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Preface

Currently, a number of books cover the experimental side of proteomics and
only briefly describe the theory and practice of data analysis. Additionally, the
generation of mass spectrometry (MS) data already has become a high-
throughput technique, which calls for efficient high-quality algorithms for data
analysis. The intention with this volume is to support researchers in deciding
which programs to use in various tasks related to analysis of MS data in
proteomics. Mass Spectrometry Data Analysis in Proteomics gives a precise
description of the theoretical background of each topic followed by accurate
descriptions of programs and the parameters best suited for different cases.
The focus has been on covering the most common steps in analyzing MS data.

First, different types of MS data and the data format are introduced, fol-
lowed by a description of the best way to convert raw data into peak list, which
can be input to various search engines. For searching databases with MS data,
it is important to use databases that are as complete as possible. Sequences can
be gathered from several resources, i.e., predicted genes from genomic data,
expressed sequence tags (ESTs), and protein sequences. When searching pre-
dicted genes from genomic data it is important to consider the accuracy of the
predicted exons, for ESTs possible frame-shift is a central issue, and for pro-
tein sequences potential signal peptides are worth considering. Mass Spectrom-
etry Data Analysis in Proteomics not only gives a report of the available
sequence databases, but also covers how to assemble ESTs into nonredundant
databases and to further process the sequences into a format suitable for search-
ing with MS data.

In the proteomics field there is a figure of speech, “100% sequence coverage
is not enough.” The proteomics field has to deal with more than 200 possible
modifications of amino acids. When looking for modifications, it is important
to have high mass accuracy and it is also an advantage to use other experimen-
tal techniques or consider information stated in the literature, which can help to
limit the number of possible modifications.

Quantification is an important issue in proteome projects because the
dynamic range of protein concentrations is thought to be around 105–106 for
eukaryotic cells. Relative quantification of proteins has been available by den-
sitometry of protein spots in two-dimensional electrophoresis (2-DE) gels for
many years. Recently, relative quantification of stable isotope-labeled peptides
analyzed by liquid chromatography (LC)-MS/MS has drawn great attention.
This interest is mainly due to easy automation of the LC-MS/MS runs, whereas
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the preparations of 2-DE gels are quite tedious. However, the data analysis is
more complex especially if the isotopic peaks from the nonstable isotope-
labeled and the stable isotope-labeled version of the peptides are overlapping,
as will be discussed further.

Mass Spectrometry Data Analysis in Proteomics mainly describes publicly
available programs. However, for computations where no publicly accessible
programs are available, commercial programs have been described. The choice
of programs in proteomics is, unfortunately, often limited by the data format.
The Proteomics Standards Initiative has been established to define community
standards for data representation in proteomics. The XML format has recently
been suggested as a good tool for interchanging data between applications and
is used already by several public and commercial applications.

There are some similarities between the proteomics field of today and the
situation in the structural proteomics community in the late 1960s with the lack
of public databases containing results and detailed experimental procedures. In
the last chapter, strategies for creating such databases are discussed.

Rune Matthiesen
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Introduction to Proteomics

Rune Matthiesen and Kudzai E. Mutenda 

Summary
Mass spectrometry (MS) has recently become one of the most informative methods for study-

ing proteins. Albiet, MS cannot compete with the detailed structural information obtained by
methods such as nuclear magnetic resonance and X-ray crystallography. However, MS is much
easier to automate and use as a large-scale technique. Large-scale proteomic methods are valu-
able for studying the dynamics of the proteins and their posttranslational modification in living
cells. Despite the great potential of mass spectrometers, many laboratories are struggling with
data analysis and data storage. The complexity of the data analysis stems from the large number
of experiments that can be performed by various mass spectrometers. In addition, many mass
spectrometers have their own data formats. Performing data analysis on MS data, therefore,
requires a rather extensive setup of algorithms and data parsers. In recent years it has become evi-
dent that the proteomics society needs standard formats for storing and exchanging data. This has
triggered a new problem, which is the invention of several different standard formats. In this
chapter, an overview of the most common proteomics experiments with MS, together with an
overview of data formats, is presented.

Key Words: Proteomics; mass spectrometry; data formats.

1. Introduction
1.1. The Basic Principles of Proteomics

The term proteomics covers the analysis of expressed proteins in organisms.
One of the first tools used in proteomics was two-dimensional gel electrophoresis
(2D-GE) introduced in 1975 (1). Recently, mass spectrometry (MS) techniques
have been combined with 2D-GE for direct and systematic identification of
polypeptides. Proteins resolved by 2D-GE can be enzymatically digested in-gel,
or digested during blotting onto membranes containing immobilized trypsin (2).
Trypsin cleaves specifically after the basic residues arginine (Arg) and lysine
(Lys), if not followed by proline (Pro), and is by far the most commonly used
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enzyme for proteomic studies. However, cyanogen bromide, which cleaves after
methionine, and endoproteinases such as chymotrypsin (cleaves after large
hydrophobic amino acids), Lys-C (cleaves after Lys), and Asp-N (cleaves before
aspartate) are also used. A good cleavage method must be compatible with the
subsequent mass spectrometric analyses, have close to 100% cleavage effi-
ciency, and a high specificity. The limitation of possible cleavage methods has
led to the development of engineered proteases with new specificity (3). Mass
spectrometric analysis of peptide fragments can lead to the identification and
partial sequencing of a protein and identification of modifications. Such strate-
gies are referred to as bottom-up sequencing, and are the most common tech-
niques used in MS. An alternative approach, referred to as top-down sequencing,
is starting to emerge where intact proteins are fragmented directly in the mass
spectrometer. Top-down sequencing will not be discussed further in this chapter.

All mass spectrometers consist of three main parts: an ion source, a mass ana-
lyzer, and a detector (see Fig. 1). Analyte ions are produced in the ion source.
Several ionization methods exist, but the most commonly used methods in
proteomics are electrospray ionization (ESI) and matrix-assisted laser desorption
and ionization (MALDI). The ions that are produced in the ion source are then
transferred to the mass analyzer where they are separated according to their
mass-to-charge ratio (m/z). Ion sources can be combined with different mass
analyzers giving mass spectrometers, such as MALDI-time-of-flight (TOF),
ESI-ion trap (IT), and ESI-Fourier transform ion cyclotron resonance (FTICR).
The physical entity measured by all mass analyzers is the m/z value of the ions.
The output, which is recorded at the detector, is ion intensity at different m/z
values. The result is visualized by an m/z vs intensity plot, or a mass spectrum.

It has been shown that traditional 2D-polyacrylamide gel electrophoresis
(PAGE) can resolve up to 1000 protein spots in a single gel (4). This is an impres-
sive number, but compared to the number of expressed genes in various organisms,
which range typically from 5000 to 40,000, it is clear that it is not good enough.
Recently, efforts have been made to optimize the standard 2D-PAGE technique
by making larger 2D-PAGE (5). The technique uses multiple, narrow-range

2 Matthiesen and Mutenda

Fig. 1. Outline of a mass spectrometer. (A) The ion source for electrospray ionization
is at atmospheric pressure, and the source for MALDI is under vacuum. (B) The mass
analyzer (commonly used in proteomics) can be a time-of-flight, an ion trap, a quadru-
pole, an FTICR, or a hybrid of the aforementioned analyzers. (C) The detector is nor-
mally an electron multiplier. The mass analyzer and detector are always within the
high-vacuum region (10).
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isoelectric focusing gels to improve separation in the first dimension. In the sec-
ond dimension, multiple long sodium dodecyl sulfate-PAGE gels of different
polyacrylamide concentrations are used. The large 2D-PAGE was claimed to
resolve more than 11,000 protein spots. In general, it is the low abundance and
hydrophobic proteins that are difficult to identify by the 2D-PAGE-based method
(6). In addition, proteins with extremes in isoelectric point and molecular mass
will not be retained in the gel and 2D-PAGE has a low throughput of samples (7).

As an alternative to the 2D-GE approach, multidimensional protein identifi-
cation technology (MudPIT) is a method that has proven to be very efficient for
identification of proteins in complex mixtures. This type of approach is also
referred to as shotgun proteomics. A study on Saccharomyces cerevisiae using
this method identified 1484 proteins (8). However, many of the identified pro-
teins in this original study were not highly confident.

The MudPIT technology has some problems when it comes to quantification
and significance of the peptides identified. One way to quantify is to integrate
the absorbance or ion counts of a peptide during the chromatographic step. This
method requires high reproducibility when two samples are compared.
Reproducibility is especially difficult to achieve if nano-liquid chromatography
columns are used. This is because partial blocking of columns may occur to dif-
ferent extents during consecutive runs. The problem can be reduced by adjust-
ing the backpressure to assure a continuous flow. A more precise method of
quantification of peptides in liquid chromatography–tandem mass spectrometry
(LC–MS/MS) experiments is to use stable isotope labeling. The principle is that
two or more samples are labeled with different stable isotopes. The differential
labeling can occur during the synthesis of the proteins in cultured cells (SILAC;
see Chapters 8 and 18), by reacting residues with labels containing different sta-
ble isotopes (chemical labeling; see Chapter 12), or by enzyme-catalyzed incor-
poration of 18O from 18O water during proteolysis (9).

The MudPIT method gives an enormous amount of data that requires auto-
matic processing (see Chapters 6 and 7). Automatic computer-based interpreta-
tion of data calls for high-quality statistical testing to evaluate the quality of the
interpretation. In the traditional 2D-PAGE, several peptides from the same pro-
tein normally confirm the identification, whereas the MudPIT method often
claims identification of proteins from two peptide sequence tags. This is prob-
lematic because the same tryptic peptides can occur in rather diverse protein
sequences (see Chapter 6). Therefore, the MudPIT method requires that the sig-
nificance of protein assignment must be more precisely evaluated than for the
2D-PAGE method.

Protein sequences can be predicted from the expressed sequence tags (see
Chapter 5) and gene sequences. However, the transcriptome and proteome are
highly dynamic over time in different cells, in contrast to the genome. Therefore,

Introduction to Proteomics 3
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the identification and quantification of proteins and mRNAs are still major chal-
lenges. The identification of mRNA and protein over time in different cells works
well, whereas the quantification has proven difficult for both mRNA and protein.
The proteome is further complicated by the fact that the proteins can be modified
to different extents, which is also a dynamic process over time in different cells.

1.2. Sample Preparation for MS

A proteomic project starts by generating a protein extract from tissues or from
a homogenous cell culture. It is an advantage to chemically modify the reactive
cysteines at the earliest possible stage to prevent mixtures of different cysteine
modifications. The reactive cysteines can, for example, become oxidized or react
with nonpolymerized acrylamide during electrophoresis (10). A discussion of the
advantages of different cysteine modifications is presented in Matthiesen et al. (11).

A protein for identification needs to be purified before the proteolytic cleav-
age and analyzed by MALDI-TOF MS. The preferred method for the separa-
tion of proteins is 2D-PAGE.

The proteolytic cleavage is most often done with trypsin. Trypsin is a serine
protease that specifically cleaves at the carboxylic side of Lys and Arg residues
if these are not followed by Pro (see Note 1). The abundance and distribution
of Lys and Arg residues in proteins are such that trypsin digestion yields pep-
tides of molecular weights that can be analyzed, for example, by MALDI-TOF
MS. The specificity of trypsin is of extreme importance. Native trypsin is sub-
ject to autolysis, generating pseudotrypsin, which exhibits a broadened speci-
ficity including chymotrypsin-like activity (12). Additionally, trypsin is often
contaminated with chymotrypsin. For these reasons, trypsin, which has reduc-
tively methylated Lys and has been treated with N-tosyl-L-phenyl chloromethyl
ketone, a chymotrypsin inhibitor, should be used. Such trypsin preparations 
can be bought under the trade name “Sequencing Grade Trypsin” (Sigma) or
“Trypsin Gold” (Promega). After digestion, it is advantageous to concentrate
and remove buffer contaminants by reverse-phase (RP) microcolumns to
increase signal-to-noise ratios and sensitivity before mass spectrometric analy-
sis. However, small and hydrophilic peptides can be lost by using the RP micro-
columns. This problem can be solved by combining the RP microcolumns with
purification using graphite powder (13). Additionally, the graphite powder can
be used to remove some types of undefined biopolymers.

Recently, new methods have been developed to enrich for peptides that have
a specific modification. The enrichment is in many cases important because it
lowers the ion suppression from nonmodified peptides and thereby increases
the signal of peptides having the specific modification. For example, hydrophilic
interaction LC is used for the enrichment of glycosylated peptides (14). Titanium
oxide has proven effective for enrichment of phosphopeptides (15,16).

4 Matthiesen and Mutenda
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1.3. Ionization Methods

Formation of ions and transition into the gas phase are required before the
molecular masses of a sample can be measured by the mass analyzer. The
generation of intact gas-phase ions is in general more difficult for higher
molecular mass molecules. Early ionization methods for peptides and pro-
teins, like fast-atom bombardment and 252Cf plasma desorption, were suc-
cessful and can be given credit for directing the attention of the biochemists
toward MS (17). The breakthrough in MS of proteins and peptides came with
the introduction of ESI–MS (18) and MALDI MS (19). The advantage of
these soft ionization techniques is that intact gas-phase ions are efficiently
created from large biomolecules with minimum fragmentation. MALDI and
ESI are further discussed in the next sections. Subheadings 1.4.–1.8. discuss
a common instrument setup using MALDI for ionization and a TOF mass
analyzer that comprises the cheapest instrument setup. Subheadings
1.9.–1.11. discuss instrument setups using ESI ionization with either an ion
trap or a Q-TOF mass analyzer.

1.4. MALDI 

MALDI is an improvement of the laser desorption ionization (LDI) technique.
In LDI, a soluble analyte is air-dried on a metal surface and the ionization is
achieved by irradiating with an ultraviolet laser. The disadvantage of LDI is that,
in general, it has low sensitivity, the ionization method causes ion fragmentation,
and the signal is very dependant on the ultraviolet-absorbing characteristics of the
analyte (20). This is solved with MALDI by decoupling the energy needed for des-
orption and ionization of the analyte. In MALDI, the analyte is mixed with a com-
pound, the matrix, which absorbs the energy from the laser. The sample is
cocrystallized with an excess amount of the matrix. A variety of matrices, small
aromatic acids, can be used. The aromatic group absorbs at the wavelength of the
laser light, while the acid supports the ionization of the analyte. Irradiation with a
short-pulsed laser, often a 337-nm N2 laser, causes mainly ionization of the matrix
followed by energy and proton transfer to the analyte (21). The MALDI technique
is good for ionizing peptides and proteins. Contaminants frequently encountered
in protein and peptide samples, such as salts, urea, glycerol, and Tween-20, which
are normally ionization suppressing, can be present at low concentration without a
major effect on the ionization. It is believed that these compounds are excluded
from the matrix and peptide/protein crystal (10). However, the MALDI technique
is sensitive to low concentrations of sodium dodecyl sulfate (22).

The matrix preparation has a major effect on the quality of MALDI-MS
spectra. Several different matrix–sample preparations have been developed.
The earliest and most frequently used technique is the dried droplet method
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(19,23). An improvement in this method was made by applying a pure matrix
surface by fast evaporation before applying the matrix–analyte mixture (24).
Fast evaporation can be achieved by dissolving the matrix in volatile solvents
like acetone. The method gives a more homogenous layer of small crystals.
Nonuniform crystals formed under slow evaporation will give lower resolu-
tion, low correlation between intensity and analyte concentration, and lower
reproducibility. A number of other preparation methods have been studied by
Kussmann et al. (25) using a variety of matrices: α-cyano-4-hydroxy cin-
namic acid (HCCA), sinapinic acid (SA), 2,5-dihydroxybenzoic acid (DHB),
and 2,4,6-trihydroxyacetophenone (THAP). Some of the matrix preparation
methods allow cleanup from buffer contaminants by a short wash with ice-
cold 0.1% trifluoroacetic acid. There is no universal matrix preparation pro-
cedure that gives good results for all peptides and proteins. Only general
guidelines have been found, such as the requirement of the sample–matrix
mixture to be adjusted to pH less than 2.0 for optimal signal-to-noise ratio.
Therefore, the previously mentioned studies pointed to the conclusion that
several combinations should be tested for each sample and that optimization
in some cases will be necessary.

In general, when MALDI ionization of tryptic peptides is used, protein
sequence coverages of 30–40% are obtained. The limited sequence coverage
can be explained by the competition for the protons in the matrix plum and lim-
ited mass range of the mass spectrometer. The more basic Arg-containing pep-
tides have higher affinity for the protons than the Lys-containing peptide. The
higher proton affinity and the higher stability of the Arg-containing peptides are
therefore more frequently observed in MALDI-MS spectra. In addition, some
peptides may not be able to co-crystallize with the used matrix.

1.5. The TOF Mass Analyzer

In TOF–MS a population of ions, for example derived by MALDI, is accel-
erated by an electrical potential as shown in Fig. 2. After acceleration, the ions
pass through a field-free region where each ion is traveling with a speed char-
acteristic of their m/z value. At the end of the field-free region a detector meas-
ures the TOF. The recorded TOF spectrum is a sum of the following times: TOF =
ta + tD + td, where ta is the flight time in the acceleration region, tD is the flight time
in the field-free region, and td is the detection time. Because the acceleration
region is much smaller than the field-free region, the flight time can be approx-
imated by the drift time, tD:

(1)t D m
zeVD

ac

=
2
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where D is the drift distance, z is the number of charges of the ion, e is the 
elementary charge, Vac is the acceleration voltage, and m the mass of the ion.
Therefore, tD for an ion will be proportional to (m/z)1/2 (26).

The mass resolution for TOF analyzers is reported as m/�m (�m is the width
of the peak at half maximal height). The ion production time, initial velocity
distribution, and the ion extraction time all contribute to reduced 
resolution. The initial kinetic energy differences can be compensated by adding
an ion reflector (also called ion mirror) to the linear TOF instrument. The
reflector is an electric field that returns the ions in an opposite direction at an
angle to the incoming ions at the end of the drift region. The more energetic
ions will penetrate more deeply into the reflecting field and, therefore, have a
longer flight path than ions with the same mass but less kinetic energy. The 
resolution of MALDI-TOF MS can also be considerably improved by using a
delayed ion extraction technique (27). In this system, ions formed by MALDI
are produced in a weak electric field, and after a predetermined time delay, are
extracted by a high-voltage pulse.

1.6. The MALDI-TOF MS Spectrum

In a TOF spectrum it is the TOF of ions that is recorded. However, the spec-
trum is normally reported as m/z vs relative intensity. Figure 3 shows the spec-
trum of tryptic peptides of bovine serum albumin analyzed on a Bruker Reflex III
mass spectrometer using HCCA as matrix. The peak annotation was done auto-
matically using a cut-off for a signal-to-noise ratio of 4.

Peptide ions generated by MALDI generally occur in a low-charge state, and
normally only the singly charged state of a peptide is observed (10). For proteins
it is common to observe higher charge states in addition to the singly charged.

Often some mass peaks in a spectrum cannot be matched with a theoretical
mass of a tryptic peptide from a single protein. Typical reasons are tryptic mis-
cleavage, modifications of tryptic peptides, tryptic peptides from other proteins,

Introduction to Proteomics 7

Fig. 2. Schematic representation of a linear time-of-flight mass spectrometer.
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ions from matrix clusters, and fragmentation of ions during MALDI-TOF MS.
The observed miscleavages are mainly because of pseudotrypsin, which is gen-
erated by autolysis of trypsin. Pseudotrypsin has a broader specificity than trypsin
(see Subheading 1.2.).

The modifications of the tryptic peptides have different origins, in vivo post-
translational modification, uncontrolled chemical modifications during sample
preparation, and intentional modifications such as cysteine and cystine modi-
fications.

The most frequently observed contaminating tryptic peptides come from
trypsin (Fig. 3) and human keratins from hair and skin. Proteins purified by chro-
matography or 2D-electrophoresis are not always 100% free from other proteins
in the original sample. For samples with high concentration of peptides and low
salt, ions from matrix clusters are normally not observed in the mass region of
interesting tryptic peptides (m/z above 500). For dilute samples, and samples
containing a high concentration of salt, mass peaks from matrix clusters might
be observed in the mass region up to 2000 Da for HCCA (28). In general, peaks

Fig. 3. Typical MALDI-TOF MS spectrum. (+) Indicates mass peaks which matched
the masses of theoretical tryptic peptides from bovine serum albumin (BSA). The data
analysis was done in VEMSmaldi v2.0. The first column in the upper right corner shows
the experimental masses, the second column the theoretical tryptic peptide masses, and
the third column shows the tryptic peptide sequences from BSA.
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of matrix clusters can be observed up to m/z 1000. Erroneous protein matches
can be the result if these masses are not removed prior to the peptide mass fin-
gerprinting (PMF) search. One solution to this problem could be to remove all
mass peaks below m/z 800, as some shorter tryptic peptides are less unique, as
shown in Fig. 4.

However, the low mass region still contains valuable information and some
shorter peptides are actually more unique than longer peptides. A better option
would be to try to identify the mass peaks from the matrix clusters. It has been
reported that the mass of most of the matrix peaks can be calculated using the
following equations (28):

(2)

where
(3)

and

(4)y z n+ ≤ + 1

y z x+ = + 1

M nM xH yK zNaCluster = − + +

Introduction to Proteomics 9

Fig. 4. Distribution of the theoretical masses between 400 and 3000 Da of tryptic
peptides for all Arabidopsis thaliana proteins. The mass scale was divided in 1-Da
intervals, and the numbers of tryptic peptides within each interval were counted. The
distribution was made in VEMS v3.0.
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n, y, z, and x are integer values. Mcluster is the observed mass of the ionized
matrix cluster; M, H, K, and Na stand for the masses of HCCA, hydrogen,
potassium, and sodium, respectively. For the DHB matrix a similar equation
where also the loss of water is taken into account, have been established (28).
Table 1 gives the masses used to calculate mass of the different matrix clusters.

The mass peak 644.02 m/z in the MALDI-TOF spectrum in Fig. 3 was
assigned as a matrix peak (n = 3, x = 0, y = 2, and z = 0) using Eqs. 2–4.
Thereafter, only one annotated mass peak of Fig. 3 has not been assigned.
Zooming in on the low mass region some additional low-intensity peaks were
annotated (Fig. 5).

It is not recommended to annotate low-intensity peaks prior to the first data-
base search, as these include a higher proportion of peaks that cannot be inter-
preted and, therefore, lead to erroneous protein identification. Further annotation
of the low-intensity mass peaks identified one additional mass peak matching
bovine serum albumin, and four matching matrix clusters. The result of the final
data analysis is summarized in Table 2. The identification of trypsin and matrix
cluster peaks gives the opportunity to use these mass peaks for internal calibra-
tion (see Appendix B; 29).

Matrix clusters might be suppressed either by purifying samples on RP
microcolumns, by using cetrimonium bromide in the matrix solution (30), or by
recrystallizing the matrix in ethanol (28). However, some peptides might get
lost on RP columns and cetrimonium bromide lowers the intensity of sample
ions although it is very efficient in suppressing matrix clusters.

Fragmentation of sample ions may occur from collision with matrix molecules
during ionization. However, in MALDI only minimal fragmentation occurs (22).

1.7. Annotation of MALDI-TOF MS

In order to annotate MS spectra it is important to understand the nature of
the isotopic distribution. Biological molecules are mainly composed of carbon (C),

10 Matthiesen and Mutenda

Table 1
Masses of the Elements Used in the Calculation
of Ion Adductsa

Mass (Da)

H 1.007825032
Na 22.98976967
K 38.9637069
HCCA 189.0425931

aThe elemental masses are from http://www.ion
source.com, and the mass for HCCA was calculated using
the elemental masses.
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Fig. 5. Zooming in on the low mass region of the MALDI-TOF spectrum shown in
Fig. 3. Peptide mass peaks from bovine serum albumin are indicated by (+), and (M)
indicates mass peaks that correspond to matrix clusters. The observed mass peaks in
parentheses were already annotated in the first annotation round. The annotation in the
second round was done manually. The data analysis was made in VEMSmaldi v2.0.

hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S). Some biological mole-
cules also bind metal ions and these include proteins and DNA. Natural isotopes
of these elements occur at almost constant relative abundance (Table 3). A more
extensive list of biological relevant isotopes can be found at http://www.ionsource.
com/Card/Mass/mass.htm.

From the values given in Table 3 one can calculate relative isotopic abun-
dance of different biological molecules. The relative abundance of the monoiso-
topic mass of a molecule with the composition CxHyNzOvSw can be calculated
using the following expression (32).

(5)

PM is the relative abundance of the monoisotopic peak for the molecule. PC,
PH, PN, PO, and PS are the abundance of the monoisotopic masses of the C, H,
N, O, and S elements, and x, y, z, v, w are positive integer values. The expres-
sion is simply the probability that all the elements in the molecule have the

P P P P P PM C
x

H
y

N
z

O
v

S
w= * * * *
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Table 2
Interpretation of Low-Intensity Peaks in the Low Mass Region of a MALDI
Spectrum of a Bovine Serum Albumin Tryptic Digesta

Observed Calculated Delta
mass mass mass
(Da) (Da) (Da) Match n x y z

499.204 ?
508.257 508.252 0.005 BSA
541.262 ?
560.071 ?
(572.291) 572.363 –0.072 BSA
588.265 ?
605.314 ?
(644.022) 644.047 –0.025 matrix 3 1 2 0
665.954 666.029 –0.075 matrix 3 2 2 1
682.054 682.003 0.051 matrix 3 2 3 0
(721.355) 721.363 –0.008 BSA
737.361 ?
765.047 ?
855.047 855.072 –0.025 matrix 4 2 2 1
871.026 871.046 –0.02 matrix 4 2 3 0

aThe data analysis was done in the program VEMSmaldi. The observed mass peaks in paren-
theses were already annotated in the first annotation round.

Table 3
Masses and Abundance of Biologically Relevant Isotopes (28,31)a

Isotope A % Isotope A + 1 %
12C 12 98.93(8) 13C 13.0033548378(1) 1.07(8)
1H 1.0078250321(4) 99.9885(7) 2H 2.0141017780(4) 0.0115(7)
14N 14.0030740052(9) 99.632(7) 15N 15.0001088984(9) 0.368(7)
16O 15.9949146221(15) 99.757(2) 17O 16.99913150(2) 0.038(1)
32S 31.97207069(12) 94.93(3) 33S 32.97145850(1) 0.76(2)

Isotope A + 2 % Isotope A + 4 %
14C 14.003241988(4) – – – –

3H 3.0160492675(11) – – – –

18O 17.9991604(9) 0.205(1) – – –

34S 33.96786683(11) 4.29(3) 36S 35.96708088(3) 0.02(1)
aUncertain digits are shown in parenthesis. 
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monoisotopic mass. A similar expression can be made for the monoisotopic
mass plus one,

(6)

where PC+1, PH+1, PN+1, PO+1, and PS+1 are the abundance of the monoisotopic
mass plus approx 1 Da of the elements. Again, the expression is the probability
that one atom in the molecule is the monoisotopic mass plus one. It is impor-
tant to note that this way of calculating the isotopic distribution is an approxi-
mation, which works well when comparing with observed isotopic distribution
from mass spectrometers that are unable to resolve the different element’s con-
tribution to the M+1 ion. In a similar way one can make an expression for the
abundance of the M+2 isotope peak. How to perform such calculations in prac-
tice is described in Chapter 2. Zooming in on the mass peaks 927,49 and
2045,00 m/z in Fig. 3 reveals the isotopic distributions in Fig. 6.

For PMF searches it is obligatory to annotate the monoisotopic mass peak for
each isotopic distribution because a list of monoisotopic masses can be submitted
directly to most search engines. If the isotopic peaks are not resolved, which is
sometimes observed for peptides above 2500 Da, then the average mass can be
annotated and used for the search. The annotation of peptide masses is straight
forward because often there is only single-charged ions present in the MALDI-
TOF MS spectrum. The charge states can be determined from the distance
between two peaks in the isotopic mass distribution of an ion (see Fig. 6). Isotopic
peaks are separated by approx 1 Da for single-charged ions, approx 0.5 Da for
double charged, and so on. In general, the charge state can be calculated by:

(7)

where ∆m is the mass difference between the isotopic peaks.

1.8. The Future for MALDI-TOF MS

MALDI-TOF MS is playing a major role in proteomics. The main advantage
with MALDI ionization is high sensitivity. MALDI-TOF MS has been used
extensively together with 2D-electrophoresis (33). One of the biggest problems
with the MALDI-TOF MS for identification of proteins is the difficulty in obtain-
ing highly significant search result. This is owing to the fact that not all the
expected tryptic peptides show up in the experimental MS spectrum. It is addi-
tionally complicated by unknown mass peaks. The PMF by MALDI-TOF MS is
limited to the analysis of purified proteins. Obtaining statistically significant PMF
results for protein mixtures have proven difficult. However, there have been
reports on strategies to identify protein in mixtures containing few proteins by
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Fig. 6. Zoom in on two annotated masses from the spectrum in Fig. 3. (A) At low
masses the monoisotopic peak is the most intense peak in the isotopic cluster. (B) At
higher masses it is no longer the monoisotopic peak that is the most intense peak in the
isotopic distribution.

PMF searches (34,35). The significance of the PMF results can be improved by
using more cleavage methods in addition to trypsin, and the search algorithms can
be improved by using both average and monoisotopic mass for PMF searches.

By using MALDI-post source decay (PSD) it is possible to obtain sequence
information with the MALDI method (36). However, the PSD fragmentation is
rather complex. With the introduction of a collision cell in a MALDI-TOF-TOF
MS it is now possible to obtain low- and high-energy collision-induced disso-
ciation (CID) fragmentation with the MALDI method (9), which can provide
more significant MALDI data and extend the MALDI method to more complex
mixtures containing tryptic peptides from several proteins.
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Another problem related to the MALDI method is the heterogeneity in
matrix–sample crystal formation, which makes it difficult to quantify and repro-
duce results. Using fast evaporation methods when applying the matrix seem to
give more homogenous matrix–sample crystals. However, it is still often neces-
sary to search for a good sample spot within a target. 

1.9. ESI

Electrospray has found many applications, such as spray painting, fuel atom-
ization in combustion systems, and crop spraying (37).

In ESI–MS, the ions are formed at atmospheric pressure followed by droplet
evaporation. A solution containing peptides or proteins is passed through a fine
needle at high potential in order to generate ions (10). The potential difference
between the capillary and the counter electrode, located 0.3–2.0 cm away from
the capillary, is typically 3–6 kV (38).

The electric potential is responsible for charge accumulation on the liquid
surface, leading to the production of charged droplets from the liquid cone at
the capillary tip. The initial drops formed by ESI range from few micrometers
to 60 µm in diameter (39). These drops shrink by evaporation, which results in
increased charge density. The increased charge density creates a Coulomb
repulsion force that eventually will exceed the surface tension causing drop
explosion (Coulomb explosion) into smaller drops. This process continues until
the drops are small enough to desorb analyte ions into the gas phase. A good
sample spray is dependant on flow rate, liquid conductivity, and surface tension.
The addition of organic solvent to aqueous analyte solution results in lower sur-
face tension, heat capacity, and dielectric constant, all of which facilitate forma-
tion of fine droplets by Coulomb explosion.

To assist in the formation of droplets a nebulizer gas can be used. The nebu-
lizing nitrogen flows through the outside of the needle. As the liquid exits, the
nebulizer gas helps break the liquid into droplets. In addition, a N2 drying gas
is applied on the entrance of the dielectric capillary to help droplet evaporation.

ESI has proven effective in producing gas-phase ions of proteins and pep-
tides (40). In general, the longer the polypeptide chain the higher the charge
state as more groups can ionize. Therefore, multiple charge states are observed
for proteins and peptides. The distribution of these charge states will depend
on the equilibrium between the different protein folds in solution prior to the
electrospraying and events in the gas phase (41). The net charge in solution
will depend on intrinsic polypeptide properties as well as extrinsic factors.
The intrinsic factors include the number, distribution, and pKas of ionizable
amino acid residues, which depend on the initial three-dimensional confor-
mation. The extrinsic factors are solvent composition, pH, ionic strength, and
temperature (41).
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MS/MS spectra of polypeptides are most often done in positive ionization
mode. The negative ionization mode can be applied in a scanning mode to detect
sulphated and phosphorylated peptides (42).

For analysis in positive mode the sample solution is often acidified, which
also leads to relatively high amounts of anions in addition to the protons. The
distribution of (M+nH)n+ shifts toward larger n and decreases the m/z values of
the ions formed when the pH is lowered (43). However, the different types of
anions have been observed to have different effects on the net average charge
of peptides and proteins ions in the spectra. The propensity for neutralization
follows the order: CCl3COO–> CF3COO–>CH3COO–~Cl– (41). The charge
reduction is proposed to occur in two steps. The first occurs in the solution
where the anion can pair with a basic group on the peptide or protein. The sec-
ond occurs in the gas phase during desolvation where the protons dissociate
from the peptide to form the neutral acid and the peptide in a reduced charge
state (41). It has been found that acetic acid and formic acid produce better ESI
results than trifluoroacetic acid. Additionally, detergents should be avoided.
Detergents can lead to signal reduction and can add complexity to the mass
spectra because of their polymeric nature (10).

Cations also affect the quality of ESI mass spectra. Cation impurities from
buffers can cause a reduction of analyte signal owing to spreading of the signal
over multiple m/z values; it also adds complexity to the spectra. The presence
of alkali metals in ESI mass spectra indicates that desalting of the sample is
required. In some cases, analysis of metalloproteins can lead to determination
of metal-binding constants (44).

ESI is performed at atmospheric pressure, which allows online coupling of
high-performance liquid chromatography and capillary electrophoresis to mass
spectrometers (45,46). ESI can be coupled to mass analyzers, such as triple
quadrupoles, ion traps, and quadrupole-TOF (Q-TOF). A powerful and com-
mon setup is RP-LC coupled to ESI–MS/MS. Increasingly nano- and micro-
bore RP-columns are being coupled to electrospray-MS/MS. The typical flow
rates in commonly used LC systems are 100–300 nL/min and 1–100 µL/min for
the nano- and micro-LC for ESI systems, respectively. However, values of
10–15 nL/min and 1–10 µL/min have been obtained (35,44). The low flow rate,
high ionization efficiency, and high absolute sensitivity make nano-ESI–MS/MS
suitable for identification or sequencing of gel-isolated proteins available in sub-
picomole amounts (48).

1.10. Ion Trap Mass Analyzer

An LC-ion trap system produces a continuous source of ions by ESI that are
guided into an ion trap mass analyzer by a combination of electrostatic lenses
and a radio frequency octapole ion guide. First, the incoming ions are focused
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toward the center of the ion trap, which is composed of three electrodes, a ring
electrode, and two end caps. This is accomplished by slowing down the incom-
ing ions with helium (He) gas (typically 1–5 mbar He) and trapping them in a
three-dimensional quadrupole field (49,50). The quadrupole field, which estab-
lishes a parabolic potential induces an oscillatory harmonic motion of the ions
at a frequency known as the secular frequency. The oscillation can be described
by solutions to the Mathieu equations (51).

The range of ion masses that can be trapped in the ion trap simultaneously is
limited in the low m/z range, and also in the high m/z range in practice. The stored
ions can be ejected according to their m/z value by applying a dipolar field of fre-
quency that is proportional to the secular frequency of an ion. By detecting the
ejected ions at different dipolar field frequency, a MS spectrum can be obtained.

Ion traps have the ability to store a precursor ion of interest and eject all other
ions simultaneously. The stored ion can be fragmented to produce sequence
information. This is done by increasing the energy of the isolated precursor ion
by excitation with the dipolar field. The amplitude for excitation is less than that
used for ejection. The increased energy of the precursor ion leads to harder and
more frequent collisions with the He gas causing fragmentation of the precur-
sor ion (49). The fragmentation is termed CID. The product ions will have a dif-
ferent secular frequency than the precursor ion, preventing further fragmentation.
The fragment ions can be ejected at different dipolar field frequencies and
detected producing the MS/MS spectrum.

1.11. Q-TOF Mass Analyzer

The Q-TOF mass analyzers are often coupled to an ESI ion source. A typi-
cal Q-TOF configuration consists of three quadrupoles, Q1, Q2, and Q3, fol-
lowed by a reflectron TOF mass analyzer (51). In some instruments some of the
quadrupoles are replaced by hexapoles. However, it is the same principle. Q1 is
used as an ion guide and for collisional cooling of the ions entering the instru-
ment. For separating ions for MS spectra, Q1 and Q2 serve as transmission ele-
ments, whereas the reflector TOF separates ions according to the m/z values.

For recording MS/MS, Q1 is operated in mass filter mode to transmit only
precursor ions of interest. The width of the mass window of ions allowed to
pass Q1 determines the range of the isotopic cluster (51). The ion is then accel-
erated to Q2, where it undergoes CID. The collision gas is usually He or argon.
The fragment ions are collisionally cooled, and focused in Q3. Finally, their m/z
values are separated in the reflector TOF.

1.12. Comparison of Q-TOF and Ion Trap Instruments

The different methods of fragmentation in Q-TOF and ion trap mass analyzers
results in differences in the MS/MS spectra. In the Q-TOF the ions are fragmented
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by accelerating them and passing them through a collision cell filled with gas. The
fragments from the precursor ion can still contain enough kinetic energy so further
fragmentation occurs on collision with the collision gas. This means that only the
most stable ion fragments will be observed in an MS/MS spectrum from a Q-TOF
mass analyzer.

In the ion trap, fragmentation occurs by increasing the secular frequency of
the precursor ion making the precursor ion collisions with the collision gas
stronger and, thereby, causing fragmentation. The fragment ions will have a dif-
ferent secular frequency than the precursor ion and will therefore not be further
excited by the applied dipolar field frequency, which prevents further fragmen-
tation. This difference means that b-, a-, and y-ions frequently can be observed
in data from an ion trap, whereas Q-TOF data mainly contains y-ions (ion types
are explained in Subheading 1.13.). This means that Q-TOF data is easier to
interpret as only one ion series is mainly present. On the other hand, the found
sequence tag in the ion trap would be more significant because more ions would
be present to confirm the derived sequence tag. However, the higher mass accu-
racy and resolution of Q-TOF data is likely to compensate for the lower signif-
icance caused by the low frequency of a- and b-ions.

In Q-TOF, MS spectra immonium ions can be observed. The m/z value for
these ions is normally below the mass cutoff used for ion traps and, therefore, is
not stable in the ion trap (the mass cutoff is normally one-third of the m/z value
for the precursor ion [49]). The immonium ions can be used as an indicator of
the presence of the corresponding amino acid in the peptide sequence (52).

1.13. The MS/MS Spectrum

The MS/MS spectrum of peptides contains sequence information. To obtain
MS/MS spectra one needs a tandem mass spectrometer. MS/MS can be one of
the two types: tandem-in-space and tandem-in-time.

In tandem-in-space MS, the first mass analyzer separates and isolates the
precursor ion of interest. The isolated ion is transmitted to the collision cell
where it is fragmented. The fragments are transmitted and analyzed in the sec-
ond mass analyzer (tandem in space). In tandem in time, the precursor ion
selection, fragmentation, and the separation of the fragments all occur in one
mass analyzer at different time-points. The precursor ions with the highest
intensity and with a charge state of +2 or more are generally preferred because
they give the best fragmentation spectra. The isolated precursor ion is then
fragmented by CID, infrared multiphoton dissociation (IRMPD), electron cap-
ture dissociation (ECD), blackbody infrared dissociation (BIRD), surface-
induced dissociation (SID), or electron transfer dissociation (ETD). In most
cases, CID is used for fragmentation. The resulting spectrum is called an
MS/MS spectrum. The precursor ion can have different charge states. Singly
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charged tryptic peptide ions generally do not fragment as easily as tryptic pep-
tide ions with higher charges.

A number of computer programs such as Probid (35), Mascot (53), Lutefisk
(54), and Virtual Expert Mass Spectrometrist (VEMS) (55) exist for automatic
interpretation of MS/MS spectra. However, all of these programs have limita-
tions. To obtain an extended interpretation of data it is necessary to understand
the structure of protonated peptides and their fragmentation pathways.

If a peptide sample is ionized by ESI in the positive mode, then positive pep-
tide ions will be generated. The protons can attach to all the strongly basic sites
of the peptides. Examples of these sites are the N-terminal amine, Lys, Arg, and
histidine residues (52). Protons attached to the N-terminal site may move to any
of the amide linkages, whereas the protons associated with Arg, Lys, and histi-
dine are bound more strongly.

This model is termed the mobile proton model and explains many observed
phenomena in MS/MS spectra of peptides (56). The precise location of the pro-
ton after transfer to the backbone is not fully established. However, the carbonyl
oxygen of a peptide bond has been suggested to be the most likely candidate (56).

According to the mobile proton model, a peptide ionized by ESI is best
viewed as a heterogeneous population with different location of the charges.
The population of peptides is then focused into the collision cell where it is
accelerated to induce fragmentation. The kinetic energy from the collisions
with the collision gas is converted to vibrational energy in the peptide ions.
The peptides then release the vibrational energy by fragmentation. For most
peptides fragmentation can be described as a charge-directed cleavage
(56,57). In charge-directed cleavages, fragmentation is guided by the site of
the protonated peptide bonds. Charge-directed cleavage is a complicated reac-
tion where the different chemical bonds along the peptide backbone are
cleaved with different probability (57). The result is mainly b- and/or y-type
sequence ions (see Fig. 7).

If the number of Lys, Arg, and histidine in a peptide equals the number of pos-
itive charges of the peptide then there are no mobile protons. These stronger
bound protons can be mobilized if the kinetic energy of the peptides is increased
in the collision cell. However, the increased energy might lead to charge remote
fragmentation where no proton is involved in the fragmentation (56).

Normally, MS/MS experiments are made on tryptic peptides and the experi-
mental settings are such that most of the tryptic peptides have charge states
higher than one. The major low-energy CID pathway by proton-directed cleav-
ages of doubly charged peptides gives mainly b- and y-ion fragments. The most
favored reaction leads to the formation of singly charged b- and y-ions. Because
the mobile proton can be located at different amide bonds, a whole series of
b- and y-ions is generated for tryptic peptides with more than one charge. The
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mass difference between two neighboring bn and bn+1-ion mass peaks corre-
sponds to the residue mass of the most C-terminal residue of the bn+1-ion (see
Fig. 7). Similarly, the mass difference between two neighboring yn and yn+1-ion
mass peaks corresponds to the residue mass of the most N-terminal residue of
the yn+1-ion (see Fig. 7). Calculating mass differences between mass peaks in a
MS/MS spectrum and relating these mass differences with a list of residue
masses can reveal the peptide sequence, or part of it, i.e., a sequence tag. In
Appendix C a table of residue masses is provided.

From Fig. 7 the following simple, but important, relation can be deduced:

(8)

where mp2+ is the mass of the doubly charged parent ion, n is the length of the
peptide, and the right side is the sum of the masses of any pair of complementary
b- and y-ions. This equation can be used to verify that the complementary ion
series is present in the experimental spectrum.

The obtained sequence tag can be validated by calculating a theoretical a-, b-,
and y-ion series for the sequence tag and comparing these with the experimental
spectrum. Consider a peptide of n amino acids AA1,…,AAn with masses
m(AAj). The mass of the doubly charge peptide can be calculated as:

(9)

This is the mass of a doubly charged peptide precursor ion and is sometimes
observed in the MS/MS spectrum at m/z mp2+/2. In practice it is not necessary
to take the mass of the electron m(e) into account because the mass accuracy of
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Fig. 7. The nomenclature used for peptide fragment ions. a-, b-, and c-ions are
charged fragments containing the N-terminal part of the fragment and x, y, and z the
C-terminal part (58). The box indicates the composition of residue R2. Residue mass
for R2 is given by summing the masses of the elements of residue R2. 
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common MS/MS mass spectrometers is in the range 0.01 to 0.2 Da and a low
number of missing electrons will only have an effect on the third decimal. The
mass of the electron here is taken into account to be precise.

If the bi-ion is composed of the amino acids AA1,…, AAi; its mass is given by

(10)

The expression is the sum of all the residue masses of residues in bi plus the
mass of a proton (59).

The masses of the y-ion series can be computed in a similar way (59):

(11)

The masses in the a-ion series (see Fig. 7) can be calculated as 

(12)

The frequency of the different fragmentation ions observed in ESI low-
energy CID can be ordered as y>b>a for tryptic peptides with charge state
higher than one, whereas the fragment ions c, x, and z cannot be observed to
any significant extent (59). The b1-ions are not observed in the MS/MS spec-
trum because of the lack of a carbonyl group to initiate the nucleophilic attack
on the carbonyl carbon between the first two amino acids; without this carbonyl
the cyclic intermediate cannot be formed (60).

Fragmentation of a doubly charged peptide with one proton on a basic amino
acid and one mobile proton will lead to formation of a bi- and yn-i-ion. The
bi-ion would still have a mobile proton and can therefore undergo further
fragmentation in a quadrupole collision cell, and to a much lesser extent in an
ion trap (see Subheading 1.12.). The b-ions preferentially fragment to smaller
b-ions than to a-ions (60). Because the b2-ion is the last b-ion fragment, the cor-
responding mass peaks often have high intensity in MS/MS spectra generated
in a quadrupole collision cell (see Fig. 8).

The b2-ions can fragment further to a2-ions. This means that high-intensity
a2-ion mass peaks can often be observed (see Fig. 8). The presence of a2- and
b2-ion mass peaks with high intensity and with a mass difference of approx 28 Da
is very useful in manual interpretation of MS/MS spectra. The mass of the
observed b2-ion can be compared with the mass of b-ions of all combinations
of two amino acids. This often gives a limited set of possibilities. The assign-
ment of the precise ordering of the two amino acids depends on observing the
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yn-1-ion. The yn-1-ion is often not observed, so the ordering is only completed
after finding a database match.

The C-terminal amino acid of a tryptic peptide is either Lys or Arg, except
for the last peptide of a protein and for miscleaved peptide bonds. The y1 can
often be observed in Q-TOF data with low intensity at m/z 147.11 for Lys and
175.12 for Arg. In addition, the immonium ions of the C-terminal amino acid
and fragments of the immonium ions can often be observed. Identification of
the C-terminal amino acid decreases the number of possible database matches
and increases the search speed.

In the low mass region one also finds the immonium ions, H2N+ = CHR
(see Appendix D). The m/z of unmodified immonium ions ranges from m/z 30
(G) to m/z 159 (W). The immonium ions can be used as an indication of the pres-
ence of certain amino acids. In practice immonium ions can be observed for pep-
tides containing L/I, V, F, Y, H, P, and W, whereas S, T, R, and K are ineffective
sources (61). If L/I, V, F, Y, H, P, and W are N-terminal residues, the correspon-
ding immonium ion can be abundant (62). However, immonium ions from inter-
nal residues are also quite frequently observed.

Other fragmentation ions apart from a-, b-, and y-ions exist and they
complicate MS/MS spectra further. The yibj-ions, also called the internal
fragment ions, are one example. The yibj-ions are generated from b- or y-ion
fragments (62).

22 Matthiesen and Mutenda

Fig. 8. A tandem mass spectrometry (MS/MS) spectrum of the tryptic peptide
GVVDSAIDATER. The MS/MS spectrum was automatically annotated using VEMS
v3.0. The annotation is given as ion type, mass (Da), and original charge state of the ion
before deisotoping and decharging.
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Low-energy CID of protonated peptides also give rise to fragmentation prod-
ucts, which arise from small neutral losses from b-, y-, and yibj-ion products
(Appendix D). The a-ions result from the loss of CO from b-ions, and are seen
as b minus 28 Da (62). The loss of NH3 can occur from b-, y-, and yibj-ions con-
taining the residues N, Q, K, and R. Peptide ions containing the residues S, T,
D, and E can lose H2O (52). The neutral losses can also be used for assigning
MS/MS spectra of peptides containing modified residues. An example is the
neutral loss of H3PO4 from phosphoserine or phosphothreonine giving anhydro
derivatives.

1.14. Fragmentation Methods

Fragmentations observed in MS are divided into three main categories (63):
(1) unstable ion fragments, formed in the ion source, with dissociation rate con-
stants of kdiss> 106/s, (2) metastable ion fragments, formed between the ion
source and the detector, with 106/s > kdiss >105/s, and (3) stable ions which
remain intact during their time in the mass spectrometer and have kdiss < 105/s.
The list of techniques for precursor ion fragmentation includes collision-acti-
vated dissociation/decomposition (CAD)/CID, PSD, ECD, IRMPD, BIRD,
SID, or ETD. IRMPD (64), BIRD (65), and SID (66) will not be discussed fur-
ther because they are mainly used for top down proteomics. The most frequently
used method for precursor ion fragmentation is CAD/CID (67). However, the
other methods have been found useful in specific areas. In the following section,
the most common fragmentation methods currently used in bottom up proteomics
are described in more detail.

1.14.1. CAD/CID

CID is the most frequently used fragmentation method. It works by inducing
collisions between the precursor ion and inert neutral gas molecules. This leads
to increased internal energy followed by decomposition of the precursor ion. The
activation of precursor ions is separated in time from the dissociation process. The
activation time is many times faster than the dissociation, which explains why
CID can be modeled as a unimolecular dissociation process and explained by
Rice–Ramsperger–Kassel theories (68) or quasi-equilibrium theory modeling.

Both low- and high-energy collisions are used for peptide fragmentation. Low-
energy collisions are used in quadrupole and ion trap instruments and they result
mainly in a-, b-, y-ions, immonium and ions from neutral loss of ammonia, and
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water from the a-, b-, y-ions. High-energy CID is mainly used in sector and TOF-
TOF instruments and yields similar fragment spectra of peptides as low-energy
CID. The main difference is that d-, v-, and w-ions corresponding to amino acid
side chain cleavage are observed in addition to more intense immonium ions. CAD
and CID can be used interchangeably. However, CID is used more frequently in
the literature (http://www.msterms.com/wiki/index.php?title = CAD_vs._CID).
Many variants of the CID method exist. They can be divided into two main groups,
on-resonance and sustained off-resonance irradiation (SORI). SORI-CID is the
most widely used technique in FTICR MS (69). On-resonance excitation works by
applying an on-resonance radio frequency (RF) pulse to increase the kinetic energy
of the ions. The increased kinetic energy increases the collision energies and the
number of collisions with the collision gas. However, the collision energies drop
for each collision that the ion experiences. It is therefore an advantage to activate
the ions several times, as is the case in multiple excitation collisional activation
(70). SORI also uses multiple excitations by applying RF pulses slightly above and
below the resonant frequency which causes the ions’ kinetic energy to oscillate.
The advantage of SORI compared with on-resonance CID is that the distribution
of the number of collisions of the ions is broader for SORI, meaning that a broader
range of fragment ions are generated (69).

1.14.2. ECD

ECD has turned out to have great usability for studying peptides with
modified amino acid residues (71). In ECD, trapped multiple-charged ions
are irradiated with a low-energy electron beam (<0.2 eV) generated by a
heated filament electron gun (72). The electron capture by the positively
charged peptides leads to intensive backbone fragmentation yielding mainly
c and z• fragments.

It is evident from the above reaction scheme that the protonated peptides
should have a minimum charge state of +2. The mechanism of ECD cleavage
is thought to involve the release of an energetic hydrogen atom upon electron
capture. The released hydrogen atom is collisionally de-excited and then later
captured at sites having high hydrogen atom affinity, such as carbonyl
oxygens and disulfide bonds (73). The cleavage occurs at the site of hydro-
gen atom capture. A unique feature in ECD is that the ECD cleavage is
faster than the intramolecular energy randomization and is therefore called a
nonergodic process.

•Radical
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The advantage of ECD compared with CID is that ECD produces many more
peptide backbone cleavages of peptides with unstable modifications, such as
glycans and phophorylations (74).

1.14.3. ETD (75)

In ETD singly charged anthracene anions transfer an electron to multiply
protonated peptides. The transferred electron induces fragmentation of the
peptide backbone in a similar fashion to what is observed for ECD. The
advantage of ETD compared with ECD is that it can be used in combination
with mass analyzers that trap ions with RF electrostatic fields such as ion
traps. ECD requires that the precursor sample ions are immersed in a dense
population of near-thermal electrons making it a technical challenge to use
ECD in ion traps. In fact, ECD is thus far only available in combination with
FTICR.

1.14.4. PSD (36)

PSD can be performed on a MALDI reflectron TOF mass spectrometer.
Ions that have acquired enough energy from photoactivation and molecular
collisions during the desorption process can fragment in the mass analyzer to
release energy (76). If the TOF mass analyzer is operated in linear mode
(without the reflector) then the precursor and the fragments of the precursor
which are generated in the field-free region will have approximately the
same flight time. In the linear mode, fragmentation in the field-free region
can only be indicated by a peak broadening in the MS spectrum. However, if
the reflector is used then the precursor and the precursor fragments will be
separated by their kinetic energy. This means that they will be separated by
mass because their velocity is the same. The reflector works by applying a
potential in opposite direction of the ions’ flight path causing the ions to turn
direction. The ions with highest kinetic energy will penetrate deeper into
the reflector region before being deflected and will therefore have a longer
flight path.

1.15. Detectors

It is outside the scope of this book to cover the different detectors used in
MS. However, in doing data analysis of MS data one cannot be ignorant to the
characteristics of the different detectors. Detector saturation effects can, for
example, skew the near Gaussian mass peaks of intense ions downward, so the
experimental mass of intense ions will have negative mass error. In Fig. 9 an
overview of the different instrument techniques that can be used is given
together with references for further reading on detectors.
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1.16. Data Formats Used in Proteomics

The data formats used in MS can be divided in two main groups: (1) formats
containing raw data, and (2) formats containing processed data. The raw data
formats are often proprietary formats from the MS inventors. Recently, standard
raw data formats have been invented to ease data extraction for program devel-
opers, such as mzDATA (see Chapter 15) and mzXML.

For processed MS/MS spectra a number of file formats exist that are associ-
ated with various software applications, such as pkl (MassLynx, Micromass),
mgf (Mascot generic file), dat (Data analysis, Bruker), pkx (VEMS), and msm
(Xcalibur). In these files the raw and continuous MS/MS spectra have been
processed to a peak list. For some of the formats the data can be further
processed to contain only singly charged and monoisotopic peaks. The structure
of the pkl, pkx, and mgf file formats are shown next:

The mgf file format:

BEGIN IONS
TITLE= Cmpd 2, +MSn(371.23), 31.8 min
PEPMASS= 371.23 762929

101.07 1287
105.12 2277
…
513.22 1081

END IONS

In the Mascot generic file format the fragment ions from a MS/MS spectrum
are enclosed between “BEGIN IONS” and “END IONS.” The title line is very
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Fig. 9. Overview of different instrument settings. The instrumental methods can be
combined in many different ways. Not all methods are discussed in this chapter.
However, appropriate references for further reading are provided. Abbreviations are
spelled out in Appendix A.
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useful for specifying extra information, such as retention times from the chro-
matogram and spectrum numbers. This is especially useful if searches with
Mascot are performed because the title line is associated with the peptide results
in the Mascot result display. The PEPMASS is the precursor ion mass (m/z) and
the following lines are fragment ion mass tab delimiter and ion intensity.

The pkl file format

592.5793 617.0220 2
97.0468 1.378e0
112.0647 4.553e0
..

962.1050 3.278e-1

The pkl file format is produced by PLGS v2.05 and Masslynx v4.0 (Waters).
In the pkl format the MS/MS spectra are separated by an empty line. The first
line in a MS/MS spectrum is precursor ion mass, intensity of precursor ion, and
charge state separated by the space character. The following lines are the frag-
ment ion masses and intensity separated by the space character.

The pkx file format

592.5793 617.0220 2 28.6831
97.0468 1.378e0 1
112.0647 4.553e0 1
..
962.1050 3.278e-1 1

In the pkx format that is used in the VEMS program, the MS/MS spectra are
separated by an empty line. The first line in a MS/MS spectrum is precursor ion
mass, intensity of precursor ion, charge state, and retention time separated by
the space character. The following lines are the fragment ion masses, intensity,
and original charge state separated by the space character.

1.17. Discussion: Problems to be Solved in MS

In Subheading 1.1., the view that the goal of proteomics should be identifi-
cation and quantification of proteins in addition to identification and quantifica-
tion of posttranslational modification in different cells over time was presented.
To fulfill these requirements, high-quality data interpretation and storage pro-
grams must be available, the fragmentation chemistry should be predictable and
fully understood, and good quantification methods should be available.

The data interpretation has lately attracted the attention of many in the pro-
teomics field (77). The main problem of today’s proteomics is that the introduction
of large-scale proteomics has made it almost impossible to analyze all the data
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manually. A number of computer programs for automatic interpretation are freely
available, such as Proid (35), Mascot (53), Lutefisk (54), and VEMS (55).
However, common to all these programs is that they do not use all the information
provided by the MS or MS/MS spectra. The reason is that the MS/MS spectra are
complex, containing a large number of mass peaks of known and unknown origin
(see Subheading 1.13.). There are two major problems to be addressed. First, the
fragmentation chemistry can be improved. Second, the interpretation algorithms
can be improved to recognize and predict abnormal fragmentation chemistry.

Another shortcoming is that most programs use one of the two interpretation
approaches. The interpretation algorithms can be divided into two categories:
the database-dependent and the database-independent (de novo) interpretation
algorithms. Both approaches have their strengths and weaknesses. The database-
dependent search is better in taking all mass peaks into account, which is espe-
cially difficult in de novo interpretation if the ion series are incomplete. The
advantage of the de novo interpretation is that it works even if peptides are
either in vivo or in vitro modified. To take advantage of both methods we have
developed an algorithm that performs both database-dependent and de novo
interpretations and automatically compares the result (Chapter 7; VEMS v3.0).
Interpretation algorithms can be further improved by including the intensity of
the isotopic distribution during the interpretation (78).

For database-dependent interpretation it is important to have reliable
sequence databases available. These can be DNA, mRNA, or protein sequences.
In this respect it is important to consider how complete the database is. It is
assumed that most databases contain mainly the most abundantly expressed
genes and proteins (79). In addition, the databases are often partly composed of
predicted genes and protein sequences. Most of the freely available programs
access only some of the available databases, for example Mascot (53) and Sonar
(80). These programs mainly allow searching against sequence databases from
the most studied organisms.

Standardized databases containing the identified, quantified proteins and
their modifications need to be improved. These databases need to contain pre-
cise information on the organ, tissue or cell type under study, in addition to the
result of the identification and quantification. The significance of the result
should be evaluated by a statistical test and not only by an algorithm-dependent
score. Some examples of the current status of proteome databases are the
Expasy server (http://www.expasy.org/) and the Microbial Proteome Database
(https://www.abdn.ac.uk/~mmb023/2dhome.htm). Generation of such databases
can also be simplified by automatic submission by the program used for inter-
pretation of the mass spectrometric data.

The current methods for quantification are based on 2D-GE or the MudPIT
method. Both methods have their limitations. In 2D-GE, quantification is often
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based on estimating spot intensities. Currently, fluorescent stains offer the highest
dynamic range and facilitate quantification in the 2D-GE method. However, some
proteins are known to be excluded from the 2D gels. These proteins have
extreme pI, and are small, large, or hydrophobic. In addition, low abundant
proteins are difficult to measure. These problems can partly be overcome by
prefractionation (81).

The MudPIT method appears not to underrepresent any particular protein
group (82) and to have a high dynamic range compared with 2D-GE. An addi-
tional advantage is that MudPIT can be automated to a larger extent than 2D-
GE. The drawback is that quantification is not easily obtained. Quantification
with the MudPIT method can be achieved by comparing protein extracts from
different sources using different stable isotope labeling for the different
sources. One example hereof is the ICAT technique (83), which is outlined in
Chapter 12. The labeled and unlabeled peptides have quite similar physical
properties (except from mass), which gives the peptides similar ionization
efficiencies and retention times and, thus, the relative intensity of light-
labeled and heavy-labeled peptides can be calculated and used as a quantita-
tive measure. If there are overlaps in mass peaks, it becomes necessary to
perform peak correction.

2. Notes
1. The rule of thumb is that the enzyme trypsin cleaves after Lys and Arg if not fol-

lowed by Pro. However, in LC–MS/MS runs, MS/MS spectra are often observed
to correspond to a cleavage of Lys or Arg followed by Pro. In these cases, the
MS/MS spectra of the peptide corresponding to noncleavage is often also
observed and with higher intensity that is if it is not outside the mass range of the
mass spectrometer. In general one can also observe missed cleavage sites that
often occur when Lys or Arg is neighboring to Asp, Glu, Lys, or Arg.
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Extracting Monoisotopic Single-Charge Peaks 
From Liquid Chromatography-Electrospray
Ionization–Mass Spectrometry

Rune Matthiesen

Summary
Peak extraction from raw data is the first step in analysis of mass spectrometry (MS) data. The

quality of this procedure is very important because it affects the quality of all subsequent analy-
sis, such as database searches and peak quantitation. Many methods have been proposed in the
literature, yet the number of practical solutions in terms of available software is rather limited.
Virtual Expert Mass Spectrometrist (VEMS) v3.0 includes an algorithm for extracting mono-
isotopic single-charged peaks and their corresponding retention time from liquid chromatography
(LC)–MS data. The extracted peaks can subsequentially be exported to other programs or used
internally by VEMS to perform peptide mass fingerprinting searches or peptide quantitation.
Additionally, VEMS interfaces the commercial program ProteinLynx Global server v2.0.5 for
automatic peak extraction from MS/MS spectra obtained by LC–MS/MS. 

Key Words: Noise filtering; peak extraction; deisotoping; decharging.

1. Introduction
Liquid chromatography-electrospray ionization–mass spectrometry (LC-

ESI–MS) of tryptic peptides produces a wealth of information in the form of
peptide masses and peptide retention time(s) on the LC column. In proteomics,
the LC system is typically a single hydrophobic reverse-phase column 
(one-dimensional separation) or an anionic/cationic column followed by a
hydrophobic reverse-phase column (multidimensional separation) (1). The
electrospray ion source is responsible for production of charged peptides in the
gas phase resulting in tryptic peptide charge states typically from +1 to +4,
where the same peptide can appear with different charge states (2). The mass
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spectrometer used for LC–MS in proteomics is most often a tandem mass spec-
trometer that produces MS or both MS and MS/MS data (see Chapter 1). The
raw data obtained from these experiments contains, in general, transformed and
distorted versions of the ideal physical quantity of interest, which is the masses
of the intact peptide, the peptide fragments, and the retention time. The conver-
sion of raw data to a peak list consists of the following three steps in Virtual
Expert Mass Spectrometrist (VEMS): (1) the instrument-introduced noise in the
spectra should be removed, (2) the monoisotopic single-charged mass should be
extracted by decharging and deisotoping, and (3) the retention time(s) for the
peptides should be extracted. How this is done in theory and practice with
VEMS v3.0 is described in this chapter.

1.1. Noise Filtering

Two types of errors are present in experimental data: systematic and random
error. Systematic error is often removed by calibration and will not be discussed
further in this section. Random error is also called noise. Filtering out noise
from the data ideally gives the true signal. The true difference between noise
and signal is that noise is not reproducible, whereas signal is. The quality of sig-
nals is often expressed as the true signal divided by the standard deviation of
the noise. There are many methods for noise removal, such as linear filters
(3,4), penalized least square (5), Fourier transform filters (6), and wavelets (7).
The presentation here concentrates on the linear filters, which are computationally
fast and have satisfactory performance for proteomics data. Linear filters con-
vert a time series to a new by a linear operation. Linear filters can in general be
expressed as (4)

(1)

where yt is the smoothed signal. xt is the current data point, and r iterates over
neighboring data points. The smooth width m is equal to q+s+1. ar are weights
and are dependent on the filter type. For example, for a simple, unweighed slid-
ing, average smooth ar = 1/m for all r. A frequent filter used in MS is the Savitsky
Golay filter (3), which has weights that result in a smoothed signal that corre-
sponds to fitting a low-order polynomial to all smooth intervals (see Fig. 1).
Savitsky Golay filters have been criticized for having end effect problems
because it is a symmetrical filter (see Note 1). However, this is rarely a problem
for MS data and can easily be circumvented by combining symmetrical filters
together with asymmetrical filters. The quality of the smoothness can be evalu-
ated by the lack of fit and by either the roughness of the data or by maximum
entropy (see Note 2).
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r q
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Alternatively a geometric mean filter with window size 2m+1 can be used in
combination with a Savitsky Golay filter.

The geometric mean filter can remove spikes because neighboring data points
need to be non-zero for a signal to be maintained, and has the additional advan-
tage that the data remains on the same scale (8).

1.2. Deisotoping and Decharging LC–MS Data

The smoothed raw data is not practical to input into a search engine. Instead,
a peak list containing what corresponds to the monoisotopic single-charged ion
is often used as input for search engines. The first step is to extract all peaks
(see Note 3) from the smoothed raw data. Peak extraction can be done by
extracting peak tops, the centroid method, or by taking the first derivative of the
signal (see Fig. 2). After the peak list is obtained, decharging and deisotoping
is done simultaneously by the VEMS program. The algorithm described here
for deisotoping and decharging has some similarities to earlier published meth-
ods (9,10). However, the method here is improved by considering information
in all MS scan numbers, rather than only considering one scan number at a time.
In addition, it considers all combinations of theoretical isotopic distributions of
one to two compounds with charge state +1 to +4 to find the best fit to the
observed isotopic distribution.

VEMS starts at the first MS scan number from the low mass end, and the
program considers high-charge states first.

y x t i t i mt
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Fig. 1. Savitsky Golay noise filtering. (A) Raw mass spectrometry (MS) data. (B) MS
data from (A) after three iterations with a nine-point Savitsky Golay filter.
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1. When a peak is encountered by scanning from the low mass end and with low scan
numbers, VEMS scans the neighboring MS scans to find the intensity peak maximum
in the elution profile.

2. It is likely that the interference from other compounds with similar m/z values and
retention times is smallest at the scan number obtained in step 1. However, there
can still be some overlapping peaks. VEMS, therefore, calculates approximate iso-
topic distributions (see Note 4) for all possible combinations of two compounds
with charge states ranging from +1 to +4, and evaluates which combination fits the
observed distribution best by calculating the lack of fit.

3. The best combination obtained in step 2 is inserted in a new peak list as monoiso-
topic single-charged mass, intensity, and retention time. After insertion into a new
peak list, the theoretical isotopic distribution at the determined charged state is
used to remove peaks in the peak list obtained from the raw data corresponding to
the observed isotopic distribution over the whole elution profile of the compound.
If the best combination was found to contain two compounds, then only the com-
pound corresponding to the peak found in step 1 is inserted in the peak list and
used for removing peaks in the elution profile.

4. Steps 1–3 are continued until there are no more peaks in the peak list obtained
from raw data.

2. Materials
2.1. Required Software

1. VEMS v3.0 (http://yass.sdu.dk). To follow this guide it is also necessary to down-
load the raw data (http://yass.sdu.dk/raw/my00234kr.raw.rar).

40 Matthiesen

Fig. 2. Converting profile data to peak lists. (A) Fifty percent Centroid method. Fifty
percent of the resolved part of the peak is used for determining the mass. The mass is
calculated by an intensity-weighted average of the masses in the peak. This is equivalent
to finding the vertical line passing through the center of gravity of the peak. (B) First
derivative method. The first derivative of the signal in (A) is calculated and the peak
masses are determined at the mass points where the first derivative is cutting the x-axis.
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2. Microsoft Windows. Currently VEMS is only fully tested on Windows XP and
Windows 2000.

2.2. Optional Software

1. PLGS v2.05 and Masslynx v4.0 are commercial programs that can be obtained
from Waters (Milford, MA). VEMS interfaces to some of the raw data process-
ing tools of PLGS v2.05 and MassLynx v4.0. It is important that PLGS v2.05 and
Masslynx v4.0 are installed in the default directory, otherwise the interfacing
from VEMS will not work. If the commercial software is not available, then one
can use ExrawNoPKX to convert mzData MS data to the VEMS MS data format.
PLGS v2.05 and Masslynx v4.0 are only necessary for the methods described in
Subheading 3.2.

3. Methods
This section describes how to extract monoisotopic single-charged peaks

from raw LC–MS/MS files. In Subheading 3.1., the extraction of the LC–MS
data is presented that is accomplished by the VEMS algorithm described in
Subheading 1. Subheading 3.2. shows how to extract monoisotopic single-
charged peaks from all the MS/MS spectra in a number of LC–MS/MS runs.

3.1. Extract Monoisotopic Single-Charged Peaks From MS Scans

Download VEMS from (http://yass.sdu.dk) and uncompress the folder. In the
VEMS directory folder there is a folder named “Exraw.” The files in this folder
should be moved directly to “c:\data” folder. This folder contains the program
“Exraw.exe” which is for format conversion. The program can extract the
LC–MS part of LC–MS or LC–MS/MS runs to an indexed format that is used
by the VEMS program. The program can, on the time of writing, convert
mzXML files and Micromass raw files to the VEMS LC–MS format.

1. Start the “Exraw.exe” program (see Fig. 3).
2. Use the directory listbox in area 1 (see Fig. 3) to choose the folder where the raw

data folder my00234kr.raw (can be obtain from http://yass.sdu.dk/raw) is located.
Press the button “>>” to select the folder. It should now appear in the listbox in
area 2.

3. The listbox in area 3 can now be used to specify the output directory.
4. Now press the button “Raw → VEMS” in area 4. The program will now convert

all the specified raw data files to the VEMS LC–MS format. 
5. In the output folder there should now be a directory named “my00234” contain-

ing the LC–MS data in the VEMS format.

The above steps converted a Micromass raw data file to the VEMS LC–MS
format. The following steps describe how to convert mzXML files to the VEMS
LC–MS format.

Peak Extraction With VEMS 41
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1. Click the button “Open mzXML” in area 4 to open an mzXML file containing
LC–MS or LC–MS/MS data.

2. Choose an output directory in area 3.
3. Click on the button “mzXML → VEMS” in area 4 to create the VEMS LC–MS

format in the output directory.

The operations performed so far did not do any data processing, they only
extracted the LC–MS data to a more efficient format both in terms of size and
data access. The VEMS LC–MS format just created can be used in the VEMS
program to extract monoisotopic single-charged peaks from MS scans. VEMS
can also use this format for peptide quantitation (see Chapter 8). The following
describes how to use VEMS to extract peaks from the format. The nomencla-
ture used to describe the user interface is presented in Appendix E.

1. Start VEMS_3.exe. Open the data import window from the file menu (File →
Open data → Open multiple spectra or press sequentially “Alt”+“F”+“O”+“P”).

2. Select the VEMS LC–MS raw data files and close the data import window.
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Fig. 3. Screen shot of the VEMS v3.0 data conversion tool. Area 1 is used to spec-
ify Micromass raw data files. Area 2 displays the chosen raw data files. Area 3 is used
to specify the output directory. Area 4 activates different conversion functions. Area 5
is used to choose files containing different data processing parameters. This is used for
optimization of processing parameters.
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3. Now click on “File → Save → Extract MS peaklist.” This will automatically extract
peaks from all the specified LC–MS data files and save them in the same folder.

The created peak list(s) can now be specified in the data import window and
can be used for peptide mass fingerprinting searches. This is useful when work-
ing with a simple protein mixture and higher sequence coverage than achieved
by the MS/MS spectra gives is important. Please note that the function activated
by step 1–3 is currently being improved.

3.2. Extract Monoisotopic Single-Charged Peaks From MS/MS Spectra

The VEMS program currently accepts MS/MS peak lists in mgf, pkl, dta,
bsc, and pkx. All these formats are ASCII formats containing mass and inten-
sity of parent ion and fragment ions. The pkx format is a VEMS format. The
critical reader would probably ask why a new format was made when there are
so many already. The reason is that the other formats do not contain all the nec-
essary information for a proper data analysis. For example the pkx format con-
tains the retention time and the original charge state of the peptide fragments
before decharging. This section will describe how to make the pkx format from
the raw data file “my00234kr.raw.”

1. Start the “Exraw.exe” program (see Fig. 3).
2. Use the directory listbox in area 1 (see Fig. 3) to choose the folder where the raw

data folder my00234kr.raw (can be obtain from http://yass.sdu.dk) is located. Press
the button “>>” to select the folder. It should now appear in the listbox in area 2.

3. The listbox in area 3 can now be used to specify the output directory.
4. Now press the button “Start” to create pkx files in the specified output directory.

Alternatively one can check the checkbox “Extract MS data?” then both the
VEMS LC–MS format and the pkx formatted files are created in the output
window when the “Start” button is pressed.

4. Notes

1. For symmetrical filters q = s in (Eq. 1). Symmetrical filters have the drawback that
they cannot be evaluated in the start and end of the spectrum that is the q first data
points and the s last data points in the spectrum. However, asymmetrical filters
where q or s equals zero can be evaluated (4).

2. The quality-of-function fitting is often evaluated by the lack of fit, which is given by 

. It is not only the lack of fit that is important for the quality of

a fit. For example, the roughness of spectrum, which is given by

is also important and a best fit can be found by minimizing a weighted sum of Elof

and R. Alternatively, the Elof could be evaluated together with maximum entropy of
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Fig. 4. The peak shape defined by a Gaussian or Lorentzian equation.

residuals, which is given by where p is residuals at different

time-points. Maximum entropy is very useful for choosing between different models
that give the same Elof.

3. Peaks in spectroscopy can have several different shapes that need different math-
ematical functions for fitting. Peaks can often be approximated by a Gaussian
(see Fig. 4), Lorentzian (see Fig. 4), or a mixture of the two functions (see Figs. 5–7).
The equation for the Gaussian function is based on the normal distributions and
can be formulated as f(mi) = A*exp-(mi – m0)

2/s2. Where m0 is at the center, A is
the maximum height at x0, and s defines the peak width. The width at half-height
of a Gaussian peak is given by s(4*ln 2)1/2 and the area is As(π)1/2. The equation
for a Lorentzian function is given by f(xi) = A/(1+(mi – m0)

2/s2), where m0 is at the
midpoint of the peak, and A is the height at the midpoint. The width at half-height
of a Lorentzian peak is given by 2s and the area is Asπ (11). In MS the mass of
such peaks are often determined by calculating the centroid mass, which is more
accurate than just taking the mass at the peak maximum. The centroid mass mc and
the corresponding intensity Ic can be calculated by the following expressions:
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Fig. 5. A mixed model where the peak shape is defined by a Gaussian equation up
to the midpoint, and by a Lorentzian function after the midpoint.

Fig. 6. A mixed model where the peak shape is defined by a Lorentzian function up
to the midpoint, and by a Gaussian equation after the midpoint.

02_Matthiesen  7/21/06  5:22 PM  Page 45



46 Matthiesen

Fig. 8. The ratio between the theoretical abundance of the monoisotopic plus one and
the monoisotopic peak plotted as a function of the monoisotopic mass.

Fig. 7. Examples of Lorentzian and Gaussian mixed models. L is the Lorentzian
function and G is the Gaussian.
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where mi is the mass at a certain mass bin and Ii is the corresponding intensity. x is
a specified percentage of the maximum intensity.

4. Approximate isotopic distributions are calculated based on theoretical isotopic
distribution of 20,000 standard tryptic peptides. Given the intensity of the monoiso-
topic peak, the intensity of the following isotopic peaks can be approximated by a lin-
ear equation (12). The ratio R between the intensity of the monoisotopic peak and the
monoisotopic plus is approximated by R = 0.0005412*m–0.01033, where m is the
mass of the monoisotopic peak (see Fig. 8). Similar approximation can be made for
the higher masses in the isotopic distribution. The approximate isotopic distribu-
tions are used to generate all possible combinations of two overlapping isotopic
distributions. The combination used is the one that gives the best fit on the neighbor-
ing peaks. The deisotoping problem can also be solved by linear algebra (13) instead
of checking all reasonable possibilities.
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Calibration of Matrix-Assisted Laser
Desorption/Ionization Time-of-Flight Peptide 
Mass Fingerprinting Spectra

Karin Hjernø and Peter Højrup

Summary
This chapter describes a number of aspects important for calibration of matrix-assisted laser

desorption/ionization time-of-flight spectra prior to peptide mass fingerprinting searches. Both
multipoint internal calibration and mass defect-based calibration is illustrated. The chapter
describes how potential internal calibrants, like tryptic autodigest peptides and keratin-related pep-
tides, can be identified and used for high-precision calibration. Furthermore, the construction of
project/user-specific lists of potential calibrants is illustrated. 

Key Words: Internal calibration; mass defect; contaminants; PeakErazor; MALDI-TOF spectra.

1. Introduction
High mass accuracy is crucial when analyzing biomolecules by mass spec-

trometry (MS); the more precise the data, the more correctly the spectrum
reflects the sample analyzed. For identification of proteins by peptide mass
fingerprinting (PMF) based on matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) MS data (see Chapter 1), this also means that the
better the mass spectrum is calibrated, the better the chance is of finding only
relevant proteins and avoiding false-positive hits resulting from random
matching (1–5). Identification based on MS analysis of a single protein is often
a trivial case if sufficient peptides are found with an acceptable mass accuracy
(30–70 ppm). High mass accuracy (<30 ppm) is likely to be crucial for identi-
fication of the correct protein/proteins if the spectrum contains numerous signals
unrelated to the protein in question, if they represent modified peptides, or if
only few peptide signals are recorded.



Three general approaches are available for spectrum calibration:

1. External calibration.
2. Internal calibration.
3. Calibration based on mass defect.

For the external calibration, a mixture of known peptides (e.g., a tryptic
digest of lactoglobulin) or a polymer like propylene glycol (6), is placed as
close as possible to the sample of interest and a spectrum is recorded. The cal-
ibration constants calculated for the standard can then be used for calibration of
the peaks from the unknown sample. Such external calibration methods will
usually only provide a mass accuracy of 50–150 ppm. This is owing to spot-
dependent mass accuracy variations found throughout the MALDI plate (6,7).
It has been shown by several groups that this variation in most cases can be
sufficiently corrected for by a simple linear transformation using two or more
frequently recognized signals from components with known mass values (8).
Traditionally, two or more tryptic autodigest products, if observed in the spec-
trum, have been used as internal calibrants. Whether or not these signals are
observed is determined mainly by the substrate-to-enzyme ratio. However, one
or more of these signals may be obscured by other peptide signals with near-
identical masses. Alternatively, signals recognized in the spectrum as originating
from other compounds, such as keratin-related peptides, matrix peaks, or stan-
dard compounds added prior to analysis, can be used in combination as internal
calibrants. The advantage is that a multipoint calibration using mass values
more or less evenly distributed over the entire range of the spectrum can be
performed, and will result in a highly trustable accurate calibration. As the
calibrants and the sample have been subjected to exactly the same conditions,
the internal calibration approach will offer the most precisely calibrated data;
5–40 ppm depending on the quality of the instrument. The disadvantage is that
such internal calibrants often suppress the signals from the sample of interest.

If a mass spectrum does not contain any known peaks on which to calibrate (this
is particularly the case if the sample amount is large, e.g., digests of proteins in
solution or from Coomassie-stained gel spots) it is possible to calibrate the spec-
trum using the mass defect/peptide mass distribution (9,10) of all peptide peaks in
the spectrum in order to obtain a mass accuracy better than 50 ppm (dependent on
the number of peptides present and the quality of the instrument). But what is the
mass defect? All amino acid residues are built from a limited number of atoms:
carbon, oxygen, nitrogen, and hydrogen (plus a little sulfur) in approximately the
same ratio. The residues all have a mass higher than the corresponding integer val-
ues, i.e., alanine weighs 71.037 Da instead of 71.0 Da. The decimal part (i.e.,
0.037) is called the mass defect of alanine. The mass defect varies between
residues, but is on average 0.0454%. Independent of the composition, there will be
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an upper and a lower limit for the mass defect of a peptide as this is calculated as
the sum of the mass defect of the individual residues. Analysis of the entire protein
database shows that less than 0.5% of all tryptic peptides with a mass greater than
1000 Da deviate more than 125 ppm from the calculated average. This results in
peptide masses being distributed into discrete clusters with a width of 2 × 125 =
250 ppm. Using this as a constraint, it is possible to calibrate MALDI-TOF spec-
tra to a precision of 30–50 ppm based on the average mass defect of all peptide
peaks in the spectrum.

In this chapter, we will illustrate how potential internal calibrants can be
identified, evaluated, and used for calibration of peak lists from any MALDI-
TOF instrument, and how mass defect-based calibration can be performed if no
internal calibrants are present. All steps will be performed using lists of spec-
trum mass values as query in the software tool PeakErazor (11). The program
works as an interactive tool, which requires human intervention and as such is
not high throughput. However, it offers the user the freedom to study the per-
formance of the MS instrument and identify frequently encountered contami-
nants useful for recalibration of the spectra.

It should be stated that if a MALDI-MS instrument is poorly calibrated or the
parameters used during data acquisition are wrong, then high mass accuracy of
the MS data can be difficult to obtain even when postacquisition calibration is
performed.

2. Materials
The PeakErazor program is freeware and runs under all 32-bit Windows ver-

sions. The data format of the input is simply a list of experimentally obtained
mass values.

3. Methods
3.1. Installing the Software

1. Download the software from http://www.gpnow.com.
2. Download the available Erazor list (erazorlist.lst) into the same directory.
3. Open the program by double-clicking on the PeakErazor icon. 

3.2. Identification of Potential Internal Calibrants

As PeakErazor uses a list of monoisotopic mass values (a peak list) as input,
it is required that proper peak extraction has been performed prior to calibra-
tion. Peak extraction is described elsewhere in the book (see Chapter 2).

The underlying principle in PeakErazor is simple; the experimental peaklist
is compared to an Erazor list containing the exact masses of known contami-
nants like trypsin, keratin, or matrix-related signals. The accepted contaminants
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Fig. 1. The main window of PeakErazor. For the data seen here, eight peaks are sug-
gested to be originating from three different keratins: keratin 1, 9, and 10. The mass
deviation from the actual mass of the contaminant is in the range of 14 to 106 ppm. If
only keratin 1 peptides are taken into account, then the mass range is 14–47 ppm.

are used as internal calibrants through a linear fit, and the contaminants are in
the same procedure removed from the list in order to improve the subsequent
PMF search (see Chapter 4). 

1. Start by copying the peak list in question to the clipboard from your preferred
spectrum analysis program.

2. Paste the peak list into PeakErazor using the “Read from clip” button in the main
window, or press Ctrl + v (see Fig. 1).



3. Define the “Precision” (i.e., mass tolerance) by which your data should match the
theoretical mass values in the Erazor list. Let this mass tolerance be set at a high
value (e.g., 500 or 800 ppm) as the accuracy of the data is not known at this stage
of analysis.

4. Select an Erazor list (see Note 1). The construction of user-defined Erazor lists is
described elsewhere (see Chapter 4).

5. Specify which types of contaminants should be reported, choose between keratin,
trypsin, unknown, and so on. The contaminants suggested by the software will be
listed to the right of the mass list with deviation and ID (name of component). Be
aware that the precision of the calibration is highly dependent on the precision of
the mass values of the contaminants. The mass values of tryptic autodigestion
products and common keratin peaks are usually known with high precision,
whereas frequently observed peaks arising from peptides with unknown sequence
(listed as “unknown” in the Erazor list) is only reported with an approximated
mass value. As a consequence, these “unknown” contaminants are less useful as
calibrants and should be eliminated (by unchecking “unknown” in the list) before
the actual calibration is performed. Remember to add the “unknown” (by check-
ing “unknown” in the list) before copying the mass list back to the clipboard in
order to remove the unknown from the peak list prior to analysis.

6. Toggle the graph window on by clicking at the “show graph” button. The experi-
mental masses of the suggested contaminants will be displayed as a function of
mass deviation (see Fig. 2). This graph is extremely useful for visualization of
possible calibration trends. It is possible to choose which type of labels (deviation,
mass, or both) to be connected to each dot in the graph (see Note 2).

7. Press the “view calib.” button below the graph in order to visualize the linear fit of
the data.

8. Study the mass accuracy of the data. Remove, by manually unchecking in the
main window, mass values for which the mass deviations fall outside the general
trend of the data (outliers). In the example given in Fig. 2, two mass values fall
outside the general trend and should be unchecked (see Fig. 2). These are presum-
ably not contaminants, but belong instead to the protein in question and should be
included in the PMF search (see Note 3).

9. Use the remaining contaminant peaks as internal calibrants as described in
Subheading 3.3. Be aware that the best calibration is obtained if calibrants span-
ning a large mass range are used.

3.3. Calibration Using Internal Calibrants

1. Start the calibration by pressing the “Calibrate” button in the main window
(see Fig. 1).

2. Redefine the mass accuracy by which your data should match the theoretical mass
values depending on the precision obtained after calibration. As a result, the win-
dow of the graph will be zoomed leaving the user with the opportunity to restudy
the calibration (see Fig. 3).
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Fig. 2. Graphic representation of the deviation as a function of the mass values.
Two values deviate from the other data points. One of them is the peak at mass value
1307 with a deviation of 106 ppm. This peak is the only one suggested to originate
from keratin 9. The other one is a peak at mass 2260 with a mass deviation of 400 ppm.
As indicated by the gray line, this corresponds to a mass deviation of 1 Da. By inspec-
tion of the mass spectrum, it was found that this resulted from wrong peak assign-
ment. The remaining dots (with a mass accuracy within ± 47 ppm) can be used
for a linear transformation in order to obtain a higher mass precision of the data
(see Fig. 5).

3. Repeat the calibration step if such a zoom reveals new masses falling outside the
general trend of the data, or if new mass values have moved into the displayed pre-
cision zone (see Note 4).

4. Copy the calibrated mass list back onto the clipboard. From here it can be pasted
directly into any program of interest, like a PMF search program.

3.4. Evaluation of Contaminants

A wrongly identified contaminant can mess up the calibration, particularly if
the calibration is based on only a few mass values. The calibration method used
here is based on a list of contaminants frequently observed in our spectra. This
list may not reflect the contaminants observed in other laboratories, causing
random matching to mass values otherwise never observed and, therefore, to
wrongly assigned contaminants. Thus, the frequency of which the contaminant
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Fig. 3. Calibration using multiple internal calibration. Here is shown the result of an
internal calibration of the data shown in Figs. 1 and 2. As can be seen, the mass preci-
sion went from ±47 to ±8 ppm. Please notice that the mass precision of the graph is ±40
ppm compared with ±800 in Fig. 2 and in the right-hand insert.

occurs in a specific study can give a hint to whether the contaminant is a true
contaminant or not. PeakErazor calculates this frequency based on all mass
values ever presented to the program by the user (when copied to the clipboard).
The list of contaminants can, therefore, be evaluated from time to time result-
ing in Erazor lists containing only contaminants observed by the user.

1. Click on the page tab “Evaluation” and open the file “allMass.mss” containing all
mass lists treated in PeakErazor by the user (see Fig. 4). The distribution of all
experimentally obtained mass values will be displayed in the graph; the upper part
representing the mass values of the sample-specific contaminants and the lower
part the contaminants (i.e., values rejected in the program). High-intensity signals
from mass values in the upper part (i.e., values commonly observed in spectra)
indicate the presence of potential contaminants that were previously unknown to
the user. Mass values in the lower part with low intensity represent peptides, which
have previously been taken as contaminants but, as they seldom occur, may not be
true contaminants.

2. Push the auto-evaluation button.
3. Study the frequency of the mass values in the table (displayed in the second column

as the number of times a certain mass value has been observed [#]) (see Fig. 5).
A true contaminant will be represented by a high frequency.
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Fig. 4. The evaluation page summarizing the mass distributions of the analyzed
data. In the example given here, 274 spectra have been analyzed. In these, 7995 peaks
out of a total of 10,958 have been accepted and subjected for further analysis by pep-
tide mass fingerprinting searches (see Chapter 4). These are represented by bars in the
upper part of the page. The numbers 800–2800 represent the mass values in the ana-
lyzed peak lists, and the length of the bars represents the number of times a specific
mass value is observed in the 274 spectra analyzed. The bars in the lower part of the
page represent the 2963 peaks believed to be contaminants; these have been rejected
from the peak list prior to further analysis. In total, 29% of all the peaks have been
rejected as contaminants. As can be seen by the length of the bars, some mass values
taken as contaminants are only observed a few time (short bars), whereas others are
commonly observed (long bars). The long bars are therefore more likely to represent
true contaminants, and the mass values resulting in short bars can therefore be removed
from the list of contaminants. Conversely, peaks represented in the upper part of the
page by long bars are likely to be contaminants and should be included in the list
of contaminants.

4. Set the values for construction of a new erazorlist.lst. Select an “Erazor list preci-
sion” and a “Base integration width.” Select how many times a certain mass value
should be observed in order to be a true contaminant (move the scroll bar in order
to change the actual number or click the “+1” button).

5. Push the Remove button.
6. Right-click and choose “save” from the pop-up menu in order to save the new

Erazor list (see also Note 1).
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Fig. 5. Graph evaluation and peak extraction. The purpose of this part of PeakErazor
is to construct a new Erazor list based on the analyzed data. This will result in a list of
contaminants more correctly reflecting the contaminants found in a specific project or
specific laboratory. In the example given, both tryptic autodigest peptides <trypsin>,
keratin peptides <keratin>, and peptides of unknown origin <unknown> are recognized.
These have been observed with different frequencies; from a novel potential contami-
nant peak at 1523, which has been observed 25 times, to a keratin peak at 1475, which
has been observed 206 times. In the dataset shown here, this keratin peptide is observed
more times than the commonly known tryptic autodigest peptide at 842.5.

3.5. Calibration Using Mass Defect

A blue-colored mass value in the main window of PeakErazor indicates that
the mass defect is larger or smaller than expected for the given mass (default is
± 125 ppm).

1. Click the icon with two arrows (to the right of the “view calib” button) in order to
toggle between internal calibration and calibration based on the mass defect. Now
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Fig. 6. Mass defect calibration. The mass defect of each mass value, contaminant or
not, is represented by a dot. All dots positioned within the gray lines after a multipoint
calibration have a mass defect value expected for a peptide. The two dots, which do not
fall within these lines, are not peptide peaks, but can instead be assigned as matrix peaks.

every mass value in the peak list will be represented by a dot (showing the devia-
tion from the average mass defect for a given mass), independently of whether it
is a contaminant peak or not.

The next step depends on the shape made up of dots; in the case where the
mass defect graph is divided into two or more sections (e.g., one group above
and one below the zero line) a manual correction has to be performed prior to
an automated calibration (see example in Fig 6).

2. Select “Manual” and drag a line through the low mass group of dots (click and
release the mouse at one end of the group, move the cursor to the other end, and
click again). This will result in a redistribution of the dots into a single group (see
Note 5).

3. Press the “Auto” button to perform a multipoint calibration.
4. Study the resulting graph. If any points fall outside of the gray lines (default is

125 ppm, set in the right-hand slider) (see Note 6) they are likely to arise from
nonpeptide peaks (typically matrix ions) or from adduct ions (Na, K) and can be
deleted through the “Delete” button (see Note 7). Two peaks arising from matrix
clusters are seen in the example in Fig 6. The “Slope” values vary a bit between
proteins, but a value of 2.5 fits most proteins (see also Note 6). The “Offset” is
currently not used in PeakErazor and should always be zero.



4. Notes
1. The erazorlist.lst from the website is a list of typically observed contaminant

(including trypsin autodigest products). This list can be edited to reflect the con-
taminants observed in a specific laboratory or specific project as described in
Subheading 3.4. Alternatively, mass values of contaminants can be added manu-
ally by selecting the Erazor list page at the top of the main page and clicking the
“add” button. Mass values of typically observed contaminants have been reported
by several groups (12,13) and a list of trypsin autodigest products can be found at
the Prospector site (http://prospector.ucsf.edu/ucsfhtml4.0/misc/trypsin.htm).

2. It is possible to expand the mass range studied by right-clicking in the graph
window and choosing “expanded mass area.” This is of advantage if peptides of
masses higher than 4000 Da are observed in the spectrum.

3. If a dot in the spectrum after calibration falls on a gray line (±1 Da) it may indi-
cate one of the following situations: (1) either a wrong isotope selection during
peak annotation, causing the dot to fall on either of the gray lines (check the spec-
trum), or (2) it can be the result of a deamidation event (amide to acid), in this case
the dot falls on the upper gray line.

4. After protein identification by PMF, the peak list can be recalibrated using the
mass values of the identified peptides, thereby improving the mass accuracy even
further. This is especially important if the spectrum is suspected to represent more
than one protein; improving the mass accuracy will increase the chance of identi-
fying additional proteins.

5. The mass defect-based calibration suffers from the risk of a 1-Da calibration offset
(only a problem if the original data has a very low initial mass accuracy). You should
therefore always perform the initial manual calibration on the low mass group.

6. In the case of protein identification based on PMF, we are usually looking at tryptic
peptides, which always (except for the C-terminal peptide) terminate in a lysine or
arginine, resulting in a dataset with skewed composition. Lysine and arginine are two
of the residues that have the highest mass defect of all 20 residues, which results in a
higher relative mass defect at low m/z values, and a lower one at high m/z values,
which is compensated for by setting the slope value to 2.5. It has been calculated that
around 99.5% of all in silico-digested tryptic peptides deviate less than 125 ppm from
the calculated average (slope = 2.5). It is relatively safe to delete all m/z values that are
outside of this limit in the calibrated mass list. The slope value should be set to zero
if the protein in question has been digested with another enzyme other than trypsin.

7. Mass defect-based calibration of spectra dominated by adduct ions (from, e.g., Na
or K) will often result in low mass accuracy as the mass defect of adducts deviate
considerably more than 125 ppm from the average peptide.
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Protein Identification by Peptide Mass Fingerprinting

Karin Hjernø

Summary
Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by

matching experimentally obtained peptide mass data against large databases. However, several
factors are known to influence the quality of the resulting matches, such as proteins contaminat-
ing the sample in question, modifications altering the mass of the peptides, ionization efficiency
of the individual peptides, and the degree of missed cleavage sites. Here, these factors are dis-
cussed and methods for elimination of contaminants from the dataset and prediction of various
modifications are introduced. Useful tips on how to specify various search parameters and how
to manually evaluate the search results are also given.

Key Words: Peptide mass fingerprinting; contaminants; modifications; protein identification;
search parameters.

1. Introduction
For gel-based proteomics there are traditionally two strategies for protein

identification by mass spectrometry (MS) analysis: (1) peptide mass finger-
printing (PMF) (1–5) and (2) sequence information obtained by tandem mass
spectrometry (MS/MS). This chapter will focus on how to perform PMF
searches and how to evaluate the obtained results.

The experimental data used in the PMF-based protein identification strategy
are mass lists derived from matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) MS spectrum of an enzymatic-digested protein.
Trypsin is commonly used as the enzyme (see Chapter 1; Note 1) and the
masses of the resulting tryptic peptides are then used as query in PMF search
programs and searched against lists of theoretical peptide mass values obtained
by in silico digest of all the protein sequences in a given database. Each protein
in the database is then given a score, dependent on how well the theoretical



mass list correlates with the experimental data. Those with the highest score are
then most likely to be present in the sample in question. This sounds like a sim-
ple task if the protein in question (or a close homolog) is present in the data-
base. However, several phenomena influence the matching of the experimental
data to the theoretical ones, making PMF a method that is not always reliable.
One problem is that some peptides tend to ionize on the expense of others and
as a consequence some peptides will not be observed in the spectrum. The rea-
sons for this are not completely understood, making it difficult to predict which
peptides to expect and which not to expect. As a rule of thumb, peaks from
arginine-containing peptides are more intense in the spectrum compared with
lysine-containing (arginine-deficient) peptides (6), and arginine-deficient pep-
tides with a mass less than 1000 are rarely observed. Another problem is that
only peptides with a mass within the recorded mass range will be observed, e.g.,
between 700 and 3500. In addition, signals can be observed in the spectrum,
which is not predicted by in silico digestion of the theoretical sequence. These
can be modified peptides, which will not be matched in the PMF search unless
the specific modification is accounted for. Alternatively, additional signals can
arise from unwanted components in the sample, e.g., keratin from hair and dust.
Figure 1 lists additional reasons why a complete match of all peaks should not
be expected.

Various software tools can be used for PMF searches (7–10). The outcome
is most often a ranked list of proteins of which the top hit represents the
protein/proteins most likely to be present in the samples analyzed. Many of
the algorithms behind these search tools take into account features like the
size of the database, the distribution frequency of a particular peptide mass
within a given protein size, and the distribution of the mass accuracy. Other
parameters, such as the number of missed cleavages sites allowed, the modi-
fications expected, the sequence database against which the data should be
searched, and the mass accuracy with which the search should be performed,
has to be set by the user. The specificity of the search is determined by these
parameters. If, for example, the mass tolerance is five times higher than the
true mass accuracy of the data, then the specificity of the search is low, mean-
ing that the risk of having false-positive hits is high. On the other hand, if the
mass tolerance is five times lower than the true mass accuracy of the data,
then the specificity of the search is too high, and the search program will not
be able to report the true-positive hit. Therefore, one has to specify parame-
ter values, which at the same time limit the number of proteins considered in
the search, but still allow for the correct protein to fall within the limits. Only
few of the search engines take into account other parameters like the ones
previously described and in Fig. 1.
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With the introduction of MALDI tandem mass spectrometers it is now pos-
sible to reanalyze the sample in question at a later time-point in order to verify
the PMF-obtained result or to study unassigned signals by MS/MS. Here, it is
of advantage to initially identify the protein by PMF, confirm the identification
by subjecting a few peptides for MS/MS, and then use the rest of the sample
amount for analysis of the nonassigned peaks. These are often the ones contain-
ing interesting modifications.

This chapter is divided into four parts. The first part is identification and
removal of signals originating from contaminants, like keratin-derived peptides.
These signals do not belong to the protein in question and can therefore inter-
fere with the specificity of the identification process. The second part deals with
modifications. Most proteins are modified at specific residues, either as a result
of posttranslational modifications or from artifacts introduced during sample
handling. It is tempting to allow for such modifications, as the modified pep-
tides will not be able to match any theoretical peptides otherwise. However, this
can introduce a lot of random matches. Here, we introduce a simple strategy,
which can be helpful in uncovering the existence of potential variable modifi-
cations, and thereby helpful in deciding which modification should be taken
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Fig. 1. There are several reasons why a perfect match should not be expected when
experimental peptide mass fingerprinting data is compared to the theoretically predicted
data. This figure lists some of the reasons.



into accounted for a specific search. The latter is illustrated here by the use of
the software tool PeakErazor (11), which was introduced elsewhere (see
Chapter 3). The third part deals with the problem of specifying parameters, such
as mass accuracy, number of missed cleavages, and so on. As these parameters
are common between the various search engines they will be described without
referring to any specific search engine. The intention is to help the user to get
high specificity without losing the real protein hit.

The last part of the chapter will deal with manual evaluation of search results
in order to eliminate false-positives. Many proteome studies today are high-
throughput studies, meaning that a lot of data is generated, making it impossible
to evaluate all of the obtained results manually. However, the current status of
search engines makes it advantageous to evaluate the results. This is especially
important working with cross-species identifications where the hits are based on
databases containing proteins from other species than the one analyzed. It is not
possible to present a set of universal rules for such a validation strategy, however,
a few useful guidelines can be given based on the experience of the author and
other scientists. The validation steps presented here are therefore not quantifiable
but we hope that they can help less experienced users in the evaluation process.
For more information on protein identification by PMF (see refs. 5 and 12–14).

2. Materials
1. The program PeakErazor is used for identification and elimination of contaminants.

This program is freely available at the General Protein/Mass Analysis for Windows
(GPMAW) homepage; http://www.gpmaw.com and is simple to install and use 
(see Chapter 3).

2. Several different search engines are freely available for PMF, such as Mascot,
Profound, MS-Fit, Aldente, and VEMS. Links to most of these can be found at the
homepage of Expasy (http://www.expasy.org). VEMS can be found at http://www.
yass.sdu.dk. As this chapter deals with parameters common for most of these
programs and with problems generally experienced using any programs, this chap-
ter will not focus on specific programs, but instead present a guide, which can be
followed using any of the search engines.

3. Methods
3.1. Removal of Mass Values Unrelated to the Protein in Question

Peptides originating from other sources, like trypsin autodigested peptides,
keratin-related peptides, and matrix-derived signals will interfere with the PMF
search and increase the risk of false-positive hits or failure of the search.
PeakErazor (introduced in Chapter 3) (see Note 1) can be used for extraction of
such contaminants before submitting the peak lists to the PMF search program.
Several approaches can be taken. Two of these are subsequently described.
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3.1.1. Elimination of Peptide Mass Values Matching 
a List of Trypsin Autodigests Products and Keratin Peptides 
Commonly Observed by Others (see Note 2)

1. Perform the first five steps in Chapter 3, Subheading 3.2. Choose keratin.lst as the
Erazor list; a list of mass values against which the experimental mass values
should be searched in order to identify potential contaminants.

2. If, for some reasons, one or more of the potential contaminants suggested by
PeakErazor is believed not to be a true contaminant, please uncheck these in the
list in the main window (see Note 3).

3. Copy the new list devoid of contaminants to clipboard.
4. Paste the new list into the PMF search engine of choice.

3.1.2. An Alternative to the Standard List of Contaminants (keratin.lst) 

It is possible to collectively evaluate spectra from a specific project in order
to identify project-specific contaminants. These can then be used as a basis for
a new list of contaminants against which the project data can be matched.

1. Chose the page tab “background” in PeakErazor.
2. Paste a number of peak lists into the table by pressing the “Add spec” button for

each list of mass values or upload a file containing several peak lists by pressing
the “Peaklist set” button.

3. The mass values found to be common in the list are calculated by pressing the
“Calculate” button. The criteria used in this calculation are defined by two param-
eters; the “combine at least” (which is the number of peak lists in which the mass
value should be found) and the “prec. (ppm)” (which is the precision within which
these mass values should be defined).

4. Save the list of shared mass values as a new Erazor list (e.g., yeastproject.lst).
5. Do as described in Subheading 3.1.1.1., this time choosing the new and project

specific Erazor list.

The latter approach is more accurate, as only project-specific contaminants
are eliminated and random matching to keratin peptides observed by others is
avoided  (see Note 4). See also Chapter 3 for optimization of the Erazor lists in
order to obtain more precise project-specific lists.

3.2. Identification of Potential Partial Modifications

A large variety of modifications can occur both in nature and during sample
handling and the existence of a single peptide in several modified versions
within the same spectrum is common. A well-known example is oxidation of
methionine, where the modified and the nonmodified peptide have a mass dif-
ference of 16 Da. Other examples are modified N-terminal glutamine (pyroGlu,
short for pyroglutamic acid, having a mass decrease of 17 Da compared with
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the nonmodified peptide) and oxidized tryptophan. The latter will often be
observed in several oxidation stages in the same spectrum along with a kynure-
nine-modified peptide (resulting from a loss of 28 Da from a double-oxidized
tryptophan) (15). As a result, a characteristic pattern can be observed where the
signals from tryptophan-containing peptides have a mass difference of +4
(kynurenine), +16 (mono-oxidized), +32 (double-oxidized), and +48 (triple-
oxidized) relative to the nonmodified peptide (16,17). The kynurenine and the
triple-oxidized peptide are not observed as frequently as the other three versions
of the peptide.

The number of theoretical masses will strongly increase if numerous possible
modifications are taken into account in a PMF search. As a consequence the risk
of getting random hits (false-positives) will especially increase (7) (see Note 5).
It is therefore recommended that the spectrum-deduced peak lists are checked for
patterns indicating the presence of such partial modifications and that the various
modifications are only accounted for in cases where such patterns are observed.
PeakErazor can elucidate such patterns as described in the following:

1. Paste your peak list into PeakErazor from clipboard (“Read from clip”).
2. Check the box named “Modifications” under display options.
3. Look for characteristic patterns like the +16 for oxidation, +17 for pyroGlu,

and +4, +16, and +32 for tryptophan oxidation.

PeakErazor reveals two patterns for potential tryptophan oxidation in the
example illustrated in Fig. 2.

3.3. Database Search

Before searching your data against a comprehensive database, it is impor-
tant that the parameters are set correctly. These should reflect the history of the
sample. One could ask some simple questions before searching the data: From
which organism did my sample come from? Is the sample purified or separated
on, for example, two-dimensional (2D)-gels? Did it undergo any special chem-
ical treatments like reduction and alkylation? The answers to such questions
can assist in defining the correct parameters for the PMF search in respect to
database choice and allowed modifications. In the following, the settings for
six different parameters will be discussed.

3.3.1. Choose Which Modifications Should be Allowed

If any of the patterns described in Subheading 3.2. is observed, then include
the corresponding modification as a variable modification (see Note 6). In addi-
tion, acetylation of the N-terminal residue of the protein is recommended as a
variable modification for eukaryotic proteins.
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Fig. 2. By checking the checkbox “modification,” it is possible to get information
on which partial modifications are likely to be present. The search parameters can be
adjusted based on this information, in order to increase the chance of identifying the
correct protein. In the example given here, two mass values (941.602 and 1250.661)
are likely to represent peptides with tryptophan. This is based on the findings of three
additional peptide signals having a mass increase by 4, 16, and 32, respectively. These
are likely to represent the same peptide with different tryptophan modifications. It can
be recommended to erase all of these peptides except, for example, the double-
oxidized peptide, and then specify this modification as a fixed modification in the
following database search.



Cysteins are often reduced and alkylated prior to analysis. The modification
state of the cysteines depends on the alkylation reagent used; e.g., iodoac-
etamide treatment will introduce a carbamidomethylation of the cysteine
residues (see Note 7).

3.3.2. Specify the Mass Tolerance

This value describes how well the experimental data has to fit to the theo-
retical data. The mass tolerance has to reflect the mass accuracy of experimen-
tal data. The mass accuracy is often given in either Dalton or in parts per
million (ppm).

If a multipoint internal calibration has been performed as described in
Chapter 3, then the obtained mass accuracy of the contaminants can make up a
norm for the database search; if a mass accuracy of ±20 ppm is obtained for
contaminants distributed over the entire mass range, then the mass accuracy of
the sample-related mass values can be expected to be within the same range and
set to, for example, 25 ppm.

3.3.3. Specify the Enzyme

The most commonly used enzyme for PMF is trypsin (see Note 8; Chapter 1).

3.3.4. Specify the Number of Missed Cleavage Sites

Some proteases have the tendency to generate peptides containing internal
cleavage sites missed by the enzyme. Depending on the efficiency of the
enzyme, it is advantageous to allow the search program to take such missed
cleavage sites into account. For trypsin it is recommended to allow for one
missed cleavage site in each peptide. If the search fails (i.e., no significant and
reliable hit is reported by the search engine) it is a good idea to change this
parameter to 0 or 2 in order to reflect the actual efficiency of the enzyme. If
the parameter is set to 2 or more, please see Subheading 3.4.2. for a manual
evaluation of the search result.

3.3.5. Chose a Comprehensive Database Against
Which the Search has to be Matched

The main demand for the database is that the protein, or close homolog, has
to be present in the database. A large database like the one from National Center
for Biotechnology Information (NCBI) can be chosen. This database covers all
the publicly available sequences and should therefore have the largest possibil-
ity of containing the protein in question (see Note 9). The size of the database
can be narrowed down by restricting the search to a single taxon or species (see
Note 10). This will not only reduce search time, but will also reduce the chance
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of identifying proteins by cross-species identification. Such identification based
on homologous proteins from other species can be helpful for organisms for
which the entire genome is not sequenced.

3.3.6. Specify the Estimated Isoelectric Point 
and Molecular Weight Values

As most studies involving PMF searches also involve the use of 2D gels for
protein separation, the isoelectric point and molecular weight estimated for the
protein in question can be utilized as additional restrictions in the search (see
Note 11). Not all search engines takes these estimated values into account.

3.4. Inspection of the Protein Hits in Order to Evaluate 
the Search Result

The protein reported as the highest scoring protein with a significant score is
most likely the one to be present in the sample of interest according to the PMF
search program used. However, how does one evaluate whether the protein
reported by the program is actually a reasonable suggestion and not a false-
positive? Some rules-of-thumb are presented, which can be used in order to
increase the confidence of a search result.

3.4.1. How is the Mass Accuracy Distribution? 

The mass distribution has to be either linear or curved, reflecting the calibra-
tion obtained on the instrument. If contaminants and/or tryptic autodigest prod-
ucts were eliminated (see Chapter 3), then check whether the mass accuracy
distribution of the contaminants is comparable to the one obtained in the search
hit. If a few mass values are found to be deviating considerably from the rest of
the masses, try to remove these masses and redo the search (see Note 12).

3.4.2. Are Any Overlapping Peptides Identified? 
Are the Missed Cleavages Observed of the Expected Type? 

Overlapping peptides are a consequence of partially missed cleavage sites
and adds to the overall confidence of the hit. However, the likeliness of such
missed cleavage sites depends on the residues adjacent to the cleavage site. In
the case of trypsin, the majority of the missed cleavage sites contain either an
acidic residue (glutamic acid or aspartic acid) or a basic residue (lysine or argi-
nine) adjacent to the potential cleavage site (18,19). Therefore, the likeliness of
the missed cleavage sites found and, thereby, the confidence of the search can
be evaluated by studying the peptides containing the missed cleavage sites (see
Note 13). This is especially important for search results obtained by allowing
two or more missed cleavage sites.
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3.4.3. Are any Peptides Carrying Suspected Partial Modifications
Identified? What About the Corresponding Nonmodified Peptide?

For modifications caused by sample preparation, such as N-terminal pyrog-
lutamic acid and the oxidation of, for example, methionine, both the modified
and the nonmodified peptide are expected to be observed. The finding of both
peptides adds to the confidence of the search result. For oxidation of methion-
ine, a metastable signal resulting from loss of the methanesulfonic acid (CH3-
S-OH = 64 Da) group is also expected. The position of the corresponding peak
on the mass spectrum depends on the specific parameters of the MALDI-TOF
instrument. Observation of this metastable signal further adds to the confidence
of the search result.

3.4.4. Do the Identified Peptides Account 
for the Most Intense Peaks in the Spectrum?

The intensities in the MALDI mass spectrum do not correlate directly to the
amount of peptide in the sample because of different factors like different ion-
ization efficiencies, suppression effects, and various degrees of missed cleav-
ages. Therefore, the intensities of the individual signals in the mass spectrum
are not taken into account in most PMF search programs today. However, it is
relevant to study whether or not the most intense peaks in the spectrum have
been accounted for by a given search result. Few intense peaks might have been
left unassigned resulting from modifications not taken into account; however, to
be a reliable hit, it should be possible to match most of the intense peaks.
Additionally, it is known that arginine-containing peptides ionize more effi-
ciently than lysine-containing peptides, often resulting in higher intensity of the
arginine-containing peptides compared to the lysine-containing peptides. This
general tendency could also be considered in an examination of the reliability
of the search result.

3.4.5. What is the Sequence Coverage Obtained Compared 
With the Expected?

Sequence coverage is the percentage of the protein covered by the matching
peptides. Often a new user will ask the question, how many peptides should be
matched and how large should the sequence coverage be for a valid hit?
However, these numbers depend on the protein in question, so no clear answer
can be given. Working with large proteins, we would expect a relatively large
amount of peptides to be matched. On the other hand, if the protein in question
turns out to constitute only a fragment of the theoretical protein sequence in the
database, i.e., because of degradation, then the number of peptides matching
can be low and the sequence coverage will appear low even though the cover-
age in the area constituted by the fragment is high. Working with small proteins,
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few peptides might be matched and still result in a relative high coverage. It has
recently been suggested that the reliability of the identification can be revised
by multiplying the sequence coverage (in percentage) with the number of mass
values matching (14). If the resulting value is greater than 300 the hit is consid-
ered valid. It is possible to calculate an expected coverage by excluding all the-
oretical peptides with a mass outside the mass range in which the spectrum is
obtained (typically 700–3000 Da). However, the distribution of possible cleav-
age sites in the protein of question will also influences such an expected cover-
age. Infrequently, distributed cleavage sites will result in peptides too large to
be observed in the spectrum, whereas frequent cleavage sites will result in many
small peptides. The later might be observed as part of peptides containing
missed cleavage sites. A way of taking these missed cleavages into account
would be to only allow the expected missed cleavages mentioned previously.
Peptides originating from the signal peptide of secreted proteins are not
expected in the mature protein analyzed, so this part of the theoretical sequence
should also be excluded when calculating the expected sequence coverage for
the protein in question. A comparison of the experimentally obtained sequence
coverage to this calculated expected coverage offers a more realistic view of
how well the data correlates.

3.5. Conclusion

In the end it should be noted that large proteins are often overrepresented in
the search results because of random matching of peptides to these proteins.
Some search engines accounts for this bias in the search algorithms, however,
one should always be sceptical toward such large proteins, especially if the part
covered by the peptides does not correlate to an expected mass of the protein.
Many of these false-positive hits can be avoided by taking the molecular mass
estimated from, for example, a 2D-PAGE, into account.

4. Notes

1. Identification of signals arising from contaminating components like keratin is
further described in Chapter 3, where it is demonstrated how these signals can be
used as internal calibrants. The subject in the present chapter is to eliminate the
contaminants prior to the PMF search. 

2. An Erazor list, containing mass values corresponding to the masses of various
contaminants, is available for download at the same web page as PeakErazor. This
list is based on observations done in our laboratory and by other laboratories (see
Chapter 3).

3. If several mass values are matching the theoretical mass values of contaminants
and one or more of these have a mass error, which is deviating from the trend
made up of the rest of the contaminants, i.e., it is an outlier, then this mass value
is most likely not a true contaminant and should be unchecked.
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4. Removing unknown contaminants using this strategy is not without problem, as
many projects contain the same protein in several samples. If 10% of the samples
in a given project contain the same protein and therefore have near-identical peak
lists, the peptides from this protein can accidentally be taken as contaminants, and
therefore be removed from the project together with the real contaminants.
One suggestion would be to use the obtained list of contaminants (the Erazor list)
as query in a PMF search in order to identify such proteins accidentally taken as
contaminants. It should be emphasized that peaks should only be rejected if they
match the theoretical mass within the accuracy with which the mass spectrum
is obtained. A peak rejection feature parallel to the one presented here for
PeakErazor is incorporated into several of the PMF search engines (14,20). In
these programs peak rejection will automatically be performed prior to the data-
base search.

5. In many cases, only one or a few peptides will contain a specific modification and
omitting these peptide masses from the search may or may not disrupt the search
result leaving the protein of interest as a false-negative. As a consequence, the user
has to counterbalance the risk of having false-positives or false-negative. Highly
modified proteins like collagen are impossible to identify by PMF unless the par-
ticular modification (hydroxyproline in this case) are taken into account. However,
as long as the protein is not identified, it is impossible to know which specific
modification is required. However, studying, for example, bone proteins, it can
turn out to be of advantage to include hydroxyproline as a variable modification
in searches otherwise found to “fail.” The hydroxyproline will have a mass differ-
ence of 16 Da compared with the normal proline, and as each peptide arising from
collagen has the possibility of containing more than one proline, a characteristic
pattern of signals spaced with 16 Da will be observed. Be aware that this pattern
corresponds to the pattern observed by multiple oxidations of other residues as
well. This example illustrates how knowledge regarding the biology connected to
the sample of interest can turn out fruitful in the protein identification process.

6. The double-oxidation modification of tryptophan (formylkynurenine) is not a
default option in, for example, the search engine Mascot. It is, however, possible
to include additional modifications through the “set search default” page, includ-
ing formylkynurenine.

7. The –SH group of cysteines are known to be very reactive and will form adduct
product with free chemicals like acrylamide, which is commonly used in casting 2D-
gels (21). It has been estimated that polymerization of acrylamide in gels rarely
exceed 90% resulting in at least 30 mM of free acrylamide (22). As a consequence,
some cysteines may be modified by propionamide. Some may even exist as unmod-
ified cysteins or as disulfide bridges. If full explanation of all the peaks in the
spectrum is desired, it can therefore be necessary to take several modifications into
account, but be aware that this will increase the risk of false-positive hits.

8. Other enzymes like LysC and ArgC (cleavage at the C-terminal side of lysine and
arginine, respectively) generate larger peptides, which can be of advantage for
proteins containing many lysines and/or arginines.
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9. The databases need to be fairly correct in order to identify the relevant protein.
This is especially a problem when searching protein databases derived from more
or less automated translation of nucleotide databases (first described by James 
et al. [23]). The problems are numerous: the quality of the nucleotide-based data-
bases are varying, especially expressed sequence tag sequences derived from
cDNA suffer from a high error rate. Gene prediction is a difficult task, especially
for small genes for which clear differentiation between true and random stretches
of open reading frames is not yet possible. In addition, the rules for alternative
splicing are very complex and not yet fully understood. An alternative is to search
whole genomic data independently of the predicted open reading frames by scan-
ning the genome with the PMF data. Algorithms for such genome-based PMF
searches are under development (24). Databases like SwissProt and Uniprot are
manually evaluated and should be without the previously mentioned problems.
However, the number of proteins in the database is lower containing only well-
analyzed proteins. One advantage of such well-annotated databases is that you
can specify your search not only to species but also to keywords appearing in 
the database entries, for example, restricting the search to plasma proteins
(MultiIdent [25]).

10. Restricting a search toward an organism that is not fully sequenced will increase
the risk of failure. This can be partly overcome by allowing the search algorithm
to search against proteins from closely related organisms. Again, the search hits
have to be evaluated carefully if such cross-species hits are allowed.

11. Experimental values estimated from a gel are very likely to diverge strongly from
the theoretical values and the use of these dubious values does not necessarily
result in increased identification success. There can be several reasons for this: (1)
for example, the protein might be highly modified by glycosylation, (2) the theo-
retical protein might be wrongly annotated caused by incorrect prediction of the
reading frame, and (3) the protein studied might be a fragment of the theoretical
protein found in the database (a truncated protein). The search engine Mascot
(www.matrixscience.com) has tried to overcome the latter problem by introducing
a “sliding window” (first suggested by Yates [4]).

12. It is possible to recalibrate a peak list based on mass values identified as belong-
ing to the protein in question. If the mass accuracy of the original peak list is low,
then recalibration and research can increase the score and, thereby, the confidence
of the search result.

13. It should be stated here that whether or not the digestion reaches completion is
dependent on other issues as well; the cleavage site can be inaccessible to the
enzyme, e.g., from steric hindrance, or the enzyme/substrate ratio that can be to
low, both cases resulting in unpredictable missed cleavage sites.
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Generating Unigene Collections of Expressed Sequence Tag
Sequences for Use in Mass Spectrometry Identification

Jeppe Emmersen

Summary
Expressed sequence tag sequences remain the largest resource of DNA sequence for most

organisms despite recent advances in genome sequencing. These sequences are short, frag-
mented versions of the expressed genes. By DNA sequence assembly, the fragments can be
assembled into contiguous DNA sequences that are better suited for protein identification by
mass spectrometry. 

Key Words: Expressed sequence tag; EST; assembly; unigenes; protein prediction; annotation.

1. Introduction
Identification of proteins using mass spectroscopic methods relies on the

existence of reliable protein sequence databases. For most organisms, however,
the vast majority of sequence information for any given organism remain as
cDNA sequences in the form of either singlepass sequenced expressed sequence
tags (ESTs) or (more rare) complete full-length cDNA sequences. EST sequences
are deposited in a special subdatabase of GenBank, dbEST, and the typical EST
sequence is approx 400–500 bases long (1). It has previously been shown that
using the dbEST database for protein identification by peptide mass finger-
printing was feasible as a last resort (2).

ESTs are either sequenced from the 5′ or the 3′ end of cDNA clones, with
the majority of ESTs deposited in the databases being 5′ end ESTs. The reason
is that the 5′ end of a cDNA normally contains a larger proportion of coding
sequence than 3′ ESTs. It turns out that many EST sequences are derived from
cDNA clones truncated at the 5′ end. Although a drawback in other application,
the truncation turns out to be an advantage when ESTs are assembled into a
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unigene collection. This enables genes of larger sizes to be constructed from
short EST sequences, which in turn enables better identification of proteins
using mass spectrometry (MS) (Fig. 1).

EST sequences obtained from public databases should, in principle, be free
from contaminating sequences. There is no standard for cleaning EST sequence
sets, however, and it is recommended to do a precleaning of EST sequence
sets obtained from public sources to remove contaminating sequences from
Escherichia coli, lambda, and vector sources. If EST sequences are not cleaned
and vector inserts masked, the final Unigene collection will harbor the contami-
nants and the assembly of EST sequences will not be optimal if vector sequences
allow nonrelated sequences to be joined.

The benefits of EST sequence assembly can be summarized as follows:

1. Reduced sequence set—reduced search space and search time.
2. More peptides can be identified—peptide sequence located at ends of ESTs are

joined.
3. Better accuracy of DNA sequence through consensus sequence—better accuracy

of protein sequences. Improves with redundancy of transcripts.
4. Detection of chimera (nonrelated sequences joined as one)—depending on algorithm.
5. EST sequences are free of intron sequences (in most cases). 

The only real disadvantage of EST assembly is that sequence variants may
be lost during consensus sequence construction. These can be found at a later
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Fig. 1. Assembly of 133 expressed sequence tags (ESTs) from the patatin gene of
potato into one contig–Unigene cluster. Each EST is represented by one line. The
otherwise undesired 5′ end cDNA truncation is an advantage in this context, as it provides
complete coverage of the gene. The ESTs were assembled using three full-length cDNAs
as scaffold, shown as the large lines at the bottom of the figure.



stage after protein annotation by examining the multiple sequence alignment of
each EST contig. If using TGICL for EST assembly, the alignments are part of
the output.

The disadvantage of losing sequence polymorphism information during con-
sensus sequence generation can be circumvented to some extent by using
sequences only from the tissue of interest. Thus, if the proteome study is
focused on a particular plant cultivar for example, the best Unigene collection
would be built by selecting only ESTs from the particular cultivar, if available.

1.1. Prediction of Protein Sequence From Low-Fidelity DNA Sequences

A good DNA sequence set is the first requirement for use in MS identification
of proteins. The second requirement is a good translation to protein sequences.
The relatively high error rate in EST sequencing is carried over to the protein
sequence, though at a lower level because of codon degeneracy at the third posi-
tion. A wrong DNA base may alter the corresponding amino acid in a tryptic pep-
tide, rendering this peptide lost in peptide mass fingerprinting. For MS/MS
sequencing, the loss is not so critical, as the remaining sequence is retained and
can be found by nonexact methods, such as BlastP. The worst base-calling error
is either a wrong insertion or deletion (indel), which alters the frame of the pro-
tein translation and subsequently the remaining sequence will be wrong.

For unattended DNA translation, there are a number of algorithms to perform
the translation. The software VEMS uses a traditional algorithm based on
simple open reading translation (longest open reading frame [ORF]). Using
VEMS to make the translation, it is possible to select the number of longest
ORFs chosen for each DNA sequence. Any indels will break the ORF, but this
may not be a problem if the real ORF is among those chosen for the translation.
For instance, if a deletion occurs at 100 bases in a 1200 base long transcript, the
real ORF shifts from frame 3 to frame 2. The result is the original ORF of 400
amino acids being split into two ORFs of 40 and 370 amino acids. If the user
selects the three largest ORFs to be stored for this transcript and there are four
nonsense ORFs longer than 40 amino acids but shorter than 400 amino acids,
the short 40 amino acid sequence is lost. If the deletion occurs in the middle of
the transcript, the chance of finding the correct sequence grows.

To compensate for indels in DNA sequences, programs have been written
that can detect frameshifts during the translation process and correct the error.
One such program is Framefinder, which is part of the Estate package for EST
analysis (3). Framefinder uses local hexamer (stretches of six nucleotides)
usage frequencies estimated from known coding sequences of a given organism
to predict the location of insertions or deletions. A dynamic programming algo-
rithm, similar to DNA alignment algorithms, such as blast or Smith-Waterman,
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is used to find the most probable translation given the hexamer frequencies
estimated for each organism. Both local and global paths can be used to find the
correct translation. This way, the algorithm is able to compensate for
frameshifts when translating the DNA sequence.

1.2. If You Do Not Want to Do It Yourself

There are a number of publicly available repositories for clustered
and assembled EST collections (Table 1). The Institute of Genomic
Research (TIGR) publishes their EST assemblies for download on their website
www.tigr.org <http://www.tigr.org/>. Currently (June 2006), there are assem-
blies available from 88 species at the TIGR website (4). The program TGICL
for EST assembly has been made publicly available (5). Another source of pre-
computed EST assemblies is the UniGene database located at GenBank (6).

The major difference between the TIGR gene indices and the GenBank
UniGene collection is the way each EST cluster is represented. A TIGR EST
cluster is treated in the same way as genome shotgun sequences, and each clus-
ter is subject to a final assembly process, whereby a consensus sequence is
generated, representing all EST sequences in the cluster. Thus, any sequence
polymorphism information is lost in this process. A unigene EST cluster is rep-
resented by the best EST sequence, thus no consensus sequence is produced.
This means that a unigene cluster sequence will not represent the full coding
sequence of a transcript, unless the gene is short or there is a full-length mRNA
sequence as part of an EST cluster.

As ESTs are selected randomly from the pool of cDNA, the most highly
expressed genes will be represented by many EST sequences, leading to a high
level of redundancy. If searching with raw EST data in the annotation process,
this will lead to longer processing times. 

1.3. Annotation of Sequences

EST unigene sequences can be annotated automatically using BlastX against
a protein database, such as the nonredundant protein database (nr) from
GenBank. In the simplest annotation scheme, only the annotation of the best
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Table 1
Some General Precomputed Expressed Sequence Tag Assembly Resources

Source Organisms Web address

TIGR 85 www.tigr.org/tdb/tgi/
Sputnik 60 sputnik.btk.fi
UniGene 52 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene
http://www.tigr.org/
www.tigr.org/tdb/tgi/
www.tigr.org


Blast hit is recorded. The annotation can then be stored in a separate file recording
the sequence and the corresponding hit. The annotation can also be stored in the
header of the fasta file.

It is also possible to annotate the predicted protein sequences directly using
BlastP against the nr protein database. However, if only ORF prediction is per-
formed with extraction of the three longest ORFs, the BlastP annotation may be
wrong as BlastP only searches one protein sequence, whereas BlastX searches
all six reading frames of the DNA sequence. Thus, it is better to annotate the
DNA sequence and then carry the annotation to the protein sequences after-
wards if the database match is good (E-value > 1E-20). If a protein sequence
predictor like Framefinder is used with the annotated DNA sequences, the
header information is also retained.

This chapter will describe how to set up free software to perform EST assem-
bly and sequence annotation of the resulting Unigene collection using a Linux
platform. Commands must be executed on the command line (shell) and are
highlighted in bold. Options for the command are highlighted in italics.

2. Materials
You will need one computer with an ×86 Linux distribution. The described

programs used in the methods are available free of charge (see Table 2).
Should it prove impossible to find the software listed because of  website

reorganizations or other difficulties, the author of this chapter can be contacted
for information on how to obtain the software.

3. Methods
The following method will describe how to use the programs TGICL,

Seqclean, and Framefinder and blast-multi.pl to assemble, annotate, and create
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Table 2
Software for Expressed Sequence Tag Processing

Name Description Web address

TGICL Assembly www.tigr.org/tdb/tgi/software/
Mira Assembly www.chevreux.org/projects_mira.html
Phrap Assembly www.phrap.org/
Cap3 Assembly genome.cs.mtu.edu/cap/cap3.html
Stack Assembly www.sanbi.ac.za/Dbases.html
JESAM Assembly corba.ebi.ac.uk/EST/jesam/jesam.html
Lucy Preprocessing http://www.tigr.org/software/
SeqClean Preprocessing http://www.tigr.org/software/
blast-multi.pl Annotation je@bio.aau.dk
Blast Alignment ftp://ftp.ncbi.nih.gov/blast/

http://www.tigr.org/software/
http://www.tigr.org/software/
ftp://ftp.ncbi.nih.gov/blast/
www.tigr.org/tdb/tgi/software/
www.chevreux.org/projects_mira.html
www.phrap.org/
www.sanbi.ac.za/Dbases.html


protein files from a collection of EST sequences. Table 2 lists the current web
addresses where the software can be obtained.

3.1. Setting Up Software

To install the software make a folder for assembly of the EST sequences:

mkdir est-assembly.

Then download the software into the est-assembly folder:

1. TGICL: <http://www.tigr.org/tdb/tgi/software/>.
2. Framefinder: <http://www.ebi.ac.uk/~guy/estate/> or by request to je@bio.aau.dk.
3. blast-multi.pl: mail to je@bio.aau.dk.
4. Sequence databases for blast: <ftp://ftp.ncbi.nih.gov/blast/db/>.

3.2. Blast Programs and Sequence Databases

The first step is to install the Blast software. It is important to remember
that Linux file names are case sensitive. First log-in as root. Set up the path to
blast environment:

mkdir /usr/local/bioinfo

Where the following folders are made using:

mkdir /usr/local/bioinfo/bin/ 

mkdir /usr/local/bioinfo/data/

Move the blast the blast archive to the bioinfo/bin/ folder and extract the
program:

tar –xvf blastsoftware 

Set the environment variables for the particular Blast path in the file
/etc/.profile by appending the following lines to /etc/.profile using a text
editor:

PATH = $PATH:/usr/local/bioinfo/bin/:usr/local/bioinfo/data/

BLASTMAT = “/usr/local/bioinfo/bin/data”

BLASTFILTER = “/usr/local/bioinfo/bin”

BLASTDB = “/usr/local/bioinfo/data”

export BLASTMAT BLASTFILTER BLASTDB PATH USER LOGNAME
MAIL HOSTNAME HISTSIZE INPUTRC

Also see Note 1.
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To obtain the database files for blasting against the nonredundant protein
database, download the formatted database files at the GenBank Blast web
address: <ftp://ftp.ncbi.nih.gov/blast/db/> to the /usr/local/bioinfo/data/folder.

To format custom databases such as the E. coli genome sequence for Blast
searching, the following command is executed:

formatdb –i E-coli-sequence-file b –p F –o T 

where E-coli-sequence-file is the fasta formatted database file. This will gen-
erate a DNA database for searching. The generated files must be placed in the
/usr/local/bioinfo/data/ folder. The E. coli genome sequence database is
obtained from <ftp://ftp.ncbi.nih.gov/blast/db/FASTA/> and the Univec database
from <ftp://ftp.ncbi.nih.gov/pub/UniVec/UniVec_Core>.

formatdb –I UniVec_Core b –p F –o T

3.3. Setting Up TGICL for Clustering and Assembly of EST Sequences

Copy the TGICLI and Seqclean packages into the ests-assembly folder and
unpack them:

tar xfvz TGICL.tar.gz and tar xvfz seqclean.tar.gz

3.4. Installing Framefinder Software

The framefinder program is a little tricky to install as only the source files
are provided. Transfer the Framefinder software package to the est-assembly
folder. Then unpack the programs and make the binaries:

tar –xfvz, then cd estate and finally make. Move the binary files in the bin
folder to your homefolder/bin or somewhere in the path.

The software is now ready for use. Remember to put the TGICL program in
the same folder as the sequence file. See Note 2 on program and user rights.

3.5. Making EST Assemblies

To clean your EST files, use the command:

seqclean est_file-v/usr/local/bioinfo/data/UniVec_Core. 

The output are two files: the processed fasta file, est_file.clean and a processing
report, est_file.cln, with details on the preprocessing.

The fasta file is then used for the assembly (see Note 3):

.\TGICL est_filedb

After the assembly has been performed, the important files generated are
est_file.singletons and /asm1/contig and /asm1/singlets. The contig file is located
in the asm1 folder generated during the assembly process and contains the
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assembled sequences from two or more EST sequences. The singlets file in the
same folder contains those sequences, which initially aligned with another
sequence, but was later rejected during the assembly phase. The singlets in the sin-
gleton file are not immediately available in fasta format but can be extracted with
the following command:

cdbyank est_filedb.cidx < est_filedb.singletons > singleton.seqs

When both the contig file, the singlets file and the singleton file have been
gathered in one directory, the following command will concatenate both files
into one to generate the final Unigene collection:

cat contig_file singletons.seq > Unigene.fsa.

See Note 4 if you have access to original sequence data.

3.6. Performing Protein Sequence Prediction Using Framefinder

The next step is to generate protein sequence files from the Unigene collec-
tion using the protein prediction software framefinder. Before DNA sequences
can be translated using framefinder, the statistical framework for protein predic-
tion needs to be set up. The first step is to obtain a set of full-length mRNA
sequences from GenBank for the organism of interest. The sequences need to
be in GenBank format and not Fasta format (see Note 4).

The coding sequence is then extracted with command:

flat2coding -o ‘Name of organism’ -d ‘name of GenBank file’ > coding.fasta. 

The entry “Name of organism” should match the organism identifier exactly
as written in the GenBank files.

The hexamer frequencies are calculated using the commands:

fasta2usage -w 6 -j 3 -d coding.fasta > coding.wordcount

calcwordprob -w coding.wordcount > coding.wordprob

The protein sequences can then be constructed using framefinder:

framefinder – w coding.wordprob -d Unigene.fasta > Unigene.predicted_
protein.fasta

The output file may contain some lines that are not in FASTA format at the
beginning of the file. These can edited out using a text editor (see Note 5).

3.7. Annotate the Unigene Collection to the nr Database

perl blast-multi.pl Unigene.fsa

which will annotate all DNA sequences using BlastX against the nr database
located in the folder /usr/local/bioinfo/data/
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The protein files can be annotated with the same program using the –p
blastp switch

perl blast-multi.pl –p blastp predicted_protein.fasta. 

Two files are produced: the annotated fasta file, where the annotation infor-
mation for the best Blast hit is added at the end of the fasta file header. The
name of the database used for annotation is prepended to the fasta file name.
The second file is a report, producing detailed information for each annotation,
such as length of query, length of database match, coverage of alignment for
both Unigene sequence, and database sequence. Thus, it is easy to check the
“biology” of the annotation and not just rely on E-value numbers.

4. Notes

1. If only one user is going to use the Blast software, the Blast environment can be
set up by creating an .ncbirc file with the following lines using a texteditor in the
user’s home directory:

[NCBI] 

Data = “/usr/local/bioinfo/data/”

The Blast executables still need to be in the system path.

2. When setting up the software, it is important that all users can access the programs
and the data. This can be done by changing the access rights using the following
command (assuming the files were put in the bioinfo path and user is root):

chmod 666 /usr/local/bioinfo/ .

3. If sequence processing is performed on a Windows OS machine but the sequence
assembly and protein sequence prediction is performed on a Unix OS, care has to
taken when transferring files, as text files are not equal between the two systems
when it comes to line breaks. Windows uses a carriage return and a linefeed (\r\n)
whereas Unix only uses a linefeed (\n). To convert from Windows to Unix format,
each text file can be modified with the following command:

tr —d ‘\15\32’ <windows-file.txt > unix-file.txt
Otherwise, the Cap3 assembly algorithm of TGICL will not be able to read
the sequence and quality files properly.

4. The example given for EST assembly assumes that sequences were obtained from
dbEST. Consequently only the fasta-formatted DNA sequence is available and the
confidence of each base cannot be estimated. If the original sequence chro-
matogram (trace) can be obtained, it is possible to estimate the probability of each
base being correct if using the base calling program Phred (7).
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5. When framefinder runs, it may insert an X instead of an amino acid letter in the
sequence in places where an indel was detected. 
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6

Protein Identification by Tandem Mass Spectrometry 
and Sequence Database Searching

Alexey I. Nesvizhskii

Summary
The shotgun proteomics strategy, based on digesting proteins into peptides and sequencing them

using tandem mass spectrometry (MS/MS), has become widely adopted. The identification of pep-
tides from acquired MS/MS spectra is most often performed using the database search approach.
We provide a detailed description of the peptide identification process and review the most com-
monly used database search programs. The appropriate choice of the search parameters and the
sequence database are important for successful application of this method, and we provide general
guidelines for carrying out efficient analysis of MS/MS data. We also discuss various reasons why
database search tools fail to assign the correct sequence to many MS/MS spectra, and draw atten-
tion to the problem of false-positive identifications that can significantly diminish the value of pub-
lished data. To assist in the evaluation of peptide assignments to MS/MS spectra, we review the
scoring schemes implemented in most frequently used database search tools. We also describe sta-
tistical approaches and computational tools for validating peptide assignments to MS/MS spectra,
including the concept of expectation values, reversed database searching, and the empirical
Bayesian analysis of PeptideProphet. Finally, the process of inferring the identities of the sample
proteins given the list of peptide identifications is outlined, and the limitations of shotgun pro-
teomics with regard to discrimination between protein isoforms are discussed.

Key Words: Tandem mass spectrometry; proteomics; algorithms; database; protein identifi-
cation; statistical models; bioinformatics.

1. Introduction
In the last few years, the shotgun proteomics approach (1–3) has become the

method of choice for identifying and quantifying proteins in most large-scale
studies (for a recent review, see ref. 4). This strategy is based on digesting
proteins into peptides followed by peptide sequencing using tandem mass
spectrometry (MS/MS) and automated database searching. Compared with
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methods of analysis based on extensive protein separation prior to MS-based
identification, such as two-dimensional (2D) gels (5), shotgun proteomics
allows higher data throughput and better protein detection sensitivity. It also has
an advantage over methods of analysis based on MS/MS sequencing of intact
proteins. Intact protein sequencing (reviewed in ref. 6) is difficult owing to their
large molecular weight, and requires more expensive mass spectrometry (MS)
instrumentation, which hinders the implementation of this technique in a typical
academic laboratory.

The method of shotgun proteomics analysis is schematically illustrated in
Fig. 1. The first step of this method is digestion of sample proteins into pep-
tides using proteolytic enzymes such as trypsin. Because each protein
digested with trypsin produces multiple peptides, the resulting peptide mix-
tures can be very complex. Peptide samples are then separated by one- or
multidimensional liquid chromatography (LC) and subjected to MS/MS
analysis to sequence the peptides. In quantitative proteomics, reviewed in
ref. 4, peptides are also encoded with a stable isotope tag, which allows
determination of the relative protein abundances with respect to a control
sample. Peptides are then ionized, and selected ions are subjected to
sequencing to produce signature MS/MS spectra. The MS/MS data acquisi-
tion process consists of two stages. The first stage involves reading all pep-
tide ions that are introduced into the instrument at any given time (MS
spectrum). At the second stage, selected peptide ions (often referred to as
“precursor” or “parent” ions) are fragmented into smaller pieces (fragment
ions) in the collision cell of the mass spectrometer in the process termed 
collision-induced dissociation (CID). The acquired MS/MS spectrum is thus
a record of mass-to-charge ratios (m/z values) and intensities of all the result-
ing fragment ions generated from an isolated precursor ion. The fragmenta-
tion pattern encoded by the MS/MS spectrum allows identification of the
amino acid sequence of the peptide that produced it (see Fig. 2). After
the desired amount of MS data is collected, the effort shifts toward the
computational analysis.

The computational analysis typically starts with the identification of the pep-
tides that give rise to the acquired MS/MS spectra. In high-throughput studies,
the most efficient peptide identification method is based on searching MS/MS
spectra against protein sequence databases. A number of automated database
search tools have been described, including widely used commercial programs
such as SEQUEST and Mascot. Although these tools can be easily run by
someone with little experience in MS, the user should be able to make appro-
priate choices of the database search parameters. The user should also be aware
of various data interpretation challenges, including high rates of false identifi-
cations produced by those tools. 
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2. Peptide Identification Methods
In a typical experiment, a single mass spectrometer can generate thousands of

MS/MS spectra per hour, and manual spectrum interpretation is not a feasible
option. As a result, a number of computational approaches and software tools
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Fig. 1. General view of the experimental steps and flow of the data in shotgun pro-
teomics analysis. Sample proteins are first proteolytically cleaved into peptides. After
separation using one- or multidimensional chromatography, peptides are ionized
and selected ions are fragmented to produce signature tandem mass spectrometry
(MS/MS) spectra. Peptides are identified from MS/MS spectra using automated database
search programs. Peptide assignments are then statistically validated and incorrect identi-
fications filtered out (peptide STHICR). Sequences of the identified peptides are used to
infer which proteins are present in the original sample. Some peptides are present in more
than one protein (peptide HYFEDR), which can complicate the protein inference process.
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have been developed for automated assignment of peptide sequences to MS/MS
spectra (7). Existing computational approaches can be roughly classified into
three categories. In the first approach, peptide sequences are extracted directly
from the spectra, i.e., without referring to a sequence database for help (de novo
sequencing approach) (8–12). In the second approach, peptide identification is
performed by correlating experimental MS/MS spectra with theoretical spectra
predicted for each peptide contained in a protein sequence database (database
search approach) (13–21). The third category includes hybrid approaches, such
as those based on the extraction of short sequence tags (three to five residues
long) followed by “error-tolerant” database searching (22–25).

Each of the approaches has its own advantages and limitations. The advan-
tage of the de novo sequencing approach over the database search method is
that it allows identification of peptides whose exact sequence is not present in
the searched sequence database. However, de novo analysis is computationally
intensive and requires high-quality MS/MS spectra. Furthermore, researchers
analyzing proteomic data are more interested in knowing what proteins are
present in the sample. This means that peptide sequences extracted from MS/MS
spectra using de novo algorithms need to be matched, e.g., using BLAST,
against the sequences of known proteins present in the sequence databases.
In the high-throughput proteomics environment, researchers are not always
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Fig. 2. An example of a tandem mass spectrometry spectrum.
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interested in, or have time to follow up on the peptides identified using de novo
sequencing tools and for which there is no exact match in the database (assuming
the database is fairly complete). As a result, the computational analysis typically
starts with database searching, and only then, if desired, de novo sequencing
tools are applied to the remaining unassigned spectra.

In the case of organisms with unsequenced or only partially sequenced
genomes, the database search approach will fail to assign correct peptide
sequences to many MS/MS spectra (even if the search is performed against a
database containing sequences from multiple related species), and it becomes
necessary to use de novo sequencing tools (26). If the analyzed sample contains
only a few proteins (e.g., proteins that are first separated on a 2D gel), protein
identification can be performed by merging peptide sequences extracted from
all spectra using a de novo sequencing tool into a single sequence and search-
ing that sequence against a protein sequence database of a homologous organ-
ism using a modified version of the BLAST algorithm, MS-BLAST (27).
However, if the sample contains more than several proteins, this approach is
likely to fail, and it is not applicable in the case of complex protein samples.
Hybrid approaches have also been suggested that combine inference of short
sequence tags (partial sequences) from MS/MS spectra with an error-tolerant
database search, i.e., search that allows one or more mismatches between the
sequence of the peptide that produced the MS/MS spectrum and the database
sequence. This approach, first described in ref. 22, has been recently extended
by several groups (23,24). By limiting the search space to only those database
peptides that contain the sequence tag extracted from the spectrum (or one of
the several sequence tags if more than one per spectrum is extracted), a signif-
icant reduction in the database search time can be achieved. As these methods
improve and the software tools that implement them become available, they
should make a great addition to the suite of computational peptide identifica-
tion tools available to proteomics researchers. However, searching MS/MS
spectra against protein sequence databases will likely remains the primary
method for the identification of peptides from MS/MS spectra in most pro-
teomic studies.

3. Peptide Identification by MS/MS Database Searching
3.1. Basic Principles

Several MS/MS database search tools are currently available, including estab-
lished and widely used commercial applications such as SEQUEST (13) and
Mascot (14), integrated programs (that provide other functionalities in addition to
database searching) such as SpectrumMill (19) and Phenyx (21), and open source
database search tools such as X!Tandem (17), OMSSA (18), and ProbID (19) (see
Table 1). All these tools operate in a similar manner. They take an experimental
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MS/MS spectrum as input and compare it against theoretical fragmentation 
patterns constructed for peptides from the searched database to find a match (see
Fig. 3). The search is typically restricted to a subset of all database peptides based
on such user-specified criteria as mass tolerance, proteolytic enzyme constraint,
and types of posttranslational modifications allowed. Theoretical fragmentation
patterns are calculated for each of the candidate peptides using common peptide
fragmentation rules. The output from the database search tools is a list of matches
(peptide sequences) ranked according to the scoring scheme implemented in each
particular tool; the best scoring peptide match has the highest likelihood of being
correct. Several types of search parameters are commonly used with MS/MS data-
base searches, which are described next.
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Table 1
A Partial List of Publicly Available Tools for Assigning Peptides to MS/MS
Spectra and for Statistical Validation of Peptide and Protein Identifications

Program Website database search tools:

SEQUEST http://www.thermo.com
MASCOT http://matrixscience.coma

Protein Prospector http://prospector.ucsf.edua

ProbID http://projects.systemsbiology.net/probidb

X!Tandem http://www.thegpm.orga,b

OMSSA http://pubchem.ncbi.nlm.nih.gov/omssaa,b

Database searching using sequence tags:

GutenTag http://fields.scripps.edu/GutenTag
InsPect http://peptide.ucsd.edu/a,b

Integrated systems (include database search tools):

SpectrumMill http://www.chem.agilent.com
Phenyx http://www.phenyx-ms.com

Post-database search processing (no statistical validation):

INTERACT http://www.proteomecenter.org/software.phpb

DTASelect http://fields.scripps.edu/DTASelect
DBParser http://www.proteomecommons.org

Post-database search processing (with statistical validation):

PeptideProphet http://www.proteomecenter.org/software.phpb

ProteinProphet http://www.proteomecenter.org/software.phpb

aFree access via the web interface.
bFree distribution (open source tools).
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3.2. Database Search Parameters

1. Types of fragment ions. For each candidate peptide, theoretical fragmentation
patterns are calculated using common peptide dissociation rules. The fragment
ions, composed of both C- and N-terminal ions, are specific for each type of mass
spectrometer (28). Under the low energy (a few keV) CID conditions commonly
encountered in mass spectrometers such as ion trap, triple quadrupole, and
quadrupole time-of-flight (TOF) instruments, peptide fragmentation primarily
results in the so called b- and y-ion. The high-energy CID conditions encountered
in other types of instruments, like TOF-TOF instruments, are also capable of
generating other ion types such as a-, c-, x-, and z-ions. Fragment ions specific to
residue side chain cleavages can also be generated at high collision energy condi-
tions. Most database search tools allow the user to select the types of ions to be
included in the generation of the theoretical spectra (default settings for most
common types of the mass spectrometer are often provided as well).

2. Monoisotopic vs average mass. Another parameter that needs to be specified by
the user is the method of calculation of the peptide mass (monoisotopic mass or
average mass). Mass spectrometers do not measure the masses of peptides, but
rather the mass-to-charge values (m/z) of peptide ions. The m/z value of the

MS/MS and Sequence Database Searching 93

Fig. 3. Tandem mass spectrometry (MS/MS) database searching. Acquired MS/MS
spectra are correlated against theoretical spectra constructed for each database peptide
that satisfies a certain set of database search parameters specified by the user. A scor-
ing scheme is used to measure the degree of similarity between the spectra. Candidate
peptides are ranked according to the computed score, and the highest scoring peptide
sequence (best match) is selected for further analysis.
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peptide ion is measured during the first stage of the MS analysis (MS spectrum),
and the mass of the peptide is then computed from it. The mass of the peptide ion
determined this way can be closer to the monoisotopic mass (mass of the peptide
ion containing monoisotopic 12C atoms only) or the average mass (average over
the masses of all peptide ions, including those containing one or more 13C atoms).
In the case of high-resolution mass spectrometers, the measured mass is likely to
be the monoisotopic mass, whereas it is better to choose the average mass in the
case of low-resolution instruments, such as ion traps.

3. Peptide ion charge state. Determination of the peptide mass from MS data requires
the knowledge of the charge state of the peptide ion. In the case of high-resolution
instruments it can be determined quite reliably from the isotope distribution
pattern observed in the MS spectrum. This is not always the case, however, with
low-resolution instruments, such as ion traps. In low-resolution instruments, dis-
tinguishing between singly and multiply charged ions is often possible, but the
exact charge state of a multiply charged ion cannot be easily determined. When
the charge state is not known, the same MS/MS spectrum is searched against
the database at least twice, once assuming +2 and once assuming +3 charge
state (in the case of peptides produced by digesting proteins with trypsin, peptide
ions carrying more than three charges are observed less frequently). After the
search is done, the best scoring assignments obtained for each of the assumed
charge states need to be reconciled, either by selecting the assignment with the
highest database search score, or using statistical methods (29).

4. Parent ion mass tolerance. Only candidate peptides that have the calculated mass
within a certain range of the measured peptide mass are selected from the
sequence database and scored against the experimental spectrum. The choice of
the mass tolerance parameter depends on the type of mass spectrometer used. With
low mass accuracy instruments, such as ion traps, one should specify a fairly large
mass tolerance of 2–3 Da. With TOF-based mass spectrometers it is possible to
achieve a mass accuracy of less than 0.1 Da, and even better mass accuracy of less
than 0.05 Da with Fourier transform MS instruments. 

5. Enzymatic digestion constrain. Many of the proteolytic enzymes used to digest
proteins into peptides cleave specifically after certain residues in the protein
sequence. For example, the most commonly used enzyme trypsin cleaves after
arginine (R) and lysine (K) residues (but usually not if they are followed by pro-
line). Thus, a peptide resulting from trypsin digestion should contain K or R at its
C-terminus (unless it is a C-terminal peptide and the last residue in the protein is
not K or R), and in the sequence of its corresponding protein the residue immedi-
ately preceding the peptide should also be K or R (or the peptide is located at the
N-terminus). The peptide also should not contain any missed cleavages, e.g., internal
K or R residues.

The knowledge of the digestion process can be used to limit the search space
to only those peptides that conform to the digestion rules specific to each prote-
olytic enzyme. All database search tools allow the user to specify the digestion
enzyme as a parameter of the database search. If the enzyme is specified, then the
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number of candidate peptides that need to be analyzed is significantly reduced
(compared with the enzyme unconstrained search allowing any linear stretch of
amino acids). This means that the search time is significantly reduced as well,
because it depends both on the size of the database and the number of candidate
peptides from that database that need to be scored against the experimental 
spectrum. In the enzyme-constrained search, the user can also limit the number of
missed cleavages allowed in the sequence of the candidate peptide.

Performing enzyme-constrained searches, however, has disadvantages. It
becomes impossible to identify peptides that exhibit unspecific cleavage, e.g.,
from posttranslational processing (e.g., removal of the signal peptide) or from
contaminating enzymes present in the sample, or because they are products of in-
source or in-solution fragmentation of other (tryptic) peptides. Similarly, if the
spectrum is produced by a peptide containing more than the allowed number of
missed cleavages, it will not be identified. As a result, in order not to lose those
identifications some researchers prefer to perform enzyme-unconstrained searches,
provided they have significant computational resources to do that. A good alterna-
tive, available in some database search tools, is to perform “semi-constrained”
searches, i.e., searches allowing for a nonspecific cleavage at one of the peptide
termini and for one or two internal missed cleavage sites.

6. Chemical or posttranslational modifications. Database searches can be performed
with one or more static (all occurrences of the residue are modified) or variable
(the residue may or may not be modified) modifications such as oxidation, methy-
lation, phosphorylation, deamidation, and others. For example, if cysteine residues
of all proteins are chemically modified, this should be considered as a static
modification. On the other hand, methionine oxidation (Met +16 Da) should be
specified as a variable modification because not all but only a small fraction of all
methionine residues are oxidized.

3.3. Selection of the Protein Sequence Database 

For some organisms (e.g., human), multiple sequence databases are available
(30). The most commonly used databases are the National Center for
Biotechnology Information’s (NCBI) Entrez Protein database, the NCBI
Reference Sequence (RefSeq) database, and UniProt (consisting of Swiss-Prot
and its supplement TrEMBL). The International Protein Index (IPI) database,
maintained by European Bioinformatics Institute (EBI), is also frequently used,
which is available for six organisms, including human and mouse. All these data-
bases can be easily located and downloaded from the World Wide Web. They vary
in terms of the completeness, degree of redundancy, and the quality of sequence
annotation; which database is the best to use depends on the goals of the experi-
ment. When the identification of sequence polymorphisms is important (e.g., in
proteomics studies of certain diseases that are caused by mutations in the genomic
sequence), the search should be done against large databases, such as Entrez
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Protein. The disadvantage of searching large databases, however, is that in addi-
tion to true biologically significant sequence variants they also contain many
redundant sequences (partial mRNAs, sequencing errors, and so on). The entries
in Entrez Protein and similar large databases are not well annotated. As a result,
researchers have to perform manual analysis to eliminate nonbiological redun-
dancies, which can be time consuming. Searching large databases also introduces
more false identifications—the larger the database is, the more likely it is to
obtain a high scoring but incorrect peptide match by chance. Thus, when the abil-
ity to identify sequence variants is not crucial, it is better to search well-curated
and annotated databases such as Swiss-Prot or RefSeq. For the six organisms for
which it is available, the IPI database represents a good balance between the com-
pleteness and the degree of redundancy. It also maintains cross-references to all
its source data (Ensembl, UniProt, RefSeq), making biological data interpretation
easier. Genomic databases also can be used for MS/MS database searching
(31,32). This is an attractive option when one wants to identify novel peptides not
present in any protein sequence database, e.g., novel alternative splice forms, or
sequence polymorphisms. However, searching genomic databases should be
practiced with great caution. Accurate translation of the DNA sequences into pro-
tein sequences is complicated because of frameshifts, incorrectly predicted open
reading frames, and other factors. The search against expressed sequence tag
(EST) databases is further complicated by the poor quality of the sequence data.
Combined with the poor quality of many experimental MS/MS spectra, genomic
database searches can lead to many incorrect identifications. This type of analy-
sis is also very computer intensive resulting from the large size of genomic data-
bases. Thus, it is advisable to perform searches against genomic databases only
as a last step, i.e., after searches against protein sequence databases failed to
assign a peptide to the spectrum with high confidence.

3.4. Sources of Failure to Assign Correct Peptide Sequences

All MS/MS database search tools perform in a similar way. They return the
best matching peptide found in the database for each input spectrum, except
when there are no candidate peptides in the searched database that satisfy the
search parameters specified by the user (e.g., in the case of enzyme-constrained
searches with very narrow mass tolerance). However, the best match returned
by the database search tool is not necessarily correct (7,29,33). In some cases, e.g.,
in the case of ion trap mass spectrometers, the fraction of all searched spectra that
get assigned correct peptide sequences is less than 50%. The reasons why the
database search tools fail to assign correct peptide sequences to so many exper-
imental MS/MS spectra include:

1. Deficiencies of the scoring scheme. When the correct peptide sequence is in the
database, another (incorrect) peptide can score higher than the correct one owing
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to a deficiency of the used scoring scheme. The scoring schemes implemented in
most commonly used database search tools are based on a simplified representation
of the peptide ion fragmentation process. In particular, in creating the theoretical
fragmentation spectrum, all fragment ion peaks (from the fragment ion series
specified in the search parameters file) are often assumed to be present in the spec-
trum and with equal intensities. In reality, the intensity of a fragment ion depends
on the amino acids located on each side of the corresponding peptide bond. For
example, the presence of a proline in the sequence often leads to a very intense
fragment ion corresponding to the breakage of the peptide bond on the N-terminal
side of the proline. The knowledge of peptide fragmentation chemistry is often
used by experienced mass spectrometrists in the process of manual validation of
peptide assignments to spectra. Research efforts are currently underway to better
understand these phenomena and incorporate them in the scoring schemes (34,35).

2. Low MS/MS spectrum quality. Correct interpretation of MS/MS spectra is difficult
if the spectra are of low quality, i.e., they contain many noise peaks, have low
signal-to-noise ratios, and/or have missing fragment ion peaks owing to incom-
plete peptide fragmentation. Furthermore, some MS/MS spectra are acquired not
on peptides, but on various contaminants introduced in the sample during sample
preparation. The number of low-quality spectra in a typical shotgun proteomics
dataset is high, and most of them cannot be correctly assigned by the database
search tools.

3. Fragmentation of multiple peptide ions. Some MS/MS spectra, which can be a
significant percentage when complex peptides mixtures are analyzed, result from
simultaneous fragmentation of two more different peptide ions having similar m/z
values. Because most database search tools operate under the assumption that the
spectrum is acquired on a single precursor ion, they often fail to assign any of the
peptide sequences to the spectrum.

4. Presence of homologous peptides. Another common problem is the presence of
several different but homologous peptides in the searched database. This problem
is particularly serious in the case of higher eukaryotes. The mass difference
between several amino acid combinations (e.g., D/N, E/Q/K) cannot be resolved
using low mass accuracy instruments such as ion traps, and two of the amino acids,
I and L, have an identical mass. If the database contains several peptides with a sim-
ilar molecular weight that have a high degree of sequence homology, an incorrect
(homologous) peptide can score slightly higher than the correct one (36). This can lead
to incorrect biological interpretation of the data, and the users of the database search
tools should apply additional scrutiny when encountering such cases.

5. Incorrectly determined charge state or peptide mass. When the charge state of a
multiply charged ion cannot be determined, the spectrum is typically searched
against the database twice, once assuming +2 and then +3 charge states (29).
However, if the true charge state is +4 or higher, or if the software incorrectly
classified the spectrum as being produced by a multiply charged ion when it is a
singly charged one or vice versa, then the correct peptide will not be found. Also,
the mass spectrometer can sometimes select the first or the second isotope peak
(peptide ion containing one or more 13C atoms) for MS/MS fragmentation. When
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this happens, the peptide mass computed from the recorded m/z value is incorrect
(it differs by 1–2 Da or more from the calculated monoisotopic peptide mass).
Thus, even if the correct sequence is in the database, it will not be selected and
scored against the experimental spectrum unless the search is performed using a
sufficiently large mass tolerance.

6. Restricted database search. Because performing searches allowing for many dif-
ferent types of chemical or posttranslational modifications is time consuming,
database searching is often done allowing for no modifications, or only the most
common ones, such as methionine oxidation. Similarly, databases are often
searched in the enzyme-constrained manner, e.g., searching only for tryptic
peptides with less than one missed cleavage. A spectrum will not be identified
if it is produced by a peptide containing an unspecified modification, resulting
from an unexpected protein cleavage, or containing more than the allowed num-
ber of missed cleavages. Several database search tools (X!Tandem, SpectrumMill,
Mascot) allow multistep analysis. The first step in such analysis is the enzyme-
constrained search not allowing for any modifications, which then can be extended
to look for peptides with certain modifications, nonspecific cleavage, or with
missed cleavage sites. The additional searches are performed only against the
sequences of the proteins that were identified by at least one high scoring peptide
in the initial search. Alternatively, similar computational efficiencies can be real-
ized without limiting the protein search space by performing more comprehensive
reanalysis of only those spectra that are of high quality and remain unassigned
after the initial search (37).

7. Sequence variants and novel peptides. As discussed previously in Subheading 2.,
identification of novel peptides, or peptide containing sequence polymorphisms
that are not present in the searched protein database is not possible. To identify
such peptides, it is necessary to search large genomic databases, or use database-
independent peptide identification methods such as de novo sequencing.

3.5. Scoring Schemes and Evaluation of the Search Results

Because for many MS/MS spectra the best scoring peptide assignment
returned by the database search tool is incorrect, the user has to evaluate the
search results and filter out false identifications (7,29,38,39). Manual validation
of peptide assignments to spectra by visual inspection is a very time-consuming
process and is simply not feasible in high-throughput analysis of large datasets
containing tens of thousands of spectra. It also requires expertise in MS and
peptide fragmentation chemistry. Instead of manual analysis, the validation of
peptide assignments to MS/MS spectra can be done in an automated or semi-
automated fashion (with only partial manual validation) using the database
search scores reported by each tool as filtering criteria.

The database search score is a score computed according to some scoring
function that measures the degree of similarity between the experimental spec-
trum and the theoretical fragmentation patterns of the candidate peptides.
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Different database search tools use different scoring schemes, and some tools
calculate more than one score. A variety of scoring schemes have been
described in the literature, including those based on spectral correlation
functions, shared fragment counts, spectrum alignment, or based on empirically
derived rules. A detailed review of all different scoring schemes goes beyond
the scope of this chapter, and the following discussion will focus on those
database search tools that are publicly available and presently used in many
proteomics laboratories.

SEQUEST (13) is the first MS/MS database search tool that became com-
mercially available, and it remains one the most commonly used programs. For
each experimental spectrum, SEQUEST calculates the cross correlation score
(Xcorr) for all candidate peptides queried from the database. To compute this
score, the intensity of the peaks in the experimental spectrum are normalized,
low-intensity peaks are removed, and all m/z values in the spectrum are rounded
off to the next integer to create a new (processed) experimental spectrum
(spectrum X). The theoretical spectrum (spectrum Y) is created for each candi-
date database peptide using a set of simplified peptide fragmentation rules. The
SEQUEST’s Xcorr score is then computed via the correlation function Corr(t)
(the product between the vectors X and Y, with Y shifted with respect to X along
the m/z axis by t mass units) as follows:

(1)

where nonzero elements xi and yi represent the peaks in the (processed) exper-
imental and theoretical spectra. The Xcorr score essentially counts the number
of fragment ions that are common between X and Y (allowing for some small
differences in m/z values resulting from mass measurement errors). The score
is also corrected to account for the number of matches occurring at random,
which is done by subtracting the average value of the function Corr(t) within a
certain range around t = 0. For each experimental spectrum, the best scoring
peptide assignment (highest Xcorr score) is kept for further analysis. In addi-
tion to Xcorr, a derivative score, the relative difference between the best and the
second best Xcorr score, ∆Cn, is computed. Both of these scores are useful for
discriminating between correct and incorrect identifications; the higher the
scores are, the more likely it is that the best scoring peptide assignment is correct.
This is illustrated in Fig. 4A, which shows a scatter plot of Xcorr and ∆Cn values
for a test dataset of peptide assignments to MS/MS spectra generated from a
sample of 18 purified proteins, and where for each assignment it is known with
high certainty whether it is correct or incorrect (29). Because Xcorr measures
the number of matching ions, it is not length-independent, as shown in Fig. 4B.
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Furthermore, the distributions of scores are different for peptide assignments to
spectra of different precursor ion charge states.

Another widely used database search tool, Mascot (14), computes a probability-
based score called the ion score (often referred to simply as Mascot score).
Similar to SEQUEST, the Mascot scoring scheme is based on the shared peak
count. The main difference is that the Mascot score is probability based. Instead
of reporting the number of matched peaks (shared peak count), Mascot estimates
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Fig. 4. (A) Separation between correct and incorrect results using SEQUEST’s Xcorr
and ∆Cn scores. ∆Cn is plotted vs Xcorr for correct (open circles) and incorrect (black
triangles) test dataset search results for doubly charged precursor ions (dataset
described in ref. 29). (B) Dependence of Xcorr on peptide length.
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the probability of that number of matches occurring by chance given the
number of peaks in the searched spectrum and the cumulative distribution of
m/z values of predicted ions for all candidate peptides in the database. At the
end, the probability that the match is random is converted into a more conven-
ient scale by taking the logarithm. The ion score is less sensitive to such param-
eters as the peptide molecular weight and the charge state of the precursor ion
than Xcorr, but not completely independent. Unfortunately, the details of the
Mascot scoring scheme remain unpublished, which prevents a comprehensive
and independent assessment of this tool.

A more recently developed database search tool SpectrumMill, as extension
of the earlier program Protein Prospector (15), computes several scores based
on a set of empirically derived rules. The main score again counts the number
of matched peaks (including the presence of neutral losses, immonium ions,
and internal fragments). In addition, a penalty is applied for the presence of
unmatched peaks. The score also incorporates the intensity of the fragment ions
observed in the experimental spectrum, the length of the peptide, and other
factors. The second score measures what fraction of the total peak intensity
(i.e., the sum of the intensities of all peaks in the spectrum) is explained by the
peaks for which there is a match in the theoretical spectrum. These two scores,
and several secondary scores, provide the basis for the evaluation of the signif-
icance of each peptide assignment. Several thresholds of varying stringency are
suggested, but the decision on how to filter the data to achieve sufficiently low
error rate without losing too many correct identifications ultimately lies with
the user of the tool.

Another recently developed commercial program, Phenyx (21), implements
a more complicated model of peptide fragmentation that takes into account the
likelihood of observing a certain type of fragment ions given the peptide
sequence. The score computed by that tool is a likelihood ratio of probabilities
computed based on the two alternative hypothesis, that the match is random
(H0) or true (H1) (21,40,41):

(2)

where P(E|D,seq,H1) and P(E|D,seq,H0) describe the probabilities of observing
the fragmentation pattern E given the peptide sequence seq and various exter-
nal factors D (such as properties of the sequence database) assuming that the
match is correct or occurring by chance, respectively. The calculation of these
probabilities requires large training datasets of MS/MS spectra to empirically
model the intensities of fragment ions as a function of the sequence composition
and other factors. Because peptide fragmentation is dependent on the type of
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mass spectrometer and the ionization source, the best performance can be
achieved by optimizing the scoring function separately for each instrument type.
The practical implementation of this scoring method requires a number of sim-
plifying assumptions (e.g., independence of peptide fragmentation at different
positions in the peptide sequence). As a result, the actual score computed using
Eq. 2 does not represent the likelihood ratio of true probabilities. Thus, the score
itself does not allow easy evaluation of the correctness of the match.

An important question that always comes up in the analysis of MS/MS data-
base search results is how to judge whether a peptide assignment with a certain
database search score (probability-based or not) is statistically significant. This
is particularly difficult when the database search tool does not compute any
statistical confidence measures. As a result, different groups apply different
(often not stringent enough) thresholds, and the resulting datasets may contain
large numbers of false identifications. This is certainly the case with SEQUEST,
which is not a probability-based tool. Mascot improves upon SEQUEST in this
regard, and computes a score threshold, called identity threshold, that can be
used as a guideline for filtering the data. It is described as a value of the ion
score such that a peptide assignment with a score above that value have less
than 5% probability of being a random match (14). However, the identity
threshold is seldom applied in practice. Instead, as in the case of SEQUEST,
different research groups use different, often arbitrarily selected thresholds
instead of the provided identity threshold. The users of SpectrumMill and
Phenyx are facing the same problems.

As a result, many large datasets of peptide and protein identifications published
in the literature in recent years contain large numbers of false identifications,
which diminishes their value. Furthermore, it is practically impossible to compare
or correlate different datasets analyzed using different database search tools, or
even using the same tool if different threshold are applied. Thus, when preparing
a manuscript for publication, the authors are urged to provide as much detail about
the data analysis as possible. A set of guidelines suggesting what information
should be provided in manuscripts can be found (see ref. 39). The need to use
robust and transparent statistical methods for validation of large datasets of peptide
and protein identifications has also been discussed (see refs. 7 and 42).

Two recently developed open source database search tools, X!Tandem (17)
and OMSSA (18), attempt to address the concerns raised above by calculating
for each peptide assignments a statistical confidence measure called the expec-
tation value. The scoring functions implemented in these tools are based on the
shared peak count approach, although significant differences exist in the way
the experimental spectra are processed prior to correlating them with the theo-
retical spectra. In OMSSA, the score is the number of matches between the
experimental and the theoretical spectrum (similar to the Corr[0] term in
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Eq. 1), whereas in X!Tandem the score (called hypergeometric score) includes
extra terms that account for the number of assigned b- and y-ions:

(3)

The process of validating peptide assignments to spectra in these tools is
assisted by the conversion of the search scores into expectation values (18,20,43).
When a peptide assignment to a spectrum with a database search score s is said
to have an expectation value E, it means that by searching the database one can
expect, on average, to observe E number of peptides getting a score equal or
greater than s by random. Thus, the smaller the expectation value is, the less likely
it is that the match is random (therefore, it is more likely to be correct). In
X!Tandem, the conversion of the database search scores into the expectation
value is done empirically. In the empirical approach, illustrated in Fig. 5, the
observed distribution f(s) of the database search scores (a histogram of the
frequency of the occurrence of a particular score s among all performed com-
parisons between the experimental spectrum and the spectra generated for data-
base peptides) is created for each MS/MS spectrum searched against the
database. This distribution is normalized to the total number of candidate data-
base peptides n:

(4)

The normalized distribution fnorm(s) is then fitted using a model distribution P(s)
(e.g., Gaussian distribution). The choice of the model distribution, and the
details of the fitting procedure (e.g., the fitting can be performed using the high
scoring tail of the distribution only, and after log-transformation) can vary
depending on the scoring scheme. The underlying assumption is that P(s) rep-
resents the distribution of random matches. The hypothesis that is being tested
is that the top scoring peptide assignment with the score sm is also a random
match. The first step is to compute an analog of the p value by integrating the
area under the right tail of the model distribution P(s) that extends beyond sm.
Because each MS/MS spectrum is compared with n theoretical spectra gener-
ated for all candidate peptides from the sequence database, the expectation
value E is computed as

(5)

The empirical approach described can be applied to any database search scor-
ing scheme (the latest version of Mascot also reports the expectation value
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along with the original ion score and the identity threshold). Furthermore, in
some cases the expectation value can be computed directly (without empirical
distribution fitting) by assuming a certain probability model for the occurrence
of a particular number of matches s by chance given the properties of the
searched protein sequence database (18,20). This approach is used in OMSSA,
where the number of matches s between the experimental and the theoretical
spectrum is modeled using the Poisson probability function:

(6)P s
s

s

( )
!

exp( )= −µ µ
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Fig. 5. Evaluation of the significance of the best scoring peptide assignment to a
spectrum using expectation values. A histogram of the frequency of the occurrence of
a particular score, s, among all performed comparisons between the experimental spec-
trum and the spectra generated for database peptides is constructed (SEQUEST’s Xcorr
score is used in this example), normalized to the total number of candidate database
peptides n, and fitted using a model distribution P(s) (Gaussian distribution, dashed
line). The area under the right tail of P(s) that extends beyond the top score sm is com-
puted, and then converted into the expectation value. 
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where parameter µ is estimated theoretically as a function of the mass meas-
urement accuracy, the number of peaks in the experimental spectrum, the total
number of calculated m/z values for all candidate peptides in the database,
and the precursor ion mass and charge. For the peptide assignment with the
highest number of matches, sm, the probability P(sm) computed using Eq. 6 is
converted into the expectation value using Eq. 5. The expectation values and
p values are well-known statistical measures that are used widely in similar
applications, e.g., in sequence similarity searches (44). Conversion of the
database search scores into the expectation values reduces the problem of
incompatibility between the scoring schemes used in different search tools.
Still, it is important to point out an important limitation of these statistical
measures when filtering datasets consisting of thousands or tens of thousands
of different observations (peptide assignments in this case). Computed inde-
pendently for each peptide assignment, the expectation values or p values on
their own are not particularly useful measures for filtering large datasets. It is
not always clear what p value or the expectation value one should select as a
threshold for filtering the entire dataset of peptide assignments, and how to
estimate the resulting false identification rates for any particular threshold
value. The filtering of large datasets can be best carried out with a help of sta-
tistical methods that operate not at the level of a single peptide assignment,
but model the distribution of scores observed for all peptide assignments in
the entire experiment (7,29), as discussed in the next section. In that regard,
it is interesting to note that a similar limitation of p values as statistical meas-
ures in the field of gene expression analysis using microarrays has led to the
development of a related data analysis approach based on the estimation of
false discovery rates (45).

4. Statistical Validation of Large-Scale Datasets 
The general method for filtering large-scale datasets of peptide assignments

using cumulative statistical measures, such as false identification rates, has
been first described in ref. 29. For the sake of clarity, the notion of false iden-
tification rates will be first illustrated using a simple approach called reversed
database searching. In this method, all MS/MS spectra from the same dataset
are searched against a composite database consisting of a normal database and
a reversed database in which all protein sequences have been reversed. The
number of assignments of peptides that are present in the reversed protein
sequences only have a score above a certain threshold st counted, Nrev(st), as
well as the total number of peptide assignments above that threshold, Ntot(st) =
Nrev(st) + Nnorm(st). Because all assignments of peptides present in the reversed
sequences only can be assumed incorrect, and assuming that the same number
of random matches occurs to the normal sequences [2Nrev(st) in total], the false
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identification rate, Err(st), resulting from filtering the data using threshold st
can be estimated as

(7)

The dataset of peptide assignments can then be filtered using the threshold
value st that corresponds to the desired false identification rate. For example, if
the target error rate is 1%, one would determine the corresponding st value
using the Err(st) curve computed according to Eq. 7, and apply that threshold
to the dataset.

Although simple and easy to implement (46), the reversed database
approach has several limitations. The false-positive rates determined using
reversed database searching for a particular dataset cannot be directly trans-
ferred to a different dataset. Thus, to ensure the accuracy of the estimates,
the analysis should be repeated for each dataset anew, resulting in longer
database search times owing to increase in the database size. Also, it has
been observed that searching reversed databases can lead to inaccurate sta-
tistical estimates (this problem can be reduced by using randomly generated
or scrambled databases instead of reversed databases). Moreover, it becomes
increasingly hard to use this approach in the presence of multiple database
search scores that are useful for discrimination, or when using additional
parameters, such as the number of tryptic termini or missed cleavages, liquid
chromatography elution time, and so on. Even more importantly, this
approach only allows estimation of the composite false identification rates,
but not the probabilities of the individual peptide assignments. The individ-
ual probabilities are necessary for the calculation of the confidence measures
at the protein level, as discussed in Subheading 5. of this chapter. A robust
and accurate statistical method for validation of peptide assignments to spec-
tra introduced in ref. 29 does not have the limitations of the reversed data-
base search approach. This method is implemented in a freely available
computational tool PeptideProphet (see Table 1). PeptideProphet takes as
input a dataset of database search results and computes, for each peptide
assignment, a probability of being correct. The method is based on the use
of the expectation maximization (EM) algorithm to derive a mixture model
of correct and incorrect peptide identifications from the data, and can be gen-
erally described as an empirical (“learning from the data”) Bayesian
approach. If the database search tool outputs a single score useful for dis-
criminating between correct and incorrect peptide assignments, the method
can be described as an unsupervised leaning method. The basic idea of the
method is illustrated in Fig. 6. Because every peptide assignment can be
classified into one of the two categories, correct or incorrect, the distribution

Err s
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of the scores observed for the entire dataset of MS/MS spectra, ftot(s) can be
represented as a mixture of two distributions:

(8)

where f+(s) and f_(s) are the distributions of the database search score s among cor-
rect and incorrect identifications, respectively. The distributions in Eq. 8, which
describe the results of searching multiple MS/MS spectra against a database,
should be distinguished from the distributions discussed previously in the context
of a single MS/MS spectrum. The distribution f(s) in Eq. 4 represented a histogram
of the frequency of the occurrence of a particular score s for all comparisons of a
single MS/MS spectrum against all n candidate database peptides. In contrast,
ftot(s) represents the frequency of the occurrence of a particular score s for all

f s f s f stot ( ) = ++ −( ) ( )
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Fig. 6. Statistical model for validation of large datasets of peptide assignments to
tandem mass spectrometry (MS/MS) spectra implemented in PeptideProphet. The
model takes as input a list of peptide assignments (best database match for each spec-
trum) and the corresponding database search scores for the entire dataset of MS/MS
spectra. It learns the most likely distributions (dashed lines) among correct and incor-
rect peptide assignments given the observed data (solid line), and computes for each
peptide assignment in the dataset a probability of being correct. 
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peptide assignments to N MS/MS spectra in the entire dataset, with only the top-
scoring peptide assignment to each MS/MS spectrum considered. The probability
pcor(s) that a peptide assignment with a score s is correct can be expressed as

(9)

where p+(s) and p–(s) are the probabilities (normalized frequencies) of observing a
peptide assignment with a score s among correct and incorrect assignments,
respectively, and r is the proportion of correct assignments in the dataset, r = N+/N.
The parameters of the distributions p+(s) and p–(s) (e.g., the means and the stan-
dard deviations if the distributions are modeled as Gaussians), and the overall pro-
portion of correct assignments in the dataset, r, are learned directly from the data
in an unsupervised manner using an iterative algorithm (the EM mixture model
algorithm). It should be stressed that no training dataset (or reversed database
searching) is required for the method to fit the observed distribution ftot(s) and to
compute the probability pcor for each assignment in the dataset, except to deter-
mine what form of the distribution to use for modeling p+(s) and p–(s). In other
words, the method learns the underlying distributions p+(s) and p–(s) without
relying on the knowledge of the distribution parameters determined explicitly by
means of reversed database searching (where the distribution p–(s) is estimated
based on the matches to the reversed sequences) or using training datasets gener-
ated using control samples (in which case p–[s] and p+[s] can be determined using
the knowledge of what proteins are present in the sample).

In the case of the database search tool Mascot, the method can be applied
as previously described, except that the ion score is renormalized prior to the
application of the EM algorithm to reduce its dependence on the molecular
weight (which is done by subtracting the identity score from the ion score).
Also, an additional penalty is applied by reducing the ion score in those cases
where the so-called homology threshold (computed by Mascot along with the
identity threshold) reported for that assignment is unusually high (i.e., outside
the typical range of homology threshold values observed for other peptides in
the same dataset that have similar ion scores). The unusually high homology
threshold reflects the presence of other candidate peptides in the database
scoring almost as high as the best scoring peptide, which lowers the confi-
dence that the best scoring peptide assignment is correct (in that regard, the
difference between the ion score and the homology score is similar to
SEQUEST’s ∆Cn score). Also, because slightly different distributions of
scores are observed for peptide assignments to spectra of different charge
state, each charge state is modeled separately. After fitting the distributions
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(p+[s] is model as a Gaussian and p–[s] as an extreme value distribution) and
determining the model parameters, the probability of being correct is com-
puted for each assignment in the dataset. The computed probability is then
used instead of the original score.

In addition to the database search score, PeptideProphet uses additional peptide
properties such as the number of termini consistent with the enzymatic cleavage
(NTT value), the number of missed cleavages (NMC value), the difference between
the measured and calculated peptide mass (∆M), the presence of a certain amino
acid or a sequence motif in the peptide sequence (e.g., cysteine residues in ICAT
experiments), and other parameters that may be useful for discrimination.
Assuming the independence between these parameters and the database search
score (which holds true for these variables under most common conditions), the
probability that the assignment is correct given the database search score s and the
values NTT, NMC, and ∆M can be written

(10)

The distributions of NTT, NMC, and ∆M values among correct and incorrect
identifications are learned using the EM algorithm along with the distributions of
the database search score. Because the NTT and NMC values are discrete, the dis-
tributions of these variables are not modeled using any probability function, but
rather are computed as proportions of all peptide assignments having a certain value
of NTT and NMC (details of the calculations can be found in ref. 29). The mass dif-
ference parameter ∆M, although continuous, is modeled in a way similar to the
treatment of NTT and NMC, except that it is first converted to a discrete variable by
binning using a fixed number of bins covering the entire range of ∆M values.

The analysis becomes more complex in those cases where one would like to
utilize more than one database search score, but the scores are not independent.
This is the case with SEQUEST, where both Xcorr and ∆Cn scores are known
to be useful for validation of peptide assignments. In addition, SEQUEST cal-
culates several other scores, e.g., the so-called preliminary score Sp that also
adds to the discrimination. At the same time, all these scores are not independ-
ent, e.g., a strong correlation is observed between ∆Cn and Xcorr (see Fig. 4B).
In the statistical model implemented in PeptideProphet, all m different data-
base search scores si are combined into a single composite score F that opti-
mally (under the assumption of multivariate normality and linearity)
discriminates between the correct and incorrect peptide assignments:

(11)F s s s c c sm i
i

m

i( , )1 2 0
1

K = +
=
∑

p s NTT NMC M
rp s NTT NMC M

rp s Ncor ( )
( )

(
, , ,

, , ,
,

∆
∆

= +

+ TTT NMC M r p s NTT NMC M, , ( ) ( , , , )∆ ∆) + − −1

MS/MS and Sequence Database Searching 109

06_Nesvizhskii  7/21/06  5:30 PM  Page 109



The discriminant function coefficients (the constant c0 and the weighting
factors ci that determine the relative contribution of each search score) were
optimized for different types of mass spectrometers (ion trap, TOF, and so on)
using training datasets generated using mixtures of purified proteins. The
statistical model, therefore, is no longer completely unsupervised. However,
the role of the training dataset is relatively minor. The distributions of the new
composite score F among correct and incorrect assignments, p+(F) and p–(F),
are not estimated from the training data, but again modeled in the unsupervised
manner using the EM mixture model algorithms as described in Eqs. 8–10,
with the composite score F used in place of the single score s. The distributions
of the composite score F vary depending on signal to noise in the MS/MS spec-
tra, the search parameters, and the size of the database used, among other fac-
tors. The mixing proportion r varies even to a greater degree, because this
parameter is a reflection of the overall quality of the data. However, because
p+(F) and p–(F), and r are modeled for each dataset anew, the peptide proba-
bilities computed using Eq. 10 remain accurate even the discriminant func-
tion itself is not optimal for that particular dataset. This critical aspect of the
statistical model ensures that PeptideProphet is robust toward variations in
data quality, proteolytic digest efficiency, database size (to some degree), and
other factors.

At present, PeptideProphet can be used to analyze the results of the database
search tools SEQUEST and Mascot, and efforts are underway to adopt it to other
programs as well. Extensive evaluation of the statistical model implemented in
PeptideProphet demonstrated a very good agreement between the actual and
computed probabilities in the entire 0 to 1 probability range. Probabilities com-
puted by PeptideProphet are more efficient at separating the correct from the
incorrect peptide identifications than the database search scores alone. As a
result, PeptideProphet allows researchers to extract more correct identifications
from the data with no increase in the number of incorrect identifications. Peptide
probabilities can also be used to calculate the false-positive identification rates
resulting from filtering the data using a minimum probability threshold pt:

(12)

where pi
cor is the probability that peptide assignments i in the dataset is correct,

Ntot(pt) is the number of peptide assignments passing the minimum probability
threshold pt, and Ninc(pt) is an estimate of how many of those peptide assignments
are incorrect. The ability to estimate false-positive rates allows consistent and
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transparent filtering of large datasets. It also facilitates comparison of different
types of mass spectrometers, or the benchmarking of various mass spectrometer
settings and experimental procedures to identify those that maximize the number
of correct peptide identifications (at the same fixed error rate) per sample or per
unit time. More importantly, computed peptide probabilities allow statistical
estimation of the likelihood for the presence of proteins corresponding to those
peptides in the original sample, as described in Subheading 5.

5. Protein Inference
In most studies, researchers are interested in identifying proteins rather than

peptides. Thus, peptides need to be grouped according to their corresponding pro-
tein, and the statistical confidence measures need to be recomputed at the protein
level (47). Several difficulties have been identified that complicate the process of
assembling peptides into proteins.

1. Nonrandom grouping of peptides. This problem can be best explained using an
illustration in Fig. 7. Peptides that are identified correctly tend to group into a
relatively small number of proteins. In contrast, incorrect peptide assignments
can be described as random matches to entries in a very large protein sequence
database, and almost every high scoring incorrect peptide assignment adds one
new incorrect protein identification. As a result, even a small false identification
error rate at the peptide level can translate into a high error rate at the protein
level (47). This effect becomes more pronounced as the number of spectra in the
dataset increases relative to the number of proteins in the sample. This also
makes detection of correct protein identifications based on a single peptide
(which is often the case with low abundance proteins) difficult, because most of
the incorrect protein identifications also have only one corresponding peptide in
the dataset.

2. Shared peptides. Identification of shared peptides, i.e., peptides whose sequence is
present in more than a single entry in the protein sequence database, makes it
difficult to infer the particular corresponding protein (or proteins) present in the
sample. Such cases most often result from the presence of homologous proteins,
splicing variants, or redundant entries in the protein sequence database (47,48).
This problem is particularly serious in the case of higher eukaryote organisms. As
a result, in shotgun proteomics it is often not possible to differentiate between
different protein isoforms, as illustrated in Fig. 8. In general, this is less of a prob-
lem when proteins are first separated using a multidimensional protein separation
technique (e.g., using 2D gels), where additional information, such as the molec-
ular weight of the sample proteins, can assist in the determination of the protein
identities. A detailed discussion of the difficulties in interpreting the results of
shotgun proteomics experiments at the protein level can be found (49).

Most database search tools allow the user to view the results in a format that
has peptides grouped according to their corresponding proteins. However, in most
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large-scale studies one has to deal with multiple datasets of MS/MS spectra that
are acquired and processed at different times. Thus, computational tools have
been developed for combining peptide assignments from multiple experiments
in order to derive a composite list of protein identifications. The earlier tools
developed for that purpose such as INTERACT (50) and DTASelect (51),
which can be used with SEQUEST and Mascot, are helpful for automating this
process. However, they do not address any of the difficulties previously
described. Another available software tool, DBParser (52) (compatible with
Mascot only), can deal with the cases of shared peptides, but does not at pres-
ent compute any statistical confidence measures for protein identifications.

All the difficulties discussed are addressed in the statistical model imple-
mented in the computational tool ProteinProphet (47). This program takes as
input a list of peptide identifications and their probabilities (output from
PeptideProphet), and computes a probability that a protein is present in the
sample by combining together the probabilities of its corresponding peptides
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Fig. 7. Illustration of nonrandom grouping of peptides according to their correspon-
ding proteins. 10 tandem mass spectrometry spectra were searched against a protein
sequence database and each spectrum was assigned the best matching peptide, with 8 out
of 10 assignments being correct (error rate 20%). Incorrect peptide assignments (shown
in black) result in two incorrect protein identifications (X1 and X2). Eight correct peptide
assignments correspond to only three correct proteins (A, B, C). As a result, in this exam-
ple a 20% false identification rate at the peptide level (two out of ten peptide assignments
are incorrect) translates into a 40% error rate at the protein level (two out of five protein
identifications are correct). The figure is for illustration purposes only, and is not repre-
sentative of actual error rates observed in a typical shotgun proteomics analysis.
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identified in the experiment. Peptides corresponding to “single hit” proteins (no
other peptides identified in the dataset corresponding to the same protein) are
penalized, but not excluded, whereas those corresponding to “multihit” proteins
are rewarded. The appropriate amount of adjustment depends on the sample
complexity, the number of acquired MS/MS spectra, and other factors, and is
determined empirically for each dataset. Shared peptides are apportioned
among all their corresponding proteins, and a minimal list of proteins is derived
that can explain all observed peptides (see Fig. 9). ProteinProphet also
collapses redundant database entries into a single identification and presents
proteins that are impossible to differentiate on the basis of identified peptides
as a group. The software ProteinProphet provides the user with many con-
venient interactive options. The output file is a list of proteins, their computed
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Fig. 8. Three shared peptides are identified that are present in two different splice
forms, SNAP-23b and SNAP-23a, of the synaptosomal-associated protein 23. SNAP-
23a is also identified by one distinct peptide that corresponds to that isoform only, and
thus it can be assumed to be present in the sample. The other isoform cannot be conclu-
sively identified because its presence in the sample is not required to explain the
observed peptides.
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probabilities, and annotations extracted from the searched protein sequence
database. For each protein, all supporting peptide identifications are listed,
along with their computed probabilities and other information (see Fig. 10).
ProteinProphet is integrated with the quantification tools XPRESS (50) and
ASAPRatio (53), and can display the relative protein abundance ratios in the
case of quantitative proteomics experiments using ICAT, SILAC, or similar
approaches (4). The ProteinProphet output file can be viewed using a web
browser, and links are provided that allow easy access to the original search
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Fig. 9. Peptides are assembled into proteins to infer what proteins are present in the
sample. Peptides are apportioned among all their corresponding proteins, and a minimal
list of proteins is derived that can explain all observed peptides (A, B, C, E, and at least
one of the two proteins, F or G). Proteins that are impossible to differentiate on the basis
of identified peptides are presented as a group (F/G). It is not possible to conclude that
protein D is present in the sample.

Fig. 10. (Opposite page) A screen shot of a sample ProteinProphet output file.
Each protein entry is accompanied by its computed probability of being correct, and
when available, quantification information. In addition, annotations extracted from the
sequence database and peptide sequences with links to the original tandem mass spec-
trometry data help the user to interpret the results of the analysis.
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results for each spectrum, and other information. The user can also locate all
proteins that share a particular peptide, and follow up on some of the proteins
that cannot be conclusively identified as present in the sample based on the
sequences of the identified peptides alone. ProteinProphet output files can also
be exported to Excel format for further analysis or journal submission.

ProteinProphet has been extensively tested using both control samples and
complex biological mixtures. It has been shown to produce accurate protein
probabilities having high power to discriminate between correct and incor-
rect protein identifications. Importantly, the protein probabilities computed
by ProteinProphet allow estimation of the false identification rates resulting from
filtering the data at the protein level. In combination, PeptideProphet and
ProteinProphet allow fast, consistent, and transparent analysis of shotgun pro-
teomic data, and provide a consistent way for publishing large-scale datasets of
peptide and protein identifications in the literature.

PeptideProphet and ProteinProphet are distributed as a part of the open source
proteomics pipeline (www.proteomecenter.org/software.php), and are available
in both Windows and Linux versions. More detailed information regarding the
installation and use of these tools can be found on the website previously cited. 
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7

Virtual Expert Mass Spectrometrist v3.0

An Integrated Tool for Proteome Analysis

Rune Matthiesen

Summary
The number of tools described in the literature for analysis of proteome data is growing fast.

However, most tools are not able to communicate or exchange data with other tools. In Virtual
Expert Mass Spectrometrist (VEMS) v3.0 an effort has been made to interface and export to already
existing tools. In this chapter, an outline of how to use the VEMS program to search tandem mass
spectrometry data against databases is described. Additionally, examples on how to extend the
analysis with other external tools are given.

Key Words: Database searching; integrated analysis; validation; Virtual Expert Mass Spectro-
metrist; VEMS.

1. Introduction
Working with mass spectrometry (MS) data analysis in proteomics requires

a broad set of analytical tools. The flow of data is generally divided into three
levels (1): first, continuous raw data from the mass spectrometer should be
noise, isotopic, and charge deconvolued to obtain a peak lists (see Chapter 2).
Second, the MS data should be searched against a database in order to identify
peptides and proteins. Depending on the experiment, the peptides and proteins
could also be quantified at this level. Third, the data should be classified and
stored in databases so that it can be systematically compared to predictions,
broadening existing knowledge and knowledge to be obtained in the future. The
goal of data analysis is, in general, to identify proteins, quantify the identified
proteins, classify the data, and compare the results with already existing knowl-
edge or predictions to extract biological relevance. To obtain a versatile tool that
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can perform all this would be extensive work, therefore, the choice made for the
Virtual Expert Mass Spectrometrist (VEMS) v3.0 (2–4) was to implement
already exciting tools whenever possible. VEMS v3.0 is interfaced to the reten-
tion time predictor program rt (see Chapter 13), basic local alignment search
tool (Blast) (5), TandemX (6), and Lutefisk (7). In addition, VEMS v3.0 has
data export/import functions for exporting to BioEdit (8), SATv1.0 (see Chapter
10), Proteios (9), Excel, significance analysis for microarray data (SAM) (10),
in-house developed PostGreSQL database (see Chapter 16). VEMS v3.0
accepts a range of data formats that will be outlined in the following sections.

This chapter explains, the basis of searching tandem mass spectrometry
(MS/MS) data against sequence databases and illustrates how the obtained search
result can be analyzed further by the tools in the VEMS program and the external
tools interfaced from VEMS.

2. Software
2.1. Required Software

1. VEMS v3.0 (http://yass.sdu.dk).
2. Microsoft Windows. Currently only fully tested on Windows XP and Windows 2000.

2.2. Optional Software

1. Blast (see Note 1). Blast can be obtain from (http://www.ncbi.nlm.nih.gov/
BLAST/) for Windows and Linux. For this purpose the Windows versions should
be downloaded (blast-20041205-ia32-win32.exe). This file is a self-extracting
archive and it should be executed from the Extern directory folder that is located in
the VEMS directory folder. Now VEMS is able to export and import data to Blast.

2. TandemX (see Note 2) can be obtained from http://www.proteome.ca/open-
source.html. TandemX should be located in the Extern/TandemX directory folder
that is located in the VEMS directory folder.

3. Lutefisk (see Note 3) can be obtained from http://www.hairyfatguy.com/Lutefisk/.
Lutefisk should be located in the Extern/lutefisk directory folder that is in the
VEMS directory folder.

4. BioEdit (see Note 4) can be obtained from http://www.mbio.ncsu.edu/
BioEdit/bioedit.html. Bioedit can be located any where on the host machine.
VEMS interacts through the BioEdit through the clipboard. 

5. SATv1.0 (see Chapter 10) can be obtained from (http:\\yass.sdu.dk). SATv1.0 can
be located any where on the host machine. VEMS interacts through the SATv1.0
through the clipboard.

6. Proteios (see Chapter 17) can be obtained from http://www.proteios.org/. VEMS
export XML that can be imported into the Proteois database.

7. SAM (see Note 5) can be obtained from http://www-stat.stanford.edu/~tibs/SAM/.
VEMS inserts the relevant quantitative data directly into Excel so that it can be
used in SAM.
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8. ProteinLynx global server (PLGS) v2.0.5 (see Note 6) is a commercial program
that can be obtained from Waters (Milford, MA). VEMS interfaces to some of the
raw data processing tools of PLGS v2.05. However, VEMS also has built-in func-
tions for raw data handling.

3. Methods
3.1. Searching the Liquid Chromatography–MS/MS Data

Having obtained a large set of liquid chromatography (LC)–MS/MS data for
the given sample the next problem is to identify peptides, peptide modifica-
tions, and proteins. In VEMS one can analyze several LC–MS/MS runs at the
same time even if the different LC–MS/MS runs corresponds to different sam-
ples. This is possible in the VEMS program because VEMS keeps track of
which LC–MS/MS run the MS/MS spectra comes from, and because one can
group the LC–MS/MS runs that belong to the same sample. This feature is
important for recalibration and for quantitative time studies (see Chapter 9).

In the following, search strategies with the VEMS program are discussed
and based on a test set of data that are freely available on http:\\yass.sdu.dk
homepage. The raw data used for this chapter can be obtained by downloading
the 357 Mb zip file (http://yass.sdu.dk/my00234kr/my00234kr.zip). Download
of the VEMS program and the archive file PatatoPrx.pkx is available in the direc-
tory TestData. This file contains processed MS/MS spectra from the raw data file
(see Chapter 2).

1. Start the VEMS application by executing the file “VEMS.exe.”
2. Open the data import window from the file menu (File → Open data → Open mul-

tiple spectra or press sequentially “Alt”+“F”+“O”+“P”).
3. The window in Fig. 1 should now be visible. Area 1 is for choosing files containing

multiple processed spectra. Area 2 is for choosing multiple raw data files and area 3
is for choosing multiple MS peak lists for PMF searches. Areas 4–6 show the
selected files. It is important that the files containing the processed spectra are in
the same order as the raw data files. This normally is not a problem because the
program sorts the spectra alphabetically. However, right-clicking in the area of
selection gives possibilities for manual editing in the list. Such activity can lead to
wrong file associations. The drive letters for the directory listboxes can be changed
by clicking on the small letters. The button “>>” is for choosing a single file and
“>>>” is for choosing multiple files.

4. Choose the processed spectra file “PotatoPrx.pkx” and raw data file “MY00234
kr.raw.”

5. Click “Transfer” and close the window. 
6. When clicking on the page-tab named “Input,” a list of all parent ions of the loaded

MS/MS spectra in the listbox on the right should be visible. There should be
148 MS/MS spectra in total. On the top of the page one can choose how many missed
cleavages to look for (see Note 7). For this data setting the default value to one is fine.
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7. Now the expected modifications should be chosen. First, choose which fixed modifi-
cation to use (see Note 8). In most cases, one would choose carbamidomethylation
of cystein (see Chapter 1) and would therefore press the radio button “CAM.”
However, the test sample under went performic acid oxidation, which double oxi-
dizes methionine, triple-oxidize-cysteine, and double-oxidizes trypthophan (also
giving other oxidation products of trypthophan). Assuming that completeness of the
reaction is unknown, it is safer to assume that these modifications are variable or
potential and therefore the radiobutton “std” for a standard amino acid table should
be chosen. The tables with masses are stored as text files in the VEMS directory and

124 Matthiesen

Fig. 1. Screen-shot of the data import window in VEMS. Areas 1–3 are for specifying
the processed liquid chromatography–tandem mass spectrometry (LC–MS/MS) runs
(peak lists), the raw data files, and MS peak lists. Areas 4–6 are the chosen LC–MS/MS
peak lists, raw data, and MS peak lists.
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can easily be modified. After pressing the “Settings” button the variable modifica-
tion can be chosen by right-clicking on the modification in the listbox (Fig. 2). By
pressing different keys on the keyboard one gets a reduced list with only the modi-
fications on the amino acids that correspond to the pressed key. Pressing key “1/2”
will bring up the full list again. Now choose “oxidize methionine,” “triple oxidize
cysteine,” and “double oxidize trypthophan.” On the setting page there are a number
of settings for the search. In general, there is no need to change the default values
except for the mass accuracy, which by default is set to 0.5 Da for parent ions and
0.5 Da for fragment ions. If the sample has been enriched for phosphopeptides then
it is not expected to contain many peptides from proteins, and therefore it is worth-
while to lower the default protein score threshold in such cases.
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Fig. 2. The settings page. The most important areas are here enclosed either by a box
or an ellipse. Area 1 is where one chooses the variable modifications. This is done by
right-clicking in area 1 and choosing “Add to variable modification-whole database.”
Area 2 is for setting the mass accuracy. Area 3 is for setting the threshold score for
peptide and protein.
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8. To search the FASTA database choose from the listbox “FASTA Databases” (see
Note 9). In the listbox, FASTA sequence files that are stored in the directory “data-
bases” in the VEMS folder are shown. There should already be a small database
of potato peroxidases named “PotatoSmall.txt.” Alternatively download a more
complete database and locate the FASTA file in the “databases” folder. Click on
“PotatoSmall.txt” and press the button “<<.” The “PotatoSmall.txt” should now be
in the listbox at the left, meaning that it has been selected for the search.

9. Start the search by pressing the tab-page “Output” and pressing the button “Start”
or sequentially press “Alt”+“S.”

10. Go to “File → Open annotated data.” A window pops up where one can annotate
the searched data and give suitable comments.

11. The search result together with all the data and settings can now be saved in a
single file by pressing “File → Save → Export to database.” Save the file in the
“Projects” folder in the VEMS directory.

Try to close the program and restart it. Go to “File → Open annotated data.” The
saved file should appear in the listbox in the bottom. Clicking on the file will dis-
play the annotated data. Pressing the “Load” button will reload the MS/MS data,
the search setting, the annotation, and the search result. The following describes
how one can continue analyzing the data. Close the window and press the page-
tab “Output” and click on the radiobutton “View search” or “View quantification.”

3.2. Recalibrating the LC–MS/MS Spectra

As a result of temperature fluctuations of the flight tube, one can often
observe a linear systematic error in mass accuracy. The individual LC–MS/MS
runs can be recalibrated in VEMS by fitting a linear equation to the theoretical
and observed masses of the most confidently matched peptides. The test data
previously listed (see Subheading 3.1., step 4) is already recalibrated so the
method in this section will not improve the mass accuracy. However, the
sequence of steps below can still be tested with the given test set.

1. Right-click in the output window and chose “Re-calibrate.”
2. Select a minimum threshold score. Only peptides with a score above the threshold

will be used for the recalibration.
3. Select which LC–MS/MS run to recalibrate.
4. Click on the “Extract” button to extract peptides from the chosen LC–MS/MS run

with a score above the threshold.
5. Press the button “linear fit” to make a linear fit.
6. If outliers are observed then click on the “Remove outlier” button.
7. Continue to click 5 and 6 until all outliers are removed. For each time button 5 and

6 is pressed the program removes the worst outlier, recalculates the linear fit, and
plots the new set of data points and the linear fitted line. When all the data points
are in the neighborhood of the linear fitted line then all the outliers are removed.
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8. By clicking on the “Mark” button all the peptides that were found to be outliers
get a comment.

9. Set the checkbox “Recalibrate all ions” if fragment ions also should be recalibrated
according to the linear fit.

10. Click the “Recalibrate” button and close the window.

To get an overview of the mass accuracy before the recalibration, click on
“Analysis → Validation → Overall performance” and go to the page-tab “Misc.”
One can now search the data again by sequentially pressing “Alt”+“S” or by
going back to the “Output” tab-page and clicking on “Start.” The new search
result should have a higher mass accuracy. Try running the function “Overall
performance” again and compare with the previous result.

3.3. Repeated Search of the LC–MS/MS Spectra

In the VEMS program one can repeated search MS/MS spectra that are not
assigned in the first search. It is possible to specify new databases (see Note
10), mass accuracies, enzymatic cleavage patterns (see Note 11), and variable
modifications for the repeated search. After the first search it is clear that the
test data has much higher mass accuracy than what was specified for the first
search, and because the search space now will be dramatically expanded it is
advantageous to specify the mass accuracy as precisely as possible to minimize
random matches. The following steps will show how to search the identified
protein sequences for all possible miscleavages and all the variable modifica-
tions in the listbox at the setting window. The list of variable modification is
stored as a text file in the VEMS directory. One can load a new list by right-
clicking on the listbox and choosing “load.”

1. Go to “Tables” page-tab and click on the “Settings” button. Set the mass accuracy
to 0.1 Da for both the fragment and the parent ion in the top of the window.

2. Go to “Analysis → Re-search data → Un-specific and variable.”

Now one should obtain more matched peptides. The number of extra
matched peptides will depend on the size of the search space (see Note 12). It
is highly recommended to manually validate the new assigned peptides.

3.4. Validating the Search Results

Validation of the database-dependent search result is an important part of
analysis. All database-dependent search algorithms, to date, make errors. In
general, the errors are only found in the low-scoring assignments. However, one
has to remember that the database-dependent search is in principle an optimiza-
tion process. This means that if a spectrum of a peptide is searched against a
database which does not contain the peptide, then the spectrum can be matched
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Fig. 3. Different peptides with similar MS/MS spectra. The correct solution (A) explains the peak 405.2 Da, whereas the solution
in (B) does not.
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to a peptide that has a MS/MS spectrum that is quite similar to the correct
peptide (see Fig. 3). It is also not possible to distinguish isoleucine and leucine
in low energy collision-induced dissociation, so the peptides ISTVGEK and
LSTVGEK would have the same spectrum. In addition, most peptides are redun-
dant, meaning that they occur in different proteins. Owing to these shortcomings

130 Matthiesen

Fig. 4. The spectrum viewer window. In this window the spectrum is display and the
peaks automatically annotated by the VEMS program. The button for browsing through
all the peptide assignments found by the database-dependent search is highlighted by
the ellipse.
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it is recommended to have at least two peptides for protein identification. In
VEMS there are a number of filters so one can hide or remove search results
that do not fulfill different validation criteria. These can be found on the tab-
page “Validation.” In the output window one can right-click on a peptide
assignment and choose “View spectrum.” This will show the spectrum viewer.
The spectrum viewer displays the spectrum with automatic peak assignments
(see Fig. 4). From the spectrum viewer one can browse through all peptide
assignments by clicking the buttons “<<” and “>>.”

3.5. Quality Test of Scoring Functions

In VEMS there is the possibility to make custom-made scoring functions as
dynamic link libraries (dlls). If appropriate test set of MS/MS spectra is avail-
able then VEMS can evaluate the different scoring functions by plotting ROC
curves (receiver operate characteristics). The test set should consist of two pop-
ulations of MS/MS spectra. One population is composed of MS/MS spectra for
which the corresponding peptide is present in the searched database (positive
set). The other population consists of MS/MS spectra of which the correspon-
ding peptide is known not to be present in the searched database (negative set).

The ROC curves were invented for radio communications in the 1960s and
have recently been used in several publications for comparing different scoring
functions (11). It is of great importance to have a good positive and negative set.
The positive set used to test VEMS is composed of spectra from known puri-
fied proteins and the negative set was made of spectra corresponding to in vitro
acetylated peptides. In the test search acetylation is then not specified as a
variable modification, so whatever the search and scoring algorithm finds on
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Fig. 5. Score distribution for the negative and positive dataset. The further the two
distributions are separated, the better the scoring function is.
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the spectra from the negative set will be wrong. After searching the complete
test set (both the positive and negative), the resulting plot of scores may have
the appearance shown in Fig. 5. The further the two distributions are apart the
better the scoring function is. However, the ROC curve is a better way to visu-
alize the performance of a scoring function. In the ROC curve the true-positive
rate is plotted vs false-positive rate at different score thresholds (Fig. 6). The
closer to the upper-left corner the curve is, the better the scoring functions.

The ROC curves can be constructed from the two score distributions in Fig. 5
by starting with a high threshold where the rate of true and false-positives are
zero. This could correspond to a threshold score of 20 in Fig. 7A and would cor-
respond to the point (0,0) in the ROC curve in Fig. 7B. Lowering the threshold
to say 15 would give approximately a true-positive rate of 12% and still no
false-negatives. Lowering the threshold further would result in false-positives.
For example, a threshold of 10 would give 14% of the false-positives and
88% true-positives point (0.14, 0.88) in the ROC curve.

3.6. Significance of Peptide Assignments

There exist four basic ways of testing the significance of a peptide assign-
ment. First, a probability model can be made that determines the probability
that the observed spectrum can be explained from a proposed peptide solution.
Such a model is only dependent on how well the theoretical spectrum correlates
with the observed spectrum and how independent it is from the size of the
searched database, the amount of data searched, and the number of variable
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Fig. 6. ROC curves made by testing the same test set with two different scoring
functions.
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modifications searched. Such a model is best if one can explain all peaks in
the observed MS/MS spectra. However, it is often the case that several intense
peaks are left unexplained making such a probability model risky. An alterna-
tive probability model could be to determine the false-positive rates by searching,
for example, the same reversed protein sequence databases with the same data
and search settings. Such models have been claimed to be dependent on how
well the theoretical spectrum correlates with the observed spectrum, the size of
the searched database, the amount of data searched, the number of variable
modifications searched, and the search settings (12). It has also been claimed
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Fig. 7. (A) Hypothetical score distribution for the negatives and positives. (B) The
corresponding ROC curve to the distributions in A.
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that such models can model the complexity of isoforms because all protein
isoforms are still present (12). However, the isoform information is only main-
tained in the reverse sequence direction and has no or little relevance to the MS
data that correspond to sequences in the correct forward direction. A third possi-
bility is to make survival analyses where the low-scoring matches during the
search are recorded and used to estimate the probability function for random
matches (2,3,13). The low-scoring matches are assumed to be random. Such a
model would truly maintain isoform information in the correct sequence direc-
tion. However, such a probability model has the drawback that it requires searches
of large amounts of data against large sequence databases in order to have a high
enough frequency to make a good estimate of the probability for random hits.
Recently, Wany et al. (14) proposed an elegant algorithm to generate random iso-
baric peptides of which the score is used to estimate the probability function for
random matches rather than using sequences in a protein sequence database. The
description given here is slightly modified compared with the one given by Wany
et al. The algorithm consists of two steps. First, a mass array using the integer data
type of size 400,000 is set up by multiplying all mass with 100. This gives a mass
array that covers from 0 to 4000 Da and has a mass accuracy of 0.01 Da. Each
entry in the mass array can be true or false. If a theoretical peptide mass corre-
sponding to the mass of the entry exists, then it is set to true, if not then it is set
to false. The array can now be computed in linear time by the following recursion:

where A[1901] is initialized to true and residue_mass returns the residue mass
of an amino acid. Iterating through the 400,000 entries in A and using the equa-
tion completes the array. In the next step, the mass array A is traced backward
from a given theoretical peptide mass. The back-tracking technique can generate
many random sequences of near-isobaric mass very fast. One can further elabo-
rate on the algorithm by using the amino acid frequency for the organism in
study for the back tracking.

The last possibility is to make a “theoretical” probability function to describe
the probability of random hits. However, all theoretical models so far do not com-
pletely agree with reality and it has been claimed that fully theoretical models are
not practical because of the large amount of parameters that affects them (15).

3.7. Grouping LC–MS/MS Data

The LC–MS/MS datasets can be grouped according to which sample they
belong. It often happens that one cuts out spots or bands from a gel, digests with
trypsin, and performs LC–MS/MS runs of each spot or band. In VEMS there is

A i
true if A i residue mass aa x tr

  =
− =[ _ ( ) ]100 uue

false if A i residue mass aa x false[ _ ( ) ]− =100 [ ]and A i false=
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no need to search runs corresponding to one spot independently because the
LC–MS/MS runs can be grouped. This feature is especially important for quan-
titative time studies (see Chapter 8). Grouping is made on the page-tab
“LC–MS grouping.” It can be done manually or automatically by giving the
number of groups in the spinedit “Group” and clicking on “Automatic” (auto-
matic grouping is only possible if the number of LC–MS/MS runs can be
grouped in equal size).

3.8. Interrogating the LC–MS Profile

In all database-dependent search programs the full information in a LC–MS
profile is not used. In VEMS the use of information in the LC–MS profile in
conjunction with the processed MS/MS spectra have been initiated. For the cur-
rent version, only manual interrogation of the LC–MS profile is available.
There are many examples of useful information hidden in the LC–MS profile.
It can reveal overlapping elution time of isobaric peptides, reveal buffer con-
taminations, locate isotope-tagged molecules, and locate peptides with multiple
phosphorylations. Once isotope-tagged molecules or potential phosphorylated
peptides have been located they can be exported into an inclusion list for future
LC–MS/MS runs.

3.9. Higher Level Data Analysis

VEMS can export all protein identifiers with associated GO annotations and
a matrix with quantitations values so that it can be easily imported into the
bioinformatic and statistical R package (15). The Bioconductor (16) R package
has many tools for knowledge extraction from various biological databases,
in addition to various graph packages that can be used for visualization.
The package GOCluster can be used to statistically analyze whether specific
GO categories are significantly up- or downregulated (17).

4. Notes

1. For grouping the proteins VEMS blasts all identified proteins against all indenti-
fied proteins. The resulting expectation values or number of similar amino acids
obtained from this blast result is used to group the indentified proteins.

2. TandemX is a free search engine that can do database-dependent searches of
MS/MS data. TandemX is used to validate and compare search results obtained by
the VEMS program. 

3. Luetfisk is a de novo sequencing program. Whereas VEMS and TandemX use
sequence databases for interpreting the MS/MS data, Lutefisk only uses information
in spectra for interpretation.

4. BioEdit is a general purpose sequence handling program. VEMS can, via
the clipboard, export protein sequences to BioEdit. BioEdit has many bioinfor-
matics tools such as the ClustalX sequence alignment tool, grouping sequences
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into families, protein hydrophobicity/hydrophilicity plots, and graphical annota-
tion of sequences.

5. SAM is an Excel add-in for finding statistically significant regulated genes based
on multiple comparisons of microarray quantitative data. In VEMS, the same
methods are used for finding significantly regulated proteins or posttranslational
modification based on multiple comparisons of MS intensity data.

6. PLGS is a commercial program for data processing, data searching, quantitation,
and data storage. VEMS interfaces to some of the data processing tools in PLGS.

7. Missed cleavages occur when trypsin does not cleave a site fully. Missed cleav-
ages are often observed if there are basic or acidic residues in the proximity of the
Lys or Arg. It is often assumed that trypsin does not cleave Lys and Arg if the next
amino acid is proline. However, one can often observe a peptide with low inten-
sity corresponding to the cleaved peptide. In VEMS v3.0, the algorithm assumes
that it is cleaved; however, both versions can be found if one specifies a minimum
of one missed cleavage in the search parameters.

8. Fixed modification is defined as a modification that occurs in all cases on the
specified amino acid. Variable modification, on the other hand, may occur but will
not occur in all cases of the specified amino acid.

9. VEMS has two search algorithms. The one demonstrated in this chapter iterates
through all sequences in the specified FASTA database and compares the peptide
sequence with an index set of MS/MS spectra. This algorithm is best when the
searched database is large and many variable modifications are searched. The other
algorithm iterates through all the spectra and compares the spectra with an indexed
sequence database. See the quick guide documentation (http://yass.sdu.dk) for
details on using indexed databases.

10. In VEMS one can chose a new database to search against unmatched spectra. This
may be relevant if contamination from other species is suspected. A well-known
example is contamination with keratin from human hair or from autolysis products
from trypsin. Once the contaminations are known, the sequences can be combined
with the species-specific databases searched and the search can be redone (see
Note 12).

11. Miscleavage is here defined as nonstandard trypsin cleavages. This can be
caused by pseudotrypsin (see Subheading 1.2. in Chapter 1;) or by other pro-
teases from the sample. VEMS finds miscleavage by searching all possible pep-
tide fragments without any cleavage rules or as semi-tryptic, meaning that the
C-terminal part of the peptide has a standard trypsin cleavage site but the N-
terminal is unspecificly cleaved.  

12. The number of possible modifications, m, of a peptide with length n is given by:

(1)

n is the number of residues in the peptide, Vi is the number of possible variable
modifications at residue i, and i iterates over the sequence.

m Vi
i

n

= +
=

∏ ( )1
1
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Quantitation With Virtual Expert Mass Spectrometrist

Albrecht Gruhler and Rune Matthiesen

Summary
Quantitative analysis of proteins and peptides by mass spectrometry has been greatly

advanced by the development of proteomic technologies within recent years. Particularly, label-
ing of peptides and proteins with stable isotopes such as 2H, 15N, and 13C facilitated the unbiased
comparison of protein amounts in distinct samples in a single mass spectrometric experiment.
These methods can be applied to detect quantitative changes in protein amounts and posttransla-
tional modifications such as phosphorylation. Quantitation of mass spectra requires accurate and
efficient bioinformatics tools, which can match corresponding peptides, determine peak intensi-
ties, and calculate relative amounts. In this chapter, we describe the use of virtual expert mass
spectrometrist for the quantitation of mass spectra from samples with peptides and proteins encoded
with stable isotopes.

Key Words: Quantitation; SILAC; chemical labeling; stable isotopes; virtual expert mass
spectrometrist; VEMS.

1. Introduction
Mass spectrometry (MS)-based quantitative analysis of proteins and peptides

has become an important proteomic tool within recent years (1–3). Quantitative
proteomics can be employed to study many complex biological processes
because it enables the unbiased measurement of changes in protein abundance
in response to a certain stimulus. Applications are manifold and include, for
example, the comparison of wild-type to mutant genes, the examination of dif-
ferent developmental stages, or the analysis of cell differentiation. Of special
interest is the quantitative analysis of posttranslational modifications such as
phosphorylation because most signaling processes are regulated by protein phos-
phorylation and dephosphorylation. Recent examples of the successful applica-
tion of quantitative phosphoproteomics include the study of the activation of a
yeast mitogen-activated protein kinase pathway by α-factor and the investigation



of the kinetics of extracellular growth factor receptor signaling (4,5). Many clin-
ical applications of proteomics also require quantitative protein analysis. One
such example is the search for biomarkers for specific diseases in body fluids
and analysis and characterization of tumor tissues by MS techniques (6,7). Yet
another example for the application of quantitative proteomics is the study of the
kinetics of protein transport between different intracellular compartments (8).

Comparative quantitation of peptides and proteins by MS can be achieved by
marking proteins or peptides with stable isotopes and thereby introducing a mass
difference without changing the chemical properties of the peptides, which would
influence their analysis by MS. Labeled and unlabeled samples can be mixed and
analyzed together in the same mass spectrometric experiment. Intensities of the
peptide pairs are then used to calculate relative peptide amounts and to monitor
changes in abundance. Encoding of proteins with stable isotopes can be per-
formed in cell culture by growing the cells in the presence of stable isotopes,
either by adding a nitrogen source containing 15N (9,10), or by substituting amino
acids with labeled counterparts such as 13C6-arginine or 2H3-leu (a method termed
SILAC for stable isotope labeling by amino acids in cell culture) (11,12).
Alternatively, proteins and peptides can be labeled by chemical derivatization in
vitro. A number of reagents exist with distinct properties and affinities for func-
tional groups, such as thiols or free amines (13). Some of the more commonly
used ones are the isotope-coded affinity tag (TCAT) reagent (14) that reacts with
cysteines and the amine-reactive isobaric tagging (iTRAQ) reagent (15), which is
specific for free amines. All of these reagents exist in a light and at least one heavy
form that contains multiple 2H, 15N, or 13C, allowing the quantitative comparison
of two or more samples by MS The advantage of chemical derivatization is that
it can be applied to all samples, even to primary cells and tissues. This is not pos-
sible for the in vivo labeling, which in most cases is limited to cell cultures. There
are some drawbacks, e.g., the need for additional sample handling, often entail-
ing sample loss and the possibility of incomplete labeling or side reactions.

However, isotopic labeling is not practical in all cases, so some approaches
have been developed to quantitate the MS spectra of unlabeled samples. A
rough estimate of protein abundance can be achieved by comparing the number
of identified peptides for an individual protein in different samples: this num-
ber generally decreases at lower concentrations, because the sensitivity of the MS
instrument is not sufficient to identify every peptide. In another approach, peak
intensities originating from the same peptides are compared with each other in
different samples analyzed under identical conditions by matrix-assisted laser
desorption and ionization MS or liquid chromatography (LC)-electrospray ion-
ization–MS (16).

All those approaches have in common the need for dedicated software for 
the processing of mass spectra and the calculation of quantitative data. The 
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comparison of several LC–MS experiments requires the matching of identical
peaks in spite of slightly variable retention times of the LC analysis, the nor-
malization of the individual LC–MS runs, and the comparison of identical peak
intensities. Likewise, quantitation by stable isotope labeling requires the match-
ing of peak pairs and the estimation of peak intensities of the heavy and light
peptides. Virtual Expert Mass Spectrometrist (VEMS) is a program developed
for searching mass spectra (see Chapter 7) and the quantitation of peptides and
proteins. In this chapter, we describe the use of VEMS for the quantitation of
stable isotope-labeled peptides and proteins from mass spectra.

2. Materials
2.1. Required Software

1. VEMS v3.0 (http://yass.sdu.dk).
2. Microsoft Windows. Currently only fully tested on Windows XP and Windows

2000.
3. ProteinLynx global server (PLGS) v2.0.5 (see Note 1) is a commercial program

that can be obtained from Waters (Milford, MA). VEMS interfaces to some of the
raw data processing tools of PLGS v2.05. However, VEMS also has built-in 
functions for raw data handling. Alternatively, MS data in mzXML (http://tools.
proteomecenter.org/) can be converted to the VEMS raw data format and used for
quantitation. If PLGS v2.2 is used instead of PLGS v2.05 then the directory
“C:\PLGS2.2” should be renamed to “C:\PLGS2.”

4. A test dataset containing a result file including all the relevant settings
(ResSILAC.txt), raw data in VEMS format (MS_SILAC_VEMS), and the processed
peak list file (SILAC.pkx) can be found at http://yass.sdu.dk/SILACtest/SILAC.zip.

3. Quantitation of Isotope-Marked Peptides With VEMS
3.1. Requirements for Quantitation

Quantitation of peptides with VEMS requires that the MS or tandem mass
spectrometry (MS/MS) data have been searched against a sequence database.
Installation of VEMS and its use for searching MS/MS spectra against data-
bases is described elsewhere in this volume (see Chapter 7). LC–MS/MS runs
of complex samples contain many isobaric peptides and the correct identifica-
tion of isotope-labeled and unlabeled-peptide pairs in an LC–MS profile relies
both on parent ion masses and the retention time of the peptide on the reverse
phase column. The peak list file used for searching peptides against databases
should therefore include the retention times. This can be achieved by using the
PKX format (see Chapter 2) or by using the mgf format for MASCOT searches.
In addition to the search result and PKX files, the raw LC–MS or LC–MS/MS
data are required, either in the Micromass raw data format or the VEMS raw
data format (see Chapter 2 to convert mzXML to VEMS raw). The following
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steps explain how to quantify peptides and proteins. The search result file
ResSILAC.txt is used as an example.

1. Load the result file ResSILAC.txt. Go to “File → Open data → Import from data-
base” and choose the file. Alternatively go to “File → Open annotated data” and
choose the file by left-clicking on it in the bottom listbox and press the button
“Load.” The loaded file already contains all the necessary settings. The explana-
tion of the various settings is given next.
The VEMS program needs to know where the raw data is located. Therefore, the
file path to the raw data should be updated. Go to “File → Open data → Open mul-
tiple spectra” (see also Chapter 7 for a detailed explanation). Right-click in the
listboxes on the right of the window and choose “clear.” Now use the listboxes on
the left to specify the new file paths for the files SILAC.pkx (file name appears in
the window “Multiple processed MSMS spectra”) and MS_SILAC_VEMS (in the
middle window “raw data”) and close the window. The order of PKX and corre-
sponding raw data files has to be identical, as otherwise unrelated files will be
associated with each other. Note also that the VEMS program counts the number
of files with processed spectra and raw data. This is useful for validating that the
files are correctly specified when many files are processed.

2. Click on the radiobutton “View quantification” (Fig. 1, no. 1) in the output window
to see the search result loaded. Values in the column named H/(L+H)% (see Note 2),
which displays quantitation results, are 0.00 because the data is still not quantified.

3. Quantitation of peptides with VEMS requires that peptide sequences have been
assigned to the fragmentation mass spectra from an LC–MS analysis, because pep-
tide composition is necessary to calculate the masses of the isotope-labeled and
unlabeled-peptide pair and for extraction of their ion currents from the correspon-
ding mass spectra. However, because peptides elute from the reverse phase column
over a time period longer than a MS/MS cycle of the mass spectrometer, the same
peptide pair is usually observed in several consecutive mass spectra. Ratios
between heavy and light peaks can slightly differ between the spectra because ions
statistics are sometimes of lower quality in mass spectra measured at the start or
end of the elution profile, where peak intensities are low. Therefore, quantitation
should be performed over the whole elution range of a certain peptide pair in order
to ensure the best possible accuracy. VEMS has a function that allows you to find
the spectra with the highest peak intensities of the identified peptides: “Edit → Find
elution maximum.” Having performed this search, VEMS will start the quantitation
of a peptide from the mass spectra with the highest intensity. This has the advan-
tage that the probability of a wrong assignment of the corresponding peaks will be
lowest. In spectra with low peak intensity and with high differences between the
intensities of the peptide pair, background peaks can sometimes be erroneously
assigned to peptide peaks, which will distort the quantitation.

4. In the settings window of VEMS, which is opened by “Input page-tab → Settings”
(Fig. 2, no. 1), the parameters for the type of labeling and the stringency of peptide
and peak selection, and peptide and protein quantitation can be defined. The list-
box in the center of the settings window (Fig. 3, no. 1) contains a list with all the

142 Gruhler and Matthiesen



VEMS Quantitation 143

Fig. 1. The output window where the search and quantitation report is displayed.

available modifications, which are displayed in abbreviated form; for example,
leu_deux3 stands for [2H3]-leucine, labeled with three deuterium instead of
hydrogen atoms. Two other commonly used isotopic-labeled amino acids are
[13C6]-arginine and [13C6]-lysine, which are represented by R_13C6 and K_13C6.
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Fig. 2. Input page displaying which files and databases have been loaded and the
peptide list.

These modifications are defined in the file “modiAll.txt” located in the VEMS
directory to which user-defined modifications can be added, thereby providing
great flexibility to incorporate novel reagents in VEMS. The list of modifications is
used both for database searching and quantitation of peptides. To choose a SILAC
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Fig. 3. Setting window where one specifies the search and quantitation settings.

modification for quantitation click on the modification to highlight it. Right-clicking
will open a popup menu and choosing the option “Add to quantification” will enter
the entry into the fields “Labeled amino acid” (Fig. 3, no. 2) and “Mass difference”
(Fig. 3, no. 3), which displays the mass difference between modified and unmod-
ified amino acids. All modifications that are present in this listbox will be applied
to the quantitation of peptides in the results list. It is important that results have
been searched with all the modified amino acids used for quantitation. If chemical
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labeling is used then two modifications should be specified per tag used. By first
highlighting the light version of the tag and choosing “Add light quantification label
light.” The same procedure is used to specify the heavy version of the tag but using
“Add to quantification label heavy.” The chosen light and heavy tags are now shown
in Fig. 3, nos. 15–16 and the mass difference between the tags in Fig. 3, no. 17.

5. The fields in the lower part of the settings window determine the parameters used
for quantitation. There are two different processing algorithms available, which
are chosen by the field “Quantification � Not single ion-chromatogram” (Fig. 3,
no. 4). Setting a tick mark means that the program will analyze mass peaks from
all MS spectra of the LC elution profile for the corresponding peptide. This will
minimize the interference from intensity from co-eluting peptides with similar
masses. If the tick mark is not set then the quantitation will be based on single-ion
chromatograms.

6. The parameters of peak detection and peptide selection can also be adjusted in
VEMS. The value in the field “mDa accuracy” (Fig. 3, no. 5) defines the maximal
mass difference between the theoretical and observed mass of the identified
peptides. The “Threshold score” (Fig. 3, no. 6) specifies the minimum score of a
peptide to be included in the quantitative analysis and ticking “Only unique” (Fig. 3,
no. 7), excludes nonunique peptides (see Note 3). In the field “Max Std” (Fig. 3,
no. 8) the maximum value for the standard deviation between quantitation of the
different peaks for a given peptide can be entered (see Note 4). The minimum
number of peptides per protein (Fig. 3, no. 9) defines how many peptides are nec-
essary for a protein to be quantitated and reported in the result list (see Note 5).
Peptides in the search result list are numbered and quantitation can be started at a
certain peptide number by entering this figure in the field “Use start from” and
ticking off the check-box (Fig. 3, no. 10).

7. The remaining fields can be used for automatic correction of ratios, where appro-
priate. For example, if in a SILAC experiment the incorporation of an isotopically
labeled amino acid has been incomplete, the calculated ratios between intensities
of heavy and light peaks do not represent the actual relative peptide amounts in the
sample. This is because part of the peptides from the labeled sample will be
unmodified and the light peptide, therefore, will be over-represented. This can be
corrected for by specifying the percentage of isotopic labeling (Fig. 3, no. 11).
VEMS will then adjust the peak intensities of heavy and light peptides accordingly
and calculate the correct ratios. In cases where incomplete labeling will not
increase the amount of the light peptides (e.g., using chemical modification of
peptides), the box below should be used (Fig. 3, no. 12).

8. The bottom fields on the settings pages deal with satellite masses that can occur in
some cases. An example for this is the appearance of a peak with a mass 1 Da lower
than the monoisotopic mass of the labeled peak in SILAC experiments. This satel-
lite peak is caused by the small percentage of 12C atoms in the isotope-encoded
amino acids and its intensity varies between different amino acid batches. It is also
known that excess of [13C6]-arginine can be converted by the cells to [13C5]-proline
(17), which causes a satellite peak with a mass of +5 Da in proline-containing
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peptides of the stable isotope-encoded sample. In this case all peptide quantitations
of peptides containing proline need to be corrected. First, one needs to specify,
using capital letters, the amino acids that affect quantitation (Fig. 3, no. 13). Next,
one gives an estimate of the intensity of the satellite peak given as X% of the heavy
peak for a peptide having only one occurrence of one of the affected amino acids
(Fig. 3, no. 14).

3.2. Quantitation With VEMS and Analysis of Results

When the quantitation settings are specified, and search results and raw data
files have been loaded, quantitation is started by pressing the “Quantify” button
(Fig. 2, no. 2). A counter will appear on the top bar of the program informing
about the progress of quantitation. If all peptides are quantitated, results can be
listed by clicking on “View quantification” (Fig. 1, no. 1) in the output page. Two
additional columns will appear in this report showing the values for quantitated
peptides (Fig. 1, no. 2) and their standard deviation (Fig. 1, no. 3). Quantitation
results for individual peptides are given as the percentage ratio H/(H+L) × 100%
(see Note 2). Protein quantitation is performed by clustering the ratios of all
quantified peptides and subsequent removal of outliers. Quantitated peptides
with a standard deviation larger than a threshold value are not considered for
protein quantitation, even if the values for their ratios are displayed in the results
list. The threshold for outliers is defined by the maximal allowed peptide stan-
dard deviation in the settings page (Fig. 3, no. 8). The average of all quantitated
peptides is calculated and displayed in the bottom line for each protein along
with the standard deviation for protein quantitation and the number of quanti-
tated peptides (Fig. 1, no. 4). Note that the standard deviation for protein quan-
titation is a measure of the differences between the peptides and is different from
the standard deviation for individual peptides.

3.3. Validation of Peptide Quantitation

VEMS offers several options for the analysis and validation of peptide and
protein quantitation results. “Analysis → Quantification → Plot quantifica-
tion” will open a window that lists all quantified proteins and displays their
ratios graphically. The minimum number of quantitated peptides per protein
can be specified and graphs are updated by clicking on the “Plot” button.
“Analysis → Quantification → Quantification overall” displays the statistics of
the analysis in the page-tab “Misc,” such as the number of quantitated pep-
tides, outliers, and proteins.

An important feature of VEMS enables the manual validation of peptide quan-
titation. It is accessed by right-clicking on a highlighted peptide and choosing
“View peptide for quantification” from the popup menu. The “Quantification”
page (Fig. 4, no. 1) will open and display the extracted peptide peaks from the
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Fig. 4. Virtual expert mass spectrometrist (VEMS) window for validating peptide
quantitations.

raw data file. The fields in the upper-left corner of the window display peptide
sequence and masses for heavy and light peaks, retention time, scan number, and
the corresponding file names (Fig. 4, no. 2). The large graph displays the peptide
peaks in the charge state of the sequenced peptide (Fig. 4, no. 3), the other graphs



display the peptide peaks in other charge states, if they are present. Peaks are
extracted from the mass spectra corresponding to the fragment spectrum of the
identified peptide or to the spectra with the highest peak intensity, if the function
“Find elution maximum” has been run. With the arrow buttons (Fig. 4, no. 4) one
can move to the preceding or succeeding mass spectra. This feature allows one to
inspect the peptide peaks for peak overlap, background noise, and isotope distri-
bution and to ensure that peak pairs are correctly matched. It is also possible to
quantitate peptides in this window, either for single spectra or over the whole elu-
tion profile, by clicking the “Quantitation” (Fig. 4, no. 5) or “Automatic” (Fig. 4,
no. 6) buttons, respectively. The results are displayed as a matrix in the field
below if the checkbox “Output Quantification” has been marked (Fig. 4, no. 7).
The first column (Fig. 4, no. 8) contains the scan number of the mass spectra fol-
lowed by the charge state of the peptides (Fig. 4, no. 9). There is one line for
charge states one to four (Fig. 4, no. 10). The next six columns (Fig. 4, no. 11)
display the intensities for three peaks (the monoisotopic mass peak and the two
following isotope peaks) of the light peptide and the corresponding heavy peptide,
followed by three values for the ratios H/(H+L) for each of the isotope peak pairs
(Fig. 4, no. 12). Results for individual mass spectra and charge states can now be
selected by ticking the box at the beginning of each row. Clicking on “Re-cal”
(Fig. 4, no. 13) will calculate the average of all selected peptide quantitations and
display them together with the standard deviation (Fig. 4, no. 14). These values
can then be entered in the field “Manual Quantification” (Fig. 4, no. 15). Clicking
on “Submit” (Fig. 4, no. 16) will enter these values in the results list replacing 
the existing values. If a peptide is to be excluded from quantitation from peptide
overlaps for example, “na” can be submitted.

In the field “Comments” (Fig. 4, no. 17) an explanation for the correction
can be entered. These functions of VEMS provide the possibility of easy and
flexible editing and correction of quantitation results and simplify the manual
validation of peptide quantitation.

3.4. Extended Analysis Functions

VEMS contains a number of features designed for the analysis of complex
experiments consisting of more than one LC–MS analysis. Examples for this
type of analysis are multidimensional chromatography, where the sample is 
separated into several fractions, or experiments with several samples for the 
different time points. VEMS keeps track of the source file for each peptide and
provides a function for grouping individual LC–MS runs.

In order to compare individual samples, the sample source has to be added to
the comment section of each peptide. This is done by choosing the “Analysis →
Validation → Sample to comment” function. After updating the results view,
the name of the PKX file is displayed at the end of each line (see Note 6). 
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The command “Analysis → Quantification → Quantification report over sam-
ples” will list the results for each sample in the “Compare” window. There is a
line for each identified protein with quantitation results, standard deviation, and
the number of quantitated peptides in each sample. This list can be exported to
Microsoft Excel by right-clicking in the window and choosing “Export to Excel.”

The quantitation of sample groups can be analyzed in the same manner.
LC–MS runs can be grouped in the “LC–MS grouping” window. Clicking on
“Import” will display a list of all loaded raw data files. The active group num-
ber is shown in the top-left spinedit box. Right-clicking on a highlighted file
name allows it to be added to a group. It will appear in the window on the right
side with its group number after the file name. After assigning all (or selected)
files to groups, the grouping function is activated by checking “Use grouping.”
The group annotation must then be entered to the comments field of the results
list using “Analysis → Validation → Group to comment” (see Note 7). The
data for protein quantitation of the individual groups are displayed in the
“Compare” window using “Analysis → Quantification → Quantification
report over samples” as described for individual samples. If the result is saved
then the grouping information is also saved.

4. Notes
1. PLGS is a commercial program for data processing, data searching, quantitation,

and data storage. VEMS interfaces to some of the data processing tools in PLGS.
2. Quantitation results in VEMS are given as the ratio between the intensity of the iso-

tope-labeled peptide and the sum of the intensities of the labeled and nonlabeled
peptides expressed as percentage Q = H/(H + L) × 100%. This value can easily be
converted to the ratio H:L by the formula H/L = Q/(1 – Q). A value of Q = 50% cor-
responds to equal amounts of isotope labeled and unlabeled peptides. Q = 66.6%
corresponds to a twofold excess of the stable isotope-labeled form, and Q = 33.3%
to a twofold excess of the unlabeled peptide.

3. The uniqueness of a peptide is database dependent, because redundant databases
(including the NCBI nonrepetitive database) may contain several versions of the
same protein, thereby rendering peptides from these proteins nonunique.

4. The ratio between heavy and light peptide peaks is calculated by comparing the
intensities of the two monoisotopic mass peaks and the two following isotope
peaks of the heavy and light peptide to each other. Because of peak overlap with
unrelated peptides of similar mass and background peaks or shifts in the isotopic
distribution between heavy and light peptide peaks, the ratios can differ for the
three peak pairs. Large discrepancies indicate errors in the quantitation and should
therefore be manually validated. The specified value for the peptide standard devi-
ation defines the maximal difference between the three ratios.

5. Every peptide of the results list will be processed, meaning that if a peptide has
been sequenced and quantitated several times, it will also count several times, if it
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has not been removed from the results list previously. Likewise, if both the heavy
and light forms have been identified, they will count as two quantitated peptides.
In order to only count the same peptide once for each LC–MS run, go to settings
and click the checkbox “Count only same peptide from same LC–MS run once.”

6. Updating views can be done by “Analyze → Refresh view,” or by clicking the
radiobuttons “View quantification” or “View search.”

7. If the some of the peptides have comments already attached then these should be
removed by “Edit → Remove comments” before running “Analysis → Validation →
Group to comment.”
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Sequence Handling by Sequence Analysis Toolbox v1.0

Christian Ravnsborg Ingrell, Rune Matthiesen, 
and Ole Nørregaard Jensen

Summary
The fact that mass spectrometry have become a high-throughput method calls for bioinfor-

matic tools for automated sequence handling and prediction. For efficient use of bioinformatic
tools, it is important that these tools are integrated or interfaced with each other. The purpose of
sequence analysis toolbox v1.0 was to have a general purpose sequence analyzing tool that can
import sequences obtained by high-throughput sequencing methods. The program includes 
algorithms for calculation or prediction of isoelectric point, hydropathicity index, transmembrane
segments, and glycosylphosphatidyl inositol-anchored proteins.

Key Words: Isoelectric point; hydropathicity index; transmembrane segments; glycosyl-
phosphatidyl inositol-anchored proteins.

1. Introduction
There are many bioinformatic methods for prediction and calculation based

on sequence information available on the internet. However, most of them work
through a web interface that is not optimal for high-throughput batch submis-
sion. Although web-based programs are, in general, user-friendly and can be
reached from almost anywhere, they have a number of drawbacks such as speed
limitation, instability of links, the dependency on the internet connection, and
the stability of the host server.

Another issue is that many of the methods for sequence analysis are scattered
out in many different programs making it a tedious task to make an extensive
sequence analysis approach. In sequence analysis toolbox (SAT) v1.0 a number
of already published methods for sequence analysis have been included. A number
of the methods have been improved compared with the original published 
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methods. The program accepts sequences in batch modes making it compatible
with high-throughput methods.

1.1. Isoelectric Point Prediction

The isoelectric point (pI) of a polypeptide is defined as the proton concentra-
tion ([H+]) at which the polypeptide has no net charge. A protein usually has
many different ionizable groups that take on different charges at different pH
(pH = –log[H+]).

The Henderson-Hasselbach Eq. 1 (1) is used to derive the partial charge of
an amino acid with a known pKa value. The partial charge is defined as the frac-
tion of a molecule with a positive or negative charge at a given pH value (2):

(1)

Rearranging and isolating the partial charge in Eq. 1 for the acidic residues
gives Eq. 2 (3)

(2)

Obtaining a simpler expression is done by multiplying Eq. 2 by the factor
10pKaa

(3)

And for basic residues the partial charge becomes (3)

(4)

The total partial positive charge (c+) in a polypeptide is given by the sum of
fractions of positive-charged amino acid:

(5)

A similar expression for the total fraction of negative charges (c–) can be
deduced:

(6)

In Eqs. 5 and 6, naa denotes the number of the amino acid species, aa, in the
polypeptide. pAA denotes the set of positive-charged amino acids: pAA = (lysine,
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arginine, histidine, N-terminal residue), and nAA the set of negative-charged
amino acids. nAA = (asparatate, glutamate, cysteine, tyrosine, phosphor serine/
threonine, C-terminal residue), because there is only one N- and C-terminal in a
polypeptide, nNter = nCter = 1.

Subtracting Eq. 6 from Eq. 5 yields Eq. 7, which describes the total partial
charge of a polypeptide:

(7)

Setting Eq. 7 to zero and solving for the pH, yields the pH, at which the net
charge is zero—i.e., the pI.

Analytically this equation is hard to solve (3), but different numerical methods
can be applied to solve it. In Weiller et al. (3), they scan through the pH scale
with a step size of 0.1 to find a zero solution.

Another approach is to use the bisection method (4), which half the searched
interval for each iteration. This can be more formally stated as:

Given a function f and two points xk and yk that satisfy the constrain, given
in Eq. 8:

(8)

Let Xk + 1 be the midpoint between xk and yk as written in Eq. 9

(9)

Choose xk+1 = xk or yk+1 = yk, so that the condition in Eq. 10 is satisfied.

(10)

Continue this approach with finding a new midpoint, until the error (ek = |xk – yk|)
becomes satisfactory.

The error in iteration k (ek) of the bi-section method can be estimated by
Eq. 11.

(11)

An interesting feature about a numerical method is to know how many 
iterations it requires to reach a given precision. Rearranging and solving for k
in Eq. 11 yields Eq. 12 that can be used to estimate the number of iteration k
needed to reach a precision within |ek|.
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To obtain a result within the error range of ±0.1 (ek = 0.1) in the pH-scale
0–14.0 (xo = 0, yo = 14), eight iterations are needed according to Eq. 12.

The bisection method is easily applied to Eq. 7 because the problem of find-
ing two points satisfying Eq. 10 is practically nonexistent. At a pH close to zero
the polypeptide will always be positively charged and likewise at a pH close to
14.0 it will have a net negative charge.

The linear approach applied in (3) yields a time-complexity of O(n), whereas
the bisection method gives a time-complexity of O(log2 n). For large n (a large
dataset) the difference between those two approaches become significant. The
big-O notation was adapted from ref. 5.

The model that the pI prediction is based on has some limitation. First of all,
this model was deduced to predict pI in a denaturizing environment (6). In this
environment the polypeptide are approximated as linear with no secondary
structures and, thereby, no intramolecular interactions between charged groups.
Second, the model depends (significantly) on which pK values are used. In this
work the pK values are adapted from ref. 7.

The N- and C-terminal of the polypeptide are amine and carboxylic acid
groups respectably, with pK values depending on the residue. Thus, for the
model to hold the N- and C-terminal has to be unmodified (i.e., no acetylation,
methylation, or amide formation). This constraint also applies to the rest of the
polypeptide, which means for the model to hold, no posttranslational modifica-
tion must be present. However, the implemented algorithm here releases this
constrain by allowing phosphorylation on serine, threonine, and tyrosine.

1.2. Prediction of Glycosylphosphatidylinositol-Anchored Proteins

Glycosylphosphatidylinositol-anchored proteins (GPI-AP) belong to a subset
of membrane-associated proteins without internal transmembrane spanning
regions (TSRs). GPI-APs are found in all eukaryotic organisms and exhibit
functions as receptors, adhesion molecules, ectoenzymes, differentiation antigens,
and adaptors (8).

After translation of a protein targeted for GPI anchoring, a preformed GPI
glycolipid is attached to the target protein in a transamidation process that leads
to the release of the C-terminal peptide from the target protein.

The GPI glycolipid is synthesized on the luminal side of the endoplasmatic
reticulum, which causes the GPI-AP to face the exterior of the plasma mem-
brane (9). Proteins targeted for GPI modification show some common traits that
can be utilized in the identification of these based on predictions from their 
primary structure:

1. N-terminal signal sequence that addresses the protein to the endoplasmatic
reticulum.

2. Hydrophobic C-terminal region.
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3. Fairly conserved ω-site (the C-terminal cleavage site) sequence motif.
4. No internal TSR.

Because GPI-APs are a wide-spread phenomenon in the eukaryotic king-
dom, and display a set of constrained properties, they possess an interest in a
bioinformatic view.

The algorithm used for SAT v1.0 for the prediction of GPI-AP is adapted
from detection of GPI (DGPI) (10). The algorithm uses the six properties listed
next (11) to determine whether a given protein is attached to the membrane by
a GPI anchor. If this is the case, then it determines the C-terminal cleavage site
(ω-site). The DGPI algorithm is build on five rules:

1. The protein must contain an N-terminal secretion signal. The probability of the
presence of a secretion signal is predicted using a method described in ref. 12.
This method is based on the formation of weighted matrix calculated from an
annotated set of secretory signal sequences. 

2. The protein’s C-terminal must contain a hydrophobic region of a minimum length
of 13 amino acids. In order to determine the C-terminal hydrophobic region of the
protein, the kd-index together with the sliding window principle is used. From an
annotated GPI-AP dataset (Swiss-Prot) it was determined that a window-size of 15
was appropriate for predicting the presence of a hydrophobic region in the GPI-
anchored proteins (10).

3. Between the hydrophobic C-terminal and the ω-site there has to be a hydrophilic
region with a minimal length of three amino acids (10). This region is deter-
mined with the same parameters as described in rule 3 (i.e., kd-index, window
size 15).

4. According to ref. 10 the ω-site can be found seven amino acids before the C-terminal
hydrophobic region.

5. This rule is an improvement in the prediction of the ω-site from rule 4. From a
Swiss-Prot dataset consisting of 172 annotated GPI-AP with a known ω-site, the
amino acids distribution neighbouring (ω+1 and ω+2) the ω-site was calculated.
This allows one to verify rule 4 and determine the most potential ω-site based on the
above calculated distribution.

However, the DGPI algorithm does not make use of the fact that GPI-AP
does not contain any internal TSR (11). So in this project the GPI predictor
makes use of this fact and thereby adds an extra rule that states:

6. No internal TSR in the proteins. TSRs are predicted using THMHMM 2.0 (13) or
the local TSR predictor using the kd-index with the sliding window principle.

1.3. Testing the GPI-AP Prediction

The objective with this section is to give an overview of the quality of using
the implemented GPI-AP prediction tool, DGPI. DGPI has been tested on a
comprehensive dataset (10). The dataset consists of 20,000 proteins from the
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Swiss-Prot database, where 349 were annotated to be GPI-AP. The results from
this test are as follows:

1. 977 proteins were predicted with DGPI to be GPI-AP.
2. 270 of the 977 proteins where predicted correctly, meaning that the 270 proteins

were annotated GPI-AP in the Swiss-Prot database.
3. 349 – 270 = 79 GPI-AP were not detected with DGPI.

In other terms this yields 270 true-positives (TP), 20,000 – 977 = 19,023 true
negatives (TN), 79 false-negatives (FN), and 977 – 270 = 707 false-positive
(FP). Taking the size of the dataset into account, an informative error analysis
can be carried out.

From the previously listed four values a rough estimate shows that DGPI
(rule 1–5; see Subheading 1.2.) captures about three out of four GPI-AP, but
on the other hand, only predicts a little fraction as being GPI anchored when
they were not.

A more formal way of measuring the effectiveness of a prediction method is to
divide its accuracy into specificity and sensitivity. Specificity is defined as (14):

(13)

Applying Eq. 13 to the DGPI results yield a specificity of 96.4%.
Consequently, the DGPI-prediction method is highly specific, i.e., relatively rarely
overpredicts.

Sensitivity is measured using (14):

(14)

Sensitivity is the term used for a prediction method to measure how well the
method captures the TP. Applying Eq. 14 to the DGPI results yields a sensi-
tivity of 77.4%. This implies that the DGPI method does not capture all real
GPI-AP.

These results were obtained without using rule six in Subheading 1.2. In
SAT v1.0, rule 6 has been added to the GPI-AP-prediction algorithm. The accu-
racy of the transmembrane predictor used for rule 6 is also of importance. SAT
v1.0 uses THMHMM 2.0 (13) for prediction of TSR. The THMHMM 2.0 pre-
diction method has been evaluated and showed an approximate specificity of
80% in general (15). Approving a specificity of 80% makes it highly unlikely
that the THMHMM prediction method will predict nine TSRs as FP (the like-
lihood would be: (1 – 0/80)9 = 5.12 • 10–7).

sensitivity TP
TP FN

=
+

specificity TN
TN FP

=
+
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1.4. Membrane Proteins

Membrane proteins play an important role in the cell in areas including cell-
to-cell signaling and the transmembrane transport of ions and solutes. Also,
they have achieved interest in the pharmaceutical industry owing to their suc-
cess as therapeutic targets for medicine (16). Transmembrane proteins do not
differ significantly in various organisms (15,17), and it is estimated that
20–30% of all genes in most genomes encode membrane proteins (13). This
implies that membrane proteins are widely abundant in most organisms, and
therefore, also should be given attention in order to understand their function.
However, membrane proteins compromise a major challenge for protein chem-
istry because of their insolubility in aqueous solution and difficulties in crystal-
lizing for structural analysis (16).

Several approached for predicting TSRs from a naked protein sequence have
been proposed (13,16). In SAT v1.0 a simple but strong TSR predictor has been
implemented.

2. Material
2.1. Analysis of Sequence Data

1. SAT v1.0 (requirement, http://yass.sdu.dk/SAT/SATv1.0).
2. Java 2 platform (requirement; http://java.sun.com/j2se/1.4.2/download.html).
3. VEMS v3.0 has an interface to SAT v1.0 that makes it possible to export peptide

and protein sequences obtained by tandem mass spectrometry searches in VEMS
to SAT v1.0 (optional; http://yass.sdu.dk).

2.2. Software Development

1. Eclipse is provided by the Eclipse Foundation. The Eclipse Foundation is a
nonprofit corporation formed to advance the creation, evolution, promotion,
and support of the Eclipse Platform and to cultivate both an open source commu-
nity and an ecosystem of complementary products, capabilities, and services
(http://www.eclipse.org).

2. Java 2 platform (requirement; http://java.sun.com/j2se/1.4.2/download.html).

SAT v1.0 was developed on the Java 2 platform, standard edition software
development kit v1.4.2_04 (J2SE SDK) by Sun Microsystems (Santa Clara, CA)
using the eclipse editor. The Java language is a platform-independent object-
oriented programming language. Java is compiled to an intermediate byte code
that is interpreted on the fly by the Java interpreter. In Java one can chose to make
applets or applications. SAT v1.0 is programmed as a java application because
this gives more programming freedom owing to security risks with applets.

SAT v1.0 is modular designed in three layers (implemented in java as pack-
ages) as illustrated in Fig. 1. The user interface layer contains the code, handling
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user interactions with the program. The responsibility of the function controller
layer is to control the connection between the user interface and the data manip-
ulation layer, which holds responsibility for programming code doing calcula-
tion, retrieval of sequences, prediction, and so on. This modular structure
enhances the flexibility of the program, which mean that new functionality easily
can by implemented.

3. Methods
3.1. General Overview of SAT v1.0

There are two types of tasks that SAT v1.0 handles. The first one is protein
sequence retrieval tasks.

1. Retrieve a set of protein sequences from their respective accession numbers.

a. Accession numbers can be retrieved from a flat file (a file where each line 
contains an accession number).

b. From the list of these accession numbers the respective protein sequences can
be retrieved from a FASTA file, Swiss-Prot file, or the ExPASy www-service.

c. A proteomic experiment containing peptide and protein sequences can be
imported from VEMS v3.0 (18) (see Chapter 7).

2. Perform sequence predictions/calculations like:

a. pI/mass.
b. Hydropathicity index.
c. TSR/Import prediction performed by THMHMM (13).

d. GPI-AP predictions.

e. Secretion signal peptide prediction.

f. Secondary structure prediction.

g. Amino acid composition.

160 Ingrell, Matthiesen, and Jensen

Fig. 1. The overall structure of sequence analysis toolbox (SAT) v1.0. SAT v1.0 is
divided into three minor substructures each with a well-defined area of responsibility.
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Fig. 2. The information flow for sequence handling in sequence analysis toolbox
v1.0. Accession numbers can be retrieved from a flat file and protein sequences are
retrieved from multiple Swiss-Prot files, multiple FASTA files, or the ExPASy www-
service. Different predictions/calculations can be applied or the retrieved sequence can
be written to a file. Another approach is to save the obtained sequences to the protein
database (DB) and if available also save peptides to their respective proteins. Last, pro-
teins identified by the mass spectrometry interpretation program Virtual Expert Mass
Spectrometrist v3.0 (38) can be imported. Prediction of transmembrane spanning
regions by THMHMM 2.0 can be imported to the protein DB.

These tasks can be undertaken by using the main frame (window) of SAT v1.0.
The information flow for sequence handling in SAT v1.0 is illustrated Fig. 2.

SATv1.0s main window of its graphical user interface (GUI) is shown in Fig. 3.
In the following text, the numbers mentioned will refer to numbers in Fig. 3. When
specifying how to extract information for further processing you use the combo box
1, 2, and 7. Afterwards, you specify where the information is to be retrieved from
(which files) in the fields 4 and 5—this is done by using the file-choosers that
appear when pressing the buttons left of the fields (4 and 5). With combo box 3,
you choose which property you want to examine, and set possible parameters to it,
with the spinners at number 8. The elliptic area mark number 6 is used to specify
the output file, in which the result from the prediction/calculation are written to
(results can be further processed by, e.g., Microsoft Excel). Another approach,
when using SAT v1.0, is to add the sequences to the internal data structure “protein
DB” and use the operators in combo box 7 to extract different information about
the stored sequences. The dominating white-space that fills the bottom half of
Fig. 3 is used to display whether a given task has been completed correctly or not.

The second type of task is the administration of multiple sequences for
which SAT v1.0 has implemented a data structure (protein DB) to hold protein
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Fig. 3. The main window of the SAT v1.0 application. (1) In this combo box you choose with which method you want to extract
the accession numbers from the file defined in field 4. In combo box 2 you choose from what and how you want to extract sequences
(peptide or protein) from the file defined in field 5. The file specifications of field 4 and 5 can be chosen by pressing the buttons left
to the fields and using the file chooser that appears. Combo box 3 is used to choose which prediction/calculation (e.g., pI prediction,
transmembrane spanning region [TSR] prediction, etc.) you want to apply on the obtained sequences specified from 1, 2, 4, and 5.
Field 6 is used to define if and where you want to save the results from the prediction/calculation applied. The spinners, 8, are used
to set prediction/calculation parameters (e.g., window size for kd-index used in TSR prediction). Combo box 7 is used to operate the
protein DB. The spinner, 9, is used to constrain sequence retrieval from the protein DB with a specified number of how many pre-
dicted TSRs a protein must have.
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Fig. 4. The Protein database (PDB) viewer lists the physicochemical properties of a cho-
sen protein and its belonging peptides in the PDB. In combo box 1 you can select between
proteins in PDB from their accession number (or search them in field [2]). In combo box
3 you can chose between peptides respective to the selected protein in combo box 1.

and peptide information obtained from a peptide mass fingerprint-based pro-
teomic experiment. This allows one to browse amongst the identified proteins
and their respective peptides with the aid of SAT v1.0’s protein DB viewer
component (see Fig. 4). In the PDB viewer, prediction and calculation of
physicochemical properties are shown like in Fig. 4. Together with the protein
DB-viewer component there is a visualization tool (Protein Vis) that shows the
following properties (Fig. 5): hydropathicity plot using the kd-index, peptides
position in the protein, predicted TSR segments, secondary structure predic-
tion (see Appendix D), predicted secretion signal peptide, and predicted GPI-
anchoring site.

To open the PDB viewer click on the file menu from the main screen and
choose “PDB-viewer” from the list. In order to visualize the protein with
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Fig. 5. The “Protein Vis” component is a tool to visualize physicochemical properties and predictions of a protein. The protein
shown here is an unknown protein with TGIR gene ID At2g41705 from Arabidopsis thaliana.
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“Protein Vis” click on the “Vis prot” button in the PDB viewer. External prediction
made by THMHMM 2.0 (13) can also be added to the protein DB.

3.2. Practical Guidelines for Predicting/Calculating 
Physicochemical Properties

3.2.1. Isoelectric Point, GRAVY, and Molecular Weight

1. First step includes importing sequences from the desired source. The source could
be a search result from VEMS v3.0 (see Chapter 7), multiple FASTA file, Swiss-
Prot file, or simply a list of peptides in a text file as shown in Fig. 6.

a. To open a text file in SATv1.0 you press the button “Read sequences from file”
(see Fig. 3). Now a file-chooser box will appear. If the selected file is in a flat-
file format (see Fig. 6) you set combo box nr. 2 to “all seq from flat file.”

b. It is also possible to open files in other formats like Swiss-Prot or FASTA.
Combo box 1 (see Fig. 3) can be used to constrain which sequences are
extracted from the sequence file specified in field nr. 4 (see Fig. 3). If combo
box 1 is set to “acc. from flat file” then only sequences with accession num-
bers present in the file specified in field nr. 5 (see Fig. 3) will be imported for
further processing (for this option to be used the sequence files have to be in
multiple FASTA or Swiss-Prot format, which is specified by combo box 2 with
the options “acc → seq in multiple FASTA file” and “acc → seq in multiple
Swiss-Prot file”). 

c. Another option for retrieving sequences is to have a flat-file containing Swiss-
Prot accession numbers without having the sequences in hand. This file is
selected with the file chooser that opens by clicking the button named “Read
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Fig. 6. A flat file opened with notepad (Microsoft Windows XP). Each line in the file
represents a peptide sequence.
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acc/thmhmm from file.” In order to specify that the sequences are to be
requested from the Swiss-Prot database combo box 2 must be set to “acc →
seq from expasy.”

d. Amino acid sequences can also be imported from search results obtained by
the VEMS v3.0 program. This is done in two steps. First, the sequences have
to be imported to the protein DB, which is done by setting combo box 7 (see
Fig. 3) to “Import sequences from VEMSv3.0” and clicking the calculate but-
ton (see Fig. 3). Now the protein and peptide sequences can be viewed with the
PDB viewer by opening the “file menu” and choosing “pdb manager.” Then a
window appears like in Fig. 4, where in order to activate the imported
sequences you select the “file menu” and click on “new.” To use the sequences
in the protein DB for calculation/prediction, set combo box 2 to “all seq from
proteinDB.”

166 Ingrell, Matthiesen, and Jensen

Fig. 7. Predicted isoelectric point vs calculated molecular weight of a peptide
dataset obtained in a phosphoproteomic study (19). The plot window gives a firsthand
impression of data.
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2. Second step is to choose the prediction/calculation method that should be per-
formed, which is done by combo box 3 (see Fig. 3). For prediction/calculation of
pI, molecular weight, and GRAVY (grand average of hydropathicity) combo box
3 should be set to “pI, mass and GRAVY.”

3. Third step includes specifying where to write the results of the calculation/
prediction. To specify the location of the result file press button nr. 6 (see Fig. 3)
and a file chooser will be opened. The result file is formatted in a comma sepa-
rated way, which means that each line represents prediction/calculations for one
amino acid sequence and the three physicochemical properties are separated
with a comma.

4. The last step is to perform the calculation/prediction, which is done be pressing
the calculate button (see Fig. 3). After the processing of the data a result window
will be opened (see Fig. 7) where pI vs mass will be plotted. If further analysis is
necessary the result file can be used. 
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Interpretation of Collision-Induced Fragmentation
Tandem Mass Spectra of Posttranslationally 
Modified Peptides

Jakob Bunkenborg and Rune Matthiesen 

Summary
Tandem collision-induced dissociation (CID) mass spectrometry (MS) provides a sensitive

means of analyzing the amino acid sequence of peptides. Modern MS instrumentation is capable
of rapidly generating many thousands of tandem mass spectra, and protein database search
engines have been developed to cope with this avalanche of data. In most studies, there is a
schism between discarding perfectly valid data and including nonsensical peptide identifica-
tions—this is currently a major bottleneck in data analysis and it calls for manual evaluation of
the data. Especially for posttranslationally modified peptides, there is a need for manual valida-
tion of the data because search algorithms seldom have been optimized for the identification of
modified peptides and because there are many pitfalls for the unwary. This chapter describes
some of the issues that should be considered when interpreting and validating low-energy CID
tandem mass spectra and gives some useful tables to aid this process.

Key Words: Proteomics; posttranslational modifications; mass spectrometry; database
searching.

1. Introduction
Proteins can be viewed as linear biopolymers composed of the only 20 dif-

ferent genetically encoded amino acids, but the functionally active form of a
protein is often quite different from that of the linear nascent polypeptide chain.
Posttranslational modifications (PTMs) are covalent alterations of the polypep-
tide chain that change the structure. A bewildering number of changes can
occur: intramolecular bonds can be formed by cystine disulfide bridges,
sequences can be removed from the polypeptide chain by enzymatic cleavage,
and most amino acids can be modified. Many cellular functions are regulated



by reversible phosphorylation, acetylation, glycosylation, or other enzymati-
cally catalyzed modifications of proteins. In addition to the biologically signif-
icant PTMs it is a well-known and most often ignored fact that proteins are
modified during storage and sample handling. When trying to analyze proteins
it is very important to be aware of the mundane posttranslational modifications,
such as deamidation, oxidation, backbone cleavage, and other common sponta-
neous modifications, as well as those that occur in consequence of the sample
handling, such as alkylation with acrylamide from sodium dodecyl sulfate-
polyacrylamide gel electrophoresis separated proteins or carbamoylation
through the use of urea as a denaturant.

Mass spectrometry (MS) measures the mass-to-charge ratio (m/z) of charged
ions and has become a major tool for protein identification. Soft ionization tech-
niques, like electrospray ionization (ESI) and matrix-assisted laser desorption/ ion-
ization (see Chapter 1), allow large biomolecules to be transferred to the gas phase
and ionized. The direct analysis of proteins is most often not feasible and for iden-
tification purposes proteins are typically digested to peptides by a specific protease
(e.g., trypsin that cleaves after arginine and lysine residues) and the masses of each
peptide are determined. Sequence information for each peptide can then be gained
by collision-induced dissociation (CID) tandem mass spectrometry (MS/MS),
where a peptide ion is selected and collided with an inert gas. The m/z of the result-
ing fragment ions are then measured. The nomenclature for the peptide fragmen-
tation (1–3) is illustrated in Fig 1. This chapter focuses on low-energy CID (less
than 100 eV) of protonated peptides in ion traps, triple quadrupoles, or QqTOFs
where there is very little side-chain fragmentation. Normally the low-energy, col-
lision-induced cleavage of the peptide backbone occurs at the amide bond giving
rise to y- and b-type ions that contain the C- and N-terminal part of the peptide,
respectively. See ref. 4 for a recent review. Additional ions can be generated by the
loss of small neutral molecules like water (a –18 Da ion series usually denoted
with a superscripted o—e.g., yi

o) or ammonia (a –17 Da ion series usually denoted
with a superscripted asterisk * —e.g., yi

*). Often, it is also possible to find immo-
nium ions from the individual amino acids in the low m/z. CID fragmentation of
multiply charged ions can also give rise to multiply charged fragment ions and it
is not uncommon for multiply charged ions to lose one or several N-terminal
amino acid residues as neutral fragments (5).

MS instrumentation is rapidly improving and diversifying but there are still
different limitations in mass range, mass accuracy, and fragmentation efficiency
for each type of instrument, and it is necessary to consider these limitations
when analyzing the data. For example, the mass accuracy needs to be better
than 1 Da when trying to detect deamidation and better than 0.0330 Da when
trying to distinguish phenylalanine from oxidized methionine by mass. Other
techniques for inducing peptide fragmentation like electron capture dissociation
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(6,7) and electron transfer dissociation (8) are not commonplace yet, but are
very powerful tools for analyzing especially labile PTMs as glycosylation
(9–11), phosphorylation (8,12), and γ-carboxyglutamic acid (13). A large num-
ber of programs are available that can identify the peptide by comparing the
experimental MS/MS spectrum with the theoretical one calculated for each
peptide in a protein database. The mass changes associated with PTMs make
MS ideally suited for the analysis. Modifications that occur stoichiometrically
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Fig. 1. (A) Peptide fragment ion nomenclature. The indices of the amino terminal-
containing a-, b-, and c-ions denote the number of residues counted from the N-terminus
and the indices of the carboxy terminal x-, y-, and z-ions are counted from the C-terminus.
(B) Collision-induced dissociation fragmentation of the peptide amide bonds to pro-
duce N-terminal b-ions and C-terminal y-ions. Linear b-ions are unstable and cyclize
to form an oxazolone structure involving the carbonyl group of the adjacent residue.
The b1-ion is rarely observed because it cannot form the stabilizing oxazolone structure
but it does occur if the N-terminal is derivatized with a carbonyl-containing group (e.g.,
acetylated). The b1-ion can be seen for arginine, lysine, histidine, and methionine that
can form alternative stabilizing structures by means of their side chains (39).
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Table 1
Posttranslational Modificationsa

Modified Mono-
amino Monomer isotopic Diagnostic Neutral

Modification acids composition mass ions loss

N-terminal N-term + C2H3O + 43.01839
acetylation

N-terminal N-term + C2H4NO + 58.02929
carbamido-
methylation

N-terminal N-term + CH2NO + 44.01364
carbamo-
ylation

N-terminal Q (N-term) –NH2 –16.01872
Pyro-
glutamine

N-terminal E (N-term) –HO –17.00274
Pyro-glutamic 
acid

N-terminal C (N-term) –NH2 –16.01872
Pyro-carbamido-
methylcysteine

Propionamide C C6H10N2O2S 174.04630 147.059
Oxidation M C5H9NO2S 147.03540 120.048 63.998

(Methionine
sulfoxide)

Oxidation W C11H10N2O2 202.07423 175.087
(hydroxy-
tryptophan)

Oxidation of C* C5H8N2O3S 176.02556 107.004
carbamido-
methylated C

Oxidation H C6H7N3O2 153.05383 126.066
(2-Oxohistidine)

Dioxidation M C5H9NO3S 163.03031 136.043
(Methionine 
sulphone)

Dioxidation W C11H10N2O3 218.06914 191.082
(N-formylkynurenine)

Kynurenine W C10H10N2O2 190.07423 163.087
Deamidation N C4H5NO3 (˜D) 115.02694
Deamidation Q C5H7NO3 (˜E) 129.04259

(Continued)
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Table 1 (Continued)

Phosphorylation S C3H6NO5P 166.99836 97.977
79.966

Phosphorylation T C4H8NO5P 181.01401 97.977
79.966

Phosphorylation Y C9H10NO5P 243.02966 216.042 79.966
Methylation K C7H14N2O 142.11061 115.123

98.096
84.081

Methylation R C7H14N4O 170.11676 143.129 73.064
115.087 56.0374
112.087 31.0422
74.071
70.065

Dimethylation K C8H16N2O 156.12626 129.137
84.081

Dimethylation R C8H16N4O 184.13241 157.149 87.0796
(asymmetric) 115.087 70.0531

112.087 45.0579
88.087
71.060

Dimethylation R C8H16N4O 184.13241 157.149 87.0796
(symmetric) 115.087 70.0531

112.087 31.0422
88.087
71.060 

Trimethylation K C9H18N2O 170.14191 143.154 59.073
84.081

Trimethylation R C9H18N4O 198.14806 171.160
Acetylation K C8H14N2O2 170.10553 143.118

126.091
84.081

γ-Carboxylation E C6H7NO5 173.0324 43.990
Nitration Y C9H8N2O4 208.04841 181.061
Hydroxyproline P C5H7NO2 113.0477 86.060

aThis short list contains some of the modifications we look for depending on the biological
problem (e.g., histones or serum proteins) and the sample preparation method (e.g., sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis-separated proteins or an in-solution digestion of
urea-denatured proteins). The N-terminal modifications are added as the N-terminal term mN in
the equations and the composite masses as the residue term mi. Often an iterative search strategy
is used, where posttranslational modifications of the identified proteins are looked up in anno-
tated protein databases (e.g., Swiss-Prot or HPRD—see Subheading 2.2.4.) and included in a
second iteration.



are often denoted fixed modifications (because all residues of a given type are
modified)—as an example the derivatization of cysteines with iodoacetamide
occurs with almost 100% efficiency on all cysteine residues. Modifications that
occur substoichiometrically (only a few residues are modified) are called variable
modifications—oxidation of methionine is rarely quantitative unless an oxidizing
agent is utilized (i.e., all the residues do not oxidize completely) and methionine
sulfoxide is most often included in the analysis as a variable modification of
methionine residues.

It is often a difficult problem to assess if the peptide retrieved by the search
engine really is the correct sequence because the MS/MS data is often far from
perfect. Two major limitations apart from data quality usually apply for the
identification of PTMs using different search algorithms. Virtually all search
engines produce a best-fit solution to a user-defined problem, but it is not
always possible to get the correct solution either because the database protein
sequence is a variant (or wrong) or because the peptide is modified in an
unforeseen way not accounted for by the search parameters. This problem is
even worse for many modified peptides where very labile groups can lead to
less informative fragmentation patterns from which limited sequence infor-
mation can be gained. From the mass of the peptide ion it is possible with
high mass accuracy to distinguish between PTMs that are nearly isobaric.
Fortunately tandem mass spectra give additional analytical handles on mod-
ifications where characteristic neutral losses, composite mass increments in
the peptide sequence ions, and diagnostic ions in the low mass region can
lead to the correct interpretation and identification of the peptide. It is
beyond the scope to this chapter to present a comprehensive list of all PTMs,
but a selection of the most common and well studied is listed in Table 1. The
manual interpretation and validation of tandem mass spectra of posttransla-
tionally modified peptides can often be aided by comparing to the MS/MS of
the nonmodified sequence, a synthetic version of the modified peptide, or a
chemically modified version of the same PTM peptide (e.g., acetylating the
peptide).

Modern MS instrumentation directly coupled to liquid chromatography is
capable of generating overwhelming amounts of data. Validating the unmodi-
fied peptide identifications resulting from database searches of this data is a
very time consuming and at times difficult task, but it is currently necessary
unless very stringent identification thresholds are imposed. It is not always true
what the search engine retrieves and there are many less fortunate examples
where the assignments have not been adequately checked (see Johnson et al.
[14] for a discussion). This chapter aims at giving some helpful tools and rules
for interpreting and validating tandem mass spectra of peptides in general and
of modified peptides in particular.
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Table 2
List of Accurate Elemental Mass Values for the Most
Commonly Occurring Elements (Including Stable
Isotope Labeling) in Peptides and Posttranslationally
Modified Peptides

H-1 1.007825035
H-2 2.014101787
C-12 12.000000000
C-13 13.003354826
N-14 14.003074002
N-15 15.000108970
O-16 15.994914630
O-18 17.999160300
P-31 30.973762000
S-32 31.972070700
Electron 0.000548580
Proton 1.007276455

2. Materials
2.1. Useful Tables

Table 2 has the exact masses of the most common elements in posttransla-
tional protein modifications—the composite monoisotopic mass of the modi-
fied residue can then be calculated once the chemical composition is known if
the modification cannot be found among the PTMs in Table 1. 

2.2. Web Resources

A collection of links to software resources to help the process of peptide
identification by CID MS/MS.

2.2.1. Protein Database Search Engines

1. Mascot: http://www.matrix-science.com/.
2. X-tandem: http://www.thegpm.org/.
3. Virtual Expert Mass Spectrometrist (VEMS): http://yass.sdu.dk/.

2.2.2. Protein Analysis Tools

1. GPMAW: http://www.gpmaw.com.

2.2.3. Protein Sequence Databases

1. nr: ftp://ftp.ncbi.nih.gov/blast/db/FASTA/.
2. IPI (human): ftp://ftp.ebi.ac.uk/pub/databases/IPI/current/ipi.HUMAN.fasta.gz.



3. UNIPROT (human): ftp://ftp.ebi.ac.uk/pub/databases/SPproteomes/fasta/proteomes/
25.H_sapiens.fasta.gz.

2.2.4. Protein Sequence Annotations

1. Swiss-Prot: http://us.expasy.org/sprot/.
2. Human Protein Reference Database: http://www.hprd.org/.

2.2.5. Protein Modification Resources

1. Delta-mass: http://www.abrf.org/index.cfm?method=dm.home.
2. Resid: http://pir.georgetown.edu/cgi-bin/resid.
3. Unimod: http://www.unimod.org/.

3. Methods
3.1. Generating a Theoretical Spectrum

Although most search engines return an annotated spectrum it can be of
immense value to generate theoretical spectra of other possible solutions.
Especially with labile modifications as glutamic acid γ-carboxylation (and to
some extent serine and threonine phosphorylation) it can be difficult to pinpoint
and assign the exact position of the modified residue. Often, there are multiple
residues that can be modified in a sequence, and distinguishing between the
possible modification sites requires careful comparison of the experimental
data and the theoretical spectra for each potential modified residue.

The mass of the protonated parent ion MH+ is given by the sum

MH+ = mN + Σmi + mC + m(H+) (usually Σmi + 19.01784 )

where mN is the mass of the N-terminating group (usually a hydrogen), Σmi is
the sum of masses of i amino acid residues, mC is the mass of the C-terminating
group (usually a hydroxyl group), and m(H+) is the mass of a proton. The
monoisotopic masses, mi, of the common amino acids can be found in Table 3.
Table 1 lists the masses of the most common posttranslational modifications.
The commonly observed fragment ion masses are then given by the following
equations where the index is counted from the N-terminus for a- and b-type ions
and from the C-terminus for y-type ions.

ai = mN + Σmi – m(e�) – m(CO) = bi – m(CO) (usually Σmi – 26.98654).

bi = mN + Σmi – m(e�) (usually Σmi + 1.007276).

yi = Σmi + mC + m(H) + m(H+) (usually Σmi + 19.01784).

For a peptide with n residues the sum of the two corresponding ions can be
calculated as:
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bi + yn-i = MH+ + m(H+) = MH+ + 1.007276

For example, once the b2-ion has been identified (from the prominent a2–b2
pair) the mass of yn�2 can be calculated. A list of possible b2 ions can be found
in Table 4. Multiple fragmentations of the backbone can occur (but less fre-
quently than single fragmentations) and it is not uncommon to observe inter-
nal fragments in the lower mass region (less than 700 Da), especially if there
is a proline in the sequence. The theoretical masses of internal ions can be cal-
culated as the sum of residue masses plus the mass of a proton. The informa-
tion contained in the low mass region can be used to patchwork the proposed
sequence (17). There is also useful information in the low mass region from
immonium and related fragment ions that are characteristic of specific amino
acids (see Tables 1 and 5). In addition, some amino acid residues undergo the
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Table 3
Masses of the 20 Common Amino Acid Residues 
and Carbamidomethylated Cysteine

Monomer Monoisotopic 
Amino Acid Abbreviation Code composition mass

Glycine Gly G C2H3NO 57.021464
Alanine Ala A C3H5NO 71.037114
Serine Ser S C3H5NO2 87.032028
Proline Pro P C5H7NO 97.052764
Valine Val V C5H9NO 99.068414
Threonine Thr T C4H7NO2 101.047679
Cysteine Cys C C3H5NOS 103.009185
Isoleucine Ile I C6H11NO 113.084064
Leucine Leu L C6H11NO 113.084064
Asparagine Asn N C4H6N2O2 114.042927
Aspartic acid Asp D C4H5NO3 115.026943
Glutamine Gln Q C5H8N2O2 128.058578
Lysine Lys K C6H12N2O 128.094963
Glutamic acid Glu E C5H7NO3 129.042593
Methionine Met M C5H9NOS 131.040485
Histidine His H C6H7N3O 137.058912
Phenylalanine Phe F C9H9NO 147.068414
Arginine Arg R C6H12N4O 156.101111
Cysteine - cbm C* C5H8N2O2S 160.030648
Tyrosine Tyr Y C9H9NO2 163.063329
Tryptophan Trp W C11H10N2O 186.079313
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Table 4
Amino Acid Residue Composition and Masses of b2-Ions 
With Carbamidomethylated Cysteinea

115.05 GG 203.10 TT 231.12 MV 258.14 EK 286.15 ER
129.07 AG 205.10 FG 232.08 AC 258.16 RT 286.16 VW
143.08 AA 209.10 AH 233.10 MT 259.09 EE 288.13 TW
145.06 GS 211.14 [I/L]P 235.11 AY 260.11 CV 288.15 MR
155.08 GP 212.10 NP 235.11 FS 260.11 MQ 289.10 CQ
157.10 GV 213.09 DP 235.12 HP 260.14 KM 289.13 CK
159.08 AS 213.16 [I/L]V 237.13 HV 261.09 EM 290.08 CE
159.08 GT 214.12 NV 239.11 HT 261.12 PY 292.08 CM
169.10 AP 214.13 GR 242.15 [I/L]Q 261.16 F[I/L] 292.13 QY
171.11 AV 215.10 DV 242.19 [I/L]K 262.09 CT 292.17 KY
171.11 G[I/L] 215.14 [I/L]T 243.11 NQ 262.12 FN 293.11 EY
172.07 GN 216.10 NT 243.13 E[I/L] 263.09 MM 294.17 HR
173.06 DG 216.10 QS 243.15 KN 263.10 DF 295.11 MY
173.09 AT 216.13 KS 244.09 DQ 263.14 VY 295.14 FF
175.07 SS 217.08 DT 244.09 EN 265.12 TY 298.10 CH
185.09 PS 217.08 ES 244.11 GW 266.12 HQ 300.17 [I/L]W
185.13 A[I/L] 218.06 CG 244.13 DK 266.16 HK 301.13 HY
186.09 AN 219.08 MS 244.14 RS 267.11 EH 301.13 NW
186.09 GQ 219.11 AF 245.08 DE 269.11 HM 302.11 DW
186.12 GK 221.09 GY 245.13 FP 270.19 [I/L]R 304.18 FR
187.07 AD 225.10 HS 245.13 [I/L]M 271.15 NR 308.11 CF
187.07 EG 226.12 PQ 246.09 MN 272.14 DR 311.14 FY
187.11 SV 226.16 KP 247.07 DM 274.12 SW 313.21 RR
189.07 GM 227.10 EP 247.14 FV 274.12 C[I/L] 315.15 QW
189.09 ST 227.18 [I/L] 248.07 CS 275.08 CN 315.18 KW

[I/L]
195.09 GH 228.13 [I/L]N 249.12 FT 275.13 HH 316.13 EW
195.11 PP 228.13 QV 251.10 SY 276.06 CD 317.14 CR
197.13 PV 228.15 AR 251.15 H[I/L] 276.13 FQ 318.13 MW
199.11 PT 228.17 KV 252.11 HN 276.17 FK 320.17 RY
199.14 VV 229.09 NN 253.09 DH 277.12 EF 321.07 CC
200.10 AQ 229.10 MP 254.16 PR 277.15 [I/L]Y 324.10 CY
200.14 AK 229.12 D[I/L] 256.18 RV 278.11 NY 324.15 HW
201.09 AE 229.12 EV 257.12 QQ 279.10 DY 327.13 YY
201.12 [I/L]S 230.08 DN 257.16 KQ 279.12 FM 334.16 FW
201.12 TV 230.11 QT 257.20 KK 284.14 PW 343.19 RW
202.08 NS 230.15 KT 258.09 CP 285.13 FH 347.12 CW
203.07 DS 231.06 DD 258.11 EQ 285.17 QR 350.15 WY
203.08 AM 231.10 ET 258.12 AW 285.20 KR 373.17 WW

aThe order of residues does not matter and [I/L] denotes an isoleucine or leucine residue; these
two residues have exactly the same mass. An intense pair of ions separated by 28 Da (a CO
group) in the low mass region is usually the signature of an a2–b2 pair, and the composition of the
b2-ion can be looked up in this table. An a2–b2 pair that does not fit with the masses in this table
could be because of modification at the N-terminus. It is not uncommon to observe a number of
internal dipeptides from multiple fragmentations that give rise to additional a2–b2 pairs.
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Table 5
Low Mass Fragment Ions and Neutral Losses From the 20 Common 
Amino Acid Residues (15,16)a

Immonium and 
Amino acid Code fragment ions Neutral loss

Glycine G 30.03
Alanine A 44.05
Serine S 60.04 18.01 (H2O)
Proline P 70.07
Valine V 72.08
Threonine T 74.06 18.01 (H2O)
Isoleucine I 86.10
Leucine L 86.10
Asparagine N 87.06, 70.03 17.03 (NH3)
Aspartic acid D 88.04, 70.03 18.01 (H2O)
Glutamine Q 129.10, 101.07, 17.03 (NH3)

84.04, 56.05
Lysine K 129.11, 101.11, 17.03 (NH3)

84.08, 56.05
Glutamic acid E 102.05, 84.04 18.01 (H2O)
Methionine M 104.06 48.00 (CH4S)
Histidine H 110.07
Phenylalanine F 120.08
Arginine R 129.11, 115.09, 17.03 (NH3)

112.09, 87.09,
70.07, 60.06

Cysteine-cbm C* 133.04 91.01 (C2H5NOS)
Tyrosine Y 136.08
Tryptophan W 159.09, 132.08, 130.07

aCysteines are derivatized with iodoacetamide to form carbamidomethylcysteine (C*).

loss of small neutral molecules, like water or ammonia, leading to satellite
peaks to the major fragment ion series (see Tables 1 and 5).

A number of software packages offer convenient tools for calculating 
theoretical masses for peptide digests of proteins, molecular masses of the pep-
tides, and fragment ion masses. One of the most user friendly and versatile
packages is general protein/mass analysis for Windows (GPMAW) (see Peri et
al. for a brief description [18]). Figure 2 illustrates a typical simple application.
After importing the protein sequence into GPMAW and doing a theoretical pro-
teolytic digest, the masses for all ions in a theoretical tandem mass spectrum of
an oxidized methionine peptide can be calculated. The experimental spectrum
is shown in Fig. 3 as it is returned from a database search using VEMS.
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Fig. 2. The program GPMAW is a very versatile tool for protein analysis. In this sim-
ple example the protein sequence of human serum albumin is loaded (upper panel) and
an in silico tryptic digestion is performed and the theoretical mass-to-charge ratios of
the singly and doubly charged ions are calculated (lower-left panel). The theoretical
masses of both singly and multiply charged fragment ions can then be calculated for
each peptide (lower-right panel). The methionine in this example is flagged as being
oxidized and the masses are adjusted throughout the calculations.
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Fig. 3. Electrospray ionization QqTOF tandem mass spectrum of a doubly charged ion
at m/z 820.36. Database searching with Virtual Expert Mass Spectrometrist (VEMS)
against the IPI human database returns the protein human serum albumin and the peptide
DVFLGMFLYEYAR with an oxidized methionine. The y-ion series from y8 and up dis-
plays an additional series of rather intense peaks arising from the neutral loss of CH3SOH
from oxidized methionine residue (see Note 5). The figure was prepared using VEMS.

3.2. Database Searching

A number of software tools have been developed to identify the proteins
from CID tandem mass spectra of the peptides. Different search engines
yield somewhat complementary results and we often search the same
dataset with two or three different programs (19–21) (see Subheading
2.2.1.). The VEMS software is freely available and offers a number of tools
for database searching and validation. VEMS can search even very large
datasets with any number of variable modifications, but care must be taken
when defining the search parameters and interpreting the outcome.
Depending on the organism, a database has to be selected (see Subheading
2.2.3.). The detailed use of MS-driven database search engines falls outside
the scope of this chapter.

3.3. Assignment and Validation Steps

Most MS-based protein database search engines return a score as a measure of
how well the theoretical spectrum matches the experimental data. High-scoring
peptides are mostly correct, but there is a large gray area where only critical
manual validation can sort out false-positive identifications. Identifying peptides
that deviate in some way from what is expected should be examined closely



with the mantra that “extraordinary results require extraordinary proof.” The
following questions are mostly empirical but can be used to probe the 
confidence of the identified peptide.

3.3.1. Peptide Sequence

1. Does the peptide sequence conform to the experiment? In most proteomics stud-
ies the proteins have been digested into peptides with a sequence-specific protease
prior to analysis. It has been shown that the most commonly used protease,
trypsin, cleaves the peptide backbone to the C-terminal side of arginine or lysine
residues with a very high degree of specificity (22). Therefore, the amino acid
residue preceding the peptide should be arginine or lysine and the peptide 
C-terminal residue should be K or R. It is possible that there is nonspecific cleav-
age or that the protein has been processed prior to analysis, but nontryptic peptides
in a tryptic protein digest should be examined critically. In many cases there is
additional sequence information that can add confidence to seemingly semitryptic
peptides where only one end of the peptide follows a tryptic cleavage pattern (for
example as a consequence of the cleavage of signal peptides or that the peptide
forms the C-terminus of the protein). Likewise, a peptide containing many inter-
nal lysines and arginines is unlikely to survive the incubation with trypsin (unless
the peptide is modified so that the cleavage sites are masked).

2. Does the number of basic groups (H, K, R, and N-terminal amino group) corre-
spond to the charge state? The charge state of peptide in ESI depends on several
factors and the above rule of thumb should only be taken as a rough estimate.
Three major interrelated factors are the basicity of the peptide residues, the con-
formation of the peptide, and the Coulomb repulsion between multiple protons
(23). In many peptides the maximum charge state can be estimated by the number
of basic residues (R, K, H, and the N-terminal amino group) but for longer pep-
tides protonation can take place at the next most basic sites (P, Q, and W) (24).
When a parent ion with a low-charge state is assigned a potential peptide sequence
with several internal basic residues, it is necessary to carefully examine the spec-
tra because the assignment could be erroneous. For example, the fragmentation at
glycine residues to the C-terminal side is often of low intensity (see Subheading
3.3.2., step 11), the assigned lysine (128.0950 Da) could be glutamine (128.0586)
or the dipeptide AG (128.0586 Da), and arginine (156.1011 Da) could be the
dipeptide VG (156.0742 Da).

3. How well does the peptide mass match the experimental mass? The mass accuracy
of the instrumentation depends on the type of mass analyzer. A rough estimate
would be that the mass accuracy of an ion trap or triple quadrupole should be bet-
ter than 1.5 Da, and that of a QqTOF better than 0.15 Da. The mass analyzers usu-
ally perform a lot better than these values and the experimental setup should be
checked if a large proportion of the peptide identifications are made with mass
accuracies outside these values (see Note 1).

4. Are residues consistently modified? An obvious question to rise is if the observed
residues are consistent with the experimental procedure. If cysteines have been
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alkylated with iodoacetamide it should be worrisome if peptides were identified
with nonmodified cysteine residues (or as being modified by another reagent).

3.3.2. Spectral Features

1. Is there a consecutive series of ions from sequential peptide fragments (e.g., >
three y-ions)? In the case of tryptic peptides there is usually some continuity in the
ion series (with some sequence dependencies, see Subheadings 3.3.2., steps 10
and 11) and for QqTOF MS/MS spectra the ion series above the parent ion mass-
to-charge ratio is usually y-ions. If high m/z b-ions are observed on a QqTOF
instrument there has to be a basic amino acid residue in the N-terminal fragment.
A rough rule of thumb for accepting the proposed peptide sequence is if there is a
sequence tag of at least three amino acids. This is a somewhat arbitrary criterion
and obviously there should not be glaring inconsistencies between the theoretical
and experimental spectrum. For example, it should not be possible to extend the
sequence tag ion series with an amino acid residue mass to include an intense ion
in the series if this amino acid residue does not fit the retrieved sequence.

2. Is there an intense a2–b2 pair of ions separated by 28 Da? The b-ions can lose CO
to form a-ions, and the a2–b2 ion pair separated by 28 Da is usually very promi-
nent in the low mass region. By looking for an intense ion pair separated by 28 Da
it is possible to guess at the amino acid composition by using Table 4. Additional
a2–b2 ion pairs can arise from internal fragmentation, see ref. 17.

3. Do the observed immonium ions correspond to residues in the peptide (especially
V, [I/L], H, F, Y, W)? Depending on the mass range of the instrument it is usually
possible to get an idea if the peptide contains any of the listed amino acids. Some
amino acid residues give rise to several low mass fragment ions (see Tables 1 and 5)
that can increase confidence in determining the amino acid composition of
the peptide.

4. Are the y1-ions observed and in accordance with enzymatic specificity? Tryptic pep-
tides give rise to intense y1-ions because of the C-terminal position of the basic
residues and this C-terminal residue should be consistent with the proposed
sequence (see Note 2). Tryptic peptides have y1-ions at m/z 147(K) and 175(R). The
y1-ions of chymotryptic peptides are at m/z 132 (I/L), 166(F), 182 (Y), and 205 (W).

5. How well do the fragment ion masses fit the theoretical masses? The assignment
of fragment ions can be aided by looking at the fragment ion mass differences
from the theoretical values. Figure 4 shows an example from VEMS for the tan-
dem mass spectrum shown in Fig. 3 where the residual mass deviation (right pane)
for correctly assigned peaks is small; larger deviations can be caused by overlap-
ping peaks or poor ion statistics, but the ions assigned to a7 and y8 in Fig. 3 do not
fit very well and these assignments should be viewed with some scepticism.

6. Are multiply charged fragment ions observed? ESI MS/MS often gives rise to mul-
tiply charged ions and it is common to observe neutral losses of amino acids from
the N-terminal end of tryptic peptides (5). It is important to note the charge state of
the ions to avoid misassigning a singly charged ion to a multiply charged ion. A mul-
tiply charged ion in the tandem mass spectrum with a higher mass than the parent
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Fig. 4. Displaying the residual masses can often help the assignment of peaks and data validation. The mass accuracy of data from
a QqTOF is quite sensitive to temperature fluctuations and a postacqusitional recalibration usually brings the mass deviation resid-
uals below 0.05 Da. If the assigned peaks deviate beyond this the assignment should be checked—going back to the raw data prior
to data processing as smoothing and centroiding is often helpful to discover overlapping peaks or other causes for poor mass accu-
racy. The figure is a screenshot from VEMS.



peptide mass suggests that the charge state of the parent ion has been wrongly
assigned (e.g., observing a doubly charged fragment ion at m/z 750 when the soft-
ware reports it has been fragmenting a doubly charged parent ion at m/z 600).

7. Are satellite ions observed from the loss of small neutral molecules? Intense ion
series often have a series of associated satellite peaks from the neutral loss of
small molecules (see Table 5), especially the loss of water from serine, threonine,
aspartic acid, and glutamic acid residues, and ammonia from arginine, lysine,
asparagine, and glutamine residues.

8. Can the amino acid sequence be permutated or changed to account for unassigned
peaks? If there is a gap in the annotated y-ion series or an unannotated peak in an
otherwise continuous ions series it is not uncommon that the order of two amino acid
residues or composition can be changed to explain the discrepancy. For example, in
an ion series containing an asparagine (114.0429 Da) residue one should 
check that there is not an ion midway to suggest two glycine residues (also
114.0429 Da).

9. If the sequence contains proline, are there internal fragment ions from multiple
cleavages? Multiple peptide fragmentations are especially common for peptides
with facile cleavage sites and especially MS/MS of peptides containing proline or
aspartic acid display internal fragment ions.

10. Are intense fragment ions observed from cleavage on the N-terminal side of P and
the C-terminal side of D? Low-energy CID fragmentation induced by a mobile
proton (25) depends on the charge state of the peptide ion and on how the charges
are sequestered by basic residues. Numerous studies have described the facile
backbone cleavage N-terminal to proline (see, e.g., ref. 26) because the tertiary
amine is more basic than the other backbone atoms. In cases where charges are
sequestered (e.g., when the number of protons is lower than the number of argi-
nine residues) there is an enhanced cleavage at aspartic acid residues (25).

11. Are fragment ions from the C-terminal side of P and G of low intensity or absent?
Statistical analysis of tandem mass spectra databases has shown that there is a bias
against fragmentation to the C-terminal side of proline and glycine residues (27,28).

3.3.3. Spectral Features of Posttranslational Modifications

1. Can the composite mass of the modified residue be found in a consecutive series of
ions? The confidence with which one can identify posttranslationally modified
residues depends crucially on the data quality and a direct observation of the com-
posite mass from a modified residue in a consecutive series of ions is stronger evi-
dence than just observing an altered parent ion mass that correspond to the PTM(s).

2. Are there characteristic neutral losses? In some cases the posttranslationally modified
residue exhibits a characteristic intense loss that increases the confidence in the
assignment—often a satellite peak from the parent ion displays the characteristic loss.
For example, phosphorylated serine very easily loses a neutral phosphoric acid group
and displays an ion series 98 Da less than the expected composite mass ion series; the
modified serine can then be identified as a dehydroalanine residue weighing 69 Da.

Interpretation of Tandem Mass Spectra of Modified Peptides 185



3. Are there any characteristic low mass ions? Some posttranslationally modified
residues are fairly stable under low-energy CID conditions and the immonium ion
(and other fragment ions) can increase the confidence of the identification (e.g.,
phosphorylated tyrosine residues give rise to an immonium ion at 216.04 Da).
Some PTMs give rise to multiple diagnostic ions (see Table 1) and observing all
the fragment ions is stronger evidence; e.g., acetyl lysine gives rise to a set of low
mass ions at m/z 84, 126, and 143.

4. Can the mass increase attributed to the PTM be explained by other means? Because
many posttranslational modifications are made of the same few elements as amino
acids are composed of, there are many possibilities of interpreting the data wrongly.
When separating proteins on a polyacrylamide gel it is not unusual that nonpoly-
merized acrylamide reacts with cysteine residues (29,30). The propionamide
attached to cysteine has exactly the same composition as an alanine residue and
depending on the data quality it can be difficult to distinguish the two possibilities
of having a propionamide–cysteine or an unmodified cysteine followed by an ala-
nine residue. The solution to this problem is most often to make an informed guess
based on the sample handling procedure. If the proteins have been separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis, reduced, and alkylated
with iodoacetamide the former solution is most likely correct (there should be no
free cysteine thiol groups after iodoacetamide treatment). Another example is after
alkylation with iodoacetamide there is a side product where the N-terminal amino
group has been carbamidomethylated—this modification adds exactly the same
mass as a glycine residue (having the same elemental composition).

5. Can missed cleavages be rationalized by neighboring modified residues? Tryptic
missed cleavages often occur at amino acid stretches with several adjacent 
basic residues leading to an additional R or K with a terminal position (either 
C- or N-terminal). Internal missed cleavages for trypsin are often associated with
neighboring acidic groups (aspartate, glutamate, and phosphorylated S, T, or Y). 

6. Is the modification consistent with known sequence motifs and target amino
acids? Many posttranslational modifications only occur on a very small subset of
residues determined by the amino acid residue, functional groups, size of the
amino acid, or a sequence motif. Looking up information on the various types of
modifications can be helpful when analyzing the spectra (see Note 3). For example,
if an asparagine is converted to aspartic acid by deglycosylation treatment with the
glycosidase PNGase F, the asparagines can tentatively assigned as being glycosy-
lated. However, the asparagines should appear in the consensus sequon NXS/T
where X can be any amino acid except proline, otherwise the N to D conversion
most likely is caused by spontaneous deamidation.

3.3.4. Precursor Ion

The selection of the parent ion and the determination of mass-to-charge ratio
and charge state are crucial for the data quality. The problems listed next usu-
ally occur as a consequence of software limitations. Visual inspection of the
parent ion in the MS survey spectrum can usually identify these problems.
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1. Is the charge state correctly assigned? The assignment of charge states depends on
the instrumentation and data quality, but even with high-resolution QqTOF instru-
mentation, the algorithm fails at times leading to an erroneous parent ion mass—
manual inspection of the parent ion can resolve this.

2. Has the correct isotope peak been picked for mass assignment? If the wrong iso-
tope peak has been chosen by the software, the mass assignment is usually off by
1 Da (or an integer number of 13C atoms). This can result in peptides being iden-
tified as being deamidated, but the correct mass can be assigned manually.

3. Has more than one precursor ion been transmitted for fragmentation simultane-
ously? A very complex MS/MS spectrum can be caused by the simultaneous
selection of more than one ion for fragmentation. In some cases, it is possible to
identify both sequences from the data, but this usually requires manual interpreta-
tion of the spectrum.

4. Is the ion selected for MS/MS an in-source-generated fragment of another usually
more intense ion? It is not uncommon for ions to undergo some in-source frag-
mentation, either as a loss of ammonia or a backbone cleavage at proline residues.
Comparing the elution profiles of the parent ion and the in-source-generated frag-
ment in liquid chromatoraphy–MS (they should have identical elution profiles) is
usually helpful for detecting this problem. The data analysis can be handled by
comparing the two tandem mass spectra and annotating the in-source-generated
fragment ion spectrum based on similarity.

3.4. Examples

Protein chemistry and biology is overwhelmingly complex and the modifica-
tions listed in Table 1 are only the most common that we look for. For more
extensive lists of modifications web resources like Deltamass, Resid, and
Unimod (see Subheading 2.2.3.) hold a wealth of information. A large body of
experimental data has been collected on the fragmentation patterns of histone
modifications like mono-, di-, and trimethylation and acetylation (see Note 4).
Protein oxidation (see Note 5) can give rise to a very complex mixture of pep-
tide isoforms and in the case of tryptophan (see Note 6) more than six oxidized
forms have been reported. Sample preparation plays a crucial role in which side
product can be formed. If a gel approach has been used for protein purification,
the search parameters should reflect that acrylamide can react with cysteines to
form propionamide. If the proteins have been digested in the presence of high
concentrations of urea there is most likely a lot of carbamoylation. If the alkyla-
tion of cysteines with iodoacetamide has not been quenched prior to trypsination
there will also be carbamidomethylation of the N-terminal amines. In general
sample handling-induced modifications are usually substoichiometric and will
mostly affect the proteins with the highest concentration. It is fairly unlikely to
identify low-abundance proteins solely based on modified peptides (unless a
sample handling-related modification is almost quantitative in which case it
should be reflected in the peptides assigned to the most abundant proteins).
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Fig. 5. Three electrospray ionization QqTOF tandem mass spectra of triply charged ion at m/z 489.92, 504.28, and 508.95.
Database searching with VEMS against the IPI human database returns three different versions of the same peptide from human
serum albumin, where the N-terminus has been derivatized with a carbamoyl group (from urea) or a carbamidomethyl group (from
iodoacetamide). It is typical to see these unwanted side products of sample handling for the most abundant proteins.



The assignment and validation of tandem mass spectra of posttranslationally
modified peptides is not an easy task. This chapter will end with a few examples
taken from a human serum sample that was denatured in 8 M urea, reduced with
dithiothreitol, alkylated with iodoacetamide, diluted to 2 M urea, and digested
overnight with trypsin at 37°C.

Oxidation of methionine is a commonly occurring phenomenon both in vivo
and in vitro. Figure 3 shows a nice example where the search engine has
returned the peptide sequence DVFLGMFLYEYAR with an oxidized methionine.
The y1-ion fits with a C-terminal arginine and the intense a2–b2 pair fits with the
dipeptide DV. There is a b-ion series in the low mass region and a long contin-
uous y-ion series and most ions are explained by this sequence. There is an ion
at m/z 120 that could be the immonium ion from both phenylalanine and
methionine sulfoxide, but the presence of oxidized methionine is confirmed by
the intense neutral loss of 64 Da (CH3SOH). In some cases, it can be helpful to
look at the mass accuracy of the fragment ions to increase confidence in the
spectral assignment, an example is shown in Fig 4.

Three very similar spectra of the peptide RHPDYSVVLLLR are displayed
in Fig. 5 and assigned to the normal peptide, a carbamoylated and a car-
bamidomethylated version. The two basic residues, RH, at the N-terminus gives
rise to a fairly intense b-ion series. The peptides differ at the N-terminus as can
be seen from the identical y-ion series and the shifted b-ion series. The 14-Da
mass difference (see Note 7) between the spectrum of the carbamoylated and
the carbamidomethylated peptide could just as well be explained by a methyla-
tion of the N-terminal arginine. The parsimonious interpretation is that it is
unlikely to have two modifications to the same residue and if the arginine
indeed was methylated this peptide containing methylarginine should also be
found in a noncarbamoylated form.

4. Notes
1. The most obvious reason for poor mass accuracy is that the calibration has drifted

and the instrument needs to be recalibrated. The mass accuracy in an ion trap
depends critically on space charging and one could consider reducing the fill
time/number of ions per scan or performing a zoom scan on the ions selected for
fragmentation to determine charge state and mass. In a QqTOF, the mass accuracy
of a well-calibrated instrument depends on having sufficient ion statistics to deter-
mine the peak maximum. Some deviation can be caused by other ions or background
noise interfering with the isotope pattern peak maxima, but the most common prob-
lem is a mass drift in calibration caused by temperature fluctuations (affecting the
length of the flight tube). This can be alleviated by postacquisitional recalibration.

2. Ion traps have a low mass cut-off in tandem mass spectra at approximately one-
third of the parent ion mass-to-charge ratio. Therefore, it is often not possible to
detect the low mass ions.
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3. The removal of signaling peptides can be predicted and correlated with the
observed sequence. The N-terminus of most proteins is heavily processed and it is
estimated that 80–90% of all proteins are acetylated at the N-terminal amino
group. Acetylation usually takes place on methionine or if the penultimate residue
has a small radius of gyration (G, A, S, C, T, P, or V) the methionine is cleaved off
by an aminopeptidase and the penultimate residue is acetylated. Hence, detecting
an N-terminally acetylated tryptophan should make the alarm bells go off. A sur-
vey of acetylated N-terminal residues has recently been published (31).

4. Histone modifications have been widely studied and there is a large number of
modifications with only the most commonly observed ones listed in Table 1.
Differentiating between near isobaric-modified residues, such as trimethylated
lysine and acetyl-lysine, requires high mass accuracy and careful analysis of the
spectra to assign diagnostic marker ions and neutral loss series (32). Further
details of fragmentation pathways and structures for the ions can be found for
methylated arginine (33), dimethylated arginine (34), and acetyllysine (35).

5. For a brief review of protein oxidation, see Berlett and Stadtman (36). The fragmen-
tation behavior of oxidized methionine (37) and oxidized carbamidomethylcysteine
(38) is similar. The mono-oxidized form has a fairly intense neutral loss of 64 Da
from methionine sulfoxide and 107 Da from mono-oxidized carbamidomethylcys-
teine, whereas the neutral loss from the dioxidized is of low abundance.

6. The structures of tryptophan oxidation products can be found on http://www.arbf.org/
images/misc/dmass32.jpg.

7. There are many modifications that can give rise to 14-Da mass differences. Fairly
conservative amino acid conversions (G to A, V to L, N to Q, D to E, etc.) and
other modifications (carbamoylation to carbamidomethylation, carbamidomethy-
lation to propionamide) give rise to 14-Da mass shifts. Therefore, the data should
be carefully scrutinized before reporting methylations.

8. The b1-ion can be seen for arginine, lysine, histidine, and methionine that can form
alternative stabilizing structures by means of their side chains (39).
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Retention Time Prediction and Protein Identification

Magnus Palmblad

Summary
Proteins are commonly identified through enzymatic digestion and generation of short

sequence tags or fingerprints of peptide masses by mass spectrometry. Separation methods, such
as liquid chromatography and electrophoresis, are often used to fractionate complex protein or
peptide mixtures and these separations also provide information on the different species, such as
molecular weight and isoelectric point from electrophoresis and hydrophobicity in reversed-
phase chromatography. These are also properties that can be predicted from amino acid sequences
derived from genomic sequences and used in protein identification. This chapter reviews recently
introduced methods based on retention time prediction to extract information from chromato-
graphic separations and the applications to protein identification in organisms with small and
large genomes. Novel data on retention time prediction of posttranslationally modified peptides
is also presented.

Key Words: Liquid chromatography; mass spectrometry; prediction; retention time; peptide;
protein identification.

1. Introduction
Proteins can be identified by comparing specific properties predicted from

translated genome sequences with the same properties measured by analytical
techniques such as mass spectrometry (MS). Ideally, individual proteins are iso-
lated, sequenced, and characterized in a “top-down” fashion, but because of
intrinsic limitations in current separation and mass spectrometric technology,
proteins are digested by one or more specific enzymes into shorter peptides and
corresponding sequence tags or fingerprints of many such peptides are used to
identify the protein, or reconstruct the sequence and characteristic modifica-
tions of the protein from the “bottom-up.” When introducing a complex sample,
such as a total protein enzymatic digest, to the mass spectrometer, suppression
in ionization and detection limits the dynamic range and the ability to detect
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low abundant proteins. To reduce the complexity and separate abundant species
from less abundant ones, methods such as two-dimensional gel electrophoresis
of proteins (1,2) and liquid chromatography (LC) of peptides (3–10) have been
used with great success. In addition to the primary function of increasing the
analytical dynamic range, the separations themselves provide information on
the analytes. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this
is the molecular weight of the protein, in isoelectric focusing the isoelectric
point (the pH at which the protein or peptide has no net charge) and in reversed-
phase chromatography, the hydrophobic nature of the peptides or proteins
(11,12). These are all properties that can be predicted from peptide sequences,
not unlike molecular masses but less accurately, thereby constraining database
searches and assisting protein identification, especially in absence of high-
quality tandem mass spectra or peptide mass fingerprints.

Given a measured mass of a peptide from an enzymatic digest and mass meas-
urement uncertainty, there is a limited number of possible matching peptides from
proteins in any given sequence database that are within the measurement error of
the observed mass (13,14). If mass measurement errors are very small, less than
1 ppm, close to which can be achieved in Fourier transform ion cyclotron reso-
nance (FTICR) MS (15), there may exist a peptide of each protein that is unique
in the organism’s proteome within the measurement uncertainty (10,14). These
peptides can then be used as “accurate mass tags” for protein identification (14).
In general, however, mass accuracy is insufficient to identify proteins based on a
single tryptic peptide mass, requiring either a pattern of several peptides or addi-
tional information on the peptides, such as short sequence tags or otherwise
informative tandem mass spectra, for unambiguous protein identification.

The accurate mass measurements, together with information on protein size,
peptide or protein isoelectric point, or peptide retention times, form a multidi-
mensional protein-dependent pattern, and as previously stated, these patterns can
also be predicted from protein and peptide sequences that in turn are predicted
from genome sequence databases. It is this fact that enables protein identifica-
tion using pattern recognition (see Fig. 1). Pattern recognition, or the detection
of patterns using knowledge of the rules generating those patterns, includes all
existing methods for protein identification by MS. When good-quality tandem
mass spectra are available, these are in general sufficient to identify the protein
(or at least the expressed gene) based on short sequence tags. In absence of such
tandem mass spectra, proteins may still be identified based on accurately meas-
ured mass and retention times for one or more peptides. Accuracy in retention
times refers to the closeness to predicted retention times.

The retention time of peptides in reversed-phase chromatography using linear
gradients is often observed to have a linear mass dependence (see Fig. 2).
Nonlinearities, such as from using nonlinear gradients, require at least a nonlinear
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Fig. 1. Generic pattern recognition used for all protein identification by mass spec-
trometry. The key concept is that any property that can be predicted from sequence
databases and measured experimentally can be used in protein identification.

Fig. 2. The retention time of peptides in reversed-phase chromatography using linear
gradients is often observed to have a linear mass dependence in the average over all pep-
tide sequences (LC-FTICR data from a Yersinia pestis cytosolic protein tryptic digest
[25]). Nonlinearities, such as those appearing when using highly nonlinear gradients,
require a nonlinear scaling function of either measured or predicted retention times.

scaling function of either measured or predicted retention times. An intuitive and
simple model with a small number of parameters for establishing a quantitative
structure–activity relationship between amino acid sequences and retention
times in LC are thus linear functions of amino acid composition, sometimes with
special consideration of terminal residues or other modifications (16). Using a
model similar to that described by Hodges et al. (17–19), we showed how reten-
tion time prediction of peptides can be combined with accurate mass from
FTICR MS to improve the statistical confidence in identifications of human pro-
teins (16). A similar “accurate mass and time tag” approach was subsequently
demonstrated on prokaryotic proteomes by LC-FTICR MS by Petritis et al. (20)
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and LC-time-of-flight MS by Strittmatter et al. (21), using normalized reten-
tion times and an artificial neural network (ANN) taking the amino acid com-
position as input and with sigmoid transfer and output functions. The
improvement from adding nonlinear nodes in a hidden layer in the ANN was
found to be small (20), and the linear model (16) and the ANN with no hid-
den layers (20) are very similar because observed retention times were
mapped to the most linear part of the sigmoid output of the ANN (see Fig. 3).
However, optimizing the output function or the part of the output function to
which measured data is mapped, as well as using a larger number of input
neurons, taking the amino acid sequence into account, should improve the
accuracy of the predictor. Chromatographic reproducibility of relative (inter-
nally calibrated) retention times sets a lower limit on achievable prediction
imprecision.

Retention time prediction can also be used as a discriminant function in
SEQUEST tandem mass spectrometry (MS/MS) database searches (22,23),
although the benefit is less significant than when using accurate mass alone.

198 Palmblad

Fig. 3. A linear model and an artificial neural network (ANN) with no hidden lay-
ers and a sigmoid output function where retention times are mapped to the most lin-
ear part (between dashed lines) are quite similar (within 4%). If a larger training set
is available, more input and hidden layer neurons can be added to the ANN and the
exact peptide sequence taken into account, improving accuracy of prediction but
requiring a much larger training set. The training set should contain many more
unique peptides than the number of free parameters in the model to avoid overfitting
to measured data.
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2. Theory
Retention time data from a number of samples, systems, and experimental

protocols (16,24,25) have been analyzed. Universally, peptide retention times
were predicted by a linear combination of unique retention coefficients for each
amino acid according to

(1)

where ci is the retention coefficient of amino acid i, of which there are ni in the
peptide, and t0 compensates for void volumes and any delay between sample
injection and acquisition of mass spectra. The coefficients ci are similar to the
weights in the 20-0-1 neural network used by Petritis et al. (20).

To predict retention times of peptides with some of the most frequently stud-
ied posttranslational modifications, four modified amino acids (methionine-S-
oxide, phosphoserine, phosphothreonine, and phosphotyrosine) were added to
the right-hand side of Eq. 1:

(2)

The 20 or 24 ci and t0 were determined by least-squares fitting tcalc to measured
retention times of 100–500 peptides from standard proteins, abundant proteins
in the samples, or as identified by MS/MS. In the latter case, retention time pre-
diction is subsequently used to increase the confidence in identification of pro-
teins for which no MS/MS data of sufficient quality is available. All software
was written in C and run on standard single-processor platforms under Cygwin
(26) or Linux. Experimental LC–MS/MS data on modified peptides was kindly
provided by Rune Mathiessen and Shabaz Mohammed using the virtual expert
mass spectrometrist program (27) for the initial data analysis and extraction of
retention times.

Proteins are identified by comparing likelihood ratios of the observed masses
and retention times against those predicted from the proteome under study and
against a large number of unrelated or random proteins of the same size and
amino acid distributions (see Fig. 4 and Table 1). The random or “decoy” pro-
tein database can be generated by filtering sequences with little homology from
other organisms or constructed by reversing the sequences in the database or
using Markov chains (28). A conservative measure of statistical significance is
thus given by the frequency of random (false) matches to experimental data by
random protein sequences. Unlike accurate mass and time tags, complete
knowledge of all posttranslational modifications, nontryptic peptides, and con-
tamination from other species is not assumed or necessary.

t n c ti i
i

calc = +
=
∑ 0

1

24

t n c ti i
i

calc = +
=
∑ 0

1

20
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Fig. 4. Protein identification by multimodal pattern recognition (accurate masses, retention time, and nonrandomness of tryptic
digestion [16,24,32]). Likelihood ratios are ratios of probabilities of observing measured masses (given the mass measurement error),
retention times (given the accuracy of prediction), and “runs” in the sequence coverage for peptides from a particular protein in the
database to those probabilities of random proteins. (Reproduced from ref. 24 with permission.)
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3. Results and Discussion 
In Fig. 2, the retention times of peptides from a Yersinia pestis cytosolic pro-

tein tryptic digest (25) are shown to exhibit a strongly positive mass dependence.
This is particularly emphasized for tryptic peptides, because these have few lysine
and arginine residues, the two most hydrophilic amino acids. If tryptic digestion
is complete, peptides contain at most one lysine or arginine in the C-terminus,
hence longer tryptic peptides have more hydrophobic residues.

The accuracy of the predictor was found to be at best around within 6–7%
(see Fig. 5). Retention time prediction was as accurate for phosphorylated pep-
tides as for unmodified peptides, provided the training set contained a sufficient
number of modified peptides (see Fig. 6). It appears that the training set should
contain at least approx 10 peptides incorporating each amino acid and modifi-
cation for all ci to converge (see Fig. 7). The ci values scale with hydrophobic-
ity as expected from literature, i.e., the more hydrophobic, the higher the
retention coefficient ci, although this is a somewhat circular argument since
hydrophobicity is often determined experimentally by reversed-phase chro-
matography (12). The retention coefficients are dependent on chromatographic
conditions, such as mobile phase composition and pH. The pH directly influ-
ences the charge of peptide side chain groups and termini and, hence, the
hydrophobicity (charged residues being more hydrophilic) and retention coeffi-
cients in reversed-phase chromatography (29,30). The t0 values were usually
near the observed void time. The overall positive ci also implies a size depend-
ency of the retention of tryptic peptides, i.e., the longer the peptide, the longer
the retention time as shown in Fig. 2. The models used so far are not the only
models for predicting reversed-phase chromatographic retention of peptides.
More sophisticated approaches would account for the actual sequence or even
predicted secondary structure (31). 

Table 1
A Single Example of Improvement in Protein
Identification in a Body Fluid (Amniotic Fluid) 
by Retention Time Prediction (24)

Accurate mass + Nonrandomness
– +

Retention time – 4 28
prediction + 15 43

The numbers refer to the number of proteins putatively identified
using accurate mass with (+) and without (–) retention time predic-
tion and nonrandomness of enzymatic digestion. Strittmatter et al.
(22) also noted a significant increase in the number of confident
peptide identifications by tandem mass spectrometry using peptide
retention times.
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Information on physicochemical properties of peptides, such as hydropho-
bicity, that can be predicted from the peptide sequence, can assist or validate
protein identification by peptide mass fingerprinting. This information is read-
ily available in LC–MS and LC–MS/MS datasets.

Fig. 5. Round-robin validation of the retention time predictor for modified pep-
tides. Predicted vs measured retention time for 488 nonredundant peptides identified
in nine separate liquid chromatography–tandem mass spectrometry runs of samples
enriched for phosphopeptides using a linear reversed-phase gradient and least-
squares fitting (regression) to the linear model in Eq. 2. The retention times of mod-
ified peptides were not harder to predict than unmodified peptides. In the
round-robin, 90% of the dataset was used for training and 10% for validation. The
validation set was then varied 10 times to use the entire dataset (data kindly provided
by Rune Matthiesen and Shabaz Mohammed at the University of Southern Denmark,
Odense, Denmark).
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Fig. 6. Distribution of retention coefficients when using one-third of the nine com-
bined liquid chromatography–tandem mass spectrometry datasets in the training set.
One-letter amino acid codes: m, methionine-S-oxide; s, phosphoserine; t, phosphothre-
onin; y, phosphotyrosine.

4. Software
The source code for the retention time predictor (rt) is available under the

GNU General Public License at http://yass.sdu.dk/RT/rt.htm, along with instruc-
tions for compilation and usage. In its simplest form, rt takes one argument on
the command-line,

rt <training set>

where <training set> is a space delimited list of retention times in arbitrary
units and peptide sequences in the one-letter code with lowercase letters for the
modified amino acids and one measured retention time and peptide sequence
pair per row in an ASCII text file, e.g.,

28.536 AHGHSmsDPAISY
32.14 SHLtWFCTMKLD
34.763 AGASyTDVAYK
etc.

The output from rt is a list of amino acids in the one-letter code and the corre-
sponding retention coefficients ci. The chromatographic retention time peptide[i].t
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of a candidate peptide  peptide[i].sequence (as a text string in the one-letter code)
is then predicted by applying Eq. 2:

peptide[i].t=c[24];

for(j=0;j<strlen(peptide[i].sequence);j++)

{

peptide[i].t+=c[(24–

strlen(strchr(“ARNDCEQGHILKMFPSTWYVmsty”,peptide[i].
sequence[j])))];

}

where c[] is a vector of the retention coefficients ci, “ARNDCEQGHILKM
FPSTWYVmsty” a string defining the order of amino acids (in one-letter code)
in c[] and c[24] is the constant term t0 in Eqs. 1 and 2). Extensions to rt for
testing the accuracy of the retention time prediction are also available from
the author.
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Fig. 7. Retention coefficients converges when at least approx 10 unique peptides
containing the corresponding amino acid or posttranslational modification (amino
acid frequency in the full dataset, one-third of which was used for training). For rare
modifications, synthetic peptides with these modifications could be added to the
sample.
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Quantitative Proteomics by Stable Isotope Labeling 
and Mass Spectrometry

Sheng Pan and Ruedi Aebersold

Summary
The goal of quantitative proteomics is to systematically study static state or perturbation-

induced changes in protein profile. Most of the recently developed mass spectrometry (MS)-
based quantitative proteomic methods employ stable isotope labeling to introduce signature mass
tags to peptides/proteins that can be used by a mass spectrometer to quantify each analyte and to
determine the sample from which it originates. In this chapter, we discuss several methods for the
introduction of mass tags to proteins and peptides for MS-based quantitative proteomic analysis,
including isotope-coded affinity tags, stable isotope labeling by amino acids in cell culture, global
internal standard technology, and mass-coded abundance tagging.

Key Words: Quantitative proteomics; isotope-coded affinity tags; ICAT; stable isotope
labeling by amino acids in cell culture; SILAC; global internal standard technology; GIST;
mass-coded abundance tagging; MCAT.

1. Introduction
Quantitative proteomics aims to identify the proteins contained in complex

samples such as cell and tissue extracts or subcellular fractions, and to deter-
mine the quantitative difference in abundance for each polypeptide contained
in different samples. It is expected that the patterns resulting from such analyses
will define comprehensive molecular signatures in health and disease and
impact a wide range of biological and clinical research questions, such as
the systematic study of biological processes and the discovery of clinical
markers for detection, diagnosis, and assessment of treatment outcome (1–5).
The traditional approach for quantitative protein profiling has been based on
two-dimensional gel electrophoresis for protein separation, followed by mass
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spectrometric identification of selected or all detected proteins (6,7). In the past
few years, several mass spectrometry (MS)-based quantitative proteomic methods
have been developed (1–3). Although they differ in sample preparation and other
aspects, these methods share the use of stable isotope protein labeling or mass
tagging to generate the mass signatures that identify the sample of origin and
serve as the basis for accurate quantification. In general, the proteins contained in
two different samples are labeled individually to acquire a different isotopic or
chemical signature and then combined and analyzed by multidimensional chro-
matography and tandem mass spectrometry (MS/MS). Relative quantification of
each identified protein in the samples compared is accomplished by determining
the abundance ratio from the signal intensities of the differentially labeled pep-
tides with identical sequence. These methods provide a broadly applicable means
for quantitative proteome experiments, and most significantly, greatly improve
the capability to analyze the proteins with low abundance.

Over the last few years, several methods for the incorporation of signature
tags into proteins or peptides have been described (see Fig. 1). These include
the use of chemical reactions to introduce an isotopic or chemical tag at spe-
cific functional groups on polypeptides (8–11), metabolic isotope labeling
using heavy amino acids (12–16), and methods that introduce stable isotope
tags via enzymatic reactions (17,18). Each one of these methods has specific
strengths and weaknesses. Incorporation of stable isotopes or mass tags via
chemical reactions allows great flexibility and selectivity for specifically tag-
ging different reactive groups on proteins or peptides, including side chains of
amino acids and specific types of modifications. Because the labeling reac-
tions occur post isolation, specific functional groups and affinity tags can be
introduced into essentially any sample to facilitate the selective isolation and
analysis of a targeted subset of the proteome. Avoiding possible side reactions
is important for the application of this method. For metabolic stable isotope
labeling, proteins are labeled using cell culturing in media that are isotopically
enriched or isotopically depleted. Because metabolic labeling does not require
any chemical reactions, the method is easy to apply and particularly useful for
experiments that involves cell culturing. It is, however, limited to cells that can
be labeled in vitro and the range of available tags is limited to precursors of
polypeptide synthesis that can be effectively metabolized. Complete isotopic
labeling in cell culture can be difficult to achieve, even for those proteins with
very long half-lives, as the growing cells synthesize new proteins during the
cell culture (13). Stable isotope incorporation via enzyme reaction is straight-
forward and generates constant and uniform mass difference. However, the
mass difference generated by enzymatic 18O incorporation is either 4 or 2 Da,
which can be difficult for quantitative analysis without using an algorithm for
deconvolution of isotope patterns.
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The most commonly used of these methods is the isotope-coded affinity
tag (ICAT) approach (8,9), in which the proteins in two samples representing
different proteomes are labeled separately on the side chain of their reduced
cysteinyl residues using one of two chemically identical but isotopically dif-
ferent ICAT reagents. An important feature of this method is the incorpora-
tion of a biotin affinity tag into the ICAT reagents, which enables the
selective isolation and purification of labeled analytes, thus affording a sub-
stantial reduction in sample complexity. Global internal standard technology
(GIST) also utilizes chemical reactions to introduce stable isotope tags at
specific sites in a polypeptide (10,19,20). Peptides from the samples to be
compared are differentially derivatized on the primary amino groups and the
quantification can be done at the MS level as well as MS/MS level using
tandem mass spectrometer (10). The mass-coded abundance tagging
(MCAT) method relies on labeling the proteins in the samples to be com-
pared with compounds that are structurally related but different in mass. An
example of this is the differential guanidination of C-terminal lysine residues
on tryptic peptides (11). The stable isotope labeling with amino acids in cell
culture (SILAC) method takes a different approach, and uses cell culturing
to introduce the isotope labeling on proteins by adding 12C- and 13C-labeled
amino acids to the growth media of separately cultured cell lines to differen-
tially label the proteins in the growing cells (13–16). In this chapter, we provide
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detailed protocols for the incorporation of signature tags into polypeptides
via a number of well-established methods.

2. Materials
2.1. ICAT

1. Cleavable ICAT reagent kit from Applied Biosystems (Foster City, CA). The
reagents and cartridges described in Subheading 3. are included in the kit.

2.2. SILAC

1. Base cell culture medium: essential medium depleted for certain amino acids
(see Note 1) (Sigma, St. Louis, MO or Invitrogen, Carlsbad, CA) and supplemented
with antibiotics and 10% dialyzed fetal bovine serum (see Note 2) (Invitrogen).

2. Normal (12C-) and 13C-labeled amino acids (see Note 1) (Cambridge Isotope Labora-
tories, Andover, MA).

3. Buffer: phosphate-buffered saline (PBS) (Sigma).
4. Lysis buffer: 1% sodium dodecyl sulfate (SDS), 1% Nonidet P-40, 50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, and protease inhibitor (CompleteTM tablets; Roche
Diagnostics, Mannheim, Germany).

5. Bradford protein assay kit (Pierce, Rockford, IL).
6. SDS-PAGE sample buffer (Invitrogen or Bio-Rad, Hercules, CA).
7. 10% SDS-polyacrylamide gel electrophoresis (PAGE) gel (Invitrogen or Bio-Rad).
8. Silver staining kit (Invitrogen or Bio-Rad).
9. Dithiothreitol (DTT) (Sigma) solution: 10 mM DTT and 100 mM ammonium

bicarbonate.
10. Iodoacetamide (Sigma) solution: 55 mM iodoacetamide and 100 mM ammonium

bicarbonate.
11. Trypsin (Promega, Madison, WI).
12. 20 mM ammonium bicarbonate solution.
13. 50 mM ammonium bicarbonate solution.
14. 100 mM ammonium bicarbonate solution.

2.3. GIST

1. Chemicals: N-acetoxysuccinimide, N-hydroxysuccinimide, hydroxylamine,
tris(hydroxyl methyl)aminomethane (Tris base), tris(hydroxyl methyl) amino-
methane hydrochloride (Tris acid), N-tosyl-L-phenylalanine chloromethyl ketone
(TPCK) treated trypsin (Sigma), [2H6]C1 acetic anhydride (Aldrich, Milwaukee,
WI), D,L-DTT, 4-vinylpyridine (Bio-Rad), HPLC-grade trifluoroacetic acid
(Pierce), HPLC-grade water, and acetonitrile (ACN) (Mallinckrodt Baker,
Phillipsburg, NJ).

2. 10 mM DTT solution: 10 mM DTT and 100 mM ammonium bicarbonate.
3. 50 mM Tris solution: pH 8.0
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4. Labeling buffer: 50 mM phosphate buffer, pH 7.5.
5. Sep-Pak cartridge (Waters, Milford, MA).

2.4. MCAT

1. Lysis buffer: 8 M urea, 1 mM CaCl2, 100 mM Tris-HCl, pH 8.5.
2. Digestion buffer: 100 mM ammonium bicarbonate, pH 8.5, and 1 mM CaCl2.
3. Immobilized TPCK trypsin beads (Pierce).
4. Solid O-methylisourea (S-methylisothiourea hemisulfate salt) (Sigma-Aldrich,

St. Louis, MO).
5. Solid-phase SPEC-PLUS PTC18 cartridge (Ansys Diagnostics, Lake Forest, CA).

3. Methods
3.1. ICAT

1. 100 µg of protein from the test and control sample are dissolved individually using
80 µL of the denaturing buffer.

2. 2 µL of the reducing reagent is added to both the control and test sample. After
vortexing and spinning, the samples are placed in a boiling water bath for 
10 min.

3. The samples are mixed and spun for 1–2 min to cool. A 1-µL aliquot from
each sample is removed and designated “before labeling” for process monitoring
(see Note 3).

4. Cleavable ICAT reagent light and heavy, respectively, is dissolved in 20 µL ACN.
5. The control and test sample are transferred to the vial containing light and heavy

ICAT reagent, respectively.
6. The samples are mixed with vortex, spun, then incubated for 2 h at 37°C. A 1-µL

aliquot from each sample is removed and designated “after labeling” for process
monitoring (see Note 3).

7. Trypsin is dissolved in 200 µL Milli-Q® water.
8. The labeled control and test samples are combined together in a single vial.
9. Trypsin solution is added to the combined sample. The sample is well mixed and

incubated for 12–16 h at 37°C. A 1-µL aliquot from the sample is removed and
designated “after digestion” for process monitoring (see Note 3).

10. The cation-exchange cartridge is assembled according to the manufacturer’s (Applied
Biosystems) instruction and conditioned with 2 mL cation exchange buffer-load.

11. The sample mixture is diluted with 2 mL of cation exchange buffer-load. The sam-
ple is well mixed and the pH is adjusted to between 2.5 and 3.3.

12. The diluted sample is slowly injected (~1 drop/s) onto the cation-exchange car-
tridge. The flow-through is collected into the original sample tube (see Note 4).

13. 1 mL of cation exchange buffer-load is injected to wash Tris(2-carboxyethyl)
phosphine), SDS, and excess ICAT reagents from the cartridge. The flow-through
is collected into the original sample tube (see Note 4).
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14. 500 µL of the cation-exchange buffer elute is injected slowly (~1 drop/s) to
elute the peptides. The eluted peptides are collected as a single fraction in a
fresh 1.5-mL tube.

15. The cation-exchange cartridge is cleaned and stored according to the manufac-
turer’s (Applied Biosystems) instruction.

16. The avidin cartridge is assembled according the manufacturer’s (Applied Biosystems)
instruction and conditioned with 2 mL of the affinity buffer elute followed by
2 mL of the affinity buffer load (see Note 5).

17. The peptide mixture collected after the cation-exchange step is neutralized with
500 µL of the affinity buffer-load and well mixed.

18. The neutralized sample is slowly (~1 drop/s) injected onto the avidin cartridge,
followed by 500 µL of the affinity buffer-load. The flow-through is collected and
kept until successful loading is confirmed.

19. The avidin cartridge is washed with 1 mL of the affinity buffer wash 1 to reduce
the salt concentration.

20. 1 mL of the affinity buffer wash 2 is injected onto the cartridge to remove the
nonspecifically bound peptides. The first 500 µL of the flow-through is collected
and kept until that the success of sample loading is confirmed.

21. The avidin cartridge is washed with 1 mL of Milli-Q water.
22. 50 µL of the affinity buffer-elute is injected onto the cartridge slowly (~1 drop/s),

and the eluent is discarded.
23. Another 750 µL of the affinity buffer-elute is injected onto the cartridge slowly

(~1 drop/s) and the eluted peptides are collected.
24. The avidin cartridge is cleaned and stored according to the manufacturer’s (Applied

Biosystems) instruction.
25. The affinity-eluted peptide mixture is dried down by a centrifugal vacuum

concentrator.
26. 100 µL of the combined cleaving reagent (95 µL of cleaving reagent A and 5 µL of

cleaving reagent B) is added to the sample. The sample is incubated for 2 h at 37°C.
27. The sample is dried down using a centrifugal vacuum concentrator and resus-

pended in an appropriate solvent based on the mass spectrometric analysis used.
28. The sample is stored at –80°C until its analysis by MS.

3.2. SILAC

1. 12C- or 13C-labeled amino acid (see Note 1) are prepared as 250X stock solutions
in the PBS, sterile filtered, and added to the base cell culture media for a final con-
centration of 52 mg/L.

2. Two populations of cells are plated into six dishes each and grown in cell culture
medium containing normal (12C-) or 13C-labeled amino acid (see Note 1) in a
humidified atmosphere with 5% CO2 in air.

3. The cells are harvested when the labeled amino acids are completely incorporated
in the proteins (see Note 6). The cells are washed twice with ice-cold PBS and
then scraped in the lysis buffer. The lysate is sonicated for two cycles of 30 s each
and centrifuged to pellet cellular debris.
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4. The supernatant of the samples compared are collected separately. The protein
concentrations are measured using Bradford protein assay (or bicinchoninic acid
assay; Pierce Biotechnology).

5. Equal amount of protein from each sample (labeled and unlabeled) are combined
and mixed in 1:1 ratio and boiled in the SDS-PAGE sample buffer.

6. The protein mixtures are resolved on a 10% SDS-PAGE gel and stained with sil-
ver stain (or Coomassie blue; Bio-Rad) to visualize the gel bands.

7. The gel bands are excised and cut into approx 1-mm3 cubes, placed in a small
Eppendorf tube, washed with 1 mL deionized water twice, then dehydrated in
100 µL ACN for approx 15 min. The ACN solution is removed and the gel is
dried by Speed-Vac.

8. 10 mM DTT solution is added to the Eppendorf tube until the gel pieces are com-
pletely covered. The protein is reduced at 56°C for 1 h.

9. After the sample is cooled to room temperature, the DTT solution is removed and
an equal volume of 55 mM iodoacetamide solution is added to the gel. The gel is
then incubated for 45 min in dark place.

10. The gel pieces are washed with 100 µL of 100 mM ammonium bicarbonate
solution, then soaked in ACN for 15 min. The step is repeated twice. The gel is
completely dried by Speed-Vac.

11. A freshly prepared solution containing 12.5 ng/µL trypsin and 50 mM ammonium
bicarbonate is added to the sample until the gel pieces are completely covered (see
Note 7). The gel pieces are reswelled at 4°C for 45 min. The sample is then incu-
bated overnight at 37°C for protein digestion.

12. The sample is centrifuged and the supernatant is collected.
13. 20 mM ammonium bicarbonate solution is added to the sample until the gel pieces

are completely covered. The gel is soaked in the solution for 20 min at which time
the sample is centrifuged and the supernatant is collected.

14. The peptides are further extracted by soaking the gel pieces in 5% formic
acid/50% ACN for 30 min. The samples are centrifuged and the supernatant is col-
lected. Step 14 is repeated three times.

15. The supernatants collected from steps 12 to 14 are combined, dried down by
Speed-Vac, and resuspended in a solvent (e.g., 0.4% formic acid, 5% ACN solu-
tion) appropriate for mass spectrometric analysis. 

16. The sample is stored at –80°C until its analysis by MS.

3.3. GIST

1. 8.0 g of N-hydroxysuccinimide in 21.4 g of [2H
6]C1 acetic anhydride is stirred for

15 h at room temperature.
2. White product crystals (N-acetoxy-[2H3]succinimide) are collected after removing

the liquid phase by rotary evaporation.
3. The white crystalline residue is treated with hexane and dried in vacuum. The

product’s melting point is 133–134°C.
4. 20 mg of protein from test and control samples is denatured separately by adding

urea at a concentration of 8 M.
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5. The proteins are reduced using 10 mM DTT solution after 1 h incubation at 50°C.
6. Vinyl pyridine is added at a concentration of 25 mM for cysteine alkylation. The

reaction is allowed to proceed at room temperature for 30 min.
7. The samples are diluted with the Tris solution to reach a final urea concentration

of 1 M.
8. TPCK-treated trypsin is added to a ratio of 1:50 (w/w) and the samples are incu-

bated for 24 h at 37°C.
9. The digested proteins from test and control samples are collected on a reversed-

phase column and then eluted with 60% ACN containing 0.1% trifluoroacetic
acid, separately. Each of the samples was then dried down and resuspended in the
labeling buffer.

10. A 50-fold molar excess of N-acetoxysuccinimide and N-acetoxy-[2H3]succinimide
is added to the test and control sample, respectively. The labeling reagent is added
in small amounts over the course of the first hour and the reactions are carried out
at room temperature over 4 h with constant mixing.

11. Equal amount of labeled test and control samples are combined and treated with
excess hydroxylamine. The pH is adjusted to 11.0–12.0. The incubation of
hydroxylamine is allowed to proceed for 10 min (see Note 8).

12. The derivatized peptide mixture is purified with a Sep-Pak cartridge, dried down
by Speed-Vac, then resuspended in a solvent (e.g., 0.4% formic acid, 5% ACN
solution) appropriate for mass spectrometric analysis.

13. The sample is stored at –80°C until its analysis by MS.

3.4. MCAT

1. The cell lysates from test and control samples are suspended in the lysis buffer
separately and centrifuged.

2. The supernatants are collected and diluted to 2 M urea using the digesting buffer.
3. Appropriate amount of immobilized TPCK trypsin beads are added to the extracts

from test and control samples separately, according to the manufacturer’s (Pierce)
instruction. The samples are incubated at 30°C for 2 d with tumbling.

4. Solid O-methylisourea is added to the test sample to a final concentration of 1.5 M,
the pH is adjusted to 10.0 with NaOH, and the sample is incubated at 37°C
overnight (see Note 9).

5. The peptides from test and control samples are combined together. The combined
sample is purified by solid-phase SPEC-PLUS PTC18 cartridges according to the
manufacturer’s (Ansys Diagnostics) instruction, dried down, and buffer-
exchanged into a solvent (e.g., 0.4% formic acid, 5% ACN solution) appropriate
for mass spectrometric analysis. 

6. The sample is stored at –80°C until its analysis by MS.

4. Notes

1. 13C-labeled leucine, arginine, and lysine have been used for SILAC experi-
ments. Other essential amino acids can be used for SILAC experiments as well.
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The selection of the type of amino acid for SILAC experiments is based on their
abundance and availability.

2. The use of dialyzed serum instead of normal serum is based on the consideration
that dialyzed serum does not contain detectable amounts of free amino acids.

3. The process monitoring aliquots (before labeling, after labeling, and after diges-
tion) are analyzed by SDS-PAGE gel using silver stain to visualize the gel bands.
After labeling a distinctive shift of the banding patterns toward a higher molecu-
lar weight will be detected. The postdigestion sample should be essentially free of
proteins bands.

4. The flow-through is kept until the success of the loading on the cation-exchange
cartridge is confirmed.

5. Conditioning the avidin cartridge with elute buffer is required to free up low-affinity
binding sites on the avidin cartridge.

6. The time needed for a complete incorporation of labeled amino acids in the pro-
teins depends on the type of cell line and experimental conditions. For example,
time course studies showed that for NIH 3T3 fibroblasts it took approximately five
doublings to reach the full incorporation of labeled amino acids (13). It is also
important to note that even those proteins with very long half-lives would still
show approx 97% incorporation of the label in the case of full incorporation as the
growing cells synthesize new proteins during the cell culturing (13).

7. Trypsin works best in the pH range between 8.0 and 8.5. 
8. The hydroxylamine treatment is to hydrolyze esters that might have been formed

during the acylation reaction.
9. The reaction should be performed in a fume hood.
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13

Quantitative Proteomics for Two-Dimensional Gels
Using Difference Gel Electrophoresis

David B. Friedman

Summary
Difference gel electrophoresis (DIGE) technology provides a powerful quantitative compo-

nent to proteomics experiments involving two-dimensional (2D) gel electrophoresis. DIGE
allows for the detection of subtle changes in protein abundance with statistical confidence while
controlling for gel-to-gel variation, as well as additional variation that is non-biological in origin
(e.g., sample preparation error, normal variation in a system). Samples are differentially labeled
with spectrally resolvable fluorescent dyes (Cy2, Cy3, and Cy5) and co-resolved for direct quan-
tification within the same 2D gel. Increased statistical confidence is obtained when combining
experimental repetition with internal standards such that independent replicate measurements
from single- and multivariable analyses can be intercompared with a relatively small number of
coordinated DIGE gels.

Key Words: DIGE; difference gel electrophoresis; two-dimensional gel electrophoresis;
quantification.

1. Introduction
The proteome is a dynamic entity, constantly changing both in levels of pro-

tein expression as well as in posttranslational modification, all of which are
completely hidden in the static DNA code. One great challenge in proteomics
has been in quantifying the dynamics of protein expression in any given state.
Various strategies have been implemented to address the issue of protein abun-
dance quantification. They usually involve either gel-based protein separations
using two-dimensional gel electrophoresis (2D-GE), with subsequent protein
identification using mass spectrometry (MS) on a subset of proteins of interest,
or high-performance liquid chromatography (HPLC) separations of complex
peptide mixtures coupled directly in-line with MS. Until recently, quantitative
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strategies have been limited to either comparison of total protein stains between
separate 2D-GE separations, or by using differential stable isotope labeling of
peptide mixtures and performing HPLC coupled with tandem MS experiments
(liquid chromatography [LC]–MS/MS). Practical experience demonstrates that
both gel-based and LC/MS-based approaches are complementary with some
degree of overlap. In general terms, gel-based approaches are often used on a
more global scale, whereas LC/MS-based strategies target subproteomes or
defined protein mixtures (although there are many examples of the reverse, as
well as strategies that take advantages of the complementary aspects of both
approaches). 2D gel-based strategies separate intact proteins based on both
charge (isoelectric point, pI) and mass, and therefore have the ability to resolve
multiply charged isoforms (that may result from phosphorylation or other
charged posttranslational modifications) and biologically significant proteolytic
products. Subsequent MS can verify that a set of isoforms is, in fact, related
without necessarily identifying the modified peptide(s), whereas such changes
may be completely overlooked in peptide-based approaches without mass
spectral information on the modified peptide(s).

2D-GE is capable of resolving several thousands protein spot features in a sin-
gle separation (1), with detection limits of ca. 1 ng. It couples first dimension pro-
tein separation by charge (using isoelectric focusing, IEF) with second dimension
protein separation by molecular weight (using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis [SDS-PAGE]) (see Note 1). Although single
2D-GE runs can resolve proteins with pI ranges between pH 3.0 and 11.0 and
apparent molecular mass ranges between 10 and 200 kDa, higher resolution and
sensitivity can be obtained by running a series of medium range (e.g., pH 4.0–7.0,
7.0–11.0) and narrow range (e.g., pH 5.0–6.0) IEF gradients with increasing pro-
tein loads, leading to an overall more comprehensive proteomic analysis (1,2)
(see Note 2). This is analogous to gaining increased resolution and sensitivity in
an LC/MS-based strategy by using multiple HPLC columns with different affin-
ity chemistries (e.g., MuDPIT [3]). Specific proteins of interest are then identified
using standard MS approaches on gel-resolved proteins that have been excised
and proteolyzed into a discrete set of peptides (see Chapter 1).

2D-GE has traditionally been a popular method for differential-display pro-
teomics on a global scale, but until recently, these strategies lacked the ability to
directly quantify abundance changes in the same fashion as in stable isotope
LC/MS-based strategies (4–6). This has mainly been because of the inability to
directly correlate migration patterns and protein staining between gel separations
(gel-to-gel variation). Stable isotopes have been used in gel-based proteomics as
well, whereby different proteomes have been separately labeled with different sta-
ble isotopes (e.g., growing cells using 14N- vs 15N-labeled medium) prior to mix-
ing and running together through the same 2D-GE separation (7). In this case,
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abundance changes can be monitored during the MS stage on individual proteins,
but requires the in-gel digestion and MS on every protein present to discover the
subset of proteins that is changing.

Difference gel electrophoresis (DIGE) technology was recently introduced
(first described by Unlu et al. [8]), which adds an essential quantitative compo-
nent to 2D-GE and allows for the detection of subtle changes in protein abun-
dance with statistical confidence (9–11). DIGE uses three spectrally resolvable
fluorescent dyes (Cy2, Cy3, and Cy5) to label up to three samples to be run
together on the same 2D gel.

The ability to coresolve multiple samples in a single gel is attractive because
it allows for direct relative quantification for a given protein without any inter-
ference from gel-to-gel variation, removing the need for running replicate gels
for each sample to control for variation (similar to stable isotope LC/MS-based
strategies). This approach has limited statistical power, however, because con-
fidence intervals are determined based on the overall variation within a popula-
tion (see Subheading 3.6.). Many researchers new to DIGE technology are not
immediately aware of the increased statistical advantage and multiplexing capa-
bilities of DIGE when combining this approach with a pooled-sample mixture
as an internal standard for a series of coordinated DIGE gels (12). This design
will allow for repetitive measurements (vital to any type of experimental inves-
tigation), and in such a way as to control both for gel-to-gel variation and pro-
vide increased statistical confidence (using Student’s t-test or ANOVA). In this
way, statistical confidence can be measured for each individual protein based
on the variance of repetitive measurements, independent of the variation in
the population. Incorporating independently prepared replicate samples into
the experimental design also controls for unexpected variation introduced
into the samples during sample preparation.

This more complex and statistically powerful experimental design is accom-
plished by using one of the three dyes (usually Cy2) to label a grand mixture of
all of the samples in an experiment to serve as an internal standard to be loaded
onto every gel. Because this standard is composed of all of the samples in a
coordinated experiment, each protein in a given sample should be represented in
the standard and thus have its own unique internal standard. Direct quantitative
comparisons are made individually for each resolved protein between the Cy3- or
Cy5-labeled samples and the cognate protein signal from the Cy2-labeled stan-
dard for that gel (without interference from gel-to-gel variation). The individual
signals from the internal standard are also used to normalize and compare
between each in-gel direct quantitative comparison for that particular protein
from the other gels. Using the Cy2-labeled standard in this fashion, therefore,
allows for more precise and complex quantitative comparisons between gels,
including sample repetition (Fig. 1).
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Importantly, the internal standard experimental design allows for the identifi-
cation of significant changes that would not have been identified if the analyses
were performed separately, even when using Cy3- and Cy5-labeled samples on
the same DIGE gel (13). This experimental design also allows for multivariable
analyses to be performed in one coordinated experiment, whereby statistically
significant abundance changes can be quantitatively measured simultaneously
between several sample types (e.g., different genotypes, drug treatments, disease
states), with repetition and without the necessity for every pairwise comparison
to be made within a single DIGE gel (14,15) (see Note 3).

This chapter assumes a solid understanding in 2D-GE, and will focus on the
design and implementation of the DIGE method using the pooled-sample
internal standard methodology. Sample preparation and the CyDye-labeling
reactions using the minimal dye chemistry will also be discussed, with notes
provided for the less common saturation-labeling chemistry.

2. Materials
2.1. Cell Lysis Buffers

1. TNE: 50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 2 mM EDTA, pH 8.0, 2 mM
dithiothreitol (DTT), and 1% (v/v) NP-40.

2. RIPA buffer: 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% deoxycholic
acid, and 0.1% SDS.

3. 2D-GE sample buffer: 7 M urea, 2 M thiourea, 4% CHAPS, and 2 mg/mL DTT.
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Fig. 1. (Opposite page) Schematic illustrating a difference gel electrophoresis
(DIGE) analysis using a pooled-sample as an internal standard to coordinate samples
across multiple DIGE gels. (A) Twelve individual samples are separately labeled with
either Cy3 or Cy5, and then one Cy3/Cy5 pair of samples is mixed together along with
an equal aliquot of a Cy2-labeled mixed sample internal standard to then be coresolved
across six DIGE gels. The Cy2/3/5-specific spot maps are then independently scanned
from each gel as shown (Cy2/3/5 images are grouped horizontally for each gel). Each
resolved protein from a given Cy3- or Cy5-labeling has an unique internal standard rep-
resented in the Cy2-labeled mixture that is loaded equally onto every gel. For each
resolved protein feature, direct quantitative measurements are made relative to the signal
from the standard within the same gel separation, without interference from gel-to-gel
variation. The standard is then used for matching and normalization between gels in a
coordinated set. Gel numbers indicate individual human patient samples. (B) A repre-
sentative two-dimensional spot map from patient number 30, with overlayed normal
sample (Cy3-red) and the tumor sample (Cy5) for comparison. (C) Graphical represen-
tation of the normalized log abundances and average ratio between normal and tumor
for the protein indicated with the red circle, with associated Student’s t-test p value.
This protein was subsequently identified by mass spectrometry as translationally con-
trolled tumor protein P13693. Adapted from ref. 13.



2.2. SDS-PAGE

1. Immobilized pH gradient strips and accompanying ampholyte mixtures can be
purchased from a number of commercial vendors. Strip lengths vary from 7 cm to
high-resolution 24-cm strips, and pH ranges vary from wide-range (e.g., pH
3.0–11.0) to high-resolution narrow-range (e.g., pH 5.0–6.0) strips.

2. 50 mL bind silane working solution: 40 mL ethanol, 1 mL acetic acid, 50 µL bind
silane solution (Amersham Biosciences), and 9 mL water (see Note 4).

3. 4X separating gel buffer: 1.5 M Tris-base, pH 8.8.
4. 30% Acrylamide:bis-acrylamide (37.5:1): N,N,N,N’-tetramethylethylenediamine

and ammonium persulfate.
5. 1 L 10X SDS-PAGE running buffer: 30.25 g Tris base, 144.13 g glycine, and 10 g

0.1% SDS.
6. 1 L fixing solution for SyproRuby staining: 100 mL methanol, 70 mL acetic

acid, 830 mL water. SyproRuby (Invitrogen/Molecular Probes), Deep Purple (GE
Healthcare/Amersham Biosciences), and other total-protein stains are available
from several commercial sources.

7. Second dimensional equilibration buffer: 6 M urea, 50 mM Tris-base, 30% glycerol,
2% SDS, and trace bromophenol blue.

8. Water-saturated butanol (see Note 5).
9. DTT (store dessicated).

10. Iodoacetamide (store dessicated, keep in the dark).

2.3. DIGE-Labeling Materials

1. N,N-dimethyl formamide (DMF) (see Note 6).
2. Labeling (L) buffer: 7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris-base, and

5 mM magnesium acetate (see Note 7).
3. Rehydration (R) buffer: 7 M urea, 2 M thiourea, 4% CHAPS, 2 mg/mL 13 mM

DTT (2%).
4. Cyanine dyes with N-hydroxy succinimidyl (NHS) ester chemistry for minimal

labeling (Cy2, Cy3, Cy5), and with maleimide chemistry for saturation labeling
(Cy3 and Cy5) are available from GE Healthcare/Amersham Biosciences as
dry solids.

5. 10 mM lysine quenching solution.
6. 200 mg/mL DTT reduction stock solution.

3. Methods

DIGE is a powerful technique for quantitative multivariable differential-display
proteomics. However, the quality of the data will only be as good as the quality of
the underlying 2D-GE technology on which it is based. The main focus of this
chapter is to provide detailed notes on the DIGE technology, however, some key
considerations to successful high-resolution 2D-GE are also provided.
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3.1. Sample Preparation

The key to success for any analytical measurement begins with sample prepa-
ration. This not only includes the buffers and materials used, but also the nature
of the samples and the way in which they are procured. The addition of exoge-
nous materials or allowing for uncontrolled manipulation of the sample (such as
conditions that may lead to proteolysis) can severely hamper and sometimes
completely prevent an analysis. Care should be taken to ensure against common
laboratory contaminants (e.g., mycoplasma for tissue culture) that, if present, may
be detected as significant changes using DIGE, either resulting from the presence
in a subset of samples, or by responding to the experimental perturbation.

1. Protein extracts can be made essentially using any method of preference, as the
necessary amount of protein can be subsequently precipitated prior to resuspen-
sion in the CyDye-labeling buffer (see Subheading 3.2.). Ensuring against prote-
olysis and loss of posttranslational modifications (e.g., phosphorylation) is of
monumental importance. However, care should be taken not to use reagents that
will resolve on the 2D gel, such as soybean trypsin inhibitor. Small molecule
inhibitors, such as aprotinin, leupeptin, pepstatinA, antipain, AEBSF, sodium
orthovanadate, okadaic acid, and microcystin, among others, are far better choices.

2. There are myriad ways to extract proteins from biological systems, and a given
protocol may work better for certain samples. Standard lysis buffers such as TNE,
RIPA buffers, or even the buffers used for 2D-GE (see Subheading 2.1.) all have
the capability of producing high-resolution samples for 2D-GE.

3. Sonication can often prove beneficial in creating high-resolution samples for 2D-
GE, most likely because of the disruption of nucleic acids, which are subsequently
removed by MeOH/CHCl3 precipitation (see Subheading 3.2.) along with phos-
pholipids. Both of these nonproteinacious ionic components can obliterate the res-
olution during IEF. Short bursts with a tip sonicator is suggested, especially in the
presence of urea-containing samples that should never be heated (see Note 7).

4. Protein concentrations should be determined using a system that is compatible for
the buffer that the proteins are extracted in. For example, the CHAPS and thiourea
in the buffers used for DIGE, although adequately chaotropic, interfere with either
the Bradford or bieinchoninic acid (BCA) assays, making the data inaccurate and
unreliable. In these cases, aliquots should be precipitated prior to quantification in a
suitable buffer.

5. A good working range to aim for is between 1 and 10 mg/mL. Too dilute and it
will be difficult to quantitatively recover proteins following precipitation cleanup
(see Subheading 3.2.); too concentrated and it will be difficult to accurately dis-
pense the appropriate volume for the experiment. Freeze-thawing should also be
kept to a minimum; freezing samples in 1-mL aliquots or less will usually suffice.

3.2. Sample Cleanup

The desired amount of sample to be used in the experiment should be pre-
cipitated prior to labeling. This both removes nonproteinacious ions from the
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sample (e.g., nucleic acids, phospholipids) that can interfere with IEF, as well
as transfers the proteins into a labeling buffer optimized for CyDye labeling and
subsequent IEF. Determine how much total protein will be on each gel, and pre-
cipitate one-half of that amount for each sample to be run on that gel. This is
straight-forward for a two-component separation, but also works out for the
multigel experiments where one-third of the total protein amount on each gel
comes from the pooled-sample internal standard (Table 1). Precipitate only
what is needed for each sample for the experiment; too much material may
create pellets that are difficult to resolubilize completely.

Many precipitation methods are available, the following is a MeOH/CHCl3
protocol that works well for DIGE, and can be easily performed in 1.5-mL
tubes (adapted from Wessel and Flugge [16]):

1. Bring up a predetermined amount of protein extract to 100 µL with water.
2. Add 300 µL (3 vol) water.
3. Add 400 µL (4 vol) methanol.
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Table 1
Experimental Design for CyDye Labeling (Minimal Dyes) 
Using a Pooled-Sample Internal Standard

Samples

Gel 1 Gel 2 Gel 3

Control-1 Treated-1 Control-2 Treated-2 Control-3 Treated-3 Pool

Precipitated amount 150 µg 150 µg 150 µg 150 µg 150 µg
L-buffer 24 µL 24 µL 24 µL 24 µL 24 µL 24 µL
Aliquot 16 µL 16 µL 16 µL 16 µL 16 µL 16 µL 8 µL (×6)
Cy2 (100 pmol/µL) 6 µL
Cy3 (100 pmol/µL) 2 µL 2 µL 2 µL
Cy5 (100 pmol/µL) 2 µL 2 µL 2 µL

30 min on ice in the dark

Lysine (quench) 2 µL 2 µL 2 µL 2 µL 2 µL 2 µL 6 µL

10 min on ice in the dark

Total vol 20 µL 20 µL 20 µL 20 µL 20 µL 20 µL 60 µL

For each gel, combine the quenched Cy3- and Cy5-labeled samples 
and add one-third of the quenched Cy2-labeled pooled mixture

20 + 20 + 20 µL 20 + 20 + 20 µL 20 + 20 + 20 µL
2X R-buffer 60 µL 60 µL 60 µL
Total 120 µL 120 µL 120 µL
R-buffer to Vf to Vf to Vf

This table illustrates a typical DIGE-labeling experiment, as described in Subbeadings 3.2. and 3.3.



4. Add 100 µL (1 vol) chloroform.
5. Vortex vigorously and centrifuge (10 min, 13g); the protein precipitate should

appear at the interface.
6. Remove the water/MeOH mix on top of the interface, being careful not to disturb

the interface. Often the precipitated proteins do not make a visibly white interface,
and care should be taken not to disturb the interface.

7. Add another 400 µL methanol to wash the precipitate.
8. Vortex vigorously and centrifuge; the protein precipitate should now pellet to the

bottom of the tube.
9. Remove the supernatant and briefly dry the pellets in a vacuum centrifuge.

10. Resuspend the pellets in a suitable amount of CyDye-labeling buffer (L-buffer,
see Table 1). Maintaining the pH at 8.5 is critical to efficient CyDye labeling, so
it is beneficial to check the pH of the resuspended samples with pH paper prior
to dye labeling.

3.3. DIGE Experimental Design

1. Preliminary gel. All experiments should start with a preliminary gel on represen-
tative samples to ensure equivocal protein amounts between samples, and that
the highest resolution and sensitivity are obtained before embarking on a multi-
gel DIGE experiment (see Notes 8 and 9). The preliminary gel will also show
any problems with the sample preparation that may be corrected by adjusting the
procurement methods (see Subheading 3.1.). This step can also be used to opti-
mize the maximal amount of protein that can be loaded without adversely affecting
resolution.
The preliminary gel need only to test one or two of the samples of a much larger
experiment. This gel can simply be stained with a total protein stain (e.g., Sypro
Ruby or Deep Purple) to visually inspect the resolution and sensitivity. Alterna-
tively, the gel can contain two or three different samples prelabeled with Cy dyes
and coresolved (see Note 10).

2. Choice of pH gradient. Precast IEF strips are commercially available from several
vendors. The widest length is currently 24 cm, providing the highest resolving
power for a given pH range. Medium-range IEF focusing gradients (e.g., pH
4.0–7.0) offer the best trade-off between overall resolution and sensitivity.
Subsequent experiments can then be designed to resolve proteins in the basic
range (pH 7.0–11.0) and in narrow pI ranges with commensurate increases in pro-
tein loading to gain access to the lower abundant proteins in a given sample (see
Note 2). In this way, a more comprehensive picture of the proteomes under study
can be obtained.

3. Incorporation of a pooled-sample mixture internal standard on every DIGE gel in
a coordinated experiment. This internal standard, usually labeled with Cy2, is
composed of an equal aliquot of every sample in the entire experiment, and there-
fore represents every protein present across all samples in an experiment. The use
of this pooled-sample internal standard on every DIGE gel in a coordinated

DIGE for Quantitative 2D Gel Proteomics 227



experiment allows for the facile comparison of independent sample replicates
with increased statistical confidence. This experimental design also enables the
simultaneous quantitative comparison between multiple variables in a coordinated
experiment.

4. Plan out which samples will be labeled with which dyes ahead of time. For mini-
mal dye-labeling chemistry (see Subheading 3.4.), each gel will contain two indi-
vidual samples labeled with either Cy3 or Cy5, and an equal amount of the
pooled-sample internal standard. The example outlined in Table 1 is for a two-
component comparison repeated in triplicate, with 300 µg total protein loaded
onto each of three gels. In this case, 150 µg of each sample should be precipitated
(Subheading 3.2.), resuspended in L-buffer, and then split 2:1. Two-thirds of each
sample (100 µg) will be individually labeled with either Cy3 or Cy5. The remain-
ing one-third of each sample will be pooled together and labeled with Cy2 to serve
as an internal standard. By following this, there will be enough of the Cy2-labeled
internal standard to have an equal amount as the Cy3 or Cy5 samples loaded onto
each gel (see Note 11).

3.4. CyDye Labeling

The most established DIGE chemistry is the “minimal labeling” method,
which has been commercially available since July 2002. CyDye DIGE fluors
are supplied as an NHS ester, which reacts with primary amino groups, typi-
cally the ε-amine group of lysine side chains. The three fluors are mass matched
(ca. 500 Da), and carry an intrinsic +1 charge to compensate for the loss of each
proton-accepting site that becomes labeled (thereby maintaining the pI of the
labeled protein). Each dye molecule also adds a hydrophobic component to the
proteins, which along with molecular weight, influences how proteins migrate
in SDS-PAGE (yielding apparent molecular mass separations).

However, some proteins may not remain soluble under 2D-GE conditions if
too much additional hydrophobicity is introduced, and lysines are quite preva-
lent in protein sequences. Thus, minimal labeling reactions are optimized for
labeling that only 2–5% of the total number of lysine residues are labeled, such
that on average, a given labeled protein would contain only one dye molecule.
This also allows for direct comparison of fluorescent signals between multiple
protein samples labeled in the same fashion. Labeling with CyDye DIGE fluors
is very sensitive, comparable to silver staining or Sypro Ruby (ca. 1 ng) using
the minimal labeling stochiometry, but with a linear response in protein concen-
tration over five orders of magnitude (9) (see Notes 12–14).

All steps are performed on ice. The following protocol is for sample loading
via rehydration of immobilized pH gradient (IPG) strips, and assumes incor-
poration of a pooled-sample internal standard to coordinate many samples
across multiple DIGE gels simultaneously. The steps are summarized in Table 1
(see Note 15).
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1. Resuspend precipitated sample in 24 µL labeling (L) buffer. Remove 8 µL (one-
third of sample) and place into a new tube that will contain the pooled-sample
internal standard (8 µL from all of the other individual samples will be pooled into
this tube) (see Note 16).

2. CyDyes are purchased as dry solids and should be reconstituted to 10X stock solu-
tions (1 nmol/µL) in fresh DMF. Dilute stock solutions of CyDyes 1:10 in fresh
DMF to a final working concentration of 100 pmol/µL (see Note 6).

3. Label each sample (50–250 µg) with 2 µL (200 pmol) of either Cy3 or Cy5 work-
ing dilution for 30 min on ice in the dark. Label the pooled-sample mixture with
2 µL (200 pmol) of Cy2 working dilution for every equivalent amount of sample
present in the pooled standard as compared with the individually labeled samples.
That is, if 100 µg of each sample is labeled with 200 pmol of Cy3 or Cy5, then
50 µg of each of these samples is present in the pooled standard, and 200 pmol of
Cy2 is used for every 100 µg of pooled standard (see Table 1 and Note 17).

4. Quench reactions with 2 µL of 10 mM lysine for 10 min on ice in the dark.
5. For each gel, combine the quenched Cy3- and Cy5-labeled samples and add one-

third of the quenched Cy2-labeled pooled mixture (see Note 18).
6. To each tripartite mixture, add an equal volume of 2X R-buffer and incubate on

ice for 10 min. 2X R-buffer is R-buffer supplemented with an additional 2 mg/mL
DTT using the 200 mg/mL DTT stock solution. DTT is omitted from the L-buffer
to prevent unfavorable interaction with the CyDyes. Adding an equal volume of
2X R-buffer to the quenched reactions provides the reducing agents to the total
reaction volume at a 1X final concentration.

7. Add R-buffer (1X DTT concentration) to a final volume suggested by the manu-
facturer for the given IPG strip length (e.g., 450 µL for 24-cm strips). Add
the appropriate volume of IPG buffer ampholines to 0.5% final (v/v) for IEF.
Proceed with rehydration of dehydrated IPG strips for >16 h and proceed with IEF
(see Subheading 3.5.3.).

3.5. 2D-GE and Poststaining

As a result of the minimal labeling, quantification with the CyDyes is carried
out on only 2–5% of the proteins and this labeled portion of the protein may
migrate at a higher apparent molecular mass than the majority of the unlabeled
protein because of the added mass and hydrophobicity of the dyes (exacerbated
in lower Mr species). To ensure that the maximum amount of protein is excised
for subsequent in-gel digestion and MS, minimally labeled 2D DIGE gels are
poststained with a total protein stain such as SyproRuby or Deep Purple.
Accurate excision is also ensured by preferentially affixing the 2D gel to a pre-
silanized glass plate during gel casting so that the gel dimensions do not change
during the analysis (see Notes 19 and 20).

These methods assume the use of an Amersham Biosciences 2D electro-
phoresis system, but is easily adaptable to other commercially available systems.
It also assumes usage of high-resolution, 24 × 20 cm gels.
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1. Special gels for 2D SDS-PAGE. Using low-fluorescence glass plates, pretreat one
plate for each gel with 3–5 mL bind silane working solution, carefully wiping the
entire surface of the plate with a lint-free wipe. Leave treated plates covered with
lint-free wipes for several hours to allow for sufficient out-gassing of fumes (that
may contain bind silane) before assembling gel plates and casting of the 2D SDS-
PAGE gels (see Note 21).

2. Assemble plates and pour 12% homogeneous SDS-PAGE gel(s) using the appro-
priate amount of 30% stock acrylamide and 4X separating gel buffer for the vol-
umes needed for the number of gels being poured (see Note 22). Overlay the gels
with water-saturated butanol for several hours to provide a straight and level
surface to place the focused IPG strip (see Note 5).

3. The combined tripartite-labeled samples, brought up to final volume with 1X
R-buffer and passively rehydrate IPG strips for longer than 16 h (Subheading
3.4.7.), are subjected to IEF (several manufactures available) (see Note 23).

4. The focused IPG strips are next equilibrated into the 2D equilibration buffer.
During this step, the cysteine sulfhydryls in the focused proteins are reduced
and carbamidomethylated by supplimenting the equilibration buffer with 1%
DTT for 20 min at room temperature, followed by 2.5% iodoacetamide in fresh
equilibration buffer for an additional 20-min room temperature incubation (see
Note 24).

5. Place equilibrated IPG strip on top of the SDS-PAGE gels that were precast with
low-fluorescence glass plates. Use a thin card or ruler to carefully tamp down the
IPG strip to the SDS-PAGE gel, removing air bubbles at the interface (see Notes
25 and 26).

6. Perform 2D SDS-PAGE at constant wattage, using << 1 W/gel for at least 1 h prior
to ramping up to lower than 20 W/gel (see Note 27).

7. CyDye images are acquired using a fluorescence imager, such as the Typhoon
9400 series (GE Healthcare/Amersham Biosciences) equipped with lasers and
filters that are compatible with the emission/excitation spectra of the dyes.
Imaging is performed through the glass plates using the intact gel cassette (see
Note 28).

8. After imaging the gels, carefully remove the plate that was untreated with bind
silane. The gel will remain affixed to the treated plate, and can be stained with
SyproRuby “open-faced” in the fixation/staining solutions a total protein stain recom-
mended by the various manufactures. Acquire images using a fluorescence imager
(see Note 29).

3.6. DIGE Analysis

3.6.1. Software Algorithms

Many bioinformatics tools are commercially available for the comparison of
multiple 2D gel-separated protein spot patterns (see Note 30). Some free internet-
based utilities (e.g., www.lecb.ncifcrf.gov/flicker/) provide simple alternation
between two-spot patterns, whereas most of the commercial products contain
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proprietary algorithms for protein-spot detection, intergel matching, protein-spot
quantification, and even utilities for building web-based tools for data dissemina-
tion. Many include the ability to average replicate patterns into a single virtual
pattern to be used in a comparative study. They are all designed to compare
multiple spot patterns and quantify abundance changes for individual proteins
between experimental conditions.

The DeCyder suite of software tools (GE Healthcare/Amersham Biosciences)
were specifically developed to support the DIGE platform, especially for those
experiments that incorporate the internal standard approach, and is therefore
used as an example here. The differential in-gel analysis (DIA) module of
DeCyder is used for direct quantification of protein-spot volume ratios between
the triply codetected signals emanating from each resolved protein, and can be
used for the simplest form of a DIGE experiment for pairwise comparisons with
N = 1. The more advanced DIGE experiments that use the internal standard to
cross-compare replicate samples from pairwise and multivariable analyses (N>3)
are handled by the biological variation analysis (BVA) module of DeCyder.
In a BVA experiment, the signals emanating from the internal standard are used
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Table 2
Statistical Applications of DeCyder Biological Variation Analysis Module

Average ratio Calculated for each protein-spot feature between two groups or
experimental conditions. Derived from the log standardized protein
abundance changes that were directly quantified within each DIGE
gel relative to the internal standard for the protein-spot feature.

Student’s t-test This common test is used to calculate the statistical significance
of an abundance change between two groups or experimental
conditions. 
The null hypothesis being tested is that there is no significant
change in the protein abundance between experimental groups. 
P values reflect the probability that the observed change has
occurred from stochastic chance alone. With DIGE, p values
of <0.01 are often observed.
Assumes normal distributions of protein abundance. Can be
performed either unpaired or paired.

One-way ANOVA Tests for differences in standardized abundance across all groups
of a multicomponent analysis. Indicates that one group is
significantly different from another in the group. For two-group
comparisons, this test will generate the same values as the t-test.

Two-way ANOVA Calculates the significance of the difference between multiple
groups with the same condition, where multiple conditions are
analyzed. For example, two drugs (condition 1) at three time-points
(condition 2), each with four independent biological replicates.



both for direct quantification within each DIGE gel in a coordinated set (using
DIA module), as well as for normalization and protein-spot pattern matching
between gels (see Note 31). This allows for the calculation of Student’s t-test
and ANOVA statistics for individual abundance changes (see Subheading
3.6.2.; Table 2). BVA is also used to match patterns between SyproRuby- and
CyDye-stained images to facilitate protein excision for subsequent MS (see
Notes 19, 20, and 29).

3.6.2. Experimental Design and Statistical Confidence

In the simplest form of a DIGE experiment, two or three samples are sepa-
rately labeled with one of the three dyes and separated in the same gel for direct
pairwise comparisons. In this case, the software first normalizes the entire
signal for each Cy-dye channel and then calculates the protein-spot volume
ratio for each protein pair. A normal distribution is modeled over the actual dis-
tribution of protein pair volume ratios, and two standard deviations of the mean
of this normal distribution represent the 95% confidence level for significant
abundance changes.

This N = 1 type of experiment has only limited statistical power, because the
95th percentile confidence interval is determined based on the overall distribu-
tion of changes within the population (two standard deviations of the mean
approximates the 95th percentile confidence interval; see Note 32). Many
more changes in abundance of much lesser magnitude can be detected with
much greater statistical confidence (Student’s t-test and ANOVA; Table 2) by
incorporating independent replicate samples into the experiment (see Note 33).
The number of replicates required in a study depends on the amount of varia-
tion in the system being investigated. Increasing the number of replicates will
increase confidence in smaller changes in expression. Subsequent classifica-
tion and hierarchical clustering analysis can also be performed on the results
(17,18), which are beneficial in extending DIGE applications for diagnostic
and prognostic uses (now available in DeCycler v6.5).

With replicate samples, the Student’s t-test and ANOVA statistics are meas-
uring the significance of the variation of a specific protein change, independent
of the overall distribution of abundance changes in the population. Incorporating
replicate samples into the experimental design also controls for unexpected
variation introduced into the samples during sample preparation. This design
not only allows for the identification of abundance changes that are consistent
across multiple replicates of an experiment, but can also identify significant
abundance changes that would not have been identified even if the analyses were
performed using Cy3- and Cy5-labeled samples on the same gels, but without
the pooled-sample internal standard to coordinate them (13).
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4. Notes

1. Both hydrophobicity and molecular weight influence how proteins migrate during
SDS-PAGE, yielding information on apparent molecular mass.

2. The use of hydroxyethyl disulfide (commercially available as “DeStreak reagent”),
combined with anodic cup loading, should be used for enhanced resolution for IEF
greater than pH 8.0 (19).

3. Repetition not only enables the identification of subtle differences with statistical
confidence, it is also vital to control for nonbiological variation. Thus, it is impor-
tant that each replicate sample is derived from an independent experiment, ideally
performed on different occasions as perhaps using different media. The independent
samples can then be analyzed coordinately using the pooled-sample internal
standard methodology. See Table 1 for an example of this design.

4. All solutions should be prepared using water that has a resistivity of 18.2 MΩ-cm;
this is referred to as “water” throughout the text.

5. Mix equal parts butanol and water and shake vigorously. Let the two phases sep-
arate overnight, and use the butanol phase for overlay. Butanol that is not com-
pletely water saturated can extract water from the top of the gel. A 0.01% SDS
solution can also be used if carefully overlayed or sprayed as a fine mist, but the
gel/overlay interface will not be as obvious.

6. DMF can degrade, producing amines that can react with the NHS ester CyDyes.
DMF stocks should be kept fresh (<3 mo) and anhydrous to ensure optimal
labeling conditions.

7. For buffers that contain urea, care should be taken to ensure the urea is fresh and
free of the natural breakdown product isocyanate, which will add ionic content and
carbamylate free amines and thereby neutralize the protonatable ε-amine groups
of lysines residues. This is problematic for several reasons, the foremost being the
fact that this gives rise to artificially charged train isoforms in the first dimension
IEF. Heating samples above 37°C should also be avoided, as this facilitates the
conversion to isocyanate.

8. For example, 500 µg of material may be loaded onto a pH 4.0–7.0 gel, but
because of the overall distribution of proteins in the sample, as well as a some-
times unusually high abundance of a subset of proteins, it may result in much less
material actually resolving between the electrodes. A good rule to follow is to
load the desired amount based on the protein concentrations, and then adjust the
load by eye as necessary.

9. Running every DIGE gel with the maximal amount of protein (without adversely
effecting first-dimension resolution) not only enables detection of lower abundance
proteins, but also provides more material for subsequent protein identification
using MS. This makes every gel in a coordinated DIGE experiment a “pick-able”
gel, without the need to run subsequent preparative gels with increased protein load
that then have to be carefully matched to a lower-abundant, analytical gel. When
combined with narrow-range IEF, maximizing the protein amount also allows inter-
rogation of the lower abundant proteins in a sample.
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10. This is DIGE in its most simplistic form, and can show differences between the
samples without interference from gel-to-gel variation, but provides limited statis-
tical power to help distinguish true biological variation from background, such as
artificial noise introduced during sample preparation.

11. Employing a dye-swapping approach will control for any dye-specific effects that
may result from preferential labeling or different fluorescence characteristics of
acrylamide at the different wavelengths of excitation for Cy2, Cy3, and Cy5,
especially at low protein-spot volumes. This is easily incorporated into any DIGE
analysis where repetitive samples are used (along with the internal standard to
compare across multiple DIGE gels). The fluorescent properties of Cy3 and Cy5
are more similar than either is to Cy2, which is why Cy2 should be chosen for the
internal standard to minimize dye bias for individual samples. 

12. Saturation labeling. A second labeling chemistry became available in 2003,
which uses a thiol-reactive maleimide group to label cysteine sulfhydyl groups.
In general, the overall lower cysteine content in proteins allows for labeling
these residues to saturation without increasing the overall hydrophobicity of the
proteins to cause insolubility problems. Thus this chemistry takes more advan-
tage of the increased sensitivity of the CyDyes (150–500 pg), and even more so
for proteins with high cysteine content. However, the saturation chemistry is
only available for Cy3 and Cy5, requires additional optimization, and is blind to
the small but significant population of noncysteine-containing proteins. For these
reasons, saturation DIGE is usually reserved for experiments where samples are
limited, where the advantage of the increased sensitivity outweigh these addi-
tional considerations.

13. In comparison, commonly used silver or colloidal Coomassie blue (ca. 5–10 ng
sensitivity) stains typically exhibit a dynamic range of less than two orders of
magnitude (9,20). The CyDye labeling system is compatible with the downstream
processing commonly used to identify proteins via MS and database interrogation,
which involves the generation of tryptic peptides within excised gel plugs. Trypsin
cleaves the peptide bonds at the C-terminal side of lysine and arginine residues,
but peptide generation is mostly unhindered as so few lysine residues are modified
by dye labeling.

14. The saturation dyes are only available for Cy3 and Cy5. The pooled sample inter-
nal standard methodology can still be employed with only two dyes, however this
will require doubling the number of gels used in the experiment, where each gel
contains a single individual sample (satCy5) along with an equal aliquot of the
pooled standard (satCy3).

15. For saturation chemistry, general methods and considerations are the same as for
the minimal chemistry, but there are several unique features to also consider for
the saturation chemistry. First, careful optimization of the labeling conditions
must be carried out for each new sample set to ensure complete reduction of
cysteine residues. Insufficient labeling will lead to multiple spots in the second
dimension because of molecular weight and hydrophocity shifts. Overlabeling
results in side reactions with the ε-amine groups of lysine side chains, but because
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the maleimide dyes do not carry compensatory charge, this results in the overall
loss of a charge, which creates a series of isoelectric forms in the first dimension
(“charge trains”).

16. To compensate for small pipettor error, adding extra volume (1–2 µL) is accept-
able. L-buffer volume can be increased, if necessary, for complete resolubiliza-
tion, although 100–250 µg or more should resolubilize readily in this volume. The
volume of labeling buffer used for resolubilization should not exceed 40 µL per
sample when using cup loading for sample entry to ensure that the final volumes
will not exceed the capacity of the cup loading (ca. 100–150 µL).

17. These methods are provided assuming that all gels to be run will be used both for
analytical (quantification), as well as preparative (providing material for subse-
quent mass spectrometry), purposes. Current recommendations from the manufac-
turer are to label 50 µg of sample with 400 pmol CyDye. Sufficient amount of
unlabled sample can be added to the quenched reactions to achieve final protein
amounts to facilitate subsequent MS. Alternatively, many have found that the
ratios can be adjusted to label increasing amounts of sample (up to 200–300 µg
with 200 pmol dye) without adversely affecting the overall labeling reaction (pre-
sented here), but may increase the background noise for low-abundance proteins.

18. If samples are to be introduced using anodic cup loading, simply bring this mix-
ture up to 100 µL in R-buffer and proceed with cup loading. R-buffer can always
be supplemented with additional DTT using the 200 mg/mL DTT stock solution.
In the presence of Destreak reagent for focusing in pH ranges greater than pH 8.0,
the addition of an equal volume 1X R-buffer should provide a sufficient amount
of DTT without interfering with the Destreak reagent.

19. Comparison of minimally labeled protein 2D maps with unlabeled protein maps is
generally not a problem, as the addition of only one dye molecule does not gener-
ally prevent the facile matching of small alterations in protein mobility between
the 2–5% labeled protein and the remaining unlabeled protein that will provide
enough material for MS.

20. Poststaining is not necessary with saturation DIGE because an unlabeled popula-
tion with potentially different migration characteristics will not exist.

21. This treatment binds the gel to one of the glass plates and, therefore, prevents
shrinking/swelling during poststaining and protein excision processes, thereby
facilitating accurate robotic protein excision. Nothing should be placed on top of
wipes that are covering bind silane-treated plates, as this may leave impressions
that are detected during the scanning phase. Assembly and casting too soon may
create a binding surface on the opposite glass plate, preventing the gel to be sub-
sequently poststained and picked. Automated protein excision can be facilitated
for certain systems by placing fluorescent alignment reference targets on the plate,
which can be performed at this stage.

22. A stacking gel is not required for 2D-GE, as the proteins are effectively “stacked”
to the height of the IPG strip. SDS is also not essential in the separating gel, as the
SDS associated with the proteins during the equilibration step, and present in the
running buffer, is sufficient.
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23. Samples of similar nature should always be focused simultaneously for optimal
reproducibility. Focusing programs vary for some pH gradients: a typical program
for many ranges is 500 V for 500 V-hours, stepping to 1000 V for 1000 V-hours,
followed by a final step to 8000 V until more than 40 V-hours have been reached.
Check recommendations from specific vendors.

24. Volume of equilibration buffer should be large to ensure sufficient removal of
ampholines and other components of the 1D run.

25. Carefully wash out any remaining liquid on top of the SDS-PAGE gel. Prewet the
IPG strip with 1X running buffer and place the strip between the gel plates with
the plastic backing adhering to the inside surface of one of the glass plates. The
prewetted running buffer will facilitate the manipulation of the IPG strip down the
inside surface of the plate and on top of the SDS-PAGE gel. 

26. An agarose overlay, used by many protocols, is not absolutely necessary to ensure
proper contact between the IPG strip and the 2D SDS-PAGE gel. Using a thin card
or ruler to carefully tap down the pre-wetted plastic backing of the IPG strip to the
gel is usually sufficient and removes the added problems associated with the over-
lay, such as trapped air bubbles in the solidified agarose.

27. Running gels at much less than 1 W/gel can improve resolution in the high molec-
ular weight regions of the 2D gel. Use wattage appropriate for the 2D unit being
used. Many different gel units can accommodate increased power by compensat-
ing for the increased heat.

28. Absorption/emission maxima in DMF are 491/506 for Cy2, 553/572 for Cy3, and
648/669 for Cy5; although care must be taken to scan in regions of each spectrum
that do not contain absorbance or emission in the other spectra, which may mean
using a nonmaximal region of a given spectrum.

29. Comparison of the 2D spot maps between saturation-labeled samples and minimal
labeled or unlabeled samples is impossible, as proteins containing multiple cysteine
residues may appear as significantly larger Mr species when labeled with the satu-
ration dyes, which of course will be impossible to predict without first knowing the
protein identity.

30. The roots for these various software packages can be found in astronomical
software designed to facilitate the search for near-Earth objects in a constant star
field (20,21).

31. Almost all software packages for 2D electrophoresis involve matching of protein-
spot patterns between gels. For DeCyder, it is used in the BVA module to match the
quantitative data obtained from the triply coresolved protein signals from each gel
in the DIA module (where gel-to-gel variation does not come into play). Manual
verification of the matching is almost always required with any software package.

32. There are many “all-or-none” type of experiments where the single gel compari-
son may be valid, and subtle changes are not expected. Nevertheless, using inde-
pendent replicates and the pooled-sample internal standard methodology is still
needed to control for nonbiological sample preparation error.

33. The multigel approach allows many data points to be collected for each group to
be compared. Spots of interest can be selected by looking for significant change
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across the groups. Student’s t-test and ANOVA probability scores (p) indicate the
probability that the observed change occurred from stochastic, random events
(null hypothesis). Probability values less than 0.05 are traditionally used to deter-
mine a statistically significant difference from the null hypothesis. As this repre-
sents 50 potential false-positives for 1000 resolved proteins, confidence intervals
within the 99th percentile (p < 0.01) are arguably more valid, and can be attained
using DIGE (13,23–27).
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Proteomic Data Exchange and Storage
Using Proteios 

Per Gärdén and Rikard Alm

Summary
Proteios (http://www.proteios.org) is an initiative for the development of a comprehensive

open source system for storage, organization, analysis, and annotation of proteomics experiments.
The Proteios platform is based on existing principles for proteomics data publishing and
data exchange.

Key Words: Mass spectrometry; 2D gel; data repository; proteomics data collection; laboratory
information management system; LIMS; free; open source; Java; mzData; MIAPE.

1. Introduction
Proteomics as a discipline in medical science is comparatively new and

involves both biology and chemical engineering. The successful development
of technologies for the analysis of DNA sequence information, especially DNA
microarray, have helped to shift the manner in which biological systems are
studied. As a result of technological advances in expression profiling methods,
differential gene and protein expression can now be studied.

Proteomics experiments arise from issues in practice related to understanding a
disease, the development of a new drug, or understanding basic biological
processes. A prerequisite is to identify a specific molecular target, usually a pro-
tein or pathway. The goal of such a study is to know which proteins may be differ-
entially expressed in response to a stimulus or between different disease states.

The successful integration of a proteomics workflow into a biochemical
engineering laboratory interfaces with both biochemistry, analytical chemistry,
and computer science (e.g., development of efficient algorithms). The amount
of data from the experiments demand data management tools.
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In spite of several efforts, proteomics lacks standardized software tools and
data formats to manage experimental data. Proteios offers an all-encompassing
proteomics experiment data model and aims to be the glue holding different
steps of the experiment together.

2. Data Handling in Proteomics
2.1. Data Model

When studying a problem domain from a computer science point of view, a
common approach is to try to define how a software is to be used in the context
of a specific setup, a use case. Use cases describe sequences of actions which
make up workflows. A software model to hold use case data is developed and
tested against each case. In proteomics the basic use case is an experiment.
Capturing the data from different proteomics experiments in a meaningful way
demands a model consistent with all occurring use cases. And it must be fore-
seen in the model how these use cases can be merged into complete experiments.

Recently the Microarray Gene Expression Data Society, the Human Proteome
Organization, and the Reporting Structure for Biological Investigations have
started the Functional Genomics Experiment (FUGE) (1) effort to create overall
models, as well as specific use cases for different bioinformatics fields, including
proteomics. Proteios, like its initial source of inspiration PEDRo (2), uses a
model specifically created for proteomics experiments.

As a data model, Proteios spans the whole proteomics experiment, from
hypothesis to actual protein identifications. Proteios is the software tool based
on this model, managing sample information, raw data, images, analysis results,
as well as connectivity to protein identification, data viewing, and analysis
tools. The organization and interface of Proteios is designed to closely follow
the natural workflow of the proteomics researcher, and is compatible with both
liquid chromatography (LC)–tandem mass spectrometry and two-dimensional
(2D)-gel experiments. Being an open source software, Proteios can be used
independently of equipment manufacturers, and be extended or modified to fit
local needs.

2.2. Data Repository

Typical experiment data management involves functionality to store results
from experiments, retrieve previously stored data, as well as the ability to run
analysis on existing data. This is repository functionality. Current software tools to
retrieve and maintain data in repositories are equipment or method centered and do
not cover a complete proteomics experiment. Basing a repository and eventually a
laboratory information management system (LIMS) on such tools risks tying
the user to a specific environment prescribed by the equipment manufacturer.
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Information management will thus be difficult to adapt to different experiment
setups. As there is a need for a public and generic data repository, one of the ambi-
tions with Proteios is that it should be possible to use as a generic repository (3).

Few proteomics tools handle automatic reading and validation of data. Data
amounts are huge, most of which is not meaningful or feasible to add manually.
Automation is the trend in gel handling, chromatography, and mass spectrometry
(MS). A realistic proteomics repository tool must be able to do automatic data
import. Also, as typical experiment workflow consists of several distinct steps, it
must be possible to import experiment data in parts, some of which are manual
whereas others are machine generated. Data will come in different formats and
originate from different equipment. Proteios aims to smoothen out these differ-
ences into a generic repository. Automatic and semiautomatic composition of
experiment steps is possible and tracking provides LIMS functionality.

2.3. Data Formats

Handling the large amounts of data arising from proteomics experiements
requires specific file formats. Proteomics data formats are abundant with some
formats being equipment specific, whereas others deal only with parts of exper-
iments, typically in conjunction with some treatment or analysis equipment.
Additionally, there are specific formats to handle sample processing, MS, and
identification results from database searches.

The Proteomics Standards Initiative (4) have recognized the need for standard
formats and are developing the “minimum information about a proteomics
experiment” (MIAPE) to cover the larger experiment context and serve as a pub-
lication standard. Further data format standards are expected to emerge from
generic data modeling work within FUGE. Sample processing data formats are
specific to LC tools and gel-picking robots (e.g., Ettan, ProPic, GelPix).

There are plenty of software tools to convert between MS equipment
specific formats (e.g., ReAdW, MassWolf, mzStar, mzBruker). As a publica-
tion standard for MS experiments and as a part of MIAPE mzData (5) has been
developed in cooperation with instrument manufacturers. Although mzData is
not a substitute for vendor specific formats, it is expected that MS machine
vendors will provide software transforming their raw files to mzData. The raw
data itself is stored directly in mzData in binary format and can also be put in
a referenced file.

The mzXML format from the Seattle Proteome Center is a raw data format
turned into XML in that it accepts and contains all spectrum data as binary.
There are converters from several machine specific formats to mzXML (6).
Both mzData and mzXML can also be used to store equipment settings.

Analyzing the MS result means trying to identify specific proteins, or in the
case of MS/MS specific peptides, in the spectrum pattern against databases of

Proteomic Data Exchange and Storage 243



known such patterns with database search tools like Mascot (7) or Sequest (8).
The result of an invoked search is returned in a data format specific to the
search tool being used. Usually search data must be submitted to a web page.
Application programmer’s interfaces (API) exist in some cases (e.g., Mascot)
but usually not. Current Proteomic Standards Initiative activities include the
development of mzIdent, which is intended to represent search paramaters and
analysis results from protein identification software tools.

Proteios can import database search results from the PIUMS (9) tool, based
on MS. Also, as Proteios is completely compatible with the Virtual Expect
Mass Spectrometrist (VEMS) (10) data model, VEMS searches can readily be
imported. It is also our ambition to handle existing and upcoming MIAPE
standard data formats as they become availiable. Currently Proteios supports
mzData.

3. The Proteios Application
3.1. Core Functionality

Proteios is a client–server application, with a many-to-many relationship
between clients and servers. This architecture makes it possible to share data
between users worldwide. The Proteios data model is a graph of elements, which
represent real experiment objects or data containers, e.g. Sample, Gel2D. The
model is mapped to XML schemas and database tables in the Proteios applica-
tion. Proteios is implemented in Java, and is thus platform independent.
Specifically, the Proteios client runs as a Java application on virtually any work-
station. Connections to server database(s), like Oracle and MySQL, are done
through the Hibernate (11) middleware. This gives the user a wide variety of
database management systems to use as a Proteios back-end server.

Proteios also provides LIMS functionality in that it assists the user in man-
aging and connecting data from heterogeneous sources with the aim to track all
relevant information from an experiment—sample, processing, MS, and protein
identification. This sets it apart from other applications, most of which either
focus on MS (e.g., Sashimi [6], OPD [12], PROTEOME-3D [13]) or do not
enable automized data capture (e.g., PEDRo [2]).

The Proteios data model is designed to map the steps of a proteomics exper-
iment. We have specifically considered the fact that some parts of an experi-
ment are generated automatically, whereas others are manual. Also, we take
into account different points in time and different locations, which corresponds
to a typical researcher’s work situation.

The prerequisites for installing Proteios is Java and access to a relational
database. Although installation of Java and the Proteios application itself is
fairly simple a system administrator may be needed to install a database.
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By running Proteios, a complete proteomics experiment can be set up by an
individual researcher, combining manually created elements (from within the
Proteios application itself) with imported files. Creating a complete experi-
ment data set manually by inserting all data, e.g., all spots peaks and so on, is
completely infeasible. On the other hand, not even in a perfect laboratory envi-
ronment can all data be entered automatically. A realistic approach is semiau-
tomatic, manually creating some data elements, but importing bulk data from
files and then using the Proteios graphical user interface (GUI) for selecting
and merging parts of the experiment together.

Proteios provides the GUI as its main client (see Fig. 1). Data is easily and
intuitively viewed and handled as graphical objects. Data from different steps
of an experiment workflow can be put together with intuitive drag and drop.
The representation follows the Proteios data model, displaying a tree structure
of elements—a tree view of the model graph, which can be rerooted to highlight
items of interest. Rerooting, together with import and export, is very versatile;
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any tree view can be exported. Export views can be given schemas to validate
against a strictly defined tree in the graph. Together with extended style sheet
transformations this provides a versatile system for basic report generation.
Data can also be annotated and extended with, for instance, protein identifica-
tions from search engines like PIUMS (9) and Mascot (7). 

As any element in the model graph can be used as the root of a tree view
through the graph and XML files are tree structures, tree views can effectively
be described by XML schemas, which enables standard XML tools to assist in
interchanging data with Proteios. Although XML files sometimes can be very
large, XML is a great advantage because it allows data to be validated.
Validation is important because it prevents corrupt data from being accepted by
Proteios. The XML schemas prescribe file formats, which can be imported to
and exported from Proteios. Often, but not necessarily, the file format corre-
sponds to a tree view of the Proteios data model. Viewing data rooted on
Experiment is the default view of data. “Experiment” is also the root of an XML
schema covering the whole Proteios data model. This schema can be used to
import and export all experiment data with validation. Parts of an experiment
can be imported separately with specific schemas validating import and export
of these parts.

When storing data in databases, as well as in working memory, the graph
structure of the model is retained. Any element can be directly accessed with-
out having to navigate through a tree of elements. Viewing of data can be done
rooted on any type of element, with “Experiment” being the default.

The following sections describe the Proteios data model in some detail.
Diagrams are provided as unified modeling language class diagrams. Elements
(classes) are shown as boxes with interconnecting lines to describe relationships
between them. Relationships have multiplicity 1, 0..1, 1..n, * indicating that one
single, one or zero, any number but at least one, or zero, or many elements
respectively can be associated. Arrows indicate inheritance.

3.2. Sample Information

For a complete Proteios structure, sample generation is the starting point with
an “Experiment” element as the basis (see Fig. 2). In a research situation, we start
out with a hypothesis for our experiment and a sample to run our experiment on.
This part of the model contains data which a researcher is expected to enter man-
ually. The Sample element holds an identification code, the production date, and
the name of the responsible person, facilitating sample tracking. As seen from the
multiplicity in the diagram, an experiment may contain several samples, but any
given sample only belongs to one single experiment.

“SampleOrigin” holds basic information, such as the specific biological
material used, what tissue or subcellular fraction was studied (if appropriate),
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and the experimental conditions to which the organism was subjected.
“TaggingProcess” describes the labeling of samples for quantitative studies,
such as difference gel electrophoresis or isotope-coded affinity tag (ICAT) MS. 

The “TaggingProcess” element allows for any quantification to be used.
Typically, one would use stable isotopes like H, C, or N. The tagging in Proteios
caters for any up- or downtagging. Just note the delta mass caused by the tag-
ging isotope and which amino acid is being tagged. Regardless of tagging 
data here, there is an ICAT entity with the “DBSearchParameters” element 
(see Subheading 3.5.). For difference gel electrophoresis there is a correspon-
ding entity in the gel element.
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Fig. 3. Sample processing.
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3.3. Sample Processing

The sample processing part of the data model (see Fig. 3) adds treatment of
the sample under investigation. The Proteios data model caters for the usage of
one-dimensional (1D) and 2D gels, as well as LC. Also there is the generic
treatment “other” to handle any other kind of treatment. 

A “Sample” in the model is one out of several possible instantiations of the
abstract class “Analyte.” It is needed in order for data to fill out the model. An ana-
lyte can directly be used as the source for MS, or it can be put through one or more
analyte processing steps. The result of one analyte processing step can be fed back
into the cycle as the next analyte. This cyclical design enables a complex series of
concatenated processes to be easily described. Other analytes are “Fraction,”
“Band,” “Spot,” “TreatedAnalyte,” or “OtherAnalyte.” As a typical use case, a band
from a 1D gel is run through 2D LC, before running MS using a particular fraction.

The Proteios data model allows five subclasses of the abstract superclass
“AnalyteProcessingStep,” four of which are “Gel1D,” “Gel2D,” “Chemical
Treatment,” and “Column.” The fifth subclass, “OtherAnalyteProcessingStep,”
provides a mechanism to capture any other form of analyte processing by linking
to a series of entries in an ontology (a controlled, structured vocabulary).

One “Gel” contains many “GelItems” (another abstract class of which “Spot”
and “Band” are instances in the case of 2D and 1D gels, respectively).
Typically, items in a gel are handled by picking robot. The experimenter will
have to fill in gel-specific information the first time. The gel created can then
be added to the sample set up in the previous section.

3.4. Mass Spectrometry

MS can be run on any analyte. Proteios uses mzData (5) to hold MS infor-
mation. Data here is largely manual. Automatic data consist of “spectrumList”
and “spectrum.” The MS part of the model (see Fig. 4) differs from the rest of
the Proteios model in that its elements are largely generic, whereas the rest of
Proteios contains elements, which are very specific in its entities. The elements
of main interest are “mzData,” “spectrumList,” “spectrum,” and “sourceFile.”

Proteios lets users manually add (and edit) the elements “mzData,”
“spectrumList,” “description,” “instrument,” “detector,” and “dataprocessing.”
Thus, the machine settings, together with the name of the experimenter, can be
added manually.

Within mzData there can be spectrum raw data stored in binary form.
Storing such huge binary data within XML only makes sense if one wishes to
maintain everything all in one file. Proteios supports this. In mzData it is
mandatory. In Proteios it is optional and the binary data will instead be stored
in a referenced source file.
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3.5. MS Results Analysis

In analyzing MS data, Proteios handles one or several “PeakList” elements.
Peak lists are processed spectra from a MS experiment. Each “PeakList”
can have several “Peak” elements representing possible peptides. One will
try to match this peak list with known protein spectra from a database. This
is purely software work for which there is a wide range of third party
tools. Not all masses will be fragments from a protein, some of them will be
contaminants.

In principle, database search tools are independent of the type of mass
spectrometer used and the database searched. This should be reflected in
EBI’s upcoming mzIdent standard, which will be supported by Proteios.
Proteios imports treated peak lists as defined by the PIUMS (9) search engine.
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Peak lists as defined by VEMS (10) can be imported, as VEMS uses Proteios as
its data storage format.

The “PeakList” element (see Fig. 5) connects to a “spectrum” element in the
MS part of the model. Based on any peak a derived peak list from the second
stage of a tandem mass spectrometer run can be generated, so that this second
peak list is a child of the precursor peak and may in its turn contain peaks.
Through this cyclic construct Proteios can represent not only MS/MS, but MS
to the degree.

The individual peaks in a list are described by mass, intensity, and charge. To
perform a protein identification, a particular “PeakList” would be submitted to an
identification tool, such as PIUMS (9), VEMS (10), Sequest (8), or Mascot (7).

The classes “DBSearch” and “DBSearchParameters” capture information
about who did the identification, when they did it, what program they used,
what database (of theoretical proteins from an in silico digest of an organism’s
predicted proteome) was used, what potential modifications were allowed on
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proteins from the sample that generated the peak list, any additional informa-
tion or another chemical analysis, and whether the ions carry ICAT labels (such
that only cysteine-containing peptides were searched against).

Based on possible peptide hits, the identification process will (hopefully)
lead to an identification of one or several proteins. Proteios represents this by
having one or several protein hits connected to the “DBSearch” element. A pro-
tein hit can refer to a clearly identified protein, it can refer to any number of
peptide hits or it can refer both at the same time. How can there be a protein hit
without any protein? Having a protein hit element does not necessarily mean
that a protein has been identified. A protein hit also serves as a container for
peptide hits. So it might be the case that several peptides were identified, but
there is not enough certainty as to what protein they adhere to.

4. Capturing an Experiment With the Proteios Data Model
4.1. Aggregating Experiment Data: A Case Study

This section describes how Proteios is used when working with 2D-gel elec-
trophoresis and protein identification. Our sample in this case is a complex pro-
tein mixture from an extract. This sample is run on a 2D gel to separate proteins
into distinct spots. The gel is scanned and passed through image analysis for the
detection of spots, and a gel picking robot is set up to pick spots chosen for
identification. The robot digests the proteins and spots the resulting peptides
onto a matrix-assisted laser desorption/ionization (MALDI) plate, which is then
analyzed in a MALDI–MS mass spectrometer. The resulting spectra are sub-
jected to a database search to identify proteins. It is a good idea to save data at
different points in the process. Proteios also provides “Restore” to reload the
latest saved state.

To get started we need to manually create an “Experiment” element (see Fig. 6),
the basic element of an experiment in Proteios. This is done by selecting one of
our connected databases in the GUI and adding an “Experiment” element,
which lets us enter information about our experiment hypothesis, (an optional)
project name, insertion time and one or several method, and result citations.
Thereafter we choose “add” on the “Experiment” we just created to add a
“Sample” element. In the “Sample” element we type in information about the
sample, like origin and organism. This sample is now an “Analyte,” which can
be subjected to one of several analyte processing steps, e.g., gel separation, liquid
chromatogram, or even MS.

We use 2D-gel electrophoresis as an initial separation step (analyte processing
step). A Gel2D element is created from within the Proteios GUI, to hold param-
eters used in gel creation—equipment, the percentage of acrylamide, and so on,
as well as a reference to the resulting raw image (see Fig. 7). This information
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must be entered manually. The gel image is analyzed to identify spots. Infor-
mation on spots of interest is sent off to a picking robot, which treats the gel
plugs with trypsin and washes out the peptides from the plug. This is an analyte
processing step called “ChemicalTreatment.” The robot applies the peptides
from each spot onto a MALDI plate and produces an XML file containing
information about the spots we selected, their location in the raw image, the
enzymatic digestion, and where they were put on the MALDI plate. Proteios
imports the picking robot file and presents the gel with all the spots beneath
(see Fig. 8). We use drag and drop in the Proteios GUI to add the picking robot
information and the spots to the gel we created manually (see Fig. 9). The
whole gel handling step is thus semi-automatic with the most tedious task of
gathering all the spots done automatically. Spots can be added one-by-one or,
preferably, all in one go.
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Each spot from the 2D gel is an “Analyte” which can be subjected to further
processing, in this case MALDI-MS. The mass spectrometer produces raw
spectrum files that are saved externally and referred to from within Proteios
with an universal resource identifier. After processing the spectra in a peak
extraction and database search software, the resulting peak lists and protein
identifications are imported into Proteios as files. Proteios is integrated with the
PIUMS (9) database search tools, so all data, peak extraction, parameters, and
database search results, can be imported in one go. The result of this import is
mzData elements, which can be connected to the gel we are working on.
Because Proteios is designed for keeping track of workflows, extra tracking can
be added to facilitate the merging of the different parts. This makes Proteios
comparable with other LIMS. In the end we have a complete experiment saved
in our repository with minimal labor and as the basis for producing reports and
to further annotate the data.
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4.2. Usage Overview

The previous use case is intended to show how Proteios can be used in a
specific proteomics experiment situation and at the same time give some indi-
cation of the strategy of the Proteios application. Describing all relevant use
cases (e.g., ICAT, LC treatment of samples) goes beyond the scope of this
text. However, it should be noted that typical use cases are semiautomatic.
Proteios lets the user manually enter information where this is typically
needed. Large data sets, which can be handled automatically, are imported as
files. There is currently off-line support for both PIUMS (9) and VEMS (10),
meaning that data from these applications can be imported. Proteios even
shares its data model with VEMS, which means that data are interchangeable
and Proteios can serve as a data repository for VEMS. Furthermore, Proteios
can export MS information in the pkl format, which enables third party,
e.g., Mascot (7), tools to use Proteios data. Search results can then be
imported into Proteios.

4.3. Batch Handling

The same functionality as with the graphical user interface is also provided
for batch processing. This is strongly related to automatic handling. One should
be able to perform tasks without user interaction. Tasks may be repetitive and
also one may wish to do something manually once to set up a pattern. A user
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can define tasks completely independent of Proteios, save them for later usage,
or extend them with further actions. The tasks are written in an XML file and
can easily be reused or extended. Because task descriptions are validated before
they are run it is difficult to go wrong. All commands that can be performed in
the GUI can also be done through the batch handler.

As Proteios largely focuses on repository features and secondary experiment
data analysis, one can do the tedious gathering of primary data as an overnight
batch job. After such overnight work the experimenter refreshes his graphical
view of Proteios and is all set to start working on secondary analysis.

4.4. Queries and Reports

Proteios allows users to browse data in the data repository in an intuitive way
through the GUI. However, to make efficient use of the stored data, queries are
supported. A user may be looking for specific data or needs to do a bulk export
of data matching some criteria. Proteios currently has basic querying facilities
that allow the user to retrieve data elements fulfilling specified criteria 
(e.g., protein hits from a certain gel and with a confidence level above a certain
limit). In the future, Proteios will be extended with a plug-in interface enabling
third party vendors to create analysis tools that interact with Proteios.

5. Outlook
5.1. A Proteios Server

In the very beginning Proteios was just a graphical tool to import some parts
of a PEDRo file to a database. A graphical client has always existed. So far
though, Proteios is a two-tier application. The server is one or many databases
with the client being either the GUI or a batch program. When interacting with
the Proteios core, both these clients have to do their own thread management,
resource handling etc.

A Proteios server is a program running in the background for clients to interact
with. Such a server will open up possibilities for external and third party programs
to use Proteios online. The methods in the server’s API will essentially be the same
as the actions defined for the Proteios batch client. By developing a Proteios server
we will step-by-step morph Proteios to a three-tier application. Or rather, Proteios
will provide the necessary support for a third layer to interact with Proteios.
Separating what current Proteios clients can do from what is the Proteios core will
enforce the development of a more clearcut API. Eventually the existing GUI and
the batch handling will use this server too.

It should be possible also for non-Java clients to interact with this server.
A Proteios server will make it possible to build computational frameworks to
integrate proteomic data with data from other types of experiments, such as
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DNA sequencing efforts and DNA microarray studies. Applications such as
BASE (14) can then easily interact with proteomics data.

5.2. Traceability: LIMS Functionality

Proteios is a free all-experiment encompassing data repository tool for
proteomics, handling manually and automatically entered data. This makes
Proteios a prime choice-independent LIMS system. There are already some
LIMS-specific entities in Proteios. More will follow. Also, further connections
can be created using XML namespaces and Proteios plug-ins.

5.3. Plug-Ins

Proteios has a very flexible data model and XML namespaces can further
specialize its usage. The basic Proteios functionality though is given as it is
compiled into the executable. It should be clear that functionality in this respect
comes on two levels. The core Proteios functionality must be stable in order to
provide a consistent application. On top of this core though, there are typical
tasks which make sense to have user defined. Such tasks consist of imports,
exports, addition (or withdrawal) of namespace restrictions, and analysis. Extra
functionality should be possible to add dynamically, i.e., without recompilation,
to a Proteios instance. Tasks in the form of small pieces of software are labeled
plug-ins. The means for users to extend functionality is using Proteios plug-ins.

5.4. XML Namespaces

XML namespaces provide a means to specialize a generic model into a specific
one. As Proteios is built on XML, namespaces are the perfect way to adapt to
special needs. And, it can be done without any recompilation—just by letting data
refer to a specific namespace. Namespaces can exist outside Proteios and com-
pletely independent of the application. Still, they are used for validation, so data
will be checked on entering and leaving Proteios. Inside the application only
much more generic basic types are used, e.g., “String” instead of something from
an ontology. This makes it easy to set up Proteios to meet your specific needs.

5.5. Ontologies

An ontology is a hierarchic system of controlled vocabularies for data enti-
ties, with relationships between them. Each vocabulary is a catalog of the val-
ues that are assumed to exist and can be referred to by a data entity. A formal
controlled vocabulary is specified by a collection of key-value pairs enabling
the lookup of a value by its key. Referring to an ontology and supplying only
the key enables the names themselves to be standardized and even to be
changed, without altering the key itself. Ontologies are extremely important for
data interchangeability and will be built into future versions of Proteios.
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5.6. Interaction With External Tools

Often one will want to use the (Proteios) repository as input to external tools.
This can be achieved in several different ways. Either one simply does it off-
line, using data imports and exports. Or, one writes a tool-specific plug-in. If
standard API:s for tools and equipment come up (we are not there yet), interac-
tion can be readily done from within a standard Proteios installation. The most
common cases are with protein and peptide matching database searches.
However, in the longer perspective it is completely feasible to involve Proteios
in the setting up of laboratory equipment. Proteios would be used not just to
fetch data once equipment has been run, but already before equipment is run.
One example is the ABI4700, which has an API to set it up. One could restrict
(namespaces again!) the relevant elements in the MS part of Proteios to map
nicely to the specific machine. The advantage lies at hand—settings are only
written once and can directly be stored in the laboratory repository. Of course,
one can also retrieve settings as well as experiment data once a machine has
been run.
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Proteomic Data Exchange and Storage
The Need for Common Standards and Public Repositories

Sandra Orchard, Philip Jones, Chris Taylor, Weimin Zhu, 
Randall K. Julian, Jr., Henning Hermjakob, and Rolf Apweiler

Summary
The ever increasing volumes of proteomic data now being produced by laboratories across

the world have resulted in major issues in data storage and accessibility. The further demands of
multilaboratory initiatives has highlighted issues when collaborators cannot import data gener-
ated within the same project but generated by different hardware types and processed by laboratory-
specific work flows and analyses packages. There is an increasing need for common data
standards that will allow the interchange of data between different instrumentation, search
engines, and between laboratory databases. This could then lead to the establishment of data
repositories from where benchmark datasets could be accessed and reanalyzed.

The Human Proteome Organization is currently supporting efforts to establish such standards.
The work of the Proteomics Standards Initiative has lead to the development of the mzData XML
interchange standard and is now broadening its scope to produce a spectral analysis output format,
mzIdent. Accompanying controlled vocabularies allow the accurate, while systematic, representation
of metadata throughout both schema.

Key Words: Proteomics; data standardization; protein interaction; mass spectrometry.

1. Introduction 
The field of proteomics is increasingly broad and includes an expanding num-

ber of complex experimental techniques. Biological samples can be separated by
several different methodologies, the best known being two-dimensional (2D)-gel
electrophoresis and high-performance liquid chromatography. Component
proteins can then be ionized and the resulting ions analyzed to give their mass.
The ensuing spectral data is passed through an analytical pipeline, which should
result in the identification of the proteins under investigation and may also yield
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additional information as to their activation state, posttranslational modifications
(PTMs), or interaction partners. Proteomic studies generate huge volumes of data,
all of which poses an enormous problem of analysis, interpretation, and storage
on the original researcher. High-throughput experimental techniques are rapidly
becoming commonplace and the development of mass spectrometers is proceed-
ing in parallel, such that the volume of data being generated by a single experiment
will only increase. The ability of researchers to vary the type of instrumentation
and analytical methodology used from experiment-to-experiment only adds to the
problem. It is not unusual for a proteomics group to possess more than one type
of mass spectrometer and vary their choice of machine with the type of experi-
ment. This can create problems for data comparison even within a single labora-
tory because each instrument manufacturer typically provides its own proprietary
program to analyze the output.

Publication of this data then presents a further challenge. Currently, a typical
paper describing a proteomics dataset will consist of an experimental description,
a summary data table, and an analysis and discussion of the data in that table.
Additional supporting material is often supplied as a supplementary table, which
is often little more than an expansion of the dataset published within the paper
that may or may not be made public by the journal. Descriptions of the sample
acquisition, preparation, and storage vary enormously, although these are crucial
issues with direct impact on the final dataset and on the interpretation of the data
by a third party. Even an issue as fundamental as protein identity can often be con-
fusing, with author-derived nomenclature failing to coincide with that used by the
public domain databases, often being misleading and causing confusion between
unrelated proteins with similar, or identical, nonstandardized names.

The need for the development of common data representation standards in
the field of proteomics was becoming apparent, with a requirement for a sys-
tem that was both stable enough to provide a reliable platform for users, instru-
mentation manufacturers, and software developers to work from while flexible
enough to keep pace with new developments in the field of both mass spectrom-
etry (MS) and proteomics in general. This requirement became critical as
large, publicly funded initiatives were being established in which the workload
is spread across multiple laboratories that support different workflows, tech-
niques, and instrumentation. The inability of the output from one piece of
instrumentation to become the input to a second piece then becomes critical,
hampering dataflow and resulting in an inevitable data loss. In order to address
this problem, the Human Proteome Organization (HUPO) (1) set its internal
bioinformatics committee the task of producing standards, initially to enable
the transfer of information between laboratories participating in the HUPO tis-
sue initiatives (2).
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2. Standardizing Protein Identification and Description
One common issue across the entire field of proteomics is that of protein iden-

tification. Long-term data storage requires the use of stable protein identifiers.
Protein names, gene names, and even sequences may change over time and
unless these changes are tracked, data revisited after an elapsed period of time
can prove to be relatively useless. One of the most significant developments with
regard to protein sequence databases is the recent decision by the National
Institutes of Health to award a grant to combine the Swiss-Prot, TrEMBL, and
Protein Information Resource-Protein Sequence Database (PIR-PSD) databases
into a single resource, UniProt (http://www.uniprot.org) (3). The Universal
Protein Resource is a comprehensive catalog of data on protein sequence and
function, maintained by a collaboration of the Swiss Institute of Bioinformatics
(Geneva, Switzerland), the European Bioinformatics Institute (Cambridge, UK),
and PIR, (Georgetown, US). UniProt is comprised of three components:

1. The expertly curated Knowledgebase (UniProtKB) which continues the work of
Swiss-Prot (4), TrEMBL (4), and PIR (5).

2. The archive (UniParc), into which new and updated sequences are loaded on a
daily basis.

3. The nonredundant databases (UniRef NREF) which facilitate sequence merging in
UniProt and allow faster and more informative sequence similarity searches.

The UniProtKB is an automatically and manually annotated protein database
drawn from translation of DDBJ/EMBL-Bank/GenBank coding sequences
and directly sequenced proteins. Each sequence receives a unique, stable identifier
allowing unambiguous identification of any protein across datasets. The
UniProtKB also provides cross-references to external data collections, such as the
underlying DNA sequence entries in the DDBJ/EMBL-Bank/GenBank nucleotide
sequence databases, 2D polyacrylamide gel electrophoresis, and three-dimen-
sional protein structure databases, various protein domain and family characteriza-
tion databases, PTM databases, protein–protein interactions (IntAct) (6),
species-specific data collections, variant databases, and disease databases.
UniProtKB/TrEMBL contains a redundant sequence set, enriched by database
cross-references and automatic annotation. Manual annotation of entries within
UniProtKB/Swiss-Prot strives to augment each entry with as much information as
is available, including the function of a protein, PTMs, domains and sites of impor-
tance, secondary and quaternary structure, similarities to other proteins, diseases
associated with deficiencies in a protein, in which tissues the protein is found,
pathways in which the protein is involved, and sequence conflicts and polymorphic
variants. Sequences are merged within UniProtKB/Swiss-Prot to provide a single,
nonredundant entry for a unique gene product from an individual organism.
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The International Protein Index (IPI) (7) provides a top-level guide to the
main databases that describe the human, mouse, and rat proteomes, namely
UniProt (3), RefSeq (8), and Ensembl (9). IPI effectively maintains a database
of cross-references between the primary data sources, providing minimally
redundant yet maximally complete sets of human, mouse, and rat proteins (one
sequence per transcript) and maintaining stable identifiers (with incremental
versioning) to allow the tracking of sequences in IPI between IPI releases. This
allows effective management of gene predictions, which vary with each release
of both Ensembl and RefSeq. IPI thus provides a complete and nonredundant
dataset for human, rat, mouse, zebrafish, Arabidopsis (with additional data from
the Arabidopsis Information Resource [10]), cow and chicken particularly
suited to support protein identification in proteomics experiments.

3. Data Standardization and Retrieval
3.1. The Proteomics Standards Initiative

HUPO was formed in 2001 to consolidate national and regional proteome
organizations into a single worldwide body. The Proteome Standards Initiative
(PSI) was established by HUPO with the remit of standardizing data formats
within the field of proteomics to the end that public domain databases can be
established where all such data can be deposited, exchanged between such
databases, or downloaded and utilized by laboratory workers (1). HUPO-PSI
organized a series of meeting at which data producers, data users, instrumen-
tation vendors, and analytical software producers gathered to discuss the prob-
lem. Because of the limited resources that could be dedicated to the effort, it
was decided to concentrate initially on a few key areas, of which MS was of
prime importance. Extensible markup language (XML) standards would be
developed to assist in the transfer of data between different workstations and
analytical platforms, and controlled vocabularies (CVs) or ontologies would
be developed to give the user the flexibility to describe the specifics of a par-
ticular experiment within the framework supplied by the XML schema (11).
Regular updates of the CVs will allow the terminology to remain current, as
techniques advance and new methodologies are introduced, wheras any schema
could remain relatively stable, allowing successful implementation by both
software and hardware manufacturers.

3.2. The Proteomics Standards Initiative: Standards for MS

It was agreed early in the discussion process that the objectives of this group
could best be achieved by aligning with the XML-based standard for analytical
information exchange currently being developed by the American Society for
Tests and Measures (ASTM) because both standards will have to describe
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MS experiments and results. Standards for spectrometry data, such as the
ASTM netCDF format (E1947-98 “Standard Specification for Analytical Data
Interchange Protocol for Chromatographic Data,” E2077-00 “Standard
Specification for Analytical Data Interchange Protocol for Mass Spectrometric
Data,” ASTM International [see www.astm.org]) and the IUPAC JCAMP for-
mat (http://www.jcamp.org) have been successful because of broad vendor sup-
port and, being computer platform neutral, they have remained readable despite
changes in computer technology. As useful as these standards are, it has proved
difficult to keep them up to date owing to the very rapid changes in MS tech-
nology. XML was considered the best technology for allowing extensions to
keep the standard up to date, while remaining computer platform neutral.

The PSI-MS schema is flexible enough to handle a diversity of experiments
with a full range of experimental descriptors while still remaining compliant with
the ASTM model. However, the encoding of peak list m/z and intensity values has
been switched to Base64 in order to produce more compact files and work is cur-
rently in hand to broaden the specification to allow a full description of acquisi-
tion, to encompass both mass array and mass intensity. A stable version of the
mzData format has now been released (http://psidev.sourceforge.net/ms)
accompanied by the first release of the accompanying CVs. These are currently
only available in list format but should be available in OWL format (12) from
Autumn 2005. The base controlled vocabulary for mzData defines information
items, which are shared across all experiments and instrument makers. All terms
include a conserved accession number that is guaranteed to remain constant with
the definition until deprecated allowing update of the associated text name with-
out loss of information. The CV has been merged with that of mzXML developed
by the ISB and distributed as mzXML.xsd. To ensure the ability to create PSI-MS
submission documents from workflows using such schema, a unified controlled
vocabulary was obtained by assigning HUPO accession numbers to all terms
included in both the HUPO-PSI schema and the ISB XML schema. When
complete, all fixed and variable attributes in mzXML will be mapped to corre-
sponding HUPO-PSI ontology terms and both will be consistent with the IUPAC
nomenclature for MS.

The published version of the PSI–MS XML data interchange format also gives
access to tools that allow the user to both convert from MS text formats to PSI–MS
XML format and view and browse stored data in PSI–MS XML format (13).

Acceptance of the mzData export format from the instrumentation manufac-
turers as a direct input to search engines has been good, and several vendors, for
example, Matrix Science, Proteome Systems Ltd., and GeneBio already support
the format, other companies such as Kratos Analytical Ltd., Thermo Electron,
Waters Corp., and Bruker Daltronics will do so in their next releases. It has been
proposed that the existing ASTM MS standard data dictionary be adopted, and
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updated, for use as a controlled vocabulary within this model, with eventual
ownership of this dictionary potentially passing to the American Society for
Mass Spectrometry so that it could be used to support both the HUPO-PSI and
the ASTM’s raw data standardization efforts. mzData is now widely regarded as
an acceptable format for representing MS data and will be valuable for both data
exchange and reposition. In the long term, it is recommended that the ASTM
standard be used for full raw data archiving when available (2005–2006);
however mzData will remain the appropriate format for data exchange.

Currently in preparation is a spectral analysis output format, supporting a
common syntax for peptide/protein identification and for protein modification
description (analysisXML). The analysisXML standard is being designed to cap-
ture results from MS search engines and represent the input parameters for
analysis algorithms, thus unifying results from different search engines. The
requirements for mzIdent include the need to support the identification of both
protein and peptides, by accession number or sequence, and must include the
ability to describe modifications. Small molecule identification by either CML or
SMILES must also be supported. The file format will include three major
elements that are cross-referenced to each other—a molecular descriptor, an
analysis results descriptor, and an analysis descriptor.

The molecule descriptor will describe the structural information of a molecule
(descriptor, sequence, PTMs, structure), and references to the results. The relation-
ship between molecules, for example, peptides as part of proteins will need to be
clearly defined, allowing previous results to be used as source evidence. Analysis
results could includes scores, spectrum annotation, reference to originating spec-
tra/analysis, and to the matched molecule. The analysis descriptor may contain the
name and version of the search engine and search parameters and can refer to a
protocol to define a series of analyses. It will also cross-reference to the associated
mzData file. Work is currently ongoing on the production of this standard and it is
hoped that it will be published in draft format in 2005.

3.3. Posttranslational Modifications

The identification of PTMs, and an understanding of their functional signifi-
cance is key to all areas of proteomics. Two existing databases already hold much
of the required information in this field. The RESID Database of Protein
Modifications (14) is a comprehensive collection of annotations and structures for
protein modifications and cross-links including pre-, co-, and PTMs, concentrating
on naturally occurring protein modifications. This database contains all the
PTMs described within UniProtKB entries and is also cross-referenced in many
other databases where an understanding of the state of a protein is or particular
importance, for example, in the molecular interactions described within IntAct.
However, MS has broader needs, in that, whereas a UniProt record for a protein
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may contain all possible PTMs for any one protein, it cannot specify the par-
ticular state of a protein under a defined set of experimental conditions. Also,
many of the modifications seen as a result of the process which a protein under-
goes during the preparative and analytical procedures of MS are artifactual and
not seen under natural conditions. UniMod is a database of protein modifica-
tions for use in MS applications and contains values for the mass differences
introduced by both natural and artificial modifications (15).

A CV describing both natural and artificial modifications from MS
processes will be required for the analysis and full exchange of proteomics
data, and such a CV (P81-MOD) will be produced and maintained as part of
the data standardization efforts.

3.4. Data Storage and Retrieval

With the development of these standards, the building of public repositories
to hold such data is now possible. One such repository is Proteomics
Identifications (PRIDE) (16). (www.ebi.ac.uk/pride) an open-source database
that is available for the deposition and subsequent retrieval of proteomics data
that is available in the public domain. This project implements an architecture
that will run on any SQL-based database server, with configuration currently
available for ORACLE and MySQL.

PRIDE will eventually hold the top-level data from the HUPO tissue initia-
tives, the plasma data being already available at the time of writing (17), as well
as other data submitted by workers in the public domain, and is fully mzData
compatible. Compatibility to analysisXML will be implemented as soon as this
standard is published. The PRIDE database has been developed to provide the
proteomics community with a public repository for protein and peptide identi-
fications together with the evidence supporting these identifications. PRIDE
holds details of PTMs including their relative positions on identified peptides.
The data submitted to PRIDE can be submitted privately, for example prior to
publication or as public data. Privately submitted data can be shared among col-
laborations of laboratories through the PRIDE collaboration system.

The PRIDE Java API now includes useful software tools to allow mzData
files to be manipulated as Java objects and stored in a relational database. This
software API can be used separately from PRIDE as required.

3.5. General Proteomics Standards

The context-sensitive nature of proteomic data necessitates the capture of
a larger set of metadata than is normally required for genetic sequencing,
where knowledge of the organism of origin will suffice. Not only is information
of sample source, handling, stimulation, and eventual preparation for analysis
required but also the detail of the analysis itself will need to be recorded.
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For example, to compare images of 2D-gels knowledge of their mass and
charge ranges are required, and this information will need to be retrieved by users
wishing to perform meaningful analysis of this experiment. A standard represen-
tation of both the methods used and the data generated by proteomics are required
to facilitate the analysis, exchange, and dissemination of proteomics data.

The Minimum Information About a Proteomic Experiment (MIAPE) guide-
lines are currently under development and are being designed to describe all the
relevant data from any proteomics experiment, such as details of the experi-
menter, the sample source, the methods and equipment used, and all subsequent
results and analyses (18). These could be, for example, data from a laboratory
performing MALDI–MS on spots of interest from comparative 2D-gel electro-
phoresis or from a high-throughput screening facility using multidimensional
liquid chromatography fed directly into a tandem mass spectrometer. A master
document describes the metadata that needs to be collected to describe the over-
all process whereas a series of technology-specific documents give more
detailed descriptions of particular areas, for example MS and MS Informatics.
An XML format for data exchange will be derived from the General Proteomics
Standards proteomics workflow/data object model, PSI-OM. This mark-up lan-
guage (PSI-ML) is designed to become the standard format for exchanging data
between researchers, and submission to repositories or journals. The object
model must be flexible enough to cope with both rapidly evolving and com-
pletely novel technologies while fulfilling the immediate requirements of the
scientists of today. As the name of the documents suggests, this process is anal-
ogous to the MIAME and MAGE-OM documentation and object model pro-
duced for the description of microarray data and much has been learned by close
collaboration with workers in that field.

It is clearly desirable that public domain data such as that published in peer-
reviewed journals should be accompanied by a defined set of information about
the experiment and that all this information and the results obtained be deposited
where it is available to all users. A MIAPE-compliant repository will contain
sufficient information to allow users to, in principle, recreate any of the experi-
ments stored within it and where possible, the information will be organized in a
manner reflecting the structure of the experimental procedures that generated it.

It is intended that the object model would encompass, and utilize, exchange
formats being developed by other groups sponsored by the PSI. For example,
the mzData model for MS, and where possible common ontologies and vocab-
ularies will be shared by all these varying domains and also developed in con-
junction with the MGED consortium to describe common aspects of proteomic
and microarray data. Together, the MIAPE guidelines, data model, ontologies,
and various implementations will provide a sound base to describe proteomic
experiments in their biological context.
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4. Summary
Significant progress has already been made in improving the accessibility

and utility of proteomic data, and to date, these efforts have been enthusiasti-
cally endorsed by the scientific community. Although these efforts are being
coordinated by the HUPO-PSI, the work is being undertaken by a large body of
scientists, representing the worlds of academia, industrial research, and instru-
mentation manufacture and it is to be hoped that they are laying the groundwork
for common standards to be widely adopted throughout the entire user commu-
nity. As these tools and models become more widely available it can be antici-
pated that they will play a major role in the direction that this important area of
biology takes and the eventual utility of the data generated in increasingly high-
throughput biology. 

HUPO is also contributing to the establishment of large-scale datasets for a
number of human tissues of particular interest in the pathogenesis of disease.
The aim of these initiatives is to produce comprehensive lists of proteins present
in normal plasma, liver, and brain, whereas identifying regional and racial vari-
ants within the population. All three project groups have acquired samples from
large cohorts of donors, which are currently being analyzed in laboratories
across the world by a standard set of procedures. The data generated will be
deposited in the public domain using UniProt/IPI identifiers and HUPO-PSI
data standards and will then be available to provide a reference dataset against
which corresponding disease or drug-treated tissue can be compared (2).

The tools and standards required for the analysis of large-scale datasets
generated by proteomic scientists working in the areas of drug discovery are
either already available or will be released within the near future. Large
reference datasets are being established and it is hoped that these will aid in
the identification of a new generation of potential drug targets and assist in
providing treatments for many of the life threatening or dehabilitating dis-
eases that are common in man today. The development of standards that
allows the transfer of data between different workstations and its eventual
deposition into public repositories has been a major step forward in achieving
this goal; the adoption of these standards by an ever-widening user commu-
nity will ensure further distribution and sharing of data, and increase its
importance as a research tool.
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Organization of Proteomics Data With YassDB

Allan L. Thomsen, Kris Laukens, Rune Matthiesen, 
and Ole Nørregaard Jensen

Summary
In recent years the organization of mass spectrometry (MS) data obtained in large-scale

proteomics projects became an important issue. This has catalyzed the development of a few
different database schemes for storing MS data, as well as some dedicated user interfaces.
However, many of these projects are still rather immature and often do not cover all needs.
Because our needs were quite specific, it was necessary to build a database that accommodates
all the major types of experiments generated in house and that could be easily extended by
new modules made by collaborators or students. A database application named “YassDB” will
be described in this chapter. The application is implemented in a “three-tier” application archi-
tecture, with a database layer, a middle layer consisting of web services and a client layer,
containing the user interface. This offers high flexibility: it allows other applications, written
in any language, to be written as clients to the database. The setup and use of the YassDB
database application with two client programs “pProRep” and “VEMS” will be outlined. 

Key Words: Database; organization; integration.

1. Introduction
With mass spectrometry (MS) as a downstream analytical technique,

proteome analysis typically yields large and complex datasets. Proper organi-
zation and storage of the original data is important for further processing and
essential to allow future re-evaluation or distribution as an electronic comple-
ment to a printed publication, in which case standardized data-formatting rules
should be followed (1,2). Well organized data handling can serve as a first step
toward building reliable biological knowledge databases, the next level in data
integration (3).

271

From: Methods in Molecular Biology, vol. 367: Mass Spectrometry Data Analysis in Proteomics
Edited by: R. Matthiesen © Humana Press Inc., Totowa, NJ



Proteomic data can be stored in several ways. Data coming from different
sources can be stored as separate files in the original format. This approach is
straightforward and probably sufficient in small-scale proteome studies, but it
does not retain the internal relationships between the data, and the organization of
the data is entirely dependent on the person who produces it. A database system
is more robust: the relational integrity of the data can be maintained, and stan-
dardized organization, analysis, searching, and management are possible.

A number of commercial systems to integrate, organize, and manage pro-
teomics data in databases are available, generally labeled as “Laboratory
Information Management Systems” or “LIMS.” Besides their usually exuber-
ant price tag, the code of these systems is often proprietary, limiting the poten-
tial to tweak them to certain needs. On the other hand, a number of open source
projects are developing database schemes such as PEDRo (4), and database
applications such as Proteios (see Chapter 14 [5]) and PRIDE (see Chapter 15)
to handle, organize, and distribute proteome data. Whether a database system
is useful, however, depends on the client to access and manage it: a dedicated
interface that reads original data files and transfers them to records in a series
of database tables, and that is able to output data to a user readable format
is needed.

This chapter presents an alternative approach to integrate data in a database
system. Rather than configuring a dedicated client that directly interacts with
the database, the interaction of a client with the database in this application is
handled in a so-called “three-tier architecture” by web services: using a stan-
dard XML-based protocol that allows to query the PostgreSQL database in a
simple way, from clients written in virtually any programming language from
any machine connected to the internet. We will describe how this system, called
“YassDB,” can be set up and used in a typical proteomics environment, and
show its particular advantages.

Its use with two client programs will be demonstrated. The first client is
called “pProRep” (“php Proteome Repository”), and can be installed on a web
server running “PHP” and offers a web-interface visualize proteome data. It
was initially developed to interact directly with a relational database in
MySQL, but a flexible database interaction layer now allows it to be configured
as a client to other database types and web services, such as provided by
YassDB. The second client is the “VEMS” program (see Chapter 7; 6,7), which
can be run directly from the users computer and used for raw data processing,
database searches, validation, and for quantify of peptide and proteins obtained
from database searches.

2. Software
The software that was used for installing and building the database is listed next. 
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2.1. Required Software

For the YassDB database and web services:

1. Linux, Fedora Core 2 or newer. Download from: http://fedoralegacy.org/ or a
newer version from http://fedora.redhat.com/.

2. Java 1.4 or newer, this might be included in the Linux distribution. Download JRE
or JDK from: http://java.sun.com/.

3. Apache Jakarta Tomcat 5.5.7, download from: http://jakarta.apache.org/tomcat/
index.html.

4. PostgreSQL 7.4, download from: http://www.postgresql.org/.
5. A JDBC driver to access the database. Download from http://jdbc.postgresql.org/.

The driver should match the database version.
6. The web application (includes Axis). Download “axis.war” from: http: //yass.

sdu.dk/yassdb/.
7. The database schema, download yassdb.backup, proteininfo.backup, and peptide-

info.backup from: http://yass.sdu.dk/yassdb/.
8. The webclient, download webclient.war from http://yass.sdu.dk/yassdb/.

2.2. For the pProRep Web Client

1. A web server running PHP5 (see Note 1). Nowadays PHP comes with most linux
distributions, source code, and binaries for different platforms are available at
www.php.net. The pProRep code, download the most recent version from
http://www.ptools.ua.ac.be/pProRep/.

2. The pProRep—YassDB interaction layer and definitions. Download from
http://www.ptools.ua.ac.be/pProRep/. Depending on which modules and exten-
sions are used: the appropriate php libraries. Direct links to appropriate downloads
can be found on the same website.

2.3. Optional Software

1. pgAdmin 3, download from: http://www.pgadmin.org/download.php.
2. Tomcat Admin Application. Download from http://jakarta.apache.org/tomcat/.
3. VEMS v3.0 (http://yass.sdu.dk).

2.4. Overall Design Considerations

The design and development of a database application involves a number of
considerations. Its purpose and the available resource determine which tech-
nologies can be used. The YassDB database system was designed according to
a number of requirements. The primary goal was to create a repository to store
the diverse data from MS experiments, and organized these into projects.
Functionality to import and export data from the protein identification search
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engines used in the department was essential: VEMS (see Chapter 7) (7) and
Mascot (8) are therefore supported.

2.5. Database Schema

The data schema (9) contains processed information from MS, LC–MS/MS,
2D-gel electrophoresis experiments, and metadata in the form of search result
and quantitative information on the search result. The spectra are stored in the
database as peak lists and only instrument settings and links to the raw data are
stored in the database. The size of the raw data (typically 0.5–1.0 Gb) would
quickly fill any affordable database server to the limited.

One of the goals when creating the database application was to avoid redun-
dancy. Redundant data can easily clutter the search strategies by giving multi-
ple search results, or require multiple searches, instead of only one. A redundant
dataset complicates data validation. In addition, redundant data consumes more
storage space and requires longer search times.

There are two strategies to avoid redundancy in a database. A control can be
performed during data insertion by searching the database for existing data.
Alternatively, the data can be just inserted and the redundancy check is done
later, by a program that runs regularly and cleans the database from redundant
information. For this application the first strategy appeared to be the best choice
and was therefore chosen (see Note 2).

To avoid redundant data there are separate tables for peptide- and protein
sequences (see Note 3). The central entity in the schema is the experiment. An
experiment can contain multiple LC–MS/MS runs (see Fig. 1). The complex
part of the schema consists of the connection of spectra, peptides, and proteins.
There is a ternary relationship (see Note 4) from peptide data to processed data,
peptide sequence, and proteins.

It is important that deleting experiments from the database occurs in a consis-
tent way, without leaving any traces in the database. The database has been imple-
mented in such a way that when an experiment is deleted from the experiment
table, the rest of the database is updated accordingly. It should therefore never be
necessary to delete information directly from other tables because of inconsis-
tence. There can be other reasons to delete data, e.g., if a peptide assignment is
found to be invalid then it must be possible to delete it separately. Additionally,
the schema is defined in such a way that it does not allow deleting entries that are
referenced in other tables.

2.6. Application Architecture

Flexibility was an important factor when this system was developed. This
was achieved by implementing YassDB as a three-tier application (see Fig. 2).
In a three-tier architecture, the clients access the database through a middle-
layer, here implemented as web services (10). The middle layer controls access
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Fig. 1. The central part of the database schema. A complete view of the schema can be
found here http://yass.sdu.dk/yassdb/downloads/databaseschema.pdf. There are two spe-
cial notations: cascade and Trigger: delete. The meaning of “Cascade” is that when a row
with a primary key is deleted this cascades to the table referencing the primary key with
a foreign key. For example, when a row is deleted from Processed_data all rows in
Fragments referencing id_processed_data is also deleted. The meaning of “Trigger:
delete” is that when rows are deleted from a table there is a trigger in the database that
delete from another table if there are no further references to some of the data. For exam-
ple, when rows are deleted from Processed_data_peptide there is a trigger deleting any
peptides, in the peptide table, that is no longer referenced. Together these two systems
clean the database when an experiment or a part of an experiment is deleted.

http://yass.sdu.dk/yassdb/downloads/databaseschema.pdf


and actions performed on the database. Web services are independent of platform
and programming language. This gives the programmers the opportunity to
easily create clients with new functionality (see Note 5).

2.7. Web Service Interface

The following methods have, at the time of writing, been implemented, and
are accessible through the web services:

1. addProject(String name, String description): adds a project to the database
assigned to the current user.

2. getProjects(): return all projects associated with the current user.
3. getExperimentIds(String project): returns all experiment identifiers associated

with a given project.
4. getVemsExperiment(int id): returns a project in VEMS format as an attached file.
5. insertVemsExperiment(): used to insert experiments in VEMS-format, the experi-

ment must be sent in an attached file. The method returns the identifier as soon as
it is known, and then inserts the rest of the experiment.
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Fig. 2. An overview of the applications three-tier architecture, showing the communica-
tion links. The clients communicate only with the middle layer, which in turn communi-
cates with the database. By keeping the layers separate it is easier to change the
implementation of a layer, especially the client layer, without affecting the other layers.



6. experiment2Project(int id_experiment, int id_project): include an experiment in
a project.

7. projectParticipant2Project(String participant, String project): include a user in
a project.

8. getGelIds(): get identifiers for all gels.
9. getGels(int[] gel_id): returns all the gels associated with the identifiers in the

request parameter, without images.
10. getGel(int id): returns a single gel, without image.
11. getGelImage(int id): returns the image of a certain gel as an attachment.
12. insertGel(Gel): inserts a gel, image as attachment, and returns the identifier, when

inserted.
13. getSpots(int[] ids): returns data for the spots in the request parameter.
14. getSpotsForGel(): returns all spots for a given gel.
15. addSpots(): add a number a spots to a gel.
16. addSpot(): add a spot to a gel.
17. getFastaProteins(int experimentId): returns all proteins found in the given expriment,

in Fastaformat.
18. getExperimentDescription(String projectName): returns all experiment descriptions

for the named project.
19. getFragments(int experimentId, int spectrumNumber): returns all fragments from

the given spectrum.
20. getVemsExperimentString: returns an experiment in VEMS text format embeded

in the SOAP response.

It is basic functionality mainly associated with inserting and retrieving data
from the database.

3. Installation
This section describes stepwise how to install and configure the different

applications. For detailed installation instructions and command options see the
appropriate documentation. The installation outline is based on a Fedora Core
2 system, but one should be able to use any other Linux system as long as the
required software can be installed. Places where change to ip-addresses or pass-
words are necessary have been enclosed in square brackets [].

3.1. PostgreSQL

3.1.1. Step 1: Creating the Database

The PostgreSQL (see Note 6) database server must be installed, before con-
tinuing. First, the database should be installed by a user who is not root. In the
following the username admin is used, if you use another please be sure to
change all references accordingly. 
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Log into the system as admin and do the following:
Create a new database cluster with initdb (see Note 7):

mkdir data

initdb -D /home/admin/data   (see Note 8)

Create a directory for logging database events:

mkdir logs

3.1.2. Step 2: Configuring and Starting the Database

It is necessary to configure who is allowed to access the database and what
authentication method should be used. This is done by editing pg_hba.conf file
that is placed in /home/admin/data/. The following lines should be added:

local  all    all             trust

This gives access to all local users using socket connection without using
authentication (see Note 9). 

host   all    all   127.0.0.1       255.255.255.255 password

Giving access to all local users using TCP/IP, this is necessary for JDBC
connections using password authentication.

The next line added is:

host   all    all   0.0.0.0           0.0.0.0       password

This gives access to all users from all ip-addresses with the use of password
authentication. Start the database server:

postmaster -i -D /home/admin/data > /home/admin/logs/sessionlog 

2>&1 & (see Note 10)

This command starts the database server, and sends all log messages and out-
put to the file session log in the log directory created earlier.

3.1.3. Step 3: Installing the Database Schemas

Make sure that the database-server is started (see Note 11). Log in as
admin and go to the directory where the three backup files are saved. Create
a database:

createdb yassdb

Use pg_restore (see Note 12) to install the schema for YassDB, webclient
and the userdb:

pg_restore -U admin -i -d yassdb -F c --no-owner yassdb.backup
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pg_restore -U admin -i -d yassdb -F c --no-owner --data-only proteininfo.
backup

pg_restore -U admin -i -d yassdb -F c --no-owner --data-only peptideinfo.
backup

The last thing to do is to create two users, one YassDB user and one admin-
istrator for tomcat. The YassDB user is the one you use to login to the database
and work with your experiments. He is created as follows, where any username
and password can be used:

insert into users (user_name,user_pass) values(‘[username]’,‘[password]’);

insert into user_roles (user_name,role_name) values (‘[username]’,‘user’);

insert into project_participants (db_user_name) values (‘[usernname]’);

The administrator is used to administer the webserver and must therefore be
a member of both admin group and manager group (see Note 13). The admin
user is created thus:

insert into users (user_name,user_pass) values(‘admin’,‘[password]’);

insert into user_roles (user_name,role_name) values (‘admin’,‘manager’);

insert into user_roles (user_name,role_name) values (‘admin’,‘admin’);

You also have to change the password for the “admin” user in the database:

ALTER USER admin PASSWORD ‘[password]’;

It can be a bit of confusion regarding the admin users. There are three users
who are all called admin, and each has his area of responsibility. There are one
for the operating system, one for PostgreSQL and one for Tomcat. In our setup,
they are in essence the same person, and therefore they are created with the
same name and password.

3.2. Apache Jakarta Tomcat

Log in as root. Unpack Jakarta Tomcat (see Note 14) in the /usr/local direc-
tory (11). Then /usr/local/jakarta-tomcat-5.5.7 is the jakarta-home directory and
all following file-paths will be relative to this directory, unless stated otherwise
(see Note 15). As default Tomcat is using port 8080, but installed as a stand-
alone server it should use port 80 (see Note 16).

3.2.1. Step 1: Configure Tomcat

Install the JDBC driver by placing the jar-file in /path/to/tomcat/common/lib.
Configure the server by doing the following: open conf/server.xml and find 
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<Connector port=“8080”

change it to 

<Connector port=“80”

Then you need to configure the authentication system. The system uses
tables in YassDB to store names and passwords. To enable this you need to
make the following changes to conf/server.xml:

Find and delete

<Realm className=“org.apache.catalina.realm.UserDatabaseRealm”
………… />

Add in the same place:

<Realm className=“org.apache.catalina.realm.JDBCRealm”
debug =“99”

driverName=“org.postgresql.Driver”

connectionURL=“jdbc:postgresql://[server_name | ip]/yassdb”

connectionName=“admin” connectionPassword =
“[admin_password]”

userTable=“users” userNameCol=“user_name” userCredCol=
“user_pass”

userRoleTable=“user_roles” roleNameCol=“role_name”

/>

At last the following lines should be added inside the <GlobalNaming
Resources> tag to enable web service access from the webclient (see Note 17).

<Resource       name=“jdbc/users”

auth=“container”

type=“javax.sql.DataSource”

maxActive=“50”

maxIdle=“20”

maxWait=“30000”

username=“admin”

password=“[admin password]”
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driverClassName=“org.postgresql.Driver”

url=“jdbc:postgresql://[server_name | ip-address]/
yassdb” />

3.2.2. Step 2: Starting Tomcat

Start tomcat by running the startup script (see Note 18):

/usr/local/jakarta-tomcat-<version>/bin/startup.sh

3.3. Web Service Configuration

To configure the application it is necessary to unpack the archive into am
empty directory (see Note 19):

mkdir axis

cd axis

jar xf axis.war

This will unpack the web application into the current directory (see Note 20).

3.3.1. Step 1: Configuring Database Access

Open the file: META-INF/context.xml in an editor, you should see some-
thing like:

<Context reloadable=“true”>

<Resource 

name=“jdbc/postgresql” auth=“container”

type=“javax.sql.DataSource” maxActive=“50”

maxIdle=“20” maxWait=“30000”

username=“admin” password=“[db_password]”

removeAbandoned=“true” removeAbandonedTimeout=
“15”

driverClassName=“org.postgresql.Driver”

url=“jdbc:postgresql://localhost/yassdb” />

The url must be changed to point at your database, you must supply the pass-
word for admin to access the database and the docbase must be changed to
reflect your tomcat version. 
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3.3.2. Step 2: Enable Logging

Create the path /home/share/logs, log in as root:

mkdir /home/share

mkdir /home/share/logs

3.3.3. Step 3: Deploy Web Services

Repack the application, if the current directory is the directory where it was
unpacked, the web application can be repacked by

jar -cf axis.war * 

Now the web services should be deployed. The easiest way to do this is to
have the manager application installed. In a web-browser write:

http://server-name/manager/html 

At the bottom of the page you find the deploy section which is divided into two.
The last section titled “WAR file to deploy,” is the one to use. Click the browse but-
ton and find the newly repacked “axis.war” file. Click “deploy” and the web serv-
ices should be running. If not there will be a “fail” message on top of the screen.

3.3.4. Step 4: Configure Webclient

Unpack the webclient into an empty directory

mkdir webclient

cd webclient

Jar xf webclient.war

Open META-INF/context.xml, and change the following references in the
resource tag:

username=“admin”

password=“[password]”

url=“jdbc:postgresql://[your-url]/yassdb” />

Open WEB-INF/classes/log4j.properties and change the following line to fit
into your system:

log4j.appender.R.File=/home/share/logs/webclient.log

Repack the webclient:

jar -cf webclient.war *
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3.3.5. Step 5: Deploy Webclient

This is done in exactly the same way as deploying the webservices, using the
webclient.war file.

After deploying the webclient you should be able to see a login page by
entering the following link in a web-browser: http://localhost/webclient.

3.4. Configuring the pProRep Client Interface

3.4.1. Step 1: Prepare a Web Server Running PHP

PHP comes, together with the apache web server, in most typical Linux
distributions (see Note 20). The correct parsing of php-pages can be quickly
checked by uploading a text file, saved as “test.php,” containing the following
code, to the document folder of the web server:

<?

phpinfo();

?>

Upon pointing the browser to the corresponding url, an extensive description
of the server PHP installation (including version info) is retrieved if the server
parses PHP-files. If PHP5 (see Note 1) is not installed, you can download it
from www.php.net. 

3.4.2. Step 2: Install pProRep

1. Unpack the downloaded pProRep archive on your computer. Unpack the down-
loaded pProRep-YassDB interaction layer, and copy the content of the resulting
folder to the unpacked pProRep folder.

2. Open install_YassDB.txt in the pProRep folder. This document contains the most
recent and detailed instructions on how to configure pProRep with YassDB on a
web server. Follow these instructions carefully. This consists of editing the rele-
vant config-files in the “configuration” folder and adjusting the configuration set-
tings. A few installation-dependent parameters need to be set correctly before
pProRep is able to function: path-variables and the data-source need to be defined
correctly. Other configuration settings are optional, but useful to adjust pProRep
to certain requirements.

3. Upload the contents of the pProRep folder to the web directory on the web server.
4. Point a web browser to the corresponding url to verify the proper pProRep

functioning.
5. The system can be further tweaked according to your requirements: needed modules

can be activated, useful extensions can be added, and the appearance of the output
can be adjusted (see Note 22). This is described in the pProRep documentation.
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3.5. Starting YassDB Database Web Services From VEMS v3.0

VEMSv3.0 can interact with the YassDB through web services. Once VEMS
and YassDB are installed and configured correctly all the Web services
described in Subheading 2.7. can be used from the VEMS program. For
installing VEMS (see Chapter 7). In the VEMS folder the file “Webservices.txt”
contains the configuration file for web services. Open the file in notepad and
edit the URL link so it references the directory containing the web services on
the YassDB server. Now start VEMS and go to the “Web service” tab-page to
start using the web services installed on YassDB.  

4. Notes
1. Although PHP5 is recommended for running pProRep, it can be run as a YassDB-

client with PHP starting from 4.2.2. In contrast to PHP 5.0, where native SOAP
webservice functionality is provided, you need to install the nusoap library for
older versions. You can download nusoap from http://sf.net/projects/nusoap/.
Details can be found on the pProRep website. The same applies for the graphical
extensions: GD2 is essential for dynamic image generation and manipulation in
PHP: for example the output of gel-images by pProRep depends on it. It is avail-
able from www.boutell.com/gd/, but included in recent PHP versions. The output
of the test.php script above gives information on whether gd2 is active. If not,
check the instructions on the gd2 website and on www.php.net. 

2. The disadvantage if this approach is that it takes longer to insert data. The alterna-
tive, where the tables are updated later, will lead to changes in the tables’ primary
keys, because some data, like peptide sequences, will be inserted independently of
existing peptides and then later, when the same peptide sequence is found twice,
one of the entries will be removed and all references updated. This can lead to con-
fusion if a search is done between insert and update: a part of the search result will
then be invalid because the primary key from some entries has changed.

3. Keeping the sequences separate also makes it easier later on to extent the informa-
tion about a certain protein, for example with PubMed references. This information
will then automatically be available to all researchers working on the same protein.

4. A ternary relationship is when a table has a relationship to three other tables. Here,
we have the processed_data_peptide table that is related to the table’s peptides,
proteins, and processed_data.

5. A big advantage with web services is that the communication between clients and
server is independent of the programming language used. The described system
uses three different programming languages, and they all easily communicate with
the web services. This offers the advantage that researchers writing programs that
use the database can do that in the programming language they know, while tak-
ing advantage of the functionality already established in the web services.

6. The choice of database is actually a limited choice between MySQL and
PostgreSQL, the two most popular free databases. They each have their advan-
tages. MySQL offers a little better performance. On the other hand PostgreSQL
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has implemented a larger part of the SQL standard, including nested queries, a
good way to make some advanced queries, views and functions, which allow cen-
tralizing some standard procedures. The need for high performance, for example
with many concurrent connections, did not outweigh the more advances SQL-
implementation of PostgreSQL, thus a choice was made for the latter. However,
the new MySQL v5.0, which is at the time of writing not yet fully released, will
apparently implement a larger part of the SQL standard (12). 

7. This is a database cluster in the sense that you can have multiple databases at this
location, not in the sense that it consists of multiple machines. 

8. If initdb is not found you have to add it to your path. If a standard installation of
PostgreSQL has been made you can use: PATH=$PATH:/usr/local/pgsql/bin.

9. This is convenient, because it does not require a password to log into the database
server from the local machine, and make changes to the database. It is obviously
a security risk if the physical database server is easily accessible for many people.

10. The last part of this command “2>&1 &” is the Linux-way to redirect output-
streams from a program. “2>” redirects the standard-error to standard-output
(&1). The finishing “&” makes the program run in the background, so you get
command-prompt back.

11. To check if the database is started write: ps -ef |grep “postmaster” at a console.
If the database is started a line containing something like: “postmaster -i –D
/usr/local/pgsql/data” should be seen.

12. pg_restore is a commandline tool for reestablishing databases and is included in
the binary distribution of PostgreSQL.

13. The membership of these two groups allows the administrative user to access the
admin and manager applications associated with tomcat. If you for some reason
don’t install these then this user is not needed and this step can be omitted.

14. Tomcat is the official servlet reference implementation, and is therefore bound to
have implemented all features in the servlet specification. It was chosen because it
is easily integrated into the apache http server and extensible with the web service
engine Axis.

15. In addition to the standard installation archive it is recommended to download the
Admin-application as it is a convenient web-based administration tool for the
tomcat installation.

16. Port 80 is the standard port for web servers, so using this makes it easier to access
the pages.

17. There are three connection pools, in the setup procedure, all point to the same data-
base, so it would be enough with one of them. This design however gives the flex-
ibility to separate the databases at a later time, without compiling the source files,
e.g., if you want to make a separate authentication system, or you already have one.

18. If you get errors about a missing environmental variable called JAVA_HOME you
must create it. Assuming you use bash-shell, do the following add: export
JAVA_HOME = /your/java/path/ to the .bashrc file in your home directory, and
execute bash.

19. If the system cannot find the jar program try export PATH = $PATH;$JAVA_
HOME/bin. This should add the jar program to your path.
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20. There are two subjects that must be addressed when configuring the web-application
that access a database. First, define how to access the database and second, define
access to the application. In both cases, it is important that the system is flexible
and independent of the code. Here, it is in both cases implemented as container
managed security. In the case of access to the application, this means that the
access is restricted by the server. It is not implemented as a fine grained control;
the server gives access if a user exists in the system and is a member of any group.
This means that any user who needs to be able to use the application must be
defined in conf /tomcat-users.xml and must be a member of one or more groups.
As for access to the database it was chosen that anyone who has access to the
application has full access to the database, through the application.

21. The pProRep installation described is based on a standard Linux-Apache-php
setup. Note that this server should not be necessarily the same machine as the one
running the YassDB database and webservices, and they are assumed to be distinct
servers in the description. Though running YassDB and pProRep simultaneously
on the same server is possible, a different server setup is required, in which
Tomcat is integrated with an Apache-server running PHP. Check the Apache
(http://httpd.apache.org/) and Tomcat (http://jakarta.apache.org/tomcat/) webpages
for more information. 

22. Some of the more advanced modules are dependent on additional (external) PHP
libraries. Because they evolve as well, and their usability is dependent on the PHP
version, it is important to check the most recent pProRep module documentation,
especially if certain features do not work as expected. 
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Analysis of Carbohydrates by Mass Spectrometry

Kudzai E. Mutenda and Rune Matthiesen

Summary
The analysis method described in this chapter demonstrates the structural characterization of

carbohydrates based on their molecular mass, as well as the mass of their respective fragment
ions using mass spectrometry (MS). The carbohydrate molecules are first converted into gaseous
ions, under vacuum, after which their mass-to-charge ratio is measured. The mass-to-charge
ratio provides information on their preliminary identification, which is further elucidated by
fragmenting the ions under a process of collision-induced dissociation. The masses obtained in
the first stage of MS together with those obtained in the subsequent stages (MSn) are combined
into a mass list that is loaded into the program, Virtual Expert Mass Spectrometrist (VEMS)
v3.0. The mass lists obtained are then used by VEMS to search a database of glycans to give the
identity of the carbohydrate and the correct assignment of the fragment ions.

Key Words: Carbohydrates; electrospray ionization; ion-trap mass spectrometry; tandem
mass spectrometry; saccharide fragmentation; VEMS.

1. Introduction
Carbohydrates play both a functional and a structural role in nature.

Carbohydrates are involved in diverse roles such as molecular recognition,
intra- and intercellular signaling, energy generation, protein conformation
modification, as well as being structural components. In addition, carbohy-
drates are implicated in many disease states. Industrially, carbohydrates find
application in the food, textile, paper, and pharmaceutical industries, just to
mention a few. The analysis of carbohydrates is therefore essential in both
understanding the role of these molecules in biology and to improve their
industrial application.

The complexity of carbohydrates, in general, poses a big challenge in their
analysis. Unlike other biomolecules, such as proteins and nucleic acids,



carbohydrates exhibit a higher structural complexity. The complexity arises
from the occurrence of multiple isomers (1) and branching, which give rise to
extreme heterogeneity. This is a consequence of there being more than one
site available for linkage between the constituent monosaccharide units in a
given carbohydrate. Analysis of carbohydrates by mass spectrometry (MS) is
further challenging because of the isobaric nature of not only the parent
molecules but also of the product ions on fragmentation. For example, it is
difficult to distinguish between different hexoses that all have a monoisotopic
mass of 162.05 Da. In addition, the unavailability of automated procedures
for sequencing and synthesizing carbohydrates for further studies adds to the
challenge of structurally analyzing carbohydrates.

The analysis of carbohydrates by MS provides information on molecular
mass, constituent monosaccharides, sequence of the monosaccharides, linkage
type, stereochemistry of the monosaccharide units, anomericity of the glyco-
sidic bond, branching positions, type of branching, modifying groups, types of
modifying groups, and the quantity. However, isomers are not readily distin-
guishable. Distinguishing isomers may require derivatization of the carbohy-
drate sample to obtain unique and diagnostic fragmentation patterns (2,3).

Tandem MS (MSn) (multiple successive MS stages) is almost always oblig-
atory to carbohydrate structural determination. Linkage type and the degree of
branching can only be determined by MSn. As described next, fragmentation
of the carbohydrate molecule along the glycosidic bond provides sequence
information, whereas cross-ring cleavages are essential for providing linkage
and branching details. Ion-trap MS with the capacity for MSn gives unambigu-
ous assignment of fragments with similar masses from MSn-1. Isobaric
oligomers can be readily resolved by sequential trapping and fragmentation of
isomer-specific ions (2,4).

The fragmentation of carbohydrates under MS/MS as described by Domon
and Costello (5) gives rise to two types of cleavages, glycosidic bond cleavage
and cross-ring cleavage. Four series of ions are generated through the cleavage
of the glycosidic bond. B and C ions arise when the charge is retained on the
nonreducing end. In B ions, cleavage occurs before the glycosidic oxygen and
in C ions cleavage occurs after the glycosidic oxygen. Y and Z ions arise when
the charge is retained on the reducing end. In Z ions, cleavage occurs before the
glycosidic oxygen and in Y ions cleavage occurs after the glycosidic oxygen. In
addition to the cleavage of the glycosidic bond, fragmentations within the sac-
charide ring unit also occur. Two series of ions are generated through cross-ring
cleavage. A ions arise from cross-ring cleavage of the saccharide unit with
charge retention on the nonreducing end, whereas in X ions the charge is
retained on the reducing end. Superscripts are used to define the position of the
ring cleavage (Fig. 1).
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Fragmentation of carbohydrates during MS/MS is influenced by several
factors including the ionization method used, ion analysis mode, adduct form,
analyzer used, collision energy, and nature of derivatization (if derivatized).

1. The ionization method used. Depending on the ionization method one uses, the frag-
mentation pattern observed will differ. This mainly has to do with the “form” of the
ionization method, whether it is a “soft” (ionization with virtually no unintended frag-
mentation) method or not. The electrospray ionization (ESI) (6) method is a “soft”
ionization method and the examples reported in this chapter are from samples ana-
lyzed by ESI. In ESI, the sample is dissolved in an appropriate solvent and then
placed in a needle. A high-voltage electric field is then applied to the tip of the nee-
dle resulting in an electrostatic spray of multiply charged droplets of the analyte.
Following desolvation and the resulting charge concentration, gas-phase ions are pro-
duced. With ESI comes the possibility of MSn with more than two stages. Structural
information on carbohydrates is usually obtained by MS3 or higher. This feature
comes with ion-trap instruments. Theoretically, up to MS12 can be performed.

2. Ion analysis mode. B and Y ions are most abundant when the analysis is carried out
in the positive ion mode. C and Z ions are most abundant in the negative ion mode. 

3. Adduct form. MH+ ions fragment more readily than MX+ ions (X represents alkali
metal cation). With MH+ mainly glycosidic bond cleavages are observed. MX+

ions produce more cross-ring fragments and hence more structural information.
Structural information is obtained from the mass difference between the different
ions of the same series. Branching positions, as well as modification sites, are
deduced mainly from cross-ring cleavages.

4. Collision energy. The collision energy used in the fragmentation process influ-
ences the type of cleavage patterns observed. Low collision energies generally
result in the cleavage of the glycosidic bond, whereas high collision energies lead
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Fig. 1. Fragmentation pattern of glycans based on the Domon and Costello nomen-
clature (5). Note that in the example above, B and Z ions are isobaric, and C and Y ions
are isobaric.
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to cross-ring cleavages. A and X ions are mostly observed under high collision
energies. In this regard, it means that low-collision energies give limited informa-
tion on sequence, whereas more structural information can be obtained from
cross-ring cleavage, a result of high-collision energies.

5. Derivatization. When carbohydrates are derivatized, the fragmentation pattern is
different from the nonderivatized counterparts. Derivatization is not only useful for
increasing the hydrophobicity of carbohydrates and thereby their ionization effi-
ciency, but also for aiding in structural determination. Derivatized carbohydrates
have a characteristic fragmentation pattern, giving diagnostic fragment ions (7,8).

2. Methods
The general approach for analyzing carbohydrates involves, first, the release of

the carbohydrate moiety from the glycoconjugate, if it is conjugated. Two general
methods are available for releasing carbohydrates from their conjugates: enzy-
matic methods and chemical methods. Enzymatic methods offer the advantage of
preserving the conjugate, i.e., the conjugate is not degraded so it is available for
analysis if required. Chemical release, which includes alkaline elimination and
hydrazinolysis, preserves the carbohydrate moiety but degrades the conjugate.
After release of the carbohydrate moiety, the next stage is separation of the carbo-
hydrate moiety. This is not always necessary but it offers the advantage of reduced
sample complexity. The analysis of carbohydrates by MS requires working with
smaller units and if the released carbohydrate turns out to be too big, reduction to
workable units can be achieved by either chemical or enzymatic digestion. In
chemical digestion the glycosidic bond is hydrolyzed with acids. Depending on the
choice of conditions, the hydrolysis will result in (1) complete cleavage whereby
the constituent monosaccharide units are obtained, (2) partial, nonspecific cleav-
age in which random cleavage results in a mixture of oligosaccharides with vary-
ing numbers of monosaccharide units, or (3) partial, specific cleavage in which
defined cleavage sites are targeted producing predictable oligosaccharides.

In enzymatic cleavage, specific enzymes are used to depolymerize the chain
giving units that can be analyzed further. Two types of enzymes are available,
exoglycosidases and endoglycosidases. Exoglycosidases cleave one monosac-
charide unit at a time from the nonreducing end of the carbohydrate chain.
Endoglycosidases cleave within the chain depending on their specificities. The
structure of the carbohydrate sample, in terms of monosaccharide sequence and
possible branching, can already be deduced from the enzymatic reaction.

Once the necessary size samples have been obtained, the carbohydrate is
ready for structural characterization. The complete analysis of a carbohydrate
sample involves the following:

1. Identification of the constituent monomers. The first stage involves the determina-
tion of the monomers making up the carbohydrate unit.



2. Sequence determination. The second stage involves the determination of the
sequence of the monomers in the carbohydrate unit.

3. Linkage type. In the third stage, the task is to determine the type of linkage(s) in
the carbohydrate unit.
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Fig. 2. Positive ion mode nanoESI MS2 of a fully methyl esterified trimer and
structural assignment of the trimer based on the fragmentation analysis with VEMS.
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4. Stereochemistry of monosaccharide units. In addition to the linkage types, the
stereochemistry of the monosaccharide units needs to be established.

5. Anomericity of the glycosidic bond. As well as the stereochemistry of the mono-
saccharide units, it is important to determine the anomericity of the glycosidic
bond.

6. Modifying groups. Finally, if there are any modifying groups on the carbohydrate
moiety, their identity should be revealed. For example, carbohydrate moieties can
be modified by phosphate, sulfate, and other groups.

Figures 2–5 show structural elucidation of carbohydrate samples digested
into smaller oligomers by enzyme treatment. The methyl esterified galacturonic
acid samples were obtained by isolating the esterified oligogalacturonides after
digesting a pectin sample with the enzyme pectin lyase A [E. C. 4.2.2.10]. The
nonmethyl esterified samples were obtained by digesting polygalacturonic acid
the enzyme polygalacturonase [E.C: 3.2.1.15].

The analysis of the mass spectra was as follows:

1. The peak list is load into Virtual Expert Mass Spectrometrist (VEMS) v3.0
(see Chapter 7 for installation of VEMS). Go to “File → Open data → Open
multiple spectra.” Choose the processed spectra file “7mer.pkl” and “6mer.pkl.”
Remember to click “Multiple,” “Transfer,” and close the window.

Fig. 3. Positive ion mode nanoESI MS2 of a nonmethyl esterified trimer (the struc-
tural elucidation is shown in inset).



2. Go to the Tab-page “Tables.” Press the radiobutton “Glyco” to load a mass table
for carbohydrate residues. Click on the button “Settings” and press the key “F2”
to load variable modifications and default settings relevant for carbohydrates.

3. Go to the Tab-page “Databases” and specify a database of glycans. “Glycan.txt”
(this file is by default installation located in the VEMS folder “Databases” and
is therefore shown in listbox FASTA databases). Click on the file “Glycan.txt”
and press the button “<<.” Click on the checkbox “Glycan” to specify that it is a
glycan database.
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Fig. 4. Positive ion mode nanoESI MS2 of a methyl esterified hexamer and structural
assignment of the hexamer based on the fragmentation analysis with VEMS.
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Fig. 5. Positive ion mode nanoESI MS2 of a nonmethyl esterified heptamer and
structural assignment of the heptamer based on the fragmentation analysis with VEMS.

4. Go to the Tab-page “Output” and click on “Start.”
5. To visually validate the proposed structures click on a solution then right-click

and choose “View spectrum.” Click on the checkbox “a, b, and y” (see Notes 1–3)
and right-click on the spectrum; this will give an automatic annotation of the
peaks and an overlay of the theoretical masses (see Note 4).



6. On Tab-page “Settings” one can customize the view and annotation of the
spectra. Make sure that the checkbox “Delete annotation on update” is
unchecked. This will allow manual annotation of peaks. If the checkbox is
checked then the manual changes will be deleted by the automatic annotation
function in VEMS.

7. Go back to the Tab-page “Spectrum.” Press the space key until the radiobutton
“Annotation” is checked or click on it. Now try to click on peaks in the spectrum.
This brings up a window where manual annotation of the peak can be made.

8. The customized view and the spectrum annotation can be saved by right clicking
in the bottom of the Spectrum window and choosing “Save spectrum.” For testing
right-click again in the bottom of the page and choose “load spectrum.”

The characteristic fragmentation pattern of carbohydrates is shown in 
Fig. 1. It can be seen that isobaric fragment ions can be obtained, which will
make distinguishing of the reducing end from the nonreducing end impossible.
To overcome this we have used stable isotope labeling of the carbohydrate
sample with H2

18O (9–13). This means that the 18O is only incorporated 
into the reducing end during mutarotation (ring opening and closing) as
shown in Fig. 6 (see Note 5).

Under acidic conditions ring opening is accelerated. The aldehyde form, the
open ring form, can form a hemiacetal, hence incorporating 18O if the sample
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Fig. 6. The incorporation of 18O into the reducing end during mutarotation.
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Fig. 7. (A) Negative ion mode MS2 spectrum of a pentamer with four CH3 groups
(m/z 935.1). (B) Negative ion mode ESI MS2 of an 18O-labeled pentamer with four
methyl groups. (A, before labeling and B, after labeling.)



is incubated with H2
18O. Under MS analysis the ion with the reducing end

residue has a 2-Da mass increase and no mass change is observed on the ion
with the nonreducing end. Thus, any fragment ions with a mass of 2 Da more
than the expected will, therefore, be carrying the reducing end residue. Again,
using the steps outlined previously in VEMS, a 54mer was correctly assigned as
shown in Fig. 7.

4. Notes
1. Cation adducts. When carbohydrates ionize, irrespective of which method is

used, they do so not only by losing/gaining proton(s), but also by binding metal
cations. In the positive ion mode they ionize by protonation as (M + nH+)n+ or
as (MX)+, (where X is an alkali metal). The relative affinities of X for M is
Cs>K>Na>Li>H (7,14). It is therefore important when interpreting the spectra
to take this into consideration. Usually one would look for either the ions (M +
nH+)n+ or the ions (M – nH+)n– in which case (M + X+)+ would not be consid-
ered. Further complication is seen especially with acidic carbohydrates where
they lose/gain proton(s) and at the same time adduct metal cations as in (M + X+)+

and (M + X+ –2H)–. This may pose problems when using programs that assume
ionization to be only proton gain/loss. With VEMS this can be adjusted by
choosing variable modifications.

2. Additional modifications. Care should be taken in interpreting spectra of carbohy-
drate samples that have the potential of carrying additional modifying groups. For
example, oligosaccharides obtained from pectin, not only do they have methyl
ester groups but also acetyl groups. This may give rise to false assignment. In
cases like these more stages of MS will be necessary to clear the ambiguity.

3. Water loss dominance. Depending on the conditions used during collision-induced
dissociation, fragment ions that have lost water are widely observed. These ions pro-
vide no structural information and they can be the major, most intense ones in a
majority of the cases. One should select for the ions that are a result of water loss to
be fragmented further, and this is a feature one has on an ion trap-type instrument.

4. The nomenclature used for the checkbox is “a, b, and y,” which is used for peptide
ion fragments. However, the nomenclature for glycan fragments uses capital letters
A, B and Y. In the VEMS spectrum viewer the checkbox was simply reused.

5. 18O labeling. The labeling conditions may result in acid hydrolysis of, for example,
methyl ester groups and thus a compromise is required between speed of 18O
exchange and loss of methyl ester groups. The higher the acid concentration the
higher the exchange rate and the more the methyl ester hydrolyzes. Körner et al.
(12) used 0.5% formic acid for 2 d at room temperature and obtained over 90%
labeling and no significant hydrolysis. Labeling can be achieved by either (1) incu-
bating a digested carbohydrate sample in acidic H2

18O, or (2) performing the diges-
tion in H2

18O medium. Hydrolyzing enzymes like polygalacturonase incorporate
18O in the products when the reaction is carried out in H2

18O-buffered medium. A
combination of (1) and (2) can be used to distinguish products of polygalacturonase
from those of a nonhydrolyzing enzyme like pectin lyase if combined digests are
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analyzed. 18O labeling is a prerequisite for sequencing. Labeling is essential for dis-
tinguishing Z and C ions in unsaturated oligomers and Y and C, and Z and B ions
in saturated oligomers.
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Useful Mass Spectrometry Programs Freely Available 
on the Internet

Rune Matthiesen

Summary
The intention with this chapter is to give an overview of a broad range of freely available pro-

grams on the internet which are useful for analyses of mass spectrometry data. The list is by no
means a full list of free proteomics tools on the net and I apologize if there are other good
tools on the internet that have been missed. The presented programs should cover the needs
for the most general tasks in data analysis of proteomics data and have to a limited extend
been tested. The links provided in this chapter will over time become invalid. In such cases it
is worth while to try a World Wide Web search using the program packages names. This will
often reveal the updated links. Some of the links presented in this chapter will also be maintained
at http://yass.sdu.dk.

Integrated Proteomics Applications for Database-Dependent Search,
Quantitation, and Data Storage

• Seattle Proteome Center (SPC) Proteomics tools (http://tools.proteomecenter.
org/).

• VEMS v3.0 (http://yass.sdu.dk/) (Chapter 8).

Database-Dependent Search Programs
• Global Proteome machine (http://www.thegpm.org/).
• GutenTag (http://fields.scripps.edu/).
• Probid (http://projects.systemsbiology.net/probid/).
• Mascot (http://www.matrixscience.com/search_form_select.html).
• Pepsea (http://www.narrador.embl-heidelberg.de/GroupPages/Homepage.html).
• Sherpa (http://www.hairyfatguy.com/Sherpa/).
• OMSSA (http://pubchem.ncbi.nlm.nih.gov/omssa/index.htm).
• X!Tandem (http://www.thegpm.org/TANDEM/index.html).

http://tools.proteomecenter.org/
http://tools.proteomecenter.org/
http://yass.sdu.dk
http://yass.sdu.dk/
http://www.thegpm.org/
http://fields.scripps.edu/
http://projects.systemsbiology.net/probid/
http://www.matrixscience.com/search_form_select.html
http://www.narrador.embl-heidelberg.de/GroupPages/Homepage.html
http://www.hairyfatguy.com/Sherpa/
http://pubchem.ncbi.nlm.nih.gov/omssa/index.htm
http://www.thegpm.org/TANDEM/index.html


• P3 (http://www.thegpm.org/).
• Inspect (http://peptide.ucsd.edu/).
• Phenyx (http://www.phenyx-ms.com/).
• PepHMM (http://msms.cmb.usc.edu/PepHMM/PepHMM.htm).

De Novo Sequencing
• Lutefisk (http://www.hairyfatguy.com/Lutefisk/).
• Inspect (http://peptide.ucsd.edu/inspect.py).
• PepNovo (http://www-cse.ucsd.edu/groups/bioinformatics/).
• OpenSea (http://medir.ohsu.edu/~geneview/).
• De Novo peaks (demo version) http://www.bioinformaticssolutions.com/products/

PEAKSStudio/.
• http://proteome.sharcnet.ca:8080/help.htm#spider.
• http://dove.embl-heidelberg.de/Blast2/msblast.html.
• PepHMM (http://peptide.ucsd.edu/).

Programs for Quantitative Proteomics
• MSquant (http://www.pil.sdu.dk/silac_msquant.htm) (Chapter 15).
• SAM (http://www-stat.stanford.edu/~tibs/SAM/).

Intensity-Based Quantitation
• MSight (http://www.expasy.org/MSight/).
• MSGraph (http://homepage.sunrise.ch/mysunrise/joerg.hau/sci/).
• MapQuant (http://sourceforge.net/projects/mapquant/).

Glycomics
• http://au.expasy.org/tools/glycomod/glycanmass.html.
• VEMS (Chapter 16).

Other Useful Tools
• IsoPro (http://members.aol.com/msmssoft/).
• Isotopic distribution calculator (http://www.chemcalc.org/).
• VEMSiso (http://yass.sdu.dk) (Chapter 2).
• MAGTRAN (http://www.geocities.com/SiliconValley/Hills/2679/magtran.html).
• MassAnalyzer (http://www.geocities.com/SiliconValley/Hills/2679/magtran.html).
• http://prospector.ucsf.edu/.
• MassXpert (http://frl.lptc.u-bordeaux.fr/website-frl/massxpert/massxpert-main.html)

tool for calculation of fragment masses.
• Peakerrazor (Chapter 4).
• OpenMS (http://open-ms.sourceforge.net/).

Data Storage and Exchange Formats
• Pride (http://www.ebi.ac.uk/pride/).
• Proteios (http://www.proteios.org/).
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• Seattle Proteome Center (SPC) Proteomics tools (http://tools.proteomecenter.org/).
• CPAS (https://proteomics.fhcrc.org/CPAS/Project/home/home.view).

Useful Databases
• http://www.abrf.org/index.cfm/dm.home.
• http://www.unimod.org/.
• KEGG (http://www.genome.jp/kegg/).
• PathDB (http://www.ncgr.org/pathdb/).
• OMIM (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM).
• cMAP (http://cmap.nci.nih.gov/PW).
• GO (http://www.geneontology.org/).

Information on Mass Spectrometry
• http://www.ionsource.com/.
• http://www.i-mass.com/guide/movie.html.

Bioinformatics Tools
• http://www.r-project.org/.
• Taverna http://taverna.sourceforge.net/.
• Bioedit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html).
• SATv1.0 (http://www.yass.sdu.dk/SAT/SATv1.0) (Chapter 10).
• http://www.systemsbiology.org/.
• www.bioexchange.com/tools/.
• http://bioinformatics.icmb.utexas.edu/OPD/.
• http://www.peptideatlas.org/.
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Appendix

A. Abbreviations
BSA Bovine serum albumin
BIRD Blackbody infrared dissociation
CE Capillary electrophoresis
CAD Collision-activated dissociation
CID Collision-induced dissociation
DE Delayed ion extraction
DHB 2,5-Dihydroxybenzoic acid
ECD Electron capture dissociation
ETD Electron transfer dissociation
ESI Electrospray ionization
ESSI Electrosonic spray ionization
ESTs Expressed sequence tags
FAB Fast-atom bombardment
FTICR Fourier transform ion cyclotron resonance
HCCA α-Cyano-4-hydroxy cinnamic acid
HED High-energy dynode detector
HPLC High-performance liquid chromatography 
IRMPD Infrared multiphoton dissociation
IT Ion trap
LDI Laser desorption ionization
LC Liquid chromatography
MALDI Matrix-assisted laser desorption/ionization
MCP Microchannel plate detector
MS Mass spectrum/spectra
MS Mass spectrometry
MudPIT Multidimensional protein identification technology
PD 252Cf plasma desorption
PMF Peptide mass fingerprinting
PMM Peptide mass mapping
PSD Post source decay

Appendix  7/21/06  6:09 PM  Page 307



RP Reversed-phase
SA Sinapinic acid
SELDI Surface-enhanced laser desorption/ionization
SDS Sodium dodecyl sulfate
SID Surface-induced dissociation
TFA Trifluoroacetic acid
THAP 2,4,6-Trihydroxyacetophenone
TOF Time-of-flight
TPCK N-tosyl-L-phenyl chloromethyl keton

B. Polynomial Calibration of Mass Spectra by VEMS v2.0
There exist three methods for calibrating mass spectra. The methods are

termed external calibration, internal calibration, and recalibration.
External calibration uses standards with known masses to calibrate the mass

spectrometer. The standards are run as separate experiments in addition to the
analysis of the sample. External calibration is the least accurate calibration
method. External calibration is especially inaccurate in use with MALDI. The
inhomogeneous crystallization of matrix and sample is the main reason for this
inaccuracy. Because the external calibration is run as a separate experiment, it
is also affected by variation in the temperature of the flight tube.

Internal calibration also uses standards with known masses but here they are
mixed with the sample and their mass spectra recorded together with the sam-
ple. For internal calibration, problems with overlapping mass peaks from the
sample and the standards can occur. In addition, the intensity of the sample
mass peaks can be lowered owing to ion suppression, if the standards and sam-
ple is mixed at an improper ratio.

Recalibration uses significantly identified sample mass peaks to calibrating
spectra that have all ready been calibrated by either external or internal stan-
dards. The recalibration relies on correctly identified mass peak. Great care
should be taken to avoid mass peaks that are not significantly identified.

All three calibration methods estimate a polynomial mass correction function.
Given a set of N significantly identified mass peaks where mobs
are the experimental and mcal the calculated masses, then the coefficients off the
least-parabola

can be found by minimizing the function

E A B C Am Bm C mobs k obs k cal k
k

N

( , , ) ( ), , ,= + + −
=

2 2

1
∑∑

m A m B m Ccal obs obs= + +* *2

{( , )} ,, ,m mobs k cal k k
N
=1
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(1). The minimization can be done by setting the partial derivatives ∂E/∂A,
∂E/∂B, and ∂E/∂C equal to zero. Rearranging gives the following linear system

The masses of matrix clusters can, for example, be used as a standard for
internal calibration. Possible masses of HCCA matrix clusters were calcu-
lated using Eqs. 2–4. The number of possible combination for a given n is 
given by

.

Mass (Da) n x y z

212.03 1 0 0 1
228.01 1 0 1 0
234.01 1 1 0 2
249.99 1 1 1 1
265.96 1 1 2 0
401.07 2 0 0 1
417.05 2 0 1 0
423.06 2 1 0 2
439.03 2 1 1 1
445.04 2 2 0 3
455.00 2 1 2 0
461.01 2 2 1 2
476.99 2 2 2 1
492.96 2 2 3 0
590.12 3 0 0 1
606.09 3 0 1 0
612.10 3 1 0 2
628.07 3 1 1 1
634.08 3 2 0 3
644.05 3 1 2 0
650.06 3 2 1 2

( ) *n n+ + −2 3
2

1
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k

N
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k

N

, ,* *4

1

3

1= =
∑ ∑





+






+ oobs k
k

N

cal k obs k
k

N

ob

C m m

m

, , ,* *2

1

2

1= =
∑ ∑





=

ss k
k

N

obs k
k

N

obA m B m, ,* *3

1

2

1= =
∑ ∑





+






+ ss k
k

N

cal k obs k
k

N

obs k

C m m

m

, , ,

,

* *
= =

∑ ∑





=
1 1

3

kk

N

obs k
k

N

caA m B N C m
= =

∑ ∑





+






+ =
1

2

1

* * *, ll k
k

N

,
=

∑
1

Appendix 309

(Continued)

Appendix  7/21/06  6:09 PM  Page 309



656.06 3 3 0 4
666.03 3 2 2 1
672.04 3 3 1 3
682.00 3 2 3 0
688.01 3 3 2 2
703.99 3 3 3 1
719.96 3 3 4 0
779.16 4 0 0 1
795.13 4 0 1 0
801.14 4 1 0 2
817.12 4 1 1 1
823.12 4 2 0 3
833.09 4 1 2 0
839.10 4 2 1 2
845.11 4 3 0 4
855.07 4 2 2 1
861.08 4 3 1 3
867.09 4 4 0 5
871.05 4 2 3 0
877.05 4 3 2 2
883.06 4 4 1 4
893.03 4 3 3 1
899.04 4 4 2 3
909.00 4 3 4 0
915.01 4 4 3 2
930.98 4 4 4 1
946.96 4 4 5 0

C. Table of Amino Acid Residue Masses and Some Elemental Masses

Compound Monoisotopic mass (Da)

E 0.000549
H+ 1.00728
H 1.00783
O 15.9949146
H2O 18.01056
Glycine (G) 57.02146
Alanine (A) 71.03711
Serine (S) 87.03203
Proline (P) 97.05276
Valine (V) 99.06841

(Continued)
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Homoserine lactone (HSL) 100.03985
Threonine (T) 101.04768
Cysteine (C) 103.00919
Isoleucine (I) 113.08406
Leucine (L) 113.08406
Asparagine (N) 114.04293
Aspartic acid (D) 115.02694
Glutamine (Q) 128.05858
Lysine (K) 128.09496
Glutamic acid (E) 129.04259
Methionine (M) 131.04049
Histidine (H) 137.05891
Methionine sulfoxide (MSO) 147.0354
Phenylalanine (F) 147.06841
Cysteic acid 150.993935
Arginine (R) 156.10111
Carboxyamidomethyl cysteine (Cys_CAM) 160.03065
Carboxymethyl cysteine (Cys_CM) 161.01466
Methionine sulfone 163.03032
Tyrosine (Y) 163.06333
Propionamide cysteine (Cys_PAM) 174.04631
Tryptophan (W) 186.07931
N-formylkynurenine 186.07931
Pyridyl-ethyl cysteine (Cys_PE) 208.067039

Adapted from refs. 2–3 and ExPASy http://www.expasy.org/tools/findmod/find
mod_masses.html.

D. Tables of Immonium Ion and Neutral Loss Masses

Immmonium ions Monoisotopic mass (Da)

Glycine (G) 30.032362
Alanine (A) 44.052362
Serine (S) 60.042362 –
Proline (P) 70.062362 +
Valine (V) 72.082362 +
Threonine (T) 74.062362 –
Cysteine (C) 76.022362
Isoleucine (I) 86.092362 +
Leucine (L) 86.092362 +
Asparagine (N) 87.052362
Aspartic acid (D) 88.042362
Glutamine (Q) 101.072362

Appendix 311

(Continued)

Compound Monoisotopic mass (Da)

Appendix  7/21/06  6:09 PM  Page 311

http://www.expasy.org/tools/findmod/findmod_masses.html
http://www.expasy.org/tools/findmod/findmod_masses.html


Lysine (K) 101.102362 –
Glutamic acid (E) 102.052362
Methionine (M) 104.052362
Histidine (H) 110.072362 +
Phenylalanine (F) 120.052362 +
Arginine (R) 129.112362 –
Tyrosine (Y) 136.072362 +
Cysteic acid 152.001211
Tryptophan (W) 159.092362 +
Methionine sulfone 164.037596
N-formylkynurenine 219.076416

The masses were calculated with MassCal part of the VEMS v2.0 application. 
(+) and (–) indicates how well the amino acids are in forming the corresponding
immonium ion.

E. Nomenclature Used for Referring to Interface
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A

Amino acids,
immonium ions and neutral loss

masses, 311, 312
mass values, 177, 310, 311
residue low mass fragment ions and

neutral losses, 179
ANN, see Artificial neural network
Apache Jakarta Tomcat, see YassDB
Artificial neural network (ANN), liquid

chromatography retention time
prediction, 198

B

BioEdit, Virtual Expert Mass
Spectrometrist v3.0 interface,
122, 135, 136

Blast,
expressed sequence tag annotation,

80–85
Virtual Expert Mass Spectrometrist

v3.0 interface, 122, 135

C

Carbohydrate analysis,
applications, 289
challenges of mass spectrometry,

289
tandem mass spectrometry,

cleavage of carbohydrates, 292
fragmentation, 291, 292
overview, 290
stages of analysis, 292–294
Virtual Expert Mass

Spectrometrist v3.0 analysis,
294–297, 299, 300

CID, see Collision-induced dissociation

Collision-induced dissociation (CID),
fragmentation principles, 14, 23, 24,

170
fragment ion nomenclature, 170, 171
posttranslationally modified peptide

identification from tandem
mass spectra,

amino acid mass values, 177
amino acid residue low mass

fragment ions and neutral
losses, 179

assignment and validation,
peptide sequence, 182, 183,

190
precursor ion, 186, 187
spectral features, 183, 185,

186, 191
b2-ion masses, 178
carbamoylation, 190
database searching, 181
element mass values, 175
histone modifications, 187, 191
modification types, 171–174
protein oxidation, 187, 190, 191
theoretical spectrum

identification, 176, 177, 179
Web resources, 175, 176

D

Data handling, see also Proteios;
YassDB,

data formats, 243, 244
data model, 242
data repository, 242, 243, 267
standardization,

Human Proteome Organization,
262, 264, 269
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minimum information about a
proteomics experiment, 268

posttranslational modifications,
266, 267

Protein Standards Initiative, 264–
266

protein identification and
description, 263, 264

rationale, 262
storage and retrieval, 267

DBParser, combining peptide
assignments, 112

Decharging, peak extraction, 39, 40, 47
DeCyder, difference gel electrophoresis

analysis, 231, 232, 236
Deisotoping, peak extraction, 39, 40, 47
Difference gel electrophoresis (DIGE),

cleanup of samples, 225–227
dye labeling, 228, 229, 234, 235
experimental design, 227, 228, 232–

234
gel electrophoresis and poststaining,

229, 230, 235, 236
isoelectric focusing pH range, 227
materials, 223, 224, 233
pooled-sample internal standard,

227, 228
preliminary gel, 227, 233
principles, 221, 223, 233
sample preparation, 225, 233
software algorithms, 230–232, 236
statistical confidence, 232, 236, 237

DIGE, see Difference gel
electrophoresis

DTASelect, combining peptide
assignments, 112

E

ECD, see Electron capture dissociation
Electron capture dissociation (ECD),

fragmentation principles, 24,
25

Electron transfer dissociation (ETD),
fragmentation principles, 25

Electrospray ionization (ESI),
principles, 15, 16

Element mass values, 175
ESI, see Electrospray ionization
EST, see Expressed sequence tag
ETD, see Electron transfer dissociation
Expectation maximization algorithm,

statistical validation of
large-scale datasets,
106, 108, 110

Expressed sequence tag (EST),
annotation, 80, 81
contaminants, 78
databases, 77, 80
polymorphisms, 79
protein sequence prediction from

low-fidelity DNA sequences,
79, 80

unigene collection generation,
advantages, 77, 78
Blast for expressed sequence tag

annotation, 80–85
Framefinder program installation

and protein sequence
prediction, 83–86

software, 81, 82
TGICL for assembly, 83–85

F

False identification rate, statistical
validation of large-scale
datasets, 105, 106

Framefinder, protein sequence
prediction from expressed
sequence tags, 83–86

Freeware, programs and sources, 303–
305

G

GIST, see Global internal standard
technology

Global internal standard technology
(GIST),

incorporation of label, 215–217
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materials, 212, 213
principles, 211

Glycophosphatidylinositol-anchored
protein (GPI-AP), prediction
using Sequence Analysis
Toolbox v1.0, 156–158

GPI-AP, see
Glycophosphatidylinositol-
anchored protein

GPMAW, protein analysis, 179, 180

H

Hendersson-Hasselbach equation, 154
High-performance liquid

chromatography, see Liquid
chromatography

Histone, modification analysis, 187,
191

Human Proteome Organization
(HUPO), standards
development , 262, 264, 269

HUPO, see Human Proteome
Organization

Hydropathicity index, prediction using
Sequence Analysis Toolbox
v1.0, 165–167

I

ICAT, see Isotope-coded affinity tag
INTERACT, combining peptide

assignments, 112
International Protein Index (IPI),

features, 264
Ion trap mass analyzer, principle,

16, 17
IPI, see International Protein Index
Isoelectric point, prediction using

Sequence Analysis Toolbox
v1.0, 154–156, 165–167

Isotope-coded affinity tag (ICAT),
incorporation of label, 213, 214

, 217
materials, 212
principles, 211

Isotope labeling, see Global internal
standard technology; Isotope-
coded affinity tag; Mass-coded
abundance tagging; Stable
isotope labeling by amino acids
in cell culture

L

Laboratory information system (LIMS),
data handling, 242, 243, 272
Proteios, 244, 257

LC, see Liquid chromatography
LIMS, see Laboratory information

system
Liquid chromatography (LC),

Fourier transform ion cyclotron
resonance mass spectrometry
coupling, 196, 197

rationale for mass spectrometry
coupling, 195, 196

retention time,
prediction

accuracy, 201, 202
artificial neural network

modeling, 198
nonlinear gradients, 196, 197
SEQUEST, 198
software, 203, 204
theory, 199

value in peptide identification,
196

Lutefisk, Virtual Expert Mass
Spectrometrist v3.0 interface,
122, 135

M

MALDI, see Matrix-assisted laser
desorption and ionization

Mascot,
applications programmer interface,

244
tandem mass spectrometry database

searching, 100, 101, 103, 104,
108
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Mass-coded abundance tagging
(MCAT)

incorporation of label, 216, 217
materials, 213
principles, 211

Mass spectrometry (MS),
annotation of spectrum, 10, 11, 13
data formats, see also Data handling,

mgf file, 26, 27
overview, 26
pkl file, 27
pkx file, 27

detectors, 25, 26
fragmentation,

collision-induced dissociation,
23, 24

electron capture dissociation,
24, 25

electron transfer dissociation,
25

post-source decay, 25
instrumentation, 2
ionization modes,

electrospray ionization, 15, 16
matrix-assisted laser desorption

and ionization, 5, 6
overview, 2, 5

mass analyzers,
ion trap mass analyzer, 16, 17
quadrupole-time-of-flight mass

analyzer, 17, 18
time-of-flight mass analyzer,

6, 7
peak extraction, see Virtual Expert

Mass Spectrometrist v3.0
peptide mass fingerprinting, see

Peptide mass fingerprinting
prospects for MALDI-TOF mass

spectrometry in proteomics,
13–15

proteomics data flow, 121, 122
spectrum features, 7–10
tandem mass spectrometry, see

Tandem mass spectrometry

Matrix-assisted laser desorption and
ionization (MALDI),
principles, 5, 6

MCAT, see Mass-coded abundance
tagging

mgf file, format, 26, 27
MIAPE, see Minimum information

about a proteomics experiment
Minimum information about a

proteomics experiment
(MIAPE),

mzData, 243, 249
standards, 268

MS, see Mass spectrometry
MS/MS, see Tandem mass

spectrometry
MudPIT, see Multidimensional protein

identification technology
Multidimensional protein identification

technology (MudPIT),
limitations, 28, 29
overview, 3

mzData, format, 243, 249

N

Noise filtering, peak extraction, 38, 39,
43, 44, 47

O

OMSSA, tandem mass spectrometry
candidate peptide scoring,
102–104

P

Peak extraction, see Virtual Expert
Mass Spectrometrist v3.0

PeakErazor,
calibration of MALDI-TOF spectra,

calibration using internal
calibration, 53, 54, 59

calibration using mass defect,
57–60

contaminant evaluation, 54–56,
59
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internal calibrant identification,
51–53, 59

contaminant identification and
elimination, 64, 65, 71, 72

installation, 51
protein modification identification,

65, 66, 72
Peptide mass fingerprinting (PMF),

calibration of MALDI-TOF spectra,
overview, 49–51
PeakErazor,

calibration using internal
calibration, 53, 54, 59

calibration using mass defect,
57–60

contaminant evaluation, 54–56,
59

installation, 51
internal calibrant

identification, 51–53, 59
confirmation of findings, 63
contaminant identification and

elimination with
PeakErazor, 64, 65, 71, 72

database searching,
allowed modifications, 66, 68,

72
cleavage enzyme specification,

68, 72
isoelectric point specification, 69,

73
mass tolerance specification, 68
missed cleavage site specification,

68
search engines, 64, 68, 69

evaluation of search result,
mass accuracy distribution, 69,

73
missed cleavages, 69, 73
modified peptides, 70
overlapping peptides, 69
peak intensities, 70
sequence coverage, 70, 71

matching limitations, 62, 63

protein cleavage, 1, 2, 4, 29, 61
protein modification identification,

65, 66, 72
spectrum annotation, 13

PeptideProphet, statistical validation of
large-scale datasets, 106, 107,
109, 110, 112, 116

Phenyx, tandem mass spectrometry
database searching, 101, 102

pkl file, format, 27
pkx file, format, 27, 141
PLGS, Virtual Expert Mass

Spectrometrist v3.0 interface,
123, 136, 141, 150

PMF, see Peptide mass fingerprinting
Post-source decay (PSD), principles,

14, 25
PostgreSQL, see YassDB
Posttranslational modifications, see

Collision-induced dissociation;
PeakErazor

pProRep, see YassDB
PRIDE, see Proteomics Identifications
ProteinProphet, protein assignment

statistical analysis, 112–114,
116

Protein Standards Initiative (PSI), data
features, 264–266

Proteios,
aggregating experiment data, 252–

254
batch handling, 255, 256
compatibility with other programs,

244, 255
core functionality, 244–246
external tool interactions, 258
graphic user interface, 245
laboratory information system, 244,

257
mass spectrometry results analysis,

250–252
mzData, 249
ontologies, 257
plug-ins, 257
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queries and reports, 256
sample information, 246, 247
sample processing, 249
server, 256, 257
tree view, 246
Virtual Expert Mass Spectrometrist

v3.0 interface, 122
XML namespaces, 257

Proteomics Identifications (PRIDE),
features, 267

PSD, see Post-source decay
PSI, see Protein Standards Initiative

Q

Quadrupole-time-of-flight mass
analyzer, principle, 17, 18

Quantitative proteomics, see
Difference gel electrophoresis;
Global internal standard
technology; Isotope-coded
affinity tag; Mass-coded
abundance tagging; Stable
isotope labeling by amino
acids in cell culture; Virtual
Expert Mass Spectrometrist
v3.0

R

Retention time, see Liquid
chromatography

S

SAM, Virtual Expert Mass
Spectrometrist v3.0 interface,
122, 136

SAT, see Sequence Analysis Toolbox
v1.0

Sequence Analysis Toolbox v1.0,
development, 159, 160
glycophosphatidylinositol-anchored

protein prediction, 156–158
high-throughput analysis, 153, 154
hydropathicity index prediction,

165–167

isoelectric point prediction, 154–
156, 165–167

task overview, 160, 161, 163, 165
transmembrane protein prediction,

159
SEQUEST,

liquid chromatography retention time
prediction, 198

tandem mass spectrometry database
searching, 99, 100, 102, 108,
109

Shotgun proteomics, overview, 88, 89
SILAC, see Stable isotope labeling by

amino acids in cell culture
SpectrumMill, tandem mass

spectrometry database
searching, 101

Stable isotope labeling by amino acids
in cell culture (SILAC),

incorporation of label, 214–217
materials, 212, 216, 217
metabolic labeling, 210
principles, 211
quantitative analysis, 140, 144, 146

Swiss-Prot, database features, 263

T

Tandem mass spectrometry (MS/MS),
carbohydrate analysis, see

Carbohydrate analysis
collision-induced dissociation, see

Collision-induced dissociation
peak extraction, 43
peptide identification,

database searching,
failure sources, 96–98
principles, 91–93
scoring and evaluation,

98–105
search parameters, 93–95
sequence database selection,

95, 96
overview of approaches, 89–91
protein inference, 111–114, 116
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statistical validation of large-scale
datasets, 105–111

shotgun proteomics, 88, 89
spectrum features, 18–23

TandemX, Virtual Expert Mass
Spectrometrist v3.0 interface,
122, 135

TGICL, expressed sequence tag
assembly, 83–85

Transmembrane protein, prediction
using Sequence Analysis
Toolbox v1.0, 159

TrEMBL, database features, 263
Two-dimensional gel electrophoresis,

difference gel electrophoresis, see
Difference gel electrophoresis

limitations, 28, 29
principles, 220, 233
protein cleavage, 1, 2, 4, 29, 61
resolution, 2, 3, 220

U

Unigene collection, see Expressed
sequence tag

UniMod, database features, 266, 267
UniProtKB, database features, 263

V

VEMS v3.0, see Virtual Expert Mass
Spectrometrist v3.0

Virtual Expert Mass Spectrometrist
(VEMS) v3.0,

carbohydrate analysis, 294–297, 299,
300

database searching,
grouping of data, 134, 135
higher level data analysis, 135
interfaced programs, 122, 123,

135, 136
modified proteins, 181
overview, 121, 122
profile interrogation, 135
quality test of scoring functions,

131, 132

recalibration of spectra, 126, 127
repeated search, 127, 136
search protocol, 123–126, 136
significance of peptide

assignments, 132–134
validation, 127, 130, 131

peak extraction,
deisotoping and decharging, 39,

40, 47
materials, 40, 41
monoisotopic single-charged

peak extraction
liquid chromatography–mass

spectrometry run, 41–43
tandem mass spectrometry run,

43
noise filtering, 38, 39, 43, 44, 47
overview, 37, 38

polynomial calibration of spectra in
v2.0, 308–310

protein sequence prediction from
low-fidelity DNA sequences,
79

quantitative analysis,
extended analysis functions,

149–151
output and analysis, 147, 150
overview, 139–141
requirements for quantification,

141–147, 150, 151
software, 141, 150
stable isotope labeling by amino

acids in cell culture, 140, 144,
146

validation, 147–149
YassDB interactions, 284

X

Xcorr, tandem mass spectrometry
candidate peptide scoring, 99,
100

X!Tandem, tandem mass spectrometry
candidate peptide scoring,
102, 103



320 Index

Y

YassDB,
application architecture, 274, 276, 284
client programs, 272
database schema, 274, 284
design considerations, 273, 274
installation,

Apache Jakarta Tomcat
configuring, 279–281, 285
installation, 279, 285
starting, 281, 285

PostgreSQL database server,
configuring and starting

database, 278, 285

database creation, 277, 278,
284, 285

database schema installation,
278, 279, 285

pProRep client interface
configuration, 283, 286

Web service configuration, 281–
283, 285, 286

software, 273, 284
Virtual Expert Mass Spectrometrist

v3.0 interactions, 284
Web service interface, 276, 277
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