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Preface

The past decade has witnessed not only a flood of protein sequence and struc-
ture data generated by large-scale genomic sequencing and structural
genomics projects, but also an ensuing growth of size and number of data-
bases and computer programs designed to manage and process these data.
The multitude of bioinformatic tools available to molecular biologists offers
multiple solutions to various steps of process sequence–structure–function
analyses. Often the choice of which tool to use depends more on its popular-
ity among relatively naïve users, sometimes stemming from the availability of
an intuitive web-server interface, rather than on an understanding of the
underlying principles or on the user’s ability to utilize all the information
returned by the program, including the assessment of confidence of the
results. Being educated and trained in molecular biology and biochemistry
and self-taught in bioinformatics, I am interested in both the development of
computational tools and their optimal application in the realm of experimen-
tal biology, especially in the studies of protein–nucleic acid interactions.
Despite the abundance of literature on bioinformatics and on molecular biol-
ogy of proteins that interact with nucleic acids, there are few (if any) timely
volumes dedicated to the synthesis of these two research areas. Hence, I was
delighted to accept the invitation to act as an editor of a “Practical Bioinfor-
matics” volume of Nucleic Acids and Molecular Biology and to consolidate key
bioinformatic methods for studying protein sequence–structure-function
relationships into a convenient source.

This volume is  mainly for the biochemist or molecular biologist who wants
to analyze, search or manipulate protein structure or sequence data and to
integrate these analyses with their experimental investigations to interpret
the obtained results or to plan further studies better. Thus, the first part of the
volume comprises reviews of methodology solicited from developers of
bioinformatic software (with the emphasis on methods that explicitly utilize
experimental information and/or are designed to guide experimental
research), while the second part comprises useful strategies for studying pro-
tein function with the aid of bioinformatics, described in the form of “case



studies” by at-the-bench scientists. Methods and strategies range from pro-
tein structure prediction by template-dependent (comparative modeling,
fold-recognition) and template-independent (ab initio) approaches, to pre-
diction of protein–protein and protein–nucleic acid interactions, to identifi-
cation of proteins exerting a defined function or prediction of the function
for newly identified proteins. In the spirit of this series, all case studies involve
analyses of proteins involved in interactions with nucleic acids – from ribo-
some assembly and structure, to posttranscriptional RNA modification, to
DNA restriction and repair.

The bioinformatics field is a very fast-moving one, and every effort was
made to produce this volume as rapidly as possible so the methods would be
timely. In this regard, I am grateful to all the authors for taking their time to
contribute and for adhering to a set of rigid deadlines; without their partici-
pation this volume would not have been possible. I hope that Practical Bioin-
formatics will serve as a useful compendium of methods both to newcomers
in the field of bioinformatics-aided experimental molecular biology and bio-
chemistry as well as to scientists actively engaged in research in this area.

Warsaw, July 2003 Janusz M. Bujnicki
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1 Primary Structure Analysis

Amino acid sequence analysis provides important insight into the structure
of proteins, which in turn greatly facilitates the understanding of its biochem-
ical and cellular function. Efforts to use computational methods in predicting
protein structure based only on sequence information started 30 years ago
(Nagano 1973; Chou and Fasman 1974). However, only during the last decade,
has the introduction of new computational techniques such as protein fold
recognition and the growth of sequence and structure databases due to mod-
ern high-throughput technologies led to an increase in the success rate of pre-
diction methods, so that they can be used by the molecular biologist or bio-
chemist as an aid in the experimental investigations.

1.1 Database Searches

Sequence similarity searching is a crucial step in analyzing newly determined
(hereafter called “target”) protein sequences. Typically, large sequence data-
bases such as the non-redundant (nr) database at the NCBI (synthesis of Gen-
Bank, EMBL and DDBJ databases) or genome sequences are scanned for DNA
or amino acid sequences that are similar to a target sequence. Alignments of
the target sequence are constructed for each database entry, typically using
dynamic programming algorithms (Needleman and Wunsch 1970; Smith and
Waterman 1981), scores derived from these alignments are used to identify
statistically significant matches. Matches which have a low probability of
occurrence by chance are interpreted as likely to indicate homology, i.e. that
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the target protein and the matched protein share a common ancestor and
their sequences have diverged by accumulating a number of substitutions.
However, pairwise similarities (especially if confined to very short regions)
can also reflect convergent evolution or simply coincidental resemblance.
Hence, percent identity or percent similarity should not be used as a primary
criterion for homology. Modern methods for database searches usually
employ extreme value distributions to estimate the distribution of the scores
between the target and the database entries and a probability of a random
match (Pearson 1998; Pagni and Jongeneel 2001) For the search for homo-
logues to be effective and the score to be accurately estimated, the database
must contain many unrelated sequences.

Traditionally, searches were carried out using programs for pairwise
sequence comparisons like FASTA (Pearson and Lipman 1988) or BLAST
(Altschul et al. 1990). However, sequences of homologous proteins can diverge
beyond the point where their relationship can be recognized by pairwise
sequence comparisons. The most sensitive methods available today use the
initial search for homologues to construct a multiple sequence alignment
(MSA), which provide insight into the positional constraints of the amino
acid composition, and allow the identification of conserved and variable
regions in the family, comprising the target and its presumed homologues.
The MSA is then converted to a position-specific score matrix (PSSM) and
used as a target to search the database for more distant homologues that share
similarity not only with the initial target, but with the whole family of related
sequences in the MSA. The MSA can be updated with new sequences and
searches can be carried out in an iterative fashion until no new sequences are
reported with the score above the threshold of statistical significance; PSI-
BLAST (Altschul et al. 1997; Aravind and Koonin 1999; Schaffer et al. 2001) is
well-optimized and currently the most popular tool in which the PSSM-based
search strategy has been implemented. Alternatively to PSSMs, the MSA can
be used to create a Hidden Markov Model (HMM), which also can be itera-
tively compared with the database to identify new statistically significant
matches (Karplus et al. 1998).

A related “intermediate sequence search” (ISS) strategy (Park et al. 1997,
1998) employs a series of database scans initiated with the target and then
continued with its homologues. Saturated BLAST is a freely available software
package that performs ISS with BLAST in an automated manner (Li et al.
2000). This strategy is computationally more demanding than iterative MSA-
based searches (all homologues should be used as search targets), but it can
sometimes identify links to remotely related outliers, which may be missed by
PSI-BLAST or HMM, which preferentially detect sequences most similar to
the average of the family. However, MSA-based searches can be used to search
for new sequences that are compatible with very subtle trends of sequence
conservation in the target family, which may be undetectable in any pairwise
comparisons. Recently, it was suggested that an increased number of target
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homologues can be found by a combination of various pairwise alignment
methods for database searches (Webber and Barton 2003). The recommended
strategy in database searches (as well as in other bioinformatic tasks) is to use
multiple methods and take the agreement between methods as confirmation.

1.2 Protein Domain Identification

Most proteins are composed from a finite number of evolutionarily conserved
modules or domains. Protein domains are distinct units of three-dimensional
protein structures, which often carry a discrete molecular function, such as
the binding of a specific type of molecule or catalysis (reviews: Thornton et al.
1999; Aravind et al. 2002). Proteins can be composed of single or multiple
domains. If this information is available, it can be used to make a detailed pre-
diction about the protein function (for instance a protein composed of a
phosphodiesterase domain and a DNA-binding domain can be speculated to
be a deoxyribonuclease), but if the domain structure is obscure, it can lead to
erroneous conclusions about the output of software for sequence analysis.

A common problem in sequence searches is homology of various parts of
the target to different protein families, which is often the case in multidomain
proteins. Naïve exhaustive ISS searches that detect and use multidomain pro-
teins can result in an erroneous inference of homology between unrelated
proteins, which happen to be related to different domains fused together in
one of the sequences extracted from a database. Hence, domain identification
should be an essential step in analyzing protein sequences, preferably preced-
ing or concurrent to sequence database searches.

A few thousand conserved domains, which cover more than two thirds of
known protein sequences have been identified and described in  literature.
Several searchable databases have been created, which store annotated MSAs
(sometimes in the form of PSSMs or HMMs) of protein domains, which can
be used to identify conserved modules in the target sequence (Table 1). PFAM
and SMART databases are the largest collections of the manually curetted
protein domains of information. Each deposited domain family is extensively
annotated in the form of textual descriptions, as well as cross-links to other
resources and literature references. Both resources contain friendly but pow-
erful web-based interfaces, which provide several types of database search
and exploration. The database can be queried using a protein sequence or an
accession number to examine its domain organization. Alternatively, the
domains can be searched by keywords or browsed via an alphabetical index.
Apart from PFAM and SMART there are a number of other databases that
classify the domains according to their mutual similarity or inferred evolu-
tionary relationships (Table 1). They differ from each other either through the
technical aspects or by concentrating on a specific group of domains. The
MSA deposited in these databases as well as their annotations (e.g. in the form
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of keywords or links to literature and/or other databases) can be generated
completely automatically or manually and corrected by experts. The useful-
ness of each database varies, depending on which problem needs to be solved,
so it is reasonable to use more than one method and infer domain boundaries
from judicious analysis of all results. In order to facilitate such analyses, the
InterPro (Mulder et al. 2003) and Conserved Domain Database (CDD; March-
ler-Bauer et al. 2003) have integrated the information from several resources
and allow simultaneous searches of multiple domain databases. InterPro and
CDD are also used for the primary structural and functional annotation of
sequence databases, SWISS-PROT and RefSeq, respectively.

The Clusters of Orthologous Groups (COG) database is one of the most
useful resources included in CDD, which may be used to predict protein func-
tion or conserved sequences modules. COGs comprise only proteins from
fully sequences genomes. COG entries consists of individual orthologous pro-
teins or orthologous sets of paralogs from at least three lineages. Orthologs
typically have the same function, so functional information from one mem-
ber is automatically transferred to an entire COG. The COGnitor tool
(http://www.ncbi.nlm.nih.gov/COG/cognitor.html) allows for the comparison
of the target protein with the COG database and infers the location of the
individual domains, as well as a study of their genomic context, such as the
frequency of occurrence of particular genomic neighbors.
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Table 1. Searchable databases of protein domains

Program Reference URL (http://)

PFAM Bateman et al. (2002) sanger.ac.uk/Software/Pfam/
SMART Letunic et al. (2002) smart.embl-heidelberg.de/
TIGRFAMs Haft et al. (2003) www.tigr.org/TIGRFAMs/
PRODOME Servant et al. (2002) prodes.toulouse.inra.fr/prodom/

2002.1/html/home.php
PROSITE Sigrist et al. (2002) us.expasy.org/prosite/
SBASE Vlahovicek et al. (2003) hydra.icgeb.trieste.it/~kristian/SBASE/
BLOCKS Henikoff et al. (2000) bioinfo.weizmann.ac.il/blocks/
COGs Tatusov et al. (2001) www.ncbi.nlm.nih.gov/COG/
CDD Marchler-Bauer et al. (2003) www.ncbi.nlm.nih.gov/Structure/ 

cdd/cdd.shtml
INTERPRO Mulder et al. (2003) www.ebi.ac.uk/interpro/



1.3 Prediction of Disordered Regions

Recently, it has been suggested that the classical protein structure-function
paradigm should be extended to proteins and protein fragments whose native
and functional state is unstructured or disordered (Wright and Dyson 1999).
Many protein domains, especially in eukaryotic proteins appear to lack a
folded structure and display a random coil-like conformation under physio-
logical conditions (reviews: Liu et al. 2002; Tompa 2002).A significant fraction
of the intrinsically unstructured sequences exhibits low complexity, i.e. a non-
random compositional bias (Wootton 1994).

On the one hand, low-complexity sequences create a serious problem for
database searches, as they are not encompassed by the random model used by
these methods to evaluate alignment statistics.For instance running a database
search with a target sequence including a compositionally biased fragment may
lead to erroneous identification of a large number of matches with spuriously
high similarity scores. Algorithms such as SEG (Wootton and Federhen 1996)
may be used to mask the low-complexity segments for database searches.

On the other hand, identification of disordered, non-globular regions may
help to delineate domains. Independently folded globular structures can be
separated from each other if a flexible linker that connects them is identified.
Alternatively, if a protein with many low-complexity regions is known to com-
prise only a single domain, its rigid core can be identified by masking off flexi-
ble insertions. The latter case is typical for many proteins from human patho-
gens such as Plasmodium or Trypanosomes, which use the large flexible loops
as hypervariable immunodominant epitopes that contribute to a smoke-screen
strategy enacted by the parasite against the host immunogenic response (Pizzi
and Frontali 2001). In any case, dissection of the target sequence into a set of
relatively rigid, independently folded domains may greatly facilitate tertiary
structure prediction, especially by fold-recognition methods (see below). The
freely available on-line servers for prediction of disordered loopy regions in
proteins are: NORSP (http://cubic.bioc.columbia.edu/services/NORSp/), DIS-
OPRED (http://bioinf.cs.ucl.ac.uk/disopred/), DISEMBL (http://dis.embl.de/),
and GLOBPLOT (http://globplot.embl.de/).The state-of-the art commercial pro-
gram PONDR is available from Molecular Kinetics (http://www.pondr.com/); at
the time of writing the company promised to introduce a free academic license
in the near future.

2 Secondary Structure Prediction

2.1 Helices and Strands and Otherwise

Globular protein domains are typically composed of the two basic secondary
structure types, the a-helix and the b-strand, which are easily distinguishable
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because of their regular (periodic) character. Other types of secondary struc-
tures such as different turns, bends, bridges, and non-a helices (such as 3/10
and p) are less frequent and more difficult to observe and classify for a non-
expert. The non-a, non-b structures are often referred to as coil or loop and
the majority of secondary structure prediction methods are aimed at predict-
ing only these three classes of local structure. Given the observed distribution
of the three states in globular proteins (about 30 % a-helix, 20 % b-strand and
50 % coil), random prediction should yield about 40 % accuracy per residue.
The accuracy of the secondary structure prediction methods devised earlier,
such as Chou-Fasman (1974) or GOR (Garnier et al. 1978) is in the range of
50–55 %. The best modern secondary structure prediction methods (Table 2)
have reached a sustained level of 76 % accuracy for the last 2 years, with a-
helices predicted with ca. 10 % higher accuracy than b-strands (Koh et al.
2003). Hence, it is quite surprising that the early mediocre methods are still
used in good faith by many researchers; maybe even more surprising that
they are sometimes recommended in contemporary reviews of bioinformatic
software or built in as a default method in new versions of commercial soft-
ware packages for protein sequence analysis and structure modeling.

Modern secondary structure prediction methods typically perform analy-
ses not for the single target sequences, but rather utilize the evolutionary
information derived from MSA provided by the user or generated by an inter-
nal routine for database searches and alignment (Levin et al. 1993). The infor-
mation from the MSA provides a better insight into the positional conser-
vation of physico-chemical features such as hydrophobicity and hints at a
position of loops in the regions of insertions and deletions (indels) corre-
sponding to gaps in the alignment. It is also recommended to combine differ-
ent methods for secondary structure prediction; the ways of combing predic-
tions may include the calculation of a simple consensus or more advanced
approaches, including machine learning, such as voting, linear discrimina-
tion, neural networks and decision trees (King et al. 2000). JPRED (Cuff et al.
1998) is an example of a consensus meta-server that returns predictions from
several secondary structure prediction methods (mostly third-party algo-
rithms) and infers a consensus using a neural network, thereby improving the
average accuracy of prediction. In addition, JPRED predicts the relative sol-
vent accessibility of each residue in the target sequence, which is very useful
for identification of solvent-exposed and buried faces of amphipathic helices.

In general, the most effective secondary structure prediction strategies fol-
low these rules: (1) if an experimentally determined three-dimensional struc-
ture of a closely related protein is known, copy the secondary structure
assignment from the known structure rather than attempt to predict it de
novo. (2) If no related structures are known, use multiple sequence informa-
tion. If your target sequence shows similarity to only a few (or none) other
proteins with sequence identity <90 %, try different databases (for example
preliminary data from unfinished genomes) to build an MSA comprising a
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Table 2. Software for secondary structure prediction

Program Reference URL (http://)

Three-state (a/b/coil) prediction
PSIPRED Jones (1999b) bioinf.cs.ucl.ac.uk/psipred/
SSPRO Pollastri et al. (2002) www.igb.uci.edu/tools/scratch/
PHD Rost et al. (1994) cubic.bioc.columbia.edu/

predictprotein/
PROF Ouali and King (2000) www.aber.ac.uk/~phiwww/prof/
PRED2ARY Chandonia and Karplus (1995) www.cmpharm.ucsf.edu/~jmc/

pred2ary/
APSSP2 G.P. Raghava (unpubl.) www.imtech.res.in/raghava/apssp2/
PREDATOR Frishman and Argos (1997) ftp://ftp.ebi.ac.uk/pub/software/unix/

predator/
NNSSP Salamov and Solovyev (1995) bioweb.pasteur.fr/seqanal/interfaces/

nnssp-simple.html
HMMSTR Bystroff et al. (2000) www.bioinfo.rpi.edu/~bystrc/hmmstr/
NPREDICT Kneller et al. (1990) www.cmpharm.ucsf.edu/~nomi/

nnpredict.html

Other types of secondary structure
TURNS Kaur and Raghava (2003a, b) imtech.res.in/raghava/
COILS Lupas et al. (1991) www.ch.embnet.org/software/

COILS_form.html

“Meta-servers” for secondary structure prediction 
(gateways to several different methods)
JPRED Cuff et al. (1998) www.compbio.dundee.ac.uk/

~www-jpred/
NPS@ Combet et al. (2000) npsa-pbil.ibcp.fr
META-PP Eyrich and Rost (2003) cubic.bioc.columbia.edu/meta/

number of moderately diverged sequences. Discard too strongly diverged
sequences, which cannot be aligned with confidence and carefully refine the
MSA in the most diverged regions. (3) If the particular algorithm does not
accept MSA as an input, try to predict the secondary structure for the target
and a few of its distant homologues and use the consensus pattern of sec-
ondary structures as an additional indicator of reliability of the prediction.
(4) Run as many good methods as possible and use the agreement between
their results to infer a consensus prediction. (5) If for a given region only a few
methods predicted a b-strand and most coil or an a-helix, the b-strand pre-
diction should be considered as a plausible alternative, as this type of sec-
ondary structure is predicted with lower accuracy by virtually all available



methods. (6) Reconfirm the prediction of loops by correlating their presence
with regions of indels in the MSA.

In our own hands, the application of these rules in a semi-automated man-
ner (i.e. human post-processing of prediction generated by various individual
methods) led to a very high accuracy of 83 % per residue (better than any sin-
gle server or any other human predictor) according to the recent evaluation
within the CASP-5 experiment (http://predictioncenter.llnl.gov/casp5/).

2.2 Transmembrane Helices

Membrane proteins are an abundant and functionally relevant subset of pro-
teins predicted to include up to 30 % of proteins in the fully sequenced
genomes. Membrane proteins are associated with the cell membrane and
comprise one or more transmembrane segments. Because of the hydrophobic
environment within the cell membrane, the transmembrane segments are
generally hydrophobic too. On the one hand, typical cytoplasmic membrane
proteins comprise hydrophobic a-helical regions separated by hydrophilic
loops. On the other hand, bacterial and organellar outer membrane proteins
exhibit a characteristic b-barrel structure comprising different even numbers
of b-strands. Specialized structure predictors have been designed for both
types of membrane proteins. Because both sides of the lipid bilayer are non-
equivalent, structure prediction methods for transmembrane proteins often
attempt to identify not only the secondary structure elements (a-helices or b-
strands), but also the topology of the protein, i.e. the orientation of the ele-
ments with respect to both surfaces (which side of transmembrane protein is
intra- or extracellular). For instance, the “positive inside rule” (von Heijne
1986, 1992) indicates that the positively charged residues have a preference for
the inside of internal membrane proteins.

As with orthodox secondary structure prediction methods, the recom-
mended strategy for identification of transmembrane segments and predic-
tion of their distribution and topology in protein sequences is to use many
different methods and refer to the consensus as the most robust structural
model (Ikeda et al. 2002). Table 3 lists available programs for prediction of
transmembrane segments and topology.A meta-server BPROMPT for predic-
tion of transmembrane helices has been recently developed that combines the
results of other prediction methods, providing a more accurate consensus
prediction (Taylor et al. 2003).

3 Protein Fold-Recognition

The success of the prediction of protein tertiary (three-dimensional) struc-
ture from its amino acid sequence is limited by deficiencies in the conforma-
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tional search procedures aimed at finding the global energy minimum and in
the effective potentials used to evaluate the free energies of possible struc-
tures. However, despite the number of possible conformations is practically
unlimited, the universe of protein folds (i.e. spatial arrangement of secondary
structure elements) is not only finite, but the total number of folds is esti-
mated to be relatively small, in the range of a few thousand (Chothia 1992;
Gerstein and Levitt 1997; Zhang and DeLisi 1998; Wolf et al. 2000; Koonin et al.
2002). The notion that proteins can share a similar fold (even in the absence of
significant sequence similarity) prompted the development of structure pre-
diction methods that limit the search of the vast conformational space to
known protein three-dimensional structures.
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Table 3. Software for prediction of transmembrane regions in proteins

Program Reference URL (http://)

a-Transmembrane proteins
HMMTOP Tusnady and Simon( 2001) www.enzim.hu/hmmtop/
DAS Cserzo et al. (1997) www.sbc.su.se/~miklos/DAS/
PHDhtmn Rost et al. (1996) cubic.bioc.columbia.edu/

predictprotein/
SOSUI Hirokawa et al. (1998)v sosui.proteome.bio.tuat.ac.jp/ 

sosuiframe0.html
TMAP Milpetz et al. (1995) www.mbb.ki.se/tmap/
TMHMM Sonnhammer et al. (1998) www.cbs.dtu.dk/services/

TMHMM-2.0/
TMpred Hofmann and Stoffel (1993) www.ch.embnet.org/software/

TMPRED_form.html
MEMSAT Jones et al. (1994) bioinf.cs.ucl.ac.uk/psipred/
TopPred2 von Heijne (1992) www.sbc.su.se/~erikw/toppred2/
WHAT Zhai and Saier  (2001) saier-144–37.ucsd.edu/what.html
UMDHMM Zhou and Zhou (2003) phyyz4.med.buffalo.edu/Softwares-

Services_files/umdhmm.htm
PRED-TMR2 Pasquier et al. (1999) biophysics.biol.uoa.gr/PREDTMR2/ 

input.html
ORIENTM Liakopoulos et al. (2001) biophysics.biol.uoa.gr/OrienTM/

submit.html
BPROMPT Taylor et al. (2003) www.jenner.ac.uk/BPROMPT

b-Transmembrane proteins
BBF Zhai and Saier (2002) www-biology.ucsd.edu/~msaier/

transport/software/bbfsource.tar.gz
HMM Martelli et al. (2002) www.biocomp.unibo.it



The protein fold-recognition approach to structure prediction aims to
identify the known structural framework (i.e. the backbone of an experimen-
tally determined protein structure) that accommodates the target protein
sequence in the best way. Typically, a fold-recognition program comprises
four components: (1) the representation of the template structures (usually
corresponding to proteins from the Protein Data Bank database), (2) the eval-
uation of the compatibility between the target sequence and a template fold,
(3) the algorithm to compute the optimal alignment between the target
sequence and the template structure, and (4) the way the ranking is computed
and the statistical significance is estimated (Fischer et al. 1996).

Two main types of fold-recognition algorithms may be defined: those that
detect sequence similarity (without utilizing structural information from the
template) and those that detect structure similarity (Table 4).

Sequence-based fold recognition methods do not utilize explicitly the
structural information from the templates. The simplest sequence-only fold-
recognition operation is to use BLAST or PSI-BLAST to search the Protein
Data Bank for structurally characterized proteins that exhibit significant
sequence similarity to the target protein. However, the principal task of pro-
tein fold-recognition methods is to identify sequence similarities that most
biologists wouldn’t easily call evident and that cannot be identified in trivial
database searches. The evolutionary information used to detect remote rela-
tionships is usually compiled in the form of a profile, or a HMM. However, the
most sensitive sequence-based fold-recognition methods available today are
more advanced than sequence-profile comparisons implemented in methods
such as PSI-BLAST, IMPALA or HMMs and utilize the evolutionary informa-
tion available both for the target and the template by performing profile-pro-
file alignment and the evaluation of the likelihood that two protein families
are related to each other; examples include FFAS (Rychlewski et al. 2000) and
the prof_sim algorithm (Yona and Levitt 2002). A recently developed method
ORFeus uses sequence profiles and disregards the experimental structural
information from the template, and attempts to predict the structure de novo
both for the target and the template families (Ginalski et al. 2003b).

Structure-based fold-recognition, often referred to as threading, utilizes
the experimentally determined structural information from the template. The
target sequence can be enhanced by including sequence-derived (predicted)
structural features of the target. The two typically used structural features are
the patterns of secondary structure elements and local environment classes
(combination of solvent accessibility, polarity of the side chain environment
and local backbone conformation). The target-template compatibility func-
tions of the early threading methods were based mainly on physicochemical
properties and evaluation of pseudo-energy of interactions and utilized
either distance-based (Godzik et al. 1992; Jones et al. 1992; Sippl and Weitckus
1992; Bryant and Lawrence 1993) or profile-based scoring-functions (Bowie
et al. 1991; Ouzounis et al. 1993). The compatibility score is computed by
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adding up the compatibility scores of each residue and subtracting a penalty
for any gaps in the target-template alignment. Computing an optimal align-
ment with a distance-based multipositional compatibility function that takes
into account residues adjacent in space but not necessarily in the primary
sequence, is an NP-complete problem (Lathrop 1994). In practice it means
that the time required to find the best alignment grows exponentially with the
length of the protein. Thus, many methods implemented various approxima-
tions to encode all structural properties into a one-dimensional string of
symbols, thereby allowing target-template matching using conventional
dynamic programming algorithms (Needleman and Wunsch 1970; Smith and
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Table 4. Fold-recognition servers

Program Reference URL (http://)

Sequence-based fold-recognition
FFAS Rychlewski et al. (2000) ffas.ljcrf.edu
SAM-T99 Karplus et al. (1998) www.cse.ucsc.edu/research/

compbio/HMM-apps/T99-query.html
ESyPred3D Lambert et al. (2002) www.fundp.ac.be/urbm/bioinfo/

esypred/
ORFEUS Ginalski et al. (2003b) grdb.bioinfo.pl/

Structure-based fold recognition (“threading”)
3DPSSM Kelley et al. (2000) www.sbg.bio.ic.ac.uk/~3dpssm/
FUGUE Shi et al. (2001) www-cryst.bioc.cam.ac.uk/~fugue/
GENThreader Jones (1999a) bioinf.cs.ucl.ac.uk/psipred/
INBGU Fischer (2000) www.cs.bgu.ac.il/~bioinbgu/form.html
PROTINFO Samudrala and Levitt (2002) protinfo.compbio.washington.edu/
RPFOLD G.P. Raghava (unpubl.) imtech.res.in/raghava/rpfold/
RAPTOR Xu et al. (2003) www.cs.uwaterloo.ca/~j3xu/

RAPTOR_form.htm
PROSPECT Xu and Xu (2000) compbio.ornl.gov/PROSPECT/
LOOPP Elber and Meller (unpubl.) ser-loopp.tc.cornell.edu/cbsu/

loopp.htm
SAM-T02 Karplus et al. (2001) www.soe.ucsc.edu/research/

compbio/HMM-apps/T02-query.html

Selected fold-recognition “meta-servers” (gateways to several different methods)
BIOINFO Bujnicki et al. (2001 c) bioinfo.pl/meta/
GENESILICO Kurowski and Bujnicki (2003) genesilico.pl/meta/
@TOME Douguet and Labesse (2001) bioserv.cbs.cnrs.fr/HTML_BIO/

frame_meta.html



Waterman 1981), as in sequence-based methods. The early threaders were
quite successful in identification of the correct fold, however the quality of the
reported target-template alignments was often poor. Apparently, correct fold-
recognition could be achieved, despite poor alignment quality, by a generally
unspecific maximization of the hydrophobic interactions, and a reasonably
good prediction of the local secondary structure (Lemer et al. 1995).

Modern fold-recognition methods utilize both the structural information
(experimentally determined for the potential templates and predicted for the
target) and the evolutionary information inferred from the MSA available for
the target and the templates. According to the recent evaluations (Bujnicki et
al. 2001a, b), best fold-recognition algorithms are able to make up to 40 % of
correct structural predictions for targets, which exhibit no significant simi-
larity to any of the potential templates (i.e. similarities that cannot be detected
by BLAST or PSI-BLAST searches run with default parameters). One of the
most significant unsolved problems is the lack of an accurate scoring function
for discrimination between correct and incorrect fold-recognition align-
ments. It is quite often the case that the correct template is reported among
the best ten results returned by a fold-recognition server, but its score is very
similar to scores for nine false positives or it is below the threshold of statisti-
cal significance. In other words, the sensitivity and specificity of fold-recogni-
tion methods are insufficient to confidently identify the correct template, if it
exists in the Protein Data Bank. Recently, consensus meta-servers have been
developed which greatly increase the sensitivity and specificity of fold-recog-
nition (Douguet and Labesse 2001; Bujnicki et al. 2001 c; Lundstrom et al.
2001; Kurowski and Bujnicki 2003; Ginalski et al. 2003a). Most of them com-
bine not only fold-recognition methods, but integrate many different kinds of
protein structure prediction methods described in this article, from identifi-
cation of domains, to secondary structure prediction, to modeling of the tar-
get based on the best-scoring template structures (for detailed description of
two examples see the following section and a separate review by Cohen et al.
(this Vol.); a separate discussion on various aspects of meta prediction is pro-
vided in a review by Bujnicki and Fischer).

4 Predicting All-in-One-Go

The GeneSilico meta-server (http://genesilico.pl/meta/; Kurowski and
Bujnicki 2003) will serve here as an example of a freely available on-line ser-
vice for integrated prediction of different aspects of protein structure. As
mentioned earlier, the recommended strategy is to predict the target protein
structure using not only the single sequence information, but to enhance it
with aligned homologous sequences. The GeneSilico meta-server allows sub-
mission of single sequences or user-defined multiple alignments (MSA). A
single sequence is processed further by individual methods, which often gen-

I.A. Cymerman et al.12



erate their own alignments, typically using PSI-BLAST (Altschul et al. 1997)
with different parameters. Automatically generated sequence alignments are
usually sufficient, but sometimes the target sequence has an unusual amino
acid composition or atypical insertions, which may cause the default iterated
database search to produce erroneous alignments that will degrade the evolu-
tionary signal instead of enhancing it. Moreover, some sequences have only a
few homologues in the traditionally used databases such as NRDB or Swiss-
Prot and in order to build a useful alignment, additional searches of other
databases are necessary. Therefore, it is strongly recommended for experi-
enced predictors to submit their own MSA, in addition to the single-sequence
queries. The GeneSilico meta-server will forward the MSA to those servers
that allow such input, while for the others, which accept only single-sequence
queries, a single consensus sequence will be calculated from the MSA using
one of many different options selected by the user (from majority-rule to
scoring derived from different substitution matrices). Furthermore, the user
will have an option to delete or retain loopy regions corresponding to gaps in
the sequence alignment – this option causes a limitation on the fold-recogni-
tion analysis to regions most likely to correspond to the true globular core of
the target protein.

As mentioned earlier, the crucial step in protein structure prediction is to
identify protein domains in the target sequence. This task is accomplished by
the HMMPFAM tool, which scans the PFAM database of known protein
domains (Bateman et al. 2002) with the HMMER method (Eddy 1996). If the
results obtained from the HMMPFAM search suggest the presence of more
than one domain in the target sequence, it is strongly recommended to split
the target into the respective fragments (possibly retaining some regions of
overlap, 10–50 aa, depending on the confidence of the domain prediction)
and resubmit the individual domains as separate prediction queries.

Secondary structure is predicted in three states (a, b, and coil) by PSI-
PRED (Jones 1999b), PROF (Ouali and King 2000), and SAM-T02 (Karplus et
al. 2001). Identification of potential transmembrane helices is attempted using
TMPRED (Hofmann and Stoffel 1993) MEMSAT (Jones et al. 1994), and
TMHMM (Sonnhammer et al. 1998). If all methods predict a transmembrane
segment or a long region with no a or b structure in the target sequence, it is
again strongly recommended to remove such regions, as they are unlikely to
form any globular domain identifiable by fold-recognition methods, and to
resubmit the remaining part of the target as a new prediction query.

The GeneSilico metaserver serves as a gateway for a number of third-party
fold-recognition methods, both sequence-dependent, and structure-depen-
dent, including FUGUE (Shi et al. 2001), 3DPSSM (Kelley et al. 2000), SAM-T02
(Karplus et al. 2001), GENTHREADER (Jones 1999a), FFAS (Rychlewski et al.
2000), INBGU (Fischer 2000), and RAPTOR (Xu et al. 2003). However, before
the extensive fold-recognition calculations are carried out, the PDB database
is searched with the PSI-BLAST method to identify trivial similarities of the
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target to proteins of known structure (three iterations against the NRDB data-
base are carried out with the target sequence to generate a MSA, which is sub-
sequently used to search the PDB database for significant similarities). If the
target exhibits significant similarity to a known structure, the fold-recogni-
tion analysis is halted and the user is notified; otherwise (or if the user
decides to resume the analysis) the query (i.e. the single sequence or the MSA)
is sent to the above-mentioned fold-recognition servers. Typically, the collec-
tion of results from all servers (up to ten target-template alignments per
server) requires about 24 h, however some sequence-based servers return
their predictions within a few minutes. The meta-server presents all target-
template alignments and the corresponding confidence scores assigned by the
individual methods according to their internal criteria. These scores are
mutually incompatible and further analysis is required to provide a common
ranking of results returned by different fold-recognition servers. Hence, when
all results are available, they are further processed by the consensus server
PCONS (two different versions, 2 and 5; Lundstrom et al. 2001; Wallner and
Elofsson 2003), which does not produce any new predictions, but selects the
ten potentially best target-template alignments from those reported by the
original methods and assigns its own confidentiality scores. It has been
shown that PCONS is more sensitive (i.e. able to identify correct templates)
and specific (i.e. able to generate significant scores) than any individual
method incorporated as a slave in the prediction pipeline.

Finally, the user of the GeneSilico server has an opportunity to generate
preliminary three-dimensional models of the target structure based on the
alignments proposed by all servers. These models may be incomplete and
contain significant errors even if they are based on correct templates, but usu-
ally serve as a useful starting point for further refinement. The preliminary
evaluation is carried out using the VERIFY3D method, whose score tells how
much the characteristics of the model resemble the features of high-resolu-
tion crystal structures i.e. how much the theoretical model is protein-like or
protein-unlike, compared to the known structures.

5 Pitfalls of Fold Recognition

As soon as the sequence of the target protein is optimally mounted on the pre-
sumably best template structure, the corresponding sequence-structure
alignment can be used to initiate reconstruction of a complete full-atom
model of the target protein by various comparative modeling techniques
(reviewed by Cohen et al. in this volume; see also the following references:
(Sanchez and Sali 2000; Krieger et al. 2003)). The comparative modeling
approach assumes that the target and the template share the polypeptide
backbone and the differences are limited to the solvent-exposed loops and the
conformation of the side chains, according to the notion that protein spatial

I.A. Cymerman et al.14



structures are more conserved in evolution than amino acid sequences
(Chothia and Lesk 1986). This assumption is certainly valid in many cases,
especially if the sequence identity between the target and the template is very
high (>50 %). However, the recent sequence and structure analyses led to the
accumulation of examples of homologous proteins with globally distinct
structures. It has been found that even in proteins with significant sequence
similarity, insertions, deletions and mutual conversions of a-helices and b-
strands can occur both at the periphery and in the core of the fold; moreover,
the global topology of the fold can be changed by circular permutations, and
rearrangements in the order of strands in b-sheets (reviews: Murzin 1998;
Grishin 2001a). Such structural changes are usually undetectable by computa-
tional methods that operate on the level of protein sequence similarities and
even for structure-based threading methods it is extremely hard to predict
differences between the three-dimensional folds of the target and the tem-
plate other than the deletion or insertion of secondary structure elements.

It also becomes  clear that domains are not the only units of homology.
Some protein superfamilies have been reported to contain segments of
homology often limited to a few elements of secondary structure unable to
fold independently, such as the bba-Me finger in many nucleases, embedded
into non-homologous regions acquired independently between proteins
(Kuhlmann et al. 1999; Grishin 2001b). In contrast, unrelated segments
acquired independently could be embedded into the regions of homology. In
such cases, detection of a strong local homology by fold-recognition pro-
grams can be erroneously extended to the entire length of the target and the
template. Currently, no fully automated methods exist for prediction of fold
irregularities. However, recent progress in the ab initio protein structure pre-
diction field, especially the development of methods that use confident pre-
dictions of the protein core made by fold-recognition methods to initiate
extensive folding simulation to assemble the peripheral elements (Simons et
al. 1997; Kihara et al. 2001) suggest that in the near future these limitations of
the current fold-recognition methods may be overcome.

Presently, the best strategy, however, is to validate the computational pre-
diction of the protein fold by experimental analyses which on their own
would not be sufficient to solve protein structure, but when combined with
bioinformatics, may serve to identify one reasonable structural model and
then guide its refinement. Such experimental investigations may include gen-
eration of both specific and non-specific distance restraints by intramolecu-
lar cross-linking, chemical modification, or simple NMR analyses, identifica-
tion of solvent-exposed loops by proteolysis, identification of important
residues by mutagenesis etc. Several examples of combination of computa-
tional and experimental analyses are discussed elsewhere in this volume (see
chapters by Linge and Nilges; Alber et al; and Friedhoff). Clearly, the develop-
ment of a convenient computational method for automated combination of
heterologous experimental data and low-resolution structure prediction by
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fold-recognition and ab initio bioinformatic methods would greatly facilitate
structural analyses of proteins and bring protein modeling closer to the work-
bench of a biochemist or a molecular biologist.
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‘Meta’ Approaches to Protein Structure Prediction

J.M. Bujnicki, D. Fischer

1 Introduction

The computational assignment of three-dimensional structures to newly
determined protein sequences is becoming an increasingly important ele-
ment in experimental structure determination and in structural genomics
(Fischer et al. 2001a). In particular, fold-recognition methods aim to predict
approximate three-dimensional (3D) models for proteins bearing no evident
sequence similarity to any protein of known structure (see the review by
Cymerman et al., this Vol.). The assignment is carried out by searching a
library of known structures (usually obtained from the Protein Data Bank)
for a compatible fold. A variety of fold-recognition methods has been pub-
lished, both structure-dependent (i.e.threading) (Sippl and Weitckus 1992;
Godzik et al. 1992; Jones et al. 1992; Ouzounis et al. 1993; Bryant and Lawrence
1993; Rost 1995; Alexandrov et al. 1996; Di Francesco et al. 1997; Fischer 2000;
Kelley et al. 2000; Shi et al. 2001) and sequence-only dependent (Karplus et al.
1998; Rychlewski et al. 2000). The state-of-the-art in the field of fold recogni-
tion is currently to combine the evolutionary information available from mul-
tiple sequence alignments for the target and the template (to detect remote
homology between protein families) and the structural information from the
template (to detect similarities of folds of compared proteins regardless of
their evolutionary relationship, i.e. analogs and homologues as well).
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2 The Utility of Servers as Standard Tools for Protein
Structure Prediction

Automatic structure prediction has witnessed significant progress during the
last few years. A large number of fully automated servers, covering various
aspects of structure prediction, are currently available to the scientific com-
munity. In addition to the biannual Critical Assessment of Structure Predic-
tion (CASP) experiment, which evaluates the state-of-the-art in the method-
ology and the skills of modeling teams and individual modelers (Moult et al.
1995, 1997, 1999, 2001), a number of evaluation experiments exist that are
aimed at assessing the capabilities and limitations of the servers. These exper-
iments assess the reliability of the programs when applied to specific predic-
tion targets and provide predictors with valuable information that can help
them in choosing which programs to use and thereby make best use of the
automated tools. One of these experiments is CAFASP (Fischer et al. 1999,
2001b), where the evaluation is carried out over the set of the CASP prediction
targets by fully automatic web servers that submit the predictions without any
human-expert intervention. CAFASP servers cover various aspects of protein
structure prediction, such as secondary structure, inter-residue contacts, and
tertiary structure. Another experiment is LiveBench, which differs from
CAFASP in that it is run continuously and on a much larger set of targets. The
targets are selected from protein structures newly submitted to the Protein
Data Bank, if their sequences show no trivial similarity to any of the previ-
ously available structures (Bujnicki et al. 2001a, b).

However, despite significant progress, protein structure prediction meth-
ods still have a number of limitations. Fully automated fold-recognition
methods can currently produce reliable sequence-structure assignments for
only a fraction of target sequences with no significant sequence similarity to
proteins of known structure (Bujnicki et al. 2001b). In the case of remote
structural similarities, the sequence alignments between the target and the
template reported by fold recognition often contain large errors (shifts).
Needless to say, fold-recognition methods perform poorly when the target
protein exhibits only partial structural similarity (i.e. not the same, but a
related fold) to proteins in the database or when the sought fold is completely
novel and cannot be recognized among the known structures. Another limi-
tation of fold-recognition methods is the uncertainty as to the identity of the
best model among the top candidates. Quite often, the correct fold is reported
within the best ten predictions, but with a non-significant confidence score,
buried among false positives.
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2.1 Consensus ‘Meta-Predictors’: Is the Whole Greater Than the Sum of
the Parts?

The use of a number of models and methods to produce better predictions
has already proven useful in a number of areas, including artificial intelli-
gence and computer vision (Marr 1982). Not surprisingly, this approach
works well also in protein structure prediction. It has been observed in pro-
tein secondary structure prediction (consensus of various methods (Cuff et
al. 1998; Selbig et al. 1999; Cuff and Barton 2000)), in homology modeling
(multiple-parent structures; (Marti-Renom et al. 2000)) and in ab initio pro-
tein folding methods (clustering models and deriving recurring constraints
from various models (Simons et al. 1999; Kihara et al. 2001; Kolinski et al.
2001).

The most vigorous development of meta approaches has been recently in
the field of protein fold recognition. From the series of CASP experiments, it
has become clear that often a correct protein fold prediction can be obtained
by one server but not by the others. It has also been observed that no server
can reliably distinguish between weak hits (predictions with below-threshold
scores) and wrong hits, and that often a correct model is found among the top
hits of the server, but scoring below a number of incorrect models. From such,
and other, observations, many human expert predictors have realized that in
order to produce better predictions, the results from a number of indepen-
dent methods need to be analyzed.

CASP has shown that the combined use of human expertise and automated
methods can often result in successful predictions. This, however, requires
extensive human intervention, because a human predictor has to improve the
model manually, has to determine whether the rank-1 model obtained is cor-
rect, whether there is a lower ranking model that corresponds to a correct pre-
diction, or whether the results of the method indicate that no prediction at all
can be obtained. To this end, human expert predictors have developed a num-
ber of semi-automated strategies. One such strategy has been the application
of a number of independent methods to extract a prediction from the top
ranking predictions. This has proven useful because for some prediction tar-
gets, one method may succeed in producing a correct prediction while others
fail, yet for other targets, this same method may fail while the others succeed.
Because it is impossible to determine a priori for which targets a given
method will succeed, human expert predictors attempt to extract any useful
information from results obtained with different methods.

To study whether it was possible to obtain a better prediction using a very
simple consensus method that utilized the information from several servers,
in CASP4, a group of four human predictors, Leszek Rychlewski, Arne Elofs-
son and both authors of this chapter, pioneered the consensus idea by sub-
mitting to CASP manually selected consensus predictions under the group-
name CAFASP-CONSENSUS. The consensus predictions were obtained by
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analyzing the predictions of the fold-recognition servers that participated in
the parallel CAFASP2 experiment. This group performed better than any of
the CAFASP servers and ranked seventh among all other human predictors of
CASP (Fischer et al. 2001b). This finding illustrated the utility of the servers’
results when taken as a whole. Since then, meta-prediction has become the
most successful approach, and has been applied by a large number of human
predictors, including some of the best CASP5 performers.

For example, in the comparative modeling section of CASP5, three groups
excelled (Tramontano 2003), including the GeneSilico group (Janusz Bujnicki
and colleagues). This group applied a new semi-automated multi-step meta-
protocol named Frankenstein’s Monster, which uses the results of diverse fold-
recognition methods to generate initial target-template alignments (Kosinski
et al. 2003; Kurowski and Bujnicki 2003). Full-atom models were built by a
series of steps aimed at assembling hybrid models using the most conserved
and most reliable fragments from the various models. Because this procedure
required extensive human intervention (over 24 h/model), it is clear that
human-meta-predicting is a difficult task requiring extensive expertise, and
that automated procedures are sorely needed.

2.2 Automated Meta-Predictors

Following the proven success of manual meta-predictors, several groups have
already implemented fully-automated versions of the meta-approach (Table
1). Automated meta-predictors can be divided into two types: (1) selectors,
which simply select models from the input and (2) added-value meta-predic-
tors, which use the input models to generate new models.

One of the earliest meta-predictors was developed by Arne Elofsson by
implementing the CAFASP-CONSENSUS ideas from CASP4 into the auto-
mated program Pcons (Lundstrom et al. 2001). Pcons receives, as input the top
models produced by different fold-recognition servers and selects the models
that are evaluated to be more likely to be correct, based on the structural sim-
ilarities among the input models. That is, it does not produce any new models,
only re-ranks the existing ones, based on their mutual similarity and the orig-
inal scores assigned by the individual servers. Pcons corroborated the
strength of the consensus idea in the subsequent LiveBench experiments
(Bujnicki et al. 2001b). It was demonstrated that PCONS2 (version trained
specifically for a few original, i.e. non-meta servers) combined the sensitivity
of the most sensitive original method (3D-PSSM; Kelley et al. 2000) with a
very high specificity (higher than any individual server). The most important
feature contributing to the improved performance of an early version of
PCONS was its scoring system, which allowed to confidently identify the cor-
rect models, although it was not always able to identify the absolutely best
model among similar top solutions. The newest version of PCONS, reinforced
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by the PROQ method for protein model evaluation (Wallner and Elofsson
2003), exhibits even higher specificity; moreover, it is able to use the set of any
external (original or meta) methods as model generators.

LIBELULLA (Juan et al. 2003) is a system of neural networks trained to
select correct folds from among the results of two primary fold-recognition
methods implemented as web servers, SAM-T99 (Karplus et al. 1999) and
3DPSSM (Kelley et al. 2000). It uses a set of associated characteristics such as
the quality of the sequence-structure alignment, distribution of sequence fea-
tures (sequence-conserved positions and apolar residues), and compactness
of the resulting models.

Another fully-automated meta-predictor that simply selects models from
those produced by other servers is 3D-JURY (Ginalski et al. 2003). It takes as
input any set of models, structurally compares all against all using MaxSub
(Siew et al. 2000), and selects one that appears to contain the largest recurrent
subset of common coordinates. It does not use any special characteristics of
the models or of the servers. 3D-JURY is coupled to the BioInfo.PL Meta-
server and, thus, can use any model including selection of the most common
model from a user-defined subset.

2.3 Hybrid Methods: Going Beyond the “Simple Selection” of Models

Some automated meta-predictors go beyond the simple selection. PMOD uses
MODELLER (Sali and Blundell 1993) to generate full-atom models based on
the selection of fold-recognition results reported by PCONS, amended by sec-
ondary structure predicted by PSI-PRED (Jones 1999). These models are eval-
uated using the PROQ method (Wallner and Elofsson 2003). ROBETTA (D.
Baker, unpubl.) builds full-atom models using the ROSETTA fragment inser-
tion method (Simons et al. 1997), starting from structures detected by PDB-
BLAST or PCONS and aligned by the K*SYNC alignment method. PRCM
takes as input the top models selected by 3D-JURY and builds full-atom mod-
els, which are minimized and evaluated using energy functions. ALEPH0-
JURY (D. Fischer, unpubl.) selects a model from those of ROBETTA, PRCM,
and SHGUM using a combination of the 3D-SHOTGUN technology (see
below) and evaluation using knowledge-based potentials.

Another successful practice observed in previous CASPs was to build
hybrid models from fragments (e.g. Bujnicki and GeneSilico; see above).
Automated meta-predictors using this approach have also been developed.
Conceptually, the first method to use the fragment-splicing approach (which
nevertheless should not be considered a meta-server) was David Baker’s
ROSETTA protein folding simulation algorithm that uses the fragment inser-
tion Monte Carlo approach (Simons et al. 1997). The general premise of this
method is that the protein conformation is reasonably well approximated by
the distribution of local structures adopted by known, not necessarily homol-
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ogous, protein structures. Protein structure fragments are obtained from the
protein structure database (Simons et al. 1997). The original version of
ROSETTA utilized the I-sites (invariant or initiation sites) library developed
by Chris Bystroff (reviewed elsewhere in this volume), which consists of a set
of short motifs, lengths 3 to 19, obtained by a clustering of sequence segments
from the Protein Data Bank (Bystroff and Baker 1998). ROSETTA has been
notoriously succesful in CASP3, CASP4, and CASP5, demonstrating that pro-
tein structure modeling by recombination of fragments derived from experi-
mentally solved structures is a powerful approach.

3D-SHOTGUN (Fischer 2003) is the first fully automated meta-predictor,
which assembles hybrid C-a models by combining the structures of individ-
ual models, independently obtained from different fold-recognition methods.
The 3D-SHOTGUN approach is superior to “pure” selection, as the resulting
hybrid models are on the average more complete and more accurate than the
input models. There are three versions of 3D-SHOTGUN: (1) an independent
version named SHGU using as input models generated by the BIOINBGU
server (Fischer 2000); (2) 3DS3 and (3) 3DS5, which uses as input the models
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from three or five different independent fold-recognition servers, respec-
tively. A new automated version of the SHOTGUN series, which was very suc-
cessful in CASP is SHGUM, which generates full-atom, refined models, with-
out the collisions and gaps seen in some of the raw spliced models. SHGUM is
an independent server using the same input as SHGU (i.e. the results of
BIOINBGU).

Figure 1 shows the diagram of mutual interdependencies of “metaN-
servers” and their reliance on the input from original servers and other
“metaN-1-servers”.

3 Future Prospects

The recent CASP5/CAFASP3 evaluation has clearly shown that the meta-
servers, on  average, perform much better than these primary servers and the
higher the N in the metaN, the more the meta-server is likely to succeed. This
works because no program is suitable for all cases, and each program has its
strengths and weaknesses, and with each layer of “meta”- analysis the
strengths can be amplified. The idea of meta-servers, or more precisely – the
post-CASP5 proliferation of meta-servers – has met, however, with ambigu-
ous reactions of the community of developers of bioinformatic methods. On
the one hand, it is much easier to develop meta-servers (especially a relatively
simple selector)  than to develop a new, original fold-recognition method. On
the other hand, because of the out-sourcing, the existing meta-servers are very
slow: always slower than the slowest of the external servers used to generate
primary predictions.

The idea of “meta-prediction” is well known in areas such as artificial intel-
ligence or the stock market,where independent agents are used to obtain a con-
sensus prediction that will be on average more accurate  than any of the indi-
vidual agents. Initially, you consult with various external brokers, but if you
have the money, you just hire them to sit at your location. Thus, the richest will
be the winner.Likewise,in order to obtain a fast protein fold-recognition meta-
server-type method applicable at genomic scales, meta-predictors will run
each of the “lower-rank”components locally,without the dependence on other
external servers. Many of the existing fold-recognition methods have imple-
mented a local version of PSI-BLAST (Altschul et al. 1997) for database
searches and generation of multiple sequence alignment,and PSI-PRED (Jones
1999) (which itself utilizes PSI-BLAST) for prediction of secondary structure.
It has been envisaged that the future meta-servers would utilize local imple-
mentations of original fold-recognition methods and lower-rank meta-proto-
cols. Hence, some of the criticism attributed to the first generation of meta-
servers may not be justified and will certainly fade away in the future, when
fast,powerful independent meta-predictors will challenge the best human pre-
dictors.Whether this will happen at CASP6 or later, remains to be seen.
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From Molecular Modeling to Drug Design

M. Cohen-Gonsaud, V. Catherinot, G. Labesse, D. Douguet

1 Introduction

1.1 General Context

Today, the pace of genome sequencing rapidly increases the number of pro-
tein sequences. This may lead to a description of living organisms at an
unprecedented level of both detail and completeness. It will require the char-
acterization of the biophysical properties and of the biological role of each
macromolecular assembly. The growing number of known protein sequences
largely exceeds the number of protein structures determined experimentally
by NMR and X-ray crystallography (Baker and Sali 2001). However, at the
same time, new folds are now rarely discovered despite significant efforts to
determine structures of unrelated proteins (see CASP5 results). Meanwhile, a
huge number of small molecules can now be easily synthesized and tested
experimentally thanks to robotics. Libraries of chemical compounds are
rapidly growing while the structural, thermodynamic and dynamic charac-
terization of ligand-macromolecule complexes is still tedious and difficult.
These observations suggest that new in silico methods (taking advantage of
the increasing power of computers) need to be developed in the field of phar-
macogenomics.

Since the first modeled protein structure (Browne et al. 1969), numerous
modeling studies have been published.Among them, several have highlighted
new needs or new strategies pushing forward the field (Crawford et al. 1987).
Sequence comparisons allow biologists to identify protein homologies and to
routinely derive functional and/or structural information (Rost and Sander
1996). In absence of any significant similarities and in some particular cases
(mainly small proteins), ab initio methods may suggest a potential fold but,
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currently, at a resolution too low for ligand docking (Baker and Sali 2001). We
will not discuss further the use of ab initio methods except in the particular
case of modeling insertions/deletions (hereafter “indels”; see Sect. 2.3.3).

Computational methods for ligand docking into macromolecular struc-
tures are more recent (early 1980s) but currently represent  a very active field,
and are essential at several steps of drug design strategies. However, the com-
bination of the two major in silico methodologies, comparative modeling and
virtual screening, remains largely unexplored despite tremendous potential
applications. In this chapter we shall describe first the modeling of protein
structures and the manner by which the resulting theoretical models may be
evaluated and used in the context of drug design.

1.2 Comparative Modeling

The sequence similarities a protein shares with proteins already characterized
at the functional and/or structural level(s) are widely used to overcome the
low output and the cost of experimental biochemical characterization
(Orengo et al. 1999; Saveanu et al. 2002). First, one must search for such
sequence similarities (e.g. using PSI-BLAST; Altschul et al. 1997) or so-called
sequence-structure compatibilities (e.g. using fold recognition). Herein, we
shall briefly describe  our server, @TOME (http://bioserv.cbs.cnrs.fr/), dedi-
cated to threading (Douguet and Labesse 2001) and molecular modeling
(Douguet et al. unpubl.), in order to highlight some specific features in rela-
tion to the characterization of ligand binding sites and drug design. The next
step is to evaluate the quality of the structural alignment and analyze the
derived partial structure or “common core”, which corresponds to the aligned
residues. This step is not yet successfully automated and represents a major
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Fig. 1. Flowchart of the pipeline
@TOME for macromolecular mod-
eling and drug design. Both fully
automated or semi-automated
(with user intervention) use of the
pipeline is possible allowing error
corrections at the various steps
connecting genomics to pharma-
cogenomics



bottleneck for macromolecular modeling. While model building can be per-
formed by fully automatic methods, it is not currently able to recover from a
wrong template choice or an incorrect alignment. Several steps are required
for complete model building and we will describe them below. However, we do
encourage the reader to refer to dedicated reviews of this field for further
details (Forster 2002; Marti-Renom et al. 2000). The last (but not the least)
step in molecular modeling is the evaluation of the predicted structure. Dif-
ferent analyses are needed depending on the target-template similarities but
also the expected use of the resulting models. Docking of other macromole-
cules or of small ligands will require evaluations at distinct locations and at
different resolutions.

1.3 Drug Design and Screening

In silico docking of small molecules (ligands) into large macromolecules (also
named “target” or “receptor”) has been developed in order to probe their
potential interactions. It may be used to explain the mode of action of drugs
as well as defining the way to improve them (e.g. derivatization to optimize
their specificity and/or affinity). This subtopic in structure-based drug design
requires structural data for both the putative ligands and the targeted recep-
tor. Different aspects of virtual docking and drug design have been reviewed
recently in more detail elsewhere. The speed of the current software allows the
search for good ligands of a given macromolecule in large chemical databases
(thousands of molecules a day per workstation). In recent years, several suc-
cessful structure-based virtual screening studies have been reported (Boehm
et al. 2000; Doman et al. 2002; Perola et al. 2000; Gruneberg et al. 2001).Virtual
screens, and in particular receptor-based virtual screens, have emerged as a
reliable, inexpensive method for identifying “leads” (compounds used as a
starting point for drug design). Advances in computational techniques have
enabled virtual screening to have a positive impact on the discovery process
(Lyne 2002). In silico docking becomes a complementary approach to experi-
mental high-throughput screening in the lead identification stage (Jenkins et
al. 2003). However, the lack of an experimentally determined structure of the
targeted protein frequently limits the application of structure-based drug
design methods. Efforts have been made to overcome some limitations and
examples of model-based drug design have emerged (see Chap. 3). Some
applications have been initiated for several important protein families such as
GPCRs (which are targeted by one third of commercial drugs and represent
3 % of the human genome; Klabunde and Hessler 2002) or drug metabolizing
enzymes (e.g. P450; Zamora et al. 2003) just to mention a few highly challeng-
ing examples. This situation calls for the development of efficient computa-
tional methods for structure modeling and ligand screening as well as a
global effort to evaluate their limitations.
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We will discuss the use of ligand database screening and docking on a
small scale to evaluate and/or to refine modeled protein structures. On a
larger scale, in silico docking will require high quality models. One might
envision as well the use of molecular models of various but related proteins to
evaluate the specificity of a set of ligands in order to predict potential side
effects (Rockey and Elcock 2002). The usefulness of these approaches in the
context of genomic biology will be discussed.

2 Comparative Modeling

2.1 Sequence Gathering and Alignment

Before, comparative molecular modeling, i.e. three-dimensional structure
building, can be initiated, sequence alignment of the target and (at least) one
template is necessary. However, the lower the sequence identity, the harder it
is to detect similarity and to align sequences. While obvious at high sequence
identity (above 30 %), the detection might not be straightforward at lower
sequence identity. A prerequisite is generally to find and align close homo-
logues of the target.

2.1.1 Sequence Database Searches

Sequence database searches were efficiently automated one decade ago
through the development of BLAST and its derivatives (Altschul et al. 1990,
1997). Most recent methods, such as fold recognition (see Sect. 2.2.1), include
such searches prior to sequence-structure comparison and their efficiency
heavily relies on the search output. The use of the template’s homologues is
also helpful, especially through profile-based methods (Rychlewski et al.
2000). Checking for the availability of a sufficient number of homologues in
the sequence databases may be necessary to ascertain the quality of the out-
puts (alignment, fold recognition, secondary structure prediction). In some
cases, this verification is highly recommended, especially, for eukaryotic
sequences belonging to small families with no prokaryotic equivalent (
Ganem et al. 2003) or particular proteins specific to a phylogenic “niche” (
Carret et al. 1999). The number of fully sequenced genomes of prokaryotes
usually warrants the construction of reasonable multiple sequence align-
ments for most proteins of bacterial or archaeal origin. However, some
sequence subfamilies might lead to the convergence of PSI-BLAST searches,
which is too rapid in the absence of “joining” intermediates between too dis-
tantly related subfamilies (Labesse et al. 2001).At the same time, the efficiency
of the sequencing projects makes PSI-BLAST searches more and more suc-
cessful. It may detect true sequence similarity even at a very low level of
sequence identity (~15 % over 60–90 % of the protein length; see CASP5
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results). In these cases, a reliable alignment is more likely to be achieved using
sequence-structure comparison methods and/or the manual edition of
sequence-structure alignment (hereafter, named structural alignment) by
experts.

2.1.2 Multiple Sequence Alignments

Once similar sequences have been gathered, various sequence alignment
methods are available (e.g. CLUSTALW, DIAILIGN, etc.) and can be directly
connected to molecular modeling (Lambert et al. 2002). PSI-BLAST itself pro-
vides multiple sequence alignments. However, the latter correspond to simi-
larity matches and do not always cover the full-length hit sequences. Com-
pared to pairwise alignment, multiple alignments may reveal more
meaningful sequence conservation (Labesse 1996). Computer programs such
as MEME (Bailey et al 1997) are available to pick up among aligned sequences,
common motifs that usually correspond to functionally or structurally
important regions. However, fine functional assignment may require tracing
subtle changes aside from common motifs that may not be automatically
detected (Labesse et al. 1994; Reid et al. 2003).

The overall quality of the alignment depends mainly on the mean pairwise
sequence identity. The statistical significance of a multiple alignment can now
be estimated (Pei et al. 2003). At a low level of sequence identity (below 25 %),
structural information will be needed to improve the alignment quality (e.g.
avoiding insertion or deletion inside secondary structure elements; Gracy et
al. 1993).

2.2 Structural Alignments

We wish to put, herein, strong emphasis on the essential step of sequence-
structure alignment also called, fold recognition. This requirement is rein-
forced by the growing use of sequence-structure comparison methods to
derive alignments in the so-called twilight and midnight zones (for sequence
identity levels between 15–25 and 0–15 %, respectively). We shall illustrate
here, with several examples, the need for careful refinement of structural
alignment as well as the usefulness of the crude models one can derive from
these alignments. Fold recognition is usually performed to search structure
databases using  “frozen approximation” for speed. It allows rapid similarity
detection. In contrast, true three-dimensional threading evaluates pairwise
contacts (in between amino acids or atoms) instead of profile-profile matches.
The enhanced sensitivity of pairwise contacts suggests that it should be used
after profile-profile comparison. This strategy has been implemented in
PROSPECT (Xu et al. 2000) or PROSPECTOR (Skolnick and Kihara 2001) and
is also made available on the server @TOME. Various factors may interfere
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with the achievement of a correct sequence-structure alignment and their
identification may require going through all the following steps: alignment
refinement (Sect. 2.2.3), model building (Sect. 2.3) and model evaluation
(Sect. 2.4).

2.2.1 Fold Recognition

Fold-recognition programs usually produce sequence alignments that are
generally more reliable than those derived from purely sequence-based meth-
ods. Furthermore, they can detect distant homologues with sequence identity
as low as 10 % ( Kinch and Grishin 2002). However, the current rate of the suc-
cess of individual threaders reaches at best 40 % for distantly related struc-
tures (Bujnicki et al. 2001). This can be partially overcome by using consensus
scoring schemes such as those provided by several web servers (http://
BioInfo.PL/meta/meta.html: Bujnicki et al. 2001; http://GeneSilico.pl/meta/:
Kurowski and Bujnicki 2003; @TOME). On the server @TOME, structural
alignments are further evaluated through a common threading tool (T.I.T.O.;
Labesse and Mornon 1998) using a potential of mean force, PKB (Bryant and
Lawrence 1993). The use of a common scoring scheme helps to choose a bet-
ter template and/or a better structural alignment.When distinct folds are pro-
posed to be compatible for the same region of the query sequence, the pro-
posed similarity is doubtful and extra care must be taken before going
through the following steps of structure modeling.

Usually, different threaders will find similar compatible folds but their
sequence-structure alignments may differ locally. In case of high sequence
similarities (above 25 %, over more than 100 residues), discrepancies occur
mainly in the vicinity of indels. A few amino acids on each side might be
improperly aligned usually due to spurious sequence identity instead of the
geometrical likelihood of the indels. Under the level of 25 % sequence identity
or in the case of small proteins the significance of the alignment might be
questioned (Sander and Schneider 1991). Below 10 % sequence identity, it
might be considered that a correct alignment cannot be achieved (except by
chance). Difficulties in alignment refinement may arise from sequence diver-
gence but also from structure changes and function variations.

2.2.2 Structural Alignment Refinement

Currently, few tools tackle the problem of automatic refinement of sequence
alignments but promising approaches have been described recently (Deane et
al. 2001; Pei et al. 2003). However, various internal controls may be used for the
selection and refinement of structural alignments using available techniques
including three-dimensional structure visualization.

One may evaluate the “stability” of a given alignment by adding new
sequences significantly similar either to the template or to the target as well as
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experimentally solved structures that superpose well onto the template.
Checking the agreement of secondary structure predictions (for the query
sequence) with secondary structure assignment (for the template) is impor-
tant for distantly related proteins (Errami et al. 2003; Callebaut et al. 1997).
Other criteria may be taken into account (particular phi/psi angles, burial,
hydrogen bonding capabilities, helix capping, etc.) and may be visualized on
the structural alignment using the JOY format (Mizuguchi et al. 1998). How-
ever, at low levels of sequence conservation, structural alignment should also
be evaluated more precisely at the three-dimensional level.

One may build (or rather extract) rapidly a “crude model” (e.g. using the
program T.I.T.O. (Labesse and Mornon 1998)). Such a partial structure
includes only strictly conserved residues (including both backbone and side-
chain atoms) and the backbone of distinct but aligned residues. Neither opti-
mization nor loop building at the indels are performed, adding no error due
to the more complex model building methods, that could mask alignment
errors. Clusters of strictly conserved residues (e.g. catalytic triad) and/or con-
servation of topohydrophobic residues (Poupon and Mornon 1998) would
suggest functional conservation (e.g. catalytic mechanism) and/or indicate a
lower global structure divergence, respectively.A related approach was imple-
mented in THREADLIZE (Pazos et al. 1999). Visual evaluation of a structural
alignment quality often suggests numerous local changes in the sequence
alignment. These changes may be transposed into a new “crude model”.A new
round of alignment edition, common-core extraction and assessment is nec-
essary for this trial-and-error optimization. Until recently, the various steps
involved in this tedious and time-consuming process, have been performed
by several programs, e.g. a multiple-alignment editor such as SEAVIEW
(Galtier et al. 1996), T.I.T.O. (Labesse and Mornon 1998) and a macromolecu-
lar structure visualization tool such as XmMol (Tuffery 1995), Swiss-PDB
viewer (Guex and Peitsch 1997) or Rasmol (Sayle and Milner-White 1995).
Two programs gathering most of the previous properties (i.e. editing and
visualization) are now available to help this task (Modview: Ilyin et al. 2002;
ViTO: Catherinot and Labesse, unpubl.).

2.2.3 Active Site Recognition

Determination of the active site location and prediction of the protein func-
tion are essential steps in the “post-genomic era”. This may become auto-
mated soon based on both modeled structures and sequence conservation
using  “evolutionary traces” (Lichtarge et al. 1996; Aloy et al. 2001; Yao et al.
2003). Another methodology, based on sequence conservation and active site
geometry analysis (Fetrow and Skolnick 1998) has been recently developed
for comparative searches. The methods for recognition of active sites may also
show loss-of-function evolution (Kniazeff et al. 2002). The significance of the
conservation of a cluster of amino acids can also be used to identify subfami-
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lies of related proteins. This can be performed using statistical tools such as
PATTINPROT (Combet et al. 2000) or PHI-BLAST (Zhang et al. 1998) even at
a low level of sequence conservation (~15 %) to confirm fold recognition
(Labesse et al. 2001) or to characterize the catalytic mechanism and/or ligand
specificity (Carret et al. 1999; Ganem et al. 2003; Reid et al. 2003). Identifica-
tion of the amino acids involved in the protein activity may also be useful at
the model completion step by providing additional restraints (see Sect. 2.3).

2.2.4 A Biological Application

As an example, we have described the study of the human copper transporter
Hah1, the crystal structure of which has been solved (Wernimont et al. 2000).
Correct identification of the compatible folds may now be obtained using any
sequence-structure comparison tools even at a very low sequence identity
(e.g. 12 %). A similar approach was previously applied to correctly model this
protein at 20 % sequence identity (Hung et al. 1998). Perfect alignment could
be achieved by restraining, as much as possible, the deletions to lie in between
positions close in space to each other (measured as Cai-Cai+1 distances in
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Hah1(1FE4) --MPKHEFSVD-MTCGGCAEAVSRVLNKLGGV-KYDIDL 
1AFJ       -ATQTVTLAVPGMTCAACPITVKKALSKVEGVSKVDVGF 
hah1_TITO  --MPKHEFSV-DMTCGGCAEAVSRVLNKLG-GVKYDIDL 
1AFJ_TITO  -ATQTVTLAVPGMTCAACPITVKKALSKVEGVSKVDVGF 
hah1_mGT   --MPKHEFSV-DMTCGGCAEAVSRVLNKLGGVK-YDIDL 
1AFJ_mGT   -ATQTVTLAVPGMTCAACPITVKKALSKVEGVSKVDVGF 
hah1_3DP   -MPKHE-FSV-DMTCGGCAEAVSRVLNKLGGV-KYDIDL 
1AFJ_3DP   -ATQTVTLAVPGMTCAACPITVKKALSKVEGVSKVDVGF 
hah1_T99   --MPKHEFSV-DMTCGGCAEAVSRVLNKLGGVK-YDIDL 
1AFJ_T99   AT-QTVTLAVPGMTCAACPITVKKALSKVEGVSKVDVGF 

***     *     **                                    ****                 

 
hah1(1FE4) PNKKVCIESE---HSMDTLLATLKKTGKTVSYLGLE--- 
1AFJ       EKREAVVTFDDTKASVQKLTKATADAGYPSSVKQ----- 
hah1_TITO PNKKVCIESE---HSMDTLLATLKKTGKTVSYLGLE--- 
1AFJ_TITO EKREAVVTFDDTKASVQKLTKATADAGYPSSVKQ----- 
hah1_mGT   PNKKVCIESE---HSMDTLLATLKKTGKTVSYLGLE--- 
1AFJ_mGT KREAVVTFDDTKASVQKLTKATADAGYPSSVKQ----- 
hah1_3DP   PNKKVCIESEH---SMDTLLATLKKTGKTVSYLGLE--- 
1AFJ_3DP EAVVTFDDTKASVQKLTKATADAGYPSSVKQ----- 
hah1_T99   PNKKVCIESE---HSMDTLLATLKKTGKTVSYLGLE--- 
1AFJ_T99   EKREAVVTFDDTKASVQKLTKATADAGYP-----SSVKQ 

                               ****                              ****** 
Fig. 2. Sequence-structure alignments of Hah1 (PDB1FE4) and PDB1AFJ. Sequence-
structure alignment produced by optimal superposition or as published before the
determination of the crystal structure PDB1FE4 or as computed by the programs mGen-
Threader (Jones 1999), 3D-PSMM (Kelley et al 2000) or SAM-T99 (Karplus et al. 1998).
Discrepancies among alignments are indicated by the asterisk (*)



the resulting “crude model”) and outside of secondary structure elements.
The completion of the structure model highlighted additional features such
as putative salt-bridges. Model-guided experiments (directed mutagenesis,
DTNB labeling or UV-visible spectroscopy of the cobalt-Hah1 complex)
quickly validated the proposed alignment (Hung et al. 1998).

2.3 Complete Model Achievement

The frequent need for manual refinement of sequence-structure alignments
at a low level of sequence identity (<25 %; see Sect. 2.2), would suggest that no
automatic modeling should currently be directly connected to sequence sim-
ilarity searches. However, subsequent completion of the three-dimensional
structure modeling may sometimes result in good models implying that, in
this case, a correct structural alignment was achieved. Automatic modeling
using several unrefined structural alignments may be performed in parallel
using a pipeline dedicated to protein structure modeling such as @TOME.
Otherwise, alternative alignments (e.g. suboptimal alignments according to
the scoring schemes of automatic procedures) are to be generated and tested.
Recognizing the correct model out of numerous incorrect ones will, then, be
the next important step (see Sect. 2.4) before one might consider that the
resulting macromolecular models are relevant for drug design (see Chap. 3).
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Fig. 3. Stereographic view of the superposition of Ca traces of PDB1FE4 and PDB1AFJ
according to the sequence-structure alignment produced by the program SAM-T99.
Crystal structure of PDB1FE4 (Wernimont et al. 2000) is drawn in thin and black lines.
PDB1AFJ (Steele and Opella, 1997) is in grey and thick (aligned) or thin (“indels”) lines



2.3.1 Global Structure Modeling

Once a structural alignment is available, a common core is deduced (corre-
sponding to aligned residues; see Sect. 2.2.2) and amino acid changes and
indels are delineated. A complete structure may be built from this starting
point using various approaches. Completion of the model implies either
adding missing parts, or fragments, onto the common core or building and
folding the whole structure at once. These methodologies were inspired by the
manner in which structures are modeled by X-ray crystallographers or the
approach to folding structures using NMR constraints. In between these two
approaches, a hybrid methodology is based on databases of protein structure
fragments which are used to build missing parts and also to rebuild (or opti-
mize) any parts including the common core. At CASP5, difficult targets (e.g.
T0130) were  modeled in a better way by mixing large fragments from differ-
ent but related three-dimensional structures. Such chimeric structures might
appear also at a finer level as illustrated by the mycobacterial TMP kinase
(Munier-Lehmann et al 2001). The extension of this technique is already
available through the use of several templates by more popular modeling pro-
grams such as MODELER (Sali and Blundell 1993) and COMPOSER (Srini-
vasan and Blundell 1993). Other programs and web servers are also available
(e.g. SWISS-MODEL: Gueix and Peitsch 1997; Geno3D: Combet et al. 2003).
The speed and efficiency of the current modeling software allow the building
of models to improve gene detection in genomes (Gopal et al. 2001) or to set
up databases such as ModBase (Sánchez et al. 1999) covering, so far, roughly
25 % of protein sequences.Twofold higher coverage can be obtained, but, at
the expense of significantly lower structure alignment and structure model
quality.

At high levels of sequence identity (above 25 %) little difference in the qual-
ity of the modeled structures is observed regardless of which software is used.
However, more precise or particular modeling studies will require taking
advantage of some specific features of these tools (additional restraints in
MODELER such as inter-atomic distance or secondary structure predictions).
Otherwise, dedicated programs may be required for specific tasks such as
side-chain conformational searches (Sect. 2.3.2), indel building (Sect. 2.3.3)
and/or energy minimization (Sect. 2.3.5). We emphasize, here, their general
use, their complementarity as well as their potential use for ligand docking
and drug design.

2.3.2 Optimization of Side-Chains Conformation

Several tools such as SMD (Tuffery et al. 1997) or SCWRL (Dunbrack and
Karplus 1993) are available to build side-chains onto a fixed backbone. They
use dedicated rotamer libraries and optimized space search procedures.
SCWRL is one of the most popular and is currently made available on the
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server @TOME. Predicted orientations of side-chains are up to 80 % correct
(percent of dihedral angle chi1 within 40Åã of the actual value) for models
built by homology. Current improvement now comes from the use of a huge
number of conformers for each amino acid, to overcome potentially mislead-
ing small van der Waals clashes (but at the expense of the CPU time required).
Optimized scoring functions are another way of improvement (Liang and
Grishin 2002).

At a low level of sequence identity, active site residues (even those strictly
conserved) are usually not properly optimized (generally due to a particular
environment and specific conformational constraints). In our experience con-
straining the original side-chain orientations (to those observed in the tem-
plate) is often more accurate. This approximation is valid only when similar
ligands are expected to bind and/or similar conditions are modeled (e.g. sim-
ilar allosteric conformations). The use of constraints on the strictly conserved
residues has yet to be carefully evaluated (on a larger scale and ahead of lig-
and docking experiments). Similarly, maintaining a bound ligand while opti-
mizing side-chain conformations may be important prior to virtual screening
or docking of ligand analogs. This is illustrated by the catalytic aspartate in
protein kinases (D184 in PKA) whose orientation is dramatically changed in
the presence of the inhibitor H8 compared to other ligands (Engh et al. 1996).
The stabilization of this particular conformation comes from a neighboring
threonine (T183 in PKA) hydrogen bonded to the side chain of aspartate
D184. Similarly, to maintain the active site pocket “open” enough to allow lig-
and docking, one may favor modeling a complex with a ligand kept bound.
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Fig. 4. View of the active site of the protein kinase AKT. The active site structure was
modeled using as a template PKA (Engh et al. 1996). The Ca trace (thin) and the ligand
H8 (thick) are indicated by grey lines. Side chains of three residues threonine T141,
aspartate D142 and a methionine M131 (T183, D184 and L173 in PKA: PDB1YDS), are
indicated by black and thick lines. Their orientations were computed by SCWRL (Dun-
brack and Karplus 1993) using, in absence of H8, either no restraint or constraining the
strictly conserved side-chains (e.g. T141 and D142). For clarity, the ligand H8 is shown in
its position in PKA



Template choice (when possible) and specific constraints will depend on the
conformation to target and/or the type of ligands to search. Setting up con-
straints should be carefully revised when significant structural rearrange-
ments are expected in the vicinity (e.g. due to indels).

2.3.3 Insertions/Deletions Building

Different techniques are required according to the length of the “indels”,
which are generally considered to correspond to loop segments. However, this
is no longer true at low levels of sequence identity (below 25 %) as secondary
structure elements may vary in length and number among related structures.
Modeling of substantial indels, taking into account local secondary structure
predictions, is still in its infancy and mainly carried out manually (Aloy et al.
2000). Short indels (usually between three and eight amino acids in length)
are modeled more accurately than longer ones. Modeling of indels may be
based solely on their own sequences (Deane and Blundell 2001) or it may take
into account the potential influence of the surrounding environment (Burke
et al. 2001).

Short loops are mainly modeled by taking into account the flanking ele-
ments and the sequence of the loop itself. Families of short-loop structures
have been defined showing some clear clusters (Kwasigroch et al. 1997; Wojcik
et al. 1999) despite the known flexibility of these protein regions. This kind of
loop is efficiently modeled using fragments sharing similar sequences and/or
compatible geometries (fitting to flanking elements). The fragment-based
approaches rely on protein structure databases that should be optimally set
up due to high redundancies in the PDB (http://www.rcsb.org/pdb/). Criteria
that are too stringent will remove closely related fragments from such pre-
processed databases preventing a fine-grained search while ensuring higher
speed.

For longer loops (above 12 amino acids in length), additional restraints are
necessary to achieve convergence. Their construction may better rely on ab
initio modeling (Bystroff and Baker 1998; De Pristo et al. 2003) rather than on
comparative modeling despite the need to take into account the surrounding
structural elements and the anchoring points. In some cases, very long indels
correspond to subdomains that can be modeled independently and are fused
later on (see CASP5 results).

The most promising improvement comes from conformation optimization
using a specific force field including terms from a potential of mean force at
the atomic level. This force field is too CPU-intensive to be used on the global
structure. This new loop building approach significantly improved the likeli-
hood of the conformation and it was shown to lower the RMSD (down to 2 Å)
of most modeled loops (Fiser et al. 2000). Further improvements (Fiser et al.
2002; de Bakker et al. 2003) come from the use of Generalized-Born solvation
approximation to select and/or optimize loop conformations.
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2.3.4 Modeling Protein Quaternary Structures

Protein-protein associations play a major role in biology, notably in signal-
ing cascades in eukaryotes or in complex biosynthetic pathways (ribosome,
photosynthesis, etc.) and may represent therapeutic targets. The huge num-
ber of possible complexes, especially in eukaryotic cells, due to the large pro-
tein families involved (e.g. more than 200 human SH3 domains) calls also for
the analysis of their specificity through quaternary structure modeling. Fur-
thermore, active sites might be formed or stabilized through macromolecu-
lar interactions (e.g. the dimer of the target T0132 at CASP5). Predictions of
the quaternary structures have long been too demanding in CPU time and
are also dependent on the experimental determination of complexes. How-
ever, potentially rapid experimental evaluation of the quaternary structure
(or interactions) makes these predictions more attractive. Such predictions
may also be performed in conjunction with low-resolution structure deter-
mination (Beckmann et al. 2001). Furthermore, the recently developed
macromolecular structure database (PQS; http://pqs.ebi.ac.uk/) facilitates
the retrieval of most likely quaternary structures from crystal structures.
Our server @TOME provides an easy way towards the modeling of the qua-
ternary structure, using MODELER, when structural data are available in the
PQS.

In some particular cases, analysis of the putative quaternary structure may
confirm putative similarity. For example, modeling of a trimeric structure of
the major porin from Campylobacter jejuni has confirmed weak sequence
similarities (~15 % over 400 residues) with better-known enterobacterial
malto- and sucroporins (Labesse et al. 2001). The best conserved sequence
motifs in these bacterial porins lay at the monomer-monomer interface espe-
cially on the trimer axis. In contrast, the external loops as well as the strands
facing the lipid membrane show little or no sequence conservation. Further-
more, a putative di-cation binding site at the interface in the model (each
monomer providing an aspartate) could then be predicted (Labesse et al.
2001). MultiPROSPECTOR (Lu et al. 2002) represents an automation of this
approach by taking advantage of the potential conservation of the quaternary
structure to refine threading searches.

Modeling indels and positioning of side chains may be improved if per-
formed in the correct macromolecular context. Furthermore, theoretical eval-
uation of a modeled structure (see Sect. 2.4) in an incorrect environment
(exposing residues normally buried at the interface) might be misleading. The
example of the CDK/cyclin complex (Davies et al. 2001) shows that the bind-
ing of a macromolecular partner can favorably influence the active site geom-
etry.

All this would prompt us to predict and to build correctly the actual qua-
ternary structure. At a high level of sequence identity, quaternary structure is
likely conserved. It will be easily modeled using methods developed for
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monomeric structures. At lower sequence identity its conservation may be
more questionable and model building will require additional skills.

Evolutionary traces (see Sect. 2.2.3) for large protein families is a conve-
nient tool to predict common interfaces based on structural alignments.
Servers are now available to perform rapidly such analysis (Armon et al.
2001). A posteriori analysis might also be convenient to identify a potential
interface. One way is to evaluate each monomer first separately and then
embedded in the putative complex using tools for model quality evaluation
such as Verify3D (see Sect. 2.4.1), which is made available on the server
@TOME.

Another way to model quaternary structure is to build partners indepen-
dently and then try to bring them in contact. This field has been reviewed
recently (Smith and Sternberg 2002) and several docking programs are avail-
able (Katchalski-Katzir et al. 1992; Smith and Sternberg 2003; Nussinov and
Wolfson 1999; Goodsell et al. 1996; Lorber et al. 2002). The use of different
methods in parallel and consensus scoring are convenient ways to improve
current performance. Low-resolution protein–protein docking (Vakser 1996)
is a convenient tool for docking modeled structures (screening out small dis-
crepancies in the monomeric models; Tovchigrechko et al. 2002). Some appli-
cations have been recently published such as the modeling of vitronectin, a
multi-domain protein, using threading, modeling and docking (Xu at al.
2001). However, the results of the experiment CAPRI (http://capri.ebi.ac.uk)
suggest that more developments are necessary before protein–protein dock-
ing can be used in routine (Janin et al. 2003).

2.3.5 Energy Minimization and Molecular dynamics

Additional steps may be required to regularize the geometry of the modeled
structure, especially in the vicinity of indels (see Sect. 2.3.3). Energy mini-
mization may improve bond length and valence angle values as well as elimi-
nate severe van der Waals clashes. It will not bring atoms closer to their actual
position. Due to the roughness of the energy landscape, energy minimizations
are easily trapped in local minima. These limitations explain why energy-
minimized structures, generally, show slightly increased global deviation (as
measured by atomic root-mean-square deviation versus the actual structure)
compared to the un-minimized models (or the starting template).

Besides energy minimization, trajectory simulation (molecular dynamics)
may be also performed with similar master equations. Molecular dynamics
may be used to explore the conformational space. Snapshots in the trajectory
may result in models as good as the starting ones (according to various struc-
tural criteria; Flohil et al. 2002). This may be used to show the precision (or
error) of the models. In MODELER (Sali and Blundell 1993), energy mini-
mization and molecular dynamics are used to optimize and generate distinct
models of the same query sequence. Largely deviating regions generally cor-
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respond to long indels and may be considered to be incorrectly modeled. Fur-
ther improvements in available CPU and forcefields may lead, in the near
future, to more suitable energy simulation for models optimization.

2.4 Model Validation

2.4.1 Theoretical Model Validation

Several tools are now available to validate three-dimensional structures at dif-
ferent levels of accuracy.At a very high level of sequence identity (above 50 %),
small deviations from actual coordinates may be achieved and programs ded-
icated to experimental structure evaluation are suitable (e.g.: WHAT-CHECK;
Hooft et al. 1996). At lower sequence identity (25–50 %), deviation from stan-
dard stereochemistry may not correlate with the overall quality of the model
(especially after energy minimization; see Sect. 2.3.5). Non-bonding inter-
atomic interactions may be more suitable using  atomic statistical potentials
such as ERRAT (Colovos and Yeates 1993),ANOLEA (Melo and Feytmans 1998)
or SOESA (Wall et al. 1999). Below 25 % sequence identity, model evaluation
should rather be performed at the residue level.PROSA II (Sippl 1993) and Ver-
ify3D (Eisenberg et al. 1997) are used to assess automatic modeling by MOD-
ELER on the server @TOME.In our experience,mainly at low levels of sequence
identity (15–25 %), good models have a mean score between 0.3 and 0.4 using
Verify3D and between –0.7 and –1.0 in PROSA.

Precise and local analysis may be required in particular cases. Simultane-
ous visualization of the score and the three-dimensional structure may be
done using visualization programs (using the B-factor values to input scores).
Specific features remain to be implemented to handle original configurations,
which are mostly observed in the active sites (or binding sites). Residues con-
tacting ions (especially, those involved in metal coordination) and/or deeply
buried ligands (especially co-factors) have a non-classical environment
resulting in disturbed evaluation. Interactions with charged compounds may
imply clustering of similarly charged residues (e.g. lysines and arginines for
phosphate binding). Similarly, particularities may be observed in ther-
mostable proteins, which may be stabilized by buried salt bridges (or even a
buried ion binding site such as -amylases). When buried in the modeled
structure, charged or highly hydrophilic residues are often considered to be
incorrectly modeled. Attention must be paid to the conservation of these
polar and buried residues and/or looking at counterbalancing residues (espe-
cially correlated substitution) or chemical groups (backbone atoms, and sub-
strate or co-factor).When such particular features are observed, evaluation of
the model quality requires the assessment of the template structure as well.

When a protein structure has been determined under various conditions
and shows some rearrangements, models of homologues built using the vari-
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ous known forms might indicate some preferred conformations. To what
extent this technique can be generalized remains an open question. However,
application of this strategy to the eukaryotic cyclin-dependent kinase CDK7
suggested that it might not require cyclin binding for full activity due to sub-
tle amino acid changes in the vicinity of the activation loop. Among these
changes, one is a tyrosine to phenylalanine substitution (tyrosine Y15 in
CDK2) in the glycine-rich loop and other changes occurred at the N-terminus
of the activation loop. The predicted higher stability of the active form due to
these correlated changes is in agreement with the observed behavior of this
CDK (Martinez et al. 1997).

2.4.2 Ligand-Based Model Selection

Methods testing the complementarity with known ligands may better rank
protein models than general structural criteria (e.g. sequence identity, inter-
molecular energies, etc.). This has been applied recently by Johnson et al.
(2003) in the case of the anti-Shigella flexneri Y monoclonal antibody com-
plexes.Virtual docking methods (described in Sect. 3.2) may be used on a lim-
ited set of experimentally characterized binders (or derived obviously from
clear protein homology).

The docking of a common substrate (e.g. TMP) in three TMP kinases (from
Haemophilus influenzae, Yersinia pestis, Bacillus subtilis, respectively) mod-
eled using the related TMP kinase from Escherichia coli, (75, 75 and 30 % iden-
tical, respectively) was used to check the quality of the modeled active site
structure (Pochet et al. 2002). Correct docking scores and position were
obtained for the enterobacteria while a poor docking score was obtained for
the enzyme from B. subtilis. This discrepancy is due to a van der Waals clash
with a buried proline not present in the template structure as shown by dock-
ing on a modeled mutant form (P104A) of the same TMP kinase. This sug-
gested some difficulties in taking into account structural constraints due to
the substitution toward a proline in a buried helix. Remodeling this TMP
kinase locally would be necessary prior to further ligand screening at high
resolution.

2.4.3 Experimental Evaluation of Models

Several biochemical and biophysical characterizations of proteins structures
are likely to provide restraints to evaluate a theoretical model at a very low
cost in time and in material. However, one should make sure to use methods
eliminating alternate models (Hurle et al. 1987). As an example limited prote-
olysis can be extremely powerful, especially when the cleavage site lies in the
protein active site (Bucurenci et al. 1996) or one particular face of the protein
(Labesse et al. 2001). Similarly, tryptophan fluorescence may help to monitor
substrate orientation and/or a putative induced-fit in the active site (Mar-
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rakchi et al. 2002, Cohen-Gonsaud et al. 2002). Mass spectrometry is currently
the method of choice in conjunction with other techniques including specific
labeling, cross-linking (Young et al. 2000), endo- and exo-proteolysis or, in the
case of small proteins, oxidation/reduction (Hung et al. 1998). When quater-
nary structures are predicted, model evaluation might be easily performed
using cross-linking or gel permeation. This, in turn, may highlight some
instability or the importance of some conformational change (Marrakchi et
al. 2002; Cohen-Gonsaud et al. 2002). Directed mutagenesis is an alternative
way to check the functional role of particular residues (Labesse et al. 2001;
Kniazeff et al. 2002; Ganem et al. 2003) but it is usually more demanding while
at risk of pleiotropic effects making the results difficult to analyze. Chimera of
closely related proteins with distinct ligand specificities are an elegant means
of building new targets to assess precisely predicted modes of binding (Mal-
herbe et al. 2003). The most precise and most useful validation may be func-
tional assessment through enzymology or affinity measurements especially
prior to drug design (Carret et al. 1998; Ganem et al. 2003). With a signifi-
cantly larger amount of sample (~10 mg), SAXS and ultracentrifugation
might be used to assess the overall structure of oligomers as well as the struc-
ture of monomers (Bada et al. 2000). Solving experimentally the protein struc-
ture, at atomic resolution, will correspond to a final assessment. Only good
models are currently suitable to speed up X-ray crystallography using  mole-
cular replacement (Jones 2001). Models may potentially also facilitate NMR
spectroscopy, in the near future. Experimental structures are usually more
suitable for drug design and virtual screening (see Chap. 3) but are deter-
mined, currently, at a low output. Prior macromolecular modeling in connec-
tion with tuned ligand docking may lead to easier and faster experimental
structure determination (e.g. by identifying or by providing a stabilizing lig-
and) which, in turn, will help further ligand optimization.

2.5 Current Limitations

The methods described above may not be well suited to predict and model
specific structural rearrangements such as inter-domain swapping or for par-
ticular protein subtypes (membrane or cytoskeletal proteins). Modeling and
evaluation tools have to be redesigned or used with extra care in order to
tackle these special tasks.

Domain swapping and strand exchanges, as exemplified by the bacterial
YajQ (CASP5: T0148), are currently very hard to predict (Saveanu et al. 2002).
Contact map predictions might help in some cases but their low overall accu-
racy is a severe limitation for their general use.

Similarly, membrane protein structures are still difficult to align, to model
and to assess. Several reasons explain this situation: few structures have been
solved experimentally compared to their soluble counterparts, and moreover,
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specific rules apply in the context of protein-lipid interactions. Some particu-
larities can be used to help sequence alignment and model refinement in the
case of membrane embedded proteins. Observed in both all-alpha and all-
beta membrane proteins, two crowns of mainly aromatic amino acids are
underlining the upper and lower limit of the membrane spanning segments.
This might correlate with the particular biophysical behavior of these amino
acids (solvation energy). Dedicated computer programs have been developed
(Diederichs et al. 1998) and may predict structural characteristics (in absence
of any detected sequence similarity) more precisely than those usually pro-
posed for soluble and globular proteins (e.g. topology prediction versus sim-
ple secondary structure predictions). This kind of prediction is especially
useful because experimental tools can assess the topology efficiently
(reporter fusions). Large families of membrane proteins have been defined
based on a conserved topology, such as GPCRs (Bockaert and Pin 1999),
despite sequence identity level below 15 % (Bhave et al. 2003).

3 Model-Based Drug Design

Several examples of protein structure models used for ligand search and/or
optimization have already been published (Ring et al. 1993; Munier-Lehmann
et al. 2001). However, the accuracy of modeled structures is often thought to
be unsuitable for drug design due to too high deviation from the actual struc-
ture (Baker and Sali 2001). Nonetheless, structure-structure comparisons reg-
ularly show conservation of both fold and ligand binding mode in distantly
related proteins (roughly 20 % identical).Analysis of the relationship between
sequence and functional descriptors has defined an empirical limit for auto-
matic pairwise-based functional annotations of two of the four EC digits
(classification according to the IUBMB Enzyme Nomenclature Committee) at
15 % identity (Devos and Valencia 2000). This suggests that at least the mech-
anism of action (catalysis for enzyme) is roughly conserved. It may be suffi-
cient to predict potential inhibitors that would mimic the reaction intermedi-
ate (Meinhart et al. 2003; Ganem et al. 2003). At higher sequence identity
(>30 %) the global shape and nature of the ligand is usually similar. At the
same time, small discrepancies in the active sites may appear, suggesting that
while the general mode of binding is conserved, specific substitutions may be
built (Munier-Lehmann et al 2001). Such correlations may be detected by
comparative modeling and used as a starting point for further more-elabo-
rated drug design.

Structure-based drug design or structure-based virtual screening usually
involves explicit molecular docking of molecules (mostly small compounds)
into the binding site of targets (or receptors). It predicts a binding mode of the
compounds and measures, or rather “scores”, the quality of the intermolecu-
lar interactions. There are a large number of classical docking programs
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available for virtual screening. They differ in the sampling algorithms used,
the handling of ligand and protein flexibility, the scoring functions they
employ, and the CPU time required to dock a molecule to a given target. Tay-
lor et al. (2002) and Wong and McCammon (2003) have recently described the
current state-of-the-art of such methods. The various docking techniques
require different types of model qualities and were mainly derived for crystal
structures. In order to circumvent discrepancies in the measured and calcu-
lated affinities, alternatives schemes of docking and scoring have been devel-
oped. Among them, the development of potentials of mean force (Sect. 3.2.1),
the representation of protein flexibility (Sect. 3.2.4) and the fragment-based
approaches (Sect. 3.2.5) are promising methodologies in connection with
macromolecular modeling. Extending comparative modeling of protein
structure to ligand recognition may represent a convenient use of sequence
similarities that we shall call hereafter: comparative drug-design.

3.1 Comparative Drug Design

Fold-recognition techniques are able to find structures compatible with
sequences sharing as little as 10 % identity at the primary level. Among those
sequences some are true homologues (or even orthologues) sharing the
same function as well as true analogs. The latter may possess neither the
same ligand specificity nor the same mechanism of action (esterase and
dehalogenases in the alpha/beta hydrolase fold superfamily). However, most
of the time, the ligand is bound in a related position relative to the protein
fold (especially in alpha/beta folds). Recognition of a potential active site (or
ligand binding site) is an important step prior to drug design but also for
validation of sequence or structural alignments. It may, also, be used to add
new compatible templates sharing a common active site but more distant in
the sequence space. This is especially fruitful when these new structures
have been solved in complex with small molecules. The latter may be used
as lead compounds in drug design. The position of the ligand may also serve
to point out functionally important residues (amino acids to be found con-
served in the alignment of true homologues). Identification of the likely
active site already allows analysis of the local conservation compared to the
global one. It may indicate either reminiscence of partial homology or, on
the contrary, a dramatic rearrangement of the active site. In the latter case
little may be said about the potential ligand and the model may be very
approximate and doubtful (e.g. UMP binding in UMP kinase which is 18 %
identical to carbamate kinase while UMP and carbamate are dissimilar;
Labesse et al. 2002). Evidence of homology would suggest that known lig-
ands (and related compounds) of the characterized homologous proteins
could be tested. Identification of a first inhibitor is especially helpful for fur-
ther function testing by enzymology and derivatization of a known ligand
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may serve to validate or to refine locally the model (or select one among sev-
eral models). It may also indicate the global shape of the binding site and
suggest how suitable it is for the design of a specific ligand. In that case, it
may serve as a starting point for oriented design of subtle chemical substi-
tutions and/or synthesis of focused compound libraries (Pochet et al. 2002).
Identification of a largely open-binding site such as that of ATP in UMPK
(Labesse et al. 2002) would suggest little chance of designing a good ligand
using a low-resolution model.

A striking example is leukotrien A4 hydrolase/aminopeptidase (LTA4H), a
bifunctional enzyme. Both reactions are catalyzed in the same Zn-containing
active site (Thunnissen et al. 2001). The presence of some short conserved
sequence residues was sufficient to prompt investigations of the relationship
of this enzyme to M1 metalopeptidase. It suggested that peptidase inhibitors
might be investigated as potential ligands despite the distinct biochemical
function and substrate structure. Indeed, the aminopeptidase inhibitor
bestatin appeared to inhibit LTB4 biosynthesis (Orning et al. 1991a). Further-
more, another metalloprotease inhibitor, captopril which also inhibits LTA4H
has been derived in new compounds with a nanomolar range inhibition (Orn-
ing et al. 1991b).

Structural comparisons to search protein structures experimentally deter-
mined in the presence of a ligand may indicate new compounds to test prior
to an unoriented drug screening. Such a comparative search is especially suit-
able for a low-resolution model as the ligand docking may be performed
exploiting protein structure similarity. Once structures are superimposed, lig-
ands are brought into equivalent regions. The ligand-structure compatibility
can be evaluated using various scores described below and used in classical
docking methods (see Sect. 3.2). Some databases facilitate comparative
searches of putative ligands. Among them, LigBase (Stuart et al. 2002;
http://alto.rockefeller.edu/ligbase/) provides structural alignments produced
by global superposition using the program CE (Shindyalov and Bourne 1998)
and a link to homologous models that were made using any of the aligned
templates (gathered in ModBase; Sanchez and Sali 1999). However, distantly
related proteins may suffer global rearrangements (particularly domain
reorientation) puzzling the programs for global structure superposition.
Alternatively, a search by compound similarity scale or by superposition
restrained to the binding site may overcome previous difficulties. The
Relibase+ database provides convenient search engines in these cases
(http://relibase.rutgers.edu; Hendlich 1998). This database contains more
than 11,938 protein entries and 43,741 ligand-binding sites for a total of 3,509
unique ligands (May 2000). Once a potential ligand is clearly identified,
refinement of the model by inclusion of the chemical compound during the
modeling steps may be useful (see Sect. 2.3). One drawback of this approach
might be the extraction of mainly biological ligand i.e. natural products. How-
ever, close to half of the best-selling pharmaceuticals are either natural prod-
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ucts or derivatives thereof (Cragg et al. 1997). Indeed, it has been observed
that the hit rates in high-throughput screens determined for natural products
collections are often dramatically higher than the rates found for large classi-
cal libraries (Breinbauer et al. 2002).

One should remember that the low resolution models derived from macro-
molecular comparative modeling at low levels of sequence identity (15–25 %)
are probably not suitable for large scale drug design and virtual screening.
However, such models may indicate a few primary “lead” compounds as start-
ing points for further model and drug design refinement. Such a compound
may also serve to stabilize the targeted macromolecule and facilitate its exper-
imental structural characterization.

3.2 Docking Methodologies

Two classes of docking methods will be described below: faster but empirical
evaluations (Sects. 3.3.1 and 3.3.2) or more expensive free energy calculations
(Sect. 3.3.3). Further information can be found in the review by Gohlke and
Klebe (2001). Independent comparative studies have been recently published
(Charifson et al. 1999; Bissantz et al. 2000). Consensus scoring approaches
suggest that, at present no individual scoring function adequately treats all of
the effects important for protein-ligand binding.

Most docking softwares take into account several conformations of a
potential ligand. In contrast, the majority of docking tools currently make the
assumption that the protein target is held fixed in one given conformation.
This approximation is generally necessary in the interest of speed and sim-
plicity, avoiding the computational cost required to accurately sample the
flexibility of the binding site. However, some efforts have been made to incor-
porate protein flexibility. This new strategy may help overcome some inaccu-
racies in receptor models (see Sect. 3.2.4). This may be useful for the few sub-
stituted side-chains one has to model in the active site. In absence of primary
tests (already known binders) to discriminate among the different modeled
conformations, one will have to consider them equally. Alternatively, one may
consider the receptor model to be globally incorrect but locally very accurate.
Fragments of putative binders will either fit very well or not at all. Starting
from a few docked fragments, new and more complex compounds may be
designed to obtained a ligand with increased affinity (see Sect. 3.2.5).

3.2.1 Knowledge-Based Potentials

In this approach, one analyzes the increasing number of experimentally
determined protein-ligand complexes by statistical means to extract rules on
preferred interaction geometries (frequencies of interatomic contacts). Com-
pared with force-field potentials, knowledge-based potentials tend to be
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softer, allowing better handling of the uncertainties and deficiencies of com-
puted interaction geometries (e.g. in modeled structures). Furthermore, such
a statistical approach implicitly incorporates physical effects not yet fully
described from a theoretical point of view (see Sect. 3.3.3). Examples of
knowledge-based scoring functions include PMF (Muegge 2000), Bleep
(Mitchell et al. 1999), SmoG (Ishchenko and Shakhnovich 2002) and
Drugscore (Gohlke et al. 2000). Their accuracy is comparable with that of
empirical-based methods, and they are fast to compute. However, they do
require structural data and, at present, they are limited by a paucity of suitable
information. Nevertheless, picomolar ligands have been designed by in silico
screening onto experimental structures using such potentials in combination
with a fragment-based approach (Grzybowski et al. 2002).

3.2.2 Regression-Based (or Empirical) Methods

These empirical scoring functions estimate the binding affinity of protein-lig-
and complexes by adding up weighted interaction terms (hydrogen bonding,
hydrophobic interactions, etc.). The weights are assigned by regression meth-
ods; fitting predicted and experimentally determined affinities to a given set
of training complexes. FlexX (Rarey et al. 1996), SCORE (Bohm 1994), Chem-
Score (Eldridge et al. 1997), LUDI (Bohm 1992) or PLP (Gehlhaar et al. 1995)
use such additive approximations to estimate the binding free energy. These
empirical-based scoring functions are fast and therefore are employed often
by most docking algorithms. However, the definition of the training set is a
major step and may be focused to a too small number of protein or ligand
types.

3.2.3 Physics-Based Methods

Physics-based forcefields, may be employed using free energy perturbation
(FEP) or thermodynamic integration (TI) methods, to estimate binding free
energies (Kollman 1993). They are the best choice for accurately assessing fine
chemical modifications that can be made to existing inhibitors to improve
their binding affinity. For example, Kuhn and Kollman (2000) were able to
predict a derivative that binds stronger than biotin to avidin by changing dif-
ferent C-H groups of biotin into C-F groups. The protein and ligand flexibility
are inherent to the method for evaluation of the binding affinities at the
expense of CPU time. Furthermore, evaluation of the solvent contributions
still represents a major challenge in view of the computational demands and
accuracy. Related methods use approximations to the binding free energy of
protein-ligand complexes by adding up the individual contributions of differ-
ent types of interactions. These terms are derived from physico-chemical the-
ory and are not determined by fitting to experimental affinities. In most cases,
gas-phase molecular mechanical energies are combined with implicit solvent
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models, such as MM/PBSA (molecular mechanics/Poisson-Boltzmann sur-
face area; Kuhn and Kollman 2000) or the Generalized-Born model (Dominy
and Brooks 1999). Nevertheless, it is still difficult to examine the binding of a
large number of compounds to a receptor with these highly CPU-consuming
methods. They may rather be used, at an early stage, to improve the modeled
active site or in the latter stage to help the “lead-compound” optimization
process.

For docking and virtual screening purposes, physics-based scoring func-
tions employ a reduced force field.Among them the most commonly used are:
DOCK (Ewing et al. 2001), AutoDock (Goodsell and Olson 1990), QXP
(McMartin and Bohacek 1997), ICM (Internal Coordinates Mechanics)
(Abagyan et al. 1994) and Prodock (Trosset and Scheraga 1999). ICM has been
tested in the CASP-2 experiments (Totrov and Abagyan 1997) to predict eight
complexes (with resulting RMSD values varying between 1.8 and 10.6 A).

3.2.4 Flexible Models

Using only one rigid protein structure of aldose reductase for virtual screen-
ing, one would have missed potential inhibitors whereas the latter can be
docked, taking into account conformational changes (Claussen et al. 2001).
Furthermore, considering the flexibility of the protein in the case of a pro-
tein model is also important in order to resolve some inaccuracies in atom
position. Modeling protein flexibility during docking of each ligand may be
still too CPU-demanding for general purposes but represents an interesting
development in the future in connection with precise analysis of model local
accuracies. The easiest way to take into account macromolecule flexibility is
currently to build an ensemble of static models. They may be generated, for
example, by randomization and/or from various templates or by molecular
dynamic simulation (Kollman 1996; Brooks et al. 1983). As an example, the
docking program FlexE works on an ensemble of structures (Claussen et al.
2001). The FlexE approach is based on a united protein description gener-
ated from the superimposed structures of the ensemble. For varying parts of
the protein, discrete alternative conformations are explicitly taken into
account, which can be combinatorially joined to create new valid protein
structures.

A new method called “relaxed complex methods”has been described by Lin
et al. (2002). It allows an induced fit of the targeted protein. First, several tar-
get conformations should be generated as above. In a second phase, a simple,
coarse-grained scoring algorithm is used to allow fast docking of a small set
of molecules. The last step corresponds to a more accurate positioning and
evaluation of the free energies of binding of the best complexes. The program
Slide also enables the motion and relaxation of binding-site side chains in
response to the presence of a docked ligand (the so-called induced fit) (Sch-
necke and Kuhn 2000).
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Precise evaluations of these various approaches in connection with macro-
molecular modeling remain to be performed on distinct protein and ligand
types.

3.2.5 Fragment-Based Drug Design

Fragment-based methods determine energetically favorable binding site
positions for various functional chemical group types (fragments) or small
chemical compounds (methane, methanol, etc.). It would represent the first
step to de novo drug-design while the second step would correspond to the
assembly of multiple fragments into a chemical compound. GRID (Goodford
1985) and MCSS (Miranker and Karplus 1991) are examples of software using
the fragment positioning approach. Another alternative may be the develop-
ment of a dynamic pharmacophore model based on a number of snapshots
from molecular dynamics simulations. For each snapshot, Carlson et al.
(2000) determined components of a pharmacophore model by identifying
favorable binding sites of chemical functional groups using MUSIC program.
This  program identifies favorable binding sites of a large number of small
probe molecules. Strong binding sites tend to cluster many probe molecules
in well-defined orientations and locations. The deduced pharmacophore can
be used in identifying potent inhibitors from a database of molecules by
chemical similarity. This approach is derived from two successful experimen-
tal methods namely “SAR by NMR” (Shuker et al. 1996) and the “tether
method” (Erlanson et al. 2000).

3.3 Virtual Screening Using Models

While comparative docking takes advantage of structure similarities with
previously determined ligand-receptor structures, classical docking (see Sect.
3.2) may be used to search chemical compound databases to highlight poten-
tial binders with new structures and new modes of binding. While low-reso-
lution models are no longer suitable, the following applications show that sig-
nificant similarities are already sufficient for successful search of micromolar
“lead” compounds.

3.3.1 Docking onto Medium Resolution Models

The development of antiparasitic agents by Ring et al. (1993) using model-
based virtual screenings is among the first and few such docking studies pub-
lished so far. Two protease structures have been modeled and used to search a
potential binder using ligand docking with program DOCK3.0. Among the
55,313 compounds, 52 and 31 compounds where selected for the two pro-
teases. Because of the uncertainties in the models built, the authors have cho-
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sen chemically diverse compounds that were predicted to interact in different
ways. After experimental testing, three inhibitors displayed activity against
the enzymes at micromolar concentrations.

Combinations of model-based docking with ligand data, used by and
derived from 3D quantitative structure-activity relationships (QSAR) may
lead to improved results and may overcome model discrepancies (Schaffer-
hans and Klebe 2001).

3.3.2 Docking onto High-Resolution Models

In the case of high-resolution models, the active site is likely to be very well
modeled. The description of the active site may be finely prepared, for exam-
ple, by the addition of hydrogens required for finer docking and energy com-
putation. The appropriate protonation states of ionizable residues need to be
determined and the correct tautomer for histidines should be assigned, as
well. Sometimes, the positions of the hydrogens are relaxed by energy mini-
mization to avoid any steric clashes. At last, in some instances, tightly bound
water(s), ions and/or cofactor(s) might need to be maintained for the docking
stage.

In high-throughput virtual screening, the source of the ligands typically
corresponds to a corporate collection of physically available compounds, or a
database of compounds available externally from chemical vendors (e.g. the
MDL® Available Chemicals Directory (ACD) from MDL Information Systems;
http://mdli.com). An additional source that is sometimes considered for vir-
tual screening is an in silico virtual library corresponding to compounds con-
structed from a list of reagents and a database of known chemistries. These
compounds may be easily purchased or synthesized in order to evaluate their
true affinities.

As an example, Wang and coworkers  used a homology model for Bcl-2,
derived from the solution structure of Bcl-xL (47.2 % i.d.) (Wang et al. 2000).A
total of 193,833 compounds were screened using the program DOCK 3.5 to
score shape complementarity for each virtual compound bound to the Bcl-2
model in a variety of conformations. Among a total of 28 compounds avail-
able commercially, one proved to be a ligand for Bcl-2 with a IC50 of ~9 µM.

To illustrate the need for water molecules and ions in the representation of
the active site we have studied docking of cAMP onto the human phosphodi-
esterase PDE4. To date, there is only one crystal structure of this enzyme,
which does not contain any ligand but crystal water molecules and ions (Mg
and Zn metals). Metals ions are essential for the hydrolysis by PDE4 of cAMP
and/or cGMP in AMP and GMP products, respectively (Liu et al. 2001). In the
absence of metals neither cAMP nor the sugar moiety (i.e. cyclic-monophos-
phoryl ribose) could be docked into the active site using the program FlexX
(Rarey et al. 1996). Including ions and a few water molecules coordinated to
the metals allowed for better docking results. Indeed, the phosphoryl oxygens
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appeared to coordinate Mg and Zn ions in agreement with the hypothesis of
Liu et al. (2001). Nevertheless, no satisfactory docking could be achieved with
the substrate cAMP, suggesting that protein flexibility should be taken into
account.

3.4 Pharmacogenomic Applications

3.4.1 A Challenging Application: the GPCRs

With the single exception of bovine rhodopsin, there are no experimental 3D
structures available for G-protein-coupled receptors (GPCRs). GPCRs are
membrane proteins hardly overexpressed or purified while their pharmacol-
ogy is better characterized (Bockaert and Pin 1999). This situation has
encouraged theoretical modeling of GPCRs and model evaluation using
docking of well-characterized ligands and/or directed mutagenesis (Gershen-
gorn and Osman 2001; Klabunde and Hessler 2002).

Bissantz et al. (2003) have investigated whether comparative models of
GPCRs are reliable enough to be used for virtual screening of chemical data-
bases. They first constructed “antagonist-bound” molecular models of three
human GPCRs (dopamine D3 receptor, acetylcholine muscarinic M1 receptor,
vasopressin V1a receptor). The sequence identity between the template
(“antagonist-bound” rhodopsin) and the sequence to model is between 21
and 29 %. Preliminary attempts to dock known ligands into the starting mod-
els usually failed regardless of which docking tool was used. Energy mini-
mization of the putative complex ligand/protein was necessary. Then random
compounds (990) and known antagonists (10) have been virtually screened
against these models. The results show that these models were suitable to
retrieve known antagonists of different structural classes from a database of
structurally different molecules (hit rates are 20- to 40-fold higher than what
can be obtained by random screening). Nevertheless, this strategy could not
be applied to derive a model of the agonist-state of such receptor (dopamine
D3 receptor, beta2-adrenergic receptor and mu-opioid receptor). Docking
efficiency is limited in this case by the capability to model conformational
change in protein structure. In contrast, the quality of the antagonist-state
models is validated for numerous proteins at once.

3.4.2 Family-Wide Docking

Docking on models of related proteins may be necessary in order to charac-
terize the specificity as well as the mode of binding of a set of substrate
analogs as exemplified, here, with various homologous TMP kinases. These
enzymes are essential for cell proliferation and have been studied intensively
over the last few years. Two crystal structures (TMP kinases from Escherichia
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coli, Mycobacterium tuberculosis) and three modeled structures (sequences
from Haemophilus influenzae, Yersinia pestis, Bacillus subtilis) have been used
for focused docking (Pochet et al. 2002).While the catalytic residues appeared
strictly conserved, several substitutions were observed in the vicinity of the
bound nucleotide (dTMP). No nucleoside has currently been co-crystallized
with a TMP kinase. We predicted a mode of binding of dT that suggested a
reorientation of the 5’-hydroxyl group (instead of a phosphoryl group in
dTMP) to form a specific hydrogen bond. Sequence variations among the
TMP kinases in the vicinity of the reoriented chemical group were used to test
the hypothesis (presence of an asparagine in B. subtilis instead of an aspartate
in other TMP kinases). Replacement of the 5¢-hydroxyl group by an amino
group only slightly affects the affinity for the mycobacterial enzyme but dra-
matically decreases the binding to that from B. subtilis.

3.4.3 Side Effect Predictions

A small molecule may bind not only to one unique receptor but also poten-
tially to various protein-receptors. An essential issue in virtual screening is
target-selectivity i.e. the capacity to predict the range of related proteins one
drug-candidate will actually bind to. Genome-sequencing projects provide us
with the complete set of proteins. However, one needs the protein structure to
apply efficient docking strategies. Combined use of comparative modeling
and selective docking has been recently described (Rockey and Elcock 2002).
Being able to rationally tune the target-range of a chemical compound would
limit the potential side effects that currently represent a major bottleneck in
drug design and development.

3.4.4 Drug Metabolism Predictions

In addition to the receptor-ligand affinity, another important aspect of drug
design is also the behavior (named ADMET for absorption, distribution,
metabolism, excretion and toxicity) of drug-candidates in the targeted
organisms (hosts and parasites). Empiric rules are now available to predict
the behavior of drug candidates. Characterizations of the proteins involved
in the various processes (transport, metabolism, detoxification, etc.) may
rationalize the former approach. Several specialized databases have been
developed for ADMET-associated proteins: transporter (http://lab.digibench.
net/transporter/), cytochromes P450 (http://medicine.iupui.edu/flockhart/
and http://p450.abc.hu/) and ADME-AP (http://xin.cz3.nus.edu.sg/group/
admet/admet.asp). Obtaining the structure of the corresponding proteins is
a major challenge of “integrated pharmacogenomics” as illustrated by the
study of cytochromes P450.

The cytochromes P450 constitute a huge superfamily of heme-thiolate
enzymes involved in the metabolism of a large number and structural diver-
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sity of substrates. P450s from pathogens (including M. tuberculosis which
possesses more than 20 P450) represent important drug targets while human
P450s present in liver (CYP1, CYP2 and CYP3 families) are associated with the
oxydative metabolism of the majority of drugs in current clinical use (limit-
ing their half-time). Only a few experimental structures of P450 s have been
solved to date (including CYP102 (Ravichandran et al. 1993) and CYP2C5
(Williams et al. 2000)). Comparative modeling of human P450 and ligand
docking results are largely consistent with currently available experimental
information from site-directed mutagenesis and substrate metabolism stud-
ies (Lewis 2002). In the near future, P450 models should allow for the screen-
ing of drug candidates in order to better define their potential efficiency
(Zamora et al. 2003).

4 Conclusions

Depending on both the sequence and the functional conservation among pro-
teins will provide structural models of different quality. Comparative macro-
molecular modeling may already provide some functional clues even at a low
level of sequence identity (at the resolution of fold-recognition techniques).
At higher sequence identity (above 25 %), clear homology may give rise to
medium resolution models of good quality in the active site (usually better
conserved). At even higher sequence identity (>45 %) theoretical models are
equivalent to low-resolution experimental structures and may provide very
good templates for large-scale virtual screening and fine drug design. The dif-
ferent level of accuracies will become an important issue for large-scale phar-
macogenomics, especially in order to predict potential side effects, a major
difficulty in current drug development. Adapting the drug design strategy to
the likelihood of the modeled active site will be an important step to develop
further comparative drug design and model-based virtual screening. Devel-
oping new bioinformatic tools (software and databases) will be necessary for
a rapidly increasing number of biological applications. A critical assessment
of the combination of modeling and docking techniques might require a com-
munity-wide extension of those set up for structure prediction (CASP: Ven-
clovas et al. 2001; EVA: Eyrich et al. 2001; LiveBench: Bujnicki et al. 2001b) on
one side and those for protein-ligand interaction prediction on the other side
(CASP2, CATFEE; http://uqbar.ncifcrf.gov/~catfee).
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Structure Determination of Macromolecular
Complexes by Experiment and Computation

F. Alber, N. Eswar, A. Sali

1 Introduction

The function of a protein is defined by its interactions with other molecules in
its environment. The interactions can be either transient, such as protein–
protein interactions involved in intracellular signaling, or relatively stable,
such as the protein–protein and protein–RNA interactions in ribosomes. A
structural description of these interactions is an important step toward
understanding the mechanisms of biochemical, cellular, and higher order bio-
logical processes. There is a need to integrate structural information gathered
at multiple levels of the biological hierarchy – from atoms to cells – into a
common framework. Recent developments in several experimental and com-
putational techniques allow structural biology to shift its focus from the
structures of the individual proteins to larger assemblies (Sali et al. 2003;
Baumeister 2002).

Macromolecular assemblies vary widely in their functions and sizes
(Alberts 1998; Goto et al. 2002; Grakoui et al. 1999; Courey 2001; Noji and
Yoshida 2001). They play crucial roles in most cellular processes, and are often
depicted as molecular machines (Alberts 1998). This metaphor accurately
captures many of their characteristic features, such as modularity, complexity,
cyclic functions, and energy consumption (Nogales and Grigorieff 2001). For
instance, the nuclear pore complex, a 50–100 MDa protein assembly, regulates
and controls the traffic of macromolecules through the nuclear envelope
(Rout et al. 2000); the ribosome is responsible for protein biosynthesis; the
RNA polymerase catalyzes the formation of RNA (Murakami and Darst 2003);
and the ATP synthase catalyzes the formation of ATP (Noji and Yoshida 2001).
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Macromolecular assemblies are also involved in transcription control (i.e.,
IFNb enhanceosome) (Courey 2001; Nogales 2000), regulation of cellular
transport (i.e., microtubulines in complex with molecular motors myosin or
kinesin) (Vale 2003; Goldstein and Yang 2000; Vale and Milligan 2000), and are
crucial components in neuronal signaling (e.g., the postsynaptic density com-
plexes) (Gomperts 1996).

The estimation of the total number of macromolecular complexes in a pro-
teome is not a trivial task. This difficulty can be partly ascribed to the multi-
tude of component types (e.g., proteins, nucleic acids, nucleotides, metal
ions), and the varying lifespan of the complexes (e.g., transient complexes
such as those involved in signaling and stable complexes such as the ribo-
some).

The Protein Quaternary Structure Database (PQSD; Nov 2002) contains
~10,000 structurally defined protein assemblies of presumed biological sig-
nificance, derived from a variety of organisms (http://pqs.ebi.ac.uk/pqs-
doc.shtml). Each assembly consists of at least two protein chains. These
assemblies can be organized into ~3,000 groups that contain chains with
more than 30 % sequence identity to at least one other member of the group
(Fig. 1; Sali et al. 2003).

The most comprehensive information about protein-protein interactions is
available for the yeast proteome consisting of ~6,200 proteins. The lower
bound on binary protein-protein interactions and functional links in yeast
has been estimated to be in the range of ~30,000 (Kumar and Snyder 2002;
von Mering et al. 2002); this number corresponds to ~9 protein partners per
protein, though not necessarily all at the same time. The human proteome
may have an order of magnitude of more complexes than the yeast cell; and
the number of different complexes across all relevant genomes may be several
times larger still. Therefore, there may be thousands of biologically relevant
macromolecular complexes whose structures are yet to be characterized
(Abbott 2002).

In contrast to structure determination of the individual macromolecules,
structural characterization of macromolecular assemblies usually poses a
more difficult challenge. A comprehensive description of large complexes
generally requires the use of several experimental methods, underpinned by a
variety of theoretical approaches to maximize efficiency, completeness, accu-
racy, and resolution of the determination of assembly composition and struc-
ture.

X-ray crystallography has been the most prolific technique for the struc-
tural analysis of proteins and protein complexes, and is still the ‘gold stan-
dard’ in terms of accuracy. Structures of several macromolecular assemblies
have recently been solved: the RNA polymerase (Cramer et al. 2001), the ribo-
somal subunits (Ban et al. 2000; Harms et al. 2001; Wimberly et al. 2000); the
complete ribosome and its functional complexes (Yusupov et al. 2001); the
proteasome (Lowe et al. 1995); GroEl (Braig et al. 1994); the cellular transport
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machinery (Goldstein and Yang 2000; Vale 2003), and various viral capsid and
virion structures (Grimes et al. 1995; Oda et al. 2000). However, the number of
structures of macromolecular assemblies solved by X-ray crystallography is
still quite small compared to that of individual proteins (Fig. 1). This discrep-
ancy is due mainly to the difficult production of sufficient quantities of the
sample and its crystallization.

There are several variants of electron microscopy, including single-particle
electron microscopy (EM; Frank 1996), electron tomography (Baumeister
2002), and electron crystallography of regular two-dimensional arrays of the
sample (Nogales et al. 1998). For large particles with molecular weights larger
than 250 to 500 kDa, single particle cryo-EM can reveal the shape and sym-
metry of an assembly at resolutions of 1–2 nm. Although the electron micro-

Characterization of the Structure of Macromolecular Complexes 75

Fig. 1. Illustration of the size range of biomolecular structures solved by X-ray crystal-
lography and the size distribution of structures contained in the Protein Quaternary
Structure database. Structures of (top left to right) the PDZ domain, a molecular recog-
nition domain that leads to protein–protein interactions; CheA, a dimeric multidomain
bacterial signaling molecule; aquaporin, which serves as a transmembrane water chan-
nel; and 70S ribosome, which is the molecular machine for protein biosynthesis. The his-
togram shows the distribution of the size of the entries in the Protein Quaternary Struc-
ture (PQS) database (http://pqs.ebi.ac.uk). The 15,190 entries with at least one protein
chain of at least 30 residues, when compared with each other, produced 3,876 clusters
with more than 30 % sequence identity and less than 30 residue length differences
among the members within the same cluster. The distributions of the numbers of
residues and chains (inset) in the representative structures for each group are shown. As
expected, the structures of large complexes are under-represented, given an estimated
average size of a yeast complex of 7.5 proteins (see text)



scope produces images that represent only 2D projections of the specimen,
the full 3D structure of the object can be reconstructed from many such pro-
jections, each showing the object from a different angle (Frank 1996). More
importantly, imaging by cryo-EM at these resolutions requires neither large
quantities of the sample nor the sample in a crystalline form.

In the absence of high-resolution assembly crystal structures, approximate
atomic models of assemblies can still be derived by combining low-resolution
cryo-EM data of whole protein assemblies with computational docking of
atomic resolution structures of their subunits (Nogales et al. 1998; Volkmann
et al. 2000; Spahn et al. 2001; Beckmann et al. 2001; Chiu et al. 2002; Chacon
and Wriggers 2002). Recent developments in the methods for interpretation of
low-resolution cryo-EM maps have suggested that docking and fitting of
atomic resolution subunit structures can enhance the structural information
content of the maps to a large extent. It has been estimated that using fitting
techniques improves the accuracy up to one tenth the resolution of the origi-
nal EM reconstruction (Volkmann and Hanein 1999; Roseman 2000; Wriggers
et al. 2000; Rossmann et al. 2001; Wriggers and Birmanns 2001).

Unfortunately, atomic resolution crystal structures of the isolated subunits
are frequently not available. Alternatively, the induced fit may severely limit
their utility in the reconstruction of the whole assembly. In such cases, it
might frequently be possible to get useful comparative protein structure
models of the subunits (Blundell et al. 1987; Greer 1990; Sali and Blundell
1993; Marti-Renom et al. 2000; Sauder and Dunbrack Jr. 2000; Murzin and
Bateman 2001). This approach is increasingly more applicable because of the
structural genomics initiative. One of the main goals of structural genomics is
to determine a sufficient number of appropriately selected structures from
each domain family, so that all sequences are within modeling distance of at
least one known protein structure (Baker and Sali 2001). It has also been
shown that the number of models that can be constructed with useful accu-
racy is already two orders of magnitude higher than the number of available
experimental structures (Pieper et al. 2002).

We begin by introducing the need for a multi-scale description of macro-
molecular assemblies that integrates information derived from multiple
sources and variable resolution into a common computational framework
(Sect. 2). Next, we review the role comparative modeling may play in the deter-
mination of atomic structures by EM (Sect. 3). In particular, we introduce
automated comparative protein structure modeling (Sect. 3.1), its errors
(Sect. 3.2), ways to predict errors (Sect. 3.3), and utility of comparative mod-
els in docking of assembly subunits into EM maps. Finally, we illustrate com-
bined comparative modeling and map fitting with two applications, the deter-
mination of partial atomic models of the 80S ribosome from Saccharomyces
cerevisiae and the 70S ribosome of Escherichia coli (Sects. 3.5 and 3.6).
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2 Hybrid Approaches to Determination of Assembly
Structures

Although X-ray crystallography and EM in combination with atomic struc-
ture docking have been successfully employed to solve structures of protein
assemblies, they are not capable of efficiently characterizing the myriad of
complexes that exist in a cell. For example, most of the transient complexes
cannot be addressed  with these approaches. Therefore, there is a great need
for hybrid methods where accuracy, high throughput, and/or high resolution
are improved by integrating information from all available sources (Fig. 2)
(Malhotra et al. 1990; Aloy et al. 2002). Information about the structure of an
assembly can be provided by a number of experimental and theoretical
methods (Fig. 2). For instance, the shape, density and symmetry of a com-
plex or its subunits may be derived from X-ray crystallography (Ban et al.
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Fig. 2. Experimental and theoretical methods that can provide information about a
macromolecular assembly structure. The annotations below each of the panels list the
aspects of an assembly that might be obtained by the corresponding method. Subunit
and assembly structure indicate an atomic or near atomic resolution at 3 Å or better.
Subunit and assembly shape indicate the density or surface envelope at a low-resolution
of worse than 3 Å. Subunit–subunit contact indicates knowledge about protein pairs that
are in contact with each other, and in some cases about the face that is involved in the
contact. Subunit proximity indicates whether two proteins are close to each other rela-
tive to the size of the assembly, but not necessarily in direct contact. Subunit stoichiom-
etry indicates the number of subunits of a given type that occur in the assembly. Assem-
bly symmetry indicates the symmetry of the arrangement of the subunits in the
assembly. Gray boxes indicate extreme difficulty in obtaining the corresponding infor-
mation by a given method. (Sali et al. 2003)



2000; Zhang et al. 1999) and electron microscopy (Frank 2002). Upper- dis-
tance bounds on residues from different proteins may be obtained from
NMR spectroscopy (Fiaux et al. 2002) and chemical cross-linking (Rappsil-
ber et al. 2000; Young et al. 2000); information that two proteins bind to each
other may be discovered by yeast two-hybrid (Phizicky et al. 2003; Uetz et al.
2000) or micro-calorimetry (Lakey and Raggett 1998) experiments; two pro-
teins can be assigned to be close to each other (relative to the size of the
assembly) if they are part of an isolated sub-complex, characterized, for
example, by an immuno-purification experiment (Rout et al. 2000; Aebersold
and Mann 2003; Phizicky et al. 2003).

To develop a framework for computing the 3D models of a given protein
assembly that are consistent with all available information about its composi-
tion and structure, we express structure determination of assemblies as an
optimization problem (Fig.3). This approach consists of three components
(Fig. 4): (1) a representation of the modeled assembly (Fig. 4a): (2) a scoring
function consisting of the individual spatial restraints (Fig. 4b): and (3) opti-
mization of the scoring function to obtain the models (Fig. 4 c). The most
important aspect of this approach is to accurately capture all available infor-
mation about the structure of the complex, whether it is high- or low-resolu-
tion, experimental, or theoretical. The method should also be capable of cal-
culating all the models that satisfy the input spatial restraints. We illustrate
this method by a description of its application to the low-resolution modeling
of the configuration of proteins in a given assembly.

2.1 Modeling the Low-Resolution Structures of Assemblies

Some large assemblies, such as the nuclear pore complex, consist predomi-
nantly of subunits whose structures have not yet been defined. If comparative
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Fig. 3. The scheme that illustrates how the subunits of a hypothetical complex (left) may
be assembled through optimization with respect to restraints from a variety of methods
to obtain the final assembly model (right). (Sali et al. 2003)
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Fig. 4. Modeling of the configuration of proteins in an assembly by satisfaction of spa-
tial restraints. a From left to right, representations of the proteasome assembly of 28 pro-
teins with points per atom, residue and protein, respectively. b Derivation of upper dis-
tance bounds on all pairs of proteins that have been shown to be a part of the same
subcomplex by an affinity chromatography experiment. An estimate for the diameter of
the whole subcomplex is needed and can be obtained, for example, from the measured
Stokes radius or the total number of residues in the subcomplex. c The distribution of an
objective function score for many optimized configurations. A desired ring structure is
indicated on the left, but stochastic optimization that starts from random configurations
also results in a variety of other distorted solutions that do not satisfy input restraints



modeling attempts cannot provide atomic structures, such assemblies may be
characterized only by low-resolution information about their overall shape
and protein–protein proximity. In other words, we can expect to be able to
model only the configuration of the proteins in the assembly, not their indi-
vidual conformations. The following sections outline the three essential
aspects of modeling by satisfaction of spatial restraints, introduced above. It
has been applied to the low-resolution modeling of the configuration of pro-
teins in the yeast nuclear complex (Alber et al. 2004, in prep.).

2.1.1 Representation of Molecular Assemblies

The system is represented by points that are restrained by spatial restraints. In
the absence of any atomic structures,we need to represent each of the assembly
proteins as a point.A slightly higher resolution may be achieved by parsing the
protein into individual domains,using either bioinformatics tools or biochem-
ical experiments, such as limited proteolysis followed by mass spectroscopy.

2.1.2 Scoring Function Consisting of Individual Spatial Restraints

The most important aspect of low-resolution modeling is to accurately cap-
ture all of the experimental and theoretical information about the structure of
the modeled assembly. This aim may be achieved by defining the scoring
function as a sum of individual spatial restraints.

The restrained spatial features may include distances, angles, and dihedral
angles defined by points and gravity centers of sets of points, as well as sym-
metry between sets of points. The distance restraints are defined based on the
available information about the modeled complex. Typical examples are given
below.

Excluded Volume Restraints. Lower bounds on protein–protein distances are
the sum of the corresponding estimated protein radii (Russel et al. 1997). The
radius can be estimated from the number of amino acid residues or from the
experimentally determined Stokes radius (Harding and Colfen 1995).

Symmetry Restraints. If EM images and stoichiometry considerations indi-
cate symmetry (Yang et al. 1998), the appropriate result can be achieved by
imposing a distance root-mean-square term on the parts of the model that
need to have similar conformation or configuration.

Protein Localization Restraints. Immunolabeling experiments (Rout et al.
2000) can be readily expressed as distance restraints on the labeled protein, rel-
ative to a reference point such as another labeled protein or the gravity center of
the complex. This data can be arrived from superimposition of the individual
electron microscopy or tomography images containing the labeled proteins.

F. Alber, N. Eswar and A. Sali80



Protein Proximity Restraints. “Pullout” experiments (Rout et al. 2000; Aeber-
sold and Mann 2003; Phizicky et al. 2003), chemical cross-linking (Rappsilber
et al. 2000; Young et al. 2000), foot-printing (Kiselar et al. 2002), or yeast two-
hybrid system assays (Uetz et al. 2000) can be translated into weak upper
bounds on the protein-protein distances. Such restraints may also be inferred
from a bioinformatics analysis of protein sequences (e.g. an analysis of corre-
lated mutations (Pazos and Valencia 2002)).

Shape Restraints. EM (Frank 1996) and tomography images (Baumeister
2002) may allow defining the volume density map for the complex. The con-
figuration of the proteins in the complex can then be restrained by maximiz-
ing the correlation coefficient between the EM map and that implied by a
model, similarly to the fitting of higher-resolution atomic models into the EM
maps (Roseman 2000; Wriggers et al. 2000; Rossmann et al. 2001; Wriggers
and Birmanns 2001).

2.1.3 Optimization of the Scoring Function

An “ensemble” of models that minimize violations of the input restraints may
be obtained by optimization of the scoring function. For example, it is possi-
ble to start with a random configuration of the proteins, and then apply a
combination of the conjugate gradients minimization and simulated anneal-
ing with molecular dynamics to the Cartesian coordinates of the points rep-
resenting the system. Since the optimization is stochastic, a large number of
models are generally calculated by starting from a large number of indepen-
dently generated random configurations (e.g., 100,000). The aim of this sam-
pling is to find all possible models that satisfy the input restraints.

2.1.4 Analysis of the Models

Depending on the resolution of the modeling, a variety of geometrical criteria
for comparing two given configurations of points can be used. Examples
include the distance root-mean-square deviation that focuses on the protein-
protein contacts and a root-mean-square deviation that focuses on the posi-
tions of the individual proteins.

Assessing the accuracy of the results is an important and highly non-trivial
part of the modeling. There are three conceivable ways of estimating the accu-
racy of the models, in the absence of a directly determined structure.
1. Similarity among the well scoring models is a necessary, but not sufficient

condition for their accuracy. If the well scoring models are not similar to
each other, there is not sufficient information in the input restraints to
define the configuration of the whole complex.

2. The consistency between the model and the data not used in the model cal-
culation also measures the accuracy of the model. For example, a criterion
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similar to the crystallographic free R-factor could be used to assess both
the model accuracy and the harmony among the input restraints.

3. The number and properties of the restraints can be correlated with the
expected accuracy of the resulting models. Such correlations can be esti-
mated by the use of “toy” models where the native structure of an assembly
is known, the restraints are simulated, and their information content is esti-
mated by exhaustive simulation.

3 Comparative Modeling for Structure Determination of
Macromolecular Complexes

Comparative modeling can play an important role in the structure determi-
nation of large protein assemblies. Due to the progress in structural biology
and structural genomics, the structures of the individual subunits of larger
assemblies are frequently already known. Additionally, the structures of large
assemblies and their constituent parts also tend to be conserved in evolution.
Therefore, it is possible to calculate relatively accurate comparative models of
the individual subunits that have no available experimental structure. While
only ~2 % of known protein sequences have had their structures determined
by experiment, comparative modeling can currently be used to predict at least
the folds for approximately 30 % of all domains in the known sequences. This
indicates that there is a growing need to improve the use of homologous sub-
unit structures in the modeling of protein assemblies. We will now review the
comparative modeling method and its limitations, and then continue with its
application to the docking of subunit structures into EM maps.

3.1 Automated Comparative Protein Structure Modeling

Comparative modeling consists of four main steps (Marti-Renom et al. 2000):
(1) fold the assignment that identifies the similarity between the target
sequence of interest and at least one known protein structure (the template);
(2) the alignment of the target sequence and the template(s); (3) building a
model based on the chosen template(s); and (4) assessing the model for its
accuracy. These steps were assembled into a completely automated pipeline
(Sanchez and Sali 1998; Eswar et al. 2003). Manual intervention is usually
required only in difficult cases. Automation of the procedure makes compar-
ative modeling accessible to both experts and the non-specialists alike and
enables the calculation of models for more sequences than is practical by
hand. There are a number of servers for automated comparative modeling
(http://salilab.org/bioinformatics_resources.shtml). Many of these servers are
tested at the bi-annual CAFASP meetings (Fischer et al. 2001) and continually
by the LiveBench (Bujnicki et al. 2001) and EVA (Eyrich et al. 2001; Koh et al.
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2003) web servers for assessment of automated protein structure prediction
methods. We will now describe ModPipe, which is our version of an auto-
mated scheme for large-scale comparative modeling (Sanchez and Sali 1998;
Eswar et al. 2003).

ModPipe is an automated software pipeline for comparative protein struc-
ture modeling that can calculate comparative models for a large number of
protein sequences, using many different template structures and sequence-
structure alignments (Fig. 5; Sanchez and Sali 1998; Marti-Renom et al. 2000;
Pieper et al. 2002; Eswar et al. 2003). Sequence-structure matches are estab-
lished by aligning the PSI-BLAST sequence profile (Altschul et al. 1997) of the
target sequence against each of the template sequences extracted from the
Protein Data Bank (PDB) (Berman et al. 2002), as well as by scanning the tar-
get sequence against a database of the template profiles (Schaffer et al. 1999).
Significant alignments covering distinct regions of the target sequence are
chosen for modeling. Models are calculated for each of the sequence-struc-
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ture matches using MODELLER, which implements comparative protein
structure modeling by satisfaction of spatial restraints (Sali and Blundell
1993). The resulting models are then evaluated by a composite model quality
criterion that depends on the compactness of a model, the sequence identity
of the sequence-structure match, and statistical energy Z-scores (Melo et al.
2002).

The thoroughness of a search for the best model is modulated by a number
of parameters, including the E-value thresholds for identifying useful
sequence-structure relationships and the degree of conformational sampling
given a sequence-structure alignment. The validity of sequence-structure
relationships is not pre-judged at the detection of the fold, but is obtained
after the construction of the model and its subsequent evaluation. This
approach enables a thorough exploration of fold assignments, sequence-
structure alignments, and conformations, with the aim of finding the model
with the best model quality score.

ModPipe has been used to calculate models for all sequences in the Swis-
sProt database (Boeckmann et al. 2003) with detectable similarity to a known
protein structure. The results are available through ModBase, a relational
database that allows flexible and efficient querying of its contents (http://
salilab.org/modbase) (Pieper et al. 2002). Currently, ModBase contains models
for domains in 415,937 out of 733,239 (~57 %) unique protein sequences
found in SwissProt (March 2002). Most of the models are based on less than
30 % sequence identity to the closest structure and cover only a single domain
in the protein sequence, corresponding on average to one third of the whole
protein. The automation and archival of such comparative models reflect the
ultimate goal of the structural genomics initiative (Sali 1998; Sanchez et al.
2000; Vitkup et al. 2001; Burley and Bonanno 2002).

3.2 Accuracy of Comparative Models

The accuracy of comparative models is most easily quantified by the extent of
sequence similarity between the sequence and the known structure (Chothia
and Lesk 1986; Sanchez and Sali 1998; Marti-Renom et al. 2000; Baker and Sali
2001). Accuracy of a model tends to increase with the target-template
sequence identity (Fig. 6). In general, models based on alignments with more
than 40 % sequence identity frequently tend to have close to 80 % of their
backbone atoms superposable with their actual structures with an RMS error
less than 3.5 Å (Sanchez and Sali 1998).

High accuracy comparative models are based on more than 50 % sequence
identity to their templates (Marti-Renom et al. 2000; Fiser and Sali 2001). They
tend to have approximately 1 Å RMS error for the main-chain atoms, which is
comparable to the accuracy of a medium resolution nuclear magnetic reso-
nance (NMR) spectroscopy structure or a low-resolution X-ray structure. The
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errors are mostly mistakes in side-chain packing, small shifts or distortions of
the core main-chain regions, and occasionally larger errors in loops. Medium
accuracy comparative models are usually based on 30–50 % sequence iden-
tity. They tend to have approximately 90 % of the main-chain modeled with
1.5 Å RMS error. There are more frequent side-chain packing, core distortion,
and loop modeling errors, and there are occasional alignment mistakes. And
finally, low accuracy comparative models are generally based on less than
30 % sequence identity. The alignment errors increase rapidly below 30 %
sequence identity and become the most significant origin of errors in com-
parative models. In addition, when a model is based on an almost insignifi-
cant alignment to a known structure, it may also have an entirely incorrect
fold.
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Fig. 6. The relationship between the accuracy of a reliable model and the percentage
sequence identity to the template. The overlaps of an experimentally determined protein
structure with its model (red continuous line) and with a template on which the model
was based (green dashed line) are shown as a function of the target-template sequence
identity. The structure overlap is defined as the fraction of the equivalent Ca atoms. For
comparison of the model with the actual structure (filled circles), two Ca atoms were
considered equivalent if they were within 3.5 Å of each other and belonged to the same
residue. For comparison of the template structure with the actual target structure (open
triangles), two Ca atoms were considered equivalent if they were within 3.5 Å after align-
ment and rigid-body superposition. The points correspond to the median values, and the
error bars in the positive and negative directions correspond to the average positive and
negative differences from the median, respectively. (Sanchez and Sali 1998)



3.3 Prediction of Model Accuracy

The folds of the comparative models in ModPipe are evaluated by a compos-
ite scoring function (Melo et al. 2002; John and Sali 2003):

Sequence identity is the fraction of positions with identical residues in the
target-template alignment. Structural compactness is the ratio between the
sum of the standard volumes of the amino acid residues in the protein and the
volume of the sphere with the diameter equal to the largest dimension of the
model. The Z-score is calculated for the combined statistical potential energy
of a model, using the mean and standard deviation of the 200 random
sequences with the same composition and structure as the model (Melo et al.
2002). The combined statistical potential energy of a model is the sum of the
solvent accessibility terms for all Cb atoms and distance-dependent terms for
all pairs of Ca and Cb atoms. The solvent accessibility term for a Cb atom
depends on its residue type and the number of other Cb atoms within 10 Å; the
non-bonded terms depend on the atom and residue types spanning the dis-
tance, the distance itself, and the number of residues separating the distance-
spanning atoms in sequence. These potential terms reflect the statistical pref-
erences observed in 760 non-redundant proteins of known structure. The
GA341 scoring function was evolved by a genetic algorithm that explored
many combinations of a variety of mathematical functions and model fea-
tures, to optimize the discrimination between good and bad models in a
training set of models. The GA341 score ranges from 0 for models that tend to
have an incorrect fold to 1 for models that tend to be comparable to at least
low-resolution X-ray structures. GA341 scores greater than 0.7 indicate a cor-
rect fold with more than 35 % of the backbone atoms superposable to those
better than 3.5 Å.

3.4 Docking of Comparative Models into Low-Resolution Cryo-EM Maps

The usefulness of comparative models is limited by their accuracy and the
resolution of the density map; similar limitations may also apply to the exper-
imentally determined subunit structures, due to the induced fit. It is usually
possible to generate a set of comparative models that are based on alternate
alignments, templates, and domain orientations; some of these models may
be more accurate than others. The best subunit models and their positions in
the complex may then be identified by manual or automated docking of the
alternate models into the electron density data from electron microscopy or
low-resolution X-ray crystallography. Ultimately, the best protein assembly
model may be obtained by satisfying simultaneously the homology-derived
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restraints on the individual subunits and shape restraints on the whole com-
plex.

The useful accuracy of comparative models for docking into the EM den-
sity map varies with the resolution of the map (Fig. 7). At resolutions worse

e identhan 10 Å, only the shape and size of a subunit can b tified and models
turbased on different but related template struc es could be chosen for the
endocking without loss of accuracy. The differ t template structures could

.,account for variable conformations of the subunit (e.g open/closed forms) or
odifferent orientations of the constituent rigid b dies. At medium resolutions,
erbetween 5 and 10 Å, it is usually possible to disc n the positions of secondary

e ostructural elements and the domain structur f the components. In these
cases, models calculated with one or more templates but with several varia-
tions in the alignments to reposition secondary structures and loops could be
useful for identifying the optimal fit of the structure in the density map.Addi-
tionally, loop regions can be independently optimized to account for differ-
ences in conformations between the model and the observed density. The
backbone trace as well as the positions and boundaries of the secondary
structure elements can be identified more accurately at even higher resolu-
tions (~5 Å). Models of at least medium accuracy (Sect. 3.2) are required for
docking into maps at this resolution. In addition to the use of multiple tem-
plates, multiple models could also be sampled by an optimization scheme that
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Fig. 7. Usefulness of comparative models for docking into EM electron density (the
maps are courtesy of Dr. Wah Chiu). Examples of errors in comparative models that can
be identified at various resolutions of the density maps are indicated. See text for details 



explores the conformational degrees of freedom for the backbone and side-
chains based on a single target-template alignment.

3.5 Example 1: A Partial Molecular Model of the 80S Ribosome from
Saccharomyces cerevisiae

As an illustration of the integrated strategies introduced earlier, we now
describe the fitting of comparative protein structure models into  electron
density maps of the whole yeast (Spahn et al. 2001) and E. coli ribosomes
(Spahn et al. 2001; Gao et al. 2003). Partial or complete molecular models of
the ribosomes are obtained by the use of information from two sources,
experimental low-resolution (10 Å) cryo-EM maps and all-atom comparative
models for the individual RNA and protein components of the ribosomes.

Ribosomes are macromolecular machines responsible for protein biosyn-
thesis in the cell and consist of ribosomal RNA (rRNA) molecules and 50–80
ribosomal proteins. They are made up of two subunits, a small subunit
responsible for decoding in protein translation (i.e., selection of cognate
tRNA) (Carter et al. 2000) and a large subunit, primarily responsible for the
catalytic activity (i.e., peptidyl transferase) (Nissen et al. 2000). Atomic reso-
lution X-ray structures are available for the small 30S subunit from the ther-
mophile bacterium Thermus thermophilus (Schluenzen et al. 2000; Wimberly
et al. 2000) as well as the large 50S subunit from the halophile archaebac-
terium Haloarcula marismortui (Ban et al. 2000) and mesophilic eubacterium
Deinococus radiodurans (Harms et al. 2001). While a relatively large amount
of high-resolution structural information is available for prokaryotic ribo-
somes or their individual subunits, there is only sparse data for their eukary-
otic counterparts. Fortunately, the eukaryotic ribosomal RNA and proteins
are evolutionarily related to their prokaryotic homologues. Despite the differ-
ent sizes of the rRNA, additional proteins, and more complex functions of the
eukaryotic ribosome, it can be anticipated that the overall spatial arrange-
ment of the subunits and the fundamental process of protein biosynthesis are
similar to those in the prokaryotes.

To gain structural insights into the machinery of eukaryotic ribosomes,
we combined a low-resolution cryo-EM map (~15 Å) of the Saccharomyces
cerevisiae ribosome with comparative modeling and docking (Spahn et al.
2001). The yeast ribosomal complex is made up of a 40S small subunit, com-
posed of a 1798 nucleotide (nt) long 18S rRNA and 32 ribosomal proteins,
and a large 60S subunit composed of a 25S rRNA (3392 nt), 5.8S rRNA
(158 nt), 5S rRNA (121 nt), and 45 ribosomal proteins (Spahn et al. 2001). To
facilitate the docking, the map of the 80S ribosome was computationally sep-
arated into the protein and RNA parts, using a method that takes into
account the differences in the density distribution of RNA and proteins, as
well as the molecular masses and contiguity constraints (Spahn et al. 2000).
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rRNA models from the crystal structures of the 30S subunit from T. ther-
mophilus (Wimberly et al. 2000) and the 50S subunit from H. marismortui
(Ban et al. 2000) were fitted into the resulting maps for the small subunit
rRNA and large subunit rRNA of yeast, respectively. Where necessary, the X-
ray models were modified by moving the non-fitting parts (e.g. helices) as
rigid bodies relative to the rest of the model.

Comparative models for the yeast ribosomal proteins were constructed
using ModPipe (Sanchez and Sali 1998; Spahn et al. 2001) and are available
through ModBase (http://salilab.org/modbase). Structural templates used to
calculate the models consisted of all the individual chains from structures in
PDB (as of September 2000), clustered so that the sequences of no two chains
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Fig. 8. Structures of the a 40S small subunit and b 60S large subunit of the yeast ribo-
some. The RNA and protein partitions are shown in yellow and turquoise respectively for
the small subunit; they are depicted as blue and orange respectively for the large subunit.
Wherever comparative models could be docked into the map, the protein partition is
shown transparently. Therefore, solid parts of the protein partition predict the position
of additional proteins with no homologous counterparts in prokaryotes. (Spahn et al.
2000)



from any two clusters were more than 95 % identical. In addition, the struc-
tures of the small subunit from T. thermophilus (PDB code: 1FJF) and the
large subunit from H. morismortui (PDB code: 1FKF) were considered as sep-
arate sets of templates. In total, comparative models were obtained for 43
yeast ribosomal proteins; 15 for the 40S subunit (Fig. 8a) and 28 for the 60S
subunit (Fig. 8b). The models were derived from alignments with sequence
identities in the range of 20–56 % (with an average of 32 %) and E-values bet-
ter than 0.0001. The coverage of the models (fraction of the yeast ribosomal
sequence modeled) ranges between 34–99 % (with an average of 75 %). Dock-
ing of atomic models into the cryo-EM density map was done manually using
program O (Jones et al. 1991).

The composite map, consisting of docked RNA and comparative models of
proteins into the 15.4 Å cryo-EM map, provides for the structural interpreta-
tion of the eukaryotic ribosome complex. The common core of the eukaryotic
ribosome was found to agree well with X-ray structures of the bacterial and
archaebacterial subunits. It reinforces the notion that the fundamental mech-
anism of protein synthesis is highly conserved throughout all kingdoms. The
differences in the structures of the prokaryotic and eukaryotic ribosomes
could be localized to regions in the density map corresponding to either yeast
proteins without homologous counterparts or those with additional domains.
These differences occur mainly on the solvent exposed faces of the subunits,
conserving the core of the ribosome. It was also found that the inter-subunit
interactions, important for communication between the subunits, and the
ribosome-tRNA interactions were largely conserved. Additionally, the struc-
ture enabled the identification of four new protein-protein contacts. For more
information, see references (Spahn et al. 2001; Beckmann et al. 2001).

3.6 Example 2: A Molecular Model of the E. coli 70S Ribosome

The aim of this study was to capture the dynamic features of the ribosome, the
‘ratchet-like’ inter-subunit motion, by trapping functionally meaningful states
by cryo-EM (Gao et al. 2003). The limited resolution of the cryo-EM maps was
overcome by docking comparative models of rRNA and proteins into the
maps of the different states of the ribosome: (1) a 11.5-Å map (Gabashvili et
al. 2000) of the control, an initiation-like complex with fMet-tRNAf

Met at the P
site (Malhotra et al. 1998); and (2) a 12.3-Å map of the EF-G·GTP-bound com-
plex (i.e. a ribosome complex with EF-G in the presence of a non-hydrolysable
GTP analog) (Frank and Agrawal 2000). The E. coli 70S ribosome consists of
two subunits: the 30S subunit, comprising 16S rRNA (1542 nt) and 21 pro-
teins, and the 50S subunit, comprising 23S rRNA (2904 nt), 5S rRNA (120 nt),
and 36 proteins. The models of E. coli 23S rRNA and 5S rRNA were generated
from the crystal structure of H. marismortui (PDB code 1FFK) (Ban et al,
2000), while the model of E. coli 16S rRNA was generated from the crystal
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structure of T. thermophilus (PDB code 1IBL) (Ogle et al. 2001) using the mol-
ecular modeling package Insight II (Accelrys Inc. Insight II 2003).

Models for the E. coli ribosomal proteins were calculated by ModPipe as
described earlier. The crystal structures of the proteins from the small subunit
of T. thermophilus (PDB code 1FJG) (Carter et al. 2000) were chosen as the
structural templates to model 19 proteins of the 30S small subunit (S2-S20) of
E. coli. For proteins of the 50S subunit, 29 out of the 36 E. coli proteins were
modeled based on the crystal structures of H. marismortui (PDB code 1JJ2)
(Klein et al. 2001), D. radiodurans (1LNR) (Harms et al. 2001), and T. ther-
mophilus (1GIY; L9, L25) (Yusupov et al. 2001).

The starting models of the whole ribosome were built by manually docking
the individual rRNA and protein models as rigid bodies into the cryo-EM
density maps using the interactive program O (Jones et al. 1991). The initial
positions of each of the rRNA structures and those of the proteins were taken
from the corresponding positions of the template crystal structures. The pro-
gram RSRef (Chapman 1995), a real-space refinement module for the TNT
program (Tronrud 1997), was then employed for automatically and simulta-
neously refining both the stereochemistry and the fit of the atomic structures
to the density map. Since the resolutions of the experimental density maps are
not suitable for refinement of independent atoms, a multi-rigid-body refine-
ment was employed.

A comparison of the two resulting atomic models revealed that the ribo-
some changes from a compact structure in the initiation-like form to a looser
one in the EF-G bound form. This change is coupled with the rearrangement
of many of the proteins. Furthermore, it could be seen that in contrast to the
unchanged inter-subunit bridges formed wholly by RNA, the bridges involv-
ing ribosomal proteins undergo large conformational changes following the
ratchet-like motion. Observations suggested an important role of ribosomal
proteins in facilitating the dynamics of translation.

4 Conclusions

We are now poised to integrate structural information gathered at multiple
levels of the biological hierarchy – from atoms to cells – into a common
framework. The goal is a comprehensive description of the multitude of inter-
actions between molecular entities, which in turn is a prerequisite for the dis-
covery of general structural principles that underlie all cellular processes. In
contrast to structure determination of individual proteins, structural charac-
terization of macromolecular assemblies usually requires diverse sources of
information (Sali et al. 2003). This information may vary greatly in terms of its
accuracy and resolution, and includes data from both experimental and com-
putational methods, such as X-ray crystallography, NMR spectroscopy,
electron microscopy, chemical cross-linking, affinity purification, yeast two-
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hybrid system experiments, calorimetry, computational docking, and bioin-
formatics analysis of protein sequences and structures. Structural genomics
will bring us closer to a comprehensive dictionary of proteins in the foresee-
able future, while electron microscopy techniques and other approaches will
allow us to assemble proteins into complexes.A comprehensive description of
large complexes will generally require the use of a number of experimental
methods, underpinned by a variety of theoretical approaches to maximize
efficiency, completeness, accuracy, and resolution of the experimental deter-
mination of assembly composition and structure. In conjunction with the
non-invasive 3D imaging of whole cells, these approaches might ultimately
enable us to read the molecular book of the cell.
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Modeling Protein Folding Pathways

C. Bystroff, Y. Shao

1 Introduction: Darwin Versus Boltzmann

All computational models that predict something have certain underlying
assumptions that constitute the physical basis for the model. In protein struc-
ture prediction, there are two physical/biological processes that can be mod-
eled: the process of evolution, or the process of folding. We name these two
paradigms, Darwin and Boltzmann, after the scientists who defined the fun-
damental principles of evolutionary biology and statistical thermodynamics,
respectively.

Most of the work in protein structure prediction is Darwin-based, using
the well-known premise that sequences that have a common ancestor have
similar folds, and they strive to extrapolate this principle to increasingly dis-
tant sequence relationships. Methods that use multiple sequence alignment,
structural alignment, or “threading potentials” are implicitly searching for a
common ancestor. Despite the often-used “energy-like” scoring functions,
these methods do not address the physical process of folding. Evolution hap-
pens on the time scale of millions of years, folding on the time scale of frac-
tions of a second.

Protein structure prediction of the Boltzmann kind is perceived to be a
very difficult problem. Many have tried their hand at it over the last thirty
years, and an equal number have failed to improve upon Darwin-based meth-
ods. The problem of predicting folding pathways may be perceived to be even
harder, since it should depend on first solving the protein folding problem.
However, this is not true, as we shall see. Prediction of the protein folding
pathway may be evaluated by looking at the success in predicting sub-seg-
ments or substructures of proteins. If the computational model has the right
underlying assumptions about what comes first in the pathway, and what
comes next, and so on, then blind predictions, such as those done as part of

Nucleic Acids and Molecular Biology,Vol. 15
Janusz M. Bujnicki (Ed.)
Practical Bioinformatics
© Springer-Verlag Berlin Heidelberg 2004

C. Bystroff, Y. Shao
Department of Biology, Rensselaer Polytechnic Institute, Troy, New York, USA



CASP, the Critical Assessment of Protein Structure Prediction bi-annual
worldwide experiment (Moult et al. 2001), may validate that model. And the
pathway model that eventually arises from this process will tell us more than
just a final answer.

In this chapter, we present a series of bioinformatics and simulation exper-
iments related to predicting protein structure by modeling the folding path-
way. We will conclude that ab initio predictions can be done either by simula-
tions or by a rule-based fragment assembly method, and that it is possible to
find folds that are not present in the database of structures. We will discuss
issues of accuracy and resolution and present some possible directions for the
future.

1.1 Protein Folding Pathway History

The early work of Levinthal and Anfinsen established that a protein chain
folds spontaneously and reproducibly to a unique three dimensional struc-
ture when placed in aqueous solution. Levinthal proved  that the folding
process cannot occur by random diffusion. Anfinsen proposed that proteins
must form intermediate structures in a time-ordered sequence of events, or
“pathway” (Anfinsen and Scheraga 1975). The nature of the pathways,
whether they are restricted to partially native states or whether they might
include non-specific interactions, such as an early collapse driven by the
hydrophobic effect, was left unanswered.

Over the years, the theoretical models for folding have converged some-
what (Baldwin 1995; Colon and Roder 1996; Oliveberg et al. 1998; Pande et al.
1998), in part due to a better understanding of the structure of the “unfolded
state” (Dyson and Wright 1996; Gillespie and Shortle 1997; Mok et al. 1999)
and to a more detailed description of kinetic and equilibrium folding inter-
mediates (Eaton et al. 1996; Gulotta et al. 2001; Houry et al. 1996). An image of
the transition state of folding can now be mapped out by point mutations, or
“phi-value analysis” (Fersht et al. 1992; Grantcharova et al. 2000; Heidary and
Jennings 2002; Mateu et al. 1999; Nolting et al. 1997). The “folding funnel”
model (Chan et al. 1995; Onuchic et al. 1997) has reconciled hydrophobic col-
lapse with the alternative nucleation-condensation model (Nolting and
Andert 2000) by envisioning a distorted, funicular energy landscape (Lau-
rents and Baldwin 1998) and a “minimally frustrated” pathway (Nymeyer et
al. 2000; Shoemaker and Wolynes 1999) through this landscape. The view
remains of a channeled, counter-entropic search for the hole in the funnel as
the predominant barrier to folding (Zwanzig 1997).

Simulations using various simplified representations of the protein chain,
including lattice models, have clarified the basic nature of folding pathways
(Kolinski and Skolnick 1997; Mirny and Shakhnovich 2001; Shakhnovich
1998; Thirumalai and Klimov 1998). The topology of the fold plays a domi-
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nant role in defining the critical positions that effect the folding rate (Ortiz
and Skolnick 2000; Shea and Brooks 2001). Models that represent the chain in
atomistic detail show that minimally frustrated, low-energy pathways may
involve the propagation of structure along the chain like a zipper (Alm and
Baker 1999; Munoz et al. 1998). All-atom, explicit solvent molecular dynamics
simulations have reproduced the experimentally determined conformations
for short peptides (Cavalli et al. 2002; Duan and Kollman 1998; Garcia and
Sanbonmatsu 2001; Krueger and Kollman 2001; Bystroff and Garde 2003).
This large body of work is still inconclusive, but clearly folding is best repre-
sented by an ensemble rather than a single pathway.

2 Knowledge-Based Models for Folding Pathways

The approach that began with I-sites is an attempt to build a hierarchical
series of models mirroring the hierarchy of folding events, from initiation to
nucleation to propagation and condensation. The hierarchy can be roughly
described as “local to global.” Each model builds on the model before it. At
each point the results are an ensemble of conformational states.

“Local structure” is a generic term for the conformations of short pieces of
the protein chain, usually 3–20 residue pieces. Local structure motifs include
the two common forms (alpha helix and beta strand) along with a few dozen
turns, half-turns, caps, bulges and coils. The role of local structure motifs with
regards to the initiation of folding has been discussed by Baldwin, Rooman
and others (Baldwin and Rose 1999; Efimov 1993; Rooman et al. 1990).

2.1 I-sites: A Library of Folding Initiation Site Motifs

I-sites is a library of 262 sequence patterns that map to local structures. A
sequence pattern is expressed as a position-specific scoring matrix (PSSM).
Recurrent sequence patterns had been previously used for prediction of
structural motifs, including the Schellman motif (Schellman 1980), the
hydrophobic staple (Munoz et al. 1995), and various types of coiled coil
(Woolfson and Alber 1995). Recurrent sequence patterns of various lengths
were found by exhaustively clustering short segments of sequence profiles for
proteins in a non-redundant database of known structures (Bystroff et al.
1996; Han and Baker 1996, 1995, Han et al. 1997). Bystroff and Baker mapped
recurrent sequence patterns to their predominant structural motifs and used
reinforcement learning to optimize the sequence-structure correlation
(Bystroff and Baker 1998). The resulting I-sites Library (Fig. 1) has been used
in various prediction experiments (Bystroff and Baker 1997; Bystroff and
Shao 2002) and has inspired numerous experimental studies since its publica-
tion (Jacchieri 2000; Mendes et al. 2002; Northey et al. 2002b; Skolnick and

Modeling Protein Folding Pathways 99



Kolinski 2002; Steward and Thornton 2002). I-sites motifs have been linked to
local structure stability in both NMR studies (Blanco et al. 1994; Munoz et al.
1995; Viguera and Serrano 1995; Yi et al. 1998) and molecular dynamics sim-
ulations (Bystroff and Garde 2003; Gnanakaran and Garcia 2002; Krueger and
Kollman 2001). Mutations in high-confidence I-sites motif regions are found
to have dramatic effects on folding (Mok et al. 2001; Northey et al. 2002a).
About one third of all residues in all proteins are found in high-confidence
(>70 %) I-sites motif regions and these sites are predicted to be conforma-
tionally stable and early folding.

2.2 HMMSTR: A Hidden Markov Model for Grammatical Structure

The I-sites library was condensed to a single, non-linear hidden Markov
model (HMM), called HMMSTR (“hamster”). This model, trained on a large
database of protein structures and multiple sequence alignments, removes the
fragment length dependence of I-sites motif predictions, models the adjacen-
cies of motifs in proteins, and puts all of the motifs on the same probability
scale (Fig. 2). Unlike profile HMMs (Eddy 1996; Gough and Chothia 2002;
Karplus et al. 1998), HMMSTR has a highly branched and cyclic connectivity,
containing for example a seven-residue cycle of helix states representing the
amphipathic helix heptad repeat motif. By modeling the adjacencies of
motifs, HMMSTR is a model for the ways that local structure can be arranged
along the sequence, similar to the ways that words can be arranged in a sen-
tence. This is, in a simple way, a model for the grammatical structure of pro-
tein sequences, from words to phrases.

The result of an HMMSTR prediction is like that of any HMM, an ensemble
of Markov state strings. Each string is a state, one state for each position in the
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sequence, represents a probable arrangement of mutually-compatible local
structure motifs. A single prediction may be obtained from the ensemble by
either selecting the most probable state string, or better, by a voting procedure
over the whole ensemble (Bystroff et al. 2000). HMMSTR improved the overall
accuracy in local structure prediction over the I-sites method from 43– 60 %
for eight residue fragments with RMSD <1.4 Å (Bystroff et al. 2000). HMMSTR
has been used for local and secondary structure prediction (Bystroff et al.2000;
Rost 2001), inter-residue contact prediction (Zaki et al.2000),and as the source
of a fragment library for Rosetta simulations (Bystroff and Shao 2002). Previ-
ous HMMs have modeled proteins globally, not as fragments (Eddy 1996;
Gough and Chothia 2002; Karplus et al. 1998).

3 ROSETTA: Folding Simulations Using a Fragment Library

The ROSETTA folding simulation algorithm uses Monte Carlo Fragment
Insertion (MCFI) to predict the 3D structures of small proteins or protein
fragments without the use of structural templates (Bonneau and Baker 2001;
Bonneau et al. 2001; Simons et al. 1997, 1999a, b). MCFI is a mostly downhill
search in a knowledge-based energy landscape. Each MCFI move consists of
replacing the backbone angles of segments of the chain with fragments in a
library. ROSETTA has been successful in prediction experiments (CASP
(Moult et al. 2001)) either using fragments from the database, from HMMSTR,
or from the I-sites motif library.

In the version of ROSETTA that runs as a public server (www.bioinfo.rpi.
edu), the fragment library is derived from I-sites fragment predictions, and
the highest confidence I-sites were restrained to their predicted backbone
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angles to increase efficiency. Fragment insertion was allowed in the restrained
regions, but moves were constrained to deviate by more then 60° from the I-
sites prediction. Also, long sequences were simulated as overlapping short
fragments of approximately 50 residues each, again for efficiency. The result-
ing predictions are spliced together at the end, using a genetic algorithm in
conjunction with the ROSETTA knowledge-based energy function. Detailed
descriptions of each of the algorithms have been previously published
(Bystroff and Shao 2002; Simons et al. 1997, 1999b).

3.1 Results of Fully Automated I-SITES/ROSETTA Simulations

3.1.1 Summary

A web server was used to predict 31 protein structures in the CASP4 experi-
ment (2000) and 44 in the CASP5 experiment (2002). The successes and fail-
ures of the server may be summarized in a few broad statements. The statis-
tics and conclusions presented here refer to bona fide blind predictions sent
automatically to the CAFASP site as part of their “Fully-Automated” satellite
experiment (Fischer et al. 2001). A more detailed analysis of this and other
methods can be obtained from the associated publications (Bystroff and Shao
2002; Shao and Bystroff 2003).

Over the 75 targets, 64 % of the residues were found in “topologically cor-
rect” large fragments, defined as fragments of 30 residues or more with RMSD
<6 Å. At 6 Å RMSD, the correct overall chain trace has been reproduced, but
not the finer details of structure. Occasionally, beta strand may be out of order
in a sheet, and strands may be substituted for helices.

A smaller percentage of all 30-residue fragments, 44 %, were predicted with
a 5 Å RMSD. At 5 Å precision, secondary structure is occasionally mispre-
dicted, loop structures may be wrong in detail, and axial rotations of sec-
ondary structure units are possible. However, much or most of the non-local
packing interactions are faithfully though roughly reproduced at this level of
accuracy, and strand mispairing is not observed.

In practice, the details of the local structure are often correctly predicted
when a fragment was globally correct, but the RMSD measure is insensitive to
this. Therefore, another measure is used to evaluate the local accuracy of the
predictions. The maximum deviation in backbone angles (mda) over a win-
dow of eight residues is usually ~180° or smaller, and serves as a strictly local
measure of correctness. Eight-residue peptides that have mda <90° and obey
all of the stereochemical constraints of a polypeptide, have an RMSD of 1.4 Å
at most (Bystroff and Baker 1998). Unfortunately, when mda is plotted along-
side RMSD, it is immediately obvious that the good local structure predic-
tions do not always coincide with the good, large-fragment predictions.
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3.1.2 Topologically Correct Large Fragment Predictions are Found

Figure 3 shows a 97-residue fragment prediction with 5.9 Å RMSD.At this level
of precision, the residues found in the core are correct and their 3D arrange-
ment is roughly correct. In fragments that contained helices, the N and C cap-
ping residues were usually but not always correctly located,and the direction of
the chain coming off of the helix was generally correct. The orientation of par-
allel sheets to helices was reproduced to within about 60°, and the axial orien-
tation of the helices with respect to strands was almost always correct, even
though rolling the helix would not greatly affect the RMSD value.

Some characteristics of even the “correct” fragment predictions suggested
ways in which the algorithm could be improved. The most obvious of these is
the distortion of alpha helices. True native helices retain very straight helix
axes despite variability in the backbone angles. Helices in the predictions,
however, were often distorted, sometimes bending the axis by 90° over its
length. A combination of factors produces these errors. ROSETTA has no
energy penalty for helix distortion, while it gives a large energetic bonus for
packing hydrophobic residues into the core and for maintaining a low radius
of gyration. Bent helices are found to replace helix kinks and alpha-alpha cor-
ners. Adding a penalty for helix distortion might fix this problem.
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Fig. 3 ROSETTA-predicted (dark gray) and true (light gray) structure of tryptophan
synthase alpha subunit from P. furiosus (PDB code 1GEQ) residues 57–153



Topological correctness is a weak criterion for usefulness, since it means
that only the handedness of the chain reversals and most of the secondary
structure are right. However, these fragmentary predictions may narrow the
search space for a structural analog or remote homologue, and may therefore
be useful in combination with other methods. The I-sites Server correctly
identified the overall anti-parallel b topology of one of the CASP5 targets, the
F-actin capping protein (PDB code 1IZN), a new fold at the time.

3.1.3 Good Local Structure Correlates Weakly with Good Tertiary
Structure

If the ROSETTA simulations followed a “local structure first”pathway, then we
would expect to see good super-secondary structure predictions coinciding
with good local structure predictions. However, this is not always the case.
Frequently, the topologically correct large fragments have the wrong local
structure. This is true despite the fact that at least 90 % of the target sequences
are covered by at least one fragment with the correct local structure in the
fragment library.

Three-state secondary structure (SS) predictions were made using a ver-
sion of HMMSTR that was trained on a large dataset of proteins of known
structure with SS states assigned using DSSP (Kabsch and Sander 1983). The
accuracy of these predictions over the 31 targets was 73.3 %, only slightly
lower than the state of the art in SS prediction (Jones 1998). SS predictions
based on tertiary structure (TS) predictions from ROSETTA had the potential
of benefiting from the added TS information, however this did not improve
the prediction accuracy.

Using SS assignments derived from the TS predictions using DSSP or
STRIDE (Frishman and Argos 1995), the prediction accuracy was low
(50–60 % Q3) because these programs depend on precise positioning of the
hydrogen-bonding residues in assigning the strand state (E). Instead, the SS
predictions were derived from the fragments in the fragment library, using SS
assignments from their native proteins. Using this method, the overall Q3
score improved to 72.4 %, but this is still no better than the SS predictions that
use sequence alone without running a simulation.

If the simulation were reproducing the folding process, one might expect
that the correctly-predicted tertiary interactions would add information to
the secondary structure prediction. One explanation for the lack of improve-
ment in secondary structure, despite some success in tertiary packing, is that
topologically correct tertiary structures are possible even when the wrong
local structure is used to build it.
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3.1.4 Average Contact Order is too Low

Relative contact order (Plaxco et al. 1998) is calculated from the coordinates as
follows:

(1)

where DSij is the sequence separation |i-j| � 5, for residues, ij, that are in con-
tact (Ca-Ca distance <8 Å). N is the number of contacts, and L is the length of
the sequence. The overall average CO in the targets was 0.252, while the CO for
the 32 predictions was 0.119. The lower CO is mostly the result of an increased
number of beta hairpins. Contacts that are local, such as those in beta hair-
pins, are easier to find in a conformational search, and thus may represent
kinetic intermediates, trapped at the end of the simulation. Kinetic trapping
may be exacerbated by the more computationally efficient server protocol. A
possible solution is to do more replicates and rely on cluster analysis to iden-
tify the global energy minimum. Practical limitations currently stand in the
way of implementing this.

Alternatively, the predominance of beta hairpins may reflect an error in the
energy function with regard to the backbone angles. Positive f angles, favored
only in glycine residues and usually required for turns, are found in the same
proportion in the targets (8 %) and in the predictions (7 %), but in the targets,
44 % of these turn residues are glycines, while in the prediction only 16 % are
glycines. This suggests that a larger energetic penalty for positive f angles in
non-glycine residues might correct the overabundance of hairpin turns.

3.1.5 How Could Automated ROSETTA Be Improved?

Our results suggest that a combination of improvements in efficiency may
increase the potential of the ROSETTA algorithm as a high-throughput engine
for tertiary structure prediction at the 30–100 residues length scale. We sug-
gest that a combination of structure comparison metrics be used for the eval-
uation of correctness; a low RMSD in the context of low backbone angle devi-
ations is shown to identify predictions that were “correct for the right
reasons”.

Secondary structure assignments were not improved by the use of tertiary
structure predictions, partly because it was possible to obtain a globally cor-
rect tertiary structure prediction by inserting fragments of the wrong local
structure.

An overall low contact order was observed in the predictions relative to the
true structures.This is at least partly due to the absence of an energetic penalty
for unfavorable backbone torsion angles. These may also represent kinetically
trapped intermediate structures from a simulation that was too short.
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4 HMMSTR-CM: Folding Pathways Using Contact Maps

HMMSTR-CM is a pathway-based method for predicting protein structure
using contact maps. Contact maps are square symmetrical Boolean matrices
that represent protein tertiary structures in a two-dimensional format. The
2D format has simplified the process of developing a rule-based algorithm for
folding pathways. Contact maps may be projected into three-dimensions
using existing methods (Aszodi et al. 1997; Brunger et al. 1986; Crippen 1988;
Vendruscolo et al. 1997).

Two-dimensional flat images are more readily discernable to the eye and
more memorable than complex, rotating three-dimensional images. With
only a little training, a student can learn to quickly distinguish a contact map
for an a/b barrel from a 3-layer a/b fold, different topologies which are very
similar in their secondary structures. Similarities between distant homo-
logues or analogs of a/b and all b folds can be seen easily in contact maps,
even when the 3D structures superimpose poorly. It makes sense that if our
eyes can recognize protein folds from 2D patterns, we should be able to pro-
gram a computer to do so, and thereby create a new tool for learning the rules
of folding.

Previous contact map prediction methods have used neural nets (Fariselli
and Casadio 1999; Pollastri and Baldi 2002), correlated mutations (Olmea and
Valencia 1997; Ortiz et al. 1998; Singer et al. 2002), and association rules (Hu
et al. 2002; Zaki et al. 2000). Neural net-based predictions had an average accu-
racy of about 21 % overall (Fariselli et al. 2001), while higher accuracies were
reported for local contacts (Pollastri and Baldi 2002), but the accuracy is lower
for all-a proteins.

Our earlier work (Zaki et al. 2000) led us to believe that two important fac-
tors were missing in contact map predictions. First, typical predicted contact
maps were structurally ambiguous or physically impossible, representing
either multiple or zero possible folds when projected into three dimensions.
Secondly, the order of appearance of contacts (i.e., the pathway) was not con-
sidered, even though much is known about the general character of folding
pathways (Baldwin 1995; Fersht 1995; Galzitskaya et al. 2001; Nolting and
Andert 2000). In the new approach we tried to enforce “physicality” and pro-
tein-like characteristics by using protein templates and simple rules. The
rules consist of common sense facts for the packing of secondary structures
(Table 1). Rules for the order of appearance were derived from the general
assumptions of a nucleation/propagation pathway (Nolting and Andert 2000).

4.1 A Knowledge-Based Potential for Motif–Motif Interactions

The first step in predicting a contact map is to assign an energy to each poten-
tial contact. The energy in this case is the database-derived likelihood of con-
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tact between any two local structure motifs. This implies that local structure
forms first, then these sub-structures condense to form larger units, subject to
a free energy of interaction, similar to a binding energy. But like its predeces-
sors I-sites and HMMSTR, HMMSTR-CM is a Bayesian ensemble approach;
each residue is represented as a probability distribution of motifs, rather than
as a single motif. Thus, each contact potential models a pair of flickering local
structures, interacting in proportion to their structural content.

The energetic interaction potential of two motifs is modeled as the statisti-
cal interaction potential between two corresponding Markov states of the
HMMSTR model. Knowledge-based Markov state “pair potentials” were
summed from the CATH database of protein domains. Each domain was first
preprocessed into Markov state probability distributions using the For-
ward/Backward algorithm (Rabiner 1989) to get the position-dependent
Markov state probability distribution g (Eq. 2).

(2)

The pairwise contact potential between any two HMMSTR states p and q
(G(p,q,s)) was calculated as the log of the mutual probability of these two
states in contacting residues (Ca -Ca distance <8 Å), for proteins in the PDB-
select database (Hobohm and Sander 1994) (Eq. 3).
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Table 1. Physicality and propagation rules

1. Maximum neighbor rule: One residue can have at the most 12 contacts.

2. Maximum mutual contact rule: If residue i and j are in contact, there are at the most
six residues in contact with both i and j.

3. Beta pairing rule: A beta strand can be in contact with at the most two other beta
strands.

4. Beta sheet rule: Any two pairing strands are either parallel or antiparallel.

5. Helix mutual contact rule: No residue can be in contact at the same time with the
residues on the opposite sides of a helix.

6. Helix rule: Only the contacts between residues i and i+4 are allowed in a helix.

7. Beta rule: No contacts (|j–i|>3) are allowed within any strand.

8. Right-hand crossover rule: Crossovers between parallel strands of the same sheet
(paired or not) are right-handed, especially if the crossover contains a helix.

9. Helix crowding rule: If a helix can go to either side of a sheet, it picks the side with
fewer crossovers.

10. Strand burial rule: If a strand can pair with either of two other strands, it chooses
the one that is more non-polar.

11. Propagation rule: A contact cannot be assigned between i and j if there are more
than eight residues in the intervening sequence that have no assigned contacts.

g i q P q i, ( | )( )=



(3)

The sensitivity of discriminating contacts from non-contacts improved
greatly by calculating G as a function of the sequence separation s=|j-i| (4 � s
� 20.For sequence separations greater than 20,s=20 was used.) The total num-
ber of potential functions G was 1037153, one for every pair of 247 Markov
states in HMMSTR and every separation distance from 4 to 20.G may be viewed
as the knowledge-based energy of contacts between local structure motifs.

The target contact potential map E (Eq. 4) is the matrix of contact poten-
tials between every two residues in the target sequence. The contact potential
between residues i and j (E(i,j)) in the target was calculated as the probability-
weighted sum of the pairwise potential functions G.

(4)

where s=|i–j|. In general, the contact potential map readily identifies possible
contacts between b strands, and also finds super-secondary structure motifs
such as the right-handed parallel bab motif and the aa corner.

4.2 Fold Recognition Using Contact Potential Maps

The flowchart in Fig. 4 summarizes the steps in a contact map prediction
using HMMSTR-CM. Target sequences were aligned to database sequences
using PSI-BLAST (Altschul et al. 1997). The resulting multiple sequence align-
ment was converted to an amino acid probability distribution or sequence
profile, as described previously (Bystroff and Baker 1998). The target
sequence profile and 1239 template profiles from the PDBselect database
(Hobohm and Sander 1994) were converted to HMMSTR g-matrices (Eq. 2),
and gtarget was aligned against each gtemplate using Bayesian adaptive alignment
(Zhu et al. 1998). The alignment matrix in this case was the sum over all joint
probabilities of Markov states (Eq. 5). The alignments were evaluated using
contact potential maps to choose the best template.

(5)

Candidate target contact maps were generated for each alignment, and
each was evaluated by the contact free energy (CFE), as described below, and
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other measures. The BayesAligner produced a single score and any number of
alignments. Templates with low alignment scores were rejected. Otherwise,
100 alignments were selected at random for further evaluation.

BayesAligner produces a probability distribution over all possible align-
ments with no more than k gaps (k depends on the sequence lengths). The
quality of the alignment distribution (see Fig. 5a) was a strong indicator of the
quality of the template. Templates and/or alignments were removed from this
set if they were highly fragmented. This was assessed using a “compactness
score” which is simply the length of the longest contiguously aligned region,
ignoring small gaps ( three residues). The template distance at the ends of the
aligned blocks was enforced to be physically possible values (Eq. 6) by trim-
ming the aligned blocks if necessary.
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Fig. 4. Flowchart for HMMST-CM contact map prediction. Rectangles represent algo-
rithms, ovals are data, and rounded rectangles are models. Dashed lines apply to training
set data (templates) and solid lines apply to both templates and targets. Light gray items
are described in referenced material. Dark gray items are described in this text as fol-
lows: HMMSTR, Section 2.2; gamma matrices, Eq. (2); SumGamma, Gpqs, Eq. (3);
SumEmap, E map, Eq. (4): Rules, Pathpath foling, Section 4.4, Table 1; BayesAligner, Tar-
get/template alignments, Section 4.2, Eq. (5), Fig. 5a; Heuristics, Eq. (6); CijALI, Section
4.2, Eq. (7); Heuristics, consensus, Section 4.3, Fig. 6



(6)

Candidate contact maps (C) were generated using the alignments and the
contact maps of each of the templates that had the top ten compactness
scores, scored using the “contact free energy” (CFE, Eq. 7). CFE was calculated
by summing the relative contact potential E over all contacts, C. Contacts with
sequence separations |j–i| of less than 4 were ignored.

(7)

where <E>is the mean contact potential for the target. For each template, we
calculated the CFE for all contact map candidates and chose the one with the
best energy as the best alignment to that template.

After we carried out the above procedure for every template in our dataset,
we usually accumulated several hundred target contact map predictions. How
to evaluate them and choose one as the final prediction became a problem
itself. The decision was made using the following four parameters: CFE, the
BayesAligner score, the compactness score and the similarity between se-
quence lengths of the target and the template. The primary parameter was the
CFE, since it represented the free energy of the sequence when folded to the
template structure. However, we observed that better alignments and similar
lengths improved the perceived prediction quality.
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The automated selection of templates was sometimes overridden by our ab
initio analysis, described below. If the propagation rules favored one topology
over another and a template of the favored topology was present in our list of
top scorers, we would select that template over a higher scoring one.

4.3 Consensus and Composite Contact Map Predictions

Often several of the top-scoring templates contained the same fold or sub-
structure. Consensus was considered a strong indicator, especially if the fold
was uncommon. Multiple candidates were sometimes used to construct a sin-
gle composite map. In practice, consensus similarity between many structures
is difficult to see in a 3D multiple superposition, but is easy to see in superim-
posed contact maps.

This prediction can be done in different ways when the top scoring tem-
plates share a similar fold. When they disagree on some contacts, the consen-
sus contacts (not necessarily those from the best scoring template) are used;
when some templates aligned well in one region and other templates aligned
well in another region, the predictions from these templates were spliced to
maximize the coverage. For some recurrent contact patterns, e.g., the parallel
bab motif, the parallel b contacts or the helix contacts were sometimes
incomplete because of misalignment of the template. By combining the top
scoring predictions, we could “grow” the incomplete pattern into a complete
one.

Simply combining the contact maps introduces “noise” – contacts that
make the prediction non-physical. (A “non-physical” contact map cannot be
projected into three-dimensions.) Manual post-processing, including path-
way-based editing (discussed next) was needed to enforce the physicality of
the final contact map.

4.4 Ab Initio Rule-Based Pathway Predictions

The fold-recognition methods described above have their roots in evolution,
but contact maps as a representation of protein structures were chosen not
with the intention of building a Darwin-based prediction strategy, but with
the intention of modeling the folding pathway. Contact maps simplify the
conformational search. However, as we have pointed out, not all contact maps
represent physically-possible three-dimensional objects. Therefore, external
information about proteins must be included.A set of aligned templates is one
source of external information. Here we present a set of fundamental rules
(Table 1) and energies (Eq. 4) that serve the same purpose – to restrict the
conformational search to contact maps that are physically possible and pro-
tein-like.
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A rule-based structure propagation model was used either in conjunction
with templates or ab initio (without templates). In CASP5, ab initio predic-
tions were sometimes done on targets found later to be remote homologues
by CASP5 assessors, but because our alignment method was not always able to
recognize remote homology, we treated them as potential new folds. The pro-
cedure is as follows.

Starting from a contact potential map, E, we kept the contacts that were bet-
ter than a cut-off value. The cut-off value was chosen so that blocks of con-
tacts were found between most secondary structural units, especially between
b strands.As a result, the initial contact map was often characterized by dense
blocks of contacts between b strands and sparse contacts to helices and
between helices.

If we kept all of these contacts, clearly the map would be physically impos-
sible. For example, a b strand element cannot be paired with more than two
other b strands. A set of common-sense rules were compiled to weed out the
possible contacts from the impossible or unlikely, and to enforce protein-like
characteristics, such as right-handed crossovers and exposed reverse turns
(Table 1). These rules were enforced as the prediction was propagated.

The folding pathway consisted of “assigning” or “erasing” contacts. Con-
tacts were assigned if the energy E(i,j) passed a threshold and the corre-
sponding contact Ci =1 did not violate any of the rules, otherwise they were
erased. Blocks of potential contacts were considered together, and the order in
which blocks were considered depended on their proximity to previously
assigned blocks of contacts (Table 1, rule 11), following the principles of the
nucleation/condensation folding mechanism.

To start the folding pathway, we selected one or more local regions with
high confidence contacts as the “nucleation site(s)”. We then propagated the
prediction in both directions by assigning or erasing blocks of contacts
around and between the nucleation site(s), subject to our set of rules. TOPS
diagrams (Sternberg and Thornton 1976) were drawn for the growing struc-
ture as a visual aid, since some rules applied to the topology. The pathway, and
the prediction, was complete when all of the remaining contacts were
rejected. The method is best described using examples, as in the next section.

4.5 Selected Results of HMMSTR-CM Blind Structure Predictions

HMMSTR-CM was used to predict contact maps as part of the CASP5 experi-
ment. Targets in the FR (fold recognition) and NF (new fold) categories were
predicted using the three methods described above: threading, consensus and
ab initio, collectively called HMMSTR-CM. In all three of these methods, the
overall accuracy of the contact map prediction depends on the accuracy of the
secondary structure prediction, which was done using HMMSTR.
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4.5.1 A Prediction Using Templates and a Pathway

YqgF, a hypothetical protein from E. coli, was successfully predicted using the
template-based approach in conjunction with a pathway prediction. All visi-
ble secondary structure units are correctly predicted (note that the 17
residues from 102 to 118 are missing in the crystal structure), and all of the
true contacts have a higher-than-average E(i,j) score. After aligning the con-
tact potential matrix, E, to each of the 1258 templates, a consensus contact
map was plotted using the top-scoring six templates. This map was used to
construct a folding pathway. Nucleating the pathway at b4a2b5 and propagat-
ing produced a TOPS diagram that agreed with only one of the templates,
1HJR, this template was therefore chosen to construct the consensus contact
map. 1HJR had the third highest CFE score. In the prediction based on 1HJR,
the N-terminal three-strand b meander is slightly under-predicted, and a con-
tact between helices 1 and 2 is slightly over-predicted. Nevertheless, the topol-
ogy is correct throughout (Fig. 5b). The two higher-scoring templates that
were not chosen had very different, and incorrect, topologies.

4.5.2 A Prediction Using Several Templates

Ycdx, another hypothetical protein from E. coli, was successfully predicted
using multiple templates. The threading approach found four templates that
had high CFE scores and also shared common structural components. Three
of those templates were eight-stranded a/b barrels and the other consisted of
two parallel a/b domains.Ycdx turned out to be an ab barrel with seven par-
allel b strands (PDB code 1M65). Templates with good CFE scores existed but
none of them predicted all of the first five helices and the parallel b strand
contacts correctly. However, by combining the results from the top scoring
templates, we made a consensus prediction that was better than any of the
contact maps made from the single templates. In particular, we correctly
found parallel contacts between the first six b strands (Fig. 6).

The sixth helix and the contacts between the sixth and the seventh strands
were predicted but misaligned. Our method mispredicted the C-terminus to
be a parallel bab motif, as in a standard eight-stranded TIM barrel, but the
true structure is three short helices connected by loops. Visual inspection of
the templates confirmed that they share the same topology, and a consensus
fold prediction would have been obvious given this result. However, finding
structural similarity and combining structures is more easily automated in
the 2D contact map format than in 3D coordinate space. Consensus in contact
maps provides a way to merge and “grow” the incomplete contact maps of dif-
ferent targets into a more complete contact map.

Ycdx also revealed a weakness of the method. HMMSTR, which is trained
to recognize recurrent super-secondary motifs, does not recognize the
unusual substructure at the C-terminus of this protein, three short helices
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instead of the usual bab motif. The consensus method, as we have defined it,
tends to bias the prediction toward the more common folds. In fact, this is a
problem with any template-based method.

4.5.3 Correct Prediction Using Only the Folding Pathway

Hypothetical protein HI0073 from H. influenzae is an example of a successful
ab initio prediction. It has 116 residues arranged in a three-layer all-parallel
a/b sandwich. The contact potential map (Fig. 7a) shows that most of the true
contacts are assigned favorable (darker) contact potentials. However, many
other favorable regions are also correctly predicted as non-contacts. Depend-
ing on the choice of nucleation sites, there was more than one way to derive a
physically possible and high-scoring topology. In this case, the nucleation site
was selected to be b2a2b3. Contacts were assigned or erased in four steps, as
follows:
1. Parallel b contacts were assigned between b2 and b3.
2. Anti-parallel b contacts were assigned to b1 and b2. All other b contacts to

b2 were erased.
3. There were two ways to make a right-handed crossover from b3 to b4, as

shown in Fig. 3 c, d. Since b1 was more hydrophobic and b3 more polar, we
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Fig. 6. Summary of strand-strand (arrows) contacts and helix predictions for four tem-
plates aligned to Ycdx (T0147). Shaded symbols represent contacts that were correctly
predicted using the template specified in the margin. The last line shows contacts that
were correctly predicted after combining the four templates and using the consensus set



paired b1 and b4. All other b contacts to b1 and contacts between a2 and a3
were erased.

4. a1 must be on the opposite side of the sheet from a3, since a3 extends across
the sheet. Therefore, contacts were assigned between a1 and a2 and erased
between a1 and a3.

The completed TOPS diagram and contact map accurately match the true
structure (Fig. 7b). The contact map prediction has 42 % contact coverage and
29 % accuracy. However, accuracy and coverage are not good measures of the
quality of a contact map prediction, since near-contacts and gross errors are
counted equally. Most of the false positive contacts in the HI0073 prediction
are adjacent to true contacts. If we count near misses (±1 residue), then the
coverage is 75 % and the accuracy is 57 %. Note that the long-range contacts
between the b1 and b4 were correctly predicted, which speaks to the power of
rule-based methods over raw statistics.
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Fig. 7. a Upper triangle Contact potential map for HI0073 showing predicted contacts as
white outlines. Darker means lower energy, E(i,j). Lower triangle True contacts. b
Molscript drawing of the crystal structure of HI0073, a hypothetical protein from
Haemophilus influenzae. c Correct TOPS diagram showing non-polar strand (dashed)
buried. d Incorrect TOPS diagram, consistent with all rules except strand burial rule



Identification of the folding nucleation site is the critical step in this
approach. Once the nucleation site is chosen, the subsequent contact assign-
ments are often unambiguous. After assigning secondary structures and
choosing b2a2b3 as the nucleation site, only one folding pathway was possible,
and it leads to the correct structure (Fig. 7 c). It is interesting to note that this
pathway also predicts a possible misfolded state (Fig. 7d). At step 3 in the
pathway, a critical decision is made that depends on the sequences of strands
one and three. If strand one was more polar and strand three more hydropho-
bic, then the alternative structure would be predicted. A simple mutation
experiment might tell us whether our model is on the right track.

The choice of the nucleation site in HI0073 was relatively easy. Only one of
the three potential bab units had a high score. The hairpin between b1 and b2
would also be a correct choice, but the selection of b2a1b3 eliminated more of
the potential incorrect folding pathways.

4.5.4 False Prediction Using the Folding Pathway. What Went Wrong?

The KaiA N-terminal domain from S. elongatus (PDB code 1M2E) is an exam-
ple where we chose the wrong nucleation site. KaiA is 135 residues long and
has five b and five a units. From its contact potential, two possible nucleation
sites could be identified, b2a2b3, or b3a3b4. We chose b2a2b3 as the nucleation
site instead of the correct, and higher scoring, b3a3b4 unit in order to favor a
region of non-local high confidence contacts between b1 and b3 and between
b1 and b4. Our mistake was in assigning non-local contacts before assigning
local ones. If we had chosen the correct nucleation site, b3a3b4, there would be
an unambiguous choice of the N-terminal babab segment. This sequence of
five secondary structures is most commonly found in a three-stranded paral-
lel sheet, and since in this case b2 is polar and b3 already pairs with another
strand, only b1 could be placed in the middle of the sheet. This would have
given the correct 2134 strand order (Fig. 8a), and the helices would have been
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Fig. 8. a Correct TOPS diagram for KaiA, generated using the pathway described in the
text using the shaded bab unit as the nucleation site. b Incorrect TOPS diagram, similar
to the actual prediction, generated using a similar pathway but starting with the wrong
nucleation site (shaded)



correctly placed according to our propagation rules (particularly the right-
handed crossover rule). Our erroneous choice of the nucleation site led to the
incorrect strand order 2314 (Fig. 8b), instead of 2134. For the record, here is
the correct pathway for KaiA using HMMSTR-CM:
1. Nucleation site at b3a3b4.
2. The N-terminal parallel babab unit must have b1 in the middle, since b2 is

polar and b3 cannot be in the middle. To satisfy the right-handed crossover
rule, a2 must be on the same side of the sheet as a3.

3. b5 must pair with b4 since it cannot pair with b2, due to crossovers on both
sides of the sheet.

4. a5 must go on the same side of the sheet as a1, due to helix crowding on the
other side.

For other targets, pathway construction and CFE score alignment methods
failed if the secondary structure prediction was inaccurate. In several targets,
including HIP1R N-terminal domain from rat, an all-helix protein, secondary
structure prediction by HMMSTR significantly under-predicted the helices.
The wrong secondary structure pattern led to the wrong assignment of con-
tact potentials, and therefore the wrong assumption of possible topologies.
Under-prediction of helices was identified as a problem in HMMSTR.

4.6 Future Directions for HMMTR-CM

By gaining insight about how different parts of the protein pack together, we
can improve the accuracy of the ab initio method. This will be necessary to
make the whole prediction process automatic. The rule-based pathway
approach depends on the correct assignment of the fold class of the target
(all-a, a/b, a+b or all b (Zhou 1998)), since the rules of propagation depend
on choices of the final topology. Generally this assignment is not difficult. So
far, it has been applied only to the a/b class, but a different set of rules may be
envisioned for the packing of helices and all b proteins.

The difficulty of choosing the correct nucleation site increases with protein
size, since there are more to choose from. For larger proteins, more than one
correct choice may be required. One possible approach could be a recursive
algorithm to exhaust all the possible topologies by starting with each poten-
tial nucleation site, and then evaluate the topologies using the contact poten-
tial.

Another improvement might be to attempt to make the contact map pre-
diction more protein- like. Our predictions have many false contacts adjacent
to true contacts, e.g. a “fat” b-hairpin prediction – even though it is predicted
at the right position. Rules to prune this type of false contacts – in other
words, to beautify the predicted contact blocks – would increase the accuracy
of our prediction. This will require better secondary structure predictions.
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5 Conclusions

We have developed methods for calculating an inter-residue contact potential
map for a protein sequence, for aligning that map to templates, and for prun-
ing that map using a folding pathway model. Results on CASP5 targets reveal
that the folding pathways for some a/b proteins are unambiguous given the
correct choice of the folding nucleation site. Pathway predictions improved
the selection of a remote homologue for one threading target. Consensus con-
tact maps are more complete than maps from single templates. The contact
map representation of a protein structure is a useful intermediate-level  detail
that facilitates rule-based algorithm development.
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Structural Bioinformatics and NMR Structure
Determination

J.P. Linge, M. Nilges

1 Introduction: NMR and Structural Bioinformatics

It has become common ground to start a bioinformatics article by mention-
ing the flood of data overwhelming the research community. Indeed, the large
amount of data has led to the insight that even the average wet lab needs sev-
eral computers, e.g. to manage micro array results or to run BLAST searches
via the internet. However, it is more than that: bioinformatics has matured to
a research discipline in its own right. The main reason is that bioinformatics
not only allows for the solving of problems that are tedious in a traditional
approach (e.g. protein function can often be inferred from homologous pro-
teins in other species), but contributes to a new way of looking at biological
systems: from a reductionist approach, to a systemic view of biology (Noble
2002). With the large amounts of data on whole systems, the focus in biomed-
ical research is increasing steadily: from a single protein to complexes, from
an enzyme-catalyzed reaction to metabolic networks. Even virtual cells or tis-
sues are no longer science fiction.

Recently, the term bioinformatics has been used more and more to describe
research related to databases (integration of resources, web access, etc.) and
sequence analysis (homology searches, multiple sequence alignments, phylo-
genetic trees). Computational biology refers to the simulation of complex net-
works, e.g. metabolic or signalling pathways, cell and tissue simulations. In
recent years, the field has seen an -omics explosion (e.g. genomics, pro-
teomics, transcriptomics, metabolomics), five of which have created several
research communities eager to integrate their data.

Structural bioinformatics focuses on the relationship between sequence,
three-dimensional structure, and the function of proteins and other biologi-
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cal macromolecules, using, among others, modelling techniques and molecu-
lar dynamics (MD) simulations.

2 Algorithms for NMR Structure Calculation

Molecular modelling has a central position in the derivation of NMR solution
structures. Experimental data are sparse and measurable for only a fraction of
the atoms (mostly the hydrogens). Most of the data describe relative positions
of atoms, and do not directly correspond to the global conformation of the
molecule. It is therefore necessary to use additional data (prior information)
valid for all molecules of the same type. This information can be derived from
molecular dynamics (MD) or molecular mechanics force fields.

Algorithm development for structure calculation is very important since
models are not manually built, but automatically calculated. The methods
used for NMR structure calculations  originally came from other fields of
structural bioinformatics or computational biology. Distance geometry meth-
ods have been developed with the aim of predicting protein 3D structure.
Nonlinear optimisation usually employs MD algorithms.

Since several good reviews exist on the different methods, for example for
distance geometry (Braun 1987; Havel et al. 1983; Havel 1991), for simulated
annealing in Cartesian coordinates (Brünger and Nilges 1993; Brünger et al.
1997; Nilges and O’Donoghue 1998), and for torsion angle dynamics (Güntert
1998; Brünger and Adams 2002), we discuss these approaches only very
briefly.

2.1 Distance Geometry and Data Consistency

Distance geometry was a natural choice for structure calculations, since the
principal data are distances derived from NOE measurements. Most of the
prior knowledge can also be expressed in form of distances (van der Waals
radii, bond lengths, etc.), with the exception of chiral information. All data
points are only known with some uncertainty; there are for example experi-
mental errors, and the measured quantities (e.g., the NOEs) are converted to
structural parameters (inter-proton distances) by an approximate theory (the
isolated spin pair approximation). The uncertainties for all data points are
expressed in the form of lower and upper distance bounds.

Distance geometry provides a framework to analyse the distance bounds in
terms of their geometric consistency and checks the bounds systematically by
applying the triangle inequalities, before the structures calculation itself. The
triangle inequalities are a fundamental property of distances, and the bounds
need to be set generously enough to ensure that they can be satisfied. The
structure calculation itself is initiated by constructing a complete distance
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matrix by selecting distances from within the bounds (Kuszewski et al. 1992;
Havel 1991; Hodsdon et al. 1997). Structures are then calculated with tools
from multivariate data analysis (principal coordinate analysis). The resulting
approximate structure is the starting point for further refinement by non-lin-
ear optimisation techniques.

2.2 Nonlinear Optimisation

With the arrival of powerful minimisation strategies based on the idea of sim-
ulated annealing, it became less important to obtain an approximate starting
structure. The distance geometry concept of lower and upper bounds, in par-
ticular for distances derived from NOEs, is generally maintained in optimisa-
tion. It is incorporated into the optimisation via an appropriate pseudo-
potential. The total energy that is minimised combines a physical energy term
(similar to an MD force field) and pseudo-potentials penalising deviations
from experimental data. If the bounds have been set sufficiently wide, the
exact values of the relative weights in the experimental terms in the energy
function are not very important.

The difficulties of applying minimisation strategies directly to the problem
of calculating NMR structures are due to the complicated energy landscape
produced by the physical force field and the experimental terms, having deep
local energy minima separated by high barriers. Methods inspired by simu-
lated annealing (Kirkpatrick et al. 1983) can overcome energy barriers.
Because of the high degree of correlation between the principal degrees of
freedom (the torsion angles), Monte Carlo based methods do not converge
very well for biological macromolecules, and the simulated annealing algo-
rithms in NMR structure determination and X-ray crystal structure refine-
ment are usually based on molecular dynamics. The key to using MD as a
minimisation tool is temperature control (e.g. Berendsen et al. 1984). Minimi-
sation schemes usually employ additional methods to overcome energy barri-
ers, for example the scaling of the non-bonded energy (Nilges and O’Dono-
ghue 1998).

In Cartesian coordinates, simulated annealing with MD consists of numer-
ically solving Newton’s equations of motion with forces derived from the
physical energy term and the pseudo-potential incorporating the experimen-
tal data. The resulting trajectory obviously does not reflect the dynamics of
the molecule, but is only a means to minimisation. Using torsion angles as
only degrees of freedom has decisive advantages, since the covalent geometry
of the molecule is automatically maintained, permitting the use of longer time
steps. The nature of the MD equations becomes much more complicated, with
an explicit dependency of the angular acceleration on angular velocities, and
a time-dependent non-diagonal mass matrix. Torsion angle dynamics shows,
in general, better convergence than Cartesian dynamics.
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2.3 Sampling Conformational Space

All structure calculation methods have a random element. For the simulated
annealing methods, the initial coordinates and the initial velocities are set
randomly. In distance geometry using the metric matrix approach, distances
are randomly chosen within their bounds, and the distances can be chosen in
random sequence (Kuszewski et al. 1992; Havel 1991; Hodsdon et al. 1997).
The standard procedure is then to use the calculation with identical data set at
several times, varying only the random number seed for initial coordinate or
distance generation. In this way, the conformational space consistent with the
data is sampled, to test if the data determines the structure. The result is a
more or less distributed structure ensemble.

This distribution depends on many factors, for example the choice of dis-
tance bounds (Chalaoux et al. 1999), the shape of the restraint potential, the
calculation method (metrisation in distance geometry, simulated annealing
schedule, etc.). The limitations of this empirical procedure are well recog-
nised, and re-sampling strategies have been suggested (Spronk et al. 2003).

2.4 Modelling Structures with Limited Data Sets

There is great interest in methods to reduce the amount of data necessary to
obtain an NMR structure, in order to extend the NMR methodology to larger
proteins (Mueller et al. 2000) and to speed up the structure determination
process for its use in structural genomic efforts (Prestegard et al. 2001). Even
with automated data analysis (seeSect. 5 below), the time required for struc-
ture determination by traditional NMR methods is still too long.

NMR data such as residual dipolar couplings (Prestegard et al. 2000; Bax et
al. 2001) have an important impact on speeding up structure determination.
In fortunate cases the residual dipolar couplings alone may be sufficient to
determine the fold (Hus et al. 2001). Searching databases with threading tech-
niques is a very promising method (Andrec et al. 2001, 2002) in reducing the
requirement of the completeness of the data. Also, the chemical shifts of the
NMR-active nuclei may be sufficient to predict the fold of a structure by
threading the secondary structure derived from the chemical shifts against a
structural data base (Ayers et al. 1999). Residual dipolar couplings also offer
an alternate approach to simultaneous resonance assignment and structure
determination of protein backbones (Tian et al. 2001).

Further development of methods combining database searches, molecular
modelling, and NMR data will lead to increasingly reliable NMR structures
from minimal data sets. The use of sparse NMR data in combination with 
ab initio protein 3D structure prediction algorithms can significantly reduce
the  amount of necessary data (Bowers et al. 2000; Rohl and Baker 2002).
The future will show if structures based on very limited data sets can be
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made accurate enough to allow for detailed structural analysis beyond fold
assignment.

3 Internal Dynamics and NMR Structure Determination

3.1 Calculating NMR Parameters from Molecular Dynamics Simulations

NMR is a rich source of structural data (inter-atomic distances,angles,and ori-
entations),However, the sensitivity of all structural data obtainable from NMR
experiments to internal dynamics makes them particularly difficult to inter-
pret in structural terms. The measured quantities are averages over time and a
large ensemble of structures, while in a standard structure calculation the
lower and upper bounds refer to instantaneous distances. The calculation of
NMR parameters was one of the first applications of MD simulations, and the
simulations often play a central role in the analysis of biomolecular NMR data
(see recent reviews by Case 2002; Brüschweiler 2003).

MD simulations on peptides are of great interest, since one can perform
fully solvated simulations in the hundreds of nanoseconds range, and the
peptides may show very complicated dynamics, including reversible folding
(Daura et al. 1999; Peter et al. 2001). In these cases, the interpretation of NMR
relaxation data is particularly difficult, and the use of standard methods for
structure determination is bound to fail. However, the direct back calcula-
tion of the complete spectra is possible from long MD simulations, therefore,
there is no need to separate internal and rotational dynamics. The NMR
parameters predicted from the simulation can be directly compared to the
experiments.

3.2 Inferring Dynamics from NMR Data

In terms of structure refinement, this is somewhat unsatisfactory, since one
has to rely entirely on the accuracy of the MD simulations in atomic detail,
and the experimental data do not enter directly. Simulations of sufficient
length are still impossible for larger biological macromolecules. Inferring
dynamics from the (sparse) experimental data during a structure calculation
is difficult, since we require additional data to characterise the molecular
motions in addition to the structure. The structure ensembles generated by
standard structure calculation methods (see the section on sampling confor-
mational space above) are sometimes taken as a reflection of the dynamics
the molecule shows in solution. There are indeed similarities to indepen-
dently performed dynamics simulations (Abseher et al. 1998) and experimen-
tal relaxation parameters (Redfield et al. 1992). Simple contact models suffice
to predict relaxation parameters (Zhang and Brüschweiler 2002; Haliloglu
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and Bahar 1999) with similar quality as detailed MD simulations (Philip-
popoulos et al. 1997). This suggests that this resemblance is caused mostly by
non-specific interactions: On the surface of the molecule, atoms have more
conformational freedom since there are fewer experimental restraints in the
NMR refinement, and also fewer non-bonded contacts.

Refinements with an ensemble of structures (ensemble refinement) or a
trajectory (time-averaged refinement) attempt to account for the conforma-
tional averaging (reviewed by Bonvin et al. 1993a). Care has to be taken to
avoid over-fitting of the data, for example by cross-validation (Bonvin and
Brünger 1995). Clearly, the precise effect of local dynamics on the NMR data
cannot be determined from the data, and MD simulations have shown that
simple conformational averages are an oversimplification (Brüschweiler et al.
1992; Schneider et al. 1999; Peter et al. 2001). It is however difficult to integrate
this knowledge with the experimental data into one consistent picture of a
dynamic structure. One can use correction factors derived from MD simula-
tions (Bonvin et al. 1993b) and other theoretical calculations, such as normal
modes (Brüschweiler and Case 1994).A general framework for the interpreta-
tion of relaxation data from nonfolded and folded proteins has been devel-
oped, using structures generated from MD simulations and principal compo-
nent analysis (Prompers and Brüschweiler 2002).

The major problem with NOE data is that structural and dynamic effects
cannot be separated. Residual dipolar couplings, in contrast, offer new ways to
analyse the internal dynamics of macromolecules. Here, the effects of struc-
ture and dynamics can be separated to first order, and thus a simultaneous
extraction of structural and motional parameters from residual dipolar cou-
pling data becomes possible (Tolman et al. 2001). Alternatively, a simultane-
ous analysis of results from many alignment media can yield dynamic prop-
erties directly from the data (Meiler et al. 2003).

4 Structure Validation

The increased speed of structure determination necessary for the structural
genomics projects makes an independent validation of the structures (by
comparison to expected properties) particularly important (reviewed by
Laskowski et al. 1998). Structure validation helps to correct obvious errors
(e.g. in the covalent structure) and leads to a more standardised representa-
tion of structural data, e.g. by agreeing on a common atom-name nomencla-
ture. The knowledge of the structure quality is a prerequisite for further use of
the structure, e.g. in molecular modelling or drug design.

The quality of structures is largely influenced by the quality of the data
(Doreleijers et al. 1998) and the energy parameters used in the refinement
(Linge et al. 2003 c).Validation programmes check the agreement of the three-
dimensional structure with the experimental data; with the a priori informa-
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tion used in the refinement (e.g. nonbonded contacts, covalent interactions);
and evaluate structural properties that depend directly neither on the data
nor the energy parameters, by comparing the structures to statistics derived
from a database of solved protein structures.

5 Structural Genomics by NMR

While X-ray crystallographers can resolve a protein structure only hours after
data collection at the synchrotron, high-throughput NMR still faces several
technical problems. Data analysis and even storage of all the parameters
involved in NMR structure determination are cumbersome. Despite recent
efforts, chemical-shift assignment and NOE assignment are not yet fully auto-
mated.

5.1 Automated Assignment and Data Analysis

Most approaches to automated NMR structure determination require an
independent chemical shift assignment as a first step. Several approaches
exist to assign at least the backbone resonances automatically (cf. review by
Moseley et al. 1999).

The major bottleneck in the analysis of NMR data and structure calcula-
tion is the assignment of NOESY cross-peaks. The large number of possible
assignments for each peak, overlap and artefacts in the spectra render manual
NOE assignment tedious.An important part of the automatic structure calcu-
lation is data analysis, since incorrect peaks have to be automatically recog-
nised.

Several programmess for automated NOE assignment exist: CLOUDS
(Grishaev and Llinas 2002); CANDID (Herrmann et al. 2002); NOAH
(Mumenthaler 1997); AUTOSTRUCTURE (Montelione et al. 2000); and ARIA
(Nilges and O’Donoghue 1998; Linge et al. 2001, 2003a). CLOUDS does not
require independent chemical-shift assignment and is akin in spirit to direct
methods in X-ray crystal structure determination.

Using the concept of ambiguous distance restraints, our own development,
ARIA, automatically assigns NOEs in an iterative manner (see Fig. 1 for an
overview). ARIA attempts to obtain optimal distance estimates in an efficient
way, by employing a fast spin diffusion correction (Linge et al. 2003 c). This
spin diffusion correction permits the use of tighter bonds for the distance
restraints, facilitating the discrimination between signal and noise. ARIA 2.0
(Habeck et al. 2003) also provides for efficient communication with databases
and supports the collaborative computing project for NMR (CCPN).
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5.2 Collaborative Computing Project for NMR (CCPN)

The CCPN (Fogh et al. 2002) aims to provide services for NMR spectro-
scopists analogous to the highly successful CCP4 project for the X-ray com-
munity. CCPN develops a data model that covers all key areas of macromole-
cular NMR from the initial experimental data to the validation of the final
structures. A data model is a description of the organisation of the data with-
out reference to a particular format. The description of the data and their
relationships are implemented in the UML language (see Fig. 2 for an exam-
ple). CCPN provides software to automatically generate Application Pro-
gramme Interfaces (APIs) for Python and C starting from the UML descrip-
tion. Programmes can directly store, access and share NMR data via the APIs.
This facilitates data inter-change between NMR software, storage, and sub-
mission of NMR data to the PDB and BMRB databases, including ‘data har-
vesting’: all known information about a particular structure determination is
carried forward from one program to another, through all the stages to the
final deposition in the database. Eventually, programs will exchange data
between each other via CCPN. Thus, the user himself does not need to write
any scripts to convert input and output formats.

A first version of the data model is available. The CCPN software suite pro-
vides tools to process raw experimental data, analyse and assign spectra, and
read and write input files for the most common programmes for spectra han-
dling, assignment and structure calculation. The FormatConverter offers a
GUI to manage several files (e.g. for chemical shift lists or cross peak assign-
ments) at the same time.
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(reprinted with permission from Linge et al. 2003a). The most time-consuming step is
the cycle of iterative NOE assignment and structure calculation



Structural Bioinformatics and NMR Structure Determination 131

Force Field

REFERENCE

Topology

DATA

Molecule Experiment

Isotopes

Assignment

Crosspeak

Shift, J ...

A

Chain

+name: String
+oneLetterCode: String

ChemAtom

+name: String
+pseudoAtomName: String
+stereochemistry: String
+nuclGroupType: String
+atomSiteType: String

ChemComponent

+threeLetterCode: String
+name: String
+oneLetterCode: String
+molType: String

Molecule

+serial: Int
+sourceInfo: String
+name: String

MolResidue

+seqID: Int

Residue

+seqID: Int
+resCode: String

Atom

+atomSerial: Int
+name: String

NonPolymer

Polymer

1

*

1

*

*

1

1

*

1

*
1

*

1

1

*

B

Fig. 2. a Overview of the CCPN data model. b Representation of a molecule within the
CCPN data model. (Reprinted with permission from Fogh et al. 2002)



5.3 SPINS

SPINS (standardised protein NMR storage) (Baran et al. 2002) is a relational
database system for NMR data organisation and archiving. It allows for the
storing of all information from the raw NMR data to protein structures and
offers tools to read and write BMRB compliant NMRStar files. SPINS is
already being used in structural genomics projects.

6 Databanks and Databases

Databanks store biological raw data as repositories whereas databases pro-
vide additional annotation and functionality. Examples of databanks are Gen-
Bank (Benson et al. 2003) and EMBL (Stoesser et al. 2003) for primary DNA
sequences and PDB (Berman et al. 2000) for protein structures. SwissProt
(Boeckmann et al. 2003) and FlyBase (FlyBase Consortium 2003) are well-
known databases which provide genetic and functional annotation. Examples
of higher-level databases are PFAM (Bateman et al. 2002), SCOP (Murzin et al.
1995) and KEGG (Kanehisa et al. 2002). All of them have one feature in com-
mon: their fast growth. The aforementioned explosion of data can be quanti-
fied: DNA databases are currently doubling every 9 months. The PDB is
expected to grow faster due to structural genomics efforts (3298 structures
were deposited in 2001, 3381 structures in 2002 with a total of 19,623 entries
at the end of 2002).

An unsolved problem is the integration of biological databases. Since each
database only contains a subset of biological knowledge, databases have to be
combined to gather all of the available information. Several methods to inte-
grate biological databases exist, but technical challenges are enormous (cf.
review by Stein 2003). Link integration is the most common integration
method so far, as employed in the sequence retrieval system (SRS) (Zdobnov
et al. 2002) and Entrez (Schuler et al. 1996). Severe problems are naming
clashes (e.g. genes and gene products using the same name) and stale hyper-
links to outdated database entries.When trying to combine information from
several resources, scientists have to access several web sites (often using “copy
& paste” within different browser windows). Obviously, this approach is
tedious and cannot be scaled up.

The underlying data models of the databases are changing quickly in order to
account for new technological developments and to describe the data in more
detail. Unfortunately, this creates additional problems when accessing their
content (software has to be rewritten, etc.). Furthermore, each database uses its
own vocabulary to describe molecular function or cellular localisation.Even the
meaning of attributes such as protein function may be different, e.g. one data-
base may annotate the protein function of the human Titin protein as muscle
protein,whereas another database may describe its function as kinase.
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Ontologies give hope in overcoming these problems. In information sci-
ence, an ontology is an explicit formal specification of how to represent
objects, concepts, entities that are assumed to exist in some area of interest,
and the relationships among them. Ontologies provide sophisticated vocabu-
lary to describe the key concepts. They do not integrate databases themselves,
but serve as a basis to help in the merging of several databases.

A major problem is error propagation in databanks and databases. DNA
sequences may contain frame shifts, deletions, contaminations from cloning
vectors, etc., functional annotations may be unverified or outdated. PDB
structures often use non-standard atom names. NMR restraint files often
show a different atom-name nomenclature than their PDB structure counter-
parts. This compromises the overall quality and usefulness of the stored data.
Without expert knowledge, a lot of time and money could be wasted.

6.1 BioMagResBank and PDB/RCSB

For NMR, the principal databases for storage of NMR experimental data and
solved structures are the BioMagResBank, and the Protein Data Bank (PDB)
curated by the Research Collaboratory for Structural Bioinformatics (RCSB).
The BMRB stores all non-coordinate biomolecular NMR data (Doreleijers et
al. 2003): chemical shifts, NOEs, coupling constants, residual dipolar cou-
plings (RDCs), hydrogen exchange rates and protection factors, order para-
meters, atomic relaxation parameters, and molecular correlation times. The
PDB is the central repository for all coordinates and also manages restraint
files used for NMR structure calculation (Berman et al. 2000). Most journals
require structures and NMR data to be published in PDB and BMRB.

Exploiting the databases, several methods for the prediction of chemical
shifts, dihedral angles, secondary and tertiary structure have been developed.
A well-known example is the TALOS programme (Cornilescu et al. 1999) for
the empirical prediction of phi and psi backbone torsion angles. The method
exploits a subset of high-resolution X-ray PDB structures for which accurate
NMR chemical-shift data are available. Since the difference between chemical
shifts and their corresponding random coil values is often correlated with
protein secondary structure, TALOS is able to make quantitative predictions
for phi and psi, using only secondary shift and sequence information.

7 Conclusions

NMR is unique in its ability to measure experimental data  on both the struc-
ture and dynamics of biological macromolecules in solution at atomic resolu-
tion. NMR therefore provides valuable input for the functional characterisa-
tion of biological macromolecules. On the other hand, the interpretation of
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the data benefits from bioinformatics infrastructures and tools. Databases
relating structures and dynamics to NMR parameters are useful for interpret-
ing new experimental data. They may reduce the time and the amount of data
necessary for determining a structure or interpreting dynamics data. Metho-
dological advances from the fields of protein 3D structure prediction and MD
simulations have been essential for the development of structural biology by
NMR in the last few decades.
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Bioinformatics-Guided Identification and
Experimental Characterization of Novel RNA
Methyltransferases

J.M. Bujnicki, L. Droogmans, H. Grosjean, S.K. Purushothaman,
B. Lapeyre

1 Introduction

1.1 Diversity of Methylated Nucleosides in RNA

Naturally occurring RNAs contain numerous chemically altered nucleosides.
They are formed by enzymatic modification of the primary transcripts dur-
ing the complex RNA maturation process. To date, a total of 96 structurally
distinguishable modified nucleosides originating from different types of
RNAs from many diverse organisms of the three major phylogenetic domains
of life have been reported (Rozenski et al. 1999); http://medstat.med.utah.
edu/RNAmods; and references therein). The pattern of modifications (type
and location) depends on the RNA molecule considered, as well as, on the
organism or the organelle they originate from. However, the largest number of
modified nucleosides with the greatest structural diversity (a total of 81) is
found in transfer RNAs, especially in tRNAs from higher organisms (Sprinzl
et al. 1998; http://www.uni-bayreuth.de/departments/biochemie/trna). Other
types of RNA (snRNA, snoRNA, rRNA, mRNA) also contain modified nucleo-
sides (see http://rna.wustl.edu/snoRNAdb), however, their occurrence and
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particularly their diversity are lower than in tRNAs (see, for example, Limbach
et al. 1995; Motorin and Grosjean 1998).

Among the naturally occurring nucleoside modifications, base and/or
ribose methylations are by far the most frequently encountered and diverse
(Fig. 1). They arise by single or multiple methylation(s) of an endocyclic car-
bon (like in m5U, m5C, or m2A), an endocyclic nitrogen (like in m3C, m3U,
m1Y, m1A, m1G, m7G, m1I, mimG) or an exocyclic amino group (a nitrogen
like in m4C, m6A, m6

2A, m2G, m2
2G, mnm5U; an oxygen as in mcm5U, mchm5U,

mo5U, mcmo5U, or a sulfur atom like in ms2A). Methyl groups are also present
in the structure of the so-called hypermodified nucleosides which result from
the attachment of a more complex side chain to one atom of the canonical
base (like ms2t6A, m6t6A, m1acp3Y, wybutosine). It can also be bound to the
exocyclic 2¢ oxygen of ribose (Cm, Um, Gm, Am, Im, Ym). In few cases, the
methyl group has been found on both the base and the ribose, leading to
hypermethylated nucleosides, as found in tRNAs from hyperthermophilic
Archaea.A few methyl-derivatives like m1G, m1A, Cm, Gm, Um, m5U are found
in RNAs from all three major biological domains, while all others are clearly
domain-specific. This suggests that only some of the corresponding modifi-
cation enzymes may have a common evolutionary origin, while the majority
of the other ones have evolved after the emergence of the three domains (Cer-
makian and Cedergren 1998).

Despite an impressive amount of research, the function of methylated
nucleosides is poorly understood. Generally speaking, the presence of methyl
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Fig. 1. Type of post-transcriptional methylated derivatives in cellular RNAs. Conven-
tional numbering of each atom in the pyrimidine and purine rings are shown. Func-
tional groups that are characteristic of each type of modified nucleoside derivative are
boxed. Only the methyl groups that arise from an identified or still putative MTases are
underlined. The conventional symbols of each modified nucleoside are in brackets. Fur-
ther information on the structure, occurrence and location of each methylated nucleo-
sides in RNAs and corresponding literature citations can be found in Limbach et al.
(1994)



groups in the RNA molecules changes a local chemical microenvironment by
increasing hydrophobicity, but also by increasing polarity as in positively
charged m1A and m7G. These discrete chemical changes may help the RNA to
fine tune its folding into a functional 3D architecture, and avoid misfolding or
improving its recognition by proteins (maturation enzymes, structural pro-
teins, aminoacyl-tRNA synthetases, initiation or elongation factors, etc.).
Therefore, depending on their locations in the RNA molecules, one can expect
the attachment of a methyl group to have more influence on one or the other
of these properties. In the case of 2¢-O-methyl ribose derivatives, this can also
protect against nucleolytic degradation, while in eukaryotic cells, methylation
could promote efficient transport of pre-rRNAs to the cytoplasm (for reviews
see: Agris 1996; Bjork 1995; Curran 1998; Davis 1998).

1.2 RNA Methyltransferases

RNA methylation is carried out by a diverse group of RNA methyltransferases
(MTases). S-adenosyl-L-methionine (AdoMet) is the most common methyl
donor of a majority of RNA MTases identified so far. However, in some
instances, the methyl groups have been shown to originate from folic acid
(5,10-methylenetetrahydrofolate coupled with FADH2), as for the enzymatic
formation of m5U in tRNA from B. subtilis or S. faecalis (Romeo et al. 1974).

Hitherto, the RNA MTase activity has always been found associated with a
protein enzyme (a single molecule or a protein complex). With respect to the
target specificity (i.e., recognition of the nucleoside(s) to be methylated),
there are, however, two major distinct mechanisms for RNA methylation. In
the first mechanism, an “all-protein enzyme” can be site-specific, region-spe-
cific or multisite-specific, depending on the complexity and occurrence of the
target-structural motif within the various RNA molecules (see Pintard et al.
2002b for a few examples). In the second mechanism, the modification is per-
formed by a ribonucleoprotein (RNP), in which a protein carries out the cat-
alytic activity, but the recognition is ensured by a guide RNA and few acces-
sory proteins bound to the guide RNA. The advantage of this second system is
that a single MTase bound to different guide-RNAs can catalyze methylation
at various different positions in a given RNA and also in different RNAs. To
date, RNA-guided modification has been identified only for ribose methyla-
tion and pseudouridine formation (review: Terns and Terns 2002).

For a mechanistic reason, enzymes that methylate different types of atoms
of a particular nucleoside may possess different active sites and use different
reaction chemistry. The same methylated nucleoside in different RNAs or in
different positions of a given RNA are often catalyzed by distinct type- and/or
site-specific enzymes. Also, certain phylogenetically conserved methylated
residues in a given position of an RNA molecule but of different organisms
can be generated by distinct mechanisms. For example, 2¢-O-methylation of
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ribose at position 34 in the majority of archaeal pre-tRNATrp are catalyzed by
a special MTase within a multiprotein complex that uses the internal comple-
mentary sequence of the intron-containing pre-tRNA as a guide to target the
methylation reactions (Clouet d’Orval et al. 2001). The same 2¢-O-methyl
ribose in S. cerevisiae is generated by a single protein (Trm7p, see below),
which carries both the RNA recognition capacity and the catalytic activity
(Pintard et al. 2000). Moreover, some RNA MTases fulfill other functions
rather than just the methylation of specific atoms within RNA. In few cases it
was demonstrated that the catalytic activity of a given MTase can be abolished
by site-directed mutagenesis without affecting the growth rate of the mutated
cells, while the disruption or the deletion of the corresponding ORF within
the genome lead to severe slow growth rate or even to lethality probably due
to a defect in the “RNA quality-control” function of some MTases (Lafontaine
et al. 1998; Johansson and Bystrom 2002).

1.3 Structural Biology of RNA MTases and Their Relatives

Most of the known MTases, whose structures were solved by X-ray crystallog-
raphy or NMR (currently over 30 structures in the Protein Data Bank) belong
to a large superfamily related to Rossmann-fold proteins (denoted as RFP;
Bujnicki 1999; Fauman et al. 1999). Compared to RFP, Rossmann-fold MTases
(RFMs) exhibit a characteristic insertion of the C-terminal 7th b-strand into
the common central b-sheet: 6-7-5-4-1-2-3. The “classical” RFPs, which bind
NAD(P), and the RFMs, which bind AdoMet, use structurally equivalent and
evolutionarily conserved cofactor-binding sites (between  strands 1, 2 and 3)
and they interact with the adenosine and ribose moieties of their ligands in a
very similar manner. Typical RFM, acting on RNA, comprises the common
catalytic domain and an auxiliary domain, often involved in substrate/target
recognition (hence dubbed TRD, for target-recognition domain) or some-
times in oligomerization. TRDs of different RFMs are usually unrelated to
each other and to any known domains in the database. Some RFMs lack aux-
iliary domains and use protuberances of the catalytic domain to recognize
and bind their substrates (Fauman et al. 1999).

According to crystallographic and/or bioinformatic analyses, most of the
experimentally studied RNA MTases belong to the RFM superfamily and
include enzymes that generate a wide variety of methylated bases and ribose-
2¢-O-methylated nucleosides (Table 1). RFM enzymes are typically mono-
meric, although di-, tri-, or tetrameric structures have been reported; among
the crystal structures of RNA MTases, Mj0882 forms a homodimer and
Rv2118 c forms a homotetramer.

There are several superfamilies of AdoMet-dependent MTases, which nei-
ther share the RFM/RFP fold nor are structurally or evolutionarily related to
one another (review: Schubert et al. 2003). The activation domain of methio-
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nine synthase (MetH) (Drennan et al. 1994) and the B12 biosynthetic
enzyme CbiF (Schubert et al. 1998) are single examples of structurally char-
acterized representatives of superfamilies with alternative folds that can sup-
port AdoMet-dependent methyltransfer reactions (reviews: Dixon et al.
1999). Several members of the SET superfamily (all protein-lysine MTases)
have been recently characterized structurally and functionally (review: Mar-
morstein 2003). It remains to be shown whether there are any RNA MTases
that belong to these superfamilies; to date, no such relationship has been
reported.

Recently, another superfamily of AdoMet-dependent MTases has been
defined based on bioinformatics analyses and dubbed SPOUT from the two
major lineages: SpoU (catalyzing 2¢-O-ribose methylation in tRNA) and TrmD
(catalyzing the formation of m1G in tRNA)(Anantharaman et al. 2002b).
SPOUT MTases comprise two domains, which exhibit different spatial
arrangements. The large, catalytic domain common to all these enzymes (the
actual SPOUT domain) exhibits a novel and unusual a/b fold with a deep knot
(topology of the central b-sheet: 6-4-5-1-2-3; AdoMet is bound between the
strands 4 and 5). The smaller domain is not conserved and exhibits structural
similarity to various unrelated RNA-binding proteins; it can be found either
fused N-terminally to the catalytic domain, or inserted into it.YibK is a “min-
imal” member of the SPOUT superfamily, which comprises only the catalytic
domain. Figure 2 shows the RFM and SPOUT folds of catalytic domains of
RNA MTases. All structurally characterized SPOUT MTases form homo-
dimers. Five structures of SPOUT-superfamily members have been reported
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Fig. 2. Comparison of the RFM and SPOUT folds of catalytic domains of RNA MTases. a
The catalytic domain of rRNA:m6A MTase ErmC¢ (Schluckebier et al. 1999), b putative
MTase YibK (Lim et al. 2003). The position of the cofactor is indicated. The consecutive
b-strands are numbered from the N-terminus to the C-terminus, revealing different
topologies of these two MTase folds



to date (Table 1), however, only two of them have been characterized bio-
chemically (including determination of the substrate specificity), while the
function of the others remains putative.

2 Traditional and Novel Approaches to Identification of New
RNA-Modification Enzymes

The first RNA modification enzyme that was identified in the 1960s by Borek
and coworkers was a tRNA MTase. Using RCRel mutants of E. coli which accu-
mulate undermodified RNAs during methionine starvation, Borek’s group
showed for the first time that an AdoMet-dependent enzyme can mediate
methylation in vitro of specific bases in macromolecular precursors of RNA,
i.e., posttranscriptionally after polynucleotide synthesis, which at that time
was not evident at all (Fleissner and Borek 1962). The tRNA:m5U MTase
(RUMT) was renamed as TrmA after the corresponding gene in the E.coli
genome was identified (Persson et al. 1992). It catalyzes the formation of the
almost universal m5U at position 54. Later, using the sequence information of
the bacterial enzyme, the orthologous gene (and the corresponding enzyme)
was identified in yeast (Nordlund et al. 2000).

For almost three decades, identification and purification of an RNA modi-
fying enzyme, as well as, the assignment of its corresponding structural genes
within a genome were  daunting tasks. The main reason was that these
enzymes are usually present in the cell at low level and are therefore difficult
to purify to homogeneity.Also, tools to generate transcripts of synthetic genes
allowing easy detection of the enzymatic activity in vitro were lacking
(review: Grosjean et al. 1998). Nevertheless, a few RNA modifying enzymes
were identified and purified from cellular extracts by standard chromato-
graphic techniques (Garcia and Goodenough-Lashua 1998). Also, classical
genetic approaches, coupled with screening depending on translational sup-
pression or resistance to selected antibiotics, allowed for identification of a
few genes corresponding to RNA modifying enzymes, including MTases,
mostly in E.coli and Salmonella thyphimurium (review: Winkler 1998).

Nowadays, such “classical” biochemical and genetic methods for identifica-
tion of new RNA MTases (and other proteins) can be efficiently supplemented
by “reverse genetics” and large-scale “-omics” approaches, including bio-
chemical genomics (Martzen et al. 1999, reviewed in Hopper and Phizicky
2003) and bioinformatics/phylogenomics (Eisen 1998). These two approaches
have proven to be very efficient and complementary in the search for novel
RNA MTases.

In the biochemical genomics approach, a set of clones that express a repre-
sentative of each protein of a proteome is generated (e.g., all ORFs from a
given genome are cloned) and the biochemical function of the corresponding
proteins is analyzed on a genome-wide basis (Martzen et al. 1999; Phizicky et
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al. 2002). For example, Phizicky and coworkers generated an array of 6144
individual yeast strains, each containing a different yeast ORF, N-terminally
fused to glutathione S-transferase (GST) that facilitates the isolation of the
corresponding protein. For the identification of ORF-associated activities,
strains were grown in defined pools, and GST-ORFs were purified. Then,
pools were assayed for activities, and active pools were deconvoluted to iden-
tify the source strains. This method has led to isolation of several novel RNA
modification enzymes such as tRNA:D17 dihydrouridine synthase (Xing et al.
2002), tRNA:m7G46 MTase Trm8p (Alexandrov et al. 2002), and tRNA: m1G9
MTase Trm10p (Jackman et al. 2003). The biochemical genomics has proven
to be exceptionally powerful in isolating “non-conventional” RNA modifica-
tion enzymes that had been predicted by none of the bioinformatics analyses.

In the biochemical genomics approach, the tagged proteins are tested in
relatively small pools (using 96 wells boxes), hence a theoretical limitation
could be that the complexes formed by the association of several protein sub-
units and/or other macromolecules like RNA as in RNP would be missed. This
has proven not to be the case experimentally, since Trm8p, which was isolated
by this method, is part of an heterodimer with Trm82p. Apparently, there was
enough Trm82p contaminating the preparation for Trm8p to be active
(Alexandrov et al. 2002). A serious limitation of the biochemical genomics
approach is that the tagged enzymes have to be active in vitro on the substrate
that is provided for the test, and this is not always the case. For instance when
tagged on its N-terminus, the tRNA MTase Trm7p (identified by bioinformat-
ics; see below) has been found to be inactive (L. Pintard, F. Lecointe, H. G. and
B.L., unpubl. data).

The bioinformatics/phylogenomics approach, which relies on the compu-
tational (comparative) analysis that combines genome sequence information
and phylogenetic studies, will be reviewed in detail in this chapter. It has
advantages over the biochemical genomics approach, since the initial screen-
ing procedure does not require manipulation of the gene or  handling of the
recombinant protein, which is sometimes an endless source of difficulty.
However, it is also very limited by the experimental data available at a certain
time that will drive the search for new candidates, and by the database, in
which the new candidates are sought. In practice, two types of computational
analyses have been used to predict biological function for uncharacterized
ORFs: the “homology” and “non-homology” methods are summarized below.

3 Bioinformatics: Terminology, Methodology, and
Applications to RNA MTases

Homology is defined as a synonym of common evolutionary origin, i.e., all
genes that have arisen from a common ancestor are homologous. Genes in
different species that originate from a single gene in the last common ances-
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tor of these species are termed orthologs. Orthologous genes have often very
similar biological roles in the present-day organisms. Homologues generated
by gene duplication are termed paralogs – they often share the same generic
function, such as the type of the reaction catalyzed, but may differ in certain
details, such as specificity towards different substrates. Typically, homologous
genes can be grouped into families and superfamilies, in which the majority of
members share the same function (e.g., pseudouridine synthases, adenosine
deaminases, dihydrouridine synthases, tRNA-splicing nucleases – to name
but a few families of enzymes involved in RNA modification and processing).
In the homology-based approach, the inference of common evolutionary ori-
gin is used to hypothesize a common function, which can be transferred
between the experimentally characterized member of the family and other
members, for which only sequence information is available.

Sometimes homologous gene products have strong sequence similarities,
so that the inference of homology is straightforward. This is especially the
case when orthologs from closely related species are compared. A BLAST
(Altschul et al. 1990) or FASTA (Pearson and Lipman 1988) search of a
sequence database can reveal potential homologues of the “query” sequence
together with pairwise alignments and an estimation of the statistical signifi-
cance of similarities. However, accumulation of multiple substitutions in the
course of the divergent evolution can make two homologous sequences as dis-
similar as any two proteins chosen randomly from the database. Several
bioinformatics approaches have been developed to identify remote homology
in the absence of pairwise sequence similarity; one of the most popular meth-
ods is protein fold recognition (FR; reviewed in another chapter of this vol-
ume). Briefly, FR detects homology based on a combination of evolutionary
criteria (conservation of key residues in multiple sequence alignments) and
structural considerations (similar linear patterns of secondary structure ele-
ments or estimation of the physico-chemical compatibility of one protein’s
sequence with another protein’s three-dimensional structure). FR methods
can be used virtually in the same manner as traditional methods for sequence
database searches, with the key difference: the database to be searched by FR
comprises only proteins with experimentally determined structures rather
than all known protein sequences. Hence, the availability of a related struc-
ture in the Protein Data Bank is an essential (but not sufficient) precondition
for the success of FR-based identification of homology.

However, homology is defined on the basis of evolution, rather than func-
tion. On the one hand, homologues can fulfill different functions and share
only very general similarities; even orthologs may fulfill non-identical roles
(reviews: Todd et al. 2002; Rost 2002). On the other hand, numerous cases of
very remote homologues or even non-homologues, which developed the same
function “by convergence” have been reported (Koonin et al. 1996; Galperin et
al. 1998). Moreover, orthology is not necessarily a one-to-one relationship
because a single gene in one genome may correspond to a whole family of
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paralogs in another genome (which may be functionally diversified; see
examples below). Hence, there is a pitfall of over-prediction (i.e., too specific
functional assignment) to be avoided when annotating ORFs’ function by
homology, using either simple or sophisticated bioinformatics tools.

The so-called non-homology methods rely on properties shared by func-
tionally-related proteins other than the hallmarks of homology, i.e., sequence
or structural similarity. Instead, conserved gene position (similar genomic
neighbors), fusions with domains of similar function, correlation in gene
occurrence (shared “phyletic patterns”), co-evolution, or co-expression is
sought. These methods can predict functions for ORFs that are without char-
acterized homologues (reviews: Marcotte 2000; Galperin and Koonin 2000).
However, the types of functional predictions also differ from what might be
learned from detection of homology.

The domain fusion method finds functional relationships of ORFs found
separately in one genome by identification of their co-occurrence as a single
ORF (i.e., fused protein) in another genome (Marcotte et al. 1999). Similarly,
the products of ORFs can be predicted to interact (physically and/or func-
tionally) if they are repeatedly found as neighbors in different genomes
(Overbeek et al. 1999). Such co-occurring ORFs typically encode subunits of
a multi-protein complex or components of an enzymatic pathway. However,
it has been suggested that in prokaryotic genomes, some genes are main-
tained within operons because of the advantage of expression at a level that
is typical of the given neighborhood rather than because of functional asso-
ciation (Rogozin et al. 2002). Co-operating or interacting proteins be also be
identified by detection of families with similar phylogenetic profiles i.e., cor-
related patterns of inheritance (presence or absence) in known genomes
(Pellegrini et al. 1999). Likewise, proteins involved in some specific biologi-
cal process can be identified by studying the correlation of their phyloge-
netic profile with the presence or absence of a particular phenotype (Huy-
nen et al. 1998).

Typically, the non-homology methods offer only very general functional
predictions in terms of metabolic pathways or multi-protein complexes,
rather than inference of a specific biochemical activity. However, if the ana-
lyzed ORF or some of its identified interaction partners have a known func-
tion (or if their biochemical function can be predicted based on homology),
the prediction of specific biochemical functions can be extended to other
putative components of a complex or a pathway.

Two general approaches (termed top-down, and bottom-up) have been
developed for identification of proteins with a desired function ; these
approaches combine various homology and non-homology methods (Fig. 3).
These approaches can be applied to guide experimental characterization of
virtually any protein superfamily; here, we describe their application to iden-
tify new candidates for RNA MTases and predict their function as specifically
as possible.
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3.1 The Top-Down Approach

The top-down approach has been traditionally used to identify relatives of a
newly identified and functionally characterized protein. It involves database
searches with the functionally characterized protein’s sequence as a “query”,
with the aim of identification of its orthologs in different organisms (likely to
share the same function) and paralogs (likely to share the general function,
but for instance exhibit different specificity). The specific aim of the top-down
analysis is typically to identify close relatives of a known (often, newly char-
acterized) protein, which may exhibit a slightly different function, for
instance, the same activity (to be verified with a similar assay as used for the
“founding member” of the family), but different substrate specificity. Often,
proteins with a specific function, closely related to the function of another,
known protein, are sought. The precondition for this type of analysis is the
knowledge of the molecular mechanism of the “query” protein and the ability
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to classify its homologues into proteins with (potentially) similar mecha-
nisms of activity and proteins with different mechanisms. For instance, the
knowledge of residues forming the active site may be essential to recognize
enzymes that catalyze a given type of RNA methylation and distinguish them
from MTases that catalyze different types of reaction. The “non-homology”
analysis in the top-down approach is usually limited to help with the predic-
tion of the subcellular localization of individual members of the family or
their putative association with some known metabolic pathway or a protein
complex.

All early bioinformatic analyses of RNA MTases were carried out accord-
ing to the top-down approach and involved iterative and/or transitive
searches of genome sequences. Typically, the BLAST program (or its iterative
version, PSI-BLAST) (Altschul et al. 1997) was used to identify homologues
of a query with a known, recently identified function, and some of these
homologues were further used as new, additional queries. Using this
approach, Koonin and Rudd have identified a family of homologues of SpoU
and predicted that they all share a function of rRNA 2¢-O-MTase determined
for one functionally characterized member of a family, Tsr from Strepto-
myces azureus (Koonin and Rudd 1993). Subsequently, it has been shown
that SpoU (renamed as TrmH) is in fact a tRNA:Gm18 2¢-O-MTase (Persson
et al. 1997). Subsequent “top-down” analysis carried out for a larger database
by Bachellerie and coworkers, revealed additional putative RNA 2¢-O-MTases
from Bacteria, Archaea, and Eukaryota (Cavaille et al. 1999). Finally, the
aforementioned analysis by Koonin and coworkers (Anantharaman et al.
2002b) allowed for linkage of the SpoU family of 2¢-O-MTases with the TrmD
family of tRNA:m1G MTases and with a few other families of uncharacter-
ized proteins. The conservation of the putative cofactor-binding site in the
newly defined SPOUT superfamily implied the common MTase function of
all its members; nonetheless, the lack of conservation in the active site sug-
gested that their specificities may be different (and not predictable from
homology alone).

The top-down approach has also been used by Santi and coworkers to iden-
tify new candidates for RNA:m5U MTase, and SpoU-related RNA:2¢-O-MTases
(Gustafsson et al. 1996) and RNA:m5C MTases (Reid et al. 1999), by Phizicky
and coworkers to identify orthologs of their biochemically-discovered fungal
tRNA:m7G46 MTase (Alexandrov et al. 2002) and new paralogs of tRNA:m1G9
MTase (Jackman et al. 2003), and by Bujnicki and coworkers to identify new
putative base-MTases with the following potential specificities: RNA:m7G
(Bujnicki et al. 2001), RNA:m2G (Bujnicki 2000; Bujnicki and Rychlewski
2002b), tRNA:m1A (Bujnicki 2001a), RNA:m2

2G (Bujnicki et al. 2002 c), 23S
rRNA:m1G (Bujnicki et al. 2002a), RNA:m6A (Bujnicki et al. 2002b), and vari-
ous 2¢-O-MTases that belong to the RFM superfamily rather than the SPOUT
superfamily (Bujnicki and Rychlewski 2000, 2002a; Pintard et al. 2002a, b;
Feder et al. 2003). The analysis of m5C, m1A and 2¢-O-MTases combined with
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experimental studies has prompted and guided identification and characteri-
zations of several novel MTases, which will be described in more detail below,
as “case studies”.

3.1.1 Top-Down Search for Novel RNA:m5C MTases in Yeast

In all eubacterial organisms, 5-methylribocytosine (m5C) has been found
only in ribosomal RNAs. For example, two m5C residues were located at posi-
tions 967 and 1407 in E. coli 16S rRNA and one at position 1962 in 23S rRNA
(Smith et al. 1992), whereas none of the E.coli tRNAs sequenced so far contain
m5C (Sprinzl et al. 1998). In contrast, in Eukaryota and Archaea, m5C is found
in both tRNAs and rRNAs. In particular, in yeast tRNAs, m5C is found at four
positions (34, 40, 48 and 49), but the most frequently occurring cluster of m5C
residues is located at positions 48 and 49 at the border of the variable loop
and the T-stem (review: Auffinger and Westhof 1998).

The first member of the RNA methyltransferases family catalyzing such a
reaction in E.coli rRNA was found independently by two groups using two
different approaches. Koonin (1994) predicted that a family comprised of the
human proliferation-associated nucleolar protein P120 and the product of
the bacterial fmu/fmv/SUN gene is made up of RNA MTases. Guided by this
prediction, Santi and his group  cloned, expressed the E. coli Fmu protein
and tested its activity in vitro using [3H]AdoMet and various RNA tran-
scripts as substrates. The identity of the methylated residue was rigorously
established by chromatographic analysis allowing for the claim that Fmu
(now renamed RsmB) is indeed an m5C-MTase acting exclusively at position
967 of E.coli 16S rRNA (Gu et al. 1999). Independently, Ofengand and
coworkers used a “classical” biochemical approach. They purified a protein
from the E.coli extract that catalyzes the formation of m5C at position 946 in
16S rRNA. After verification of the specificity of the newly purified enzyme
using in vitro produced 16S rRNA transcript as a substrate, the N-terminus
of the protein was micro-sequenced. The resulting peptide sequence was
then used as a query to identify the corresponding gene (Fmu) in the E.coli
genome (Tscherne et al. 1999).

Subsequently, the sequence of RsmB was used to search for homologous
proteins (potential RNA:m5C MTases) in the S. cerevisiae genome. This top-
down approach allowed for the detection of three yeast proteins with obvious
sequence similarity to RsmB: (1) YNL061w/Nop2p, a nucleolar protein impli-
cated in the rRNA maturation of 26S ribosomal RNA (Hong et al. 1997); (2) an
uncharacterized ORF YNL022 c; and (3) YBL024w/Ncl1p, a non-essential
nuclear protein (Wu et al. 1998). It was found that the Ncl1p protein catalyzes
the formation of m5C at four different positions (34, 40, 48 and 49) in tRNAs
and hence it was renamed Trm4p (Motorin and Grosjean 1999). That only
Trm4p is responsible for the formation of all the m5Cs in the various S. cere-
visiae tRNAs, was confirmed by the deletion experiment. Thus, based on a
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bioinformatic prediction of a general function (RNA MTase) for Fmu and
experimental determination of its specificity, a family of eukaryotic m5C
MTases was identified.

3.1.2 Top-Down Search for Bacterial and Archaeal m1A MTases

The methylated nucleoside 1-methyladenosine (m1A) is found in the T-loop
of tRNAs from many organisms belonging to the three domains of life (Bacte-
ria, Eukarya and Archaea). In eukaryotic and bacterial tRNAs, m1A is present
at position 58, whereas in archaeal tRNAs it is present at position(s) 58 and/or
57. Archaeal m1A57 is an obligatory intermediate in the biosynthesis of 1-
methylinosine (m1I57). In contrast to the biosynthesis of m1I37 in the anti-
codon loop of S. cerevisiae tRNAs, which proceeds by a deamination of A to I,
followed by a methylation step, the biosynthesis of m1I57 in archaeal tRNAs
proceeds by the methylation of A57 into m1A57, followed by a deamination
leading to m1I57 (reviewed in Grosjean et al. 1996). The enzyme responsible
for the m1A modification has been studied for a long time using cell extracts
or (semi-)purified enzymes from a variety of organisms: mammals, Tetrahy-
mena pyriformis, Dictyostelium discoideum, Thermus flavus and Thermus
thermophilus (reviewed in Garcia and Goodenough-Lashua 1998)). However,
the genes encoding these tRNA:m1A MTases remained unidentified.

A major breakthrough in the identification of the genes encoding
tRNA:m1A MTases was made by Anderson et al. (1998), who were character-
izing mutations affecting the regulation of the S. cerevisiae GCN4 gene
encoding a transcription factor acting as a general regulator of amino acids
biosynthesis. The expression of GCN4 itself is a highly regulated process that
involves translational control. The GCN4 messenger RNA contains four short
ORFs upstream of the main GCN4 ORF, and translation of these short ORFs
controls the level of GCN4 translation. A series of trans acting mutations
were obtained (called gcd mutations) leading to the translational derepres-
sion of GCN4 translation. Among the different gcd mutations were gcd10 and
gcd14 which were found to affect the maturation of the initiator tRNA. A
more detailed analysis showed that the formation of m1A in tRNAs is
affected in the gcd10 and gcd14 mutants (Anderson et al. 1998). The Gcd10p
and Gcd14p proteins form a nuclear complex with tRNA:m1A MTase activ-
ity, in which Gcd14p (now renamed Trm6a) is responsible for transferring
the methyl group from AdoMet to tRNA whereas Gcd10p (now renamed
Trm6b) is required for tRNA binding (Anderson et al. 2000). These results
confirmed a previous computational sequence analysis suggesting that only
Trm6a, and not Trm6b possesses conserved motifs typical of the RFM fam-
ily of MTases (Calvo et al. 1999).

A top-down approach allowed for the identification of Trm6a orthologs in
a variety of organisms belonging to the three domains of life. In contrast,
Trm6b orthologs were found only in Eukaryota (Bujnicki 2001a). Moreover,

J. M. Bujnicki et al.152



protein fold-recognition analysis revealed that the Trm6a and Trm6b families
are evolutionarily related and probably evolved from a common ancestor
(after a gene duplication in the ancestor of extant Eukaryota). Therefore, the
archaeal and prokaryotic tRNA:m1A MTases were postulated to be homomul-
timers of a Trm6a-like polypeptide (Bujnicki 2001a). This hypothesis was
reinforced after the resolution of the crystal structure of a bacterial Trm6a
homologue, the Rv2118 c protein from Mycobacterium tuberculosis (Gupta et
al. 2001). The crystal structure revealed that Rv2118 c exhibits an RFM fold,
that it binds AdoMet and forms a homotetramer corresponding to a weak
dimer of strong dimers. Nonetheless, the MTase function of Rv2118 c has not
yet been demonstrated.

Guided by bioinformatics, bacterial and archaeal homologues of Trm6a
have been cloned and characterized functionally. As expected, the bacterial
protein cloned from Thermus thermophilus genomic DNA (termed TrmI)
turned out to be a homotetrameric, site-specific AdoMet-dependent MTase,
able to methylate m1A58 in tRNA in the absence of any other protein (Droog-
mans et al. 2003). Surprisingly, the archaeal ortholog of TrmI (cloned from
Pyrococcus abyssi) was found to exhibit not only the m1A58, but also the
m1A57 specificity (Droogmans and coworkers, unpublished data). The latter
finding was quite surprising: a typical non-homology approach aimed at the
identification of an Archaea-specific RNA modification enzyme would sug-
gest searches for an Archaea-specific gene. This study suggested that a func-
tion specific to a given phylogenetic lineage could be in fact conferred by a
“moonlighting” protein (Jeffery 1999), which developed a novel activity, while
maintaining the original one.

3.1.3 Top-Down Search for Novel Yeast 2'-O-MTases

In yeast, ribose methylation is guided mainly by the numerous snoRNA that
base-pair with their cognate targets onto the pre-rRNA precursor. Several
lines of evidence suggest that Nop1p is the major snoRNA-dependent rRNA
MTase (Tollervey et al. 1993; Wang et al. 2000). However, there are still a few
ribose methylations for which no guide RNA has yet been identified (Lowe
and Eddy 1999). One of these orphan nucleosides is located within the cat-
alytic site of the large rRNA molecule, at the peptidyl-transferase center. Not
only was this structure  highly conserved throughout the evolution, but the
very same nucleoside – a uridine at the 5¢ end of the loop – is always 2¢-O-
methylated (Fig. 4). Interestingly, in E. coli, the homologous position (Um2552)
of the 23S rRNA has been shown to be specifically methylated by RrmJ, an
RFM-superfamily enzyme that belongs to an heat-shock operon (Caldas et al.
2000).

Top-down sequence searches, initiated with RrmJ revealed a large family of
proteins from Bacteria,Archaea, Eukaryota and various viruses, characterized
by a common K-D-K-E tetrad of residues separated in a primary sequence,
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but adjacent in space in the RrmJ crystal structure (Bugl et al. 2000; Feder et
al. 2003). Phylogenetic studies revealed that RrmJ is the closest prokaryotic
homologue of Spb1p, a nucleolar protein involved in 25S rRNA maturation in
yeast (Kressler et al. 1999; Pintard et al. 2000). Interestingly, the top-down
search revealed that the yeast genome encodes two additional proteins with
striking similarities to RrmJ/Spb1p, namely Mrm2p and Trm7p. Mrm2p has
recently been shown to be a mitochondrial ortholog of RrmJ and to methylate
position U2791 of the peptidyl-transferase center that corresponds to U2552 in E.
coli (Pintard et al. 2002a). Figure 4 shows a secondary structure representation
of the hairpin loops (in the E. coli 23S rRNA, the S. cerevisiae 28S rRNA and
the yeast mitochondrial 21S rRNA) that contain the methylated nucleoside
always located at the same position. Taken together, these results strongly
suggest that the position of the peptidyltransferase center of the large rRNA is
modified by site-specific enzymes rather than by the snoRNA-guided mecha-
nism, perhaps since this well conserved position plays a key role, different
from all other 2¢-O-methylations.

The functions of Spb1p (a nucleolar protein involved in 25S rRNA matura-
tion), and Mrm2p (a mitochondrial protein involved in 21S rRNA ) were quite
obvious (methylation of the same position in orthologous rRNA molecules),
the function of Trm7p was quite puzzling.A key experiment – the demonstra-
tion that Trm7p is mostly cytoplasmic – has limited the search for its sub-
strates to the sole RNA known to be modified within the cytoplasm (Pintard
et al. 2002b). Obvious candidates were tRNAs, for which certain modifications
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occur after their export from the nucleus. There are striking similarities
between the anticodon loop of certain tRNA that are 2¢-O-methylated and the
peptidyl transferase center of the rRNA recognized by FtsJ, Mrm2p and pos-
sibly Spb1p. One major difference is the length of the loop that is seven
nucleotides long in tRNA as compared to 5 nucleotides in rRNA. However,
once methylated, nucleotide at position 32 can base pair with the nucleotide at
position 38 therefore reducing the length of the loop to five nucleotides, ren-
dering it more like the rRNA loop (Auffinger and Westhof 2001). It turned out
that Trm7p is required for the formation of both Cm32 and Gm34 in tRNAPhe,

Tyr and Leu (Pintard et al. 2002b). Interestingly, the kinetics of the two reactions
are different, Cm32 being made rapidly and without delay, while Gm34 is
made more slowly and after a long delay. This observation suggested that the
reaction could be sequential, Cm32 being first catalyzed, then this modifica-
tion would be followed by a structural rearrangement of tRNA that would
expose G34 to the action of the enzyme. A homology model of Trm7p was
built, to which the tRNAPhe structure was docked. Strikingly, only the mature
form of the tRNA fits well with the modeled structure, exposing the 2¢-OH
group of the ribose to the methyl group of AdoMet bound to the enzyme. In
sharp contrast, the 2¢-OH group of ribose at position 32 is not accessible to the
enzyme when the tRNA has already adopted its mature 3D structure. This
suggested that the tRNA is being modified at position 32 prior to the adoption
of its mature 3D-structure, when its structure is still flexible enough to expose
its 2¢-OH group to the action of the enzyme. Then, after methylation of posi-
tion 32, base pairing between nucleotides 32 and 38 would take place and the
tRNA structure would flip and adopt its more rigid mature structure. Only
then would modification of position 34 take place, therefore explaining the
different kinetic reactions. This view is supported by the observation that for-
mation of Cm32 is not very sensitive to mutations affecting tRNA secondary
structure, while formation of Gm34 is strongly dependent on the rigid struc-
ture adopted by the mature tRNA (F. Lecointe and H.G., unpubl. results). It is a
noteworthy point  that the protein produced in E. coli had no activity in vitro,
suggesting that certain modifications achieved in eukaryotic cells are essen-
tial for the enzyme to become active. Alternatively, it is conceivable that
Trm7p requires some other cellular components as is the case for the afore-
mentioned heterodimeric tRNA MTases Trm6a/Trm6b (alias Gcd10p/
Gcd14p) (Anderson et al. 2000) or Trm8/Trm82 (Alexandrov et al. 2002).

3.2 The Bottom-Up Approach

The bottom-up approach aims to identify  as many members of a protein
superfamily in a given genome (or set of genomes) as possible. Typically, the
generic function is predicted first (by detection of distant homology) and the
functional details (up to the level of specificity) are predicted by combination
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of homology and non-homology methods. This type of analyses is typically
intended to provide a large number of potential candidates with only “crude”
functional prediction, for experimental testing and determination of bio-
chemical function.

Here, we will focus on the bottom-up prediction of RNA MTases in the
yeast genome. The earliest genome-wide analysis of potential MTases among
yeast ORFs did not specifically focus on RNA methylation and involved sim-
ple identification of proteins that possess motifs conserved in the RFM super-
family (four of the most conserved motifs were selected out of a total of nine)
(Niewmierzycka and Clarke 1999). The search resulted in 33 candidate ORFs
with identifiable motifs. Seven of these ORFs turned out to be known MTases
(the authors note that they failed to detect motifs in several genuine MTases),
while the other 26 so-called good and marginal matches were put forward for
experimental analysis. Disruptions were made in seven of the corresponding
genes, revealing one lethal and two slow growth phenotypes. One of the
mutants showed a methylation defect of a novel type of arginine derivative,
leading to the prediction of the specificity of the corresponding enzyme, ulti-
mately confirmed by its biochemical characterization (Niewmierzycka and
Clarke 1999).

Recently, a large-scale analysis of candidate proteins involved in RNA
metabolism has been presented by Anantharaman et al. (2002a). Their analy-
sis involved different types of enzymes and non-enzymes and all prokaryotic
and eukaryotic genomes available, naturally including also RNA MTases and
the yeast genome. They used exhaustive iterative searches of sequence data-
bases queried by representatives of all known families of proteins implicated
in RNA metabolism. All sequences retrieved from the searches were pooled
together and potential orthologous sets were delineated by clustering
(according to BLAST scores, as implemented in BLASTCLUST). The initial
groups of orthologs and paralogs were corrected and optimized by multiple
sequence alignment analysis and phylogenetic tree reconstruction. The
domain architecture of each individual protein was then determined by com-
parison with multiple sequence alignments of all known protein domains.
Finally, the conservation of functional complexes and pathways was assessed
by combining the results of protein domain analysis with the experimental
evidence extracted from the literature. Detection of homologues of proteins
involved in RNA metabolism required corrections to exclude those domains
and proteins that were known to be primarily involved in DNA metabolism.A
distinction between RNA and DNA MTases, whose catalytic domains are
often very similar, was made based on the non-homology criteria: RNA
MTases are typically highly conserved (both with respect to the protein
sequence and phylogenetic distribution) and are often associated with known
RNA-binding domains, such as PUA (Aravind and Koonin 1999), S4 (Staker et
al. 2000), THUMP (Aravind and Koonin 2001), or TRAM (Anantharaman et
al. 2001). On the other hand, DNA MTases are typically found associated with
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restriction endonucleases in restriction-modification systems (review:
Bujnicki 2001b), exhibit sporadic phylogenetic distribution due to intense
horizontal gene transfer (Jeltsch and Pingoud 1996) and have never been
found to contain RNA-binding domains. For a few putative MTase families,
Anantharaman et al. predicted the RNA MTase function based on the identi-
fication of fusions with known RNA MTases, other RNA modification
enzymes, or with known RNA-binding domains (Anantharaman et al. 2002a).
Curiously, the predicted rRNA MTases from the HemK/YfcB family turned
out to be active as protein MTases, which catalyzes the methylation of
polypeptide chain release factors such as RF1 and RF2 (Nakahigashi et al.
2002; Heurgue-Hamard et al. 2002). This would suggest that the function of
these proteins was significantly overpredicted (the prediction should be as
general as “methylation implicated in the translation process” rather than
very specific “rRNA methylation”). Interestingly, the RF2 exhibits “molecular
mimicry” and its 3D structure mimics that of tRNA (Vestergaard et al. 2001).
It is therefore tempting to speculate that HemK and its homologues could
have diverged from an ancestral RNA MTases that were “cheated out of”by the
RNA-like structure of the protein substrate; no wonder that humans were
misled too.

3.2.1 Bottom-Up Search for New Yeast RNA MTases

Isolation of yeast MTases Mrm2p and Trm7p (see above) represented a per-
fect example of the characterization of new RNA MTase enzymes guided by a
top-down bioinformatic analyses.We have extended the search for novel RNA
MTases to the whole yeast genome, using the bottom-up approach (Fig. 3.).
Firstly, identification of all putative yeast AdoMet-dependent MTases was
attempted; secondly, these MTase candidates (MTCs) were ranked according
to their predicted potential to act on RNA; thirdly, prediction of the substrate
specificity was attempted; fourthly, the functional predictions were experi-
mentally tested by cloning and in vivo and in vitro characterization of the
respective MTCs.

In the first step, all MTases identified previously (regardless of their sub-
strate specificity) were included in the “MTCs” database. The yeast proteome
was “purged” from all functionally characterized (i.e., annotated) proteins,
which were unlikely to encode an MTase function. All functionally uncharac-
terized yeast ORFs were subjected to the bioinformatic analysis, aimed at the
identification of novel homologues of MTases with known structures. In the
first step, the IMPALA (Schaffer et al. 1999) and PDB-BLAST (Li et al. 2002)
methods were used to identify trivial similarities to characterized proteins or
domains. Both methods utilize the PSI-BLAST (Altschul et al. 1997) algorithm
to construct position-specific score matrices (PSSMs) from sequence profiles
and conduct sequence-profile matching. The key difference is in the “side” on
which PSI-BLAST is used to collect homologues: IMPALA compares the query
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sequence to a set of pre-computed PSSMs corresponding to protein domains,
while PDB-BLAST computes a PSSM for the query and compares it with sin-
gle sequences from the PDB. Sequences with significant similarities to known
MTases were putatively annotated as MTCs and retained for further analysis,
while those significantly similar to other proteins were excluded from the
query database. The remaining sequences (including all MTCs) were analyzed
using the fold-recognition methods, which utilize both sequence and struc-
ture information to identify similarities between the query protein and pro-
teins with known structure (reviewed elsewhere in this volume).

The fold-recognition results (J.M.B., unpubl. data) were used to predict
further MTase homologues (added to the MTCs database), to identify auxil-
iary domains in the MTC sequences, and to rank the MTCs according to
their relative similarity to any of the known nucleic acid MTase structures
(Table 1) versus similarity to other MTases with demonstrated non-RNA
MTase activity. Since S. cerevisiae does not encodes any DNA MTases, all pre-
dicted nucleic acid MTases are obvious candidates for RNA MTases. MTCs
with obvious non-RNA MTase specificities (high similarity to non-RNA
MTases, genomic context strongly suggesting non-RNA MTase function, etc.)
were down-ranked. The remaining yeast MTCs were putatively labeled as
primary RNA MTase candidates if they (or their close homologues from dif-
ferent genomes): (1) contained known or predicted nucleic acid-binding
domain(s); (2) exhibited strong similarity to known RNA MTases (either in
simple sequence searches or advanced fold-recognition analyses); (3) exhib-
ited conservation of predicted catalytic residues characteristic for nucleic
acid MTases. MTCs were putatively labeled as secondary RNA MTase candi-
dates if they (or their close homologues from different genomes): (1) exhib-
ited genomic association with proteins involved in RNA metabolism; (2)
exhibited phylogenetic correlation with the occurrence of a particular
methylated nucleoside. All remaining MTCs were considered as possible
RNA MTase candidates (especially if they exhibited a sequence conservation
characteristic of many known RNA MTases), but their experimental charac-
terization was given low priority.

The bioinformatic search led to the identification of 20 MTCs, some of
which had been previously identified as putative AdoMet-binding proteins
(Niewmierzycka and Clarke 1999), others as putative RNA MTases (Anan-
tharaman et al. 2002a). The corresponding genes have been deleted and tRNA
modification defects have been studied in vivo and in vitro. Wild-type and
mutant cells are labeled with [32P]orthophosphate, then the total tRNA is
extracted, digested with various enzymes and the nucleosides are separated
on 2D-TLC plates. The analysis is complex, since the same modification can
occur at different positions in the same or in different tRNAs. For instance,
m1G can be found at position 9 (catalyzed by Trm10p) and at position 37 (cat-
alyzed by Trm5p). Therefore, in vivo, in a strain deleted for Trm5p m1G would
still be detected due to the activity of Trm10p, and vice-versa. In some cases,
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Table 2. Known and predicted RNA MTases in the yeast S. cerevisiae

Protein/ORF Superfamily Function/specificity Identificationa

Bona fide RNA MTases
Trm1p RFM tRNA:m2

2G26 GEN
Trm2p RFM tRNA:m5U54 GEN, BIO
Trm3p SPOUT tRNA:Gm18 BIO
Trm4p RFM tRNA:m5C34,40,48,49 BIO
Trm5p RFM tRNA:m1G37 BIO
Trm6a&b RFM tRNA:m1A58 GEN
Trm7p RFM tRNA:Cm32,Gm34 BIO
Trm8p (MTC1) &82p RFM tRNA:m7G46 BGE, BIO
Trm9p (MTC2) RFM tRNA:mcm5U34/mcm5s2U34 GEN, BIO
Trm10p ? tRNA:m1G9 BGE
Trm11p (MTC12) RFM tRNA:m2G10 BIO
Nop1p RFM Nm (snoRNA-guided) GEN
Nop2p RFM 25S rRNA:m5C BIO
Dim1p RFM 18S rRNA:m6

2A1779,1780 GEN
Pet56p SPOUT mt 21S rRNA:Gm2270 GEN
Mrm2p RFM mt 21S rRNA:Um2791 BIO
Tsg1p (MTC20) RFM sn(o)RNA:m2

2
7G GEN, BIO

Abd1p RFM mRNA:m7G GEN
Ime4p (MTC17) RFM mRNA:m6A GEN, BIO

Predicted RNA MTases
Spb1p RFM [25S rRNA:Um2918,Gm2919]b GEN, BIO
sc-mtTFB RFM [mt 15S rRNA:m6

2Ac]b GEN
Rrp8p RFM (Nucleolar localization)c GEN
YNL024 c (MTC3) RFM c,d BIO
YLR137w (MTC4) RFM c,d BIO
YBR271w (MTC5) RFM c,d BIO
YDR140 W (MTC6) RFM c BIO
YIL110w (MTC7) RFM c,d BIO
YJR129 c (MTC8) RFM c,d BIO
YLR285w (MTC9) RFM c,d BIO
YML005w (MTC10) RFM c BIO
YNL063w (MTC11) RFM [Putative protein MTasec]b BIO
KAR4 (MTC13) RFM [Inactivated]b; cofactor of Ime4pc BIO
YNL092 W (MTC14) RFM c BIO
YMR209C (MTC15) RFM c BIO
YNL022 c (MTC16) RFM [RNA:m5Cc]b BIO
YGR283C (MTC18) SPOUT c BIO
YMR310C (MTC19) SPOUT c BIO

a BIO, bioinformatics; GEN, genetics; BGE, biochemical genomics.
b Square brackets indicate function predicted with relatively high confidence.
c Function unknown.
d A family of paralogous putative MTases.



it has been necessary to purify by hybrid-selection the tRNA labeled in vivo in
order to analyze only a certain tRNA. Alternatively, it was also possible to use
a double-deleted strain, as it had been the case for Trm11p (see below).

Meanwhile, many of the MTCs from the “top 20” list were demonstrated to
be true RNA MTases. MTC1 was found to correspond to Trm8p, a catalytic
subunit of a heterodimeric MTase required for the formation of m7G46 in
yeast tRNA (Alexandrov et al., 2002). MTC2 was shown by us and by others to
be required for the formation of a complex modification at position 34 of the
anticodon loop in yeast tRNA (the corresponding MTase has been named
Trm9p–S. Clarke, Saccharomyces Genome Database; S.K.P., J.M.B, H.G. and
B.L., unpubl. observ.). MTC19 (Ime4p), which was originally described as con-
trolling meiosis, catalyzes the formation of m6A in mRNA (Clancy et al. 2002).
MTC20 was found to encode the enzyme (Tgs1p) that catalyzes the trimethy-
lation of the cap of snRNAs and some snoRNAs (Mouaikel et al. 2002).
Recently, we have found that MTC12 (Trm11p) is required for the formation of
m2G10 in yeast tRNA (S.K.P., J.M.B, H.G. and B.L., unpubl. observ.). In yeast
tRNA there is also some m2G, along with m2

2G made at position 26 by Trm1p.
A double mutant strain trm1–0, trm11–0 was constructed, in which neither
m2G nor m2

2G were detected at all (S.K.P., J.M.B., H.G. and B.L., unpubl. obser-
vation). In our hands, other MTCs exhibited no detectable tRNA MTase activ-
ity; they remain plausible candidates for novel MTases acting on other RNAs,
and interesting objects for experimental characterization.

4 Conclusions

Although the first RNA MTase was discovered about 40 years ago, progress in
the study of this and related enzymes has been very slow until it was possible
to identify and clone their genes, and produce recombinant proteins. Cur-
rently, the growth in sequence data through large-scale genome sequencing
projects has made the identification of novel proteins possible based on com-
parative analyses. However, in order to understand the detailed biochemical
function of enzymes encoded in the genomes, the knowledge of linear protein
sequences must be interpreted in the context of their three-dimensional
structures. This can be achieved by a combination of structural genomics
(providing the template structures) and bioinformatics (providing the links
between the templates and protein sequences). The protein function can be
inferred by interpretation of the sequence/structure data in the evolutionary
context – thereby conserved sites implicated in substrate binding and/or
catalysis can be identified. However, the most common way is to annotate new
genes and proteins by transferring the function “by homology” without
detailed considerations. The weakness of such approach lies in our insuffi-
cient understanding of how sequence similarity translates to functional simi-
larity. It may be useful to provide useful hints, but to date this has resulted in
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too many overpredictions that are too specific of function for uncharacter-
ized homologues. It is now known that paralogous proteins may exhibit quite
distinct new functions since the divergence from the common ancestor they
shared with a well-characterized protein used as a reference in the annotation
process. Needless to say that experiments in vivo and in vitro are essential to
validate the predicted functions based on homology.

Despite the progress in identification of new RNA modification enzymes
by the “-omics” and “-matics” approaches, our knowledge of the details of the
enzymology of RNA modification remains limited relative to the number and
variety of modified nucleotides that have been identified so far in the various
RNAs from the three biological domains. The availability of complete genome
sequences of many organisms from distinct branches of the Tree of Life cre-
ates the opportunity to explore the functional content of the genomes and
evolutionary relationships between them at a new qualitative level. The analy-
sis of the conserved genome neighborhood and phyletic profiling allows for
the prediction of new functions without referring to homology or protein
structure and to detect the cases of functional convergence in evolution. This
methodology, however, is dependent on our knowledge of biochemical reac-
tions and metabolic pathways leading to a generation of modified nucleosides
in RNA and on the experimental data concerning the presence or absence of
particular modifications in organisms with fully sequenced genomes.

The development of non-identical functions by orthologs and functional
convergence of unrelated enzymes is poorly understood. RNA modification
(and especially RNA methylation) is a perfect object for the analysis of these
processes, as many cases of such functionally and structurally diversified
RNA MTases have been reported. The study of enzymology of RNA modifica-
tion by a combination of theoretical and experimental approaches may pro-
vide the key to understanding the basic evolutionary processes and determin-
ing the relationships between Eubacteria,Archaea, and Eukaryota, and help to
reconstruct the true Tree of Life.
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Finding Missing tRNA Modification Genes:
a Comparative Genomics Goldmine

V. de Crécy-Lagard

1 Missing tRNA Modification Genes

1.1 tRNA Modifications

As the adapters between mRNAs and the elongating peptide chain, transfer
RNAs (tRNA) are at the nexus of the genetic code and of the translation appa-
ratus. Prior to their participation in translation, tRNAs must undergo exten-
sive processing of the nascent transcript. The post-transcriptional processing
of tRNAs involves a number of functionally distinct events essential for tRNA
maturation (Altman et al. 1995; Björk 1995; Deutscher 1995; Westaway and
Abelson 1995). The phenomenon of nucleoside modification is perhaps the
most remarkable of these events, and results in a wealth of structural changes
to the canonical nucleosides (Björk 1995). Although other RNA species also
exhibit varying degrees of nucleoside modification, it is only in the tRNA that
a rich structural diversity is realized.

Nucleoside modification typically occurs to ~10 % of the nucleosides in a
particular tRNA, but can involve as many as 25 % of the nucleosides (Björk
1995). Over 80 modified nucleosides have been characterized (Björk 1995),
many of which are conserved across broad phylogenetic boundaries. The
nature of nucleoside modification varies from simple methylation of the base
or ribose ring to extensive “hypermodification” of the canonical bases, the lat-
ter of which can result in radical structural changes and involve multiple
enzymatic steps to complete. The lack of mutant phenotypes for some modi-
fication enzymes was initially interpreted as precluding an important physio-
logical role for tRNA modification. However, with the realization that modi-
fied nucleosides are conserved in phylogenetically diverse organisms, and
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that an impressive amount of genetic information codes for tRNA-modifying
enzymes [an estimated 1 % of the total genome in the bacterium Salmonella
typhimurium (Björk and Kohli 1990) and the eukaryote Saccharomyces cere-
visiae (Hopper and Phizicky 2003)], an appreciation for the importance of
modified nucleosides to the basic physiology of the cell is emerging. It is now
recognized that modified nucleosides are integral to tRNA function at many
levels, influencing translation (Björk 1992; Muramatsu et al. 1988; Yokoyama
and Nishimura 1995), tRNA structure and stability (Björk 1995; Derrick and
Horowitz 1993; Horie et al. 1985; Kowalak et al. 1994; Perret et al. 1990), and
regulatory events (Persson 1993). In spite of the importance of modified
nucleosides to tRNA function, the contributions that specific modifications
make to tRNA are well established in only a few cases (Björk 1995; Björk and
Kohli 1990), and our understanding of the biosynthesis of the various modi-
fied nucleosides is mainly rudimentary.

1.2 Compilation of the Missing tRNA Modification Genes

The lack of fundamental knowledge about the biosynthetic pathways involved
in nucleoside modification is due to their resistance to traditional biochemi-
cal and genetic characterization. Identification and purification of relevant
enzyme activities from crude cell-free extracts are complicated by the diffi-
culty of obtaining appropriate tRNA substrates, the presence of endogenous
RNases that degrade the RNA substrates and products, a lack of appropriate
assays, and the typically low abundance of the enzymes involved in RNA
modification. Traditional genetic approaches are hindered by the lack of
clearly defined phenotypes in mutants, and the fact that unambiguous identi-
fication of a gene involved in RNA modification is ultimately dependent on
determining the presence or absence of the specific modified nucleoside in
tRNA, a laborious and technically challenging process when working with
large libraries of mutants.As a consequence, it is estimated that approximately
30–50 % of the tRNA modification genes remain uncharacterized (Eastwood-
Leung et al. 1998). Escherichia coli and Saccharomyces cerevisiae are the best-
characterized organisms with respect to tRNA modifications genes. A compi-
lation of the E. coli tRNA modification genes is given in Table 1; approximately
25 % has not been clearly identified. In S. cerevisiae 28 genes have been iden-
tified and it has been estimated that 15–20 are missing (H. Grosjean, pers.
comm.). The status of the current literature is summarized in Fig. 1.

Out of the 81 modifications found in tRNA (Motorin and Grosjean 2001),
the synthesis of 20 has been fully genetically characterized, the pathways for
33 are only partially elucidated and, for the remaining 27, no genetic informa-
tion is known. The number of missing tRNA modification genes can only be
estimated as in some cases (e.g., wyeosine) the number of steps in the path-
ways are unknown and could implicate between four and eight genes (Droog-
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Table 1. Known E. coli tRNA modification genes

Modificationa Locus Swiss-Prot Reference

Y13 truD=ygbO O57261 Kaya and Ofengand (2003)
Y32 rluA=yabO P39219 Raychaudhuri et al. (1999)
Y38–40 truA= hisT P07649 Kammen et al. (1988)
Y55 truB=yhbA P09171 Gutgsell et al. (2000; Nurse et al. (1995)
Y65 truC=yqcB Q46918 Del Campo et al. (2001)
D16,17,20,20a dusA=yjbN P32695 Bishop et al. (2002)

dusB=yhdG P25717
dusC=yohI P33371

I34 tadA=yfhC P30134 Wolf et al. (2002)
m2A37 trmG=yfiF?b P33635 Gustafsson et al. (1996, this work)
m6A37 ?c

Cm32 ?
Um32 ?
m5U54 trmA P23003 Ny and Björk (1980); Persson et al.

(1992)
m1G37 trmD P07020 Bystrom and Björk (1982)
Gm18 trmH= spoU P19396 Persson et al. (1997)
m7G46 trmB=yggH P32049 De Bie et al. (2003)
s2C32 stcA=?d

s4U8 thiI =nuvA P77718 Mueller et al. (1998)
icsS=nuvC P39171 Lauhon and Kambampati (2000)

i6A37 miaA P16384 Caillet and Droogmans (1988)
ms2i6A37 miaB= yleA P77645 Esberg et al. (1999)

icsS Lauhon (2002); Nilsson et al. (2002)
s2U34 mnmA=trmU=asuE P25745 Green et al. (1996); Kambam-

pati and Lauhon (2003)
icsS=nuvC P39171

cmnm5s2U34 mnmE=trmE P25522 Cabedo et al. (1999)
cmnm5U34 mnmG=gidA P17112 Bregeon et al. (2001)

gidB? Kambampati and Lauhon (2003)
mnm5s2U34 mnmC=yfcK?b P77182 Björk and Kjellin-Straby (1978, this
work)
mnm5U34
mnm5se2U34 selD P16456 Leinfelder et al. (1990)

icsS Mihara et al. (2002)
?

mnm5Um34 ?
Q34 queA P21516 Reuter et al. (1991)

tgt P19675 Frey et al. (1988)
queB=?

preQ0, preQ1 queC=ybaX P77756 Reader et al. (in press)
queD=ygcM Q46903
queE=ygcF P55139
queF=yqcD Q46920

mo5U34 aroABCDE Björk (1980); Hagervall et al. (1990)
cmo5U34 ?
mcmo5U34
ac4A34 ?
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Table 1. (Continued)

Modificationa Locus Swiss-Prot Reference

s2T ?
t6A37 ?
mt6A37 mtaAd

k2C34 tilSd Soma et al. (2003)
acp3U47 ?

Predicted missing 12

Total known 30

a The list of the modified bases found in E. coli was taken from Björk (1996). The abbre-
viations are taken from Motorin and Grosjean (2001).

b Question marks denote missing pathways or steps.
c Prediction from genomics, no experimental proof.
d The gene has been identified, but the accession number is not yet available.

Fig. 1. Distribution of modified bases found in tRNA among kingdoms. The bases for
which all the pathway genes have been identified are boxed in full, those for which the
pathway genes are partially identified are boxed with dash lines



mans and Grosjean 1987; Munch and Thiebe 1975; Smith et al. 1985). The
analysis is further complicated by the fact that the same modification might
be synthesized by different enzymes or pathways in different organisms. For
example, the mechanisms of formation of m1I are different in Archaea and in
Eukaryots. In the latter the deamination occurs before the methylation
whereas the reverse happens in Archaea (Grosjean et al. 1995, 1996).

It is clear from this analysis, however, that at least 30 % of the modification
genes are still missing. The availability of hundreds of whole genome
sequences allows the use of radically new approaches to identify them.

2 Comparative Genomics: an Emerging Tool to Identify
Missing Genes

The data generated from genome sequencing programs (16 Archaea, 106 Bac-
teria and 18 Eukarya fully sequenced and published to date) (http://wit.inte-
gratedgenomics.com/GOLD/), has revealed how much we have yet to learn
before understanding the roles of all the proteins in a cell. Even in the best
genetically characterized organisms, a third of the genes have no assigned
function (Blattner et al. 1997; Kunst et al. 1997). Systematic approaches such
as structural genomics initiatives or systematic interaction mapping can lead
to elucidation of some functions (Huynen et al. 2003; Mittl and Grutter 2001).
However, there remains a plethora of enzymatic activities or pathways for
which the genes remain unknown (Cordwell 1999), and “comparative
genomics” is emerging as a powerful approach for identifying these “missing”
genes (Osterman and Overbeek 2003; Fig. 2).

These methods integrate several types of genomic data to make predictions
that can then be tested experimentally. The kind of information that can be
derived from whole genome datasets include:
1. Clustering data: Genes of a given pathway have a higher probability of

being physically linked on the chromosome (Overbeek et al. 1999).
2. Protein fusion events: Genes of the same pathway can be fused to encode

multi-domain proteins in some organisms (Enright et al. 1999).
3. Phylogenetic occurrence profiles or signatures: phylogenetic profiles can

be generated from the profile of one known gene in the pathway under
study or from information about the presence or absence of a given path-
way among sequenced organisms (Pellegrini et al. 1999).

4. Shared regulatory sites: pathway genes are often regulated by a common
protein recognizing a specific DNA sequence (Gelfand et al. 2000).

5. Co-expression: now that expression array data is available, particularly for
S. cerevisiae (http://db.yeastgenome.org/cgi-bin/SGD/expression/expres-
sionConnection.pl) and E. coli (http://www.genome.wisc.edu/functional/
microarray.htm), co-expression correlations can allow for identification of
genes that are in the same metabolic pathway.
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6. Protein interaction networks: using two-hybrid screens protein interaction
networks have been established for several organisms and can be used to
make predictions (Legrain et al. 2001).

This information can be gathered and organized using Web-based tools
such as the freely accessible Cluster of Orthologous Groups database (Tatusov
et al. 2001) and the proprietary ERGO database (Overbeek 2003). Though the
comparative genomics field is still young, these tools have allowed the genetic
characterization of a number of critical metabolic pathways that had eluded
scientific inquiry for decades (Osterman and Overbeek 2003). For example,
predictions based exclusively on occurrence profiling resulted in the identifi-
cation of the last steps of the non-mevalonate isoprenoid pathway (Smit and
Mushegian 2000). Protein fusion analysis allowed the identification of miss-
ing coenzyme A biosynthesis genes in Homo sapiens (Daugherty et al. 2002).
Chromosome clustering analysis revealed a missing fatty acid synthesis gene
(a target of antibacterial compounds) in Streptococcus pneumoniae (Heath
and Rock 2000).A search for regulator sites allowed the identification of many
missing thiamine biosynthesis genes (Rodionov et al. 2002). These methods
can be combined as described below to find both genes encoding simple
tRNA modification enzymes or whole new pathways involved in the synthesis
of the more complex modifications.
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3 Finding Genes for Simple tRNA Modifications

3.1 Paralog- and Ortholog-Based Identifications

Methylation and pseudourylation are the most common and abundant mod-
ifications in tRNAs. The first genes were discovered more than 10 years ago
(Nurse et al. 1995; Ny and Björk 1980) and most of the work of the last decade
has been sorting out the exact catalytic functions of the paralogs of these
genes identified by blast searches. These sequence homology based searches
were very successful and identified most of the methylases or pseudouridine
synthases involved in tRNA modification (Del Campo et al. 2001; Gustafsson
et al. 1996; Motorin and Grosjean 1999). In several cases, however, the family
has diverged too much to be identified by these methods. Ofengand and col-
leagues recently identified the TruD family that modifies position 13 on
tRNAAsp using a traditional enzyme purification approach (Kaya and Ofen-
gand 2003). In a similar fashion, Phizicky and colleagues identified the methy-
lase that modifies m1G9 in S. cerevisiae by a “biochemical genomic
approach”, (Jackman et al. 2003). In both cases, these new families could not
have been identified by homology searches.

The identification of tRNA methylases presents a second difficulty: the
Cluster of Orthologous Group analysis (Tatusov et al. 2001) is not sensitive
enough to differentiate orthologs and paralogs and cannot be efficiently used
to predict functions. More than 16 genes are in the same methylase cluster
COG0500 in E.coli, and these genes encode RNA, DNA and protein methy-
lases. To differentiate between the different methylase subclasses more sensi-
tive methods are needed, such as structure-based protein alignments (Anan-
tharaman et al. 2002a, b) which discriminate between subfamilies. Another
way to circumvent the problem of insensitivity in the COG analysis is to com-
bine the COG analysis with genetic mapping information when available
(bearing in mind that genetic mapping information can be erroneous). For
example, the gene trmG involved in m2A37 formation has been mapped
between 56–61 min on the E. coli chromosome (Björk 1996). Orf yfiF, found at
58 min and annotated as an rRNA methylase (GOG0566) is an obvious candi-
date for trmG. In a similar fashion, the last methylase steps involved in the for-
mation of cmnm5s2U, encoded by trmC, had been mapped to the 50-min
region in E. coli (Hagervall and Björk 1984).Analysis of the region allowed for
the identification of the ycfK gene, at position 52.59 that encodes a bifunc-
tional protein combining a SAM-dependent methylase domain (COG0500)
and another domain (COG0665) identified as Glycine/D-amino acid oxidase
(deaminating) domain that could be the mnmC gene. This prediction has
recently been confirmed experimentally (L. Droogmans, pers. comm.).
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3.2 Comparative Genomics-Based Identifications

In cases where no genetic or biochemical information is available compara-
tive genomics methods are valuable to identify the missing genes, as we have
recently shown with the identification of the tRNA 5,6-dihydrouridine syn-
thase (Dus) family (Bishop et al. 2002). 5,6-Dihydrouridine (D) is one of the
most common and abundant modifications of tRNA (Sprinzl et al. 1998), and
is also present in some 23S RNA (Kowalak et al. 1995), but both the genes and
enzymes were unknown. As detailed in Fig. 3, by combining occurrence pro-
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Fig. 3. Identification of the Dus
family by comparative
genomics. A tRNA modification
catalyzed by the missing Dus
enzyme. B The strategy fol-
lowed to identify the candi-
dates. Experimental validation
was obtained by constructing
an E. coli mutant deleted in all
the genes of this family, and
demonstrating that tRNA puri-
fied from this strain lacked any
detectable D as shown in C



filing, chromosome clustering, and homology searches, the dus family of
genes that contains orthologs in most sequenced species was identified.

McCloskey and coworkers observed an inverse correlation between the D
content and the growth temperature of a given organism (Dalluge et al. 1997).
Generally, thermophiles have little or no D and psychrophiles contain high
amounts of D. These authors also showed that short oligonucleotides contain-
ing D favor the C2¢-endo ribose conformation (compared with the equivalent
U-containing oligonucleotide), while the C3¢-endo conformation is necessary
for base stacked RNA (Dalluge et al. 1996). Thus it was proposed that D con-
fers local flexibility to tRNAs that is required at lower temperatures and detri-
mental at higher temperatures. However, there is no direct evidence for this
theory. Available genomic information allowed us to plot the number of DUS
paralogs in a given organism against its optimum growth temperature
(Fig. 4). It is clear that while mesophilic organisms can have one to three
genes, all thermophiles and hyperthermophiles have one or less. Access to the
whole genome sequences of psychrophilic organisms such as Methanogenium
frigidum and Methanococcoides burtonii (Saunders et al. 2003) will soon
reveal if this trend is confirmed.
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4 Finding Complex Modification Pathway Genes

4.1 Finding Missing Steps in Known Pathways

For many complex tRNA modifications such as queuosine, ms2i6A or Wyeo-
sine, several biosynthetic steps are needed. Few pathways have yet been totally
characterized and fully reconstituted in vitro. In the case of the synthesis of
mnm5s2U34 (Fig. 5A), five enzymes have been characterized but at least one
enzyme is still missing (Kambampati and Lauhon 2003). Gene clustering
around the gidA, mnmE, and mnmA genes was analyzed. One candidate, gidB,
clearly stood out: it is linked to gidA and mnmE in many genomes (Fig. 5B),
and the structure of GidB has recently been determined and shown to have a
methyltransferase fold (Romanowski et al. 2002). GidB is clearly a candidate
for the missing step in the ms2i6A modification pathway and should be inves-
tigated further.
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Fig. 5. A Biosynthesis pathway for mnm5s2U34 (adapted with permission from Kam-
bampati and Lauhon 2003). B Clustering examples of the mnmE, gidA and gidB genes



4.2 Finding Uncharacterized Pathway Genes

4.2.1 Identification of the PreQ Biosynthesis Pathway Genes

Some of the most complex modifications known to occur in tRNA are the 7-
deazaguanosine nucleosides queuosine (Q) and archaeosine (gG), and the tri-
cyclic wyosine (Yt) family of nucleosides (Fig. 6). Both queuosine and
archaeosine share the unusual 7-deazaguanosine core, but differ in the extent
of further elaboration of this core structure; queuosine is characterized by a
cyclopentenediol ring appended to (7-aminomethyl)-7-deazaguanosine
(Kasai et al. 1975a; Ohgi et al. 1979), which in some mammalian tRNAs is gly-
cosylated with galactose or mannose at the C5¢¢ hydroxyl (Okada and
Nishimura 1977), while archaeosine possesses an amidine functional group at
the 7-position (Gregson et al. 1993).

Queuosine and its derivatives occur exclusively at position 34 (the wobble
position) in the anticodons of tRNAs coding for the amino acids asparagine,
aspartic acid, histidine, and tyrosine (Frey et al. 1988). These tRNAs share two
common nucleosides in their anticodon sequence GUN (positions 34–36),
where N defines the identity of the codon and can be any nucleoside. Queuo-
sine is ubiquitous throughout studied eukaryotic and bacterial phyla (with
the exception of the tRNA of yeast and Mycoplasma), but is absent from the
tRNA of the Archaea. In marked contrast, archaeosine is present only in the
Archaea, where it is found in the majority of tRNA species, specifically at posi-
tion 15 in the dihydrouridine loop (D-loop)(Sprinzl et al. 1989), a site not
modified in any tRNA outside of the archaeal domain.
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The biosynthetic pathways of queuosine and archaeosine are partially
characterized and summarized in Fig. 7. GTP is known to be the precursor in
queuosine biosynthesis, and the first established intermediate in the pathway
is 7-cyano-7-deazaguanine (preQ0) (Okada et al. 1978), which presumably
then undergoes reduction to 7-aminomethyl-7-deazaguanine (preQ1) by an
as yet uncharacterized dehydrogenase. PreQ1 is subsequently inserted into the
tRNA by the enzyme tRNA-guanine transglycosylase (TGT), a reaction in
which the genetically encoded base (guanine) is eliminated (Okada et al. 1979;
Okada et al. 1978). The remainder of queuosine biosynthesis occurs at the
level of the tRNA, and involves the unprecedented utilization of S-adenosyl-
methionine (AdoMet) in the construction of an epoxycyclopentandiol ring
(Kinzie et al. 2000; Slany et al. 1993; Slany et al. 1994) to give epoxyqueuosine
(oQ), followed by an apparent B12-dependent step in which the epoxide in oQ
is reduced to give queuosine (Frey et al. 1988).

Although queuosine is ubiquitous in both the Eukarya and Bacteria, only
Bacteria are capable of de novo queuosine biosynthesis. Eukaryotes acquire
queuosine as a nutrient factor from the intestinal flora (Frey et al. 1988), and
insert queuine, the free base of queuosine, directly into the appropriate tRNAs
(Shindo-Okada et al. 1980) by a eukaryotic TGT.

The presence of a 7-substituted 7-deazaguanine core structure in both
queuosine and archaeosine, along with the structural similarity of preQ0 to
archaeosine base, is consistent with identical biosynthetic pathways in
Archaea and Bacteria for the formation of preQ0. These pathways presum-
ably diverge at preQ0, with preQ0 serving as the substrate for an archaeal
TGT in the key base substitution reaction. Evidence in support of this sce-
nario came with the isolation of both preQ0 and an archaeal TGT from
Haloferax volcanii (Watanabe et al. 1997), followed by the identification and
cloning of a putative tgt gene from M. jannaschii (Bai et al. 2000), and the
biochemical characterization of the recombinant enzyme as a TGT (Bai et al.
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2000). The formation of archaeosine can then in principle occur through the
formal addition of ammonia to the nitrile of preQ0 after incorporation into
the polynucleotide.

As summarized in Fig. 7, at least three steps are missing in Q and gG
biosynthetic pathways; the respective last steps and the steps leading from
GTP to preQ0. To identify the missing genes several types of genomic infor-
mation were combined as shown in Fig. 8 and detailed below.
1. Biochemical information: because GTP is the precursor in queuosine

biosynthesis, several authors have proposed that an uncharacterized GTP
cyclohydrolase-like enzyme catalyzes the first step of the biosynthesis
(Morris and Elliott 2001). A search of the COG database (Tatusov et al.
2001) using the “GTP cyclohydrolase” keywords identified the two known
GTP cyclohydrolase families (FolE and RibA), but also identified the
COG0780 family, annotated as “enzymes related to GTP cyclohydrolase
I”(Fig. 8A).

2. Clustering data: when analyzing the neighboring regions of COG0780 fam-
ily members in many organisms we found that, in B. subtilis, the COG0780
member ykvM was the last gene of the ykvJKLM operon (Fig. 8B). In 80 %
of the totally sequenced organisms, different combinations containing two
or three of these four genes were found in operonic structures.

3. Phylogenetic distribution: an occurrence profile was generated using the
presence or absence of tgt as a marker for the occurrence of the Q biosyn-
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Fig. 8A–D. Identification of four new queuine biosynthesis genes by comparative
genomics



thetic pathway in a given organism (Fig. 8C): tgt homologues are absent
from S. cerevisiae and Mycoplasma as predicted from the literature
(Andachi et al. 1989; Kasai et al. 1975b; Katze et al. 1982). Unexpectedly, tgt
homologues are also absent from most mycobacterial sp. and Treponema
pallidum, suggesting that Q is absent from these species as well. The four
genes ykvJKLM are members of COGs that all followed the required occur-
rence criteria (absence in S. cerevisiae, Mycoplasma and Mycobacterium).

The combination of phylogenetic occurrence, clustering and biochemical
data led to the hypothesis that the four enzyme families encoded by the
ykvJKLM operon in B. subtilis are involved in Q synthesis. The hypothesis was
tested by constructing four Acinetobacter ADP1 mutants deleted in the corre-
sponding genes. In all cases, HPLC analysis of digests of bulk tRNA prepared
from these strains shows the disappearance of the Q peak present in the WT
strain (Fig. 8D).

By combining genomics approaches with genetics, we were able to identify
four new queuosine genes in a short space of time (Reader et al., in press). We
are currently testing the hypothesis that these genes encode the biosynthetic
enzymes for preQ0 /preQ1.

4.2.2 Hunting for the Wyeosine Biosynthesis Genes

Little is known about the biosynthesis of the wyosine family (Fig. 9). Most of
the relevant studies have been performed in S. cerevisiae, where it has been
demonstrated that wyosine originates from the genetically encoded guanine
(Blobstein et al. 1973), and the first step is N1 methylation by the m1G methy-
lase (Droogmans and Grosjean 1987), an AdoMet-dependent methylase
encoded by the gene YHR070w (Trm5). Notably this methylase is non-spe-
cific, being responsible for N1-methylation at G37 in tRNAs that code for Leu,
His, Asp, Trp, and Pro (Björk et al. 2001).

Two strategies can be followed to identify genes in the wyosine pathway.
The first is clustering analysis using the methylase as the starting gene. Clus-
tering is not as strong in Eukarya as in Bacteria or Archaea, but as the first
genes of the pathway should be present in Archaea (involved in m1G and
mimG formation), this is still a useful approach. The second strategy is to use
the observation that Drosophila melanogaster tRNAPhe does not have Y but
m1G at position 37 (Sprinzl et al. 1998).

Using an ERGO macro (Overbeek 2003), a phylogenetic occurrence query
was performed to identify genes that are present in Homo sapiens, S. cere-
visiae, S. pombe and M. janaschii, but absent in Drosophila melanogaster, E.
coli and B.subtilis. Only one family followed this distribution (COG0731).
Members of this family are found in all sequenced Archaea and in all
sequenced Eukarya except D. melanogaster and Anopheles gambiae. It has
been annotated as a Fe-S oxidoreductase and is a member of the SAM radical
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superfamily (Sofia et al. 2001) and is a plausible candidate for an enzyme
involved in the formation of the tricyclic ring.

In the case of S. cerevisiae, a number of post- genomic tools such as protein
interaction data, mRNA expression data or gene deletion data are available in
integrated databases such as SGD (http://www.yeastgenome.org/). Analysis of
the data available on the yeast COG0731 member YPL207w, revealed that a
deletion mutant has been constructed and is viable (Giaever et al. 2002).
Analysis of the genes that are co-expressed with YPL207w during the cell cycle
(Cho et al. 1998) or in response to DNA damaging agents (Gasch et al. 2001)
shows strong linkage (P>10–5) with ribosome biogenesis and RNA process-
ing/ RNA metabolism genes. Experiments are underway to test if indeed, if
YPL207w is a wyeosine biosynthesis gene (Fig. 10).

5 Conclusions

As we have shown in several cases comparative genomics approaches are well
suited in identification of the missing tRNA modification genes. Compared
with other biosynthesis clusters in which major pathway genes were missing
such as the coenzyme (NAD, CoA, FAD), the use of the comparative genomics
approach has given us a closing of the number of unknowns in a very short
time (Gerdes et al. 2002). We can anticipate that before this review goes to
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Fig. 9. The biosynthesis of wybutosine in S. cerevisiae. Asterisks denote methyl groups
from AdoMet, and heavy bonds denote the origin of these carbons from the 3-amino-3-
carboxylpropyl group of methionine

Fig. 10. Phylogenetic occurrence
profile for the wyosine family of
modified nucleosides



press it will already be obsolete as more genes are found. However, the type of
approaches that were described in this review can be applied to any pathway
and should be an integral part of the experimental biologist tools when tack-
ling a biological problem.
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Evolution and Function of Processosome,
the Complex that Assembles Ribosomes 
in Eukaryotes: Clues from Comparative Sequence
Analysis

A. Mushegian

1 Introduction

An assembly of functioning ribosomes starts with the biosynthesis of riboso-
mal RNAs and proteins. In all living species, polycistronic pre-ribosomal RNA
(pre-rRNA) is processed to mature rRNAs and is covalently modified at mul-
tiple positions, with the aid of specific protein enzymes and small nucleolar
guide RNAs (snoRNAs). There are more than 40 known types of covalent
rRNA modifications, the two most common ones being pseudouridylation
and methylation (Crain et al. 2003). Ribosomal proteins, some of which are
also covalently modified, are then assembled into mature ribosome subunits
with rRNA. In eukaryotic cells, cytoplasmically synthesized ribosomal pro-
teins have to be imported into the nucleus, and the assembled ribosomes are
exported from the nucleus back into the cytoplasm.

Until very recently, the molecular components of the apparatus for ribo-
some assembly in eukaryotes were not well uncharacterized. Lately, the high-
throughput proteomic analysis of fractionated yeast cells resulted in the
determination of the protein composition of several complexes involved in
various stages of ribosome assembly (Dragon et al. 2002; Grandi et al. 2002;
Nissan et al. 2002; Schafer et al. 2003; reviewed in: Fatica and Tollervey 2002).
The multistage process of ribosome maturation and export is associated with
the modification of these complexes through the addition and removal of spe-
cific proteins; altogether, there are more than 80 such protein components in
yeast, specific to at least some stages of the ribosome maturation and export
pathway. This protein set is collectively referred to as processosome.
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The knowledge about the composition of the processosome complex is
now guiding the molecular dissection of protein–protein and protein-RNA
interactions within the complex (Fatica et al. 2002, 2003; Oeffinger et al. 2002;
Wehner et al. 2002; Gadal et al. 2002; Granneman et al. 2003). In addition,
sequence database searches detected some sequences highly similar to the
processosome components, predicting specific biochemical activities for
many of them (e.g., Fatica et al. 2003). One goal of this chapter is to take the
next step in that analysis, namely, to detect additional sequence signals that
may be indicative of protein function. I will focus on the newly discovered
(putative) components of processosome, as they are defined in Fatica and
Tollervey (2002; see their Fig. 2 for the details), leaving out the analysis of bet-
ter-studied and typically better-conserved RNA processing enzymes them-
selves.

Processosome composition is also interesting for evolutionary reasons.
Ribosomes are essential organelles shared by all three domains of life, Bacte-
ria, Archaea, and Eukarya. Despite the prokaryotic cellular organization of
both Bacteria and Archaea, the ribosomal proteins and other factors involved
in mRNA translation set Bacteria and Archaea apart, and unite Archaea with
Eukarya, in the two following senses: first, whenever the orthologous proteins
exist in all three domains, the evolutionary distance between archaeal and
eukaryal proteins is much closer than between archaeal and bacterial
orthologs (Koonin et al. 1997); secondly, when orthologous proteins are found
only in two domains out of three, they are typically Archaea and Eukarya, to
the exclusion of bacteria (Anantharaman et al. 2002). Similar trends are
observed with the proteins involved in many other aspects of RNA metabo-
lism (Koonin et al. 2001; Anantharaman et al. 2002). In the case of the proces-
sosome components, one could therefore expect substantial similarity
between yeasts (and other eukaryotes) and archaea. Yet, the complex organi-
zation of eukaryotic karyoplasm and nucleocytoplasmic transport requires
eukaryote-specific adaptations. Separation of ancestral from eukaryote-spe-
cific components of processosome would therefore provide some clues to the
evolution of multiprotein complexes associated with the emergence of cellu-
lar nucleus.

2 Sequence Analysis of the Processosome Components

I extracted sequences of yeast processome components listed in Fatica and
Tollervey (2002) from GenBank. For comparative purposes, five other protein
sets were prepared: (1) complete yeast proteome, as distributed by NCBI
(http://www.ncbi.nlm.nih.gov). (2) Proteins localized throughout the nucleus,
as determined by the high-throughput tagging project at Yale University
(http://ygac.med.yale.edu/triples/basic_search.asp). (3) Proteins with nuclear
localization, determined by various computational and in vivo approaches,
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from the MIPS Yeast database (http://mips.gsf.de/proj/yeast/CYGD/db/index.
html). (4) Structural components of nuclear pore, as annotated in the first
dataset. (5) Yeast cytoplasmic ribosomal proteins, as annotated in the first
dataset. Several properties of these datasets are summarized in Table 1.

Most of the analysis described in this chapter was performed using the
programs from NCBI Toolkit (http://www.ncbi.nlm.nih.gov), in particular
PSI-BLAST and RPS-BLAST (Altschul et al. 1997; Schaffer et al. 1999, 2001).
Intrinsic features were predicted using the SEG program for detection of low-
complexity and non-globular sequences (Wootton and Federhen 1996) and
the Coils2 program for prediction of left-handed coiled coils (Lupas 1996a).
The SEALS suite (Walker and Koonin 1997) was used to manage the pipelines
for analysis of sequence batches, and the tax_collector program from that
package was used to automatically detect homologues of yeast proteins from
different clades. Secondary structures and three-dimensional folds were pre-
dicted using the meta-server (Ginalski et al. 2003). Orthologous and paralo-
gous relationships of the homologues were determined using the described
criteria (Tatusov et al. 1997; Sonnhammer and Koonin 2002). Automatic
assignment to NCBI COG database (Tatusov et al. 2001; http://www.ncbi.
nlm.nih.gov/COG/new/) was performed using the modified cognitor pro-
gram (Tatusov et al. 1997; M. Coleman and ARM, unpubl.).

2.1 Intrinsic Features

Properties of a biopolymer that can be computed without sequence database
searches are sometimes called “intrinsic”features. In the case of proteins, these
features include,for example,a fraction of amino acids with certain properties;
the random vs. biased amino acid composition of whole proteins or certain
regions within these proteins; or short strings of letters that can serve as bio-
logically relevant “tags”, for instance, intracellular sorting signals. Some of the
intrinsic properties of the processosome components are summarized in
Table 1. Proteins that participate in ribosome assembly appear, on average, to
be similar in most respects to larger sets of nuclear proteins,although quite dif-
ferent from the known structural components of the nuclear pore.

A relatively high proportion of negatively-charged amino acids are ob-
served in processosome components. Interestingly, they tend to occur in short
(typically 3–7 amino acids) homopolymeric or mixed poly-aspartic/ poly-
glutamic acid clusters (data not shown). Preliminary analysis indicates that
this clustering may not be merely an artifact of a high proportion of charged
residues in these proteins, but may be required for some aspects of processo-
some function, such as, facilitating interactions with and compensating the
positive net charge of ribosomal proteins.

The runs of negatively charged amino acids are an extreme example of low
compositional complexity of a protein sequence. The low-complexity regions
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also include longer stretches enriched in one or only a few amino acids; if
such a segment is on the order of 20 amino acids or longer, it typically adopts
non-compact, elongated or flexible (non-globular) conformation (Wootton
and Federhen 1996; Wan et al. 2003).

Perhaps the most distinctive feature of the processosome proteins is a
high proportion of amino acids that are predicted to belong to left-handed
coiled coils (Lupas 1996a, b). A coiled coil is a ubiquitous protein motif con-
sisting of several (commonly two or three) alpha helices wound around each
other, similar to the threads of a rope. Most coiled-coil sequences are based
on heptad repeats, the seven-residue patterns in which the first and fourth
residues, called core positions, are hydrophobic (typically leucine). As there
are 3.6 residues in each turn of the alpha helix, these residues form a
hydrophobic seam that slowly moves around the helix. The coiled-coil motifs
in the same or several different molecules can join each other to bury their
hydrophobic seams. The intercalation of side chains between neighboring
helices (“knobs-into-holes” arrangement) stabilizes the coiled coils. Most
coiled-coil prediction algorithms are based on detecting this heptad period-
icity (Lupas 1996a, b).

The low-complexity sequences and coiled coils are two examples of regions
with biased sequence composition, as compared to a more random distribu-
tion of individual residues in sequence databases as a whole (Altschul et al.
1994). Both of these types of regions tend to be non-globular (fibrillar or elon-
gated), and frequently serve as hinges between globular domains in multido-
main proteins, or as interfaces for protein oligomerization (Lupas 1996b;
Wootton and Federhen 1996).A substantial fraction of amino acid residues in
processosome components belongs to non-globular and coiled-coil regions
(Table 1), and the majority of proteins have both types of these regions (67 out
of 85 proteins contain non-globular segments and 59 contain coiled coils).

Thus, analysis of intrinsic sequence features in processosome components
reveals many potential interfaces for protein-protein interactions. As the
information on pairwise interactions between individual processosome pro-
teins accumulates, one can use the prediction of these features in planning
experiments on more precise mapping of these interfaces. Another practical
application of the simple sequence regions is that they often help to demar-
cate the borders of globular domains in large multidomain proteins (Mushe-
gian et al. 1997; see Fig. 1 for an example).

2.2 Evolutionarily Conserved Sequence Domains

I compared sequences of processosome components to the databases of pro-
tein sequences and of conserved sequence families and domains at NCBI
(http://www.ncbi.nlm.nih.gov/BLAST). The summary of these results is
shown in Table 2. Perhaps the main general conclusion of this analysis is that
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for about one half of the proteins, some prediction of their molecular func-
tions, interactions, or three-dimensional folds can be made on the basis of
sequence similarities (note that this does not include annotations of knockout
phenotypes and roles in ribosome synthesis available for the yeast proteins
used as queries). Thus, the knowledge base about protein families, domains,
their structure and function enables predictions even when experimental
information is insufficient. Below, some of these predictions are described in
more detail.

2.2.1 Kre33p, or Possibly AtAc: Protein with Multiple Predicted Activities

Kre33p (YNL132w) is associated with the 90S pre-ribosomal complex,
thought to contain the 35S pre-rRNA and the U3 snoRNA. It is not detected in
the pre-60S complex, suggesting a function either within the 90S complex

>gi|6324197|ref|NP_014267.1| Killer toxin REsistant; Kre33p [Saccharomyces 
cerevisiae] 
1-189 First predicted globular domain (SEG program), corresponds almost 
precisely to the first distinct homology region with predicted alpha/beta fold 
(PSI-BLAST and fold recognition data), except that the latter extends to amino 
acid 211 (Fig. 2A) 
MAKKAIDSRIPSLIRNGVQTKQRSIFVIVGDRARNQLPNLHYLMMSADLKMNKSVLWAYKKKLLGFTSHRKKRENKIKK
EIKRGTREVNEMDPFESFISNQNIRYVYYKESEKILGNTYGMCILQDFEALTPNLLARTIETVEGGGIVVILLKSMSSL
KQLYTMTMDVHARYRTEAHGDVVARFNERFI 
190-255 First predicted non-globular domain (SEG) 
LSLGSNPNCLVVDDELNVLPLSGAKNVKPLPPKEDDELPPKQLELQELKESLEDVQPAGSLVSLSK 
256-679 ATPase/helicase homology domain (PSI-BLAST and fold recognition) 
TVNQAHAILSFIDAISEKTLNFTVALTAGRGRGKSAALGISIAAAVSHGYSNIFVTSPSPENLKTLFEFIFKGFDALGY
QEHIDYDIIQSTNPDFNKAIVRVDIKRDHRQTIQYIVPQDHQVLGQAELVVIDEAAAIPLPIVKNLLGPYLVFMASTIN
GYEGTGRSLSLKLIQQLRNQNNTSGRESTQTAVVSRDNKEKDSHLHSQSRQLREISLDEPIRYAPGDPIEKWLNKLLCL
DVTLIKNPRFATRGTPHPSQCNLFVVNRDTLFSYHPVSENFLEKMMALYVSSHYKNSPNDLQLMSDAPAHKLFVLLPPI
DPKDGGRIPDP 
583-679 Acetyltransferase homology domain, N-terminal part (Fig 2B; PSI-BLAST 
and fold recognition)   
LCVIQIALEGEISKESVRNSLSRGQRAGGDLIPWLISQQFQDEEFASLSGARIVRIATNPEYASMGYGSRAIELLRDYF
EGKFTDMSEDVRPKDYSI 
680-714 Predicted non-globular region connecting two halves of the 
acetyltransferase homology region 
KRVSDKELAKTNLLKDDVKLRDAKTLPPLLLKLSE 
715-807 Acetyltransferase homology domain, C-terminal part (Fig 2B; PSI-BLAST 
and fold recognition 
QPPHYLHYLGVSYGLTQSLHKFWKNNSFVPVYLRQTANDLTGEHTCVMLNVLEGRESNWLVEFAKDFRKRFLSLLSYDF
HKFTAVQALSVIES 
808-828 Short coiled-coil region (Coils2) 
SKKAQDL 
SDDEKHDNKELTRT 
829-925 C-terminal mostly helical domain, possibly nucleic acid-binding (PSI-
PRED and PSI-BLAST) 
HLDDIFSPFDLKRLDSYSNNLLDYHVIGDMIPMLALLYFGDKMGDSVKLSSVQSAILLAIGLQRKNIDTIAKELNLPSN
QTIAMFAKIMRKMSQYFR  
926-1056 C-terminal non-globular domain (SEG) 
QLLSQSIEETLPNIKDDAIAEMDGEEIKNYNAAEALDQMEEDLEEAGSEAVQAMREKQKELINSLNLDKYAINDNSEEW
AESQKSLEIAAKAKGVVSLKTGKKRTTEKAEDIYRQEMKAMKKPRKSKKAAN 

Fig. 1. Segmentation of the Kre33p sequence into predicted structural and functional
domains. The programs used to predict each particular feature are indicated; see text for
the references to each program
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itself, or perhaps in the less-studied early pre-40S particle. The phenotypes of
Kre33p knockouts in yeast and nematode (lethal in homozygote, haploinsuf-
ficient and K1 killer toxin resistant in yeast; slow-growing and locomotion-
impaired in worm) suggest no clue to its biochemical activity.

Searches of the sequence databases and libraries of conserved domains,
however, detect orthologs of Kre33 in all completely sequenced eukaryotic
genomes, in most Archaea, and in many Proteobacteria from the gamma sub-
division. By definition of an ortholog, a similar domain architecture provides
for the alignment extended along the whole lengths of these proteins. Genes
for Kre33p-like proteins are generally found in a single copy per genome, and
their evolutionary tree is consistent with the generally accepted species tree
(data not shown).

What might be the (shared) function of Kre33p proteins? Analysis of
matches to the libraries of conserved sequence domains clearly predicts two
distinct enzymatic activities of the Kre33p family. The second globular region
(Fig. 1) in yeast Kre33p aligns with a number of predicted ATP-hydrolyzing
enzymes with a Walker-type gamma phosphate-binding loop (Leipe et al.
2002). The downstream DEAA motif flanked by the predicted N-terminal beta
strand and C-terminal alpha helix is almost certainly the Mg2+-binding site,
similarly to the well-known DEAD/H box in DNA and RNA helicases (data
not shown). The set of other conserved motifs, partly overlapping with the
helicase-specific signatures, suggests that Kre33p-like ATPases interact with
DNA or RNA, possibly mediating the assembly/disassembly of RNA-protein
complexes within the 90S pre-ribosome.

The region located to the C-terminus of the predicted ATPase domain (Fig.
2B) aligns to the large family of GNAT-like acetyltransferases, a group of
enzymes that includes members with a wide range of substrate specificities,
from small ligands to macromolecules. The three-dimensional structures of
many GNAT-like enzymes, in wild type and mutated forms and in complexes
with various adducts, have pinpointed the residues important for interaction
with the donor of acetyl group, Acetyl-CoA (Angus-Hill et al. 1999). Most of
these residues are well conserved in Kre33p-like sequences, indicating that
they must be active enzymes.

Acetyltransferases are involved in a wide range of biological processes,
from inactivation of antibiotics in bacteria to chromatin remodeling via
acetylating histones and thereby changing their ability to interact with DNA.
Recently, GNAT-like acetyltransferases have been shown to play a role in the
acetylation of many other protein substrates, such as nuclear import proteins
(Bannister et al. 2000) and multiple components of proteasome (Kimura et al.
2003). A hint at another possible role for Kre33p in ribosome assembly is
given by the mass-spectrometry data on mammalian 40S ribosomal subunit
and yeast 60S subunit (Louie et al. 1996; Lee et al. 2002), indicating that at least
13 ribosomal proteins are acetylated. Most of the activities responsible for
these modifications are unknown, and Kre33p-like proteins are good candi-
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dates for that role. It would be also of interest to know whether rRNA and any
of snoRNAs are acetylated in vivo and what the function of such a modifica-
tion might be. Given the presence of ATPase and Acetyltransferase domains in
Kre33p and its orthologs, I provisionally rename this family AtAc (pro-
nounced attack), even though this name is already used as a synonym to lym-
photactin (a cytokine; e.g. Dorner et al. 2003).

The name AtAc may be short-lived, though, because two more conserved
regions can be defined in the family. The most C-terminal region is pre-
dicted to consist mostly of alpha helices, and displays marginally significant
yet potentially interesting similarity, in PSI-BLAST searches, to C-terminal
regions of bacterial sigma-70 transcription factors. The sigma-70 sequences
most similar to the AtAc C-terminal domain were the sporulation-specific
factors from Gram-positive bacteria (sigma-G factor from Bacillus cereus, GI
30021992), matched the C-terminus of AtAc from Acidianus sp., GI 14279357,
at thefifth PSI-BLAST iteration with the probability of random match
E=10–3, but the domain in question is found in a wide variety of sigma fac-
tors (data not shown). Known under the name of sigma-4, it is one of the
most conserved and functionally important regions in the sigma factors,
consisting of three tightly packed helices (Campbell et al. 2002). The mode
of interaction of sigma-4 with DNA (in bacteria, the prime target is the –35
promoter region) seems to be exclusively via the major groove of the dou-
ble-stranded form, so the immediate implications to the AtAc activity are not
clear.

Recently, structural and functional similarity has been described between
essentially the same helix-turn-helix motif in sigma-4 and a region in a dif-
ferent family of proteins also involved in the processosome function, namely
the Imp4 family (Wehner and Baserga 2002). I will discuss the significance of
these observations in the next section (see Sect. 2.2.2).

The N-terminal region of the AtAc proteins, located upstream of the
ATPase-like domain and separated from it by a putative low-complexity
sequence linker, is not  similar to any other sequences in the database. How-
ever, sensitive methods of secondary structure prediction (McGuffin et al.
2000) and fold recognition based on probabilistic modeling and threading
(Ginalski et al. 2003) indicate that this domain belongs to the alpha/beta class,
and may be a representative of a Rossmann-like fold within that class. Indeed,
weak sequence and structure similarity has been observed between AtAc-N
domain and several S-adenosyl-methionine dependent methyltransferases
that have a Rossmann-like structure (Fig. 2A and data not shown). Conserved
acidic residues, located close to the C-termini of the predicted beta-strands,
are characteristic of many enzymes that belong in this fold (Lesk 1995) and
can be observed in AtAc-N. Thus, AtAc-N is likely to be an active enzyme,
though the type of reaction it catalyzes is not possible to predict with cer-
tainty. I speculate that there might be yet another transferase involved in the
modification of ribosomal proteins or RNA. Alternatively, this or other enzy-
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matic domains in AtAc’s may be involved in regulating, by covalent modifica-
tion, the activities of other components of processosome.

2.2.2 Imp4/Ssf1/Rpf1/Brx1/Peter Pan Family of Proteins

Five putative processosome components, namely Imp4p (YNL075w), Ssf1p
(YHR066w), Brx1p (YOL077c), Rpf1p (YHR088w), and Rpf2p (YKR081c),
share significant sequence similarity. All these proteins, as well as their other
recognizable homologues in yeast, Ssf2p (YDR312w), are involved in the for-
mation and activity of RNP complexes in the nucleus (Wehner et al. 2002;
Wehner and Baserga 2002). The known roles of Rpf1 and Rpf2 are mainly in
ribosome maturation, whereas Ssf1 appears to be additionally, and Ssf2 exclu-
sively, involved in splicing. Multiple homologues of these proteins are found
in all eukaryotes, including the fruit fly protein, Peter Pan, required for larval
growth. One homologue of the Imp4/Peter Pan gene per genome is detected in
some (but not all) Archaea, which are usually found next to the genes encod-
ing the exosome components, i.e. the RNA processing nucleases whose homo-
logues in yeast are involved in pre-rRNA processing (Koonin et al. 2001).

Based on this evidence, the RNA-binding roles have been suggested to the
members of the Imp4/Peter Pan family, and experiments have confirmed that
Imp4p, Rpf1p, and Rpf2p bind single-stranded (ss) RNA, displaying some-
what different nucleotide preferences, and do not bind double-stranded RNA
or single-stranded DNA (Wehner and Baserga 2002). The substantial part of
the ssRNA-binding activity resided in the C-terminal domains of Rpf1p and
Rpf2p; corresponding segments of these proteins conferred RNA-binding
ability to an unrelated protein (luciferase).

I aligned eukaryotic and archaeal Peter Pan-like proteins and attempted to
predict their secondary structure and tertiary fold. The family alignment
indicates that similarity between Eukarya and Archaea is distributed over
most of the length of archaeal proteins, but is confined to the middle portion
of the larger eukaryotic homologues (Fig. 3). Thus, eukaryotic proteins appear
to consist of two conserved sequence domains, one shared with Archaea and
the other unique (and an additional, non-globular and less well-conserved, N-
terminal regions – data not shown). No statistically significant sequence sim-
ilarity was observed between either of the two domains and any proteins from
other families.

Wehner and Baserga (2002) used a search with the eMOTIF program and
library (Huang and Brutlag 2001) to match the C-terminal RNA-binding seg-
ment of eukaryotic Peter Pan-like proteins to the sigma-70 helix-turn helix
motifs in bacterial transcription factors. Unlike the well-studied statistics of
database searches used in the BLAST suite of programs (Altschul et al. 2001;
Schaffer et al. 2001), the statistical properties of short motifs is not well under-
stood, and I was not able to quantify the specific sequence affinity between
Peter Pan-C domain and sigma-70. Moreover, secondary structure prediction
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suggests an alpha-beta structure for both domains in Peter Pan-like proteins
(Fig. 3), and specifically, indicates that the area to the N-terminus of the turn
with the characteristic ExG signature is more likely to be a beta-strand than
an alpha helix. Determination of the structure of the C-terminal, RNA-bind-
ing region of eukaryotic Peter Pan-like proteins will resolve the question of
similarity between these domains and sigma-70, and of the mode of RNA
binding by Peter Pan-C. The apparently independent existence of Peter Pan-N
domain in archaea suggests a distinct, second molecular function.

The dedicated involvement of the Peter Pan/Imp4 family in nucleolar RNA
metabolism, and the addition of eukaryote-specific domain to an archaea-
specific module are reminiscent of another protein superfamily involved in an
RNA-directed process. The post-transcriptional gene silencing (PTGS) path-
way occurs in cytoplasm, is mediated by specific small RNAs, and requires
several specific protein components. A protein family that appears to be ded-
icated to the PTGS is the eukaryotic Piwi/Argonaute/Zwille family that con-
sists of two distinct protein domains. The centrally located PAZ domain is
eukaryote-specific, and is also found in another component of the PTGS path-
way, the helicase/exonuclease Dicer, and is thought to mediate heterodimer-
ization of Argonaute and Dicer (Anantharaman et al. 2002). The C-terminal
Piwi domain is found in eukaryotes and, as a stand-alone protein, in Archaea.
In a purely superficial analogy with this system, it could be argued that the
Peter Pan-N domain performs a function shared by Archaea and eukaryotes,
and the Peter Pan-C domain may be involved in the maturation of eukaryote-
specific supramolecular complexes.

2.2.4 Diverse RNA-Binding Domains and Limited Repertoire of Globular
Protein Interaction Modules

The substrates of processosome are pre-rRNA, its various processed forms
and, finally, ribosome subunits that, even in mature form, interface with the
environment mostly via RNA (Moore and Steitz 2002). Thus, it is not unex-
pected to detect RNA-binding domains in many processosome components.
Indeed, a comparison of the databases of sequences and conserved sequence
domains, as well as biochemical evidence, predicts an RNA-binding function
and, typically, the existence of known RNA-binding domains, for at least 30 of
the processosome proteins. What may be less expected is the amazing variety
in sequences and structures of these domains. I counted at least 17 distinct
types of known or purported RNA-binding domains (Table 2).

Some of the processosome components are RNA-modifying enzymes that
employ discrete domains to interact with their substrates. This is the case for
helicases (C-terminal regions, including, probably, distinct HELICc domain)
and methyltransferases (PUA domain). Other proteins seem to consist mostly
of RNA-binding domains, such as KH, RRM, or TRAM (Letunic et al. 2002;
http://smart.embl-heidelberg.de/). Furthermore, a number of processosome



components appear to be the paralogs of ribosomal proteins, many of which
contain RNA interaction domains named after them (e.g. various forms of S1
domain and S4 versions of the PUA domain). Finally, several domains are
found in both DNA-binding and RNA-binding proteins, such as versions of
Helix-Turn-Helix domain in AtAc and in Rio2p protein kinase, of HELICc
domain in helicases, and of a yet uncharacterized domain in CBF/Mak21/
Noc2/Noc3 a family related to CCAAT-binding transcriptional coactivator
subunits (Table 2).

Not only do the sequences of the nucleic acid-binding modules belong to a
broad variety of sequence families, but the spatial structures of these domains
are also extremely diverse. Five high-level structural classes are commonly
described (http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.html), and repre-
sentatives of most of them are predicted among the processosome. For exam-
ple, the helical domains mentioned in previous sections belong to all-alpha
folds, L1 insertion domain (YKR060w) to alpha-beta, ribosomal protein S4
–like fold (Imp3) is segregated alpha+beta, and the C-terminal domain of
Nob1p is predicted to form a zinc ribbon from the class of small ligand-stabi-
lized proteins.

A significant fraction of processosome proteins (at least 10) also contains
specific conserved domains that are likely to be involved in protein-protein
interactions. In contrast to the RNA-binding domains, there are only a few
distinct classes of such domains in processosome. With a single exception of
one BRCT domain in Nop7p, specific protein interaction domains in proces-
sosome are either of WD40, or of TPR/halfTPR type.

Although many proteins contain one interaction domain, having the same
type of protein interaction module does not imply that they all share one and
the same interaction partner. Despite the ease with which WD40 and TPR
domains can be recognized in sequence similarity searches, their sequences
are highly diverged in the processosome proteins. Moreover, mutagenesis
experiments have shown how a change of even a few amino acids in these
domains may result in dramatically different interactions (see domain anno-
tations in http://smart.embl-heidelberg.de/ for the details). Apparently, larger
protein-protein interfaces, with a potential of chemically diverse interactions,
afford substantial specialization of specific processosome components, even
though the interacting modules are broadly of the same type.A different prin-
ciple seems to operate in protein-RNA recognition, where interfaces may be
smaller, and the sequence of one interaction partner (ribosomal RNA) is evo-
lutionarily constrained.

3 Phyletic Patterns

In an attempt to reconstruct at least some steps in the evolutionary history of
processosome, I gathered information on the evolutionary lineages in which
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the homologues of the processosome proteins are found. The presence and
absence of orthologous genes in different lineages can be presented as a
binary vector (set of 0¢s and 1¢s) or coded with letters (the third column in
Table 2), and is called a phyletic pattern. I traced the phyletic patterns of
processosome proteins in three eukaryotic lineages, metazoans, plants, and
fungi, as well as in Archaea and Bacteria.

Whenever the orthologs of a given gene can be found in all three major
domains, i.e., Bacteria, Archaea, and Eukarya, this suggests that an ortholo-
gous gene has been present in the common ancestor of three domains. If
orthologs are found only in Archaea and Eukarya, this indicates the emer-
gence of the gene later in evolution. These patterns can be adulterated by hor-
izontal gene transfer, which is apparently a widespread process, as extensively
documented, for example, in Mirkin et al. (2003); however, it will not be con-
sidered here. At a higher resolution, certain genes may be present in some but
not all lineages within a domain, suggesting lineage-specific gene losses and
possibly displacements of these functions by different, non-orthologous
enzymes (Koonin et al. 1996). Taken as a whole, the distribution of phyletic
patterns helps one to understand the rate and order of the evolutionary
accrual of different domains with their specific functions.

A special, and important, case of sequence similarity is paralogous similar-
ity, i.e. the relationship resulting from domain duplication and rearrange-
ment. If a gene from an evolutionarily more recent lineage lacks orthologs, but
has paralogs, in a more ancient lineage, the emergence of a present-day func-
tion can be explained by cooptation of a copy of an ancestral gene for a new
function. Often, more complex functional systems in eukaryotic cells can be
parsed into components, most of which are traceable to simpler prokaryotic
systems.

All told, seven phyletic patterns are represented in processosome compo-
nents. At one extreme, three proteins, Ygr081, Utp8p, and Loc1p, are missing
even in fungi other than Saccharomyces cerevisiae. Assuming that their asso-
ciation with processosome is functionally relevant, these proteins have either
evolved beyond recognition in other lineages, or have been displaced by unre-
lated proteins with the same function. At the other extreme, there are nine
proteins represented by orthologs everywhere. Seven of them are enzymes
with known biochemical activities, dimethyl adenosine transferase Dim1p,
RNA methylases Nop2p and Spb1p, the multidomain enzyme Kre33p/AtAc
described above, RNA 3'-teminal phosphate cyclase Rcl1p (one copy in bacte-
ria and archaea, lineage-specific duplication in eukaryotes – Bill et al. 2000),
helicases Dbp9p and Drs1p, and two proteins are related to distinct classes of
ribosomal proteins, Mrt4p and Nsa3p.

There are 20 proteins with the MPF–– pattern (orthologs in all lineages of
eukaryotes, no orthologs or paralogs in prokaryotes). None of such proteins
are predicted to have an enzymatic activity; Mac16p, Noc2p and Noc3p con-
tain RNA interaction domains. There are five proteins with pattern MPFa–
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(orthologs in eukaryotes, paralogs in Archaea) – all from the Peter Pan family
– and six MPFA– proteins, again with no known enzymatic activities, but with
three ribosomal protein-related domains. The largest class has the pattern
MPFab, with 29 proteins, 7 of which are Walker-type ATP/GTP-binding
enzymes with ancient, ubiquitous core domain (Leipe et al. 2002), and the oth-
ers are non-enzymatic proteins dominated by protein–protein interaction
domains. Finally, 12 MPFAb proteins are the most diverse ones, including both
interaction adaptors and several enzymes with diverse specificities.

From this brief outline, the following trends emerge. Essentially all the
enzymes involved in ribosome assembly have been present early in the evolu-
tion of Life, perhaps in the last common ancestor of Bacteria, Archaea and
Eukarya. Many types of modules for protein–protein and protein-RNA inter-
action have also been present at that stage. Later in the evolution of eukary-
otes, copies of some enzymes were recruited to perform additional functions,
and interaction domains greatly proliferated in numbers and diverged in
sequences. Archaea-specific “inventions” in processosome are mostly limited
to the Peter Pan-N domain. About one-fourth of processosome components
are eukaryote-specific, but very few clues to their function or origins cur-
rently exist.

A more detailed evolutionary analysis has to take into account not just the
deep branches of the Tree of Life, but examine in more detail the gene content
of the recent lineages. For example, although both Rcl1p and Kre33p are
found in Eukarya, Archaea, and Bacteria, they are actually missing from a few
Archaea and are found in only a few bacteria, mostly from the gamma subdi-
vision of proteobacteria (Fig. 4A).

While the reconstruction of the most probable path of evolution leading to
such “patchy” patterns is possible yet technically challenging (Mirkin et al.
2003), the pattern itself can be used for the reconstruction of functional path-
ways. The basic idea is that genes whose phyletic patterns are similar to each
other are more likely to be functionally linked (Pellegrini et al. 1999).

Recently, we have developed the statistical framework for a comparison of
binary patterns using a variety of distance measures and clustering tech-
niques (G.V.Glazko and ARM, in prep.). A fragment of a neighbor-joining
clustering based on a distance derived from Pearson correlation measure, is
shown in Fig. 4A. The patterns of Rcl1p and Kre33p appear to be highly cor-
related with each other and with the pattern for an uncharacterized family of
proteins (NCBI COG0585), represented in E. coli by the YgbO gene product
and in yeast by YOR243 cp.

Initial sequence analysis did not provide convincing clues to YgbO func-
tion. However, I noticed statistically insignificant PSI-BLAST matches
between the N-terminal regions of the YgbO protein from E. coli and different
pseudouridine synthases of the TruB family. As pseudouridine synthesis is
one of the essential modifications of rRNAs, tRNAs, and snoRNAs, and
because the matches contained a conserved aspartic acid residue thought to
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Fig. 4. YgbO/Pus7 is a pseudouridine synthase related to TruB and functionally linked
to Rcl1p and Kre33p/AtAc. A Phyletic patterns of Rcl1p, Kre33p, and YgbO families are
similar. Three-letter species abbreviations are according to the COG database (http://
www.ncbi.nlm.nih.gov/COG/new/). B Alignment of YgbO and TruB families. Asterisks
indicate the residues lining the active-site cavity of E.coli TruB (pdb 1K8 W), including
the principal catalytic aspartate and conserved arginine thought to form a salt bridge
with each other (bold asterisks). Species abbreviations: Cj, Campylobacter jejeuni; Mt,
Methanothermobacter thermautotrophicus; Hsp, Halobacterium sp. NRC-1; Os, Oryza
sativa; Ma, Methanosarcina acetivorans str. C2A. Other designations are as in Fig. 2



be involved in catalysis in TruB (see below), I analyzed multiple alignments of
the YgbO and TruB families, in an attempt to define all conserved sequence
motifs shared by both families.As shown in Fig. 4B, the YgbO family contains
all the main motifs recognized in a TruB family (some of which are also
shared with other families of pseudouridine synthases; Koonin 1996), and the
sequence elements conserved between YgbO and TruB appear to correspond
to the set of beta-strands which form the core of the N-terminal catalytic
domain in the known three-dimensional structure of TruB (Hoang and Ferre-
D’Amare 2001). The C-terminal (presumably RNA-binding) PUA-like domain
of TruB enzymes (Anantharaman et al. 2002) is missing from YgbO, but the
latter family apparently contains long sequence inserts, some of which may
fold independently and play an equivalent role in YgbO interaction with the
substrate. Notably, all residues that make contact with the substrate analog 5-
fluorouracyl in the TruB co-crystal (Hoang and Ferre-D’Amare 2001) are well
conserved in the YgbO family (Fig. 4B). Thus, YgbO enzymes are likely to be
pseudouridine synthases distantly related to the TruB family.

When this manuscript was under final revision, two reports showed the
pseudouridylate synthase activity of YgbO and Yor243p. Kaya and Ofengand
(2003) reported purification of a pseudoridylate synthase responsible for the
modification of nucleotide 13 in tRNAGlu in E.coli, by a direct biochemical
approach unaided by sequence comparison. In another work, Ma et al. (2003)
selected the enzyme that modifies position 35 in yeast U2 snoRNA, based on
its biochemical activity, from the library of expressed GST fusions of all yeast
proteins (Martzen et al. 1999). Neither group reported the similarity to TruB,
except for noticing the most conserved acidic residue in the GxKD motif and
showing that it is essential for catalysis (Kaya and Ofengand 2003).

Analysis of phyletic patterns and sequence conservation thus indicates that
Rcl1p, AtAc/Kre33p, and pseudouridylate synthase now renamed TruD/Pus7,
may act in concert, modifying snoRNAs and/or rRNA. The nature of these
modifications and their role in ribosome assembly remains to be investigated.

4 Concluding remarks

In this chapter,I surveyed the sequences of yeast proteins that are found in spe-
cific complexes associated with ribosome assembly and nuclear export.Several
computational methods, i.e., examination of intrinsic sequence features, data-
base searching and analysis of homologous domains, and quantification of
similarities between phyletic patterns, can be used together to predict novel
molecular functions for proteins that have not been sufficiently studied.While
“molecular function” is not the same as the detailed understanding of the bio-
logical role of a protein, the list of “what is possible” for a given protein can be
dramatically shortened, and further experimentation will be increasingly
guided, by the information inferred from computational approaches.
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Bioinformatics-Guided Experimental
Characterization of Mismatch-Repair Enzymes and
Their Relatives

P. Friedhoff

1 Introduction

The increasing information in databases of protein sequences and structures
together with the development of bioinformatic tools has helped the bio-
chemists to identify and validate the function of many different proteins. In
this chapter, we will show the successful application of two methods, protein-
fold recognition (FR) and evolutionary-trace (ET) analysis to learn about the
function of a group of proteins which belong to the class restriction endonu-
cleases, namely the type II restriction endonuclease (REase) Sau3AI and the
mismatch repair (MMR) protein MutH.

The first method, fold recognition, makes use of sequence information to
predict the secondary structure, the topology, and finally the tertiary struc-
ture of a protein. These methods are of great value for many purposes in mod-
ern biology since the available sequence information has by far exceeded the
available structural information and the knowledge about the fold of a given
protein is an important step towards the understanding of its function. Here,
we applied several fold-recognition programs and the consensus server Pcons
available via “metaservers” (Bujnicki et al. 2001; Kurowski and Bujnicki 2003)
to predict the structure of the C-terminal domain (CTD) of Sau3AI.

The second method, the evolutionary-trace analysis, makes use of phyloge-
netic and structural information of a protein family in order to identify func-
tional sites in proteins. This method has been successfully used to predict the
functional sites in a variety of different proteins (review: Lichtarge et al. 2002).
Here, we use the evolutionary-trace method to identify amino acid residues in
MutH, which are involved in sensing the methylation status of its recognition
sequence.
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In both cases, the bioinformatic analysis guided the biophysical and bio-
chemical analysis of the proteins, whose results in turn confirmed that the
predictions were highly significant.

1.1 Sau3AI and Related Restriction Endonucleases

Sau3AI belongs to the family of type II restriction endonucleases. In the pres-
ence of Mg2+, Sau3AI cleaves double-stranded DNA (recognition sequence:
/GATC), producing sticky ends with four nucleotide 5¢-overhangs. Its partner
enzyme, the Sau3AI DNA methyltransferase (MTase) protects the hosts DNA
via methylation of the recognition sequence to give C5-methylation (m5C) at
position 4, thereby preventing cleavage by Sau3AI (Seeber et al. 1990). More-
over, Sau3AI is also inhibited by N4-methylcytosine (m4C) at position 4 but
not by N6-methyladenine (m6A) at position 2.

“Orthodox” type II REases recognize short palindromic sequences, 4 to 8
base pairs in length, and cut both strands and have recently been classified
into several subgroups (reviews: Pingoud and Jeltsch 2001; Roberts et al.
2003). Most of these enzymes, now classified as type IIP enzymes, have a sym-
metric recognition and cleavage site. They often act as homodimers, thereby
forming one DNA binding site that contains two catalytic centers allowing the
simultaneous cleavage of both strands, e.g. EcoRI or EcoRV. One variation to
this scheme is the type IIF REases, which tetramerize, thereby forming two
DNA binding sites. In order to be fully active both DNA binding sites most be
occupied (Embleton et al. 2001). On the other hand, types IIE REases are two-
domain proteins, which upon dimerization will form two DNA binding sites.
Similar to type IIF REases, both DNA binding sites of type IIE enzymes have
to be occupied to achieve maximum activity. However, in contrast to type IIF
enzymes, only one DNA binding site of a IIE REase contains a catalytically
active site while the other is an activator site, e.g., in NaeI or EcoRII (Huai et
al. 2001; Mucke et al. 2002).

While Sau3AI has been used widely as a tool by molecular biologists, rather
little information regarding the biochemistry of this enzyme was known.
Sau3AI contains 449 amino acid residues and, therefore, has twice the size of
the subunit of a typical type IIP REase. Therefore, the enzyme might belong to
one of the various subtypes of the type II class of restriction endonucleases.
Special interest on Sau3AI was raised when the structure of the DNA mis-
match repair endonuclease MutH was solved and the sequence similarity
between the N-terminal domain of Sau3AI and MutH became apparent (Ban
and Yang 1998).
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1.2 DNA Mismatch Repair

DNA mismatch repair is one of several repair pathways to ensure the stability
of the genome of most organisms. The difference between mismatch repair
and most other repair mechanisms is that the mismatch repair machinery
corrects sequence information errors, i.e., base–base mismatches or inser-
tion/deletions, while the other repair mechanism corrects changes in the
structure of the DNA, e.g. strand breaks or alkylation of bases. The main but
not exclusive function of DNA mismatch repair is the correction of errors of
the replicative DNA polymerases, which escaped their built-in proofreading
function. Therefore, the mismatch repair system has two tasks to fulfill: (1)
recognition of the replication error and (2) identification of the erroneous
strand, which by definition is the newly synthesized daughter strand (Mod-
rich and Lahue 1996).

The paradigm for DNA mismatch repair is the methylation-directed MutHLS
system of Escherichia coli and related proteobacteria. The system has been
extensively studied both in vivo and in vitro and has been reconstituted in vitro
from purified compounds by Modrich and coworkers (Lahue et al.1989).More-
over,the crystal structures for the key players,MutS,MutL and MutH,have been
solved recently (Ban and Yang 1998; Ban et al.1999; Lamers et al.2000).

Mismatch repair is initiated by recognition of the mismatch by MutS. MutL
then acts as a “molecular matchmaker” and helps to recruit other components
involved in this process. The first protein recruited is the sequence-specific
endonuclease MutH, which after activation by MutS and MutL nicks the
unmethylated erroneous DNA strand at hemimethylated dam sites (GATC),
which can be up to 1000 base pairs away from the mismatch (Modrich and
Lahue 1996). Thereby, strand discrimination is achieved and repair is directed
to the newly synthesised daughter strand. In vitro reconstitution experiments
have shown that the excision re-synthesis steps can occur bidirectionally by
involving the action of DNA helicase II, exonucleases (ExoI or ExoX for 3¢-5¢-
removal; ExoVII or RecJ for 5¢-3¢-removal, single-strand DNA binding pro-
tein, DNA polymerase III holoenzyme and DNA ligase (Modrich 1991; Au et
al. 1992; Cooper et al. 1993).

Several mechanisms for the communication between the mismatch recog-
nition and the strand discrimination step have been discussed in the litera-
ture. These models all have one thing in common, a physical interaction
between MutS and MutL on the one hand, and MutL and MutH, on the other.
The three most frequently discussed models include an ATP-dependent DNA
translocation model (Allen et al. 1997); the molecular switch or sliding clamp
model (Gradia et al. 1997) and the DNA looping model (Junop et al. 2001).

Although the structures of the MutHLS proteins are available, it is not
known how MutH is activated by MutL, or how MutH discriminates between
the unmethylated and methylated DNA strands, since the structure of MutH
was solved in the absence of its cognate DNA substrate.
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1.3 Nicking Endonuclease MutH

E. coli MutH is a 229 amino acid monomeric endonuclease, which in the pres-
ence of Mg2+ nicks DNA strands (recognition sequence: /GATC;Welsh et al.
1987). MutH only nicks at GATC when the adenine is not methylated. The nat-
ural and preferred substrates of MutH are hemimethylated GATC sites with
m6A on the (parental) strand, which is not cleaved by MutH. DNA fully methy-
lated (m6A) at GATC) is not cleaved at all. However, the endonuclease activity
of MutH is low (turnover number <1 h–1) but gets stimulated 20- to 50-fold in
a mismatch-independent manner by MutL or in a mismatch-dependent man-
ner by MutS and MutL (Ban et al. 1999; Hall and Matson 1999). The mecha-
nism of strand discrimination by MutH seems to be limited to a subset of g-
proteobacteria, since close homologues of MutH have not been found outside
these taxa (Eisen and Hanawalt 1999). Hence, the mechanisms for strand dis-
crimination must be different in most other Bacteria, Archaea and Eukarya.

Sequence comparisons revealed that MutH shows sequence similarity to
Sau3AI (Ban and Yang 1998). In addition to the sequence similarity, MutH and
Sau3AI have  the cleavage of the same recognition sequence at the same posi-
tion, i.e. /GATC, in a Mg2+-dependent manner in common (Ban and Yang
1998). Both enzymes are inhibited by m4C and m5C methylation at position 4
(Friedhoff, unpubl. results). However, whereas MutH only nicks DNA in
unmethylated (m6A) GATC sites, Sau3AI makes a double-strand break regard-
less of the methylation status at the adenine at position 2. Moreover, Sau3AI is
almost twice the size of MutH and does not require activation by additional
factors. The question, therefore, was raised, whether these additional residues
have a function in controlling the activity of Sau3AI similar to how MutL acti-
vates MutH (Ban and Yang 1998).

The structure of the E. coli MutH protein was the first structure of the
MutHLS system solved (Ban and Yang 1998) and revealed the structural simi-
larity to restriction endonucleases. As might be expected from the function,
the crystallographic analysis suggested a monomeric structure for MutH.
Moreover, three structural variations of MutH have been observed (pdb
codes: 1azo, 2azo_A and 2azo_B). One of these (2azo_B) is believed to be the
catalytic competent form of MutH, where the active site has a similar geome-
try as the closest structural relative PvuII. The three MutH structures differ in
terms of the relative orientation of the two subdomains (Yang 2000) and the
order of several loop residues. At least six highly conserved residues Lys48,
Glu56, Asp70, Glu77, Lys79 and Lys116 have been reported to be crucial for
enzymatic activity, since the individual alanine mutants are almost devoid of
catalytic activity while still being able to bind to the substrate (Yang 2000; Loh
et al. 2001; Friedhoff et al. 2002). By structural similarity the DNA binding
cleft could be assigned but no details on how the monomeric MutH recog-
nizes the DNA and discriminates unmethylated DNA from methylated one
were reported.
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A mechanism for activation might be the stabilization of the active form of
MutH upon binding to activator protein MutL. The protruding C-terminal a-
helix F and the following hydrophobic have been suggested to act as a molec-
ular lever for MutS and MutL to activate MutH (Ban and Yang 1998). More-
over, the binding site for MutL was mapped experimentally to a region around
the end of a-helix E (Toedt et al. 2003).

2 Sau3AI – Similar Folds for N- and C-Terminal Domains

In order to get an insight into the function of the C-terminal domain (CTD) of
Sau3AI we made use of fold-recognition programs by using the power of
metaservers, which combine and judge the results of several fold-recognition
programs (Bujnicki et al. 2001; Ginalski et al. 2003; Kurowski and Bujnicki
2003).

2.1 Fold Recognition for the C-Terminal of Sau3AI

MutH-related sequences were identified using a variety of BLAST and PSI-
BLAST searches (Altschul et al. 1997) of a non-redundant (nr) database and
publicly available nucleotide sequences from both complete and unfinished
genome projects at NCBI (http://www. ncbi.nlm.nih.gov). BLAST searches of
individual genome sequences were performed using the GOLD Genomes
OnLine Database using sequences of E. coli MutH and Sau3AI as queries. Mul-
tiple alignments were extracted from the BLAST output with the BIBVIEW
software (http://bioinfo.pl/bibview.pl) and were corrected manually, taking
into account preservation of the continuity of the observed secondary struc-
tural elements.

In a search for proteins with a similar fold of the C-terminal domain of
Sau3AI, we submitted the individual sequences for the seven C-terminal
domains to the Structure Prediction Meta Server (http://bioinfo.pl/meta/;
(Bujnicki et al. 2001; Ginalski et al. 2003) or the alignment of the C-terminal
domains of the seven REases to the Fold Prediction Metaserver at Genesilico
(http://genesilico.pl/meta) (Kurowski and Bujnicki 2003). Both metaservers
use several fold-recognition programs (links to the individual structure pre-
diction servers are provided on the above-mentioned websites).

The  best hits by far, from the metaserver for all seven REases was the struc-
ture of MutH (pdb-code 1azo or 2azo), suggesting that both the N-terminal
and C-terminal domain of the REases adopt a similar fold as MutH (Table 1).
Moreover, when the sequence alignment of all seven C-terminal domains was
submitted, which is now possible with the Fold Prediction Metaserver at Gen-
eSilico, the PDB-BLAST had already resulted in a significant hit, namely 1azo
with a score of 3e-86.
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These results suggest that both the N- and the C-terminal domains of
Sau3AI adopt a MutH-like fold, which has several implications for the quater-
nary structure of the enzyme. For instance, this result may suggest that
Sau3AI is a pseudodimer, i.e., the DNA binding site is formed by the two sub-
domains from a single polypeptide chain similar to the one which has been
observed for other DNA cleaving enzymes, e.g., the homing endonucleases PI-
SceI (Christ et al. 1999). Another possibility is that the protein forms a dimer
with two distinct DNA binding sites formed by the N and the C-terminal
domain, respectively. This has been shown for the type IIE REases NaeI and
EcoRII (Huai et al. 2001; Mucke et al. 2002; Zhou et al. 2003), though the DNA
binding domains of these enzymes have different folds.

To learn more about the function of the C-terminal domain of Sau3AI we
performed a protein sequence alignment based on the fold-recognition pre-
dictions with the N-and C-terminal domains of the REases and MutH pro-
teins. MutH protein sequences and the N-terminal domains of the REases
were aligned using the ClustalX program (Thompson et al. 1997). The C-ter-
minal domains of the REases were aligned separately and thereafter aligned
to the former alignment guided by the results of the prediction servers and
manually refined using the program BioEdit (Hall 1999,Fig. 1). Moreover, a
phylogenetic and molecular evolutionary analyses conducted using MEGA
version 2.1 (Kumar et al. 2001) indicated that the C-terminal domains of the
REases are more distantly related to the MutH sequences than to the N-termi-
nal domains (Fig. 2). A similar result of a phylogenetic study was reported by
Bujnicki (2001).

One of the important questions was, whether the C-terminal domain will
also be able to bind and cleave the DNA. Catalytic important residues in MutH
(E56, D70, E77, K79 and K116) have been identified by structural similarity
(Ban and Yang 1998) and verified by mutational analyses (Friedhoff et al.
2002; Wu et al. 2002; Junop et al. 2003). The sequence analysis showed that the
C-terminal domains lack the characteristic active site residues of the PD-
(D/E)XK motif (Fig. 1). Moreover, by mapping the sequence conservation
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Table 1. Results of the Structure Prediction Meta Server

Protein Pcons2 PDB code 3D Jury PDB code

Sau3AI 2.12 1azo 64.67 1azo
LlaKR2I 3.07 1azo 79.00 2azo_A
Sth368I 3.88 1azo 84.25 2azo_A
RE_Spn 4.17 1azo 93.00 1azo
RE_Blo 3.12 1azo 81.40 1azo
RE_Cpe 4.48 1azo 95.00 2azo_A
RE_Lmo 3.15 1azo 85.86 1azo

Scores of >1.5 or 50 for Pcons2 or 3D Jury, respectively, are regarded as significant.
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onto the structure of MutH we noticed that most conserved residues were
located in the protein core rather than on the protein surface, with the excep-
tion of a few residues probably involved in DNA binding and recognition.
These residues included K48 and E91 of MutH, which are involved in DNA
binding and recognition as revealed by mutational analyses (Friedhoff et al.
2002; Wu et al. 2002).

To validate our bioinformatic analysis we analyzed the biochemical and
biophysical properties of Sau3AI in more detail.

2.2 Biochemical and Biophysical Analysis – Evidence for a
Pseuotetramer That Induces DNA Looping

Since efforts to clone the entire R-M system of either Sau3AI or LlaKR2I in a
variety of E. coli strains failed (Seeber et al. 1990; Twomey et al. 1998), we were
not able to perform a mutational analysis on Sau3AI. However, we could show
by gel filtration and sedimentation analysis that Sau3AI in the absence of DNA
is a monomer (Friedhoff et al. 2001). This might suggest that Sau3AI forms a
pseudodimer, however, it does not rule out that Sau3AI could dimerize upon
binding to DNA.Similar results have been observed for type IIS REase that pre-
sumably are monomeric in the absence of DNA but dimerize in the presence of
DNA, as shown for FokI (Bitinaite et al. 1998; Wah et al. 1998).

Next, we addressed the question whether Sau3AI contains a single DNA
binding site with two catalytic centers – as is the case for most type II restric-
tion endonucleases due to their homodimerization – competent to perform a
double-strand break in one binding event. The results of a DNA cleavage
analysis in which the conversion of plasmid DNA from the supercoiled form
to either the open circular form (by nicking) or to the linear form (by double-
strand breakage) was monitored, and showed no indication for an accumula-
tion of the open circular form and thus no indication for DNA nicking (Fried-
hoff et al. 2001). Hence, we concluded that Sau3AI contains one DNA binding
site with two catalytic centers.

However, these results did not answer the question regarding the function of
the additional C-terminal domain of Sau3AI.It was known from type IIE REases
that an additional DNA binding domain without catalytic activity can act as an
activator thereby regulating the activity of the catalytic domain, as shown for
example for NaeI, EcoRII or FokI (Bitinaite et al. 1998; Embleton et al. 2001;
Mucke et al.2002).Consequently,we addressed this issue by analyzing the cleav-
age of DNA substrates containing either one or two GATC sites.The outcome of
this analysis revealed that a substrate with two recognition sites was cleaved sig-
nificantly faster than the substrate with a single site (Friedhoff et al.2001).More-
over,the two sites were cleaved one at a time similar to that observed for type IIE
REase,e.g.,NaeI or EcoRII,which contains two DNA binding sites,one of which
is the catalytic site and one of which is the activator site.In addition it was shown
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for Sau3AI that the cleavage of long DNA substrates containing a single GATC
site is stimulated rather than inhibited by the addition of small oligonucleotides
containing a GATC site (Hermann and Jeltsch 2003).

The enzymological analysis of Sau3AI was corroborated by an electron
microscopy study using the same DNA substrates as was used for the cleavage
analysis. This analysis clearly demonstrated the ability of Sau3AI to introduce
DNA loops on substrates containing two GATC sites (Fig. 3), indicating the
presence of two DNA binding sites in the enzyme.

These results taken together suggest that Sau3AI forms a dimer upon bind-
ing to DNA. This dimer contains a DNA binding site formed from the N-ter-
minal domain each of which contains a catalytically competent active site that
allows the enzyme to perform a double-strand break in a single DNA binding
event. The second DNA binding site is formed from two C-terminal domains
that lack a catalytically active site and thereby do not cleave the DNA upon
binding. Based on these conclusions a model of quaternary structure of
Sau3AI complexed with the target DNA was generated by Bujnicki (2001;
Fig. 4). These results have implications for the evolution, structure and func-
tion of bacterial DNA repair of enzymes and restriction endonucleases.

The exact function of the additional C-terminal DNA binding domains
remains elusive although it has been speculated for other type II REase, e.g.,
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Fig. 2. Phylogenetic tree
of MutH and REases (N-
and C-terminal domains).
The phylogenetic tree of
MutH, the N-terminal
domain (NTD) and C-ter-
minal domain (CTD) of
REases was constructed
with the neighbor-joining
method (Saitou and Nei
1987) using the alignment
shown in Fig. 1 after
removing some regions
with large gaps. The num-
bers at the nodes corre-
spond to the statistical
support of the branching
order by the bootstrap
criterion. The bar below
the phylogram indicates
the evolutionary distance
to which the branch
lengths are scaled based
on the estimated diver-
gences
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the type IIE and typeIIF enzymes that the second DNA binding site could
increase the accuracy of these enzymes (Embleton et al. 2001). The function of
the C-terminal domain of Sau3AI is reminiscent of the function of MutL,
which also can bind to DNA (Bende and Grafstrom 1991; Ban et al. 1999). By
having an additional DNA binding site, the affinity of Sau3AI for DNA has
probably increased.

One of the functions of MutL could be the formation of a MutL-MutH com-
plex that has higher DNA binding affinity compared to MutH, which in turn
would result in stimulating the activity of MutH. Indeed, this has been
observed although the stimulation of the catalytic activity was shown to be
higher compared to the stimulation of DNA binding affinity (Loh et al. 2001).
Another possibility is the stabilization of the catalytic competent form of
MutH by MutL upon complex formation. In case of Sau3AI, binding of DNA to
the C-terminal domain might also lead to a stabilization of the catalytic active
form of the N-terminal domain.

B

C

A

Sau3AI
Pseudodimer

active site

DNA-binding
 sites

Sau3AI
Pseudotetramer

302 447 7191 1204 1 906
GATC GATC GATC

Fig. 3. Looping of DNA with two GATC sites by Sau3AI. A Schematic diagram of the
pseudodimer of Sau3AI (consisting of two similar domains) showing the two DNA bind-
ing half sites one of which contains the catalytic amino acid active residues (indicated by
three triangles). Upon dimerization, the pseuotetramer is formed containing two DNA
binding sites. The active site is formed by the two N-terminals domains while the second
DNA binding site is formed by the C-terminal domains. B Schematic representation of
Sau3AI binding to DNA containing a single or two GATC sites. When two binding sites
are present, DNA looping is possible. C Electron microscope analysis of Sau3AI binding
to two different DNAs as shown in B revealing the formation of DNA loops in the sub-
strate with two DNA binding sites



In summary, our analysis showed that Sau3AI and its relatives belong to the
type IIE REases adding one more facet to this class by having two subdomains
with a similar but not identical fold.

3 Identification of the Methylation Sensor of MutH

One of the important differences between MutH and Sau3AI is their different
sensitivity towards m6A methylation of the GATC recognition sequence.
While Sau3AI cleaves DNA substrates regardless of the methylation status at
the adenine, MutH only cleaves unmethylated DNA strands with a preference
for the unmethylated DNA strand in a hemimethylated (its natural) substrate
over fully unmethylated DNA. Using the above mentioned sequence compar-
ison between the family of MutH proteins and the family of Sau3AI related
REases (Fig. 1) we wondered whether the biochemical difference between
these two families would also be reflected as differences in the sequence. This
would allow for making a prediction regarding the function of several amino
acid residues in MutH. Since the preferential cleavage of unmethylated GATC
sites in hemimethylated DNA is crucial for the in vivo function of MutH in
mismatch repair, elucidation of the mechanism underlying the strand dis-
crimination is an important issue.

P. Friedhoff232

N-terminal domain

C-terminal domain

Fig. 4. Model of the Sau3AI pseudotetramer. Homology modeling of the Sau3AI struc-
ture was performed by J.M. Bujnicki 2001). The two subunits of Sau3AI are shown in a
schematic drawing in dark and light gray. The two DNAs bound to the binding sites
formed by the N- and C-terminal domains, respectively, are shown as sticks
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3.1 Evolutionary Trace Analysis

Functional important residues can be predicted by the evolutionary trace
(ET) analysis (Lichtarge et al. 1996) or related methods such as ConSurf
(Armon et al. 2001; Pupko et al. 2002; Glaser et al. 2003). These analyses rely on
the presence of a family of proteins having sequence similarity and fall into
distinct classes. The evolutionary trace analysis is a method of identifying
functional residues in a protein sequence by looking for conserved residues in
the branches of an evolutionary tree (Lichtarge and Sowa 2002).

It has been shown for several proteins that functional differences could be
correlated with differences in the sequence by the ET method. Moreover, in
combination with protein structures this evolutionary information can be
mapped onto the structure, thereby increasing the likelihood of identifying a
functional epitope.We therefore started such an analysis that became possible
when more sequence homologues of both MutH and Sau3AI became avail-
able. However, an evolutionary trace analysis using the Evolutionary Trace
Server (TraceSuite II) (Lichtarge et al. 1996; Innis et al. 2000) did not gave us a
significant result.

Hence, we decided to perform a modification of the evolutionary trace
analysis using the program GeneDoc and its built-in function for defining
groups of sequences (Nicholas et al. 1997). We included only MutH sequences
in this analysis with a maximum pairwise sequence identity of 60 %. More-
over, we removed the Sth368I sequence that was the most divergent sequence
among the Sau3AI family members (Fig. 2). Thus, we ended up with a set of
eight MutH and five Sau3AI-related protein sequences. In contrast to the orig-
inal ET method, we constructed the consensus sequence at 80 % sequence
identity. Residues were then regarded as conserved when they were identical
in both consensus sequences, as class specific when they were different in
both consensus sequences or as neutral, when they were only conserved in
one consensus sequence. Thus we identified 16 conserved and 24 class specific
residues, i.e., residues conserved in both groups but not identical between the
groups, (Fig. 5). Finally, we mapped this evolutionary trace to the structure of
MutH. The result of this analysis is given in Fig. 6.

The alignment of the amino acid sequence of these proteins revealed that
these nucleases share only a limited number of conserved amino acid re-
sidues, which presumably are involved in common functions, viz. DNA bind-
ing, recognition and cleavage or folding. Some of the class specific trace
residues are right next to the active site residues and, therefore, are likely can-
didates for being involved in DNA recognition and sensing the methylation
status of the GATC recognition sequence. The most prominent residues were
Phe94, Arg184 and Tyr212 (Fig. 6).
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3.2 Superposition of MutH with REases in Complexes with DNA

To find out which of the class-specific amino acid residues are most likely to
be located in the protein DNA interface, we superimposed the structure of
MutH with 11 structures of restriction enzyme-DNA complexes (Friedhoff et
al. 2003), using the residues of the catalytic center, i.e., D70, E77 and K79 in
case of MutH, as a seed. After superposition we searched for amino acid
residues in MutH that are at a distance of 0.5 nm to the bases of each super-
imposed DNA molecule equivalent to the adenines of the GATC recognition
sequence of MutH (Friedhoff et al. 2003). Residues that were conserved in the
MutH group were then regarded as candidates involved in recognizing the
methylation status of the adenines.

In the superimposed structures, the following residues in MutH turned out
to be close to the nucleobases of the DNA, corresponding to the two adenine
residues in the double stranded DNA sequence: Lys48 facing the minor groove
and Phe94, Arg184 and Tyr212 facing the major groove (Fig. 7). As the N6
position of the adenine residues is located in the major groove, only Phe94,
Arg184 and Tyr212 are good candidates to sense the methylation of N6 in one
strand and the absence of methylation in the other strand. Moreover, Lys48 is
also conserved in the Sau3AI family and might therefore have a general
function in DNA binding and recognition. Tyr212 seemed to be of particular

Fig. 6A, B. Mapping the evolutionary trace on the structure of MutH. Space-fill display
of the MutH structure (pdb 2azo_B): the coloring is according to the evolutionary trace
analysis between the MutH and REase (Fig. 5). Conserved residues are shown in dark
gray, while class specific residues are shown in light gray. The position of the catalyti-
cally important active site residues E56, D70, E77, K79 and K116 are indicated. The posi-
tion of three class-specific residues located in the DNA binding site (F94, R184 and Y212)
is indicated in gray



interest, as the superposition suggests that it is located close to the adenine
residues in both strands.

3.3 Mutational Analysis of MutH

Consequently, we performed a mutational analysis of the three amino acids
identified by the bioinformatic analysis and generated the MutH variants
F94A, R184A and Y212S. These variants were tested in vivo and in vitro for the
activity in DNA mismatch repair. The in vivo analysis suggested that the
MutH variants R184A and Y212S were severely impaired in their function in
DNA mismatch repair (Table 2). Since this could be due to several factors
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F94

m6A

A

Y212

R184

A

B

C

Fig. 7A–C. Superposition of MutH with
MunI. A Result of the superposition of the
active site of MutH with that of MunI (pdb
code 1d02) in similar orientation as in
Fig. 6B. A Space-fill representation of MutH
and the DNA of the MunI-DNA complex as
a cartoon. B Same as in A but with MutH in
a schematic drawing showing strand and
helices as arrows and tubes, respectively.
The atoms of F94, R184 and Y212 are shown
in space-fill representations. C Blow up of
the three amino acid residues as well as the
two adenine bases of the GATC sequence
(in the MunI-DNA structure: AATT). The
adenine on the strands to be cleaved must
be unmethylated (A), while the adenine on
the opposite strand (m6A) can be methy-
lated
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Table 2. Mutational analysis of MutH

Protein In vivo DNA binding DNA cleavage Strand 
activity (%) (%) (%) discrimination

Wild type 100 100 100 >100
F94A 50 10 290 78
R184A 0.3 5 3 >100
Y212S 0.5 7 86 2.5

Data are modified from Friedhoff et al. (2003). In vivo activity of MutH was monitored
in a mutH-deficient strain as the ability of a plasmid-encoded MutH (wild type or vari-
ants) to reduce the mutation frequency. DNA binding was monitored as binding of MutH
to a 19-mer oligonucleotides in a electrophoretic mobility shift assay. DNA cleavage was
monitored as described in Fig. 8. Strand discrimination was calculated as the ratio of the
cleavage rates for the unmethylated and methylated DNA strands in a hemimethylated
DNA substrate.

(improper folding, reduced DNA binding/cleavage, or change in specificity)
we purified the proteins to homogeneity and analyzed the cleavage of a
hemimethylated DNA substrate that carried two different fluorophores on the
unmethylated and the methylated strand. The analysis of the cleavage prod-
ucts obtained by incubation of these substrates with MutH was carried out by
capillary electrophoresis with laser induced fluorescence detection using
denaturing polyacrylamide gels. The results were very clear: The wild type
MutH protein and the MutH variants F94A and R184A were only able to cleave
the unmethylated DNA strand, though the R184A variant showed a reduced
catalytic activity due to decreased DNA binding affinity (Table 2). On the
other hand, the variant Y212S has lost its ability to discriminate between the
unmethylated and the methylated strand being able to cleave both strands
with a similar rate (Fig. 8). Hence, this variant has lost its activity by a change
in specificity rather than activity and, therefore, cannot function as a strand
discrimination factor in DNA mismatch repair in vivo.

Taken together the evolutionary trace analysis correctly predicted a func-
tional site in the MutH protein family. One of these residues, Tyr212, turned
out to be responsible for sensing the methylation status of the GATC site. The
function of the Arg184 is mainly in DNA binding/recognition while the role of
Phe84 remains to be solved by a more detailed analysis.
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R184A Y212S

F94A

FAM

FAM FAM

FAMFAM

TET

TET

TETTET

TET

CTAG

TET
GATC

me FAM

359 bp
271 bp

84 bp

wild type

length (nt)84 271 359

length (nt)84 271 359

length (nt)84 271 359

length (nt)84 271 359

length (nt)84 271 359

uncleaved

Fig. 8. Mutational analysis of MutH – identification of a methyl group sensor.Analysis of
DNA cleavage by wild-type MutH and variants of MutH with hemimethylated DNA sub-
strates. The DNA is labeled with the fluorophores FAM in the methylated strand and TET
in the unmethylated strand. Cleavage in the unmethylated strand will lead to a 271-nt-
long fragment labeled with TET while cleavage of the methylated strand will lead to an 84-
nt-long DNA fragment labeled with FAM. Note that only the MutH variant Y212S has lost
its ability to discriminate between the methylated and the unmethylated DNA strand

4 Conclusions

The results presented above describe examples of how the combination of
bioinformatic predictions can guide biochemical and biophysical experi-
ments to elucidate the functions of proteins.When done thoroughly the bioin-
formatic analysis leads to a testable hypothesis that can be specifically
addressed by the biochemists. To this end, it will be very interesting to con-
duct similar analysis for other components of the DNA mismatch repair
machinery. One issue will regard the yet unknown structure of the C-terminal
domain of the evolutionary conserved protein MutL, which is important for
the formation of homodimers and heterodimers in prokaryotes and eukary-
otes, respectively. Another unresolved issue is the topology and structure of
the mismatch repair complex. The identification of the protein–protein inter-
faces will be, therefore, an important step towards the understanding of this
important biochemical pathway.
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Predicting Functional Residues in DNA Glycosylases
by Analysis of Structure and Conservation

D.O. Zharkov

1 Introduction

Almost every biochemist and molecular biologist with an interest in protein
research confronts the question of the role played by individual amino acid
residues in a specific polypeptide. The wide variety of experimental tech-
niques available to address this question can be categorized into two general
approaches: functional and structural. In the former case, the residue in ques-
tion is chemically modified or mutated; in the latter, the relationships with
neighboring residues are defined and biological function is inferred. Each
approach has its advantages and limitations and the most accurate informa-
tion is provided when both are used together.

Elsewhere (Zharkov and Grollman 2002), I have outlined theoretical and
practical methods for using information derived from protein structure and
the conservation of amino acid residues to predict the biochemical func-
tion(s) of these residues. Such residues then become candidates for functional
testing by site-directed mutagenesis or chemical modification. In that work,
the principles of this bioinformatics approach were illustrated by analyzing
two families of DNA glycosylases. These enzymes, which initiate the repair of
damaged DNA, are members of the same structural family but exhibit sharply
different substrate specificities. Penicillin-binding proteins (Goffin and Ghuy-
sen 1998), transferrins (Gu 1999), Myc proteins (Gu 1999), cyclooxygenases
(Gu 2001) and caspases (Wang and Gu 2001) have been analyzed by similar
methods, but without the inclusion of structural information. The general
methodology of our analysis will be reviewed here only briefly; readers inter-
ested in detailed information should consult the original paper (Zharkov and
Grollman 2002). In this review, I will focus on recent methodological develop-
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ments, placing emphasis on their practical application. I will demonstrate
their use in refining predictions and present examples of hypotheses gener-
ated by this type of analysis.

2 Generating Predictions: Sequence Selection and Analysis

The basis for structure-conservation analysis is intuitively clear (Zharkov and
Grollman 2002). Consider the situation in which a group of sequence-related
proteins (orthologous, paralogous, or both) is divided into two or more func-
tional subgroups. Then, residues conserved across all subgroups should be
important for functions common to all proteins, whereas residues conserved
in some subgroups, but not others, would be important only for functions of
subgroups in which they are conserved. For example, among DNA glycosy-
lases, the endonuclease III family may be divided into the subgroups Nth and
MutY, which are similar structurally, but differ in the types of damage they
recognize and process (Aravind et al. 1999; Eisen and Hanawalt 1999). All
positions in the sequence alignment may be classified as similar (residues
conserved in all subgroups), dissimilar (residues conserved in some but not
all subgroups), or unconserved (Fig. 1). The availability of a three-dimensional
structure for a representative member of the subgroup provides an outline of
the structurally conserved core or active center for the entire subgroup. Map-
ping dissimilar residues on such a structure reveals positions of residues
responsible for substrate specificity or other subgroup-specific functions.

Application of this strategy requires careful consideration of several issues.
Which sequences should be included and which should be intentionally
excluded in the comparison (sequence selection and qualification)? Which are
the best subgroup divisions (sequence classification)? How can conservation
be quantified? The answer to any one question may depend upon the answer
to another.

The most important parameter in this analysis is the algorithm used to
quantify conservation. The two main approaches use publicly available soft-
ware. One, exemplified by the AMAS (Analysis of Multiply Aligned
Sequences) algorithm (Livingstone and Barton 1993, 1996), takes into account
the physicochemical properties of individual amino acid residues. For each
position of the sequence alignment, AMAS calculates a “conservation num-
ber”, Cn, representing the number of borders in the Venn diagram that must
be crossed to include all amino acids at this position. The Venn diagram of
physicochemical properties may be custom defined, but a standard Taylor set
(Taylor 1986) is often a good starting point. To be considered conserved, the
value for Cn must exceed a certain threshold value, after which a simple set of
rules (Fig. 1) may be followed to classify every position (Zharkov and Groll-
man 2002). AMAS is available as a Web-based server (barton.ebi.ac.uk/
servers/amas_server.html). An alternative approach, developed by Gu (1999,
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2001; Wang and Gu 2001) and later implemented as a Gu99 algorithm in the
DIVERGENCE software (xgu1.zool.iastate.edu/software.html), essentially
disregards the physicochemical properties of individual residues. This algo-
rithm, provided with two clusters in a tree of related sequences, uses statisti-
cal methods to estimate the so-called posterior probability that divergence at
every position will contribute to the total value for divergence between the
clusters. With some reservations, this value is presumed to reflect selective
pressure at this particular position after gene duplication and functional
divergence. Thus, if a certain residue is important for a subgroup-specific
function, it will have a higher posterior probability of being related to diver-
gence between the subgroups.

In AMAS, the selection of sequences for analysis is of utmost importance as
the algorithm does not distinguish between conservation by descent and con-
servation by function. Inclusion of many closely related sequences will influ-
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Fig. 1. Flow chart for the similarity classification algorithm. The chart illustrates the
procedure for assigning residues to a subgroup. Output of the AMAS algorithm is used
as the input for this classification



ence Cn if a fraction of atypical residues is ignored, as often is the case when
minimizing noise created by a chance inclusion of a wrongly classified or
unqualified sequence. In contrast, Gu99 is not adversely affected by sequence
relationships, as it is already incorporated into the procedure. Still, practical
limitations of computing power favor pre-selection of sequences. In earlier
work (Zharkov and Grollman 2002), we used the National Center for Biotech-
nology Information’s Clusters of Orthologous Groups database (Tatusov et al.
1997, 2001), which offers a selection of sequences from a broad set of phylo-
genetic lineages. Alternative options are, however, available. The greatest
number of relevant sequences related to a given sequence is obtained by using
the latter as a query for a nonrestricted BLAST search (Altschul et al. 1990,
1997) in a nonredundant sequence database. If the search is limited to certain
genomes, these should be chosen to represent a large number of phylogenetic
lineages. Alternatively, if a nonrestricted search is used, a subset of identified
sequences may be selected for subsequent additional analysis. In practice, we
found the latter approach to be the most useful, especially when analyzing
proteins that occur only in a limited number of lineages. The optimal level of
selection depends on the total number of sequences; for example, we selected
one sequence per phylogenetic order to analyze the Nth family of DNA glyco-
sylases (see below).

Problems of qualification and classification are important for technical
reasons primarily, as functional information is generally available for only a
small number of proteins under analysis (Zharkov and Grollman 2002). Obvi-
ously, if residues with crucial functions have already been determined bio-
chemically for the entire family or subgroup(s), then the sequences to be ana-
lyzed should be checked for conservation of such elements to avoid an
artificial decrease in similarity. Classification of sequences into subgroups is
best done by constructing the phylogenetic tree and considering the relation-
ship of the retrieved sequences to prototype subgroup members although, in
some cases, corrections may be made on the basis of well-established func-
tionally important subgroup-specific residues. For example, biochemical
experiments have shown that the E. coli MutY protein is similar to E. coli Nth
but possesses an additional C-terminal domain that regulates its substrate
specificity. Therefore, the presence of this domain designates a sequence as
MutY even if it clusters with Nth in a tree of Nth family members.

Given the conceptual difference in the approaches characterizing the
AMAS and Gu99 algorithms, it is of interest to compare results obtained by
both algorithms in a defined protein family. Endonuclease III (Nth) from E.
coli is the prototype of the largest superfamily of DNA repair glycosylases
(Asahara et al. 1989; Thayer et al. 1995), enzymes that excise damaged bases
from DNA, thereby helping to maintain genomic stability (Friedberg et al.
1995). This superfamily is characterized by the presence of a helix-hairpin-
helix motif and a conserved loop ending in an aspartic acid residue (Thayer
et al. 1995; Nash et al. 1996). DNA glycosylases belonging to this superfamily
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are collectively capable of repairing almost the full repertoire of base lesions.
A subset of the superfamily, termed the Nth family, combines enzymes that
share the two signature motifs and an overall three-dimensional organization
with E. coli Nth (Eco-Nth).

Nth family proteins are bilobal, with one lobe comprising a six-helix barrel
and the other containing a [4Fe-4S]2+ iron-sulfur cluster. Despite close
sequence and structural similarity, these close relatives of Eco-Nth are sur-
prisingly diverse with respect to the spectrum of lesions removed from DNA.
The entire Nth family may be divided into four subgroups by substrate speci-
ficity: (1) the Nth subgroup, specific for oxidized or reduced pyrimidines,
such as thymine glycols and 5,6-dihydropyrimidines, where Eco-Nth is a rep-
resentative member (Asahara et al. 1989); (2) the Pdg subgroup, specific for
pyrimidine dimer UV photoproducts, where Micrococcus luteus pyrimidine
dimer glycosylase (Mlu-Pdg) is a representative member (Piersen et al. 1995);
(3) MutY subgroup, specific for adenine mismatched either with guanine or 8-
oxoguanine; E. coli MutY protein (Eco-MutY) is a representative member
(Michaels et al. 1990); and (4) Tdg subgroup, specific for thymine or uracil
mismatched with guanine; with Methanothermobacter thermautotrophicus
thymine-DNA glycosylase, Mth-Tdg, being a representative member (Begley
and Cunningham 1999).

Nth and MutY are ubiquitous, whereas Pdg and Tdg are restricted in their
appearance in the tree of life. MutY differs from Nth in two respects. First, Nth
possesses concomitant AP lyase activity, for which Lys-120 (in Eco-Nth) is
absolutely required. Eco-MutY, however, has a serine residue in this position
and possesses glycosylase, but not AP lyase, activity. Secondly, as noted above,
MutY contains an additional C-terminal domain important for recognition of
a mismatched base opposite adenine.

To perform the comparative analysis of predictions generated by AMAS
and Gu99, we searched the nonredundant National Center for Biotechnology
Information’s protein sequence database with BLASTP (Altschul et al. 1997),
using sequences of Eco-Nth and Eco-MutY as queries. For every taxonomic
order, as defined in the NCBI Taxonomy Browser, a single best hit was selected
for further analysis (Table 1). After qualification, based on the presence of an
intact iron-sulfur cluster, sequences were classified as Nth if they possessed
lysine at the position corresponding to K120 in E. coli Nth and had no C-ter-
minal domain; alternatively, sequences were classified as MutY if they had the
C-terminal domain and a residue other than lysine at the K120-related posi-
tion. Sequences were aligned using ClustalW (Thompson et al. 1994), and a
tree was constructed by the neighbor-joining method (Saitou and Nei, 1987),
producing well-defined clusters for Nth and MutY. Positions were then either
classified as similar or dissimilar at Cn=8 by AMAS (Fig. 2A), and posterior
probability was calculated for each cluster by Gu99 (Fig. 2B).

As shown in Fig. 2, the two algorithms did not produce identical results.
The cluster of dissimilar residues on the upper “lip” of the DNA-binding
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Table 1. Sequence selection for Nth and MutY

Phylum Class Order Representative species

Bacteria
Actinobacteria Actinobacteria Actinomycetales Thermobifida fusca (Nth,

MutY)
Bifidobacteriales Bifidobacterium longum

DJO10A (Nth, MutY)
Aquificae Aquificae Aquificales Aquifex aeolicus (Nth)
Bacteroidetes Bacteroides Bacteroidales Bacteroides thetaiotaomi-

cron VPI-5482 (Nth, MutY)
Sphingobacteria Sphingobacteriales Cytophaga hutchinsonii

(Nth, MutY)
Chlorobi Chlorobia Chlorobiales Chlorobium tepidum TLS

(Nth)
Chlamydiae Chlamydiae Chlamydiales Chlamydia trachomatis

(MutY)
Chloroflexi Chloroflexi Chloroflexales Chloroflexus aurantiacus

(Nth)
Cyanobacteria Chroococcales Thermosynechococcus elon-

gatus BP-1 (MutY)
Nostocales Nostoc punctiforme (Nth)
Oscillatoriales Trichodesmium erythraeum

IMS101 (Nth)
Prochlorophytes Prochlorococcus marinus

str. MIT 9313 (MutY)
Deinococcus- Deinococci Deinococcales Deinococcus radiodurans
Thermus (Nth, MutY)
Firmicutes Bacilli Bacillales Bacillus halodurans (Nth)

Oceanobacillus iheyensis
HTE831 (MutY)

Lactobacillales Enterococcus faecalis V583
(Nth)
Lactococcus lactis subsp.
lactis (MutY)

Clostridia Clostridiales Heliobacillus mobilis (Nth);
Desulfitobacterium
hafniense (MutY)

Thermoanaero- Thermoanaerobacter 
bacteriales tengcongensis (Nth)

Fusobacteria Fusobacteria Fusobacterales Fusobacterium nucleatum
subsp. nucleatum ATCC
25586 (Nth)

Planctomycetes Planctomycetacia Planctomycetales Pirellula sp. (MutY)
Proteobacteria Alpha-proteo- Caulobacterales Caulobacter crescentus

bacteria CB15 (Nth, MutY)
Rhizobiales Bradyrhizobium japonicum

(Nth);
Agrobacterium tumefaciens
(MutY)

Rhodobacterales Rhodobacter sphaeroides
(Nth, MutY)

Rhodospirillales Magnetospirillum magne-
totacticum (Nth, MutY)

Rickettsiales Rickettsia conorii (Nth)
Sphingomonadales Novosphingobium aromati-

civorans (Nth, MutY)
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Table 1. (Continued)

Phylum Class Order Representative species

Beta-proteo- Burkholderiales Burkholderia fungorum
bacteria (Nth, MutY)

Neisseriales Neisseria meningitidis
MC58 (Nth);
Neisseria meningitidis
Z2491 (MutY)

Nitrosomonadales Nitrosomonas europaea ATCC
19718 (Nth, MutY)

Gamma proteo- Alteromonadales Shewanella oneidensis MR-1
bacteria (Nth, MutY)

Enterobacteriales Escherichia coli K12 (Nth,
MutY)

Legionellales Coxiella burnetii RSA 493  
(Nth, MutY)

Pasteurellales Haemophilus influenzae Rd
(Nth, MutY)

Pseudomonadales Pseudomonas fluorescens
PfO-1 (Nth)
Pseudomonas putida
KT2440 (MutY)

Vibrionales Vibrio vulnificus CMCP6 
(Nth);
Vibrio cholerae (MutY)

Xanthomonadales Xanthomonas campestris
pv. campestris str. ATCC 
33913 (Nth, MutY)

Delta-proteo- Desulfovibrionales Desulfovibrio desulfuricans
bacteria G20 (Nth, MutY)
Epsilon-proteo- Campylobacterales Campylobacter jejuni
bacteria (Nth);

Helicobacter hepaticus
ATCC 51449 (MutY)

Magnetotactic Magnetococcus sp. MC-1
cocci (Nth, MutY)

Spirochaetes Spirochaetes Spirochaetales Treponema pallidum (Nth)
Leptospira interrogans
serovar lai str. 56601 (MutY)

Thermotogae Thermotogae Thermotogales Thermotoga maritima (Nth)

Archaea
Crenarchaeota Thermoprotei Desulfurococcales Aeropyrum pernix (Nth)

Sulfolobales Sulfolobus solfataricus (Nth)
Thermoproteales Pyrobaculum aerophilum

(Nth)
Euryarchaeota Archaeoglobi Archaeoglobales Archaeoglobus fulgidus

DSM 4304 (Nth)
Halobacteria Halobacteriales Halobacterium sp. NRC-1 

(Nth)
Methanococci Methanococcales Methanocaldococcus jan-

naschii (Nth)
Methanopyri Methanopyrales Methanopyrus kandleri

AV19 (Nth)
Thermococci Thermococcales Pyrococcus abyssi (Nth)
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Fig. 2. Correlation between predictions of AMAS and Gu99 algorithms. The classifica-
tion of positions into unconserved, dissimilar and similar was performed using AMAS
on the nonrestricted order-level nonredundant Nth/MutY dataset at Cn=8 (see text for
details). The sequences possessing an intact iron-sulfur cluster were deemed qualified;
classification was based on the presence of (1) the C-terminal domain (excluded from
the alignment and tree building) and (2) position 120 in E. coli Nth/MutY. A Similar
(red), dissimilar (blue) and unconserved (gray) residues mapped on the structure of E.
coli Nth. B The same structure with residues colored according to their posterior proba-
bility (P=0, red, P=0.5, green, P=1, blue, with halftones in between; residues for which the
DIVERGENCE v1.04 software produced no P value are shaded gray). C Posterior proba-
bilities of the site being related to functional divergence plotted for 99 sites. Correlation
between groups of data was estimated from the biserial correlation coefficient; the sig-
nificance is given by Student’s t-test for the biserial correlation coefficient



groove was identified only partly by posterior probability, as were the dissim-
ilar residues in the active site pocket at the center of the protein globule. In
particular, Lys-120, which is well established biochemically to be essential for
Nth but not MutY activity, and which served for sequence classification, had
P=0.47, a low value for a residue of crucial functional difference. Residues of
the dissimilarity cluster at the lower lip of the DNA-binding groove also dis-
played low posterior probability. Indeed, although there is a statistically sig-
nificant difference in posterior probability among the unconserved, similar
and dissimilar residues, the predictive power of correlation is not high (bise-
rial correlation coefficient rbs=0.45 for “dissimilar” vs. “unconserved” group;
rbs=0.25 for “similar” vs.“unconserved” group; Fig. 2C).

The reason for this discrepancy may lie in the heterogeneity of the “dissim-
ilar” group, as defined by AMAS. Consider the general situation of two sub-
groups. If a dissimilar position is conserved in one group, it may be conserved
in another (“asymmetric dissimilarity”) or conserved as a residue with differ-
ent physicochemical properties (“symmetric dissimilarity”). Symmetrically
dissimilar positions are associated with anomalously low P values in Gu99,
because they do not accumulate many changes even when the physicochemi-
cal properties of the respective residues differ tremendously, as is the case for
Lys-120 in Nth and Ser-120 in MutY. In fact, if symmetrically dissimilar posi-
tions are excluded from the dissimilar group, then rbs for dissimilar vs. uncon-
served increases from 0.45 to 0.53, and the symmetrically dissimilar group
becomes significantly different from the asymmetrically dissimilar (rbs=0.38,
P<0.05) but not from unconserved or similar categories. Similarly, Gu99 does
not distinguish efficiently between similar and unconserved positions, as nei-
ther is likely to contribute to functional divergence.

Ideally, both approaches should be used to identify primary candidates for
site-directed mutagenesis. Below, we discuss examples of mutations at posi-
tions identified by both procedures. To date,AMAS appears to have better pre-
dicting power if the sequences are chosen with care. Ideally, an algorithm for
functional conservation prediction would take both phylogeny and physico-
chemical properties into account; to our knowledge, no such algorithm has
been developed.

3 Testing the Predictions: Mutational Analysis of Residues
Defining Substrate Specificity in Formamidopyrimidine-
DNA Glycosylase

Formamidopyrimidine-DNA glycosylase (Fpg or MutM) and endonuclease
VIII (Nei) from E. coli are structurally related DNA glycosylases that excise oxi-
dized bases from DNA (Tchou et al.1991; Melamede et al.1994).Although these
enzymes reportedly act on many different substrates, Fpg primarily excises
redox-modified purines (8-oxoguanine and formamidopyrimidines), while

Predicting Functional Residues in DNA Glycosylases 251



Nei is most active on redox-modified pyrimidines (David and Williams 1998).
Eco-Fpg and Eco-Nei display high sequence similarity (Jiang et al. 1997a) and
serve as protypes for the Fpg superfamily of DNA repair glycosylases (Zharkov
et al. 2003), including more than 100 bacterial, plant and vertebrate proteins.
The biochemistry of Fpg and Nei is well-established, including functional
requirements for the N-terminal PE catalytic dyad (Tchou and Grollman 1995;
Zharkov et al. 1997; Lavrukhin and Lloyd 2000) and the C-terminal Cys4 zinc
finger (O’Connor et al. 1993; Tchou et al. 1993). Crystal structures were deter-
mined recently for several members of the Fpg family (Fromme and Verdine
2002; Gilboa et al. 2002; Serre et al. 2002; Zharkov et al. 2002).

To identify candidate subgroup-specific residues for Fpg or Nei, we per-
formed a BLAST search in the NCBI nonredundant protein sequence database
using Eco-Fpg and Eco-Nei as queries. Qualification of sequences was based
on the presence of the N-terminal PE and C-terminal Cys4 zinc finger motifs.
Following alignment and tree construction, the sequences most distant from
the query sequences were used as queries in the second round of the search.
We found 147 homologues of Fpg and Nei, showing an even distribution of
Fpg (but not Nei) in bacteria, although no Fpg homologues were found in
Archaea. The sequences identified were classified as belonging, or not belong-
ing, to the Fpg subgroup, based on the presence of the N-terminal motif
PE(L/I/M)PE (124 sequences); the remaining 23 sequences carrying the N-
terminal signature motif PEG were considered to be Nei. This highly skewed
distribution toward Fpg made it difficult to reliably predict Nei-specific
residues due to high noise levels; thus, we restricted the analysis to Fpg. How-
ever, although Nei sequences formed a cluster clearly separated from Fpg in
the tree, the low conservation of many elements functionally important for
Eco-Nei suggest that Nei as defined here may be an artificial subgroup and
perhaps should be further classified into narrower subgroups. Nevertheless,
as presently constructed, this subgroup functions as a “non-Fpg” category.

To analyze the conservation of physicochemical properties of Fpg residues,
subsets of the sequences were randomly selected (with the exception that E.
coli K12 sequences were always present) to represent no more than one per
order and were then re-aligned. Conservation in the aligned sequences were
analyzed by AMAS with the threshold Cn=9. The structure of E. coli Fpg cova-
lently complexed with DNA (1K82 in the Protein Data Bank) (Gilboa et al.
2002) was used for mapping. The alignment also was analyzed by Gu99, in
which case the Nei subgroup was extended to one sequence per genus to pro-
vide a cluster of a workable size.

Two residues identified by this similarity analysis (Arg-108 and His-89)
proved to be of particular interest when mapped on the three-dimensional
structure.Arg-108 (together with Met-73 and Phe-110) is part of a void-filling
triad inserted into the DNA helix, compensating for the void produced when
the damaged base flips out of the helix into the active site pocket (Gilboa et al.
2002). Arg-108 forms two hydrogen bonds with the orphaned cytosine, con-
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tributing to the opposite-base specificity of the enzyme (Tchou et al. 1994). In
Eco-Nei, this function is performed by Gln-69, which forms a void-filling triad
with Leu-70 and Tyr-71 (Zharkov et al. 2002); surprisingly, this element is not
conserved in the Nei subgroup. Unlike Eco-Fpg, Eco-Nei does not discrimi-
nate among opposite bases (Jiang et al. 1997b). In contrast, Arg-108 is highly
conserved among bacterial Fpg homologues but not in Nei proteins. A sup-
plementary analysis by Gu99 indicated an extremely high posterior probabil-
ity for this residue (P=0.9999) to be involved in the functional divergence
between Fpg and Nei subgroups. His-89 (P=0.995) also forms two hydrogen
bonds with DNA but makes these contacts with the phosphates of the strand
opposite the lesion, possibly contributing to early steps of lesion recognition
by indirect readout (Zharkov et al. 2004).

Mutations of Arg-108 and His-89 produced marked overall effects on
enzyme activity, but the mechanisms involved were different, as expected
from their different predicted functions (Fig. 3; Zaika et al. 2004). For exam-
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Fig. 3. Effects of mutations of dissimilar residues in Fpg. Similar (red) and dissimilar
(blue) residues are defined and mapped as described in the text. His-89 and Arg-108 are
colored magenta. For the H89A mutation, the specific activity (kcat/KM) of the wild-type
enzyme toward 8-oxoG:C and DHU:C is plotted as 100 % in the left bar, and that of the
mutant is shown in the right bar of a respective group. For the R108A mutation, the spe-
cific activity against 8-oxoG:A, 8-oxoG:C, 8-oxoG:G, and 8-oxoG:T for the wild-type
enzyme is plotted in the same way (note the log scale of the ordinate)



ple, the H89A mutation significantly decreased activity of the enzyme
towards DNA containing 8-oxoguanine (8-oxoG), but not dihydrouracil
(DHU), the latter being an unspecific substrate for this enzyme, presumably
recognized via a different mechanism than 8-oxoG (Karakaya et al. 1997). The
R108A mutation influenced the activity toward 8-oxoG in an opposite base-
specific manner. For example, substrates containing C and A opposite 8-oxoG
were affected far less than those with G and T opposite the lesion (Fig. 3). Our
site-directed mutagenesis experiments, therefore, confirmed the predictions
made by structural conservation analysis (Zaika et al. 2004).

4 Refining the Predictions: Analysis of Substrate Specificity
in the Endonuclease III Family

The Nth family of DNA glycosylases may be divided into four subgroups by
substrate specificity: Nth, Pdg, MutY and Tdg (see above). Although the over-
all structures of these enzymes are similar, their substrate specificities are
quite different. From two subgroups previously considered for the Nth family,
namely Nth and MutY (Zharkov and Grollman 2002), I shall now extend this
analysis to all subgroups of the Nth family.

The following 11 archaeal and 44 bacterial genomes were searched by
BLAST in the NCBI microbial genome database: Aeropyrum pernix, Sulfolobus
solfataricus, Pyrobaculum aerophilum, Archaeoglobus fulgidus, Halobacterium
sp. NRC-1, Methanothermobacter thermautotrophicus, Methanocaldococcus
jannaschii, Methanopyrus kandleri AV19, Methanosarcina mazei Goe1, Pyro-
coccus furiosus DSM 3638,Thermoplasma volcanium, Mycobacterium tubercu-
losis H37Rv, Streptomyces coelicolor A3(2), Aquifex aeolicus, Chlorobium
tepidum TLS, Chlamydia trachomatis, Chlamydophila pneumoniae CWL029,
Nostoc sp. PCC 7120, Synechocystis sp. PCC 6803, Bacillus subtilis, Clostridium
perfringens, Enterococcus faecium, Mycoplasma pneumoniae, Ureaplasma ure-
alyticum, Lactococcus lactis subsp. lactis, Listeria innocua, Thermoanaerobac-
ter tengcongensis, Staphylococcus aureus subsp. aureus N315, Streptococcus
pyogenes M1 GAS, Fusobacterium nucleatum subsp. nucleatum ATCC 25586,
Magnetococcus sp.MC-1,Caulobacter crescentus CB15,Agrobacterium tumefa-
ciens str. C58 (U. Washington), Mesorhizobium loti, Rhodobacter sphaeroides,
Rickettsia prowazekii, Ralstonia solanacearum, Neisseria meningitidis Z2491,
Nitrosomonas europaea, Campylobacter jejuni, Helicobacter pylori 26695,
Escherichia coli K12, Yersinia pestis, Buchnera aphidicola str. Sg, Vibrio
cholerae, Xanthomonas campestris pv. campestris str. ATCC 33913, Xylella fas-
tidiosa 9a5 c,Haemophilus influenzae Rd,Pasteurella multocida, Pseudomonas
aeruginosa, Salmonella typhimurium LT2, Borrelia burgdorferi, Treponema
pallidum, Thermotoga maritima, Deinococcus radiodurans. These genomes
represent 46 phylogenetic groups, with no more than two genomes per group;
four genomes were unfinished at the time of our analysis. Sequences of Eco-
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Nth, Mlu-Pdg, Eco-MutY, and Mth-Tdg were used as queries and 100 top-scor-
ing sequences for each query were pooled.All sequences were aligned and the
tree was constructed by the neighbor-joining method. Sequences outside the
root common for Eco-Nth, Mlu-Pdg, Eco-MutY, and Mth-Tdg were discarded.
Remaining sequences were re-aligned and classified into one of the four sub-
groups according to rooting with the closest query sequence. The manual
sequence qualification step was omitted. Physicochemical properties of
residues in the aligned sequences were analyzed by AMAS (Cn=7,10 % atypical
residues allowed, no gaps ignored, cysteines considered reduced). X-ray crys-
tallographic structures of Nth (2ABK; Thayer et al. 1995), MutY (1MUY; Guan
et al. 1998), and Tdg (1KEA; Mol et al. 2002) were used for mapping.

The BLAST search in 55 microbial genomes recovered a total of 103
sequences similar to the four query sequences, including the Mlu-Pdg and
Mth-Tdg sequences, although genomes of the respective species were not
searched. As 100 top-scoring sequences were taken from each search, the
small number of sequences in the pool reveals that the Nth family is well con-
served and shares little similarity with other sequences. Each query produced
many sequences from other subgroups, e.g., the Eco-Nth query identified the
Eco-MutY sequence as a homologue. Following classification and qualifica-
tion steps, 80 sequences belonging to 38 phylogenetic lineages remained in
the analysis. The Nth subgroup included 33 sequences of 29 phylogenetic lin-
eages; the Pdg subgroup, 8 sequences of 6 lineages; the MutY subgroup, 34
sequences of 28 lineages; and the Tdg subgroup, 5 sequences of 4 lineages.
Visual inspection of the alignment for sequence length and subgroup-specific
conserved motifs confirmed the correctness of the group composition. Inter-
estingly, the Tdg subgroup included archaean sequences only.

In general, Nth proteins grouped with Pdg proteins and MutY proteins with
Tdg proteins formed two subgroup pairs.Many positions are conserved in Nth
and Pdg and in MutY and Tdg, but not between these two pairs. Positions con-
served in one protein and in either member of the other pair are rare. As Nth
and Pdg participate in the repair of damaged bases,while MutY and Tdg repair
mismatched bases, such groupings may reflect either functional differences
between these enzymes, or their evolutionary relationships. The latter possi-
bility appears less likely because of the exclusively archaean origin of Tdg.

Representative enzymes from three of the four subgroups (excluding Pdg)
have been crystallized and their three-dimensional structures determined by
X-ray diffraction methods (Kuo et al. 1992; Thayer et al. 1995; Guan et al. 1998;
Mol et al. 2002). Enzymes of the Nth family bound to their cognate DNA have
not yet been structurally analyzed1, and their DNA-binding site and active site
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published (Fromme and Verdine 2003); since the structures of DNA-bound MutY and
Tdg are not available, the structure of free Nth was nevertheless used for illustrative
purposes here.



are inferred from biochemical and mutagenesis evidence.Analysis of residues
conserved across all subgroups of the Nth family were conducted previously
(Zharkov and Grollman 2002) and the results did not differ significantly when
the present data set was included. Residues that appeared to be specific for the
Nth, MutY, or Tdg subgroup were mapped on the appropriate structure. Map-
ping serves as a useful visualization tool and helps in the understanding of the
possible roles of the subgroup-specific amino acids (Zharkov and Grollman
2002). Residues were considered specific for a subgroup if (1) they were con-
served (Cn≥7) within the subgroup and (2) they were not conserved in the
other subgroup of the same pair. Most residues fulfilling these two criteria
were not conserved in any of the three remaining subgroups.

Proteins in the Eco-Nth, Eco-MutY, and Mth-Tdg subgroups contain two
lobes separated by a positively charged interdomain cleft, where DNA is pre-
sumably bound. A deep pocket opens into the bottom of this cleft, containing
residues important for the enzyme’s catalytic activity. The groove usually has
well-defined rims or “lips.” The inferred mechanism of action for enzymes in
the Nth family postulates that damaged DNA is bound into the enzyme’s cleft
and kinked at the site of the lesion. The base to be excised is then extruded
(flipped out) of the double helix and inserted into the enzyme’s active site
pocket,where a series of chemical reactions take place (McCullough et al.1999).

Mapping of subgroup-specific residues reveals them to be slightly more
scattered across the enzyme globule as compared with the previous analysis
of Nth and MutY (Zharkov and Grollman 2002). This is especially evident in
Tdg, likely due to the small sample size. Nevertheless, many subgroup-specific
residues clearly cluster on the lips of the interdomain groove and in the
active-site pocket.

In the Eco-Nth (Fig. 4A), the highly conserved E23 and Y185 residues close
the far-left part of the groove and form a hydrogen bond between the Y185
hydroxyl and one of the E23 Oe atoms (Kuo et al. 1992). (Orientation here and
elsewhere is given with the six-barrel domain pointing upward). H176 and
H177 form the bottom of the active-site pocket.

In Eco-MutY (Fig. 4B), R19 closes the far-left part of the groove. G139 and
A189 are located on the lower lip and Y82 is on the upper lip of the groove.
Activity of the Y82C Eco-MutY mutant is severely compromised, and a muta-
tion converting the corresponding tyrosine of a human MutY homologue into
a cysteine is associated with familial adenomatous polyposis (Al-Tassan et al.
2002). The entrance into the active-site pocket is occupied by Q41, a residue
that likely interacts with the base opposite A, thus directly contributing to
MutY specificity (Guan et al. 1998). Deeper in the pocket, one finds E37 and
A124. An E37S mutation completely inactivates the enzyme, and it has been
proposed that this residue forms hydrogen bonds with the N7 and N6 of the
adenine to be excised (Guan et al. 1998).

Finally, Mth-Tdg (Fig. 4C) does not contain subgroup-specific residues in
the postulated active-site pocket. However, R46 R47, and L87 cluster on the
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upper lip of the DNA-binding groove. It is suggested that R47 is inserted into
the DNA double helix and assists in base flipping (Mol et al. 2002); mutation
of this residue to alanine reduces enzymatic activity 20-fold.

In some cases, residues identified as being specific for Nth and MutY sub-
groups differ from the Nth- or MutY-specific residues identified earlier
(Zharkov and Grollman 2002). This situation results from improvements in
separation of enzyme groups with different substrate specificities and in
sequence selection based on microbial genome search rather than on prede-
fined clusters of orthologous groups (Tatusov et al. 1997). For example, Pdg
enzymes are often annotated as Nth. Consequently, Pdg is one of three
“endonuclease III proteins” found in the D. radiodurans genome and included
as such in the Nth COG of the Clusters of Orthologous Groups Database
(Tatusov et al. 2001). The two others relate less to Nth or Pdg than Nth and Pdg
relate to each other. This ambiguous annotation leads to an artificial decrease
in conservation of positions that are truly specific for Nth and thus hinders
their identification. The present approach allows for better resolution of
residues important for the specific function of each subgroup.

The currently accepted mechanism by which DNA glycosylases search for
and “recognize” cognate lesions includes several steps where an enzyme could
exert substrate specificity. In the initial encounter, the enzyme binds non-
specifically to DNA and moves along one or the other groove by facilitated
one-dimensional diffusion (von Hippel and Berg 1989) until the lesion is
encountered. Recognition of the lesion is accomplished through the action of
a “reading head,” a part of the enzyme directly involved in scanning DNA. The
damaged base is then everted from the helix and stabilized through interac-
tions in the active-site pocket. Interactions with the reading head and the
binding pocket are likely to be different as, in some DNA glycosylases, canon-
ical bases may not fit the pocket (Kavli et al. 1996). Residues located at the
edges of the DNA-binding groove of Nth, MutY, or Tdg are good candidates
for reading-head groups. These residues are often bulky and capable of inter-
calation between base pairs in the DNA duplex, as in the prototypical tyro-
sine/arginine reading head of uracil-DNA glycosylase (Parikh et al. 1998).
Alternatively, residues positioned on the edge may detect atypical patterns of
hydrogen bond donors and acceptors exposed in the major or minor groove
of DNA, as proposed for E. coli Fpg protein (Grollman et al. 1994). Residues
located within the active-site pocket likely stabilize the everted base through
formation of specific hydrogen bonds. Interestingly, some glycosylases, such
as Tdg or alkylpurine-DNA glycosylase AlkA (Zharkov and Grollman 2002),
contain no specific amino acids in the active-site pocket. These enzymes may
rely on nonspecific van der Waals contacts to stabilize the everted base
(Labahn et al. 1996). Alternatively, the enzymes may form hydrogen bonds
with amino acids that are not unique to the subgroup (Mol et al. 2002), in
which case substrate specificity would most likely occur during the scanning
step. Residues from both classes, identified by a combined structural and
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bioinformatics approach, are primary candidates for site-directed mutagene-
sis studies designed to clarify their roles in determining substrate specificity.
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