The HTML
PocketGuide

BruceHyslop

Ginormous knowledge, pocket-sized.

pppppppp

The HTML Pocket Guide
Bruce Hyslop

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com

Peachpit Press is a division of Pearson Education.
Copyright © 2010 by Bruce Hyslop

Executive Editor: Clifford Colby
Editor: Kim Wimpsett

Technical Editor: Michael Bester
Production Editor: Tracey Croom
Compositor: David Van Ness
Indexer: James Minkin

Cover Design: Peachpit Press
Interior Design: Peachpit Press

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission
for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis without warranty. While
every precaution has been taken in the preparation of the book, neither the author

nor Peachpit shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the instructions con-
tained in this book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Peachpit was aware of a trademark claim, the designations appear as requested by the
owner of the trademark. All other product names and services identified throughout
this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade
name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-69974-9
ISBN-10: 0-321-69974-2

987654321
Printed and bound in the United States of America

Contents

Introduction. vii
Part 1: HTML Basics. 1
Chapter 1: HTML Basics . 3
Part 2: HTML Elements and Guidance 25
Chapter 2: Primary Structure and Sections . 27
Chapter3: DocumentHead...................................... 43
Chapter 4: Lists. 69
Chapter 5: Text . 93
Chapter 6: Embedded Content (Images and Objects) 141
Chapter 7: Forms 157
Chapter 8: Tabular Data. 185
Chapter 9: Scripting . 203

vi The HTML Pocket Guide

Part 3: HTML5 Elements and Guidance. 221
Chapter 11: Primary Structure and Sections. ... 223
Chapter 12: Text . 245
Chapter 13: Embedded Content

(Images, Media, and More). 263
Chapter 14: Forms. 277
Chapter 15: Interactive Elements. 285
Appendix: Alphabetical HTML Elements Page Listing. 294

Index . 296

Part1l

HTML Basics

This part of the book contains one chapter, “HTML Basics,” which provides
an overview of HTMLs, discusses the versions of HTML, recommends
some best practices, lists common attributes, and more.

Part 1 Contents

Chapter1: HTMLBasicsoooi

HTML Basics

This chapter provides foundational information for Parts 2 and 3 of the
book. (If you've been around HTML for awhile, much of it will be old hat.)

| cover a few standards-based best practices, basic HTML document struc-
ture for all flavors of the language (including HTMLs), differences among
the versions, DOCTYPEs, basic data types, common attributes, a note
about obsolete and deprecated items, and more.

I encourage all readers to review the “How Attributes Are Noted in
This Book” box.

Let’s begin with an overview of HTMLg in case this version of HTML is
new to you.

4 Part 1: HTML Basics

An HTMLsg Overview

HTMLs is a natural evolution of HTML 4 that accounts for the rapid
growth of media, rich online experiences, and sophisticated Web applica-
tion development since HTML 4.01 became a specification at the end of
1999.

At the time of this writing, HTMLs is still under development and
subject to change. However, it is on stable footing, and browsers have
already added many—and continue to add more—of its features.
(Please see http://www.htmlfiver.com/htmls-browser-support/ for more
information.)

This book includes information from the HTMLs editor’s Working Draft
dated April 26, 2010. Here are some key links so you can keep up with
HTMLs’s progress:

= W3C Working Draft: http://www.w3.org/TR/htmls/.

= Latest editor’s Working Draft (typically more recent): http://www.
whatwg.org/specs/web-apps/current-work/multipage/.

= HTML, The Markup Language: http://www.ws3.org/TR/html-markup/.
This briefly summarizes each HTMLs element and attribute.

= HTML;s differences from HTMLg: http://www.ws3.org/TR/htmls-diff.

Snapshot View
HTMLs breaks down like this:

= New elements and attributes: HTMLs inherits nearly every element
from HTML 4 (please see Part 2 of the book). It also includes nearly 30
new elements, all of which | detail in Part 3 of the book. Highlights
include audio, video, canvas, datalist, and a whole host of new

Chapter 1: HTML Basics 5

semantics such as article, nav, header, and footer. As discussed in
Chapter 7, HTMLs also includes big advancements in the forms depart-
ment with new attributes and input types that make rich forms easier
to develop, more accessible, and more consistent for users and that
can validate in the browser without JavaScript.

= New features: Features is a bit of a broad term, but it mostly speaks
to new functionality in HTMLs and related in-progress specs that fall
under HTMLs from a “marketing” sense, if not literally part of HTMLs.
(Aside from the occasional coverage, this book leaves in-depth discus-
sions of the new features for another day.) Some of these features are:

— Canvas (via the aforementioned canvas element)

— Cross-document messaging

- Drag and drop

— Embedding of Scalable Vector Graphics (SVG) directly in HTML
— Geolocation

- History (browser) management

- Microdata

- Native media playback scripting (via the aforementioned audio and
video elements)

— Offline Web Applications
— Web Storage (aka DOM storage)
- Web Workers

Code Formatting Syntax: A Recommendation

HTMLs is extremely forgiving concerning how you may structure the
code. You may include or omit closing tags, use uppercase or lowercase
elements and attributes, quote or not quote attribute values, and more.
That flexibility has been the source of some controversy, but it remains.

6 Part 1: HTML Basics

Having said that, my recommendation is to code HTMLs in either one of
these two ways:

= Use all lowercase for code, double-quote all attribute values, use attri-
bute minimization, always use an element’s end tag if it has one, and
don’t terminate elements that don’t have an end tag (that is, empty or
void elements).

= Or, use XHTML syntax, which is exactly the same as the previous bullet,
except you don't use attribute minimization and do terminate empty
elements. Yes, HTMLs5 accepts XHTML syntax.

All the code examples in this book conform to one of these (mostly the
second) so you can get a sense of how to replicate them if you're new
to coding. (Please see "Differences Between HTML 4 and XHTML" later in
this chapter for explanations of attribute minimization and terminating
empty elements. Their descriptions are relevant to HTML5 usage, too.)

Why do | recommend following one of these formats? | elaborate a bit

on this at http://www.htmlfiver.com/extras/htmls-code-syntax/, but
the short answer is they're in line with the way seasoned developers and
designers have coded for the better part of the past decade as a result of the
Web standards movement. So, these syntax formats will become de facto
HTMLs coding standards, in my view, if they aren’t already.

Unlike HTML5, XHTMLs syntax does have firm rules, just like XHTML 1.

However, unlike XHTML 1, an XHTML5 page must be served with an
XML MIME type, and if there is a single invalid portion of code, the page won't
render. For this reason, HTMLs will have widespread use, while XHTMLs will
likely find a limited audience.

How to Style New Elements

Although it's true that you can't use HTMLs features such as the addi-
tional input types and the details element unless a browser supports their
behavior, you can use the new semantic elements such as article, aside,

Chapter 1: HTML Basics 7

nav and most of the others right away. Plus, with just a little extra help,
most browsers allow you to style them even when they don't yet support
them natively. I've detailed the three easy steps required to style these
elements at http://www.htmlfiver.com/extras/style-htmls-elements/.

So, that’s a bird’s eye view of HTMLs. Please dig into Parts 2 and 3 to
learn the nitty-gritty concerning HTMLs element usage, and visit http://
www.htmlfiver.com/using-htmls-today/ to learn more about what you
can use in HTMLs today.

A Few Best Practices

I could easily dedicate chapters to Web standards and best practices but
have synthesized them into these key points:

= Always use a DOCTYPE: A DOCTYPE tells the browser what mode in
which to render, improves interoperability, and makes your life a heck
of a lot easier when developing and debugging your code. Please see
the “DOCTYPEs” section for more information.

= Separate content, presentation, and behavior: Along with the next
item, this is one of the key tenets of Web standards. Separation of
content (HTML), presentation (CSS), and behavior (JavaScript) means
not intermingling them in the HTML. Usually it’s best to place your CSS
and JavaScript in separate files and load them into your pages. Among
other benefits, this makes development, reusability, and maintenance
far easier. (Make one CSS or JavaScript update, and it can spill across
your whole site.)

= Use proper semantics: This refers to wrapping your content with the
HTML element(s) that best reflects the nature of the content. For exam-
ple, put each paragraph of text in a paragraph element (<p></p>). Place
a list of items in a definition list (<d1></d1>), ordered list (<o1></01>), or

8 Part 1: HTML Basics

unordered list () as is most appropriate; it’s the same principle
for other types of content and their related elements. This improves
accessibility, improves search engine optimization (SEO), tends to make
pages lighter, and usually makes styling with CSS easier as well.

= Validate your pages: HTML validators check your code for syntax errors.
By validating your pages, you’ll be sure they’re in compliance with
their DOCTYPE. This helps you create more consistent code and track
down the occasional nettlesome bug. Validate your X/HTML pages
at http://validatorw3.org/ and your HTML5 pages there or at http://
htmls.validator.nu/ to receive the kind of personal validation and satis-
faction that only an automated program can provide!

Basic HTML Document Structure

No matter what flavor of HTML you’re writing—HTML 4, XHTML 1, or
HTMLs—the basic structure remains the same. Only a few of the details
are different. Let’s take a look.

Example 1 (a typical XHTML 1 Strict page):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.@ Strict//EN"

"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en">
<head>

<title>Your document title</title>

<meta http-equiv="Content-type" content="text/html;
charset=utf-8" />
</head>
<body>

[your page content]

Chapter 1: HTML Basics 9

</body>
</html>

I've highlighted the portions that change from one version of the
language to another. They are as follows:

= The DOCTYPE: Include a DOCTYPE in every page. See the “DOCTYPEs”
section in this chapter for more information, including a list of avail-
able DOCTYPEs.

= The html element: This is simply <html lang="en"> for HTML 4 and
HTMLs documents, where lang is customized accordingly to fit the
language of your page content. (Please see “Language Codes” in this
chapter.) English is specified in the example.

= The meta element that includes the character encoding: An HTML 4
document doesn’t have the trailing slash (/>). An HTML5 document may
have the trailing slash if you'd like but is otherwise simplified to <meta
charset="utf-8">, assuming the encoding is UTF-8. It’s also preferable
to put it before the title. (See the meta element in Chapter 3.)

For comparison, Example 2 shows a typical HTMLs document.
Example 2:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Your document title</title>
</head>
<body>
. [your page content] .
</body>
</html>

10 Part 1: HTML Basics

Differences Between HTML 4
and XHTML

In addition to the basic structural differences just discussed, there are a
number of other differences between HTML 4 and XHTML 1 (they’re true of
XHTMLs, too). They're all easy to get a handle on; this section of the XHTML 1
spec summarizes them nicely: http://www.w3.org/TR/xhtml1/#diffs.

| do want to call out two of the key differences, though, since you’ll come
across them frequently in Parts 2 and 3 of the book:

Terminate empty elements: Some elements are classified as empty
elements (also called void). An empty element is one that can’t contain
content, so it doesn’t have an end tag. Examples are and
. In
XHTML, empty elements must be self-closing, which is simply a matter
of ending them with />, as in and
. Most of my code
samples throughout the book use XHTML syntax (which is also valid

in HTMLs), but you will see notes such as “<area> or <area />"in the
summary of relevant elements as a reminder of the two formats.

An attribute must have a value (even Booleans): Some attributes

don’t have a value, like the selected attribute on <option selected>
</option>.This syntax is referred to as attribute minimization. Most

of these are Boolean attributes, meaning that if they are present, the
condition is true (the option is selected), and if they aren't, it is false.
XHTML documents don’t allow attribute minimization, so you simply
assign the name of the attribute as the attribute value, making the
example become <option selected="selected"></option>.(Note that

HTMLs allows either selected, selected="", or selected="selected",

all of which browsers should treat the same way.)

m Please also see “Code Formatting Syntax: A Recommendation” earlier

in this chapter.

Chapter 1: HTML Basics 1

Differences Between HTML 4
and HTMLs

Some elements are different when used in HTML 4 or XHTML 1 docu-
ments versus in HTMLs. | detail these differences throughout Part 2 of
the book. Please see the introduction to Part 2 regarding how | typically
convey that information. | also recommend you refer to the handy W3C
summary at http://www.w3.org/TR/htmls-diff/.

m Please also see “Code Formatting Syntax: A Recommendation” earlier
in this chapter.

DOCTYPEs

HTML comes in a few flavors, as dictated by a page’s DOCTYPE (always
include one in your documents!). This section includes a reference of the
available DOCTYPES and a brief summary of what each allows.

Standards-savvy developers and designers have tended to use XHTML 1
Strict or Transitional and, in some cases, HTML 4.01 Strict. However, you can
use the HTMLs DOCTYPE today, and your pages will work as expected (that
doesn’t mean all of HTML5’s new elements will work since that depends
on the browser, but you can code your pages as you normally would
otherwise).

HTML 4.01 Strict
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://waww.w3.org/TR/html4/strict.dtd">

Deprecated elements and attributes, frames, and the target attribute on
links are not allowed.

12 Part 1: HTML Basics

HTML 4.01 Transitional (aka Loose)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/1loose.dtd">

Deprecated elements and attributes are allowed.

HTML 4.01 Frameset

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

Avariant of HTML 4.01 Transitional that is used for frames only.

HTMLs5 and XHTMLs
<!DOCTYPE html>

Used for all HTML5 documents.

XHTML 1 Strict
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0Q Strict//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1l-strict.dtd">

You must follow XHTML syntax rules; plus, deprecated elements and
attributes, frames, and the target attribute on links are not allowed.

XHTML 1 Transitional
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

You must follow XHTML syntax rules. Deprecated elements and attri-
butes are allowed.

Chapter 1: HTML Basics 13

XHTML 1 Frameset

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

A variant of XHTML 1 Transitional used for frames only.

XHTML 1.1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml1l.dtd">

Equal to XHTML 1 Strict but allows you to include additional modules.

Inline vs. Block-level Elements

A block-level element may contain most other block-level elements and all
inline elements. Inline elements mostly describe brief strings of text and
may include other inline elements. For instance, the p element is a block-
level element, and the em element is inline: <p>This is a great
example!</p>. Block-level elements occupy at least one full line when
rendering, while inline elements take up only as much space as their
content requires. This default behavior may be overridden with the CSS
display property.

HTMLs doesn’t use the terms block-level and inline, though its elements
do render by default in one of the two ways. Please see “Content models”
at http://www.w3.org/TR/htmls/dom.html#content-models for details.

HTML Comments

HTML comments don't render in the page, just in the code. They must
start with <!-- and end with -->and they may cover several lines of
code. | recommend commenting at least the beginning and end of major
sections of your pages to make your code easier to read.

14 Part 1: HTML Basics

Attributes

An HTML element’s attribute defines a property of that element. They are
optional in most cases, so use them only as needed. For example, here
you see both the href and title attributes applied to a hyperlink:

<p>They saw a <a href="ducks.html" title="Essay and
photos">family of ducks by the stream.</p>

You may place attributes in any order you like, but | encourage you to be
consistent in your approach in order to make your code easier to read
and manage.

I'll detail common attributes in just a bit, but first please indulge me as |
explain how attributes are noted in this book.

How Attributes Are Noted
in This Book

Many HTML elements share the same attributes. The X/HTML speci-
fications use the terms Core, [18n, and Events to categorize these.
(Core consists of mostly unrelated common attributes, 18n consists
of the internationalization-related attributes, and Events are the
event-related attributes.) Meanwhile, HTML5 uses one term only,
Global, which represents all the Core, 118n, and Events attributes
from X/HTML plus a bunch just for HTMLs. (I explain each of these
attribute groupings in detail after this box.)

I use these terms throughout Parts 2 and 3 of the book. Namely, the
beginning of each HTML element entry includes a list of its attri-
butes in this format:

Attributes Core, I18n, Events, accesskey, alt, href, nohref*, shape,
HTMLs Only: Global, hreflang, media, ping

(continues on next page)

Chapter 1: HTML Basics 15

How Attributes Are Noted
in This Book (continued)

An “Attributes in Detail” section that details their usage appears
toward the end of an HTML element’s entry.

So, in this example, the element supports all the Core, I18n, Events,
and (in HTMLs only) Global attributes. In addition, the attributes
listed by name (accesskey, alt, href, nohref*, shape, hreflang, media,
and ping) are custom attributes that the element supports, depend-
ing on the version of HTML. In case it’s not clear, all attributes prior
to HTML5 Only apply to HTML 4, XHTML 1, and HTML5 (except when
noted otherwise in “Attributes in Detail”), and all attributes after
HTML5 Only apply to HTML5 only, as you would expect.

If an attribute has an asterisk, as nohref does in the example, then
that indicates an exception is noted in “Attributes in Detail.” For
instance, it might say this: nohref: *Obsolete in HTMLs.

The accesskey and tabindex attributes are shared by a handful of
elements in X/HTML though are not part of the Core, 118n, or Events

attribute groupings. They are part of HTML5’s Global attributes, though, so
please find their descriptions in that section. The same definitions apply to their
use in X/HTML documents.

OK, let’s look at the attribute groupings.

Core

These attributes are both part of X/HTMLs Core group and HTML5’s

Global group of common attributes:

= class="class names": Use this to assign one or more space-separated

class names to an element for styling or scripting purposes. You may

16 Part 1: HTML Basics

define your own class names, such as <p class="news synopsis">. . .
</p>. A class may be repeated in a page, whether it’s to the same or
different element types.

= id="unique identifier": This assigns a unique ID for functional, styling,
and scripting purposes. It may not be repeated within the same page.

= style="inline style sheet": This assigns inline CSS to an element. Avoid
using this whenever possible since it is a best practice not to mix your
presentation (CSS) and content (HTML).

= title="descriptive text":This provides a short description that doesn’t
appear on-screen, though most browsers render it as a tooltip when
the mouse or other pointer is hovered on the element. Screen readers
may announce the text as well.

I18n (Internationalization)

These two attributes allow you to specify the language and direction of
text in your document.

= dir="1tr|rt1":This specifies the base directionality of the element’s
text content and tables. Typically, you don’t need to set it anywhere
on your page since the default is 1tr (left-to-right). However, if your
content’s base directionality is right-to-left, such as in Hebrew, set
<html . . . dir="rt1l" lang="he"> (sans ellipses) so the rest of the
page inherits the setting. (Note: You should specify 1ang, too, as
shown, but user agents don’t determine text directionality from that).
If you are intermingling left-to-right and right-to-left content, such as
English and Arabic, respectively, set dir and lang on the element (a
paragraph, for instance) that contains the content that deviates from
the directionality of the page at large. Please also see the bdo element
in Chapter 5 for a related discussion.

= lang="language code": This specifies the language of the element’s
content. Be sure to always set it on the html element; elements on

Chapter 1: HTML Basics 17

the rest of the page inherit that value unless you override it at a more
granular level. For instance, set <html . . . lang="en"> (sans ellipses)
on a document in English. If a paragraph within that same page is

in French, set <p lang="fr"> . . . </p>to override it. Please see the
“Language Codes” section of this chapter to access more codes.

Events

These common event attributes allow you to assign JavaScript to a

range of page behaviors. As a best practice, don’t apply these attributes
to your HTML inline as you do with other attributes. Meaning, avoid

this: <a href="some-page.html" onclick="someFunction(); return
false">1link text. Instead, use JavaScript to apply them unobtru-
sively; this is in keeping with the separation of content and behavior best
practice described in “A Few Best Practices” earlier in this chapter. Search
online for unobtrusive JavaScript to learn more and see code examples.

= onclick="script": Event fires when the user clicks a mouse button or
hits Return or Enter on the keyboard. (Mouse means pointing device for
each event in this list.)

= ondblclick="script": Event fires when the user double-clicks a mouse
button.

= onmousedown="script": Event fires when the user holds the mouse
button down. This is the opposite of onmouseup.

= onmouseup="script": Event fires when the user releases the mouse
button. This is the opposite of onmousedown.

= onmouseover="script": Event fires when the user moves the mouse
cursor on top of an element. This is the opposite of onmouseout.

= onmousemove="script": Event fires when the user moves the mouse
cursor.

18 Part 1: HTML Basics

= onmouseout="script": Event fires when the user moves the mouse
cursor away from an item. This is the opposite of onmouseover.

= onkeypress="script": Event fires when the user presses and releases a
key.

= onkeydown="script": Event fires when the user presses down on a key.
This is the opposite of onkeyup.

= onkeyup="script": Event fires when the user releases a key. This is the
opposite of onkeydown.

Global (HTMLs)

As discussed in the “How Attributes Are Noted in This Book” box, the
attributes that HTMLs classifies as Global include X/HTMLs Core, 118n,
and Events, plus the unique ones listed here. The Global attributes may
be applied to nearly every element in HTMLs.

= accesskey="keyboard character": (Note: Some X/HTML elements
support tabindex, as noted in their entries in Part 2 of the book.)
This attribute assigns a character as a shortcut to setting focus on an
element, as in <input type="text" name="search" accesskey="4" />.
Browsers and platforms vary on what key or keys you must press in
combination with the accesskey to activate it. While pressing Ctrl plus
the accesskey on a Mac typically activates the shortcut, on a Windows
computer it’s Alt for Internet Explorer and Chrome, Shift+Alt for Firefox,
and Shift+Esc for Opera. Behavior varies per element and browser. See
http://www.webaim.org/techniques/keyboard/accesskey.php for more
information, including reasons why it hasn’t gained wider adoption.

= class: Please see the description in the “Core” section.

= contenteditable="true|false": HTML5 allows users to edit an
element’s content if the element has contenteditable="true".If
contenteditable is not set, an element inherits the value from its

Chapter 1: HTML Basics 19

nearest parent. A setting of false prevents an element from being
edited. The default state is to inherit. For more information, see
http://blog.whatwg.org/the-road-to-html-5-contenteditable and a
demo at http://htmlisdemos.com/contenteditable.

contextmenu="id of menu": This assigns the element’s context
menu when its value matches the id of a menu element (please see
Chapter 15).

dir: Please see the description in the “18n” section.

draggable="true|false": HTML5 provides a drag and drop API. Set
draggable="true" on an element to make it draggable (false does
the opposite). If draggable is undefined, the default state is auto,
which defers to the default state of the user agent.

hidden: When present, this Boolean attribute “indicates that the
element is not yet, or is no longer, relevant,” and user agents shouldn’t
show the content. It affects presentation only; scripts and form
controls in hidden content still work.

id: Please see the description in the “Core” section.

itemid, itemprop, itemref, itemscope, and itemtype: These attributes
are related to defining microdata. Please see http://dev.w3.org/htmls/mdy/.

lang: Please see the description in the “118n” section.

spellcheck="true|false": Set spellcheck="true" on an element
whose content should have its spelling and grammar checked (false
does the opposite). HTML5 suggests the default state could be for

the element to inherit the setting of its parent but doesn’t define it
outright. It also doesn’t define how a user agent should perform spell-
and grammar-checking.

style: Please see the description in the “Core” section.

p1o) Part 1: HTML Basics

= tabindex="number": (Note: Some X/HTML elements support
tabindex, as noted in their entries in Part 2 of the book.) Some users
prefer to navigate a page with the Tab key (and Shift+Tab to move
backward). Each time you press Tab in a supporting browser, the focus
shifts to the next a element (a hyperlink or anchor) or form control
according to the order in which it appears in the HTML source, not
necessarily the on-screen order (because of CSS moving it).

You may change the order by assigning a tabindex to an element,
such as Trees. Elements
with tabindex gain priority, so they are tabbed to first (1 is the high-
est priority) before any other elements, regardless of source order. The
numbers may be in any order or increment you'd like. The HTML source
order determines the priority of elements with the same number.
tabindex="0" has special meaning; it makes an element focusable by
keyboard but places it in the normal document tabbing sequence. Also,
tabindex on a disabled element has no effect since it can’t gain focus.

In HTMLs, any negative number means you can’t tab to the element,
but you can set focus to it with JavaScript via focus(). Many browsers
apply this same behavior to X/HTML documents when tabindex="-1".

I strongly recommend you avoid using tabindex in most cases and
make your natural tabbing order logical for users.

= title: Please see the description in the “Core” section.

Data Attributes

Data attributes are another of HTMLs'’s particularly useful additions—
they’re custom attributes that you may apply to any element to store
data in your HTML. They are helpful in cases where another attribute or
element isn’t appropriate for containing the information. You may name
your attributes as you wish as long as they begin with data-. A data
attribute's value doesn’t appear in the page; instead, you leverage it with
JavaScript. For example, imagine your page includes a list of products

Chapter 1: HTML Basics 21

for males and females of all ages. By including data attributes, you could
write a script that sorts or filters the list based on the user’s choices.

Example:

<li data-gender="female" data-agerange="55-67">Product Name</

- 1i>

You may add as many data attributes as necessary. For instance, the
example could include another one called data-pricerange. Best of all,
you can use data attributes today across browsers as long as your page
has an HTMLs5 DOCTYPE. Please see http://www.htmlfiver.com/data-attri-
butes/ for an example of how to access your custom data with JavaScript.

Events That Are Part of Global

The HTMLs Global attribute set includes the X/HTML Events attri-
butes. They are onclick, ondblclick, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, and onmouseup.
Please see the “Events” section in this chapter for details. HTMLs also
includes the following event-related attributes as part of Global:

onabort, onblur*, oncanplay, oncanplaythrough, onchange,
oncontextmenu, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied,
onended, onerror*, onfocus*, onformchange, onforminput, oninput,
oninvalid, onload*, onloadeddata, onloadedmetadata, onloadstart,
onmousewheel, onpause, onplay, onplaying, onprogress, onratechange,
onreadystatechange, onscroll, onseeked, onseeking, onselect, onshow,
onstalled, onsubmit, onsuspend, ontimeupdate, onvolumechange, and
onwaiting

Those with an asterisk have a different meaning when applied to the
body element.

22 Part 1: HTML Basics

Please see the input element in Chapter 7 for details about onblur and
onfocus. Descriptions for the others have been left out for space consider-
ations and because many go beyond the scope of this book (for instance,
many relate to scripting the audio and video elements). You can learn
more at http://www.w3.org/TR/htmls/dom.html#global-attributes.

Basic Data Types

This section describes basic HTML data types referenced by elements in
Parts 2 and 3. Please also see http://www.w3.org/TR/html4/types.html.

CDATA, and id and name Attribute Values

The descriptions of many attributes indicate that CDATA is the accepted
value, as in name="cdata" for form inputs. CDATA, in these instances,

is a fancy name for a text string that accepts a variety of characters.
Specifically, for id, name, and other attributes that accept text, their value
“must begin with a letter (([A-Za—z]) and may be followed by any number
of letters, digits ([0-9]), hyphens ('), underscores (‘_’), colons (*:’), and
periods (‘)"

Character Encoding

The charset attribute defines the character encoding, such as what you
should define in the head element of each document (see “Basic HTML
Document Structure” earlier in this chapter and the meta element entry
in Chapter 3). Most commonly, charset is set to utf-8.The W3C provides
a thorough discussion on the topic at http://www.ws3.org/International/
tutorials/tutorial-char-enc/.

Content Types (MIME Types)

A content type specifies the nature of a linked or embedded resource,
such as assigned to the type attribute of the 1ink element that loads a

Chapter 1: HTML Basics 23

style sheet. Among the common content types are image/gif, image/png,
image/svg+xml, text/css, text/javascript, text/html, and video/mpeg.
A complete list of registered MIME types is available at http://www.
w3.org/TR/htmlg/references.html#ref-MIMETYPES.

Language Codes

A language code is assigned to the lang attribute to describe the
language of an element’s content, as in Lang="d1" for Dutch. Please see
the “18n” section of this chapter for more details about 1ang. Language
codes may have a subcode, too, as in cn-zh. Please see http://www.
anglistikguide.de/info/tools/languagecode.html for a list of codes.

Link Types

The defined X/HTML link types are alternate, stylesheet,
start®, next, prev, contents*, glossary®, copyright®, chapter?®,
section®, subsection®, appendix®, help, and bookmark. Please see
http://www.w3.org/TR/htmlg/types.html#h-6.12 for descriptions.

HTMLs includes the ones not marked with an asterisk and also includes
these: archives, author, external, icon, license, nofollow, noreferrer,
pingback, prefetch, search, sidebar, tag, index, up, first, and last.
Please see http://www.w3.org/TR/htmls/interactive-elements.html#
linkTypes for descriptions. Additionally, HTML5 allows you to define new
link types by defining them at http://wikiwhatwg.org/wiki/RelExtensions.

The a (Chapter 5), 1ink (Chapter 3), and area (Chapter 6) elements use
link types.

Character Entities

A character entity represents a character in a document’s character set.
Some common character entities are & ; for an ampersand, for

24 Part 1: HTML Basics

a nonbreaking space, &1t; for a less-than sign, > ; for a greater-than
sign, " for a straight quotation mark, &1squo; for a curly opening
single quotation mark, ’ for a curly closing single quotation mark,
“ for a curly opening double quotation mark, and ” fora
curly closing double quotation mark. There are dozens more. Here’s a

list, courtesy of Elizabeth Castro: http://www.elizabethcastro.com/html/
extras/entities.html.

Deprecated and Obsolete Elements
and Attributes

A deprecated element or attribute is one that you shouldn’t use but that
browsers still support for backward-compatibility reasons. Most of the
deprecated items are presentational in nature and have been replaced by
CSS. An obsolete element or attribute is one that you should not use and
that browsers should not support.

The deprecated elements in X/HTML are applet, basefont, center, dir,
font, isindex, menu, s, strike, and u.

The goal of this book is to be a practical reference to standards-based
coding today and into the future. To that end, | deliberately left out
obsolete and deprecated elements and obsolete attributes, since you
shouldn’t use them anyway. Similarly, | omitted proprietary (that is,
nonstandard) elements that certain browsers support but that aren’t
part of any HTML specification, either final or in the works.

However, throughout Parts 2 (especially) and Part 3, | do note deprecated
attributes and what you should use instead, which usually means using
CSS to replace a presentational attribute. | also note elements and attri-
butes that are valid in X/HTML but not in HTML5 (they’re obsolete).

HTML Elements and
Guidance

This part of the book covers all nondeprecated elements that are shared
among HTML 4, XHTML 1, and HTML5 (though some are obsolete in
HTMLs, as noted). Elements unique to HTML5 are covered in Part 3.

In some cases, an already existing element is different in HTMLs, whether
it's the element’s meaning, the availability of an attribute, or the addition
of new attributes. | note these differences throughout. In particular, keep
an eye on the “Attributes in Detail” sections and the HTMLs boxes at the
end of relevant entries. Each box details different uses and/or attributes
for the element, allowing you to understand their application in HTMLs
at a glance.

Part 2 Contents

Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:

Primary Structure and Sections 27
DocumentHead 43
Lists 69
Text ... 93
Embedded Content (Images and Objects) 141
Forms 157
TabularData 185
Scripting ... 203

Chapter1o: Frames 213

Primary Structure

and Sections

The elements in this chapter represent an HTML document’s high-level
structural and outline components. Some are essential (after all, you
can’t write an HTML document without the html element), while others
are either used sparingly (the hr element) or have seen their usage
decline in HTMLs (the div element).

This chapter is a counterpart to Chapter 11, which describes related
elements unique to HTMLs. If you're writing X/HTML documents, then
you don’t need to hop on over there. But, if you’re writing HTMLs, then
this chapter and Chapter 11 combine to detail all the primary structural
and sectioning elements at your disposal.

28 Part 2: HTML Elements and Guidance

address

Author contact information

Syntax <address></address>

Attributes core, 118n, Events, HTML5 Only: Global

Description

address is one of the most misleading elements by name. You'd logi-
cally think it’s for marking up a postal address, but it isn’'t (except for one
circumstance described in a little bit). In fact, surprisingly, there isn’t an
HTML element explicitly designed for that.

Instead, address defines contact information for the author of an HTML
document or part of a document. It typically goes at either the beginning
or, more often, the end of a page. However, if a section of a page has an
author, place the address in context of that section.

Most of the time, contact information takes the form of the author’s
e-mail address or a link to a page with more contact information.

Example:

<address>

Page maintained by
= Taylor Rose and <a href="/contact-us/katherine-whitney.
= html">Katherine Whitney.

</address>

Browsers typically render address content in italics by default, like this:

Page maintained by Taylor Rose and Katherine Whitney.

Chapter 2: Primary Structure and Sections 29

Additionally, the contact information could very well be the document
author’s postal address, in which case marking it up with address would
be valid. But, if you're creating the Contact Us page for your business and
want to include your office locations, it would be incorrect to code those
with address. So, it’s the context that matters.

HTMLs and the address Element

In HTMLs, address pertains to the nearest article element ancestor,
or the body if no article is present. It's customary to place address in
an HTMLs footer element when documenting author contact infor-
mation for the page at large.

An address in an article provides contact information for the
author of that article within a document. Please see the article
entry in Chapter 11 for an example.

HTMLg stipulates that address may contain author contact informa-
tion only, not anything else such as the document or article’s last
modified date. Additionally, HTMLs forbids nesting any of the follow-
ing elements inside address: h1-h6, address, article, aside, footer,
header, hgroup, nav, and section.

30 Part 2: HTML Elements and Guidance

body

Document content container

Syntax <body>
. [document content]
</body>

Attributes Core, 118n, Events, onload, onunload, HTML5 Only: Global,
onafterprint, onbeforeprint, onbeforeunload, onblur, onerror,
onfocus, onhashchange, onmessage, onoffline, ononline, onpagehide,
onpageshow, onpopstate, onredo, onresize, onstorage, onundo

Description

The body element contains all code related to a page’s content and may
also contain one or more script blocks. body is required for every HTML
document except one that defines framesets, in which case it can appear
only inside the noframes element. (Please see Chapter 10.) Only one body
is allowed per HTML document.

Example:

</head>

<body>
<h1>A11l about <code>body</code></hl>
<p>The <code>body</code> element contains your page's
content, which may include nearly every
element.</p>

</body>

</html>

Chapter 2: Primary Structure and Sections 31

body may contain text, images, objects, scripts, tables, and forms—in
short, nearly every HTML element, whether block-level or inline. However,
if the DOCTYPE is Strict (which | recommend), each inline element must
be contained in a block-level element. For instance, the code and em
elements in the example could not sit directly inside body because both
are inline elements.

Attributes in Detail

In addition to the common events, body has two special event attributes
(see the “HTML5 and the body Element” box, too):

= onload="script": Fires when all the document’s content has finished
loading. This includes all images, objects, and scripts (whether they are
local to the site or external, third-party scripts). Consequently, the time
it takes for onload to fire can vary greatly from page to page depend-
ing on the content, how content is served, network latency, a user’s
browser cache settings, and more.

= onunload="script": Fires when the user leaves the document, such as
when navigating to another page via a link.

Deprecated Attributes

The following attributes are all presentational in nature, so use CSS
instead to achieve the equivalent effect.

= alink: Obsolete in HTMLs. This color appears as the user is selecting
a link. Use the CSS a:active pseudo-selector to define the active link
color instead.

= background: Obsolete in HTMLs. Use the CSS background-image prop-
erty to define the body background image instead.

= bgcolor: Obsolete in HTMLs. Use the CSS background-color property
to define the body background color instead.

32 Part 2: HTML Elements and Guidance

= link: Obsolete in HTMLs. Use the CSS a:1ink pseudo-selector to define
the unvisited (that is, default) link color instead.

= text: Obsolete in HTMLs. Use the CSS color attribute to define the
default text color instead.

= vlink: Obsolete in HTMLs. Use the CSS a:visited pseudo-selector to
define the visited link color instead.

HTMLs and the body Element

HTMLs introduces several new event attributes to body. As with other
events, it’s best to apply these unobtrusively with JavaScript rather
than include them in your HTML.

ATTRIBUTES IN DETAIL

= onafterprint="script": This fires when the browser finishes print-
ing the document.

= onbeforeprint="script": This fires when the browser’s Print func-
tionality is engaged, such as when you choose Print from the
menu but before the document has printed.

= onbeforeunload="script": This fires just before the document
unloads, which happens each time a user submits a form or navi-
gates away from the current page. Use it if you want users to con-
firm they intend to leave the page.

= onblur="script": This fires when body loses focus, such as when
the user clicks the mouse pointer outside body. It’s the opposite of
onfocus.

= onerror="script": This fires when an uncaught runtime script
erTor OCCUrS.

= onfocus="script": This fires when the body achieves focus after
having lost it. It's the opposite of onblur.

Chapter 2: Primary Structure and Sections 33

HTMLs and the body Element (continued)

= onhashchange="script": This fires when only the hash (#) portion
of the URL changes. For instance, if you are currently browsing
http://www.yourdomain.com/meteor-showers.html and select a
link that anchors to the #photos id elsewhere on the page, the
URL changes to http://www.yourdomain.com/meteor-showers.
htmli#photos and onhashchange fires if it’s defined. It fires again if
you navigate to another anchor or back to the initial state that had
no hash.

= onmessage="script": This fires when a document receives a
message via server-sent events, Web sockets, cross-document
messaging, and channel messaging. For example, HTML5’s Cross-
Document Messaging allows two documents to communicate
regardless of their source domains. onmessage fires when one doc-
ument receives a message from the other one via postMessage().
A full discussion of messaging is beyond the scope of this book.

= onoffline="script": This fires when the navigator.onLine attri-
bute value changes from true to false, which occurs when the
browser cannot contact the network upon a user-initiated or
programmatic request for a remote page or file.

= ononline="script": The opposite of onoffline, this fires when the
value of navigator.onLine changes from false to true.

= onpagehide="script": This fires when navigating from a browser’s
session history entry, which is an individual URL and/or state
object plus other contextual information. Loosely put, the session
history represents the full set of pages accessed during a browsing
session.

= onpageshow="script": The opposite of onpagehide, this fires when
navigating to a browser’s session history entry.

(continues on next page)

34 Part 2: HTML Elements and Guidance

HTMLs and the body Element (continued)

= onpopstate="script": HTMLs5 allows you to manipulate the ses-
sion history by recording an interface state (a state object) in the
history programmatically. onpopstate fires when navigating to
a browser’s session history entry that is a state object. Please see
https://developer.mozilla.org/en/DOM/window.onpopstate and
https://developer.mozilla.org/en/DOM/Manipulating_the_browser_
history for more information and examples.

= onredo="script": HTML5’s undo/redo history functionality is just
one of its features that makes it easier to build robust Web appli-
cations. The concept is similar to the undo and redo features in
word processors and other software. onredo fires when a redo
operation takes place on an undo object. The specifics are beyond
the scope of this book.

= onresize="script": This fires when the body changes size.

= onstorage="script": The W3C’s Web Storage API (http://www.
w3.org/TR/webstorage/), also referred to as “DOM Storage,” allows
you to store a large amount of data securely in the browser.
onstorage fires when a storage event occurs. The specifics of Web
Storage are beyond the scope of this book. Please see http://dev.
opera.com/articles/view/web-storage/ for more information.

= onundo="script": This is the opposite of onredo, firing when an
undo operation takes place on an undo object.

Also, when common events onblur, onerror, onfocus, and onload
appear on body, they expose the same-named event handlers of the
Window object. Please see “Attributes” in Chapter 1 for more details
about these four events.

Chapter 2: Primary Structure and Sections 35

div

A generic container
Syntax <div></div>

Attributes core, 118n, Events, HTML5 Only: Global

Description

The div element serves as a generic, block-level container and has no
semantic meaning. As is the case with any meaningless element, use div
only when a proper semantic choice doesn’t exist.

Developers typically use it in X/HTML as the wrapper around most
primary blocks of content and then control the width, placement, and
other presentation characteristics with CSS. div may contain both block-
level and inline elements, including other divs.

Example:

<body>

<div id="container">
<div id="header"> . . . </div>
<div id="content">

<div id="main"> . . . </div>
<div id="sidebar"> . . . </div>
</div>
<div id="footer"> . . . </div>
</div>
</body>

div’s cousin is the span element, which is a generic, inline container
with no semantic meaning.

36 Part 2: HTML Elements and Guidance

Deprecated Attributes

= align: Obsolete in HTMLs. align is presentational in nature, so instead
use the CSS text-align property (with a value of center, justify,
left, or right) to align a div’s content.

HTMLs and the div Element

You'll find fewer instances to use div in HTMLs5 because that version
of the language contains several containers that do have meaning,
such as article, aside, header, footer, nav, and section (see Chapter
11). Use div only when a semantic element isn’t required.

h1, h2, h3, hg, hs, hé

A heading

Syntax <hl></hl>
<h2></h2>
<h3></h3>
<h4></h4>
<h5></h5>
<h6></h6>

Attributes Core, 118n, Events, HTML5 Only: Global

Description

The h1-h6 elements represent content headings of varying degrees of
importance. The hl is the most important, and the h6 is the least. Each
heading describes the content or functionality that follows, whether it’s

Chapter 2: Primary Structure and Sections 37

an article, a sign-up form, a module with a group of links, the title above
an embedded video, and so on.

Your h1-h6 headings are among the most important elements in any
HTML document, because they are integral to defining your page’s
outline. Plan them without regard for how you want them to look; focus
on what heading hierarchy is appropriate for your content. This benefits
both SEO and accessibility.

Search engines weigh your headings heavily, particularly the likes of h1.
Screen reader users often navigate a page by headings, too, because it
allows them to quickly assess a page’s content without having to listen
through every piece of content.

Opinions vary concerning whether it’s appropriate to skip a heading
level in a document—to move from h1 to h3 within a particular content
area, for instance. Most people in the community think you should not
skip a level, a view | share. Having said that, there is no firm rule in either
X/HTML or HTMLs about this.

By default, headings typically render at a size comparable to its impor-
tance and in bold. However, as previously noted, don’t use a particular
heading level just because you want it to look a certain way. You can
control all of that with CSS.

Example:

<h1>This is
<h2>This is
<h3>This is
<h4>This 1is
<h5>This 1is
<h6>This 1is

heading level one</hl>
heading level two</h2>
heading level three</h3>
heading level four</h4>
heading level five</h5>

Q9 9 9 9 9 9o

heading level six</h6>

38 Part 2: HTML Elements and Guidance

Please note that the following rendering isn’t to scale.

This is a heading level one

This is a heading level two
This is a heading level three

This is a heading level four
This is a heading level five
This is a heading level six

Deprecated Attributes

= dlign: Obsolete in HTMLs. align is presentational in nature, so instead
use the CSS text-align property (with a value of center, justify,
left, or right) to align a heading’s content.

m You are allowed to use more than hl per page, though it isn’t common
to do so and is mostly discouraged in X/HTML because the use cases
are limited. Google’s Matt Cutts has gone on record saying Google allows it
without a search ranking penalty as long as it’s content-appropriate and within
reason. However, you should use h1 more often in an HTML5 document. See the
“HTML5 and the h1-h6 Elements” box.

@ You’ll often see the h1 used to wrap a site’s logo, but | don’t recom-
mend this practice in X/HTML. Save your h1 for the main heading (or
two) within your content.

HTML5 and the h1-h6 Elements

HTMLs’s article, aside, nav, section, and hgroup elements greatly
impact the way in which you use h1-h6 headings. Please see the
“HTML5’s Document Outline” section and the elements’ entries in
Chapter 11.

Chapter 2: Primary Structure and Sections 39

hr

A horizontal rule
Syntax <hr>or <hr />

Attributes Ccore, 118n, Events, HTML5 Only: Global

Description
The hr element does not contain any content; it renders as a horizontal
rule, acting as a separator.

Example:

<p>This is a paragraph.</p>
<hr />
<p>This is another paragraph.</p>

By default, user agents typically render it as a two-color (gray), 2-pixel-
high bar that extends the full width of the content container in which it
sits. The space above and below an hr tends to vary among browsers.

This is a paragraph.

This is another paragraph.

Deprecated Attributes

= align: Obsolete in HTMLs. Use the CSS width and, optionally, margin
properties to dictate the alignment of an hr relative to the content
around it.

= noshade: Obsolete in HTML5. This Boolean attribute, when present,
turns off the default “groove” appearance of an hr by rendering the

40 Part 2: HTML Elements and Guidance

two lines in one color instead of two. Use CSS instead, such as
hr { border: 1px solid #999; }, where #999 represents the color.

= size: Obsolete in HTMLs. Use the CSS height property to dictate the
size instead.

= width: Obsolete in HTMLs. Use the CSS width property to dictate the
width instead.

HTML5 and the hr Element

HTMLg gives the hr more context by redefining it as “a paragraph-
level thematic break, e.g. a scene change in a story, or a transition to
another topic within a section of a reference book.”

html

Document root element

Syntax <html></html>

Attributes 118n, HTML5 Only: Global, mani fest

Description

The html element is the root element of every HTML document; all
other elements are contained within it. The opening html tag should be
preceded by a valid DOCTYPE.

Example (typical HTML 4 Strict document):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://waww.w3.org/TR/html4/strict.dtd">

Chapter 2: Primary Structure and Sections 41

<html lang="en">

<head>

</head>

<body>

</body>

</html>

The lang attribute sets the base language for the entire document. The
structure remains the same as the example for other versions of HTML,
except for the DOCTYPE and, in some cases, the attributes on html. Please

see Chapter 1 for more information about 1ang, the html element’s other
attributes, and DOCTYPE options.

Deprecated Attributes

= version: Obsolete in HTMLs. Do not use this attribute since it provides
redundant information as the DOCTYPE regarding the required DTD
version.

HTMLs and the html Element

If the previous example had been an HTML5 document, everything
would be the same except the DOCTYPE would be <!DOCTYPE html>.

ATTRIBUTES IN DETAIL

= manifest="URL": This optional attribute contains a valid non-
empty URL that points to the document’s application cache mani-
fest. HTMLs provides the means to run offline Web applications

(continues on next page)

42 Part 2: HTML Elements and Guidance

HTMLs and the html Element (continued)

(application can mean a robust application or just a handful of
HTML pages; it doesn’t matter). The application cache manifest
lists the files an application needs to operate when disconnected
from the network. The browser saves a copy of the files when
you access the site online. Details about offline Web applications
are beyond the scope of this book, but you specify the attribute
like this:

<html manifest="myapplication.manifest">

Please note that a base element has no effect on resolving a rela-
tive URL in the manifest attribute since manifest is processed
before base appears.

Document Head

An HTML document’s head element contains important information
about the page, links to external resources such as style sheets, and
embedded styles, when necessary. Plus, what you include in your page’s
head impacts search engine optimization (SEO).

Each of the elements described in this chapter may appear only in the
head, except style, which has an exception in HTMLs.

The script element may also appear in the head; however, it’s best
to include it at the end of your page just before the </body> end tag
whenever possible.

44 Part 2: HTML Elements and Guidance

base

Document’s base URI

Syntax <head>
<base href=
</head>

nn

> or <base href="" />

Attributes nref, target, HTMLs Only: Global

Description

The base element defines the page’s absolute URI from which relative
paths to external resources are resolved. (External resources include
assets such as images, JavaScript files, and style sheets, as well as links
to other pages and paths to server-side scripts that process forms.) base
must be defined in the document head before any element that calls
upon an external resource, and there can be only one base element per
page. If base is not defined, the page’s base URI defaults to the current
page. Most pages on the Web don’t define base because the default
behavior is what is desired.

Attributes in Detail
= href="uri": Defines the document’s base absolute URI.

= target: Used to set the base target for links and form actions in docu-
ments with frame or iframe elements. Please see the frame entry in
Chapter 10 for more information.

It's important to note that base impacts the URIs only for the page in
which it appears. For instance, if you define background-image:
url(../img/arrow.png) in an external style sheet that is loaded by a
page with base defined, the path to the image is unaffected. Similarly,

Chapter 3: Document Head 45

base in a parent document does not affect the paths within an iframe’s
document. Lastly, the object element’s codebase attribute takes prece-
dence over base.

The easiest way to understand how base works is to see examples
both with and without it. Let’s say you’ve created the following page at
http://www.myvacationpics.com/2009/.

Example 1 (without base defined):

<head>

<link rel="stylesheet" href="../css/global.css"
type="text/css" />

</head>

<body>

<p>
<img src="image/kauai/thumbnail_volcano_0@1. jpg"
width="400" height="300" alt="Kauai volcano" />
Kauai Volcano Pics
</p>

</body>
Example 1is your typical HTML page—the paths to the external assets
are exactly how they appear in the code. That is, the paths to the style

sheet, the volcano image, and the page to view more pictures are relative
to the HTML page’s location, which is in the 72009/ directory.

Now, let’s apply a base value while leaving the rest of the code exactly as
it was in Example 1. Remember, you aren’t moving the page to a different
folder, just adding base to the page.

46 Part 2: HTML Elements and Guidance

Example 2 (with base defined):

<head>

<base href="http://www.myvacationpics.com/2010/" />
<link rel="stylesheet" href="../css/global.css"
type="text/css" />

</head>

<body>

<p>
<img src="image/kauai/thumbnail_volcano_0@1. jpg"
width="400" height="300" alt="Kauai volcano" />
Kauai Volcano Pics
</p>

</body>

With the base defined in Example 2, all URIs in the page are now relative
to the base href value, meaning the page treats them as if it’s in the
/2010/ directory even though it still lives in /2009/. Here are the paths

as they appear in the code and where the page looks for them now that
they resolve to new locations:

= ../css/global.css resolves to http://www.myvacationpics.com/css/
global.css (this didn’t change because of the path).

= image/kauai/thumbnail_volcano_01.jpg now resolves to http://
www.myvacationpics.com/2o010/image/kauai/thumbnail_volcano_o1.
Jjpg (instead of http://www.myvacationpics.com/2009/image/kauai/
thumbnail_volcano_o1.jpg, as in Example 1).

= volcanoes/kauai.html resolves to http://www.myvacationpics.
com/2010/volcanoes/kauai.html (instead of http://www.myvacation
pics.com/2009/volcanoes/kauai.html, as in Example 1).

Chapter 3: Document Head 47
head

Information about document

Syntax <head>
</head>

Attributes 118n, profile*, HTMLs Only: Global

Description

The head element is required in each HTML document. It houses a hand-
ful of other elements that provide information about the page, such

as the character encoding, title, links to style sheets, and metadata for
search engines. It does not contain page content (as the body element
does) that user agents generally render, though they may surface the
information in other ways (such as with title on the title bar).

The elements that head may contain are base, 1ink, meta, script, style,
and title. All are defined in this chapter except script, which is covered
in Chapter 9. Also, all of these except script (and style in HTML5) may
appear only in the head.

The head immediately follows the DOCTYPE and the html element, as
shown in the example.

Example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.@ Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en">

<head>

(continues on next page)

48 Part 2: HTML Elements and Guidance

<title>Sunny renewable green energy services - Solar
Panels Galore</title>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
[other meta elements]

<link rel="stylesheet" type="text/css"
href="/common/css/base.css" />

</head>

<body>

Attributes in Detail

= profile="uri": *Obsolete in HTML5. As | mention in this chapter’s entry
for the meta element, you may create your own meta elements simply
by including them in your page. You may also create a metadata
profile, which is documentation of a metadata standard, and point to
it with the profile attribute on the head. It’s a way of informing user
agents that some of your meta elements are derived from that profile.
Including the profile attribute does not change the behavior of the
meta elements, however. A full discussion of profiles is beyond the
scope of this book, but you can read more at http://www.w3.org/TR/
htmlgo1/struct/global.html#profiles. Also, two such profiles are Dublin
Core (http://dublincore.org/documents/dces/ and http://dublincore.org/
resources/faq/) and XFN (http://gmpg.org/xfn/11 and http://micro
formats.org/wiki/xfn).

Chapter 3: Document Head 49

HTMLs and the head Element

HTMLs declares the profile attribute obsolete and in its place
requests you register extensions to the predefined set of metadata
names (application-name, author, description, and generator, as
discussed in the meta entry in this chapter). You may register exten-
sions at http://wikiwhatwg.org/wiki/MetaExtensions.

link

Link to a related resource

Syntax <link rel=""href="">or <link rel="" href="" />

Attributes Core, 118n, Events, charset*, href, hreflang, media, rel,
rev®, target®, type, HTML5 Only: Global, sizes

Description

The link element defines a link between the current document and
another resource, but in a much different way than the a element. Like

a, Link uses the href attribute to define the location of the resource,

but 1ink doesn’t display actionable text in your page content. Instead, it
provides information for user agents to act upon. A page may have multi-
ple link elements, and they must always appear in the head element.

There are two cases for using link:

= To link to a resource that affects the current view, such as a style sheet
or favicon. Please see Examples 1—4.

= To link to a resource that doesn’t affect the page but that is related
to it, such as a version in an alternate format (RSS or Atom feed, PDF,

50 Part 2: HTML Elements and Guidance

and so on) or language, or to link to a resource that is part of the same
series of documents, such as chapters split into multiple HTML files.
Again, these links are not displayed in your page content, but a search
engine may index the related documents, and in the case of a feed, an
RSS reader displays the linked XML content. Please see Examples 5-7.

The best way to get a feel for 1ink is to look at some examples.

Linking to Style Sheets or a Favicon

The most common use for 1ink by far is to load a style sheet.
Example 1 (load a style sheet):

<head>

<link rel="stylesheet" href="/common/css/base.css"
type="text/css" media="screen, print" />

</head>
@ You may have seen style sheets loaded with @import, too. However,

using link is a best practice, primarily because style sheets load as
fast as or faster than @import in a range of scenarios.

It doesn’t matter in what order the attributes appear, but the sequence
in Example 1is pretty standard. Also, it’s customary to include the type
attribute as shown whenever you load a style sheet, and rel will always
be either “stylesheet” or “alternate stylesheet” (see Example 3). The

href and media attributes will vary, however. href provides the URI (an
absolute path, in this case) to the style sheet, and media defines in what
media the style sheet should be applied to the page (screen layout and
when printing, in the example). Please see “Attributes in Detail” for more
options.

Chapter 3: Document Head 51

Now let’s load two style sheets.
Example 2 (load two or more style sheets):

<link rel="stylesheet" href="/common/css/base.css"
type="text/css" media="screen" />
<link rel="stylesheet" href="/common/css/print.css"
type="text/css" media="print" />

Use two or more link elements if you have separate style sheets for
displaying your page on-screen and printing (or other purposes as
defined by media). This is pretty common, since there are often elements
you want to “turn off” for printing, such as navigation and ads.

The final style sheet example shows how to load an alternate style sheet,
which you use to provide a different presentation than your default
layout. It could be for a different theme (light on dark versus dark on
light), changing the dimensions, and so on.

Example 3 (load an alternate style sheet):

<link rel="stylesheet" href="/common/css/base.css"
type="text/css" media="screen" title="Default" />

<link rel="stylesheet" href="/common/css/print.css"
type="text/css" media="print" />

<link rel="alternate stylesheet" href="/common/css/theme-
= light-on-dark.css" type="text/css" media="screen"
title="Light on Dark" />

Your page may have several alternate style sheets. An alternate style
sheet doesn’t affect your page by default. Some browsers allow you to
select it from a menu as listed per its title attribute. For instance, in
Firefox’s View > Page Style menu, you'd see the Default and Light on Dark
themes to choose from for Example 3. Since not all browsers provide a

LY Part 2: HTML Elements and Guidance

means to select an alternate style sheet, developers often implement a
JavaScript style switcher (search online for more details).

Now it’s time to move onto the second most frequent use of 1ink:
displaying a favicon.

Example 4 (display a favicon):

<link rel="shortcut icon" href="/img/favicon.ico"
type="1image/x-icon" />

A favicon is the small site-specific icon you’ll often see in a browser’s
address bar before the URL, next to a bookmark/favorite, on a tab
(depending on the browser), or on a desktop shortcut (depending on
the OS). If favicon.ico lives at your site root, you typically don’t need to
use 1ink, though you may prefer to just be explicit. Note that if you use
rel="1icon" instead of rel="shortcut icon", Internet Explorer won’t
load it. (Even so, older versions of IE exhibit some inconsistent favicon
behavior. You may need to bookmark the page before the favicon will
show.)

Linking to Related Documents

The remaining examples demonstrate using 1ink to point to related
documents that don’t impact the page’s layout.

Example 5 (point to RSS or Atom feed):

<link rel="alternate" type="application/rss+xml" href=
= "topstories.xml" title="Top Stories -- YourDomain.com" />

The 1ink format in Example 5 tells an RSS reader where to locate
your feed. Note the values for the rel and type attributes. You may
have more than one feed per document, such as one link for national
top stories and another for regional news. For an Atom feed, specify
type="application/atom+xml" instead.

Chapter 3: Document Head 53

Example 6 (point to alternate language):

<link rel="alternate" type="text/html" hreflang="es"
href="spanish.html" title="Article in Spanish" />

If you provide a link to an alternate language version of the document, as
in Example 6, a search engine may index it. Note the use of the hreflang
attribute. type is set to text/html to reflect that the href points to a
document with that content type.

Example 7 (point to documents in a series, and prefetching)

<link rel="start" href="step-one.html" />
<link rel="prev" href="step-four.html" />
<link rel="next" href="step-six.html" />

Let’s say you’ve written a series of pages called “The Seven Steps to
Creating Your Own Luck.” If step-five.html were the current document,
it could include the 1ink elements shown in Example 7, which inform
search engines about the series. rel="start" refers to the first docu-
ment in the series.

Furthermore, Firefox prefetches a rel="next" href.This means that in
Example 7, the assets for step-six.html are loaded behind the scenes
as you’re browsing the current page. You don’t have to prefetch an entire
page, though. The href attribute could just as easily point to an image
or a style sheet. The former would be handy if the current page is one of
several within a photo gallery, for example.

Firefox 3.0+ also supports rel="prefetch", which is the HTML5 way to
specify a resource for prefetching (HTML5 supports next, too). Other
browsers may follow suit.

@ Learn more about prefetching at https://developer.mozilla.org/en/
Link_prefetching_FAQ.

54 Part 2: HTML Elements and Guidance

Attributes in Detail
(See the “HTMLs and the 1ink Element” box for additional details.)

= charset: *Obsolete in HTMLs. This specifies the character encoding of
the link destination. Please see “Character Encoding” in Chapter 1 for
more details.

= href="uri": This defines the 1ink resource location. Please see the a
element in Chapter 5 for a description of various URI paths that are
available to you.

= hreflang="langcode": Not often used, this indicates the base
language of the href’s destination, much in the way the lang attribute
specifies the language of other HTML elements. Hence, you may use
hreflang only when href is present. See Example 6.

= media:When rel is set to stylesheet, this comma-separated list indi-
cates the media for which the style sheet applies (see Examples 1-3).
If you leave out media, the value typically defaults to all in browsers,
even though HTML 4 declares it should be screen.

The following list includes the possible media values. screen and print
enjoy wide support and, with all, are used the most by a very large
margin. Support for the others varies. Please also see the “HTMLs5 and
the link Element” box.

all:For all devices.

aural: For speech synthesizers.

braille: For Braille assistive devices.

handheld: For handheld devices, but few support it. Typically, you'll
use screen instead when designing for mobile.

Chapter 3: Document Head 55

— print: For printing and print preview.

- projection: For projectors and similar views. Opera’s projection
mode, Opera Show, supports it.

- screen: For typical computer screens and modern mobile browsers.
This is the value that tells a Web browser to render a style sheet.

- tty: For media using a fixed-pitch character grid, such as teletypes.

— tv: For television-type devices.

rel="link-types" and rev="link-types": *rev is obsolete in HTMLs. rel
and rev have opposite meanings and are used in conjunction with
href.The rel attribute indicates the relationship from the current
document to the linked resource (see Examples 1-7). rev (“reverse”)
indicates the relationship from the linked resource to the current
document. (Please see the a element in Chapter 5 for a full description
of the difference.)

target: *Not valid with Strict HTML 4 and XHTML 1 DOCTYPEs. Obsolete
in HTMLs. target specifies the name of the frame for which the 1ink
applies. HTML provides four special target names with specific behav-
ior: _blank, _self, _parent, and _top. Please see Chapter 10 for more
details.

type="content-type": Tells the user agent the content type of the
content at the 1ink’s destination. It is only advisory.

56 Part 2: HTML Elements and Guidance

HTML5 and the 1ink Element

HTMLs requires link to have a rel attribute, an itemprop attribute,
or both. Please see “Attributes” in Chapter 1 concerning itemprop, an
HTMLs global attribute.

HTMLg also allows link inside a noscript element that’s in the head.
ATTRIBUTES IN DETAIL

HTMLs expands the values for media and includes the sizes
attribute.

= media: This attribute’s list of values is the same as in X/HTML
except that it includes media queries. In HTML5, media’s value
must be a valid media query list from the Media Queries specifi-
cation (http://www.w3.0rg/TR/2009/CR-css3-mediaqueries-2009
0915/#syntax). media is allowed only if href is present.

= sizes: This defines the size(s) of a linked icon(s). sizes="all"
means the icon is scalable, such as an SVG image. Otherwise,
provide a space-delimited list of sizes (if more than one) in
WIDTHxHEIGHT format, where each value is a non-negative
integer.

Examples:

<link rel="icon" href="some-icon.svg" sizes="any"
type="1image/svg+xml">

<link rel="icon" href="favicon.png" sizes="16x16"
type="1image/png">

<link rel="icon" href="icon-set.icns" sizes="16x16 128x128
= 256x256">

Chapter 3: Document Head 57

meta

Document metadata

Syntax <head>
<meta> or <meta />
</head>

Attributes 118n, content, http-equiv, name, scheme*, HTML5 Only:
Global, charset

Description

View source on virtually any Web page, and you're bound to see a hand-
ful of meta elements—typically called meta tags—in the head element.
meta specifies information about the current HTML document in a name-
value pair format, primarily for the benefit of browsers, search engine
spiders, and other user agents. Metadata does not appear in your page’s
content. There’s no limit to the number of meta elements you can include
in your page as long as all of them are in the head.

Example 1 shows arguably the most important meta element.
Example 1 (declaring the content type):

<head>
<title>. . .</title>
<meta http-equiv="Content-Type" content="text/html;
= charset=utf-8" />

</head>
The name in the name-value pair in this example is the http-equiv
attribute, while content, as always, is the value. Include this meta

58 Part 2: HTML Elements and Guidance

element in each of your pages to define your document’s character
encoding (UTF-8, in this case). It’s standard practice to make it one of the
first elements inside the head, either just before or just after the title.
(HTML5 changes the syntax for this usage of meta. Please see the charset
attribute in the “HTMLs5 and the meta Element” box.)

m It’s important to add a Content-Type meta element to your documents
so user agents can detect the document’s character encoding. If you
exclude it, you run the risk of your users seeing unreadable text, particularly on
a multilingual site. For more information, see http://www.w3.org/International/
tutorials/tutorial-char-enc/.

Typically, meta elements are grouped together, though they don’t have to
be. And there’s no set list of meta element name-value properties from
which to choose. You're allowed to create your own simply by includ-

ing them in your page (or you can create them more formally; see the
head element’s profile attribute in this chapter). But, the following are
among the most common ones, and they define information that search
engines use to varying degrees.

Example 2 (common meta elements):

<head>
<title>Sunny renewable green energy services - Solar
Panels Galore</title>
<meta http-equiv="Content-Type" content="text/html;
= charset=utf-8" />
<meta name="description" content="Solar Panels Galore
provides consulting and installation services for
industrial, commercial and residential active and
passive solar panel systems." /> (continues on next page)

Chapter 3: Document Head 59

<meta name="keywords" content="solar panels, active solar,
passive solar, renewable energy, green energy, solar
panel installation, solar panel consultation,

industrial, commercial, residential" />

<meta name="author" content="Tanya Brown" />

</head>

The most useful of the three highlighted meta elements in Example 2 is
name="description". A search engine may display this value as a snip-
pet of text in its search results. So, I highly recommend you include a

succinct, informative description in each page. Search engines don’t all
display the same number of characters, though, so limit yours to 150-160.

The impact of name="keywords" metadata (see Example 2) on search
engine ranking has diminished dramatically over the years, to the point
that Google declared that it completely ignores name="keywords" for
Web search. Some search engines still use them (though not heavily), so
continue to include them, as long as they are relevant to your content.
They fell out of favor because many unscrupulous site owners tried to
trick search engines by including popular keywords that were unrelated
to their site’s content. Search engines got wise to this and put more
emphasis on a site’s body content and far less on meta keywords.

The name="author" metadata is similar in that a search engine spider or
other user agent may choose to use it.

m Use the following meta element to tell a search engine to neither
index the page content nor follow any of the links on it. You may also
specify noindex or nofollow individually.

<meta name="robots" content="noindex, nofollow" />

60 Part 2: HTML Elements and Guidance

Microsoft introduced the X-UA-Compatible header in IE8 to allow you
to dictate the IE version your page should render as. For example, this

tells it to behave like IE7’s standards mode:

<meta http-equiv="X-UA-Compatible" content="IE=7" />

Of course, it’s best to make your page work in the latest version of IE instead of
forcing it to behave like IE7, but there may be times when this meta element is
necessary. Learn more about the modes at http://www.htmlfiver.com/extras/
meta/.

Attributes in Detail

content: This is the “value” in the name-value pair of a meta element.

http-equiv: Also called a pragma directive, this behaves like an HTTP
header sent by the server. Along with the name attribute, http-equiv is
one of the “names” in the name-value pair of a meta element. It must
be paired with content. See Example 1.

name: As you would expect, this represents a “name” in the name-value
pair of a meta element. It must be paired with content.

scheme: *Obsolete in HTMLs. You may populate scheme with text of
your choosing that clarifies a meta’s content. For instance, <meta
name="date" content="11-05-2010" scheme="DD-MM-YYYY" />
explains the date refers to May 11, not November 5.

Chapter 3: Document Head 61

HTMLs and the meta Element

Each meta element must include the charset, http-equiv, itemprop,
or name attribute, but not more than one, and the content attribute is
required in tandem with all but charset.

ATTRIBUTES IN DETAIL

= charset: Exclusive to HTML5 on meta, charset specifies the docu-
ment’s character encoding. You may define it only once in a page.
The Content-Type meta syntax in Example 1 technically is still
allowed in HTMLs, but the preferred format is highlighted next,
which I recommend you use. Furthermore, HTMLS requires it to
appear within the first 512 bytes (that is, characters) of your code.
You'll always be safe if you put it before the title.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/> <!-- use instead of Example
1 format -->
<title>. . .</title>
. [other meta elements] .

</head>

= name: HTMLs5 defines a set of four metadata names, though
you still may use others. The http://wiki.whatwg.org/wiki/
MetaExtensions page documents extensions to this predefined set,
and you can register your own by adding them to the wiki.

Two of the predefined names are author and description, which

you use just as I showed in Example 2. The other two are as follows:

— application-name: Defines a short Web application name, but
use it only if your page represents a Web application; here’s an

(continues on next page)

62 Part 2: HTML Elements and Guidance

HTML5 and the meta Element (continued)

example: <meta name="application-name" content="Inventory
Manager">. This attribute may appear only once in a page.

- generator: Specifies the name of the tool, if any, used to gener-
ate the document; here’s an example: <meta name="generator"
content="Dreamweaver">. Do not include it if you hand-code
a page.

= http-equiv: HTMLs5 formally defines four standard values:

content-language: HTMLg discourages you from using this and
recommends the lang attribute on the html element instead.

content-type: This defines the document’s content type, as
shown in Example 1, but use the charset attribute instead
for HTMLs.

default-style: This sets the name of the default alternate style
sheet.

- refresh: This instructs a page to refresh after a specified period
of time. Your page may include only one instance. A meta
refresh takes one of two forms: a number of seconds or a num-
ber of seconds and a URL.

For example, if your page were a sports scoreboard, you would
direct it to refresh every 9o seconds with <meta http-equiv=
"refresh" content="90">.

Include a URL if you want to refresh to a different page after the
specified number of seconds. A use case for this is a photo gallery
that autocycles every 10 seconds: <meta http-equiv="refresh"
content="10; url=photo-06.html">. However, avoid using

this if you've moved content from one location to another and
want to redirect users coming into the old location via a search
engine or bookmark. Use a 301 Redirect instead (please search
online for more information.)

Chapter 3: Document Head 63

style

An embedded style sheet

Syntax <head>
<style type="text/css">

</style>
</head>

Attributes 118n,media, title, type, HTML5 Only: Global, scoped

Description

In most cases, it’s best to put your CSS in an external style sheet and

link to it, because it’s easier to manage and takes advantage of caching
to speed up your pages. The style element is for those occasions when
you want to embed CSS in your page. Your page may include multiple
style elements, but they may appear only in the head element, except in
HTMLs (see the “HTMLs and the style Element” box).

If you were to define the same CSS selector in each of the three style
sheets in the example that follows, the order in which they appear deter-
mines which definition is applied to the page. For instance, if the linked
base.css in the example specifies p { font-size: lem; color: #333;

}, then the rule in the style block overwrites the font-size value. In
turn, subpage . css overwrites any conflictingp { . . . } property values
in both base. css and the style block because it’s last. The exception

is if the media attribute differs on any of the three. If the style block

had media="print" instead, its rules would not impact base. css, and
subpage. css would only impact base. css.

64 Part 2: HTML Elements and Guidance

Example:

<head>

<link rel="stylesheet" href="base.css" type="text/css"
media="screen" />

<!-- overwrites conflicting rules in base.css -->
<style type="text/css" media="screen">

p{

font-size: 1.2em;

}
</style>
<!-- overwrites conflicting rules in base.css and style

element -->
<link rel="stylesheet" href="subpage.css" type="text/css"
media="screen" />

</head>

Attributes in Detail

(Please see the “HTMLs and the style Element” box for more attribute
information.)

media: This optional comma-separated list indicates the media for
which the style sheet applies. If you leave out mediq, the value typically
defaults to all in browsers, even though HTML 4 declares it should

be screen. Please see the 1ink element entry in this chapter for more
details, including an explanation of possible media values.

title="text":The title attribute is supposed to be advisory in this
context, but it does impact behavior in some browsers. Namely, if a

Chapter 3: Document Head 65

titleis specified, some versions of Chrome, Firefox, and Safari treat
the style block like an alternate style sheet and don’t render the styles
unless the user selects the alternate style sheet. Only Firefox makes

it easy to choose it (View > Page Style). See the “HTML5 and the style
Element” box for more. So, use title only if you intend to implement a
JavaScript style switcher (search online for more details).

= type: "Required. " This attribute with a value of text/css must appear

on each style element.

m Please see the 1ink element in this chapter regarding loading an
external style sheet.

HTMLs and the style Element

HTMLs also allows style inside a noscript element in the head as well
as most elements with the scoped attribute in the document’s body.

ATTRIBUTES IN DETAIL

HTMLs has an additional attribute, scoped, and gives title special
meaning on style.

= scoped: Unlike X/HTML, HTML5 allows one or more style elements
in the body element as long as this Boolean attribute is present.
And if it is present, it means the style element applies to its parent
element and the parent’s child nodes only. In the following exam-
Ple, only the second article element and its children receive the
rules defined in the scoped style element. However, mixing CSS
and HTML is not a good practice and presents maintenance head-
aches, so [recommend you use a scoped style element only if you
have a special case that can’t be solved by an external style sheet.

(continues on next page)

66 Part 2: HTML Elements and Guidance

HTMLs and the style Element (continued)

Example:

<body>

<article><!-- this doesn't receive padding -->
<h1>This is not affected</hl>
<p>This is not affected.</p>

</article>

<article><!-- this receives padding -->
<style type="text/css" scoped>
article { padding: 25px; }
hl { color: blue; }
p { color: red; }
</style>

<h1>This is blue.</hl>
<p>This is red.</p>
</article>

</body>
= title:If a titleis present, it defines the style element as an
alternate style sheet.

Chapter 3: Document Head (Y

title

The document’s title

Syntax <head>
<title></title>
</head>

Attributes 118n, HTML5 Only: Global

Description

The title element defines a document’s title and may contain both
plain text and character entities but not markup. It is required for each
HTML document (except HTMLs emails) and must be defined within a
document’s head element, and only once. The title value displays at the
top of the browser window rather than in the Web page.

The title text also serves as the bookmark title when you bookmark a
page, unless you edit it manually. As a best practice, choose title text
that briefly summarizes a document’s content. This benefits both screen
reader users and your search engine rankings (please see the “The title
Element and SEO” box). Secondarily, indicate your site’s name in the title.

| recommend you get your title’s core message into the first 6o characters,
including spaces, because search engines often cut them off in their results
at around that number (as a baseline). Browsers display a varying number
of characters, but more than 60, in the title bar before cutting off the text.

Example:

<head>
<title>Photos of the Kauai Volcano | MyVacationPics.com
= </title>

</head>

68 Part 2: HTML Elements and Guidance

The title element should not be confused with the title attribute
(please see “Attributes” in Chapter1).

The title Element and SEO

Many developers—even well-intentioned, fairly experienced ones—
often give little consideration to the title element. They’ll simply
put the name of their site and then copy it across all HTML pages (or
even worse, leave the title text their code editor inserts by default).
However, if one of your goals is to drive traffic to your site, you'd be
doing yourself and your potential readers a huge disservice by fol-
lowing suit.

Search engines have different algorithms that determine a page’s
rank and how its content is indexed; universally, though, title plays
a key role. First, most search engines look to the title element for
an indication of what a page is about and index a page’s content in
search of related text. An effective title focuses on a handful of key-
words that are central to a page’s content.

Second, search engines use the title element as the linked title that
appears in their search results listings. If you're like me, and I suspect
the majority of users, you scan the titles in the list of search results
first when you're trying to determine which page seems to match
what you're seeking. The more targeted your title text, the more
likely it is to show up in the results and be chosen by a user.

SEO is a deep topic, and I highly encourage you to do more research
on your own. But, I hope this gives you both a glimpse into one of
SEO’s key components and the incentive to craft strategic title ele-
ments, if you aren’t doing so already.

Lists

HTML affords you three list types: definition list (d1), ordered list (o1),
and unordered list (ul). | explain each in depth in their respective entries
in this chapter.

Lists are one of the most commonly used semantic elements across the
Web. This is particularly true of unordered lists, which are ubiquitous as
the choice for marking up navigation and many other groups of links.

Before | explain each list-related element, I'll discuss a capability that is
common to all lists: nesting.

70 Part 2: HTML Elements and Guidance

Nested Lists

Lists can be nested within other lists, as shown in the following example
that details a sequenced plan to relocate. In this case, it’s an ordered list
inside another one, though you can nest any type of list within any other
type (see the d1 entry in this chapter for a related note).

Take an Italian Berlitz course.</1i>
Move to Italy.
<!-- Start nested list -->

Have a yard sale.</1li>
Pack what's left.</1i>
<1i>Ship boxes.</1li>
Jump on plane.</1i>

<!-- end nested list -->
<!-- close list item containing nested list -->

Say “Ciao!” upon landing.</1i>

This displays by default in most user agents as shown here:

1. Take an ltalian Berlitz course.
2. Move to ltaly.

1. Have a yard sale.

2. Pack what'’s left.

3. Ship boxes.

4. Jump on plane.
3. Say “Ciao!” upon landing.

Chapter 4: Lists 71

There’s one simple but important rule to follow when nesting lists:
You must insert the nested list inside an 11 element (or dd element in
the case of a definition list) of the parent list. That is, putting the list
alongside a parent 11i or dd is invalid.

Also, although this example shows only one level of nesting, you can
also nest a list inside a nested list (and another inside that one, ad
infinitum). For example, | could nest an unordered list (a ul, as you'll
recall) in the “Pack what’s left” 11 to list all items to pack, irrespective of
packing order.

dd

A definition description
Syntax <dd></dd>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the dd element to describe a corresponding term (dt) in a definition
list (d1). The dd follows the dt and may contain block-level content, such
as paragraphs (p), ordered lists (o1), unordered lists (ul), another defini-
tion list,and more.

If your dd content is longer than one paragraph, nest ps in the dd
rather than splitting the text among multiple dds without ps.

72 Part 2: HTML Elements and Guidance

Example:

<h2>1936 Summer Olympics 10@m Men's Results</h2>
<dl>

<dt>Gold medal winner</dt>

<dd>Jesse Owens (USA)</dd>

<dt>Silver medal winner</dt>
<dd>Ralph Metcalfe (USA)</dd>

<dt>Bronze medal winner</dt>
<dd>Tinus Osendarp (NED)</dd>
</dl>

The simplest arrangement within a d1 is one dt grouped with one dd,

as shown in the previous example. (I've separated each group with a
blank line for clarity; it doesn’t impact the rendering.) The d1 entry in this
chapter elaborates on these and other configurations, definition lists in
general, and the role of dd.

User agents typically render a definition list by default like so (although
you can change it with CSS):

Gold medal winner

Jesse Owens (USA)
Silver medal winner

Ralph Metcalfe (USA)
Bronze medal winner

Tinus Osendarp (NED)

Chapter 4: Lists 73

di

A definition list

Syntax <d1-
<dt></dt>
<dd></dd>

</dl>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the definition list (d1) to define a term (represented by one or

more dt elements) and its description (represented by one or more dd
elements). The dt may contain inline content only, while a dd may contain
block-level content.

Though it’s a natural fit for defining words like in a dictionary, the d1
is not constrained to such narrow usage. As you will see, there is some
levity concerning what constitutes a term and a description, as well as
differing opinions about what is “legal.”

Avoid using a d1 to mark up dialogue (see the “When Can You Use a
Definition List? HTML 4 Murkiness and HTMLs Clarification” box for

more information).

The following are several examples of how to use a definition list.

74 Part 2: HTML Elements and Guidance

Example 1:

<dl>
<dt>Boris Karloff</dt>
<dd>Best known for his role in <cite>Frankenstein</cite>
and related horror films, this scaremaster's real name
was William Henry Pratt.</dd>

</dl>

A definition list need not have more than one dt and dd group to
constitute a list.

Example 1is a basic d1. All of the following arrangements are valid for a
group of dt and dd elements within a d1:

= Asingle dt grouped with a single dd, as in the previous Example 1
and as Director in the following Example 2. This is the most common
occurrence.

= Asingle dt grouped with multiple dds. See Writers in Example 2.
= Multiple dts grouped with a single dd. See Example 3.

= Multiple dts grouped with multiple dds. See the note that follows
Example 3.

Example 2 shows the first two of these by way of a list of credits for the
movie Amélie (for all you French movie fanatics). It also demonstrates
how to use a nested definition list.

Chapter 4: Lists 75

Example 2:

<h3>Credits for <cite>Amélie</cite></h3>

<dl>
<dt>Director</dt> <!-- Single dt with single dd -->
<dd>Jean-Pierre Jeunet</dd>

<dt>Writers</dt> <!-- Single dt with multiple dds -->
<dd>Guillaume Laurant (story, screenplay)</dd>
<dd>Jean-Pierre Jeunet (story)</dd>

<dt>Cast</dt>
<dd>
<!-- Start nested list -->
<dl>
<dt>Audrey Tautou</dt> <!-- Actor/Actress -->
<dd>Amélie Poulain</dd> <!-- Character -->

<dt>Mathieu Kassovitz</dt>
<dd>Nino Quincampoix</dd>

</d1>
<!-- end nested list -->
</dd>

</dl>

lincluded the blank line between each group of dt and dd elements so

you could see the groupings more explicitly. It’s not required in a defi-
nition list and doesn’t impact its rendering in a user agent, so it’s entirely up to
you as an HTML author whether to include it.

76 Part 2: HTML Elements and Guidance

User agents typically render a definition list by default as shown next
(but you can alter it with CSS). Note how the dd text in the nested list is
indented another step.

Director
Jean-Pierre Jeunet
Writers
Guillaume Laurant (story, screenplay)
Jean-Pierre Jeunet (story)
Cast
Audrey Tautou
Amélie Poulain
Mathieu Kassovitz
Nino Quincampoix

Now let’s look at another example. Although you shouldn’t repeat the
same dt value in a d1 (for example, Writers appears only once in the
previous example), you may have multiple dts grouped with a single dd,
as | mentioned earlier.

Example 3:

<h2>Defining words with multiple spellings</h2>

<dl>
<dt><dfn>bogeyman</dfn>, n.</dt> <!-- Multiple dts with
single dd -->
<dt><dfn>boogeyman</dfn>, n.</dt>
<dd>A mythical creature that lurks under the beds of small
children.</dd>

Chapter 4: Lists 77

<dt><dfn lang="en-gb">aluminium</dfn>, n.</dt>
<dt><dfn>aluminum</dfn>, n.</dt>

</dl>

m Notice that | used the 1ang attribute here to denote that aluminium is
in the British version of English.

This example uses a definition list to define terms like in a dictionary (the
most traditional use for a d1). You'll notice | wrapped the terms in a dfn
element. You might think this is redundant, but it can be appropriate if
it’s consistent with the proper usage of dfn. (Please see the dfn entry in
Chapter 5 for more details.) This approach is encouraged by HTML5 as

a way to distinguish a d1 used to define words in dictionary or glossary
format from a d1 used for other appropriate means like our movie credits.
Although you're unlikely to find references to this approach elsewhere
for HTML 4, too, | think it’s appropriate.

An example of multiple dts grouped with multiple dds would be if in
Example 3 bogeyman/boogeyman had a second definition. See the dt
entry in this chapter for a related example.

Deprecated Attributes

= compact: Obsolete in HTMLs. This attribute is presentational in nature
so was deprecated in favor of using CSS. Please see the ol entry in this
chapter for more information.

78 Part 2: HTML Elements and Guidance

When Can You Use a Definition List? HTML 4
Murkiness and HTMLs Clarification

HTML 4 has been criticized, and rightfully so, for being a little
unclear in its definition of the definition list. Ironic, yes. As a result,
the d1’s use has been open to interpretation.

Purists argue that it should be used only for defining terms like in

a dictionary or glossary. However, HTML 4 does not define the dl

so strictly. It opens the door to other uses by referring to the dd as a
“description” rather than a “definition” and by presenting an alterna-
tive usage for marking up dialogue, though most agree that applica-
tion is ill-advised. (I don’t recommend it, and HTMLg doesn’t allow it;
please also see the “HTMLs, the d1 Element, and Dialogue” box).

Others—what seems like the majority—think the concept of the
term—description relationship is not intended to be quite so rigid and
is an appropriate semantic choice for marking up other content if in
context, such as the earlier movie credits example.

No HTML specification will be able to account for every use case for
structuring content, at least not to everyone’s satisfaction. For the
most part, the ways in which developers have used the definition list
beyond dictionary-like definitions arose from a desire to use seman-
tic markup in cases where a better alternative was lacking. HTMLs
recognizes this as well, providing a handful of example usages that
range from glossary definitions to author-editor listings to meta
information and more.

So, how far do you go with a definition list? My advice is to always
consider the intent of a dl—defining content that has a term-
description relationship. Use your best judgment to determine
whether your content fits this model.

Chapter 4: Lists 79

Unlike the other list types, the 11 element may not be part of a defini-
tion list unless it is part of an ordered or unordered list nested in a dd.

HTMLs, the d1 Element, and Dialogue

As noted in the previous box, HTML 4 declares that a d1 may also

be used to mark up dialogue, such as from a play. Despite the W3C's
endorsement, this usage has not gained widespread approval from
the development community, because many think it deviates too
far from the intent of a definition list. Indeed, HTML5 acknowledges
this by explicitly declaring that “The d1 element is inappropriate for
marking up dialogue.”

Still, there isn’t a perfect solution for dialogue in either HTML 4

or HTMLs. The recommendation in HTMLg involving b and span is
questionable and has already received pushback from some in the
community. Those concerns and a proposed alternative (with its own
issues) are discussed at http://24ways.org/2009/incite-a-riot.

dt

A definition list term
Syntax <dt></dt>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the dt element to denote a term in a definition list (d1). The term is
described by at least one corresponding dd element that follows the dt.
Please note that a dt may contain inline content only.

t:0) Part 2: HTML Elements and Guidance

The simplest arrangement within a d1 is one dt (term) grouped with one
dd (description). Another possibility is shown in the following example,
with one dt associated with multiple dds since director can be defined in
many ways. The d1 entry in this chapter elaborates on these and other
configurations, definition lists in general, and the role of dt.

Example:

<dl>
<dt><dfn>director</dfn></dt>
<dd>0One who directs</dd>
<dd>0ne who oversees a group or an organization</dd>
<dd>0ne who leads all aspects of the creation of a film</
= dd>

</d1l>
Most user agents typically render a definition list by default as shown

here, except for the italics on director, which is because of the dfn
element:

director
One who directs
One who oversees a group or an organization
One who leads all aspects of the creation of a film

m You might be wondering why director is wrapped in a dfn element.
Isn’t the dt sufficient to indicate it’s a term? It depends on the context.
Yes, a dt does denote a term, but a dfn has a more specific meaning, and in the
context of a dt, dfn indicates the list is defining terms like a dictionary or glos-
sary does. Please see the d1 entry in this chapter and the dfn entry in Chapter 5
for more information and examples.

Chapter 4: Lists 81

Alist item
Syntax

Attributes Ccore, 118n, Events, HTML5 Only: Global

Description

Use the 11 element to specify each list item in both ordered and unor-
dered lists. It cannot be used on its own or in an element besides an ol
or ul (or menu in HTML5). An 1i may contain both block-level and inline
content, including div, span, a, p, all other list types, and more.

Examples:

<h4>Sequence of Events before Heading out Tonight</h4>

Stretch</1i>

Run five miles</1i>

Shower and dress for dinner

<h4>Items to Buy for First Grade</h4>

Notebooks</11>
Pencils</1i>
Eraser</1i>

Please see the ol and ul entries in this chapter for more information
about 11 for each list type

82 Part 2: HTML Elements and Guidance

Deprecated Attributes
The following attributes are deprecated in X/HTML:

= type: Obsolete in HTMLs. This attribute is presentational in nature so
was deprecated in favor of using CSS. Please see the ol entry in this
chapter for more.

= value: There is no equivalent replacement in X/HTML. Please
see the “HTML5 and the 1i Element” box for more information
regarding HTMLs.

HTMLs and the 1i Element

HTMLs reintroduces the value attribute and includes a new element,
menu, that uses 11.

ATTRIBUTES IN DETAIL

= value="number": The value attribute, which is deprecated in
HTML 4, is a valid attribute in HTMLs as long as the 11 is a child
of an ol. In this context, value specifies the ordinal value of its list
item and adjusts the value of each subsequent item accordingly. Its
value must be a valid integer.

For instance, imagine a list of results in which there is a tie for
third place.

Example:

<h3>Class President Voting Results</h3>

Hannah Carson (64)</1i>
Stefan Rios (51)</1i>
Kyla Wong (47)</1i> (continues on next page)

Chapter 4: Lists 83

HTMLs and the 1i Element (continued)

<li value="3">Delores Cardinal (47)
Michael McMurtry (44)</1i>

This list renders as follows:

1. Hannah Carson (64)
2. Stefan Rios (51)

3. Kyla Wong (47)

3. Delores Cardinal (47)
4. Michael McMurtry (44)

Notice that both the third and fourth items are numbered “3.”
and the fifth item is numbered “4.” The same principle applies if

you define your list markers as non-numeric values with CSS. For
example, with 1ist-style-type: upper-roman; set, our example

would show “iii.” twice, followed by “iv.”
THE MENU ELEMENT

11 is an optional child of the new menu element and is not wrapped
in either an ol or an ul in this context. Please see the menu entry in
Chapter 15 for more information.

84 Part 2: HTML Elements and Guidance

ol

An ordered list

Syntax
</1i>

Attributes Core, 118n, Events, HTML5 Only: Global

Description

Use an ordered list (o1) to define a list of items for which the sequence
is important to the list’s meaning. For example, you might want to list
a ranking of your favorite songs, detail the steps in a recipe, or provide
driving directions from one point to another. Each list item is represented
by a 1i element, which can contain either block-level or inline content.

Example:

<h2>Directions to Birthday Party from Town Hall</h2>

Head north on Hill Street for a quarter mile.
Bear right at the fork onto Elm Street and continue
for a mile.</1i>
Turn left onto Glass Drive; it's the last house on the
left.</1i>

Chapter 4: Lists 85

Typically, most user agents render a number as the default marker
before each list item, like so:

1. Head north on Hill Street for a quarter mile.
2. Bear right at the fork onto EIm Street and continue for a mile.
3. Turn left onto Glass Drive; it’s the last house on the left.

You can control what type of marker appears with the list-style-type
CSS property (don’t use the deprecated HTML type attribute). Options
include letters, Roman numerals, bullets (yes, even on an ordered list,
though it isn’t recommended), images, no marker at all, and more. If
you're curious about the options, the CSS 2.1 Specification details them at
http://www.w3.0rg/TR/CSS21/generate.htmi#lists.

As with definition lists (d1) and unordered lists (ul), you may nest all
types of lists inside an ordered list, and vice versa. Please see the "Nested
Lists” section earlier in this chapter for more information about nesting
and an example using ordered lists.

Most important, remember to use an ol only if it’s appropriate to
describe the semantics of your content, not just because you want
numbers or another sequenced marker before your content (though the
two typically go hand in hand).

m | found this handy tip online. A good way to determine whether an
ordered list or an unordered list is the correct semantic choice is to ask
yourself whether the meaning of your list would change if you shuffled the
items around. If the answer is yes, use an ol. Please see the d1 and ul entries in
this chapter for information about other list types.

86 Part 2: HTML Elements and Guidance

Recommended Uses

Aside from some of the obvious uses I've noted, an ordered list is the
proper choice for marking up both breadcrumb and pagination navigation.

Breadcrumb navigation. Breadcrumb navigation is the series of links
you'll often see above the content on, say, an e-commerce site to indicate
the navigation path to the page you're viewing. A breadcrumb is often
displayed like this example, with the page you’re on displayed but not
linked:

Home > Products > Outdoors > The Garden Weasel

An ordered list makes sense for this because a breadcrumb represents a
distinct sequence of links.

Pagination navigation. Pagination navigation is the horizontal list of
mostly numeric links you're probably used to seeing on e-commerce and
news sites, allowing you to paginate through lists of products or to addi-
tional pages within an article.

m You can turn off the markers in your CSS with this:
ol {
list-style-type: none;

Deprecated Attributes

The following attributes are deprecated in X/HTML. Where applicable,
I've described the method that has replaced the attribute and that repli-
cates its purpose.

= compact: Obsolete in HTMLs. Since this attribute is presentational in
nature (and never gained wide support anyway), use the CSS margin,
padding, and line-height CSS properties instead to adjust the spac-
ing between list items and make the list more compact.

Chapter 4: Lists 87

= start: Please see the “HTMLs5 and the ol Element” box for more
information.

= type: Obsolete in HTMLs. As noted earlier in the chapter, use the CSS
list-style-type property instead of the type attribute to control
each list item’s marker styling. For instance, the following rule dictates
that all ordered lists display an uppercase Roman numeral before each
list item:

ol {
list-style-type: upper-roman;

HTMLs and the ol Element

HTMLs defines two additional attributes for ordered lists: start and
reversed.

ATTRIBUTES IN DETAIL

= start="number": The start attribute, which is deprecated in HTML
4,1s a valid attribute in HTMLs. start specifies that an ordered list
begins at a number (or non-numeric character depending on your
style sheet) other than the default, which is “1.” Its value must be
a valid integer, even if the marker type you've specified in your
CSS is not numeric, like upper-roman, shown earlier. For example,
start="4" would display as “IV.”

Example:

<ol start="5">
Preheat oven to 350 degrees</1li>
Grease pan
Mix ingredients in a large bowl</1i>

(continues on next page)

88 Part 2: HTML Elements and Guidance

HTMLs and the ol Element (continued)

This renders as follows:

5. Preheat oven to 350 degrees
6. Grease pan
7. Mix ingredients in a large bowl

If you had specified your marker as lower-roman, then it would
begin with “v.” instead.

= peversed: HTMLs5 introduces the new reversed Boolean attribute,
which you use to indicate a descending list. (See “Attributes” in
Chapter 1 for more about Boolean attributes.)

Example:

<h2>Countdown of the World's Three Coldest Locations</h2>
<ol reversed="reversed">

0ymyakon, Russia</1li>

Plateau Station, Antarctica</1i>

Vostok, Antarctica</1li>

<p><cite>http://www.aneki.com/coldest.html</cite></p>

This list renders as follows:

3. Oymyakon, Russia
2. Plateau Station, Antarctica
1. Vostok, Antarctica

The XHTMLs syntax is <ol reversed="reversed">. You may use
it in HTML5 documents as well if you prefer it over HTML5’s <ol
reversed> shortened format.

Please also see the 11 entry in this chapter for a discussion of the
related value attribute.

Chapter 4: Lists 89

ul

An unordered list

Syntax

</1i>

Attributes Core, n8n, Events, HTML5 Only: Global

Description

Use an unordered list (ul) to define a generic list for which the sequence
of items is not important. Each list item is represented by a 11 element,
which can contain either block-level or inline content.

The ul is on the short list of the most commonly used elements on the
Web because it is semantically appropriate for a wide variety of content
(see “Recommended Uses”).

Let’s take a look at a simple example in the form of a shopping list.
Example:

A bag of flour</1i>
Carrots</1li>
Fresh fruit

Typically, most user agents render a bullet before each list item by default,
like so:

0] Part 2: HTML Elements and Guidance

* A bag of flour
e Carrots
e Fresh fruit

However, the fact that a list may have bullets isn’t important; it’s
whether your content calls for an unordered list semantically. CSS
provides you full control over the formatting, allowing different types of
bullets, images, no marker at all, and more.

@ You can make sequential numbers appear as list item markers with this:
ul {
list-style: decimal;

3
Use this only if your content is appropriate for an unordered list and not an
ordered list. For example, you might post a list with the heading “Ten Tofu
Dishes | Can’t Live Without (in no particular order),” and you want to show deci-
mals to reinforce that the list does, in fact, include ten items.

m | found this handy tip online. To determine whether an ordered list or

an unordered list is the best semantic choice, ask yourself whether the
meaning of your list would change if you shuffled the items around. If the
answer is no, use a ul; otherwise, use an ol.

Recommended Uses

Here are just a few of the many ways in which unordered lists are utilized:

Navigation. Whether it’s for global navigation, a group of footer links, or
anywhere in between, the ul is the de facto standard for marking up site
navigation. (Please see the ol entry for a couple exceptions.)

Tabs. This form of navigation typically appears across the top of a module.

Product grids and carousels. These are typically displayed horizontally.

Chapter 4: Lists 91

Article headline lists. These often appear on a home page to surface links
to recent articles or on an article subpage as related links. View source on
your favorite news sites, and you're likely to see groups of links to articles
formatted inaul.

Related video lists. These typically have a thumbnail image and a title
and description.

Deprecated Attributes

= compact and type: Obsolete in HTMLs. These attribute are presenta-
tional in nature so were deprecated in favor of using CSS. Please see
the ol entry in this chapter for more information.

Text

On the Web, content is king, and in most cases your content is text.

This chapter focuses on the elements used to mark up your carefully
crafted prose, links, code samples, references, and more in order to enrich
the semantics of your content. That, in turn, pleases both screen readers
and search engines, and it affords you presentational control over your
content via CSS.

As you’ll see, there are a lot of elements covered in this chapter. You'll
likely use only a handful regularly—such as a, p, em, and strong—but |
really encourage you to become familiar with the others. You may find
there are some elements you should have been using all along. cite is
just one example of a hidden gem. And if you’re working on an HTML5
site, be sure to check out this chapter’s companion, Chapter 12, which
focuses on text elements unique to HTMLs.

94 Part 2: HTML Elements and Guidance

d

An anchor

Syntax <a>

Attributes Core, 118n, Events, accesskey, charset*, coords*,
href, hreflang, name*, rel, rev*, shape*, tabindex, target®, type,
HTMLs Only: Global

Description

The a (“anchor”) element is essential to the Web, providing the means to
create a hyperlink to another page or serve as an anchor within a page
to which a hyperlink points. You may wrap an a element around text or
an image but not around a block level element, such as a p or div (this is
allowed in HTMLs, though; see the “HTML5 and the a element” box).

You may link to a variety of resources: another page (.html, .php, and so
on), an anchor within a page, a document such as a PDF, an image, an
e-mail address, and more. The href attribute provides the link path and
takes on many forms.

Example 1 (simple link to another resource):

<!-- link within the same folder -->
<p>Africa has numerous inspiring areas to <a href="parks-and-
= reserves.html">experience animals in the wild.</p>

<!-- link to another site -->

<p>. . . <a href="http://en.wikipedia.org/wiki/Norway"
title="History, geography, culture and more">Norway on
Wikipedia . . .</p>

Chapter 5: Text 95

The optional title attribute typically displays as a tooltip and may be
read by a screen reader. As you no doubt know, browsers underline and
display links in a different color than static text by default, like so:

Africa has numerous inspiring areas to experience animals in the wild.

For simplicity’s sake, I'll show only the a element in most of the remain-
ing examples, but in practice, be sure each one is wrapped in a block-level
element, such as a p.

Drill down from the current page location to a subfolder by including the
proper path. Example 2 drills down to products and then to shoes.

Example 2 (link to subpage):

. basketball
shoes .

Conversely, use . ./ to link to a resource one folder level up from the
current page. If you use . ./. ./, the link points two levels up, and so on.

Example 3 (link up a level or two):

. Pictures of Ozzie .
<!-- Up two levels and down one -->
. <img src="salad.jpg"

width="200" height="200" alt="organic salad" /> .

Each of those examples (except the one linking to Wikipedia) has a rela-
tive path, meaning they are relative to the location of the linking docu-
ment. Although you can link throughout your site with those methods,
an absolute path is often your best choice. It begins with /, which points
to the site’s root, and then you drill down from there. Consequently, it
doesn’t matter where the linking document lives in the directory hierar-
chy, because the link will always work.

96 Part 2: HTML Elements and Guidance

For instance, the page containing the link in Example 4 could be one level
deep or a dozen, but the link would be the same.

Example 4 (link with absolute path):

. basketball
shoes .

Linking to an e-mail address is equally simple. Just prefix the e-mail
address with mailto:.The link will open the user’s e-mail client if he or
she has one installed and populate the To: field with the address.

Example 5 (link to e-mail address):

. contact Sean Lee

- .

If you define an anchor or element with id="cheetahs", you may link
directly to that portion of the page by assigning # plus the id to the href,
as in Example 6. (To link to an anchor on another page, include the file-
name, as in href="big-cats.html#cheetahs".)

Example 6 (link to anchor):

<!-- links from here -->
<p>Visit Africa to experience cheetahs in
the wild.</p>

<!-- to here in the current document (Approach #1) -->

<h2>Experience Cheetahs
= </h2>

Chapter 5: Text 97

This is an alternative approach:

<!-- to here in the current document (Approach #2) -->

<h2 1id="cheetahs">Experience Cheetahs</h2>

Both approaches work across browsers—the page jumps to that point—
but neither is perfect from a usability standpoint. In the second one, if
you navigate with the Tab key in Internet Explorer after navigating to the
h2, it jumps you to the first link on the page rather than the first link after
the h2.

The first approach, although a little cumbersome, ensures Internet
Explorer’s tabbing order continues from the anchor as most users would
expect. But, it adds a link that does nothing. (Note you could also wrap
the link around “Experience Cheetahs.”)

Meanwhile, Chrome’s tabbing misbehaves regardless, depending on your
point of view. It ignores your current position in the page, so pressing Tab
takes you to the first link after the last one you activated, not after the id
anchor to which you’ve jumped.

Attributes in Detail

All flavors of HTML share the following a attributes unless otherwise
noted. (Please see the “HTML5 and the a Element” box for additional
attributes specific to HTMLs.)

= accesskey: Please see “Attributes” in Chapter 1 for details.

= charset: *Obsolete in HTMLs. This specifies the character encoding of
the link destination. Please see “Character Encoding” in Chapter 1 for
more details. This is typically omitted.

98 Part 2: HTML Elements and Guidance

coords and shape: *Obsolete in HTMLs. These two attributes define

a client-side image map that uses the object element. However,
browser support of object client-side image maps is extremely poor
(Firefox and Opera 9.2 and newer only), so use the map element instead
(please see map in Chapter 6).

href="uri":The most powerful attribute on the Web, href defines the
link destination. Please see the previous examples.

hreflang="langcode": This indicates the base language of the href’s
destination, much in the way the lang attribute specifies the language
of other HTML elements. Hence, you may use hreflang only when
href is present.

name="cdata": *Deprecated in XHTML but validates. *Obsolete in HTMLs.
This provides the anchor with a unique name so you can link to it from
another a. It must be unique within a page, and it shares a namespace
with id. The name attribute is a vestige of earlier versions of HTML, and
id has replaced it as the attribute to use (see Example 6).

rel="link-types" and rev="link-types": *rev is obsolete in HTML5. rel
and rev have opposite meanings and are used in conjunction with
href.The rel attribute indicates the relationship from the current
document to the linked resource. rev (“reverse”) indicates the relation-
ship from the linked resource to the current document; historically, it’s
been misunderstood and rarely used, which is why it’s not included in
HTMLs. The following examples illustrate their differences:

<!-- rel specifies that 04-giraffes.html is a chapter of
the book of which the current document is a part -->
<p>Learn that and more in <a href="04-giraffes.html"
rel="chapter">Giraffes.</p>

<!-- rev specifies that the current page is an appendix,
NOT that chapter-14.html is -->

Chapter 5: Text 99

<p>As stated earlier, <a href="chapter-14.html"
rev="appendix">tofu is delicious.</p>

Each rel and rev value must be a space-separated list. For instance,
in the previous example, rel="chapter section" would indicate the
href points to a section within a chapter. Please see “Link Types” in
Chapter 1 for the list of defined values.

You do not have to include rel or rev on each anchor (including one
or both is far less common than not), because if either is undefined,
is left blank, or contains a value the user agent doesn’t recognize, no
relationship is defined. The link still functions, though.

tabindex: Please see “Attributes” in Chapter 1 for details.

target: *Not valid with Strict X/HTML DOCTYPEs. target specifies the
name of the frame or iframe in which the link should open. If the
name doesn’t exist, the link opens in a window. HTML provides four
special target names with specific behavior: _blank (link opens in a
new, unnamed window), _self, _parent, and _top. Please see the
frameset element in Chapter 10 for more details. target is not depre-
cated in HTMLs, but it may not reference a frame element since frames
don't exist in HTMLs.

Beginning authors often wonder how to open a link in a new window
while using a Strict DOCTYPE, since target isn’t allowed. Let me pref-
ace this by saying that it’s best not to open a link in a new window,
because you want to leave that decision up to the user. But for those
times when you must, you can implement it with JavaScript. One
approach uses rel="external" on the a as a hook for the script. You
can find JavaScript for it by searching online. No matter your method,
I recommend you add title="0Opens external site in new window" or
a similar message to each relevant link as a cue to users. Additionally,

100 Part 2: HTML Elements and Guidance

use CSS to place an icon next to each link so users know at a glance
the link behaves differently.

= type="content-type": Tells the user agent the content type of the
content at the link’s destination. It is only advisory.

HTMLs and the a element

HTMLs introduces a few changes to the a element.
a as Placeholder

If a doesn’t have the href attribute, it represents a link placeholder.
For example, you could populate the a dynamically with JavaScript
based on user behavior.

Wrap a Around Nearly Any Element

In a big and extremely useful departure from previous versions of
HTMIL, HTMLs allows wrapping an a around most elements, includ-
ing paragraphs, lists, and more. For example, the following is valid
HTMLs, making both the hl and h2 text an active link:

<hgroup>
<h1>Giraffe Escapes from Zoo</hl>
<h2>Animals worldwide rejoice</h2>
</hgroup>

The only limitation is that a cannot contain elements classified as
interactive content, such as other links, the audio, video, details,
form, iframe elements, and more (they’re mostly common sense). The
validator will tell you when you've gone astray.

(continues on next page)

Chapter 5: Text 101

HTML5 and the a element (continued)
Attributes in Detail
HTMLs includes these additional attributes:

= media: This attribute describes the media for which the href des-
tination resource was designed (just like the media attribute when
using link to load a style sheet). It is only advisory. The value is
“all” if media is omitted; otherwise, it must be a valid media query
list from the Media Queries specification (http://www.w3.org/
TR/2009/CR-css3-mediaqueries-20090915/#syntax). media is
allowed only if href is present.

= ping: ping facilitates tracking user behavior to gather analytics.
It specifies a space-separated list of URLs (one is fine, too) that the
user agent should notify if the user follows a hyperlink. Typically,
this would be a server-side script that logs the user’s action. ping is
allowed only if href is present.

Historically, developers have used other tracking methods, but
they’re typically hidden from the user. User agents supporting
ping allow one to disable it, putting tracking in control of the user
where it belongs (if you're a marketer, you might disagree!). And
ping improves performance by eliminating the additional over-
head of other methods (some require more trips to the server and/
or load extra JavaScript).

102 Part 2: HTML Elements and Guidance

abbr

An abbreviation

Syntax <abbr></abbr>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the abbr element to mark up an abbreviation, such as Jr. for Junior,
UK for United Kingdom, and B.S. for Bachelor of Science. abbr is often
confused with the acronym element, which is also featured in this chap-
ter. Please see http://www.htmlfiver.com/extras/abbr-acronym/ for more
discussion of the difference between the two.

Example 1:

<p>They wake up at 7 <abbr>a.m.</abbr> and go to bed at 9
<abbr>p.m.</abbr> every day.</p>

<p>They listen to games via the online <abbr title="Major
League Baseball">MLB</abbr> Gameday Audio service.</p>

Note the use of the optional title attribute to provide the expansion of
the abbreviation. title improves accessibility, since a user can configure
a screen reader to announce the text, and it also appears as a tooltip
when the mouse pointer is on the abbr.

Alternatively, if you want to make the expansion even more accessible
and explicit, as well as support printing it in all browsers, you can place it
in parentheses instead of in the title, as shown in Example 2.

Example 2:

<p>They listen to games via the online <abbr>MLB</abbr>
(Major League Baseball) Gameday Audio service.</p>

Chapter 5: Text 103

Rendering of abbr and acronym

User agents typically don’t display abbr or acronym text differently than
other text by default, though some such as Firefox and Opera do show
a dotted bottom border (underline) if you define a title.This acts as a
visual cue to sighted users that a tooltip is available. You may replicate
this effect in other modern browsers with this bit of CSS:

/* show underline when a title is provided */

abbr[title], acronym[title] {
border-bottom-style: dotted;
border-bottom-width: 1px;

If you don’t see the dotted bottom border on your abbr or acronym in
Internet Explorer, try adjusting the parent element’s 1ine-height
property in CSS.

Internet Explorer 6 renders abbr text, but it doesn’t recognize abbr as
an element (unless you execute document . createElement('abbr")
first), so you can’t style it with €SS, and the title tooltip won’t display.

HTML5 and the abbr Element

HTMLs eliminates the confusion between abbreviations and acro-
nyms by declaring the acronym element obsolete and advising
authors to use abbr in all instances.

It also specifies that if an abbreviation is in plural form within the
element, the title text, if present, should be plural as well.

104 Part 2: HTML Elements and Guidance

acronym

An acronym

Syntax <acronym></acronym>

Attributes core, 118n, Events, HTML5 Only: Global

Description

The acronym element defines an acronym. It is often confused with the
abbr element, which is for abbreviations. (An acronym is also an abbre-
viation but one that spells a word, such as laser, radar, and scuba.) Please
see http://www.htmlfiver.com/extras/abbr-acronym/ for more discussion
of the difference between the two.

Example:

<p>After the <acronym>radar</acronym> detected movement under
the ship, she threw on her <acronym title="self-contained
underwater breathing apparatus">scuba</acronym> gear to go
check it out.</p>

As shown, the optional title attribute defines the expanded form of the
acronym. Please see the abbr entry for more about the value of title
and an alternative approach, as well as how title impacts acronym
rendering in some browsers.

HTML5 and the acronym Element

HTMLs eliminates the confusion between abbreviations and acro-
nyms by declaring the acronym element obsolete and advising
authors to use abbr in all instances.

Chapter 5: Text 105

b

Bold text

Syntax

Attributes core, 118n, Events, HTML5 Only: Global

Description

In X/HTML, the b element is purely presentational; it renders text as bold
but provides no meaning. You can think of it as a span element that

is bold by default. Because it’s solely presentational, b fell out of favor
several years ago like the i element and is all but deprecated in the

eyes of many. Developers are advised to use the strong element instead
whenever appropriate, since it has semantic value and doesn’t speak to
how the enclosed text should look.

Example:

<!-- Uses strong instead of b -->
<p>That intersection is extremely dangerous

= .</p>

User agents render both strong and b the same way by default (and both
can be altered with CSS):

That intersection is extremely dangerous.

However, don’t use strong for content, such as a heading, just because
you want it to be bold. Instead, use h1-h6, or the appropriate semantic
element and style it accordingly with CSS.

106 Part 2: HTML Elements and Guidance

b vs. strong, HTMLs, and More

HTMLs redefines b so its use is rooted in typographical conventions,
instead of solely making text bold. Please see the i element entry in
this chapter for more background concerning b vs. strong, as well as
b’s role in HTMLs.

bdo

Bidirectional text override

Syntax <bdo dir=""></bdo>

Attributes core (dir is required), HTMLs Only: Global

Description

Use the bdo (“bidirectional override”) element and its required dir attri-
bute to change the directionality of the enclosed text. dir specifies the
desired display direction and takes a value of either 1tr (“left to right”) or
rtl (“right to left”).

Example 1:
<p>This text appears left-to-right by default, while
<bdo dir="rtl">this appears right-to-left</bdo>.</p>

User agents render this as follows:

This text appears left-to-right by default, while tfel-ot-thgir sraeppa
siht.

That’s a crude example just to show the basic concept, but here’s some of
the “why” and “when” of bdo.

Chapter 5: Text 107

Each Unicode character has a directionality associated with it—either
left to right (like Latin characters in most languages) or right to left (like
characters in Arabic or Hebrew). Unicode’s bidirectional (“bidi”) algo-
rithm determines how to display content that includes a mixture of both
left-to-right and right-to-left characters. bdo comes into play when the
algorithm doesn’t display the content as intended and you need to over-
ride it. Please see http://www.htmlfiver.com/extras/bdo/ for more details.
Additionally, the W3C's article “Creating HTML Pages in Arabic, Hebrew
and Other Right-to-left Scripts” (http://www.w3.org/International/
tutorials/bidi-xhtml/) discusses the issues at length.

big

Larger text
Syntax <big-</big>

Attributes Core, 118n, Events, HTML5 Only: Global

Description

Text contained in a big element renders in an indeterminate larger size
(and it may vary in user agents). Like the small element, bigisn’t offi-
cially deprecated in X/HTML, but practically speaking it is, and develop-
ers are advised never to use it. Instead, use CSS to control your font size
in conjunction with a proper semantic element. The em and, especially,
strong elements are ideal substitutes for cases in which you might have
been inclined to use big. (Avoid using span since it has no semantic
meaning and doesn’t enhance accessibility.) Example 1 shows strong in
place of big.

108 Part 2: HTML Elements and Guidance

Example:
<p>This is the sale you CAN'T miss!</p>

The strong text won't be larger than its surrounding text by default, but
you can style it as you please with CSS: larger, a normal weight instead of
the default bold, and so on.

HTMLs and the big element

The big element is obsolete in HTMLs.

blockquote

A long quotation

Syntax <blockquote></blockquote>

Attributes Core, 118n, Events, cite, HTML5 Only: Global

Description

Use the blockquote element to denote a long (block-level) quotation.
It is the counterpart to the q element, which is appropriate for a short
(inline) quotation. The optional cite attribute allows you to specify the
source’s URI.

Example:

<p>In <cite>The Brothers Karamazov</cite>, Dostoevsky wrote:
- </p>

<blockquote cite="http://www.dostoevskybooks.com/the-brothers-
= karamazov/">

Chapter 5: Text 109

<p>The stupider one is, the closer one is to reality. The
stupider one is, the clearer one is. Stupidity is brief
and artless, while intelligence wriggles and hides
itself. Intelligence is a knave, but stupidity is honest
and straightforward.</p>

</blockquote>

Browsers typically indent blockquote content by default (you can change
this with CSS):

In The Brothers Karamazov, Dostoevsky wrote:

The stupider one is, the closer one is to reality. The stupider
one is, the clearer one is. Stupidity is brief and artless, while
intelligence wriggles and hides itself. Intelligence is a knave,
but stupidity is honest and straightforward.

Be sure to use blockquote only if your content is quoted from a
source, not just because you want to indent it. You may indent other
HTML elements by setting the margin-left property in CSS.

Attributes in Detail

= cite: Use this optional attribute to include a URI that points to the
quotation’s source. The previous example refers to Dostoevsky’s book
on a site (fictitious, in this case). Please see the dfn element entry in
this chapter for more details about cite accessibility and presentation
issues. (Note: The cite attribute is different from the cite element,
which is also used in the example and described in full in this chapter.)

For a page with a Strict DOCTYPE, blockquote content must be

marked up with the appropriate elements (like p in the example)
rather than wrapped directly. However, | strongly encourage you to mark it up
even if you're using a Transitional DOCTYPE. It’s better for accessibility and
controlling presentation with CSS, and it’ll make your transition to Strict easier.

110 Part 2: HTML Elements and Guidance

HTML5 and the blockquote Element

HTMLg says the blockquote and cite elements are invalid for repre-
senting a conversation.

br

A line break

Syntax
or

Attributes Core, 118n, Events, HTML5 Only: Global

Description

The br element forces a line break in a run of text, such as in a poem or
street address. As a rule, use br sparingly since it mixes presentation (the
domain of CSS) with your HTML. Do not use it to create a break between
paragraphs; wrap the content in the p element instead, and define the
space between paragraphs with the CSS margin property.

Example:

<p>
125 Center Street

Moose Jaw, Saskatchewan

Canada S6H 3J9

</p>

Deprecated Attributes
= clear: Use the CSS clear property instead to dictate the flow of
content that follows a br.

Chapter 5: Text 111

cite

A reference to a source
Syntax <Ccite></cite>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the cite element for a citation or reference to a source. Examples
include the title of a play, a script, a book, a song, a movie, a photo, a
sculpture, a concert or musical tour, a specification, a newspaper, a legal
paper, a person, and more.

For instances in which you are quoting from the cited source, use g or
blockquote, as appropriate, to mark up the quoted text (please see
their entries in this chapter). To be clear, cite is only for the source, not
what you are quoting from it. cite may also be used without a related
quotation.

Examples:

<p>Two of the books on her summer reading list are <cite>A
Separate Peace</cite> and <cite>The Odyssey</cite>.</p>

<p>Which character in <cite>This is Spinal Tap</cite> said,
<g>It's such a fine line between stupid, and clever</g>?</p>

<p>When he went to The Louvre, he learned that <cite>Mona
Lisa</cite> is also known as <cite>La Gioconda</cite>.</p>

User agents typically italicize cite text by default, like this (you can alter
it with CSS):

112 Part 2: HTML Elements and Guidance

Which character in This Is Spinal Tap said, “It’s such a fine line
between stupid and clever”?

HTML 4, HTMLs, and the cite Element Dustup

HTML 4 is different from HTMLg in that it also allows using cite on
a person’s name, such as when quoting the person. HTML 4 provides
this example (I've changed the element names from uppercase to
lowercase):

As <cite>Harry S. Truman</cite> said,
<q lang="en-us">The buck stops here.</qg>

In addition to instances like that, developers often use cite for the
name of blog and article commenters (the default WordPress theme
does, too).

Amid some disagreement in the development community, HTMLs
explicitly declares that using cite for a person’s name is not appro-
priate. Instead, it defines cite as solely for the “title of a work,” like a
title of a play, a script, and the other ones (except a person) listed in
the previous description. Many developers have made it clear they
intend to continue to use cite on names because HTML5 doesn’t
provide an alternative they deem acceptable (namely, the span and b
elements).

Chapter 5: Text 113

code

A code fragment

Syntax <code></code>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the code element to mark up a fragment of computer code. For
instance, you'll often see code used on Web tutorials. Typically, it’s nested
in p or pre, as appropriate, though other elements may be acceptable, too.

Example:

<p>The <code>showPhoto(id)</code> function displays the
full-size photo of the thumbnail in our <code><

= Ul id="thumbnails"></code> carousel list.</p>

User agents typically render code in a monospace font by default, like so:

The showPhot o(i d) function displays the full-size photo of the
thumbnail in our <ul i d="t hunbnai | s" > carousel list.

If you'd like to render a block of code, wrap it in a pre element to preserve
its formatting. Please see the pre entry in this chapter for an example
and more information.

m Please see the kbd, samp, and var element entries in this chapter for
other computer- and programming-related semantics.

114 Part 2: HTML Elements and Guidance

HTMLs and the code Element

HTMLg says code is also appropriate for a filename. HTML 4 is quite
short on details about code, but in my judgment, this is appropriate
for X/HTML usage, too.

del

Deleted content

Syntax

Attributes core, 118n, Events, cite, datetime, HTML5 Only: Global

Description

The del element indicates content that has been deleted from a previous
version of the document. It’s useful when you'd like to explicitly show
what has changed as a page evolves. Its counterpart is the ins element,
which indicates content that’s been inserted since a previous version. You
are not required to use them in tandem, however.

For both, think of a technical specification or legal document that goes
through multiple iterations before becoming final, a gift registry list that
is updated as items are purchased, or a Web tutorial you update after a
reader provides valuable feedback in the comments section. In each case,
you may want to inform the reader of the content’s evolution with del
and/or ins.

Chapter 5: Text 115

Example 1 (as inline element):

<h3>Tomorrow's Showtimes</h3>

<ins>2 <abbr>p.m.</abbr> (Another show just added!)
= </ins></1i>
<del datetime="2010-03-03T10:16:15-05:00">5 <abbr>p.m.
= </abbr> <ins>SOLD OUT</ins></1i>
<del cite="http://waww.hot-ticket-plays.com/show-
= sells-quickly/" datetime="2010-03-02T710:10:14-05:00">8:30
<abbr>p.m.</abbr> <ins>SOLD OUT</ins></11i>
</0l>

By default, user agents typically render a strikethrough on del content
and underline ins content (you can alter this with CSS). Example 1 would
appear like this:

1. 2 p.m. (Another show just added!)

2. 5p:m: SOLD OUT
3. 8:30p-m- SOLD OUT

As | mentioned, del and ins are often used together but don’t have to be.
For example, | inserted content in the first list item but didn’t delete any.
Conversely, there may be times you document a deletion without insert-
ing a replacement.

Attributes in Detail
These attributes have the same purpose for both del and ins:
= cite="url": Use this optional attribute to include a URI to a source

that explains why the change was made. For instance, in the last 11
in Example 1, cite might point to a story about the show selling out

116 Part 2: HTML Elements and Guidance

in ten minutes. Alternatively, you could provide a brief message in the
title attribute, which displays as a tooltip. (Note: The cite attribute
is different from the cite element, which is also described in this
chapter.)

= datetime: Use this optional attribute to specify the date and
time of the change, as shown in Example 1. The required format is
YYYY-MM-DDThh:mm: ssTZD. Please see http://www.w3.org/TR/htmlq/
types.html#type-datetime for a full explanation.

m cite and datetime are curious in that they add value to your content,

but browsers don't readily expose the information to users. Please see
http://www.htmlfiver.com/extras/del-ins/for further discussion of this accessi-
bility issue and some solutions.

As Inline or Block-Level Element

del and ins are rare in that they can be either inline or block-level
elements. They are inline when surrounding content within a block-level
element, such as a paragraph or the 11 in Example 1. They are block-level
when they contain one or more block-level elements, as in Example 2. An
instance of del or ins cannot be both at the same time, however; you
cannot nest block-level content inside del or ins when either is used inline.

This example shows ins as a block-level element; the approach is the
same for del.

Example 2 (as block-level element):

<ins>
<p>Update: Since initial publication of
this story, we learned that Mr. Johnson's bike ride
across the United States will commence on July 7th.</p>

</ins>

Chapter 5: Text 117

Browsers render content in a block-level del and ins inconsistently by

default. Most display a strikethrough for del and an underline for ins
on all nested content as expected, but at the least, Firefox 3.5 and older do not.
You can rectify this with the following explicit CSS rule (the * means every
element inside del and ins gets the treatment):

del * {
text-decoration: line-through;
}
ins * {
text-decoration: underline;
}

dfn

Defining instance of term
Syntax <dfn></dfn>

Attributes core, 118n, Events, HTML5 Only: Global

Description

The dfn element indicates the defining instance of a term. Wrap dfn only
around the term you’re defining, not the definition itself.

Example 1:

<p>The contestant was asked to spell “pleonasm.”
She asked for the definition and was told that <dfn>pleonasm
= </dfn> means <g>a redundant word or expression</g> (Ref:
<cite><a href="http://dictionary.reference.com/browse/

= pleonasm">dictionary.com</cite>).</p>

User agents typically italicize dfn text by default:

118 Part 2: HTML Elements and Guidance

The contestant was asked to spell “pleonasm.” She asked for the
definition and was told that pleonasm means a redundant word or
expression (Ref: dictionary.com).

Note that although pleonasm appears twice in our example, dfn marks
the second one only, because that’s when | defined the term (that is, it’s
the defining instance). Similarly, if | were to use pleonasm subsequently
in the document, | wouldn’t wrap it in dfn because I've already defined

it. However, | could add an id to the dfn and link to it from other points
in the document or site. Please also note that you don’t need to use the
cite element each time you use dfn, just when you reference a source.

dfn may also enclose another inline element like abbr, when appropriate.
Example 2:

<p>A <dfn><abbr title="Junior">Jr.</abbr></dfn> is a son who
has the same full name as his father.</p>

@ dfnis also appropriate in a definition list. Please see the d1 and dt
elements in Chapter 4 for more details.

HTMLs and the dfn Element

HTMLIs says, “The paragraph, description list group, or section that
is the nearest ancestor of the dfn element must also contain the
definition(s) for the term given by the dfn element.” The previous
paragraph examples reflect this.

HTMLs also stipulates that if you use the optional title attribute, it
should be the same as the dfn term. However, if, as in Example 2, you
nest a single abbr in dfn and the dfn does not have a text node of its
own, the optional title should be on the abbr only.

Chapter 5: Text 119

em

Emphasize text

Syntax

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the em element to convey emphasis. Its counterpart is the strong
element, which conveys greater emphasis. (Please see the “HTMLs5 and
the em Element” box concerning differences in HTMLs.)

Although both em and the i element render text in italics by default,
always use em when emphasizing content since it has semantic mean-
ing and 1 doesn’t in X/HTML. Please see the i entry in this chapter for a
detailed discussion about i vs. em.

Example:

<p>Your Ford Pinto is really cool.</p>
This typically displays by default as follows:

Your Ford Pinto is really cool.

You can change the display with CSS, of course, even making it bold if
you'd like.

m It’s not appropriate to use em simply as a means to italicize text. As

always, choose the proper semantic element for your content and then
style it. For instance, there may be times when the cite element is the right
choice instead of em.

120 Part 2: HTML Elements and Guidance

HTMLs5 and the em Element

In HTML 4, em is for emphasis, and the strong element is for greater
emphasis. HTMLs redefines them a bit, so em accounts for all degrees
of emphasis and strong conveys importance. It’s a subtle shift.

In HTMLs, em represents different levels of emphasis by whether it’s
nested in another em; each nested level is emphasized more than its
parent. Here I've adjusted the previous example to demonstrate:

<p>Your Ford Pinto is really cool.</p>

Now, I'm emphasizing both really and cool, but really is stronger
because it’s contained in the nested em.

HTML5 also reminds us that em changes the meaning of a sentence
by where it appears. For instance, the next example conveys that
“your” Pinto is really cool, while someone else’s isn’t.

<p>Your Ford Pinto is really cool.</p>

As another example, if you were excited beyond belief by the Pinto,
you could convey it by placing the entire sentence in an em and add-
ing an optional exclamation mark to leave no doubt:

<p>Your Ford Pinto is really cool!</p>

Chapter 5: Text 121

Italicized text

Syntax <i></i>

Attributes core, 118n, Events, HTML5 Only: Global

Description

In X/HTML, the 1 element is purely presentational; it renders text in ital-
ics but provides no meaning. You can think of it as a span element that

is italicized by default. Because it’s solely presentational, i fell out of
favor several years ago like the b element. Use the em element instead to
emphasize text, since it has semantic value and doesn’t speak to how the
enclosed text should look.

Example:

<!-- Uses em instead of i -->
<p>He had a great final kick, but just missed
catching the race leader.</p>

User agents render both em and 1 the same way (and both can be altered
with CSS):

He had a great final kick, but just missed catching the race leader.

122 Part 2: HTML Elements and Guidance

b and i vs. strong and em,
a Little Background, and HTMLg

The b and i elements were the subject of much opinionated discus-
sion in the earlier days of HTML5’s evolution. Some called for their
deprecation or removal, while others thought they had to remain.
Though a decision has been made, the sentiments haven’t changed.

You could spend hours reading all angles of the arguments both

for and against b and 1, but they boil down to a couple key posi-
tions: Those against them think it's wrong to use an element strictly
intended for presentation and that conveys no semantic meaning;
those for them think b and 1 are too entrenched in the Web (many
millions of pages use them) and believe em and strong are not appro-
priate semantics for every case.

To the latter, there are established typographic conventions in tradi-
tional publishing that fall between the cracks of the available HTML
semantics. Among them are italicizing certain scientific names (for
example, “The Ulmus americana is the Massachusetts state tree.”),
foreign phrases (for example, “The couple exhibited a joie de vivre
that was infectious.”), and named vehicles (for example, “The Orient
Express began service in 1883.”). These italicized terms aren’t empha-
sized, just stylized per convention. There are fewer cases for bold, but
HTML;s cites keywords in a document abstract and a product name in
areview as examples.

Rather than create several new semantic elements (and further
muddy the waters) to address cases like these, HTMLs takes a practi-
cal stance by trying to make do with what we have: em for all levels

of emphasis, strong for importance, and b and i for the between-the-
cracks cases to “stylistically offset [the text] from the normal prose.”
The notion is that although b and i don’t carry explicit semantic
meaning, the reader will recognize a difference is implied. And you're
still free to change their appearance from bold and italics with CSS.

(continues on next page)

Chapter 5: Text 123

b and i vs. strong and em,
a Little Background, and HTMLS (continued)

Make no mistake, though, HTMLs does emphasize that you use b
and i only as a last resort when another element (such as strong, em,
cite, and others) won't do.

HTML5'’s approach is understandable, all things considered. That
being said, the idea of always using em and strong instead of i and b,
respectively, is so woven into the fabric of standards-focused devel-
opers that the majority are unlikely to deviate. Many of them still
think it is better to add some meaning to an element (such as with
em), even if it isn’t quite on point, than it is to use what they perceive
to be a solely presentational element.

ins

Inserted content
Syntax <ins></ins>

Attributes Core, 118n, Events, cite, datetime, HTML5 Only: Global

Description

Use the ins element to denote content you've added to an HTML docu-
ment since a previous version in cases when tracking the history adds
value. ins is often used in conjunction with the del element, which
denotes deleted content. As such, both elements and their attributes are
described in greater detail in the del entry in this chapter.

124 Part 2: HTML Elements and Guidance

kbd

Text for user to enter

Syntax <kbd></kbd>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the kbd element to mark up text the user should enter. It applies to
both letters typed and keys pressed.

Example:

<p>To log into the demo:</p>

Type <kbd>tryDemo</kbd> in the User Name field</1i>
<kbd>TAB</kbd> to the Password field and type
<kbd>demoPass</kbd></11>
Hit <kbd>RETURN</kbd> or <kbd>ENTER</kbd></1i>

User agents typically display a monospace font for kbd by default. Our
example (sans the paragraph) would render like this:

1. Type t r yDeno in the User Name field
2. TAB to the Password field and type denoPass

3. Hit RETURN or ENTER

m Please see the code, samp, and var elements for other computer- and
programming-related semantics.

Chapter 5: Text 125

p

A paragraph

Syntax <p></p>

Attributes core, 118n, Events, HTML5 Only: Global

Description

The p is one of the most-used elements on the Web, which should come
as no surprise since its purpose is to define a paragraph.

You may use p on its own (see Example 1) or in conjunction with nested
inline elements. For instance, you may see an img element in a paragraph,
along with elements that enrich the semantics of the content, such as
citein Example 2.

Examples:

<p>Centuries-old sisters, Marge and Priscilla, were the
creation of the children's fertile imaginations.</p>

<p><img src="movie_poster.jpg" width="300" height="175"
alt="Monty Python and the Holy Grail poster" /><cite>Monty
Python and the Holy Grail</cite> was released in 1975.</p>

As shown here, browsers render each paragraph on its own line by
default:

Centuries-old sisters, Marge and Priscilla, were the creation of the
children’s fertile imaginations.

. .. next paragraph . . .

126 Part 2: HTML Elements and Guidance

Deprecated Attributes
= align: Use the CSS text-align property with a value of center,
justify, left, or right instead.

m Nesting a block-level element in a paragraph is not allowed.

pre

Preformatted text

Syntax <pre></pre>

Attributes Core, 118n, Events, HTML5 Only: Global

Description

Use the pre element to render preformatted text. The most common use
case is to present a block of code, but you may also use pre for text and
ASCll art.

Example 1 (code):

<pre>
<code>
var band = {
bass: "Geddy",
guitar: "Alex",
drums: "Neil",
showsPlayed: "2112"
3
</code>
</pre>

Chapter 5: Text 127

Browsers typically render this as shown (sans the outline) and in a mono-
space font:

war band = {
hass: "Geddy™,
guitar: "Alex™,

drum=z: "Neil'™,
showsPlayed: "Z112"
}:

As you see, pre preserves the indentation, so the code block displays in
from the left edge. Without pre, the code displays like a sentence, making
it harder to read even for our simple example:

var band = { bass: "Geddy", guitar: "Al ex"
"Neil", showsPl ayed: "2112" };

, druns:

Here is an example with text.
Example 2 (text):

<pre>
This is flush left.

This begins fourteen spaces from the left side.

This begins six spaces from the left side and two lines
= down.

</pre>

As expected, it displays just as it appears in the code (and as the content
describes).

You'll notice that the paragraphs aren’t wrapped in p elements. This is
deliberate, because it’s invalid to nest many HTML elements inside pre,

128 Part 2: HTML Elements and Guidance

including p, sub, sup, and more. Be sure to validate your pages to check
whether you've accidentally included an invalid element in a pre.

Presentation Considerations with pre

Be aware that user agents typically disable automatic word wrapping of
content inside a pre, so if it’s too wide, it might affect your layout or force
a horizontal scrollbar. The following CSS rule enables wrapping within
pre in many browsers, but not Internet Explorer except version 8 when in
IE8 mode.

pre {
white-space: pre-wrap;

}

On a related note, in most cases | don’t recommend you use
white-space: pre; on an element such as div as a substitute for pre,
because if the user agent doesn’t support CSS, the formatting will be
lost. Furthermore, the whitespace can be crucial to the semantics of the
enclosed content, especially code, and only pre always preserves it.

Deprecated Attributes
= width: Use the CSS width property instead.

pre isn’t a shortcut for avoiding marking up your content with proper

semantics and styling its presentation with CSS. For instance, if you
want to post a news article you wrote in a word processor, don’t simply copy
and paste it into a pre if you like the spacing. Instead, wrap your content in p
elements and write CSS as desired.

@ Please see the code, kbd, samp, and var elements in his chapter for
other computer- and programming-related semantics.

Chapter 5: Text 129

q

A short quotation
Syntax <g></q>

Attributes Core, 118n, Events, cite, HTML5 Only: Global

Use the q element to enclose a short (inline) quotation that doesn’t
require a paragraph break. The quotation may be a phrase someone said
or a reference from a document, movie, song, and so on. g is the counter-
part to the blockquote element, which is for long (block-level) quotations.

Example 1:

<p>Kathy is fond of quoting her favorite movie,
<cite>Phantasm</cite>, by exclaiming, <q cite="http://

= www.phantasmscreenplay.com">You play a good game, boy, but
the game is finished!</qg> every chance she gets.</p>

g can stand on its own or be paired with the cite element (in other
words, <cite>Phantasm</cite>), as in Example 1.

Authors should not include quotation marks when they use g. Most user
agents automatically render them as required by HTML 4 and HTMLs.
However, Internet Explorer 7 and older fail to do so. Here is the correct
rendering:

Kathy is fond of quoting her favorite movie, Phantasm, by exclaiming,
“You play a good game, boy, but the game is finished!” every chance
she gets.

Be sure you don’t use q simply because you want quotation marks
around a word or phrase, though. For instance, <p>He 1ikes the word
<g>morsel.</q></p>,is improper because morsel isn’t a quotation from

130 Part 2: HTML Elements and Guidance

a source. In that case, use character entities, such as <p>He 1ikes the
word “morsel.”</p> (or " on each side for straight
quotation marks).

Attributes in Detail

= cite: Use this optional attribute to include a URI to the source you are
quoting. For instance, Example 1 points to the Phantasm screenplay
on a site (fictitious, in this case). Please see the del element entry in
this chapter for more details about cite accessibility and presenta-
tion issues. (Note that the cite attribute is different from the cite
element, which is also used in Example 1 and described in full else-
where in this chapter.)

Nested Quotations

You may also nest a g inside another one.
Example 2:

<p>The short story began, <g>When she was a child, she would
say, <g>Hello!</g> to everyone she passed.</g></p>

Since outer and inner quotations are treated differently in languages, add
the lang attribute to q as needed. User agents are supposed to render
Example 2 with single quotations around the nested portion, like this:

The short story began, "When she was a child, she would say, ‘Hello!’
to everyone she passed."

However, support is inconsistent (even with 1ang explicitly declared),
including among modern browsers, surprisingly. Firefox handles it
correctly, while the likes of Chrome and Safari render double quotations
in all cases.

Chapter 5: Text 131

@ A handful of online tutorials discuss solutions for showing quotation
marks for q across browsers consistently. Two examples are http://
monc.se/kitchen/129/rendering-quotes-with-css and http://juicystudio.com/
article/fixing-ie-quotes.php.

Because of the cross-browser issues, you may surround a quotation with a
character entity such as “ (left quotation) and ” (right quotation)
or " (straight quotation on each side) instead of using q. Similarly, &Lsquo;
and ’ render left and right single quotations, respectively. You do lose
some of the semantics with this approach, though.

samp

Sample output text
Syntax <samp></samp>

Attributes Core, 118n, Events, HTML5 Only: Global

Description
The samp element represents sample output text from a program or script.

Example:

<p>0Once the payment went through, the site returned a message
reading, <samp>Thanks for your order!</samp></p>

User agents typically display samp content in a monospace font by
default, like this:

Once the payment went through, the site returned a message reading,
Thanks for your order!

m Please see the code, kbd, and var elements for other computer- and
programming-related semantics.

132 Part 2: HTML Elements and Guidance

small

Smaller text

Syntax <small></small>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Text contained in a small element renders in an indeterminate smaller
size (and it may vary in user agents). Like the big element, small isn’t
officially deprecated in X/HTML, but practically speaking it is, and devel-
opers are advised never to use it (see the “HTMLs5 and the small Element”
box for an exception). Instead, control your font size with CSS in conjunc-
tion with a proper semantic element. The em element is often a good
substitute, as shown here.

Example:

<p>His handwriting was very, very tiny, so he was
able to fit a term's worth of notes on a single page.</p>

His handwriting was very, very tiny, so he was able to fit a term’s
worth of notes on a single page.

The em text won’t be smaller than its surrounding text by default, but
you can style it with CSS as you please. Use span in cases when em or
another element doesn’t feel appropriate for your content and you just
need a container to facilitate making it smaller with CSS.

Chapter 5: Text 133

HTMLs and the small Element

HTMLs has redefined the small element to put it to use instead of
making it obsolete like the big element.

According to HTML5, use small for side comments such as fine print,
which “typically features disclaimers, caveats, legal restrictions, or
copyrights. Small print is also sometimes used for attribution, or for
satisfying licensing requirements.”

small is intended for brief portions of inline text, not spanning mul-
tiple paragraphs or other elements.

Example:

<p>0rder now and you'll receive free shipping. <small>
(Some restrictions may apply.)</small></p>

small should not be confused with the HTMLs-only aside element,
which may contain large blocks of content (some of which may
include small elements). Please see the aside entry in Chapter 11 for
more details.

Lastly, if you use small with em and strong, it doesn’t diminish the
weight of the meaning of those elements.

134 Part 2: HTML Elements and Guidance

strong

Stronger text emphasis

Syntax

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the strong element to convey stronger emphasis than its counter-
part, the em element. (Note: The meaning has changed in HTMLs. Please
see the “HTMLs5 and the strong Element” box.)

Although both strong and the b element render in bold by default,
always use strong instead when conveying stronger emphasis since b is
purely presentational and has no semantic meaning in X/HTML. Please
see the i element entry in this chapter for a detailed discussion about b
and i vs. strong and emin HTMLs.

Examples:

<p>They've been married for 44 years!</p>
<p>Warning: Pan will be hot.</p>

strong typically renders by default like this:

They’ve been married for 44 years!

You can change it with CSS, of course, even making it italicized if you'd like.

It’s not appropriate to use strong simply as a means to bold text. As

always, choose the proper semantics for your content and then style it.
For instance, if you’re tempted to use strong to create a heading, use the appro-
priate heading level (h1-h6) instead.

Chapter 5: Text 135

HTML5 and the strong Element

In X/HTML, em is for emphasis, and the strong element is for greater
emphasis. HTMLs redefines them a bit, so em accounts for all degrees
of emphasis and strong conveys importance. It’s a subtle shift. The
first example shown earlier (that is <p>They've beenmarried . . .</p>)
would use em in HTMLs instead of strong.

Additionally, in HTMLg, strong indicates a greater level of impor-
tance each time it’s nested in another strong. Let’s suppose we wrap
the entire second example in strong:

<p>Warning: Pan will be hot.
= </p>

The inner strong, in other words, Warning:, con-
veys greater importance than the parent strong.

sub

A subscript
Syntax

Attributes Core, 118n, Events, HTML5 Only: Global

Description

Use the sub element to mark up content suitable for subscript notation
(in other words, not just because you want content to appear below the
line of text).

Example:

<p>The chemist asked for a glass of H₂0.</p>

136 Part 2: HTML Elements and Guidance

As you would expect, user agents render sub text below other text on the
same line by default, like so:

The chemist asked for a glass of H,0O.

Line Spacing, sub and sup

If you have a paragraph that has more than one line and contains
one or more sub or sup elements, the spacing between the lines

may vary, depending on the browser and your page’s font and
line-height settings. You can solve this with CSS. Solutions are avail-
able online if you search for line spacing with sup and sub. However,
do not heed any advice suggesting you use an element other than
sub or sup to circumvent this layout issue.

sup

A superscript

Syntax

Attributes core, 118n, Events, HTML5 Only: Global

Description

Use the sup element to mark up content suitable for superscript notation
(in other words, not just because you want content to appear above the
line of text).

Example:

<p>The mathematician wrote 4³ for his age.</p>

Chapter 5: Text 137

As you would expect, user agents render sup text above other text on the
same line by default, like so:

The mathematician wrote 42 for his age.

m Please see the “Line Spacing, sub and sup” box in this chapter.

tt

Teletype or monospace text

Syntax <tt></tt>

Attributes Core, 118n, Events, HTML5 Only: Global

Description

The tt element is purely presentational; it typically renders in the user
agent’s monospace font by default but conveys no meaning. tt isn’t offi-
cially deprecated, but practically speaking it is, and you should not use it.

Instead, use the element that most accurately describes the meaning

of the content, and then style it with CSS as desired. The code, kbd, and
samp elements (all described elsewhere in this chapter) are good seman-
tic candidates for most instances where you might have been tempted
to use tt.

HTMLs and the tt Element

The tt element is obsolete in HTMLs.

138 Part 2: HTML Elements and Guidance

var

Avariable

Syntax <var></var>

Attributes core, 118n, Events, HTML5 Only: Global

Description
Use the var element to mark up a variable or computer program
argument.

Examples:

<p>If <var>x</var> is the number of marathons Heather has
run, she has run 419.2 total miles in the races, and each
one is 26.2 miles, what is the value of <var>x</var>?</p>

<p>Einstein is best known for <var>E</vars=<var>m</var>

<var>c</var>².</p>

User agents typically render var in italics in the same font as other text
by default, like so:

If x is the number of marathons Heather has run, she has run 419.2
total miles in the races, and each one is 26.2 miles, what is the value
of x?

Einstein is best known for E=mc2.

var and the code Element

There are varying opinions about whether one should use var to mark
up variables inside the code element. HTML 4 isn’t much help, because

Chapter 5: Text 139

it simply says var “indicates an instance of a variable or program argu-
ment” and provides no examples.

General consensus is it’s primarily intended for instances such as those in
our examples and others representing a placeholder variable. (If you were
marking up a Mad Libs sheet, you would put <var>adjective</vars>,
<var>verb</var>,and so on.) | suggest that if you are marking up code,
var is not required, though may be used if you need to differentiate the
variables from the other code (assuming you aren’t emphasizing a vari-
able, in which case em would be more appropriate).

m See the code, kbd, and samp elements for other computer- and
programming-related semantics.

Embedded Content

Images and Objects

Embedded content is typically some form of media: an image, a movie, a
Flash application, and so on. In each case, it’s an external resource that’s
loaded into your page. This chapter focuses on the elements that facili-
tate that.

If you're working on an HTMLs site, be sure to check out this chapter’s
companion, Chapter 13, which focuses on embedded content elements
unique to HTMLs, including audio, video, canvas, and more.

Looking for the embed element? Please see Chapter 13. Though
in widespread use for years, it wasn’t part of the X/HTML specs.
However, HTML5 makes it official.

142 Part 2: HTML Elements and Guidance

darea

A region within a map

Syntax <map>
<area> or <area />

</map>

Attributes Core, 118n, Events, accesskey, alt, coords, href, nohref*,
shape, target®, onblur, onfocus, HTML5 Only: Global, hreflang, media,
ping, rel, type

Description

The area element defines a region within a client-side image map and
may be used only in conjunction with the map element. Please see the
map entry in this chapter for a full explanation.

Attributes in Detail

Please see the map entry in this chapter for more information about the
alt, href, and shape attributes.

= accesskey: Please see “Attributes” in Chapter 1.

= nohref: *Obsolete in HTML5. When present, this Boolean attribute
specifies that the area doesn’t have a link.

= onblur="script": This event fires when an area loses focus, which is to
say when users tab away from or click outside the defined region. It’s
the opposite of onfocus. As with all JavaScript events, it is best to add
it unobtrusively rather than inline in the area element’s HTML. (Search
online for unobtrusive JavaScript to learn more.)

Chapter 6: Embedded Content (Images and Objects) , 143

= onfocus="script": This event fires when an area gains focus, which is
to say when users tab to the defined region (or as they are pressing
the mouse button on the link in browsers like IE and Opera). It’s the
opposite of onblur. As with all JavaScript events, it is best to add it
unobtrusively rather than inline in the area element’s HTML. (Search
online for unobtrusive JavaScript to learn more.)

= target="frame name": *Not allowed with Strict DOCTYPEs.This defines
the frame or iframe in which to open the href. Please see Chapter 10
for more details. Use it only if href is present.

HTMLs and the area Element

Since the nohref attribute doesn’t exist in HTML5, simply don’t
include href to make an area not linked.

ATTRIBUTES IN DETAIL

Frames don’t exist in HTMLs, so you can use the target attribute
only to point an href to an iframe.

area has these additional attributes in HTML5:

= hreflang="langcode": This indicates the base language of the
href’s destination, much like the way the 1ang attribute specifies
the language of other HTML elements. Hence, you may use
hreflang only when href is present.

= media and ping: Please see the “HTMLs5 and the a element” box in
the a entry of Chapter 5 for more details.

= rel: Please see the a entry of Chapter 5 for more details.

= type="content-type": This tells the user agent the content type of
the content at the link’s destination. It is only advisory.

144 Part 2: HTML Elements and Guidance

img

An embedded image

Syntax or

Attributes Core, 118n, Events, alt, height, ismap, Longdesc*, name*, src,
usemap, width, HTML5 Only: Global

Description

The img element embeds an image in the document. Images are typically
a GIF, JPEG, or PNG.

img use is pretty straightforward. In most cases, you’ll use just the alt,
height, src,and width attributes.

Example:

<p>
<img src="dave_roberts_steal.jpg" width="320" height="240"
alt="Dave Roberts slides in safely to second." />

</p>

Although you can set the width and height to other values, it’s best to
use the image’s intrinsic dimensions. If you make an image larger, it will
appear distorted. If you make it smaller, you’re using more bandwidth
than is necessary to display the desired image size. Instead, cut out a
smaller version of the image, and embed that one in your page.

The alt attribute is critical for accessibility, because it provides a brief
description of the image as alternate text for screen readers. The text
also displays in most browsers if the image fails to load or if images are

Chapter 6: Embedded Content (Images and Objects) 145

nn

turned off. If an image doesn’t warrant alt text, put alt="" (screen read-
ers typically ignore these empty alt values, but without them they’ll

often read aloud the img src value).

Attributes in Detail

= aglt="text":Include an alt attribute for every image to enhance acces-
sibility. Please see the description just before “Attributes in Detail.”

= height="percentage or pixels": This specifies the image’s height, typi-
cally in pixels. The image stretches or shrinks accordingly. When set to
a percentage, it’s relative to its parent container’s height.

= ismap: When present, this Boolean attribute indicates that the image
is part of a server-side image map. This type of image map is rarely
used anymore, but when it is, the img must be in an a element whose
href points to the server-side script. See the map entry in this chapter
for an example of a client-side image map, the preferred approach.

= longdesc="uri": *Obsolete in HTMLs5. This points to a resource (that is,
a text file, HTML page, and so on) with a longer description to supple-
ment (not replace) alt when its brief description isn’t sufficient. When
the img is associated with an image map, describe the image map’s
contents.

= name="cdata": *Deprecated in XHTML. Obsolete in HTMLs. Even though
name isn’t deprecated in HTML 4, always use id instead to identify an
image for the purposes of scripting or styling with CSS.

= src="uri": This specifies the image’s location.

= usemap="#name": This associates the image with a map element. It
must be # followed by the map’s name attribute. Please see the map
entry in this chapter for an example. Note that when the usemap

146 Part 2: HTML Elements and Guidance

attribute is present, the image cannot be contained inside either an a
or a button element.

= width="percentage or pixels": This is the image’s width, typically in
pixels. When set to a percentage, it’s relative to its parent container’s
width.

Deprecated Attributes

Use the CSS properties listed in parentheses instead of these deprecated
attributes: align (float and vertical-align), border (border),

hspace (margin-left and margin-right), and vspace (margin-top and
margin-bottom). All of these attributes are obsolete in HTMLs.

map

Image map container

Syntax <map name="">
<area> or <area />

</map>

Attributes core, 118n, Events, name, HTML5 Only: Global

Description

An image map specifies one or more regions within a single image, typi-
cally for the purposes of linking it to another page or resource. The map
element contains the area elements that define the linked regions.

Consider the following example, which takes a photo of items in a garage
and creates links to individual pages about the washing machine, tire,
and tricycle (what, you don’t blog about your garage?).

Chapter 6: Embedded Content (Images and Objects) 147

Example:

<div><!-- it can be inside other elements, such as a p -->
<img src="things_in_the_garage.jpg" width="400"
height="300" alt="Things in the garage, including a
tire, tricycle and washing machine." usemap="#garage" />
<map name="garage">
<area shape="rect" coords="16,21,132,152"
href="washing-machine.html" alt="Learn about the
washing machine" />
<area shape="circle" coords="194,159,45"
href="tire.html" alt="Learn about the tire" />
<area shape="poly" coords="288,88,381,194,251,195"
href="tricycle.html" alt="Learn about the tricycle" />
</map>
</div>

The img element’s usemap attribute associates the image with the map; it
must be # followed by the map’s name attribute. A map can be associated
with more than one img in a page. (The HTML Validator may incorrectly
tell you name is deprecated for Strict DOCTYPEs.)

Each area element defines a region within the image, and href defines
the region’s link destination URI. There are four shape values from which
to choose: circle, poly, rect, and default. Declare a shape with the
shape attribute, and define its coordinates with coords (they're relative
to the top-left corner of the image).

Here are the rules:

= When shape="circle", the coords attribute takes three numbers: the
x,y coordinates of the circle’s center (for example, 194, 159) and the
circle’s radius (for example, 45).

148 Part 2: HTML Elements and Guidance

= When shape="poly", the coords attribute takes three or more pairs of
x,y coordinates to define a polygon. In the example, the three points
are 288,88 and 381, 194 and 251, 195.

= When shape="rect", coords takes two pairs of numbers to define a
rectangle. The first two represent the x, y coordinates of the top-left
corner (for example, 16, 21), and the second two are the bottom-right
corner (for example, 132, 152).

= When shape="default", it specifies the entire image (coords is not
required).

= When shape isn’t included, the region shape defaults to rect.

The alt attribute on area is much different than it is on an img. It should
read like link text regarding the href destination (see the example), not
describe that region of the image. alt is available to screen reader users
so they’ll know why to follow a link. Internet Explorer displays it as a
tooltip. Use the title attribute to display a tooltip for all browsers, but
always include alt regardless unless you haven’t defined href.

@ In reality, most people use a tool to draw the regions and generate the
map and area code rather than figuring out all the coordinates by
hand. Many HTML editors have such a tool built in, but if yours doesn’t, search
for image map editor online.

Technically, map can be associated with an object or input element,
too, but you'll rarely see this in practice.

Attributes in Detail

= name="text": Defines the name of your image map in order to associ-
ate it with an image via the img element’s usemap attribute. Please see
the example.

Chapter 6: Embedded Content (Images and Objects) |, 149
object

A generic embedded object

Syntax <object></object>

Attributes cCore, 118n, Events, archive*, classid*, codebase*, code-
type*, data, declare®, height, name, standby*, tabindex, type, usemap,
width, HTMLs Only: Global, form

Description

The object element adds an external resource, typically media content
such as Flash applications (games, video, audio, and so on) but also
images, video (QuickTime, and so on), documents (PDF, Word, and so on),
and Java applets (pretty rare nowadays). object’s browser support varies
by the type of content, so be sure to test it accordingly. By far its most
prevalent use is for loading Flash applications.

The object’s inner content is fallback content for search engines and
browsers that don’t support what the object would otherwise load.
Make sure the alternative content reflects the intended content oris a
message informing users how they can access it, such as where to down-
load a plug-in.

Example 1shows an object that loads a SWF, along with its alternative
content. Note: This is merely to demonstrate a simple object. | don’t recom-
mend you use this code to embed Flash because it won’t stream a movie in
IE. You can use SWFObject 2, discussed in a moment, for a better approach.

Example 1:

<object type="application/x-shockwave-flash"
data="how_to_change_tire.swf" width="512" height="384">
(continues on next page)

150 Part 2: HTML Elements and Guidance

<param name="movie" value="how_to_change_tire.swf" /> <!--
= for IE -->
<!-- Alternative content -->
<h2>How to Change a Tire</h2>

Remove spare tire and jack from trunk
. remaining steps .

</object>

You can also nest objects. If the browser can’t handle the first one, it
looks to the second, and so on, down to the alternative content. The bare-
bones structure (in other words, without actually specifying object data
to load) looks like Example 2.

Example 2 (nested objects):

<object><!-- Can I load this? Yes, then load it and stop. -->
<object><!-- No, then try this (and so on for other
objects). -->

<p>Alternative content</p><!-- Show only if no object
loaded -->
</object>
</object>

Probably the most ubiquitous example of nested objects is SWFObject
2,a very popular method for embedding Flash in a valid, cross-browser
manner. Some browsers handle nested objects better than others (please
see http://www.alistapart.com/articles/flashembedcagematch/), so
SWFODbject 2 uses IE’s conditional comments to provide IE with one set
of object code and other browsers with another. Please see “Step 1” at
http://code.google.com/p/swfobject/wiki/documentation for an example.

Chapter 6: Embedded Content (Images and Objects) 151

Object vs. Embed

You might be saying to yourself, “Wait, doesn’t the embed element embed
applications like Flash, too?” Yes, it does, but it has never been an official
part of HTML until HTMLs (see Chapter 13). Although it’s now a few years
old, this article summarizes the two elements nicely (not just in terms of
Flash embedding), describing pros and cons for each: http://www.alist
apart.com/articles/flashembedcagematch/. Ignore its mention of SWFFix
at the end, though; SWFObject 2 has replaced that method.

Attributes in Detail

= archive="URIs list": *Obsolete in HTMLs. This space-separated list of
URIs specifies the location of one or more archives (JAR files, for exam-
ple) to speed up the download of the object’s resources, which may
include those specified by classid and data. Relative URIs are relative
to the codebase attribute if it’s set.

= classid="URI": *Obsolete in HTMLs. This specifies the location of an
object’s implementation. For instance, classid="clsid:D27CDB6E-
AEGD-11cf-96B8-444553540000" tells Internet Explorer to load the
Flash ActiveX control. cLassid’s value may be internal, like the preced-
ing value, or point to a location on the Web.

= codebase: *Obsolete in HTMLs. This sets the base path for resolving
relative URIs in the classid, data, and archive values. It takes prece-
dence over a base attribute in the document head. Omit it to use the
document’s base URI.

= codetype="content-type": *Obsolete in HTMLs. This indicates the
content type of the classid data so the user agent can determine
whether it supports the content before downloading it. It defaults to
the type value if codetype is omitted.

= data="URI": This points to the data (resource) to be embedded in the
object. For example, for a PNG, it could be data="rowboat.png".

152 Part 2: HTML Elements and Guidance

= declare: *Obsolete in HTML5. When included, this Boolean attribute
specifies that the object should not be instantiated when the page
loads but, instead, when another element refers to it. An object with
declare must have an id so it can be referenced, and the object
must appear in the source before any element that refers to it.
One way to instantiate a declared object is with a link, as in <p>Watch the movie.</p>.

= name="cdata": This specifies the object name when it’s submitted in
aform.

= standby="text": *Obsolete in HTMLs. This specifies a message to
display while the object’s implementation and data are loaded.

= tabindex: Please see “Attributes” in Chapter 1.

= type="content-type": This indicates the content type of the data,
helping a user agent determine whether to load it (in other words, if
it’s supported). The HTTP content type returned by the server takes
precedence.

= ysemap: This associates a map element with the object when set to
the map’s name attribute value. Please see the map element in this
chapter for an example of usemap with img; the same principle applies
with object.

= width="percentage or pixels" and height="percentage or pixels":
These specify the object’s dimensions in pixels or as a percentage of
its parent element’s size. Though they’re technically optional, some
browsers require them.

Deprecated Attributes

Use the CSS properties listed in parentheses instead of these deprecated
attributes: align (float and vertical-align), border (border), hspace

Chapter 6: Embedded Content (Images and Objects) 153

(margin-left and margin-right), and vspace (margin-top and margin-
bottom). All of these attributes are obsolete in HTMLS.

HTMLs and the object Element

The archive, classid, code, codebase, codetype, declare, and standby
attributes are all obsolete in HTMLs. For all of these, with the excep-
tion of declare and standby, you can use a param element with a
name equal to the attribute name (that is, <param name="archive"
value="..." />) if you need to pass that data to the embedded
object. Please see param in this chapter for more information.

ATTRIBUTES IN DETAIL
HTMLs requires at least the data or type attribute to be present.

= form="form element ID": When set to a form element’s id, the form
attribute associates the object with that form element.

param

Object resource parameter

Syntax <param name="" value="">

or <param name="" value="" />

Attributes Core, 18n, Events, name, type*, value, valuetype*, HTMLs
Only: Global

Description

The param element passes a parameter name and value to the external
resource loaded by an object element for it to use at runtime. Each

154 Part 2: HTML Elements and Guidance

object may have multiple params. There aren’t a set of param names
defined in the HTML specs; it’s understood that the embedded resource
will know what to do with those passed to it.

object is used to embed Flash more than any type of content. Two
common params to pass a SWF are flashvars and wmode. The first passes
a string of variables (each separated with &) into the movie, and

the second allows you to position HTML on top of a SWF with the CSS
z-index property (it may impact performance, though, so keep an eye
out for that).

Example:

<object . . .>

<param name="flashvars" value="content=info.xml&page=3
/>"
<param name="wmode" value="opaque" />

</object>
Please also see Example 1in the object entry in this chapter.

Attributes in Detail

= name="cdata": The parameter name.

= type="content-type": *Obsolete in HTML5. Specifies the content type of
value’s designated resource when valuetype="ref".

= value="cdata": The parameter value.

= valuetype="datalobject|ref": *Obsolete in HTML5. Specifies the
content type of the value attribute.

Chapter 6: Embedded Content (Images and Objects) 155

— When valuetype="data", which is the default, it indicates that
value’s value is passed as a string.

- You can pass in a resource from another object when
valuetype="object" and value is a hash name of the
other object’s id. Examples are <object id="1d0fObject"
data="wheelbarrow.gif" type="image/gif"></object> and
<param name="1image" valuetype="object" value="#1d0fObject" />
in the second object.

— When valuetype="ref", value must be a URI where runtime values
(such as an image or a sound file) are stored.

Forms drive data gathering and searching, whether it’s for Web applica-
tions, soliciting user-generated content, selling products, or conducting
polls.

This chapter covers the form-related elements common to all flavors of
HTML, plus includes their new attributes in HTMLs, which help make the
Web a richer application medium.

If you're looking for an overview of forms, the form entry provides an
example of a complete form along with its behavior and a description of
its components.

158 Part 2: HTML Elements and Guidance

button

A form button

Syntax <button></button>

Attributes Core, 118n, Events, accesskey, disabled, name, tabindex,
type, value, onblur, onfocus, HTML5 Only: Global, autofocus, form,
formaction, formenctype, formmethod, formnovalidate, formtarget

Description

The button element can be a submit button, a reset button, or a
static button. In this regard, it is the same as the input elements
of type="submit" or type="1image" (both of which submit a form),
type="reset", and type="button" (a static button).

However, button is different in that you may place HTML (text, images,
and most elements) inside it and style it with CSS. (You may style input
buttons, too, but they don’t accept content like button.)

Example:
<button type="submit" name="submitbtn">Finalize
Order</button>

The example shows a submit button and assumes it’s contained in a form
element. Set type="reset" for a reset button (which restores all form
controls to their initial values), and set type="button" for a static one
that requires adding behavior with JavaScript. Display an image button by
using either an img as the content or a CSS background-image technique.

However, button has one main gotcha: unusual Internet Explorer behav-
ior, particularly in IE6. (Yes, although IE6 is old, it remains a requirement
for many if not the majority of sites.)

Chapter 7: Forms 159

IE6 and 7, as well as IE8 in compatibility mode, all don’t submit a button’s
value; they submit its contents—yes, the HTML that is between <button>
and </button> (technically, known as its innerText). This is particularly
off-putting with a form of method="get" because that HTML ends up in
your query string. Note that IE8 in standards mode correctly submits the
button’s value, as do all other common user agents.

IE6 exhibits a larger problem when your form has multiple buttons. It
submits the name of all the buttons, not just the one the user selected,
so you can’t process the form accordingly. For example, did the user
select Update Shopping Cart or Place My Order?

If your form has only one button and you’re using method="post"

(or if the muddied query string doesn’t present problems), you're OK.
Otherwise, your safest bet is using input buttons, not button elements.
input with type="1image" often provides plenty of creative control.

Attributes in Detail
= accesskey and tabindex: Please see the “Attributes” section of
Chapter 1.

= disabled: Please see “Attributes in Detail” for the input element in
this chapter.

= name="cdata": This specifies the button’s name for the purposes of
processing the form. Please see the description for the problem in IE6.

= onblur="script" and onfocus="script": Please see “Attributes in Detail”
for the input element in this chapter.

= type="button|reset|submit": Please see the description for details
of the three types. If type is unspecified, most browsers default to
submit, but IE6 and 7, as well as IE8 in compatibility mode, all default
to button, so they won’t submit the form unless the type="submit".

= value="cdata": This sets the button’s value, which is paired with its name.

160 Part 2: HTML Elements and Guidance

fieldset

A set of related controls

Syntax <fieldset>
<legend></1legend>
. [form controls]
</fieldset>

Attributes core, 118n, Events, HTMLs Only: Global, disabled, form, name

Description

The fieldset element groups together one or more related form
controls. The optional legend element identifies the group, displays
in the page, and is read by screen readers. Please see the example and
discussion in the form element entry in this chapter.

HTMLs and the fieldset Element

The fieldset element supports these additional attributes in HTMLs.
ATTRIBUTES IN DETAIL

= disabled: Please see “Attributes in Detail” for the input element in
this chapter.

= form="form id": Please see the “HTMLg and the input Element”
box in this chapter.

= name="cdata": This specifies the fieldset element’s name.

Chapter 7: Forms 161

form

An interactive form

Syntax <formaction="">
. [your form]
</form>

Attributes Core, 118n, Events, accept*, accept-charset, action,
enctype, method, name, onreset, onsubmit, HTML5 Only: Global,
autocomplete, novalidate, target

Description

Use the form element and its controls to collect data from users. Uses
include enabling registering on a site, submitting shipping and credit
card information, conducting a poll, gathering user comments on a
blog or news site, and so on. (Please note that you may not nest a form
element inside another one.)

A form contains one or more controls (button, input, select,and
textarea) with which the user can engage, as well as other elements
(fieldset, label, and legend) that add semantic and structural meaning.

The upcoming Public Radio Station Listener Survey
code example Eol e

results in this G

form default © Female © Male

rendering: Coutey. [Alghanston ¥

Comments:

[#] Yes, I'm a cusvent subsenber

_ Submit My Informatiun

162 Part 2: HTML Elements and Guidance

Elements look different depending on the browser and platform. You
can dictate the appearance with CSS to varying degrees.

The code that follows contains all but two of the available form child
elements so you can see how they work together (button and optgroup
are the only ones not shown, but they’re described in their respective
entries in this chapter). I've broken the code into two parts to make it
easier to discuss and have highlighted at least one instance of each form-
related element and attribute the example uses.

Example (part 1):

<h1>Public Radio Station Listener Survey</hl>
<form action="process-form.php" method="post">
<div> <!-- text input -->
<label for="fullname">Full Name:</label>
<input type="text" id="fullname" name="fullname"
maxlength="100" />
</div>

<fieldset> <!-- radio buttons -->
<legend>Gender</legend>
<input type="radio" id="female" name="gender"
value="female" /> <label for="female">Female</label>
<input type="radio" id="male" name="gender"
value="male" /> <label for="male">Male</label>
</fieldset>
[code from Example (part 2)] .

l use a div in the example to contain most form elements. Some prefer
to use a fieldset for each or 11is within a list. There are no set rules
about this as long as you don’t use a table.

Chapter 7: Forms 163

This part of the example includes the form, fieldset, legend, label, and
text input type elements and radio button input type elements.

The form element’s start tag begins each form. In the example, the
action="process-form.php" value specifies the server-side location
that is sent the form data for processing once the user submits it via
the Submit My Information button at the end of part 2 of the example.
Please see “Attributes in Detail” concerning method="post".

Each form control has a name attribute, which is paired with its value
attribute. The value is typically dictated by what the user enters or
selects. When a form is submitted, each control name with a value is
passed to the processing script. The name must be unique throughout a
form, with the exception of a related set of radio buttons or check boxes.
For instance, in part 1 of the example, there’s a radio button input each
for female and male, but both have name="gender". Their value attri-
butes are different, though; the form submits the value of “female” if the
user selects that option and “male” for the other.

The label element’s text describes a form field (for example, <label
for="fullname">Full Name:</label>). Each label element is explicitly
associated with a control when its for attribute value is the same as a
control’s id. For instance, in part 1 of example, because the first 1abel has
for="fullname", it’s associated with this control: <input type="text"
id="fullname" name="fullname" maxlength="100" /> (a control’s name
and 1id values are often the same but don’t have to be).

Do not use a specific name (for example, name="email") on one

element and the same id value (for example, id="email") on a differ-
ent element, or you’re bound to run into problems in Internet Explorer if you try
to access the elements with JavaScript.

The fieldset element groups together one or more related form controls.
The optional 1egend element identifies the group and displays in the

164 Part 2: HTML Elements and Guidance

page. For example, a fieldset contains our gender-related radio buttons,
and <legend>Gender</legend> describes the group. legend is crucial for
screen reader users because it provides context to the fieldset’s controls.

That covers the highlights of the first part of our form. Now let’s look at the
second part. Again, I've highlighted portions that I'll discuss after the code.

Example (part 2):

. [code from Example (part 1)]
<div> <!-- select box -->
<label for="country">Country:</label>
<select id="country" name="country">
<option value="AF">Afghanistan</option>
<option value="AL">Albania</option>
[more country options]

</select>
</div>
<div> <!-- textarea -->

<label for="comments">Comments:</label>
<textarea id="comments" name="comments" rows="3"
cols="40"></textarea>

</div>

<div> <!-- checkbox -->
<input type="checkbox" id="subscribed"
name="subscribed" checked="checked" /> <label
for="subscribed">Yes, I'm a current subscriber</label>
</div>

<div> <!-- submit -->
<input type="submit" value="Submit My Information" />
</div>

</form>

Chapter 7: Forms 165

Part 2 of the example includes the select, option, textarea, checkbox
input type, and submit button input type elements.

A select box includes one or more option elements that represent

the choices a user may make. For instance, in the case of <option
value="AF">Afghanistan</option>, Afghanistan appears on-screen. If
the user selects it, the AF value is passed to the server upon submission.

A textarea is different from a text input (see part 1 of the example)
because it can be several lines tall, as defined by the rows attribute and
because you can’t set a maxlength in X/HTML (you can control it with
JavaScript, however). The cols attribute specifies the number of charac-
ters allowed on a line, effectively defining its width. You’ll notice different
rendering sizes across browsers; use the CSS height and width properties
to normalize the dimensions.

Next up is an input with a type of checkbox. You’ll notice the
checked="checked" attribute in part 2 of the example code. This prese-
lects the check box. (Note: checked="checked" is the XHTML syntax;
use simply checked for HTML 4, though either format is acceptable in
HTMLs.)

The example’s <input type="submit" value="Submit My Information" />
code displays a button that reads Submit My Information—or whatever
you specify as the value. Because the input is set to type="submit", the
formis submitted when the user engages the button.

This should give you a sense of how a form works. Please see the other
entries in this chapter for additional details about the form-related
elements and their attributes.

Attributes in Detail
= accept="content-type list": *Obsolete in HTMLs. Please see “Attributes
in Detail” for the input element in this chapter.

166 Part 2: HTML Elements and Guidance

= accept-charset="charset list": This space- and/or comma-delimited
list indicates the character encodings for input data that the server
processing the form accepts. Typically, it’s left out, since the default
value is the reserved string, “UNKNOWN,” which browsers may
interpret as the character encoding (such as utf-8) of the page that
contains the form.

= action="uri": Required in X/HTML.This attribute points to the server
location that will process the form when it is submitted (please see
the example). If omitted, the form will submit to the current page.

= enctype="content-type": When method="post", this attribute
can be used to specify the encoding of the form data sent
to the server. Typically, it’s left out (the default value is
application/x-www-form-urlencoded); however, you should include
it as enctype="multipart/form-data" if your form includes an input
with type="file".The third possible value is text/plain (data is
largely unencoded when submitted), but it is used rarely.

= method="get|post| plus delete|put for HTML5": The method="post"
declaration means that upon submission, the form values are sent to
the server without being exposed to the user. It is the more secure
method. Generally speaking, it’s the method of choice whenever you
want to post information to the server to save, update, or remove data
in a database. An example is a shipping address and credit card infor-
mation form on an e-commerce site.

When method="get", the values are appended to the action

value’s URI followed by a question mark. Generally speaking, use
method="get" whenever you want to get information from the server
after the form is submitted. An example is a search form that returns
results. If action="search-results.php" and the search input text
field has a name="searchphrase" attribute, then the tail end of the

Chapter 7: Forms 167

URI would be search-results.php?searchphrase=Kermit+and+Yoda after
searching for Kermit and Yoda.

HTMLs includes two more method values, delete and put, which map
to the HTTP DELETE and HTTP PUT methods, respectively.

name="cdata": This attribute was included for backward compatibility

with much older user agents, but you should use id instead to apply a
unique identifier (for example, <formid="signup" . . .>) for styling or
scripting purposes.

onreset="script": This event fires when the user activates an input
button with type="reset". Attach this event unobtrusively instead of
as an attribute in the HTML.

onsubmit="script": This event fires when the form is submitted, allow-
ing you to execute JavaScript, such as a function that submits the form
via Ajax instead of a page refresh in cases where scripting is enabled.

Attach this event unobtrusively instead of as an attribute in the HTML.

HTML5 and the form Element
The form element has three additional attributes in HTMLs.
ATTRIBUTES IN DETAIL

= agutocomplete: Please see the “HTML5 and the input Element” box
in this chapter.

= novalidate: When present, this Boolean attribute indicates that
the form’s data should not be validated when it’s submitted.

= target="name": This sets the target of the form submission and
can have a value of _blank, _parent, _self, or _top, or a value you
specify that could match the name of an iframe.

168 Part 2: HTML Elements and Guidance

input

An input control

Syntax <input type="" /> or <input type="" />

Attributes Core, 118n, Events, accept, accesskey, alt, checked,
disabled, ismap, maxlength, name, onblur, onchange, onfocus, onselect,
readonly, size, src, tabindex, type, usemap, value, HTML5 Only: Global,
autocomplete, autofocus, disabled, form, formaction, formenctype,
formmethod, formnovalidate, formtarget, height, list, max, min,
multiple, pattern, placeholder, required, step, width

Description

The input element is the most diverse of the form controls, since it can be
a check box, a radio button, a single-line text entry field, hidden from the
user,a means to upload a file, an image button for submitting a form, and
more. The type attribute dictates which of these shapes an input takes.

Examples of each type:

<input type="button" name="calculate" value="Calculate" />

<input type="checkbox" name="newsletter" value="technology" />
<input type="file" name="uploadedvideo" />

<input type="hidden" name="productids" value="19382, 10375" />
<input type="image" name="submit" src="btn_submit.png"
alt="Submit Form" />

<input type="password" name="password" maxlength="25" />
<input type="radio" name="color" value="blue" />

<input type="reset" name="reset" value="Reset Form" />

<input type="submit" name="submit" value="Place Order" />

<input type="text" name="firstname" maxlength="50" />

Chapter 7: Forms 169

Please see the form entry in this chapter for an example regarding
inputs of type="checkbox", type="radio", type="submit", and
type="text", including a screen shot of how they render by default.

An input of type="button" renders a button that does not submit the
formwhen the user activates it. The value attribute provides the text that
appears on the button. You may use JavaScript to apply behavior to it.

An input of type="checkbox" is like an on/off switch. Its value is submit-
ted only when the box is selected (“on”). Like radio buttons, a set of
related check boxes may have the same name attribute; however, in

such a case, their value attributes should be different. For instance, you
might offer several e-mail newsletters for which users can sign up. Your
check boxes could be <input type="checkbox" name="newsletter"
value="design" /> and <input type="checkbox" name="newsletter"
value="technology" />. A user may select multiple check boxes.

An input of type="file" allows users to browse on their computer or
network for a file to upload.

An input of type="hidden" doesn’t display, and the user cannot change
its value. A hidden input allows you to pass data from page to page.

An input of type="image" displays a submit button that is represented
by the src attribute. When the form is submitted, the passed data is
name . x=x-value and name.y=y-value. The name is the element’s name
attribute value. x-value and y-value are the x and y pixel coordinates—
measured from the top left corner of the image—of where the user
clicked within the image (if a mouse or similar pointing device was used).

Use an input of type="password" when requesting a user’s password. It
renders like a text input except that for privacy, dots, or a similar charac-
ter display instead of the characters the user enters.

170 Part 2: HTML Elements and Guidance

An input of type="radio" displays a radio button. Radio buttons typi-
cally come in sets of at least two (otherwise use a check box). Unlike a
check box, a user may select only one radio button from a set of them
sharing the same name attribute. However, like with a check box, make
sure each related radio button has a different value. Please see the
gender example and description in the form entry in this chapter.

An input of type="reset" displays a button that resets all controls to
their initial values (that is, prior to user involvement). The text on the
button reads Reset unless you override it with the value attribute.

An input of type="submit" displays a button that submits the form
when the user activates it. The text on the button reads Submit unless
you override it with the value attribute.

An input of type="text" provides a single-line text box with an optional
maxlength attribute that limits the number of characters accepted by the
box. If value is set, its text appears in the text input by default. Use the
textarea element (also in this chapter) to allow for a longer, multiline
text entry.

Attributes in Detail

= accept="content-type list": *Obsolete in HTML5. This attribute specifies
a comma-separated list of media types a user agent may use to verify
that files submitted by a formvia an input type="file" is acceptable.
However, browser support is poor, so you shouldn’t rely on it. Be sure
your server-side form-processing script performs all required validation
of uploaded files.

= accesskey: Please see the “Attributes” section of Chapter 1.

= glt="text": This behaves like alt on the img element—providing alter-
nate text when the image doesn’t display—except in this case it’s for
an input of type="image".

Chapter 7: Forms 171

checked: When present, this Boolean attribute preselects inputs of
type="checkbox" and type="radio". As with other Boolean attributes,
it takes a different form depending on the markup language version
(as specified by the DOCTYPE). checked="checked" is the XHTML
syntax; use simply checked for HTML 4, though either format is accept-
able in HTMLs.

disabled: When present, this Boolean attribute disables the element
so the user can’t interact with it. Furthermore, a disabled control
doesn’t receive focus, it is skipped in tabbing navigation, and its value
is not submitted with the form.

ismap: When present, this Boolean attribute specifies that an input of
type="1image" is a server-side image map. You'll rarely, if ever, see this
used these days.

maxlength="number": This specifies the maximum number of charac-
ters allowed in a type="text" field.

name="cdata": This assigns a name to the input, which is paired with its
value when processing the form.

onblur="script” and onfocus="script": These events are opposites.
onblur fires when focus leaves the element, such as when the user
tabs away from it or clicks outside it, while onfocus fires when focus is
restored. As with other events, add them unobtrusively with JavaScript
rather than hard-coding them in the HTML.

onchange="script": This event fires when the user changes the content.

onselect="script": This event fires when the user selects content in an
input of type="text".

readonly: When present, this Boolean attribute prohibits the user
from altering the element’s contents. The element still may receive
focus, be tabbed to with the keyboard, and submits with the form.

172 Part 2: HTML Elements and Guidance

= size="number": This sets the number of characters that are visible for
an input of type="text". Rendering varies across browsers, so use the
CSS width property for finer control and more consistency.

= src="uri": This specifies the location of the image for an input of
type="1image".
= tabindex: Please see the “Attributes” section of Chapter 1.

= type="text|password|checkbox|radio|submit|reset|file|hidden|
image|button": Please see the descriptions of each type in this entry.

= usemap: When present, this Boolean attribute specifies that an input
of type="1image" is a client-side image map. Please see the entry for
the map element in Chapter 6 for more details.

= value: This is the value of the input that is associated with its name,
both of which are passed to the processing script when the formis
submitted.

HTMLs and the input Element

One of HTML5’s primary goals is to provide native elements that
enable creating Web applications more easily. In that vein, it makes
big advances in the form department, especially as it pertains to
input types and other attributes.

ATTRIBUTES IN DETAIL

= autocomplete="on|off": Many browsers store values you've
entered in a text field (with a particular name) for subsequent
use when filling out another form. For instance, no doubt you've
found yourself typing your city or e-mail address in a text field,
only to see it appear in a small menu from which to choose. It’s
handy when you're using the form, but it’s dangerous if someone
else uses your browser later. They may be exposed to sensitive

Chapter 7: Forms 173

HTMLs and the input Element (continued)

information (such as a credit card number) you've entered. When
you set autocomplete="off", the user agent won't do this. The
default value is that of the autocomplete setting for the input’s
form owner--which is the nearest form element that contains the
input--or that is associated with the field via the input’s form attri-
bute. A form element’s autocomplete defaults to on, so be sure to
set autocomplete="off" for all sensitive input fields.

autofocus: When present, this Boolean attribute tells the browser
to set focus on the field as soon as the page is loaded. This allows
users to use the control without having to tab to it or click it first.

form="form id": By default, each form control is associated with
its nearest ancestor form element (that is, the form that contains
it). Set this attribute to the id of a different formin the page to
override this behavior.

formaction, formenctype, formmethod, formnovalidate, and
formtarget: These are the same as the form element’s action,
enctype, method, novalidate, and target attributes, respectively,
except you may assign them to a submit button. If they aren’t
present, they default to the related attribute values of the input’s
form owner (see the autocomplete attribute).

height="number of pixels" and width="number of pixels":
These specify the height and width, respectively, of an input of
type="1image".

list="datalist id": This identifies an element that lists predefined
options suggested to the user in a datalist element (see Chapter
14). Its value should match the id of the relevant datalist in the
same document.

max and min: These indicate the range of acceptable values for
inputs that are of type date, datetime, datetime-local, month,
number, range, time, and week. (continues on next page)

174 Part 2: HTML Elements and Guidance

HTMLs and the input Element (continued)

= multiple: When present, this Boolean attribute specifies the
user is allowed to enter more than one value in the input field. It
applies only to inputs of type="email" and type="file".

= pattern="regular expression": This specifies a regular expres-
sion—the same kind you use in JavaScript per ECMAScript—
against which the browser should check the input's value when
a formis submitted (but before it’s sent to the server). Please see
the “Patterns” section of the ECMAScript spec: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-262.pdf.

For example, you would check for a five-digit numeric pattern with
<input pattern="[0-9]{5}" name="zipcode" title="A zip code
requires five numbers." />.You should include a title attribute
that describes the required pattern; user agents display it to users
as a hint. pattern is a welcome addition to HTMLs since it allevi-
ates the need to write JavaScript for client-side form validation (of
course, you should always do server-side validation regardless).

= placeholder="text": This defines a word or brief phrase that
displays in the element as a hint to what the user should enter
in the field. When the user tabs to the field, clicks it, or has previ-
ously entered text in it, the placeholder value doesn’t show:. It
applies only to an input of type="text" and a textarea element. It
shouldn’t be used as a replacement for the label element.

= required: When present, this Boolean attribute requires the user
to engage the input (that is, make a selection or enter text, as the
case may be) before submitting the form. User agents may alert
users when they’'ve failed to complete the field (try it in Opera 10.5
to see it in action!).

= step: According to HTMLs, this “indicates the granularity that
is expected (and required) of the control’s value, by limiting
the allowed values.” It applies to inputs that are of type date,
datetime, datetime-local, month, number, range, time, and week.

Chapter 7: Forms 175

HTMLs and the input Element (continued)

= type="color|date|datetime|datetime-1local|email|month|number
|range|search|tel|time|url|week": These additional input types
are one of HTMLs’s biggest features. Where supported, validation
occurs natively in the browser. The email, search, tel, and url
types are specific types of text fields. The others provide new kinds
of controls, such as a color picker for color and those described in
“Examples of New input Types.”

ExaAMPLES OF NEW input TYPES

Here are a few examples of the new input types. Opera has the

best support at the time of this writing. Nonsupporting brows-

ers typically fall back to an input of type="text". Please see
http://www.htmlfiver.com/extras/inputs/ for more information about
the new types (and more examples).

The date type provides a calendar. In this example, the user must
select a date on or after June 11, 2010. (datetime, datetime-local,
month, and week also provide a calendar, though their allowed values
differ. datetime and datetime-local also show a time control like the
kind type="time" displays.)

<input type="date" name="eventdate" min="2010-06-11" />

The number type shows a text field and spinner control. In this exam-
ple, the user is required to select a number, and it must be between
10 and 25:

<input type="number" name="quantity" min="10" max="25"
required="required" />

The range type shows a slider control. In this example, the value is
between 100 and 500 in increments of 10.:

<input type="range" name="pick" min="100" max="500"
step="10" />

176 Part 2: HTML Elements and Guidance

label

A form control label

Syntax <label for=""></label>

Attributes Ccore, 118n, Events, accesskey, for, onblur, onfocus, HTMLs
Only: Global, form

Description

Use the label element to associate a text label with a form control. Set
its for attribute to the control’s id to make the association; this is crucial
for accessibility. Many browsers put the cursor focus inside the input (or
select the choice in the case of a radio button or checkbox) if the user
clicks the 1abel text.

Example:

<label for="address">Street Address:</label> <input
type="text" id="address" name="address" />

Please also see the example and discussion in the form element entry in
this chapter.

You are allowed to wrap 1abel around controls, such as a check box

input. However, some screen readers may fail to announce the control
contained in the label, so be sure to test your form. When in doubt, stick with
the model shown in the example.

Attributes in Detail
= accesskey: Please see the “Attributes” section of Chapter 1.

= for="control id": Associates the 1abel with a control when set to the
control’s id.

Chapter 7: Forms 177

= onblur="script" and onfocus="script": These events are opposites.
onblur fires when focus leaves the 1abel, while onfocus fires when it
is restored.

HTMLs and the 1abel Element
The label element has one additional attribute in HTMLs.
ATTRIBUTES IN DETAIL

= form="form id": Please see the “HTMLs5 and the input Element”
box in this chapter.

legend

A fieldset caption

Syntax <fieldset>
<legend></1legend>
. [form controls]
</fieldset>

Attributes core, 118n, Events, accesskey, HTML5 Only: Global

Description

The optional legend element identifies the group of controls contained
within a fieldset. The legend displays in the page and is read by screen
readers, providing visually impaired users context for the related form
controls. Please see the example and discussion in the form element
entry in this chapter.

178 Part 2: HTML Elements and Guidance

Attributes in Detail
= accesskey: Please see the “Attributes” section of Chapter 1.

Deprecated Attributes
The align attribute is deprecated.

optgroup

A group of select choices

Syntax <optgroup label="">
<option></option>

</optgroup>

Attributes Core, 118n, Events, disabled, Label, HTML5 Only: Global

Description

Use the optgroup element to organize one or more groups of related
option elements in a select element. Each optgroup must contain at
least one option.

Example:

<select name="computers">
<optgroup label="Desktops">
<option value="xyz2000">The XYZ 2000</option>
. [more Desktop options]
</optgroup>
<optgroup label="Laptops">

Chapter 7: Forms 179

. [Laptop options]
</optgroup>
</select>

Typically, optgroup renders by default like this:

Dasktops -~
The X2 2000

Attributes in Detail
= disabled: Please see “Attributes in Detail” for the input element in
this chapter. Both Internet Explorer 6 and 7 ignore it on optgroup.

= label="cdata": Required.This provides the group’s label that displays
in the select box above the optgroup’s options.

option

A select element choice
Syntax <option></option>

Attributes Core, 118n, Events, disabled, label, selected, value,
HTMLs Only: Global

Description

The option element provides a choice within a select element.

Please see the form and optgroup element entries in this chapter for
examples and more information.

180 Part 2: HTML Elements and Guidance

Attributes in Detail
= disabled: Please see “Attributes in Detail” for the input element in
this chapter. Both Internet Explorer 6 and 7 ignore it on option.

= label="cdata":If 1abel text is specified, user agents are supposed to
render it instead of the text inside the option. Only Chrome, Opera,
and Safari support it among popular browsers.

= selected: When present, this Boolean attribute preselects the option.
More than one option may be preselected if the multiple attribute is
set on the select element.

= value="cdata": This is the value submitted with the formif the user
chooses the option. If the value attribute isn’t specified, the option’s
inside text, for instance, <option>Ground Shipping</options,is its value.

HTMLs and the option Element

HTML5'’s datalist element may contain one or more option ele-
ments. Please see Chapter 14 for details.

select

A menu of choices

Syntax <select name="">
<option></option>
</select>

Attributes core, 118n, Events, disabled, name, multiple, size, HTMLs
Only: Global, autofocus, form

Chapter 7: Forms 181

Description

Use the select element to provide one or more choices in a single

“menu.” Each choice is represented by an option element, which may
either exist on its own or exist as part of an optgroup. Please see the

examples in the form and optgroup element entries in this chapter.

Attributes in Detail

disabled: Please see “Attributes in Detail” for the input element in
this chapter.

name="cdata": This specifies the select element’s name so the form-
processing script can associate the selected options with the select.

multiple: When present, this Boolean attribute allows for more than
one choice from the select box.

size="number": By default, a select displays only one option when
the user hasn’t expanded the list. Set the size attribute (for example,
size="3") to the number of options you want to show instead. (Note:
Chrome and Safari may show more options than desired when size is
less than 5.) Typically, when size is set, a select renders as a list box
with a scroll bar on the right.

HTMLs and the select Element

The select element supports the autofocus and form attributes in
HTMLs. Please see the “HTML5 and the input Element” box in this
chapter.

182 Part 2: HTML Elements and Guidance

textarea

Multiline field for text

Syntax <textarea></textarea>

Attributes Core, 118n, Events, accesskey, cols, disabled, name, onblur,
onchange, onfocus, onselect, readonly, rows, tabindex, HTML5 Only:
Global, autofocus, form, maxlength, placeholder, required, wrap

Description

A textarea element is a multiline text control. It is useful in cases

when you would like to provide more space for content than an input

of type="text" comfortably allows, for example, when soliciting

reader feedback on a blog entry or a product page. You can prepopu-

late a textarea with content by placing it between <textarea> and
</textarea>. Please see the example and discussion in the form element
entry in this chapter.

Attributes in Detail
= accesskey: Please see the “Attributes” section of Chapter 1.
= cols="number": Required in X/HTML. This sets the maximum number

of characters per line, effectively setting the textarea’s width unless
you overwrite it with the CSS width property.

= disabled: Please see “Attributes in Detail” for the input element in
this chapter.

= name="cdata": This specifies the textarea’s name for the purposes of
processing the form and this element’s value.

= onblur="script" and onfocus="script": Please see “Attributes in Detail”
for the input element in this chapter.

Chapter 7: Forms 183

onchange="script": This event fires when the user changes the content.
Since textarea doesn’t have a maxlength attribute in X/HTML (it does
in HTMLs, although most browsers don’t honor it yet), you can write
JavaScript that will check for the length of the content each time it
changes and prevent the user from typing more if it exceeds the limit
you determine.

onselect="script": This event fires when the user selects content in
the textarea.

readonly: When present, this Boolean attributes prohibits the user
from altering the textarea’s contents. The element still may receive
focus, be tabbed to with the keyboard, and submits with the form.
One common use is on a textarea that contains terms of use copy,
followed by a check box input asking the user to select it to agree to
the terms.

rows="number": Required in X/HTML.This sets the number of rows of
text, effectively setting the textarea’s height unless you overwrite it
with the CSS height property.

tabindex: Please see the “Attributes” section of Chapter 1.

HTMLs and the textarea Element
The textarea element supports these additional attributes in HTMLs.
ATTRIBUTES IN DETAIL

= autofocus: Please see the “HTMLg and the input Element” box in
this chapter.

= form="form id": Please see the “HTMLg and the input Element”
box in this chapter. (continues on next page)

184 Part 2: HTML Elements and Guidance

HTMLs and the textarea Element (continued)

= maxlength="number": This sets the maximum number of charac-
ters allowed in the textarea.

= placeholder="text": Please see the “HTML5 and the input
Element” box in this chapter.

= required: When present, this Boolean attribute requires the user
to enter text before submitting the form.

= wrap="hard|soft": This specifies the type of text wrapping in
the field. Set wrap="hard" to ensure no line has more characters
than is specified by the cols attribute, which is required in this
instance. If wrap is not set, it defaults to soft (the user agent fig-
ures out wrapping on its own).

Tabular Data

Tabular data can take many forms such as financial or survey data, a
calendar of events, a bus schedule, or a television programming schedule.
Whatever the case may be, this kind of information is usually presented
with one or more column or row headings along with the data.

The table element is your element of choice in these instances. It—along
with its child elements—are described in this chapter. If you're looking
for a code example and summary of the majority of a table’s elements
and features, please head to the table entry.

Note that tables are not intended to control page layout, since that’s the
domain of CSS (but you already knew that, right?).

186 Part 2: HTML Elements and Guidance

caption

Atable caption

Syntax <caption></caption>

Attributes core, 118n, Events, HTML5 Only: Global

Description

The optional caption element provides a brief description of a table. It
may appear directly only after the <table> start tag. User agents typi-
cally display the caption centered above the table by default. Please see
the table entry in this chapter for an example.

Deprecated Attributes

= align: Use the CSS caption-side property (with a value of top or
bottom) instead to dictate whether the caption should appear above
or below the table. Firefox also supports additional values of left and
right for caption-side, though they’re no longer standard. Please
note that Internet Explorer 7 and previous versions don’t support
caption-side. Use the CSS text-align property (with a value of left,
center, or right) to control a caption’s horizontal alignment.

col

A table column for styling

Syntax <col> or <col />

Attributes core, 118n, Events, align®, char*, charoff*, span, valign®,
width*, HTML5 Only: Global

Chapter 8: Tabular Data 187

Description

The col element allows you to apply style to one or more table columns.
It doesn’t impact the table’s structure. All cols must go after caption

or before thead if either of those elements is present. In X/HTML, they
may exist on their own or be contained within one or more colgroup
elements. However, if at least one colgroup is present, all cols must be
in one or more colgroups. HTML5 requires all col elements to be explic-
itly contained inside one or more colgroups.

Please see the colgroup entry in this chapter for examples and further
discussion, and see the “Attributes in Detail” section since both elements
have the same attributes.

colgroup

A group of table columns
Syntax <colgroup></colgroup>

Attributes Core, 118n, Events, align*, char*, charoff*, span, valign®,
width*, HTML5 Only: Global

Description

The colgroup element allows you to group one or more table columns
for styling purposes. It doesn’t impact the table’s structure. colgroup
may exist on its own (see Example 2) or contain one or more col
elements (see Example 1), which allow more granular styling control
within a colgroup. All colgroups must go after caption and before
thead if either of those elements is present.

Let’s add colgroup and col elements to the example from the table
element entry in this chapter. I've abbreviated portions of the code
surrounding the colgroups.

188 Part 2: HTML Elements and Guidance

Example 1 (colgroups with cols):

<table summary=" . . . ">
<caption> . . . </caption>
<colgroup class="quarter">
<col />
</colgroup>
<colgroup class="years">
<col span="3" />
</colgroup>
<!-- thead is here -->
<!-- the rest of the table code -->
</table>

The span attribute may be used on either colgroup or col, and in either
case, it indicates the number of columns the element spans for styling.
(span doesn’t impact the table’s structure, unlike the colspan attribute
that may appear on a th or td.) The class attribute (or you could use

id if it’s unique to the page) allows you to target CSS to a colgroup. For
example, if you apply .years col { background: #ccc; width: 60px; }
to the Example 1 code, each th and td in the second, third, and fourth
columns will be 60 pixels wide with a gray background (the first column
is dictated by the first colgroup).

There’s actually more code in Example 1than is necessary since each of
the colgroups has only one col. So, you can rewrite the colgroup portion
like in Example 2. In this case, the col elements are implied.

Example 2 (just colgroups):

. [table start tag and caption]
<colgroup class="quarter"></colgroup>
<colgroup class="years" span="3"></colgroup>
. [rest of table] .

Chapter 8: Tabular Data 189

And, in X/HTML there’s yet a third way to write it.
Example 3 (just cols):

[table start tag and caption]
<col class="quarter" />
<col class="years" span="3" />
. [rest of table] .

In short, whether you use colgroup and/or col is up to you depending on
what makes the code the lightest to accommodate your styling needs.
However, you may not use a combination of Examples 2 and 3; if you use
at least one colgroup, all cols must appear in one or more colgroups.

m Use .years { background: #ccc; width: 6@px; } to apply the same
styling to Examples 2 and 3 as in Example 1.

Browsers vary in what CSS styles they apply (and how you must apply

them) to colgroup and col. For instance, Internet Explorer tends to
support more text styling options (such as bold, italics, and alignment) via
colgroup and col than other browsers.

Attributes in Detail

For align, char, charoff, and valign (all of which are obsolete in HTMLs),
please see “Attributes in Detail” for the tbody element in this chapter.

= span="number of columns": Set span to the number of columns the
element should represent for styling. If span is omitted, it defaults to 1.
Please see the examples in this entry.

= width="number of pixels, a percentage value, or 0*": *Obsolete in
HTML5.This attribute isn’t deprecated in X/HTML, but use the CSS
width property instead to set a number of pixels or a percentage (see
the explanation for Example 1in this entry). width takes a third value,

190 Part 2: HTML Elements and Guidance

too. When it is set to 0* (zero asterisk), each column should display
at the minimum width necessary to contain its contents. Browser
support for this value is inconsistent, though.

table

Tabular data parent element

Syntax <table></table>

Attributes Core, 118n, Events, border*, cellpadding®, cellspacing®,
frame*, rules”, summary, width*, HTML5 Only: Global

Description

Use the table element to present tabular data, such as data in a spread-
sheet. For instance, it could be financial or survey data, a calendar of
events, or a television programming schedule. At the most fundamental
level, a table is comprised of rows of cells. Each row (tr) contains heading
(th) and/or data (td) cells. Several other HTML elements and attributes
are particular to constructing tables, as you will see in examples here and
elsewhere in this chapter.

Although not technically illegal, do not use tables to control the layout

of your pages, since it’s considered a very bad and dated practice.
Instead, use the proper semantics for your content and control your layout with
CSS. The table element is meant to structure tabular data. (HTML e-mails are
the one unfortunate exception, but that’s only because not all e-mail clients
and providers support, or allow, the CSS required to achieve certain layouts
consistently.)

Some of the table-related elements and attributes are geared toward
making a table more accessible. Sighted users may take for granted how
easily they can glean information presented in a table just by glancing

Chapter 8: Tabular Data 191

at it. However, imagine you are using a screen reader (or other assistive
device), and the table information is read to you. It can be disorienting
unless the table includes information that declares column and row
headings and associates them with data cells, for instance, so the data
can be announced in context.

Let’s take a look at the sample table I'll
explain before getting into the code. All
the formatting shown is the typical
default browser rendering, though as

Company Financials for

1962-1964 mn Thousands
Cuarter 1962 1963 1964

with other elements, you can style Q1 145 5167 161
tables much differently with CSS. Q2 F140 51599 F184
I've split the table code into two parts Q3 §153 5162 8168
to make it easier to discuss. I've also 24 F157 $160 §171
highlighted at least one instance of TOTAL £595 $648 t664

each table-related element and attri-
bute that the example uses.

Example (part 1—the table header and footer):

<table summary="Company financials from 1962-64 in which each
year is a column heading and the quarter within each year is
a row heading.">

<caption>Company Financials for 1962-1964 in

Thousands</caption>
<thead> <!-- table head -->
<tr>

<th scope="col">Quarter</th>

<th scope="col">1962</th>

<th scope="col">1963</th>

<th scope="col">1964</th>
</tr>

</thead> (continues on next page)

192 Part 2: HTML Elements and Guidance

<tfoot> <!-- table foot -->
<tr>
<th scope="row">TOTAL</th>
<td>$595</td>
<td>$648</td>
<td>$664</td>
</tr>
</tfoot>
<!-- Example 1 (part 2) code picks up from here -->

Let’s discuss a few of the components shown in this first part. Not
surprisingly, each table begins with the <table> start tag. Unlike the
summary attribute, the optional caption element does display in the page
(see “Attributes in Detail” regarding summary). If you include a caption, it
must immediately follow the start tag for the table.

The thead element explicitly marks a row or rows of headings as

the table head. Each row is encapsulated in a tr element, and each

of its headings is marked up with a th element, as shown with <th
scope="col">Quarter</th>, <th scope="col">1962</th>, and so on.
th elements typically display in bold and center-aligned by default. The
scope attribute does not affect presentation, but it helps make a table
accessible. It informs a screen reader or other assistive device that the
heading is for each td in a row (when scope="row") or a column (when
scope="col") or is for a group of rows (when scope="rowgroup") or a
group of columns (when scope="colgroup") in a more complex table.

The tfoot element explicitly marks a row or rows as the table foot.
Sample uses include column calculations, such as in the example, or a
repeat of the thead headings for a long table, such as a train schedule.
Even though it seems counterintuitive, tfoot must come before tbody in
the code (shown in part 2 of the example) even though it displays after it.
(Note: HTMLs allows tfoot after tbody as long as there’s only one tfoot

Chapter 8: Tabular Data 193

in the table.) Please see “The thead and tbody Elements” box for more
information.

You’ll notice in part 1 of the example that only the first tfoot child

element is a th, which is in contrast to the thead that has four ths. It’s
because only one of the cells is a heading, in this case for the row, as denoted
with <th scope="row">TOTAL</th>.

All right, now onto the second part of the example, which includes the
table’s data.

Example (part 2—the table body data):

[tfoot] .
<!-- Example 1 (part 1) code precedes this -->
<tbody> <!-- table body -->
<tr>
<td scope="row">Ql</td>
<td>$145</td>
<td>$167</td>
<td>$161</td>
</tr>
[similarly structured tr and tds for Q2-Q4 rows]

</tbody>
</table>
The tbody element surrounds all the data rows, which are specified by

tr elements just like in the thead and tfoot. Each data cell is a td, and
tbody is required whenever you include a thead or tfoot.

The keen observer might have spotted that the first element in the
QO1through Q4 rows is a td with scope="row", instead of a th. | used
<td scope="row">Q1</td> because each of the “01” through “Q4” cells

194 Part 2: HTML Elements and Guidance

in the first column is data underneath the “Quarter” column heading
(<th scope="col">Quarter</th>) in the thead. When you place the
scope attribute on a td, it behaves like a heading from the perspective
of an assistive device. (scope on a td is obsolete in HTMLs; use a th with
scope instead.)

Resources to Learn More

Tables can be very complex depending on the data you need to represent.
I've collected some links to resources that provide a variety of table
discussions and examples, with an emphasis on making tables acces-
sible. The links are available at http://www.htmlfiver.com/extras/tables/.

Attributes in Detail

= border, frame and rules: *All are obsolete in HTML5. These are presen-
tational attributes that were created before CSS had a means to
provide similar control. So, although they aren’t deprecated in X/HTML,
use the CSS border property on the various table elements instead.

= cellpadding="number of pixels or percentage value": *Obsolete in
HTMLs. This attribute sets the amount of space around the content
within each cell. Use the CSS padding property on the td and th
elements instead.

= cellspacing="number of pixels or percentage value": *Obsolete in
HTMLs. This attribute sets the amount of space between each cell.
There is a CSS alternative, border-spacing, but Internet Explorer 8 and
older don’t support it. If your goal is to remove all spacing between
cells, there’s a way around this; use table { border-collapse:
collapse; } in your CSS instead of <table cellspacing="0"> in your
HTML. However, if you'd like to set the spacing to a value other than
zero (3, for example) and you want IE to display the same spacing as
other browsers, you’ll have to resort to <table cellspacing="3">
instead of using the CSS border-spacing property.

Chapter 8: Tabular Data 195

= summary="text": This optional attribute provides an overview of the
table structure and content to screen readers and other assistive
devices. It does not typically display in the page. Reserve summary for
instances when some explanatory text would be useful to the visually
impaired. Please see the example in this entry.

= width="number of pixels or percentage value": *Obsolete in HTMLs.
This attribute isn’t deprecated in X/HTML, but use the CSS width
property to dictate the table width instead. For example, use
table { width: 90%; }. When set as a percentage, the table width is
relative to the width of the element in which it’s contained. Browsers
typically determine a table’s width based on its content if width isn’t
specified and usually won't let it exceed the container’s width (unless
there’s a large image in it).

Deprecated Attributes
= align: Use the CSS float or margin properties instead.

= bgcolor: Use the CSS background-color property instead.

The thead and tfoot Elements

Though not required, I recommend you include a thead in each
table that has at least one row of column headings, and use tfoot as
appropriate.

thead and tfoot allow browsers to differentiate a table’s head and
foot from its body data (in tbody) so the tbody can scroll indepen-
dently of them. Also, some browsers may print the tfoot and thead
elements on each page if a table spans multiple pages. Furthermore,
users of assistive devices may benefit from the headings being
explicitly declared, and you can gain greater CSS control.

196 Part 2: HTML Elements and Guidance

@ You may nest a table inside another one, though the cases for doing so
are not common. Nesting must be done within a td.

tbody

A table’s body of data cells

Syntax <tbody></tbody>

Attributes core, 118n, Events, align®, char*, charoff*, valign*,
HTMLs Only: Global

Description

The tbody element contains the rows (tr elements) of data cells (td
elements) that represent a table’s body of data. It is required whenever
a table includes a thead or tfoot element. A table may have more than
one tbody. Please see the table element entry in this chapter for an
example and further discussion.

Attributes in Detail

The colgroup, thody, td, tfoot, th, thead, and tr elements share these
attributes, none of which enjoys widespread use.

= align="leftlcenter|right|justifylchar": *Obsolete in HTMLs.
Though align isn’t deprecated in X/HTML, use the CSS text-align
property on tbody instead. You may also want to use the CSS
margin-left:auto and/or margin-right:auto declarations ona
tbody’s child elements. Set align="char" when also specifying the
char attribute.

= char="character": *Obsolete in HTMLs5.The intent of char is to allow
you to specify a single text character that serves as the axis for

Chapter 8: Tabular Data 197

horizontal alignment within cells. The default is the decimal point
character for the element’s language (for example, a period in English
and a comma in French). However, browser support for char is virtually
nonexistent.

= charoff="number": *Obsolete in HTMLs. Used in tandem with
align="char" and the char attribute, charoff is intended to allow you
to specify a positive or negative numeric offset to the first occurrence
of the alignment character on each line. However, browser support for
charoff is virtually nonexistent.

= valign="topImiddlelbottomlbaseline": *Obsolete in HTML5.Though
valignisn’'t deprecated in X/HTML, use the CSS vertical-align prop-
erty on tbody instead.

td

A cell of table data

Syntax <td></td>

Attributes Core, 118n, Events, abbr*, align*, axis* char*, charoff*,
colspan, headers, rowspan, scope*, valign*, HTMLs Only: Global

Description

Use the td element to specify a table data cell. Typically, a td contains
numeric or text data without HTML elements, but it is valid to place both
inline and block-level content in a data cell.

This example shows a brief table for the purposes of demonstrating the
effect of colspan and rowspan, which can also be applied to th elements.
Please see the table element entry in this chapter for a longer, proper
table example and further discussion.

198 Part 2: HTML Elements and Guidance

Example (with colspan and rowspan):

<table border="1">
<tbody>
<tr>
<td rowspan="3">1</td>
<td colspan="2">2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

m lincluded border="1" so you could see the cell boundaries quickly
without writing CSS. This approach can be handy as you're building a
table. When you're done, remove the border from the HTML and set it in your
CsS if desired when styling your table.

The example typically renders like this:

Chapter 8: Tabular Data 199

Attributes in Detail

For align, char, charoff, and valign (all of which are obsolete in HTMLs),
please see “Attributes in Detail” for the tbody element in this chapter.

= abbr="text": *Obsolete in HTMLs. Use abbr to specify an abbreviated
version of the td’s content. A screen reader might read the abbr value
instead of the td value.

= axis="cdata": *Obsolete in HTML5. Browser support for this attribute
is virtually nonexistent. In theory, it allows you to specify a space-
separated list of names of your choosing as a way of categorizing a
cell. Please see http://www.ws3.org/TR/htmlg/struct/tables.html#multi-
dimension for more information.

= colspan="number": This specifies the number of columns the cell
spans across. Please see the example.

= headers="list of ids": This attribute performs a similar task as
scope—associating tds with their headings for the benefit of assis-
tive device users—except in a more explicit manner. Suppose you
have a calendar table with two headings above the same cell,
such as <th id="month" colspan="7">June</th> in one row and
<th id="weekday">Fri</th> in the next. You explicitly associate a cell
with these by listing their IDs (separated by a space) as the headers
value: <td headers="month weekday">11: Bake sale</td>. Use
headers instead of scope in HTMLg pages.

= rowspan="number":This specifies the number of rows the cell spans.
Please see the example.

= scope="collcolgrouplrowlrowspan": *Obsolete in HTML5 on a td but
valid on a th; use on a th instead. This benefits screen readers by speci-
fying that the element is a heading for either a row (scope="row"),
a column (scope="col"), a group of rows (scope="rowgroup"), or a

pLo]o] Part 2: HTML Elements and Guidance

group of columns (scope="colgroup"). Please see an example of scope
in the table entry in this chapter.

Deprecated Attributes
= bgcolor: Use the CSS background-color property instead.

= height: Use the CSS height property instead.

= nowrap: Use the CSS white-space: nowrap declaration instead.

= width: Use the CSS width property instead.

m Unlike most other user agents, Internet Explorer doesn’t display the
border on an empty td, even if you type a space in it, like <td> </td>.

However, it will render the border if the content is a nonbreaking space entity,
as in <td> </td>. IE shows a td’s background color regardless of content.

tfoot

A table foot

Syntax <tfoot></tfoot>

Attributes Core, 118n, Events, align*, char*, charoff*, valign®,
HTMLs Only: Global

Description

The tfoot element explicitly marks a row or rows (each as a tr element)
as the table foot. Please see the table element entry in this chapter

for an example and further discussion, including “The thead and tfoot
Elements” box. Please also see “Attributes in Detail” in the tbody entry in
this chapter, since the two elements have the same attributes.

Chapter 8: Tabular Data 201

th

Atable column or row heading

Syntax <th></th>

Attributes core, 118n, Events, abbr*, align*, axis® char*, charoff*,
colspan, headers, rowspan, scope, valign*, HTML5 Only: Global

Description

The th element specifies the heading of a table column or row. Please see
the table element entry in this chapter for an example and further discus-
sion. Please also see “Attributes in Detail” and “Deprecated Attributes” in
the td entry in this chapter, since the two elements are the same regard-
ing attributes with one exception: scope is valid on a th in HTMLs.

thead

A table head

Syntax <thead></thead>

Attributes Core, 118n, Events, align®, char*, charoff*, valign*,
HTMLs Only: Global

Description

The thead element explicitly marks a row or rows (each as a tr element)
of headings as the table head. The headings provide context to the
table’s columns of data.

Please see the table element entry in this chapter for an example and
further discussion, including “The thead and tfoot Elements” box. Also

202 Part 2: HTML Elements and Guidance

see “Attributes in Detail” in the tbody entry in this chapter, since the two
elements have the same attributes.

tr

A table row

Syntax <tr></tr>

Attributes core, 118n, Events, align®, char*, charoff*, valign*,
HTMLs Only: Global

Description

The tr element designates a table row and may contain td and/or th
elements, as is appropriate. Please see the table element entry in this
chapter for an example and further discussion. Please also see “Attributes
in Detail” in the tbody entry in this chapter, since the two elements have
the same attributes.

Deprecated Attributes
= bgcolor: Use the CSS background-color property instead.

Scripting

On today’s Web, client-side scripting—namely, JavaScript—makes the
world go 'round. Or fade in and out. Or complete your search term as
you're typing it. Or drive an interactive news module. Or control a video
player. Or ... you get the idea.

Alas, showing you how to write JavaScript or any other scripting
language is beyond the scope of this book, but | will show you the easy
part, which is getting your scripts into a page.

Please also see “Attributes” in Chapter 1 for a list of the events you can
apply and capture with JavaScript.

204 Part 2: HTML Elements and Guidance

Scripting and Performance
Best Practices

A full discussion of best practices pertaining to scripts and page
performance is beyond the scope of this book, but I'll touch on a few
points that are high impact.

First, it helps to understand how a browser handles scripts. As a page
loads, the browser downloads (if it’s external), parses, and executes
each script in the order in which it appears in your HTML. (See the
defer attribute in the script element entry for related information.)
As it’s processing it, the browser neither downloads nor renders any
other content that appears after the script element—not even text.
This is known as blocking behavior.

This is true for both embedded and loaded scripts, and as you can
imagine, it can really impact the rendering speed of your page
depending on the size of your script and/or what actions it performs.

Most browsers do this because your JavaScript may include code on
which another script relies, may include code that generates content
(such as with document . appendChild()), or may include code that
otherwise alters your page. Browsers need to take all of that into
account before finishing rendering.

So, how do you avoid this? The easiest technique to make your
JavaScript nonblocking is to put all script elements at the end of
your HTML, right before the </body> end tag. If you've spent even
just a little time viewing source on others’ sites, no doubt you've
seen scripts loaded in the head element. Outside of the occasional
instance where that may be necessary, it’s considered a dated prac-
tice that you should avoid whenever possible.

(continues on next page)

Chapter 9: Scripting 205

Scripting and Performance
Best Practices (continued)

Another simple way to speed up your script loading is to combine
your JavaScript into a single file (or as few as possible) and minify
the code using a tool such as the following:

= Google Closure Compiler:
http://code.google.com/closure/compiler/ (download and
documentation),
http://closure-compiler.appspot.com (online version of tool)

= YUI Compressor:
http://developer.yahoo.com/yui/compressor/ (download and
documentation),
http://refresh-sf.com/yui/ (unofficial online version of tool)

Each will reduce your file size, but results will vary from script to
script.

Those are two common and powerful methods, but they only
scratch the surface of what’s possible. For in-depth discussions of
script-loading methods and optimization, I highly recommend
Even Faster Web Sites (O'Reilly) by Steve Souders and his site,
http://www.stevesouders.com.

206 Part 2: HTML Elements and Guidance

noscript

Script alternative

Syntax <noscript></noscript>

Attributes core, 118n, Events, HTML5 Only: Global

Description

Content contained in a noscript element displays only when the user
agent doesn’t have scripting enabled or doesn’t support the type of
script specified. It can contain both inline and block-level content. You
may not nest a noscript inside another one.

Example:

<script src="widget.js" type="text/javascript" />

<noscript>
<p>This content only displays if JavaScript is disabled or
not supported by the browser.</p>

</noscript>

Although noscript is designed as a fallback to JavaScript, it’s best to
avoid using it whenever possible. Instead, your page’s default experience
(that is, without JavaScript) should make content available to all users,
while browsers with JavaScript enabled display an enhanced experience.
This approach is known as progressive enhancement.

For example, imagine you have a carousel of a dozen image thumbnails,
and if you select one, the full-size version of that thumbnail displays.

Say the default experience (with CSS) is that all the thumbnails display
in a grid (built as an unordered list). Selecting a thumbnail reloads the
page and displays the full-size image above the grid. However, if the user

Chapter 9: Scripting | 207

agent has JavaScript enabled, the progressively enhanced version recon-
figures the thumbnail grid into a horizontal carousel that displays four
thumbnails at a time. Users can use left and right arrows to navigate
through the carousel, and if they select a thumbnail, the full-size image
displays above the carousel without a page refresh.

HTMLs and the noscript Element

HTMLg notes that noscript should be used only when you are
serving an HTML5 document, not an XHTML5 document.

It also allows for noscript in a document head, though its content
may be the 1ink, meta, and style elements only. This is not valid
in X/HTML.

script

Embed or load a script

Syntax <script></script>

Attributes charset, defer, type, src, HTML5 Only: Global

Description

Use the script element to import or embed a client-side script in a docu-
ment. Though script supports other languages, JavaScript is undeniably
the scripting language of choice. script may appear in both the head
and body elements and multiple times within a document. However, as |
note at the beginning of the chapter, it’s best to combine your JavaScript
into one file and load it at the end of your page whenever possible.

208 Part 2: HTML Elements and Guidance

You cannot place HTML elements within a script block (you can
create HTML with JavaScript, however).

You can add JavaScript to your page in three ways: by putting it in an
external file, by embedding the code as the contents of the script
element, or by applying it inline with an event attribute. I'll cover the first
two ways (the third isn’t advised).

In most cases, you'll want to house a distinct piece of JavaScript in an
external file both so multiple pages can load it and because it’s easier to
maintain your code in one file rather than in the script blocks of several
HTML files. Additionally, a user agent will cache the file after it’s loaded
the first time, speeding up the page load of subsequent pages on the
same site that use the script.

Example 1 (import external file):

<body>
<!-- Load JavaScript for product carousel -->
<script src="js/carousel.js" type="text/javascript">
= </script>

</body>
</html>

Alternatively, you can embed the JavaScript in your page; however, as
noted, the first approach is usually preferred.

Example 2 (embedded code):

<body>

Chapter 9: Scripting 209

<script type="text/javascript">

var Foo = window.Foo || {};
Foo.bar = {
. // rest of code
1
</script>
</body>
</html>

The type attribute is required in both cases, but src applies only to
the first.

As | mentioned, you can have several script elements in a page, and
they can appear in both the head and the body.

Variables and functions both embedded in a document and defined in an
external file can be available to each other. In other words, each script
element is not mutually exclusive. For example, it’s common to see a
JavaScript library loaded by one script element, followed by another
script element that imports or embeds code leveraging that library.

However, you may not combine an external script call and an embedded
script in the same script element. The embedded portion is ignored. For
instance, only carousel. js executes in this example:

<script src="js/carousel.js" type="text/javascript">
var Foo = window.Foo || {};

{
. // rest of code

Foo.bar

1

</script>

210 Part 2: HTML Elements and Guidance

Attributes in Detail

= charset: This specifies the character encoding of a script loaded via
the src attribute. It does not apply to an embedded script block (such
as Example 2). Please see “Character Encoding” in Chapter 1.

= defer (IE6-8, FF 3.1-3.6): Please see “The script Element and
Performance Best Practices” box earlier in this chapter for an explana-
tion of how user agents handle scripts by default.

The Boolean defer attribute allows you to tell the browser that it
may choose to load and execute a script after the rest of the page has
been parsed and rendered. In essence, you are indicating that your
JavaScript doesn’t include any code that other scripts in the page
depend on or that generates HTML content. If you defer a script that
does either of these, your page is not likely to render properly.

Example:

<script type="text/javascript" src="photo-gallery.js"
defer="defer"></script>

Please note defer’s limited browser support, listed earlier.

= src="uri":The src value requires a valid URI that points to your external
script. The external script’s language must match what you specify in the
type attribute. Also, if a script element has both a src attribute (like
Example 1) and embedded code (like Example 2), the latter is ignored.

= type="content-type": Use type instead of the deprecated language
attribute to specify a script’s MIME type. For instance, set it to
text/javascript when either embedding or loading JavaScript.
This attribute is required.

Chapter 9: Scripting 211

Deprecated Attributes

= language="cdata": Use type instead of 1anguage.

m Please see “Scripting and Performance Best Practices” earlier in this
chapter.

HTMLs and the script Element

HTMLs introduces a new attribute to script called async.

async is a Boolean attribute that instructs a script to be executed
asynchronously as soon as it is available. It may be used only on a
script element with a src attribute.

Example:

<script type="text/javascript" src="module-slider.js"
async="async"></script>

You may assign both async and defer for the purposes of

older browsers that support defer only. However, async takes
precedence if a browser supports both attributes. Please see
http://www.htmlfiver.com/htmls-browser-support/ for the latest
support information.

Frames

Frames were far more prevalent in the early days of the Web, in part
because bandwidth was so poor that developers saw a benefit in split-
ting the screen up into pieces that loaded independently of one another.
But with frames came usability, accessibility, and SEO shortcomings.

Nowadays, frames are considered a relic of the early days of the Web—so
much so that HTMLs does not include them at all. Because of this, cover-
age here of frame, frameset, and noframes is very light.

The main focus of this chapter is the iframe element, which is very much
part of HTMLs, complete with some new attributes.

214 Part 2: HTML Elements and Guidance

frame

A frame within a frameset

Syntax <frame src=""> or <frame src="" />

Attributes Core, frameborder, longdesc, marginheight, marginwidth,
name, noresize, scrolling, src

Description

m The frame element is obsolete in HTMLs.

The frame element represents a frame within a frameset element. Please
see the frameset entry in this chapter for more information.

Attributes in Detail

When present, the Boolean noresize attribute disallows the user from
resizing the frame. Please see the iframe element in this chapter for
details about the other attributes.

frameset

A set of frames

Syntax <frameset></frameset>

Attributes Core, cols, onload, onunload, rows

Description

The frameset element is obsolete in HTMLS. You can create a similar
visual effect with the CSS position: fixed declaration.

Chapter 10: Frames 215

The frameset element splits the window into one or more frame
elements. Each frame loads its own HTML document, and navigation
takes place within each frame unless a link’s target attribute points to
the name attribute of another frame, iframe, or window.

target also has four predefined values: _blank (opens the link in a new
window; can be used in normal, nonframes pages, too), _parent (opens
the link in the parent frameset), _self (the default setting; opens the link
in the same frame containing the link), and _top (opens the link in the
full browser window, not constrained to a frame).

Framesets may be configured in a wide variety of ways. Please see
http://www.w3.org/TR/htmlg/present/frames.html for examples.

Attributes in Detail

= cols and rows: Each of these is a comma-separated list of the number
of pixels, percentage values, and relative lengths (which use an aster-
isk). cols defines the layout of vertical frames, while rows defines hori-
zontal ones. The default for each is 100%, which means one column and
one row (that is, the entire screen). An example with relative lengths
is cols="*, 475px, 3*".The middle column is 475 pixels wide, and the
first and third columns are 25 percent and 75 percent of the remaining
width space, respectively.

= onload="script": This event fires when all frame elements have loaded.

= onunload="script": This event fires when all frame elements have been
removed from the window, such as when a link with target="_top" is
selected.

216 Part 2: HTML Elements and Guidance

iframe

An embedded frame

Syntax <iframe></iframe>

Attributes Core, frameborder®, height, longdesc*, marginheight®,
marginwidth* name, scrolling®, src,width, HTMLs Only: Global, sandbox,
seamless, srcdoc

Description

The iframe element allows you to embed one HTML document inside
another one. The document loaded in the iframe is its own entity;

for example, it isn’t impacted by CSS in the parent page (see HTML5’s
seamless attribute for an exception). When you activate a link in an
iframe, it loads in the iframe unless it has a target attribute that points
elsewhere. Please see the frameset element in this chapter for more
about target.

Example:

<iframe name="embeddedpage" width="300" height="400"
src="embedded-page.html"><p>This content shows if the user's
browser doesn't support iframes.</p></iframe>

Attributes in Detail

= frameborder="1|0": *Obsolete in HTMLs. The default value of this
attribute is 1, which informs the user agent to render a border on the
iframe. A value of @ turns it off. Since frameborder is presentational
in nature, use the CSS border property instead in both X/HTML and
HTMLs5 documents.

Chapter10: Frames 217

= height="number of pixels or a percentage value" and width="number
of pixels or a percentage value": This specifies the dimensions. If each
is set to a percentage such as 33%, it will occupy a third of its parent
element’s available space.

= longdesc="uri": *Obsolete in HTMLs. This provides a link to a long
description (to supplement the title attribute, if present) of the
iframe for nonvisual user agents such as a screen reader. It is used
rarely.

= marginheight="number of pixels" and marginwidth="number of
pixels": *Both are obsolete in HTML5.marginheight specifies the
amount of space between the top and bottom edges of the iframe
and its contents. marginwidth does the same except for the left and
right sides. Although these aren’t deprecated in X/HTML, they are
presentational effects, so use CSS instead.

= name="cdata": This names the iframe so other elements may target it
via their target attribute.

= scrolling="auto|no|yes": *Obsolete in HTML5. A value of auto, which
is the default state, informs the user agent to provide scrollbars when
necessary. no means to never show scrollbars, and yes means always
show them. Although this isn’t deprecated in X/HTML, use the CSS
overflow (with a value of auto, hidden, or scroll) property instead.

= src="uri": This is the location of the document or resource loaded into
the iframe.

Deprecated Attributes
= galign: Use the CSS float property instead.

218 Part 2: HTML Elements and Guidance

HTMLs and the iframe Element

In HTMLs, the iframe element does not have fallback content in
between the start and end iframe tags.

HTMLs adds three attributes to iframe.
ATTRIBUTES IN DETAIL

= sandbox: The sandbox attribute allows you to set restrictions
on an iframe’s content. The value for this optional attribute is a
space-separated list that includes one or more of these values:
allow-same-origin, allow-top-navigation, allow-forms, and
allow-scripts. When sandbox is set, the iframe’s forms and scripts
are disabled, its links are prevented from targeting areas outside
the iframe, and its plug-ins are disabled. However, setting sand-
box to allow-forms and allow-scripts reenables the appropriate
elements. Scripts can never create pop-up windows, though. The
allow-same-origin value treats the content of the iframe as if it
were from the same origin as the parent page (that is, the page
that contains the iframe). Please see http://www.w3.0org/TR/htmls/
text-level-semantics.html#attr-iframe-sandbox for more details,
particularly regarding warnings for certain value combinations.

= seamless: When present, this Boolean attribute makes the iframe’s
links open in the parent page instead of the iframe and makes the
parent’s CSS apply to the iframe’s contents.

= srcdoc: You may assign srcdoc to a string of HTML that represents
what the contents of the iframe should be. If both src and srcdoc
are specified, srcdoc takes priority. This allows a legacy browser to
load the src and a supporting browser to use the srcdoc value.

Chapter 10: Frames 219

noframes

Frames fallback content
Syntax <noframes></noframes>

Attributes core, 118n, Events

Description

@ The noframes element is obsolete in HTMLs.

The noframes element provides fallback content for a user agent that
doesn’t support frames. Please see http://www.w3.org/TR/htmlgq/
present/frames.html for examples.

HTML5S Elements and
Guidance

This part of the book covers all elements that are unique to HTMLs. It
combines with Part 2 to detail the full set of elements available to you
for HTMLs development.

Please also see “An HTMLs Overview” in Chapter 1 if you're new to HTMLs.

HTMLs is still under development at the time of this writing, and
although it’s on stable footing, it’s still subject to change. (To wit, some
elements were added and removed while writing this book.) For the most
part, I've left out browser support information since it often changes

as vendors add more features or refine their implementations. Please

see http://www.htmlfiver.com/htmIs-browser-support/ for up-to-date
information.

Part 3 Contents

Chapter 11:
Chapter 12:
Chapter 13:

Chapter14:
Chapter 15:

Embedded Content

(Images, Media, and More)

Primary Structure

and Sections

This chapter is a counterpart to Chapter 2 because it describes related
elements unique to HTMLs. If you're writing X/HTML documents, then
this chapter isn’t relevant. But, if you're writing HTML5, then it combines
with Chapter 2 to detail all the primary structural and sectional elements
at your disposal.

In X/HTML, the div element is your main device to contain chunks of
content. As you know, div, although great as a container, has absolutely
no semantic meaning. The seven elements in this chapter are containers
that do have meaning. div doesn’t go away in HTMLs; you just won’t use
it as often.

224 Part 3: HTMLs Elements and Guidance

Furthermore, a few of these elements directly impact a document’s
outline and change the way you use h1-h6 headings in HTMLs. | explain
that next and then get into the entries for the individual elements.

HTMLs’s Document Outline

Each HTML document has an underlying outline, which is like a table of
contents. Now, the outline isn’t something that displays in your page
explicitly, but as with all semantics, it’s meaningful to the likes of search
engines and screen readers, which use the outline to glean the structure
of your page and provide the information to users.

In X/HTML, the h1-h6 heading elements are all you have to structure
the outline. HTML5, on the other hand, includes four sectioning content
elements—article, aside, nav, and section—that demarcate distinct
sections within a document and define the scope of the h1-h6 (and
footer) elements within them.

This means each sectioning element has its own h1-h6 hierarchy, which
is a big shift from X/HTML. Also, not only is more than hl in a page OK,
but it’s recommended.

All this impacts the outline. Let’s compare two equivalent outlines to
see how this works. The first, which is typical in X/HTML, uses heading
elements only.

Version 1:

<body>
<h1>Product User Guide</hl>
<h2>Setting it up</h2>
<h2>Basic Features</h2>

Chapter 11: Primary Structure and Sections 225

<h3>Video Playback</h3>
<h2>Advanced Features</h2>
</body>

Now, the second version, which uses both heading and section
elements, including one nested section. (Note: The code indentation is
unimportant and doesn’t affect the outline.)

Version 2:

<body>
<h1>Product User Guide</hl>
<section>
<h1>Setting it up</hl>
</section>

<section>
<h1>Basic Features</hl>
<section>
<hl>Video Playback</h1>
</section>
</section>

<section>
<hl>Advanced Features</hl>
</section>
</body>

The HTML 5 Outliner (http://gsnedders.htmls.org/outliner/) is a fantastic
tool that presents a visual representation of your document’s outline.
Using it to generate outlines for Versions 1and 2 shows that even though
their h1-h6 heading levels are different, both result in this outline:

226 . Part 3: HTMLs Elements and Guidance

1. Product User Guide
1. Setting it up
2. Basic Features
1. Video Playback
3. Advanced Features

As you can see, each section element in Version 2 becomes a subsection
of its nearest h1-h6 or sectioning content ancestor (also section, in this
case). The same behavior is true of all four sectioning content elements
(article, aside, nav, and section) even when they’re mixed together.

By comparison, if Version 2 had no sections, its outline would be this:
1. Product User Guide

2. Setting it up

3. Basic Features

4.Video Playback

5. Advanced Features

Both Versions 1and 2 are valid HTMLs, but the second is preferable
because the section elements are more explicit semantically. In fact, in
practice | recommend you wrap an article element around Version 2’s
content, since that’s even more appropriate in this context (though the
resulting outline is slightly different). Here’s an example:

<body>
<article>
<h1>Product User Guide</hl>
<section>
<hl>Setting it up</hl>
</section>
[other sections] .
</article>

</body>

Chapter 11: Primary Structure and Sections 227

@ Please see the section element entry in this chapter for a more
complete version.

I highly recommend you create a variety of test pages and compare the
results in the HTML 5 Outliner to get a better feel for how the outline
algorithm works. Use the Outliner during your project work, too, to
ensure your structure is as intended. First, be sure you validate your
HTMLs pages at http://htmls.validator.nu/.

This takes some getting used to for developers well versed in X/HTML
but new to HTMLs, because you're conditioned to think that only one hl
is appropriate on a page except in rare circumstances. But, it makes a lot
of sense if you think about it in terms of headings and sections within a
normal (that is, non-HTML) document, like the kind you might write with
a word processor.

Now let’s dive into this chapter’s elements.

article

A self-contained composition

Syntax <articles</article>

Attributes HmL5 Only: Global

Description

The article element signifies a self-contained composition that is
intended to be distributable or reusable, such as (though not necessarily)
in syndication. For example, it could be a news article, a music review, a
blog entry, a case study, a company’s history on an About Us page, a prod-
uct description, a user-submitted comment, or an interactive widget or
gadget. In short, article is any independent item of content.

228 Part 3: HTMLs Elements and Guidance

Naturally, a page may contain several article elements. For example, a
blog’s homepage typically includes a few of the most recent postings;
each would be its own article.

You may nest an article inside another as long as the inner articleis
related to the article on the whole (please see Example 2). (Note that
you may not nest an article inside an address element.)

All right, you've read about article; now let’s see it.
Example 1 (basic article):

<article>
<h1>The Diversity of Papua New Guinea</hl>
<p>Papua New Guinea is home to more than 800 tribes and
languages . . .</p>
[rest of story content] .

<footer> <!-- the article's footer, not the page's -->
<p>Leandra Allen is a freelance journalist who earned
her degree in Anthropology from the University of
Copenhagen./p>
<address>
You may reach her at <a href="mailto:leandra@
= therunningwriter.com">leandra@therunningwriter.com</
a>.
</address>

</footer>

</article>

Note the use of the footer and address elements (see their entries in
this chapter and Chapter 2, respectively). Here, address applies only to its
parent article (the one shown), not to the page or any articles nested
within that article, such as the reader comments in Example 2.

Chapter 11: Primary Structure and Sections 229

Example 2 demonstrates nested article elements in the form of user-
submitted comments to the parent article.

Example 2 (nested articles):

<article>
<h1>The Diversity of Papua New Guinea</hl>
[parent article content]

<footer>
. [parent article footer]
</footer>

<section>

<h1>Reader Comments</hl>

<article>
<footer>bloose wrote on <time datetime="2010-08-20"
pubdate>August 20, 2010</time>:</footer>
<p>Great article! I've always been curious about
Papua New Guinea.</p>

</article>

<article>
[next reader comment]
</article>
</section>
</article>

m Please see the other elements in this chapter for additional examples
that include article.

230 | Part 3: HTMLs Elements and Guidance

aside

Tangential content

Syntax <aside></aside>

Attributes HmmL5 Only: Global

Description

The aside element indicates a section of content that is tangentially
related to the main content on the page but that could stand on its

own. It may be a box within the main content itself, in the same column
but not nested in the main content, or in (or as) a secondary column.
Examples include a pull quote, a sidebar, a box of links to related articles
on a news site or other blog entries, advertising, groups of nav elements,
and a list of related products on a commerce site.

Example 1 shows an aside used for an inset sidebar.
Example 1 (nested in main content):

<article>
<h1>The Diversity of Papua New Guinea </hl>
[article content]
<aside>
<h1>Papua New Guinea Quick Facts</hl>

The country has 38 of the 43 known birds of
paradise.</11i>
Though quite tropical in some regions, others
occasionally experience snowfall.</1i>

</aside>

Chapter 11: Primary Structure and Sections 231

. [more article content]
</article>

That same article might include a “Related Stories” aside containing
a list of links to other essays about the country or surrounding region
(Indonesia, Australia, and so on). Alternatively, that aside could be in a
different page column instead of nested in the article.

Now, let’s consider an example of a design portfolio or case studies, in
which each page focuses on a single project and you provide links to the
other ones in an adjacent column (as controlled by CSS, not simply by
virtue of arranging the code as shown in Example 2).

Example 2 (not nested in main content):

<article> <!-- main content on the page -->
<hl>. . . [name of project] . . .</hl>
<figure>. . . [project photo] . . .</figure>
<p>. . . [project write-up] . . .</p>
</article>

<!-- this aside is not nested in the article -->

<aside>
<h1>0ther Projects</h1>
<nav>

Habitat for
Humanity brochure</11i>
Royal
Philharmonic Orchestra site</1i>

</nav>

</aside>

232 Part 3: HTMLs Elements and Guidance

It would be perfectly fine to nest this particular aside in the project
article, too, since they are related.

On that subject, an aside nested in the page’s main content typically
requires a closer relationship than when it’s outside. For example, if the
main content is a blog entry article element, you could mark up your
blogroll in a non-nested aside. It would be inappropriate to nest it in the
article, because it isn’t related to that specific entry—unless, of course,
your blog post is “My Favorite Blogs”! Note that one other place you may
not nest an aside is inside an address element.

Use the figure element, not aside, to mark up figures that are part of

an article, such as a chart or graph. Please see Chapter 12 for more
information.

footer

Footer of segment or page

Syntax <footer></footer>

Attributes HmL5 Only: Global

Description

Use the footer element to represent a footer for the nearest article,
aside, blockquote, body, details, fieldset, figure, nav, section, or td
element in which it is nested. It signifies the footer for the whole page
only when its nearest ancestor among these is the body (see Example 1).
And if a footer wraps all the content in its section (such as an article,
for example), it represents the likes of an appendix, index, long colophon,
or long license agreement, depending on its content.

Chapter 11: Primary Structure and Sections 233

A footer typically includes information about its section, such as links to
related documents (see Example 1), copyright information (see Example
1), its author (see Example 2), and similar items. A footer does not need
to be at the end of its containing element, though usually it is. Also, you
may not nest a header element or another footer within a footer, nor
may you nest a footer within a header or address element.

Even if you've never written a line of HTMLs, you're no doubt familiar
with the notion of a page footer. That’s one such use for the footer
element, as shown in Example 1.

@ Please see the entry for the header element in this chapter for an
example of how the page header and content area could be
structured.

Example 1 (as page footer):

<body>
[page header and content] .

<!-- this is a page footer because body is its nearest
ancestor -->
<footer>
<p><small>© Copyright 2011 The Corporation, Inc.</
= small></p>

Terms of Use</1i>
Privacy Policy
- </11>

</footer>
</body>

234 Part 3: HTMLs Elements and Guidance

Please see the nav element entry in this chapter for an explanation of
why the links ul isn’t wrapped in a nav.

The following borrows from Example 1in the article element entry

in this chapter. It demonstrates a footer in the context of a page section.
Please see that entry for an explanation of the address element’s

scope here.

Example 2 (as a page section footer):

<body>

<article>
<hl>. . . [article header] . . .</hl>
<p>. . . [article content] . . .</p>
<footer> <!-- the article footer -->
<p>Leandra Allen is a freelance journalist who
earned her degree in Anthropology from the
University of Copenhagen.</p>
<address>
You may reach her at <a href="mailto:leandra@the
= runningwriter.com">leandra@therunningwriter.com
-.
</address>
</footer>
</article>
<footer id="footer"> <!-- the page footer -->
[copyright, terms of use, privacy policy] .
</footer>
</body>

The id="footer" (call it anything you like) on the page footer is optional
and is just to differentiate it from the other footer for styling control.

Chapter 11: Primary Structure and Sections 235

header

Grouped introductory content

Syntax <header></header>

Attributes HmL5 Only: Global

Description

Use the header element to mark up a group of introductory or navi-
gational content. It usually includes the section’s heading (an h1-h6 or
hgroup), but this isn’t mandatory. Some other header uses include repre-
senting the header for the whole page or containing a search form, rele-
vant logos, or a section’s table of contents (see Example 2). See Example 1
regarding the first three. You may not nest a footer or another header
within a header, nor may you nest a header within a footer or address
element.

Don’t use header unnecessarily. If all you have is an h1-h6 or an
hgroup and no companion content worthy of grouping with it, there’s
no need to wrap it in a header in most cases.

When you think of a header, no doubt a page’s masthead comes to mind,
as in this common structure in X/HTML pages:

<body>
<div id="header">
[site logo, global navigation, etc.]

</div>

[page content and footer] .
</body>

236 Part 3: HTMLs Elements and Guidance

HTMLs’s header element is the right choice for replacing that div, but a
header may also appear elsewhere in your pages, as shown in Example 2.
But, first, let’s replace that page header div.

Example 1 (as page header):

<body>
<header><!-- add an id like "header" or "masthead" if
desired -->

<!-- site logo could go here -->
<!-- a search box form could go here -->
<!-- site's global navigation -->
<nav>
 . . .
</nav>
</header>
<article>

[page content]
</article>
<footer>
. [copyright, terms of use, privacy policy, etc.]
</footer>
</body>

m Please see the entry for the footer element in this chapter for an
example of how to structure a page footer.

As | mentioned, header isn’t limited to containing your page’s masthead.
In Example 2 I've added a header that wraps both the heading and ques-
tion links at the top of a FAQ. The common theme of the examples is that

Chapter 11: Primary Structure and Sections 237

the header contains a group of introductory content or navigation that
leads into the next section.

Example 2 (in page content):

<body>
<header>
[site logo, navigation, etc.]
</header>
<article>
<header>
<h1>Frequently Asked Questions</hl>
<nav>

What is your return
policy?</11i>
How do I find a
location?</11>

</nav>
</header>

<!-- the header links point to these -->
<article id="answerl">
<h1>What is your return policy?</hl>
<p> . . . [answer] . . . </p>
</article>

<article id="answer2">
<hl>How do I find a location?</hl>
<p> . . . [answer] . . . </p>

</article> (continues on next page)

238 Part 3: HTMLs Elements and Guidance

</article> <!-- end parent article -->
</body>
m The nav element is appropriate around the list of FAQ question links

since it’s a major navigation group within the page, as discussed in the
nav entry in this chapter.

hgroup

Group of multiple headings

Syntax <hgroup>[two or more headings]</hgroup>

Attributes H™MLs Only: Global

Description

The hgroup element represents a section header and may contain only
two or more h1-h6 headings. It’s for times when your heading has multi-
ple levels, such as subheadings, alternative titles, or tag lines, or if you
don’t want those subheadings or alternate title to affect the document
outline. Grouping them in an hgroup indicates they are related.

For instance, consider the news story shown in the example.
Example:

<article>
<hgroup>
<h1>Giraffe Escapes from Zoo</hl>
<h2>Animals Worldwide Rejoice</h2>

Chapter 11: Primary Structure and Sections 239

</hgroup>
<p>. . . [article content] . . .</p>
</article>

Only the first instance of the highest-ranked heading in an hgroup
appears in the document outline—“Giraffe Escapes from Zoo” in the
example. Similarly, if another h1 appeared after it, it would be omitted
from the outline just like the h2. Please see “HTML5’s Document Outline’

J

earlier in this chapter.

nav

Section of major navigation
Syntax <nav></nav>

Attributes HmL5 Only: Global

Description

X/HTML doesn’t have an element that explicitly represents a section of
major navigation links, but HTML5 does: the nav element. Links in a nav
may point either within the page, to other resources, or both. However,
use it only for your document’s most important groups of links, not all
of them.

nav doesn’t replace the need to structure your links in an ul and ol
element, as appropriate. Continue to use those elements, and simply
wrap a nav around them.

HTMLs recommends not wrapping ancillary page footer links like “Terms
of Use” and “Privacy Policy” in a nav, which makes sense. Sometimes,
though, your page footer reiterates the top-level global navigation or

240 | Part 3: HTMLs Elements and Guidance

includes other important links like “Store Locator.” In most cases, | recom-
mend putting those types of footer links in a nav.

The following sample news page includes four lists of links, only two of
which are considered major enough to warrant being wrapped in a nav:

Example:

<body>
<header>
<!-- site logo could go here -->

<!-- site global navigation -->
<nav>
 . . .
</nav>
</header>

<div id="main">
<h1>Arts & Entertainment</hl>
<article>
<h1>Gallery Opening Features the Inspired,

Inspiring</hl>
<p>. . . [story content] . . . </p>
<aside>
<h1>0ther Stories</hl>
<!-- not wrapped in nav -->
 . . . [story links] . . .
</aside>
</article>

</div>

<aside id="sidebar"s>

<nav><!-- secondary navigation -->

Chapter 11: Primary Structure and Sections 241

Movies</1i>

Music</1i>

</nav>

</aside>

<footers>
<!-- Ancillary links not wrapped in nav. See
Example 1 of footer entry in this chapter. -->
 . . .
</footer>
</body>

The secondary navigation in the aside allows the user to navigate to
other pages in the Arts & Entertainment directory, so it constitutes a
major navigational section.

Note that you shouldn’t nest a nav within an address element.

m Example 2 in the header element entry in this chapter includes
an example of a nav surrounding a group of links that point within
the page.

So, how do you decide when a group of links deserves a nav? Ultimately,
it’s a judgment call based on your content organization and accessibility.
Although this feature didn’t exist at the time of this writing, a user agent
such as a screen reader may choose to prioritize links contained in a nav
over others. For instance, it could allow users to jump easily from one nav
block to another with a keyboard command. Or a user agent may present
the nav elements and suppress other links initially to assist certain users
(note: this isn’t default browser behavior).

242 Part 3: HTMLs Elements and Guidance

section

Thematic content grouping

Syntax <section></section>

Attributes HML5 Only: Global

Description

The section element indicates a thematic grouping of content, typically
with a heading. Examples include composition sections (and subsections,
if nested; see the example), chapters, or each tab within a tabbed module.

Keep in mind that section is not a generic container like div, because

section conveys meaning. Generally speaking, use section instead of
div if its content should appear in the page’s outline (see “HTML5’s Document
Outline” earlier in this chapter).

The distinction between article and section is a little subtle. HTMLsg
recommends using article instead if the content could be syndicated.
Please see the examples throughout this chapter to get a sense of how
tousearticle.

The following example, like Example 2 in this chapter’s article element
entry, shows article and section working together.

Example:

<article>
<h1>Product User Guide</hl>
[introductory content] .

<section>
<hl>Setting it up</hl>

Chapter 11: Primary Structure and Sections

[instructions]
</section>

<section> <!-- this contains two subsections -->
<h1>Basic Features</hl>

<section> <!-- nested, so it's a subsection -->
<h1>Video Playback</h1>
[instructions]
</section>
<section> <!-- another subsection -->

<h1>Jumping to Chapters</hl>

[instructions]
</section>
</section>
</article>

Note that you shouldn’t nest a section within an address element.

Text

This chapter features text-level semantics that are unique to HTMLs.

Of these, you will probably find yourself using the new figure and
figcaption the most, since they address a common content convention
(a figure with a caption, surprise!) for which X/HTML lacks dedicated
elements.

This chapter’s counterpart is Chapter 5; together they detail all the text-
level elements available to you when developing HTMLs documents and
applications.

246 | Part 3: HTMLs Elements and Guidance

figcaption

Caption for a figure

Syntax <figure-
<figcaption></figcaption>
</figure>

Attributes HmLs Only: Global

Description

The figcaption element represents the caption or legend for a figure
element’s contents. It might be a brief photo description or references
that begin with “Exhibit D” and the like. You cannot use figcaption
unless it’s in a figure element and figure has other content. And
although figcaption is optional, a figure may include only one, and it
must be either the first or last child element of the figure.

Please see the figure element in this chapter for more details and code
examples.

figure

A figure

Syntax <figure></figure>

Attributes HmLs Only: Global

Description

Use the figure element to mark up a self-contained piece of content
(with an optional caption) that is referred to by the main content of your

Chapter 12: Text 247

document. Typically, figure is part of the content that refers to it, but the
figure could also live elsewhere on the page or on another page, such as
in an appendix.

A figure element may include a chart, a graph, a photo, an illustration,
a code segment, and so on. Think of how you see figures in magazine or
newspaper articles, stories, and reports, and you’ll have a good sense of
when to use figure.

The optional figcaptionis a figure’s caption or legend and may appear
either at the beginning or at the end of a figure’s content. (See the
figcaption entry in this chapter for more details.)

Consider Example 1, an excerpt from an annual report, which includes a
pie chart to supplement the primary content.

Example 1:

<article>
<h1>2011 Revenue by Industry</hl>
[report content]

<figure>
<figcaption>Figure 3: 2011 Revenue by Industry
= </figcaption>
<img src="chart_revenue.png" width="260" height="260"
alt="Revenue chart: Clothing 42%, Toys 36%,
Food 22%" />
</figure>

<p>As Figure 3 illustrates, . . . </p>

[more report content] .
</article>

248 Part 3: HTMLs Elements and Guidance

@ Note the use of the image’s alt attribute in Example 1to convey the
chart’s contents to screen readers or in the event a browser’s images
are turned off.

Another part of the report could include a letter from the president of a
board of trustees, accompanied by her photo and a caption.

Example 2:

<article>

<figure>
<img src="photo_president.jpg" width="200" height="300"
alt="Gwen Chapman" />
<figcaption>Gwen Chapman, President of the Board
= </figcaption>
</figure>

</article>

Or, instead of a photo, it could be a video introduction (please see the
video element in Chapter 13). figure may also include multiple pieces
of content. For instance, Example 1 could include two charts: one for
revenue and another for profits. Keep in mind, though, that when using a
figure with multiple pieces of content, only one figcaption element is
permitted.

Don’t use figure simply as a means to embed all instances of self-
contained content within a body of text. Oftentimes, the aside
element may be appropriate instead. Please see its entry in Chapter 11.

Chapter 12: Text 249

mark

Highlighted text
Syntax <mark></mark>

Attributes HmmL5 Only: Global

Description

The mark element is like a semantic version of a highlighter pen. In other
words, you don’t use a highlighter because you want to color snippets of
your textbook or legal document yellow; you use it because the text you
highlight is especially relevant to the task at hand (such as when study-
ing for an exam, reviewing a contract for key language, and so on). The
same is true when you use mark; style its text with CSS as you please (or
not at all, as is the default user agent behavior), but use it only when it’s
pertinent to do so.

No matter when you use mark, it’s to draw the reader’s attention to a
particular text segment. Here are some use cases for it:

= Highlighting part of a quote that wasn’t highlighted in its original
form by the author to call attention to it (see Example 1).

= Highlighting a search term when it appears in a results page or an
article. Suppose you searched for megapixel and each resulting article
used <mark>megapixel</mark> to highlight the term throughout its
text for your benefit.

= Highlighting a code fragment (see Example 2).

250 Part 3: HTMLs Elements and Guidance

Example 1:

<p>So, I went back and read the instructions myself to see
what I'd done wrong. They said:</p>

<blockquote>
<p>Remove the tray from the box. Pierce the overwrap
several times with a fork and cook on High for <mark>15
minutes</mark>, rotating it half way through.</p>
</blockquote>

<p>I thought she'd told me fifty. No wonder it
exploded in my microwave.</p>

mark is not the same as either em (represents emphasis) or strong
(represents importance). Please see their entries in Chapter 5.

Example 2 features a highlighted piece of code. (Again, the mark code
won'’t look different unless you style it with CSS.)

Example 2:

<p>Experienced developers know it's bad practice to use a
class name that describes how it should look, such as with
the highlighted portion below:

<pre>
<code>
<mark>.redText</mark> {
color: #c00;
}
</code>

</pre>

Chapter 12: Text 251

meter

A scalar measurement
Syntax <meter value=""></meter>

Attributes HTMLs Only: Global, form, high, Low, min, max, optimum,
value

Description

The meter element signifies a measurement within a known range or a
fractional value. In plain English, it’s the type of gauge you use to repre-
sent the likes of voting results (for example, “30% Smith, 37% Garcia,
33% Clark”), the number of tickets sold (for example, “811 out of 850”),
numerical test grades, and disk usage. You may use meter within most
other elements, though not within another meter.

Although it’s not required, as a best practice you should include text
inside meter that reflects the current measurement so older user agents
may present it.

Examples:

<p>Project completion status: <meter value="0.80">80%
completed</meter></p>

<p>Car brake pad wear: <meter low="0.25" high="0.75"
optimum="0" value="0.21">21% worn</meter></p>

meter is not for marking up general measurements such as height,
weight, distance, or circumference that have no known range. For exam-
ple, you cannot do this: <p>I walked <meter value="3">3</meter>miles
yesterday . </p>. However, you can do the following:

252 Part 3: HTMLs Elements and Guidance

Example (with title):

<p>Miles walked during half-marathon: <meter min="0"
max="13.1" value="2.5" title="Miles">2.5</meter></p>

meter doesn’t have defined units of measure, but you can use the title
attribute to specify text of your choosing, as in the previous example.
User agents might display the title as a tooltip or otherwise leverage it
when rendering the meter.

HTMLs suggests user agents might render a meter like a horizontal bar

with the measured value colored differently than the maximum value
(unless they’re the same, of course). Think of a thermometer on its side. No
browsers support this at the time of this writing. In the meantime, you can style
meter to some extent with CSS or enhance it further with JavaScript.

Attributes in Detail

Each of these attributes is optional except value. And all those indicat-
ing an attribute value of number should be set to a valid floating-point
number. Negative numbers are allowed.

= form="form element ID": Associates the meter with the form element
whose id equals the value of this attribute. This overrides the default
behavior, which is if meter is nested inside a form element, it’s associ-
ated with that element.

= high="number", 1ow="number", optimum="number": Work together
to split the range into low, medium, and high segments. optimum
indicates the optimum position within the range, such as “o brake
pad wear” in one of the examples. Set optimum lower than low to indi-
cate that low values are better, do the opposite for high, and set it in
between if neither a low value nor a high value is optimal.

Chapter 12: Text 253

min="number": Specifies the lower bound of the range. It equals o if
it’s unspecified.

max="number": Specifies the upper bound of the range. It equals 1.0 if
it’s unspecified.

value="number": Required. Specifies the value for the meter to indi-
cate as the value measurement. If it’s less than the min value, user
agents treat it the same as min, and if it’s more than max, it is treated
the same as max.

Furthermore, the following must be true when you apply these attribute
values (LTE means “is less than or equal to”):

min LTE value LTE max.

min LTE Low LTE max (if Low is specified).

min LTE high LTE max (if high is specified).

min LTE optimum LTE max (if optimum is specified).

low LTE high (if both low and high are specified).

And if a minimum or maximum isn’t specified, then the value attribute
must be between the range of o and 1.

Use the progress element (see its entry in this chapter) instead of
meter to indicate a task’s progress, such as with a progress bar.

254 Part 3: HTMLs Elements and Guidance

progress

Task progress indicator

Syntax <progress></progress>

Attributes HML5 Only: Global, form, max, value

Description

Use the progress element to display the completion progress of a task
(like a progress bar).

For instance, a Web application could indicate the progress as it’s saving
a large amount of data. Although it’s not required, as a best practice

you should include text (for example, “0% saved,” as shown in the exam-
ple) inside progress that reflects the current value and max for older
user agents.

Example:

<p>Please wait as we save your data. Current progress:
<progress id="progressBar" max="100">0% saved</progress></p>

Though a full discussion is beyond the scope of this book, typically you
would update both the progress value and the inner text (for example,
make it “20% saved,” and so on) dynamically with JavaScript. var bar

= document.getElementById('progressBar'); gives you access to the
element from the example, and then you can get or set bar.value.

Chapter 12: Text 255

Attributes in Detail

Those indicating an attribute value of number should be set to a valid
floating-point number.

= form="form element ID": Associates the progress with the form
element whose id equals the value of this attribute. This overrides the
default behavior, which is if progress is nested inside a form element,
it's associated with that element.

= max="number": Specifies the number the value attribute must reach
to signal the task is complete. It must be greater than o, and if it’s
unspecified, it equals 1.0.

= value="number": Specifies the current progress as a number. It is
optional, but if it’s specified, it must be equal to or greater than o and
less than or equal to the max attribute.

m You may not nest one progress inside another one.

There are two types of progress elements: determinate and indeter-

minate. A determinate progress has a value, so its progress can be
determined by the relation of the value to the max attribute. An indeterminate
progress does not have a specified value, so although progress may be occur-
ring, its level can’t be determined (the task may be waiting for feedback).

HTMLs suggests user agents display determinate and indeterminate progress

elements differently but is short on specifics other than to say that determinate
ones should show the value of value relative to the value of max. No browsers
support this at the time of this writing. In the meantime, you can style prog-
ress to some extent with CSS or enhance it further with JavaScript.

256 Part 3: HTMLs Elements and Guidance

p

For ruby fallback parentheses

Syntax <rp>(</rp>and <rp>)</rp>

Attributes HmmL5 Only: Global

Description

Use the rp element to display parentheses around ruby text (the rt
element) in user agents that don’t support ruby annotations. User agents
that do support ruby ignore the rp, so they don’t display the parentheses.

Please see the ruby element in this chapter for an example.

rt

Ruby text component

Syntax <ruby>
<rt></rt>
</ruby>

Attributes HML5 Only: Global

Description

The rt element contains the ruby text used in a ruby annotation. The
content of an rt represents the annotation of the ruby element content
that immediately precedes it (not including an rp element).

Please see the ruby element in this chapter for an example.

Chapter 12: Text 257

ruby

A ruby annotation

Syntax <ruby>
<rp>(</rp><rt></rt><rp>)</rp>
</ruby>

Attributes HmLs Only: Global

Description

A ruby annotation is a convention in East Asian languages, such as
Chinese and Japanese, typically used to show the pronunciation of
lesser-known characters. These small annotative characters appear either
above or to the right of the characters they annotate. They are often
called simply ruby or rubi, and the Japanese ruby characters are known

as furigana.

The ruby element, as well as its rt and rp child elements, is HTMLg’s
mechanism for adding them to your content. rt specifies the ruby char-
acters that annotate the base characters. The optional rp allows you

to display parentheses around the ruby text in user agents that don’t
support ruby. This example demonstrates this structure with English
placeholder copy. The area for ruby text is highlighted.

Example:

<ruby>
base <rp>(</rp><rt>ruby chars</rt><rp>)</rp>
base <rp>(</rp><rt>ruby chars</rt><rp>)</rp>
</ruby>

258 Part 3: HTMLs Elements and Guidance

A user agent that supports ruby may display it like this (or on the side):

rubry chars by chars

base base

If the example included the base Chinese characters for Beijing (which
requires two characters) and their accompanying ruby characters, a user
agent that supports ruby may display it like this (or on the side):

st g =y

I =

As you can see, it ignores the rp parentheses and just presents the rt
content. However, a user agent that doesn’t support ruby displays it like
this:

i ol w R N =N O Ry

You can see how important the parentheses are; without them, the base
and ruby text would run together, clouding the message.

. At the time of this writing, only Internet Explorer and Google Chrome
support ruby annotations (all the more reason to use rp in your
markup). The HTML Ruby Firefox add-on (https://addons.mozilla.org/en-US/
firefox/addon/6812) provides support in the meantime.

m You may learn more about ruby characters at
http://en.wikipedia.org/wiki/Ruby_character.

Chapter 12: Text 259

time

Date and/or time

Syntax <time></time>

Attributes HTML5 Only: Global, datetime, pubdate

Description

Use the time element to represent a precise time or Gregorian calendar
date. The time is based on a 24-hour clock with an optional time-zone
offset. You may not nest a time element inside another one.

The datetime attribute provides the date and/or time in a machine-read-
able format. This sample demonstrates the datetime format:

2011-03-25T17:19:10-02:00

This means “March 25, 2011, at 10 seconds after 5:19 p.m.” T separates

the date (YYYY-MM-DD) and time (hh:mm:ss), and the time-zone offset is
preceded by - (minus) or + (plus). You aren’t required to provide datetime,
and if you do, it doesn’t need to be the full complement of information
(see Example 1).

The optional text content inside time (that is, <time>text</time>)
appears on the screen as a human-readable version of the datetime
value.

The following examples demonstrate various time configurations.

260 | Part 3: HTMLs Elements and Guidance

Example 1 (variations):

<p>The volunteers arrive at <time>03:30</time>.</p>

<p>We began our hike through Zion National Park on <time
datetime="2003-07-03T710:30:00">July 3, 2003 at 10:30 am

= </time>.</p>

<p>They made their dinner reservation for <time datetime=

= "2010-11-02T19:15:00">tonight at 7:15</time>.</p>

<p>The record release party is on <time datetime="2010-11-02">
= </time>.</p>

You'll notice that the last one doesn’t have any text content. In such
cases, user agents are supposed to render the datetime value as text in a
human-friendly manner, but as of this writing, none yet do so. You’ll have
to wait until a few browsers support this rendering feature of time to see
the exact results.

Use the pubdate attribute to indicate that time represents a publishing
date (see “Attributes in Detail” for more specifics.)

Example 2 (with pubdate):

<article>
<header>
<h1>Popularity of Mountain Hiking Sees Steady
Increase</h1>
<p><time datetime="2006-06-15" pubdate>June 15, 2006
= </time></p>

</header>

[article content]
</article>

Chapter 12: Text 261

If the article had reader-submitted comments, those could be time-
stamped with time, datetime, and pubdate, too.

Attributes in Detail

= datetime: This provides the date or time being specified. If you don’t
include it, the date or time is represented by the time element’s text
content. Its machine-readable format (described earlier in this entry)
allows for syncing dates and times between Web applications.

= pubdate: This Boolean attribute specifies that the time element
represents the publication date and time of the nearest article
element that contains the time element. If there isn't an article
ancestor, the publication date applies to the whole page. If pubdate is
included, either datetime or the time element’s text content as a valid
date string (such as “June 15,2006” in Example 2) with an optional
time is required. pubdate may be specified as either pubdate or
pubdate="pubdate". The latter is required for XHTMLs.

Do not use time to mark up imprecise dates or times, such as “the
mid-1900s,” “just after midnight,” “the latter part of the Renaissance,
or “early last week.”

”

Because dates in the time element are based on the Gregorian calen-

dar, H-TML5 recommends you don’t use it for pre-Gregorian dates.
There has been a lot of discussion about this limitation, but it’s a complicated
issue. Read http://www.quirksmode.org/blog/archives/2009/04/making_time_
saf.html for an extensive explanation of some of the issues.

262 Part 3: HTMLs Elements and Guidance

wbr

A line break opportunity

Syntax <wbr> or <wbr />

Attributes HmL5 Only: Global

Description

Browsers wrap text content automatically, but sometimes a word or
continuous phrase is too long to fit in the available space. In such a
case, use the wbr element in between words or letters to indicate where
content may wrap if necessary to maintain legibility. To clarify, wbr does
not force a line break like the br element; it informs the browser of an
opportunity to insert a line break.

In this example, the words run together without spaces to mimic being
said very quickly, and the wbrs specify points for wrapping.

Example:

<p>They liked to say, "Friendly<wbr>Fleas<wbr>and<wbr>
Fire<wbr>Flies<wbr> Friendly<wbr>Fleas<wbr>and<wbr>Fire<wbr>
Flies<wbr>" as fast as they could over and over.</p>

Embedded Content

(Images, Media,
and More)

One of HTMLg'’s goals is to eliminate the need for browser plug-ins to

provide media content and rich, interactive experiences. The thought is
that open standards should provide all you need so you aren’t bound to
proprietary technologies such as Adobe Flash and Microsoft Silverlight.

To that end, media makes a huge leap in HTML5 with both native audio
and video support. The latter is one of HTML5’s hot-ticket items. It’s also
hotly debated among the browser vendors, as you'll learn in this chap-
ter. Regardless, the likes of YouTube and Vimeo have already jumped on
board, and its momentum promises to keep growing with the release of
the Apple iPad and other devices that are sans plug-ins.

264 | Part 3: HTMLs Elements and Guidance

And, how about rich, interactive experiences? The canvas element makes
huge waves in that department. This chapter doesn’t have room for an
in-depth exploration of canvas, but it does provide an overview and
several resources so you can dig into it further on your own.

audio

Embedded audio stream

Syntax <audio></audio>

Attributes HTMLs Only: Global, autoplay, controls, loop, preload,
src

Description

Use the audio element to embed an audio stream.
Example:

<audio src="ocean.oga" controls="controls">
<!-- The HTML in here is for non-supporting user agents -->
<p>Sorry, your browser doesn't support HTML5 audio
with the Ogg Vorbis format. You may
= download the file instead.</p>

</audio>

The text inside the audio element is fallback content that displays only
if the browser doesn’t support audio. You can include a message like in
Example 1, or you can include code that embeds another type of audio
player, such as Flash.

The fallback content area shouldn’t be used for accessibility-focused
content, such as an audio transcript.

Chapter 13: Embedded Content (Images, Media, and More) | 265

As is the case with the video element, the major browsers have not
agreed on a baseline audio format to support with the audio element,
and HTMLs does not dictate one as a result. As of the time of this writing,
the support was split among a few formats:

= AAC (MgA): Safari 4+

= MPEG (MP3): Chrome 3+, Safari 4+

= MPEG-4 (MP4): Chrome 3+, Safari 4+

= Ogg Vorbis: Chrome 3+, Firefox 3.5+, Opera 10.5+

= WAV: Firefox 3.5+, Safari 4+, Opera 10.5+

Additionally, Microsoft has said that IEg will support HTML5 audio with
MP3 and AAC (M4A). You may track the latest audio support on desk-

top and mobile browsers at http://www.htmlfiver.com/htmls-browser-
support/.

This means you’ll need to provide multiple source files to support all
browsers. The source element allows you to do exactly that. Please see
its entry in this chapter for an example with audio.

Even though these browsers support audio, you may experience an
occasional bug. It’s a pretty new feature for all of them, but it should
improve over time.

Attributes in Detail

Please see the descriptions for the autoplay, controls, loop, preload,
and src attributes in the video entry in this chapter, since they behave
the same for audio.

266 | Part 3: HTMLs Elements and Guidance

canvas

Bitmap drawing surface

Syntax <canvas></canvas>

Attributes H™ML5 Only: Global, height, width

Description

The canvas element is one of the headline-grabbing features of HTMLs.
Think of it like an entirely blank img element that you can draw on
with JavaScript. It is—true to its name—a digital canvas. You can create
games, graphs, animations, and other dynamic bitmap images.

Example:

<canvas id="piechart" width="400" height="430">
<!-- fallback content for browsers that don't support
canvas -->

</canvas>

You should always provide fallback content inside that displays if the
browser doesn’t support canvas or JavaScript is turned off. This content
should be similar in spirit to the bitmap canvas. For instance, if the exam-
ple canvas were a pie chart, your fallback content could be this:

<p>45% chose blue as their favorite color, 30% chose green,
and 25% chose red.</p>

One shortcoming of canvas is it isn’t accessible. Sure, the fallback
content is, but anything you draw on canvas isn’t. Some proposals to
remedy this are being discussed at the time of this writing.

Chapter 13: Embedded Content (Images, Media, and More) 267

At the time of this writing, canvas is supported by every major browser—
Chrome, Firefox, Opera, Safari—except Internet Explorer. However,

there are rumors (though not an announcement from Microsoft) that

IE9 might include it. In the meantime, developers must resort to using
ExCanvas (http://code.google.com/p/explorercanvas/).

Learn More

So, how do you draw on canvas? Well, you access your canvas element
through its id and use the built-in JavaScript API for drawing on its
surface. Unfortunately, a proper canvas drawing discussion is beyond the
scope of this book, because it could fill at least a chapter by itself. But, the
following resources are all you’ll need to get both a sense of what you
can do with canvas and how to do it:

= Demos: Canvas Demos (http://www.canvasdemos.com/) provides
information and links to a wide variety of canvas applications. It also
includes a tutorials section, plus a link to a cheat sheet if you search
for that term.

= Tutorials:
— From Mozilla: https://developer.mozilla.org/en/Canvas_tutorial

— From Opera: http://dev.opera.com/articles/view/html-5-canvas-the-
basics/

— From Opera (advanced): http://dev.opera.com/articles/view/
blob-sallad-canvas-tag-and-javascrip/

Attributes in Detail

= height and width="number of pixels": Set the dimensions of the
canvas in pixels. They default to 300 (width) and 150 (height) if
undefined.

268 | Part 3: HTMLs Elements and Guidance

embed

Embed plug-in content

Syntax <embed> or <embed />

Attributes H™ML5 Only: Global, height, src, type, width

Description

The embed element adds external content that requires a plug-in, such as
a Flash game or movie. embed isn’t part of the X/HTML specs, but brows-
ers have supported it for years, so HTMLs has made it official.

Please see the object element entry in Chapter 6 for differences
between object and embed.

Example 1:

<embed src="game.swf" type="application/x-shockwave-flash"
width="500" height="500" />

m embed is an empty element, meaning it’s properly written as <embed>

or <embed /> instead of <embed></embed> and, consequently, doesn’t
have any inner content. However, you may need to use the invalid, latter form
for backward compatibility. Also, you can’t associate fallback content with
embed like you can for the audio and video elements, which are not empty
elements.

Even though it doesn’t validate in X/HTML pages, embed is ubiquitous
nowadays since it’s part of the code YouTube and other video sites
provide to embed a video on a site. For Example 2, I've slightly modified
YouTube code (not including the object portion) in order to make it valid
HTMLs. Namely, | made embed an empty element and changed all amper-
sands to &.

Chapter 13: Embedded Content (Images, Media, and More) |, 269

Example 2:

<embed src="http://www.youtube.com/v/Z3ZAGBL6UBA&hl=en_
= US& ; fs=1&" type="application/x-shockwave-flash"
allowscriptaccess="always" allowfullscreen="true" width="480"

height="385" />

You'll notice two attributes, allowscriptaccess and allowfullscreen,
that aren’t among the four attributes native to embed. This is OK, because
embed allows custom attributes specific to plug-ins. These attributes are
passed into plug-ins as parameters.

Attributes in Detail

= src="url":The path to the resource

= type="MIME type":The MIME type of the resource, such as
application/x-shockwave-flash

= width="number of pixels or percentage value" and height="number of
pixels or percentage value": The width and height in pixels or percent-
age values. The percentages are relative to the size of the embed’s
parent element.

source

A media source

Syntax <source src="">or <source src="" />

Attributes H™ML5 Only: Global, medig, src, type

Description

Not all user agents support the same media formats for the audio and
video elements, as discussed in their entries in this chapter. The source

270 Part 3: HTMLs Elements and Guidance

element allows you to specify multiple media source URLs for audio and
video, so if the user agent doesn’t support the first in the list, it looks to
the second, then the third, and so on, until it finds one it does support.

Example:

<audio controls="controls" autoplay="autoplay">
<!-- UA looks at this first -->
<source src="laughter.oga" type="audio/ogg;
= codecs=vorbis" />
<!-- then this, etc. -->
<source src="laughter.spx" type="audio/ogg;
= codecs=speex" />

</audio>

This is the recommended practice since you’ll risk shutting out users if
you provide only one source. Note that you are permitted to use source
only in either an audio or video element. Please see an example of
source with the video element in the video entry in this chapter.

Attributes in Detail

= media="media query list": If desired, specify the media platform(s),
such as screen or projection, to help the browser determine whether
it'll be useful to load the resource specified by src. If you omit the
media attribute, which is common, it defaults to all. See the 1ink
element in Chapter 3 for more information.

= src="uri": Required.This is the path to the media resource.

= type="MIME type": This specifies the type of the media resource (for
example, audio/mp3, video/ogg, or video/mp4) specified by src to help
the user agent determine whether it supports it. The optional codecs
parameter serves the same purpose but is specific to the codec(s) used
to encode the media. In both cases, if the user agent knows it doesn’t

Chapter 13: Embedded Content (Images, Media, and More) 271

support it, it looks at the next source, if any. type must be a valid
MIME type. You'll find several examples of type and codecs configura-
tions for both audio and video at http://www.whatwg.org/specs/
web-apps/current-work/multipage/video.html#the-source-element.

video

An embedded video
Syntax <video></video>

Attributes HTMLs Only: Global, autoplay, controls, height, Loop,
poster, preload, src,width

Description

Native video playback is one of HTMLs's highest-profile additions, and it’s
implemented with the video element.

Example 1 (basic video embed):

<video src="your-video.ogv" controls="controls">
<!-- The HTML in here is for non-supporting user
agents -->

</video>

Adding a video to your page is that easy—no plug-ins, complicated
embedding methods, or JavaScript required. src is the path to your
video, and controls="controls" (or simply controls, if you prefer that
format) makes default play, pause, and other buttons available to the
user. (See “Attributes in Detail” regarding other attributes.) Or you can
create your own controls and add behavior with JavaScript (see https://
developer.mozilla.org/En/Using_audio_and_video_in_Firefox for a taste).

272 Part 3: HTMLs Elements and Guidance

The HTML inside video is optional though highly encouraged. It displays
only if the browser doesn’t support the video element. Typically, you'll
want to include an embed method for another video player format, such
as Flash, or perhaps a simple message with a link directly to the video file
for offline viewing. Please see Example 2 and related content for the best
way to approach fallback solutions.

Do not use video’s inner content for accessibility means, such as to

include a transcript of the video. In theory, the video itself should be
encoded with captions or related information. At the time of this writing, there
wasn'’t a standard captioning format for the video element, but discussions
were underway.

The video Format Debate

Adding video may be simple, but unfortunately, it’s been difficult to get
the major browser vendors to agree upon the baseline standard video
format. It’s been a hotly debated issue, the details of which | won’t get
into here, though you can read a summary at http://listswhatwg.org/
htdig.cgi/whatwg-whatwg.org/2009-June/020620.htmi. As a result,
HTMLs removed an initial requirement that user agents must support
Ogg Theora at a minimum and now doesn’t require a specific format.

Currently, the following formats work with the video element on the
browsers listed:

= Ogg Theora: Universal support for an open, licensing- and royalty-free
format such as Ogg Theora is the Holy Grail, but the issue isn’t quite
that simple. The supporting browsers are Chrome 3.0+, Firefox 3.5+,
and Opera 10.5+.

= H.264: The popular format in which vast amounts (for example,
YouTube et al.) of video content is already encoded. The support-
ing browsers are Chrome 3.0+, Safari 3.1+, and Internet Explorer
with Google Chrome Frame installed. Internet Explorer 9, still in

Chapter 13: Embedded Content (Images, Media, and More) 273

development at the time of this writing, will support H.264 (without
the need for Google Chrome Frame).

m You may track the latest support for video on desktop and mobile
browsers at http://www.htmlfiver.com/htmls-browser-support/.

As you can see, neither format is supported across the range of browsers.
Therefore, unless you know your audience primarily uses one of these sets
of browsers—uvery unlikely, except for narrower platforms like the iPhone
and iPad—you’ll need to encode your video in at least two formats.

That’s not particularly convenient, but suppose you do generate two
versions. How do you serve them to users? The source element has you
covered.

Multiple Media Sources with the source Element

Example 2 shows how to use the source element to specify multiple
media sources.

Example 2 (provide multiple video sources):

<video controls="controls">
<!-- option 1: 0GG Theora video and Vorbis audio -->
<source src="your-video.ogv" type='video/ogg;
= codecs="theora, vorbis"' />
<!-- option 2: H.264 -->
<source src="your-video.mp4" type='video/mp4;
= codecs="avcl.42EQ1E, mp4a.40.2"" />
<!-- The HTML below here is for non-supporting user
agents, for example, you could embed a Flash video
player. -->

</video>

274 Part 3: HTMLs Elements and Guidance

Note that you specify the src on each source element instead of on the
video start tag. The user agent checks the type and codecs information
of the first source to see whether it supports it. If it knows it doesn’t, it

moves to the next one, and so on. Please see the source element in this
chapter for more details.

m Video for Everybody (http://camendesign.com/code/video_for_
everybody) is a block of code (no JavaScript required) you may use
that leverages the video and source elements with fallbacks for QuickTime
and Flash so your video can work on all browsers, provided your video is
encoded in the variety of formats.

Attributes in Detail

= autoplay: If present, this Boolean attribute instructs the user agent
to start playing the media when the page loads, rather than waiting
for the user to initiate playback. Here’s an example of using it: <video
src="skywriter.ogg" autoplay="autoplay"></video> (or simply,
autoplay).

= controls: If present, this Boolean attribute instructs the user agent
to display controls so the user can control playback. These default
controls include play, pause, volume, seek, and in some instances more
(browsers are supposed to provide more, but not all do). The look and
feel of the default controls varies between supported browsers. If you
create your own controls with JavaScript, the default controls show if
scripting is disabled.

= loop: If present, this Boolean attribute instructs the user agent to play
the media again when it reaches the end.

= poster="url": If present, this is the path to an image that is intended
to be representative of the video, such as one of the initial frames.
HTML5 recommends browsers show the poster frame when the video

Chapter 13: Embedded Content (Images, Media, and More) 275

isn’t available (such as when loading), though they may choose to
show nothing instead. User agents have full discretion of what to
show when the video is paused on the first frame.

preload="none|metadatalauto": Preloaded video loads in part or full
before the user initiates playback. The preload attribute is your means
to suggest to the user agent what you think will result in the best
user experience regarding preloading. It’s just a hint; the user agent
may choose to ignore your setting if, for example, bandwidth is not a
concern. preload has no effect if autoplay is present. The options are
as follows:

- preload="none": This suggests that it isn’t necessary to preload the
video or any metadata. Use this if it’s less likely the user will play the
video or if you want to minimize server traffic.

- preload="metadata": This is the same as none except to hint that
fetching video metadata only (not the video itself), such as the
dimensions, duration, and so on, is OK.

- preload="auto": This hints to the user agent that server traffic is
not a concern so it may preload some or all of the video.

src="url": This is the path to the video.

width="number of pixels or percentage value" and height="number of
pixels or percentage value": These define the width and height of the
video. If they don’t equal the dimensions of the video’s intrinsic size,
the video will shrink or stretch accordingly and may be letterboxed or
pillarboxed. Note that the video will maintain its native aspect ratio
regardless of whether width and height reflect that aspect ratio. If the
width and height are undefined, the player typically renders at the
intrinsic size of the video. You may define these with CSS instead, such
as with video { width: 320px; height: 240px; }.

Forms make a big leap in HTMLs as part of its focus on making Web
applications richer and their development easier.

Among the most compelling additions are the input types for color

and date pickers, numbers, a range slider, search, email and telephone
number fields, and more. Plus, there are attributes for marking fields as
required, or specifying a regular expression that performs pattern match-
ing without JavaScript. Please see the “HTMLs and the input Element”
box in Chapter 7’s input entry for more information.

HTMLs also includes new form-related elements, which this chapter covers.

(Note: Please also see the meter and progress elements in Chapter 12
since you may find them valuable to use with a form.)

278 Part 3: HTMLs Elements and Guidance

datalist

A list of predefined options

Syntax <datalist>
<option></option>

</datalist>

Attributes HML5 Only: Global

Description

The datalist element specifies a list of predefined option elements for
an input element. For instance, you may turn a text input control into
a combo box, meaning the user may either type in a value or choose
from the datalist’s options. Setting the input’s 1ist attribute to the
datalist’s id hooks them together.

If a browser supports datalist, it doesn’t display any of its contents,
except that it makes the options available once the user interacts with
the input. This allows you to add fallback content in the datalist
content for browsers that don’t support datalist. (There’s one notable
exception: As of this writing, Chrome doesn’t show the fallback content
even though it doesn’t support datalist.)

In this example, | predefine some drink options. Users may choose from
those or type something like Tang, if that’s their preference. For the
purposes of being really explicit to demonstrate the concept, | included
“fallback” in the attribute values of each element that is ignored by a
browser that supports datalist. (Note: The example assumes the code is
in a form element.)

Chapter 14: Forms 279

Example:

<label for="drink">Enter your favorite drink:</label>
<input type="text" name="drink" id="drink" list="drinkslist">
<datalist id="drinkslist">
<label for="drinkfallback">0r, select a drink from this
list:</label>
<select name="drinkfallback" id="drinkfallback">
<!-- the options are not ignored, just the select -->
<option value="apple juice">apple juice</option>
<option value="frappe">frappe</option>
<option value="water">water</option>
</select>
</datalist>

Technically, you shouldn’t have to specify the value attributes on the
options, but Opera 9+, the only browser to provide reasonable (though
incomplete) support for datalist at the time of this writing, doesn’t
present an option’s inner text, only the value (and the label attribute
value if value is present). You can’t leave out the inner text, though,
because an empty select box would display as the fallback content.

Here’s how the example looks in a browser that doesn’t support
datalist. (I added a little CSS to make it wrap and breathe a bit.)

Friter your favarite drink:
Or, select a drink from this list

i apple juice ¥

Until Opera or another browser has complete support for datalist,
Section 2.1 of http://docs.google.com/View?id=dch3zh37_ocf8kc8cq illus-
trates how a proper implementation might look and behave.

280 | Part 3: HTMLs Elements and Guidance

keygen

A key pair generator control

Syntax <keygen name=""> or <keygen name="" />

Attributes HTMLs Only: Global, autofocus, challenge, disabled, form,
keytype, name

Description

The keygen element is a key pair generator control. When the form is
submitted, “the private key is stored in the local keystore, and the public
key is packaged and sent to the server.” Many browsers (but not Internet
Explorer) have supported keygen for a long time even though it was
never an official element in any HTML spec. HTMLs makes it official.

Example:

<form action="processkey.php" method="post"
enctype="multipart/form-data">
<div>
<label for="key">Choose a Key Grade:</label>
<keygen name="key" id="key">
<input type="submit" value="Submit Key">
</div>

</form>

keygen renders like a select box in supporting browsers, though its
options may be different. This shows how keygen renders in Chrome:

Choose a Key Grade: 2048 (High Grade) | [Submit key |

Chapter 14: Forms 281

HTMLs doesn’t dictate how the generated private key should be used,
though presumably, it could result in a client certificate being generated
by the server and offered to the user for the purposes of SSL and certifi-
cate authentication services.

Attributes in Detail

= autofocus: When present, this Boolean attribute tells the browser
to set focus on the keygen control as soon as the page is loaded. This
allows users to use the control without having to tab to it or click it
first.

= challenge="challenge string": When present, the value is packaged
with the submitted key.

= disabled: When present, this Boolean attribute disables the element
so the user can’t interact with it. Furthermore, a disabled control
doesn’t receive focus, it is skipped in tabbing navigation, and its value
is not submitted with the form.

= form="form id": By default, each form control is associated with its
nearest ancestor form element (that is, the form that contains it). Set
this attribute to the id of a different formin the page to override this
behavior.

= keytype="keyword": rsa is the default keyword that supporting
browsers understand. Firefox also supports ec, and both Firefox and
Safari support dsa. If keytype="rsa", the state of the key is RSA. User
agents are not required to support this or other values, only “recognize
values whose corresponding algorithms they support.”

= name: This assigns a name to the keygen for processing the form.

Part 3: HTMLs Elements and Guidance

output

The result of a calculation

Syntax <output></output>

Attributes H™ML5 Only: Global, for, form, name

Description
The output element represents the results of a calculation.

Example:

<form action="calculate-it.php" method="post">
<input name="valuel" id="valuel" type="number"> x
<input name="value2" id="value2" type="number"> =
<output name="total" for="valuel value2"></output>
<input name="submit" type="submit">

</form>

One application of output could be a shopping cart that updates the
total price as the user changes the number of products or the shipping
option. As an enhancement for users whose browsers support JavaScript,
you could also process output calculations on the client side by wiring

a JavaScript function to update the output every time a change is made
to the cart. That’s not a replacement for server-side processing, though,
since you don’t want to shut out users with JavaScript disabled.

Attributes in Detail

= for="control id(s)": This explicitly associates the output with each
control involved in the calculation when it is set to a space-separated
list of the control ids. The controls may exist anywhere in the same
document. Please see the example.

Chapter 14: Forms 283

= form="form id": By default, an output is associated with its nearest
ancestor form element (that is, the form that contains it). Set this attri-
bute to the id of a different formin the page to override this behavior.

= name="output name": This assigns a name to the output for the
purposes of processing the form.

Interactive Elements

HTMLs includes two new interactive elements, details and menu, and
their supporting elements, summary and command, respectively. They
support one of HTML5’s goals of making Web application development
easier, richer,and more accessible by building features into native HTML
elements.

This chapter explains how to leverage them to create application-style
toolbars and contextual menus (in the case of menu), as well as expand-
able and collapsible information and form control modules (in the case of
details). Please be aware, though, that much of the native functionality
that these elements promise doesn’t exist in any major browser at the
time of this writing. That is expected to change as browsers continue to
incorporate more and more of HTMLg'’s features. Like the other HTMLs

286 | Part 3: HTMLs Elements and Guidance

chapters, this one details how the elements and attribute should behave
once implemented correctly.

The device element is not included, since it’s considered an
addition to HTML beyond HTMLs and its details were still
being defined at the time of this writing. You may track its progress at
http://dev.w3.org/htmls/html-device/. In short, device “represents a device
selector, to allow the user to give the page access to a device, for example
a video camera” for videoconferencing from HTML applications.

command

A menu command

Syntax <command label=""> or <command label="" />

Attributes H™ML5 Only: Global, checked, disabled, icon, label,
radiogroup, type

Description

The command element represents a choice within a menu element. A
command may be one of three states, as specified by its type attribute.
The default is a normal command (type="command" or no type) that

is associated with an action (see the example in the menu entry in this
chapter). Another is a toggle (type="radio"), as shown in the follow-
ing example. The third state is a choice of one item from a list of items
(type="checkbox").

Suppose you write a word processing Web application, and you want
to provide a context menu so users can easily toggle the track changes
option from where they are typing, rather than navigating through the
toolbar at the top.

Chapter 15: Interactive Elements 287

Example (context menu with radio commands):

<menu type="context" id="trackChanges">
<h1>Track Changes</hl>
<command type="radio" radiogroup="tracking" label="On" />
<command type="radio" radiogroup="tracking" label="Off" />
</menu>
<article contenteditable="true" contextmenu="trackChanges">
. . . [paragraphs and other content the user may edit] . . .
</article>

The radiogroup specifies a name for the group of related radio
commands that toggle when the command is toggled (in other words, the
selected one is toggled on, and all others in the radiogroup are toggled
off). The contextmenu attribute on the article element is set to the
menu’s id in order to specify the menu as the article’s context menu;
users may not access it outside the article.

A type="checkbox" command may be structured similarly but would not
include the radiogroup attribute.

You may use menu in other ways besides a context menu. Please see

the menu entry in this chapter for an explanation of menu types, as well
as another example and further discussion of command, including how to make a
command functional.

Attributes in Detail

= checked: If present, this Boolean attribute indicates the command is
selected. It's permitted only if type is set to checkbox or radio.

= disabled: If present, this Boolean attribute makes the command
unavailable, though it may still display.

288 Part 3: HTMLs Elements and Guidance

= icon="image URL":This specifies the location of an image that repre-
sents the command and is shown to the user.

= label="text": Required.This specifies the command name text that is
shown to the user.

= radiogroup="name":This value is a name of your choosing and may
be assigned only if type="radio". Please see the description in this
entry.

= type="checkbox|command|radio": This defines a command’s state. The
command defaults to type="command" if type is omitted. Please see the
description in this entry.

details

An expandable widget

Syntax <details></details>

Attributes HTML5 Only: Global, open

Description

The details element expands or collapses to reveal or hide information
or controls. JavaScript isn’t required for this behavior, since it’s built into
the element.

By default, a details element should render as closed, so its content
doesn’t display except for the summary element (the open attribute sets it
to open instead). summary is the caption for the content and, depending
on the user agent, may be the means by which the user can open or close
the details. If summary is absent, the user agent should display a term of
its choosing, such as Details.

Chapter 15: Interactive Elements | 289

These following examples show a couple ways you might use details.
The first is a football (American-style) game tracker. The summary provides
a snapshot of the action, and the user can learn more by opening the
details element. It could even have a video element in it. The second
example is a list of emoticons the user could toggle open in a chat appli-
cation and then close after selecting one.

Examples:

<details>
<summary>Good Guys 20, Bad Guys 17, fourth quarter
- </summary>
<!-- Code showing score by quarter and
other statistics would go here. -->
</details>

<details>
<summary>Emoticons</summary>

<img src="icon/super_smiley.png"
width="20" height="20" alt="Super smiley" /></1i>
<img src="icon/guffaw.png" width="20"
height="20" alt="Guffaw" /></11i>
[more emoticons] .

</details>

Another application of details could build on the drawing tool example
from the menu entry in this chapter. A floating palette like those in
Photoshop could include a series of stacked details elements that reveal
form inputs to type in shape dimensions or pick a color, and so on.

290 | Part 3: HTMLs Elements and Guidance

Try to craft a summary that reflects the values of the details whenever
possible. The football example demonstrates this.

Attributes in Detail

= open: When present, this Boolean attribute specifies that the content
within details should be shown to the user. User agents shouldn’t
show it by default except the summary.

menu

An application menu

Syntax <menu></menu>

Attributes HTML5 Only: Global, 1abel, type

Description

The menu element has had a previous life in HTML, but it’s deprecated in
X/HTML. HTMLs both resurrects and refines it to add value.

A menu may be a context menu or a toolbar, as specified by its type
attribute (it’s neither if type is undefined, as shown in the example). A
context menu is like the kind that displays in software when you right-
click or Option-click (or Alt-click in some cases). A toolbar is like the kind
available along the top of most software (though a toolbar menu won’t
necessarily appear at the top). In each case, a menu has one or more
choices.

m menu is appropriate for Web application menus, not navigation. Please
see the nav element in Chapter 11 regarding structuring navigation.

Chapter 15: Interactive Elements 291

The command element is one way to define your menu’s options. (Please
see its entry in this chapter for more details.)

Example (toolbar menu with commands):

<menu type="toolbar">

<menu label="File">
<command label="New" icon="1icon/new.png"
title="Start a new drawing" />
<command label="Open" icon="icon/open.png"
title="Open a drawing" />
<command label="Save" icon="icon/save.png"
title="Save your drawing" disabled="disabled" />
[more commands]
</menu>
</1i>

<menu label="Edit">
[commands for Edit menu]
</menu>
</1i>

</menu>

This example shows a menu of type="toolbar" for an imaginary draw-
ing app (using the canvas element, for instance). It assumes the user’s
browser has JavaScript enabled, since you can’t apply behavior to command
elements (or canvas, for that matter) without it. Note that the type is
specified only on the parent menu since the nested menus are part of the
toolbar (a menu doesn’t require nested menus, however). In the example,
each nested menu is represented in the interface by its 1abel attribute
(although as of this writing, no popular user agent renders it yet).

292 Part 3: HTMLs Elements and Guidance

The use of 11 without an ol or ul element parent is particular to menu.
menu allows nearly all other HTML elements, too, though you can’t
structure some of it with 1i elements and the rest with something else.

The disabled attribute renders the Save command element inactive.
Presumably, you would remove disabled programmatically to enable the
command once the user performs a change, as is common in applications.
The title attribute text may display as a tooltip as the pointer hovers
over the command; it is optional, like the icon attribute.

A command element doesn’t perform an action unless you specify its
behavior via an onclick event. For instance, selecting the New command
could call a JavaScript function that starts a new drawing. | strongly
recommend you add the onclick events unobtrusively rather than as
inline onclick attributes. (Please search for unobtrusive JavaScript online
for details.)

Previously, | noted that command is just one way to represent a menu’s
choices. You may also use elements such as a, button, and select. If you
were to use button, the example’s structure would be the same except
button elements would replace the commands. This approach could be
friendlier to browsers that don’t support command, because they would
still be able to display the list of buttons.

Context Menus

A context menu is structured the same as a toolbar except it has a
type="context" declaration. You associate a context menu with another
element by setting the element’s contextmenu attribute value to the
menu’s id. Please see the example in the command entry in this chapter.

m Use the hr element as a separator within a menu as needed.

Chapter 15: Interactive Elements 293

HTML5 suggests how a menu may appear but doesn’t define it outright,
so user agent renderings may vary.

Attributes in Detail

= type="context|toolbar": Defines a menu as either a context menu or a
toolbar. If type is unspecified, the menu is a list of options that’s neither
type. For instance, the nested menu in the example doesn’t have a type
since it’s a submenu.

= label="text": The menu’s label that is shown to the user.

summary

Details summary or caption

Syntax <summary></summary>

Attributes HmmL5 Only: Global

Description

The summary element provides a summary, caption, or legend for the
other contents of a details element. Please see the details entry in this
chapter for more information.

Appendix: Alphabetical
HTML Elements Page Listing

LEGEND:

(HTML5 only) HTML 4 and XHTML 1 include all elements except those marked with
(HTMLs only), which are unique to HTMLs.

HTMLs includes all elements except those marked with an asterisk (*).

a,94 blockquote, 108

abbr, 102 body, 30

acronym®, 104 br, 110

address, 28 button, 158

areaq, 142 canvas (HTMLs only), 266
article (HTMLs only), 227 caption, 186

aside (HTMLs only), 230 cite, 11

audio (HTMLs only), 264 code, 113

b, 105 col,186

base, 44 colgroup, 187

bdo, 106 command (HTMLs only), 286

big*, 107 datalist (HTMLs only), 278

dd, 71

del, 114

details (HTMLs only), 288
dfn, 117

div, 35

dL,73

dt, 79

em, 119

embed, 268

fieldset, 160
figcaption (HTMLs only), 246
figure (HTMLs only), 246
footer (HTMLs only), 232
form, 161

frame*, 214

frameset®, 214

h1-he, 36

head, 47

header (HTMLs only), 235
hgroup (HTMLs only), 238
hr, 39

html, 40

i,121

iframe, 216

img, 144

input, 168

ins,123

kbd, 124

keygen, 280

label, 176

legend, 177

11, 81

link, 49

map, 146

mark (HTMLs only), 249
menu (HTMLs only), 290
meta, 57

meter (HTMLs only), 251
nav (HTMLs only), 239
noframes®, 219

Appendix 295

noscript, 206

object, 149

ol, 84

optgroup, 178

option, 179

output (HTMLs only), 282
p, 125

param, 153

pre, 126

progress (HTMLs only), 254
q,129

rp (HTMLs only), 256

rt (HTMLs only), 256
ruby (HTMLs only), 257
samp, 131

script, 207

section (HTMLs only), 242
select, 180

small, 132

source (HTMLs only), 269
strong, 134

style, 63

sub, 135

summary (HTMLs only), 293
sup, 136

table, 190

tbody, 196

td, 197

textarea, 182

tfoot, 200

th, 201

thead, 201

time (HTMLs only), 259
title, 67

tr, 202

tt*, 137

ul, 89

var, 138

video (HTMLs only), 271
wbr (HTMLs only), 262

Index

A Atom feed link, 52
aelement, 94-101 attribute minimization, 10

attributes, 97-100, 101 attributes

examples of using, 94-97 Boolean, 10
HTMLs and, 101 Core, 15-16
data, 20-21

abbr element, 102-103
abbreviations, 102-103
about this book, vii—x
absolute path, 95,96
accesskey attribute, 15,18
acronym element, 103,104
address element, 28—29
anchors, 96-101

deprecated, 24
Events,17-18

Global, 18—22

how they're noted, 14-15
118n,16-17

new to HTMLs, 5
obsolete, 24

audio element, 264-265
audio format support, 265
author contact info, 28—29

application cache manifest, 41-42
application menus, 290-293

area element, 142-143

article element, 29, 227229, 242
aside element, 230—232, 248

B

b element, 105-106, 122, 123
base element, 44-46
bdo element, 106—-107
best practices
HTML, 7-8
scripting, 204-205

bidirectional text override, 106-107

bigelement, 107-108
blocking behavior, 204
block-level elements, 13, 116,117
blockquote element, 108-110
body element, 30-34
deprecated attributes, 31-32
event attributes, 31,32-34
HTMLs and, 32-34
bold text, 105-106, 122,123
Boolean attributes, 10
borders
frame, 216
table, 198,200
br element, 110
breadcrumb navigation, 86
browsers, x
script handling by, 204
support for HTMLg, 4, 221
button element, 158-159

C

calculation results, 282-283
canvas element, 266267
caption element, 186
Castro, Elizabeth, 24
CDATA values, 22
character encoding, 22
character entities, 23—-24
charset attribute, 22
cite element, 111-112
class attribute, 15-16, 18
code
conventions used for, ix—x
HTMLs syntax format, 5-6
code element, 113-114, 138139
col element, 186-187
colgroup element, 187-190

Index 297

attributes, 189-190

examples of using, 188-189
command element, 286288, 291
comments, 13
content types, 22-23
contenteditable attribute, 18—-19
context menus, 290,292-293
contextmenu attribute, 19
Core attributes, 15-16
Cutts, Matt, 38

D

data attributes, 20—21

data types, 22-23

datalist element, 278—279

date/time info, 259—261

dd element, 71-72

definition lists, 73-79
denoting terms in, 79-80
describing terms in, 71-72
dialogue and, 79
examples of, 73-77
when to use, 78

del element, 114117
attributes, 115-116
block-level, 116, 117

deleted content, 114-117

deprecated elements/attributes, 24

details element, 288-290

determinate progress, 255

device element, 286

dfn element, 117-118

dir attribute, 16,19

div element, 3536, 223, 242

dl element, 73-79
deprecated attribute, 77
dialogue markup and, 79
examples of using, 73-77
when to use, 78

DOCTYPEs, 7,9, 11-13

document head elements, 43-68

draggable attribute, 19

drawing surface, 266-267

dt element, 79-80

298 The HTML Pocket Guide

E

elements
attributes for, 1422
conventions used for,ix—x
deprecated or obsolete, 24
empty or void, 10
inline vs. block-level,13
new to HTMLg, 4-5
summary list of, 295-296
See also specific elements
emelement, 119-120, 122,123
embed element, 151, 268—269
embedded content
overview of elements for, 141-155
unique HTMLs elements for,
263-275
empty elements, 10
Events attributes, 17-18, 21-22
expandable widgets, 288-290

F

favicons, 52

fieldset element, 160

figcaption element, 246

figure element, 246-248

footer element, 232-234

formelement, 157,161-167
attributes, 165-167
examples of using, 162-165
HTMLs and, 167

form-related elements
overview of, 157-184
unique to HTMLs, 277-283

frame element, 214

frames, 213219

frameset element, 214—215

G

Global attributes, 18—22
data attributes, 20—21
Events attributes, 21-22
Google Closure Compiler, 205

H

h1-h6 elements, 36—-38

H.264 video format, 272-273

head element, 43, 47-49

header element, 235-238

headings, 36-38, 238-239

hgroup element, 238-239

hidden attribute, 19

highlighted text, 249-250

horizontal rule, 39-40

hr element, 39—40, 292

HTML
attributes, 1422
best practices, 7-8
character entities, 23-24
comments, 13
data types, 22-23
deprecated elements/attributes, 24
DOCTYPEs, 11-13
document structure, 8—9
inline vs. block-level elements, 13
obsolete elements/attributes, 24
summary list of elements, 295-296
version differences, 10-11

HTML 4
DOCTYPEs, 11-12
HTMLs differences, 11
summary list of elements, 295-296
XHTML differences, 10

HTMLg
data attributes, 20-21
DOCTYPEs, 12
document outlines, 224-227
element styling, 7
embedded content, 263-275
form-related elements, 277-283
Global attributes, 18—22
HTML 4 differences, 11
interactive elements, 285293
overview, 4—7, 221
structural elements, 223243
summary list of elements, 295-296
syntax formats, 5-6
text elements, 245-262

HTMLs Outliner tool, 225,227

html element, 9, 40-42
HTML Ruby Firefox add-on, 258

118n attributes, 16-17
i element, 121-123
id attribute, 16, 19, 22
iframe element, 216-218
attributes, 216—217, 218
HTMLs and, 218
image maps, 146-148
images, embedded, 144-146
img element, 144-146
indeterminate progress, 255
inline elements, 13, 116
input element, 168-175
attributes, 170-175
HTMLs and, 172-175
types of inputs, 168-170
ins element, 123
inserted content, 123
interactive elements, 285-293
italicized text, 119, 121, 122,123
itemid attribute, 19
itemprop attribute, 19
itemref attribute, 19
itemscope attribute, 19
itemtype attribute, 19

J

JavaScript, 17, 203, 204-205,206—209

K

kbd element, 124
keygen element, 280-281
keywords, 59

L

label element, 176-177
lang attribute, 16-17, 19, 23
language codes, 23

legend element, 177-178
11 element, 81-83, 292
line breaks, 110, 262

Index 299

link element, 49-56
attributes, 54-55, 56
cases for using, 49-50
favicons and, 52
HTMLs and, 56
related documents and, 52—-53
style sheets and, 50-52

link types, 23

lists, 69—-91
definition, 73-79
items in, 81-83
nested, 70-71
ordered, 84—-88
unordered, 89—91

M

map element, 146-148

mark element, 249-250

measurements, 251-253

media content, 263-275

menu commands, 286—288

menu element, 83,290-293

meta element, 9, 57-62
attributes, 60, 61-62
commonly used forms of, 58-59
content type declaration, 57-58
HTMLs and, 61-62

meta tags, 57

metadata, 57

meter element, 251-253
attributes, 252-253
examples of using, 251-252

MIME types, 22-23

monospace text, 137

N

name attribute, 22
nav element, 238, 239241
navigation
ordered lists and, 86
section of links for, 239241
unordered lists and, 9o
nesting
articles, 228, 229
asides, 230231, 232

300 = The HTML Pocket Guide

nesting (continued)

lists, 70-71

objects, 150

quotations, 130

tables, 196
noframes element, 219
noscript element, 206—207

(o)

object element, 149-153
attributes, 151-152
examples of using, 149-150

obsolete elements/attributes, 24

Ogg Theora video format, 272

ol element, 84-88
HTMLs and, 87-88
recommended uses of, 86

onclick attribute, 17

ondblclick attribute, 17

onkeydown attribute, 18

onkeypress attribute, 18

onkeyup attribute, 18

onmousedown attribute, 17

onmousemove attribute, 17

onmouseout attribute, 17

onmouseover attribute, 17

onmouseup attribute, 17

optgroup element, 178-179

option element, 179-180

ordered lists, 84—88
recommended uses of, 86
using unordered vs., 85,90

outlines, 224-227

output element, 282-283

P

p element, 125-126
pagination navigation, 86
paragraphs,125-126
param element, 153-155
pre element, 126-128
prefetching, 53
preformatted text, 126-128
preloaded video, 275
progress element, 253, 254-255
progressive enhancement,
206—207

Q

g element, 129-131

quotations
long,108-110
nested, 130
short, 129—-131

R

relative path, 95

rp element, 256

RSS reader link, 52

rt element, 256

ruby annotations, 257-258
ruby element, 257-258

S

samp element, 131
script element, 43, 204, 207-211
attributes, 210—211
examples of using, 208-209
HTMLs and, 211
scripting, 203-211
best practices for, 204-205
elements and attributes, 206—211
search engine optimization (SEO),
43,68
section element, 242-243
sectioning content elements, 224
select element, 180-181
semantics, 7-8
small element, 132-133
Souders, Steve, 205
source element, 269-271, 273-274
span element, 35
spellcheck attribute, 19
strong element, 122, 123, 134-135
structural/sectional elements
general overview of, 27-42
unique to HTML5, 223-243
style attribute, 16,19
style element, 63-66
attributes, 64-66
HTML and, 65-66
style sheets
embedded, 63-66
linking to, 50-52

sub element, 135-136
subscript notation, 135-136
summary element, 293

sup element, 136-137
superscript notation, 136-137
support Web site, ix

T

tabindex attribute, 15,20
table element, 185,190-196
attributes, 194-195
examples of using, 191-194
resources about, 194
tabular data, 185202
task progress indicator, 254-255
tbody element, 193,196-197
td element, 197200
teletype text, 137
terminology overview,x
text
bolding, 105-106, 122,123
emphasizing, 119-120, 122-123,
134-135
highlighting, 249-250
italicizing, 119, 121, 122,123
resizing, 107-108, 132133
text elements
overview of, 93-139
unique to HTMLs, 245-262
textarea element, 182-184
attributes, 182-184
HTMLs and, 183-184
tfoot element, 192-193, 195, 200
th element, 201
thead element, 192, 195,201-202
thematic content, 242-243
time element, 259—261
time/date info, 259—261
title attribute, 16, 20
title element, 67-68
toolbar, 290, 291
tr element, 202
tt element, 137

Index 301

U

ul element, 89—91

unobtrusive JavaScript, 17,292

unordered lists, 89—91
recommended uses of, 90-91
using ordered vs., 85, 90

user agents, x

\"

validators, 8, 227
var element, 138-139
variables, 138-139
video element, 271-275
attributes, 274-275
examples of using, 271-272,
273274
multiple media sources and,
273274
video formats and, 272-273
Video for Everybody code, 274

w

wbr element, 262

Web resources
HTMLs Working Draft, 4
HTML Pocket Guide support, ix
script-loading methods, 205

Web standards, 7-8

widgets, 288-290

X

XHTML
DOCTYPEs, 12-13
HTML 4 differences, 10
summary list of elements,
295-296
syntax format, 6
XHTMLs, 6
X/HTML, X, 223,239

Y

YUI Compressor, 205

	Contents
	Part 1: HTML Basics
	Chapter 1: HTML Basics

	Part 2: HTML Elements and Guidance
	Chapter 2: Primary Structure and Sections
	Chapter 3: Document Head
	Chapter 4: Lists
	Chapter 5: Text
	Chapter 6: Embedded Content (Images and Objects)
	Chapter 7: Forms
	Chapter 8: Tabular Data
	Chapter 9: Scripting
	Chapter 10: Frames

	Part 3: HTML5 Elements and Guidance
	Chapter 11: Primary Structure and Sections
	Chapter 12: Text
	Chapter 13: Embedded Content (Images, Media, and More)
	Chapter 14: Forms
	Chapter 15: Interactive Elements

	Appendix: Alphabetical HTML Elements Page Listing
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

