORKS 

NN with feedback connections are not new and can be labelled as either ‘recurrent 
networks’ or ‘partial recurrent networks’; recurrent networks exhibit full connection 
between each node and all other nodes in the network, whereas partial recurrent networks 
contain a limited number of specific feedback loops. The term ‘lattice networks’ is also 
used when source nodes are included that supply external inputs. Haykin (1994) notes the 
interest in such networks for dealing with time varying inputs or outputs; recurrent or 
sequential networks are also considered by Hertz et al.(1989) who assign the name 
Jordan Networks, for a one step delayed feedback of outputs, and Elman Architecture 
when the feedback to the network input is from one or more hidden layers. These 
networks and their names originate from Jordan (1986) and Elman (1990). 

It should also be noted that the author would prefer to use the expression 
‘autoregressive neural network’. This might help to retain (as much as possible) the 
common terms and meanings that are used in system theory, conceptual models and time 
series analysis. Data-driven approaches, which include all types of regression modelling, 
form a small subset of the total modelling spectrum—which varies from a full conceptual 
approach to a total data-driven approach—such that data-driven neurocomputation is not 
identified to be a toolbox of distinct techniques deserving specialist consideration. From 
this viewpoint the name autoregressive neural network might perhaps better emphasise 
the non-linear generalisation of linear autoregressive moving average models that are 
common tools in time series analysis e.g. ARMA or ARMAX. However, to be consistent 
with a book on neural network modelling techniques, the term partial recurrent neural 
networks will be used throughout this chapter.  

3.1 PRNN basics 

Equations 1 and 3 are closely related with regard to the mechanism that governs the time 
evolution of the corresponding models. Both are in state space form and involve the 
feedback of earlier computed previous system states. The transfer function in Equation 1 
is based on physical principles—to the extent that such things are possible—and will 
often possess a strong non-linear component. In Equation 3 the transfer function is linear 
and must be identified from observed data. These concepts form the basis for the 
definition of a PRNN. The idea is to replace the transfer functions Φt(·) and/or Ft(·), with 
an NN, which leads to the following dynamic model in discrete time: 

(4) 
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‘NN’, on the right hand side of this equation, serves as a black box model for the transfer 
function, which is of a standard input-output configuration. MLP or RBFN solutions 
would both offer a suitable architecture. The vector represents the weights of the 
connections in the NN. These weights equate to the uncertain parameters of each model, 

analogous to in the conceptual model of Equation 1, or in the ARMAX model of 
Equation 3. 

Equation 4 introduces a dynamic model in which the complete time propagation 
mechanism is derived from the process of parameterisation; no system understanding or 
physical process knowledge has been incorporated. The PRNN version of Equation 4, 
thus follows a data-driven approach, albeit that the state space concept which is inherent 
to generic dynamic conceptual models has been incorporated. PRNN models thus form 
an important extension to standard static NN models, and can be seen as a first step in 
importing the properties or components of conceptual models, into the domain of 
neurocomputation. This also provides some interesting opportunities for hybrid 
modelling (see Thompson & Kramer, 1994; Van den Boogaard & Kruisbrink, 1996). 

PRNN must encapsulate the dynamic properties of each system that is considered in 
an accurate and efficacious manner. This could require the development of complex 
architectures, albeit that more complex architectures will contain a larger number of 
uncertain parameters The dimension of will, in particular, be much larger than the 
dimension of the model state, such that this large number of uncertain parameters is in 
contrast to the situation for conceptual models, where the number of uncertain parameters 
is in most cases quite small. 

The uncertain parameters must again be identified using training procedures, and 
given a fully parameterised representation of the transfer function, this calibration process 
will often require a large number of observed input-output patterns. The assessment of a 
suitable network architecture will also form an important aspect of such operations, since 
this item will be used to represent the transfer function, and as such the complexities of 
each dynamic model. 

PRNN models, compared to ARMAX models, can also be viewed as a non-linear 
generalisation with respect to the latter type of linear black box model. The PRNN model 
does in fact reduce to an ARMAX model if a linear NN is used to represent the transfer 
function. It must be noted, however, that random model components have so far been 
omitted from consideration in the PRNN model, i.e. the stochastic part of an ARMAX 
model. This then introduces a restriction to the deterministic approach that will in 
consequence possess no statistical representation of the model error. This important 
aspect of the development process is considered in more detail in Section 3.5. 

If possible, the orders M and N of the (auto)regressive parts of the modelling input, 
should be determined on the basis of system knowledge or from correlation analysis 
applied to the different processes and lag times involved. However, a proper (and 
minimal) estimate for both factors can also be obtained through the process of calibration. 

The components and the K-dimensional state vector and L-dimensional 

external forcing will in practice often refer to processes of different origin, type or 
character. Therefore, the (minimum required) orders of M and K can differ for the 
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individual components suggesting different ‘optimal’ orders Mk for and Nl for 
To make the model as ‘compact’ as possible, it also makes sense to take these different 
orders into account, and the PRNN model of Equation 4 can thus be further generalised to 
the following form: 

 

(5) 

In this case the architecture of a (standard) NN consists of 

neurons in the input layer and K neurons in the output layer. Not all components of 

the output vector must be autoregressive. For a non-autoregressive component k, the 
order Mk is 0, and this output is not then subject to feedback at later time steps. 

Figure 7.1 illustrates a ‘simple’ PRNN model in which the basic NN is of type MLP. 

The model output is two-dimensional, the first output component is order two 

autoregressive, and the second output component is non-autoregressive. Therefore 

K=2, M1=2 and M2=0. The external input of the model is one dimensional, but is order 
two regressive, so that L=1 and N1=2. 

This figure shows that a PRNN model can also be viewed as a complex NN. The latter 
contains a large number of layers, part of the output from certain layers is not fed forward 
to other layers, whilst other parts of the output skip  
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Fig. 7.1. The architecture of a partial 
recurrent neural network. 

over adjacent layers and are fed forward to non-adjacent layers. This architecture differs 
from a feedforward solution, with a standard set of connections, where the outputs from 
each node in each layer are always fed forward to all nodes in the next layer and not to 
nodes in other layers. 

Summarising, the PRNN of Equation 5 is found after embedding the time propagation 
mechanism of dynamic conceptual models into a data-driven modelling environment—
such that a non-linear black box model with state space properties is obtained. PRNN 
models are thus seen to be a non-linear generalisation of ARMAX models. Some other 
important aspects of the PRNN model will be discussed in Section 3. 

The main issue in PRNN is the feedback of outputs, from the NN at time t, to provide 
inputs at time t+1 and/or later. This feedback might also involve self-feedback loops, at 
the level of an individual neuron, albeit that in the reported applications no such loops 
were present when hidden layers existed. Thus, seen in time, there is a strict direction for 
subsequent feedback such that at each time step the output is an explicit function of the 
input and the ‘numerical scheme’ is in this regard explicit rather than implicit. 

3.2 Open loop versus closed loop systems 

The PRNN model is a closed loop system where a ‘new’ system state follows from one or 
more system states computed at one or more previous time steps. Under certain 
conditions, a closed loop architecture can be reorganised into an equivalent open loop 
arrangement, and in this situation the modelling input will involve external forcings 
alone. The model in Equation 4 will thus become: 

 (6) 

The model is no longer autoregressive and ‘system memory’ in terms of previous states 
and past events must therefore be made available using a sufficient set of historical time 
series forcings N′. However, the required series could be infinite, as can be verified from 
the following one-dimensional, first order, time invariant and autoregressive model: 

 

(7) 

The order N′ in an open loop representation can indeed become infinite even when the 
order N in the closed loop architecture is finite or small. However, in practice, a fair 
approximation will often be possible with a finite order N′, although this N′ will still be 
much larger than the sum of the orders K and N, in the original autoregressive model. The 
number of parameters in the open loop model will also be much larger, which can 
significantly handicap parameter identification, and in consequence decrease the 
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predictive capabilities of the calibrated model. Hence the preference for a closed loop 
solution. 

The use of an autoregressive or closed loop model, under certain conditions, will often 
be more of a necessity than an option. Here one must think of dynamic systems with an 
infinite memory, leading to non-stationary processes and responses, where initial 
conditions are not ‘gradually forgotten’. Let us consider the case of a simple and pure 
(non-leaky) integrator. In mathematical terms, this system is described in the model of 
Equation 7 when Θ=1. In hydrological terms, it represents the filling of a reservoir with 
no output mechanism, although this configuration is not very realistic and some form of 
discharge mechanism must in practice be included. For instance, a weir is a simple 
passive emptying mechanism, which produces an overflow when the upstream water 
depth exceeds its crest. The overflow is then a non-linear function of water depth, and for 
this modified and more realistic reservoir model, it can be verified that an autoregressive 
tool is a better-suited solution than an open loop description. Proaño et al. (1998) dealt 
with such overflows in sewerage systems and used a PRNN for the emulation of a 
detailed conceptual model. Their approach and results are reviewed and further discussed 
in Section 4.1. 

3.3 Calibration of a PRNN using adjoint modelling 

PRNN encapsulate a standard NN that is applied at each time step and which will, 
through recursion, generate a temporal sequence of changes in the model state over time. 
However, due to the occurrence of feedback over one or more time steps, the application 
of common training approaches based on backpropagation of error must be customised to 
provide an appropriate generalisation. The adjoint formalism that is used for the 
calibration of large scale deterministic dynamic models is well suited to such a task. The 
advanced calibration or data assimilation facilities that have been developed for, and 
applied to, deterministic numerical models can thus be applied to PRNN, which is to be 
expected since the latter tool is a direct adaptation from the generic structure of such 
earlier modelling methodologies. 

Model calibration in general, and NN training in particular, involves the definition of a 
cost function or a goodness-of-fit criterion that is used to assess the level of 
(dis)agreement that occurs between model predictions and real world observations. This 
cost function must be minimised with respect to the control variables. The control 
variables will in most instances entail a combination of uncertainties in model 
parameters, in initial conditions, or in external forcings. For large scale minimisation 
problems, gradient descent techniques offer a practical solution, provided that such 
gradients are not too difficult or too time consuming to extract. Efficient gradient descent 
techniques include conjugate gradient and quasi-Newton methods (see Press et al., 1989). 
Several tools are available to provide an estimate of the gradient at each stage in the 
calibration process; one important and efficient method is adjoint modelling. In this 
approach the desired gradient is obtained from the results of two model runs and is 
independent of the number of control variables. The first run involves the propagation of 
an ‘original’ model over the time interval whilst the second run involves the construction 
of a so called ‘adjoint solution’. The latter is intended to be a tangent model of the 
original solution; it thus equates to a linear dynamic system that has the same spatial and 
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temporal dimensions as the original model. However, in contrast to the original model, 
the adjoint solution must be solved backwards in time. The cost function gradient is 
expressed in the states and prediction residuals of the original model, which together with 
the states of the adjoint model, provides an exact set of analytical derivatives, as opposed 
to an imperfect numerical approximation. Each gradient, in association with previous 
gradients computed during earlier iterations, is then used to provide the inputs for a 
gradient descent operation that will find an update for the uncertain parameters and in so 
doing will provide a better performance for the model. The adjoint model is thus applied 
more than once, the updating procedure is repeated until the cost function is minimised, 
and the parameters are updated in batch mode, after each forward (model) and backward 
(adjoint) sequence and not at separate time steps. 

Within the context of dynamic models, adjoint modelling is also known as variational 
data assimilation and for a detailed introduction to adjoint modelling and its practical 
significance with respect to the calibration of large scale dynamic numerical models the 
reader is referred to: Chavent (1980), Long (1989), Panchang and O’Brien (1990), Van 
den Boogaard et al. (1993), Lardner et al. (1993), or Ten Brummelhuis et al. (1993). The 
relevance of variational data assimilation techniques to NN models is also mentioned in 
Hsieh and Tang (1998). 

The adjoint formalism can be derived for PRNN and such adjoint PRNN would in turn 
offer a generalisation of the backpropagation rule for standard MLP. The adjoint PRNN 
model reduces to standard backpropagation if the model is not autoregressive. 

3.4 Calibration of a PRNN using data insertion 

Static NN that model time series data often use a different training procedure to the one 
that is advocated in the work that is reported in this chapter. In such cases, the NN is fed 
with observations, rather than system states that were computed in previous time steps so 
that the model is propagated and calibrated according to: 

 (8) 

Time propagation in the above equation is based on the process of data insertion. 
Equation 8 is in consequence not autoregressive and the solution thus equates to a ‘one-
step-ahead forecasting’ operation. The ‘advantage’ of data insertion, in a strict sense, is 
that standard procedures can be used in the training process e.g. backpropagation, which 
is described in Chapter 2. The development and implementation of advanced calibration 
techniques that deal with strict autoregressiveness is thus avoided, e.g. the adjoint 
method, which is described in Section 3.3. 

For the following reasons, however, it is argued that data insertion is often considered 
to be an improper form of modelling and/or data assimilation: 

1. Replacing computed system states with their corresponding observations means that a 
user has no confidence in the model. Prediction of one or more future system states, 
based on auto/cross-correlations with observed data, could be an inaccurate method 
for longer time horizons. It would in consequence be reasonable to expect improved 
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accuracies over longer prediction horizons from an autoregressive model that had been 
trained and applied in a strict and proper sense. 

2. Data insertion is not an acceptable method of data assimilation because the true 
estimate of a ‘system state’ can never be more accurate than the last data point 
inserted. Data insertion gives no possibilities to average redundant information over 
time in order to reduce the effects of noise; it is thus impossible to improve the 
estimated ‘system state’. Moreover, overwriting model states with observations can 
leave the model dynamically unbalanced. This is a particular problem when the 
observed data are sparse, noisy and/or inconsistent with the modelling predictions. 
Each insertion might typically inject bursts of noise into an evolving modelling 
solution with obvious consequences in the form of undesirable modelling results. For a 
more detailed discussion see Long (1989). 

3. In practice, observed data sets are often sparse and irregularly distributed in space and 
time. With data insertion, outputs cannot be generated when one of the required 
antecedent observations is missing. Moreover, such gaps in the data set can 
significantly reduce the quantity and quality of the training and/or verification patterns 
and thus limit applications to those cases where state space observations are not 
missing. True autoregressive models do not suffer from these limitations since such 
tools propagate computed rather than observed model states. In fact, this pinpoints the 
main issue of modelling, which should be to generate estimates of the full system 
state, and, in particular, for positions and times where observations are missing. 

4. Data insertion introduces a strong difference between the use of a model in the 
calibration stage and the application of that same model to real-world forecasting 
operations. For the purposes of calibration each output is replaced with a 
corresponding observation at the next time step; but this cannot be done in forecast 
mode, since future states are still an unknown factor, and there is no alternative other 
than to propagate the model as a strict autoregressive solution with feedback of 
computed outputs. Hence, calibration based on data insertion has optimised a model 
that is based on different conceptions, with respect to the one that is used for 
forecasting operations which could reduce the quality of forecasts. 

3.5 On-line or sequential data assimilation for PRNN models 

Data assimilation facilities are often used to improve the performance of (deterministic) 
dynamic conceptual models. The data insertion process, described above, represents a 
simple form of on-line sequential assimilation. However, in a dynamic environment, it is 
also important that each model is able to adapt to changing conditions and as such to 
improve its skill or power with respect to short or medium term forecasting horizons. 
Thus other factors must be considered and assimilated as each model proceeds from time 
step to time step, such that the consistent integration of changing conditions, within an 
adaptive solution, will produce an operational product that is superior in comparison to a 
corresponding non-adaptive deterministic solution. 

Even a well-calibrated standard model will not provide a perfect set of predictions in 
forecast mode and such predictions will in most cases become less accurate over 
modelled time. Gradual increases in error will arise from errors in the calibration data set, 
unresolved modelling miscalculations, fluctuations or long term trends in the model 
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parameters and/or external forcings. These uncertainties can be described as changing 
internal or external conditions, such that to provide improved forecasting power, it is 
essential that the model must adapt to pertinent trends, oscillations or environmental 
switches. To allow for this, and to make the model better suited to operational and/or real 
time prediction, on-line or sequential data assimilation techniques are important. The 
usual approach is to describe all model and observation uncertainties using random noise, 
such that the uncertainties are modelled in a statistical sense, as opposed to the imposition 
of a strict physical relationship. The original deterministic model is thus embedded in a 
stochastic environment and the actual process of data assimilation then involves the 
consistent integration of all sources of modelled or observed information so far available, 
whilst also taking the statistics of their uncertainties into account. Thus, following the 
integration of model and data, an optimal instantiation of the model is obtained for 
forecasting purposes. The most common procedure that is used to perform this type of 
data assimilation exercise is Kalman filtering; for theoretical background material see 
Gelb (1974), Jazwinski (1970) or Maybeck (1979); for applications in tidal flow models 
with emphasis on storm surge forecasting see Heemink (1986), Heemink and 
Kloosterhuis (1990) or Verlaan (1998). 

Most on-line data assimilation facilities have been developed for, and applied to, 
dynamic conceptual models. PRNN, however, with their state space architecture, also 
provide a suitable basis to develop data-driven models that are equipped with on-line data 
assimilation procedures. So, in addition to the inclusion of state space form, another 
important and substantial component of dynamic conceptual models is imported into the 
sphere of neurocomputation. This will provide new and important opportunities with 
respect to the development of operational or real-time applications. For example, in 
hydrological modelling, real time flood forecasting, prediction of water loads in drainage 
systems, forecasting and controls of structures such as sluices, weirs or barriers, can be 
mentioned as relevant applications for on-line real-time or run-time data assimilation. 
Similar examples can be given for other disciplines where operational modelling is 
important. 

From the above it is clear that for the integration of on-line data assimilation facilities, 
random noise must be incorporated to allow for the statistical modelling of uncertainties, 
in the form of extended and stochastic PRNN. Such mechanisms are not considered in 
this chapter but will require a much stricter generalisation of linear ARMAX models in 
comparison to deterministic PRNN models. For calibration and/or data assimilation 
procedures with respect to stochastic PRNN, the same mechanisms that are used for 
conceptual or ARMAX models, could also be used to develop neural solutions. Technical 
details on the construction of such tools can be found in Van den Boogaard et al. (2000). 

4 PRNN APPLICATIONS 

Two hydrological applications are presented. The first case involves using a PRNN to 
emulated a dynamic conceptual model of a sewerage system. In the second case a PRNN 
is applied to model the water balance of Lake IJsselmeer in the Netherlands. 

4.1 PRNN emulation of a sewerage system 
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This section outlines the potential use of PRNN for model emulation. Further details on 
the reported application can be found in Proaño et al. (1998). 

One major problem with respect to sewerage systems is the overflows that can and do 
occur during severe rain storm events. Sewerage overflow occurs when the capacities of 
either sewerage systems or treatment plants are exceeded during a rainfall event. The 
overflow devices are often nothing more than a storage chamber, with a weir that acts to 
control the flow, such that an overflow occurs when the upstream water depth exceeds its 
crest. 

In the Netherlands, some 90% of all sewerage systems are combined systems, which 
spill diluted sewage into open water systems during extreme rainfall events. For most 
towns, these systems have either no slope or mild slopes, such that the resultant network 
of interconnected flows will contain a large number of loops. Moreover, when all street 
sewer lines are included, the total structure could contain several thousands or even tens 
of thousands of pipes. 

Models based on a numerical solution to the Saint Venant equations can be used to 
simulate sewerage systems. The SOBEK-URBAN modelling system is the main tool that 
is used to perform such simulations in the Netherlands; for a numerical description of this 
mechanism see Stelling (2000). The main point to note is that this tool can provide an 
integrated approach for the simulation of 1-D processes in rivers, sewers and drainage 
systems, where integrated means that flows in the pipe network and the receiving waters 
can be combined. 

Legislation regarding sewage spilling into open water systems has in recent times 
placed more and more constraints on the frequencies and quantities of permitted overflow 
that is allowed to occur during storm events. Moreover, to deal with current legislation, 
and to assess whether or not a particular case satisfies the regulations, simulations must 
be performed for a 10 year period, and in the near future this period is expected to be 
extended from 10 to 25 years. 

Simulation of sewerage systems over such a long period are performed on recorded 
series of historical rain storm events. For a current design, or one or more proposed 
rehabilitation designs (e.g. dealing with additional storage capacities), this implies that 
the set of simulated storm events must contain storms with the potential to produce 
overflows. However, for a time period of 10 to 25 years, this will require at least a few 
hundred such events. 

For large cities, with several tens of thousands of pipes, the computational burden 
associated with such simulations will remain extreme, despite anticipated computer 
improvements in terms of faster processors and more powerful memories (Verwey, 
1994). Even when restricted to subsets of events with potential overflow, the 
computational effort will still be large, in particular when numerous designs must be 
compared. It is for this reason that a number of alternative methods have been 
investigated; see Proaño et al. (1998) or Price et al. (1998). NN, under such 
circumstances, offer two possible opportunities: (i) to act as fast model emulators and/or 
(ii) to perform model reduction operations. PRNN, in contrast to static standard NN, 
would in both cases be expected to provide a more suitable solution since the solution 
would in both operations be required to encapsulate numerous dynamic systems and 
dynamic processes. 
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Proaño et al. (1998) used a PRNN for the dynamic emulation of overflow discharges. 
The external input consisted of rainfall time series data for a storm event. The output of 
the PRNN was a time series of overflow discharges at one or more overflow structures. 
This output must be zero when no overflow occurs. The PRNN was calibrated on a data 
set of rainfall-overflow combinations, the overflow time series was generated from a 
numerical conceptual model, and the output time series of a few nodes in the numerical 
model were emulated as opposed to the production of a solution that would model the 
complete state of the sewerage system. It was also ensured that the calibration and 
verification data sets, each contained rain storm events that produced overflow, as well as 
events without overflow. 

It was important in the research to assess whether or not the emulation could be based 
on a limited subset of the large ‘original’ set of events. If not, then the input and output 
patterns for all events would have to be derived from the conceptual model, and the 
desired reduction of computational cost would not be achieved. In addition, an emulation 
would no longer make sense, since the frequencies and quantities of overflow would be 
contained in the numerical model predictions. 

This model emulation and reduction exercise was applied to the sewerage system of 
Maartensdijk, a town with about 10000 inhabitants, in the centre of the Netherlands. 
Based on system emptying time and storage/pump capacities, 200 potential overflow 
events were selected from a rainfall series of 10 years, and an overflow model produced 
from 89 of the 200 events. 

The selection of representative calibration and validation data sets was based on 
scatter plots of three parameters that characterised the main features of the rainfall time 
series: storm duration, maximum rainfall depth and total rainfall depth. 20 overflow 
events and 7 non-overflow events were selected for the calibration set; a verification set 
of 17 events was likewise constructed. Then, for all 44 calibration and verification events, 
simulation with a SOBEK-URBAN model of the Maartensdijk sewerage system was 
carried out. This provided a time series of water depths and discharges at three overflow 
structures and from which a PRNN model was then constructed. This PRNN model was 
calibrated and verified in batch mode, which means that the connection weights were 
optimised for all training events in concert as a collective item, and that individual events 
were not treated as separate entities for model development purposes. 

The external inputs for this PRNN consisted of current and antecedent rainfall 
samples. There were two outputs: current discharge and current water depth at the weir. 
The latter was needed because at such structures, the water depth determines the state of 
the system and not discharge. In fact, discharge is a rating curve function of the water 
depth, but this relation is not one-to-one, e.g. discharge is zero when water depth falls 
below the crest of a weir. Therefore, discharge cannot be used to represent the ‘system 
state’. This also illustrates the fact that, within black box procedures, physical principles 
or system knowledge must often be used in order to ensure that there is a meaningful set 
up for each model. 

Similar physical considerations, as well as test experiments, also revealed the need for 
PRNN models to deal with non-transient effects for the accumulation of rain depths into 
water depths. Open loop models (see Section 3.2) or standard NN models are thus seen to 
be less suitable approaches for the sewerage emulations reported herein. 
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Several training experiments were undertaken, a suitable architecture was assessed, 
and accurate PRNN emulations of the SOBEK-URBAN model obtained. Validation tests 
on events not contained in the training and verification data sets also demonstrated the 
capabilities of a PRNN to generalise to unseen data sets. 

4.2 Water balance in Lake IJsselmeer 

This section summarises the potential use of a PRNN to model water balance. The 
reported application is for Lake IJsselmeer in the Netherlands. Further details on this 
investigation can be found in Van den Boogaard et al. (1998).  

 

Fig. 7.2. Plan view of Lake IJsselmeer. 

The most important factors that affect the water balance of Lake IJsselmeer are the inflow 
of the River IJssel and the outflows from the sluices at Den Oever and Kornwerderzand. 
Figure 7.2 provides a map of the area which marks the position of the River IJssel and the 
locations of both sluices. The sluices are used to discharge excess water and form an 
interface between the lake and the tidal Dutch Wadden Sea. Such spilling is possible 
during low tides, when water levels outside the lake are lower than water levels within 
the lake, and spill volume is estimated in terms of the difference between these two water 
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levels. The wind can also have a significant effect on the difference between the inner 
water level and the outer water level. 

Water balance modelling, in most instances, will involve building some type of 
autoregressive mechanism. This can be recognised from the manner in which the water 
volume Vt, changes over a time increment ∆t, which can be expressed as: 

 
(9) 

where Qin(·) and Qout(·) denote the inflow and outflow discharges. If the total area 
remains more or less constant, the water level ht, will then evolve according to:  

 
(10) 

Typical evolutions will occur in state space form. The transfer function will be non-linear 
when the relationship between the currents qin(·) or qout(·) and the water levels is non-
linear. However, non-linear mechanisms will often impact on the inflows and outflows, 
and marked non-linearities are evident for the overflow at sluices. 

In the reported work a PRNN was used to perform dynamic modelling of the water 
levels of Lake IJsselmeer as a function of five external system forcings: discharge of the 
River IJssel, the North-South and East-West components of the wind, and the outside 
tidal water levels at the sluices of Kornwerderzand and Den Oever. The output was the 
water level of Lake IJsselmeer. The time step in this model is ∆t=1 day, which 
corresponds to the sampling period of observed discharges for the River IJssel, and the 
sampling period of water levels for Lake IJsselmeer. Daily time series of the maximum 
wind speed and the minimum outer tidal water levels were also included in this modelling 
operation. 

In this research, only winter seasons were considered, since the dynamic behaviour of 
the system at these times is the most interesting. The data set consisted of daily samples, 
for the period October 1 to March 31, taken from the 15 winter seasons between 1978/9 
and 1992/3. From this data set, nine seasons were selected for training, whilst the other 
six seasons were used for testing. The training and testing data sets were each considered 
to be more or less representative of the whole data set and the chosen architecture was 
calibrated to find a set of weights that provided the best model performance as follows. 
For each season, initial conditions were derived from one or more observations taken on 
October 1, and the model was then propagated in a strict autoregressive sense through to 
the following March 31. The standard least squares criterion provided a cost function and 
quantified the level of (dis)agreement between modelled and observed water levels. 
Figure 7.3 shows the performance of the calibrated solution for four representative 
periods. For all periods, including ones not shown here, a reasonable level of 
performance was obtained. However, during certain periods, considerable prediction 
errors were still present. These are thought to be related to errors in the external forcings 
and not a result of poor training. PRNN performance was also better than a conceptual 
water balance model that had been developed in earlier work—albeit that the actual 
difference was considered to be minor. 

In Section 3.4 it was argued that data insertion is not a proper form of calibration for 
PRNN and the effect of data insertion on such models for Lake IJsselmeer is considered 

The Use of Partial Recurrent Neural Networks     129



in Van den Boogaard et al. (1998). PRNN output, where the model is applied and 
calibrated in a strict autoregressive sense, was compared against the outcomes of the 
corresponding model trained with data insertion. For all periods in the training data set, 
the model based on data insertion reproduced the observed data with near-perfect levels 
of skill, and performed much better than the autoregressive solution trained with 
feedback of computed outputs. The weights of the model based on data insertion were 
then substituted into an autoregressive model that was used to predict the water levels for 
the periods of the verification data set. This model was run in prediction mode as an 
autoregressive forecaster and the outputs were found to be  
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Fig. 7.3. Observed water levels (solid 
curves) and water levels computed 
with a calibrated PRNN (dashed 
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curves) for 4 winter seasons. The 
seasons of Figures 7.3a,b were part of 
the calibration data set, while the 
seasons of Figures 7.3c,d were within 
the verification data set. 

systematically less accurate than those produced from the corresponding autoregressive 
solution that had been trained with strict computed feedback. 

The reported comparison was based on the root mean square error of both forecasts. 
Such findings support the theoretical arguments that strict autoregressive solutions will 
contain better predictive skills than models based on data insertion. The observed 
accuracies of the data insertion model for the training data set is misleading since this 
could reflect strong temporal correlations between the various observations. PRNN 
trained with feedback of computed outputs will, in general, better mimic the dynamics of 
the physical system and as such offer strong potential for superior modelling. 

It should also be noted that major uncertainties were associated with the discharge 
figures for the River IJssel. These discharges were not direct observations but estimates 
derived from empirical relationships using water level registrations from the River Rhine 
at Lobith near the Dutch-German border. These relationships could contain errors, 
especially for winter seasons, when water levels and/or discharges are large or even 
extreme. In all other external forcings, such as the wind, large uncertainties will also have 
been present. For applications under operational or real time conditions, such as short to 
medium term water level forecasting or sluice controls, these uncertainties must be taken 
into account in a more explicit form. Section 3.5 argued that this could be done in a 
statistical sense, through the use of on-line data assimilation techniques, to improve the 
forecasting capabilities of the model. The application of on-line data assimilation to this 
situation is presented in Van den Boogaaard et al. (2000). 

5 DISCUSSION AND CONCLUSIONS 

This chapter has considered the role of PRNN—in hydrological science and for dynamic 
systems modelling. Each PRNN is a non-linear dynamic model in state space form where 
the transfer function is modelled with a standard NN. The complete time propagation 
mechanism is thus a parameterised solution that must be identified from observed data. 
Each PRNN is in essence a data-driven model, but with the incorporation of a state space 
architecture, an important generic aspect of dynamic conceptual models is included. 
PRNN models can be viewed as a non-linear generalisation of ARMAX models—which 
are common tools for the modelling and analysis of time series data. PRNN are also 
observed to be a dynamic extension of standard static NN, since the former is able to deal 
with time varying inputs and outputs, whereas the latter contains no explicit provision for 
‘system dynamics’ or ‘system memory’. 

The state space mechanism of a PRNN involves the feedback of outputs computed in 
one or more previous time steps. This closed loop architecture can be written in an 
equivalent open loop form, leading to a non-autoregressive model. The transfer function 
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in this situation can be modelled with a standard NN. However, to account for ‘system 
memory’, a much longer series of historical external forcings must be provided in the 
shape of numerous inputs. This will produce a significant increase in the number of 
unknown parameters in terms of additional connection weights that will cloud the issue 
and reduce the power of the network to establish a clear model. For some solutions, the 
demand for historic factors could be infinite, which leaves little real choice other than to 
use an autoregressive model or PRNN. Indeed, this is not a theoretical issue, as can be 
seen from the sewerage experiment presented in Section 4.1. 

The feedback of computed outputs requires a proper generalisation of the training 
rules that are used in a standard NN. It was also argued, that for the calibration of a 
PRNN, gradient descent techniques and adjoint modelling were appropriate. The latter is 
a variational data assimilation technique, which provides an extremely efficient and 
elegant means of computing the gradient of a cost function and is one that is widely used 
for the calibration of large scale meteorological models and for 2-D or 3-D hydraulic 
flow modelling. PRNN share a common state space architecture with large scale 
conceptual models, such that the adjoint method has direct application, and the adjoint 
formalism is in fact a generalisation of the standard backpropagation rule. 

Sometimes an alternative training procedure is followed using data insertion. This 
means that real observations are used for feedback, rather than the actual model outputs, 
that were computed in one or more previous time steps. It was argued that, in general, 
this is not a proper form of modelling and an inappropriate mechanism for calibration or 
data assimilation purposes. In the case of data insertion, the modelling and/or forecasting 
is based on the temporal correlations of the observed processes, rather than the consistent 
identification of the physical mechanism that governs the time propagation operation. 
Each calibrated autoregressive solution represents a model in a strict sense that is better 
suited to forecasting operations. This was confirmed in the practical application provided 
under Section 4.2. In fact, data insertion should not be used for model calibration 
purposes, unless the circumstances are such that there is an absence of both model error 
and observation noise. 

This chapter has considered deterministic PRNN. The implication of this is that both 
the model and the external forcings, which form the modelling input, are assumed to be 
perfect. In Section 4.1, these conditions are clearly satisfied, as the input-output is 
adopted from the results of a deterministic dynamic conceptual model. The PRNN was 
shown to be a feasible solution for model emulation and/or model reduction purposes. 
Such findings would be applicable to the general case as, within emulations, external 
forcings and observations are consistent and without uncertainties. Moreover, the number 
of observations can be as large as demanded or desired, and fast neural emulators of 
dynamic conceptual models will provide important opportunities for rapid assessment, 
real time control and management, scenario optimisation and uncertainty/ sensitivity/risk 
analysis. However, the main problem still lies in finding the right architecture. 

In Section 4.2 the deterministic PRNN was used to model the water balance of Lake 
IJsselmeer based on observed hydrological and meteorological data. For a test data set of 
winter seasons, the calibrated model produced reasonable water level predictions, 
although in certain periods the prediction errors were still large and could well be due to 
uncertainties in the observations. Section 3.5 suggested that to achieve improved 
performance, such uncertainties should be taken into account, and that the uncertainties 
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could be modelled in an explicit statistical manner. Sequential data assimilation 
techniques could then be used for the optimal integration of both model and observations. 
PRNN combined with sequential data assimilation facilities will also provide a robust 
solution in terms of errors and adaptation to changing conditions. This could lead to 
significant improvements in forecasting skill and further increase the potential benefits 
for operational and/or real time applications. 

Sequential data assimilation techniques, applied to conceptual dynamic models, can 
also be imported into a PRNN. The state space form of such models means that this a 
simple operation; so, after the state space architecture and the adjoint formalism, this 
third important feature of dynamic conceptual models could also be embedded within a 
neural solution. 

The other chapters in this book describe numerous feasible and adequate hydrological 
modelling applications based on standard static NN, but for forecasting purposes, such 
solutions are in most cases limited to the simple production of one-step-ahead outputs. 
Hence one future challenge will be to ascertain the extent to which this window of 
prediction or forecasting horizon can be extended with a PRNN, and, if so, what then 
would be the most appropriate architectures and training methods? 
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8 
RLF/1: Flood Forecasting via the Internet  

SIMON A.CORNE AND STAN OPENSHAW  
School of Geography, University of Leeds, UK 

ABSTRACT: This chapter introduces a web-based neural network flood 
forecasting toolbox called RLF/1. This system comprises a set of software 
tools written in C++, neural network models, data sets and documentation, 
and runs on a SUN-Solaris workstation. The system is integrated using 
UNIX shell scripts, which display forms, upload data, create databases, 
train networks, control a simulation and display results. Output including 
results files, session logs and trained models are available for 
downloading. Three default neural network models, which are stored on 
the system and can be experimented with, were developed for flood 
forecasting on stable, flashy and intermediate river systems. They use 
historical data for gauging stations around the Ouse catchment in 
Yorkshire, UK. Using the models, a simulation of a real-time forecast 
may be run by supplying historical time-series data. Alternatively, the 
time series may be used to construct new models. 

1 INTRODUCTION 

Following a successful pilot project to demonstrate the application of artificial neural 
network (NN) methods to flood forecasting (Openshaw et al., 1998), the main barrier to 
the practical implementation and use of NN based flood forecasting systems was 
considered to be one of communication. In order for the river engineers and hydrologists 
who are responsible for flood warning and control to place their trust in such tools, the 
world of NN must first be demystified. To help address this issue, an integrated NN 
based flood forecasting system, called RLF/1, was developed using web-based 
technologies. RLF/1 comprises a suite of software tools running on a SUN-Solaris 
workstation. The tools have been written in C++ and are integrated via HTML and UNIX 
shell scripts. The system can be accessed and run on-line from the following address: 
http://www.ccg.leeds.ac.uk/simon/intro.html  

The aim of RLF/1 is to demonstrate that NN solutions are a practical tool for real-
world flood forecasting operations. The Internet offers a system that can be openly 
accessed at minimal cost by engineers and scientists from around the world who can 
experiment with the NN models at their leisure. Time series data can be uploaded and a 
real-time forecast simulated using stored NN models. New models can also be 
constructed, trained on-line and then used to provide simulated forecasts. The use of web-



based technologies means that background material, on-line help, instructions and links 
to relevant information are fully integrated within the software package. 

Initial work on the application of NN to flood forecasting was applied to river flow 
data for the Yorkshire Ouse catchment (Openshaw et al., 1998). Input data for NN 
training were selected on the advice of hydrologists. A database was constructed from 
historical time series comprising immediate river-level history for principal and upstream 
gauging stations at fifteen-minute resolution, mean hourly river-level histories, mean 
daily rainfall, averaged long-term rainfall history, averaged daily temperatures, averaged 
daily evapotranspiration, and the length of daylight. In the current work, NN models have 
been developed using a minimal set of input data (river level time series for a principal 
gauging station combined with suitably lagged upstream time series) in conjunction with 
a method of pre-classification. Models have been trained for stable, flashy and 
intermediate types of river system. These models are then integrated to produce a 
computer system that can be adapted to fit a similar network of rivers and tributaries 
where comparable information is available. 

2 MODELLING APPROACH 

The RLF/1 system may be used in two ways. The first approach uses existing NN models 
that were developed for stable, intermediate and flashy types of river network based upon 
a simple routing model. For each of the three types of river network, two different sets of 
models were built: one producing a single predicted river level or flow at some future 
time (e.g. three hours ahead, six hours ahead, twelve hours ahead, etc.); the other 
produced a predicted time series of river levels/flows up to some future time. These 
models may be used to predict river levels for comparable river systems. When supplied 
with historical time series data by the user, RLF/1 can simulate a forecast by using the 
raw data as input variables to the models. The software allows for predictions to be 
compared with observations to give a measure of the success. 

The second approach involves using RLF/1 as an interactive model-building tool, 
creating and training user-defined NN with user-supplied data. 

2.1 Basic model 

The RLF/1 system uses a very simple model of a river network. The system aims to 
forecast the river level (or flow) at a principal gauging station. The main input data for 
this station is derived from high-resolution historical river level time series for that 
station. Additional inputs, suitably lagged for mean  
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Fig. 8.1. Example of a simple routing 
model used by RLF/1. 

time of transport, include: river level time series for the upstream gauging stations, 
rainfall time series for relevant upstream rainfall gauges, coarser-resolution and/or 
averaged time series of other upstream data, e.g. soil moisture (explicit measurement or 
implicit from long-term mean rainfall), temperature, evapotranspiration, etc. A simple 
model with two upstream gauging stations and two upstream rainfall gauges is illustrated 
in Figure 8.1. 

RLF/1 may then be used to model the response at the principal gauging station by 
supplying the time series for the principal station and the four upstream gauges and their 
mean time of transport to the principal station. 

2.2 Pre-classification 

In earlier flood forecasting experiments (Openshaw et al., 1998), it was found difficult to 
train networks to cover the entire dynamic range of the data. The database, constructed 
from a long historic record, is mostly composed of vectors from periods of very low 
activity, punctuated with relatively short periods of interest: rising, falling and peak 
levels. Rather than attempting to train a single NN using randomly selected vectors from 
the entire database, a Kohonen (1988) self-organizing feature map (SOFM) was used to 
identify clusters in the data. The sixteen clusters produced by the optimum SOFM (a 
four-by-four map) were found to fall into five general categories (rising, falling, low and 
flat, moderate and flat, peak). Separate databases were created according to these five 
categories and NN were generated for each. For practical forecasting, the category of an 
input vector was identified and the forecast was generated using the most appropriate 
model. 

In the web-based version of RLF/1, this procedure has been simplified. Instead of the 
five separate classes, RLF/1 makes use of either two (high, low) or three (high, 
intermediate, low) categories. The selection of thresholds to distinguish categories may 
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be automatic or interactive. Separate network models are then used for each of the 
categories.  

2.3 NN for stored models 

Conventional multilayer feedforward NN were used as the basis for stored models. These 
were constructed, trained and tested using the Stuttgart Neural Network Simulator (SNNS 
Group, 2002) from the University of Stuttgart, Germany. Models were trained using the 
resilient propagation modification (Riedmiller & Braun, 1993) to the backpropagation 
training algorithm and also using the scaled conjugate gradient method (Moller, 1993). 

2.4 NN for on-line model building 

The principal concern for on-line model building was to create adaptable NN models. 
Conventional multilayer feedforward networks are prone to a problem commonly known 
as catastrophic forgetting, i.e. once trained, the NN cannot assimilate new training 
information without losing the ability to represent its original training information. We 
have used an approach for adaptive modelling developed for process control (Mills et al., 
1995). These methods are based upon conventional multilayer feedforward models but 
incorporate some architectural modifications and make use of new training algorithms. 

2.4.1 Architectural modifications 

Two modifications to the conventional multilayer networks have been implemented. The 
first is the use of linear nodes at the output layer. This has the advantage of a wide 
dynamic range with respect to the strict range enforced by the standard sigmoidal transfer 
function (Mills et al., 1995). A modified gain parameter for updating hidden-to-output 
connection weights is also required during training. Following Mills et al. we have used a 
fixed value of 0.1 for this parameter. 

Some features of the data being modelled may have an approximately linear 
relationship. Conventional feedforward networks, which by nature use non-linear transfer 
functions, cannot always make a very close approximation to linear functions. But it is 
possible to represent a near linear relationship by combining a non-linear network with 
linear component mappings. The second architectural modification is the incorporation of 
linear bypass connections, with trainable weights, between the input and linear output 
layers (Mills et al., 1995); this is illustrated in Figure 8.2. 

2.4.2 History stack adaptation 

It has been suggested that the computational requirements of simulated NN are too great 
for real-time application (Sanner & Slotine, 1991). The history stack adaptation method 
(Mills et al., 1995) can enhance convergence characteristics for adaptive identification of 
non-linear processes using multilayer feedforward networks (MLFN). The algorithm is 
based upon a short history of input patterns that can represent an approximation to the 
non-linear mapping. The history stack is a first-in-first-out (FIFO) stack containing np 
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patterns. The method requires warming-up for several time steps as the stack is filled. At 
each subsequent time  

 

Fig. 8.2. Schematic diagram of a 
modified multilayer network. Standard 
weighted interconnections are shown 
by solid lines. Linear bypass 
connections are shown by dotted lines. 

step a new pattern is loaded onto the stack while the oldest pattern is discarded; also, 
network weights are adjusted over nc cycles using the patterns in the stack. Supervised 
learning using all patterns in the stack, in random order, at each time step results in a 
network that minimizes the error corresponding to the approximate mapping represented 
in the stack patterns. 

The algorithm uses each pattern npnc times before it is discarded, with a concomitant 
increase in the load on computational resources. The selection of these two parameters is 
critical to the adaptation process: the number of cycles must be greater than one in order 
to achieve a large learning increment at each time step; the number of patterns should be 
small enough to be both representative and to avoid the retention of out-of-date 
information. The combination of np and nc is critical to performance. Different 
combinations can be used for a variety of purposes: e.g. fast adaptation, low 
computational cost, complex mapping and noisy data. 

As well as the architectural modifications described above, further extensions to the 
history stack adaptation algorithm can enhance performance. For time-varying processes 
it may be appropriate to attach more weight to more recent patterns. This can be achieved 
by exponential time weighting of the NN learning rate parameter. For stability it may be 
necessary to exclude some patterns from the stack: an entry criterion may be used to 
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measure the ‘novelty’ of each pattern. If a new pattern is too similar to those already 
present in the stack, there is little to gain from its inclusion. A sufficiently novel pattern 
will make more efficient use of the history stack method. 

2.4.3 Reinforcement backpropagation 

A truly adaptable NN system must use current data to modify the behaviour of the model. 
Reinforcement backpropagation (Mills et al., 1995) uses reinforcement learning, in which 
feedback is provided by a scalar performance measure given by a so-called ‘critic 
function,’ and the history stack algorithm to provide good learning performance. 

The reinforcement learning system receives a time-varying input vector and generates 
a time-varying output vector. The output vector is adjusted by a random dither vector 
with elements selected from a Gaussian distribution. After a delay, the system receives a 
time-varying scalar signal related to the performance resulting from the output vector. 
This performance measure is based upon the comparison of calculated u(k) and observed 
y(k) outputs: 

 (1) 

The reinforcement learning algorithm aims to optimize the performance scalar for future 
cases. The performance measure is passed through a discrete-time low-pass first order 
filter that estimates the current average performance against which new performances are 
measured. This is called the improvement comparison: a positive value indicating 
improvement, a negative value indicating diminished performance. Given the delay in 
acquiring the performance measure, the input, dither and output vectors are passed 
through a shift register corresponding to the delay. A new target vector based upon the 
suitably delayed output and dither vectors is created and combined with delayed input 
vector to create a new training pattern which can be entered into the history stack. A 
modification to this algorithm only accepts the new training pattern if the improvement 
comparison is positive. The method proceeds using the history stack algorithm described 
in the previous section. 

2.5 Bootstrapping 

The RLF/1 software includes a simple bootstrapping algorithm to give a statistical 
measure of the errors in forecasted values. At each step of the bootstrapping algorithm, 
some input variables are discarded at random and are replaced by duplicates of remaining 
variables. The output is calculated according to the modified input vector and the process 
is repeated. This method permits the calculation of a mean output with confidence limits. 
The statistical significance of the results is increased by increasing the number of steps 
although this will also increase the overall computation time. The method also simulates 
the effect of missing input values, a problem commonly faced by real-time computer 
applications. The number of steps may be set to zero, which results in a single calculation 
of output without statistics. 

2.6 Historical data 
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The RLF/1 system has been constructed and tested on a set of data supplied by the UK 
Environment Agency, North-Eastern Division. The data cover the years 1982–1996. 
River levels at fifteen-minute intervals were available for nineteen gauging stations in the 
Ouse catchment in North Yorkshire. Rainfall data at fifteen-minute  

 

Fig. 8.3. Location of the Ouse 
catchment. 

intervals were available for eleven stations in the same geographical area. In addition, 
daily mean rainfall data were available for thirty-five different locations. Daily climate 
data for Leeming in North Yorkshire were obtained from the UK Meteorological Office 
archive maintained by the British Atmospheric Data Centre at the Rutherford Appleton 
Laboratory in Chilton, Oxfordshire. The data files for use by RLF/1 may be supplied in 
Hydrolog and Rainark formats (used by the Environment Agency) or as comma-
separated variable files. 

The Ouse catchment (Fig. 8.3) incorporates several river sub-networks that exhibit 
quite different characteristics. The gauging station at Skelton, near the city of York, has a 
very stable, slowly-evolving response, where the flood-peak can take a week to rise and 
fall. At the top of the catchment, the gauging station near Low Houses exhibits a very 
flashy response, where a flood peak might rise and fall within a few hours. The gauging 
station near Boroughbridge, roughly midway between Low Houses and Skelton, displays 
characteristics intermediate to these two extremes, with a flood peak that may last two or 
three days. The data for these three principal stations, together with their upstream 
stations, were used to construct the stable, flashy and intermediate models, respectively. 
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3 THE WEB-BASED INTERFACE 

The RLF/1 system uses web-based technologies to provide a relatively seamless 
transition between descriptive text (both background and help screens), data uploading, 
parameter specification, program control and the evaluation of results. The system 
encompasses C++ software tools, HTML documentation, SUN-Solaris shell scripts and 
GNU utilities. It contains five main sets of tools for data file conversion, simple statistics, 
database construction, NN and flood forecasting. Step-by-step guides to using the flood 
forecaster and model builder are also available on-line.  

3.1 Using the flood forecaster 

The RLF/1 system is comprised of a series of forms, which are listed in Table 8.1. Form 
1 is the RLF/1 home page, which contains background information written in HTML. 
Several choices are provided. Selection of the flood forecasting or model building options 
leads to a registration page (name, address, e-mail address). The next stage is to define 
the river system, its associated data files (i.e. river level/flow and rainfall time-series) and 
the formats. Form 2 (Specification of the basic model), shown in Figure 8.4, allows the 
construction of the routing model in terms of transport times from upstream gauging 
stations to the principal station. Several other parameters may be specified: the look-
ahead time (n hours), the data resolution (quarter-hourly, hourly, etc.), the catchment type 
(i.e. stable, flashy, intermediate) and the type of model (i.e. trained network, trained 
network with some adaptation, the history stack/reinforced learning model). The flood 
forecasting models normally generate a single number, which is the river level at  

Table 8.1. Forms in RLF/1. 

Form Function 

1 RLF/1 home page 

2 Specification of the basic model 

3 Specification of the pre-classification thresholds 

4 Modified version of Form 3 

5 Specification of model architectures and training parameters 
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Fig. 8.4. Form 2: Specification of the 
basic model. 

a time n hours in the future. The use of bootstrapping to measure statistical error in the 
forecast can be specified. This method also provides an idea of how well the models 
would perform if one or more input variables were missing. 

Once the model is run, Form 3 (Specification of the pre-classification thresholds) 
appears, as shown in Figure 8.5, which displays the time series for the principal station 
and allows the specification of a level threshold to distinguish high and low levels, as 
well as the expected minimum and maximum levels. These levels are estimated 
automatically but may be overwritten as required. Following a parameter check the 
forecaster is run, displaying the current time, time of prediction, predicted value and 
confidence limits (if bootstrapping has been specified) and the prediction error. The 
results are displayed graphically, with error bars on the predictions if bootstrapping has 
been specified. A series of expanded plots allows a closer examination of the quality of 
the predictions. Separate pages provide a listing of the time series of predictions, 
observations, comparison between the predictions and observations and a log file, all of 
which can be downloaded. The final form allows the extension of the forecast beyond the 
supplied time series. The last few levels/flows for each of the stations are displayed and 
the values at the next time step may be supplied to generate a new forecast. 
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A step-by-step guide is also available. To examine the capabilities of the system, or if 
the interested user has no suitable data, a demonstration is provided using data stored on 
the web-server.  

 

Fig. 8.5. Form 3: Specification of the 
pre-classification thresholds. 

3.2 Using the model builder 

The interface to the model builder is largely the same as that used by the flood forecaster. 
The data specification form following registration does have one major difference: an 
additional low-resolution (e.g. daily, monthly) time-series may be included in the 
modelling, such as soil moisture, average temperature or long-term average rainfall. 

Next is a modified version of the flood forecaster time-series display form. The major 
differences, shown in Figure 8.6a, are the specification of the expected minimum and 
maximum for the additional low-resolution data and the high/low (H/L) or 
high/intermediate/low (H/I/L) classification; Figure 8.6b shows the specification of the 
parameters for constructing the databases. The input window and look-ahead time 
determine the size of input and target vectors. By default, half of each database is used 
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for training, a quarter for validation and a quarter for testing but these proportions can be 
changed. Generally, training vectors are selected in random order from the database, but 
this can also be changed to sequential selection, if required. 

Using the parameters specified in the previous form, the two (H/L) or three (H/I/L) 
databases are created and then split into training, validation, and testing files. Further 
events may be added to the databases using a modified data specification form, before the 
NN models are created. The final form (Form 5), as shown in Figure 8.7, is used for the 
specification of the architecture and training parameters for the H/L or H/I/L NN models. 
NN architecture is specified by the number of hidden layers (one or two), the size of the 
hidden layer(s), the use of linear bypass connections and the use of linear output gain. 
Training is controlled by the number of training cycles, gain and momentum parameters, 
initial weight range and exponential time weighting factor. The next two screens serve to 
display useful feedback information: the first lists the parameters and the second displays 
the classification of input vectors into the two or three categories selected. The two or 
three NN models are then trained according to the parameters. The training and validation 
data sets are used during the NN training. On completion, i.e. at the end of the specified 
number of iterations, the unseen data set is passed through the model and the calculated 
and observed values are listed. 

The results of training are made available in a number of ways, mostly via links to 
files that can be displayed and downloaded. Such files include the progress of training, 
the trained network represented as a text file, as well as a session log. Graphical displays 
are also provided, showing the progress of training and a comparison of the calculated 
and observed values. 

If the models are sufficient for the end user, they may be saved. It is then possible to 
test the saved models with new, unseen data or a new training exercise may be started. If 
training is not satisfactory, the models may be trained further with the option of changing 
one or more parameters (number of cycles, gain, momentum and exponential time 
weighting). To test a trained network, the data specification form is again used to upload 
time series files for the stations comprising the routing model. The flood forecaster is 
then run using the models and the test data. The display of results is as described in the 
previous section.  
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Fig. 8.6. Form 4: Modified version of 
Form 3 (a) The RLF/1 model builder 
form for database construction. Setting 
pre-classification thresholds. (b) The 
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RLF/1 model builder form for database 
construction. Setting database 
parameters. 

 

Fig. 8.7. Form 5: Specification of 
model architectures and training 
parameters. 
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4 WORKING EXAMPLES 

The model builder in conjunction with the flood forecaster has been tested with several 
examples derived from two different data sets, one from the Ouse catchment and the 
second from Northumbria; both data sets were supplied by the Environment Agency. The 
results of the tests with both catchments are available on the website. In this chapter, 
examples are provided for a stable, intermediate and flashy regime from the Ouse 
catchment. 

4.1.1 Stable response testing 

The aim of this stable event experiment was to predict the river level at the Skelton 
gauging station, near the city of York, using historical level time series for Skelton only. 
A six-hour input window was used to predict the future level with a forecasting horizon 
of six hours. A threshold of 2m was used to perform  

Table 8.2. Model architectures for the stable 
example. 

Model Input size Hidden layers Hidden size Output size Training cycles 

Low 24 1 6 1 250 

Intermediate 24 2 3 1 500 

High 24 2 3 1 500 
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Fig. 8.8. Results for training events at 
Skelton from the summer of 1986 and 
the winter of 1994. 

a pre-modelling classification of the data into three categories. All input data were 
standardised and the expected data range was set to 0–7m. The three models are 
described in Table 8.2. 

Training data were derived from events at Skelton during the summer of 1986 and the 
winter of 1994. The results of training are shown in Figure 8.8, where the predicted 
values are plotted alongside the observed levels. The trained models were tested with a 
flood event at Skelton from the winter of 1995. The test results are provided in Figure 
8.9, which show good correspondence with the first peak and an under prediction of the 
second peak. This is probably due to the fact that the second event is particularly large 
and exceeds the levels that were used to train the model. To improve the model 
performance, very large events, either real or simulated, should be presented to the model 
during the training process.  
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Fig. 8.9. Results for a test event at 
Skelton from the winter of 1995. 

Table 8.3. Model architectures for the intermediate 
example. 

Model Input size Hidden layers Hidden size Output size Training cycles 

Low 80 1 4 1 250 

Intermediate 80 1 8 1 400 

High 80 2 4 1 500 

4.1.2 Intermediate response testing 

In this experiment, the aim was to predict the river level at Boroughbridge in North 
Yorkshire based upon historical level time series for the nearby gauging station at 
Westwick, together with upstream gauging stations at Alma Weir, Kilgram and Low 
Houses, as well as the rainfall gauge at Tow Hill, near Low Houses. A four-hour input 
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window was used to predict the future level with a forecasting horizon of three hours. A 
threshold of 1.12m was used to perform a pre-modelling classification of the data into 
three categories. All input data have been standardised. The expected data range was set 
to 0–4.25m. The three models are described in Table 8.3. 

Training data were derived from events in the region during the winters of 1994 and 
1995. The results of training are shown in Figure 8.10, where the predicted values are 
plotted alongside the observed levels. The trained models  

 

Fig. 8.10. Results for training events at 
Boroughbridge from the winters of 
1994 and 1995. 
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Fig. 8.11. Results for a test event at 
Boroughbridge from the winter of 
1996. 

were tested with an event in the region during the winter of 1996. The test results are 
shown in Figure 8.11. 

Although the training hydrographs are predicted perfectly, the validation event shows 
a lag and a small under prediction although the general shape of  

Table 8.4. Model architectures for the flashy 
example. 

Model Input size Hidden layers Hidden size Output size Training cycles 

Low 32 1 4 1 500 

Intermediate 32 2 2 1 500 

High 32 2 2 1 500 

Neural networks for Hydrological modelling     154



 

Fig. 8.12. Results for training events at 
Low Houses for the winters of 1994 
and 1996. 

the curve is well represented. The absolute errors in level are quite small so further 
improvements might require training on more events of this size. 

4.1.3 Flashy response testing 

The aim of this flashy event experiment was to predict the river level at Low Houses 
gauging station in North Yorkshire, using historical level time series for Low Houses, 
together with time series for the rainfall gauge at nearby Tow Hill. A four-hour input 
window was used to predict with a forecasting horizon of three hours. A threshold of 
0.2m was used to perform a pre-modelling classification of the data into three categories. 
The expected data range was set to 0–2.5m. In contrast to the other two examples, all 
input data were retained as raw values. The three models are described in Table 8.4. 

Training data were derived from events at Low Houses during the winters of 1994 and 
1996. The results of training are shown in Figure 8.12, where the predicted values are 
plotted alongside the observed levels. The trained models  
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Fig. 8.13. Results for a test event at 
Low Houses from the winter of 1995. 

were tested with an event at Low Houses during the winter of 1995. The test results are 
shown in Figure 8.13. 

The results for the test event exhibit similar patterns to the first experiment, i.e. good 
forecasts for smaller hydrographs and under prediction for larger ones although once 
again, the absolute errors are not large. However, the model was trained to see events 
close to 1.2m so the problems with under prediction may simply reflect the more difficult 
nature of this hydrological regime. 

5 NEXT STEPS 

The aim of RLF/1 is to demonstrate to a wider audience that NN are a practical tool for 
flood forecasting. The implementation of this tool as an Internet application means that 
interested engineers and scientists can experiment with NN, at little or no cost, and see 
whether or not these tools can provide a suitable solution for the task in hand. 
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RLF/1, as the name implies, is a first release and therefore still has some limitations. 
For example, the underlying routing model is very simple, the maximum number of 
upstream gauging stations is restricted to five and only one additional long-term input 
variable can be specified. The selection of certain training parameters is also limited to 
menu choices. It should, however, be stressed that the software beneath the interface is 
not limited so it will be possible to provide a more flexible tool in future versions. 
Another limitation is that the only NN supplied are multilayer perceptrons with either one 
or two hidden layers, although some extensions to the basic models are provided. 
Additional NN architectures will be added in later versions. Finally, the system does not 
permit prediction of hydrographs with different lead times or forecasting horizons. RLF/2 
is being developed and will incorporate alternative methods for time series prediction 
(ARMA and fuzzy logic modelling) as well as hybrid systems that will provide increased 
flexibility. 

The technologies underlying RLF/1 can be customized for particular river networks 
and climatic regimes and can therefore be used as a practical flood forecasting tool. It is 
left to hydrologists and river engineers to experiment with RLF/1 to see if it answers 
(some of) their requirements for flood forecasting. Please visit the web site and test our 
software. 
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ABSTRACT: Artificial neural networks (NN) are recognised as being 
universal approximators and are capable of extracting the underlying 
relationship between any input, or stimulus, and its subsequent output, or 
response. This property is particularly attractive when dealing with the 
complex natural systems that are commonly encountered in hydrology, 
hydrogeology and water resources planning and management. Among the 
many other applications, the last few years have seen increasing attention 
being paid to rainfall-runoff modelling. However, the effective use of NN 
in this context is seen to demand almost as much, if not more, 
hydrological insight than conceptual/physical rainfall-runoff models. 
Particular attention must be paid to the choice of input variables, and to 
the patterns of inputs and outputs upon which the NN is trained and 
validated. 

1 INTRODUCTION 

In this chapter we look at the position of rainfall-runoff models in the broader context of 
the already wide choice of models for hydrological forecasters. Why should a modeller 
choose this approach? The last decade has seen the gradual introduction of informatic 
tools, such as artificial neural networks (NN), into hydrology, hydrogeology and water 
resources planning and management. The applications of these techniques have been 
many and various, but a broad appreciation of their potential has been slow to develop. 
One reason for the apparent reluctance to consider such an approach may be unfamiliarity 
with the concept of, and nomenclature associated with, NN. Essentially, NN are excellent 
computational devices for pattern recognition and classification; it is their origins in 
artificial intelligence and cognitive sciences that have given rise to what is unfamiliar 
terminology in the hydrological sciences. 

The structure of a NN, which consists of multiple interconnections and their parallel 
processing architecture have an obvious analogy with biological systems, as explained in 
any introductory textbook on the subject (e.g. Alexander & Morton, 1990; Beale & 
Jackson, 1990; Hertz et al., 1991). There are, however, many different types of NN, the 
choice between which can add to the discomfort of the potential user. However, the 
purpose of this commentary is not to elaborate upon the different forms of NN (see 



Chapters 2–7), although inevitably some reference has to be made to the architectures and 
calibration methods that have been applied to date. In preference, the emphasis is placed 
on the applications. In this context, a cursory review of the literature is sufficient to 
reveal the wide variety of problems to which NN have been applied successfully The 
following listing is intended to be illustrative rather than exhaustive: 

– as sub-models of complex processes within a larger physically-based framework; the 
estimation of daily solar radiation from daily maximum and minimum air temperatures 
and precipitation (Elizondo et al., 1993), and the modelling of drying water retention 
curves for sandy soils by Schaap and Bouten (1996) provide ready examples of this 
approach; 

– as a replacement for, or for modelling the results obtained from, more complex, 
physically-based computer models that impose heavy demands on computing 
resources; examples include the river salinity forecasting model of Maier and Dandy 
(1996), and the determination of optimum pumping scenarios for groundwater 
remediation schemes by Rogers and Dowla (1994) and Rogers et al. (1995), and Aly 
and Peralta (1999); 

– as models of analytically-intractable relationships, such as the approximation for the 
confidence limits to the quantiles from a flood frequency distribution derived by 
Whitley and Hromadka (1999); 

– as a method of avoiding the constraints associated with standard techniques, such as 
multiple linear regression analysis, in deriving relationships between the parameters of 
a regional flood frequency distribution and catchment characteristics (Muttiah et al., 
1997; Hall & Minns, 1998; Hall et al., 2000, 2002); 

– as a screening model, e.g. for the identification of critical realisations of log 
conductivity fields for a single realisation groundwater remediation management 
model (Ranjithan et al., 1993); 

– as a method of pattern completion, e.g. the neural kriging method of Rizzo and 
Dougherty (1994); 

– as a model of the preferences of decision-makers in multi-objective optimisation (see 
Wen & Lee, 1998 for an example); 

– as a forecasting device, such as that for predicting rainfall fields proposed by French et 
al. (1992) and Luk et al. (1998); 

– as an alternative to parameter-intensive physical/conceptual models in applications that 
do not require a detailed understanding of the system dynamics. 

The problem that seemingly has attracted the most attention in this last category has been 
that of modelling the relationship between rainfall and runoff. However, as the following 
review is intended to demonstrate, the application of NN to the development of a rainfall-
runoff model demands as much, if not more, hydrological insight than the calibration of a 
standard physical/conceptual model (see also Maier & Dandy, 1999). 

The details of a representative selection of 16 studies in which NN have been 
employed to develop rainfall-runoff models are presented in Table 9.1. A more  

Table 9.1. Summary of previous studies in which 
NN have been employed to model rainfall-runoff 
relationships 
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Reference Time unit Catchment Area 
(km2) 

Technique 

Hour Wye, UK 11 MLP/BPNN Abrahart and Kneale 
(1997) 

        

Hour Tagliamento, Italy 2480 MLP/BPNN Campolo et al. (1999) 

        

30 second Laboratory catchment 2.1m2 MLP/BPNN Carriere et al. (1996) 

        

Dawson and 15 minute Amber, UK 139 MLP/BPNN 

Wilby (1998) 15 minute Mole, UK 142 MLP/BPNN 

10 minute Kamihonsha, Japan 3.12 

      

RBF/OLS; 
MLP/BPNN 

Fernando and 
Jayawardena (1998) 

        

5 second Laboratory catchment 26.8m2 MLP/BPNN Hall and Minns (1993) 

one minute Doncaster, UK 5.14 ha MLP/BPNN 

Hsu et al. (1995) Day Leaf River, USA 1949 MLP/LLSSIM 

Hour Kamihonsha, Japan 3.12 Jayawardena and 
Fernando (1998) 

      

RBF/OLS; 
MLP/BPNN 

Hour Zeller Bach, Germany 20 MLP/BPNN Lange (1998) 

Hour Windach, Germany 344.7 MLP/BPNN 

Month Araxisi, Italy 121 MLP/BPNN Lorrai and Sechi (1995) 

        

30 minute Dollis Brook, UK 24 MLP/BPNN 

        

Minns and Hall (1997) 

30 minute Silk Stream, UK 31.25 MLP/BPNN 

Day Independence, USA 230 MLP/BPNN Poff et al. (1996) 

Day Little Patuxent, USA 97 MLP/BPNN 

Hour Ouse, UK 3286 

      

MLP/BPNN with KN See and Openshaw 
(1998) 

        

Day Sunkosi, Nepal 18000 MLP/CG 

Day Shiquan, China 3092 MLP/CG 

Shamseldin (1997) 

Day Yanbain, China 2350 MLP/CG 
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Day Bird Creek, USA 2344 MLP/CG 

Day 1580 MLP/CG 

  

Wolombi Creek, 
Australia 

    

 

Day Brosna, Ireland 1207 MLP/CG 

10 day Malaprabha, India ? Teegavarapu (1998) 

      

MLP/BPNN; 
RBF/OLS 

Zealand et al. (1999) Quarter-
month 

Namakan 19270 MLP/BPNN 

        

Notation: MLP—multi-layer perceptron; BPNN—error back-propagation; RBF—radial basis 
function; OLS—ordinary least squares; LLSSIM—linear least squares with multi-start simplex 
operation; CG—conjugate gradient; KN—Kohonen network. 

comprehensive tabulation has been provided by Dawson and Wilby (2001), and the 
details of several of the cited studies have been reviewed by the ASCE Task Committee 
on Application of Neural Networks in Hydrology (2000). The approach that has been 
overwhelmingly favoured has been the multi-layer perceptron (MLP) network with the 
error back-propagation learning algorithm (BPNN). Several authors reported favourable 
results using radial basis function (RBF) networks due primarily to the fact that the 
training time of RBF networks was usually significantly less than for equivalent MLP 
networks. Furthermore, the RBF networks appear to provide a superior performance over 
MLPs when dealing with only small numbers of input data sets (see Dibike et al., 1999). 
However, the generalisation properties of the RBF networks deteriorate as the number of 
input data sets increases and RBF networks are subsequently out-performed by MLP 
networks (Y B Dibike personal communication, 1997, see also Minns, 1998, p. 33). 

2 RAINFALL-RUNOFF RELATIONSHIPS 

The shape of a hydrograph for any given stream is a 
function of total available overland flow supply, 
subsurface flow, groundwater flow, slope of the overland 
and stream segments, roughness characteristics of flow 
elements, and geometry of channels. (Bras, 1990, p. 385) 

The above quotation, from a well-known hydrological textbook, provides a succinct 
description of the physics of hydrograph generation. The forcing function to the 
catchment system is obviously precipitation in general, and the variations of rainfall 
intensity over time in particular. However, the relationship between the rainfall intensity 
and the response of the catchment in terms of changes in discharge at the outlet is 
primarily dependent on the action of the intervening processes within the hydrological 
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cycle. Overland flow supply and subsurface flow are essentially functions of the soils and 
vegetative cover, and therefore dependent on the state of wetness of the catchment prior 
to the rainfall. The contribution of groundwater is a function of geology and the height of 
the phreatic surface in relation to the channel system. The slope, roughness and geometry 
of the latter then shape the formation of the outlet hydrograph. 

Such influences are well appreciated in a qualitative sense, and models of individual 
processes, such as those for unconfined/confined groundwater flow, are readily available. 
Their integration into spatially-distributed, physically-based models of the land phase of 
the hydrological cycle has been pursued vigorously for almost two decades. However, as 
noted by Abbott and Refsgaard (1996), their application in practice belies the need for the 
type of results that such models are capable of providing. Nevertheless, not all 
hydrological problems which depend on rainfall-runoff modelling for their solution 
require an in-depth knowledge of individual components of the hydrological cycle. This 
differentiation was recognised many years ago by Amorocho and Hart (1964), who 
coined the terms physical hydrology and systems investigation to describe the two 
different approaches. Whereas the former is directed at a complete synthesis of the 
hydrological cycle, in the spatially-distributed and physically-based sense described 
above, systems investigation is concerned with the solution of technological problems 
within the constraints imposed by the available data. 

Perhaps the most widely-known of the modern generation of physically-based, 
distributed catchment modelling systems is the Système Hydrologique Européen (SHE), 
the original structure of which was described by Abbott et al. (1986). Details of a case 
study in which SHE was applied to a river basin of some 4955 km2 in India have been 
provided by Refsgaard et al. (1992). Those authors provided a frank discussion of the 
substantial data requirements and supplementary fieldwork required to implement their 
model. They acknowledged that their use of 2 km×2 km grid squares still did not provide 
a fully physically-based and fully-distributed description of the basin, even though it was 
entirely sufficient for the practical application in question. Even in these systems there 
remained a certain degree of empiricism in the representation of particular hydrological 
processes. Consequently process identification and the associated determination of 
parameter values by direct measurement continued to require extensive calibration 
procedures. 

From this it can be concluded that for many problems of rainfall-runoff modelling 
simpler approaches have serious merit. Less detailed models would in most situations be 
equally accurate and much cheaper to apply. For example for forecasting at sites without 
any significant changes in land use, or for forecasting over a certain range and 
distribution of antecedent soil conditions. But to be fair to the distributed, physically-
based models it should be pointed out that many of these aim to solve more complex 
process problems than simple rainfall-runoff. In practical terms problems of waste 
disposal, erosion, changes in vegetation and so on, are much more important than 
rainfall-runoff alone although such models might include a NN approach as part of its 
structure. 

In contrast, systems investigation is a data-driven approach and hydrology in general 
and rainfall-runoff modelling in particular provides ample opportunities to take advantage 
of informatic techniques, such as NN. The principal advantage of NN is that, even if the 
precise relationship between input and output data streams is unknown but is 
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acknowledged to exist, the network can be trained to learn that relationship. The use of 
the data as recorded, i.e. the total rainfall volumes instead of the rainfall excess volumes 
and the recorded stages or discharges instead of the direct runoff rates is an added 
incentive to avoid unnecessary empiricism. However, the user must be assured at the 
outset that the relevant input and output data sets have been selected in the first place. 

To date, NN have been applied to model the rainfall-runoff relationships of anything 
from laboratory catchments (Hall & Minns, 1993; Carriere et al., 1996) to drainage areas 
in excess of 19000 km2 (Zealand et al., 1999)—see Table 9.1. For the larger sizes of 
catchment, the use of stage or flow records for sites upstream of the outlet may be 
possible, so that the NN are implicitly routing hydrographs as part of the learning process 
(e.g. See & Openshaw, 1998). Indeed, NN have been applied directly for the routing of 
flood and stage hydrographs by Zhu and Fujita (1994), Raman and Sunilkumar (1995), 
Thirumallaiah and Deo (1998) and Teegavarapu (1998). Minns (1998, 2000) showed that 
for these types of simple advection and dispersion processes, a NN is capable of 
encapsulating the same knowledge that is contained in the governing partial differential 
equations. In fact, the governing continuum equations could actually be restored by 
analysing the weights of the NN that had been trained with measured data. 

The following discussion, however, is more specifically concerned with the art of 
rainfall-runoff modelling, which despite being a fertile area for exploration offers several 
less-than-obvious traps for the unwary. The first choice to be made by the NN modeller is 
the mode of presentation of the data to the network, i.e. how can the input and output 
patterns be defined? One possibility is to take the n successive ordinates of the rainfall 
hyetograph and feed these into the n input nodes of a network whose m output nodes 
carry the m successive ordinates of the flow hydrograph. This was the approach followed 
by both Smith and Eli (1995) and Lange (1998). In the former case the outputs were the 
coefficients from a truncated harmonic series representation of the hydrograph, which 
had the added advantage of already being standardised within the interval ±1. 

An alternative method of defining patterns is the so-called dynamic approach. In this 
case the input is a set of concurrent ordinates of (say) the rainfall totals from p raingauges 
within the catchment, and the output is the concurrent rate of outflow. Each time step 
defines a pattern, and therefore a single storm event provides as many exemplars as there 
are runoff ordinates, rather than only a single input-output pairing. This is the approach 
that has been adopted by the majority of writers on rainfall-runoff modelling using NN, 
but requires a much higher level of hydrological insight into the working of the 
catchment system. Within the dynamic approach, three types of model can be identified: 

– naïve dynamic model; 

 
(1) 

– rainfall-runoff simulation model; 

 
(2) 

– ‘auto regressive’ model; 
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(3) 

where Q(t) is the outflow at time level t and r(t) is the rainfall ordinate at time level t. 
The simplest, naïve dynamic rainfall-runoff model (1) would consist of a NN with 

inputs from one or more raingauges at time t, and an output of concurrent flow. A simple 
scatter plot of input(s) against output is sufficient in this case to indicate that the 
description of the input pattern is inadequate. Some improvement is obtainable by 
allowing for the time lag between the occurrence of the flow and the incidence of the 
causative rainfall. Since the flow at any instant is effectively com posed of contributions 
from different sub-areas with highly variable travel times to the outlet, both the 
concurrent and antecedent rainfalls can be considered to be contributing to the outflow. 
Use of a moving window of rainfall at time t and the k previous intervals provides some 
improvement (e.g. Karunanithi et al., 1994). 

The choice of length for the moving window of rainfall can significantly affect the 
accuracy of the resulting NN model. If the window is too short, the input data does not 
contain enough information about the entire rain event that is contributing to the 
concurrent outflow. The square shapes of the output hydrographs in Figure 9.1(a) seem to 
represent only the shape of the rainfall bursts and there is a very poor representation of 
the rising limbs and the recession limbs. The equilibrium discharges are also 
underestimated. Conversely, if the window is too long, the input contains too much 
information, which may even include historical rainfall events whose effects have long 
since passed out of the catchment and so are no longer contributing to the concurrent 
flow. Figure 9.1 (c) is indicative of a NN that can no longer ‘generalise’ the relationship 
between rainfall and runoff. There is simply too much data being presented at the input 
layer and—to maintain the biological analogy—the NN gets ‘confused’. The most 
accurate results, shown in Figure 9.1 (b), are obtained using a moving window length that 
broadly encompasses the range of centroid-to-centroid lag times of the training data; a 
result that has some intuitive appeal. Details of the laboratory catchment experiment 
depicted in Figure 9.1 are given in Hall and Minns (1993). 

A further problem with model (1) is that the simplistic input patterns may easily result 
in ambiguous results. More specifically, intervals with zero rainfall inputs are 
encountered in two contrasting situations. First immediately prior to the beginning of the 
storm and the start of the rising limb, and secondly some time after the end of the storm 
event when flows are moderately high and in recession. The NN has no information to 
discriminate between these two ‘no-rainfall’ conditions and once more becomes 
‘confused’. These conditions have to be differentiated by the addition of another input if 
the NN is to achieve the correct mapping. The most obvious candidate is adding a flow 
ordinate. This is most easily provided by making the output at time t an input at time t+1 
(Hall & Minns, 1993; Minns & Hall, 1996, and similar use of stage outputs by Campolo 
et al., 1999). This approach is described above as model (2). In effect, the flow (or stage) 
ordinate is employed as a crude measure of catchment wetness. Figure 9.2 demonstrates 
the remarkable improvement in the NN model obtained by simply adding several 
antecedent flow ordinates to the input. 

Model (3) is then the logical extension of models (1) and (2) into purely ‘auto-
regressive’ time series prediction. This model does not make use of any rainfall data at all 
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but uses only antecedent outflow values as input to the NN to predict the concurrent 
outflow. Figure 9.3 depicts the results of a NN that uses only the 5 antecedent flow values 
to predict the concurrent outflow. 

Although the rising limb of the hydrograph in Figure 9.3 is not reproduced very 
accurately and the equilibrium flows are slightly underestimated, this NN model provides 
only slightly poorer performance than the results from model (2) in Figure 9.2. The 
overshoot at the top of each rising limb is caused by the fact that the network has no other 
information to tell it at which level the rising limb should stop until the actual 
measurements indicate that this has happened. That is, at the top of the rising limb, the 
output from the NN continues rising in  
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Fig. 9.1. Performance of NN on the 
verification event for a laboratory 
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catchment using only 10-second-
interval rainfall data as input for (a) 
10-interval; (b) 25-interval; and (c) 50-
interval windows. 

 

Fig. 9.2. Performance of NN on 
verification event for laboratory 
catchment using 25 rainfall ordinates 
and 4 antecedent flow ordinates at 10-
second intervals as input. 
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Fig. 9.3. Performance of NN on 
verification event for laboratory 
catchment using 5 antecedent flow 
ordinates only as input. 

magnitude reflecting the pattern of the preceding flows. It is not until several time steps 
have passed for which the measured values are all constant, that the NN ‘recognises’ that 
the equilibrium level has been reached. Similarly, the phase error that occurs at the 
beginning of the recession limb is caused by the fact that the NN has no knowledge about 
the cessation of the rainfall until one or two time steps after the actual measured values 
start to decrease. 

Figures 9.1–9.3 depict respectively the results of models (1), (2) and (3) when applied 
to the problem of one-step-ahead time series prediction. In general, the plethora of 
literature involving the application of NN to rainfall-runoff modelling confirms the 
exceptional accuracy of NN models for short forecasting intervals. Longer forecasting 
intervals may be obtained by utilising Q(t+1), Q(t+2),…etc. as outputs during the training 
of the NN. Unfortunately, the performance of the NN decreases quite rapidly with an 
increasing prediction time horizon (Campolo et al., 1999; Zealand et al., 1999). Another 
approach is to use a trained NN with a ‘feedback’ loop in which the predicted output is 
used directly as input data for the subsequent time step. Unfortunately, the error 
accumulation associated with this approach also means that the performance of the NN 
deteriorates quite rapidly after only one or two iterations (van den Boogaard et al., 1998). 
Although Abrahart (1998) describes a method to deal with the accumulated error, the 
most promising approach would appear to involve the use of partial recurrent neural 
networks (PRNN), which contain feedback loops in both the training and recall modes of 
the network. Hertz et al. (1991) describe the architecture of these so-called Jordan/Elman 
Recurrent Networks. Proaño et al. (1998) and van den Boogaard et al. (1998) show 
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significant improvements in long-term predictions using PRNN (see Chapter 7), which 
they also refer to as ‘auto regressive’ NN. 

In terms of the number of patterns that can be extracted from a given data set, the 
dynamic models described above are superior to those based simply on the rainfall 
hyetograph as the input and the complete hydrograph as the output. However, the 
problem then arises as to the set of time points for which those patterns are extracted. 
Here a clear perspective is required as to the purpose of the modelling, since with any 
series of discharges the (positive) skewness of its marginal distribution tends to increase 
as the time interval at which the data are recorded reduces. This effect is manifested in 
the appearance of sustained recessions to the hydrographs as the time interval becomes 
shorter, such that with (say) daily data they become the dominant features of the time 
series. In these circumstances, the rising limbs and peaks of the storm hydrographs form 
only a small portion of the total number of patterns in the time series, and the mapping of 
inputs to outputs is biased in favour of the recession behaviour. If therefore the purpose 
of the modelling is to capture the essence of the flood regime of the catchment, then the 
inputs should be restricted to the major storm events. For convenience, these inputs and 
outputs may be arranged in the form of an artificial time series in which the flow 
transitions between successive events are smoothed to provide continuity. In the absence 
of seasonal influences, this approach has been found to work satisfactorily (Hall & 
Minns, 1993; Minns & Hall, 1996, 1997; Minns, 1996; Campolo et al., 1999). If the full 
range of flow behaviour is of interest, then an alternative approach might be to carry out a 
prior classification of event types or hydrograph features—perhaps employing a Kohonen 
network—and to develop a separate NN rainfall-runoff model for each class (e.g. See & 
Openshaw, 1998). 

Dawson and Wilby (1998) have concluded that NN for long flow series at short time 
intervals should ideally be calibrated and validated on data for a common period of the 
year. Seasonal influences can, of course, be incorporated by extending the list of input 
variables. For example, Abrahart and Kneale (1997) and Abrahart (1998) employed an 
annual hour count converted into its sine and cosine equivalents to denote ‘time of year’. 
Alternatively, Zealand et al. (1999) added a ‘period of the year’ (in effect, a week 
number) and cumulative precipitation since the previous 1 st November to the current 
time up to 1 st April, to their inputs. The latter being intended as a measure of winter 
snowpack accumulation. Yet another approach to incorporating a seasonal variable is to 
use temperature data as an additional input (Lorrai & Sechi, 1995; Poff et al., 1996; 
Zealand et al., 1999). 

Despite the potential significance of seasonal influences, the majority of NN rainfall-
runoff models rely on combinations of current and antecedent rainfall totals and 
antecedent flow (or stage) ordinates as inputs (see Hsu et al., 1995; Minns & Hall, 1996, 
1997; Jayawardena & Fernando, 1998; Fernando & Jayawardena, 1998; Campolo et al., 
1999). More elaborate inputs derived from the basic records have been introduced in 
some studies. Mason et al. (1996) for example uses the derivative of the rainfall intensity 
and the integral of the rainfall intensity over the previous five time steps. Shamseldin 
(1997) defined a series of rainfall indices consisting of weighted sums of previous rainfall 
ordinates, the weights being derived from the ordinates of a gamma distribution. 

The predominant objective of the rainfall-runoff models that have been developed 
using some form of NN has been that of forecasting future flows given the knowledge of 

Rainfall-Runoff Modelling     169



past flows, rainfalls and other relevant variables. Unfortunately, the MLP-type of NN is 
not ideally suited to this application. This is largely because the sigmoidal activation 
function adopted by many authors imposes a scaling on the network output such that the 
network is incapable of predicting a flow larger in magnitude than that contained within 
the training data set. This effect is amply demonstrated by Minns and Hall (1996) based 
upon trials with synthetic data. NN modellers must be aware that when a NN is applied to 
a real catchment, even if the training data included all the available measurements, there 
remains a small, but non-negligible probability that an extreme event, beyond the range 
of recorded experience, might occur in the future, and not be correctly forecast. 

An alternative approach suggested by Minns (1996) and Minns and Hall (1997) is to 
use the change in flow as the output rather than the absolute magnitude of the discharge. 
This variable was used independently by Zhu and Fujita (1994) for forecasting purposes, 
but without explanation. Change in stage was adopted as the forecast variable by See and 
Openshaw (1998), presumably because of the scaling problem outlined above. However, 
Karunanithi et al. (1994) claim that a (clipped) linear activation function allows 
extrapolation. This property arises due to the unbounded nature of the linear activation 
output. However, if this type of NN is applied with little or no hydrological insight, this 
apparent luxury of ‘unlimited’ extrapolation may lead to quite unacceptable linear 
extrapolations of some very non-linear hydrological processes. The results may then be 
not only meaningless, but also quite dangerous to apply! More recently, Imrie et al. 
(2000) have proposed the addition of a ‘guidance system’ to the output layer of a cascade 
correlation architecture of NN in order to assist with extrapolation beyond the range of 
the training data set. However, this approach depends upon information from the testing 
data set, and thereby disrupts the cycle of training and independent verification (see also 
Chapter 6).  

3 EXAMPLE: A SMALL SEWERED CATCHMENT 

In order to minimise the possible effects of seasonal variations in losses, Hall and Minns 
(1993) constructed a NN model using records from an urban catchment area. The Cantley 
Estate in Doncaster was gauged for a 3-year period in the late 1950s as part of a research 
programme carried out by the then Road Research Laboratory (see Watkins, 1962). The 
catchment, which has a gross area of 5.14 ha, is served by a separate surface water 
drainage system having an outfall 610 mm in diameter. The details of 16 storm events 
were kindly supplied by the Institute of Hydrology (now the Centre for Ecology and 
Hydrology), Wallingford. Twelve of these events were randomly selected for training and 
the remaining 4 reserved for verification. With data at oneminute intervals, there were 
therefore 985 data sets for training and 270 for verification. 

Several different network configurations were trained and tested. A series of runs was 
carried out exploring the effect of changing the length of the rainfall window, and then 
adding antecedent flows to the input. Simultaneously, the number of nodes in the hidden 
layer was adjusted to eventually obtain the smallest possible network with the best 
generalisation properties. Rainfall-only input (i.e. model (1)) produced very noisy 
outputs, with peak flows significantly under-estimated on some events and overestimated 
on others. In addition, the lower limbs of the recessions were too steep. The addition of 3 
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antecedent flows (i.e. model (2)) removed most of these undesirable features, although 
the highest peak flow rate was both underestimated in magnitude and late in timing. The 
results of the best-performing network configuration, with 18 inputs, 10 hidden nodes and 
1 output, are presented in Figure 9.4.  

 

Fig. 9.4. Performance of NN on 
verification events for Cantley Estate 
sewerage system using 15 rainfall 
ordinates and 3 antecedent flow 
ordinates as input. 

Having demonstrated that a NN with a suitable choice of inputs is capable of 
reproducing, with some fidelity, the responses to storm events upon which it has not been 
trained, the question arises as to whether the approach offers any advantages over a 
conventional black-box rainfall-runoff model. The 4 verification events from the Cantley 
Estate were therefore modelled separately by means of a well-established, conceptual 
hydrological modelling package, RORB (Mein et al., 1974). 

The basic element of the RORB model is a single, conceptual, non-linear reservoir for 
which the relationship between storage, S, and discharge, Q, is given by: 

 
(4) 

where Kc is a storage constant applicable to all sub-areas within the catchment and Kr is a 
relative delay time applicable to individual channel reaches within the network estimated 
from the expression: 
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(5) 

where Li is the length of the reach represented by the storage element, Lav is the average 
flow distance of sub-catchment inflows within the channel network, and f is a factor 
depending upon the type of channel reach, i.e. natural, lined or unlined. 

For this experiment, the power of the non-linear reservoir, m, was set to the default 
value of 0.8, and the initial loss and storage constant manipulated until the peak flow rate 
and total runoff volume were satisfactorily reproduced. In the case of the event of 3 July, 
1957, which was double-peaked, the rainfall was separated into two bursts, thereby 
introducing the ratio between the runoff volumes caused by each burst as a third 
calibration parameter. The plots of the single-peaked storm of 26 August, 1956 and the 
double-peaked event of 3 July, 1957 are displayed in Figures 9.5 and 9.6 respectively. 

The results are compared in Table 9.2 in terms of their coefficients of efficiency as 
defined by Nash and Sutcliffe (1970). The coefficients of efficiency (COE) of the two 
models on these four events are generally comparable in magnitude. However, in the case 
of the event of 3 July 1957 (that with a pronounced double peak), the performance of the 
NN is obviously superior. 

Some important factors should be considered when evaluating these results. Firstly, 
the calibration parameters for the RORB model included an initial loss rate, while 
application of the NN did not involve any consideration of loss separation. In fact, the 
NN has no calibration parameters as such, but only the set of weights which it learns 
itself. It thus involves no operator intervention and no a priori knowledge of the 
catchment. Moreover, since the RORB model was calibrated for each event individually 
but the NN operated on all 4 events with the same set of weights determined from the 
training, this comparison is inherently unfavourable to the NN model. Although the 
training of the NN requires a substantial investment in computer time, the procedure is 
far more  
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Fig. 9.5. Model comparison for storm 
of 26 August, 1956 (Cantley Estate). 

 

Fig. 9.6. Model comparison for storm 
of 3 July, 1957 (Cantley Estate). 
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straightforward than is the calibration of even a simple conceptual model, which must be 
undertaken on an event-by-event basis. 

The results obtained are sufficient to demonstrate that, for situations involving 
rainfall-runoff modelling in which there are no extraneous influences such as land-use 
changes, a NN has the potential to perform in a comparable fashion, if not better than a 
conceptual hydrological model.  

Table 9.2. Comparison between fit provided to four 
storm events by a NN model and the RORB 
conceptual model in terms of coefficients of 
efficiency (COE). 

  Coefficients of efficiency 

Storm of RORB NN 

23 August 1956 0.974 0.981 

26 August 1956 0.983 0.982 

3 July 1957 0.884 0.978 

21 July 1957 0.990 0.951 

4 CONCLUDING REMARKS 

Since flood forecasting has emerged as one of the dominant applications of NN rainfall-
runoff models, the problem of extrapolation beyond the confines of events in the training 
data set has to be carefully addressed. MLP having a sigmoidal activation function are 
not capable of departing very far outside the range of training events and this feature of 
their behaviour is not always well appreciated. The alternatives are either to choose a 
variable that is more constrained in its absolute values, such as change in flow or stage, or 
to adopt an alternative form of activation function, or even a different type of network. 
Definitive recommendations have yet to emerge on this critical issue. However, the 
further possibility of incorporating additional domain knowledge into the modelling 
process by adding a (synthetic) Estimated Maximum Flood to the training data set has 
been shown to hold considerable promise (see Hettiarachchi et al., 2004). 

The results of all of the numerical experiments reported to date indicate that suitably 
configured NN are capable of identifying usable relationships between runoff discharges 
and antecedent rainfall depths to an exceptional degree of accuracy. The relationships are 
obtained using only the raw, measured data and do not require the use of any derived or 
artificial calibration parameters. In particular, the NN model provides these exceptional 
results unhindered by constraints of volume continuity in the input and output data and, 
in fact, the units of the data are chosen simply for convenience of measurement and 
representation (e.g. rainfall depths in mm, discharges in m3/s). Furthermore, simple, non-
hydrological parameters like the percentage of impervious area may be easily 
incorporated into the model at the discretion of the modeller (see Minns & Hall, 1997). 
These types of parameters may be derived from simple measurements or may even be 
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highly intuitive, and are likewise unrestricted in terms of conditions of dimension or 
hydrological-physical consistency. 

The discussion above demonstrates that although a NN may be regarded as an ultimate 
form of ‘black box’ model (Minns & Hall, 1996), the potential user is not absolved from 
devoting some thought to the mode of presentation of data to the network. The principal 
question to be posed is: what exactly constitutes the pattern of inputs that produces the 
pattern of outputs? Moreover, do the selected input and output patterns contain additional 
information that is not strictly relevant to the purpose of the exercise? These questions are 
inevitably problem-dependent, but in all cases the selection of inputs, whether data as 
recorded or variables derived from operations on recorded data, requires the application 
of hydrological insight as much as any conventional physical/conceptual rainfall-runoff 
model. Provided that such insight is applied, the performance of NN models can be 
undoubtedly superior to conventional hydrological models in situations that do not 
require more detailed knowledge of the hydrological system. 
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A Neural Network Approach to Rainfall 

Forecasting in Urban Environments  
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Engineering, The University of New South Wales, Sydney, Australia 

ABSTRACT: An effective flood warning system in urban areas must 
provide the warning with sufficient lead time for an appropriate response 
by the relevant emergency services and the affected community. This 
requirement poses a critical problem as most urban catchments are 
characterised by a fast hydrologic response to storm events. The approach 
used here to forecast rainfall over the Upper Parramatta River Catchment 
in Sydney is based on the application of a pattern recognition technique 
using an artificial neural network. It assumes that the future rainfall is a 
function of a discrete number of past spatial and temporal rainfall records; 
an important task, therefore, is the determination of the number of spatial 
and temporal rainfall records necessary for accurate prediction of future 
rainfall. The rainfall prediction model performed best when an optimal 
amount of spatial and temporal rainfall information was provided to the 
network. 

1 INTRODUCTION 

Flash floods are a life-threatening phenomenon, which also result in economic losses and 
social disruption. Handmer et al. (1988), for example, estimated direct economic losses 
for residential property in the Toongabbie Creek catchment (a subcatchment of the Upper 
Parramatta River, in the western suburbs of Sydney, Australia) as being approximately $5 
million (1986 Australian dollars) for the 1% Annual Exceedance Probability (AEP) 
event. Commercial and industrial activities within the catchment were also estimated to 
have suffered economic losses of a similar magnitude. In the decade since these estimates 
were made, significant additional urbanisation, which decreases the potential response 
time of warning systems, together with inflation, make such potential losses an 
underestimate in present day terms. 

Development of an effective flood warning system can be expected to mitigate these 
losses. For an effective flood warning system, there needs to be sufficient time between 
the recognition of a potential flood event and its occurrence, for dissemination of flood 
warning messages and the activation of appropriate emergency services. More accurate 
forecasts of a flood should help to increase the time between the recognition of a 
potential flood event and its subsequent occurrence. This need has prompted the 



development of an effective rainfall forecasting system, wherein it must be recognised 
that rainfall is a dynamic process, which varies in space and time. There is a need to 
consider the spatial variability in a point-based rainfall forecasting model and to 
transform the point data output into areal distributions using spatial tools within a 
Geographic Information System (GIS). 

There are two basic approaches suitable for the development of a rainfall forecasting 
model. These can be categorised as (i) the process model approach, in which the physical 
processes influencing rainfall are analysed and process models are developed, although 
this approach may not be feasible because: 

• rainfall is a complex dynamic system which varies both in space and time resulting in 
problems associated with the definition of solution space boundaries; 

• even if the rainfall processes can be described concisely and completely, the volume of 
calculations involved may be prohibitive; and 

• the data that are available to assist in the definition of control variables for the process 
models, such as pressure, evaporation, wind speed and direction are limited in both the 
spatial and temporal dimensions. 

and (ii) the ‘black box’ model approach, in which pattern recognition technology is used 
to predict the most likely future pattern of rainfall in time and space. The aim is to extract 
from the historical rainfall records the essential patterns necessary for the prediction of 
future rainfall events. There are many alternative techniques for the extraction of the 
essential features from historical records; the technique used here is based on artificial 
neural networks (NN). 

Rainfall forecasts at rain gauge locations provide only scattered data and forecasts of 
rainfall over a catchment. The rainfall forecasts may have a fine temporal resolution, but 
the true areal rainfall, which produces runoff, is not known. This highlights a critical 
problem in conventional rainfall-runoff modelling where simplified approaches, such as 
Thiessen Polygons, are used without taking either the spatial distribution or the dynamic 
properties of the rainfall into account. These simplified approaches can result in large 
errors in runoff estimation (Fontaine, 1991; Urbonas et al., 1992). In response to this 
need, Ball and Luk (1998) developed a method to model the spatial variability of rainfall 
using point measurements of rainfall as the input information. NN rainfall forecasts can 
therefore be passed to this model for the determination of future rainfall patterns over a 
catchment. The integration of these tools provides a powerful forecasting solution.  

2 THE UPPER PARRAMATTA RIVER CATCHMENT 

2.1 Catchment details 

The Upper Parramatta River Catchment is used as the study area for the development of 
an integrated rainfall forecasting system. This river is situated in the western suburbs of 
Sydney and drains into Sydney Harbour (Fig. 10.1 and 10.2). The tidal limit of the river 
is the Charles Street Weir. Immediately upstream of  
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Fig. 10.1. Location of Sydney, 
Australia. 

 

Fig. 10.2. Rain gauges within the 
Upper Parramatta River Catchment. 

Table 10.1. Population and dwellings in Parramatta. 
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Year 
Total 
population 

% change over past 
five years 

Total occupied 
dwellings 

% change over past 
five years 

1976 348398 – 100246 – 

1981 374190 7.4 111064 10.8 

1986 384601 2.8 119229 7.4 

1991 435478 13.2 140900 18.2 

the Weir, is the Parramatta Central Business District which has suffered considerable 
flood damage over a number of years. There are two main tributaries of the Parramatta 
river within the Upper Parramatta River Catchment: the Toongabbie Creek and Darling 
Mills Creek. The catchment is steep with an average slope of 1.2%. 

The dominant land use is a mix of residential, commercial, industrial and open space 
(parkland) areas. Considerable development as a result of the rapid increase in population 
and dwellings has occurred within this catchment over the past two decades, as shown in 
Table 10.1 (Australian Bureau of Statistics, Census of Population and Housing, personal 
communication). The increase in the number of dwellings from 1986 to 1991 is 18%. A 
rough estimation of the increase in impervious area can be obtained by assuming an 
average dwelling size of 200 square metres and allowing 50% of this area for associated 
impervious area such as roads and footpaths. Using this approach, an estimate for the 
increase in impervious area is 6.5 km2 or 6%. Both increases are significant from a 
hydrological and flood management viewpoint. 

The effect of this urbanisation has been continuing increases in estimates of the peak 
level for all flood events. To mitigate the social and economic losses associated with 
these floods the Upper Parramatta River Catchment Trust (UPRCT) was instituted in 
1989, with the task of managing flood mitigation measures within the catchment, among 
other duties. 

2.2 Rainfall records 

There are sixteen continuously recording rain gauges within the catchment (Fig. 10.2). 
The majority of these gauges have been installed by the UPRCT since its formation. 
Consequently, long-term records are not available, and there is, on average, one point 
rainfall sample for each 7 km2 of catchment. Moreover, although this would represent a 
high density of rain gauge information for most catchments, Urbonas et al. (1992) 
suggest that an even higher density of spatial information is required if accurate 
predictions of catchment response are to be obtained for convective storm events (Table 
10.2). 

Records from the 16 rain gauges within the Upper Parramatta River Catchment were 
obtained from January 1991 to September 1996. During this period, 34 storm events 
occurred where the daily rainfall total exceeded 20 mm. More than 70% of such storms 
were convective and the rest were frontal. The convective storms occurred predominantly 
during the summer and autumn seasons,  
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Table 10.2. Accuracy of rainfall-runoff models 
(after Urbonas et al., 1992). 

Gauge density (km2/gauge) Range (%) Mean deviation (%) 

8.0 −100.0 to 150.0 −24.2 

4.0 −75.3 to 94.5 0.5 

2.7 −32.2 to 63.66 15.8 

2.0 −32.2 to 18.8 −0.9 

1.6 0.0 to 0.0 0.0 

while the frontal storms were more evenly distributed through the year. The data series 
were extracted in 15-minute intervals. Missing rainfall values, due to malfunctioning 
gauges or errors in transmission of the data, were estimated from neighbouring rain 
gauges using the spatial rainfall model of Ball and Luk (1996, 1998). 

3 RAINFALL FORECASTING—POINT PATTERNS 

3.1 Building a neural network solution 

To develop the proposed rainfall forecasting model, the continuous process of rainfall 
was represented using a discrete Markovian process, in which the rainfall value at a given 
location in space and time is a function of a finite set of previous realisations. With this 
assumption, a simple model structure can be expressed as: 

(1) 

where X(t)=[x1t, x2t,…, xNt]T represents a vector of rainfall values x1t, x2t,…, xNt at N 
different gauge sites at time t, where T denotes the transpose operator, f[] is a non-linear 
mapping function, which shall be approximated using NN, e(t) is a mapping error (to be 
minimised) and k is the (unknown) number of past realisations contributing to rainfall at 
the next time step, referred to as the model lag. If k is equal to 1, rainfall at the next time 
step is related only to the present rainfall, representing a lag-1 model. 

Multi-layer feed-forward neural networks (MLFN) offer a straightforward approach to 
represent the above rainfall model. Further particulars about the workings of this network 
are provided in Chapter 2. The MLFN is presented with the current and past rainfall 
values as inputs, e.g. X(t),…, X(t−k+1), and the next rainfall value X(t+1) is used as the 
network output. There are, however, several drawbacks associated with this approach. 
First, since the model lag k is unknown, a lengthy trial process is required to determine 
the optimal value of k. Second, for a network with high orders of lag, a large number of 
input nodes would be required. Consequently, the number of parameters will increase, 
making the network unnecessarily complex and with a higher risk of overfitting. Finally, 
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the MLFN is a static model, which might struggle or fail to model the dynamic nature of 
rainfall processes. Further details on MLFN are provided in Chapter 2. 

Time delay neural networks (TDNN) offer an alternative solution, which can 
effectively model the rainfall process while keeping a minimum number of parameters. 
More details about this type of network are provided in Chapter 5. A distinctive feature of 
TDNN is the use of partial connections; this dramatically reduces the number of weights 
in the network compared with a fully connected MLFN architecture. In addition, TDNN 
have been developed for detecting local features within a larger pattern; this feature 
detection ability is very useful for the task of rainfall forecasting. Each TDNN, however, 
is still a static model. This static representation has several drawbacks. First, if the 
rainfall process has a long term memory, a large number of inputs nodes will be required, 
resulting in a network containing a large number of free parameters. Second, the number 
of past rainfall inputs has to be determined through the process of investigation, which 
often requires a lengthy series of trial and error experiments. A dynamic model may 
overcome this problem. Further details on TDNN are provided in Chapter 5. 

NN with feedback connections that feed past states of the system back to the network 
can be used to build dynamic models. This is a recurrent network; recurrent networks 
exhibit full connection between each node and all other nodes in the network whereas 
partial recurrent networks contain a limited number of specific feedback loops. A 
recurrent network possesses the characteristic of dynamic memory. In addition, a 
recurrent network reduces the number of inputs and consequently the number of 
parameters, speeding up the calculations. For practical applications, the partial recurrent 
neural network (PRNN) is more appropriate because the training of such networks is 
similar to that of the MLFN and is therefore also much easier than a recurrent network. In 
partial recurrent networks the main network structure is feedforward and the feedforward 
connections are trainable. The feedback connections are formed through a set of ‘context’ 
units that are not trainable, which simplifies the training process. The function of the 
context units is to store information from the previous time steps. To achieve this, the 
context units make a copy of the activation of hidden nodes in the previous time step. 
Therefore, at time t the context units have some signals related to the state of the network 
at time t−1. As a result, the rainfall at time t+1 is a function of the rainfall at time t and 
the previous states of the system represented by the activation of the hidden nodes at time 
t−1, expressed by 

 
(2) 

where X(t+1) are rainfall at time t+1, which are outputs of the network, X(t) are rainfall at 
time t, which are inputs of the network, O(t−1) are the activations of the hidden nodes at 
time t−1 and copied back to the context units for input at time t, g() is a recurrent 
mapping function and e(t) is the mapping error. Further details of PRNN are provided in 
Chapter 7.  

3.2 Neural network methodology 

MLFN, TDNN and PRNN models were developed for forecasting the storm events 
occurring over the Upper Parramatta River Catchment. The PRNN and TDNN were 
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specifically developed to model the structures in time series, so they are considered to be 
the most suitable candidates for the current study. The MLFN, however, is the most 
popular model and has a relatively simple structure. The MLFN was included in this 
study to provide a base line for comparison. The networks were developed through: (i) 
data preparation, including data pre-processing, (ii) selection of training algorithm and 
performance indicators, and (iii) determination of the appropriate inputs and outputs. 

In the data preparation step, two data sets were established for training and testing the 
network; the third data set was used for validating the training to ensure that the network 
learns the pertinent information and not the noise associated with the data used for 
training the network. To obtain unbiased samples for each of the data sets, the 34 storm 
events were divided randomly into: 

• a training set—16 storm events with a total of 748 rainfall periods. This data set was 
used to calibrate the connection weights of the various networks tested. 

• a validation set—8 storm events with a total of 376 rainfall periods. This data set was 
used to monitor the performance of the training and to provide an indication of when 
to cease training. 

• a testing set—10 storm events with a total of 625 rainfall periods. This final data set 
was used to evaluate the performance of the networks on data previously unseen by 
the network. 

The selection of individual events for a particular data set was random; hence all events 
should have similar characteristics (Table 10.3). 

Prior to training, the data were scaled to a smaller range [0, 1], which is associated 
with the choice of a sigmoid activation function. There are several alternative data 
transformation approaches that can be used, with each approach having its own 
advantages and disadvantages. In this case, a logarithmic algorithm was used to ensure 
that the recorded rainfall values were transformed into the desired range. 

The next step in the implementation of the network is the selection of the training 
algorithm and performance indicator. The normalised mean squared error (NMSE) was 
chosen as the performance indicator for a comparison between the three alternative types 
of network. One problem with the use of sum squared error for the network comparison is 
that the rainfall series had different lengths, which introduces problems. This problem 
was overcome with a  

Table 10.3. Summary of storm characteristics. 

Characteristics Training Validation Testing 

Storm type 10 convective, 6 frontal 4 convective, 4 frontal 8 convective, 2 frontal 

Storm duration (hours) 3 to 22 2 to 21 6 to 24 

Time to max. rainfall 30 min to 10 hr 1 hr to 18 hr 45 min to 21 hr 

normalised version of sum squared error, i.e. the normalised mean squared error (NMSE). 
Weigend et al (1992) defined the NMSE as 
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(3) 

where N is the total number of output nodes, P is the total number of data samples, dnp are 
the target outputs, ynp are the network outputs and σ2 is the variance of the target outputs. 
NMSE is, in essence, the sum of squared errors normalised by the number of data 
samples over all output nodes and the estimated variance of the data. 

The final step in the data preparation is the determination of the input and output data 
representation. For the Upper Parramatta River Catchment, there are a number of possible 
configurations for the input and output information. 

The three most feasible approaches are to: 

• divide the catchment into grids (439 cells of 500m×500m) and use rainfall at each cell 
as inputs to forecast rainfall at all cells simultaneously. The resulting outputs will be 
the rainfall at each cell of the catchment; 

• use rainfall at the 16 gauges as inputs to forecast rainfall for the 16 gauges 
simultaneously. In this case, one network represents the rainfall for all 16 gauges, and 
from the rainfall forecasts for the 16 gauges, a spatial rainfall model is used to 
generate the rainfall at all points of the catchment; or 

• use rainfall at the 16 gauges as inputs to forecast rainfall for a single gauge. This will 
result in 16 networks for the 16 gauges of the catchment. Again, after the rainfall 
forecasts for the 16 gauges are obtained, a spatial rainfall model is used to generate the 
rainfall at all points in the catchment. 

Initial assessment of these three configurations suggests that the option of using 
information from the 16 rain gauges as input information and using the same locations as 
the output information (i.e. rainfall forecast) is the most desirable option. The main 
reasons for this are: 

• information from all measurement points are used simultaneously to produce forecasts 
for each of the measurement points; and 

• forecast results can be used readily in an existing spatial rainfall model. 

The option of forecasting a single gauge was rejected because the same process was 
required once for each prediction location and, therefore, 16 networks were needed. In a 
similar manner, the option of using 439 cells as both input and output was rejected, since 
it involved the use of a large number of input and output nodes and because the 
consequent network would contain a large number of parameters (weights). For example, 
a one-hidden layer MLFN with 439 input nodes, 439 output nodes and 2 hidden nodes 
comprises 1756 connections (439×2+439×2, excluding the biases). The available rainfall 
data (max. 1749 data points) were not considered sufficient information to train a 
network of this size and nature.  

Table 10.4. MLFN with different architectures and 
time lags. 

  Normalised Mean Squared Error (NMSE) 
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Network Training Testing 

Lag-1 MLFN with 2 hidden nodes 0.53 0.71 

Lag-1 MLFN with 128 hidden nodes 0.40 1.20 

Lag-2 MLFN with 2 hidden nodes 0.51 0.73 

Lag-2 MLFN with128 hidden nodes 0.36 0.96 

Lag-3 MLFN with 2 hidden nodes 0.49 0.72 

Lag-3 MLFN with 128 hidden nodes 0.32 1.26 

Lag-4 MLFN with 2 hidden nodes 0.49 0.78 

Lag-4 MLFN with 128 hidden nodes 0.27 2.33 

Note: Each network was trained for 1000 epochs. 

3.3 Development of alternative networks 

The three alternative types of NN considered in this chapter were trained and tested with 
rainfall data collected from the catchment, i.e. a total of 34 storm events with depth 
recorded every 15-minutes. Various network configurations were explored to determine 
the effect of the key variables: lag of the network and the number of hidden nodes. 

MLFN solutions comprised networks with 1, 2, 3 and 4 lags and 2, 4, 8, 16, 24, 32, 64, 
and 128 hidden nodes. We also explored MLFN with two hidden layers. For TDNN, the 
size of input windows was 2, 3 and 4, and for PRNN, the lag was fixed at 1, while the 
number of context units tried was 2, 4, 8, 16, 24, 32 and 64. The complete listing of all 
modelling results using these parameters is presented in Luk (1998). 

Initial investigation of network performance with various numbers of hidden nodes 
indicated that the networks with a greater number of hidden nodes resulted in a lower 
training error, at a fixed stopping condition, which was set at 1000 epochs and where one 
epoch represented a complete sweep through the training patterns. Moreover, since the 
connection weights of the network were updated only at the end of each epoch, a 
maximum of 1000 epochs also means that the weights were updated at most 1000 times. 
This result is to be expected since more hidden nodes equates to more free parameters, 
which results in lower training errors. During testing, however, these solutions had poorer 
performance since the networks had over-learned the training data. This effect is 
illustrated in Table 10.4. Irrespective of the order of lag in the network, MLFN with 128 
hidden nodes produced a smaller NMSE during training, but a much higher NMSE 
during testing. For example, the lag-4 MLFN with 128 hidden nodes had the smallest 
training error of 0.27 while the testing error for the same network was the highest at a 
value of 2.33. 

The influence of the order of lag can also be assessed from Table 10.4. Perusal of the 
data shown in this table indicates that MLFN with higher order lags tended to learn the 
training data better. For validation, however, the reverse is the case. These results do not 
suggest that a network with higher order lag will give poorer results. The results in fact 
indicate that networks with higher order lag, which contain more connection weights and 
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hence more free parameters, like networks with more hidden nodes, tended to over-learn 
the training data. 

From this analysis it was concluded that the performance of a network depended more 
on the complexities of the network than the inclusion of additional information through 
the use of data from previous time periods. The effect of using higher orders of lag was to 
increase such complexities without the provision of pertinent additional information. 
Consequently, it is suggested that the performance of a network depends not on the 
number of hidden nodes or the order of lag but rather on the combination of these two 
aspects. 

3.4 Comparison of alternative networks 

The network results of Luk (1998), in addition to being used for determination of 
network components and architectures, can also be used as the basis of a comparison 
between alternative types of network. The selection of a best network configuration based 
on NMSE scores computed using test data for eight networks with the lowest validation 
error are shown in Table 10.5. Each row of Table 10.5 represents a network with a 
specific lag. For example, the first row shows the results for a lag-1 MLFN with 24 
hidden nodes, while the second row shows the results for a lag-2 MLFN with 8 hidden 
nodes. 

In general, all three types of NN have comparable performance, which suggests that 
the functions being modelled are quite similar. NMSE test scores for all networks were in 
the range of 0.63 to 0.67. Such small differences are due to networks being developed on 
an optimal architecture defined through the interaction between the lag and the number of 
hidden nodes. For example,  

Table 10.5. Comparison of alternative networks. 

Network 
Training 
(NMSE) 

Validation 
(NMSE) 

Testing 
(NMSE) 

Stopping 
epoch 

Training error at 1000 
epoch 
(NMSE) 

MLFN Lag 1 
(16–24–16) 

0.50 0.68 0.64 200 0.49 

MLFN Lag 2 
(32–8-16) 

0.51 0.69 0.66 100 0.47 

MLFN Lag 3 
(48–4-16) 

0.48 0.69 0.67 700 0.47 

MLFN Lag 4 
(64–2-16) 

0.52 0.71 0.65 200 0.49 

PRNN 
(16–4–16) 

0.49 0.67 0.64 300 0.48 

TDNN Lag 2 
(32–16–16) 

0.50 0.67 0.63 100 0.41 

TDNN Lag 3 0.50 0.69 0.64 100 0.41 
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(48–32–16) 

TDNN Lag 4 
(64–32–16) 

0.51 0.69 0.65 100 0.40 

Notation: The network configuration is denoted by three figures (x-y-z), where x=no. of input 
nodes, y=no. of hidden nodes and z=no. of output nodes. 

the lag-1 MLFN requires more hidden nodes to achieve an optimal solution while the 
more complicated lag-4 MLFN requires two hidden nodes due to the large number of 
parameters associated with high order of lag. This result is consistent with the concept of 
the existence of an optimal configuration for a network that was discussed earlier. 

Figures 10.3 and 10.4 compare three one-step ahead forecasts of rainfall depth at a 
single gauge. The hyetograph in each figure shows the actual rainfall recorded at that 
gauge site and the forecast rainfall, and similar plots for other gauges and storm events 
presented in Luk (1998) and Luk et al. (2000). 

Analysing the forecast errors for one storm with each of the three solutions, we 
conclude that: (i) the forecast error increases as the rate of change of rainfall intensity 
increases; (ii) the networks made better predictions after the peak of the storm event; and 
(iii) all the networks tended to under-predict the rainfall when the rate of change in the 
rainfall intensity was positive, and to over-predict the rainfall when the rate of change in 
the rainfall intensity was negative. 

Summarising all the comparison tests, it was found that: 

• the three alternative types of NN have comparable performance; 
• MLFN with lower orders of lag have a marginally better performance than networks 

with higher orders of lag; 
• MLFN with higher lags tended to over-learn the training data, resulting in smaller 

training errors, but larger validation errors; 
• MLFN with lower lags require more hidden nodes, and vice versa, suggesting an 

optimal set of architectural components; 
• PRNN showed comparable performance with lag-1 MLFN and outperformed MLFN 

with higher order lag;  
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Fig. 10.3. Forecasting rainfall at gauge 
no. 7253 for the storm event on 2 
January 1996. 
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Fig. 10.4. Forecasting rainfall at gauge 
no. 7253 for the storm event on 6 
January 1996. 

• a lag-2 TDNN provided the lowest error for the test data set (0.63); and 
• all forecast errors in all cases increased as the rate of change of rainfall intensity 

increased in either a positive or negative direction. 

4 RAINFALL FORECASTING—AREAL DISTRIBUTIONS 

4.1 Building an integrated modelling solution 

The integration of GIS and NN approaches provides a powerful rainfall forecasting 
model that merges the merits of the two technologies together. For the purposes of 
developing an areal rainfall forecasting system, it was assumed that no rainfall data, other 
than that measured at the rainfall gauges, were available for this catchment. There are two 
alternative approaches that could be used to generate future rainfall forecasts; these two 
approaches are: 

• Use of a GIS to estimate the rainfall for each cell within the catchment based on the 
measured rainfall at each gauge. This will generate a significant number of estimated 
rainfall surfaces. The NN could then be used to map these estimates to produce a 
direct rainfall forecast for each cell within the catchment. 
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• Use of an NN to forecast the rainfall at each of the rainfall gauges and then use the GIS 
to generate a distributed rainfall forecast for all cells within the catchment. 

The first approach of using catchment cells as the location of both input and output 
information was not considered feasible due to the large number of input and output 
nodes that would be required, which for 0.25 km2 cells in the Upper Parramatta River 
catchment is 439 per layer. This would result in 1756 connections for a 3-layer MLFN 
and training such a large network would be extremely time consuming. Moreover, a 
network with so many free parameters would need a large volume of detailed rainfall data 
that seldom exists. 

4.2 Integrated solution 

150 artificial storm events were used to build and test the integrated rainfall forecasting 
system. This need for synthetic data was due to an inadequate number of recorded storm 
events. The forecast rainfall at each cell was compared with the actual value of rainfall 
(from the artificial event) to ascertain the forecast error. Of these events, 100 storm 
events were used for training the NN, 25 storm events for validation of the training 
process, and 25 storm events for testing the rainfall forecasting system. 

The artificial storm events were assumed to be a random process, with some degree of 
tracking, and were generated from a mixture of autoregressive and random techniques. 
The first step involved the random start of a storm centre at a point close to or within the 
study catchment. The location of this starting point was biased according to historical 
records of storms over the Upper Parramatta River Catchment. The storm then moved 
towards the centre of the catchment subject to deviations from the initial direction 
defined by the following autoregressive equation: 

(4) 

where direction(t) is the direction of the storm centre at time t, direction(0) is the initial 
direction of storm movement and e(t) is the random deviation of storm movement, which 
had a mean of 0° and a standard deviation of 15°. The intensity of the storm at its centre 
was an autoregressive process that had the following relationship: 

 
(5) 

where Pmax(t) is the rainfall intensity at the storm centre (mm/hr) at time t, and e(t) is the 
random fluctuation. The movement of the storm centre was a random process with a 
mean speed of 12 km/hr, and a standard deviation of 2 km/hr, as illustrated in Figure 
10.5. This storm moved across the catchment from the North East to South West over a 
period of 2.5 hours (15 min×10 time steps). 

4.3 Test results and discussion 
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In ascertaining the accuracy of the spatial rainfall forecasts, both visual and arithmetic 
comparisons were established. Validation of the spatial rainfall forecasting system was on 
the basis of 

• replicating the areal rainfall patterns (visual inspection); 
• tracking the movement of storm centres (visual inspection); 
• predicted rainfall at individual cells; and 
• predicted rainfall for subcatchments. 

 

Fig. 10.5. Track of storm centres. 
Table 10.6. Forecast errors for storm no. 138. 

Time step Intensity (mm/15-min) Distance (km) Angle (degree) 

1 −4.0 0.11 −47.2 

2 −4.6 0.64 12.3 

3 −5.8 −0.61 28.3 

4 −1.5 −0.66 16.4 

5 −3.5 −0.56 −15.8 

6 1.8 −0.22 25.4 

7 −3.1 −1.05 −10.7 

8 1.8 −1.00 −1.5 

9 −2.0 −0.34 109.4 
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10 −3.6 −0.17 74.8 

Table 10.7. Error statistics for storm no. 138. 

Statistic Intensity (mm/15-min) Distance (km) Angle (degree) 

High 1.8 −0.22 28.3 

Low −5.8 −1.05 −15.8 

Mean −1.7 −0.68 7.0 

Median −2.3 −0.63 7.4 

Standard deviation 3.1 0.31 18.9 

Skewness 0.1 0.18 −0.1 

The results for Storm No.138 are presented in Tables 10.6 and 10.7 and in Figures 10.6 
and 10.7. Figure 10.6 shows the distribution of rainfall at one instant during this testing 
event. A complete history of this storm event, together with other events, is presented in 
Luk (1998). Figure 10.7 maps the  
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Fig. 10.6. Predicted and actual rainfall 
during a validation storm event. 
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actual storm centre track against the predicted storm centre track for the same storm 
event. The actual track of storm centres is represented by numbers, whereas the forecast 
track is shown by alphabetic characters. Both tracks had similar characteristics; the 
forecasting system did very well in tracking the  

 

Fig. 10.7. Forecasting movement of 
storm centres. 

Table 10.8. Error statistics for 25 test storm events. 

Statistic Intensity (mm/15-min) Distance (km) Angle (degree) 

High 8.2 0.73 178.3 

Low −16.8 −1.68 −172.5 

Mean −2.8 −0.62 −0.9 

Median −2.9 −0.62 0.6 

Standard deviation 4.3 0.49 53.0 

Skewness −0.1 0.27 −0.03 

storm centres from time steps 2 to 8. There were, however, distance errors in forecasting 
the storm centres at time steps 7 and 8. These errors resulted in an overestimation of the 
spatial rainfall distribution.  
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Tables 10.6 and 10.7 also show large angle errors in the first and last two time steps. It 
is suspected that these errors are due to initiation and boundary conditions related to one 
or both parts of the combined modelling operation. Due to high uncertainties at such 
locations, the values at these time steps are excluded from the calculation of the error 
characteristics presented in Table 10.7. The average intensity of this storm event was 28.9 
mm per 15-minute period (or approximately 76 mm/hr). The error in the forecast was 
small and the prediction of location was excellent. The range of error in location was only 
−1.05 to −0.22 km, with a mean error of −0.68 km, which means that, on average, the 
storm centre is predicted to be in a cell that is adjacent to the correct cell. 

Similar characteristics were replicated for all 25 storm events and are summarised in 
Table 10.8. The integrated forecasting system is observed to have  

Table 10.9. Normalised mean squared errors for all 
25 test storm events. 

  NMSE at each time step 

Event 1 2 3 4 5 6 7 8 9 10 Mean 

126 0.444 0.245 0.227 0.429 0.015 0.028 0.072 0.162 — — 0.203 

127 0.063 0.875 0.506 0.482 0.042 0.083 0.101 0.027 0.055 — 0.248 

128 0.246 0.227 0.156 0.232 0.327 0.436 0.312 0.046 0.097 0.193 0.227 

129 0.362 0.046 0.177 0.161 0.341 0.156 0.254 0.617 0.587 0.163 0.286 

130 0.328 0.336 0.173 0.056 0.150 0.177 0.554 0.116 0.196 0.193 0.237 

131 0.160 0.512 0.305 0.010 0.015 0.031 0.185 0.066 0.098 — 0.154 

132 0.469 0.264 0.321 0.078 0.070 0.239 0.454 0.348 0.215 0.143 0.295 

133 0.703 0.123 0.267 0.199 0.206 0.074 0.161 0.299 0.124 — 0.240 

134 0.175 0.328 0.328 0.074 0.175 0.168 0.040 0.055 0.194 — 0.171 

135 0.145 0.092 0.266 1.643 0.167 0.307 0.241 0.132 0.176 — 0.352 

136 0.884 0.350 0.120 0.503 0.202 0.236 0.140 0.144 0.137 0.140 0.286 

137 0.070 0.443 0.213 0.224 0.615 0.375 0.063 0.221 — — 0.278 

138 0.130 0.086 0.286 0.139 0.127 0.081 0.026 0.176 0.199 0.396 0.165 

139 0.150 0.245 0.301 0.427 0.062 0.054 0.082 0.080 — — 0.175 

140 1.561 0.165 0.388 0.244 0.419 0.210 0.237 0.410 0.101 0.059 0.344 

141 4.422 0.026 0.826 0.147 0.217 0.199 0.278 0.053 0.048 0.113 0.587 

142 0.039 0.178 0.056 0.134 0.083 0.167 0.286 0.024 0.299 1.755 0.302 

143 0.416 0.028 0.383 0.070 0.809 0.441 0.224 0.117 0.165 0.147 0.280 

144 0.756 0.181 0.305 0.222 0.191 0.204 0.347 0.207 0.261 — 0.297 

145 0.703 0.112 0.132 0.651 0.103 2.333 0.211 0.226 0.115 0.094 0.430 
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146 0.434 0.196 0.13 0.128 0.257 0.056 0.045 — — — 0.178 

147 0.093 0.655 0.104 0.402 0.355 0.069 0.071 0.009 0.059 — 0.202 

148 0.149 0.107 0.073 0.093 0.207 0.073 0.150 0.170 0.185 — 0.134 

149 0.063 0.186 0.09 0.102 0.476 0.120 0.285 0.041 0.051 — 0.157 

150 1.075 0.432 0.391 0.097 0.566 0.296 0.251 0.080 0.073 0.156 0.342 

Overall Mean NMSE 0.263 

produced reliable predictions for rainfall intensities and location of storm centres, but this 
was not the case for prediction of storm movement. 

The normalised mean squared error for each time step during all 25 test storm events 
is 0.263, which is considered to be a reasonable result for a reliable model (Table 10.9). 
There were, however, several abnormal figures, but all of these occurred at the first time 
step and the integrated solution provided accurate forecasts for the remainder of the storm 
movements and associated rainfall intensities. These errors are ascribed to problems in 
recognising the initial position of the storm centres. 

5 CONCLUSIONS 

Development of an integrated rainfall forecasting system using GIS and NN technologies 
has been the focus of this chapter. This development process involved investigations into 
models of the spatial distribution of rainfall, and the appropriate form of NN for rainfall 
forecasting as well as an assessment of the forecast accuracy of the proposed system.  

During NN development, three alternative types were identified, developed and 
compared: a MLFN; a PRNN; and a TDNN. It was found that all three types were able to 
make reasonable 15-minute forecasts of rainfall for multiple locations within a 
catchment. From test results, the following points are noted: 

• For each network, there was an optimal configuration, which was determined from a 
combination of the number of hidden nodes and the lag of the network; 

• The three networks had comparable performance when developed and trained to reach 
their optimal forecasting power; and 

• Networks with lower lags outperformed ones with higher lags due to the 15-min rainfall 
time series possessing no long-term relationships. 

The integration of GIS and NN technologies enabled reasonable 15-minute forecasts of 
the spatial distribution of rainfall over the Upper Parramatta River Catchment. The 
system accurately preserved spatial rainfall patterns and produced good forecasts with 
strong agreement to actual rainfall values. In conclusion, the rainfall forecasting system 
developed for the Upper Parramatta River Catchment had the following characteristics: 

• A spatial and temporal distributed architecture; 
• The system has been developed for real-time operation. It receives present rainfall 

values at multiple gauge positions and produces rainfall forecasts for each cell in the 
catchment; and 
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• With collection of new rainfall data, the NN component can be re-trained to provide 
improved performance. 
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Freshwaters 
PAULINE E.KNEALE  

School of Geography, University of Leeds, UK 

ABSTRACT: The sustainable management of watercourses involves an 
appreciation of the interactions between multiple ecological, hydrological, 
hydrochemical and anthropogenic factors. In these matters getting the 
water flow right is vital, adding the complex ecology adds to the 
challenge. Since many hydroecological interactions are difficult to model 
in a process manner and ecological data are often limited, neural networks 
are a valuable forecasting tool. This chapter presents a literature review of 
the use of artificial neural networks in water quality applications and 
considers the value of the various approaches adopted. 

1 INTRODUCTION 

The sustainable management of river water resources and modelling of freshwater 
ecological systems is challenged by the interaction of many heterogeneous processes. The 
complex dynamics are not easily coded into process models, and, when available, the 
required data are often sparse with variable sequencing or qualities. In addition to 
receiving natural, urban and industrial effluent inflows, river waters may be polluted by 
diffuse runoff from agricultural, industrial and household processes, and from buildings 
and road surfaces which impacts on the in-stream ecology (Beasley & Kneale, 2002; Ellis 
& Hvitved-Jacobsen, 1996; Lee & Bang, 2000; Moog & Chovanec, 2000). This water 
may be abstracted later for drinking or industrial use. Water quality management agendas 
involve identifying and preventing pollution, and identifying and restoring water courses, 
to enhance water quality and make water available for use and re-use downstream. 
Sensitive water bodies and ecosystems may require protection, mitigation or remediation. 

Effective water quality management involves respecting the ecological integrity and 
diversity of the system. In planning water and related land resources, the US Water 
Resources Council (1973) recommended consideration of national economic 
development and environmental quality. Therefore, modelling the quality of flow for 
management purposes may also require the coupling of hydrological, biogeochemical, 
ecological and socio-economic models at river basin and sub-basin scales. Colasanti 
(1991) discussed the similarities between the structure and behaviour of artificial neural 
networks (NN) and natural ecological systems, arguing that the parallels implied that NN 
techniques should be appropriate tools for ecological modelling. In this chapter the 
current role of NN in contributing to the management of river water quality is reviewed. 



2 DATA ISSUES 

Given the complexity of the biogeochemical processes involved, the changes that occur 
from point to point and the natural variability of environmental systems, the NN approach 
to identifying and managing pollution is extremely valuable. But as previous chapters 
have shown, NN solutions require appropriate data and evaluation. Modelling biological 
and chemical processes in water and associated ecological behaviour is a technically 
complex issue. Compared with river flow forecasting, where lengthy records of stage or 
discharge and rainfall may be available at multiple stations at 15 minute or hourly 
intervals, good water quality data are often very limited; it may be weekly or monthly 
data, for a reduced network of sites, and a limited number of parameters. Ecological 
observations are even less frequent, often comprising snapshot surveys made on one or 
two days each year. 

Point data may be available for the chemistry of the water column and bed sediment, 
but the equations which govern the spatial and temporal chemical interactions between 
the column and the sediment are by no means definitive. Simple models using 1D 
equations, driven by average travel times, may be successful in forecasting the movement 
of pollution plumes downstream but miss the detail required to look at biological and 
chemical interactions. However, when attempting to account for a large number of 
factors, distributed mathematical modelling becomes infinitely more complex, and 
requires heavy computational investment. 

The key questions for evaluating a NN application include asking: 

• Does the approach provide an answer that is appropriate for a particular experimental 
investigation? 

• Does it improve on current forecasting practice? 
• Is the forecast accurate enough and achieved at an acceptable cost? 

Bowden et al. (2002) using data for the River Murray catchment analyse issues that can 
arise as the result of the way in which subsets of data are selected for the training, testing, 
and validation of models and shows that the less than optimal selection will impair model 
performance. Cigizoglu (2003) shows that using longer training stage datasets improves 
the NN forecast and argues that generating synthetic series can be advantageous where 
the full data set is limited.  

3 MODELLING STYLES 

Because NN were designed to mimic certain biological functions of the brain, we might 
have expected widespread interest in applying this technology to biological applications 
of water quality. But, as Table 11.1 indicates, NN applications have really only 
mushroomed since 1996. The range of applications is very wide, from explorations of 
individual parameters (Cancilla & Fang, 1996; Moatar et al., 1999), through fisheries 
management (Aurelle et al., 1999; Olden & Jackson, 2002), to describing more complex 
patterns and interactions for management purposes (Schleiter et al., 1999; Walley & 
Fontama, 1998). 
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The objective evaluation of NN outputs comes in one of two forms. Either NN 
forecasts are compared to field or laboratory time series as in the case of Maier et al. 
(1998) and Recknagel et al. (1997), or outputs are compared to results developed using 
alternative forecasting techniques. Table 11.1 indicates that in 40% of the applications, 
linear regression is the chosen alternative; comparisons with process models are 
infrequent. 

The following statement made by Lek and Guegan (1999) when reviewing NN 
progress in a wide range of applications is true for these cases: ‘Most of these examples 
showed that NN performed better than more classical modelling methods’. It can be 
argued, somewhat cynically, that the authors would not have published if their results had 
been worse. It should also be noted that multiple regression is a less sophisticated form of 
black-box input-output modelling, and that in a very complex and non-linear natural 
world, NN models should do better by definition. For optimum evaluation NN forecasts 
should be set against the most sophisticated modelling approach normally used for each 
application. 

It is notable that where results are reported with reference to times series, the 
correlation coefficients are frequently above 0.9. Even where the ecological and 
hydrological processes are complex, the results are impressive as in Karul et al.’s (2000) 
study of modelling eutrophication in Turkish lakes and dams. The authors state that 
‘despite the very complex and peculiar nature of Keban Dam, a relatively good 
correlation (correlation coefficient between 0.60 and 0.75) was observed between the 
measured and calculated values. For Mogan and Eymir, which are much smaller and 
more homogenous lakes compared to Keban Dam Reservoir, correlation values as high as 
0.95 were achieved between the measured and calculated values’ (p. 145). 

4 LABORATORY ANALYSIS 

The increasing need to detect low levels of pollutants in water and sediment and to look 
at the reactions of combinations of herbicides, pesticides and chemical pollutants on 
organisms demands discriminating laboratory analytical techniques that are sensitive and 
fast. Water quality managers may first encounter NN in the laboratory where such tools 
are being incorporated into ‘smart’ and/or integrated sensing equipment to automate 
pollutant detection and to discriminate chemicals or identify organisms (Morris et al., 
2001) at very high speeds. Yatsenko (1996) shows how NN can assist in disentangling 
information from  

Table 11.1. A selection of applications of NN in 
water quality modelling. 

Topic/ authors 
NN learning system 
(software if known) Application 

Model 
comparison 
(where made) 

Water 
chemistry 
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Cancilla and 
Fang (1996) 

PCA and UPM 

  

Backpropagation 
(Brainmaker 
Professional) 

Water chemistry, three sites on 
the Niagara River, USA 

  

Clair and Ehrman 
(1998) 

Backpropagation 
(Neuroshell 2) 

  

      

    

Changing climate impacts on 
discharge, dissolved organic 
carbon, and nitrogen from 14 
eastern Canadian rivers 

  

Clair et al. 
(1999) 

Backpropagation 
(Neuroshell 2) 

DOC in runoff for climate 
modelling 

Linear regression 

Gong and 
Denœux (1996) 

Epochwise backsweep Transfer of solid waste in sewer 
pipes 

  

Lek et al. (1996) Backpropagation   

    

Phosphorous and orthophosphate 
runoff from 927 USA tributaries 

  

Lek et al. (1999) Backpropagation   

    

Nitrogen in stream water using 
land use variables. Data from 927 
US watersheds   

Maier and Dandy 
(1996) 

  

Maier and Dandy 
(1998) 

  

Maier and Dandy 
(2001) 

Backproagation 
(NeuralWorks 
Professional II/Plus) 

Salinity of River Murray 

  

Manescu et al. 
(1998) 

  DO and flow   

Moatar et al. 
(1999) 

Backpropagation Daily pH 

      

1st and 2nd order 
polynomial 
regression 

Poff et al. (1996) Backpropagation   

    

Temperature and flow changes in 
response to climate change 
scenarios   

Starrett et al. 
(1998) 

  

Starrett et al. 
(2001) 

Backpropagation Pesticide leaching from golf 
courses 

  

Yang et al. 
(1997) 

Backpropagation Daily soil pesticide concentrations   

Zhang and 
Stanley (1997) 

Backpropagation   

    

Water colour for treatment and 
drinking water management 
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Cyanobacteria       

Maier and Dandy 
(1997) 

  

  

Backpropagation 
(NeuralWorks 
Professional II/Plus) 

  

    

Forecasting algal blooms in River 
Murray using Anabaena and river 
water chemistry, colour, and 
temperature 

  

Maier et al. 
(1998) 

Anabaena in River Murray   

  

Backpropagation 
(NeuralWorks 
Professional II/Plus) 

    

Maier et al. 
(2001) 

Backpropagation 

    

Anabaena in River Murray, four 
week forecasts 

Associative memory 
networks (AMNN) 

Recknagel 
(1997) 

Backpropagation   

    

Blue green algae species forecast 
using water chemistry information 
for lakes in Japan 

  

Recknagel et 
al. (1997) 

  

  

Backpropagation 
(EXPLORER from 
Neural Ware Inc.) 

  

      

    

Blue-green algae species 
abundance is forecast from water 
chemistry inputs for lakes in 
Finland and Japan, and River 
Murray, Australia 

  

Walter et al. 
(2001) 

Backpropagation 

    

Chlorophyll-α as a measure of 
eutrophication, Burrinjuck 
Reservoir, Australia 

Deterministic model 
SALMO 

Wei et al. 
(2001) 

Algal densities—four genera   

  

Backpropagation 
(MATLAB Neural 
Network Toolbox) 

    

Whitehead et 
al. (1997) 

Backpropagation Algal models for River Thames 
reaches 

      

Time series, Dynamic 
process growth model 

Backpropagation   Wilson and 
Recknagel 
(2001)   

1 and 30 day forecasts of algal 
abundance, 6 lakes 

  

Fish       

Aurelle et al. 
(1999) 

Backpropagation   

    

Distinguishing hatchery and 
natural brown trout stocks 

  

Baran et al. 
(1996) 

Backpropagation Brown trout population density Multiple regression 
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Brosse et al. 
(1999) 

Backpropagation Lake fish abundance, multiple 
species 

Multiple regression 

Brosse et al. 
(2001) 

Kohonen self-
organizing map 

    

Fish assemblages, 15 species, 
Lake Pareloup, France 

Principal component 
analysis 

Chen and 
Ware (1999) 

Backpropagation Pacific herring stocks 

      

      

Multiple regression, 
process based 
climate-stock 
recruitment model 

Gozlan et al. 
(1999) 

Backpropagation River fish diversity and 
abundance 

Multiple regression 

Huse and 
Ottersen 
(2003) 

Backpropagation   

    

Recruitment and biomass 
development of Northeast Arctic 
cod. 

  

Ibarra et al. 
(2003) 

Backpropagation Fish guilds, Garonne   

Laë et al. 
(1999) 

Backpropagation Fish yields from 59 lakes in 
Africa 

      

      

Descriptive statistics, 
Stepwise multiple 
regression 

Lek and 
Baran (1997) 

Backpropagation Brown trout population density   

Mastrorillo et 
al. (1997a) 

Backpropagation Minnow abundance 

      

Stepwise multiple 
regression 

Topic/ 
authors 

NN learning system 
(software if known) Application 

Model 
comparison 

(where made) 

Mastrorillo et 
al. (1997b) 

Backpropagation Presence/absence 3 small fish: 
minnow, gudgeon, stone loach 

Discriminant 
factor analysis 

Reyjol et al. 
(2001) 

Backpropagation Habitat modelling, brown 
trout, minnow, stone loach. 

  

Zhou (2003) Backpropagation Abundance of Pacific salmon 
Oncorhynchus spp. 

Moving average 

Ecological Interactions and Management 

Campolo et 
al. (1999) 

Backpropagation (Stuttgart 
Neural Network Simulator) 

Flow forecasting to manage 
water quality at low flows 
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Chon et al. 
(1996) 

Kohonen Network Benthic macroinvertebrates, 
Suyong river, Korea 

  

Chon et al. 
(2000) 

Adaptive Resonance Theory 
Kohonen Network 

Monthly benthic 
macroinvertebrates in two 
streams 

  

Karul et al. 
(1999) 

Backpropagation Lake eutrophication Multiple 
regression 

Karul et al. 
(2000) 

Backpropagation Eutrophication in lakes and 
dams in Turkey 

  

Lek and 
Guegan 
(1999) 

Backpropagation Kohonen Self-
Organizing Map 

A review paper discussing the 
use of NN for ecological 
modelling 

  

Obach et al. 
(2001) 

Kohonen Self-Organizing Map Ecosystem dynamics, 30 year 
record of macroinvertebrate 
and habitat data 

  

Olden (2003) Backpropagation Lake fish communities   

Paruelo and 
Tomasel 
(1997) 

Backpropagation Seasonal vegetation growth Multiple 
regression 

Schultz and 
Wieland 
(1997) 

Backpropagation Managing crop development 
and soil moisture using 
meteorological and crop data 

  

Schleiter et 
al. (1999) 

Backpropagation with senso-
nets 

Multiple water chemistry 
parameters, habitat variables 
and benthic macro-
invertebrates 

  

Walley and 
Fontama 
(1998) 

Backpropagation initial 
experiments included trials with 
7 types of NN before 
backpropagation was selected 

Average score per taxon 
(ASPT) 
Number of families in 
unpolluted rivers 

  

Wen and Lee 
(1998) 

Backpropagation Catchment scale planning and 
management 

  

sensors as part of water analysis procedures. He uses a neural chip to separate and 
classify pollutant characteristics. Charef et al. (2000) use the NN approach to estimate 
concentrations of COD (Chemical Oxygen Demand) in urban waste waters. Detailed 
discussion on the place of NN technologies in laboratories is beyond the scope of this 
review, but these applied uses of NN solutions are typically tied to pollution monitoring 
at water and sewage treatment works (Adgar et al., 2000; Baxter et al., 2001; Brion et al., 
2001; Choi & Park, 2001; Delgrange-Vincent et al., 2000; Joo et al., 2000; Milot et al., 
2002; Pigram & Macdonald, 2001; Serodes et al., 2001; Shetty et al., 2003). 

Neural networks for Hydrological modelling     208



5 FLOW FORECASTING IN RIVERS 

At the heart of a traditional distributed forecasting model for water quality or pollution 
monitoring there are routing models that forecast the in-channel movement of water. 
Corne et al. (1998) have shown that the travel times of flood waves can be forecast where 
the river data series is long enough to train the initial model. But pollution wave travel 
times vary from event to event and do not move at the same pace as the flood wave. At 
times of high flow a pollution incident may be mitigated by dilution, but the more rapid 
travel times may also be critical in planning downstream pollution prevention measures. 
The potential of NN solutions to act independently of a flow model by looking at event 
data individually is a potential strength over traditional models that forecast the chemistry 
of the runoff and then route the flows downstream as a separate operation. NN are 
particularly valuable where flow is not well related to precipitation because of abstraction 
for hydro power plants, reservoirs or irrigation (Golob et al., 1998; Stokelj et al., 2002). 
The application of NN in other flow routing applications can be found elsewhere in this 
book (Chapters 5, 6 and 10). 

What is not clear is whether in the long-term eco-hydro-chemical models should be 
linked to flow forecasting models with good flood-wave travel-time forecasting 
performance. Or whether the NN treatment of flow and chemistry data independently but 
simultaneously will make robust models that solve this non-linear problem. TDNN 
algorithms may prove more accurate since they can search for appropriate lags in 
sequential data series (see Chapter 5). Developing research in the latter area is potentially 
more appealing. 

6 WATER QUALITY MODELLING 

Classical water quality modelling started in the 1920s with the Streeter-Phelps models for 
dissolved oxygen (DO) forecasts and some of the earliest NN investigations modelled the 
same variable. Partly this is driven by the importance of DO in any aquatic system and 
because this is a variable with reasonably detailed field records in many cases. Manescu 
et al. (1998) use a NN solution in conjunction with a Geographical Information System 
(GIS) to forecast DO and stream flow. The presented results are good but there is no 
independent forward testing for accuracy and stability. They pick up the point that non-
uniformity of sampling over 3 years forced the use of monthly averaged data. The model 
works well but any data averaged over a month hides individual incidents of high or low 
levels. This is fine for applications where monthly averages are the required output, but 
the NN can forecast at shorter time intervals, given appropriate data. 

Daily data are available for the Middle Loire which permits Moatar et al. (1999) to 
forecast pH. The inputs are river flow and radiation, variables chosen as important in 
controlling the eutrophication processes during summer lowflow regimes. Testing was 
undertaken using 4 years of data and validated with 1 year of independent data. The 
reported pH forecast accuracy is 86%. 

6.1 Chemical pollution 
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Nutrient loading is an issue in eutrophication where enriched runoff leads to increased 
algal growth and decreased water quality. Phosphorous (P) has been shown to be 
significantly related to enrichment characteristics, and so the possibility of forecasting P 
levels on a national basis was explored by Omernik (1997). Omernik took data for 927 
tributary catchments from across the USA which did not have point source pollution 
inputs. Using multiple regression she found it necessary to divide the USA into three 
regions and produce different models for each region. Lek et al. (1996) have explored the 
forecasting potential of the same data set using backpropagation neural network (BPNN) 
modelling and compared the performance of the different approaches. Lek et al. used six 
independent variables to develop models for four dependent variables which characterise 
P in runoff (Table 11.2). In each model run the six independent variables were linked to 
one of the dependent variables (concentration or export of P). Experimental runs with up 
to 20 hidden nodes showed that a good predictive model could be created for each 
measure of P using only 5 hidden nodes and training for 500 iterations. The independent 
variables reflect land use and stocking density, but have no direct information about 
regional  

Table 11.2. Variables used by Lek et al. (1996) to 
forecast four measures of P in runoff from USA 
catchments. 

Independent variables Dependent variables 

FOR % of catchment under forest CTP Concentration of total phosphorous (mg ·1−1) 

AGR % of catchment under agriculture COP Concentration of ortho-phosphorous (mg ·1−1) 

OTH % other land uses ETP Export of total phosphorous (mg ·1−1) 

PRE Average annual precipitation (cm) EOP Export of ortho-phosphorous (mg ·1−1) 

FLO Discharge (m3 ·s−1)     

ANI Animal density (animal/km−2)     

variability. The forecasting efficiency in terms of a correlation coefficient was in each 
case better than 0.7. NN performance also either equalled or improved upon the 
regression approach. Moreover, there is no need for multiple regional models, as a single 
network can cope with variation across the US. The advantage of the NN approach over 
regression modelling is that the non-linearity inherent in the systems is dealt with better. 
The performance of the BPNN in this case shows that a single model can outperform the 
multiple regression approach, and is more flexible. 

Moving from a regional to a local scale, Cancilla and Fang (1996) sought to compare 
techniques which will discriminate water chemical data from three sites on the Niagara 
River. In this application the goal is classification, i.e. can the NN or other methods 
discriminate within and between samples to identify their source? The data comprised 24 
hour composite water samples, taken weekly and analysed for 32 target compounds, 
including chlorinated pesticides and polynuclear aromatic hydrocarbons (PAHs). The NN 
was trained to see how well the program could determine the source of each sample. The 
authors compared the performance of the NN with results from a Universal Process 
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Modelling(UPM) analysis(O’Sullivan, 1991; Teranet IA Inc, 1992) and Principal 
Components Analysis (PCA). All three approaches discriminated the sources of the water 
samples. 

In their experiments models were built using 25% of the data and then validated 
against the unseen 75%. Table 11.3 shows the relative performance of the NN and UPM 
approaches, which are both successful, with results above the 90% level. The NN 
performs slightly better. Additionally the authors investigate the size of the minimum 
data set required to build an adequate model. Figure 11.1 shows the results of training 
with sample sizes ranging from 2 to 112. A predictive success of 65% was achieved from 
models developed on 2% of the samples, but when given 25% of the sampled data (35–40 
records), prediction success rose above the 90% level. This is an example of NN being 
used to classify data, in this case to identify patterns and changes in patterns. Given 
appropriately accurate data sets for normal hydrological conditions, this technique has 
tremendous potential in natural and drinking water quality analyses to spot changes in 
trends and locate contamination sources. 

The water supply for Adelaide, Australia, relies on piped transfers from adjacent 
basins. The piped supply contributes 10–80% of demand and may have a high salinity. 
Maier and Dandy (1996) sought to forecast salinity levels and recognised the potential 
appropriateness of developing NN solutions ‘because longer-term forecasts are required, 
non-linear relationships are  

Table 11.3. The percentage of times samples were 
correctly identified from chemical data for 3 sites 
on the Niagara River (from Cancilla & Fang, 1996). 

Method NN (%) UPM (%) 

Training data 25% (37 seen samples) 100 93.7 

Validation data 75% (112 unseen samples) 94.4 91.7 
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Fig. 11.1. The effect of the training 
data set size on the prediction rate 
(from Cancilla & Fang, 1996). 

suspected and it is difficult to prescribe the exact mathematical relationship between the 
variables’ (p. 1016). 

Their initial model had 141 inputs: flows, lagged flows and salinity data for a series of 
sites, and the output was a 14-day ahead forecast of flow and salinity at Adelaide. The 
final model had a reduced number of inputs (51) which reduced training time and raised 
output efficiency. The validation 14-day forecasts had errors ranging from 5.3–7.0%. 
This is acceptable for planning purposes, but could probably be improved given further 
data, although Maier and Dandy (1998) show that it can also be improved by looking in 
detail at the parameters of the NN structure itself. Through careful adjustment of the 
learning rate, searching for appropriate local minima and paying attention to the length of 
the training period, the model can be further optimised. The authors make the point that 
the model will learn common patterns quickly and well but is slow to learn infrequent 
patterns and may model these very badly. Similarly, in flood modelling, Kneale and See 
(2000) deal with this issue by training networks for extreme events on the high stage 
hydrographs only, and ignoring the low flow discharge patterns. In looking at chemical 
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and biological responses it may be a good managerial approach to develop NN solutions 
for typical and regular conditions and specialist models for rare events. 

Where water is taken from rivers for drinking water, the intake quality determines the 
level of purification required. On the North Saskatchewan River at Edmonton, Alberta, 
the key variable is colour (Zhang & Stanley, 1997). Catchment land cover is forest and 
agriculture, the water quality is good but subject to high colour in spring and summer. In 
managing the treatment works, a one-day ahead forecast is appropriate, giving time for 
chemical additives to be adjusted for the next intake. The input parameters are based on 
river flow, change in flow rate, current and lagged colour data, precipitation and 
temperature. Data are lagged to take account of river water travel times and seasonality 
indices. The authors acknowledge that the models described in the paper may not be the 
optimum solutions for this particular site but the results show that NN can provide 
practical tools for forecasting water quality in real-time so that operational decisions can 
be taken. Potentially the results from this type of modelling can be linked to a 
computerised water treatment control process, with additives and settlement times being 
controlled through the model. 

Amongst a host of other applications Starrett et al. (1998, 2001) have shown that their 
BPNN can be used to forecast the leaching of pesticides, in this case for the short turf on 
golf courses. Their KTURF model outperformed the comparative regression models to 
forecast the complex interaction between the pesticide, its solubility, leaching rates, and 
soil parameters. This model has potential practical use in many irrigation applications 
where the leaching of chemicals or pesticides are of concern. 

6.2 Climate change 

There have, to date been limited numbers of ‘what if’ climate and water chemistry 
modelling studies that used NN technologies, but Clair and Ehrman (1998) is a valuable 
exception. These authors take up the challenge of assessing climate change influences on 
forecasts of monthly discharge (Q, m3 · s −1), dissolved organic carbon (DOC, kg · ha−1 · 
mo−1), and dissolved organic nitrogen (DON, kg · ha−1 · mo−1) for 14 basins in Atlantic 
Canada where wetlands influence the hydrological response. Modelling comprised a 
three-layer BPNN process and the inputs were: month number, basin area, basin slope 
and 6 climate inputs which are entered for the current and preceding month—maximum, 
minimum and mean monthly temperature, total rain, total snow and total precipitation. 
This modelling is at the seasonal scale, taking monthly values and summing them to 
generate seasonal figures. The model is trained and validated on historic data but can also 
be used with GCM (global circulation model) forecasts to look at the impact of future 
climates. Such forecasts are clearly limited by the accuracy of the GCM estimates of 
climate parameters and results cannot be compared with outcomes. However, logical 
results are found. A warmer winter scenario reduces storage in the snow pack and so 
produces more runoff, whereas summer warming increases evapotranspiration and the 
forecast flows are lower. The forecasts for Q and DOC which follow similar patterns are 
good. The DON forecasts are less good, because nitrogen runoff is a more complex 
process than climate and basin topography can be pattern matched against the results. 
These results have practical management implications where water is extracted for 
irrigation and power generation and in flood control, but as the authors point out, their 
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reliability for future climate related forecasting is a function of the GCM data input 
quality.  

An indirect investigation of climate change consequences for ecology is discussed by 
Poff et al. (1996). They use BPNN to forecast flows in the Little Pauxtent and 
Independence Rivers. The models are trained on historic flow data and then used to 
generate new forecasts given various scenarios for climate change. The discussion of the 
ecological implications of various scenarios is based on flow data only, and there is no 
ecological element in the modelling. However, the NN forecasts provide an interesting 
basis for future speculation. 

Frakes and Yu (1999) compare NN with a GIS based hydrological model to forecast 
direct surface runoff, on a daily basis, from four sub-basins of the Susquehanna River. 
The results were similar, with the NN doing slightly better in the larger sub-basins and 
slightly less well in the smaller basins. 

While Pearson et al. (2002) are concerned with forecasting plant species evolution 
their modelling approach couples the power of a NN approach with a process based 
climate-hydrological model, which identifies bioclimatic envelopes and predicts species 
distribution changes in response to various climate change scenarios. This coupling 
approach giving additional power to the modeller. 

6.3 Biological interactions 

Water quality may be characterised directly by its chemistry; but the abundance or 
absence of biota is also a significant indicator of the quality and health of a channel 
reach. Algae and indicator species such as Cryptosporidia present water managers with 
immediate problems (Maier & Dandy, 1997; Recknagel et al., 1997; Maier et al., 1998). 
The abundance and diversity of fish species in a river reach are also an indication of 
water quality (Baran et al., 1996; Lek & Baran, 1997). There are a number of 
investigations that have studied fish population diversity and the effectiveness of NN 
simulations to forecast biological population diversity (Mastrorillo et al., 1997a, b; 
Walley & Fontama, 1998) or to establish general relationships between environmental 
variables and the ecological status of a river or lake. 

Table 11.1 indicates that fish modellers are wedded to BPNN and generally compare 
the results to regression models. Baran et al. (1996) compare forecasts of population 
density and biomass in Salmo trutta L. (brown trout) for 220 channel reaches on 11 
streams in the Pyrenees. The NN model was trained on data from 165 reaches and 
validated on 55 reaches. In both analyses, observed and estimated biomass and density 
are related, but the NN correlation coefficients are higher, and therefore the models are 
more accurate (Fig. 11.2). Taking these data further, NN are used to predict the density 
and biomass of trout from environmental variables (Lek & Baran, 1997). The 
independent variables are mean Froude number, mean depth, mean bottom velocity, 
mean surface velocity, % shelter, % deep water, % total cover and stream altitude. Again 
the results are very useful in an area where modelling ecological relationships from 
deterministic flow equations is fraught with difficulty. 

Gozlan et al. (1999) use NN to look at the structure and diversity of young (0+years) 
fish in the River Garonne. For thirty-eight sites on the river  
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Fig. 11.2. Relationship between 
density or biomass, observed and 
estimated using multiple regression 
models (MLR) and backpropagation 
neural networks (BPNN). (Redrawn 
from Baran et al., 1996, Figs. 11.2 and 
11.3). 

system, seventeen channel characteristics are used to forecast the abundance of six fish 
species and related variables (Table 11.3). The non-linearity of the relationships and the 
mix of data types suggest that NN should provide a more accurate forecast than a 
multiple regression approach and their results show this to be true. In this study 4250 fish 
were captured in 596 samples and of these 3911 were 0+. The specific species included in 
the model comprise 71% of the total. The NN forecasts the abundance of the species, 
which on this river is ecologically very helpful. The hydrology of the Garonne is 
influenced by dams along the main channel which have reduced microhabitat diversity. 
This has changed the overall diversity of the fish population. Robust species like Chubb 
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were not affected by the changes but lentic species are reduced in numbers and rheophil 
and limnophil species are more dominant. The success of these NN models once again 
indicates that such technologies can provide useful planning tools for estimating the 
impact of physical change to a channel morphology on fish populations.  

Table 11.3. The parameters used by Gozlan et al. 
(1999) for sites on the River Garonne. 

Input parameters   Output parameters 

Flowing channel (0/1) % clay 

    

Abundance of Blicca bjoerkna 

Partially abandoned channel 
(0/1) 

% silt 

    

Abundance of Leuciscus cephalus 

Abandoned channel (0/1) % sand 

    

Abundance of Leponmis gibbosus 

Distance from bank (m) % gravel 

    

Abundance of Barbus barbus 

Water depth (cm) % pebbles 

    

Abundance of Gambusia affinis 

Slope of bank % cobbles Abundance of Rutilis rutilis 

Temperature (°C) Macrophytes 
(0/1) 

Specific richness 

Algae (0/1) Water velocity % roots 

  

Number of 0+fishes Shannon diversity 
index 

Mastrorillo et al. (1997a) use NN to explore the dynamics of Phoxinus phoxinus 
(minnow) populations because these fish are typical of the small species which are 
critical in the food chain dynamics of streams. The use of a BPNN shows minnow 
abundance increases as gravel and sand increases, but decreases with distance from the 
bank, stream velocity and pebbles. The BPNN successfully picks out the habitat 
preferences for this species as shown in other ecological studies (Mastrorillo et al., 1996) 
provided there is a suitably large database. This work is further developed in Mastrorillo 
et al. (1997b) where BPNN forecast the presence or absence of three species (Phoxinus 
phoxinus; Gobio gobio—gudgeon; Barbatula barbatula—stone loach) in the same river. 
Comparison with a discriminant factor analysis shows that NN are able to assign a higher 
number of individuals correctly. Both methods can predict the presence or absence of the 
three species but the NN are more accurate. 

Going beyond water quality, Aurelle et al. (1999) used NN to look at genetically 
differentiated forms of Salmo trutta (brown trout). From the river management 
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perspective this study shows that the impact of stocking and the genetic differentiation of 
different populations of trout can be successfully undertaken. 

Forecasting the biomass of Clupea pallasi (Pacific herring) stocks over a 41 year 
period (Chen & Ware, 1999) is an example of a longer-term ecosystem research 
application. NN performance of optimal models measured in terms of the coefficient of 
determination is between 0.6–0.7, whereas a multiple regression model achieved 0.29, 
and a process climate-stock recruitment model scored 0.42. Essentially the NN can 
forecast the biomass of the fish stock at a higher accuracy than alternative methods and in 
a way that positively assists in the management of fish resources.  

6.4 Macroinvertebrates 

The biological condition of rivers in the UK is monitored using the BMWP (Biological 
Monitoring Working Party) system where families of benthic macroinvertebrates are 
grouped according to their sensitivity to organic pollution. Families which have low 
scores are relatively insensitive and so are widespread whereas families with high scores 
are sensitive to pollution and generally only found at clean, rural streams (Chesters, 
1980). BMWP scores are used in RIVPACS, a software model that combines 
macroinvertebrate information with catchment data to forecast the ‘expected’ species 
composition at clean sites (Wright et al., 1995). This system uses the average score per 
taxon (ASPT) and the number of families present (NFAM) because they are less sensitive 
to seasonal and sampling variations than raw BMWP totals. Walley and Fontama (1998) 
report the results of a NN study to forecast ASPT and NFAM as a basis for biological 
classification of water quality. The thirteen input variables describe catchment location 
co-ordinates, distance from source, slope, alkalinity, discharge, altitude, boulders, 
pebbles, sand, silt, river width and depth. Two NN were developed and both solutions 
were observed to perform slightly better than the industry standard RIVPACS III. Where 
the NN appeared to be working less well the authors suggest the problem lies in the data 
quality rather than the forecasting mechanism. For example, high altitude sites gave 
relatively poor predictions, but of the five sites above 450m, three had unusually high 
alkalinities so it is probable that these three sites lead to distortion in the results at non-
alkaline locations. The input variables could be expanded to consider other geological or 
catchment characteristics, and it is probable that some of the observed error is due to the 
natural seasonal and spatial variation in species distributions. 

6.5 Algal blooms 

The issue of algal blooms in lakes and rivers is biologically significant and has 
implications for recreational users of the resource (Ferguson, 1997; Codd et al., 1995). 
Bloom appearance is a complex function of nutrient loading, enriched runoff, BOD, air 
and water temperatures and physical characteristics of the river, lake or reservoir. Kneale 
and Howard (1997) showed the inadequate power of multiple regression to explain bloom 
behaviour in UK lakes and reservoirs, a problem that is relevant when data collection is 
restricted to monthly spot sampling. Statistics can describe these data, but forecasting 
potential is very limited. Recknagel et al. (1997) characterise the roles and limitations of 
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different approaches to phytoplankton modelling (Table 11.4), an approach that could be 
usefully replicated in other areas of quality modelling. 

Recknagel et al. (1997) applied NN to the problem of forecasting seasonal changes in 
the numbers of cells present for a range of algal species. These authors use different input 
and output layers, for each of the five lakes considered, but with a common architecture 
(Fig. 11.3). Their success in forecasting the number of cells present for a range of species 
from meteorological and  

Table 11.4. Characteristics of phytoplankton 
modelling (from Recknagel et al., 1997). 

  Empirical 
steady 
state 
models 

Deterministic  
models 

Time-
series 
analysis 
models 

Heuristic 
models 

Fuzzy 
models 

Neural 
networks 
models 

Data type Cross-section Cross-section/ 
time series 

Time series Cross-
section/ time 
series 

Cross-
section/ time 
series 

Time series 

Time step for 
simulation 

  Minute/hour/day Day   Month Day 

Time 
resolutions of 
predictions 

Season/year Day/week/month Month Month/season Month/season Day/week 

Considered 
control 
factors for 
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Fig. 11.3. NN structure used to 
forecast algal species at Lake 
Kasumigaura, Japan (from Recknagel 
et al., 1997). 

water quality information is indicative of the strength of this approach. These authors also 
looked in more detail at the internal weightings assigned by the different models and use 
sensitivity analysis to understand a little more about the processes driving the bloom 
forecasts. This allows them to determine that in the Lake Kasumigaura example, 
‘chlorophyll-a determines most of the dynamics of Microcystis’ and that clumps of 
Microcystis are indirectly protected from grazing by zooplankton which preferentially 
feed on non-toxic algae. Effectively the NN models forecast the ‘timing, magnitude and 
succesion of several algal species realistically, such as Microcystis, Oscillatoria and 
Phormidium’ (Recknagel et al., 1997). 

When there are good data sets, as for the lower River Thames, where the UK 
Environment Agency collects flow, chemical and bio-indicator data regularly, algal 
forecasts should be more operationally useful. Whitehead et al. (1997) modelled the 
growth of algae and its transport downstream with the benefit of weekly data. Usefully 
this paper compares NN performance against that of a time series model and a dynamic 
mass balance and growth model. As a forecasting tool NN are seen to perform as well as 
the two alternative models, but as the authors state ‘the advantage of NN is that no 
subjective information is required to determine the model structure or estimate 
parameters’. NN are therefore seen as the more pragmatic approach and one that can be 
implemented independently by forecasters who do not have detailed local catchment 
knowledge. Black box NN provide the forecast but do not give an insight into processes 
of growth and mass, for which the mass balance model is the more appropriate. 

For the River Murray, Australia, Maier and Dandy (1997) and Maier et al. (1998) 
forecast Anabena cell counts using BPNN. Blooms occur over relatively short periods, 
12–14 weeks in the summer months. This application shows that NN may be calibrated 
on data from the first seven weeks of the year when colonies are developing but are not a 
management problem, and then used to make forecasts for the next four weeks when 
numbers multiply and the matter becomes more serious. The models provide useful 
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forecasts of both the incidence and the magnitude of the peak in Anabena cell counts. As 
would be expected, temperature is the key variable, and forecasts based on temperature 
alone were very successful. Adding turbidity, soluble phosphorous and discharge to the 
inputs slightly improves the forecast, as does adding lagged data. For water management 
purposes a four week ahead forecast of cyanobacteria peaks is acceptable; it allows time 
for management intervention if wished and adequate warning if necessary. More recently 
Maier et al. (2001) looked at four-week ahead forecasting, comparing neurofuzzy 
associative memory neural networks (AMNN) with BPNN. This is an approach that 
others will no doubt want to explore because they show the AMNN to be more 
parsimonous and a slight improvement on the BPNN. 

In searching for a management tool to deal with eutrophication in lakes Karul et al. 
(1999) develop a model to forecast chlorophyll-α. The inputs are PO4 phosphorous, NO3 
nitrogen, alkalinity, pH, water temperature, suspended solids, conductivity, DOC, and 
Secchi depth. The comparable multiple regression model has a correlation coefficient of 
0.71, which is very similar to the NN performance at 0.74. The authors comment that the 
NN win out where the inputs and outputs are not linearly correlated, but where the 
correlation is linear, the two approaches generate very similar results. 

As in other areas the user must define the required output. If you want an estimate of 
chlorophyll-α at a given time interval, NN will do the job, but if you want process 
insights then look elsewhere. 

6.6 Urban runoff 

Urban storm water management presents a series of engineering challenges, not the least 
of which is limited data availability because continuous monitoring within pipes and 
sewers is expensive and difficult. There are some limited applications but the information 
is relatively sparse. Zaghloul and Abu Kiefa (2001) have reported on the use of NN 
approaches to perform sensitivity analysis in conjunction with the very widely used US 
Environmental Protection Agency Storm Water Management Model. Previdi et al. (1999) 
used NN to forecast flow in experimental urban networks and Gong and Denœux (1996) 
use PRNN within a model to forecast both flow and total suspended solids. The authors 
state that, in principle, their approach could be extended to forecast COD, nitrogen heavy 
metals and other variables but they are restricted to TSS by the availability of the data. 
The results are very good, improving on process modelling, but again data availability is 
a key limitation to further work. Ha et al. (2003) link a radial-basis-function neural 
network and a NN to classify land use and land cover and then link to a process based 
urban runoff and water quality model. They show that this coupling can be used to 
forecast changing water quality runoff in response to an actual or planned urban 
landscape change.  

7 INTEGRATED MODELS FOR CATCHMENT MANAGEMENT 

One can envisage a catchment forecasting model that integrates water resource demands 
with real-time flow and quality information, handles conflicting demand requirements 
including economic elements, makes decisions about flow regimes, extractions and 
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releases, and thus provides a decision support system. Since these diverse demands are 
highly non-linear and data are likely to be recorded on different scales and time frames, 
NN should offer some advantages. The program described by Wen and Lee (1998) moves 
in this direction. These authors use data for the Tou-Chen River, Taiwan to seek 
management proposals which: 

(a) find a reasonable allocation of waste loading for each pollution source against 
discharge to the river 

(b) achieve higher standards of water quality for fish, and improve the environmental 
quality, and 

(c) determine a basis for the total elimination of mass loading in a deteriorating river. 

The flexibility of the NN approach allows economic and environmental variables to be 
linked in a manner that would not be clear in a process model. The authors conclude that 
their NN solutions can be used to manage the river basin and select feasible strategies to 
meet environmental quality goals. 

The speed of execution of NN solutions and their general tendency to require fewer 
parameters than conventional models present the forecaster with tools to compile and 
compare multiple management scenarios. Yang et al. (1997), modelling accumulated 
pesticide concentrations in agricultural fields, showed that the model could be run in real 
time, while spraying was taking place, and allow field application rates to be varied. The 
output from this model, which has the potential to generate multiple scenarios, could 
provide the input to a hydrological drainage and runoff model. 

There are a limited number of cases where there has been a comparative study of 
water quality and/or ecological model performance. In the ecological literature Paruelo 
and Tomasel (1997) test aspects of a simulated data series for a seasonal vegetation 
growth index and show that NN models outperform regression models as a forecasting 
tool. NN solutions handle the non-linearities in the system better. These authors generate 
their data series, which creates an interesting experiment, but field trials would be very 
valuable. This is the crux. The data must be available. 

More recently these approaches have been used by Chen and Mynett (2003) to explore 
eutrophication, Shim et al. (2002) for flood control on the Han River Korea, Wang and 
Jamieson (2002) for wastewater treatment planning and Xia et al. (2001) to forecast lake 
basin water and salt balances. 

8 ARE NN USEFUL FOR WATER QUALITY MODELLING? 

Since Colasanti (1991) speculated on the value of NN for ecological forecasting there has 
been a wealth of hydrological water quality applications. The similarities between the 
structure and behaviour of NN and natural ecological systems argues for the use of NN 
tools in ecological modelling. But do these NN applications improve on current 
forecasting practice and are the forecasts accurate enough and achieved at an acceptable 
cost? 

Looking across the water quality modelling literature it is clear that in the last six 
years NN have been used in a diverse range of applications. Results from comparison 
studies with alternative statistical approaches suggests that the NN models give slightly 
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better results. NN do demand large data sets but these solutions have a real edge in eco-
biological studies in being able to handle data that are qualitative. Where model 
performance falls below expectation, errors are most frequently attributed to inadequacy 
in the data, as for example reported in Walley and Fontama (1998). When compared with 
statistical alternatives the evidence suggest that NN models can more accurately forecast 
non-linearity, handle complex inter-relationships and give a good indication of input-
output responses. In water quality modelling hydroinformatics is thus seen to run in 
parallel with ecological informatics, hopefully to the benefit of both. 

In many traditional examples of water quality modelling, the bio-chemical elements 
followed on as a second step after a hydrological model was created. The water quality 
elements were in some cases constrained by the structure of the original model and 
limited by the lower quality and consistency of data. There is no water quality equivalent 
of the 15-minute stage or rainfall record nor is the spatial distribution of these data 
comparable. The NN approach offers the opportunity for the modeller to treat all inputs 
independently and to link detailed and sparse data sets as inputs on an equal basis. The 
flexibility this affords is a major breakthrough. Their practical potential to combine 
diverse data, for example crop information with land use and weather data in agricultural 
modelling, has been highlighted by Schultz and Wieland (1997). Lek and Guegan (1999) 
stress the powerful potential of NN models to solve ‘hard computational problems’ 
including those where the underlying ecological relations are not understood. Gevrey et 
al. (2003) are confident enough to say ‘Convinced by the predictive quality of artificial 
neural network (ANN) models in ecology, we have turned our interests to their 
explanatory capacities’. 

NN software packages are available but clearly users need to understand the real world 
function well enough to make good judgements about NN model architecture, training 
and validation. Zhang and Stanley (1997) show that the variable which is most highly 
correlated with the output, yesterday’s raw water colour with today’s, does not give a 
good model. The strong autocorrelation in the data causes the model to forecast a 
repetition of today’s values for tomorrow. ‘The model lost its ability to distinguish the 
small individual difference between today’s colour value and yesterday’s’ (p. 2343), but 
it is this crucial small scale difference that the water treatment manager requires. Hence 
the modeller’s intuitive ideas about model structure were modified in the light of initial 
model forecasts. Starrett et al. (1988) describe the trial and error process involved in 
finding the optimum number of hidden layers and hidden nodes, and in comparing the 
effect of different transfer functions on the forecast. Indeed, as stated, ‘tens of run were 
made with each new network structure to determine the solution that had the lowest error’ 
(p. 3103). The forecaster must take the time to investigate the effects of model 
architecture to ensure the validity of the results. However, this is one of the few papers to 
consider that the time taken to create and test the model was a constraint. 

The major disadvantage in taking a NN approach is that it does not give the modeller 
further insights or explanations of catchment processes and dynamic change, although 
Recknagel et al. (1997) have shown that sensitivity analysis can produce useful insights 
about the processes. For the water quality manager this is a technique that is powerful, 
easily available and produces results that are directly understood by the user. Where this 
type of information is required then NN modelling offers a useful managerial tool. 
Working further with the approach and recognising its value in allowing the integration 
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of various types of data, as in the Wen and Lee (1998) case where the approach is used to 
choose multiple options, is perhaps the next most useful step. 

The increase in NN applications in the late 1990s has been followed by continued 
acceptance of the technique (Brion & Lingireddly, 2003; Lee et al., 2003) and links to the 
development of fuzzy logic (Maier et al., 2001), fusion modelling (Abrahart & See, 
2002) and genetic algorithm rule-based models (Bowden et al., 2003; Chen et al., 2003; 
Wang & Jamieson, 2002). So far the dominance of backpropagation learning rules is 
clear. The availability of NN tools as shareware and the speed of model calculation make 
this an appealing set of technologies. Where the modelling alternative is a regression or 
correlation approach then the theoretical advantage of applying a non-linear modelling 
solution makes considerable sense. 
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ABSTRACT: The sediment supply-transport-deposition cycle, which 
controls sediment yield, consists of a complex and highly non-linear set of 
processes. All stages of the cycle are affected by a range of natural and 
anthropogenic influences. It is thus difficult to characterise and quantify 
all the important factors, making the effective measurement or prediction 
of sediment movement extremely difficult. Neural networks offer a way 
of including much complexity via both quantitative and qualitative inputs. 
Preliminary studies on soil loss from small catchments under varying land 
use, and sediment transport in several rivers in the north of England, have 
shown the potential benefits of neural network technologies to improve 
estimation of different phases of the sediment movement cycle. 

1 INTRODUCTION 

The supply and transfer of sediment to and through the river system consists of a number 
of complex phenomena. At all stages of the process, from initial detachment of sediment 
particles to arrival of sediment at a point of interest, a combination of highly non-linear 
and interacting processes contribute to this complexity. There are problems in the 
estimation of any individual process component, and therefore the estimation of a final 
sediment flux resulting from the combin-ation of all components is extremely difficult 
and prone to error. In contrast, many of the techniques available for estimation of various 
parts of the sediment supply and transfer system are very simple, and often empirically 
based. This combination of complex process and simplistic estimation occurs in several 
areas of science. For many projects in engineering, agriculture or hydrology, an 
assessment of erosion rates or sediment movement has to be made rapidly and without 
recourse to detailed and expensive field monitoring programmes.  

As the contributory processes are so complex, their full explanation in mathematical 
terms is not possible. Even if it were possible to derive physically-based equations that 
reflect the full complexity of the situation, it is certain that for any given study or project, 
sufficient data would not be available to apply such techniques. This is particularly so in 
cases where one is trying to predict what may happen over the course of, for example, the 
next 100 years, during which time many of the controlling parameters may change. 



However, in many situations, an estimate of erosion rates or sediment yields must be 
obtained so recourse is made to the simpler and empirical models. 

One may argue that where estimates are made for long time scales the potential 
change in short term sediment supply or transfer rates, due for example to changes in land 
use or management, are so great that complex modelling methods are not justified. 
Unforeseen changes in the system may alter estimates by a factor greater than the 
inherent error in an over-simplistic estimation method. There is merit in such a point of 
view; however, some estimation procedures result in extremely high errors, even for 
today’s well monitored sites, which may also determine the success or failure of a 
project. Thus it seems logical to attempt to improve the estimation methodologies 
available. The development of artificial neural networks (NN) over recent years offers 
good potential to develop more robust and accurate sediment modelling solutions (Li & 
Gu, 2003; Nagy et al., 2002; Tayfur, 2002). 

In this chapter, an overview is given of the processes involved in sediment supply and 
transfer. The difficulties of measurement are discussed and a summary of widely used 
prediction techniques given. At each stage of this discussion the non-linearities and 
interactions between processes and stages of the supply-transfer chain are highlighted. 
The potential advantages offered by NN are then explored. This is followed by reports of 
some preliminary studies carried out using NN for the estimation of sediment yield from 
small catchments and for larger river sites. Finally, an assessment of results to date and 
future research directions is given. 

2 THE SEDIMENT SUPPLY AND TRANSFER SYSTEM 

The sediment supply and transfer system starts with the detachment of soil particles from 
their parent material or current location. Eroded material is transported overland, through 
the air, or through the river system and at some later stage is deposited. This sequence of 
processes occurs many times as a sediment particle moves from its original detachment 
site through the catchment (Fig. 12.1). 

All three components of the sediment cycle vary, both spatially and temporally, and 
are affected by a range of controlling parameters. Sediment supply sources include 
geological weathering, freeze-thaw processes, sheet, rill and gully erosion, wind erosion, 
mass movements, construction sites, mining, logging, roads and river bank collapse. The 
rates of supply from these various sources are in turn affected by land use and 
management practices, climate, topography, geology and soil type. Thus both the 
potential for a particular site to supply sediment and the actual rate at which sediment is 
supplied to some  
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Fig. 12.1. The sediment cycle. 

point down-slope or down-stream show extreme variability in both time and space. In 
areas where the regolith is disturbed, for example in mining and agriculture, the sediment 
load is likely to be enhanced and enriched with pollutants whose transport, deposition and 
re-erosion may also be of interest (Doyle et al., 2003; Erskine et al., 2002; Martin & 
Calvert, 2003; Melieres et al., 2003). 

Sediment transport is controlled by gravity and erosion agents such as water and wind. 
In mass movement the energy to move sediment down-slope is gravitational in nature, 
although water may well have played an important initial role in destabilising the slope. 
Where water flows over land or through a drainage network, the ability of the water to 
move particles is related to the depth and velocity of the water as well as the 
characteristics of individual sediment particles (size, shape, density). A similar 
combination of factors comes into play for sediment transport by wind. A sediment 
particle may take seconds or thousands of years to move from its initial point of 
detachment across a catchment and through a river network. Once in a river system, 
sediment moves in three main modes: 

1. Bedload consists of large particles which are moved along in continuous contact with 
the river bed, i.e. shear velocities of flow are never sufficient to entrain this material 
into the body of the flow. 

2. Suspended bed load consists of material that is intermittently in suspension in the 
flow body, and at other times on the river bed (either at rest or forming part of the 
bedload). Material is entrained from the river bed as the shear velocity of the flow 
increases, and is re-deposited as velocities decrease again. The result is that this 
material is found in varying concentrations throughout the river section. Generally a 
logarithmic profile is found through depth, with a normal distribution across the 
section. Maximum transport rates are generally in mid-river and in the mid-depth 
range, coincident with the maximum velocity zones in straight river sections. The 
entrainment and deposition process is complicated by the burial and shading of soil 
particles by larger particles. Thus material of a size that could, theoretically, be 
entrained at a certain velocity may be trapped on the river bed under larger particles 
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and thus unavailable for transport. In extreme cases river beds may effectively be 
arrowed by large particles.  

3. Washload consists of material that is constantly in suspension, and is found at constant 
concentrations throughout the river depth, and across the profile. For estimation 
methods and measurement programmes this is often defined as material finer than 63 
µm in diameter, although intuitively this criterion will be different for different flow 
rates. 

Normally measurements of bedload and suspended material (including washload) are 
made separately. Bedload is often not measured directly but is estimated from the bed 
grain size data. 

At any point from the time of initial detachment sediment can be picked up and 
transported by a body of water with sufficient energy. Once that energy is dissipated in 
some way, such as a reduction in flow rate, water entering a reservoir, a wider section of 
river, or shallow flow over floodplains, sediment will settle out of the flow and be 
deposited. This happens in both overland and river flow. Thus a particular soil particle 
can be moved in several steps from its original location to a river, with a time delay of 
days to centuries, depending on the obstacles that are in its way. Once in a river, sediment 
can only be transported when there is sufficient flow to do so. For a particular river, flow 
will never have sufficient energy to move some particles; some will only be able to move 
along the bed and some will be intermittently in suspension in the flow, whilst the very 
finest particles may be permanently in suspension. Individual particles can be buried 
under other particles and so trapped within the river system for considerable amounts of 
time before re-entrainment. 

Thus transport of sediment through the river system is dependent on both the supply of 
sediment to the river channel and the ability of the flow in the river to move the supplied 
sediment. Rivers are often described as supply or capacity limited transport systems, 
although in reality there is not a discernible transport capacity limit for the finest 
sediment particles. In practice a river can move from one state to the other dependent on 
the temporal distribution of both sediment supply (amount of sediment and sediment 
particle size) and river flow. In the majority of rivers the ability of the river to transport 
sediment is not the limiting factor; it is rather the supply of sediment from the range of 
sources in the catchment which restricts the amount of sediment moved. This means that 
for most rivers the relationship between sediment concentration and water discharge 
exhibits marked hysteresis. This can be in either a clockwise or anticlockwise direction 
dependent on the proximity of active sediment sources to the monitoring point. In 
practice, data from an individual site will exhibit both leading and lagging sediment 
peaks relative to the flow peak. Figure 12.2 demonstrates this for a site on the River Tees 
in north-east England for a series of events before and after a large storm (on 28 October 
2000) which activated new, local sediment sources. Post-flood events all had leading 
sediment peaks. Hysteresis for events with leading and lagging sediment peaks (above 
and below zero time difference on the graph) is in opposite directions. 

White (1996) assessed the contribution to overall sediment yield of wet and dry season 
flows, thunderstorms and tropical cyclones for a reservoir catchment in the Philippines. It 
was generally held that the cyclone events, which generate  
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Fig. 12.2. The impact of new, local 
sediment sources on the time 
difference between sediment 
concentration and flow peaks. 
Sediment peaks in advance of flow 
peaks are positive. 

large widespread flooding, were the main reason for the high sedimentation rates of 
reservoirs, but it was also clear that much of the sediment supply work was done by 
smaller frequent and localised thunderstorm events. When a cyclone occurred there was 
already a large amount of detached sediment moving through the river system, which was 
available for transport when the river discharges were raised. 

It is also clear from a number of comparative and paired catchment studies, that 
sediment supply can be dramatically reduced (or increased) by human activity. For 
example, in a study in Malawi, White et al. (1988) found that the difference in sediment 
yield between a fully managed and a traditionally farmed catchment was of the order of 
100 times. These characteristics of sediment movement, which are temporally erratic, 
spatially variable and impossible to monitor on an appropriate scale to permit process 
modelling, suggests that NN should theoretically present a practical option for the 
forecaster. 

Large catchments do, however, behave as integrators of the individual parts of the 
catchment, and in the same way as hydrological modelling began with ‘lumped’ and 
‘empirical’ approaches and developed to ‘distributed’ and ‘physically-based’ tools, so 
sediment yield modelling has followed a similar route. 
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3 EROSION AND SEDIMENT YIELD ASSESSMENT 

For the NN modeller the potential to integrate hillslope and river processes is attractive. It 
has been shown elsewhere in this book that river flow, which is a main controlling factor 
for sediment transport, may be forecast reasonably well with NN. But there is no absolute 
requirement to model river flow as a pre-requisite to modelling sediment transport, as 
early empirical models show. Sediment supply and transport rate forecasts have 
historically developed from two directions, agricultural engineering and civil 
engineering. These two sub-disciplines developed distinctively different approaches 
because of the differing objectives of their studies. Agricultural engineers were primarily 
interested in field scale erosion of soil, i.e. the loss of soil from fields, and measures to 
prevent it. Civil engineers were interested in the transport of sediment by rivers, and 
particularly in the long-term yield of sediment to reservoir impoundments. Over the 
years, work by specialists with other interests and disciplines have resulted in new 
approaches to erosion and sediment transport estimation. The following section gives an 
overview of the techniques that are available for assessment of field-scale erosion, in-
stream sediment transport and long-term sediment yield. The potential use of NN at each 
of these scales is highlighted. 

3.1 Field-scale erosion rates 

Work to assess field-scale erosion rates developed rapidly early in the 20th century as a 
result of severe erosion in the USA. A series of monitoring sites were developed to 
measure the rate of sediment loss for different soils and topographic conditions under 
different land uses, land management regimes and rainfall. Measurements were carried 
out on standard rectangular plots. Such measurements have been replicated in many 
countries throughout the world. In the USA, a total of 10,000 plot years of data was 
collated and used to develop an empirical relationship between soil loss and its 
controlling factors (Wischmeier & Smith, 1978). This relationship, the Universal Soil 
Loss Equation (USLE), forms the basis for many erosion and sediment yield estimation 
techniques. 

The basic model is: 

 
(1) 

where: 
E=Rate of soil loss 
R=Rainfall erosivity parameter 
K=Soil erodibility parameter 
LS=A topographic factor, accounting for slope length and steepness 
C=A crop cover factor 
P=A management factor 
The equation was modified for situations where runoff or rainfall dominates the 

sediment detachment process, to produce RUSLE (SWCS, 1995) and MUSLE (Williams 
& Berndt, 1977) respectively. In Southern Africa, a similar technique, the Soil Loss 
Estimator for Southern Africa (SLEMSA), was developed (Elwell, 1980).  
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Alternative attempts were made to develop a more physically-based model to include 
field-scale processes such as rills, under the auspices of the Water Erosion Prediction 
Project (WEPP) (Flanagan & Nearing, 1995; Renschler, 2003). 

In fact what is actually estimated by these techniques is a very small-scale land-based 
sediment yield figure. This can give an idea of loss of soil from an agricultural area, or 
the potential relative contribution of a certain area of a river catchment to the overall 
sediment load carried by the river. These techniques allow comparison of different 
potential land uses or management techniques in terms of their effectiveness at 
maintaining soil in place and can, therefore, be used in planning, design and assessment 
of catchment management plans or as a means of evaluating soil conservation 
programmes. 

The USLE and its derivatives are a common method that is used to provide the soil 
loss estimation component in several catchment scale hydrological models. The widely 
used Soil Water Assessment Tool (SWAT) (Arnold et al., 1998; Chanasyk et al., 2003) 
has an erosion model based on MUSLE. In common with other USLE based models this 
effectively restricts its use to areas where sheet and rill erosion dominate the sediment 
supply system. 

3.2 Sediment transport rates 

In order to design sediment extraction devices, to plan dredging programmes, to 
understand sediment supply and movement through a catchment, and to assess the 
influence of sediment on river ecology and habitat (particularly for fisheries; see Chapter 
11), we need to estimate sediment transport rates at a point. 

This can be done in two ways, although in reality monitored data are required to 
validate any modelling approach: 

• Measurement of sediment concentrations across a river cross-section. This is labour 
intensive and expensive. In order to define the whole sediment transport regime, 
measurements must be carried out at frequent intervals over a long period. In addition, 
there is often hysteresis in the sediment concentration-discharge curve, and this may 
change with varying antecedent conditions and with changes in the catchment (on a 
seasonal or longer term). The result is a high degree of uncertainty, with the sediment 
rating curve often consisting of a cloud of points around a regression line. It may also 
be necessary to carry out repeat surveys of the river channel to identify deposition and 
erosion zones. 

• A number of sediment transport formulae are available (for a review of sediment 
transport in rivers, see Fisher, 1993). These provide an estimate of the capacity of the 
river to transport sediment of a given size, and thus theoretically provide an upper 
limit to the sediment transport rate. There are many equations available, most of which 
have been developed with flume data. Such equations may be unrealistic for natural 
river conditions. Most of the equations require a representative bed grain size as input. 
This is very difficult to obtain, as bed material clearly changes with flow condition. 
The available equations normally give a wide range of answers for a given river site.  

• Other investigators use a ‘stream power’ approach, first suggested by Bagnold in 1966, 
which considers a body of moving water in a river to be analogous to an engine able to 
exert power in order to carry out the work of sediment transport. This approach has 
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been revisited and improved recently (Finlayson & Montgomery, 2003; Martin & 
Church, 2000). 

3.3 Sediment yield 

Sediment yield can be defined as the total volume or mass of sediment passing a point of 
interest over a specified time. For example, the long term average annual input of 
sediment to a reservoir may be needed for the practical management of siltation problems 
or be required in reservoir design modelling. 

The need to estimate sediment yield has mainly and historically been related to the 
construction of large dams. As well as estimating how long a reservoir will take to fill 
with water, there is also a need to estimate how fast it will fill with sediment. This defines 
the viable life of the reservoir. In reality sediment yield estimates are subject to so much 
uncertainty that it is extremely rare for a proposed dam project to be abandoned because 
of predicted high sedimentation rates. At best, the design may be adapted to include some 
sediment exclusion or extraction device such as low level sluices, but these are often 
ineffective. 

Sediment yield estimates for dam projects often constitute 1 or 2 pages in an overall 
feasibility study running to hundreds if not thousands of pages. And yet one of the major 
problems encountered in many reservoirs around the world is that of excessive 
sedimentation. Even where sedimentation is not a problem in volume terms, water quality 
problems may be associated with input of contaminants attached to the sediments. 
Sediment inputs are almost without exception in excess of those predicted at the 
feasibility stage, often by an order of magnitude (see for example: Brabben, 1982; Fish, 
1983; Patnaik, 1975; Dickinson et al., 1990). This poor record of pre-construction 
estimates of sediment yield rates has many contributory causes. In order to understand the 
shortcomings in currently available techniques, it is necessary to look in more detail at 
the options that are available for sediment yield estimation, and the factors that contribute 
to error. 

There are four basic options for sediment yield estimation: 

• Measurement of sediment concentration and stage (river flow) in order to develop a 
sediment rating curve. This is then used in conjunction with a long-term river 
discharge record to estimate long-term sediment yield. This is subject to the same 
problems of measurement as discussed above. 

• The use of hydrological models of various types (conceptual, black-box, stochastic, 
physically-based). Even the most sophisticated hydrological models use empirical 
relationships for sediment components, often based on USLE. Although some make an 
attempt to impose a more rigorous physically based approach, even these resort to 
empirical ‘parameters’. In order to get the supply side of the equation correct, 
predictions of overland flow have to be correct. There is much debate in the literature 
over whether any model (even the most complex) can realistically model internal 
catchment processes. Although models may make a good prediction of river flow at 
the catchment outlet, the various components of that flow (overland, shallow soil, 
groundwater interaction, etc.) may not be well estimated in time or space and both are 
necessary pre-requisites for accurate modelling of sediment supply and transport. 
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• Sediment yield models (e.g. Al Kadhimi, 1980; Fournier, 1960) are normally highly 
empirical. They are based on simple bulk catchment characteristics such as catchment 
area, main channel slope and vegetation type. 

• GIS based models of erosion and sediment transfer, which are based on erosion risk, are 
themselves often based on one of the empirical soil loss models in an attempt to 
represent spatial variability in sediment supply. The link between the estimation of 
movement of eroded sediments from the hillslope to and within rivers is often weak. 
Some work has been based on distance and slope to main river channel, i.e. the further 
the original erosion is from a river and the shallower the slope between it and the river, 
the longer it will take for eroded material to move into the river. Some attempts have 
also been made to integrate this sort of approach with more sophisticated distributed 
hydrological models (e.g. Burton & Bathurst, 1998). 

In estimating at any scale (field-scale erosion, sediment transport and sediment yield) we 
are interested in three phenomena and their interactions—supply, transport and 
deposition of sediment. As described above, all of these processes are extremely complex 
and non-linear, and show high temporal and spatial variability, with in-built and variable 
lags in the system and continue to need field assessments to judge reliability (Walling et 
al., 2003). 

4 WHY USE NN FOR SEDIMENT MODELLING? 

A consideration of the factors affecting supply and transport of sediment and the 
inadequacy of the techniques available for estimation allows us to list a number of 
possible advantages of NN sediment modelling: 

1. Non-linear behaviour can be learnt—e.g. variation due to antecedent conditions, 
location of rainfall events, seasons, thresholds, etc. 

2. There is no need to explicitly define all contributory processes as they can be 
represented by proxy variables (e.g. date). This is also true of statistical models. 

3. Input variables can include those that use, for example, varying upstream inputs to 
represent spatial variability (e.g. flow rates for upstream tributaries or upstream 
raingauge data). Causal links do not have to be explicitly explained. 

4. NN have been shown to work for river flow prediction, which is one of the main 
controlling factors for sediment transport. 

5. There is no requirement with NN to model river flow as a pre-requisite to modelling 
sediment transport, thus removing one major source of potential error.  

6. Where data are scarce there may be a possibility to transfer models between 
hydrologically similar rivers with geographically similar catchments—although 
‘similar’ remains to be defined. 

7. NN are mathematically and computationally less demanding than most sediment 
related modelling alternatives. 

8. Non-contributing variables can be identified and removed or ignored. This is also true 
for statistical models. 

9. Some understanding of the physical system functioning may be gained by an analysis 
of which events are affected by the removal of input variables (Abrahart et al., 2001) 
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or hidden neurons, which represent specific hydrological processes, e.g. overland 
flow, flow recessions, flow peaks (Wilby et al., 2003). 

10. Potentially, more general models can be developed. 

5 PREVIOUS NN STUDIES IN SEDIMENT MODELLING 

There are a limited number of studies that have used NN to model the sediment supply 
and transfer system. Abrahart and White (2001) applied NN to a series of four small 
experimental catchments in Malawi. The catchments experienced differing land use and 
management regimes and had been monitored over a period of 3–5 years. A small data 
set with 117 records containing rainfall, runoff and sediment yield were available 
covering the 1981 to 1985 rainy seasons. Models for predicting sediment output were 
developed using multiple linear regression (MLR) (Fig. 12.3) as a benchmark and a fully 
connected 8:8:1 NN trained with backpropagation and jitter, which is the addition of 
artificial noise (Fig. 12.4). In both cases, proxy variables were used to represent different 
catchment characteristics. Due to the small size of the data set, the networks  

 

Fig. 12.3. Multiple linear regression 
prediction with superimposed line of 
perfect agreement. 

were trained with increasing amounts of jitter, which was added to the input patterns 
during training in order to facilitate a generic solution and to avoid over-fitting. 

The results showed that the NN significantly outperformed the MLR approach. The 
NN solution provided a tighter fit to the data and created a marked reduction in the 
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number of pronounced outliers. The NN approach also had the added advantage of 
producing a solution with a similar pattern of error for each catchment unlike the MLR, 
which exhibited bias in favour of the catchment with the largest number of recorded 
observations. The NN technique produced a more flexible response to changing 
circumstances and the pattern of error between the individual catchments was equalised 
so that the model could be transferred to unknown scenarios with reasonable confidence. 

Jain (2001) used NN to model the sediment-rating curve at two sites on the 
Mississippi River. This work built on his earlier research to model discharge rating 
curves, which also used NN (Jain & Chalisgaonkar, 2000). A sediment rating curve 
expresses a non-linear relationship between the sediment and river discharges and is 
usually modelled using regression analysis and curve fitting. NN provide an alternative 
method for modelling this non-linear relationship. Different combinations of input 
variables were used including current and previous levels, discharge and sediment 
concentration inputs while the output layer had two nodes, one for discharge, and one for 
sediment concentration. The number of hidden layer nodes was determined through trial 
and error. Conventional rating curves were also developed for the two gauging stations 
concerned to provide a comparison. The results showed that the NN provided a better 
estimate of sediment discharge for the validation period at both sites, relative to a 
conventional curve fitting approach, which encountered problems with peak prediction. 
NN were also successful in modelling the hysteresis concentration using 161 
observations from 4 streams. Half of the observations  

 

Fig. 12.4. NN prediction using 
standard inputs and jitter set at ± 0.0%. 
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were used for training and the remaining half for verification. The input variables 
included 6 parameters covering tractive shear stress, suspension, water depth ratio and 
Froude effect. 

Nagy et al. (2002) used NN trained with backpropagation to estimate total sediment 
concentration. Testing was undertaken to determine the most suitable NN discharge, 
Reynolds numbers and stream width ratio, which were used to predict the sediment 
transport. The final architecture contained 12 hidden nodes. The model was verified with 
a large number of data points from several rivers. The results showed that the NN 
approach estimated sediment concentrations well compared to conventional methods. The 
authors also compared the NN results with seven other formulae presented in the 
literature, and the NN model gave the best results overall. 

NN have also been used to model sheet sediment transport (Tayfur, 2002). Three-layer 
feedforward networks were trained and tested using experimental slope and rainfall 
intensity input data to predict sediment discharge as an output. The NN were compared to 
results from the most commonly used physical models including flow velocity, shear 
stress, stream power and unit stream power. The results showed that the NN performed as 
well as the physically based models at predicting nonsteady-state sediment loads at 
varying slopes. The various approaches were also used to predict the mean sediment 
discharge from experimental runs. The results indicated that the NN performed better 
than the physically based models at steep and very steep slopes under very high rainfall 
intensities. 

6 NN EXPERIMENTS 

This section discusses initial results from an investigation into the possibility of 
modelling sediment concentration directly from flow rate without the need for a 
sediment-rating curve. Data from the Land Ocean Interaction Study (LOIS) (Wass & 
Leeks, 1999) and the sustainability in managed barrages study (SIMBA: 
www.silsoe.cranfield.ac.uk/iwe/projects/simba.htm) were used in these experiments. 
Flow and sediment concentration data for two stations were used: the Low Moor station 
on the River Tees, and the Thornton Manor station on the River Swale, both in north east 
England. The catchments providing sediment to the Swale River and the Tees River have 
similar characteristics, which justified the use of the data for both rivers during the 
training and testing stages. 

The backpropagation method was employed to train the NN. A series of trials were 
undertaken to determine optimum values for the number of nodes in each layer, the 
number of hidden layers, the learning rate, the momentum rate and the connection 
weights. Fixed stopping was used and all data were scaled between 0 and 1. 

6.1 Spatial transfer based on flow 

The first set of experiments was designed to train NN for a station on the River Swale 
and for the solution to be tested and applied to a station on the River Tees. NN were 
trained using 15-minute flow values as inputs for the time  
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Fig. 12.5. The estimated and actual 
suspended sediment concentrations at 
Low Moor for the period 23/01/2000 
to 07/03/2000 at time t. The six 
network inputs were flow t to t−5. 

period 10/11/1994 to 25/12/1994 for the River Swale. Six flow values (t to t−5) were 
used to estimate the unique suspended sediment concentration at time t. The testing of the 
trained NN was accomplished with 15-minute flow and suspended sediment data from 
the Low Moor station on the River Tees for the time period 23/01/2000 to 07/03/2000. 
The results are shown in Figure 12.5. 

The results indicate that the suspended sediment concentration predicted by the NN 
generally approximated the observed value but underestimated the peaks. The MSE and 
the estimated total sediment yield at the end of the testing period were 472 and 3496 t 
respectively. The difference between the estimated and observed sediment yield (5664 t) 
was 38%. 

The experiment was repeated, replacing the training data with the testing data and vice 
versa, i.e. the Tees River data were used for training and the Swale River data for testing. 
The time periods of the data considered during both stages remained unchanged. The 
results showed that the NN predicted the general behaviour of the observed Swale series 
but again there was a general underestimation of the peaks. The NN estimated a sediment 
yield of 7739 t, which was just 4.4% higher than the observed value of 7412 t, with an 
MSE of 632 t. The small difference in yield estimates arose because the underestimation 
of peaks was balanced by an overestimation of low flows. 

The above experiment was then repeated with the input and output data rescaled to 
between 0.2 to 0.8 and an input time interval from t−8 to t−13. The results showed that 
changing the input time interval and the scaling limits provided closer approximations to 

Neural Network Modelling of Sediment Supply     241



the observed values. The MSE decreased to 533 t and the total sediment yield estimated 
was 2.3% higher than that observed. 

These results show that if river flow and suspended sediment data from a nearby river 
with similar catchment characteristics are available, then the general behaviour of the 
suspended sediment time series can be estimated using the available flow series for the 
corresponding time interval. The results  

 

Fig. 12.6. The estimated and actual 
suspended sediment concentrations at 
Low Moor for the period 25/02/2000 
to 30/03/2000 at time t. The six 
network inputs were flow t to t−5. 

obtained are especially significant considering the expense of installing sediment 
measurement equipment and the importance of providing realistic future estimates for a 
river’s potential sediment yield. 

6.2 Temporal transfer based on flow 

In the second set of experiments, NN were trained on 15-minute data from the Low Moor 
station on the River Tees for the time period 21/01/2000 to 25/02/2000 and tested on a 
later period at the same location. The input data consisted of six flow values from t to t−5 
and the output was the unique suspended sediment concentration at time t. The testing 
stage covered 25/02/2000 to 30/03/2000. The NN estimated time series was again close 
to the observed record but the peaks were underestimated (Fig. 12.6). The total estimated 
sediment yield, 3980 t, was 5.2% less than the observed value of 42061. 
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In this experiment it was shown that even in the absence of observed sediment data, it 
was possible to obtain reliable corresponding estimates by training with sediment and 
flow data from previous events at the same location. 

6.3 Temporal transfer based on sediment data 

If some sediment data are available then preceding values of sediment concentration can 
be used as training data. This was carried out for the River Ouse at Skelton for the time 
period 07/01/1995 to 18/01/1995 using the 6 previous sediment concentration values as 
inputs (t−1 to t−6). The results are shown in Figure 12.7, which indicates that the 
availability of the preceding sediment concentration data would improve the ability of the 
NN to predict future sediment concentration values (the MSE in this experiment was just 
32.5 t). The sediment concentrations predicted by the NN do not reflect the full 
variability of the monitored data, although it is not certain that the high variability seen in 
the monitored data is a true representation of sediment movement in the river. Sediment 
monitoring is a complex procedure with high levels of uncertainty  

 

Fig. 12.7. The estimated and actual 
suspended sediment concentrations at 
Skelton for the period 07/01/1995 to 
18/01/1995 at time t. The six network 
inputs were suspended sediment 
concentration at t−1 to t−6. 

attached to the data. Even so, the total sediment yield estimated from field data and from 
the NN are very close, and in terms of estimating sedimentation rates in reservoirs, this 
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would be an entirely acceptable estimation procedure. However, this example must be 
considered as illustrative only, as the existence of immediately preceding sediment 
concentration data would mean that this is a situation where one may not, in practice, 
need to use NN. 

In these examples the data sets used were small and the training times for the NN were 
limited. It is clear that with the availability of a longer continuous data set the NN would 
be trained with more input and output patterns. This would increase the accuracy of the 
models by providing better validation results. 

No technique can be expected to model processes that are outside the range of those 
considered in its development, and yet this is often what happens with the modelling of 
sediment yield. Data may be available for a series of flow conditions, but are usually not 
monitored during extreme flows. This is in part because extreme flows are by definition 
rare and will probably not occur during any monitoring period, and in part because of the 
difficulties of obtaining a true measurement of sediment transport rate in high flow 
conditions. Normally, very few data are available at all. In such circumstances it is 
important to include process understanding in any modelling approach. This can 
potentially be done with NN by including information on upstream conditions without 
explicitly defining the controlling processes. 

7 CONCLUSIONS 

The modelling of any part of the sediment supply-transport-deposition cycle is highly 
complex, involving many non-linearities and a diverse mix of controlling factors. 
Existing techniques are limited by the ability of models to fully represent this complexity. 
In particular the often extreme spatial and temporal variability of all phases of the cycle 
presents difficulties for both data input and model construction. NN offer an alternative 
estimation procedure with the capability to learn complex and non-linear behaviour. A 
major advantage is the possibility of using proxy variables to represent different climatic 
or hydrological situations or land use management combinations within a catchment. 
Such an approach means that important influences can be included in the model without 
explicit parameterisation. Preliminary tests at the small catchment and river basin scale 
have shown promising results. Work is ongoing to combine such a modelling approach 
with recent developments in field data collection in order to better represent variability in 
the system. 

There are relatively fewer applications for NN modelling in sediment transport 
forecasting than there are, for example, in the water quality and fisheries areas (Table 
11.1) but the potential for use is just as extensive. Given that bedload sediments are 
critical for spawning, or as habitat sites, and that pollutants readily attach themselves to 
sediments on slopes in the stream bed, and when suspended in the water column, the 
scope for applied forecasting is considerable. There is also, for example, little research on 
coupling the hillslope-stream interface in this context. The USLE model has held its 
premier position for nearly a century. Its straightforward approach is appealing in 
simplifying processes that are distributed and highly complex. NN would appear to have 
an advantage in being mathematically and computationally less demanding than process-
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based hydrological modelling approaches and have the potential to generate new options 
in both hillslope runoff modelling and stream sediment transport forecasting. 
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13 
Nowcasting Products from Meteorological 

Satellite Imagery  
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ABSTRACT: Nowcasting and Numerical Weather Prediction (NWP) 
form the backbone of quantitative weather forecasting at the UK 
Meteorological Office (Met Office), covering very short to medium range 
forecasts (up to about 5 days ahead), and for horizontal scales from about 
1 km to global. Due to the way in which observations are assimilated into 
NWP, very short range nowcasting methods have a significant impact on 
forecasts such as cloud and precipitation, and indeed are used for 
mesoscale model initialisation. 

Meteorological satellites using visible, infrared and microwave radiometers provide a 
valuable source of information in support of both nowcasting and NWP. This chapter 
describes the use of meteorological satellite image data in nowcasting, and why neural 
networks have started to become an important technique for dealing with the complex 
patterns present in such data in near-real time operational forecasting applications. 

Two such applications researched and developed at the Met Office, which use visible 
and infrared geostationary meteorological satellite imagery, are presented. The first 
concerns the discrimination of cloud type for determining which of two nowcasting 
techniques to use in a flood forecasting system. The second application is concerned with 
efforts to determine a probability of precipitation from visible and infrared imagery to 
improve precipitation forecasts from the British Isles precipitation radar network for use 
in the Met Office’s Nimrod nowcasting system. 

1 NOWCASTING 

Nowcasting concerns very short range weather forecasting over horizontal scales of 
around 1 to 100 km. It tends to focus on the extrapolation of observed trends in cloud, 
precipitation and similar meteorological variables, as opposed to the approach of NWP, 
which determines the atmospheric state and uses quasigeostrophic dynamical equations to 
forecast future states from which distributions of cloud and precipitation can be inferred 
(Golding, 1998). 

1.1 Nowcasting techniques 



Many nowcasting techniques are available, such as extrapolation, advection, conceptual 
models, statistical techniques, expert systems and decisions trees, as well as the use of 1-
dimensional and NWP models (Conway, 1992; Conway, 1999). 

The original nowcasting method is simple linear extrapolation based on the 
assumption that the rate of change is constant. Persistence, for example, is a special 
example of linear extrapolation in which the rate of change is zero. Advection is an 
alternative to linear extrapolation, which can allow for curved motion to be forecast. 
Typically, the components of advection are derived from NWP forecasts. 

Conceptual models embody some qualitative or semi-quantitative description of 
meteorological phenomena, such as their structure, life-cycles and mechanisms. 
Examples include the development of mid-latitude depressions (cyclogenesis), and the 
concept of a warm conveyor belt of moist air in so-called ‘Spanish plume’ events. 

Statistical techniques are often used in situations where the physical basis of a 
relationship is poorly understood, or there is some complex nonlinear relationship, for 
example between observations and atmospheric variables, and where sufficient data 
exists to help define that relationship. Although regression techniques have been used for 
many years, it is no surprise that artificial neural networks (NN) started to take their place 
amongst this set of tools in the early 1990s, precisely for those reasons mentioned, but 
not least because nowcasting products are often required in near-real time. 

If a forecasting task can be reduced to a set of rules, then decision trees, which 
represent the rules in the form of a flow-chart, can be used in the process. ‘Inference 
engines’ can operate on sets of rules to reach conclusions, and these are the basis of 
expert systems. 

Perhaps the dominant forecast method in the medium-range since the 1960s has been 
the NWP model, in which a 3-dimensional representation of the atmosphere is contained, 
either in a grid-point or in a spectral space. Such numerical models can be global in 
nature, or can represent a limited area with finer horizontal and vertical resolution. Some 
numerical modelling centres, such as the Met Office, run both global and local models, so 
that boundary conditions from the global model can be used to initialize values at the 
edges of local models. The models integrate the so-called primitive equations which 
represent Newton’s second law of motion, the ideal gas equation, the first law of 
thermodynamics, the conservation of mass and a pressure tendency equation, using the 
best ‘analyzed’ state of the atmosphere in terms of motion (winds), mass (pressure and 
temperature) and moisture (humidity).  

Although NN have been suggested as a forecasting alternative to NWP models, it is 
very unlikely that they would be used, because the physical basis of these models at 
synoptic scales is well understood. The main problem with NWP models is one of 
gathering sufficient observational data, assimilating it, and using the finest horizontal and 
vertical resolutions possible, the last two factors being largely dependent on the 
computing power available. (The Met Office currently uses a Cray T3E supercomputer to 
run its Unified Model (Cullen, 1993), which caters for medium-range forecasting, climate 
and ensemble prediction applications at global—and meso—scales, all in one operational 
suite.) 

1.2 Nowcasting versus NWP? 
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Nowcasting systems rely heavily on remotely sensed observations of atmospheric 
variables such as cloud and precipitation, and usually contain relatively simple 
assumptions for extrapolating them. NWP also relies on remotely sensed observations to 
determine the state of the atmosphere, but because of the relative lack of observations 
(105 for example in a global NWP model) compared to the number of grids points used 
(typically 107 in such models), there are many more degrees of freedom than the 
observational information can provide, and the problem is said to be ‘under-determined’. 

NWP therefore relies heavily on ‘first-guess’ fields: on forecasts produced from a 
previous forecast run. Data assimilation techniques are then used to weigh up the 
information from observations against the information in the firstguess to produce the 
best idea of the current state of the atmosphere, the analysis. Assimilation requires a large 
number of observations (often from a 6 hour period centred on the analysis, because of 
the asynoptic nature of some data such as weather radar, satellite retrievals and lightning 
detection), and together with the effects of limited resolution, a significant amount of 
time is required for the observations to affect the model forecast. In other words, the 
information input to NWP models is relatively slow. This means that NWP models tend 
to produce poor forecasts of variables such as cloud and precipitation at short forecast 
lead times, but because they have a good representation of the atmospheric dynamics, 
produce better forecasts in the medium range (3 to 48 hours). 

In addition to the resolution problems, current NWP models suffer from timeliness and 
quality of very short range forecasts. So does this mean that nowcasting should rely on 
observational data alone and forecasting techniques such as advection, statistical analysis, 
conceptual models and expert systems? 

1.3 Sources of data 

Nowcasting is inextricably linked to remotely sensed observations and near-real time 
products that can be obtained from platforms such as weather radar and geostationary 
meteorological satellites. In answer to the last question, however, the truth is that more 
and more nowcasting systems are making use of first-guess and forecast data from NWP 
models, so we should not refer to ‘Nowcasting versus NWP’, but rather to ‘Nowcasting 
using NWP’. Indeed, modern nowcasting systems use as many techniques that are 
required, and as much observational and model data to provide significant information 
for the required forecast variable. 

Consider the case of the Met Office’s Nimrod nowcasting system (Golding, 1998), in 
which precipitation forecasts use: 

1. radar and satellite observations to generate frequent rain rate analyses 
2. linear extrapolation, or advection from NWP forecast winds, depending on recent 

quality levels, to advect the precipitation 
3. relative use of observational data and NWP precipitation forecasts, where the latter 

dominates towards the end of the nowcast, as the relevance of the observational data 
declines. 

Nowcasting data sources therefore not only include weather radar network data, 
geostationary satellite imagery, synoptic reports, but indirectly, all the observations that 
are used in NWP models: data from radiosondes, drifting and stationary buoys, aircraft 
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reports, as well as top-of-the-atmosphere infrared and microwave radiances, 
scatterometer winds and atmospheric motion vectors derived from meteorological 
satellites. 

2 THE USE OF METEOROLOGICAL SATELLITE IMAGERY IN 
NOWCASTING 

At the Met Office, meteorological satellite observations have been used to improve 
weather forecasts in a number of ways. The classic approach was to provide imagery 
products for bench forecasters, such as visible and infrared imagery, and information on 
cloud top height and the presence of fog. These products were used to aid decision 
making for a range of tasks, from local forecasting to the validation of NWP models. 

In recent years, the increase in speed and memory of computers has helped to process 
satellite data in near-real time, so that a much larger array of meteorological products can 
be considered. These include temperature and humidity retrievals from infrared and 
microwave sounding instruments and atmospheric motion vectors obtained from 
geostationary visible, infrared and water vapour imagery. A large number of additional 
meteorological products are expected to be obtained from new satellite instruments. 
Meteosat Second Generation produces images every 15 minutes with 3 km sub-satellite 
resolution for 12 visible and infrared channels, and products include high-resolution 
winds, convective rainfall rate, stability analysis imagery and information on rapidly 
developing thunderstorms. 

2.1 Visible, infrared and microwave imagery 

Satellite sensor measurements can be broadly classified according to their use in 
nowcasting or NWP. The domains of nowcasting and NWP have already been discussed, 
and it is no surprise, therefore, that nowcasting requires near-real time mesoscale 
products, usually related to specific meteorological variables such as cloud and 
precipitation, whilst NWP requires global data, usually related to the atmospheric state 
such as temperature and humidity soundings and wind-speed. An important difference is 
the platform used to get the meteorological variables of interest. On balance, polar 
orbiters tend to provide data for NWP, and geostationaries the data for nowcasting. 

Geostationary meteorological satellites nearly always have one visible and one 
infrared channel (at about 0.7µm and 11.0µm respectively), and occasionally a channel 
centred on the 6.7µm water vapour band. From the radiance observed in the visible 
channel, a measure of the visible reflectivity is obtained, which is high for opaque cloud, 
and low for warm land and sea surfaces. Infrared channel radiances are used to determine 
an infrared brightness temperature of a given pixel. For example, thick cirrus cloud at 
high altitudes can result in a cloud-top brightness temperature of around 220K, whilst 
land surfaces in summer can produce brightness temperatures in excess of 300K. Figure 
13.1 shows visible and infrared images of the UK on Christmas day 1995, together with 
the corresponding values for selected pixels, in a 2-dimensional ‘feature space’. Note that 
different cloud and surface classes occupy different regions of the space: thick cirrus 
clouds (diamonds) have reflectivities of 55–90% and brightness temperatures of 215–
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230K, whilst clear sea (crosses) occupies a smaller cluster with reflectivities of 10–20% 
and brightness temperatures of 275–285K. 

As well as images at visible and infrared wavelengths, some radiometers have been 
flown which operate in the microwave (for example, the Special Sensor Microwave 
Imager on the US Defense Meteorological Satellite Program satellites). These passive 
microwave imagers operate at wavelengths of several millimetres, although channels are 
usually expressed in terms of frequency, with SSM/I for example having channels at 19, 
22, 37 and 85GHz. 

2.2 Cloud 

Figure 13.1 illustrates how visible and infrared satellite imagery can be used as a source 
of information on cloud amount and type. Kidder and Vonder Haar (1995) provide an 
excellent review of cloud products from meteorological satellite imagery, and Pankiewicz 
(1995) discusses the use of pattern recognition techniques for such products. 

The simplest and oldest technique for discriminating cloud from cloud-free areas is to 
use a threshold in both visible and infrared channels (Arking, 1964), such that if a pixel is 
brighter or colder than some threshold value, it is assumed to be cloud covered. Two 
fundamental problems with this technique, however, are the choice of threshold and the 
effects of sub-pixel cloud. An alternative is to use histogram techniques, in which 
histogram contours are plotted in a space similar to that shown in Figure 13.1. In one 
approach (Desbois et al., 1982), clusters of classes are determined by first identifying 
local maxima, then assigning samples to the nearest maxima to form growing clusters. 

Spatial coherence (Coakley & Bretherton, 1982) relies on parts of the infrared 
brightness temperature image being either completely clear or completely cloudy.  
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Fig. 13.1. Meteosat visible and infrared 
images taken at 11:30UTC on 25th 
December 1995, processed at the Met 
Office to produce visible reflectivity in 
the range 0–100%, and infrared 
brightness temperature in the range 
193–303K, both represented here in 
grey-levels from 0–255. A 2-
dimensional feature space shows 
samples of data taken from 2500 pixels 
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in the bottom right hand corner (mid-
level cloud, dots), 100 pixels in the 
centre of the North Sea depression 
(thick cirrus, diamonds), and 100 
pixels just south of Ireland (clear sea, 
crosses). 

The mean and standard deviations of infrared radiances are calculated and plotted against 
each other. Areas free of cloud have low standard deviation and low mean radiance, 
whilst areas filled with cloud also have low standard deviation but high mean radiance. 
Partly cloudy areas have high standard deviation and an intermediate mean radiance. The 
radiance values for clear and cloudy areas are then determined, and knowing the actual 
radiance, the effective cloud amount can be calculated for each pixel.  

To some extent, pattern recognition techniques take the concept of thresholding, 
histogramming and spatial coherence, and use all of this information together to 
determine cloud properties in imagery. A multi-dimensional space is constructed, the 
most basic example being where each radiance measurement relates to one axis (as in 
Fig. 13.1). However, other features such as standard deviation and textural measures 
(Haralick, 1986) of a small group of pixels can be used to provide additional information. 
As in histogramming, samples are used to define clusters of classes. However, the idea is 
then to discriminate these classes so that any set of features values can be identified with 
that class again. Over the past 20 years or more, a number of cloud type classifiers have 
been constructed using the elements of pattern recognition (Parikh, 1997 provided an 
early review), using parallelepipeds in a 7-dimensional feature space (Karlsson, 1994) 
and Gaussian maximum likelihood classification (Ebert, 1987; Garand, 1988). 

2.3 Precipitation 

The estimation of precipitation using satellite imagery is ‘one of the most difficult and 
unsolved problems facing the science and technology of satellite remote sensing’ 
(Levizzani, 1999). Reviews of visible, infrared and microwave techniques have been 
produced by Barrett and Martin (1981) and Kidder and Vonder Haar (1995), who broadly 
classify visible and infrared techniques into cloud indexing, bi-spectral techniques, life 
history methods and the use of cloud models. With any visible or infrared technique, 
precipitation rates are inferred indirectly: the precipitation falls from the cloud base, but 
visible and infrared radiances are observed at the top of the atmosphere. Hence no cloud 
means there is no precipitation, but cloudy regions may also produce no precipitation, 
and clouds in the tropics produce precipitation in quite a different way to mid-latitude 
frontal bands. In addition, verification of precipitation is difficult. Data from radar 
networks are used, but come with their own sources of uncertainty. The representativity 
of rain gauges makes their use with satellite data a problem. Since radars sample volumes 
comparable to satellite pixels, radar networks are probably the best source of verification 
data. 
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The oldest technique of cloud indexing aims to identify cloud types in satellite 
imagery, after which rain rates can be assigned to the different cloud types, e.g. the 
widely used Global Precipitation Index method, (Arkin & Meisner, 1987). 

Bi-spectral methods (Lovejoy & Austin, 1979) attempt to combine the rules of 
probabilities of precipitation associated with both visible and infrared channels, so that 
clouds which have the best chance of raining must be both cold and bright. Currently, the 
Met Office’s Nimrod nowcasting system uses this type of method to determine a 
probability of precipitation from Meteosat (Cheng & Brown, 1995). 

For convective clouds, life-history techniques are particularly relevant, since there is a 
clear relationship between the rate of change of a cirrus anvil associated with 
cumulonimbus clouds and the resulting precipitation. One of the most widely used 
techniques is known as the Griffith-Woodley technique (Griffith et al., 1978), which 
identifies cloud colder than 253K in a series of images. The maximum areal extent is 
obtained, and the inferred rain rates are determined according to the stage of cloud 
growth, the cold cloud area and the cloud-top temperature within the cold cloud area. 

In principle, pattern recognition techniques can combine cloud type, bispectral and life 
history information, if sufficiently accurate and comprehensive training sets are available. 
Wu et al. (1985) used the Gaussian maximum likelihood method to classify samples 
measuring 400 km2 taken from GOES imagery. To train the classifier, rain rates were 
inferred from collocated National Weather Service radar data. More recently, Grassotti 
and Garand (1994) used cloud-top pressure, albedo and cloud fraction as input features to 
an unsupervised classifier, as well as 6-hourly estimated NWP model rain rates. 

2.4 Neural network approaches to cloud and precipitation estimation 

Visible and infrared cloud and precipitation nowcasting products are ideal candidates for 
retrieval by pattern recognition techniques, and in particular, multilayer perceptron neural 
networks (MLP) using the backpropagation learning algorithm (Rumelhart et al., 1986). 
They both require two aspects of pattern recognition: automatic recognition of the 
structures and shapes observed in cloud (machine vision), and automatic recognition of 
rain rates or cloud types in terms of spectral and textural data, as well as ancillary data, 
such as latitude and hour of the day (statistical pattern recognition). The reasons that 
MLP have been considered useful for this work is that: 

1. Apparently unrelated input features (such as average values, grey-level difference 
vectors, hour of the day and latitude) can all be combined. 

2. Complex nonlinear relationships between meteorological variables (such as cloud 
structure and rain rate for example) can be learned. 

3. Preconceived ideas of class distributions (such as Gaussians) are not assumed—NN 
training is ‘data driven’. 

4. Operational use of trained NN is very fast, important in near-real time applications 
where large datasets (such as images) are processed. 

5. In classification mode (with two or more output nodes), estimates are Bayesian in the 
sense that a mixture of information is provided to the trained NN, and the outputs 
represent the likelihood of those classes existing. (This means that for all output values 
less than 0.1, for example, an extra ‘don’t know’ class can be ascribed.) 
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6. Adaptability to loss of data (‘graceful degradation’) is possible, which can be of 
particular use in meteorological satellite imagery applications, where visible channel 
data effectively disappears at night. 

There are naturally a number of drawbacks to these techniques, including the amount and 
quality of data used in training (robustness), the correct representation of all likely 
situations in the training set (extreme events), and the fact that to some extent, the trained 
network is a black box (although the strengths of connections between input and output 
nodes can indicate the relative importance of certain relationships). However, given a 
sufficiently good training set, these problems can be largely overcome, resulting in good 
candidates for operational applications. 

3 CLOUD CLASSIFICATION FOR A FLOOD FORECASTING 
SYSTEM 

One key problem related to very short range forecasting in mid-latitudes concerns the 
different types of weather that can result from conditions controlled by synoptic-scale 
advection as opposed to conditions controlled by mesoscale convection. In advective 
situations, frontal and stratiform cloud types are more dominant, and cloud and rain tend 
to be advected according to steering level winds. 

On the other hand, convection is often governed by small, local instabilities in the 
lowest few kilometres of the atmosphere, which are able to trigger the release of large 
quantities of Convectively Available Potential Energy (CAPE) over a short period of 
time. Once this CAPE has been released, development of convective cells and storms can 
be extremely fast: a mature cumulonimbus storm can develop from a cumulus cloud in as 
little as 30 minutes. The weather associated with severe convection can include a number 
of violent phenomena: heavy precipitation (rain rates of more than 30 mmh−1 are not 
uncommon over a period of a few minutes), strong gusts, downdraughts (important to 
aviation), not to mention lightning, hail and tornadoes. 

Forecasting in such convective situations can be improved with an understanding of 
the life-cycle of convective cells, as well as knowing the recent history of those cells. 
This is because convective cells tend to undergo stages of evolution, dissipation, splitting 
and merging, even to the extent of producing daughter cells. It would therefore appear to 
be of interest to not just describe cloud according to the well-known classes such as 
altocumulus, cirrostratus and stratocumulus, but into more physically related classes 
including stratiform cloud, and shallow and deep cumuliform (convective) cloud. 

This section discusses the use a NN cloud classifier trained to distinguish just these 
classes, for use in a flood forecasting system which is required to use advective or 
convective forecasting techniques, appropriately. 

3.1 Overview of the GANDOLF system 

GANDOLF (an acronym for Generating Advanced Nowcasts for Deployment in 
Operational Land-based Flood forecasts) is a system designed to provide automated 
precipitation forecasts to the Environment Agency, and to issue warnings of likely 
accumulations in regions of interest (Collier et al., 1995; Pierce et al., 1995). Many of the 
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sources of error in flood forecasting often occur during periods of heavy convective 
precipitation, because the exact timing, location and intensity of convective activity is 
difficult to assess, and many nowcasting systems currently rely on extrapolative and 
advective techniques. However, a promising new technique which uses an object-oriented 
conceptual model (OOM) of convective cells (Hand & Conway, 1995) began a series of 
tests at the Met Office in 1994, and was more recently trialled in a pre-operational 
version of GANDOLF during the summer months of 1996 to 1998 in collaboration with 
the Environment Agency. 

There are three levels of operation of GANDOLF: 

• Level 1 (Monitor) co-ordinates the gathering of remote data, primarily from the Nimrod 
nowcasting system. Processed Meteosat data are used at this stage to determine the 
overall synoptic conditions in terms of advection or convection, and a decision is 
made to use Nimrod nowcasts or to start the OOM. If precipitation is detected within 
the GANDOLF domain, and specifically within the Chenies radar domain (an area of 
about 420 km×420 km centred to the north west of London), the second level of 
operation is started. 

• Level 2 (Action) is concerned with running and validating the OOM. If the OOM 
forecasts convective precipitation in the Thames Domain (NG 380–580 km E; 120–
280 km N), GANDOLF initiates the third and highest level of operation. 

• Level 3 (Alert) is the third and highest level of operation. The latest OOM precipitation 
forecast is sent to the Flood Warning Centre. Verification statistics are also sent when 
observed 10 minute instantaneous rain rate and 15 minute accumulations are available. 
Level 3 issues heavy precipitation warning messages if such precipitation is forecast. 

3.2 Cloud classifier training and testing 

Some automatic technique for distinguishing stratiform cloud from convective cloud was 
therefore required for level 1 of the GANDOLF system. A good candidate method 
seemed to be the use of cloud classification from satellite imagery, available in near-real 
time, for the whole of the GANDOLF domain. 

3.2.1 Early results 

In 1996, a MLP was trained using Meteosat visible and infrared imagery, for use in the 
pre-operational version of GANDOLF (Pankiewicz, 1997). A total of 365 Meteosat 
visible and infrared images was restored from a satellite image archive from 1994, one 
image pair being selected for every day of the year, at some randomly chosen time 
between dawn and dusk. The area covered by the imagery included northwest Europe, the 
North Sea and part of the Atlantic Ocean east of 20°W, roughly from 45°N to 65°N. 

For each image pair, a total of six samples of 17×17 pixels were selected by an 
experienced meteorologist at the Met Office, using surface analyses to verify airmasses 
and cloud types. This resulted in 2190 samples (over 6×105 pixels), which were labelled 
into one of: clear land or sea, stratiform cloud (including frontal cirrus, thin cirrus, 
altostratus, nimbostratus, stratus, fog and haar), shallow convective cloud (including 
stratocumulus and cumulus), and deep convection (cumulonimbus and mesoscale 
convective systems). The number of samples in each class was not the same, but was a 
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measure of the a priori distributions of the classes encountered in the imagery, which can 
be an important factor in terms of classification accuracy for such NN (Foody et al., 
1995). The samples were finally split randomly into a training set of two-thirds and a test 
set of one-third of the samples. 

Feature selection at this stage was performed by a literature search of proven cloud 
classification features (Gu et al., 1991; MacLaren et al., 1994; Bankert 1994). A more 
objective method is discussed in Section 4.2. Simple features were used including the 
minimum, maximum, standard deviation and mean Robert’s gradient in the visible, the 
maximum, ratio of minimum to maximum and standard deviation in the infrared, and the 
month of the year and hour of the day of the sample (9 inputs plus a threshold node). All 
features were normalized linearly in the range 0 to 1, especially as few feature values 
were found to occur near the limits. Output class values were set to 0 or 1 for each 
sample with the true class being represented by 1. 

One hidden layer was deemed sufficient for the network, and after numerous trials, the 
fewest misclassifications were obtained for a 10:12:4 network architecture. The network 
used backpropagation with a momentum term added. The number of samples used in the 
training set was found to improve classification accuracy if the ratio was approximately 
1:4:3:1 for clear, stratiform, shallow and deep convective cloud, respectively. A 
deliberately large learning rate of 0.9 was set to provide a gradient descent that would 
cover a large portion of the error surface. Changes in the mean square error were checked 
every five epochs, and training was stopped if the error was less than 10−5 for 10 
consecutive epochs, or when a maximum number of 200 epochs had passed. If an 
apparently good solution was obtained, classification accuracies were calculated 10 times 
on randomly chosen subsets of the test set, since a large standard deviation in 
classification accuracy implies that the network became stuck in a local minimum 
(MacLaren et al., 1994). The best classification accuracy obtained in this way was 80.8 ± 
2.2%. 

Table 13.1 below shows a typical confusion matrix for this network, in which the 
number of true samples used are compared against the number estimated by  

Table 13.1. A typical confusion matrix for the 1996 
version of the GANDOLF cloud classifier, with a 
classification accuracy of 81.0%. True class 
numbers are given in the rows (50 per class), and 
NN estimates in the columns. 

  Estimated 
clear 

Estimated 
stratiform 

Estimated shallow 
convection 

Estimated deep 
convection 

True clear 49 1 0 0 

True stratiform 7 30 8 5 

True shallow 
convection 

0 2 42 6 

True deep 
convection 

1 4 4 41 
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the NN. Ideally, the matrix should be diagonal, but in practice, non-zero off-diagonal 
elements exist, which indicate where the worst misclassifications occur. The main source 
of error was in identifying stratiform cloud. For example, some cases of thin cirrus were 
misclassified as clear and some cases of broken stratus were misclassified as shallow 
convection. 

3.2.2 Night-time, dawn and dusk 

One of the problems with the 1996 version of the network was that it relied on visible 
imagery, and could not be used at night. To improve the classifier, 100 cases of Meteosat 
visible and infrared imagery were restored from archive (a new training set), spread over 
the period July 1995 to December 1997. Half of the cases were chosen randomly, whilst 
the remainder were chosen to contain examples of particular meteorological situations 
that might be missed in the randomly chosen set (such as polar Arctic and polar maritime 
showers, Spanish plume events, deep convection in a polar maritime returning flow, 
anticyclonic clear situations and so on). 

Some 3000 samples (nearly 9×105 pixels) at 5 km resolution were selected and were 
once again labelled according to clear, stratiform cloud, or shallow or deep convective 
cloud. Met Office analyses were used to ensure the synoptic situation warranted the class 
chosen, and deep convective cloud was discriminated from shallow convective cloud if 
cloud top temperatures were less than −15 °C, warmer than the corresponding threshold 
used during the initial GANDOLF classifier training in 1996. The final distribution of 
samples is given in Table 13.2. 

Initially, the plan was to provide two cloud classifiers, one for visible and infrared 
data, the other for infrared only. However, some experiments were performed with a 
single cloud classifier, that could adapt to loss of visible data at night. It became obvious 
after some time that two classifiers tended to show significant mismatches at dawn and 
dusk when GANDOLF switched from one to the other. NN are, however, claimed to be 
good at coping with the loss of input data (graceful degradation), so an experiment was 
tried in which missing visible channel input values were set to 256/255 (1.0039; the 
normal range is 0.0 to 1.0). This appeared to work very well indeed, providing a network 
with an overall (day and night) classification accuracy of 92%. Nine input features were 
used for this network, the same as those used for the 1996 GANDOLF classifier.  

Table 13.2. Distribution of training and testing 
samples by class for the 1999 version of the 
GANDOLF cloud classifier. 

  Clear Stratiform Shallow convection Deep convection 

Visible and infrared 189 789 99 298 

Infrared only 274 1190 14 147 

Total 463 1979 113 445 

The few remaining problems were now concerned with the classification of deep 
convective cloud at night, and the changeover from the 23:30 image to the 00:00 image 
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(due to the training data being non-cyclic). To avoid these problems, some modifications 
were made, including the addition of the mean Robert’s gradient as an input feature in the 
infrared, which showed an ability to discriminate deep convective cloud and stratiform 
cloud, and a change from using the minimum visible and infrared values to the mean 
visible and infrared values, which was found to better discriminate shallow convection. 
Additionally, the hour of the day and month of the year features in the training set were 
randomly split into two, with one set having 24 hours (or 1 year) added if the value was 
less than 12:00 (or before July), or subtracted if it was greater than 11:59 (or after June), 
to provide a training set covering 48 hours or 2 years for each feature. This enabled the 
network to perform the same fit to the data at the start and end of these features, thereby 
improving the 23:30 to 00:00 and December to January matches. Table 13.3 below shows 
an example of the network classification accuracy for the NN delivered for operational 
use within GANDOLF, for a typical distribution of samples. 

Figure 13.2 gives an example of the 1999 GANDOLF NN cloud classifier, at dusk at 
19:00 on the 6th June 1999, when visible data were starting to be lost. Stratiform cloud is 
correctly identified in the infrared section, but convective cloud remains near the coast of 
southern France. This would have resulted in the object oriented forecast model of 
convective cells being used, since most the south of the UK is covered with deep 
convective cloud. 

In practical use, the classifier, although trained on samples of 17×17 pixels, was used 
to calculate features in regions of 7×7 pixels, and was used to classify tiles of 3×3 pixels 
(15×15 km). This loses little information in terms of classification accuracy, except that 
the centres of deep convective cells tend to become classified as stratiform cloud. This is 
strictly true given that they consist of cirrus anvils. The advantages of this procedure are 
that edge effects are improved (tiles of 17×17 pixels may classify everything as stratiform 
cloud if the region contains clear sea and stratiform cloud), the image is not too noisy  

Table 13.3. A confusion matrix for the 1999 version 
of the GANDOLF cloud classifier, with a 
classification accuracy of 92.7% for a typical 
distribution of samples. True class numbers are 
given in the rows, and NN estimates are given in 
the columns. 

  

  

Estimated 
clear 

Estimated 
stratiform 

Estimated shallow 
convection 

Estimated deep 
convection 

True clear 60 0 0 0 

True stratiform 1 256 0 0 

1 6 30 1 True shallow 
convection 

     

0 9 15 73 True deep 
convection 
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Fig. 13.2. GANDOLF NN cloud 
classification at dusk, 19:00UTC on 
6th June 1999. The left panel shows 
the Meteosat parallax corrected 
infrared image for the Nimrod area at 5 
km resolution, the centre panel the 
Meteosat visible image (note the effect 
of dusk), and the right panel shows the 
classified image (black is clear, dark 
grey is stratiform cloud, mid-grey is 
shallow convective cloud, light grey is 
deep convective cloud and white is 
unclassified). 

(which occurs if every pixel is classified), and the time required to perform the 
classification is about 32 times quicker. 

4 PRECIPITATION ESTIMATION FOR THE NIMROD 
NOWCASTING SYSTEM 

Spurious echoes in the form of anomalous propagation (anaprop) and clutter can provide 
fairly common, yet unwanted signals in weather radar data, resulting in false observations 
of precipitation. The Nimrod nowcasting system produces a variety of cloud and 
precipitation fields which are also used in initialising the mesoscale model. The quality of 
radar data therefore has an important consequence for both short-range forecast guidance 
and mesoscale model initialisation. 

Currently, the Nimrod nowcasting system attempts to detect spurious radar echoes 
automatically using a scheme that includes a Probability of Precipitation (PoP) field 
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determined from two independent sources: ground-based synoptic data and Meteosat 
visible and infrared imagery. The Meteosat data are analysed on a pixel-by-pixel basis to 
help form the PoP field by using a simple thresholding technique, described by Cheng et 
al. (1993), and based on the method of Lovejoy and Austin (1979). Essentially, cloud-
free areas result in a low PoP, whilst in cloudy areas, PoP is estimated according to the 
climatological occurrence obtained by Cheng et al. (1993). The scheme is often referred 
to as the Nimrod anaprop removal scheme, although the aim is to remove all spurious 
echoes. This Meteosat PoP is then combined with the ground-based synoptic reports and 
forecast PoP using Bayes’ theorem (Pamment & Conway, 1998), and results in a value of 
a parameter known as alpha, which can range from 0 (definitely no rain) through 1 (the 
climatological probability of rain) to large values (definitely rain). A threshold is set 
within the field of alphas to remove radar echoes where there is a sufficiently low 
probability of rain. 

Although the current Meteosat thresholding scheme provides a Probability of 
Detection of about 60% for cold frontal precipitation where rain rates are greater than 
1/32 mmh−1, it is about 50% for warm fronts, and only 30% for cold-air convection. 

A study was undertaken to estimate precipitation rate in 4 classes from NOAA 
AVHRR data using a NN classifier, which provided a new capability of incorporating 
spectral and textural image characteristics. The results were encouraging, with an average 
PoP of 72% at a threshold of 1/8 mmh−1, taken in various synoptic conditions, compared 
to similar mesoscale model PoP values of 69% at T+0 and 63% at T+6. False Alarm 
Rates (FAR) were 37% from the NN, compared to 51% from the mesoscale model at T+0 
and 56% at T+6. 

The combination of different discriminatory inputs such as infrared brightness 
temperature and visible reflectivity texture meant that local neighbourhood information 
around the pixel of interest could be used to improve the estimate of precipitation, over 
and above that of a threshold technique (for example in cases of cold-air convection, by 
recognizing convective cells). The NN approach used in this case had further advantages 
in that its output values provided Bayesian estimates of the PoP directly, and that it could 
operate at high speed, because of the statistical nature of the trained NN. 

4.1 Training and validation data 

At the Met Office, Meteosat image data are processed through the Autosat system, which 
reprojects images into polar stereographic coordinates, and derives a range of products, 
including visible reflectivity and infrared brightness temperatures, from the instrument 
counts. Infrared grey-scales range from 4 to 251, and represent brightness temperatures of 
198K to 308K respectively. The Nimrod nowcasting system ingests these two Meteosat 
products, corrects them for parallax and sun angle and maps them onto a 5 km grid within 
the Nimrod domain (Golding, 1998). 

Each image underwent pre-processing including identification and removal of corrupt 
images and was then composited into the Nimrod domain at 5 km resolution. 

For the development of the PoP classifier, we used 48 sets of Meteosat and radar 
composite images from July 1995 to June 1997 (including visible reflectivity data when 
available). Two sets were restored for each month at random times, coinciding with half 
hourly Meteosat imagery. 
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For each radar composite, two additional composites were chosen before and after the 
time of interest, to form a radar movieloop with 5 half-hourly frames. These movieloops 
were examined for anaprop, often seen best in this way as patches of shimmering radar 
echoes bearing little relation to real rain systems and often related to orography. Areas 
suspected of being contaminated with anaprop were marked on a copy of each image, to 
avoid selection for the NN training set. 

A total of 3200 samples of 17×17 pixels (85×85 km) were selected from the collocated 
infrared brightness temperature and radar rain rate fields from uncontaminated regions of 
the images. Samples were labelled as no rain (≤1/32 mmh−1or as rain (> 1/32 mmh−1), 
depending on the central radar rain rate (centre labelling) or the average radar rain rate 
over the sample (average labelling). 

Average labelling is less sensitive, but provides a better correlation between cloud 
brightness temperature statistics and rain or no rain. Any subsample could therefore be 
chosen, with its own centre or average label, if required. Of the 3200 samples, 2097 had 
no rain as the central label and 1103 had rain, giving a dry to wet ratio of 1:1.9. This 
compares to the dry to wet ratio used by Cheng et al. (1993) of 1:2.8. 

From this set of 3200 samples, 1142 were selected for which uncorrupted visible 
reflectivity data were known to be available. These data were restored from archive, and 
added to the training and validation sets. Of the 1142 samples, 749 had no rain as the 
central label and 393 had rain, giving the same dry to wet ratio as for the infrared only 
cases. 

4.2 Feature selection for the PoP classifier 

Given samples of infrared brightness temperature or visible reflectivity pixels which we 
wish to correlate with a central or average rain rate label, it is possible to calculate 
numerous statistics or features over different sized regions. The most obvious features are 
the infrared brightness temperature or visible reflectivity values at the central pixel; given 
this information, a NN classifier should be able to classify as well as, or better than the 
threshold classifier discussed in Cheng et al. (1993), for example. However, it is possible 
to extract some simple local features, such as the mean, standard deviation, minimum, 
maximum, and the range and ratio of the maximum and minimum, providing a total of 7 
features per spectral channel, including the central value. 

It is also possible to extract textural features from regions of at least 3×3 pixels, such 
as grey-level difference vectors (Weszka et al., 1976). A grey-level difference vector 

is the absolute difference between two grey-levels with a fixed spatial 
relationship of angle, and distance (in pixels). In this work, four relationships were 
used: (0°, 1.00), (45°, 1.41), (90°, 1.00) and (135°, 1.41). Grey-level differences were 
calculated for every pair of pixels in the sample governed by these relationships, to 

produce a series of histograms These histograms were then used to construct 
five statistics of interest: the mean, contrast, angular second moment, entropy and 
homogeneity, as detailed in Pankiewicz (1994). 

To determine the ability of these 17 candidate features per spectral channel to 
discriminate rain from no rain, multi-dimensional Bhattacharyya distances were 
calculated (see Gu et al. (1991), for example). Bhattacharyya distances were calculated 
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for sample sizes of of 7×7 pixels, using centre labelling for cases where both visible 
reflectivity and infrared brightness temperature data were available. In this case, the 
largest Bhattacharyya distances were found to continue increasing at a feature vector size 
of 9 dimensions, with textural features starting to be used at 9 dimensions. 

The largest Bhattacharyya distance of a feature vector without textural features was 
found to consist of the minimum, maximum, range and ratio of the visible reflectivity, 
plus the minimum, maximum, range and ratio of the the infrared brightness temperature 
(8 dimensions). At 9 dimensions, the largest Bhattacharyya distance included the same 
features as at 8, together with the maximum visible reflectivity entropy measure of 
texture. 

4.3 PoP training and testing 

Feature selection showed that 5 or 8 features depending on availability of visible 
reflectivity data are most useful at discriminating 2 rain classes (no rain and rain with a 
threshold of 1/32 mmh−1). The 3200 training samples were split randomly into a training 
set and a validation set, containing two-thirds and one-third of the data respectively. A 
MLP was trained with the input features described above, together with a bias node. 
Weight values were recorded every 5 epochs, and the validation set was used to obtain 
the average Probabilities of Detection (POD) and False Alarm Rates (FAR). The aim was 
to increase the PoP and decrease the FAR. Note however that to get the same ratio of wet 
to dry pixels, we require FAR=1-PoP. If FAR > 1-PoP, then the scheme overestimates the 
number of wet pixels. In tests, a 1:2.8 wet to dry distribution of samples was used in 
order to compare the results with the work of Cheng et al. (1993). 

After a large number of experiments in which the number of hidden nodes was 
changed, as well as values of the learning rate and momentum factor, the best network 
was found to produce a PoP of 66±9%, a FAR of 57±5% and an Equitable Threat Score 
(ETS) of 17±6%. These are average scores in the sense that the validation set was 
constructed out of samples taken during various synoptic conditions. An idea of the 
variances was obtained by calculating PoP, FAR and ETS for subgroups of samples from 
the total validation set. A total of 8 hidden nodes provided this solution, and a learning 
rate of values of 0.5 and momentum factor of 0.05 were used. The input features were 
normalized according to zero mean, 4σ variance, and all samples were 7×7 pixels with 
centre class labelling. 

The results for the infrared only network can be compared with the best PoP of 
61±24% and FAR of 47±12% for cold frontal cases obtained by Cheng et al. (1993), and 
their values of 28±21% and 74±11% respectively for cold-air convection, and 50±19% 
and 50±16% respectively for mesoscale convective systems. 

An example of the resulting PoP where echoes were recorded in the Nimrod radar 
composite is shown in Figure 13.3 for 20:30UT on 15th May 1997, together with the 
Meteosat infrared image and the radar composite. The radar composite was obtained after 
processing with the Meteosat threshold classifier, and a large number of spurious echoes 
still remain over Ireland, Strathclyde,  
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Fig. 13.3. An example of PoP values 
from the infrared feature NN: The top 
left panel shows the Meteosat infrared 
image for the Nimrod area at 5 km 
resolution, at 20:30UTC on 15th May 
1997. The top right panel shows rain 
rates within the Nimrod radar 
composite area (white is no rain, light 
grey >1/32 mmh−1, dark grey >1/2 
mmh−1 and black 2 mmh−1), and the 
lower panel shows the NN PoP field 
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where radar echoes were recorded 
(dark grey is PoP >0.4, light grey is 
PoP ≤0.4). 

9Grampian region, the Midlands, the southeast and the Normandy and Brittany coast. 
The NN PoP classifier has assigned PoP values of around 0.02–0.3 over Northern Ireland, 
Strathclyde and the Grampian region, 0.02–0.5 over the Midlands, 0.01–0.3 over the 
southeast and 0.02–0.3 over the Normandy and Brittany coast. However, PoP values of 
around 0.5 are found for the band of rain over the Firth of Forth, and 0.5–0.7 for the rain 
off the Lincolnshire coast.  

For the visible and infrared feature network, the 1142 available samples were again 
split into a training set from two-thirds of the data, and a validation set from the 
remaining third. The same procedure was adopted to search for the best classifier, and in 
this case, the best network was found to produce a PoP of 69 ± 10%, a FAR of 41 ± 3%, 
and an ETS of 33 ± 7%, all superior to the infrared only PoP classifier. A total of 12 
hidden nodes were required, together with a learning rate of 0.2 and a momentum factor 
of 0.01. All other NN aspects were the same as for the network using infrared features 
alone. 

4.4 Results of trialling the PoP classifier in Nimrod 

In the Nimrod anaprop removal scheme, PoP values are not used in the calculation of a 
final probability map. Alpha values are used instead, where in general: 

 
(1)  

where P(W) is the probability of a pixel being wet and P(D) is the probability of a pixel 
being dry. An alpha value can be said to be the ‘odds’ that a pixel is actually wet and 
ranges from 0 (definitely no rain) through to 1 (the climatological probability of 
precipitation) to large values up to 100 (definitely rain). The use of alpha values in the 
Nimrod anaprop removal scheme is described by Pamment and Conway (1998). The NN 
PoP product is converted into a field of alphas before it is implemented into the current 
anaprop removal scheme. 

The NN PoP field must be shown to provide a better diagnosis of precipitating and 
non-precipitating cloud than the current field (described by Cheng et al., 1993), if it is to 
be used in the Nimrod anaprop removal scheme. The current PoP field diagnoses shallow 
and small-scale convection poorly and this is particularly evident when only infrared data 
are available: the NN classifier would be of particular value if it can show improvements 
in such conditions. 

The classifier must identify areas of non-precipitating cloud in order that spurious 
echoes in radar images can be effectively removed. However, an overriding requirement 
of the anaprop removal scheme is that precipitation echoes must not be removed; 
therefore, the classifier must also accurately identify areas of precipitation. 

The performance of the new classifier was evaluated during two periods, between 28th 
May and 8th September 1998, and 28th October and 18th December 1998. 
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During the initial period, the assessment was designed to measure the performance of 
the NN PoP classifier, without surface reports or short period forecasts. The PoP from the 
classifier was converted into a field of alphas (NN alphas) which could be directly 
compared to the Nimrod Meteosat field of alphas (Nimrod alphas) of the current anaprop 
removal scheme. In the current scheme, an alpha value of 1 is the threshold with values 
below 1 assumed to indicate dry conditions and any echoes falling in these regions being 
deleted. Alpha values of 1 or greater are assumed to indicate a climatological probability 
of rain and any echoes falling in these regions are retained. A set of linear transforms 
were used to convert the NN PoP into alpha values. These transforms were derived by 
examining a number of radar composites and finding a transformation which produced a 
balance of alpha values for wet and dry radar pixels in a similar way to the current 
Nimrod alphas field. The threshold at which echoes would be deleted or retained was 
derived by finding a value which produced a balance of anaprop removal and rain 
retention similar to the current Nimrod alphas. The same linear transforms were applied 
to the NN PoP field, regardless of whether infrared only or visible and infrared data were 
used. In this period, the transforms used meant that, for the NN PoP, the threshold 
probability below which echoes are removed was 0.143 (i.e. a NN PoP of 0.143 is equal 
to an alpha of 1). 

The NN scheme performed better than the Nimrod scheme in terms of the accuracy of 
anaprop diagnosis. Some 97% of the cases examined showed the NN scheme to have 
either diagnosed all cases of anaprop correctly, or retained only some light anaprop or 
clutter. This compares favourably with 84% for the Nimrod scheme. In terms of the 
accuracy of rain diagnosis, the current Nimrod scheme performed better than the NN 
scheme. A total of 77% of the cases examined showed the Nimrod scheme to have either 
diagnosed all cases of rain correctly or removed only an insignificant amount of light rain 
(e.g. from the edges of rain clouds). The NN scheme diagnosed 60% of cases to this level 
of accuracy, with the remainder having rain deletion likely to give a misleading analysis 
and forecast, or deletion of significant amounts of rain. 

Over the winter assessment period (28th October–18th December 1998), 144 cases 
were examined. The anaprop assessment scores show that the current Nimrod scheme 
removed more anaprop and clutter than the NN scheme in 47% of cases examined. In 
76% of cases examined, the NN scheme retained a significant amount of anaprop or an 
amount likely to cause problems for TV applications. The NN scheme performed better 
than the Nimrod scheme in terms of the amount of rain retained. In the rain assessment, 
the NN scheme deleted significant amounts of rain in only 1% of cases, compared with 
15% of cases for the Nimrod scheme. On the basis of the assessment results, the NN PoP 
classifier has not been implemented operationally within Nimrod. 

The NN scheme showed early promise, particularly for improving PoP diagnosis 
based on infrared data only. Although a number of problems emerged during the trial 
period, it became apparent that nearly all of these could be remedied. Given that few 
alternatives exist to improve the analysis of spurious echoes from independent data, and 
that the NN technique can be refined with the use of surface temperature, snow cover and 
a surface climatological albedo field (all used in the current scheme), an improved NN 
PoP classifier is currently being developed. 
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5 CONCLUSIONS 

The role of meteorological satellite imagery as a data source for nowcasting products has 
been described, emphasising the need for the ability of such products to incorporate 
ancillary information, such as time, geographical location and NWP analysis data. From a 
list of nowcasting techniques currently available, it appears that NN, in the role of pattern 
recognition systems, can provide the flexibility and speed for building the type of 
nowcasting products that are being required for near-real time operational use. 

Two examples of the application of NN used in this way have been presented, one for 
use in discriminating stratiform cloud and convective cloud in the GANDOLF flood 
forecasting system, and the other for determining a probability of precipitation from 
satellite imagery in order to assess rain rates from the British Isles radar network in the 
Nimrod nowcasting system. 

The cloud discriminator undertook some 3 years of testing in a pre-operational 
environment before its limitations could be properly assessed. Modification of NN for 
additional sources of information and new training data is a relatively simple matter, and 
an improved version of the cloud classifier became part of the operational GANDOLF 
system on 1st June 1999. 

The probability of precipitation estimator for Nimrod underwent trialling during 1998, 
and although it showed early promise with an ability to detect light rain from shallow 
convection in summer, also showed a number of problems, particularly during winter, 
when there is small contrast between land surface temperature and low cloud. However, 
it is expected that the problems can be remedied, and further development is planned in 
the near future. 

The applications of NN described in this chapter have been shown to provide useful 
near-real time operational techniques. From the wealth of data expected from new and 
upcoming meteorological satellites, and from the increasing complexity of nowcasting 
systems, it is expected that the requirement for such techniques will continue well into 
the foreseeable future. 
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Mapping Land Cover from Remotely Sensed 

Imagery for Input to Hydrological Models 
GILES M.FOODY  

School of Geography, University of Southampton, Highfield, UK 

ABSTRACT: Remote sensing has been widely used as an input to 
hydrological models. Often the remotely sensed data are used indirectly, 
especially through the derivation of land cover data that may be 
incorporated into spatially distributed models. Although land cover 
mapping is one of the most common applications of remote sensing, there 
are numerous problems with the techniques used, which limit map 
accuracy and thus the associated value of the map to hydrological 
modellers. This chapter focuses on the potential of feedforward neural 
networks as a tool for land cover mapping using supervised digital image 
classification. Neural networks are considered relative to conventional 
methods and examples of comparative performance in different situations 
are provided. 

1 INTRODUCTION 

Remote sensing has many applications in hydrology but is particularly attractive as a 
source of data for hydrological models. Modelling work has progressed from a period 
characterised as being data sparse and computationally constrained to one that is data rich 
and computationally powerful (DeCoursey, 1988; Melone et al., 1998; Storck et al., 
1998; Jakeman et al., 1999). Many hydrological models have been produced but selecting 
a model and obtaining appropriate data to use in it can, however, be difficult (Melone et 
al., 1998). Initially, and to some extent as a function of past data availability and 
computing facilities, emphasis was placed on lumped models. Although valuable, lumped 
models are spatially constrained. Remote sensing has the potential to provide complete 
data coverage of large areas. As a consequence, remote sensing may be used to 
parameterise spatially distributed models (Harvey & Solomon, 1984). These distributed 
models offer the potential to refine our understanding of important hydrological issues, 
particularly those for which the spatial dimension is important (Dunn et al., 1998; 
Frankenberger et al., 1999). 

Artificial neural networks (NN) are a form of computational intelligence that imitates 
functions of the human brain (Aleksander & Morton, 1990; Fischer, 1998). NN are 
general purpose computing tools that can be used to solve complex non-linear problems 
(Simpson & Li, 1993; Fischer, 1996) and have been used in a wide range of applications 
in remote sensing. These tools have been used for unsupervised classification (Baraldi & 



Parmiggiani, 1995), geometric correction (Smith et al., 1995), image compression 
(Walker et al., 1994), model inversion or variable estimation (Pierce et al., 1994; 
Schweiger & Key, 1997; Wang & Dong, 1997), but especially for supervised 
classification (Benediktsson et al., 1990; Kanellopoulos et al., 1992; Mannan & Ray, 
2003). A broad range of different network types have been used including radial basis 
function networks (RBFN) and binary diamond networks (BDNN) (Salu & Tilton, 1993; 
Bishop, 1995; Murnion, 1996) but by far the most widely used is the feedforward multi-
layer perceptron (MLP) network (see Chapter 2). For brevity, attention here is focused 
only on the use of feedforward NN for supervised digital image classification. This 
technique converts remotely sensed imagery, sometimes in association with ancillary data 
sets such as topography, into a thematic map. 

Remote sensing has developed into a major source of data for hydrological models 
(Klein & Barnett, 2003; Lacaze et al., 2003; Hillard et al., 2003; Mackaya et al., 2003). 
The image data are acquired by a sensor in a consistent manner that provides a complete 
and near-simultaneous coverage of large areas. Furthermore, remotely sensed imagery are 
available at a range of spatial and temporal scales and so capable of providing 
information on a vast range of environmental issues (Foody & Curran, 1994). In essence, 
the imagery acquired by remote sensors provide a spatial representation of the manner in 
which electromagnetic radiation interacts with the Earth’s surface. The nature of the 
interactions of radiation with the Earth’s surface is controlled by a set of state variables 
(Verstraete et al., 1996; Curran et al., 1998). As these state variables, typically basic 
physical, chemical and biological properties of the surface, control the observed remotely 
sensed response they can be estimated directly from remotely sensed imagery. 
Fortunately some hydrological variables of interest are, or are very highly correlated 
with, state variables and so can also be estimated directly. For example, 
evapotranspiration, a fundamental component of the hydrological cycle, may be 
estimated from remotely sensed imagery acquired in the thermal infrared part of the 
electromagnetic spectrum (Hoshi et al., 1989; Engman & Gurney, 1991). The estimation 
of hydrological variables from remotely sensed data can, however, be extremely difficult, 
especially if the variable of interest is only indirectly related to the observed remotely 
sensed response or requires highly accurate radiometric calibration of the data. It is, 
therefore, common for remote sensing to be used indirectly as a source of data for 
hydrological models. Thus, for example, measures of vegetation amount such as leaf area 
index (LAI), which is effectively a state variable (Curran et al., 1998; Foody & Boyd, 
2002), or biomass (Foody et al., 2001, 2003; Held et al., 2003) can be derived remotely 
and may be used to derive estimates of vegetation parameters for hydrological models 
(Schultz, 1996; Watson et al., 1999). Similarly, land cover is strongly linked to a range of 
hydrological variables of interest and state variables controlling the remotely sensed 
response. Land cover has a strong influence over key hydrological properties such as 
interception, infiltration and evaporation. Thus land cover maps may be used to estimate 
a range of hydrological variables or used to parameterise models (Hoschi et al., 1989; 
Neumann & Schultz, 1989; Sharma & Singh, 1992; Garatuza-Payan et al., 1998; Storck 
et al., 1998). Land cover maps derived from remotely sensed images have, therefore, 
been widely used as an input to hydrological models including those focused on the 
estimation of evapotranspiration (Jensen & Chery, 1980; Uchida & Hoshi, 1988), and 
stream flow and sediment yield (Harvey & Solomon, 1984). Furthermore, as land cover 
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controls many basic properties, changes in land cover have important hydrological 
implications. The effects of major changes in land cover and use such as those associated 
with urbanisation (Olsin et al., 1988; Bellal et al., 1996; Kang et al., 1998; Tsihrintzis & 
Hamid, 1998), forest clearance (Schultz, 1996; Brooks & Spencer, 1997; Crockford & 
Richardson, 1998; Woube, 1999), agricultural expansion and management practices 
(Boardman, 1995; Barjracharya & Lal, 1999) have, amongst others (Walling, 1981), 
attracted considerable interest. These land cover changes may be monitored as a 
consequence of the temporal dimension of remote sensing. 

Remote sensing may be used to map land cover at a range of spatial and temporal 
scales. Classification techniques are generally used in the mapping of land cover from 
remotely sensed imagery. This applies to both visual and digital based approaches to 
mapping. Visual interpretation proceeds in a similar manner to aerial photograph 
interpretation, with the analyst using image tonal, textural and contextual features to 
identify land cover, often with the aid of a discrimination or interpretation key (Lillesand 
& Kiefer, 2000). Although visual classification can be highly accurate, digital analyses 
are often preferred. Digital classifications can be undertaken more objectively than visual 
analyses and can more easily handle the voluminous digital images acquired by current 
and proposed sensing systems. Moreover, the output of the digital classification is 
typically in a format conducive for integration with other digital data sets, particularly 
those held within a geographical information system (GIS), which is attractive for use 
with hydrological models, especially distributed models. 

Many digital image classification approaches have been used to map land cover with 
varying degrees of success. Two broad categories of classification technique have been 
used, unsupervised and supervised (Mather, 1999; Tso & Mather, 2001). Unsupervised 
classifications seek to identify natural classes within the imagery. They are essentially 
clustering algorithms that identify a set of spectrally dissimilar classes present in the 
imagery. Once derived the analyst must then attempt to label the classes in some 
meaningful way. If, as is more typical, the classes of interest are known in advance it may 
be preferable to use a supervised classification. With a supervised classification the 
analyst specifies the classes of interest and provides the classification with information on 
which to characterise each class in the imagery. This enables the analyst to focus on the 
classes of interest to the particular study, which can be a major advantage as the classes 
of hydrological significance may not be depicted on available thematic maps (Knox & 
Weatherfield, 1999). On the basis of the class characterisations derived and the 
classifier’s decision rule, the class membership of every image pixel may be predicted. If 
desired, different spatial units (e.g. fields or land parcels such as hillslopes rather than 
individual pixels) that match more closely the hydrological issues under study (Bronstert, 
1999) could be used as the basic spatial unit in a particular classification; for simplicity 
the standard per-pixel approach to classification will be assumed throughout but the 
discussion has applicability to other approaches. 

Despite the considerable developments made recently, the accuracy with which land 
cover may be mapped from remotely sensed imagery with a supervised classification is 
often perceived to be inadequate for operational applications (Wilkinson, 1996). This 
limits the value of land cover maps derived from remotely sensed imagery for input to 
hydrological models as error will propagate into later analyses based upon them. 
Consequently, the considerable potential of remote sensing as a source of land cover data 
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for use in hydrological models is not being realised. Many reasons may be cited for this 
situation. These include issues such as the nature of the land cover classes, the spectral, 
spatial and radiometric resolutions of the remotely sensed imagery and the methods used 
in mapping (Meiner, 1996; Takara & Kojima, 1996; Campbell, 2002). Here, attention is 
focused only on the latter issue with particular emphasis on the potential use of NN as 
tools for mapping land cover from remotely sensed imagery. 

2 SUPERVISED DIGITAL IMAGE CLASSIFICATION 

Supervised image classification is one of the most common digital image analyses 
undertaken in remote sensing. It aims essentially to convert the remotely sensed imagery, 
sometimes in association with ancillary data sets (e.g., topography), into a thematic map. 
Prior to a classification a series of pre-processing analyses may be undertaken to prepare 
the imagery. Typically pre-processing involves the removal or reduction of distortions or 
degradations in the imagery (Mather, 1999). This may include making corrections for 
atmospheric attenuation effects (Chavez, 1996), variations in the sensor’s viewing 
geometry due to both sensor and terrain variables (Meyer et al., 1993; Ekstrand, 1996) 
and image geometry (Mather, 1999). If, for example, a time series of imagery is to be 
used in mapping it may also be necessary to radiometrically correct or calibrate the 
imagery to absolute units. Further pre-processing of the imagery may be undertaken to 
meet the requirements of the particular mapping investigation. If the imagery are noisy 
(e.g. synthetic aperture radar imagery) the analyst may seek to reduce noise prior to the 
classification through the application of a smoothing or low-pass filter. Perhaps, more 
commonly, it may be desirable to use only a sub-set of the remotely sensed data in the 
classification. Although multispectral imagery are usually required for an accurate land 
cover classification, many sensors, especially hyperspectral instruments, provide an 
unnecessarily large amount of data for classification applications. Typically the imagery 
acquired in the different wavebands of a sensor are highly inter-correlated and, therefore, 
the useful discriminatory information could be conveyed by a subset of the wavebands 
recorded. A feature selection analysis may be undertaken to define a sub-set of the 
acquired imagery that reduces the size of the data set while maintaining the useful 
discriminatory information. This is often based on interwaveband comparisons of class 
separ-ability or data compression techniques such as principal components analysis 
(Mather, 1999). The feature selection is helpful not only in reducing the size of the data 
set but also in terms of reducing ground data requirements and maximising classification 
accuracy. It can, however, be difficult and sometimes the data discarded may contain 
highly significant discriminatory information. 

When all pre-processing operations have been completed the imagery may be 
classified. A supervised digital image classification can be broken down into three basic 
stages. First is the training stage which involves the analyst identifying sites of known 
class membership in the imagery. These sites are used to derive training statistics that 
describe the classes in the remotely sensed data. In the second, class allocation, stage of 
the classification these training statistics are used with the classification decision rule to 
allocate each pixel in the remotely sensed image to one of the defined classes. For 
example, the maximum likelihood classification allocates each pixel to the class with 

Neural networks for Hydrological modelling     274



which it has the highest posterior probability of membership. The third and final stage of 
the classification is the testing stage in which the accuracy of the classification is assessed 
(Campbell, 2002). Many factors influence the quality of a supervised digital image 
classification. Ground data on class membership are, for example, required in the training 
and testing stages and the acquisition and quality of these data can have a major impact 
on the resulting classification (Campbell, 2002). The classification algorithm must also 
be selected with care. Classification algorithms differ enormously in terms of the 
assumptions made and sensitivity to deviations from the assumed conditions. The 
maximum likelihood classification, for example, is a conventional statistical classifier 
that assumes, amongst other things, that the spectral data for each class are normally 
distributed. This is often not the case and also places a demand for a large ground data set 
on which to derive accurate estimates of the class distributions (Mather, 1999). 
Nonetheless, the conventional statistical classification approaches are the most widely 
used techniques for land cover mapping from remotely sensed imagery, although a range 
of, often non-parametric, alternatives have been advocated (e.g. Dymond, 1993; Peddle, 
1993; Tso & Mather, 2001). 

3 ADVANTAGES OF NEURAL OVER STATISTICAL 
CLASSIFICATION 

Conventional statistical image classification techniques are not always appropriate for 
mapping land cover from remotely sensed imagery. For example, the requirements and 
assumptions of the maximum likelihood classification, one of the most widely used 
techniques, are often unsatisfiable. Of particular concern are four inter-related problems: 

• In a conventional parametric classifier, the data are assumed to be normally distributed. 
This may often not be the case with remotely sensed imagery. Furthermore, there may 
be significant inter-class differences in the distributions which cannot be normalised 
prior to the classification as class membership, the desired output of the classification, 
is unknown. 

• To define a representative sample from which the descriptive statistics (e.g. mean and 
variance) are generated and upon which the analysis is based may require a large 
amount of data. Typically, it is recommended that the minimum training set size is 
some 10–30 times the number of discriminating variables (e.g. wavebands) per-class 
(Mather, 1999). Clearly a very large training set is required for mapping from some 
multi-spectral imagery and this runs contrary to a major goal of remote sensing, which 
involves extrapolation over large areas from limited ground data. With high 
dimensional data sets, such as those acquired by hyperspectral sensors operating in 
hundreds of wavebands, the training set requirement for correct application of such a 
classification may be exorbitantly high. Related to this issue, the ‘Hughes 
Phenomenon’, whereby classification accuracy may decline with an increase in the 
number of discriminating variables, may be observed with algorithms such as the 
maximum likelihood classification. To avoid this problem it may be necessary to 
perform some kind of feature selection to focus only on part of the data set which 
conveys useful discriminatory information. 
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• The classification can only make use of data acquired at a high level of numerical 
precision (e.g., ratio level) and cannot accommodate directly data with a directional 
component. Unfortunately, there may often be useful discriminatory information that 
is available at a low level of measurement precision (e.g., a nominal level soil type 
map) or has a directional component (e.g., terrain slope aspect). As re-scaling the data 
is often difficult the only practical means of integrating the ancillary data is by 
stratifying the imagery by the low level ancillary data and classifying each stratum 
independently. This will, however, also compound the training data requirement 
problem as each stratum will require its own training set. 

• The maximum likelihood classification is computationally demanding and, therefore, 
relatively slow. The significance of this problem may become increasingly evident in 
the near future given the large data volumes anticipated from proposed remote sensing 
systems (Gershon & Miller, 1993) and increasing use of hyperspectral sensors. 

Although the analyst may proceed with a maximum likelihood classification when its 
assumptions are not satisfied, for example without correcting for non-normal 
distributions or with disregard to the training set size requirements for a particular data 
set, it is likely that the full information content of the remotely sensed imagery would not 
be utilized. Consequently, alternative classification approaches have been sought and 
recently much attention has focused on feedforward NN. 

The feedforward NN approach to supervised image classification is less sensitive to 
some of the problems associated with conventional statistical classifications. This is 
evident in relation to the four problems with the maximum likelihood classification 
discussed above. First, NN make no assumptions about the nature and distribution of the 
data. As a consequence, a large sample may not required to estimate the properties of the 
distribution, although a representative training set is still required to provide an adequate 
description of the classes with training set properties, such as size and composition, 
requiring careful selection in relation to the properties of the classes and the network 
itself (Baum & Haussler, 1989; Foody et al., 1995; Staufer & Fischer, 1997). Second, as 
NN learn the underlying relationships in the data and effectively weight the importance 
of the discriminating variables, such tools may, therefore, have no limitations placed on 
data dimensionality which reduces the need for feature selection to identify, for instance, 
an optimal band combination for a classification. Pre-processing operations including 
feature selection can, however, still be beneficial, particularly in the reduction of network 
complexity and thereby training requirements in addition to the provision of potential 
increases in classification accuracy (Chang & Lippmann, 1991; Benediktsson & 
Sveinsson, 1997; Yu & Weigl, 1997; Kavzoglu & Mather, 2002). Third, NN are able to 
use directly data acquired at any level of measurement precision and accommodate 
directional data when appropriately scaled. These factors combined also enable NN to be 
used as black box tools which may be attractive when there is little or no prior knowledge 
about the particular problem. Lastly, classification by trained NN are extremely rapid 
(Peddle et al., 1994). 

4 SUPERVISED IMAGE CLASSIFICATION WITH A NEURAL 
NETWORK 
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Feedforward NN are particularly attractive for supervised image classification as a 
consequence of their ability to learn by example and generalise (Schalkoff, 1992). Each 
network may be envisaged as comprising a set of simple processing units arranged in 
layers, with each unit in a layer connected by a weighted channel to every unit in the 
adjacent layer(s). Combined these elements transform the remotely sensed image (which 
essentially depicts the measured multispectral radiance) into a thematic map (depicting 
the spatial distribution of the land cover classes of interest) (Fig. 14.1). The NN 
architecture is determined by a range of factors which relate, in part, to the nature of the 
remotely sensed imagery and the desired land cover classification. There is, for example, 
usually an input unit for every discriminating variable and an output unit associated with 
each class in the classification. The number of hidden units and layers is defined 
subjectively, often on the basis of a series of trial runs. Alternatively, the number of 
hidden units and layers could be defined with the aid of various published ‘rules of 
thumb’ or optimised with the use of methods that allow the network to add or delete units 
until a satisfactory structure is produced (Chauvin, 1989; Jiang et al., 1994; Bishop, 
1995; Bischof & Leonardis, 1997; Kavzoglu & Mather, 2003). In general, the larger the 
number of hidden units and layers used, the more able the network will be to learn the 
training data but this may be achieved at the expense of an undesirable reduction in the 
overall capacity for generalisation and an increase in computer processing time. 

Each NN is initially constructed with the inter-unit weights set at randomly defined 
values. The magnitude of each of these weighted connections is then  

 

Fig. 14.1. Classification of remotely 
sensed imagery with an artificial neural 
network. Typically a bias unit (not 
shown for clarity) is connected to the 
processing units by a weighted 
connection and included in the training 
process. 

adjusted during an iterative training process which aims to minimise output errors 
(Schalkoff, 1992). Once the overall output error has declined to an acceptable level, 
which is typically determined subjectively, training ceases and the trained network is then 
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ready for the classification of pixels of unknown land cover class membership. For this, 
the remotely sensed data for each pixel of unknown class membership are input to the 
trained network and the pixel allocated to the class associated with the most highly 
activated unit in the output layer. This type of approach has been widely used for the 
classification of remotely sensed imagery and generally found to be more accurate than 
alternative classification approaches (Bendiktsson et al., 1990; Kanellopoulos et al., 
1992; Peddle et al., 1994; Foody et al., 1995). Before briefly illustrating its potential with 
an example, some disadvantages of the approach will be considered and possible 
solutions to some problems raised indicated by a further example. 

5 PROBLEMS WITH NEURAL NETWORKS FOR SUPERVISED 
CLASSIFICATION 

Although emulating some aspects of the human eye-brain system, which is very effective 
for pattern recognition, NN generally used in mapping land cover from remotely sensed 
imagery have the computing power of lower life-forms such as earthworms (Simpson & 
Li, 1993). The relative simplicity of NN typically used for land cover mapping can be 
illustrated with reference to the number of weighted connections in the network which is 
a function of the number of units and their arrangement. The human brain, for instance, 
contains some 1011 units or neurons (Aleksander & Morton, 1990) while NN used in 
remote sensing are much smaller, with typically less than 103 units. There are many other 
problems associated with the use of NN for supervised image classification. Here, some 
are briefly discussed and possible solutions indicated. 

While NN may generally be used to classify imagery at least as accurately as other 
classification approaches there are a range of factors that limit their use (Wilkinson, 
1997). Feedforward NN are, for example, semantically poor. Thus, while NN may be 
able to accurately map land cover from remotely sensed imagery it is difficult understand 
how the result was achieved. It is, for example, difficult to identify the relative 
contribution of different wavebands for inter-class discrimination which would be useful 
in the design of new sensors. Some information may be gleaned from an analysis of the 
weighted connections but if the analyst wanted to understand how, for example, a 
particular class allocation was achieved it may be preferable to adopt an alternative 
technique and those based on genetic programming and fuzzy logic may be more 
appropriate (Corne et al., 1996). The accuracy of a classification is also not always the 
only concern of the analyst. Other criteria of classification performance may be 
important. In many of the comparative studies undertaken, performance criteria other 
than accuracy, notably training time, have been evaluated and revealed that NN may be 
less attractive than other classification approaches. This problem may, however, be 
resolved through developments in computing, particularly in parallel hardware or through 
other approaches that seek to accelerate training (Dawson et al., 1993; Manry et al., 
1994). Alternatively, if training time is a major constraint, different network types, such 
as the ‘one-shot’ BDNN (Salu & Tilton, 1993) and RBFN (Bishop, 1995), or fast 
learning algorithms, could be used. 

Perhaps one of the most important problems is that classification, by whatever 
method, is highly subjective (Johnston, 1968). Despite apparent objectivity, the analyst 
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has control over a range of NN parameters that strongly influence network performance, 
especially in terms of speed and accuracy (Foody, 1999a). Issues such as the selection of 
a suitable network architecture and properties, together with the avoidance of problems 
such as overfitting to the training data while deriving a sufficient generalisation capacity 
are important (Fischer et al., 1997), but largely based on subjective decisions. Even if the 
various network parameters are selected judiciously there is still no guarantee that NN 
will provide an acceptable let alone optimal land cover classification. While the adoption 
of NN avoids problems with the assumptions made by other classification techniques it 
does not free the analyst from a range of basic problems that are common to all 
supervised image classifications. Many factors will influence classification performance. 
For instance, the accuracy of the classification may be constrained largely by the quality 
of the training data. Issues such as the size and composition of the training sets have a 
considerable effect on the accuracy of NN classifications (Zhuang et al., 1994; Foody et 
al., 1995; Blamire, 1996; Staufer & Fischer, 1997) as they do on other classification 
approaches. The analyst must also accept that the use of NN does not guarantee that the 
classification will be sufficiently accurate. Although generally more accurate than other 
classifications, the accuracies reported in the literature, like those of other classifiers, 
often fall short of an operationally acceptable level (Wilkinson, 1996). Moreover, NN 
classifications do not always provide the highest classification accuracy, on a per-class 
and/or overall basis and some form of consensual or hybrid approach may be desirable 
(Wilkinson et al., 1995; Wilkinson, 1996). Perhaps more importantly, the appropriateness 
of classification as a tool for mapping is debatable. 

The classification process outlined and its resulting outputs are ‘hard’, with each 
image pixel allocated to a single land cover class. This type of classification is only 
appropriate for the mapping of classes that are discrete and mutually exclusive. On many 
occasions this will not be the case. Many land cover classes are continuous and so inter-
grade (Foody, 1996; Foody & Boyd, 1999; Kent et al., 1997). This is in part a 
consequence of class definition. For example, forest classes are often defined on the basis 
of relatively arbitrary thresholds of tree canopy cover. Furthermore, ‘hard’ classification 
is only appropriate if the basic spatial unit used, typically the pixel, is pure (i.e., 
represents an area of homogeneous cover of a single class). This is rarely the case, with 
many pixels of mixed land cover composition contained within remotely sensed imagery 
(Campbell, 2002). These, mixed pixels, may occur whatever the nature of the classes. For 
instance, with continuous classes, mixed pixels will occur in the inter-class transition 
zones where the classes co-exist spatially. Whereas for discrete classes, the area 
represented by a pixel will often enclose or straddle class boundaries. The exact 
proportion of mixed pixels in an image will vary with a range of factors, notably the land 
cover mosaic on the ground and the sensor’s spatial resolution, but is often very large 
(Campbell, 2002). Mixed pixels may, for instance, vastly dominate coarse spatial 
resolution imagery used in mapping land cover at regional to global scales (Foody et al., 
1997). With fine spatial resolution imagery mixing also occurs but here the concern is 
generally about the extent of sub-class components, such as soil, leaves and shadow of an 
individual vegetation class. Mixed pixels will, therefore, be evident in fine spatial 
resolution data sets, particularly for heterogeneous classes such as urban areas 
(Townshend, 1981). 
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For the full potential of remote sensing as a source of land cover data to be realised 
alternative approaches to conventional ‘hard’ classifications may be required. Most 
attention has focused on fuzzy or soft classifications that allow for partial and multiple 
class membership (Wang, 1990; Tso & Mather, 2001). In such a classification, the full 
class membership of each pixel is partitioned between all classes and so a pixel can 
display any possible membership scenario, from full membership to one class through to 
having its membership divided, in any permutation, between all classes. 

The conventional NN approach to classification outlined above is ‘hard’ but can be 
softened to provide a fuzzy land cover classification (Foody, 1996). For this, the 
magnitude of the activation level of an output unit may be taken as a measure of the 
strength of membership to the class associated with the unit that reflects the fractional 
coverage of the class in the area represented by the pixel (Foody, 1996, 1997) in a 
manner similar to mapping probabilities from the maximum likelihood classification 
(Foody, 1996). Thus, rather than deriving only the code of the class associated with the 
most activated network output unit the magnitude of the activation level of each output 
unit could be derived and mapped. This makes fuller use of the information content of the 
remotely sensed imagery and may enable a more accurate and appropriate representation 
of land cover to be derived. This applies to both relatively discrete (Foody et al., 1997) 
and continuous land cover classes (Foody & Boyd, 1999). The magnitude of the output 
units has also been utilised in various measures for different hydrological and 
meteorological applications (e.g. Chapter 13).  

 

Fig. 14.2. The continuum of 
classification fuzziness. 

In addition to being able to derive a fuzzy class allocation, it is possible to use mixed 
pixels or fuzzy data directly in the training stage of NN classification, as the analyst must 
specify the target vector for the training data set (Foody, 1997; Foody et al., 1997). As a 
consequence, NN may be able to produce a land cover classification at any point along 
the continuum of classification fuzziness (Foody, 1999b). At the hard end of this 
continuum are the conventional ‘hard’ or completely-crisp classifications (Fig. 14.2). 
These are based on the standard approach to classification in which a pixel is associated 
with a single class at each stage of the classification and so the data may be considered to 
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belong to crisp rather than fuzzy sets. Most supervised image classifications adopt this 
approach but its application may be inappropriate due, for instance, to the presence of 
mixed pixels. At the other extremity of the continuum are fully-fuzzy classifications (Fig. 
14.2). In these, fuzziness is accommodated in all three stages of the classification. This 
type of approach may provide a more realistic and accurate representation of the land 
cover of a site and use more fully the information content of the remotely sensed 
imagery. Between these extremes lie classifications of varying fuzziness, including those 
generally referred to in the literature as fuzzy classifications, in which only the class 
allocation stage actually accommodates fuzziness (Foody, 1999b). Recognising the 
existence of the continuum and designing a classification to fit the appropriate point 
along it for a particular study may aid land cover mapping and thereby hydrological 
modelling. The potential of feedforward NN for classification along the continuum can 
be illustrated by comparative evaluation against conventional classification methods. 

6 EVALUATION RELATIVE TO OTHER CLASSIFICATION 
APPROACHES 

Numerous comparative studies have been undertaken to assess the accuracy of NN based 
classifications relative to those derived from more conventional classification approaches 
such as maximum likelihood classification, linear discriminant analysis and evidential 
reasoning (e.g. Benediktsson et al., 1990; Peddle et al., 1994; Paola & Schowengerdt, 
1995). As a generalisation, these studies have revealed that a neural network may be used 
to map land cover at least as accurately, but commonly more accurately than 
conventional classification approaches. For instance, Peddle et al. (1994) show that 
classifications derived from NN were generally, but not always, more accurate than those 
derived using maximum likelihood and evidential reasoning approaches. Moreover, the 
incorporation of use of additional discriminatory information (e.g., image texture) to the 
analyses increased the accuracy of NN classifications while that of the conventional 
maximum likelihood classification declined. NN, therefore, have considerable potential 
for accurate land cover mapping and in the realisation of the potential of remote sensing 
as a source of land cover data for input to hydrological models. This can be illustrated, 
here with reference to classifications undertaken at either end of the continuum of 
classification fuzziness. 

6.1 Hard 

In many studies of agricultural regions land cover maps depicting crop types have been 
used to parameterise hydrological models. Remote sensing is particularly attractive for 
crop mapping as the temporal repeat cycle of many sensing systems enables the 
observation of crop-specific cycles which greatly enhances class separability 
(Middlekoop & Janssen, 1991). The relative advantage of the NN approach to 
conventional classification can be illustrated with a simple example. Using fine spatial 
resolution SAR imagery, in which mixing of classes within pixels could be avoided, that 
were acquired on four dates through a growing season Foody et al., (1995) compared the 
accuracy of mapping seven crop types using NN and discriminant analysis. The 
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discriminant analysis used was relatively similar to the maximum likelihood 
classification and allocated each case to the class with which it has the highest posterior 
probability of membership (Tom & Miller, 1994). The NN comprised 4 input (one for 
each SAR image), 3 hidden and 7 output units (one for each class) and used the 
quickprop learning algorithm (Fahlman, 1988). Using the same data sets, the accuracy of 
the classifications were calculated as 65.5% and 81.9% for the discriminant analysis and 
NN, respectively. In this instance, the NN was therefore able to derive a significantly 
more accurate classification (at the 95% level of confidence) than the conventional 
statistical approach. 

6.2 Fuzzy 

In many instances the land cover to be mapped may be considered to be fuzzy. This is 
particularly the situation when the spatial resolution of the sensor used is comparable to 
or coarser than the typical size of the features being mapped (e.g. fields). In such 
circumstances a fuzzy classification may be undertaken and NN are particularly attractive 
as they may be used at any point along the continuum of classification fuzziness. This can 
be illustrated with an example of mapping urban land cover. Urban land cover is highly 
heterogeneous and can significantly influence hydrological processes. Often of key 
concern is the amount and distribution of impervious surfaces such as roads, pavements 
and buildings. These are typically of sub-pixel size in satellite sensor data and so cannot 
be mapped accurately by conventional digital image classifications. However, NN may 
be trained with mixed data and used to derive a fuzzy classification. As an example, 
Foody (1997) used a BPNN with a single hidden layer to derive a fuzzy classification of 
an urban area. The NN predictions of sub-pixel class composition were found to be 
closely correlated with reference data (r>0.88) indicating the potential to derive sub-pixel 
level land cover data. This is very advantageous when mixing is a problem, which is 
often the case for heterogeneous land covers and/or the remotely sensed data with a 
coarse spatial resolution (Foody, 2000; Zhang & Foody, 2001). 

7 SUMMARY AND CONCLUSIONS 

Remote sensing is a major source of information for hydrological models. Frequently the 
remotely sensed imagery are used indirectly through the provision of land cover data. NN 
are particularly attractive for the production of land cover maps from remotely sensed 
imagery via a supervised digital image classification analysis. The independence of 
restrictive assumptions, ability to integrate diverse data sets and, ultimately, the 
derivation of very accurate land cover classifications are key advantages of the NN 
approach. Although NN have many advantages over conventional classification 
approaches and have often been noted to provide more accurate classifications they are 
not without their problems. Indeed there is an argument that NN are the second best way 
of performing a task. Thus, if, for example, the data set to be classified does satisfy the 
requirements of the maximum likelihood classification then that approach, rather than a 
NN, may be the most appropriate. In such circumstances, the fundamental model 
underlying the maximum likelihood classification is a major advantage over the 
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distribution-free black-box approach of the NN. By recognising that different 
classification approaches vary in their ability to separate the classes in an image, 
however, it may be appropriate to adopt a multi-classifier approach to make the best use 
of each method of classification (Wilkinson et al., 1995; Roli et al., 1997; Warrender & 
Augusteijn, 1999). 

A major advantage of NN for land cover mapping lies in their flexibility, particularly 
in relation to their applicability at any point along the continuum of classification 
fuzziness. This helps reduce the problems associated with the often-inappropriate 
dependence on conventional ‘hard’ classification techniques for land cover mapping 
when there is generally significant fuzziness to be accommodated. Since NN may be used 
to derive a classification at any point along the continuum of classification fuzziness they, 
therefore, have considerable potential for land cover mapping applications and play a 
significant role in the realisation of the potential of remote sensing as a source of 
information for hydrological modelling applications.  
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ABSTRACT: The use of artificial neural networks in hydrology is on the 
increase. This data-driven technology, along with other alternative 
methods, can be used to develop models that are capable of delivering 
superior forecasts and predictions in comparison to traditional 
hydrological models. However, we are a long way from understanding the 
optimal models that relate to specific circumstances and pertinent model 
development issues. In this chapter a research agenda for the next decade 
is discussed including the need to: continue improving existing neural 
network models, further compare neural network models with operational 
and process-based solutions, develop and assess meaningful evaluation 
criteria, improve model understanding and build dedicated hydrological 
neural network software packages. 

1 A RESEARCH AGENDA 

Artificial neural networks (NN) are now commonly used in many fields, ranging from 
social sciences to engineering, where in comparison to more conventional statistical or 
theoretical approaches, such tools are providing better and/or faster solutions to different 
types of problem. Despite this overall success, the uptake of NN technologies in the 
hydrological sciences has been much slower although we are now witnessing an 
increasing momentum in the reported use of NN and other AI technologies. Throughout 
this book there are clear illustrations of areas in which hydrological science could benefit 
from the application of NN including: rainfall-runoff modelling (Chapters 3 to 9); rainfall 
forecasting (Chapter 10); water quality prediction (Chapter 11); sediment modelling 
(Chapter 12); and applied remote sensing (Chapters 13 and 14). The examples presented 
in these chapters all demonstrate that neurocomputing can produce models of similar or 
superior performance, but to date there is little evidence that the available technologies 
are being transferred into an operational environment, which is the next crucial step 
forward, if the widespread potential of these tools is to be successful. To facilitate a 
process of technological transfer, neurohydrologists will need to pursue a research agenda 
that continues to tackle questions about improvements in modelling mechanics, and also 
address the concerns of traditional hydrologists who prefer to use process-based models 



and to exclude data-driven approaches. This chapter suggests five general directions in 
which research in the next decade could be pursued: 

• improvement to existing NN hydrological models including the investigation of current 
NN hydrological problems; 

• more emphasis on their comparison with operational and process-based models; 
• the development and construction of more powerful and more efficacious modelling 

evaluation criteria; 
• further research into understanding their internal workings and the real-world meaning 

of each component; and 
• the construction of integrated and hybrid NN software for hydrological research. 

Each of these items is discussed in the sections that follow. 

2 CONTINUE TO IMPROVE EXISTING NN MODELS 

This is a massive area of research that ranges from experimentation with different NN 
algorithms and architecture to the development of hybrid models and dynamic solutions. 

2.1 Algorithms and architectures 

The multi-layer perceptron trained using backpropagation is the default situation and the 
most common tool that is used in all areas of application. Some initial research into 
alternative algorithms and architectures is however occurring in the area of rainfall-runoff 
modelling: see for example Chapter 5 on Time Delay Neural Networks (TDNN), Chapter 
6 on Cascading Correlation Neural Networks (CCNN) and Chapter 7 on Partial Recurrent 
Neural Networks (PRNN). There is also a vast, theoretical literature on other types of 
network which remains an area for further research, e.g. second order NN methods 
(Shepherd, 1997). 

Another important area for research is the fact that there are no fixed rules for the 
design of an individual solution and that it is not possible to establish an appropriate 
model a priori. It is likewise impossible to obtain subsequent confirmation that the final 
architecture is the optimum one (Kanellopoulos et al., 1992). The problem of no 
theoretical support persists throughout all areas of design; even the most basic matters 
must be determined through experimentation. Most practitioners use intuition or trial and 
error assessment procedures. Even sophisticated automated search procedures will suffer 
from comparable problems since different algorithms can produce different answers (for 
more details see Maier and Dandy (2000, pp. 106–108)). Empirical testing is thus 
paramount and some first steps in this direction, that relate internal functions to 
conceptual model processes in which the number of required hidden nodes is matched 
against specific mechanical ‘anchors’, is illustrated in Wilby et al. (2003). 

2.2 Learning regimes 

Training is the process of optimising connection weights in the search for an appropriate 
level of fit. It is not possible to determine the best course of action a priori. There are no 
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fixed rules about: the selection and implementation of an appropriate learning algorithm; 
the number, distribution, or format of the training patterns; or the manner in which the 
data are presented. The training process must also be considered in relation to the 
selection of an appropriate architecture and such decisions are further complicated with 
the problem that it is possible to overfit the training data. Trial and error, plus regular 
monitoring with alternative data sets, is again the best advice to date (Sarle, 2000). 

Most NN hydrological forecasting and prediction has involved modelling 
combinations of traditional rainfall-runoff variables in a supervised learning environment. 
However, various problems can arise from skewed data distributions or weak 
deterministic hydrological relationships, and the supervised learning model thus puts an 
arduous burden on the learning mechanism since it requires a complete set of all possible 
input-output situations. It is therefore suggested that the information content, on either the 
input or the output side of the modelling function, must be increased if these tools are to 
achieve improved performance. It is in this respect that alternative relationships derived 
from the original data could also perhaps be used to help build superior modelling 
solutions. Reed and Marks (1999) have classified potential addition and replacement 
strategies for improvements to the supervised training model into ‘hints’ and ‘distal 
learners’: 

• Supervised learning with hints is where extra output nodes are added to the network, 
which is equivalent to training the network to learn additional functions. These hint 
functions should be related to the main function of interest and should be easier to 
learn. Their use could create non-zero derivatives in regions where the original 
function has plateaued and thus help to speed-up convergence. The provision of 
additional constraints could also control the final solution under problematic 
circumstances or help overcome difficulties associated with local minima in the 
underlying relationship. 

• Supervised learning with a distal teacher, is where the outputs from a network act as 
inputs to another system, which then transforms the network output into the final 
output. The overall modelling procedure is thus split into a two-stage operation. The 
first part is used to predict simple intermediate concepts and the second part then 
transforms these output values into the required outputs. The potential to achieve 
significant gains exists when the intermediate function is easier to learn and the final 
transformation is based on an exact statistical, mathematical or trigonometric function. 

Some hydrological examples of addition and replacement strategies that have been 
suggested in the past include: the addition of binary inputs to mark the start and end of 
rainfall (Hall & Minns, 1993); the introduction of additional outputs to help preserve or 
monitor global features in the overall structure or particular aspects of the data set 
(French et al., 1992); and conversion of the predicted data into a set of alternative 
representations that are better items to model such as the use of Fourier Series parameters 
instead of actual hydrological variables (Smith & Eli, 1995). 

Yet another problem for investigation is the fact that it is not possible to establish 
confidence intervals for each coefficient; t-values for example are meaningless in the case 
of a non-linear solution. The recommended method for testing a neural solution is 
empirical and involves validation against one or more sets of unseen test data (for more 
details see Maier and Dandy (2000, p. 112)). This process demands unbiased datasets that 
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are difficult to construct, and provides a test for overfitting not a measure of 
trustworthiness. Other assessment mechanisms include: an examination of residuals (Hsu 
et al., 1995; Lek et al., 1996); and the plotting of error bounds (Hwang & Ding, 1997; 
Whitley & Hromadka, 1999). 

2.3 Multi-modelling and hybrid modelling solutions 

Most NN hydrological modelling applications have to date involved the construction of a 
single standalone NN solution. Yet there exists a growing realisation that more 
significant applications can be facilitated through the development of multi-network 
solutions, in the form of serial and parallel combinations, as illustrated in Chapter 4. 
Sharkey (1999) has also argued that multi-neural applications would in most cases 
provide improved performance over single-neural modelling solutions. Indeed, 
compound solutions could be developed to perform tasks that cannot be modelled with a 
single solution, and a modular combination of neural components could be used to 
resolve difficult problems in a more effective manner. Moreover, better overall 
performance and higher levels of skill, can often be achieved through an efficacious mix 
of unstable predictors which are organised in the form of a ‘redundant combination’. 
There are two main approaches that could be investigated: ensemble combinations and 
modular combinations. 

The term ‘ensemble’ is used to describe a combination of redundant networks; other 
terms for this form of combination include ‘committee’ and ‘committee machine’. In an 
ensemble combination the component networks are redundant in that each network 
provides a solution to the same task, or problem, or task component. The final result is 
then amalgamated or averaged using a suitable method of numerical combination. The 
motivation behind this approach is to obtain improved generalisation capabilities and thus 
guard against the failure of each individual component solution. Individual components 
could for instance be developed using variation in: initial random weights, architectures, 
training algorithm, or data sampling. Empirical investigation into the effectiveness of 
different methods of ensemble creation suggests that variation in the training data has the 
greatest potential for producing networks that make different errors (Sharkey & Sharkey, 
1995; Sharkey et al., 1996; Tumer & Ghosh, 1996; Cigizoglu, 2003). 

In the modular approach the task or problem is decomposed into a number of sub-
tasks and the complete task solution requires the contribution of several modules. There 
are various motivations for taking a modular approach, some of the most important are 
to: 

• use decomposition to improve performance i.e. no monolithic solutions; use of more 
appropriate modules or blend of modules; a mixture of experts approach; 

• enable switching of control from one solution to another; 
• use sub-problems to extend the capabilities of a single solution; 
• permit recombination of data from different sources and partial representations; 
• build less complex solutions that are easier to understand; 
• develop modular combinations that can be modified and extended with minimal effort; 
• use individual components that are quicker to train; 
• create modular solutions that will permit the incorporation of prior knowledge that is 

implemented in terms of an appropriate decomposition. 
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Further development and testing is required of hybrid models that are derived from an 
integration of neurocomputing tools with other ‘smart technologies’ or conventional and 
traditional techniques. There is a growing realisation in the field of intelligent systems 
(Teodorescu, 2000) that complex problems will require hybrid solutions, derived from an 
amalgamation of diverse tools and methods, originating from traditional mathematics 
(e.g. dynamical systems; linear algebra; symbolic computation) and computer science 
(e.g. logic and theorem proving; cellular automata; graph algorithms). There is also a 
marked trend towards combining genetic algorithms, fuzzy logic, NN and expert systems. 
Each individual technique has specific computational properties that are well suited to a 
particular problem but not to others. Two or more techniques are thus often combined in 
such a manner as to overcome the limitations of an individual technique. Thus hybrid 
systems are also important when considering the complex and varied nature of 
application domains wherein different component problems, or associated sub-problems, 
might require different types of processing or different forms of solution. 

Hybrid formulations could range from the provision of large-scale multi-model unions 
to the simple insertion of direct replacement parts. Two examples will be provided in 
support of the general case. Shamseldin and O’Connor (2001) have demonstrated that a 
neural solution can be coupled to a conceptual model in the manner of a hydrological 
model-output updating procedure, with proven benefits, for use in real time forecasting 
applications. Dssanayake and Phan-Thien (1994) have described a neural method for 
solving partial differential equations that could be adopted in process-based distributed 
modelling applications. The mathematical solution of problems associated with 
continuum mechanics, are well developed and well understood, but the numerical 
implementation of such methods is seldom straightforward. Yet it is often the case that a 
quick and (within-reason) accurate solution can be achieved from a neural approximation, 
that can deliver an acceptable set of independent outputs, with minimal user effort under 
either linear or non-linear conditions. 

NN can also be used to perform data fusion operations on the modelling outputs that 
are produced from an independent set of individual neural forecasters, e.g. from an 
ensemble combination of or mixed neural and conventional hydrological forecasters 
(Abrahart & See, 2002). Data fusion in this context describes the process of combining or 
amalgamating information from multiple sensors, data sources or modelling outputs and 
can involve serial, parallel, or mixed strategies of combination. The principal objective of 
data fusion is to provide a solution that is either more accurate in some form or which 
allows one to make additional inferences above and beyond those which could be 
achieved through the use of single source data alone. Data fusion can also operate at more 
complicated feature-based or decision-based levels, using any combination of input types, 
to produce either a numerical output, a feature output, or a higher level decision. 
Decisions from individual sensors or sources can also be fused into a higher-level 
decision in the manner of an expert system; see Dasarathy (1994, 1997). 

2.4 Dynamic modelling 

Further development and testing is required of dynamic tools that are able to model 
complex chaotic systems. Most hydrological modelling has assumed that it is possible to 
describe the rainfall-runoff transformation using a finite number of basic operators rather 
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than attempting to explain the total process as a complex whole. It is likewise assumed 
that: (i) the process is deterministic or stochastic; (ii) small distortions in the data can 
have little or no effect on the power of the model to predict; and (iii) problems associated 
with modelling and calibration issues will disappear with improved access to greater 
volumes of more and better catchment data derived from automated recording devices. 
However, such beliefs are not consistent with the concept of chaos, or the idea that 
simple nonlinear deterministic systems can at times behave in what appears to be an 
unpredictable and chaotic manner (Gleick, 1987; Stewart, 1997). Extreme or irregular 
behaviour can indeed arise from a simple deterministic system, which contains a small 
number of non-linear inter-dependent variables, wherein small initial distortions will 
under certain circumstances develop in an exponential manner. 

The term ‘chaos’ is used in a formal sense to describe the complicated behaviour of a 
non-linear dynamic system, that is a self-organised process, in which the next state of the 
system can be expressed as a non-linear function of previous states. The phase space of a 
chaotic system is the feature space in which the process involved is traced over time, such 
that a chaotic process goes around areas or points that are situated in phase space, termed 
chaotic attractors. There is no repetition of the same trajectories and the system can 
evolve in continuous or discrete time. It can embrace stretches and contractions of the 
phase space and it is sensitive to initial conditions such that different initial states will 
produce different trends and outcomes. Sivakumar (2000) discusses the hydrological 
implications of chaotic behaviour that is observed in rainfall (e.g. Sivakumar et al., 1999) 
and runoff (e.g. Krasovskaia et al., 1999) time series data. These findings suggest that a 
similar situation will exist for the rainfall-runoff transformation process and should 
therefore be incorporated within the model building process (albeit that a recent attempt 
to determine the existence of this chaotic process was inconclusive (Sivakumar et al., 
2001)). Kasobov (1996, pp. 486–493) lists several different types of NN that could be 
used to model non-linear dynamical systems: (i) recurrent networks, with feedback 
connections, can be used to learn short-term time-dependencies e.g. using input neurons 
that could feed their output back to themselves—thus producing a response to a given 
input that did not occur the first time that input was presented; (ii) connectionist models, 
based on chaotic neurons, in which the behaviour of a neuron depends on its external 
stimulus, or connectionist models with oscillators, in which functional units comprise two 
more neurons that act as excitors or inhibitors and model frequencies, phases or 
amplitudes; and (iii) spatio-temporal solutions in which time is treated as a variable. For 
other possibilities see Zaldivar et al. (2000) and Giustolisi (2000). 

3 FURTHER COMPARISON WITH SOLUTIONS OPERATIONAL 
AND PROCESS-BASED SOLUTIONS 

Extensive exploration and reporting is required to establish the exact relationship 
between neural solutions and traditional or conventional hydrological models. Such 
studies must provide a detailed account of each reported investigation and contain all 
model-related facts and decisions. The main focus of recent comparisons has been with 
statistical time series predictors and conceptual models, for example, Tingsanchali and 
Gautam (2000) compare two lumped conceptual models and a statistical solution with a 
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NN forecaster. However, the range and scope of neural applications must be extended, to 
include a consideration of more complex problems and undertakings and to make 
comparisons against state-of-the-art distributed process modelling operations. 

Further studies should also be directed towards the emulation of existing hydrological 
mechanisms, either in part or in full, since there are clear benefits to be had in terms of a 
speed-up (see Abebe et al., 2000; Gautam, 1998; Khindker et al., 1998; Liu & Lin, 1998). 
This would be of immense value with respect to real-time forecasting, large scale 
processing of detailed satellite data or for long term simulation runs e.g. MEDRUSH 
(Abrahart et al., 1996) and SIBERIA (Willgoose & Riley, 1998; Willgoose, 2000). Most 
neural applications involve less than 100 neurons and require a modest amount of 
training; software simulation in most situations will therefore be sufficient. However, 
more powerful mechanisms will be required to meet anticipated future demands, which 
must at some point proliferate to include useful things that can be done with 1000s of 
processing elements and 10000’s of weighted connections. This will in turn herald a need 
for high performance hardware, in the form of dedicated neurocomputing platforms and 
hard-wired machines, which is a specialist area that will require substantial research into 
the technologies involved; such equipment is at present restricted to a limited number of 
specialist areas that demand high performance computing e.g. high energy physics. 

Sorooshian (1991) states that most hydrological models suffer from (i) an assumption 
that the dynamics of a watershed can be represented using a lumped approach and point-
based data and that (ii) great inaccuracies occur when such models are applied to 
situations that possess significant differences in space-time scales. NN solutions should 
therefore be developed at different scales of spatial, temporal or process-based 
investigation; to provide cross-scale models that can be used to perform macro-unions for 
up-scaling or down-scaling operations. NN, based on multiple catchments, could also be 
used to provide evidence that improved levels of modelling can be achieved at different 
levels of process-based or spatio-temporal generalisation. Moreover, important 
environmental associations that suffer from poor conventional modelling or an 
insufficient theoretical foundation, might perhaps be modelled in a more accurate or more 
efficacious manner than was hitherto possible. Schaap and associates (Schaap & Bouten, 
1996; Schaap & Leij, 1998; Schaap et al., 1998; Schaap et al., 1999; Lebron et al., 1999) 
provide several classic examples on the prediction of soil water properties. This field of 
research is characterised with small data sets, widespread disparities, and problematic 
hysterisis loops; for NN modelling of loop-rating hysteresis curves, see Jain and 
Chalisgaonkar (2000). The use of fuzzification methods and neural modelling concepts to 
overcome sediment transfer prediction problems associated with small data sets has also 
been demonstrated; see Abrahart and White (2001). 

4 DEVELOPMENT OF MORE MEANINGFUL EVALUATION 
CRITERIA AND ASSOCIATED HYDROLOGICAL MODELLING 

BENCHMARKS 

The calculation of dimensionless indices to assess model skill is still the norm: 
descriptive statistics based on sum-squared error or similar measures are computed to 
provide an assessment of global or seasonal goodness-of-fit. However, conventional 
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indices will tend to emphasise a limited number of features in the data, such that specific 
items of interest with respect to the proposed application will often be masked. Hall 
(2001) investigated volume, bias and timing issues. He commented that the preferred 
solution would be to use a series of different measurement criteria (ten were suggested) 
that focused on the more important aspects of model behaviour—as opposed to placing 
total reliance on a single index. Gupta et al. (1998) (see also Yapo et al., 1998) have also 
proposed a multi-criteria calibration procedure in which several different objectives could 
be satisfied and this approach might be adopted in a similar manner for model evaluation, 
as opposed to calibration, purposes. Model output could thus be assessed on the basis of 
multiple measures and different features, or different periods, using a dedicated 
interactive analytical toolbox that still awaits development. The hydrographic record can 
for example be divided into periods with or without rainfall. The rain-free periods might 
then be further divided into periods dominated by either throughflow or baseflow 
processes, and performance assessed for each division e.g. Wagener et al. (2000). 

The selection and weighting of individual components within a multi-assessment 
procedure must be application specific and related to fitness-for-purpose; the assessment 
of a flood model should perhaps emphasise peaks, whilst the assessment of a resources 
model might perhaps be more directed towards an evalu-ation of low flow sequences. 
Improved measures and metrics are also needed to extend the scope of the assessment 
exercise: ranging from hydrological indices related to operational forecasting (e.g. See et 
al. (2001) have suggested the use of alarm levels and the rising limb of the hydrograph) 
to geometrical analysis based on constructs that are devised to perform an evaluation of 
line simplification algorithms (e.g. differences in lengths, angles, curvatures, or 
displacements: for further details see McMaster (1987, 1989)). The list of additional 
items to be evalu-ated might also be extended to include a consideration of various non-
skill-based issues such as: model construction time; data input requirements; error 
handling capabilities; or temporal adaptation characteristics. 

True comparison of reported strategies is often difficult because the reported solutions 
are developed in different environments. Thus local variations can have a significant 
impact on model performance. To address this problem the development of better 
measures and metrics will also require the provision of associated benchmarks and 
standards. These must be based on shared data sets, which can be used to demonstrate the 
difference between strong and weak solutions, and thus facilitate subsequent multi-model 
comparison exercises. 

5 IMPROVEMENTS TO MODEL UNDERSTANDING 

It is difficult to detect or to understand the internal processes that are occurring within 
each model, since the information that has been extracted from the original training data, 
is distributed throughout the NN architecture. Neural solutions provide no justification or 
explanation for their answers; there are no facilities to match the ‘how and why’ querying 
procedures of an expert system. Each user must therefore have confidence in the 
construction of the NN and its associated modelling outputs. It is nevertheless desirable 
that each solution should be capable of imparting some form of an explanation, even if it 
is a partial explanation, as an integral part of its function. Minns (2000) has argued that 
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neural methods can discover usable relations in measured and experimental data with 
little or no a priori knowledge of the governing physical process characteristics. The 
neural solution cannot perform an explicit identification of the form of a model but such 
form is nevertheless implicit in the neural structure, being encoded within the distribution 
of nodes and weights. Each NN solution is thus an electronic knowledge encapsulator, 
that stores encoded information at the sub-symbolic level, which is difficult to extract in 
mathematical terms due to the high degree of non-linear complexities that are involved. 
Direct translation of weighted coefficients into a mathematical equation does not help; 
even with small architectures such equations are too complicated for direct human 
comprehension (c.f. genetic programming).  

Flood and Kartam (1993, p. 136) demonstrated that the NN output response surface of 
a NN is the amalgamation of the output response surfaces from each of the hidden 
neurons, and that analysis of the output from each hidden unit, will thus provide a 
representation of the function that each unit is performing. Wilby et al. (2003) have also 
shown that the inner workings of a river-level forecaster can be matched against the inner 
workings of a conceptual model that was cloned with a neural solution. NN internal 
functions can therefore be extracted and inspected for real-world meaning, in terms of a 
one-to-one mapping against recognised hydrological processes, along the same lines as 
those reported for data-based mechanistic modelling of rainfall-runoff in Young (1993, 
1998a,b, 1999a,b), Young and Beven (1991, 1994), Young et al. (1997) and Lees (2000). 

Two other preferred methods of extraction are based on global diagnostics. To 
perform a meaningful examination of individual weights and connections is problematic 
because the mutual interaction between each neural component is of critical importance. 
It would therefore seem prudent to develop further methods of exploration and analysis 
along similar lines to holistic testing procedures such as: 

• sensitivity analysis: which investigates ‘the rate of change in one factor with respect to 
change in another’ (McCuen, 1973), and 

• saliency analysis: which involves zeroing neural input vectors to determine the effect 
that a particular input has on the overall modelling process (Abrahart et al., 2001). 

Other methods include the inspection of connection weights (Maier & Dandy, 1997), and 
the construction of stereotypical inputs or Hinton Diagrams, i.e. visualization of the 
weight matrix (Silverman & Dracup, 2000). 

Further exploration and analysis of internal components and relationships is required, 
using both quantitative (i.e. measurement) and qualitative (i.e. visualization) techniques, 
to assess the influence and possible meaning of specific nodes, weights and topologies. 
Future research must also aim to extract relevant material and to discover useable 
relations that will foster better understanding and thus assist future modelling efforts at 
the development stage: 

• to build parsimonious NN modelling solutions. 
• and facilitate rapid prototyping of more complex mechanisms. 

It is also recommended that the end product should be visualized and interpreted, in 
contrast to the provision of a detailed numerical description, that is based on the use of 
global statistics. Laffan (1998) reports that large-scale real time geographic visualisation 
of nodal output during training, for dynamic assessment purposes, is not a realistic 
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option. However, post-model building visualization can still provide a powerful means of 
analysis, since it is easier for people to interpret diagrams vis-à-vis all other forms of 
digital data presentation. The end product does not remove the black box tag but does 
enable some insight into the mechanism and thus makes each solution a little more 
transparent to both practitioners and scientists.  

6 DEVELOPMENT OF DEDICATED HYDROLOGICAL NN 
SOFTWARE PACKAGES 

Most NN hydrological modelling applications have been developed using commercial 
packages or in-house programs, that adopt a static approach to modelling, based on the 
use of standard architectures and algorithms: (i) the data are organised; (ii) the data are 
imported; and (iii) the model is then developed. Each alternative solution that is to be 
tested thus requires a fresh start. No neural software package or program at present 
supplies a customisable hydrological programming interface that could be used to (i) ease 
the development process or (ii) provide a suitable test bed for rapid application 
development or for modelling exploration purposes. The present generation of software 
tools and products is thus unable to provide a high level of interaction commensurate 
with the demands of a modern data-driven paradigm. It is therefore argued that a bespoke 
NN software package should be developed, to perform detailed interactive exploration 
and analysis operations, and tailored to the purposes of hydrological science. This 
program should be in the form of a dedicated toolbox that would permit practitioners to 
assemble and test a range of solutions, or to perform basic modifications to a specific 
application, based on libraries of functions in an integrated and controlled user-
empowered environment (cf. GeoVISTA Studio (Gahegan et al., 2000)). 

Some basic examples of the different sorts of interactive experiment that model 
builders might wish to perform might include the adoption of alternative data pre-
processing transformations. Sarle (2002), for example, explains that in addition to simple 
linear conversions there are several other recognised procedures which include (i) log 
transformations that can be used to reduce large gaps between upper outliers e.g. peak 
flow situations and (ii) logistical transformations that could be used to expand distances 
within a cluster of similar values e.g. in a parallel hybrid error-updating mechanism based 
on the prediction of residual data from a traditional model. The other major item that 
would be useful is an option to construct and incorporate dedicated transfer functions, 
that can be run or changed at will, without the need for a higher degree in software 
engineering. Imrie et al. (2000) have investigated the use of different output activation 
functions and the implication is that some functions might be more appropriate than 
others, under certain circumstances, according to the inherent hydrological properties of a 
catchment and its data e.g. use of cubic polynomial activation function for river flow 
prediction. The development of a dedicated neural-hydrological toolbox would also 
permit the incorporation of several automated mechanisms that would (i) perform a 
detailed exploration and analysis of internal relationships and (ii) could implement a 
broad range of appropriate hydrological evaluations. 
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7 FINAL WORD 

NN have much to offer. The opportunities for exploring and forecasting are both 
numerous and challenging. Hydrological problems are appropriate, the possibilities are 
exciting, the software is available, and we encourage hydrologists to continue their 
involvement. 
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