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Incomplete notes by Ingemar Bengtsson, Fall 2003 (including minor additions
by Martin Ericsson). The course is defined by Mandl & Shaw: Quantum Field
Theory (1984), not by these notes. Other good albeit old fashioned books in-
clude Bjorken & Drell: Relativistic Quantum Mechanics (1964) and Relativistic
Quantum Fields (1965) as well as Weinberg: The Quantum Theory of Fields
I (1995). A more modern book is Peskin and Schroeder: An Introduction to
Quantum Field Theory (1995).

As long as the Feynman rules are known, and the resulting S-matrix can be shown to
be satisfactory, one tends to say, with Alfred E. Neumann: “What, me worry?”.

Martinus Veltman



PREREQUISITES

I expect you to know certain things, including elementary facts from analytical
mechanics, electrodynamics and quantum mechanics. Not many things—the
following list is more or less complete—but if you do not know the things on
the list you will probably be in trouble.

First of all you are supposed to recognize an action when you see one, such
as

S= / %jﬂ V), (1)

and to see immediately what equations of motion you get when varying the
action, ignoring time derivatives (why?). Namely in this case

(55’=—/6:c(i°+ %). 2)

You are also supposed to have an idea about classical electrodynamics so that
you recognize Maxwell’s equations in tensor form,

OpFP = AmrJe . (3)

You will also know that one can formulate the theory in terms of a vector
potential. Indeed this is necessary in order to write down a simple action that
leads to Maxwell’s equations when its variation is set to zero. The drawback
is that you cannot use the theory until you have understood something about
gauge invariance, the ambiguity that is always present in the vector potential:

§Ay = O, . (4)

I expect you to have sufficient experience with relativity so that you know that
you have to live with the fact that some people use a spacelike metric (— + ++),
and some a timelike (+ — ——).

Some background in quantum mechanics is also required. Notably you
should know about the harmonic oscillator and its spectrum,

1
H= %(102 + w?z?) = w(ata + 5) , (5)

where

1
V2w

This is the general solution both in classical and quantum mechanics (in the
Heisenberg picture where the operators are time dependent). Note that we

z(t) = (ae” ™t 4 gteiwt) (6)



can look at this as a decomposition of z into positive and negative frequency
parts; by convention the positive frequency part is the one where the time
dependence is through e~#*!. Tt is interesting that this decomposition brings
complex numbers in already at the classical stage of the theory.

You should know about the Schrodinger and Heisenberg pictures,

(Ts(t)|zs|Ts(t)) = (Ls(0)|e zse™ ™ |Us(0)) = (Prlzn(t)|Tr) . (7)

The time dependence can be shifted around, provided that the time dependence
of the matrix elements—that carry all the predictive content of the theory—
stays the same. The list of things you have to know is now at an end.

Time dependent perturbation theory may escape your memory, so let me
remind you. (In the end this course will become simply an involved exercise in
time dependent perturbation theory.) The first step is to split the Hamiltonian
in two parts, where the first — Hy — is something we can handle, say the
harmonic oscillator for definiteness. So

i0:0sg = HVg = (Ho+ H)Us . (8)

Now we go to the interaction or Dirac picture through

T (t) = ot g(t) z1(t) = etflotgge—iHot (9)
So the operators evolve as “free”, that is harmonic oscillator, operators. To
compute expectation values we also need to solve for the wave functions; so we
look for a formal, perturbative solution of

10U (t) = et Hpe ot (1) = Hy(t) T (t) . (10)
Operators such as H;(t) are now time dependent, although this time dependence
is not the “correct” one prescribed by the dynamics of the theory!
Equivalently, if we define the operator
Ur(t) =U(t, t0)¥1(0) , (11)

we must solve the equation

iatU(t,to) = Hj(t)U(t,to) 3 U(to,to) =1. (12)

This is not straightforward essentially because [H(t1), Hi(t2)] # 0 due to the
time dependence. However, one can proceed iteratively:

t t
U(t,to) =1-—1 dt1H[(t1)U(t1,t0) =1-—1 dtlHI(tl) +

to to
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Figure 1: Time ordered perturbation theory: Changing the region of integration.

t t1
+(—i)2/ dty | dt2Hr(t)Hi(t2) + -
to to

The first equality is exact and captures the full content of eq. (12), including
the initial condition. The second gives a useful perturbative expansion. We now
employ a clever trick that will turn out to be absolutely essential if we wish to
organize the calculation intelligibly in the relativistic quantum field theory case.
It is called time ordering, and uses the observation that

t t1 1 t t
/ dtl dtgHI(tl)H[(tg) == —/ dtl dtQT(HI(t]_)HI(tz)) . (14)
to to 2 to to

Instead of integrating over a triangle in the (¢1,t2) plane we integrate over a
square, putting the operators in a particular time order with the “earliest” one
occurring first. Actually this is so important that I report the two interme-
diate steps: First we change the order of integration and then we relabel the
integration variables,

t t t t
/ dty [ dtsHy(t)Hi(t2) 150, = / ity [ dtsHi(t)Hi(h), yse, . (15)
to to to t1

The trick is easily generalized to higher orders in the operators, so our solution
of the Schrédinger equation can be written (formally!) as

ot _2 ot t
U(t,to) =1—1 H[(tl)dtl + ( 2') / dtq dtzT(HI(tl)HI(tQ)) + ...
to * to to

(16)
_ Te_if:o dtH (t)

Each term in the Taylor expansion of the exponential is time ordered. We will
deal with this type of expansion in concrete detail later. For the moment, keep



in mind that our interest in time dependent perturbation expansions explains a
certain predilection towards time ordered products of operators that will show
itself at an early stage.

A caveat should also be mentioned. Perturbation theory assumes that we
know what Hilbert space we are working in. We know this because the Hilbert
space is chosen so that we can represent the algebra of the operators that we
have, say ¢ and p. And here we can rely on the Stone-von Neumann theo-
rem, which states that there is (up to unitary equivalence) only one (decent)
representation of the Heisenberg algebra

[z,p] =i . (17)

This is true also if we have NV independent Heisenberg algebras in the game, say
for a point particle in N = 3 dimensions. However, it is not true when N — oo
(basically because representations that one expects to be unitarily equivalent
fail to be so0), and this is the situation we are in when we deal with quantum
field theory. This means that the perturbation expansion that we will embark on
comes without any guarantee that it will make any kind of mathematical sense,
so that we have no reason to complain when we encounter divergent integrals at
an early stage. The attitude that I will take in these notes is the historical one:
It all works very well following some trickery when we renormalize the theory.
All sorts of more sophisticated responses to this dilemma have been advanced
but they are beyond our scope here.



WHAT IS A FIELD THEORY?

A field theory is in a definite sense a dynamical system with an infinite number
of degrees of freedom. To see this we begin with a study of NV degrees of freedom,
say a set of coupled harmonic oscillators given by the quadratic Lagrangian

L= Z ¢n+1 ¢n)2 - ngﬁ%) . (18)

The interactions are between nearest neighbours only and the Lagrangian was
chosen so that the equations of motion are linear;

én = Qz(¢n+1 - 2¢n + (ﬁnfl) - m2¢n . (19)

It is convenient to adopt periodic boundary conditions so that the index n can
be counted modulo N. The standard philosophy is that the lattice is so large
that in the end boundary conditions do not matter much. We can think of the
N lattice points as representing positions in space, and we also observe that if
m? = 0 then ¢, = 0 means that the value assumed by ¢, equals the average
of that assumed by its neighbours. In effect what we have in this case is an
approximate description of a sound wave, with ¢,, standing for the density of
the gas at the point labelled n.

Because of linearity the equations are easily solved with a Fourier transfor-
mation, that is we define

This has the effect of dlagonahzmg the equations of motion,

Tk,
= —0%(2sin —)?®; — m* ¥y, . 21
(25in 228 — m*®, (21)
Each mode ®; can be regarded as a harmonic oscillator. The equations of

motion—classical or quantum—are therefore solved by

1
vV 2wy,

The momentum canonically conjugate to ¢, is m, = d)n The quantum version
of the theory is obtained by postulating the commutation relations

By, =

. k
(ape “rt 4 aJf erty s w2 = 0%(2sin %)2 +m?. (22)

[¢n; 7Tm:| = i(sn,m a4 [aka a“ = 5k,—l . (23)



Here a_j, = any— and so on. The Hamiltonian, when expressed in creation and
annihilation operators, is

N

N
1 1
H= 2 ,;,1 wk(akatk + a;'ca_k) = ,;_1 wk(ala_k + 5) . (24)

It is a good thing to show this explicitly. The spectrum of this Hamiltonian is
easily worked out. The Hilbert space can be built up from a “vacuum” vector
|0y and is spanned by the vectors

(@)™ ()" ... ()"

nl!ng! ’I’LN!

|ny,n2, ... ,nN) = |0) . (25)
To give this Hilbert space a physical interpretation, when we think of this as
the quantum version of the theory of sound waves, we say that a state with the
“occupation number” N = )", n; contains N “phonons”. These are “particles”
in the sense that they can be counted; we can define the number operator

N
N = Z a};a,k (26)
k=1
whose eigenvalues are the occupation numbers of the states,

N|n1,n2, ,TLN> = (n1 +ns + ... +TLN)|TL1,TL2, ,TLN) . (27)

The phonons also carry energy in discrete amounts. To some extent we can think
of them as elementary “sound particles”, but we have no particular justification
for thinking of phonons as particles localized to a point, or anything like that.

Now what happens if we take the continuum limit, that is to say if we let
the lattice spacing a tend to zero, keeping the length of the interval L fixed so
that the number of points N goes to infinity? (If we did not believe in atoms
we would think that this gives a more exact description of sound waves.) Before
taking the limit @ — 0 we rescale things a little. In effect we set

Z%%/dw b Vas(e) 0 (28)

and insist that ¢(z) and c shall stay finite when we take the limit. Then we find
that

L= 5 30 - @un — 62 > L= [dal@ -2, (29)

n

where ¢’ is the spatial derivative of ¢(x), which in itself is a classical field
obeying the field equation



<6§ - c%af) é(x) = 0¢(x) =0 . (30)

As our definition we say that a classical field is some kind of function (not
necessarily a scalar) of space and time. An important point that this exercise
has is that it shows that, in field theory, the role of space is quite different from
that of time. The coordinate z plays the same role as that played by the index i
in the discrete dynamical system. It is an index, in the sense that it is labelling
an infinite set of degrees of freedom. The field equation is not analogous to the
Schrédinger equation, where x enters in the first place as an operator.

Of course our scalar field can be a function of a three dimensional space
just as well as a one dimensional, and is then said to describe (00)® degrees of
freedom, one for each spatial point. There will be an action S, a Lagrangian L
that you never think of, and a Lagrangian density £ that you think about often
since

S = /dtL = /d‘*a:/: = —%/d4x(6a¢6"¢+m2¢2) : (31)

I am using a spacelike metric. There will be a canonical momentum (more
precisely, a canonical momentum density)

m(x) = % (32)
0¢
and a positive definite Hamiltonian
1 o
H= §/d3x(7r2 + 0:90ip + m2H?) . (33)

The infinite number of degrees of freedom do not affect the formal structure of
the Hamiltionian system very much. There will be canonical Poisson brackets

{(2),m(y)} = 6@ (z,y) (34)

in terms of which Hamilton’s equations of motion take the form

$(z) = {p(e), Hy == () = {n(2), H} = Ap —m?¢ . (35)

(I use A to denote the Laplacian.) There are certain subtle problems that are
specific to field theory though, already at the classical stage. In principle we
must formulate conditions on the allowed field configurations that ensure that
the integral that goes into the definition of H converges, we must check that
these conditions hold at all times, and so on. One strategy is to consider the
field theory in a finite volume and impose periodic boundary conditions. (“The
Universe is a box, anyway.”) Another is to work in an infinite volume and insist
that the fields fall to zero at infinity, sufficiently fast to ensure that all integrals



exist—with the understanding that this is not a cosmological assumption, it
is part of a definition of what we mean by an “isolated system”. In particle
physics, infinity is where the detectors are.

As long as the action is such that the field equations are linear they can
again be solved by means of a Fourier transformation. If we define the theory
in a box of volume V we find that the general solution of the Klein-Gordon
equation is

V4 2Vwk

Here T am using the conventions of Mandl and Shaw. Because we are in a box
ki = (ks,ky, k-) runs over a discrete set of values only. If we use an infinite
volume we get

b() = 3 e (a(k)eFe ) 4 gl (k)e~iexd) . (36)
k

1 d*k
ole) = v (2m)3 /m

Here I am using my own conventions and k; takes arbitrary real values. In both
cases wr = VkZ +m?2, a positive function. The function a(k) can be chosen
at will so this is the general solution of the Klein-Gordon equation. It is real
provided af(k) is the complex conjugate of a(k).

Since the complex function a(k) can be chosen at will we must choose 2 x
(00)® numbers to specify the solution, which means that there is one degree of
freedom (with “position” and “velocity” to be specified) per spatial point. But
note that a(k) is actually a highly non-local function of the field since we must
integrate over all space to get it. This observation will become important later
on when we use a(k) to extract a particle interpretation for the quantum field.
It is also worth noting that eq. (37) gives a (non-local) split of the field into
(complex) positive and negative frequency parts,

(a(k)ei(k-w—wkt) +a1(k)e—i(k.x—wkt)) . (37)

p=¢ + o) (38)

where the positive frequency part ¢{*) is the one that is linear in the annihilation
operators.

An advantage with the infinite volume formulation is that Lorentz invariance
can be made obvious in a simple way. At first sight it seems that the three
dimensional integral in the solution is somewhat against the spirit of a four
dimensional spacetime, but second thought reveals that

&

2 /d4k6[(wk +E%) (wr — K)]0(k°) = /d4k5(k2 +m")0(k?) . (39)

To prove this note that if a function f(z) has simple zeroes at x = z; then
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Figure 2: The mass hyperboloid in momentum space.

@)=y () (40)
¢ do =xz;

The measure is now in manifestly Lorentz invariant form. It is seen that the
integration is really over the future mass hyperboloid &2 +m? = 0 in momentum
space, and this hyperboloid is carried onto itself under Lorentz transformations.
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QUANTUM THEORY OF THE FREE SCALAR FIELD

We can now pass over to the quantum theory of a free scalar field in a straight-
forward way. As in the discrete case we can proceed by turning the functions
a(k),at(k) into hermitian conjugate operators obeying suitable commutation
relations. We choose

[a(k), @t (k)] = 20k 8®) (K, K') . (41)

The somewhat peculiar factor in front of the delta function is allowed because
wy, is positive. My conventions are rigged in such a way that Lorentz invariance
is easily discussed. Now the canonical momentum at ¢ = 0 is simply the time
derivative of ¢ at time zero,

) a3k : ;
W(.T)‘t:() = \/ﬁ / T(at(k)e_ik.z _ a(k)ezk-m) . (42)
It is then easy to verify that, at t =0,
[6(), m(y)] = i6®) (z,y) . (43)

These are the canonical commutation relations.
Now we need a Hilbert space. First we define the vacuum vector by

oy - a(k)[0) =0 . (44)

There is a problem immediately because a' (k) is not an operator since it takes
us out of the Hilbert space we wish to define;

llat (%)|0)[|* = (Ola(k)a (k)|0) = 2w (0[0)d(k, k) = oo . (45)

This is expected. Eigenstates of the momentum do not exist in elementary
quantum mechanics either. If we ignore this we can define the “one-particle
states” as

|k) = al (K)|0) - (46)

If we want to be rigourous we can define wave packets and smeared operators
/] b
a Y

&k -
1¥) = [ 5 -F(k)|k) = a'[£]|0) . (47)
wh
We say that af(k) is an operator valued distribution. Similarly ¢(x) is an

operator valued distribution; ¢(z) is not an operator but ¢[f] = [ d*z f(z)¢(z)
is an operator for suitable test functions f(z). At the moment this complication

11



does not matter but it will soon cause problems because it means that objects
such as ¢(x)@p(x)—products of fields at the same point—do not exist.

To continue, we can define a Hilbert space called Fock space whose basis
vectors are

|0) ) |k) s |k1ak2> PERLE (48)

that is to say that it is a direct sum of n particle states with all finite n present.
Note that the “particles” are bosons. Thus the two-particle states obey

k1, k) = al (k1 )a® (k2)|0) = af (k2)al (k1)[0) = [ka, k1) . (49)

A general state is a superposition of n-particle states, schematically

|1IJ) :Co|0)+cl|1)+(32|2)+ [ (50)

We will soon substantiate the interpretation that the “n-particle states” are
indeed n-particle states, but before we do so let us say something about the
field aspects. First we observe that (schematically)

(n|gp(z)|n) ~ (njn—1)+ (njn+1)=0. (51)

Actually one can construct so called coherent states for which (¢(x)) = ¢ (x)
is a function behaving as a classical field, but these states are superpositions of
n-particle states with all n present. In this sense the field and particle aspects
of quantum field theory are complementary. We may also observe that

(01¢*(2)10) — ({0]¢(2)]0))* = 00 =0 =00 . (52)

This reflects the fact that ¢? is not defined. If we smear the fields with test func-
tions we get a well defined answer, but we find—Dby choosing test functions that
are increasingly peaked—that there are violent “vacuum fluctuations” present.

Let us now look at some important operators in the theory. At first sight
the Hamiltonian should be

3
1= 5 [ o000+ 0900+ w6 = 5 [ 3 wn(a(R)al () + ol (Ha(h)

(53)
Essentially because ¢?(z) does not exist this is not an acceptable operator in
Fock space. We want all our operators to be normal ordered, that is to say that
the annihilation operators should occur to the right of the creation operators.
But if we normal order this expression for the Hamiltonian it diverges. This is
not too bad though because the divergence is a c-number that does not affect
Heisenberg’s equations of motion. So we simply omit it and define—note the
colons that stand for normal ordering—

12



3
= % / Pz : (90,6 + Diddich + m24?) : = %wkaf(k)a(k) L (54
This is well defined in Fock space.

Another important operator is the Noether charge corresponding to transla-
tions in space. Recall that when the action of a classical field theory is invariant
under some particular variation of the fields then there necessarily exists a con-
served charge in the theory. For our scalar field theory, defined by the action
(31),

Sp=0;¢p = 6= / d*zd;L=0. (55)

(By assumption the surface term at spatial infinity vanishes.) This is symmetry
under spatial translations. On the other hand when the field equations hold, but
if we keep careful track of partial integrations with respect to time, we obtain

to . t2
55 = /t dt / P (956) = /1t dt / &z (x55) (56)

regardless of the form of the variation d¢. But if we insert our particular varia-
tion then 65 must vanish. The conclusion is that the quantity

P,' = —/d3$77'31’¢ (57)

is independent of the time at which it is evaluated, provided that the field
equations hold. Hence P; = 0 is an automatic consequence of the latter. It is
said to be a conserved Noether charge. A nice thing about it is that if we use it
instead of H in Hamilton’s equations of motion we find that it generates spatial
translations, just as the Hamiltonian generarates time translations:

{¢(z), Pi} = —0ig(x) . (58)
The Noether charge always generates the symmetry transformation that is the
reason for its existence in the first place—we have simply gone through a par-
ticular case of Noether’s theorem that holds for any dynamical system defined
by an action invariant under some transformation, regardless of whether the
number of degrees of freedom is finite or not.
Our Noether charge is conserved also in the quantum theory where

Pk
ka

P, =— / dPrnd;ip = kia® (k)a(k) . (59)

This time there are no normal ordering difficulties. There is a third operator
that is important to us, although it has some funny properties. It is called the
number operator and is defined as

13



N= / PE ot k)ak) - (60)

ka

It is again a conserved operator (in our free field theory). What is peculiar about
is that it can not be written as a local functional of the fields—the creation and
annihilation operators being highly non-local functions of the fields. The best
we can do is to write it as

N=i / B¢ — F )y 61)

using the non-local split of the field into positive and negative frequency parts.
Equipped with these three operators we can finally substantiate the particle
interpretation of the theory. First of all

H|0) = P3[0) = N|0) =0 . (62)

In this sense the vacuum is empty. Next

Nlk)=1k)  Hlk) =wi|k)  Pilk) = kilk) . (63)

Hence the one-particle state has the energy and momentum that we expect from

a free relativistic particle. The operator N is supposed to count the number of

particles, and indeed the eigenvalue of the one-particle state is one. If we need

any further verification that one particle is present we could define the angular

momentum operator (as the Noether charge corresponding to spatial rotations)

and check that the particle behaves as we expect a spin zero particle to behave.
We can now go on in this way. For the two-particle states

Nlkiks) = 2|kik2) (64)

Hlkiko) = (wk, +wk,)[k1k2)  Pilkiks) = (k1 + k2)ilkike) . (65)

These are the eigenvalues expected for two non-interacting particles. For the
n-particle states we again get what we expect. Hence the n-particle states
are indeed states of n particles that can be counted (with the operator N) and
whose energies and momenta are additive (as they should be for non-interacting
particles). The particle interpretation of quantum field theory is established. On
the other hand the “particles” do have some counterintuitive properties, at least
if you insist that a particle is something that is localized to a point. We have
already seen that the definition of the creation operator is non-local, and so is
the definition of the operator N. Indeed at this point we know nothing about
the spacetime properties of our particles.

If we consider two real scalar fields collected into one complex scalar ¢ (with
complex conjugate @) something new and interesting happens. The action is

14



- / 0*2(00 30§ + m>) (66)

and the field equation is again just the Klein-Gordon equation, so the two real
fields do not interact with each other. But there are twice as many degrees of
freedom and the theory admits a new and interesting symmetry transformation,
namely

0p=iep = 05=0. (67)
(The parameter € is any real number.) The transformation is local, and so is
the corresponding conserved Noether charge

Q=i / Br(Fé— 36) (68)

If we try to couple a scalar field theory to the electromagnetic charge via the
vector potential we find that we need a complex valued field to succeed, and
then @ will have an interpretation as the electrical charge—an integral of the
local charge density.

The general solution of the Klein-Gordon equation now depends on two
independent complex numbers a(k) and b(k) and correspondingly there will be
two independent pairs of creation and annihilation operators in the quantum
theory. Schematically,

o= /ae i plet ¢ = /aTei+be_i. (69)

The number operator (non-local) and the charge operator (local) become, re-
spectively,

N = / %(af(k)a(k)m‘r(k)b(k)) (70)
Q= [ 5 @ Wtk 51100 ()

All the n-particle states in our Fock space will carry an electrical charge mea-
sured by the eigenvalues of (). Thus

Qa'lo) =a'0)  Qb'j0) = —bf|0) . (72)
This is in fact extremely interesting: What we are seeing indicates that it is
not possible to write down a quantum field theory that contains negatively
charged particles only. We necessarily get anti-particles carrying the opposite
charge as well. This indication can in fact be sharpened to a theorem that is
a deep consequence of locality and relativistic invariance working together. It
also happens to be true (in nature): For each kind of charged particle there is
an oppositely charged antiparticle that can exist.
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SPACETIME PROPERTIES

We now wish to compute

[6(x), p(y)] = iA(z,y) (73)
(0l¢()p(y)[0) = iAT (z,y) (74)
OIT(¢(x)(y)|0) = iAF(z,y) - (75)

The right hand sides here are c-number distributions known as Green functions,
generically denoted by G(z,y)—although in a non-linear theory the commutator
would be an operator rather than a c-number Green function.

You may wonder why we should compute them? The commutator Green
function A is clearly of great interest and, if the theory is to make sense,
we must show that it vanishes when x and y are spacelike separated so that
(roughly speaking) measurements made at spacelike separated points do not
interfere. The Wightman function A¥ is of interest because it can be shown
that it contains all the information in the theory, that is to say that the Hilbert
space and the operators can be reconstructed from it (this remains true for in-
teracting theories provided that we include arbitrarily long strings of vacuum
expectation values like (0|¢(z1)d(z2) ... ¢(z5)|0); in the free theory the higher
order Wightman functions can be expressed in terms of the second order ones).
The Feynman propagator A is the working horse of time ordered perturbation
theory.

Before we compute the Green functions it is helpful to recall that it is al-
lowed to think of the field equation as a matrix equation, where the matrix has
continuously many indices. So the “transition” from ordinary matrices to the
present case looks like

ZCUVJ' - /dm'C(w,x')f(x') , (76)

and the Klein-Gordon operator can be viewed as a matrix provided that we
write

C(z,2") = (O - m*)é(z,2') = /dﬂC'C(w,w')dﬁ(w') = (0 —m*)¢(z) . (77)

To solve the equation (O — m?)¢(x) = j(x) it is therefore enough to invert
the matrix C(z,z'). Its inverse is precisely the inhomogeneous Green function
G(z,2');
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(O0-m?)G(z,2") = 0(z,2') & /dw”C(w,x")G(x",a:’) =4(z,z') . (78)

For the Laplace equation the Green function is unique but for the Klein-Gordon
equation we get an entire zoo of Green functions, including homogeneous ones.
The various members of the zoo obey either

6@ (z,y) inhomogeneous Ap , A,
(O —m*)G(z,y) = . (79
0 homogeneous AT, A

The problem is precisely the homogeneous solutions: For the Laplace equation
with suitable boundary conditions the only homogeneous solution is zero, while
for a wave equation like the Klein-Gordon equation this is not true. In ma-
trix language, the matrix C(z,z") has zero eigenvalues and therefore the inverse
is not well defined unless additional conditions are imposed—for instance, the
extra condition that the field vanishes to the past of the “disturbance” repre-
sented by j(z) leads to the retarded Green function A,.; familiar from classical
electrodynamics. The Feynman propagator is a rather strange animal from a
classical point of view and is best characterized by its analyticity properties (as
we will see).

We start by deriving some relations between our Green functions. First we
define the complex conjugate of the complex Wightman function:

A7 (z,y) = (AT (z,9))" = (=i(0]g(2)¢(y)[0)* = —A*(y,2) . (80)
Since [¢(z), ¢(y)] = {0|[¢(z), #(y)]|0) the commutator Green function is

A(z,y) = AT (z,y) — AT (y,2) = AT (z,y) + A~ (z,y) = 2Re[A(z,y)] . (81)

The Feynman propagator is

Ap(z,y) = Ot —t") AT (z,y) — O(-t + ')A (z,y) (82)

(where t = 2° and t' = y°). Tt follows that
Re[Ap(z,y)] = %6(75 —t") (AT (z,y) + A7 (z,y)) (83)
TmAr(z,9)] = L (A (5,9) - A¥(z,3) (84

In fact all Green functions can be expressed in terms of the Wightman function
and its complex conjugate, or alternatively in terms of the real and imaginary
parts of the Feynman propagator.
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We would like to calculate the Green functions. Translation invariance actu-
ally implies that G(z,y) = G(z—y) for all the Green functions, so it is enough to
compute G(z) = G(z,0). In our free field theory (and using the decomposition
of the field into negative and positive frequency parts, that is into parts linear
in creation and annihilation operators respectively) the Wightman function is

A* (2) = —i{0]$(2)$(0)]0) = —i{0]¢ ) (2)6 ) (0)[0) =
(85)
) Bk ikz
@m? ) 2"

Here the four vector scalar product is k - = k;x; — k% with k° = wy. But this
can be rewritten in an intelligent way. Write

d4k eik-z d4k eik-z
B / e Ry mE / @)t (P — ) (B0 + o) (86)
The integrand is singular at k° = +w;. Choosing a suitable contour in the
complex kC-plane we can perform the integral using the calculus of residues and

we obtain
Ak eitw
| G =) 87)

where the choice of contour—in this case, surrounding one of the singularities
only—is an essential part of the definition of the integral. It is now evident that

(O -—m?)At(2) = / %ei’” =0 (88)

because the integrand is now analytic and the contour can be shrunk to a point.

It is also evident that the commutator Green function A = AT + A~ is given by

the same integral, but this time with a contour that encloses both singularities.
Indeed all Green functions can be written on the form

4 ik-x 4

The integrand of the Green function has poles at k° = 4wy and it is an inho-
mogeneous or homogeneous Green function depending on whether the contour
goes along the real axis or just surrounds one or both of the poles. The integral
defining an inhomogeneous Green function can again be evaluated using the cal-
culus of residues because the contour can be closed in the lower half plane when
t> 0 so that e~ "t ~ eIMIK’It goes to zero when Tm([k°] is large and negative,
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Figure 3: Integration contours for some homogeneous Green functions.
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Figure 4: Integration contours for some inhomogeneous Green functions.

and in the upper half plane when ¢ < 0. It remains necessary to say whether the
contour should pass above, below or through the poles. If it passes above both
poles then the integral vanishes for ¢ < 0 (since the closed contour surrounds
no poles), as appropriate for the retarded Green function A,.;. A contour that
reproduces eq. (82) for the Feynman propagator Ag can also be found without
much ado.

You may be pleased to know that the Fourier transformation of the Feynman
propagator is the object that will mostly concern us later on. But for our
present purpose it is interesting to look at the explicit expression in z-space.
Let 0 = 2% +y% + 22 — 2. After a delicate calculation that I will not repeat one
obtains

m 1
Ap(e) = gr 7= H ime) (90)
Here Hl(l) is a Hankel function. It can be expanded for small values of its
argument;

Ar(@) = - 8(0) — ™ 0(0) (1 + %a +o. ) -
(91)

19



Figure 5: Support of the commutator Green function.

The first observation is that this is singular on the light cone (and the second
that the expression becomes very simple when m = 0). The real part, and hence
the commutator Green function A (as well as the retarded Green function A,.;)
has support on and—when the mass is non-zero—inside the light cone. On the
other hand the imaginary part has support also outside the light cone. If we
expand the Hankel function for large values of the argument we find that when
t =0 and r = /22 + y2 + 22 is large then the imaginary part goes to zero like

1
Im[Ap(z)] ~ e ™ = 0. (92)
rz
This will be true also for the Wightman functions A*.
What can we make of this? First, for points z and y with spacelike separation
we find from eq. (73) that

[¢(z), (y)] =0 . (93)

This is relativistic causality. It is consistent with the canonical commutation
relations and indeed the latter are easily derived from the commutator Green
function. Relativistic causality implies that all local functionals of the field
(functions of the field and its derivatives to some finite order) commute at space-
like separation. Thus whenever the points x and y are at spacelike separation
the energy density H(z) obeys

[H(z),H(y)) =0 where H = /d3$7{($) . (94)

It is therefore meaningful to talk about the total amount of energy in separate
rooms at the same time. The same goes for the momentum and charge densities.

While we are on this subject it may be worth while to remark that although
energy is a local concept it does not have all the local properties that we may
expect. The vacuum vector is not annihilated by #(z) since it contains afat
terms. It remains true that the vacuum expectation value of the energy density
is zero, but one can find other states in the theory for which (¥|H(z)|¥) assumes
arbitrarily large negative values at a given point. On the other hand negative
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energy densities can occur only in ways that are subject to various integral
constraints—certainly the integral over all space has to be positive. This issue
is still subject to research.

A second point: We have constructed a quantum field theory for scalar par-
ticles that are bosons. They are bosons essentially because of the commutation
relations assumed for the creation and annihilation operators. Now we could
have postulated anti-commutators instead, schematically

[aa a]+ = [aT7aT]+ =0 [aaaT]-i- =1. (95)
The fields would still be

6= ) + ¢ ~ / ge it +atetit (96)

They would obey the anti-commutator

[$(2), p()]4 = [0 (2), 6 W)+ + [8 ) (2), 6P ()]s =
(97)
=AY (z,y) +iAY(y,2) = (AT (z,y) — A7 (z,y)) .

But this is a disaster since it can be expressed by the imaginary part of the
Feynman propagator, which does not vanish outside the light cone. So the
attempt to build a local relativistic theory of spinless fermions fails. Pursuing
this line of thought one can prove a remarkable theorem called the spin-statistics
theorem, stating that in a local relativistic theory integer spin particles cannot
be fermions and half-integer spin particles cannot be bosons. This is a major
triumph for quantum field theory.

A third point: The integrand of the number operator is not a local functional
of the fields since it can be expressed only in terms of the positive and negative
frequency parts. This means that the “number density” n(z) is non-local, in
particular the numbers of particles in two different volumes obey

[Nv,, Ny,] #0  where NV:/ d*zn(z) (98)
v

even if the two volumes V; and V5, are at spacelike separation. In effect what
this means is that a particle cannot be localized to a point. However, since the
Wightman function vanishes like e~™" at large spacelike separations r this fact
can be ignored at distances much larger than the Compton wavelength h/cm of
the particle. For a m-meson—the canonical example of a spinless particle—the
Compton wavelength is about 10~!® meters.
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THE UNRUH EFFECT

The concept of “particle” deserves further scrutiny. Clearly the best definition
of a particle is “something that causes a click in a detector”. A very rough model
of a detector takes it to be something that moves along a world line z*(7), not
necessarily an inertial one. It has some internal states with different energies
E;. It will interact with the quantum field through a term in the Hamiltonian
that we take to be

Hr = em(7)¢(z(7)) . (99)

Here m(7) is some operator in the Hilbert space of the detector. Assume that, at
the outset, the field is in its vacuum state—already this case has its possibilities
as we will see. In first order perturbation theory we will get an amplitude for
the transition from a state where the detector is in the state with energy E; to
that with energy E; which is

A(i = j) = (T Ej] /fo drm(7)(z(7))|0E;) . (100)

The field has gone to a state that we label ¥—it actually does not concern us
much, we are interested in what is happening to the detector. Using

m(r) = o (0)e~ o7 (101)

we find that the amplitude factorizes and becomes
Ali = j) = C(EjIm(O)IEz)/ dre! P~ EIT(B¢(2)|0) . (102)
—0oQ

(The Hilbert space is the product of the Hilbert space of the detector and the
Hilbert space of the field.) What we want is the total probability for a transition
between two states of the detector so we will perform a sum over all possible
states of the field, that is we can use ) g |¥)(¥| = 1 since we perform a sum
over a complete set of states for the field. Thus

P(i—j) = c2|(Ej|m(0)|Ei)|2/jo dr /jo dr'e {Ei— BT (0| 3(z) (2 )| 0) .

(103)
This double integral diverges. We will be looking at situations where the inte-
grand is actually a function of A7 = 7 — 7/ only. This means that we look at
stationary processes, and what we have encountered is a familiar difficulty in
such situations. It is easily cured by defining the transition probability per unit
time to be
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Puej)zﬁugmummm{/ dATe {Ei—EIATAT (A7) . (104)

Here AT (A7) = AT (x(7),z(7")) is the Wightman function restricted so that
its arguments lie on the world line of the detector. We need it in z-space rather
than in Fourier space. It can be read off from eq. (91). Its analyticity properties,
in x-space, will be crucial.

It is interesting to compute the Wightman function from scratch, once more.
This will give some further insight into why the wave function admits homoge-
neous Green functions, and how the analyticity properties arise. We do it for
the massless case only. Consider first the function

11
4r2 o’
It solves the wave equation O¢ = 0 everywhere except where it is ill-defined,
namely at o = 0. If the metric g,g is the Euclidean metric rather than the
Minkowski metric it solves the four dimensional Laplace equation everywhere
except at ¢ = 0 and is in fact the unique Green function of that operator (it
is the obvious generalization of —ﬁ which is the Green function of the usual
Laplace operator). Now we can get a complex solution ¥, if we use

0 = gapr®z’ . (105)

Oy = gap(x® —iv*) (2P —ivP) . (106)

The solution is regular everywhere except when ¢, vanishes, and this happens
only if the real and imaginary parts vanish separately, that is if and only if

2 —viP=z.v=0. (107)
But in the Minkowski case, and if v is a timelike vector, this never happens! Let
us choose v* = (¢,0,0,0). This gives an everywhere regular complex solution of
the wave equation which is, however, not Lorentz invariant because it depends
on a special vector. But we can consider

1 1 1
AT — _ Ti - hm - = = _
AT = 11_13(1) v, 12 lgrg) 2t~ an? (J zwe(t)d(a)) . (108)

Here we used the mystical formula

1 :%;m&@. (109)

z e
(“The merry mathematican won the princess and half the residue.” Actually

the formula is not mystical; it is a distributional formula to be used inside an
integral.) Comparing with eq. (91) it follows that A7 is precisely the Wightman
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Figure 6: World lines of two detectors, one sitting still and one having constant
proper acceleration.

function. This is a distributional solution of the wave equation which is Lorentz
invariant because we have taken a limit where the fixed vector v* disappears.
Let us write it out:

1 1
472 (t —i€)2 — 22
When we inspect this expression we see that what remains of our excursion into
the complex domain is the fact that the Wightman function is analytic in the
lower complex t-plane; indeed it can be defined by that property.

With the Wightman function in hand we can go back to eq. (104) and see
what will happen to our detector under various assumptions about the world
line that it follows. Let us first suppose that it is in a state of free fall (inertial
motion). Without loss of generality we set

iAtT = (110)

1 1

— iAT(AT) = —— ——— — |
(t,x,y,z) (7;07070) = 1 ( T) 472 (AT — i€)2

(111)
So the integrand is analytic in the lower complex plane. But this means that
the detector cannot get excited by the vacuum state; that is if E; > E; then
the contour of integration can be closed in the lower half plane and since the
integrand is analytic within the contour the integral that defines P(i — j)
vanishes. This is presumably unsurprising.

It is more interesting to consider the case of a detector whose acceleration a
in its own rest frame is constant. It follows the worldline

t= %sinh (ra) w= %cosh (ra) = a’—f£= al—z (112)
A little bit of juggling with hyperbolic sines and cosines shows that
2
1
iA+(AT) = —— (113)

1672 sinh? (% — ie) )
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AT

Figure 7: Integration contour for relating transition probabilities.

(If you are curious about this, the identity you need is cosh a cosh f—sinh a:sinh § =
1+ 2sinh (e — $)/2.) This time the integrand in eq. (104) has an infinite set of
poles on the imaginary axis, namely at

_ 2min

A 114
r=20 (114)

where n is an arbitary integer. The integral certainly does not vanish; the
detector will be excited even though the field is in its vacuum state. To do the
integral you need to know that

1 _ f: L (115)
sinh®z (z +imk)?
k=—o0
But we can arrive at the relevant conclusion without doing the integral.
~ What we need to do is to relate the transition probabilities P(i — j) and
P(j — i). We do this by choosing a special contour with no singularities inside
so that

;2

/ dAre {Fi—EIAT A+ (A7) +/ " dAre (P FIATIAY (A7) = 0.

;27

co—i<t
(116)
But the Wightman function is periodic in imaginary time, that is
+ + 2m
AT(AT) = AT (AT +z;) . (117)
In the second integral we can therefore shift variables
' 2w
AT - AT = —-AT — i (118)
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This is consistent with the appropriate pole prescription (in the sense that the
pole for the second integral lies below the contour in the A7—plane and above
it in the A7'—plane). Dropping the prime, and introducing d as the factor that
characterizes the detector, we can conclude that

P@aj):d/ dAre (B~ BOATIA* (A7) =
(119)
=d / dAre—i(F—F)AT =2 (B —F)i A+ (A7) = e~ EF-F p(j S ) .

This actually means that the detector behaves as if it were in thermal equilib-
rium (it expresses the principle of detailed balance). To see this, suppose that
the states of the detector are populated according to the Boltzmann distribution

N; = Ne Bi/kT = Ne=27Ei/a (120)

Here k is Boltzmann’s constant and we have assigned a temperature T' = 5
to our detector. For the transition rates, that depend on how the levels are
populated, we can then deduce that

R(i = j) = NiP(i = j) = N;P(j = i) = R(j = i) . (121)

So the Boltzmann distribution is the equilibrium distribution for our detector.

What we have seen is a manifestation of the Unruh effect: A detector moving
at constant proper acceleration will respond to the vacuum state of a scalar field
precisely as if it were in a thermal bath with temperature

_ a ~ a
T 2nk T 109m/s?

It would be difficult to observe this effect with a real detector—although perhaps
not impossible if we use an elementary particle with some internal states in that
role. Conceptually it is nevertheless an important point. The vacuum state is
not all that harmless, and the particle concept is observer dependent.

(122)
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THE DIRAC FIELD

To describe electrons we need a field theory for fermions with mass m and spin
1/2. The particles should also carry an electric charge. Since spin 1/2 particles
are two component objects this suggests that we need a field with twice as many
components as the complex Klein-Gordon field. This expectation turns out to
be basically correct. The construction has to have some clever feature in order
to allow fermionic statistics in a way that is consistent with locality.

The solution is the Dirac field equation

(i7%% 0 — md%)h? =0 . (123)

In this equation we have introduced the y-matrices. Their defining property is
that they obey the anti-commutator

Y71 = =20 (124)
The sign on the right hand matters. I have chosen it so that my y-matrices are
the “Bjorken and Drell” ones, even though I am using a spacelike metric. The
field ¥® is a spinor, which for our purposes can be defined as a vector in a vector
space that carries an irreducible representation of the y-matrix algebra.
It is reasonable that this could be the solution of our problem, first of all
since

0= (i-0+m)(iy-9—m) = (311,71 Badds + m*)p = (B —m?)y . (125)

The mass of the particles should be m. Second, since the equation is first order
in derivatives “twice as many components” as the second order Klein-Gordon
equation should mean four components, and we will soon see that the y-matrix
algebra requires a four dimensional representation space. Compare eq. (35),
where the Klein-Gordon equation is rewritten as a first order equation for two

components; in effect
O -1 ¢\ _
(—A+m2 O )(w)_o' (126)

So the number of degrees of freedom is as expected. But we must also check
that the equation is Lorentz invariant, that the Hamiltonian is bounded from
below, and that the theory has decent locality properties. This will take a little
time.

We begin with Lorentz invariance. Recall that a Lorentz transformation is
a transformation that takes the point with coordinates z® to the point with
coordinates z'® = Aaﬁmﬂ , where the matrix A leaves the Minkowski metric
invariant in the sense that
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Figure 8: An active transformation and a scalar field.

A"‘AYA'Hén""S =9 . (127)

(This includes both rotations and Lorentz boosts.) A scalar field ¢ is by defini-
tion a field such that when a Lorentz transformation is performed the function
¢(z) is transformed to a new function ¢'(z) defined by

¢'(z") = ¢(z) - (128)

If the original function has a peak around the point whose coordinates are z,
the new function has a peak around the point whose coordinates are z'. A field
equation is Lorentz invariant if and only if the transformed field is a solution
to the equation whenever the original field is; a Lorentz transformation takes
solutions to solutions. It is easy to see that the Klein-Gordon equation is indeed
Lorentz invariant.

A more elaborate example is the vector field A®. By definition it transforms
according to

A% (z') = A% AP (z) . (129)

It is more convenient—and usually sufficient—to consider “small” Lorentz trans-
formations, that is we set

aﬂ = 6aﬂ + waﬁ ; waﬁ = —wlga . (130)

Then we ignore all second order and higher terms in w. The condition on the
tensor wag, with one index lowered using the Minkowski metric, ensures that
eq. (127) holds. The transformed vector field is

A (z) = A* A (A 'z) = AF(2* - waﬁmﬁ) + wt AY(z) . (131)
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Using a Taylor expansion we then find that

SAR(z) = A (z) — Al(z) = %waﬁ(Jag)“,,A"(m) , (132)

where Jog = Log + Sap is a tensor and a matrix at the same time;

(Laﬂ)uy = (.’Eaaﬂ - .Z',/_aaa)(su,, (Sa,g)“u = (557]5,, - 5gnay . (133)

(To prove this, set £* = waﬂxﬁ so that

Atz — &) m AP (z) — €20, A" (x) = AP =Wk A — wzP8, AP . (134)

Once you have this it is a matter of comparing terms—just insist on having an
w® in front of everything.) Note that the orbital part L,s of the angular mo-
mentum tensor commutes with the spin part S,s. It can be seen that Maxwell’s
equations are Lorentz invariant in the sense that a solution is transformed to
a solution. A key property of the Lorentz transformations is that they form
a group, which means that the infinitesimal transformations close in the sense
that

[01,02]A* = d5 AF . (135)
Explicitly one can see that
[61, 6, A% = %wgﬁwzé[Jaﬁ, st A . (136)
Also that
[Jas: Jys] = Mgy Jas — NayJas + NasIpy — MasJary - (137)

From this it follows that the parameter that determines the transformation ds3
in the equation above is given by an equation of the form ws = ws(wi,ws2).
Mathematically this means that the Lorentz group is a Lie group.

We do not need a lot of group theory here, but we can extract some key
features that we wish the Dirac theory to have. We need a matrix S, that
obeys

[Saﬂ, S’yé] = nﬁ'ySaé - na'ysﬂé + naJS,B'y - nBJSa'y . (138)

An infinitesimal Lorentz transformation of the spinor field should be given by

1
St = iwaﬂ (Lagd% + Sap%)0" . (139)

The Lorentz invariance of the Dirac equation is ensured if solutions transform
to solutions, which in infinitesimal terms means that d¢» must be such that
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(ty-0—m)py=0 = (iy-0—m)dyp=0. (140)

And now we have to construct S,g out of the building blocks that we have at
our disposal, namely the y-matrices.

The y-matrix algebra consists, by definition, of all matrices that one can ob-
tain by taking products of y-matrices, subject to the condition (124), and then
all matrices that can be obtained by taking linear combinations of the resulting
products. (By definition, an algebra is a vector space equipped with a multi-
plicative operation.) Hence the y-matrix algebra consists of linear combinations
of the following objects:

1, 7%, 7%,

7 ) 7

, 7P (141)

Here all the multi-index objects are by definition totally anti-symmetric. The
point is that

1 1 1
77 =%l + 50T = P+ ST = PP (142)
The symmetric pieces of the products can always be removed in this way. Totally
anti-symmetric tensors in four dimensions cannot have more than four indices,
so our list is complete. Let us now count the number of linearly independent
objects in the algebra. It is convenient to begin by defining
Yy = (00’ =1, [+ =0. (143)
Now we introduce the totally anti-symmetric object e,g+s defined by €p123 =1
in all coordinate systems. This is a “pseudo-tensor”, that is it behaves like a
tensor under rotations and boosts but changes sign under reflections. Now it is
easy to see that
i
1= famar™ & o0 = et (144)
If we also trade y*#7 for 7°y2, the list of objects in the y-matrix algebra can
be rewritten as

1, v*, 8, 4%y, 4. (145)

We see that it contains sixteen objects. It is easy to see that—with the obvious
exception of 1—they must be represented by traceless matrices. For instance

Tr 4% = Tr 7%7°y° = =Tr 1°7%9° = =Tr 7%7°7° = —Tr 1~ . (146)
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Here we used first eq. (143) and then the cyclic property of the trace. It follows
that all the objects in the list must be linearly independent. Suppose that there
exist numbers a; etc. so that

a11 + a2a7® + a3057%" + @0a7°Y® +asy® = 0. (147)

Taking the trace of this equation implies that a; = 0. Multiplying the whole
expression with 7° and again taking the trace implies that asq = 0. Going on
in this way implies that all the coefficients must vanish. Therefore the y-matrix
algebra contains precisely sixteen linearly independent objects—the algebra is
sixteen dimensional. If we have sixteen linearly independent matrices they must
be (at least) four by four matrices, so the spinors on which the matrices act must
be four component objects. (Clearly this conclusion depends on the dimension
D of spacetime. In general the dimension of spinor space is 2% if D is even, and
25" if D is odd. In fact the Pauli matrices are y-matrices in three Euclidean
dimensions.)

Let us say something about explicit representations—although calculations
should be done using nothing but the defining equation (124) as far as possible.
The first observation is that since we need sixteen linearly independent matri-
ces altogether the representation must be done with four by four matrices—so
the Dirac spinor field is a four component object as advertized. The second
observation is that, since

()P =1=-(')=-(")"=-(+"), (148)
the matrix 7° is hermitian and the matrices 7* are anti-hermitian (i.e., y* has
imaginary eigenvalues). Next introduce the two by two Pauli matrices, suitably
normalized so that

[O'i,Uj] = ieijkak [(Ti,O'j]+ = 5@']'1 . (149)

Then an explicit representation (the Dirac representation) is

1 0 ; 0 o 01
70:(0 —1) 71:(—02- 01) 75:(1 0)' (150)
This representation will prove useful when we discuss the non-relativistic limit

of the Dirac equation, essentially because 7° is diagonal. Another representation
is the Weyl representation given by

pe(5 ) (5 8) (3 %)

Now 7® and +° have switched roles and +® is diagonal. This property will turn
out to mean that the Weyl representation is useful in situations where the mass
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m in the Dirac equation is so small that it can be ignored. Let me just mention
a third representation of interest called the Majorana representation, in which
all the gamma matrices are purely imaginary—this means that if we had chosen
the opposite sign in eq. (124) we could have had a purely real set of gamma
matrices, something that is of interest if we want to describe neutral spin one
half particles.

Now for some interesting calculations. First

V77 = 207y =0 y%) (152)

It is crucial to realize that the easy way to prove this is to do it directly from
eq. (124). Similarly

[Y*2 7] = 2070y — P30 £ P — Py (153)

We have found our spin tensor! We can set

1

We are now in a position to check that the Dirac equation is Lorentz invariant,
that is that Lorentz transformations take solutions to solutions.

We are given that 9® is a solution of the Dirac equation and we want to
show that this implies that d¢® is too, where d¢* is given by eqs. (139) and
(154). But because ¥* obeys the Dirac equation we have that

(i -0 — m)ow = (i - & — m)%waﬂJam/) = %w"‘ﬂih O, Jagld . (155)

We want to show that this equals zero. The commutator is, using eq. (152),

[v - 0, Japl = V[0, Lapl + [V, SaplOn =
(156)
= Ya0p — 1800 — (55'704 —088)0, =0 .
This is the proof that the Dirac equation is Lorentz invariant.
We are going to need the action for the Dirac equation as well, and this
means that we must learn to construct scalar functions out of spinors. (We

are looking for the analogue of raising and lowering vector indices. Recall that
under an infinitesimal Lorentz transformation

JA* =w*3A* By =—Bsw®, = 6(A*B,)=0. (157)

The transformation rule for the covariant vector is defined so that the scalar
product is a scalar.) Given the spinor ¥* we must find a “dual” spinor 1, so
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that ¥,1® is a scalar, unaffected by the spin part of the Lorentz transformation.
The answer is

Do = Pi7, . (158)

The proof uses the hermiticity properties of the - matrices that we deduced
directly from the algebra. Since 7° is hermitian and ¢ anti-hermitian it is true
that

N=7"1" = "= s (159)
Now we proceed with the calculation, remembering that S,5 = —%fyag:
7l aptat 0_ 1 apr ogt .0 L a7
5wa = Ew ¢ Saﬁ’y = Ew ¢’7 Saﬁ’)/ = _5(") wSaB * (160)

It is now immediate that d (41p) = 0, which is what we wanted to show. Similarly
it can be shown that ¢y*1) transforms as a vector, ¥y5v7*1 as a pseudo-vector,
and so on. A scalar action that leads to the Dirac equation is therefore

S:/@Z(m-a—m)w. (161)

The spinor is really a complex field so this action is analogous to the action for
the complex scalar field, in particular in the sense that we get the field equations
by varying ¢ and ¢ independently.

We have now collected two basically classical arguments that the Dirac field
equation has a chance to describe spin 1/2 particles in a relativistic quantum
field theory: It is a Lorentz invariant equation with twice as many degrees of
freedom as the Klein-Gordon field. It remains to actually construct the (free)
quantum field theory and check that the resulting theory is a local theory with a
Hamiltonian bounded from below, and also that the spin, statistics and charge
are what we want them to be.
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QUANTUM THEORY OF THE DIRAC FIELD

To handle the rest of our questions about the Dirac field we proceed to quantize
it along the same lines as we did for the free scalar field. That is, we begin by
writing down the general solution of the field equation as a (Fourier) sum of
plane waves. A single plane wave of (say) positive frequency is of the form

zpa(w) — ua(k)eik.m — ua(k)ei(k,-z"—wkt) . (162)

This is a solution of the Dirac equation provided that

(v-k+m)u®k)=0, (163)

where it is understood that k° = w;. The question is how many linearly inde-
pendent solutions there are? Consider the matrix that multiplies the spinor in
eq. (163). One can show that its rank drops from four to two precisely when
k? +m? = 0, so the answer is two. The easy way to see this is to study the
equation in the limit k; =0 = wy = m. Using the Dirac representation of the
~y-matrices we find in this limit that

-m1l 0
7-k—< 0 m1> . (164)
Therefore there are two linearly independent solutions
1 0
0 1
u1(0) = 0 u2(0) = 0 (165)
0 0

(I write the spinor indices explicitly only on festive occasions. On the other hand
I now put a new index r on the spinors that labels these two solutions.) What
does this look like at arbitrary k;? Provided that k2 + m? = 0 the following
function of & is a solution by construction and in fact gives precisely two linearly
independent solutions by a repetition of the preceding argument:

u(k) = (- k—mu,(0), r=12  (166)
2m(m + wy)
When k; = 0 we reproduce the two solutions we have found already. The
somewhat strange prefactor is there to ensure Lorentz invariance (which is not
trivial because we have brought a constant spinor into the game). In fact, with
this factor included,

1

ur(k)us(k) = 2m(m + @)

ur(0)(y -k —m)(y -k —m)us(0) = 6ps . (167)
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(Use the explicit form of 4(0) to show this.) This is a Lorentz invariant because
the dependence on wy drops out. A drawback of our construction is that it
does not have a smooth massless limit but since we are interested in massive
electrons this does not matter.

After these preparations we can write down the general solution of the Dirac
equation:

\/_ d*k etk@ a —ik-x
V@) = o | 2 Z w7+ o (Rl (k)e” ™), (168)
where
e vk-m ey Y k+mo
vl = g k) = s () (169)
and
1 0 0 0
wO=| 0| wO=|g| woO=|)| o=,
0 0 0 1
(170)

The solution has twice as many degrees of freedom as a complex Klein-Gordon
field, as promised. The extra factor v/2m in the solution is there to ensure
that the mass dimension of the field differs from that of the scalar field in the
appropriate way.

The spinors that enter the general solution obey a number of equations that
will turn out to be useful later, so we collect them here:

Uplhy = —UpUs = Opg (171)
(k)7 (k) = B, (k)1 0, (k) = =5, (172)

2 m—-y-k > v-k+m
ZUTUT = T — ;UTUT = T . (173)

In egs. (171) we have scalar quantities, the quantities in eqs. (172) transform
like the fourth component of a spacetime vector, and egs. (173) define two pro-
jection operators respectively onto the space of positive and negative frequence
solutions. To prove egs. (173) is straightforward y-matrix algebra, starting from
the observation that > u(0)4@(0) = (1 ++°)/2.
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It is time to quantize. This time we perform the quantization by imposing
anti-commutation relations on the operators (c,ct) and (d,d'), to see what
happens. Thus

[er(k), ¢t (k)] = [dr(k), dE(K)]y = 2wr6,:0) (K, k) (174)

and

[er(R), cs(R)]4 = [dr(K), ds(K')]+ =0 . (175)

Using these operators we can build a Fock space much as we did for the scalar
field. As for the complex scalar field there will be two kinds of particles that
at this stage we can call “¢” and “d” particles. One new thing that happens is
that when we build our Fock space using anti-commuting oscillators then the
particles will behave like fermions, with anti-symmetric wave functions. For
the scalar field this assignment of statistics is inconsistent with locality. Here
on the other hand it all works out correctly. In particular the canonical anti-
commutation relation for the fields at equal time t = ' = 0 is easily computed
from eq. (168) and (174 - 175), and found to be

[v°(2), 9(y)]+ = 1°6@ (2,y) (176)

consistent with locality (since it vanishes when z # y which are at spacelike
separation). In this calculation we make use of egs. (173).

Actually the various Green functions of the theory can be found without any
calculation at all starting with the observation that

(iy-0 —m)(iy-0+m)=0—m?. (1w

An inhomogeneous Green function of the Dirac equation must obey

(i -0 —m)G%(2,y) = 6%(z,y) (178)

so that if G(z,y) is an inhomogeneous Green function for the Klein-Gordon
equation then the solution is

4

Gyfap) = (170 +m)Gla,y) = [ s e (1)
The various kinds of Green functions now arise from different choices of the
pole prescription for the kop-integral, just as in the scalar case. The canonical
(anti)-commutation relation must arise from restricting the commutator Green
function to t = ¢ = 0, and it is instructive to compare the spinor and scalar
cases, as follows:
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[¢a($)a@(y)]+ = i'yoatA(:v,y)|t:t::0 = —ivoat:A(x,y)“:t/:O =
(180)

= —iy°[¢(z), d(y)] = 1°0P) (z,y) .

We also need a Hamiltonian operator. Since we know the action, eq. (161),
we find only one reasonable candidate. A calculation using egs. (163) and (172)
shows that

2

/ P (iv'0; — m) = / ﬁwk cl(k)er (k) — dr(K)dL(K)) . (181)

r= 1

We refine this slightly with normal ordering, that is to say we move all creation
operators to the left and throw away the divergent c-number that arises in the
process. But notice carefully that the sign in front of the resulting dfd term
depends crucially on whether we use commutator or anti-commutators for the
oscillators. For the latter choice we get

2

- / B Py O —m)p - = / Lh S B)en () + dL (k) () -

2wy,

(182)
This is positive definite, as it should be, and it has the expected eigenvalue
w when it acts on the one particle states cf(k)|0) and df(k)|0). Had we used
commutators, that is Bose-Einstein statistics, instead we would have obtained
a Hamiltonian that was not bounded from below. So Fermi-Dirac statistics is
forced on us by consistency with general principles.

There is an electrical charge operator

r=1

@=c [@rd@nv@) = [ § 53 W) - d®ae) . s

We used egs. (172) once more. It commutes with the Hamiltonian and is
therefore conserved under time evolution; it is in fact a Noether charge. It is
not positive definite and in fact the “c” and “d” particles have opposite charges.
Again, the formalism requires the existence of anti-particles!

The spin of the one particle states is left as an exercise.

37



VECTOR FIELDS AND GAUGE INVARIANCE

With spins zero and one half behind us we take on spin one. Presumably it
should be described by a vector field, so the first guess for the action would be

S = —% / d* 10, Ag0* AP = % / d*z(A;A; — AgAg — 0;A;0;Aj + 0;AgB; Ag) -

(184)
But this is wrong, because the Hamiltonian is not bounded from below. If we
step back from the problem at hand for a moment we observe that in quantum
field theory there is a certain amount of tension between the particle interpre-
tation on the one hand and locality on the other. From the first point of view,
if one regards quantum field theory as just a convenient way to treat a quantum
theory for an indefinite number of particles, the first problem to solve is “what
kind of particles are there”. As Wigner showed this can be phrased as a question
about the irreducible representations of the Poincaré group. The (interesting)
irreducible representations are of two kinds, massive and massless. To get a
massive representation, fix a real number m > 0 and an irreducible represen-
tation of the rotation group (which arises here as the group leaving a timelike
momentum vector invariant). Some clever maneouvering now shows that this
will give rise to an irreducible representation of the Poincaré group labelled by
m and j, where j can take any integer or half integer value. Therefore massive
particles of any mass and spin can exist. In particular spin one particles exist
(as mathematical objects—they also exist as physical objects, but that is an-
other story). The massless case is less transparent but the interesting cases are
again labelled by an integer or half integer number A, although this number is
now a label for a representation of the two dimensional rather than the three
dimensional rotation group (and the “internal” Hilbert space of the particle is
always two dimensional). The number A is usually referred to as the helicity of
the particle.

Starting from Wigner’s description of particles of any allowed spin it is
straightforward to build a multi-particle Fock space and also the operators H,
F;, J; that measure the energy, momentum and angular momentum of the states
in Fock space. What is not obvious is how one can construct interactions that
are consistent with locality. From the other point of view one starts with local
fields whose commutators vanish outside the light cone. Provided that the fields
transform like tensors or spinors under the Lorentz group, locality and Lorentz
invariance are easily built into the theory (at a formal level, that is) but the
particle interpretation of the resulting theory is obscure. Also one must beware
of catastrophies like the one that befell our first attempt to build a field theory
for spin one particles. The spin one particle should presumably have three times
as many degrees of freedom as the scalar field, but there is no spacetime tensor
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with three components.

Both points of view have advantages and disadvantages. In the end they do
turn out to be consistent with each other. In the case of the Dirac field, the
objects that “intertwine” between the particle and field points of view are the
spinors u*(k) and v®(k) and as we have seen a certain amount of calculation had
to be performed in order to see that they had the properties that are required
of them. And then spin one half is the easy case ...

To come back to the concrete problem: A field equation appropriate for the
description of massive spin one particles is the Proca equation

OAy —0,0-A—m?A4,=0. (185)

The action looks like the action for the electromagnetic field but with a mass
term added. How can the four components of the field A, describe three times
as many degrees of freedom as the scalar Klein-Gordon field? To see why, we
take the four-divergence of the field equation and observe that

0=0%0Ag — 020+ A—m2As) = —m2d - A. (186)

The conclusion—depending crucially on a non-zero mass—is that the four-
divergence of the vector field is constrained to be zero. Looking closely at
the field equation again we see that its time component is

DAO - 608 -A- m2A0 = AAO - 806,141 — m2A0 =0 s (187)

where A denotes the Laplace operator. There is no second order time derivative
of Ag! To set initial data for the Proca equation we first choose A;(z) and A;(z)
at time ¢ = 0 in any way we please. Eqs. (186 - 187) then enable us to compute
Ao(z) and Ag(x). Finally we solve the equation using these data. The point
is that the total amount of freedom that we had in the choice of initial data
is precisely three—not four—times the freedom we had for the Klein-Gordon
equation.

So the number of degrees of freedom is right. What about the Green func-
tions? They are easily written down starting from the corresponding Green
functions for the scalar field. We must find the “inverse of the field equation”,
that is the inverse of the operator

06,7 — 0,0° —m?5.P . (188)
The answer is
d4k‘ eik-(z—y) k kﬁ
B - _ B o 1
G,"(z,y) / e B (6a + ) : (189)

To get the various Green functions—commutator, Feynman, Wightman, and
what not—we just adjust the pole prescription for the k°-integral suitably. In
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Figure 9: Initial data do not determine the vector potential (A is non-zero in
the shaded regions).

a way, and in the spirit of the remarks that we made at the beginning of this
lecture, this completes the quantization of the massive vector field.

But what happens when m? = 0? The Green function that we derived
diverges in that limit. This is not so surprising in view of the fact that our
discussion of the field equation depended in a crucial way on m? # 0; the
Lorenz condition 0 - A = 0 does not follow from Maxwell’s equations without a
massterm. Indeed it is well known that there does not exist any choice of initial
data that together with Maxwell’s equations determines A,; given a solution
Ay (z) the field

A (@) = Aa(2) + 0aA(2) (190)

is a solution as well, for a quite arbitrary function A(z). We say that Maxwell’s
equations are invariant under the gauge transformation (190), and electrody-
namics is an example of a gauge theory—indeed the simplest example of a very
important concept, so it is worth thinking about.

The key difference between a gauge theory and an ordinary field theory is
that the one-to-one correspondence between solutions of the field equations and
possible histories of the physical system (that the field theory is assumed to
describe) is given up. In a gauge theory we postulate a one-to-one correspon-
dence between histories of the physical system on the one hand, and equivalence
classes of solutions of the field equations on the other. Two solutions are said
to belong to the same equivalence class if they can be connected with a gauge
transformation, such as eq. (190) in the case at hand. The space of solutions will
be divided into “gauge orbits”, each orbit by definition being such an equiva-
lence class. All solutions belonging to the same orbit represent the same history
of the system. The physics of the theory is in its gauge invariant quantities,
functions that are unaffected by gauge transformations. A prime example in
electrodynamics is the electromagnetic field strength tensor
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Figure 10: Phase space partitioned into gauge orbits (schematically).

Fop(z) = 0o Ap(z) — O9gAa(z) - (191)

Almost all the physics is in the electromagnetic field, but there are circumstances
(such as the Aharonov-Bohm effect) where other, non-local, gauge invariant
quantities must be considered.

But what do we actually do? There are two main strategies:

e Choose, by means of some definite prescription, one solution from each
orbit, and work with these only. This is called gauge fixing.

e Work directly with the equivalence classes. This will lead us to something
called covariant or Gupta-Bleuler quantization.

Before we decide between them, let us gain a little experience with gauge theo-
ries. Here is the entire course in one formula:

S = [~ 3FaF™® 4 ity -0 = mip + eAatir® (192)

This is the action of the Maxwell-Dirac theory and, together with the general
principles of quantum mechanics, it contains all of QED. Because of the last
(interaction) term its field equations are non-linear and therefore cannot be
solved exactly in generic situations. For the electromagnetic field we get

A FP +ehpyhp=0. (193)

Now the four-divergence of the first term vanishes identically because of the way
that the fields strength tensor was defined, so it must be true that

Ba(epy*¥) = 0. (194)
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Actually this is true, because of the field equation for the spinor field. Was
this a fortunate accident? No. It must be so because of gauge invariance. The
action is in fact invariant under the transformation

M =ieAy S = —ieAYy  SA, = O.A, (195)

where A is some arbitrary function. If you do the calculation you see that this is
so only because the interaction term is present, with exactly the right coefficient.
So the first observation is that the form of the interaction is dictated by gauge
invariance. The second observation is that if we vary the action according to
eq. (195), so that §S = 0, and make the additional assumption that the Dirac
field obeys its field equation—so that the terms involving §i vanish—then we
obtain

0= / BaN(DsFP + ey™ep) . (196)

Here A is an arbitrary function and the term in brackets is the field equation for
the electromagnetic field. Performing a partial integration we conclude that the
four-divergence of the field equation must vanish when the matter field obeys
its own field equation. So the consistency condition that we noted above is a
necessary consequence of gauge invariance.

Before we get carried away with gauge invariance, it is as well to note that
the theory remains consistent if we add a mass term for the vector field. It is
the massless vector field that demands gauge invariance for consistency. In a
different direction, we can generalize the idea of gauge theories in an interesting
way. Introduce several Fermi fields, say two for definiteness, and label them
with the index a. We can include them all in the action; in the non-interacting
case we take the action to be

So= [ duy-00°. (197)
(A mass term for the fermions is optional.) This is invariant under

S = iAol yy° 8thy = —iAithyo? , | (198)

where o; are the Pauli matrices and A; is some spacetime independent vector in
some “internal” space. One can show that these transformations close to form
a Lie algebra, in fact the SU(2) Lie algebra familiar from quantum mechanics
courses. But if we now make the transformations spacetime dependent so that
A; = Ai(z) then the action is no longer invariant:

8(ithay - 0Y*) = —ha0f Y P Bali . (199)

We can repair this by adding a term
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Sr= / $a0f 7 Y’ Agi (200)

to the action. It describes the interaction of the spinor fields with a triplet of
gauge vector fields A,; transforming in a suitable way under gauge transforma-
tions. More precisely, we assume that, under gauge transformations,

0Ay; = OuA; + non-linear terms . (201)

A detailed calculation shows that the non-linear terms must be there; what is
new compared to electrodynamics is that

/ ((502)0 17°0" + $a0? 17 (64")) Ag £0. (202)

Therefore the gauge transformation of the vector field must be a non-linear
version of the gauge transformation of the electromagnetic field; the non-linear
terms must be chosen so that Sy + 6Sr = 0. Anyway, once we bring new
fields into the action we must provide them with field equations of their own.
They must come from a non-linear generalization of the F2 term in the Maxwell
action, because the Maxwell action itself is not invariant under the non-linear
version of eq. (201). When the details are fully worked out we have in our hands
the simplest example of a Yang-Mills theory—and it is interesting to know that
the strong and weak interactions in the Standard Model of particle physics are
precisely of this type.

After this excursion into matters beyond QED we return to work, first with
the linear Maxwell theory that does not include the Dirac field at all. The
first of the two approaches listed above is conceptually simpler even though it
leads to messier formulze, so let us look at this first.! One prescription that does
what we want is the Coulomb gauge condition 0; A; = 0. This is a non-covariant
condition, but this is an unavoidable drawback of the first approach. There are
two points to check, and we check them under the assumption that space is
infinite and everything falls to zero at infinity sufficiently fast, that is to say we
assume that the Laplace operator has a unique inverse (Af =0 = f=0).

We must check that any solution is gauge equivalent to a solution that
obeys the Coulomb condition, and also that two different solutions that obey
the Coulomb condition cannot be gauge equivalent. But this is so because if
0;A; = f, where f is some function, then the equation

0= 6114; = 6,(141 + 6,/\) =f+AA (203)

has a solution A, which means that there is a gauge equivalent solution A} that
obeys the Coulomb condition; moreover the solution is unique (by assumption)
so that if f =0 then A =0 and hence A} = A;.

11t will be a brief look that may be hard to follow if you see this for the first time.
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Figure 11: A good gauge choice, and two bad ones.

A systematic way to discuss the Coulomb gauge begins by introducing the
projection operators

0.5, 00,
A A

Any vector field, and in particular the vector potential, can then be split into a
transverse and a longitudinal part,

PL =6 — Pl = : (204)

Ai=AT + A} =PJA; + PEA; s 0,AT =0 A} =0,(0;4;) . (205)

While this is well defined, it is also non-local—recall that the inverse A~! is
actually a short hand description of the Green function of the Laplace operator:

1 [, 1
4r |x — x|

% f= / PGz, ') f(z') = @) . (206)

This involves integrating over all of space. In the end this non-locality is harm-
less, but this is something that has to be shown. Anyway the gauge transfor-
mations now take the form

AT =0 SAF =9;A . (207)

Imposing the Coulomb gauge means that we set A = 0. Moreover we see from
eq. (187) that, in the Coulomb gauge, A9 = 0 (in an interacting theory Ag will
be determined by the electric charge density via the Laplace equation) so that
the entire content of the theory is in the transverse vector potential.

Quantization of the theory now proceeds by writing down canonical commu-
tation relations. In the Coulomb gauge the momentum canonically conjugate
to AT is the electric field E; = AT, which is automatically transverse. But the
commutation relations that we write down must be consistent with the fields
being transverse. Thus we postulate

A @, B = (5 = 22) 60, (209)
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At first, this appears to be in direct contradiction with locality (since the inverse
of the Laplacian really involves an integration over all space). At closer scrutiny
all is well. The point is that since all the physics is in the gauge invariant
quantities the apparent non-locality that we encounter in the Coulomb gauge
does not affect the physics. Indeed, if we compute the commutator of the gauge
invariant magnetic and electric fields we find, using eq. (208), that

[Bi(x), Ej(y)] = €imnOm[An(2), Ej ()] = i€imjOmd(z,y) - (209)

This is local, as it should be.

To summarize this brief look at Coulomb gauge quantization, it made us
lose sight of two of our main guiding principles, namely Lorentz invariance
and locality. In the end both are still there though. The main virtue of this
approach is that it is straightforward to count the number of degrees of free-
dom. It is two per spatial point, that is twice as many as in the scalar field.
Construction of the Fock space is also relatively straightforward. The alterna-
tive strategy—"covariant” quantization—turns out to be the other way around.
Lorentz invariance and locality is built in from the start, while counting de-
grees of freedom and making sure that the Fock space is consistent with basic
principles is highly non-trivial.

Before we undertake this work, is it necessary? That is, is the photon mass-
less? As we have hinted already QED, when taken in isolation, remains con-
sistent also if the vector field is given a mass. The speed of light would then
be less than ¢, but that is allowed. Experimentally a mass term would show
up in various ways, notably in that the familiar Coulomb potential »~! would
be modified into a Yukawa potential »—le~™" since the relevant static Green
function would no longer be the Green function of the Laplacian. The best
available limit comes from this theoretical fact together with careful studies of
the magnetic fields surrounding both the Earth and Jupiter. (The larger scale of
Jupiter is compensated by greater accuracy in terrestrial measurements.) The
conclusion is that the mass of the photon is < 2 - 10716 eV, which should be
compared to the mass of the electron, which is a very light particle weighing in
at 511 keV. In view of this it seems very natural to assume that the photon is
exactly massless. This conclusion is further strengthened by the way that QED
is embedded in the electro-weak SU(2) x U(1) Yang-Mills theory, where a mass
term for the photon can be admitted—if at all—only at the expense of making
the theory drastically much more complicated.
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COVARIANT QUANTIZATION OF GAUGE THEORIES

Now we turn to covariant quantization of gauge theories. What follows is a brief
sketch that aims to make it plausible that the Gupta-Bleuler method works for
the free electromagnetic field. You can find the full story elsewhere. You should
also be aware that the Gupta-Bleuler method is not the last word on the subject;
when quantization of Yang-Mills fields became a concern covariant quantization
developed further and acquired catchwords like “BRST symmetry” and “ghost
fields”. It may be worthwhile to observe that the key differences between Gupta-
Bleuler inspired quantization on the one hand, and methods based on gauge
fixing (like the Coulomb gauge) on the other, do not have much to do with
manifest Lorentz invariance as such—it is just that the former kind of schemes
are consistent with manifest covariance, and the latter are not.

The key ingredient in the Gupta-Bleuler method is a gauge choice, but this
time the gauge is not “fixed” in quite the same sense as it is when we impose
a canonical gauge condition like the Coulomb gauge. Let us look at Maxwell’s
equations with some arbitrary source term J% included. For consistency this
must be a conserved current—a property that is guaranteed by gauge invariance
as we saw above. Thus

QpFP* =DA% —9%9- A= J . (210)

If there had been a mass term present we would have had that - A = 0. Now
we cannot draw that conclusion, but we are free to choose 8- A = 0 as an initial
condition. This is called the Lorenz gauge (for the Danish physicist Lorenz). If
we insert this condition into Maxwell’s equations they become

OA*=J% = 08-A=0 (211)

(since the current is conserved). Hence O - A evolves as a free field also in the
coupled theory, and if we set it to zero as an initial condition it will remain zero,
provided that we agree to perform only those gauge transformations for which
OA = 0; with this restriction

OA=0 = &0 -A)=0. (212)

There are of course many functions A that obey this condition. Hence we can
consistently assume that the Lorenz condition is fulfilled at all times, but a
restricted kind of gauge transformation is still active. Maxwell’s equations now
simplify to

OA® = Jo . (213)

This is the approach usually taken in classical radiation problems because it is
now trivial to write down Green functions and so on. But we seem to be back
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to the theory that we dismissed at the outset of the previous lecture. There is
a difference however, in that the Lorenz condition must be built into the theory
as a supplementary condition somehow. Quite a bit of work is needed to see
precisely how the classical treatment of the Lorenz gauge can be taken over to
the quantum theory.

Let us start out by accepting that the field equation for the free electromag-
netic field can be written as four copies of the Klein-Gordon equation. Then
the general solution of the field equations is

3k

\/T/%Jk

Actually for some purposes it is better to be a little bit more flexible here. We
can write the general solution in the form

Ay(z) = efe 4 qf etk Ty (214)

3

Aole) = = [ 52e:

\/T 2w ®

The index r runs from 0 to 3 and summation over repeated indices is understood.

There must be four linearly independent solutions, so €, (k) denotes a set of four

linearly independent spacetime vectors, one for each value of k. They play the

same role that the spinors u and v played in the general solution of the Dirac
equation and will be chosen to obey

(ar(k)e*® + al (k)e 2y . (215)

egegnaﬁ =n"* €a€iMrs = TNaf- (216)
Here 1"* is a matrix having the same form as the Minkowski metric, i.e. with

diagonal entries (1,1,1, —1). We will use it to raise and lower the Latin indices
in the usual way. The solution

€, = 0, (217)
evidently reproduces eq. (214), but the extra flexibility afforded by the k-
dependent set of basis vectors turns out to be helpful. Let us observe right
away that we cannot set €, - ¢, = d,, since there cannot exist four linearly
independent spacelike vectors in Minkowski space, so eq. (216) is essentially
forced upon us from the start.
Using egs. (215 - 216) we can express the Hamiltonian in terms of the
oscillators. In the quantum case we must do some normal ordering to get the
following result, namely

o 3
H = /d3x A AY + 0;A,0;A% = / %wk(alal +a£a2+aga3 —agao) . (218)
k

This appears to be a disaster since it is not positive definite, as remarked before.

Remarkably enough it is not fatal, as we will see when we proceed. Concerning
the commutator, we know what we must have, namely

47



[Aa(2), A3(Y)] = inapA(2,y) , (219)

where A is the commutator Green function for the Klein-Gordon equation. This
is the only reasonable possibility that is both covariant and local. A calculation
shows that in order to get this result we must use eq. (216), and moreover on
the oscillators we must impose the commutation relations

[a,(k), al(K')] = 2winrs0® (k, ') . (220)

But this comes at a prize. Explicitly

[ao(k), al(k')] = —2wpd® (k, k') . (221)

The sign is wrong. In the underlying Hilbert space this means that there are
one-particle states with negative norm:

3 3
| [ S i ®amIolP =~ [ 5 E1imPoo <0, (222

ka

We seem to be going from bad to worse. Certainly the theory as it stands so
far—when we think of Maxwell’s equations as a collection of four independent
Klein-Gordon equations—is no good.

It is tempting to say that because of eq. (221) we should regard ag as the
creation operator instead of ag. This would avoid the negative norms but would
bring us in direct conflict with Lorentz covariance—and in the end it would not
work. Instead we play the card that we have left, namely the Lorenz condition.
This time we can not—as we succesfully did for the massive vector field—impose
0- A =0 as a condition on the field operators since this would be inconsistent
with the commutator (219). What we can do is to impose the Lorenz condition
on the states, and say that it defines a “physical subspace” of the Hilbert space.
That is to say that any physical system is assumed to be described by a state
vector |phys) that belongs to a subspace of Hilbert space consisting of vectors
that obey

(phys|0 - A|phys) =0 (223)

or equivalently

(8- A)®)|phys) =0, (224)

where (8 - A)(*) denotes the positive frequency part, that is the part that is
linear in annihilation operators. To repeat, this equation is an equation for the
state |phys). The hope is that there are no negative norm states among the
solutions. Moreover we hope that the Hamiltonian of the theory is such that if
we start the time evolution in a state that belongs to the physical subspace, the
system will not evolve out of it. If this works out we can consistently declare
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Figure 12: Polarization vectors (in three-space) defined relative to the propaga-
tion direction.

that the world always starts in the physical subspace, and consequently that
negative norm states are never encountered in reality. This is not so different
from the way the Lorenz condition is handled in the classical theory.

The k-dependent set of basis vectors comes in handy when we try to disen-
tangle what the condition means. We observe that a solution of eq. (216) is
given by

(225)

where

hieb? = 0 (226)

and the vectors €;"” are assumed to form a basis in the two dimensional space
that is orthogonal to the vector k;. We are going to refer to the one-particle
states created by a1, as transverse photons, those created by as as longitudinal
photons, and those created by ag as scalar photons. (Namely scalar with respect
to rotations. The setup is on the whole a bit less convincing than the corre-
sponding setup for the electron, since the photon does not have a rest frame
attached to it—the choice of the time direction is completely arbitrary.) States
created with aI are orthogonal to states created with a; They correspond to
photons with linear polarization in two perpendicular directions—in general a
photon can be in a complex superposition of these two basis states. Note that
the language is close to that used in Coulomb gauge quantization, except that
in the Coulomb gauge the longitudinal and scalar photons are simply not there.
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A little detour: In our special reference frame we can introduce a constant
vector n, and set

1
Gg =Ny 62 = —mka + Ny - (227)

Using the completeness relation we now observe that

2
o 1 1
Zeaeﬁ = NaB —Eo€+EQLES = Tap — Tn)? ———ka kg—}-k (kang+nqkg) . (228)

r=1

This has a consequence that will be useful later on: Suppose that a vector M,
has the property that & - M = 0. Then

2
> eneg MAMP = MM . (229)
r=1

The bar stands for complex conjugation—later on just such an equation will

appear, with M, as a gauge invariant scattering amplitude.

But our main interest for the moment is a minor calculation showing that

d3k ,
9- AP = / e (k)a, (k etk —
O = s [ Gk Banth
(230)
i d? .
= — k) — as(k))e*= .
JW/% (ao(k) — as(k)
Hence the physical state condition takes the simple form
(ao — a3)|phys) =0 . (231)

It is gratifying to observe that at least that particular negative norm state that
we encountered in eq. (222) does not obey this condition, so the physical state
condition kills at least some negative norm states. We want to show that it kills
all of them.

I will not actually do this, but I can make it plausible. The Hilbert space
consists of states created from the vacuum by strings of four different kinds of
creation operators. There is a basis consisting of product states of the form

|@) = |T)|LS) , (232)

where the notation is intended to mean that the first factor is a state contain-
ing transverse photons only, the second contains only scalar and longitudinal
photons. Now assume that this state belongs to the physical Hilbert space.
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This is no restriction on the transverse part, but it is a restriction on the
scalar/longitudinal part. Next consider the number operator that counts the
number of scalar and longitudinal photons,

UL S
Nps = 2—(a3a3 —alap) . (233)
Wk

(The minus sign must be there!) Suppose that the physical state |LS,,) contains
n scalar and longitudinal photons altogether. Then, using the physical state
condition (231) the following calculation can be done:

Bk
(LS |LS,) = (LS| / *E(afas — dfaglLS,) =

(234)
3
— [ E s alal (e - an)iLs,) =0
Wk
Hence
(LSn|LSy) = b - (235)

There are no negative norm states (of this type at least) in the physical Hilbert
space. That is good. But there are zero norm states, and we have to take an
attitude to those.

The solution (I will give a plausibility argument for its viability soon) is sim-
ilar to the construction of the classical phase space of gauge theories. Consider,
in the number basis, a state for longitudinal and scalar photons of the form

|LS) = C0|LSO> =+ 01|L81> + C2|L82) + ... (236)

The idea then is that only the vacuum part really counts, that is to say that
the states

IT)ILS) and  |T)[LSo) (237)

describe the same actual state of the physical system, regardless of the values
of the coefficients ¢;, ¢o and so on. So our final picture of the Hilbert space
of QED, in its Gupta-Bleuler version, shows a physical subspace containing no
negative norm states and foliated by “gauge orbits” of states that differ only by
the amount of zero norm states contained in the superposition.

The plausibility argument in favour of this solution is as follows: Look at an
observable, that is some operator whose expectation value we are interested in.
The Hamiltonian

Kk
H= / ﬂwk(alal +aba, + a§a3 - a;r)ao) (238)
k
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is the obvious example. Then, following our treatment of the number operator,
it is straightforward to check that in a physical state

(LS|(T|H|T)|LS) = (LSo|(T|H|T)[LSo) , (239)

and this confirms that the amount of zero norm states present in the physical
state is physically irrelevant. This is actually true for all observables in the
theory, not only for the Hamiltonian. In fact it is true by definition since an
observable, in a gauge theory, is defined as a Hermitian operator that has this
property.

As a final consistency check we must show that if the system starts in a
physical state it will not evolve out of the physical subspace. But this is so
because

[ao — a3z, H] = wi(ag — as) . (240)

If we apply H to a state that obeys the physical state condition (231) it will
still obey the physical state condition;

(ap — a3)H|phys) = wi(ag — as3)|phys) =0 . (241)

A physical state remains physical as time goes by.

From this analysis it may appear that Gupta-Bleuler quantization is just
an involved way of doing something that is quite straightforward if we work in
the Coulomb gauge—with only transverse photons—to begin with. But please
observe that the advantages of Gupta-Bleuler quantization are considerable,
notably because the Feynman propagator and the interaction term in the La-
grangian are kept very simple.
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Figure 13: An S-matrix element.

THE S-MATRIX, LSZ, AND THE MAGICAL FORMULA

We have reached a decent understanding of free field theories, classical or quan-
tum. Interacting field theories, with non-linear field equations, is quite another
kettle of fish. We no longer have any right to expect that we will ever lay
our hands on the general solution of the field equations, and the expectation
is that only approximate calculations are feasible. Before turning to approxi-
mations it is a good idea to decide what we want to approximate. In particle
physics the obvious answer is scattering amplitudes. The physical situation is
that the initial state consists of a set of incoming particles with well defined
momenta, and the outgoing state consists of another set of incoming particles
again with well defined momenta. The theory should describe the relation be-
tween these two sets in terms of a probability amplitude. This is given by
the S-matrix elements; if we have two incoming particles such matrix elements
are (p}pyout|pipain), (P} phpsout|pipain), (piphpspiout|pipsin) and so on—any
number of particles can come out so that there is a lot to compute. Our aim is
to show that there is a perturbation theory that produces the S-matrix elements
as a power series in the coupling constant of the model; the rules for writing
down the individual terms in the series are very simple and are called Feynman
rules. Unfortunately the actual evaluation of the terms is not easy. To prevent
unnecessary complications from obscuring the logic we will derive these rules
for the ¢* theory, whose action is

I O Sy .
S = /dm28a¢8¢+2¢+4!¢. (242)

Such a scalar field theory actually does occupy a corner of the Standard Model—
to do with the Higgs field—so it is of direct interest.

In the first step our ambition is to express the S-matrix in terms of vacuum
expectation values of the field operators using close to rigourous arguments—or
more accurately, using arguments that can be made close to rigourous. In the
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second step we set up a perturbation expansion for these vacuum expectation
values using arguments that are not rigourous at all. In the first step we will
work in the Heisenberg picture. This can be confusing conceptually since the
state |¥) of the system is time independent. Things can still happen though as
we will see. Since the situation in the past is assumed to be that there exists a
certain set of particles with well defined momenta we assume that the Hilbert
space of the theory has a basis consisting of states

|0 1[1) ) |p ln) ) |p17p2 1n> 5 ety (243)

and so on. The situation in the past is similar, so we assume that there is
another basis of the Hilbert space consisting of the states

|0 out) , |pout), |p1,p2out), ... (244)

The in-states and the out-states are distinct, and S-matrix elements can now
be interpreted: We describe events that happen not by allowing the states to
change in time, but by using different basis states in the past and in the future.

We introduce special field operators called in-fields and out-fields that create
such multi-particle states from the vacuum. Thus

3 . .
Gin(x) = ﬁ %(am(k)e’k'z +al (k)e i*7) (245)
ain(k) = —\/ﬁ /d%e‘““'”” Bt Gin(x) . (246)

By definition this is a free scalar field that obeys the Klein-Gordon equation (and
the double pointed arrow above the derivative means first take the derivative to
the right and then subtract the derivative to the left). It describes the kinematics
of the theory and does not feel the interaction at all. Classically, the field ¢
that occurs in the Lagrangian obeys the equation

A .
(O —m?)p(z) = §¢3 (z) =j(=z) . (247)
We can then use the retarded Green function to construct a classical in-field

bin() = $() - / YA rer (2, )i () - (248)

By construction ¢;, obeys the Klein-Gordon equation. We have chosen the
retarded Green function here because if j(z) — 0 as t = —oo (say if we assume
an “adiabatic cutoff” of the interaction in the distant past) then

lim j(@)=0 = lm (din—9)=0. (249)

t——o0
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So the in-field and the true field agree in the far past under these assumptions.
Choosing the advanced Green function in eq. (248) produces an “out-field” that
agrees with the true field in the far future.

In quantum field theory we assume that it is true that there exists a numer-
ical factor v/Z such that we can define

VZbinla) = 8(@) - [ (e, )i (250)
and that in some sense (to be specified, if you are careful) it is true that
Jim (VZin — ) =0. (251)

This is called the asymptotic condition. The out-field ¢, is constructed in a
similar way using the advanced Green function.

The numerical factor Z can be explained, but I will just give a hint: The
point is that we normalize the fields by insisting that their equal time commu-
tators are just delta functions,

[6(@), dW)]it=r = [$in (@), $in (V)] ji=rr = 6P (z,y) - (252)

But, using translation invariance, we can write

(Ollg(z), #)]10) = D _(0l$(0)|n)e® =~ (n|$(0)[0) — (z 43 y) ,  (253)

n

where the sum goes over all the n—-inparticle states. In the corresponding cal-
culation for the in-field the only matrix element that contributes is (0|¢in|1).
Reasoning along these lines one finds that whenever further matrix elements
contribute to eq. (253) it must be true that 0 < Z < 1; the result Z = 0 would
be embarrassing but it is what we will actually compute from perturbation the-
ory later on. I don’t give the full argument since this is the only point where
I am in the pleasant position of being able to refer you to original work by a
Swedish field theorist (Gunnar Killén).

The strategy is now to “remove the ps” from the S-matrix elements in such
a way that they become vacuum expectation values of strings of field operators.
Thus, if we have n incoming and m outgoing particles

1Dy D |P1D2 D) = BLDh .. Plulal, )PP o Pa1) =
(254)

= (PP -+ Prlabut )IP1 - Pr1) + (B -Phnlal, (n) — abue(Pa)lp1 - Paa)-
The first term here is non-vanishing only if there is a particle with momentum

equal to p, in the out-state. In effect there is a particle that does not participate
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Figure 14: Splitting the S-matrix into connected parts.

in the scattering process. This is not so interesting. Let us dismiss terms of this
kind by calling them “forward scattering amplitudes” and then proceed with
the evaluation of the “connected” part of the amplitude.

We bring the in- and out-fields into the game. Thus the second term above
can be written

\/ﬁ / dBreiPn® 5, (PLDYy - D |Pin (@) — Gout (T)[P1 - Pr—1) . (255)

Using the asymptotic condition this is
) 1 . . 3, ipnT e d ] /

Next we use an identity that holds for any two functions f and g such that f
obeys the Klein-Gordon equation and partial integrations can be done freely:

(257)
- —/ dt/d% 8(f B¢ g) :/d4mf(li|—m2)g.
Using this the connected part of the amplitude becomes
(P1 - PmlP1 <o D) =
(258)

= W% [ dtacin =@ = )@ . Bl () e poa)
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Effectively we have “removed one p” from the amplitude. We go on in this way.
An interesting thing happens in the next step:

(P - Pl|o(2)|p1 ... pn) = forward scattering term +
(259)

P . Plé@)al, (Pn—1) — abu(Pa—1)d(@)|p1 ... Pa2) -

Note the ordering here. In both terms that operator which is associated to the
later time is placed to the left. Neglecting the forward scattering term and going
through the same motions as before we obtain

(D) - Dralp1 o Pn) =

:<Vé$?>/&“mﬂm—m%/wa*%%—m%x (260)

X(p1 - P T(B(2)$(Y))IP1 - Pr2) -

The two field operators are time ordered. If z; and z; are at spacelike separation
the time ordering is ambiguous but the operators commute, so the ordering is
well defined when it matters.

Repeating the above procedure as many times as necessary we arive at the
LSZ formula for the S-matrix:

(P} - Piu|p1 - Pn) = forward scattering terms +

A n+m
(261)
x{0[T(¢(z1)p(z2) - P(Tn1m))|0) -

In this way the problem of calculating the S-matrix has been reduced to the
problem of calculating the n-point Green functions

T(Z1, s Zn) = (0|T(H(z1) -.. ¢(z4))]0) . (262)

The treatment so far is exact, it is in the Heisenberg picture, and it can be
made reasonably rigourous. It is an important point that we have in effect been
able to show that the entire content of the theory is contained in the n—point
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vacuum correlation functions, in this case vacuum expectation values of strings
of time ordered field operators.

Spinor and vector fields can be treated in a quite analogous manner. Of
course the expressions will then be decorated with spinors u and v or polarization
vectors €2 on the “external legs” and, in the case of gauge fields, we will also
have to make sure that the in and out states are physical states, so there is a
certain amount of additional work to be done.

With the first step of the derivation of the Feynman rules complete we take
the second. We will set up a perturbation theory that enables us to compute
the Green functions. To do so we switch to the interaction picture, which—
for reasons hinted at in the first lecture—means that we take leave of rigour
altogether. We will treat the field operators as free fields, obeying linear equa-
tions of motion, and the rest of the time dependence will be in the states. We
introduce the evolution operator as the time ordered exponential

_i [*?
Ults,t1) = Te ™ 1O 1y = (1 —o00) . (263)

We set initial data for the states by means of
Jlim [ = [T (264)

where the subscripts refer to the interaction and Heisenberg pictures, respec-
tively. However, from now on we will drop the subscripts on the interaction
picture states. At arbitrary times the interaction picture states and fields are
defined by

[T() =U®)|¥)r  and  p(z) =Ut)s)U(t) . (265)

We use ¢ to denote the field operator in the interaction picture. This field
operator evolves like a free field would in the Heisenberg picture, while the state
obeys

iU (8)) = Hr ()T (1)) . (266)

We will assume (without any kind of justification!) that

|0y = [0in)y and  U(t)|0) = e™|0) , (267)

where v is some physically irrelevant phase. This is the assumption of vacuum
stability, that is we assume that the interaction picture vacuum is stable under
time evolution.

With these assumptions in hand we can begin to evaluate the Green func-
tions. Suppose that t; >t > ... >t,. Then
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T(@1, - 7n) = (0[6(21) - $(2n)[0) =

(268)
= (0[U ™ (t1)p(21)U (t1, t2)p(w2) - Ultn—1,tn)@(xn)U(t)10) -
Now we introduce a time ¢ which is large enough so that
t>t —t<tn. (269)

That is, ¢ is later than all the arguments in 7, and —t is earlier than all the
arguments in 7. It follows that

U(tn) = Ul(tn, —t)U(—t) Ut) =Ut1,t)U(2) - (270)
So

(@1, oy n) = QU OU(E t)p(21)U (b1, t2) - 9(@a)U (tn, —t)U(=1)[0) -
(271)
But this can be written in terms of the time ordered exponential U (¢, —t). The
result:

(@1, n) = OT OT(pla1) - plan)e” =T OOT(pj0) . (@72)

We are interested in the limit ¢ — co. But U(—o0) is the unit operator while,
according to the assumption (267) of vacuum stability,

. 1

We have arrived at the Gell-Mann-Low magical formula

Jim O[U(#) = Jim (0[U~(8)0)(0

OIT (1) .. plen)e J==T1O%) )

<0|T(e—zf_°o HI(t)dt)|0>
The second step in the derivation of the Feynman rules is complete.

From this platform it will be a straightforward exercise to derive the Feyn-
man rules. It should be noted however that the “derivation” of the Gell-Mann—
Low formula is at best heuristic. There is nothing wrong with the logic, only
with the assumptions. The logic works perfectly well in non-relativistic quan-
tum mechanics where the representation of the canonical commutation relations
is unique. But that is not true here, and the assumption of vacuum stability is
false. In fact it is quite respectable to regard the Feynman rules as the definition
of the theory (together with the LSZ formula for how to convert the 7-functions
into S-matrix elements). Everything else can then be forgotten.

T(T1y oy Tp) = . (274)
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WICK’S THEOREM AND THE FEYNMAN RULES

Thanks to the magical formula, the task of writing down either the 7-functions or
the S-matrix elements in an interacting quantum field theory is basically solved.
The idea is that you simply look at eq. (274), supplemented by eq. (262) if
you are after the S-matrix elements, and immediately write down the terms in
a power series expansion (in the coupling constant) that gives the answer. In
practice what you do first is to derive something called the Feynman rules of
the theory. They give you a strikingly memorable version of this procedure.

Of course the first paragraph here is an overstatement. It is not so easy to
actually do this right, especially not if you are working with terms of some high
order in the coupling constant. But it is not entirely inaccurate either—what
the magical formula shows is that it is enough to be able to deal with strings of
time ordered free field operators, and this is doable. The key statement here is
known as Wick’s theorem. It provides a way to rewrite such strings as sums of
normal ordered terms whose vacuum expectation values are trivial to take. In
a notation to be explained, the statement is that

T(p1---0n) =:@1---tpn : +
+ 0103 Y3 Pn it PIP2P3 Pg P F (275)

+:P01P2 P24 Y5 ... P ...

The dots in this equation represent “all possible ways of doing the same thing”,
and the overlines connecting two field operators means that exactly this pair
of operators should be removed from the expression and replaced with ¢A;;,
where A;; = A(z;,x;) is the Feynman propagator connecting the two points
in spacetime that appear as arguments of the field operators.? Tt is easier to
explain the meaning of this statement with a few examples rather than trying
to make the preceding sentence crystal clear. And anyway the proof of Wick’s
theorem is by induction on n, so you will need to go through the following
motions anyway.
For n = 2 it is clear that

T(p1p2) =t 102 : +c (276)

where c is some classical c-number. We can evaluate it by taking the vacuum
expectation value of the expression. Using eq. (75) we see that

2The standard notation here is a little different and much better. I cannot do it in Latex.
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¢ = (0T (p192)[0) = iA12 = P1 93 - (277)

For n = 3, assume for the sake of the argument that the point x3 is earlier than
the others. Then

T(p1p203) = T(p1p2)p3 =: @12 : p3 +il12p3 =
(278)

(+)

=12 i3 e o)

+iA1203 ,

where we first used the result for n = 2 and then decomposed the field ¢35 into
positive and negative frequency parts, that is to say into its annihilation and
creation parts. If we now decompose also the other field operators in the same
way and then move all the positive frequency parts to the right we find, for
instance, that

(=)

L1021 05 = prpapl )

(279)
T 2 SRl R P I S (21 S e I S (P

But the commutators that appear here are c-numbers and can therefore be
evaluated by taking vacuum expecation values;

[, 057 = (0100l 710) = (0]r103]0) = (0T (01905)]0) = iAys ,  (280)

where we used our assumption about the relative time ordering of our points.
Collecting things together we arrive in this way to

T(p1p2p3) =: @123 : +il12¢3 + iAa2301 + iA13¢2 . (281)

This is eq. (275) specialized to the case n = 3. The meaning of eq. (274) should
now have transpired and it should also be clear that a proof by induction is
possible for all n.

Actually when we apply Wick’s theorem to the magical formula we need only
the final (purely c-number) terms, where all the field operators have been “con-
tracted” away—the normal ordered products of field operators do not contribute
to the vacuum expectation value.

To see why Wick’s theorem helps, let us consider a simple example in a
simple theory, such as the ¢* theory of eq. (242). Before doing so, it is perhaps
as well to admit that in more complicated theories things are more difficult and
sharper tools than Wick’s may be needed. Yang-Mills theory is an example
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of this. On the other hand for spinorial QED, which is what we are mostly
interested in, Wick’s theorem works fine. Anyway, the case at hand has

sz/d3:v%:cp4: . (282)

We include the normal ordering to make the resulting formule better defined;
effectively it means that we will omit all contractions like ¢(x)d(z) = iA(z, x).
This is just as well since this is a divergent expression. Now we focus on the
four point function 7(z1, 2, x3, z4) for definiteness. When expanded as a power
series in the coupling constant the numerator in the magical formula (274)
becomes

i
O (erpapapald) = A [ 2T (reapaen : poop )10) -
(283)

1
_)‘2M/d4m/d4ml<0|T(§01§02903(P4 L pppp PPl D0 + ..

where ¢ is taken at x and ¢’ at 2’ (both of which arguments are then inte-
grated over). When we apply Wick’s theorem to this expression a collection of
products of Feynman propagators between various points will appear. There
will also be a contribution from the denominator of the magical formula that
actually simplifies matters in the sense that it cancels some of the terms from
the numerator. Even without doing the detailed calculation it should be clear
that each individual term in the expansion can be described in a graphical man-
ner: If we draw the points, including the points z and z’ that we are going to
integrate over, and connect pairs of these points with a line if and only if there
is a Feynman propagator connecting these two points with each other, then we
obtain a pictorial representation of the term in question.

You may feel that my description is getting increasingly schematic. There
is a reason for this that I will explain soon.

In the end—when we turn to the LSZ formula for the S-matrix amplitude—
we will be more interested in having our formulee in momentum space. It is
therefore convenient to make a Fourier transformation to the momentum space
n-point function

F(P1y- - yPn) = /d4x1 .. ./d4xneiip1'””i ceT T ), (284)

where the signs depend on whether the momenta or out- or ingoing. Then we
can state the content of the magical formula as being equivalent to the follow-
ing Feynman rules: To compute 7(p1,...,p,) to any given order in X\ use the
building blocks in Fig. 15 a, called propagators and vertices respectively. Note
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that each propagator has an arrow along which its “momentum” flows, and
also that Kirchhoff’s rules apply when different momenta meet at a vertex (i.e.,
the momenta are conserved at the vertices). Using these building blocks, draw
all topologically inequivalent diagrams connecting the n external points. If we
want to do perturbation theory to order AP we include all diagrams containing
at most p vertices, and no more. For the 2 and 4 point functions computed
to second order this gives the collection of diagrams given in Fig. 15 b. (At
higher orders this can get pretty complicated, as shown in Fig. 15 c. Actually,
in drawing this set I have started from an interaction Hamiltonian that is not
normal ordered. This reflects a more modern attitude to mass renormalization
and does not matter at this stage.) All the time we are building a formula cor-
responding to each diagram, since each propagator in the diagram corresponds
to a factor
i

Frme (285)
and each vertex corresponds to a factor —i\.

To see if a diagram is topologically inequivalent to another imagine their
propagators to be made of rubber (say) and nail down their n free ends on
a table. If one configuration can be transformed to another without moving
the ends the diagrams are topologically equivalent, otherwise not. Fig. 16
a illustrates this for a theory containing three point vertices only. When a
diagram contains closed loops Kirchhoff’s rules will leave a momentum running
around the loop undetermined. The rule is that the formula corresponding to

the diagram gets a prefactor
d*p
[ ey (250

where p is the momentum running around the loop (see Fig. 16 b). Finally
the formula should be equipped with an overall momentum conserving delta
function

(27)46(4) (Z DPin — Zpout) . (287)

Actually this is not quite the end. Some diagrams will be equipped with an
extra combinatorial factor that equals one over the number of ways in which
the diagram can be transformed into itself; Fig. 16 ¢ shows what this factor is
in some concrete cases. (In practice, the combinatorial factor is the only detail
that one is likely to get wrong when using the Feynman rules to low orders.
Fortunately QED does not have such factors.)

This is it. In a sense it is all. To get the corresponding rules for how to
compute S-matrix elements use the LSZ formula—essentially it just means that
we “chop off the external legs” from the 7-functions.
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Figure 16: More about Feynman diagrams.
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My description has been quite sketchy. The reason is that it is not really very
helpful to see the derivation of the Feynman rules described. It is necessary to
derive them oneself for a few simple cases at least. Thus we have the following
Exercise:

e Derive a formula for the four point 7-function up to second order in A
from scratch, that is, starting from the magical formula. In the process,
verify the Feynman rules as described above.

If you do this carefully you will afterwards realize that, except for the combina-
torial factor, it is indeed possible to see directly what the answer is. It will also
be clear that Feynman rules for any reasonably simple quantum field theory
(like QED) can be derived in the same manner.

Of course the evaluation of the 7-function is not complete just because we
have derived the Feynman rules. The answer is some function of the exter-
nal momenta containing lots of terms, as well as integrals over undetermined
variables that remain to be computed before we know what the terms really
are. So there is work to be done. Some reflection shows that there may well
be trouble too. In z-space the 7-functions consist basically of long strings of
Feynman propagators, some of them connecting points that we are going to
integrate over. But we know that the Feynman propagator is not a function,
it is a distribution that has delta function singularities when its two arguments
are at lightlike distances from each other. Therefore a typical 7-function will
contain products of delta functions. And such things do not really exist. This
difficulty is a real one, but it also has a solution called renormalization. We will
come to it. Further worries can be raised, like the question whether the power
series expansion converges. This we will simply ignore.
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CROSS SECTIONS

At this point my notes will become even more sketchy than they used to be, and
will in fact rely heavily on Mandl and Shaw. In particular, I will frequently use
their notation rather than my own. The main difference is that they normalize
the fields using a finite box of side L and volume V = L3. The momentum of
the single particle states is then discrete;

2
Di = f(n15n2;n3) . (288)

It will become evident very soon why I want to switch to a box.

In principle the calculation of probability amplitudes for arbitrary scattering
processes, as power series in the coupling constant, should now be straightfor-
ward. In fact it is not—we still have to renormalize the theory. There is another
point to worry about: In the end we are not interested in probability ampli-
tudes, we want probabilities. As an intermediate step we compute probability
densities by squaring the amplitudes—and immediately there is a catch, because
the amplitudes contain unsquarable delta functions. Fortunately this is a trivial
difficulty that is easily resolved with a little thought.

Mandl and Shaw give the S-matrix amplitudes in QED on the form

Sy 4o(4 m 1
(plout|pin) = &4; + | (2m)*6W (ps, pi) H \VVE H \Vve x M,

fermions photons
(289)

where the Feynman rules for the amplitude M are given on their page 129. Now
it must be kept in mind that the whole formalism is seriously over—idealized.
It describes perfectly sharp momentum states, plane waves in fact. What we
really have is a localized beam of incoming particles. Moreover we are unlikely
to place any detectors in the beam itself, so that forward scattering is of no
interest really. That is to say that we can split Sy; = d¢; +iT; and concentrate
on the transition matrix 7', which contains all the off-diagonal elements.

But we must square the delta function. This is where the box (and a finite
time interval T') is so helpful: We first approximate the delta functions with the
well behaved functions

Y RPN
§(B,E') ~ — / dt e!(F—E)t (290)
T J_T/2
dz . \%
3 ~ Upi—p;)Ti —
6( )(p7pl) ~ /‘; (271_)36 (p p) - (271_)3 513713' ) (291)
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where only the discrete set of momenta given in eq. (288) appears in eq. (291).
Now we can square the delta function by squaring these well behaved functions.
Thus

(5(4)(p ; pi))2 = (;;7;4 5D (s pi) - (292)

If we take the limits T', V — oo this expression diverges, as expected. But we
had a similar difficulty when we discussed the Unruh effect, so we know that we
are not interested in the probability that something scatters. We are interested
in the transition probability per unit time. Let us call it w. We get it by dividing
through with the time interval T', so that

_ |Tfi|2 _ 4 5(4) ) m m 2
w=—p— = vEen)'sWpnp) ] VE 11 V—Ef|M| - (293)

fermions in fermions out

For simplicity we are assuming that there are no external photons. Indeed we
will specialize right away to the case of two incoming fermions only. Of course
any number of fermions are allowed to come out. (This is an interesting case.)

We can now take the limit 7" — 0o. The infinite volume limit still looks bad,
but then our problem remains over—idealized. Real detectors will have a finite
resolution and measure momenta belonging to some interval [p,p + dp]. Given
eq. (288) the number of states in this interval will be

V. 3
(27r)3d D.

We are really interested in wd®n rather than in w as such. Moreover we are
not interested in the transition probability per unit time but in the transition
probability per unit time and unit incoming flux. The flux of incoming particles
is the number of particles coming in per unit of time and area, which is equal
to the volume that passes the surface per unit time divided by the total volume
V. This works out as

d®n =

(294)

UTelAt/At o Vrel

V vV
where v,¢; is the relative velocity of the colliding particles. With this result we
can write down the quantity that we are interested in as

flux =

(295)

wll; —‘(/ds)psf mim md®p
=T @17 _ (o)t ) — L2 2
do i (@m0 oy, pi) g — ];[ Gy, MI - (296)

This interesting quantity is independent of both V' and T', so we can now take
the limit where these go to infinity.
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There is one quibble though, which is that the Lorentz tranformation prop-
erties of our expression are a little obscure. However, a calculation in the rest
frame of one of the incoming particles shows that

2

v
(P1 - P)* —mim3 = m%m%m . (297)

Hence the bothersome factor E; Esv,.¢ is really a Lorentz scalar;

EyByvre = \/ (Py - Py)? — mm3 . (208)

So everything is as it should be. Of course our expression is not given as a
function of independent variables—thus if we have two particles coming out
momentum conservation implies that the only free variables are the angles 6,
¢ describing the scattering. This is why our expression still contains a delta
function. We are looking at an integrand, not at a function.
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Figure 17: Tree diagrams for lepton-lepton scattering. If the outgoing pair is
different from the incoming, the second diagram is absent.

A SIMPLE QED CALCULATION

We would now like to calculate, to lowest non-trivial order, something real. For
this reason we turn to QED, take our Feynman rules from Mandl and Shaw,
and look at lepton-lepton scattering. The process

ef+e —et +e (299)
is known as Bhabha scattering, and to second order in the coupling constant

there are two relevant Feynman diagrams. We can simplify matters even further
by looking at

et +e s put+pu . (300)

Then there is only one relevant diagram, so the task of adding interfering scat-
tering amplitudes trivializes. Using the Feynman rules the task of writing down
the amplitude is trivial too. The answer is

.o _ 1
M irysis, = _7'62“82 (plz)’ya'ueu (pll)vn (P1)7*ur, (P2) m . (301)

Here we have specified the spin states r; and ro of the incoming electron-positron
pair as well as the spin states s; and sy of the outgoing muons.

Extracting the cross section requires some work even in this ultra-simple
example. The first step must be to square the amplitude. We still have one
simplifying (but realistic) assumption up our sleeve. We are going to assume
that the incoming beam is unpolarized, and that the spin states of the outgoing
particles are not measured. It is perhaps not obvious that this will simplify
matters, but it will, as the calculation to follow shows. Summing over outgoing
and averaging over incoming spin states gives the amplitude squared as

1 e?
|M|2 = 4 Z |Mf"1rzs1sz|2 = 4

T1T28182

T esB s @)
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Figure 18: Fermion lines go straight through the diagrams.

where

Aaﬁ = Z Us,y (plz)'Yavs1 (pll)ﬁ.ﬁ (pll)')'ﬂusz (plz) (303)

8182

Bog = Z Ury (P1) Yo Urs (P2)Ury (P2) V507, (P1) - (304)
T17T2
We can rewrite these expressions as traces over matrices. The good news is
that—precisely because we are summing over spin states—the spinors describing
the states turn into projection operators that are easy to deal with in such a
calculation. In fact we can write

Aaﬁ =Tr [Z Ussy (pIQ)asz (p;)] Vo lz Usy (pll)’DSl (pll )] B =

(305)
PSR TN A ek L7
2m, % 2m,
Here m,, is the muon mass. Similarly, with m equal to the electron mass,
pr—m “p2+m
Boy =T 2L, TR, (306)

2m 2m
A little reflection shows that we have come across a general phenomenon. In
QED, all fermion lines go “straight through the diagram” and for this reason
they will always contribute a trace to the cross section. Of course these traces
may be rather long, and if we do not sum over spin states something worse
than projectors will occur in them. Still, calculating the trace of a string of
gamma-matrices is always doable.
Having done so, we obtain

e*(p1 - Py pa - Ph +p1 - ph p2 - Pl +mpy - ph + mipr - p2 + 2m*m?)

M2 =
M| 2m?m2 (p1 + p2)*

(307)
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Next we have to think a little about the kinematics of the process. Let us
describe it in the center of mass system. The only free parameter is the scatter-
ing angle 6, everything else is determined by energy-momentum conservation.
Define

»m=(E,p) p2=(E,-p) p=(Ep) p=(E-p). (308)

We have (p; + p2)? = 4E? and

p1-py =p2-py = E> —pp' cosf (309)
p1-Py=p2-p; = E° + pp' cosf (310)
p1-p2 = E* +p? ph-ph=E"+p”. (311)

We must have that E > m,. When evaluating |M|? we will permit ourselves
the approximation that the electron mass m = 0, since m, = 207 - m.

We must now stick our expression for the amplitude squared into eq. (296)
for the cross section. Because it has not been expressed in terms of indepen-
dent variables, the latter contains delta functions that we want to get rid off.
Fortunately we are looking at a particularly simple case (two particles in, two
particles out). The cross section is of the form

do = f(p},ph)d(E} + Eb — Ey — E»)5®) (p + phy — p1 — p2)d®pid®py  (312)

with
2
'oph) = (2m)t mn Mp My 313
f(pl p2) ( ) \/(pl .p2)2 — m2m2 (2’”)3Ei (27()3Eé ( )
We begin by integrating out p). This gives

do = f(pll7pl2)6(Ei + Eé - E1 E2)|p1| d|p1|d(2|p2 =pi1+p2—p] - (3]‘4)

But in our case E| + E} is some function of |p’1| and we can make use of the

delta function identity d(f(x)) = ‘ 4 ‘ in doing the integration over |p}]|.
Thus

f(p15p2)
do = Gt d® . (315)
Blpl‘

In the center of mass system we have |p}| = |p}| and
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OB +E5) _ Il Iphl _  Ei+Ey
! - i ! | 1| "B nli - (316)
|1l E; E; EjE)
We are finally getting there. Collecting things together we have
1 m?m? !
do AR (317)

o W(El +E2)2m

which is the integrand of an integral over the only free parameters around,
namely the scattering angles.

Fetching our expression for the amplitude squared, ignoring the electron
mass as agreed, and doing some algebra, we arrive at

d") et 11phl, 1o 2 2 2
= ——(E*+p“cos+m)) . (318)
(dQ’ com.  Am216 EP Z

In the high energy limit where the muon mass can be ignored as well this is

do a? 9
(m)w.m. = @(1 +cos“0) . (319)

There is a good agreement with experiment.
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WHAT IS A FEYNMAN DIAGRAM?

The perturbation expansion that we are using is just a form of time ordered
perturbation theory. A Feynman diagram is an individual term in such an
expansion. But things have been organized in a rather peculiar manner. In
a Feynman diagram the lines are assigned “momenta” p® that are conserved
at the vertices. If you think about it, this is a bit strange because “energy” in
perturbation theory usually refers to the eigenvalues of the free Hamiltonian Hy,
and this energy is not conserved by the interaction. The true—and conserved—
energy of the system is an eigenvalue of the total Hamiltonian Hy+ Hj. Moreover
in perturbation theory we usually keep careful track of the “intermediate states”,
which are eigenstates of Hy. That is to say, we expect an expansion of the general
form

VfaVai Vf[J’VBaVai
R E; — E: ,
sz (5fz+6( f z) Vfl_}—;E’i_Ea+§(E’i_EB)(Ei_Ea)+
(320)
where we use the matrix elements
Vi = (f|Hrli) (321)

and so on. The total energy is conserved, E; = Ef, but E; # E, since the
“free” energy is not conserved by the interaction.

In the Feynman diagram expansion things look very different. Choosing a
scalar ¢>-theory because it is the simplest example, we deal with terms like

)\2
= m =+ CI‘OSSing . (322)

The “momentum” p* = (E,p;) is conserved at the vertices but on the other
hand the “energy”

Ty;

Bt By=Jo+m? 4o tm? £ o A paP A = (329

is not the energy of any intermediate particle—if it were the denominator in
eq. (322) would be zero. Moreover there seems to be no reference to any global
intermediate state of the whole system.

To see how eq. (322) is related to eq. (320) we rewrite the former a little.
Observe that
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Figure 19: Taking a Feynman diagram apart to keep track of the states.

A2 A2
(Bi+ E2)2 — (pr+p2)? —m? (w1 +w2)? —wi,y
(324)
S ( 1 1 )
2witr \wi +wr —wiys w1t w2 twiga/)
Just a little bit of extra rewriting is needed to see what goes on. We get
A2 1 1
( + ) . (325)
2w1+2 W1+ We — Wiya W1 + Wy — 2w — 2wy — W142

We see that this really is like eq. (320); the Feynman diagram is in fact a sum
of two terms containing rather different intermediate states. In one case there
is a single particle with the “free” energy wi2, in the other there is a total of
five particles.

In this way we can translate the Feynman diagrams into the language familiar
from standard quantum mechanics. It only remains to observe that the new
language is much better than the old. So we tend to think of the Feynman
diagram as describing intermediate “off shell” particles for which P2 —m?2 # 0.
Therefore the denominators are not dangerous in general. But there is a case
where the intermediate particles come arbitrarily close to being “on shell”. This
difficulty will occupy us next.

74



Pw P ™ P

Figure 20: An arbitrary amplitude, to which we add one photon to an external
leg.

SOFT PHOTONS

First, consider an arbitrary amplitude at some fixed order in the coupling con-
stant, given by a sum of arbitrarily complicated Feynman diagrams. Let there
be N charged particles in and M charged particles out. There could be photons
too, but those do not play any role in the argument that follows.

The first observation is that it is peculiar that it is at all possible to have
non-trivial amplitudes without any outgoing photons—indeed one expects that
charged particles that change their state of motion must radiate. At the end of
the argument that is started here, it will be seen that the expectation is correct
even though the non-trivial amplitudes do exist to lowest order in the coupling
constant.

Now consider an amplitude M which differs from the given amplitude Mg
only in that there is one extra outgoing photon. We will study this new am-
plitude in the limit that the extra outgoing photon becomes very soft, that is
k9 — 0 for this particle. Let us first attach the extra photon vertex to an ex-
ternal leg, for definiteness let it be that of an incoming electron. The Feynman
rules (from Mandl and Shaw) tell us that

My = (something)u,.(p) . (326)
With the extra photon attached we get

M= (something)&%Zlie’yauﬂp)ea(k) =

(327)
p— k+m

= e(something)w £k)ur(p) .
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Figure 21: An amplitude that differs from a given one by the presence of one
extra soft photon.

In the denominator we used the fact that p> — m? = k? = 0. Now in the limit
when k° becomes very small, that is that the extra photon is very soft, we can
make an approximation, use the gamma-matrix algebra, and then the Dirac
equation for u:

(b= k+m) f(E)ur(p) = (p+m) £(k)ur(p) =2p - eur(p) . (328)
We conclude that
M= e(something)ﬁur(p) = el%MO . (329)

So this particular contribution to the amplitude with one extra soft photon
added is obtained simply by multiplying the original amplitude with a factor.
Moreover because of the denominator of that factor it is clear that it blows up
in the limit when the extra photon becomes very soft. This blow up happens
precisely because the electron line to which the extra photon was attached was
an external electron line, obeying p?> —m? = 0. Hence diagrams where the extra
photon is attached to internal electron lines will not contribute noticeably to
the amplitude in the limit when the extra photon becomes soft; in that limit the
complete amplitude M will be given as a sum over all possible ways of attaching
the extra photon to the external legs.

In conclusion then, given an amplitude that describes (to some order in e)
N particles in and M particles out, the amplitude to one higher order in e
describing N particles in and M + 1 particles out, with the condition that one
of the latter is a soft photon, is

e~p‘?‘ e'.p’.a
M= A 5 ) eq Mo - 330
(Zpk pk> 0 (330)
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One interesting conclusion can be drawn directly. We did not assume anything
about the charges here—they were allowed to differ from particle to particle.
But we know that the amplitude must be gauge invariant, in the sense that it
is unchanged under the transformation €, — €, + k. Applying this transfor-
mation to the amplitude M we find that M is invariant if and only if

0= (Z ei— e;.) Mo . (331)
in out
The conclusion is that charge is conserved.

It is a straightforward affair to extend this argument to the case of an ar-
bitrary number of extra soft photons going out; again it is only necessary to
consider all possible ways of attaching the extra photons to the external legs,
and the amplitude will factorize in just the way we have seen already.

There will, however, be a problem with the cross section. Let us consider
the case of one outgoing soft photon. Then the cross section will factorize;
there will be one factor describing the cross section with no extra photon, one
factor coming from the discussion above, one factor because of the extra photon
external leg, and one phase space factor for the extra photon. Multiplying these

together we get
. N2 B
doy_(do) a (ep_cp Ak (332)
dsy av ) 4an? \k-p k-p' w

(The first factor is the cross section with no extra photon; the notation implies
that we are looking at a very simple process but the argument is general.) We
sum over polarization states for the extra photon, that is we make use of

2
Mp=eMo = Y IMe(B))? = -M"M, . (333)
r=1
Then
(d_ff)_(d_ff’) ) (L_ r )2d3_k (334)
av) \d? ), 4n> \k-p k-p w

The detectors have a finite resolution, so that if we are interested in the cross
section for scattering with no extra photon detected we must integrate this
expression over the range 0 < k < AFE for some AFE characterizing the detector,
and assumed to be small enough so that our soft photon approximation applies.
The problem is that this integral diverges at the lover end of its range;

/0 ™ (jg,) = 400 . (335)

At first sight this looks very bad.
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The theory wiggles out of this difficulty in an interesting way. The point
turns out to be that there are further contributions to the cross section, coming
from amplitudes describing elastic scattering, without soft photons but with
radiative corrections. That is to say that their Feynman diagrams have closed
loops and the expression for the amplitude involves an integration over the un-
determined momenta running around the loops. Examination shows that some
of these integrals diverge at the lower, infrared, end of the integration range.
(They also diverge at the other end, but that is another story altogether.) After
appropriate regularization it will be seen that these divergencies cancel against
the divergence that we have already detected in the cross section. Moreover
this cancellation occurs—in the cross section—at all orders of the perturbation
expansion. And even more, it is possible to sum the relevant terms to all orders
of the perturbation expansion and see that the effect is to make the elastic cross
section zero. When soft photon emission is included the cross section is not
zero. So this solves the riddle that we started out with: Charged particles can
change their state of motion, but in doing so they necessarily emit a “cloud” of
infinitely many soft photons.

From a fundamental point of view the root of the difficulty is that the as-
sumption that one can use a Fock space to describe both in- and out-states is
wrong; if the in-states belong to Fock space then the out-states are necessar-
ily a kind of coherent states that, roughly speaking, contain an infinite set of
photons.
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RENORMALIZATION—A FIRST ENCOUNTER

When we carry the QED perturbation expansion to higher orders in the cou-
pling constant, we will encounter integrals over undetermined momenta running
around the loops. In particular we will come across the electron self energy

d '
(k) = e2/ (QWI))N,L . ;_mv’% : (336)

the vacuum polarization graph

i d'p - Y (B+ F+m)v (B+m)
0 =€ [ o s g O
and the vertex correction
4
Nk =i [ G e R %)

(with external legs amputated). These integrals are in fact divergent. For a
rough estimate, use analyticity and a Wick rotation py — ipg to convert them
into integrals over an Euclidean momentum space. We can do this precisely
because of the pole prescitption that went into the definition of the Feynman
propagator—the Minkowski space amplitude will be the analytic continuation
of an amplitude calculated in Euclidean space! The measure becomes

d*p = r¥drdQ , (339)

where df) is the measure on the 3-sphere. Then we can estimate that

o0 1
) ~/ drr’ . (340)

This appears to be linearly divergent in the ultraviolet, that is to say at the
upper end of the integration range. Similarly

oo 3 1
m~ N/ dr r = (341)
—appears to be quadratically divergent—and
A* h dr 31 342
~ ror " ( )

which is logarithmically divergent. Detailed examination will show that ¥ and
A are divergent in the infrared (lower) end as well, but this we will from now on
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ignore. It turns out that these are the only divergencies that occur to second
order in perturbation theory.

Three divergent Feynman graphs

Now we know that we made unjustified assumptions in the derivation of the
Gell-Mann-Low magical formula, on which perturbation theory is based. Hence
it is not really surprising that divergencies occur. What is surprising is that the
story does not end here. It is possible to save the theory and extract useful
information in spite of these divergencies. To get a first inkling of how this
can be done, let us look at a toy model of a function that is defined through a
divergent integral, and see how the function can be useful in spite of the fact
that it is ill defined. Choose

flx) = /100 xci:l_/y . (343)

This is logarithmically divergent and hence, on the face of it, it means nothing.
However, the definition can be manipulated as follows:

We just performed a forbidden manipulation by writing the two integrands
under a common integral sign. But if we do it anyway we can then continue as
follows:

dy -

@)~ £0) =2 [ h W~ jw). (345)

x+y)

Here f(z) is given by a perfectly convergent integral. So we have arrived at the
conclusion that

flz)=A+ f(=) . (346)
Here A is a divergent constant. We are led to take the point of view that f(x)
has an interesting and well defined dependence on z, even though it is in itself
not a well behaved function.
We can do an improved version of this argument if we replace the original
definition of f(z) with the limit A — oo of the regularized expression
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A
i@ = [ L= 4w + 1ato) (347)

Then the interesting part of f(z) can be defined by the limit
lim (fa(z) — A(A)) = f(z) . (348)

A—oo

As long as we keep A finite we can isolate the function fa(z) in a perfectly
rigourous manner—and afterwards take the limit to obtain the well defined
function f(z).

A linearly divergent example is

g(z) = /1 h myiyy : (349)

Again we try to tame it by means of subtraction. Heuristically

9@ =90 = [Tty (=3 ) = [T M apw). @50

g(z) =B —zA—zf(x) . (351)

Again we see that although the integral that defines the function is divergent,
the divergence can be isolated into divergent constants—this time two of them—
so that the interesting z—dependence is given by a well defined finite function.
The hope then is that the divergent integrals that we encounter in QED are of
this type. To do this in a convincing manner requires some careful attention to
the regularization procedure and so on.

Above all it requires careful attention to the question of what the answer
is supposed to do for us. Let us consider the electron self-energy graph as
an example, and imagine that we are calculating the two point function to all
orders in perturbation theory. (When the self-energy graph occurs inside some
more complicated Feynman graph it is really the complete two point function
that should occur there.) We organize the complete expression into one—particle
irreducible parts, that is to say into subgraphs that are such that they remain
connected if we cut any one of the propagators. Diagrammatically we denote
such a part with a blob, and in the equations with the symbol X(p). If Sr(p)
denotes the free electron propagator what we are computing is the complete
dressed electron propagator

Sk(p) = Sr(p) + Sr(p)X(p)Sr(p) + Sr(p)Z(p)Sr(P)E(P)SF(p) +-.. . (352)
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Figure 22: The complete electron propagator.

We can sum this series much as we can sum a geometric series; evidently

Sr(p) = Sr(p) + Sr(p)X(p)Sr(p)
& (353)

(#—m)Sp(p) =1+ Z(p)Sk(p) -
We have arrived at the expression

1
!

If we had the one-particle irreducible part X(p) exactly, this would be the exact
answer for the propagator in the interacting theory. In practice we will of course
have to do with ¥(p) computed up to some finite order in perturbation theory.

The interesting thing about eq. (354) is that we see that a divergent constant
in ¥(p) will not matter very much. The physical information present in the
propagator Si(p) is the exact location of the pole. (The precise function of p
that occurs in the denominator is interesting too, but only when the propagator
occurs inside some more complicated amplitude.) For the free propagator the
pole occurs at p? = m2. Now suppose that X(p) = A + £(p), where A is
constant—that is to say a constant times the unit matrix—and %(0) = 0. Then

1 1

F-m—A-50)  F-ma-S()’
where the pole occurs at the renormalized mass mg = m + A. It is the renor-
malized mass mpg that is actually measured in experiment. The parameter m
on the other hand is just a parameter in the theory that is of no significance in
itself. And this will be so even in the best of all possible worlds, where X(p) is
a finite function. In a less perfect world where X(p) is logarithmically divergent
the constant A is divergent, but this does not have very dramatic consequences.
If things really organize themselves as sketched then this just means that the
uninteresting parameter m is divergent too, in precisely the manner needed to
produce the finite mg that is our experimental input.

Sr(p) (355)
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In 241 dimensions things actually do organize themselves as sketched as far
as QED is concerned. In 3+1 dimensions additional complications occur. The
electron self energy graph then behaves more like the second of the toy integrals
that we investigated. One finds

Y(p)=B-Ay-p+X(p), (356)

where both B and A are divergent. (The result is clearly reasonable from the
point of view of Lorentz invariance.) This also can be handled; one ends up
with a propagator of the form

Si(p) = Z1SE (D) , (357)

where Z; is zero (or one over infinity) and the renormalized propagator SE(p)
is well defined after a redefinition of the mass parameter. This is called mul-
tiplicative renormalization. The numerical factor Z; is not unexpected; indeed
we had such a factor already in eq. (250). The embarrassing thing is that its
value will be zero. On the other hand this factor will arise in several places in
a given amplitude—the aim will be to show that all these factors cancel out.
Indeed it is easy to see that if we use Z = Z; in eq. (262) then this factor will
cancel out in the final amplitude for the 2-point function.

Of course, we will have to analyze the integrals (336 - 338) in detail to see
how things work, but the discussion so far should have convinced you that there
may some leeway for an attempt to wiggle out of the problem with infinite
integrals in QED.
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REGULARIZATION

We have a delicate argument in front of us. Although the integrals that we
have to do are divergent we do not want to actually manipulate any divergent
expressions. In an intermediate step we therefore make all integrals finite “by
hand”. This is the procedure called regularization. Actually there are many such
procedures on the market; eventually we must show that the final results are
independent of which particular procedure that is chosen. In the toy integral the
regularization was performed by simply cutting off the range of the integration,
performing the appropriate manipulations, and taking the limit A — oo at the
end. The function f(z) that we eventually ended up with did not depend on
A. In quantum field theory an upper limit on the range of integration would
violate Lorentz invariance, and this would be a bad thing. Indeed we want our
regularization scheme to respect all the symmetries in the problem. There is
a reason for this: A detailed examination of our integrals (336 - 337) shows
that they are not as divergent as they seem to be. Thus the quadratically
and linearly divergent terms in the vacuum polarization graph actually cancel.
But this happens because of gauge invariance, and it will happen only if the
regularization respects gauge invariance.

It is not altogether straightforward to invent a gauge invariant regularization
scheme. The method that I will use is an old one due to Pauli and Villars, and
it works well for QED. For Yang-Mills theory it simply fails. Other methods
such as dimensional regularization are then used. A final general remark is that
in some theories it turns out that there simply does not exist any regularization
that preserves all the symmetries of the classical theory; then what happens
is that these symmetries are absent from the corresponding quantum theory.
There is what is known as an “anomaly”. Having said this, let me explain the
idea behind Pauli-Villars regularization using a toy integral as an example.

Suppose that we encounter an integral such as

dp 1
I=| ——— 358
| @) (359)
where f(p) is some function of the momentum such that the integral is loga-
rithmically divergent. The idea is now to change the propagator to

1 C;
- 5 S (359)
p2 — m?2 ; p2 _ Mz2
where
Co = 1 Mo =m (360)

and where the remaining parameters are at our disposal. We have ensured that
we recover the original propagator in the limit that M;s¢ — co. Of course the
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idea now is to evaluate the integral with all the regulator masses finite and to
take the limit only at the end of the calculation. First we rewrite

C; C; ]\4'12 Mz2 2
Zmzzﬁ<l+ o (p2> +> i (361)

i i

Our integral then becomes

d* i M2 M2\®

All our manipulations are above board since they are performed inside the
integrand. Next we evaluate the integral and take the regulator masses to
infinity at the end. If the original integral is finite we have done nothing, only
extra work. But if the original integral is logarithmically divergent it can be
saved by choosing

> ei=0. (363)

We can of course always do this. Inspection of eq. (362) shows that it will also
be enough to make I,., finite. The situation will then be analogous to that in
eq. (347). The hope is that an interesting renormalized function will emerge
after a second step analogous to eq. (348).

If the original integral is quadratically divergent we save the situation by
imposing

=Y M} =0. (364)
i i

As long as f(p) is a polynomial in the momentum we can always make the
integral I, finite if we go on in this way.

A nice thing about Pauli-Villars regularization is that the peculiar change
in the propagator can be understood at the Lagrangian level. If the original
action contains a term

1
S = -5 / d*z 0, 90% P + m?¢? (365)
we simply replace it with
1
Sreg = —5 /d433 D ci(0a$i0™¢i + M47) . (366)
i
We are adding new species of particles to the theory, with large (eventually

infinite) masses so that they are not excited in experiments conducted at sensible
energies. There is a catch though. The regularized theory (with finite regulator
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masses) is sick. The reason is that eq. (363) forces at least one of the ¢; to
be negative. And inspection of the action shows that this implies that the
Hamiltonian of the regularized theory cannot be positive definite. This is just
a way of saying that we really have to take the limit M;~¢ — oo at the end.
Although Pauli-Villars regularization leads to a sick theory if taken literally,
it does respect gauge invariance in QED. Having introduced regulator fields we
can couple them to the electromagnetic field through minimal coupling as usual,
to ensure that the regulator fields enter the Feynman diagrams they way we want
them to. That is to say, there is nothing wrong with using the interaction terms

e / Sy Avs (367)

in the action. The reason why we cannot go beyond QED is that we will play
the same game with the photon propagator. This means that we will perform
calculations where massive photons enter the loops. This can be done without
too much ado in an abelian gauge theory like QED, because in this case the
extra longitudinal degrees of freedom that we introduce in this way will act like
free fields—if we keep them away from the external legs they will not enter the
loops either. In non-Abelian gauge theories this is no longer true and other
measures must be taken.

There is another reason why we want to use massive photon propagotors,
namely that some of the loop integrals—such as the electron self energy and
the vertex correction graphs—are divergent also in the infrared. This difficulty
is separate from the difficulty at hand and we are therefore happy to avoid it
through the simple expedient of replacing

1 1

P PR
in the photon propagator. We can take the limit A — 0 when we eventually
arrive at the cross sections.

(368)
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THE ELECTRON SELF ENERGY

The conclusion so far is that we will deal with the regularized integrals

dp i 1
(2 (N2
_’I,Ege?q (k) - (16) / (271_)4 ; Ci%u }6+ ﬁ — mfyp‘p2 — )\3 (369)
—where only the photon propagator was modified—and
d'p Tey* ($+ K+ Mi)y" (¢ + M;)

e (k) = ¢ / )t 2= (s B = 32 01 (370)

where the fermion propagator was modified.

Now we look at eq. (369) and realize that we have to actually do it. The first
step is to use a trick due to Feynman that cleans the denominator of products
of polynomials. The trick is

1 L dx
ab /0 az +b(l—2)F (871

Applied to the case at hand, and performing a little algebra, this is

1 1 B
X (p+k2-—m?

(372)
_ /1 dx
Jo [(k+ (1 —2)p)? — (1 —2)2p? + (1 —z)(p? —m?) — zAZ]2

If we also perform some gamma matrix algebra in the numerator we then get

2 e [ d'k =2(p+ K) +4m
52 (p) = (ie) /0 dx/(27r)4 S L (373)

where

1*=-(Q1-z)p* (374)

RZ=(1-2)p* —(1—2z)(p* —m?) +2)?. (375)

Note that we interchanged the order of integration, but that is allowed since
all integrals are finite in the regularized theory. We can also change integration
variables. In particular, we can change k% — k% + [¢. We throw away terms in
the integrand that are odd in k% since they contribute nothing. After a Wick
rotation (that contributes an overall factor of 4) we can do the integral over the
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angular variables in an Euclidean momentum space (leading to an overall factor
of 272, which is the area of the 3-sphere). Then

—in®(p) = 27r i / / i ZC' k2+’R2 —2z p+4m) . (376)

We can do the final momentum integral. So

—ix®(p) =
(377)

N T 2 | 12 R? h
:(ze) W/O d:c(—2:c 16+4m) [;c, (111(16 +Ri)+m)]o

On the face of it this is logarithmically divergent. But now we use our freedom
to set > ¢; = 0. Then there will be no contribution from the upper end of the
integration range. We make the specific choice

COZ]. /\0:)\ 61:—1 A1:A, (378)
all others zero. In this way we happily arrive at
2, 1 R2
—ix®(p) = (ie)? T / dz(—2z p+4m)In —5 . (379)
(2m)* Jo Rb

Explicitly

) :al/ 3 p?(1—x)2 + A%z — (p2 —m?)(1 — )
) dr 2m —z p)In P2t e — (P —mD(1-2)
(380)

This is the regularized result. We should now remove the cutoff by taking the
limit A — oo, but if we do this the expression diverges logarithmically. Before
we proceed it will be necessary to think.

What we are computing is a propagator. The pole of the propagator should
occur at the electron mass m. Does it? According to eq. (354) the propagator,
to this order in perturbation theory, is

1
1 —
Sr(p) = pR——" T (381)
According to the calculation we just made
SO s = 2T [ oz — ) LT mr? (382)
B (1 —z)2 4+ ,’,\:2 .
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We can set A = 0 directly here since this is finite in the infrared. If we also take
into account that A >> m? we find approximately

1 2 1
am A z Q A
Hence
3a A
»( =Z"mln— .
(P) pem = 5 —mIn — (384)

This becomes logarithmically divergent when we remove the cutoff. But it is
much more significant that it is non-zero. From eq. (381) we see that the pole of
the electron propagator does not sit at p? = m?. The parameter m has therefore
been robbed of its physical meaning.

We can always write

S(p) = A+ (B—m)B+ (- m)°Z;(p) , (385)
where
A= g%mln% (386)
8%
B= Ty (387)

The divergent constant A can now be absorbed into the mass m. The pole of
the propagator then sits at

mr=m+A=9109-107%2 g, (388)

where the value was taken from experiment, not from theory. The quantity mpg
will be held constant when we take the limit A — oo. The parameter m will
misbehave, but we have no special emotional attachment to m.

We still have to worry about the constant B. First of all we have to explain
what the derivative with respect to p in eq. (387) actually means. It must be
true that

0
op
A little experimentation now shows that a more conventional way of writing the
derivative is

p=1. (389)

a

o 9
fy 6pa

o ¢

=

(390)



So, using y = 1 — z, we can spell out that

1 2 A2
+20-
B:ﬁ/ dy(l—y)lnggxf—(y)—
27 Jo Y2+ 2 (1—y)
(391)
1 2 2
«a 2y* — 2y 2y° — 2y
—— [ dy(1+y) - :
2”/0 v+ 25(1-y) v+ 2501-y)
In the approximation that A is big and X is small this is
1 2 2
@ y 2y —2y
B%—/ dy |Q—y)lhn—5———-14+y)————1] . (392
2m Jo ( A(1-y) Y2+ 25 (1—y)
Here we can do the integration over y and we end up with the result
afl 1., A2 1. X 9
B—;[‘zmm‘énm‘g] (393)

This is divergent in the infrared (the limit A — 0) but we do not worry about
this. We do worry about the fact that it is divergent in the ultraviolet (the limit
A — ), but our prime concern is the mere fact that it is not zero.

Now, to this order in perturbation theory, we can write

i
(1= B)(#~mp)(1 ~ (F—mr) = (p))
where we introduced the renormalized mass mg. In eq. (385) the bare mass m
occurs instead. Actually the difference does not matter here since I work to a

fixed order in e only and ruthlessly throw away higher order terms. That is to
say, since mg = m + o(e?), B = o(e?) and so on, it will be true that

Sp(p) = (394)

(1—=B)(p—mgr)=p—m—A—Bp—m)+o(e?) , (395)

and terms of o(e?) are ignored. What we find is that the residue at the pole is
equal to

1
Zy = —— 396
= (396)
and that it happens to be logarithmically divergent. But—and this is really
why the numerical factor Z was introduced in the LSZ formalism—the residue
at the pole must equal one if the states are correctly normalized. The correct

propagator to use then is the renormalized propagator
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]' !
SE"(psme) = ZoF P) - (397)

At the same time we perform a renormalization of the wave functions. We
change from “bare” to “dressed” states according to

|bare) = \/ Zz|dressed) . (398)

Later on I will give a sketch that makes it at least vaguely plausible that the
structure of the theory is such that the bothersome factor Z, now cancels out
from all the S-matrix amplitudes. Hence the fact that it happens to vanish can
be ignored from a practical point of view. Needless to say that a full proof that
this procedure works, and works to any order in perturbation theory, is difficult.
But it has been provided.

I should also say that the function Xy (p) is ultraviolet finite. This function
becomes important when the fermion propagator occurs inside some more com-
plicated diagram but to this order in perturbation theory it does not contribute
anything to the physics.
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VACUUM POLARIZATION

It is more satisfying to discuss the vacuum polarization diagram because here
the game is not only to show that the theory is consistent. There is a definite
physical effect called the Lamb shift to be harvested as well. We can also
see the importance of gauge invariance—and the need for a gauge invariant
regularization scheme—in a particularly transparent way.

Let us return to our unregulated expression for the vacuum polarization
diagram. As it stands it is an apparently quadratically divergent integral that
means nothing. But we can see that if it did mean anything it would have to
have certain definite properties. The idea is to attach this graph to an external
leg, so that the momentum variable on which it depends is the momentum of a
real photon. The amplitude is of the form

€My =€eTIAM!, . (399)
Gauge invariance dictates that the amplitude must be unchanged under the
substitution € — € + k, so that we must have

=0 = kT,p(k)=0. (400)

The only way to arrange this is to have

Map(k) = (kaks — gapk?®)A(k) + K*B(k) . (401)
We can now do a little dimensional analysis. Counting mass dimension (that is
[p] =1, [p"] = n and so on) we observe that

[Mag] = [d'plp~]=2 [A]=[B]=0. (402)
This means that on purely dimensional grounds the functions A and B must be
given by integrals that, at the ultraviolet end, must behave like

1
/d4p p4 ~/ dp P (403)
So we arrive at the conclusion that, because of gauge invariance, the quadratic
divergencies must cancel out leaving only logarithmical divergencies in their
place.
Explicitly one can convince oneself that

7 1 1
kU, = —— [ d*pT =
o (2704/ P K=

(404)

:ﬁ/d%ﬂ(ﬁ—lm‘m;—m)w‘
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Now, if this were a well behaved integral, we could perform the shift p — p+k& in
the first term and conclude that this expression is zero as it should be. Because
it is not we cannot draw this conclusion, but it is clearly advisable to use a
regularization scheme that allows this cancellation to happen.

If we use Pauli-Villars regularization and Feynman’s trick to simplify the
denominator we will get the regularized expression on the form

177, (k) = Z/ da:/ Zcz [p2 R2 , (405)

where
N9 = Tey*(f+ K+ J+ Mi)y° ($+ 1+ M) (406)

R? = M} — z(1 — z)k? (407)

lo = —(1— 2)kq - (408)

We can deal with the numerator straight away, using the facts that the trace over
an odd number of gamma matrices is zero, that integrals over an odd number
of p® will be zero, and that the angular integration (in Euclidean momentum
space) will ensure that

1
PaPs = J9asP” - (409)
A modest calculation then implies that

NP = —(k°kP — k2g"0)8x(1 — 2) — 29°°(5F —2R?) . (410)

In this way we arrive at the preliminary result that

28 (k) = (k*kP — k2g%P)I,.., (k) + g*’ D(K) , (411)

reg

where

Oy (k) = /0 dx 8z(1 Zcz/ Rz] (412)

D(k):—2z/ dx Zcz/ dp P’ _327;'] . (413)

We wish that D(k) = 0, otherwise something is wrong with gauge invariance.
Fortunately a detailed evaluation of the integral shows that D(k) is zero. To
draw that conclusion the regulator fields must be chosen so that the integral is
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finite in the first place. After the Wick rotation the integral can be manipulated
to the form

2
D(k)z—e( 4/ dx (ZcZ Zc, +’R2 > . (414)

The requirements for this to be finite, and indeed to vanish, are

doe=> M =0. (415)

It is not surprising that we get more conditions now than we got in the cal-
culation of the electron self energy, because this time we had to regularize a
quadratically divergent integral. A minimal solution of these equations is

co=1 c1=—-1—¢ Cy =€ (416)

m? m?
Mg =m?> Mi=— Mj=—, (417)

€ €
where we think of
m

A=M,=— 418
= (418)

as being larger than any relevant energy scale. Once the regulator fields are
chosen in this manner we have a rigourous version of the rough argument that
the quadratic divergencies ought to cancel.

The remaining function in our graph is non-zero and contains interesting
physics. The result of doing the integral, with the regulator in place already, is

2 1
ey (k) = —46?/0 dz 22(1 — x) Zc,'RZ2 =

1
= _%/0 dz 2z(1 — z)(In (m* — z(1 — z)k*) —

(419)

(1 + ?2) In (A% —z(1 — 2)k%) + % ln( —z(1 - 1)k%)) ~

1 2 2
a m? —x(1 —x)k

~-2 2¢(1 — z)In = — TR

7r/0 da2a( m)nAQ—m(l—m)kQ’

where the approximation in the last step took into account that A >> m?2. We
see immediately that
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a2 A
—1In

M, (0) = —=In— 420
(0 =22m (420)
is logaritmically divergent as the cutoff goes to infinity, while
1 2 2
) o _ «a 3 m? —z(1 —x)k
i (ITpey (k) = Ty (0)) = —2 /0 do 20(1 - o)l "I =T (4o

is finite and independent of A. Hence this diagram is finite after a single sub-
traction. The physics will depend on the perfectly well defined renormalized
function

2 _ 22
L m z(1—2)k

= (422)

a !
(k) = ——/ do 22(1 - 2)1
T Jo
This time there really are physical consequences already in this order of pertur-
bation theory, as we will now see.

There should be some diagrams here

The physical process that we will look at is scattering of an electron off an
external field, to third order in e2. There are three relevant diagrams, and we
will focus on the one that contains the vacuum polarization graph. The external
field will be taken to be the static Coulomb field from an atomic nucleus, namely

Ze
AN z) = [ — 42
0 = (f2.0.00) | (42)
or in momentum space
Z
A5 (q) = (q—f 0,0, 0) : (424)
To first order the amplitude is
MW = ieus(p+q) A(q)ur(p) - (425)
Taking the vacuum polarization diagram into account this becomes
. .g
M®) = jet v u, (Ag” - zqifﬂfgg(q)A?t(q)) . (426)

95



Since the external field is in the Lorenz gauge this simplifies to

M® = ja, Aty e (1 () (q)) . (427)

reg

There is no propagator in the final expression. Moreover there is an important
point, namely that the parameter e occurs only in combination with the factor
(1-T117,,(q)). (As in the discussion of the electron’s self-energy, we throw away
all terms of higher order in e—hence the fact that e also enters into the function
I, does not matter.)

The point is that e, like m, does not have any predetermined meaning.
Whether the factor that comes together with e is finite or not, we would still
set

er=e(1 -T2, (0)) = 1.6 - 107 Coulomb , (428)

Teg

where the numerical value comes from experiment. Having done so we can, to
this order in perturbation theory, express the amplitude as

i A (). o

To this expression the vacuum polarization contributes a well behaved and finite
function. In addition we have performed a multiplicative renormalization of the
parameter e,

1
V75
The fact that the renormalization constant is infinite is embarrassing, but not
too much embarrassing since it will eventually be argued that it cancels out
from all observable quantities.

Physically what eq. (429) shows is that the strength of the interaction
between the electron and the electromagnetic field depends on the momentum,
or in real space on the distance to the nucleus. To see how, let us assume that

(430)

e =

£ =g <<m?. (431)

We can then Taylor expand the logarithm that goes into eq. (422), and approx-
imate

I (¢%) ~ = / PR R RPCE SR (432)
~—— T 2x —r) == = =
r 7 Jo m?2 157w m?2
Effectively the potential is changing,
Ze Ze a ¢
— = |1+ —==] . 433
q? q> ( + 157 m2> (433)
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In real space this means that

Ze | Ze | Zea
47r 4y 15wm?2

3(z) . (434)

The delta function piece of a potential will be felt by electrons whose wave
functions are non—zero at the origin, that is to say by electrons in s states.
Since the “extra” piece of a potential is attractive such electrons will be more
tightly bound and their energy levels will be shifted downwards. This is the
origin of the Lamb shift that is observed to split the otherwise degenerate levels
25% and QP% in the hydrogen atom. The shift is of the order of a 1000 MHz
and turns out to be consistent with the above deliberations.

Two final remarks. A general remark is that vacuum polarization will cause
the force to grow stronger when the distance shrinks. The wonderful thing is
that non—Abelian gauge theories can exhibit the opposite kind of behaviour. A
specific remark is that examination of eq. (422) shows that the function I (k?)
has a rather interesting structure; notably it will develop an imaginary part
when k2 > 4m2. This is due to the fact that electron—positron pairs can be
created at this energy.
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THE VERTEX GRAPH

There is one more one loop graph that brings divergencies into the theory. It also
brings an (ultimately) well defined function of direct relevance for the coupling
of an electron to a static magnetic field. This is the vertex graph, given by

L . .
N o) = (=0 [ G e (499

A new thing happens to us here, which is that the integral is divergent in
the infrared end of the integration range. This is why a small photon mass A
has been added as a regulator. In the ultraviolet end the integral is, naively,
logarithmically divergent, but the divergence appears in a rather harmless way.
To see this, define

A=P—F-m, I=p-P lU=p-P. (436)
Thus
1 1 1 1
H = w . 437
F—F-m" F—F-m JF+a J4A s
Then we use the identity
1 1 1.1 1.1_1
- - 4 -B-4{-B-B-4... 4
A-B aAtaata’a"at (438)
to observe that
A(p,p) =
(439)

o | et (k- vk e ) (54 4)

Using this in eq. (435) we find that

A* = A¥(P, P) + finite terms . (440)

The conclusion is that, if we express an amplitude as a function of the momen-
tum transfer ¢ = p — p', then the result is an ill-behaved constant followed by a
finite function of ¢. This is the kind of situation that are by now familiar with,
and we should be able to handle it.

Not only that, the divergence turns out to be related to the divergent con-
stant B in the electron propagator. See eq. (385). This happens because of
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gauge invariance, and it is true at all orders of (regularized) perturbation theory
(provided we use a regularization that respects gauge invariance). Let us define
the vertex contribution, including the tree level result, as

TH =k + A* (441)

Explicitly the relation between A# and the electron propagator is given by
Ward’s identity

0
53— 2(p) = —A(p,p) - (442)
Op,
To lowest non-trivial order in perturbation theory it is easy to show this through
explicit manipulation of the one loop graphs, using the observation that

0 1 1 1

i - — Ay .

Opy p—m p—m' p—m
Anyway, with this result in hand, we see that if we consider two external elec-
trons (“on the mass shell”) and take the limit of zero momentum transfer, we
get

(443)

a(p)T*u(p) = (1 — B)ay"u = ZLZTW"U = UrenY" Uren » (444)
where we renormalized the wave functions—as we learned to do when discussing
the electron propagator. The final result is independent of the factor Zs, so the
regulator can now be taken away with impunity. The theory produces only
finite results.

What are these results in the present case, that is, when we study the scat-
tering of two external electrons interacting with an electromagnetic field? What
we are trying to compute, in the Heisenberg picture say, is the expectation value
of the current

®'|J*(2)Ip) = @'Yy ¢Ip) = ieu(P)T* (p,p')u(p) - (445)
The current is conserved;
WJ'=0 = @ —puI*0)p)=0. (446)

What can we get? Since u and @ obey the Dirac equation Lorentz invariance
constrains the result to be a sum of three terms only, namely

i )= (1F@) - oo+ )60 + LT H ) ) u
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To see this, write out all possible terms and use the Dirac equation to bring
their number down. Current conservation, given that the external electrons are
on shell, actually forces

H(g)=0. (448)

Hence there are only two terms. It is convenient to rewrite them using Gordon’s
identity

2ma(p')y"u(p) = a(p') [(p + p)* + iy (p — )] u(p) - (449)

Hence the most general form of the thing we are trying to compute is

i
A (p,p') =" Fp(¢®) + %WW%FP(CIZ) . (450)

The two functions here are known as the Dirac and Pauli form factors, respec-
tively. The ultraviolet divergence sits in Fpp(0). Once this has been isolated and
dealt with the renormalized Dirac form factor is finite and obeys

F5em(0) =0 . (451)

There is also an infrared divergence in the renormalized Dirac form factor, that
has to be dealt with at the level of cross sections. The Pauli form factor will
come out finite at both ends, with no special action required.

It only remains to do the integral (435). Since there are three propagators
in the denominator we use Feynman’s trick in the form

1 1 1 1
—_— =2 d d . 452
abe / ”/ Y Jaay + bz(1 = y) + (1 — 2) (452)

And so on...
This leads to the anomalous magnetic moment of the electron. But I did
not have the time to put it in my notes.
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A SKETCH OF RENORMALIZABILITY

What we have seen so far can perhaps be regarded as encouraging signs that
maybe the infinities occurring in the Feynman diagrams can be controlled. And
moreover that it will never be necessary to actually manipulate infinite integrals.
All regularized calculations will be finite, so the real statement will be that in
the end all traces of the regularization procedure will disappear from observable
quantities. This statement has in fact been proved. A rough sketch follows.

First one shows that it is enough to control the divergencies in the two
and three point functions, that is in the fermion propagator Sy, the photon
propagator D', and the vertex contribution I'* = y*4+A®. This is not altogether
surprising since it is easy to see that graphs do tend to become more convergent
as the number of external legs increases—provided that the coupling constant
is dimensionless we should get an extra factor of p? in the denominator if we
add an extra leg. In theories like scalar ¢ or Einstein’s theory of gravity, where
the coupling constant has dimension (length)2, this is no longer true and indeed
such theories are not renormalizable.

There should be lots of pictures in this section

The claim that we are after goes something like this: Once the mass has been
appropriately shifted all the divergencies in QED will sit in two scale factors Z;
and Z3. There will be well defined renormalized functions given by

1
Sp(p) = Z1:SF D) = ZsDE  T*(p,p') = Z—lf‘i‘z(p,p’) - (453)

Naively one would have expected three independent scale factors but gauge
invariance relates I'* and X in such a way that only two of them are independent.
Now introduce the physical charge e through

1
€R ,
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a factor v/Z; for each external fermion, and a factor v/Z3 for each external
photon. Then the renormalization constants Z; and Z3, whether divergent or
no, will cancel out from the S—matrix elements of the theory. The latter will

e =

(454)
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become well defined functions of the physical charge er and the physical mass
meg.

It is instructive to check for one self that the renormalization factors indeed
do cancel out from some interesting processes, say Compton scattering and the
scattering of light by light. Of course this assumes that the hard part of the work
has been done already, namely to show that the two and three point functions
are finite. This is actually much more difficult than one might expect, since
the electron and photon propagators involve “overlapping divergencies”. But
it is still true. The main point then is that the divergencies affect only two
parameters (e and m) and some irrelevant scale factors.

Stepping back from the problem, it is clear that we got ourselves into trouble
by assuming that QED holds at all energy scales. When we sum over interme-
diate states in the loop diagrams we make use of that assumption, and find
divergencies, whereas in Nature the very high energy behaviour is presumably
something quite different. But the message is that this does not matter: The
interaction of electrons and photons at accessible energies is not affected by the
unknown very high energy behaviour, except in so far as it affects the values of e
and m, and somehow sets them equal to their observed values. The modern way
to phrase what is going on is along such lines, and hence it differs somewhat from
the way I have been expressing it so far. The statement is like: The high energy
behaviour is experimentally irrelevant and cancels out from observable quanti-
ties at low energies—where “low” means those energies where experiments are
carried out and “high” presumably means those energies where quantum gravity
takes over so that present day theories are not applicable anyway.
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