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River mechanics

This textbook offers a thorough mechanical analysis of rivers from
upland areas to oceans. It scrutinizes state-of-the-art methods, under-
lining both theory and engineering applications.

Each chapter includes a presentation of fundamental principles, fol-
lowed with an engineering analysis and instructive problems, exam-
ples, and case studies illustrating engineering design. The emphasis
is on river equilibrium, river dynamics, bank stabilization, and river
engineering. Channel stability and river dynamics are examined in
terms of river morphology, lateral migration, aggradation, and degra-
dation. The text provides a detailed treatment of riverbank stabilization
and engineering methods. Separate chapters cover physical and mathe-
matical models of rivers. This textbook also contains essential reading
for understanding the mechanics behind the formation and propagation
of devastating floods, and offers knowledge crucial to the design of
appropriate countermeasures to reduce flood impact, prevent bank ero-
sion, improve navigation, increase water supply, and maintain suitable
aquatic habitat.

More than 100 exercises (including computer problems) and nearly
20 case studies enhance graduate-student learning, while researchers
and practitioners seeking broad technical expertise will find it a valu-
able reference.

Pierre Y. Julien is Professor of Civil Engineering at Colorado State
University.
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Preface

Rivers have fascinated humanity for centuries. Most prosperous cities around
the world have been founded along rivers. Today, river engineers are still design-
ing structures to draw benefits from the fluvial system for developing societies.
It is clear that river engineering is not based solely on a simple understand-
ing of local hydrodynamic forces, but also on an encompassing knowledge
of the watershed that supplies water and sediment to dynamic river systems.
Expertise in river mechanics combines knowledge of watershed climatology,
geomorphology, and hydrology, with a deep understanding of hydrodynamic
forces governing the motion of water and sediment in complex river systems.
State-of-the-art teaching of river mechanics clearly requires study material that
emphasizes both theoretical concepts and practical engineering technology.
Ideally, scientists should develop new concepts that may be applicable to en-
gineering design, and practitioners should understand why certain structures
work and why others fail.

This textbook has been prepared for engineers and scientists seeking broad-
based technical expertise in river mechanics. It has been specifically designed
for graduate students, for scholars actively pursuing scientific research, and for
practitioners keeping up with developments in river mechanics. The prereq-
uisites simply include basic knowledge of undergraduate fluid mechanics and
partial differential equations. The textbook Erosion and Sedimentation, by the
same author and Cambridge University Press, serves as prerequisite material
for the graduate course on river mechanics taught at Colorado State University.

Rather than a voluminous encyclopedia, this textbook scrutinizes a selected
number of methods to meet pedagogical objectives underlining both theory and
engineering applications. This text has been designed to be covered within a
regular 45-lecture-hour graduate-level course.

The chapters of this book contain, besides theory and lecture material, vari-
ous exercises, general problems, data sets, computer problems, examples, and
case studies. They illustrate specific aspects of the profession from theoretical
derivations through exercises, to practical solutions to real problems through
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xii Preface

the analysis of case studies. Most problems can be solved with a few algebraic
equations; others require the use of computers. The computer problems offer
students the opportunity to develop skills for solving physical problems with
computers. No specific computer code or language is required. Instead of using
existing software packages, I stimulate student creativity and originality in de-
veloping the students’ own computer programs. Throughout, a solid diamond
(�) denotes equations and problems of particular significance. Problems with
a double diamond (��) are considered most important.

I am grateful to D. B. Simons, E. V. Richardson, H. W. Shen, H. Rouse,
M. Frenette, J. L. Verrette, Y. Ouellet, C. F. Nordin, S. Schumm, S. R. Abt,
and J. Ruff, who influenced my teaching over the years. I am also particularly
thankful to P. G. Combs and D. C. Baird for sharing their practical expertise in
river engineering. This book also benefits from numerous suggestions formu-
lated by a generation of graduate students at Colorado State University. They
helped me tailor this textbook to meet their needs under the constraints of qual-
ity, concision, and affordability. Jenifer Davis diligently typed successive draft
versions of the manuscript, and Jean Parent prepared the figures. Finally, it has
been a renewed pleasure to collaborate with Florence Padgett, Ellen Carlin,
Zach Dorsey, and the Cambridge University Press production staff.



Notation

Symbols

a acceleration
a reference elevation
a pier width
acent centrifugal acceleration
acor Coriolis acceleration
ai incremental cross-section area
ai+1 coefficient of hi+1

at partial watershed area
aθ particle-stability coefficient
ã wave amplitude
a, b coefficients of the resistance equation
a, b transform coefficients for duration curves
A surface area
Aa amplitude factor
Asb surface area of a settling basin
At watershed drainage area
Ã, B̃ wave coefficients
br river-bend coefficient
c wave celerity
cG group velocity
C Chézy coefficient
Ca reference concentration
Cs Courant number
Cfl Courant–Friedrich–Levy coefficient
Ck grid dispersion number
C0i upstream sediment concentration
Cr runoff coefficient
Cu velocity Courant number

xiii



xiv Notation

Cv,Cw,Cppm,Cmg/l sediment concentration
d10, d50 particle size distribution, % finer by weight
dm effective riprap size
ds particle size
d∗ dimensionless particle diameter
D pipe diameter
Dd degree-days
Dp drop height of a grade-control structure
e void ratio
E specific energy
Etons expected soil loss in tons
Ẽ total energy of a wave
E() exceedance probability
�E specific energy lost in a hydraulic jump
f Darcy–Weisbach friction factor
fl Lacey silt factor
f (t) infiltration rate
F force
F̃ fetch length of wind waves
FB buoyancy force
Fc centrifugal force
FD drag force
Fg gravitational force
Fh hydrodynamic force
Fi inertial force
FL lift force
FM momentum force
Fp pressure force
Fs shear force in a bend
FS submerged weight of a particle
Fw weight of water
FW weight of a particle
F() nonexceedance probability
F(t) cumulative infiltration
Fa(t) actual cumulative infiltration
Fp(t) potential cumulative infiltration
Fr Froude number
g gravitational acceleration
G specific gravity of sediment
Gr gradation coefficient



Notation xv

Gu universal gravitation constant
h flow depth
hc critical flow depth
hd downstream flow depth
hn normal flow depth
h p pressure head at the wetting front
hr rainfall depth
hs cumulative snowmelt
ht tailwater depth
hu upstream flow depth
hw partial elevation drop on a watershed
�h local change in flow depth
�H energy loss over a meander wavelength
H Bernoulli sum
Hw elevation drop on a watershed
Hs = 2ã wave height
i rainfall intensity
ib riverbed infiltration rate
ie excess rainfall intensity
i f snowmelt rate
j space index
k time index
k0 resistance parameter for laminar overland flow
ks surface roughness
k ′

s grain roughness
kt total resistance to laminar overland flow
k̃ wave number
K saturated hydraulic conductivity
K1, K2 coefficients of the pier scour equation
Kc riprap coefficient
Kd dispersion coefficient
Knum numerical dispersion coefficient
K p plunging jet coefficient
Ksj submerged jet coefficient
l1 to l4 moment arms
lc, ld moment arms in radial stability of river bends
La abutment length
L f depth of the wetting front
L p pier length
Lr river length



xvi Notation

Lr length ratio
Lsb settling-basin length
L M runoff-model grid-cell size
L R grid size of rainfall precipitation
L S correlation length of a storm
LW length scale of a watershed
L� length of arrested saline wedge
m exponent of the resistance equation
ms sediment mass eroded from a single storm
m E mass of the Earth
mM mass of the Moon
M mass
M specific momentum
M1, M2 first and second moments of a distribution
M , N particle-stability coefficients
n Manning coefficient n
ñ wave number index
N number of points per wavelength
N number of storms
O() order of an approximation
p pressure
p() probability density function
p0 porosity
p0e effective porosity
p0i initial water content
p0r residual water content
�pc fraction of material coarser than dsc

�pi sediment size fraction
�p0 change in water content at the wetting front
P wetted perimeter
P̃ total power of a wave
�P power loss in a hydraulic jump
P() probability
P0 power loss
P� grid Peclet number
q unit discharge
qbv unit sediment discharge by volume
q∗

bv = qbv/ω0ds dimensionless unit sediment discharge
ql lateral unit discharge
qm maximum unit discharge



Notation xvii

qs unit sediment discharge
qt total unit sediment discharge
Q river discharge
Qbv bed sediment discharge
Qe watershed size correction factor
Q p peak discharge
Qs sediment discharge
r radial coordinate
r∗ dimensionless radius of curvature
r, θ, z cylindrical coordinate system θ downstream,

r lateral, and z upward
R radius of curvature of a river
�Re excess rainfall
Rh hydraulic radius
Rm minimum radius of curvature of a channel
RE radius of the Earth
Re Reynolds number
Re∗ grain shear Reynolds number
Re = V h/ν Reynolds number
Re∗ = u∗ds/ν grain shear Reynolds number
Ro = ω/κu∗ Rouse number
S slope
Se effective saturation
S0, S f , Sw bed, friction, and water-surface slope
So, S f , Sw radial water-surface slope
S∗

r dimensionless radial slope
Sr , Swr radial water-surface slope
SDR sediment delivery ratio
t time
�t time increment
�ts time increment for sediment
ta cumulative time with positive air temperature
te time to equilibrium
t f cumulative duration of snowmelt
tr rainfall duration
t∗
r = tr/t̄r normalized storm duration

tt transversal mixing time
tv vertical mixing time
T period of return of extreme events
T wave period



xviii Notation

TE trap efficiency
Ts windstorm duration
u, v velocity along a vertical profile
ū average flow velocity
u∗ shear velocity
Uw wind velocity
vs velocity against the stone
vx , vy , vz velocity components
V cross-section averaged velocity
Vc critical velocity
V� densimetric velocity
Vθ downstream velocity in cylindrical coordinates
W channel width
Wm meander width
Wo overland plane width
x , y, z coordinates usually x downstream, y lateral, and z upward
xr , yr , zr length ratios of hydraulic models
�x grid spacing
X runoff length
Xc reach length
Xe equilibrium runoff length
Y sediment yield
zb bed elevation
zw water-surface elevation
z∗ dimensionless depth
�z scour depth

Greek Symbols

α coefficient of the stage–discharge relationship
αb deflection angle of barges
αe energy correction factor
β exponent of the stage–discharge relationship
β bed particle motion angle
βm momentum correction factor
γ specific weight of water
γm specific weight of a water–sediment mixture
γmd dry specific weight of a water–sediment mixture
γs specific weight of sediment
�(x) gamma function



Greek Symbols xix

δ angle between streamline and particle direction
ξ ratio of exceedance probabilities
ξ̃ displacement in the x direction
η sideslope stability number
η̃ displacement in the y-direction
λ streamline deviation angle
λ wavelength
λ f snowmelt intensity
λr = tr/te hydrograph equilibrium number
� meander wavelength
µ dynamic viscosity of water
ν kinematic viscosity of water
φ angle of repose of bed material
φ latitude
φ dimensionless soil mass eroded from a single storm
� velocity potential
ρ mass density of water
ρm mass density of a water–sediment mixture
ρmd dry mass density of a water–sediment mixture
ρs mass density of sediment
ρsea mass density of seawater
� = ln[−ln E(x)] double logarithm of exceedance probability
ω settling velocity
ωE angular velocity of the Earth
� sinuosity
�R coefficient of secondary flows in bends
θ downstream orientation of channel flow
θ angular coordinate
θ j jet angle measured from the horizontal
θm maximum orientation of channel flow
θp flow orientation angle against a pier
θr raindrop angle
θ0, �0 downstream bed angle
�1 sideslope angle
� = (t − tr )/te dimensionless time
σ stress components
σd standard deviation of dispersed material
σg gradation coefficient
σ̃ angular frequency of surface waves
τ shear stress



xx Notation

τ0, τb bed shear stress
τ0x , τ0y downstream and lateral bed shear stress
τbn bed shear stress at a normal depth
τc critical shear stress
τr radial shear stress
τ ∗

r dimensionless radial shear stress
τs side shear stress
τsc critical shear stress on a sideslope
τw wind shear stress
τzx shear stress applied in the x direction in a plane

perpendicular to z
τ∗ Shields parameter
τ∗c critical value of the Shields parameter
ψ = q/ ie L dimensionless discharge
ψ , θ weighting coefficients
� reduced variable
ζ k

n Fourier coefficient

Superscripts and Diacriticals

â coefficient of the logarithm resistance equation
ñ wave properties
Ĉ parameters of the universal soil-loss equation
ē average value
hk time index k

Subscripts

ar , aθ cylindrical coordinate components
ax , az Cartesian components
τc critical shear stress
h j+1 space index at j + 1
Lm , Qm model value
L p, Q p prototype value
Lr , Qr similitude scaling ratio
ρm , γm properties of a water–sediment mixture
ρmd , γmd properties of a dry water–sediment mixture
ρs , γs sediment properties
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Introduction to river mechanics

It has long been understood that water flows downhill. This maybe the only
statement to be remembered until a river dries out and crops wilt. Droughts
unfortunately threaten humanity with the constraint that, without water, life
cannot be sustained. On the other hand, the devastating consequences of excess
water through floods stem from the fact that humanity, crops, and cattle are
not well adapted to submerged life. Although nomadic tribes coped with the
continuously changing pulses of fluvial systems, sedentary conditions forced
humanity to protect against floods and droughts. In arid lands, perennial streams
with regulated flow and a year-round supply of water are so much more valuable
to humanity and wildlife than are natural sequences of short floods that succeed
long droughts in dry ephemeral streams. River engineers are facing the daunting
challenge of optimizing the urban and environmental resources pertaining to
rivers while minimizing the damages caused by floods and droughts.

Perhaps the origin of river engineering started with Yu (4000 B.C.) who
was selected to be emperor of China on the premise of long-lasting dikes for
the protection of fertile Chinese plains against floods. For centuries, Chinese
emperors were classified into “good dynasties” or “bad dynasties” depending
on whether or not they succeeded in their struggle to harness large rivers. At
approximately the same time, in Mesopotamia, an extensive irrigation system
was developed between the Tigris and the Euphrates Rivers. Flood-control
levees were constructed to protect fertile lands from destructive inundations.
In these early periods of civilization, humanity’s cultural development was
dominated by fear of thunder, lightning, rain, floods, storms, cyclones, and
earthquakes. The lack of understanding of cause-and-effect relationships to
explain natural phenomena such as floods has characterized earlier civilizations.
Nonetheless, humanity was compelled to develop hydraulic engineering and
tame rivers in order to prevent famine and to survive. Today, several hydraulic
structures from past civilizations serve as landmarks of excellence.

Natural philosophy emerged during Greek antiquity. Thales of Miletus (circa
600 B.C.) explored natural laws through philosophical meditation in replacing
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2 Introduction to river mechanics

mythological traditions with logical thoughts and reflections based on obser-
vations of nature. Basic principles underlying natural processes were deduced
by rational approaches, including reflection and speculation. Hypotheses and
assumptions were formulated by natural philosophers. For instance, Thales
believed that “water was the origin of all things” and “the earth rested on
water.” Plato (428–348 B.C.) speculated on matters of physics and metaphysics
alike, without interest in possible discrepancies between theory and reality.
Democritus of Thrace (465 B.C.) believed everything to be inherently mechan-
ical in nature and admitted nothing fortuitous or providential.

In opposition to Plato’s speculative ideas, the philosophy of Aristotle (384–
322 B.C.) contemplated nature through facts, and his writings on logic, physics,
biology, metaphysics, and ethics promote continuous advances and evolution
of knowledge in each field. He recognized two types of action: a motivation,
to which the speed of movement is directly proportional, and a resistance, to
which motion is inversely proportional. He also believed that the motivation was
proportional to the density of the body and that the resistance was proportional to
the density of the medium through which it moved. These statements essentially
describe the concepts of linear momentum and resistance to motion. Archimedes
(287–212 B.C.) was the greatest mathematician of antiquity, with chief interest
in geometry, centers of gravity, hydrostatics, a theory of floating bodies, and
anticipated foundations for differential and integral calculus.

Another important milestone, achieved by Hippocrates of Cos (460–380?
B.C.), is worth mention. He proved the existence of evaporation by weighing a
vessel filled with water over a long period of time. The most splendid achieve-
ments are twofold: (1) The concept of studying nature through experiments
was born; and (2) the concept that quantitative information could be gathered
from measurements was developed. It took nearly 2,000 years after Hippocrates
before experiments and measurements supplanted speculations and hypotheses.
The real treasures of natural philosophy found between 600 and 300 B.C. were
highly reputed, but they had few practical effects, and society could hardly
benefit from this new knowledge. Humanity had to wait until the Renaissance,
circa 1500 A.D., to appreciate the long-lasting values of the Greek civilization.

As much as Greeks were interested in pure rational knowledge, Romans
were the true pragmatic engineers of antiquity. Marcus Vitruvius Pollio (first
century B.C.) and Sextus Julius Frontinus (40–103 A.D.) were concerned with
the construction of the aqueducts that supplied water to Rome. There is still
debate as to whether water conduits had been calculated, but colossal aqueduct
and water-distribution systems were designed on the basis of only experience
and rough estimates. It is intriguing that the simple concept of conservation of
mass was not understood at the time of the design. Frontinus could measure
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flow depth, and he keenly observed that a steeper slope results in higher flow
velocity. However, he incorrectly considered that the discharge corresponds to
the cross section given by the measured canal width and flow depth. He observed
that velocity increases the discharge, but he could not recognize the quantitative
proportionality between velocity and discharge. Correct understanding of the
relationship between discharge Q, cross-sectional area A, and velocity V in
terms of Q = AV is due to Hero of Alexandria (first century A.D.).

Almost 1,500 years elapsed until the discharge relationship was correctly
rediscovered by Leonardo da Vinci (1452–1519) and Benedetto Castelli (1577–
1644?). The Renaissance period marks the rebirth of civilization after the Middle
Ages. The development of printing contributed to rapid dissemination of knowl-
edge. Leonardo da Vinci understood the principles of experimental science and
advocated the necessity of observation: “I will treat of such a subject. But first
of all I shall make a few experiments and then demonstrate why bodies are
forced to act in this manner. This is the method that one has to pursue in the
investigation of phenomena of nature. It is true that nature begins by reasoning
and ends by experience; but, nevertheless, we must take the opposite route: as
I have said, we must begin with experiment and try through it to discover the
reason.”

Flow kinematics became better understood under Benedetto Castelli, who
wrote “Sections of the same river discharge equal quantities of water in equal
times, even if the sections themselves are unequal. Given two sections of a river,
the ratio of the quantity of water which passes the first section to that which
passes the second is in proportion to the ratio of the first to the second sections
and to that of the first and second velocities. Given two unequal sections by
which pass equal quantities of water, the sections are reciprocally proportional
to the velocities.”

The seventeenth century brought remarkable advances in mechanics and
mathematics. Dynamic concepts of inertia and momentum became clear under
René Descartes (1596–1650), who wrote “I assume that the movement which is
once impressed upon a given body is permanently retained, if it is not removed
by some other course; that is, whatever has commenced to move in a vacuum
will continue to move indefinitely at the same velocity.”

Pressure concepts in fluids at rest were described by Blaise Pascal (1623–
1662), who postulated that pressure was transmitted equally in all directions.
Christian Huygens (1629–1695) defined the principle of centrifugal force and is
sometimes credited with the principle of conservation of energy. Isaac Newton
(1642–1727) clearly formulated three laws of motion as a concise synthesis
of concepts explicitly formulated by Descartes, Wallis, Huygens, and Wren.
His contribution is a concise definition of mass, momentum, inertia, and force.



4 Introduction to river mechanics

He also studied fluid resistance between a fluid and a solid to conclude that
resistance is proportional to the relative velocity of adjacent zones. Energy
concepts and present-day calculus evolved around the contribution of Gottfried
Wilhelm von Leibniz (1646–1716). He introduced the concept of a live force that
is proportional to the second power of velocity, now known as kinetic energy,
and raised a lively debate between kinetic energy and momentum proportional
to the first power of velocity.

Hydrodynamics can be attributed to outstanding mathematical developments
in the eighteenth century. Daniel Bernoulli (1700–1782) dealt with fluid statics
and dynamics. It is nevertheless Leonard Euler (1707–1783) who rigorously
derived the Bernoulli equation and the differential forms of the equations of
continuity and acceleration in frictionless fluids.

Resistance to flow remained obscure until the nineteenth century when experi
ments on flow in small pipes resulted from the studies of Gotthilf Heinrich
Ludwig Hagen (1797–1884), Jean-Louis Poiseuille (1799–1869), Julius
Weisbach (1806–1871), Henry Phillibert Gaspard Darcy (1803–1858), Wilhelm
Rudolf Kutter (1818–1888), Emile Oscar Ganguillet (1818–1894), and Robert
Manning (1816–1897). The Navier–Stokes equations for the analysis of vis-
cous fluid motion became possible from the contributions of Jean-Claude Barré
de Saint-Venant (1797–1886), Louis Marie Henri Navier (1785–1836), Baron
Augustin Louis de Cauchy (1789–1857), Simeon Denis Poisson (1781–1840)
and George Gabriel Stokes (1819–1903). Turbulence challenged generations of
scientists including Joseph Boussinesq (1842–1929), Osborne Reynolds (1842–
1912), Ludwig Prandtl (1875–1953), and Theodor von Kármán (1881–1963),
who contributed to unveil part of its inherent complexity.

In comparison with those of hydraulics, the advances in sediment transport,
which is essential to understanding river mechanics, have been extremely slow.
Two contributions before the twentieth century are noteworthy: (1) the con-
tributions of Albert Brahm on the relationship between the bedflow velocity
and the 1/6 power of the immersed weight of bed material and (2) the concept
of tractive force by Paul Francois Dominique du Boys (1847–1924) and his
relationship to bed-sediment transport.

Today, in-class discussions can emerge from a simple question such as, Why
do rivers form? It is interesting to note the required physical processes that
lead to river formation. The concept of a gravitational-force component should
first come to mind. The need for erodible material or alluvium emanates from
the discussion. The concept of an alluvial river usually is gradually becoming
clear. However, all of this does not explain why rivers form. Do we understand
the mechanics of formation of alluvial rivers? The effects of flow convergence
and divergence allude to the concepts of continuity of water. Aggradation and
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Water (Q   = Q   )
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Figure 1.1. Water and sediment balance for converging flow.

degradation results from conservation of sediment. Does converging flow tend to
cause aggradation or degradation? We can formulate an intuitive understanding
by using a simple sediment rating curve of the type qs = aqb, where, qs is the
unit sediment discharge and q is the unit discharge; see Fig. 1.1.

The results of converging flow are to cause degradation when b > 1 and
aggradation when b < 1. Is there any reason from our understanding of erosion
and sedimentation that supports that b > 1? If so, I guess we have answered
our question. In a simplified form, rivers form because sediment concentration
increases with unit discharge. Flow convergence thus causes scour, and this
clearly illustrates that river mechanics stems from an understanding of hydro-
dynamics and sediment transport.

On Earth, the study of the water and sediment discharge to the oceans from the
rivers around the world shows that the annual suspended sediment discharge is
13.5 × 109 metric tons per year. Some important rivers are listed in Table 1.1.
Approximately half of the sediment discharge to the oceans originates from
rivers in Southeast Asia. In comparison, the total freshwater flow to the oceans
from all rivers of the world combines to 1.2 × 106 m3/s. The average sediment
concentration of flows to oceans is ∼360 mg/l.

The proposed physical analysis of river mechanics is based on the concept
of water and sediment transport down the rivers under the action of gravity
from the upland areas to the oceans. The surface area of the land that drains
into a particular river delineates the watershed, also termed the drainage basin
or catchment. Chapter 2 outlines the physical properties of water and sediment
and the governing equations of motion. Chapter 3 reviews the sources and
the yields of water and sediment at the watershed scale. Chapter 4 treats the
steady-flow conditions in canals and rivers. Chapter 5 delves into the mechanics
of unsteady flows in rivers. Chapter 6 describes the downstream hydraulic
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8 Introduction to river mechanics

geometry and equilibrium in alluvial rivers. Chapter 7 discusses the concepts
of river dynamics and response to perturbations from equilibrium conditions.
Chapter 8 particularly deals with river stability and presents methods to stabi-
lize river banks. Chapter 9 presents several river engineering techniques from
flood control to bridge crossings and waterways. Chapter 10 focuses on physical
modeling techniques, with a particular analysis on the underlying theoretical
concepts. Chapter 11 introduces the reader to numerical methods used to solve
river engineering problems. Finally, Chapter 12 summarizes theory and appli-
cations of river engineering problems associated with waves and tides, usually
observed in river estuaries.



2

Physical properties and equations

As a natural science, the variability of river processes must be examined through
the measurement of physical parameters. This chapter first describes dimensions
and units (Section 2.1), physical properties of water (Section 2.2), and sediment
(Section 2.3). The equations governing the motion of water and sediment from
upland areas to oceans include kinematics of flow (Section 2.4), the equation
of continuity (Section 2.5), the equation of motion (Section 2.6), and the con-
cept of hydraulic and energy grade lines (Section 2.7). In this chapter and in
the rest of the book, a solid diamond (�) denotes equations and problems of
particular significance. Problems with a double diamond (��) are considered
most important.

2.1 Dimensions and units

Physical properties are usually expressed in terms of the following fundamental
dimensions: mass (M), length (L), time (T ), and temperature (T ◦). Throughout
the text, the unit of mass is preferred to the corresponding unit of force. The
fundamental dimensions are measurable parameters that can be quantified in
fundamental units.

In the SI system of units, the fundamental units of mass, length, time, and
temperature are the kilogram (kg), the meter (m), the second (s), and degrees
Kelvin (◦K). Alternatively, the Celsius scale (◦C) is commonly preferred be-
cause it refers to the freezing point of water at 0◦C and the boiling point at
100◦C.

A Newton (N) is defined as the force required for accelerating 1 kg at 1 m/s2.
Knowing that the acceleration that is due to gravity at the Earth’s surface, g,
is 9.81 m/s2, we obtain the weight of a kilogram from Newton’s second law:
F = mass × g = 1 kg × 9.81 m/s2 = 9.81 N. The unit of work (or energy) is
the joule (J), which equals the product of 1 N × 1 m. The unit of power is a
watt (W), which is 1 J/s. Prefixes are used in the SI system to indicate multiples
or fractions of units by powers of 10:

9



10 Physical properties and equations

µ (micro) = 10−6, k (kilo) = 103,

m (milli) = 10−3, M (mega) = 106,

c (centi) = 10−2, G (giga) = 109.

For example, sand particles are coarser than 62.5 micrometers, or µm; gravels
are coarser than 2 millimeters, abbreviated 2 mm, and one megawatt (MW)
equals one million watts (1,000,000 or 106 W).

In the English system of units, the time unit is a second, the fundamental
units of length and mass are, respectively, the foot (ft), equal to 30.48 cm, and
the slug, equal to 14.59 kg. The force required for accelerating a mass of one
slug at 1 ft/s2 is a pound force (lb). Throughout this text, a pound refers to a
force, not a mass. The temperature, in degrees Celsius, TC

◦, is converted to the
temperature in degrees Fahrenheit, T ◦

F , by T ◦
F = 32.2 ◦F + 1.8 T ◦

C .
Variables are classified as geometric, kinematic, dynamic, and dimensionless

variables, as shown in Table 2.1. Geometric variables involve length dimensions
only and describe the geometry of a system through length, area, and volume.
Kinematic variables describe the motion of fluid and solid particles, and these
variables can be depicted by only two fundamental dimensions, namely L and
T . Dynamic variables involve mass terms in the fundamental dimensions. Force,
pressure, shear stress, work, energy, power, mass density, specific weight, and
dynamic viscosity are common examples of dynamic variables. Several con-
version factors are listed in Table 2.2.

2.2 Properties of water

The physical properties of a nearly incompressible fluid such as water are
sketched in Fig. 2.1.

Mass density of water, ρ. The mass of water per unit volume is
referred to as the mass density ρ. The maximum mass density of water at
4 ◦C is 1,000 kg/m3 and varies slightly with temperature, as shown in Table 2.3.
In comparison, the mass density of sea water is 1,025 kg/m3 and, at sea level, the
mass density of air is 1.29 kg/m3 at 0 ◦C. The conversion factor is 1 slug/ft3 =
515.4 kg/m3.

Specific weight of water, γ . The gravitational force per unit volume of
fluid, or simply the fluid weight per unit volume, defines the specific weight γ .
At 10 ◦C, water has a specific weight, γ = 9,810 N/m3 or 62.4 lb/ft3 (1 lb/ft3 =
157.09 N/m3). Specific weight varies slightly with temperature, as given in
Table 2.3. Mathematically, the specific weight γ equals the product of the mass
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Table 2.1. Geometric, kinematic, dynamic, and dimensionless variables

Fundamental
Variable Symbol dimensions SI Units

Geometric (L)
Length L , x , h, ds L m
Area A L2 m2

Volume ∀ L3 m3

Kinematic (L, T)
Velocity vx , u, u∗ LT −1 m/s
Acceleration a, ax , g LT −2 m/s2

Kinematic viscosity ν L2T −1 m2/s
Unit discharge q L2T −1 m2/s
Discharge Q L3T −1 m3/s

Dynamic (M, L, T)
Mass m M 1 kg
Force F = ma,mg M LT −2 1 kg m/s2 =1 N
Pressure p = F/A M L−1T −2 1 N/m2 = 1 Pa
Shear stress τxy , τ0, τc M L−1T −2 1 N/m2 = 1 Pa
Work or energy E = F · d M L2T −2 1 N m = 1 J
Mass density ρ, ρs M L−3 kg/m3

Specific weight γ, γs = ρs g M L−2T −2 N/m3

Dynamic viscosity µ = ρν M L−1T −1 1 kg/m s = 1 N s/m2 = 1 Pa s

Dimensionless
Slope S0, S f — —
Specific gravity G = γs/γ — —
Reynolds number Re = uh/ν — —
Grain-shear

Reynolds number Re∗ = u∗ds/ν — —
Froude number Fr = u/

√
gh — —

Shields parameter τ∗ = τ/(γs − γ )ds — —
Concentration Cv ,Cw — —

Note: Pa stands for pascal.

density ρ times the gravitational acceleration g = 32.2 ft/s2 = 9.81 m/s2:

γ = ρg. (2.1)

Dynamic viscosity µ. As a fluid is brought into deformation, the ve-
locity of the fluid at any boundary equals the velocity of the boundary. The
ensuing rate of fluid deformation causes a shear stress τzx that is proportional
to the dynamic viscosity µ and the rate of deformation of the fluid, dvx/dz:

τzx = µdvx

dz
. (2.2)



Table 2.2. Conversion of units

Unit kg, m, s N, Pa, W

1 acre 4,046.87 m2

1 acre-foot (acre-ft) 1,233.5 m3

1 atmosphere (atm) 101,325 kg/m s2 101.3 kPa
1 bar 100,000 kg/m s2 100 kPa
1 barrel (U.S., dry) (bbl) 0.1156 m3

1 British thermal unit (Btu) = 778 lb ft 1,055 kg m2/s2 1,055 N m
1 cubic foot per second (ft3/s) 0.0283 m3/s
1 day 86,400 s
1 degree Celsius (◦C) = (TF◦− 32◦) 5/9 1 degree Kelvin (K)
1 degree Fahrenheit (◦F) = 32 + 1.8 TC◦ 0.555556 degree Kelvin
1 drop 61.6 mm3

1 dyne (dyn) 0.00001 kg m/s2 1 × 10−5 N
1 dyne per square centimeter (dyn/cm2) 0.1 kg/m s2 0.1 Pa
1 fathom (fath) 1.8288 m
1 foot (ft) 0.3048 m
1 gallon (U.S., liquid) (gal) 0.0037854 m3

1 horsepower (hp) = 550 lb ft/s 745.70 kg m2/s3 745.7 W
1 inch (in.) 0.0254 m
1 inch of mercury (in. Hg) 3,386.39 kg/m s2 3,386.39 Pa
1 inch of water 248.84 kg/m s2 248.84 Pa
1 joule (J) 1 kg m2/s2 1 N m = 1 J
1 kip 4,448.22 kg m/s2 4,448.22 N
1 knot 0.5144 m/s
1 liter (l) 0.001 m3

1 micrometer (µm) 1 × 10 −6 m
1 mile (nautical) 1,852 m
1 mile (statute) 1609.34 m
1 million gallons per day (mgd) = 1.55 ft3/s 0.04382 m3/s
1 Newton (N) 1 kg m/s2

1 ounce (avoirdupois) (oz) 0.02835 kg
1 fluid ounce (U.S.) 2.957 × 10−5 m3

1 pascal (Pa) 1 kg/m s2 1 N/m2

1 pint (U.S., liquid) (pt) 0.0004732 m3

1 poise (P) 0.1 kg/m s 0.1 Pa s
1 pound-foot (lb-ft) 1.356 kg m2/s2 1.356 N m
1 pound per square foot (lb/ft2 or psf) 47.88 kg/m s2 47.88 Pa
1 pound per square inch (lb/in.2 or psi) 6,894.76 kg/m s2 6,894.76 Pa
1 pound-force (lb) 4.448 kg m/s2 4.448 N
1 pound-force per cubic foot (lb/ft3) 157.09 kg/m2 s2 157.09 N/m3

1 quart (U.S., liquid) (qt) 0.00094635 m3

1 slug 14.59 kg
1 slug per cubic foot (slug/ft3) 515.4 kg/m3

1 stoke (S) = 1 cm2/s 0.0001 m2/s
1 ton (U.K., long) 1,016.05 kg
1 ton (metric) (t) 1,000 kg
1 ton (short) = 2,000 lb 8,900 kg m/s2 8.9 kN
1 watt (W) 1 kg m2/s2

1 yard (yd) 0.9144 m
1 year (yr) 31,536,000 s

Note: Those units for which no abbreviations are given are spelled out.
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Surface area A
Force F

Velocity v

Distance z

x

τ

Mass density ρ

Specific weight γ

Kinematic viscosity υ

τ =
dv
dz

=
F
A

xµ = ρυ dv
dz

x

zxShear stress

zx

Dynamic viscosity µ = ρυ

x

Figure 2.1. Newtonian fluid properties.

The fundamental dimension of the
dynamic viscosity µ is M/LT , which
is a dynamic variable. As indicated
in Table 2.3, the dynamic viscosity
of water decreases with temperature.
Fluids without yield stress for which
the dynamic viscosity remains con-
stant regardless of the rate of deforma-
tion are called Newtonian fluids. The
dynamic viscosity of clear water at 20
◦C is 1 centipoise: 1 cP = 0.01 P =
0.001 N s/m2 = 0.001 Pa s. The con-
version factor is 1 lb s/ft2 = 47.88 N
s/m2 = 47.88 Pa s.

Kinematic viscosity ν. When the dynamic viscosity of a fluid µ
is divided by the mass density ρ of the same fluid, the mass terms cancel
out. This results in kinematic viscosity ν with dimensions L2/T , which is
also shown in Table 2.3, decreasing with temperature. The viscosity of clear
water at 20 ◦C is 1 centistokes = 1 cS = 0.01 cm2/s = 1 × 10−6 m2/s. The
conversion factor is 1 ft2/s = 0.0929 m2/s. The change in kinematic viscosity
of water, ν, with temperature T ◦ in degrees Celsius can be roughly estimated
from

ν= µ

ρ
= [1.14 − 0.031 (T ◦ − 15) + 0.00068 (T ◦ − 15)2] × 10−6 m2/s. (2.3)

It is important to remember that both the density and the viscosity of water
decrease with temperature. The maximum water density is found at 4 ◦C, and
water either colder or warmer than 4 ◦C will be found near the surface. The
density of ice increases as the temperature decreases. This causes the ice cover
to crack during cold nights and expand to apply large forces on the banks of
lakes, reservoirs, and wide rivers during warm days.

2.3 Properties of sediment

The physical properties of sediment are classified into single particles (Sub-
section 2.3.1), sediment mixture (Subsection 2.3.2), and sediment suspension
(Subsection 2.3.3).



14 Physical properties and equations

Table 2.3. Approximate physical properties of clear water and ice at
atmospheric pressure

Specific Dynamic Kinematic
Temperature Density ρ weight γ viscosity µ viscosity ν

◦C kg/m3 N/m3 N s/m2 m2/s

−30◦C 921 9,035 Ice Ice
−20◦C 919 9,015 Ice Ice
−10◦C 918 9,005 Ice Ice

0◦C 999.9 9,809 1.79 × 10−3 1.79 × 10−6

4◦C 1,000 9,810 1.56 × 10−3 1.56 × 10−6

5◦C 999.9 9,809 1.51 × 10−3 1.51 × 10−6

10◦C 999.7 9,807 1.31 × 10−3 1.31 × 10−6

15◦C 999 9,800 1.14 × 10−3 1.14 × 10−6

20◦C 998 9,790 1.00 × 10−3 1.00 × 10−6

25◦C 997 9,781 8.91 × 10−4 8.94 × 10−7

30◦C 996 9,771 7.97 × 10−4 8.00 × 10−7

35◦C 994 9,751 7.20 × 10−4 7.25 × 10−7

40◦C 992 9,732 6.53 × 10−4 6.58 × 10−7

50◦C 988 9,693 5.47 × 10−4 5.53 × 10−7

60◦C 983 9,643 4.66 × 10−4 4.74 × 10−7

70◦C 978 9,594 4.04 × 10−4 4.13 × 10−7

80◦C 972 9,535 3.54 × 10−4 3.64 × 10−7

90◦C 965 9,467 3.15 × 10−4 3.26 × 10−7

100◦C 958 9,398 2.82 × 10−4 2.94 × 10−7

◦F slug/ft3 lb/ft3 lb s/ft2 ft2/s

0◦F 1.78 57.40 Ice Ice
10◦F 1.78 57.34 Ice Ice
20◦F 1.78 57.31 Ice Ice
30◦F 1.77 57.25 Ice Ice
32◦F 1.931 62.40 3.75 × 10−5 1.93 × 10−5

40◦F 1.938 62.43 3.23 × 10−5 1.66 × 10−5

50◦F 1.938 62.40 2.73 × 10−5 1.41 × 10−5

60◦F 1.936 62.37 2.36 × 10−5 1.22 × 10−5

70◦F 1.935 62.30 2.05 × 10−5 1.06 × 10−5

80◦F 1.93 62.22 1.80 × 10−5 0.930 × 10−5

100◦F 1.93 62.00 1.42 × 10−5 0.739 × 10−5

120◦F 1.92 61.72 1.17 × 10−5 0.609 × 10−5

140◦F 1.91 61.38 0.981 × 10−5 0.514 × 10−5

160◦F 1.90 61.00 0.838 × 10−5 0.442 × 10−5

180◦F 1.88 60.58 0.726 × 10−5 0.385 × 10−5

200◦F 1.87 60.12 0.637 × 10−5 0.341 × 10−5

212◦F 1.86 59.83 0.593 × 10−5 0.319 × 10−5
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=     g = G

Volume

Mass density ρs

Specific weight γs

Specific gravity

Vs

sρ γ

G

Size ds

Figure 2.2. Physical properties of a
single particle.

2.3.1 Single particle

The physical properties of a single solid
particle of volume ∀s are sketched in Fig.
2.2. The mass density of a solid parti-
cle, ρs , describes the solid mass per unit
volume. The mass density of quartz par-
ticles, 2,650 kg/m3 (1 slug/ft3 =
515.4 kg/m3), does not vary significantly
with temperature and is assumed con-
stant in most calculations. It must be kept
in mind, however, that heavy minerals

such as iron, copper, etc., have much larger values of mass density.

Specific weight of solid particles, γs . The particle specific weight γs

corresponds to the solid weight per unit volume of solid. Typical values of γs

are 26.0 kN/m3 or 165.4 lb/ft3. The conversion factor is 1 lb/ft3 = 157.09 N/m3.
The specific weight of a solid, γs , also equals the product of the mass density
of a solid particle, ρs , times the gravitational acceleration g; thus

γs = ρs g. (2.4)

Specific gravity G. The ratio of the specific weight of a solid particle
to the specific weight of fluid at a standard reference temperature defines the
specific gravity G. With common reference to water at 4 ◦C, the specific gravity
of quartz particles is

G = γs

γ
= ρs

ρ
= 2.65. (2.5)

The specific gravity is a dimensionless ratio of specific weights, and thus its
value remains independent of the system of units.

Submerged specific weight of a particle, γ̃s . Owing to the Archimedes
principle, the specific weight of a solid particle, γs , submerged in a fluid
of specific weight γ equals the difference between the two specific weights;
thus

γ̃s = γs − γ = (G − 1)γ. (2.6)

Sediment size ds . The most important physical property of a sedi-
ment particle is its size. Table 2.4 shows the grade scale commonly used in
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Table 2.4. Sediment grade scale and approximate properties

Particle Angle of Critical Critical Settling
diameter repose shear stress shear velocity velocity

Class name ds (mm) φ (deg) τc (N/m2) u∗c (m/s) ω0 (mm/s)

Boulder
Very large >2,048 42 1790 1.33 5,430
Large >1,024 42 895 0.94 3,839
Medium >512 42 447 0.67 2,715
Small >256 42 223 0.47 1,919

Cobble
Large >128 42 111 0.33 1,357
Small >64 41 53 0.23 959

Gravel
Very coarse >32 40 26 0.16 678
Coarse >16 38 12 0.11 479
Medium >8 36 5.7 0.074 338
Fine >4 35 2.71 0.052 237
Very fine >2 33 1.26 0.036 164

Sand
Very coarse >1.000 32 0.47 0.0216 109
Coarse >0.500 31 0.27 0.0164 66.4
Medium >0.250 30 0.194 0.0139 31.3
Fine >0.125 30 0.145 0.0120 10.1
Very fine >0.062 30 0.110 0.0105 2.66

Silt
Coarse >0.031 30 0.083 0.0091 0.67a

Medium >0.016 30 0.065 0.0080 0.167a

Fine >0.008 Cohesive 0.042a

Very fine >0.004 material 0.010a

Clay
Coarse >0.0020 2.6 × 10−3a

Medium >0.0010 6.5 × 10−4a

Fine >0.0005 1.63 × 10−4a

Very fine >0.00024 4.1 × 10−5a

a Possible flocculation

sedimentation. Note that the size scales are arranged in geometric series with a
ratio of two units (1 in. = 25.4 mm).

The size of particles can be determined in a number of ways: The nominal
diameter refers to the diameter of a sphere with the same volume as that of the
particle, usually measured by the displaced volume of a submerged particle,
the sieve diameter is the minimum length of the square sieve opening through
which a particle will fall, and the fall diameter is the diameter of an equivalent
sphere of specific gravity G = 2.65 having the same terminal settling velocity
in water at 24 ◦C.
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A wet-sieve method keeps the sieve screen and sand completely submerged.
The sediment is washed onto the wet sieve and agitated somewhat vigorously
in several directions until all particles smaller than the sieve openings have a
chance to fall through the sieve. Material passing through the sieve with its
wash water is then poured onto the next-smaller-size sieve. Particles retained
on each sieve and those passing through the 0.062-mm sieve are transferred
to containers that are suitable for drying the material and for obtaining the net
weight of each fraction.

The dry-sieve method is less laborious than the wet-sieve method because a
mechanical shaker can be used with a nest of sieves for simultaneous separation
of all sizes of interest. It requires only that the dry sand be poured over the
coarsest sieve and that the nest of sieves be shaken for 10 min on a shaker that
has both lateral and vertical movements.

2.3.2 Sediment mixture

The properties of a sediment mixture are sketched in Fig. 2.3. The total volume
∀t is the total of the volume of solids ∀s and the volume of voids ∀v .

Particle-size distribution. An example of particle-size distribution in
Fig. 2.4 shows the percentage by weight of material finer than a given sediment
size. The sediment size d50 for which 50% by weight of the material is finer is
called the median grain size. Likewise d90 and d10 are values of grain size for
which 90% and 10% of the material are finer, respectively.

Gradation coefficients σg and Gr. The gradation of the sediment mix-
ture is a measure of nonuniformity of sediment mixtures. It can be described
by

Vs

d d d16 50 84

Vv

φ

Figure 2.3. Properties of a sedi-
ment mixture.

σg =
(

d84

d16

)1/2

(2.7a)

or by the gradation coefficient

Gr = 1
2

(
d84

d50
+ d50

d16

)
. (2.7b)

Both gradation coefficients reduce to unity
for uniform sediment mixtures, i.e., when
d84 = d50 = d16. The gradation coefficient
increases with nonuniformity, and high-
gradation coefficients describe well-graded
mixtures.
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Figure 2.4. Particle-size distribution: v.f.,very fine; c., coarse; v.c., very coarse.

Angle of repose φ. Typical values of the angle of repose φ of granular
material are shown in Fig. 2.5. The angle of repose varies with grain size and
angularity of the material. Typical values of the angle of repose are also given
in Table 2.4 for material coarser than medium silt.

Critical shear stress τc and shear velocity u∗c . Approximate values
of critical shear stress τc for noncohesive particles can be obtained from the
extended Shields diagram. The values from Julien (1995) are given in Table 2.4
as approximate reference values. The corresponding critical shear velocity u∗c is
defined as u∗c = √

τc/ρ. Note that both τc and u∗c do not change significantly for
sands and silts. To get crude approximations, a shear-stress value of τ = 0.1 Pa
is sufficient to move silts but not sands, and τc = 1 Pa is sufficient to move sands
but not gravels.

2.3.3 Sediment suspension

The properties of a sediment suspension are sketched in Fig. 2.6, with the
volume of void ∀v equal to the volume of water ∀w .
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Figure 2.5. Angle of repose of granular material (after Simons, 1957).

Volumetric sediment concentration Cv . The volumetric sediment con-
centration Cv is defined as the volume of solids ∀s over the total volume ∀t .
When the voids are completely filled with water, ∀v = ∀w , we obtain

Cv = ∀s

∀s + ∀w
. (2.8a)

The most common unit for sediment concentration is milligrams per liter,
which describes the ratio of the mass of sediment particles to the volume of
the water–sediment mixture. Other units include kilograms per cubic meter
(1 mg/l = 1 g/m3), the volumetric sediment concentration Cv , the concentration
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Figure 2.6. Properties of a suspension.

in parts in 106 (ppm) Cppm, and the
concentration by weight Cw . We can
easily demonstrate the following iden-
tities:

Cw = sediment weight

total weight

= Cv G

1 + (G − 1) Cv
(2.8b)

in which G = γs/γ and

Cppm = 106 Cw . (2.8c)

Note that the percentage by weight Cppm is given by 1,000,000 times the weight
of sediment over the weight of the water–sediment mixture. The corresponding
concentration in milligrams per liter is then given by

Cmg/l = 1 mg/l G Cppm

G + (1 − G) 10−6 Cppm
= ρ GCv = 106 mg/l GCv . (2.8d)

The conversion factors from Cppm to Cmg/l are given in Table 2.5. Note that
there is less than a 10% difference between Cppm and Cmg/l at concentrations
of Cppm < 145,000.

Table 2.5. Equivalent concentrations for Cv , Cw , Cppm, Cmg/l, P0, and e

Cv Cw Cppm Cmg/l P0 e

Suspension
0.0001 0.00026 265 265
0.001 0.00264 2,645 2650
0.0025 0.00659 6,598 6625
0.005 0.01314 13,141 13250
0.0075 0.01963 19,632 19875
0.01 0.02607 26,069 26500
0.025 0.06363 63,625 66250

Hyperconcentration
0.05 0.12240 122,401 132,500 0.95 19
0.075 0.17686 176,863 198,750 0.925 12.3
0.1 0.22747 227,467 265,000 0.9 9
0.25 0.46903 469,027 662,500 0.75 3
0.5 0.72603 726,027 1,325,000 0.50 1
0.75 0.88827 888,268 1,987,500 0.25 0.33

Note: Calculations based on G = 2.65.
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Settling velocity ω0. The settling velocity ω0 of sediment particles in
clear water at 10 ◦C is calculated from

ω0 = 8ν

ds

{[
1 + (G − 1)g

72ν2
d3

s

]0.5

− 1

}
, (2.9)

where ds is the particle diameter, ν is the kinematic viscosity, G is the specific
gravity, and g is the gravitational acceleration. The values of the settling velocity
in clear water are given in Table 2.4.

Specific weight of a mixture, γm. The specific weight of a submerged
mixture is the total weight of solid and water in the voids per unit total volume.
The specific weight of a mixture, γm , is a function of the volumetric concentra-
tion Cv as

γm = γs∀s + γ∀v

∀s + ∀v
= γs(Cv ) + γ (1 − Cv ). (2.10)

The specific mass ρm of a submerged mixture is the total mass of solid and
water in the voids per unit total volume. The specific mass of a mixture is given
by ρm = γm/g.

Porosity p0. The porosity p0 is a measure of the volume of void ∀v

per total volume ∀t = ∀v + ∀s . The volume of solid particles ∀s = (1 − p0)∀t

is thus

p0 = ∀v

∀t
= e

1 + e
, (2.11)

where the void ratio e is the ratio of the volume of void ∀v to the volume of
solid ∀s . The values of porosity and void ratios at various hyperconcentrations
are listed in Table 2.5.

Dry specific weight of a mixture, γmd . The dry specific weight of a
mixture is the weight of solid per unit total volume, including the volume of
solids and voids. The dry specific weight of a mixture, γmd , is a function of
porosity p0 as

γmd = γs(1 − p0) = γG(Cv ). (2.12)

The dry specific weight of sand deposits is approximately ∼14.75 kN/m3 or
93 lb/ft3. The dry specific mass of a mixture is the mass of solid per unit total
volume. The dry specific mass of a mixture is ρmd = γmd/g.
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2.4 River flow kinematics

Flow kinematics describes fluid motion in terms of velocity and acceleration.
In rivers, two orthogonal coordinate systems are common: (1) global right-
hand Cartesian (x ,y,z) systems, with x in the main downstream direction, y
in the lateral direction to the left bank, and z upward; and (2) local cylindrical
(r , θ , z) systems, in which r is the river radius of curvature in a horizontal plane,
as shown in Fig. 2.7.

The rate of change in the position of a fluid element is a measure of its
velocity. Velocity is defined as the ratio between the displacement ds and the
corresponding increment of time dt . Velocity is a vector quantity v that varies
in both space (x ,y,z) and time t . Its magnitude v at a given time equals the
square root of the sum of squares of its orthogonal components:

v =
√

v2
x + v2

y + v2
z ,

where vx = dx/dt , vy = dy/dt , and vz = dz/dt .
A line tangent to the velocity vector at every point at a given instant is known

as a streamline. The path line of a fluid element is the locus of the element
through time, e.g., the path followed by a single buoy on a river. A streak line is
defined as the line connecting all fluid elements that have passed successively
at a given point in space, e.g., instantaneous position of all buoys released over
time from a single point on a river.
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Figure 2.7. Cartesian and cylindrical coordinates.
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The differential velocity components over an infinitesimal distance
ds (dx ,dy,dz) and time increment dt at a point (x ,y,z) are

dvx = ∂vx

∂t
dt + ∂vx

∂x
dx + ∂vx

∂y
dy + ∂vx

∂z
dz, (2.13a)

dvy = ∂vy

∂t
dt + ∂vy

∂x
dx + ∂vy

∂y
dy + ∂vy

∂z
dz, (2.13b)

dvz = ∂vz

∂t
dt + ∂vz

∂x
dx + ∂vz

∂y
dy + ∂vz

∂z
dz. (2.13c)

| local | | convective |
The Cartesian acceleration components are obtained directly after the veloc-

ity equations are divided by the time increment dt ,

ax = dvx

dt
= ∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
, (2.14a)

ay = dvy

dt
= ∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
, (2.14b)

az = dvz

dt
= ∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z
, (2.14c)

| local | | convective |
in cylindrical coordinates, with vr = dr/dt , vθ = rdθ/dt , vz = dz/dt , and the
properties of curvilinear vectors give additional convective terms in centrifu-
gal acceleration v2/r in Eq. (2.15a) and the Coriolis acceleration (vr vθ )/r in
Eq. (2.15b):

ar = dvr

dt
= ∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z
, (2.15a)

aθ = dvθ
dt

= ∂vθ
∂t

+ vr
∂vθ
∂r

+ vθ
r

∂vθ
∂θ

+ vr vθ
r

+ vz
∂vθ
∂z
, (2.15b)

az = dvz

dt
= ∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z
. (2.15c)

| local | | convective |
It is shown in Eqs. (2.14) and (2.15) that the total acceleration can be sep-

arated into local- and convective-acceleration terms. Flows in which local-
acceleration terms vanish at any point are called steady. Flows are uniform
when all convective-acceleration terms vanish. Steady-uniform flows describe
the particular case of motion without any acceleration component.
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2.5 Conservation of mass

The equation of continuity, or law of conservation of mass, states that mass
cannot be created nor destroyed. The continuity equation can be written in either
differential form, discussed in this chapter, or integral form, to be discussed in
subsequent chapters (e.g., Section 5.1).

In differential form, consider the infinitesimal control volume in Fig. 2.8
filled with a fluid and a homogeneous concentration of sediment.

The difference between the mass fluxes entering and leaving the differential
control volume equal the rate of increase of internal mass. For instance, in the
x direction, the net mass flux leaving the control volume is [(∂ρmvx )/(∂x)] dx
times the area dydz. The change in internal mass is (∂ρm/∂t) dxdydz. Repeating
the procedure in the y and the z directions yields the following differential
relationships:
Cartesian coordinates (x , y, z):

∂ρm

∂t
+ ∂

∂x
(ρmvx ) + ∂

∂y
(ρmvy) + ∂

∂z
(ρmvz) = 0. (2.16a) �

ρm z

z

y
(lateral)

x (downstream)

v

ρm yv

ρ
m xv

+
∂

∂z
dzρ

m zv
ρm zv

+ ∂
∂x

dxρ
m xv

ρm xv

+
∂

∂y
dyρ

m yv
ρm yv

(up)

dz

dx

dy

Figure 2.8. Infinitesimal element of a fluid.
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Cylindrical coordinates (r , θ , z):

∂ρm

∂t
+ 1

r

∂

∂r
(ρmrvr ) + 1

r

∂

∂θ
(ρmvθ ) + ∂

∂z
(ρmvz) = 0. (2.16b) �

For the particular case in which sediment diffusion is not significant, the
conservation of solid mass is also defined after ρm is replaced with Cv ob-
tained after Eq. (2.10) is substituted into Eq. (2.16). For sediment-transport
problems in which turbulent diffusion and dispersion are significant, sediment-
continuity equation (10.5) in Julien (1995), including turbulent-mixing coeffi-
cients, should be used. For homogeneous incompressible suspensions without
settling, the mass density is independent of space and time (ρs, ρ, ρm = const);
consequently ∂ρm/∂t = 0 and the divergence of the velocity vector in Cartesian
coordinates must be zero, i.e.,

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0. (2.17)

When dealing with open-channel flows at low sediment concentrations, we can
neglect compressibility effects, and we find that Eq. (2.17) is applicable.

2.6 Equations of motion

The analysis of fluid motion results from the application of forces on a fixed
control volume. Given that the force F equals the product of mass m and
acceleration a, the approach for fluids of mass density ρ = (m/∀) stems from
a = (F/m) = (F/ρ∀ ). The forces acting on a Cartesian element of fluid and
sediment (dx ,dy,dz) are classified as either internal forces or external forces.
The internal accelerations, or body forces per unit mass, acting at the center
of mass of the element are denoted by gx , gy , and gz . The external forces per
unit area applied on each face of the element are subdivided into normal- and
tangential-stress components. The normal stresses σx , σy, and σz are designated
as positive for tension. Six shear stresses, τxy, τyx , τxz, τzx , τyz , and τzy , with
two orthogonal components are applied on each face, as shown in Fig. 2.9.
The first subscript indicates the direction normal to the face, and the second
subscript designates the direction in which the stress is applied. The identities
τxy = τyx , τxz = τzx , and τyz = τzy result from the sum of moments of shear
stresses around the centroid.

The cubic element in Fig. 2.9 is considered in equilibrium when the sum of
the forces per unit mass in each direction, x , y, and z, equals the corresponding
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Figure 2.9. Surface stresses on a fluid element.

Cartesian acceleration components ax , ay , and az :

ax = gx + 1

ρm

∂σx

∂x
+ 1

ρm

∂τyx

∂y
+ 1

ρm

∂τzx

∂z
, (2.18a)

ay = gy + 1

ρm

∂σy

∂y
+ 1

ρm

∂τxy

∂x
+ 1

ρm

∂τzy

∂z
, (2.18b)

az = gz + 1

ρm

∂σz

∂z
+ 1

ρm

∂τxz

∂x
+ 1

ρm

∂τyz

∂y
. (2.18c)

These equations of motion are general without any restriction as to com-
pressibility, viscous shear, turbulence, or other effects. The normal stresses can
be rewritten as a function of the pressure p and the additional normal stresses,
τxx , τyy , and τzz , accompanying deformation:

σx = −p + τxx , (2.19a)

σy = −p + τyy, (2.19b)

σz = −p + τzz . (2.19c)
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Table 2.6. Equations of motion

Cartesian coordinates
x component

ax = ∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂yx

∂y
+ vz

∂vx

∂z
= gx − 1

ρm

∂p

∂x
+ 1

ρm

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
(2.20a) �

y component

ay = ∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
= gy − 1

ρm

∂p

∂y
+ 1

ρm

(
∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z

)
(2.20b) �

z component

az = ∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z
= gz − 1

ρm

∂p

∂z
+ 1

ρm

(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

)
(2.20c) �

Cylindrical coordinates
r component
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z
= gr − 1

ρm

∂p

∂r

+ 1

ρm

[
1

r

∂

∂r
(rτrr ) + 1

r

∂τθr

∂θ
− τθθ

r
+ ∂τzr

∂z

]
(2.21a) �

θ component
∂vθ
∂t

+ vr
∂vθ
∂r

+ vθ
r

∂vθ
∂θ

+ vr vθ
r

+ vz
∂vθ
∂z

= gθ − 1

ρmr

∂p

∂θ

+ 1

ρm

[
1

r2

∂

∂r
(r2τrθ ) + 1

r

∂τθθ

∂θ
+ ∂τzθ

∂z

]
(2.21b) �

z component
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z
= gz − 1

ρm

∂p

∂z
+ 1

ρm

[
1

r

∂(τr z)

∂r
+ 1

r

∂τθ z

∂θ
+ ∂τzz

∂z

]
(2.21c) �

After the acceleration components ax , ay , and az from Eqs. (2.14) are
considered, the equations of motion in Cartesian and cylindrical coordinates
can be written as shown in Table 2.6.

2.7 Hydraulic and energy grade lines

Let us consider a small element of fluid in a wide-rectangular channel at a
bed slope S0, as shown in Fig. 2.10. The flow is one dimensional (1D) in the
x direction; thus v = vx and vy = vz = 0. The shear stress that is due to ele-
ment stretching is τxx = 0. The effects of bank shear τyx in a wide channel can
be neglected, τyx = 0, but the bed shear stress is significant, τzx �= 0. At small
bed-slope angles, sin θ � tan θ and gx = g sin θ ∼= gS0, Eq. (2.20a) thus re-
duces to

∂vx

∂t
+ vx

∂vx

∂x
∼= gS0 − 1

ρ

∂p

∂x
+ 1

ρ

∂τzx

∂z
. (2.22)
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Figure 2.10. Pressure and shear-stress distributions in a fluid column.

We obtain the pressure distribution by integrating Eq. (2.20c), given that
az = 0 and that shear-stress variations are small. The resulting hydrostatic-
pressure approximation that is defined from gz = g cos θ � −g from the bed
elevation is∫ 0

p
dp = ρ

∫ h

z
−gdz or p = ρg(h − z) (2.23)

at the bed, z = 0, the pressure is p0 = ρgh and the relative pressure vanishes
at the free surface, p = 0 at z = h.

The bed shear stress τ0 is obtained from the definition of the friction slope S f

for steady-uniform flow as τ0 = ρghS f . Like pressure, the shear-stress vanishes
at the free surface and varies linearly over the depth. The shear-stress distribution
is thus

τzx = ρg(h − z)S f . (2.24) �

Relation (2.22) is greatly reduced after Eqs. (2.23) and (2.24) are substituted
into it, owing to (∂z/∂x) = 0 and (∂S f /∂z) = (∂h/∂z) = 0; thus

∂vx

∂t
+ vx

∂vx

∂x
∼= gS0 − g

∂h

∂x
− gS f . (2.25)

We can solve equation of motion (2.25) in dimensionless form for S f after
dividing by g:

S f
∼= S0 − ∂h

∂x
− vx∂vx

g∂x
− ∂vx

g∂t
. (2.26)

This very important formulation is usually attributed to Saint-Venant (1871).
The practical significance is that point velocities vx can be replaced with the

mean flow velocities V , considering that the momentum correction factor is
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Figure 2.11. Energy grade line (EGL) and hydraulic grade line (HGL).

close to unity:

S f
∼= S0 − ∂h

∂x
− V

g

∂V

∂x
− 1

g

∂V

∂t
.

| bed slope |
(2.27) ��

| free-surface slope |
| energy slope |

Finally, the graphical representation in Fig. 2.11 after the consideration that
S0 = −(∂z/∂x). Thus the first term on the right-hand side of relation (2.27)
physically describes the bed slope. The first two terms on the right-hand side
of relation (2.27) describe the free-surface slope. The first three terms on the
right-hand side of relation (2.27) describe the slope of the energy grade line.

Problem 2.1

Determine the mass density, specific weight, dynamic viscosity, and kinematic
viscosity of clear water at 20 ◦C (a) in SI units and (b) in the English system of
units.

Answers: (a)ρ= 998 kg/m3, γ = 9790 N/m3, µ= 1.0 × 10−3 N s/m2,

ν= 1 × 10−6 m2/s, (b)ρ= 1.94 slug/ft3, γ= 62.3 lb/ft3, µ= 2.1 × 10−5 lb s/ft2,
ν = 1.1 × 10−5 ft2/s.

�Problem 2.2

Determine the sediment size, mass density, specific weight, submerged specific
weight, and angle of repose of small quartz cobbles (a) in SI units and (b) in
the English system of units.
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��Problem 2.3

The volumetric sediment concentration of a sample is Cv = 0.05. Determine
the corresponding (a) concentration by weight, Cw , (b) concentration in parts
in 106, Cppm, (c) concentration in milligrams per liter, Cmg/l, (d) porosity p0,
and (e) void ratio e.

Answers: The answers to Problem 2.3 are in Table 2.5.

�Problem 2.4

The porosity of a sandy loam is 0.45. Determine the corresponding soil prop-
erties: (a) volumetric concentration, (b) void ratio e, (c) specific weight γm ,
(d) specific mass ρm , (e) dry specific weight γmd , and (f) dry specific mass ρmd .

�Problem 2.5

Calculate the gradation coefficients σg and Gr from the particle-size distribution
shown in Fig. 2.4.

Answer:

σg =
√

32

0.5
= 8,Gr ≈ 1

2

[
32

8
+ 8

0.5

]
= 10,

i.e., a well-graded mixture.

��Problem 2.6

Apply the continuity equation to 1D runoff at a unit discharge q and flow depth
h for rainfall intensity ie on an impervious plane. Demonstrate that (∂h/∂t) +
(∂q/∂x) = ie, where x denotes the downstream direction and t denotes time.

Problem 2.7

Demonstrate Eq. (2.8b) from the definition that Cw is the sediment
weight/total weight.
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River basins

This chapter covers the characteristic of river basins (also called watersheds)
that affect surface runoff and sediment yield. The main watershed characteristics
are illustrated in Section 3.1, followed by rainfall precipitation (Section 3.2),
interception and infiltration (Section 3.3), excess rainfall (Section 3.4), and
surface runoff (Section 3.5). Soil eroded from upland areas is usually the source
of most sediments that are transported by rivers to reservoirs and estuaries.
Methods are presented to calculate upland erosion (Section 3.6) and to estimate
sediment yield from watersheds (Section 3.7).

3.1 River-basin characteristics

The hydrologic cycle describes processes that contribute to the source and the
yield of water and sediment from upland areas to the fluvial system. Figure 3.1
depicts a portion of a watershed during a precipitation event. Shown in this
figure are the processes of condensation, precipitation, interception, evapora-
tion, transpiration, infiltration, subsurface flow, exfiltration, deep percolation,
groundwater flow, surface flow, surface-detention storage, channel precipita-
tion, evaporation, and streamflow. All of these processes play a role in hydro-
logy; however, precipitation, infiltration, overland flow, and streamflow are most
important in surface runoff, upland erosion, and river mechanics.

River basins or watersheds define areas of the Earth’s surface where rainwater
drains into a particular stream. The terms basin and catchment are synony-
mously used in the literature. Watershed characteristics can often be described
in geographical terms, including physiography and topography, geology and
pedology, and climatology and forestry. Watershed boundaries are delineated by
drainage divides, usually located at high points, that separate different drainage
areas.

Watershed physiography is described primarily by topographic maps. The
elevation relates to the type of precipitation in terms of rain and snow. The
surface slope indicates the rate at which potential energy (PE) is transformed
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Figure 3.1. Hydrologic cycle.

into the kinetic energy (KE) of surface waters. The surface slope is also a
dominant parameter in the calculation of soil erosion and sediment transport.
The topography of small watersheds can nowadays be depicted with a digital
elevation model with data available at 30-m resolution. Geographic information
systems (GISs) provide standard procedures for slope calculations from the
mean elevation at each pixel. Limitations lie in the size of the data files and the
computing power of computers performing hydrologic calculations.

Digital elevation models provide the following physiographical characteris-
tics of a watershed: (1) drainage area, (2) extreme elevations, (3) hypsometric
curves of the percentage of the drainage area at or below a given elevation (see
Fig. 3.2), (4) average value and distribution of the terrain slope, (5) percent-
age of drainage area in lakes and reservoirs, and (6) drainage length from the
physically remotest point on the watershed to the outlet.

The mainstream length of a river varies with drainage area, and the relation-
ship shown in Fig. 3.3 indicates that mainstream length increases approximately
with the square root of the drainage area.

Geologic information indicates the overall erodibility of large watersheds.
For instance, the Yellow River in China carries a large sediment load from the
Loess plateau, and the St. Lawrence River drains the granitic Laurentian shield
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at an average sediment concentration of 20 mg/l. In large rivers, the location
of faults can be useful in detecting changes in bed elevation through tectonic
activity and also in tracking possible lateral shifting of rivers through ancient
times. Paleohydrology provides broad guidance to fluvial geomorphologists
as to what might have been ancient fluvial conditions. Without quantitative
measurements of ancient tectonic activities, such information, however, often
remains quite speculative.
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Figure 3.4. Niger River: (a) climate, (b) rainfall precipitation, and (c) potential
evapotranspiration.
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Soil types are usually classified according to agronomic standards, such as
the Soil Conservation Service (SCS) classification. The digitized information
at some fine resolutions enables the estimation of infiltration characteristics and
surface-roughness parameters for the calculation of surface runoff.

Climatic conditions are also known to change over sufficiently large water-
sheds, and many change over time, e.g., desertification. For instance, the cli-
mate of the Niger river watershed ranges from arid to humid [Fig. 3.4(a)], and
the vegetation changes from that of a desert to that of a rain forest. Qualita-
tive changes in vegetative cover can often be corroborated with mean annual
rainfall precipitation and mean annual potential evapotranspiration, as shown
in Figs. 3.4(b) and 3.4(c).

3.2 Rainfall precipitation

In the United States, the mean annual rainfall precipitation increases southward
from 50 mm in the north to over 4,000 mm near the Mississippi River delta. Such
spatial variability in climate and vegetation is typical of very large rivers (over
1 × 106 km2 of drainage area). This contrasts with the relative homogeneity
in climate and vegetation of most small watersheds. In terms of large events,
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Fig. 3.5 shows the distribution of the rainfall precipitation with a duration of
3 h and a period of return of 100 yr in the continental United States. Note the
spatial variability that ranges from less than 2 in. in Nevada to more than 7 in.
in Louisiana. Figure 3.6 shows the world’s largest precipitation events in terms
of rainfall depth as a function of rainfall duration.
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Consider a convective rainstorm passing over a watershed, as in Fig. 3.7.
There are four length parameters associated with rainstorms and watersheds
in the context of raster-based hydrologic models: (1) the correlation length of
the rainstorm cell, L S; (2) the grid size of the rainfall precipitation data, L R ;
(3) the characteristic length of the watershed, LW ; and (4) the runoff-model
grid-cell size, L M . The radar and the model resolution parameters, L R and L M ,
are defined by the modeler, whereas the basin- and the storm-size parameters,
LW and L S , are determined by the field site and the natural storm size in the
study area. In addition, it is important to note that the correlation length for
watershed characteristics is of the order of tens to hundreds of meters, whereas
the spatial correlation length for rainfall, L S , is hundreds to thousands of
meters.

An example of a rainfall event measured by a network of 46 rain gauges
with an average spacing of 10.6 km is that in the Denver area, as shown in
Fig. 3.8. This small mesoscale rainstorm has a diameter of 20–30 km, and the
spatial cross correlation between 2-min rainfall data in a frame of reference
moving with the rainstorm is shown in the same figure. The correlation coeffi-
cient becomes close to zero at a rain-gauge separation distance of ∼16 km. This
means that, for this particular storm, 2-min rainfall measurements with an aver-
age spacing of 15 km would be essentially uncorrelated. May and Julien (1998)
demonstrated the importance of using a system of coordinates that moves with
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the center of mass of the storm cell in order to have physically representative
correlation coefficients. The reason for this is that some rainstorms can move
at average velocities exceeding 100 km/h.

Conceptually, there are three conditions required for appropriate distributed
hydrologic modeling. The first is L M � LW , so that the basin is subdivided into
sufficiently small grid elements to describe the spatial variability of basin char-
acteristics. The second condition is L R � L S , which ensures preservation of
the spatial gradients of rainfall, particularly for smaller, convective rainstorms.
The third requirement is that L R ≤ L M , such that rainfall is placed in the cor-
rect watershed grid cell. The third requirement is most difficult to satisfy with
either rain gauges or radar. State-of-the-art rainfall precipitation estimates com-
bine radar measurements for spatial variability and rain gauges for ground-truth
calibration of radar measurements.

Recent polarimetric weather radar techniques offer an opportunity to
record spatially distributed rainfall events with unprecedented resolution. The
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Figure 3.9. Colorado rainfall rates measured by the CSU-CHILL radar (after
Ogden and Julien, 1994).

weather radar data shown in Fig. 3.9 was recorded at the Colorado State
University (CSU-CHILL) radar facility, near Greeley, Colorado. The CSU-
CHILL radar is a dual linearly polarized coherent radar that operates at 2.75
GHz, which corresponds to a wavelength of 10.7 cm in the S band. The beam
width of the 8-m-diameter antenna is approximately 1.0◦. Attenuation does
not affect S-band weather radars, even in the heaviest rainfall, making them
ideal for weather observation. The radar transmits an average power of 1 kW,
with peak power during transmit pulses of 1 MW, and can measure Doppler
velocities. Ground clutter, high reflectivity, ice and graupel phase, represen-
tative precipitation values at different elevations (or CAPPIs), and ground
calibration remain active research areas to improve the accuracy of radar
measurements.

Figure 3.9 shows multiparameter rainfall rates within the 80 km × 80 km
data domain at 12:48 MDT and 13:56 MDT. The radar was located at the origin
of the plots. The rainfall fields were converted from radar conical coordinates
to rectangular coordinates by interpolation to a 1 km × 1 km grid size. The
scale of individual storm cells was approximately 4–10 km, with an average
storm size near 8 km. The rainfall data from 27 radar scans were processed,
and the correlation length L S was determined to be 2.3 km by both covariance
models. Note that the precipitation patterns of convective rainstorms change
very rapidly in both time and in space. Discretized rainfall precipitation can
serve as input to raster-based hydrologic models such as the CASC2D (Julien
et al., 1995).
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Point rainfall precipitation can be
described as a random time series of
discrete storm events, each having
finite duration and constant intensity.
The principal variables of rainfall
precipitation sketched on Fig. 3.10 are
(1) the storm duration tr , (2) the storm
intensity i , and (3) the time arrival be-
tween successive storms. The time of
arrival of successive storms has often
been described as a Poisson process.

The emphasis is on the storm duration tr , average intensity i , and the rainstorm
depth hr obtained from hr = i tr .

Considering that the average storm duration is

t̄r = 1

N

N∑
1

tr ,

where N is the number of storms, the normalized storm duration t∗
r = tr/t̄r is

distributed exponentially. The particular characteristic of exponential distribu-
tion is that the probability density function p( ) and the exceedance probability
function E( ) are identical:

E(t∗
r ) = p(t∗

r ) = e−t∗
r . (3.1)

The corresponding cumulative distribution function F(tr ) or nonexceedance
probability, is obtained from

F(tr ) = F(t∗
r ) = 1 − E(t∗

r ). (3.2)

An example of the distribution of rainfall precipitation data is provided in
Fig. 3.11.

Similarly, the storm intensity i can be normalized after being divided by the
average intensity

ī = 1

N

N∑
1

i

over N storms. The normalized intensity i∗ = i/ī is exponentially distributed
with a probability density function p( ) equal to the exceedance probability
E( ) as

E(i∗) = p(i∗) = e−i∗
, (3.3)

F(i) = F(i∗) = 1 − E(i∗). (3.4)
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For instance, the observed and the fitted exponential distribution functions for
rainstorm intensity, F(i∗), are shown in Fig. 3.12.

For the example shown in Figs. 3.11 and 3.12 with 6 yrs of rainfall data,
monthly periods were found to be sufficiently long to assume constant values
of average rainfall duration and intensity for each month. Detailed statistical
analyses can show whether rainstorm duration and intensity are nearly inde-
pendent for the period considered. Example 3.1 illustrates how to determine
the observed and the fitted exponential distribution functions.
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Example 3.1 Application to distribution of rainfall duration. The rainfall
durations of N = 10 rainstorms measured during one month are 50, 5, 25, 210,
320, 150, 45, 40, 25, and 40 min. Determine the distribution of these events
and compare with the exponential distribution. Note that the procedure should
normally be applied to large samples.

In Table E.3.1.1, the events are listed in column 1 and ranked in decreasing
order in column 2. Their increasing rank in column 3 is divided by N + 1 = 11
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Figure E.3.1.1. Distribution of rainfall
duration.

in column 4 to determine the mea-
sured nonexceedance probability Fm( ).
The measured exceedance probability
Em( ) = 1 − F( ) is given in column 5.

The rainfall duration tr is normalized
as t∗

r = tr/t̄r after being divided by the
average rainfall duration t̄r = 91 min.
The calculated nonexceedance proba-
bility Ec( ) = 1 − e−t∗

r . The comparison
between measured and calculated nonex-
ceedance probability curves is
shown in Fig. E.3.1.1. Note that this
sample is very small in this case.

Case Study 3.1 The Big Thompson River flood, United States. The two
reports of Grozier et al. (1976) and McCain et al. (1979) document the Big
Thompson River flood of July 31–August 1, 1976. As much as 12 in. (305 mm)

Table E.3.1.1. Nonexceedance probability curves for rainfall duration

Measured Measured Calculated
Duration nonexceedance exceedance nonexceedance

tr Ranked probability probability probability
(min) duration Rank Fm ( ) Em ( ) t∗r = tr

t̄r
Fc( )

50 5 1 0.09 0.91 0.05 0.05
5 25 2 0.18 0.82 0.27 0.24

25 25 3 0.27 0.73 0.27 0.24
210 40 4 0.36 0.64 0.44 0.35
320 40 5 0.45 0.55 0.44 0.35
150 45 6 0.54 0.46 0.49 0.39

45 50 7 0.64 0.36 0.55 0.42
40 156 8 0.73 0.27 1.65 0.81
25 210 9 0.82 0.18 2.31 0.90
40 320 10 0.91 0.09 3.51 0.97

Average t̄r = 91 min, N = 10
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of rain fell on the Big Thompson River basin during the evening of July 31,
1976, causing a devastating flood on the Big Thompson River and its tributaries
between Estes Park and Loveland, Colorado. Larimer County officials reported
139 lives lost and property damage of $16.5 million.

During the evening hours of July 31, a series of violent thunderstorms
(Fig. CS.3.1.1) released large volumes of rain along a path several miles wide
from Estes Park to the Wyoming border, as sketched in Fig. CS.3.1.2. The Big
Thompson River basin west of Drake was severely hit by the storm, and dev-
astating flooding occurred along the Big Thompson River between Estes Park
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Figure CS.3.1.1. Thunderstorms of the Big Thompson flood.
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and Loveland and along the North Fork of the Big Thompson River from Glen
Haven to its mouth at Drake.

The isohyetal map of the total precipitation from July 31 to August 2, 1976,
is shown in Fig. CS.3.1.2. Eastern Colorado was under conditions favorable for
heavy rain on July 31, 1976, for a number of reasons. The surface map of that
morning showed a slowly moving cold front in the state. Such fronts display
lines of convergence that lift air to form thunderstorms. Also favorable was the
easterly wind just north of the front, moving air upslope and aiding the frontal
lifting. The low-level air was very moist, well above the seasonal normals, and

12

10

8

6

4

2

0
1900 2000 2100 2200 2300 2400

Time (h (MDT))

E
st

im
at

ed
 c

um
ul

at
iv

e 
ra

in
fa

ll 
(i

n)

Glen Comfort

Glen Haven

Ju
ly

 3
1

A
ug

us
t 1

Figure CS.3.1.3. Cumulative rainfall
precipitation.

the moisture aloft was also unusually
high. Thunderstorms move with the
speed and the direction of the winds
aloft, and the 500-mbar (millibar) level
is usually adequate for judging such
movement. The 500-mbar wind was
only ∼5 knots and was not expected to
change much during the day. This was
the case with the thunderstorms near
Estes Park. They moved very slowly
while putting out large amounts of wa-
ter over a period of several hours, as
shown in Fig. CS.3.1.3.
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Rainfall began at approximately 18:30 MDT on July 31, 1976, and ended
at approximately 23:30 MDT that evening. Additional rainfall was observed
on August 1 and 2. Precipitation totals were as much as 10 in. (254 mm)
between Estes Park and Drake and more than 12 in. (305 mm) in the Glen
Haven area. Very little rainfall contributed to the flood east of Drake and west of
Estes Park.

Flood runoff in the Big Thompson basin derived from an area of approxi-
mately 60 square miles (155 km2) centered on the Big Thompson River from
Lake Estes to Drake. The topography of the area is characterized by steep north-
and south-facing slopes with rugged rock faces along the ridges and a thin soil
mantle at lower elevations that supports a moderate stand of coniferous trees.
Because of the steep slopes and small storage capacity of the soils, the storm
runoff quickly reached nearby surface channels.

The flood lasted only a few hours. The reported peak stages on the Big
Thompson River occurred as follows: 20:00 at Glen Comfort, 21:00 at Drake,
21:30 at the Loveland power plant, and approximately 23:00 at the mouth of
the canyon ∼8 miles (13 km) west of Loveland. The relative timing of the peak
stages was such that the peak on the Big Thompson River just downstream from
Drake occurred before the peak from the North Fork arrived at Drake. The
flood peak moved through the 7.3-mile (11.7-km) length of channel between
Drake and the canyon mouth in ∼2 h with no apparent reduction in discharge.
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East of the canyon mouth, the Big Thompson River valley widens rapidly and
the flood discharge was quickly reduced by valley storage and overflow to
numerous reservoirs. The peak discharge at the mouth of the Big Thompson
River near LaSalle was ∼2,500 ft3/s (70.8 m3/s), occurring at noon on August 1,
as compared with 31,200 ft3/s (883 m3/s) ∼35 miles (56 km) upstream at the
mouth of the canyon. The peak discharges at various locations are shown as a
function of drainage area in Fig. CS.3.1.4.

3.3 Interception and infiltration

The excess rainfall volume available for surface runoff is the volume of
precipitation in excess of the rainfall losses. Losses include interception,
evapotranspiration, surface detention, storage, and infiltration.

Some rainfall is intercepted by vegetation before it reaches the ground. The
amount of interception varies with the type, density, and stage of growth of
the vegetation, intensity of the rainfall, and wind speed. A dense forest canopy
may intercept as much as 25% of the annual rainfall in climates with frequent,
light rainfalls, low wind speeds, and evergreen vegetation. On a single storm
basis, the interception storage is generally a small percentage of the total rainfall
event, except in dense forests.

Evapotranspiration is the combination of evaporation and transpiration. Eva-
poration refers to the phase change of water from liquid to vapor from wet
surfaces. Water evaporation from plant surfaces is termed transpiration. All
evaporation from a leaf surface is not transpiration as intercepted water is
also evaporated. On an annual basis, evapotranspiration generally involves a
large fraction of the total precipitation, e.g., refer to Figs. 3.4 for a comparison
between arid and humid climates. In spite of the high losses on an annual basis,
evapotranspiration is usually neglected in cases in which severe rainstorms are
considered.

Detention storage is the volume of water required for filling land depressions
before surface runoff begins. Detention storage is the depth of water required for
initiating surface runoff. Actual measurements of surface storage and detention
are practically nonexistent. Detention storage is estimated at 0.2–0.6 in. (0.5–
1.5 cm) in pervious areas such as open fields, woodlands, and lawn grass. Values
of 0.05–0.3 in. (0.13–7.6 cm) relate to paved surfaces and roofs in urban areas.

Infiltration is the process of water’s permeating into soil pores. In general, the
infiltration rate is dependent on soil physical properties, vegetative cover, an-
tecedent soil-moisture conditions, rainfall intensity, and the slope of the infiltrat-
ing surface. Bare soils tend to have lower infiltration rates than soils protected by
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a vegetative cover. The impact of falling raindrops breaks down soil aggregates,
and small particles are carried into the soil pores, thus sealing the surface and
reducing the infiltration rate. The antecedent moisture condition also alters the
infiltration rate, and wet soils have lower infiltration rates than dry soils. On steep
slopes, the water tends to run off rapidly and there is less infiltration. The soil
classification in Fig. 3.13 depends on the percentage of sand, silt, and clay in the
soil. For instance, a soil with 60% sand, 30% silt, and 10% clay is a sandy loam.

Green and Ampt (1911) developed an approximate infiltration model based
on Darcy’s law. They assumed vertical flow in a column initially at a uniform
water content p0i and saturation at the surface p0e. The saturated wetting front
moves gradually into the soil zone unaffected by infiltration, as sketched in
Fig. 3.14.

The infiltration rate f (t) varies with time as the piston-type wetting front
advances into the soil:

f (t) = K (h + L f + h p)

L f
, (3.5)
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where K is the hydraulic conductiv-
ity of the wetted soil part of the soil
profile, L f is the depth of the wetting
front, h p is the pressure head for wet-
ting at the wetting front, and h is the
depth of ponding of water on the soil
surface.

In general, the flow depth h is small
compared with the length of the wet-
ting front L f and may be neglected in
Eq. (3.5). The change in water content
across the wetting front, �p0, depends
on the initial water content p0i , the thor-
oughly drained (or residual) water con-

tent, p0r , the effective saturation Se, and the total porosity p0. The relationship
is�p0 = p0e − p0i = p0e − Se p0e = (1 − Se)p0e, where the effective porosity
is given by p0e = p0 − p0r and Se = p0i/p0e. By noting that F(t) = L f�p0

or L f = F(t)/�p0 and taking h as zero, we find that the infiltration rate f (t)
varies with time as

f (t) = K

[
h p�p0

F(t)
+ 1

]
, (3.6) ��

where F(t) is the cumulative infiltration depth at time t . The cumulative
infiltration is found by integration of Eq. (3.6) as

F (t) = K t + h p�p0 ln

(
1 + F (t)

h p�p0

)
(3.7)

Equations (3.6) and (3.7) apply for the case in which the ponded depth is
negligible. If this is not the case, h p should be replaced with h p + h.

Rawls et al. (1983) present values for p0, p0e, h p, and K as functions of
soil type in Table 3.1. In practice, because Eq. (3.7) cannot be solved ex-
plicitly for F(t), an iterative procedure is required. A trial value for F(t) is
substituted into the right-hand side of the equation, which is then compared with
the left-hand side. This process is repeated until agreement between the two
values is obtained. A good first estimate is K t for F(t). Possibly an easier way
to calculate f (t) from Eq. (3.6) is to solve Eq. (3.7) for t at various values of
F(t). The cumulative infiltration F(t) can then be used in Eq. (3.6) to determine
f (t) at corresponding time.
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Table 3.1. Green–Ampt infiltration parameters (after Rawls
et al. 1983)a

h p K
Soil texture p0 p0e (cm) (cm/h)

Sand 0.437 0.417 4.95 11.78
Loamy sand 0.437 0.401 6.13 2.99
Sandy loam 0.453 0.412 11.01 1.09
Silt loam 0.501 0.486 16.68 0.65
Loam 0.463 0.434 8.89 0.34
Sandy clay loam 0.398 0.330 21.85 0.15
Clay loam 0.464 0.309 20.88 0.10
Silty clay loam 0.471 0.432 27.30 0.10
Sandy clay 0.430 0.321 23.90 0.06
Silty clay 0.479 0.423 29.22 0.05
Clay 0.475 0.385 31.63 0.03

a Rawls et al. (1983) contains more information on these parameters including
their standard deviations and values for various soil horizons.

Example 3.2 illustrates how to calculate infiltration by use of the Green–Ampt
method. Typical potential infiltration curves for initially dry soils in terms of
f (t), F(t), and f (t)/K for cumulative rainfall infiltration up to 5 cm are shown
in Figs. 3.15(a), 3.15(b), and 3.15(c), respectively.

Example 3.2 Calculation of the infiltration potential. Calculate the infil-
tration curve for a silt loam at 30% effective saturation.

Solution: Given Se = 0.3, Table 3.1 provides the following charac-
teristics for a silt loam as p0e = 0.486, hp = 16.7 cm, and K = 0.65 cm/h. We
then calculate�p0 = (1 − Se) p0e = (1 − 0.3) 0.486 = 0.34. For instance, we
compute the cumulative infiltration F(t) = 1 cm by rearranging Eq. (3.7):

t =
F (t) − h p�p0 ln

[
1 + F(t)

h p�p0

]
K

=
1 − 16.7(0.342)ln

[
1 + 1

16.7(0.34)

]
0.65

= 0.12 h.

From Eq. (3.6), the infiltration rate at t = 0.12 h is

f (0.12 h) = K

[
h p�p0

F(t)
+ 1

]
= 0.65

[
16.7(0.34)

1
+ 1

]
= 4.36 cm/h.
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Table E.3.2.1. Green–Ampt infiltration
calculations

F(t)a tb f (t)c

(cm) (min) (cm/h)

0.0 0.0 ∞
0.25 0.5 15.4
0.5 1.9 8.0
0.75 4.2 5.6
1.0 7.3 4.4
1.5 15.6 3.4
2.0 26.4 2.5
3.0 54.6 1.9
4.0 90.0 1.6
5.0 130.0 1.4

a Assumed.
b From Eq. (3.7) with Se = 0.3, p0e = 0.486,
h p = 16.7 cm, K = 0.65 cm/h, and �p0 = 0.34
c From Eq. (3.6).

Table E.3.2.1 illustrates the values of infiltration calculated from the assumed
values of F . A plot of f versus t from columns 3 and 2 yields the infiltration
curve.

3.4 Excess rainfall

Excess rainfall represents the supply of water to the surface-runoff process.
Excess rainfall represents the amount of rainfall in excess of interception, evapo-
transpiration, and infiltration. When the rainfall rate exceeds the infiltration rate,
detention storage begins to fill. Runoff will begin where the detention storage is
filled. When the rainfall rate drops below the infiltration rate, water in surface
storage is gradually depleted until surface runoff ceases. The water in detention
storage then infiltrates. Example 3.3 provides the detailed calculation of excess
rainfall by use of the Green–Ampt infiltration equation.

Example 3.3 Calculation of excess rainfall. Use the Green–Ampt equation
to calculate the excess rainfall for the rainstorm in the first two columns of
Table E.3.3.1. The maximum detention storage is 0.75 cm, and the soil is a silt
loam soil with 30% effective saturation.
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Table E.3.3.1. Excess rainfall calculations

Detention Excess
Rainfalla Infiltrationd storage f rainfallg

ta i�t f p(t)b �Fp(t)c �Fa(t) Fp(t)e S �Re

(min) (cm) (cm/h) (cm) (cm) (cm) (cm) (cm)

0 0.00 0.00 0.00 0.00
15 0.25 Very large Very large 0.25 0.25 0.00 0.00
30 0.30 15.40 3.85 0.30 0.55 0.00 0.00
45 0.43 7.36 1.84 0.43 0.98 0.00 0.00
60 0.66 4.42 1.10 0.66 1.64 0.00 0.00
75 1.55 2.90 0.73 0.73 2.37 0.75 0.07
90 4.85 2.21 0.55 0.55 2.92 0.75 4.30

105 0.91 1.91 0.48 0.48 3.40 0.75 0.43
120 0.51 1.74 0.43 0.43 3.83 0.75 0.08
135 0.36 1.61 0.40 0.40 4.23 0.71 0.00
150 0.28 1.52 0.38 0.38 4.61 0.61 0.00
165 0.23 1.45 0.36 0.36 4.97 0.48 0.00
180 0.20 1.39 0.35 0.35 5.32 0.33 0.00

Totals 10.53 = 5.32 0.33 + 4.88

aThe hyetograph is in the first two columns; rain starts at t = 15 min.
bPotential infiltration rate from Fp at the previous time increment.
cPotential infiltration volume �Fp = f p�t .
d The actual infiltration volume is the smaller of column 4 and column 2 + column 7.
e Fp(t) = Fp(t − 1) +�Fa .
f Surface storage.
gExcess rainfall.

Solution: The parameters for the Green–Ampt equation from Table 3.1
are p0e = 0.486, h p = 16.68 cm, and K = 0.65 cm/h. The change in water
content as a result of the passing of the wetting front is calculated as �p0 =
(1 − Se)p0e = (1 − 0.3)0.486 = 0.34.

The infiltration rate f (t) and the cumulative infiltration F(t) are related by
Eq. (3.7) as

f (t) = K

[
h p�p0

F(t)
+ 1

]
= 0.65

cm

h

[
16.68(0.34)

F(t)
+ 1

]
.

The rainfall hyetograph is defined in the first two columns of Table E.3.3.1.
Note that the rainfall starts at t = 15 min. Column 3 represents the potential
infiltration rate f p(t) calculated from the preceding equation with Fp from
the previous time increment. Column 4 gives the potential infiltration volume
�Fp(t) calculated as f p(t)�t . The actual infiltration volume �Fa(t) for the
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time increment is the smallest of columns 4 vs. column 2 plus column 7 for the
increment.

Early in the storm, i.e., during the first 60 min, the potential infiltration rate
exceeds the rainfall rate and the actual infiltration volume is limited to the
rainfall volume. The cumulative infiltration Fp(t) at a particular time is equal
to Fp(t) from the previous time increment plus �Fa(t) for the current time
increment. In the time increment from 60 to 75 min, the potential infiltration
rate falls below the rainfall rate and some detention storage and rainfall excess
are generated. Because at this time the surface storage is empty, the rainfall first
satisfies infiltration with 0.73 cm, then 0.75 cm to detention storage, and 0.07 cm
in surface storage or rainfall excess ready for surface runoff. This process is
continued until the end of the storm. It can be seen that, for the time interval from
120 to 135 min, �F(t) is 0.40 cm whereas the rainfall is only 0.36 cm. Thus
0.04 cm of water is taken from the detention storage. The actual infiltration
�Fa(t) cannot exceed the rainfall depth for the time increment � f p�t plus
the depth of water in surface storage. Mass balance must be preserved at all
times. The cumulative sum of excess rainfall, column 8 of Table E.3.3.1, plus
the incremental value of cumulative infiltration �Fp(t) and detention storage
S must equal the cumulative rainfall precipitation in column 2.

3.5 Surface runoff

Runoff refers to the surface flow occurring during and immediately after precipi-
tation events. Base flow refers to seepage and groundwater flow between pre-
cipitation events. Surface runoff is added to the base flow to determine the total
flow. The base flow from small watersheds can often be neglected in the compu-
tation of surface runoff from large rainstorms. Excess rainfall generates surface
runoff as overland flow and channel flow. To capture the essential features of
the rainfall–runoff relationship, consider a rectangular excess hyetograph of
constant intensity i and duration tr , as sketched in Fig. 3.10. This section aims
at defining the corresponding runoff hydrograph, which requires knowledge
of resistance to overland flow (Subsection 3.5.1) and stage–discharge relation-
ships (Subsection 3.5.2). Surface runoff is then calculated for overland flow
(Subsection 3.5.3) and snowmelt runoff (Subsection 3.5.4).

3.5.1 Resistance to overland flow

Resistance to flow defines the relationship between flow depth h and depth-
averaged flow-velocity ū. Resistance to flow can be written in terms of the
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Table 3.2. Resistance to overland flow

Turbulent Flow

Laminar flow Chézy C Darcy–Weisbach
Surface k0 Manning n (ft1/2/s) f

Concrete or asphalt 24–108 0.01–0.013 78–38 0.03–0.4
Bare sand 30–120 0.01–0.016 65–33 0.04–0.5
Graveled surface 90–400 0.012–0.03 38–18 —
Bare clay–loam soil 100–500 0.012–0.033 36–16 —

(eroded)
Sparse vegetation 1,000–4,000 0.053–0.13 11–5 0.1–1000
Short grass prairie 3,000–10,000 0.10–0.20 6.5–3.6 0.5–13,000
Bluegrass sod 7,000–100,000 0.17–0.48 4.2–1.8 1–10,000

Darcy–Weisbach friction factor f , Manning coefficient n, or Chézy coefficient
C . The corresponding definitions of C , n, and f are, respectively,

ū = C h1/2S1/2, (3.8a)

ū = 1

n
h2/3S1/2 (in S.I. units), (3.8b)

ū =
√

8g

f
h1/2S1/2. (3.8c) �

Note that only the Darcy–Weisbach coefficient f is dimensionless; the
Manning coefficient n has the dimensions T/L1/3 and the numerator is re-
placed with 1.49 in the English system of units. The Chézy coefficient C has
the dimensions L1/2/T .

Table 3.2 lists typical values of the Darcy–Weisbach friction factor f , the
Chézy coefficient C , given the identity C = √

8g/ f , the Manning coefficient n,
and the laminar resistance coefficient k0 for various overland-flow conditions.
Woolhiser (1975) presented a method to evaluate resistance coefficients for
overland flow.

For smooth impervious surfaces, Fig. 3.16 shows the Darcy–Weisbach fric-
tion factor f as a function of the Reynolds number Re = [(ūh)/ν] = (q/ν)
given the flow depth h, the mean flow velocity ū or unit discharge q and kine-
matic viscosity ν. It is important to note that two flow regimes are observed in
this figure: (1) laminar flow when Re< 1,000, characterized by a constant value
of k0; and (2) turbulent flow when Re > 1,000, approximated by the Blasius
equation f ∼= 0.223/Re0.25. It is also interesting that rainfall intensity increases
the value of k0 in the laminar-flow regime. Raindrop impact thus only increases
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Figure 3.16. Resistance to overland flow (after Li and Shen, 1973).

resistance to flow in the laminar-flow regime. Raindrop effects are negligible
in turbulent flows, i.e., when Re > 1,000.

Laminar flows with raindrop impact can be described by the Darcy–Weisbach
equation in which the friction factor f relates to (1) the Reynolds number Re,
(2) the friction coefficient k0, and (3) the empirical coefficients A and b for
raindrop impact. The friction coefficient kt includes both effects that are due to
surface roughness and rainfall intensity. The following relationship is generally
used:

f = kt

Re
= k0 + Aib

Re
. (3.9)

The values of k0 have been tabulated by Woolhiser for various surface charac-
teristics, and the value k0 = 24 is representative of a smooth surface. For rainfall
intensity given in feet per second, A ∼= 4.32 × 105 s/ft (A ∼= 1.42 × 106 s/m
for i in meters per second) and b ∼= 1.

The Darcy–Weisbach friction factor f is shown in Fig. 3.17 for the case
of vegetated upland surfaces. It is found that resistance to flow on vegetated
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Figure 3.17. Resistance to overland flow on vegetated surfaces (after Chen,
1976).

surfaces is much higher than that for smooth impervious surfaces. The laminar
regime extends up to Re < 105, and turbulent flows are found when Re > 105.
The values of k0 in Table 3.2 indicate that k0 can be several orders of magni-
tude larger than for a smooth surface. The effects of raindrop impact become
negligible compared with the effects of vegetation.

3.5.2 Stage–discharge relationship

In general, resistance to flow can be written as a stage–discharge relation-
ship,

q = αhβ, (3.10) �
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Table 3.3. Resistance relationships q = αhβ for overland flow

Resistance
Flow Type Coefficient α β te

Laminar kt = constant
8gS

ktν
3

(
ktνL
8gSi2

)1/3

Turbulent

Darcy–Weisbach f = constant

√
8gS

f 1.5
(

f L2

8gSi

)1/3

Chézy C = constant C S1/2 1.5
(

L2

C2 Si

)1/3

Manning (S.I. units) n = constant S1/2/n 1.67
( nL

S1/2i0.667

)0.6

where the unit discharge q is a power function of flow depth h. The resistance
coefficient α and exponent β for overland flow on rectangular planes are given
in Table 3.3 for laminar and turbulent flows as functions of kt , f , C , and n in
Table 3.2. In Table 3.3, g is the gravitational acceleration, S is the surface slope,
ν is the kinematic viscosity, and i is the rainfall intensity.

Similarly, flow depth h, flow velocity ū, bed shear stress τ0, and Froude
number Fr can be determined as functions of discharge from

h =
(q

α

) 1
β

, (3.11a)

ū = α
(q

α

) β−1
β

, (3.11b)

τ0 = γ hS = γ S
(q

α

)1/β
, (3.11c)

Fr = ū√
gh

= α3/2βq
2β−3

2β g−1/2
(3.11d)

It is important to understand that constant values of n do not correspond
to constant values of kt , C , or f . In fact, if kt is constant as a function of
discharge q or Reynolds number Re, this implies that the Manning coefficient
n will change with discharge. For instance, in the laminar-flow regime with
constant kt , the Manning coefficient n depends on the Reynolds number; after
combining Eqs. (3.8b), (3.8c), and (3.9), we obtain

n =
(

kt

8g

)5/9
ν1/9

S1/18
Re−4/9. (3.12a)

We find that, for overland flows in upland areas, the Manning coefficient n
is inversely proportional to the Reynolds number. At very low flow rates on flat
slopes in upland areas, the Manning coefficient n can become extremely high,
even greater than 1.
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Similarly, we can combine Eq. (3.8b) with Eq. (3.8c) to find the following
relationship between the Manning coefficient n, the Darcy–Weisbach factor f ,
and the Reynolds number Re:

f = 8gS0.1n1.8

ν0.2 Re0.2 . (3.12b)

We find that at a constant slope S and fluid viscosity ν, a line of constant Manning
coefficient n is described by f ∼ Re−0.2, which is approximately equivalent to
the Blasius relationship in Fig. 3.16 for turbulent flows at Re > 1,000.

3.5.3 Overland-flow hydrographs

Analytical expressions for overland-flow hydrographs are derived for a plane-
rectangular surface of length L and width W at a constant slope S0 under a
constant excess-rainfall intensity ie. It is assumed that the overland-flow plane
is initially dry (h = 0 and q = 0) before the beginning of precipitation at time
t = 0. The flow depth increases linearly with time h = iet during the rising limb
until the flow depth conveys the equilibrium discharge (qm = ie L). As sketched
in Fig. 3.18, at a given time t , the upstream portion of the plane X < Xe reached
complete equilibrium. In the complete-equilibrium domain, X < Xe, the flow
is steady and nonuniform and the unit discharge q at any point x increases
as q = iex but does not change with time. In the partial-equilibrium domain,
X > Xe, the flow is unsteady and uniform and the unit discharge at any point
is constant in space at q = ie Xe but changes with time given the corresponding
flow depth h = iet .

h q = i  X
h = f(x)

X
X

q = i  X
h = i  t

h = i  t
h =  i  t
h = 0.8  i  t
h = 0.6  i  t
etc.

e
e

e
ee

e

e

e

X < Xe X > Xe

ee

Complete equilibrium Partial equilibrium

i   = i - fe

Excess rainfall

L

q = i  Xe

Figure 3.18. Sketch of overland-flow depth.
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The continuity relationship (see Problem 2.6) describing the conservation of
fluid mass is applied to wide-rectangular flow:

∂h

∂t
+ ∂q

∂x
= ie. (3.13) �

Note that this continuity relationship describes a steady flow in the complete-
equilibrium domain (X < Xe) when ∂h/∂t = 0 and a nonuniform flow for
partial equilibrium results from ∂q/∂x = ie. As rainfall duration increases, the
length Xe increases and the complete-equilibrium domain becomes larger with
time. From combining h = i t , q = i Xe, and q = αhβ , we obtain the position
Xe as a function of time as

Xe = α

ie
(iet)β . (3.14)
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graphs.

The time to equilibrium te is obtained
when Xe reaches the downstream end
of the plane; the entire plane thus be-
comes under steady-flow conditions.
At that time, t = te and the equilibrium
discharge qm = ie L = α(iete)β is solved
for te to give

te = i [(1/β)−1)]
e

(
L

α

)1/β

= 1

ie

(
ie L

α

)1/β

. (3.15) ��

We can determine the time to equili-
brium of upland areas from the excess-
rainfall intensity ie, the length of the
plane L , and α and β from Table 3.3.
Values of te for different resistance re-
lationships are presented in Table 3.3.

Complete-equilibrium hydrographs
are those for which the rainfall duration
tr exceeds the time to equilibrium te;
hence the hydrograph dimensionless
time λr = tr/te is greater than unity.
The surface-runoff hydrograph can be
subdivided into three parts: the rising
limb, equilibrium, and falling limb. The
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rising limb of runoff hydrographs is characterized by q = α(iet)β and the com-
plete equilibrium by q = ie L; the falling limb is rather complex. In general
terms, surface runoff over a rectangular plane of length L can be written in
dimensionless form as ψ = [q/(ie L)] as a function of the dimensionless time
� = [(t − tr )/te], where te is the time to equilibrium. Figure 3.19 illustrates
the shape of surface-runoff hydrographs on rectangular planes for any flow-
resistance relationship. The rising limb of the complete-equilibrium hydrograph
is given by ψ = (�+ λr )β. The equilibrium discharge simply equals ψ = 1,
and the falling limb is given by

� = 1 − ψ
βψ

β−1
β

, (3.16)

as shown in Fig. 3.19(b). For partial-equilibrium hydrographs, the salient fea-
tures of the hydrographs are shown in Fig. 3.19(c).

Example 3.4 Calculation of surface-runoff hydrographs. Calculate the
surface-runoff hydrograph for a 1-h rainstorm of constant excess-rainfall in-
tensity of 1 in./h on a rectangular plane, 100 ft wide, 400 ft long, on a 20%
slope. Also calculate the maximum flow depth, velocity, and shear stress at the
corresponding Froude number. The plane is sparsely vegetated.

In S.I. units, ie = 7 × 10−6 m/s, L = 122 m, and tr = 3,600 s. Considering
the kinematic viscosity ν = 1 × 10−6 m2/s, the maximum Reynolds number is

Remax = ie L/ν = 7 × 10−6 × 122 m s

s 1 × 10−6 m2
= 860.

Thus the flow is laminar. For a sparsely vegetated field, a value of k0
∼= 2,000

is selected from Table 3.2. From Table 3.3, β = 3 for laminar flow and

α = 8gS/kν = 8 × 9.81 m × 0.2 s

s2 2,000 × 1 × 10−6 m2
= 7848

ms
.

The time to equilibrium is calculated from

te =
(

ktνL

8gSi2
e

)1/3

=
[

2,000 × 1 × 10−6 × 122 m3

8 × 9.81 m × 0.2 × s

s2 s2

(7 × 10−6)2 m2

]1/3

= 682 s.

The complete-equilibrium hydrograph tr > te is calculated in three parts.
First, the rising limb is calculated from ψ = (�+ λr )β or

q = ie L(t/te)3 = 7 × 10−6 × 122 m2

(682)3 s4
t3 = 2.69 × 10−12 t3.
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Second, after 682 s, q = 8.54 × 10−4 m2/s and remains constant until t =
3,600 s. Third, the unit discharge decreases with time after t > 3,600 s according
to � = (1 −�)/β� (β−1)/β or

t = tr + te
(ie L − q)

3(ie L)1/3q2/3
= 3,600 s + 682 s (8.54 × 10−4 − q)

3(8.54 × 10−4)1/3q2/3
.

The falling limb of the hydrograph is thus obtained from substituting values
of discharge, 0 < q < 8.54 × 10−4, into this equation to calculate the time t at
which the discharge will occur.

During complete equilibrium, the maximum flow depth, velocity, shear stress,
and Froude number are obtained from Eqs. (3.11):

h =
(q

α

)1/β
=

(
8.54 × 10−4

7,848

)1/3

= 4.8 mm,

ū = α
(q

α

) β−1
β = 7,848

(
8.54 × 10−4

7,848

)2/3

= 0.18 m/s,

τ0 = γ hS = 9,810 N

m3
× 4.8 × 10−3 m × 0.2 = 9.4 Pa,

Fr = ū√
gh

= 0.18√
9.81 × 4.8 × 10−3

= 0.83.

3.5.4 Snowmelt runoff

Snowmelt runoff is a complex topic that we can analyze by using a complete
radiation budget. Approximations like the degree-day method are often used for
simplicity. As an example, hourly snowmelt-runoff discharge data from a small
experimental plot in Canada were available for comparisons with climatological
data (Julien and Frenette, 1986). Cumulative snowmelt hs , in meters, of equiva-
lent water content was successfully correlated to three factors (see Fig. 3.20):
(1) the cumulative number of degree days Dd in degrees Celsius times days,
(2) cumulative time ta in hours when the air temperature is above 0 ◦C, and
(3) cumulative time of snowmelt, t f , in hours measured from the experimental
plot

h p = 7.29 × 10−3 D1.2
d , (3.16a)

hs = 4.44 × 10−9t3.11
a , (3.16b)

hs = 6.15 × 10−8t2.7
f . (3.16c)
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Equation (3.16c) should be given physical preference, but meteorological
records may be available to use only Eqs. (3.16a) and (3.16b). The first derivative
of Eq. (3.16c) shows that the mean runoff discharge increases with the snowmelt
time. The cumulative distribution functions F(q f ) of the hourly runoff intensity
q f measured from this experimental plot are shown in Fig. 3.21. The field
measurements fit an exponential probability density function reasonably well,
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which can be written as

F(i f ) =
∫ i f

0
p(i f )di f =

∫ i f

0
λ f e −λ f i f di f = 1 − e −λ f i f . (3.17)

The snowmelt intensity ī f = 1/λ f increases as the melting period progresses.
The unit discharge from snowmelt runoff can be calculated from q f = i f L .
The average snowmelt rate ī f can be estimated by dhs/dt f from Eq. (3.16c).

3.6 Upland-erosion losses

Water is the most widespread agent of erosion. Upland erosion by water can be
classified into sheet erosion and rill erosion. Sheet erosion is the detachment of
land surface material by raindrop impact and thawing of frozen grounds and its
subsequent removal by sheet flow.

The surface-erosion process begins when raindrops hit the ground and detach
soil particles by splash. The KE released by raindrop impact on the ground is

10
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  )2
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Figure 3.22. Shear stress under raindrop
impact (after Hartley and Julien, 1992).

sufficiently large to break the bonds
between soil particles. The character-
istics of raindrop splash depend on
raindrop size and sheet-flow depth;
a crown-shaped crater forms a few
milliseconds after impact. The impact
shear stress can be as large as 100
times the base shear stress from shal-
low sheet flow. For the example
shown in Fig. 3.22, Hartley and Julien
(1992) measured shear stress in ex-
cess of 10 Pa. This far exceeds the

critical shear stress of 2.5 N/m2 for cohesive soils. In general, the effect of
raindrop impact can be neglected when the sheet-flow depth is larger than three
times the raindrop size.

The transport capacity of shallow overland flow, usually called sheet flow,
increases with field slope and unit-flow discharge. As sheet flow is concentrated
and the unit discharge increases, the increased sediment-transport capacity
scours microchannels called rills. Rill erosion is the removal of soil by concen-
trated sheet flow. Rills are small enough to be removed by normal tillage.

Soil particles detached by raindrop impact are transported downstream by
runoff, and the unit sediment discharge on bare soils is a power function of
surface slope S, unit discharge q , and rainfall intensity i . Julien and Simons
(1985) provided a quantitative evaluation of the exponents of several sediment-
transport equations for sheet erosion. For sandy soils, it was found that the
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following equation can be used:

qs
∼= 25,500 S1.66 q2.035, (3.18) �

where qs is the unit sediment discharge from sheet and rill erosion in metric
ton/m s, S is the slope, and q is the unit discharge in square meters per second.
It is appropriate to note that the exponent of discharge is greater than unity and
therefore rills are likely to form owing to the discussion followed in the first
chapter of this book. The foregoing analysis of upland erosion considers the
analysis of a single storm (Subsection 3.6.1), followed by the expected value of
soil erosion from a single storm (Subsection 3.6.2) and the universal soil-loss
equation (Subsection 3.6.3).

3.6.1 Soil loss from a single event

Upland erosion by overland flow during a single event of constant excess-rainfall
intensity ie and duration tr is sketched in Fig. 3.23. Because the sediment dis-
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Figure 3.23. Sketches of (a) hyeto-
graph, (b) hydrograph, and (c) sedi-
ment graph.

charge is a power function of the runoff
discharge, the characteristics of the sed-
iment discharge follow the shape of the
runoff hydrograph. We obtain, in dimen-
sionless form, the total soil mass eroded
per unit width, φ, by integrating the sed-
iment discharge, qs/ρν, over the dimen-
sionless runoff period t∗ = t/t̄r :

φs =
∫ ∞

0

qs

ρν
d(t∗) =

(
1

ρν t̄r

)∫ ∞

0
qsdt.

(3.19)

The eroded soil mass from a single storm
ms in metric tons is given by

ms = W0

∫ ∞

0
qsdt = W0ρν t̄rφs, (3.20)

where W0 is the plane width in meters, ρ
is the mass density of water in kilograms
per cubic meter, ν is the kinematic vis-
cosity of water in square meters per sec-
ond, tr is the average rainfall duration in
seconds, and φs is a dimensionless term,
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determined in the next paragraph, that depends on the type of hydrograph, i.e.,
partial or complete hydrograph.

For a given constant excess-rainfall intensity ie over a plane surface of slope
S, Julien (1982) integrated Eq. (3.19) and obtained exact analytical solutions
as functions of λr = tr/te for a complete hydrograph φc when λr > 1 and for a
partial-equilibrium hydrograph φp when λr < 1, as follows:

φc = 25,500

ρν t̄r
S1.66 L2 i2

e tr

(
1 − 9

14λr

)
, (3.21)

φp = 25,500

ρν t̄r
S1.66 L2 i2

e tr

(
λ3

r

2
− 2λ6

r

7

)
(3.22)

Simplifications arise from the fact that the erosion rates in Eq. (3.22) become

φ

1

(a) Erosion during one storm event

(b) Joint probability density function of
      the duration intensity parameters of
      several storms
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Figure 3.24. Sketch of expected val-
ues of soil erosion (after Julien,
1982).

very small for short storms (λr < 1). Also,
the erosion rates for complete-equilibrium
hydrographs [Eq. (3.21)] become inde-
pendent of λr and increase linearly with
rainfall duration tr when λ is large.

3.6.2 Expected soil loss

The expected value of soil erosion from
one storm of unknown duration and in-
tensity is determined with the exponen-
tial probability density functions of rain-
fall duration and intensity. From the
exponential distributions of rainfall dura-
tion and intensity described in Eqs. (3.1)
and (3.3), the expected value of soil ero-
sion by one storm, φ̄s , is given as sketched
in Fig. 3.24:

φ̄s =
∫ ∞

0

∫ ∞

0
φe −t∗

r e −i∗
d(t∗

r ) d(i∗),

(3.23)

where t̄r is the average storm duration, ī
is the average storm intensity, t∗

r = tr/t̄r ,
and i∗ = i/ī . This integral must be divided into two parts, as indicated by
Eqs. (3.21) and (3.22), which are valid when tr > te and tr ≤ te, respectively.
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After defining t∗
e = te/t̄r , we obtain

φ̄s =
∫ ∞

0

∫ t∗
e

0
φpe −t∗

r e−i∗
d(t∗

r )d(i∗) +
∫ ∞

0

∫ ∞

t∗
e

φce −t∗
r e−i∗

d(t∗
r )d(i∗).

(3.24)

The functions φp and φc are given by Eqs. (3.21) and (3.22). The exact
analytical integration of Eq. (3.23) was obtained by Julien (1982) and Julien
and Frenette (1985). The following relation is an approximate solution:

φ̄s
∼= 3.4 × 105

ρ ν
S1.66 L2 ī2

e K̂ Ĉ P̂, (3.25)

where K̂ , Ĉ , and P̂ are the universal soil-loss equation (USLE) coefficients
defined in Subsection 3.6.3.

In regions where infiltration is significant, the expected soil-erosion loss from
a single storm m̄s is multiplied by the runoff coefficient Cr , and the excess-
rainfall intensity ie is approximated by ī out, or

m̄s = W0 ρ ν t̄r φ̄s
∼= W0 3.4 × 105 S1.66 L2 Cr ī2 t̄r K̂ Ĉ P̂. (3.26)

The expected amount of soil eroded during a given period of time, e.g.,
1 month, is equal to the product of the expected value of soil erosion for one
rainfall event m̄s and the mean number of events ν̄ during that period.

A practical approximation for the expected value of the soil loss in metric
tons during a period with an average of ν̄ storms is thus

Etons
∼= 3.4 × 105 ν̄ W0 S1.66 Cr (ī L)2 t̄r K̂ Ĉ P̂, (3.27) �

where Etons is the expected soil loss in metric tons on a rectangular plane of
width W in meters and length L in meters, the average rainfall duration t̄r is in
seconds and the average rainfall intensity ī is in meters per second, the number
of storms is ν̄, the slope S is in meters per meter, the runoff coefficient is Cr ,
and the USLE parameters are K̂ , Ĉ , and P̂ , which are discussed in the next
subsection. The advantage of this formulation is that the unit discharge q = ī L
can be replaced with snowmelt-runoff discharge for the simulation of erosion
losses in cold regions.

3.6.3 Universal soil-loss equation

The Universal Soil Loss Equation (USLE) was designed to predict the annual
average soil-erosion losses from field areas under specified cropping and
management systems. The USLE computes the soil loss Ê at a given site as a
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product of six major factors:

Ê = R̂ K̂ L̂ ŜĈ P̂, (3.28) ��

where Ê is the soil loss per unit area normally in tons per acre, R̂ is the rainfall-
erosivity factor, K̂ is the soil-erodibility factor, usually in tons per acre, L̂ is
the field-length factor normalized to a plot length of 72.6 ft, Ŝ is the field-slope
factor normalized to a field slope of 9%, Ĉ is the cropping–management factor
normalized to a tilled area with continuous fallow, and P̂ is the conservation-
practice factor normalized to straight-row farming up and down the slope.

The rainfall-erodibility factor R̂ can be evaluated for each storm (summed
over hours) from R̂ = 0.01

∑
i(916 + 331 log i), where the summation is per-

formed over the time increments of the storm, and i is the rainfall intensity
in inches per hour. Soil-erosion losses from single storms strongly correlate
with the maximum 30-min rainfall intensity. The annual rainfall-erosion index
ranges from 0 to 600 in the United States.

The soil-erodibility factor K̂ describes the inherent erodibility of the soil
expressed in the same units as those of the annual erosion losses, tons per acre.
Numerous factors control the erodibility of cohesive soils such as grain-size
distribution, texture, permeability, and organic content. Typical values of the
factor K̂ relate to the general triangular soil classification shown in Fig. 3.13.
For each soil type, approximate values of K̂ can be found in Table 3.4, given
the soil type and the percentage of organic matter.

The slope-length-steepness factor L̂ Ŝ is a topographic factor relating erosion
losses from a field of given slope and length when compared with soil losses

Table 3.4. Soil erodibility factor K̂ in tons/acre
(after Schwab et al., 1981)

Organic Matter Content
(%)

Textural Class 0.5 2

Fine sand 0.16 0.14
Very fine sand 0.42 0.36
Loamy sand 0.12 0.10
Loamy very fine sand 0.44 0.38
Sandy loam 0.27 0.24
Very fine sandy loam 0.47 0.41
Silt loam 0.48 0.42
Clay loam 0.28 0.25
Silty clay loam 0.37 0.32
Silty clay 0.25 0.23
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Figure 3.25. Slope-length-steepness factor of the USLE (after Wischmeier
and Smith, 1978).

of a standard plot 72.6 ft long inclined at a 9% slope. The values of L̂ Ŝ are
plotted in Fig. 3.25, with the length and the field slope given.

The cropping–management factor Ĉ for bare soils is taken as a standard value
equal to unity. The factor Ĉ accounts for soils under different cropping and
management combinations such as different vegetation, canopy during growth
stage, before and after harvesting, crop residues, mulching, fertilizing, and crop
sequence. Typical values of Ĉ are given in Tables 3.5 for forest (Table 3.5a),
pasture, rangeland, and idle land (Table 3.5b), cropland (Table 3.5c), and
construction slopes (Table 3.5d). Area-averaged values of Ĉ can be used when
several vegetation types cover a given area.

Table 3.5a. Cropping–management factor Ĉ for forest (after
Wischmeier and Smith, 1978)

Percentage of area covered by Percentage of area covered
canopy of trees and by duff at least

undergrowth 2 in. deep Factor Ĉ

100–75 100–90 0.0001–0.001
70–45 85–75 0.002–0.004
40–20 70–40 0.003–0.009
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Table 3.5c. Cropping–management
factor Ĉ for cropland (approximate
values from Wischmeier and Smith,
1978)

Tilled continuous fallow 1.0
Rough fallow 0.30–0.80
Conventional seed bed 0.50–0.90
No tillage 0.05–0.25
Full canopy 0.10–0.20
Residues left on the field 0.10–0.50

Table 3.5d. Cropping–management factor Ĉ
for construction slopes (modified after
Wischmeier and Smith, 1978)

Mulch rate
Type of mulch (tons/acre) Factor Ĉ

Straw 1.0–2.0 0.06–0.20
Crushed stone 1/4 to 1.5 in. 135 0.05

240 0.02
7 0.08

Wood chips 12 0.05
25 0.02

Table 3.6. Conservation-practice factor P̂ for
contouring, strip-cropping, and terracing (after
Wischmeier and Smith, 1978)

P value

Terracing
Land slope Farming on Contour
(percent) contour strip-crop a b

2–7 0.50 0.25 0.50 0.10
8–12 0.60 0.30 0.60 0.12

13–18 0.80 0.40 0.80 0.16
19–24 0.90 0.45 0.90 0.18

a For erosion-control planning on farmland.
b For prediction of contribution to off-field sediment load.
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The conservation-practice factor P equals one for downslope rows and typical
values for contouring, strip-cropping, and terracing are given in Table 3.6.
Contour practices are most effective on slopes of less than 12%, in which case
P̂ can be as low as 0.5. Contouring does not reduce erosion losses at slopes
exceeding 24%. Strip-cropping and terracing reduce erosion significantly on
slopes of less than 12%.

Example 3.5 Application to soil losses on a small watershed. Consider
a watershed area covering 600 acres (1 acre = 4,047 m2) above a proposed
floodwater-retarding structure. Compute the annual soil-erosion loss given
the conditions shown in Fig. E.3.5.1 in an area where the rainfall erosivity is
R̂ = 185.

Pasture
170 acres
Silt loam
200 ft long at 8%

Cropland
280 acres
Silt loam
200 ft long at 8%

Forest
150 acres
Silt loam
100 ft long at 12%

1 hectare = 2.5 acres
         1 m = 3.28 ft

Figure E.3.5.1. Example of soil-loss
calculation.

Cropland covers 280 acres of contin-
uous corn with residues left on the field,
cultivated up and down an 8% slope that
is 200 ft long on a silt loam. The rainfall
erosivity R̂ = 185 and the soil-erodibility
factor K̂ ∼= 0.46 for a silt loam in
Table 3.4 the topography factor L̂ Ŝ = 1.4
from Fig. 3.25 with a length of 200 ft
at an 8% slope, the cropping–manage-
ment factor Ĉ ∼= 0.4 for continuous cul-
tivation and P̂ = 1 for upslope and
downslope practices. The annual soil loss
is Ê = 185 × 0.46 × 1.4 × 0.4 = 47 tons
per acre over 280 cropland acres.

Pastureland covers 170 acres, half of
which has a canopy cover of short brush

(0.5-m fall height), and 80% of the surface is covered by grass and grasslike
plants, the soil is a silt loam, and the slopes at 8% are 200 ft long. The parameters
are R̂ = 185, K̂ = 0.46, L̂ Ŝ = 1.4, Ĉ = 0.012 from Table 3.5b, and P̂ = 1. The
annual soil loss is 1.4 tons per acre for 170 acres.

Finally, forestland covers 150 acres, 30% of the area has tree canopy, and
50% of the surface is covered by litter. Silt loam slopes are 100 ft long at a
12% slope. The parameters are R̂ = 185, K̂ = 0.46, L̂ Ŝ = 1.8 from Fig. 3.25,
and Ĉ = 0.009 from Table 3.5a. The annual soil loss Ê = 185 × 0.46 × 1.8 ×
0.009 = 1.37 tons/acre for these 150 acres. The total soil-erosion loss on
this watershed equals 13,600 tons/yr (47 tons/acre × 280 acres + 1.4 tons/acre ×
170 acres + 1.37 tons/acre × 150 acres).
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3.7 Sediment source and yield

This section on sediment source and sediment yield from watersheds first covers
the soil-erosion losses (Subsection 3.7.1) followed by a method to estimate the
sediment yield from watersheds (Subsection 3.7.2).

3.7.1 Soil-erosion losses from large watersheds

Annual erosion losses can be calculated on watersheds. It is generally found
that the topographic factors Ŝ and the land-use factor Ĉ determine most of the
spatial variability in soil-erosion losses. Comparatively, the rainfall-erodibility
and the soil-erosivity parameters remain relatively constant at the basin scale.
The spatial variability in the factors Ŝ and Ĉ thus requires particular attention in
investigations of soil-erosion mapping. When using Geographical Information
System (GISs) to delineate the surface slope from raster-based data, the grid-cell
size influences the slope calculations. In general, the surface slope decreases as
the grid-cell size increases (Molnar and Julien, 1998).

The influence of the grid-cell size on the computation of soil-erosion
rates has been studied to determine whether or not average values of the
USLE parameters can be used instead of values for each pixel. Julien
and Frenette (1987) defined a relative grid-size factor Q∗

e for each matrix
from

Q∗
e = N

[
R̂ K̂ L̂ Ŝ Ĉ P̂

]
∑N

i=1 R̂i K̂ i L̂ i Ŝi Ĉ i P̂ i

, (3.29)

where R̂i denotes the value of parameter R̂ of the USLE on pixel i and R̂ is the
average value of R̂i over a large area.

The mean value of the relative correction factor Q̄∗
e shown in Fig. 3.26

gradually decreases as the number of pixels, N , increases. This can be attributed
to the fact that calculated slopes decrease as grid size increases. The use of
average values of USLE parameters tends to underestimate soil-erosion losses
when applied to large areas.

When applied to watersheds, the values of the correction factor have been
shown to vary primarily with drainage areas, as in Fig. 3.27. As a result, the
average value of the watershed-size correction factor Q̄e can be written as a
function of the drainage area At in square kilometers as

Q̄e = 0.8 A−0.137
t , At > 0.125 km2. (3.30) �
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Figure 3.26. Erosion ratio vs. number of cells (after Julien, 1979).
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The correction factor Q̄e remains constant (Q̄e = Q̄es) when At < 0.125 km2,

which indicates that the soil-loss equation can be applied to small areas without
bias. As the drainage area increases beyond At > 0.125 km2, the correction
factor Q̄e decreases gradually, as shown in Fig. 3.27.

Consequently, the annual erosion losses from a large watershed can be es-
timated from the erosion Ê calculated with watershed-averaged values of the
USLE coefficients divided by the correction factor Q̄e:

Ê ∼= Ê

Qe
. (3.31)

This relationship is quite practical because quick estimates of the gross ero-
sion on large watersheds can be obtained from the average characteristics of
the watershed. Calculations can be based on either the USLE [Relation (3.28)]
or on the surface-runoff parameters in Eq. 3.26. In this case, the watershed
slope is calculated from S̄ = �H/1,000

√
At , where �H is the elevation dif-

ference between the highest and the lowest elevation on the watershed and
At is the watershed drainage area in square kilometers. The runoff width
W0 = 106 At/L , with At in square kilometers and the average runoff length L
in meters.

We may also consider the mean precipitation h̄ = ν̄ t̄ r ī during the given
period to reduce Eq. (3.27) to the following relation for annual erosion losses
on large watersheds:

Ê tons � 3.4 × 1011

Q̄e
At L̄ S̄1.66Cr h̄ ī K̂ Ĉ P̂, (3.32) �

where Ê is the erosion loss in tons, At is the drainage area in square kilo-
meters, L̄ is the average runoff length in upland areas in meters (∼100 m),
S̄ = �H/1,000

√
At , �H is the elevation difference in meters, h̄ is the average

precipitation in meters during the period considered, Cr is the runoff coefficient,

ī is the average rainfall intensity in meters per second, and K̂ , Ĉ, and P̂ are the
watershed-averaged values of the USLE parameters. As shown in Fig. 3.27, the
variability around the mean value is approximately a factor of 2. The erosion
loss is expected to range between 50% and 200% of the value estimated from
relation (3.31).

3.7.2 Sediment yield from large watersheds

The sum of upland and channel erosion in a watershed amounts to the gross
erosion. All eroded particles in a watershed, however, do no reach the watershed
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Figure 3.28. Sediment–delivery ratio (modified after Boyce, 1975).

outlet. Particles detached from bare upland areas are trapped in vegetated areas
farther downstream. Some material carried in natural streams is deposited in the
channels to cause channel aggradation. Some material deposits on the floodplain
during major floods and large amounts are permanently trapped in lakes and
reservoirs. The total amount of sediment that is delivered to the outlet of the
watershed is known as the sediment yield.

The sediment–delivery ratio is defined as the ratio between the sediment
yield and the gross erosion on a watershed. The ability of a channel network
to convey eroded material to the outlet depends on drainage area, watershed
slope, drainage density, and runoff. It is found from Fig. 3.28 that the sediment–
delivery ratio decreases primarily with the size of the drainage area. The sedi-
ment yield Y from a large watershed can thus be estimated from the following
procedure:

Y ∼= SDR
At

Q̄e
3.4 × 1011 L̄ S̄1.66 Cr h̄r i K̂ Ĉ P̂, (3.33) �

where SDR is the sediment–delivery ratio from Fig. 3.28, At is the drainage area
in square kilometers, Q̄e is the watershed-size correction factor from Fig. 3.27,
S̄ = �H/1,000

√
At with�H as the elevation difference in meters between the

highest and the lowest elevation on the watershed, h̄r in meters is the average
precipitation during the period considered, L̄ is the average runoff length in
meters, Cr is the runoff coefficient, ī is the average rainfall intensity in meters
per second, and K̄ , C̄ , and P̄ are the watershed average values of the USLE
parameters. Finally, the specific degradation of a watershed is obtained from the
sediment yield divided by the drainage area. A calculation example is presented
in Case Study 3.2.
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Case Study 3.2 Soil losses of the Chaudière watershed, Canada. The
Chaudière watershed covers At = 5,830 km2, as measured from topographic
maps (1:250,000). The average cropping–management factor, Ĉ ∼= 0.35, is
determined from topographic maps (1:50,000) and from forest and agricul-
tural maps (1:250,000). The average soil-erodibility parameters are K̂ ∼= 0.17
and P̂ ∼= 1.0. The characteristic slope is computed from the relationship S̄ =
�H/1, 000

√
At = 0.0156, in which�H = 1190 m is the elevation difference

in meters between the highest and the lowest point on the watershed. The runoff
length L̄ is the length of sheet and rill flow on upland areas. Based on topo-
graphical maps and field observations, this length is estimated at 300 ft, or L̄ =
91.4 m, and is assumed constant over the watershed.

The data from 22 meteorological stations on the Chaudière watershed and
from hourly data summaries (1943–1970) were analyzed to conclude that the
mean annual rainfall precipitation is ∼770 mm and the runoff coefficient is
∼0.7. Assume that the Figs. 3.11 and 3.12 are representative of rainfall condi-
tion, ī = 1 × 10−6 m/s. The average number of rainstorms is ν̄s = 51/yr, and
the average storm duration is t̄ r = 1.5 × 104 s.

We can estimate the expected value of annual erosion loss from this watershed
from the average watershed characteristics by using relation (3.31) with Q̄e

∼=
0.24 from Fig. 3.27 with At = 5,830 km2, E = (Ē tons/Qe) ∼= [(3.4 × 1011)/
0.24] × 5,830 × 91.4 m × (0.0156)1.66 × 0.7 × 0.77 m × 1 × 10−6 m/s ×
0.17 × 0.35 × 1 � 2.4 × 106 tons/yr.
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Figure CS.3.2.1. Sediment yield of the
Chaudière watershed (after Julien and
Frenette, 1985).

The mean annual sediment yield
from this watershed is estimated with
the sediment–delivery ratio SDR

∼=
0.03 from Fig. 3.28: Y ∼= E × SDR =
2.4 × 106 × 0.03 = 720 ktons/yr. The
mean annual sediment yield meas-
ured from 1968–1976 is ∼363 ktons/
yr. The reader is referred to Julien and
Frenette (1986) for a detailed anal-
ysis of sediment yield from snow-
melt on this watershed. Comparison
with the monthly sediment yield
in Fig. CS.3.2.1 shows reasonable

agreement between measured and calculated sediment yields on a monthly
basis.
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�Exercise 3.1

Combine the equations h = i te, q = i L , and q = αhβ to derive the expressions
for the time to equilibrium in Table 3.3.

��Exercise 3.2

Combine Eqs. (3.8b) and (3.8c) to derive the relationship between the Darcy–
Weisbach friction factor f and the Reynolds number Re in Eq. (3.12b).

�Computer Problem 3.1

Find a sample of rainfall duration, intensity, or rainfall depth and compare with
the exponential distribution as per the method shown in Example 3.1.

��Problem 3.1

Repeat the infiltration calculations of Example 3.3 for a silty clay. Plot the
hyetograph, infiltration rate, detention storage, and excess rainfall as functions
of time from Table E.3.3.1. Compare the results for silty loam vs. silty clay.

��Problem 3.2

Consider a 1-h storm at 1-in./h rainfall intensity on a 100-m-long plot at a
5% slope. Determine the maximum flow depth, flow velocity, Froude number,
and shear stress if the surface is rough and impervious. (Hint: Determine the
appropriate resistance equation.) Also calculate and plot the surface-runoff
hydrograph.

Problem 3.3

Estimate the time to equilibrium of the largest possible 3-h storm on a rectan-
gular farmland covering 35 acres. Estimate the infiltration on bare soil for silty
clay loam.

Problem 3.4

Calculate the average rate of snowmelt in meters per second, from the derivative
of Eq. (3.16c) after a snowmelt period of 100 h. Calculate λ2 f and compare
with the results shown in Fig. 3.21.
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��Problem 3.5

From the data in Table 1.1, plot on a log–log scale the water discharge, sediment
discharge, and concentration as functions of drainage area.

�Problem 3.6

From the expression for sediment yield [Relation (3.33)] and the mean annual
flow, Cr At h̄, determine the expression for mean sediment concentration.



4

Steady flow in rivers

Steady flow refers to flow conditions that do not change with time. Steady flows
can be either uniform when the conditions do not change with space or nonuni-
form when flow conditions change with space. Steady flow in rivers (Section 4.1)
includes description of at-a-station hydraulic geometry, followed by a descrip-
tion of steady-uniform flow and resistance to flow. Steady-nonuniform flows
(Section 4.2) include an analysis of the momentum equations followed by
rapidly varied flow and gradually varied flow. Sediment transport in rivers
(Section 4.3) includes a simple description for sediment transport in steady-
uniform flow followed with calculations of aggradation and degradation in
river reaches.

4.1 Steady river flow

Drainage networks have been studied by geomorphologists and topologists. In
general, topologists search mathematical ranking and order among subwater-
sheds without specific reference to physical entities. The results of several years
of experimental studies from the Rainfall Erosion Facility at Colorado State
University by Schumm et al. (1987) attempted to relate basin morphology and
sediment yield. Although considerable sediment-yield variability is assumed
to result from climatic fluctuations and land-use changes, the experiments
show that sediment yield is highly variable under steady rainfall conditions.
The complex response of channel network evolution seems to be character-
ized by an exponential decrease in sediment yield as the channel network
develops.

Rivers follow the low points along the watershed topographic profiles. With
very few exceptions in arid areas, the lowest point of a watershed is located at the
river outlet. A watershed map usually shows the hydrographic area and drainage
network with lakes, reservoirs, and perhaps also gauging stations, counties,
states, and/or countries. The drainage network of a watershed implies a dis-
continuous increase in drainage area and discharge at river confluences. Except

79
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Figure 4.1. Longitudinal profile of the Mississippi River.

for river captures and artificial changes like transmountain water diversions,
the drainage network of natural channels does not change significantly with
time.

The river length is usually measured in the downstream direction from the
uppermost river elevation. Left and right banks are usually referenced to a
downstream-looking direction. A longitudinal profile is quite useful to detect
bedrock controls, headcuts, nickpoints, and alluvial reaches. The approximate
slope of alluvial reaches can be estimated from gradual changes in elevation
over long distances. The valley slope corresponds to the floodplain elevation
drop over the valley length. The channel slope corresponds to the water-surface
elevation drop over the channel length. Channel and valley slopes are defined as
positive although the elevation decreases in the positive-downstream direction.
The river sinuosity is then defined as the ratio of the channel length to the valley
length between two points located on the river. Examples of river reaches and
longitudinal profiles are shown in Fig. 4.1 for an alluvial river, and Figs. 4.2 and
4.3 for semialluvial rivers. The longitudinal profile of an alluvial river reach is
gradual. Bedrock control in semialluvial river reaches causes discontinuities in
longitudinal profiles, bed-material sizes, and flow conditions.

At engineering time scales, it can be considered that the channel character-
istics can change significantly during extreme flood events or after active
tectonic and volcanic periods. River reaches can be examined one by one to
determine their physical characteristics, such as length, sinuosity, width, depth,
cross-sectional geometry, surface roughness, and hydraulic-resistance factor.
The straightening of river reaches through meander cutoffs can change the
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Figure 4.2. Longitudinal profile of the Matamek River (after Frenette and
Julien, 1980).

length of rivers and their corresponding sinuosity and slope. River mileage is
often measured downstream from a major river confluence or upstream from the
mouth of a river. It is important to consider that the exact location of these ref-
erence points usually changes over the years. The following discussion focuses
on at-a-station hydraulic geometry (Subsection 4.1.1) and on steady-uniform
flow in rivers (Subsection 4.1.2).

4.1.1 At-a-station hydraulic geometry

At a given station along the river, a cross-section profile can be drawn in the
direction perpendicular to the main flow direction. Cross sections that are not
measured perpendicular to the flow direction will appear wider than reality.
The cross-section profile shows the flow-depth distribution across the river
as well as the elevation of the banks including the floodplain. It is important
to reference the elevation to a benchmark that provides an exact horizontal-
reference-plane elevation such as the mean sea level. Elevation scales are usually
linked to the geodetic reference elevation [above mean sea level (ASL)] or the
National Geodetic Vertical Distance (NGVD), which are both absolute vertical
elevations. In some cases, the elevation is given with respect to a low-water
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Figure 4.3. Morphology and bed material of the Matamek River (after Frenette
and Julien, 1980).

reference plane (LWRP), which is the water-surface elevation in the river that
is exceeded 97% of the time. Note that the LWRP is not horizontal, but slopes
with the river. An example of a cross-sectional profile is given in Fig. 4.4. In this
particular case, the downstream bedrock control retains water in the channel
when the discharge reduces to zero.

Indications of the substrate material are given and the cross-sectional geo-
metry extends onto the floodplain, where sketchy information on vegetation in
terms of deciduous and coniferous trees, bushes and grasses is provided. These
attributes provide basic information on aquatic habitat and expected floodplain
roughness for runoff simulations during floods.

From this cross-sectional profile, the following geometrical parameters can be
determined as functions of stage: (1) top-channel width W, (2) wetted perimeter
P, (3) cross-sectional area A, (4) mean flow depth h̄ = A/W , and (5) hydraulic
radius Rh = A/P . These parameters describe the geometry of a cross section.
It is important to consider that the mean flow depth is different from the stage.
An increase/decrease in mean flow depth does not necessarily correspond to
the same increase/decrease in stage.
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Figure 4.4. Cross section of the Matamek River (after Frenette and Julien,
1980).

Figure 4.5. Matamek River: (a) vertical velocity profile and (b) transversal
velocity profile (after Frenette and Julien, 1980).

The concept of at-a-station hydraulic geometry stems from velocity mea-
surements along a cross section. An example of a velocity profile along one
vertical of a cross section at a given stage provides sufficient measurements
for the determination of the depth-averaged flow velocity v̄ [Fig. 4.5(a)].
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The depth-averaged velocity is normally obtained from a measured velocity
profile.

Total discharge measurements are obtained from evenly spaced depth hi

and depth-averaged velocity v̄i measurements along the cross section. The
total cross-sectional area A is the sum of incremental areas ai , A = ∑

i ai =∑
i �Wi hi , where �W is the spacing between verticals of a cross section.

The total discharge is Q = ∑
i ai v̄i , where v̄i is the depth-averaged flow ve-

locity normal to the incremental area. The cross-sectional average velocity is
V = Q/A. Figure 4.5(b) shows a cross-sectional velocity profile with evenly
spaced depth-averaged flow velocities along the cross-sectional profiles. At this
cross section, the following hydraulic geometry is found: top width W = 280 ft,
wetted perimeter P = 280.5 ft, cross-sectional area A = 684 ft2, mean flow
depth h̄ = 2.44 ft, and hydraulic radius Rh = A/P = 2.43 ft. The discharge is
Q = 210 ft3/s, and the cross-sectional average velocity V = 0.31 ft/s = 9.4 cm/s.
Note that it is common to find that the wetted perimeter is close to the top width,
P ∼= W , and that the hydraulic radius is close to the mean flow depth, Rh

∼= h̄.
A flow-rating curve, or stage–discharge relationship, displays the change in

stage with discharge. In channels with bedrock control, the stage–discharge
relationship is unique and well defined, as shown in Fig. 4.6(a). In large al-
luvial rivers, the stage–discharge relationship may shift over time because
of a combination of processes including (1) bed aggradation or degradation,
(2) changes in bedform configuration, or (3) loop-rating effects that are due
to dynamic flood routing. The example of the Mississippi River is shown in
Fig. 4.6(b).

Specific-gauge records indicate the water level at a given flow discharge.
The analysis of specific-gauge records can determine long-term aggradation or
degradation trends of a river. For instance, Fig. 4.7(a) shows the specific-gauge
records of the Atchafalaya River between Simmesport and Morgan City from
1950 to 1997. It clearly shows that the river has been gradually degrading bet-
ween Simmesport and Chicot Pass and aggrading downstream of Chicot Pass.

In some alluvial rivers, water temperature can affect the specific-gauge
records. For the example of the Mississippi River, in Fig. 4.7(b), the water
temperature at a fixed discharge of 106 ft3/s can alter the stage by as much as
5 ft. Higher stages correspond to warm water temperature.

The analysis of hydraulic-geometry relationships becomes simple once the
flow-rating curve is known. At a given discharge, the mean flow depth is ob-
tained from the flow-rating curve and the corresponding width, hydraulic radius,
and cross-sectional area are obtained from the cross-sectional profiles.

This process can be repeated at various stages or discharges to define
the at-a-station hydraulic-geometry relationships. The rate at which the
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Figure 4.6. Stage–discharge relationship: (a) Matamek River and (b)
Atchafalaya River.

hydraulic-geometry parameters change with discharge is quite important in
defining at-a-station hydraulic geometry relationships. The example of the
Matamek River is illustrated in Figs. 4.8. The analysis of 10 cross sections
over a 1.4-km reach displays the local variability in hydraulic-geometry rela-
tionships of a nearly straight river. The wetted perimeter, or river width, varies
by a factor of 2 within this reach; the rate of increase with discharge is fairly
constant. When the hydraulic-geometry parameters are plotted vs. discharge on
a log–log scale, the gradient of the profiles gives the exponent b of the rela-
tionship P = aQb.

For instance, the wetted perimeter in Fig. 4.8(a) can be approximated by
P ∼= 126 Q0.1, with Q in cubic feet per second and P in feet. Note that the
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Figure 4.7. Specific-gauge records: (a) Atchafalaya River and (b) temperature
effect (U.S. Army Corps of Engineers, 1999).

exponent is very small, which means that both the wetted perimeter and the
river-surface width do not vary significantly with discharge. In fact, for many
practical applications, the use of a rectangular cross section is a fairly good
approximation. Beyond bankfull flows, the channel width suddenly increases,
which alters calculations of mean flow depth and hydraulic radius.

Figure 4.8(b) shows the cross-section average flow depth vs. discharge at
several cross sections of the same reach. Except at very low flows, the slope of the
lines on this diagram indicates that the mean flow depth increases approximately
as h̄ = 0.35 Q0.36 with Q in cubic feet per second and h̄ in feet.



Figure 4.8. At-a-station hydraulic geometry of the Matamek River (after
Frenette and Julien, 1980).
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Figure 4.8. (cont.)

The cross-sectional averaged velocity can be plotted against discharge on
a log–log plot, as shown in Fig. 4.8(c) for the same reach. At a station, the
velocity varies largely with discharge, in this case, V ∼= 0.022 Q0.54.

The definition of volumetric flux requires that the product of width, depth,
and velocity be equal to the discharge. Hence the relationships must satisfy
Q = W h̄V ∼= 126 Q0.1 × 0.36 Q0.36 × 0.022 Q0.54; thus the product of coef-
ficients is 126 × 0.36 × 0.022 = 1 and the sum of exponents is 0.1 + 0.36 +
0.54 = 1.

Typical at-a-station hydraulic-geometry relationships show that changes in
discharge affect primarily the flow velocity and, to a lesser extent, the flow
depth. Unless the discharge exceeds bankfull conditions, the river surface width
is fairly constant except at very low discharges. In some cases, the water-
surface slope of a river may also change with discharge. The example shown
in Fig. 4.8(d) illustrates a slight increase in slope with discharge.

4.1.2 Steady-uniform river flow

Steady-uniform flow implies no change in hydraulic conditions with either
space or time. We easily obtain that ∂Q/∂x = 0, or Q = AV = constant and
∂A/∂t = 0, or A is constant in space and time. Equation of motion (2.27)
reduces to S f = S0 = tan θ ∼= sin θ because of steady flow [(∂V /∂t) = 0] and
uniform flow [(∂h/∂x) = 0 and (∂V /∂x) = 0]. The shear-stress relationship τ0

for uniform flow reduces to

τ0 = γ Rh S0. (4.1)

For steady-uniform flow, shear-stress and resistance relationships can be di-
rectly written as a function of bed slope. With reference to Fig. 4.9, with iden-
tical pressure distributions at the upstream and the downstream cross sections,
the weight component in the downstream x direction is balanced by only the
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Figure 4.9. Equilibrium sketch for a river reach.

bed shear force Fw sin θ = τ0 W dx , which, for wide-rectangular channels with
Fw = γ W hdx, and sin θ ∼= tan θ = S0 at small angles, simply reduces to
τ0 = γ h S0 because S f = S0.

Shear velocity u∗ defines a kinematic substitute for the dynamic bed shear
stress τ0. The identity stems from τ0 = ρu2

∗ or

u∗ =
√
τ0

ρ
= √

gRh S f . (4.2) �

The shear velocity is not a measurable quantity but serves as a scaling pa-
rameter for kinematic-velocity profiles in turbulent boundary layers. The shear
velocity is also often used in sediment-transport studies.

Resistance to flow is evaluated from steady-uniform flow conditions, S f =
S0. Because no shear exists under hydrostatic conditions, the shear stress τ0

is assumed to vary with fluid velocity and, after dimensional considerations, a
dimensionless friction factor f has been defined after the work of Darcy and
Weisbach as

f = 8τ0

ρV 2
= 8gRh S f

V 2
. (4.3) ��

Resistance to flow can thus be described from the Darcy–Weisbach friction
factor f. For wide-rectangular channels, Rh = h, we also easily demonstrate
that S f = f Fr2/8. We may also consider that

√
8/ f = V/u∗. The depth-

averaged flow velocity is then simply obtained as

V =
√

8g

f
R

1/2

h S
1/2

f = C R
1/2

h S
1/2

f , (4.4) ��

where C is the Chézy coefficient. The identity C2 = 8g/ f is always valid, and
it is important to note that f describes flow resistance whereas C describes flow
conveyance. The Chézy coefficient C is a constant as long as f is a constant.
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It has been observed over the years that the Chézy coefficient C or the Darcy–
Weisbach factor f varies with relative submergence and the Manning equation
is a convenient approximation. Total resistance to flow can be described in terms
of the Chézy coefficient C, the Darcy–Weisbach friction factor f, or the Manning
coefficient n. The following identity among these factors has been established:
C ≡ √

(8g/ f ) ≡ (R1/6
h /n) (in S.I. units) ≡ (1.49/n) R1/6

h (in English units).
For steady-uniform flow, S f = S0, in a wide-rectangular channel, Rh = h,

the normal depth hn is obtained after q = V h is substituted into Eq. (4.3):

hn =
(

f q2

8gS0

)1/3

(4.5a) �

or

hn =
(

nq

S1/2
0

)3/5

in S.I. (4.5b) �

The normal depth thus increases with discharge and friction factor but decreases
with increasing slope.

Evaluation of the Darcy–Weisbach friction factor for pipe flows yields three
flow regimes clearly shown in Fig. 4.10. The flow is laminar on smooth sur-
faces when the Reynolds number Re < 2000 and the Darcy–Weisbach friction
factor is inversely proportional to the Reynolds number, f = (kt/Re). The flow
becomes turbulent when Re> 2000 and the surface boundary roughness exerts

Figure 4.10. Resistance-to-flow diagram.
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an influence on resistance to flow. When the flow is hydraulically smooth,
the Darcy–Weisbach friction factor f gradually decreases with the Reynolds
number. When the flow is hydraulically rough, resistance to flow depends on
only the ratio of pipe diameter to surface roughness. For turbulent flows in
rough pipes, the Darcy–Weisbach friction factor f and the Chézy coefficient C
remain constant at any value of the Reynolds number.

The evaluation of the Darcy–Weisbach friction factor in rivers is a complex
matter. The friction factor f varies with fluid viscosity, flow depth, grain size,
bedform configuration, and vegetation. Exact values can be obtained experi-
mentally for field conditions or laboratory conditions representative thereof.

River flows are turbulent, and we essentially need to differentiate between
hydraulically rough versus hydraulically smooth boundaries. We can do this by
comparing the bed-material grain size d50 with the laminar sublayer thickness
δ = 11.6 ν/u∗, where ν is the kinematic viscosity of water and u∗ is the shear
velocity from Eq. (4.2). The order of magnitude for δ corresponds to tenths of
millimeters, that corresponds to sand sizes. When δ > 3 ds , the flow is hydrau-
lically smooth; the flow is hydraulically rough when δ < ds/6.

Resistance to flow in plane bed rivers with bed material finer than sand is
said to be hydraulically smooth:

V

u∗
=

√
8

f
= C√

g
= 5.75 log

(
3.67u∗h

ν

)
, (4.6)

where u∗ = √
τ0/ρ is the shear velocity and ν is the kinematic viscosity of the

fluid.
For hydraulically rough boundaries without bedforms, resistance to flow in

rivers with bed material coarser than sand can be approximated by

V

u∗
= C√

g
=

√
8

f
= 5.75 log

(
12.2Rh

k ′
s

)
, (4.7) �

where k ′
s
∼= 3 d90 or k ′

s
∼= 6.8 d50 can serve as first approximations.

Three equivalent flow-resistance formulations remain commonly used in
river engineering practice: (1) the Chézy coefficient C, (2) the Manning coeffi-
cient n, and (3) the Darcy–Weisbach friction factor f. Both Chézy and Manning
coefficients are dimensional, and the equivalence among the three is simply
stated as

C ≡
√

8g

f
≡ R1/6

h

n
(S.I. units) ≡ 1.49 R1/6

h

n
(English units). (4.8) ��

Typical values for grain resistance are shown in Table 4.1. Both f and n increase
with surface roughness. The Chézy coefficient describes flow conveyance and
decreases with surface roughness.
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Table 4.1. Grain resistance and velocity formulations for turbulent flow over
hydraulically rough plane boundaries (C = C ′and f = f ′)

Formulation Range Resistance parameter Velocitya

Chézy h/ds → ∞ C =
√

8g

f
constant V = C R1/2

h S1/2
f

Manning h/ds > 100
C√

g
∼= a

(
Rh

ds

)1/6
∼= R1/6

h

n
(S.I.) V = 1

n
R2/3

h S1/2
f (S.I.)

n ∼= 0.062 d1/6
50 (d50 in meters)

n ∼= 0.046 d1/6
75 (d75 in meters)

n ∼= 0.038 d1/6
90 (d90 in meters)

Logarithmic
C√

g
=

√
8

f
= 5.75 log

(
12.2 Rh

k′
s

)
V =

(
5.75 log

12.2 Rh

k′
s

)√
gRh Sf

k′
s

∼= 3 d90

k′
s

∼= 3.5 d84

k′
s

∼= 5.2 d65

k′
s

∼= 6.8 d50

a The hydraulic radius Rh = A/P is used, where A is the cross-sectional area, and P is the wetted
perimeter; the friction slope S f is the slope of the energy grade line.

For practical purposes, it is clear from Fig. 4.11 that the logarithmic equation
applies over a wide range of h/d50. As a first approximation, the following can
be used: √

8g

f
= 5.75 log

2h

d50
. (4.9)

Manning’s equation is also found to be applicable. For instance, the rela-
tionship in which n = 0.064 d1/6

50 , with d50 in meters, should be in reasonable
agreement with the field measurement when h/ds >100 and h/ds < 10,000. It
is concluded that Manning’s equation may not applicable in shallow mountain
streams (h < 10 ds) and in very deep sand-bed rivers (h > 10,000 ds).

The logarithmic form of grain resistance in Eq. (4.9) can be transformed
into an equivalent-power form in which the exponent m varies with relative
submergence h/ds :

V

u∗
=

√
8

f ′ = a

(
h

ds

)m

≡ â ln

(
b̂h

ds

)
(4.10) �

under the transformation that imposes the constraint that the value and the first
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Table 4.2. Typical values of resistance coefficients

Darcy-Weisbach Manning Chézy
Boundary type f n C (m1/2/s)

Smooth 0.0056 0.01 118
Plane sand bed 0.0046–0.0078 0.010–0.013 100–130
Sand antidunes 0.0078–0.015 0.013–0.018 72–100
Ripples 0.015–0.042 0.018–0.030 43–72
Sand dunes 0.018–0.076 0.020–0.040 32–65
Gravel bed 0.011–0.042 0.015–0.030 43–86
Cobble bed 0.018–0.057 0.020–0.035 37–65
Boulder bed 0.029–0.076 0.025–0.04 32–52
Vegetation 0.042–0.24 0.03–0.07 18–43

Figure 4.11. Resistance to flow for hydraulically rough rivers.

derivative be identical:

a = â

m

(
ds

h

)m

, (4.11a)

m = 1

ln(b̂h/ds)
. (4.11b)

Vegetation increases resistance to flow, and only crude empirical resistance
coefficients can be obtained. Tables 4.2 provides typical values of resistance
coefficients for various conditions.

Ranges of values for the Manning coefficient n are summarized in Tables 4.2
and 4.3. In the case of hydraulically smooth channels, values of 0.01< n < 0.02
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Table 4.3. Typical bedform characteristics

Sediment Dominant
concentration type of Bedform surface

Bedform Manning n (mg/l) roughness profiles

Lower flow regime
Plane bed 0.014 0 Grain —
Ripples 0.018–0.028 10–200 Form —
Dunes 0.020–0.040 200–3000 Form Out of phase
Washed-out dunes 0.014–0.025 1000–4000 Variable Out of phase

Upper flow regime
Plane bed 0.010–0.013 2000–4000 Grain —
Antidunes 0.010–0.020 2000–5000 Grain In phase
Chutes and pools 0.018–0.035 5000–50000 Variable In phase

are appropriate. In sand-bed channels, the presence of bedforms increases resis-
tance and values of the Manning coefficient n can be as high as 0.05. In gravel-
bed and cobble-bed streams, grain resistance is predominant, with n ∼ d1/6

s ,

as given in Tables 4.1 and 4.2. Other values of the Manning coefficient n are
given in Table 4.3. Example 4.1 explains how to calculate the normal depth
and shear stress in a river. Example 4.2 illustrates how to determine the main
characteristics of channel flows, including shear stress, resistance parameters,
and friction slope, from field measurements of a velocity profile.

Example 4.1 Application to smooth plane bed. Consider a steady-uniform
flow in a 10-m-wide smooth rectangular channel; if the discharge is 10 m3/s and
the slope is 26 cm/km, estimate the friction factor in terms of f and equivalent
C and n and calculate the normal flow depth and the corresponding applied bed
shear stress.

For a very smooth surface, we can consider f ∼= 0.01 from Table 4.1, the
calculated normal flow depth given the unit discharge

q = Q

W
= 10 m3

s 10 m
= 1 m2

s

is

hn =
(

0.01 × 1 m4s2

s2 × 8 × 9.81 m × 26 × 10−5

)1/3

= 0.788 m.

The equivalent resistance parameters C and n are calculated, with the hydraulic



Steady river flow 95

radius given in S.I. units, as

Rh = A

P
= W hn

W + 2hn
= 10 m × 0.788 m

10 m + 2 × 0.788 m
= 0.681 m,

C =
√

8 × 9.81 m

s 2 × 0.01
= 88 m1/2/s,

n = R1/6
h

C
= (0.681 m)1/6

88 m1/2 s
= 0.01 s/m1/3.

The applied bed shear stress for steady-uniform flow S f = S0 is obtained from
Eq. (4.1):

τ0 = γ Rh S f = γ Rh S0 = 9810 N

m3
× 0.681 m × 26 × 10−5

= 1.73 N

m2
= 1.73 Pa.

Example 4.2 Application to a turbulent-velocity profile. Consider the given
measured velocity profile in a 200-ft-wide river in Fig. 4.5(a).

Consider two points, 1 and 2, near the bed,

v1 = u∗
κ

ln
z1

k ′
s

,

v2 = u∗
κ

ln
z2

k ′
s

,

and estimate the following parameters:

(a) shear velocity:

u∗ = κ (v2 − v1)

ln

(
z2

z1

) = 0.4(0.85 − 0.55)ft

ln

(
1.5

0.5

)
s

= 0.11 ft/s = 0.0335 m/s.

(b) boundary shear stress:

τ0 = ρ u2
∗ = 1.92 slug

ft3
(0.11)2 ft2

s2
= 0.023

lb

ft2
= 1.1 Pa.

(c) depth-averaged flow velocity:

V ∼= 0.85 ft/s = 0.26 m/s.

(d) unit discharge:

q = V h = 0.85 ft/s × 3.7 ft = 3.1 ft2/s = 0.292 m2/s.
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(e) hydraulic radius:

Rh = A

P
= W h

W + 2h
= 200 × 3.7 ft2

200 + 2 × 3.7 ft
= 3.56 ft = 1.09 m;

the hydraulic radius Rh = 3.56 ft is close to flow depth 3.7 ft.
(f) Froude number:

Fr = V√
gRh

∼= V√
gh

= 0.85 ft/s√
32.2 × 3.7 ft2

s2

= 0.078.

(g) friction slope from Eq. 4.1:

S f = τ0

γ Rh

∼= τ0

γ h
= 0.023 lb ft3

ft2 62.4 lb × 3.7 ft
= 9.96 × 10−5 ∼= 10 cm

km
.

(h) Darcy–Weisbach friction factor from Eq. 4.3:

f = 8 S f

Fr2 = 8 × 9.96 × 10−5

0.0782
= 0.13.

(i) Manning coefficient from Table 4.1:

n = 1.49

V
R2/3

h S1/2
f = 1.49 ft1/3s

0.85 ft m1/3
(3.7 ft)2/3(9.96 × 10−5)1/2

= 0.042 s/m1/3.

Note that, because of the conversion factor 1.49 ft1/3/m1/3, the value
of n is the same in both S.I. and English units.

(j) Chézy coefficient from Eq. 4.8:

C =
√

8g

f
=

√
8 × 32.2

0.13
= 44.5 ft1/2/s = 24.6 m1/2/s.

Note that the metric value of C is commonly used.
(k) momentum correction factor [Eq. (4.17)] in Subsection 4.2.1:

βm = 1

A V 2
x

∫
A

v2
x dA ∼= 1

hV 2
x

∑
i

v2
xi dhi ,

Note that dhi = 1 ft except for the uppermost velocity measurement

βm
∼= 1

3.7 ft

s2

(0.85)2 ft2
[0.552 + 0.852 + 1.02 + (1.12 × 0.7)]

ft3

s2

= 1.074.
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(l) energy correction factor [Eq. (4.23b)] in Subsection 4.2.2:

αe = 1

AV 3
x

∫
A

v3
x dA ∼= 1

hV 3
x

∑
i

v3
xi dhi ,

αe
∼= 1

3.7 ft

s3

(0.85)3 ft3
[0.553 + 0.853 + 1.03 + (1.13 × 0.7)]

ft4

s3

= 1.194.

Note that αe > βm and that both are greater than unity.

4.2 Steady-nonuniform river flow

Steady-nonuniform flow in rivers implies that the total discharge does not
change with time but can vary in the downstream direction. Mathematically,
steady flow implies that (∂h/∂t) = 0, (∂ V/∂t) = 0, (∂W/∂t) = 0, and
(∂Q/∂t) = 0. In a 1D channel without rainfall, infiltration, and lateral in-
flow, discharge also remains constant in the downstream direction. Nonuniform
flow is possible under steady discharge when the mean flow velocity, chan-
nel width, and flow depth change in the downstream direction, or (∂V/∂x) �=
0, (∂W/∂x) �= 0, and (∂h/∂x) �= 0. In the following discussion, momentum
equations are derived (Subsection 4.2.1), followed by rapidly varied converging
flow in rivers (Subsection 4.2.2) and gradually varied flow (Subsection 4.2.3).

4.2.1 Momentum equations for steady flow

Momentum equations define the hydrodynamic forces exerted by surface flows.
After the equations of motion [Eqs. (2.18)] are multiplied by the mass density
of the water ρ, the terms on the left-hand side of the equations represent the rate
of momentum change per unit volume and the rate of impulse per unit volume
is found on the right-hand side. Integration over the total volume ∀ shows that
the rate-of-momentum change equals the impulse per unit time. For example,
the x component in the Cartesian coordinates for steady flow is∫

∀
ρ

(
vx
∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
d∀

=
∫

∀
ρgx d∀ −

∫
∀

∂p

∂x
d∀ +

∫
∀

(
∂τxx

∂x
+ τyx

∂y
+ ∂τzx

∂z

)
d∀. (4.12)

The integrand on the left-hand side can be rewritten as

∂ρv2
x

∂x
+ ∂ρvx vy

∂y
+ ∂ρvx vz

∂z
− vx

(
∂ρvx

∂x
+ ∂ρvy

∂y
+ ∂ρvz

∂z

)
. (4.13)
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By virtue of the continuity Eq. (2.17), the terms in parentheses of expression
(4.13) can be dropped. The volume integral of the remaining momentum and
stress terms can be transformed into surface integrals by means of the divergence
theorem Eq. 5.2. The result is the general impulse–momentum relationship.
x component∫

A
ρvx

(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA =

∫
∀
ρgx d∀ −

∫
A

p
∂x

∂n
dA

+
∫

A

(
τxx
∂x

∂n
+ τyx

∂y

∂n
+ τzx

∂z

∂n

)
dA. (4.14a)

y component∫
A
ρvy

(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA =

∫
∀
ρgy d∀ −

∫
A

p
∂y

∂n
dA

+
∫

A

(
τxy
∂x

∂n
+ τyy

∂y

∂n
+ τzy

∂z

∂n

)
dA. (4.14b)

z component∫
A
ρvz

(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA =

∫
∀
ρgzd∀ −

∫
A

p
∂z

∂n
dA

+
∫

A

(
τxz
∂x

∂n
+ τyz

∂y

∂n
+ τzz

∂z

∂n

)
dA. (4.14c)

It is observed that momentum is a vector quantity, the momentum change that
as due to convection is embodied in the surface integral on the left-hand side
of Eqs. (4.14), and all the stresses are expressed in terms of surface integrals.

Consider a detailed application of the momentum equations to open-channel
flows. With reference to the rectangular channel sketched in Fig. 4.12, the
momentum relationship [Eqs. (4.14)] in the downstream x direction is applied
to this channel, now subjected to rainfall at an angle θr , velocity Vr over an area
Ar , wind shear τw , bank shear τs = τyx , and bed shear τb = τ0 = τzx :∫

A
ρvx

(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA =

∫
∀
ρgx d∀ −

∫
A

p
∂x

∂n
dA

+
∫

A

(
τxx
∂x

∂n
+ τyx

∂y

∂n
+ τzx

∂z

∂n

)
dA. (4.15)

Several integrals vanish for 1D flow in impervious channels, vy = vz =
τxx = 0, leaving∫

A
ρv2

x

∂x

∂n
dA +

∫
A

p
∂x

∂n
dA =

∫
∀
ρgx d∀ +

∫
A
τzx
∂z

∂n
dA +

∫
A
τyx
∂y

∂n
dA

(4.16)
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Figure 4.12. Forces applied on a river reach.

Consider an incompressible homogeneous fluid, ρm = ct , and define the mo-
mentum correction factor βm , given the cross-sectional averaged velocity Vx :

βm = 1

AV 2
x

∫
A

v2
x dA. (4.17)

The value of βm is generally close to unity; the reader can refer to
Example 4.2 for a detailed calculation from a measured velocity profile. With
average values of pressure p, velocity V, and area A at upstream cross section 1
and downstream cross section 2, the integration of the momentum equation for
this control volume ∀ of length Xc, width W , and height h yields

βmρA2V 2
2 + p2 A2 − βmρA1V 2

1 − p1 A1 − ρAr V 2
r sin(θ + θr )

= γ ∀ sin θ − τbW Xc − τs 2h Xc + τw W Xc. (4.18)

Assuming that the boundary shear stress τ0 equals the bank shear stress τs and
the bed shear stress τb, the equation with negligible rainfall, Ar → 0, without
wind shear, τw → 0, can be rewritten when the channel inclination θ is small
(sin θ ∼= S0, the bed slope) as

p2 A2 +βmρA2V 2
2 = p1 A1 + βmρA1V 2

1

| downstream force | | upstream force |
+γ

(
A1+ A2

2

)
Xc S0 −τ0(W +2h)Xc.

| weight force | | shear force |
(4.19) �
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This equation indicates equilibrium of forces in the downstream direction.
The downstream and the upstream forces equal the sum of a pressure force
and a momentum force. Further reduction is possible when the weight-force
component cancels the shear force. In the case of steady flow, Q1 = Q2, in
a rectangular channel of width W, the cross-section area is A = W h and the
average pressure is p = 0.5 ρ gh. Further assuming that the Boussinesq cor-
rection factor βm

∼= 1, we find that the hydrodynamic-force component Fh

reduces to

Fh = p A + βmρAV 2 = 0.5ρghW h + ρW h

(
Q

W h

)2

. (4.20)

The specific-momentum function M is obtained after the hydrodynamic force
Fh is divided by the channel width W and the specific weight of the fluid ρg;
thus

M = Fh

ρgW
= h2

2
+ q2

gh
, (4.21) �

where the unit discharge q = Q/W .

Figure 4.13. Specific-momentum dia-
gram.

This specific-momentum function M
can be plotted as a function of flow depth
at a given unit discharge q. For instance,
the specific-momentum functions for
q = 1 m2/s are shown in Fig. 4.13. Two
flow depths with identical specific mo-
menta are called conjugate depths. The
lowest value of the specific-momentum
function is obtained when ∂M/∂h = 0,
which corresponds to the critical flow
depth hc = (q2/g)1/3. Given the prop-
erty that q = V h, the critical flow depth
corresponds to (q2/gh3

c) = (V 2/ghc) =
Fr2

c = 1. A critical value of the Froude
number Fr = 1 relates to the minimum

value of the specific-momentum function. Flow is supercritical when Fr> 1 or
h < hc and subcritical when Fr < 1 or h > hc.

Example 4.3 Application of momentum to hydraulic jump. Steady flow,
Q = 10 m3/s, in a rectangular channel, W = 10 m, is such that the upstream
flow velocity V = 4 m/s is rapidly reduced over a short distance to form a
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hydraulic jump. If the channel slope counterbalances the shear force, determine
the flow depth, velocity, and forces downstream of the hydraulic jump.

The increased turbulence in the aerated portion of the flow near the surface
is not accounted for by the bed-resistance equations. For this reason, energy
will be dissipated at a faster rate than it would through bed-resistance. Because
flow depth changes over a short distance, it can be shown that the bed friction
force on a smooth surface without baffle blocks is very small compared with
pressure forces. We can therefore consider that equilibrium will be approxi-
mately dictated by the balance of pressure and hydrodynamic forces upstream
and downstream of the hydraulic jump.

The answer can be found with the use of conjugate depths on the specific-
momentum diagram, Fig. 4.13. Exact values of the conjugate flow depth can
be calculated from M1 = M2 in the form

q2

g

(
1

h1
− 1

h2

)
= 1

2

(
h2

2 − h2
1

)
. (E.4.3.1)

The relationship Fr2
1 = (q2/gh3

1) allows to rewrite Eq. E.4.3.1 as

Fr2
1 = 1

2

h2

h1

(
h2

h1
+ 1

)
. (E.4.3.2)

The solution of the quadratic equation in h2/h1 is called the Belanger
equation:

h2

h1
= 1

2

(√
1 + 8 Fr2

1 − 1

)
. (E.4.3.3) �

The conjugate downstream flow depth h2 is calculated directly from the up-
stream flow depth h1 and the upstream Froude number Fr1.

For the case in point, Q = 10 m3/s and W = 10 m, or q = Q/W = 1 m2/s,
the upstream flow depth is (q/V1) = [(1 m2s])/(s × 4 m)] = 0.25 m and the
upstream Froude number is

Fr2
1 = q2

gh3
1

= 1 m4s2

s2 × 9.81 m × (0.25)3 m3
= 6.52.

The corresponding downstream conditions are calculated from the Belanger
equation flow depth h2 = (0.25/2)(

√
1 + 8 × 6.52 − 1) = 0.788 m and down-

stream velocity V2 = (q/h2) = (1.27 m/s) (see Fig. E.4.3.1).
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Figure E.4.3.1. Hydraulic jump.

Hydrodynamic forces are calculated by multiplying the specific-momentum
value by ρgW . For instance, the downstream pressure force is

Fp2 = ρg W h2/2 = 9.81 kN

m3
× 10 m × (0.788 m)2

2
= 30.4 kN.

Simplified solutions are possible for two types of nonuniform flow: (1) rapidly
varied converging flow and (2) gradually varied flow. In both cases, convective
changes in flow depth, width, and velocity head are significant and cannot be
neglected.

Rapidly varied flows are usually induced by structures and other perturba-
tions to the flow. Because flow conditions change over a short distance, it can
generally be assumed that the energy loss and the change in bed elevation are
small compared with the convective terms of the St. Venant equation. We can
assume as a first approximation that

d

dx

(
h + V 2

2g

)
= 0, (4.22a)

which can be integrated over x to yield conservation of specific energy over
this short reach. The specific-energy diagram hence becomes extremely useful
in the analysis of rapidly varied steady flows.

Gradually varied flows are those in which changes in width, depth, and
velocity take place over a reasonably long distance; the convective-acceleration
terms can be neglected but friction losses remain important over a long reach.
Gradually varied flows refer to changing flow depth in the downstream direction
such that, with a change in flow depth h in the downstream x direction, all four
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terms of the St.-Venant equation are rearranged in the following manner:

dE

dx
∼= d

dx

(
h + V 2

2g

)
= S0 − S f . (4.22b)

4.2.2 Rapidly varied converging river flow

Rapidly varied flow conditions refer to large spatial derivatives over a short
channel reach. In converging flows, it is often considered that the energy level
will be maintained constant because the bed friction does not take place over
a long distance. In wide-rectangular channels, the gradient of the integral form
of the Bernoulli sum can be rewritten as

dẼ

dx
= d

dx

(
p

γm
+ αe

V 2

2g

)
= −dzb

dx
− S f = S0 − S f

∼= 0; (4.23a)

this implies that the integral form of specific energy Ẽ = (p/γm) + [αe(V 2/2g)]
remains constant. The energy correction factor αe is defined as

αe = 1

AV 3
x

∫
A

v3
x dA. (4.23b)

After considering that αe
∼= 1, hydrostatic distribution p = γ h, and that the

unit discharge q = V h, we find that the specific energy E corresponds to the
sum of pressure and velocity head above the channel-bed elevation:

E = h + q2

2gh2
. (4.24) �

Figure 4.14. Specific-energy diagram.

The specific-energy function E can be
plotted as a function of flow depth at a
given unit discharge q, e.g., q = 1 m2/s
in Fig. 4.14.

Two flow depths with identical spe-
cific energies are called alternate
depths. The lowest value of the spe-
cific energy corresponds to (∂E/∂h) =
1 − (q2/gh3

c) = 0, which defines the
critical flow depth when the Froude
number Fr = 1:

hc =
(

q2

g

)1/3

. (4.25) ��
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We also easily demonstrate that the minimum value of specific energy Emin =
1.5 hc.

Once the critical flow depth is known, the Froude number can be directly
calculated from q2 = gh3

c as

Fr = q

h
√

gh
=

(
hc

h

)3/2

. (4.26)

Applications of rapidly varied flows are shown for river flow contraction in
Example 4.4 and for flow under a sluice gate in Example 4.5.

Example 4.4 Application to open-channel flow contractions. Consider
steady flow at Q = 10 m3/s in a 10-m wide-rectangular channel from Example
4.3. Determine (a) the maximum possible elevation of a sill�zmax in section A
that will not cause backwater and (b) the maximum lateral contraction �Wmax

of the channel in section A that will not cause backwater.
In rapidly varied flow, it is expected that the energy losses through friction

are equivalent to friction losses for steady-uniform flow. The accelerating flow
is analyzed with the specific-energy diagram, Fig. E.4.4.1.

Figure E.4.4.1. Sill and river contraction.
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Solution: (a) The maximum elevation of the sill �zmax in section A
is such that the flow will be critical on top of the sill and �zmax + Emin =
E1 or �zmax = E1 − Emin. In this example, the unit discharge q = (Q/W ) =
[(10 m3/s)/10 m] = 1 m2/s, the critical flow depth

hc = 3

√
q2

g
=

(
1 m4s4

s2 × 9.81 m

)1/3

= 0.467 m,

and the minimum specific energy Emin = 3/2 hc = 0.70 m.
The approaching steady-uniform flow depth from Example 4.3 is h1 =

0.788 m. The corresponding velocity is V1 = (q/h1) = [1 m2/(s × 0.788 m)] =
(1.27 m/s). The specific-energy level E1 =h1 + V 2

1 /2g =0.788 m +
(1.27 m/s)2 2 × 9.81 m = 0.870 m. The maximum sill elevation �zmax =
E1 − Emin = 0.870 m − 0.70 m = 0.17 m.

(b) The minimum channel width W2 in section A that does not cause back-
water is such that the total discharge remains constant, Q = W1q1 = W2q2, and
the flow is critical in the contracted section A2, or hc2 = 0.67 E1 = 0.67 Emin2,
with E1 = 0.87 m and 1 = q2

2/gh3
c2, or

W2 = Q√
g(0.67E1)3

.

In this example,

W2 = 10 m3s

s
√

9.81 m (0.667 × 0.87 m)3
= 7.22 m.

The maximum lateral contraction �Wmax = W1 − W2 = 10 m − 7.22 m =
2.78 m.

Example 4.5 Application to rapidly varied flow under a sluice gate. A
sluice gate controls the 10-m3/s flow discharge in a 10-m wide-rectangular
channel. If the flow depth downstream of the sluice gate is at h1 = 0.25 m and
rapidly increases to the normal flow depth h2 = 0.788 m in a hydraulic jump
located at the toe of the sluice gate, determine the following:

(a) What is the water level upstream of the sluice gate?
(b) What is the force applied onto the sluice gate?
(c) How much energy is lost in the hydraulic jump?

Solution: (a) The energy losses through friction along the sluice gate
can be neglected because the flow is rapidly varied and converging. It is assumed
that the specific-energy level on both sides of the gate are identical. At a unit
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flow discharge q = (Q/W ) = 1 m2/s, the specific-energy diagram in Fig. 4.14
shows that the downstream specific energy corresponding to a downstream flow
depth h1 = 0.25 m is

E1 = h1 + q2

2gh2
1

= 0.25 m + 1 m4 s2

s2 × 2 × 9.81 m (0.25 m)2
= 1.06 m.

The alternate depth at the same specific-energy level corresponds to the flow
depth h2

∼= 1 m upstream of the gate.
(b) The force applied on the gate can be calculated from the specific-

momentum function plotted in Fig. 4.13. We obtain graphically, at an upstream
flow depth of 1 m, M = 0.6 m2, and, at the downstream flow depth of 0.25 m,
M ∼= 0.45 m2. The corresponding force applied to the gate corresponds
to the difference in specific-momentum times γW , or �F = γW�M =
(9,810 N /m3) × 10 m × (0.6 − 0.45) m2 = 14.7 kN.

(c) The hydraulic jump with q = 1 m2/s and upstream flow depth h1 =
0.25 m was previously examined in Example 4.3. The specific-energy level at
the upstream end is given by

E1 = h1 + q2

2gh2
1

= 0.25 m + 1 m4s2

s2 × 2 × 9.81 m × (0.25 m)2
= 1.06 m,

as shown in Fig. 4.14. At the downstream end of the hydraulic jump, the pre-
viously calculated conjugate depth h2 = 0.788 m corresponds to the specific
energy

E2 = h2 + q2

2gh2
2

= 0.788 m + 1 m4s2

s2 × 2 × 9.81 m × (0.788 m)2

= 0.87 m.

The specific energy lost in the jump is �E = 1.06 m − 0.87 m = 0.19 m.
The specific energy lost in a hydraulic jump can be calculated directly after the
following transformation:

�E =
(

h2 + q2

2gh2
2

)
−

(
h1 + q2

2gh2
1

)

= h2 − h1 + q2

2g

(
1

h2
2

− 1

h2
1

)
, (E.4.5.1)

given the constraint of conjugate depths

q2

g

(
1

h1
− 1

h2

)
= 1

2

(
h2

2 − h2
1

)
from Eq. (E.4.3.1).
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After q2/g is substituted with a function of h1 and h2, �E in Eq. (E.4.5.1)
can be solved as a function of h1 and h2 after algebraic manipulations as

�E = (h2 − h1)3

4h1h2
. (E.4.5.2) �

In our practical example,

�E = (0.788 − 0.25)3

4 × 0.788 × 0.25
= 0.197 m.

The power loss �P in the hydraulic jump is then calculated from

�P = γ Q�E = 9,810 N

m3
× 10 m3

s
× 0.197 m = 19.3 kW.

The larger the Froude number upstream of the jump, the larger the power lost
through turbulence in the hydraulic jump.

4.2.3 Gradually varied river flow

The term gradually-varied flow refers to flow conditions that change over long
distances. Simplifications of the momentum equations are possible for 1D flows.
As a first approximation, it is often assumed that resistance to flow in gradually
varied flow can be calculated as for steady-uniform flow. In wide-rectangular
channels, h = Rh with steady-uniform flow, S f = S0, the normal flow depth hn

from Eq. (4.5a) compares with the critical flow depth hc from Eqs. (4.25) and
(4.26) according to

hn

hc
=

(
f

8S0

)1/3

=
(

1

Fr

)2/3

at normal depth

· (4.27)

Gradually-varied water-surface elevation profiles are commonly called back-
water curves. Their analysis results from a direct application of the quasi-
steady dynamic wave of the St. Venant equation. For a steady 1D flow, in
wide-rectangular channels, relation 2.27 can be rewritten as

dE

dx
= dE

dh

dh

dx
= S0 − S f = ∂h

∂x
+ V

g

∂V

∂x
= dh

dx
(1 − Fr2). (4.28)

Note that, in this derivation, it is assumed that V = q/h and Fr2 = q2/gh3

and an equation for resistance to flow is not required because q is considered
constant.
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The relationship describing water-surface elevation for a steady 1D flow of
an incompressible sediment-laden fluid is

dh

dx
= S0 − S f

1 − Fr2 . (4.29) ��

Using the properties of critical flow depth hc from Eq. (4.25) and normal
depth hn from Eq. (4.5), in wide-rectangular channels, Rh = h, the governing
equation for steady flow, with constant q and f , becomes

dh

dx
=

S0

[
1 −

(
hn
h

)3
]

[
1 −

(
hc
h

)3
] . (4.30)

Note that dh/dx → 0 as the flow depth h approaches the normal depth hn . Also,
dh/dx → ∞ near critical flow as h → hc.

The sign of dh/dx depends on the relative magnitude of h, hn , and hc. Five
types of backwater profiles are possible:

1. H profiles for horizontal surfaces with hn → ∞,
2. M profiles for mild slopes when hn > hc or S0 < f/8,
3. C profiles for critical slopes when hn = hc or S0 = f/8,
4. S profiles for steep slopes when hn < hc, or S0 > f/8,
5. A profiles or adverse slopes when S0 < 0.

A subcritical normal depth hn > hc corresponds to f > 8 S0 and a super-
critical normal depth hn < hc is obtained when f < 8 S0. Accordingly, a stream
slope is said to be mild when S0 < f/8 and steep when S0 > f/8. The ratio of
friction slope S f to bed slope S0 can be obtained from S f = ( f q2/8 gh3) and
S0 = ( f q2/8 gh3

n); thus

S f

S0
=

(
hn

h

)3

, (4.31) �

and, finally, the ratio of applied bed shear stress τb to the bed shear stress
applied at normal depth τbn for wide-rectangular channels with constant q and
f is

τb

τbn

∼= γ hS f

γ hn S0
= h

hn

(
hn

h

)3

=
(

hn

h

)2

. (4.32) �

Typical water-surface profiles in open channels are shown in Fig. 4.15.
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4.15 Backwater profiles for mild and steep slopes.

Numerical calculations can be initiated from a given flow depth h1, and the
distance increment �x at which h2 = h1 ±�h is approximated by

�x ∼=
�h

[
1 −

(
hc
h1

)3
]

S0

[
1 −

(
hn
h1

)3
] (4.33a)

or

�h ∼=
S0�x

[
1 −

(
hn
h

)3
]

[
1 −

(
hc
h

)3
] . (4.33b)

Note that it is also possible to iterate on �h until a predetermined value of
�x is obtained. The friction slope S f in gradually varied flows with constant q
and f can be approximated by Eq. (4.31), which shows that S f < S0 when the
flow depth exceeds the normal depth and increases very rapidly when h < hn .

This shows that the bed shear stress increases (τ > τn) at flow depths less
than normal depth (h < hn). Bed shear-stress distributions for 1D mild M and
steep S backwater curves are sketched in Figs. 4.15 and 4.16. Shear stress
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4.16 Typical backwater pro-
files.

increases in the downstream direction for con-
verging flows (M-2 and S-2 backwater
curves), and decreases for diverging flows
(M-1, M-3, S-1, and S-3 backwater curves).
Consequently, bed sediment transport is ex-
pected to increase in the downstream direction
for converging flows and decrease for diverg-
ing flows.

Example 4.6 Application to gradually
varied flow. Consider a 10-m-wide canal dis-
charging 10 m3/s at a slope of 26 cm/km along
the reach sketched in Fig. E.4.6.1. Given the
sluice-gate opening at 0.2 m, a sill height at
0.17 m, and free downstream overfall con-
ditions, draw the water-surface profile, also
called the hydraulic grade line (HGL), and
the energy grade line (EGL). The flow depth
at C is 0.2 m and the bed surface is smooth
( f ∼= 0.01). Identify the backwater curves and
sketch the shear-stress distribution along the
reach.

Given the specific-energy diagram for the
same unit discharge q = 1 m2/s in Fig. 2.10,
the alternate depth to h = 0.2 m is approx-
imately 1.5 m upstream of the gate at B.
Critical flow depth, hc = (q2/g)1/3 =
(1/9.81)1/3 = 0.467 m, controls the flow depth

on top of the sill at G and near the free overfall at J. The sill controls sub-
critical flow upstream of G and the reach H–I is sufficiently long to sustain
steady-uniform flow between EF and HI at a normal depth hn = 0.788 m, from
Example 4.1. Rapidly varied flow is obtained between BC and FH, as is the hy-
draulic jump DE previously calculated in Example 4.3. Gradually-varied flow is
observed among AB, CD, and IJ. The bed slope S0 = 26 cm/km corresponds to a
mild slope because S0 < f/8 = 125 cm/km. In the reach AB, h > hn > hc and
the backwater type is classified as M-1. The flow is accelerating between IJ
with hn > h > hc to form an M-2 backwater curve, and the reach CD, with
hn > hc > h, corresponds to an M-3 backwater curve.

The EGL is drawn with conservation of energy in rapidly-varied flow between
BC and FH taken into consideration. The specific energy for steady-uniform
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E.4.6.1 Sketch of HGL and EGL.

flow was previously calculated in Example 4.5 at 0.87 m, which remains cons-
tant between E and I. From Example 4.5, the energy lost in the hydraulic jump
is �E = 0.197 m and, from Eq. (4.47), the friction slope S f is much greater
than S0 when h < hn , as observed between CD and IJ. Finally, the velocity
head is very small in the reservoir and the EGL practically corresponds to the
free surface.

Bed shear-stress distribution is also sketched along the reach as calculated
from Eq. 4.32, shear stress increases largely when h < hn and should be largest
downstream of the sluice gate in the M-3 backwater curve. Energy losses in the
hydraulic jump are caused by near-surface turbulence. Bed shear stress should
be highly variable but larger than that for steady-uniform flow. Around the sill,
bed shear stress increases in converging flow between F and G and decreases
in diverging flow between G and H. Bed shear stress increases again near the
free overfall as h < hn .

4.3 Sediment transport in rivers

This section presents a brief summary of sediment transport in rivers. Equili-
brium conditions are covered in Subsection 4.3.1 and aggradation–degradation
characteristics are discussed in Subsection 4.3.2. More specific details are
available in Julien (1995).

4.3.1 Equilibrium sediment transport

The dimensionless particle diameter d∗ is defined from the specific gravity
G of sediment, the kinematic viscosity of the fluid ν, and the gravitational
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acceleration g as

d∗ = ds

[
(G − 1)g

ν2

]1/3

. (4.34)

The settling velocity ω of a sediment particle in still water is defined as

ω = 8ν

ds

[(
1 + d3

∗
72

)0.5

− 1

]
. (4.35) �

The ratio of shear force to bed particle weight defines the Shields parameter
τ∗ as

τ∗ = τ0

(γs − γ ) ds
= u2

∗
(G − 1) g ds

, (4.36) ��

where τ0 is the bed boundary shear stress, u∗ is the shear velocity, γs is the
specific weight of a sediment particle, γm is the specific weight of water, ds is
the particle size, and g is the gravitational acceleration.

The critical value of the Shields parameter τ∗c corresponding to the beginning
of motion (τ0 = τc) depends on d∗, as shown in Fig. 4.17. Critical values of the
Shields parameter τ∗c and shear stress τc for different particle sizes are listed in
Table 2.4.

4.17 Particle-motion diagram (after Julien, 1995).
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4.18 Sediment-transport diagram (after
Julien, 1995).

The unit sediment discharge by vol-
ume can be defined from the Meyer–
Peter and the Müller formulas as

qbv = 8 (τ∗ − τ∗c)1.5

×[
(G − 1)g d3

s

]0.5
. (4.37a)

An alternative formulation based on
the Shields parameter and the settling
velocity is shown in Fig. 4.18. Also,
a very crude approximation for sands,
where 0.1 < τ ∗ < 1, is

qbv ≈ 18
√

g d3/2
s τ 2

∗ · (4.37b)

Sediment transport can be sub-
divided into three zones that describe
the dominant mode of transport: bed-
load, mixed load, and suspended load.
It is interesting that, for turbulent flow
over rough boundaries, incipient mo-

tion corresponds to u∗/ω ∼= 0.2. Figure 4.19 shows the ratio of suspended to
total load as a function of u∗/ω and h/ds . In most rivers, bedload is dominant
at values of u∗/ω less than ∼0.4. A transition zone, called a mixed load, is found

4.19 Ratio of suspended to total sediment load (after Julien, 1995).
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4.20 Sediment concentration profiles (after Woo et al., 1988).

where 0.4 < u∗/ω < 2.5 in which both the bedload and the suspended load
contribute to the total load.

The sediment concentration C at an elevation z above the bed for the sus-
pended load can be calculated from the Rouse equation as

C = Ca

[(
h − z

z

)(
a

h − a

)] ω
κu∗
, (4.38)

where Ca is the concentration at an elevation a above the bed, h is the flow depth,
and κ is the von Kármán constant (κ ∼= 0.4). An example of a concentration
profile is shown in Fig. 4.20.

4.3.2 Riverbed aggradation and degradation

Owing to continuity of sediment, part of the total load deposits on the channel
bed as the sediment-transport capacity decreases in the downstream direction.
The sediment continuity relationship for advective fluxes is

∂Cv

∂t
+ ∂qtx

∂x
+ ∂qty

∂y
+ ∂qtz

∂z
= 0, (4.39) �

where the mass fluxes qtx , qty , and qtz account for the total unit sediment dis-
charge by volume in the x, y, and z directions, respectively.
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Assuming a steady supply of sediment (∂Cv/∂t = 0), Eq. (4.39) for a wide
channel without lateral sediment inflow (∂qty/∂y = 0) reduces to

∂qtx

∂x
+ ∂qtz

∂z
= 0, (4.40)

which reduces further after it is assumed that the advective fluxes qtx = vx Cv

and qtz = −ωCv are dominant:

∂vx Cv

∂x
− ∂ωCv

∂z
= 0. (4.41)

A practical approximation is obtained for gradually varied flow (∂vx/∂x →
0), constant fall velocity ω, and ∂Cv/∂z ∼= −Cv/h; thus

vx∂Cv

∂x
+ ωCv

h
= 0. (4.42)

The solution for grain sizes of a given fraction i (constant fall velocity) at a
constant unit discharge q = V h, given vx = V , is a function of the upstream
sediment concentration C0i of fraction i at x = 0:

Ci = C0i e
− Xωi

hV . (4.43)

This shows that the concentration left in suspension is negligible (Ci/C0i =
0.01) at a distance XCi :

XCi = 4.6
hV

ωi
. (4.44)

This relationship is very useful in the design of settling basins. For the analysis
of reservoir sedimentation, the percentage of sediment fraction i that settles
within a given distance X defines the trap efficiency TEi as:

TEi = C0i − Ci

C0i
= 1 − e− Xωi

hV = 1 − e
−W Xωi

Q . (4.45) �

It is interesting to note that the trap efficiency for particles of given settling
velocityωi , basin length x , and discharge Q = W hV increases with basin width
W . We thus conclude that, for a given discharge and sediment discharge Qtx ,
increasing the channel width induces aggradation. When the trap efficiency of
silt and clay particles is calculated, careful consideration must also be given to
density currents and possible flocculation, in which case the flocculated settling
velocity must be used instead of ωi :

TEi
∂Qtxi

∂x
+ (1 − p0)

W∂zi

∂t
= 0 (4.46a)
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or

∂zi

∂t
= − TEi

(1 − p0)

∂Qtxi

W∂x
. (4.46b)

Values of porosity p0 depend of the specific weight of sediment deposits. Dry
specific weight of sediment deposits varies with the proportion of sand, silt,
and clay and changes with time. The conversion of the incoming weight of
sediment to volume necessitates knowledge of the average dry specific weight
of a mixture γmd , defined in Chap. 2 as the dry weight of sediment per unit
total volume including voids. For material coarser than 0.1 mm, the dry specific
weight of the mixture remains practically constant around γmd = 14.75 kN/m3

or 93 lb/ft3. As a rough first approximation, 1 ton of sediment corresponds
to 20 ft3 of bed material. The corresponding dry mass density of the mixture,
ρmd , is given by ρmd = γmd/g = 1500 kg/m3 or 2.9 slug/ft3. The porosity p0 of
sand material is then obtained from p0 = 1 − γmd/γs = 0.43. The volumetric
sediment concentration is Cv = 1 − p0 and the void ratio is e = p0/(1 − p0).

For distances separating successive cross sections �X larger than XC , the
trap efficiency is essentially unity and aggradation responds directly to changes
in the sediment-transport capacity of the stream. For�X smaller than XC , only
part of the sediment load in suspension will settle within the given reach. The
sediment load at the downstream end will then exceed the sediment-transport
capacity of the stream. The reader is referred to Julien (1995) for a detailed
analysis of erosion and sedimentation.

Exercise 4.1

Demonstrate the conjugate flow-depth relationship, Eq. (E.4.3.3), from the
specific-momentum identity M1 = M2 for flow in a wide-rectangular channel.

Exercise 4.2

Carry out the algebraic transformations from Eq. (E.4.5.1) to demonstrate that
the specific-energy loss in a hydraulic jump is

�E = (h2 − h1)3

4h1h2
.

Exercise 4.3

Apply the law of conservation of volume to an incompressible fluid flowing
through a 1D control volume of discharge Q = ∫ A

0 vx dA given the cross-
sectional area A and top width W . Consider the lateral inflow of unit discharge
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Ex.4.3.1 Conservation of mass.

ql , rainfall intensity ir , and infiltration
rate ib leaving through the wetted
perimeter P (see Fig. Ex.4.3.1).

[Hint: calculate the volume fluxes
entering the control volume ∀ = Adx
and compare to the rate of change in
control volume (∂∀/∂t = (∂A/∂t)dx .]

�Exercise 4.4

Demonstrate the 1D formulation of the
equation of motion (4.15). Consider the

momentum flux F = βmρAV 2
x = ρ ∫ A

0 v2
x dA passing through a cross-sectional

area A and top width W . Neglect momentum contributions from rainfall, lateral
inflow, and infiltration. The shear stress τ0 is applied over the wetted perimeter
P and the bed slope is S0 = tan θ (see Fig. Ex.4.4.1).

Ex.4.4.1 Conservation of momentum.

�Problem 4.1

The cross-sectional and depth-aver-
aged flow-velocity profiles are given in
digital form with the orientation refer-
ence along the cross section. Complete
Table P.4.1.1 to calculate the cross-
section area A = ∑

i ai and the flow
discharge Q =∑

i Qi =
∑

ai vi sin θ .
Note that a large eddy formed near the
right bank and reverse flow is mea-
sured. Draw the cross section profile
and the velocity profile as per
Fig. 4.5(b).

�Problem 4.2

Consider the cross section of a 10-m
wide-rectangular minor channel with

a bankfull depth of 2 m. Given a floodplain width that extends 50 m on
each side of the minor channel bounded with a near-vertical escarpment (see
Fig. P.4.2.1). Calculate the following parameters as functions of flow depth h up
to 5 m: (1) top channel width W , (2) wetter perimeter P , (3) cross-sectional area
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Table P.4.1.1. Cross-section data

Distance from Flow Depth-averaged Deviation
left bank depth flow velocity angle ai Qi

(ft) (ft) (ft/s) (◦) (ft2) (ft3/s)

0 0 0 — 0
10 1.3 +0.6 260 −7.68
20 1.7 +0.2 280 17
30 1.8 0.4 110 6.76
40 2.1 1.1 90 31.5
60 2.4 1.4 89 67.19
80 2.9 2.1 86 58

100 3.6 2.6 85 186.48
120 4.1 1.9 88 82
140 2.2 0.8 90 35.2
160 0 0 — 0

Answer: A = 383.5 ft2, Q = 596.5 ft3/s.

P.4.2.1 Cross section.

A, (4) near flow depth h̄, and (5) hy-
draulic radius Rh . Discuss the effect of
the width discontinuity at h = 2 m.

�Problem 4.3

The cross section in Fig. P.4.3.1 is lo-
cated 1.25 km upstream of the control
section on the Matamek River. Given

the water-surface slope [Fig. 4.8(d)] and the stage–discharge relationship

P.4.3.1 Cross section.
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[Fig. 4.6(a)], determine the following:

(a) A pool is formed because of downstream bedrock control. Draw the
water surface elevation when Q = 0.

(b) At the given discharge, Q = 465 ft3/s, calculate surface width, wetted
perimeter, cross-section area, mean flow depth, mean flow velocity,
and hydraulic radius. Plot these points on Figs. 4.8.

(c) Estimate the bankfull discharge at that cross section, assuming a con-
stant Manning coefficient n at all stages.

��Problem 4.4

Consider a steady-uniform flow discharge of 15 m3/s in a 70-m-wide 2–4-mm
gravel-bed stream. Given the bed slope of 5 cm/km, determine the following:

(a) the critical flow depth;
(b) the resistance coefficients f , n, and C ;
(c) the normal flow depth and compare it with the hydraulic radius;
(d) the Froude number at normal flow depth;
(e) the type of slope for backwater profile calculations;
(f) the applied bed shear stress at normal flow depth.

�Problem 4.5

Draw the position of the free surface, the HGL, and the EGL in a 10-m wide-
rectangular channel discharging 10 m3/s in the smooth canal at a bed slope of
26 cm/km (see Fig. P.4.5.1).

Answer: Combine the information from Examples 4.1 to 4.6. Energy
is conserved between A–B and D–E. Friction losses occur between C and D, to

P.4.5.1 Definition sketch.
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P.4.6.1 Concentration profile of the Missouri River (after Bondurant, 1963).

which turbulence losses are added between B and C. Momentum is conserved
between B and D, and friction forces can be neglected between B and C, but
are dominant between C and D. Added forces are provided by the sill and the
sluice gate, which can be calculated as per Example 4.3.

��Problem 4.6

From the cross section in Fig. P.4.6.1, do the following:

(a) Plot the surface width vs. stage and cross-sectional areas vs. stage.
(b) Estimate the Manning coefficient n of the river if the slope is 1.5 ×

10−4.

��Problem 4.7

Use the values of â and b̂ from Eqs. (4.10) and use the transforms for Eqs. (4.11)
to define a and m for a power relationship applicable when h ∼= 5 d50. Once a
and m are defined, plot the straight-line resistance relationship on Fig. 4.11 and
compare with the field measurements. Determine what the range of applicability
is of this equation.

Answer: From â = 2.5, b̂ = 2, and h/d50 = 5, we obtain m = 0.434
and a = 2.86. Plotting

√
(8/ f ) = 2.86 (h/d50)0.434 in Fig. 4.11 is in very good

agreement with the field measurements when h/d50 < 50.
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CP.4.1.1 Definition sketch.

��Computer Problem 4.1
Backwater behind a reservoir
Consider steady flow (q = 3.72 m2/s)
in the impervious rigid boundary chan-
nel sketched in Fig. CP.4.1.1. Assume
that the channel width remains large

and constant regardless of flow depth and that f = 0.03. Determine the distri-
bution of the following parameters along the 25-km reach of the channel when
the water-surface elevation at the dam is 10 m above the bed elevation: (a) flow
depth in meters, (b) mean flow velocity in meters per second, and (c) bed shear
stress in newtons per square meter.
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Unsteady flow in rivers

This chapter is concerned with unsteady flow in rivers. The governing equations
describing unsteady flow in open channels include continuity in Section 5.1
and momentum in Section 5.2 for 1D flow. Governing equations are followed
by the concept of floodwave propagation (Section 5.3), loop-rating effects
(Section 5.4), flood routing (Section 5.5), and flow and sediment-duration
curves in Section 5.6.

5.1 River continuity equation

The continuity equations simply express conservation of mass. In most rivers,
it is assumed that the mass density ρ is constant, and the continuity equa-
tions imply conservation of volume. A general formulation is presented in
Sub-section 5.1.1, followed by the commonly used two-dimensional (2D) form
in Subsection 5.1.2. A simplified 1D form is then given in Subsection 5.1.3.

5.1.1 General continuity formulation

The three-dimensional (3D) form of the continuity equation is simply the integ-
ral over a control volume ∀ of the differential form [Eq. 2.16a]:

∫
∀

∂ρ

∂t
d∀ +

∫
∀

(
∂ρvx

∂x
+ ∂ρvy

∂y
+ ∂ρvz

∂z

)
d∀ = 0. (5.1)

This volume integral of partial derivatives can be transformed into surface
integrals owing to the divergence theorem, e.g., application to a vector F ,∫

∀

∂F

∂x
d∀ =

∫
A

F
∂x

∂n
dA, (5.2)

in which ∂x/∂n is the cosine of the angle between the coordinate x and the
normal vector n pointing outside the control volume. The integral form of the

122
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continuity equation simply states that the difference between inflow and outflow
results in volumetric storage, as shown in Example 5.1.

Example 5.1 Application of the continuity equation. Consider the fairly
straight river reach of length Xc, constant width W, and flow depth h, as sketched
in Fig. E.5.1.1.

The first integral of (5.1) is zero in this case because the fluid is incom-
pressible and the control volume ∀ = W h Xc is constant. The divergence
theorem (Eq. 5.2) is applied to the second term:∫

A

(
ρvx

∂x

∂n
+ ρvy

∂y

∂n
+ ρvz

∂z

∂n

)
dA = 0. (E.5.1.1)

The values of ∂x/∂n, ∂y/∂n, and ∂z/∂n are the cosines of the angle be-
tween the vector normal to the surface n pointing outside the control volume
and the Cartesian coordinates x, y, and z, respectively. Figure E.5.1.1 illus-
trates the direction cosines on the downstream face. In this example, the di-
rection cosine ∂x/∂n vanishes on all faces except the upstream (∂x/∂n = −1)
and downstream (∂x/∂n = +1) cross sections. Similarly, the direction cosine
∂y/∂n vanishes except on the left bank (∂y/∂n = +1) and right river bank
(∂y/∂n = −1). The direction cosine ∂z/∂n vanishes except at the free surface
(∂z/∂n = +1) and the riverbed (∂z/∂n = −1). Moreover, for an incompres-
sible homogeneous suspensionρm1 = ρm2 = ρm with the vertical velocity, vz =
dh/dt at the free surface, the infiltration rate through the banks vy = i , and
vz = −i at the bed. The surface integral of the first term in Eq. (E.5.1.1) yields
the downstream flux A2V2∂x/∂n (note that ∂x/∂n = +1) and the upstream flux
−A1V1 (note that V1 is positive in the x direction and ∂x/∂n = −1 upstream).

Figure E.5.1.1. Definition sketch.
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The second term gives the infiltration through the channel banks 2ih Xc (note
that on the right bank the flux is in the negative y direction and ∂y/∂n = −1).
The third term gives the flux through the of free-surface area W Xc dh/dt and
the infiltration through the bed iW Xc. The sum of all components results in

A2V2 − A1V1 + 2ih Xc + iW Xc + W Xc
∂h

∂t
= 0. (E.5.1.2)

| outflow | | inflow | | infiltration | | storage |

In general, continuity simply formulates that the storage is the inflow minus the
outflow. In the case of an impervious channel, i = 0, the integral form of the
continuity equation reduces to

A2V2 − A1V1 + W Xc
∂h

∂t
= 0. (E.5.1.3)

| outflow | | inflow | | storage |

This form is equivalent to 1D equation (5.8) written as

A2V2 − A1V1

Xc
= −W∂h

∂t
. (E.5.1.4)

5.1.2 Two-dimensional continuity for rivers

Depth-integrated formulations of the governing equations are useful in describ-
ing most river systems with typical variability in planform geometry such as
changes in lakes, reservoirs, and estuaries. The system of coordinates typically
sets the x axis in the main downstream direction at a small slope S̄0x = tan θ
from the horizontal, a horizontal y axis toward the left bank, and the upward
z axis deviating at a slope S̄0x from the vertical. The depth-integrated continuity
relationship is obtained for homogeneous suspensions (constant ρ) from the
integration of Eq. (2.16a) along the upward z axis.

The surface integration is carried out over a control volume of fixed grid dx
and dy with bed elevation zb and water-surface elevation zw that vary in space,
as sketched in Fig. 5.1.

Given the flow depth h = zw − zb, the depth-integrated velocity components
Vx and Vy are

Vx = 1

h

∫ zw

zb

vx dz, and Vy = 1

h

∫ zw

zb

vy dz. (5.3)
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Figure 5.1. Depth-integrated control
volume.

The net volume flux leaving the control
volume in the x direction is

dy

[
hVx + ∂ (hVx )

∂x
dx

]
− dyhVx

= dx dy
∂ (hVx )

∂x
. (5.4)

Repeating the process in the y direction
gives dx dy ∂(hVy)/∂y and, consider-
ing the infiltration flux ib dx dy and the
entering rainfall flux i dx dy, the net
volume change within the control vol-
ume is

dx dy
∂h

∂t
+ dx dy

∂hVx

∂x
+ dx dy

∂hVy

∂y

+ (ib − i) dx dy = 0. (5.5)

The depth-integrated form of the
continuity equation is obtained after
Eq. (5.5) is divided by dx dy:

∂h

∂t
+ ∂hVx

∂x
+ ∂hVy

∂y
+ (ib − i) = 0.

(5.6) ��

The rate of change in flow depth, dh/dt , relates to the net downstream flux
∂(hVx )/∂x , the net lateral flux ∂(hVy)/∂y, the vertical infiltration rate ib de-
fined as positive outward, and the vertical rainfall intensity i defined as pos-
itive inward. In this form, h = zw − zb, where both water-surface elevation
zw and bed elevation zb can vary and Vx and Vy are depth-integrated veloc-
ities. All parameters, h, Vx , Vy , ib, and i , can vary in space x − y and time.
Equation (5.6) is applicable to homogeneous suspensions (constant ρm) and to
the orthogonal system of coordinates in which the z axis is near vertical (small
angle θ0).

5.1.3 One-dimensional continuity for rivers

The definition sketch in Fig. 5.2 describes a river reach with a top width W, cross-
section area A, wetted perimeter P , hydraulic radius Rh = A/P , and mean flow
depth h = A/W . The total discharge Q is given from the product of the mean
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Figure 5.2. Continuity for a river reach.

flow velocity V and area A; the unit
discharge of the lateral flow is ql . The
rainfall intensity is i, and the infiltra-
tion rate through the wetted perimeter
is ib.

The net volumetric flux leaving the
control volume is (∂Q/∂x)dx + ib Pdx .
The net volumetric flux entering the con-
trol volume is qldx + iW dx . The dif-
ference between entering and leaving
volumetric fluxes corresponds to vol-
umetric storage ∂Adx = ∂(W h)dx per
unit time ∂t .

After dividing by dx , we easily de-
monstrate that

∂A

∂t
+ ∂Q

∂x
+ ib P − iW − ql = 0, (5.7)

where ib is the rate of infiltration through the wetted perimeter P , i is the rainfall
intensity through the reach-averaged river width W , A is the reach-averaged
cross-sectional area, and ql is the unit discharge of lateral inflow.

For an impervious channel (ib = 0) without rainfall (i = 0) and without lateral
inflow (ql = 0), the 1D equation of continuity simply reduces to

∂Q

∂x
+ ∂A

∂t
= 0. (5.8) ��

This simple differential equation that expresses conservation of mass is
widely used in the analysis of floodwave propagation.

5.2 River momentum equations

In this section, the momentum equations are presented for 2D flows in
Subsection 5.2.1, followed by a 1D formulation in Subsection 5.2.2.

5.2.1 Two-dimensional momentum for rivers

For most rivers, depth-integrated formulations of the equation of motion are
sufficiently accurate as long as the acceleration in the near-vertical z direction
can be neglected. The resulting depth-integrated formulation is 2D in x and y
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Figure 5.3. Stresses on a depth-integra-
ted volume.

along with a hydrostatic pressure dis-
tribution. For homogeneous suspen-
sions (constant ρm), the integration
over depth is applied to a control vol-
ume, as shown in Fig. 5.3.

It is assumed that the wind and the
rainfall forces applied through the free
surface are negligible. The bed shear
stress τzx = τ0x and the pressure is hy-
drostatic such that the depth-averaged
pressure p is given by p = 0.5 ρgh.
The sum of forces in the x direction
gives

ρax hdxdy = ρghdxdy sin θ

− ρg

2

∂h2

∂x
dxdy

+ ∂τyx h

∂y
dxdy

− τ0x dxdy. (5.9)

Dividing through by the mass ρhdxdy
with small θ0, such that sin θ0

∼= tan θ0 =
S̄0x (and sin θ = S̄0x − ∂zb/∂x), and
using Eq. (2.14a), results in

ax = ∂Vx

∂t
+ Vx

∂Vx

∂x
+ Vy

∂Vx

∂y
+ Vz

∂Vx

∂z

| local | | convective |

= gS̄0x − g
∂zb

∂x
− g

∂h

∂x
− τ0x

ρh
+ ∂τyx

ρ∂y
. (5.10)

| gravity | |bed elevation| |pressure| |bed shear| |side shear|

It is assumed that the momentum correction factors are close to unity, i.e.,
that the flow velocity is fairly uniform over the depth. It can be further assumed
that Vz is very small and that the variability of riverbank shear stress is negligible
compared with that of the bed shear stress. The following approximation for
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the depth-integrated equation of motion is

∂Vx

∂t
+ Vx

∂Vx

∂x
+ Vy

∂Vx

∂y
= gS̄0x + gS0x − g

∂h

∂x
− τ0x

ρh
. (5.11)

With a similar analysis applied in the y direction we obtain

∂Vy

∂t
+ Vx

∂Vy

∂x
+ Vy

∂Vy

∂y
= gS0y − g

∂h

∂y
− τ0y

ρh
, (5.12)

where S̄0x is the average downstream bed slope and the average lateral slope
is S̄0y = 0. The local bed slopes are S0x = − (∂zb/∂x) and S0y = − (∂zb/∂y),
respectively.

These simplified equations are applicable to 2D raster-based models of rivers
with large width–depth ratios. The main difficulty lies in the evaluation of the
bed and the side shear-stress components.

For flow in bends, the relative magnitude of radial acceleration terms in cylin-
drical coordinates indicates that the centrifugal acceleration is counterbalanced
by pressure gradient and radial shear stress, as suggested by Rozovskii (1957):

V 2
θ

r
= gSwr − 1

ρ

∂τr

∂z
, (5.13)

where the local downstream velocity Vθ , the radial shear stress τr , and the radial
water-surface slope Swr vary with the vertical elevation z and/or the radius of
curvature r .

5.2.2 One-dimensional momentum for rivers

When the channel width remains fairly constant, the lateral velocity component
Vy from Eq. (5.12) can be neglected. The velocity reduces to V = Vx , the bed
slope to S = S0x , and the bed shear stress to τ0 = τ0x :

∂Vx

∂t
+ Vx∂Vx

∂x
= gS̄0x + gS0x − g

∂h

∂x
− τ0x

ρmh
, (5.14)

where S̄0x is the reach-averaged positive slope and S0x = −∂zb/∂x . It is left to
the reader in Exercise 5.1 to demonstrate with the continuity equation [Eq. (5.8)]
that the following formulation reduces to Eq. (5.14) when A is constant and
βm = 1:

∂Q

∂t
+ ∂βm QV

∂x
= g AS0 − g

A∂h

∂x
− τ0 P

ρ
. (5.15)

Assume a hydrostatic pressure distribution, p = ρgh, and assume that the
bed shear stress τ0 in wide-rectangular channels (Rh

∼= h and P � W ) approx-
imately equals τ0 = ρghS f and that gx is a function of bed slope gx = gS0,
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where S0 = S̄0x + S0x . The 1D equation of motion [Eq. (5.14)] with a single bed
slope S0 simply reduces to St. Venant equation (2.27) following dimensionless
form after being rearranged and divided throughout by gravitational acceleration
g and A:

S f
∼= S0 − ∂h

∂x
− V ∂V

g∂x
− 1

g

∂V

∂t
. (5.16) ��

(1) (2) (3) (4) (5)

| kinematic |
| diffusive |
| quasi-steady |
| dynamic |

Figure 5.4. Slope definition sketch.

The terms of the dimensionless equation of motion are sketched in Fig. 5.4.
They describe (1) the friction slope or
the slope of the EGL, (2) the bed slope
of the channel, (3) the pressure gradi-
ent or downstream change in flow depth
that is due to backwater, (4) the velocity
head gradient or downstream change in
velocity head that is due to backwater
and/or changes in channel width, and
(5) the local-acceleration term for un-
steady flow.

The full use of Eq. (5.16) is referred
to as the dynamic-wave approximation
of the St. Venant equation. In many ap-
plications, however, the last term (5) is
very small and can be neglected. For
all steady flows, as well as unsteady
flows in which (5) is negligible,

the quasi-steady dynamic-wave approximation includes the first four terms of
Eq. (5.16); this corresponds to the backwater equations for gradually varied
flows used in Chap. 4. In most rivers, the flow is subcritical, Fr < 1, and the
velocity head gradient (4) can be neglected before the pressure gradient (3). The
diffusive-wave approximation, S f = S0 − ∂h/∂x , is commonly used in river
mechanics. Finally, the kinematic-wave approximation is obtained in which all
but the first two terms vanish. This is the case when ∂h/∂x � S0. Example 5.2
illustrates how the continuity and the momentum equations can be combined
to determine the celerity of surface waves.
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Example 5.2 Application to surface perturbations. Consider a solitary
wave traveling in a frictionless channel without change of shape or velocity. For

Figure E.5.2.1. Propagation of a small
perturbation.

instance, a solitary wave can be pro-
duced by a sudden horizontal displace-
ment of a vertical gate in a laboratory
flume.

As sketched in Fig. E.5.2.1(a), the
solitary wave travels to the right with
celerity c in a stationary fluid. An ob-
server moving along the wave crest at
a velocity equal to the celerity will per-
ceive steady flow [Fig. E.5.2.1(b)] in
which the wave appears to stand still
while the flow moves at a velocity equal
to c in magnitude.

When continuity relationship (5.8) is
applied to the steady-flow case, con-
stant discharge implies that the relative

velocity under the crest is ch/(h + �h). It is interesting to note that in relative
motion [Fig. E.5.2.1(b)], the relative velocity decreases with flow depth. The
equation of motion is then applied to the steady relative motion. When friction
is neglected and a small slope is assumed, the energy equation between the
normal section of the flow and the section at the wave crest simply describes
conservation of specific energy, or

h + c2

2g
= h + �h + c2

2g

(
h

h + �h

)2

. (E.5.2.1)

Solving for c, we obtain

c =
√

2g (h + �h)2

2h + �h
. (E.5.2.2)

This is commonly known as the Lagrangian celerity equation for 1D propa-
gation of small waves in still water. For waves of moderate amplitude, the wave
celerity increases with wave height.

5.3 River floodwaves

This section treats the subject of floodwave propagation in 1D channels. Un-
steady flow describes changes in flow discharge Q with time t , and downstream
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distance x . Therefore the exact differential is

dQ = ∂Qdx

∂x
+ ∂Qdt

∂t
. (5.17)

By definition, the celerity c = dx/dt defines the location where the flow is
steady, i.e., dQ = 0. The celerity c at which space–time changes take place is
simply given by the solution of Eq. (5.17) for dx/dt , or

c ≡ dx

dt
≡

−∂Q
∂t
∂Q
∂x

. (5.18)

When considering conservation of mass in a one-dimensional impervious
channel, we obtain from Eq. (5.8) that (∂Q/∂x) = (−∂A/∂t). Substituting this
into Eq. (5.18) gives

c = ∂Q

∂A
. (5.19) ��

This relationship for floodwave celerity is referred to as the Kleitz–Seddon
law. It is interesting to point out that it is essentially the result of the conservation
of mass with the restrictions pertaining to Eq. (5.8).

For a wide-rectangular channel, the unit discharge q varies with depth h
according to resistance relationships, such as q = V h = αhβ . The equation of
wave propagation and the celerity relationship in flowing water then reduce to

∂h

∂t
+ c

∂h

∂x
= 0, (5.20)

c = ∂q

∂h
= βαhβ−1 = βV . (5.21) �

The floodwave celerity c is always faster than the flow velocity when
β > 1. For instance, β = 3 for laminar flow and β = 1.5 for turbulent flow with
constant Darcy–Weisbach factor f (or Chézy coefficient C); see Table 3.3. It is
of foremost importance to understand that the celerity of floodwaves increases
with flow depth. It implies that larger floodwaves (larger flow depth) propa-
gate faster than small floodwaves. This causes nonlinearity in the downstream
propagation of floodwaves, and linear techniques based on superposition, such
as the unit hydrograph, fail to adequately simulate floodwave propagation in
channels. It also indicates that the method of isochrons used in hydrology is not
applicable to both small and large floodwaves.

The following treatment of equation of motion (5.16) considers the resistance
and the continuity relationships. The resistance relationship V = αhβ−1 yields
the following derivatives ∂V = (β−1) (V/h)∂h. The reader can demonstrate
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in Exercise 5.2 that equation of motion (5.16) can be rewritten as

S f = S0 − [1 + (β − 1)Fr2]
∂h

∂x
− 1

g

∂V

∂t
. (5.22)

Note that for steady flow this equation is slightly different from Eq. (4.28)
because resistance to flow is considered and q is not constant.

A complete list of conversion factors considering q = V h = αhβ , ∂h/∂t =
−∂q/∂x , and c=βV is presented in Table 5.1. Continuity relationship (5.8)
then yields ∂h/∂t = −∂q/∂x = −V ∂h/∂x − h∂V/∂x , which can be com-
bined with ∂V = [(β − 1)V/h]∂h to reduce Eq. (5.22) to

S f = S0 − [1 − (β − 1)2 Fr2]
∂h

∂x
, (5.23a) �

| floodwave diffusivity |
and, for Manning’s equation,

S f = S0 −
(

1 − 4

9

Q0.2 S0.9

gn1.8 W 0.2

)
∂h

∂x
. (5.23b)

The floodwave-diffusivity term depends on the value of β and Fr. For instance,
Manning’s equation is applicable in most rivers (β = 5/3), and, for Fr < 1.5, the
floodwave-diffusivity term is positive. Conversely, the term is negative when
Fr > 1.5. In rivers with low Froude number, the floodwave diffusivity becomes
close to unity.

It is also quite important to examine the ratio of the second to the first
term of the St. Venant equation. From Eq. (5.22), the ratio (−∂h/S0∂x) is a
measure of the floodwave attenuation at low values of the Froude number. From
Table 5.1, this diffusivity ratio can be written (see Exercise 5.5) as

−1

S0

∂h

∂x
= 1

S0c2

∂q

∂t
= 1

β2S0

W 1−2/β

α2/βQ2−2/β

∂Q

∂t
. (5.24)

In the case of the Manning equation, α = (S1/2
0 /n), β = 5/3 , the diffusivity

ratio reduces to

−1

S0

∂h

∂x
= 9

25

n1.2

W 0.2S1.6
0 Q0.8

∂Q

∂t
. (5.25) �

The reader will note that rapid changes in discharge (large ∂Q/∂t) increase
floodwave diffusivity. For a given floodwave, a given Q, and ∂Q/∂t , diffusivity
increases with Manning coefficient n and decreases with channel slope. It is
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therefore clear that, in many cases, channel straightening (higher S0) and chan-
nel lining (lower n) decrease floodwave diffusivity of natural channels.

The following relationships are important in determining the flow velocity V
and the floodwave celerity c, assuming that the Manning equation is applicable:

V = 1

n
R2/3

h

{
S0 − [1 − (β − 1)2 Fr2]

∂h

∂x

}1/2

, (5.26)

c = β

n
R2/3

h

{
S0 − [1 − (β − 1)2 Fr2]

∂h

∂x

}1/2

. (5.27) �

The floodwave-diffusivity term plays a dominant role in the alteration of
floodwaves. This process is illustrated with the following example. Consider a
triangular floodwave propagating in a wide-rectangular channel, as sketched
in Fig. 5.5. Two points at equal flow depth are located upstream (A) and
downstream (B) of the wave crest. The reference discharge Qr corresponds to
the kinematic-wave approximation, where, S0 = S f , thus assuming Manning’s
equation Qr = (A/n)R2/3

h S1/2
0 . Three types of floodwaves are recognized:

(1) a dynamic wave when Fr > 1/(β − 1); (2) a kinematic wave when
Fr = 1/(β − 1), and (3) a diffusive wave when Fr < 1/(β − 1).

Dynamic waves in steep channels thus tend to form pulsating flows or surges,
also called roll waves. In laminar flow (β = 3), roll waves can theoretically form
when Fr > 0.5. Measurements in sheet flows are possible for subcritical flow
at Fr > 0.7 (Julien and Hartley, 1985). In turbulent flows (β = 5/3), roll waves
develop on very steep smooth channels under supercritical flows (Fr > 1.5).
Roll waves and supercritical flows should be avoided when open channels are
being designed because of surface instabilities and cross waves incurred by any
perturbation of the bank and/or the bed. This can best be achieved by an increase
in boundary roughness to the extent that the flow will remain subcritical.

Kinematic waves are obtained when Fr =1/(β−1). As sketched in
Fig. 5.5(b), the bed and the friction slopes are identical. This implies that wave
celerity and discharge increase solely with flow depth. The wave celerities and
discharges at points (A) and (B) are therefore identical, and the distance sepa-
rating (A) and (B) remains constant as the floodwave travels downstream. The
celerity of the wave crest at (C) is nevertheless larger than that of (A) or (B),
and the crest gradually moves to form a well-defined wave front, also referred
to as kinematic shock.

In most rivers, the flow is subcritical and flood routing is adequately described
by the diffusive-wave approximation of the St. Venant equation. In such cases,
the wave celerity and discharge do not vary solely with flow depth but also
depend on the gradient of flow depth in the downstream direction. For instance,
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Figure 5.5. Dynamic, kinematic, and diffusive waves.

as sketched on Fig. 5.5(c), the initially triangular floodwave shows ∂h/∂x < 0
on the downstream side and ∂h/∂x > 0 on the upstream side of the crest.

This implies that the two points, (A) and (B), at identical flow depth will prop-
agate at different celerities where the downstream point (B) moves faster down-
stream than point (A). This will result in floodwave attenuation, or stretching of
the distance separating (A) and (B), as the flood propagates in the downstream
direction. The floodwave will elongate and the peak discharge decrease as the
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wave travels downstream. Floodwave attenuation is most effective when the
Froude number is low, and ∂h

∂x is large compared to S0.

5.4 Loop-rating curves

Solutions to unsteady flow problems in most rivers require the use of the
diffusive-wave formulation of the St. Venant equation. Based on the friction-
slope relationship, total discharge Q in a river can be written as

Q = A

n
R2/3

h

{
S0 −

(
∂h

∂x

)
[1 − (β − 1)2 Fr2]

}1/2

. (5.28)

At a given flow depth, the friction slope S f at low Froude numbers is
slightly larger than the bed slope during the rising stage (∂h/∂x) < 0. Unless

Figure 5.6. Loop-rating curve of the
Mississippi River at Vicksburg (after
Combs, 1994).

the kinematic-wave approximation is
applicable, river floods will induce
loops in the rating curve relationship
because S f �= S0 during the rising and
the falling levels of flood hydrographs.
Typically, at a given flow depth, the
rising limb of a floodwave will dis-
play a higher discharge than the falling
limb. A counterclockwise loop is ob-
tained for stage–discharge relation-
ship (h versus Q) of most channels.
The example of the Mississippi River
is shown in Fig. 5.6. The maximum
discharge is reached before the maxi-
mum flow depth.

The loop-rating curve also has an impact on shear stress and sediment-
transport calculations. Bed shear-stress τ0 calculations based on the friction
slope are given by

τ0 = γ Rh S f = γ Rh

{
S0 − [1 − (β − 1)2 Fr2]

∂h

∂x

}
. (5.29)

Shear-stress calculations deviate from kinematic-wave considerations. It is
particularly shown that at a given flow depth, shear stress is larger on the rising
limb than on the falling limb. Bedload sediment transport also increases with
bed shear stress, thus resulting in larger sediment transport during the rising limb
at a given flow depth than for the falling limb. For instance, the Meyer–Peter
Muller formula shows that qs ∼ (τ0 − τc)1.5.
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Figure 5.7. Loop of the sediment-rating curves: (a) Bell River and (b) Yampa
River.

Sediment transport is described by the sediment-rating curve (sediment dis-
charge Qs versus water discharge Q). Although both Qs and Q increase during
the rising stages, Qs increases faster than Q. The sediment-rating curve is
characterized by a clockwise loop-rating effect, as shown in Fig. 5.7. This ef-
fect is predominant for streams transporting mostly bedload. Streams carrying
predominantly washload may not respond to changes in bed shear stress.

In summary, Fig. 5.8 sketches the effects of the dynamic, kinematic, and dif-
fusive waves on discharge and bedload sediment transport. The dynamic wave
usually found in upland areas tends to cause riverbed degradation as the flood-
wave amplifies downstream. Conversely, the diffusive wave typically found in
most subcritical rivers causes floodwave attenuation and riverbed aggradation.

Example 5.3 Application of the St. Venant equation. An observer measures
the flow depth in a 50-m wide-rectangular channel inclined at S0 = 3 × 10−3

with Manning coefficient n = 0.03. Initially, the flow depth is 1.0 m and the
water level rises at a rate of 1 m/h. Calculate (1) the initial discharge at a distance
of 1 km downstream, (2) calculate the relative magnitude of the acceleration
terms in the St. Venant equation, and (3) determine whether the floodwave
attenuates as it propagates downstream.
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Figure 5.8. Dynamic, kinematic, and diffusive waves.

Step 1: The initial upstream discharge is

Qu = W

n
h5/3

u S1/2
0 = 50

0.03
15/3

√
3 × 10−3 = 91.3 m3/s.

From continuity equation (5.8),

�Q = −W�h�X

�t
= −50 × 1

3,600 s
× 1,000 m3 = −13.9 m3/s.

The downstream discharge Qd is 91.3 − 13.9 = 77.4 m3/s.

Step 2: The downstream flow depth is

hd =
(

nQ

W S1/2

)3/5

=
(

0.03 × 77.4

50 × √
3 × 10−3

)0.6

= 0.906 m.
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The upstream and the downstream velocities are, respectively,

Vu = Qu

W hu
= 91.3

50 × 1
= 1.826 m/s, Vd = Qd

W hd
= 77.4

50 × 0.906
= 1.708 m/s.

Over a distance of 1 km, the flow depth changes by 0.094 m and �V =
0.118 m/s. The terms of the St. Venant equation (Eq. 5.16) are

(2) S0 = 0.003 = 3 × 10−3,

(3)
∂h

∂x
= −0.094 m

1,000 m
= −9.4 × 10−5,

(4)
V

g

∂V

∂x
= 1.77

9.81

(−0.118)

1,000
= −2.13 × 10−5.

Given the floodwave celerity c = βV = 5/3 × 1.77 m/s = 2.95 m/s, the
1-km distance is traveled in 390 s.

(5)
1

g

∂V

∂t
= s2

9.81 m

0.118 m

340 s2
= 3.53 × 10−5.

The friction slope is S f = S0 − (∂h/∂x) − (V ∂V /g∂x) − (1/g)(∂V /∂t) =
3.08 × 10−3. Note that the Froude number,

Fr = Vu√
ghu

= 1.826√
9.81

= 0.58

is less than unity and term (4) is smaller than term (3).

Step 3: We can use Eq. (5.22) to calculate the floodwave diffusivity term as
1 − (β − 1)2 Fr2 = 1 − 4

9 (0.58)2 = 0.85. We determine that the floodwave is
diffusive and attenuates as it propagates downstream.

5.5 River flood routing

We can calculate the propagation of floodwaves in rivers by solving the equa-
tions of conservation of mass and momentum. The basic approach for the nume-
rical simulation of floodwave routing stems from the concept of celerity, which
is sketched for a single wide-rectangular channel in Fig. 5.9. Any change in
flow depth corresponds to a change in discharge, and the perturbation prop-
agates at a celerity c. Because c = dx/dt , numerical models should attempt
to set �x and �t such that c ∼= �x/�t. The stability of several numerical
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Figure 5.9. Sketch of stable and unstable numerical schemes.

schemes depends on the Courant–Friedrich–Levy condition, which can be
written as

C f l = c�t

�x
, (5.30)

where C f l is the Courant number. When C f l ≤ 1, the numerical scheme is
stable; the scheme is usually unstable when C f l > 1 m, as sketched in Fig. 5.9.

Because the floodwave celerity is maximum near the peak discharge of the
floodwave (c = βV ), the time and space increments �t and �x , respectively,
can be related as

�t = C f l �x

βV
= �x C f l

βα1/βq
β−1
β

, (5.31)

and, for Manning’s equation in S.I. units, we easily demonstrate in Exercise 5.6
that, for stability,

�t <
3

5

�x n

h2/3 S1/2
0

= 3n0.6 W 0.4

5Q0.4 S0.3
�x . (5.32)

Alternatively, we can calculate C f l at any node at any time step from fixed
values of �x and �t as

C f l = �t

�x

5

3

Q0.4 S0.3

n0.6 W 0.4
= �t

�x

5

3
V ; (5.33)
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when C f l exceeds 1, the highest value of the Courant number C f l is indicative
of where numerical instabilities are likely to originate in numerical models. It
is also clear from Eq. (5.32) that numerical instabilities are caused by high dis-
charges and steep slopes whereas larger resistance and channel width increase
numerical stability.

Example 5.4 Application to flood routing. The continuity relationship is to
be used to calculate floodwave propagation through a 325-km-long reach of a
260-m-wide river. The bed slope is 1.5 × 10−4 and the Manning coefficient n
is 0.015. The hypothetical daily inflow discharge is Qin of 1,000, 2,000, 3,000,
2,500, 2,000, 1,500, and 1,000 m3/s. Calculate the outflow discharge and the
daily change in flow depth during this period. We can first check the value of
the Courant number from Eq. (5.33):

C f l = 86,400 s

325,000 m

5

3

(Q)0.4 (1.5 × 10−4)0.3

(0.015)0.6(260)0.4
= 4.24 × 10−2 Q0.4.

For the maximum discharge Q = 3,000 m3/s, C f l = 1.04, which can be ac-
ceptable only because C f l > 1 for a single time step. The Froude number is

Fr = Q0.1 S0.45

g0.5 n0.9 W 0.1
= (3,000)0.1 (1.5 × 10−4)0.45

(9.81)0.5 (0.015)0.9 (260)0.1
= 0.34.

The natural floodwave should attenuate because Fr < 1.5.
The Froude number is sufficiently small and the diffusivity term from

Eq. (5.23), 1 − (β − 1)2 Fr2 = 1 − 4
9 (0.34)2 = 0.95, remains close to unity.

The diffusive-wave approximation is therefore recommended over the full-
dynamic-wave approximation.

The maximum diffusivity ratio from Eq. (5.25) is

−1

S0

∂h

∂x
= 9

25

n1.2

W 0.2 S1.6
0 Q0.8

�Qmax

�t

= 9

25

(0.015)1.2 1,000

(260)0.2(1.5 × 10−4)1.6(3,000)0.8 86,400
= 0.019.

The diffusivity is so small that the solution should be very close to kinematic
routing.

The initial water-surface elevation at Q = 1,000 m3/s is h = 2.534 m. The
equation of continuity for an impervious channel without rainfall and lateral
inflow is rewritten as

�hi = (Qin − Qout) �t

W�x
. (E.5.4.1)
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Table E.5.4.1. Floodwave routing calculation

Kinematic Diffusive
Days Qin hu �hi hd

a Qout Qout
b hd

c

(i) (m3/s) (m) (m) (m) (m3/s) C f l (m3/s) (m)

1 1,000 2.53 0 2.53 1,000 0.67 1,000 2.53
2 2,000 3.84 1.02 2.53 1,000 0.67 1,015 2.55
3 3,000 4.90 1.28 3.56 1,759 0.84 1,786 3.65
4 2,500 4.39 −0.43 4.82 2,925 1.03 2,912 4.71
5 2,000 3.84 −0.51 4.39 2,499 0.97 2,485 4.42
6 1,500 3.23 −0.54 3.88 2,033 0.89 2,021 3.90
7 1,000 2.53 −0.59 3.33 1,579 0.81 1,567 3.33

ahdi+1 = hdi +�hi

b Qout =
(

W

n

)
hd

5/3 S0
1/2

(
1 − ∂h

S0∂x

)1/2
∼= 212.3 hd

5/3
[

1 + �hi

S0C f l�x

]1/2

.

cFloodstage calculated with �x = 32.5 km and �t = 2 h.

Figure E.5.4.1. Calculated flood
routing.

On a daily basis (�t = 86,400 s), the
discharge Qout at the downstream station
is then updated from the new downstream
flow depth hd i+1 = hd i + �hi , and the
downstream discharge is calculated with
the diffusive-wave approximation in
S f = S0 − ∂h/∂x . The procedure is illus-
trated in Table E.5.4.1 and the results are
shown in Fig. E.5.4.1. For the sake of com-
parison, the floodstage calculated on a finer
grid, �x = 32.5 km and �t = 2 h, is

shown in the last column of Table E.5.4.1. The results are quite similar to those
of the diffusive-wave formulation.

5.6 River flow and sediment-duration curves

Duration curves describe the percentage of time that a certain water or sediment
discharge is exceeded. The curves are usually based on daily records and are
useful in estimating how many days per year an event will be exceeded. Let the
uppercase letter X denote a random variable, and let the lowercase letter x denote
a possible value of X . For a random variable X , its cumulative distribution
function (cdf), denoted as F(x), is the probability P that the random variable
X will be less than or equal to x :

F(x) = P(X ≤ x). (5.34)
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F(x) is also called the nonexceedance probability for the value x . The ex-
ceedance probability E(x) = 1 − F(x). The probability density function (pdf),
p(x), is the derivative of the cdf:

p(x) = dF(x)

dx
. (5.35)

Exceedance probability transforms are useful in the analysis of duration curves.
Properties of an exponential pdf (epdf) of variable x are such that after variable
x is divided by the mean value x̄ , a reduced variable �̄ is defined as �̄ = x/x̄ .
The properties of the epdf p(�̄) and the exceedance probability E(�̄), defined
as E(�̄) = ∫ ∞

�̄
p(�̄) d�̄, are

E(�̄) = p(�̄) = e−�̄ . (5.36)

It is interesting to note that both the epdf and the exceedance probability are
identical.

The purpose of the transform is to determine whether the pdf of a runoff
or sediment variable x reduces to an epdf of variable �̄ after the following
transform:

�̄ = axb, (5.36a)

where a and b are, respectively, the transform coefficient and exponent, hereby
referred to as transform parameters. When successful, this transforms the un-
known exceedance probability of variable x into a simple epdf of the reduced
variable �̄.

The inverse transform is simply defined from Eq. (5.36a) as

x =
(

1

a

) 1
b

�̄
1
b = â�̄ b̂, (5.36b)

where â and b̂ are the inverse transform parameters simply calculated from a
and b as â = (1/a)1/b and b̂ = (1/b). Useful conversions are a = â−1/b̂ = â−b

and b = (1/b̂). The inverse transform exponent b̂ is important in determining
the degree of nonlinearity of the variable x and can be related to deterministic
relationships. An example of range of values of b̂ for various processes is
summarized in Table 5.2. In increasing order of nonlinearity, we find point
rainfall, surface runoff, chemical and sediment concentration, and chemical
and sediment yield.

The properties of the transform are such that once the transform parameters a
and b are known, the exceedance probability of variable x is calculated directly
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Table 5.2. Typical values of b̂ for
different variables

Process b̂

Point rainfall 0.85–1.28
Upland snowmelt 1.15–1.37
Upland chemical concentration 0.46–1.40
Upland runoff 1.46–1.62
River flow discharge 1.25–1.77
River sediment concentration 1.13–2.14
Upland chemical yield 1.48–2.33
Upland sediment yield 2.20–2.35
River sediment discharge 1.70–2.84

from Eqs. (5.35) and (5.36a). The pdf p(x) is

p(x) = abxb−1e−axb = ab

(
�̄

a

) b−1
b

e−�̄ . (5.37)

We can also demonstrate that p(x)dx = p(�̄)d�̄ and E(x) = E(�̄).
The procedures to evaluate the parameters of this distribution are presented

in Subsection 5.6.1, followed by practical considerations in Subsection 5.6.2.

5.6.1 Parameter evaluation

Two procedures are examined for the transform parameter evaluation: (1) a
graphical method and (2) the method of moments.

Graphical method. The graphical method capitalizes on the properties
of the epdf and the exceedance probability in Eq. (5.36). The natural logarithm
of Eq. (5.36) is combined with Eq. (5.36a) to give

−ln E(�̄) = �̄ = axb. (5.38) �

The transform parameters a and b are evaluated graphically after the natural
logarithm of Eq. (5.38) is taken in the form

� = ln[−ln E(�̄)] = ln �̄ = ln a + b ln x, (5.39) �

where the shorthand exceedance probability� designates the double logarithm
of the exceedance probability. Of course, this transform requires that all values
of x be positive.
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A straight line is fitted on the graphical presentation of � as a function of
ln x to yield estimates for a and b. It becomes clear from the properties of
Eq. (5.39) that ln a corresponds to the value of� when x = 1. Likewise, if the
points on the graph� vs. ln x assemble on a straight line, the slope of the line
gives directly the transform exponent b. The graphical method is subjective but
provides the user a qualitative appreciation of the goodness of fit. Ideally, all
points should plot on a straight line for the power transform in Eq. (5.38) to be
exactly applicable.

Method of moments. Parametric estimation from the method of mo-
ments takes advantage of the information contained in the first and the second
moments of the sample. The transform parameters a and b can be evaluated after
being equated with the first and the second moments of the transformed vari-
ables. Specifically, the first moment, or mean value, of the sample x̄ is equated
to the first moment M1 of the transformed distribution, given x = (

�̄/a
)1/b

and
p(x) dx = p(�̄)d�̄:

M1 =
∫ ∞

0
xp (x) dx =

(
1

a

) 1
b
∫ ∞

0
�̄

1
b e−�̄ d�̄

=
(

1

a

) 1
b

�

(
1 + 1

b

)
= â!b̂ = x̄ . (5.40)

Accordingly, the expected value x̄ can be simply evaluated from a simple gamma
function of the inverse transform parameters as x̄ = â!b̂, where ! designates
the factorial function of the argument b̂. Likewise, the second moment of the
sample x2 is equated to the second moment M2 of the transformed distribution:

M2 =
∫ ∞

0
x2 p(x) dx =

(
1

a

) 2
b
∫ ∞

0
�̄

2
b e−�̄ d�̄

=
(

1

a

) 2
b

�

(
1 + 2

b

)
= â2!(2b̂) = x2. (5.41)

The evaluation of the transform parameters a and b follows after the transform
coefficient a is eliminated from the ratio of Eq. (5.41) to the square of Eq. (5.40);
thus

�
(
1 + 2

b

)
[
�
(
1 + 1

b

)]2 = x2

x̄2
. (5.42)

From the calculated values of x̄ and x2 of the sample, the value of b on the
left-hand side of Eq. (5.42) can best be evaluated numerically. For instance, an
interpolation procedure is based on the numerical values given in Table 5.3
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Table 5.3. Useful values of the transform
parameter b

b x2 / x2 �(b) !(b)

0.1 184,756 9.51 0.951
0.15 2,213 6.22 0.933
0.2 252 4.59 0.918
0.25 70 3.62 0.906
0.3 30.2 2.99 0.897

0.35 16.77 2.54 0.891
0.4 10.86 2.21 0.887
0.45 7.79 1.97 0.886
0.5 6 1.77 0.886
0.55 4.861 1.61 0.888

0.6 4.090 1.49 0.893
0.65 3.543 1.38 0.900
0.7 3.138 1.30 0.908
0.75 2.830 1.22 0.919
0.8 2.588 1.16 0.931

0.85 2.395 1.11 0.945
0.9 2.238 1.07 0.962
0.95 2.108 1.02 0.980
1 2 1.00 1.00
1.05 1.907 0.973 1.02

1.1 1.828 0.951 1.046
1.2 1.700 0.918 1.10
1.3 1.601 0.897 1.17
1.4 1.523 0.887 1.24
1.5 1.460 0.886 1.33

1.6 1.409 0.893 1.43
1.7 1.366 0.909 1.54
1.8 1.330 0.931 1.68
1.9 1.299 0.962 1.83
2 1.273 1.00 2.0

2.5 1.183 1.33 3.32
3 1.132 2.0 6.0
3.5 1.100 3.32 11.6
4 1.078 6.0 24.0
4.5 1.063 11.6 52.3

proves to be sufficiently accurate. The value of the transform coefficient a then
follows from â!b̂ = x̄ in Eq. (5.40) as

a =
[
�
(
1 + 1

b

)
x̄

]b

. (5.43)
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Parameter estimation from the method of moments is direct and not subjective
but lacks the visual information inherent in the graphical method. The evaluation
of the transform parameters with both the graphical method and the method of
moments is illustrated in Example E.5.5.

Example 5.5 Application of the duration curve procedure. Consider the
following sample of an unknown variable: x̄ = 4.5, 1.0, 7.0, 2.0, 9.0, 0.5, 6.0,
11.0, 3.5. The first step consists of ranking the n = 9 numbers in decreasing
order of x , as shown in the second column of Table E.5.5.1; the values of x
are squared in the third column. The second step consists of calculating the
exceedance probability by use of the Weibull plotting position. Accordingly,
the numbers in decreasing order are ranked from 1 to n as shown in the fourth
column, 1 being the largest and n being the smallest number. After the rank is di-
vided by 1 + n, the plotting position corresponds to the exceedance probability
E(�̄) or E(x) in the fifth column. The values of ln x and � = ln [−ln E(�̄)]
are tabulated in the sixth and the seventh columns, respectively, for the plot
shown in Fig. E.5.5.1. Graphically, the parameter estimation gives a ≈ 0.1 and
b ≈ 1.3. The line is usually fit through the higher values of ln x because, for
sediment-transport parameters, the large values of x are usually those contribut-
ing to most of the sediment load.

With the method of moments, the average value, x̄ = 4.94, is calculated at the
bottom of the second column of Table E.5.5.1. The average value of x2 = 36.1
is compiled at the bottom of the third column. From Table E.5.5.1, the ratio
(x2/x̄2) = [36.1/(4.94)2] = 1.479 in the second column corresponds to a value
of b ≈ 1.45 from interpolation with the values given in the first column of
Table 5.3. The value of a ≈ 0.085 is thereafter calculated from Eq. (5.43).

Table E.5.5.1. Example of transformation procedure

Sample
x̃ Ranked x x2 Rank E(x) ln (x) ln [− ln E(x)]

4.5 11.0 121.00 1 0.1 2.3979 0.8340
1.0 9.0 81.00 2 0.2 2.1972 0.4759
7.0 7.0 49.00 3 0.3 1.9459 0.1856
2.0 6.0 36.00 4 0.4 1.7918 −0.0874
9.0 4.5 20.25 5 0.5 1.5041 −0.3665
0.5 3.5 12.25 6 0.6 1.2528 −0.6717
6.0 2.0 4.00 7 0.7 0.6931 −1.0309

11.0 1.0 1.00 8 0.8 0.0000 −1.4999
3.5 0.5 0.25 9 0.9 −0.6931 −2.2504

Average: x̄ = 4.94 x2 = 36.1
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Figure E.5.5.1. Flow duration example.

The gamma function can also be approximated by Stirling’s asymptotic series
as

!(x) = �(x + 1) =
√

2πxx x e−x

{
1 + 1

12x
+ 1

288x2
− 139

51,840x3
· · ·

}
,

(E.5.5.1)

which is readily available on most scientific calculators.

5.6.2 Practical considerations

The transforms provide useful information in the analysis of exceedance prob-
ability and flow duration curves. Indeed, the exceedance probability E(x) of a
variable x can be directly calculated from

E(x) = e−axb
, (5.44)

given the transform parameters. For instance, the flow discharge in the Chaudière
river (x = Q) is given by φ = 0.048 Q0.66, or a = 0.048 and b = 0.66. The
exceedance probability E(1,000 m3/s) of a daily discharge Q = 1,000 m3/s
is calculated from E(1,000) ∼= e−0.048×(1,000)0.66 = 0.01. The transforms also
enable the user to estimate what value of a parameter will be exceeded a certain
fraction of the time directly from

x = [− ln E(x)]1/b

(
1

a

)1/b

= â [− ln E(x)]b̂ . (5.45)

For instance, we calculate the daily sediment discharge of the Colorado River at
Lee’s Ferry that is exceeded 1% of the time, or 3.65 days a year, from Eq. (5.45)
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after solving for x = Qs . For the Colorado River, â = 120,230 and b̂ = 1.7,
a daily sediment discharge exceeded 1% of the time, E(Qs) = 0.01, is simply
given by Qs = 120,230(− ln 0.01)1.7 = 1.6 × 106 tons/day.

Once the magnitude x1 and exceedance probability E1 of an event is known
one can determine the unknown magnitude x2 of another event of exceedance
probability E2 simply as a function of the inverse transform exponent b̂. At
a given b̂ we define ξ = E2/E1 to obtain the unknown η = x2/x1. From
Eq. (5.44), we obtain E1 = e−axb

1 and ξE1 = e−a(ηx1)b
to be solved for ξ as a

function of η and b as

ξ = e−ax1
b(ηb−1) = E(ηb−1)

1 , (5.46)

or conversely for η as a function of ξ and b̂,

η =
(

1 + ln ξ

ln E1

)b̂

=
(

ln E2

ln E1

)b̂

, (5.47)

which shows that at any given value of ξ and E1, the magnitude of η increases
with the exponent b̂.

As a final result, the transforms enable the user to calculate the magnitude of
infrequent events from the mean value of a variable and the inverse transform
parameter b̂. From Equations 5.40 and 5.45, we demonstrate that the exceedance
probability of the mean value is only a function of b̂ as

−ln E(x̄) = (
!b̂
)1/b̂

. (5.48)

The value of x that has an exceedance probability E(x) is then directly calculated
from x̄ and b̂ as

x =
[

ln E(x)

ln E(x̄)

]b̂

x̄ =
{

[− ln E(x)]b̂

!b̂

}
x̄ . (5.49) ��

Values of the multiplication coefficient in the braces of Eq. (5.49) are given in
Table 5.4. One of the practical applications of this method is the determination
of the two-year flood, which usually corresponds to the dominant discharge of
alluvial rivers.

Extreme rainfall events and the resulting floods can claim thousands of lives
and cause billions of dollars in damage. Floodplain management and the design
of flood-control works, reservoirs, bridges, and other investigations need to
reflect the likelihood or probability of such events. Figure 5.10 shows extreme
specific-discharge conditions as functions of drainage area.

A frequency distribution is precisely determined when a sufficiently long
record is available, e.g., flood discharges, rainfall precipitation, or pollutant
loadings. Frequency analyses are required when available data from past
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Table 5.4. Multiplication factor k for infrequent events x = kx

Inverse transform coefficient b̂

rainfall runoff sediment

Exceeded E(x) 1 1.5 2 2.5 3

5% of the time 0.05 3.0 3.9 4.49 4.68 4.48
1% of the time 0.01 4.6 7.4 10.6 13.7 16.3
1 day per year 2.738 × 10−3 5.9 10.7 17.4 25.5 34.2
1 day per 1.5 years 1.825 × 10−3 6.3 11.9 19.9 30.1 41.8
1 day per 2 years 1.37 × 10−3 6.6 12.7 21.7 33.6 47.8
1 day per 5 years 5.47 × 10−4 7.51 15.5 28.2 46.6 70.6
1 day per 10 years 2.73 × 10−4 8.2 17.6 33.6 58.0 92

Figure 5.10. Specific discharge vs. drainage area (modified after Creager
et al., 1945).

measurements are insufficient to define precisely the risk of large floods, ex-
treme rainstorms, and pollutant loadings. Engineers typically have to work with
a sample of 10 to 100 observations to estimate events with exceedance prob-
abilities of 1 in 100, 1 in 1,000, and even the flood flows for spillway design
exceeded with a chance of 1 in 10,000.

The return period (sometimes called the recurrence interval) is often specified
rather than the exceedance probability. A return period T can be understood as
follows: In a fixed T-year period the expected number of exceedances of the
T-year event is exactly one if the distribution of floods does not change over
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that period. Thus an average of one flood greater than the T-year flood level
occurs in a T-year period. A return period has been incorrectly understood to
mean that one and only one T-year event can occur every T years. Actually, the
probability of the T-year flood’s being exceeded is 1/T every year; thus the 1%
exceedance event can be described as a value with a 1 in 100 chance of being
exceeded each year.

Case Study 5.1 Daily sediment discharge of the Colorado River, United
States. The duration curve of 5 years of daily sediment-discharge measure-
ments of the Colorado River at Taylor’s Ferry before the construction of the

Figure CS.5.1.1. Sediment discharge
of the Colorado River (after Julien,
1996).

dams is shown in Fig. CS.5.1.1. The mag-
nitude of infrequent events can be es-
timated from the mean values x̄ and b̂.
For instance, given the mean daily sedi-
ment discharge of 185,700 tons/day in
the Colorado River and b̂ = 1.7, estimate
(1) the parameters a, b, â, and E(Q̄s)
and (2) the magnitude of the daily sedi-
ment discharge x2 exceeded 1 day per
year (P2 = 0.00274).

First, b = 1/b̂ = 0.588, !(1.7) = 1.54
from Table 5.3, â = x̄/1.54 = 120,230
from Eq. (5.40), and a = â−b = 1.028 × 10−3 from Eq. (5.36b). The exceed-
ance probability of the mean daily sediment discharge of the Colorado River,
Q̄s = 185,700 tons/day, is calculated from Eq. (5.44) with X = x̄ . This gives
E1 = E(Q̄s)=e−1.028×10−3×185,7000.588 = 0.275.

Second, the daily sediment discharge exceeded 1 day/yr is calculated
from Eq. (5.49) as Qs = [(−ln 0.00274)1.7/1.54]185,700=2.46 million tons
per day.

As a last practical example, estimate the daily sediment discharge with a
period of return of 10 yr from this 5-yr record. Using Eq. (5.49), we ob-
tain Qs10 yr = [(− ln 2.74 × 10−4)1.7/1.54] 185,700 = 4.31 million tons per day,
which is 23 times the mean daily sediment discharge.

Case Study 5.2 Fluvial data set for the Rhine River, The Netherlands.
This case study presents a summary of the 1998 Rhine River flood data in
Table CS.5.2.1, followed with stage measurements along the Rhine-Waal River
in The Netherlands in Table CS.5.2.2. Selected particle-size distributions of
the bed material are presented in Table CS.5.2.3 and selected velocity and
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Table CS.5.2.1. Flood of the Rhine river near the Pannerdens Canal

Large Dune Small Dune

Date in Discharge Stage Depth Velocity Slope length height length height
1998 (m3/s) (m) (m) (m/s) (cm/km) (m) (m) (m) (m)

29 Oct. 4,077 11.71 8.51 7.43 0.34 0
30 4,783 12.33 9.13 8.31 0.41 0
31 6,180 13.42 10.22 10.42 11.12 0.48 0
1 Nov. 8,119 13.96 10.76 11.77
2 9,045 14.48 11.28 12.35 16.24 0.74 0
3 9,464 14.88 11.52 1.82 13.12 19.78 0.87 0
4 9,149 15.01 11.49 1.75 13.70 22.57 0.97 0
5 8,267 14.91 1.71 13.32 23.90 1.08 0
6 7,273 11.17 1.71 11.58 26.02 1.13 0
7 14.14 10.94 10.61 28.84 1.15 0
8 13.76 10.56 9.84
9 13.46 10.05 1.63 9.07

10 5,640 13.11 8.49 32.42 0.93 0
11 12.85 9.82 1.53 7.91
12 5,122 12.69 9.49 34.78 0.79 6.94 0.27
13 4,850 12.46 9.25 36.63 0.74 6.72 0.25
14
15
16 4,522 12.18 9.1 40.01 0.66 6.61 0.28
17
18
19 4,527 12.17 9.1 42.28 0.56 7.95 0.26

sediment-concentration profiles are shown in Table CS.5.2.4. The navigable
width of the Rhine River is maintained at 260 m. The assistance of G. Klaassen
at Delft Hydraulics and W. ten Brinke at the Rijkswaterstaat, is gratefully
acknowledged.

Exercise 5.1

Demonstrate that the left-hand side of Eq. (5.15) reduces to Eq. (5.14) when
βm = 1 in wide rivers. Hint: use continuity equation (5.8).

�Exercise 5.2

Demonstrate from the derivatives of the resistance relationship V = αhβ−1 that
equation of motion (5.16) reduces to Eq. (5.22).

Answer: h∂V = (β − 1) V ∂h,
or (V/g) (∂V/∂x) = (β − 1)Fr 2 (∂h/∂x).
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Table CS.5.2.2. Stages along the Rhine-Waal River

Station Pannerdense Nijmegen
Lobith Kop Haven Tiel Zaltbommel Vuren

kilometer section 862.18 867.22 884.87 913.25 934.78 951.78
Distance 4,998.1 10,180.858 27,225.159 55,528.35 76,652.202 93,204.14

Date Time cm cm cm cm cm cm

Oct. 1 09:00 1372 1318 1118 776 467 224
Nov. 1 12:00 1457 1395 1188 840 536 277

2 12:00 1514 1450 1231 890 585 315
3 12:00 1554 1486 1266 939 646 377
4 11:00 1573 1502 1283 955 670 409
4 16:00 1574 1502 1284 958 673 409
4 17:00 1573 1502 1284 958 673 412
4 18:00 1573 1502 1284 958 674 414
4 19:00 1572 1502 1284 958 674 415
4 20:00 1572 1283 959 675 416
5 07:00 1563 1494 1277 958 675 418
5 08:00 1562 1494 1278 957 675 419
5 09:00 1561 1493 957 674 418
5 11:00 1559 1490 1276 956 673 145
5 12:00 1558 1489 1274 956 673 414
6 12:00 1515 1455 1248 933 657 402
7 12:00 1468 1413 1215 626 370
8 13:00 1427 1376 1189 871 593 337
9 11:00 1392 1346 1165 852 568 321

10 10:00 1358 1314 1137 826 541 300
11 13:00 1327 1285 1110 799 514 276

Table CS.5.2.3. Particle-size distribution of the bed material

Position d90 d84 d75 d65 d50 d35 d25 d16 d10

(m from axis) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

−33 7.810 5.524 3.000 1.864 0.948 0.609 0.453 0.372 0.315
−33 11.480 8.768 5.296 2.539 0.980 0.651 0.469 0.378 0.319
−33 7.894 5.770 3.040 1.474 0.808 0.556 0.448 0.378 0.325

0 11.506 8.809 5.767 3.347 1.901 1.306 0.952 0.762 0.635
0 12.190 9.905 6.400 3.040 1.182 0.710 0.495 0.401 0.338
0 12.000 9.600 4.000 1.851 0.942 0.698 0.536 0.414 0.339

33 11.789 9.263 6.800 4.800 2.686 1.109 0.684 0.459 0.396
33 11.767 9.227 6.109 3.232 0.901 0.472 0.397 0.334 0.297
33 5.642 3.717 2.622 1.925 1.435 0.967 0.775 0.602 0.486

Average 10.231 7.843 4.782 2.675 1.310 0.786 0.579 0.456 0.383
(mm)
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Table CS.5.2.4. Velocity and concentration profiles

Height z Concentration c Velocity v Height z Concentration c Velocity v
(m) (mg/1) (m/s) (m) (mg/1) (m/s)

October 31, 1998 1.9 71 1.66
0.2 233 0.97 3.1 40 1.81
0.2 246 1.02 3.7 41 1.82
0.2 159 1.00 5.1 29 2.06
0.3 83 1.28 5.5 23 2.00
0.3 75 1.23 5.9 28 1.94
0.4 97 1.25 6.8 20 1.99
1.1 39 1.50 7.9 18 2.03
1.1 38 1.48 9.0 8 2.07
1.2 9 1.45 Surface 10.5

2.5 4 1.73 November 7, 1998
3.0 5 1.71 0.2 108 0.84
4.4 4 1.72 0.2 140 0.89
6.5 3 1.90 0.2 99 0.85
7.3 2 1.87 0.7 53 1.02
7.3 3 1.85 0.6 96 1.11
8.3 2 1.98 0.2 303 0.93
8.2 2 1.96 1.1 31 1.35

Surface 8.9 1.3 24 1.46

November 3, 1998 1.3 26 1.36
0.3 494 0.74 2.1 20 1.45
0.3 488 0.81 2.5 23 1.46
0.3 498 0.72 3.3 21 1.43
0.5 398 0.84 4.7 11 1.76
0.8 293 1.22 5.1 8 1.77
0.4 432 0.47 5.9 8 1.79
1.2 132 1.38 6.8 7 1.79
0.9 185 1.34 7.9 5 1.77
1.3 134 1.47 9.0 4 1.84
2.2 83 1.63 Surface 9.4

3.5 49 1.92 November 10, 1998
4.1 43 1.86 0.3 143 0.85
4.0 43 1.85 0.3 153 0.95
5.3 35 1.99 0.3 103 0.91
6.0 33 1.98 0.4 124 0.95
7.3 26 2.08 0.2 181 0.73
8.0 25 2.04 0.4 87 0.96
9.0 23 1.90

Surface 9.9 1.3 15 1.30

November 5, 1998 0.9 42 1.11
0.2 216 1.27 1.1 28 1.24
0.2 212 1.33 2.0 11 1.38
0.3 250 1.30 3.2 7 1.51
0.5 227 1.47 3.8 8 1.53
0.5 218 1.36 4.5 7 1.44
0.5 230 1.47 5.1 7 1.52
0.8 157 1.41 6.3 6 1.62
0.9 170 1.46 6.9 5 1.70
0.9 160 1.41 8.1 4 1.74

Surface 9.1
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��Exercise 5.3

Demonstrate Eq. (5.23a) from the derivatives of the resistance relationship
V = αhβ−1 combined with the continuity relationship [Eq. (5.8)]. Hint:

1

g

∂V

∂t
= (β − 1)

V

gh

∂h

∂t
,

∂h

∂t
= −∂q

∂x
= −

(
V ∂h

∂x
+ h∂V

∂x

)
.

�Exercise 5.4

As per Exercises 5.2 and 5.3, demonstrate that, for floodwave propagation, term
(5) of St. Venant equation (5.16) is always −β times larger than term (4).

�Exercise 5.5

Demonstrate Eqs. (5.23a) and (5.23b) from Eq. 5.16, Table 5.1, c = βV,
Q = Wq, and q = αhβ . For Manning’s equation, substitute α = S1/2/n and
β = 5/3.

Exercise 5.6

Demonstrate Eqs. (5.24) and (5.25) from q = αhβ , α = S1/2/n and β = 5/3
for Manning’s equation.

�Problem 5.1

Determine the celerity of the floodwave in Example 5.3. What is the time
required for the upstream perturbation to reach the downstream station?

Answer:

c = βV = 5 × 1.82/3 = 3.03 m/s,

T = 1,000 m

c
= 5.5 min.

��Problem 5.2

Repeat the calculations from Example 5.4 for different values of �x . Describe
and explain the influence of the Courant number on flood routing calculations.

Problem 5.3

Estimate the peak discharge of a 3-km2 watershed under extreme rainfall con-
ditions. What is the equivalent rainfall intensity?
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�Problem 5.4

With reference to Case Study CS.5.1, for the daily sediment discharge of the
Colorado River, b̂ = 1.7, the daily sediment discharge of x1 = 1 × 106 tons/day
is exceeded 10 days/yr (E1 = 0.0274). Calculate the exceedance probability E2

of a daily sediment discharge x2 = 2 × 106 tons/day.

Answer: In this case, ξ is calculated, given η = x2/x1 = 2 and b =
1/b̂ = 0.59 for the Colorado River; thus ξ = (0.0274)(20.59−1) = 0.162,
or E2 = ξE1 = 4.45 × 10−3 or 1.62 days/yr.

�Problem 5.5

From the cross section of the Missouri River (Fig. P.4.6.1) determine the
following:

(a) If the Manning coefficient n is constant at any stage, determine the
celerity relationship from the relation between the cross-section area
and discharge.

(b) When the discharge is Q = 31,600 ft3/s and the water level rises at
a rate of 1 ft per day, what is the flow discharge at a cross section
located 10 miles upstream (assume that the cross section is unchanged
and without lateral inflow along the reach).

��Problem 5.6

Consider that the Missouri River flow in Fig. P.4.6.1 is controlled by clearwater
releases from a reservoir and determine the following:

(a) Determine the celerity of the wave generated from suddenly increas-
ing the discharge from a steady 10,000 ft3/s to a discharge fixed at
20,000 ft3/s.

(b) Assume simple approximations for partial derivatives over a reach on
a daily basis and estimate the relative magnitude of the various terms
of the St. Venant equation when the discharge increases from 20,000
to 30,000 ft3/s in 1 day. What approximation of the St. Venant equation
is best suited for floodwave routing?

Answer: (a) c � 2.5 m/s, (b) diffusive-wave approximation.
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��Problem 5.7

Take a sample, at least 100 values, containing daily measurements of either
discharge, sediment concentration, sediment discharge, or nutrient or chemical
concentration. Determine the following:

(a) exceedance probability curve
(b) inverse transform parameters â and b̂
(c) average value of the sample and value exceeded 1 day/yr

��Problem 5.8

From the data section in Case Study 5.2, determine the floodwave celerity.
Determine which approximation of the St. Venant equation is best suited for
flood routing.
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River equilibrium

In a strict sense, a channel is stable when all particles along the wetted perimeter
are not moving. This implies that, without transport of bed material, a cross-
sectional geometry cannot change with time. The geometry of stable channels,
also termed nonalluvial channels, depends on rock outcrops and artificial riprap
and does not depend on sediment transport. Many rivers, however, flow in their
own deposits, called alluvium, to form alluvial channels. Equilibrium of alluvial
channels implies a balance between incoming and outgoing water discharge and
sediment load. Poised and graded streams are synonyms describing equilibrium
conditions. Whenever a balance is obtained between incoming and outgoing
sediment discharges, the cross-sectional geometry may locally change as long
as the deposition volume with a river reach is equal to the erosion volume.
For instance, river bends may reach equilibrium condition between the rate of
erosion on the outside bank and the rate of sedimentation on the point bar.
In a broad sense, the cross-sectional geometry of a meandering channel is in
equilibrium. However, lateral migration of the bend implies that the planform
geometry of the stream is not stable.

This chapter deals with stable and equilibrium river conditions. Section 6.1
details particle stability in a strict sense, and the concept of stable channel is
used in Section 6.2 to define the ideal at-a-station cross-sectional geometry of
a straight channel. Empirical regime relationships in Section 6.3 are followed
by flow conditions in river bends in Section 6.4. The downstream hydraulic
geometry of alluvial channels is derived in Section 6.5. Planform geometry and
bars are discussed in Section 6.6, followed by a discussion of river meandering
in Section 6.7. Lateral migration rates are discussed in Section 6.8, followed
by a case study of a meandering river.

6.1 Particle stability

Figure 6.1 illustrates the forces acting on a cohesionless particle resting on
an embankment inclined at a sideslope angle �1 and a downstream bed-slope

158
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Figure 6.1. Particle-stability analysis.

angle �0. These are the lift force FL , the drag force FD , the buoyancy force
FB , and the weight of the particle FW . As long as the water-surface slope in
the downstream direction is small, the buoyancy force can be subtracted from
the particle weight to give the submerged weight, FS = FW − FB . The lift force
is defined as the fluid force normal to the embankment plane whereas the drag
force is acting along the plane in the same direction as that of the velocity field
surrounding the particle.

For notational convenience, we define two geometrical parameters, a� and
tan�, from the sideslope angle �1 and the downstream bed-slope angle �0.
These two parameters describe the projection of the submerged weight vector
along the embankment plane. The angle � is obtained from the ratio of the
two projection components of FS in the embankment plane as tan� =
[(cos�1 sin�0)/(cos�0 sin�1)], which can be approximated by tan� ∼=
(sin�0/ sin�1) as long as both angles are fairly small (less than ∼20◦). The
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fraction of the submerged weight that is normal to the embankment plane
is given by a� =

√
1 − cos2�0 sin2�1 − cos2�1 sin2�0, which is approx-

imated by a� ∼=
√

cos2�1 − sin2�0 when both angles are small (less than
∼20◦). As a realistic approximation, the submerged weight has one sideslope
component, FS sin�1, one downslope component, FS sin�0, and a compo-
nent normal to the plane, FS a�, as shown in Fig. 6.1. The streamline deviates
from the downstream direction at an angle λ along the embankment plane (λ
is defined positive downward). When unstable, a particle moves at an angle β
from the direction of steepest descent. A particle moves along the horizontal
when β = 90◦ and moves in the downstream direction when β +� = 90◦.
When β +� > 90◦, a particle moves up the sideslope toward the free surface.
Conversely, when β +� < 90◦, a particle moves down the sideslope toward
the thalweg. In most streams, the downstream slope �0 will be sufficiently
small to consider that� ∼= 0 and a� ∼= cos�1. The downstream direction thus
practically corresponds toβ = 90◦, values ofβ < 90◦ indicate particles moving
toward the thalweg, and β > 90◦ indicates motion toward the free surface.

Stability against rotation of a particle determines incipient motion when the
equilibrium of moments about the point of rotation is satisfied. The devia-
tion angle δ is measured between the particle direction and the streamline.
Considering the angles δ and β and the moment arms l1, l2, l3, and l4 that are
shown in Fig. 6.1, we find that stability about point 0 corresponds to

l2 FS a� = l1 FS

√
1 − a2

� cosβ + l3 FD cos δ + l4 FL . (6.1)

The left-hand side of Eq. (6.1) defines the stabilizing moment that is due
to the particle weight. Clearly the last term on the right-hand side denotes the
lift moment, which always destabilizes the particle. The first two terms on
the right-hand side determine about which pivot point particle P is to rotate.
In most cases, their net sum is positive, and moments about 0 are considered.
Should their net sum be negative, when λ < 0, the particle will then rotate about
point 0′ instead of about 0.

The stability factor SF0, for rotation about point 0, is defined as the ratio of
the resisting moments to the moment generating motion. In the case shown in
Fig. 6.1, in which both cos δ and cosβ are positive, the stability factor SF0 is the
ratio of the sum of counterclockwise moments about 0 to the sum of clockwise
moments about 0; thus

SF0 = l2 FS a�

l1 FS

√
1 − a2

� cosβ + l3 FD cos δ + l4 FL

. (6.2) ��

Note that each term in Eq. (6.2) must be positive; otherwise the formulation is
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changed to express the ratio of positive stabilizing moments to positive desta-
bilizing moments.

Because the stability factor SF0 equals unity when the angle�0 or�1 equals
the angle of repose φ under static fluid conditions (FD = FL = 0), it is found
that tanφ = l2/ l1. Dividing both the numerator and the denominator by l1 FS

transforms Eq. (6.2) into

SF0 = a� tanφ

η1 tanφ +
√

1 − a2
� cosβ

, (6.3) �

in which η1 = M + N cos δ after we define

M = l4 FL

l2 FS
, N = l3 FD

l2 FS
. (6.4)

The parameter M/N represents the ratio of lift to drag moments of force. The
case of no lift is given by M/N = 0 and equal moments are described by M = N
or (M + N )/N = 2. The variable η1 is called the sideslope stability number for
the particle on the embankment. The variable η1 relates to the stability number
η0 = M + N for particles on a plane-horizontal surface (�0 = �1 = δ = 0)
after we consider λ+ δ + β +� = 90◦:

η1 = η0

{
(M/N ) + sin(λ+ β +�)

1 + (M/N )

}
, (6.5) �

η0 = τ0

τc
= τ0

(G − 1)ρ g ds τ∗c

. (6.6) �

The stability number η0 is calculated from the applied shear stress τ0, the
critical shear stress on a plane-horizontal surface τc, the particle diameter ds ,
the mass density of the particle ρs = Gρ, the mass density of the fluid ρ, the
gravitational acceleration g, and the critical value of the Shields parameter τ∗c .

This normalized form of the Shields parameter shows that η0 = 1 describes
the incipient motion of particles on a plane-horizontal bed. When the flow is
fully turbulent over a hydraulically rough horizontal surface, incipient motion
approximately corresponds to τ∗c = 0.047 and SF0 = η0 = 1.

The second equilibrium condition indicates the direction of a moving particle
from equilibrium conditions along the section normal to A-A in Fig. 6.1:

l3 FD sin δ = l1 FS

√
1 − a2

� sinβ. (6.7)
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After δ is written as a function of λ,�, and β, solving for β gives

β = tan−1




cos(λ+�)

(M + N )
√

1 − a2
�

Nη0 tanφ
+ sin(λ+�)


 . (6.8) �

The angle β determines the direction of motion of a sediment particle in
contact with the inclined plane. The particle-orientation angle depends on
(1) surface topography by means � and a�, (2) streamflow direction at an
angle λ, and (3) particle characteristics such as angle of repose φ and excess
shear η0 = τ0/τc. A complete calculation example is given in Example 6.1 .

Example 6.1 Application to particle-stability analysis. The following
example details the calculations of particle stability for typical river-bend condi-
tions by use of Eqs. (6.3), (6.5), (6.6), and (6.8). The overall agreement with
field data being slightly better with M/N = 0, this value was given preference
for all calculations.

A 16-mm quartz particle stands on the bed of a channel; if the downstream
channel-slope angle is �0 = 0.074◦ and the sideslope angle is �1 = 15◦, cal-
culate the particle-direction angle under an applied bed shear τ0 = 12 Pa when
the streamlines are deflected upward at λ = −10◦. The calculation procedure
is as follows:

(a) The particle size is ds = 16 mm.
(b) The angle of repose is approximately φ = 37◦, and the specific gravity

G = 2.65 is assumed.
(c) The sideslope angle is �1 = 15◦.
(d) The downstream slope angle is �0 = 0.074◦.
(e) The angle � = tan−1 (sin�0/sin�1) = 0.28◦.
(f) The geometric factor a� =

√
cos2�1 − sin2�0 = 0.965.

(g) The applied bed shear stress is τ0 = 12 Pa; this corresponds to a flow
depth of ∼1 m.

(h) The streamline deviation angle λ = −10◦ means that the downstream
shear-stress component is τ0 cos λ = 11.8 Pa and the transverse shear
stress is τ0 sin λ = −2.08 Pa toward the free surface (negative).

(i) From Eq. (6.6) and τ∗c = 0.047, the plane-bed-stability number is

η0 = 12 Nm3s2

m2 (1.65) 1,000 kg × 9.81 m × 0.016 m × 0.047
= 0.985.
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( j ) From Eq. (6.8), assuming M/N = 0, the 16-mm particle-direction
angle is

β = tan−1


 cos(−10◦ + 0.28◦)√

1 − (0.965)2

0.985 tan 37◦ + sin(−10◦ + 0.28◦)


 = 79.4◦.

(k) The 16-mm particle moves toward the thalweg because β +� < 90◦.
( l ) The stability factor is calculated from Eq. (6.3).

SF◦ = 0.965 tan 37◦

0.985 sin (−10◦ + 79.4 + 0.28◦) tan 37◦ + √
1 − 0.9652 cos 79.4◦

= 0.97.

The particle is unstable. We easily repeat the calculations with a 32-m particle
to find out that it is stable under the given hydraulic conditions.

6.2 Channel stability

Consider the cross-sectional geometry of a straight channel for which all par-
ticles of weight Fs along the wetted perimeter are at incipient motion. The
critical shear stress τsc on a sideslope θ1 is determined in analogy to the critical
shear stress τc that corresponds to the angle of repose φ. A very simplified but
elegant equilibrium relationship was proposed by Lane (1953) who, after assum-
ing that τc ∼ Fs tanφ and the resultant on the sideslope R/Fs cos θ1 = tanφ,
obtained

τsc

τc
=

√
1 − sin2 θ1

sin2 φ
= cos θ1

√
1 − tan2 θ1

tan2 φ
. (6.9) �

A detailed derivation can also be found in Julien (1995). As sketched in Fig. 6.2,
the thalweg shear stress is τc = γ h0S and τ0 = γ hS cos θ1 on the sideslope.

Isolating γ S gives the following identity:

τ0h0 = τch cos θ1. (6.10)

The differential equation for the ideal cross-section geometry is obtained
from tan θ1 = −dh/dy after τ0/τc is canceled from Eqs. (6.9) and (6.10), thus(

dh

dy

)2

+
(

h

h0

)2

tan2 φ = tan2 φ, (6.11)
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Figure 6.2. Ideal cross-section geometry.

where h0 is the flow depth at the centerline of the channel. The ideal cross-
section geometry in which all particles are at incipient motion has a cosinusoidal
shape, with y measured laterally from the centerline:

h

h0
= cos

(
y tanφ

h0

)
. (6.12) �

The flow depth h0 corresponds to incipient motion on a plane surface h0 ≈
0.047 (G − 1)ds/S. The surface width, h0π/tan φ, is obtained from the
values of y in Eq. (6.12) where h = 0. The width–depth ratio is constant and
equal to π cotφ. The cross-section area is A = 2 h2

0 cotφ, and the hydraulic
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radius is

Rh = 8h0 cosφ

π (4 − sin2 φ)
.

The mean flow velocity V is then obtained from a resistance relationship,
e.g., the Manning equation. The flow discharge is then obtained from A and V
(see Problem 6.2). In practice, only coarse bed channels may reach incipient
motion at high discharge. Sediment transport in all sand-bed channels cannot
be ignored, and the width–depth ratio of most alluvial streams far exceeds the
ideal geometry conditions.

6.3 Regime relationships

The construction of irrigation canals in India and Pakistan fostered investiga-
tions of the design of canals under regime conditions, i.e., a canal that is nonsilt-
ing and nonscouring. Empirical relationships have been proposed by Kennedy
(1895), Lacey (1929), and Blench (1969), among many others. The Lacey silt
factor fe was defined to designate the properties of “Kennedy’s standard silt” of
the Upper Bari Doab canal. The geometry of canals with different bed material
were compared in terms of different values of fe. The silt factor was shown
to increase with grain size; the approximate relationship fl = 1.59 d1/2

mm can be
used. The key relationships from Lacey determined the mean flow velocity V
in feet per second, the hydraulic radius Rh in feet, the cross-section area A in
square feet, the wetted perimeter P in feet, and the dimensionless slope as a
function of the design discharge Q in cubic feet per second, and the Lacey silt
factor:

V = 0.794 Q1/6 f 1/3
l , (6.13)

R = 0.47 Q1/3 f −1/3
l , (6.14)

A = 1.26 Q5/6 f −1/3
l , (6.15)

P = 2.66 Q1/2, (6.16)

S = 0.00053 f 5/3
l Q−1/6. (6.17)

In wide-shallow channels, the hydraulic radius is approximately equal to the
flow depth, and the channel width can often be approximated by the wetted
perimeter. The width–depth ratio thus increases slightly with discharge and
decreases slightly with grain size. Another characteristic of the regime equation
is that once the discharge and grain size are determined a unique value of
bed slope is calculated from Eq. (6.17). Note that the method does not allow
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Figure 6.3. Downstream hydraulic geometry.

changes in slope at a given discharge and grain size. Consequently, the velocity
in Eq. (6.13) does not depend on slope.

The regime equations refer to downstream channel geometry at a given
bankfull discharge. As shown in Fig. 6.3, different discharges in Eqs. (6.13)–
(6.17) correspond to bankfull conditions in different channels. Because these
channels can be located at different positions in the same fluvial system, channel
properties are referred to as downstream hydraulic geometry. Downstream hy-
draulic geometry describes bankfull conditions for different cross sections, as
opposed to the at-a-station hydraulic geometry that describes channel properties
at different discharges at a given cross section.

6.4 Equilibrium in river bends

Secondary circulation in curved channels is generated through a change in
downstream channel orientation. The streamlines near the surface are deflected
toward the outer bank whereas those near the bed are deviated toward the inner
bank. The near-bed velocity, the tangential bed shear stress, and the drag on the
bed particles are commonly directed toward the inner bank.

Flow in bends is analyzed in cylindrical coordinates. The relative magni-
tude of radial-acceleration terms indicates that the centrifugal acceleration is
counterbalanced by pressure gradient and radial shear stress, as suggested by
Rozovskii (1957):

v2

r
= gSr − 1

ρ

∂τr

∂z
, (6.18)

where the local downstream velocity v , the radial shear stress τr , and the radial
water-surface slope Sr vary with the vertical elevation z and/or the radius of
curvature r. In Fig. 6.4, the transverse boundary shear stress τr R at point RA, the
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Figure 6.4. Flow in river bends.

radial water-surface slope Sr A at point A, the radius of curvature R at the same
point, the average flow depth h, and the top channel width W serve as scaling
factors.

These scaling factors define dimensionless parameters for channel width
w∗ = w/W , flow depth z∗ = z/h, radius of curvature r∗ = r/R, velocity v∗ =
v/V̄ , radial shear stress τ ∗

r = τr/τr R , and the radial surface slope S∗
r = Sr/Sr A.

The element of fluid volume d∀ = dx dy dz for a reach of given length dx = Rdθ
is reduced to a dimensionless volume d∀∗ = d∀/WRh. Radial equation of mo-
tion (6.18) is multiplied by ρ and d∀, reduced in dimensionless form, and then
integrated over the dimensionless volume ∀∗ of the reach. The resulting dimen-
sionless momentum equation in the radial direction is

ρW hV̄ 2
∫

∀∗

v∗2

r∗ d∀∗ = ρgRW hSr A

∫
∀∗

S∗
r d∀∗ − RWτr R

∫
∀∗

∂τ ∗
r

∂z∗ d∀∗. (6.19)

The corresponding force diagram is sketched in Fig. 6.4, after the centrifugal
force is denoted on the left-hand side of Eq. (6.19) by Fc, the pressure force Fp

describes the first term on the right-hand side, and the last integral represents
the shear force Fs . The pressure force is found to balance the sum of the
centrifugal force exerted at a distance lc above point A whereas the shear force
is exerted at a distance ld below point A. Moment equilibrium around point A
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gives

�R = ρhV̄ 2

Rτr R
=

ld

∫
∀∗

∂τ ∗
r

∂z∗ d∀∗

lc

∫
∀∗

v∗2

r∗ d∀∗
. (6.20)

The dimensionless parameter �R denotes the ratio of the centrifugal force
generating secondary motion to the shear force abating the motion and dissi-
pating energy. The resulting ratio of radial shear stress τr R to the downstream
bed shear stress τθ defines the deviation angle λ of the streamlines near the bed.
Therefore, combining Eqs. (6.20) and (4.10), we obtain

tan λ = τr R

τθ
=

[
a2

�R

(
h

ds

)2m
]

h

R
. (6.21) �

Rozovskii (1957) found that the value of the term in brackets of Eq. (6.21)
is approximately equal to 11. Slightly different values have been proposed by
Engelund (1974), de Vriend (1977), Odgaard (1981), and Hussein and Smith
(1986). We conclude that deviation angle λ depends primarily on the ratio of
flow depth to radius of curvature. Sharp bends will exhibit stronger secondary
flows.

In curved channels, secondary-flow effects on particle stability are examined
through the influence of the deviation angle λ on the values of the stability
factor SF0. Stability calculations based on Eqs. (6.6), (6.8), (6.5), and (6.2) with
λ �= 0 demonstrate that slight downward deviations decrease particle stability,
whereas small upward deviations increase particle stability. On the other hand,
large upward deviations will also decrease particle stability.

Quantitative dimensionless results are summarized in Fig. 6.5 for typical
2D flow conditions in a curved alluvial channel. The local cross-sectional shape
is described as the ratio of the embankment slope θ to the angle of repose φ.
This figure illustrates the relative particle-stability ratio �λ = SF0 (λ �= 0)/
SF0(λ = 0) of the stability factor with secondary circulation (λ �= 0) over the
stability factor without secondary circulation (λ = 0). It is shown in Fig. 6.5
that, when the deviation angleλ is relatively small, for example less than 15◦, the
downward deflected streamlines near the outer bank (θ/φ > 0) induce particle
motion, as expected from �λ < 1. Conversely, opposite effects are observed
near the inner bank (θ/φ < 0); the upward deviations of the streamlines increase
the stability of particles, as shown by the values of �λ > 1. The conditions
induced by secondary circulation at angles λ < 15◦ decrease particle stability
near the outer bank and increase particle stability near the inner bank of curved
alluvial channels.
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Figure 6.5. Relative particle stability in curved channels.

When the strength of secondary circulation increases, 15◦ < λ < 55◦, asym-
metry in the particle-stability curves shown in Fig. 6.5 develop and a larger
proportion of the channel becomes unstable. For extreme conditions (λ > 55◦),
the entire cross section becomes unstable and scour occurs for all particles on
the wetted perimeter of the alluvial channel, thus widening the channel.

This analysis of secondary-circulation effects on particle mobility in curved
alluvial channels highlights a continuum of conditions between the following
two extremes: (1) at small deviation angles, around λ < 15◦, equilibrium pre-
vails between outer-bank erosion and inner-bank deposition; and (2) at large
deviation angles, typically when λ > 55◦, the particle stability decreases over
the entire cross section and should result in widening of the alluvial channel.
Secondary-circulation effects being primarily felt near the outer bank, the de-
viation angle λ thus relates to the widening process in alluvial channels.

The result of downward lateral forces is to destabilize the bed particles
whereas upward lateral forces stabilize bed particles [Fig. 6.6(b)]. Under sig-
nificant secondary flows, cross-sectional geometry becomes asymmetric, with
the thalweg moving toward the outer bank, as sketched in Fig. 6.6. Stability
can be maintained only through a heavier particle weight to counterbalance the
higher erosive forces. Conversely, finer particles can deposit to form a point bar
near the inner bank.
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Figure 6.6. Stability and equilibrium in river bends.

To reach stability in graded bed material in which armoring is possible,
coarser grains can be found near the outer bank and finer grains near the inner
bank [Fig. 6.6(c)]. In the case of uniform erodible bed material, secondary
flows will induce scour at the toe of the outer bank, leading to bank caving
and lateral migration. Equilibrium is possible only when bank caving balances
inside deposition on the point bar [Fig. 6.6(d)].

It is also important to note that the change in cross-sectional geometry de-
pends on the magnitude of the streamline deviation angle λ. From Eq. (6.21) we
obtain that the angleλ increases with flow depth h. At high flows, we thus expect
to find the strongest secondary flows with the maximum scour potential near the
outer bank. The asymmetry in the cross-sectional geometry should be observed
during floods. At low flows, low values of the angle λ will tend to bring the
thalweg position back closer to the channel centerline and the cross-sectional
geometry should become more symmetrical.

6.5 Downstream hydraulic geometry

Flow discharge varies with time, and sediment transport is most active dur-
ing floods. The morphology of alluvial channels should therefore depend on
a high discharge value that contributes to the channel formation. This value
should be high enough such that sediment transport is quite active, yet it should
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Figure 6.7. Natural levees.

reoccur a sufficient number of times to maintain a channel free of vegeta-
tion. A bankfull discharge is determined by the discharge that a channel can
convey when reaching the floodplain level. Natural levees result from the de-
position of coarser fractions of the suspended load on the floodplain adja-
cent to the channel. As sketched in Fig. 6.7, levees can form near the outer
bank of the channel or along both sides of alluvial channels. The reoccur-
rence frequency of bankfull flows is quite variable (Williams, 1978). Peri-
ods of return of 1.5 and 2 yrs are most often encountered in the literature,
but mean annual floods, mean annual flows, and 5-yr floods have also been
cited.

The dominant discharge is of sufficient magnitude and frequency to determine
the dimension and geometry of an alluvial channel. For hydraulic-geometry
relationships, it is taken to be the bankfull discharge, which has a period of return
of approximately 1.5 yr in many natural channels. It is important to remember
that the concept of dominant discharge cannot be precisely quantified. The
dominant discharge of a river remains subjective and variable. The downstream
hydraulic-geometry relationships developed in this section can provide only
approximative values of width, depth, velocity, and slope.

The downstream hydraulic geometry of noncohesive alluvial channels can
be analytically determined from the following four relationships. First, under
steady-uniform bankfull flow conditions, the dominant discharge Q is

Q = W hV, (6.22)

where the mean velocity vector V is taken normal to the cross-sectional area,
h is the flow depth, and W is the bankfull width.

For channels with large width–depth ratios, the hydraulic radius Rh becomes
equal to the flow depth h. Second, the power form of the resistance equation
from Eq. (4.10) is

V = a
√

g

(
h

ds

)m

h1/2S1/2, (6.23)

where g is the gravitational acceleration, ds is the grain diameter, S is the
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slope, and the exponent m = 1/ln(12.2 h/ds). Note that the value of m = 1/6
corresponds to the Manning–Strickler resistance equation.

Third, the stability of noncohesive particles in straight alluvial channels is
described by the relative magnitude of the downstream shear force and the
weight of the particle. The ratio of these two forces defines the Shields number
τ∗ from Eq. 4.36:

τ∗ = hS

(G − 1) ds
, (6.24)

where G is the specific gravity of sediment particles. The critical value of
the Shields number, τ∗ ≈ 0.047, identifies the beginning of motion of non-
cohesive particles in turbulent flows over rough boundaries. For values of
the Shields number below the critical value (τ∗ ≤ τ∗c ), the particles on the
wetted perimeter of the alluvial channel are stable. Beyond this threshold
(τ∗ > τ∗c ), the particles enter motion and the rate of sediment transport in-
creases with the Shields number. Two significant concepts are associated with
the Shields number: (1) the threshold concept described by τ∗c for the begin-
ning of motion of noncohesive particles and (2) the concept that beyond the
threshold value, the sediment-transport rate increases with the Shields number.
Because the Shields number depends primarily on flow depth, it is thus asso-
ciated with the vertical processes of aggradation and degradation in alluvial
channels.

Fourth, for flow in bends, with the radius of curvature R being proportional
to the channel width W , Eq. (6.21) shows that

tan λ = br

(
h

ds

)2 m h

W
, (6.21a)

where the value of br = [(a2W )/(�R R)] is assumed to be constant.
Equations (6.21)–(6.24) contain 13 variables, namely W , h, V , S, Q, ds ,

τ∗, tan λ, g, a, br , G, and m. Four relationships enable the definition of the
four dependent variables, W , h, V , and S, as functions of the others. Julien
(1988) showed that Q, ds , and τ∗ were the primary independent variables. The
variability in the other parameters is considered to be relatively small. Julien
and Wargadalam (1995) determined approximative empirical values for the
remaining parameters from a large data set, including data from 835 rivers and
canals.

The downstream hydraulic geometry for noncohesive alluvial channels for
hydraulically rough turbulent flows were derived for flow depth h in meters,
surface width W in meters, average flow velocity V in meters per second, and
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friction slope S as

h = 0.133 Q
1

3 m+2 d
6 m−1
6 m+4

s τ
−1

6 m+4∗ , (6.25a)

W = 0.512 Q
2 m+1
3 m+2 d

−4 m−1
6 m+4

s τ
−2 m−1
6 m+4∗ , (6.25b)

V = 14.7 Q
m

3 m+2 d
2−2 m
6 m+4

s τ
2 m+2
6 m+4∗ , (6.25c)

S = 12.4 Q
−1

3 m+2 d
5

6 m+4
s τ

6 m+5
6 m+4∗ (6.25d)

from the equilibrium or dominant flow discharge Q in cubic meters per
second, the median grain size ds = d50 in meters, and the Shields parameter
τ∗ = γ hS/(γs − γ )d50, given the resistance exponent m calculated from m =
1/ ln(12.2 h/d50). An example of the agreement among predicted and measured
width, depth, velocity, and slope from Julien and Wargadalam (1995) is shown
in Fig. 6.8.

The recommended calculation procedure for the downstream hydraulic
geometry starts with the user selection of three independent variables. To in-
clude the effects of sediment transport, the user may want to calculate four
dependent variables of average flow depth h in meters, surface width W in
meters, average flow velocity V in meters per second, equilibrium slope S as a
function of three known independent variables in discharge Q in cubic meters
per second, median grain size ds in meters, and dimensionless Shields number
τ ∗; Eqs. (6.25a)–(6.25d) are solved with the five-step procedure outlined below
in Example 6.2.

When Manning’s equation is applicable, m = 1/6, a simplified form of
Eqs. (6.25) is obtained as

h ∼= 0.133 Q 0.4 τ−0.2
∗ , (6.26a)

W ∼= 0.512 Q 0.53 d−0.33
s τ−0.27

∗ , (6.26b)

V ∼= 14.7 Q 0.07 ds
0.33 τ 0.47

∗ , (6.26c)

S ∼= 12.4 Q −0.4 ds τ
1.2
∗ . (6.26d)

The hydraulic geometry of stable channels is obtained from Eqs. (6.26) when
τ∗ ∼= 0.047. Higher sediment transport implies higher velocity and slope and
reduced width and depth.

This system of equations is sufficiently flexible to allow the user to use a
different set of known independent variables. For instance, geomorphologists
may prefer to calculate flow depth h, width W, mean velocity V, and Shields
number τ∗ as explicit functions of discharge Q in cubic meters per second,
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Figure 6.8. Downstream hydraulic-geometry method of Julien and
Wargadalam (1995).
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median grain size ds in meters, and channel slope S. The empirically recali-
brated equations of Julien and Wargadalam (1995) are

h = 0.2 Q
2

5+6 m d
6 m

5+6 m
s S

−1
5+6 m , (6.27a)

W = 1.33 Q
2+4 m
5+6 m d

−4 m
5+6 m

s S
−1−2 m

5+6 m , (6.27b)

V = 3.76 Q
1+2 m
5+6 m d

−2 m
5+6 m

s S
2+2 m

5+6 m , (6.27c)

τ∗ = 0.121 Q
2

5+6 m d
−5

5+6 m
s S

4+6 m

5+6 m , (6.27d)

where m = 1/ln(12.2 h/ds). The equations are solved with the procedure given
in Example 6.2.

For the particular case in which Manning’s equation is acceptable, m = 1/6,
the downstream hydraulic-geometry relationships simplify to

h = 0.2Q0.33 d0.17
s S−0.17, (6.28a) ��

W = 1.33Q0.44 d−0.11
s S−0.22, (6.28b) ��

V = 3.76Q0.22 d−0.05
s S0.39, (6.28c) ��

τ∗ = 0.121Q0.33 d−0.83
s S0.83. (6.28d) ��

It is observed that the channel width varies primarily with discharge whereas
other parameters also affect flow depth and flow velocity. A plot of channel
width vs. discharge is shown in Fig. 6.9.
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1989).
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Equation (6.28d) relates sediment transport by means of τ∗ to the dis-
charge, grain size, and slope. For instance, if we consider the following crude
approximation for the unit bed-sediment discharge qs in square meters per sec-
ond as qs

∼= 18
√

g d3
s τ

2
∗ , the solution for the bed-material discharge Qs = Wqs

is obtained from Eqs. (6.28b) and (6.28d):

Qs d0.28
s � Q1.11 S 1.44, (6.29) �

where Qs is the bed-material load in cubic meters per second, ds is the bed-
material size in meters, Q is the bankfull discharge in cubic meters per second,
and S is the bed slope. This approximation relates to downstream conditions
and does not apply to at-a-station conditions.

This crude relationship shows the equilibrium between, on the right side,
the product of hydraulic parameters (discharge and slope) and, on the left side,
the product of sediment characteristics (sediment discharge and grain size).
Lane (1955a) had proposed a similar form in which QS ∼ Qsds . Example 6.2
illustrates how the hydraulic geometry of a channel can be estimated from the
discharge, grain size, and slope.

Example 6.2 Application to stable channel geometry. Calculate the down-
stream hydraulic geometry given Q = 104 m3/s, d50 = 0.056 m, and τ ∗

θ =
0.047 at the beginning of motion.

Step 1: Roughly estimate the flow depth, e.g., h = 1 m.

Step 2: From the flow depth and grain size calculate m from

m = 1

ln
(

12.2 h
ds

) = 0.186.

Step 3: Calculate the exponents for flow depth from Eq. (6.25a), given
m = 0.186:

h = aQbdc
s τ

∗d
θ = 0.133(104)0.39 (0.056)0.023 (0.047)−0.195 = 1.38 m.

Step 4: Repeat steps 2 and 3 with the calculated flow depth in step 3 until
convergence:

m = 0.175 gives h = 1.49 m, and m = 0.172 gives h = 1.51 m.

Step 5: Calculate the channel width W, flow velocity V , and slope S by using
the last value of m and the exponents of Q, ds , and τ ∗

θ in Eqs. (6.25), e.g., with
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m = 0.172:

W = 0.512(104)0.534 (0.056)−0.335 (0.047)−0.267 = 36.4 m,

V = 14.7(104)0.068 (0.056)0.329 (0.047)0.466 = 1.87 m/s,

S = 12.4(104)−0.397 (0.056)0.994 (0.047)1.199 = 2.86 × 10−3.

6.6 Bars in alluvial rivers

Channel-bed configurations include bedforms and bars. Bedforms include
ripples, dunes, and antidunes and remain submerged, except during droughts
or in ephemeral streams. The reader is referred to Julien (1995) regarding bed-
form classification and formation. Bars refer to large bedform configurations
that are often exposed during low flows. They are usually submerged at least
once a year in order to prevent vegetation growth. Bars can be viewed as al-
luvial bed deposits that can be transported under high flow conditions. When
bars do not get submerged approximately every year, vegetation grows and
stabilizes the bars to form islands or to reduce the active channel width of a
river.

Alternate bars form in straight channels with deposits alternating from the
right bank to the left bank. As illustrated in Fig. 6.10(a), the wavelength of
alternate bars � is proportional to the channel width W, and � � 2π W.
Alternate bars tend to form in channels where the Froude number is high
and the Shields parameter is close to incipient motion. The height of alter-
nate bars can reach the flow depth. The thalweg is said to wander or weave
between both banks. Additional information regarding alternate bars can be
found in Fujita and Muramoto (1982, 1985) and in Ikeda (1984).

Point bars are sketched in Fig. 6.10(b). Their formation process is akin to
that of the secondary flows discussed in Section 6.4, and they usually are found
near the inner bank of river bends. The increased particle stability near the
inner bank induces sedimentation and fining of the bed deposits. The process of
point-bar sedimentation is usually associated with the erosion of the outer bank
and lateral migration of the river. During major floods, point-bar deposits can
be remobilized to form chute cutoffs, as sketched in Fig. 6.10(c). At low flows,
chute cutoffs may induce sedimentation in both river branches. The truncated
point bar is also referred to as a middle bar.

Tributary bars form in the main channel near the confluence, with tribu-
taries carrying a significant sediment load. As shown in Fig. 6.10(d) the trib-
utary bar contributes to streamlining of the confluence of both streams. The
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Figure 6.10. Bar formations in rivers.

tributary bars can be reworked, depending on the magnitude, sediment load,
and timing of the floods in both channels. Figure 6.10(e) shows submeanders,
which are defined as small meanders confined within the banks of a perennial
stream channel. Submeanders are caused by very low flows compared with flood
discharges.
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6.7 River meandering

River meandering is characterized by a succession of alternating meander loops.
A meander loop is the channel reach between two inflection points. A meander
consists of a pair of loops in opposite directions. Numerous hypotheses have
been suggested to explain the origin of meandering, including secondary flows,
perturbation theory, and extremal hypotheses.

Meandering is basically a fluid mechanics problem in which vorticity plays
a leading role. The motion of fluid in a curved channel is generally based
on the equations of motion. Different approaches were proposed by Einstein
(1926), Rozovskii (1957), Yen (1970), DeVriend (1977), Odgaard (1981),
Nelson and Smith (1989), and others. Several attempts focus on the hydro-
dynamic stability of straight alluvial channels. A perturbation technique is used
to determine whether small oscillations amplify or decay. Examples can be
found in Callander (1969), Anderson (1967), Engelund and Skovgaard (1973),
Parker (1976), and Ikeda et al. (1981).

Extremal hypotheses include the principle of minimum variance first pro-
posed by Langbein and Leopold (1966). The minimization involves the adjust-
ment of the planimetric geometry and the hydraulic factors of depth, velocity,
and local slope. Yang (1976) stated that the time rate of energy expenditure ex-
plains the formation of meandering streams. Other studies by Maddock (1970)
and Chang (1980) use the principle of minimum stream power. Chang (1979a)
concluded that a meandering river is more stable than a straight one as it ex-
pends less stream power per unit channel length for the system. Julien (1985)
treated meandering as a variational problem in which the energy integral cor-
responds to the functional of a variational problem, the solution of which is the
sine-generated curve.

Consider the reach of a meandering alluvial river, as sketched in Fig. 6.11.
Two systems of coordinates are defined: one rectilinear and one curvilinear.
The down-valley axis X defines the rectilinear system along the centerline
of the meandering pattern downstream of the valley slope. In the curvilin-
ear system, the sinuous axis x follows the centerline of the meandering river
path. The angle θ separates the directions x and X along the flow path.
Measured from the river centerline, the radius of curvature R in the transversal
direction y remains orthogonal to the downstream axis x . Both the magnitude
and the direction of the radius of curvature R vary along the path of the channel
width W and mean flow velocity V . The radius of curvature is minimum, Rmin,
at the apex and is maximum, R = ∞, at the crossing. A complete meander
loop is denoted between O and M . At M , the river length is L and the meander
length is �. The amplitude of the meander belt, or meander width, is Wm .
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Figure 6.11. Definition sketch of a meandering river.

When plotting the orientation angle θ as a function of downstream dis-
tance x , Langbein and Leopold (1966) found that θ is a function of the max-
imum angle θm set at the origin, the downstream distance x and the river
length L:

θ = θm cos
2πx

L
. (6.30)

This sine-generated curve is compared with an observed meandering pattern in
Fig. 6.12.

The meander length � is computed from the following relationship:

� =
∫ L

0
cos θ dx =

∫ L

0
cos

[
θm cos

(
2π x

L

)]
dx . (6.31)

The sinuosity �, defined as � = L/�, increases gradually with θm in radians,
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as illustrated in Fig. 6.13:

� ≡ L

�
= L∫ L

0
cos θ dx

∼= 1 +
(

2 θm

π

)5

= 1 + 0.1 θ5
m . (6.32)

The radius of curvature R can be obtained from dx = Rdθ ; thus combining this
with Eq. (6.30) gives

R = L

2πθm
csc

(
2πx

L

)
. (6.33)

The minimum radius of curvature Rm at the apex is obtained when csc
[(2πx)/L] = 1 or

Rm = L

2πθm
. (6.34)

For a given meander length �, the minimum radius of curvature (which obvi-
ously corresponds to the maximum value of �/Rm) varies with θm as

�

Rm
= 2πθm�

L
= 2πθm

�
. (6.35)
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Figure 6.13. Properties of meandering rivers.

We easily obtain Rm = [L/(2πθm)] = [(��)/(2πθm)]. The ratio �/Rm

varies with θm as shown in Fig. 6.13 and reveals that the minimum radius
of curvature for a given meander wavelength corresponds to the maximum
angle θm = 75◦ = 1.3 rad. Consequently, the increase in radius of curva-
ture beyond this point constitutes an extremely important feature because the
radius of curvature controls the magnitude of the centrifugal force in
bends.

Leopold et al. (1960) empirically observed that the meander length � is
∼10 times the channel width W , as shown in Fig. 6.14(a). The properties
of sine-generated curves are also supported by field evidence. For instance,
the ratio of wavelength to minimum radius of curvature �/Rm for meander-
ing streams in Fig. 6.13 varies between 3 and 5. Field measurements from
Leopold and Wolman (1960) indicate an average ratio of 4.7, as shown in
Fig. 6.14(b). Also, the mean radius of curvature R̄m � 2.3 W is obtained from
� � 10 W � 4.7 R̄m in Figs. 6.14(a) and 6.14(b). From � � 10 W and the
above, we obtain

Rm

W
� 5�

πθm
. (6.36)
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The meander width Wm as defined in Fig. 6.11 is evaluated analytically
by the following integral: Wm = 2

∫ L/4
0 sin θ dx . The ratio of meander width

Wm to the wavelength � is a dimensionless measure of the amplitude:

Wm

�
=

2
∫ L/4

0
sin

[
θm cos

(
2π

x

L

)]
dx∫ L

0
cos

[
θm cos

(
2π

x

L

)]
dx

. (6.37)
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Equation (6.37) has been integrated numerically as a function of θm , and
the ratio Wm/� is plotted in Fig. 6.13. The meander width increases rapidly
when θm exceeds 90◦ and reaches the value 3.25 at the meander cutoff
(θm = 125◦). Field results in Fig. 6.15 give empirical values Wm = 4.5 W ∼=
0.45�.

6.8 Lateral river migration

The effects of channel meandering on hydraulic geometry and sediment trans-
port can be examined through the effect of sinuosity on channel slope. The
energy gradient of the valley, S f 0, is given by the ratio of the energy loss
�H over a meander wavelength �. The friction slope S f of a meander-
ing stream, however, corresponds to the energy loss �H over the sinuous
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stream length L:

S f = �H

L
= �H

�

�

L
= S f 0

�
. (6.38)

The influence of the sinuosity of the channel width, depth, velocity, and Shields
parameter can be examined through Eqs. (6.28). For instance, for the Manning–
Strickler equation with m = 1/6, the flow depth h ∼ �1/6,W ∼ �0.22, V ∼
�−0.39, and τ∗ ∼ �−0.83. As a numerical example, when compared with a
straight channel, a meandering channel with sinuosity � = 2 would have a
flow depth 12% larger and a channel width 16% larger. The flow velocity
would decrease by 24%, and the shear stress would decrease by 44%. Sinuosity
thus increases the cross-section area and decreases flow velocity and sediment
transport.

Because sinuosity varies with θm [Eq. (6.32)], the ratio of the Shields pa-
rameter for a meandering channel τ∗ is shown in Fig. 6.16 as a function of θm .
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Figure 6.16. Relative longitudinal and transversal shear stresses.
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When θm > 90◦, the Shields parameter of a meandering channel is less than half
that of a straight channel. The decrease in the longitudinal Shields parameter
as the sinuosity increases demonstrates that sinuous channels have a reduced
ability to transport sediments compared with straight channels at any given
valley slope.

The transversal shear stress has been shown to be proportional to tan λ and
the square of the velocity. For instance, from Eq. (6.20), we obtain

τt0 ∼ hV 2

R
, (6.39)

where τt0 is the bed shear stress in the transversal direction. The maximum
transversal shear stress τt max corresponds to the minimum value of the radius
of curvature Rm = ��/2πθm from Eq. (6.35). Combining Eq. (6.39) with

Figure 6.17. Examples of lateral migra-
tion.

Eqs. (6.28a) and (6.28c) for a given
discharge and grain size results in

τt max ∼ 2π θm�
−1/6

���0.77
∼ θm�

−1.61.

(6.40)

The value of τt max from Eq. (6.40) is
shown in Fig. 6.16 as a function of
θm in radians, Eq. (6.40). High val-
ues of the transversal Shields parame-
ter are found when 40◦ < θm < 80◦.
From Fig. 6.13, this corresponds to
values of� ∼ 4 Rm . With� � 10 W
in Fig. 6.15, this leads us to the impor-
tant conclusion that the lateral shear
stress should be high when Rm ∼
2.5 W .

Lateral migration in meandering
rivers results from the erosion of the
outer bank combined with equivalent
sedimentation near the inner bank.
This process is illustrated in Fig.
6.17(a). In natural rivers, erosion rates
are variable and also depend on bank-
material strength, cohesion, armoring,
and vegetation. Typical patterns are
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Figure 6.18. Types of meander scroll formation (after Richardson et al., 1990).

also sketched in Fig. 6.17(b). Widening is the result of erosion on one bank
in excess of sedimentation near the opposite bank. Narrowing is the result of
sedimentation near one bank in excess of the erosion rate of the opposite bank.
The alluvium deposits near the inner bank sometimes form small ridges or
terraces called scrolls caused by the reworking of point-bar deposits at low
and high flows. Scrolls mark the successive positions of former meander loops,
are often visible on aerial photographs, and are indicative of past inner-bank
locations. Figure 6.18 illustrates several types of scrolls.

The radius of curvature to width ratio can be a useful tool for predicting
erosion rates in river systems. Biedenharn et al. (1989) studied the effects of
Rm/W and bank material on the erosion rates of 160 bends along the Red River
in Louisiana and Arkansas. As indicated in Fig. 6.19, at Rm/W values greater
than ∼5, the erosion rates were generally low at 10–35 ft/yr (3–10 m/yr) with
no discernible increasing or decreasing trend. The maximum erosion rates were
observed in the Rm/W range of 2 to 4.

The relative migration rate, defined as the annual migration rate divided
by the channel width, can be developed as a function of Rm/W . Nanson and
Hickin (1986) studied the relative migration rate of 18 rivers in western Canada,
including the Beatton River, British Columbia. As shown in Fig. 6.20, their study
indicated that the migration rate of meanders is maximized at 2.0 < Rm/W<

4.0. The relative migration rate can vary by 1 order of magnitude at a given
value of Rm/W . The considerable scatter in the data suggests that the migration
rate of meanders is extremely complex and may be a function of factors other
than Rm/W .

The lateral stability of different stream reaches can be compared by means
of a dimensionless erosion index. The erosion index is the product of its
median bank erosion rate expressed in channel widths per year, multiplied
by the percentage of reach along with erosion occurred, multiplied by 1,000.
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Erosion indexes for 41 streams in the United States are plotted against sinuosity
in Fig. 6.21. The length of most of these reaches is 25 to 100 times the channel
width. The highest erosion-index values are for reaches with sinuosity of less
than 2. It is clear from Fig. 6.16 that this corresponds to high lateral mobility.
We can thus infer that lateral erosion of meandering channels is correlated to the
value of the transversal shear stress. The erosion index value of 5 was suggested
by Brice (1984a) as a boundary between stable and unstable reaches. Reaches
having erosion-index values of less than 5 are unlikely to cause lateral erosion
problems at bridges.

A neck cutoff is the natural result of lateral migration of a meandering pat-
tern over a long period of time. Indeed, channel sinuosity increases as lateral
migration of the outer bend progresses. When the channel sinuosity becomes
very large, e.g., � > 3, the downstream transport capacity, channel slope, and
flow velocity are reduced. As a consequence, the risk of flooding is largely
increased. Neck cutoffs form when the valley slope far exceeds the channel
slope and the sediment-transport capacity is sufficient to cut through the neck of
the long meander loops. Once the cutoff has occurred, silting at both ends of the
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Figure 6.22. Oxbow-lake formation process.

meander loop results in clay plugs that isolate the oxbow lake. The oxbow-lake
formation process through neck cutoffs is illustrated in Fig. 6.22. Neck cutoffs
result in decreased sinuosity, increased slope, velocity, and sediment transport
to be conveyed through or deposited in downstream bends. There may also be
local incision and head cutting upstream of the neck cutoff. Over time, meander
loops readjust their slope sinuosity and sediment transport to reach a renewed
state of equilibrium.

Case Study 6.1 Sediment transport in the Fall River, Colorado, United
States. Fall River is a meandering stream flowing through the Horseshoe Park
area of Rocky Mountain National Park, Colorado (Fig. CS.6.1.1). During the
late spring snowmelt, the daily discharge exceeds bankfull flow for several
weeks through early summer. The bankfull flow of Fall River is ∼7 m3/s,
and its winter lows are less than 0.5 m3/s. The failure of the Lawn Lake
Dam, located at the headwaters of Roaring River on July 15, 1982, is at the
origin of a large alluvial fan, shown in Fig. CS.6.1.1. The alluvial fan sup-
plies coarse sediment for bedload transport to the Fall River. The Fall River
slope is gentle at 0.0013. Sediment loads as high as 0.6 kg/m s have been
measured with sediment fractions ranging from 0.125 to 32 mm moving as
bedload.

During field seasons 1986 and 1987, measurements were taken along two con-
secutive bends at 22 cross sections (Anthony, 1992) to determine the patterns
of internal cross-sectional adjustments from high to low flows (Anthony and
Harvey, 1991). Measurements included bed and free-surface topography, velo-
city profiles, and sediment transport by size fraction. Duplicated measurements
at 1-m intervals across the channel included at least three vertical velocity
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Figure CS.6.1.1. Location of the Fall River reach.

profiles (for both longitudinal and transverse flow) and six 1-min bedload
measurements.

Topographic measurements included bed and water-surface elevations at
1-m intervals across the channel for each of the 22 cross sections identified
in Fig. CS.6.1.2. At these high discharges, the cross-sectional geometry of this
meandering channel alternates between a relatively rectangular shape at cross-
ings to the most asymmetrical form near the bend apex. Near the apex, the
cross-sectional geometry features (1) a deep thalweg along the outside of the
bends, (2) a point-bar planform along the inside of the bends, and (3) a point-bar
slope connecting the two.

At each cross-section, 2D velocity profiles were measured with a Marsh–
McBirney current meter at 1-m intervals across the channel. Both transverse
and longitudinal velocities were measured, starting from the bottom (with
the current meter resting on the bottom) and then in approximately 10-cm
intervals to the water surface. The data set of 1986 near bankfull discharge
describes the flow pattern for the entire study reach. At each point in the
profile, a 30-s sampling duration was allowed for measuring each velocity
component. This sampling duration was extended to 1 min when turbulence was
significant. The repeated sampling done in 1987 provided average-flow vectors
for closely spaced points at each cross section. The streamline deviation angle
λwas obtained from the 2D velocity measurements made near the channel bed.
Both the velocity measurements close to the bed and those 10 cm above the
bed were available for analysis. The measurements made 10 cm above the bed
showed a more consistent pattern of flow direction and magnitude and were
used to determine the streamline deviation angle λ.
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Sediment transport in the layer covering 3 in. (7.67 cm) above the bed was
measured with a Helley–Smith sampler. Two 1-min bedload samples were
collected at each vertical of each cross section, and the measurements were
repeated three times. The bedload measured at each sampling location was later
sieved to determine the particle-size distribution of moving material. Grain-size
distributions from duplicate measurements were quite similar. Measured bed-
load movement at each sampling location was divided into weights for each
size fraction. At each cross section, the bedload movement for each size frac-
tion was then summed over the entire cross section. For a given grain size, the
percentage of the cross-section total material transported was then calculated
for each sampling point. After this process was repeated at each cross section,
a bedload percentage map over the entire reach was obtained for that particular
size fraction. Bedload percentage maps were then produced for each size frac-
tion, i.e., 16, 8, 4, 2, 1, 0.5, 0.25 and 0.125 mm. Typical bedload percentage
maps are shown in Fig. CS.6.1.2 to represent coarse grains in transport (d95

∼=
8 mm) and fine grains in transport (d10

∼= 0.25 mm).
The values of bedload percentages at each cross section were used to calculate

the position of the center of mass of bedload transport for each size fraction.
It is interesting to note in Fig. CS.6.1.2 that the location of the center of mass
for fine grains is different from that of coarse grains. The lines linking the
successive positions of the center of mass for different grain sizes are shown
in Fig. CS.6.1.3. Near the crossing, the bedload center-of-mass curves for each
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Figure CS.6.1.3. Mean bedload trajectory in Fall River (after Julien and
Anthony, in press.)
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size fraction are fairly parallel and oriented in the downstream direction. Near
the apex, the bedload center-of-mass curves are shifting across the channel.
The angle difference between coarse and fine grains can be calculated from the
angle β̂ of the particle-stability analysis in Example 6.1.

The particle-stability analysis determines the mean particle-direction
angle β, given the particle grain size, sideslope angle, downstream slope
angle, and the shear stress. The results of calculations with the method in
Example 6.1 with different size fractions for the Fall River bend are shown in
Fig. CS.6.1.4.

Finally, the cross-section geometry of the Fall River bends also depends
on discharge. As shown in Fig. CS.6.1.5, increasing discharge causes ero-
sion of the thalweg and sedimentation on the point bar. The larger flow depth
increases the deviation angle λ according to Eq. (6.21). Conversely, as the
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Figure CS.6.1.5. Changes in cross-section geometry: (a) increasing discharge
and (b) decreasing discharge (after Anthony, 1992).

discharge decreases, the angle λ decreases and the cross section gradually be-
comes more rectangular through erosion of the point bar and sedimentation in
the pools.

��Exercise 6.1

With reference to Fig. 6.2, derive Eq. (6.9) from τc ∼ Fs tanφ and R/(Fs

cos θ1) = tanφ.

�Exercise 6.2

Derive Eq. (6.11) from Eqs. (6.9) and (6.10); then substitute Eq. (6.12) into
Eq. (6.11) to demonstrate that it is indeed the solution.
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�Exercise 6.3

Derive the expression for the radius of curvature in Eq. (6.33) from dx = Rdθ
and the sine-generated curve, Eq. (6.30).

�Exercise 6.4

Examine the field observation in Figs. 6.9 and 6.14(c). Determine empirical
ratios for the meander length as a function of channel width.

��Problem 6.1

Calculate the particle-direction angle under an applied shear stress τ0 =
10 Pa, where the streamlines are deflected upward at λ = −10◦. The down-
stream bed-slope angle is θ0 = 0.05◦ and the sideslope angle is θ1 = 10◦. Con-
sider a particle of size 10 mm and compare the result with a 1-mm particle
under identical flow conditions.

Problem 6.2

Define the ideal cross-section geometry for a 100-mm cobble-bed canal with all
particles at beginning of motion. The slope of the channel is 0.01. Also estimate
the flow discharge in this canal. (Assume that φ = 40◦, n = 0.03).

Answers: h0 = 0.78 m, W = 2.9 m, A = 1.45 m2, Rh = 0.42 m, V =
1.87 m/s, Q = 2.71 m3/s, τ∗ = h S

(G − 1) ds
= 0.047, incipient motion

�Problem 6.3

The Cache la Poudre River near Rustic, Colorado, has a bankfull discharge of
17.6 m3/s, a width of 12.8 m, a depth of 0.65 m, and a slope of 0.0048 with a
grain size of 150 mm. Compare the actual geometry with the regime equations
and downstream hydraulic-geometry relationships.

��Problem 6.4

Use the regime relationships to calculate the hydraulic geometry of an irrigation
canal that conveys 5000 ft3/s in a very fine gravel-bed channel. Compare with the
hydraulic geometry for stable channels. (Hint: τ∗ = 0.047 for stable channels.)

Answers: V = 4.6 ft/s, R = 5.7 ft, P = 188 ft, S = 6.9 × 10−4 from
the regime equations; V = 0.72 m/s, h = 1.78 m,W = 109 m, S = 1.3 × 10−4

from Eqs. (6.26) with ds = 3 mm.
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Figure P.6.5.1. Mississippi River near
Greenville (after Langbein and Leopold,
1966).

��Problem 6.5

From Fig. P.6.5.1, determine the ori-
entation angle of the river at positions
equally spaced by 1 mile and plot the
values to complete the diagram. Fit a
sine function and determine the values
of θm and the origin of the downriver
axis x . Determine L and �, measure
the sinuosity, and compare with cal-
culations based on θm and Eq. (6.32).
Measure the minimum radius of cur-
vature Rm and compare with values
calculated from L and θm . Com-
pare the measured meander width with
the calculations, assuming the sine-
generated curve.

��Problem 6.6

From the information presented in
Case Study 6.1, determine the follo-

wing: downstream angle θ0, sideslope angle θ1 at high flow, bed shear-stress
estimate τ0, radius of curvature, and streamline deviation angle λ. Also calcu-
late the downstream hydraulic geometry from the relationships of Section 6.5
and compare with field observations. Determine the river length L , the meander
length �, the sinuosity, maximum planform deviation angle θm and meander
width Wm , and compare with relationships in Section 6.7. Plot the field obser-
vations on Fig. 6.9, 6.13, 6.14 and 6.15, and determine whether lateral mobility
should be high or low.

Answers: θ0 = 0.0745, θ1 � 15◦ from Fig. CS.6.1.5, τ0
∼= γ h S ∼=

12 Pa, Rm � 15 m, λ � tan−1, (11 h/R) = 36◦ at high flow and λ � 10◦ at low
flow. From Q = 7 m3/s, ds = 8 mm and S = 0.0013, Eqs. (6.28) give h �
0.52 m, W = 22 m, V = 0.55 m/s, and τ∗ = 0.05. The actual cross-section
geometry is deeper and narrower than calculated. Planform geometry, L �
103 m, � � 50 m, � � 2, θm � 95◦ = 1.66 rad, and Wm � 45 m. This gives
Wm � 4.5 W, � = 5 W � 3.5 Rm , Rm � 1.5 W , which is very low. Field
measurements compare well with the figures. Based on Fig. 6.16, the lateral
mobility should be fairly low.
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�Problem 6.7

Determine the sinuosity of the channel in Fig. P.6.7.1. Locate the inflection
points and locate the clockwise and counterclockwise loops. Determine the

100 m0

Figure P.6.7.1. Example of meander-
ing channel.

number of loops and the number of
meanders. Determine the average river
wavelength, meander length, meander
width, and length of the meander belt.
Compare meander width with that of
Fig. 6.13. Anticipate where neck cut-
offs might occur and determine where
the oxbow lakes would be. Discuss the
impact of possible neck cutoffs on hy-
draulic geometry and sediment trans-
port. Do you expect the lateral mobility
of this river to be high or low?
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River dynamics

Deviations from equilibrium conditions will trigger a dynamic response from
the alluvial river system to restore the balance between inflowing and outflow-
ing water and sediment discharges. Section 7.1 of this chapter deals with the
dynamics of stream response to changes in water and sediment discharges.
Sections 7.2 and 7.3 describe the dynamic response of alluvial systems to
degradation and aggradation, respectively, particularly the effects on hydraulic
geometry and channel morphology. Section 7.4 focuses on river confluences
and branches. Finally, Section 7.5 provides guidelines on river databases, data
sources, and field surveys.

7.1 River dynamics

Conceptually, the fluvial system of the watershed sketched in Fig. 7.1 can be
divided into three main zones: (1) an erosional zone of runoff production and
sediment source; (2) a transport zone of water and sediment conveyance; and
(3) a depositional zone of runoff delivery and sedimentation. The second zone
is characterized by near-equilibrium conditions between the inflow and the
outflow of water and sediment. The bed elevation in this equilibrium zone is
fairly constant and the hydraulic geometry is described in Chap. 6 and this
section. The upper zone is characterized by net erosion of bed material and
channel degradation. The dynamic response of degrading fluvial systems is
discussed in Section 7.2. The lower zone is characterized by net sedimentation
and channel aggradation. The dynamic response of aggrading fluvial systems
is discussed in Section 7.3.

Conceptually, the hydraulic geometry of alluvial channels is related to stream
characteristics that vary with time. As sketched in Fig. 7.2, the concept of
dominant discharge used in Chap. 6 refers to bankfull discharge conditions
or flood discharge with a period of return of ∼1.5 yr. The corresponding sed-
iment discharge is divided into washload for size fractions of bed material
finer than d10. The bed-material discharge Qbv corresponds to size fractions of

199
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Figure 7.1. Erosion, transport, and sedimentation in a fluvial system.
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bed material coarser than d10. The bed-
material discharge is most important
because it relates to changes in bed
conditions and thus to changes in hy-
draulic geometry.

Section 6.4 dealt with equili-
brium downstream hydraulic geome-
try. Accordingly, the relationship of
Eqs. (6.26) among channel slope S,
dominant discharge Q, grain size ds ,
and Shields parameter τ∗ can be rewrit-
ten as

SQ
1

2+3 m = 1.24d
5

4+6 m
s τ

4+6 m
5+6 m∗ . (7.1)

We remember that the unit of the
bankfull discharge Q is cubic meters
per second and that of the median
grain diameter ds is meters, whereas
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the slope S and the Shields parameter τ∗ are dimensionless. After considering
that the sediment discharge Qs is proportional to the Shields number τ∗, we find
that the product of slope and discharge on the left-hand side of Eq. (7.1) must be
balanced by the product of grain size and sediment discharge on the right-hand
side of Eq. (7.1), which is known as Lane’s (1955) relationship, written as

QS ∼ Qsds . (7.2)

This qualitative relationship states that equilibrium conditions exist between
hydraulic conditions on the left-hand side of relation (7.2) and sediment con-
ditions on the right-hand side of relation (7.2). Perturbations to one or several
parameters in relation (7.2) will be balanced by a change in one or several of
the remaining parameters.

A quantitative relationship between hydraulic and sediment variables is pos-
sible after defining a sediment transport relationship. It is important to use a
bed-sediment discharge because riverbed changes are induced by erosion and/or
sedimentation of bed material. The following empirical relationship for sand
transport is used as a first approximation:

qbv � 18
√

gd3/2
s τ 2

∗ . (7.3)

This relationship for the unit bedload discharge by volume qbv in square
meters per second is approximately valid for 0.1 < τ∗ < 1, where the grain
diameter ds is in meters. Accordingly, the bedload discharge by volume is
Qbv = qbvW , and from relations (6.27) and (7.3) we obtain

Qbv � 0.77Q
6+4 m
5+6 m d

−2.5+5 m
5+6 m

s S
7+10 m
5+6 m . (7.4a)

Specifically for m = 1/6, this reduces to

Qbvd
0.28
S � 0.77Q1.11S1.44. (7.4b) ��

We thus should apply this approximation only as a downstream hydraulic
relationship among dominant discharge Q in cubic meters per second, the bed-
material discharge by volume Qbv in cubic meters per second, and the grain
diameter ds in meters. Relations (7.4) should not be used to define at-a-station
properties such as sediment-rating curves.

The sediment concentration in milligrams per liter, Cmg/l = 106GCv =
106G(Qbv/Q) can be obtained directly from relations (7.4) as

Cmg/l � 2.65 × 106 Q0.11d−0.28
s S1.44. (7.5)

This relationship deserves testing and should be accurate within an order of
magnitude as long as the sediment-transport relationship and the approximation
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m = 1/6 are applicable. Nevertheless, it clearly shows the dominant role played
by the channel slope S in the conveyance of sediment in alluvial channels.

We can assess the effects of sediment discharge Qbv on the downstream
hydraulic geometry of sand-bed streams after substituting S into Eqs. (6.27)
with the function of the bed-material discharge Qbv in cubic meters per second,
ds in meters, and Q in cubic meters per second from relation (7.4b). We obtain
the solution for the bankfull flow depth in meters, channel width W in meters,
flow velocity V in meters per second, and Shields parameter τ∗ after assuming
that m = 1/6 and substituting S from relation (7.4b) into Eqs. (6.28):

h � 0.19Q0.46d0.13
s Q−0.12

bv , (7.6a)

W � 1.3Q0.62d−0.15
s Q−0.15

bv , (7.6b)

V � 4Q−0.08d0.02
s Q0.27

bv , (7.6c)

S � 1.2Q−0.77d0.19
s Q0.69

bv , (7.6d)

τ∗ � 0.14Q−0.31d−0.67
s Q0.57

bv . (7.6e)

Alternatively, the effects of bed-material sediment concentration Cmg/l that
correspond to the dominant discharge can be assessed after Qbv = 3.8 × 10−7

Cmg/l Q is substituted into relations (7.6a)–(7.6e). We simply obtain down-
stream hydraulic-geometry relationships as functions of bankfull bed-material
sediment concentration in milligrams per liter, ds in meters, and Q in cubic
meters per second:

h � 1.1Q0.34d0.13
s C−0.12

mg/l , (7.7a) �

W � 12Q0.47d−0.15
s C−0.15

mg/l , (7.7b) ��

V � 0.075Q0.19d0.02
s C0.27

mg/l, (7.7c) �

S � 4.4 × 10−5 Q−0.08d0.19
s C0.69

mg/l, (7.7d) ��

τ∗ � 3 × 10−5 Q0.26d−0.67
s C0.57

mg/l. (7.7e) �

At sediment concentrations of less than 1,000 ppm, sediment concentrations
in milligrams per liter Cppm can be used instead of Cmg/l. The difference between
Cmg/l and Cppm is less than 10% at concentrations of less than 145,000 ppm.



River dynamics 203

Problem 7.2 illustrates how relations (7.7) can be used to estimate the charac-
teristics of an alluvial channel, based on discharge, grain size, and bed-material
concentration.

We can thus infer from relations (7.6) that an increase in dominant discharge
Q+ is expected to cause a significant increase in bankfull width W + and in
depth h+, a significant decrease in slope S−, and a less-pronounced decrease
in Shields parameter τ−

∗ . An increase in dominant sediment discharge Q+
bv

corresponds to a significant increase in slope S+ and Shields parameter τ+
∗ ,

a less-pronounced increase in velocity V +, and slight decreases in channel
width W − and flow depth h−. The effects of increases in grain size d+

s are
comparatively less significant, except for a decrease in Shields parameter τ−

∗ .
In summary, we can expect the following dynamic responses of alluvial systems
to perturbations in water and sediment discharges:

Q+ → W +h+S−τ−
∗ , (7.8a)

Q+
bv → S+τ+

∗ V +, (7.8b)

d+
s → τ−

∗ . (7.8c)

We thus note that the downstream hydraulic geometry in width and depth
primarily depends on discharge. Increases in water and sediment discharges
exert counterbalancing effects on the channel slope and the Shields parameter.
Grain-size effects are comparatively small. The opposite effects are of course
obtained for decreasing values of the parameters.

As sketched in Fig. 7.3, changes in hydraulic geometry take place through
reworking of the alluvium in which rivers flow. Flow depth increases as the bed
degrades, and flow depth decreases through aggradation. Channel widening
will occur through bank erosion. Channel narrowing will probably take place
through shoaling and the formation of bars and islands, followed by incision
of the main channel. In general, shoals are submerged sandbars at low flows.
Sandbars and gravel bars are submerged at high flow, and islands are covered
with vegetation. Changes in flow velocity are quite naturally linked to bedforms
and the ability of a stream to transport sediment. Changes in bed slope, on the
other hand, are quite problematic in the sense that they require adjustment of
bankfull conditions and changes in the floodplain.

As an example, consider an alluvial fine sand-bed channel that has a bank-
full width W1 = 300 ft, a flow depth h1 = 10 ft, slope S1 = 8 ft/mile, and
a flow velocity V1 = 10 ft/s. Determine the expected change in downstream
hydraulic geometry if the dominant flow discharge is decreased by 50%. The
bed-material size and the sediment concentration are expected to remain the
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Figure 7.3. Adjustments in river width, depth, and flow velocity.

same. The changes in hydraulic-geometry characteristics with Q2/Q1 = 0.5 are
calculated from relations (7.7): h2/h1

∼= (0.5)0.34 = 0.80,W2/W1
∼= (0.5)0.47=

0.72, V2/V1
∼= (0.5)0.19 = 0.87, and S2/S1

∼= (0.5)−0.08 = 1.05.
Accordingly, the flow depth is expected to decrease to ∼8 ft, the bank-

full width should decrease to ∼210 ft, the flow velocity should decrease to
∼9 ft/s, and the bed slope should slightly increase to ∼8.5 ft/mile for the
new equilibrium condition. These expected changes only can be used as a first
approximation.

7.2 Riverbed degradation

Channel degradation refers to the general lowering of the bed elevation that
is due to erosion. In some cases, the bed material is fine and degradation will
result in channel incision, which is covered in Subsection 7.2.1. In other cases,
the material is sufficiently coarse to form an armor layer that prevents further
degradation, as discussed in Subsection 7.2.2.
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7.2.1 Incised rivers

Slope adjustments refer to streams that would require either a steeper or a milder
slope for reaching equilibrium between incoming and outgoing water and sedi-
ment discharges. Stated in simple terms, when the outgoing exceeds the inflow-
ing sediment load, alluvial streams will scour bed material and degrade. Degra-
dation results in channel incision and milder slopes, as sketched in Fig. 7.4.

Figure 7.4. Schematic of riverbed degradation.
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Figure 7.5. Effects of dams downstream of alluvial reaches.
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Incised channels tend to be narrow and deep compared with equilibrium con-
ditions. Channel incision will take place until equilibrium condition is reached.
Incised channels are typical of upland areas whereby the sediment-transport
capacity increases in the downstream direction. Rills are small-scale channels
found in upland areas. Gullies are larger-scale features also found in upland
areas. Conventionally, rills can be crossed by farm machinery whereas gullies
cannot.

In rivers, channel incision is found in arroyos and canyons. Arroyos are
ephemeral channels in arid areas with flashy hydrographs that carry large sedi-
ment loads during short periods of time. Many arroyos dry out in the downstream
direction as a result of infiltration and evaporation. The sediment load even-
tually deposits on the channel bed downstream of arroyos to form wide-shallow
streams. Canyons are usually deeply entrenched in vertical bedrock walls. In-
cised channels typically are narrower and deeper then equilibrium channels and
are characterized by a shortage of sediment. Channel degradation also causes
the banks to become unstable and subject to failure. Gully-like incised channels
become very unstable, and bank erosion may become a significant source of
sediment to the channel. Incised channels can often be found where the stream
slope increases in the downstream direction. Knickpoints indicate points with
a sudden change in bed slope. Headcuts usually refer to sudden drops in bed
elevation. Headcuts usually start downstream, and their upstream migration is
a characteristic feature of incised channels.

As sketched in Fig. 7.5, artificial structures such as dams alter the equilibrium
between the flow of water and sediment in alluvial channels. Reservoirs tend to
decrease the magnitude of flood flows and increase low flows. The clearwater
release from the dam also causes the reach below the dam to degrade in the
form of a wedge starting below the dam. The magnitude and the extent of
the degradation below dams depend on the reservoir size and operation and on
the size and availability of alluvium below the dam. Incision tends to be deepest
in sandy materials and is subject to armoring in gravels.

Degradation of the main river stem at river confluences causes headcutting

Figure 7.6. Schematic of headcut mi-
gration.

and degradation in the tributaries. As sketched in Fig. 7.6, the headcut prop-
agates upstream from the confluence
and can cause severe stability problems
in structures on shallow foundations
such as bridges and some grade-control
structures. The ensuing gullying in a
tributary can cause significant bank in-
stabilities and channel widening.
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Figure 7.7. Specific-gauge record of the Atchafalaya River at Simmesport
(after U.S. Army Corps of Engineers, 1999).

Specific-gauge records are often used to determine whether a stream tends
to aggrade or degrade over time. A specific-gauge record is the water-surface
elevation that corresponds to a given discharge. When gauge records are avail-
able for a long period of time, plotting the gauge elevation at given discharges
can detect long-term river trends. For instance, the specific-gauge record of the
Atchafalaya River is shown in Fig. 7.7. Both discharges show a gradual lowering
of the water-surface elevation with time. Over a period of 50 yrs, the water-
surface elevation is ∼15 feet lower than in the mid-1950s. When the procedure
is repeated at several stream gauges along a river, longitudinal water-surface
profiles at a specific discharge can be obtained. The example in Fig. 4.7(a) il-
lustrates the water-surface lowering in the Atchafalaya River from Simmesport
to Chicot Pass and the rising in water-surface elevation between Chicot Pass
and Morgan City. It should be noted that specific-gauge records do not provide
information on bed elevation, and, per se, aggradation or degradation changes
cannot be determined from specific-gauge records. Changes in bedforms, bed
material, resistance to flow, loop-rating effects, and channel widening can alter
the trends observed with specific gauges.

It is possible to observe opposite trends at different discharges; for instance,
specific gauges may indicate a decreasing trend at a low discharge and an in-
creasing trend at a high discharge. It is thus recommended to compare cross
sections over time in order to confirm any trend detected with specific gauges.

7.2.2 Riverbed armoring

Armoring of the bed layer refers to coarsening of the bed-material size as a result
of degradation of well-graded sediment mixtures. The selective erosion of finer
particles of the bed material leaves the coarser fractions of the mixture on the
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bed to induce coarsening of the bed material. When the applied bed shear stress
is sufficiently large to mobilize the larger bed particles, degradation continues;
when the applied bed shear stress cannot mobilize the coarse bed particles, an
armor layer forms on the bed surface. The armor layer becomes coarser and
thicker as the bed degrades until it is sufficiently thick to prevent any further
degradation. The armor layer is representative of stable bed conditions and can
be mobilized only during large floods. A riverbed is sometimes said to be paved
when the armor layer can be mobilized only during exceptional floods. Three
conditions need to be satisfied to form armor layers: (1) the stream must be
degrading, (2) the bed material must be sufficiently coarse, and (3) there must
be a sufficient quantity of coarse bed material. Relative to the first condition,
the sediment-transport capacity must exceed the sediment supply such that the
stream attempts to scour the bed.

The second condition can be quantified as follows from the Shields diagram.
The incipient condition of motion with τ∗c � 0.05 can be rewritten in terms of
minimum grain size at the beginning of motion.

dsc � 10 hS, (7.9a) �

where dsc is the minimum grain diameter, h is the flow depth during floods,
and S is the channel slope. The units of grain size are the same as those of the
flow depth. Alternatively, we can estimate the flow depth corresponding to the
beginning of motion by

h � dsc/10 S. (7.9b)

The third condition refers to the fraction of material �pc coarser than dsc

available in the bed material. When this percentage is large, the armor layer
will form rapidly and the extent of degradation will be minimal. When this
percentage is low, a large volume of bed material will be scoured before the
armor layer can form. The effect of the armor layer in this case will be limited.
Quantitatively, we can consider that an armor layer of approximately twice the
grain size will stabilize the bed. The scour depth �z that will form an armor
layer equal to 2dsc can be estimated from

�z = 2dsc

(
1

�pc
− 1

)
. (7.10)

The scour depth becomes very large when �pc is small, and it is there-
fore important to have a particle-size distribution that is representative of the
sublayer, including clay, sand, and gravel layers. Example 7.1 illustrates some
characteristics of river degradation and armoring.
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Once an armor layer has formed, it plays a very important role in chan-
nel stability and morphology. Indeed, the riverbed is stable except under large
floods, and the armor layer protects the bed against further degradation. Its
removal through natural and/or artificial activities can cause significant stream-
instability problems. For instance, gravel mining operations remove the coarse
armor layer from bed streams at low flows. The damage can often be seen
during subsequent floods in which large discharges cause severe degradation
in the channel. Headcut development and upstream migration can also cause
the failure of upstream structures such as bridges. Case study 7.1 illustrates the
complex effects of dams, land-use changes, and gravel mining on river-channel
morphology.

Example 7.1 Application to riverbed degradation. The Meuse River in
The Netherlands is 250 km long. The mean annual discharge is 230 m3/s near
Maastricht and exceeds 3,000 m3/s during major floods. The Meuse is more or
less controlled by weirs to enable river navigation, and the lower stretches of
the Meuse have dikes. From Maastricht to Maasbracht, the Meuse meanders
over shallow gravel banks, and barge traffic is possible only in a parallel canal.
The river is easily navigable between Maasbracht and Lith. Near Maasbracht,
the river shows a sharp transition from a gravel-bed to a sand-bed river with d50

decreasing from ∼16 to 3 mm and the bed slope decreasing from 48 to 10 cm/km.
Figure E.7.1.1 from Murrillo-Muñoz (1998) shows several characteristics of the
bed material of the Meuse River.

At a flow depth of 3 m, the critical grain size at the beginning of motion is
calculated from the slope and relations (7.9). In this case, dsc � 12 × 3 m ×
48 × 10−5 = 17 mm for the upper reach and dsc � 12 × 3 m × 10 × 10−5 =
3 mm for the power reach. It is interesting to note that these size fractions
approximately correspond to d50 of the bed material. To examine whether ar-
moring is possible during floods, the critical grain sizes at a flood flow depth
h = 6 m are 25 and 7 mm. Considering the particle-size distribution of the
lower reach, particle sizes exceeding 35 mm cannot be found in large quan-
tities and degradation can be expected during floods. Considering that only
∼3% of material, �pc � 0.03, is coarser than 35 mm in the lower reach, the
extent of degradation calculated from Eq. (7.10) is�z � 2.3 m, which is com-
parable with the degradation measurements shown in Fig. E.7.1.1. Note that
Eq. (7.10) is very sensitive to low values of�pc and an infinite degradation depth
is obtained when �pc → 0. It is therefore very important to carefully deter-
mine the particle-size distribution of coarse bed fractions. When several meters
of degradation are expected, borings are required for examining the substrate
and looking for possible gravel and cobble layers that can limit the extent of
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degradation. The presence of bedrock outcrops along the river profile can be
most useful when severe degradation is expected.

In the field, quick estimates of the flow depth required for beginning of motion
of the bed material are obtained by

hm � 10 ds/Scm/km, (E.7.1.1) �

where the flow depth h is in meters, the median grain diameter is in millimeters,
and the slope is in centimeters per kilometers.

In this example, the flow depth for the upper reach with ds � 16 mm and
S = 48 cm/km is approximately 3 m. The flow depth for the lower reach with
ds � 3 mm and S = 10 cm/km is also approximately 3 m. Downstream fining
in this river seems to follow the empirical rule that ds/S is constant.

Case Study 7.1 Dynamic changes of Dry Creek, United States. Dry Creek
is a major tributary to the Russian River just south of Healdsburg, California
(Fig. CS.7.1.1). The Russian River Basin drains approximately 235 km2 and
Dry Creek has a drainage area of 34 km2.
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Healdsburg Dam serves as a control on the Russian River, and Dry Creek will
be even more significantly altered when the Warm Springs Dam is completed
and put in operation.

Significant land-use changes are also evident from the aerial photographs.
The Dry Creek valley is agricultural, with citrus fruits as the major crop. The
upland areas are rugged, consisting primarily of hilly and mountainous terrain.
Recently this condition has been aggravated by record storms and wildfire,
both contributing to abnormal runoff volumes. Other land-use changes include
some urbanization and the conversion of forest lands to agricultural and grazing
lands.

Dry Creek is located in a valley of high relief (>300 m) on a well-defined
wide floodplain averaging 1.2 km in width (Fig. CS.7.1.1). The low-flow chan-
nel is incised within a wider-flow channel bordered by low scarps. The low-flow
channel has a sinuosity of approximately 1.20, whereas the wider flood flow
channel is straight (sinuosity approximately 1.05). Aerial photographs indicate
that Dry Creek is extremely active. This corroborates the findings in Fig. 6.16.
Although the overall channel sinuosity remains approximately the same from
year to year, a comparison of the location of meander bends and crossovers
reveals that their positions change with time. Channel boundaries are alluvial,
being composed of sand and gravel. The low-flow channel is locally braided
and locally anabranched. Both the low-flow and the flood-flow channels are
equiwidth with the development of wide point bars prevalent along the low-
flow channel. Tree cover is generally less than 50% of the bankline, and cut
banks are evident. Bank material is generally noncohesive silt, sand, gravel, and
cobbles.

Dry Creek is a braided stream that is overloaded with sands and gravel.
The deposition of sediments from the overloaded condition creates gravel-bar
formation and aggradation of the channel bed. The presence of the gravel bars
enhances lateral migration of the channel. These conditions create severe bank-
erosion problems because of the highly erodible bank. Bank-erosion problems
were detected more than 30 km upstream of the confluence with the Russian
River and have been documented from records and photographs as early as
1940. In addition, the similarity of degradation and lateral migration tendencies
between the areas upstream and downstream of the Lambert Bridge (control)
indicates the significance of natural channel instability.

Gravel mining in the Russian River and other tributaries such as Dry
Creek has been an important industry in Sonoma County since the early 1900s.
In recent years, such activities have continued in Dry Creek and in the
Russian River near the mouth of Dry Creek. There is evidence of gravel min-
ing near the confluence of Dry Creek and the Russian River, resulting in a
general deepening of the Russian River. This is due to the closing of the
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Healdsburg Dam in 1952 and the Coyote Dam in 1958. The lowering of the base
level in the Russian River has induced a general lowering of the base of Dry
Creek.

The channel of Dry Creek downgraded significantly in the 1950s and 1960s
because of the drop in the base level of the Russian River. This drop was the result
of in-stream gravel mining and the construction and operation of the Healdsburg
and Coyote Dams. A total streambed elevation drop of 7 m has been recorded in
a 0.6-km length near the Healdsburg Dam since 1940. The current Healdsburg
Dam structure, completed in 1952, has maintained the past upstream bed ele-
vation and is acting as a control that prevents upstream headcuts in the Russian
River. However, the base-level drop in the Russian River initiated a headcut
in Dry Creek that has propagated a total distance of 13 km upstream from the
mouth. The headcut was controlled when rock just upstream of the Lambert
Bridge was exposed in 1972–1977. Calculations indicate that the headcut trav-
eled at an estimated rate of 0.6 km/yr, requiring 23 yrs to travel the entire 13 km.
With the deeper channel system and with controlled flooding, higher banks
became exposed to attack by the flowing water. Abnormal flooding and fire se-
quence produced record runoff and sediment that has caused the deeply incised
lower ends of Dry Creek to begin to widen again from extensive bank ero-
sion. Analysis of aerial photographs indicates a significant increase in channel
width.

Qualitative analysis reveals that the erosion problems along Dry Creek are
complicated. The accelerated channel degradation has been primarily caused
by (1) lowering of the base level that is due to the construction of dams on the
Russian River; (2) increased runoff resulting from record storms, complicated
by land-use changes and wildfires; and (3) gravel mining activity on the Russian
River and Dry Creek.

7.3 Riverbed aggradation

Channel aggradation refers to a gradual bed-elevation increase that is due to
bedload sedimentation. This section considers braiding in Subsection 7.3.1 and
alluvial fans and deltas in Subsection 7.3.2.

7.3.1 Braided rivers

When the inflowing sediment discharge exceeds the outgoing sediment capa-
city, alluvial channels tend to deposit their sediment load throughout the reach.
Streams carrying mostly washload will not change their morphology because
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the sediment overload will be carried downstream to settle in lakes, reservoirs, or
estuaries. Streams carrying most of their sediment load in suspension change
their morphology gradually as the excess sediment load settles in the down-
stream direction. The riverbed material size becomes gradually finer in the
downstream direction. From Lane’s relationship, downstream fining is usu-
ally accompanied by a downstream decrease in bed slope. On the other hand,
streams that carry predominantly bedload material will respond quite rapidly
to a change in sediment-transport capacity. A decrease in transport capacity
induces direct settling on the bed of alluvial channels.

As sketched in Fig. 7.8, the settling of bedload forces aggrading channels
out of the bankfull conditions. The flow spreads on the floodplain with accu-
mulation of the bed-sediment load to form natural levees on a wide flood-
plain. There is a tendency for the stream to widen and become very shallow
with bars subjected to rapid changes in morphology. At high flows, braided
streams have a low sinuosity and often appear to be straight. At low flows,
numerous small channels weave through the exposed bars. These streams are
known to braid as the bed slope increases through aggradation. The flow ve-
locity of braided streams is high, and the bed material can be easily mobilized.
Braided streams are rather unstable in that they are prone to severe lateral
migration, frequent shifts, and changes in cross-section geometry. The bars
of braided streams are generally submerged once a year and are devoid of
vegetation.

Islands are different from bars in that they are stabilized by vegetation and
rivers with multiple islands are anastomosed. Anastomosed rivers are usually
more stable than braided channels because vegetation straightens the banks and
stable islands control the flow between the branches. During floods, vegetated
islands trap sediment and aggrade.

Because braided channels require large bedload transport, most braided rivers
are steep, and therefore, at a given discharge, braided rivers should be steeper
than meandering rivers. Several criteria based on bankfull discharge and slope
are shown in Fig. 7.9. The range of slope variability, however, is quite extensive,
and it remains difficult to separate braiding from meandering channels solely on
the basis of bankfull discharge and slope. An alternative approach is based on
the width–depth ratio. In general, braided channels have a width–depth ratio in
excess of 100. Case Study CS.7.3 illustrates several features of a large braided
river.

A single channel with given dominant discharge is thus thought to meander
on mild slopes and braid on steep slopes. This concept has been expanded by
Lane (1957) who proposed a slope-discharge relation for sand-bed channels.
Empirically, braided channels were observed when SQ1/4 > 0.01 and channels
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Figure 7.8. Schematic features of riverbed aggradation.

were meandering when SQ1/4 < 0.0017, given the slope S and the dominant
discharge Q in cubic feet per second. Unfortunately, this criterion is not al-
ways valid. Lane’s diagram is considered only as an index describing the
morphological pattern.
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Direct measurements of bedload transport and comparisons with transport
capacity are too uncertain to provide any good indication of a stream tendency to
braid. One useful indicator is that braiding often occurs near a sudden decrease
in slope, provided that the stream carries excess bedload material. An example
of a sudden decrease in bed slope with downstream fining and braiding is shown
in Fig. 7.10 for the Tanana River in Alaska. In this case, from Buska et al. (1984),
channel aggradation takes place with selective deposition of coarser material
upstream. Note that the bed slope is proportional to the grain size. The magnitude
of slope and grain size is quite comparable with those of the degrading Meuse
River in Case Study 7.1.
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7.3.2 Alluvial fans and deltas

Alluvial fans are found where steep mountain channels reach valley floors, as
sketched in Fig. 7.11. The sudden break in bed slope causes the bed material

Apex
Alluvial fan

Valley floor

Figure 7.11. Sketch of an alluvial fan.

transported by the river to deposit. The
accumulation of debris usually takes a
conical shape. The volume of mate-
rial in the alluvial fan is indicative of
the sediment-transport capacity of the
stream through geologic times. The
aggradation takes place on the riverbed
and on natural levees between the apex
of the alluvial fan and the valley floor.
An example of an alluvial fan is dis-
cussed in Case Study 7.2.

Through aggradation and natural

Figure 7.12. Sketch of possible tec-
tonic effects.

levee formation, a river raises its own
bed elevation above the surrounding
floodplain to form a perched river. Per-
ched rivers are stable as long as they can-
not breach their levees. Perched rivers
are prone to avulsion in which rivers se-
lect a new flow path that can be located
up to hundreds of kilometers away from
their original river courses. Old chan-
nels of perched rivers rapidly dry out,
and the process of aggradation and natu-
ral levee formation starts at the new river
location.

To some extent, tectonic activities
exert a similar influence on alluvial river
morphology as aggradation and degra-
dation (sketched in Fig. 7.12). Uplift and
subsidence on the side of a river may
result in river perching and may result
in river avulsions. Uplift along the
water course should cause aggradation
and possible braiding upstream and de-
gradation and possible incision down-
stream. Subsidence along a river course
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should cause the opposite effects, with degradation upstream and aggradation
downstream.

Deltas are observed when rivers reach large lakes, reservoirs and oceans. The
sediment deposits extend in a deltaic form into the water, and the aggradation in
the upstream river causes the deposits to spread laterally in the lower reaches of
the river. The features of deltas and alluvial fans are quite similar where the val-
ley floor is replaced with the water level and deltas are much flatter than alluvial
fans. The delta deposits are usually fine (finer than sand) as opposed to allu-
vial fans (coarser than sand). Rivers transporting large quantities of washload
may remain sinuous and meander to the river mouth. Rivers transporting large
quantities of bed material tend to braid.

Case Study 7.2 Lawn Lake Dam failure, Colorado, United States.
Jarrett and Costa (1986) documented the failure of Lawn Lake Dam in Rocky
Mountain National Park, Colorado, on the morning of July 15, 1982. The dam
released 674 acre-ft (8.3 × 10−5 m3) of water at an estimated peak discharge of
18,000 ft3/s (500 m3/s) down the Roaring River valley. Three people were killed
and damages totaled $31 million. The probable cause of failure was deteriora-
tion of the lead caulking used for the connection between the outlet pipe and the
gate valve. The resulting leak eroded the earthfill, and progressive piping led
to failure of the embankment. Floodwaters from Lawn Lake Dam overtopped
a second dam, Cascade Lake Dam, located 6.7 miles downstream, as shown in
Fig. CS.7.2.1. Cascade Lake Dam, a 17-ft-high, concrete gravity, 12.1-acre-ft
capacity dam, failed by toppling with 4.2 ft of water flowing over its crest.
The flood continued down the Fall River and caused extensive damage from
overbank flow to the city of Estes Park.

Peak discharges were determined with a variety of indirect methods in-
cluding a dam-break model. Peak discharges for the flood were estimated at
(1) 18,000 ft3/s from Lawn Lake Dam; (2) 12,000 ft3/s at Horseshoe Falls where
Roaring River joins the Fall River; (3) 7,210 ft3/s into Cascade Lake Dam at
the east end of Horseshoe Park; (4) 16,000 ft3/s after the failure of Cascade
Lake Dam; (5) 13,100 ft3/s ∼1 mile downstream from Cascade Lake Dam; and
(6) 8,520 ft3/s just upstream from Estes Park. Maximum depths ranged from
6.4 to 23.8 ft, maximum widths ranged from 97 to 1,112 ft, and mean velocities
ranged from 3.3 to 12.6 ft/s. Travel times of the flood were determined from
eyewitness accounts. The leading floodwave took 3.28 h to travel 12.5 miles
(average 3.8 miles/h). Flood peaks were 2.1 to 20 times the 500-yr flood for
selected locations along the flood path. It probably was the largest flood that
these basins have experienced since the retreat of the glaciers several thousands
years ago.
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Figure CS.7.2.1. Lawn Lake Dam failure.

In the Roaring River valley, alternate river reaches were either scoured or
filled, depending on valley slope. Channels were widened tens of feet and
scoured from 5 to 50 ft locally. Generally, reaches steeper than 7% were scoured
and reaches less than 7% were filled. In the Roaring River, 56% of the channel
reach was scoured, some by as much as 50 ft, and 44% was filled with coarse
sediments, 2 to 8 ft thick.

An alluvial fan extending 42.3 acres contained 364,600 yd3 of material de-
posited at the mouth of the Roaring River. The fan had a maximum thickness
of 44 ft and an average thickness of 5.3 ft. A 452-ton boulder measuring 14 ×
17.5 × 21 ft moved with the flood and was deposited on the alluvial van. Down
the flow axis, average particle sizes changed from 7.5-ft boulders at the fan apex
to fine sand and silt within a distance of 1,900 ft. The alluvial fan dammed the
Fall River, forming a 17-acre lake upstream from the fan.

7.4 River confluences and branches

The effects of channel narrowing and widening are quite important in alluvial
rivers. Indeed, a widening stream tends to aggrade and a narrowing tends to
degrade. The combination of these two mechanisms stabilizes the river width,
and this is the primary reason why rivers tend to have fairly constant widths
over long river reaches.
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River confluences in equilibrium have to convey the water and sediment
discharges in the downstream direction. When the sediment concentration and
particle size are the same, relations (7.7) can be used to determine the ex-
pected changes in hydraulic geometry from an increase in discharge while
keeping ds and Cppm constant. We thus obtain that river confluences will cause
a significant increase in bankfull width, an increase in flow depth and shear
stress, and a slight increase in flow velocity. The channel slope should also
slightly decrease. The example of the confluence of the Ganges and Jamuna
Rivers flowing into the Padma River is shown in Case Study 7.3. In particular,
Table CS.7.3.1 confirms the expected changes in width, depth, velocity, and
slope.

River branches under equilibrium condition have to convey water and sedi-
ment discharges in the downstream direction. From relations (7.7), with constant
grain size and sediment concentration, the opposite changes are expected from
river branching: (1) significant decrease in river width, (2) moderate decrease
in flow depth and shear stress, (3) slight decrease in flow velocity, and (4) slight
increase in riverbed slope.

Deviations from equilibrium conditions are possible from river captures that
result from a new confluence as a result of avulsion of a tributary. At a new river
capture, we can expect degradation and channel widening downstream of the
new confluence. Likewise, flow diversions out of alluvial channels will trigger
sedimentation below the diversion. Channel aggradation, narrowing, reduced
flow velocity, and gradual steepening of the river are the expected changes in
channel branches.

As an example, consider the sediment diversion of the Mississippi River
into the Atchafalaya River. Approximately 22% of the flow discharge of the
Mississippi River is diverted into the Atchafalaya River. The sand concentration
in the Mississippi River varies largely with discharge, as shown in Fig. 7.13(a).
Sand concentrations remain less than approximately 200 ppm at all discharges
less than 1,000,000 ft3/s. Sand concentrations increase approximately linearly
with discharge. The effect of a flow diversion should be to decrease the sand
concentration downstream of the diversion.

An analysis of sediment transport by size fraction and a sediment budget are
shown in Fig. 7.13(b). The very fine sand and fine sand fractions are in reason-
able equilibrium, and the inflowing sediment load equals the outflowing sedi-
ment load. For the medium sand and coarse sand fractions, the inflowing sand
load of ∼19 million yd3/yr far exceeds the outflowing of 2.25 million yd3/yr.
We thus expect the sedimentation of ∼17 million yd3 of medium and coarse
sand, 0.25 mm< ds < 1 mm. In a river reach that is 262 miles long and a river
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Figure 7.13. Sediment diversion at the Old River Control Complex (after U.S.
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that is ∼2,000 ft wide, the accumulation of sediment represents an average
accumulation of sand of 0.16 ft/yr. The tendency toward braiding is possible,
but the Mississippi River has a low width–depth ratio (∼2,000 ft wide and
50 ft deep). At this rate, it would take 100 yr to raise the bed by 16 ft.

Case Study 7.3 Alluvial changes of the Jamuna River, Bangladesh. The
Jamuna River is the lowest reach of the Brahmaputra River in Bangladesh. It
drains an area of 550,000 km2, and the mean annual discharge is 20,000 m3/s.
It is a large braided sand-bed river, and the number of braids at low flows
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Table CS.7.3.1. Characteristics of the Jamuna, Ganges, and Padma Rivers

Mean
Drainage annual Bankfull

area discharge discharge Slope ds Width Depth Velocity
River (km2) (m3/s) (m3/s) (cm/km) (mm) (m) (m) (m/s)

Jamuna 550,000 20,000 48,000 7.5 0.20 4,200 6.6 1.70
Ganges 1,000,000 11,000 43,000 5 0.14 3,700 6.5 1.78
Padma 1,550,000 28,000 75,000 4.5 0.10 5,200 7.5 1.93
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Figure CS.7.3.1. Large river confluences and branching in Bangladesh.

varies between 2 and 3, as shown in Fig. CS.7.3.1. The total width of the
braided channel pattern varies between 5 and 17 km. At the confluence with
the Ganges, the average annual flood is ∼60,000 m3/s and low-flow discharges
vary between 4,000 and 12,000 m3/s. The maximum discharge recorded in
1988 reached 100,000 m3/s. The water-surface slope decreases from 10 to
6 cm/km and the bed material is quite uniform with d50

∼= 0.25 mm near the
Indian boarder and 0.16 mm at the confluence with the Ganges River (See
Table CS.7.3.1).

Klaassen et al. (1993) report that the Jamuna River is quite active, with
frequent channel shifts and lateral migration rates E frequently exceeding
500 m/yr. The shifting rate of the first-order channel is 75 to 150 m. Bank-
erosion rates of second-order channels of 250 to 300 m are common. Lateral
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migration rates exceeding the channel width W in 1 yr have been measured,
and, in general, E/W decreases with R/W , where R is the channel radius of
curvature. An example of lateral shift is shown in Fig. CS.7.3.2. Significant
changes in cross-section geometry can take place within a few years. Examples
of braid confluences and branching are shown in Fig. CS.7.3.3.

The confluence shown in Fig. CS.7.3.3 (a) did not move significantly up-
stream or downstream. In general, slackwater zones are behind wide bars and
prone to quick deposition within a year or so. Confluences thus tend to be
streamlined. The branching shown in the same figure migrates upstream at a

Figure CS.7.3.2. Lateral migration of
the Jamuna River (after Klaassen et al.,
1993).

rate of ∼900 m/year. In general, symmetrical branches move upstream.
Asymmetrical bifurcations are charac-
terized by one dominant channel in
the main downstream direction. The
small channel tends to bifurcate at a
right angle from the main flow direc-
tion. These smaller channels tend to
get smaller in size and eventually
disappear.

The characteristics of the Ganges
and the Padma Rivers are also shown
in Table CS.7.3.1 for comparison. The
reader will note that the sediment size
is finer in the Padma River, and the
slope is accordingly reduced.

The width, depth, flow velocity, and
coarse sediment transport of the
Jamuna River are shown in Fig.
CS.7.3.4. The figures indicate a signi-
ficant variability in measurements that
are typical of measurements in allu-
vial rivers. As much as there is de-
bate as to what the dominant discharge
of a stream really is, the reader will
note that, at a given discharge near
50,000 m3/s, the variability in width
and depth is approximately a factor
of 2. This illustrates the fact that the
dominant discharge and downstream
hydraulic-geometry relationships are
not exact features of alluvial rivers.
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Figure CS.7.3.3. Confluences and branching of the Jamuna River (after
Klaassen et al., 1993).

7.5 River databases

River databases for the analysis of channel stability include (1) historical de-
velopments, (2) maps and photos, (3) streamflow data, (4) sediment data, and
(5) field surveys. Historical information affecting channel morphology and
stability should be reviewed. Upstream basin information includes land-use
changes, flow diversions, and artificial structures for flood control, irrigation,
and navigation.

Topographic maps at various scales, depending on the stream size, indicate
the nature of the drainage area and the fluvial system. The stream planform
geometry, longitudinal profile, and estimates of channel slope can be obtained
from topographic maps with contours. Aerial photographs are most useful in
examining sediment deposits. The comparison of several sets of aerial photo-
graphs enable the evaluation of the lateral migration rates of alluvial channels.
Geographic information systems (GIS) are useful in examining topography, soil
types, and land-use data. The analysis of lateral migration in very large rivers,
like the Jamuna River, is sometimes possible with GIS data. Satellite imagery
is sometimes useful in the analysis of watershed data and some turbidity and
flow patterns in lakes and estuaries.



River databases 227

10

10

10

1

10

1

10

10

1

10

10

10
10 10 103 4 5

-3

-2

-1

-1

3

4

Discharge (m  /s)3

W
id

th
 (

m
)

D
ep

th
 (

m
)

C
ro

ss
 s

ec
tio

n 
av

er
ag

e 
ve

lo
ci

ty
 (

m
/s

)
C

oa
rs

e 
se

di
m

en
t (

m
ill

io
n 

to
ns

/d
ay

)

(d)

(c)

(b)

(a)

0.57

0.26h    0.4 Q~

0.17V    0.27 Q~

W    9 Q~

Figure CS.7.3.4. Hydraulic geometry of the Jamuna River (after FAP24,
1996).

Streamflow data include discharge data on a daily basis for the entire period
of record. The entire flow-discharge record can be used to determine the flow-
duration curves and for flood-frequency analysis. Hydrometric gauges are use-
ful in determining the stage–discharge relationship. Loop-rating effects that
are due to aggradation/degradation, bedform changes, and/or hydrodynamic
effects can be examined from stage–discharge relationships. It is also useful to
examine specific-gauge records to detect aggradation/degradation trends over
long periods. The bankfull discharge should normally fit within the range of
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1 to 5 yr in the flood-frequency analysis. Extrapolations to periods of return far
exceeding the length of record can be misleading.

Sediment data include bed material and sediment transport; the particle-size
distribution of bed material should be determined as accurately as possible.
The variability in bed material in alluvial rivers can be high. Several samples at
different locations are often desirable. In degrading channels, careful attention
should be paid to the coarse fractions of the surface material and underlying
deposits. Sieve analyses are best suited to fine-grained streams, and gravel-
bed and cobble-bed streams require the examination of large volumes of bed
material to determine the median grain size.

Suspended sediment records should indicate the flux-average sediment con-
centration and the sediment load. Sediment load by size fractions is most
valuable to separate washload from bed-material load. Sediment concentra-
tion profiles enable evaluation of the Rouse parameter. Sediment budgets by
size fractions are sometimes most useful in determining the different patterns
of sediment transport for washload and bed-material load.

Field surveys are most effective after a review of maps and photos. It is very
important to gather additional information on the cross-sectional geometry
of the river, including bankfull conditions and floodplain elevation, land use,
and vegetation. Field notes should include indications of actual upstream basin
conditions, and recent changes in vegetation, land use, and sediment sources
should be reviewed. Riverbed, banks, profile, and planform should be exam-
ined for particle-size distribution of bed material, sediment deposits, aggrada-
tion/degradation, headcutting, and bedrock control. Bank stability and mode of
failure, stratigraphy and seepage, lateral migration, and vegetation should be
considered. River hydraulics includes velocities, high-water marks on bridge
piers, structures, and the floodplain; river choking, debris, ice cover and ice
jams, and flow controls provide important information for water-surface calcu-
lations with hydraulic models. Flights over the river are quite informative on
the overall planform stability of rivers during floods. Case Study 7.4 illustrates
how river databases can be used to examine the dynamics of river systems by
means of the analysis of mass curves.

Case Study 7.4 Bernardo reach of the Rio Grande, New Mexico, United
States. The 10-mile-long Bernardo reach of the Middle Rio Grande in New
Mexico is included in the habitat designation for two federally listed endan-
gered species: the silvery minnow and the southwestern willow flycatcher. A
complete database of flow and sediment transport in the Rio Grande below
Cochiti Dam has been assembled at Colorado State University by G. Richard,
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C. Leon, and T. Bauer in collaboration with D. Baird at the U.S. Bureau
of Reclamation. Besides the complete data reports (Leon et al., 1999, and
Bauer et al., 2000), the geomorphic analysis of Richard et al. (2000) shows a
500-ft-wide river with a fine sand bed at d50 � 0.3 mm. The channel width
varies from 150 to 1,200 ft within a 10-mile-long reach. A discharge mass curve
at Bernardo and San Acacia in Fig. CS.7.4.1 represents the cumulative runoff
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Figure CS.7.4.4. Sediment accumulation in the Bernardo reach of the Rio
Grande (after Richard et al., 2000).

volume as a function of time. During the same period, the sediment mass curves
in Fig. CS.7.4.2 describe the cumulative sediment yield as a function of time.
The influence of Cochiti Dam is clearly identified after 1975.

Double mass curves represent the cumulative sediment load as a function
of the cumulative runoff water volume. The case of Bernardo reach of the Rio
Grande is illustrated in Fig. CS.7.4.3. The slope of double mass curves defines
average sediment concentrations in suspension. In the case of the Rio Grande,
the slope reduction reflects the effects of Cochiti Dam in terms of reduced
sediment concentration after 1975.
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Mass difference curves show the difference between sediment inflow and
sediment outflow to a given reach. It can be determined from the sum and
the differences between the sediment curves of all tributaries and branches
of a given river reach. Mass difference curves provide information on the net
sediment balance on a river reach over time and indicate whether a river is
aggrading (+) or degrading (−). The case of the Bernardo reach of the Rio
Grande is illustrated in Fig. CS.7.4.4, and the negative values indicates degra-
dation of the river reach, which has been confirmed with field measurements of
the cross-sectional geometry. It is important to include the contribution of all
tributaries in the analysis of mass difference curves.

�Exercise 7.1

Derive relations (7.4a) and (7.4b) from Relations (6.27) and (7.3).

Exercise 7.2

Derive hydraulic-geometry relations (7.6a)–(7.6e) from combining Relations
(6.28) and (7.4).

�Exercise 7.3

Derive hydraulic-geometry relations (7.7a)–(7.7e) from Relations (7.6) and the
definition of Cppm.

�Exercise 7.4

Calculate the annual rate of bed aggradation in the Mississippi River from the
data provided in the river branching section, Section 7.4.

Problem 7.1

Determine the combined effects of a 50% decrease in water discharge Q− and
a 200% increase in sediment discharge Q+

bv on channel width, flow depth, flow
velocity, slope, and Shields parameter.

Answers: New flow depth ∼67% of initial flow depth h � 0.67 h0,
W � 58%W0, V � 1.27V0, S � 2.75S0, and τ∗ � 1.84τ∗0 .

�Problem 7.2

Estimate the hydraulic geometry of an alluvial stream at a bankfull discharge
of 4,500 ft3/s with d50 = 0.5 mm and a bed-material concentration of 150 ppm.
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Answers: With Q = 127 m3/s, ds = 0.0005 m, and Cmg/l 150, we
obtain from relations (7.7a)–(7.7e) h � 1.2 m, W � 170 m, V = 0.63 m/s,
S � 2.2 × 10−4, and τ∗ � 0.3.

Problem 7.3

Varmint Creek drains a 320-square-mile watershed (see also Problem 7.2). The
mean annual rainfall is 45 in. The largest known peak discharge in a 45-yr record
was 26,000 ft3/s in 1929. The 10-yr suspended sediment record indicates a mean
annual yield of 48,000 tons, mostly a washload of silt and clay. The channel
slope is ∼2.5 ft/mile. The 2-yr flood peak is 4,500 ft3/s. The corresponding
bed-sediment concentration is estimated at 150 ppm. Compare the measured
peak discharge and sediment yield with those of comparable watersheds of the
same drainage area.

�Problem 7.4

The Jamuna River is a large braided river with a median grain size of 0.2 mm.
The river conveys ∼48,000 m3/s at bankfull conditions and the corresponding
bed-material discharge is approximately 2.6 million tons per day. Estimate the
downstream hydraulic geometry of the river.

Answers: Calculate by using Relations (7.6a)–(7.6e) with Q =
48,000 m3/s, ds = 0.0002 m, and Qbv = 11.6 m3/s to give h � 6.7 m, W �
2,500 m, V � 2.8 m/s, S � 3.2 × 10−4 and τ∗ � 6. Field measurements in
Table CS.7.3.1 indicate h � 6.6 m, W � 4,200 m, V � 1.7 m/s, S � 7.5 ×
10−5, and τ∗ � 15. The calculated slope far exceeds the measured slope, and
the stream may be aggrading and braiding.

��Problem 7.5

From the information in Case Study 7.1 and Fig. CS.7.1.1, estimate the mini-
mum grain size at the beginning of motion during a flood of the Meuse River
at 100,000 ft3/s.

Answers: The flow depth is ∼25 ft during floods, or h � 7.6 m, and
the slope is ∼4 ft/mile, or S � 7.6 × 10−4. We obtain from Relations (7.9)
dsc � 12 hS = 0.069 m or 69 mm. This indicates that all sand and gravel sizes
are in motion during floods. Only cobbles are stable and can armor the riverbed
if available in sufficiently large quantity.
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�Problem 7.6

With reference to the Lawn Lake Dam failure in Case Study 7.2, determine the
following: (1) the flow depth required for mobilizing a 2-m boulder in Roar-
ing River and (2) the volumetric sediment concentration of the Roaring River
flow.

Answers: (1) From Relation (7.9b) with S = 0.07 and ds = 2 m, we
obtain a flow depth of ∼2.8 m; (2) a volumetric sediment concentration of ∼33%
is obtained from the alluvial fan volume and the Lawn Lake water release. It
can be classified as hyperconcentrated flow.

Problem 7.7

With reference to the Jamuna River in Case Study 7.3, determine the planform
geometry from the planform predictors based on discharge and slope. Also use
the width–depth ratio as an indicator.

�Problem 7.8

Anticipate the effects of a 30% flow reduction and 30% sediment diversion on
the hydraulic geometry (W, h, V, S, τ∗) of a large meandering river.

��Problem 7.9

With reference to the Jamuna, Ganges, and Padma Rivers’ confluences in Case
Study 7.3, apply the hydraulic-geometry relationships and compare with field
measurements of W, h, V, and S. Compare the slopes upstream and downstream
of the confluence. Would a river confluence in equilibrium require an increase
or decrease in slope in the downstream direction?

��Problem 7.10

The Bernardo reach of the Rio Grande in New Mexico features a channel width
ranging from 150 to 1,200 ft with an average of ∼500 ft. The average reach
slope is 80 cm/km, a median grain size of 0.3 mm, and a sandload up to 10,000
tons per day at discharges of ∼5,000 ft3/s. Compare with the range of channel
width and slope calculated at a sediment concentration of sand varying from
500 to 2,000 mg/l.

Answers: From Relations (7.7) and C =500 mg/l, W =163 m and
S = 4.6 × 10−4.
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River stabilization

River-stabilization structures are designed to protect the riverbanks and prevent
lateral migration of alluvial channels through bank erosion. River-stabilization
methods can be classified according to two different approaches: (1) strengthen-
ing the banks and (2) reducing hydrodynamic forces. This chapter first examines
the bank stability of alluvial streams in Section 8.1. Bank-protection meth-
ods through strengthening the banks with riprap are discussed in Section 8.2,
and other bank-strengthening methods are covered in Section 8.3. Flow-control
structures offer an alternative approach by reducing the hydrodynamic forces ap-
plied against the riverbanks. The flow-control structures covered in Section 8.4
aim at gaining control over the flow depth and the direction and magnitude of
flow velocity near the river banks. Some engineering considerations are dis-
cussed in Section 8.5.

8.1 Riverbank stability

Bank stability is examined in this section. First, the processes are reviewed
in Subsection 8.1.1, followed by conceptual solutions for slope reduction in
Subsection 8.1.2 and subsurface drainage in Subsection 8.1.3.

8.1.1 Bank-erosion processes

Processes of bank erosion are directly linked to the lateral migration of al-
luvial channels. Bank erosion is the result of flowing water that applies ac-
tive forces met by the passive forces of the bank material to resist motion.
As discussed in Chap. 6, the hydrodynamic forces in river bends induce sec-
ondary flow where the free-surface streamlines are deflected toward the outer
bank and the near-bed streamlines are deflected toward the inner bank. Along
a cross section, the streamlines are deflected downward near the outer bank
and deflected upward on the point bar. The resulting effect is to decrease the

234
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Figure 8.1. Bank-failure types.

stability of sediment particles and cause degradation near the outer bank. On the
other hand, the particle-stability increases and aggradation is expected near the
point bar.

The scour at the toe of the outer bank shifts the thalweg to the outside of
river bends and causes steepening of the outer bank. Increased steepening of
the outer-bank material causes bank failure. Three modes of failure are typical
of alluvial rivers, as sketched in Fig. 8.1. With noncohesive granular material,
grain removal at the toe of the outer-bank induces sliding of the granular ma-
terial as soon as the bank angle exceeds the angle of repose of the material
[Fig. 8.1(a)]. In the case of cohesive bank material, rotational failure is typical
and the presence of tension cracks may accelerate the bank-erosion process
[Fig. 8.1(b)]. In alluvial streams flowing in stratified deposits, the underlying
noncohesive material is mobilized, thus leaving the overlying cohesive material
unsupported and subject to tension cracks and cantilever failure [Fig. 8.1(c)].
In general, the most erosive banks are sandy and silty, whereas the least erosive
are clayey and gravelly.
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Factors affecting streambank failure include hydraulic parameters that con-
trol the active forces such as discharge magnitude and duration, velocity, and
applied shear-stress magnitude and orientation. Additional active forces that
are due to seepage, piping, surface waves, and ice can also contribute to bank
erosion. Passive forces relate to bank-material size, gradation, and cohesion.
Biological factors such as vegetation can play a significant stabilizing role.
Artificially-induced activities such as urbanization, drainage, floodplain farm-
ing and development, boating and commercial navigation, and water-level fluc-
tuations from hydropower generation can have detrimental effects on bank
stability.

Changes in channel geometry through bank erosion are particularly signifi-
cant during floods. The sediment-transport capacity is often several orders of
magnitude greater during floods than at intermediate or low flows. Most cases
of riverbank instability in alluvial rivers take place during the small percentage
of time when the dominant discharge is exceeded. The analysis of flow-duration
curves and sediment-duration curves in Section 5.6 is useful in the analysis of
bank stability.

Landslides refer to the downslope movement of earth and organic materials
[Fig. 8.1(b)]. Active forces are involved in mass wasting. These forces are
associated with the downslope gravity component of the slope mass. Resisting
these downslope forces are the shear strength of the Earth’s materials and any
additional contributions from vegetation by means of root strength or human
slope-reinforcement activities. When a slope is acted on by a stream or river,
an additional set of forces is added. These forces are associated with removal
of material from the toe of the slope, fluctuations in groundwater levels, and
vibration of the slope. A slope may fail if stable material is removed from the
toe. When the toe of a slope is removed, the slope loses more resistance by
buttressing than it does by downslope gravitational forces. The slope materials
may then tend to move downward into the void in order to establish a new
balance of forces or equilibrium.

The presence of water in riverbanks and its movement toward or away from
the river affects bank stability and bank erosion in various ways. The outflow of
water from the river into the adjacent banks stabilizes the riverbanks. Rivers that
continuously seep water into the banks tend to have smaller widths and larger
depths for a particular discharge. The converse is true of rivers that continu-
ously gain water by an inflow through their banks. The inflow destabilizes
riverbanks.

Piping is another phenomenon common to the alluvial banks of rivers. With
stratified banks [e.g., Fig. 8.1(c)], flow is induced in more permeable layers
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by changes in river stage and by wind- and boat-generated waves. If the flow
through the permeable lenses is capable of dislodging and transporting fine par-
ticles from the permeable lenses, the material is slowly removed, undermining
portions of the bank. Without this foundation material to support the overlying
layers, a block of bank material drops down and results in the development of
tension cracks, as sketched in Fig. 8.1(c). These cracks allow surface flows to
enter, further reducing the stability of the affected block of bank material.

Mass wasting is an alternative form of bank erosion. If the bank becomes
saturated and possibly undercut by flowing water, blocks of the bank may
slump or slide into the channel. Mass wasting may be further aggravated by

Figure 8.2. Slope-reduction methods.

construction of homes on riverbanks,
operation of equipment on the flood-
plain adjacent to the banks, added
gravitational force resulting from tree
weight, saturation of banks, and in-
creased infiltration into the flood-
plain.

8.1.2 Slope reduction and
benching

The weight of soil at the toe of the
slope counterbalances the weight of
soil in the upper part of the slope and
aids the shear strength of the soil in
resisting against failure.

Direct slope reduction is an exca-
vation method whereby soil is re-
moved from the slope to flatten the
slope angle, as shown in Fig. 8.2(a).
This method is usually preferred when
adequate space is available on the
floodplain. Where there is insufficient
space, the slope may be flattened by
use of fill material, as shown in
Fig. 8.2(b), or by cut-and-fill opera-
tions, as shown in Fig. 8.2(c). Slope,
or buttress, benching is also an indirect
method of slope reduction. It differs
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from the method described above only in the final shape of the slope section.
The benching method produces a benched or a series of stepped sections, as
shown by Fig. 8.2(d). The end effect of this method is a gross reduction in the
angle of the slope.

8.1.3 Subsurface drainage

The control of groundwater within a slope is often a feasible means of stabilizing
the slope. The control of groundwater may be achieved by two methods: (1) the
prevention of infiltration of surface water into soils, and (2) the provision for
subsurface drainage to remove the water from the soil mass. The first method
is generally accomplished by merely providing adequate surface drainage. The
second method uses various subsurface-drainage techniques.

Subsurface drains are most effective when only a small quantity of water is
required to be removed to affect stabilization. A thin confined aquifer can be
intercepted to reduce the artesian pressure. Horizontal drains consist of a slotted
pipe to remove excessive water from cut slopes experiencing stability problems.
Figure 8.3(a) shows an idealized concept for the application of horizontal drains
to streambank stability.

Stabilization of highway cut slopes frequently involves the use of a combina-
tion of horizontal and vertical drainage systems. Vertical drains can be utilized
in riverbank stabilization, as sketched in Fig. 8.3(b). The main function of a
drain-well installation is to intercept groundwater moving toward the bank and
thus to relieve pore pressures that would otherwise develop in a saturated fine-
grained bank material. Usually this high-cost concept is applicable only in cases
in which high groundwater levels exist above maximum river elevations.

A drainage trench is shown conceptually in Fig. 8.3(c). Its function is similar
to that of the vertical drain to intercept any groundwater before it reaches
the bank slope. A slotted or perforated pipe is placed at the bottom of the
trench to drain the water intercepted by the trench. As with vertical drains, this
method would be effective for bank stabilization only in cases in which high
groundwater levels occur above maximum river elevations.

8.2 Riverbank riprap revetment

Several engineering methods can be used to strengthen riverbanks against ero-
sion. Methods commonly encountered include the use of riprap or large stones
that are not easily removed from the banks. Besides riprap in this section, the
other methods considered in Section 8.3 are vegetation, gabions, blocks and
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Figure 8.3. Riverbank drainage methods.

rocks, rock-fill trenches, windrow revetment, soil cement, fences, bulkheads,
and mattresses.

When economically available in sufficient size and quantity, rock riprap is
usually the most widely used material for bank protection. A rock riprap blan-
ket is flexible and is neither impaired nor weakened by slight movement of
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the bank resulting from settlement or other minor adjustments. Local damage
or loss is easily repaired by the placement of more rock. Construction is not
complicated, and special equipment and construction practice are not necessary.
Riprap is usually durable and recoverable and may be stockpiled for future use.
Locally available riprap usually provides a cost-effective alternative to many
other types of bank protection. The appearance of rock riprap is natural, and
after a period of time vegetation will grow between the rocks. Finally, wave
runup on rock slopes is usually less than on other types of structures. The
important factors to be considered in designing rock riprap blanket protection
are: (1) the velocity (both magnitude and direction) of the flow or shear stress
in the vicinity of the rock; (2) the sideslope of the bankline being protected;
(3) the density of the rock; (4) the angle of repose for the rock, which depends
on stone shape and angularity; (5) the durability of the rock; (6) the riprap blan-
ket thickness; (7) the filter needed between the bank and the blanket to allow
seepage but to prevent erosion of bank soil through the blankets; (8) the blanket
stabilization at the toe of the bank; and (9) the blanket must be tied into the
bank at its upstream and downstream ends.

Two methods to determine the size of rock riprap required for streambank
stabilization are presented: (1) shear-stress method in Subsection 8.2.1 and
(2) flow-velocity method in Subsection 8.2.2. Specifications are given for riprap
gradation in Subsection 8.2.3 and for filters in Subsection 8.2.4. Protection
against riprap failure is then considered in Subsection 8.2.5.

8.2.1 Shear-stress method

Riprap stability on a sideslope is a function of (1) the magnitude and the direction
of the flow velocity or shear stress in the vicinity of the streambank, (2) the
sideslope angle, and (3) the properties of the rock including size, density, and
angularity. The functional relationship that determines the stability factor of a
particular stone under given hydrodynamic forces has been analyzed previously
in Chap. 6. The stability factor SF can be determined from Eqs. (6.3), (6.5),
(6.6), and (6.8), as detailed in Example 6.1.

On the outer bank of natural meandering channels, the streamlines are de-
flected downward at an angle λ that can be estimated from tan λ ∼= 11 h/R,
where h is the mean flow depth and R is the bend radius of curvature. A simpli-
fied approach to the calculation of the rock size that corresponds to the beginning
of motion on a sideslope θ1 is possible when the following approximations are
acceptable: (1) flow in the downstream direction, i.e., in the absence of sec-
ondary flows, or λ ∼= 0; (2) the downstream bed slope is negligible, θ0

∼= 0;
(3) the specific gravity of the rock is close to 2.65; and (4) the viscous drag is
small compared with the lift force.
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The effective rock size dm required for stabilizing a riverbank under applied
shear stress τ0 is estimated from Lane’s relationship as

dm = τ0

τ∗c (γs − γ )

[
cos θ1

√
1 − tan2 θ1

tan2 φ

] (8.1a) �

or

dm = τ0

τ∗cγ (G − 1)

[√
1 − sin2 θ1

sin2 φ

] , (8.1b) �

where τ0 is the applied shear stress, γs and γ are the specific weight for the rock
and water, respectively, θ1 is the sideslope angle, φ is the angle of repose of the
rock riprap, and τ∗c is the critical value of the Shields number. Examples 8.1
and 8.2 illustrate how to determine riprap size and particle stability. It must be
considered that the term in brackets of Eqs. (8.1) becomes very small when
the sideslope angle becomes approximately equal to the angle of repose of the
material. This tends to require extremely large material on steep banks.

Example 8.1 Calculation of riprap size in straight channels. Determine
the rock riprap size required for stabilizing the banks of a straight river given
the river width W = 300 m, a flow depth of h = 7 m, and a channel slope of
S = 60 cm/km. The bank slope is θ1 = 30◦, the rock density G is 2.7, and the
angle of repose is φ = 40◦.

Step 1: The shear stress applied on the particle is τ0 = γ hS = 9,810 N/m3 ×
7 m × 60 × 10−5 = 41 Pa.

Step 2: The term in brackets of Eqs. (8.1) is calculated as

η = cos θ1

√
1 −

(
tan θ1

tanφ

)2

= cos 30

[
1 −

(
tan 30

tan 40

)2
]0.5

= 0.63.

Note that very large riprap sizes may be obtained when the term η becomes
very small.

Step 3: The effective riprap size is obtained from Eqs. (8.1) assuming τ∗c =
0.047 as

dm
∼= τ0

ητ∗c (γs − γ )
= 41 Pa

0.63 × 0.047

m3

(2.65 − 1) 9,810 N
= 0.085 m,

or ∼3.3 in.
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Example 8.2 Application to riprap stability in a bend. The mean flow
velocity in a river bend reaches 18 ft/s (5.5 m/s) during floods at a Manning
coefficient of n = 0.03, the river is 300 ft wide (91 m) and 10 ft deep (3.0 m)
with a radius of curvature of 700 ft (215 m). Determine the stability factor of
6-in. crushed rock riprap at a sideslope of 1V :2.25H , or θ1 = 24◦. The angle
of repose of the material is φ = 40◦ and the specific gravity G = 2.65.

Step 1: The slope is calculated from Manning’s formula

S = tan θ0 =
(

nV

1.49 h2/3

)2

=
(

0.03 × 18

1.49 × 102/3

)2

= 6.1 × 10−3

or 610 cm/km, or θ0 = 0.35◦.

Step 2: The shear stress is obtained from τ0 = γ hS = 62.4 × 10 × 6.1 × 10−3 =
3.8 lb/ft2 or 182 Pa.

Step 3: From the method in Chap. 6, the angle θ = tan−1 (sin θ0/ sin θ1 ) =
0.86◦.

Step 4: The factor aθ =
√

cos2 θ1 − sin2 θ0 =
√

cos2 24 − sin2 0.35 = 0.91.

Step 5: The streamline deviation angle is λ � tan−1 (11h/R) = tan−1 [(11 ×
10)/700] = 8.9◦.

Step 6:

η0 = 21τ0

(G − 1)γ ds
= 21 × 3.8 lb-ft3

ft2 (1.65) 62.4 lb × 0.5 ft
= 1.55.

Step 7: The angle β, assuming M = N , is

β = tan−1




cos(λ+ θ )
2

√
1 − a2

θ

η0 tanφ
+ sin(λ+ θ )







= tan−1




cos(8.9 + 0.86)[
2
√

1 − 0.912

1.55 tan 40
+ sin(8.9 + 0.86)

]



= 50.7◦.



Riverbank riprap revetment 243

Step 8:

η1 = η0

[
1 + sin (λ+ β + θ )

2

]

= 1.55

[
1 + sin (8.9 + 50.7 + 0.86)

2

]
= 1.45.

Step 9: The stability factor is

SF = aθ tanφ

η1 tanφ +
√

1 − a2
θ cosβ

= 0.91 tan 40◦

1.45 tan 40◦ + √
1 − 0.912 cos 50.7◦ = 0.52

The stone is unstable because SF< 1. As a first approximation, assuming λ = 0
and θ0 = 0, the stone size at incipient motion is estimated from Eqs. (8.1) as

dm
∼= τ0√

1 − sin2 θ1

sin2 φ
0.047 (γs − γ )

= 3.8 lb-ft3

ft2

√
1 − sin2 24◦

sin2 40◦ 0.047 × 1.65 × 62.4 lb

� 1.0 ft or 30 cm.

Calculation steps 6–9 account for secondary flow and can be repeated for
different stone sizes until SF = 1.

Based on flow velocity, the first estimate of riprap size can be obtained from
Eqs. (8.4) in Subsection 8.2.4 solved for ds as

ds = V 2
c

K 2
c

sinφ

2(G − 1)g(sin2 φ − sin2 θ1)1/2

= (18)2 ft2s2 sin 40

s2(1.2)2 2 × 1.65 × 32.2 ft
√

sin2 40 − sin2 24
= 2.7 ft.

In this case, this value can also be obtained from Fig. 8.4 in Subsection 8.2.2.

8.2.2 Velocity method

The stone size needed to protect a streambank from erosion by a current that
is moving parallel to the embankment can also be determined as a function of
flow velocity. The diameter d50 is that of a spherical stone that would have the
same weight as the 50% size of the stone. For stone riprap, the velocity at the
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top of the stone, called velocity against the stone, vs , is related to the shear
velocity u∗ as vs = 5.75 u∗.

From the incipient motion condition of material with angle of repose φ, for
hydraulically rough flow conditions,

τ∗c = u2
∗c

(G − 1)gds
= 0.06 tanφ,

we obtain the critical velocity against the stone vsc as

vsc = 5.75 u∗c =
√

2(G − 1)gds tanφ . (8.2)

The velocity against the stone vs also relates to the mean flow velocity V as a
function of the flow depth h and the stone diameter ds as V = vs log (4 h/ds).
After combining this with Eq. (8.2), we obtain the critical mean flow velocity
Vc as

Vc = Kc

√
2(G − 1)gds , (8.3a)

where

Kc = log

(
4 h

ds

)√
tanφ . (8.3b)

The critical mean flow velocity thus depends on relative submergence h/ds

and angle of repose φ. It is noticed that, for riprap,
√

tanφ � 1 and Kc � 1.2,
when h/ds � 5.

The critical mean flow velocity for representative riprap design conditions
(h � 5 ds or Kc = 1.2) is shown in Fig. 8.4. This graphic should be used when
h< 10 ds . At larger flow depths (h> 10 ds), the shear-stress method is prefer-
able. The reader is referred to Maynord (1992) and Abt (Colorado State Univer-
sity, 2001, pers. comm.) for recent developments on riprap design procedures
based on flow velocity.

On a sideslope without secondary flows, the critical mean flow velocity Vc

can be approximated according to Lane’s approach by

Vc � Kc

√
2(G − 1)gds

[
1 − sin2 θ1

sin2 φ

]1/4

. (8.4) �

Typical curves at an angle of repose φ = 40◦ are shown in Fig. 8.4 for sideslope
angles up to 33◦. It is observed that sideslope effects become very significant
when θ1 > 20◦. Gradations calculated with the U.S. Army Corps of Engineers
(1981) method can be obtained from Table 8.1.
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Figure 8.4. Particle-stability diagram.

8.2.3 Riprap gradation

The concept of a representative grain size for riprap is fairly simple. A uni-
formly graded riprap with a median size d50 scours to a greater depth than
a well-graded mixture with the same median size. The uniformly distributed
riprap scours to a depth at which the velocity is less than that required for the
transportation of d50 size rock. The well-graded riprap, on the other hand, de-
velops an armor plate; that is, some of the finer materials, including sizes up
to d50 and larger, are transported by the high velocities, leaving a layer of large
rock sizes that can not be transported under the given flow conditions. Thus
the size of rock representative of the stability of the riprap is determined by the
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Table 8.1. Riprap weight from the U.S. Army Corps of Engineers (1981)

Stone weight (lb) for percent lighter by weighta

100 50 15
d100 max d30 max d90 max

(in.) max min max min max min (ft) (ft)

12 86 35 26 17 13 5 0.48 0.70
15 169 67 50 34 25 11 0.61 0.88
18 292 117 86 58 43 18 0.73 1.06
21 463 185 137 93 69 29 0.85 1.23
24 691 276 205 138 102 43 0.97 1.40

aAssuming G = 2.65, or γs = 165 lb/ft3 = 26 kN/m3, 1 ft = 12 in. = 30.5 cm. The relationship
between diameter and weight is based on a spherical shape.

Figure 8.5. Suggested riprap gra-
dation curve.

larger sizes of rock. The representative grain
size dm for riprap is larger than the me-
dian rock size d50. The effective size dm ap-
proximately corresponds to d65, and we can
use dm

∼= 1.25 d50. The computations of the
representative grain size dm for the recom-
mended gradation are illustrated in Fig. 8.5
in terms of d50. Recommended gradations
from the U.S. Army Corps of Engineers are
presented in Tables 8.1 and 8.2.

Riprap consisting of angular stones is more suitable than that consisting of
rounded stones. Control of the gradation of the riprap is almost always made
by visual inspection. When necessary, poor gradations of rock can be used as

Table 8.2. Suggested riprap size gradation

Percent Sieve diameter Stone diameter
finer by weight (×d50) (×d50)

0 0.25 —
10 0.35 0.28
20 0.50 0.43
30 0.65 0.57
40 0.80 0.72
50 1.00 0.90
60 1.20 1.10
70 1.60 1.50
90 1.80 1.70

100 2.00 1.90
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riprap, provided that a filter is placed between the riprap and the bank or bed
material.

Considering the practical problems of quarry production, a gradation band
is usually specified by the U.S. Army Corps of Engineers (1981) rather than a
single gradation curve, and any stone gradation within the limits is acceptable.
The Corps criteria for establishing gradation limits for riprap are as follows:
(1) the lower limit of d50 stone should not be less than the size of stone re-
quired for withstanding the design shear forces; (2) the upper limit of a d50

stone should not exceed five times the lower limit of a d50 stone, the size
that can be obtained economically from the quarry or the size that satisfies
layer-thickness requirements; (3) the lower limit of d100 stone should not be
less than two times the lower limit of d50 stone; (4) the upper limit of d100

stone should not exceed five times the lower limit of d50 stone, the size that
can be obtained economically from the quarry or the size that satisfies layer-
thickness requirements; (5) the lower limit of d15 stone should not be less
than 1/16 the upper limit of d100 stone; and (6) the bulk volume of stone
lighter than the d15 stone should not exceed the volume of voids in the structure
without this lighter stone.

The riprap thickness should not be less than (1) 12 in. (30 cm) for practical
placement, (2) less than the diameter of the upper limit of d100 stone, or (3) less
than 1.5 times the diameter of the upper limit d50 stone, whichever is greater. If
riprap is placed under water, the thickness should be increased by 50%, and if it
is subject to attack by large floating debris or wave action it should be increased
6–12 in. (15–30 cm).

Riprap placement is usually accomplished by dumping directly from trucks.
If riprap is placed during construction of the embankment, rocks can be dumped
directly from trucks from the top of the embankment. Rock should never be
placed by dropping down the slope in a chute or pushed downhill with a bull-
dozer. These methods result in segregation of sizes. With dumped riprap there
is a minimum of expensive handwork. Draglines with orange peel buckets,
backhoes, and other power equipment can also be used advantageously to place
riprap.

8.2.4 Filters

Filters are used under the riprap revetment to allow water to drain easily from
the bank without carrying out soil particles. Filters are required when the d15

of the riprap gradation exceeds five times the d85 of the bank material. Filter
blankets must meet two basic requirements: stability and permeability. The
filter material must be fine enough to prevent the base material from escaping
through the filter, but it must be more permeable than the base material. There is
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no standard filter that can be used in all cases. Two types of filters are commonly
used: gravel filters and synthetic filter cloths.

Gravel filters consist of a layer, or blanket, of well-graded gravel placed over
the embankment or riverbank before riprap placement. Sizes of gravel in the
filter blanket should be from 3/16 in. (5 mm) to an upper limit, depending on
the gradation of the riprap, with maximum sizes of approximately 3–31/2 in.
(90 mm). The filter thickness should not be less than 6–9 in. (20 cm). Filters
that are one-half the thickness of the riprap are quite satisfactory. Suggested
specifications for gradation are as follows:

d50 (filter)

d50 (base)
< 40, (8.5a) �

5 <
d15 (filter)

d15 (base)
< 40, (8.5b) �

d15 (filter)

d85 (base)
< 5.

(8.5c) �

If the base material is a fine-grained cohesive soil, such as fat or lean clay,
these requirements are not applicable, and the stability criterion is that the d15

size of the filter cannot exceed 0.4 mm. Multiple filters may be used when the
base material is very fine. In such a case, each layer must satisfy the stability
and permeability requirements relative to the underlying layer. A detailed filter
design calculation example is presented in Example 8.3.

Synthetic filter cloths (plastic cloth and woven plastic materials) are also
used as filters, replacing a component of a graded filter. Numerous plastic filter
fabrics exist with a wide variation in size of number of openings and in strength
and durability of material. Opening areas of 25%–30% appear desirable to
minimize the possibility of clogging and to reduce head loss. It is often desirable
to place a protective blanket of sand or gravel on the filter or to take care in
placing the rock to that the filter fabric is not punctured. The sides and the toe
of the filter fabric must be sealed or trenched so that the base material does
not leach out around the filter cloth. Care is also required in joining adjacent
section soft filter fabric together.

Example 8.3 Application to filter design. The following filter design ex-
ample involves the properties of the base material and the riprap given in
Table E.8.3.1.

The riprap does not contain sufficient fines to act as the filter because

d15 (riprap)

d85 (base)
= 100

1.5
= 67,
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Table E.8.3.1. Sizes of materials

Base material Riprap

Sand Rock

d85 = 1.5 mm d85 = 400 mm
d50 = 0.5 mm d50 = 200 mm
d15 = 0.17 mm d15 = 100 mm

which is much greater than 5, the recommended upper limit [requirement
(8.5c)]. Also

d15 (riprap)

d15 (base)
= 100

0.17
= 600,

which is much greater than 40, the recommended upper limit [requirement
(8.5b)]. The properties of the filter to be placed adjacent to the base, from
requirement (8.5c), are as follows:

(a)
d50 (filter)

d50 (base)
< 40 so d50 (filter)< (40)(0.5) = 20 mm.

(b)
d15 (filter)

d15 (base)
> 5 so d15 (filter)> (5)(0.17) = 0.85 mm.

(c)
d15 (filter)

d15 (base)
< 40 so d15 (filter)< (40)(0.17) = 6.8 mm.

(d)
d15 (filter)

d85 (base)
< 5 so d15 (filter)< (5)(1.5) = 7.5 mm.

Thus, with respect to the base,

0.85 mm < d15 (filter) < 6.8 mm,

d50 (filter) < 20 mm.

The properties of the filter to be placed adjacent to the riprap are as follows:

(a)
d50 (riprap)

d50 (filter)
< 40 so d50 (filter) > 200/40 = 5 mm.

(b)
d15 (riprap)

d15 (filter)
> 5 so d15 (filter) < 100/5 = 20 mm.

(c)
d15 (riprap)

d15 (filter)
< 40 so d15 (filter) > 100/40 = 2.5 mm.

(d)
d15 (riprap)

d85 (filter)
< 5 so d85 (filter) > 100/5 = 20 mm.
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Figure E.8.3.1. Example of filter design.

Therefore, with respect to the riprap, the filter must satisfy these requirements:

2.5 mm < d15 (filter) < 20 mm,

d50 (filter) > 5 mm,

d85 (filter) > 20 mm.

These riprap filter requirements along with those for the base material are shown
in Fig. E.8.3.1. Any filter having sizes represented by the double cross-hatched
area is satisfactory. For example, a good filter could have these sizes:

d85 = 40 or 20 mm,

d50 = 10 mm,

d15 = 4 mm.

8.2.5 Preventing riprap failure

A major shortcoming in riprap design techniques is the assumption that riprap
failure is due only to particle erosion. Riprap failure modes are identified as
follows: (1) particle erosion; (2) translational slide; (3) slump; and (4) sideslope
failure, as illustrated in Fig. 8.6.

Particle erosion by flowing water is the most commonly considered ero-
sion mechanism [Fig. 8.6(a)]. Particle erosion can be initiated by abrasion,
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Figure 8.6. Riprap-failure types.

impingement of flowing water, eddy
action/reverse flow, local flow accel-
eration, freeze/thaw action, ice, or toe
erosion. Probable causes of particle
erosion include: (1) stone size that is
not large enough or is reduced by abra-
sion; (2) individual stones that are
removed by impact; (3) a bank side-
slope that is so steep that the angle of
repose of the riprap material is easily
exceeded; and (4) riprap gradation that
is too uniform. The solution requires
coarser riprap material and careful
consideration of riprap gradation and
angularity of the material.

A translational slide is a riprap fail-
ure caused by the downslope mass
movement of stones. The initial
phases of a translational slide are in-
dicated by cracks in the upper part of
the riprap blanket that extend parallel
to the channel. Slides are usually ini-
tiated by channel-bed degradation that
undermines the toe of the riprap
blanket. It has been suggested that the
presence of a filter blanket may pro-
vide a potential failure plane for
translational slides. The causes of

translational slides include: (1) a bank sideslope that is too steep; (2) the presence
of excess hydrostatic pore pressure; and (3) loss of material at the toe of the
riprap blanket. The solution requires strengthening the toe of the riprap blanket
and possible use of larger stones near the channel bed.

Modified slump failure of riprap [Fig. 8.6(c)] is the mass movement of ma-
terial within only the riprap blanket. Probable causes of modified slump are:
(1) a bank sideslope that is too steep; and (2) lack of toe support. The solution
requires adding coarse material at the toe of the embankment and reducing the
sideslope angle in the upper part of the embankment.

A sideslope failure is a rotation–gravitational movement of material along
a surface of rupture that has a concave upward curve [Fig. 8.6(d)]. The cause
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Figure 8.7. Riprap revetments.

of slump failures is related to shear failure of the underlying base material
that supports the riprap. Probable causes of slump failures are: (1) excess pore
pressure in the base material; and (2) sideslopes that are too steep. The solu-
tion requires reduction of the embankment slope or possibly draining the base
material. Riprap should not be used at slopes steeper than 1V:1.5H.

The upstream and the downstream ends of the blanket should be tied into the
bank to prevent stream currents from unraveling the blanket. The most common
method to tie into the bank is to dig a trench at both ends of the blanket (Fig. 8.7).
The depth of a trench should be twice the blanket thickness, and the bottom
width of the trench should be three times the thickness.

The most effective method to prevent undermining is the launching apron
sketched in Fig. 8.7(b). A flexible “launching apron” is laid horizontally on the
bed at the foot of the revetment, so that when scour occurs the materials will
settle and cover the side of the scour hole on a natural slope. This method is
recommended for cohesionless channel beds in which deep scour is expected.
In cohesive channel beds, bank revetment should be continued down to the
expected worst scour level and the excavation then refilled.

Alternatives to the launching apron include: (1) excavating and continuing
the revetment down to a nonerodible material or to below the expected scour
level; and (2) driving a “cutoff wall” of sheet piling from the toe of the revetment
down to a nonerodible material or to below the expected scour level.
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8.3 Riverbank protection

This section discusses bank-protection measures other than riprap: vegetation
(Subsection 8.3.1), windrows and trenches (Subsection 8.3.2), sacks and blocks
(Subsection 8.3.3), gabions and mattresses (Subsection 8.3.4), articulated
concrete mattresses (Subsection 8.3.5), soil cement (Subsection 8.3.6), and
retaining walls (Subsection 8.3.7).

8.3.1 Vegetation

Vegetation is probably the most natural method for protecting streambanks. It
is less expensive than most structural methods and it improves environmental
conditions for wildlife. The presence of vegetation below the water surface can
effectively protect a bank in two ways. First, the root system helps to hold the
soil together and increases overall bank stability by forming a binding network.
Vegetation takes water from the soil, providing additional capacity for infiltra-
tion, and may improve bank stability by water withdrawal. Second, the exposed
stalks, stems, branches, and foliage provide resistance to the streamflow, caus-
ing the flow to lose energy by deforming the plants rather than by removing
soil particles. Dense vegetation reduces flow velocities and induces deposition.
Above the water surface, vegetation prevents surface erosion by absorbing the
impact of falling raindrops.

Vegetation is generally divided into two broad categories: grasses and woody
plants (trees and shrubs). The grasses are less costly to plant on an eroding bank
and require a shorter period of time to become established. Woody plants offer
greater protection against erosion because of their more extensive root systems;
however, under some conditions the weight of the plant will offset the advantage
of the root system. On very high banks, tree roots do not always penetrate to
the toe of the bank. If the toe becomes eroded, the weight of the tree and its
root mass may cause a bank failure.

Using planted vegetation for streambank erosion control also has its limita-
tions. These may include the following: (1) their failure to grow; (2) they are
subject to undermining; (3) they may not withstand alternate periods of wet-
ting and drying for varied durations; (4) they may be uprooted by freezing and
thawing of ice; and (5) they may suffer wildlife or livestock damage.

Native plants should normally be used because they have become adapted
to the climate, soils, and other ecological characteristics of the area. Exotic
plants, in contrast, are often met with local opposition. Plants chosen should
have some tolerance to flooding. A mixture of grasses, herbs, shrubs, and trees
should be used to provide a diversity of wildlife habitats. Some nitrogen-fixing
plants may be required in poor soils and difficult climates.
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Streambank zones depend on the ability of certain plants to tolerate vari-
ous durations of flooding and their attributes of dissipating wave and current
energies. The splash zone located between normal high water and normal low
water is the zone of highest stress. The splash zone is exposed frequently to
wave wash, erosive river currents, ice and debris movement, wet–dry cycles, and
freezing-thawing cycles. This section of the bank would be inundated through-
out most of the year (at least 6 months/yr).

The bank zone lies above the normal high-water level; yet this site is exposed
periodically to wave wash, erosive river currents, ice and debris movement, and
traffic by animals or humans. The site is inundated for at least a 60-day duration
once every 2–3 yrs. The water table in this zone frequently is close to the soil
surface because of its closeness to the normal river level.

The terrace zone, inland from the bank zone, is usually not subjected to
erosive action of the river except during occasional flooding.

For the splash zone, only herbaceous semiaquatic plants, such as reeds,
rushes, and sedges, are suggested for planting. These types of plants can tolerate
considerable flooding and are more likely to live in this zone. Reeds also protect
streambanks in various ways. With their roots, rhizomes, and shoots, they bind
the soil under the water, sometimes even above the water. In the reed zone along
the riverbank, they form a permeable underwater obstacle that slows down the
current and waves by friction, thereby reducing their impact on the soil.

In the bank zone, both herbaceous and woody plants are used. These should
still be quite flood tolerant and able to withstand partial to complete submer-
gence for up to several weeks. Various willows can be used in this zone. In
periods of high water, the upper branches of such shrubs reduce the speed of
the current and increase friction and thereby decrease the erosive force of the
water. The branches of such shrubs have a great resilience, springing back after
currents subside.

The terrace zone is less significant for bank protection because it is less often
flooded, and thus less easily eroded. The terrace zone contains native grasses,
herbs, shrubs, and trees that are slightly less flood tolerant than those in the
bank zone. The tree species also become taller and more massive. Trees are
noted for their value in stabilizing banks of streams and rivers. The banks of
some rivers have not been eroded for durations of 100–200 yrs because heavy
tree roots bind the alluvium of floodplains. A combination of trees, shrubs, and
grasses in this zone will not only serve as an integrated plant community for
erosion control, but will improve wildlife habitat diversity and aesthetic appeal.

Grasses can be planted by hand seeding, sodding (transplanting clumps of
grass or herbaceous plants, sprigging (planting plant stems or rhizomes), or by
mechanical spreading mulches consisting of seed, fertilizer, and other organic
mixtures. Several commercial manufacturers now market erosion-control
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matting that will hold the seed and soil in place until new vegetation can become
established. The matting is generally installed by hand and secured to the bank
where plantings have been made to prevent erosion. A fence should be placed
along the top bank if livestock requires access to the stream.

We construct reed rolls by combining sections of sod, rhizomes, and shoots,
and enclosing them within a wire net, and placing all components in a trench.
Usually the sod must be held in place with wire netting or stakes. Shrublike wil-
low, dogwood, and alder transplants or 1-yr-old rooted cuttings are effectively
used in this zone and can augment the sodding practice.

Hydroseeding can be a useful and effective means of direct seeding, parti-
cularly on steep slopes. Often barges with hydroseeders mounted on them can
be floated on the stream and used adjacent to the site. Seeds should be blown
on first in a water slurry and then mulches applied following seeding to reduce
soil moisture loss. The mulch also will tend to tie down and cover the seeds
and reduce immediate surface soil erosion by wind and water. Case Study 8.1
illustrates the effectiveness of vegetation protection on the neck of Thompson
Bend, Mississippi River.

Case Study 8.1 Thompson Bend on the Mississippi River, United States.
Thompson Bend is located on the right descending bank of the Mississippi
River between river miles 30 and 45, above the confluence of the Mississippi
and Ohio Rivers; see Fig. CS.8.1.1. The river flows in a gooseneck encompassing
approximately 10,000 acres (40 km2) of valuable agricultural land. At the throat

Figure CS.8.1.1. Thompson Bend of the Mississippi River.
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of the bend, the overland distance is approximately 2 miles. The river distance
along the thalweg is approximately 14 miles (22.5 km). During large floods
the river naturally tries to flow straight across Thompson Bend. The water
surface drop along the thalweg is 7 ft (2.1 m) for a slope 0.5 ft/mile (9.5 cm/km)
along the river and 3.5 ft/mile (66 cm/km) across the neck.

In the early 1980s, severe erosion of the upper bankline began along the
right descending bank in the upper reaches of the bendway. In addition, lo-
calized surface erosion reached an estimated rate of 40,000 (tons/acre)/event
[16,000 (tons/hectare)/event]. Continued erosion could have allowed for
development of a chute cutoff across the bend. This would have impaired navi-
gation to the steep slopes and resulting high velocities in the new channel across
the bend. It would also have destroyed thousands of acres of valuable farmland
and changed the river regime for miles upstream and downstream.

Thompson Bend clearly illustrates the vital importance that vegetation exerts
on controlling overbank scour. The revegetation process began in 1985 and early
1986. The results were immediately evident during the fall flood of 1986. Very
little erosion was observed. The area was tested again in the flood of 1990, when
very little erosion occurred. The Thompson Bend also suffered very little visible
damage during the Great Flood of 1993, when record high stages occurred, and
the duration of the overland flows reached an unprecedented 130 days. However,
the flood took its toll on the vegetation. Numerous trees that were inundated
for most of the 130 days died. The flood of 1994 did not allow any significant
revegetation to occur. Subsequently, the flood of 1995, the second highest ever
at Cape Girardeau, produced some visible scour for the first time since the
revegetation was initiated. However, the erosion was very minor compared
with the massive amounts of scour that occurred in the early 1980s.

8.3.2 Windrows and trenches

A windrow revetment consists of piling a sufficient supply of erosion-resistant
material on the existing land surface along the bank. Trenches are similar except
that the material is buried as sketched in Fig. 8.8(b). Windrows and trenches
permit the area between the natural riverbank and the windrow to erode through
natural processes until the erosion reaches and undercuts the supply of riprap. As
the rock supply is undercut, it falls onto the eroding area, thus giving protection
against further undercutting and eventually halting further landward movement.

High banks tend to produce a nonuniform revetment alignment and have
a tendency for large segments of the bank to break loose and rotate slightly.
Comparatively, low banks simply slough into the stream.
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Figure 8.8. Windrows and trenches.

The velocity and the stream charac-
teristics dictate the size of stone form-
ing a windrow revetment. The size of
stone must be large enough to resist be-
ing transported by the stream. An im-
portant design parameter is the ratio of
the relative thickness of the final revet-
ment to the stone diameter. Large stone
sizes will require more material than
smaller stone sizes to produce the same
relative thickness. A well-graded stone
is important to ensure that the revet-
ment does not fail from leaching of the
underlying bank material. The stream
velocity was found to have a strong
influence on the ultimate sideslope of
the revetment. In general, the greater
the velocity, the steeper the sideslope
of the final revetment.

8.3.3 Sacks and blocks

Burlap sacks filled with soil or sand–cement mixtures have long been used for
emergency work along levees and streambanks during floods (Fig. 8.9). The
sacks protect streambanks for which riprap of suitable size and quality is either
not available or must be transported over long distances. Although most types
of sacks are easily damaged and will eventually deteriorate, sacks filled with
sand–cement mixtures can provide long-term protection if the mixture has set
up properly.

Precast cellular blocks can be manufactured with locally available sand, ce-
ment, and aggregates or can be obtained from commercial sources. Blocks are
durable, exceeding riprap in freeze/thaw resistance and are less likely to be en-
capsulated and lifted off the bank by ice. Also, most designs provide easy
pedestrian access to the water’s edge, and may be more aesthetic than com-
peting materials. Channel boundary roughness is less than with many other
techniques, and wave runup is less than that for smooth concrete surfaces.
Cellular blocks are cast with openings to provide for drainage and to allow
vegetation to grow through the blocks, thus permitting the root structure to
strengthen the bank. Fabric or a gravel blanket can be used as a filter under the
blocks if there is any danger that the bank soil will be eroded through the block



258 River stabilization

V H

V H

V H

V H

Figure 8.9. Sacks and blocks.

openings by streamflow or seepage.
Hand placement is frequent instead of
the use of specialized equipment. After
the blocks have been placed, the revet-
ment offers sufficient flexibility to con-
form to minor changes in bank shape.
Weepholes should be included in the
revetment design to allow drainage of
groundwater and prevent pressure
buildup that could cause revetment
failure.

Sacks do have certain advantages
over stone riprap, as follows: (1) they
allow possible placement on steep
slopes; (2) they use locally available
materials; (3) they result in a smooth
boundary, if channel conveyance is a
major consideration; and (4) the cob-
blestone effect may be considered to
be more aesthetic.

Sack revetments also have disadvan-
tages compared with stone riprap:
(1) they are highly labor intensive, and
thus are generally more costly than

stone; (2) they have a tendency to act monolithically and therefore do not have as
much flexibility as riprap and are more susceptible to excess hydrostatic pres-
sure; (3) uniformly sized sacks are not as effective against erosion and leaching
as well-graded stones, and therefore a sack revetment is more likely to require
a filter material; and (4) synthetic bags may be vulnerable to environmental
hazards such as fire, ice, vandalism, and livestock traffic.

The preferred placement technique is sketched in Fig. 8.9. A rule of thumb
is to consider flat placement only if the bank slope is flatter than 1V :2.5H . On
slopes of 1V :2H , the bags should be overlapped by being placed with the long
dimension pointing toward the bank, whereas on slopes steeper than 1V :2H ,
the bags should be overlapped with the short dimension pointed toward the
bank. The maximum slope should be 1V :1H .

8.3.4 Gabions and mattresses

Gabions are patented rectangular wire boxes (or baskets) filled with relatively
small-sized stone, usually less than 8 in. (20 cm) in diameter. Where flow
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velocities are such that small stones would not be stable if used in a riprap
blanket, the wire boxes provide an effective restraint. Limiting recommended
maximum velocity for use of gabions ranges from 8 to 15 ft/s (2 to 5 m/s),
depending on the manufacturer.

The baskets are commercially available in a range of standard sizes and are
made of heavy galvanized steel wire with a polyvinyl chloride (PVC) coating
when used in a corrosive environment. They are supplied at a job site folded
flat and are assembled manually, by use of noncorrosive wire. The baskets are
normally 0.5 m deep × 1 m × 2 m and are set on a graded bank for revetments.
A filter blanket or filter cloth is used where required to prevent leaching of base
material and undermining of the baskets.

Box gabions are normally stacked on relatively steep slopes to form a massive
structure capable of resisting the forces of both river flows and also unstable
bankline materials. The flexibility of their mesh and filler stone allows them
to maintain their structural integrity even after some degree of displacement,
undercutting, or settlement. Box gabion structures generally are aligned either
along the streambank toe to form a retaining wall for the bank materials or out
from the bank to form dikes for diverting flows away from the bank. Examples
are shown in Fig. 8.10.

Mattress gabions are shaped into shallow, broad baskets and are tied together
side by side to form a continuous blanket of protection. They are normally
placed on a smoothly graded riverbank slope.

Gabions and mattresses are among the more expensive methods of stream-
bank erosion protection. However, their record of satisfactory performance
is making them more and more popular. Unit costs of bankline length pro-
tected vary widely, depending on the complexity of the protection design.

Figure 8.10. Gabions and mattresses.
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Gabion structures need to be periodically inspected, and proper maintenance
ensures reliable performance. Wire mesh is subject to damage from floating
debris, water pollutants, corrosion, wear from high-velocity sediments, and
vandalism.

Any cracks or breaks in the PVC coating will expose the wire to corrosive
elements, thereby providing negligible advantage over standard galvanized
gabions. Freezing temperatures have caused the coating to lose its ductility.
Fabricating, filling, and lacing gabions under these conditions have caused an
unsatisfactory number of coating cracks and splits.

8.3.5 Articulated concrete mattresses

In large rivers, precast concrete blocks held together by steel rods or cables
can be used to form flexible articulated mats, sketched in Fig. 8.11. Block sizes
may vary to suit the contour of the bank. It is particularly difficult to make a
continuous mattress of uniformly sized blocks to fit sharp curves. The open
spacing between blocks permits removal of bank material unless a filter blanket
of gravel or plastic filter cloth is placed underneath. For embankments that are
subjected to only occasional flood flows, the spaces between blocks may be
filled with earth and vegetation can be established.

The use of articulated concrete mattresses (ACMs) has been limited prim-
arily to the Mississippi River. This is due to the large cost of the plant required
for the placement of the mattress beneath the water surface. The present ACM
originated from experiments started in 1915 to develop a flexible and per-
manent underwater willow mattress. After many failures and discouragements,
the concrete mattress sketched in Fig. 8.11 was developed. The basic unit of
this mattress is 4 ft wide (1.3 m) × 25 ft long (7.6 m) and 3 in. (7.5 cm) thick.

Figure 8.11. Articulated concrete mattresses.
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The articulated concrete is flexible, strong, and durable, and ensures complete
coverage of the riverbank when properly placed. However, ∼8% of its surface
area is open, which permits fines to pass through. The open areas are undesir-
able but necessary to facilitate placement of the mattress in swift deep water,
to relieve hydrostatic pressure, and to provide the required flexibility. Yearly
maintenance runs approximately 2% of inplace work. This type of revetment
has an excellent service record and is considered the standard for the Lower
Mississippi River.

8.3.6 Soil–cement

The use of concrete, soil–cement, or roller-compacted concrete generally comes
into play when the design and/or site conditions preclude more conventional
flexible techniques. Although concrete generally implies permanency, the ma-
terial itself can be manufactured and placed to respond and withstand changing
field conditions. The use of concrete-related materials offers a cost-effective
alternative that has proven to be effective under a wide variety of field condi-
tions. The key to success, however, is proper recognition of the rigid nature of
the material in a flexible boundary channel.

In areas where riprap is scarce, the combination of on-site soil with cement
provides a practical alternative. Figure 8.12 sketches a typical soil–cement
construction for bank protection. For use in soil–cement, soils should be easily
pulverized and contain at least 5%, but not more than 35%, silt and clay (material
passing through the No. 200 sieve). Finer soils usually are difficult to pulverize
and require more cement as do 100% granular soils that have no material passing
through the No. 200 sieve. Soil–cement can be placed and compacted on slopes
as steep as 2H :1V . Best results have been achieved on slopes no steeper than
1V :3:H .

A stairstep construction is recommended on channel embankments with rel-
atively steep slopes. Placement of 6–9-ft (2–3 ms)-wide horizontal layers of
soil–cement (6-in.- or 15-cm-thick layers) can progress more rapidly than a

Figure 8.12. Soil–cement.
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large quantity of fill material. Special care should be exercised to prevent raw
soil seams between successive layers of soil–cement. If uncompleted embank-
ments are left at the end of the day, a sheepsfoot roller should be used on the
last layer to provide an interlock for the next layer. The completed soil–cement
installation must be protected from drying out for a 7-day hydration period.
After completion, the material has sufficient strength to serve as a roadway
along the embankment.

When velocities exceed 6–8 ft/s and the flow carries sufficient bedload to be
abrasive, the aggregates should contain at least 30% gravel particles retained
on a No. 4 (4.75-mm) sieve. It should be emphasized that soil–cement provides
rigid bank protection. The depth of the bank protection should be sufficient to
protect the installation from the anticipated total scour.

A soil–cement blanket with 8%–15% cement may be an economical and
effective streambank protection method for use in areas where vegetation is
difficult to establish in sandy bank material. However, soil–cement has three
major disadvantages; impermeability, low strength, and susceptibility to tem-
perature variations. If the bank behind the blanket becomes saturated and cannot
drain, failure may occur. Also, because a soil–cement blanket is relatively brit-
tle, very little, if any, traffic (vehicular, pedestrian, or livestock) can be sustained
without cracking the thin protection veneer. In northern climates the blanket
can easily break up during freeze–thaw cycles.

8.3.7 Retaining walls

Retaining walls are near-vertical structures designed to prevent streambank
erosion or failure. Vertical retaining walls provide a substantial increase in
waterfront land area and often improve the access to water.

Although some soils may be relatively stable in a vertical embankment under
dry conditions, wet soils are unstable in a vertical embankment. Retaining walls,
have been classified into three distinct types, discussed below: (1) gravity walls;
(2) cantilever walls; and (3) sheet-piling walls.

Gravity walls are massive walls that rely on their mass to restrain the move-
ment of soil. The walls are constructed to such proportions that any developed
soil or hydrostatic pressures that would tend to cause movement or failure
of the wall are resisted by the weight of the wall and resultant shear forces
that develop at the base of the wall. Examples of gravity walls are shown in
Fig. 8.13.

The concrete walls in Fig. 8.13(a) are usually designed such that no tension
is developed within the concrete and no reinforcing steel is required for their
construction. Variations of this type of wall may consist of stone masonry, as
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Figure 8.13. Gravity walls.

shown in Fig. 8.13(b). This type of wall has been successfully adapted to the
construction of very large walls.

Retaining walls constructed of stone-filled gabions in Fig. 8.13(c) are another
type of gravity wall. As discussed in Subsection 8.3.4, gabions are baskets made
of metal mesh or geotextiles that are filled with stone and have wide usage in
hydraulic structures. To form a wall, the gabions are simply stacked atop one
another in such a number as to provide sufficient mass to retain the soil within
a streambank.
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The timber crib walls in Fig. 8.13(d) are similar to common fence construc-
tion except that all wood should be treated with a preservative to minimize
deterioration that is due to repetitive wetting and drying or insect activity and
the toe of the crib should always be protected with riprap. The most common
cause of failure is scour around the pilings, followed by the structure tipping
over because of the pressure of the bank behind the bulkhead. The fill mate-
rial should drain freely. Filter fabric or gravel can be placed as a filter behind
openings in the fence to prevent fine soils from leaching through. The bulkhead
should be tied into the bank at the upstream and the downstream ends of the
structure to prevent flanking from flow behind the bulkhead. The crib walls in
Fig. 8.13(d) are constructed of interlocking structural members of treated wood,
precast reinforced concrete, or metal, usually galvanized steel or aluminum. The
structural components of a crib wall interlock to form “boxes” that are filled
with stone, blocks, sand, or rubble to provide the mass necessary for stability.

Caissons, or large “boxes” of reinforced concrete in Fig. 8.13(e) are con-
structed on land and then floated to the site and flooded and sunk to form a
continuous wall. The caisson is then filled with concrete or compacted sand to
provide the mass required for stability.

A cantilever wall refers to a reinforced concrete base with a stem wall can-
tilevered upward from the base. The stem is designed to resist the lateral earth
and hydrostatic forces. The soil above the base provides mass to resist move-
ment. Reinforced concrete is required for strengthening cantilevered walls. The
wall stem may be supported or stiffened by buttresses fronting the wall or by
counterforts behind the wall, as shown in Fig. 8.14.

The simplest form of cantilever wall would be wooden posts driven into the
streambed with wooden lagging or timbers placed behind the posts or nailed
or bolted to the posts in order to retain the soil within the banks. This type
of construction is restricted to small walls, although larger walls have been
constructed in a similar manner by use of steel H piling rather than posts and
with timber lagging or reinforced concrete panels placed between the flanges
of the piling in order to retain the soil.

Sheet-piling walls are sometimes referred to as flexible walls or flexible
bulkheads. As shown in Fig. 8.15, the walls are normally constructed by driving
of the sheet piling and then excavation of the earth fronting the wall. Although
wooden and reinforced concrete sheet piling have been used, steel sheet piling
is most commonly used. Because of the limited stiffness of the sheet piling and
the resulting large deflections, the height of these walls is somewhat restricted.

Anchors increase the allowable height of flexible cantilevered walls. Earth
anchors are constructed to provide a horizontal restraining force to the wall.
Walls of this sort are often referred to as “anchored” or “tied-back” walls, as
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Figure 8.14. Reinforced cantilevered walls.

Figure 8.15. Sheet-piling walls.

shown in Fig. 8.15(b). Anchors may be constructed by the drilling of horizontal
or angled holes through the wall and into the retained soil a distance beyond
any zone of potential active movement of the soil. Threaded steel rods are
then pressure grouted into the holes and bolts are torqued against the wall to
tension the rods and to apply a restraining force on the wall. Anchors may also
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Figure 8.16. Diagrams of forces that act on a retaining wall.

be provided when a structural member, or “deadman,” is buried beyond the
zone of active movement within the soil and a rod connected to that member is
tensioned against the wall. In some cases, when the walls serve as components
of a hydraulic structure or a cofferdam, it may be possible to brace against the
face of the wall and restrain movement.

Retaining-wall stability. The external forces that act on a retaining
wall are sketched in Fig. 8.16. The lateral earth pressures that act behind the
structure are generally referred to as active. The earth pressures that resist
movement in front of the wall are referred to as passive. Hydrostatic pressures
result from groundwater behind the wall and water within the channel. For
the development of active earth pressure, the assumption is made that the wall
moves or deflects enough to allow for the development of shearing resistance
under the structure. The pressure exerted under the wall is necessary to maintain
equilibrium of the soil mass. The active and the passive pressures represent the
limits of a broad spectrum of stress conditions. When a wall is restrained and
not free to move, “at-rest” earth-pressure conditions are assumed to exist. These
conditions lie between the active and passive limits. For design purposes, the
limiting conditions of active and passive earth pressures are normally selected
for free-standing and cantilevered walls. For braced or restrained walls, an
at-rest condition may be assumed, often in concert with the limiting conditions.

The active and the passive earth pressures are usually computed based on
methods originally proposed by Rankine and modified by others. The at-rest
earth pressures are usually computed by use of factors developed from physical
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tests or empirical means. Lateral earth pressures resulting from granular soils are
usually more accurately predicted than those resulting from cohesive soils. For
this reason, and for purposes of drainage, granular material is usually selected as
backfill for retaining walls. With the rise and fall of stream stages, a difference
in water elevation across the retaining wall may develop. The differences in
water elevation will then result in an imbalance in hydrostatic forces that act on
the wall. Further, hydrostatic forces acting upward on the base of the wall will
lessen the effective weight of the structure, thereby lessening its ability to retain
the soil. The stability of free-standing walls is a relatively simple problem of
statics, once the forces acting on a wall have been defined.

Groundwater control is required for preventing imbalances in water eleva-
tions across a retaining wall. Whenever conditions allow, the backfill for a wall
should be a clean, free-draining granular material. Drains or weepholes through
the wall should be provided to ensure a prompt lowering of the groundwater be-
hind the wall with the lowering of the stage within the stream. Erosion control is
critical to the stability of all retaining walls. Under submerged conditions, there
is always the potential for the loss of material at the toe of the retaining wall.

8.4 River flow-control structures

Flow-control structures are designed to reduce hydrodynamic forces against
streambanks by controlling the direction, velocity, or depth of flowing water.
Among the most important properties of a flow-control structure is its degree
of permeability. As used here, the term “permeable” means that a structure has
definite openings through which water is intended to pass. An impermeable
structure may deflect a current entirely, whereas a permeable structure may
serve mainly to reduce the flow velocity. Structures made of riprap, or filled
with riprap, have some degree of permeability, but these are classed as imperme-
able because they act essentially as impermeable barriers to a rapidly moving
current of water. Types of flow-control structures include hardpoints (Sub-
section 8.4.1), spurs (Subsection 8.4.2), guidebanks (Subsection 8.4.3), retards
(Subsection 8.4.4), dikes (Subsection 8.4.5), jetties (Subsection 8.4.6), fences
(Subsection 8.4.7), vanes (Subsection 8.4.8), bendway weirs (Subsection 8.4.9),
and drop structures (Subsection 8.4.10).

8.4.1 Hardpoints

Hardpoints consist of stone fills spaced along an eroding bank line (Fig. 8.17).
The structures protrude only short distances into the river channel and are
supplemented with a root section extending landward into the bank to preclude
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Figure 8.17. Hardpoint.

flanking, should excessive erosion persist. The majority of the structure cannot
be seen as the lower part consists of rock placed underwater, and the upper part
is covered with topsoil and seeded with native vegetation. The structures are
especially adaptable in long, straight reaches not subject to direct attack.

8.4.2 Spurs or groynes

A spur, also called a groyne, is a structure or embankment projected a fair
distance from the bank into a stream to deflect flowing water away from the
bank. Spurs prevent erosion of the bank and establish a more desirable width and
channel alignment. By deflecting the current away from the bank and causing
sediment deposits, a spur or a series of spurs may protect the streambank more
effectively and at a lower cost than riprap. Also, if the location of any scour is
moved away from the bank, failure of the riprap on the spur can often be repaired
before damage is done to structures along and across the rivers. Very short spurs
are similar to hardpoints. Long spurs or groynes may also be called spur dikes,
and very long spurs can be referred to as dikes and jetties (Subsections 8.4.4 and
8.4.5). Spurs are also used to channelize a wide, poorly defined stream into a
well-defined channel that neither aggrades nor degrades, thus maintaining its
location from year to year. Spurs on streams with suspended sediment discharge
induce sedimentation to establish and maintain the new alignment.
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Figure 8.18. Spurs of groynes.

As the spur length increases, the scour depth at the spur tip increases, the
severity of flow deflection increases, and the length of channel bank protection
increases. The projected length of impermeable spurs should be held to less than
15% of the channel width at bankfull stage. The projected length of permeable
spurs should be held to less than 25% of the channel width.

The spacing of spurs in a bank-protection scheme is a function of the spur’s
length, angle, and permeability, as well as the channel bend’s degree of cur-
vature (see Fig. 8.18). As a rule of thumb, the spacing should be 3–5 times
the projected length. Reducing the spacing between individual spurs results in
a reduction of the local scour at the spur tip and causes the flow thalweg to
stabilize farther away from the concave bank toward the center of the channel.
Spurs angled downstream produce a less severe constriction of flows than those
angled upstream or normal to the flow. Retardant spurs should be designed
perpendicular to the primary flow direction.

The spur height should be sufficient to protect the regions of the channel bank
affected by the erosion processes active at the particular site. If the design flow
stage is lower than the channel bank height, spurs should be designed to a height
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no more than 3 ft (1 m) lower than the design flow stage. If the design flow
stage is higher than the channel bank height, spurs should be designed to bank
height. Permeable spurs should be designed to a height that will permit passage
of heavy debris over the spur crest and not cause structural damage. When pos-
sible, impermeable spurs should be designed to be submerged by approximately
3 ft (1 m) under their worst design flow condition, thus minimizing the impacts
of local scour and flow concentration at the spur tip and the magnitude of flow
deflection.

Permeable spurs should be designed with level crests unless bank height or
other special conditions dictate the use of a sloping crest design. Impermeable
spurs should be designed with a slight fall toward the spur head to allow differ-
ent amounts of flow constriction with stage (particularly important in narrow
channels). A simple straight spur head form is recommended. The spur head or
tip should be as smooth and rounded as possible. Smooth, well-rounded spur
tips help minimize local scour, flow concentration, and flow deflection.

8.4.3 Guidebanks

Guidebanks are placed at bridge crossings near the ends of approach embank-
ments to guide the stream through the bridge opening, as shown in Fig. 8.19.
Constructed properly, flow disturbances, such as eddies and cross flow, will be
eliminated to make a more efficient waterway under the bridge. They are also
used to protect the highway embankment and reduce or eliminate local scour at
the embankment and adjacent piers. The recommended shape of a guidebank is

Figure 8.19. Guidebank.
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a quarter ellipse with a major to minor axis ratio of 2.5. The major axis should
be approximately parallel to the main flow direction.

For some flow conditions, a short curved guidebank on one side and a long
straight bank on the other may be the best solution. The crest elevation should
be 1 ft (30 cm) higher than the elevation of the design flood, with the effect of
the contraction of the flow taken into consideration; this is because the design
flow should not overtop the guidebank. Besides improved erosion protection,
guidebanks provide a more efficient water flow (less head loss) through a bridge
opening. They also decrease scour depth and move the scour hole away from
the abutments.

8.4.4 Retards

A retard is a low permeable structure located near the toe of the bank slope
parallel to the streamflow, as shown in Fig. 8.20. The function of a retard
is to decrease velocity behind the structure and eliminate erosive secondary
currents, thereby inducing deposition and growth of vegetation. Retards are
most successful on streams that carry a large bed material load.

Occasional tieback connections to the bank are desirable and are mandatory
where the retard is located any distance away from the bank. A satisfactory
structure height is usually 1/3 to 2/3 of the streambank height. A top elevation

Figure 8.20. Retard.
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that is less than the bank height allows drift during high flows to pass over and
lodge against the bank rather than against the structure.

Retards have several advantages over the basic technique of sloping the bank
and paving with stone, as follows: (1) they can be adapted to a wide range of
conditions; (2) the channel alignment can be improved; (3) they are usually less
costly; and (4) little if any bank grading is required, which simplifies rights-of-
way acquisition and material disposal problems.

Retards are less desirable than stone paving in the following respects: (1) they
offer no direct immediate improvement in bank-slope stability; (2) they offer no
direct immediate prevention of erosion by overbank drainage and return flows;
(3) they are subject to damage by ice, drift, fire, vandalism, and deterioration
from the elements; (4) they may reduce channel capacity, particularly after
vegetation is established; (5) they interfere with local access to the stream
channel; and (6) they may not be aesthetically pleasing.

Pile retards can be made of concrete, steel, or timber. They may be used in
combination with bank-protection works such as riprap. The retard then serves
to reduce the velocities sufficiently so that either smaller riprap can be used,
or riprap can be eliminated. The design of timber pile retards is essentially the
same as timber pile dikes (Subsection 8.4.5).

8.4.5 Dikes

There are two principal types of dikes: (1) stone fill dikes; and (2) timber pile
dikes. Stone fill dikes are very long spur dikes or groynes. Except for their ex-
tended length, their characteristics are described in Subsections 8.4.2 and 8.4.3.

The design approach for dikes and retards requires a comparison of recent and
old aerial photographs to identify bank-caving rates and to become familiar with
the overall stream-meander pattern. A preliminary determination of upstream
and downstream termination points and general structural alignment can then be
made. A site inspection then confirms the general stream characteristics, survey
of cross sections, bed and bank material, soil boring if piles are to be driven,
and drift carried by the stream. The usual alignment problem is to stabilize the
outside of a bend. It is not mandatory to have a constant radius of curvature, but
the alignment should be smooth without abrupt changes in radius, as sketched
in Fig. 8.21(a).

Unless a retard is located in a zone of very mild attack, toe protection is highly
desirable [Fig. 8.21(b)]. Toe deepening can cause structural failure and/or loss
of filler material from the retard. Toe protection is more effective than excess
penetration of piles or posts. Toe protection should be heavier at and downstream
of the point of maximum attack determined from aerial photographs and site
inspection and survey. Extending the heavier toe protection downstream of this



River flow-control structures 273

Figure 8.21. Bank-stabilization sketch.

point is desired because impingement points usually tend to migrate downstream
with time. The simplest method is to windrow aggraded stone along the channel
side of the retard at a uniform rate per linear foot, varying the rate along the bend
if appropriate. A rule of thumb is that 1 ton of stone per foot will accommodate
3 ft (1 m) of scour.

Mistakes in selecting upstream and downstream termination points are a com-
mon reason for retard failure because points of attack migrate down valley with
time, which can be detected from comparative aerial photographs. Therefore,
the downstream termination should be downstream of the existing knickpoint of
bank stability. Conversely, the upstream terminating point should correspond
to the downstream end of the adjacent point-bar deposition zone. The usual
termination method is to turn the structure azimuth back into the bank at an
angle. The top elevation can be kept constant.
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Dikes and retards allow the channel alignment to be modified if that is a
project requirement. They are well suited to the incremental construction ap-
proach. Because dikes and retards extend into the channel, they are subject
to severe attack. Therefore inspection and maintenance are essential. Channel
capacity at high flow is decreased initially. The channel will usually adjust by
forming a deeper, though narrower, cross section, and the ultimate effect may
even be an increase in capacity. Because conservative assumptions on future
deposition and vegetative growth would be necessary, dikes or retards must be
approached with caution on flood-sensitive projects.

Timber pile dikes may consist of closely spaced single, double, or multiple
rows of timber piles, as shown in Fig. 8.22. Wire fence may be used in con-
junction with pile dikes to collect debris and thereby cause effective reduction
of velocity. Double rows of timber piles can be placed together to form timber

Figure 8.22. Timber pile dikes.



River flow-control structures 275

cribs, and rocks may be used to fill the space between the piles. Timber pile
dikes are vulnerable to failure through scour. This can be overcome if the piles
can be driven to a large depth to achieve safety from scour, or the base of the
piles can be protected from scour with dumped rock in sufficient quantities.

The arrangement of timber piles depends on the velocity of flow, quantity of
suspended sediment transport, and depth and width of the river. If the velocity
of flow is large, timber pile dikes are not likely to be very effective. On the
other hand, they are quite effective in moderate flow velocities with high con-
centrations of suspended sediments. The deposition of suspended sediments in
the pile dike field is a necessary consequence of reduced velocities. If there is
not sufficient material in suspension, or if the velocities in the dike fields are
too large for deposition, the permeable timber pile dikes will be only partially
effective in training the river and protecting the bends. The length of each dike
depends on channel width, position relative to other dikes, flow depth, and avail-
able pile lengths. Generally, pile dikes are not used in large and deep rivers. On
the other hand, banks of wide shallow rivers can be successfully protected with
dikes. The spacing between dikes varies from 3 to 20 times the length of the
upstream dike, with closer spacing favored for best results.

8.4.6 Jetties

Jetty fields add roughness to a channel or overbank area to train the mainstream
along a selected path. The added roughness along the bank reduces the velocity
and protects the bank from erosion. Jetty fields are usually made up of steel
jacks tied together with cables. Both lateral and longitudinal rows of jacks
are used to make up the jetty field, as shown in Fig. 8.23. The lateral rows
are usually angled approximately 45◦ to 70◦ downstream from the bank. The
spacing varies, depending on the debris and sediment content in the stream, and
may be 50 to 250 ft (15 to 80 m) apart. Jetty fields are effective only if there is a
significant amount of debris carried by the stream and the suspended sediment
concentration is high. When jetty fields are used to stabilize meandering rivers,
it may be necessary to use jetty fields on both sides of the river channel because
in flood stage the river may otherwise develop a chute channel across the point
bar.

Steel jacks are devices with basic triangular frames tied together to form a
stable unit. The resulting framework is called a tetrahedron. The tetrahedrons
are placed parallel to the embankment and cabled together with the ends of
the cables anchored to the bank. Wire fencing may be placed along the row
of tetrahedrons. The aesthetical value of steel jacks is minimal, particularly in
rivers used for boating, fishing, rafting, and kayaking.
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Figure 8.23. Jetties.

8.4.7 Fences

Fencing can be used as a low-cost bank-protection technique on small to medium
size streams that are usually wide and shallow (see Fig. 8.24). Special structural

Figure 8.24. Fences.

design considerations are required in
areas subject to ice and floating debris.
Both longitudinal (parallel to stream)
fence retards and transverse (perpen-
dicular to stream) fences have been
used in the prototype with varying de-
grees of success: (1) the channel gra-
dient must be stable and not be steep
(subcritical flow); (2) toe scour protec-
tion can be provided by extending the
support posts well below the maximum
scour expected or by placing loose rock
at the base of the fence to launch
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Figure 8.25. Vane dikes.

downward if scour occurs at the toe; (3) tiebacks to the bank are important
to prevent flanking of the fence and to promote deposition behind the fence;
(4) fence retards generally reduce attack on the bank so that vegetation can
become established; and (5) metal or concrete fences are preferred because of
ice damage and fire loss of wooden fences.

8.4.8 Vanes

Vane dikes are structures designed to guide the flow away from an eroding
bank line (see Fig. 8.25). The structures can be constructed of rock or other
erosion-resistant material, the tops of which are constructed below the design
water-surface elevation and would not connect to the high bank. Water is free
to pass over or around the structure, with the main thread of flow near the
surface directed away from the eroding bank. The findings from model investi-
gations of these structures include the effects of various vane dike orientation,
vane dike length, and gap length. The ends of the dikes are subjected to local
scour, and appropriate allowance should be made for loss of dike material into
the scour hole. The rock size to be used for the dike depends on availability
of material. Large rocks are generally used to cover the internal section con-
structed with smaller rocks or earthfill. Side slopes of 1V:5H and 1V:2H are
common.

8.4.9 Bendway weirs

A bendway weir is a low sill located in a navigation channel bend. Bendway
weirs are usually angled 20◦ to 30◦ upstream with approximately equal length
and spacing. The level crest is at an elevation low enough to allow normal
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Figure 8.26. Bendway weirs.

river traffic to pass over unimpeded (Fig. 8.26). The weir should be high and
long enough to intercept a large percentage of flow at the river cross section.
Weirs are typically built in sets (4 to 14 weirs per bend) and are designed
to control near-bed flow velocities and current directions through the bend
and well into the downstream crossing. Secondary flows are reduced, and wa-
ter flowing over the weir is redirected at an angle perpendicular to the weir.
When the weirs are angled upstream, water is directed away from the outer
bank and toward the inner part of the bend. Prototype and model results in-
dicate that construction of a series of bendway weirs in a navigation channel
bend results in: (1) improved navigation through the bend; (2) deposition at the
toe of the revetment on the outside of the bend and thus an increase in bank
stability; (3) more uniform surface-water velocities across any cross section;
(4) flow patterns in the bends that are generally parallel with the banks; and
(5) the thalweg of the channel being moved away from the toe of the outer-bank
revetment.

Case Study 8.2 Bendway weirs of the Mississippi River, United States. A
physical movable-bed model study of a 20-mile section of the middle
Mississippi River was built at Waterways Experiment Station and operated for
the St. Louis District of the Corps of Engineers (Pokrefke and Combs, WES,
1998, personal communication). The model was designed to study and improve
bendway navigation and address environmental concerns: (1) high-maintenance
dredging costs; (2) need to protect least tern nesting areas; (3) constricted na-
vigation channel; (4) high velocities; (5) detrimental high-flow current patterns;
and (6) inadequate navigation channel widths in the crossing downstream of the
bend. With this model, the bendway weir concept, developed in January 1988,
was refined for Price’s Landing and Brown’s Bends. Bendway weirs have been



River flow-control structures 279

Figure CS.8.2.1. Bendway weirs of the Mississippi River.

tested in 11 models at WES, e.g., Fig. CS.8.2.1, to improve both deep and
shallow-draft navigation, align currents through highway bridges, divert sedi-
ment, and protect docking facilities. From 1989 to 1995, over 120 weirs have
been built in 13 bends of the Mississippi River. Analysis of the five oldest weir
installations show that from 1990 to 1995 dredging was reduced by 80%, saving
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U.S. $3 million. In addition, towboat accidents were reduced, tow delay times
at bends were reduced, sediment and ice management was improved, least tern
nesting areas were undisturbed, aquatic habitat area was increased, and fish size
and density in the weir fields increased (fivefold in some areas).

8.4.10 Drop structures

Grade-control structures, or drop structures, are used to reduce the slope of a
channel. The purpose of grade-control structures is to stabilize the banks and
bed of a channel by reducing stream slope and flow velocity. The efficiency
of grade-control structures decreases with increasing stream size. Vertical con-
crete, timbers and sheet pile weirs, riprap sloping sills, and soil–cement or
gabion drop structures can be designed, as sketched in Fig. 8.27, after consid-
ering the stability of the structure and the depth of the scour hole at the toe of
the structure.

Drop structures must be designed to contain the effects of energy dissipation
while protecting both the bed and the banks upstream and downstream of the
structure. Protection of the approach sections is usually ensured with riprap.
Rock protection is efficient in breaking up the remaining turbulence in the
stilling basin and in protecting bed and bank materials from direct attack. Filters
must also be designed when appropriate.

Log and timber drop structures are appropriate in very small streams and
field gullies [Fig. 8.27(a)]. Corrugated pipe grade-control structures consist of a
culvert driven or buried vertically into the stream bed, depending on channel-bed
width. Riprap is placed within the culvert and for a short distance downstream
to prevent scour below the structure. The downstream sidewall of the culvert
section is trimmed flush with the bottom. The structures are effective for small
drops, and a series of them may be used to control grade in a relatively steep
channel over a long distance. Gabions may be useful in constructing weirs or
drop structures in areas where an adequate filler material is available. These
baskets are versatile in that they may be used in series or singularly to provide
various drop heights. They may also be used to protect the streambanks in the
approaches and to form a stilling basin. Concrete, because of its durability, is
probably the most frequently used material in the construction of larger drop
structures. These structures vary in design, particularly in the stilling basin
portion of the structure.

Weirs are probably the most widely used form of grade-control structure.
This is due to their relative ease of design and construction, low cost in many
instances, and versatility and adaptability for other purposes. The simplest form
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Figure 8.27. Drop structures, weirs, and sills.

is probably that made of sheet piles, the piling serving as both control section
and cutoff wall. To form sheet-pile weirs, sheet piles are driven to a depth two
to three times the anticipated depth of maximum scour, or to refusal, and are
trimmed to a cross section approximately that of the original channel in that
area [Fig. 8.27(b)]. If high banks are present, the sheet-pile weir should be tied
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into the bank at both ends. Riprap protection is suggested both upstream and
downstream of this type of weir. Sheet piles are particularly useful in wide
channels where the required length of concrete or rock structures could be too
costly. The piles may be trimmed at or above the natural channel grade. By
trimming the piles above the channel bottom, the channel will aggrade for a
short distance upstream, resulting in a flatter EGL in that reach. In a stream
requiring reduction of energy over a longer reach, several weirs may be used in
sequence.

Broad-crested weirs, sloping sills, or rock-fill weirs are structures formed
when a pile of stone is placed across the bottom of a stream [Fig. 8.27(c)]. The
amount of scour that could be expected to occur just downstream of the weir,
because of turbulence or a migrating headcut, would determine the volume of
rock needed. Specific methods to determine the local scour depth downstream
of hydraulic structures are presented in Section 9.2.

8.5 Riverbank engineering

The essence of a successful bank-stabilization project is that it should be both
effective and environmentally sound before the economics are considered. The
engineering challenge is to determine the most suitable technique to solve a
specific problem. Environmental and economic factors can then be integrated
into the final selection.

The required project life is short for emergency stabilization during an ex-
treme flow event. Immediate action is required under conditions not permitting
the design and construction of a permanent solution. An intermediate project life
refers to temporary solutions. For instance, an eroding channel can be stabilized
with the expectation that the stream channel will be relocated in the future. The
most common situation refers to a very long project life that typically exceeds
100 yrs.

Operation and maintenance costs can sometimes be traded against initial
construction costs. If the project sponsor has the capability to monitor the
condition of the work and maintain it as required, a less durable technique may
be preferable to a “bomb-proof” method requiring a higher initial investment.

Climatic conditions affect project durability through: (1) the effect of freezing
and thawing on stone; (2) the effect of ice flows on protection structures; (3) the
effect of heaving on slope armoring; (4) the effect of wetting and drying, with the
accompanying damage by bacterial growth and insects, on wooden components;
(5) the effect of sunlight on synthetic materials; and (6) the effect of corrosion on
wire meshes for gabions, mattresses, jacks, and fences. Corrosion and abrasion
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can greatly reduce the durability of techniques that rely on metallic components
for long-term structural integrity. The critical factors are water chemistry, air
quality, and concentration and velocity of coarse sediment impinging on the
metallic components.

Debris carried by the flow, usually in the form of uprooted trees, can cause
such extensive damage on some streams as to rule out some techniques and may
prohibitively raise the cost of other structures designed to withstand debris loads.
Debris can make structures more effective in reducing near-bank velocities and
accumulating sediment. Debris can also fail structures that accumulate large
debris in zones of high velocity.

Vandalism and theft can be reduced by selection of a technique that minimizes
temptation. Some materials that are obvious targets for vandals and thieves are
posts, boards, concrete blocks and stones of attractive size and shape, small
cables and wire, and easily removable fasteners. It is worth considering an
increase in the size and the weight of components to make their removal or
destruction more tedious. Peeling threaded fasteners and thinly grouting the
surface of vulnerable mattresses may suffice to keep the work functional.

Animals can cause problems in a stabilization method. Beavers have a re-
markable talent for girdling, felling, or eating vegetation of all sizes and species.
This can be disconcerting if the success of the work depends on quickly es-
tablishing a strong vegetative cover. Cows, deer, rabbits, and other animals
may also find tender young vegetation on new stabilization plantings to their
liking. Insect damage can be a problem for wooden components or vegeta-
tion. Preservative treatment for wooden components is common practice, and
chemical treatment of vegetation at vulnerable stages may be feasible. Water
quality and environmental considerations may rule out these options for some
projects.

Adjustment to scour or settlement remain important. A stabilization method
that has the ability to adjust to scour or bank subsidence has a significant advan-
tage over those that do not. Completely rigid methods must be carefully designed
and constructed and perhaps even then supplemented by flexible materials at
critical points. The property of flexibility reaches its ultimate application in the
design of toe protection. The methods that have this property are stone and
other adjustable armor, flexible mattress, and a few types of dikes and retards.

Streambank limitations also need to be considered. It is sometimes expensive
or impractical to grade the bank for geotechnical stability or to allow placement
of armor protection because of adjacent structures, restricted rights of way, or
restrictions on disposing of the excavated material. In such cases, a technique
must be selected that leaves at least part of the existing bank intact.
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Figure P.8.2.1. Revetment example.

�Problem 8.1

With reference to Example 8.2, determine the rock size that is stable and deter-
mine an appropriate gradation curve for the riprap blanket.

Answer:

d50 � 1.25 ft = 40 cm, d100 = 2.5 ft � 80 cm, d20 = 0.625 ft � 20 cm.

��Problem 8.2

Use the channel sketched in Fig. P.8.2.1 and the following properties:

(a) specific weight of stone = 165 lb/ft3 (26 kN/m3),
(b) local depth at toe of outer bank = 25 ft (7.6 m),
(c) local depth at 20% upslope from toe = 20 ft (6.1 m),
(d) channel sideslope = 1V:2H,
(e) channel downstream slope = 2 ft/mile (3.8 cm/km),
(f) minimum centerline bend radius = 1700 ft (520 m),
(g) average velocity = 7.2 ft/s (2.2 m/s),
(h) water-surface width = 500 ft (150 m)

Determine the size, thickness, and geometry of the riprap blanket required for
the stabilization of the outer bank of this channel. If the riprap is placed over
uniform 0.5-mm sand, determine the characteristics of the filter required for
preventing leaching.
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Table P.8.3.1. Riprap gradation

Weighta (lb)
% Lighter by

weight Maximum Minimum

100 292 117
50 86 58
15 43 18

aUnit weight of stone is 165 lb/ft3 (26 kN/m3).

�Problem 8.3

Table P.8.3.1 shows the results of a riprap sample that is supposed to meet
the requirements for riprap gradation. Determine whether or not this gradation
meets the requirements for stability. If d50 corresponds to incipient motion,
determine what gradation is required.
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River engineering

This chapter presents a discussion of various types of river engineering struc-
tures. The aim of this chapter is to familiarize the reader with solutions to a wide
spectrum of river engineering problems. This chapter covers an overview of the
following types of river engineering structures: (1) flood control in Section 9.1;
(2) river closure and local jet scour in Section 9.2; (3) canal headworks in
Section 9.3; (4) bridge crossings in Section 9.4; (5) navigation and waterways
in Section 9.5; and (6) dredging in Section 9.6.

9.1 River flood control

This section discusses river engineering solutions to flood control. The meth-
ods include flow regulation with reservoirs in Subsection 9.1.1, floodways
in Subsection 9.1.2, channel conveyance in Subsection 9.1.3, and levees in
Subsection 9.1.4.

9.1.1 Reservoirs

The most direct method of flood control is the storage of surface runoff. Flood
control with reservoirs redistributes floodwaters and attenuates floodwaves. A
reservoir fills up when the inflow exceeds the outflow, and water storage acts
as a buffer to decrease the peak discharges and increase the low discharges.
An increase in low discharges is beneficial to hydropower, navigation, and
irrigation. It is best to keep the reservoir as full as possible in order to maintain
sufficient storage capacity to increase the low discharge reserve in periods of
drought. For flood control, however, the reservoir should be kept as low as
possible to store unexpected large floods and decrease flood peaks.

In upper watersheds, detention basins are simply equipped with an uncon-
trolled conduit and a spillway. As long as the spillway is not overtopped, the
flood volume is stored, resulting in a considerable attenuation of the floodwave,

286
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Figure 9.1. Flood storage.

as shown in Fig. 9.1. When the spillway is overtopped, some storage above the
spillway crest reduces the outflow discharge. Flood-control reservoirs are most
effective when the volume of a reservoir is of the same order of magnitude as
that of the upstream floodwave volume.

9.1.2 Floodways

Floodwave attenuation is sometimes possible if some of the floodwater is
diverted away from the river. Floodways are used to divert floodwaters into
a topographic depression near the river, or into a lake, river, or sea. Floodway
outlets consist of spillways or control gates, which are usually located on or near
the floodplain to regulate the overbank flow discharge. Normally floodways are
not used for long periods of time. It is therefore important to operate the facilities
periodically to ensure proper usage in case of emergency. Floodwaters usually
carry a significant suspended sediment load, and the possibility of scour around
the structures or filling in the floodway needs to be considered. In some cases,
sedimentation can be expected downstream of the diversion but can be removed
after the flood. Erosion and sedimentation problems may become more serious
in the case of possible capture of the river by the distributary, e.g., the possible
capture of the Mississippi River by the Atchafalaya River near the Old River
control complex.
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9.1.3 Channel conveyance

Lowering the flood levels in a river reach by increasing the discharge capa-
city of the river channel is sometimes possible: (1) by reducing the roughness
of the river bed; (2) by enlarging the conveying cross section; and/or (3) by
shortening the river channel and thus steepening the channel slope. Each of
these improvements results in lowering of the specific stage in the river reach
considered. Effective improvements are restricted to clearing the banks and
the floodplain from vegetation and other obstacles, eliminating sandbars and
islands, and smoothing the banks with revetments. In cold regions, explosives
or ice breakers can break up ice jams. In streams in which resistance to flow
depends on bedforms, smoothing the bed by removal of sand dunes is rarely
effective because bedforms will shortly reappear.

Enlarging the conveying cross section can sometimes be done by deepening
or widening the river channel and by lowering or widening the floodplain. This
approach is successful only if the sediment load is small and the bed is stable. In
most cases, deepening the low-water bed by dredging will result in a temporary
improvement at a high cost that is likely to reoccur. In many cases, an enlarged
cross section will gradually fill up with sediment until the original bed level
and slope have been restored. Deepening of the channel is attractive only if the
sediment load is small and the bed is stable. If not, a permanent improvement can
be achieved only by continuous dredging, ultimately resulting in degradation
of the river bed. Such a solution might be economically justified if the dredged
material can be used elsewhere. However, the stability of hydraulic engineering
structures might be endangered by headcuts and bed degradation.

Shortening the river channel can be achieved by meander cutoffs, but such
a channel rectification should be carried out with great care. If it is not fixed
by embankments, the river might start meandering again. Moreover, the locally
steep slope will increase the sediment load, causing erosion upstream and sedi-
mentation downstream. In most cases, the new river channel will gradually in-
crease its sinuosity and regain its original slope. Also, flood protection problems
are not solved with an increase in stream conveyance; they are merely passed
on downstream.

9.1.4 Levees

A levee is an earth embankment constructed along a stream to protect land on the
floodplain from being flooded (Fig. 9.2). A floodwall is a concrete structure that
serves the same purpose and is found in urban areas where insufficient space pro-
hibits building a levee. For thousands of years, river levees have been built for the
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Figure 9.2. Levees and floodwalls.

protection of people and their property
against flooding. It still is the most ex-
pedient method for flood control. Lev-
ees reduce the storage capacity of the
floodplain and thus restrict the flow
conveyance of the river. These reduc-
tions will induce higher water levels
and limit floodwave attenuation. Be-
cause of the lateral migration of mean-
dering streams, the levees should be
placed at a fair distance from migrat-
ing channels, preferably outside the
meander belt.

The elevation of levees is primarily
determined by the stage of the design
flood. River engineers perform a bene-
fit–cost analysis to compare the flood-
protection gain against the construc-
tion cost of raising the levee above the
design level. In general, they measure

the benefit of additional protection by considering the exceedance and the cost
of flood damages at different water levels. The cost of possible levee breaching
and the corresponding extent of flooding need to be considered. Moreover, if
flood control is regarded as a purely economical problem, it is seldom justi-
fied. Public, environmental, political, and military pressure may justify the large
sums needed to protect against flooding. If the increased value of landside pro-
perty, with improved protection against flooding, is taken into account, the ratio
between costs and benefits may become more favorable. Other factors affecting
the levee height include tides and wind waves in coastal areas and wide rivers.
The design of the levee must prevent breaching as a result of seepage, piping,
sliding, slope failure, and revetment erosion. Levees should provide safety until
their crests are overtopped.

The choice of elevation of the levees may also depend on anticipated aggra-
dation of the riverbed in coming years. River sedimentation within the levees
causes the flow-rating curves to shift upward, thus necessitating the levees’
being raised beyond the initial level, e.g., Yellow River and Rio Grande. As
sketched in Fig. 9.2(d), the volume of material required for levee protection in-
creases with the square of the levee height, and the cost can become prohibitive
in the case of perched rivers. For rivers for which the flood hydrographs rise
or fall quickly, the levee section should be analyzed for instability following
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rapid drawdown. Also, the design of internal filters is particularly critical be-
cause of the frequent need to use less than desirable material for embankment
construction.

Levee crown elevation is based on the design flood profile plus an allowance
for settlement and freeboard. Settlement of either the foundation or the levee em-
bankment, or both, may result in a loss of freeboard, which provides additional
levee height for factors that cannot be rationally accounted for in flood-profile
computations. Minimum freeboard allowances are usually 2 ft (60 cm) for
agricultural levees and 3 ft (1 m) for urban levees. Additional freeboard may
be needed at the upstream end of a levee, near drainage structures, bridges,
and other constrictions, and for wave action. Levee crown width is primarily
dependent on dimensions for the patrol road on the levee crown. Minimum
widths of 10 to 12 ft (3 to 9 m) are commonly used with occasional wider
turning or passing areas. Where public roads are located on the levee crown, a
wider crown width is required.

Compacted levees with sheep foot or rubber-tired rollers require strong foun-
dations of low compressibility and water content of borrow material close to
specified range. Semicompacted levees are not commonly used, and uncom-
pacted levees with fill dumped in place with little spreading and compaction is
used only for emergency work.

Figure 9.3. Leveed floodplain.

Borrow areas should be on the riverside of the levee, and long, shallow
borrow areas along the levee alignment are favored because there are fewer po-

tential problems (Fig. 9.3). Riverside
borrow areas should be designed to fill
slowly on rising stages and drain fully
on fall stages, and the bottom of the ex-
cavated area should slope away from
the levee.

Underground seepage in pervious
foundations beneath levees may result:
(1) in the buildup of excessive hydro-
static pressure beneath the impervious
top layer on the landside; and (2) in
sand boils or in piping beneath the levee
itself unless seepage control measures
are provided. Principal control mea-
sures include riverside impervious blan-
kets, landside seepage berms, pervious
toe trenches, pressure-relief wells, cut-
off trenches, and sheet piling.
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Agricultural use on the landside requires the control of the groundwater
table. The efficiency of the drainage system improved by the construction
of drains, ditches, and canals may be affected by aggradation or degrada-
tion of the riverbed and the floodplain. Local surface drainage of landside
agricultural fields through the levees is usually possible with: (1) levees along
the tributary channels; (2) culverts with flood gates; or (3) pumping plants. For
major tributaries, levees are constructed along the tributaries, tying to the main
channel levee and extending upstream to the limits of backwater influence.

Culverts with floodgates are effective only when the main river is at low flow.
The culverts can be equipped with control devices or with flap gates that auto-
matically open to permit outflow when the water level on the landside is higher
than on the riverside of the levee. Floodgates automatically close to prevent
entry of backwater from the main river when the head differential is reversed
in ponding areas, and pumping stations are usually required for land drainage
when the main river is at high stage. Pumping plants are most frequently effec-
tive where a limited amount of temporary ponding is available. Pumping plants
may be combined with culverts with floodgates in some situations.

Case Study 9.1 Flood Protection of the Mississippi River, United States.
The Mississippi River has threatened the valley for a long time. In 1543, la Vega,
in his history of the expedition by DeSoto, described the first recorded flood
of the Mississippi River. The severe flood began on approximately March 10,
1543 and crested 40 days later. The river had returned to its banks by the end
of May, having been in flood for ∼80 days.

The Mississippi River discharges an average of 520 km3 of water each
year past the cities of Vicksburg and Natchez, Mississippi. Not all parts of
the Mississippi River drainage basin contribute water in equal measure; see
Fig. CS.9.1.1(a). One-half of the water discharged to the Gulf of Mexico is
contributed by the Ohio River and its tributaries (including the Tennessee River)
whose combined drainage areas constitute only one-sixth of the area drained
by the Mississippi River. By contrast, the Missouri River drains 43% of the
area but contributes only 12% of the total water. The Mississippi River now
discharges an average of about 200 million metric tons of suspended sediment
per year past Vicksburg and eventually to the Gulf of Mexico.

The suspended sediment load carried by the Mississippi River to the Gulf of
Mexico has decreased by one-half in the past 200 yrs. The decrease has happened
mostly since the 1950s, as the largest natural sources of sediment in the drainage
basin were cut off from the Mississippi River main stem by the construction
of large reservoirs on the Missouri and Arkansas Rivers. This large decrease in
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Figure CS.9.1.1. Regime of the Mississippi River.
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sediment load from the western tributaries was counterbalanced somewhat by
a fivefold-to-tenfold increase in sediment load in the Ohio River as a result of
deforestation and rowcrop farming.

By the year 1879, the need for improvement of the Mississippi River had
become widely recognized. The necessity for coordination of engineering
operations through a centralized organization had finally been accepted. Ac-
cordingly, in that year, the Congress established the Mississippi River Com-
mission (MRC) with the assignment and the duty to protect the banks of the
Mississippi River, improve the navigation thereof, prevent destructive floods,
promote and facilitate commerce, trade, and postal service.

Great floods in 1882 and subsequent years plagued the valley as levees were
overtopped or crevassed. These disasters and the rising flood heights between
the levees caused many to question the total reliance on building levees to con-
tain the river’s floodwaters. Other approaches to improving flood protection –
reforestation of the floodplain, cutoffs to speed up the river’s flow, reservoirs to
hold back floodwaters, and floodways to divert flows away from the main chan-
nel – were suggested but always rejected by the MRC in favor of a “levee-only”
policy.

The role of the MRC grew with each flood, finally culminating in the Flood
Control Act of 1917, which authorized the MRC to construct an extensive pro-
gram of flood protection with cost sharing by states and local interests. The
program maintained the levee-only approach and included new levee construc-
tion and strengthening of existing levees to standards set 3 ft above the high
water of 1912. By the end of 1926, the improved levee system had successfully
passed several major high-water events. These successes convinced the MRC
and the public that the flood-control problem was nearly solved.

The false sense of security in the Lower Mississippi Valley vanished in the
flood of 1927, a natural disaster of great proportions. This tremendous flood ex-
tended over nearly 26,000 miles2, killed more than 500 people, and drove more
than 700,000 people from their homes. Thirteen crevasses in the main Missis-
sippi River levees occurred, demonstrating that even the largest and strongest
levees would not alone protect from flooding. To prevent a recurrence of the
1927 flood, Congress authorized the Mississippi River and Tributaries (MR&T)
project in the Flood Control Act of 1928. The levee-only policy of the past was
discarded and the U.S. Army Corps of Engineers adopted a new approach
based on improved levees plus floodways, including a spillway to divert water
at Bonnet Carré into Lake Pontchartrain above New Orleans.

The four major elements of the MR&T project are: (1) levees for containing
flood flows; (2) floodways for the passage of excess flows past critical reaches of
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Figure CS.9.1.2. Design of flood-control plan of the Mississippi River.

the Mississippi; (3) channel improvement and stabilization in order to provide
an efficient navigation alignment, to increase the flood-carrying capacity of the
river, and for protection of the levee system; and (4) tributary basin improve-
ments for major drainage and for control, such as dams and reservoirs, pumping
plants, and auxiliary channels. The flood-control plan sketched in Fig. CS.9.1.2
is designed to control the “project flood.” It is a flood larger than the record
flood of 1927. At Cairo, the project flood is estimated at 2,360,000 ft3/s or
66,820 m3/s. The project flood is 11% greater than the flood of 1927 at the
mouth of the Arkansas River and 29% greater at the latitude of Red River
Landing, amounting to 3,030,000 ft3/s (85,800 m3/s) at the location ∼120 miles
(200 km) below Vicksburg.

The Atchafalaya River. When the first European settlers arrived, they found the
Red River emptying into the Mississippi at Turnbull’s Bend and the
Atchafalaya River a well-defined distributary flowing out of Turnbull’s Bend
a few miles to the South [Fig. CS.9.1.3(a)]. In 1931, Captain Shreve dug a
canal across the narrow neck of Turnbull’s Bend. The river accepted the shortcut
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Figure CS.9.1.3. Old River Control.

and abandoned its old channel, the upper part of which eventually silted
up, leaving the lower section open, which became known as Old River
[Fig. CS.9.1.3(b)].

The Red River no longer flowed into the Mississippi River, but into the
Atchafalaya River. Old River connected them to the Mississippi. The cur-
rent usually flowed west from the Mississippi through Old River into the
Atchafalaya; however, during high water on the Red River, the flow sometimes
reversed. For years the head of the Atchafalaya River was blocked by a massive
“raft” – a 30-mile-long (50-km) log jam – that defied efforts of settlers to remove
it. In 1839, the State of Louisiana began to dislodge the raft to open up the river
as a free-flowing and navigable stream. The removal of the log jam provided an
opportunity for the Atchafalaya to enlarge, become deeper and wider, and carry
more and more of the flow from the Mississippi. The Atchafalaya offered the
Mississippi River a shorter outlet to the Gulf of Mexico – 142 miles (227 km)
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Figure CS.9.1.4. Locks and dams of the Upper Mississippi River.

compared with 315 miles (504 km) – and by 1951 it was apparent that, unless
something was done soon, the Mississippi River would take the course of the
Atchafalaya River.

The Old River control structures were designed and operated to maintain the
distribution of flow and sediments between the Lower Mississippi River and the
Atchafalaya River in approximately the some proportions as occurred naturally
in 1950. That distribution was determined to be approximately 30% of the total
latitude flow (combined flow in the Red River and the Mississippi River above
the control structures) passing down the Atchafalaya River on an annual basis
[Fig. CS.9.1.3(c)].

The Mississippi River is the main stem of a network of inland navigable
waterways that form a system of ∼12,350 miles (19,760 km) in length, not
including the Gulf Intracoastal Water of 1,173 miles (1,877 km). Waterborne
commerce on the Mississippi rose from 30 million tons in 1940 to almost
400 million tons in 1984. In Fig. CS.9.1.4, the entire 1080-km reach of the Upper
Mississippi River between Minneapolis, Minnesota, and St. Louis, Missouri, is
controlled for barge navigation by a series of 29 lock-and-dam structures. The
first structure, completed in 1913 at Keokuk, Iowa, was built to impound water
to generate hydroelectric power. The other 28 structures were built, mostly dur-
ing the 1930s, to maintain a minimum river depth of 9 ft (2.7 m) for barge
navigation. Before the dams were built, navigation during low-water periods
was extremely hazardous, if not impossible, across rapids such as those at
Keokuk and Rock Island, and it was difficult in many other reaches of the upper
river.
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Figure 9.4. Dam construction beside the river.

9.2 River closure

The construction of dams requires closing off a river reach and diverting stream-
flow around a dry construction site. There are essentially three types of river
closures: (1) dam construction beside the river; (2) complete closure and flow
diversion; and (3) partial closure and flow contraction. The first type is illus-
trated in Fig. 9.4, in which a dry construction site can be found next to the river
in the first stage. When the construction is complete, the river is then diverted
on the structure in the second stage. This is obviously possible for only low
structures such as locks and dams.

The complete closure and flow diversion is discussed in Subsection 9.2.1,
along with the methods to calculate local scour from permanent structures such
as sills, drop structures, sluice gates, and culverts in Subsection 9.2.2. The
partial closure and flow contraction approach by use of cofferdams is covered
in Subsection 9.2.3.

9.2.1 River closure and diversion

For the construction of earth dams and high concrete dams in deep, narrow

Figure 9.5. River diversion.

canyons, the entire river channel is gen-
erally closed by building upstream and
downstream earth and rockfill coffer-
dams. For large dams on major rivers,
the streamflow must be conveyed
around the work site through tunnels,
as sketched in Fig. 9.5. Such tunnels
may serve a dual purpose: (1) flow di-
version during construction; and
(2) regulated outlet works later. On
small streams, a temporary flume or
pipeline may be adequate to divert
streamflow around the construction site.
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The size of a diversion tunnel depends primarily on the diversion design flood
and on the upstream cofferdam height. The tunnel inlet must be low enough for
flow through the tunnel as soon as the river is closed off. A log boom or trash
rack upstream of the inlet may be required for preventing partial blockage of
a diversion tunnel by debris. Diversion tunnels are designed to be closed tem-
porarily, usually by gates or stoplogs, at the upstream portal to permit filling of
the reservoir. If the tunnel is used solely for diversion, permanent tunnel closure
is ensured with a concrete plug.

The construction sequence for channel diversions is as generally follows:
(1) construct diversion tunnel; (2) construct temporary upstream cofferdam;
(3) construct temporary downstream cofferdam; (4) dewater construction site
within the cofferdams; (5) construct permanent upstream cofferdam; and
(6) construct main dam.

Initial closure is usually made with temporary cofferdams across the main
river channel upstream and downstream of the construction site. The water in the
work area between the temporary structures is pumped out for the construction
of a permanent cofferdam in the dewatered area. The permanent upstream cof-
ferdam can be constructed as an extension of the temporary upstream cofferdam
or as a part of the main dam embankment section.

River closure can be effected in various ways, but the two primary procedures
are to: (1) successively narrow and eventually close off the channel by end

Figure 9.6. River closure.

dumping from one or both banks
[Fig. 9.6(a)]; and/or (2) gradually raise
a low sill across the channel by dump-
ing uniformly across the gap from a
construction bridge or barge or by use
of a dragline or moveable dredge dis-
posal line [Fig. 9.6(b)].

During a river closure, the up-
stream water level is raised from the
backwater effect of choking the flow.
The difference in water levels up-
stream and downstream of the closure
causes an increase in flow velocity and
a greater potential for scour in the clo-
sure section. In end dumping, the flow
velocity increases. The finest material

in the fill will move downstream rather than deposit in the gap. As velocity
increases, all the fill material being dumped into the closure section will be
transported downstream and will not contribute to closing the channel. Just
before complete closure, velocities through the gap may be so high that only
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large stones and prefabricated concrete blocks may be required for making the
final closure.

In gradually raising the crown of a low sill across the opening, a mound is built
up uniformly across the channel by dumping from a bridge or suspension cable.
As material is added, the flow is choked and forces backwater effects upstream
of the sill, as described in Example 4.4. The increasing water-level difference
upstream and downstream of the closure section increases the flow velocity,
tractive force, and sediment-transport capacity. As fill material continues to be
added and the tractive force becomes sufficiently high to transport larger-size
fractions of the fill, the crest lengthens in the downstream direction. Obstruction
of the channel by the sill raises the upstream water surface and diverts part of
the streamflow through the diversion tunnel. The reduced discharge over the sill
eventually permits the sill to be raised to the water surface for complete closure.

To determine the stability of a rounded stone deposited in flowing water,
Isbash’s equation has been modified for river closures and stilling basins. As
per Eqs. (8.3), the relationship between critical flow velocity Vc for beginning
of motion and diameter of a stone ds is

Vc = Kc [2g(G − 1)]1/2 d1/2
s , (9.1)

where Kc is a coefficient equal to 1.2 for river closure and 0.86 for stilling
basins, g is the gravitational acceleration, and G is the specific gravity of the
stone. The stone diameter ds that can withstand an average flow velocity Vc is
calculated from

ds = 1

2g(G − 1)

(
Vc

Kc

)2

. (9.2)

The stone weight FW corresponding to a spherical stone of diameter ds is
calculated from

FW = γs
πd3

s

6
, (9.3)

where γs is the specific weight of the stone. A sample calculation for a river
closure is presented in Example 9.1.

Example 9.1 Application to a river closure. During the closure of a river,
the water-surface elevation drops approximately �h = 6 ft (1.82 m) within a
short distance. Estimate the stone diameter ds at a specific weight γs of 165 lb/ft3

or G = 2.65 that would be stable.
Assuming conservation of energy within this short reach, the velocity corres-

ponding to a 6-ft drop is calculated as

Vc =
√

2g�h = √
2 × 32.2 × 6 = 19 ft/s (or 5.8 m/s). (E.9.1.1) �
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In the case of a shallow opening, the velocity may correspond to the critical
flow depth, given the unit discharge q as hc = (q2/g)1/3. The required stone
diameter calculated from Eq. (9.2) is

ds = 1

2 × 32.2 × 1.65

(
19

1.2

)2

= 2.35 ft (or 0.71m),

and the corresponding stone weight from Eq. (9.3) is

FW = 165 × π(2.35)3

6
= 1,121 lb (or 5 kN).

These results are comparable with those previously presented in Fig. 8.4. We
can substitute Eq. (E.9.1.1) into Eq. (9.2) to find that the required stone diameter
increases linearly with �h. The appropriate stone size is approximately one-
fifth of the drop height.

9.2.2 Jet scour

The construction of large dams is associated with the need to release water
periodically downstream. The bed scour caused by plunging jets or submerged
jets needs to be considered in the stability analysis of hydraulic structures.

With reference to the four cases illustrated in Fig. 9.7, the scour depth �z
below plunging jets in Fig. 9.7(a) can be estimated from the empirical equation
of Fahlbusch (1994) as a function of unit discharge q, the jet velocity V1 entering
the tailwater depth ht at an angle θ j measured from the horizontal at the water
surface, and the gravitational acceleration g:

�z = K p

√
qV1

g
sin θ j − ht . (9.4)

The coefficient for plunging jet Kp depends on grain size with Kp � 20 for silts,
5 < Kp < 20 for sand, and 3 < Kp < 5 for gravel.

Submerged jets discharge entirely under the free surface, as sketched in
Fig. 9.7(b). The example of flow under a sluice gate downstream of a hydraulic
structure has a considerable scour potential. Hoffmans and Verheij (1997)
applied Newton’s second law to a control volume and found the equilibrium
scour depth �z from

�z = Ksj yj

(
1 − V2

V1

)
, (9.5)

where V2 is the outflow velocity, V1 is the inflow velocity, y j is the inflow
jet thickness, and Ksj is a scour coefficient for submerged jets. The value
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Figure 9.7. Jet scour.

of Ksj depends on the particle size and varies from Ksj � 50 for silts, to
20 < Ksj < 50 for sand, and to 7 < Ksj < 20 for gravel.

As sketched in Fig. 9.7(c), scour below grade-control structures and also sills
and drop structures can be estimated from the method of Bormann and Julien
(1991) as

�z =
{

1.8

[
sinφ

sin(θ j + φ)

]0.8 q0.6V1 sin θ j

[(G − 1) g]0.8 d0.4
s

}
− Dp, (9.6)

where �z is the scour depth below the grade-control structure, Dp is the drop
height of the grade-control structure, q is the unit discharge, V1 is the approach
velocity, ds is the particle size, g is the gravitational acceleration, G is the spe-
cific gravity of bed material, φ is the angle of repose of the bed material, and θ j

is the jet angle measured from the horizontal. Examples 9.2 and 9.3 illustrate
how these empirical relationships can be used to estimate the scour depth below
hydraulic structures.

As sketched in Fig. 9.7(d), local scour below circular culvert outlets has been
studied by Ruff et al. (1982). The scour depth �z can be predicted as

�z = 2.07 D

(
Q√
gD5

)0.45

, (9.7)
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where Q is the discharge, D is the culvert diameter, and g is the gravitational
acceleration.

The local scour depths predicted from the empirical relationships are sub-
jected to improvements as more field and laboratory data become available. A
recent review of different methods showing the analysis of different data sets
has been presented by Hoffmans and Verheij (1997).

Example 9.2 Application to scour depth below a sluice gate. A sluice gate,

Figure E.9.2.1. Local scour below a
sluice gate.

as sketched in Fig. E.9.2.1 is operated
at an opening of 0.34 m. The upstream
water level is 10 m and the downstream
water level is 5 m. The unit discharge
in this wide opening is 2 m2/s. The bed
material consists of fairly uniform gra-
vel with d50 = 5 mm and d90 = 7 mm.

Estimate the scour depth:

Step 1: The flow velocity in the vena
contracta is

V1 = q

y j
= 2

0.34
= 5.9 m/s .

Step 2: The outflow velocity is

V2 = q

ht
= 2

5
= 0.4 m

s
.

Step 3: The scour depth obtained from Eq. (9.5) with Ksj = 15 is

�z = 15 × 0.34

(
1 − 0.4

5.9

)
� 4.8 m.

Example 9.3 Application to scour depth below a grade-control structure.
A broad-crested weir is built across a 50-m-wide river. The drop height is 2.25 m,
and the face angle of the structure is 60◦. The scour slope is approximately 1V:2H
in noncohesive material with d50 = 2 mm and d90 = 2.5 mm (see Fig. E.9.3.1).
Estimate the scour depth when the river discharge is 160 m3/s:

Step 1: Determine q = (Q/W ) = (160/50) = 3.2 m2/s, Dp = 2.25 m, ds =
0.002 m, θ j = tan−1 1/2 = 26◦, and g = 9.81 m/s2.
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Figure E.9.3.1. Local scour below a drop structure.

Step 2: Estimate φ = 40◦ and G = 2.65.

Step 3: Assume that the critical flow condition is obtained at the sill crest. The
critical flow depth hc is obtained from hc = (q2/g)1/3 = (3.22/9.81)1/3 = 1 m.

Step 4: The approach flow velocity is assumed to be critical, or

V1 = q

hc
= 3.2

1
= 3.2 m/s.

Step 5: The scour depth estimated from Eq. (9.6) is

�z =
{

1.8

[
sin (40◦)

sin (66◦)

]0.8 3.20.6 3.2 sin 26◦

(1.65 × 9.81)0.8 (0.002)0.4

}
− 2.25 m = 2.7 m.

9.2.3 Cofferdams

In large rivers in which the entire flow cannot be diverted from the construction
site, a partial river closure with flow contraction can be considered. Cellular
cofferdams can enclose a part of the streambed that can be dewatered by pump-
ing to provide a dry area for construction. The two-stage construction of a lock
and dam is sketched in Fig. 9.8.

Although cofferdams are temporary structures, each stage may be in place
for several years, and they should be as cheap as possible while providing the
optimum degree of protection. The cofferdam cost is generally one of the major
cost items in river construction, particularly when flood stages are frequent
or flashy in nature and the construction extends through several years. For
preliminary studies, floods with the following recurrence intervals have been
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Figure 9.8. Flow contraction with cofferdams.

used for cofferdam design (Petersen, 1986): (1) a 3–5-yr period of return for river
construction not exceeding 2 yr; or (2) a 5–25-yr flood when the construction
period exceeds 2-yr. Where long streamflow records are available, elevation
of the second or the third largest historical flood can be used to determine the
cofferdam crest elevation including freeboard. Other important considerations
include backwater effects and property damage behind large dams with high
cofferdams and potential downstream effects of water release from a sudden
cofferdam failure. For final design, the trade-off between risk and potential
damage that is due to overtopping and the cost of a higher cofferdam can be
assessed. If the risk of loss of life and property damage downstream is high, the
standard project flood may be adopted for cofferdam design.

With stage construction on alluvial streams, considerable scour can be expec-
ted in the constricted channel cross section at flood stages. Large contrac-
tion scour and abutment scour can be calculated from the methods discussed
in Subsections 9.4.2 and 9.4.3. If studies indicate that excessive scour might
endanger the cofferdam, it may be possible to change the cofferdam config-
uration to reduce local scour or to armor the bed where maximum scour is
expected.

In general, the scour model tests from Franco and McKellar (1968) indicated
that: (1) the scour is local rather than general and the point of maximum scour is
usually near the upstream corner of the cofferdam; (2) the depth, location, and
area of maximum scour can be affected by the alignment of the upper arm of
the cofferdam; (3) the extent of scour along the cofferdam is increased as the
angle of the upstream arm is increased with respect to the flow direction; and
(4) the area of maximum scour can be moved away from the cofferdam with a
spur dike or guidebank at the upstream corner of the cofferdam.

Cellular cofferdams are predominately designed either with circular
or diaphragm cells (Fig. 9.9). As a rule of thumb, the cell width should



River closure 305

Figure 9.9. Cofferdam cells.

approximately equal the cell height.
The circular cells are connected by
cells of circular arcs. Circular cells are
stable so that each cell can be filled
immediately on completion, making it
possible for equipment to work from
one cell to the next. The diaphragm
type consists of two walls of circular
arcs connected by straight diaphragm
sections, but individual cells are not
stable. A template is used for guid-
ance in driving the piles, and when
a cell is completed the template is
removed and reused for the next cell.

According to Petersen (1986), templates are somewhat easier to set for dia-
phragm cells than for circular cells.

Several diaphragm cells are driven and then carefully filled by keeping
the differences in fill elevation in adjacent cells within approximately 4–5 ft
(1.2–1.5 m) to avoid distortion of the diaphragms. Circular cells usually re-
quire less steel for high structures. However, less steel is usually required for
diaphragm cells for low cofferdams. The failure of a circular cell is usually
local, with damage limited to one cell, but diaphragm cell failure may extend
to adjacent cells.

Sheet-pile cells are usually filled hydraulically with readily available local
material such as sand, gravel, rock, or earth for stability. It is particularly im-
portant to fill the lower half of each cell with pervious material to facilitate
drainage and avoid high hydrostatic forces on the cell walls. A concrete cap
(∼6 in. or 15 cm) is poured to protect the top of the cell fill against scour in
the event the cofferdam is overtopped, to prevent infiltration of rainwater into
the fill, and to provide a working surface for the contractor’s equipment. The
concrete cap also provides a base for sandbagging to provide limited additional
height and protection against overtopping beyond the cofferdam design flood
elevation and extends the time required for water to saturate the fill in the event
of overtopping.

Cellular cofferdams are constructed by driving a wall of interlocking steel
sheets through water and saturated pervious material into underlying more im-
pervious clays or rock. Cofferdams are driven to rock whenever possible, and
if the material is soft shale, piles are driven 6 in.–1 ft (15–30 cm) into the shale.
In pervious materials, the piles are driven as deep as feasible to increase the
seepage path and decrease seepage flow into the work area and thus reduce
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pumping costs. Following the completion of cofferdam construction, the work
area inside the cofferdam is dewatered at a limited drawdown rate (usually ∼5 ft
in 24 h or 1.5 m per day), depending on riverbank stability and the rate of cell
drainage.

9.3 Canal headworks

The regular supply of water to irrigation canals demands adequate control of
the water level and sediment transport at the canal intake. Canal headworks
control the water level with the construction of a weir to artificially raise the
water level at the irrigation canal intake, as sketched in Fig. 9.10. The weir

Figure 9.10. Weirs and grade-control
structures.

located downstream of the headworks rai-
ses the upstream water level, thus artifi-
cially decreasing the channel slope and
flow velocity near the canal headworks.
The artificial slope is therefore less than
the equilibrium slope of the channel under
natural conditions. Finally, sedimentation
problems upstream of the weir and local
scour downstream of the weir need to be
addressed (e.g., Section 9.2).

There are a number of problems inhe-
rent to fixed weirs in streams with vari-
able discharge. Raising the water level
upstream of the weir is required for wa-
ter supply during periods of low river dis-
charge. In periods of high discharge, how-

ever, the raised water level may increase the risk of flooding. The erosive forces
near the weir at high discharges may also necessitate expensive bed and bank
stabilization.

Canal headworks also control the sediment intake into the canal. Fixed
weirs usually reduce the sediment concentration at the intake for a period
of time. The decreased sediment-transport capacity upstream of the weir re-
sults in aggradation that will eventually reach the canal intake. Canal head-
works may be located on the outside of a stable river bend. In river bends,
the surface water (low sediment concentration) seeks the outside of the bend
whereas the sediment-laden streamlines near the bed are deflected away from
the canal headworks (e.g., refer to Fig. 6.6). Therefore, headworks on the con-
cave bank benefit from the natural river flow curvature and reduce the ne-
cessity for extensive sediment exclusion and sediment ejection at the canal
headworks, as sketched in Fig. 9.11. The concave bank approach is possible
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Figure 9.11. Sediment exclusion and
ejection.

when the river is stable, without lateral
migration, and when the river does not
carry a significant load of floating de-
bris. Subsection 9.3.1 focuses on sed-
iment exclusion followed by sediment
ejection in Subsection 9.3.2.

9.3.1 Sediment exclusion

Sediment exclusion is intended to pre-
vent sediment from entering the canal

by deflecting sediment away from the canal headworks, as sketched in
Fig. 9.11. Natural flow curvature causes the heavily sediment laden water to
flow away from the canal intake, as shown in Fig. 9.12(a). Guide walls can
be designed on both small and large systems to create a favorable flow path,
as shown in Fig. 9.12(b). Guide walls increase exclusion efficiency and are
effective in continuous sluicing operations.

Guide vanes simply produce favorable secondary currents for sediment re-
moval. Bottom and surface vanes, shown in Fig. 9.13, induce secondary currents
that divert the bottom streamlines containing a heavy sediment load away from
the canal headworks, and surface water containing a relatively light sediment
load can be diverted through the canal headworks. Under steady flow, guide

Figure 9.12. Canal headworks with river curvature.
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Figure 9.13. Canal headworks with vanes.

vanes can exclude practically the entire bedload. Conversely, they should be
avoided when the flow is unsteady.

9.3.2 Sediment ejection

As sketched in Fig. 9.11, sediment ejectors remove sediment that should not be
transported through the canal system. Ejection methods do not preclude other
sediment control methods, but provide a factor of safety should the exclusion
devices fail to perform according to design. The sediment ejector sketched in
Fig. 9.14 should be close to the head regulator where settling is predominant;
otherwise the sediment deposited in the canal may not reach the ejector.

The tunnel ejector shown in Fig. 9.14(a) can eject coarse bedload from straight
canals. The bed of the canal forms a ramp sloping down toward the ejector. The
ramp height may sometimes be level with the roof of the ejector. The incoming
bed material rolls over the ramp and is ejected through the tunnels. The roof over
the guide vanes prevents coarse material from passing over the vanes because
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Figure 9.14. Sediment ejectors.

of the turbulence resulting from the
interaction of the bottom guide vanes
and large canal discharges. For small
discharges the roof can be omitted and
the guide vanes alone will deflect the
bedload.

The vortex tube in Fig. 9.14(b) is ex-
tremely efficient at removing coarse
bedload-like gravels in small canals. The
main feature of the vortex tube is a pipe
with a slit opening along the top side.
As water flows over the tube, the shear-
ing action sets up a vortex motion that
catches the bedload as it passes over the
lip of the opening. The sediment is car-
ried to the outlet at the downstream end
of the vortex tube.

Settling basins sketched in Fig. 9.14(c)
remain popular for the removal of both
bedload and suspended load at canal
headworks. The underlying principle is
simply to provide a section wide and
long enough to reduce flow velocity and
allow sediment to settle out. The basic
relation for the design of settling basins

is the trap efficiency TE , which represents the ratio of the weight of sediment
settling in the basin to the weight of sediment entering the basin:

TE = 1 − e
−ωW L sb

Q , (9.8)

where W is the settling-basin width, ω is the settling velocity of a particle, Lsb

is the length of settling basin, and Q is the flow discharge. At a given discharge
and particle size, the efficiency depends on the surface area of the settling basin.
A calculation example is detailed in Example 9.4.

Example 9.4 Calculation of a settling-basin length. Determine the length of
a 30-m-wide settling basin designed to trap 90% of ds = 0.05-mm silt entering
a canal at a discharge of Q = 3 m3/s. The unit discharge q = Q/W = 3/30 =
0.1 m2/s. The settling velocity of 0.05-mm particles is approximately 2 mm/s.
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The settling-basin length is calculated from Eq. (9.8), solved for L as

Lsb = q

ω
[−ln (1 − TE )] = 0.1 s

0.002 m

m2

s
[−ln (1 − 0.9)] = 115 m.

Repeating the application to different basin widths shows that identical results
are obtained as long as the settling-basin area Asb = Lsb W = 3,450 m2.

9.4 Bridge scour

River engineers are concerned with bridge crossings in the following regards:
(1) careful selection of the bridge site to minimize the total bridge costs; and
(2) protection against possible structural failure from scour undermining the
embankments and piers. The depth of scour during a flood has to be determined
in order to design stable foundations for the bridge.

The river crossing should preferably be located in straight river reaches or in
stable bends without lateral migration. Sites with narrow floodplain width, rock
outcrops, or high bluffs are good locations for bridge crossings. Straight river
reaches are often selected in order to avoid problems with lateral migration and
deep scour holes in bends.

Protecting embankments and piers against scour requires consideration of
the following items: (1) general scour (Subsection 9.4.1); (2) contraction scour
(Subsection 9.4.2); (3) abutment scour (Subsection 9.4.3); and (4) pier scour
(Subsection 9.4.4). The total scour depth is obtained from the sum of all compo-
nents. Live-bed scour occurs when there is transport of upstream bed material
into the scour hole. Conversely, clearwater scour is without upstream bed sedi-
ment transport. Selected methods are presented below, and a detailed treatment
of scour at bridges can be found in Richardson and Davis (1995). It should be
remembered that all scour estimation procedures serve as approximations and
engineering judgement should be exercised.

9.4.1 General scour

Progressive degradation or aggradation can be associated with changes in the
river regime caused by natural processes or human activities on the stream or
watershed. Factors that affect long-term bed changes are: (1) dams and reser-
voirs both upstream and downstream of the bridge site; (2) changes in watershed
land use like urbanization, deforestation, etc.; (3) channel stabilization and rec-
tification; (4) natural or artificial cutoff of a meander bend; (5) changes in
the downstream base level of the bridge reach, including headcuts; (6) gravel
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Figure 9.15. Bridge crossing.

mining from the streambed; (7) diver-
sion of water into or out of the stream;
(8) lateral migration of a river bend;
and (9) thalweg shifting in a braided
stream. The engineer must assess the
present state of the stream and water-
shed and consider planned future
changes in the river system.

Rivers are free to change cross-
section geometry, and the location of
the thalweg may also shift consider-
ably in time, e.g., Fig. CS.7.3.2. The
bed level may still vary considerably
as a consequence of traveling of sand
waves, bedforms, riffles, and pools in
relatively straight river reaches and
changes in pools and crossings during
flood conditions. If bed-level measure-
ments are available from previous

years, an analysis of specific-gauge data may yield some insight into the trend
to be expected in the future, e.g., see Figs. 4.7 and 7.7.

When general scour is expected to be significant, as sketched in Fig. 9.15,
it is often advisable to construct a grade-control structure downstream of the
bridge crossing. The purpose of the structure is to control the bed elevation at
the bridge site and protect the abutment and piers.

9.4.2 Contraction scour

Contraction scour results from flow acceleration in river contractions. The ap-
proach flow depth h1 and average approach flow velocity V1 result in the sedi-
ment transport rate qS1 . The total transport rate to the contraction is W1qS1 , in
which W1 is the width of the approach. If the water flow rate Q1 = W1q1 in
the upstream channel is equal to the flow rate at the contracted section, then,
by continuity,

q2 = W1

W2
q1, (9.9)

where q1 = h1V1, q2 = h2V2, and the subscript 2 refers to conditions in the
contracted section. The sediment-transport rate at the contracted section after
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Figure 9.16. Contraction scour (after
Nordin, 1971).

equilibrium is established must be

qS2 = W1

W2
qS1 . (9.10)

With reference to Fig. 9.16, the depth of
scour �z that is due to the contraction
is then

�z = h2 − h1. (9.11)

Here h1, V1, and W1 are the depth, vel-
ocity, and width of the approach flow,
respectively, and h2 is the contracted
flow depth at the bridge. The contracted
scour depth represents an average over
the channel width, and symmetry is as-

sumed in the calculation. When only one side is being contracted, the abutment
scour equation of the following subsection should be considered.

9.4.3 Abutment scour

Abutments, as well as spur dykes, can have different shapes, and they can be
set at various angles to the flow. As sketched in Fig. 9.17, the tip of earth and

Figure 9.17. Abutment scour (after Richardson et al., 1990).



Bridge scour 313

rockfill abutments will generally have a spillthrough shape when compared
with sheet piles standing as vertical walls. Local scour at abutments depends
on the amount of flow intercepted by the bridge abutments. The equilibrium
scour depth for local live-bed scour in sand near a spillthrough abutment under
subcritical flow is

�z

h1
= 1.1

(
La

h1

)0.4

Fr0.33
1 , (9.12a)

where�z is the equilibrium depth of abutment scour, h1 is the average upstream
flow depth in the main channel, La is the abutment and embankment length
measured at the top of the water surface and normal to the side of the channel
from where the top of the design flood hits the bank to the outer edge of the
abutment, and Fr1 = {V1/[(gh1)0.5]} is the upstream Froude number.

If the abutment terminates at a vertical wall and the wall on the upstream
side is also vertical, then the scour hole in sand calculated by Eq. (9.12a) nearly
doubles (Liu et al., 1961, and Gill, 1972):

�z

h1
= 2.15

(
La

h1

)0.4

Fr0.33
1 . (9.12b)

Field data for scour at the end of rock dikes on the Mississippi River indicate
that the equilibrium scour depth for spillthrough abutment scour when La/h1 >

25 can be estimated by

�z

h1
= 4 Fr0.33

1 . (9.13)

This method can be used for very long abutments when flood waters
extend onto very wide floodplains. Example 9.5 illustrates abutment scour
calculations.

9.4.4 Pier scour

Pier scour is caused by the horseshoe vortex induced by secondary flow at
the pier base [Fig. 9.18(a)]. The horseshoe vortex removes bed material away
from the base region in front of and along the side of the pier. The strength
of the vortex decreases as the depth of scour is increased. Equilibrium scour
is reached when the transport rates entering and leaving the scour hole are
equal.

The Colorado State University (CSU) equation calculates the pier scour as

�z

h1
= 2.0 K1 K2

(
a

h1

)0.65

Fr0.43
1 , (9.14)
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Figure 9.18. Pier scour (after Richardson and Davis, 1995).

where �z is the scour depth, h1 is the flow depth just upstream of the pier, K1

is the correction for pier shape from Table 9.1 corresponding to Fig. 9.18(b);
K2 is the correction for the flow angle of attack from Table 9.2, a is the pier
width and Fr1 = V1/(gh1)0.5 is the upstream Froude number.

The extent to which a pier footing or pile cap affects local scour at a pier
is not clearly determined. Under some circumstances the footing may serve to
impede the horseshoe vortex and reduce the depth of scour. In other cases in
which the footing extends above the streambed into the flow, it may increase
the effective width of the pier, thereby increasing the local pier scour. In the
calculations, the pier width can be used if the top of the pier footing is slightly

Table 9.1. Pier-type correction
factor K1 (after Richardson
et al., 1990)

Pier type K1

Square nose 1.1
Round nose 1.0
Circular cylinder 1.0
Sharp nose 0.9
Group of cylinders 1.0

Note: See Fig. 9.18(b).
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Table 9.2. Flow-angle correction factor K2

(after Richardson et al., 1990)

Correction factor K2

Attack
Angle θp (deg) L p/a = 4 L p/a = 8 L p/a = 12

0 1.0 1.0 1.0
15 1.5 2.0 2.5
30 2.0 2.5 3.5
45 2.3 3.3 4.3
90 2.5 3.9 5.0

Note: θp = skew angle of flow, L p = pier length, a = pier width.

above or below the streambed elevation. The footing width is used when the pier
footing projects well above the streambed or when general scour is expected in
the river reach.

As a rule of thumb, the scour depth is approximately two times the pier
width. In debris-laden streams or when ice jams can be expected at the bridge
site, the actual local scour may be considerably larger than that determined by
the equation. The extra scour resulting from debris or ice accumulation against
the pier must be given due consideration. Ice and debris can both produce static
and dynamic pressure up to 200 Pa on bridge piers. These forces are over and
above the static and dynamic forces caused by the traffic on the bridge and the
forces exerted on the piers by the flowing water.

When bedforms travel along the riverbed, the maximum scour depth will be
one-half the dune height, greater than the mean scour depth. The CSU equation
has been slightly modified to account for dune bedforms and for scour reduction
from bed armoring (Richardson and Davis, 1995). Scour may also be reduced
if riprap is placed around bridge piers. A riprap layer twice the design diam-
eter thick should extend between 1.5 and 6 times the pier width. Example 9.5
illustrates how to calculate the local scour depth around a bridge pier.

Example 9.5 Application to abutment and pier scour. A 200-m-long bridge
is to be constructed over a sand-bed channel with 300-m-long spillthrough
abutments 1V :2H . Six rectangular bridge piers measuring 1.5 m thick and
12 m long are aligned with the flow. At a design 100-yr flow discharge of
850 m3/s, the upstream flow velocity is 3.75 m/s and the flow depth is 2.8 m
upstream of the piers. Estimate (a) the abutment scour depth and (b) the pier
scour depth.
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(a) Abutment scour

Step 1: The approach Froude number is

Fr1 = V1√
gh1

= 3.75√
9.81 × 2.8

= 0.71.

Step 2: The ratio of abutment length La to flow depth h1 is (La/h1) = (300/2.8)
= 107.

Step 3: The abutment scour depth is calculated with Eq. (9.13) because La >

25h :

�z = 4 h1Fr0.33
1 = 4 × 2.8 × 0.710.33 = 10 m.

Guidebanks in Subsection 8.4.3 could be designed to reduce abutment scour.
(b) Pier scour

Step 1: The Froude number is Fr1 = 0.71.

Step 2: The rectangular pier shape corresponds to K1 = 1.1 from Table 9.1.

Step 3: The pier length/width ratio (L/a) = (12/1.5) = 8 and K2 = 1.0 from
Table 9.2 as long as the pier is aligned with the flow, θp = 0.

Step 4: The pier scour depth calculated from the CSU equation (9.14) is

�z = 2 h1 K1 K2

(
a

h1

)0.65

Fr0.43
1 = 2 × 2.8 × 1.1 × 1 ×

(
1.5

2.8

)0.65

(0.71)0.43

= 3.5 m.

9.5 Navigation waterways

Channel improvement for navigation is justified on the basis of savings in
commercial shipping costs. The reduced cost of moving commodities by means
of waterways instead of other modes of transportation is compared with the
costs of construction, operation, and maintenance. Navigation requirements
are discussed in Subsection 9.5.1, followed by waterway alignment and cutoffs
in Subsection 9.5.2, and locks and dams in Subsection 9.5.3.
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9.5.1 Navigation requirements

General requirements for channel depth, channel width, and lock dimensions for
commercial navigation are governed by a number of factors, including type and
volume of probable future tonnage, types and sizes of vessels, and tows in gen-
eral use on connecting waterways. Tows on the Lower Mississippi frequently
have more than 40 barges and transport 50,000 to 60,000 tons (450–540 MN)
of cargo (Fig. 9.19). Higher-powered towboats have an average of ∼3,000 hp
(2.2 MW), with three 10-ft- (3-m-) diameter, five-bladed stainless steel pro-
pellers housed in Kort nozzles. Three barge types are common: (1) open-hopper
barges for transporting coal, sand and gravel, and sulfur; (2) covered-hopper
barges for grain and mixed cargo; and (3) tank barges for petroleum and chem-
icals (Fig. 9.19). Barge sizes vary around a standard 35 ft (10.7 m) in width and
195 ft (60 m) in length.

Pilots navigate towboats at the stern of the tow with control of the engine
thrust and direction of the rudder. The navigation width depends on channel
alignment, size of tow, and whether one-way or two-way traffic is planned.
One-way traffic may be adequate when the traffic is light if the reach is relatively
straight with good visibility and if passing lanes are provided. Two-way traffic
permits heavy traffic to move faster except when tows are meeting or passing.
Figure 9.20(a) shows the recommended channel widths for commercial navi-
gation in straight channels.

Wider navigation channels are required in bends because tows take an oblique
position [shown in Fig. 9.20(b)]. The drift angle α varies with the radius of

Figure 9.19. Barge types (after Petersen, 1986).
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Figure 9.20. Navigation characteristics.

curvature of the channel; the speed, power, and design of the craft, and wind
forces; whether the tow is empty or loaded; whether the traffic is going up or
down the river; and the flow pattern. The navigation channel width is a direct
function of the drift angle, which is larger for downbound tows than for upbound
tows. For example, the drift angle for downbound tows of various sizes in a
bend with a 3,000-ft (914-m) radius is shown in Fig. 9.20(b).

9.5.2 Waterway alignment and cutoffs

Navigation is preferable in fairly straight channels or bends with long radii of
curvature. In wide channels, the waterway alignment can be controlled with
revetments, spur dykes, and longitudinal dykes. Once the radius of curvature
has been determined, the design of river alignment structures is based on the
methods discussed in Chap. 8, considering the cost and the effectiveness of
different structures.

Navigation in meandering channels usually requires straightening the river.
Cutoffs across the neck of long meander bends improve the alignment of the
river, reduce sinuosity, and shorten the river length, thus increasing the channel
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Figure 9.21. Artificial cutoff.

slope. For instance, the natural cutoffs of the Mississippi River shortened the
river by ∼50 miles (80 km). Artificial cutoffs were constructed to improve river
alignment for navigation and for flood control. Indeed, straight river reaches
are easier to navigate than long meandering rivers, e.g., Fig. 9.21. Also, steeper
gradients reduce flood stages. Historically, structural cutoffs of the Mississippi
River were prevented because they (1) disrupted the river regime, (2) aggra-
vated bank erosion upstream, (3) increased downstream shoaling stages, and
(4) produced currents difficult to navigate.

Pilot channels are excavated from the downstream end for the construction
of artificial cutoffs. Pilot channels have 1V :3H sideslopes with bottom widths
from 50 to 200 ft (15 to 60 m) and bottom elevations from 6 to 12 ft (2 to 4 m)
below the low-water reference plane. When the river length is long compared
with the pilot channel, the slope ratio if favorable for natural enlargement of the
cut and narrow pilot channels are adequate. Wider and deeper pilot channels
are initiated when there is little length or slope advantage. A parallel trench is
excavated for the placement of riprap revetment. Earth plugs near the upstream
end of the excavated pilot channels are left in place to block low flows. Plugs
are designed to be overtopped and washed out during floods after the revetment
has been completed.

An example of river alignment is shown in Fig. 9.22. A radius of cur-
vature of 8,000 ft (2.7 km) is maintained throughout the reach. The con-
struction of riprap revetments, spur dykes, and longitudinal dykes provides
flow control as long as dyke overlaps and tiebacks prevent flanking of the
structures. Note the increase in slope that is due to the reduced reach length.
Case Study 9.2 illustrates the changes in the Rhine and the Waal Rivers in The
Netherlands.
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Figure 9.22. River control for navigation.

Case Study 9.2 Control of the Rhine and the Waal Rivers, The Nether-
lands. According to RIZA (1999), people living near the Rhine River in past
centuries had to cope with flood disasters. Levees failed repeatedly during
floods. In winter, drifting ice often led to the formation of ice jams that raised
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Figure CS.9.2.1. Waal River near Tiel in The Netherlands (after Jansen et al.,
1979).

the water levels and increased the risk of levee overtopping. Levees, built on
the floodplain and groynes or spur dykes, have been built since the eighteenth
century to channelize the river, as shown in Fig. CS.9.2.1. The width of the
main channel has been reduced from more than 500 to 260 m. Islands and
sandbanks were removed, and the banks were protected from erosion with a
series of groynes spaced approximately every 200 m on both sides of the river.
As a result, the main channel of the Rhine River has eroded considerably over
the past 100 years. In the past 60 years, the Rhine’s channel at Lobith has de-
graded an average of 1–2 cm each year. This in turn threatens the stability of
the groynes and the banks.

Approximately one-third of the sediment transported by the Rhine reaches
the North Sea. The rest is deposited in the river’s lower reaches. During floods,
material deposits between the groynes and on the floodplain, particularly behind



322 River engineering

the summer levees, which is the primary reason for the double-levee system. Up
to 10 cm of sediment can deposit along the riverbanks during extended periods
of flooding.

The main navigable channel of the Waal River is currently maintained at
150 m wide with at least 2.5 m of water 95% of the time. The river engineering
challenge arises from increasing the navigation width and depth without detri-
mental effects on the environment. Measures include the use of bottom vanes
and bendway weirs to widen bends and extension of groynes and construction
of longitudinal dykes to increase the flow depth locally.

Stream rehabilitation projects do not necessarily imply restoring the stream
to natural conditions that existed before humanity appeared. Natural conditions
that existed several thousands of years ago can be looked at as reference condi-
tions. In many instances, stream restoration to ancient conditions is not a feasible
proposition. Stream rehabilitation offers a compromise between reference con-
ditions and the present situation. The present policy for stream rehabilitation
may include the vital components for mankind development and offer adequate
habitat for aquatic and riparian species as well as ensure survival of endan-
gered species. Figure CS.9.2.2 shows the present policy reflects a compromise
solution between present and referenced floodplain situations.

Figure CS.9.2.2. Floodplain management of the Rhine-Waal in The Nether-
lands (after RIZA, 1999).
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Target situations are often idealistic, and the completion of a stream rehabili-
tation project does not guarantee that the designed habitat is fit for the intended
species. Efforts to restore aquatic habitat and develop wetlands have become
an integral part of river engineering practice.

9.5.3 Locks and dams

Dams are required to sustain an adequate navigation depth, and locks allow
ships to navigate in a river steepened by artificial cutoffs. Locks and dams must
be spaced to maintain the navigation depth throughout the pools. Spacing the
dams farther apart may eliminate dams and reduce the initial cost of construc-
tion. However, maintenance dredging and channel contraction with dikes are
also required for maintaining the sediment-transport capacity of the natural
channel.

Straight reaches are desirable locations for locks because they are easier to
navigate than bends. However, straight reaches tend to be unstable with inade-
quate flow depth in the downstream approach channel. Wide straight reaches are
also prone to sedimentation. Adverse cross currents from spillway discharges
may also affect traffic in the lock approaches. In river navigation projects the
lock is usually located near the bank at one end of the dam to minimize the
adverse effects of spillway discharge on traffic. A typical lock and dam layout
is illustrated in Fig. 9.23.

A lock is a structure designed to enable vessels to gain access to lower or
higher water levels on either side of the dam. It is an open chamber with gates at
both the upper and the lower pool. Locks admit water to fill the chamber from
the upper pool and discharge to the lower pool to empty the lock, as illustrated
schematically in Fig. 9.24. A downstream-bound tow approaches a lock, the
emptying valves and lower lock gates are closed, and the water surface in the
lock chamber is brought to the same elevation as that of the upper pool by
opening the filling valves. The upper lock gates are then opened for the tow to
move into the lock chamber. The upper lock gates and filling valves are then
closed, and the emptying valves are opened to bring the water surface in the
lock down to the level of the lower pool. The lower lock gates are then opened,
and the tow moves out of the lock chamber into the lower pool. The procedure
is reversed for a tow moving upstream. Locks are designed to provide adequate
depth for navigation. Undersized locks may force large tows to be very slow and
cautious when entering a lock chamber. Large locks are not only more expensive,
but they require longer filling and emptying times. Filling and emptying times
for a lock are designed to be as short as possible without excessive turbulence,
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Figure 9.23. Lock and dam (after Petersen, 1986).

surges, or crosscurrents in the lock chamber that might damage the tow or cause
the tow to damage the lock.

Locks fill and empty through culverts and ports in or on the chamber floor
or at the base of the lock walls. Deep locks provide a cushion of water to
dampen turbulence so that tows are not damaged and stresses in the hawsers
(the cables that secure tows to the lock walls) are within acceptable limits.
In the lock chamber, shown in Fig. 9.25, flow from the wall culverts pass
into a crossover culvert across the center of the lock chamber. The splitter
wall at the crossover culvert distributes flow equally into two longitudinal
floor culverts with ports. Ports in the upper guard wall reduce crosscurrents
by permitting the flow intercepted by the lock to pass through the wall to
the spillway. The total cross-sectional area of port openings in the guard wall
should be equivalent to the cross-sectional area of the approach channel. Up-
per guard wall ports should be designed as low as possible to increase bottom
velocities and reduce shoaling. Currents and velocities from a lock-emptying
system can be dangerous to tows approaching the lower lock. The lock emp-
tying outlet should be outside the lower lock approach. However, when the
discharge outlet is located outside the lock approach, the water-surface el-
evation at the outlet sometimes may be higher than that in the lower lock
approach, resulting in difficulty in opening the lower lock gates. The outlet
discharge manifold in the lower lock approach can induce turbulence to reduce
shoaling.
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Figure 9.24. Navigation through a lock (after Petersen, 1986).

9.6 Dredging

Dredging is the process of removing material from the bed or the banks of a
waterway for the purpose of deepening or widening navigation channels or to
obtain fill material for land development. Dredging is a very costly operation
(in excess of U.S. $1.00 per cubic yard) that requires heavy equipment and
long pipelines. Dredging equipment can be classified as either mechanical or
hydraulic. Mechanical dredges (Fig. 9.26) lift the dredged material by means of
diggers or buckets. Hydraulic dredges pick up the dredged material by means
of suction pipes and pumps. Mechanical dredges remove bed material by a
dipper or bucket, and the excavated material is dumped into disposal barges for
unloading at the disposal site. Mechanical dredges are usually not self-propelled
and must be towed to the work site.

Dipper dredges have considerable digging power to excavate hard compacted
material and blasted-rock fragments. It can operate with very little maneuvering
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Figure 9.25. Flow pattern through a lock (after Petersen, 1986).

space and can be accurately controlled in the vicinity of bridges and other
structures. Bucket dredges use interchangeable buckets (clamshell, orange peel,
dragline) for different operational purposes. An open bucket digs into 12 yd3

(9 m3) of bed material, and then closes to be raised and emptied. A modified
system in which buckets are fixed on a conveyor belt has also been used in
Europe. Considerable fine material is lost from the bucket as it is raised from
depths up to 100 ft (30 m), and the maximum concentration of the suspended
turbidity plume is typically less than 1,000 ppm.

Hydraulic suction dredges, shown in Fig. 9.27, can be categorized by means of
picking up the dredged material (cutterhead, plain suction, and dustpan dredges)
and by means of disposal of the dredged material (hopper, pipeline, and sidecast-
ing dredges). Hopper dredges, sketched in Fig. 9.27(a), are self-propelled sea-
going vessels used primarily for maintenance dredging and progressive deepen-
ing by successive passes. Hopper dredges draw concentrated material in contact
with the channel bottom through suction pipes and store it in hoppers in the
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Figure 9.26. Mechanical dredges (after U.S. Army Corps of Engineers, 1983).

dredge. Sediment resuspension occurs near the suction lines at concentrations
of a few parts per thousand, and up to several tens of parts per thousand when
there is overflow from the hoppers. When fully loaded, the dredge moves to the
disposal area under its own power. Hopper dredges are emptied by opening of
the bottom doors and dumping of the entire contents in a few seconds. A well-
defined plume of dredged material entrains water as it settles to the bottom. Most
of the material forms a mound on the bottom, and some spreads horizontally.

Sidecasting dredges are self-propelled seagoing vessels designed to remove
material from shallow coastal harbors. A sidecasting dredge picks up bottom
material through two suction pipes and pumps it directly overboard beside
the dredge. The dredge operates back and forth across the bar, successively
deepening the channel on each pass. Sidecasting dredges are not suitable for
dredging contaminated material.

Hydraulic pipeline dredges loosen the bottom material with a cutterhead or
with water jets (dustpan dredges). The slurry is then pumped through a floating
discharge line to the disposal site. Dustpan dredges [Fig. 9.27(b)] are self-
propelled vessels suitable for dredging only noncohesive material in waters
without significant wave action. Dustpan dredges are equipped with: (1) press-
ure water jets that loosen the bottom material; and (2) a wide-flared and flat
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Figure 9.27. Suction dredges (after U.S. Army Corps of Engineers, 1983).

suction line intake for sediment removal. It normally discharges into open water
through a relatively short pipeline, up to 100 ft (30 m) long; a longer disposal
line requires a booster pump.

Cutterhead dredges are the most efficient and versatile, and thus the most
widely used. The cutterhead dredge shown in Fig. 9.27(c) has a rotating cutter
around the suction pipe intake and can dig and pump alluvial material including
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Figure 9.28. Cutterhead dredge with
pipeline (after U.S. Army Corps of En-
gineers, 1983).

compacted clays and hardpans. Suction
pipe diameters range from 8 to 30 in.
(20 to 90 cm). The cutterhead dredge
sketched in Fig. 9.27(c) consists gen-
erally of a cutterhead, baskets, ladder,
suction line, A-frame, H-frame, pumps,
gantry, spuds, and a pipeline up to 30 in.
(90 cm) in diameter.

A cutterhead dredge operates by cir-
cling about one anchored spud with the
cutterhead describing an arc. As the
swing is completed, the second spud is
anchored and the first one raised to cir-
cle in the opposite direction and move
forward, as illustrated in Fig. 9.28.

The floating discharge line is made up
of 30–50-ft- (9–16-m-) long pipe sections, each supported by pontoons. They are
connected together by flanges, ball joints, or rubber sleeves to give the dredge
some flexibility in moving. Land pipeline disposal can range up to 3 miles
(5 km) without additional sections of shore pipe. For longer transport distances,
booster pumps are required on the discharge line. Slurries of 10%–20% sediment
concentration by weight are typically pumped in pipelines up to 30 in. (90 cm)
in diameter at velocities ranging from 15 to 20 ft/s (5 to 8 m/s).

According to Petersen (1986), the disposal of dredged material has received
considerable environmental consideration since the 1960s. Not all dredged ma-
terial is contaminated, and only a small percentage of the sites are highly con-
taminated. Clay content and organic matter in dredged material tend to retain
many contaminants, and sands easily release contaminants through mixing, re-
suspension, and transport. Adverse water quality effects are unlikely unless the
dredged material is highly contaminated. The physical impacts of open-water
disposal are likely to be of greater potential consequence than the chemical and
the biological impacts. Adverse biological effects are often unlikely because
many organisms usually recolonize disposal sites. Except during fish migration
and spawning, turbidity in river waters is more likely to be an aesthetic problem
than a biological problem.

Confined land disposal is sometimes the only possible alternative for dis-
posing of some highly polluted sediments. The dredge material is ponded until
the suspended solids have settled out. The long-term storage capacity of land
disposal sites depends on consolidation of the dredged material, compressibility
of foundation soils, effectiveness in dewatering the dredged material, and
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management of the site. Case Study 9.3 illustrates how recurring dredging
problems can be alleviated with flow-control structures.

Case Study 9.3 Dredging at Choctaw Bar of the Mississippi River, United
States. In this river engineering case study from Phil Combs (USACE WES,
1998), Choctaw Bar is an important location along the Mississippi River. The
Choctaw Bar area is located between river mile 557–565 AHP (above head
of passes) on the Mississippi River. It is located ∼17 river miles upstream of
Greenville, Mississippi. The small town of Arkansas City, Arkansas, is located
adjacent to Choctaw Bar and is protected by the Mississippi River Mainline
levee. Choctaw Bar is located on the right descending bank of the river, and
the Eutaw-Mounds revetment is located on the left descending bank. Stabi-
lization of the left bank began as early as 1947 and has continued until the
present, costing more than $10 million. Stabilization of the river in this reach
was critical as levee crevasses had occurred many times in the past and the
mainline levee is relatively close to the river. In addition to the stabilization
of the left bank, dikes have been constructed on the right bank. Dikes in
the vicinity of Chicot Landing were constructed in 1968 for approximately
$1.2 million.

Stabilization of the river is for flood protection and to ensure a 9-ft-deep navi-
gable channel. Channel maintenance for navigation has become a significant
problem within the reach. Table CS.9.3.1 lists the channel maintenance dredging
for the years 1971–1973.

Review of the 1972 hydrographic surveys indicates that a bar in the vicinity
of mile 559 AHP essentially blocked the navigation channel. Table CS.9.3.1 of
maintenance dredging reflects the attempt to maintain the channel by mechani-
cal means. The 1972 hydrographic surveys also indicate that there is a consider-
able chute cutoff development on the right bank, as shown in Fig. CS.9.3.1(a).

Regular discharge measurements have been taken to establish the flow dis-
tribution in the channel and the right chute. The flow in the chute has increased
to the point that, in 1972, ∼50% of the total river flow was passing through the
chute.

Table CS.9.3.1. Dredging data
(after Combs, USACE WES, 1998)

Year Days Cubic Yards

1971 15 404,000
1972 27 1,531,000
1973 71 4,121,000
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Figure CS.9.3.1. Dredging at Choctaw bar of the Mississippi River (after
Combs, USACE, WES, 1998).

Additional information includes the facts that: (1) the left bank has been
stabilized; (2) rock dikes are located generally on the right-hand side of the
channel; and (3) contours on plan sheets refer to elevations in feet relative to the
low water reference plane (LWRP). The LWRP is the water-surface elevation
plane corresponding to the discharge exceeded 97% of the time on the flow
duration curve. The elevation of the LWRP shown on the plan sheets is varying
from 97–100 ft NGVD (National Geodetic Vertical Datum). NGVD elevations
are identical to above mean-sea-level (MSL) elevations.
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The assignment has been to develop an engineering plan to provide depend-
able navigation through the reach. The plan should utilize and enhance the ex-
isting stabilization infrastructure in the reach, if at all possible. The plan should
consider that the aquatic ecosystem in the right chute is a valuable resource.
Additionally, the plan should not conflict with the overall flood carrying capacity
of the river. If the existing infrastructure cannot be used, sufficient engineering
and environmental justification has to be provided to alter the plan.

Figure. CS.9.3.1(b) shows the structural solution proposed by the U.S. Army
Corps of Engineers and the topography at Choctaw Bar in 1992. Note the effect
of reduced channel width on flow depth and ease of navigation.

�Problem 9.1

During a river closure by the end-dumping method, the water-surface elevation
drops ∼15 ft, or 4.5 m, within a short distance. Estimate the stone diameter and
the stone weight required for closure.

Answer: ds � 3 ft (90 cm) and FW � 2,200 lb (10 kN).

�Problem 9.2

Estimate the scour depth below a plunging jet at a velocity of 18 ft/s (5.5 m/s)
at an angle of 60◦ from the horizontal. The jet thickness is 1 ft (30 cm) and the
tailwater depth is 6 ft (1.8 m). Sand covers a thick layer of gravel ∼5 ft (1.5 m)
below the surface.

Answer: �z � 5.8 ft (1.8 m).

��Problem 9.3

Estimate the scour depth below the sluice gates of Example 9.2 when the opening
is 1 m high. Determine the flow velocity, assuming conservation of energy on
both sides of the gate.

Answer: V1 � √
2gh = 9.9 m/s, q = V h = 9.9 m2/s,

V2 � 2 m/s,�z � 12 m.

��Problem 9.4

Estimate the scour depth below the grade-control structure in Example 9.3
when
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(a) the discharge is 320 m3/s
(b) for scour in medium sand (Q = 160 m3/s).

��Problem 9.5

Estimate the scour depth below a 2-ft-diameter culvert flowing full at a velocity
of 15 ft/s.

Answer: The discharge Q =47 ft3/s (1.33 m3/s) and�z � 5 ft (1.5 m).

Problem 9.6

Repeat the length calculations for the settling basin in Example 9.4 for a width
of 60 m and show that the basin area is 3,450 m2. Also determine the trap
efficiency of a basin area of 2,000 m2.

Answer: TE = 74%.

��Problem 9.7

Calculate the local scour depth at the end of a 100-m-long spillthrough abutment
in a river flowing at a velocity of 3 m/s and a flow depth of 4 m. If the water
spreads 200 m farther out the floodplain during floods, estimate the scour depth,
considering that the Froude number does not change significantly.

Answer: The scour depth for Eq. (9.12a) is 12.5 m and does not change
during floods because La > 25 h1.

��Problem 9.8

Estimate the scour depth around a rectangular pier that is 1 m wide and 5 m
long in a river that is 4 m deep. The flow velocity is 3 m/s at an angle of 30◦

from the pier alignment.

�Problem 9.9

Reevaluate the pier scour depth from Example 9.5 should the flow alignment
against the pier change to 20◦ in the coming years.

Answer: At L p/a = 8, θp = 20◦, and K2 � 2.2 from Table 9.2, the
scour depth would more than double at �z = 7.7 m.
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Physical river models

Physical models of rivers have existed at least since 1875, when Louis Jerome
Fargue built a model of the Garonne River at Bordeaux. Physical models are usu-
ally built to test various river engineering structures and to carry out experiments
under controlled laboratory conditions as opposed to costly field programs. The
main purposes of physical models include: (1) a small-scale laboratory dupli-
cation of a flow phenomenon observed in a river; (2) the examination of the
performance of various hydraulic structures or alternative countermeasures to
be considered in the final design; and (3) investigation of the model performance
under different hydraulic and sediment conditions.

This chapter first describes hydraulic similitude in Section 10.1 in terms
of geometric, kinematic, and dynamic similitude. Hydraulic models can be
classified into two categories: (1) rigid-bed models, discussed in Section 10.2
and (2) mobile-bed models, discussed in Section 10.3. The analysis leads to
the definition of model-scale ratios, and several examples and case studies are
presented.

10.1 Hydraulic similitude

The prototype conditions, denoted by the subscript p, refer to the full-scale
field conditions for which a hydraulic model, subscript m, is to be built in the
laboratory. Model scales, subscript r, refer to the ratio of prototype to model
conditions. For instance, the gravitational acceleration in the prototype is gp, the
gravitational acceleration in the model is gm , and the scale ratio for gravitational
acceleration is defined as gr = gp/gm . Hydraulic models usually have the same
gravitational acceleration in the model and the prototype; thus gr = 1.

For all scale models, the following considerations are relevant: (1) the model
length must be large enough to ensure the accuracy of the measurements, e.g.,
a flow-depth measurement error of 1 mm in a model at a scale of 1:100, or
zr = 100, represents an error of 10 cm in the prototype flow-depth measurement;
(2) we must consider the physical limitations on space, water discharge, and

334
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instrumentation accuracy, e.g., we cannot realistically model the Mississippi
River in a 100-m-long hydraulics laboratory; and (3) we must appropriately
simulate the boundary conditions, e.g., the stage and the discharge of inflow
tributaries, and the possible tidal effects at the downstream end must be properly
accounted for.

Hydraulic models use water and require that the scales of mass density ρr

and kinematic viscosity νr be unity. Because the scale ratio for gravitational
acceleration gr = 1, the scale for specific weight γr and dynamic viscosity µr

are also unity; thus ρr = gr = νr = γr = µr = 1 in hydraulic models.
Geometric similitude describes the relative size of two Cartesian systems of

coordinates (x, y, z). The vertical zr length scale is defined as the ratio of the
prototype vertical length z p to the model vertical length zm such that zr = z p/zm .
For instance, a length scale zr = 100 indicates that a model length of 1 m
corresponds to a prototype length of 100 m. The horizontal length scales are
defined in a corresponding manner in the downstream x and lateral y directions
as xr and yr . Exact geometric similitude is obtained when the vertical and
the horizontal length scales are identical, i.e., Lr = xr = yr = zr . The corres-
ponding area and volume scales are respectively Ar = L2

r and Volr = L3
r . If

accurate quantitative data are to be obtained from a model study, there must be
exact geometric similitude in every linear dimension. Model distortion implies
that the vertical zr and the lateral yr scales are not identical. The distortion
factor is obtained from the ratio of yr/zr . Model tilting results from different
vertical zr and downstream horizontal xr scales. The downstream model slope
Sr = zr/xr is effectively tilted when the horizontal length scale is different from
the vertical scale. In a distorted model, the surface area scales for horizontal
and cross-sectional surfaces are respectively Ar = xr yr and Axr = zr yr . The
volume scale for a distorted model corresponds to Volr = xr yr zr .

Kinematic similitude refers to parameters involving length and time, e.g.,
velocity V, acceleration a, kinematic viscosity ν, etc. For instance, the velo-
city scale Vr is defined as the ratio of prototype to model velocities as Vr =
Vp/Vm . The time scale tr = tp/tm appropriately describes kinematic similitude
when fluid motion in the model and the prototype are similar. With the kine-
matic relationships that L = V t and V = at , time can be canceled from these
two relationships to obtain V 2 = aL . Any experiment in which the gravita-
tional acceleration is the same in the model and the prototype requires that
ar = gr = 1. When applied to the model and the prototype, this relationship
yields one of the most important kinematic relationships in physical modeling:

Vr

z 0.5
r

= 1. (10.1) ��
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This is known as the Froude similitude criterion. Accordingly, the time scale and
the velocity scales for exact kinematic similitude are identical, tr = Vr = z0.5

r .
It is important to consider that the time scale for distorted and tilted models
varies with direction. Distorted and tilted models are restricted to simulate
1D flows and time scales for flow velocities in the y and the z directions are
irrelevant. Distorted and tilted models therefore cannot appropriately account
for 2D and 3D convective and turbulent accelerations and should not be used
to model vorticity, diffusion, turbulent mixing, and dispersion.

Dynamic similitude implies a similarity in the dynamic behavior of fluids.
Dynamic similitude refers to parameters involving mass, e.g., mass density ρ,
specific weight γ , and dynamic viscosityµ. For instance, the mass-density scale
ρr is defined as the ratio of prototype to model mass densities as ρr = ρp/ρm .
The mass scale Mr = Mp/Mm appropriately describes dynamic similitude, be-
sides the readily defined length and time scales. The basic concept of dynamic
similitude is that individual forces acting on corresponding fluid elements must
have the same force ratio in both systems. Individual forces acting on a fluid
element may be due either to a body force such as weight in a gravitational
field, or surface forces resulting from pressure gradients, viscous shear, or sur-
face tension. The resulting inertial force necessitates that the force polygon be
geometrically similar.

Gravitational and viscous effects are respectively described by the Froude
number Frr = Vr/(gr zr )0.5 and the Reynolds number Rer = Vr zr/νr . In hy-
draulic models, the Froude and the Reynolds numbers, i.e., Frr = Rer = 1, can
be simultaneously satisfied only when V 2

r /zr = Vr zr , which is the trivial full
scale Vr = zr = 1. We thus conclude that exact similitude of all force ratios in
hydraulic models is strictly impossible except at full scale. Of course, forces that
are negligible compared with others will not affect the force polygon. There-
fore the art of hydraulic modeling is to center the analysis around the force
components that are dominant in the system.

The art of hydraulic modeling thus consists of determining whether grav-
ity or viscosity is the predominant physical parameter and to determine the
scale parameters accordingly. This approach is reasonable as long as either
gravitational or viscous terms can be neglected. In open channels, gravitational
effects are typically predominant and resistance to flow does not depend on
viscosity as long as flows are hydraulically rough. In most river models, how-
ever, the weight force ratio Fgr = ρr L3

r gr should balance the inertial or hydro-
dynamic force Fir = ρr L2

r V 2
r . The ratio of inertial to weight forces implies

that Fir/Fgr = V 2
r /Lr gr = 1, which is simply the Froude similitude criterion.

The Froude similitude criterion thus satisfies similarity in the ratio of iner-
tial to weight forces. We also recognize that the Froude number also properly
scales the ratio of velocity head to flow depth. Consequently Froude similitude
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describes similarity conditions in specific-energy diagrams for the model and
the prototype. The Froude similitude is therefore useful in describing rapidly
varied flow conditions.

10.2 Rigid-bed model

Rigid-bed models are built to simulate flow around river improvement works
and hydraulic structures. A rigid boundary implies that the bed is fixed, i.e.,
no sediment transport. This is the case when the Shields parameter of the bed
material is τ∗ < 0.03. Rigid-bed model scales can be determined in either one
of two cases: (1) exact geometric similitude, in which resistance to flow can
be neglected; and (2) distorted/tilted models, in which resistance to flow is
important. Exact geometric similitude and Froude similitude can be simul-
taneously maintained in rigid-bed models only when resistance to flow can be
neglected (Subsection 10.2.1). Such models are well suited to the analysis of
3D flow around hydraulic structures, in which sediment transport is not impor-
tant. When long river reaches are considered and resistance to flow cannot be
neglected, both the Froude and the resistance similitude can be simultaneously
satisfied in tilted/distorted models (Subsection 10.2.2).

10.2.1 Exact Froude similitude

The model scales for hydraulic models with exact geometric similitude can be
determined from the Froude similitude criterion. Exact geometric similitude is
required when the flow is 3D and when vertical accelerations are not negligible.
This type of model is particularly well suited for modeling the flow near hy-
draulic structures. The scale ratios for hydraulic models with exact geometric
similitude reduce to Vr = tr = L0.5

r and Mr = L3
r . All other scale ratios can

be derived from the length, time, and mass scales by use of the fundamental
dimensions of any considered variable. The scale ratio for several variables is
listed in the third column of Table 10.1.

The exact geometric similitude imposes constraints that are usually difficult
to work with in modeling river reaches. Scaling the size of roughness elements
according to the length scale will maintain the same resistance parameter as
long as Re∗ > 70 for both the model and the prototype. In practice, this is pos-
sible for only very coarse bed channels such as cobble and boulder bed streams.
The difficulty with the undistorted (untilted) Froude similitude criterion is that
the near-bed conditions are drastically changed. Indeed, the laminar sublayer
thickness δ in hydraulic models is relatively too thick. For instance, it requires
a scale δr = (u∗r )−1 = (Lr )

1/2
. A strict geometrical similitude cannot be main-

tained because the length similitude requires very small particles whereas scale
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modeling produces a very large laminar sublayer thickness in the model. In
the hydraulically smooth regime, resistance to flow increases as the Reynolds
number decreases, and resistance to flow will be larger for the model than for
the prototype. Exact similitude of near-bedflow conditions cannot be preserved
when the same fluid is used because the viscous effects cannot be neglected.
Exact similitude in these cases would require different fluids for the model and
the prototype.

10.2.2 Froude similitude for tilted river models

Model distortion and tilting is viewed as a feasible practical alternative. Model
distortion and tilting are acceptable only when vertical and lateral accelerations
of the water can be neglected with respect to the gravitational acceleration. This
practical solution allows the use of different scales for flow depth and sediment
size. The model is distorted when yr �= zr and tilted when xr �= zr , which should
be appropriate for near 1D flow conditions. Rigid-bed hydraulic models re-
quire that resistance to flow be the same for the model and the prototype. In the
hydraulically rough regime, Re∗ > 70, resistance to flow depends on relative
submergence h/ds . The governing equation to be preserved in gradually va-
ried flow models with rigid boundaries is the resistance relationship Sr = fr Fr 2

r

whereby tilting is required because Frr = 1 and dsr �= 1. In general terms, resis-
tance to flow can be defined as

√
8/ f = a(h/ds)m where m = [1/(ln 12.2 h

ds
)].

The governing equation of similitude for resistance to flow can be written as

Fr2
r = zr

xr

(
zr

dsr

)2 m

. (10.2)

As a particular case, according to Strickler’s relationship between Manning co-
efficient n and bed roughness diameter n ∼ d 1/6

s , the Manning–Strickler equa-
tion corresponds to m = 1/6.

The model scales in distorted Froude models must simultaneously satisfy the
Froude and the Manning–Strickler similitude criteria. The Manning–Strickler
similitude criterion in a distorted model is defined as(zr/dsr)1/6[(z1/2

r S1/2
r )/Vr] =

1. A tilted hydraulic model Sr = zr/xr �= 1 that satisfies the Froude similitude
Frr = 1 implies that dsr = z 4

r /x
3

r . According to this relationship, the user has
2 degrees of freedom in selecting two of the three scale parameters, xr , zr ,
or dsr . During the calibration of rigid-boundary models, model roughness is
typically increased when disproportionately large blocks and sticks are used to
reproduce a stage–discharge relationship comparable with that of the prototype.
The modeling of design structures with distorted rigid-boundary models thus
requires the intuition and judgement of experienced engineers. The scale ratios
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for a distorted rigid-bed model are presented in column 4 of Table 10.1 and a
calculation example is presented in Example 10.1.

Model distortion is often encountered in engineering practice whereby the
flow depth is increased compared with that of exact similitude. A distorted
model with different horizontal and vertical scales allows different scales for
the bed material and for flow depth. The practical interest in distorted models is
that in increasing flow depth and decreasing resistance to flow, and the model
user can empirically increase the size of roughness elements until the model
results compare with field measurements. The model is then said to be cali-
brated. Because the kinematic similarity is not exact, however, any attempt to
determine kinematic properties such as streamlines and turbulent mixing cannot
be properly scaled in distorted models.

Example 10.1 Application to a tilted-rigid-bed model. A 2,000-m gravel-
bed river reach has a flow depth of 2 m, a width of 50 m, and a mean velocity
of 0.3 m/s. If the prototype Manning coefficient n = 0.025 and d50 = 5 mm,
determine the model scales. The maximum length in the laboratory is 20 m.

The prototype Froude number is

Frp = Vp√
gh p

= 0.3√
9.81 × 2

= 0.0677,

and the prototype slope is

Sp
∼= n2V 2

h 4/3
= 0.0252 × 0.32

2 4/3
= 2.23 × 10−5.

The Shields parameter is

τ∗p = h p Sp

(G − 1) dsp

= 2 × 2.23 × 10−5

1.65 × 0.005
= 0.005 < 0.03.

Therefore a rigid-bed model is appropriate.
The length scale xr = (x p/xm) = (2,000/20) = 100 or a model depth of

hm = h p/hr = 2/100 = 0.02 m and an exact Froude similitude gives
Vr = √

xr = 10, and the model velocity Vm = Vp/Vr = 0.03/10 = 0.03 m/s.
The corresponding model Reynolds number is Rem = [(Vm hm)/ν] = [(0.03 ×
0.02)/(1 × 10−6)] = 600 and the model flow would be laminar.

Model distortion is necessary in order to increase the accuracy of flow-depth
and velocity measurements and to guarantee turbulent flow in the model. The
user has 1 degree of freedom in selecting either the vertical scale, the slope, or
the size of roughness elements. The vertical scale is arbitrarily set as zr = 25
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or a flow depth of 8 cm. The model Reynolds number would then be

Rem = Rep

Rer
= Vp h p

νz 3/2
r

= 2 × 0.3

1 × 10−6 × 251.5
= 4,800.

Model scales are calculated from column 4 of Table 10.1 for tilted rigid beds.
For example, planform geometry is similar when yr = xr = 100. The model
velocity is Vm = (Vp/Vr ) = (Vp/

√
zr ) = 0.3/

√
25 = 0.06 m/s, and the time

scale is tr = xr z−1/2
r = (100/

√
25) = 20. The model discharge is Qm =

Q p/Qr = VpWph p/yr z 3/2
r = [(0.3 × 50 × 2)/(100 × 253/2)] = 0.0024 m3/s.

The tilted model slope is Sm = Sp/Sr = Sp/zr x−1
r = 2.23 × 10−5 × 100/25 =

8.9 × 10−5. The size of the roughness elements should be dsm = dsp/dsr =
dsp x 3

r /z
4
r = 0.005 1003/254 = 13 mm. In this type of model, resistance blocks

or plates would be placed on a smooth surface until the field stage–discharge
conditions can be adequately duplicated. This is a trial-and-error calibration
procedure.

10.3 Mobile-bed river models

Mobile-bed models are useful when sediment transport is significant, e.g., when
τ∗ > 0.06. Typical examples include drop structures, local scour, erosion below
spillways, sills, locks and dams, reservoir sedimentation, etc. The bed mobility
provides 1 additional degree of freedom in selecting the mass density of sedi-
ment. Similitude in sediment transport is obtained when the Shields parameter
τ∗ and the dimensionless grain diameter d∗ are similar in both systems, i.e.,
τ∗r = 1 and d∗r = 1. Of course, these conditions also imply that Re∗r = 1 be-
cause τ∗d3

∗ = Re 2
∗ .

There are four similitude criteria for mobile-bed models: (1) Froude simili-
tude; (2) resistance, e.g., Manning–Strickler; (3) dimensionless grain diameter;
and (4) bed-material entrainment or Shields parameter. These four similitude
criteria must be simultaneously satisfied in river reaches with rapidly varied
flow and sediment transport. The governing criteria involve seven parameters:
Vr , gr , zr , dsr , Sr , (G − 1)r , and νr . Hydraulic models with gr = νr = 1 and
four equations of similitude leave only 1 degree of freedom, e.g., the model
length scale zr , besides the lateral scale yr , which is not specified by the equa-
tions. The model is tilted because the equations impose Sr = zr/xr . For in-
stance, the user may prefer a model that is undistorted but tilted, yr �= zr , to a
distorted and tilted model that preserves planform geometry xr = yr .

The mobile-bed similitude is said to be complete, with 1 degree of freedom,
when the four equations of similitude are simultaneously satisfied (Subsec-
tion 10.3.1). When complete similitude is impossible, it is sometimes possible
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to sacrifice one of the governing equations for an additional degree of freedom
(Subsection 10.3.2).

10.3.1 Complete mobile-bed similitude

It is important to acknowledge that complete mobile-bed similitude implies
that the downstream direction is dominant and the accelerations in the lateral
and the vertical directions are negligible. Complete mobile-bed similitude is
therefore essentially suitable for 1D sediment-transport processes. Similitude
in dimensionless particle diameter d∗r = 1 in hydraulic models imposes the
following relationship between the particle diameter and the particle density:

d3
sr = 1

(G − 1)r
. (10.3)

It is clear from this relationship that hydraulic models require very light sediment
when large particles are used in the model.

The properties of light material commonly used in practice are listed in
Table 10.2. It is interesting to note that, for prototype sediment at a specific
gravity of 2.65, any lightweight material corresponds to a specific scale ratio
for the particle diameter.

Table 10.2. Lightweight sediment properties for mobile-bed models

Specific gravity Typical size
Material G ds (mm) Comment

Polystyrene 1.035–1.05 0.5–3 Durable but difficult to wet
and tends to float

Gilsonite 1.04
Nylon 1.16 0.1–5

(polyamidic resins)
Lucite 1.18
PVC 1.14–1.25 1.5–4 Hydrophobic
Perspex 1.18–1.19 0.3–1 Dusty
Acrylonitrile butadiene 1.22 2–3 Adds detergent against

styrene air-bubble adherence
Coal 1.2–1.43 0.3–4 Possible inhomogenity in

(up to 1.6) specific gravity and sorting
Ground walnut 1.33 0.15–0.41 Deteriorate in 2–3 months,

shells color water (dark brown)
Bakelite 1.38–1.49 0.3–4.0 Porous, tends to rot, changes

diameter, and floats
Pumice 1.4–1.7
Loire sand 1.5 0.63–2.25 Dusty
Lytag (fly-ash) 1.7 1–3 Porous
Quartz sand 2.65 0.1–1
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Similitude in Shields parameter τ ∗r = 1 imposes the following relationship
between the particle diameter and the slope similitude Sr :

τ ∗r = zr Sr/[(G − 1)r dsr ] = 1. (10.4)

It is clear from Eqs. (10.3) and (10.4) that in order to simultaneously satisfy
d∗r = 1, Sr = zr/xr , and τ∗r = 1, the condition dsr = x 1/2

r /zr must be satisfied.
The scale ratios are obtained from simultaneously satisfying Eqs. (10.1)–(10.4).
In a nutshell, the particle-diameter scale dsr is directly obtained as a result of
the Manning–Strickler relationship and the Froude similitude dsr = z 4

r /x
3

r .
The density of the sediment is then obtained from the dimensionless particle
diameter such that (G − 1)r = x 9

r /z
12
r . Finally, by substitution into the Shields

equation, the condition that satisfies the same Shields parameter imposes that
zr = x 7/10

r . This condition further simplifies previous requirements as dsr =
x−0.2

r and (G − 1)r = xr
0.6.

The criterion for sediment suspension based on settling velocity ω can be
defined from ω = 8(ν/ds)[(1 + 0.0139 d3

∗ )0.5 − 1]. The settling velocity scale
in water is thus ωr = 1/dsr as long as d∗r = 1. The criterion for sediment sus-
pension is defined from identical values of the ratio of shear velocity to settling
velocity, or ωr/u∗r = 1. This leads directly to dsr = x1/2

r /zr , which is identical
to the condition previously obtained from the Shields parameter. We can thus
conclude that similitude in Shields parameter is equivalent to similitude in the
ratio of bedload to sediment suspension, provided that d∗r = 1. This strengthens
the requirement that d∗r = 1 and τ∗r = 1 for similitude in sediment transport.

Similitude in bedload sediment transport can be determined from the
Einstein–Brown relationship as qbv/ωds = f (τ∗), in which, with ωr = 1/dsr

when d∗r = 1, we obtain directly qbvr = f (τ∗r ). It is interesting to note that
qbvr = 1 when τ∗r = 1, which again strengthens the requirement for similitude
in Shields parameter through τ∗r = 1.

Bed aggradation and degradation relates to the sediment continuity relation-
ship applied to bedload discharge written in 1D form as ∂qb/∂x = −p0(∂z0/∂ts),
where qb is the unit bedload discharge, p0 is the porosity of the bed material, z0

is the bed-elevation, and ts refers to time. The time scale for bedload motion tsr

that describes bed-elevation changes is then obtained as tsr = [(p0r zr xr )/qbr ].
It can be assumed that the porosity ratio p0r = 1. This time ratio refers to the
sedimentation time scale that is useful in the analysis of local bed-elevation
changes through local scour, bedforms, and changes in bedload transport. The
time scale for bed-elevation changes is different from the time scale obtained
from the Froude similitude criterion.

In diffusion–dispersion studies, the time scale for vertical mixing can be
estimated from tvr = zr/u∗r comparatively with the time to lateral mixing given
by ttr = y2

r /zr u∗r . Of course these two scales are equivalent only as long as
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the model is not distorted. Also, the length scale for vertical mixing is xvr =
[(zr Vr )/u∗r ] is comparable with the length for lateral mixing given by xtr =
Vr y2

r /zr u∗r . These length scales are compatible for only undistorted models.
The scale ratios for rapidly varied mobile-bed models are listed in column 5 of

Table 10.1. Example 10.2 illustrates how to calculate the scale ratios for mobile-
bed models. In practice, complete mobile-bed similitude is somewhat restricted
to model scales that are not too small (approximately zr < 25) because larger
scale models necessitate unreasonably light material.

Example 10.2 Calculation of complete mobile-bed similitude. Consider
the model of a large sand bed at a flow depth of 8 m and a velocity of 2 m/s. The
slope is 7 × 10−5, and the discharge is 40,000 m3/s. Determine the scale ratios
for complete similitude at zr = yr = 100. The prototype Shields parameter is

τ∗p = h p Sp

(G − 1)pdsp
= 8 × 7 × 10−5

1.65 × 0.0002
= 1.7 > 0.03.

The bed is mobile and the value of m = [ln( 12.2 × 8
0.0002 )]−1 = 0.076. The scale

ratios for the following parameters are obtained from column 5 of Table 10.1:

m = 0.0763
downstream distance xr = 1001.21 = 266

model particle diameter dsm = dsp

dsr
= 0.2 mm

100−0.393
= 1.2 mm

time scale tr = 1000.71 = 26.6
time scale of bed tsr = 1002.21 = 26,300

model velocity Vm = Vp

Vr
= 2 m/s

10
= 0.2 m/s

model discharge Qm = Q p

Qr
= 40,000 m3/s

1005/2
= 0.4 m3/s

model slope Sm = Sp

Sr
= 7 × 10−5

100−0.21
= 1.9 × 10−4

model sediment density (G − 1)m = (G − 1)p

1001.18
= 1.65

230
= 7 × 10−3.

Gm = 1.007, which is lower than the density of polystyrene.

An incomplete mobile-bed model will unfortunately be indicated at this
model scale.

10.3.2 Incomplete mobile-bed similitude

When the conditions for complete similitude are not practically possible, one
constraint can sometimes be sacrificed in order to benefit from an additional
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degree of freedom. As the model further deviates from complete similitude,
there is a greater risk that the model may yield incorrect results. There are ne-
vertheless a number of possibilities, depending on which conditions of simili-
tude should be preserved in both the model and in the prototype. Two types of
models are considered here: (1) non-Froudian similitude Frr �= 1; and (2) quasi
similitude in sediment transport d∗r �= 1. First, near-equilibrium streams in
which the flow is gradually varied can be simulated with different values of the
Froude number as long as the flow is subcritical, i.e., fine-grained alluvial rivers
with low Froude numbers can be simulated with the same bed material at higher,
yet subcritical, Froude numbers. Second, coarse bed material in which bedload
transport is predominant can be simulated with smaller values of d∗ as long as
the flow is hydraulically rough. The scale values for these two cases of incom-
plete mobile-bed similitude are presented in columns 7 and 8 of Table 10.1.

In non-Froudian models, gradually-varied flow in large alluvial rivers does
not impose large changes on the specific-energy diagram. In cases in which
the Froude number remains fairly constant along the study reach, we may use
different values of the Froude number for the model and the prototype as long
as the flow remains subcritical in both systems. In this case only the three
governing equations, (10.2), (10.3), and (10.4), are simultaneously satisfied.
The Froude similitude criterion would be replaced with an additional degree of
freedom, e.g., yr , zr , and dsr .

When the same density of sediment is used, the similitude in dimensionless
particle diameter d∗ implies that (G − 1)r = 1/d 3

sr ; thus the sediment must have
the same density and particle diameter. The Shields similitude condition can be
rewritten as dsr = x 1/2

r /zr = 1 and Manning–Strickler equation (10.2) can be
rewritten in terms of the Froude number as Frr = z −0.5+m

r . The Froude scale is
not unity but changes slightly with model scale and the scale ratios for gradually
varied alluvial flow models are listed in column 8 of Table 10.1.

This type of model allows the use of the same sediment in the model and the
prototype. Undistorted cross-sectional geometry can be simulated with yr =
zr , and similitude in planform geometry is obtained when xr = yr . This type
of model offers similitude in bedload and suspended sediment transport. The
drawbacks of this approach are that the model does not obey the Froude simi-
litude and should be limited to near-uniform subcritical flows. This type of
model should appropriately simulate sediment transport and resistance to flow.
However, the force diagrams and the lateral/vertical accelerations are not appro-
priately simulated.

Models with quasi similitude in sediment transport, d∗r �= 1, may be used
from Table 10.1, column 7, in which bedload transport is dominant, as detailed
in Example 10.3. It is noteworthy that the similitude in total sediment transport
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is questionable when τ∗r = 1 and d∗r �= 1. Scale effects can be found in other
sediment-transport processes such as suspended load and bedform prediction.
Case Study 10.1 and Problem 10.3 illustrate how the scales of a model that uses
the same material for both systems can be determined. Case Study 10.2 relates
physical modeling with protection against scour at highway bridges.

Example 10.3 Application to bedload transport in coarse-gravel-bed
streams. A gravel-bed river with d50 ≈ 30 mm and d90 = 100 mm has a natural
bed slope S = 3 × 10−3. If the flow depth reaches 4 m during floods, determine
the model scales that would allow a 10-km reach to be modeled within 40 m in
the hydraulics laboratory.

The downstream length scale xr = 10,000/40 = 250 and the Shields param-
eter of the prototype is

τ∗p = h p Sp

(G − 1)pdsp

= 4 m × 3 × 10−3

1.65 × 0.03 m
= 0.24 > 0.06;

hence there is sediment transport. Complete mobile-bed similitude would re-
quire a model sediment size of dsr = (dsp/dsm ) ∼= z−0.286

r = 250−0.286 = 0.208
or dsm � 30 mm, which is impractical.

The modeler must therefore resort to incomplete mobile-bed modeling. In
this case, a model that does not satisfy the Froude condition would not be
indicated because the prototype Froude number is certainly quite high. Because
the bed material is very coarse and the flow is hydraulically rough,

Re∗p =
√

gh p Spdsp

ν
=

√
9.81 × 4 × 3 × 10−3 × 0.03

1 × 10−6
= 10,300,

it is considered that d∗r �= 1 would be appropriate because finer bed material
would still be in the hydraulically rough regime. The scale ratios for incomplete
mobile-bed similitude with d∗r �= 1 leave 2 degrees of freedom. From pro-
totype values, m = [ln(12.2 × h p

dsp
)]−1 = (ln 12.2 × 4

0.03 )−1 = 0.135, and the

2 degrees of freedom in zr = 175 and dsr = 20 are arbitrarily selected, along
with yr = 250. There is no similitude in planform geometry because yr = 250
and xr = z1+2 m

r d−2 m
sr = 314. The resulting scale ratio for grain shear Reynolds

number from Table 10.1, column 7 is Re∗r = (Re∗p/Re∗m ) = d1+m
sr z0.5−m

r =
201+0.1351750.5−0.135 = 197; then Re∗m = Re∗p/Re∗r = 10,300/197 = 52,
which is considered hydraulically rough. Other model scales calculated
from Table 10.1 are Qr = yr z1.5

r = 5.8 × 105 and Vr = z 1/2
r = √

175 = 13.3.
The model sediment diameter is dsm/dsr = 0.03 m/20 = 1.5 mm at a
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particle density of (G−1)m = (G−1)p/(G − 1)r = 1.65/z1−2 m
r d2 m−1

sr =1.65/
1751−2×0.135202×0.135−1 = 0.34 or Gm = 1.34, in which coal or Bakelite would
be appropriate from Table 10.2. The model will also require tilting and Sm =
Sp/Sr = Sp/d2 m

sr
z−2 m

r = 3 × 10−3/202×0.135 175−2×0.135 = 0.0054.The scale
for unit bedload discharge is calculated assuming similitude in qbr/u∗r dsr = 1
or qbr = d1+m

sr z0.5−m
r = 201+0.135 1750.5−0.135 = 197. Finally, the time scale for

bed-elevation changes is obtained from tsr = z1.5+3 m
r d−1−3 m

sr
= 1751.5+3×0.135

20−1−3×0.135 = 278, which means that bed changes over 1 min of model time
correspond to 4.6 h of prototype time. Suspended sediment transport is not in
similitude. Therefore the similitude in total sediment discharge is questionable,
but aggradation and degradation features from bedload discharge should be
well represented by the model.

Case Study 10.1 Mobile-bed model of the Jamuna River, Bangladesh.
Klaassen (1990, 1992) reported on a physical scale model of the Jamuna River
in Bangladesh. The Jamuna River is a flat sand-bed river, with, on the average,
three braids upstream of Sirajganj (near the proposed bridge site). The purpose
of this movable-bed scale model investigation is: (1) to study the effect of the
river training works on channel patterns; (2) to identify “worst” channel patterns
(during both floods and low-flow conditions) for the river training works; and
(3) to study the upstream river shifts on the channel patterns near the bridge
and the training works.

For the present model investigation the limitations include: (1) model dimen-
sions at a maximum of approximately 50 × 20 m2 because of costs; (2) model
material sand, because lightweight material (which would be preferable) is too
expensive in large quantities; and (3) model material size, which should be
∼200 µm because it is readily available in large quantities.

The main characteristics of the related model are listed in Table CS.10.1.1.
The scaling procedure resulted in a considerably distorted model. For a model
discharge of ∼100 1/s, a fair reproduction of the channel pattern is probably
obtained for a model slope of approximately 8 × 10−3. If the Chézy coefficient
Cm in the model is assumed to be ∼25 m1/2/s, the average velocity in the
channels is estimated to be ∼0.4 m/s. This implies that the Froude number in
the model is of the order of 0.5 whereas in the prototype Fr ∼= 0.2. Locally
in the model even higher values of the Froude number may be found. Such
high Froude numbers will certainly affect the flow pattern reproduction and
consequently induce scale effects.

Very good morphological results were obtained with the model, and the
objectives have been satisfactorily met. One of the main concerns about the
model relates to local scour. Local scour is reproduced correctly in only undis-
torted models that satisfy the Froude condition. Because both conditions are
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Table CS.10.1.1. Characteristics of the Jamuna River model (after Klaassen,
1990)

Parameter Prototype Scale factor Model

Particle size dsp = 0.2 mm dsr = 1 dsm = 0.2 mm
Density G p = 2.65 (G − 1)r = 1 Gm = 2.65
Slope Sp = 7 × 10−5 Sr = 0.01 Sm = 7 × 10−3

Discharge Q p = 10,000 m3/s Qr = 106 Qm = 0.01 m3/s
= 90,000 m3/s = 0.09 m3/s

Bankfull width Wp = 3,000 m yr = 1,000 Wm = 3.3 m
Total width 15,000 m yr = 1,000 15 m
Flow depth h p = 5.8 m zr = 200 hm = 0.032 m

hmp = 8 m hmm = 0.04 m
Sediment transport qsp = 1.4 × 10−3 m2/s qsr = 80 qsm = 1.34 × 10−5 m2/s
Flood duration Tp = 78 days tr = 2,500 Tm = 0.03 day
Froude number Frp = 0.1−0.2 Frr = 0.25 Frm = 0.4 − 0.8

not fulfilled, local scour cannot be scaled. Another concern is the local presence
of supercritical flow.

Through comparisons with the conditions in Example 10.2, the reader will
note that complete mobile-bed similitude requires excessively light material. It
is also given as Problem 10.3 that the reader can verify that the model scales are
quite comparable with those obtained with incomplete mobile-bed similitude
with zr = 100, yr = 1,000, and dsr = 1.

Case Study 10.2 Bridge scour model for Schoharie Creek, United States.
Richardson and Lagasse (1996) report that there are more than 575,000 bridges
in the U.S. National Bridge Inventory. Approximately 84% of these bridges span
over water. On April 5, 1987, the center span of the 165-m-long bridge over
Schoharie Creek, New York, collapsed during a near-record flood of ∼1,750
m3/s. Each rigid-frame pier was supported on a spread footing bearing on
a glacial till just below the streambed. The bridge designers assumed that the
glacial till substrate was nonerodible.

A physical model of the Schoharie Creek bridge was built at a model scale
of 1:50 in a 20 ft long × 100 ft flume. The following scale ratios were obtained
from an exact Froude similitude with zr = 50: (1) the velocity scale was 7.07;
(2) the time scale was also 7.07; and (3) the discharge scale was 17,678. The
horseshoe vortex near the base of the bridge pier was at the origin of the scour
underneath the pier and the spread footing.

The 1987 bridge failure resulted in establishing a National (U.S.) Program
that requires each state to evaluate all bridges over water for vulnerability to
failure from erosion of the foundations. This evaluation is to be carried out by
an interdisciplinary team consisting of hydraulic, structural, and geotechnical



350 Physical river models

engineers. This evaluation is in addition to the National Bridge Inspection Pro-
gram that requires the states to inspect all bridges every two years to determine
their structural integrity. As a design philosophy, bridges should be designed
by use of the flow of a 100-yr flood and to withstand the effects of scour from
a flow exceeding the 100-yr flood.

Scour monitoring devices include sonic fathometers for scour data measure-
ments that can be stored in data loggers. Also, magnetic sliding collars have
been designed to slide freely over a small stainless steel pipe driven into the
streambed at the expected scour location. An audible signal can be heard at the
bridge deck when the magnet comes close to the sensor.

�Exercise 10.1

Derive the scale ratios for tilted-rigid-bed models from similitude in Froude
number and Manning–Strickler. Compare the results with those of column 4
in Table 10.1. Also determine the results of the particular case in which xr =
yr = zr = Lr .

Exercise 10.2

Demonstrate that, in a hydraulic model, the scale parameters that satisfy the
same Reynolds number and the same Shields parameter also satisfies the same
dimensionless particle diameter.

�Exercise 10.3

In Example 10.2, show that the grain Reynolds number of the model and the
prototype are quite similar despite the model distortion.

��Exercise 10.4

Derive the scale ratios for complete mobile-bed similitude from simultaneously
solving for similitude in: (1) Froude number Frr = 1; (2) resistance equation;
and (3) sediment transport τ∗p = d∗r = 1. Compare the results with those of
Table 10.1, column 5, and check the values for the Manning–Strickler relation-
ship (m = 1/6).

��Exercise 10.5

Derive the scale ratios for incomplete mobile-bed similitude after considering
similitude in: (1) the resistance equation; and (2) sediment transport with τ∗r =
d∗r = 1. Compare the results with those of Table 10.1, column 8, for Frr �= 1.
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��Exercise 10.6

In Case Study CS.10.1, determine whether the scale factors selected in
Table CS.10.1.1 satisfy: (1) the Froude similitude; (2) the Manning–Strickler
similitude; and (3) sediment-transport similitude in d∗r = τ∗r = 1.

��Problem 10.1

A clearwater open-channel model is to be designed such that the maximum
laboratory discharge is 2 l/s for a stream discharge of 300 m3/s. If the laboratory
space allows a maximum length of 60 m to model a river reach of 10 km,
determine a suitable scaling length for the model. From this, determine the
scaling ratios for time, discharge, and hydropower.

Problem 10.2

The filling and emptying gates of a canal lock extend the full height of the
lock chamber. When a vessel is lowered in the prototype lock, the gates at the
outlet end are programmed to open at a fixed rate. The waves and the currents
produced by the outflow cause the vessel to pull at its moorings. In a 1/25 scale
model of the system that uses water, the maximum tension in the moorings is
1.6 lb (0.36 N) when the gates are opened at the proper rate. Determine the
maximum mooring-line tension in the prototype.

Answer: Fp = Fm Fr = (l.6 lb)L3
r = 25,000 lb (112 kN).

��Problem 10.3

With reference to Case Study 10.1, demonstrate that the model scales in Table
CS.10.1 are comparable with those obtained from Table 10.1, column 8, with
yr = 1,000, zr = 100, dsr = 1, and m = 0.076.

Answer: tr = 1002−m = 7050, Qr = yr z1+m
r = 142,000,

Sr = z−1
r = 0.01, and Frr = 100m−0.5 = 0.14.

��Problem 10.4

With reference to Example 10.3, calculate the ratio u∗/ω for both the model
and the prototype and verify that most of the sediment transport is bedload in
both cases.

Answer: u∗p/ωp = 0.57 and u∗m/ωm � 0.5, thus predominantly
bedload.
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Mathematical river models

Numerous river engineering problems can be conveniently investigated by
means of mathematical models. Mathematical models must properly describe
the physical processes and provide a numerical solution to a system of differ-
ential equations that are solved together with suitable boundary conditions and
empirical relationships that describe resistance to flow and turbulence.

The differential equations describing river mechanics problems are usually
simplified forms of the equations of conservation of mass and momentum, lead-
ing to a set of partial differential equations involving two independent variables
(time and space or two spatial variables). Examples that use the finite-difference
method are presented in this chapter. The finite-element method also provides
useful solutions to river engineering problems but is beyond the scope of this
chapter.

The algorithms to be used in the finite-difference method depend on the type
of differential equation to be solved. Table 11.1 provides a simple classifica-
tion of river engineering problems. The information propagates at a celerity
c in hyperbolic equations, and the celerity is effectively infinite in parabolic
equations.

Once a river engineering problem has been defined and a mathematical model
chosen, field data need to be gathered to describe initial and boundary condi-
tions, geometrical similitude, material properties, and design conditions. Ad-
ditional data are also required for calibration and verification. The governing
equations can be simplified to preserve the main features of the physical prob-
lem; the time and the space increments are determined at this stage. A schema-
tization can be made of the design conditions to be investigated.

Model calibration is usually necessary because empirical parameters are
involved to describe resistance to flow and because of the implifications to
the governing equations. Parameters can be adjusted to obtain good corre-
spondence between numerical results and continuum values. Of course, the
adjustment should not be extended beyond physically acceptable values. The

352
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Table 11.1. Differential equation types in river engineering

River engineering
Equation type Equation problem

Hyperbolic
∂φ

∂t
+ v

∂φ

∂x
= 0

Advection
(v constant)

∂2φ

∂t2
= c2 ∂

2φ

∂x2
Floodwave propagation

(c2 constant)

Parabolic
∂φ

∂t
= Kd

∂2φ

∂x2
Diffusion–dispersion

(Kd constant)

Elliptic
∂2φ

∂x2
+ ∂2φ

∂y2
= 0 Flow net

precision of a model refers to the error margin of the numerical calcula-
tions. Model accuracy usually refers to the comparison of the model with field
measurements. For instance, a model that calculates the floodstage to the near-
est centimeter but is 1 m off from the field measurements is precise but not
accurate. The method of adjusting parameters by running the model at differ-
ent values until a satisfactory result is obtained is called hindcasting. It is a
very useful way to determine the sensitivity of the model results to changes
in the model parameters. The calibration phase should also comprise a check
of the numerical accuracy by varying numerical parameters such as the time
step.

Model verification involves simulation for a different set of prototype data
with the coefficients previously obtained during the calibration. If a model run
satisfactorily reproduces the measured prototype conditions without further
adjustment, a reasonable confidence is gained in the application of the model to
design conditions that have never occurred in the prototype. It is often possible
to calibrate a model with the first half of a field data set and to verify the model
with the second half. This chapter describes finite-difference approximations in
Section 11.1, followed by some typical 1D models in Section 11.2, and a brief
discussion of multidimensional models in Section 11.3.

11.1 Finite-difference approximations

Let us consider a function h(x, t) defined in space x and time t . We may divide
the x–t plane into a grid, as shown in Fig. 11.1(a). The grid spacing along the
x axis is �x and the time interval along the t axis is �t .
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Figure 11.1. Finite-difference grid
and approximation.

The value of the variable h will use the
spatial location as a subscript and the time
as a superscript, e.g., hk

j refers to the value
of flow depth at the j th spatial grid point
and kth time grid point. By the known
time level, we mean that the values of dif-
ferent dependent variables are known at
the time level hk and we want to com-
pute their values at the unknown time level
hk+1.

If the computations progress from one
step to the next, then the procedure is re-
ferred to as a marching procedure. Most
of the phenomena described by hyperbolic
partial differential equations are solved
with marching procedures. The conditions
specified at time t = 0 are referred to as
the initial conditions. The conditions spec-
ified at the channel ends are called the end,
or boundary, conditions.

Finite-difference approximations are first introduced before a presentation
on consistency and convergence (Subsection 11.1.1), a linear stability analysis
(Subsection 11.1.2), higher-order approximations (Subsection 11.1.3), and
boundary conditions (Subsection 11.1.4). The finite-difference method is based
on a Taylor series expansion of the variable h j+1 written as a function of h j

as

hk
j+1 = hk

j +�x

(
∂h

∂x

)k

j

+ �x2

2!

(
∂2h

∂x2

)k

j

+ �x3

3!

(
∂3h

∂x3

)k

j

+ 0(�x4), (11.1)

where the derivative (∂h/∂x)k
j is evaluated at grid point j and time level k and

0(�xm) indicates m-order terms. The Taylor series could be similarly expanded
to define h k

j−1 from hk
j as

hk
j−1 = hk

j −�x

(
∂h

∂x

)k

j

+ �x2

2!

(
∂2h

∂x2

)k

j

− �x3

3!

(
∂3h

∂x3

)k

j

+ 0(�x4). (11.2)
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Rearranging Eqs. (11.1) and (11.2) and dividing by �x gives, respectively,

(
∂h

∂x

)k

j

= hk
j+1 − hk

j

�x
− �x

2!

(
∂2h

∂x2

)k

j

− �x2

3!

(
∂3h

∂x3

)k

j

| forward | | truncation error |
difference

+ 0(�x3) � hk
j+1 − hk

j

�x
+ 0(�x), (11.3)

| downwind |
(
∂h

∂x

)k

j

= hk
j − hk

j−1

�x
+ �x

2!

(
∂2h

∂x2

)k

j

− �x2

3!

(
∂3h

∂x3

)k

j

| backward | | truncation error |
difference

+ 0(�x3) � hk
j − hk

j−1

�x
+ 0(�x). (11.4)

| upwind |

The first approximation of the partial derivative in Eq. (11.3) is written in
the form of a forward (downwind) difference and a first-order truncation error
0(�x) that will approach zero as�x becomes very small. Similarly, Eq. (11.4)
includes a backward (upwind) difference and a truncation error 0(�x). The
truncation error approaches zero as �x approaches zero as long as the high
derivatives remain continuous. Therefore both forward and backward finite-
differences are first-order approximations.

A central finite-difference approximation can then be obtained from taking
half of the sum of Eqs. (11.3) and (11.4), or

(
∂h

∂x

)k

j

= hk
j+1 − hk

j−1

2�x
+ 0(�x2). (11.5)

The truncation error is of the order of (�x)2 because the terms in �x in
Eqs. (11.3) and (11.4) cancel. The central difference is thus said to be a second-
order approximation.

Figure 11.1(b) shows a geometrical representation of the forward, backward,
and central finite-difference approximations. The real slope is the tangent of
the function at B. The forward finite-difference approximation uses the slope of
the secant curve line BC , the backward finite-difference approximation uses the
slope of line AB, and the central finite-difference approximation uses the slope
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Table 11.2. Explicit and implicit finite differences

Finite difference Explicit Implicit

Backward
upwind

∂h

∂x
�

hk
j − hk

j−1

�x

∂h

∂x
�

hk+1
j − hk+1

j−1

�x

Forward
downwind

∂h

∂x
�

hk
j+1 − hk

j

�x

∂h

∂x
�

hk+1
j+1 − hk+1

j

�x

Central
∂h

∂x
�

hk
j+1 − hk

j−1

2�x

∂h

∂x
�

hk+1
j+1 − hk+1

j−1

2�x

of the line AC , although all three approximations become exact as �x goes to
zero (first-order approximation). It is clear from these figures that the central
finite-difference approximation is more accurate (second-order approximation)
than the forward or the backward finite-difference approximations.

Explicit formulations refer to partial derivatives at the known level k whereas
implicit formulations refer to the unknown level k + 1. Table 11.2 lists some
typical explicit and implicit finite-difference approximations for the spatial
partial derivative, ∂h/∂x , at the grid point ( j,k).

11.1.1 Consistency and convergence

Four properties of consistency, stability, convergence, and accuracy are impor-
tant in numerical analysis. The following formulation of the advection equation,
or floodwave propagation problem, is used to illustrate these properties. Hence

∂h

∂t
+ c

∂h

∂x
= 0, (11.6)

where c is the celerity, is approximated with a forward difference in time and a
backward difference in space (FTBS) to give

hk+1
j − hk

j

�t
+ c

hk
j − hk

j−1

�x
= 0. (11.7)

Rearranging to find the flow depth at the unknown level k + 1 as a function of
the flow depth at the known level k, we obtain

hk+1
j = hk

j − c�t

�x

(
hk

j − hk
j−1

)
, (11.8a)

hk+1
j = Cchk

j−1 + (1 − Cc) hk
j , (11.8b)

where Cc = (c�t/�x) is the Courant number.
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To get started, the initial condition of flow depth needs to be known for all
j values at k = 0. The algorithm can then march in time given the boundary
condition of flow depth for all k values at j − 1 = 0.

Consistency is the property of a finite-difference scheme to reduce to the
partial differential equation as the truncation error disappears. In our example,
the values of hk

j+1 and hk
j−1 from Eqs. (11.1) and (11.2) are substituted back

into Eq. (11.8b) to give

hk
j + �t

(
∂h

∂t

)k

j

+ �t2

2!

(
∂2h

∂t2

)k

j

+ 0(�t3) =
(

1 − c�t

�x

)
hk

j

+ c�t

�x

[
hk

j −�x

(
∂h

∂x

)k

j

+ �x2

2!

(
∂2h

∂x2

)k

j

+ 0(�x3)

]
. (11.9)

Rearranging the equation after canceling the terms in hk
j and dividing by �t

results in

(
∂h

∂t

)k

j

+c

(
∂h

∂x

)k

j

+
[
�t

2!

(
∂2h

∂t2

)k

j

− c�x

2!

(
∂2h

∂x2

)k

j

+0(�t2)+0(�x2)

]
= 0,

| original equation | | truncation error | (11.10)

where the first part is the original equation. This numerical scheme is uncondi-
tionally consistent with the partial differential equation because the truncation
error vanishes regardless of how �t and �x approach zero.

A method is said to be convergent when the difference between the solutions
of the differential and difference equations tends to zero as the time step goes
to zero. It has been shown that a consistent method, if stable, is also convergent
and vice versa. Consequently it is generally sufficient to check consistency and
stability to ensure convergence. It is therefore indicated to examine the stability
of numerical schemes.

11.1.2 Linear stability analysis

The stability of a difference method is concerned with the propagation of an
error, introduced for example by inaccurate initial or boundary data or rounding
in the numerical calculations. Such errors will be propagated by the difference
method. If they do not grow, the method is called stable.

The linear stability analysis, also referred to as the von Neumann procedure,
examines the property of the response of the finite-difference scheme to input
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perturbations written as a Fourier series in complex form as

hk
j =

N/2∑
ñ=1

ζ k
ñ e

iñ 2π j�x
L , (11.11)

where N is the number of points per wavelength L = N�x, i = √−1, and ñ
is the wave-number index. The complex function ei α̃ j ñ can be separated into
a real and an imaginary part according to Euler’s relation ei α̃ j ñ = cos(α̃ j ñ) +
i sin(α̃ j ñ). When viewed in the complex plane, the Fourier coefficients ζ k

ñ

exhibit the amplitude and the angle α̃ = 2π/N represents a phase angle. The
linear stability analysis method examines how each Fourier coefficient changes
in time for any wave-number index ñ. Looking at any wave number (say ñ = 1),
we obtain

hk
j = ζ kei α̃ j . (11.12a)

In the following example from Abbott and Basco (1989), the stability analysis
of the algorithm in Eq. (11.8) is examined after hk+1

j and hk
j−1 are defined from

Eq. (11.12a) as

hk+1
j = ζ k+1ei α̃ j , (11.12b)

hk
j−1 = ζ kei α̃( j−1). (11.12c)

The terms in Eqs. (11.12) are substituted back into Eq. (11.8b):

ζ k+1ei α̃ j = Ccζ
kei α̃( j−1) + (1 − Cc)ζ kei α̃ j . (11.13)

After canceling the common term ei α̃ j , we obtain

[(1 − Cc) + Cce−i α̃]ζ k

ζ k+1 = | amplification factor Aα | (11.14)

The term in the brackets of Eq. (11.14) is the amplification factor Aα , which
is a complex number. As sketched in Fig. 11.2(a), in the complex plane, the
factor Aα is simply a circle of magnitude Cc centered at 1 − Cc, and the mo-
dulus |Aα| determines whether the Fourier coefficient grows (when |Aα| > 1),
stays constant (when |Aα| = 1), or decays (when |Aα| < 1) as a function of
time.

Of course, growth in the Fourier coefficients means that perturbations grow
as the calculations progress in time, even when �x → 0 and �t → 0. There-
fore a finite-difference scheme is stable as long as |Aα| ≤ 1. In this exam-
ple, shown in Fig. 11.2, Aα = (1 − Cc + Cc cos α̃) + iCc sin α̃ and |Aα| =√

[1 − Cc(1 − cos α̃)]2 + C2
c sin2 α̃. Numerical stability |Aα| ≤ 1 corresponds

to Cc ≤ 1, which is referred to as the Courant–Friedrich–Levy (CFL)
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Figure 11.2. Stability diagram (modified after Abbott and Basco, 1989).

condition of stability for this numerical scheme. It is interesting to note that
the CFL stability condition implies that the celerity c of the analytical solution
must be less than the celerity (�x/�t) of the numerical solution, or

Cc = c

�x/�t
≤ 1. (11.15a)

Accordingly, once the space size �x has been determined, the time increment
�t that satisfies the stability requirement is specified as

�t <
�x

c
. (11.15b) ��

The physical interpretation of the CFL condition is that the numerical time
step �t may not exceed the characteristic time step �x/c. Otherwise, all the
physical information does not have sufficient time to propagate to the next time
step, and this will manifest itself as an instability. In practice, the CFL condition
often imposes an important restriction on the time step because the spatial step



360 Mathematical river models

Figure 11.3. Examples of initial and boundary conditions.

�x is generally determined by geometric considerations. This restriction has
led many investigators to prefer implicit methods for several decades. With the
development of very fast computers, explicit numerical schemes are nowadays
gaining popularity.

11.1.3 Higher-order approximations

Finite differences with higher-order approximations are obtained by the intro-
duction of differences at additional nodes in order to cancel out higher-order
terms that would otherwise appear in the truncation error. For instance, a Taylor
series expansion between nodes j and j + 2 gives

hk
j+2 = hk

j + 2�x

(
∂h

∂x

)k

j

+ 4�x2

2!

(
∂2h

∂x2

)k

j

+ 8�x3

3!

(
∂3h

∂x3

)k

j

+ 0(�x4).

(11.16)
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The second derivative is approximated after Eq. (11.1) is doubled and subtracted
from Eq. (11.16):(

∂2h

∂x2

)k

j

= hk
j+2 − 2hk

j+1 + hk
j

�x2
−�x

(
∂3h

∂x3

)k

j

+ 0(�x2). (11.17)

The truncation error of this approximation is only first-order accurate. How-
ever, substituting Eq. (11.17) back into the right-hand side of Eq. (11.3) yields,
after rearranging,

(
∂h

∂x

)k

j

= −hk
j+2 + 4hk

j+1−3hk
j

2�x
+

(
�x2

2!
−�x2

3!

)(
∂3h

∂x3

)k

j

(11.18a)

or (
∂h

∂x

)k

j

� −hk
j+2 + 4hk

j+1−3hk
j

2�x
+ 0(�x2). (11.18b)

As a result, the first derivative is turned into a second-order approximation
after an additional grid point is added into the numerical scheme. Higher-
order finite-difference approximations can be obtained in a similar fashion, and
several useful finite-difference schemes of the first and the second derivatives are
listed in Table 11.3. For instance, Relation (11.18b) corresponds to the second-
order forward-difference scheme of the first derivative in Table 11.3.

Table 11.3. First- and second-order finite-difference schemes

φ j−3 φ j−2 φ j−1 φ j φ j φ j+1 φ j+2 φ j+3

(a) Backward differences 0(�x) (b) Forward differences 0(�x)

�x
∂φ

∂x
= −1 1 �x

∂φ

∂x
= −1 1

�x2 ∂
2φ

∂x2
= 1 −2 1 �x2 ∂

2φ

∂x2
= 1 −2 1

(c) Backward differences 0(�x)2 (d) Forward differences 0(�x)2

2�x
∂φ

∂x
= 1 −4 3 2�x

∂φ

∂x
= −3 4 −1

�x2 ∂
2φ

∂x2
= −1 4 −5 2 �x2 ∂

2φ

∂x2
= 2 −5 4 −1

(e) Central differences 0(�x2)

2�x
∂φ

∂x
= −1φ j−1 + 0φ j + 1φ j+1

�x2 ∂
2φ

∂x2
= 1φ j−1 − 2φ j + 1φ j+1
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11.1.4 Boundary conditions

Elliptic equations require that boundary conditions be specified over a com-
pletely closed boundary. The boundary data may consist of the value (Dirichlet
type of boundary condition) or its normal derivative (Neumann type of boundary
condition). The solution to hyperbolic and parabolic equations usually requires
both initial and boundary conditions. Starting from given initial conditions at
t = 0, a marching method finds the values at successive unknown time intervals
from the boundary conditions.

The zone of influence of boundary conditions propagates through the do-
main at each time step. Lower-order approximations require simple boundary
conditions. For instance, a scheme hk+1

j = 0.5 hk
j−1 + 0.5 hk

j requires only the
upstream boundary condition hk

0 and the initial condition h0
j for calculations

over the entire domain. A downstream boundary condition is not required.
As sketched in Fig. 11.3, higher-order approximations require additional

information about the boundary conditions. For instance, consider the scheme

hk+1
j = a j−2hk

j−2 + a j−1hk
j−1 + a j h

k
j + a j+1hk

j+1

with nonzero coefficients. Besides the initial condition at all nodes h0, this
algorithm requires a double upstream boundary condition at h−1 and h0 and
also requires a single downstream boundary condition because the term h j+1

implies that the information propagates in the upstream direction. The term
h j+1 also implies that the information contained at the upstream boundary
condition does not entirely propagate in the downstream direction. Indeed, some
information contained in the upstream boundary condition propagates outside
of the solution domain, in the upstream direction. This becomes particularly
important in advection–dispersion problems in which conservation of mass
is expected. Higher-order approximations thus provide improved calculation
results at the expense of requiring detailed boundary conditions. Example 11.1
illustrates the concepts of numerical stability and convergence discussed in this
section.

Example 11.1 Application to Wave Routing. Apply the finite-difference
scheme that is FTBS from relations (11.7) and (11.8b) to wave routing at a
constant celerity c at 2 m/s. Consider �x = 2,000 m and examine calcula-
tions of the triangular wave propagation for Cc = 0.5, 1.0 and 2.0, as shown in
Table E.11.1.1. Comparing the results at t = 2,000 s shows that the wave is cor-
rectly propagated when Cc = 1.0 whereas the peak is numerically decreased to
half its value when Cc = 0.5 and increased to twice its value when Cc = 2.0.
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Table E.11.1.1. Wave propagation at �x = 2,000 m

Distance 0 2 4 6 8 10 12
(km)

Initial depth 0 0.5 1 0 0 0 0
(m)

Routing Cc = 0.5 or �t = Cc�x

c
= 500 s; hk+1

j = 0.5 hk
j−1 + 0.5 hk

j
time (s)
0 0 0.5 1 0 0 0 0
500 0 0.25 0.75 0.5 0 0 0
1,000 0 0.125 0.5 0.625 0.25 0 0
1,500 0 0.0625 0.3125 0.5625 0.4375 0.125 0
2,000 0 0.03125 0.1875 0.4375 0.50 0.28125 0.0625

Routing Cc = 1.0 or �t = 1,000 s; hk+1
j = hk

j−1
time (s)
0 0 0.5 1 0 0 0 0
1,000 0 0 0.5 1 0 0 0
2,000 0 0 0 0.5 1 0 0

Routing Cc = 2.0 or �t = 2,000 s; hk+1
j = 2hk

j−1 − hk
j

time (s)
0 0 0.5 1 0 0 0 0
2,000 0 −0.5 0 2 0 0 0
4,000 0 0.5 −1 −2 4 0 0

The numerical scheme is stable when Cc ≤ 1 and unstable when Cc > 1, and
there is numerical diffusion when Cc < 1. The convergence of this numeri-
cal scheme is examined at Cc = 0.5 and Cc = 2.0 after the space increment
�x = 1,000 m is halved, as shown in Table E.11.1.2. It is most instructive to
observe that in the case of Cc = 0.5, halving �x results in a better approxi-
mation of the peak value than that calculated in Table E.11.1.1. Specifically,
after t = 2,000 s, the peak value of hmax calculated with �x = 1 km is 0.61 m
compared with hmax = 0.5 at �x = 2 km from a correct value of hmax = 1 m.
The improvement shows that the truncation error decreases as�x → 0, which
is a simple example of convergence in which accuracy is gained at the expense
of more extensive calculations. In comparison, the case with Cc = 2 shows
that decreasing �x by one-half does not increase the accuracy of the calcula-
tion. Indeed, the maximum flow depth hmax calculated at t = 4,000 s is 8 m
for �x = 1,000 m compared with hmax = 4 m at the same time when �x =
2,000 m. This illustrates the fact that decreasing�x and�t does not necessarily
improve convergence, even if the numerical scheme is consistent. A consistent
numerical scheme can be convergent only when it is stable.
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11.2 One-dimensional river models

There are numerous one-dimensional models available for the simulation of
steady backwater flow, unsteady floodwave propagation, advection–dispersion
of sediment and contaminants, and aggradation–degradation in alluvial rivers.
The foregoing presentation focuses on a few numerical schemes: (1) explicit
schemes in Subsection 11.2.1; (2) the Leonard scheme in Subsection 11.2.2;
(3) the MacCormack scheme in Subsection 11.2.3, an explicit predictor–
corrector scheme; and (4) the Preissmann scheme in Subsection 11.2.4, an
implicit scheme. Subsection 11.2.5 discusses aggradation–degradation simula-
tions in alluvial rivers.

11.2.1 Explicit scheme

Consider the combination of advection and dispersion as a mechanism for the
transport of sediment, or contaminant, at a concentration φ. The substance
is said to be conservative in the sense that the total mass remains constant
and therefore without sedimentation or chemical reaction that would cause
the decay of the substance; the 1D advection–dispersion equation is written
as

∂φ

∂t
+ v

∂φ

∂x
= Kd

∂2φ

∂x2
, (11.19)

where v is the mean flow velocity in the downstream x direction and Kd �
250 hu∗ is the dispersion coefficient. Note that a similar approach could be
used for turbulent diffusion; however, it is assumed here that the substance is
well mixed and the concentration is uniform at a given cross section. It can
also be noted that when Kd is very small, Eq. (11.19) becomes quite sim-
ilar to the floodwave propagation analysis of Section 11.1, as described by
Eq. (11.6).

The mathematical interest in Eq. (11.19) arises from the fact that the equation
is a hybrid between a hyperbolic equation when Kd = 0 and a parabolic equation
when v = 0. In rivers, the flow velocity is usually important and the system
should be centered around a solution to hyperbolic equations, and the numerical
scheme developed in Section 11.1 can serve as a basis for further analysis. The
FTBS scheme can thus be adopted for the advective term and a second-order
central difference approximation used for the dispersion term. The resulting
finite-difference scheme is written as

φk+1
j − φk

j

�t
+ v

φk
j − φk

j−1

�x
= Kd

φk
j+1 − 2φk

j + φk
j−1

�x2
. (11.20)
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The terms are rearranged in an explicit form after Cu = v�t/�x and Ck =
Kd�t/�x2, are defined; thus

φk+1
j = Ckφ

k
j+1 + (1 − Cu − 2Ck)φk

j + (Cu + Ck)φk
j−1. (11.21)

Although the dispersion term is a second-order approximation, the advection
term is approximate to only the first order. The truncation error contains terms
on a higher order than the advection term and may thus induce numerical
dispersion. Indeed, with reference to the consistency analysis in Subsection
11.1.2, advection equation (11.10) can be rewritten, after φ is substituted for h
and v for c, as(
∂φ

∂t

)k

j

+ v

(
∂φ

∂x

)k

j

+
[
�t

2!

(
∂2φ

∂t2

)k

j

− v
�x

2!

(
∂2φ

∂x2

)k

j

+ 0(�t2) + 0(�x2)

]
= 0.

(11.22)

The advection scheme can be written as

∂φ

∂t
= −v

∂φ

∂x
+ 0(�t,�x). (11.23)

After taking space and time derivatives with constant v , we obtain

∂2φ

∂t∂x
= −v

∂2φ

∂x2
+ 0(�t,�x), (11.24a)

∂2φ

∂t2
= −v

∂2φ

∂x∂t
+ 0(�t,�x), (11.24b)

which can be recombined to obtain the wave equation

∂2φ

∂t2
= v2 ∂

2φ

∂x2
+ 0(�t,�x). (11.25)

Substituting Eq. (11.25) back into Eq. (11.22) gives(
∂φ

∂t

)k

j

+v

(
∂φ

∂x

)k

j

=
(−v2�t

2
+ v�x

2

)(
∂2φ

∂x2

)k

j

+ 0(�t2,�x2).

| advection term | | truncation error | (11.26)

We obtain the fact that the truncation error of the advection scheme in-
cludes a numerical diffusion term, which, with Cu�x = v�t , can be rearranged
as

Knum = −v2�t

2
+ v�x

2
= v�x

2
(1 − Cu). (11.27)
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It is now becoming clear that the proposed scheme in Eq. (11.20) really solves
the following equation:

∂φ

∂t
+ v∂φ

∂x
= (Kd + Knum)

∂2φ

∂x2
· (11.28)

The numerical dispersion determined in Eq. (11.27) vanishes as Cu ap-
proaches unity, hence the interest in running computer models with values of
Cu close to unity. This is a challenge, as it has been shown that this numerical
scheme becomes unstable as Cu > 1. This now explains why the simulations
in Example 11.1 were flawless when Cc = 1, whereas diffusion was observed
for Cc = 0.5.

The grid Peclet number P� = Cu/Ck = v�x/Kd is a measure of the
ratio between advection Cu = v�t/�x and dispersion Ck = Kd�t/�x2. As
dispersion gradually tends toward a normal distribution, the standard deviation
σd increases with time�t as σd = √

2Kd�t , and 95% of the dispersed material
is contained in a plume of length ±2σd . When Cu = 1, the advection length
is simply given by �x = v�t , the grid Peclet number then corresponds to
2�x2/σ 2

d . The physical significance, as sketched in Fig. 11.4, is that �x = σd

Figure 11.4. Advection and dispersion characteristics.
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when P� = 2Cu , or Ck = 1/2, and dispersion is dominant when P� < 2 Cu . A
substance cannot propagate upstream when �x > 2σd , which corresponds to
P� = 8 Cu , or Ck = 1/8; dispersion is dominant when P� > 8 Cu . The physical
dispersion is sufficiently large to counteract local convection instabilities in re-
gions of large velocity gradients when P� ≤ 2 Cu .

In practice, modelers must guard against simulations in which Knum � Kd .
For instance, consider a model with v = 1 m/s, Kd = 100 m2/s,�x =2,000 m,
and �t = 1,000 s. This model is stable, Cu = v�t/�x = 0.5 < 1, and es-
sentially advective, Ck = Kd�t/�x2 = 0.025 � Cu . However, Knum =
(v�x/2)(1 − Cu) = 500 is five times larger than the physical dispersion Kd ,
and the model is physically meaningless as far as the dispersion calcula-
tions are concerned. A better approach would be to use, for instance, half
the original Kd value, or Kd/2 = 50 m2/s, and set Knum = Kd/2 to deter-
mine the grid spacing �x and time increment �t as functions of Cu and Kd

as

�x = Kd/v(1 − Cu), (11.29a)

�t = KdCu/v
2(1 − Cu). (11.29b)

For instance, modeling this case with v = 1 m/s and Kd = 100 m2/s would
require setting the model for Cu = 0.9 with �x = 1,000 m and �t = 900 s to
obtain Knum = 50 m2 /s. A finer grid spacing�x would be required for reducing
Knum. It is also clear from Eqs. (11.29) that both�x and�t become excessively
small when Kd decreases. This approach thus becomes quite restrictive when we
are solving for diffusion problems (lower Kd values). Also, when this algorithm
is applied to rivers with variable flow velocity, the most restrictive conditions
on�x and�t are obtained when v is large. This practically means that explicit
models are most sensitive to instabilities where and when v is the largest, i.e.,
near the peak discharge of a flood hydrograph. Peak flood conditions should
therefore be used to determine the maximum velocity used in the calculations
of �x and �t .

11.2.2 Leonard scheme

Leonard (1979) developed a third-order approximation to solve advection–
dispersion equation (11.19). The algorithm eliminates the numerical diffusion
term contained in the truncation error. Canceling higher-order space derivative
terms provides a higher accuracy for the advection term. The explicit algo-
rithm for φk−1

j is given, without derivation, as a function of Cu = v�t/�x and
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Ck = Kd�t/�x2, and values of several modes at the known level φk :

φk+1
j = φk
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[
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6

(
C2

u − 3 Cu + 2
)]
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−
[
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[
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2

(
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)]
φk

j−1

+
[

Ck (Cu) + Cu

6

(
C2

u − 1
)]
φk

j−2.

(11.30)

The linear stability analysis shows a wide stability range, as in Fig. 11.5. For
practical purposes, it is generally sufficient to know that the algorithm is stable
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Figure 11.5. Stability diagram of the Leonard scheme (modified after Leonard,
1979).
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for Cu < 1 and Ck < 0.4. We can therefore determine �x and �t as functions
of Kd and v as

�t = Kd C2
u

v2 Ck
, (11.31a)

�x = Kd Cu

v Ck
· (11.31b)

For given Kd and v , the values of �x and �t are proportional to Cu and
inversely proportional to Ck . For instance, when Cu = 1 and Ck = 0.1, �t =
10 Kd/v2,�x = 10 Kd/v , and P� = 10. The coefficients of Eqs. (11.30) reduce
to

φk+1
j = 0.1φk

j + 0.8φk
j−1 + 0.1φk

j−2. (11.32a)

This algorithm should be convenient as long as the changes in φ are relatively
gradual. Small oscillations may otherwise be amplified because the grid Peclet
number P� = 10. To ensure a numerically smooth simulation without oscil-
lations, a value of P� = Cu/Ck = 2 may provide better results, for instance,
Cu = 0.8 and Ck = 0.4. The corresponding grid spacing�x = 2Kd/v and time
step �t = 1.6 Kd/v2 are smaller and the coefficients of Eq. (11.30) reduce
to

φk+1
j = 0.048φk

j+1 + 0.376φk
j + 0.304φk

j−1 + 0.272φk
j−2. (11.32b)

In the case of pure advection (Kd = Ck = 0), the algorithm is stable for
Cu < 1, which simply imposes �t < �x/v regardless of �x ; this is quite
convenient as long as v remains fairly constant within �x .

Example 11.2 Application to Advection–Dispersion. Consider advection
and dispersion in a steep and very rough mountain channel with a slope S =
4 × 10−3. The flow depth h is 3 m, the mean flow velocity is V = 2 m/s,
and the dispersion coefficient Kd � 250 hu∗ � 257 m2/s. At the upstream
end of a 30-km reach, very fine sediment is released at a concentration of
100,000 mg/l for 15 min with a 3-min pulse at 200,000 mg/l 1 h after the initial
release. Consider that the reach is fairly uniform and that the total sediment mass
is preserved at all times. Determine the maximum concentration at a distance
of 10 km downstream of the release. How long will the concentration exceed
10,000 mg/l at a point located 20 km downstream of the release?

A simple finite-difference model can be used. For instance, with �t =
180 s = 0.05 h and �x = 500 m, the Courant number Cu =V �t/�x = 0.72
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and the model should be stable because Cu < 1. The dispersion number Ck =
Kd�t/�x2 = 0.185, and the grid Peclet number is P� = 3.86. The user of the
Leonard method should check that the coefficients a j−2 = 0.075607, a j−1 =
0.577656, a j = 0.337868, and a j+1 = 0.008869 sum up to unity and that
none is negative. The initial sediment concentration can be set at 0, and the
upstream boundary condition set as 1 × 105 for the first five time steps and
2 × 105 at the 20th time step; all other values are zero.

These boundary conditions are not sufficient for using the Leonard scheme.
An additional upstream boundary condition is required because the algorithm
includes both φ j−1 and φ j−2. Additionally, the downstream boundary condition
must be specified because the algorithm requires φ j+1. To compare the total
mass, the second upstream boundary condition could satisfy the requirement
that no sediment propagates upstream from the point of release. At the

Figure E.11.2.1. Advection–dispersion calculation example.
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downstream end, advection is dominant and the concentration could be set iden-
tical to the value calculated one grid space upstream at the previous time step.

The use of the numerical scheme in Subsection 11.2.1 is comparatively sim-
pler because only one upstream boundary condition must be specified. The
numerical results shown in Fig. E.11.2.1 indicate that the second sediment
pulse disperses very rapidly and produces a second peak with lower sediment
concentration. The maximum concentration 10 km downstream is 61,000 mg/l
at a time of 1 h 27 min after release. The Leonard algorithm gives Cmax at
59,000 mg/l at 1 h 30 min. The results of both algorithms are essentially identical
20 km downstream, and the concentration exceeds 10,000 mg/l between 2 h
25 min until 4 h after release.

11.2.3 MacCormack scheme

The MacCormack scheme is an explicit, two-step predictor–corrector scheme
(MacCormack, 1969) that is second-order accurate in both space and time and
is capable of capturing the shocks without isolating them. This scheme has
been applied for analyzing 1D unsteady open-channel flows by Fennema and
Chaudhry (1986).

For 1D flow, two alternatives of this scheme are possible: (1) backward finite
differences are used in the predictor part and forward differences are in the
corrector part; or (2) forward finite differences are used in the predictor part and
backward differences in the corrector part. It is possible to alternate the direction
of differencing from one time step to the next. Better results are produced if
the direction of differencing in the predictor step is the same as that of the
movement of the wave front.

The finite-difference approximations for the first alternative are given below.
The predictor algorithm is

∂U

∂ t
� U ∗

j − U k
j

�t
,

∂F

∂ x
� Fk

j − Fk
j−1

�x
,

(11.33)

in which the superscript * refers to variable U computed during the predictor
part for the unknown level k + 1.

Substitution of these finite differences into the governing equation in the form
∂U/∂t + ∂F/∂x + R = 0 and simplification of the resulting equation yield

U ∗
j = U k

j − �t

�x

(
Fk

j − Fk
j−1

) − Rk
j �t. (11.34)
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In the continuity equation, the computed value of U ∗
j corresponds to flow

depth h∗ at the level k + 1, from which we determine the values of cross-
section area A∗, discharge Q∗, and velocity U ∗ at the unknown level k + 1.
These values are then used to compute F∗ and R ∗. The corrector algorithm is
implicit in space, as

∂U

∂t
= U ∗∗

j − U k
j

�t
,

(11.35)
∂F

∂x
= F∗

j+1 − F∗
j

�x
.

(11.36)

Substituting these finite differences and R = R∗
j into the governing equation

yields

U ∗∗
j = U k

j − �t

�x
(F∗

j+1 − F∗
j ) − R∗

j �t, (11.36a)

where the superscript ** refers to the values of the variables after the correc-
tor step. The value of U k+1

j at the unknown time level k + 1 is finally given
by

U k+1
j = 1

2
(U ∗

j + U ∗∗
j ), (11.36b)

from which all other parameters can be determined at the level k + 1. The
MacCormack scheme is stable if the CFL condition is satisfied.

Figure 11.6. Definition sketch of
the Preissmann scheme.

11.2.4 Preissmann scheme

The Preissmann scheme has been used since
the early 1960s (Preissmann and Cunge,
1961; Liggett and Cunge, 1975). It offers
the advantage that a variable spatial grid may
be used; steep wave fronts may be properly
simulated by varying the weighting coeffi-
cients θ and ψ , and the scheme yields an
exact solution of the linearized form of the
governing equations for a particular value of
�x and �t .

The partial derivatives are approximated
as sketched in Fig. 11.6 with the following
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weighted four-point scheme

∂h

∂t
� (1 − ψ)

hk+1
j − hk

j

�t
+ ψ

hk+1
j+1 − hk

j+1

�t
, (11.37a)

∂h

∂x
� (1 − θ )

hk
j+1 − hk

j

�x
+ θ

hk+1
j+1 − hk+1

j

�x
, (11.37b)

in which 0 ≤ θ ≤ 1 and 0 ≤ ψ ≤ 1 are weighting coefficients. In the partial
derivatives, h refers to either velocity V or flow depth h. By selection of a
suitable value for θ , the scheme may be made totally explicit (θ = 0) or implicit
(θ = 1). The scheme is stable if 0.5 ≤ θ ≤ 1. The truncation errors are of the
order of�t2 and�x2 when ψ = θ = 0.5. Taking θ = 0.5 gives a scheme that is
stable without numerical diffusion. Taking values θ > 0.5 introduces truncation
errors that produce numerical diffusion. Steep wave fronts are properly simu-
lated for low values of θ, but there are oscillations behind the wave front. These
oscillations are eliminated for θ close to unity; however, steep wave fronts are
somewhat smeared. For typical applications, θ = 0.6–0.7 may be used.

By substituting these finite-difference approximations into the St. Venant
equation, we have 2N equations (N is the number of reaches on the chan-
nel). We cannot write these equations for the grid points at the downstream
end. However, we have 2(N + 1) unknowns, i.e., two unknowns for each grid
point. Thus, at each time step for a unique solution, we need two more equations.
These are provided by two boundary conditions.

Boundary conditions at the upstream and the downstream extremities of the
routing reach must be specified in order to obtain solutions to the St. Venant
equations. In fact, in most unsteady-flow applications, the unsteady disturbance
is introduced at one or both of the external boundaries. At the upstream bound-
ary, either a specified discharge or water-surface elevation time series (hydro-
graph) can be used. The hydrograph should not be affected by downstream flow
conditions. At the downstream boundary, specified discharge or water-surface
elevation time series or a tabular relation between discharge and water-surface
elevation (single-valued rating curve) can be used. Another downstream bound-
ary condition can be a loop-rating curve based on the Manning equation. The
loop is produced with the friction slope Sf rather than the channel bottom
slope S0.

The Preissmann scheme produces a pentadiagonal banded matrix. The set
of nonlinear algebraic equations may be solved by an iterative technique. The
solution of 2N × 2N simultaneous equations requires an efficient technique
such as the double-sweep elimination procedure. Algorithms for subcritical
and supercritical flows with velocity or flow depth as the boundary condition
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are given in Abbott and Basco (1989). The lengthy procedure is beyond the
scope of this chapter.

11.2.5 Aggradation–degradation scheme

The analysis of bed-elevation changes in 1D channels involves the combined
effects of water-surface calculations and of changes in bed elevation through
the sediment continuity relationship. The stability of explicit schemes depends

Figure 11.7. Sketch of riverbed.

not only on the hydrodynamic conditions,
but also on the type of sediment-transport
relationship. To illustrate this point, con-
sider a steady 1D flow of unit discharge
q in a rectangular canal. Assume a slight
perturbation of the bed elevation at point
j , as sketched in Fig. 11.7, and let us
calculate the change in bed elevation �z

by using a backward difference of the sediment continuity relationship:

� z j+1 = − TE

(1 − p0)

(qsj+1 − qsj )�ts
�x

. (11.38)

where TE = 1 − exp[(−�xω)/q] is the trap efficiency, p0 is the porosity of
the bed material, ω is the settling velocity, q is the unit discharge, �x is the
grid spacing, and �ts is the time increment for sediment. In practice, the grid
spacing is usually sufficiently long that TE � 1. Also, the porosity is usually
assumed constant.

The unit sediment discharge qs is the subject of discussion here because
h j > h j+1 and Vj < Vj+1. Therefore, if the sediment-transport relationship is
proportional to the flow depth, qs ∼ hb, then qsj > qsj+1 and�z j+1 > 0 cause
aggradation at node j + 1 and the scheme is unstable. Conversely, the scheme
is stable (as long as �ts is reasonable) if qs ∼ V b because qsj < qsj+1 results
in degradation. Algorithms based on shear stress, qs ∼ aτ b = a(hS)b, can be
equivalent to the flow-depth algorithm if the slope is taken as a reach average
water-surface slope.

Opposite results in terms of scheme stability are obtained if the backward
difference �z j+1 is replaced with a forward difference �z j . Also, the case
of supercritical flow would also yield different results. The stability of
aggradation–degradation algorithms depends not only on the stability of the
hydrodynamic scheme but also depends largely on the sediment-transport rela-
tionship. In practice, it is often preferable to calculate�z from Eq. (11.38) and
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split �z as �z j = α�z and �z j+1(1 − α)�z, with 0 < α < 1 as a weighting
factor between forward and backward differences.

The time increment for sediment �ts is different than the time increment
�t for hydrodynamic calculations. It is clear from Eq. (11.38) that the
aggradation–degradation increment �z is linearly proportional to �ts . When
the change in bed elevation �z during �ts = �t is small compared with
the flow depth, the assumption of a rigid boundary calculation for hydrody-
namic calculations during �t is justified. The aggradation–degradation cal-
culations can be performed independently, and the equations are said to be
uncoupled. The use of �ts > �t is thus possible as long as �z is small com-
pared with h. Conversely, when�z is large compared with the flow depth when
�ts = �t , the sediment and the hydrodynamic equations have to be solved
simultaneously, and the equations are said to be coupled. Fortunately, bed-
elevation changes are usually sufficiently small during floods to use uncoupled
formulations.

An example of aggradation–degradation calculations is shown in Fig. 11.8.
The formulation is uncoupled, and the unit discharge is constant throughout the
reach. The upstream sediment discharge depends on the local upstream slope,
and the upstream bed elevation is assumed to be fixed. The sand-transport ca-
pacity is used in the calculations. Over time, aggradation takes place as sediment
transport decreases in the downstream direction. The reach becomes increas-
ingly uniform with a new slope that is several times less than the initial reach
slope. The sediment-transport capacity also gradually becomes fairly uniform
with slightly decreasing unit sediment discharge in the downstream direction.
This numerically illustrates the fact that alluvial rivers gradually tend to become
quite uniform in the downstream direction with very gradual changes in depth,
velocity, slope, and sediment-transport characteristics.

11.3 Multidimensional river models

2D depth-integrated models have been applied to predict surface runoff and
sediment-transport rates. A quasi-steady approach can often be used, although
some 2D unsteady-flow models are available. A complete description of multi-
dimensional models is beyond the scope of this chapter. A significant number
of 2D and 3D codes are commercially available, and some are readily available
in the public domain. The fast development of computers make new numeri-
cal solutions possible to river engineering problems of increasing complexity.
In many cases in which the vertical variation in flow velocity and turbulence
are of little interest, vertically averaged horizontal 2D models can be used.
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Figure 11.8. Example of riverbed aggradation and degradation.

The following assumptions are usually considered in depth-integrated 2D
models: (1) the radius of curvature is usually much larger than the channel width
and the mildly curved channel approximation is appropriate; (2) the shallow-
water approximation is appropriate, and this assumption is particularly valid
when the width–depth ratio of meandering or braiding streams is large enough
to neglect sidewall effects; (3) a 2D horizontal flow is considered, the vertical
velocity component is disregarded, and this type of model cannot account for
secondary currents in bends; (4) hydrostatic pressure distribution is assumed;
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(5) the wavelength of the bed deformations is assumed to be longer than the
wavelength of ripples, dunes, or antidunes, and bedforms are considered only
as roughness elements; (6) the spatial variation in the hydraulic roughness can
be neglected; (7) the influence of grain sorting is insignificant, and uniform bed
material is considered; and (8) the celerity of the bed disturbances is small, the
model assumes a rigid boundary, and hydrodynamic calculations are uncoupled
with the aggradation–degradation calculations.

2D models usually solve the continuity and the momentum equations af-
ter an empirical relationship is assumed for resistance to flow (e.g., Manning
or Chézy). The calculations can be performed in a raster-based or vector-
based format, depending on the GIS database available for the calculations.
Finite-difference schemes are well suited to raster-based data whereas the
finite-element method seems more appropriate for vector-based data and com-
plex geometries. The calculations are repeated at successive time steps for
unsteady-flow calculations. Sediment-transport calculations can effectively
yield aggradation and degradation results with uncoupled formulations. Exam-
ples of models include CASC2D for surface runoff simulation at the watershed
scale (e.g., Julien et al., 1995) and FLO-2D for mudflow simulation, typically
on alluvial fans (e.g., O’Brien et al., 1993).

Quasi-3D flow models simulate depth-averaged mathematical flow models in
combination with the depth-integrated velocity profile. The continuity and the
momentum equations are solved with empirical logarithmic velocity profiles.
The bedload transport rate in the transverse direction is calculated with em-
pirical formulas. The depth-averaged steady-state equation for the suspended
load is described in an orthogonal, curvilinear coordinate system. Models can
solve the sediment continuity equation for the 2D bed and suspended sediment
transport. Once the depth-averaged 2D velocity calculations are completed,
standard logarithmic velocity profiles are considered to determine the vertical
velocity profile. Because the model calculations are in two dimensions, sec-
ondary currents in river bends cannot be properly simulated with quasi-3D
models.

3D models are generally steady-state models used for turbulent-flow simula-
tions. In κ-ε models, the state of turbulence is characterized by the energy and
dissipation parameters κ and ε. 3D models typically solve the depth-averaged
Reynolds approximation of the momentum equation for velocity. The depth-
averaged mass conservation determines the water-surface elevation. The devia-
tion from the depth-averaged velocity is computed for each cell by the solution
of the conservation of mass equation in conjunction with a κ-ε closure for ver-
tical momentum diffusion. Sedimentation computations are based on 2D solid
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mass conservation for the channel bed and the exchange of sediment between
bedload and suspended load.

Data required for running multidimensional models include: (1) channel geo-
metry with cross sections; (2) upstream/downstream boundary conditions in
terms of discharge and stage as functions of time for unsteady-flow models
and flow-velocity profiles for 3D models; (3) particle-size distribution of the
bed material; (4) upstream/downstream sediment load (some models require
both bedload and suspended load); and (5) suspended sediment concentration
profiles for 3D models. The data requirements increase with the number of
dimensions in the model. Some model features may require data that are not
available, and many times assumptions must be made regarding missing data.
For instance, some models can calculate sediment transport by size fractions,
and sediment data of the bed material and boundary conditions may not be
available for each size fraction.

Models may not necessarily handle the data in the most appropriate manner.
For instance, some κ-ε should account for the turbulence generated behind
bedforms. Lumped values of κ and ε will be assumed in the model even if
longitudinal profile data showing bedforms are available.

Steady 3D models are applied to estimate the initial rate of sedimentation
and erosion in a given situation. The reason for this is the vast computer time
required for stabilizing the models under steady-state conditions. To run the
model over long time periods under different flow conditions to determine
aggradation and degradation would be prohibitive. The initial models pro-
vide good insight into the short-term effects of a proposed structure (chan-
nel diversion, new harbor, closure of a channel, etc.). However, they are of
limited value for long-term simulation. It is usually preferable to run long-
term 1D simulations in parallel to gain basic knowledge of morphological
processes and long-term changes to be expected at the site. Case Study 11.1
illustrates how various models can be used to solve complex river engineering
problems.

Case Study 11.1 Lower Mississippi River Sediment Study, United States.
The diversion of water and sediment from the Mississippi River into the
Atchafalaya River has been closely monitored with physical and mathemat-
ical model studies (USACE, 1999). Models of the flow and sediment diver-
sion at the Old River Control Complex required extensive field and labora-
tory measurements. Among the data needs at the site, the bathymetry and
daily water and sediment-discharge records over a period of 50 yr served to
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calibrate and test 1D HEC-6 models of the Mississippi and Atachafalaya Rivers.
A 3D model, CH3D-SED, also required more accurate field measurements of
velocity profiles with acoustic Doppler current profilers, and sediment con-
centration profiles by size fractions, measured with a P-63 at discharges of
∼1,000,000 ft3/s.
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Figure CS.11.1.1. Mississippi riverbed nead the Old River Control Complex.
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Figure CS.11.1.2. Surface-velocity calculation near a diversion (after U.S.
Army Corps of Engineers, 1999).

Selected results are shown here to illustrate the type of information that can
be gained from physical and mathematical models. Figure CS.11.1.1 shows
two results from the physical model. The position of the thalweg is extremely
important for navigation purposes. Comparing the results illustrates the sedi-
ment accumulation and the nonuniform thalweg depths downstream of sharp
bends as opposed to the more uniform thalweg depths obtained for gently
curved channels. The surface flow velocities calculated with the model CH3D-
SED are shown in Fig. CS.11.1.2 and, as expected, maximum flow velocities
can be found near the concave bank of the diversion channel. The sediment
concentration of fine sand in suspension is shown in Fig. CS.11.1.3. The higher
sediment concentrations of fine sand on the point bars are the result of secondary
flows, as expected.
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Figure CS.11.1.3. Calculated sediment concentration profiles of the
Mississippi River (after U.S. Army Corps of Engineers, 1999).

�Exercise 11.1

Plot the modules of the amplification factor |A| of Eq. (11.14) on Fig. 11.2(b)
as a function of 2 < N < 20 for values of Cr = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5,
and 2.0. Show that |A| approaches unity as N → ∞ for all values
of Cr .

��Exercise 11.2

With reference to Example 11.1, repeat the calculations for �x = 500 m and
�x = 250 m for values of Cr = 0.5 and 2.0, respectively. Compare the results
with those of Tables E.11.1.1 and E.11.1.2. Plot the results at t = 2,000 s for
Cr = 0.5 and �x = 2,000, 1,000, 500, and 250 m and show that the results
converge. Also, plot the corresponding results for Cr = 2.0 and show that the
results diverge as �x decreases even if the scheme is consistent.
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�Exercise 11.3

Reconcile the results obtained in Exercise 11.2 with the fact that |A| approaches
unity as N is large, as obtained in Exercise 11.1.

�Exercise 11.4

With reference to Subsection 11.2.1, demonstrate that �x = 2Kd/V (1 − Cu)
and �t = 2KdCu/V 2(1 − Cu) from K = Knum in Eq. (11.27) and Cu =
V�t/�x . Also, calculate �x and �t for V = 1 m/s, Kd = 50 m2/s, and
Cu = 0.9. Compare the results with those of Subsection 11.2.1.

Exercise 11.5

Derive Eq. (11.32b) from a stable Leonard scheme with Cu = 0.8 without
oscillations and with a grid Peclet number P� = 2.

Exercise 11.6

Consider the following time approximation:

∂h

∂t
� hk+1

j − h̃k
j

�t
with h̃k

j = 1

2
α
(
hk

j+1 + hk
j−1

) + (1 − α)hk
j ,

where α is a weighting coefficient between a central difference and the nodal
value at hk

j . Define the finite-difference approximation, Eq. (11.6), with a central
difference in time. Show that when α = Cr , the scheme reduces to a simple
FTBS scheme, or hk+1

j = hk
j − c(�t/�x)(hk

j − hk
j−1).

��Computer Problem 11.1

Calculate the floodwave propagation of Example 5.4 at a grid size �x =
32.5 km and �t = 2 h and use the diffusive-wave approximation.

Answer: in Table E.5.4.1

�Computer Problem 11.2

With reference to Example 11.2, what would be the maximum concentration
10 km downstream of the release if the first pulse only lasted 9 min at a con-
centration of 100,000 mg/l2. Also, compare the results with and without the
second pulse.
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��Computer Problem 11.3

With reference to Computer Problem 4.1, calculate sediment transport for ds =
0.3 mm over the 25-km reach and use the aggradation–degradation algorithm
to calculate changes in bed elevation through time. Repeat the calculations and
correct for the water- surface elevation changes through time. Provide graphical
output of sediment-transport capacity, bed elevation, and hydraulic grade line
at three different times. (Hint: The results are somewhat similar to those of
Fig. 11.8.)
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Waves and tides in river estuaries

This chapter relates to river features observed in wide, open areas and in river
estuaries. Section 12.1 presents the theory of surface waves with applications
to wind waves. Section 12.2 specifically deals with tides in river estuaries.
Section 12.3 presents a brief discussion of saline wedges in river estuaries.

12.1 Surface waves

As sketched in Fig. 12.1, let us consider short gravity waves propagating in
a smooth canal of depth h and unit width. The fluid is incompressible and
the motion is irrotational. The velocity potential � is defined such that the
velocity component in the downstream x direction is vx = (−∂�/∂x) and vz =
(−∂�/∂z) in the vertical z direction. The equation of continuity can be rewritten
as

∂2�

∂x2
+ ∂2�

∂z2
= 0. (12.1)

To obtain a solution to the equation of continuity, the method of separation
of variables is considered, and the wavelength λ is assumed to propagate in time
t at a celerity c:

� = f (z) cos
2π

λ
(x − ct) . (12.2)

Substituting Eq. (12.2) into Eq. (12.1) yields an equation of the form

d2f (z )

dz 2
− f (z ) = 0. (12.3)

The solution to this equation requires the use of hyperbolic functions.
The hyperbolic sine, cosine, and tangent are defined by the three relations

sinh z = ez − e−z

2
, cosh z = ez + e−z

2
, tanh z = sinh z

cosh z
= ez − e−z

ez + e−z
, (12.4)

385
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Table 12.1. Properties of hyperbolic functions

Value Value Value
f (z) at z → 0 at z → ∞ at z → −∞ d f (z)

dz

∫
f (z)dzz

sinh z z 1/2 ez −1/2 e−z cosh z cosh z
cosh z 1 1/2 ez 1/2 e−z sinh z sinh z
tanh z z 1 −1

Figure 12.1. Surface-wave diagram.

respectively, which should be compared with the relations

sin z = eiz − e−i z

2i
, cos z = eiz + e−i z

2
, tan z = sin z

cos z
, (12.5)

where i = √−1 for the circular functions. It follows at once from their defini-
tions that cosh2 z − sinh2 z = 1. We note that, like their circular cousins, sinh z is
an odd function and cosh z is even. In addition we have, by definition, cosech z =
1/sinh z, sech z = 1/cosh z, and coth z = 1/tanh z. It is clear from the table
that sinh z and cosh z are solutions of Eq. (12.3). Other elementary properties
of the hyperbolic functions which follow at once are summarized in Table 12.1
and sketched in Fig. 12.2.

Therefore the complete solution for the potential function can be written as

� =
(

Ã cosh
2π z

λ
+ B̃ sinh

2π z

λ

)
cos

2π

λ
(x − ct) , (12.6)

where coefficients Ã and B̃ and celerity c can be determined from the boundary
conditions.

The first boundary condition is that the vertical velocity is zero, or

vz = ∂�

∂z
= 0 at z = 0. (12.7)
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Figure 12.2. Properties of hyperbolic functons.

Substituting Eq. (12.6) into Eq. (12.7) imposes the condition that B̃ = 0.
There are two remaining boundary conditions to define the celerity c in Subsec-
tion 12.1.1 and the coefficient Ã as a function of wave amplitude in Subsection
12.1.2. The concept of wave energy is presented in Subsection 12.1.3, followed
by group velocity in Subsection 12.1.4 and wave power in Subsection 12.1.5.
Finally, applications to wind waves are presented in Subsection 12.1.6.

12.1.1 Wave celerity

An expression for the wave celerity can be obtained from the boundary condition
at the free surface. The expression emerges from the equation of motion without
friction. For 2D flow (vy = 0), the equation of motion in the vertical z direction is

∂vz

∂t
+ vx

∂vz

∂x
+ vz

∂vz

∂z
= −g − 1

ρ

∂p

∂z
. (12.8)

In the case of irrotational flow, (∂vz/∂x) = (∂vx/∂z), the following is obtained
from the flow potential definition vz = (−∂�/∂z):

∂

∂z

[−∂�
∂t

+ 1

2

(
v2

x + v2
z

) + gz + p

ρ

]
= 0. (12.9)

Considering that the velocity of the water is small, we can neglect the term in
v2. The potential that is due to gravity is g (z + η̃) and the equation of pressure
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becomes

p

ρ
= ∂�

∂t
− g (z + η̃) (12.10a)

or

η̃ = 1

g

∂�

∂t
− z − p

ρg
. (12.10b)

Differentiating the reduced equation of motion with respect to time gives

vz = ∂η̃

∂t
= 1

g

∂2�

∂t2
− 1

ρg

∂p

∂t
. (12.11a)

At the free surface z = h, the atmospheric pressure p is constant and the vertical
velocity vz can be obtained as

vz = −∂�
∂z

= + 1

g

∂2�

∂t2
. (12.11b)

| velocity potential | | equation of motion |
After substituting the potential function from Eq. 12.6 with B̃ = 0, into
Eq. (12.11b), we obtain at z = h

−2π

λ
sinh

2πh

λ
= − 1

g

[
2πc

λ

]2

cosh
2πh

λ

or (12.12a) ��

c2 = gλ

2π
tanh

2πh

λ
.

This is the relationship for wave celerity c, also known as the phase velocity,
derived by Airy. There are two particular cases of interest: (1) long waves, also
called shallow-water waves, where λ� h; and (2) short waves, also called
deep-water waves, where λ� h.

For shallow-water waves, the wavelength λ is very long compared with the
flow depth h (λ� h):

c2 � gλ

2π

2πh

λ
= gh. (12.12b)

This is the case of tidal waves, in which the velocity of propagation is indepen-
dent of the wavelength.

For deep-water waves, the wavelength λ is very short compared with the flow
depth h(λ� h):

c2 � gλ

2π
. (12.12c)
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This is the case of deep sea waves that are due to the wind. As the celerity
is proportional to the square root of the wavelength, a high wind gives rise to
longer waves than does a gentle breeze.

The wave period T relates to the wavelength λ and the celerity c as λ = cT ,
and the following identities are obtained directly from Eqs. (12.12):

T =
√

2πλ

g
coth

2πh

λ
, (12.13a) �

λ = gT 2

2π
tanh

2πh

λ
. (12.13b)

The relationship among celerity, period, and flow depth is illustrated in
Fig. 12.3. It is sometimes convenient to define the wave number k̃ = (2π/λ)
and the angular frequency σ̃ = k̃c = (2π/T ) to define the surface waves of
amplitude ã as η̃ = ã sin(k̃x − σ̃ t).
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Figure 12.3. Wave celerity as a function of depth and period.
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12.1.2 Displacement and velocity

The velocity components are obtained directly from the velocity potential equa-
tion (12.6) with B̃ = 0:

vx = ∂ξ̃

∂t
= −∂�

∂x
= 2π Ã

λ
cosh

2π z

λ
sin

2π

λ
(x − ct), (12.14a)

vz = ∂η̃

∂t
= −∂�

∂z
= −2π Ã

λ
sinh

2π z

λ
cos

2π

λ
(x − ct), (12.14b)

and integrating over time gives the horizontal ξ̃ and vertical η̃ displacements;

ξ̃ = Ã

c
cosh

2π z

λ
cos

2π

λ
(x − ct), (12.15a)

η̃ = Ã

c
sinh

2π z

λ
sin

2π

λ
(x − ct). (12.15b)

|wave amplitude ã |

This relationship defines the constant Ã as a function of three wave character-
istics: (a) wave amplitude ã, (b) wavelength λ, and (c) wave celerity c. From
cos2 + sin2 = 1, the path of a fluid element is seen to be an ellipse:

ξ̃ 2[
Ã

c
cosh

2π z

λ

]2 + η̃2[
Ã

c
sinh

2π z

λ

]2 = 1, (12.15c) �

with its major axis horizontal because cosh > sinh. As the hyperbolic sine and
cosine approach the same limiting value for large values of the argument, this
ellipse becomes a circle near the surface of deep-water waves, as shown in
Fig. 12.4.

Figure 12.4. Particle motion in water waves.
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Figure 12.5. PE definition sketch.

12.1.3 Wave energy

The total energy of a wave is divided into potential-energy (PE) and kinetic-
energy (KE) components generally expressed in terms of average energy over
a complete wavelength per unit surface area.

The PE that is due to the progressive waveform on the free surface is obtained
from subtracting the PE without the wave from the PE with the wave, as sketched
in Fig. 12.5(a); the incremental PE per unit width, dPEa, in a small column of
water is the height of the center of gravity times the mass increment dm. In a
water column h + η̃ high and dx long for water of specific weight γ , we obtain
dPEa = (height to center of gravity) g dm = [(h + η̃)2/2]γ dx . The average PE
per unit surface area is obtained from integration of the incremental PE over
one wavelength λ and one wave period T:

PEa = γ

2λT

∫ t+T

t

∫ x+λ

x
(h + η̃)2dxdt. (12.16)

Using η̃ = ã sin(k̃x − σ̃ t) from Eq. (12.15b), we find that Eq. (12.16) becomes

PEa = γ

2λT

∫ t+T

t

∫ x+λ

x
[h2 + 2ã sin(k̃x − σ̃ t) + ã2 sin2(k̃x − σ̃ t)] dxdt

or simply

PEa = γ h2

2
+ γ ã2

4
,

which is the average PE per unit surface area of all the water above z = 0.
The PE in the absence of a wave, as sketched in Fig. 12.5(b), is

PEb = γ

2λT

∫ t+T

t

∫ x+λ

x
h2 dxdt = γ h2

2
.

The average PE per unit area that is attributable to the wave is

PEa − PEb = γ ã2

4
. (12.17)
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Figure 12.6. KE definition sketch.

From Fig. 12.6, the KE per unit width of
a small element dx long and dz high with
velocity components vx and vz is given by

d(KE) = 1

2

(
v2

x + v2
z

)
dm

= 1

2
ρ
(
v2

x + v2
z

)
dzdx .

The average KE per unit surface area is
then given after integration over the flow depth, one wavelength, and one wave
period

KE = ρ

2λT

∫ t+T

t

∫ x+λ

x

∫ h+η̃

0

(
v2

x + v2
z

)
dzdxdt. (12.18)

Using the velocity components compatible with the progressive wave η̃ =
ã sin (k̃x − σ̃ t) and velocity components given by Eqs. (12.14), we find that
Eq. (12.18), then becomes

KE = ρ

2λT

∫ t+T

t

∫ x+λ

x

∫ h+η̃

0
k̃2 Ã2

[
cosh2 k̃z sin2(k̃x − σ̃ t
+ sinh2 k̃z cos2(k̃x − σ̃ t)

]
dzdxdt.

By using the following identities: (1) cosh2kz = k̃z = 1
2 [1 + cosh 2 k̃z];

(2) sinh2 k̃z = − 1
2 (1 − cosh2 k̃z); (3) cos2(k̃x − σ̃ t) − sin2(k̃x − σ̃ t) = cos2

(k̃x − σ̃ t); and (4) cos2(k̃x − σ̃ t) + sin2(k̃x − σ̃ t) = 1, the average KE den-
sity becomes

KE = ρk̃2 Ã2

4λT

∫ t+T

t

∫ x+λ

x

∫ h+η̃

0
[cosh 2 k̃z − cos 2(k̃x − σ̃ t)]dzdxdt

= ρk̃ Ã2

8
sinh 2 k̃h.

It reduces further from: (1) sinh2 k̃h = 2 sinh k̃h cosh ˜kh; (2) Ã = ãc/sinh
k̃h from Eq. (12.15b); and (3) c2 = (g/k̃) tanh k̃h from relations (12.12):

KE = γ ã2

4
. (12.19) �

The KE of small-amplitude waves [Eq. (12.19)] thus equals the PE [Eq. (12.17)].
The average total energy Ẽ per unit surface area is the sum of the average

potential of Eq. (12.17) and average KE of Eq. (12.19):

Ẽ = PE + KE = γ ã2

2
. (12.20) ��
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12.1.4 Group velocity

Several waves can be superposed simply by the addition of the flow-potential
functions, which results in adding the wave amplitudes as

η̃ = ã1 sin σ̃1t + ã2 sin σ̃2t, (12.21a)

η̃ = ã1 (sin σ̃1t + sin σ̃2t) + (ã2 − ã1) sin σ̃2t. (12.21b)

In deep water, celerity is a function of wavelength, and two sets of waves
of slightly different wavelengths travel at different velocities. This causes local
reinforcement and interference as one set gains on the other. The velocity with
which the regions of reinforcement or interference advance is known as the
group velocity. To find this velocity, consider two trains of simple harmonic
waves of the same amplitude but of slightly different wavelength and frequency,
such as

η̃1 = ã sin
2π

λ1
(x − c1t) , (12.22a)

η̃2 = ã sin
2π

λ2
(x − c2t) . (12.22b)

The following identity is used: sin x + sin y = 2 sin 1
2 (x + y) cos 1

2 (x − y).
The resultant water elevation η is obtained from Eqs. (12.21) and (12.22):

η̃ = η̃1 + η̃2 = 2 ã

{
cosπ

[(
1

λ1
− 1

λ2

)
x −

(
c1

λ1
− c2

λ2

)
t

]}
(12.23){

sinπ

[(
1

λ1
+ 1

λ2

)
x −

(
c1

λ1
+ c2

λ2

)
t

]}
.

As the wavelengths and the velocities are only sightly different, we may replace
λ1 and λ2 with the mean wavelength λ and c1 and c2 with the mean celerity c
in the second trigonometrical function in braces:

η̃ � 2ã

{
cosπ

[
d

(
1

λ

)
x − d

(
c

λ

)
t

]}
sin

2π

λ
(x − ct) . (12.24)

| group envelope |

This expression represents a wave traveling with phase velocity c with an
amplitude of 2ã and a group envelope in braces. At a given instant the amplitude
plotted against x is represented by a cosine curve, the distance from one region
of maximum amplitude to the next being the reciprocal d (1/λ). Moreover, this
region of maximum amplitude is progressing in the positive x direction with
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c
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G

x

η

Figure 12.7. Group-velocity
sketch.

the group velocity cG :

cG =
d
( c

λ

)
d

(
1

λ

) =
λdc − cdλ

λ2

−dλ
λ2

= c − λ dc

dλ
. (12.25)

Therefore we have a wave within a wave, as represented in Fig. 12.7. The
full-line wave curve advances with the celerity c whereas the dashed curve
advances with the group velocity cG . If c increases with λ, the phase wave
travels more rapidly than the group wave. In this case the full-line waves pass
through the group from rear to front, each crest disappearing at the front of the
group while a new crest appears at the rear.

The group velocity obtained from substituting the wave celerity from rela-
tions (12.12) into Eq. (12.25) is

cG = c

2

(
1 + 2k̃h

sinh 2k̃h

)
, (12.26) ��

which asymptotically reduces to c/2 when k̃h is large (deep-water waves) and
reduces to c when k̃h is very small (shallow-water waves). The group velocity
for shallow-water waves is identical to the wave celerity because the wave
celerity is independent of wavelength.

12.1.5 Wave power

The increment of power in a frictionless fluid is obtained by the product of
the elementary force ax dm and velocity in the same direction vx = −∂�/∂x .
Considering that the channel banks and bed do not move and that the pressure
is atmospheric at the free surface, the increment of power can then be integrated
over the flow depth during one period T to give the total power P̃ of the wave
per unit surface area:

P̃ = 1

T
ρ

∫ t+T

t

∫ h+η̃

0

∂�

∂t

(−∂�
∂x

)
dzdt. (12.27a)

Substituting the flow-potential function � from Eq. (12.6) into Eq. (12.27a)
gives

P̃ = γ ã2

2
cG . (12.27b) �
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It is concluded that the energy of a wave previously calculated in Eq. (12.20)
propagates at a velocity corresponding to the group velocity.

12.1.6 Wind waves

The minimum wind speed to generate gravity waves is approximately 6 m/s.
The characteristics of wind waves include a full spectrum of wavelengths and
amplitudes. The significative wave height Hs represents the average height of
the large waves in the upper third of the spectrum. The wave height Hs is
given as twice the wave amplitude ã. The average wavelength of these waves
determines the significative wavelength λs . Under a constant wind speed Uw ,
the wave height increases with the downwind distance, called the fetch length
F̃ , and with time until equilibrium is obtained. In deep water, either the wind
duration or the fetch length can limit the growth of waves. In shallow water, the
flow depth h can also limit the growth of wind waves.

In rivers, the wind waves are usually limited by the fetch length F̃ . The
flow depth may also limit the wave height during large storms when the fetch
length exceeds ∼3–5 km. The significative wave height Hs can be estimated as
a function of wind speed Uw , flow depth h, and fetch length F̃ from Fig. 12.8.

The development of wind waves under a constant wind speed Uw over a fetch
length F̃ is sketched in Fig. 12.8. To determine the wave height H̃ s , it can be
assumed that the work done by the shear stress τ ∼ ρU 2

w over the fetch length
F̃ corresponds to the energy of the wave Ẽ ∼ ρgH 2

s from Eq. (12.20). After
the work done and the energy are equated, the wave height H̃ s is related to the
fetch length F̃ as

H̃ s � 0.003 Uw

√
F̃/g. (12.28)

We can estimate the windstorm duration t̃ s required for reaching equilib-
rium by considering the ratio of the fetch length F̃ to the group velocity cG . In
shallow water, the storm duration can be approximated by t̃ s = F̃/

√
gh.

Waves are fetch limited as long as H̃ < 0.3 h, or Uw < 100
√

gh2/F̃ . In
this case, the significative wave height is approximated by Relation 12.28 and
the wavelength is λ � 15 H̃ s . The period is obtained from Eq. (12.13a). The
flow depth limits the growth of surface waves when h < 0.01 Uw

√
F̃/g. In

the case of depth-limited waves, the wave height is limited to approximately
30% to 40% of the flow depth, or H̃ s � 0.35 h. Fetch-limited waves are likely to
cause erosion of river banks whereas depth-limited waves will likely also cause
resuspension of the bed material.
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Figure 12.8. Amplitude of wind waves.

12.2 Tides in river estuaries

Tides are complex oscillatory waves in large water masses. The most obvious
tidal period corresponds to approximately a half daily cycle, more specifically
12 h 25 min. The tidal range and time of high water not only vary from place to
place but also throughout the month and the year. Tidal oscillations result from
massive gravitational and centrifugal force balances among Earth, Moon, and
Sun.
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Considering first the Earth alone, we
find that the gravitational attraction is
proportional to the universal gravitation
constant Gu = 6.673 × 10−11 Nm2/kg2.

At the surface of the Earth of mass
m E = 5.976 × 1024 kg and radius RE =
6,371 km, the gravitational acceleration
is g = Gum E/R2

E = 9.8 m/s2. The cen-
trifugal acceleration is proportional to the
square of the angular velocity multiplied
by the radius of rotation. As sketched
in Fig. 12.9, the centrifugal accelera-
tion that is due to the Earth’s rotation

is acE = ω2
E RE cosφ = 0.034 m/s2 cosφ, where ωE = 7.272 × 10−5 rad/s

is the angular velocity of the Earth and φ is the latitude of the point
considered.

Suppose the Earth is entirely covered with water. A unit mass of water
on the surface is simultaneously subjected to gravitational and centrifugal
accelerations. At the poles, there is no local centrifugal action, whereas at the
equator the centrifugal acceleration is of the order of 0.034 m/s2, or 0.3% of the
gravitational acceleration. This combined action varies with latitude and draws
the water toward the equator. Although there is in fact a preferential accumula-
tion of water near the equator, the daily rotation of the Earth does
not cause tides but contributes to tides through Coriolis acceleration. The
presentation of the Coriolis acceleration (Subsection 12.2.1) is followed by
tidal acceleration (Subsection 12.2.2) and tide amplitude and propagation
(Subsection 12.2.3).

12.2.1 Coriolis acceleration

Moving water at the surface of the Earth is subjected to acceleration, known as
the Coriolis acceleration, that is due to the rotation of the Earth. The Coriolis
acceleration is a function of the angular velocity vector of the Earth’s rotation
� and the flow-velocity vector V of moving water in a frame of reference at the
center of mass of the Earth and rotating with the Earth (x to the East, y North,
and z vertical up).

The Coriolis acceleration that is due to the Earth’s rotation � = ŷωE

cosφ + ẑ ωE sin φ that is applied at the center of mass of the Earth and is
due to the velocity vector V with vx to the East, vy to the North, and vz vertical
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up, is then defined as

acor = −2�× V

= 2ωE [x̂(vy sinφ − vz cosφ) − ŷvx sinφ + ẑvx cosφ]. (12.29)

For horizontal flow at the surface of the Earth (vz = 0), the Coriolis accele-
ration acor depends on the latitude angle φ. Fluid motion is deflected to the right
in the northern hemisphere and to the left in the southern hemisphere. Given
the angular velocity of the Earth, ωE = 7.3 × 10−5 rad/s and the latitude angle
φ, the magnitude of the Coriolis acceleration is

|acor| � 2ωE sinφV . (12.30)

The ratio of the Coriolis acceleration to the downstream gravitational acceler-
ation is defined as 2 sinφωE V/(gS). GivenωE = 7.3 × 10−5 rad/s, this ratio is
small (ratio<0.01) in most rivers and the Coriolis acceleration can be neglected
in all but a few large rivers where S is very small, e.g., S = 5 × 10−5, and where
the flow velocities are relatively large, e.g., V > 2 m/s. Example 12.1 illustrates
one case in which the Coriolis acceleration is not negligible. The Coriolis ac-
celeration can also be compared with the centrifugal acceleration in a river bend
of radius R1 as 2 sin φ ωE R1/V . This ratio is usually negligible in all but fairly
straight large rivers. Although negligible in rivers unless the surface slope is
very small, the Coriolis force plays a dominant role in large water masses and
in the atmosphere, in which it generates geostrophic winds.

Example 12.1. Calculation of the Coriolis acceleration. Consider the lower
Mississippi River at a latitude φ = 30◦ in a river bend at a radius of cur-
vature R1 = 4 miles (6.4 km). The water-surface slope of the river is Sw ≈
6 × 10−5 is applied on and the water moves horizontally to the south at 10
ft/s (3 m/s). The westward Coriolis acceleration due to the rotation of the
Earth is |acor| = 2ωE sinφV = 2 × 7.3 × 10−5 × sin 30◦ × 10 = 7.3 × 10−4

ft/s2 (2.22 × 10−4 m/s2). The centripetal acceleration in the river bend is
calculated from acent = V 2/R1 = 100 ft2/s2/4 × 5,280 ft = 4.7 × 10−3 ft/s2

(1.43 × 10−3 m /s2). The Coriolis acceleration is ∼15% of the centripetal acce-
leration in this river bend. In comparison, the downstream gravitational accelera-
tion component is gS = 32.2 ft/s2 × 6 × 10−5 = 1.9 × 10−3 ft/s2 (5.8 × 10−4

m/s2). The Coriolis acceleration is a significant fraction of the downstream
gravitational acceleration. Indeed, the Coriolis acceleration is ∼38% of the
downstream gravitational acceleration and should not be neglected in this case.
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Field velocity measurements of the Mississippi River that use the acous-
tic Doppler current profilers at the Old River Control Complex show that the
random turbulent-velocity fluctuations mask the effects of the Coriolis accele-
ration. Winkley (1989) nevertheless concludes that the Coriolis force exerts an
influence on the geometry of the Lower Mississippi River. The Coriolis effects
become even more significant for oscillations of longer periods, such as tides.

12.2.2 Tidal accelerations

The Earth and the Moon may be considered as a single system, consisting of
two bodies having a common center both of mass and rotation C , as sketched in
Fig. 12.10. The common center of mass is just inside the surface of the Earth –
as the Earth diameter and mass are respectively approximately 3.7 and 81 times
those of the Moon and their distance apart is ∼30 Earth diameters. In a frame
of reference rotating in space about C with a period of ∼27.3 days, the water
is subject to the gravitational accelerations of the Earth and the Moon and the
centripetal acceleration.

The centrifugal and gravitational accelerations exerted by the Moon are equal
and opposite at the center of mass of the Earth. Locally at the Earth surface, the
gravitational acceleration attracts water toward the Moon at point A while the
centrifugal acceleration about point C forces the water away from the Moon
toward point B. Their resultant force causes the water surface to form a spheroid
that is oblate along the Earth–Moon axis. The above argument can be applied

Earth

F

C

F
gE

gMFcC

ω   = 2π/T
T   = 365 d

s

s

ω   = 2π/T

T   = 27.3 d
C

C

s C

Moon

B A

T   = 24 hE
ω   = 7.3 x 10    rad/sE

-5

6375 km 4670 km

m    = 5.98 x 10     kgE
24 m    = 7.34 x 10     kgM

22

km384 410 

Figure 12.10. Earth–Moon influence on tides.
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to the effect of the Sun’s giving differential gravitation effects that are 2.17
times smaller than those for the Moon. Consequently, maximal tides should be
obtained during new and full Moons.

Also, the gravitational and the centripetal accelerations at the poles do not
change during the day. The largest variations are obtained at the equator with,
for instance, the gravitational force of the Sun near the east at sunrise and near
the west at sunset. In simplified form, the differential in latitudinal accelera-
tions on a daily basis generates flow velocities that are proportional to the cosine
of the latitude. The maximum differential is obtained when the Sun is in the
equatorial plane, which should increase the magnitude of fall and spring tides
at the times of the equinoxes. The magnitude of the Coriolis acceleration from
relation (12.30) is therefore proportional to sinφe cosφe. Accordingly, tides
should be small near the poles and the equator and should be maximum at a 45◦

latitude.
The exact analysis of tides is further complicated by the facts that: (1) the axis

of rotation of the Earth is at 66◦33 minutes from the plane of Earth’s rotation
around the Sun; and (2) the plane of the Moon is also inclined at 5◦9′ minute
from the plane of the Earth’s rotation around the Sun. High-water levels do
not usually coincide with the maximum lunar attraction at a given locality.
Displacements in harmonic systems are out of phase with accelerations. Tidal
currents are not necessarily in phase with the displacements because of the
finite wave-propagation speed and its dependence on depth. For reasons of
boundary shape and friction effects, local systems rotate around amphidromic
points where no tide elevation exists. An example is shown in Fig. 12.11.

12.2.3 Tide amplitude and propagation

The propagation of tides in estuaries with variable widths is calculated on the
basis that the effects of friction and wave reflections remain negligibly small.
Thus the law of conservation of energy provides a convenient way of expressing
the effect of changes in width and depth on tide amplitude. The total energy for
the entire surface of the wave from Eg. (12.20) is

W0λ0 Ẽ = W0λ0
1

2
γ ã2

0 = Wxλx
1

2
γ ã2

x , (12.31)

where W is the width of the estuary, λ is the tidal wave length and ã is the
tide amplitude. The subscript 0 refers to the initial or reference position and
the subscript x to any location. Because the celerity c of shallow-water waves
c = √

ghx and because the period T = λ/c is independent of any deformation
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of the wave, the tide amplitude ãx can be determined after λx = T
√

ghx is
substituted into Eq. (12.31) to obtain

ãx

ã0
=

(
W0

Wx

)1/2 (h0

hx

)1/4

. (12.32) �

This is known as Green’s law, which assumes conservation of energy for
shallow-water waves. In the case of intermediate-or deep-water waves other
than tidal waves, the more general relationship from conservation of power
[Eq. 12.27(b)] is recommended. The case of tide propagation with friction is
best analyzed with numerical models. From Fig. 12.11 we can examine the tidal
amplitude changes as it propagates up the St. Lawrence estuary. It is clear that
the increase in amplitude is caused by the reduction in channel width and flow
depth.

12.3 Saline wedges in river estuaries

As rivers enter seas and oceans, the density difference between clear freshwater
and saltwater often causes density stratification. A saline wedge refers to the
saline layer underlying freshwater in a river communicating with a tideless sea.
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The still form is called an arrested saline wedge, and the length and the shape
of arrested saline wedges are described below.

Let ρsea be the density of saltwater (usually ρsea � 1,035 kg/m3), and let ρm

be the mass density of the river freshwater, including suspended sediment. Then
a densimetric velocity V� may be defined as

V� =
√
�ρ

ρm
gh, (12.33)

where �ρ = ρsea − ρm, g is the gravitational acceleration, and h is the river
depth. The physical significance of V� is linked to the propagation velocity of
internal waves of large wavelength. The initial velocity of saline fronts moving
in still water is also proportional to V�. A saline wedge extends laterally as
long as V� > V1.

As sketched in Fig. 12.12, we can calculate the height of the wedge at the
river mouth hs1 by defining the position where the local velocity V1 equals the
local densimetric velocity V�1. The densimetric velocity is applied at the river
mouth:

V 2
�1 = V 2

1 = �ρ

ρm
g (h − hs1) . (12.34)

If mixing at the interface is small, the continuity condition for freshwater in a
river of constant width gives

V1 (h − hs1) = V h. (12.35)

Eliminating V1 between expressions (12.34) and (12.35) and solving for hs1/h
gives

hs1

h
= 1 −

(
V

V�

)2/3

. (12.36)

The length L� of an arrested saline wedge has been studied experimentally
and the following empirical relationship is suggested:

L�
h

� 6.0

(
V�h

ν

)1/4 (V�
V

)2.5

. (12.37)

The length of an arrested saline wedge depends primarily on the river depth h
and the density difference �ρ.

The shape of the arrested saline wedge sketched in Fig. 12.12 is defined
from the height of the saline wedge hs , the height of the wedge at the river
mouth hs1, and the distance L in terms of the wedge length L� . The shape of
the arrested saline wedge is practically independent of seawater salinity, river
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Figure 12.12. Arrested saline wedges.

velocity, water depth, channel width, and viscosity, as shown in Fig. 12.12(b).
Case Study 12.1 provides an example of interaction between the saline wedge
and tides in river estuaries.

Case Study 12.1 Salmon capture in the Matamek River estuary, Canada.
The Matamek River is a small tributary of the St. Lawrence River estuary
near Sept-Iles. When leaving rivers to enter the sea, juvenile Atlantic salmon
(salmo salar), called smolts, spend 20–30 days in the saline wedge of river
estuaries to gradually adapt to saltwater. To study the migration pattern in
the Matamek River, the capture–recapture method was used to estimate the
population of smolts in the estuary during the migration period in June and
early July. Captures were made during high tides at a fixed location (point A
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Figure CS.12.1.1. Salmon capture and tides of the Matamek River.

in Fig. 4.2) in the estuary for a period of 2 yrs. The daily average number of
smolts captured per seine haul is shown in Fig. CS.12.1.1. The double peak
in fish migration intrigued scientists. At the time, arguments were supporting
two different fish population’s migrating at slightly different times. Scientific
studies were pursued to determine whether there could be genetic differences
in the fish population. When the moon cycle in Fig. CS.12.1.1 is plotted against
the salmon capture chart, the peaks correspond to half-moon periods. Could the
Moon also exert influence on fish capture?

When the water levels in the estuary were plotted as a function of time,
Fig. CS.12.1.1 shows that the captures were low when tides were very high.
The saline wedge is located at the capture site during half-moons when the
tide is moderately high. The saline wedge was located upstream during higher
tides and downstream for lower tides, as sketched in Fig. 12.12(c). It became
clear that the number of fish captured depended primarily on whether or not
the seine was hauled in the saline wedge or not. A simple regression equation
based on the high- and the low-water levels was set up to determine ahead of
time whether or not fishing would be good for any given day. So much for the
influence of the Moon on fish behavior and for the two salmon populations in
the Matamek River.

Case Study 12.2 Tidal data for the St. Lawrence River, Canada. This
case study presents tide-propagation data in the St. Lawrence River. The
data presented in Fig. CS.12.2.1 and Table CS.12.2.1 illustrate tidal wave
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propagation in river estuaries. The database serves for specific calculations in
Problem 12.5.

�Exercise 12.1

Satisfy Eq. (12.6) with the boundary condition that the vertical velocity is zero
at the bottom of the canal [Eq. (12.7)] to show that B̃ = 0.
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Table CS.12.2.2. Tides of the St. Lawrence River

Sept-Iles Rimouski Quebec Grondines

Date m Time m Time m Time m Time

March 2.1 0h44 3.2 1h17 4.1 5h23 2 8h06
2000 0.5 6h31 1 7h09 0.5 12h15 0.5 15h03

4 2.7 12h57 3.8 13h26 4.8 17h29 2.6 19h58
0.4 19h23 0.7 19h53 0.3 0h52 0.4 4h16

5 2.2 1h19 3.4 1h50 4.4 5h59 2.2 8h32
0.5 7h11 0.8 7h45 0.4 12h58 0.5 16h03
2.8 13h32 4 13h59 5 18h07 2.8 20h34
0.3 19h53 0.6 20h21 0.2 1h30 0.5 4h57

6 2.4 1h52 3.6 2h22 4.7 6h34 2.4 8h59
New 0.2 7h49 0.6 8h19 0.3 13h39 0.6 16h57
Moon 2.8 14h06 4.1 14h32 4.8 18h45 2.5 21h14

0.2 20h19 0.5 20h43 0.2 2h07 0.6 5h36

7 2.5 2h25 3.8 2h54 4.9 7h09 2.7 9h29
0.1 8h26 0.5 8h54 0.2 14h19 0.7 17h47
2.8 14h39 4.2 15h05 5.3 19h24 3 21h45
0.1 20h53 0.4 21h20 0.2 2h43 0.7 6h14

8 2.6 2h59 3.9 3h28 5.1 7h45 2.9 10h04
0.1 9h05 0.5 9h30 0.2 14h59 0.8 18h33
2.7 15h14 4.1 15h41 5.3 20h03 3 22h23
0.1 21h25 0.4 21h53 0.2 3h19 0.8 6h51

9 2.7 3h35 4 4h04 5.2 8h21 3.1 10h42
0.1 9h45 0.5 10h09 0.1 15h39 0.8 19h18
2.6 15h51 4 16h20 5.1 20h44 3 23h05
0.1 21h59 0.4 22h28 0.2 3h56 0.8 7h27

10 2.7 4h14 4 4h43 5.2 9h00 3.1 11h25
0.2 10h29 0.6 10h53 0.2 16h21 0.9 20h03
2.4 16h31 3.8 17h03 4.9 21h28 2.8 23h51
0.2 22h37 0.6 23h07 0.3 4h33 0.9 8h04

11 2.7 4h57 3.9 5h27 5.1 9h42 3.1 12h12
0.4 11h20 0.7 11h42 0.3 17h05 0.9 20h50

��Exercise 12.2

Substitute Eq. (12.6) into Eq. (12.11b) to obtain wave celerity relationships
(12.12).

Exercise 12.3

From the definition of velocity in Eqs. (12.14), demonstrate that the convective-
acceleration terms in Eq. (12.9) are small compared with the local acceleration
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for waves of small amplitude (ã � λ). [Hint: Examine the ratio (v2
x + v2

z )/
∂�/∂t .]

Exercise 12.4

Demonstrate the relationship for the group velocity in Eq. (12.26) from sub-
stituting wave celerity relationships (12.12) into Eq. (12.25). Also show that
cG = c/2 for deep-water waves.

�Exercise 12.5

Demonstrate that the energy of gravity waves propagates at the group velocity
by substituting Eq. (12.6) into Eq. (12.27a). [Hint: Use the identities shown in
Eq. (12.19).]

��Exercise 12.6

Calculate the length of the saline wedge for the clearwater of the Matamek
River. The flow velocity is 1 m/s and the flow depth is ∼4 m.

Answer: L� = 1,650 m, V� = 1.17 m/s, and hS1 = 0.4 m, with ρsea =
1,035 kg/m3.

��Problem 12.1

Estimate the wave height, wavelength, and waveperiod in a river that is 10 m
deep with at fetch length of 10 km. Consider a hurricane with a wind speed of
75–90 mph (∼40 m/s).

Answer: H̃ s � 3.5 m, λs � 50 m, and the period T � 6 s. The cele-
rity c = λs/T = 8.3 m/s, and the waves are depth limited.

�Problem 12.2

Estimate the wave height, wavelength, and waveperiod in a river that is 4 m
deep, with a fetch length of 1 km. Consider a storm with a wind speed of 65–75
mph (∼30 m/s).

��Problem 12.3

Compare the magnitude of the Coriolis acceleration in the Rhine River with the
downstream gravitational acceleration and also with the centrifugal acceleration
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in a 2-km-radius river bend near Nijmegen in The Netherlands. (Hint: Consider
the field measurements h = 10 m, V � 2 m/s, and S � 1 × 10−4).

Answer: acor =2×10−4 m/s2, acor/gS � 22%, and acor/acent � 10%.

��Problem 12.4

Consider a branch of the Mississippi River delta with a discharge of 270,000
ft3/s (7,640 m3/s), a branch width of 1,500 ft (460 m), and a depth of 45 ft
(13.7 m). Estimate the densimetric velocity V� and the length L� of the salinity
wedge.

Answer: Assume that �ρ/ρm = 0.035, V = 4.0 ft/s = 1.2 m/s, and
V� = 7.11 ft/s = 2.17 m/s. The length L� � 16.5 miles (26 km).

��Problem 12.5

With reference to the tide propagation data in Case Study 12.2, examine the
following characteristics:

(a) Estimate the floodwave celerity from the shallow-water equation and
compare with field observations. (Hint: Assume a flow depth of ∼10
m near Grondines, ∼50 m near Québec, up to 100 m near Rimouski,
and up to 200 m near Sept-Iles.)

(b) Compare the shape of tidal waves between Sept-Iles and Trois-Rivières
and discuss the effects of bed roughness on tides.

(c) From Table CS.12.2.1, examine the days when the highest tides occur
at various locations. Discuss the observations.

��Computer Problem 12.1

From the data in Case Study 12.2, calculate at 30-min intervals the flow velocity
at Québec on March 8, 2000. Assume a simple prismatic approximation for the
river channel 120 km long with a width of 2 km, depth 15 m, constant inflow
discharge of 10,000 m3/s, and constant stage near Trois-Rivières. Why is there
flow reversal at Québec?
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advection-dispersion, 365, 370
adverse slopes, 108
aerial photograph, 187, 226
aggradation, 114, 199, 215, 219
aggradation-degradation scheme, 375
agricultural levee, 290
alluvial channel, 158, 171
alluvial fan, 219, 221
alluvial river bar, 177
alluvial system, 199, 203
alternate bar, 177–178
alternate depth, 103
amplification factor, 358
anabranching, 216
anastomosed river, 215, 216, 218
anchor, 265
angle of repose, 18, 161
angular frequency, 389
annual erosion loss, 74
annual migration rate, 187
apex, 178, 180
aquatic habitat, 322
armor layer, 209, 210
arrested saline wedge, 402
artesian pressure, 238
articulated concrete mattress, 260
artificial cutoff, 319
at-a-station hydraulic geometry, 81, 87
Atchafalaya River, 86, 222, 295,

379
Atlantic salmon, 403
avulsion, 216, 219

backward finite-difference, 355, 361
backwater profile, 107, 110

baffle, 324
bank caving, 170
bank failure, 235
bank-erosion process, 234
bank stabilization, 282
bankfull discharge, 171, 183, 199, 224
barge type, 317
basket, 259
bedform characteristics, 94
bedload percentage map, 193
bedload sediment transport, 113, 192–193,

218
bed-material discharge, 199
bedrock outcrop, 212
bed shear stress, 27
Belanger equation, 101
benching, 237
bend apex, 191
bendway weir, 277–279
Big Thompson flood, 42, 44
blanket, 252
block, 257, 258
borrow area, 290
bottom vane, 308
boundary condition, 362
box gabion, 259
brackish water, 403
braided river, 214–218, 223
braiding and meandering, 216–217
branches, 221
bridge inspection program, 350
bridge scour, 310
broad-crested weir, 282, 302
bucket dredge, 325, 327
bulkhead, 264
buoyancy force, 159
burlap sack, 257
buttress, 237, 264

caisson, 263–264
calibration phase, 353
canal headwork, 306, 307–308
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cantilever wall, 262, 264
canyons, 207
capture, 216
capture–recapture, 403
celerity, 130–131, 389
cellular cofferdam, 303–304
center-of-mass curve, 193
central finite-difference, 355, 361
centrifugal acceleration, 23, 128, 166, 398
channel conveyance, 288
channel degradation, 204
channel improvement, 288, 294, 316
channel incision, 205, 207
channel intake, 306
channel morphology, 199
channel shift, 224
channel stability, 163
channel widening, 222
Chaudière watershed, 76
Chézy coefficient, 54, 89, 91
choking, 298
chute cutoff, 178, 330
circular cell, 305
clay plug, 190
climate, 34
cofferdam, 303–304
cohesive bank, 235
Colorado River, 151
commercial navigation, 317
compacted levee, 290
complete closure, 297
complete mobile-bed similitude, 345
complete-equilibrium hydrograph, 58–59, 60
concave bank, 180
concentration profiles, 154
concrete wall, 263
confined aquifer, 238
confluence, 225
conjugate depth, 100–101
conservation of mass, 24, 122
conservation practice, 70–71
consistency, 356–357, 363, 366
contaminant, 329, 365
continuity, 122
contraction scour, 311–312
control volume, 122, 125
convection instabilities, 368
convective acceleration, 23
convective rainstorm, 37, 39
convergence, 356–357, 363
conversion of units, 12
convex bank, 180
Coriolis acceleration, 23, 397–398, 400
corrector algorithm, 373
Courant number, 140–141, 356
Courant–Friedrich–Levy (CFL), 140, 358
covered-hopper barge, 317

crib wall, 263–264
critical flow depth, 100, 103
critical shear stress, 18, 163
cropland, 71
cropping-management, 68, 69–70
crossing, 178, 180
crossover culvert, 324
cross-section geometry change, 195
cross wave, 134
culvert scour, 291, 301
cumulative distribution function, 40
cumulative infiltration, 48, 53
cumulative time of snowmelt, 61
cut and fill, 237
cutoff, 316, 318–319
cutoff trench, 290
cutoff wall, 252
cutterhead dredge, 328

dam, 323
dam break, 220
Darcy–Weisbach friction factor, 54,

89, 91
database, 228
deadman, 266
debris, 283
decreasing discharge, 195
deep-water wave, 388–389, 401
degradation, 114, 199, 207, 210, 219
degree days, 61
delta, 220
densimetric velocity, 402
density stratification, 401
depositional zone, 199
depth-integrated 2D model, 377
depth of ponding, 48
design flood elevation, 305
detention basin, 286
detention storage, 46, 53
diaphragm cell, 304–305
differential equation types, 353
diffusive wave, 129, 134–136, 138, 141
dike, 272, 274
dipper dredge, 325, 327
Dirichlet type of boundary condition, 362
discharge duration, 206
discharge measurement, 84
dispersion number, 371
distorted model, 335, 348
divergence theorem, 122
diversion tunnel, 297–299
dominant discharge, 171, 203, 206
double levee system, 289, 322
double mass curve, 229
downbound tow, 318
downstream boundary condition, 362
downstream fining, 212, 215
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downstream hydraulic geometry 158, 166,
172–175, 202

downwind, 356
drain, 267
drain well, 238, 239
drainage network, 79
drainage trench, 238
dredged material, 329
dredging, 325
drift angle, 318
drop structure, 280, 281
Dry Creek, 212
dry specific weight, 21
dumped riprap, 247
duration curve, 142–143, 147,

151
dustpan dredge, 327–328
dynamic response, 199, 203
dynamic similitude, 336
dynamic variables, 10
dynamic viscosity, 11
dynamic wave, 135, 138

earth cofferdam, 297
earth plug, 319
effective riprap size, 241
effective saturation, 48
elliptic equations, 362
emptying, 323
end-dumping, 298
endangered species, 228, 322
energy correction factor, 97, 103
energy dissipation, 280
energy grade line (EGL), 29, 110–111
equation of motion, 25, 27, 128
equilibrium in river bends, 166
equivalent concentrations, 20
erosion coefficient, 73
erosion index, 187, 189
erosional zone, 199
Euler’s relation, 358
evapotranspiration, 46
exact geometric similitude, 335, 337
exceedance probability, 40, 42, 143, 147, 149,

151
excess rainfall, 51–53
expected soil loss, 65–66
explicit finite difference, 356, 365
external forces, 25
extremal hypotheses, 179
extreme rainfall, 149
extreme specific discharge, 149

Fall River, 190
fan apex, 221
fence, 276
fetch length, 395

field survey, 228
filling, 323
filter, 247
filter design, 250
filter fabric, 264
finite-difference approximation, 353–354
fish population, 404
flash flood, 45
flexibility, 283
floating debris, 276
flood-carrying capacity, 294
flood control, 286, 289
flood damage, 289
flood-frequency analysis, 227
floodgate, 291
floodplain, 171, 288
flood protection, 288, 293
flood routing, 139, 141
floodwall, 289
floodwave amplification, 135
floodwave attenuation, 135, 137, 286–287, 289
floodwave celerity, 131, 140
floodwave diffusivity, 132, 134, 139
floodwave propagation, 133
floodway, 287, 293
flow contraction, 104, 297, 304
flow convergence, 4
flow-discharge record, 227
flow diversion, 297
flow-duration curve, 227
flow in bends, 128
flow kinematics, 22
fluvial system, 199
flux, 124
forestland, 71
forward finite-difference, 355, 361
Fourier series, 358
freeboard, 290, 304
freeze-thaw cycle, 262
Froude similitude, 336–337, 340
fundamental dimensions, 9

gabion, 258–259, 263, 280
gabion structure, 260
gabion wall, 263
Ganges River, 224–225
gantry, 329
gate pier, 324
general scour, 310–311
geographic information system (GIS), 226
geometric similitude, 335
geometric variables, 10
geometry of meanders, 183
geotextile, 263
gooseneck, 255
gradation coefficients, 17
grade-control structure, 207, 280, 301–302
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gradually-varied flow, 102, 107, 110
grain resistance, 92
gravel filters, 248
gravel mining, 210, 213–214
gravity wave, 385
gravity wall, 262
grazing, 213
great flood, 293
Green and Ampt, 47
Green’s law, 401
grid Peclet number, 367, 371
groundwater control, 267
group velocity, 393–394
groynes, 268–269, 321
guidebank, 270–271, 304
guide vane, 307
guide wall, 307
gullies, 207

hardpoint, 267
headcut, 207, 210, 214
high tide, 403
higher-order approximation, 360, 362
hopper dredge, 325, 327–328
horizontal drain, 238–239
horseshoe vortex, 313–314
hydraulic conductivity, 48
hydraulic-geometry changes, 204
hydraulic-geometry relationship, 171
hydraulic geometry of stable channel, 173
hydraulic grade line (HGL), 29, 110–111
hydraulic jump, 101, 106
hydraulic model, 339
hydraulic modeling, 336
hydraulic pipeline dredge, 327
hydraulic similitude, 334
hydraulic suction dredge, 325
hydraulically rough/smooth, 91
hydrologic cycle, 31
hydroseeding, 255
hyetograph, 52
hyperbolic function, 385–387
hyperbolic partial differential equation, 354,

365
hypsometric curve, 33

ice and debris movement, 236, 254, 320
ideal cross-section geometry, 163–164
impermeable spur, 270
implicit finite difference, 356
impulse-momentum relationship, 98
incipient motion, 160
incised river/channel, 205, 207
incomplete mobile-bed similitude, 346–347,

349
increasing discharge, 195
infiltration, 46, 48–49

inflection point, 180
initial water content, 48
interception, 46
interference, 393
irrigation canal, 306
island, 215

Jamuna River, 223–225, 348
jet scour, 300–301
jetty field, 275–276

Kellner jack, 276
kinematic similitude, 335
kinematic variables, 10
kinematic viscosity, 13
kinematic wave, 129, 134–135, 138
Kleitz–Seddon law, 131
knickpoints, 207

Lacey silt factor, 165
Lagrangian celerity, 130
landslide, 236
Lane’s relationship, 201
lateral earth pressure, 267
lateral migration, 170, 184, 186, 188–189, 224
lateral mobility, 185, 189
lateral stability, 187
launching apron, 252, 257
Lawn Lake, 220
Leonard scheme, 368, 371
levee, 171, 219, 288–290, 293
lift-drag ratio, 161
lift force, 159
lightweight sediment properties, 344, 349
linear stability analysis, 357, 369
local acceleration, 23
local scour depth, 302
lock and dam, 296, 323–324
logarithmic equation, 92
logjam, 295
long wave, 388
longitudinal dyke, 319
longitudinal profile, 80
longitudinal shear stress, 185
loop, 180
loop-rating curve, 136
low sill, 299
low tide, 403
low water reference plane (LWRP), 81, 331
lower guard wall, 324
Lower Mississippi River, 261

MacCormack scheme, 372
magnetic sliding collar, 350
mainstream lengths, 33
maintenance, 282
maintenance dredging, 330
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Manning coefficient, 54, 90–91
Manning-Strickler similitude, 340
marching procedure, 354
masonry wall, 263
mass curve, 229
mass density, 10
mass wasting, 237
Matamek River, 83, 87, 403
mathematical model, 352
matting, 255
mattress, 258–259
maximum precipitation, 36
maximum scour, 304
maximum sill elevation, 105
mean annual flood, 171
mean daily sediment discharge, 151
mean radius of curvature, 183
meander belt, 180
meander cutoff, 288
meander length, 179–184
meander loop, 179, 187, 190
meander width, 179–184
meandering, 186, 189, 217
mechanical dredge, 325
method of moment, 144–145
Meuse River, 210
mid-channel bar, 178
migration rate, 188
mild slopes, 108
minimum channel width, 105
minimum radius of curvature, 181–182
minimum stream power, 179
Mississippi River, 222, 255, 278, 291, 330,

379, 398
Mississippi River Commission (MRC), 293
mobile-bed model, 339, 342, 344, 348
mobile-bed similitude, 343
model accuracy, 353
model calibration, 352
model dimension, 348
model distortion, 340–341
model scale, 334, 342
model verification, 353
modified slump failure, 251
momentum correction factor, 96, 99
momentum equation, 97, 126
mountainous terrain, 213
multidimensional river model, 376

National Geodetic Vertical Datum (NGVD),
81, 331

native plants, 253
navigable waterway, 296
navigation, 316–318
neck cutoff, 189–190
Neuman type of boundary condition, 362
noncohesive alluvial channel, 171

noncohesive bank, 235
nonexceedance probability, 40, 42,

143
nonuniform thalweg depth, 381
normal depth, 90
normal stresses, 25
numerical diffusion, 366–367
numerical stability, 141, 359, 368
numerically smooth simulation, 370

open-hopper barge, 317
overland flow, 57–58, 63
overtopping, 305
oxbow lake, 190

Padma River, 222, 224–225
parabolic equation, 365
partial closure, 297
partial-equilibrium hydrograph, 58, 60
particle erosion, 250
particle-orientation angle, 162
particle-size distribution, 17
particle stability, 158, 162, 168, 194
pasture land, 71
path line, 22
paved bed, 209
peak discharge, 220
perched river, 216, 219, 289
perforated pipe, 238
permeable spur, 270
perturbation theory, 179
pervious toe trench, 290
phase velocity, 388
physical model, 334
physical properties, 9, 14
pier footing, 314
pier scour, 313–315
pile, 273
pile cap, 314
pile cluster, 274
pile retard, 272
pilot channel, 319
pipeline, 329
piping, 236, 290
planform geometry, 181
plunging jet scour, 300–301
point bar, 169–170, 177
point bar sedimentation, 194
point-bar slope, 191
point rainfall precipitation, 40
pontoon, 329
pore pressure, 238
porosity, 21
port, 329
potential evapotranspiration, 34
potential infiltration, 52
precast cellular block, 257
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precision, 353
predictor-corrector scheme, 372
Preissmann scheme, 373
preservative treatment, 283
pressure-relief well, 290
probability density function, 143
project durability, 282
project flood, 294
project life, 282
properties of sediment, 13
pumping plant, 291, 306

quasi similitude, 347
quasi-steady dynamic wave, 129

radial acceleration, 128
radial shear stress, 128, 166–167
radial surface slope, 167
radius of curvature, 167, 172, 178–179, 181,

187
raindrop impact, 55, 63
rainfall erodibility, 67
rainfall excess, 53
rainfall precipitation, 35
rapidly varied flow, 102
Red River, 295
regime equation, 165
regulated outlet work, 297
relative infiltration, 50
relative migration rate, 187
relative particle stability, 169
reservoir, 286
resistance to flow, 93
resistance to overland flow, 53–54
retaining wall, 262, 266
retard, 271–274
revegetation, 256
revetment, 252, 330
Rhine River, 151, 152, 321
rigid-bed hydraulic model, 337, 339–341
rills, 63, 207
Rio Grande River, 228–229
riprap design 238, 240–242, 244–247,

250
risk, 304
river branches, 222
river closure, 297–299, 304
river confluences, 221–222
river control, 320
river crossing, 310
river database, 226
river diversion, 297
river dynamics, 199
river engineering, 286
river estuaries, 385, 401
river flood control, 286
river floodwave, 130

river flow-control structure, 267
river formation, 4
river meandering, 179
river model, 365
river-stabilization structure, 234
riverbank engineering, 234, 236, 253,

282
riverbed armoring, 208
riverbed degradation, 204
rivers around the world, 5
Roaring River, 190, 220
rock dike, 331
rock durability, 240
rock fill, 274
rock riprap, 240
rockfill abutment, 313
rockfill cofferdam, 297
rockfill weir, 282
roll wave, 134
rotational failure, 235
Rouse equation, 114
runoff, 51
Russian river, 212

sack revetment, 257–258
Saint-Venant equation, 28, 129, 139
saline wedge, 401–404
salmon capture, 404
sampling duration, 191
satellite imagery, 226
scale ratio, 339
Schoharie Creek, 349
scour adjustment, 283
scour depth, 303, 310
scour monitoring, 350
scrolls, 187
second-order approximation, 361
secondary circulation, 166, 169
sediment ejection, 306, 308
sediment exclusion, 306–307
secondary flow, 168
sediment budget, 222
sediment concentration, 19
sediment continuity relationship, 114
sediment-delivery ratio, 75
sediment discharge, 113
sediment diversion, 223
sediment grade scale, 16
sediment overload, 215
sediment-rating curve, 137
sediment record, 228
sediment source, 72, 199
sediment transport, 111
sediment yield, 72, 74
settlement, 283
settling basin, 309
settling velocity, 21, 112
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shallow-water wave, 388
shear stresses, 25
shear velocity, 18, 89
sheepfoot roller, 262
sheet erosion, 63
sheet flow, 63
sheet pile, 262, 264, 281–282, 305
Shields parameter, 112, 161, 172
short wave, 388
sidecasting dredge, 327
sideslope failure, 250–251
sieve analysis, 17
sill raising, 298
similitude criteria, 342
sine-generated curve, 180, 182
sinuosity, 180, 184–185, 189
slackwater zone, 225
slope adjustment, 205
slope length steepness, 67
slope-reduction method, 237
slope reinforcement, 236
sloping sill, 281, 282
sluice gate, 105, 300, 302
slump, 250
smolts, 403
snowmelt runoff, 61
sodding, 254
soil cement, 261–262
soil classification, 47
soil erodibility, 67
soil loss, 64, 71
specific discharge, 150
specific energy, 110, 130
specific-gauge record, 84, 86, 208
specific gravity, 15
specific momentum, 100
specific weight, 10, 15, 21
spillthrough abutment, 313
spillway crest, 287
spillway gate, 324
splash zone, 254
splitter wall, 324
sprigging, 254
spud, 329
spur, 268–270, 321
St. Lawrence River, 404
stability, 357
stability factor, 160–161, 168
stability number, 161
stability diagram, 217
stabilizing moment, 160
stable bed condition, 209
stable channel, 158
stable channel geometry, 176
stable foundation, 310
stage-discharge relationship, 56, 84, 227
starboard, 329

steady 3D model, 379
steady-nonuniform flow, 97
steady-uniform flow, 88
steel jack, 275
steep slopes, 108
stilling basin, 280, 324
stone fill dike, 272
stone gradation, 247
storage capacity, 286
stratified bank, 235
streak line, 22
streambank erosion control, 253
streambank failure, 236
streamline, 22
streamline deviation angle, 160, 168, 170, 191
stream rehabilitation, 322
subcritical normal depth, 108
submeander, 178
submerged jet scour, 300–301
submerged specific weight, 15
submerged weight, 159–160
subsidence, 219
subsurface drainage, 238
summer levee, 322
supercritical normal depth, 108
surface runoff, 53
surface-runoff hydrograph, 60
surface vane, 308
surface wave, 236, 385–386
suspended load, 113
swing cable, 329
synthetic filter cloth, 248

Tanana River, 218
tank barge, 317
tectonic activity, 219
temperature effect, 86
tension crack, 235
terrace zone, 254
tetrahedron, 276
thalweg, 169–170, 178, 191
thalweg erosion, 194
thunderstorms, 44
tieback, 252, 271, 273
tide, 385, 388, 396, 399–401,

404
tilted river model, 335, 340
timber crib wall, 264
timber pile dike, 272, 274–275
timber pile fence, 274
time scale for bedload motion, 344
time to equilibrium, 59, 60
toe protection, 258, 272–273
toe scour, 235
topographic measurement, 191
towboat, 317
translational slide, 250–251
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transport zone, 199
transversal shear stress, 185–186
trap efficiency, 115
trench, 239, 256–257
trenchfill revetment, 320
tributary bar, 177–178
tributary basin improvement, 294
truncation error, 361
tunnel, 297
tunnel ejector, 308–309
turbulent-velocity profile, 95

uncoupled formulation, 376
underground seepage, 290
uniform thalweg depth, 381
universal soil-loss equation, 66
upland erosion, 63–64
uplift, 219
upper lock gate, 323
upstream boundary condition, 362
upwind, 356
urban levee, 290
urbanization, 213

valley slope, 186, 189
vandalism, 283
vane dike, 277
vegetation, 253
velocity against stone, 244

velocity measurement, 191
vertical drain, 238
vertical wall, 313
volumetric flux, 126
von Neumann procedure, 357
vortex tube, 309

Waal River, 321–322
washload, 199, 214
water and sediment loads, 6
water quality, 329
watersheds, 31
waterway alignment, 316, 318
wave, 131, 254, 362, 364, 385, 387,

389–391, 394
weather radar, 39
weephole, 258, 267
Weibull plotting position, 147
weighting coefficient, 373
wetting front, 48
wildfire, 213
wind wave, 395–396
windrow, 256, 257
windrow revetment, 257
windstorm duration, 395
wire fencing, 275

Yampa River, 137
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