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Preface

There has been increasing interest in recent years to develop a critical point
theory by which one can obtain additional information on the critical points
of a differentiable functional. What I mean by additional information is the
locations of the critical points related to closed convex subsets in Banach
spaces. This is the theme of the current book.

This book mainly reflects a significant part of my research activity during
recent years. Except for the last chapter, it is constructed based on the results
obtained myself or through direct cooperation with other mathematicians. On
the whole, the readers will observe that the main abstract existence theorems
of critical points in classical minimax theory are generalized to the cases of
sign-changing critical points. Hence, a new theory is built. To the best of
my knowledge, no book on sign-changing critical point theory has ever been
published.

The material covered in this book is for advanced graduate and PhD
students or anyone who wishes to seek an introduction into sign-changing
critical point theory. The chapters are designed to be as self-contained as
possible.

I have had the good fortune to teach at the University of California at
Irvine and to work with Martin Schechter for the years 2001 to 2004. During
that period, some results of the current book were obtained. M. Schechter
has had a profound influence on me not only by his research, but also by his
writing and his generosity. I am grateful to T. Bartsch and Z. Q. Wang for
sending me their interesting papers and enlightening discussions with Wang
when I visited Utah. Thanks also go to A. Szulkin and M. Willem for inviting
me to visit their prestigious departments years ago. Special thanks are also
given to S. Li who first introduced me into the variational and topological
methods ten years ago. I wish to thank the University of California at Irvine
for providing me a favorable environment during the period 2001 to 2004.
This book is supported by the NSFC (No. 10001019 & 10571096), the SRF-
ROCS-SEM, the Program of the Education Ministry in P. R. China for New
Century Excellent Talents in Universities of China.
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x Preface

I thank the anonymous referees for carefully checking the manuscript and
for their suggestions which make the book much more readable. In particular,
suggesting adding the topics of Chapter 7.

Tsinghua University, Beijing Wenming Zou



Introduction

A theory is the more impressive,
the simpler are its premises,
the more distinct are the things it connects,
and the broader is its range of applicability.

Albert Einstein

Many nonlinear problems in physics, engineering, biology, and social sciences
can be reduced to finding critical points (minima, maxima, and minimax
points) of real-valued functions on various spaces. The first class of critical
points to be studied were minima and maxima and much of the activity in
the calculus of variations has been devoted to finding such points. A more dif-
ficult problem is to find critical points that are neither maxima nor minima.
So far we may say, to some extent, that there is an organized procedure
for producing such critical points and these methods are called global vari-
ational and topological methods. Roughly speaking, the modern variational
and topological methods consist of the following two parts.

Minimax Methods. Ljusternik and Schnirelman [214] in 1929 mark the
beginning of global analysis, by which some earlier mathematicians no
longer consider only the minima or maxima of variational integrals. In 1934,
Ljusternik and Schnirelman [215] developed a method that seeks to get infor-
mation concerning the number of critical points of a functional from topolog-
ical data. These ideas are referred to as the Ljusternik–Schnirelman theory.
One celebrated and important result in the last 30 years has been the moun-
tain pass theorem due to Ambrosetti and Rabinowitz [15] in 1973. Since then,
a series of new theorems in the form of minimax have appeared via various
linking, category, and index theories. Now these results in fact become a
wonderful tool in studying the existence of solutions to differential equations
with variational structures. We refer readers to the books (or surveys) due
to Brézis and Nirenberg [71], Nirenberg [232, 233, 235], Rabinowitz [255],

xi



xii Introduction

Schechter [275], Struwe [313], Willem [335], Mawhin and Willem [225], and
Zou and Schechter [351], among others.

Morse Theory. This approach towards a global theory of critical points
was pursued by Morse [229] in 1934. It reveals a deep relation between the
topology of spaces and the number and types of critical points of any function
defined on it. This theory was highly successful in topology in the 1950s
due to the efforts of Milnor [226] and Smale [303]. In the works of Palais
[239], Smale [304], and Rothe [264, 263], Morse theory was generalized to
infinite-dimensional spaces. By then it was recognized as a useful approach in
dealing with differential equations and in particular, in finding the existence
of multiple solutions (see Chang [92, 94]). The critical group and Morse index
also can be derived in some cases. Although there are some profound works
on Morse theory and related topics, the applications are somewhat limited by
the smoothness and nondegeneracy assumptions on the functionals. Readers
may consult Mawhin and Willem [225], Conley [106], and Benci [51], among
others.

However, both minimax theory and Morse theory essentially give answers
on the existence of (multiple) critical points of a functional. They usually
cannot provide many more additional properties of the critical points except
some special profiles such as the Morse index, critical groups, and so on.
I make no attempt here to give an exhaustive account of the field or a complete
survey of the literature.

There has been increasing interest in recent years to develop a theory by
which one can obtain much more information on critical points. The central
theme of the current volume is the theory of finding sign-changing critical
points. The book is organized as follows.

In Chapter 1, we provide some prerequisites for this book such as degree
theory, Sobolev space, and so on. Basically, these theories are relatively
mature and readily available in many existing books. However, we still spend
some pages on the flows of the ODEs in Banach spaces which play important
roles in this book. Well-trained readers may skip over this chapter to the next
parts.

In Chapter 2, we establish the relation between linking and the sign-
changing critical point. The linking introduced by Schechter is more general
and realistic. We say that a set A links another set B if they do not intersect
and A cannot be continuously shrunk to a point without intersecting B. This
kind of linking includes the original ones. But more examples can be found.
We show how the new linking produces sign-changing critical points.

We devote Chapter 3 to the sign-changing saddle point theory. The saddle
point theory can be traced back to Rabinowitz’s theory 30 years ago, which
gives the sufficient conditions on the existence of a saddle point. But it never
excludes the triviality of that point, nor the sign-changingness of it. We solve
this question.
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Essentially, in Chapter 4, we generalize the Brezis–Nirenberg critical point
theorem obtained in 1991 by judging the location and nodal structure of the
(PS) sequences and critical points.

Chapter 5 is about the even functionals. We obtain the relationship
between the classical symmetric mountain pass theorem and the sign-changing
critical points.

Chapter 6 discusses the parameter dependence of sign-changing critical
points. This theory is independent of the (PS) compactness condition.

In Chapter 7 we provide sign-changing critical point theories due Bartsch,
Chang and Wang, and Bartsch and Weth. The Morse index and the number
of nodal domains are included.

In each chapter, based on the new abstract sign-changing critical point
theory, applications are considered mainly on Schrödinger equations or
Dirichlet boundary value problems.

This book mainly consists of the results of my recent research. It is not
intended and nor is it possible to be complete. In fact, many other results
on sign-changing solutions of elliptic equations in recently years are not in
this book. I just cite them in the bibliography or quote some lemmas from
them. We refer the readers to the references in the bibliography written by
T. Bartsch, A. Castro, G. Cerami, K. C. Chang, M. Clapp, V. Coti-Zelati,
E. N. Dancer, Y. Du, N. Ghoussoub, F. A. van Heerden, N. Hirano, S. Li,
J. Q. Liu, Z. Liu, P. H. Rabinowitz, S. Solimini, M. Struwe, Z. Q. Wang,
T. Weth, C. Yuan, et al. for other interesting results on concrete elliptic
equations. Finally, although Chapter 7 involves some theories due to Bartsch
and others, I would like to mention the following additional topics due to
them: symmetry results for sign-changing solutions, in particular for the least
energy nodal solution; upper estimates on the number of nodal domains;
and some discussions of singularly perturbed equations and multiple nodal
solutions without oddness of the nonlinearity.



Chapter 1

Preliminaries

For readers’ convenience, we collect in this chapter some classical results on
nonlinear functional analysis and the elementary theory of partial differential
equations. Some of them are well known and their proofs are omitted. For
others, although their proofs may be found in many existing books, we make
no apology for repeating them.

1.1 Partition of Unity

Let E be a metric space with a distance function dist(·, ·) on it. Let A ⊂ E
and O be a family of open subsets of E. If each point of A belongs to at least
one member of O, then O is called an open covering of A.

Definition 1.1. Let O be an open covering of a subset A of E. O is called
locally finite if for any u ∈ A, there is an open neighborhood U such that
u ∈ U and that U intersects only finitely many elements of O.

A well-known result on this line is the underlying proposition due to Stone
[308].

Proposition 1.2. Any metric space E is paracompact; that is, every open
covering O of E has an open, locally finite refinement Θ. That is, Θ is a
locally finite covering of E and for any Vi in Θ, we can find a Ui in O such
that Vi ⊂ Ui.

Proposition 1.3. Assume that E is a metric space with the distance function
dist(·, ·). Let O be an open covering of E. Then O admits a locally finite
partition of unity {λi}i∈J subordinate to it satisfying

(1) λi : E → [0, 1] is Lipschitz continuous.
(2) {u ∈ E : λi(u) �= 0}i∈J is a locally finite covering of E.

W. Zou, Sign-Changing Critical Point Theory, doi: 10.1007/978-0-387-76658-4, 1
c© Springer Science+Business Media, LLC 2008



2 1 Preliminaries

(3) For each Vi, there is a Ui ∈ O such that Vi ⊂ Ui.
(4)

∑
i∈J λi(u) = 1,∀u ∈ E,

where J is the index set.

Proof. Because (E,dist) is a metric space with an open covering O, by Propo-
sition 1.2, there is an open, locally finite refinement Θ; that is, Θ is locally
finite and for any Vi of Θ, we can find a Ui of O such that Vi ⊂ Ui. Define

ρi(u) = dist(u,E\Vi), i ∈ J.

Then ρi is locally Lipschitz. Let

λi(u) =
ρi(u)

∑
j∈J ρj(u)

, i ∈ J.

Then {λi}i∈J is what we want. �

1.2 Ekeland’s Variational Principle

We recall Ekeland’s variational principle (see Ekeland [137]).

Lemma 1.4. Let E be a complete metric space with a metric dist and I :
E → R be a lower semicontinuous functional that is bounded below. For any
T > 0, ε > 0, let u1 ∈ E be such that I(u1) ≤ infE I + ε. Then there exists a
v1 ∈ E such that

I(v1) ≤ I(u1),(1.1)

dist(u1, v1) ≤ 1/T,(1.2)

I(v1) < I(w) + εTdist(v1, w), for all w �= v1.(1.3)

Proof. Define a partial order � in E as the following.

u � v ⇔ I(u) ≤ I(v)− εTdist(v, u).

Then obviously,

u � u, for all u ∈ E,

u � v, v � u⇒ u = v, for all u, v ∈ E,

u � v, v � w ⇒ u � w, for all u, v, w ∈ E.

Let C1 := {u ∈ E : u � u1} and let u2 ∈ C1 be such that

I(u2) ≤ inf
C1

I +
ε

22
.



1.2 Ekeland’s Variational Principle 3

Then, let C2 := {u ∈ E : u � u2}. Inductively,

un+1 ∈ Cn := {u ∈ E : u � un}, I(un+1) ≤ inf
Cn

I +
ε

2n+1
.

By the lower semicontinuity of I and the continuity of dist(·, ·), we see that
Cn is closed. Moreover,

C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ · · · ,

· · · � un � · · · � u2 � u1.

For any v ∈ Cn, then

(1.4) I(v) ≤ I(un)− εTdist(v, un).

Note that v ∈ Cn−1; we have

(1.5) I(un) ≤ inf
Cn−1

I +
ε

2n
≤ I(v) +

ε

2n
.

Combine Equations (1.4) and (1.5); we have that dist(v, un) ≤ (1/T2n).
Because v ∈ Cn is arbitrary, we know that the diameter of Cn is less than or
equal to (1/T2n−1), hence, approaches zero. Therefore,

∞⋂

n=1

Cn = {v1}.

We claim that v1 is what we want. Indeed, v1 ∈ C1 implies that

I(v1) ≤ I(u1)− εTdist(u1, v1) ≤ I(u1).

For any w �= v1, we observe that we cannot have w � v1, otherwise w ∈⋂∞
n=1 Cn hence w = v1. That is, we must have

I(w) > I(v1)− εTdist(w, v1).

Finally, noting that

dist(u1, un) ≤
n−1∑

i=1

dist(ui, ui+1) ≤
n−1∑

i=1

1
T2i

≤ 1
T

and that limn→∞ un = v1, then we get that dist(u1, v1) ≤ 1/T. Thus, v1

satisfies Equations (1.1) to (1.3). This completes the proof. �

Notes and Comments. Readers may consult Ekeland [138], de Figueiredo
[147], Ghoussoub [156], Grossinho and Tersian [162], Mawhin and Willem
[225], Struwe [313], and Willem [335] for the variants of Ekeland’s variational
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principle and their applications. Ghoussoub [156] contains the Borwein and
Preiss principle and also the mountain pass principle which is presented as a
“multidimensional extension” of the Ekeland variational principle. A simple
and elegant generalization of Ekeland’s variational principle to a general form
on ordered sets was obtained in Brézis and Browder [66]. It was applied to
nonlinear semigroups and to derive diverse results from nonlinear analysis
including the variational principle and one of its equivalent forms, the Bishop–
Phelps theorem. Some other generalizations of Ekeland’s variational principle
can also be found in Li and Shi [203] and Zhong [339, 340].

1.3 Sobolev Spaces and Embedding Theorems

Let Ω be an open subset of RN , N ∈ N. Denote

Lp(Ω) := {u : Ω → R is Lebesgue measurable, ‖u‖Lp(Ω) <∞},

where

‖u‖Lp(Ω) =
(∫

Ω

|u|pdx
)1/p

, 1 ≤ p < +∞.

If p = +∞,

‖u‖L∞(Ω) = ess sup
Ω
|u| := inf

A⊂Ω,meas(A)=0
sup
Ω\A

|u|,

where meas denotes the Lebesgue measure. If ‖u‖L∞(Ω) <∞, we say that u
is essentially bounded on Ω. Let

Lp
loc(Ω) := {u : Ω → R, u ∈ Lp(V ) for each V ⊂⊂ Ω},

where V ⊂⊂ Ω ⇔ V ⊂ V̄ ⊂ Ω and V̄ is compact. Sometimes in this book
we denote ‖u‖Lp(Ω) by ‖u‖p or |u|p .

We denote by supp(u) := {x ∈ Ω : u(x) �= 0} the support of u : Ω → R.
Let C∞

c (Ω) denote the space of infinitely differentiable functions φ : Ω → R
with compact support in Ω. For each φ ∈ C∞

c (Ω) and a multi-index α =
(α1, . . . , αN ) with order |α| := α1 + · · ·+ αN , we denote

Dαφ =
∂α1

∂xα1
1

· · · ∂αN

∂xαN

N

φ.

Definition 1.5. Suppose u, v ∈ L1
loc(Ω). We say that v is the αth-weak

partial derivative of u, written Dαu = v provided
∫

Ω

uDαφdx = (−1)|α|
∫

Ω

vφdx

for all φ ∈ C∞
c (Ω).
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It is easy to check that the αth-weak partial derivative of u, if it exists, is
uniquely defined up to a set of measure zero.

Let Cm(Ω) be the set of functions having derivatives of order ≤ m being
continuous in Ω (m = integer ≥ 0 or m = ∞). Let Cm(Ω̄) be the set of
functions in Cm(Ω) all of whose derivatives of order ≤ m have continuous
extension to Ω̄.

Definition 1.6. Fix p ∈ [1,+∞] and k ∈ N ∪ {0}. The Sobolev space

W k,p(Ω)

consists of all u : Ω → R which has αth-weak partial derivative Dαu for each
multi-index α with |α| ≤ k and Dαu ∈ Lp(Ω).

If p = 2, we usually write

Hk(Ω) = W k,2(Ω), k = 0, 1, 2, . . . .

Note that H0(Ω) = L2(Ω). We henceforth identify functions in W k,p(Ω)
which agree a.e

Definition 1.7. If u ∈W k,p(Ω), we define its norm to be

‖u‖W k,p(Ω) :=

⎧
⎪⎨

⎪⎩

(∑
|α|≤k

∫
Ω
|Dαu|pdx

)1/p

, p ∈ [1,+∞),

∑
|α|≤k ess supΩ |Dαu|, p = +∞.

Definition 1.8. We denote W k,p
0 (Ω) the closure of C∞

c (Ω) in W k,p(Ω) with
respect to its norm defined in Definition 1.7. It is customary to write

Hk
0 (Ω) = W k,2

0 (Ω)

and denote by H−1(Ω) the dual space to H1
0 (Ω).

The following results can be found in Evans [141] and Adams and
Fournier [2].

Proposition 1.9. For each k = 1, 2, . . . and 1 ≤ p ≤ +∞, the Sobolev space

(W k,p(Ω), ‖ · ‖W k,p(Ω))

is a Banach space and so is W k,p
0 (Ω). In particular, Hk(Ω),Hk

0 (Ω) are
Hilbert spaces; W k,p

0 (RN ) = W k,p(RN ).

Definition 1.10. Let (E, ‖·‖E) and (Y, ‖·‖Y ) be two Banach spaces, E ⊂ Y .
We say that E is continuously embedded in Y (denoted by E ↪→ Y ) if the
identity id : E → Y is a linear bounded operator; that is, there is a constant
C > 0 such that ‖u‖Y ≤ C‖u‖E for all u ∈ E. In this case, the constant C > 0
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is called the embedding constant. If moreover, each bounded sequence in E
is precompact in Y , we say the embedding is compact, written E ↪→↪→ Y .

Definition 1.11. A function u : Ω ⊂ RN → R is Hölder continuous with
exponent γ > 0 if

[u](γ) := sup
x�=y∈Ω

|u(x)− u(y)|
|x− y|γ <∞.

Definition 1.12. The Hölder space Ck,γ(Ω̄) consists of all functions u ∈
Ck(Ω̄) for which the norm

‖u‖Ck,γ (Ω̄) :=
∑

|α|≤k

‖Dαu‖C(Ω̄) +
∑

‖α|=k

[Dαu](γ)

is finite. It is a Banach space. We set Ck,0(Ω̄) = Ck(Ω̄).

We have the following embedding results; see Adams [1], Adams and
Fournier [2], Evans [141], and Gilbarg and Trudinger [160].

Proposition 1.13. If Ω is a bounded domain in RN , then

W k,p
0 (Ω) ↪→

⎧
⎪⎪⎨

⎪⎪⎩

Lq(Ω), kp < N, 1 ≤ q ≤ Np/(N − kp);

Cm,α(Ω̄), 0 ≤ α ≤ k −m−N/p ,

0 ≤ m < k −N/p < m + 1.

Proposition 1.14. If Ω is a bounded domain in RN , then

W k,p
0 (Ω) ↪→↪→

⎧
⎪⎪⎨

⎪⎪⎩

Lq(Ω), kp < N, 1 ≤ q < Np/(N − kp);

Cm,α(Ω̄), 0 ≤ α < k −m−N/p ,

0 ≤ m < k −N/p < m + 1.

In general, W k,p
0 (Ω) cannot be replaced by W k,p(Ω) in Proposition 1.13.

However, this replacement can be made for a large class of domains, which
includes, for example, domains with a smooth boundary.

Definition 1.15. A bounded domain Ω ⊂ RN with boundary ∂Ω. Let k be
a nonnegative integer and α ∈ [0, 1]. Ω is called Ck,α if at each point x0 ∈ ∂Ω
there is a ball B = B(x0) and one-to-one mapping ϕ from B onto D ⊂ RN

such that

(1) ϕ(B ∩Ω) ⊂ RN
+ := {x = (x1, x2, . . . , xN ) ∈ RN : xN > 0}.

(2) ϕ(B ∩ ∂Ω) ⊂ ∂RN
+ := {x = (x1, x2, . . . , xN ) ∈ RN : xN = 0}.

(3) ϕ ∈ Ck,α(B), ϕ−1 ∈ Ck,α(D).

The following proposition is due to Gilbarg and Trudinger [160, Theo-
rem 7.26].
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Proposition 1.16. Let Ω be a C0,1 domain in RN . Then

(1) If kp < N, then W k,p(Ω) ↪→ Lp∗
(Ω), where p∗ = Np/(N − kp); and

W k,p(Ω) ↪→↪→ Lq(Ω) for all q < p∗.
(2) If 0 ≤ m < k − N/p < m + 1, then W k,p(Ω) ↪→ Cm,α(Ω̄), α = k −

N/p−m; and W k,p(Ω) ↪→↪→ Cm,β(Ω̄) for any β < α.

The following proposition can be found in Brezis [64] and Willem [335].

Proposition 1.17. The following embeddings are continuous.

H1(RN ) ↪→ Lp(RN ), 2 ≤ p <∞, N = 1, 2,

H1(RN ) ↪→ Lp(RN ), 2 ≤ p ≤ 2∗, N ≥ 3,

where 2∗ := 2N/(N − 2) if N ≥ 3; 2∗ = +∞ if N = 1, 2, is called a critical
exponent.

For N ≥ 3, let

S := inf
u∈H1(RN )\{0}

‖∇u‖22
‖u‖22∗

be the best Sobolev constant. Then, by Talenti’s [321] result,

S =
‖∇U‖22
‖U‖22∗

,

where

U∗(x) =
(N(N − 2))(N−2)/4

(1 + |x|2)(N−2)/2
.

Note that if RN is replaced by a bounded domain, S is never achieved. We
frequently use the following Gagliardo–Nirenberg inequality, see Chabrowski
[88], Evans [141], and Nirenberg [231].

Proposition 1.18. For every v ∈ H1(RN ),

‖v‖p ≤ c‖∇v‖γ
2‖v‖1−γ

q

with
N

p
= γ

N − 2
2

+ (1− γ)
N

q
, q ≥ 1, γ ∈ [0, 1],

where c is a constant depending on p, γ, q,N.

Note. In this book, from time to time the letter c is indiscriminately used to
denote various constants when the exact values are irrelevant.

The following concentration-compactness lemma due to Lions [196] is also
a powerful tool in dealing with Schrödinger equations.
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Lemma 1.19. Let r > 0 and q ∈ [2, 2∗). For any bounded sequence {wn} of
E := H1(RN ), if

sup
y∈RN

∫

B(y,r)

|wn|qdx→ 0, n→∞,

where B(y, r) := {u ∈ E : ‖u − y‖ ≤ r}; then wn → 0 in Lp(RN ) for
q < p < 2∗.

Proof. We only consider N ≥ 3. Choose p1, p2, t > 1, t′ > 1 such that

p1t = q, p2t
′ = 2∗, 1/t + 1/t′ = 1, p1 + p2 = p.

By the Hölder inequality and Proposition 1.14, we have
∫

B(y,r)

|wn|pdx

≤
(∫

B(y,r)

|wn|p1tdx

)1/t(∫

B(y,r)

|wn|p2t′dx

)1/t′

≤ c

(∫

B(y,r)

|wn|p1tdx

)1/t

‖wn‖p2
2∗

≤ c

(∫

B(y,r)

|wn|p1tdx

)1/t(∫

B(y,r)

(w2
n + |∇wn|2)dx

)p2/2

≤ c

(∫

B(y,r)

|wn|p1tdx

)1/t(∫

B(y,r)

(w2
n + |∇wn|2)dx

)p2/2

.

Covering RN by balls of radius r in such a way that each point of RN is
contained in at most N + 1 balls, we have

∫

RN

|wn|pdx ≤ (N + 1)c sup
y∈RN

(∫

B(y,r)

|wn|qdx
)1/t

,

which implies the conclusion. �

1.4 Differentiable Functionals

Let E be a Banach space with the norm ‖ ·‖. Let U ⊂ E be an open set of E.
The conjugate (or dual) space of E is denoted by E′; that is, E′ denotes the
set of all bounded linear operators on E. Consider a functional G : U → R.
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Definition 1.20. The functional G has a Fréchet derivative F ∈ E′ at u ∈ U
if

lim
h∈E,h→0

G(u + h)−G(u)− F (h)
‖h‖ = 0.

We denote G′(u) = F or ∇G(u) = F and sometimes say the gradient of G
at u. Usually, G′(·) is a nonlinear operator. We use C1(U,R) to denote the set
of all functionals G that have a continuous Fréchet derivative on U . A point
u ∈ U is called a critical point of a functional G ∈ C1(U,R) if G′(u) = 0.

Definition 1.21. The functional G has a Gateaux derivative I ∈ E′ at u ∈ U
if, for every h ∈ E,

lim
t→0

G(u + th)−G(u)
t

= I(h).

The Gateaux derivative at u ∈ U is denoted by DG(u). Obviously, if G has
a Fréchet derivative F ∈ E′ at u ∈ U , then G has a Gateaux derivative
I ∈ E′ at u ∈ U and G′(u) = DG(u). Unfortunately, the converse is not true.
However, if G has Gateaux derivatives at every point of some neighborhood
of u ∈ U such that DG(u) is continuous at u, then G has a Fréchet derivative
and G′(u) = DG(u). This is a straightforward consequence of the mean value
theorem.

Sometimes, we use the concepts of the second-order Fréchet and Gateaux
derivatives.

Definition 1.22. The functional G ∈ C1(U,R) has a second-order Fréchet
derivative at u ∈ U if there is an L, which is a linear bounded operator from
E to E′, such that

lim
h∈E,h→0

G′(u + h)−G′(u)− Lh

‖h‖ = 0;

we denote G′′(u) = L.

We say that G ∈ C2(U,R) if the second-order Fréchet derivative of G
exists and is continuous on U .

Definition 1.23. The functional G ∈ C1(U,R) has a second-order Gateaux
derivative at u ∈ U if there is an L, which is a linear bounded operator from
E to E′, such that

lim
t→0

(G′(u + th)−G′(u)− Lth)v
t

= 0, ∀h, v ∈ E.

We denote D2G(u) = L.

Evidently, any second-order Fréchet derivative of G is a second-order
Gateaux derivative. Using the mean value theorem, if G has a continuous
second-order Gateaux derivative on U , then G ∈ C2(U,R).
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Definition 1.24. Let f(x, t) be a function on Ω × R, where Ω is either
bounded or unbounded. We say that f is a Carathéodory function if f(x, t)
is continuous in t for a.e. x ∈ Ω and measurable in x for every t ∈ R.

Lemma 1.25. Assume p ≥ 1, q ≥ 1. Let f(x, t) be a Carathéodory function
on Ω ×R and satisfy

|f(x, t)| ≤ a + b|t|p/q, ∀(x, t) ∈ Ω ×R,

where a, b > 0 and Ω is either bounded or unbounded. Define a Carathéodory
operator by

Ou := f(x, u(x)), u ∈ Lp(Ω).

Let {wk}∞k=0 ⊂ Lp(Ω). If ‖wk − w0‖p → 0 as k → +∞, then

‖Owk −Ow0‖q → 0

as k →∞. In particular, if Ω is bounded, then O is a continuous and bounded
mapping from Lp(Ω) to Lq(Ω) and the same conclusion is true if Ω is un-
bounded and a = 0.

Proof. Note that

(1.6) wk(x) → w0(x), a.e. x ∈ Ω.

Because f is a Carathéodory function,

(1.7) Owk(x) → Ow0(x), a.e. x ∈ Ω.

Let

(1.8) vk(x) := a + b|wk(x)|p/q, k = 0, 1, 2, . . . .

Then by (1.6)–(1.8),

(1.9) |Owk(x)| ≤ vk(x) for all x ∈ Ω; vk(x) → v0(x) a.e. x ∈ Ω.

Because
|wk|p + |w0|p − ||wk|p − |w0|p| ≥ 0,

by Fatou’s theorem, we have

(1.10)

∫

Ω

lim inf
k→+∞

(|wk|p + |w0|p − ||wk|p − |w0|p|)dx

≤ lim inf
k→+∞

∫

Ω

(|wk|p + |w0|p − ||wk|p − |w0|p|)dx.
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Combining (1.6)–(1.10), thus we see that

(1.11) lim
k→+∞

∫

Ω

||wk|p − |w0|p|dx = 0.

It follows that

(1.12)
∫

Ω

|vk − v0|qdx ≤ bq

∫

Ω

||wk|p − |w0|p|dx→ 0

as k →∞. Because there is a constant C > 0, C1 > 0 such that

|Owk −Ow0|q

≤ C(|Owk|q + |Ow0|q)

≤ C(|vk|q + |v0|q)

≤ C1(|vk − v0|q + |v0|q)

a.e. x ∈ Ω, then by Fatou’s theorem,

(1.13)

∫

Ω

lim inf
k→+∞

(C1(|vk − v0|q + |v0|q)− |Owk −Ow0|q|)dx

≤ lim inf
k→+∞

∫

Ω

(C1(|vk − v0|q + |v0|q)− |Owk −Ow0|q)dx.

By (1.7), (1.8), (1.12), and (1.13), we have

‖Owk −Ou0‖q → 0.

Finally, if Ω is bounded, then for any u ∈ Lp(Ω), evidently we have

(1.14) ‖Ou‖q ≤ c + c‖u‖p/q
p ,

where c > 0 is a constant. Equation (1.14) remains true if Ω is unbounded
and a = 0. Therefore, O is a continuous and bounded mapping from Lp(Ω)
to Lq(Ω) and the same conclusion is true if Ω is unbounded and a = 0. �

The following lemma comes from Willem [335].

Lemma 1.26. Assume p1, p2, q1, q2 ≥ 1. Let f(x, t) be a Carathéodory func-
tion on Ω ×R and satisfy

|f(x, t)| ≤ a|t|p1/q1 + b|t|p2/q2 , ∀(x, t) ∈ Ω ×R,

where a, b ≥ 0 and Ω is either bounded or unbounded. Define a Carathéodory
operator by

Ou := f(x, u(x)), u ∈ H := Lp1(Ω) ∩ Lp2(Ω).
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Define the space
E0 := Lq1(Ω) + Lq2(Ω)

with a norm

‖u‖E0

= inf{‖v‖Lq1 (Ω) + ‖w‖Lq2 (Ω) : u = v + w ∈ E0, v ∈ Lq1(Ω), w ∈ Lq2(Ω)}.

Then O = O1 + O2, where Oi is bounded continuous from Lpi(Ω) to
Lqi(Ω), i = 1, 2. In particular, O is a bounded continuous mapping from H
to E0.

Proof. Let ξ : R → [0, 1] be a smooth function such that ξ(t) = 1 for t ∈
(−1, 1); ξ(t) = 0 for t �∈ (−2, 2). Let

φ(x, t) = ξ(t)f(x, t), ψ(x, t) = (1− ξ(t))f(x, t).

We may assume that p1/q1 ≤ p2/q2. Then there are two constants d > 0,
m > 0 such that

|φ(x, t)| ≤ d|t|p1/q1 , |ψ(x, t)| ≤ m|t|p2/q2 .

Define

O1u = φ(x, u), u ∈ Lp1(Ω);

O2u = ψ(x, u), u ∈ Lp2(Ω).

Then by Lemma 1.25, Oi is bounded continuous from Lpi(Ω) to Lqi(Ω), i =
1, 2. It is readily seen that O = O1 + O2 is a bounded continuous mapping
from H to E0. �

The following theorem and its idea of proof are enough for us to see those
functionals encountered in this book are of C1.

Theorem 1.27. Assume κ ≥ 0, p ≥ 0. Let f(x, t) be a Carathéodory function
on Ω ×R and satisfy

(1.15) |f(x, t)| ≤ a|t|κ + b|t|p, ∀(x, t) ∈ Ω ×R,

where a, b > 0 and Ω is either bounded or unbounded. Define a functional

J(u) :=
∫

Ω

F (x, u)dx, where F (x, u) =
∫ u

0

f(x, s)ds.

Assume (E, ‖ · ‖) is a Sobolev Banach space such that E ↪→ Lp+1(Ω) and
E ↪→ Lκ+1(Ω); then J ∈ C1(E,R) and

J ′(u)h :=
∫

Ω

f(x, u)hdx, ∀ h ∈ E.
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Moreover, if E ↪→↪→ Lκ+1, E ↪→↪→ Lp+1, then J ′ : E → E′ is
compact.

Proof. Because E ↪→ Lκ+1(Ω) and E ↪→ Lp+1(Ω), we may find a constant
C0 > 0 such that

(1.16) ‖w‖κ+1 ≤ C0‖w‖, ‖w‖p+1 ≤ C0‖w‖, ∀w ∈ E.

Recall the Young inequality and

(|s|+ |t|)τ ≤ 2τ−1(|s|τ + |t|τ ), τ ≥ 1, s, t ∈ R.

Combining the assumptions on f , for any γ ∈ [0, 1], it is easy to check that

|f(x, u + γh)h| ≤ C1(|u|(p+1) + |h|(p+1) + |u|κ+1 + |h|κ+1),

where C1 is a constant independent of γ. Therefore, for any u, h ∈ E, by the
mean value theorem and Lebesgue theorem,

(1.17)

lim
t→0

J(u + th)− J(u)
t

= lim
t→0

∫

Ω

f(x, u + θth)hdx

=
∫

Ω

f(x, u)hdx

=: T0(u, h),

where θ ∈ [0, 1] depending on u, h, t. Obviously, T0(u, h) is linear in h.
Furthermore, by (1.16),

|T0(u, h)|

≤
∫

Ω

|f(x, u)h|dx

≤ c(‖u‖κ
κ+1‖h‖κ+1 + ‖u‖p

p+1‖h‖p+1)

≤ c(‖u‖κ + ‖u‖p)‖h‖.

It follows that T0(u, h) is linear bounded in h. Therefore, DJ(u) = T0(u, ·) ∈
E′ is the Gateaux derivative of J at u. Next, we show that DJ(u) is contin-
uous in u. Let Ou := f(x, u), u ∈ E. By Lemma 1.26, O = O1 + O2, where
O1 is bounded continuous from Lκ+1(Ω) to L(κ+1)/κ(Ω) and O2 is bounded
continuous from Lp+1(Ω) to L(p+1)/κ(Ω). For any v, h ∈ E,

|(DJ(u)−DJ(v))h|

=
∣
∣
∣
∣

∫

Ω

(f(x, u)− f(x, v))hdx

∣
∣
∣
∣
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=
∣
∣
∣
∣

∫

Ω

(Ou−Ov)hdx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Ω

(O1u + O2u−O1v −O2v)hdx

∣
∣
∣
∣

≤
∫

Ω

|O1u−O1v||h|dx +
∫

Ω

|O2u−O2v||h|dx

≤ C0‖O1u−O1v‖(κ+1)/κ‖h‖+ C0‖O2u−O2v‖(p+1)/p‖h‖.

It implies that

‖DJ(u)−DJ(v)‖E′(1.18)

≤ C0(‖O1u−O1v‖(κ+1)/κ + ‖O2u−O2v‖(p+1)/p),

where ‖ · ‖E′ is the norm in E′. If vk → u in E ⊂ Lκ+1(Ω) ∩ Lp+1(Ω), then

‖O1vk −O1u‖(κ+1)/κ → 0,

‖O2vk −O2u‖(p+1)/p → 0.

Therefore, DJ(vk) → DJ(u). This means DJ(u) is continuous in u. Hence,
J ′(u) = DJ(u); that is, J ∈ C1(E,R). Furthermore, if E ↪→↪→ Lp+1, E ↪→↪→
Lκ+1, then any bounded sequence {uk} in E has a subsequence denoted by
{uk} that converges to u0 in Lp+1(Ω) and in Lκ+1(Ω). Hence, O1(uk) →
O1(u0) in L(κ+1)/κ(Ω); O2(uk) → O2(u0) in L(p+1)/p(Ω). Finally, DJ(uk)→
DJ(u0) in E′; that is, J ′ is compact in E. �

1.5 The Topological Degree

Since the invention of Brouwer’s degree in 1912, topological degree has
become an eternal topic of every book on nonlinear functional analysis. There-
fore, we just outline the main ideas and results and omit the proofs. Readers
may consult the books of Berger [57], Chang [91], Deimling [134], Mawhin
[224], Nirenberg [234], and Zeidler [337] (also Brézis and Nirenberg [72] for
applications).

Definition 1.28. Let W ⊂ X := RN (N ≥ 1) be an open subset and a
mapping J ∈ C1(W,X). A point u ∈W is called a regular point and J(u) is
a regular value if J ′(u) : X → X is surjective. Otherwise, u is called a critical
point and J(u) is the critical value.

To construct the degree theory, we need a simplified Sard’s theorem. Refer
to Sard [266].
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Theorem 1.29. Let W ⊂ X := RN (N ≥ 1) be an open subset and J ∈
C1(W,X). Then the set of all critical values of J has zero Lebesgue measure
in X.

Definition 1.30 (Brouwer’s degree). Let W ⊂ X := RN (N ≥ 1) be a
bounded open subset, J ∈ C2(W̄ ,X), p ∈ X\J(∂W ).

(1) If p is a regular value of J , define the Brouwer degree by

deg(J,W, p) :=
∑

v∈J−1(p)

sign detJ ′(v),

where det denotes the determinant.
(2) If p is a critical value of J , choose p1 to be a regular value (by Sard’s

theorem) such that ‖p− p1‖ < dist(p, J(∂W )) and define the Brouwer
degree by

deg(J,W, p) := deg(J,W, p1).

In item (1), J−1(p) is a finite set when p is a regular value. In item (2), the
degree is independent of the choice of p1.

If J ∈ C(W̄ ,X), we may find by Weierstrass’s theorem an approximation
of J via a smooth function.

Definition 1.31 (Brouwer’s degree). Let W ⊂ X := RN (N ≥ 1) be a
bounded open subset, J ∈ C(W̄ ,X), p ∈ X\J(∂W ). Choose J̃ ∈ C2(W̄ ,X)
such that

sup
u∈W

‖J(u)− J̃(u)‖ < dist(p, J(∂W ))

and define Brouwer’s degree by

deg(J,W, p) := deg(J̃ ,W, p),

which is independent of the choice of J̃ .

Proposition 1.32. Let W ⊂ X := RN (N ≥ 1) be a bounded open subset,
J ∈ C(W̄ ,X), p ∈ X\J(∂W ).

(1)

deg(id,W, p) =
{

1, p ∈W,
0, p �∈ Ω̄,

where id is the identity.
(2) Let W1,W2 be two disjoint open subsets of W , p �∈ J(W̄\(W1 ∪W2));

then
deg(J,W, p) = deg(J,W1, p) + deg(J,W2, p).

(3) Let H ∈ C([0, 1] × W̄ ,RN ), p ∈ C([0, 1],RN ) and p(t) �∈ H(t, ∂W ).
Then deg(H(t, ·),W, p(t)) is independent of t ∈ [0, 1].
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(4) (Kronecker’s theorem) If deg(J,W, p) �= 0, then there exists a u ∈ W
such that J(u) = p.

Theorem 1.33 (Borsuk–Ulam theorem). Let W be an open bounded
symmetric neighborhood of 0 in RN . Every continuous odd map f : ∂W →
RN−1 has a zero.

Brouwer’s degree can be extended to infinite-dimensional spaces. This is
the Leray–Schauder degree for a compact perturbation of the identity.

Definition 1.34. Let E be a Banach space; M ⊂ E. A mapping J : M →
E is called compact if J(S) is compact for any bounded subset S of E.
Furthermore, if J is continuous, we say that J is completely continuous. In
this case, id− J is called a completely continuous field.

Theorem 1.35. Let E be a Banach space and M ⊂ E be a bounded closed
subset. Let J : M → E be a continuous mapping. Then J is completely
continuous if and only if, for any ε > 0, there exists a finite-dimensional
subspace En of E and a bounded continuous mapping Jn : M → En such that

sup
u∈D

‖J(u)− Jn(u)‖ < ε.

Let E be a Banach space and W ⊂ E be a bounded open subset. Let
J : W̄ → E be completely continuous and f = id− J . If p ∈ E\f(∂W ), then
by Theorem 1.35, there exists a finite-dimensional subspace En of E and a
bounded continuous mapping Jn : W̄ → En such that

sup
u∈W

‖J(u)− Jn(u)‖ < dist(p, f(∂W )).

Denote Wn = En ∩ W ; fn(u) = u − Jn(u); then fn ∈ C(W̄n, En), p ∈
En\fn(∂Wn). Hence, deg(fn,Wn, pn) is well defined.

Definition 1.36 (Leray–Schauder degree). Let f be the completely con-
tinuous field defined as above. Define the Leray–Schauder degree of f at
p ∈ E\f(∂W ) by

deg(f,W, p) = deg(fn,Wn, p),

which is independent of the choice of En, p, Jn.

Proposition 1.37. Let W ⊂ E be a bounded open subset of the Banach space
E; f = id− J is a completely continuous field, p ∈ E\f(∂W ).

(1)

deg(id,W, p) =

{
1, p ∈W,

0, p �∈ W̄ .

(2) Let W1,W2 be two disjoint open subsets of W , p �∈ f(W̄\(W1 ∪W2));
then

deg(f,W, p) = deg(f,W1, p) + deg(f,W2, p).
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(3) Let H ∈ C([0, 1]×W̄ ,E) be completely continuous, ht(u) = u−H(t, u),
p ∈ C([0, 1], E), and p(t) �∈ ht(∂W ) for each t ∈ [0, 1]. Then

deg(ht(·),W, p(t))

is independent of t ∈ [0, 1].
(4) (Kronecker’s theorem) If deg(f,W, p) �= 0, then there exists a u ∈ W

such that f(u) = p.

Theorem 1.38 (Borsuk–Ulam theorem). Let W be an open bounded
symmetric neighborhood of 0 in a Banach space E. A completely continu-
ous field f = id − J : W̄ → E, where J is odd on ∂W ; p ∈ E\f(∂W ); then
deg(f,W, p) is an odd number.

1.6 The Global Flow

Let (E, ‖ · ‖) be a Banach space. Consider the following Cauchy initial value
problem of the ordinary differential equation.

(1.19)

⎧
⎪⎨

⎪⎩

dσ

dt
= W (σ(t, u0)),

σ(0, u0) = u0 ∈ E,

where W is a potential function. We are interested in the existence of a
solution to (1.19), which plays an important role in the following chapters.
First, we prepare two auxiliary results.

Lemma 1.39 (Gronwall’s inequality). If κ ≥ 0, γ > 0 and f ∈
C([0, T ],R+) satisfies

(1.20) f(t) ≤ κ + γ

∫ t

0

f(s)ds, ∀t ∈ [0, T ],

then f(t) ≤ κeγt for all t ∈ [0, T ].

Proof. By (1.20), we observe that (d/dt)
(
e−γt

∫ t

0
f(s)ds

)
≤ κe−γt. Integra-

ting both sides on [0, t], we get the conclusion. �

Lemma 1.40 (Banach’s fixed point theorem). Let D ⊂ E be closed. Let
H : D → D satisfy

(1.21) ‖Hu−Hv‖ ≤ k‖u− v‖ for some k ∈ (0, 1) and all u, v ∈ D.

Then there exists a unique u∗ such that Hu∗ = u∗.
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Proof. Let un+1 = Hun (n = 0, 1, 2, . . .) with u0 ∈ D. Using (1.21)
repeatedly, we have ‖un+m+1−un‖ ≤ (1−k)−1kn‖u1−u0‖ → 0 as n→ +∞.
Therefore, {un} is a Cauchy sequence. The conclusion follows from the con-
tinuity of H. �

We assume

(O) W : E → E is a locally Lipschitz continuous mapping; that is, for any
u ∈ E, there exists a ball B(u, r) := {w ∈ E : ‖w−u‖ < r} with radius
r and a constant ρ > 0 depending on r and u such that

‖W (w)−W (v)‖ ≤ ρ‖w − v‖, ∀w, v ∈ B(u, r).

Moreover, ‖W (u)‖ ≤ a + b‖u‖ for all u ∈ E, where a, b > 0 are con-
stants.

Theorem 1.41. Assume (O). Then for any u ∈ E, Cauchy problem (1.19)
has a unique solution σ(t, u) (called the flow or trajectory) defined in a maxi-
mal interval [0,+∞) of t.

Proof. For any fixed u0 ∈ E, by condition (O), we find a ball B(u0, r) :=
{w ∈ E : ‖w − u0‖ < r} with radius r and a constant ρ > 0 depending on r
and u0 such that

‖W (w)−W (u0)‖ ≤ ρ‖w − u0‖, ∀w ∈ B(u0, r).

Let Λ := supB(u0,r) ‖W‖. Then Λ < +∞. Choose ε > 0 such that ερ < 1,
εΛ ≤ r. Consider the Banach space

Ê := C([0, ε], E) := {u : [0, ε] → E is a continuous function}

with the norm ‖u‖Ê := maxt∈[0,ε] ‖u(t)‖ for each u ∈ Ê. Let D := {u ∈ Ê :
‖u− u0‖Ê ≤ r}. Define a mapping H : Ê → Ê by

Hu := u0 +
∫ t

0

W (u(s))ds, u ∈ Ê.

For any u,w ∈ D we have

‖Hu− u0‖Ê ≤
∫ t

0

‖W (u(s))‖Êds ≤ Λε ≤ r

and

‖Hu−Hw‖Ê ≤ max
t∈[0,ε]

∫ t

0

‖W (u)−W (w)‖Êds ≤ ρε‖u− w‖Ê .

Therefore, H : D → D satisfies all conditions of Lemma 1.40. Hence, H has
a unique fixed point u∗ ∈ D, which is a solution of Cauchy problem (1.19).
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On the other hand, assume that u(t) and v(t) are solutions of the Cauchy
problem (1.19) corresponding to the initial data u0 and v0, respectively.
Then

‖u(t)− v(t)‖Ê

≤ ‖u0 − v0‖Ê +
∫ t

0

‖W (u(s))−W (v(s))‖Êds

≤ ‖u0 − v0‖Ê + ρ

∫ t

0

‖u(s)− v(s)‖Êds.

By Lemma 1.39, ‖u(t)− v(t)‖Ê ≤ ‖u0− v0‖Êeρt. This proves the continuous
dependence on the initial data of solution of (1.19).

Summing up, (1.19) has a unique solution u(t) on the maximal existence
interval [0, �] which is continuously dependent on the initial data. Next, we
just show that � = +∞. Assume that � < +∞; then

u(t) = u0 +
∫ t

0

W (u(s))ds.

Then by (O),

‖u(t)‖ ≤ ‖u0‖+ a� + b

∫ t

0

‖u(s)‖ds.

Lemma 1.39 implies that there is a constant C1 dependent on u0, �, a, and b
such that ‖u(t)‖ ≤ C1. It follows that

‖u(t)− u(s)‖ ≤ C2|t− s|.

This implies that the limit limt→	− u(t) = u1 exists. Consider the following
Cauchy initial value problem.

(1.22)

⎧
⎪⎨

⎪⎩

dσ

dt
= W (σ(t, u)),

σ(0, u1) = u1 ∈ E.

Similarly, it has a unique solution ū(t) on a maximal interval [0, �1] with
initial data u1 = u(�− 0). Let

v(t) =

{
u(t), t ∈ [0, �],

ū(t− �), t ∈ [�, � + �1],

Then v(t) is also a solution of (1.19) with the initial data u0 on the maximal
interval [0, � + �1]. This is a contradiction. �
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1.7 The Local Flow

Let (E, ‖ · ‖) be a Banach space. Sometimes, we cannot expect the global
existence of the flow. But we have the following local results of the flow.

Theorem 1.42. Let u0 ∈ E,R > 0, B(u0, R) := {w ∈ E : ‖w − u0‖ < R}.
Assume that W : B(u0, R) → E is Lipschitz continuous:

‖W (u)−W (v)‖ ≤ K‖u− v‖ for all u, v ∈ B(u0, R).

Then the following initial value problem

(1.23)
dσ(t, u0)

dt
= −W (σ(t, u0)), σ(0, u0) = u0,

has a unique solution σ : [−δ, δ] → B(u0, R), where

0 < δ < min{R/M ′, 1/K}, M ′ := sup
u∈B(u0,R)

‖W (u)‖.

Proof. First, we note that

‖W (u)‖ ≤ ‖W (u)−W (u0)‖+ ‖W (u0)‖

≤ K‖u− u0‖+ ‖W (u0)‖

< ∞,

thus it follows that M ′ <∞. Define

C([−δ, δ], E) := {u(t) : [−δ, δ] → E is continuous}.

Then C([−δ, δ], E) is a Banach space with the norm ‖u‖C := maxt∈[−δ,δ]

‖u(t)‖. Let

D := {u(t) ∈ C([−δ, δ], E) : ‖u(t)− u0‖ ≤ R, ∀ t ∈ [−δ, δ]}.

Then D is a closed subset of C([−δ, δ], E) with respect to the norm ‖ · ‖C.
Define

Fu(t) = u0 −
∫ t

0

W (u(t))dt.

Then the solution of (1.23) is equivalent to the fixed point of F . For each
u(t) ∈ D, we observe that

(1.24) ‖Fu(t)− u0‖ =
∥
∥
∥
∥

∫ t

0

W (u(t))dt
∥
∥
∥
∥ ≤M ′δ < R;
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it follows that F maps D into D. For any u(t), v(t) ∈ D,

‖Fu(t)− Fv(t)‖

≤
∥
∥
∥
∥

∫ t

0

(W (u)−W (v))dt
∥
∥
∥
∥

≤ Kδ

(

max
t∈[−δ,δ]

‖u(t)− v(t)‖
)

≤ Kδ‖u− v‖C;

then
‖Fu− Fv‖C ≤ Kδ‖u− v‖C.

Note that Kδ < 1; then by Lemma 1.40, F has only one fixed point σ(t, u0)
in D. By (1.24), σ(t, u0) ∈ B(u0, R). �

Theorem 1.43. Let U be an open subset of E and W : U → E is locally
Lipschitz continuous. Then the following initial value problem

(1.25)
dσ(t, u0)

dt
= −W (σ(t, u0)), σ(0, u0) = u0 ∈ U,

has a unique solution σ : [0, T (u0)) → U , where T (u0) ∈ (0,∞] is the maximal
time of the existence of the flow with initial data u0. If T (u0) < +∞ and
limt→T (u0)−0 σ(t, u0) = u∗

0, then u∗
0 ∈ ∂U .

Proof. By Theorem 1.42, there exists a δ1 > 0 such that (1.25) has a unique
solution σ1(t, u0) : [0, δ1] → U . Let w0 = σ1(δ1, u0) ∈ U . Because W is locally
Lipschitz continuous at w0, we may find a δ2 > 0 such that the problem

(1.26)
dσ(t, w0)

dt
= −W (σ(t, w0)), σ(0, w0) = w0,

has a unique solution σ2(t, w0) : [0, δ2] → U . Define

σ(t, u0) :=

{
σ1(t, u0), t ∈ [0, δ1],

σ2(t− δ1, σ1(δ1, u0)), t ∈ [δ1, δ1 + δ2].

Then σ(t, u0) : [0, δ1 + δ2] → U is also a solution of (1.25); that is, σ1(t, u0)
can be extended to σ(t, u0) from [0, δ1] to [0, δ1 + δ2]. Keep going. We may
assume that σ1(t, u0) is extended to an interval [0, λ) on the right-hand side
of 0.

Next, we show that the solution of (1.25) on [0, λ) is unique. Assume by
negation that (1.25) has two solutions ξ1(t, u0) and ξ2(t, u0) on [0, λ). Let

O = {t ∈ (0, λ) : ξ1(t, u0) = ξ2(t, u0)}.
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By Theorem 1.42, there exists a δ > 0 and a ball Bu0 centered at u0 such that
(1.25) has a unique solution σ∗(t, u0) : [−δ, δ] → Bu0 . If necessary, we may
choose δ so small that ξ1(t, u0), ξ2(t, u0) ∈ Bu0 for all t ∈ [0, δ]. For i = 1, 2,
define

ηi(t, u0) :=

{
σ∗(t, u0), t ∈ [−δ, 0),

ξi(t, u0), t ∈ [0, δ].

Then ηi(t, u0) : [−δ, δ] → Bu0 (i = 1, 2) are two solutions of (1.25). By
Theorem 1.42, we know that

ξ1(t, u0) = ξ2(t, u0), ∀ t ∈ [0, δ].

Therefore, O is a nonempty closed subset of [0, λ). Take any t0 ∈ O; then
ξ1(t0, u0) = ξ2(t0, u0) := h. By Theorem 1.42, there exists a δ3 > 0 and a ball
Bh centered at h such that (1.25) has a unique solution σ∗∗(t, h) : [−δ3, δ3]→
Bh. But, we know that ξ1(t+ t0, u0), ξ2(t+ t0, u0) for all t ∈ [−δ3, δ3] are also
solutions of (1.25) if δ3 is small enough; we must have

ξ1(t + t0, u0) = ξ2(t + t0, u0), ∀ t ∈ [−δ3, δ3].

That is, (t0−δ3, t0+δ3) ⊂ O. Therefore, O is not only closed but also open in
[0, λ). Therefore, O = [0, λ). This shows that the solution of (1.25) on [0, λ) is
unique. Obviously, by the above arguments, we may get a maximal interval
[0, T (u0)) of the right-hand side of 0 for the unique solution. Otherwise, we
can continue to extend the solution. Here T (u0) ≤ +∞. Finally, if T (u0) <
+∞ and limt→T (u)−0 σ(t, u0) = u∗

0, then u∗
0 ∈ ∂U . Indeed, if u∗

0 �∈ ∂U ,
then u∗

0 ∈ U . Because U is open and W is locally Lipschitz continuous, by
Theorem 1.42, we may get the solution starting from u∗

0 defined on a small
interval [0, ε). Pasting the solutions defined on [0, T (u0)) and on [0, ε), we get
a solution defined on [0, T (u0) + ε). This contradicts the fact that [0, T (u0))
is maximal. �

The following theorem reveals the continuous dependence of the solution
of (1.25) on the initial data.

Theorem 1.44. Let U be an open subset of E and W : U → E is locally
Lipschitz continuous. Let σ : [0, T (u0)) → U be the unique solution of the
initial value problem (1.25) with initial data u0 ∈ U , where T (u0) ∈ (0,∞]
is the maximal time of the existence of the flow with initial data u0. Then,
for each λ ∈ (0, T (u0)) and ε > 0, there exists an r > 0 such that for each
v ∈ B(u0, r) := {w ∈ E : ‖w − u0‖ < r}, T (v), the maximal time of the
existence of the flow with initial data v, is greater than λ and

‖σ(t, u0)− σ(t, v)‖ ≤ ε, ∀t ∈ [0, λ];

hence, σ(t, v)→ σ(t, u0) uniformly for t ∈ [0, λ] as v → u0.
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Proof. Because W : U → E is locally Lipschitz, there is an R > 0,K > 0
such that

‖W (u)−W (v)‖ ≤ K‖u− v‖
for all u, v ∈ B(u0, R) := {w ∈ W : ‖w − u0‖ < R}. By Theorem 1.42, the
initial value problem

(1.27)
dσ(t, u0)

dt
= −W (σ(t, u0)), σ(0, u0) = u0,

has a unique solution σ : [−δ, δ] → E, σ(t, u0) ∈ B(u0, R) for all t ∈ [−δ, δ],
where

(1.28) 0 < δ := δ(R) < min{R/M ′, 1/K}, M ′ := sup
u∈B(u0,R)

‖W (u)‖.

The above arguments remain true if we replace R by R/5 and in this case, δ
becomes δ/5 . This observation is useful in the following step.

Step 1. Take any t1 ∈ [−δ/5, δ/5]; let u1 = σ(t1, u0). We show that for any
u∗

1 with ‖u∗
1 − u1‖ < R/5, the solution σ(t, u∗

1) with initial data u∗
1 exists on

[−δ/5, δ/5]. Moreover,

‖σ(t, u∗
1)− σ(t + t1, u0)‖ ≤ 3‖u∗

1 − u1‖ ∀t ∈
[

−δ

5
,
δ

5

]

.

In fact, when t1 ∈ [−δ/5, δ/5] and ‖u∗
1 − u1‖ < R/5, note that σ(t1, u0) ∈

B(u0, R/5), then ‖u∗
1 − u0‖ ≤ R/5 + ‖u1 − u0‖ ≤ R/5 + R/5 = 2R/5. Let

B(u∗
1, R/5) := {w ∈ E : ‖w − u∗

1‖ ≤ R/5}.

Then B(u∗
1, R/5) ⊂ B(u0, 3R/5) ⊂ B(u0, R). Therefore, σ(t, u∗

1) exists on
[−δ/5, δ/5]. Because

σ(t, u1) = u1 −
∫ t

0

W (σ(s, u1))ds,

σ(t, u∗
1) = u∗

1 −
∫ t

0

W (σ(s, u∗
1))ds,

for all t ∈ [−δ/5, δ/5], we see that

‖σ(t, u1)− σ(t, u∗
1)‖

≤ ‖u1 − u∗
1‖+ K

∫ t

0

‖σ(s, u1)− σ(s, u∗
1)‖ds



24 1 Preliminaries

for all t ∈ [0, δ/5]. By Lemma 1.39 (Gronwall’s inequality), we have that

‖σ(t, u1)− σ(t, u∗
1)‖ ≤ eKt‖u1 − u∗

1‖

for all t ∈ [0, δ/5]. In a similar way, this is also true for t ∈ [−δ/5, 0]. Hence,

(1.29) ‖σ(t, u1)− σ(t, u∗
1)‖ ≤ e2δK/5‖u1 − u∗

1‖

for all t ∈ [−δ/5, δ/5]. Finally,

σ(t, u1) ≡ σ(t + t1, u0), ∀t ∈ [−δ/5, δ/5].

Combining this with (1.29) and (1.28), we get the conclusion stated in the
beginning of Step 1.

Step 2. Take λ ∈ (0, T (u0)) and ε > 0. Any t∗ ∈ [0, λ] and let u∗ = σ(t∗, u0).
By Step 1, there are δ(t∗) > 0, R(t∗) > 0 such that for any s∗ ∈ [−δ(t∗), δ(t∗)],
σ(s∗, u∗) = σ(t∗+s∗, u0), as long as ‖w−σ(t∗+s∗, u0)‖ < R(t∗), the solution
σ(t, w) exists on [−δ(t∗), δ(t∗)] and

(1.30) ‖σ(t, w)− σ(t + t∗ + s∗, u0)‖ ≤ 3‖w − σ(t∗ + s∗, u0)‖

for all t ∈ [−δ(t∗), δ(t∗)]. Consider the covering of [0, λ]:

{(t∗ − δ(t∗), t∗ + δ(t∗)) : t∗ ∈ [0, λ]}.

Then we have a finite covering of [0, λ]. We denote it by

(t∗i − δ(t∗i ), t
∗
i + δ(t∗i )), i = 1, 2, . . . ,m.

Without loss of generality, we assume that

0 = t∗1 < t∗2 < · · · < t∗m = λ;(1.31)

t∗1 + δ(t∗1) ∈ (t∗2 − δ(t∗2), t
∗
2 + δ(t∗2));(1.32)

t∗1 + δ(t∗1) + δ(t∗2) ∈ (t∗3 − δ(t∗3), t
∗
3 + δ(t∗3));(1.33)

t∗1 + δ(t∗1) + δ(t∗2) + δ(t∗3) ∈ (t∗4 − δ(t∗4), t
∗
4 + δ(t∗4));(1.34)

· · ·

δ(t∗1) + δ(t∗2) + δ(t∗3) + · · ·+ δ(t∗m) > λ.(1.35)

Let

(1.36) r =
1

3m+3
min{R(t∗1), . . . , R(t∗m), ε}.

Now, for each v ∈ B(u0, r), let s∗1 = 0; then ‖v − u0‖ = ‖v − σ(t∗1 +
s∗1, u0)‖ < r < R(t∗1). The argument for (1.30) implies that σ(t, v) exists
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on [−δ(t∗1), δ(t
∗
1)] and that

(1.37) ‖σ(t, v)− σ(t + t∗1 + s∗1, u0)‖ ≤ 3‖v − σ(t∗1 + s∗1, u0)‖ < 3r < ε

for all t ∈ [−δ(t∗1), δ(t
∗
1)]. Hence,

(1.38) ‖σ(δ(t∗1), v)− σ(δ(t∗1) + t∗1 + s∗1, u0)‖ < 3r.

Choose s∗2 = δ(t∗1) + t∗1 + s∗1 − t∗2; then by (1.32), we see that s∗2 ∈
(−δ(t∗2), δ(t

∗
2)). Thus, (1.38) becomes

(1.39) ‖σ(δ(t∗1), v)− σ(t∗2 + s∗2, u0)‖ < 3r < R(t∗2).

The argument for (1.30) implies that σ(t, σ(δ(t∗1), v)) exists on [−δ(t∗2), δ(t
∗
2)]

and

‖σ(t, σ(δ(t∗1), v))− σ(t + t∗2 + s∗2, u0)‖(1.40)

= ‖σ(t + δ(t∗1), v)− σ(t + t∗2 + s∗2, u0)‖

≤ 3‖σ(δ(t∗1), v)− σ(t∗2 + s∗2, u0)‖

= 3‖σ(δ(t∗1), v)− σ(δ(t∗1) + t∗1 + s∗1, u0)‖

< 32r

for all t ∈ [−δ(t∗2), δ(t
∗
2)]. This is also true if v = u0; that is,

(1.41) ‖σ(t + δ(t∗1), u0)− σ(t + t∗2 + s∗2, u0)‖ < 32r.

By Equations (1.40) and (1.41), we have

(1.42) ‖σ(t + δ(t∗1), v)− σ(t + δ(t∗1), u0)‖ < 2 · 32r < ε

for all t ∈ [−δ(t∗2), δ(t
∗
2)].

In (1.42), we choose t = δ(t∗2) and s∗3 = δ(t∗2) + t∗2 + s∗2 − t∗3; then by (1.33),
s∗3 ∈ [−δ(t∗3), δ(t

∗
3)]. Moreover,

(1.43) ‖σ(δ(t∗2) + δ(t∗1), v)− σ(δ(t∗3 + s∗3), u0)‖ < 32r < R(t∗3).

The argument for (1.30) implies that

σ(t, σ(δ(t∗1) + δ(t∗2), v)) = σ(t + δ(t∗1) + δ(t∗2), v)

exists on [−δ(t∗3), δ(t
∗
3)] and

‖σ(t, σ(δ(t∗1) + δ(t∗2), v))− σ(t + t∗3 + s∗3, u0)‖(1.44)

= ‖σ(t + δ(t∗1) + δ(t∗2), v)− σ(t + t∗3 + s∗3, u0)‖
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≤ 3‖σ(δ(t∗1) + δ(t∗2), v)− σ(δ(t∗2) + t∗2 + s∗2, u0)‖
< 33r

for all t ∈ [−δ(t∗3), δ(t
∗
3)]. This is also true if v = u0; that is,

(1.45) ‖σ(t + δ(t∗1) + δ(t∗2), u0)− σ(t + t∗3 + s∗3, u0)‖ < 33r.

By (1.44) and (1.45), we have

(1.46) ‖σ(t + δ(t∗1) + δ(t∗2), v)− σ(t + δ(t∗1) + δ(t∗2), u0)‖ < 2 · 33r < ε

for all t ∈ [−δ(t∗3), δ(t
∗
3)]. Combine (1.37), (1.42), and (1.46). We know that

σ(t, v) exists on [0, δ(t∗1) + δ(t∗2) + δ(t∗3)] and

‖σ(t, v)− σ(t, u0)‖ < ε, t ∈ [0, δ(t∗1) + δ(t∗2) + δ(t∗3)].

We continue this procedure, we observe that σ(t, v) exists on

[0, δ(t∗1) + · · ·+ δ(t∗m)]

and
‖σ(t, v)− σ(t, u0)‖ < ε, t ∈ [0, δ(t∗1) + · · ·+ δ(t∗m)].

This completes the proof of the theorem because δ(t∗1) + · · ·+ δ(t∗m) > λ. �

Remark 1.45. From the proof of Theorem 1.44, it is easily seen that the unique
solution σ(t, u) to (1.19) obtained in Theorem 1.41 is continuously dependent
on the initial data u. Hence, σ ∈ C1([0,+∞)× E,E).

Sometimes, we have to consider the local flow that starts from a point in a
closed subset and does not leave that set. We first have a necessary condition
for the existence of this kind of local flow.

Lemma 1.46. Assume that M is a closed subset of E. Let W ∈ C(M, E),
u0 ∈M. There exists a δ > 0 such that the initial value problem

(1.47)

⎧
⎪⎨

⎪⎩

dσ(t, u0)
dt

= W (σ(t, u0))

σ(0, u0) = u0

has a solution σ(t, u0) : [0, δ] →M. Then

(1.48) lim
λ→0+

dist (u0 + λW (u0),M)
λ

= 0.

Proof. Note that

σ(λ, u0) = u0 + λσ′(0, u0) + o(λ), λ→ 0+.
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If λ→ 0+, then σ(λ, u0) ∈M. Hence,

dist (u0 + λW (u0),M)
λ

≤ ‖u0 + λW (u0)− σ(λ, u0)‖
λ

=
o(λ)
λ

,

which implies the conclusion of the lemma. �

We observe that (1.48) holds automatically if u0 is an interior point of
M. This means that (1.48) is actually a boundary condition. The next
result is about the existence of a polygonal approximation of the solution
of (1.47).

Lemma 1.47. Assume that M is a closed subset of E. Let W ∈ C(M, E),
and u0 ∈ M. There exist M ′ > 0, b > 0 such that ‖W (u)‖ ≤ M ′ for all
u ∈ M ∩ B(u0, b), where B(u0, b) := {u ∈ E : ‖u − u0‖ ≤ b}. Moreover,
assume that

(1.49) lim
λ→0+

dist(u + λW (u),M)
λ

= 0, ∀u ∈M.

Let εn ∈ (0, 1), εn → 0 as n→∞. Then for each n there is a

σn ∈ C
([

0,
b

M ′ + 1

]

, B(u0, b)
)

and a sequence 0 = tn0 < tn1 < tn2 < · · · < tni < · · · → b/(M ′ + 1) as i → ∞
such that

(1) tni − tni−1 ≤ εn, i = 1, 2, . . . ;
(2) σn(0, u0) = u0, ‖σn(t, u0) − σn(s, u0)‖ ≤ (M ′ + 1)|t − s|, ∀s, t ∈[

0, b
M ′+1

]
;

(3) σn(tni−1, u0) ∈ M ∩ B(u0, b) and σn(t, u0) is linear on [tni−1, t
n
i ] for

i = 1, 2, . . . ;
(4)

∥
∥σn(tn

i ,u0)−σn(tn
i−1,u0)

tn
i −tn

i−1
−W (σn(tni−1, u0))

∥
∥ ≤ εn;

(5) If u ∈M∩B(u0, b) with ‖u−σn(tni−1, u0)‖ ≤ (M ′ +1)(tni − tni−1), then
‖W (u)−W (σn(tni−1, u0))‖ ≤ εn.

Proof. For each fixed n ≥ 1, we prove the lemma by induction. Obviously,
we may find a tn1 > 0 and construct a σn(t, u0) on [0, tn1 ] that satisfies (1)–
(5). Suppose that σn(t, u0) is well defined on [0, tni−1] (tni−1 < b/(M ′ + 1))
and satisfies (1)–(5) above. Now we find tni > 0 and define σn(t, u0) on
[tni−1, t

n
i ]. Let γi ∈ [0, εn] denote the maximal number that has the following

properties.
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(i) tni−1 + γi ≤ b
M ′+1 ;

(ii) If u ∈M∩B(u0, b) with ‖u− σn(tni−1, u0)‖ ≤ (M ′ + 1)γi, then

‖W (u)−W (σn(tni−1, u0))‖ ≤ εn;

(iii) dist
(
σn(tni−1, u0) + γiW (σn(tni−1, u0)),M

)
≤ εnγi/2.

Here, the existence of the maximal γi is obvious. In fact, (iii) comes from
(1.49). Now we choose tni = tni−1 + γi. By (iii), we take z ∈M such that

(1.50) ‖σn(tni−1, u0) + (tni − tni−1)W (σn(tni−1, u0))− z‖ ≤ εn(tni − tni−1).

Define
(1.51)

σn(t, u0) =
z − σn(tni−1, u0)

tni − tni−1

(t− tni−1) + σn(tni−1, u0), ∀t ∈ [tni−1, t
n
i ].

Then σn(tni , u0) = z ∈M. By (1.50), we have

(1.52)
∥
∥
∥
∥
σn(tni , u0)− σn(tni−1, u0)

(tni − tni−1)
−W (σn(tni−1, u0))

∥
∥
∥
∥ ≤ εn;

this is (4). By it, we have

‖σn(t, u0)− σn(s, u0)‖ =
∥
∥
∥
∥
σn(tni , u0)− σn(tni−1, u0)

tni − tni−1

∥
∥
∥
∥ |t− s|

≤ |t− s|(‖W (σn(tni−1, u0))‖+ εn)

≤ (M ′ + 1)|t− s|.

Therefore, (2) holds on [0, tni ]. Furthermore,

‖σn(tni , u0)− u0‖

≤
i∑

j=1

‖σn(tnj , u0)− σn(tnj−1, u0)‖

≤ (M ′ + 1)
i∑

j=1

(tnj − tnj−1)

= (M ′ + 1)(tni )

≤ b;

that is, σn(tni , u0) ∈ B(u0, b). It follows (3). In view of (ii), (5) is evident. If
tni → b/(M ′ + 1) as i→∞, then, by (2) there exists limt→b/(M ′+1) σn(t, u0) =
ū ∈ B(u0, b). Let σn(b/(M ′ + 1), u0) = ū. Then σn(t, u0) is what we
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want. Therefore, to finish the proof of the lemma, it suffices to show that
tni → b/(M ′ + 1) as i→∞. By negation, if tni → s0 < b/(M ′ + 1) as i→∞.
By (2), we know that there exists a limit:

lim
i→∞

σn(tni , u0) = z∗ ∈M∩B(u0, b).

By the continuity of W , we have a ρ > 0 such that ‖W (w)−W (z∗)‖ ≤ εn/3
as long as ‖w − z∗‖ ≤ 2(M ′ + 1)ρ. By (1.49), there exists an ε0 > 0 small
enough such that

(1.53) dist (z∗ + ε0W (z∗),M) ≤ ε0εn/3.

Choose i0 large enough such that

(1.54) s0 − tni < ε0, ‖z∗ − σn(tni , u0)‖ ≤ ε0(M ′ + 1), i ≥ i0.

Thus, for t ∈ [tni , tni + ε0], i ≥ i0, w ∈ M∩B(u0, b), and ‖w − σn(tni , u0)‖ ≤
(M ′ + 1)ε0, then

‖w − z∗‖ ≤ ‖w − σn(tni , u0)‖+ ‖σn(tni , u0)− z∗‖

≤ 2ε0(M ′ + 1) < 2ρ(M ′ + 1)

because ε0 > 0 was taken small enough. It follows that

‖W (w)−W (σn(tni , u0))‖

≤ ‖W (w)−W (z∗)‖+ ‖W (z∗)−W (σ(tni , u0))‖

≤ 2
3
εn.

In items (i)–(iii), if we replace γi+1 by ε0, (i)–(ii) are still true. By (1.54), we
see that ε0 > γi+1 (i ≥ i0). Because γi+1 is maximal, then (iii) is not true for
ε0. That is,

dist (σn(tni , u0) + ε0W (σn(tni , u0)),M) > εnε0/2, i ≥ i0.

Passing the limit as i→∞, we get that

dist (z∗ + ε0W (z∗),M) > εnε0/2,

which contradicts (1.53). �

Theorem 1.48. Assume that M is a closed subset of E. Let W ∈ C(M, E),
u0 ∈ M. There exists an M ′ > 0, b > 0 such that ‖W (u)‖ ≤ M ′ for all
u ∈ M ∩ B(u0, b), where B(u0, b) := {u ∈ E : ‖u − u0‖ ≤ b}. Moreover,
assume that
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(1.55) lim
λ→0+

dist (u + λW (u),M)
λ

= 0, ∀u ∈M.

Let g ∈ C([0,∞),R) be a nondecreasing function with g(0) = 0 and the
following ODE

(1.56) u′(t) = g(u(t)), u(0) = 0

has only the trivial solution 0. Furthermore, assume that

(1.57) ‖W (u)−W (v)‖ ≤ g(‖u− v‖), u, v ∈M∩B(u0, b).

Then the initial value problem

(1.58)

⎧
⎪⎨

⎪⎩

dσ(t, u0)
dt

= W (σ(t, u0)),

σ(0, u0) = u0,

has a unique solution

σ(t, u0) :
[

0,
b

M ′ + 1

]

→M∩B(u0, b) ⊂M.

Proof. By Lemma 1.47, for each n ≥ 1, there is a

σn(t, u0) ∈ C
([

0,
b

M ′ + 1

]

, B(u0, b)
)

that satisfies (1)–(5). Now we show that the sequence {σn(t, u0)} is convergent
uniformly in [0, b/(M ′ + 1)]. Let

π(t) := ‖σn(t, u0)− σm(t, u0)‖, t ∈
[

0,
b

M ′ + 1

]

.

For each t ∈ [0, b/(M ′ + 1)], we may assume that t ∈ (tni , tni+1) ∩ (tmj , tmj+1)
for some i and j. Then by Lemma 1.47, we may estimate the Dini derivative
D+π(t) of π(t) as the following.

D+π(t) = lim sup
h→0+

π(t + h)− π(t)
h

≤ ‖σ′
n(t, u0)− σ′

m(t, u0)‖

=

∥
∥
∥
∥
∥

σn(tni+1, u0)− σn(tni , u0)
tni+1 − tni

−
σm(tmj+1, u0)− σm(tmj , u0)

tmj+1 − tmj

∥
∥
∥
∥
∥
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≤
∥
∥
∥
∥
σn(tni+1, u0)− σn(tni , u0)

tni+1 − tni
−W (σn(tni , u0))

∥
∥
∥
∥

+‖W (σn(tni , u0))−W (σm(tmj , u0))‖

+

∥
∥
∥
∥
∥

σm(tmj+1, u0)− σm(tmj , u0)
tmj+1 − tmj

−W (σm(tmj , u0))

∥
∥
∥
∥
∥

≤ g(‖σn(tni , u0)− σm(tmj , u0)‖) + (εn + εm).(1.59)

Note that

‖σn(tni , u0)− σm(tmj , u0)‖

≤ ‖σn(tni , u0)− σn(t, u0)‖+ ‖σn(t, u0)− σm(t, u0)‖

+‖σm(t, u0)− σm(tmj , u0)‖

≤ (M ′ + 1)(εn + εm) + π(t)

:= κ(t).

Keeping in mind (1.59), we have

D+κ(t) ≤ g(κ(t)) + (M ′ + 1)(εn + εm).

It is routine to show that

(1.60) π(t) ≤ κ(t) ≤ ξnm(t), t ∈
[

0,
b

M ′ + 1

]

,

where ξnm(t) is the maximal solution of the ODE

u′(t) = g(u) + (M ′ + 1)(εn + εm), u(0) = (M ′ + 1)(εn + εm).

Because (M ′ + 1)(εn + εm) → 0 as n,m → ∞, ξnm(t) → ξ(t) uniformly for
t ∈ [0, b/(M ′ + 1)] and ξ(t) is a solution of

u′(t) = g(u), u(0) = 0.

Therefore, by the assumption of the theorem, (1.56) has only the trivial
solution 0. Then ξ(t) = 0 for all t ∈ [0, b/(M ′ + 1)]. Combine (1.60); the
sequence {σn(t, u0)} is convergent uniformly in [0, b/(M ′ + 1)] and its limit
σ(t, u0) ∈ C ([0, b/(M ′ + 1)], B(u0, b)) . Evidently, σ(t, u0) ∈M. To complete
the proof of the theorem, we have only to show that

(1.61) σ(t, u0) = u0 +
∫ t

0

W (σ(s, u0))ds, t ∈
[

0,
b

M ′ + 1

]

.
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For each t ∈ [0, b/(M ′ + 1)], we may assume that t ∈ [tni , tni+1] for some i, n.
Then we have that

∥
∥
∥
∥σn(t, u0)− u0 −

∫ t

0

W (σn(s, u0))ds
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
σn(t, u0)− σn(tni , u0)−

∫ t

tn
i

W (σn(s, u0))ds

∥
∥
∥
∥
∥

+
i∑

j=1

∥
∥
∥
∥
∥
σn(tnj , u0)− σn(tnj−1, u0)−

∫ tn
j

tn
j−1

W (σn(s, u0))ds

∥
∥
∥
∥
∥

.

By (4)–(5) of Lemma 1.47, we get that
∥
∥
∥
∥
∥
σn(tnj , u0)− σn(tnj−1, u0)−

∫ tn
j

tn
j−1

W (σn(s, u0))ds

∥
∥
∥
∥
∥

≤ ‖σn(tnj , u0)− σn(tnj−1, u0)− (tnj − tnj−1)W (σn(tnj−1, u0))‖

+
∫ tn

j

tn
j−1

‖W (σn(tnj−1, u0))−W (σn(s, u0))‖ds

≤ 2εn(tnj − tnj−1).

Similarly, we have that
∥
∥
∥
∥
∥
σn(t, u0)− σn(tni , u0)−

∫ t

tn
i

W (σn(s, u0))ds

∥
∥
∥
∥
∥
≤ 2εn(t− tni ).

It follows that

(1.62)
∥
∥
∥
∥σn(t, u0)− u0 −

∫ t

0

W (σn(s, u0))ds
∥
∥
∥
∥ ≤ 2εnt.

Recall (1.57) and note that σn(t, u0) → σ(t, u0) uniformly in [0, b/(M ′ + 1)]
as n→∞; thus we readily have

∫ t

0

W (σn(s, u0))ds→
∫ t

0

W (σ(s, u0))ds

uniformly for t in [0, b/(M ′ + 1)]. Combining this with (1.62), we get (1.61).
That is, σ(t, u0) is the solution we want. Finally, we show the unique-
ness of the solution. Assume that there is another solution σ̃(t, u0) in
[0, b/(M ′ + 1)]. Let π̃(t) = ‖σ(t, u0) − σ̃(t, u0)‖, then π̃(0) = 0 and the Dini
derivative
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D+π̃(t) ≤ ‖σ′(t, u0)− σ̃′(t, u0)‖

≤ ‖W (σ(t, u0))−W (σ̃(t, u0))‖

≤ g(‖σ(t, u0)− σ̃(t, u0)‖)

= g(π̃(t)).

It follows that π̃(t) ≡ 0 because the problem (1.56) has only a trivial solution.
This completes the proof of the theorem. �

The following theorem is an immediate consequence of Theorem 1.48.

Theorem 1.49. Assume E is a Banach space, O ⊂ E is an open subset,
M ⊂ O is a closed subset of E, W : O → E is locally Lipschitz continuous,
and

lim
λ→0+

dist(u + λW (u),M)
λ

= 0, ∀u ∈M.

Then for any given u0 ∈ M, there exists a δ > 0 such that the initial value
problem

(1.63)

⎧
⎪⎨

⎪⎩

dσ(t, u0)
dt

= W (σ(t, u0))

σ(0, u0) = u0

has a unique solution σ(t, u0) defined on [0, δ). Moreover, σ(t, u0) ∈ M for
all t ∈ [0, δ).

Notes and Comments. The ideas of Theorems 1.42–1.44 can be traced back
to Berger [57], Deimling [133], and Martin [221, 222]. Their proofs can also
be found in Guo [163]. Lemma 1.47 and Theorem 1.48 are taken from Guo
and Sun [164] and Lakshmikantham and Leela [188]. Theorem 1.49 can be
found in Brezis [65] (see also Deimling [133, 134] and Chang [94]). We also
refer readers to Barbu [26], Deimling [133], and Martin [222] for other results
on ODEs in abstract spaces.

1.8 The (PS) Condition

Let (E, ‖ · ‖) be a Banach space and (·, ·) denote the pairing of E with its
dual space. Our purpose is to find the critical points, that is, solve

(1.64) J ′(u) = 0,

where J is a C1 functional on a Banach space E. Equation (1.64) is called
the Euler–Lagrange equation of the functional J . However, under many cir-
cumstances, we just can derive a sequence {un} ⊂ E such that
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J(un) → c, J ′(un) → 0.

Obviously, to get a solution of (1.64), some kinds of compactness conditions
are necessary.

Definition 1.50. Any sequence {un} satisfying

(1.65) sup
n
|J(un)| <∞, J ′(un) → 0,

is called a Palais–Smale sequence ((PS) sequence, for short). If any (PS)
sequence of J possesses a convergent subsequence, we say that J satisfies the
(PS) condition.

The original idea of the (PS) condition was introduced by Palais [239],
Smale [305] and Palais and Smale [240] (see also H. Brézis et al. [67]). The
following weak version of the (PS) condition was proposed in Cerami [84].

Definition 1.51. Any sequence {un} satisfying

(1.66) sup
n
|J(un)| <∞, (1 + ‖un‖)J ′(un) → 0,

is called a weak Palais–Smale sequence (in short, w-PS sequence). If any
weak (PS) sequence of J possesses a convergent subsequence, we say that
J satisfies the w-PS condition. If the supremum in (1.66) is replaced by:
J(un) → c as n →∞, we say that J satisfies the w-PS at level c, written as
(w-PS)c.

Theorem 1.52. Let E be a Banach space, J ∈ C1(E,R). Assume

J ′(u) = Lu + I ′(u), u ∈ E,

where L : E → E′ is a bounded linear invertible operator and I ′ maps bounded
sets to relatively compact sets in E′. Then any bounded (PS)-sequence or weak
(PS)-sequence is relatively compact.

Proof. Let {un} be a bounded (PS)-sequence or weak (PS)-sequence, then
J ′(un) → 0. The conclusion follows from the relative compactness of I ′ and
un = L−1J ′(un)− L−1I ′(un). �

Assume that J ∈ C1(E,R). Let K := {u ∈ E : J ′(u) = 0} and Ẽ := E\K.

Definition 1.53. A locally Lipschitz continuous map W : Ẽ → E is called a
pseudo-gradient vector fieldfor J if

• (J ′(u),W (u)) ≥ 1
2‖J ′(u)‖2 for all u ∈ Ẽ,

• ‖W (u)‖ ≤ 2‖J ′(u)‖ for all u ∈ Ẽ.
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Let W be a pseudo-gradient vector field of J . Consider the initial value
problem:

(1.67)

⎧
⎪⎨

⎪⎩

dη

dt
= −W (η),

η(0, u0) = u0 ∈ Ẽ.

By Lemma 1.43, it has a unique solution (called flow or trajectory) η :
[0, T (u0)) → E, where T (u0) ∈ (0,∞] is the maximal time of the existence
of the flow with initial data u0.

We consider a simple application of the (PS) condition (see, for example,
Guo and Sun [164]).

Lemma 1.54. Assume J ∈ C1(E,R) is bounded below and satisfies the (PS)
condition. Then there is a sequence {η(tn, u0)} such that

η(tn, u0) → u∗, J(u∗) ≤ J(u0), J ′(u∗) = 0.

Proof. By the definition of the pseudo-gradient vector field, it easy to check
that

dJ(η(t, u0))
dt

≤ 0.

Therefore,

inf
E

J ≤ J(η(t, u0)) ≤ J(u0), ∀ t ∈ [0, T (u0)).

Let s ≥ t, s, t ∈ [0, T (u0)); then by the definition of the pseudo-gradient
vector field,

‖η(s, u0)− η(t, u0)‖

≤
∫ s

t

‖W (η(r, u0))‖dr

≤ |s− t|1/2

(∫ s

t

‖W (η(r, u0))‖2dr
)

≤ 2|s− t|1/2

(∫ s

t

2(J ′(η(r, u0)),W (η(r, u0)))dr
)1/2

≤ 4|s− t|1/2
(
J(u0)− inf

E
J
)1/2

.

If T (u0) < ∞, then ‖η(s, u0) − η(t, u0)‖ → 0 as s, t → T (u0). Hence, there
exists a limit

lim
t→T (u0)−0

η(t, u0) := u∗.
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By Lemma 1.43, u∗ ∈ ∂Ẽ ⊂ K. Hence, J(u∗) ≤ J(u0) and J ′(u∗) = 0. If
T (u0) = ∞, note that

∫ t

0

1
2
‖J ′(η(r, u0))‖2dr

≤
∫ t

0

(J ′(η(r, u0)),W (η(r, u0)))dr

= J(η(0, u0))− J(η(t, u0))

≤ J(u0)− inf
E

J.

It follows that there is a sequence tn →∞ such that J ′(η(tn, u0)) → 0. By the
(PS) condition, up to a subsequence, η(tn, u0) → u∗ with J ′(u∗) = 0, J(u∗) ≤
J(u0). �

1.9 Lax–Milgram Theorem and Weak Solutions

We recall the Lax–Milgram theorem from linear functional analysis, which
will provide in certain circumstances the existence and uniqueness of a weak
solution to elliptic problems. Let, in this section, E be a Hilbert space with
the inner product 〈·, ·〉 and the associated norm ‖ · ‖. Let (·, ·) denote the
pairing of E with its dual space.

Theorem 1.55. Assume that B : E × E → R is a bilinear mapping. There
are two constants a, b > 0 such that |B[u, v]| ≤ a‖u‖‖v‖ for all u, v ∈ E
and B[u, u] ≥ b‖u‖2 for all u ∈ E. For any given bounded linear functional
g : E → R, there exists a unique element u ∈ E such that B[u, v] = (g, v) for
all v ∈ E.

Proof. For each fixed u ∈ E, the mapping B[u, ·] is a bounded linear func-
tional on E. By Riesz’s representation theorem, we may find a unique element
u0 such that

(1.68) B[u, v] = 〈u0, v〉

for all v ∈ E. We define M0u := u0. Then B[u, v] = 〈M0u, v〉 for all u, v ∈ E.
It is easy to see that M0 : E → E is linear and ‖M0u‖ ≤ a‖u‖ for all u ∈ E.
Note that

b‖u‖2 ≤ B[u, u] = 〈M0u, u〉 ≤ ‖M0u‖‖u‖.
It follows that M0 is a bounded one-to-one mapping with a closed range
R(M0). We claim that R(M0) = E. Otherwise, we have a v ∈ R(M0)⊥, v �= 0.
But this is impossible because b‖v‖2 ≤ [Bv, v] = 〈M0v, v〉 = 0. By Riesz’s
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representation theorem again, we have a w ∈ E such that (g, v) = 〈w, v〉 for
all v ∈ E. Hence, we have a u ∈ E such that M0u = w. Therefore,

B[u, v] = 〈M0u, v〉 = 〈w, v〉 = (g, v)

for all v ∈ E. The uniqueness of u is obvious. �

In practice, one of the main research projects by means of critical point
theory is the existence of solutions to elliptic equations. For example,
consider

(1.69) −∆u = f(x, u), x ∈ Ω ⊂ RN .

Then the corresponding functional is defined by

I(u) =
1
2
‖u‖2 −

∫

Ω

F (x, u)dx,

where F (x, u) =
∫ u

0
f(x, s)ds. Roughly speaking, if I is of C1 on a Sobolev

space (E, ‖ · ‖) and I ′(u) = 0 (critical point), then

(1.70)
∫

Ω

∇u · ∇wdx−
∫

Ω

f(x, u)wdx = 0, ∀w ∈ E.

The critical point u satisfying (1.70) is called a weak solution of (1.69) and
obviously u is not necessarily a classical solution of (1.69). In general, more
assumptions on the smoothness of ∂Ω and of f are needed if the weak solution
wants to be a classical solution.

We just give a simple example and show how the regularity theory of an
elliptic equation can be applied to obtain a classical solution from a weak
solution. The following proposition is due to Gilbarg and Trudinger [160,
Theorems 6.6] (see also Struwe [313]).

Proposition 1.56. Suppose that u ∈ H2,p
loc (Ω) such that −∆u = f in Ω with

f ∈ Lp(Ω), 1 < p <∞. Then for any Ω′ ⊂⊂ Ω, there holds

‖u‖H2,p(Ω′) ≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω)),

where C depends on Ω,Ω′, N, p. Assume in addition that Ω is a C1,1 domain
and that there exists a function u0 ∈ H2,p(Ω) such that u − u0 ∈ H1,p

0 (Ω);
then

‖u‖H2,p(Ω) ≤ C(‖u‖Lp(Ω) + ‖f‖Lp(Ω) + ‖u0‖H2,p(Ω)),

where C depends on Ω,N, p.

The following proposition is due to Gilbarg and Trudinger [160, Theorems
6.14 and 6.19].
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Proposition 1.57. Assume that Ω is a Ck+2,α domain and f ∈ Ck,α(Ω).
Then the Dirichlet problem

−∆u = f in Ω, u = 0 in ∂Ω

has a unique classical solution u ∈ Ck+2,α(Ω).

The following proposition is due to Gilbarg and Trudinger [160, Theorem
9.15].

Proposition 1.58. Assume that Ω is a C1,1 domain and f ∈ Lp(Ω), p > 1.
Then the Dirichlet problem

−∆u = f in Ω, u = 0 in ∂Ω

has a unique classical solution u ∈W0
1,p(Ω) ∩W 2,p(Ω).

The following result is due to Brézis and Kato [68] (see also Struwe [313]).

Lemma 1.59. Assume that Ω is a domain of RN (N ≥ 3) and that f :
Ω ×R→ R is a Carathéodory function such that

|f(x, t)| ≤ a(x)(1 + |u|), a.e. x ∈ Ω,

where a ∈ L
N/2
loc (Ω). If u ∈ H1,2

loc (Ω) is a weak solution of

−∆u = f(x, u) in Ω,

then u ∈ Lq
loc(Ω) for any q < ∞. If u ∈ H1,2

0 (Ω) and a ∈ LN/2(Ω), then
u ∈ Lq(Ω) for any q <∞.

Next, we give an example to illustrate when a weak solution becomes a
classical solution (see, e.g., Lu [218, Theorem 7.5.4]).

Theorem 1.60. Assume that Ω is a bounded domain of RN (N ≥ 2), Ω is
of Ck+2,	 (� ∈ (0, 1)), and that f : Ω ×R → R is a Carathéodory function
such that

(1) There exists τ ∈ (0, 1] such that

f(x, t) ∈ Ck,τ (Ω̄ × [−M ′,M ′],R), for any M ′ > 0,

(2) There are C > 0 and 2 ≤ p ≤ 2∗ such that

|f(x, t)| ≤ C(1 + |u|p−1), a.e. x ∈ Ω.

(3) There exists a function f0(x) ∈ L∞(Ω) such that

lim
t→0

f(x, t)
t

= f0(x) uniformly for x ∈ Ω.
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Assume u ∈ H1,2
0 (Ω) is a weak solution of

(1.71) −∆u = f(x, u) in Ω, u = 0 on ∂Ω.

Then u must be a classical solution of (1.71). In particular, u ∈ Ck+2,β(Ω̄),
where β = �τk+1.

Proof. Define

φ(x, t) =

⎧
⎨

⎩

f(x, t)
t

, if t �= 0,

f0(x), if t = 0.

Then there are two constants a > 0, b > 0 such that

(1.72) |φ(x, t)| ≤ f0(x) + a + b|t|p−2 ≤ f0(x) + a + b|t|2∗−2

for all x ∈ Ω̄, t ∈ R. By the assumption, u ∈ H1,2
0 (Ω) is a weak solution of

(1.73) −∆u = φ(x, u(x))u in Ω, u = 0 on ∂Ω.

If N ≥ 3, by Proposition 1.13, u ∈ L2∗
(Ω). By (1.72) and Theorem 1.25,

φ(x, u(x)) ∈ LN/2(Ω). Then, Lemma 1.59 implies that u ∈ Ls(Ω) for all
s ≥ 2. This is naturally true if N ≤ 2. Note the conditions (2)–(3) and use
Theorem 1.25 again; we see that f(x, u(x)) ∈ Ls/(p−1)(Ω), ∀s ≥ 2. Choose
s ≥ 2, s ≥ p− 1. By Proposition 1.58, the following problem

(1.74) −∆w = f(x, u(x)) in Ω, w = 0 on ∂Ω

has a unique solution

w ∈W 1,q
0 (Ω) ∩W 2,q(Ω), ∀q =

s

(p− 1)
> 1, s ≥ 2.

Because u is a weak solution of (1.71), combining (1.74), we have u = w. If
we choose q = N/(1− �), then q ≥ 2/(p− 1) if N ≥ 2. By Proposition 1.13,
u ∈W 1,q

0 (Ω) implies that u ∈ C0,	(Ω̄); here 1−N/q = �. Then we may find
M ′ > 0 such that

|u(x)| ≤M ′, ∀x ∈ Ω̄,

|u(x)− u(y)| ≤M ′|x− y|	, x, y ∈ Ω̄.

Note that Ω is of Ck+2,	(� ∈ (0, 1)); then f satisfies. Condition (1) with k
replaced by 0, 1, 2, . . . , k − 1 (see Gilbarg and Trudinger [160, Lemma 6.35]
and Lu [218, Theorem 7.5.4]). Hence, there exists a C > 0 such that

|f(x, u)− f(y, v)| ≤ C(|x− y|τ + |u− v|τ )

for all (x, u), (y, v) ∈ Ω̄ × [−M ′,M ′]. Therefore,
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|f(x, u(x))− f(y, v(y))|

≤ C(|x− y|τ + |u(x)− v(y)|τ )

≤ C(|x− y|τ + (M ′)	|x− y|	τ )

≤ C(dτ(1−	) + (M ′)	|x− y|	τ )

for x, y ∈ Ω̄, where d is the diameter of Ω. This shows that f(x, u(x)) ∈
C0,	r(Ω̄). By Proposition 1.57, (1.74) has a unique classical solution w = u

in C2, 	τ (Ω̄). By induction, if we assume that u ∈ Ck+1, 	τk

(Ω̄), similarly, we
may prove that f(x, u(x)) ∈ Ck, 	τk+1

(Ω̄) and u = w. By Proposition 1.57
once again, we have that u ∈ Ck+2, 	τ1+k

(Ω̄). �

Finally, we want to review the unique continuation theorem.

Definition 1.61. Let Ω be a connected open subset of RN . We say that a
function W on Ω has the unique continuation property if and only if every
function u satisfying

(1.75) |∆u(x)| ≤W (x)|u(x)|

which is equal to zero on some open set is identically zero on Ω.

The following unique continuation theorem is due to Schechter and Simon
[277].

Theorem 1.62. Let u obey (1.75) and W ∈ Lr
loc(R

N ) with r = N − 2 if
N > 5; r > (2N − 1)/3 if N ≤ 5. Then if u = 0 in a small ball, then u = 0
everywhere.

Notes and Comments. The Lax–Milgram theorem can be found in Lax [189]
and Lax and Milgram [190]. We refer readers to Gilbarg and Trudinger [160],
Evans [141], Struwe [313], and Taylor [325] for the regularity theory of elliptic
equations. Results on unique continuation theorems also can be seen in Reed
and Simon [262].

Note. In this book, we are only devoted to and satisfied with finding critical
points (weak solutions) of differentiable functionals. All weak solutions are
indiscriminately called solutions.



Chapter 2

Schechter–Tintarev Linking

The relationship between the classical linking theorem and the sign-changing
critical point is established. The abstract theory is applied to elliptic equa-
tions with miscellaneous resonance.

2.1 Schechter–Tintarev Linking

Let E be a Hilbert space endowed with an inner product 〈·, ·〉 and the asso-
ciated norm ‖ · ‖. Define a class of contractions of E as follows.

(2.1) Φ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Γ :

Γ (·, ·) ∈ C([0, 1]×E,E), Γ (0, ·) = id,

for each t ∈ [0, 1), Γ (t, ·) is a homeomorphism of E

onto itself and Γ−1(t, ·) is continuous on [0, 1)× E;
there exists a x0 ∈ E such that Γ (1, x) = x0

for each x ∈ E and that Γ (t, x) → x0 as t→ 1
uniformly on bounded subsets of E

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Obviously, Γ (t, u) = (1− t)u ∈ Φ.

Definition 2.1. A subset A of E is linked to a subset B of E if A ∩ B = ∅
and, for every Γ ∈ Φ, there is a t ∈ [0, 1] such that Γ (t, A) ∩B �= ∅.

Proposition 2.2. Let H ∈ C(E,RN ) and Q ⊂ E be such that H0 = H|Q is
a homeomorphism of Q onto the closure of a bounded open subset Ω of RN .
Let p ∈ Ω; then H−1

0 (∂Ω) links H−1(p).

Proof. Assume by negation that H−1
0 (∂Ω) does not link H−1(p). Then there

is a Γ ∈ Φ such that

(2.2) Γ (t,H−1
0 (∂Ω)) ∩H−1(p) = ∅, t ∈ [0, 1].
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That is,

(2.3) H(Γ (t,H−1
0 (∂Ω))) ∩ {p} = ∅, t ∈ [0, 1].

Set

(2.4) θ(t) := H ◦ Γ (t, ·) ◦H−1
0 .

Then we see that θ(t) ∈ C(Ω̄,RN ) for each t ∈ [0, 1] and θ(0) = id on Ω. If
Γ (1, E) = x0, then θ(1)x = Hx0 �= p for all x ∈ Ω̄ because by (2.2)–(2.4),

H(Γ (1,H−1
0 (∂Ω))) ∩ {p} = ∅.

By Brouwer’s degree,

deg(θ(t), Ω, p) = deg(θ(1), Ω, p) = 1, ∀ t ∈ [0, 1].

This is a contradiction. �

Proposition 2.3. Let A,B be two closed bounded subsets of E such that E\A
is path connected. If A links B, then B links A as well.

Proof. Assume by negation that B does not link A. Then we may find a
Γ ∈ Φ such that

(2.5) Γ (t, B) ∩A = ∅, ∀ t ∈ [0, 1].

By the definition of Φ, we assume that Γ (1, E) = x0, hence x0 �∈ A. Let Ω
be a closed ball such that A ⊂ Ω. Note that E\A is path connected; then
there is a path γ connecting x0 �∈ A to a point x1 �∈ Ω. Let t0 ∈ [0, 1) be such
that the diameter of Γ (t0, B) − x0 is less than min{dist(γ,A),dist(x1, Ω)}.
Parameterize γ in such a way that it is given by γ(t), t0 ≤ t ≤ 1, γ(t0) = x0,
γ(1) = x1. Then

(2.6) (Γ (t0, B) + γ(t)− x0) ∩A = ∅, t0 ≤ t ≤ 1

and

(2.7) (Γ (t0, B) + x1 − x0) ∩Ω = ∅.

Define

Γ1(t, x) =

{
Γ (t, x) for t ∈ [0, t0],

Γ (t0, x)− u0 + γ(t) for t ∈ [t0, 1].

By (2.5), we see that Γ1(t, B) ∩A = ∅ for all t ∈ [0, 1]. Hence,

(2.8) B ∩ Γ−1
1 (t, A) = ∅, ∀ t ∈ [0, 1].
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By (2.7),

(2.9) Γ1(1, B) ∩Ω = ∅.

Let Γ2 be any map in Φ such that Γ2(t, Ω) ⊂ Ω for all t. Take

Γ3(t, ·) =

{
Γ1(2t, ·)−1 for all t ∈ [0, 1/2],

Γ1(1, ·)−1 ◦ Γ2(2t− 1, ·) for all (1/2, 1].

It is easy to check that Γ3 ∈ Φ. But Equations (2.8)–(2.9) imply that

B ∩ Γ3(t, A) = ∅, t ∈ [0, 1].

It contradicts the fact that A links B. �

Proposition 2.4. Let E = M⊕Y, where M,Y are closed subspaces with one
of them finite-dimensional. If y0 ∈M\{0} and 0 < ρ < R, then the sets

A := {u = v + sy0 : v ∈ Y, s ≥ 0, ‖u‖ = R} ∪ [Y ∩ B̄R],

B := M ∩ ∂Bρ

link each other in the sense of Definition 2.1, where Br := {u ∈ E : ‖u‖ < r}.

Proof. We first consider the case of dimY < ∞ and identify Y with some
RN . We may assume that ‖y0‖ = 1. Let

Q = {sy0 + v : v ∈ Y, s ≥ 0, ‖sy0 + v‖ ≤ R}.

Then A = ∂Q in RN+1. Let u = v + w with v ∈ Y,w ∈ M ; we define Fu =
v +‖w‖y0. Then F |Q = id and B = F−1(ρy0). We can apply Proposition 2.2
to conclude that A links B. Because A and B are bounded and E\A is path
connected, B links A as well. �

Proposition 2.5. Let E = M ⊕ Y, where M,Y are closed subspaces with
dimY < ∞. Let BR = {u ∈ E : ‖u‖ < R} and let A = ∂BR ∩ Y,B = M.
Then A links B.

Proof. We identify Y with some RN and take Ω = BR ∩ Y,Q = Ω̄. For
u = v + w, v ∈ Y,w ∈ M , define the projection Fu = v. Because F |Q = id
and M = F−1(0), we observe by Proposition 2.2 that A links B. �

Proposition 2.6. Let B be an open set in E and A = {a, b} such that a ∈ B,
b �∈ B̄. Then A links ∂B.

Proof. Let Γ ∈ Φ. If Γ (1, E) = u0, then Γ (t, a) (Γ (t, b)) is a curve in E
connecting a (b, respectively) with u0. If u0 �∈ B̄, then Γ (t, a) intersects ∂B.
If u0 ∈ B, then Γ (t, b) intersects ∂B. Hence A links ∂B. �



44 2 Schechter–Tintarev Linking

Proposition 2.7. Let E = M ⊕ Y, where M,Y are closed subspaces with
dimY < ∞. Let BR := {u ∈ E : ‖u‖ < R} and take A = ∂BR ∩ Y. Choose
z0 �= 0, z0 ∈ Y and let

B =
{
u ∈M : ‖u‖ ≥ δ

}
∪
{
u = sz0 + v : v ∈M, s ≥ 0, ‖sz0 + v‖ = δ

}
.

Then A links B with respect to Φ for any R > δ > 0.

Proof. Let Q = B̄R ∩ Y. For simplicity, we may assume that ‖z0‖ = 1 and
that

E = Ỹ ⊕Rz0 ⊕M,

for each u = ũ + sz0 + v with ũ ∈ Ỹ , v ∈M. Define

H(u) =

{
ũ + (s + δ − (δ2 − ‖v‖2)1/2)z0, for ‖v‖ ≤ δ,

ũ + (s + δ)z0, for ‖v‖ > δ.

We observe that H|Q = id and that H−1(δz0) is precisely the set B. We
hence conclude by Proposition 2.2 that A links B. �

Proposition 2.8. Let E = M ⊕ Y, where M,Y are closed subspaces with
dimN < ∞. Let BR := {u ∈ E : ‖u‖ < R} and take A = ∂BR ∩ Y. Choose
z0 �= 0, z0 ∈ Y,R1 > δ and let

B = {sz0 + v : s ≤ 0; v ∈M,R1 ≥ ‖v‖ ≥ δ}

∪ {u = sz0 + v : v ∈M, s ≥ 0, ‖sz0 + v‖ = δ}.

Then A links B with respect to Φ for any R > δ > 0.

Proof. Let Q = B̄R ∩ Y. For simplicity, we may assume that ‖z0‖ = 1 and
that

E = Ỹ ⊕Rz0 ⊕M.

For each u = ũ + sz0 + v with ũ ∈ Ỹ , v ∈M. Define

H(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũ + (s + δ − (δ2 − ‖v‖2)1/2)z0, for ‖v‖ ≤ δ,

ũ + (s + δ)z0 +
‖v‖ − δ

R1 − δ
(s2 + 1)z0, for R1 ≥ ‖v‖ > δ,

ũ + (s2 + s + 1 + δ)z0, for ‖v‖ ≥ R1.

We observe that H|Q = id and that H−1(δz0) is precisely the set B. We
hence conclude by Proposition 2.2 that A links B. �

Proposition 2.9. If B is any subset of a bounded open set Ω ⊂ E, then ∂Ω
links B.
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Proof. Assume that ∂Ω does not link B, and we seek a contradiction. In this
case, there is a Γ ∈ Φ such that

(2.10) Γ (s, ∂Ω) ∩B = ∅, ∀ s ∈ [0, 1].

Hence,

(2.11) Γ (1, ∂Ω) := u �∈ B.

Let v be any point in B. We now show that

(2.12) ‖Γ−1(s, v)‖ → ∞, as s→ 1.

If this were not true, we would have by the definition of Φ that

v = Γ (s, v)[Γ−1(s, v)] → u,

which contradicts (2.11). Therefore, (2.12) is correct and thus

(2.13) Γ−1(s, v) �∈ Ω̄

for s close to 1 because Ω is bounded. Note that v = Γ−1(0, v) ∈ B ⊂ Ω; we
may have an s0 ∈ (0, 1) such that

(2.14) Γ−1(s0, v) ∈ ∂Ω.

To see this, let

s0 = sup{s ∈ [0, 1] : Γ−1(t, v) ∈ Ω,∀t ∈ [0, s)}.

Then Γ−1(s0, v) �∈ Ω. Otherwise, there would be an interval containing s0 in
which Γ−1(s, v) ∈ Ω; this contradicts the definition of s0. But

Ω � Γ−1(s, v) → Γ−1(s0, v), as s→ s0.

Hence, (2.14) holds and this means that v ∈ Γ (s0, ∂Ω) which contradicts
(2.10). Thus, ∂Ω links B. �

Proposition 2.10. Let E be a Hilbert space with the inner product 〈·, ·〉 and
the corresponding norm ‖·‖. We assume that there is another norm ‖·‖ of E
such that ‖u‖ ≤ C‖u‖ for all u ∈ E; here C > 0 is a constant. Moreover,
we assume that ‖un−u∗‖ → 0 whenever un ⇀ u∗ weakly in (E, ‖ · ‖). Write
E = M⊕Y, where M,Y are closed subspaces with dimY <∞. If y0 ∈M\{0}
with ‖y0‖ = 1 and 0 < ρ < R with

Rp−2‖y0‖p
 +

R‖y0‖

1 + D‖y0‖
> ρ, D > 0, p > 2 are constants.
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Let

A := {u = v + sy0 : v ∈ Y, s ≥ 0, ‖u‖ = R} ∪ [Y ∩ B̄R],

B :=
{

u ∈M :
‖u‖p



‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖
= ρ

}

,

where B̄R denotes the closed ball of E centered at zero with radius R. Then
A links B in the sense of Definition 2.1.

Proof. It is easy to check that A∩B = ∅. We identify Y with some RN . Let

Q = {sy0 + v : v ∈ Y, s ≥ 0, ‖sy0 + v‖ ≤ R}.

Then A = ∂Q in RN+1. Let u = v + w with v ∈ Y,w ∈M ; we define

(2.15) ξ0(u) :=

⎧
⎪⎨

⎪⎩

‖u‖p


‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖
, if u �= 0,

0, if u = 0.

Then ξ0 : E → E is continuous. We define

Fu = v + ξ0(w)y0.

Then for any u = v + sy0 ∈ Q, we see that s ∈ [0, R] and F (u) = v + ξ0(sy0)y0.
Here ξ0(sy0) = 0 iff s = 0. Otherwise

ξ0(sy0) = sp−2 ‖y0‖p


‖y0‖2
+ s

‖y0‖‖y0‖
D‖y0‖ + ‖y0‖

:= asp−2 + sb,

where a, b > 0 are two constants depending on y0 only. Therefore, F0 = F |Q is
a homeomorphism of Q onto the closure of a bounded open subset Ω of RN+1.
Let ρy0 ∈ Ω; then by Proposition 2.2, F−1

0 (∂Ω) = ∂Q links F−1(ρy0) = B.
That is,

A links B.

�
Proposition 2.11. In Proposition 2.10, if we choose y0 ∈M with ‖y0‖ = 1
and R > ρ‖y0‖, then A links B where B is replaced by B := {u ∈ M :
‖u‖ = ρ}.

Proof. It is obvious. �

Notes and Comments. Definition 2.1 was introduced by Schechter and
Tintarev [278] and Propositions 2.2–2.4 were proved there (see also Schechter
[275]). Propositions 2.5–2.7 and 2.9 can be found in Schechter [275]. Propo-
sition 2.8 is a new one. More examples can be seen in Schechter [273, 275]
and Schechter and Zou [280, 283]. The original approach to linking required
A to be of a special nature (e.g., the boundary of a manifold) in order to
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link a set B. This severely restricted the kind of sets that could be used. The
linking in the current book seems more general and realistic. It only means
that A cannot be continuously shrunk to a point without intersecting B.
We refer readers to Benci and Rabinowitz’s linking (infinite-dimensional and
compact maps) in [55], Silva’s linking of deformation type in [295], Corvellec’s
linking on metric spaces in [109], Tintarev’s isotopic linking in [328], Li an
Liu’s local linking at zero in [197] (see also Chang [93], Brézis and Nirenberg
[70], and Li and Willem [200]), Benci’s homological linking in [51] (see also
Perera [241] and Liu [207]), and Ramos and Sanchez’s homotopical linking
in [261].

2.2 Sign-Changing Critical Points via Linking

Let E be a Hilbert space endowed with the inner product 〈·, ·〉 and the
associated norm ‖·‖. Consider the following type of functional G ∈ C1(E,R).
Its gradient G′ is of the form

(2.16) G′(u) = κ(u)u−ΘGu,

where κ(u) : E → [1/2, 1] is a locally Lipschitz continuous function; ΘG : E →
E is a continuous operator. Let K := {u ∈ E : G′(u) = 0} and Ẽ := E\K.

Let V : Ẽ → E be a pseudo-gradient vector field for G(cf. Definition 1.53);
that is,

(1) 〈G′(u), V (u)〉 ≥ 1
2‖G′(u)‖2 for all u ∈ Ẽ.

(2) ‖V (u)‖ ≤ 2‖G′(u)‖ for all u ∈ Ẽ.

By Theorem 1.43, the following initial value problem
⎧
⎪⎨

⎪⎩

dσ(t, u)
dt

= −V (σ(t, u)),

σ(0, u) = u ∈ Ẽ,

has a unique solution (called flow or trajectory) σ : [0, T (u)) → E, where
T (u) ∈ (0,∞] is the maximal time of the existence of the flow with initial
value u.

Let P be a closed convex and weakly closed subset of E such that
(P)\{0} �= ∅.

For any δ > 0, define

±D(δ) := {u ∈ E : dist(u,±P) < δ},(2.17)

D∗ := D(δ) ∪ (−D(δ)), S = E\D∗.(2.18)
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Then ±D(δ) are open convex, D∗ is open, ±P ⊂ ±D(δ/2) ⊂ ±D(δ), and S
is closed. We make the following assumption.

(A111) There exists a δ > 0 (small enough) such that ΘG(±D(δ)) ⊂ ±D(δ/2).

Lemma 2.11. Assume (A1). Then there exists a locally Lipschitz continuous
map L0 : Ẽ → E such that L0(±D(δ) ∩ Ẽ) ⊂ ±D(δ/2) and that V (u) :=
κ(u)u−L0(u) is a pseudo-gradient vector field of G. Furthermore, V and L0

can be chosen to be odd if G,κ are even.

Proof. Note that ‖G′(v)‖ �= 0 for any v ∈ Ẽ. Define

Ω(v) :=
{

u ∈ Ẽ : ‖G′(u)‖ >
1
2
‖G′(v)‖, ‖ΘGu−ΘGv‖ <

1
8
‖G′(v)‖

}

.

Then {Ω(v) : v ∈ Ẽ} is an open covering of Ẽ in the topology of E, and
we can find a locally finite refinement open covering {Ω̃(λ) : λ ∈ Λ} of Ẽ,
where Λ is the index set. For any λ ∈ Λ, only one of the following cases
occurs.

(1) Ω̃(λ) ∩ D(δ) = ∅, Ω̃(λ) ∩ (−D(δ)) = ∅;
(2) Ω̃(λ) ∩ D(δ) �= ∅, Ω̃(λ) ∩ (−D(δ)) = ∅;
(3) Ω̃(λ) ∩ D(δ) = ∅, Ω̃(λ) ∩ (−D(δ)) �= ∅;
(4) Ω̃(λ) ∩ D(δ) ∩ (−D(δ)) �= ∅;
(5) Ω̃(λ) ∩ D(δ) �= ∅, Ω̃(λ) ∩ (−D(δ)) �= ∅, Ω̃(λ) ∩ D(δ) ∩ (−D(δ)) = ∅.

If the last case happens, we remove Ω̃(λ) from the covering and replace it with
Ω̃(λ)\D̄(δ) and Ω̃(λ)\(−D̄(δ)). In this way, we rearrange them so that the
new covering has only the properties (1)–(4). In particular, the new covering
is still a covering of Ẽ. To see this, we take any w ∈ Ẽ; then we have a Ω̃(λ)
in the “old” covering {Ω̃(λ) : λ ∈ Λ} of Ẽ such that w ∈ Ω̃(λ). If Ω̃(λ)
is one of the cases (1)–(4), then w is covered by Ω̃(λ) which is also in the
new covering. If Ω̃(λ) is of case (5), then we may distinguish the following
cases.

• If w �∈ D̄(δ), then w ∈ Ω̃(λ)\D̄(δ); hence, w is covered by the new covering.
• If w �∈ −D̄(δ), then w ∈ Ω̃(λ)\

(
− D̄(δ)

)
; hence, w is covered by the new

covering.
• The remaining case is w ∈ D̄(δ) ∩ (−D̄(δ)); we now show that this will

not happen. Firstly, we observe that w �∈ D(δ) ∩ (−D(δ)). Otherwise, it
contradicts the fact that Ω̃(λ) is of Case (5). So, we must have the following
cases.

(a) w �∈ D(δ), w ∈ −D(δ); hence, w ∈ ∂D(δ) ∩ (−D(δ)).
(b) w �∈ D(δ), w �∈ −D(δ); hence, w ∈ ∂D(δ) ∩ (−∂D(δ)).
(c) w ∈ D(δ), w �∈ −D(δ); hence, w ∈ D(δ) ∩ (−∂D(δ)).
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Because 0 ∈ D(δ) ∩ (−D(δ)), which is open convex, then for these cases
(a)–(c),

tw = tw + (1− t)0 ∈ D(δ) ∩ (−D(δ)), t ∈ (0, 1).

However, tw ∈ Ω̃(λ) for t→ 1− because Ω̃(λ) is open and w ∈ Ω̃(λ). This
also contradicts the fact that Ω̃(λ) is of Case (5).

Therefore, we indeed get a new covering which has only the properties (1)–(4).
For each λ ∈ Λ, define

αλ(u) := dist(u, Ẽ\Ω̃λ), φλ(u) :=
αλ(u)

∑

λ∈Λ

αλ(u)
, u ∈ Ẽ;

then 0 ≤ φλ(u) ≤ 1 and φλ : Ẽ → E is locally Lipschitz continuous. For
each λ ∈ Λ, choose aλ ∈ Ω̃(λ) such that aλ is arbitrary in Case (1); aλ ∈
Ω̃(λ) ∩D(δ) in Case (2); aλ ∈ Ω̃(λ) ∩ (−D(δ)) in Case (3); and aλ ∈ Ω̃(λ) ∩
D(δ) ∩ (−D(δ)) in Case (4). Define

L0(u) =
∑

λ∈Λ

φλ(u)ΘGaλ, u ∈ Ẽ.

Then L0 : Ẽ → E is locally Lipschitz coninuous. Let

V (u) := κ(u)u− L0u.

We prove that L0 and V are what we want.
For any u ∈ Ẽ, there are only finitely many numbers λ1, . . . , λs ∈ Λ such

that u ∈ Ω̃(λ1) ∩ · · · ∩ Ω̃(λs). Moreover, there are w1, . . . , ws ∈ Ẽ such that
Ω̃(λi) ⊂ Ω(wi) for i = 1, . . . , s. Then

L0(u) =
s∑

i=1

φλi
(u)ΘGaλi

,

where aλi
∈ Ω̃(λi) for i = 1, . . . , s. Note that

‖ΘGu−ΘGaλi
‖

≤ ‖ΘGu−ΘGwi‖+ ‖ΘGwi −ΘGaλi
‖

≤ 1
4
‖G′(wi)‖

≤ 1
2
‖G′(u)‖
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for i = 1, . . . , s; it follows that

‖ΘGu− L0u‖

=

∥
∥
∥
∥
∥
ΘGu−

s∑

i=1

φλi
(u)ΘGaλi

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

s∑

i=1

φλi
(u)(ΘGu−ΘGaλi

)

∥
∥
∥
∥
∥

≤ 1
2
‖G′(u)‖.

Hence

‖V (u)‖(2.19)

= ‖κ(u)u− L0(u)‖

≤ ‖κ(u)u−ΘGu‖+ ‖ΘGu− L0(u)‖

≤ ‖G′(u)‖+

∥
∥
∥
∥
∥

s∑

i=1

φλi
(u)ΘGu−

s∑

i=1

φλi
(u)ΘGaλi

∥
∥
∥
∥
∥

≤ 3
2
‖G′(u)‖.(2.20)

and |〈G′(u), ΘGu− L0u〉| ≤ 1
2‖G′(u)‖2. Furthermore,

(2.21) 〈G′(u), V (u)〉 = ‖G′(u)‖2 + 〈G′(u), ΘGu− L0u〉 ≥
1
2
‖G′(u)‖2.

Inequalities (2.20) and (2.21) imply that V (u) := κ(u)u − L0u is a pseudo-
gradient vector field for G. Next, we show that L0(±D(δ) ∩ Ẽ) ⊂ ±D(δ/2).
In fact, for any u ∈ D(δ) ∩ Ẽ, there are finitely many φλ(u), say φλi

(u)
(i = 1, . . . , s), which are nonzero. Then

L0u =
s∑

i=1

φλi
(u)ΘGaλi

and u ∈ Ω̃(λi) ∩ D(δ) for i = 1, . . . , s. Hence, aλi
∈ Ω̃(λi) ∩ D(δ) by the

definition of aλ. It follows that ΘGaλi
∈ D(δ/2) by recalling the condition

(A1). It implies that L0(u) ∈ D(δ/2), because D(δ/2) is also convex. This
proves that L0(D(δ)∩Ẽ) ⊂ D(δ/2). Similarly, we have that L0(−D(δ)∩Ẽ) ⊂
−D(δ/2).

Finally, we show that V and L0 can be chosen to be odd if G and κ are
even. Let L̄0(u) = 1

2 (L0u − L0(−u)); then L̄0 : Ẽ → E is odd and locally
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Lipschitz continuous. Define V̄ := κ(·)− L̄0; then V̄ : Ẽ → E is also odd and
locally Lipschitz continuous. We may show that L̄0(±D(δ) ∩ Ẽ) ⊂ ±D(δ/2).
Indeed, for any u ∈ ±D(δ) ∩ Ẽ, then −u ∈ ±D(δ) ∩ Ẽ and hence

L0(±u) ∈ ±D(δ/2), −L0(−u) ∈ ±D(δ/2).

Therefore,

L̄0u =
1
2
L0u +

1
2
(−L0(−u)) ∈ ±D(δ/2),

because ±D(δ/2) is convex. �

By checking the proof of Lemma 2.11, we readily have the following variant
of Lemma 2.11.

Lemma 2.12. Consider the functional G ∈ C1(E,R). Its gradient G′ is of
the form

G′(u) = u−ΘGu.

Let M1,M2 be two closed convex (or open convex) subsets of E. Suppose that

(A222) ΘG(Mi) ⊂Mi, i = 1, 2.

Then there exists a locally Lipschitz continuous map L0 : Ẽ → E such that
L0(Mi ∩ Ẽ) ⊂ Mi, i = 1, 2 and that V (u) := u− L0(u) is a pseudo-gradient
vector field of G. Furthermore, V and L0 can be chosen to be odd if G is even
and M2 = −M1.

From now on, let P denote a positive cone of E; that is, P is a closed
convex subset of E such that tP ⊂ P for all t ≥ 0 and P ∩ (−P) = {0}. We
always assume implicitly that P �= {0}. We call −P a negative cone. Consider
the following vector field,

W (u) :=
(1 + ‖u‖)2V (u)

(1 + ‖u‖)2‖V (u)‖2 + 1
.

Then W is a locally Lipschitz continuous vector field on Ẽ. Obviously,

‖W (u)‖ ≤ ‖u‖+ 1

for all u ∈ Ẽ. We denote

K[a, b] := {u ∈ E : G′(u) = 0, a ≤ G(u) ≤ b},

Gc := {u ∈ E : G(u) ≤ c}, BR(0) := {u ∈ E : ‖u‖ ≤ R}.

Define

(2.22) Φ∗ := {Γ ∈ Φ : Γ (t,D∗) ⊂ D∗}.

Then Γ (t, u) = (1− t)u ∈ Φ∗.
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Theorem 2.13. Suppose that (2.16) and (A1) hold. Assume that a compact
subset A of E links a closed subset B of S and

a0 := sup
A

G ≤ b0 := inf
B

G.

Define
d∗ := inf

Γ∈Φ∗
sup

Γ ([0,1],A)∩S
G(u);

then
d∗ ∈

[
b0, sup

(t,u)∈[0,1]×A

G((1− t)u)
]
.

Furthermore, if G satisfies the (w-PS)c condition for any c with

c ∈
[
b0, sup

(t,u)∈[0,1]×A

G((1− t)u)
]
,

then
K[d∗ − ε, d∗ + ε] ∩ (E\(−P ∪ P)) �= ∅

for all ε > 0 small. Moreover, if d∗ = b0, then K[d∗, d∗] ⊂ B.

Proof. Obviously, d∗ is well defined because A links B and B ⊂ S. Moreover,

d∗ ∈
[
b0, sup

(t,u)∈[0,1]×A

G((1− t)u)
]
.

We first consider the case of d∗ > b0. By contradiction, we assume that

(2.23) K[d∗ − ε0, d
∗ + ε0] ∩ (E\(−P ∪ P)) = ∅

for some ε0 > 0 small enough. Then

(2.24) K[d∗ − ε0, d
∗ + ε0] ⊂ (−P ∪ P).

Case 1. Assume K[d∗ − ε0, d
∗ + ε0] �= ∅.

K[d∗ − ε0, d
∗ + ε0] is compact, thus we may assume that dist(K[d∗ − ε0,

d∗ + ε0],S) := δ0 > 0.
By the (w-PS) condition, there is an ε̄ > 0 such that

(2.25)
(1 + ‖u‖)2‖G′(u)‖2

(1 + ‖u‖)2‖G′(u)‖2 + 1
≥ ε̄

for
u ∈ G−1[d∗ − ε̄, d∗ + ε̄]\(K[d∗ − ε0, d

∗ + ε0])δ0/2,

where (T )c := {u ∈ E : dist(u, T ) ≤ c}. By decreasing ε̄, we may assume
that ε̄ < d∗ − b0, ε̄ < ε0/3; then
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〈G′(u),W (u)〉 ≥ ε̄/8

for any
u ∈ G−1[d∗ − ε̄, d∗ + ε̄]\(K[d∗ − ε0, d

∗ + ε0])δ0/2.

Let

Ω1 = {u ∈ E : |G(u)− d∗| ≥ 3ε̄}, Ω2 = {u ∈ E : |G(u)− d∗| ≤ 2ε̄}

and

ϑ(u) =
dist(u,Ω1)

dist(u,Ω1) + dist(u,Ω2)
.

Let β(u) : E → [0, 1] be locally Lipschitz continuous such that

(2.26) β(u) =

{
1 for all u ∈ E\(K[d∗ − ε0, d

∗ + ε0])δ0/2,

0 for all u ∈ (K[d∗ − ε0, d
∗ + ε0])δ0/3.

Let W̄ (u) = ϑ(u)β(u)W (u) for u ∈ Ẽ; W̄ (u) = 0 otherwise. Then W̄ is a
locally Lipschitz vector field on E. We consider the following Cauchy initial
value problem,

(2.27)

⎧
⎪⎨

⎪⎩

dϕ(t, u)
dt

= −W̄ (ϕ(t, u)),

ϕ(0, u) = u,

which has a unique continuous solution ϕ(t, u) in E. Evidently,

dG(ϕ(t, u))
dt

≤ 0.

By the definition of d∗, there exists a Γ ∈ Φ∗ such that

Γ ([0, 1], A) ∩ S ⊂ Gd∗+ε̄.

Therefore, Γ ([0, 1], A) is a subset of Gd∗+ε̄ ∪ D∗. Denote

A1 := Γ ([0, 1], A).

We claim that there exists a T1 > 0 such that ϕ(T1, A1) ⊂ Gd∗−ε̄/4 ∪ D∗.
First, if u ∈ D∗, we show that ϕ(t, u) ∈ D∗ for all t ≥ 0. Without loss

of generality, we may assume that u ∈ D(δ). Suppose there exists a t0 > 0
such that ϕ(t0, u) �∈ D(δ). We may choose a neighborhood Nu of u such
that Nu ⊂ D(δ) because D(δ) is open. By the theory of ordinary differential
equations in Banach space, we can find a neighborhood Nt0 of ϕ(t0, u) such
that ϕ(t0, ·) : Nu → Nt0 is a homeomorphism. Because ϕ(t0, u) �∈ D(δ), we
can take a w ∈ Nt0\D̄(δ). Correspondingly, we find a v ∈ Nu such that
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ϕ(t0, v) = w. Hence, we may find a t1 ∈ (0, t0) such that ϕ(t1, v) ∈ ∂D(δ)
and ϕ(t, v) �∈ D̄(δ) for all t ∈ (t1, t0].

On the other hand, for any z ∈ D̄(δ) ∩ K, W̄ (z) = 0, hence

(2.28) dist(z + λ(−W̄ (z)), D̄(δ)) = 0, for all λ > 0.

For any z ∈ D̄(δ)∩Ẽ, we have L0(z) ∈ D̄(δ/2) because L0(D(δ)∩Ẽ) ⊂ D(δ/2)
in view of Lemma 2.11. Therefore, by a property of the cone P: xP+yP ⊂ P
for all x, y ≥ 0, we have

dist(z + λ(−W̄ (z)),P)

= dist(z − λϑ(z)β(z)W (z),P)

= dist
((

1− λϑ(z)β(z)(1 + ‖z‖)2κ(z)
(1 + ‖z‖)2‖V (z)‖2 + 1

)

z

+
λϑ(z)β(z)(1 + ‖z‖)2

(1 + ‖z‖)2‖V (z)‖2 + 1
L0(z),P

)

≤ dist
((

1− λϑ(z)β(z)(1 + ‖z‖)2κ(z)
(1 + ‖z‖)2‖V (z)‖2 + 1

)

z+
λϑ(z)β(z)(1 + ‖z‖)2
(1+ ‖z‖)2‖V (z)‖2 +1

L0(z),

(

1− λϑ(z)β(z)(1 + ‖z‖)2κ(z)
(1 + ‖z‖)2‖V (z)‖2 + 1

)

P +
λϑ(z)β(z)(1 + ‖z‖)2

(1 + ‖z‖)2‖V (z)‖2 + 1
P
)

≤
(

1− λϑ(z)β(z)(1 + ‖z‖)2κ(z)
(1 + ‖z‖)2‖V (z)‖2 + 1

)

dist(z,P)

+
λϑ(z)β(z)(1 + ‖z‖)2

(1 + ‖z‖)2‖V (z)‖2 + 1
dist(L0(z),P)

≤
(

1− λϑ(z)β(z)(1 + ‖z‖)2κ(z)
(1 + ‖z‖)2‖V (z)‖2 + 1

)

µ0 +
λϑ(z)β(z)(1 + ‖z‖)2

(1 + ‖z‖)2‖V (z)‖2 + 1
µ0

2

≤ µ0

for λ > 0 small enough because κ(z) ≥ 1
2 . That is, z + λ(−W̄ (z)) ∈ D̄(δ) for

λ small. Once again, we get

(2.29) dist(z + λ(−W̄ (z)), D̄(δ)) = 0, for all λ > 0 small enough.

Combining (2.28) and (2.29), we thus obtain

lim
λ→0+

dist(z + λ(−W̄ (z)), D̄(δ))
λ

= 0, ∀z ∈ D̄(δ).
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Consider the following initial value problem
⎧
⎪⎨

⎪⎩

dϕ(t, ϕ(t1, v))
dt

= −W̄ (ϕ(t, ϕ(t1, v))),

ϕ(0, ϕ(t1, v)) = ϕ(t1, v) ∈ D̄(δ).

It has a unique solution ϕ(t, ϕ(t1, v)). By Theorem 1.49, there is a δ̃ > 0 such
that

ϕ(t, ϕ(t1, v)) ∈ D̄(δ) for all t ∈ [0, δ̃).

Hence, by the semigroup property, ϕ(t, v) ∈ D̄(δ) for all t ∈ [t1, t1 + δ̃), which
contradicts the definition of t1. Therefore, ϕ(t, u) ∈ D∗ for all t ≥ 0.

If u ∈ A1, u �∈ D∗, then we observe that G(u) ≤ d∗ + ε̄. If G(u) ≤ d∗ − ε̄,
then

G(ϕ(t, u)) ≤ G(u) ≤ d∗ − ε̄

for all t ≥ 0. Assume G(u) > d∗ − ε̄. Then u ∈ G−1[d∗ − ε̄, d∗ + ε̄]. If

(2.30) dist(ϕ([0,∞), u),K[d∗ − ε0, d
∗ + ε0]) ≤ δ0/2,

then there exists a tm such that dist(ϕ(tm, u),S) ≥ δ0/4; that is, ϕ(tm, u) ∈
D. Assume that

(2.31) dist(ϕ([0,∞), u),K[d∗ − ε0, d
∗ + ε0]) > δ0/2 > 0.

Similarly, we assume that G(ϕ(t, u)) > d∗− ε̄ for all t ≥ 0 (otherwise, we are
done). Then, by (2.26)–(2.31), we have that
(2.32)

(1 + ‖ϕ(t, u)‖)2‖G′(ϕ(t, u))‖2
(1 + ‖ϕ(t, u)‖)2‖G′(ϕ(t, u))‖2 + 1

≥ ε̄, ϑ(ϕ(t, u)) = β(ϕ(t, u)) = 1

for all t ≥ 0. Therefore, by (2.32),

(2.33) G(ϕ(24, u)) = G(u) +
∫ 24

0

dG(ϕ(s, u)) ≤ d∗ − 2ε̄.

By combining the above arguments, we see that for any u ∈ A1\D∗, there
exists a Tu > 0 such that ϕ(Tu, u) ∈ Gd∗−ε̄/2∪D∗. By continuity, there exists
a neighborhood Uu such that ϕ(Tu, Uu) ⊂ Gd∗−ε̄/3 ∪ D∗. Because A1\D∗ is
compact, we get a T1 > 0 such that ϕ(T1, A1\D∗) ⊂ Gd∗−ε̄/4 ∪ D∗. Then

(2.34) ϕ(T1, A1) ⊂ Gd∗−ε̄/4 ∪ D∗.

Case 2. If K[d∗ − ε0, d
∗ + ε0] = ∅, then (2.26) holds with (K[d∗ − ε0,

d∗ + ε0])δ0/2 = ∅ and β(u) ≡ 1. Then, trivially, (2.32)–(2.34) are still true.
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Now we define

Γ ∗(s, u) =

{
ϕ(2T1s, u), s ∈ [0, 1/2],

ϕ(T1, Γ (2s− 1, u)), s ∈ [1/2, 1].

Then, Γ ∗ ∈ Φ∗. If s ∈ [0, 1/2], we have that

Γ ∗(s,A) ∩ S ⊂ ϕ(2T1s,A) ∩ S ⊂ Ga0 ∩ S ⊂ Gd∗−ε̄/4.

If s ∈ [1/2, 1], then

Γ ∗(s,A) ∩ S ⊂ ϕ(T1, Γ (2s− 1, A)) ∩ S
⊂ ϕ(T1, A1) ∩ S
⊂ (Gd∗−ε̄/4 ∪ D∗) ∩ S
⊂ Gd∗−ε̄/4 ∩ S
⊂ Gd∗−ε̄/4.

It follows that G(Γ ∗([0, 1], A) ∩ S) ≤ d∗ − ε̄/4, a contradiction.
Next we consider the case of d∗ = b0. Here we have to construct a different

vector field and need a careful analysis of the flow. We prove that K[d∗, d∗]∩
B �= ∅. If it were not true, there would exist numbers ε1, ε2, ε3 such that

(2.35)
(1 + ‖u‖)2‖G′(u)‖2

1 + (1 + ‖u‖)2‖G′(u)‖2 ≥ ε1

for |G(u) − d∗| < ε2 and dist(u,B) ≤ ε3. By decreasing ε2, we may assume
that ε2 < ε1ε3/16. Let

Ω3 := {u ∈ E : dist(u,B) ≤ ε3/2, |G(u)− d∗| ≤ ε2/2},

Ω4 := {u ∈ E : dist(u,B) ≤ ε3/3, |G(u)− d∗| ≤ ε2/3}.

Then K ⊂ E\Ω3. Choose Γ ∈ Φ∗ such that

(2.36) sup
Γ ([0,1],A)∩S

G(u) ≤ d∗ + ε2/3.

We can find a u0 ∈ Γ ([0, 1], A) ∩ B ∩ S �= ∅ because A links B and B ⊂ S.
This implies that

(2.37) b0 ≤ G(u0) ≤ sup
Γ ([0,1],A)∩S

G(u) ≤ d∗ + ε2/3;

that is, u0 ∈ Ω4 ⊂ Ω3. Let

ϑ1(u) =
dist(u,E\Ω3)

dist(u,E\Ω3) + dist(u,Ω4)
,
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and consider the following Cauchy initial value problem,
⎧
⎪⎨

⎪⎩

dϕ1(t, u)
dt

= −ϑ1(ϕ1(t, u))W (ϕ1(t, u)),

ϕ1(0, u) = u ∈ E,

which has a unique continuous solution ϕ1(t, u) in E. Obviously, by (2.35),

(2.38)
dG(ϕ1(t, u))

dt
≤ −ε1

8
ϑ1(ϕ1(t, u)).

If u ∈ Gd∗+ε2/3, then

G(ϕ1(t, u)) ≤ G(u) ≤ d∗ + ε2/3

for all t ≥ 0. If there is a t1 ≤ ε3/4 such that ϕ1(t1, u) �∈ Ω4, then either
G(ϕ1(t1, u)) < d∗ − ε2/3 or dist(ϕ1(t1, u), B) > ε3/3. For the latter case,
we observe that dist(ϕ1(t, u), B) ≥ ε3/12, and hence, ϕ1(t, u) �∈ B for all
t ∈ [0, ε3/4]. If ϕ1(t, u) ∈ Ω4 for all t ∈ [0, ε3/4], then

G
(
ϕ1

(ε3

4
, u
))

= G(u) +
∫ ε3/4

0

dG(ϕ1(t, u))

≤ d∗ +
ε2

3
− ε3ε1

32

≤ d∗ − ε2

6
.

That is, either

G(ϕ1(ε3/4, u)) < d∗ − ε2/6 = b0 − ε2/6

or ϕ1(t, u) �∈ B for all t ∈ [0, ε3/4] and each u ∈ Gd∗+ε2/3. It follows that
ϕ1(ε3/4, u) �∈ B for any u ∈ Gd∗+ε2/3. Next we prove that for all u ∈ A, t ∈
[0, ε3/4], we must have ϕ1(t, u) �∈ B. Note that if u ∈ A, u �∈ S, then u ∈ D∗.
Following an argument similar to that of the proof of the first case, we see
that ϕ1(t, u) ∈ D∗. Hence ϕ1(t, u) �∈ B ⊂ S for all t ≥ 0. Therefore, we may
only consider the case u ∈ A ∩ S. Evidently, ϕ1(ε3/4, u) �∈ B. Furthermore,
by (2.38), we see that

G(ϕ1(t, u)) ≤ G(u)− ε1

8

∫ t

0

ϑ1(ϕ1(t, u))dt

≤ d∗ − ε1

8

∫ t

0

ϑ1(ϕ1(s, u))ds.
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If ϕ1(t, u) ∈ B, then G(ϕ1(t, u)) ≥ b0 = d∗, and we must have ϑ1(ϕ1(s, u)) ≡
0 for s ∈ [0, t]. This implies that ϕ1(s, u) �∈ Ω4 and either G(ϕ1(s, u)) <
d∗ − ε2/3 or dist(ϕ1(s, u), B) > ε3/3 for all s ∈ [0, t]. Both cases imply
ϕ1(t, u) �∈ B. This proves that ϕ1([0, ε3/4], A) ∩B = ∅. Let

Γ1(t, u) =

{
ϕ1(2tε3/4, u), 0 ≤ t ≤ 1/2,

ϕ1(ε3/4, Γ (2t− 1, u)), 1/2 ≤ t ≤ 1.

Then it is easy to check that Γ1 ∈ Φ∗. But by the above arguments,

Γ1([0, 1], A) ∩B = ∅,

which contradicts the fact that A links B. �

Theorem 2.14. Suppose that (2.16) and (A1) hold and that ΘG : E → E is
a compact operator. Assume that E = Y ⊕M, 1 < dimY <∞, and that

(1) G(v) ≤ α for all v ∈ Y, where α is a positive constant,
(2) G(w) ≥ α for all w ∈ B := {w : w ∈ M, ‖w‖ = ρ} ⊂ S, where ρ is a

positive constant,
(3) G(sw0 + v) ≤ T0 for all s ≥ 0, v ∈ Y ; w0 ∈ M\{0} is a fixed element,

and T0 is a constant.

If G satisfies the (w-PS)c condition for all c > 0, then there exists a sequence
{un} ⊂ E\(−P ∪ P) such that

G′(un) → 0, G′(un) =
Tn

n
un, G(un) → c,

where {Tn} is a bounded sequence and c ∈ [α/2, 2T0].

Proof. Define ψ ∈ C∞(R) such that ψ = 0 in (−∞, 1/2) and ψ = 1 in
(1,∞), 0 ≤ ψ ≤ 1. We may assume that ‖w0‖ = 1. Write u ∈ E as u =
v + w, v ∈ Y,w ∈M. Let

Gn(u) = G(u)−
(

T0 +
1
n

)

ψ

(
‖u‖2

n

)

, n = 1, 2, . . . .

Then

G′(u)−G′
n(u) = 2

(

T0 +
1
n

)

ψ′
(
‖u‖2

n

)
u

n
,

‖G′(u)−G′
n(u)‖ ≤ T1n

−1/2.

We claim that Gn satisfies (w-PS) for each n sufficiently large if G does.
In fact, assume that {uk} is a (w-PS) sequence: Gn(uk) → c and (1 +
‖uk‖)G′

n(uk) → 0 as k → ∞. If, for a renamed subsequence, ‖uk‖2/n > 1,
then ψ′(‖uk‖2/n) = 0 and
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(1 + ‖uk‖)G′
n(uk) = (1 + ‖uk‖)G′(uk) → 0.

Then {uk} has a convergent subsequence. If ‖uk‖2/n ≤ 1, then {uk} is
bounded and (w-PS) follows immediately. To see this, note that

G′(uk)− 2
(

T0 +
1
n

)

ψ′
(
‖uk‖2

n

)
uk

n
→ 0.

Take n so large that

b(u) = κ(u)−
[

2
(

T0 +
1
n

)

ψ′
(
‖u‖2

n

)

/n

]

is bounded and bounded away from 0. Then

b(uk)uk −ΘGuk → 0 as k →∞.

Because the {uk} is bounded, there is a renamed subsequence such that
both b(uk) and ΘGuk converge. Hence, this subsequence converges as well.
Thus, in both cases, the (w-PS) condition is satisfied. Moreover, Gn(v) ≤ α
for all v ∈ Y. For any w ∈ M , if ‖w‖ = ρ, then ψ(‖w‖2/n) = 0 for n > 2ρ2

and consequently Gn(w) = G(w) ≥ α. Choose ‖sw0 + v‖ := n1/2 := Rn.
Then Rn > ρ if n large enough, and

Gn(sw0 + v) = G(sw0 + v)− (T0 + 1/n)ψ
(
‖sw0 + v‖2

n

)

≤ − 1
n

.

Let
B := {w ∈M : ‖w‖ = ρ},

and

An := {v ∈ Y : ‖v‖ ≤ Rn} ∪ {sw0 + v : s ≥ 0, v ∈ Y, ‖sw0 + v‖ = Rn}.

Then An links B, and Gn satisfies all the conditions of Theorem 2.13. Hence,
there exists a un ∈ E\(−P ∪ P) such that

G′
n(un) = 0, Gn(un) ∈

[
α/2, sup

(t,u)∈[0,1]×An

Gn((1− t)u)
]
.

Evidently,

‖G′(un)−G′
n(un)‖ = ‖G′(un)‖ ≤ T1n

−1/2 → 0,

α/2 ≤ Gn(un) ≤ G(un) ≤ Gn(un) + T0 + 1/n,

sup
(t,u)∈[0,1]×An

Gn((1− t)u) ≤ T0.
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Therefore, G(un) → c ∈ [α/2, 2T0]. Finally,

G′(un) = G′(un)−G′
n(un) = 2

(

T0 +
1
n

)

ψ′
(
‖un‖

n

)
un

n
=

Tn

n
un,

where {Tn} is a bounded sequence. �

The statement G′(un) = (Tn/n)un in Theorem 2.14 is quite helpful for
getting a sign-changing limit of the sequence {un}.

We now assume that there is another norm ‖ · ‖ of E such that ‖u‖ ≤
C‖u‖ for all u ∈ E; here C > 0 is a constant. Moreover, we assume that
‖un − u∗‖ → 0 whenever un ⇀ u∗ weakly in (E, ‖ · ‖). In the sequel, all
properties are with respect to the norm ‖ · ‖ if without specific indication.
Write E = M ⊕ Y, where Y,M := Y ⊥ are closed subspaces with dimY <∞
and (M\{0}) ∩ (−P ∪ P) = ∅; that is, the nontrivial elements of M are
sign-changing. Let y0 ∈M\{0} with ‖y0‖ = 1 and 0 < ρ < R with

Rp−2‖y0‖p
 +

R‖y0‖

1 + D‖y0‖
> ρ, D > 0, p > 2 are constants.

Let

A := {u = v + sy0 : v ∈ Y, s ≥ 0, ‖u‖ = R} ∪ [Y ∩ B̄R],

B :=
{

u ∈M :
‖u‖p



‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖
= ρ

}

.

Then by Proposition 2.10, A links B in the sense of Definition 2.1. Choose

(2.39) a > sup
[0,1]×A

G((1− t)u) + 2.

Define

(2.40) B := B ∩Ga� .

Choose Γ (t, u) = (1− t)u ∈ Φ∗; then Γ (t, a) ∈ B for some (t, a) ∈ [0, 1]×A.
Moreover, Γ (t, a) ∈ Ga� , hence, B := B ∩Ga� �= ∅. Set

(2.41) Φ∗∗ := {Γ ∈ Φ∗ : Γ ([0, 1], A) ⊂ Ga�}.

Then Γ (t, u) = (1− t)u ∈ Φ∗ ∩ Φ∗∗.

Lemma 2.15. ‖u‖ ≤ c1, ∀u ∈ B; here c1 is a constant.

(A333) Assume that for any a, b > 0, there is a c = c(a, b) > 0 such that

G(u) ≤ a and ‖u‖ ≤ b ⇒ ‖u‖ ≤ c.
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Lemma 2.16. Assume (A3). Then we have that

dist(B := B ∩Ga� ,P) := δ1 > 0.

Proof. By negation, we assume that dist
(
B, P) = 0. Then we find {un} ⊂

B, {pn} ⊂ P such that ‖un − pn‖ → 0. Then {un}, hence {pn}, is bounded
in both (E, ‖ · ‖) and (E, ‖ · ‖). We assume that un ⇀ u∗ ∈ E; pn ⇀ p∗ ∈
P weakly in (E, ‖ · ‖); un → u∗ strongly in (E, ‖ · ‖). Then we observe that
u∗ ∈M . Because

‖un‖p


‖un‖2
+

‖un‖‖un‖

‖un‖+ D‖un‖
= ρ

and ‖un − u∗‖ → 0, then u∗ �= 0. However, because u∗ = p∗, we get a
contradiction in as much as all nonzero elements of M are sign-changing. �

In view of Lemma 2.16, we may assume that B ⊂ S as long as the δ of
Condition (A1) is small enough; this is indeed true in our applications.

Theorem 2.17. Suppose that (2.16), (A1), and (A3) hold. Assume

a0 := sup
A

G ≤ b
0 := inf

B�
G.

Define
d∗ := inf

Γ∈Φ∗∗
sup

Γ ([0,1],A)∩S
G(u);

then
d∗ ∈

[
b
0, sup

(t,u)∈[0,1]×A

G((1− t)u)
]
.

Furthermore, if G satisfies the (w-PS)c condition for any c with

c ∈
[
b
0, sup

(t,u)∈[0,1]×A

G((1− t)u)
]
,

then
K[d∗ − ε, d∗ + ε] ∩

(
E\(−P ∪ P)

)
�= ∅

for all ε > 0 small. Moreover, if d∗ = b
0, then K[d∗, d∗] ⊂ B.

Proof. It suffices to note that any flow φ considered in the proof of Theo-
rem 2.13 is nonincreasing in the sense that G(φ(t, u)) is nonincreasing in t.
Then the proof of this theorem is the same as that of Theorem 2.13 where B
is replaced by B. �

Theorem 2.18. Suppose that (A3) holds. Theorem 2.14 is still true if we
replace B by B and a := T0 + 2.

Notes and Comments. The ideas of the proofs for Lemmas 2.11 and 2.12 first
come from Sun [316] (see also Guo [163] and a paper by Liu and Sun [211]). In
[316], D∗ itself is a convex set. In [211], it is assumed that ΘG

(
∂D(δ)

)
⊂ D(δ)
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and that G′ = id−ΘG. Lemma 2.11 and Theorems 2.13 and 2.14 are proved
in Schechter and Zou [288].

Condition (A1) is applied in Conti et al. [107]. In particular, [107] is the
pioneering paper where the neighborhood of a cone is introduced which satis-
fies the type of condition (A1). By using the invariant sets of flows and lower
(upper) solutions, Conti et al. obtained the existence of multiple solutions
with ordering relations. Similar ideas are also used in Conti et al. [108] for
the existence of many solutions for superlinear elliptic systems. Later, this
idea of the neighborhood of a cone is used by Bartsch et al., Liu and Wang,
Schechter and Zou, and Zou, among others.

In Theorem 2.14, T0 is an arbitrary constant that is not necessarily equal
to α. This novelty makes it powerful in applications, especially in dealing
with asymptotically linear equations. Note that T0 must be equal to α in
classical linking (cf. Benci and Rabinowitz [55], Brézis and Nirenberg [70], Li
and Liu [197], Li and Willem [200], Silva [295], and Tintarev [328]).

2.3 Jumping Dirichlet Equations

Consider the sign-changing solutions to the following Dirichlet boundary
value problem

(2.42)

{
−∆u = f(x, u), in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded domain with the smooth boundary ∂Ω and
finite measure measΩ := |Ω|.

Let E := H1
0 (Ω) be the usual Sobolev space endowed with the inner

product

〈u, v〉 :=
∫

Ω

(�u� v)dx

for u, v ∈ E and the norm ‖u‖ := 〈u, u〉1/2. Let

0 < λ1 < · · · < λk < · · ·

denote the distinct Dirichlet eigenvalues of −∆ on Ω with zero boundary
value. Then each λk has finite multiplicity. The principal eigenvalue λ1 is
simple with a positive eigenfunction ϕ1, and the eigenfunctions ϕk corres-
ponding to λk (k ≥ 2) are sign-changing. Let Nk denote the eigenspace of
λk. Then dimNk <∞. We fix k and let Ek := N1⊕ · · ·⊕Nk. In this section,
we consider the case of

(2.43) lim
t→+∞

f(x, t)
t

= β+(x), lim
t→−∞

f(x, t)
t

= β−(x)
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uniformly for x ∈ Ω. In particular,

λk < β±(x) < c, where c > 0 is a fixed constant.

Throughout this section, we assume

(B111) f is a Carathéodory function and f(x, t)t ≥ 0 for (x, t) ∈ Ω × R;
lim
t→0

(f(x, t))/t = 0 uniformly for x ∈ Ω.

(B222) 2F (x, t) ≥ λk−1t
2 − c0 for all x ∈ Ω, t ∈ R, where F (x, t) =

∫ t

0
f(x, s)ds; c0 > 0 is a constant.

By the above assumptions, we may find a CF > 0 such that

(2.44) F (x, t) ≤ 1
4
λ1|t|2 + CF |t|p, ∀x ∈ Ω, t ∈ R;

here 2 < p < 2∗. Also, we can get another constant Λ0 > 0 such that

(2.45) 2F (x, t) ≤ Λ0t
2 for all x ∈ Ω, t ∈ R.

Recall the Gagliardo–Nirenberg inequality,

(2.46) ‖u‖p ≤ cp‖u‖α‖u‖(1−α)
2 , u ∈ E,

where α ∈ (0, 1) is defined by

(2.47)
1
p

= α

(
1
2
− 1

N

)

+ (1− α)
1
2
.

On the other hand, we have a constant Λp > 0 such that

(2.48) ‖u‖p ≤ Λp‖u‖, u ∈ E.

Without loss of generality, we assume that Λp > 1 and cp > 1. Set

Λ∗
p := min

{
1

4Λ2
pc

(p−2)
p

, (4Λ2
pc

(p−2)
p )−(1/(p−2))

}

,(2.49)

T1 := min{λ(1−α)(p−2)
k , λ

(1−α)
k },(2.50)

T2 := min
{

1
64C2

F

, (8CF )−(1/(p−2))

}

.(2.51)

(B333) Assume that

c0 ≤
1

4|Ω|
(
Λ∗

p

)2
T1T2.

The first result deals with the case of a jump not crossing eigenvalues: λk <
β±(x) ≤ λk+1. Resonance may occur at λk+1.
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Theorem 2.19. Assume that (B1)–(B3) and (2.43) hold with λk < β±(x) ≤
λk+1. If either β+(x) < λk+1 for x ∈ Ω or β−(x) < λk+1 for x ∈ Ω, then
Equation (2.42) has a sign-changing solution.

If we strengthen the condition on f , we have the following theorem where
the jump is allowed to cross an arbitrarily finite number of eigen-values.

Theorem 2.20. Assume that (B1)–(B3) and (2.43) hold. If λk < β±(x) for
x ∈ Ω, and

(B444) there exists a C0(x) ∈ L1(Ω) such that

(i) f(x, t)t− 2F (x, t) ≥ C0(x), for (x, t) ∈ Ω ×R,
(ii) lim

|t|→∞
(f(x, t)t− 2F (x, t)) =∞ for x ∈ Ω.

then Equation (2.42) has a sign-changing solution.

Theorem 2.20 permits β±(x) to be arbitrary bounded functions greater
than λk and to cross an arbitrarily finite number of eigenvalues of −∆ with
zero boundary value condition. Therefore, the jump has much more freedom.

For the Dirichlet boundary value problem (2.42), it is usually called jum-
ping nonlinearity at ±∞ if

{
f(x, t)/t→ a a.e. x ∈ Ω as t→ −∞,

f(x, t)/t→ b a.e. x ∈ Ω as t→∞.

The existence of solutions of (2.42) is closely related to the equation

−∆u = bu+ − au−, where u± = max{±u, 0}.

Conventionally, the set

Σ := {(a, b) ∈ R2 : −∆u = bu+ − au− has nontrivial solutions}

is called the Fuč́ık spectrum of −∆ (see Dancer [127], Fuč́ık [151], and
Schechter [269]). It plays a key role in most results of this aspect. However,
so far no complete description of Σ has been found. If

0 < λ1 < · · · < λk < · · ·

are the distinct Dirichlet eigenvalues of −∆ on Ω with zero boundary value,
it was shown in Schechter [269] that in the square (λl−1, λl+1)2 there are
decreasing curves Cl1, Cl2 (which may or may not coincide) passing through
the point (λl, λl) such that all points above or below both curves in the square
(the so-called type (I) region) are not in Σ, whereas points on the curves are
in Σ. Usually, the status of points between the curves (referred to as the
type (II) region if the curves do not coincide) is unknown. However, it was
shown in Gallouët and Kavian [154] that when λ is a simple eigenvalue, then
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points of the type (II) region are not in Σ. On the other hand, Margulies
and Margulies [223] have shown that there are boundary value problems for
which many curves in Σ emanate from a point (λl, λl) when λl is a multiple
eigenvalue. Certainly, these curves are contained in region (II).

Next we proceed to prove the above theorems. Define

G(u) =
1
2
‖u‖2 −

∫

Ω

F (x, u)dx, u ∈ E.

Then G ∈ C1(E,R) and G′(u) = u−ΘG(u), u ∈ E, where ΘG : E → E is a
compact operator. Actually, ΘG(u) = (−∆)−1

(
f(x, u)

)
.

Lemma 2.21. Under the assumptions of Theorems 2.19–2.20, G(u) → −∞
for u ∈ Ek as ‖u‖ → ∞.

Proof. Rewrite G as

G(u) =
1
2
‖u‖2−

∫

RN

(
1
2
β+(x)(u+)2 +

1
2
β−(x)(u−)2 + H(x, u)

)

dx, u ∈ E,

where H(x, u) :=
∫ u

0
h(x, t)dt;

h(x, t) = f(x, t)− (β+(x)t+ − β−(x)t−); t± = max{±t, 0}.

Therefore,

G(u)

=
1
2
‖u‖2 −

∫

Ω

H(x, u)dx

−1
2

(∫

β−(x)≥β+(x)

+
∫

β−(x)<β+(x)

)

(β+(x)(u+)2 + β−(x)(u−)2)dx

=
1
2
‖u‖2 − 1

2

∫

β−(x)≥β+(x)

β+(x)u2dx

−1
2

∫

β−(x)≥β+(x)

(β−(x)− β+(x))(u−)2dx

−1
2

∫

β−(x)<β+(x)

β−(x)u2dx

−1
2

∫

β−(x)<β+(x)

(β+(x)− β−(x))(u+)2dx−
∫

Ω

H(x, u)dx.

Note min{β+(x), β−(x)} > λk and recall the variational characterization of
eigenvalues {λk}; we have the following estimates for any u ∈ Ek.
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G(u)

≤ 1
2
‖u‖2 − 1

2

∫

β−(x)≥β+(x)

β+(x)u2dx

−1
2

∫

β−(x)<β+(x)

β−(x)u2dx−
∫

Ω

H(x, u)dx

≤ 1
2
‖u‖2 − 1

2

∫

Ω

min{β+(x), β−(x)}u2dx−
∫

Ω

H(x, u)dx

≤ −δ‖u‖2 −
∫

Ω

H(x, u)dx,

where δ > 0 is a constant. The last inequality is due to the finite dimension
of Ek and the Schechter–Simon Theorem 1.62. Therefore,

lim
‖u‖→∞,u∈Ek

G(u)
‖u‖2 ≤ −δ

because

lim
t→∞

h(x, t)
t

= 0

and dimEk <∞. �

Lemma 2.22. Assume (B2). Then

G(u) ≤ c0|Ω|
2

, ∀u ∈ Ek−1.

Proof. For u ∈ Ek−1,

G(u) =
1
2
‖u‖2 −

∫

Ω

F (x, u)dx

≤ 1
2
‖u‖2 − 1

2

∫

Ω

λk−1u
2dx +

1
2

∫

Ω

c0dx

≤ c0|Ω|
2

. �

For p > 2 given in (2.44), we let

(2.52) ξ0(u) :=

⎧
⎪⎨

⎪⎩

‖u‖p
p

‖u‖2 +
‖u‖‖u‖p

‖u‖+ λβ
k‖u‖p

, if u �= 0,

0, if u = 0,
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where β = (1− α)(p− 2). Then ξ0 : E → E is continuous. Set

(2.53) S0 := {u ∈ E⊥
k−1 : ξ0(u) = ρ}, ρ :=

1
8CF

> 0.

For u ∈ S0, by (2.48) we have

ρ =
‖u‖p

p

‖u‖2 +
‖u‖‖u‖p

‖u‖+ λβ
k‖u‖p

≤ ‖u‖‖u‖p

2(‖u‖λβ
k‖u‖p)1/2

+
‖u‖2p
‖u‖2 ‖u‖

p−2
p

≤ (‖u‖‖u‖p)1/2

2(λβ
k)1/2

+ Λ2
p‖u‖p−2

p

≤ (Λp)1/2‖u‖
2(λβ

k)1/2
+ Λ2

p‖u‖p−2
p .

By the Gagliardo–Nirenberg inequality in (2.46) and (2.47),

(2.54) ‖u‖p−2
p ≤ cp−2

p ‖u‖α(p−2)‖u‖(1−α)(p−2)
2 .

But u ∈ E⊥
k−1; we see that

λk‖u‖22 ≤ ‖u‖2 and ‖u‖2 ≤
1

λ
1/2
k

‖u‖.

Hence,

(2.55) ‖u‖p−2
p ≤ cp−2

p ‖u‖p−2λ
−(((1−α)(p−2))/2)
k .

Therefore,

ρ ≤ (Λp)1/2‖u‖
2(λβ

k)1/2
+ (Λp)2cp−2

p ‖u‖p−2λ
−(((1−α)(p−2))/2)
k

≤
(

1

(λβ
k)1/2

+
1

λ
((1−α)(p−2)/2)
k

)

(2Λ2
pc

p−2
p )max{‖u‖, ‖u‖p−2}.

Then we have that

(2.56)
λ

((1−α)(p−2))/2
k

(4Λ2
pc

p−2
p )

ρ ≤ max{‖u‖, ‖u‖p−2}.
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Lemma 2.23. For all u ∈ S0,

‖u‖ ≥ Λ∗
p min{λ((1−α)(p−2))/2

k , λ
(1−α)/2
k }min{ρ, ρ1/(p−2)}.

Lemma 2.24. ‖u‖p
p/‖u‖2 ≤ ρ, ∀u ∈ S0.

Lemma 2.25. ‖u‖p ≤ c1, ∀u ∈ S0.

Proof. If ‖u‖p →∞, then so does ‖u‖ → ∞; hence

‖u‖‖u‖p

‖u‖+ λβ
k‖u‖p

→∞,

a contradiction. �

By (2.44), we know that F (x, u) ≤ λ1/4|u|2 + CF |u|p, ∀x ∈ Ω, u ∈ R.
Consider the functional

G(u) =
1
2
‖u‖2 −

∫

Ω

F (x, u)dx, u ∈ H1
0 (Ω).

Then

G(u) ≥ 1
2
‖u‖2 − λ1

4
‖u‖22 − CF ‖u‖p

p

≥ 1
4
‖u‖2 − CF ‖u‖p

p

≥ ‖u‖2
(

1
4
− CF

‖u‖p
p

‖u‖2
)

.

Combining Lemma 2.23 and Lemma 2.24, we have the following.

Lemma 2.26. For any u ∈ S0, we have that

G(u) ≥ 1
8
(Λ∗

p)
2T1T2 ≥

1
2
|Ω|c0.

Lemma 2.27. Under the assumptions of Theorem 2.19, G satisfies the
(w-PS) condition.

Proof. Assume that {un} is a (w-PS) sequence:

G(un) → c, (1 + ‖un‖)G′(un) → 0.

By negation, we assume that ‖un‖ → ∞ as n→∞. Let wn = un/‖un‖. Then
‖wn‖ = 1 and there is a renamed subsequence such that wn → w weakly in
E, strongly in L2(Ω), and a.e. in Ω. Moreover,
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〈G′(un), v〉 = 〈un, v〉 −
∫

Ω

f(x, un)vdx→ 0

and

〈wn, v〉 −
∫

Ω

f(x, un)v
‖un‖

dx→ 0.

By (2.43), we see that

−∆w = β+w+ − β−w−.

Because
G(un)/‖un‖2 = 1/2−

∫

Ω

F (x, un)dx/‖un‖2 → 0,

we see that
∫

Ω
(β+(w+)2 + β−(w−)2)dx = 1. It implies that w �= 0. Let w :=

w− + w+ with w− ∈ Ek, w+ ∈ E⊥
k , w̃ := w+ − w−. Let q(x) = β+(x) when

w(x) ≥ 0; q(x) = β−(x) when w(x) < 0. Then we have that −∆w = q(x)w
and hence

‖w+‖2 − ‖w−‖2 =
∫

Ω

q(x)(w+)2dx−
∫

Ω

q(x)(w−)2dx.

It follows that

0 ≤ ‖w+‖2 − λk+1‖w+‖22 ≤ ‖w+‖2 −
∫

Ω

q(x)(w+)2dx

= ‖w−‖2 −
∫

Ω

q(x)(w−)2dx ≤ ‖w−‖2 − λk

∫

Ω

(w−)2dx ≤ 0.

That is, ‖w±‖2 =
∫

Ω
q(x)(w±)2. The only way this can happen is q(x) = λk

when w−(x) �= 0 and q(x) = λk+1 when w+(x) �= 0 and therefore, either
w− is an eigenfunction of λk or w+ is an eigenfunction of λk+1. But the
first case cannot occur because β± > λk. If w+ is an eigenfunction of λk+1,
then w+ is sign-changing. Because −∆w+ = β+(x)w+

+ − β−(x)w−
+ , we have

β− = λk+1 on a subset of Ω of positive measure and β+ = λk+1 on an-
other subset of Ω of positive measure. This contradicts the assumption of the
theorem. �

Lemma 2.28. Under the assumptions of Theorem 2.20, G satisfies the
(w-PS) condition.

Proof. Assume that {un} is a (w-PS) sequence: (1+ ‖un‖)‖G′(un)‖ → 0 and
{G(un)} is bounded. Then

(2.57) G(un)− 1
2
〈G′(un), un〉 =

∫

Ω

(
1
2
f(x, un)un − F (x, un)

)

dx < c



70 2 Schechter–Tintarev Linking

and
1
2
‖un‖2 ≤ c +

∫

Ω

F (x, un)dx ≤ c +
∫

Ω

Λ0u
2
ndx.

If {‖un‖} is unbounded, then, for a renamed subsequence,

1 ≤ 2Λ0 lim
n→∞

∫

Ω

u2
n

‖un‖2
dx.

It follows that limn→∞ |un|2 = ∞ on a subset of Ω with a positive measure.
Combining this with (B4), we have

∫
Ω

(
1
2f(x, un)un − F (x, un)

)
dx → ∞,

which contradicts (2.57). �

To prove Theorems 2.19 and 2.20, we apply Theorem 2.17. First, we let

P := {u ∈ E : u(x) ≥ 0 for a.e. x ∈ Ω}.

Then P (−P) is the positive (negative) cone of E and ±P has an empty
interior. Let

A := {u = v + sy0 : v ∈ Ek−1, s ≥ 0, ‖u‖ = R} ∪ (Ek−1 ∩BR(0)),

where y0 ∈ E⊥
k−1, ‖y0‖ = 1 and R large enough. Let ρ be defined in (2.53).

By Proposition 2.10, A links S0. Choose

(2.58) a > sup
[0,1]×A

G((1− t)u) + 2.

Define

(2.59) B := S0 ∩Ga� .

In Lemmas 2.15 and 2.16, we chose ‖ · ‖ = ‖ · ‖p. Then by Lemma 2.16,

dist(B := S0 ∩Ga� ,P) := δ1 > 0.

We define
D(µ0) := {u ∈ E : dist(u,P) < µ0}.

Lemma 2.29. Under the assumptions of (B1), there exists a µ0 ∈ (0, δ1)
such that ΘG(±D(µ0)) ⊂ ±D(µ0/2).

Proof. Write u± = max{±u, 0}. For any u ∈ E,

‖u+‖2 = min
w∈(−P)

‖u− w‖2
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≤ 1

λ
1/2
1

min
w∈(−P)

‖u− w‖

=
1

λ
1/2
1

dist(u,−P)(2.60)

and, for each s ∈ (2, 2∗], there exists a Cs > 0 such that

(2.61) ‖u±‖s ≤ Csdist(u,∓P).

By assumption (B1), for each ε′ > 0 small enough, there exists a Cε′ > 0
such that

(2.62) f(x, t)t ≤ ε′t2 + Cε′ |t|p, x ∈ Ω, t ∈ R,

where p > 2 is a constant. Let v = ΘG(u). Then by (2.60)–(2.62),

dist(v,−P)‖v+‖

≤ ‖v+‖2

= 〈v, v+〉

=
∫

Ω

f(x, u+)v+dx

≤
∫

Ω

(ε′|u+|+ Cε′ |u+|p−1)|v+|dx

≤
(

2
5
dist(u,−P) + C(dist(u,−P))p−1

)

‖v+‖.

That is,

dist(ΘG(u),−P) ≤
(

2
5

)

dist(u,−P) + C(dist(u,−P))p−1.

So, there exists a µ0 < δ1 such that dist(ΘG(u),−P) < 1
2µ0 for every u ∈

−D(µ0). Similarly, dist(ΘG(u),P) < 1
2µ0 for every u ∈ D(µ0). The conclusion

follows. �
Proofs of Theorems 2.19–2.20. By Theorem 2.17, there exists a u ∈
E\(−P ∪ P) (sign-changing critical point) such that

G′(u) = 0, G(u) ∈
[
b
0 − ε̄, sup

(t,u)∈[0,1]×A

G((1− t)u) + ε̄
]
,

where b∗0 = c0|Ω|/2; ε̄ is small enough. �
Notes and Comments. The study of the Fuč́ık spectrum began with
Ambrosetti and Prodi [17], Dancer [125], and Fuč́ık [151]. They first realized
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that the set Σ is an important factor in the study of semilinear elliptic
boundary value problems with jumping nonlinearities. There are many papers
on the existence of solutions to Dirichlet elliptic boundary value problems
with jumping nonlinearities; see Các [75], Dancer [127, 128], Giannoni and
Micheletti [159], Hirano and Nishimura [169], Lazer and Mckenna [191, 192],
Liu and Wu [209], Margulies and Margulies [223], Marino and Saccon [220],
Perera and Schechter [244–246], Schechter [269, 272, 273, 275, 276], and
their references cited therein. They were mainly concerned with the exis-
tence results without sign-changingness of the solution. Dancer and Du [130]
(jumping at zero), Dancer and Zhang [132], Li and Zhang [201], and Schechter
et al. [279] got sign-changing solutions for Dirichlet zero-boundary value prob-
lems where the Fuč́ık spectrum of Dirichlet boundary value problems is essen-
tial to their arguments. Note that in Schechter et al. [279], the authors first
proved that the sign-changing solutions of Dirichlet boundary value problems
are independent of the Fuč́ık spectrum. The Fuč́ık spectrum for Schrödinger
equations is an open question. Lemma 2.29 is due to Bartsch, Liu and
Weth [37], whose earlier ideas can be found in Conti, Merizzi and Terracini
[107, 108].

2.4 Oscillating Dirichlet Equations

In this section, we consider the following case,

(2.63) lim inf
t→±∞

f(x, t)
t

:= θ±(x); lim sup
t→±∞

f(x, t)
t

:= ϑ±(x),

where θ±, ϑ± ∈ L∞(Ω). Assumption (2.63) implies that the nonlinearities
are jumping and oscillating. Assume

(B555) 2F (x, t) ≥ max{λk−1t
2, θ+(x)(t+)2+θ−(x)(t−)2}−c0 for x ∈ Ω, t ∈ R;

c0 > 0 is a constant.

Theorem 2.30. Assume (B1), (B3), and (B5). For each pair of numbers
α+, β− in the interval (λk, λk+1) there are numbers α− < λk and β+ > λk+1

such that
α± ≤ θ±(x) ≤ ϑ±(x) ≤ β±, x ∈ Ω.

Then Equation (2.42) has a sign-changing solution.

Theorem 2.31. Assume (B1), (B3), and (B5). For each pair of numbers
α−, β+ in the interval (λk, λk+1) there are numbers α+ < λk and β− > λk+1

such that
α± ≤ θ±(x) ≤ ϑ±(x) ≤ β±, x ∈ Ω.

Then Equation (2.42) has a sign-changing solution.
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Theorem 2.32. Assume (B1), (B3), and (B5). Suppose that

‖v‖2 ≤
∫

RN

(θ+(v+)2 + θ−(v−)2)dx, ∀v ∈ Ek; ϑ±(x) ≤ λk+1, x ∈ Ω

and that no eigenfunction corresponding to λk+1 satisfies

−∆u + V (x)u = ϑ+u+ − ϑ−u−,

and no function in Ek\{0} satisfies −∆u + V (x)u = θ+u+ − θ−u−. Then
Equation (2.42) has a sign-changing solution.

Theorem 2.33. Assume (B1), (B3), and (B5). Suppose that

λk ≤ θ±(x) ≤ ϑ±(x) ≤ λk+1, x ∈ Ω

and that no eigenfunction corresponding to λk satisfies

−∆u = θ+u+ − θ−u−

and that no eigenfunction corresponding to λk+1 satisfies −∆u = ϑ+u+ −
ϑ−u−. Then Equation (2.42) has a sign-changing solution.

Some lemmas are necessary for proving the above theorems.

Lemma 2.34. For each pair of numbers α+, β− ∈ (λk, λk+1), there are num-
bers α− < λk, β+ > λk+1 such that

‖u‖2 <

∫

Ω

(α+(u+)2 + α−(u−)2)dx, ∀ u ∈ Ek\{0};(2.64)

‖u‖2 >

∫

RN

(β+(u+)2 + β−(u−)2)dx, ∀ u ∈ E⊥
k \{0}.(2.65)

Proof. To prove (2.64), we define

c̄0 := max
u∈Ek,‖u‖2=1

(

‖u‖2 −
∫

Ω

α+(u+)2dx−
∫

Ω

λk(u−)2dx
)

.

Because dimEk < ∞, c̄0 exists and is attained at a point u0 ∈ Ek with
‖u0‖2 = 1. Then,

c̄0 =
(

‖u0‖2 −
∫

Ω

λku
2
0dx

)

+
∫

Ω

(λk − α+)(u+
0 )2dx ≤ 0.

Note that both terms in the middle above are less than or equal to zero.
If ‖u0‖2 −

∫
Ω

λku
2
0dx = 0, then u0 ∈ Nk is an eigenfunction of λk. Hence,

u+
0 �≡ 0 because the eigenfunction is sign-changing. Thus, the second term,

hence c̄0, is less than zero. Therefore, for all u ∈ Ek\{0},
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‖u‖2 −
∫

Ω

(α+(u+)2 + α−(u−)2)dx ≤ (c̄0 + λk − α−)
∫

Ω

u2dx < 0

for an appropriate α− < λk. To prove (2.65), we define

d0 = inf
u∈E⊥

k ,‖u‖2=1

(

‖u‖2 −
∫

Ω

λk+1(u+)2dx−
∫

Ω

β−(u−)2dx
)

.

Note that
∫

Ω
λk+1(u)2dx ≤ ‖u‖2 for all u ∈ E⊥

k ; we see that

‖u‖2 −
∫

Ω

λk+1(u+)2dx−
∫

Ω

β−(u−)2dx(2.66)

≥
∫

Ω

(λk+1 − β−)(u−)2dx

≥ 0.

It follows that d0 ≥ 0. It suffices to show that d0 > 0. But, if this were not
true, we would have a sequence {un} ⊂ E⊥

k , ‖un‖2 = 1 such that

dn := ‖un‖2 −
∫

Ω

λk+1(un)2dx−
∫

Ω

(λk+1 − β−)(u−
n )2dx→ 0

as n→∞. It follows that

‖un‖2 ≤ λk+1 + dn.

We may assume that un → u∗ weakly in E and strongly in L2(Ω), hence,
‖u∗‖2 = 1. Therefore,

‖u∗‖2 −
∫

RN

λk+1(u∗)2dx−
∫

Ω

(λk+1 − β−)(u−
∗ )2dx ≤ lim

n→∞ dn = 0.

This implies that u−
∗ = 0 and

‖u∗‖2 =
∫

Ω

λk+1(u∗)2dx.

All these mean that u∗ is a positive eigenfunction of λk+1. This contradiction
completes the proof of the lemma. �

Lemma 2.35. Under the assumptions of Theorem 2.30, G satisfies the (PS)
condition.

Proof. Lemma 2.34 and the conditions of Theorem 2.30 imply that

‖u‖2 <

∫

RN

(θ+(u+)2 + θ−(u−)2)dx, ∀u ∈ Ek\{0};(2.67)
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‖u‖2 >

∫

Ω

(ϑ+(u+)2 + ϑ−(u−)2)dx, ∀u ∈ E⊥
k \{0}.(2.68)

Now let {un} be a (PS) sequence: ‖G′(un)‖ → 0 and {G(un)} is bounded. We
just have to show that {un} is bounded. To show this, assume that ‖un‖ → ∞.
Let ūn = un/‖un‖. Then ūn → ū weakly in E, strongly in L2(Ω), and a.e. in
Ω. Because |f(x, un)|/‖un‖ ≤ F0|ūn|, we may assume that (f(x, un))/‖un‖
converges strongly in L2(Ω) to a function h(x). Observe that

lim inf
n→∞

f(x, un)
‖un‖

≥ ū(x) lim inf
t→∞

f(x, t)
t

= ū(x)θ+(x), if ū(x) > 0.

In a similar way, we can show that

ū(x)θ+(x) ≤ lim inf
n→∞

f(x, un)
‖un‖

≤ lim sup
n→∞

f(x, un)
‖un‖

≤ ū(x)ϑ+(x), if ū(x) > 0;

ū(x)ϑ−(x) ≤ lim inf
n→∞

f(x, un)
‖un‖

≤ lim sup
n→∞

f(x, un)
‖un‖

≤ ū(x)θ−(x), if ū(x) < 0.

This gives

ū(x)θ+(x) ≤ h(x) ≤ ū(x)ϑ+(x), if ū(x) > 0;

ū(x)ϑ−(x) ≤ h(x) ≤ ū(x)θ−(x), if ū(x) < 0.

Let q(x) = h(x)/ū(x) if ū(x) �= 0; otherwise, q(x) = 0. Then

θ+(x) ≤ q(x) ≤ ϑ+(x), if ū(x) > 0;(2.69)

θ−(x) ≤ q(x) ≤ ϑ−(x), if ū(x) < 0.(2.70)

On the other hand, G′(un) → 0 implies that

(2.71) 〈ū(x), v〉 −
∫

Ω

h(x)vdx = 〈ū(x), v〉 −
∫

Ω

q(x)ūvdx = 0.

Let ū = v̄ + w̄ with v̄ ∈ Ek, w̄ ∈ E⊥
k , and ũ = w̄ − v̄. Therefore, by (2.71),

(2.72) ‖w̄‖2 − ‖v̄‖2 =
∫

Ω

q(x)(w̄)2dx−
∫

Ω

q(x)(v̄)2dx.

Recalling (2.67)–(2.69) and (2.72), we have

0 ≤
∫

Ω

(θ+(v̄+)2 + θ−(v̄−)2)dx− ‖v̄‖2

≤
∫

Ω

q(x)(v̄)2dx− ‖v̄‖2
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=
∫

Ω

q(x)(w̄)2dx− ‖w̄‖2

≤
∫

Ω

(ϑ+(w̄+)2 + ϑ−(w̄−)2)dx− ‖w̄‖2

≤ 0.

It follows that
∫

Ω

(θ+(v̄+)2 + θ−(v̄−)2)dx = ‖v̄‖2;(2.73)

∫

Ω

(ϑ+(w̄+)2 + ϑ−(w̄−)2)dx = ‖w̄‖2.(2.74)

Using (2.67) and (2.68) once again, we see that v̄ = w̄ = ū = 0. Hence,
〈

G′(un),
un

‖un‖2
〉

= 1−
∫

RN

f(x, un)
‖un‖

ūn(x)dx→ 1,

providing a contradiction. �

By a similar argument, we can prove the following.

Lemma 2.36. Under the assumptions of Theorem 2.31, G satisfies the (PS)
condition.

Lemma 2.37. Under the assumptions of Theorem 2.32, G satisfies the (PS)
condition.

Proof. By the assumptions of the Theorem 2.32, we have

‖u‖2 ≤
∫

Ω

(θ+(u+)2 + θ−(u−)2)dx, u ∈ Ek;

‖u‖2 ≥ λk+1‖u‖22 ≥
∫

Ω

(ϑ+(u+)2 + ϑ−(u−)2)dx, u ∈ E⊥
k .

Then (2.74) still holds. Hence
∫

Ω

(λk+1 − ϑ+)(w̄+)2dx +
∫

Ω

(λk+1 − ϑ−)(w̄−)2dx = 0.

It follows that ϑ+ = λk+1 if w̄ > 0, and ϑ− = λk+1 if w̄ < 0 and w̄ is an
eigenfunction of λk+1. Therefore,

−∆w̄ + V (x)w̄ = λk+1w̄ = ϑ+w̄+ − ϑ−w̄−,
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which implies that w̄ = 0. Furthermore,
∫

Ω

(θ+(v̄+)2 + θ−(v̄−)2)dx =
∫

Ω

q(x)(v̄)2dx.

Thus, q(x) = θ+(x) if ū > 0; q(x) = θ−(x) if ū < 0 and

−∆ū + V (x)ū = θ+ū+ − θ−ū−.

It follows that ū = v̄ = 0. Using an argument similar to that used in proving
Lemma 2.35, we get a contradiction if the (PS) sequence is unbounded. �

Similarly, we have

Lemma 2.38. Under the assumptions of Theorem 2.33, G satisfies the (PS)
condition.

Proofs of Theorems 2.30–2.33. By Lemmas 2.22–2.26, we see that G(u) ≤
c0|Ω|/2 for all u ∈ Ek−1 := Y and G(u) ≥ c0|Ω|/2 for all u ∈ S0. By (B5),
(2.63), and (2.67), similar to the proof of Lemma 2.22, we have G(u) ≤ T0

for all u ∈ Ek; here T0 is a constant. Then, G satisfies all the conditions of
Theorem 2.18. Therefore, there exists a sequence {uk} ∈ E\(−P ∪ P) such
that

G′(uk) → 0, G′(uk) = Ckuk/k,G(uk) ∈
[
1
4
c0|Ω|, 2T0

]

,

as k → ∞, where the sequence {Ck} is bounded. By Lemmas 2.35–2.38,
uk → u, where u satisfies

G′(u) = 0, G(u) ∈
[
1
4
c0|Ω|, 2T0

]

.

We now show that u is sign-changing. In fact, because G′(uk)−Ckuk/k = 0,
we have

‖u±
k ‖2 −

Ck

k
‖u±

k ‖2 =
∫

RN

f(x, u±
k )u±

k dx ≤ 1
3
‖u±

k ‖2 + C‖u±
k ‖p

p.

It follows that ‖u±
k ‖ ≥ s0 > 0, where s0 is a constant independent of k. This

implies that the limit u is sign-changing and G′(u) = 0, G(u) ∈
[
1
4c0|Ω|, 2T0

]
.

�
Notes and Comments. The existence results of Theorems 2.30–2.33 are
essentially known (cf. Các [75], Berestycki and de Figueiredo [58], Furtado
et al. [152, 153], Habets et al. [165], and Schechter [269]). But in those papers
the signs of the solutions cannot be decided. Theorems 2.30–2.33 are neither
consequences of the usual linking theorems nor straightforward results of the
methods developed in Bartsch [30], Li and Wang [199], and Bartsch et al. [37].
A similar result to that of Lemma 2.34 can be found in Các [75], Lazer and
Mckenna [191], and Schechter [269].
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2.5 Double Resonant Cases

Consider the following case,

(2.75) λk ≤ Ψ1(x) := lim inf
|t|→∞

f(x, t)
t

≤ lim sup
|t|→∞

f(x, t)
t

:= Ψ2(x) ≤ λk+1

uniformly for x ∈ Ω. We have the following.

Theorem 2.39. Assume that (B1)–(B4) and (2.75) hold with Ψ1(x) �≡ λk.
Then Equation (2.42) has a sign-changing solution.

Lemma 2.40. Under the assumptions of Theorem 2.39, G(u) → −∞ for
u ∈ Ek and ‖u‖ → ∞.

Proof. Because Ψ1(x) ≥ λk, Ψ1(x) �≡ λk, and dimEk <∞, by the variational
characterization of the eigenvalues {λk}, there is a ρ > 0 such that

(2.76) ‖u‖2 −
∫

Ω

Ψ1(x)u2dx ≤ −ρ‖u‖2 for all u ∈ Ek.

In fact, this is an immediate consequence of the Schechter–Simon Theo-
rem 1.62. Furthermore, by (2.75), for ε > 0 small enough, there exists a
Cε > 0 such that

1
2
Ψ1(x)t2 − F (x, t) ≤ 1

2
εt2 + Cε

for all x ∈ Ω, t ∈ R. Therefore, combining (2.76),

G(u) =
1
2
‖u‖2 − 1

2

∫

Ω

Ψ1(x)u2dx +
∫

Ω

(
1
2
Ψ1(x)u2 − F (x, u)

)

dx

≤ −3ρ
8
‖u‖2 +

∫

Ω

(
1
2
εu2 + Cε

)

dx

≤ −ρ

4
‖u‖2 +

∫

Ω

Cεdx.

The lemma follows immediately. �

Proof of Theorem 2.39. Similar to Lemma 2.28, G satisfies the (w-PS) con-
dition. The remainder is analogous to the proof of Theorem 2.20. We leave
the details to the readers. �

Notes and Comments. To study the sign-changing solutions, several authors
developed some methods. In Bartsch [30], the author established an abstract
critical theory in partially ordered Hilbert spaces by virtue of critical groups
and studied superlinear problems. In Li and Wang [199], a Ljusternik–
Schnirelman theory was established for studying the sign-changing solutions
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of an even functional. Some linking-type theorems were also obtained in
partially ordered Hilbert spaces. The methods and abstract critical point
theory of Bartsch [30], Bartsch and Weth [45], and Li and Wang [199, 198]
involved the dense Banach space C(Ω) of continuous functions in the Hilbert
space H1

0 (Ω), where the cone has a nonempty interior. This plays a crucial
role. To fit that framework, much stronger hypotheses (e.g., boundedness of
the domain and stronger smoothness of the nonlinearities) were imposed. In
[37], the method of dealing with superlinear non-odd f was based on Liu
and Sun [211] by using arguments of invariant sets. In [37], this idea of the
neighborhood of a cone due to Conti et al. [107] was applied and modified
by the authors to construct the invariant set. Their idea also can be traced
back to Bartsch [29].

Under the Ambrosetti–Rabinowitz’s super-quadratic (ARS, for short),
Wang [331] obtained the existence result of three solutions (one is posi-
tive, another one is negative) on a superlinear Dirichlet elliptic equation and
later in Bartsch and Wang [40], the authors proved for semilinear Dirichlet
problems that the third solution is sign-changing. This result was general-
ized to nonlinear Schrödinger equations in Bartsch and Wang [41] where the
(ARS) condition plays an important role. Recall the papers of Coti Zelati
and Rabinowitz [121, 122], where V (x) and f(x, t) were periodic for each
x variable and infinitely many sign-changing solutions were obtained by a
totally different theory.

In Bartsch and Wang [44], the existence of sign-changing entire solutions
defined on RN was studied. They constructed a series of Dirichlet problems
on the ball and then expanded the ball to whole space.

Other papers on sign-changing solutions include Bartsch et al. [31], Castro
et al. [80, 81], Castro and Finan [82], Dancer and Du [129], Dancer and Yan
[131], and Schechter et al. [279]. Other variants of the linking theorem can be
found in Schechter [273, 267, 270, 274, 271]. Finally, we mention other papers
on resonant problems. In Arcoya and Costa [18], Bartolo et al. [27], Bartsch
and Li [36], Hirano et al. [171], and Hirano and Nishimura [169], the strong
resonant elliptic equation was studied. In Schechter [276] and Zou and Liu
[348], general resonant problems were considered.



Chapter 3

Sign-Changing Saddle Point

3.1 Rabinowitz’s Saddle Points

Let E be a Hilbert space with an inner product 〈·, ·〉 and the associated norm
‖ · ‖. Assume that E has an orthogonal decomposition E = Y ⊕ M with
dimY <∞. Consider a C1-functional G defined on E.

Theorem 3.1. Suppose that G ∈ C1(E,R) satisfies the Palais–Smale con-
dition. If there is a constant α and a bounded neighborhood D of 0 in Y such
that

G|∂D ≤ α, inf
M

G ≥ β > α,

then G has a critical value ≥ β.

This is the saddle point theorem. It can be found in the well-known
brochure of Rabinowitz (cf. Theorem 4.6 of Rabinowitz [255]). The saddle
point theorem is an elementary but very useful result that has been applied
in various variational problems (see, e.g., Rabinowitz [255] and Struwe [313]).
Some variants were obtained (cf., e.g., Benci and Rabinowitz [55] and Lazer
and Solimini [193]). The following generalization was given by Silva [299] (see
also Furtado et al. [152, 153]).

Theorem 3.2. Assume that G ∈ C1(E,R) satisfies a weak Palais–Smale
condition. If

(3.1) a0 := sup
Y

G �= ∞, b0 := inf
M

G �= −∞,

then G has a critical point.

Unfortunately, no more information on this critical point produced in the
above theorems was obtained. Theorem 3.2 does not get an estimate of the
critical value. Particularly, both theorems cannot exclude the trivial point 0 if
zero is a critical point because, in practice, infM G ≤ 0. Therefore, additional
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conditions must be assumed in order to get a nontrivial critical point. For
example, in Furtado et al. [152] (see also Lazer and Solimini [193] for an
earlier version), under the hypotheses of Theorem 3.2, the authors assumed
furthermore that

(3.2)

{
G ∈ C2(E,R), G′(0) = 0, G′′(0) is a Fredholm operator and

either dimY < m(G, 0) or m̄(G, 0) < dimY,

where m(G, 0)(m̄(G, 0)) is the Morse index (augmented Morse index) of G
at 0. In this case, G has a nonzero critical point. Condition (3.2) was intro-
duced in Lazer and Solimini [193] which was related to Amann and Zehnder’s
theorem in [10]. Under the assumptions of (3.2) and of Theorem 3.1, the
authors of [193] also got a nontrivial solution including an estimate of the
Morse index. In all those papers, no further property on this nonzero critical
point was obtained even though (3.2) was imposed. Sometimes, in applica-
tion, Condition (3.2) is somewhat hard to verify and many more requirements
are needed.

The questions are twofold. If G′(0) = 0, when will the saddle point be
nontrivial if (3.2) is cancelled? But on the other hand, can we get a further
property for this point, say, sign-changingness or nodal structure of the saddle
point? We devote this chapter to these open questions. More precisely, we
generalize Theorem 3.2 by showing that there is another critical point in
addition to zero which is sign-changing with respect to a positive cone of
E. We do not need the assumptions as in (3.2). We apply the new abstract
result to study the existence of sign-changing solutions to the semilinear
elliptic boundary value problem of the form

{
−∆u = f(x, u), in Ω,

u = 0, on ∂Ω,

and the Schrödinger equation
{
−∆u + Vλ(x)u = f(x, u), x ∈ RN ,

u(x) → 0 as |x| → ∞,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and f(x, t) is
a Carathéodory function. We establish the existence results on sign-changing
solutions.

3.2 Sign-Changing Saddle Points

Let G ∈ C1(E,R) have the gradient G′ of the form:

G′(u) = u−ΘG(u),
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where ΘG : E → E is a continuous operator. Let K := {u ∈ E : G′(u) = 0}
and Ẽ := E\K. The locally Lipschitz continuous map V : Ẽ → E is a
pseudo-gradient vector field of G (cf. Definition 1.53). Let P denote a closed
convex positive cone of E and D(i)

0 be an open convex subset of E, i = 1, 2. In
applications, we may choose D(i)

0 appropriately so that either D(1)
0 contains all

possible positive critical points or D(2)
0 includes all possible negative critical

points. Let

(3.3) S := E\W, W := D(1)
0 ∪ D(2)

0 .

We make the following assumptions.

(A111) ΘG(D(i)
0 ) ⊂ D(i)

0 , i = 1, 2.

Let

(3.4) W (u) :=
(1 + ‖u‖)2V (u)

(1 + ‖u‖)2‖V (u)‖2 + 1
.

Then W is a locally Lipschitz continuous vector field on Ẽ. Let Φ be the set
of contractions defined in (2.1) of Section 2.1. Obviously, for a fixed e0 ∈ E,
Γ (t, u) := (1− t)u + te0 ∈ Φ.

In this chapter, we always use the following weaker version of the (PS)
condition. It is a variant of Definition 1.51 due to Cerami [84].

Definition 3.3. The functional G is said to satisfy the (w∗-PS) condition if
for any sequence {un} such that {G(un)} is bounded and G′(un) → 0, we have
either {un} is bounded and has a convergent subsequence or ‖G′(un)‖‖un‖ →
∞. If in particular, {G(un)} → c, we say that (w∗-PS)c is satisfied.

(A222) There exists a δ > 0 and z0 ∈ Y with ‖z0‖ = 1 such that

B := {u ∈M : ‖u‖ ≥ δ} ∪ {sz0 + v : v ∈M, s ≥ 0, ‖sz0 + v‖ = δ} ⊂ S.

In applications, usually the first eigenfunction is positive, and the orthogonal
complement of the first eigenspace (⊂ Y ) contains sign-changing elements
and zero. Therefore, (A2) can be verified readily.

Theorem 3.4. Assume (A1) and (A2). Let G be a C1-functional on E that
maps bounded sets to bounded sets and satisfies (w∗-PS) and

b0 := inf
M

G �= −∞, a0 := sup
Y

G �=∞.

Then G has a critical point in S with critical value ≥ infB G.

In comparison with Theorems 3.1 and 3.2, we observe the following
novelties of Theorem 3.4. If zero is a critical point of G, we still obtain
another nonzero saddle point, no matter what infB G is (possibly infB G ≤ 0).
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The nonzero saddle point is sign-changing, the critical value of which is not
necessarily nonzero. We do not need the assumptions as in (3.2) and G is
only of C1. To contrast Theorem 3.2, we get a lower bound of the critical
value. After finishing the proof of Theorem 3.4, we give an estimate of the
upper bound of the critical value.

In applications, by choosing different W, hence S, we may obtain different
locations of critical points. In particular, we can get nontrivial sign-changing
critical points even though infB G < 0.

Proof of Theorem 3.4. First of all, we define

(3.5) d∗0 := inf
B∪M

G;

then d∗0 > −∞. We divide the proof into five steps.

Step 1. We show that there exists a flow ϑ ∈ C([0,∞) × E,E) such that
ϑ(t, u) = u for any u ∈ M ∪ B and that G(ϑ(t, u)) is nonincreasing with
respect to variable t ∈ (0,∞) for every u ∈ E. More important, ϑ has the
properties stated in Steps 2–4 below. By analyzing the flow carefully, we may
find a critical point in S.

To prove these, we first choose

c0 := 64(a0 − d∗0 + 1)
(

ln
5
4

)−1

+ 1.

Then by the (w∗-PS) condition, there exist ε1 ∈ (0, 1), R1 > δ > 0 such
that

(3.6) ‖G′(u)‖(1 + ‖u‖) ≥ c0

for all u ∈ G−1[d∗0 − ε1, a0 + ε1] with ‖u‖ ≥ R1, where δ comes from the set
B in (A2). Let ε0 ∈ (0, ε1) and

(3.7)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ω1 := {u : G(u) ≥ a0 + ε1 or G(u) ≤ d∗0 − ε1},
Ω2 := {u : d∗0 − ε0 ≤ G(u) ≤ a0 + ε0},
Ω3 := {u = u− + u+ : u− ∈ Y, u+ ∈M, ‖u−‖ ≤ R1},
Ω4 := {u = u− + u+ : u− ∈ Y, u+ ∈M, ‖u−‖ ≥ R1 + 1}.

Hence, B ⊂ Ω3. Define

g(u) =
dist(u,Ω1)

dist(u,Ω1) + dist(u,Ω2)
,(3.8)

l(u) =
dist(u,Ω3)

dist(u,Ω3) + dist(u,Ω4)
.(3.9)



3.2 Sign-Changing Saddle Points 85

Let

(3.10) W ∗(u) :=

⎧
⎨

⎩
g(u)l(u)W (u) =

g(u)l(u)(1 + ‖u‖)2V (u)
(1 + ‖u‖)2‖V (u)‖2 + 1

, u ∈ Ẽ,

0, u ∈ K.

For any u ∈ ∂K, note that ∂K ⊂ K ⊂ Ω1 ∪ Ω3; we distinguish the cases
u ∈ Ω1 and u ∈ Ω3\Ω1. First, we assume that u ∈ Ω1. Then either G(u) ≥
a0 +ε1 or G(u) ≤ d∗0−ε1. We consider G(u) ≥ a0 +ε1 first. If G(u) = a0 +ε1

and ‖u−‖ ≥ R1, then ‖G′(u)‖(1 + ‖u‖) ≥ c0, which contradicts the fact that
u ∈ ∂K. So we must have either

G(u) = a0 + ε1 with ‖u−‖ < R1 or G(u) > a0 + ε1.

Both cases imply that there is an open neighborhood Uu of u such that
Uu ⊂ Ω1 ∪ Ω3. If G(u) ≤ d∗0 − ε1, in a similar way, we find a neighborhood
Uu of u such that Uu ⊂ Ω1 ∪ Ω3. Second, if u ∈ Ω3\Ω1, we may also find
this kind of neighborhood Uu of u. These arguments show that W ∗ is locally
Lipschitz continuous on whole E. Moreover, ‖W ∗(u)‖ ≤ 1 + ‖u‖ on E. Now
we can consider the following Cauchy problem

(3.11)

⎧
⎪⎨

⎪⎩

dϑ(t, u)
dt

= −W ∗(ϑ),

ϑ(0, u) = u ∈ E.

It has a unique solution ϑ(t, u) : [0,∞) × E → E satisfying the following
properties.

(1) ϑ(t, u) is a homeomorphism of E onto E for each t ≥ 0.
(2) ϑ(t, u) = u for all u ∈M ∪B.
(3) G(ϑ(t, u)) is nonincreasing with respect to t ≥ 0.

Step 2. We show that

(3.12) ϑ([0,+∞),W) ⊂ W.

We first show

(3.13) ϑ([0,+∞), W̄) ⊂ W̄.

By Lemma 2.11, there exists a locally Lipschitz continuous map O such that

O(D(i)
0 ∩ Ẽ) ⊂ D(i)

0 ,

hence,
O(D̄(i)

0 ∩ Ẽ) ⊂ D̄(i)
0 , i = 1, 2.
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Because K ⊂ Ω1 ∪ Ω3, then ϑ(t, u) = u for all t ≥ 0 and u ∈ W̄ ∩ K. Next,
we assume that u ∈ D̄(1)

0 ∩ Ẽ. We show that ϑ(t, u) ∈ D̄(1)
0 for all t > 0. By

negation, assume that there is a T0 > 0 such that ϑ(T0, u) �∈ D̄(1)
0 ; we may

find a number s0 ∈ [0, T0) such that ϑ(s0, u) ∈ ∂D̄(1)
0 and ϑ(t, u) �∈ D̄(1)

0 for
t ∈ (s0, T0]. Consider the following initial value problem

⎧
⎪⎨

⎪⎩

dϑ(t, ϑ(s0, u))
dt

= −W ∗(ϑ(t, ϑ(s0, u))),

ϑ(0, ϑ(s0, u)) = ϑ(s0, u) ∈ E.

It has a unique solution ϑ(t, ϑ(s0, u)). For any v ∈ D̄(1)
0 , if v ∈ K, then

W ∗(v) = 0. Hence,
v + β(−W ∗(v)) = v ∈ D̄(1)

0 .

Assume that v ∈ Ẽ ∩ D̄(1)
0 ; then O(v) ∈ D̄(1)

0 . By Lemma 2.11 and noting
that D̄(1)

0 is convex, we have

v + β(−W ∗(v))

= v − β
g(v)l(v)(1 + ‖v‖)2V (v)
(1 + ‖v‖)2‖V (v)‖2 + 1

= v − β
g(v)l(v)(1 + ‖v‖)2

(1 + ‖v‖)2‖V (v)‖2 + 1
(v −O(v))

=
(

1− β
g(v)l(v)(1 + ‖v‖)2

(1 + ‖v‖)2‖V (v)‖2 + 1

)

v

+ β
g(v)l(v)(1 + ‖v‖)2

(1 + ‖v‖)2‖V (v)‖2 + 1
O(v) ∈ D̄(1)

0

for β small enough. Summing up, we have

lim
β→0+

dist(v + β(−W ∗(v)), D̄(1)
0 )

β
= 0, ∀v ∈ D̄(1)

0 .

By Lemma 1.49, there exists an ε > 0 such that ϑ(t, ϑ(s0, u)) ∈ D̄(1)
0 for

all t ∈ [0, ε). By the semigroup property, we see that ϑ(t, u) ∈ D̄(1)
0 for all

t ∈ [s0, s0 + ε), which contradicts the definition of s0. Therefore,

ϑ([0,+∞), D̄(1)
0 ) ⊂ D̄(1)

0 .

Similarly, ϑ([0,+∞), D̄(2)
0 ) ⊂ D̄(2)

0 . That is, ϑ([0,+∞), W̄) ⊂ W̄. Thus (3.13)
is true. To prove ϑ([0,+∞),W) ⊂ W, we just show that ϑ([0,+∞),D(1)

0 ) ⊂
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D(1)
0 . By a contradiction, assume that there exists a u∗ ∈ D(1)

0 , T0 > 0 such
that ϑ(T0, u

∗) �∈ D(1)
0 . Choose a neighborhood Uu∗ of u∗ such that Uu∗ ⊂ D̄(1)

0 .
Then by the theory of ordinary differential equations in Banach spaces, we
may find a neighborhood UT0 of ϑ(T0, u

∗) such that ϑ(T0, ·) : Uu∗ → UT0

is a homeomorphism. Because ϑ(T0, u
∗) �∈ D(1)

0 , we take a w ∈ UT0\D̄
(1)
0 .

Correspondingly, we find a v ∈ Uu∗ such that ϑ(T0, v) = w; this contradicts
the fact that ϑ([0,∞), D̄(1)

0 ) ⊂ D̄(1)
0 . This completes the proof of (3.12).

Step 3. For any R > 0, let

AR := {u ∈ Y : ‖u‖ = R}.

We show that there exist R0 > 0, T0 > 0 such that

(3.14) ϑ(T0, AR0) ⊂ Gd∗
0−ε0 := {u ∈ E : G(u) ≤ d∗0 − ε0}.

Choose R0 = 2(R1 + 1), where R1 comes from (3.6) of Step 1. Let φ0(t) =
‖ϑ(t, u)‖, where ϑ comes from (3.11). If g(u)l(u) �= 0 for some u ∈ E, then
by (3.6)–(3.8), we must have that

‖G′(u)‖(1 + ‖u‖) ≥ c0 > 1.

Hence,

‖g(u)l(u)W (u)‖ ≤ (1 + ‖u‖)2‖V (u)‖
(1 + ‖u‖)2‖V (u)‖2 + 1

≤ 8(1 + ‖u‖)2‖G′(u)‖
(1 + ‖u‖)2‖G′(u)‖2 + 1

≤ 8c0

1 + c2
0

(1 + ‖u‖).

Therefore,

(3.15) ‖g(u)l(u)W (u)‖ ≤ 8c0

1 + c2
0

(1 + ‖u‖) for all u ∈ E.

Furthermore, ∣
∣
∣
∣
dφ0(t)

dt

∣
∣
∣
∣ ≤

8c0

1 + c2
0

(1 + φ0(t)).

It follows that

(3.16) φ0(t) = ‖ϑ(t, u)‖ ≤ e(8c0/(1+c2
0))t(1 + ‖u‖)− 1 for all u ∈ E, t ≥ 0.

Choose

T0 :=
1 + c2

0

8c0
ln

5
4
.
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For any u ∈ Y with ‖u‖ = R0 = 2(R1 + 1), write

ϑ(t, u) = ϑ1(t, u)⊕ ϑ2(t, u) with ϑ1(t, u) ∈ Y, ϑ2(t, u) ∈M.

By (3.15) and (3.16),
∣
∣‖ϑ1(t, u)‖ − ‖u‖

∣
∣ ≤ ‖ϑ(t, u)− u‖

=
∫ t

0

dϑ(t, u)

≤ 8c0

1 + c2
0

∫ t

0

(1 + ‖ϑ(t, u)‖)dt

≤ 8c0

1 + c2
0

∫ t

0

(1 + ‖u‖)e(c0/(1+c2
0))tdt

= (1 + ‖u‖)(e(8c0/(1+c2
0))t − 1).(3.17)

It implies that

(3.18) ‖ϑ(t, u)‖ ≥ ‖ϑ1(t, u)‖ ≥ ‖u‖ − (1 + ‖u‖)(e(8c0/(1+c2
0))t − 1) ≥ R1 + 1

for all t ∈ [0, T0]. Then, by (3.7) and (3.8), l(ϑ(t, u)) = 1 for all t ∈ [0, T0].
If there exists a t1 ∈ [0, T0] such that G(ϑ(t1, u)) ≤ d∗0 − ε0, then

(3.19) G(ϑ(T0, u)) ≤ d∗0 − ε0.

Otherwise,
d∗0 − ε0 < G(ϑ(t, u)) ≤ G(u) ≤ a0 ≤ a0 + ε0

for all t ∈ [0, T0]. By (3.6), (3.8), and (3.18), we have that

‖G′(ϑ(t, u))‖(1 + ‖ϑ(t, u)‖) ≥ c0

and g(ϑ(t, u)) = 1 for all t ∈ [0, T0]. Therefore, if we keep in mind the choice
of c0, ε0, and T0, we then have

G(ϑ(T0, u))

= G(u) +
∫ T0

0

dG(ϑ(t, u))

≤ G(u)−
∫ T0

0

〈

G′(ϑ(t, u)),
(1 + ‖ϑ(t, u)‖)2V (ϑ(t, u))

(1 + ‖ϑ(t, u)‖)2‖V (ϑ(t, u))‖2 + 1

〉

dt

≤ G(u)− 1
8

∫ T0

0

(1 + ‖ϑ(t, u)‖)2‖G′(u)‖2
(1 + ‖ϑ(t, u)‖)2‖G(u)‖2 + 1

dt
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≤ a0 −
1
8

∫ T0

0

c2
0

1 + c2
0

dt

≤ d∗0 − ε0.

Combining (3.19), we observe that

(3.20) ϑ(T0, AR0) ⊂ Gd∗
0−ε0 , hence ϑ(T0, AR0) ∩B = ∅.

Step 4. In this step, we show that ϑ(T0, AR0) links B with respect to Φ and
then we can define a critical value of minimax type. First, we note that
ϑ(t, u) = u for all u ∈ B;AR0 ∩ B = ∅ and that ϑ(t, ·) : E → E is a
homeomorphism for any t ≥ 0, we see that

(3.21) ϑ(t, AR0) ∩B = ∅ for all t ≥ 0.

Let Γ be any map in Φ. Define

Γ1(t, u) =

{
ϑ(2tT0, u) if t ∈ [0, 1/2];

Γ ((2t− 1), ϑ(T0, u)) if t ∈ [1/2, 1].

Then Γ1 ∈ Φ. Because AR0 links B by Proposition 2.7, there is a t1 ∈ [0, 1]
such that Γ1(t1, AR0)∩B �= ∅. Because ϑ(2tT0, AR0)∩B = ∅ for all t ∈

[
0, 1

2

]
,

we must have t1 > 1
2 . Hence,

Γ ((2t1 − 1), ϑ(T0, AR0)) ∩B �= ∅.

Invoking (3.21), this shows that ϑ(T0, AR0) links B with respect to Φ.
Now, take any Γ ∈ Φ, then Γ ([0, 1], ϑ(T0, AR0)) ∩B �= ∅. Because B ⊂ S,

we see that
Γ ([0, 1], ϑ(T0, AR0)) ∩ S �= ∅.

Define

(3.22) d0 := inf
Γ∈Φ

sup
Γ ([0,1], ϑ(T0,AR0 ))∩S

G.

Evidently, by (3.20),

(3.23) ā0 := sup
ϑ(T0,AR0 )

G ≤ d∗0 − ε0 < d∗0 ≤ inf
B

G ≤ d0.

Step 5. We prove that K[d0 − ε̄, d0 + ε̄] ∩ S �= ∅ for all ε̄ > 0; here and in the
sequel, K[e, f ] := {u ∈ E : G′(u) = 0, e ≤ G(u) ≤ f}. Once this is done, note
that K[d0 − ε̄, d0 + ε̄] is compact due to the (w∗-PS) condition and that S is
closed; we may find a critical point in S with critical value d0 ≥ infB G.



90 3 Sign-Changing Saddle Point

We assume by negation that K[d0 − ε̄, d0 + ε̄] ∩ S = ∅ for some ε̄ > 0 and
try to get a contradiction. In this case, K[d0− ε̄, d0 + ε̄] ⊂ W. By the (w∗-PS)
condition, K[d0−ε̄, d0+ε̄] is compact. We may assume that K[d0−ε̄, d0+ε̄] �= ∅
(otherwise, it is simpler).

It follows that

(3.24) dist(K[d0 − ε̄, d0 + ε̄], S) := δ0 > 0.

Again, by the (w∗-PS) condition, there is an ε2 > 0 such that

(3.25)
(1 + ‖u‖)2‖G′(u)‖2

1 + (1 + ‖u‖)2‖G′(u)‖2 ≥ ε2

for all
u ∈ G−1[d0 − ε2, d0 + ε2]\(K[d0 − ε̄, d0 + ε̄])δ0/2,

where (A)δ0 := {u ∈ E : dist(u,A) ≤ δ0}. By decreasing ε2 and invoking
(3.23), we may assume that

(3.26) ε2 < ε̄/3, ε2 < d0 − ā0.

Particularly, we still have that K[d0 − ε2, d0 + ε2] ∩ S = ∅. Furthermore by
(3.25),

(3.27) 〈G′(u),W (u)〉 ≥ ε2/8

for all u ∈ G−1[d0 − ε2, d0 + ε2]\(K[d0 − ε̄, d0 + ε̄])δ0/2. Let

Ω5 := {u ∈ E : |G(u)− d0| ≥ 3ε2},(3.28)

Ω6 := {u ∈ E : |G(u)− d0| ≤ 2ε2},(3.29)

ξ(u) =
dist(u,Ω5)

dist(u,Ω6) + dist(u,Ω5)
,(3.30)

κ(u) :=

{
1, u ∈ E\(K[d0 − ε̄, d0 + ε̄])δ0/2,

0, u ∈ (K[d0 − ε̄, d0 + ε̄])δ0/3.
(3.31)

Take any v ∈ ∂K.

If |G(v)−d0| > 3ε2, then there is an open neighborhood Uv of v such that

(3.32) ξ|Uv
= 0.
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If |G(v)− d0| ≤ 3ε2, note 3ε2 < ε̄; we may find a δ∗ << δ0/8 such that

(3.33) |G(w)− d0| ≤ ε̄ for all w ∈ Uv := {w ∈ E : ‖w − v‖ < δ∗}.

Because v ∈ ∂K, there exists a v1 ∈ Uv ∩ K. Hence, v1 ∈ K[d0 − ε̄, d0 + ε̄]. It
follows that

dist(v,K[d0 − ε̄, d0 + ε̄]) ≤ dist(v, v1) < δ∗ < δ0/8.

Therefore, we may find an open neighborhood Ũv of v such that

dist(x,K[d0 − ε̄, d0 + ε̄]) < δ0/5, for all x ∈ Ũv.

This implies that

(3.34) κ|Ũv
= 0.

Combining (3.28)–(3.34), the vector field defined by

(3.35) Y ∗(u) :=

⎧
⎪⎨

⎪⎩

ξ(u)κ(u)W (u) =
ξ(u)κ(u)(1 + ‖u‖)2V (u)
(1 + ‖u‖)2‖V (u)‖2 + 1

, u ∈ Ẽ,

0, u ∈ K,

is locally Lipschitz on whole E. We now consider the following Cauchy initial
value problem, ⎧

⎪⎨

⎪⎩

dπ(t, u)
dt

= −Y ∗(π(t, u)),

π(0, u) = u ∈ E,

which has a unique continuous solution π(t, u) in E. Evidently,

(3.36)
dG(π(t, u))

dt
≤ 0.

Similarly to Step 2, we can prove that

(3.37) π([0,∞),W) ⊂ W.

By the definition of d0 in (3.22), there exists a Γ ∈ Φ such that

(3.38) Γ ([0, 1], ϑ(T0, AR0)) ∩ S ⊂ Gd0+ε2 .

Therefore,

(3.39) Γ ([0, 1], ϑ(T0, AR0)) ⊂ Gd0+ε2 ∪W.



92 3 Sign-Changing Saddle Point

Denote A∗ := Γ ([0, 1], ϑT0, AR0)). Next, we show that there exists a T1 > 0
such that π(T1, A

∗) ⊂ Gd0−ε2/4 ∪W.
In fact, if u ∈ A∗ ∩W, then π(t, u) ∈ W for all t > 0 by (3.37).
If u ∈ A∗, u �∈ W, then we see that G(u) ≤ d0 + ε2. If it happens that

G(u) ≤ d0 − ε2, then by (3.36),

G(π(t, u)) ≤ G(u) ≤ d0 − ε2

for all t ≥ 0.
If G(u) > d0 − ε2, then u ∈ G−1[d0 − ε2, d0 + ε2]. If

dist(π([0,∞), u),K[d0 − ε̄, d0 + ε̄]) ≤ δ0/2,

then there exists a tN such that π(tN , u) ∈ W. Moreover,
(3.40)

dist(π(tN , u),S) ≥ δ0/4, π(t, u) ∈ W for all t ≥ tN (by (3.37)).

Assume
dist(π([0,∞), u),K[d0 − ε̄, d0 + ε̄]) > δ0/2.

Similarly, we assume that G(π(t, u)) > d0 − ε2 for all t; then

π(t, u) ∈ G−1[d0 − ε2, d0 + ε2]\(K[d0 − ε̄, d0 + ε̄])δ0/2.

Therefore, by (3.29)–(3.31),

(3.41) ξ(π(t, u)) = κ(π(t, u)) = 1 for all t ≥ 0.

Moreover, by (3.27) and (3.41),

G(ϑ(24, u)) = G(u) +
∫ 24

0

dG(π(s, u))

≤ G(u)−
∫ 24

0

〈G′(π(s, u)),W (π(s, u))〉ds

≤ d0 − 2ε2.(3.42)

By combining the above arguments (cf. (3.40)–(3.42)), for any u ∈ A∗\W,
there exists a Tu > 0 such that

(3.43)

{
either π(Tu, u) ∈ Gd0−ε2/2 or

dist(π(Tu, u),S) ≥ δ0/4 and π(t, u) ∈ W for all t ≥ Tu.

By continuity, (3.43) implies that there exists a neighborhood Uu of u ∈
A∗\W such that
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(3.44)

{
either π(Tu, Uu) ⊂ Gd0−ε2/4 or dist(π(Tu, Uu),S) ≥ δ0/5

and π(Tu, Uu) ⊂ W, hence, π(t, Uu) ⊂ W for all t ≥ Tu.

Because A∗\W is compact, by (3.43) and (3.44) we get a T1 > 0 such that

(3.45) π(T1, A
∗\W) ⊂ Gd0−ε2/4 ∪W hence, π(T1, A

∗) ⊂ Gd0−ε2/4 ∪W.

Now we define

Γ ∗(s, u) =

{
π(2T1s, u), s ∈

[
0, 1

2

]
,

π(T1, Γ (2s− 1, u)), s ∈
[
1
2 , 1
]
.

Then, Γ ∗ ∈ Φ. We consider two cases.
If s ∈

[
0, 1

2

]
, we have that

Γ ∗(s, ϑ(T0, AR0)) ∩ S

⊂ π(2T1s, ϑ(T0, AR0)) ∩ S

⊂ Gā0 ∩ S (by (3.23) and (3.36))

⊂ Gd0−ε2/4 (by (3.26)).(3.46)

If s ∈
[
1
2 , 1
]
, we have

Γ ∗(s, ϑ(T0, AR0)) ∩ S

⊂ π(T1, Γ (2s− 1, ϑ(T0, AR0))) ∩ S

⊂ π(T1, A
∗) ∩ S

⊂ (Gd0−ε2/4 ∪W) ∩ S (by (3.45))

⊂ Gd0−ε2/4 ∩ S

⊂ Gd0−ε2/4.(3.47)

It follows from (3.46) and (3.47) that

G(Γ ∗([0, 1], ϑ(T0, AR0)) ∩ S) ≤ d0 − ε2/4,

which contradicts the definition of d0 in (3.22). �

Remark 3.5. From the proof of Theorem 3.4, we may estimate the upper
bound of the critical value, which is helpful in applications. In fact, by (3.17),
for all u ∈ AR0 ,

(3.48) ‖ϑ(T0, u)‖ ≤ (1 + ‖R0‖)(e(8c0/(1+c2
0))T0 − 1) + R0 := R2.
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Because Γ (t, u) = (1 − t)u + te0 ∈ Φ for a fixed e0 ∈ E with ‖e0‖ = 1, by
(3.22) and (3.48),

d0 := inf
Γ∈Φ

sup
Γ ([0,1], ϑ(T0,AR0 ))∩S

G

≤ sup
t∈[0,1], w∈ϑ(T0,AR0 )

G((1− t)w + te0)

≤ sup
u∈E, ‖u‖≤R2+‖e0‖

G.

Therefore,
d0 ∈

[
inf
B

G, sup
u∈E, ‖u‖≤R2+1

G
]
,

where R2 given in (3.48) depends on R0, c0, T0, hence, on a0, d
∗
0, R1 in (3.6).

Notes and Comments. Various versions of the weak (PS) condition were used
in Costa [112], Costa and Magalhães [117, 111, 116, 113–115], Silva [293–298,
300], and the references cited therein. Other variants of the saddle point (link-
ing) theorem and its applications can be found in Amann [9], Ambrosotti and
Rabinowitz [15], Liu [208] (on product spaces with a compact manifold), and
Schechter [273, 267, 270, 274, 271]. The estimates of the Morse index for the
saddle point were given in Lazer and Solimini [193], Perera and Schechter
[243], Ramos and Sanchez [261], and Solimini [307]. In particular, by way
of the critical groups, the Morse indices of sign-changing solutions for non-
linear elliptic problems can be determined in the paper by Bartsch et al.
[31] where the functionals are of C2 and the cones have nonempty interiors.
Another version of the saddle point theorem, called the sandwich theorem,
was obtained by Schechter (see Schechter [275, Theorem 2.9.1]). Theorem 3.4
was originally established in Zou [347] where the following stronger condition
was imposed: if D(1)

0 ∩ D(2)
0 = ∅, then either D(1)

0 = ∅ or D(2)
0 = ∅. Actually,

this is unnecessary.

3.3 Schrödinger Equations with Potential Well

Consider the Schrödinger equation:

(3.49)

{
−∆u + Vλ(x)u = f(x, u), x ∈ RN ,

u(x) → 0 as |x| → ∞,

where f ∈ C(RN × R,R). In this section, we study the basic properties
of the spectrum of −∆ + Vλ. About the potential, we make the following
assumptions.
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(D111) Vλ(x) := λg0(x) + 1, g0 ∈ C(RN ,R); g0 ≥�≡ 0 and Ω :=
int(g−1

0 (0)) �= ∅;
(D222) There exist M0 > 0 and r0 > 0 such that

meas
(
{x ∈ Br0(y) : g0(x) ≤M0}

)
→ 0 as |y| → ∞,

where Br0(y) denotes the ball centered at y with radius r0;
(D333) Ω̄ := g−1

0 (0) and ∂Ω is locally Lipschitz.

Condition (D1) means that Vλ has a steep potential well whose steepness is
controlled by λ. Let

E =
{

u ∈ H1,2(RN ) :
∫

RN

g0(x)u2dx <∞
}

endowed with the norm

‖u‖E =
(∫

RN

(|∇u|2 + (1 + g0(x))u2)dx
)1/2

.

Equivalently, let Eλ be the Hilbert space

Eλ :=
{

u ∈ H1(RN ) :
∫

RN

(|∇u|2 + Vλ(x)u2)dx <∞
}

endowed with the inner product

〈u, v〉λ :=
∫

RN

(�u� v + Vλ(x)uv)dx

for u, v ∈ Eλ and norm ‖u‖λ := 〈u, u〉1/2
λ .

The operator Sλ := −∆ + Vλ is a self-adjoint operator on L2(RN ),
bounded below by 1. We write 〈·, ·〉L2 and ‖ · ‖2 for the usual inner prod-
uct and the associated norm in L2(RN ). We denote

〈Sλu, u〉L2 =
∫

RN

(|∇u|2 + Vλu2)dx, u ∈ E.

For given elements φ1, φ2, . . . , φm of E, set

Qλ(φ1, . . . , φk)

= inf{〈Sλφ, φ〉L2 : φ ∈ E, ‖φ‖2 = 1, 〈φ, φi〉L2 = 0, i = 1, . . . , k}.
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For each k ∈ N we define spectral values of Sλ by the kth Rayleigh quotient

µk(Sλ) := sup
φ1,...,φk−1∈E

Qλ(φ1, . . . , φk−1).

Then µk(Sλ) is nondecreasing with respect to k and λ. By Reed and Simon’s
theorems [262, Theorems XIII.1 and XIII.2], either µk(Sλ) is an eigenvalue of
Sλ or µk(Sλ) = µk+1(Sλ) = · · · = inf σess(Sλ), the infimum of the essential
spectrum.

Choose a domain Ω0 ⊂ Ω with meas Ω0 < ∞. Consider L := Sλ|L2(Ω0) =
−∆+1. This operator is self-adjoint and positive with the domain W 1,2

0 (Ω0)∩
W 2,2(Ω0) and the form domain W 1,2

0 (Ω0). Then the spectrum σ(L) is discrete
and consists of eigenvalues µk(L) with finite multiplicity and

0 < µ1(L) < µ2(L) ≤ µ3(L) ≤ · · · → ∞.

We may consider W 1,2
0 (Ω0) as a subspace of E. Then as a simple consequence

of the Courant minimax description of the eigenvalues (cf., e.g., Reed and
Simon’s theorems [262, Section XIII.1]), we observe that

µk(Sλ) ≤ µk(L)

for all k. We may assume that limλ→∞ µk(Sλ) := µk. Then

µ1 ≤ µ2 ≤ · · ·

is a nondecreasing sequence because µk(Sλ) is nondecreasing in k for each λ.
In particular, µk ≤ µk(L). Given an open set D in RN , define

µ∗(−∆ + Vλ,D) = inf
u∈H1(D),u �=0

∫
D

(|∇u|2 + Vλu2)dx
‖u‖2L2(D)

.

Lemma 3.6. Assume (D1) and (D2); then there exists a sequence ri → ∞
such that

lim
λ→∞

lim
i→∞

µ∗(−∆ + Vλ,RN\B̄ri
(0)) = ∞.

Proof. We first show that (D2) implies that

(3.50) lim
λ→∞

lim
y→∞µ∗(−∆ + Vλ, Br0(y)) = ∞.

Let

O(y) = {x ∈ Br0(y) : g0(x) > M0},

P (y) = {x ∈ Br0(y) : g0(x) ≤M0}.
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Then

(3.51)
∫

O(y)

(|∇u|2 + Vλu2)dx ≥ (λM0 + 1)
∫

O(y)

u2dx.

Now we fix p ∈ (1, N/(N − 2)) and let q = p/(p − 1) be the dual exponent.
By Sobolev’s inequality,

(3.52) ‖u‖L2p(Br0 (y)) ≤ c‖u‖W 1,2(Br0 (y)), u ∈W 1,2(Br0(y)).

By (3.52) and the Hölder inequality

∫

P (y)

u2dx = (meas (P (y)))1/q

(∫

P (y)

u2pdx

)1/p

(3.53)

≤ (meas (P (y)))1/q‖u‖2L2p(Br0 (y))

≤ c(meas (P (y)))1/q‖u‖2W 1,2(Br0 (y)).

Note that meas (P (y)) → 0 as y →∞. Then by (3.53),

µ∗(−∆ + Vλ, Br0(y))

= inf
u∈W 1,2(Br0 (y)), u �=0

∫
Br0 (y)

(|∇u|2 + Vλu2)dx
∫

Br0 (y)
u2dx

→∞

as y →∞ and λ→∞. Thus, (3.50) is true. It follows that

(3.54) lim
λ→∞

lim
y→∞µ∗(−∆ + Vλ, Br(y)) =∞

holds for all r > 0.
Finally, we show that (3.54) implies the conclusion of the current lemma.

Choose ri = ir0 (i > 1) and decompose RN into a countable family of pair-
wise disjoint balls Br0(xm) such that RN\Bri

(0) is the union of all B̄r0(xm)
with m ∈ Index(i) := {m : xm ∈ RN\Bri

(0)}. Let

γi(λ) = inf
m∈Index(i)

µ∗(Sλ, Br0(xm)),

then limλ→∞ limi→∞ γi(λ) = ∞. For each u ∈ H1(RN\Bri
(0)),

∫

RN\Bri
(0)

(|∇u|2 + Vλu2)dx
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=
∑

m∈Index(i)

∫

Br0 (xm)

(|∇u|2 + Vλu2)dx

≥ γi(λ)
∑

m∈Index(i)

‖u‖2L2(Br0 (xm))

= γi(λ)‖u‖2L2(RN\Bri
(0));

this implies the conclusion of the lemma. �

Under (D1)–(D3), the Schrödinger operator −∆ + Vλ has a finite number
of eigenvalues below the infimum of the essential spectrum. More precisely,
we have the following.

Proposition 3.7. Assume (D1) and (D2). Then

(1) inf σess(−∆ + Vλ) → ∞ as λ → ∞; where σess denotes the essential
spectrum.

(2) For any k > 0, there exists a Λk such that −∆ + Vλ has at least k
eigenvalues below the essential spectrum provided λ ≥ Λk.

Proof. It suffices to show that

(3.55) lim
k→∞

µk =∞.

Assume by negation that limk→∞ µk = supk µk < c0 < ∞. By Lemma 3.6,
there exist λ0 > 0 and ri > 0 such that

(3.56) µ∗(Sλ0 ,R
N\Bri

(0)) ≥ 2c0.

Let µ∗
k(S0, Bri

(0)) denote the kth Rayleigh quotient of the operator S0 on
the domain Bri

(0). Then

lim
k→∞

µ∗
k(S0, Bri

(0)) = ∞.

Hence, there exists a k0 ∈ N with

µ∗
k(S0, Bri

(0)) ≥ 2c0.

Using the notation (S∗
λ,D) for the operator Sλ on L2(D) with Neumann

boundary conditions, by Reed and Simon’s propositions ([262, Proposi-
tions 3–4, Section XIII.15]) we have for λ ≥ λ0 that

(Sλ,RN ) ≥ (Sλ0 ,R
N )

≥ (S∗
λ0

, Bri
(0) ∪ (RN\Bri

(0))
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= (S∗
λ0

, Bri
(0))⊕ (S∗

λ0
,RN\Bri

(0))

≥ (S∗
0 , Bri

(0))⊕ (S∗
0 ,RN\Bri

(0)).

By (3.56),

µk0(Sλ,RN ) ≥ µk0(S
∗
0 , Bri

(0))⊕ (S∗
λ0

,RN\Bri
(0))

= µ∗
k0

(S0, Bri
(0))

≥ 2c0.

But, µk0(Sλ,RN ) ≤ µk0 ≤ c0; this is a contradiction. �

Lemma 3.8. Assume (D1) and (D2). Then H1
0 (Ω) ↪→↪→ L2(Ω), where Ω

comes from (D1).

Proof. Let C(R) = RN\BR, where BR is the open ball centered at 0 with
radius R. We first show that for any ε > 0, there exists an R(ε) > 0 such
that

(3.57) ‖u‖2L2(Ω∩C(R(ε))) ≤ ε‖u‖2H1
0 (Ω),

where

‖u‖H1
0 (Ω) :=

(∫

Ω

(|∇u|2 + u2)dx
)1/2

.

For this, we choose a countable set of coordinates xi ∈ RN such that each
x of RN belongs to at most κ balls centered at xi with radius r0 (cf. (D1)).
Then for any R > r0 and u ∈ H1

0 (Ω),
∫

C(R)∩Ω

u2dx ≤
∑

|xi|>R−r0

∫

Br0 (xi)∩Ω

u2dx.

For any fixed p ∈ (2, N/(N − 2)), we have

∫

C(R)∩Ω

u2dx ≤
∑

|xi|>R−r0

(∫

Br0 (xi)∩Ω

u2pdx

)1/p

(meas(Br0(xi) ∩Ω))1/p′
,

where p′ = p/(p−1). Note that H1(RN ) ↪→ L2q(RN ); we may find a constant
c > 0 that is independent of xi such that

(∫

Br0 (xi)∩Ω

u2pdx

)1/p

≤ c

∫

Br0 (xi)∩Ω

(|∇u|2 + u2)dx.
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For any ε > 0, by (D2), we have a R(ε) > 0 such that

(meas(Br0(xi) ∩Ω))1/p′ ≤ ε

cκ
, for |xi| > R(ε)− r0.

Thus,
∫

C(R)∩Ω

u2dx

≤ ε

κ

∑

|xi|>R−r0

∫

Br0 (xi)∩Ω

(|∇u|2 + u2)dx

≤ ε

∫

C(R)∩Ω

(|∇u|2 + u2)dx

≤ ε‖u‖H1
0 (Ω).

By this, it is easy to see that H1
0 (Ω) ↪→↪→ L2(Ω). �

Lemma 3.9. Assume (D1) and (D2). For any ε > 0, there exist Λε > 0 and
Rε > 0 such that

‖u‖2L2(Oε) ≤ ε‖u‖2λ
for all u ∈ Eλ and λ ≥ Λε, where Oε := {x ∈ RN : |x| ≥ Rε}.

Proof. For any ε > 0, similarly to the proof of (3.57), we may find an Rε > 0
such that

(3.58)
∫

Ωε

u2dx ≤ ε

2
‖u‖2λ,

where Ωε := {x ∈ RN : |x| > Rε, g0(x) < M0} (see (D2)). Let

Ω̃ε := {x ∈ RN : |x| ≥ Rε, g0(x) ≥M0}.

Then
∫

Ω̃ε

u2dx ≤ 1
λM0 + 1

∫

Ω̃ε

(λg0(x) + 1)u2dx(3.59)

≤ 1
λM0 + 1

‖u‖2λ

≤ ε

2
‖u‖2λ

as λ large enough. Combining (3.58) and (3.59), we get the conclusion of the
lemma. �
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Consider the following eigenvalue problem.

(3.60) −∆u + u = νu in Ω; u = 0 on ∂Ω.

Proposition 3.10. Under (D1)–(D3), (3.60) has positive isolated eigen-
values with finite multiplicity:

(3.61) 0 < ν1 < ν2 < · · · < νm < νm+1 < · · · .

Proof. For each g ∈ L2(Ω), consider the Dirichlet problem on Ω:

−∆u + u = g in Ω, u = 0 on ∂Ω.

Define the following functional

I(u) =
∫

Ω

(|∇u|2 + u2)dx−
∫

Ω

gudx.

By Lemma 3.8, there is a unique u ∈ H1
0 (Ω) such that I ′(u) = 0. Define the

linear operator H : L2(Ω) → H1
0 (Ω) by Hg = u. Then

‖Hg‖2 = ‖u‖2 = I ′(u)u +
∫

Ω

gudx ≤ ‖g‖L2(Ω)‖u‖H1
0 (Ω).

Combining this and Lemma 3.8, H : L2(Ω) → L2(Ω) is compact. Therefore,
by Hislop and Sigal [172, Theorem 9.10] (and Kato [183]), Equation (3.60) has
a discrete spectrum (eigenvalues), and each eigenvalue has finite multiplicity.
Obviously, the first eigenvalue is greater than zero. �

Let dim(νi) denote the dimension of the eigenspace corresponding to the
eigenvalue νi. Let dk :=

∑k
i=1 dim(νi). Let ψ1 be the first eigenfunction of

(3.60) corresponding to ν1. We may assume that ψ1 > 0.
We may rewrite (3.61) with their multiplicity taken into consideration:

(3.62) 0 < µ1(L∗) < µ2(L∗) ≤ µ3(L∗) · · · ≤ µk(L∗) · · · ,

where L∗ := −∆ + 1 on Ω. Consider W 1,2
0 (Ω) as a subspace of W 1,2(RN )

and note that 〈Sλu, u〉λ = 〈L∗u, u〉,∀u ∈W 1,2
0 (Ω). We see that

(3.63) µk(Sλ) ≤ µk(L∗)

for all k ∈ N and λ > 0. Because

(3.64) µk = lim
λ→∞

µk(Sλ),

then

(3.65) µk ≤ µk(L∗)
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for all k ∈ N. By (3.55), limk→∞ µk = ∞. Furthermore, we have the
following.

Proposition 3.11. µk = µk(L∗) for all k ∈ N.

Proof. Let ϕk,λ ∈ Eλ be a normalized eigenfunction of Sλ corresponding to
µk(Sλ). Hence, ‖ϕk,λ‖L2(RN ) = 1 and

(3.66)
∫

RN

(∇ϕk,λ∇v + Vλϕk,λv)dx = µk(Sλ)
∫

RN

ϕk,λvdx,

for all v ∈ C∞
0 (RN ). Combining this with (3.62)–(3.65), we may assume

that
(3.67)

ϕk,λ → ϕk weakly in W 1,2(RN ), ϕk,λ → ϕk strongly in L2(RN )

as λ→∞. We claim that ϕk ∈W 1,2
0 (Ω). In fact, by (D3) it suffices to show

that ϕk = 0 a.e. in RN\Ω. However, if this were not true, there would exist
a compact Ω1 ⊂ RN\Ω and a c1 > 0 such that

(3.68) lim
λ→∞

∫

Ω0

ϕ2
k,λdx =

∫

Ω0

ϕ2
kdx ≥ c1.

By (D1), we get a c2 > 0 such that g0(x) ≥ c2 for all x ∈ Ω0. Therefore, by
(3.68),

µk(L∗) ≥ ‖ϕk,λ‖2λ ≥ λ

∫

Ω0

g0(x)ϕ2
k,λdx ≥ λc2

∫

Ω0

ϕ2
k,λdx→∞,

as λ→∞. This is a contradiction. Next, we prove that

(3.69) ‖ϕk,λ‖L2(RN ) → ‖ϕk‖L2(RN ), λ→∞.

First, by Lemma 3.9 and Equations (3.63) and (3.66), for any ε > 0 we find
an Rε > 0 such that

(3.70) lim
λ→∞

‖ϕk,λ‖2L2(Oε) ≤ ε/2,

where Oε := {x ∈ RN : |x| ≥ Rε}. Choose Rε so large that

(3.71) ‖ϕk‖2L2(Oε) ≤ ε/2.

Combine (3.70) and (3.71); we get (3.69), which implies that ‖ϕk‖L2(Ω) = 1.
In (3.66), we take any v ∈ C∞

0 (Ω) and let λ→∞. We see that
∫

Ω

(∇ϕk∇v + ϕkv)dx = µk

∫

Ω

ϕkvdx.

This completes the proof of the lemma. �
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Notes and Comments. Lemma 3.6 and Proposition 3.7 were established in
Bartsch et al. [38]. Lemma 3.8 and Proposition 3.10 were obtained in van
Heerden and Wang [168]. Lemma 3.9 was also due to van Heerden and Wang
[168]. Proposition 3.11 was given in Liu et al. [210], which was essentially
based on van Heerden [166]. Equation (3.49) with a potential well was also
considered recently in Stuart and Zhou [309] where the existence results had
been obtained.

3.4 Flow-Invariant Sets

In this section, we construct the invariant set of the gradient flow. Let ψ1

be the first eigenfunction of (3.60) corresponding to ν1 = µ1(L∗), and φ1

be the first eigenfunction corresponding to µ1(Sλ). We may assume that
ψ1 > 0, φ1 > 0.

Lemma 3.12. Assume that

(3.72) lim inf
t→0

f(x, t)
t

> ν1 uniformly for x ∈ RN .

If U+(x) is a positive solution of Equation (3.49), then there exists a constant
t0 > 0 such that

t0ψ1(x) < U+(x), ∀ x ∈ RN

and
t0φ1(x) < U+(x), ∀ x ∈ RN .

Proof. By (3.72), we have two positive constants ε1, ε2 such that

(3.73)
f(x, t)

t
> ν1 + ε1, ∀ |t| ∈ (0, ε2), x ∈ RN .

Choose R > 0 such that U+(x) < ε2 for |x| ≥ R. Choose t0 > 0 so small that

(3.74) t0ψ1(x) < U+(x), for |x| ≤ R.

We just have to show that (3.74) is true for all x. By negation, we assume
that Θ := {x ∈ RN : t0ψ1(x) > U+(x)} �= ∅; then Θ ⊂ {x ∈ Ω : |x| ≥ R}.
Moreover,

−∆(t0ψ1) + t0ψ1 = ν1t0ψ1 in Θ,(3.75)

−∆U+ + VλU+ = f(x,U+) in Θ,(3.76)

t0ψ1(x) = U+(x) on ∂Θ,(3.77)

t0
∂ψ1

∂ν
≤ ∂U+

∂ν
on ∂Θ,(3.78)
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where ν denotes the outer unit normal on ∂Θ. By (3.73),

(3.79)
∫

Θ

t0ψ1(ν1U
+ − f(x,U+))dx < −

∫

Θ

(t0ψ1)(ε1)U+dx < 0.

But by (3.75)–(3.78) and the divergence theorem,
∫

Θ

t0ψ1(ν1U
+ − f(x,U+))dx(3.80)

=
∫

Θ

(t0ψ1∆U+ − U+∆(t0ψ1))dx(3.81)

=
∫

∂Θ

t0ψ1

(
∂U+

∂ν
− t0

∂ψ1

∂ν

)

ds(3.82)

≥ 0;(3.83)

it contradicts (3.79). The second conclusion can be proved analogously. �

Given any u1, u2 ∈ Eλ such that u1(x) ≥ u2(x) for all x ∈ RN . Define

g(x, t) =

⎧
⎪⎨

⎪⎩

f(x, u1(x)), for t > u1(x),

f(x, t), for u2(x) ≤ t ≤ u1(x),

f(x, u2(x)), for t < u2(x).

Set
J(u) =

1
2
‖u‖2λ −

∫

RN

G(x, u)dx, u ∈ Eλ,

where G(x, u) =
∫ u

0
g(x, t)dt.

Lemma 3.13. Assume that there exists an F0 > 0 such that

(3.84) |f(x, t)| ≤ F0|t| for all (x, t) ∈ RN ×R;

then J satisfies the (PS) condition and J(u) →∞ as ‖u‖ → ∞.

Proof. By the assumption, we observe that

J(u) ≥ 1
2
‖u‖2λ − c

∫

RN

(|u1|+ |u2|)|u|dx(3.85)

≥ 1
2
‖u‖2λ − c(‖u1‖2 + ‖u2‖2)‖u‖λ.

This implies the second part of the lemma. Now let {vn} be a (PS) sequence;
that is,

sup
n
|J(vn)| <∞, J ′(vn) → 0.
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By (3.85), we see that {‖vn‖λ} is bounded. Then, up to a subsequence, vn → v
weakly in Eλ and strongly in L2

loc(R
N ), with v a solution of

−∆u + Vλu = g(x, u).

Furthermore,

‖vn‖2λ − ‖v‖2λ = 〈J ′(vn), vn〉 −
∫

RN

(g(x, vn)vn − g(x, v)v)dx

≤ o(1) +

∣
∣
∣
∣
∣

∫

|x|≥R

(g(x, vn)vn − g(x, v)v)dx

∣
∣
∣
∣
∣

≤ o(1) + c

∫

|x|≥R

(|u1|+ |u2|)(|vn|+ |v|)dx

= o(1).

This means ‖vn‖λ → ‖v‖λ. The (PS) condition is satisfied. �

Lemma 3.14. Assume that (D1)–(D3), (3.72), and (3.84) hold. Moreover,
there exists an L ≥ 0 such that f(x, t)+Lt is increasing in t. If there exists a
positive (negative) solution u1 (u2, resp.) to Equation (3.49), then there exists
a minimal positive (maximal negative) solution U+ (U−, resp.) to Equation
(3.49).

Proof. We assume the existence of a positive solution u1. Define

g(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

f(x, u1(x)), for t > u1(x),

f(x, t), for 0 ≤ t ≤ u1(x),

0, for t < 0.

Consider the solution u ∈ Eλ of the equation

(3.86)

{
−∆u + Vλ(x)u = g(x, u), x ∈ RN ,

u(x) → 0 as |x| → ∞.

Let

(3.87) J(u) :=
1
2
‖u‖λ −

∫

RN

G(x, u)dx,

which is of C1. We claim that any solution u of (3.86) belongs to the interval
[0, u1]; that is, 0 ≤ u(x) ≤ u1(x) for x ∈ RN . Otherwise, the open set
Θ := {x ∈ RN : u(x) > u1(x)} �= ∅ and

−∆u + Vλ(x)u = f(x, u1) = −∆u1 + Vλ(x)u1.
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Hence,
−∆(u− u1) + Vλ(x)(u− u1) = 0.

Because u(x), u1(x) → 0 as |x| → ∞, the maximum principle implies that
u(x) = u1(x) for x ∈ Θ, a contradiction. Similarly, we have u(x) ≥ 0. By
Lemma 3.12, there exist constants t0 > 0 such that

(3.88) 0 < t0ψ1(x) < u1(x), ∀ x ∈ RN .

By (3.72), we may choose t0 so small that

F (x, tψ1) >
1
2
(ν1 + δ)t2ψ2

1 , t ∈ (0, t0], s ∈ RN

and that tψ1 is not a critical point (solution) of J (of (3.86)) for all t ∈ (0, t0].
Therefore,

J(tψ1) =
1
2
‖tψ1‖λ −

∫

RN

G(x, tψ1)dx

=
1
2
‖tψ1‖λ −

∫

RN

F (x, tψ1)dx

=
ν1t

2

2

∫

Ω

ψ2
1dx−

∫

Ω

ν1 + ε1

2
t2ψ2

1dx

< 0.

for all t ∈ (0, t0]. Hence infE J < 0. Because f(x, t)+Lt is increasing in t, we
may assume that L = 0. Otherwise, we may replace the norm ‖u‖λ by the
equivalent norm ‖u‖∗ :=

∫
RN |(∇u|2 + Vλu2 + Lu2)dx. Note that 0, u1 are

solutions to (3.49) and f(x, t) is increasing in t; we have that

0 ≤ (−∆ + Vλ)−1f(x, u) ≤ u1 if 0 ≤ u ≤ u1.

By (3.87),
J ′(u) = u− (−∆ + Vλ)−1g(x, u).

Because
0 ≤ (−∆ + Vλ)g(x, u) = (−∆ + Vλ)f(x, u) ≤ u1

if 0 ≤ u ≤ u1, then by Lemma 2.12, there exists an operator L0 such that

L0([0, u1]) ⊂ [0, u1]

and that V = id−L0 is the pseudo-gradient vector field of J , where [0, u1] :=
{u ∈ Eλ : 0 ≤ u ≤ u1}. For each t ∈ (0, t0], note that tψ1 is not a critical
point of J . We consider the initial value problem:
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⎧
⎪⎨

⎪⎩

σ(s, tψ1)
ds

= −V (σ(s, tψ1))

σ(0, tψ1) = tψ1.

By Lemmas 3.13 and 1.54, there exist
(3.89)

σ(st
n, tψ1) → u∗

t (n→∞), J(u∗
t ) ≤ J(tψ1) < 0, J ′(u∗

t ) = 0

for each t ∈ (0, t0]. Recalling Lemma 1.49 and noting L0([0, u1]) ⊂ [0, u1], we
may assume that

0 ≤ σ(s, tψ1) ≤ u1, s ≥ 0.

Therefore, we may assume that

u∗
t ∈ [0, u1], t ∈ (0, t0]

for each t ∈ (0, t0]. By (3.89), we get a critical point u∗
t of J such that

0 ≤ u∗
t ≤ u1.

Then u∗
t is also a solution of (3.49). Because J(u∗

t ) < 0, we may assume that

0 < u∗
t ≤ u1.

That is, u∗
t is a positive solution of (3.49) for all t ∈ (0, t0]. Obviously,

inf
Eλ

J ≤ J(u∗
t ) < 0, J ′(u∗

t ) = 0.

By the (PS) condition, there is a U+ such that u∗
t → U+ (t → 0) in Eλ and

u∗
t (x) → U+(x) ≥ 0 for x ∈ RN . Evidently, U+ is a solution of (3.49). Next,

we show that U+(x) > 0. If U+ = 0, then by Lp
loc estimates on any ball

BR := {x ∈ RN : |x| ≤ R} (R > 0), we have ‖u∗
t ‖L∞(BR) ≤ c‖u∗

t ‖λ, where
c is independent of t. For any ε > 0, there is a T0 such that ((f(x, t))/t) ≥
(ν1 +ε) for |s| ∈ (0, T0). For this T0, we find a R > 0 such that u∗

t ≤ u∗
t0 < T0

for |x| ≥ R and all t ∈ (0, t0]. For this R, we find a t̄ ∈ (0, t0) such that

‖u∗
t ‖L∞(BR) ≤ c‖u∗

t ‖λ < T0, ∀ t ∈ (0, t̄).

Because u∗
t is a solution of (3.49), that is,

−∆u∗
t + Vλu∗

t = f(x, u∗
t ),

hence,

(3.90) −∆u∗
t + Vλu∗

t ≥ (ν1 + ε)u∗
t .
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Let µ1(Sλ) be the first eigenvalue of Sλ with eigenfunction φ1(λ) > 0. Then
ν1 ≥ µ1(Sλ). Multiplying (3.90) by φ1(λ) and integrating, we have

µ1(Sλ)
∫

RN

u∗
t φ1(λ)dx

=
∫

RN

f(x, u∗
t )µ1(Sλ)dx

≥ (µ1(Sλ) + ε)
∫

RN

u∗
t φ1(λ)dx,

a contradiction. Finally, we show that U+ is indeed minimal. Assume that
U1 is another positive solution to (3.49); then we find a t1 < t0 such that

tψ1(x) ≤ U1(x), for all x ∈ RN , t ∈ (0, t1].

Then, for each t ∈ (0, t1] we may find a flow σ(s, tψ1) such that

0 ≤ σ(s, tψ1) ≤ U1, s ≥ 0.

Therefore,

U1 ≥ σ(st
n, tψ1) → u∗

t , n→∞; ∀ t ∈ (0, t1].

Let t→ 0; we have
U1 ≥ U+.

In the same way, we may find a maximal negative solution. �

By (3.72), for ε0 > 0 small enough, we find a t0 > 0 such that

(3.91)
f(x, t)

t
> ν1 + ε0 ≥ µ1(Sλ) + ε0, x ∈ RN , t ∈ (0, t0].

Let

(3.92) P ∗
λ := {u ∈ Eλ : u ≥ φ1(λ)},

where φ1(λ) is the positive eigenfunction of µ1(Sλ). Then P ∗
λ is closed and

convex. By Lemmas 3.12 and 3.14, we may assume, up to multiplying φ1(λ)
by a small coefficient, that P ∗

λ (−P ∗
λ ) includes all positive (negative) solutions

of (3.49) if they exist. Moreover, we may choose

(3.93) φ1(λ) ≤ t0.

Let

(3.94) D0(ε, λ) = {u ∈ Eλ : dist(u, P ∗
λ ) < ε}
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and

(3.95) J0 := (−∆ + Vλ)−1f.

Theorem 3.15. Under the assumptions of Lemma 3.14, there exists an
ε∗ > 0 and Λ∗ > 0 such that

J0(±D0(ε, λ)) ⊂ ±D0

(
1
2
ε, λ

)

for all ε ∈ (0, ε∗), λ ≥ Λ∗.

Proof. For any u ∈ Eλ, let w = max{φ1(λ), J0u} ∈ P ∗
λ . Therefore,

(3.96) dist(J0u, P ∗
λ ) ≤ ‖J0u− w‖λ.

Because w is either J0u or φ1(λ), we have

‖J0u− w‖2λ(3.97)

= 〈J0u− φ1(λ), J0u− w〉λ

=
∫

RN

(−∆(J0u− φ1(λ)) + Vλ(J0u− φ1(λ)))(J0u− w)dx

=
∫

RN

(f(x, u)− µ1(Sλ)φ1(λ))(J0u− w)dx

=
∫

RN

(µ1(Sλ)φ1(λ)− f(x, u))(w − J0u)dx.(3.98)

Keeping (3.93) in mind and noting that f(x, t) is increasing in t, then

(3.99) f(x, u) ≥ f(x, t0) > (µ1(λ) + ε0)t0 ≥ (µ1(Sλ) + ε0)φ1(λ),

for u ≥ t0. Hence,
∫

RN

(f(x, u)− µ1(Sλ)φ1(λ))(J0u− w)dx.

≤
∫

u(x)≤t0

(µ1(Sλ)φ1(λ)− f(x, u))(w − J0u)dx(3.100)

Because f(x, u) ≥ F0u for u ≤ 0 (see (3.84)), combining (3.93), we have
that

∫

u(x)≤t0

(µ1(Sλ)φ1(λ)− f(x, u))(w − J0u)dx(3.101)
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≤
∫

t0≥u≥0

(µ1(Sλ)φ1(λ)− (µ1(Sλ) + ε0)u)(w − J0u)dx

+
∫

u<0

(µ1(Sλ)φ1(λ)− F0u)(w − J0u)dx

≤ (µ1(Sλ) + ε0)
∫

ξλ≥u≥0

(φ1(λ)− u)(w − J0u)dx

+ (µ1(Sλ) + F0)
∫

u<0

(φ1(λ)− u)(w − J0u)dx

≤ (µ1(Sλ) + ε0 + F0)
∫

Γ

(φ1(λ)− u)(w − J0u)dx

≤ (ν1 + ε0 + F0)
∫

Γ

(φ1(λ)− u)(w − J0u)dx,(3.102)

where

ξλ :=
µ1(Sλ)φ1(λ)
(µ1(Sλ) + ε0)

,

Γ := {x ∈ RN : u(x) ≤ ξλ(x)}.

Given R > 0, we may find an εR > 0 such that

(3.103) (φ1(λ)− u) ≥ ε0

µ1(Sλ) + ε0
φ1(λ) ≥ εR, for x ∈ Γ, |x| ≤ R.

On the other hand, u(x) ≤ φ1(λ) on Γ ; combining the definition of P ∗
λ , we

observe, for any Γ ′ ⊂ Γ, that

(3.104) ‖φ1(λ)− u‖Lp(Γ ′) = inf
v∈P∗

λ

‖v − u‖Lp(Γ ′), ∀ p ∈ [2, 2∗].

Therefore, by the Sobolev inequality and (3.103) and (3.104),
∫

Γ∩{|x|≤R}
(φ1(λ)− u)(w − J0u)dx(3.105)

≤ c(R)
∫

Γ∩{|x|≤R}
|φ1(λ)− u|2∗−1(w − J0u)dx

≤ c(R)‖φ1(λ)− u‖2
∗−1

L2∗ (Γ )
‖w − J0u‖λ

≤ c(R)(dist(u, P ∗
λ ))2

∗−1‖w − J0u‖λ,
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where c(R)s are constants depending on R, whose values are irrelevant to
each other. On the other hand, by (3.104)

∫

Γ∩{|x|>R}
(φ1(λ)− u)(w − J0u)dx(3.106)

≤ ‖φ1(λ)− u‖L2(Γ∩{|x|>R})‖w − J0u‖2

≤ ‖φ1(λ)− u‖L2(Γ∩{|x|>R})‖w − J0u‖2

≤ inf
v∈P∗

λ

‖u− v‖L2(Γ∩{|x|>R})‖w − J0u‖λ.(3.107)

For the constant
ε′ :=

1
4(ν1 + ε0 + F0)

,

by Lemma 3.9, we have Rε′ > 0, Λε′ > 0 such that

inf
v∈P∗

λ

‖u− v‖L2(Γ∩{|x|>R})(3.108)

≤ inf
v∈P∗

λ

‖u− v‖L2({|x|>R})

≤ inf
v∈P∗

λ

ε′‖u− v‖λ

= ε′dist(u, P ∗
λ ).

Combining (3.96)–(3.108), we have

dist(J0u, P ∗
λ )

≤ (ν1 + ε0 + F0)(ε′dist(u, P ∗
λ ) + c(R)(dist(u, P ∗

λ ))2
∗−1)

≤
(

1
4
dist(u, P ∗

λ ) +
c(R)
4ε′

(dist(u, P ∗
λ ))2

∗−1

)

.

Therefore, if dist(u, P ∗
λ ) < ε < ε∗, where ε∗ is small enough, then

dist(J0u, P ∗
λ ) ≤

(
1
4
ε +

c(R)
4ε′

ε2∗−1

)

<
1
2
ε <

1
2
ε∗;

that is,

J0(D0(ε, λ)) ⊂ D0

(
1
2
ε, λ

)

, ε ∈ (0, ε∗).

This completes the proof for the case of “+” of the theorem. The proof for
the case of “−” is similar; we omit the details. �
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Notes and Comments. Theorem 3.15 and other lemmas of this section were
established in Liu et al. [210]. The ideas of decreasing flow-invariant sets can
also be found in Sun [315], Sun and Hu [317], and Sun and Xu [318]. More
references have been mentioned in previous notes and comments.

3.5 Sign-Changing Homoclinic-Type Solutions

We form the following hypotheses on the nonlinearity f .

(E1) f ∈ C(RN×R,R); there exist H0 > 0, L ≥ 0 such that |f(x, t)| ≤ H0|t|
for all (x, t) ∈ RN ×R and that f(x, t) + Lt is increasing in t.

(E2) ν1 < lim inft→0((f(x, t))/t) ≤ lim supt→0((f(x, t))/t) < νk uniformly
for x ∈ RN .

(E3) 2F (x, t) ≤ κt2, x ∈ RN , t ∈ R, where κ < νk+1.
(E4) lim|t|→∞(2F (x, t))/t2 = θ(x) ≥ νk uniformly for x ∈ RN , where

θ(x) �≡ νk.

We need the following alternatives to guarantee the (w∗-PS) condition. That
is, either

(E5) f(x, t)t− 2F (x, t) ≥ H(x) ∈ L1(RN ) for x ∈ RN , t ∈ R and

lim
|t|→∞

(f(x, t)t− 2F (x, t)) =∞ for each x ∈ RN ,

or
(E6) f(x, t)t− 2F (x, t) ≤ H(x) ∈ L1(RN ) for x ∈ RN , t ∈ R and

lim
|t|→∞

(f(x, t)t− 2F (x, t)) = −∞ for each x ∈ RN .

Theorem 3.16. Assume (D1)–(D3), (E1)–(E4), and (E5) (or (E6)). Then
there exists a Λ > 0 such that Equation (3.49) has a (nontrivial) sign-
changing solution for each λ ≥ Λ.

By Condition (E2), f is allowed to be jumping (or oscillating) between ν1

and νk around zero in the sense that

f(x, t)/t→ a as t→ 0+, f(x, t)/t→ b as t→ 0−,

where a, b ∈ (ν1, νk). By assumption (E4), the resonance might be happening
at νk. Due to our assumptions (E2) and (E4), the energy functional does not
have mountain pass geometry.

Then by (D1), Eλ ↪→ H1(RN ) is continuous. Consider

(3.109) Gλ(u) =
1
2
‖u‖2λ −

∫

RN

F (x, u)dx.

Then Gλ ∈ C1(Eλ,R) and G′
λ = id − J0, where J0 := (−∆ + Vλ)−1f. The

weak solution of (3.49) corresponds to the critical point of Gλ.
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By Proposition 3.7, for λ large enough, the operator −∆ +Vλ has at least
dk eigenvalues:

µ1(Sλ), µ2(Sλ), . . . , µdk
(Sλ)

with corresponding eigenfunctions φ1(λ), φ2(λ), . . . , φdk
(λ) and ‖φi(λ)‖2 = 1

for all i = 1, . . . , dk. Set

Edk
(λ) := span{φ1(λ), φ2(λ), . . . , φdk

(λ)}.

Lemma 3.17. Assume (E4). Then there exist Λ1 > 0, C1 > 0 such that

Gλ(u) ≤ C1 for all u ∈ Edk
(λ) := Y and λ > Λ1.

Proof. It suffices to show that G(u) ≤ 0 for u ∈ Edk
(λ) and ‖u‖ large enough.

By a contradiction, we assume that there is a sequence {un} ⊂ Edk
(λ) with

‖un‖λ →∞ such that G(un) > 0. By (E4), we write

F (x, u) =
θ(x)

2
|u|2 + P (x, u),

where P (x, u) = o(|u|2) uniformly for x ∈ RN as |u| → ∞. Furthermore,
we observe that ‖u‖2λ ≤ µdk

(Eλ)|u|22 for all u ∈ Edk
(λ) and µdk

(Eλ) ≤ νk

for λ large enough. Moreover, by the standard elliptic theory (here we need
dimEdk

(λ) < ∞ and the Schechter–Simon theorem (cf. Theorem 1.62) on
the unique continuation property for Schrödinger operators), we may prove
that there exists an ε0 > 0 such that

‖u‖2λ −
∫

RN

θ(x)u2dx ≤ −ε0‖u‖2λ, for any u ∈ Edk
(λ).

Note dimEdk
(λ) < ∞; we assume that un/‖un‖λ → w0 in Edk

(λ) with
‖w0‖λ = 1. Then by (E4),

0 <
G(un)
‖un‖2λ

=
1
2
− 1

2

∫

RN

θ(x)
|un|2
‖u‖2λ

dx +
∫

RN

P (x, un)
‖u‖2λ

dx

→ 1
2
− 1

2

∫

RN

θ(x)w2
0dx + o(1)

< −ε0

2
+ o(1),

this is impossible. �
Lemma 3.18. Assume (E2). Then there exists a Λ2 > 0 and a δ > 0 inde-
pendent of λ such that Gλ(u) ≥ c > 0 for all u ∈ E⊥

dk−1
(λ) with ‖u‖λ = δ

and all λ ≥ Λ2.
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Proof. By (E2), there are t0 > 0, ν∗ < νk such that f(x, t)t ≤ ν∗t2 for all
x ∈ RN and |t| ≤ t0. Therefore,

(3.110) 2F (x, t) ≤ ν∗t2 for all x ∈ RN , |t| ≤ t0.

Furthermore, by (E1),

(3.111) 2F (x, t) ≤ 2H0t
2 −H0t

2
0 for |t| ≥ t0, x ∈ RN .

By Proposition 3.7 and (3.55),

lim
λ→∞

µn(Eλ) = µn; lim
n→∞µn →∞.

We first choose λ > Λ∗ such that µdk
(Eλ) approaches µdk

= νk; hence
µdk

(Eλ) > ν∗ because νk > ν∗. Next, we choose λ large enough (say
λ > Λ∗∗) such that the Schrödinger operator −∆ + Vλ has dm eigenval-
ues µ1(Eλ), . . . , µdm

(Eλ). In particular, we may want dm large enough so
that

(2H0 + µdm
(Eλ)− 2ν∗)(µdk

(Eλ)− ν∗) ≥ 4ν∗,(3.112)

(µdm
(Eλ)− 2H0)(µdk

(Eλ)− ν∗) ≥ 32ν∗,(3.113)

µdm
(Eλ)− 2H0 − 4|2H0 − ν∗| ≥ 0,(3.114)

ν∗µdm
(Eλ) > 2H0µdk

(Eλ).(3.115)

For any u ∈ E⊥
dk−1

(λ), we write u = v + w with

v ∈ Xdk
(λ)⊕Xdk+1(λ)⊕ · · · ⊕Xdm

(λ)

and w ∈ E⊥
dm

(λ), where dm is given in (3.112)–(3.115) and Xdi
(λ) (i =

k, . . . ,m) is the eigenspace associated with µdi
(Eλ). Let

(3.116) ι1 :=
(2H0 + µdm

(Eλ))
4

w2 +
(µdk

(Eλ) + ν∗)
4

v2 − F (x, u).

If |v + w| ≤ t0, then by (3.110) and (3.112) and the choice of µdm
(Eλ), we

see that

ι1 ≥
2H0 + µdm

(Eλ)
4

w2 +
µdk

(Eλ) + ν∗

4
v2 − 1

2
ν∗(v + w)2(3.117)

≥ 2H0 + µdm
(Eλ)− 2ν∗

4
w2 +

µdk
(Eλ)− ν∗

4
v2 − ν∗|vw|

≥
(

((2H0 + µdm
(Eλ)− 2ν∗)(µdk

(Eλ)− ν∗))1/2

2
− ν∗

)

|vw|

≥ 0.
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If |v + w| > t0, then by (3.111), we conclude that

ι1 ≥
(

µdm
(Eλ)− 2H0

4
w2 +

(µdk
(Eλ) + ν∗)− 4H0

4
v2

−2H0vw +
H0t

2
0

2

)

:= ι2 + ι3,(3.118)

where

ι2 :=
µdm

(Eλ)− 2H0

8
w2 +

(µdk
(Eλ)− ν∗)

4
v2 − ν∗vw,(3.119)

ι3 :=
µdm

(Eλ)− 2H0

8
w2 − 2H0 − ν∗

2
v2 − (2H0 − ν∗)vw +

H0t
2
0

2
.(3.120)

Next, we estimate ι2 and ι3. If

(µdk
(Eλ)− ν∗)

4
|v| − ν∗|w| ≥ 0,

then by (3.113),

(3.121) ι2 ≥
µdm

(Eλ)− 2H0

8
w2 +

(
µdk

(Eλ)− ν∗

4
|v| − ν∗|w|

)

|v| ≥ 0.

Otherwise,
(µk(Eλ)− ν∗)

4
|v| − ν∗|w| ≤ 0,

by the choice of µdm
(Eλ) in (3.113); we deduce that

(3.122) ι2 ≥
(

µdm
(Eλ)− 2H0

8
− 4(ν∗)2

µdk
(Eλ)− ν∗

)

w2+
µdk

(Eλ)− ν∗

4
v2 ≥ 0.

On the other hand, by (3.114),

ι3 ≥
µdm

(Eλ)− 2H0

8
w2 − (2H0 − ν∗)

2
v2 − (2H0 − ν∗)vw +

H0r
2
0

2

≥ µdm
(Eλ)− 2H0 − 4|2H0 − ν∗|ν∗

8
w2

− 2H0 − ν∗ + |2H0 − ν∗|
2

v2 +
H0t

2
0

2

≥ −(1 + |2H0 − ν∗|)v2 +
H0t

2
0

2
.(3.123)

Choose

δ :=
(

H0t
2
0

2(1 + |2H0 − ν∗|)C2
m

)1/2

,
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where Cm is a constant such that

‖v‖∞ ≤ Cm‖v‖λ

for all
v ∈ Xdk

(λ)⊕Xdk+1(λ)⊕ · · · ⊕Xdm
(λ),

which is finite-dimensional. Now, ‖u‖λ = δ; then

‖v‖∞ ≤ Cm‖v‖λ ≤ Cm‖u‖λ = Cmδ.

Hence, ι3 ≥ 0. Therefore, by (3.118)–(3.123), ι1 ≥ 0. Finally,

Gλ(u)

= Gλ(v + w)

=
1
2
(‖v‖2λ + ‖w‖2λ)−

∫

RN

F (x, u)dx

≥ 1
4
‖v‖2λ +

1
4
‖w‖2λ +

1
4
µdk

(Eλ)|v|22 +
1
4
µdm

(Eλ)|w|22 −
∫

RN

F (x, u)dx

≥ 1
4

(

1− ν∗

µdk
(Eλ)

)

‖v‖2λ +
1
4

(

1− 2H0

µdm
(Eλ)

)

‖w‖2λ +
∫

RN

ι1dx

≥ 1
4

min
{(

1− ν∗

µdk
(Eλ)

)

,

(

1− 2H0

µdm
(Eλ)

)}

‖u‖2λ

≥ 1
4

(

1− ν∗

µdk
(Eλ)

)

δ2 (by (3.115))

> 0.

�

Now, we choose

M := E⊥
dk

, z0 ∈ E⊥
dk−1

\E⊥
dk

with ‖z0‖λ = 1,

B := {u ∈M : ‖u‖λ ≥ δ} ∪ {u = sz0 + v : s ≥ 0, v ∈M, ‖u‖λ = δ},(3.124)

where δ comes from Lemma 3.18.

Lemma 3.19. There exists a Λ3 > max{Λ1, Λ2} such that infM Gλ ≥ 0 and
infB Gλ > c > 0 for all λ > Λ3.

Proof. For any u ∈M with ‖u‖λ ≥ δ, by (E3),

Gλ(u) =
1
2
‖u‖2λ −

∫

RN

F (x, u)dx
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≥ 1
2
‖u‖2λ −

κ

2

∫

RN

u2dx

≥ 1
2

(

1− κ

µdk+1(Eλ)

)

‖u‖2λ

≥ 1
3

(

1− κ

νk+1

)

‖u‖2λ

≥ 1
3

(

1− κ

νk+1

)

δ2

> 0.

Combining Lemma 3.18, we have infB Gλ > c > 0. The proof also implies
that infM Gλ ≥ 0. �
Lemma 3.20. Under the assumptions of Theorem 3.16, there exists a Λ4 > 0
such that Gλ satisfies the (w∗-PS) condition for each λ ≥ Λ4.

Proof. Let {un} be a (w∗-PS) sequence:

G′
λ(un) → 0, Gλ(un) → c.

We assume that {‖un‖λ‖G′
λ(un)‖λ} is bounded (otherwise, we are done). We

are going to show that {‖un‖λ} is bounded and has a convergent subsequence.
Note that

∣
∣
∣
∣Gλ(un)− 1

2
〈G′

λ(un), un〉λ
∣
∣
∣
∣(3.125)

=
∣
∣
∣
∣

∫

RN

(
1
2
f(x, un)un − F (x, un)

)

dx

∣
∣
∣
∣

< c

and

1
2
‖un‖2λ ≤ c +

∫

RN

F (x, un)dx

≤ c + c

∫

RN

|un|2dx.

If {‖un‖λ} is unbounded, then, for a renamed subsequence,

(3.126) 1 ≤ c lim
n→∞

∫

RN

u2
n

‖un‖2λ
dx.

By Lemma 3.9, for any ε > 0 there exists an R > 0 and a Λ4 > 0 such that

(3.127) ‖v‖2L2(Bc
R) ≤ ε‖v‖2λ, ∀ v ∈ Eλ, λ ≥ Λ4,
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where Bc
R := {x ∈ RN : |x| > R}. Applying (3.126) to (3.127), we may find

R > 0 such that

lim
n→∞

∫

|x|≤R

u2
n

‖un‖2λ
dx > c > 0.

It follows that limn→∞ |un|2 = ∞ on a subset Ω with positive measure.
Combining this with (E5) or (E6), we have

∣
∣
∣
∣

∫

RN

(
1
2
f(x, un)un − F (x, un)

)

dx

∣
∣
∣
∣→∞,

which contradicts (3.125). Thus, we see that {‖un‖λ} is bounded. Next, we
show that {un} has a convergent subsequence. Suppose that un → u weakly
in Eλ and un → u strongly in L2

loc(R
N ) for some u ∈ Eλ. Then G′

λ(u) = 0.
Recall that ‖G′

λ(un)‖ → 0; then

‖un − u‖2λ = o(1) +
∫

RN

(f(x, un)− f(x, u))(un − u)dx

≤ o(1) + H0

∫

|x|≥R

(|un|+ |u|)|un − u|dx

+
∫

|x|≤R

(f(x, un)− f(x, u))(un − u)dx

≤ o(1) + H0

∫

|x|≥R

|u||un − u|2dx + 2H0

∫

|x|≥R

|un − u|2dx

+
∫

|x|≤R

(f(x, un)− f(x, u))(un − u)dx

≤ o(1) +
1
2
‖un − u‖2λ + 2H0‖un − u‖λ

(∫

|x|≥R

|u|2dx
)1/2

+
∫

|x|≤R

(f(x, un)− f(x, u))(un − u)dx.

It implies that we may make ‖un − u‖λ small enough by choosing R,n large
enough; that is, ‖un − u‖λ → 0. �

Let P ∗
λ and D0(ε, λ) be as in (3.92) and (3.94).

Lemma 3.21. Under the assumptions of (D1)–(D3) and (E1), there exists a
Λ5 > 0 such that

(3.128) dist((E1(λ))⊥,±P ∗
λ ) > 0, for all λ ≥ Λ5.



3.5 Sign-Changing Homoclinic-Type Solutions 119

Proof. We just prove the case of “+”; the other case is analogous. If

dist((E1(λ))⊥, P ∗
λ ) = 0,

then there would exist {wn} ⊂ (E1(λ))⊥, {en} ⊂ P ∗
λ such that dist(wn, en)→

0 as n→∞. Then

〈en, φ1(λ)〉λ = 〈en − wn, φ1(λ)〉λ + 〈wn, φ1(λ)〉λ → 0 as n→∞.

However, en ≥ φ1(λ) implies that

〈en, φ1(λ)〉λ = µ1(Eλ)〈en, φ1(λ)〉L2 ≥ µ1(Eλ)
∫

RN

(φ1(λ))2dx > 0,

a contradiction. �

Proof of Theorem 3.16. By Lemmas 3.17 and 3.18, we have

inf
M

Gλ ≥ 0, sup
Y

Gλ <∞

for λ large enough. Choose ε ∈
(
0, dist((E1(λ))⊥, P ∗

λ )
)

small enough. Let

D(1)
0 := D0(ε), D(2)

0 := −D0(ε), S = E\W, W := D(1)
0 ∪ D(2)

0 ;

then Lemma 3.21 implies that (A1) and (A2) (cf. (3.124)) of Theorem 3.4
hold. Therefore, we have a critical point u1 ∈ S with Gλ(u1) ≥ infB Gλ > 0;
then u1 is sign-changing. �

Notes and Comments. After the paper by Bartsch et al. [38], there are some
papers on (3.49). In van Heerden and Wang [168] and van Heerden [166],
the authors studied using the mountain pass theorem, the existence of one
positive solution to (3.49) with asymptotically linear nonlinearities and of
multiple solutions if f(x, t) is odd in t. In van Heerden [166], under the
assumptions that f(x, t) is odd in t and that

lim
|t|→0

f(x, t)
t

:= ξ(0) ∈ (νm, νm+1),

lim
|t|→∞

f(x, t)
t

:= ξ(∞) ∈ (νk, νk+1)

uniformly for x ∈ RN , where k �= m, the authors obtained multiple solutions.
In Liu et al. [210] it was proved by the genus-method of the even functional
(see also Li and Wang [199]) those solutions obtained in van Heerden [166]
are sign-changing. If min{k,m} = 0 (ν0 := −∞), under which the mountain
pass theorem can be applied readily, a positive and a negative solution are
also obtained. The existence of a solution to asymptotically linear scalar field
equations was considered in Stuart and Zhou [310] and Li and Zhou [194].
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Theorem 3.16 was originally obtained in Zou [347] where an alternative
result was given.

The first paper where modern global variational methods were employed in
order to find homoclinic type solutions (for a Hamiltonian system) seems to
be Coti Zelati et al. [120]. The Hamiltonian considered there was strictly con-
vex and superlinear. Subsequently multibump type solutions for this system
have been found in Séré [290, 291]. Existence of multibump type solutions
has been shown in Coti Zelati and Rabinowitz [121] (see also [123]) for the
second-order Hamiltonian systems and [122] for a semilinear elliptic PDE on
RN with periodic potentials and nonlinearities under the assumption of the
superlinearity condition. In these papers the multibumps have been obtained
starting from a mountain pass point at a level c, under the assumption that
there are only finitely many geometrically distinct homoclines below a some-
what higher level c + ε. In the very recent paper of Arioli et al. [20], it is
shown that a multibump construction can be carried out from any isolated
homocline having a nontrivial critical group.

If the potential V and the nonlinearity f are periodic in variable x, we
also refer readers to van Heerden [167], Kryszewski and Szulkin [185], Liu
and Wang [212], Schechter and Zou [281, 284], Troestler and Willem [329],
Willem [335], and Willem and Zou [336] for the existence results. In partic-
ular, in [122, 212] the authors obtained infinitely many sign-changing solu-
tions. Interested readers may also consult the following papers for homoclinic
orbit problems for Hamiltonian systems and Schrödinger equations; they
are Ackermann [4] (multibump solutions by using nontrivial local degree),
Ackermann and Weith [5] (multibump solutions for periodic Schrödinger
equations in a degenerate setting), Bartsch and Ding [33, 34] (no multi-
bump type solutions), Rabinowitz [258] (handbook), Rabinowitz and Tanaka
[259], Alama and Li [7] (on multibump bound states), Li and Wang [206]
and Szulkin and Zou [320], among others. We also mention the paper by
Arioli et al. [19] where multibump solutions have been found for an infinite
lattice of particles (a Fermi–Pasta–Ulam type problem). The paper of Berti
and Bolle [60] considers the homoclines and chaotic behavior for perturbed
second-order ODE systems and PDEs. For the Schrödinger equation

(3.129) −∆u + V (x)u = |u|2∗−2u, x ∈ RN , u ∈ R,

where 2∗ is the critical Sobolev exponent, V is 1-periodic in x1, . . . , xN and
the spectrum σ(−∆ + V ) ⊂ (0,∞), the first result is due to Arioli et al. [20].
They show that if V changes sign and N ≥ 4, then (3.129) has a solution
u �= 0 which is a minimizer for the associated functional on the Nehari mani-
fold. Moreover, there exist multibumps whenever this solution is isolated.
Hence, it implies that (3.129) always has infinitely many solutions that are
geometrically distinct. The nonlinear term can be much more general and not
odd there. Some computations on nontrivial critical groups are given in [20].



Chapter 4

On a Brezis–Nirenberg Theorem

4.1 Introduction

Let E be a Hilbert space with the inner product 〈·, ·〉 and the associated
norm ‖ · ‖. Assume that E has an orthogonal decomposition E = Y ⊕M
with dimY < ∞. In Brezis and Nirenberg [70], it is assumed that G is
a C1-functional on E satisfying the Palais–Smale condition. Suppose that
there is a continuous map p∗ of the boundary of the half ball:

K := {u = sv0 + w : w ∈ Y, s ≥ 0, ‖u‖ ≤ R}, R > 0,

into E, where v0 is a fixed unit vector in M , with the following properties,

p∗(u) = u, ∀ u ∈ Y, ‖u‖ ≤ R;

‖p∗(u)‖ ≥ r0 > 0, ∀ u ∈ K, ‖u‖ = R

and G(p∗(u)) ≤ 0 for all u ∈ ∂K. Assume furthermore that for some positive
ρ < r0,

G(u) ≥ 0 for u ∈M, ‖u‖ = ρ.

Then G has a nonzero critical point u0 where G(u0) ≥ 0.
The question is when will this critical point be sign-changing? In this chap-

ter we are concerned with this problem on the location and nodal structure of
the critical point. More precisely, we generalize Brezis and Nirenberg’s result
(cf. [70]) by giving a sufficient condition on the existence of sign-changing
critical points.

4.2 Generalized Brezis–Nirenberg Theorems

Let G ∈ C1(E,R) and the gradient G′ be of the form

(4.1) G′(u) = u−ΘG(u),

W. Zou, Sign-Changing Critical Point Theory, doi: 10.1007/978-0-387-76658-4, 121
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where ΘG : E → E is a continuous operator. Let K := {u ∈ E : G′(u) = 0}
and Ẽ := E\K. Let D0 be an open convex subset of E. Denote S := E\D,
D := −D0 ∪ D0. Assume

(A1) ΘG(±D0) ⊂ ±D0.

Lemma 4.1. Assume that (A1) holds. Let G ∈ C1(E,R) and let B, M

be two closed and disjoint subsets of E. Assume that M is compact and
‖G′(u)‖ ≥ δ > 0 for all u ∈ M. Then there exists a deformation ψ ∈
C([0,+∞)× E, E) satisfying

(1) ψ(t, u) = u for all u ∈ B and t ≥ 0; ψ(0, u) = u for all u ∈ E.
(2) ‖ψ(t, u)− u‖ ≤ t for all u ∈ E and t ≥ 0.
(3) There exists a t0 > 0 and an open neighborhood UM� of M such that

G(ψ(t, u))−G(u) ≤ − δ2

8 + 2δ2
t

for all u ∈ UM� and t ∈ [0, t0].
(4) ψ([0,+∞), D̄) ⊂ D̄; ψ([0,+∞),D) ⊂ D.

Proof. Let δ1 > 0 and

M1 := {u ∈ E : dist(u,M) < δ1},

M2 := {u ∈ E : dist(u,M) < δ1/2}.

Because M is compact, we may take a δ1 > 0 small enough such that

(4.2) ‖G′(u)‖ ≥ δ/2 for all u ∈ M̄1; M̄1 ∩B = ∅;

here M̄1 is the closure of M1. Let

θ(u) =
dist(u,E\M1)

dist(u,E\M1) + dist(u,M2)
.

Define

(4.3) W (u) :=

⎧
⎨

⎩

θ(u)
V (u)

1 + ‖V (u)‖2 , for u ∈ Ẽ,

0, for u ∈ K,

where V (u) is the pseudo-gradient vector field provided by Lemma 2.12. Note
that if u ∈ ∂K, then u �∈ M̄1 by (4.2) because K is closed. Hence we may
find a neighborhood Uu of u such that Uu ⊂ E\M̄1 ⊂ E\M1 and θ(Uu) = 0.
Then W is a locally Lipschitz continuous vector field from E to E. Moreover,
‖W (u)‖ ≤ 1 on E for all u ∈ E.
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Consider the following Cauchy initial value problem

(4.4)
dψ(t, u)

dt
= −W (ψ(t, u)), ψ(0, u) = u ∈ E.

By Theorem 1.41, (4.4) has a unique continuous solution ψ: [0,∞)×E → E.
Evidently, ψ(t, u) = u for all u ∈ B and t ≥ 0 and ‖ψ(t, u) − u‖ ≤ t for all
u ∈ E and t ≥ 0. Choose

UM� := {u ∈ E : dist(u,M) < δ1/10},

which is an open neighborhood of M. For any u ∈ UM� and 0 ≤ t ≤ t0 :=
δ1/3, choose w ∈M such that ‖u− w‖ ≤ δ1/8. Then

dist(ψ(t, u),M) ≤ ‖ψ(t, u)− w‖ ≤ 11δ1/24 < δ1/2.

Therefore, ψ((0, δ1/3],UM�) ⊂ M2, and hence, UM� ⊂ M2, θ(ψ(t, u)) = 1,
and ‖G′(ψ(t, u))‖ ≥ δ/2 for all t ∈ [0, t0] and u ∈ UM� . Hence,

G(ψ(t, u))−G(u)

=
∫ t

0

dG(ψ(s, u))
ds

ds

≤ −
∫ t

0

θ(ψ(s, u))〈G′(ψ(s, u)),
V (ψ(s, u))

1 + ‖V (ψ(s, u))‖2 〉ds

= −1
2

∫ t

0

‖G′(ψ(s, u))‖2
1 + ‖G′(ψ(s, u))‖2 ds

≤ − δ2t

8 + 2δ2

for all t ∈ [0, t0] and u ∈ UM� . Finally, we show that

ψ([0,+∞), D̄) ⊂ D̄, ψ([0,+∞),D) ⊂ D.

The idea is similar to that in Theorem 2.13. By Lemma 2.12, we first observe
that

O(±D0 ∩ Ẽ) ⊂ (±D0) ⇒ O(±D̄0 ∩ Ẽ) ⊂ (±D̄0).

Because K ⊂ E\M1, ψ(t, u) = u for all t ≥ 0 and u ∈ D̄ ∩ K. Assume that
u ∈ D̄0 ∩ Ẽ. If there is a T0 > 0 such that ψ(T0, u) �∈ D̄0, then we may
find a number s0 ∈ [0, T0) such that ψ(s0, u) ∈ ∂D̄0 and ψ(t, u) �∈ D̄0 for
t ∈ (s0, T0]. Consider the following initial value problem

⎧
⎨

⎩

dψ(t, ψ(s0, u))
dt

= −W (ψ(t, ψ(s0, u))),

ψ(0, ψ(s0, u)) = ψ(s0, u) ∈ E.
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It has a unique solution ψ(t, ψ(s0, u)). For any v ∈ D̄0, if v ∈ K, then
W (v) = 0. Hence, v + λ(−W (v)) = v ∈ D̄0. Assume that v ∈ Ẽ ∩ D̄0.
By Lemma 2.12 and noting that D̄0 is convex, we have

v + ρ(−W (v))

= v − ρθ(v)
V (v)

1 + ‖V (u)‖2

= v + ρ

(

− θ(v)
1 + ‖V (v)‖2

)

(v −O(v))

=
(

1− ρθ(v)
1 + ‖V (v)‖2

)

v +
ρθ(v)

1 + ‖V (v)‖2 O(v)

for ρ small enough. It implies that v + ρ(−W (v)) ∈ D̄0 for ρ > 0 small
enough. Summing up, we have

lim
ρ→0+

dist(v + ρ(−W (v)), D̄0)
ρ

= 0, ∀v ∈ D̄0.

By Lemma 1.49, there exists an ε > 0 such that ψ(t, ψ(s0, u)) ∈ D̄0

for all t ∈ [0, ε). By the semigroup property, we see that ψ(t, u) ∈ D̄0

for all t ∈ [s0, s0 + ε), which contradicts the definition of s0. Therefore,
ψ([0,+∞), D̄0) ⊂ D̄0. Similarly, ψ([0,+∞),−D̄0) ⊂ −D̄0. Consequently,
ψ([0,+∞), D̄) ⊂ D̄. To prove ψ([0,+∞),D) ⊂ D, we just show that
ψ([0,+∞),D0) ⊂ D0 by a contradiction. Assume that there exists a u∗ ∈
D0, T0 > 0 such that ψ(T0, u

∗) �∈ D0. Choose a neighborhood Uu∗ of u∗ such
that Uu∗ ⊂ D̄0. Then by the theory of ordinary equations in Banach space,
we may find a neighborhood UT0 of ψ(T0, u

∗) such that ψ(T0, ·) : Uu∗ → UT0

is a homeomorphism. Because ψ(T0, u
∗) �∈ D0, we take a w ∈ UT0\D̄0. Cor-

respondingly, we find a v ∈ Uu∗ such that ψ(T0, v) = w; this contradicts the
fact that ψ([0,∞), D̄0) ⊂ D̄0. �

Definition 4.2. Let B be a closed subset of E. Define a class F of compact
subsets of E satisfying

(1) A ∩ S �= ∅ for all A ∈ F .
(2) For any σ ∈ C([0, 1] × E,E) satisfying σ(t, x) = x for all (t, x) in

({0} ×E) ∪ ([0, 1]×B), there holds σ(1, A) ∈ F for any A ∈ F .

Class F is called a homotopy-stable family with extended boundary B.

Lemma 4.3. Assume (A1). Let B be a closed subset of E and assume that
it has a homotopy-stable family with extended boundary B. Define

c = inf
A∈F

sup
A∩S

G
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and assume that there is a closed subset Π of E with

A ∩Π ∩ S\B �= ∅, ∀A ∈ F

and
sup
B

G ≤ c ≤ inf
Π

G.

Then there exists a sign-changing (PS) sequence {um} such that

G′(um) → 0, G(um) → c, um ∈ S, dist(um,Π) →∞.

Proof. For any ε ∈ (0, 100−10), there is an A ∈ F such that

(4.5) c ≤ sup
A∩S

G ≤ c + ε.

Let
Πε := {u ∈ E : dist(u,Π) < ε1/2}.

Let L ⊂ C([0, 1]×E,E) be the set of mappings ψ satisfying

ψ(t, u) = u, ∀ (t, u) ∈ ({0} × E) ∪ ([0, 1]× ((A\Πε) ∪B))

and
sup

(t,u)∈[0,1]×E

‖ψ(t, u)− u‖ <∞.

Then L is a complete metric space equipped with the metric

d(ψ,ψ′) = sup{‖ψ(t, u)− ψ′(t, u)‖ : (t, u) ∈ [0, 1]× E}.

Consequently, ψ(1, A) ⊂ F for any ψ ∈ L. Define
φ1(u) = max{0, ε− ε1/2dist(u,Π)},(4.6)

φ2(u) = εmin{1,dist(u, (A\Πε) ∪B)},(4.7)

G0 = G + φ1 + φ2.

Also, define Θ : L → R by

Θ(ψ) = supG0(ψ(1, A) ∩ S).

Then Θ is a lower semicontinuous function on L. Note that

Θ(ψ) = sup
ψ(1,A)∩S

(G + φ1 + φ2)(4.8)

≥ sup
ψ(1,A)∩S∩Π

(G + φ1)(4.9)

≥ c + ε.
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Therefore, d := infψ∈L Θ ≥ c + ε. Let ψ̄ = id (i.e., ψ̄(t, u) = u,∀(t, u)); then
ψ̄ ∈ L. By (4.5)–(4.7),

d ≤ Θ(ψ̄) = sup
A∩S

(G + φ1 + φ2) ≤ c + 3ε.

Hence,
Θ(ψ̄) ≤ inf

ψ∈L
Θ + 2ε.

By Ekeland’s variational principle (cf. Lemma 1.4), we have a ψ0 ∈ L such
that Θ(ψ0) ≤ Θ(ψ̄),d(ψ0, ψ̄) ≤ 4ε1/2 and

(4.10) Θ(ψ) ≥ Θ(ψ0)− ε1/2d(ψ,ψ0)/2, ∀ψ ∈ L.

Let
M := {u ∈ ψ0(1, A) ∩ S : G0(u) = Θ(ψ0)}.

Because A is compact and ψ0(1, A) ∩ S �= ∅, M �= ∅. Next we show that

M ∩ ((A\Πε) ∪B) = ∅.

In as much as
ψ0(1, A) ∩Π ∩ S\B �= ∅,

we may find a u0 in Π ⊂ Πε satisfying φ2(u0) > 0. For any u ∈M, we have

G0(u) = max
ψ0(1,A)∩S

G0(4.11)

≥ max
ψ0(1,A)∩Π∩S

G0

= max
ψ0(1,A)∩Π∩S

(G + φ1 + φ2)

≥ c + ε + φ2(u0).

On the other hand, for any u ∈ (A\Πε) ∪ B, we may assume that u ∈ S
(otherwise, u �∈M).

If u ∈ (A\Πε) ∩ S, we see that φ1(u) = φ2(u) = 0. Then by (4.5),

(4.12) G0(u) = G(u) ≤ sup
A∩S

G ≤ c + ε.

If u ∈ B∩S, then by (4.6) and (4.7), G0(u) ≤ c+ε. Both cases imply that

sup
((A\Πε)∪B)∩S

G0 ≤ c + ε.

By (4.11) and (4.12),

(4.13) M ∩ ((A\Πε) ∪B) = ∅.
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Next, we show that there exists a uε ∈M such that ‖G′(uε)‖ ≤ ε1/5 and
c− ε ≤ G(uε) ≤ c + 3ε. In particular, uε ∈ S and dist(uε,Π) ≤ 5ε1/2.

First we note that any uε ∈M implies that uε ∈ ψ0(1, A), uε ∈ S, and

G0(uε) = maxG0(ψ0(1, A) ∩ S) = Θ(ψ0) ≥ d

and Θ(ψ0) ≤ Θ(ψ̄) ≤ c + 3ε. Then

c + ε ≤ G0(uε) = G(uε) + φ1(uε) + φ2(uε) ≤ c + 3ε;

it implies that
c− ε ≤ G(uε) ≤ c + 3ε.

Choose w ∈ A such that uε = ψ0(1, w). By the definition of ψ0 and (4.13), we
see that w ∈ Πε. Hence, dist(w,Π) < ε1/2, because d(ψ0, ψ̄) < 4ε1/2. Hence,
dist(uε,Π) < 5ε1/2.

By way of contradiction, assume that ‖G′(u)‖ > ε1/5 for all u ∈ M. We
apply Lemma 4.1 to the set M and B ∪ (A\Πε); we have a σ ∈ C([0, 1] ×
E,E), t0 > 0 (assume t0 < 1) and an open neighborhood UM� of M such
that

(1) σ(0, u) = u for all u ∈ E.
(2) σ(t, u) = u for all u ∈ B ∪ (A\Πε) for all t ≥ 0.
(3) ‖σ(t, u)− u‖ ≤ t for all u ∈ E for all t ≥ 0.
(4) G(σ(t, u))−G(u) ≤ −(ε2/5/(8 + 2ε2/5))t for all u ∈ UM� and t ∈ [0, t0].

In addition, we have

(4.14) σ(t, D̄) ⊂ D̄, σ(t,D) ⊂ D, ∀t ∈ [0,∞).

Define
ψλ(t, u) = σ(tλ, ψ0(t, u)), λ ∈ [0, 1].

Then ψλ(t, u) ∈ L and

d(ψλ, ψ0) = sup{‖ψλ(t, u)− ψ0(t, u)‖ : u ∈ E, t ∈ [0, 1]} ≤ λ.

Hence, by (4.10),
Θ(ψλ) ≥ Θ(ψ0)− ε1/2λ/2.

Because

(4.15) Θ(ψλ) = supG0(ψλ(1, A) ∩ S)

and A is compact, there is a uλ ∈ A such that Θ(ψλ) = G0(ψλ(1, uλ))
and ψλ(1, uλ) = σ(λ, ψ0(1, uλ)) ∈ S. Furthermore, by (4.14), ψ0(1, uλ) ∈ S.
Consequently,

G0(ψλ(1, uλ)) ≥ Θ(ψ0)− ε1/2λ/2(4.16)
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= sup
ψ0(1,A)∩S

G0 − ε1/2λ/2

≥ G0(ψ0(1, u))− ε1/2λ/2

for all u ∈ A with ψ0(1, u) ∈ S. Because A is compact, we may assume that
uλ → u0 ∈ A as λ→ 0. Then ψ0(1, u0) ∈ S. Moreover, by (4.16),

G0(ψ0(1, u0)) = sup
ψ0(1,A)∩S

G0

and therefore, ψ0(1, u0) ∈ M. It follows that ψ0(1, uλ) ∈ UM� for λ small
enough. Hence,

G(ψλ(1, uλ))−G(ψ0(1, uλ))(4.17)

= G(σ(λ, ψ0(1, uλ)))−G(ψ0(1, uλ))

≤ − ε2/5λ

8 + 2ε2/5

for λ small enough. Note that

|φ1(ψ0(1, uλ))− φ1(ψλ(1, uλ))|(4.18)

≤ ε1/2‖ψλ(1, uλ)− ψ0(1, uλ)‖

≤ λε1/2

and that

|φ2(ψ0(1, uλ))− φ2(ψλ(1, uλ))|(4.19)

≤ ε‖ψλ(1, uλ)− ψ0(1, uλ)‖

≤ λε.

By combining (4.13)–(4.19), we get

ε2/5

8 + 2ε2/5
λ ≤ ε1/2λ/2 + 2ελ + ε1/2λ.

This implies ε ≥ 96−10, a contradiction. �

Lemma 4.4. Assume (A1). Let K be a compact subset of E and γ0 be a
given continuous function from a closed subset K0 of K into E and consider
the family

Γ := {γ ∈ C(K,E) : γ = γ0 on K0}.
Let Π be a closed subset of E. Assume that γ(K) ∩ S ∩ Π\γ0(K0) �= ∅ for
any γ ∈ Γ . Define
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c = inf
γ∈Γ

sup
γ(K)∩S

G.

If
sup

γ0(K0)

G ≤ inf
Π

G,

then there exists a sequence {um} such that

G′(um) → 0, G(um) → c, um ∈ S.

Moreover, dist(um,Π) → 0 if c = infΠ G.

Proof. Let

F := {A : A = γ(K), γ ∈ Γ}, B = γ0(K0).

Then one checks that F is a homotopy-stable family with extended bound-
ary B,

A ∩Π ∩ S\B �= ∅, ∀A ∈ F ,

and
sup
B

G ≤ inf
Π

G ≤ c.

If infΠ G < c, then for any A ∈ F , there is a u0 ∈ A ∩ S such that

c ≤ sup
A∩S

G = G(u0).

Hence
{u ∈ E : G(u) ≥ c} ∩ S ∩A\B �= ∅

and
sup
B

G < c ≤ inf
Π′

G, where Π ′ = {u ∈ E : G(u) ≥ c}.

Apply Lemma 4.3 to F , B,Π ′, and S; we get a sign-changing sequence {um}
such that

G′(um) → 0, G(um) → c, um ∈ S, dist(um,Π ′) →∞.

If infΠ G = c, then supB G ≤ c = infΠ G. Apply Lemma 4.3 to F , B,Π, and
S. Then we get a sign-changing sequence {um} such that

G′(um) → 0, G(um) → c, um ∈ S, dist(um,Π) →∞.

�
Lemma 4.5. Let E = Y ⊕M with dimY < ∞. Assume that z ∈ M with
‖z‖ = 1 and that there is a continuous map γ0 : ∂K → E, where

K := {y + sz : y ∈ Y, s ≥ 0, ‖u‖ ≤ R},
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satisfying

(1) γ0(y) = y for any y ∈ Y, ‖y‖ ≤ R.
(2) ‖γ0(u)‖ ≥ r > 0 for u ∈ K, ‖u‖ = R.

Let K0 = ∂K;
Γ := {γ ∈ C(K,E) : γ = γ0 on K0}.

Let F = M ∩ Sρ, ρ < r, where Sρ := {u ∈ E : ‖u‖ = ρ}. Then γ(K)∩ F �= ∅
for all γ ∈ Γ .

Proof. Let P : E → Y be the projection onto Y along M . Let Y0 = Y ⊕Rz.
Define H : K → Y0 as the following.

H(u) = Pγ(u) + ‖(id− P )γ(u)‖z.

Let
Σ1 = {(y, 0) : y ∈ Y, ‖y‖ ≤ R}

and Σ2 = {u ∈ K : ‖u‖ = R}. Then ∂K = Σ1 ∪ Σ2. By the assumption,
H(u) �= ρz for any u ∈ ∂K. Therefore, deg(H,K, ρz) is well defined. Let

H(t, u) = tH(u) + (1− t)H∗(u), t ∈ [0, 1], u ∈ ∂K,

where

H∗(u) =

⎧
⎪⎨

⎪⎩

u if u ∈ Σ1

H(u)
‖H(u)‖R if u ∈ Σ2.

Note that H(u) = u for u ∈ Σ1 and ‖H(u)‖ ≥ r > 0 for u ∈ Σ2. Then it is
easy to check that H(t, u) �= ρz for all u ∈ ∂K, t ∈ [0, 1]. Because the degree
depends only on the boundary values of H(t, ·), we have that

deg(H,K, ρz) = deg(H(t, ·),K, ρz) = deg(H∗,K, ρz).

To compute the degree on the right-hand side of the above identities, we note
that u ∈ Σ1; then H∗(u) = u �= ρz. And H∗(Σ2) ⊂ Σ2, H∗ = id on ∂Σ2.
Because Σ2 is homeomorphic to a ball, there is a continuous deformation
H∗(t, u) connecting H∗(u) to the identity in Σ2 with H∗(t, u) = id on ∂Σ2

for all t ∈ [0, 1]. Therefore,

deg(H∗,K, ρz) = deg(id,K, ρz) = 1.

It follows that deg(H,K, ρz) = 1; this completes the proof of the lemma. �

Theorem 4.6 (Generalized Brezis–Nirenberg Theorem). Assume
(A1). Let E = Y ⊕M with dimY < ∞. Assume that z ∈ M with ‖z‖ = 1
and that there is a continuous map γ0 : ∂K → E, where

K := {y + sz : y ∈ Y, s ≥ 0, ‖u‖ ≤ R},
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satisfying

(1) γ0(y) = y for any y ∈ Y, ‖y‖ ≤ R and ‖γ0(u)‖ ≥ r > 0 for u ∈ K,
‖u‖ = R.

(2) G(γ0(u)) ≤ a for all u ∈ ∂K, where a is a constant may be ≤ 0 or > 0.
(3) For some positive ρ < r, infM∩Sρ

G ≥ a, where Sρ := {u ∈ E :
‖u‖ = ρ}.

(4) M ∩ Sρ ⊂ S.

Then there exists a sequence {um} such that

G′(um) → 0, G(um) → c ∈ R, um ∈ S.

If G satisfies the (PS) condition at level c, then G has a sign-changing critical
point in S.

Proof. Let K0 = ∂K,

Γ := {γ ∈ C(K,E) : γ = γ0 on K0}.

Let F = M ∩ Sρ. By Lemma 4.5, γ(K) ∩ F �= ∅ for all γ ∈ Γ . Hence, by (1)
and (3), γ(K) ∩ S ∩ F\γ0(K0) �= ∅ for any γ ∈ Γ . Define

c = inf
γ∈Γ

sup
γ(K)∩S

G.

By (2) and (3),
sup

γ0(K0)

G ≤ inf
F

G.

By Lemma 4.4, there exists a sign-changing sequence {um} such that

G′(um) → 0, G(um) → c, um ∈ S.

Moreover, dist(um, F ) → 0 if c = infF G. By the (PS) condition, we get a
sign-changing critical point in S. �

Notes and Comments. Lemma 4.5 is due to Brezis and Nirenberg [71]. An
earlier version of Definition 4.2 was given by Ghoussoub [156, 157].
Theorem 4.6 reveals the relationship between the classical linking theorem
and sign-changing solution. We refer readers to Rabinowitz [255], Schechter
[275], Struwe [313], Willem [335], and Zou and Schechter [351] for some earlier
linking theorems without the nodal structure information.

4.3 Schrödinger Equations

Consider the existence of a sign-changing homoclinic orbit to the Schrödinger
equation:
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(4.20) −∆u + Vλ(x)u = f(x, u), x ∈ RN ,

that is, a solution satisfying u(x) → 0 as |x| → ∞. Suppose that Vλ satisfies
all the conditions (D1)–(D3) of Chapter 3. By the theory of the previous
chapter, the Schrödinger operator −∆+Vλ has a finite number of eigenvalues
below the infimum of the essential spectrum. The eigenvalue problem

−∆u + u = νu in Ω; u = 0 on ∂Ω

has positive isolated eigenvalues with finite multiplicity:

0 < ν1 < ν2 < · · · < νm < νm+1 < · · · .

Let dim(νi) denote the dimension of the eigenspace corresponding to the
eigenvalue νi. Let dk :=

∑k
i=1 dim(νi). We make the following hypotheses on

the nonlinearity f .

(G1) f ∈ C(RN ×R,R); there exist H0 > 0, L ≥ 0 such that

|f(x, t)| ≤ H0|t|, ∀(x, t) ∈ RN ×R

and f(x, t) + Lt is increasing in t.
(G2) There is a k > 2 such that 2F (x, t) ≥ νk−1t

2 for all x ∈ RN , t ∈ R. In
particular, lim inft→0((f(x, t))/t) > ν1 uniformly for x ∈ RN .

(G3) 2F (x, t) ≤ ((νk +νk−1)/2)t2 for all x ∈ RN and |t| ≤ T0, where T0 > 0
is a constant.

(G4) lim inf |t|→∞(2F (x, t))/t2 = H∞ > νk; lim|t|→0(f(x, t)t)/(F (x, t)) =
π0 > 2 uniformly for x ∈ RN , where π0 is a constant.

(G5) lim|t|→∞(f(x, t)t−2F (x, t))/|t|β = c > 0 uniformly for x ∈ RN , where
β ∈ (1, 2) is a constant.

(G6) f(x, t)t− 2F (x, t) > 0 for all x ∈ RN , t ∈ R\{0}.
The above assumptions include the following case.

f(x, t)/t→ a as t→ −∞, f(x, t)/t→ b as t→∞.

Here a, b are allowed to be any (different) numbers greater than νk. In
other words, the jump at infinity may cross an arbitrarily finite number of
eigenvalues in the spectrum of −∆+Vλ. In particular, a and b may belong to
the continuous spectrum of −∆ + Vλ and therefore the resonance may occur
at the continuous spectrum.

Theorem 4.7. Assume (D1)–(D3) and (G1)–(G6). Then there exists a Λ > 0
such that Equation (4.20) has a sign-changing solution for each λ ≥ Λ.

Let Eλ be the Hilbert space

Eλ :=
{

u ∈ H1(RN ) :
∫

RN

(|∇u|2 + Vλ(x)u2)dx <∞
}
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endowed with the inner product 〈u, v〉λ :=
∫
RN (�u � v + Vλ(x)uv)dx for

u, v ∈ Eλ and norm ‖u‖λ := 〈u, u〉1/2
λ . Then by (D1), Eλ ↪→ H1(RN ) is

continuous. Consider

(4.21) Gλ(u) =
1
2
‖u‖2λ −

∫

RN

F (x, u)dx.

Then Gλ ∈ C1(Eλ,R) and G′
λ = id − ΘG, where ΘG := (−∆ + Vλ)−1f.

The weak solutions of (4.20) correspond to the critical points of Gλ. By
Proposition 3.7, for λ large enough, the operator −∆ + Vλ has at least dk

eigenvalues:
µ1(Sλ), µ2(Sλ), . . . , µdk

(Sλ)

with corresponding eigenfunctions e1(λ), e2(λ), . . . , edk
(λ) and |ei(λ)|2 = 1

for all i = 1, . . . , dk. Set

Edk
(λ) := span{e1(λ), e2(λ), . . . , edk

(λ)}.

By (3.63) µn(Sλ) ≤ µn(L∗) for all n ∈ N. Note that µn(Sλ) → µn as λ→∞
for all n > 0. By (3.55), limn→∞ µn = ∞. By Proposition 3.11, µn = µn(L∗)
for all n ∈ N.

Lemma 4.8. Assume (G2). Then there exists a Λ1 > 0 such that

Gλ(u) ≤ 0 for all u ∈ Edk−1(λ) and λ > Λ1.

Proof. We first observe that ‖u‖2λ ≤ µdk−1(Sλ)|u|22 for all u ∈ Edk−1(λ) and
µdk−1(Sλ) ≤ νk−1. Then by (G2),

G(u) =
1
2
‖u‖2λ −

∫

RN

F (x, u)dx

≤ 1
2
‖u‖2λ −

1
2

∫

RN

νk−1u
2dx

≤ 1
2

(

1− νk−1

µdk−1(Sλ)

)

‖u‖2λ

≤ 0.

�

Lemma 4.9. Under the assumption of (D4), there exists a Λ2 > 0 such that
Gλ(u) → −∞ for u ∈ Edk

(λ) as ‖u‖ → ∞ for each λ > Λ2.

Proof. First, we observe that

(4.22) ‖u‖2λ −
∫

RN

H∞u2dx ≤ −κ‖u‖2λ, ∀u ∈ Edk
(λ),
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where κ := (H∞ − µdk
(Sλ))/µdk

(Sλ) > 0 because µdk
(Sλ) ≤ νk < H∞.

Furthermore, note that dimEdk
(λ) <∞. We may find an R > 0 such that

(4.23)
∫

RN\BR(0)

H∞u2

‖u‖2λ
dx ≤ κ

4
,

∫

RN\BR(0)

|F (x, u)|dx ≤ κ

8
‖u‖2λ

for all u ∈ Edk
(λ). Here and in the sequel, BR(0) := {x ∈ RN : |x| ≤ R}. It

follows from (4.22) and (4.23) that

(4.24) ‖u‖2λ −
∫

BR(0)

H∞u2dx ≤ −3κ
4
‖u‖2λ for all u ∈ Edk

(λ).

Furthermore, by (G4), for ε > 0 small enough, there exists a Cε > 0 such
that

1
2
H∞t2 − F (x, t) ≤ 1

2
εt2 + Cε, ∀ x ∈ BR(0), t ∈ R.

Therefore, combining (4.22)–(4.24),

Gλ(u)

≤ 1
2
‖u‖2λ −

1
2

∫

BR(0)

H∞u2dx +
∫

BR(0)

(
1
2
H∞u2 − F (x, u)

)

dx

−
∫

RN\BR(0)

F (x, u)dx

≤ −3κ
8
‖u‖2λ +

κ

8
‖u‖2λ +

∫

BR(0)

(
1
2
εu2 + Cε

)

dx

≤ −κ

5
‖u‖2λ +

∫

BR(0)

Cεdx.

The lemma follows immediately. �
Lemma 4.10. Assume (G2). Then there exists a Λ3 > 0 and a ρ0 > 0
independent of λ such that

Gλ(u) ≥ c > 0

for all u ∈ E⊥
dk−1

(λ) with ‖u‖ = ρ0 and all λ ≥ Λ3.

Proof. This is similar to the proof of Lemma 3.18. We give it here for com-
pleteness. Note that

(4.25) 2F (x, t) ≤ 2H0t
2 −H0T

2
0 for |t| ≥ T0, x ∈ RN ,

where T0 comes from (G3). We first choose λ large enough (say λ > Λ∗)
such that µdk

(Sλ) approaches µdk
= νk; hence µdk

(Sλ) > Λ̄ because νk > Λ̄,
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where Λ̄ = (νk +νk−1)/2. Next, we choose λ large enough (say λ > Λ∗∗) such
that the Schrödinger operator −∆ + Vλ has dm eigenvalues

µ1(Sλ), . . . , µdm
(Sλ).

In particular, we may want dm large enough so that

(2H0 + µdm
(Sλ)− 2Λ̄)(µdk

(Sλ)− Λ̄) ≥ 4Λ̄2,(4.26)

µdm
(Sλ) ≥ 2H0,(4.27)

(µdm
(Sλ)− 2H0)(µdk

(Sλ)− Λ̄) ≥ 32Λ̄2,(4.28)

µdm
(Sλ)− 6H0 + 2Λ̄ > 0,(4.29)

µdm
(Sλ) >

2H0

Λ̄
µdk

(Sλ).(4.30)

For any u ∈ E⊥
dk−1

(λ), we write u = v + w with

v ∈ Xdk
(λ)⊕Xdk+1(λ)⊕ · · · ⊕Xdm

(λ)

and w ∈ E⊥
dm

(λ), where dm is given in (4.26)–(4.30) and Xdi
(λ) (i = k, . . . ,m)

is the eigenspace associated with µdi
(Sλ). Let

(4.31) θ1 :=
(2H0 + µdm

(Sλ))
4

w2 +
(µdk

(Sλ) + Λ̄)
4

v2 − F (x, v + w).

If |v + w| ≤ T0, then by condition (G3) and the choice of µdm
(Sλ), we see

that

θ1 ≥
(2H0 + µdm

(Sλ))
4

w2 +
(µdk

(Sλ) + Λ̄)
4

v2 − 1
2
Λ̄(v + w)2(4.32)

≥ (2H0 + µdm
(Sλ))− 2Λ̄

4
w2 +

(µdk
(Sλ) + Λ̄)− 2Λ̄

4
v2 − Λ̄|vw|

≥
(

((2H0 + µdm
(Sλ)− 2Λ̄)(µdk

(Sλ) + Λ̄− 2Λ̄))1/2

2
− Λ̄

)

|vw|

≥ 0. (By (4.26))

If |v + w| > T0, then by (4.25), we conclude that

θ1 ≥
(

(µdm
(Sλ) + 2H0)− 4H0

4
w2(4.33)

+
(µdk

(Sλ) + Λ̄)− 4H0

4
v2 − 2H0vw +

H0T
2
0

2

)

(4.34)

:= θ2 + θ3,
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where

θ2 :=
µdm

(Sλ) + 2H0 − 4H0

8
w2 +

(µdk
(Sλ)− Λ̄)

4
v2 − Λ̄vw,

(4.35)

θ3 :=
µdm

(Sλ) + 2H0 − 4H0

8
w2 − 2H0 − Λ̄

2
v2 − (2H0 − Λ̄)vw +

H0T
2
0

2
.

(4.36)

If
(µdk

(Sλ)− Λ̄)
4

|v| − Λ̄|w| ≥ 0,

then by (4.27),

(4.37) θ2 ≥
µdm

(Sλ) + 2H0 − 4H0

8
w2 +

(
µdk

(Sλ)− Λ̄

4
|v| − Λ̄|w|

)

|v| ≥ 0.

If
(µk(Sλ)− Λ̄)

4
|v| − Λ̄|w| ≤ 0,

by the choice of µdm
(Sλ) in (4.27) and (4.28), we deduce that

θ2(4.38)

≥
(

µdm
(Sλ) + 2H0 − 4H0

8
− 4Λ̄2

µdk
(Sλ)− Λ̄

)

w2 +
µdk

(Sλ)− Λ̄

4
v2

≥ 0.

On the other hand, by (4.29),

θ3 ≥
(µdm

(Sλ) + 2H0)− 4H0

8
w2(4.39)

− (2H0 − Λ̄)
2

v2 − (2H0 − Λ̄)
2

vw +
H0r

2
0

2

≥ (µdm
(Sλ) + 2H0)− 6H0 + 2Λ̄

8
w2(4.40)

−6H0 − 3Λ̄
4

v2 +
H0T

2
0

2

≥ −6H0 − 3Λ̄
4

v2 +
H0T

2
0

2
.

Choose

ρ0 :=
(

2H0T
2
0

(6H0 − 3Λ̄)C2
m

)1/2

,
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where Cm is a constant such that ‖v‖∞ ≤ Cm‖v‖ for all

v ∈ Xdk
(λ)⊕Xdk+1(λ)⊕ · · · ⊕Xdm

(λ)

which is finite-dimensional. Then ‖u‖ = ρ0 and

‖v‖∞ ≤ Cm‖v‖ ≤ Cm‖u‖ = Cmρ0.

Hence, θ3 ≥ 0. Therefore, by (4.33)–(4.39), θ1 ≥ 0. Finally,

Gλ(u)

= Gλ(v + w)

=
1
2
(‖v‖2λ + ‖w‖2λ)−

∫

RN

F (x, v + w)dx

≥ 1
4
‖v‖2λ +

1
4
‖w‖2λ +

1
4
µdk

(Sλ)|v|22

+
1
4
µdm

(Sλ)|w|22 −
∫

RN

F (x, u)dx

≥ 1
4

(

1− Λ̄

µdk
(Sλ)

)

‖v‖2λ +
1
4

(

1− 2H0

µdm
(Sλ)

)

‖w‖2λ +
∫

RN

θ1dx

≥ 1
4

min
{(

1− Λ̄

µdk
(Sλ)

)

,

(

1− 2H0

µdm
(Sλ)

)}

‖u‖2

≥ 1
4

(

1− Λ̄

µdk
(Sλ)

)

ρ2
0

> 0.

�
Lemma 4.11. Under the assumptions of Theorem 4.7, for each c, there exists
a Λ4 > 0 such that Gλ satisfies the (PS) condition at level c for each λ ≥ Λ4.

Proof. Let {un} be a (PS) sequence at level c:

G′
λ(un) →∞, Gλ(un) → c.

We first show that {‖un‖λ} is bounded. By (G4), let ε0 > 0 be such that
π0 − ε0 > 2. Hence, there exists an R0 > 0 such that

(4.41) f(x, u)u ≥ (π0 − ε0)F (x, u)

for all x ∈ RN and |u| ≤ R0. On the other hand, by (G5) and (G6), we may
choose c > 0 small enough such that

(4.42) f(x, u)u− 2F (x, u) ≥ c|u|β
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for all x ∈ RN and |u| ≥ R0. Then
(

1
2
− 1

π0 − ε0

)

‖un‖2λ +
∫

RN

(
1

π0 − ε0
f(x, un)un − F (x, un)

)

dx(4.43)

≤ c + o(1)‖un‖λ.

Hence, by (4.42) and (4.43) and (G1) and (G6), we get that

‖un‖2λ(4.44)

≤ c + o(1)‖un‖λ

+c

(∫

|un|≤R0

+
∫

|un|≥R0

)(

F (x, un)− 1
π0 − ε0

f(x, un)un

)

dx

≤ c + o(1)‖un‖λ + c

∫

|un|≥R0

(

F (x, un)− 1
π0 − ε0

f(x, un)un

)

dx

≤ c + o(1)‖un‖λ + c

(
1
2
− 1

π0 − ε0

)∫

|un|≥R0

f(x, un)undx

≤ c + o(1)‖un‖λ + c

∫

|un|≥R0

|un|2dx.

Furthermore,

Gλ(un)− 1
2
〈G′

λ(un), un〉λ ≤ c + o(1)‖un‖λ

and (G5) and (G6) and (4.42) imply that

c + o(1)‖un‖λ ≥
∫

RN

(
1
2
f(x, un)un −G(x, un)

)

dx

≥ c

∫

|un|≥R0

|un|βdx.(4.45)

Choose

θ =
(2− β)(N + 2)
(2N + 4−Nβ)

.

Then θ ∈ (0, 1) and, by (4.45) and the Hölder inequality,
∫

|un|≥R0

|un|2

=
∫

|un|≥R0

|un|2(1−θ)|un|2θdx
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≤
(∫

|un|≥R0

|un|βdx

)(1−θ)2/β (∫

|un|≥R0

|un|(2N+4)/Ndx

)2θN/2N+4

≤ (c + c‖un‖λ)2(1−θ)/β‖un‖2θ
λ .

It follows by (4.44) that

‖un‖2λ ≤ o(1)‖un‖λ + c + c(c + c‖un‖λ)2(1−θ)/β‖un‖2θ
λ .

Note that 2(1− θ)/β + 2θ < 2 because β ∈ (1, 2) and θ ∈ (0, 1). Thus, we see
that {‖un‖λ} is bounded. Suppose that un → u weakly in Eλ and un → u
strongly in L2

loc(R
N ) for some u ∈ Eλ. Then G′

λ(u) = 0. By Lemma 3.9, for
any ε > 0 there exists an R > 0 and a Λ > 0 such that

(4.46) ‖v‖2L2(Bc
R) ≤ ε‖v‖2λ, ∀v ∈ Eλ, λ ≥ Λ,

where Bc
R := {x ∈ RN : |x| > R}. Recall that ‖G′

λ(un)‖ → 0 and G′
λ(u) = 0.

Thus,

‖un − u‖2λ

= o(1) +
∫

RN

(f(x, un)− f(x, u))(un − u)dx

≤ o(1) +
∫

|x|≥R

(|un|+ |u|)|un − u|dx

+
∫

|x|≤R

(f(x, un)− f(x, u))(un − u)dx

≤ o(1) + H0

∫

|x|≥R

|u||un − u|2dx + 2H0

∫

|x|≥R

|un − u|2dx

+
∫

|x|≤R

(f(x, un)− f(x, u))(un − u)dx

≤ o(1) +
1
2
‖un − u‖2λ + 2H0‖un − u‖λ

(∫

|x|≥R

|u|2dx
)1/2

+
∫

|x|≤R

(f(x, un)− f(x, u))(un − u)dx.

Obviously, we may make ‖un − u‖λ small enough by choosing R,n large
enough; that is, ‖un − u‖λ → 0. �

Let Pλ := {u ∈ Eλ : u ≥ φ1(λ)}, where φ1(λ) is the positive eigenfunc-
tion of µ1(Sλ). Then Pλ is closed and convex. By Lemma 3.21, all positive
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solutions belong to Pλ. By Lemma 3.21 and the proof of Theorem 3.15, we
have the following.

Lemma 4.12. Under the assumptions of (D1)–(D3) and (G1), there exist
ε0 > 0 and Λ5 > 0 such that

dist(Sρ ∩ (E1(λ))⊥,−Pλ ∪ Pλ) > ε0 > 0 for all ρ > 0

and
ΘG(±D0(ε)) ⊂ ±D0(ε) for all ε ∈ (0, ε0), λ ≥ Λ5,

where Sρ := {u ∈ Eλ : ‖u‖λ = ρ}, D0(ε) = {u ∈ Eλ : dist(u, Pλ) < ε}.

Proof of Theorem 4.7. Let S = Eλ\(−D0(ε) ∪ D0(ε)). Then a critical point
of Gλ in S is a sign-changing solution of (4.20). Let Y = Edk−1(λ),M :=
Edk−1(λ)⊥; then dimY <∞ and Eλ = Y ⊕M . Assume that z ∈M\Edk

(λ)⊥

with ‖z‖ = 1. Let

K := {y + sz : y ∈ Y, s ≥ 0, ‖u‖ ≤ R}.

Then there exists a Λ > 0 such that for each λ ≥ Λ, Gλ(u) ≤ 0 for all
u ∈ ∂K with R large enough (by Lemmas 4.8 and 4.9). For some positive ρ,
by Lemma 4.10, infM∩Sρ

G ≥ a. By Lemma 4.12, M ∩ Sρ ⊂ S. Combining
the (PS) condition of Lemma 4.11, the second conclusion of Lemma 4.12 and
Theorem 4.6, G has a sign-changing critical point in S. �

Notes and Comments. Evidently, Pλ∩(−Pλ) = ∅. Then, −D0(ε)∩D0(ε) = ∅
if ε small enough. Moreover, (1− t)(±Pλ) �⊂ ±Pλ, (1− t)(±D0(ε)) �⊂ ±D0(ε)
for some t ∈ [0, 1]. So, we cannot construct linking as in Chapter 2. The
results of Chapter 2 cannot be directly applied to (4.20). The methods of Li
and Wang [199] and Schechter et al. [279] need the functionals to be of C2.



Chapter 5

Even Functionals

5.1 Introduction

Let E be a Hilbert space with the inner product 〈·, ·〉 and the associated norm
‖ · ‖. We first recall a well-known result.

Suppose that G ∈ C1(E,R) is even and satisfies the (PS) condition. Let
Y,M ⊂ E be two closed subspaces of E with dimY <∞,dimY −codimM =
1, G(0) = 0. Assume that there exists γ > 0, ρ > 0 such that G(u) ≥ γ for
u ∈ Q(ρ) := {u ∈ M : ‖u‖ = ρ} and that there exists an R > 0 such that
G(u) ≤ 0 for all u ∈ Y with ‖u‖ ≥ R. Let

Γ = {φ ∈ C(E,E) : φ is odd ;φ(u) = u if u ∈ Y, ‖u‖ ≥ R}.

Then the number
b := inf

φ∈Γ
sup
u∈Y

G(φ(u)) ≥ γ

is a critical value of G.
In applications on superlinear problems, one can prove that γ → ∞

by choosing a sequence of subspaces Y . In this manner, one can obtain
infinitely many critical points. This is a well-known version of the symmetric
mountain pass theorem due to Ambrosetti and Rabinowitz (see Ambrosotti
and Rabinowitz [15] and Rabinowitz [255]). This result has been applied to
elliptic equations, Hamiltonian systems, and other variational problems to
get infinitely many solutions.

In this chapter we are concerned with when the critical points of the
symmetric mountain pass theorem will be sign-changing.

5.2 An Abstract Theorem

Let G ∈ C1(E,R) and the gradient G′ be of the form

G′(u) = u−KG(u),

W. Zou, Sign-Changing Critical Point Theory, doi: 10.1007/978-0-387-76658-4, 141
c© Springer Science+Business Media, LLC 2008
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where KG : E → E is a continuous operator. Let K := {u ∈ E : G′(u) = 0}
and Ẽ := E\K, K[a, b] := {u ∈ K : G(u) ∈ [a, b]}. Let P be a positive cone
of E. For µ0 > 0, define

(5.1) D0 := {u ∈ E : dist(u,P) < µ0}.

Then D0 is an open convex set containing the positive cone P in its interior.
Set

D := D0 ∪ (−D0), S = E\D.

In this chapter, we use the following assumption.

(A) KG(±D0) ⊂ ±D0.

Let

(5.2) π(u) :=
(1 + ‖u‖)2

(1 + ‖u‖)2‖V (u)‖2 + 1
,

where V is a pseudo-gradient vector field of G from Lemma 2.12. Then π(u)
is locally Lipschitz continuous. Write W (u) = π(u)V (u). Then W is a locally
Lipschitz continuous vector field over Ẽ. Obviously, ‖W (u)‖ ≤ ‖u‖+1 for all
u ∈ Ẽ. Moreover, W (u) is odd if V (u) is odd.

Lemma 5.1. Assume that E = Ẽ+Ê with dim Ẽ <∞,dim Ẽ−codim Ê ≥ 1.
Let ζ : E → E be a continuous and odd mapping and

Θ := {u ∈ Ẽ : ‖u‖ ≤ R},

Υ := {u ∈ Ê : ‖u‖ = ρ},

where R > ρ > 0. If ζ(u) = u for all u ∈ ∂Θ, then

ζ(Θ) ∩ Υ �= ∅.

Proof. Let Uζ := {u ∈ Ẽ : ‖ζ(u)‖ < ρ} ∩ {u ∈ Ẽ : ‖u‖ < R}. Because ζ is
odd, then Uζ is an open bounded symmetric neighborhood of 0 in Ẽ. Write
E = E′ ⊕ Ê; then E′ ⊂ Ẽ and dim Ẽ > dimE′. Let P : E → E′ be the
projection onto E′. Then Pζ : ∂Uζ → E′ is a continuous odd map. By the
Borsuk–Ulam theorem (cf. Theorem 1.33), there exists a u ∈ ∂Uζ such that
Pζ(u) = 0; that is, ζ(u) ∈ Ê. Note that ζ(u) = u for u ∈ ∂Θ and R ≥ ρ;
we may check that u ∈ ∂Uζ implies that ‖ζ(u)‖ = ρ. This completes the
proof. �

Theorem 5.2. Assume (A). Let Y,M be two subspaces of E with dimY <
∞; dimY − codim M = 1. Suppose that

Q(ρ) := {u ∈M : ‖u‖ = ρ} ⊂ S.
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Assume that G ∈ C1(E,R) is even and that there exist γ > 0, β ∈ R such
that

G(u) ≥ γ for all u ∈ Q(ρ), G(u) ≤ β, for all u ∈ Y.

If G satisfies the (w∗-PS)c condition (see Definition 3.3) at level c for each
c ∈ [γ, β], then

K[γ − ε, β + ε] ∩ (E\(−P ∪ P)) �= ∅
for all ε ∈ (0, γ).

Proof.
Step 1. We claim that there exists a σ ∈ C([0,∞)×E,E) such that σ(t, u) is
odd in u and that σ(t, u) = u for any u ∈ G0 ∪Q(ρ) for all t ≥ 0. Moreover,
σ possesses some properties stated in the next steps.

To prove this, we choose c0 = 72(β − γ + 1)(ln(5/4))−1 + 2; then by the
(w∗-PS)c condition, there exist ε1 ∈ (0, γ), R1 > 2ρ such that

‖G′(u)‖(1 + ‖u‖) ≥ c0

for all u ∈ G−1[γ − ε1, β + ε1] with ‖u‖ ≥ R1. Let ε0 ∈ (0, ε1), ε0 < 1 and

U1 := {u ∈ E : either G(u) ≤ γ − ε1 or G(u) ≥ β + ε1},(5.3)

U2 := {u ∈ E : γ − ε0 ≤ G(u) ≤ β + ε0},(5.4)

U3 := {u ∈ E : ‖u‖ ≤ R1},(5.5)

U4 := {u ∈ E : ‖u‖ ≥ R1 + 1}.(5.6)

Then Q(ρ) ⊂ U3, K ⊂ U1 ∪ U3. Moreover, for any u ∈ K, there exists a
neighborhood Uu of u in E such that either Uu ⊂ U1 or Uu ⊂ U3. Define

q(u) =
dist(u,U1)

dist(u,U1) + dist(u,U2)
,(5.7)

j(u) =
dist(u,U3)

dist(u,U3) + dist(u,U4)
;(5.8)

both q(u) and j(u) are locally Lipschitz continuous functions on E. Set

W ∗(u) = j(u)q(u)W (u)

for u ∈ Ẽ and W ∗(u) = 0 otherwise, where W (u) is odd because G is even.
Then by construction, W ∗ is locally Lipschitz continuous and odd on E.
Consider the following Cauchy problem
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(5.9)

⎧
⎪⎨

⎪⎩

dσ(t, u)
dt

= −W ∗(σ(t, u)),

σ(0, u) = u ∈ E.

Note that ‖W ∗(u)‖ ≤ (1 + ‖u‖); the unique solution σ(t, ·) : E → E is a
homeomorphism and has the following properties.

(1) σ(t, u) is odd in u ∈ E.
(2) σ(t, u) = u for all u ∈ G0 ∪Q(ρ) for all t ≥ 0.
(3) G(σ(t, u)) is nonincreasing with respect to t ≥ 0 for any u in E.

Step 2. We show that

(5.10) σ([0,+∞), D̄) ⊂ D̄, σ([0,+∞),D) ⊂ D.

We first observe by Lemma 2.12 that L0(±D0 ∩ Ẽ) ⊂ (±D0) implies that
L0(±D̄0 ∩ Ẽ) ⊂ (±D̄0). Obviously, σ(t, u) = u for all t ≥ 0 and u ∈ D̄ ∩ K.
Next, we assume that u ∈ D̄0 ∩ Ẽ. If there were a t0 > 0 such that
σ(t0, u) �∈ D̄0, then there would be a number s0 ∈ [0, t0) such that σ(s0, u) ∈
∂D̄0 and σ(t, u) �∈ D̄0 for t ∈ (s0, t0]. Consider the following initial value
problem

(5.11)

⎧
⎪⎨

⎪⎩

dσ(t, σ(s0, u))
dt

= −W ∗(σ(t, σ(s0, u))),

σ(0, σ(s0, u)) = σ(s0, u) ∈ E.

It has a unique solution σ(t, σ(s0, u)). For any v ∈ D̄0, if v ∈ K, then
W ∗(v) = 0; hence v+λ(−W ∗(v)) = v ∈ D̄0. Therefore, we assume that v ∈ Ẽ.
Noting v ∈ D̄0 implies that dist(v,P) ≤ µ0. By Lemma 2.12, for any p ∈ P, we
have

‖v + λ(−W ∗(v))− p‖

= ‖v + λ(−j(v)q(v)π(v)(v − L0(v)))− p‖

= ‖(1− λj(v)q(v)π(v))v + λj(v)q(v)π(v)L0(v)

−λj(v)q(v)π(v)p− (1− λj(v)q(v)π(v))p‖

= (1− λj(v)q(v)π(v))‖v − p‖+ λj(v)q(v)π(v)‖L0(v)− p‖

≤ (1− λj(v)q(v)π(v))µ0 + λj(v)q(v)π(v)µ0

= µ0
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for λ small enough. It means that

lim
λ→0+

dist(v + λ(−W ∗(v)), D̄0)
λ

= 0, ∀v ∈ D̄0.

By Lemma 1.49 and (5.1), there exists a δ > 0 such that σ(t, σ(s0, u)) ∈ D̄0

for all t ∈ [0, δ). By the semigroup property, we see that σ(t, u) ∈ D̄0 for all
t ∈ [s0, s0 + δ), which contradicts the definition of s0. Therefore,

(5.12) σ([0,+∞), D̄0) ⊂ D̄0.

Similarly,

(5.13) σ([0,+∞),−D̄0) ⊂ −D̄0.

That is, σ([0,+∞), D̄) ⊂ D̄. To prove σ([0,+∞),D) ⊂ D, we just show that
σ([0,+∞),D0) ⊂ D0 by negation. Assume there exist u∗ ∈ D0, t0 > 0 such
that σ(t0, u∗) �∈ D0. Choose a neighborhood Uu∗ of u∗ such that Uu∗ ⊂ D̄0.
Then by the theory of ordinary differential equations in Banach space, we
may find a neighborhood Ut0 of σ(t0, u∗) such that σ(t0, ·) : Uu∗ → Ut0 is a
homeomorphism. Because σ(t0, u∗) �∈ D0, we take a w ∈ Ut0\D̄0. Correspond-
ingly, we find a v ∈ Uu∗ such that σ(t0, v) = w, which contradicts (5.13). We
get (5.31).

Step 3. There exists a T0 > 0 such that

(5.14) σ(T0, (Gβ\BR0(0)) ∩ Y ) ⊂ Gγ−ε0 ,

where R0 = 2(R1 + 1). Note that

‖q(u)j(u)W (u)‖ ≤ 8c0

4 + c2
0

(1 + ‖u‖);

then by calculation, ‖σ(t, u)‖ ≤ e(8c0/(4+c2
0))t(1+‖u‖)−1 for all u ∈ E, t ≥ 0.

We choose T0 = 9(β − γ + 1). For any u ∈ (Gβ\BR0(0)) ∩ Y , then ‖u‖ ≥ R0

and G(u) ≤ β, and it follows that

‖σ(t, u)− u‖ =
∥
∥
∥
∥

∫ t

0

dσ(t, u)
∥
∥
∥
∥

≤ 8c0

4 + c2
0

∫ t

0

(1 + ‖σ(t, u)‖)dt

≤ 8c0

4 + c2
0

∫ t

0

(1 + ‖u‖)e(8c0/(4+c2
0))tdt

= (1 + ‖u‖)(e(8c0/(4+c2
0))t − 1).
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It implies that ‖σ(t, u)‖ ≥ ‖u‖− (1 + ‖u‖)(e(8c0/(4+c2
0))t − 1) ≥ R1 + 1 for all

t ∈ [0, T0]. Hence, j(σ(t, u)) = 1 for all t ∈ [0, T0]. If there exists a t1 ∈ [0, T0]
such that G(σ(t1, u)) ≤ γ − ε0, then G(σ(T0, u)) ≤ γ − ε0 and we are done.
Otherwise,

γ − ε0 ≤ G(σ(t, u)) ≤ G(u) ≤ β ≤ β + ε0

for all t ∈ [0, T0]. It implies that

‖G′(σ(t, u))‖(1 + ‖σ(t, u)‖) ≥ c0

and q(σ(t, u)) = 1 for all t ∈ [0, T0]. Therefore,

G(σ(T0, u))

= G(u) +
∫ T0

0

dG(σ(t, u))

= G(u) +
∫ T0

0

(
−(1 + ‖σ(t, u)‖)2〈G′(σ(t, u), V (σ(t, u))〉

(1 + ‖σ(t, u)‖)2‖V (σ(t, u))‖2 + 1

)

dt

≤ G(u)−
∫ T0

0

(
(1 + ‖σ(t, u)‖)2‖G′(σ(t, u))‖2

8(1 + ‖σ(t, u)‖)2‖G′(σ(t, u))‖2 + 2

)

dt

≤ G(u)− c2
0

2 + 8c2
0

T0

≤ β − c2
0

2 + 8c2
0

T0

≤ γ − ε0;

we get (5.32).

Step 4. Let D(R) := BR(0) ∩ Y,R > R0, R > ρ, and

Γ := {Φ : Φ ∈ C([0,∞)× E,E), Φ(t, u) is odd in u, Φ(0, ·) = id,

Φ(t, σ(T0, u)) = σ(T0, u),∀u ∈ ∂D(R),∀t ∈ [0,∞);Φ(t,D) ⊂ D},

Then id ∈ Γ. We claim that

σ−1Φ(1, σ(T0,D(R))) ∩Q(ρ) �= ∅,

where σ−1(·) := σ−1(T0, ·). Set

Φ∗(u) := σ−1Φ(1, σ(T0, u)),

which is odd. Note Φ∗(u) = u for all u ∈ ∂D(R); by Lemma 5.1,

Φ∗(D(R)) ∩Q(ρ) �= ∅.
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Hence, by Steps (1) and (2),

Φ(1, σ(T0,D(R))) ∩Q(ρ) �= ∅, Φ(1, σ(T0,D(R))) ∩ S �= ∅.

Consider

(5.15) b = inf
Φ∈Γ

sup
u∈Φ(1,σ(T0,D(R))∩S

G(u).

Obviously, b is well defined and β ≥ b ≥ γ > 0.

Step 5. We prove that

K[b− ε̄, b + ε̄] ∩ (E\(−P ∪ P)) �= ∅

for all ε̄ ∈ (0, γ). That is, there is a sign-changing critical point.
By negation, we assume that

K[b− ε̄, b + ε̄] ∩ (E\(−P ∪ P)) = ∅

for some ε̄ ∈ (0, γ); then

(5.16) K[b− ε̄, b + ε̄] ⊂ (−P ∪ P).

Case (i). Assume K[b− ε̄, b + ε̄] �= ∅. Because K[b− ε̄, b + ε̄] is compact in E,
by the definition of S, we must have

dist(K[b− ε̄, b + ε̄],S) := δ0 > 0.

By the (w∗-PS)c condition for c ∈ [γ, β], there is an ε2 ∈ (0, ε̄/3) such that

(5.17)
(1 + ‖u‖)2‖G′(u)‖2

1 + (1 + ‖u‖)2‖G′(u)‖2 ≥ ε2

for u ∈ G−1[b−ε2, b+ε2]\(K[b− ε̄, b + ε̄])δ0/2; here and in the sequel, (A)c :=
{u ∈ E : dist(u,A) ≤ c}. By decreasing ε2, we may assume that ε2 < ε0/3,
where ε0 comes from Step 1. Then

〈G′(u),W (u)〉 ≥ ε2/8

for any u ∈ G−1[b− ε2, b + ε2]\(K[b− ε̄, b + ε̄])δ0/2. Let

U5 = {u ∈ E : |G(u)− b| ≥ 3ε2},

U6 = {u ∈ E : |G(u)− b| ≤ 2ε2}.
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Let y(u) : E → [0, 1] be locally Lipschitz continuous such that

y(u) :=

{
1 for all u ∈ E\(K[b− ε̄, b + ε̄])δ0/2

0 for all u ∈ K[b− ε̄, b + ε̄])δ0/3.

Consider

h(u) :=
dist(u,U5)

dist(u,U6) + dist(u,U5)
.

Let W̄ (u) := y(u)h(u)W (u) if u ∈ Ẽ and W̄ (u) = 0 otherwise; then W̄ is a
locally Lipschitz vector field on E. We consider the following Cauchy initial
value problem, ⎧

⎪⎨

⎪⎩

dη(t, u)
dt

= −W̄ (η(t, u)),

η(0, u) = u ∈ E,

which has a unique continuous odd solution η(t, u) in E. Evidently,

dG(η(t, u))
dt

≤ 0.

By the definition of b in (5.35), there exists a Φ ∈ Γ such that

Φ(1, σ(T0,D(R))) ∩ S ⊂ Gb+ε2 .

Therefore,
Φ(1, σ(T0,D(R))) ⊂ Gb+ε2 ∪ (E\S).

Denote A := Φ(1, σ(T0,D(R))). We claim that there exists a T1 > 0 such
that

(5.18) η(T1, A) ⊂ Gb−ε2/4 ∪ D.

In fact, if u ∈ A ∩ D, then similar to Step 2, η(t, u) ∈ D for all t ≥ 0.
If u ∈ A, u �∈ D, then we see that G(u) ≤ b + ε2. If G(u) ≤ b− ε2, then

G(η(t, u)) ≤ G(u) ≤ b− ε2

for all t ≥ 0. If G(u) > b− ε2, then u ∈ G−1[b− ε2, b + ε2]. If

dist(η([0,∞), u),K[b− ε̄, b + ε̄]) ≤ δ0/2,

then there exists a tm such that η(tm, u) �∈ S. Moreover, we may choose m
so that dist(η(tm, u),S) ≥ 1

3δ0 > 0.
Assume

dist(η([0,∞), u),K[b− ε̄, b + ε̄]) > δ0/2.
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Similarly, we assume that G(η(t, u)) > b − ε2 for all t (otherwise, we are
done); then

η(t, u) ∈ G−1[b− ε2, b + ε2]\(K[b− ε̄, b + ε̄])δ0/2.

Hence,

h(η(t, u)) = 1, y(η(t, u)) = 1, 〈G′(η(t, u)),W (η(t, u))〉 ≥ ε2/8

for all t ≥ 0. Therefore,

(5.19) G(η(24, u)) = G(u) +
∫ 24

0

dG(η(s, u)) ≤ b− 2ε2.

By combining the above arguments, for any u ∈ A\D, there exists a Tu > 0
such that either η(Tu, u) ∈ Gb−ε2/2 or dist(η(Tu, u),S) ≥ 1

3δ0. By continuity,
there exists a neighborhood Uu of u such that either η(Tu, Uu) ⊂ Gb−ε2/3 or
dist(η(Tu, Uu),S) ≥ 1

4δ0. Both cases imply that

η(Tu, Uu) ⊂ Gb−ε2/3 ∪ (E\S).

Because A\D is compact in E, we get a T1 > 0 such that

(5.20) η(T1, A) ⊂ Gb−ε2/4 ∪ (E\S).

Case (ii). If K[b−ε̄, b+ε̄] = ∅, then (5.17) holds with (K[b− ε̄, b + ε̄])δ0/2 = ∅.
Then, trivially, (5.19) and (5.20) are still true.

Now we define
Φ∗∗(t, u) = η(tT1, Φ(t, u)).

Then Φ∗∗(t, u) is odd in u for every t and Φ∗∗(0, u) = u. Moreover, if u ∈
∂D(R), then G(u) ≤ β and G(σ(T0, u)) ≤ γ − ε0 (by Step 3) ≤ b− 3ε2; that
is, σ(T0, u) ∈ U5. Therefore,

Φ∗∗(t, σ(T0, u)) = η(tT1, Φ(t, σ(T0, u)))

= η(tT1, σ(T0, u))

= σ(T0, u),

for all t ≥ 0. Evidently, by the construction of η, Φ∗∗(t,D) ⊂ D. Then
Φ∗∗ ∈ Γ. But

G(Φ∗∗(1, σ(T0,D(R))) ∩ S) ≤ b− ε2/4,

a contradiction. �

Again, let Y,M be two subspaces of E with dimY < ∞,dimY −
codim M ≥ 1 and (M\{0}) ∩ (−P ∪ P) = ∅; that is, the nontrivial ele-
ments of M are sign-changing. We assume that P is weakly closed; that is, if
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P � uk ⇀ u weakly in (E, ‖ · ‖), then u ∈ P. In all applications of this book,
this is satisfied automatically. Next we assume that there is another norm
‖ · ‖ of E such that ‖u‖ ≤ C‖u‖ for all u ∈ E; here C > 0 is a constant.
Moreover, we assume that ‖un − u∗‖ → 0 whenever un ⇀ u∗ weakly in
(E, ‖ · ‖). Write E = M1 ⊕M. Let

Q(ρ) :=
{

u ∈M :
‖u‖p



‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖
= ρ

}

,

where ρ > 0,D > 0, p > 2 are fixed constants. Evidently, we have

Lemma 5.3. ‖u‖ ≤ c1, ∀u ∈ Q(ρ); where c1 > 0 is a constant.

We first make the following assumption.

(A
1) Assume that for any a, b > 0, there is a c2 = c2(a, b) > 0 such that

G(u) ≤ a and ‖u‖ ≤ b ⇒ ‖u‖ ≤ c2.

Lemma 5.4. Assume (A
1). For any a > 0, we have that

dist(Q(ρ) ∩Ga,P) := δ(a) > 0.

Proof. By negation, we assume that

dist(Q(ρ) ∩Ga,P) = 0.

Then we find {un} ⊂ Q(ρ) ∩Ga, {pn} ⊂ P such that ‖un − pn‖ → 0. Then
by Lemmas 5.3 and (A

1), {un}, hence {pn}, is bounded in both (E, ‖ · ‖) and
(E, ‖ · ‖). We assume that

un ⇀ u∗ ∈ E, pn ⇀ p∗ ∈ P weakly in (E, ‖ · ‖);

un → u∗ strongly in (E, ‖ · ‖).

Then we observe that u∗ ∈M . Because

‖un‖p


‖un‖2
+

‖un‖‖un‖

‖un‖+ D‖un‖
= ρ

and ‖un − u∗‖ → 0, then u∗ �= 0. However, because u∗ = p∗, we get a
contradiction because all nonzero elements of M are sign-changing. �

Let
Γ ∗

Y := {h : h ∈ C(ΘY , E), h|∂ΘY
= id, h is odd},

where
ΘY := {u ∈ Y : ‖u‖ ≤ RY }, RY > 0.

Note that both ‖ · ‖ and ‖ · ‖ are equivalent in Y ; we have a constant �Y

such that
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‖u‖ ≤ �Y ‖u‖, for all u ∈ Y.

We assume that RY ≥ �Y + 2 and

(5.21)

(
RY

	Y

)p

R2
Y

+
RY

(
RY

	Y

)

RY + DCRY
> ρ.

Lemma 5.5. h(ΘY ) ∩Q(ρ) �= ∅, ∀ h ∈ Γ ∗
Y .

Proof. Let

β∗(u) :=
‖u‖p



‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖

if u �= 0 and β∗(0) = 0. Then β∗ : E → E is continuous. Let

U := {u ∈ Y : β∗(h(u)) < ρ} ∩ {u ∈ Y : ‖u‖ < RY };

then U is a neighborhood of zero in Y . Let P : E → M1 be the projection;
then P ◦h : ∂U →M1 is odd and continuous. By the Borsuk–Ulam theorem,
we have that P ◦ h(u) = 0 for some u ∈ ∂U . Hence, h(u) ∈M. We claim u �∈
∂{u ∈ Y : ‖u‖ < RY }. Otherwise, ‖u‖ = RY and then h(u) = u, P (u) = 0.
It follows that

‖u‖p


‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖
≤ ρ.

Note that ‖u‖ ≤ C‖u‖ ≤ C�Y ‖u‖ in Y . Therefore,
(

RY

	Y

)p

R2
Y

+
RY

(
RY

	Y

)

RY + DCRY

=

(
‖u‖
	Y

)p

‖u‖2 +
‖u‖

(
‖u‖
	Y

)

‖u‖+ DC‖u‖

≤ ‖u‖p


‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖

≤ ρ;

this is impossible in view of (5.21). So, our claim is true. It means

u ∈ ∂{u ∈ Y : β∗(h(u)) < ρ}, ‖u‖ ≤ RY , u ∈ Y.

Hence,

h(u) ∈M,

‖h(u)‖p


‖h(u)‖2 +
‖h(u)‖‖h(u)‖

‖h(u)‖+ D‖h(u)‖
= ρ ⇒ h(u) ∈ Q(ρ).

�
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We need the following assumption.

(A
2) lim

u∈Y,‖u‖→∞
G(u) = −∞, sup

Y
G := β.

By Lemma 5.4 and (A
1) and (A

2), we may assume

(5.22) Q := Q(ρ) ∩Gβ ⊂ S,

where Q is a bounded set by Lemma 5.3 and (A
1). Let

(5.23) inf
Q��

G := γ.

It is easy to check that Q ∩ Y �= ∅. Then β ≥ γ.

Theorem 5.6. Assume (A) and (A
1) and (A

2). If the even functional G
satisfies the (w∗-PS)c condition (see Definition 3.3) at level c for each c ∈
[γ, β], then

K[γ − ε, β + ε] ∩ (E\(−P ∪ P)) �= ∅
for all ε > 0 small.

Proof. The proof is the same as that of Theorem 5.2. We just sketch the main
points.

Step 1. We claim that there exists a σ ∈ C([0,∞) × E,E) such that σ(t, u)
is odd in u and that σ(t, u) = u for any u ∈ Q for all t ≥ 0. Moreover, σ
possesses some properties stated in next steps.

To prove this, we choose c0 = 72(β − γ + 1)(ln 5/4)−1 + 2, then by the
(w∗-PS)c condition, there exist ε1 > 0, R1 > 2ρ such that

‖G′(u)‖(1 + ‖u‖) ≥ c0

for all u ∈ G−1[γ − ε1, β + ε1] with ‖u‖ ≥ R1. Let ε0 ∈ (0, ε1), ε0 < 1 and

U1 := {u ∈ E : either G(u) ≤ γ − ε1 or G(u) ≥ β + ε1},(5.24)

U2 := {u ∈ E : γ − ε0 ≤ G(u) ≤ β + ε0},(5.25)

U3 := {u ∈ E : ‖u‖ ≤ R1},(5.26)

U4 := {u ∈ E : ‖u‖ ≥ R1 + 1}.(5.27)

If necessary, we may enlarge R1 such that Q ⊂ U3, K ⊂ U1∪U3. Moreover,
for any u ∈ K, there exists a neighborhood Uu of u in E such that either
Uu ⊂ U1 or Uu ⊂ U3. Define

(5.28) q(u) =
dist(u,U1)

dist(u,U1) + dist(u,U2)
,
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(5.29) j(u) =
dist(u,U3)

dist(u,U3) + dist(u,U4)
;

both q(u) and j(u) are locally Lipschitz continuous functions on E. Set

W ∗(u) = j(u)q(u)W (u)

for u ∈ Ẽ and W ∗(u) = 0 otherwise, where W (u) is odd because G is even.
Then by construction, W ∗ is locally Lipschitz continuous and odd on E.
Consider the following Cauchy problem

(5.30)

⎧
⎪⎨

⎪⎩

dσ(t, u)
dt

= −W ∗(σ(t, u)),

σ(0, u) = u ∈ E.

Note that ‖W ∗(u)‖ ≤ (1 + ‖u‖), the unique solution σ(t, ·) : E → E is a
homeomorphism and has the following properties.

(1) σ(t, u) is odd in u ∈ E.
(2) σ(t, u) = u for all u ∈ Q for all t ≥ 0.
(3) G(σ(t, u)) is nonincreasing with respect to t ≥ 0 for any u in E.

Step 2. We show that

(5.31) σ([0,+∞), D̄) ⊂ D̄, σ([0,+∞),D) ⊂ D.

It is the same as that of Theorem 5.2.

Step 3. There exists a T0 > 0 such that

(5.32) σ(T0, (Gβ\BR0(0)) ∩ Y ) ⊂ Gγ−ε0 ,

where R0 = 2(R1 + 1). It is the same as that of Theorem 5.2.

Step 4. Let D(R) := BR(0) ∩ Y,R > R0, R > ρ and by Condition (A
2), we

may choose R so large that

(5.33) sup
u∈Y,‖u‖=R

G ≤ γ − ε1 − 1.

Thus, ∂D(R) ⊂ U1 of step 1. Hence

(5.34) σ(t, u) = u for all u ∈ ∂D(R), t ≥ 0.
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Let

Γ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ :

Φ ∈ C([0,∞)× E,E), Φ(t, u) is odd in u; Φ(0, ·) = id

Φ(t, σ(T0, u)) = σ(T0, u), ∀u ∈ ∂D(R), ∀t ∈ [0,∞)

G(Φ(t, σ(T0, u))) ≤ G(u), ∀u ∈ D(R), ∀t ∈ [0,∞)

Φ(t,D) ⊂ D

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Then id ∈ Γ. Set
Φ∗(u) := Φ(1, σ(T0, u)),

which is odd. Note Φ∗(u) = u for all u ∈ ∂D(R) and

G(Φ∗(u)) ≤ G(u) ≤ β, u ∈ D(R).

By Lemma 5.5 (we may enlarge R = RY ),

Φ∗(D(R)) ∩Q �= ∅.

Hence,

Φ(1, σ(T0,D(R))) ∩Q �= ∅, Φ(1, σ(T0,D(R))) ∩ S �= ∅.

Consider

(5.35) b = inf
Φ∈Γ

sup
u∈Φ(1,σ(T0,D(R))∩S

G(u).

Obviously, b is well defined and β ≥ b ≥ γ.

Step 5. Similarly to Step 5 of Theorem 5.2, we get that

Φ∗∗(t, u) = η(tT1, Φ(t, u)).

Then Φ∗∗(t, u) is odd in u for every t and Φ∗∗(0, u) = u. Moreover, if u ∈
∂D(R), then G(u) ≤ β and G(σ(T0, u)) ≤ γ − ε0 (by Step 3) ≤ b− 3ε2; that
is, σ(T0, u) ∈ U5. Therefore,

Φ∗∗(t, σ(T0, u)) = η(tT1, Φ(t, σ(T0, u)))

= η(tT1, σ(T0, u))

= σ(T0, u),

for all t ≥ 0. Evidently, by the construction of η, Φ∗∗(t,D) ⊂ D. Moreover,

G(Φ∗∗(t, σ(T0, u))) ≤ G(Φ(t, σ(T0, u))) ≤ G(u), ∀u ∈ D(R).
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Therefore, Φ∗∗ ∈ Γ. But

G(Φ∗∗(1, σ(T0,D(R))) ∩ S) ≤ b− ε2/4,

a contradiction. �

Notes and Comments. Lemma 5.1 can be found in Rabinowitz [255] and
Willem [335]. A recent paper by Bartsch et al. [37] studied the sign-changing
critical points of even functionals by using genus. An estimate of the num-
ber of nodal domains was given there. In particular; Li and Wang [199],
a Ljusternik–Schnirelmann theory was established for studying the sign-
changing critical points of even functionals of C2.

5.3 A Classical Superlinear Problem

We consider the following superlinear elliptic equation.

(5.36)

{
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain of RN (N ≥ 3). Assume

(J1) f : Ω̄ ×R→ R is a Carathéodory function with subcritical growth:

|f(x, u)| ≤ c(1 + |u|s−1) for all u ∈ R and x ∈ Ω̄,

where s ∈ (2, 2∗); f(x, u)u ≥ 0 for all x ∈ Ω̄, u ∈ R, and f(x, u) =
o(|u|) as |u| → 0 uniformly for x ∈ Ω̄.

(J2) There exist µ > 2 and R > 0 such that

0 < µF (x, u) ≤ f(x, u)u, x ∈ Ω, |u| ≥ R,

where F (x, u) =
∫ u

0
f(x, v)dv.

(J3) f(x, u) is odd in u.

Theorem 5.7. Assume (J1)–(J3). Then (5.36) has infinitely many sign-
changing solutions.

Let E := H1
0 (Ω) be the usual Sobolev space endowed with the inner

product

〈u, v〉 :=
∫

Ω

(�u� v)dx

for u, v ∈ E and the norm ‖u‖ := 〈u, u〉1/2. Let

0 < λ1 < · · · < λk < · · ·
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denote the distinct Dirichlet eigenvalues of −∆ on Ω with zero boundary
value. Then each λk has finite multiplicity. The principal eigenvalue λ1 is
simple with a positive eigenfunction ϕ1, and the eigenfunctions ϕk corre-
sponding to λk (k ≥ 2) are sign-changing. Let Nk denote the eigenspace of
λk. Then dimNk <∞. We fix k and let Ek := N1 ⊕ · · · ⊕Nk. Let

G(u) =
1
2
‖u‖2 −

∫

Ω

F (x, u)dx, u ∈ E.

Then G is of C1(E,R) and

〈G′(u), v〉 = 〈u, v〉 −
∫

Ω

f(x, u)vdx, v ∈ E,

G′ = id−KG.

Lemma 5.8. Assume (J1) and (J2) hold; then G satisfies the (PS) condition.

Lemma 5.9. G(u) → −∞ as ‖u‖ → ∞, for all u ∈ Ek.

Proof. Because dimEk <∞, then by (J2),

G(u)
‖u‖2 ≤

1
2
−
∫

Ω

F (x, u)
‖u‖2 dx→ −∞

as ‖u‖ → ∞, u ∈ Ek. The lemma follows immediately. �

Consider another norm ‖ ·‖ := ‖ ·‖s of E, s ∈ (2, 2∗). Then ‖u‖s ≤ C‖u‖
for all u ∈ E; here C > 0 is a constant and ‖un − u∗‖ → 0 whenever
un ⇀ u∗ weakly in (E, ‖ · ‖). Write E = Ek−1 ⊕ E⊥

k−1. Let

Q(ρ) :=
{

u ∈ E⊥
k−1 :

‖u‖s
s

‖u‖2 +
‖u‖‖u‖s

‖u‖+ D‖u‖s
= ρ

}

,

where ρ,D are fixed constants. Evidently, we have the following.

Lemma 5.10. ‖u‖s ≤ c1,∀u ∈ Q(ρ); where c1 > 0 is a constant.

By the assumptions, we may find a CF > 0 such that

(5.37) F (x, t) ≤ 1
4
λ1|t|2 + CF |t|s, ∀x ∈ Ω, t ∈ R;

here 2 < s < 2∗. For any a, b > 0, there is a c2 = c2(a, b) > 0 such that

G(u) ≤ a and ‖u‖s ≤ b ⇒ ‖u‖ ≤ c2.

By Lemma 5.9,
lim

u∈Y,‖u‖→∞
G(u) = −∞,
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where Y = Ek. Then (A
1) and (A

2) are satisfied. We define

sup
Y

G := β.

Let
Q := Q(ρ) ∩Gβ , inf

Q��
G := γ.

Set P := {u ∈ E : u(x) ≥ 0 for a.e. x ∈ Ω}. Then P (−P) is the positive
(negative) cone of E and weakly closed. By Lemma 5.4, there is a δ := δ(β)
such that dist(Q,P) := δ(β) > 0. We define

D0(µ0) := {u ∈ E : dist(u,P) < µ0},

where µ0 is determined by the following lemma.

Lemma 5.11. Under the assumptions of (J1) and (J2), there exists a µ0 ∈
(0, δ) such that KG(±D0(µ0)) ⊂ ±D0(µ0).

Proof. The proof is quite similar to that of Lemma 2.29. �

Let
D := −D0(µ0) ∪ D0(µ0), S := E\D.

We may assume

(5.38) Q := Q(ρ) ∩Gβ ⊂ S.

Proof of Theorem 5.7. By Theorem 5.6,

K[γ − ε, β + ε] ∩ (E\(−P ∪ P)) �= ∅

for all ε > 0 small. That is, there exists a uk ∈ E\(−P ∪ P) (sign-changing
critical point) such that

G′(uk) = 0, G(uk) ∈ [γ − 1, β − 1].

Next we estimate the γ = infQ�� G. Similarly to Lemma 2.23, by choosing
the constants D and ρ, for all u ∈ Q(ρ), we may get

‖u‖ ≥ Λ∗
s min{λ((1−α)(s−2))/2

k , λ
(1−α)/2
k }min{ρ, ρ1/(p−2)}.

By Lemma 2.26, for any u ∈ Q(ρ), we have that

G(u) ≥ 1
8
(Λ∗

s)
2T1T2,

where Λ∗
s, T1, T2 are defined in (2.49)–(2.51) with p replaced by s, α ∈ (0, 1)

is a constant, and Λ∗
s, T2 are independent of k. In particular,
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T1 := min{λ(1−α)(s−2)
k , λ

(1−α)
k } → ∞, as k →∞.

Therefore, γ →∞ as k →∞; hence the proof of Theorem 5.7 is finished. �

5.4 Composition Convergence Lemmas

Sometimes we need strong convergence results for the composition of
nonlinearities with a weakly convergent sequence. The following result is the
well-known Brézis–Lieb lemma (cf. Brézis and Lieb [69]).

Lemma 5.12. Let Ω be an open subset of RN and let {un} ⊂ Lp(Ω),∞ >
p ≥ 1. Assume that {un} is bounded in Lp(Ω) and that un(x) → u(x) a.e.
on Ω. Then

lim
n→∞

∫

Ω

(|un|p − |un − u|p − |u|p)dx = 0.

Proof. For any ε > 0, there exists a cε > 0 such that
∣
∣|a + b|p − |a|p

∣
∣ ≤ ε|a|p + cε|b|p.

Let Dn = |un|p − |un − u|p − |u|p; then

|Dn| ≤ ε|un − u|p + (cε + 1)|u|.

Let Ln = (|Dn| − ε|un − u|p)+; then 0 ≤ Ln ≤ (cε + 1)|u|p and Ln(x) → 0
a.e. on Ω as n→∞. By Fatou’s lemma,

‖u‖p ≤ lim inf
n→∞ ‖un‖p ≤ C0,

where C0 is a constant. Therefore, Lebesgue’s theorem implies that
∫

Ω
Ln(x)

dx→ 0 as n→∞. Note that

||un|p − |un − u|p − |u|p| ≤ Ln + ε|un − u|p;

we have that

lim sup
n→∞

∫

Ω

||un|p − |un − u|p − |u|p|dx ≤ 2εC0.

This implies the conclusion of the lemma. �

The following result is known as Strauss’ lemma (cf. Strauss [311]).

Lemma 5.13. Let F,H : RN ×R→ R be Carathéodory functions satisfying

(5.39) sup
x∈RN ,|t|≤c

|F (x, t)| <∞, sup
x∈RN ,|t|≤c

|H(x, t)| <∞
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for each c > 0 and

(5.40) lim
|t|→∞

F (x, t)
H(x, t)

= 0 uniformly for x ∈ RN .

Assume that {un} and u∗ are measurable functions on RN such that

(5.41) C := sup
n

∫

RN

|H(x, un)|dx <∞

and that

(5.42) lim
n→∞F (x, un(x)) = u∗ a.e. on RN .

Then for each bounded Borel set Ω ⊂ RN , we have

(5.43) lim
n→∞

∫

Ω

|F (x, un(x))− u∗(x)|dx = 0.

Furthermore, if

(5.44) lim
|t|→0

F (x, t)
H(x, t)

= 0 uniformly for x ∈ RN

and

(5.45) lim
|x|→∞

un(x) = 0 uniformly in n,

then F (x, un(x)) → u∗ in L1(RN ).

Proof. To prove the first conclusion of the lemma, it suffices to show that
{F (x, un(x))} is uniformly integrable. By (5.39) and (5.40), for any ε > 0,
there exists a cε > 0 such that

(5.46) |F (x, un(x))| ≤ cε + ε|H(x, un(x))| on RN for all n.

For each R > 0, we have that

meas(Ω ∩ {x ∈ RN : |F (x, un(x))| ≥ R})(5.47)

≤ 1
R

∫

Ω∩{x∈RN :|F (x,un(x))|≥R}
|F (x, un(x))|dx

≤ 1
R

(

cε meas Ω + ε sup
n

∫

RN

|H(x, un(x))|dx
)

→ 0
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as R →∞. Combining (5.46), (5.47), and (5.41), we have that

lim
R→∞

∫

Ω∩{x∈RN :|F (x,un(x))|≥R}
|F (x, un(x))|dx = 0.

This implies the uniform integrability of {F (x, un(x))}.
To prove the second part of the lemma, take any ε > 0; by (5.44) and

(5.45) we may find a K > 0 such that

(5.48) |F (x, un(x))| ≤ ε|H(x, un(x))|

for all |x| ≥ K and all n. By (5.46)–(5.48), we have that
∫

RN

|F (x, un)|dx

≤
∫

|x|≤K

(cε + ε|H(x, un)|)dx + ε

∫

RN

|H(x, un)|dx

<∞

uniformly for all n. Invoking Fatou’s lemma, we observe that u∗ ∈ L1(RN ).
By (5.48),

(5.49)
∫

|x|≥K

|u∗|dx ≤ εC.

By the first part of the lemma, we find an n0 such that

(5.50)
∫

|x|≤K

|F (x, un(x))− u∗|dx ≤ ε, if n ≥ n0.

Inequalities (5.48)–(5.50) imply that
∫

RN

|F (x, un)− u∗|dx ≤ 2εC + ε if n ≥ n0.

This completes the proof of the lemma. �

Lemma 5.14. Let g : RN ×R → R be a Carathéodory function satisfying
|g(x, t)| ≤ c(|t|+ |t|2∗−1) for all x ∈ RN and t ∈ R. Furthermore,

(5.51) lim
|t|→∞

g(x, t)
|t|2∗−1

= 0, uniformly for x ∈ RN .

If un → u∗ weakly in H1(RN ) and un → u∗ a.e. on RN , then

lim
n→∞

∫

RN

(G(x, un)−G(x, u∗)−G(x, un − u∗))dx = 0,

where G(x, u) =
∫ u

0
g(x, s)ds.
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Proof. For any fixed R > 0, by the mean value theorem we have a β ∈ (0, 1)
depending on x,R such that

∫

RN

G(x, un)dx(5.52)

=
∫

|x|≤R

G(x, un)dx +
∫

|x|≥R

G(x, un − u∗ + u∗)dx

=
∫

|x|≤R

G(x, un)dx

+
∫

|x|≥R

(G(x, un − u∗) + g(x, (un − u∗) + βu∗)u∗)dx.

By Lemma 5.13, we know that

(5.53) lim
n→∞

∫

|x|≤R

(G(x, un)−G(x, u∗))dx = 0

and that

(5.54) lim
n→∞

∫

|x|≤R

G(x, un − u∗)dx = 0.

By the assumption on the growth of g and the Hölder inequality, we have
that

∣
∣
∣
∣
∣

∫

|x|≥R

g(x, (un − u∗) + βu∗)u∗)dx

∣
∣
∣
∣
∣

(5.55)

≤ c

∫

|x|≥R

(|βu∗ + (un + u∗)||u∗|+ |βu∗ + (un − u∗)|2∗−1|u∗|)dx

≤ c

(∫

|x|≥R

|u∗|2dx
)1/2(∫

|x|≥R

|βu∗ + (un + u∗)|2dx
)1/2

+ c

(∫

|x|≥R

|u∗|2∗
dx

)1/2∗ (∫

|x|≥R

|βu∗ + (un + u∗)|2∗
dx

)(N+2)/2N

.

Because
(∫

|x|≥R

|u∗|2dx
)1/2

→ 0,

(∫

|x|≥R

|u∗|2∗
dx

)1/2∗

→ 0 as R →∞
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and {un} is bounded in H1(RN ), we know that (5.55) can be made small
enough as R is sufficiently large. Finally, we write

∣
∣
∣
∣

∫

RN

(G(x, un)−G(x, u∗)−G(x, un − u∗))dx
∣
∣
∣
∣(5.56)

≤
∣
∣
∣
∣
∣

∫

|x|≤R

(G(x, un)−G(x, u∗))dx

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

|x|≤R

G(x, un − u∗)dx

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

|x|≥R

G(x, u∗)dx

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

|x|≥R

g(x, (un − u∗) + βu∗)u∗dx

∣
∣
∣
∣
∣
.

By (5.53)–(5.56), by choosing R large enough and then letting n → ∞, we
may make (5.56) as small as we like. This completes the proof. �
Notes and Comments. Lemma 5.12 can be found in Willem [335].
Lemmas 5.13 and 5.14 are adopted from Chabrowski [88] with more applica-
tions there.

5.5 Improved Hardy–Poincaré Inequalities

We first establish the following improved Hardy–Poincaré inequalities.

Theorem 5.15. Let Ω be a bounded subset of RN (N ≥ 2). Then there is a
constant C > 0 such that

(5.57)
∫

Ω

(

|∇u|2 − (N − 2)2

4
u2

|x|2
)

dx ≥ C‖u‖22

for all u ∈ H1
0 (Ω).

Proof. Obviously, it is true when N = 2. We assume that N ≥ 3. We make
a symmetrization that replaces Ω by a ball BR := {w ∈ H1

0 (Ω) : ‖w‖ ≤ R}
with the same volume as Ω and the function u by its symmetric rearrange-
ment. It is well known that the rearrangement does not change the L2-norm.
Therefore, it is enough to prove the results in the symmetric case. Moreover,
by a simple scaling, we assume that R = 1. We define the new variable

v(r) = u(r)r(N−2)/2, r = |x|.

Then
∫

B1

|∇u|2dx− (N − 2)2

4

∫

B1

u2

r2
dx

= NωN

(∫ 1

0

(v′)2rdr − (N − 2)
∫ 1

0

v(r)v′(r)dr
)

,
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where ωN is the volume of B1. Taking for instance u ∈ C1
0(B1), the last

integral is zero and then
∫

B1

|∇u|2dx− (N − 2)2

4

∫

B1

u2

r2
dx = NωN

∫ 1

0

(v′)2rdr.

By the Poincaré inequality in two dimensions, we have
∫ 1

0

(v′)2rdr ≥ C

∫ 1

0

v2rdr.

Because ∫

B1

|u|2dx = NωN

∫ 1

0

v2rdr,

the proof is done by density. �

Theorem 5.16. Let Ω be a bounded subset of RN (N ≥ 3). Then for any
p ∈ [1, 2) there exists a constant C(p,Ω) > 0 such that

(5.58)
∫

Ω

(

|∇u|2 − (N − 2)2

4
u2

|x|2
)

dx ≥ C(p,Ω)‖u‖2W 1,p(Ω)

for all u ∈ H1
0 (Ω).

Proof. We divide the proof into several steps.

Step 1. Assume Ω is a ball centered at zero and u is radial. By scaling we
may assume that Ω is the unit ball B = B1(0). Because u = u(r), r = |x|, we
have to show that there exists a constant C = C(p,B) > 0 such that

(5.59) C

(∫ 1

0

|u′|prN−1dr

)2/p

≤
∫ 1

0

(

|u′|2 − (N − 2)2

4
u2

r2

)

rN−1dr

holds for every smooth function u(r) defined for r ∈ [0, 1] and u(1) = 0. By
density, it is true for radial functions in H1

0 (B). By changing the variables,
we have that

(5.60)
∫ 1

0

(

|u′|2 − (N − 2)2

4
u2

r2

)

rN−1dr =
∫ 1

0

|v′|2rdr,

where v(r) = r(N−2)/2u(r). On the other hand,

∫ 1

0

|u′|prN−1dr

=
∫ 1

0

∣
∣
∣
∣r

−(N−2)/2v′(r)− N − 2
2

r−N/2v(r)
∣
∣
∣
∣

p

rN−1dr
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≤ C(p)
∫ 1

0

|v′|prN−1−(N−2)p/2dr + C(p,N)
∫ 1

0

|v|prN−1−Np/2dr

:= A + Q.

Furthermore,

(5.61) A ≤
(∫ 1

0

|v′|2rdr
)p/2(∫ 1

0

rN−1dr

)(2−p)/2

≤ C

(∫ 1

0

|v′|2rdr
)p/2

.

Choose q > max{p, 4p/(N(2− p))} and let

s =
(

N − 1− Np

2
− p

q

)
q

q − p
> −1;

then

(5.62) Q ≤
(∫ 1

0

|v|qrdr
)p/q (∫ 1

0

rsdr

)(q−p)/q

.

By the standard embedding of H1
0 (B2) into Lq(B2) in the two-dimensional

ball, we see that

∫ 1

0

|v|prdr ≤ C(p)
(∫ 1

0

|v′|2rdr
)q/2

.

Combining this with (5.60)–(5.62), we get (5.59). The result is proved for
radial functions in a ball.

Step 2. Assume Ω is a ball centered at zero and u is nonradial. Once again,
we assume that Ω = B. By using spherical coordinates x = (r, σ) in B, we
decompose u into spherical harmonics to write

u =
∞∑

k=0

uk(r)ek(σ),

where {ek} constitute an orthogonal basis of L2(SN−1) consisting of eigen-
functions of the Laplace–Beltrami operator, which has eigenvalues ck =
k(N + k− 2), k ≥ 0. In particular, e0(σ) = 1 and u0(r) is the projection of
u ∈ H1

0 (B) onto the space of radially symmetric functions. Then
∫

Ω

(

|∇u|2 − (N − 2)2

4
u2

r2

)

dx(5.63)

= NωN

∞∑

k=0

∫ 1

0

(

|u′
k|2 −

(N − 2)2

4
u2

k

r2
+ ck

u2
k

r2

)

rN−1dr,
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where NωN is the Hausdorff measure of the (N−1)-dimensional unit sphere.
By Step 1, the radial term

(5.64)
∫ 1

0

(

|u′
0|2 −

(N − 2)2

4
u2

0

r2

)

rN−1dr ≥ C‖u0‖2W 1,p(B).

By Theorem 5.15, it is easy to estimate that
(5.65)
∫ 1

0

(

|u′
k|2 −

(N − 2)2

4
u2

k

r2
+ ck

u2
k

r2

)

rN−1dr ≥ 4ck

(N − 2)2

∫ 1

0

|u′
k|2rN−1dr.

Using the fact that ck ≥ N − 1 > 0 for k ≥ 1, the sum in (5.63)
over k = 1, 2, . . . is bounded below by C‖u − u0‖2H1

0 (B)
. Joining this and

(5.63)–(5.65), the theorem follows in the ball.

Step 3. Assume Ω is a general domain. Assume that 0 ∈ Ω and Ba(0) ⊂ Ω.
We introduce a smooth cutoff function φ such that 0 ≤ φ(x) ≤ 1 with φ(x) =
1 for all x ∈ Ba/2(0) and φ(x) = 0 when |x| ≥ a. Let w1 = uφ and w2 = u−w1;
we have that
∫

Ω

(

|∇u|2 − (N − 2)2

4
u2

r2

)

dx

=
∫

Ω

(

|∇w1|2 −
(N − 2)2

4
w2

1

r2

)

dx +
∫

Ω

(

|∇w2|2 −
(N − 2)2

4
w2

2

r2

)

dx

+2
∫

Ω

(

∇w1 · ∇w2 −
(N − 2)2

4
w1w2

r2

)

dx.(5.66)

Because (1− 2φ)∇φ = 0 on ∂(Ba\Ba/2), we have that
∫

Ω

u∇u · ((1− 2φ)∇φ)dx = −1
2

∫

Ba\Ba/2

u2div((1− 2φ)∇φ)dx.

Therefore,
∫

Ω

∇w1 · ∇w2dx

=
∫

Ω

φ(1− φ)|∇u|2dx−
∫

Ω

|∇φ|2u2dx +
∫

Ω

u∇u · ((1− 2φ)∇φ)dx

≥ −C

∫

Ω

u2dx.(5.67)

Moreover, note that the support of w2 is disjoint with the origin; we have
that
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(5.68)
∫

Ω

w2
2

|x|2 dx +
∫

Ω

w1w2

|x|2 dx ≤ C

∫

Ω

u2dx.

Furthermore, if we apply the result already proved in a ball to w1 ∈ H1
0 (Ba),

we have that

(5.69)
∫

Ω

(

|∇w1|2 −
(N − 2)2

4
w2

1

r2

)

dx ≥ C‖w1‖2W 1,p(Ω).

Combining (5.66)–(5.69), we obtain the conclusion of the theorem. �

The constant ((N − 2)2/4) (N ≥ 3) is known as the best Hardy constant
that is not attained in H1

0 (Ω).

Notes and Comments. Theorem 5.15 was established by Brézis and Vázquez
in [73]. Theorem 5.16 can be found in Vázquez and Zuazua [330]. Related
studies were made in Catrina and Wang [83] and Wang and Willem [333]
where Caffarelli–Kohn–Nirenberg-type inequalities with remainder terms
were established. We also refer the readers to the paper by Adimurthi et al.
[3] where the improved Hardy–Sobolev inequality was given in W 1,p

0 (Ω).

5.6 Equations with Critical Hardy Constant

We consider the following nonlinear elliptic equation with inverse-square
potential and critical Hardy constant.

(5.70)

⎧
⎨

⎩
−∆u− (N − 2)2

4
u

|x|2 = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain of RN (N ≥ 3). Assume

(I1) f : Ω̄ ×R→ R is a Carathéodory function with subcritical growth:

|f(x, u)| ≤ c(1 + |u|s−1) for all u ∈ R and x ∈ Ω̄,

where s ∈ (2, 2∗); f(x, u)u ≥ 0 for all x ∈ Ω̄, u ∈ R and f(x, u) =
o(|u|) as |u| → 0 uniformly for x ∈ Ω̄.

(I2) There exist µ > 2 and R > 0 such that

0 < µF (x, u) ≤ f(x, u)u, x ∈ Ω, |u| ≥ R,

where F (x, u) =
∫ u

0
f(x, v)dv.

(I3) f(x, u) is odd in u.

Theorem 5.17. Assume (I1)–(I3). Then (5.70) has infinitely many sign-
changing solutions.
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To prove the above theorem, we introduce the working space E which is
obtained by the completion of C∞

0 (Ω) with respect to the norm

‖u‖ =
(∫

Ω

(

|∇u|2 − (N − 2)2

4
u2

|x|2
)

dx

)1/2

associated with the inner product

〈u, v〉 =
∫

Ω

(

∇u · ∇v − (N − 2)2

4
uv

|x|2
)

dx.

Consider the following eigenvalue problem

(5.71)

⎧
⎨

⎩
−∆u− (N − 2)2

4
u

|x|2 = λu in Ω,

u = 0 on ∂Ω.

The first eigenvalue of (5.71) is given by

λ1 = inf{‖u‖2 : u ∈ E, ‖u‖2 = 1}.

By Proposition 1.16, E ↪→W 1,p(Ω) ↪→↪→ L2(Ω) for p→ 2−. The minimizing
sequence is compact in L2(Ω). By standard argument, we may assume that
the first eigenfunction φ1 is positive in Ω. The second eigenvalue is given by

λ2 = inf
{

‖u‖2 : u ∈ E,

∫

Ω

uφ1dx = 0, ‖u‖2 = 1
}

which possesses a sign-changing eigenfunction φ2. Similarly, we can charac-
terize the nth eigenvalue λn with a sign-changing eigenfunction. By standard
elliptic theory, λn →∞ as n→∞.

For s given in (I1), s < 2N/(N − 2), we may choose p such that s <
pN/(N − p), p < 2. By Proposition 1.16,

(5.72) W 1,p(Ω) ↪→↪→ Lt(Ω), ∀t < Np/(N − p).

Let
G(u) =

1
2
‖u‖2 −

∫

Ω

F (x, u)dx, u ∈ E.

Then G is of C1(E,R) and

〈G′(u), v〉 = 〈u, v〉 −
∫

Ω

f(x, u)vdx, v ∈ E,

G′ = id−KG.
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Lemma 5.18. Assume (I1) and (I2) hold; then G satisfies the (PS)
condition.

Proof. Assume that {un} is a (PS) sequence; ‖G′(un)‖ → 0 and {G(un)}
is bounded. A routine argument implies that {‖un‖} is bounded. By Theo-
rem 5.16 and (5.72), {un} is compact in Ls(Ω). By (I1),

‖un − um‖2 =
∫

Ω

|f(x, un)− f(x, um)||un − um|dx + o(1)

≤ c

(∫

Ω

|un − um|sdx
)1/s

+ o(1)

→ 0.

This completes the proof of the lemma. �

Let Nk denote the eigenspace of λk; then dimNk < ∞. Let Ek := N1 ⊕
· · · ⊕Nk, k ≥ 2.

Lemma 5.19. G(u) → −∞ as ‖u‖ → ∞, for all u ∈ Ek.

Proof. Because dimEk <∞, then by (I2),

G(u)
‖u‖2 ≤

1
2
−
∫

Ω

F (x, u)
‖u‖2 dx→ −∞

as ‖u‖ → ∞, u ∈ Ek. The lemma follows immediately. �

Proof of Theorem 5.17. This is similar to the proof of Theorem 5.7; we leave
it to the readers. �

Notes and Comments. If (N − 2)2/4 is replaced by a constant µ which is less
than the best Hardy constant, Equation (5.70) is called a subcritical potential
equation. The existence of solutions for this case was studied in Cao and Peng
[78], Chen [102], Egnell [136], and Ferrero and Gazzola [145] (see also Sintzoff
and Willem [302] for a more general equation with unbounded coefficients). If
N = 2, a nonlinear elliptic problem (with singular potentials) was considered
in Caldiroli and Musina [77] and Shen et al. [292]. The sign-changing solutions
have not been considered there.

5.7 Critical Sobolev–Hardy Exponent Cases

Consider the Dirichlet boundary value problem with critical Sobolev–Hardy
exponents and singular terms:
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(5.73) −∆u = λ|u|r−2u + µ
|u|q−2

|x|s u inΩ, u = 0 on ∂Ω,

where 2 < r, q ≤ 2∗(s), Ω is a smooth bounded domain of RN , N > 2,
0 < s < 2 and 2∗(s) := (2(N − s))/(N − 2) is the Sobolev–Hardy exponent.

We have the following main theorems in this section. Theorems 5.20 and
5.21 concern (5.73) with Sobolev–Hardy critical singular terms.

Theorem 5.20. Assume 2 < r < 2∗(s), q = 2∗(s). Then there exists a µ0 > 0
such that Equation (5.73) has a sign-changing solution for any λ > 0, µ ∈
(0, µ0).

Theorem 5.21. Assume 2 < r < 2∗(s), q = 2∗(s). Then for any λ > 0,
Equation (5.73) has an unbounded sequence of sign-changing solutions
(µk, uk) satisfying

1
2

∫

Ω

| � uk|2dx−
λ

r

∫

Ω

|uk|rdx−
µk

2∗(s)

∫

Ω

|uk|2
∗(s)

|x|s dx→∞, k →∞.

Theorems 5.22 and 5.23 concern (5.73) with Sobolev critical nonsingular
terms and subcritical singular terms.

Theorem 5.22. Assume 2 < q < 2∗(s), r = 2∗(s). Then there exists a λ0 > 0
such that Equation (5.73) has a sign-changing solution for any µ > 0, λ ∈
(0, λ0).

Theorem 5.23. Assume 2 < q < 2∗(s), r = 2∗(s). Then for any µ > 0,
Equation (5.73) has an unbounded sequence of sign-changing solutions (λk, uk)
satisfying

1
2

∫

Ω

| � uk|2dx−
λk

2∗(s)

∫

Ω

|uk|2
∗(s)dx− µ

q

∫

Ω

|uk|q
|x|s dx→∞, k →∞.

Next we provide a result for the existence of infinitely many sign-changing
solutions to Equation (5.73) with Sobolev–Hardy subcritical and singular
terms.

Theorem 5.24. Assume 2 < q, r < 2∗(s). Then for any µ > 0, λ > 0,
Equation (5.73) has an unbounded sequence of sign-changing solutions (uk)
satisfying

1
2

∫

Ω

| � uk|2dx−
λ

r

∫

Ω

|uk|rdx−
µ

q

∫

Ω

|uk|q
|x|s dx→∞, k →∞.

Let E := H1
0 (Ω) with the norm ‖u‖ =

( ∫
Ω
| � u|2dx

)1/2
. We define

Gλ,µ(u) =
1
2

∫

Ω

| � u|2dx− λ

r

∫

Ω

|u|rdx− µ

q

∫

Ω

|u|q
|x|s dx.
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Then Gλ,µ ∈ C1(H1
0 (Ω),R). Recall the Sobolev–Hardy inequality, which is

essentially due to Caffarelli et al. [76]; there is a constant C > 0 such that

(5.74) C

(∫

Ω

|u|2∗(s)

|x|s dx

)2/(2∗(s))

≤
∫

Ω

|∇u|2dx for all u ∈ E := H1,2
0 (Ω).

The best Sobolev–Hardy constant (i.e., the largest constant C satisfying the
above inequality for all u ∈ H1,2

0 (Ω)) is given by

(5.75) µs := µs(Ω) := inf
u∈H1

0 (Ω),u �=0

∫
Ω
| � u|2dx

(∫
Ω

|u|2∗(s)

|x|s dx
)2/2∗(s)

.

Lemma 5.25. Let µs be the Sobolev–Hardy constant given by (5.75). Then

(1) If 2 < r < 2∗(s), q = 2∗(s), then for any λ > 0 and any µ > 0, Gλ,µ

satisfies the (PS)c condition for all

c <
2− s

2(n− s)

(
µn−s

s

µN−2

)1/(2−s)

.

(2) If 2 < q < 2∗(s), r = 2∗(s), then for any λ > 0 and any µ > 0, Gλ,µ

satisfies the (PS)c condition for all

c <
1
N

(
µN

0

λN−2

)1/2

.

(3) If 2 < q, r < 2∗(s), then for any λ > 0 and any µ > 0, Gλ,µ satisfies
the (PS)c condition for all c.

Proof. (1) Assume that {un} is a sequence in E satisfying

(5.76) Gλ,µ(un) → c <
2− s

2(N − s)

(
µN−s

s

µN−2

)1/(2−s)

, G′
λ,µ(un) → 0.

Then

(5.77) 〈G′
λ,µ(un), un〉 =

∫

Ω

|∇un|2dx− µ

∫

Ω

|un|2
∗(s)

|x|s dx− λ

∫

Ω

|un|rdx;

hence,

2c + 1 + o(1)‖un‖(5.78)

≥ 2Gλ,µ(un)− 〈G′
λ,µ(un), un〉

≥ µ

(

1− 2
2∗

)∫

Ω

|un|2
∗

|x|s d + λ

(

1− 2
r

)∫

Ω

|un|rdx.



5.7 Critical Sobolev–Hardy Exponent Cases 171

Combining (5.77) and (5.78), {un} is bounded in E. By Lemma 5.12 and the
Sobolev–Hardy embedding theorem, it is easy to show that

(5.79)
∫

Ω

|un − u|2∗(s)

|x|s dx =
∫

Ω

|un|2
∗(s)

|x|s dx−
∫

Ω

|u|2∗(s)

|x|s dx + o(1).

Furthermore, note that
∫

Ω

|un|2
∗(s)

|x|s dx

is uniformly bounded in n and that w/|x|s/2∗ ∈ L2∗(s)(Ω) for any w ∈
H1,2

0 (Ω). We may show that

(5.80)
∫

Ω

|un|2
∗(s)−2un

|x|s wdx→
∫

Ω

|u|2∗(s)−2u

|x|s wdx.

We now assume that un → u weakly in E. For any v ∈ E, by (5.80), we have
that 〈G′

λ,µ(u), v〉 = 0. Therefore,

0 = 〈G′
λ,µ(u), u〉 =

∫

Ω

(

|∇u| − λ|u|r − µ
|u|2∗(s)

|x|s
)

dx.

It follows that

(5.81) Gλ,µ(u) ≥ 0.

Therefore, by the assumption of item (1),

G0,µ(un − u) = Gλ,µ(un)−Gλ,µ(u) + o(1)(5.82)

≤ Gλ,µ(un) + o(1) ≤ c <
2− s

2(N − s)

(
µN−s

s

µN−2

)1/(2−s)

.

Because

o(1) = 〈G′
λ,µ(un), un − u〉(5.83)

= 〈G′
λ,µ(un)−G′

λ,µ(u), un − u〉

=
∫

Ω

(

|∇un −∇u|2 − µ
|un − u|2∗(s)

|x|s
)

dx + o(1).

Combining (5.82) and (5.83),

(5.84)
(

1
2
− 1

2∗(s)

)

‖∇un −∇u‖22 ≤ c <
2− s

2(N − s)

(
µN−s

s

µN−2

)1/(2−s)

.
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By the Sobolev–Hardy inequality and (5.84), we finally have

o(1) =
∫

Ω

(

|∇un −∇u|2 − µ
|un − u|2∗(s)

|x|s
)

dx

≥
∫

Ω

|∇un −∇u|2dx− µ(µs)(−2∗(s))/2

(∫

Ω

|∇un −∇u|2dx
)(2∗(s))/2

≥ c

∫

Ω

|∇un −∇u|2dx.

Thus, un → u in E.
(2) This is similar to Case (1).
(3) It is easier than that of Cases (1) and (2). Because 2 < q, r < 2∗(s) are

subcritical, the compactness of the Sobolev–Hardy embedding and Sobolev
embedding can be applied. �

Next we just give the proof of Theorem 5.24; the others can be done
analogously. We leave them to the readers. For simplicity, we write Gλ,µ = G.

Denote by
0 < λ1 < λ2 < · · · < λk < · · · → ∞

the eigenvalues of −∆ with zero boundary value. Then the principal eigen-
value λ1 is simple with positive eigenfunction ϕ1, and eigenfunction ϕk cor-
responding to λk(k ≥ 2) is sign-changing. Let Nk denote the eigenspace of
λk; then dimNk < ∞. Let Ek := N1 ⊕ · · · ⊕ Nk, k ≥ 2. We use µs,q(Ω) to
denote the best Sobolev–Hardy constant:

µs,q := inf
u∈E,u�=0

∫
Ω
| � u|2dx

(∫
Ω

|u|q
|x|s dx

)2/q
.

Let

Q(ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ E⊥
k−1 :

µ

q

∫
Ω

|u|q
|x|s dx

‖u‖2 + µ
‖u‖

(∫
Ω

|u|q
|x|s dx

)1/q

‖u‖+ D

(∫
Ω

|u|q
|x|s dx

)1/q

+
λ

r

‖u‖r
r

‖u‖2 + λ
‖u‖‖u‖r

‖u‖+ D‖u‖r
=

1
4

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

where D is a fixed constant. Evidently, we have

Lemma 5.26.
( ∫

Ω
(|u|q/|x|s)dx

)1/q ≤ c1, ‖u‖r ≤ c1, ∀u ∈ Q(ρ); where
c1 > 0 is a constant.
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Lemma 5.27. For any a, b, c > 0, there is a d > 0 such that

G(u) ≤ a, ‖u‖r ≤ b and
(∫

Ω

|u|q
|x|s dx

)1/q

≤ c ⇒ ‖u‖ ≤ d.

Lemma 5.28. For any a > 0, we have that

dist(Q(ρ) ∩Ga,P) := δ(a) > 0.

Proof. Note that
∫

Ω

|u|q
|x|s dx

≤ CH‖u‖s

(∫

Ω

|u|σdx

)(2−s)/2

= CH‖u‖s‖u‖q−s
σ

and ∫
Ω

|u|q
|x|s dx

‖u‖2 ≤ C ′
H‖u‖q−2

σ ,

where σ = ((2q − 2s)/(2− s)) ∈ (2, 2∗), and CH , C ′
H are constants from

Hardy and Sobolev inequalities. Then the rest is similar to that of Lemma 5.4.
�

Let
Γ ∗

Y = {h : h ∈ C(ΘY , E), h|∂ΘY
= id, h is odd},

where
ΘY := {u ∈ Y : ‖u‖ ≤ RY }, RY > 0, Y = Ek.

We assume RY large enough.

Lemma 5.29. h(ΘY ) ∩Q(ρ) �= ∅, ∀ h ∈ Γ ∗
Y .

Proof. Let

β∗(u) :=
µ

q

∫
Ω

|u|q
|x|s dx

‖u‖2 +
λ

r

‖u‖r
r

‖u‖2 + λ
‖u‖‖u‖r

‖u‖+ D‖u‖r

+ µ
‖u‖

(∫
Ω

|u|q
|x|s dx

)1/q

‖u‖+ D

(∫
Ω

|u|q
|x|s dx

)1/q

if u �= 0 and β∗(0) = 0. Then β∗ : E → E is continuous. Let

U := {u ∈ Y : β∗(h(u)) < 1/4} ∩ {u ∈ Y : ‖u‖ < RY }.
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Then U is a neighborhood of zero in Y . Let P : E → M1 := Ek−1 be the
projection; then P ◦ h : ∂U → M1 is odd and continuous. By the Borsuk–
Ulam theorem, we have that P ◦ h(u) = 0 for some u ∈ ∂U . Hence, h(u) ∈
M = E⊥

k−1. We claim u �∈ ∂{u ∈ Y : ‖u‖ < RY }. Otherwise, ‖u‖ = RY and
then h(u) = u, P (u) = 0. It follows that β∗(u) ≤ 1

4 . But this is impossible if
we choose RY large enough. So, our claim is true. It means

u ∈ ∂

{

u ∈ Y : β∗(h(u)) <
1
4

}

, ‖u‖ ≤ RY , u ∈ Y.

Hence, h(u) ∈M,β∗(h(u)) = 1
4 . Hence, h(u) ∈ Q(ρ). �

Lemma 5.30. lim
u∈Y,‖u‖→∞

G(u) = −∞, sup
Y

G := β <∞.

Consider G′(u) = G′
λ,µ(u) = u−KGu, u ∈ E, where

KG(u) = (−∆)−1(λ|u|r−2u + µ|u|q−2u/|x|s).

Lemma 5.31. Assume 2 < q, r < 2∗(s). Then there exists a µ0 ∈ (0, δ) such
that KG(±D0(µ0)) ⊂ ±D0(µ0), where δ = δ(β) comes from Lemmas 5.28
and 5.30.

Proof. The proof is similar to that of Lemma 2.29. However, because it
involves the Hardy potential, there are still something to be done. First,
we have, for any u ∈ Em, that

‖u±‖t = min
w∈(∓P)

‖u− w‖t

≤ Ct min
w∈(∓P)

‖u− w‖

= Ctdist(u,∓P)

for each t ∈ [2, 2∗]; Ct > 0 is a constant depending on t. By the Hardy
inequality, we have that

∥
∥
∥
∥
u±

|x|

∥
∥
∥
∥

2

= min
w∈(∓P)

∥
∥
∥
∥

u

|x| − w

∥
∥
∥
∥

2

≤ min
w∈(∓P)

∥
∥
∥
∥

u

|x| −
w

|x|

∥
∥
∥
∥

2

≤ c dist(u,∓P).
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Let v = KG(u). Therefore,

dist(v,∓P)‖v±‖

≤ ‖v±‖2

= 〈v, v±〉

=
∫

Ω

(

λ|u|r−2 + µ
|u|q−2

|x|s
)

uv+dx

≤
∫

Ω

(

λ|u±|r−1 + µ
|u±|q−1

|x|s
)

|v±|dx

≤ c‖u+‖r−1
r ‖v±‖r + µ

(∫

Ω

|u|q
|x|s dx

)(q−1)/q (∫

Ω

|v±|q
|x|s dx

)1/q

≤ c‖u±‖r−1
r ‖v±‖r

+µ

((∫

Ω

|u±|2
|x|2 dx

)s/2(∫

Ω

|u±|(2(q−s))/(2−s)dx

)(2−s)/2
)(q−1)/q

×
(∫

Ω

|v±|q
|x|s dx

)1/q

≤ (c dist(u,∓P)r−1 + c dist(u,∓P)(q−1))‖v±‖.

Because r − 1 > 1, q − 1 > 1, we may choose µ0 < δ small enough so that
dist(KG(u),∓P) ≤ µ0 for every u ∈ ∓D0(µ0). The conclusion follows. �

Proof of Theorem 5.24. Let

D := −D0(µ0) ∪ D0(µ0), S := E\D.

By Lemma 5.28, we may assume Q := Q(ρ) ∩ Gβ ⊂ S. Here, Q is a
bounded set. Let infQ�� G := γ. It is easy to check that Q ∩ Y �= ∅. Then
β ≥ γ. It is easy to see that Theorem 5.6 is also true for the above Q.
Similar to the proof of Theorem 5.7, infQ�� G := γ → ∞ as k → ∞ if we
choose an appropriate D. Hence, we may get the conclusion of Theorem 5.24.

�

Notes and Comments. Lemma 5.25 was due to Ghoussoub and Yuan [158,
Theorem 4.1]. The existence result of infinitely many solutions of Theorem 4.5
was first proved in Ghoussoub and Yuan [158], where the authors claimed
that one solution among them is positive and another one is sign-changing;
the signs of others had not been decided there. Here we give a confirma-
tion. In [158], the quasilinear type of (5.73) is considered and sign-changing
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solutions were obtained by Ghoussoub’s dual methods. In [158], for semilinear
(5.73), they needed either λ large enough or n > (2r +2)/(r−1) correspond-
ing to the case of Theorems 5.20 and 5.21 and that n > (2(q− s)+2)/(q−1)
corresponding to the case of Theorems 5.22 and 5.23. Finally, we refer read-
ers to papers by Garcia Azorero and Peral Alonso [155], Ferrero and Gazzola
[145], and Ruiz and Willem [265] on the elliptic (parabolic) equations with
the Hardy potential, where the existence of positive solutions was studied.



Chapter 6

Parameter Dependence

As we have seen in the previous chapters, the (PS)-type compactness condi-
tion (or weak (PS)) plays a crucial role. To verify this condition, one has to
prove the boundedness of the (PS) (or weak (PS)) sequence which requires
some special assumptions and procedures. These of course are severe restric-
tions. They strictly control the growth of the nonlinearity. In this chapter,
we show the readers how to get a bounded and sign-changing Palais–Smale
sequence directly from the linking. The classical Palais–Smale compactness
condition and its variants are completely unnecessary.

6.1 Bounded Sign-Changing (PS)-Sequences

Let E be a Hilbert space with the inner product 〈·, ·〉 and the corresponding
norm ‖ · ‖. Let A,B be two closed subsets of E. Suppose that G ∈ C1(E,R)
is of the form:

G(u) :=
1
2
‖u‖2 − J(u), u ∈ E,

where J ∈ C1(E,R) maps bounded sets to bounded sets. Define

Gλ(u) =
λ

2
‖u‖2 − J(u), λ ∈ Λ :=

(
1
2
, 1
)

.

Let Kλ := {u ∈ E : G′
λ(u) = 0} denote the set of all critical points of Gλ.

The gradient G′
λ(u) = λu−J ′(u), where J ′ : E → E is a continuous operator

independent of λ. Let Ẽλ := E\Kλ. Let P (−P) denote a closed convex
positive (negative) cone of E. Assume

(A111) There exists a µ0 > 0 such that

dist(J ′(u),±P) ≤ 1
5
dist(u,±P)

for all u ∈ E with dist(u,±P) < µ0.

W. Zou, Sign-Changing Critical Point Theory, doi: 10.1007/978-0-387-76658-4, 177
c© Springer Science+Business Media, LLC 2008
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For the fixed µ0 > 0, we define

±D0 := {u ∈ E : dist(u,±P) < µ0},(6.1)

D := D0 ∪ (−D0),(6.2)

S = E\D, ±D1 := {u ∈ E : dist(u,±P) < µ0/2}.(6.3)

Then D0 and D1 are open convex, D is open, ±P ⊂ ±D1 ⊂ ±D0, and S is
closed. Obviously, we have

(6.4) J ′(±D0) ⊂ ±D1.

Let Φ be the class of contractions of E defined in (2.1) of Chapter 2. Define

(6.5) Φ∗ := {Γ ∈ Φ : Γ (t,D) ⊂ D for all t ∈ [0, 1]}.

Then Γ (t, u) = (1− t)u ∈ Φ∗.

(A222) Let A be a bounded subset of E and link a subset B of E; B ⊂ S and

a0(λ) := sup
A

Gλ ≤ b0(λ) := inf
B

Gλ for any λ ∈ Λ.

Theorem 6.1. Assume that (A1) and (A2) hold. Define

c0(λ) := inf
Γ∈Φ∗

sup
Γ ([0,1],A)∩S

Gλ(u);

then
c0(λ) ∈

[
b0(λ), sup

(t,u)∈[0,1]×A

Gλ((1− t)u)
]
.

Moreover, for almost all λ ∈ Λ,

(1) If c0(λ) > b0(λ), then there is a sequence {um} depending on λ such
that

sup
m
‖um‖ <∞, um ∈ S, G′

λ(um) → 0, Gλ(um) → c0(λ).

(2) If c0(λ) = b0(λ), then there is a sequence {um} depending on λ such
that

sup
m
‖um‖ <∞, dist(um,S) → 0, G′

λ(um) → 0,

Gλ(um) → c0(λ).

Proof. Because A links B, we readily have c0(λ) ≥ b0(λ). In fact, for any
Γ ∈ Φ∗ we first observe that Γ ([0, 1], A) ∩ B �= ∅; recall that B ⊂ S. Then
we have Γ ([0, 1], A) ∩ S �= ∅. Therefore,
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sup
Γ ([0,1],A)∩S

Gλ ≥ sup
Γ ([0,1],A)∩B

Gλ

≥ inf
Γ ([0,1],A)∩B

Gλ

≥ inf
B

Gλ = b0(λ).

Then c0(λ) ≥ b0(λ). Evidently,

c0(λ) ≤ sup
(t,u)∈[0,1]×A

Gλ((1− t)u)

because Γ (t, u) = (1 − t)u ∈ Φ∗. Observe that the map λ �→ c0(λ) is nonde-
creasing. Hence, c′0(λ) := (dc0(λ))/dλ exists for almost every λ ∈ Λ.

From now on, we consider those λ where c′0(λ) exists. For a fixed λ ∈ Λ,
let λn ∈ (λ, 2λ) ∩ Λ be a nonincreasing sequence so that λn → λ as n→∞.
Then there exists an n̄(λ), which depends on λ only, such that

(6.6) c′0(λ)− 1 ≤ c0(λn)− c0(λ)
λn − λ

≤ c′0(λ) + 1 for n ≥ n̄(λ).

We prove the theorem step by step.

Step 1. In this step, we show that there exist Γn ∈ Φ∗, k0 := k0(λ) > 0 such
that ‖u‖ ≤ k0 := (2c′0(λ) + 6)1/2 whenever u ∈ Γn([0, 1], A) ∩ S with

Gλ(u) ≥ c0(λ)− (λn − λ),

where k0 := (2c′0(λ) + 6)1/2, is a constant depending on λ and indepen-
dent of n. In fact, by the definition of c0(λ), there exists a Γn ∈ Φ∗ such
that

sup
Γn([0,1], A)∩S

Gλ(u)(6.7)

≤ sup
Γn([0,1], A)∩S

Gλn
(u)

≤ c0(λn) + (λn − λ).

If
Gλ(u) ≥ c0(λ)− (λn − λ)

for some u ∈ Γn([0, 1], A) ∩ S, then by (6.6) and (6.7), we have that

1
2
‖u‖2 =

Gλn
(u)−Gλ(u)
λn − λ

(6.8)
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≤ c0(λn) + (λn − λ)− c0(λ) + (λn − λ)
λn − λ

≤ c′0(λ) + 3.

It follows that

(6.9) ‖u‖ ≤ (2c′0(λ) + 6)1/2 := k0(λ) := k0;

here k0 depends on λ only.

Step 2. In this step, we show that Gλ(u) ≤ c0(λ) + (c′0(λ) + 2)(λn − λ) for
all u ∈ Γn([0, 1], A) ∩ S. By the choice of Γn and (6.6) and (6.7), for all
u ∈ Γn([0, 1], A) ∩ S, we see that

Gλ(u)(6.10)

≤ Gλn
(u)

≤ sup
Γn([0,1], A)∩S

Gλn
(u)

≤ c0(λn) + (λn − λ)

≤ c0(λ) + (c′0(λ) + 2)(λn − λ).

Step 3. In this step, we assume that c0(λ) > b0(λ) and construct the flow.
For ε > 0, we define

Qε(n, λ) :=

⎧
⎨

⎩
u ∈ E :

‖u‖ ≤ k0 + 2,

c0(λ)− 2(λn − λ) ≤ Gλ(u) ≤ c0(λ) + 2ε

⎫
⎬

⎭
.

Choose n∗(λ) > n̄(λ) (n̄(λ) comes from (6.6)) such that

(c′0(λ) + 2)(λn − λ) < ε,(6.11)

λn − λ ≤ ε,(6.12)

λn − λ < c0(λ)− b0(λ)(6.13)

for all n ≥ n∗(λ). We show that

(6.14) inf
u∈Qε(n∗(λ), λ)∩S

‖G′
λ(u)‖ = 0.

Then the conclusion (1) of the theorem follows from (6.14).
First, Qε(n∗(λ), λ) ∩ S �= ∅. Indeed, if

Gλ(u) ≤ c0(λ)− (λn − λ)
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for all u ∈ Γn([0, 1], A) ∩ S, then

c0(λ) < c0(λ)− (λn − λ),

a contradiction. Therefore, there exists a u ∈ Γn([0, 1], A) ∩ S such that
Gλ(u) ≥ c0(λ) − (λn − λ); it follows that ‖u‖ ≤ k0. Furthermore,
(6.11)–(6.13) imply Gλ(u) ≤ c0(λ) + ε. Therefore, u ∈ Qε(n, λ) ∩ S �= ∅
for all n ≥ n∗(λ). Moreover, we observe that

(6.15) Qε(n, λ) ⊂ Qε(n∗(λ), λ) for all n ≥ n∗(λ).

To show (6.14) by negation, we assume that there exists an ε∗ > 0 such that

‖G′
λ(u)‖2

1 + ‖G′
λ(u)‖ ≥ ε∗ for all u ∈ Qε(n∗(λ), λ) ∩ S;

here ε∗ only depends on n∗(λ), λ, and ε, not on n. Therefore, by (6.15), we
still have

(6.16)
‖G′

λ(u)‖2
1 + ‖G′

λ(u)‖ ≥ ε∗ for all u ∈ Qε(n, λ) ∩ S, ∀n ≥ n∗(λ).

We seek a contradiction that will confirm the claim of (6.14). Let

Θ1 := {u ∈ E : ‖u‖ ≤ k0 + 1};(6.17)

Θ2 := {u ∈ E : ‖u‖ ≥ k0 + 2};(6.18)

Θ3 :=

{

u ∈ E :
either Gλ(u) ≤ c0(λ)− 2(λn − λ)

or Gλ(u) > c0(λ) + 2ε

}

;(6.19)

Θ4 := {u ∈ E : c0(λ)− (λn − λ) ≤ Gλ(u) ≤ c0(λ) + ε}.(6.20)

Define

ϑ(u) :=
dist(u,Θ2)

dist(u,Θ1) + dist(u,Θ2)
,(6.21)

q(u) :=
dist(u,Θ3)

dist(u,Θ3) + dist(u,Θ4)
.(6.22)

Recall the definition of S in (6.3), let

Θ(α) := {u ∈ E : dist(u,P) < α} ∪ {u ∈ E : dist(u,−P) < α}, α > 0.

Then Θ(α) is an open neighborhood of the positive and negative cones
−P ∪ P. Let S∗ := E\Θ(µ0/2), which is an open neighborhood of S, where
µ0 comes from (6.3). Define
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(6.23) π(u) :=
dist(u,Θ(µ0/4))

dist(u,Θ(µ0/4)) + dist(u,S∗)
.

Recall Condition (A1) and Lemma 2.11; we have a locally Lipschitz continu-
ous map Oλ : Ẽλ → E such that

Oλ(±D0 ∩ Ẽλ) ⊂ ±D1

and that Vλ(u) := λu−Oλ(u) is a pseudo-gradient vector field of Gλ.
By (A1), we observe that Kλ ⊂ (−P) ∪ P ∪ S for any λ ∈ Λ. Hence,

∂Kλ ⊂ (−P) ∪ P ∪ S for any λ ∈ Λ. Therefore, for any u ∈ ∂Kλ, if

‖u‖ ≤ k0 + 2, c0(λ)− 2(λn − λ) ≤ Gλ(u) ≤ c0(λ) + 2ε and u �∈ ±P,
(6.24)

then u ∈ Qε(n, λ) ∩ S. By (6.16), there is an open neighborhood Uu of u
such that ‖G′

λ(w)‖
∣
∣
Uu
≥ ε∗/2, which contradicts the fact that u ∈ ∂Kλ. This

means that at least one of the inequalities of (6.24) is not true. It follows that
there exists a neighborhood Uu of u such that either Uu ⊂ Θ2 or Uu ⊂ Θ3 or
Uu ⊂ Θ(µ0/4). Therefore,

ϑ(u)q(u)π(u) = 0 for all u ∈ Uu.

Consequently, if we define

(6.25) W ∗
λ (u) :=

⎧
⎪⎨

⎪⎩

ϑ(u)q(u)π(u)
1 + ‖Vλ(u)‖ Vλ(u), for u ∈ Ẽλ,

0, for u ∈ Kλ,

then W ∗
λ is a locally Lipschitz continuous vector field from E to E and

‖W ∗
λ (u)‖ ≤ 1 on E. Consider the following Cauchy initial value problem

(6.26)

⎧
⎪⎨

⎪⎩

dψ(t, u)
dt

= −W ∗
λ (ψ(t, u)),

ψ(t, u) = u ∈ E.

By Theorem 1.41, (6.26) has a unique continuous solution (flow) ψ: [0,∞)×
E → E.

Step 4. In this step, we also assume that c0(λ) > b0(λ) and show that the
flow ψ has some properties. We show that

(6.27) ψ([0,+∞), D̄) ⊂ D̄, ψ([0,+∞),D) ⊂ D.

We first observe that Oλ(±D0 ∩ Ẽλ) ⊂ (±D1) implies that Oλ(±D̄0 ∩ Ẽλ) ⊂
(±D̄1). Obviously, ψ(t, u) = u for all t ≥ 0 and u ∈ D̄ ∩Kλ. Next, we assume
that u ∈ D̄0 ∩ Ẽλ. If there were a t0 > 0 such that ψ(t0, u) �∈ D̄0, then there
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would be a number s0 ∈ [0, t0) such that ψ(s0, u) ∈ ∂D̄0 and ψ(t, u) �∈ D̄0 for
t ∈ (s0, t0]. Consider the following initial value problem

⎧
⎪⎨

⎪⎩

dψ(t, ψ(s0, u))
dt

= −W ∗
λ (ψ(t, ψ(s0, u))),

ψ(0, ψ(s0, u)) = ψ(s0, u) ∈ E.

It has a unique solution ψ(t, ψ(s0, u)). For any v ∈ D̄0, if v ∈ Kλ, then
W ∗

λ (v) = 0. Hence, v+ρ(−W ∗
λ (v)) = v ∈ D̄0. Assume that v ∈ Ẽλ∩D̄0. Note

that v ∈ D̄0 implies dist(v,P) ≤ µ0. By Lemma 2.11 and a property of the
cone P: xP + yP ⊂ P for all x, y ≥ 0, we have

dist(v + ρ(−W ∗
λ (v)),P)

= dist
(

v + ρ

(

−ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖

)

Vλ(v),P
)

= dist
(

v + ρ

(

−ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖

)

(λv −Oλ(v)),P
)

= dist
((

1− ρλ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖

)

v + ρ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖ Oλ(v),P

)

≤ dist
((

1− ρλ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖

)

v + ρ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖ Oλ(v),

ρ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖ P +

(

1− λρ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖

)

P
)

=
(

1− ρλ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖

)

dist(v,P) + ρ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖ dist(Oλ(v),P)

≤
(

1− ρλ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖

)

µ0 + ρ
ϑ(v)q(v)π(v)
1 + ‖Vλ(v)‖

µ0

2

≤ µ0

(

because λ >
1
2

)

for ρ small enough. It implies that v + ρ(−W ∗
λ (v)) ∈ D̄0 for ρ > 0 small

enough. It follows that

lim
ρ→0+

dist(v + ρ(−W ∗
λ (v)), D̄0)

ρ
= 0, ∀v ∈ D̄0.

By Lemma 1.49, there exists a δ > 0 such that ψ(t, ψ(s0, u)) ∈ D̄0

for all t ∈ [0, δ). By the semigroup property, we see that ψ(t, u) ∈ D̄0
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for all t ∈ [s0, s0 + δ), which contradicts the definition of s0. Therefore,
ψ([0,+∞), D̄0) ⊂ D̄0. Similarly, ψ([0,+∞),−D̄0) ⊂ −D̄0. That is,
ψ([0,+∞), D̄) ⊂ D̄. Similar to previous chapters, ψ([0,+∞),D) ⊂ D.

Step 5. In this step, we also assume that c0(λ) > b0(λ). Note that ε∗ is
independent of n; we may choose n∗∗(λ) > n∗(λ) such that

(6.28) λn − λ <
ε∗

4(c′0(λ) + 3)
for all n ≥ n∗∗(λ).

For each n > n∗∗(λ), we define

(6.29) Γ ∗
n(s, u) :=

⎧
⎪⎨

⎪⎩

ψ(2s, u), 0 ≤ s ≤ 1
2
,

ψ(1, Γn(2s− 1, u)),
1
2
≤ s ≤ 1.

Then Γ ∗
n ∈ Φ. Moreover, by (6.27) of Step 4, Γ ∗

n ∈ Φ∗ for all n ≥ n∗∗(λ).
For each fixed n > n∗∗(λ), we consider the following two cases. Both of

them lead to a contradiction that confirms (6.14).
If u ∈ Γ ∗

n([0, 1/2], A) ∩ S, then u = ψ(2s0, u0) for some s0 ∈ [0, 1/2] and
u0 ∈ A. Therefore, by (6.11),

Gλ(u) = Gλ(ψ(2s0, u0))(6.30)

≤ Gλ(u0)

≤ a0(λ)

≤ b0(λ)

≤ c0(λ)− (λn − λ).

If u ∈ Γ ∗
n([12 , 1], A) ∩ S, we write u = Γ ∗

n(s1, u1) for some s1 ∈ [12 , 1] and
u1 ∈ A. Then u = ψ(1, Γn(2s1 − 1, u1)) ∈ S.

If Gλ(Γn(2s1 − 1, u1)) ≤ c0(λ)− (λn − λ), then

Gλ(u) = Gλ(ψ(1, Γn(2s1 − 1, u1)))(6.31)

≤ Gλ(ψ(0, Γn(2s1 − 1, u1)))

≤ Gλ(Γn(2s1 − 1, u1))

≤ c0(λ)− (λn − λ).

If Gλ(Γn(2s1 − 1, u1)) > c0(λ) − (λn − λ), we show that (6.31) still
holds.

We first observe that Γn(2s1 − 1, u1) ∈ S. Otherwise, Γn(2s1 − 1, u1) ∈ D
implies that u = ψ(1, Γn(2s1−1, u1)) ∈ D by (6.27), which is a contradiction
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because u ∈ S. Recall Step 1; we have ‖Γn(2s1 − 1, u1)‖ ≤ k0. Furthermore,
by (6.11)–(6.15),

Γn(2s1 − 1, u1) ∈ Qε(n, λ) ∩ S ⊂ Qε(n∗(λ), λ) ∩ S.

Therefore, by (6.16),

(6.32)
‖G′

λ(Γn(2s1 − 1, u1))‖2
1 + ‖G′

λ(Γn(2s1 − 1, u1))‖
≥ ε∗.

On the other hand, because ‖W ∗
λ (u)‖ ≤ 1 for all u ∈ E, we have that

‖ψ(t, Γn(2s1 − 1, u1))− ψ(0, Γn(2s1 − 1, u1))‖ ≤ t

and that

‖ψ(t, Γn(2s1 − 1, u1))‖(6.33)

≤ t + ‖Γn(2s1 − 1, u1)‖

≤ k0 + 1.

for all t ∈ [0, 1]. There are two subcases again.

If Gλ(ψ(t, Γn(2s1 − 1, u1))) ≤ c0(λ)− (λn − λ) for some t ∈ [0, 1], then

Gλ(u) = Gλ(ψ(1, Γn(2s1 − 1, u1)))(6.34)

≤ Gλ(ψ(t, Γn(2s1 − 1, u1)))

≤ c0(λ)− (λn − λ).

Hence, we have an inequality as (6.31).
If Gλ(ψ(t, Γn(2s1 − 1, u1))) > c0(λ) − (λn − λ) for all t ∈ [0, 1]. By

(6.11)–(6.13),

Gλ(ψ(t, Γn(2s1 − 1, u1)))(6.35)

≤ Gλ(Γn(2s1 − 1, u1))

≤ c0(λ) + ε.

On the other hand, insert (6.27) again; ψ(1, Γn(2s1 − 1, u1)) ∈ S implies
that ψ(t, Γn(2s1 − 1, u1)) ∈ S for all t ∈ [0, 1]. Combining (6.15), (6.33), and
(6.35), we have that

(6.36) ψ(t, Γn(2s1 − 1, u1)) ∈ Qε(n, λ) ∩ S ⊂ Qε(n∗(λ), λ) ∩ S
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for all t ∈ [0, 1]. By (6.16) and (6.36),

(6.37)
‖G′

λ(ψ(t, Γn(2s1 − 1, u1)))‖2
1 + ‖G′

λ(ψ(t, Γn(2s1 − 1, u1)))‖
≥ ε∗ for all t ∈ [0, 1].

Moreover, by (6.21)–(6.23), (6.33)–(6.35),

ϑ(ψ(t, Γn(2s1 − 1, u1)))(6.38)

= q(ψ(t, Γn(2s1 − 1, u1)))

= π(ψ(t, Γn(2s1 − 1, u1)))

= 1

for all t ∈ [0, 1]. Combining the definition of the pseudo-gradient vector field
and (6.37) and (6.38), it follows that

Gλ(ψ(t, Γn(2s1 − 1, u1)))−Gλ(Γn(2s1 − 1, u1))

≤
∫ t

0

dGλ(ψ(s, Γn(2s1 − 1, u1)))
ds

ds

≤
∫ t

0

−
〈

G′
λ(ψ(s, Γn(2s1 − 1, u1))),

Vλ(ψ(s, Γn(2s1 − 1, u1)))
1 + ‖Vλ(ψ(s, Γn(2s1 − 1, u1)))‖

〉

ds

≤ −1
2

∫ t

0

‖G′
λ(ψ(s, Γn(2s1 − 1, u1)))‖2

1 + ‖Vλ(ψ(s, Γn(2s1 − 1, u1)))‖
ds

≤ −1
4

∫ t

0

‖G′
λ(ψ(s, Γn(2s1 − 1, u1)))‖2

1 + ‖G′
λ(ψ(s, Γn(2s1 − 1, u1)))‖

ds

≤ −1
4
ε∗t.

It follows that

G(u)(6.39)

= Gλ(ψ(1, Γn(2s1 − 1, u1)))

≤ Gλ(Γn(2s1 − 1, u1))−
1
4
ε∗

≤ c0(λ) + (c′0(λ) + 2)(λn − λ)− 1
4
ε∗ (by (6.11))

≤ c0(λ)− (λn − λ). (by (6.29))
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Summing up (6.30), (6.31), (6.34), and (6.39), we have

G(u) ≤ c0(λ)− (λn − λ)

for all u ∈ Γ ∗
n([0, 1], A)∩S and all n > n∗∗(λ). This contradicts the definition

of c0(λ) because Γ ∗
n ∈ Φ∗. The contradiction guarantees the truth of (6.14)

which deduces Conclusion (1) of the theorem.

♣ In the next steps 6–11, we consider the case of c0(λ) = b0(λ). We prove
that the Conclusion (2) of Theorem 6.1 is true.

Step 6. A is bounded, therefore dA := max{‖u‖ : u ∈ A} < ∞. For ε > 0,
T > 0, we define

(6.40) Ω(ε, T, λ) :=

{

u ∈ E :
‖u‖ ≤ k0(λ) + 4 + dA,

|Gλ(u)− c0(λ)| ≤ 3ε, d(u,S) ≤ 4T

}

.

We claim that Ω(ε, T, λ) �= ∅ for any ε > 0, T > 0. Indeed, by (6.11), we
choose n large enough such that

sup
u∈Γn([0,1], A)∩S

Gλ(u) ≤ sup
u∈Γn([0,1], A)∩S

Gλn
(u)(6.41)

≤ c0(λ) + 3ε.

Because A links B, there exists a pair of numbers (s0, u0) ∈ [0, 1] × A such
that Γn(s0, u0) ∈ B ⊂ S. Hence, dist(Γn(s0, u0),S) = 0 and

Gλ(Γn(s0, u0)) ≥ b0(λ) = inf
B

Gλ(6.42)

= c0(λ) > c0(λ)− (λn − λ) ≥ c0(λ)− 3ε.

By Step 1, ‖Γn(s0, u0)‖ ≤ k0. Hence, Γn(s0, u0) ∈ Ω(ε, T, λ) �= ∅.

Step 7. We prove that

(6.43) inf{‖G′
λ(u)‖ : u ∈ Ω(ε, T, λ)} = 0 for all ε, T ∈ (0, 1),

which implies Conclusion (2) of the theorem.
By a contradiction, we assume that there exist δ > 0, ε1 > 0, T1 ∈ (0, 1)

such that

(6.44) ‖G′
λ(u)‖ ≥ 3δ for all u ∈ Ω(ε1, T1, λ).

Choose n∗(λ) so large again that

(6.45) (λn − λ) ≤ ε1, (c′0(λ) + 2)(λn − λ) < ε1, (λn − λ) < δT1
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and

(6.46) (λn − λ) ≤ δ2

(c′0(λ) + 2)(1 + 3δ)
T1, for all n ≥ n∗(λ).

Define

Ω∗(n, ε1, T1, λ)(6.47)

:=

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ E :

‖u‖ ≤ k0 + 4 + dA,

c0(λ)− (λn − λ) ≤ Gλ(u) ≤ c0(λ) + 3ε1,

dist(u,S) ≤ 4T1.

⎫
⎪⎪⎬

⎪⎪⎭

.

By (6.45) and (6.46) and the same arguments as those in (6.41) and (6.42),

(6.48) Ω∗(n, ε1, T1, λ) �= ∅; Ω∗(n, ε1, T1, λ) ⊂ Ω(ε1, T1, λ).

Define

Θ5 := Θ5(ε1, T1, λ)(6.49)

:=

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ E :

‖u‖ ≤ k0 + 3 + dA,

|Gλ(u)− c0(λ)| ≤ 2ε1,

dist(u,S) ≤ 3T1

⎫
⎪⎪⎬

⎪⎪⎭

.

Then, by the same arguments as in Step 6, Θ5 �= ∅. Let

(6.50) ξ(u) :=
dist(u,E\Ω(ε1, T1, λ))

dist(u,Θ5) + dist(u,E\Ω(ε1, T1, λ))

and define

Θ6 := Θ6(ε1, T1, λ)(6.51)

:=

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ E :

‖u‖ ≤ k0 + 2 + dA,

|Gλ(u)− c0(λ)| ≤ ε1,

dist(u,S) ≤ 2T1

⎫
⎪⎪⎬

⎪⎪⎭

.

Then, by a similar argument as that in Step 6, Θ6 �= ∅ and

(6.52) Θ6 ⊂ Θ5 ⊂ Ω(ε1, T1, λ).
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Define

(6.53) ζ(u) :=
dist(u,E\Θ5)

dist(u,Θ6) + dist(u,E\Θ5)
.

For any u ∈ ∂Kλ, if u ∈ Ω(ε1, T1, λ) (a closed subset), then by (6.44),
there exists an open neighborhood Uu of u such that ‖G′

λ(w)‖ ≥ 2δ for
all w ∈ Uu. This is impossible because u ∈ ∂Kλ. So, u �∈ Ω(ε1, T1, λ).
Hence, we may find a neighborhood Uu of u such that Uu ⊂ E\Ω(ε1, T1, λ).
By (6.50),

ξ(w) = 0 for all w ∈ Uu.

Therefore,

(6.54) W ∗∗
λ (u) :=

⎧
⎪⎨

⎪⎩

ξ(u)ζ(u)
1 + ‖Vλ(u)‖Vλ(u), for u ∈ Ẽλ,

0, for u ∈ Kλ,

is a locally Lipschitz continuous vector field from E to E. Moreover,

(1) ‖W ∗∗
λ (u)‖ ≤ 1 for all u ∈ E,

(2) 〈G′
λ(u),W ∗∗

λ (u)〉 ≥ 0 for all u ∈ E,
(3) For any u ∈ Θ5, then u ∈ Θ5 ⊂ Ω(ε1, T1, λ) ⊂ Ẽλ and ξ(u) = 1,

‖G′(u)‖ ≥ 3δ (by (6.44)).

Hence,
〈

G′
λ(u),

ξ(u)
1 + ‖Vλ(u)‖Vλ(u)

〉

(6.55)

=
〈

G′
λ(u),

Vλ(u)
1 + ‖Vλ(u)‖

〉

≥ ‖G′
λ(u)‖2

4(1 + ‖G′
λ(u)‖)

≥ 9δ2

4(1 + 3δ)
.

Consider the following Cauchy initial value problem
⎧
⎪⎨

⎪⎩

dψ1(t, u)
dt

= −W ∗∗
λ (ψ1(t, u)),

ψ1(0, u) = u ∈ E.

It has a unique continuous solution ψ1: [0,∞) × E → E. Note that if
ζ(ψ1(t, u)) �= 0, then by (6.53), ψ1(t, u) ∈ Θ5. Therefore, by (6.55), we
have that
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(6.56)
dGλ(ψ1(t, u))

dt
≤ − 9δ2

4(1 + 3δ)
ζ(ψ1(t, u)) ≤ 0

for all u ∈ E and t ≥ 0.

Step 8. We show that

(6.57) ψ1([0,+∞), D̄) ⊂ D̄, ψ1([0,+∞),D) ⊂ D.

The idea is similar to that in Step 4. We give a brief proof for completeness.
We first observe that Oλ(±D0∩Ẽλ) ⊂ (±D1) implies that Oλ(±D̄0∩Ẽλ) ⊂

(±D̄1). Obviously, by (2.47), ψ1(t, u) = u for all t ≥ 0 and u ∈ D̄ ∩Kλ. Next,
we assume that u ∈ D̄0 ∩ Ẽλ. If there were a t0 > 0 such that ψ1(t0, u) �∈ D̄0,
then there would be a number s0 ∈ [0, t0) such that ψ1(s0, u) ∈ ∂D̄0

and ψ1(t, u) �∈ D̄0 for t ∈ (s0, t0]. Consider the following initial value
problem ⎧

⎪⎨

⎪⎩

dψ1(t, ψ1(s0, u))
dt

= −W ∗∗
λ (ψ1(t, ψ1(s0, u))),

ψ1(0, ψ1(s0, u)) = ψ1(s0, u) ∈ E.

It has a unique solution ψ1(t, ψ1(s0, u)). For any v ∈ D̄0, if v ∈ Kλ, then
W ∗∗

λ (v) = 0. Hence, v + β(−W ∗∗
λ (v)) = v ∈ D̄0. Assume that v ∈ Ẽλ ∩ D̄0.

Note that v ∈ D̄0 implies that dist(v,P) ≤ µ0. By Lemma 2.11, we have

dist(v + β(−W ∗∗
λ (v)),P)

= dist
(

v + β

(

− ξ(v)ζ(v)
1 + ‖Vλ(v)‖

)

Vλ(v),P
)

= dist
(

v + β

(

− ξ(v)ζ(v)
1 + ‖Vλ(v)‖

)

(λv −Oλ(v)),P
)

= dist
((

1− βλ
ξ(v)ζ(v)

1 + ‖Vλ(v)‖

)

v + β
ξ(v)ζ(v)

1 + ‖Vλ(v)‖Oλ(v),P
)

≤ dist
((

1− βλ
ξ(v)ζ(v)

1 + ‖Vλ(v)‖

)

v + β
ξ(v)ζ(v)

1 + ‖Vλ(v)‖Oλ(v),

β
ξ(v)ζ(v)

1 + ‖Vλ(v)‖P +
(

1− λβ
ξ(v)ζ(v)

1 + ‖Vλ(v)‖

)

P
)

=
(

1− βλ
ξ(v)ζ(v)

1 + ‖Vλ(v)‖

)

dist(v,P) + β
ξ(v)ζ(v)

1 + ‖Vλ(v)‖dist(Oλ(v),P)
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≤
(

1− βλ
ξ(v)ζ(v)

1 + ‖Vλ(v)‖

)

µ0 + β
ξ(v)ζ(v)

1 + ‖Vλ(v)‖
µ0

2

≤ µ0

(

because λ >
1
2

)

.

Hence, v + β(−W ∗∗
λ (v)) ∈ D̄0 for β > 0 small enough. It follows that

lim
β→0+

dist(v + β(−W ∗∗
λ (v)), D̄0)

β
= 0, ∀v ∈ D̄0.

By Lemma 1.49, ψ([0,+∞), D̄0) ⊂ D̄0. Similarly, ψ([0,+∞),−D̄0) ⊂ −D̄0.
That is, ψ([0,+∞), D̄) ⊂ D̄. The same as the proof of Step 4, we have
ψ([0,+∞),D) ⊂ D.

Step 9. We claim: ψ1(t, u) �∈ B for all t ∈ [0, T1] and u ∈ A.
For u ∈ A, by (6.56), we have that

(6.58) Gλ(ψ1(t, u)) ≤ Gλ(u) ≤ a0(λ) ≤ b0(λ) = c0(λ), ∀ t ∈ [0, T1]

and

Gλ(ψ1(t, u))(6.59)

= Gλ(u) +
∫ t

0

dGλ(ψ1(σ, u))
dσ

dσ

≤ Gλ(u)−
∫ t

0

9δ2

4(1 + 3δ)
ζ(ψ1(σ, u))dσ

for all t ∈ [0, T1]. If the claim of this step is not true, then there are t0 ∈ [0, T1]
and u ∈ A such that ψ1(t0, u) ∈ B. Then

Gλ(ψ1(t0, u)) ≥ c0(λ) = b0(λ) = inf
B

Gλ.

By (6.58) and (6.59), we see that

∫ t0

0

9δ2

4(1 + 3δ)
ζ(ψ1(σ, u))dσ = 0.

Hence, ζ(ψ1(σ, u)) = 0 for σ ∈ [0, t0]; that is ψ1(σ, u) �∈ Θ6, ∀σ ∈ [0, t0].
In particular, ψ1(t0, u) �∈ Θ6. Therefore, one of the following three cases
occurs.

‖ψ1(t0, u)‖ > k0 + 2 + dA,(6.60)

|Gλ(ψ1(t0, u))− c0(λ)| > ε1,(6.61)
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dist(ψ1(t0, u),S) > 2T1.(6.62)

Because
‖ψ1(t0, u)− ψ1(σ′, u)‖ ≤ |t0 − σ′|,

then
‖ψ1(t0, u)‖ ≤ ‖ψ1(0, u)‖+ T1 ≤ dA + 1;

it implies that (6.60) can never be true. If (6.61) holds, then Gλ(ψ1(t0, u)) <
c0(λ)−ε1 (by (6.58)). Hence, ψ1(t0, u) �∈ B because infB Gλ = b0(λ) = c0(λ).
Evidently, (6.62) implies that ψ1(t0, u) �∈ B. Therefore, the claim of Step 9
is true.

Step 10. We claim: ψ1(T1, Γn(2s− 1, u)) �∈ B for all u ∈ A and all s ∈
[
1
2 , 1
]
.

For any fixed u ∈ A and s ∈
[
1
2 , 1
]
, if Γn(2s− 1, u) ∈ D, then by (6.57),

ψ1(T1, Γn(2s− 1, u)) ∈ D ⊂ E\S ⊂ E\B.

Next, we assume

(6.63) Γn(2s− 1, u) ∈ S

and divide the proof of the claim into two cases.

Case 1. If ψ1(σ, Γn(2s− 1, u)) ∈ Θ6 for all σ ∈ [0, T1], we have that

Gλ(ψ1(T1, Γn(2s− 1, u)))

= Gλ(Γn(2s− 1, u)) +
∫ T1

0

dGλ(ψ1(σ, Γn(2s− 1, u)))
dσ

dσ

≤ Gλ(Γn(2s− 1, u))

−
∫ T1

0

9δ2

4(1 + 3δ)
ζ(ψ1(σ, Γn(2s− 1, u)))dσ (by (6.56))

= Gλ(Γn(2s− 1, u))− 9δ2

4(1 + 3δ)
T1 (by (6.53))

≤ c0(λ) + (c′0(λ) + 2)(λn − λ)− 9δ2

4(1 + 3δ)
T1 (by (6.11) and (6.63))

≤ c0(λ)− 5δ2

4(1 + 3δ)
T1, (by (6.46))

which implies that ψ1(T1, Γn(2s− 1, u)) �∈ B because c0(λ) = b0(λ).
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Case 2. If there exists a t0 ∈ [0, T1] such that

ψ1(t0, Γn(2s− 1, u)) �∈ Θ6,

then one of the following alternatives holds.

‖ψ1(t0, Γn(2s− 1, u))‖ > k0 + 2 + dA.(6.64)

|Gλ(ψ1(t0, Γn(2s− 1, u)))− c0(λ)| > ε1.(6.65)

dist(ψ1(t0, Γn(2s− 1, u)),S) > 2T1.(6.66)

Assume that (6.64) holds. We show that ψ1(T1, Γn(2s−1, u)) �∈ B. Otherwise,
if ψ1(T1, Γn(2s− 1, u)) ∈ B, then

b0(λ) = c0(λ)(6.67)

≤ Gλ(ψ1(T1, Γn(2s− 1, u)))

≤ Gλ(Γn(2s− 1, u)).

By (6.63), (6.67), and Step 1, ‖Γn(2s− 1, u)‖ ≤ k0. Furthermore, because

‖ψ1(t0, Γn(2s− 1, u))− ψ1(0, Γn(2s− 1, u))‖ ≤ t0,

it follows that

‖ψ1(t0, Γn(2s− 1, u))‖ ≤ k0 + t0 ≤ k0 + 1,

which contradicts (6.64). Hence, ψ1(T1, Γn(2s− 1, u)) �∈ B.
Assume that (6.65) holds, we show that ψ1(T1, Γn(2s − 1, u)) �∈ B. Note,

by (6.11), (6.63), and (6.47), that

Gλ(ψ1(t0, Γn(2s− 1, u)))

≤ Gλ(ψ1(0, Γn(2s− 1, u)))

= Gλ(Γn(2s− 1, u))

≤ c0(λ) + ε1.

Therefore, (6.56) and (6.65) imply that

Gλ(ψ1(T1, Γn(2s− 1, u)))

≤ Gλ(ψ1(t0, Γn(2s− 1, u)))

≤ c0(λ)− ε1.

It follows that ψ1(T1, Γn(2s− 1, u)) �∈ B because c0(λ) = b0(λ).
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Assume that (6.66) holds. Note that

‖ψ1(t, u)− ψ1(t′, u)‖ ≤ |t− t′|.

It therefore follows that

‖ψ1(t, Γn(2s− 1, u))− w‖

≥ ‖ψ1(t0, Γn(2s− 1, u))− w‖ − |t− t0|,

for all w ∈ B, t ∈ [0, T1]. Hence,

dist(ψ1(t, Γn(2s− 1, u)), B) ≥ T1

for all t ∈ [0, T1]. In particular,

(6.68) ψ1(T1, Γn(2s− 1, u)) �∈ B.

That is, each case of (6.64)–(6.66) implies (6.68).
Cases 1 and 2 complete the proof of the claim in Step 10.

Step 11. To get the final contradiction, we have to introduce a new mapping:

Γ ∗
1 (s, u) :=

{
ψ1(2sT1, u), 0 ≤ s ≤ 1/2,

ψ1(T1, Γn(2s− 1, u)), 1/2 ≤ s ≤ 1.

Then Γ ∗
1 ∈ Φ∗ (in view of Step 8). However, by Steps 9 and 10, Γ ∗

1 (s,A)∩
B = ∅ for all s ∈ [0, 1], which contradicts the fact that A links B. We get the
final contradiction. This justifies (6.43) in Step 7 which implies Conclusion
(2) of the theorem. �

The first case of Theorem 6.1 implies that {um} is a sign-changing bounded
(PS) sequence. For the second case, note that we may choose an open neigh-
borhood S0 of S such that B ⊂ S ⊂ S0 ⊂ E\(−P ∪ P) (see the definition of
S in (6.3)); hence, {um} is still a sign-changing bounded (PS) sequence. For
both cases, if {um} has a convergent subsequence, then its limit must belong
to S because S is closed. That is, Gλ has a sign-changing critical point in
S for almost all λ ∈ Λ. Note that the classical Palais–Smale compactness
condition is not needed.

Theorem 6.2. Under the assumptions of Theorem 6.1, if J ′ is compact, then
for almost all λ ∈ Λ, Gλ has a sign-changing critical point in S.

For a special choice of linking sets A and B, we obtain the following weaker
version.

Theorem 6.3. Assume that (A1) and (A2) hold. Suppose that E = Y ⊕M ,
1 < dimY <∞ and that



6.1 Bounded Sign-Changing (PS)-Sequences 195

(1) Gλ(v) ≤ δλ for all v ∈ Y and λ ∈ Λ, where δλ ≥ 0 is a constant,
(2) Gλ(w) ≥ δλ for all w ∈ {w : w ∈ M, ‖w‖ = ρλ} ⊂ S and λ ∈ Λ; where

ρλ is a positive constant,
(3) Gλ(sw0 + v) ≤ C0 for all s ≥ 0, v ∈ Y , and λ ∈ Λ, w0 ∈ M with

‖w0‖ = 1 is a fixed element, and C0 is a constant.

If J ′ is compact, then for almost all λ ∈ Λ, Gλ has a sign-changing critical
point in S.

Proof. Define χ ∈ C∞(R) such that χ = 0 in
(
− ∞, 1

2

)
and χ = 1 in

(1,∞), 0 ≤ χ ≤ 1. Write u ∈ E as u = v + w, v ∈ Y,w ∈M. Let

Gλ, n(u) = Gλ(u)−
(

C0 +
1
n

)

χ

(
‖u‖2

n

)

, n = 1, 2, . . . .

Then

G′
λ, n = G′

λ(u)− 2
(

C0 +
1
n

)

χ′
(
‖u‖2

n

)
u

n
(6.69)

= λu− J ′(u)− 2
(

C0 +
1
n

)

χ′
(
‖u‖2

n

)
u

n

:= λu− J̃ ′(u)

and

(6.70) ‖G′
λ(u)−G′

λ, n(u)‖ ≤ C1n
−1/2.

Moreover, Gλ, n(v) ≤ δλ for all v ∈ Y. For any w ∈ M , if ‖w‖ = ρλ, then
χ(‖w‖2/n) = 0 for n > 2ρ2

λ and consequently

Gλ, n(w) = Gλ(w) ≥ δλ.

Choose ‖sw0 + v‖ := n1/2 := Rn. Then Rn > ρλ if n is large enough, and

Gλ, n(sw0 + v)

= Gλ(sw0 + v)− (C0 + 1/n)χ
(
‖sw0 + v‖2

n

)

≤ − 1
n

.

Let
B := {w ∈M : ‖w‖ = ρλ},

and

An := {v ∈ Y : ‖v‖ ≤ Rn} ∪ {sw0 + v : s ≥ 0, v ∈ Y, ‖sw0 + v‖ = Rn}.
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Then An links B (cf. Chapter 2), B ⊂ S, and supAn
Gλ ≤ infB Gλ,∀λ ∈ Λ.

Furthermore, for any u ∈ E with dist(u,P) < µ0, by (A1) and (6.69), we
have

dist(J̃ ′(u),P)

≤ dist(J ′(u),P) + dist
(

2
(

C0 +
1
n

)

χ′
(
‖u‖2

n

)
u

n
,P
)

≤ dist(J ′(u),P) + 2
(

C0 +
1
n

)

χ′
(
‖u‖2

n

)
1
n

dist(u,P)

≤ 1
4
dist(u,P)

for n large enough. Then Gλ,n satisfies all the conditions of Theorem 6.1.
Because J ′ is compact, by standard argument, the bounded (PS) sequence
has a convergent subsequence. Therefore, for almost all λ ∈ Λ, there exists a
un ∈ S such that

G′
λ,n(un) = 0,

Gλ,n(un) ∈ [ δλ, sup
(t,u)∈[0,1]×An

Gλ,n((1− t)u)].

Evidently,

‖G′
λ(un)−G′

λ,n(un)‖ = ‖G′
λ(un)‖ ≤ C1n

−1/2 → 0, (by (6.70))

δλ ≤ Gλ,n(un) ≤ Gλ(un) ≤ Gλ,n(un) + C0 + 1/n,

sup
(t,u)∈[0,1]×An

Gλ,n((1− t)u) ≤ C0.

Therefore, Gλ(un) → c ∈ [δλ, 2C0] as n→∞. Finally,

G′
λ(un) = G′

λ(un)−G′
λ,n(un)

= 2
(

C0 +
1
n

)

χ′
(
‖un‖2

n

)
un

n

=
Cn

n
un → 0,

where {Cn} is a bounded sequence. That is, for almost all λ ∈
(

1
2 , 1
)
, we find

un ∈ S such that
G′

λ−(Cn/n)(un) = 0,

which implies the conclusion of the theorem. �
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We now assume that there is another norm ‖ · ‖ of E such that ‖u‖ ≤
C‖u‖ for all u ∈ E; here C > 0 is a constant. Moreover, we assume that
‖un − u∗‖ → 0 whenever un ⇀ u∗ weakly in (E, ‖ · ‖). In the sequel,
all properties are with respect to the norm ‖ · ‖ if without specific indi-
cation. Write E = M ⊕ Y, where Y,M := Y ⊥ are closed subspaces with
dimY < ∞ and (M\{0}) ∩ (−P ∪ P) = ∅; that is, the nontrivial elements
of M are sign-changing. Let y0 ∈ M\{0} with ‖y0‖ = 1 and 0 < ρ < R
with

Rp−2‖y0‖p
 +

R‖y0‖

1 + D‖y0‖
> ρ, D > 0, p > 2 are constants.

Let

A := {u = v + sy0 : v ∈ Y, s ≥ 0, ‖u‖ = R} ∪ [Y ∩ B̄R],

B :=
{

u ∈M :
‖u‖p



‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖
= ρ

}

.

Then by Proposition 2.10, A links B in the sense of Definition 2.1. Choose

(6.71) a > sup
(t,u)∈[0,1]×A, λ∈[1/2,1]

Gλ((1− t)u) + 2.

Define

(6.72) B := B ∩Ga�

1/2.

Choose Γ (t, u) = (1 − t)u ∈ Φ∗ (cf. (2.22)); then Γ (t, a) ∈ B for some
(t, a) ∈ [0, 1]×A. Moreover, Γ (t, a) ∈ Ga�

1/2, hence, B := B ∩Ga�

1/2 �= ∅. Set

(6.73) Φ∗∗
λ := {Γ ∈ Φ∗ : Γ ([0, 1], A) ⊂ Ga�

λ }.

Then Γ (t, u) = (1− t)u ∈ Φ∗ ∩ Φ∗∗
λ . Note that Ga�

λ ⊂ Ga�

1/2.

Lemma 6.4. ‖u‖ ≤ c1, ∀u ∈ B; here c1 is a constant.

Lemma 6.5. Assume that for any a, b > 0, there is a c = c(a, b) > 0 such
that

G1/2(u) ≤ a and ‖u‖ ≤ b ⇒ ‖u‖ ≤ c.

Then we have that

dist(B := B ∩Ga�

1/2,P) := δ1 > 0.

Proof. This is the same as that of Lemma 2.16. �

Therefore, we may assume that B ⊂ S as long as the µ0 of Condition
(A1) is small enough; this is indeed true in our applications.
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(A∗∗∗
222) Assume

a0(λ) := sup
A

Gλ ≤ b0(λ) := inf
B�

Gλ for any λ ∈ Λ.

(A∗∗∗
333) Assume that for any a, b > 0, there is a c = c(a, b) > 0 such that

G1/2(u) ≤ a and ‖u‖ ≤ b⇒ ‖u‖ ≤ c.

Theorem 6.6. Assume that (A1), (A
2), and (A

3) hold. Define

c0(λ) := inf
Γ∈Φ∗∗

λ

sup
Γ ([0,1],A)∩S

Gλ(u);

then
c0(λ) ∈

[
b0(λ), sup

(t,u)∈[0,1]×A

Gλ((1− t)u)
]
.

Moreover, for almost all λ ∈ Λ,

(1) If c0(λ) > b0(λ), then there is a sequence {um} depending on λ such
that

sup
m
‖um‖ <∞, um ∈ S, G′

λ(um) → 0, Gλ(um) → c0(λ),

(2) If c0(λ) = b0(λ), then there is a sequence {um} depending on λ such
that

sup
m
‖um‖ <∞, dist(um,S) → 0, G′

λ(um) → 0,

Gλ(um) → c0(λ).

Proof. Keep in mind that the flow is descending. If λ1 ≤ λ2, then we have

Φ∗∗
λ2
⊂ Φ∗∗

λ1
.

Therefore, c0(λ) is nondecreasing. Replace B by B and Φ∗ by Φ∗∗
λ ; then the

proof is the same as that of Theorem 6.1. �

Notes and Comments. The novelty of Theorem 6.3 is the sign-changing pro-
perty of the critical point via a weaker linking geometry. It should be noted
that in the original form of the saddle point theorem (cf. Rabinowitz [255]),
it is required that

G(sw0 + v) ≤ 0 for all s ≥ 0, v ∈ Y, ‖sw0 + v‖ = R

holds for some R ≥ ρ. To get this, one has to show that

lim sup
R→∞

{G(sw0 + v) : s ≥ 0, v ∈ Y, ‖sw0 + v‖ = R} < 0.
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This is much more demanding than that of Theorem 6.3. This was also
observed in Schechter [268, 275] where the Palais–Smale condition was
required and no nodal structure of the critical point was obtained. In the
proof of Theorem 6.1, we have used the idea of the so-called “monotoni-
city method”, because Gλ is monotonically depending on λ. This trick was
introduced by Struwe in [312, 313] for minimization problems and essentially
developed by Jeanjean [178, 180–182] for one positive solution of the moun-
tain pass type. Some ideas adopted here and in the sequel come from Jeanjean
in [178]. Further developments were made by Schechter, Szulkin, Willem, and
Zou in [282, 286, 287, 320, 336, 344, 346] for (only the existence of solutions
of) elliptic systems, homoclinic orbits of Hamiltonian systems, Schrödinger
equations, and so on.

6.2 Bounded (PS) Sequences via Symmetry

In this section, assume that E = ⊕j∈NXj with dimXj < ∞ for any j ∈ N,
where N denotes the set of all positive integers. Set Ek = ⊕k

j=1Xj , Zk =
⊕∞

j=kXj , and
Bk = {u ∈ Ek : ‖u‖ ≤ ρk}.

We write Y = Ek,M = Zk. Then dimY <∞; dimY −codimM ≥ 1. Assume
that (M\{0})∩ (−P ∪P) = ∅; that is, the nontrivial elements of M are sign-
changing. We assume that P is weakly closed; that is, if P � uk ⇀ u weakly
in (E, ‖ · ‖), then u ∈ P. In all applications in this book, this is satisfied
automatically. As before, we assume that there is another norm ‖ · ‖ of E
such that ‖u‖ ≤ C‖u‖ for all u ∈ E; here C > 0 is a constant. Moreover,
we assume that ‖un−u∗‖ → 0 whenever un ⇀ u∗ weakly in (E, ‖ · ‖). Write
E = M1 ⊕M. Let

Q(ρ) :=
{

u ∈M :
‖u‖p



‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖
= ρ

}

,

where ρ > 0,D > 0, p > 2 are fixed constants. Evidently, we have

Lemma 6.7. ‖u‖ ≤ c1,∀u ∈ Q(ρ), where c1 > 0 is a constant.

Lemma 6.8. Assume (A
3). For any a > 0, we have that

dist(Q(ρ) ∩Ga
1/2,P) := δ(a) > 0.

Proof. Similar to Lemma 5.4. �
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Let

Γk(λ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ :

γ ∈ C([0, 1]×Bk, E)

γ(t, ·)|∂Bk
= id for each t ∈ [0, 1]

γ(t, u) is odd in u; γ(t,D) ⊂ D for all t ∈ [0, 1]

supGλ(γ([0, 1], Bk)) ≤ maxBk
G1(u) := a0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

;

then γ = id ∈ Γk(λ). Note that both ‖ · ‖ and ‖ · ‖ are equivalent in Y ; we
have a constant �Y such that

‖u‖ ≤ �Y ‖u‖, for all u ∈ Y.

We assume that ρk ≥ �Y + 2 and

(6.74)

(
ρk

	Y

)p

ρ2
k

+
ρk

(
ρk

	Y

)

ρk + DCρk
> ρ.

Lemma 6.9. h(t, Bk) ∩Q(ρ) �= ∅, ∀ h ∈ Γk(λ), ∀ t ∈ [0, 1].

Proof. Let

β∗(u) :=
‖u‖p



‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖

if u �= 0 and β∗(0) = 0. Then β∗ : E → E is continuous. Set h(t, ·) = h(·).
Let

U := {u ∈ Y : β∗(h(u)) < ρ} ∩ {u ∈ Y : ‖u‖ < ρk};
then U is a neighborhood of zero in Y . Let P : E → M1 be the projection;
then P ◦h : ∂U →M1 is odd and continuous. By the Borsuk–Ulam theorem,
we have that P ◦ h(u) = 0 for some u ∈ ∂U . Hence, h(u) ∈ M. We claim
u �∈ ∂{u ∈ Y : ‖u‖ < ρk}. Otherwise, ‖u‖ = ρk and then h(u) = u, P (u) = 0.
It follows that

‖u‖p


‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖
≤ ρ.

Note that ‖u‖ ≤ C‖u‖ ≤ C�Y ‖u‖ in Y . Therefore,
(

ρk

	Y

)p

ρ2
k

+
ρk

(
ρk

	Y

)

ρk + DCρk

=

(
‖u‖
	Y

)p

‖u‖2 +
‖u‖

(
‖u‖
	Y

)

‖u‖+ DC‖u‖

≤ ‖u‖p


‖u‖2 +
‖u‖‖u‖

‖u‖+ D‖u‖

≤ ρ.
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This is impossible in view of (6.74). So, our claim is true. It means

u ∈ ∂{u ∈ Y : β∗(h(u)) < ρ}, ‖u‖ ≤ ρk, u ∈ Y.

Hence,

h(u) ∈M,

‖h(u)‖p


‖h(u)‖2 +
‖h(u)‖‖h(u)‖

‖h(u)‖+ D‖h(u)‖
= ρ⇒ h(u) ∈ Q(ρ).

�

Let
Nk := Q(ρ) ∩Ga0

1/2, a0 := max
Bk

G1.

By Lemma 6.8, we have that

dist(Nk,P) := δ(a0) > 0.

Therefore, we may assume that Nk ⊂ S. Define

ak(λ) := max
∂Bk

Gλ, bk(λ) := inf
Nk

Gλ,

ck(λ) := inf
γ∈Γk(λ)

max
γ([0,1],Bk)∩S

Gλ.

(A333) Assume ak(λ) < bk(λ) for any λ ∈ Λ.

Theorem 6.10. Assume that (A1), (A
3), and (A3) hold and that Gλ is even

for all λ ∈ Λ. Then, for almost all λ ∈ Λ, there is a sequence {um} depending
on λ such that

sup
m
‖um‖ <∞, um ∈ S, G′

λ(um) → 0,

Gλ(um) → ck(λ) ∈
[
bk(λ), max

u∈Bk

G1(u)
]
.

In particular, if J ′ is compact, then for almost all λ ∈ [1/2, 1], Gλ has a sign-
changing critical point in S with critical value in [bk(λ), maxu∈Bk

G1(u)].

Proof. By the intersection lemma 6.9, for any γ ∈ Γk(λ), we have that

γ([0, 1], Bk) ∩Nk �= ∅;

then γ([0, 1], Bk) ∩ S �= ∅. Therefore,

sup
γ([0,1],Bk)∩S

Gλ ≥ sup
γ([0,1],Bk)∩Nk

Gλ
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≥ inf
γ([0,1],Bk)∩Nk

Gλ

≥ inf
Nk

Gλ

= bk(λ).

Then ck(λ) ≥ bk(λ). Evidently,

ck(λ) ≤ sup
u∈Bk

Gλ(u) ≤ max
u∈Bk

G1(u),

the right-hand side is a constant independent of λ.
Note that Γk(λ2) ⊂ Γk(λ1) if λ1 ≤ λ2. Then ck(λ) is still nondecreasing.

Similar to the proof of Theorem 6.1, c′k(λ) := (dck(λ))/dλ exists for almost
every λ ∈ (1

2 , 1). From now on, we consider those λ where c′k(λ) exists. For
a fixed λ ∈ Λ, let λn ∈ (λ, 2λ) ∩ Λ be a nonincreasing sequence so that
λn → λ as n→∞. Then there exists an n̄(λ), which depends on λ only, such
that

(6.75) c′k(λ)− 1 ≤ ck(λn)− ck(λ)
λn − λ

≤ c′k(λ) + 1 for n ≥ n̄(λ).

We prove the theorem step by step.

Step 1. We show that there exists a γn ∈ Γk(λ) and d0 := d0(λ) > 0 such
that

‖u‖ ≤ d0 whenever u ∈ γn([0, 1], Bk) ∩ S with Gλ(u) ≥ ck(λ)− (λn−λ),

where d0 is dependent on λ and independent of n.
In fact, by the definition of ck(λ), there exists a γn ∈ Γk(λ) such that

sup
u∈γn([0,1], Bk)∩S

Gλ(u) ≤ sup
u∈γn([0,1], Bk)∩S

Gλn
(u)(6.76)

≤ ck(λn) + (λn − λ).

If Gλ(u) ≥ ck(λ)− (λn− λ) for some u ∈ γn([0, 1], Bk)∩S, then by (6.75)
and (6.76), we have that

(6.77)
1
2
‖u‖2 =

Gλn
(u)−Gλ(u)
λn − λ

≤ c′k(λ) + 3.

It follows that

(6.78) ‖u‖ ≤ (2c′k(λ) + 6)1/2 := d0(λ) := d0;

here d0 is dependent on λ only.
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Step 2. By the choice of γn and (6.75) and (6.76), we see that

Gλ(u) ≤ Gλn
(u)(6.79)

≤ ck(λ) + (c′k(λ) + 2)(λn − λ)

for all u ∈ γn([0, 1], Bk) ∩ S.

Step 3. For ε > 0, we define

Hε(n, λ) :=

{

u ∈ E :
‖u‖ ≤ d0 + 2,

ck(λ)− 2(λn − λ) ≤ Gλ(u) ≤ ck(λ) + 2ε

}

.

Choose n∗(λ) > n̄(λ) (n̄(λ) comes from (6.75)) such that

(6.80) (c′k(λ)+2)(λn−λ) < ε, λn−λ ≤ ε, 2(λn−λ) < ck(λ)−ak(λ)

for all n ≥ n∗(λ). Then,

Hε(n∗(λ), λ) ∩ S �= ∅

for all n ≥ n∗(λ). Indeed, by the definition of ck(λ), there exists at least
one u ∈ γn([0, 1], Bk)∩S such that Gλ(u) > ck(λ)− (λn − λ); it follows that
‖u‖ ≤ d0. Furthermore, (6.79) and (6.80) imply Gλ(u) ≤ ck(λ)+ε. Therefore,
u ∈ Hε(n, λ) ∩ S �= ∅ for all n ≥ n∗(λ). Evidently,

(6.81) Hε(n, λ) ⊂ Hε(n∗(λ), λ) for all n ≥ n∗(λ).

We show that

(6.82) inf
u∈Hε(n∗(λ), λ)∩S

‖G′
λ(u)‖ = 0.

Then the conclusion of the theorem follows from (6.82).
To prove (6.82) by negation, we assume that there exists an ε∗ > 0 such

that

(6.83) ‖G′
λ(u)‖ ≥ ε∗ for all u ∈ Hε(n∗(λ), λ) ∩ S;

here ε∗ only depends on n∗(λ), λ, and ε, not on n. Therefore, by (6.81),

(6.84) ‖G′
λ(u)‖ ≥ ε∗ for all u ∈ Hε(n, λ) ∩ S, ∀n ≥ n∗(λ).

We now proceed to seek a final contradiction. Let

Ω1 := {u ∈ E : ‖u‖ ≤ d0 + 1};

Ω2 := {u ∈ E : ‖u‖ ≥ d0 + 2};
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Ω3 :=

{

u ∈ E :
either Gλ(u) ≤ ck(λ)− 2(λn − λ) or

Gλ(u) > ck(λ) + 2ε

}

;

Ω4 := {u ∈ E : ck(λ)− (λn − λ) ≤ Gλ(u) ≤ ck(λ) + ε}.

Define

β(u) :=
dist(u,Ω2)

dist(u,Ω1) + dist(u,Ω2)
,(6.85)

ξ(u) :=
dist(u,Ω3)

dist(u,Ω3) + dist(u,Ω4)
.(6.86)

Recall the definition of S in (6.3); let

Θ(α) := {u ∈ E : dist(u,P) < α} ∪ {u ∈ E : dist(u,−P) < α}, α > 0.

Then Θ(α) is an open neighborhood of the positive and negative cones
−P ∪ P. Let S∗ := E\Θ(µ0/2), which is an open neighborhood of S, where
µ0 comes from (6.3). Define

(6.87) π(u) :=
dist(u,Θ(µ0/4))

dist(u,Θ(µ0/4)) + dist(u,S∗)
.

Recall condition (A3) and Lemmas 2.11 and 2.12; we have a locally Lipschitz
continuous map Oλ : Ẽλ → Eλ such that Oλ(±D0 ∩ Ẽλ) ⊂ ±D0 and that
Vλ(u) := λu−Oλ(u) is a pseudo-gradient vector field of Gλ. In particular, we
may choose Oλ, hence Vλ, to be odd because Gλ is even for all λ. By (A1),
∂Kλ ⊂ (−P) ∪ P ∪ S for all λ ∈ Λ. Then for any u ∈ ∂Kλ, if

‖u‖ ≤ d0 + 2, ck(λ)− 2(λn − λ) ≤ Gλ(u) ≤ ck(λ) +2ε and u �∈ ±P,
(6.88)

then, u ∈ Hε(n, λ) ∩ S. By (6.84), there exists a neighborhood Uu of u
such that ‖G′

λ(w)‖|Uu
≥ ε∗/2. This is impossible because u ∈ ∂Kλ. This

means that at least one of the inequalities of (6.88) is not true. It follows
that there exists a neighborhood Uu of u such that either Uu ⊂ Ω2 or
Uu ⊂ Ω3 or Uu ⊂ Θ(µ0/4). Therefore, β(u)ξ(u)π(u) = 0 for all u ∈ Uu.
Consequently,

W ∗
λ (u) :=

⎧
⎪⎨

⎪⎩

β(u)ξ(u)π(u)
1 + ‖Vλ(u)‖ Vλ(u), for u ∈ Ẽλ,

0, for u ∈ Kλ,

is a locally Lipschitz continuous vector field from E to E and ‖W ∗
λ (u)‖ ≤ 1

on E. Moreover, note that Ωi(i = 1, 2, 3, 4) and Θ(α) are symmetric sets;
we see that β(u), ξ(u), π(u) are even. Therefore, W ∗

λ (u) is odd in u. Let ψ:
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[0,∞) × E → E be the unique continuous solution of the following Cauchy
initial value problem

dψ(t, u)
dt

= −W ∗
λ (ψ(t, u)), ψ(0, u) = u ∈ E.

By the same arguments as in Step (4) of the proof of Theorem 6.1,

(6.89) ψ([0,+∞), D̄) ⊂ D̄, ψ([0,+∞),D) ⊂ D.

Step 5. Choose n∗∗(λ) > n∗(λ) such that

(6.90) λn − λ <
(ε∗)2

4(c′k(λ) + 3)(1 + ε∗)

for all n ≥ n∗∗(λ). For each n > n∗∗(λ), we define

(6.91) γ∗
n(s, u) := ψ(1, γn(s, u)), s ∈ [0, 1].

Then by (6.80), (6.86), and (6.89), γ∗
n ∈ Γk(λ). Take any u ∈ γ∗

n([0, 1], Bk) ∩
S; we write u = γ∗

n(s1, u1) ∈ S for some s1 ∈ [0, 1] and u1 ∈ Bk. Then
u = ψ(1, γn(s1, u1)) ∈ S.

If Gλ(γn(s1, u1)) ≤ ck(λ)− (λn − λ), then

Gλ(u) = Gλ(ψ(1, γn(s1, u1)))(6.92)

≤ Gλ((0, γn(s1, u1)))

= Gλ(γn(s1, u1))

≤ ck(λ)− (λn − λ).

If Gλ(γn(s1, u1)) > ck(λ) − (λn − λ), we show that (6.92) still holds.
We first observe that γn(s1, u1) ∈ S. Otherwise, γn(s1, u1) ∈ D implies
that u = ψ1(1, γn(s1, u1)) ∈ D by (6.89), which is a contradiction because
u ∈ S. Recall Step 1; we have ‖γn(s1, u1)‖ ≤ d0. Furthermore, by (6.79) and
(6.80),

γn(s1, u1) ∈ Hε(n, λ) ∩ S ⊂ Hε(n∗(λ), λ) ∩ S.

Therefore, by (6.84),

(6.93) ‖G′
λ(γn(s1, u1))‖ ≥ ε∗.

On the other hand, because ‖W ∗
λ (u)‖ ≤ 1 for all u ∈ E, we have that

‖ψ(t, γn(s1, u1))− ψ(0, γn(s1, u1))‖ ≤ t
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and that

(6.94) ‖ψ(t, γn(s1, u1))‖ ≤ t + ‖γn(s1, u1)‖ ≤ d0 + 1 for all t ∈ [0, 1].

If Gλ(ψ(t, γn(s1, u1))) ≤ ck(λ)− (λn − λ) for some t ∈ [0, 1], then

(6.95) Gλ(u) = Gλ(ψ(1, γn(s1, u1))) ≤ ck(λ)− (λn − λ);

then we have an inequality as (6.92).
Now we assume Gλ(ψ(t, γn(s1, u1))) > ck(λ) − (λn − λ) for all t ∈ [0, 1].

By (6.79)–(6.81),

(6.96) Gλ(ψ(t, γn(s1, u1))) ≤ Gλ(γn(s1, u1)) ≤ ck(λ) + ε.

By (6.89), ψ(1, γn(s1, u1)) ∈ S implies that ψ(t, γn(s1, u1)) ∈ S for all t ∈
[0, 1]. Combining (6.81), (6.94), and (6.96), we have that

(6.97) ψ(t, γn(1, u1)) ∈ Hε(n, λ) ∩ S ⊂ Hε(n∗(λ), λ) ∩ S

for all t ∈ [0, 1]. By (6.84),

(6.98) ‖G′
λ(ψ(t, γn(s1, u1)))‖ ≥ ε∗ for all t ∈ [0, 1].

Moreover, by (6.85), (6.86), (6.94), and (6.96),

β(ψ(t, γn(1, u1))) = ξ(ψ(t, γn(1, u1)))(6.99)

= π(ψ(t, γn(1, u1)))

= 1

for all t ∈ [0, 1]. Combining the definition of the pseudo-gradient vector field
and (6.98) and (6.99), it follows that

Gλ(ψ(t, γn(s1, u1)))−Gλ(γn(s1, u1))

≤
∫ t

0

dGλ(ψ(s, γn(s1, u1)))
ds

ds

≤
∫ t

0

−
〈

G′
λ(ψ(s, γn(s1, u1))),

Vλ(ψ(s, γn(s1, u1)))
1 + ‖Vλ(ψ(s, γn(s1, u1)))‖

〉

ds

≤ −1
2

∫ t

0

‖G′
λ(ψ(s, γn(s1, u1)))‖2

1 + ‖Vλ(ψ(s, γn(s1, u1)))‖
ds

≤ −1
4

∫ t

0

‖G′
λ(ψ(s, γn(s1, u1)))‖2

1 + ‖G′
λ(ψ(s, γn(s1, u1)))‖

ds

≤ −1
4

(ε∗)2

1 + ε∗
t.
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It follows that

G(u) = Gλ(ψ(1, γn(s1, u1)))(6.100)

≤ Gλ(γn(s1, u1))−
1
4

(ε∗)2

1 + ε∗

≤ ck(λ) + (c′k(λ) + 2)(λn − λ)− 1
4

(ε∗)2

1 + ε∗
(by (6.79))

≤ ck(λ)− (λn − λ). (by (6.90))

Summing up (6.92), (6.95), and (6.100), we have

G(u) ≤ ck(λ)− (λn − λ)

for all u ∈ γ∗
n([0, 1], Bk) ∩ S and all n > n∗∗(λ). This contradicts the defin-

ition of ck(λ) because γ∗
n ∈ Γk(λ) (cf. (6.91)). The contradiction guarantees

the truth of (6.82) from which the conclusion of Theorem 6.10 follows. �

Notes and Comments. A classical theorem for the existence of critical points
of even functionals is the so-called symmetric mountain pass theorem due to
Ambrosetti and Rabinowitz [15] (see also Rabinowitz [251, 253, 254, 257])
by which we may get infinitely many critical points without nodal structure.
A related result to Theorem 6.10 is known as the fountain theorem because
the critical points spout out like a fountain. The earlier form of the fountain
theorem and its dual were established by Bartsch in [28] and by Bartsch and
Willem in [50] (see also Willem [335]), respectively. Other applications can
be found in Bartsch and Willem [48, 49] and Bartsch and de Figueiredo [35]),
a variant version of which is given in Zou [342]. In all these papers, the sign
of the critical point cannot be decided.

6.3 Positive and Negative Solutions

In this section, we establish a parameter depending on the mountain pass
theorem inside the cones, by which we may get positive and negative solutions
directly. Assume e±0 ∈ ±P. Let

Ψ± := {φ ∈ C([0, 1],±D0) : φ(0) = 0, φ(1) = e±0 }.

We introduce the following assumption.

(A444) β±(λ) := inf
φ∈Ψ±

sup
φ([0,1])

Gλ >max{Gλ(0), Gλ(e±0 )} := ρ± for all λ ∈ Λ.

Theorem 6.11. Assume that (A1) and (A4) hold. Then for almost all λ ∈ Λ,
there are two sequences {um(±)} ⊂ ±D0 depending on λ such that
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sup
m
‖um(±)‖ <∞, G′

λ(um(±)) → 0,

Gλ(um(±)) → β±(λ) as m→∞,

where
β±(λ) ∈ [ρ±,Π±(λ)], Π±(λ) := max

t∈[0,1]
Gλ(te±0 ).

Furthermore, if both {um(±)} have convergent subsequences (for instance,
J ′ is compact), then for almost all λ ∈

(
1
2 , 1
)
, Gλ have two critical points

u± ∈ ±P.

Proof. We only consider the case of “+”. As before, β′
+(λ) exists for almost

all λ ∈ Λ. For this kind of λ, choose λn ∈ (λ, 2λ) ∩
(

1
2 , 1
)

such that λn → λ
and

(6.101) β′
+(λ)− 1 ≤ β+(λn)− β+(λ)

λn − λ
≤ β′

+(λ) + 1, as n large enough.

By the definition of β+(λ), there exists a φn ∈ Ψ+ such that

(6.102) sup
φn([0,1])

Gλ ≤ sup
φn([0,1])

Gλn
≤ β+(λn) + (λn − λ).

Hence,

Gλ(u) ≤ Gλn
(u)(6.103)

≤ sup
φn([0,1])

Gλn

≤ β+(λ) + (c′+(λ) + 2)(λn − λ)

for all u ∈ φn([0, 1]). By (6.102), it is easy to check that

(6.104) ‖u‖ ≤ k0 := (2β′
+(λ) + 6)1/2

if Gλ(u) ≥ β+(λ)− (λn − λ) and u ∈ φn([0, 1]). Define

A(ε, λ) := {u ∈ D0 : ‖u‖ ≤ k0 + 3, |Gλ(u)− β+(λ)| ≤ ε}.

We first observe that A(ε, λ) �= ∅. To see this, choose n large enough such
that

(c′+(λ) + 2)(λn − λ) < ε.

By (6.103), Gλ(u) ≤ β+(λ)+ ε for all u ∈ φn([0, 1]). Evidently, by the defini-
tion of β+(λ), we cannot have Gλ(u) < β+(λ)−(λn−λ) for all u ∈ φn([0, 1]).
That is, there exists at least one u ∈ φn([0, 1]) such that

(6.105) Gλ(u) ≥ β+(λ)− (λn − λ) ≥ β+(λ)− ε;
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hence, ‖u‖ ≤ k0, u ∈ A(ε, λ) �= ∅. We just need to prove that

(6.106) inf{‖G′
λ(u)‖ : u ∈ A(ε, λ)} = 0.

By way of negation, assume that there exists an ε0 > 0 such that ‖G′
λ(u)‖ ≥

ε0 for u ∈ A(ε0, λ). Without loss of generality, we may assume ε0 < (β+(λ)−
ρ+)/3. Choose n large enough such that

(λn − λ) ≤ ε0/5, (c′+(λ) + 2)(λn − λ) < ε0/5,

λn − λ < 2(β+(λ)− ρ+), λn − λ <
ε2
0

4(1 + ε0)(β′
+(λ) + 3)

.

Then by (6.103),

Gλ(u) ≤ β+(λ) + (c′+(λ) + 2)(λn − λ)(6.107)

< β+(λ) + ε0/5

for all u ∈ φn([0, 1]). Define

(6.108) A∗(ε0, λ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u ∈ D0 :

‖u‖ ≤ k0 + 3,

β+(λ)− (λn − λ) ≤ Gλ(u),

Gλ(u) ≤ β+(λ) + ε0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Then, by a similar argument, A∗(ε0, λ) �= ∅ and A∗(ε0, λ) ⊂ A(ε0, λ).
Define

M1 :=

⎧
⎨

⎩
u ∈ D0 :

‖u‖ ≤ k0 + 2,

β+(λ)− λn−λ
2 ≤ Gλ(u) ≤ β+(λ) + ε0

2

⎫
⎬

⎭
,

M2 :=

⎧
⎨

⎩
u ∈ D0 :

‖u‖ ≤ k0 + 1,

β+(λ)− λn−λ
4 ≤ Gλ(u) ≤ β+(λ) + ε0

4

⎫
⎬

⎭
.

Then M2 ⊂M1 ⊂ A∗(ε0, λ). Let

κ(u) :=
dist(u,E\M1)

dist(u,M2) + dist(u,E\M1)
,

V ∗
λ (u) =

⎧
⎪⎨

⎪⎩

κ(u)
Vλ(u)

1 + ‖Vλ(u)‖ , u ∈ Ẽλ,

0, u ∈ Kλ,
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where Vλ comes from Lemma 2.12. Then V ∗
λ (u) is a locally Lipschitz

continuous vector field on E. Consider the following initial value problem,
⎧
⎪⎨

⎪⎩

dϑ(t, u)
dt

= −V ∗
λ (ϑ(t, u)),

ϑ(0, u) = u ∈ E.

Its unique solution ϑ(t, u)(t ≥ 0) satisfies

‖ϑ(t, u)− u‖ ≤ t;(6.109)

dGλ(ϑ(t, u))
dt

≤ −1
4
κ(ϑ(t, u))

‖G′
λ(ϑ(t, u))‖2

1 + ‖G′
λ(ϑ(t, u))‖ ≤ 0.(6.110)

Therefore, by (6.107) and (6.110),
(6.111)

Gλ(ϑ(t, u)) ≤ Gλ(u) ≤ β+(λ) + ε0/5, ∀ u ∈ φn([0, 1]), ∀t ≥ 0.

If u ∈ φn([0, 1]) such that Gλ(u) > β+(λ) − (λn − λ)/4, then by (6.104),
‖u‖ ≤ k0; hence, u ∈M2. Therefore, by (6.110) and (6.111), we must have

(6.112) Gλ(ϑ(t, u)) ≤ Gλ(u) ≤ β+(λ)− (λn − λ)/4,

for all u ∈ φn([0, 1]) and u �∈M2,∀t ≥ 0.
If u ∈ φn([0, 1]) ∩M2, we show that (6.112) is still true for t = 1.
Suppose that t1 is the largest number (may equal ∞) such that ϑ(t, u) ∈

M2 for 0 ≤ t ≤ t1. If t1 < 1, because ϑ(t1 +s, u) �∈M2 for s > 0 small enough
and in view of (6.111), we have either

(6.113) ‖ϑ(t1 + s, u)‖ > k0 + 1

or

(6.114) Gλ(ϑ(t1 + s, u)) < β+(λ)− (λn − λ)/4.

We claim that the second conclusion of (6.113) is true. Otherwise,

Gλ(u) ≥ Gλ(ϑ(t1 + s, u))

≥ β+(λ)− (λn − λ)/4

≥ β+(λ)− (λn − λ),

which implies by (6.102) that ‖u‖ ≤ k0. By (6.109),

‖ϑ(t1 + s, u)‖ ≤ ‖u‖+ t1 + s ≤ k0 + 1;
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that is, the first alternative of (6.113) fails too. Now, use (6.110) again; we
must have

(6.115) Gλ(ϑ(1, u)) ≤ Gλ(ϑ(t1 + s, u)) ≤ β+(λ)− (λn − λ)/4.

If t1 ≥ 1, then ϑ(t, u) ∈M2 for 0 ≤ t ≤ 1. If

(6.116) Gλ(ϑ(1, u)) > β+(λ)− (λn − λ)/4,

then by (6.110), Gλ(u) ≥ β+(λ) − (λn − λ)/4, it implies that ‖u‖ ≤ k0 and
then by (6.109), ‖ϑ(t, u)‖ ≤ k0 + 1 for all t ∈ [0, 1]. Combining (6.110),
(6.111), and (6.116), we observe that

ϑ(t, u) ∈M2 ⊂ A(ε0, λ)

for all t ∈ [0, 1]. Hence, κ(ϑ(t, u)) = 1 for all t ∈ [0, 1]. It follows that

Gλ(ϑ(1, u))−Gλ(u)

=
∫ 1

0

dGλ(ϑ(s, u))
ds

ds

≤ −1
4

∫ 1

0

κ(ϑ(s, u))
‖G′

λ(ϑ(s, u))‖2
1 + ‖G′

λ(ϑ(s, u))‖ds

≤ − ε2
0

4(1 + ε0)
.

Furthermore, by (6.107),

Gλ(ϑ(1, u))(6.117)

≤ − ε2
0

4(1 + ε0)
+ β+(λ) + (λn − λ)(β′

+(λ) + 2)

≤ β+(λ)− (λn − λ)
4

,

by the way we have chosen n. Anyway, (6.116) cannot be true. Recall (6.112),
(6.115), and (6.117); we have that

(6.118) Gλ(ϑ(1, u)) ≤ β+(λ)− (λn − λ)/4, ∀u ∈ φn([0, 1]).

Similar to the proof of Step 4 of Theorem 6.1, we have

(6.119) ϑ([0,+∞),D0) ⊂ D0.

If we define
φ∗(t) := ϑ(1, φn(t)),
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then because 0, e+
0 �∈M1, we have that

φ∗(0) = ϑ(1, φn(0)) = ϑ(1, 0) = 0,

φ∗(e+
0 ) = ϑ(1, φn(e+

0 )) = ϑ(1, e+
0 ) = e+

0 ,

Combining this and (6.119), we see that φ∗ ∈ Ψ+. But (6.118) contradicts
the definition of β+(λ). Then we get the first part of Theorem 6.11. As for
the second part, we just note that (A1) implies that Kλ ∩ D0 ⊂ P. �
Notes and Comments. The classical mountain pass theorem can be found
in Ambrosetti and Rabinowitz [15] (see also Rabinowitz [251, 253, 254]).
A version of the parameter-depending mountain pass theorem on whole space
was first established in Jeanjean [178] which also produces a bounded (PS)
sequence. But the sign of the limits was not decided there. In general, to
get positive or negative solutions to elliptic equations, more techniques and
theory (e.g., the trick of truncating function and the maximum principle)
are needed. Here, we may get both positive and negative solutions directly.
A version of the mountain pass theorem in an open subset was established in
Sun [316] (see also Sun and Hu [317]) where the (PS) condition was necessary.
Readers are referred to Chang [97, 96, 98], Li and Wang [198], Schechter [267,
270, 275], Schechter and Zou [289], and Tintarev [327] for other variants of
the mountain pass theorem.

6.4 Subcritical Schrödinger Equation

Consider the existence of sign-changing solutions to the Schrödinger equation:

(6.120) −∆u + V (x)u = f(x, u), x ∈ RN ,

where 2∗
(
= 2N/(N − 2) if N ≥ 3 or 2∗ = ∞ if N = 1, 2

)
is the critical

Sobolev exponent; f(x, t) : RN ×R→ R is a Carathéodory function with a
subcritical growth. Throughout this chapter, we always assume the following
geometric condition and growth hypotheses.

(S1) Let V (x) ∈ L∞
loc(R

N ), V0 := essinfRN V (x) > 0. For any M ′, r > 0,

(6.121) meas({x ∈ Br(y) : V (x) ≤M ′}) → 0 as |y| → ∞,

where Br(y) denotes the ball centered at y with radius r.
(S2) f : RN ×R→ R is a Carathéodory function with a subcritical growth:

|f(x, u)| ≤ c(1 + |u|s−1) for all u ∈ R and x ∈ RN ,

where s ∈ (2, 2∗); f(x, u)u ≥ 0 for all (x, u) and f(x, u) = o(|u|) as
|u| → 0 uniformly for x ∈ RN .
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Let E be the Hilbert space

E :=
{

u ∈ H1(RN ) :
∫

RN

V (x)u2dx <∞
}

endowed with the inner product

〈u, v〉 :=
∫

RN

(�u� v + V (x)uv)dx

for u, v ∈ E and norm ‖u‖ := 〈u, u〉1/2. The role of (S1) ensures the com-
pactness of certain embeddings of the working spaces. The limit in (6.121)
can be replaced by one of the following stronger conditions.

(S̄1) meas({x ∈ RN : V (x) ≤ M ′}) < ∞ for any M ′ > 0 (see Bartsch and
Wang [39]),

(S̃1) V (x) →∞ as |x| → ∞. (see Rabinowitz [260] and Omana and Willem
[238]).

A classical result due to Molchanov [228] (see also Kondrat’ev and Shubin
[184, Corollary 6.2] and Bartsch et al. [38]) says that E ↪→↪→ L2(RN ) and
hence, by the Gagliardo–Nirenberg inequality (cf. Lemma 1.18), E ↪→↪→
Lp(RN ) for p ∈ [2, 2∗). By standard elliptic theory (see, e.g., Evans [141]
and Reed and Simon [262]) we have the following lemma.

Lemma 6.12. The hypothesis (S1) implies that the eigenvalue problem

−∆u + V (x)u = λu, x ∈ RN

possesses a sequence of positive eigenvalues

0 < λ1 < λ2 < · · · < λk < · · · → ∞

with finite multiplicity for each λk. The principal eigenvalue λ1 is simple
with a positive eigenfunction ϕ1, and the eigenfunctions ϕk corresponding to
λk (k ≥ 2) are sign-changing.

Let Xk denote the eigenspace of λk; then dimXk < ∞. Let Ek := X1 ⊕
· · · ⊕Xk and

P := {u ∈ E : u(x) ≥ 0 for a.e. x ∈ RN}.
Then P (−P) is the positive (negative) cone of E. Let S be defined as (6.3).

Consider

(6.122) Gλ(u) =
λ

2
‖u‖2 −

∫

RN

F (x, u)dx, λ ∈
(

1
2
, 1
)

:= Λ.

Then
Gλ ∈ C1(E,R), G′

λ = λid− J ′,
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where J ′ := (−∆ + V )−1f. We seek the critical points of G1 := G.
Consider Equation (6.120) with superlinear and subcritical growth. We
are interested in the existence of infinitely many sign-changing solutions.
Assume

(P1) lim inf
|t|→∞

f(x, t)
t

=∞ uniformly for x ∈ RN .

(P2) f(x, t) is odd in t.

(P3)
f(x, t)

t
is nondecreasing in t > 0.

Theorem 6.13. Assume (S1) and (S2) and (P1)–(P3). Then Equation (6.120)
has one positive solution, one negative solution, and infinitely many sign-
changing solutions.

Condition (P3) can be replaced by

(P4) H(x, t) := f(x, t)t − 2F (x, t) ≥ 0 for all x ∈ RN ; H(x, t) is convex in
t > 0.

Theorem 6.14. Assume (S1), (S2), (P1), (P2), and (P4).
Then Equation (6.120) has one positive solution, one negative solution, and
infinitely many sign-changing solutions.

We prove Theorems 6.13 and 6.14 by applying Theorem 6.10. Given k ≥ 2,
set

Ek = ⊕k
j=1Xj , Zk = ⊕∞

j=kXj .

Then E = Ek−1 ⊕ Zk. Let

Bk := {u ∈ Ek : ‖u‖ ≤ ρk},

where ρk > 0 is a constant to be determined.
By (S2), there exist CF > 0, s ∈ (2, 2∗) such that

(6.123) |F (x, u)| ≤ λ1

8
u2 + CF |u|s, for x ∈ RN , u ∈ R.

Recall the Gagliardo–Nirenberg inequality:

(6.124) ‖u‖s ≤ cs‖∇u‖α
2 ‖u‖1−α

2 for all u ∈ H1(RN ),

where α = N
(

1
2 − 1/s

)
∈ (0, 1), cs > 1 is a constant depending on s,N .

Lemma 6.15. Under the assumptions of Theorems 6.13 and 6.14, there
exists a constant ρk > 0 independent of λ such that

(6.125) max
∂Bk

Gλ ≤ ak ≤ 0

for all λ ∈
(

1
2 , 1
)
. Here ak is independent of λ.
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Proof. Because dimEk <∞, then by (P1),

Gλ(u)
‖u‖2 ≤ 1

2
−
∫

RN

F (x, u)
‖u‖2 dx→ −∞

as ‖u‖ → ∞, u ∈ Ek uniformly for λ ∈
(

1
2 , 1
)
. Then there exists a ρk > 0

such that max∂Bk
Gλ ≤ ak ≤ 0, where ρk > 0, ak are independent of λ. �

For s ∈ (2, 2∗) given in (6.123), let

Q(ρ) :=

{

u ∈ E⊥
k−1 :

‖u‖s
s

‖u‖2 +
‖u‖‖u‖s

‖u‖+ λβ′

k ‖u‖s

= ρ

}

,

where β′ = (1− α)(s− 2), ρ := 1/16CF > 0 are fixed constants, α = N
(

1
2 −

1/s
)

comes from (6.124). On the other hand, we have a constant Λs > 1 such
that

(6.126) ‖u‖s ≤ Λs‖u‖, u ∈ E.

For u ∈ Q(ρ), by (6.126) we have

ρ =
‖u‖s

s

‖u‖2 +
‖u‖‖u‖s

‖u‖+ λβ′

k ‖u‖s

≤ ‖u‖‖u‖s

2(‖u‖λβ′

k ‖u‖s)1/2
+
‖u‖2s
‖u‖2 ‖u‖

s−2
s

≤ (‖u‖‖u‖s)1/2

2(λβ′

k )1/2
+ Λ2

s‖u‖s−2
s

≤ (Λs)1/2‖u‖
2(λβ′

k )1/2
+ Λ2

s‖u‖s−2
s .

By the Gagliardo–Nirenberg inequality in (6.124),

(6.127) ‖u‖s−2
s ≤ cs−2

s ‖u‖α(s−2)‖u‖(1−α)(s−2)
2 .

But u ∈ E⊥
k−1; we see that λk‖u‖22 ≤ ‖u‖2. Hence, by (6.127),

(6.128) ‖u‖s−2
s ≤ cs−2

s ‖u‖s−2λ
−(((1−α)(s−2))/2)
k .
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Therefore,

ρ ≤ (Λs)1/2‖u‖
2(λβ′

k )1/2
+ (Λs)2cs−2

s ‖u‖s−2λ
−(((1−α)(s−2))/2)
k

≤
(

1

(λβ′

k )1/2
+

1

λ
((1−α)(s−2))/2
k

)

(2Λ2
sc

s−2
s )max{‖u‖, ‖u‖s−2}.

Then we have that

(6.129)
λ

((1−α)(s−2))/2
k

(4Λ2
sc

s−2
s )

ρ ≤ max{‖u‖, ‖u‖s−2}.

Hence, we have

Lemma 6.16. For all u ∈ Q(ρ),

‖u‖ ≥ Λ∗
s min{λ((1−α)(s−2))/2

k , λ
(1−α)/2
k }min{ρ, ρ1/(s−2)},

where Λ∗
s is a constant independent of k.

Lemma 6.17.
‖u‖s

s

‖u‖2 ≤ ρ, ∀u ∈ Q(ρ).

Lemma 6.18. ‖u‖s ≤ c1, ∀u ∈ Q(ρ).

Proof. Actually,

‖u‖s ≤ ρ(1 + λβ′

k Λs), ρ =
1

16CF
.

�

Consider the functional

Gλ(u) =
λ

2
‖u‖2 −

∫

RN

F (x, u)dx, λ ∈
(

1
2
, 1
)

:= Λ.

Then by (6.123),

Gλ(u) ≥ 1
4
‖u‖2 − λ1

8
‖u‖22 − CF ‖u‖s

s

≥ 1
8
‖u‖2 − CF ‖u‖s

s

= ‖u‖2
(

1
8
− CF

‖u‖s
s

‖u‖2
)

.

Combine Lemma 6.16 and Lemma 6.17; we have the following.
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Lemma 6.19. For any u ∈ Q(ρ), we have that

Gλ(u) ≥ δs min{λ((1−α)(s−2))/2
k , λ

(1−α)/2
k },

where δs > 0 is a constant independent of k and λ.

By Lemma 6.9 and Lemma 6.15, we may choose ρk large such that
Lemma 6.9 holds. Now let

Nk := Q(ρ) ∩Ga0
1/2, a0 := max

Bk

G1.

By Lemma 6.8, we have that

(6.130) dist(Nk,P) := δ(a0) > 0.

For µ0 > 0, we define

D0(µ0) := {u ∈ E : dist(u,P) < µ0},

D1(µ0) := {u ∈ E : dist(u,P) < µ0/2}.

D := −D0(µ0) ∪ D0(µ0), S := E\D.(6.131)

Lemma 6.20. Consider Gλ with

(6.132) G′
λ(u) = λu− J ′(u).

There exists a µ0 < 1/2 (may be chosen small enough) such that

dist(J ′(u),±P) ≤ 1
5
dist(u,±P)

for all u ∈ E with dist(u,±P) < µ0. That is, (A1) is satisfied for Gλ.

Proof. This is the same as the proof of Lemmas 2.29. �

By Lemma 6.20 and (6.130), we may assume that

Nk ⊂ S.

By Lemma 6.19, we have the following.

Lemma 6.21. Under the assumptions of Theorems 6.13 and 6.14, there exist
constants rk > 0 independent of λ such that

(6.133) bk ≤ inf
Nk

Gλ

for all λ ∈ ( 1
2 , 1). Here bk are independent of λ. Moreover, bk →∞ as k →∞.
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Note Lemma 6.20 and Nk ⊂ S; we may use Theorem 6.10 to Gλ on E
for almost all λ. Then Gλ has a sign-changing critical point u(λ) in S with
critical value in [bk,maxBk

G1(u)], an interval independent of λ.

Lemma 6.22. Let λm ∈
(

1
2 , 1
)

and λm → 1. Set um = u(λm). Under the
assumptions of Theorems 6.13 and 6.14, {um} is bounded.

Proof. Assume that ‖um‖ → ∞ as m → ∞. We consider wm := um/‖um‖.
Then, up to a subsequence, we get that

wm ⇀ w in E,

wm → w in Lt(RN ) for 2 ≤ t < 2∗,

wm(x) → w(x) a.e. x ∈ RN .

Case 1. w �= 0 in E. Because G′
λ(um) = 0, we have that

∫

RN

f(x, um)um

‖um‖2
dx ≤ c.

On the other hand, by Fatou’s lemma and Conditions (P1) and (S2),
∫

RN

f(x, um)um

‖um‖2
dx

=
∫

{w(x) �=0}
|wm(x)|2 f(x, um)um

|um|2
dx→∞,

a contradiction.

Case 2. w = 0 in E. Define

G′
λ(tmum) := max

t∈[0,1]
Gλ(tum).

For any c > 0 and w̄n := (4c)1/2wn, we have, for n large enough, that

Gλ(tmum) ≥ Gλ(w̄m) = c−
∫

RN

F (x, w̄m)dx ≥ c/2,

which implies that limm→∞ Gλ(tmum) = ∞. Evidently, tm ∈ (0, 1); hence,
〈G′

λ(tmum), tmum〉 = 0. It follows that
∫

RN

(
1
2
f(x, tmum)tmum − F (x, tmum)

)

dx→∞.

If Condition (P3) holds, h(t) = 1
2 t2f(x, s)s−F (x, ts) is increasing in t ∈ [0, 1];

hence 1
2f(x, s)s−F (x, s) is increasing in s > 0. Combining the oddness of f ,
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we have that
∫

RN

(
1
2
f(x, um)um − F (x, um)

)

dx(6.134)

≥
∫

RN

(
1
2
f(x, tmum)tmum − F (x, tmum)

)

dx

→∞,

If Condition (P4) holds, then (6.134) is still true. Therefore, we get a contra-
diction inasmuch as

∫

RN

(
1
2
f(x, um)um − F (x, um)

)

dx

= Gλ(um) ∈ [bk,max
Bk

G].

Once we have proved the boundedness of {um}, it is easy to get a
sign-changing critical point u of G1 with critical value in [bk,maxBk

G1(u)]
(independent of λ). Because bk → ∞ as k → ∞, we get infinitely many
sign-changing critical points of G1.

Finally, we apply Theorem 6.11 to prove the existence of positive and
negative solutions. Evidently, Gλ(u) → −∞ for u ∈ Ek and ‖u‖ → ∞ uni-
formly for λ ∈

(
1
2 , 1
)
. Because E1 ⊂ P, we may choose e+

0 ∈ P such that
Gλ(e+

0 ) ≤ Gλ(0) = 0. Obviously, by (S2), all the conditions of Theorem 6.11
are satisfied and therefore, Gλ has a critical point vλ ∈ P:

G′
λ(vλ) = 0, Gλ(vλ) = β+(λ) ≥ c∗ > 0;

here we may choose c∗ > 0 independent of λ (by (S2)). Similarly, we may
show that {vλ}λ∈Λ is bounded and has a convergent subsequence whose limits
v∗ ∈ P satisfy G′(v∗) = 0, G(v∗) ≥ c∗ > 0. Analogously, we may get a
negative critical point of G. �

Notes and Comments. In recent years many existence results have been
obtained for (6.120) under various conditions on V (x) and f(x, t). In
Rabinowitz [260] the author had obtained one positive and one negative
solution to (6.120) under the assumption that V (x) →∞ as |x| → ∞. A gen-
eralization of the main result in [260] can be found in Bartsch et al. [38]. In
Bartsch and Wang [42], the existence and multiplicity results were obtained
under an assumption stronger than (S1). One sign-changing solution had been
obtained in Bartsch and Wang [43, 44] for Dirichlet problems and Schrödinger
equations. In a recent paper Bartsch et al. [37] studied (6.120) with superlin-
ear f(x, u). In the case where f(x, u) is odd in u, infinitely many sign-changing
solutions were obtained in [37] by using genus and by imposing a global (PS)
compactness condition. An estimate of the number of nodal domains was
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given there. All the papers mentioned above deal with superlinear cases.
In Furtado et al. Silva [152, 153], and Perera and Schechter [247], double
resonance was considered but no information concerning the sign-changing
solutions was obtained. Under the Ambrosetti–Rabinowitz super-quadratic
(ARS, for short), Wang [331] obtained the existence result of three solutions
(one is positive, another one is negative) on a superlinear Dirichlet elliptic
equation and later in Bartsch and Wang [40], the authors proved for semi-
linear Dirichlet problems that the third solution is sign-changing. This result
was generalized to nonlinear Schrödinger equations in Bartsch and Wang [41]
where the (ARS) condition plays an important role. Recall the papers of Coti
Zelati and Rabinowitz [121, 122], where V (x) and f(x, t) were periodic for
each x variable and infinitely many sign-changing solutions were obtained by a
totally different theory. Hence, the (ARS) condition was demanded there. See
Bartsch and Weth [46, 47] and Wang [332] for related papers on sign-changing
solutions, and see also Lupo and Micheletti [219] and Perera [241, 242] for
existence results on multiple solutions. Conditions (P1) and (P3) above are
essentially different from the (ARS) condition. Some weakened (ARS) condi-
tions can be found in Jeanjean [178], Liu and Wang [213], Schechter and Zou
[285], Willem and Zou [336], and Zhou [341].

6.5 Critical Cases

Consider the Schrödinger equation with critical Sobolev exponent growth:

(6.135) −∆u + V (x)u = β|u|2∗−2u + f(x, u), x ∈ RN .

It is well known that the equation

−∆u + u = |u|2∗−2u, x ∈ RN ,

has no positive solution (cf. Benci and Cerami [54]). This is a consequence of
the Pohozaev-type identity (cf. Berestycki and Lions [59]). The equation

(6.136) −∆u + V (x)u = |u|2∗−2u, x ∈ RN ,

has a positive solution provided V (x) ≥ 0 and its LN/2-norm is small (see
Benci and Cerami [54] and Ben-Naoum et al. [56]). If V (x) ≡ 0 on RN , this
equation has the positive solution

[N(N − 2)](N−2)/4

(1 + |x|2)(N−2)/2
.

In particular, all positive solutions of (6.136) can be obtained from this solu-
tion by dilations and translations. If V (x) →∞ as |x| → ∞ and f(x, u) ≡ 0,
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Chabrowski and Yang [89] obtained one nontrivial solution to (6.135), where
β can be a function.

We mention a Dirichlet boundary value problem:

(6.137)

{
−∆u = µu + |u|2∗−2u, in Ω,

u = 0, on ∂Ω,

where Ω is a bounded smooth domain of RN . The existence of solutions of
(6.137) had been studied extensively after the celebrated paper of Brézis and
Nirenberg [71].

(P5) f(x, t)t− 2F (x, t) ≥ 0 for all x, t.

Theorem 6.23. Assume (S1), (S2), (P1), (P2), and (P5). Then there exists a
β0 > 0 such that, for any β ∈ (0, β0), Equation (6.135) has one sign-changing
solution, one positive solution, and one negative solution.

The following theorem concerns the sign-changing solution u of (6.135)
with respect to parameter β > 0. We say that {(βk, uk)} are sign-changing
and unbounded if {uk} are sign-changing and unbounded.

Theorem 6.24. Assume (S1), (S2), (P1), (P2), and (P5).
Then Equation (6.135) has a sequence of positive solutions (βk, vk), a sequence
of negative solutions (βk, wk), and an unbounded sequence of sign-changing
solutions {(βk, uk)} satisfying

1
2

∫

RN

(| � uk|2 + V (x)|uk|2)dx−
βk

2∗

∫

RN

|uk|2
∗
dx−

∫

RN

F (x, uk)dx→∞

as k →∞.
We use the same notations Ek, Zk, Nk, Bk, as in the preceding section. Let

S := inf
u�=0,u∈H1(RN )

‖ � u‖2
‖u‖22∗

be the best Sobolev constant and define

(6.138) SE := inf
u�=0,u∈E

‖u‖2
‖u‖22∗

.

Then SE ≥ S. Define

(6.139) Gλ,β(u) =
λ

2
‖u‖2 − β

2∗

∫

RN

|u|2∗
dx−

∫

RN

F (x, u)dx

for all λ ∈ (1
2 , 1), β > 0. Then

Gλ,β ∈ C1(E,R), G′
λ,β = λ id− Jβ ,

where Jβ(u) := (−∆ + V )−1[β|u|2∗−2u + f(x, u)].
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Lemma 6.25. There is a constant ρk depending on k, independent of λ, β,
such that

ρk > 0, Gλ(u) ≤ 0,

for all u ∈ Ek with ‖u‖ = ρk uniformly for λ ∈ ( 1
2 , 1) and β > 0.

Proof. Because dimEk <∞, then by (P1),

Gλ,β(u)
‖u‖2 ≤ 1

2
−
∫

RN

F (x, u)
‖u‖2 dx→ −∞

as ‖u‖ → ∞, u ∈ Ek uniformly for λ ∈ ( 1
2 , 1) and β > 0. The lemma follows

immediately. �

Let Bk, Q
(ρ) be as defined in the previous section. Let

Nk = Q(ρ) ∩Ga0
1
2 ,0

, a0 := max
Bk

G1,0.

Lemma 6.26. There exists a constant β̃0 > 0 such that

Gλ,β(u) ≥ 1
2
δs min{λ((1−α)(s−2))/2

k , λ
(1−α)/2
k } := bk

for all u ∈ Nk and all λ ∈ ( 1
2 , 1), β ∈ (0, β̃0). Where δs > 0, α ∈ (0, 1)

are independent of λ, β, k; β̃0 depends on k, s, α. In particular, bk → ∞ as
k →∞.

Proof. By Lemma 6.19, for any u ∈ Q(ρ), we have that

Gλ,0(u) ≥ δs min{λ((1−α)(s−2))/2
k , λ

(1−α)/2
k },

where δs > 0 is a constant independent of λ, k, β. By Lemma 6.18,

‖u‖s ≤ ρ(1 + λβ′

k Λs), ρ =
1

16CF
, u ∈ Q(ρ).

Therefore, on Nk = Q(ρ) ∩Ga0
1/2,0 with a0 := maxBk

G1,0, we have that

(6.140) ‖u‖ ≤
(
8CF (16CF )−s(1 + λβ′

k Λs)s + 8max
Bk

G1,0

)1/2

:= Ξ.

On Nk, we have the following estimates:

Gλ,β(u) = Gλ,0(u)− β

2∗

∫

Rn

|u|2∗
dx

≥ δs min{λ((1−α)(s−2))/2
k , λ

(1−α)/2
k } − β

2∗
S
−2∗/2
E ‖u‖2∗
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≥ δs min{λ((1−α)(s−2))/2
k , λ

(1−α)/2
k } − β

2∗
S
−2∗/2
E Ξ2∗

≥ 1
2
δs min{λ((1−α)(s−2))/2

k , λ
(1−α)/2
k }

for β ≤ (2∗/2)S2∗/2
E Ξ−2∗

δs min{λ((1−α)(s−2))/2
k , λ

(1−α)/2
k } := β̃0. �

Note that

G′
λ,β(u) = λu− J ′

β(u) = λu− J ′
βu, u ∈ E.

Lemma 6.20 is still valid for J ′
β .

By Theorem 6.10, for almost all λ ∈
(

1
2 , 1
)
, and any β ∈ (0, β̃0), Gλ,β has

a sign-changing critical point u(λ, β) such that

(6.141) G′
λ,β(u(λ, β)) = 0, Gλ,β(u(λ, β)) ∈

[
bk,max

Bk

G1,0

]
;

here bk (defined in Lemma 6.26) and maxBk
G1,0 are two constants depending

on k (independent of λ, β).

Lemma 6.27. Assume (P1) and (P5). Let λm → 1 as m → 1 and denote
um := u(λm, β). If

β ∈

⎛

⎜
⎝0,

S
2∗/2
E

(
N max

Bk

G1,0

)(2∗−2)/2

⎞

⎟
⎠ ,

then {um} has a convergent subsequence.

Proof. Because

G′
λm,β(um) = 0,(6.142)

Gλm,β(um) ∈
[
bk,max

Bk

G1,0

]
;(6.143)

here [bk,maxBk
G1,0] is a finite interval depending on k only. We first prove

that {um}∞m is bounded. Assume {um}∞m is unbounded for a contradiction.
We observe that

∫

RN

2β
2∗ |um|2

∗

‖um‖2
dx(6.144)

≤
∫

RN

2β
2∗ |um|2

∗
+ 2F (x, um)
‖um‖2

dx

→ 1 as m→∞.(6.145)
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Let wm = um/‖um‖; then wm → w∗ weakly in E, strongly in L2(RN ), and
a.e. x in RN . Denote Ω1 = {x ∈ RN : w∗(x) �= 0}. Then (|um|2

∗
/u2

m)w2
m →

∞ for x ∈ Ω1. If Ω1 has a positive measure, then
∫

RN

|um|2
∗

‖um‖2
dx

=
∫

RN

|um|2
∗

u2
m

w2
mdx

≥
∫

Ω1

|um|2
∗

u2
m

w2
mdx

→∞;

this contradicts (6.144). Thus, the measure of Ω1 must be zero; that is, w∗ ≡ 0
a.e. x ∈ RN . On the other hand, choose ω ∈ (2, 2∗); then

∫

RN

(
(ω/2∗ − 1)β|u|2∗

+ ωF (x, um)− umf(x, um)
u2

m

)

w2
mdx(6.146)

→ λm

(ω

2
− 1
)

.

However,

lim sup
m→∞

(ω/2∗ − 1)β|um|2
∗

+ ωF (x, um)− umf(x, um)
u2

m

w2
m(6.147)

≤ lim sup
m→∞

c(1 + |um|2)
u2

m

w2
m

= 0.

We observe that (6.146) and (6.147) imply ω − 2 ≤ 0; it is a contradiction.
Therefore, {um} is bounded and we may assume that um → u(1, β) := u
weakly in E, strongly in L2(RN ), and a.e. x in RN . Using Brezis–Lieb’s
Lemma 5.12, we get

∫

RN

(|um|2
∗ − |u|2∗ − |u− um|2

∗
)dx→ 0.

Furthermore, by Lemma 5.14,
∫

RN

(F (x, um)− F (x, u)− F (x, um − u))dx→ 0.
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Therefore, we have that

Gλm,β(um)−Gλm,β(u)−Gλm,β(um − u) = o(1).

Furthermore,

λm‖u‖2 + λm‖um − u‖2 −
∫

RN

(β|u|2∗
+ β|u− um|2

∗
+ f(x, um)um)dx

= 〈um, um〉 −
∫

RN

(β|um|2
∗

+ f(x, um)um)dx + o(1)

= 〈G′
λm,β(um), um〉+ o(1)

= o(1).

Noting that G′
λm,β(u) = 0, we have

λm‖um − u‖2(6.148)

= β

∫

RN

|u− um|2
∗
dx +

∫

RN

(f(x, um)um − f(x, u)u)dx + o(1).

Next, we have to estimate
∫
RN (f(x, um)um − f(x, u)u)dx. We first estimate

∫

|x|≤R

(f(x, um)um − f(x, u)u)dx

for any R > 0. Note {‖um‖} is bounded; we have

meas{x ∈ RN : |x| ≤ R, |f(x, um)um| ≥ k}

≤ k−1

∫

{x∈RN :|x|≤R,|f(x,um)um|≥R}
|f(x, um)um|dx

≤ k−1c(measBR(0))

→ 0

as k →∞. That is, {f(x, um)um} is uniformly integrable. Hence,

(6.149)
∫

|x|≤R

(f(x, um)um − f(x, u)u)dx→ 0

as m→∞ for any R > 0. On the other hand, by the Hölder inequality,
∫

|x|>R

(f(x, um)um − f(x, u)u)dx(6.150)
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≤
∫

|x|>R

|f(x, um)um − f(x, um)u + f(x, um)u− f(x, u)u|dx

≤ c‖um −u‖2+c

∫

|x|>R

(|u|s−1|um −u|)dx+c

(∫

|x|>R

|u|2dx
)1/2

+ c

∫

|x|>R

|um|s−1|u|dx +
∫

|x|>R

|u|2dx +
∫

|x|>R

|u|sdx.

Because
∫

|x|>R

(|u|s−1|um − u|)dx(6.151)

≤
∫

|x|>R

|u|sdx + ‖um‖
(∫

|x|>R

|u|2∗
dx

)(s−1)/2∗

,

and
∫

|x|>R

|um|s−1|u|dx(6.152)

≤ c‖um‖s−1

(∫

|x|>R

|u|2∗/(2∗−s+1)dx

)(2∗−s+1)/2∗

,

then (6.149)–(6.152) imply that

(6.153)
∫

|x|>R

(f(x, um)um − f(x, u)u)dx→ 0 as R →∞.

By combining (6.149) and (6.153) ,
∫

RN

(f(x, um)um − f(x, u)u)dx→ 0 as m→∞.

By (6.148), we have

λm‖um − u‖2(6.154)

= β

∫

RN

|um − u|2∗
dx + o(1)

≤ βS
−2∗/2
E ‖um − u‖2∗

+ o(1).
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If, up to a subsequence, limm→∞ ‖um − u‖2 = t > 0, then (6.154) implies

t ≥ β−2/(2∗−2)S
2∗/(2∗−2)
E .

Note G′
λm,β(u) = 0 and (P5); we know that Gλm,β(u) ≥ 0. It follows from

(6.154) that

max
Bk

G1,0 + o(1)

≥ Gλm,β(um)

= Gλm,β(u) + Gλm,β(um − u) + o(1)

≥ Gλm,β(um − u) + o(1)

=
λm

2
‖um − u‖2 − β

2∗

∫

RN

|um − u|2∗
dx−

∫

RN

F (x, um − u)dx + o(1)

=
λm

N
‖um − u‖2 + o(1).

Therefore,

max
Bk

G1,0 ≥
1
N

β−(2/(2∗−2))S
2∗/(2∗−2)
E ;

that is,

β ≥ S
2∗/2
E

(N maxBk
G1, 0)(2

∗−2)/2
.

This is a contradiction. This means that limm→∞ ‖um − u‖ = 0. �

Proofs of Theorems 6.23 and 6.24. By Lemmas 6.26 and 6.27, we now assume
that

0 < β < min

{
S

2∗/2
E

(N maxBk
G1,0)(2

∗−2)/2
, β̃0

}

:= β0.

Then, for any β ∈ (0, β0), there exists a sign-changing critical point u(1, β)
such that (see (6.141))

(6.155) G′
1,β(u(1, β)) = 0, G1,β(u(1, β)) ∈

[
bk,max

Bk

G1,0

]
.

That is, u(1, β) is a sign-changing solution of (6.135). The proofs of the
existence of positive and negative solutions are trivial. This is a case of critical
exponents, therefore we have to adopt the methods of Lemma 6.27 to prove
that the positive and negative (PS)-sequences have convergent subsequences.
Condition (S2) may guarantee the nontriviality of the limit. We omit the
details.
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Theorem 6.24 is a straightforward consequence of Theorem 6.23 and
Lemma 6.26. �

Notes and Comments. Readers may consult the results on sign-changing
solutions of Dirichlet boundary value problems obtained in Cerami et al. [85],
where the dimension N ≥ 6. The ideas of Chabrowski [86], Ghoussoub [156],
Hirano et al. [170], and Tarantello [324] (see also Ekeland and Ghoussoub
[139]) are also worthy reading for finding sign-changing solutions of elliptic
equations with a critical exponent. We also refer readers to the papers by
Brézis and Nirenberg [71], Chabrowski [88], Chabrowski and Szulkin [87],
Chabrowski and Yang [89, 90], de Figueiredo et al. [148, 149], Li [205], Silva
and Xavier [301], and Schechter and Zou [284] for (semi- and quasilinear)
elliptic problems involving critical Sobolev exponents, where the existence of
(positive) solutions was studied.

As we have seen in this book, we have mainly applied the ideas of finite-
dimensional linking to the sign-changing solutions. There are some infinite-
dimensional linking theorems which were established for the existence of
critical points of the strongly indefinite functionals; see Bartsch and Clapp
[32], Benci [52], Benci and Rabinowitz [55], Buffoni et al. [74], Hofer [174],
Hulshof and van der Vorst [177], Kryszewski and Szulkin [185], Schechter
[274], Schechter and Zou [281, 286], and Szulkin and Zou [320]. We also refer
the readers to Chang et al. [100], Fei [143], Long [217], Szulkin and Zou [319],
and Zou [345] for strongly indefinite functionals by Morse theory.

Finally, before closing the main matter of the book, we would like to
introduce some other papers on sign-changing solutions to concrete elliptic
equations. The papers of Chen et al. [101], Ding et al. [135], Neuberger [236],
and Neuberger and Swift [237], are mainly based on numerical methods that
are totally different from the theory of the current book. By use of topological
methods (critical groups) the Morse indices of sign-changing solutions for
nonlinear elliptic problems can be determined in the paper by Bartsch et al.
[31]. Some earlier results on this aspect can be observed in Bahri and Lions
[25], Lazer and Solimini [193], Perera and Schechter [243], and Solimini [307]
where the Morse indices of critical points of minimax type were estimated.



Chapter 7

On a Bartsch–Chang–Wang–Weth
Theory

In this chapter, we are interested in the further properties of the sign-changing
critical points, namely the Morse index and the number of nodal domains.
The results dealt with in this chapter are mainly borrowed from Bartsch,
Chang, and Wang [31] and Bartsch and Weth [45]. Uniformly, we call them a
Bartsch–Chang–Wang–Weth theory. We are only concerned with some funda-
mental ideas and applications. Actually, these topics deserve to be treated in
a specific book. Readers are referred to the papers of Bartsch, among others.

7.1 Some Basic Results on Morse Theory

Let E be an infinite-dimensional Hilbert space with the inner product 〈·, ·〉
and the corresponding norm ‖ · ‖. Let G ∈ C1(E,R).

Definition 7.1. Let u0 be an isolated critical point of G with G(u0) = c;
then the kth critical group of G at u0 is defined by

Ck(G, u0) := Hk(Gc, Gc\{u0}), k ∈ Z.

Here Hk denotes the kth singular homology group with coefficient in a field
F , Z = {0, 1, 2, . . .}.

If U is a neighborhood of the critical point u0 such that u0 is the unique
critical point of G in U , then by excision we have

Ck(G, u0) ∼= Hk(Gc ∩ U,Gc ∩ U\{u0}).

If G ∈ C2(E,R), we use G′′(u) to denote the unique bounded self-adjoint
linear operator T : E → E such that

〈G′′(u)v, w〉 = 〈Tw, v〉, ∀ u, v, w ∈ E.

W. Zou, Sign-Changing Critical Point Theory, doi: 10.1007/978-0-387-76658-4, 229
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Recall that a linear operator T : E → E is Fredholm if T has a
finite-dimension kernel (denoted by ker(T )) and the range of T (denoted
by range(T )) is closed and has finite codimension. When T is a self-adjoint
Fredholm operator, then because the range of T is the orthogonal comple-
ment of the kernel of T , we have E = ker(T ) ⊕ range(T ). Assume that
G′′(u0) is Fredholm. Because G′′(u0) is self-adjoint, E can be decomposed as
E = ker(G′′(u0)) ⊕ range(G′′(u0)). The restriction of (G′′(u0)) to its range
is invertible, thus by the basic spectral theory there exist closed subspaces
E+ and E− of the range of G′′(u0) and a constant b > 0 such that E+ and
E− are orthogonal and

〈G′′(u0)u, u〉 ≥ b‖u‖2, ∀u ∈ E+;

〈G′′(u0)u, u〉 ≤ −b‖u‖2, ∀u ∈ E−.

Definition 7.2. We call dimE− the Morse index of the critical point u0

and dimE− + dim kerG′′(u0) the generalized Morse index of u0. If G′′(u0)
is invertible, that is, kerG′′(u0) = {0}, then u0 is called a nondegenerate
critical point.

Set V := kerG′′(u0) and denote by ν := ν(G, u0) := dimV the nullity of G
at u0. By the generalized Morse lemma, we have a diffeomorphism h : U0 → U
from a neighborhood U0 of 0 in E to a neighborhood U of u0 in E and a
C1-function Ψ0 : U0 ∩ V → R such that

G(h(v + w)) = G(u0) +
1
2
〈G′′(u0)w,w〉+ Ψ0(v)

for v ∈ V,w ∈ V ⊥ with v + w ∈ U0. The next proposition is known as the
shifting lemma of Gromoll–Meyer (see Chang [94]). Its proof can be found in
Chang [94] and Mawhin and Willem [225].

Proposition 7.3. Assume that G ∈ C2(E,R). Let u0 be an isolated critical
point of G with Morse index µ := µ(G, u0) and nullity ν := ν(G, u0). Assume
that G′′(u0) is a Fredholm operator with index 0. Then

Ck(G, u0) ∼= Ck−µ(Ψ0, 0), k ∈ Z,

where Ψ0 is the function from the generalized Morse lemma. In particular,
Ck(G, u0) = 0 for all k �∈ [µ, µ + ν]. Moreover, if ν = 0, then Ck(G, u0) ∼= F
for k = µ, and Ck(G, u0) ∼= 0 otherwise.

The following proposition is well known.

Proposition 7.4. Assume that G ∈ C2(E,R) satisfies the (PS) condition.
Let u0 be an isolated critical point of G. The following are equivalent.
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(1) u0 is a local minimum.

(2) Ck(G, u0) ∼=
{
F , if k = 0,

0, otherwise.
(3) C0(G, u0) �= 0.

Proof. Obviously, (1)⇒ (2) ⇒ (3). The proof for the implication of (3)⇒ (1)
can be found in Chang [94].

Definition 7.5. A critical point u0 of G is said to be of the mountain pass
type if for any sufficiently small and open neighborhood U of u0 the set
Gc ∩ U\{u0} is not path connected, where c = G(u0).

Theorem 7.6. Assume that G ∈ C2(E,R) satisfies the (PS) condition. Let
u0 be an isolated critical point of the mountain pass type and G(u0) = c;
G′′(u0) is a Fredholm operator with index 0 and dim kerG′′(u0) = 1 if 0 ∈
σ(G′′(u0)), the spectrum of G′′(u0). Then the Morse index µ of u0 is less
than or equal to 1.

Proof. Let V := kerG′′(u0) and W := V ⊥ = W+ ⊕W−, where W± is the
generalized eigenspace of G′′(u0) corresponding to σ(G′′(u0)) ∩R±, respec-
tively. Then the Morse index µ = dimW− and the nullity ν = dimV . By
the generalized Morse lemma, there is a diffeomorphism h : U0 → U and a
C1-function Ψ0 : U0 ∩ V → R, where U0 is a neighborhood of 0 and U is a
neighborhood of u0, such that

G(h(v + w)) = G(u0) +
1
2
〈G′′(u0)w,w〉+ Ψ0(v)

for all v + w ∈ U0, v ∈ V,w ∈W. Thus,

Gc ∩ U

= {h(v + w) : 〈G′′(u0)w,w〉+ 2Ψ0(v) ≤ 0}
∼= {(v + w) ∈ U0 : 〈G′′(u0)w,w〉+ 2Ψ0(v) ≤ 0}.

Denote BεV := {u ∈ V : ‖u‖ ≤ ε}. Choose ε > 0, δ > 0 small enough such
that BεV ×BδW ⊂ U0 and that

(7.1) 2 sup
BεV

|Ψ0(v)| < |〈G′′(u0)w,w〉|, ∀w ∈W− with ‖w‖ = δ.

For 0 �= v+w ∈ BεV ×BδW ⊂ U0 satisfying G(h(v+w)) ≤ c, it is connected
to v + w− ∈ BεV ×BδW

− by the path

(7.2) γ(t) := v + w− + (1− t)w+, t ∈ [0, 1].

Note that G(h(γ(t))) ≤ c and γ(t) ∈ U0\{0} for all t ∈ [0, 1].
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If dimW− > 1, we show that the set

(7.3) T := Gc ∩ h(BεV ×BδW )\{u0}

is path connected; this contradicts the fact that u0 is of the mountain pass
type. To this end, choose

w−
1 :=

⎧
⎪⎨

⎪⎩

δ
w−

‖w−‖ , if w− �= 0,

any element w−
1 of W− with ‖w−

1 ‖ = δ, if w− = 0.

Now γ(1) defined in (7.2) is connected to v + w−
1 along the path given by

γ(t) := v + (2− t)w− + (t− 1)w−
1

for all t ∈ [1, 2]. Note that G(h(γ(t))) ≤ c and γ(t) ∈ U0\{0} for all t ∈ [1, 2].
Define

γ(t) := (3− t)v + w−
1 , t ∈ [2, 3];

it connects γ(2) to γ(3) = w−
1 . Moreover, γ(t) ∈ U0\{0} and G(h(γ(t))) ≤ c

for t ∈ [2, 3] (see (7.1)). Let

(7.4) Gc ∩ h(BεV ×BδW )\{u0}.

The above arguments show that every u ∈ T can be connected by a path
inside the set T to a point in h({0} × ∂BδW

−) ⊂ T . Hence, T is path
connected. This contradicts the fact that u0 is of the mountain pass type.
Therefore, µ ≤ 1. �

Theorem 7.7. Under the assumptions of Theorem 7.6, the following state-
ments are equivalent.

(1) u0 is of the mountain pass type.

(2) Ck(G, u0) ∼=
{
F , if k = 1,

0, otherwise.
(3) C1(G, u0) �= 0.

Proof. (1) ⇒ (2). If µ = 0, by hypothesis, we see that ν = 1; hence V ∼= R.
Because u0 is isolated, Ψ0 does not change sign on (−ε, 0) nor on (0, ε).
Because T (see 7.3) is not path connected, we observe that Ψ0(v) < 0 for
0 < |v| < ε. It follows that

Ck(G, u0) ∼= Ck(Ψ0, 0) ∼=
{
F , if k = 1,

0, otherwise.
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If µ = 1, we have that

Ck(G, u0) ∼= Ck−1(Ψ0, 0).

If C0(Ψ0, 0) �= 0, then by Proposition 7.4, we have that

Ck(G, u0) ∼= Ck−1(Ψ0, 0) ∼=
{
F , if k = 1,

0, otherwise.

If C0(Ψ0, 0) = 0, similar to the above arguments, we see that we may find
ε > 0, δ > 0 such that BεV × BδW ⊂ U0 and that every point u ∈ T
can be connected within T to a point h(w−

1 ) with w−
1 ∈ W−, ‖w−

1 ‖ = δ.
Note that C0(Ψ0, 0) = 0 implies that there is a path γ : [0, 1] → Ψ0

0 ∩ BεV
with γ(0) = 0, γ(1) �= 0. Thus the path h(γ(t) + w−

1 ) deforms h(w−
1 ) to

h(γ(1) + w−
1 ) within T . Note that Ψ0(γ(1)) ≤ 0 and h(γ(1) + w−

1 ) can be
connected to h(γ(1)) within T by the path h

(
γ(1) + (1− t)w−

1

)
; we see that

T is also path connected. This is a contradiction.
Now we show that (2) ⇒ (1).
If µ = 0, then ν = 1. By using the generalized Morse lemma we have that

C1(Ψ0, 0) = C1(G, u0) �= 0,

which implies that Ψ0(v) < 0 for 0 < |v| ≤ ε and ε > 0 small enough. It
follows that

h(BεV × {0})\{u0}

⊂ T

⊂ h((BεV \{0})×BδW ),

where T is defined in (7.4). Hence, if U ⊂ h(BεV ×BδW ) is a neighborhood
of u0 then Gc ∩ U\{u0} cannot be connected.

If µ = 1, then C0(Ψ0, 0) ∼= C1(G, u0) �= 0, it follows that 0 is a strict local
minimum of Ψ0. Then the generalized Morse lemma implies that

h({0} ×BδW
−)\{u0}

⊂ T

⊂ Gc ∩ h(BεV × (BδW\BδW
+));

by this we get the same conclusion. �

Obviously, we have (2) ⇒ (3). Now we show that (3) ⇒ (2). If u0 is
nondegenerate, we are done. Otherwise, by the shifting lemma,

Ck(G, u0) ∼= Ck−µ(Ψ0, 0), k ∈ Z.
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If µ = 1, we see that C0(Ψ0, 0) �= 0, which means that 0 is an isolated local
minimum of Ψ0; then

Ck(Ψ0, 0) ∼=
{
F , if k = 0,

0, otherwise.

Thus,

Ck(G, u0) ∼=
{
F , if k = 1,

0, otherwise.

If µ = 0, then
Ck(G, u0) ∼= Ck(Ψ0, 0), k ∈ Z.

The assumptions of the theorem imply that Ψ0 is defined on a 1-manifold.
Then C1(Ψ0, 0) �= 0 implies that 0 is a local maximum of Ψ0. Thus,

Ck(G, u0) ∼= Ck(Ψ0, 0) ∼=
{
F , if k = 1,

0, otherwise. �

Notes and Comments. Readers may consult the books [94] by Chang and
[225] by Mawhin and Willem for more results on the Morse theory.
Proposition 7.4 is due to Chang [94]. Theorems 7.6 and 7.7 are due to Bartsch
et al. [31]. They can also be found in Bartsch [30]. In particular, the proof
for the case “(3) ⇒ (2)” of Theorem 7.7 is borrowed from Chang [94].
Definition 7.5 is due to Hofer [175]. A slightly modified version of the de-
finition of a mountain pass point can be found in Pucci and Serrin [248, 249].
In Bartsch [30] (see also Bartsch and Wang [40]), a critical point theory on
partial-order Hilbert spaces was established; we give more notes or comments
in the following sections.

7.2 Critical Groups of Sign-Changing Critical Points

Assume P ⊂ E is a closed convex cone of E. It induces a partial order of E
defined by:

u ≥ v ⇔ u− v ∈ P; u > v ⇔ u ≥ v and u �= v.

A mapping h : E → E is called order preserving if u ≥ v implies that
h(u) ≥ h(v) for all u, v ∈ E.

As we show in our applications, P may have an empty interior in the
topology of E. Now we assume that there is a Banach space E0 which is
densely embedded into E such that

P0 := E0 ∩ P
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has a nonempty interior in E0, denoted by
◦
P0. The elements of

◦
P0 are called

positive. We write u � v if u− v ∈
◦
P0. A mapping h : E → E is called

strongly order preserving if h(u) � h(v) as long as u, v ∈ E0 with u > v.

We assume that there is an element e0 ∈
◦
P0 such that 〈u, e0〉 > 0 for all

u ∈ P0\{0}. Let G : E → R satisfy the following hypotheses.

(A111) G ∈ C2(E,R), G(0) = 0, G′(0) = 0; K := {u ∈ E : G′(u) = 0} ⊂ E0.
The (PS) condition holds for G.

(A222) The gradient of G is of the form G′(u) = u−ΘG(u), where ΘG : E → E
is a compact operator satisfying ΘG(E0) ⊂ E0. The restriction Θ :=
ΘG|E0 : E0 → E0 is of C1 and strongly order preserving.

(A333) For any u0 ∈ K, we assume that any eigenvector of the Fréchet deriv-
ative Θ′

G(u0) ∈ L(E) (the set of all bounded linear operators) lies in
E0. The largest eigenvalue of Θ′

G(u0) is simple and its eigenspace is
spanned by a positive eigenvector.

(A444) One of the following holds.

(1) G is bounded below.
(2) For any u ∈ E, u �= 0, we have G(tu) → −∞ as t → ∞. There is

a c < 0 such that 〈G′(u), u〉 < 0 whenever G(u) ≤ c.
(3) There is a compact self-adjoint linear operator ΠG ∈ L(E) such

that G′(u) = u −ΠGu + o(‖u‖) as ‖u‖ → ∞. All eigenvectors of
ΠG lie in E0, the largest eigenvalue is simple, and its eigenspace is

spanned by a positive eigenvector e∞ ∈
◦
P0 such that 〈u, e∞〉 > 0

for every u ∈ P0\{0}. Furthermore, Π := ΠG|E0 ∈ L(E0).

Definition 7.8. Let µ0, ν0 denote the Morse index and the nullity of 0,
respectively. Under the conditions (A1)–(A4), we define by µ∞, ν∞ the Morse
index and nullity of infinity as the following.

µ∞ = ν∞ = 0, if (A4)-(1)holds;

µ∞ = ∞, ν∞ = 0, if(A4)-(2) holds;

µ∞ = the number of negative eigenvalues of
id−ΠGcounted with multiplicities and

ν∞ = dim ker(id−ΠG)if(A4)-(3)holds.

Theorem 7.9. If µ0 ≥ 2 and µ∞+ν∞ ≤ 1, then G has a sign-changing criti-
cal point u1. If all sign-changing critical points with negative critical values
are isolated, then there exists a sign-changing critical point u1 which is of
mountain pass type and

G(u1) < 0, Ck(G, u1) ∼=
{
F , if k = 1,

0, otherwise.
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Proof. Consider the negative gradient flow φ(t, ·) of G on E defined by

(7.5)
d

dt
φ(t, u) = −G′(φ(t, u)), φ(0, u) = u ∈ E.

By (A2) we have that φ(t, u) ∈ E0 for u ∈ E0 and φ(t, u) induces a continuous
local flow on E0. Obviously, G

(
φ(t, u)

)
is strictly decreasing in t if u is not a

critical point of G. Moreover, for v ∈ P0\{0}, by (A2) we have that

v −G′(v) = ΘG(v)� ΘG(0) = 0.

This implies that the vector field −G′ points at v inside the cone
◦
P0: v −

G′(v) ∈
◦
P0. Setting

D = P0 ∪ (−P0), D = D\{0}.

Then
φ(t, v) ∈

◦
D, ∀v ∈ D, v �= 0, t > 0.

For any r ∈ R, let
(7.6) lr : H1(E0,D

) → H1(E0, G
r ∪D)

be the homeomorphism induced by the inclusion (E0,D
) � (E0, G

r ∪D)
on the first homology level. Because E0 is contractible and D is homotopy
equivalent to a two-point space, we have that

(7.7) H1(E0,D
) ∼= F .

Set
Λ := {r ∈ R : lr �= 0}.

Claim 1. Λ �= ∅. Because µ∞ + ν∞ ≤ 1, Condition (A4)-(1) or (A4)-(3)

applies. In Case (1), we set e∞ := e0 ∈
◦
P0 . In Case (3) we choose e∞ ∈

◦
P0

as the positive eigenvector of id−Π with ‖e∞‖ = 1 belonging to the largest
eigenvalue of Π. Note that G is bounded below on E1 := E0 ∩ (e∞)⊥. For
r < infE1 G, we have the inclusion:

(E0,D
)

j� (E0, G
r ∪D) i� (E0, E0\E1).

Because j ◦ i is a homotopy equivalence we see that r ∈ Λ.

Claim 2. c := supΛ < 0. Because µ0 ≥ 2, let λ1 < λ2 < 0 be the two smallest
eigenvalues of G′′(0) and e1, e2 be the normalized eigenvectors corresponding

to λ1 and λ2, respectively. By (A3), we know that e1 ∈
◦
D . Let Sε be the

sphere of radius ε in span{e1, e2}. Then maxSε
G < 0 for ε > 0 small enough.

We show that r �∈ Λ for all r ≥ maxSε
G and all ε > 0 small enough. If

r ≥ maxSε
G, we have that
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(E0, Sε ∪D) ⊂ (E0, G
r ∪D).

Then we just have to show that

H1(E0, Sε ∪D) ∼= 0.

But this is an immediate consequence of the long exact sequence of the pair
(E0, Sε ∪D) and the fact that H1(E0) = 0 and that H0(Sε ∪D) → H0(E0)
is an isomorphism because D ∪ Sε is path connected.

By a standard deformation argument, it is easy to see that c is a critical
value (cf. Chang [94]). Suppose that G has only finitely many sign-changing
critical points u1, . . . , um at the level c. We choose δ > 0 and neighborhoods
Ui ⊂ E0\D of ui with the following properties.

(a) Ui ∩ Uj = ∅ for i �= j.
(b) ui is the only critical point of G in Ui.
(c) Gc−δ ∪ Ui is positive invariant under φ(t, ·).
(d) There is a T ≥ 0 such that φ(T,Gc+δ) ⊂ Gc−δ ∪ U1 ∪ · · · ∪ Um.

Because c + δ �∈ Λ and c− δ ∈ Λ, the long exact sequence of the triple

(E0, G
c+δ ∪D, Gc−δ ∪D)

yields H1(Gc+δ ∪D, Gc−δ ∪D) �= 0 :

H1(E0,D
)

↓�= 0 ↘ 0

H1(Gc+δ ∪D, Gc−δ ∪D) −→ H1(E0, G
c−δ ∪D) −→ H1(E0, G

c+δ ∪D).

Let U := U1 ∪ U2 ∪ · · · ∪ Um. By (c) and (d), Gc−δ ∪ U ∪D is a strong
deformation retract of Gc+δ ∪D. Hence,

H1(Gc−δ ∪ U ∪D, Gc−δ ∪D) ∼= H1(Gc+δ ∪D, Gc−δ ∪D).

By the excision property, we get that

H1(U,U ∩Gc−δ)

∼= H1(Gc−δ ∪ U,Gc−δ)

∼= H1(Gc−δ ∪ U ∪D, Gc−δ ∪D).

Now properties (a) and (b) imply that

H1(U,U ∩Gc−δ) ∼=
m⊕

i=1

H1(Ui, Ui ∩Gc−δ) ∼=
m⊕

i=1

C1(G, ui).
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Therefore, there exists an i ∈ {1, 2, . . . ,m} such that C1(G, ui) �= 0. By
Theorem 7.6, ui is of the mountain pass type and Ck(G, ui) ∼= δk1F . �

Theorem 7.10. If µ∞ ≥ 2 and µ0 + ν0 ≤ 1, then G has a sign-changing
critical point u1 with G(u1) > 0. If all sign-changing solutions are isolated,
then there is a sign-changing solution u1 with G(u1) > 0, Morse index µ ∈
{1, 2}, and

C0(G, u1) = C1(G, u1) = 0, C2(G, u1) �= 0.

In particular, u1 is neither a local minimum nor of mountain pass type. If
µ = 2 or the nullity ν ≤ 1, then

Ck(G, u1) ∼=
{
F , if k = 2,

0, otherwise
k ∈ Z.

Thus, u1 looks homologically like a nondegenerate critical point with Morse
index 2.

Proof. Because µ∞ ≥ 2, either (A4)-(2) or (A4)-(3) applies. In both cases,

there are v∞ ∈
◦
P0 and w∞ ⊥ v∞ with ‖v∞‖ = ‖w∞‖ = 1 and G(u) < 0 for

any u ∈ span{v∞, u∞} with ‖u‖ ≥ R for R > 0 large enough. Let

Q := {sv∞ + tw∞ : |s| ≤ R, t ∈ [0, R]}

and
∂Q := {sv∞ + tw∞ ∈ Q : |s| = R or t ∈ {0, R}}.

Then ∂Q ⊂ G0 ∪D. Let β := maxQ G so that

(Q, ∂Q) � (Gβ ∪D,G0 ∪D).

Let η(β) ∈ H2(Gβ ∪D,G0 ∪D) be the image of 1 ∈ F ∼= H2(Q, ∂Q) under
the homeomorphism

F ∼= H2(Q, ∂Q) → H2(Gβ ∪D,G0 ∪D)

induced by the inclusion. For any r ≤ β, let

lr : H2(Gr ∪D,G0 ∪D) → H2(Gβ ∪D,G0 ∪D)

be induced by the inclusion. Define

Λ := {r ≤ β : η(β) ∈ image(lr)}, c := inf Λ.

Claim. η(β) �= 0. To show this, we let e1 ∈
◦
P0 be the first eigenvector of

G′′(0) and set
E1 := span{e1}, E2 := E⊥

1 ∩ E0.
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Because µ0 + ν0 ≤ 1 we obtain infSεE2 G ≥ α > 0 for some ε > 0 small
enough. This implies that

(Q, ∂Q) ⊂ (Gβ ∪D,G0 ∪D) ⊂ (E0, E0\SεE2).

The inclusion induces the homeomorphism

H2(Q, ∂Q) → H2(E0, E0\SεE2).

We just have to show that the homeomorphism is not 0. Choose w0 ∈ E2

with ‖w0‖ = 1 and let

Q0 := {sv∞ + tw0 : |s| ≤ R, t ∈ [0, R]}.

Rotating w∞ into w0, we may deform (Q, ∂Q) into (Q0, ∂Q0) within
(E0, E0\SεE2). Therefore, it suffices to show that

H2(Q0, ∂Q0) → H2(E0, E0\SεE2)

is not 0. Let
Q1 := {se1 + tw0 : |s| ≤ R, t ∈ [0, R]}.

The rotation from v∞ to e1 inside
◦
P0 deforms (Q0, ∂Q0) into (Q1, ∂Q1) within

(E0, E0\SεE2). Thus, we just have to show that

H2(Q1, ∂Q1) → H2(E0, E0\SεE2)

is not 0. To prove this, we define

Q2 := {se1 + tw0 ∈ Q1 : |s| ≤ R, t = 0, R} ⊂ ∂Q1

and
Q3 := {se1 + tw0 ∈ Q1 : |s| = R, t ∈ [0, R]} ⊂ ∂Q1.

Then ∂Q1 = Q2 ∪ Q3 and the inclusion (Q2, Q2 ∩ Q3) � (∂Q1, Q3) is an
excision. Similarly, we define

W1 := E1 × (E2\SεE2), W2 := (E1\{0})× E2.

Then E0\SεE2 = W1 ∪ W2. Moreover, the inclusion (W1,W1 ∩ W2) �
(E0\SεE2,W2) is an excision. Consider the commutative diagram

H2(Q1, Q3) → H2(Q1, ∂Q1)
∂→ H1(∂Q1, Q3)

↓ i1 ↓ i2

H2(E0, E0\SεE2) → H1(E0\SεE2,W2).
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The top row is exact as part of the long exact sequence of the triple
(Q1, ∂Q1, Q3). Note that

H2(Q1, Q3) ∼= H1(Q3) = 0

and that i2 is an injective; we see that i1 �= 0. By using the excision iso-
mophisms i2 is an injective if and only if

i3 : H1(Q2, Q3 ∩Q2) → H1(W1,W1 ∩W2)

is injective. This is an immediate consequence because the inclusions Q2 �
W1 and Q2 ∩Q3 � W1 ∩W2 are homotopy equivalences. Hence, they induce
isomorphisms on the homotopy level. Thus, i3 is an isomorphism. The claim
is true.

By the above claim, we know that 0 �∈ Λ because l0 = 0 (see (7.6)).
Note that β ∈ Λ; hence c ∈ [0, β]. By the assumption, µ0 + ν0 ≤ 1, the
sign-changing solutions cannot accumulate at zero. Assume that the sign-
changing solutions are isolated; there are only finitely many sign-changing
solutions with values in [0, β]. It implies that G0 ∪D is a strong deformation
retract of Gr ∪ D for r > 0 small enough. Therefore, c > 0. Let u1, . . . , um

be all sign-changing critical points at the level c ∈ (0, β]. We choose δ > 0
and neighborhoods Ui of ui, i = 1, . . . ,m, as in the proof of Theorem 7.9.
Consider the commutative diagram

H2(Gc−δ ∪D,G0 ∪D)

↓ j ↘ (jc−δ)

H2(Gc+δ ∪D,G0 ∪D)
jc+δ→ H2(Gβ ∪D,G0 ∪D)

↓
H2(Gc+δ ∪D,Gc−δ ∪D).

Because c + δ ∈ Λ, there is an η(c + δ) ∈ H2(Gc+δ ∪D,G0 ∪D) with
jc+δ(η(c + δ)) = η(β). Now, η(c + δ) cannot lie in the image of j because
c − δ �∈ Λ. That is, η(β) �∈ image(jc−δ). Therefore, the exactness of the left
column yields

H2(Gc+δ ∪D,Gc−δ ∪D) �= 0.

Similar to the proof of Theorem 7.9, we have that

C2(G, ui) �= 0, for some i ∈ {1, . . . ,m}.

This is the required sign-changing solution which is neither a local minimum
nor of mountain pass type . If µ = 2, by the shifting lemma, we see that

Ck(G, ui) ∼= Ck−2(Ψ0, 0) for all k ∈ Z.
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Thus, C0(Ψ0, 0) �= 0. By Proposition 7.4, 0 is a local minimum of Ψ0 and
moreover,

Ck(Ψ0, 0) ∼=
{
F , if k = 0,

0, otherwise.

Hence, we obtain

Ck(G, ui) ∼=
{
F , if k = 2,

0, otherwise.

Next we assume that µ ≤ 1 and ν = ν(G, ui) ≤ 1; hence µ = 1, ν = 1
because C2(G, ui) �= 0. Then we have by the shifting lemma that

Ck(G, ui) ∼= Ck−1(Ψ0, 0).

It follows that C1(Ψ0, 0) �= 0; hence Ψ0 is a local maximum of Ψ0. Therefore,

Ck(Ψ0, 0) ∼=
{
F , if k = 1,

0, otherwise,
Ck(G, ui) ∼=

{
F , if k = 2,

0, otherwise.

�

Theorem 7.11. Assume that ν0 = ν∞ = 0, µ∞ ≥ 1 and µ0 �= µ∞. Suppose
that all sign-changing critical points are isolated.

(1) If µ0 ≥ 1, then G has a sign-changing critical point u1 such that either
G(u1) > 0, Cµ0+1(G, u1) �= 0, or G(u1) < 0, Cµ0−1(G, u1) �= 0.

(2) If (A4)-(3) holds with µ∞ ≥ 2, then G has a sign-changing critical point
u1 satisfying Cµ∞(G, u1) �= 0.

Proof. Case 1. By Theorems 7.9 and 7.10, we just have to consider the cases
µ0 ≥ 2 and µ∞ ≥ 2. Using excision and the fact that 0 is a nondegenerate
critical point, we obtain for each ε > 0 small enough that

(7.8) Hµ0(G
ε ∪D, G−ε ∪D) ∼= Hµ0(G

ε, G−ε) �= 0.

It is easy to see (cf. Bartsch and Wang [43] and Chang [95]) that for each
α > 0 large enough,

(7.9) Hk(E0, G
−α ∪D) ∼= Hk(E0, G

−α) ∼= δkµ∞F , k ∈ Z.

Note that µ∞ ≥ 1 and ν∞ = 0. We fix such a small ε > 0 and such a large
α > 0. Consider the following diagram
(7.10)

Hµ0+1(E0, G
ε ∪D) ∂→ Hµ0(G

ε ∪D, G−α ∪D)→ Hµ0(E0, G
−α ∪D)

↓ j

Hµ0(G
ε ∪D, G−ε ∪D)
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↓
Hµ0−1(G−ε ∪D, G−α ∪D).

Note that the vertical maps are part of the long exact sequence of the triple

(Gε ∪D, G−ε ∪D, G−α ∪D).

Combining (7.8) we see that either

(i) Hµ0(G
ε ∪D, G−α ∪D) �= 0 or

(ii) Hµ0−1(G−ε ∪D, G−α ∪D) �= 0.

For Case (i), by (7.9) we have that Hµ0(E0, G
−α∪D) = 0. By (7.10), we see

that it is a part of the exact sequence of the triple (E0, G
ε ∪D, G−α ∪D);

we deduce that
Hµ0+1(E0, G

ε ∪D) �= 0.

Choose a nontrivial element ϑ ∈ Hµ0+1(E0, G
ε ∪D). For r ≥ ε, let

lr : Hµ0+1(E0, G
ε ∪D) → Hµ0+1(E0, G

r ∪D)

be the homeomorphism induced by the corresponding inclusion. Consider the
set Λ := {r ≥ ε : lr(ϑ) �= 0} and define c := supΛ. Then, c < ∞. That is, if
σ is a singular chain representing ϑ then the carrier |σ| ⊂ E0 of σ is compact
and contained in Gr for r ≥ max|σ| G. Hence, lr(ϑ) = 0 for r ≥ max|σ| G and
c < max|σ| G < ∞. Thus c ∈ [ε,∞). We proceed as before to obtain a sign-
changing critical point u1 of G such that G(u1) = c and Cµ0+1(G, u1) �= 0.

On the other hand, if Hµ0−1(G−ε ∪D, G−α ∪D) �= 0, we consider

Λ := {r ∈ [−α,−ε] : Hµ0−1(Gr ∪D, G−α ∪D) = 0}

and c := supΛ ∈ [−α,−ε]. It is easy to see that G has a sign-changing critical
point u1 on the level c with Cµ0−1(G, u1) �= 0.

Case 2. Consider α > 0 as in (7.9) and let

Λ := {r ≥ −α : Hµ∞(Gr ∪D, G−α ∪D) �= 0}.

We first show that Λ �= ∅. To show this, we choose a nontrivial element
ϑ ∈ Hµ∞(E0, G

−α ∪D); this is possible because of (7.9). If σ is a singular
chain representing ϑ and if r ≥ max|σ| G, then ϑ comes from

Hµ∞(Gr ∪D, G−α ∪D).

This implies that [max|σ| G,∞) ⊂ Λ. Thus c := inf Λ ∈ [−α,∞) is finite.
As before, G has a critical point u1 with Cµ∞(G,µ1) �= 0 and u1 ∈ E0\D.
Because Cµ∞(G, 0) = 0, we see that u1 is a nontrivial sign-changing critical
point. �
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Notes and Comments. The results of this section are due to Bartsch et al. [31].
Conditions (A1)–(A4) and Definition 7.8 were introduced in Bartsch and
Wang [40]. The hypothesis that all sign-changing critical points must be
isolated can be weakened. It suffices to assume that all sign-changing critical
points with values in a finite closed interval are isolated. By imposing some
stronger assumptions, it is possible to find more sign-changing critical points
(cf. Bartsch et al. [31]). Theorem 7.11 can be extended to the degenerate case
(i.e., ν0 and ν∞ may be nontrivial). In this case, the following Landesmann–
Lazer condition should be assumed (cf. [31]).

(7.11) G(u) → ±∞, for u ∈ ker(id−ΠG) as ‖u‖ → ∞.

Readers may find related results and methods in Bartsch and Li [36] and
Chang [94] for degenerate situations without the sign-changing conclusions.

In Bartsch and Wang [40], it was shown by using the maximum principle
and the critical group that certain solutions change sign. The philosophy
is that if the behavior of the energy functional near zero and near infinity
implies a nontrivial critical group of a critical point, then this point can be
neither positive nor negative. Similar to Theorem 7.9, Theorem 2.1 of Bartsch
and Wang [40] got a sign-changing critical point u1 such that any positive
critical point u2 must have u2 � u1; any negative critical point u3 must
have u3 ! u1. Moreover, if the functional is bounded below, then it indeed
has strongly maximal negative and strongly minimal positive critical points.
Theorem 2.2 of Bartsch and Wang [40] obtained a sign-changing critical point
u1 such that any critical point u2 < u1 implies that u2 ! 0 and u2 > u1

implies that u2 � 0. Also, in Bartsch [30], the extremality properties of the
positive, negative, and sign-changing solutions were obtained where the Borel
cohomology was involved. Finally, we would like to mention the paper [99] due
to Chang and Jiang where sign-changing solutions were found for Dirichlet
problems with indefinite nonlinearities by the Morse theory (an earlier result
was obtained in Li and Wang [198] by a mountain pass theorem in order
intervals).

7.3 Sign-Changing Solutions of Mountain Pass Type

Let Ω ⊂ RN be a Lipschitz bounded domain. Consider the following Dirichlet
problem

(7.12)

{
−∆u = f(u), in Ω,

u = 0, on ∂Ω.

Let 0 < λ1 < λ2 < λ3 < · · · be the eigenvalues of the −∆ with zero boundary
value condition. Assume
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(B111) f ∈ C1(R), f(0) = 0.

(B222) lim sup
|t|→∞

f(t)
t

< λ1.

(B333) f ′(t) → β ∈ R as |t| → ∞. If β = λk, we assume that

f(t)− βt is bounded in t ∈ R and either
∫

Ω

(

F (u)− β

2
u2

)

dx→∞,

for u ∈ V := {u ∈ C∞
0 (Ω) : −∆u = βu} with ‖u‖ → ∞ or

∫

Ω

(

F (u)− β

2
u2

)

dx→ −∞, for u ∈ V with ‖u‖ → ∞.

Let E := H1
0 (Ω) be the usual Sobolev space with the norm and inner

product:

‖u‖ =
(∫

Ω

|∇u|dx
)1/2

, 〈u, v〉 =
∫

Ω

∇u · ∇vdx.

Theorem 7.12. Suppose that either (B1), (B2), or (B1) and (B3) with β <
λ2 hold. Moreover, f ′(0) ≥ λ2. Then (7.12) has a sign-changing solution.
If all sign-changing solutions with negative energy are isolated, then (7.12)
has a solution that changes sign, has Morse index at most 1, and is of the
mountain pass type.

Proof. Consider the functional

G(u) =
1
2
‖u‖2 −

∫

Ω

F (u)dx, u ∈ E = H1
0 (Ω).

Under the conditions of Theorem 7.12, G may not satisfy the smoothness
condition in (A1) and the order preserving condition in (A2). But in the
case of (B2), by a standard argument due to Hofer [173], there exists a
C1-modification f̃ of f satisfying

(a) f̃(0) = 0.

(b) lim sup
|t|→∞

f̃(t)
t

< λ1.

(c) |f̃ ′(t)| < a for all t ∈ R and some a > 0.
(d) f̃ ′(0) > λ2.

Moreover, solutions of (7.12) are precisely the solutions of the modified
Dirichlet problem
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(7.13)

{
−∆u = f̃(u), in Ω,

u = 0, on ∂Ω.

Therefore, we may always assume that |f ′(t)| < a for all t ∈ R. On E, we
use the following equivalent norm ‖u‖E =

( ∫
Ω

(|∇u|+ au2)dx
)1/2

. Let

P := {u ∈ E : u(x) ≥ 0 a.e. in Ω}

be the positive cone of E. Choose the Banach space E0 := C1
0 (Ω) with the

usual norm. Then E0 is dense in E and P0 := E0 ∩ P has nonempty interior
◦
P0 . Let e0 be the unique normalized positive eigenfunction of −∆ on Ω with
zero boundary value condition, then

e0 ∈
◦
P0 and 〈u, e0〉 > 0 for all u ∈ P0\{0}.

Rewrite
G(u) =

1
2
‖u‖2E −

∫

Ω

H(u)dx, for u ∈ E,

where h(t) = f(t) + at,H(t) =
∫ t

0
h(s)ds. Then it is easy to see that G ∈

C2(E,R). It is trivial to check that the (PS) condition is satisfied by G in
the case of (B2). If (B3) holds with β �= λk, the (PS) condition also can be
proved easily. But if β = λk, we can also prove the (PS) condition because
the Landesman–Lazer condition (see (7.11)) is satisfied. It follows from the
standard regularity theory that all critical points of G lie in E0. Thus (A1) of
the previous section is satisfied. Because h′(t) > 0, we observe that (A2) and
(A3) hold. Furthermore, if (B2) holds then (A4)-(1) is satisfied. If (B3) holds
and β ∈ (λ1, λ2), then (A4)-(3) is satisfied. Note that the Morse index µ0 of
G at 0 is ≥ 2 because f ′(0) > λ2. These arguments imply that µ∞ = ν∞ = 0
if (B2) holds and (µ∞, ν∞) = (0, 0), or (0, 1) or (1, 0) if (B3) holds. That is,
µ∞ + ν∞ ≤ 1. The conclusion of the theorem follows from Theorem 7.9. �

Definition 7.13. Let u be defined on a domain Ω (may or may not be
bounded); the components of Ω\u−1(0) are called the nodal domains (or
sets) of u.

Next we consider the following superlinear cases. Assume

(B444) There exists a p with 2 < p < (2N)/(N − 2) and there is a c > 0 such
that

|f(t)| ≤ c(1 + |t|p−1), ∀ t ∈ R.

(B555) There are R > 0, γ > 2 such that

0 < γF (t) ≤ tf(t), ∀ |t| ≥ R.

(B666) f ′(t) > f(t)/t, ∀ t �= 0.
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Theorem 7.14. Assume that f ′(0) < λ2 and all the sign-changing solutions
are isolated. Suppose that either (B1) and (B3) with β > λ2 hold or (B1),
(B4), and (B5) hold. Then (7.12) has a sign-changing solution u1 which is
neither a local minimum nor of mountain pass type.

If in addition (B6) holds, then u1 has precisely two nodal sets, its Morse
index is 2, and

Ck(G, u1) =

{
F , if k = 2,

0, otherwise.

Proof. For the asymptotically linear case, f ′(t) is bounded. The proof is sim-
pler. We just prove the superlinear case by using Theorem 7.10. We have to
show that G has a sign-changing critical point u satisfying

C0(G, u) = C1(G, 0) = 0, C2(G, u) �= 0.

Furthermore, we want to show, if in addition (B6) holds, that

Ck(G, u) ∼=
{
F , if k = 2,

0, otherwise.

First, by (B5) there exists a c > 0 such that

(7.14) F (u) ≥ C|u|γ , ∀|u| ≥ R.

By (7.14) and (B4), it is easy to check that there exist A > 0, Rn →> rn →∞
such that

0 ≤ lim inf
n→∞

f ′(Rn)
|Rn|p−2

≤ lim sup
n→∞

f ′(Rn)
|Rn|p−2

≤ A,(7.15)

0 ≤ lim inf
n→∞

f ′(−rn)
|rn|p−2

≤ lim sup
n→∞

f ′(−rn)
|rn|p−2

≤ A.(7.16)

Define
(7.17)

fn(t) =

⎧
⎪⎨

⎪⎩

f(t), −rn ≤ t ≤ Rn,

f(Rn) + f ′(Rn)(t−Rn) + |t−Rn|p−2(t−Rn), t ≥ Rn,

f(−rn) + f ′(−rn)(t + rn) + |t + rn|p−2(t + rn), t ≤ −rn,

Observe that p ≥ γ by (7.14). Because of (7.15) and (7.16) we have that

(7.18) |fn(t)| ≤ a0(1 + |t|p−1)

and

(7.19) γFn(t) ≤ fn(t)t, ∀|t| ≥ R
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uniformly for all n. There also exists an > 0 such that

(7.20) |f ′
n(t)| ≤ an(1 + |t|p−2), ∀t ∈ R

and

(7.21) f ′
n(t) ≥ −an, ∀t ∈ R.

Next, for each n we use an equivalent norm on E given by

‖u‖2En
=
∫

Ω

(|∇u|2 + anu2)dx.

We write En for the space E with this norm. Define

gn(t) = fn(t) + ant,Gn(t) =
∫ t

0

gn(s)ds

and

(7.22) Gn(u) =
1
2
‖u‖2En

−
∫

Ω

Gn(u)dx.

Then Gn ∈ C2(En,R) by (7.20). It is easy to check by using (7.18) and (7.19)
that (A1), (A2), and (A3) are satisfied. With (7.19), we also get that for each
u ∈ E\{0} there exists M(u) > 0 such that Gn(tu) < 0 for all t > M(u) and
there exists a < 0 such that 〈G′

n(u), u〉 < 0 if Gn(u) ≤ a. Therefore, we may
apply Theorem 7.10 to Gn. Moreover, by the proof of Theorem 7.10, we see
that the critical values cn are bounded above by βn = maxBn

Gn, where

Bn := {sv∞ + tw∞ : |s| ≤ Tn, t ∈ [0, Tn]}

for some Tn > 0 such that

Gn(u) < 0, for all u ∈ span{v∞, w∞}with ‖u‖En
≥ Tn,

where v∞, w∞ are normalized eigenfunctions corresponding to the first and
second eigenvalues. From the above arguments, we see that there exists a
T0 > 0 independent of n such that

Gn(u) < 0 for all u ∈ span{v∞, w∞}with ‖u‖En
≥ T0.

Hence, we may choose a fixed B0 such that

cn ≤ β0 = max
B0

Gn.
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Thus cn is uniformly bounded. Next we observe that

cn = Gn(un)− 1
γ
〈G′

n(un), un〉

=
(

1
2
− 1

γ

)

‖un‖2En
−
∫

Ω

(

Fn(un)− 1
γ
fn(un)un

)

dx

≥
(

1
2
− 1

γ

)

‖un‖2 − c,

where c > 0 is independent of n because of (7.19). Therefore, un is bounded
in E. Then by (7.18), Equation (7.12), and standard elliptic estimates we get

‖un‖C1
0 (Ω) ≤ c

independent of n. Thus for n large, un is a sign-changing solution of the
original problem (7.12). We fix n large enough and write un = u. We denote
the restriction of G and Gn to C1

0(Ω̄) by G̃, G̃n, respectively. By a theorem
due to Chang [94], we have for k = 0, 1,

0 = Ck(Gn, u) = Ck(G̃n, u) = Ck(G̃, u) = Ck(G, u)

and
0 �= C2(Gn, u) = C2(G, u).

If in addition (B6) holds, we also get

Ck(G, u) = Ck(Gn, u) =

{
F , if k = 2,

0, otherwise.

Note that a sign-changing solution has Morse index µ ≥ 2. Combining this
with the fact µ ≤ 2 we see that µ = 2. �

The following theorem is a straightforward consequence of Theorem 7.11.

Theorem 7.15. Suppose that all the sign-changing solutions are isolated.
Assume that (B1) holds and that

λk < f ′(0) < λk+1, for some k ≥ 0;

here λ0 = −∞. Moreover, suppose that (B3) or (B4) and (B5) hold. In the
case of (B3) we assume that there are λm �= λk,m ≥ 1 with λm < β < λm+1.

(1) If k ≥ 1 then there exists a sign-changing solution u1 such that either
G(u1) > 0, Ck+1(G, u1) �= 0 or G(u1) < 0, Ck−1(G, u1) �= 0.

(2) If (B3) holds with β ∈ (λm, λm+1), k �= m ≥ 2, then (7.12) has a sign-
changing solution u1 with Cm(G, u1) �= 0.
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Notes and Comments. The Morse index of a mountain pass point has been
found independently in Ambrosetti [11] for the nondegenerate case and in
Hofer [176] for the general case of possibly degenerate critical points.

The results of this section are due to Bartsch et al. [31]. The nondegeneracy
assumptions in Theorem 7.15 can be dropped by using the ideas of Bartsch
and Li [36] and Chang [94]. The information on the Morse indices of sign-
changing solutions can be used to obtain new multiplicity results. The readers
can combine Theorems 7.12–7.15 (even degree theory) to get the existence
results of two sign-changing solutions (see, e.g., Corollary 2.4 of Bartsch et al.
[31]). In [31], the results were extended to elliptic systems. The trick on the
modification f̃ of f used in the proof of Theorem 7.12 was due to Hofer [173].
Similar ideas for constructing the function fn in (7.17) was applied in Castro
and Cossio [79]. We refer readers to Bartsch and Wang [40], where some
order relations among positive (negative) solutions, local minimizers, and
sign-changing solutions were given. In particular, it was first shown that the
third solution obtained in Wang [331] was indeed sign-changing as expected
for a long time. Finally, we mention that in Li and Wang [198] and Dancer and
Yan [131], sign-changing solutions of the mountain pass type were obtained.

Before closing this section, we refer readers to the following papers on the
estimates of Morse indices: Fang and Ghoussoub [142] (Morse type informa-
tion on Palais–Smale sequences), Hofer [175], Lazer and Solimini [193] (non-
symmetric functionals), Ramos and Sanchez [261], and Tanaka [323] (even
functionals).

7.4 Nodal Domains

Consider the following equation.

(7.23)

{
−∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a smooth and bounded domain. In this section
we are concerned with the number of nodal domains of the weak solutions to
(7.23). Assume

(C111) f : Ω×R→ R is a Carathéodory function and f(x, 0) = 0 a. e. x ∈ Ω.
(C222) There exist a p ∈ (2, (2N/(N − 2))] if N ≥ 3 (otherwise, p > 2 if

N = 2) and c > 0 such that |f(x, t)| ≤ c(|t|+ |t|p−1) for all t ∈ R and
a.e. x ∈ Ω.

(C333) The function t→ (f(x, t))/|t| is nondecreasing on R\{0} for a.e. x ∈ Ω.
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The energy functional of (7.23) is

G(u) =
1
2

∫

Ω

|∇u|2dx−
∫

Ω

F (x, u)dx, u ∈ E := H1
0 (Ω).

Then G ∈ C1(E,R).

Lemma 7.16. Assume (C1)–(C3). If 〈G′(u), u〉 = 0 for some u ∈ E with
u �= 0, then

(7.24) 0 ≤ G(u) = sup
t≥0

G(tu).

In particular, if the function in (C3) is strictly increasing, then G(u) > 0.

Proof. Let φ(t) := G(tu), t ≥ 0. Then

φ′(t) = 〈G′(tu), u〉 = t

∫

Ω

(

|∇u|2 − f(x, tu)
tu

u2

)

dx, t > 0.

Hence (C3) implies that φ′(t)/t is nonincreasing on (0,∞). Furthermore, the
set

S := {t > 0 : φ′(t) = 0}
is a subinterval of (0,∞) and 1 ∈ S. Let b < ∞ be the right endpoint of S.
Then φ is strictly decreasing on (b,∞). Note that

0 ≤ max
t∈[0,b]

φ(t) ≤ max
t∈S

φ(t) = φ(1).

We get (7.24). If the function in (C3) is strictly increasing, then φ′(t)/t is
strictly decreasing on (0,∞); hence S = {1} and φ′(t) > 0 for all t ∈ (0, 1).
We then have that G(u) = φ(1) > φ(0) = 0. �
Theorem 7.17. Assume (C1)–(C3). If f is odd in u, then every weak solu-
tion of (7.23) with 0 < G(u) ≤ βn has at most n nodal domains, where

βn := inf
X⊆E,dim V ≥n

sup
X

G, n > 0.

Proof. By negation; assume that u has more than n nodal domains. Let
Ω1, . . . , Ωn be a choice of such domains; we define functions wi (i =
1, 2, . . . , n) as the following.

(7.25) wi(x) :=

{
u(x), if x ∈ Ωi,

0, if x ∈ Ω\Ωi.

Then wi ∈ E (see Müller-Pfeiffer [230]). For v := u−
∑n

i=1 wi, we have

0 < G(u) = G(v) +
n∑

i=1

G(wi).
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Up to an appropriate choice of Ωi, i = 1, . . . , n, we may assume that G(v) > 0.
Note that

〈G′(wi), wi〉 = 〈G′(u), wi〉 = 0;

we have by Lemma 7.16 that G(wi) = supt∈R G(twi) because G is even. Let

X = span{w1, . . . , wn}.

We obtain

(7.26) βn ≤ sup
X

G =
n∑

i=1

G(wi) = G(u)−G(v) < G(u),

which contradicts the assumption. �

Consider the nodal Nehari set

(7.27) M := {u ∈ E : u+ �= 0, u− �= 0, 〈G′(u), u+〉 = 〈G′(u), u−〉 = 0};

here

(7.28) u± = ±max{±u, 0}.

Let

(7.29) β := inf
M

G.

Theorem 7.18. If (C1)–(C3) hold and if the function in (C3) is strictly
increasing, then every weak solution u ∈ M of (7.23) with G(u) = β has
precisely two nodal domains.

Proof. By negation; we assume that u has at least three nodal domains. We
choose nodal domains Ω1, Ω2 such that w1 ≥ 0, w2 ≤ 0 for the associated
functional w1, w2 ∈ H1

0 (Ω) defined as in (7.25). Clearly, w1 + w2 ∈ M. The
function v := u−w1−w2 satisfies 〈G′(v), v〉 = 0. This implies that G(v) > 0
by Lemma 7.16. Then we have that β ≤ G(w1 + w2) < G(u) (see (7.26)),
which contradicts the assumption. �

Notes and Comments. The results of this section are due to Bartsch and
Weth [45]. A classical result of Courant and Hilbert [124] states that the
number #(e) of nodal domains of a Dirichlet eigenfunction e of the Laplacian
in Ω is bounded above by µ(e) + 1, where µ(e) is the Morse index of e. By
Benci and Fortunato [53], we also have the inequality #(u) ≤ µ(u) for any
solution of (7.12) provided f(0) = 0 and f ′(t) > f(t)/t for all t �= 0. Similar
estimates as Theorems 7.17 and 7.18 can also be found in Bartsch et al. [37],
where the results were established for Schrödinger equations with potentials
yielding compactness.
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7.5 Sign-Changing Solutions with Least Energy

Consider again the semilinear Dirichlet problem (7.23). We now study the
least energy solution related to the nodal Nehari sets defined in (7.27). We
need the following conditions throughout this section.

(D111) f ∈ C1(Ω ×R,R), f(x, 0) = 0 for all x ∈ Ω.
(D222) There exist p ∈ (2, (2N/(N − 2)) if N ≥ 3 (if N ≥ 2, we let p > 2) and

c > 0 such that |f ′(x, t)| ≤ c(1 + |t|p−2) for all t ∈ R and all x ∈ Ω,
where f ′(x, t) = ∂f/∂t.

(D333) f ′(x, t) > f(x, t)/t > 0 for all x ∈ Ω, t �= 0.
(D444) There exist R > 0 and γ > 2 such that

0 < γF (x, t) ≤ tf(x, t), for all x ∈ Ω, |t| ≥ R.

Consider the Hilbert space H := E∩H2(Ω) endowed with the scalar product
from H2(Ω) and the induced norm ‖ · ‖H , where E := H1

0 (Ω). Define the
functionals Π± : E → R given by

Π±(u) :=
∫

Ω

|∇u±|2dx =
∫

Ω

∇u · ∇u±dx;

here u± is defined in (7.28).

Lemma 7.19. Π± is differentiable at u ∈ H with derivative Π ′
±(u) ∈ E′

given by

(7.30) 〈Π ′
±(u), v〉 =

∫

±u>0

((−∆u)v +∇u∇v)dx.

Moreover, Π±|H ∈ C1(H).

Proof. Let u, v ∈ H and t �= 0; we define

K1(t) := {x ∈ Ω : u(x) + tv(x) ≥ 0, u(x) > 0},

K2(t) := {x ∈ Ω : u(x) + tv(x) ≥ 0, u(x) < 0},

K3(t) := {x ∈ Ω : u(x) + tv(x) < 0, u(x) > 0},

K4 := {x ∈ Ω : u(x) = 0}.

Let πi(x) and π(x) be the characteristic functions associated with Ki(t) and
K4, respectively; i = 1, 2, 3. Because ∇u = 0 and −∆u = 0 a.e. on K4

(cf. Gilbarg and Trudinger [160]), we have

1
t
(Π+(u + tv)−Π+(u))
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=
1
t

∫

Ω

(∇(u + tv)∇(u + tv)+,∇u∇u+)dx

=
1
t

∫

Ω

((−∆u)(u + tv)+ + (∆u)u+)dx +
∫

Ω

∇v∇(u + tv)+dx

=
1
t

∫

Ω

π1((−∆u)(u + tv) + (∆u)u)dx +
∫

Ω

π1∇v∇(u + tv)dx

+
1
t

∫

Ω

π2((−∆u)(u + tv))dx +
∫

Ω

π2∇v∇(u + tv)dx

+
1
t

∫

Ω

π3(∆u)udx + t

∫

Ω

π4∇v∇v+dx

=
∫

Ω

π1(−∆u)vdx +
∫

Ω

π1∇u∇v + o(1)

as t → 0. The last equality is a consequence of the fact that π1, π3 → 0
pointwise a.e. on Ω for t→ 0. By the Lebesgue theorem,

∫

Ω

π2((−∆u)v +∇v∇u)dx→ 0.

Using the definition of π2, π3, we have that
∣
∣
∣
∣

∫

Ω

(π3 − π2)(∆u)u
t

dx

∣
∣
∣
∣ ≤

∫

Ω

(π2 + π3)|∆u||v|dx→ 0

for t→ 0. Thus

〈Π ′
+(u), v〉 = lim

t→0

(∫

Ω

π1(−∆u)vdx +
∫

Ω

π1∇u∇vdx

)

=
∫

u>0

((−∆u)v +∇u∇v)dx,

as claimed. The proof for Π ′
− is similar.

For the second part of the lemma, we take a sequence un → uin H; then

|〈Π ′
+(un)−Π ′

+(u), v〉|

=
∣
∣
∣
∣

∫

un>0

((−∆un)v +∇un∇v)dx−
∫

u>0

((−∆u)v +∇u∇v)dx
∣
∣
∣
∣

≤ 2‖un − u‖H‖v‖H

+
∣
∣
∣
∣

∫

u≤0<un

((−∆u)v +∇u∇v)dx +
∫

un≤0<u

((−∆u)v +∇u∇v)dx
∣
∣
∣
∣
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≤ 2‖un − u‖H‖v‖H

+
(∫

u≤0<un

(|∆u|2 + |∇u|2)dx +
∫

un≤0<u

(|∆u|2 + |∇u|2)
)1/2

‖v‖H

= o(1)‖v‖H .

Note that ∇u = 0 and ∆u = 0 a.e. on the zero set of u. Thus, (Π+|H)′

is continuous and the proof is complete for Π+. The proof for Π ′
− is

similar. �

Define F± : E → R by

F±(u) =
∫

Ω

f(x, u)u±dx, u ∈ E.

Then we have the following.

Lemma 7.20. F± ∈ C1(E,R) with the derivative given by

〈F ′
±(u), v〉 =

∫

Ω

f ′(x, u±)u±vdx +
∫

Ω

f(x, u±)vdx.

Proof. It is quite similar to that of Lemma 7.19. �

Lemma 7.21. The set M ∩ H is a C1-manifold of codimension two in H,
where M is defined in (7.27).

Proof. Define ρ± : E → R by

ρ±(u) = 〈G′(u), u±〉.

Then
M ∩H = {u ∈ H : u± �= 0, ρ±(u) = 0}.

By Lemmas 7.19 and 7.20, ρ± is differentiable in u ∈ H with

〈ρ′±(u), u±〉 =
∫

Ω

(|∇u±|2 − f ′(x, u)(u±)2)dx, 〈ρ′±(u), u∓〉 = 0.

Moreover, ρ±|H ∈ C1(H,R). Using (D3) implies that 〈ρ′±(u), u±〉 < 0 for
all u ∈ M ∩ H. Approximating u± by functions in H, we conclude that(
ρ′+(u), ρ′−(u)

)
∈ L(H,R2) is onto for each u ∈ M ∩H. This completes the

proof of the theorem. �

Theorem 7.22. Let u ∈ M be a critical point of G with G(u) = infM G.
Then the Morse index of u is precisely 2.
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Proof. By (D3),

〈G′′(u)u±, u±〉 =
∫

Ω

(|∇u±|2 − f(x, u)(u±)2)dx < 0.

Hence the Morse index of u is at least 2. On the other hand, by the elliptic
regularity theory, u ∈ H. Denote by T0 ⊂ H the tangent space of the manifold
M∩H at u. We claim 〈G′′(u)v, v〉 ≥ 0 for all v ∈ T0. Actually, by Lemma 7.21,
for each v ∈ T0, we may find a C1-curve γ : [−1, 1] →M∩H such that γ(0) =
u and γ̇(0) = v. Because 〈G′(u), v〉 = 0, we observe that G ◦ γ : [−1, 1] → R
is twice differentiable at 0 and

∂2

∂t2
(G ◦ γ)

∣
∣
t=0

= 〈G′′(u)v, v〉.

Note that G(u) = min
v∈M∩H

G(v), we infer that (∂2/∂t2)(G◦γ)
∣
∣
t=0

≥ 0. Hence,

the claim above is true. Because T0 ⊂ H has codimension two and H is dense
in E, we conclude that the Morse index of u is at most 2. �

Obviously, G′ = id − ΘG, where ΘG : E → E is compact and strongly
order preserving. Due to (D3), we may use the usual scalar product

〈u, v〉E =
∫

Ω

(∇u∇v + uv)dx, u, v ∈ E = H1
0 (Ω).

We denote the corresponding norm by ‖ · ‖E . By integrating −∇G we obtain
a flow η(t, u) : O → E, where O ⊂ R× E satisfying

(7.31)

⎧
⎪⎨

⎪⎩

∂

∂t
η(t, u) = −∇G(η(t, u)),

η(0, u) = u, (t, u) ∈ O.

We introduce the following notations.

Υ− := {u ∈ E0 : u is a sign-changing subsolution of (7.23)}.(7.32)

Υ+ := {u ∈ E0 : u is a sign-changing supersolution of (7.23)}.(7.33)

Υ  := {(0, 0)} ∪ {(u, v) ∈ Υ− × Υ+ : u < v} ⊂ E0 × E0.(7.34)

Υ ∗ := ∪(u,v)∈Υ �((u + P0) ∪ (v − P0)) ⊂ E0.(7.35)

It is easy to see by the strong order preservingness of ΘG that if (u, v) ∈ Υ ,
then (u + P0) ∪ (v − P0) is positive invariant under η(t, ·) for all t ≥ 0.
Combining this and the standard deformation as used in previous chapters,
we may easily prove the following lemma. Readers may also consult the paper
of Bartsch [30] for details.
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Lemma 7.23. Suppose that Kc ⊂ Υ ∗ for some c > 0. Then there is an ε > 0
and a homotopy η : (Gc+ε

E0
∪ Υ ∗)× [0, 1] → Gc+ε

E0
∪ Υ ∗) such that

(a) η(t,Gd
E0
∪ Υ ∗) ⊂ Gd

E0
∪ Υ ∗ for all d ≤ c + ε, t ∈ [0, 1].

(b) η(1, Gc+ε
E0

∪ Υ ∗) ⊂ Gc−ε
E0

∪ Υ ∗.

Let

(7.36) λ∗
1 < λ∗

2 < · · · < λ∗
k < · · ·

denote the Dirichlet eigenvalues of the operator −∆− f ′(x, 0) on Ω.

Theorem 7.24. Assume that (D1)–(D4) hold and λ∗
2 > 0. Then (7.23) has

a sign-changing solution u∗ with the following properties.

(1) G(u∗) = infM G (M is defined in (7.27)); u∗ has precisely two nodal
domains.

(2) u∗ has Morse index 2.
(3) If u < u∗ is a subsolution of (7.23), then u ≤ 0.
(4) If u > u∗ is a supersolution of (7.23), then u ≥ 0.

Proof. By (D4), it is routine to show that

(7.37) lim
t→∞G(tu) = −∞

for every u ∈ E\{0}. Note that any critical point u �∈ Υ ∗ of G is a minimal
element of Υ− and a maximal element of Υ+; that is, it has the properties (3)
and (4) of Theorem 7.24.

Let e1 ∈ P0 be the normalized first Dirichlet eigenfunction of −∆u −
f ′(x, 0) on Ω. Because λ2 > 0, there exists r > 0 and a C1-map κ∗ : {e1}⊥ ∩
Br(0) → {e1} such that for every u = w + κ∗(w) ∈ Graph(κ∗) we have that
η(t, u) → 0 as t → ∞. In fact, if λ1 > 0 we may take κ∗ ≡ 0, if λ1 ≤ 0,
Graph(κ∗) is the E-local stable manifold of 0. Set

S∗ := {u = w + κ∗(w) : w ∈ {e1}⊥, ‖w‖E = r} ⊂ E.

Note that

(7.38) α := inf
S∗

G > 0.

Furthermore, by Lemma 4.5 of Bartsch [30] we have that

(7.39) S∗ ∩ Υ ∗ = ∅.

Put γ := α/2 and consider the inclusion

jc : (Gc
E0
∪ Υ ∗, Gγ

E0
∪ Υ ∗) � (E,E\S∗), ∀c ≥ γ,
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which is well defined by (7.38). It induces a homeomorphism

j∗c : H2(E,E\S∗) → H2(Gc
E0
∪ Υ ∗, Gγ

E0
∪ Υ ∗).

Here and in the following H∗(C,D) denotes the Alexander–Spanier cohomol-
ogy of the pair D ⊂ C with the integer coefficients. We claim

(7.40) H2(E,E\S∗) ∼= Z.

For this, we set

E1 := Re1, SrE
⊥
1 := {u ∈ E⊥

1 : ‖u‖E = r}.

Note that the pair (E,E\S∗) is a homeomorphism to the pair (E,E\SrE
⊥
1 ).

Hence
H2(E,E\S∗) ∼= H2(E,E\SrE

⊥
1 ).

Now the pair (E,E\SrE
⊥
1 ) is the same as the product pair

(E1, E1\{0})× (E⊥
1 , E⊥

1 \SrE
⊥
1 ).

The Künneth theorem shows that

H2(E,E\SrE
⊥
1 ) ∼= H1(E⊥

1 , E⊥
1 \SrE

⊥
1 ) ∼= H̃0(E⊥

1 \SrE
⊥
1 ) ∼= Z,

which proves (7.40); the claim is true. Now we define

c̄ := inf{c ≥ γ : j∗c is injective}.

Then c̄ ≥ α, because Gc
E0
∪ Υ ∗ ⊂ E\S∗; hence j∗c = 0 for c < α. Next we

show that

(7.41) c̄ ≤ β

with β given by (7.29). For this, let ε > 0 and choose u ∈ M such that
G(u) < β + ε/2. By Lemma 7.16 we have that

G(λu+ + µu−) ≤ G(u), ∀λ, µ ≥ 0.

By (7.37), there exists R > 0 such that

G(λu+ + µu−) ≤ 0, for all max{λ, µ} ≥ R.

Approximating u+,−u− with suitable functions v1, v2 ∈ P0, we have that

G(λv1 − µv2) ≤ β + ε, for all 0 ≤ λ, µ ≤ R,

and
G(λv1 − µv2) ≤ γ, for all max{λ, µ} ≥ R.



258 7 On a Bartsch–Chang–Wang–Weth Theory

Define
C := {λv1 − µv2 : 0 ≤ λ, µ ≤ R},

then C ⊂ span{v1, v2} ⊂ E0 and

∂C := {λv1 − µv2 ∈ C : min{λ, µ} = 0, or max{λ, µ} = R}.

We have the following inclusions

(C, ∂C) i� (Gβ+ε
E0

∪ Υ ∗, Gγ
E0
∪ Υ ∗)

jβ+ε� (E,E\S∗).

We claim that the induced map
(7.42) i∗ ◦ j∗β+ε : H2(E,E\S∗)→ H2(C, ∂C)

is an isomorphism. Using the notation E1 = Re1 from above it is easy to
construct a homeomorphism

h : (E,E\S∗) → (E,E\SrE
⊥
1 )

such that h ◦ jβ+ε ◦ i is homotopic to the inclusion

i0 : (C, ∂C) � (E,E\SrE
⊥
1 ).

Let e2 ∈ E⊥
1 with ‖e2‖E = 1 and define

C1 := {λe1 + µe2 : |λ| ≤ R,µ ∈ [0, R]};

then C1 = BRE1 × [0, R]e2 and

∂C1 = {λe1 + µe2 : |λ| = R or µ ∈ {0, R}}.

Note that (C, ∂C) can be deformed to (C1, ∂C1) within (E,E\SrE
⊥
1 ). This

implies that i∗ ◦ j∗β+ε is an isomorphism if and only if the inclusion

i1 : (C1, ∂C1) � (E,E\SrE
⊥
1 )

induces an isomorphism. Now
(C1, ∂C1) ∼= (BRE1, SRE1)× ([0, R]e2, {0, Re2})

and
(E,E\SrE

⊥
1 ) ∼= (E1, E1\{0})× (E⊥

1 , E⊥
1 \SrE

⊥
1 ).

Because the inclusions

(BRE1, SRE1) � (E1, E1\{0})

and
([0, R]e2, {0, Re2}) � (E⊥

1 , E⊥
1 \SrE

⊥
1 )
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induce isomorphisms on cohomology levels, the claim of (7.42) follows by the
naturality of the Künneth maps.

Now because i∗ ◦ j∗β+ε is an isomorphism, j∗β+ε is an injective and thus
c̄ ≤ β + ε. Hence the claim of (7.41) is true. Now we prove that

(7.43) Kc̄ �⊂ Υ ∗.

By negation, if Kc̄ ⊂ Υ ∗, then by Lemma 7.23, there is an ε > 0 and a
homotopy

h : (Gc̄+ε
E0

∪ Υ ∗)× [0, 1] → (Gc̄+ε
E0

∪ Υ ∗)

such that h∗
1 ◦ j∗c̄−ε = j∗c̄+ε, where

h∗
1 : H2(Gc̄−ε

E0
∪ Υ ∗, Gγ

E0
∪ Υ ∗) → H2(Gc̄+ε

E0
∪ Υ ∗, Gγ

E0
∪ Υ ∗)

is induced by

h1 : (Gc̄+ε
E0

∪ Υ ∗, Gγ
E0
∪ Υ ∗) → (Gc̄−ε

E0
∪ Υ ∗, Gγ

E0
∪ Υ ∗).

Hence, because j∗c̄+ε is injective, j∗c̄−ε has to be injective as well. This, however,
contradicts the definition of c̄ and thus (7.43) is proved.

Take u∗ ∈ Kc̄, u
∗ �∈ Υ ∗. Then u∗ is a sign-changing solution of (7.23)

having the properties (3) and (4) of Theorem 7.24. In particular, u∗ ∈ M
and therefore, c̄ = G(u∗) ≥ β. In fact, the equality holds by (7.41) and hence
the remaining properties (1) and (2) are established by Theorems 7.17 and
7.22. �

Theorem 7.25. Assume that (D1)–(D4) hold and that f is odd in u. Then
there exists a sequence of distinct solutions ±uk, k ≥ min{l, λl > 0} of (7.23)
with the following properties.

(1) ‖uk‖ → ∞ as k →∞.
(2) uk is sign-changing for k ≥ 2.
(3) uk has at most k nodal domains.
(4) If u < uk is a subsolution of (7.23), then u ≤ 0.
(5) If u > uk is a supersolution of (7.23), then u ≥ 0.

Proof. We set
m0 := min{l : λl > 0} − 1.

If m0 > 0, then we put W := V ⊥, where V is the generalized Dirichlet
eigenspace of −∆ − f ′(x, 0) associated with the eigenvalues λ1, . . . , λm0 . If
m0 = 0 we set W := {e1}⊥, where e1 is the eigenvector of λ1. Then d0 :=
codim W = max{1,m0}. By the stable mainifold theorem there exists a
Lipschitz continuous map g∗ : BrW = W ∩ Br(0) → W⊥ for r > 0 small
enough such that

(7.44) S∗ := {u = g∗(w) + w : w ∈W, ‖w‖E = r}
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is contained in the local stable manifold of 0. Then

(7.45) S∗ ∩ Υ ∗ = ∅.

Recall that G is even; then S∗ = −S∗ and then g∗ is odd. Let h∗ denote
the Borel cohomology for the group Z/2 with coefficient ring h∗(pt) ∼= F2[ω].
If B ⊂ Υ ∗ are Z/2-spaces, A′ ⊂ Υ ∗, B′ ⊂ B are invariant subspaces and
ξ ∈ h∗(Υ ∗, B); then we write ξ|(A′,B′) for the image of ξ under the homeo-
morphism h∗(Υ ∗, B) → h∗(A′, B′) induced from the inclusion. Letting

α :=
1
2

inf
S∗

G > 0

and using (7.45), we have an inclusion

(7.46) jc : (Gc
E0
∪ Υ ∗, Gc

E0
∪ Υ ∗) � (E0, E0\S∗) �� (E,E\S∗)

for c ≥ α. According to Lemma 6.1 of Bartsch [30], there exists an element
ψ ∈ hd0+1(E,E\S∗) with the following property.

If R > 0 such that S∗ ⊂ intEBR(0) and if Y ⊂ E is a finite-dimensional
subspace with d = dimY > codim W = d0, then

(7.47) 0 �= ωd−d0−1 · ψ
∣
∣
(BRY,{0}∪SRY )

∈ hd(BRY, {0} ∪ SRY ).

Using this cohomology class we may consider the values

(7.48) ck := inf{c ≥ α : j∗c (ωk−d0−1 · ψ) �= 0 ∈ hk(Gc
E0
∪ Υ ∗, Gc

E0
∪ Υ ∗)}

for all k ≥ d0 + 1. In Bartsch [30], it is shown that there is a sequence of
critical points (uk)k≥d0+1 of G satisfying Properties (1)–(4) of Theorem 7.25
and such that G(uk) = ck for all k ≥ d0 + 1. In view of Theorem 7.17, it
suffices to show that

(7.49) ck ≤ βk, ∀k ≥ d0 + 1.

We fix k. By (7.37), for any given k-dimensional subspace Y ⊂ E0, we may
find a positive number R > 0 such that G(u) ≤ 0,∀u ∈ Y, ‖u‖ ≥ R. Hence
for β0 := maxY G, we obtain that

(BRY, {0} ∪ SRY ) ⊂ (Gβ
E0
∪ Υ ∗, Gα

E0
∪ Υ ∗) ⊂ (E0, E0\S∗).

Combining (7.47) and (7.48), it follows that ck ≤ β. We finish the proof of
the theorem by recalling that E0 ⊂ E is dense. �

Notes and Comments. The results of this section are due to Bartsch and
Weth [45]. Theorem 7.24 improves a result of Bartsch [30] (see also Bartsch
et al. [31]) as well as Castro et al. [80]. In [80], no extremality properties such
as (3) and (4) of Theorem 7.24 are studied. In Bartsch [30], properties (3)
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and (4) of Theorem 7.24 are obtained, but (1) and (2) could only be proved
by assuming that all sign-changing solutions are isolated which can almost
not be checked. In particular, in the proof of Theorem 7.24, one need not
calculate the Morse index. Theorem 7.25 is an extension of Theorems 1.1
and 7.3 of Bartsch [30], where sign-changing solutions are supposed to be
isolated. Finally, as observed in Bartsch [30], the ideas of [30] and of this
chapter can be used to prove the existence of connecting orbits between the
sign-changing stationary solutions for the parabolic equation.
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Revista Matemática de la Universidad Complutense de Madrid, 10(1997), 443–469.

74. B. Buffoni, L. Jeanjean, and C. A. Stuart, Existence of nontrivial solutions to a
strongly indefinite semilinear equation, Proc. Amer. Math. Soc., 119(1993), 179–186.

75. N. P. Các, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity
crosses a multiple eigenvalue, J. Diff. Eqs., 80(1989), 379–404.

76. L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with
weights, Compositio Math., 53(1984), 259–275.

77. P. Caldiroli and R. Musina, On a class of two-dimensional singular elliptic problems,
Proc. Royal Soc. Edinb., 131A(2001), 479–497.

78. D. Cao and S. Peng, A global compactness result for singular elliptic problems

involving critical Sobolev exponent, Proc. Amer. Math. Soc., 131(2003), 1857–1866.
79. A. Castro and J. Cossio, Multiple solutions for a nonlinear Dirichlet problem, SIAM

J. Math. Anal., 25(1994), 1554–1561.
80. A. Castro, J. Cossio, and J. M. Neuberger, A sign changing solutions for a superlinear

Dirichlet problems, Rocky Mount. J. Math., 27(1997), 1041–1053.
81. A. Castro, J. Cossio, and J. M. Neuberger, A minimax principle, index of the critical

point, and existence of sign-changing solutions to elliptic BVPs, E. J. Diff. Eqs.,
2(1998), 1–18.

82. A. Castro and M. Finan, Existence of many sign-changing nonradial solutions for
semilinear elliptic problems on thin annuli, Topo. Meth. Nonlinear Anal., 13(1999),
273–279.

83. F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp con-
stants, existence (and non existence), and symmetry of extremals functions, Comm.
Pure Appl. Math., 54(2001), 229–258.

84. G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Acad.
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269. M. Schechter, The Fuč́ık spectrum, Indiana Univ. Math. J., 43(1994), 1139–1157.
270. M. Schechter, The intrinsic mountain pass, Pacific J. Math., 171(1995), 529–544.
271. M. Schechter, The saddle point alternative, Amer. J. Math., 117(1995), 1603–1626.
272. M. Schechter, Type (II) regions between curves of the Fuč́ık spectrum, Nonlinear
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Linèaire, 20(2003), 341–358.

302. P. Sintzoff and M. Willem, A semilinear elliptic equation on RN with unbounded
coefficients, Variational and Topological Methods in the Study of Nonlinear Phenom-
ena, Progress on Non. Diff. Eqs. and Appl. Vol. 49, 105–113, Birkhäuser, Boston,
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336. M. Willem and W. Zou, On a semilinear Dirichlet problem and a nonlinear

Schrödinger equation with periodic potential, Indiana Univ. Math. J., 52(2003),
109–132.

337. E. Zeidler, Nonlinear Functional Analysis and its Applications, I-III, Springer Verlag,
New York, 1985.

338. Z. Zhang, J. Chen, and S. Li, Construction of pseudo-gradient vector field and sign-

changing multiple solutions involving p-Laplacian, J. Diff. Eqs., 201(2004), 287–303.
339. C. K. Zhong, A generalization of Ekeland’s variational principle and application to

the study of the relation between the weak P. S. condition and coercivity, Nonlinear
Anal. TMA, 29(1997), 1421–1431.

340. C. K. Zhong, On Ekeland’s variational principle and a minimax theorem, J. Math.
Anal. Appl., 205(1997), 239–250.

341. H. S. Zhou, Positive solution for a semilinear elliptic equation which is almost linear
at infinity, Z. Angew. Math. Phys., 49(1998), 896–906.

342. W. Zou, Variant fountain theorems and their Applications, Manuscripta Mathemat-
ica, 104(2001), 343–358.

343. W. Zou, Multiple solutions for asymptotically linear elliptic systems, J. Math. Anal.
Appl., 255(2001), 213–229.

344. W. Zou, Solitary waves of the generalized kadomtsev-petviashvili equations, Appl.
Math. Lett., 15(2002), 35–39.

345. W. Zou, Computations of cohomology groups and applications to asymptotically
linear beam equations and noncooperative elliptic systems, Commun. Partial Diff.
Eq., 27(2002), 115–148.

346. W. Zou and S. Li, New linking theorem and elliptic systems with nonlinear boundary
condition, Nonlinear Anal. TMA., 52(2003), 1797–1820.

347. W. Zou, Sign-changing saddle point, J. Funct. Anal., 219(2005), 433–468.
348. W. Zou and J. Liu, Multiple solutions for elliptic resonant problem via local linking

theory and Morse theory, J. Diff. Eq., 170(2001), 68–95.
349. W. Zou, On finding sign-changing solutions, J. Funct. Anal., 234(2006), 364–419.
350. W. Zou, Morse index estimates of sign-changing solutions and applications,

(Preprint).
351. W. Zou and M. Schechter, Critical Point Theory and Its Applications, Springer,

New York, 2006.



Index

H1(RN ), 7

Hk(Ω), 5

Lp(Ω), 4

Lp
loc(Ω), 4

W k,p(Ω), 5

W k,p
0 (Ω), 5

supp(u), 4

Cm(Ω), 5

Ck,α, 6

C∞
c (Ω), 4

w∗-PS, 83

(PS) condition, 34

Borsuk–Ulam theorem, 16, 142
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