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Preface

The subject of this monograph is the results of the recent theoretical studies of
the nature and the role of many-particle and orientation effects in the process
of anomalous elastic scattering of X-ray photon by free atom, atomic ion, and
linear molecule.

Theoretical and experimental investigations of anomalous elastic scatter-
ing of X-ray photon having energy in the range of 0.35 keV≤ ηω ≤1.4 MeV by
a many-electron system are immediate requirements in modern fundamental
and applied physics from the point of view of the conditions of the anomalous
dispersion when an incident photon energy is close to that of an inner-shell
ionization thresholds. They are important, firstly, because of the construction
and subsequent application of the X-ray free electron laser and because of
laboratory-plasma X-ray laser generation. Also, it is urgent to solve impor-
tant problems, such as maintaining a laser thermonuclear fusion, as well as
majority of problems in plasma physics, ionizing radiation physics, surface
physics, metal and semiconductor physics, and astrophysics.

However, in spite of the existence of a general quantum-mechanical theory
for the process of anomalous scattering of the electromagnetic radiation by
matter, following from the works by Kramers and Heisenberg (1925) [1] and
Waller (1928,1929) [2,3], both the calculation methods and the assignments
of the anomalously dispersive regions of the elastic scattering spectra in the
immediate vicinity (∼1 ÷ 100 eV) of the inner-shell ionization thresholds of
free atom, atomic ion, and molecule are absent in the world scientific practice,
including the many-particle effects. Indeed, the existing methods within the
anomalously dispersive regions of elastic scattering lead to infinite (nonphys-
ical) intensities of the differential cross-section resonances. Thus, more than
50% discrepancy follows between theoretical and experimental results near the
inner-shell ionization thresholds. The principal reason for that is the neglec-
tion of wide hierarchy of the many-electron effects that take place in this case
on the virtual level and influence significantly the structure and shape of the
observed anomalous elastic scattering spectrum. Moreover, together with the
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problem of the accounting for the many-particle effects, some other analytical
aspects of the process’ quantum theory should be resolved.

Then, the problem of creation of the quantum theory and the methods
of calculation of the spectral characteristics in the process of X-ray photon
resonant elastic scattering by free atom, atomic ion, and molecule near their
inner-shell thresholds accounting for the many-particle effects arises.

In the theoretical description of the anomalous elastic scattering of
X-ray photon by an atom placed within a chemical compound, the anomalously
dispersive real and imaginary parts of the scattering probability amplitude
can be represented with a good accuracy as a product in terms of atomic
and solid bodies [4]. Numerous experimental and theoretical results of the
investigations on the near-inner-shell-edge fine structure of the X-ray absorp-
tion spectra in crystals allow one to suggest the following. Satisfactory results
are expected for the solid-body part even in one-electron approximation (i.e.,
one-configuration Hartree–Fock approximation), whereas in the calculation of
the atomic part, one has to go beyond the frames of this approximation. So,
it includes the many-particle effects following from the effect of radial rear-
rangement of the atomic residue electron shells in the electrostatic field of a
deep vacancy. Therefore, in the study of complete many-particle structure of
the atomic part, the preliminary stage is necessary for obtaining the informa-
tion on the nature of the anomalies in the differential cross-section of elastic
scattering of an X-ray photon by solids, and in reliable identification of the
solid-body effects.

It should be noted that the many-particle theory and the methods devel-
oped in this monograph can be generalized, particularly onto the case of solids.
Therefore, they can be used for further development in the process of the
anomalous elastic scattering of an X-ray photon by matter in a condensed
state theory.

Once a photon is scattered elastically, the system comes back to its initial
state. Nevertheless, during its virtual existence in an excited state, it has time
to demonstrate its real many-electron nature. As our studies have shown,
this demonstration becomes most bright and individual near the ionization
thresholds, and it manifests itself in the strong disturbances of the smoothness
of the differential elastic scattering cross-section. The studies of those spectral
regions may produce the unique information on the structure and properties
of the scattering objects, specifically on the many-particle effects and their
quantum interference. Then, the study of the anomalous elastic scattering of
X-ray photon by matter becomes an independent instrument to study the
many-electron nature of the scattering objects.

In this monograph, we also present the analytical solution of the stationary
many-electron Schrödinger equation for nonrelativistic wave functions for the
set of electrostatically interacting states of photoionization of the atomic inner
shell and the state of the Auger decay of the virtual deep vacancy with Auger-
and photoelectron states in the continuum. This solution was obtained outside
the frames of the quantum perturbation theory for the first time in scientific
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practice. This result, having a specific importance for the quantum theory of
the absorption of an X-ray photon by free atom, atomic ion, and molecule,
has also an important methodical value for the further development of the
many-particle quantum theory of anomalous elastic scattering of an X-ray
photon by a many-electron system.

The results of the calculation of the absolute values and shapes of the dif-
ferential cross-sections of anomalous elastic scattering of X-ray photon by a
free atom and a multipe-charged positive atomic ion can be used in the devel-
opment of the methods of production and diagnostics of the high-temperature
laboratory plasma, the plasma “string” as an active medium, and in the con-
struction of the multiple-layer interference mirrors used as resonators in an
X-ray laser [5]. The results of the studies of anomalous elastic scattering of
polarized X-ray photon by a molecule fixed in space may be considered as a
base for the construction of experimental methods to form and control the
fixed-in-space many-electron systems.

The monograph is organized as follows.
In the first chapter, a review of the modern state of experimental and

theoretical studies of the anomalous elastic scattering of an X-ray photon
by a many-electron system is given. The principal attention is paid to the
theoretical models for the differential cross-section of the process, on the basis
of which the method of this monograph is developed. The modern situation
is characterized, and the aims of the studies are specified.

In the second chapter, within the second-order quantum-mechanical
perturbation theory, the many-particle quantum theory and the methods of
calculation of the differential cross-section of the anomalous elastic scatter-
ing of an X-ray photon by an atom and an atomic ion in near inner-shell
ionization thresholds are formulated. A general analytical structure of the
form-factor of an atom with any ground-state term is stated. The effect of
the many-electron correlations and nonsphericity of the absolute values and
shapes of the form-factor of the spherical-symmetry approximation are stud-
ied. The absolute values and the shapes of the differential cross-sections of the
anomalous elastic scattering cross-sections are calculated for a set of particular
atoms and ions.

In the third chapter, the results of the theoretical studies of the role of the
many-particle phenomenon of postcollision interaction in the absorption and
anomalous elastic scattering of X-ray photon near the inner-shell ionization
threshold are presented. Outside the frame of the quantum-mechanical pertur-
bation theory, the analytical solution of the Schrödinger equation is obtained
for the nonrelativistic wave function of the system of the atomic continua
interacting electrostatically.

In the fourth chapter, the many-particle theory and the methods of cal-
culation of the differential cross-section of the anomalous elastic scattering of
X-ray photon by a fixed-in-space hydrogen-ligand and nonhydrogen-ligand
diatomic molecules are presented. The general analytical structure of the
form-factor of a linear molecule is stated. The absolute values and shapes
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of the differential cross-sections of the anomalous elastic scattering for spe-
cific molecules near the ionization thresholds of deep molecular orbitals are
stated.

The methods developed in this monograph are not limited by the X-ray
energy range. They can be generalized up to the vacuum ultraviolet (optical:
6.0 eV ≤ ηω ≤ 12.4 eV) range of energies for the elastically scattered photon.

To be able to understand this monograph, the readers should know
quantum mechanics and mathematical analysis at the university-level.

The authors are indebted to Prof. V. Demekhin, Prof. A. Kochur,
Prof. I. Petrov, and Prof. V. Sukhorukov of Rostov State University of Trans-
port Communication (Russia) for their critical remarks during the discussion
of the results of this monograph. We also apologize to those numerous authors
whose valuable works have not been mentioned in this monograph.

Rostov-on-Don, Russia Alexey Hopersky
September 2009 Victor Yavna
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1

Research Results of the Process
of the Anomalous Elastic X-Ray Photon

Scattering by a Many-Electron System

Technological advancements of experimental investigations in the field of
atomic, molecular spectroscopy and spectroscopy of the solid state, the use of
synchrotron polarized X-ray radiation, and the high level of energy resolution
of the incident photon in the first place led to an intensive development of
experimental and theoretical analysis of the electronic structure of matter,
which use the information being received from the spectra of the anomalous
elastic X-ray photon scattering by an atom, a molecule, and a solid state.

Before we make a brief review of the main experimental and theoretical
results obtained in the spectroscopy of the anomalous elastic X-ray photon
scattering by a many-electron system and concretize our research tasks, we
shall give a description of the main modern theoretical analysis methods.

1.1 Theoretical Process Description

Describing in theory the differential cross-section of the X-ray anomalous
elastic scattering process by an atom:

dσ
dΩ

= r20 |Q|2 , (1.1)

(Ω is the solid angle, r0 = 2, 818 · 10−13 cm is the classical electron radius, Q
is the process probability amplitude), there are two schemes mainly used in
modern scientific literature.

The first scheme is the second order of the nonrelativistic quantum-
mechanical perturbation theory developed in the fundamental works by Dirac
[6] and first realized while describing the anomalous scattering process of
the electromagnetic radiation by a matter in the works by Kramers and
Heisenberg [1] and Waller [2, 3].

In our study, the nonrelativistic variant of the first scheme of the differ-
ential cross-section description (1.1) with allowance for the non-zero widths of
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the atomic vacancy decay in its structure will be identified as an approximation
of the Kramers–Heisenberg–Waller formula. The relativistic variant of this
scheme for an atom (the relativistic Hamiltonian and the description of one-
electron wave functions by Dirac spinors) reproduces formally and mathemat-
ically the second order Ŝ of the quantum electrodynamics matrix formalism
[7] and its present form for the calculation of the differential cross-section (1.1)
is presented by Kissel–Pratt algorithm [8]. In the context of the relativistic
variant of the description of the gamma radiation elastic scattering (photon
energy �ω ∼ 500 keV–10 MeV and more) and in computing the differential
cross-section (1.1) for heavy atoms, we can register the photon elastic scatter-
ing at the virtual electron-positron pairs created by the Coulomb nuclear field,
in addition to the Rayleigh atomic electron scattering, the Thomson nuclear
scattering, Rayleigh nucleon scattering, and the Delbrück scattering.

Here we shall remind the reader that in the scientific literature the
“Rayleigh scattering” is understood as the photon contact and non-localized
(through absorption and following radiation) elastic scattering by atomic elec-
trons (nucleons), whereas the “Thompson nuclear scattering” means just the
photon contact elastic scattering by a nucleus, if we imagine it as a point
object.

In the wavelength mode from the long wave λ ∼ 2 − 20 Å until the ultra
short λ ∼ 0, 3 − 0, 01 Å ranges of the incident X-ray photon that exceed dis-
tinctly the average atomic nucleus diameter the mentioned additional elastic
scattering process types are insignificant, and the studied process can be the-
oretically examined with allowance for the Rayleigh photon scattering by the
electrons of a free atom only.

The second scheme is a form factor approximation and its modifications.
From the mathematical standpoint, it is just a particular case of the first
scheme. The form factor approximation describes satisfactorily the differential
cross-section (1.1) in the energy range of a scattering X-ray photon that is far
from the energy of the ionization thresholds of the atomic shells. To describe
the anomalously dispersing scattering range its modifications are necessary
for the purpose of registration of the dispersing contributions.

Let us describe these calculation schemes.

1.1.1 Quantum-Mechanical Perturbation Theory

In the second order of the quantum-mechanical perturbation theory, the prob-
ability amplitude of the process of the photon anomalous elastic scattering by
an atom in (1.1) for the atomic state wave functions takes nonrelativistically
the form [10]:

Q = (e1 · e2)F (θ;ω) +A; (1.2)

where e1 and e2 are the unit polarization vectors of the incident (generated)
and the scattered (registered) energy photon �ω. In (1.2) atomic system of
units (e = me = � = 1) the following values are defined:
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(a) Atomic form factor (structure function)

F (θ;ω) = 〈0|
N∑

j=1

exp [i (k · rj)] |0〉, (1.3)

if an atom has filled shells in the ground state (term 1S0), it is equal to

F (θ;ω) =
∑

nl

Nnl

∞∫

0

P 2
nl(r)

sin(kr)
kr

dr, (1.4)

k = |k| = |k1 − k2| = (2ω/c) sin(θ/2),

(b) Anomalously dispersing Kramers–Heisenberg–Waller terms in the dipole
approximation (k · rj << 1) for Fourier components of the electromag-
netic field operator

A = S
m>f

am
1 a

m
2

(
1

E0m + ω
+

1
E0m − ω

)
, (1.5)

am
1,2 = 〈0|

N∑

j=1

(e1,2 · pj) |m〉,

E0m = E0 − Em + iΓnl/2.

In the formulas (1.3)–(1.5) are defined: N– the number of electrons in the
atom, rj – the radius vector of the j – electron in the atom, Nnl – the number
of electrons in the atomic nl – shell, Pnl(r) – the radial part of the wave
function of the nl – shell electron, k1− and k2 – the wave vectors of the
incident and the scattered photons, k – the scattering vector, θ – the scattering
angle (the angle between the vectors k1 and k2), c – the light speed, E0 –
the energy of the atom ground |0〉 – state, Em – the energy of the atom in
the |m〉 – intermediate (virtual) scattering state, pj – the impulse operator
of the j – electron in the atom, Γnl – the total width of the nl – vacancy
decay at the radiation and autoionization channels, f – the Fermi level (the
set of quantum numbers of the atom valence shell), and the symbol S means
the summation (integration) according to the virtual states of the discrete
(continuous) excitation/ionization spectrum of all atom nl – shells, including
the states of its multiple excitation/ionization.

The summation (integration) in (1.5) follows the countable (discrete spec-
trum) and the noncountable (continuous spectrum) infinite sets of the virtual
(unobserved) states. The sign choice before the imaginary part in the energy
denominators (1.5) corresponds to the well known in the quantum scattering
theory Gamov procedure [11] Em → Em−iΓnl/2, obeying the formation of the
scattered diverging wave P (r) ∝ exp(ikr) at the asymptotic form (r → ∞).
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In Chap. 2, we shall show that the form factor of an open-shell atom in
the ground state has in general a more complex analytic structure than (1.4).

The expression for the differential cross-section of the elastic scattering
(1.1) results from the Fermi golden rule for the expectancy differential of
changing the system “atom + radiation” in unit time from the initial state
with the energy Ei to the final states’ interval (f, f + df) of the continuous
spectrum

dWif = 2π |Qif |2 δ (Ei − Ef ) df,

df = (2πc)−3V ω2dω dΩ,

determining for its part the differential cross-section of the process

dsif = (1/ρ)dWif

ρ = cn/V,

where ρ is the flux density, n is the number of the incident photons, V is the
volume, where the photons spread out. In this connection, the expression for
Qif – the probability amplitude of the process is based on the operator of the
electromagnetic interaction

Ĥint =
N∑

j=1

[
1

2c2
(Aj)

2 − 1
c

(pj · Aj)
]
, (1.6)

Aj ≡ A(rj ; 0).

Here, the operator of the vector potential of the free electromagnetic field in
the form of the secondary quantization

A =
∑

k,η

√
2π
|k|ekη

(
â−kηe

ikr + â+
kηe

−ikr
)
, (1.7)

is presented as the solution [7] of the wave equation at time point t = 0:

ΩA(r; t) = 0, (1.8)

and is defined: â+
kη

(
â−kη

)
– the creation (annihilation) operator of the photon

with the wave vector k and the polarization η(=1, 2), ekη – the photon’s
polarization vector e1⊥e2⊥k.

Let us state here that the structures of the (1.8) and the linear in the
electromagnetic field items in the interaction operator (1.6) are determined
by the choice of the Coulomb field calibration that makes the commutator
vanish

divA(r; t) = 0; ϕ(r) = 0,

where ϕ(r) is the scalar part of the field 4-potential Aμ = (ϕ,A), μ = 0, 1, 2, 3.
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The quadratic in the electromagnetic field terms of the operator (1.6)
describes the so-called contact interaction of a photon with atomic electrons
and determines the analytic structure of the atomic form factor (1.3). The
linear in the electromagnetic field terms of the operator (1.6) describes the
absorption process and the photon radiation by an atom by means of its vir-
tual excitation/ionization of different multiplicity and determines the analytic
structure of the anomalously dispersing Kramers–Heisenberg–Waller terms
(1.5) of the total probability amplitude of the elastic scattering process.

The formulas (1.1)–(1.7) form the basis of the nonrelativistic variant of
the first theoretical scheme for describing the anomalous elastic X-ray photon
scattering by free atomic electrons. We shall use them in Chap. 2 of our study
for the development of the many-body quantum theory of the process.

1.1.2 Form Factor Approximation and its Modifications

The form factor modification follows from the expression for the probabil-
ity scattering amplitude (1.2), if we set aside the anomalously dispersing
Kramers–Heisenberg–Waller terms. Then the differential cross-section of the
process takes the form:

dσ
dΩ

= r20 (e1 · e2)
2 |F (θ, ω)|2 . (1.9)

In the case of the elastic scattering of nonpolarized electromagnetic radiation
by a many-electron system the polarization factor (e1 · e2)

2 in (1.9) is equal
to
(
1 + cos2 θ

)
/2.

In the context of this approximation the relativistic corrections to the
atomic form factor in (1.9) are considered by building the modified atomic
form factor, where the contribution from each nl -electron of the atomic core
has the form [10]:

gnl(θ;ω) = 4π

∞∫

0

ρnl(r) (1 − αnl(r))
−1 sin(kr)

kr
r2dr, (1.10)

αnl(r) =
1
mc2

(Enl + Vnl(r)) .

In (1.10) the following values are determined: Enl is the binding energy and
Vnl(r) is the potential energy of the nl-electron as well as the relativistic
probability density of the electron location in the nucleus:

ρnl(r) =
1

4πr2
[
R2

nl(r) +Q2
nl(r)
]
,

where Rnl(r) and Qnl(r) are the radial spinor components of the one-
electron wave function. In the nonrelativistic limit (v/c << 1) we derive
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Qnl(r) → 0, Rnl(r) → Pnl(r) – the nonrelativistic radial part of the electron
wave function, αnl(r) → 0 and return to the expression (1.4).

The energy of the scattered X-ray photon approaching the energy of the
ionization threshold of the deep atom shell and the anomalously dispersing
terms of the probability amplitude of the elastic scattering (1.2) begin to play
a decisive role in determining the process probability and the form factor
approximation becomes inapplicable.

In this situation, we can make the following first move towards the mod-
ification of the form factor approximation. Passing in (1.5) to the limit of
zero widths of the vacancy decay Γnl → 0 for each atomic nl -shell, deleting
the sum in the intermediate states of the discrete spectrum scattering, and
considering the operator equation:

lim
η→0

( η
π

) [
(x − y)2 + η2

]−1
= δ(x− y),

for the probability amplitude of the elastic scattering we obtain the expres-
sion:

Q = (e1 · e2)

[
F (θ;ω) +

∑

nl

(ReAnl − i ImAnl)

]
, (1.11)

ReAnl =
(
2π2cro

)−1
P

∞∫

o

x2σnl(x)
ω2 − x2

dx, (1.12)

ImAnl = ω (4πcro)
−1
σnl(ω), (1.13)

σnl(ω) = (4/3)π2αa2
oω |Dnl|2 . (1.14)

In (1.11)–(1.14) the following values are determined: Dnl is the probability
amplitude and σnl(ω) is the cross-section of the atomic nl -shell photoion-
ization, α is the fine structure constant, a0 is the Bohr radius, and P is
the symbol of the Cauchy principal value. The connection (1.13) shows the
optical theorem [11], well known in the quantum absorption and scattering
theory.

In the case of the zero scattering angle (forward scattering), the expres-
sion (1.12) can be derived on the basis of the optical theorem (1.13) and from
the causality principle of the light-signal propagation, the mathematical rep-
resentation of which leads to the amplitude analyticity of the forward elastic
scattering [12].

Actually, from the Cauchy integral formula,

ψ(ω) = (2πi)−1

∮

L

ψ(x)(x − ω)−1dx,

for the arbitrary analytical function ψ(x) = Reψ(x) + i Imψ(x), ψ(x) → 0 at
x→ ∞, the Kramers-Kronig dispersion relations [13] follow:
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Reψ(ω) =
(

1
π

)
P

+∞∫

−∞
Imψ(x) (x − ω)−1 dx,

Imψ(ω) = −
(

1
π

)
P

+∞∫

−∞
Reψ(x)(x − ω)−1dx.

Now, the expression for the real part of the function ψ(x) can be transformed
to the integral on the physically meaningful energy interval x ∈ [0;∞):

Reψ(ω) =
(

2
π

)
P

∞∫

0

x Imψ(x)
(
x2 − ω2

)−1
dx. (1.15)

Finally, the substitution of (1.13) in (1.15) leads to (1.12) accounting for a
sign in (1.11).

Then, keeping in mind that F (0;ω) = N follows from the formula (1.4)
for the atomic form factor at the zero scattering angle, on the basis of the
expressions (1.12)–(1.14) we arrive at the formulas of the form factor approx-
imation, modified in terms of the Kramers-Kronig dispersion relations for the
forward scattering amplitude:

Q = (e1 · e2) (N + f ′ − if ′′) , (1.16)

f ′ =
∑

nl

ReAnl; f ′′ =
∑

nl

ImAnl.

For the interpretation of the experimental results, the expression (1.16) has
been used in many scientific works of reference dealing with the analysis of
the anomalous elastic X-ray photon scattering by a many-electron system.

The further attempt to fall outside the limits of the approximation (1.16)
in order to consider the probability amplitude of the elastic scattering in
the theoretical description, the radiation transitions to virtual states of the
continuous spectrum scattering along with the transitions to states of the
discrete spectrum scattering, the non-zero values of widths of atomic vacancy
decays and the scattering angles, the many-body effects as well make the
second step in the modification of the form factor approximation unavoidable –
the return to the structures of the probability scattering amplitudes in the
quantum mechanical perturbation theory at least (1.1)–(1.7).

In closing this section, the following can be noted. The building of the
anomalous dispersion part (1.5) of the probability amplitude of the elastic
scattering is realized by us in the dipole approximation for the Fourier com-
ponents of the electromagnetic field operator (1.7): exp

[
i
(
k · ⇀

r
)] ∼= 1. As

a result, the expression (1.5) turns out to be independent of the scattering
angle, the polarization factor (e1 · e2) being extracted from it. Exceeding the
limits of the dipole approximation makes the anomalously dispersing Kramers-
Heisenberg-Waller terms theoretically depend on the scattering angle even
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after extracting the polarization factor [14]. Such investigation is outside the
scope of our work. It will be required in the hard X-ray mode, because in
the short-wave range of the wave-lengths λ ∝ 0, 30 ÷ 2,00 Å the limitation
through the dipole approximation, if the average value of the atomic diameter
is d∼ 1÷2 Å, can distinctly degrade the quality of the theoretical description
of the differential cross-section of the process.

1.2 Measurement and Calculation Results of Spectral
Characteristics of the Process

Performed at present, the scientific works dealing with the study of the anoma-
lous elastic X-ray photon scattering by a many-electron system generally can
be divided into three groups: (a) the works, where the imaginary and real
parts of the probability amplitude of the anomalous elastic scattering in (1.2)
and (1.16) were studied; (b) the works, where the differential cross-section of
the process was investigated; (b) the works, where the atomic form factor was
analyzed.

Let us review the main research results following this classification. We
shall however confine our review to the works, where the energy region ω =
ωI ± 200 (eV) (ωI is the energy of the ionization threshold of the deep atomic
I-shell) was studied – the main area of “action” of the many-body effects
investigated in the present book.

1.2.1 Study of the Real and Imaginary Parts of the Probability
Amplitude of the Process.

In the work by Fukamashi and Hosoya (1975) [15] the near structure of
the functions f ′ and f ′′ in the area of the K-ionization threshold of Ga
(ωK = 10,368 eV) in the GaP crystal was detected using the characteristic
monochromatic X-ray radiation and measured with a high resolution (∼2 eV).
In the photon energy area ω∼ωK ±6 (eV) the ∼20% divergence of the theory
(one-electron hydrogen-like approximation without considering the relaxation
of the atomic core in the 1s-vacancy field, the near fine structure of the absorp-
tion section, the transitions to the intermediate states of the discrete spectrum,
and the finite values of the decay widths of the core vacancies) and experiment
was detected. The authors do not state the divergence causes.

The synchrotron X-ray radiation (DESY; Hamburg, Germany) for study-
ing the spectral characteristics of the anomalous elastic scattering process
was used for the first time in the work by Bonse and Materlik (1976)
[16]. In this work the near fine structure of the function f ′ in the energy
area of the K-ionization threshold of the metallic Ni (ωK = 8,332 eV)
was detected and measured with high resolution of the scattered photon
wavelength

(
Δλ/λ ≤ 2 · 10−4

)
. The authors point to the fact that their mea-

surement results differ from the results of the one-electron hydrogen-like



1.2 Measurement and Calculation Results of Spectral Characteristics 9

approximation, and connect it with ignoring the finite decay width of the
1s-vacancy of Ni incalculation.

In the work by Fukamashi et al (1978) [17] the synchrotron X-ray radi-
ation (Stanford Synchrotron Radiation Laboratory; SSRL, USA) is used for
studying the functions f ′ and f ′′ in the energy region of the K-ionization
threshold of the metallic copper (Cu: ωK = 8, 980 eV). The absolute values
and shapes of these functions are derived with a high scattered photon energy
resolution (∼2 eV), their nonlinear near-threshold structure is ascertained and
it is demonstrated that the one-electron hydrogen-like approximation in the
context of the second-order quantum mechanical perturbation theory and the
modified form factor approximation (1.16) lead to more than 20% divergence
with the experiment in the threshold area. The authors do not determine the
divergence causes.

The structure of the function f ′ in the energy region of the K−ionization
threshold of the metallic Se (ωK = 12, 658 eV) is measured with a high scat-
tered photon energy resolution (ω /Δω ∝ 1, 5 ·104) in the work by Bonse et al
(1980) [18]. The synchrotron X-ray radiation (DESY; Hamburg, Germany)
was used. The authors did not explain in theory the results of the experiment.

In the works of Templeton’s team (1980–1982) [19–21] the synchrotron
X-ray radiation (Stanford Synchrotron Radiation Laboratory; SSRL, USA)
is used for the first time for studying the functions f ′ and f ′′ in the
energy region of the atomic ionization L1,23 – thresholds. The measure-
ments are performed with a high-scattered photon wavelength resolution(
Δλ / λ ∼= 10−3

)
. The resonance structure of these functions is detected for

atoms of Cs (crystal of CsHC4H4O6) [20] (L1,23-thresholds), Pr (crystal of
NaPrC10H12N2O8 [8H2O]), Sm (isomorphic Sm) [19] (L3-threshold), and Gd
(isomorphic Gd) [21] (L3-threshold). The results of the experiment for the
atom of Cs in the L3-threshold area are compared with the results of the rela-
tivistic Cromer-Liberman algorithm [22]. The divergence between theory and
experiment in the photon energy region ω = ωL3 ± 15 (eV) amounts to 30%.
The results of the experiment for the f ′-function of atoms of Pr and Sm are
compared with the results of the modified form factor approximation (1.16).
The divergence between theory and experiment in the photon energy region
ω = ωL3 ± 10 (eV) amounts to 30%. The authors do not determine the causes
of the mentioned divergences.

In the works by Hart (1980) [23] and Hart and Siddons (1981) [24] the func-
tions f ′ and f ′′ are measured in theK-ionization threshold area of the metallic
Zr (ωK = 17, 998 eV), Nb (ωK = 18, 986 eV), and Mo (ωK = 20, 008 eV)
by using the synchrotron X-ray radiation (Wheatstone Laboratory; London,
England) with a scattered photon energy resolution ∼25 eV. The diver-
gence of results between the relativistic Cromer-Liberman algorithm and
the experiment in the photon energy region ω = ωK ± 100 (eV) amounts
to 40%. According to these authors, their modification of the mentioned
model decreases the divergences to 10%. However, there are no physical and
mathematical arguments for the realized modification.



10 1 Process of the Anomalous Elastic X-Ray Photon Scattering

In the work by Henke et al (1982) [25] the first attempt is made in scientific
practice to generate the theoretical data bank for the functions f ′ and f ′′

and the photoabsorption coefficients in the incident photon energy region
ω ∈ [100; 2000] eV, including the energy regions of the deep shells ionization
thresholds on the basis of the modified form factor approximation (1.16) for
elements of the Mendeleev’s table with the nuclear charge Z = 1÷ 94. In the
work by Henke et al (1993) [26] the region ω ∈ [2; 30] keV is added to the
research results of [25], as well as the results by Windt (1991) [27] coming
out from the experimental studies of the function f ′ for the elements C, Si,
Mo, and W in the region ω ∈ [50; 1000] eV ,the results of the relativistic
Kissel-Pratt algorithm [28] for the function f ′ of the elements Al, Zn, and
Pb in the energy region ω ∈ [50; 20000] eV, and the scattering angles θ = 0◦,
30◦, 90◦. The results of the mentioned works demonstrate the nonlinear near-
threshold structure of the functions f ′ and f ′′. The calculations are made
without considering the many-particle effects and it seems to be methodically
necessary to compare them (and their confidence estimation) with the results
of the quantum many-particle theory.

In the context of the relativistic Kissel-Pratt algorithm Basavaraju et al
(1986) [29] researched theoretically for the first time the functions f ′, f ′′ and
the differential cross-sections of the anomalous elastic X-ray scattering for
the neutral atoms C, O, Ne, and their ions C1+, C2+, C4+, C5+, O1+, O6+,
O7+, Ne1+, Ne2+, Ne4+, Ne6+, Ne8+, Ne9+ in the energy region of the 1s-
and 2s-shells ionization thresholds. The nonlinear structure of the calculated
values is determined as well as the fact, that the giant resonances of the
differential scattering cross-section appear, if there are multicharged positive
ions in immediate proximity to the energies of the ionization thresholds. The
transitions to the intermediate states of the discrete spectrum scattering, the
finite values of the decay widths of the virtual core vacancies, and the many-
particle effects are not taken into consideration.

In the work by Zhou et al (1990) [30] in the context of the relativistic
Cromer-Liberman algorithm modified by the authors (additional calculation
of transitions to the intermediate states of the discrete spectrum scattering),
the functions f ′, f ′′ and the differential cross-sections of the anomalous elastic
X-ray forescattering are studied theoretically in the photon energy region
ω ∈ [1; 70] keV for the neutral atom Ne and its ions Ne2+, Ne4+, Ne6+, Ne7+.
The giant resonances of the differential scattering cross-section (transition
1s–2p) in the energy region of the ion 1s-shells ionization thresholds, where
the oscillator strengths are vastly superior to the same for the 1s–3p resonance
in the neutral Ne are investigated. The results of this work for the atom Ne
and its ion Ne6+ are supplemented in the work by Zhou et al (1992) [31].
In both the works the finite values of the decay widths of the virtual core
vacancies and the many-particle effects are not taken into consideration.

In the work by Barkyoumb et al (1990) [32] the extended far fine structure
(EXAFS: Edge extended X-ray-Absorption Fine Structure) of theK-spectrum
of the metallic copper absorption (Cu : ωK = 8, 980 eV) was measured
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using the synchrotron X-ray radiation (Synchrotron Radiation Laboratory;
Brookhaven, USA) in the scattered photon energy region 8,600 eV ≤ ω ≤
9,600 eV with a high resolution (∼2 eV). In the context of the modified form
factor approximation (1.16), the authors show for the first time in scientific
practice, that the EXAFS-oscillations of the photoabsorption spectrum lead
to the corresponding oscillations of the f ′-function, determining in this way its
extended fine structure in the photon energy region ωK ≤ ω ≤ ωK +200 (eV).
Similar result is achieved in the work by Barkyoumb and Smith (1990) [33] for
the f ′-function of the metallic aluminum (Al : ωK = 1, 560 eV) in the photon
energy region 1,450 eV ≤ ω ≤ 1,800 eV.

Using the synchrotron radiation (HASYLAB; Hamburg, Germany) in the
work by Stanglmeier et al (1992) [34] the f ′-function is measured in the ion-
ization K-threshold area of Ni and Cu, the ionization L1,23-thresholds area
of Ta and Au, and the ionization L3-threshold area of Pt. The experimental
data are compared with the calculation results in the Cromer-Liebermann
model, and wide disagreements are discovered between theory and experi-
ment in the neighborhood of the ionization threshold energies (±300 eV). The
authors associated this first, with the defects of the theoretical scheme they
used. In the work by Kissel et al (1995) [9] a good fit of the independent par-
ticle relativistic approximation (dropping of the relaxation processes of the
atomic core electron shell in the field of virtual deep vacancies) to the results
of the experiment [34] is achieved. However, both experimental and theoreti-
cal data in immediate proximity (±50 eV) to the ionization thresholds of the
researched elements are lacking.

The intensive development of methods of synchrotron X-ray radiation pro-
duction and use has been accompanied in the past 15 years by publication
of a great number of both experimental and theoretical studies of scattering
amplitude Q from (1.2) first of all for the solid-state bodies. In order to finish
the brief review of this section we shall restrict ourselves to the examination
of the works [35, 36]. In the work [35] a radically new step is taken in the
development of the theory of the anomalous elastic X-ray radiation scatter-
ing by a solid body after the works by Barkyoumb et al (1990) [32, 33]. The
work [36] gives an example of a typical experimental study, where the DAFS-
spectroscopy (DAFS: Diffraction Anomalous Fine Structure) method that is
widely developed in recent years is realized.

Using the Green function method in the work by Vedrinskii et al (1992)
[35] the theoretical model of the real and imaginary parts of the probability
amplitude of the anomalous elastic X-ray radiation scattering by a crystal in
the energy region of the central atom deep shell ionization threshold, account-
ing for the near fine structure of its photoabsorption spectrum (XANES:
X-ray Absorption Near Edge Structure) is developed in the context of the
second-order quantum mechanical perturbation theory for the first time in
the scientific practice. The theory is reduced to calculating the functions ReA
and ImA of the anomalous dispersive part (1.5) of elastic scattering probabil-
ity amplitude for the monocrystal BN in the scattered photon energy region
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170 eV ≤ ω ≤ 230 eV, including the ionization threshold energy of atom B
1 s-shell (ωK = 188 eV). The nonzero values of the atomic vacancies decay
widths and the potential of the virtual appearing deep 1s-shell vacancy is
taken into consideration.

Using the synchrotron X-ray radiation (Synchrotron Radiation Labora-
tory; Brookhaven, USA) in the work by Frenkel et al (1999) [36] the XANES-
and EXAFS-structures of the functions f ′

� f ′′ of the crystal Fe3O4 are
measured in the scattered photon energy region ωK ≤ ω ≤ ωK + 600 (eV),
in the ionization threshold energy region of the atom Fe 1s-shell (ωK =
7,112 eV). The structural information is extracted from the experimental
results using the DAFS-spectroscopy methods.

1.2.2 Differential Cross-Section Study of the Process

In the work by Kissel et al (1980) [37] the relativistic Kissel-Pratt algorithm is
represented. It is developed by the authors and extensively used presently for
describing the differential cross-section of the elastic photon scattering process
by an atom in theory. This algorithm is based on the following main principles:
the probability amplitude of the elastic scattering is examined accurate to the
second order of the

�

S-matrix formalism of the quantum electrodynamics; the
electron wave functions in the atom (Dirac spinors) are taken as solutions of
the Dirac equation with the central self-consistent Dirac-Hartree-Fock-Slater
potential (the exchangeable part of the potential is localized according to
Slater [39]). The authors underscore that such a model does not account for
the vacuum polarization effect of the quantum electrodynamics [7] at high
photon energies (gamma range) and the many-particle effects at low photon
energies (X-ray range). The calculation results of absolute values and differ-
ential cross-section forms of the elastic photon scattering by the atoms Al,
Zn, Ag, Sn, Sm, Ta, Au, Hg, and Pb are represented. The conclusion is made
that in the photon energy range from 100 eV till 100keV, including the X-ray
range, the effects of the Thomson nuclear scattering, the Rayleigh nucleon
scattering, and the Delbrück scattering [40] on virtual electron-positron pairs
created by Coulomb nuclear field are unessential and the dominating type of
elastic scattering process is the Rayleigh photon scattering by atom electrons.
Outside the anomalous dispersing areas of the elastic scattering, the calcu-
lation results fit well with the results of the experiment by Schumacher and
Stoffregen (1977) [41] for the atoms Zn, Sn, Ta, Au, and Pb. The authors
show by the example of the Pb atom, that as the scattered photon energy
approaches the 1s-shell ionization threshold energy (ωK = 88, 006 eV), the
differential cross-section of the elastic scattering becomes singular and their
model turns out to be inapplicable.

The first and still only one published experiment dealing with measur-
ing the absolute values and forms of the anomalous elastic X-ray radiation
scattering process as a function of the photon energy and scattering angle in
the immediate energy region of the 1s-shell ionization threshold with a high
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scattered photon energy resolution (∝ 25 eV) is realized using the metallic
molybdenum (Mo: ωK = 20, 008 eV) in the work by Hribar et al (1984) [42].
The differential cross-section for scattering is measured in the photon energy
region ωK −200(eV) ≤ ω ≤ ωK +300 (eV). The characteristic monochromatic
X-ray radiation is used. The nonlinear structure of the differential cross-
section is determined in the energy region of the ionization K−threshold.
The authors do not interpret the results of the experiment.

Using the synchrotron linearly polarized X-ray radiation (DESY; Hamburg,
Germany) in the photon energy region 21,2 keV ≤ ω ≤ 43, 7 keV in the work
by Smend et al (1987) [43] the absolute values and forms of the differential
cross-section for the elastic angle scattering θ = 60◦, 90◦, 120◦, 180◦ of the
X-ray photon by atoms Kr (ωK = 14,327 eV) and Xe (ωK = 34, 561 eV) in
the gas phase are measured for the first time in scientific practice. Outside
the anomalous dispersing areas of the scattering the calculation results of the
authors (the relativistic Kissel-Pratt algorithm) fit well (the difference does
not exceed 5÷10 %) overall with the experimental ones. The measurement and
calculation in the immediate energy region of the ionization K−thresholds of
the atoms Kr and Xe are not performed.

In the work by Kane et al (1987) [44] the differential cross-sections are
measured for elastic 125◦ angle scattering of the X-ray photon with a fixed
energy 88,03keV by the metallic Al (ωK = 1,560 eV), Au (ωK = 80,729 eV),
Pb (ωK = 88, 006 eV), and Bi (ωK = 90, 527 eV). In the context of the rela-
tivistic Kissel-Pratt algorithm, we can find that the difference between theory
and experiment amounts to 40% in the anomalous dispersing elastic scatter-
ing region in case of Pb (ω − ωK ≈ 24 eV). In case of Bi (ω − ωK ≈ 2, 5 keV)
it amounts to 50%. It is the authors’ opinion that the mentioned divergences
can be concerned with the fact that the relativistic Kissel-Pratt algorithm
uses the one-electron basis of the wave functions taking no account of atom
self-consistent field distortion, when the deep virtual vacancy appears, and
ignores the finite values of the 1s-vacancy decay width. In the more recent
work by Basavaraju et al (1995) [45] the authors performed measurements
and calculations and came to the conclusion that the divergence between the-
ory and experiment decreases to 20% in the case of Pb and to 24% in the
case of Bi.

In the work by Bhattacharyya et al (1988) [46] the differential cross-
sections are measured for elastic angle scattering (θ = 8, 9◦; 12, 6◦; 14, 2◦;
17, 7◦) of the X-ray photon with a fixed energy 59,54keV by the metallic
Cu (ωK = 8, 980 eV), Ag (ωK = 25, 520 eV), Sn (ωK = 29,204 eV), Ta
(ωK = 67, 419 eV), Au (ωK = 80, 729 eV), and Pb (ωK = 88, 006 eV). Wide
disagreements are detected between experimental results and theory (rel-
ativistic Kissel-Pratt algorithm) at the narrow scattering angles (≤12,6◦).
These disagreements amount to 45% in case of Ta atom. The authors do not
determine the causes of the mentioned disagreements.

Casnati et al (1990) [47] measured the differential cross-sections for elastic
angle scattering (θ = 60◦; 90◦; 120◦) of the X-ray photon with a fixed energy



14 1 Process of the Anomalous Elastic X-Ray Photon Scattering

59,54 keV by the metallic Al, V (ωK = 5,463 eV), Mo, Cd (ωK = 26, 711 eV),
Sn, and Pb. They did not detect any noticeable discrepancy with the results of
the relativistic Kissel-Pratt algorithm at such marked distance of the scattered
photon energy from the energies of the deep 1s-shell ionization thresholds of
the researched elements.

In the work by Shahi et al (1998) [48] the differential cross-sections are
measured for elastic angle scattering (θ = 121◦) of the X-ray photon with a
fixed energy 59,54 keV by the elements with nuclear charge 1 2 ≤ Z ≤ 92: 42
elements from Mg (ωK = 1, 305 eV) till U (ωK = 115, 606 eV ). The difference
between experimental findings and the results of the relativistic Kissel-Pratt
algorithm amounted to 12% for the element Er (ωK = 57, 486 eV) with the K-
ionization threshold energy being nearest to the incident photon energy. The
authors establish a fact of divergences with the modified form factor approx-
imation and the relativistic Kissel-Pratt algorithm for all analyzed elements,
but they do not determine the causes of the mentioned divergences.

Elyaseery et al (1998) [49] measured the differential cross-sections for elas-
tic angle scattering (θ = 145◦; 154◦; 165◦) of the X-ray photon with fixed
energies 13,95; 17,75; 26,36 and 59,54 keV for the elements Cu, Zn, Zr, Nb, Mo,
Ag, Cd, In, Sn, Ta, and W. The authors did not manage to measure the scat-
tering cross-sections at the photon energy 17,75 keV for Zr (ωK = 17,998 eV)
and 26,36keV for Cd (ωK = 26,711 eV). The results of the experiments are
compared with the modified relativistic form factor approximation algorithm,
the description of the anomalous dispersing scores. The divergence between
theory and experiment amounted to 10%. The authors did not determine the
causes of the mentioned divergences.

In the work by Rao et al (1999) [50] the differential cross-section are
measured for elastic angle scattering θ = 90◦ of the X-ray photon with
fixed energies 5,41; 6,40; 6,93; 7,47 and 8,04keV for heavy elements with
nuclear charge 46 ≤ Z ≤ 82: Pd, Ag, Cd, In, Sn, Sb, Pt, Au, and Pb.
The divergence between the experimental findings and the results of the
relativistic Kissel-Pratt algorithm amounted in particular to 12% in the
ionization L−,M−thresholds area of the elements Pt (ω(L1) = 13,880 eV;
ω(M1) = 3,296 eV), Au (ω(L1) = 14,353 eV; ω(M1) = 3,425 eV), and Pb
(ω(L1) = 15,861 eV; ω(M1) = 3,851 eV). The authors did not analyze the
divergence causes.

Kumar et al (2001) [51] performed precision measurements of the dif-
ferential cross-sections for elastic angle scattering θ = 125◦ of the photon
with energy 88,03 keV for 17 elements with nuclear charge 30 ≤ Z ≤ 92.
The divergence between the experimental findings and the results of the
relativistic Kissel-Pratt algorithm amounts to 10%. The experimental find-
ings are 28 times smaller for Pb (ωK = 88, 006 eV) and 31% greater for Bi
(ωK = 90, 527 eV) in comparison with the form factor approximation modified
for accounting of anomalous dispersing scores. The authors did not determine
the divergence causes.
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Mandal et al (2002) [52] measured the differential cross-sections for elas-
tic angle scattering θ = 90◦ of the X-ray photon with a fixed energy
22,1 keV for 20 elements with nuclear charge 22 ≤ Z ≤ 82. The experi-
mental findings are compared with the calculation results in the modified
form factor approximation and in the relativistic Kissel-Pratt algorithm. The
divergences are determined in particular with the last-mentioned: the exper-
imental findings are 16% greater for Nb (ωK = 18, 986 eV), 29% greater for
Mo (ωK = 20, 008 eV), and 8% greater for Pb (ωK = 88, 006 eV). Following
the conclusions of the work [53] (the measurements are performed and the
results are analyzed in theory for the differential cross-section of the elastic
and Compton X-ray photon scattering with the energy 11 ÷ 22 keV by light
atoms 2He and 10Ne), the authors connected the divergences with the fact
that the mentioned theoretical models do not consider first of all the nonlo-
cality effects of the exchange self-consistent atomic potential and the electron
correlation, and in that way they require a more precise definition.

1.2.3 Study of the Atomic form Factor Structure

When describing the differential cross-section of the elastic photon scattering
by an atom, its form factor (the structure function) plays a large role. It is a
value (1.3) that determines the probability amplitude of the contact (without
virtual reorganisation of the many-electron system) photon-atom interaction.

For the development of the many-particle quantum theory of the process
in relation to form factor it is necessary to solve two main problems. The
first problem lies in the necessity to study the influence of the many-particle
effects in the ground state of the atom on the analytic structure, value, and
configuration of its form factor. As the ground state of most of the elements
in the Mendeleev’s table is not spherically symmetric, the second problem is
the need to study the influence of the nonsphericity effects of the open-shell
atoms on the analytic structure, value, and configuration of their form factors.
However , the degree to which the traditionally used procedure is validated to
substitute the form factor of the examined atom [26,37] or its ion [29, 31] for
their analogs of the spherically symmetric (term 1S0) approximation (1.4) or
its relativistic variant (1.10) needs to be ascertained.

The influence of electron correlations in the ground state of the atom on
the analytic structure, value, and configuration of its form factor is studied
for light elements for the first time theoretically in the work by Kim and
Inokuti (1968) [54] (atom He) and in the works by Brown (1970) [55] (atom
He), (1970) [56] (atoms Li and Be), (1972) [57] (atom C), (1974) [58] (atom
B and ion C1+). The results of these works led to the conclusion that at least
for the examined elements the accounting for correlation effects changes the
absolute values of the one-electron approximation form factors not more than
1 ÷ 2%, when describing the wave function of the atomic ground state. The
role of correlation effects in the X-ray energy region of the atomic deep shell
ionization thresholds is not investigated.
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The theoretical studies of the generic analytic structure of the open-shell
ground-state atom form factor are absent in published works. In Chapter 2 of
our treatise, we pursue the pioneering studies in this field.

There is no experimental study of the spectral characteristics of the anoma-
lous elastic X-ray photon scattering by a molecule in the gas-phase. However,
the results of numerous investigations of the X-ray photon-molecule absorp-
tion resonance and near-edge structure spectra let us suppose the inevitable
existence of complex resonance structure of its differential cross-section for
anomalous elastic scattering. This structure is determined first through for-
mation of the virtual resonance photoabsorption states in the energy regions
of the ionization thresholds of deep molecular orbitals.

This supposition is confirmed in the work by Gel’mukhanov and Ăgren
(1997) [59]. The nonrelativistic quantum theory of the resonance elastic X-
ray photon scattering by a free molecule, first published in scientific literature,
is presented by the authors in this work. The theory is developed in the
context of the quantum mechanical perturbation theory (Kramers-Heisenberg-
Waller formula) for the anomalous dispersing items of the process probability
amplitude. The form factor part of the scattering amplitude is taken, when
κ = 0, as the nonrelativistic limit of the expression (1.10), where ρ(r)− is
now the function of the electron density distribution in the molecule. The
calculation of the f ′−, f ′′−functions and the differential cross-sections for
the anomalous elastic scattering is performed for the linear-polarized X-ray
photon taking into consideration the finite values of the deep vacancies decay
widths in the energy region of the 1s-shell ionization threshold of carbon
(ωK = 284, 20 eV) and oxygen (ωK = 543, 10 eV) atoms in the CO molecule.
The many-particle and orientation effect are not examined.

1.3 Statement of the Study Problems

Thus, the following situation has been formed in the problem solving of the
development of the many-particle quantum theory of the anomalous elastic
X-ray photon scattering by free atoms, an ion, and a molecule, before the
present work of the authors appears:

1. The measurements of the real and imaginary part of the process probabil-
ity amplitude in the energy region of the deep 1 s-, 2s-, 2p-shell ionization
thresholds for a number of atoms of the crystalline solid lattice show
a complicated near and extended structure of the functions f ′ and f ′′.
The attempts to describe in theory the results of the experiments within
the bounds of the existing and above mentioned atomic models lead to
20 ÷ 40% disagreement among the absolute values of the functions f ′ and
f ′′ in theory and experiment. The causes of the disagreement are not
determined. Nevertheless, exceeding the limits of the atomic models for
extracting information about structure in the solid body experiments, as
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well as the information reliability are inevitably determined by knowledge
of the atomic constituent of the spectral characteristics measured in the
process.

The atomic models represented in the review surely cannot separate in
theory the contribution of the solid-state effects to the order of the men-
tioned disagreements between theory and practice. Finally, as the energy
of the incident upon the crystal X-ray photon approaches the energy
region of the deep shell ionization thresholds of the lattice atoms, it is
necessary to exceed the limits of the one-electron approximation (one-
configuration Hartree-Fock approximation) in order to take into consid-
eration the wide hierarchy of the many-particle effects when describing the
atomic constituent in theory.

2. The measurement results of the absolute values and forms of the differen-
tial process cross-sections for a number of atoms in the normal scattering
regions agree well with the theoretical ones. In the energy region of the deep
1s-shell ionization thresholds, we can discover the wide disagreement (up
to ∼ 50%) between theory and experiment. The causes of the disagreement
are not determined.

3. The differential process cross-section for an atom in immediate proximity to
the energy of its deep 1s-shell ionization threshold as the energy function of
the elastic scattered X-ray photon is measured for the metallic molybdenum
[42]. The results of the experiment are not construed. Similar experiment
needs to be used as a test for the many-particle quantum theory of the
differential elastic scattering cross-section developing in this treatise.

4. The calculations of the absolute values and forms are performed, and the
nonlinearity of the probability amplitude and differential process cross-
sections is determined for a number of free atoms and atomic ions in the
regions adjacent to the anomalous dispersing region. There is no theoret-
ical study of the immediate anomalous dispersing regions of the elastic
scattering for atoms. For atomic ions, the fact is established that the giant
resonance of the elastic scattering differential cross-section appears in the
energy region of the deep 1s−shell ionization threshold. However the abso-
lute intensity values of the scattering resonance and the many-particle
effects are not examined.

5. The many-particle effect of the nonzero decay width of the virtual deep
atom vacancy and atomic ion is very important for the resonance structure
formation of the anomalous elastic scattering differential cross-section;but
its role is not studied in theory. Moreover, for both the quantum theory
of the photoabsorption process and the quantum theory of the anomalous
elastic X-ray photon scattering by an atom we cannot accept the problem,
that deals with describing and accounting of the many-particle effect of the
post-collision interaction as a quantum interference of the radial and angle
restructuring effects of the photoelectron wave function and its electro-
static interaction with Auger-electron in Auger-decay state of the virtual
deep vacancy as being solved. This problem requires a precision theoretical
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investigation. There is a need to make such investigation mainly for light
atoms with the nuclear charge Z ≤ 20, where life span of the deep virtual
vacancies is generally [60,61] determined through the auto ionization decay
channels of Auger type.

6. The generic analytical form factor structure of the open-shell atom is not
determined in the ground state. The results are: (a) how the nonsphericity
effect of the atom influences the theoretical absolute values and forms of
its form factor and the differential cross-sections of the anomalous elastic
X-ray photon scattering by it is not examined; (b) there is no theoretical
study, to find whether if substitution of the form factor of any given atom
for its spherically symmetrical analog, as is traditionally used in scientific
literature is justified.

7. The influence of the electron correlation in the atom ground state on the
value of the spherically symmetrical form factor of the one-electron approx-
imation for the light atoms (He, Li, Be, B and C) is analyzed in theory.
The energies of the deep shell ionization thresholds for these atoms are
much lower than the X-ray lower range limit (∼350 eV). There is no theo-
retical study for the atoms having at least one of the deep shell ionization
thresholds in the X-ray energy range of the scattered photon.

8. The nonrelativistic variant of the quantum theory of elastic X-ray photon
scattering by a free nonoriented in space molecule [59] is developed. The
theory is not summarized in order to account for (a) orientation and many-
particle effects and (b) analytical structure of the free molecule form factor
beyond the scope of its presentation through the electron inventory in a
molecule.

The study of the problems mentioned above and, as a result, the development
of the many-particle quantum theory and analysis methods for the absolute
values and forms of the differential cross-section of the anomalous elastic X-ray
photon scattering by a free atom, atomic ion, and molecule in the gas-phase
form the contents of the present treatise.



2

Many-Particle Effects at Anomalous Elastic
X-Ray Photon Scattering by an Atom

and an Atomic Ion

As noted in Chap. 1, the modern theoretical models for describing the elastic
X-ray photon scattering by an atom led to wide disagreements with the exper-
iment in the energy region of the deep shell ionization thresholds, ignoring the
wide hierarchy of the many-particle effects.

In this chapter, we develop the nonrelativistic many-particle quantum the-
ory of the X-ray photon scattering process in the energy region of the atom
and the atomic ion deep shell ionization thresholds.

In Part 2.1, the analytic structure of the process cross-section is repre-
sented. The analytic form factor structure of the open-shell atom in the ground
state and the calculation data for a number of such atoms are given in Part 2.6.
In Part 2.2, the hierarchy of the many-particle effects is analyzed. In Part 2.3,
the process amplitude is physically interpreted and the question regarding
photon scattering phase and number is examined. In Part 2.4, the computa-
tional algorithm for the process cross-section is represented. In Part 2.5, the
correlation structure of the atom form factor in the X-ray scattering region is
studied. In Part 2.7, the calculation data of the scattering cross-sections for
a number of atoms are represented in the context of the theory developed in
Parts 2.1–2.6. In Part 2.8, the theory is adapted to the cross-section construc-
tion of the anomalous elastic X-ray photon scattering by an atomic ion. In
Part 2.9, the elastic scattering indicatrix in the anomalous dispersing X-ray
photon energy region is studied. At the end of the chapter the findings are
represented.

2.1 Analytic Structure of the Differential Process
Cross-Section

We shall construct the differential cross-section (1.1) in four stages. At the
first stage, we shall construct the process amplitude. The construction is real-
ized in the context of the multiconfiguration wave functions conception of
scattering states. In order to expound the developing theory, we reproduce
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the results of the quantum scattering theory [62–64]. At the second stage,
we shall concretize the scattering amplitude structure as it is presented in
the secondary quantization of the electromagnetic field. At the third stage,
we shall examine the analytic form factor structure of the closed-shell atom
in the ground state. Finally, at the fourth stage, we shall note the resultant
expression for the differential process cross-section.

2.1.1 Construction of the Process Probability Amplitude

Let us find the probability of the elastic photon scattering by an atom. For
this purpose, we shall ascertain the solution of the Schrödinger equation:

i
∂

∂t
ψ = Ĥ(t)ψ,

�

H(t) =
�

Ha +
�

V (t), (2.1)

for the weight factors am of the wave functions of the orthonormal basic states
in the complete wave function in the form of

ψ = |jt〉 +
∑

m

am |mt〉;

|jt〉 = |Ot〉 · �
a

+

f |Of 〉 , t ∈ [0;∞) . (2.2)

In (2.1) the Hamiltonian of the atom

Ĥa = −
N∑

n=1

(
Δn/2 + r−1

n Z
)

+
N∑

k>n

|rk − rn|−1

and the atom-external electromagnetic field interaction operator are deter-
mined (see Part 1.1.1)

�

V (t) =
�

H1(t) +
�

H2(t); (2.3)

�

H1(t) = − (1/c)
N∑

i=1

(pi · Ai); Ai ≡ A (ri; t) ;

�

H2(t) =
(
1/2c2

) N∑

i=1

(Ai)
2
.

In (2.2), the summation is over all basic states of an atom + radiation quantum
system, including the radiative vacancy decay channels in the |mt〉 − state
structure. The symbols are also introduced: |Ot〉 − is the wave function of
the atom ground state (Fermi vacuum); |Of 〉 − is the wave function of the
photon vacuum; â+

f − is the photon creation operator.
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Meeting the conditions

i
∂

∂t
|Ot〉 = Ĥa |Ot〉 ; (2.4)

i
∂

∂t
|mt〉 = Ĥ (0) |mt〉 , (2.5)

we extract from (2.1) and (2.2) the differential equation for the weight factors:

i
d

dt
am = 〈mt| V̂ (t) |jt〉 +

∑

n

an 〈mt| V̂ (t) − V̂ (o) |nt〉 . (2.6)

Let us solve it rough, setting aside the sum and including the perturbance
(ω is the absorbed photon energy)

V̂ (t) → V̂ λ(t) = V̂ (0) exp (−iωt+ λt) , λ > o.

Let us factor the wave functions of the basic states in time:

|Ot,mt〉 → |O,m〉 exp (−iEo,mt) .

Then passing to the limit λ→ 0, we obtain the well-known Fermi golden rule
for the transition probability of an atom + radiation quantum system from
the state |j〉 to the state |m〉:

Wmj =
d

dt
|am|2 = 2π |Qmj|2 δ (Em − E0 − ω) . (2.7)

The expression (2.7) holds the amplitude structure of the photon scattering
by an atom:

Qmj =< m
∣∣∣V̂ (0)

∣∣∣ j >; |j〉 = |jt=0〉 . (2.8)

Let us define concretely the amplitude structure (2.8). For this purpose, we
shall find the wave function of the state |m〉 in the form of

|m〉 = |j〉 + S
n>f

βnj |n〉 , S
n>f

≡
∞∑

n>f

∞∫

0

dn , (2.9)

where the fulfillment of the conditions is required

Ĥ(0) |m〉 = Em |m〉 ; (2.10)
Ĥa |j〉 = E0 |j〉 ; (2.11)
Ĥ∗ |n〉 = En |n〉 ; Ĥ∗ = Ĥa + Ĥ1(0). (2.12)

However we did not require the fulfillment of the conditions (2.11) and (2.12)
on the Hamiltonian of an atom + radiation quantum system. As a result,
the states |j〉 and |n〉 turn out to be virtual (nonobservable) in the elastic
scattering process.
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In order to find the weight factors βnj in (2.9) we have to determine the
expression for the energy of the |n〉 − state. We shall find the wave function
of this state in the form of:

|n〉 = |n0〉 + S
α,b
ηb

αn

∣∣αb
〉

+ S
R,l
ql
Rn

∣∣Rl
〉
. (2.13)

The following is here determined: the wave functions of the excitation/
ionization |n0〉 − states of the atom nl -shell, of the

∣∣αb
〉 − states of the

Auger (b-channel) decay of the nl -vacancy with the weight factors ηb
αn, and

of the
∣∣Rl
〉

=
∣∣Rl

a

〉 · â+
fl |Of 〉− states of the radiative (l-channel) decay of the

nl -vacancy with the weight factors ql
Rn,
∣∣Rl

a

〉− is the atom part of the wave
function, â+

fl − is the creation operator of the photon with a f -frequency on
the l-channel decay.

We shall neglect the intrachannel confounding in (2.13). It will lead to
diagonal energy matrices on the Ĥ∗− operator

〈no|
�

H
∗
|mo〉 = E(0)

n δnm;
〈
αb
∣∣ �

H
∗
|βc〉 = Eb

αδαβδbc; (2.14)
〈
Rl
∣∣ �

H
∗ ∣∣Lk

〉
= El

RδRLδlk.

Taking into consideration the known operator equation lim
ε→0

(x± iε)−1 =

P (1/x)∓iπδ (x), for the energy of the |n〉 – state we obtain from (2.12)–(2.14)
the expression:

En = ReEn − iΓn/2; (2.15)

ReEn = E(0)
n + P

{
Sα,β

∣∣hb
α

∣∣2

En − Eb
α

+ SR,l

∣∣ξl
R

∣∣2

En − El
R

}
;

hb
α = 〈no|

�

H
∗ ∣∣αb
〉
; ξl

R = 〈no|
�

H
∗ ∣∣Rl
〉
;

Γn = ΓA
n + ΓR

n ;

ΓA
n = 2π

∑

b

∣∣hb
α

∣∣2, En = Eb
α; ΓR

n = 2π
∑

l

∣∣ξl
R

∣∣2, En = El
R.

The Auger (A) and radiative (R) components of the total decay width of the
|n0〉 − state vacancy are here determined.

Returning to the wave function (2.9) and taking into consideration (2.10)–
(2.12) and (2.15) for βnj we obtain the equation:

βnj (Ej − ReEn + iΓn/2) ∼= Vnj , (2.16)

Vnj = 〈n0| V̂ (0) |j〉 .
Considering (2.9) and (2.16), we have the desired analytic expression for the
scattering amplitude (2.8) in the form of:
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Q = 〈j| V̂ (0) |j〉 + S
n>f

VjnVnj

Ej − ReEn + iΓn/2
. (2.17)

The formula (2.17) reconstitutes the known result of the quantum scattering
theory [62–64].

Let us pass on to the second stage of the construction. We shall define
concretely the amplitude (2.17) in the context of the secondary quantization
of the electromagnetic field (1.7).

We shall take into consideration the structure of the perturbation operator
(2.3) and of the expression for the matrix elements of the photon creation and
annihilation operators in the context of the occupation nkη−numbers [12]:

〈nkη − 1| â−kη |nkη〉 =
√

2πc2nkη/ωV ,

〈nkη + 1| â+
kη |nkη〉 =

√
2πc2 (nkη + 1) /ωV .

Then, to the dipole approximation for the Fourier components of the field
operator (1.7), we obtain:

Q = (e1 · e2)
{
F (θ;ω) + a S

n>f
ωnσ (ωn) (C1n − iπC2n)

}
; (2.18)

(e1 · e2) F (θ;ω) =
〈
j
∣∣∣Ĥ2 (O)

∣∣∣ j
〉

;

C1n =
Δωn

(Δωn)2 + γ2
n

− 1
ω + ωn

;

C2n = (γn/π)

[
1

(Δωn)2 + γ2
n

+
1

(ω + ωn)2

]
;

ωn = ReEn − Eo; Δωn = ω − ωn;

γn = Γn/2; a =
(
4π2cro

)−1
.

In (2.18), we considered the connection of the length and speed forms for the
radiative transition operator [65] and the expression for the cross-section of
the phototransition [10] (length form) from the |m〉-state with the energy Em

to the |n〉-state with the energy En:

σ (ωnm) = (4/3)π2αa2
0

1
qm

ωnm

∣∣∣∣∣〈n|
N∑

i=1

ri |m〉
∣∣∣∣∣

2

;

ωnm = En − Em; (2.19)

where qm is the statistical weight of the |m〉-state.
In our study, we shall mainly examine the elastic X-ray photon scattering

by an atom (an ion) with the 1S0 -term of the ground state. In this situation,
we shall find the probability amplitude of the single excitation/ionization of
the atom n1l1 − shell. We shall keep in mind the structure of the matrix
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element of the radiation transition Q(k)-operator to the approximation of the
LS -bonding [66]:

〈
n1l

N1
1 , LSJ

∥∥∥Q(k)
∥∥∥n1l

N1−1
1 n2l2L

′
1S

′
1, L

′S′J ′
〉

= (−1)l2+L′
1−S−J′√

N1[L,L′, J, J ′]δSS′
(
lN1
1 LS

∥∥∥lN1−1
1 (L′

1S
′
1) l1
)
·

{
l1 L Ll

1

L′ l2 k

}{
L J S
J ′ L2 k

} 〈
n1l1

∥∥∥Q(k)
∥∥∥n2l2

〉
.

Then, if we define concretely the values

k = 1;N1 = 4l1 + 2;LSJ → 1S0; L′S′J ′ → 1P1; L′
1S

′
1 → 2l1;(

l4l1+2
1 00

∥∥∥l4l1+1
1

(
2l1
)
l1

)
= 1;

〈
n1l1

∥∥∥Q(1)
∥∥∥n2l2

〉
= (−1)l1+g

√
lmax {l11l2} 〈n1l1 |r̂|n2l2〉 ;

{
0 0 0
1 1 1

}
=

1√
3
;
{
l1
1

0
l2

l1
1

}
=

1√
3 (2l1 + 1)

· (−1)l1+l2+1 ;

we obtain for the desired amplitude
〈
n1l

4l1+2
1 , 1S0

∥∥∥Q(1)
∥∥∥n1l

4l1+1
1 n2l2,

1P1

〉
= (−1)l1+g

√
2lmax 〈n1l1 |r̂|n2l2〉 .

The following is denoted here: [x] ≡ 2x + 1, lmax = max (l1, l2) , 2g is the
even-numbered condition and {l11l2}− is the triad ones.

The expression for the cross-section n1l1 → n2l2 of the phototransition
(2.19) assumes the form:

σ (ω) = (4/3)π2αa2
0ω (Ry) lmax |〈n1l1 |r̂|n2l2〉|2 .

For the general nl -shell of the atom, the use of the length or speed forms
of the radiation transition operator should be followed by taking into con-
sideration the correlation influence (if it is appreciable) of the random phase
approximation with an exchange (see Part 2.2.3) for the theoretical scattering
amplitudes (2.18).

2.1.2 Form Factor of the Closed-Shell Atom

To complete the statement we shall reproduce the result (1.4) as the third
stage for the construction of the elastic scattering differential cross-section by
using the methods of the irreducible tensor operator theory.

Let us write the exponent expansion in (1.3) by the C
(t)
p -spherical

functions (t ≥ 0, p = -t, . . ., t):

exp [i (q · r)] =
∑

t,p

(−1)p it (2t+ 1) jt (qr)C(t)
−p (q)C(t)

p (r) . (2.20)
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We consider the Wigner–Eckart theorem for the matrix element T
(t)
p =

C
(t)
p (r) jt (qr) of the operator:

〈γ2J2M2|T (t)
p |γ1J1M1〉 = ϕ

(
J2t J1

−M2pM1

)
〈γ2J2|

∣∣∣T (t)
∣∣∣ |γ1J1〉 ; (2.21)

φ = (−1)J2−M2 .

We also consider that C
(0)
0 = 1 and for the scalar (t = 0) operator

〈γ2J2| |j0 (qr)| |γ1J1〉 →
∑
nl

Nnl 〈nl| j0 (qr) |nl〉, is realized, where the following

is determined: |nl〉 is the radial part of the wave function of the nl -electron
and Nnl is the occupation number of the atom nl -shell.

Then, from (1.3) we obtain (1.4), where sin (kr) /kr = j0 (kr).
In (2.20), the jt (qr)-spherical t-order Bessel function of the first kind is

determined. In (2.21), the γ -set of quantum numbers, that characterizes along
with JM the atomic state.

We realize the fourth stage of the construction and write the differential
cross-section in the form we shall use in the following.

Inserting the expression (2.18) into (1.1), we obtain finally:

dσ

dΩ
= r20 (e1 · e2)

2

⎧
⎪⎨

⎪⎩

⎛

⎝F (θ;ω) + η
∑

nl≤f

Rnl

⎞

⎠
2

+

⎛

⎝η
∑

nl≤f

Inl

⎞

⎠
2
⎫
⎪⎬

⎪⎭
; (2.22)

Rnl =
∑

m>f

Anl,mW
nl
Rm +

∑

k=1

∞∫

0

dDk
nlW

nl
Rk; (2.23)

Inl =
∑

m>f

ωmAnl,mW
nl
mI + γnl

∑

k=1

∞∫

0

dDk
nlW

nl
Ik ; (2.24)

Wnl
Rm = ωmεm

(
1 + ε2m

)−1 − γnl (1 + ω/ωm)−1 ;

Wnl
Rk = Δωk[(Δωk)2 + γ2

nl]
−1 − (ω + ωk)−1 ;

Wnl
mI =

(
1 + ε2m

)−1
+ γ2

nl (ω + ωm)−2 ;

Wnl
lk = [(Δωk)2 + γ2

nl]
−1 + (ω + ωk)−2 ;

dDk
nl = (ωk/π)σk

nl

k∏

i=1

dεi;

εm = Δωm/γnl; Δωk = ω − ωk; γnl = Γnl/2;
ωk = ReE (ε1....εk) − Eo; η = 1, 4327 · 10−2

(
eV −1 ×Mb−1

)
.

For the transitions to the discontinuous spectrum, the valueAnl,m = σnl (ωm) /
πγnl is here determined and the ionization k-repetition factor is denoted too.
E (ε1....εk) − is the energy of state, σk

nl ≡ σnl (ε1....εk) − is the cross-section
of the atom k-divisible photoionization.
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In (2.22) the expression in the braces is dimensionless, but the dimension
of the elastic scattering differential cross-section is r20/sr.: r

2
0 = 7, 941 ·

10−26cm2; dΩ = sin θdθdϕ, θ ∈ [0;π], ϕ ∈ [0; 2π]. θ−, ϕ− are angles of the
spherical coordinate system. They are interpreted from the physical stand-
point as the scattering angle and the angle between the axle OX and the
scattering plane (the plane going through the wave vectors of the incident
and scattering photon).

2.2 Anomalous Dispersion Kramers–Heisenberg–Waller
Terms: Qantum Interference of the Many-Particle Effects

The interference of the scattering amplitudes does not lead the total scattering
cross-section to be represented as a sum of partial (atom shell) cross-section.
So, theoretically describing the cross-section of the elastic photon scattering
by an atom, we face the quantum interference of all the many-particle effects
hierarchy forming the probability amplitude of the process.

In this part of our treatise, we present the physical state and the methods
for the theoretical description of the mentioned many-particle effects hierarchy
when scattering the X-ray photon in the energy region of the atom deep shell
ionization thresholds.

2.2.1 Electron Shells Radial Rearrangement Effect

It is found that the main many-particle effect having influence on the theo-
retical photon absorption cross-section in the energy region of the atom deep
shell ionization threshold, is the effect of the radial relaxation of the atomic
core electron shells in the field of the deep vacancy [67].

The appearance of the deep nl -vacancy mainly leads the outer shells of the
atomic core to react (decreasing distinctly their midradius) to the destruction
of the nl4l+2−”screen” between them and the atomic core. The shifting of
the electron density of the atomic core shells to the atomic centre is accom-
panied by the additional delocalization of the photoelectron wave function.
The result of such delocalization is the photoionization probability amplitude
contraction.

Adding the effect of the radial relaxation presupposes two problems to be
solved – the computation of the one-electron wave functions of the initial and
final phototransition states and the matrix elements of the physical quantities
operators.

So, the problem algorithm can be divided into two steps. Let us describe
them step by step.

Computation of the one-particle states wave functions. We shall
write down the ψ− wave function of the N -electron atom in the form of the
antisymmetrized product of the one-electron φα− wave functions:
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ψ = (N !)−1/2 det ‖φα‖ . (2.25)

Then solving the problem of minimizing the energy functional of the atomic
state we arrive at the Hartree-Fock equation [10]:

(
ĥ− 2Qnl − εnl

)
|nl〉 = Xnl + Lnl, (2.26)

for |nl〉 ≡ Pnl (r) radial part of the φα− wave function (Y is an angular and χ
is a spin parts)

φmlms

nls =
1
r
Y l

ml
(θ;ϕ)χs

ms
(σ) |nl〉 , (2.27)

〈nl |n′l′〉 = δnn′δll′ . (2.28)

In (2.26) εnl – is the energy of the nl -electron and the functionals are
determined:

Lnl =
2
N

∑

n′ �=n

λnl,n′l |n′l〉, (2.29)

rQnl =
1
N

∑

k

Φ(k)
nl − Z, (2.30)

Φk
nl =

∑

n′l′
(1 + δnl,n′l′)f

(k)
ll′ Yn′l′,n′l′ (2.31)

rXnl =
2
N

∑

k

∑

n′l′ �=nl

g
(k)
ll′ Y

(k)
nl,n′l′ |n′l′〉, (2.32)

and the differential as well

ĥ = d2/dr2 − l (l+ 1) /r2. (2.33)

The functionals (2.30) and (2.32) accordingly define the straight (local) and
exchange (nonlocal) parts of the electrostatic potential for the nl -electron.

The nondiagonal Lagrange multiplier λ in (2.29) ensures the fulfillment of
the condition (2.28).

In (2.30)–(2.32) the radial integral

Y
(k)
nl,n′l′ =

⎛

⎝
r∫

0

[r1/r]k +

∞∫

r

[r/r1]k+1

⎞

⎠Pnl (r1)Pn′l′ (r1) dr1

is indicated, Z is the nuclear charge, f (k)
ll′ −, g(k)

ll′ − are the angular coefficients.
The (2.26) equation is solved numerically, since the analytical solution

by modern mathematical methods is impossible, if the number of electrons
in the atom N > 2. The main difficulty in getting an analytical solution is
determined by the nonlocality of the exchange part (3.32) of the Hartree–Fock
potential.
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In order to consider the correlation effects, the atom wave function can be
built in the form of the linear combination of the wave function (2.25) with
the wave functions of the excitation/ionization states of the atom:

ΦLS = S
n
αLS

n ψLS
n . (2.34)

The solution of the variational problem with the wave function (2.34) leads
to the Hartree–Fock–Jucys multiconfiguration equation [68] for the nl -orbital.
The solution of this equation is an exceptionally intricate problem. One of the
ways to simplify it is by the method of the configuration mixing. In this situa-
tion the one-electron wave functions are determined not by the solution of the
Hartree–Fock–Jucys equation, but by the solution of the equations (2.26) for
each configuration from the

{
ψLS

n

}− set in (2.34). The simplified version of
this method – the approximation of the “frozen core” – is the most-used. In
this approximation, the orbitals obtained for the wave function of some fixed
ψLS

n – configuration are “frozen” and used for building of all basic set in (2.34).
In our work we shall turn to the multiconfiguration approximation in the

context of the method of configuration mixing (Chaps. 2– 4).
The variation principle as applied to the study of the upper state ψn faces

the challenge of the condition agreement (2.28) and the orthogonality claim

〈ψn| ψm〉 = 0 (2.35)

of the state ψn to the state ψm of the same symmetry if Em < En, where
En,m is the energy states ψn,m.

The rejection of the condition (2.28) for the orbitals of one symmetry from
different configurations leads to using the nonorthogonal orbitals. In this case,
the Hartree–Fock–Jucys equations are appreciably complicated. To keep the
orthogonality ψn to ψm without turning to the solution of the Hartree–Fock–
Jucys equations we can use the Gram–Schmidt orthogonalization algorithm
[69,70]. According to this algorithm, if we want to meet the condition (2.35),
we have to change from the radial orbitals P (n)

kl to the radial orbitals:

P̃
(n)
kl = αnm

kk′

(
P

(n)
kl −

〈
P

(n)
kl

∣∣∣ P (m)
k′l

〉
P

(m)
k′l

)
;

αnm
kk′ =

[
1 −
〈
P

(n)
kl

∣∣∣ P (m)
k′l

〉2
]−1/2

; (2.36)

that fulfils the orthogonality condition
〈
P̃

(n)
kl

∣∣∣ P (m)
k′l

〉
= 0.

Calculation of the transition probability amplitudes. Using the
nonorthogonal orbitals makes the analytical structure of the radiation tran-
sition lose simplicity. Such structure was determined for the first time in the
work [71] and is of the form of (length form):

〈ψa|
N∑

i=1

r̂i |ψb〉 = (DaaDbb)
−1/2

N∑

i,j=1

〈ai| r̂ |bj〉Dab (aibj) . (2.37)
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In (2.37) the wave functions of the transition states are defined through the
one-electron orbitals:

|ψa (x1, x2, ...xN )〉 = (DaaN !)−1/2 det ‖ai (xj)‖ ;

|ψb (x1, x2, ...xN )〉 = (DaaN !)−1/2 det ‖bi (xj)‖ ;

where Dab = det ‖〈ai| bj〉‖ is the determinant of the orbital overlap integral
and Dab (aibj)− is the algebraic complement to the element 〈ai| bj〉 in the
determinant Dab.

In the scheme of the genealogical coefficients [65, 66], when constructing
the wave functions of the transition states, the result (2.37) was confirmed in
the works [72,73]. In accordance with the formula (2.37) the authors of these
works obtained for the transition amplitude (length form):

Rn1l1n2l2 = S
∑

ni

∑

nj

(−1)2−δn1ni
−δn2nj C12

ij Qj; (2.38)

C12
ij = 〈nil1| r̂ |njl2〉 〈n1l1| nil1〉 〈nj l2| n2l2〉

〈nil1| nil1〉 〈nj l2| nj l2〉 ; (2.39)

Qj = 1 −
∑

ni �=nj ,l

〈nj l| nil〉 〈nil| nj l〉
〈nil| nil〉 〈nj l| nj l〉 ; (2.40)

S =
∏

i

〈nili| nili〉qi ;

〈n1l|n2l〉 =

∞∫

0

Pn1l(r)Pn2l(r)dr; 〈n1l1|r̂|n2l2〉 =

∞∫

0

Pn1l1(r)Pn2l2(r)rdr;

δαβ – is the Kronecker–Weierstrass symbol; qi – is the smaller of numbers of
shell occupation of transition configurations.

Both the nonrelativistic and the relativistic calculations of the matrix ele-
ments of the physical quantities operators using the methods of the nonorthog-
onal orbitals theory demonstrate (see Part 2.7.1) that the value (2.40) can be
saved out to a high degree of precision as:

Qj → 1. (2.41)

2.2.2 Multiple Atomic Excitation/Ionization Effect

In the energy region of the atom deep shell ionization threshold, the effect of
the radial relaxation results in the decrease of the photoabsorption intensity
value, calculated on the basis of wave functions of the unreconstructed atomic
core electrons. The losing of intensity in such a way can be first reconstructed
by considering the process of multiple excitation/ionization of the atomic
ground state. We shall restrict ourselves in our work to the analysis of the
excitation/ionization process of κ = 2 multiplicity. The reason is as follows.
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In the works [74–79], the near-edge photoabsorption fine structure spec-
tra were experimentally ascertained first for the atoms 10Ne [74] (KL23-
structure), 11Na [75, 76] (KM1-structure), 18Ar [77] (KM23-structure) and
36Kr [78,79] (KN23-structure). In the works [80–82], the results of these exper-

iments ([80] 10Ne, [80, 81] 11Na, [80] 18Ar, [82] 36Kr) were first interpreted in
theory and it was demonstrated that the processes of κ = 2 multiplicity con-
tribute significantly to the intensity of the multiple excitation/ionization. The
scientific works that followed (see, e.g., [83, 84]) confirmed this result.

In order to describe in theory the cross-section of the double excita-
tion/ionization of the atomic ground state that belongs to the scattering
cross-section structure (2.22), we have to solve two problems −1) to con-
struct the wave functions of the double excitation/ionization states and 2) to
calculate the photoabsorption cross-section.

We shall describe this algorithm for the radiation transitions to the states
with a deep 1s-vacancy and a vacancy in the valence n1l1-shell 1 s−1n1l

−1
1

n2l2n3l3 (n1 = f ; n2,3 > f). These transitions will exactly play a leading part
when describing the near-edge fine structure of the scattering cross-sections
of the atoms studied in our work.

Constructing the wave functions of the final states. It consists
of two stages. At the first stage the radial orbitals of the core and excited
electrons are found out by solving the Hartree–Fock (2.26) for each configu-
ration from the set {1 s−1n1l

−1
1 n2l2n3l3}. At the second stage the base wave

functions are constructed:

|αLS〉 =
∣∣1s−1n1l

−1
1 (L0S0)n2l2n3l3

(
L̄S̄
)
;LS
〉
; (2.42)

where as α the totality of the intermediate moments and configurations is
denoted. Finally, by solving the defining equation

∑

α′
aαα′
{
〈α′LS| Ŵ |αLS〉 − (E − Ek) δαα′

}
= 0; (2.43)

the energies of steady-state conditions and their wave functions are found out

|ELS〉 =
∑

α

aαE |αLS〉 . (2.44)

In (2.43) Ŵ = Ĥc − V̂ (K) , Ĥc−, V̂ (K)− are operators of the Coulomb
interaction and Hartree–Fock potential of K configuration.

Let us define the described algorithm concretely for the atoms studied in
our work. The wave function (2.44) for the closed-shell atoms in the ground
state is obtained in the form:

ψ
(
1P1

)
=
∑

n1,2>f

∑

LS

∑

l1,2

aLS
12

∣∣1s−1fp−1
(
2S+1P

)
n1l1n2l2 (LS) ; 1P1

〉
. (2.45)

In case of an argon atom the region of absorption K-spectrum in the pho-
ton energy ω ≤ 3228 eV is described through the wave function (2.45).
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If ω ≥ 3237 eV, the fine structure spectrum is mainly determined through
radiation transition to the final state with a wave function of the form:

Ψ
(
1P1

)
=
∑

n1,2>f

⎧
⎨

⎩
∑

LS

aLS
12

∣∣ALS
12

〉
+
∑

n>f

bn12
∣∣BLS

12

〉
⎫
⎬

⎭; (2.46)

∣∣ALS
12

〉
=
∣∣1s−13s−1

(
1,3S
)
n1sn2p (LS) ; 1P1

〉
;

∣∣BLS
12

〉
=
∣∣1s−13p−2

(
1D
)
nd[2S]n1sn2p; 1P1

〉
.

The configuration mixing in (2.46) describes the so-called dynamic dipole po-
larization effect [85] of the valence 3p-shell through the excitations 3p2−3snd.

In (2.45), for a neon atom (for atoms 18Ar and 36Kr the main quantum
numbers of the valence fp-shell and the excited s-, p- electrons are increased
by one and two correspondingly) the excitations are taken into consideration:

n1l1n2l2 =

⎧
⎨

⎩

3p3p
3p4p
3p5p

⎫
⎬

⎭ ,
{

3s3d
3s4d

}
,

{
3d3d
3d4d

}
,

{
3s3s
3s4s

}
. (2.47)

In the intermediate and short-wave region of the near-edge scattering fine
structure K-spectra the radiation transitions to the constant spectrum state
are considered as well:

(a) excitation/ionization

1 sfp− npεp
(
10Ne, 18Ar, 36Kr, 54Xe

)
;

1 sfs− npεs, nsεp
(
11Na

)
; (2.48)

(b) double ionization

1 sfp− εpε′p
(
10Ne, 18Ar, 36Kr, 54Xe

)
. (2.49)

The states (2.46) are submerged in the constant spectrum of the states (2.48)
and (2.49), but their interference is not taken into consideration in our work.

The calculation of the wave functions of photoabsorption final states for
a natrium atom differs from that for neon, argon, and krypton atoms. The
difference is connected with the fact that the main contribution to the pho-
toexcitation intensity in the region of the near-edge scattering fine structure
K-spectrum of the natrium atom is made by excitations of the peripheral
3s-electron. Then, while calculating we can restrict ourselves to considering
the configurations with three 1 s-, n1l1-, n2l2-incomplete shells:

ψ
(
2P3/2

)
=
∑

n1,2>f

∑

LS

aLS
12

∣∣1s−1n1l1 (LS)n2l2; 2P3/2

〉
; (2.50)

l1l2 = {sp} , {pd} .
In the defining (2.43), the state energy of the K-configuration is calculated
from the formula:
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EK → ELS
12 = E12 −

〈
Ŵ12

〉
+WLS

12 − Ẽ. (2.51)

E12 is the state energy of the K-configuration which is averaged over the
term values of (n1l1n2l2)-pairs of excited electrons;

〈
Ŵ12

〉
is the averaged

over the terms interaction energy of the excited electron pairs; WLS
12 is the

energy of electron-electron interaction depending on term; Ẽ− is the energy
of the arbitrarily fixed state, where the energy count starts (2.51).

Then, the energies of the photon absorbed by an atom are calculated from
the formula:

ω → ωLS
12 = ELS

12 −
(
E(0) − Ẽ

)
; (2.52)

where E(0) is the energy of the atomic ground state.
Account for the correlation effects leads to the decrease of electron–electron

interaction and as a result to the “compression” on the energy scale of the
photoabsorption theoretical spectrum. For neon, argon, and krypton atoms
such decrease is equivalent to the conversion of values ELS

12 from (2.52) and
nondiagonal WLS

αα′ ≡
〈
α′LS

∣∣∣Ŵ
∣∣∣αLS

〉
− elements in (2.43):

ELS
12 → m−1ELS

12 +
(

1 −m

m

)(
E12 − Ẽ

)
; WLS

αα′ → m−1WLS
αα′ ; (2.53)

where m = 1, 5; 1,4 and 1,3 for neon, argon, and krypton correspondingly.
For the natrium atom the decrease of the electron–electron interaction is

not deduced from the formula (2.53), but calculated [87] by methods of the
correlation Feynman diagrams [88].

Photoabsorption cross-section. The probability amplitude of the pho-
totransition to the states (2.44)

AELS =
∑

α

aαE 〈αLS|Q(1) |0〉 (2.54)

as a matrix element of the operator

Q(1) = e

N∑

i=1

ri (2.55)

determines the intensity of the double photoexcitation of the atom

IELS (ω) = 2σELS (ω) /πΓn1l1 ;

σELS (ω) =
4
3
π2αa2

0ω |AELS |2 ; (2.56)

where Γn1l1− is the total width of the n1l1− vacancy decay.
In case of excitation/ionization the value σELS (ω) in (2.56) coincides

with the process cross-section, and in case of double ionization it deter-
mines the integrand in the expression for the cross-section of the atom double
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photoionization:

σELS (ω) =

ω−IP12∫

0

σELS (ω; ε) dε; (2.57)

where IP12− is the energy of the atom double ionization threshold.
The angular and radial structures of the matrix elements of the tran-

sition operator (2.55) in the amplitude (2.54) are obtained in the works
[80,82]. If we consider the radial relaxation effect and the approximation of the
LS -connection, these structures have in the dipole approximation the form:

1. for 1 snp→ npn′p transitions in the atoms 10Ne, 18Ar, 36Kr and 54Xe:
〈
n1l

4l1+1
1 n2l

4l2+1
2 (LS)nl2n′l2 (L′S) , 1P1

∥∥∥Q(1)
∥∥∥O, 1S0

〉

= (−1)l1+l2+S
N

√
lmax[L,L′, S] (1 + δnn′)−1 ·

{
l2
1
L′

l1

l2
L

}
·

·
[(
nl2

∥∥∥d̂
∥∥∥n1l1

)
〈n′l2 | n2l2〉 + (−1)L′+S

(
n′l2
∥∥∥d̂
∥∥∥n1l1

)
〈nl2 | n2l2〉

]
;

2. for 1 sns→ npn′s transitions in the atom 18Ar:
〈
n1l

4l1+1
1 n2l

4l1+1
1 (LS)nl2n′l1 (L′S) , 1P1

∥∥∥Q(1)
∥∥∥O, 1S0

〉

= (−1)l1+l2+S
N
√
lmax[L,L′, S] ·

{
l1
1
L′

l1

l2
L

}
·

·
[(
nl2

∥∥∥d̂
∥∥∥n1l1

)
〈n′l1 | n2l1〉 + (−1)L+S

(
nl2

∥∥∥d̂
∥∥∥n2l1

)
〈n′l1 | n1l1〉

]
;

3. for 1 s3s→ npn′s transitions in the atom 11Na:
〈
n1l

4l1+1
1 n′l1 (LS)nl2, 2L̄

∥∥∥Q(1)
∥∥∥n1l

4l1+2
1 n2l1,

2l1

〉

= (−1)l1+l2+L
N

√
1
2
lmax[L, L̄, S] ·

{
l1
L̄
l2
l1

1
L

}
·
(
nl2

∥∥∥d̂
∥∥∥n1l1

)

〈n′l1 | n2l1〉 +N
√

2lmax[l1]δSOδLO

(
nl2

∥∥∥d̂
∥∥∥n2l1

)
〈n′l1 | n1l1〉 .

The following values are here determined: N is the product of the overlap
integrals of the wave functions of the electrons that are not involved in the
transition;

∣∣O, 1S0

〉
is the wave function of the atom ground state; [x] ≡

2x + 1; lmax = max (l1, l2) the matrix element of the transition one-electron
operator (the length form)

(
n2l2

∥∥∥d̂
∥∥∥n1l1

)
= 〈n2l2 |r̂|n1l1〉 −

∑

n1∠n∠f

〈n2l2 | nl2〉 〈nl2 |r̂|n1l1〉
〈nl2 | nl2〉 .
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2.2.3 Correlation Effects of the Random Phase Approximation
with Exchange and Auger and Radiative Decay of the Deep
Vacancy

In the energy region of the atom deep shells ionization thresholds the autoion-
ization effects (without photon radiation) of two types play important roles:
the correlation effect of the random phase approximation with exchange
(RPAE) [67], the deep vacancy Auger decay effect [89], and the deep vacancy
radiative (with photon radiation) decay effect as well [90].

The RPAE correlations are determined through the electrostatic interac-
tion of the atom deep nl -shell excitation/ionization channel with the atom
core m (l ± 1)− shells ionization channels. At the same time, the RPAE
correlations keep the deep vacancy as the metastable state of the atom +
radiation quantum system. The observable state of this system is already
realized through the Auger and radiative decays of the deep shell.

As already mentioned in the introduction to Part 2.2, the RPAE corre-
lations and the effects of the deep shells Auger and radiative decays during
elastic photon scattering by an atom interfere at the virtual level.

The degree of this interference is determined by the vacancy position in
the atomic core. So, the Auger and radiative vacancy decay widths in the
outer shells do not exceed 10−6 eV. In this case, we can neglect the Auger
and radiative decay effects when constructing the transition amplitudes and
consider only the RPAE correlations. But if we have for example, atoms with
a nuclear charge Z ≥ 10, the strong spatial and energy apartness of the deep
1s-shell from the other shells of the atomic core permits neglect of the RPAE
correlations influence on the theoretical cross-section of the photon absorption
by the atomic 1s-shell.

The situation can be changed in a workmanlike manner if n = m. Precisely
this case is realized if we deal with the 2s-shell photoionization of the argon
atom [91, 92]. The spatial and energy nearness of the deep 2s- and 2p-shells
here make the RPAE correlations interfere distinctly with both 2s-vacancy
Auger and radiative decay effects and with the electron shells radial relaxation
effect in the field of the 2s-vacancy. This case is analyzed in Part 2.7 of our
treatise when we describe in theory the elastic X-ray photon scattering cross-
section in the energy region of the 2s-shell ionization threshold of the argon
atom.

The correlation effect of the random phase approximation with
exchange. The differential cross-section of the atom nl -shell photoionization
in the RPAE methods has the form [67] for example in case of the linear
polarization of the absorbed photon:

dσnl (ω)
dΩ

=
4 π2Nnl

c ω (2l + 1)

∑

l1,2

Dll1Dll2ψl1l2Fl1l2 (θ, φ); (2.58)
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ψl1l2 = il1−l2 exp[i (δl1 − δl2)]; l1,2 = l ± 1;

Fl1l2(θ, φ) =
∑

m

(
l1 1 l
−m 0 m

)(
l2 1 l
−m 0 m

)
Y l1

m (θ, φ)Y l2
m (θ, φ).

The ionization amplitude here is in accord with the integral equation:

Dll1 = dll1 +
1
3

(
S

α≤f,β>f
− S

α>f,β≤f

)
DαβU

αβ
ll1
E−1

αβ . (2.59)

In the expressions (2.58) and (2.59) the following values are defined: ω is
the absorbed photon energy; c is the velocity of light; Ω is the solid angle;
θ, ϕ are the angles of the spherical coordinate system; δl1 – is the elastic
scattering phase of the εl1-electron in the atomic core field; Nnl – is the
electron number in the absorbing shell; the matrix element of the radiative
transition one-electron operator (length form)

dll1 = ω[(2l+ 1) (2l1 + 1)]1/2 ·
(
l 1 l1
0 0 0

)
〈nl| r̂ |εl1〉 ;

the matrix element of the electron-electron interaction
�

V -operator (if j → l)

U iγ
jη = 2

(
ij
∥∥∥V̂l

∥∥∥ γη
)
− (2l+ 1)

∑

l′≥0

(−1)l+l′
{
li l lγ
lj l

′ lη

}(
ij
∥∥∥V̂l′

∥∥∥ γη
)

; (2.60)

the energy denominator

Eαβ = εα − εβ + ω + i (1 − 2nβ)Δ;
Δ → 0; nβ = {1, β ≤ f ; 0, β > f} .

The physical interpretation of the amplitude (2.59) in the Goldstone–
Hubbard–Feynman diagrams formalism is presented in the work [67] (see the
work [94] for the matrix element (2.60) too).

The deep vacancy Auger and radiative decay effects. The vacancy
lifetime in the atom deep nl -shell

τnl = �Γ−1
nl ; Γnl = ΓA

nl + ΓR
nl; (2.61)

is in inverse proportion to the total width of its Auger and radiative channels
decay

ΓA
nl = 2π

∑

i

∣∣∣
〈
nl−1
∣∣ Ĥ |Ai〉

∣∣∣
2

;

ΓR
nl = 2π

∑

j

∣∣∣
〈
nl−1
∣∣ P̂ |Ri〉

∣∣∣
2

. (2.62)
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In (2.62) the following is defined: P̂ =
N∑

k=1

p̂k− is the radiative transition

operator,
∣∣nl−1

〉− is the wave function of the state with an nl -vacancy, |Ai〉−
and |Rj〉− are the wave functions of the Auger and radiative nl -vacancy decay
states and the summation is over the decay channel number.

According to construction in Part 2.1, the value (2.61) determines the
non-zero imaginary part of the energy denominator of the elastic scattering
amplitude (2.17). In that way, from the mathematical standpoint the role of
the virtual deep vacancy Auger and radiative decay effects during the elastic
X-ray photon scattering by an atom consists in the fact that they remove
the singularities of the real (2.23) and imaginary (2.24) parts of the scatter-
ing probability amplitude during photon resonance (see Δωk = 0 in (2.22))
absorbing by an atom.

We constructed the theory of the elastic photon scattering by an atom in
Part 2.1 to the approximation when the following effects are ignored: (a) the
effects of the radial reconstruction of the photoelectron wave function when
transiting from the atom deep shell excitation/ionization state to the deep
vacancy Auger and radiative decay state; (b) the effects of the electrostatic
photoelectron-Auger-electron interaction. These effects are combined in scien-
tific literature under the common name of the post-collisional interaction
effect . Chapter 3 of our treatise is dedicated to the problem of theoretical
description of this effect and to argumentation of the approximation we made.

2.3 Physical Interpretation of the Process Probability
Amplitude

The scattering (2.17) amplitude structure constituents can be interpreted from
the physical standpoint as follows.

The probability amplitude
〈
j
∣∣∣V̂ (0)

∣∣∣ j〉 determines the form factor struc-
ture of the atom (1.3). The amplitude of such elastic scattering type can be
explained as the probability amplitude of the photon-atom contact interac-
tion (two photon lines converge to the Goldstone–Hubbard–Feynman dia-
gram vertex), that is described through the quadratic part regarding the
electromagnetic field operator

Ĥ2(0) =
(
1/2c2

) N∑

i=1

(Ai)
2; Ai → A (ri; 0) ;

of the complete Hamiltonian of the atom + radiation quantum system.
The probability amplitude

S
n>f

VjnVnj (Ej − ReEn + iΓn/2)−1 (2.63)
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describes the elastic photon scattering by an atom in its reorganizing on
the virtual level and determines the structure of the anomalous dispersion
Kramers–Heisenberg–Waller terms of the scattering overall amplitude. The
amplitude of such elastic scattering type can be interpreted as the probability
amplitude of formation and following disappearance of the endless set of the
atom + radiation quantum system excitation/ionization virtual states. This
amplitude is described through the linear part regarding the electromagnetic
field operator

Ĥ1 (0) = −1
c

N∑

i=1

(pi · Ai); Ai → A (ri; 0) ;

of the complete Hamiltonian of the atom + radiation quantum system.
In the energy region of the incident photon Ej → ReEn, the amplitude

(2.63) becomes the dominant part of the scattering overall amplitude. So, the
inner structure of the mentioned endless set determines the main features of
the anomalous elastic X-ray photon scattering by an atom.

2.3.1 Goldstone–Hubbard–Feynman Diagrams Formalism

Considering the endless set of the atom + radiation quantum system exci-
tation/radiation, virtual states presupposes the summation of the endless

functional series of the evolution
�

S-operator expansion [7, 12] in electromag-
netic interaction constant α = e2/�c = 1/137. In the modern stages of the
quantum electrodynamics development, the solution of such problem seems to
be impossible. But considering the many-particle effects in the elastic X-ray
photon scattering by an atom is meant to solve exactly this problem.

In the works [95–99] the following approximation to the solution of this
problem is formulated. If we continue to be in the context of the perturbation
theory for the scattering amplitude (2.17), we can consider the many-particle
effects in twostages. In the first stage we transit from the wave functions one-
electron basis of the atom ground states configuration to the basis that is
nonorthogontal to it. This basis is reconstructed in the field of one (or more)
vacancy (Parts 2.2.1, 2.2.2). In the second stage the configuration mixing
method is realized (Part 2.2.1). In this way, the summation of the mentioned
series is unnecessary, because the required transition amplitudes (and the
Goldstone–Hubbard–Feynman diagrams corresponding with them) appear by
themselves.

Actually, let us consider the values Vjn in (2.63) in the Goldstone–
Hubbard–Feynman diagrams formalism [100]. Then we obtain the diagram
representation in Fig. 2.1 for the anomalous dispersion part (2.63) of the scat-
tering amplitude (1.2). This representation shows all main topological types
of the many-particle correlations diagrams: (a) the F1 block describes the
interference of the RPAE correlations and the electron shells radial relaxation
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Fig. 2.1. The direct (1) and exchange (2) parts of the anomalous dispersion ampli-
tude of the photon scattering (2.17) by an atom in Goldstone–Hubbard–Feynman
diagrams representation [97]: ω is the scattering photon energy; F = F1+F2+F3+. . .;
line – the state is obtained in the configuration field of the atom ground state; dou-
ble line – the state is obtained in the i-vacancy field; the double arrows line – the
state is obtained in the i- and j-vacancy field. The F1,2,3 structures are explained
from the physical standpoint in the text. The time-sequential routine of the virtual
processes is from left to right. The points stand for the infinite diagrams series

effect in the i-vacancy field; (b) the F2 block describes the interference of the
radial relaxation effects and the vacuum correlations (excitation/ionization
of Fermi-vacuum before the photon absorbing by an atom); (c) the F3 block
describes the effects of the atom ground state multiple excitation/ionization
|0〉 + ω → i−1j−1k1k2.

Keep in mind that ignoring the photon exchange process (see the diagrams
block (2) in Fig. 2.1) in the f ′− real component of the scattering amplitude
(1.16) leads to appreciable errors in calculating the scattering cross-section
(2.22). So, the calculation for the neon atom [95,96] showed that the calcula-
tion error in the photon energy region 400÷800 eV (the energy of the 1s-shell
ionization threshold is I1s = 870, 10 eV) amounts to 40%. The magnitude of
calculation error does not exceed 1% in the case of f ′′− imaginary component.
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2.3.2 About the Scattered Photon Phase and Number

We shall finish our review of Part 2.3 with marking the problem of scattered
photons phase and number measurement.

Describing the process of the elastic photon scattering by an atom we can
come to a conclusion (in contrast to the classical description [101,102]), that it
is impossible to measure some physical quantities simultaneously. We describe
this fact as applied to the problem of the scattered photon phase and number
measurement.

In the work [103] (see also [104, 105]), for the variables {photon phase
is (ϕ); photon number (N)} the following equivocation correlations are first
determined:

ΔN · ΔC ≥ 1
2
〈S〉 ; (2.64)

ΔN · ΔS ≥ 1
2
〈C〉 . (2.65)

The hermitian operators of the cosine and sine of the photon phase and
number are here defined

�

C =
1
2

(
�

E− +
�

E+

)
=

�

C
+

;
�

S =
1
2

(
�

E− − �

E+

)
=

�

S
+

; (2.66)

�

E− =
(

�

N + 1
)−1/2

�
a;

�

E+ = �
a

+
(

�

N + 1
)−1/2

; (2.67)
�

N = �
a

+�
a; (2.68)

in the eigen wave functions (α, α′− are normalization factors)

|ψc〉 = α
∞∑

n=0

sin [(n+ 1)ϕ] |n〉; (2.69)

|ψs〉 = α′
∞∑

n=0

[ei(n+1)φ − e−i(n+1)(φ−π)] |n〉; (2.70)

|n〉 = (n!)−1/2
(

�
a

+
)n

|0〉 ; 〈n | n〉 = 1; (2.71)

〈ψc | ψ′
c〉 = 〈ψs | ψ′

s〉 = δ (φ− φ′) ;

with eigenvalues:

Ĉ |ψc〉 = cosϕ · |ψc〉 ; Ŝ |ψs〉 = sinϕ · |ψs〉 ; N̂ |n〉 = n |n〉 ;

â |n〉 = n1/2 |n− 1〉 ; â+ |n〉 = (n+ 1)1/2 |n+ 1〉 . (2.72)

However, the linear hermitian operator cannot be compared [105] with the
photon phase in the Hilbertian space. So, the elastic scattered photon phase
turns out to be physically nonobservable (immeasurable) and defines only
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the mathematical structure of the weighting factor of n-photon states in the
photon systems wave functions (2.69) and (2.70). In (2.64), (2.65) the following
is denoted: 〈C〉 , 〈S〉− are the matrix elements of the operators (2.66)–(2.68)
in the states (2.69) and (2.70); â+ (â)− is the photon birth (annihilation)
operator. In (2.71) and (2.72), |n〉− is the wave function of the n−photon
states of the Fock space and |0〉− is the wave function of the photon vacuum.

According to (2.64) and (2.65), the transition from the classical to the
quantum description is followed by the loss of the possibilityof measuring
simultaneously the quantities N and ϕ. Actually, if we try to measure for
example the scattered photon phase (ΔC → 0; ΔS → 0), we can lose all infor-
mation about the scattered photon number (ΔN → ∞). Let us state here
that the equivocation correlation in the form of ΔN · Δϕ ≥ 1/2 discussed
in early works (Dirac (1927) [106], Heitler (1956) [102]; see also the work by
Louis de Broglie (1986) [107]) turns out to be false, as is demonstrated in the
work [103].

2.4 Calculation Algorithm of the Process Differential
Cross-Section

Let us take a detailed look at the numerical and analytical aspects of the
calculation algorithm of the scattering differential cross-section (2.22).

2.4.1 Calculation of the Integral Amplitude Terms

The main structural constituent of the expressions (2.23) and (2.34) is the pho-
toabsorption σk

nl− cross-section (2.19) for each nl -shell of the studied atom.
The cross-section (2.19) is built on the wave functions of the transition states
obtained by computational solution of the Hartree–Fock equation (2.26). From
here on, for calculating the integral terms in (2.23) and (2.24) the following
is used:

(a) Lagrange second kind polynomial representation of the function σk
nl (x):

L(2)
n (x) = anx

2 + bnx+ cn (2.73)

on the partial interval x ∈ [x2n−1, x2n, x2n+1] of the final domain of
integration x ∈ [x1, x2N+1], n = 1, 2, . . .N, N is the polynomial number;

(b) asymptotic of the function σk
nl (x) on the infinite interval of integration

x ∈ [x2N+1,∞):

σk
nl (x) → c2x

−2 + c3x
−3 + c4x

−4. (2.74)

The constant coefficients are here out of the condition of “lacing” of the
function (2.74) with the polynomial (2.73) if n = N .



2.4 Calculation Algorithm of the Process Differential Cross-Section 41

2.4.2 Asymptotic Problem of the Partial Photoionization
Cross-Sections

The only analytical result obtained presently for the atomic photoionization
cross-section in the ultra relativistic limit – the result for a hydrogen atom –
leads to the logarithmic divergence of the real part (2.23) of the scattering
amplitude. Actually, the photoionization cross-section of the hydrogen-like
atom in the ultra relativistic limit ω >> me takes the form of [7]:

σ (ω) ∝ 2πZ5α4r20ω
−1; (2.75)

where Z is the atom nuclear charge, α is the fine structure constant. Then, if
we substitute (2.75) in (2.23) on the interval of the integration x ∈ [x2N+1,∞),
we obtain:

∞∫

x2N+1

x (ω − x) σnl (x)
(x− ω)2 + Γ2

nl/4
dx ∝ ln[(x− ω)2 + Γ2

nl/4]∞x2N+1
= ∞.

Let us remark that in the work [108] the analytical result is obtained for
asymptotic of the photoionization cross-section of the multielectron atom
nl-shell in the limit Inl << ω << me (Inl is the ionization threshold energy
of the studied atomic nl-shell):

σnl (ω) ∝ ω−η; η = 7/2 (l = 0) ; 9/2 (l �= 0) .

But in the ultra relativistic limit ω >> me, Inl we are interested in, the
issue of the analytical structure of the asymptotic of the multielectron atom
photoionization cross-section remains open.

In such a situation, the empirical choice of the asymptotic of the atomic
photoionization cross-section is unavoidable. This choice is mainly determined
by three circumstances: (a) the calculated and proved by experiment [109,110]
absolute values of the atomic photoionization cross-sections in the far post
threshold energies of the absorbed photon must be reproduced to a high degree
of precision (1 ÷ 3%); (b) the singularities of the scattering amplitude must
be absent; (c) the following analytical integration must be simple. The choice
of asymptotic in the form of (2.74) meets these conditions.

2.4.3 Calculation of the Double Photoionization Channels

If calculating the double photoionization channels in the expressions (2.23)
and (2.24), the double improper integral of the first kind appears. We shall
demonstrate that this integral can be transformed [96] to the singlefold inte-
gral of the expression containing the double photoionization cross-section
(2.57). Let us take a look at the integral of the form:

∫∫

D

dxdyΦ (x, y) =
∫∫

D′

dαdβ |I|Φ (α, β) (2.76)
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in the rectangular D : (x, y) ∈ [0;∞) and curvilinear D′ integration domain.
Let us transform the coordinates:

x (α, β) = α− β − a; y (α, β) = β; (2.77)

where a is one constant. According to (2.77) for the Jacobian of mapping we
obtain:

I = det ‖∂ (x, y) /∂ (α, β)‖ = 1.

Then, for the right member (2.76) we have an expression:

∫∫

D′

dαdβΦ (α, β) = lim
Δ→∞

⎛

⎝
n∫

a

m∫

0

+

n+Δ∫

n

Δ∫

m−Δ

⎞

⎠ dαdβΦ (α, β) ; (2.78)

where n = a + Δ,m = α − a. We consider that the external integral in the
addend of (2.78) goes to zero for the regular functions Φ (α, β) ∝ α−η with
η ≥ 2. Then, we obtain for (2.76):

∞∫

0

∞∫

0

dxdyΦ (x, y) =

∞∫

a

dα

α−a∫

0

d βΦ (α, β). (2.79)

Let us hold fix the variables of integration in (2.77):

α = IP12 + ε+ ε′; β = ε′; a = IP12. (2.80)

Then instead of (2.79) we obtain the desired singlefold integral of the double
photoionization cross-section (2.57). This cross-section appears in (2.79) in
the interior integration on the energy surface ε + ε′ = α − IP12. Remember
(Part 2.2.2) that in (2.80) ε−, ε′− are energies of the continuous spectrum
photoelectrons, IP12− is the energy of the atomic double ionization threshold.

2.5 Correlation Abnormalities of the Atomic Form
Factor

In this part of our treatise we investigate the role of the correlation effects
when describing in theory the atomic form factor. As a subject of inquiry we
chose the 10Ne atom.

2.5.1 Correlation Structure of the Atomic Form Factor

We determine the analytical structure of the atomic form factor with the
1S0− term of the ground state outside the one-configuration Hartree–Fock
approximation. We transform the form factor of the atom (1.4) to the form:
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F0 =

∞∫

0

q (r) j0 (kr) dr; (2.81)

q (r) =
∑

nl

NnlP
2
nl (r); k =

2ω
c

sin
(
θ

2

)
,

where q (r) is the function of the electronic charge radial distribution in the
atom.

In the work [111], the correlation structure of the ground state wave func-
tion of the 10Ne atom was analyzed. The modified ground state wave function
is obtained in the form of:

∣∣ψ
(
1S0

)〉
= α0

∣∣0; 1S0

〉
+
∣∣ψc

(
1S0

)〉
, (2.82)

∣∣ψc

(
1S0

)〉
=
∑

m≤f

∑

n1,2

∑

LS

β12
m (LS)

∣∣(m,LS)n1len2l
′
e;

1S0

〉
.

The summation here is made over the two-particle (m,LS)- excitation of
the atomic core shells into the states described by so-called natural orbitals
(index “e”) [10,71]; α0−, β12

m (LS)− are the weighing coefficients of the basis
states in the modified wave function structure and LS =1 S, 3P , 1D. After
substitution of (2.82) for (1.3) we derive the desired expression for the modified
form factor of 10Ne atom:

F = F0 +

∞∫

0

Δq (r) j0 (kr) dr; (2.83)

where Δq (r) is the change function of the electronic charge radial distribution
in the atom when allowing for the correlations.

We shall define concretely the basis states in (2.82):

(m,LS) → 2p4(LS), n1len2l
′
e → nl2e, l ≥ 0.

We consider the expression for the matrix element of the transition Q(k) –
operator [66]:

〈
n1l

N1
1 n2l

N2
2 γ1γ2LSJ

∥∥∥Q(k)
∥∥∥n1l

N1
1 n2l

N2
2 γ′1γ

′
2L

′S′J ′
〉

= (−1)L1+S+J′
δSS′
√

[L,L′, J, J ′]
{
L
J ′

J
L′
S
k

}

[
(−1)L2+L+L′

A
(k)
12 + (−1)L

′
2 A

(k)
21

]
;
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A
(k)
12 = δ (γ2, γ

′
2) δ (S1, S

′
1) [S1]−1/2

{
L1

L′
L
L′

1

L2

k

}
B

(k)
1 ;

B
(k)
1 =

(
lN1
1 γ1

∥∥uk
∥∥ lN1

1 γ′1
) (

n1l1

∥∥∥q(k)
∥∥∥n1l1

)
;

γ1 ≡ α1L1S1; [x] ≡ 2x+ 1;Q(k) =
N∑

i=1

q
(k)
i ; q(k)

i = C(k)jk (kri) .

We also consider that:
(
l
∥∥∥C(0)

∥∥∥ l′
)

= [l]1/2 · δ (l, l′) ;
(
nl
∥∥∥q(0)
∥∥∥nl
)

= [l]1/2 · 〈nl |j0|nl〉 ;
(
lNγ
∥∥u0
∥∥ lNγ′

)
= N [L, S]1/2[l]−1/2 · δ (γ, γ′) ;

{
0
0

0
0

0
0

}
= 1;

{
L
0

0
L
L
0

}
= [L]−1/2 .

Then, if k = 0, LSJ = L′S′J ′ → 1S0, L1S1 = L2S2, L
′
1S

′
1 = L′

2S
′
2, we derive

from (1.3) the analytical representation for the Δq (r)−function:

Δq (r) = 2
∑

n,LS

|βn (LS)|2 [P 2
nle (r) − P 2

2p (r)
]
.

Let us remark here that if the scattering angle is zero (forescattering), the
Bessel’s function j0 (kr) → 1 and the modified form factor of an atom coincide
with (2.81).

2.5.2 Calculation Results: 10Ne Atom

For characterizing the influence of the correlation effects on the theoretical
value of the form factor of the 10Ne atom we defined and examined numerically
the function of the correlation abnormalities:

Δ (%) =
(
F

F0
− 1
)
· 100 (%) . (2.84)

We calculated the F0 value in the wave functions of the atomic core electrons
that were obtained by solving the Hartree–Fock equations for the ground state
configuration of the neon atom 1s22s22p6

(
1S0

)
. The Δq (r) function is calcu-

lated in the work [111] in the natural orbitals with n ∈ [3, 11] and l ∈ [0, 10].
The natural orbitals of the basis states 1s22s22p4

(
3p2, 3d2

)
, contributing

significantly to (2.82), are represented in Table 2.1.
Comparing the midradius of the neon atom valence 2p-shell r2p = 0, 51 Å

with the midradiuses of the natural orbitals from Table 2.1 we can disclose the
following. The electron configurations lead to a small charge redistribution
from the interior of domain of the atomic ground state described in the one-
configuration Hartree–Fock approximation to its periphery [112]. As a result,
the function of the correlation abnormalities (2.84) becomes different from
zero and oscillates in the limit from −0.15% to + 0.15% (Fig. 2.2).
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Table 2.1. Weighting coefficients β12
m and midradiuses rnl of the natural orbitals of

the dominant basis states in the wave function (2.82)

nle −β12
m rnl, Å

1S 3P 1D 1S 3P 1D

3p 0,046 0,069 0,077 0,694 0,714 0,706
3d 0,044 0,062 0,049 0,550 0,563 0,558

Fig. 2.2. Dependence of the function of the correlation abnormalities (2.84) for the
neon atom on the energy of the elastic scattered X-ray photon (ω) if the scattering
angles are 90◦, 180◦

2.6 Form Factor of the Open-Shell Atom

The form factor of the atom with an arbitrary 2S+1LJ− term of the |LSJ〉
electron configuration of the ground state is defined in the following manner
(Part 1.1.1):

F = 〈LSJ |
N∑

i=1

exp{i (q · ri)} |LSJ〉. (2.85)

If we have a closed -shell atom in the ground state, the expression (2.85) takes
the form:

F0 =
∑

nl≤f

Nnl 〈nl| j0 |nl〉. (2.86)

As was mentioned in Chap. 1, the formula (2.86) or its relativistic general-
ization is traditionally extended to an arbitrary atom. If we can apply such
approximation it should be theoretically proved. But in published works there
are still no theoretical and experimental investigations dealing with the influ-
ence of the aspheric effects of the open-shell atom in the ground state on the
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form factor (2.86) magnitude. In this part of our treatise we study such influ-
ence for the first time, confining ourselves to the atoms with one open-shell
and the total ground-state momentum J = 0, 1/2, 3/2 [113].

2.6.1 Analytic Structure of the Form Factor

We shall determine the angular and radial structure of the expression (2.85)
for an arbitrary term of the atomic ground state.

Considering the quantum interference effect of the contact elastic photon
scattering amplitudes by the series (M = −J, . . ., J) of the atomic |γJM〉−
ground state, we can represent its form factor as (J1 = J2 = J):

F =
1

2J + 1

J1∑

M1=−J1

J2∑

M2=−J2

〈
γ1J1M1

∣∣∣∣∣

N∑

i=1

exp{i (q · ri)}
∣∣∣∣∣ γ2J2M2

〉
. (2.87)

In (2.87) we summed over theM2-projections of the J2-total momentum in the
final atomic state, averaged over theM1-projections of the J1-total momentum
in the initial atomic state, and indicated the γ− set of quantum numbers
characterizing the atomic state with the JM.

We shall expand the exponent in spherical functions according to (2.20),
use the Wigner–Eckart theorem (2.21) and consider that

(
l
∥∥C(2n+1)

∥∥ l
)

= 0
is realized if n = 0, 1, 2, . . . Then we obtain the desired analytic structure
from (2.87):

F = F0 +
1

2J + 1

∞∑

n=1

〈γJ |
∣∣∣Q(2n) ‖γJ〉 ψ(n)

J . (2.88)

In (2.88), the spherically symmetrical (n = 0) part of the atomic form factor
is distinguished and the following is defined:

(a) the contact transition operator

Q(2n) =
N∑

k=1

C(2n) (rk) j2n (qrk); (2.89)

forcing on the pair of the nonrecurring electron shells of the |γJ〉 − configura-
tion. If we have the odd number of the electron shells in the configuration, the
virtual electron shell with a zero occupation number and 1S0 term is added;

(b) angle function

ψ
(n)
J =

J∑

M1=−J

J∑

M2=−J

2n∑

p=−2n

R
(2n)
−p (q)

(
J 2n J

−M2 p M1

)
; (2.90)

R
(2n)
−p (q) = (−1)n (8n+ 2)1/2 Θ2n,−p (α) exp (−ipϕ) .
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In (2.90), α and ϕ are the spherical angles of the scattering vector q and
Θ2n,−p are the associated Legendre polynomials [65].

The matrix element in (2.88) in the approximation of the LS -bonding can
be calculated from the formula:
〈
n1l

N1
1 n2l

N2
2 T1T2;LSJ

∥∥∥Q(k)
∥∥∥n1l

N1
1 n2l

N2
2 T ′

1 T
′
2;LSJ

〉
=

= (−1)L1+L2+S+J [L, J ]
{
L J S
J L k

}(
A

(k)
12 +A

(k)
21

)
; (2.91)

A
(k)
12 = [S1]−1/2

{
L1 L L2

L L1 k

}
B

(k)
1 ;

B
(k)
1 = Dk (N1, l1, T1)

(
l1

∥∥∥C(k)
∥∥∥ l1
)
〈n1l1 |jk|n1l1〉 ;

Dk (N, l, T ) = N [L][S]−1/2
∑

T1

(−1)L1+L+l+k |GTT1 |2
{
l l k
L L L1

}
; (2.92)

Dk (4l+ 2 −N, l, T ) = (−1)k+1
Dk (N, l, T ) ; (2.93)

where GTT1− are the genealogical coefficients and T ≡ γLS, [x] ≡ 2x + 1, is
indicated.

The expression (2.91) is a consequence of the general result of the work
[66] for the matrix element of the transition operator (2.89).

2.6.2 Calculation Results: Atoms of 17Cl, 21Sc, 23V, 35Br,
39Y, 73Ta.

As a subject of inquiry we chose the atoms with one open shell and the
total momentum of the ground state J = 0, 1/2, 3/2. Three groups of terms
correspond with them: 3P0, 5D0, 7F0 group, 2S1/2, 2P1/2 group, and 4S3/2,
2P3/2, 2D3/2, 4F3/2 group.

For the first (J = 0) and the second (J = 1/2) group of terms there is no
sum in (2.88) and the expression (2.86) remains for the form factors of atoms.
For example for the 2S1/2− term J1 = J2 = 1/2 and from the condition
|J2 − J1| ≤ t ≤ J1 + J2 we obtain 0 ≤ t ≤ 1. Since

(
l
∥∥C(1)

∥∥ l
)

= 0, in the
expansion by the t-multipolarity for the form factor (2.87), only the item with
Wigner coefficient remains non-zero:

(
J2 0 J1

−M2 0 M1

)
= (−1)J2−M2 1√

2J1 + 1
δJ1J2δM1M2 . (2.94)

Considering (2.94) for (2.87), we have:

F = (2J1 + 1)−1/2

〈
γ2J2

∥∥∥∥∥

N∑

k=1

C(0) (rk) j0 (qrk)

∥∥∥∥∥ γ1J1

〉
. (2.95)
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After all, considering (2.91) if

J = 1/2, L = 0, S = 1/2, L1S1 = L′
1S

′
1 = (0, 0) ,

L2S2 = L′
2S

′
2 = (0, 1/2) ,{

0 1/2 1/2
1/2 0 0

}
= − 1√

2
,
(
l
∥∥∥C(0)

∥∥∥ l′
)

= (2l+ 1)1/2
δll′ ,

we obtain the expression (2.86) for the form factor.
For the third (J = 3/2) group of terms the sum in (2.88) contains one

(n = 1) item. In this case, we have for the function (2.90):

ψ
(1)
3/2 =

1√
5
f (θ) ; f (θ) = 1 + 2 cos θ; (2.96)

where θ is the scattering angle. From (2.92) and (2.93) it follows that
D2

(
1, d,2D

)
= − D2

(
5, p,2P

)
=
√

2. We took the values D2

(
3, p,4S

)
=0,

D2

(
3, d,4F

)
= − 2

√
6/5 from the work [66]. Finally, calculating the matrix

elements (2.91) we obtain for the form factors of atoms from the third group
of terms considering (2.96):

F
(
4S3/2

)
= F0;

F
(
2P3/2

)
= F0 − 1

2
f (θ) 〈np| j2 |np〉 ;

F
(
2D3/2

)
= F0 +

17
14
f (θ) 〈nd| j2 |nd〉 ;

F
(
4F3/2

)
= F0 − 6

35
f (θ) 〈nd| j2 |nd〉 ;

j2 (x) =
(

3
x3

− 1
x

)
sinx− 3

x2
cosx; x = qr; lim

x→0,∞
j2 (x) = 0.

To describethe atom aspheric effects we defined and investigated numerically
the asphericity function:

Δ(%) =
(
F

F0
− 1
)
· 100(%). (2.97)

We calculated the function (2.97) for the atoms (the open shell and the
ground state term are given in brackets) 17Cl

(
3p5;

2P3/2

)
, 21Sc

(
3d;

2D3/2

)
,

23V
(
3d3;

4
F 3/2
)
, 35Br

(
4p5;

2P3/2

)
, 39Y

(
4d;

2D3/2

)
and 73Ta

(
5d3;

4F3/2

)
, if

the energies of the scattered photon are ω = ω1s ± 0, 5 (keV). We took
the energy values of the atom 1s− shell ionization thresholds from the
work [10]: ω1s (keV) = 2, 83 (Cl); 4, 49 (Sc); 5, 47 (V ); 13, 48 (Br); 17, 04 (Y );
67, 42 (Ta). The calculation results by the example of atoms of 21Sc and 39Y
are represented in Fig. 2.3.

We formulate the received results for the atoms with the total momentum
of the ground state J = 3/2.
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Fig. 2.3. The asphericity function (2.97) for the atoms of 21Sc (filled circle, open
circle) and 39Y (filled inverted triangle�, open inverted triangle�). The black cir-
cle(triangle): ω = ω1s − 0, 5 (keV); the light circle(triangle): ω = ω1s + 0, 5 (keV).
ω is the scattered photon energy, θ is the scattering angle, ω1s is the energy of the
atom 1s-shell ionization threshold

1. The behavior of the aspericity function (2.97) on the interval of the scat-
tering angles [0◦; 180◦] has an oscillation character. The absolute value of
the function is situated in the limits from –2% to +3%.

2. If the nuclear charge of the atom increases, the oscillation number of the
function (2.97) increases too. At the same time, the values of its extreme
points are located on the interval of the scattering angles [0◦; 45◦].

The calculation results represented in Fig. 2.3 demonstrate that corrections
for atom asphericity in the energy region of the 1s− shell ionization threshold
(–2% ÷ +3%) seem to be the same values as corrections for the correlation
effects (10Ne : −0, 15% ÷ +0, 15%; [54–58]: 1% ÷ 2%). As a consequence,
the approximation (2.86) traditionally used in scientific literature turns out
to be quite acceptable if describing in theory the experimental results with
measurements errors ∼ ±5%.

2.7 Differential Cross-Sections of the Anomalous Elastic
X-Ray Photon Scattering by an Atom

In this part of our treatise, we set forth the results of the first theoretical stud-
ies dealing with the role of many-particle effects in the elastic X-ray photon
scattering by an atom and an atomic ion in the energy region of their deep
shells ionization thresholds [95–99,112–118].
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2.7.1 Closed-Shell Atoms in the Ground State: 10Ne, 18Ar,
36Kr, 54Xe

We shall examine the calculation results for the cross-sections of the anoma-
lous elastic X-ray photon scattering by a closed-shell atom in the ground state
in the energy region of its deep 1s (Ne,Ar,Kr,Xe)-, 2s (Ar)- and 2p (Xe)- shells
ionization thresholds.

Atom of 10Ne: scattering in the 1s-shell ionization threshold
region. The matrix elements of the radiation transition operator and the
photoabsorption cross-section (2.19) are obtained in two approximations.

Approximation 1: without considering the radial relaxation effect in the 1s-
vacancy field. The wave function of the np-photoelectron is derived by solving
the Hartree-Fock equation for the configuration 1s102s

2
02p

6
0np
(
1P1

)
. The wave

functions of the atomic core electrons are deduced by solving the Hartree–
Fock equations for the 1s202s

2
02p

6
0

(
1S0

)− configuration of the atomic ground
state. In this approximation, the matrix elements of the radiation transition
operator contain only the first items in the sums (2.38) with S = 1 and the
probabilities of the multiple excitation/ionization of the atomic ground state
are equal to zero.

Approximation 2: considering the radial relaxation effect in the
1s-vacancy field. The wave function of the np-photoelectron is derived by
solving the Hartree–Fock equation for the configuration 1s12s22p6np

(
1P1

)
.

The wave functions of the atomic core electrons are deduced by solving
the Hartree–Fock equations for the configuration 1s12s22p6

(
2S1/2

)
. By this

means, we managed to consider the atomic core relaxation in the 1s-vacancy
field. In this case, the matrix elements of the radiation transition operator
take the form (2.38) with S < 1. For example, considering the approximation
(2.41) and the orthogonality of the wave function of the 1s1np state to the
wave function of the 2s1np state of the same symmetry, the expression (2.38)
takes the form (length form) in case of the 1s-np transition:

R1snp = S1s

(
〈1s0 |r̂|np〉 − 〈1s0 |r̂| 2p〉 · 〈2p0| np〉

〈2p0| 2p〉
)

;

S1s = 〈1s0| 1s〉1 〈2s0| 2s〉2 〈2p0| 2p〉6 .

We calculated the radiation transition amplitudes in the length form, since
the RPAE correlations change the values of amplitudes with a 1s-shell for
not more than 0,5%. Calculating the scattering discrete subspectrum, we con-
sidered only the most intensive radiation transitions to the 3p-, 4p- states
of the photoelectron (the calculation results for n ∈ [3; ∞) are repre-
sented in the next Part). The main resonances of the scattering cross-sections
in the photon energy region ω ∼= 870 ± 3 eV in Fig. 2.4 are determined
through the transitions to these states. For the value of the total width
of the 1s-vacancy decay we accepted the value Γ1s = 0, 65 eV measured in
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Fig. 2.4. The differential cross-section of the anomalous elastic nonpolarized X-ray
photon scattering by neon atom (scattering resonance area): 1 – without considering
the radial relaxation effect (RRE); 2 – RRE without considering the double excita-
tion/ionization processes; 3 – RRE with considering the double excitation/ionization
processes. The identification of the resonances indicated by numerals is given in the
text. θ is the scattering angle, Ω is the solid angle, ω is the energy of the scattered
photon. The calculated relativistic values for threshold energies of the K (872,32 eV)-
and KL23 (916, 00 eV)-ionization of the neon atom are indicated

the experimental spectrum of the neon atom K-photoabsorption [74]. Along
with 1s-np excitation/ionization in the second approximation we consid-
ered the double excitation/ionization of the neon atom ground state. The
double photoexcitation amplitudes are described in the Hartree–Fock multi-
configuration approximation with intermediate states of the form (2.45). The
algorithm for deriving the wave functions of these states is represented in
Part 2.2.2. Here: (a) the wave functions of the electron-excited are derived
by solving the Hartree–Fock term-averaged equations for the configuration
1s12s22p5

(
1,3P
)
n1l1n2l2 (LS) ; (b) the wave functions of the atomic core

electrons are calculated by solving the Hartree–Fock 1,3P -term-averaged
equations for the configuration 1s12s22p5. The amplitudes of the double exci-
tation/ionization and the double ionization are described in the Hartree–Fock
one-configuration approximation through the transitions to the states:

1s12s22p5 (npε p, ε pε′ p) , n = 3, 4. (2.98)

At the same time, for the first (n = 3) channel we considered the electro-
static splitting of the 1P - and 3P - terms of the atomic core 1s12p5(1,3P ). The
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Fig. 2.5. The differential cross-section of the anomalous elastic nonpolarized X-ray
photon scattering by neon atom (near-threshold scattering region): the circles indi-
cate the calculation (the Kissel–Pratt relativistic algorithm) of the work [29]; the
other symbols are the same as in Fig. 2.4. The details of the scattering resonance
region are not given. The energy scale is given in the logarithmic scale

channels (2.98) are open if the X-ray photon energies are 906, 82 (3P ), 909, 81
(1P ), 911, 70 and 916,00 eV correspondingly.

The calculation results for the cross-section of the nonpolarized X-ray
photon zero-angle scattering (2.22) by neon atom in the energy region of the
1s-shell ionization threshold are represented in Fig. 2.4, 2.5, and in Table 2.2.

The radiation transitions to the double photoexcitation states corre-
spond with the most intense resonancesin the near fine structure area of the
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Table 2.2. Spectral characteristics of the main resonances of the differential cross-
section of the elastic nonpolarized X-ray photon zero-angle scattering by neon atom
in the ionization K-threshold areas in approximations 1,2 and 3 (see Fig. 2.4)

nl ω, eV dσ/dΩ, r2
0/sr.

1 2,3 1 2 3

3p 868, 64 869, 40 1900, 00 170, 00 162,50
4p 870, 96 871, 10 167, 60 47, 26 37,53

scattering cross-section in Fig. 2.4:

|1〉 = γ3 3 p2[0, 97
(
3P
)
];

|2〉 = γ1[0, 90 3s3d
(
1D
)− 0, 50 3p2

(
1D
)
];

|3〉 = γ1 3 p2
[
0, 70

(
1D
)

+ 0, 60
(
1S
)]

;

|4〉 = γ1 3 p4 p
[
0, 90

(
1D
)]

;

|5〉 = γ1 3 p5 p
[
0, 80

(
1D
)]

;

where γ1,3 = 1s12p5
(
1,3P
)

and the terms with
∣∣aLS

12

∣∣ ≥ 0, 50 are deducted in
the full structure of the wave function (2.45).

We obtained the cross-sections of the 2s- and 2p-photoabsorption consider-
ing the radial relaxation effect and the RPAE correlations. However, since the
1s-shell is significantly separated spatially and energy-wise from the 2s-and
2p-shells of the atomic core, the influence of the radial relaxation effect and
the RPAE correlations in 2s- and 2p-photoabsorption on the theoretical scat-
tering cross-section in the energy region of the ionization K-threshold turned
out to be insignificant.

According to the results represented in Fig. 2.4, 2.5, and in Table 2.2, we
can arrive at the following conclusions. The electron shell radial relaxation
effect in the 1s-vacancy field leads (a) to a strong intensity rejection and to
a shift to shorter wavelengths of the resonance energies of scattering cross-
sections calculated without considering this effect and (b) to the redistribution
of the scattering intensity, calculated without considering this effect, between
short-wave and long-wave regions of the scattering spectrum. The magnitude
and direction of the redistribution of the scattering intensity are essentially
determined by considering the double excitation/ionization processes both in
the region of the scattering resonances, and in the region of near-threshold
scattering. Outside the anomalous dispersing scattering area the results of our
calculation coincided almost with the theoretical results of the independent
particles approximation in the work [29].

Considering the set completeness of the photoexcitation one-
particle states. In this part we turn to the problem of considering the
set completeness [119] of the excitation/ionization one-particle states of the
quantum system “atom⊕photon” if constructing the scattering cross-section.
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We have two methods before us. The first approach is to spread the methods
well known in literature (the correlation functions technique [120–123]) to the
resonance region of the scattering spectra. The second is to develop an alter-
native method for considering the set completeness of the photoexcitation
one-particle states of the quantum system “atom⊕photon”. In our treatise,
we chose the second method and solved the problem by the example of the
simple many-electron systems with ground state 1S0 - term of the 10Ne atom
(present Part) and of its ion Ne6+ (Part 2.8).

Let us turn directly to the quantum-mechanical observed value – the dif-
ferential cross-section of the scattering (2.22). We shall transform (2.22) to
the form:

dσ/dΩ = r20 (e1 · e2)
2 {(F (θ;ω) + f ′)2 + (f ′′)2};

f ′ = η
∑

nl≤f

Rnl; f ′′ = η
∑

nl≤f

Lnl;

Rnl =
k−1∑

m≥f

Bm

(
Δm

1 + Δ2
m

− δm

)
+Rk;

Lnl =
k−1∑

m≥f

Bm

(
1

1 + Δ2
m

+ δ2m

)
+ Lk;

Δm = (ω − ωm) /γ; δm = γ/ (ω + ωm) ; ωm = Inl − εm;

Bm =
(

4
3
πα a2

0/γ

)
ω2

mAm; Am = |Dm|2 ; γ = Γnl/2.

Here, from the full structures of the real (f ′) and imaginary (f ′′) components
of the scattering amplitude we extracted only the sums of the one-particle
excitations with the principal quantum number m ∈ [f ;∞). Additional to
the symbols indicated earlier in (2.22), we introduced the following symbols:
Rk and Lk are the remainders of the (m ∈ [k;∞)) functional series for the
Rnl- and Lnl-functions; Dm is the amplitude of the radiation nl → m (l ± 1)
transition; Inl is the energy of the atomic nl -shell ionization threshold; εm is
the energy module of the m (l ± 1)-photoelectron.

We shall sum the functional series in the context of the quasiclassical
approximation of quantum mechanics [124] for the singly and highly excited
states m ∈ [k >> f ;∞ ):

Am =
(
k − 1
m

)3

Ak−1, εm =
(
k − 1
m

)2

εk−1.

Let us turn from summing to integrating under the condition ωk+1 − ωk ∝
10−λeV, λ ≥ 4 and consider the equality:

arctg(x) − arctg(y) = arctg

(
x− y

1 + xy

)
, xv > −1.
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Then, for the Rk - and Lk - remainders of series we obtain the expressions
closed in the elementary functions:

Rk = πμ{ω ln(1 + 2β/a) − 2εk + γρ};
Lk = μ

(
γεk

c− εk
+ cρ

)
; c > εk;

ρ = arctg

(
γεk

a+ β

)
; μ =

(k − 1)
2cεk−1

· γ InlAk−1;

a = b2 + γ2 ; β = bεk ; b = ω − Inl ; c = ω + Inl.

In that way, the following algorithm is realized for calculating the cross-section
(2.22) for m ∈ [f ;∞). If m ∈ [f ; k-1], we perform calculations in the Hartree-
Fock wave functions of the transition states. If m ∈ [k >> f ;∞ ), we use the
quasiclassical approximation. The selection criterion for the natural numbers
λ and k is determined through the computer-based experiment: their following
increase does not change the values of the cross-section (2.22) calculated at
the previous step.

The calculation results for the cross-section (2.22) and the f ′−, f ′′−
components of the scattering amplitude with provision for the set com-
pleteness and many-particle effects (see previous Part) are represented in
Fig. 2.6, 2.7. The linear-polarized photon is examined: e1,2⊥P are scattering
planes passing through the wave vectors of the incident and scattered pho-
tons. In calculating we used the experimental values (in eV) of the energies of
atomic shell ionization thresholds [125] 870.230 (1s), 48.445 (2s), 21.613 (2p),
and the total widths of the atom vacancies decays 0.230 (1s) [126], 0.050 (2s)
[127], 10−17 (2p) (estimate on evidence derived from the work [128]). In the
previous part we considered only the most intensive transitions from the 1s-
shell to the photoelectron 3p-, 4p- states. As could be expected (see Fig. 2.6),
considering the set completeness of the photoexcitation mp-states makes the
nonphysical minimum of the theoretical scattering cross-section in the ion-
ization K-threshold region disappear. We shall state the good compliance of
calculation results with results of synchrotron experiments [129, 130] dealing
with measuring the cross-section of the photon absorption by 10Ne atom in
the ionizationK-threshold region. So, considering the optical theorem (1.13)
according to information from Fig. 2.7, for example, if ω = 870 eV, we obtain
σ = 0.356 Mb, whereas the experimental work [130] gives us σ = 0.376 Mb.

Atom of 18Ar: scattering in the 1s-shell ionization threshold
region. The cross-section calculation (2.22) is performed in two approxima-
tions that are analogous to the approximations for neon atom. In Approxi-
mation 2, additional to the radial relaxation effect and the double excitation/
ionization processes we considered the many-particle effect of the vacuum
correlations [100]. In this case, this effect is determined through the radiation
transitions from 3p2

0 → m1 (p, d)m2 (p, d) states of excitation/ionization of
the ground state to the initial state of argon atom K-photoabsorption.



56 2 Many-Particle Effects at Anomalous Elastic X-Ray Photon Scattering

864 868 872
0

40

80

I
1s

2

1

θ = 90°

10Ne

dσ

T /
dΩ

,  
r 02 /s

r.

ω, eV

Fig. 2.6. The differential cross-section of the anomalous elastic linear polarized (at
right angle to scattering plane) X-ray photon scattering by neon atom: 1 − 1s →
[3;∞)p photoexcitations are considered; 2 – only 1s → [3; 6] p photoexcitations are
considered. θ is the scattering angle, ω is the scattered photon energy. The position
of the 1s-shell ionization threshold energy I1s = 870.230 eV is marked off

In calculating the resonant part of the scattering spectrum in all approx-
imations we considered only the transitions to the 4p-, 5p-, 6p- states of the
photoelectron. We did not solve the problem of considering the np-states for
n ∈ [7;∞). This problem is a subject for future studies.

The calculated value of the ionization K-threshold energy ω1s =
3205, 65 eV agrees well with the experimental value 3206,26 eV [84]. In this
connection we considered the relativistic correction 10,0 eV [131] to the
threshold energy. For the 1s-vacancy decay width we accepted the value
Γ1s = 0, 69 eV [132].

To describe the near fine structure of the scattering cross-section in the
energy region of the ionization K-threshold we considered the transitions to
the states with the wave functions (2.45) and (2.46) in Part 2.2.2 of our
treatise. The channels of excitation/ionization and of the double ionization
1s13p5 (np εp, εp ε′p), n = 4, 5 are open, if the energy of the scattered photon
is 3228.50, 3232.40 and 3237.40 eV correspondingly.

The radiation transitions to the double photoexcitation states correspond
with the brightest resonances in the region of the near fine structure of the
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Fig. 2.7. The anomalous dispersing f ′- and f ′′- components of the elastic scattering
amplitude for the neon atom. The symbols are the same as in Fig. 2.6

scattering cross-section:

|1〉 = 0, 60 γ1 4p2(1S) − 0, 50 γ13d2(1S); (2.99)
|2〉 = −γ3 4p5p[0, 60(3P ) + 0, 50(3D)];
|3〉 = 0, 80γ14p5p(1D);
|4〉 = 0, 86

∣∣1s13s1(3S)4s4p(3P )
〉

+ 0, 50
∣∣1s13p43d4s4p

〉
; (2.100)

where γ1,3 ≡ 1s13p5
(
1,3P
)

is indicated and the items with the mixing coef-
ficients

∣∣aLS
12

∣∣ ≥ 0, 50 are deducted in the wave function structure (2.45) and
(2.46). In the argon atom, the d−symmetry of the excited states is collapsible
[133]. This results in a strong electrostatic mixing of the 1s3p-4p4p, 3d3d exci-
tations in the state (2.29) and in the dynamic dipole polarization effect [85]
of the 3p-shell through the 3p2 − 3s3d excitation in the state (2.100).

The many-particle effects play a significant role only in the region of the
ionization threshold through the atomic nl-shell. The ionization threshold
energies of the n (s, p)-shells (n = 2, 3) of the argon atom are strongly sepa-
rated from the ionization K−threshold energy (for example, ω (K)−ω (L1) =
2, 88 keV). So, the cross-sections of the 2s-, 2p-, 3s-, 3p- photoabsorption are
calculated to the approximation of the atomic core that is unreconstructed in
the fields of these vacancies.

The radiation transition amplitudes are calculated in the length form, since
the RPAE correlations change the amplitude values with 1s-shell not more
than 1% [134].
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Fig. 2.8. The differential cross-section of the anomalous elastic nonpolarized X-ray
photon scattering by argon atom (scattering resonance region): 1 – without consid-
ering the radial relaxation effect (RRE) for electron shells in the 1s-vacancy field;
2 – with considering RRE; 3 – RRE + vacuum correlations; 4 – approximation 3
+ double excitation/ionization processes. The resonances indicated by numerals are
interpreted in the text. θ is the scattering angle, Ω is the solid angle, ω is the scattered
photon energy. The calculated energy values of the argon ionization K (3205, 65 eV)
and KM23 (3237,40 eV) thresholds are marked off

The calculation results for the argon atom are given in Fig. 2.8, 2.9, and
in Table 2.3 [98]. The conclusions that follow from the obtained results are
similar to the results for the neon atom.

Atom of 18Ar: scattering in the 2s-shell ionization threshold
region. This part of the treatise aims at researching the influence of the RPAE
correlations on the elastic scattering cross-section. As a subject of inquiry we
chose the differential cross-section of the elastic X-ray photon scattering in the
energy region of the argon atom 2s-shell ionization threshold. The choice is
determined by the fact that the absolute values and the cross-section form of
the 2s-photoabsorption by argon atom are found out to high precision during
the synchrotron experiment [135] and they are appreciably determined by the
RPAE correlations [91, 92].

The 2s-photoabsorption cross-section is obtained to three approximations.

Approximation 1: without considering the effect of the radial electron shells
relaxation in the 2s-vacancy field. The states of the single excitation/
ionization 2s1 (m, ε) p, m ≤ 9 are considered.

Approximation 2: the effect of the radial electron shells relaxation in the
2s-vacancy field is considered.
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Fig. 2.9. The real (1) and imaginary (2) parts of the probability amplitude of the
anomalous elastic nonpolarized X-ray photon scattering by argon atom: unbroken
line indicates the radial relaxation effect (RRE) + vacuum correlations + double
excitation/ionization process; triangles denote the theory (nonrelativistic form factor
approximation without considering RRE) in the work [26]. The calculated energy
value of the argon atom 1s-shell ionization threshold I1s = 3205, 65 eV is indicated.
The details of the scattering resonance region are not given. The coordinate axis
scales are given in the logarithmic scale

Table 2.3. Spectral characteristics of the main resonance for the differential cross-
section of the elastic nonpolarized X-ray photon scattering by argon atom in the
ionization K-threshold region to the 1,2,3 and 4 approximations (see Fig. 2.8)

ω, eV (dσ/dΩ) 10−2, r2
0/sr.

1 2,3,4 1 2 3 4

3202,19 3203,26 24,910 2,341 2,397 2,106

Approximation 3: Approximation 2 including the mixing of the 2s1 (m, ε) p
and 2p5εd configurations (the RPAE correlations are considered).

The effect of such mixing leads to the following analytical structure of the
transition amplitude [92]:
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An = L1/2
n

⎛

⎝an +

∞∫

0

dεLε ψnε fnε

⎞

⎠ . (2.101)

In (2.101), the following values are defined:

Ln = (Δ2s/π) [(ω − ωn)2 + Δ2
2s]

−1;

Lε = (Δ2p/π) [(ω − ωε)
2 + Δ2

2p]
−1;

fnε = bε + cnε;

bε =
(
ω − ωε

Δ2p

)[π
2

+ arctg (ωε/Δ2p)
]
; (2.102)

cnε = (π/Δ2s) (ω − ωn) + ln
[
ω
(
ω2

ε + Δ2
2p

)−1/2
]
; (2.103)

an = 〈0| D̂ |n〉 ; ψnε = 〈0| D̂ |ε〉 〈ε| Ĥ |n〉 ;

|0〉 =
∣∣∣2s2;1So

〉
; |n〉 =

∣∣2s1np;1 P1

〉
; |ε〉 =

∣∣2p4εd;1 P1

〉
;

where ω is the absorbed photon energy; ωε is the 2p − εd transition energy;
ωn is the 2s−np transition energy; 2Δ2s,2p = Γ2s,2p are widths of the 2s- and
2p-vacancy decays. The problem of considering the mp-states for m ∈ [10; ∞)
is not solved and is the subject for future inquiries.

The integral term in (2.101) describes the effect of the RPAE correla-
tions. The calculation results in Fig. 2.10 demonstrate the strong influence of
the RPAE correlations on the 2s-photoabsorption cross-section. We can see
that considering the 2p5εd-states determines the formation of the asymmetric
resonance profile instead of symmetric Cauchy–Lorentz ones.

In the same figure, the amplitude (2.101) is interpreted from the physi-
cal standpoint in the Goldstone–Hubbard–Feynman diagrams representation
(at time forward). The first diagram is in accord with the first term in the
amplitude, while the second (direct) and the third (exchange) diagrams corre-
spond with the integral term. Let us remark here that the time-back -diagrams
describe the vacuum correlation effect which we did not consider in this
contest. Considering this effect is the subject of future inquiries.

When constructing the cross-section in Fig. 2.10, we used the calculated
value of the 2s-shell ionization potential being equal to 324,90 eV and the
value of the 2s-vacancy decay width being equal to 2,04 eV. These values fit
well with the experimental values 326, 25± 0, 05 eV and 2, 25± 0, 15 eV in the
work [136].

The appearance of the value Δ2p in (2.102) and (2.103) was interpreted
by the authors of the work [137] as the effect of the nonzero widths of the
RPAE states vacancy decay. If we consider this effect mathematically, we
can discover that the integrals of the singular functions are not presented in
the photoabsorption amplitude structure. From the practical standpoint, this
effect can turn out to be appreciable for very heavy atoms, where the decay
widths of the deep 2p-vacancy amount to 9,60 eV, for example, for the atom
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Fig. 2.10. 2s-4p photoexcitation cross-section for argon atom: 1 – Approximation 2;
2 – Approximation 3. ω is the absorbed photon energy. The calculated location of the
2s-shell ionization threshold energy I2s = 324, 90 eV is indicated. The interpretation
of the transition amplitude (2.101) in the Goldstone–Hubbard–Feynman diagrams
representation is inserted

of uranium
(
92U
)

[61]. For the atoms of argon (Γ2p = 0, 13 eV [138]), krypton
(Γ2p = 1.26 eV [60]), and xenon (Γ2p = 3.25 eV [60]), its influence on the
2s-photoabsorption cross-section did not exceed 1% [92,137].

The calculation results for the scattering cross-section for the atom of
argon in the energy region of the ionization L1-threshold at the scattering
angle 60◦ are represented in Fig. 2.11 [114]. It follows from Fig. 2.11 that the
radial relaxation effects and the RPAE correlations ones are the effects of
the same order. By this means, if calculating and interpreting the scattering
spectrum, these effects must be considered simultaneously.
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Fig. 2.11. Differential cross-section of the anomalous elastic linear polarized (at
right angle to the scattering plane) X-ray photon scattering by argon atom in the
energy region of the ionization L1-threshold: 1, 2, 3 – Approximations 1, 2, 3.
θ is the scattering angle, Ω is the solid angle, ω is the scattered photon energy.
The measured in the work [136] location of the 2s-shell ionization threshold energy
I2s = 326, 25 ± 0, 05 eV is indicated

X-ray photon scattering by a heavy atom. Let us summarize the
results obtained for light atoms in the case of elastic X-ray photon scattering
by heavy atoms.

Atom of 36Kr: scattering in the 1s-shell ionization threshold
region. We obtained the differential cross-section (2.22) to two approxima-
tions which are similar for the atom of neon. The ionization threshold energy of
the krypton 1s-shell is significantly segregated from the ionization threshold
energy of other atomic core shells (for example, ω1s − ω2s = 12, 646 keV).
For this reason, the scattering amplitudes for these shells are taken to
Approximation 1.

To identify the photoabsorption processes we studied the cross-section of
the X-ray photon absorption by the atom of krypton in the energy region of
the 1s-shell ionization threshold:
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σ1s (ω) =
(
4π2/3c

)
S

m>f
L1s (ω, ωm)ωm |Amp

1s |2 + σXANES
1s (ω) ;

L1s (ω, ωm) = (Γ1s/2π)
[
(ω − ωm)2 + Γ2

1s / 4
]−1

, (2.104)

where Amp
1s is the probability amplitude, ωm is the 1s-mp transition energy,

Γ1s is the width of the 1s-vacancy decay, ω is the absorbed photon energy, c is
the light speed, and σXANES

1s (ω) is the cumulative cross-section of the double
excitation/ionization processes (the calculation method – see Part 2.2.2). To
all approximations in (2.104) we considered only the radiative transitions into
5p-, 6p-, 7p- states of the photoelectron (Fig. 2.12). These transitions deter-
mine the broad resonance of the scattering cross-section in the photon energy
region ω ∼= 14325±3 eV (Fig. 2.13). The problem of considering the mp-states
for m ∈ [8;∞) is not solved and will be the subject for future inquiries.

The calculated energy value of the 1s-shell ionization threshold amounted
to 14325,911eV. This value corresponds well with the experimental one –
14327,190eV [125]. For the total width of the 1s-vacancy decay we took the
theoretical value 2,69 eV [60].

The discrete part of the near fine structure of the absorption spectrum
(Fig. 2.12, 2.13) is determined through the radiative transitions to the states
[82]:

|1〉 = −0, 8 γ3 5p2
(
3P
)

+ 0, 5 γ1 4d2
(
1D
)
;

|2〉 = 0, 7 γ1 5p2
(
1D
)− 0, 5 γ3 4d2

(
3P
)
;

|3〉 = 0, 5 γ3 5p6p
(
3D
)
;

|4〉 = 0, 7 γ1 5p6p
(
1D
)
;

|5〉 = 0, 5 γ1 4d5d
(
1D
)
.

γ1,3 ≡ 1s14p5
(
1,3P
)

is indicated here and the terms with the mixing coef-
ficient

∣∣aLS
12

∣∣ ≥ 0, 50 are deducted in the structure of the wave functions
(2.45). The components 1s14p5n1dn2d, 1s14p5n1sn2 (s, d) of the states (2.45)
are “shadow” components, since they do not contribute to the radiative
transition amplitude to the dipole approximation. Actually, the rules of the
orbital quantum number l selection do not allow transiting to the states
1s14p5n1dn2d. The transitions to the states 1s14p5n1sn2 (s, d) are not allowed
by reason of the orthogonality demand of the wave functions of these transi-
tions for the wave functions of the states with the same symmetry situated
below on the energy scale (see Part 2.2.2). The channels of the double exci-
tation/ionization and of the double ionization of the krypton ground-state
1s14p5 (np ε p; εp ε′p) , n = 5, 6 are open, if the energies of the scattered photon
are 14344,70, 14348,21, and 14351,97eV correspondingly.

The calculation results for the scattering cross-section are represented in
Fig. 2.13, 2.14, and in Table 2.4 [97]. According to these results, the conclusions
we made with reference to the role of the radial relaxation effect and the
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Fig. 2.12. Cross-section of X-ray photon absorption by krypton 1s-shell: 1 –
Approximation 1; 2 – the radial relaxation effect is considered; 3 – the cumulative
cross-section of the double excitation/ionization; the curves under the curve 3 are
partial cross-sections of the double excitation/ionization for n = 5, 6 and ε corre-
spondingly; 4 – Approximation 2 (sum spectrum); 5 – synchrotron experiment in
the work [139]. The states of the double photoexcitation marked by numbers are
identified in the text. The width of the 1s-vacancy decay is Γ1s = 2, 69 eV [60].
ω is the absorbed photon energy. The calculated energy locations of the krypton
ionization thresholds K (14325, 911 eV) and KN23 (14351, 970 eV) are indicated

double excitation/ionization processes are similar to the conclusions for the
light atoms.

Let us formulate the additional obtained results:

1. If increasing the scattering angle, we notice the profound influence both
of the radial relaxation effect of the electron shells in the 1s-vacancy field



2.7 Anomalous Elastic X-Ray Photon Scattering 65

Fig. 2.13. Differential cross-section of the elastic linear polarized (at right angle to
the scattering plane) X-ray photon scattering by krypton atom in the energy region
of the 1s-shell ionization threshold. The symbols are the same as in Fig. 2.12. ω is
the scattered photon energy, Ω is the solid angle, θ is the scattering angle

and double excitation/ionization processes on the theoretical scattering
cross-section. To demonstrate this result we shall define the value:

η⊥ (ω; θ) = (dσ⊥/dΩ)2 / (dσ⊥/dΩ)1 , (2.105)

which characterizes the degree of suppression or increase in theoretical
elastic scattering intensity, when transiting from Approximation 1 (index 1)
to Approximation 2 (index 2). In Table 2.4, the scattering angle dependence
of the value (2.105) is represented, when the photon energy is equal to the
energy of 1s-shell ionization threshold for krypton atom.

2. If increasing the atom nuclear charge, the domain of appreciable influence
of many-particle effects on the theoretical elastic scattering cross-section
corresponds with the large scattering angles. We obtain this result as a
consequence of the previous conclusion considering the fact that the atom
form factor agrees with the atom nuclear charge, if the scattering angle is
zero.

By this means, predicting the theoretical models for heavy atoms based on
the approximation of “independent particles” [8,43] (without considering the
radial relaxation effect) should distinctly disagree with experimental data, first
of all, if the scattered angles are large. While arguing for this statement we can
mention the fact that 20%÷ 70% disagreements are discovered between the
values of the elastic large-angle scattering cross-section by a number of heavy
atoms measured and calculated to approximation of “independent particles”
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Fig. 2.14. Differential cross-section of the anomalous elastic linear polarized (at
right angle to the scattering plane) X-ray photon scattering by krypton atom at
the angles 60◦, 90◦, and 120◦. The points and triangles indicate the synchrotron
experiment and theory (the relativistic Kissel-Pratt algorithm) in the work [43]; the
continuous curve indicates the theory of present work (Approximation 2). Ω is the
solid angle, ω is the scattered photon energy. The energy location of the krypton
1s-shell ionization threshold I1s = 14325, 911 eV is represented

in the works [41] (the atoms of 30Zn, 42Mo, 50Sn, 73Ta, 79Au, 82Pb) and [44]
(the atoms of 82Pb, 83Bi).

Atom of 54Xe: scattering in the 1s-shell ionization threshold
region. The calculation method for the scattering cross-section (2.22) and
the conclusions as well are the same as for krypton atom. For this reason we
shall present only the calculation results. They are given in Fig. 2.15, 2.16 [99].
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Table 2.4. Scattering angle dependence of the value (2.105) for krypton atom when
X-ray photon energy is I1s = 14325, 911 eV

θ , degree 00 300 600 900 1200

η⊥ (ω1s; θ) 0,90 0,81 0,64 0,39 0,23

The calculation results for K-photoabsorption cross-section (2.104) are
represented in Fig. 2.15. At all approximations only the most intensive tran-
sitions to the 6p-, 7p- and εp- states of the photoelectron are considered. The
problem of considering the np-states for n ∈ [8;∞) is not solved and it is a
subject for future inquiries. The calculated energy value for 1s-shell ionization
threshold amounted I1s = 34564, 21 eV. In this connection we considered the
relativistic correction for the threshold energy 1309,50 eV [131]. The obtained
value corresponds well with the experimental ones 34565,40 eV represented
in the work [140]. As a width of the 1s-vacancy decay we took the theoretical
value 11,49 eV from the work [141].

The channels of the double excitations/ionization and the double ion-
ization 1s15p5 (np εp; εp ε′p) are open, if the scattered photon energies are
34580,21 (n = 6), 34583,32 (n = 7), and 34587,03 eV. The channels of the
double excitation make a small vanishing contribution to the photoabsorp-
tion intensity and we did not consider them when calculating the scattering
cross-section.

The amplitudes of the radiative 1s-shell-assisted transitions are calculated
in the length form, since the RPAE correlations change them not more than
1% [142].

For comparison, the results of the cross-section calculation are represented
for the 1s-shell ionization of xenon atom from the work [142] in Fig. 2.15. It
is specified in this work that considering the spinor structure of the electron
wave functions (curve 5) leads to 10%÷12% value decrease of ionization cross-
section at nonrelativistic approximation (curve 2). Considering this effect for
compound nonrelativistic ionization cross-section (transition from curve 4 to
curve 6) makes the theory agree significantly with the experiment (curve 7).

As widths of the nl �= 1s vacancy decay (in eV) we took the following val-
ues: 4, 00 (2s), 3, 25 (2p), 5, 50 (4s), 3, 00 (4p), 0, 09 (4d) [60], 11, 70 (3s) [143],
5, 16 (3p), 0, 68 (3d) [144], and 0, 19 · 10−7 (5s) [145]. There is no information
about the width of 5p-vacancy decay in the literature, and so we accepted it to
be equal to the width of the 5s-vacancy decay. For the energies of nl �= 1s shells
ionization thresholds we took the values represented in the works [125,146].

Atom of 54Xe: scattering in the 2p-shell ionization threshold
region. Let us study the influence of spin-orbit splitting effect of the atom
deep shell on the theoretical scattering cross-section. As a subject of inquiry
we took the cross-section of the elastic X-ray photon scattering in the energy
region of the 2p-shell ionization threshold for xenon atom. The choice is
conditioned by the fact that the form of 2p-photoabsorption spectrum for
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Fig. 2.15. Cross-section of the X-ray photon absorption by xenon atom 1s-shell:
1 – Approximation 1; 2 – Approximation 2; 3 – partial cross-sections of double
excitation/ionization for n = 6, 7 and ε correspondingly; 4 – Approximation 2 (sum
spectrum); 5 – the theory from the work [142]; 6 – Approximation 2 considering the
result [142]; 7 – the synchrotron experiment from the work [149]. The width of the
1s-vacancy decay Γ1s = 11, 49 eV. ω is the absorbed photon energy. The calculated
energy locations for xenon atom ionization thresholds K (34564, 21 eV) and KO23

(34587,03 eV) are marked

xenon atom is mainly determined through the spin-orbit splitting effect of the
2p1/2,3/2 - shell [147, 148].

The radiative transition amplitude and the 2p-photoabsorption cross-
section are obtained at two approximations.
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Fig. 2.16. Differential cross-section of the anomalous elastic linear polarized (at
right angle to the scattering plane) X-ray photon scattering by xenon atom. The
points and light circles demonstrate the synchrotron experiment and theory (the
relativistic Kissel-Pratt algorithm) in the work [43]; the continuous curve presents
the theory of this work (Approximation 2). θ is the scattering angle, Ω is the solid
angle, ω is the scattered photon energy. The calculated energy location of the 1s-
shell ionization threshold for xenon atom I1s = 34564, 21 eV is indicated. The scale
of cross-sections is given in logarithmic scale

Approximation 1: without considering the radial relaxation effect for electron
shells in the 2p-vacancy field. The states of single excitation/ionization
2p5 (m, ε) (s, d), m ≤ 7 are considered.

Approximation 2: the radial relaxation effect for electron shells in the
2p-vacancy field is considered.
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The amplitudes of the 2p-shell-assisted transitions are calculated in the
length form, since the RPAE correlations change their values not more
than 1%.

The problem of considering the m(s, d)-states for m ∈ [8; ∞) is not solved
and it is a subject for future inquiries.

To consider the spin-orbit splitting effect of the 2p-shell at all approxima-
tions, we determined the wave functions of the final states in two stages.

At the first stage we obtained the wave functions of the single excita-
tion/ionization states having used the energy matrix diagonalization of the
spin-orbit splitting operator [10] at the LSJ -bonding approximation:

|nJ〉 =
∑

LS

aLSJ

∣∣2p5n (s, d) ; 2S+1LJ

〉
; (2.106)

where aLSJ are the coefficients of term mixing.
At the second stage we considered the wave functions (2.106) mixing with

the wave functions of the |mJ ; i〉-channels of the 2p-vacancy Auger-decay:

|ωnJ〉 = ρ1/2
nω

(
|nJ〉 +

N∑

i=1

S
m>f

βiJ
nm (ω) |mJ ; i〉

)
; (2.107)

〈ωnJ | ω′n′J ′〉 = δnn′δJJ′δ (ω − ω′) ;

ρnω = (Γ2p/2π)
[
(ω − ωn)2 + Γ2

2p/4
]−1

.

The following values are defined in (2.107): Γ2p is the width of the
2p-vacancy Auger-decay, ωn is the energy of 2p-n (s, d) transition, ω is the
absorbed photon energy. The calculated energy values for the 2p1/2,3/2- shell
ionization thresholds 4791,54 eV (L3-threshold) and 5089,44 eV(L2-shell) cor-
respond well with the experimental [125] ones 4782,16 eV and 5106,72 eV. The
widths of the 2p-vacancy decay we took from the graphic data represented in
the works [60, 61]: Γ2p (L3) = 3, 00 eV and Γ2p (L2) = 3, 25 eV.

The near-edge 2p-photoabsorption fine structure spectrum of xenon atom
observed in the experiment [147] in the photon energy region ω ≥ 4806 eV
is determined through the excitation/ionization of the outer 4d-, 5s- and
5p- shells in the ground state. This structure is not analyzed in the present
treatise.

The calculation results for the cross-section of the X-ray photon scattering
by xenon atom in the energy region of 2p-shell ionization thresholds are repre-
sented in Fig. 2.17 [114]. It follows from them that the radial relaxation effect
of electron shells (against the “background” of the spin-orbit 2p-shell splitting
effect) changes significantly the results of Approximation 1. Actually, we have
to deal with redistribution of scattering intensity from L2-threshold region into
L3-threshold region, suppression of resonance intensity, and minimum shift to
the short-wave region of the theoretical elastic scattering cross-section.
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Fig. 2.17. Differential cross-section of the elastic linear polarized (at right angle to
the scattering plane) X-ray photon scattering by xenon atom in the energy region of
the ionization L3- and L2-thresholds: 1, 2 – Approximations 1, 2. ω is the scattered
photon energy, θ is the scattering angle, Ω is the solid angle. The calculated energy
location of the ionization thresholds I (L3) = 4791, 54 eV and I (L2) = 5089, 44 eV
is indicated

2.7.2 Open-Shell Atoms in the Ground State: 11Na,42 Mo

Let us take a look at the results of theoretical investigations dealing with the
cross-section of elastic X-ray photon scattering by an open-shell atom in the
ground state in the energy region of its deep 1 s-shell ionization threshold.
As subjects of inquiry we chose the atoms of sodium and molybdenum. Such
choice is conditioned by the following reasons. The atom of sodium is a sim-
ple many-electron system having one(3s) electron outside the filled shells of
the ground state configuration. The near-threshold structure of the sodium
K-photoabsorption spectrum has been analyzed enough theoretically [80, 81,
87] and experimentally [75, 76]. The atom of molybdenum is presently the
only one element of the Mendeleev’s table, for the experimental data [42],
obtained for the absolute values of the differential cross-section of the elastic
X-ray photon scattering in the immediate vicinity of the 1s-shell ionization
energy.

Atom of 11Na: scattering in the 1s-shell ionization threshold
region. The elastic scattering (2.22) for the 1 s-shell is calculated at two
approximations.
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Approximation 1: the radial relaxation effects of the electron shells in the
1s-vacancy field and the 1,3S-term splitting effects of the 1s13s1[1,3S]mp1

(
2P
)

photoabsorption states are not considered.
Approximation 2: the radial relaxation effects of the electron shells in the

1s-vacancy field and the mentioned splitting effects are considered.
At all approximations we considered only the most intensive transitions

to the photoelectron 3p-, 4p- and 5p- states. The problem of considering the
np-states for n ∈ [6;∞) is not solved and it is a subject for future inquiries.

The radiative 1s-shell-assisted transitions amplitudes are calculated in
the length form, since the RPAE correlations change their values not more
than 1%.

For the width of the 1s-vacancy decay and the energy of the 1s-shell ion-
ization threshold we used the values Γ1s = 0, 80 eV for m = 3, Γ1s = 0, 55 eV
for m = 4, 5 and I1s = 1079, 10 eV, measured in the experimental photoab-
sorption spectrum [76]. We did not analyze such significant distinctions for
the widths of the 1s-vacancy decay when changing the main quantum number
of the mp-photoelectron. It is a subject for future inquiries.

Along with the 1s-mp transitions we considered the radiative transitions to
the double excitation/ionization states (2.48) and (2.50) in Approximation 2.
The radiative transitions to the photoabsorption states show the best correla-
tion with the resonances in the region of the near-edge scattering cross-section
fine structure in Fig. 2.18:

|1〉 = 0, 99 γ 4s
(
1,3S
)
3p;

|2〉 = 0, 93 γ 5s
(
3S
)
3p;

|3〉 = 0, 80 γ 4p
(
3P
)
3d+ 0, 50 γ 4s

(
3S
)

4p; (2.108)

|4〉 = −0, 50 γ 4p
(
1P
)
3d+ 0, 80 γ 4s

(
1S
)

4p; (2.109)

|5〉 = −0, 80 γ 4s
(
3S
)
4p.

Here γ ≡ 1s12s22 p6, and the terms with
∣∣aLS

12

∣∣ ≥ 0, 50 are deducted in the
wave functions (2.50) structure. The “shadow” 1s1n1p

(
1,3P
)
n2d components

of the states (2.108) and (2.109) do not contribute to the radiative transition
amplitude at the dipole approximation and appear in the scattering spectrum
through the mixing with 1s1n1s

(
1,3S
)
n2p components. The channels of the

double excitation/ionization 1s3s → 3pεs, 4sεp are open when the scattered
photon energies are 1084,76 eV and 1089,02 eV correspondingly.

The energies of the 2s-, 2p-, 3s- shell ionization thresholds are significantly
far removed from the energy of the 1s-shell ionization threshold (for example,
ω1s −ω2s

∼= 1 keV). For this reason, the scattering amplitudes for the nl �= 1s
shells are calculated at Approximation 1.

The main conclusions [116] are the same as for atoms of neon and argon.
We shall add only one new condition. The presence of the open 3s1-shell
in the ground state does not disturb (see Part 2.6 for 2S1/2-term of the
atomic ground state) the analytical structure of its form factor (1.4). But the
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Fig. 2.18. Differential cross-section of the elastic linear polarized (at right angle to
the scattering plane) X-ray photon scattering by atom of sodium in the energy region
of the 1s-shell ionization threshold. The broken curve indicates Approximation 1; the
continuous curve indicates Approximation 2; the chain curve – the radial relaxation
effect of the electron shells in the 1s-vacancy field is considered without 1,3S-terms
splitting of the 1s13s1[1,3S]mp1

(
2P
)

states. The scattering resonances marked by
numbers, and the values of the indicated energy locations of the ionization thresholds
are identified in the text. ω is the scattered photon energy, Ω is the solid angle, θ is
the scattering angle

1,3S-term splitting effect of the 1s13s1
[
1,3S
]
mp1
(
2P
)

photoabsorption states
results in complication of the scattering cross-section resonance structure.

Atom of 42Mo: scattering in the 1s-shell ionization threshold
region. The form factor of molybdenum atom is calculated in the wave func-
tions of electrons obtained by solving the Hartree-Fock equation for the ground
state configuration 1s204d

5
05s

1
0

(
7S3

)
. We did not study the influence of the two

open-shells field on its form factor structure, and restricted ourselves to the
spherically symmetric representation (1.4).

The scattering cross-sections (2.22) for the 1s-shell are obtained at two
approximations.

Approximation 1: the radial relaxation effect of the electron shells in the
deep 1s-vacancy field is not considered.

Approximation 2: the radial relaxation effects of the electron shells in the
deep 1s-vacancy field and the effects of the excitation/ionization and double
ionization to states:

∣∣1s14d5 (6sεp; εs5p; εsε′p)
〉
; (2.110)

∣∣1s14d45s1 (5dεp; εd5p; εdε′p)
〉
, (2.111)
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are considered. We did not considered the double excitation states, since their
contribution to the scattering amplitude had turned out to be vanishingly
small as compared to the contribution of the states (2.110) and (2.111).

When calculating the amplitudes of the 1s-np photoexcitation, we consid-
ered only the states with n = 5, 6, 7. It is the subject of future inquiries to
consider the states for n ∈ [8;∞). The radiative 1s-shell-assisted transitions
amplitudes are calculated in the length form, since the RPAE correlations do
not change their values more than 1%.

The calculated energy value for the 1s-shell ionization threshold of molyb-
denum atom amounted to 20007,473eV. It corresponds well with the exper-
imental [150] value 20008± 2 eV. For the width of 1s-vacancy decay we used
the theoretical value 6,00 eV [60]. The widths of the nl �= 1s, 4d, 5s vacancies
decays are taken from the graphic data of the work [61]. The widths of the
4d-, 5s- vacancies decays are not available in the published works, and we
accepted them as equal to 10−9 eV.

The 1s-shell ionization threshold for molybdenum atom is significantly
far removed from the ionization thresholds of other atomic core shells (for
example, ω1s − ω2s

∼= 17 keV). For this reason, the scattering amplitudes for
the nl �= 1s shells are calculated at Approximation 1.

The calculation results for the cross-section and the real component of the
scattering amplitude from (1.11),

f ′ =
∑

nl

ReAnl (2.112)

are represented in Fig. 2.19, 2.20 [117]. When calculating the value (2.112),
we did not consider the radiative transitions to the single excitation states.

The transition from Approximation 1 to Approximation 2 can be the-
oretically interpreted as follows. The electrons and vacancies of the elastic
scattering states are not observed in the quantum “atom + radiation” sys-
tem. As a result, the quantum mechanics of many-particle effect is realized at
a virtual level. We can detect the realizability of this dynamics in the scat-
tering cross-section structure experimentally (see Fig. 2.19, 2.20). Outside
the anomalous dispersive region of the elastic scattering the role of many-
particle effects in cross-section determination is significantly reduced. For
this reason, the results of the relevant experiment in the work [41] for the
metallic molybdenum can be interpreted at approximation of the atomic core,
unreconstructed in the deep 1s-vacancy field.

2.8 Anomalous Elastic X-Ray Photon Scattering
by an Atomic Ion

The transition from the atom to its multicharged positive ion is accompanied
by quantity reduction of symmetry-resolved radiative and Auger channels
of the deep vacancy decay. This condition results in increasing the vacancy
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Fig. 2.19. Differential cross-section of the anomalous elastic linear polarized (at
right angle to the scattering plane) X-ray photon scattering by molybdenum atom.
The circles indicate the experiment for metallic molybdenum in the work [42]; the
broken and continuous curves indicate Approximation 1 and Approximation 2. The
calculated energy value for the 1s-shell ionization threshold of molybdenum atom
I1s = 20007, 473 eV. ω is the scattered photon energy, Ω is the solid angle, θ is the
scattering angle

lifetime. We shall determine the many-particle effect of this sort as the deep
vacancy stabilization effect [118] when transiting from atom to its positive
ion. In this part of our treatise, we study in theory the resonance cross-section
structure of the elastic X–ray photon scattering by an atom and its ion in the
energy region of the 1s–ionization threshold by the example of neon atom and
its ion Ne6+. Along with the radial relaxation effect of the electron shells in
the 1s–vacancy field we consider the deep vacancy stabilization effect in the
scattering intermediate states.

The calculated width value of the 1s-shell vacancy decay is 0,2660 eV for
the neon atom, and it corresponds well with the experimental result 0,27 eV
[129]. Let us remark here that the calculated width value 0,1508 eV of the
1s-vacancy Auger decay in the partial 1s-2p2p

(
1D
)

channel corresponds well
with the experimental value 0,160 eV in the work [151]. The contribution of
the radiative decay channels to the total 1s-vacancy width of the neon atom
does not exceed the value 0,0020eV [60].

The calculation for the ion Ne6+ is made in two versions (Table 2.5):
without considering (Γ1s = 0, 2660 eV) and considering (Γ1s = 0, 0486 eV)
the deep vacancy stabilization effect. The wave function of the photoelec-
tron is obtained by solving the Hartree-Fock equation for the scattering
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Fig. 2.20. Real component f ′ of the amplitude of the anomalous elastic nonpo-
larized X-ray photon scattering by molybdenum atom. The circles indicate the
experiment for metallic molybdenum in the work [23]. Other symbols are the same
as in Fig. 2.19

Table 2.5. Values of partial (Γn
1s, eV) and total

(
Γ1s =

∑
n

Γn
1s, eV

)
widths of the

1s-vacancy decay in the channels (n) of Auger-kind in neon atom and its ion Ne6+

n Γn
1s

10Ne Ne6+

1s − 2p2p
(
1D
)

(
1S
) 0,1508

0,0130
1s − 2s2p

(
3P
)

(
1P
) 0,0254

0,0520
1s − 2s2s

(
1S
)

0,0248 0,0486
Γ1s 0,2660 0,0486
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state 1s12s2 (n, ε) p
(
1P1

)
, n ≤ 8. The difference of the scattering ampli-

tudes, calculated without considering and considering the radial relaxation
effect of the electron shells in the 1s-vacancy field, did not exceed 1%. This
can be explained as follows. The missing 2p-shell determines the stabilization
(freezing) of the valence 2s-shell midradius. The following destruction of the
1s2-“screen” (1s→ np transition) between core and 2s-shell does not lead to
decreasing its midradius.

The almost missing effect of the ion core shells relaxation in the deep
vacancy field determines the vanishing small intensity of the double excita-
tion/ionization processes (0,1% of contribution to the probability scattering
amplitude). By comparison we shall remark that for neon atom the radial
relaxation effect of the electron shells in the 1s-vacancy field results in
the strong suppression of the resonance intensity values, calculated without
considering this effect (Part 2.7.1).

For the width of the 2s-vacancy decay we accepted for neon atom the value
0,05 eV, judged by the experimental 2s-photoabsorption spectrum in the work
[127]. The information on the widths of the 2s-vacancy decay for neon atom
and of the 2s-vacancy for ion Ne6+ is not available in published works, and
we accepted them as equal to 10−9 eV.

The radiative 1s-assisted transitions amplitudes both for neon atom and
ion Ne6+ are calculated in the length form, since the RPAE correlations do
not change their values more than 1%.

The calculation results restricted by considering the 1s-np photoexcitation
states with n ≤ 8 are represented in Tables 2.5, 2.6 ,and in Fig. 2.21 [118].
The calculation result for ion Ne6+ without considering the deep vacancy
stabilization effect is represented only as a part of the scattering full cross-
section.

It follows from the results in Fig. 2.21, that the transition from neon atom
to its ion is accompanied by reconstruction of the scattering cross-section – the
energy region of the scattering resonances is expanding, and the resonances
themselves take the form of elastic scattering giant resonances. The results of
considering (see Part 2.7.1) the set completeness of the 1s-np photoexcitation

Table 2.6. Spectral characteristics for the most intense resonances of the differential
cross-sections of the elastic linear polarized (at right angle to the scattering plane)
X-ray photon 90◦ angle scattering by neon atom and its ion Ne6+ in the energy
region of the 1s-shell ionization threshold

Element Transition ω, eV dσ⊥/dΩ,
r2
0/sr.

Γ1s, eV

10Ne 1s – 3p 869, 356 8,970·102 0,2660

Ne6+ 1s – 2p 891, 520 1,448·108 0,0486
1s – 3p 1016, 979 5,977·106

1s – 4p 1054, 286 8,674·105
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Fig. 2.21. Differential cross-section of the elastic linear polarized (at right angle to
the scattering plane) X-ray photon scattering by neon atom and its ion Ne6+ in the
energy region of the 1s-shell ionization threshold: 1 – neon atom for Γ1s = 0, 2660 eV;
2 – ion Ne6+ for Γ1s = 0, 0486 eV; 3 – ion Ne6+ for Γ1s = 0, 2660 eV. θ is the
scattering angle, Ω is the solid angle, ω is the scattered photon energy. The calculated
energy values for the 1s-shell ionization thresholds I1s

(
10Ne
)

= 872, 320 eV and
I1s

(
Ne6+

)
= 1099, 131 eV are indicated

states, when calculating the cross-section (2.22), and the f ′−, f ′′− compo-
nents of the amplitude of the elastic X-ray photon scattering by the ion Ne6+

are represented in Fig. 2.22, 2.23. We used the width value 0,0805eV for
1s-vacancy decay, that was obtained by extrapolation of the theoretical
results of the work [152]. For the width of the 2s-vacancy decay we accepted
the estimated value 10−9 eV. As expected (Fig. 2.22), considering the set
completeness results in eliminating unphysical minimum of the theoreti-
cal scattering cross-section in the energy region of the 1s-shell ionization
threshold.

The results for ion Ne6+ have a predictive character and can be particularly
used in studying the 4Be-like ions [153] that are important from the standpoint
of plasma physics and astrophysics.

2.9 Many-Particle Effects in Formation of Scattering
Indicatrixes

The scattering cross-section (2.22) determines the process characteristic –
the scattering indicatrix that is important both for theory and application
aspect. Many theoretical and experimental works (see for example [154]) are
dedicated to studying this characteristic for scattered photon energies lying
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Fig. 2.22. Differential cross-section of the anomalous elastic linear polarized (at
right angle to the scattering plane) X-ray photon scattering by ion Ne6+: 1 – the
1s → [2;∞)p photoexcitations are considered; 2 – only 1s → [2; 10] p photoexcita-
tions are considered. θ is the scattering angle, Ω is the solid angle, ω is the scattered
photon energy. The calculated energy location of the 1s-shell ionization threshold
I1s = 1099, 131 eV is indicated
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Fig. 2.23. f ′- and f ′′- components of the elastic scattering amplitude for ion Ne6+.
The symbols are the same as in Fig. 2.22

outside the energy regions of the atomic deep shells ionization thresholds. But
there are no research papers on scattering indicatrixes in immediate proximity
(±1 ÷ 100 eV) to energy of the atomic deep shells ionization thresholds in
published literature.
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Taking into account the results of Part 2.7 we can naturally suggest the
following fact. The smoothness breakings of the scattering cross-section that
are determined by many-particle effects should lead to the relevant changes
of the scattering indicatrix forms. The aim of this part of our treatise is to
examine this suggestion in theory. As subjects of inquiry the atoms of neon
and argon are taken.

Analysis method and calculation results. We shall define the scatter-
ing indicatrix as the energy function of scattered photon and scattering angle
in the following manner:

ρ (θ, ω) = D (θ, ω) /D (π/2, ω∗) .

The values ρ and θ here mean the polar radius and angle correspondingly,
ω∗ is the fixed energy value of the scattered photon, and the cross-section
(2.22) is indicated as D (θ, ω). We accepted ω∗ = I1s + 5 (eV), where I1s is
the energy value of the atomic 1s-shell ionization threshold: 870, 10 eV

(
10Ne
)

[129], 3206, 26 eV
(
18Ar
)

[84]. For the widths of the 1s-vacancy decay we
accepted the values 0, 50 eV

(
10Ne
)

[74] and 0, 69 eV
(
18Ar
)

[132].
The scattering amplitudes for 1s-shell are obtained at two approximations.
Approximation 1: the radial relaxation effect of the electron shells in the

1s-vacancy field is not considered.
Approximation 2: the radial relaxation effect of the electron shells in the

1s-vacancy field and the double excitation/ionization of the atomic ground
state are considered.

The calculation results are represented in Fig. 2.24 and in Table 2.7.
Main conclusions. Analyzing the obtained results we can come to the

following conclusions [115].

1. The radial relaxation effect and the double excitation/ionization processes
reduce the 90◦ angle scattering intensity calculated at Approximation 1.
In this connection, the reduction degree of the back scattering intensity
α = ρ1 (π, ω) /ρ2 (π, ω), exceeds the reduction degree of the forward scat-
tering intensity, β = ρ1 (0, ω) /ρ2 (0, ω), where the indexes correspond with
Approximations 1, 2. As a result, when transiting from Approximation
1 to Approximation 2, the asymmetry degree of the scattering indica-
trix, γ = ρ (0, ω) /ρ (π, ω), increases and the monotone character of its
dependence on the photon energy disappears (Table 2.7). The monotone
disappearance is determined by the double excitation/ionization processes.
The increasing of the value γ can be interpreted physically as follows. The
many-particle effects intensify the primary character of the photon pen-
etrating process to material medium in comparison with its reflection by
this medium.

2. If the nuclear charge of an atom increases, the role of the many-particle
effects play a large role in reducing the reflecting power(back scattering)
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Fig. 2.24. Indicatrixes of the anomalous elastic nonpolarized X-ray photon scat-
tering by atoms of 10Ne (a) and 18Ar (b). The dots indicate Approximation 1; the
continuous curves indicate Approximation 2. The scattered photon energies (eV) are
ω1,2,3,4 = I1s + [-100, 5, 50, 1000]. I1s is the energy of the atomic 1s-shell ionization
threshold: 870,10 eV

(
10Ne
)
, 3206,26 eV (18Ar)

Table 2.7. Calculated dependence of the α, β, γ values for atoms of neon and argon
on the X-ray photon energy in the energy region of the 1s-shell ionization threshold

Atom ω, keV γ α β α/β

1 2

10Ne 0,875 1,055 1,078 1,885 1,844 1,022
0,920 1,075 1,076 1,216 1,215 1,001
1,870 1,324 1,329 1,028 1,025 1,003

18Ar 3,211 2,694 3,937 1,926 1,318 1,461
3,256 2,841 3,102 1,217 1,115 1,091
4,206 3,493 3,574 1,056 1,032 1,023

of an atom. According to Table 2.7, the ratio α/β for argon atom exceeds
the same for neon atom.

If the photon energies lie outside the anomalous dispersive scattering regions,
the results of Approximation 2 repeat the ones of Approximation 1. As a
consequence, the changes of the forms of the scattering indicatrixes specified
above disappear.
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Main Results of Chapter 2

1. The many-particle quantum theory and the analysis methods for the differ-
ential cross-section of the elastic X-ray photon scattering by an atom and
atomic ion in the energy region of their deep shells ionization thresholds
are developed.

2. The analytical structure of the form factor for an open-shell atom in the
ground state is determined.

3. How the electron correlations in the ground state (10Ne) and the atom
nonsphericity effects (17Cl, 21Sc, 23V, 35Br, 39Y, 73Ta) influence the theo-
retical values and forms of their form factors in the X-ray region of elastic
scattering is studied.

4. The differential cross-sections of the anomalous elastic X-ray photon scat-
tering by the closed-shell atoms (ionization K-threshold of 10Ne, 36Kr;
ionization K-, L1-thresholds of 18Ar; ionization K-, L2,3-thresholds of
54Xe), by the open-shell atoms (ionization K-threshold of 11Na, 42Mo) in
the ground state and by the atomic ion (ionization K-threshold of Ne6+)
as well are calculated.

5. The method for considering the completeness set of the single photoexcita-
tion states is developed and realized by the example of 10Ne atom and Ne6+

ion, when describing the differential cross-section of the elastic scattering
in theory.



3

Effect of the Deep Vacancy Auger-Decay
When Anomalous Elastic X-Ray Photon

Scattering by an Atom

In Chap. 2, we did not consider the effect of the post-collision interaction as
we were developing the quantum theory and the calculation methods for the
differential cross-section of the elastic X-ray photon scattering by an atom.
The reason for this could be attributed to the fact that the effect of the
post-collision interaction practically does not change the values and forms
calculated for the cross-section of the X-ray absorption by the atomic deep
shell in one-configurational Hartree–Fock approximation.

The aim of the present chapter of our treatise is to substantiate in theory
this supposition. In Sect. 3.1, the extension of the Hartree–Fock equation for
the photoelectron wave function is represented, with provision for the deep
vacancy Auger-decay; also represented is the photoelectron-Auger-electron
interaction. In Sect. 3.2, the calculation results are presented for the cross-
sections of the photon absorption by the 1s-shell of beryllium, neon, and
argon atoms with provision for the radial relaxation effect of the photoelectron
wave function due to the deep vacancy Auger-decay. In Sect. 3.3, the analyti-
cal solution of the Schrödinger equation is determined for the wave function of
the interacting photo- and Auger-electrons of the continuous spectrum. The
chapter concludes by formulating the results obtained.

3.1 Effect of the Deep Vacancy Auger-Decay
in Excitation/Ionization of an Atom: Theory

The aim of this section is to extend the Hartree–Fock equation for the pho-
toelectron wave function, in accordance with the concept of configuration
mixing of the atomic deep shell excitation/ionization and the deep vacancy
Auger-decay [155].

3.1.1 Atom Photoexcitation

Let us consider the wave function of the final photoexcitation state as the
wave function of the superposition of states |E0〉 =

∣∣n0l
−1
0 nl
〉

with a deep
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n0l0− vacancy and the Auger-decay state of vacancy |E1〉 =
∣∣n2l

−1
2 n3l

−1
3 ε1l1nl

〉

(where nl is the photoelectron of the discrete spectrum, ε1l1 is the Auger-
electron, and n2,3 ≤ f is the Fermi level):

|E〉 = αE

⎛

⎝|Eo〉 +

∞∫

0

dε1 βE1 |E1〉
⎞

⎠; (3.1)

〈E| E′〉 = δ(E − E′); 〈E1| E2〉 = δ(ε1 − ε2);
〈Eo| Eo〉 = 1; 〈Eo| E1〉 = 0.

For the wave function (3.1) to be the eigen function of the atom Hamiltonian:

Ĥ |E〉 = E |E〉. (3.2)

According to the study of the matrix of intrachannel mixing, (3.2) takes the
form:

〈E1| Ĥ |E2〉 = Enlδ(ε1 − ε2) + 〈ε1l1| ĥ |ε2l1〉 +Anl
12; (3.3)

where Enl is the energy of the state |Enl〉 =
∣∣n2l

−1
2 n3l

−1
3 nl
〉

without Auger-
electron, Anl

12 = (a12 + anl
12) is the term describing the Auger-electron inter-

action with atomic core shells (a12), and nl is the photoelectron (anl
12);

ĥ = −(1/2)d2/dr2 + l(l+ 1)/2r2 − Z/r.
It is possible to represent the matrix element (3.3) in the diagonal form as

〈E1|H |E2〉 → E1δ(ε1 − ε2), (3.4)

assuming that the wave function of the Auger-electron satisfies the equation:

〈ε1l1| ĥ |ε2l1〉 +Anl
12 = ε1δ(ε1 − ε2); (3.5)
ε1 = E1 − Enl.

Solving (3.5), we assume that the set of one-electron wave functions of the
state |Enl〉 is already known. It is specifically assumed that the wave function
of the nl -photoelectron is obtained in the atomic core field, being changed due
to the Auger-decay.

The problem of deducing such a wave function of the nl-photoelectron
is the subject of our further study. Without solving this problem we can-
not clarify the influence of the radial and angular correlations in the photo-
and Auger-electron motion on the cross-section of the elastic X-ray photon
scattering by an atom.

The authors [155] recommend solving the problem of deducing the wave
function of the nl-photoelectron in two stages.

In the first stage, (3.5) is solved on the wave function of the “start-up”
nl∗-photoelectron, the state in the Hartree–Fock field of the

∣∣n2l
−1
2 n3l

−1
3

〉
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- core. Then, the expression (3.3) takes the form:

〈E1|H |E2〉 = E1δ(ε1 − ε2) + ϕ12; (3.6)
ϕ12 = anl

12 − anl∗
12 .

Thereafter, the value ϕ12 will represent the small parameter of the theory.
In the second stage, the analog of the multi-configuration Hartree–Fock–

Jucys equation for the wave function of the nl-photoelectron is set up on the
variation principle – the condition of the energy E extremeness wherein the
value of |αE |2 is high.

Calculating the matrix elements of the atom Hamiltonian and considering
(3.6), we deduce the integral equations for the coefficient of configuration
mixing

βE1 = μ1

⎛

⎝V1 +

∞∫

0

d ε2 βE2 ϕ12

⎞

⎠ ; V1 = 〈E0| Ĥ |E1〉 ; (3.7)

and the energy of the state (3.1)

E = E0 +

∞∫

0

d ε1 V1 βE1; E0 = 〈E0| Ĥ |E0〉. (3.8)

In (3.7), the generalized function of the form is determined as

μ1 = P (E − E1)−1 + zEδ(E − E1),

where P is the symbol of the Cauchy integral principle value and the real
function zE will be determined later.

Using (3.7) and the operator equality for the product of singular functions
[156,157]

P

(E′ − E1)
· P

(E − E1)
=

P

(E′ − E)

(
P

E − E1
− P

E′ − E1

)
+ B̂,

B̂ = π2δ(E1 − E′)δ(E1 − E),

we can reduce the expression (3.8) to the form:

E = E0 + FE + zE |VE |2 +
∞∑

n=2

∞∫

0

Φn

n∏

i=1

μid εi; (3.9)

Φn = V1Vn

n−1∏

i=1

ϕi,i+1; VE = V1 |E1=E ;

FE = P

∞∫

0

d ε1 |V1|2 (E − E1)−1.



86 3 Effect of the Deep Vacancy Auger-Decay

The second and the last terms in (3.9) describe the shift of the observed value
for the resonance energy of the photoexcitation cross-section, relative to the
theoretical value E0. Owing to the smallness of the values ϕi,i+1 and under
the supplementary condition for the z-function

|zEϕi,i+1| << 1 (3.10)

we can transform expression (3.9) to:

E = E0 + FE + ΔE + zE

(
|VE |2 + CE

)
; (3.11)

ΔE =
∞∑

n=2

P

∞∫

0

Φn

n∏

i=1

(E − Ei)−1d εi;

CE = 2 P

∞∫

0

d ε1 V1VE ϕ1E (E − E1)−1.

The relation (3.11) is used for the definition of the z-function. Now, the
E-energy function in (3.11) cannot be the “object” of variation, because it
determines the z-function. Thus, for this reason we posit the second stage,
described above for solving the problem of determining the wave function of
the photoelectron.

We can deduce the normalization factor in (3.1) from the condition:

〈E| E′〉 = δ(E − E′) = αEαE′

⎛

⎝1 +

∞∫

0

d ε1 βE1 βE′1

⎞

⎠ . (3.12)

On substitution of (3.7) in (3.12), we get on condition (3.10):

|αE |2 (π2 + z2
E)
(
|VE |2 + CE

)
= 1. (3.13)

Considering (3.11), we obtain from (3.13) the spectral density of the final
states:

|αE |2 = (γE/π) [(E − E0 − FE − ΔE)2 + γ2
E ]−1; (3.14)

γE = ΓE/2 = π (|VE | + CE) .

Now, we shall state the analog of the multi-configuration Hartree–Fock–Jucys
equation for the wave function of the nl-photoelectron.

According to (3.14), the observed value for the resonance energy E of the
photoexcitation cross-section can be determined under the condition of the
minimum denominator, by solving the integral equation:

E − E0 − FE − ΔE = 0. (3.15)



3.1 Effect of the Deep Vacancy Auger-Decay in Excitation/Ionization 87

From (3.15), it follows that the E-functional contrary to (3.11) can be repre-
sented in the form containing no z-function. In this case, it allows the variation
at the wave function of the nl -photoelectron.

We shall find the E-functional. To solve (3.15) approximately, we represent
the third and the fourth terms as Taylor’s series in value neighborhood

Ē = Enl + ε̄, Enl = 〈Enl| Ĥ |Enl〉 ;

where ε̄ is the observed resonance energy of the Auger-electron. Considering
that ΔE < FE , we can get:

FE
∼= FĒ + (

∂

∂E
FE)E=Ē · (E − Ē); ΔE

∼= ΔĒ . (3.16)

We shall determine the so-called spectroscopic factor [158] of the |E0〉− state
in the complete wave function (3.1):

s =

⎧
⎨

⎩1 −
⎡

⎣ ∂

∂E
P

∞∫

0

d ε1 |V1|2 (E − E1)−1

⎤

⎦

E=Ē

⎫
⎬

⎭

−1

.

Then, from (3.15) and (3.16), we deduce the desired approximate solution of
the integral equation (3.15):

E = s (E0 + FĒ + ΔĒ) + (1 − s)Ē. (3.17)

We shall find the variation of the functional (3.17) at the radial part of the
wave function of the nl -photoelectron

δ

δPnl

(
E −
∑

n′l

λnl,n′l 〈nl| n′l〉
)

= 0; (3.18)

where λnl,n′l are the Lagrange multipliers.
Finally, on substitution of (3.17) in (3.18), we get the desired analog of

the multi-configuration Hartree–Fock–Jucys equation for the wave function of
the nl-photoelectron:

⎧
⎨

⎩ĥ+
∑

n′l′≤f

(
Nn′l′

s Y
(0)
n′n′ +

∑

k>0

ak
sY

(k)
n′n′

)
− εnl

⎫
⎬

⎭ |nl〉 + sDr =

=
∑

n′l′≤f

∑

k>0

bksY
(k)
nn′ |n′l′〉 +

∑

n′ �=n

λnl,n′l |n′l〉 ; (3.19)

Nn′l′
s = sNn′l′

0 + (1 − s)Nn′l′
1 ; (3.20)

ak
s = s ak

0 + (1 − s)ak
1 ;

bks = s bk0 + (1 − s)bk1 .
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The effective occupation numbers of the atomic core electron shells and the
angular coefficients are determined here through the occupation numbers and
the angular coefficients for |E0〉− and |Enl〉− configurations, respectively. In
(3.19), we obtained the correlation potential for the nl-photo- and εl1− Auger-
electron interaction in the deep vacancy Auger-decay state through the ΔE-
functional variation:

Dr =
∑

k≥0

P

∞∫

0

∞∫

0

d ε1d ε2
V1V2

E10E20

(
akY

(k)
12 |nl〉 − bkY

(k)
1n |ε2l1〉

)
. (3.21)

The energy denominators are written as an approximation of the Koopmans’
theorem [10]:

E10
∼= εn2l2 + εn3l3 − εn0l0 − ε1;

and the angular coefficients belong to the configuration of the Auger-decay in
(3.1).

We shall study the asymptotic of the effective potential for the photo-
electron in (3.19). This study is required for testing the agreement of the
developing theory, if it maintains the Coulomb type of asymptotic. If r >> r0
(r0 is the atom radius), it follows from (3.21) that:

Dr ∝ 1
r
dr |nl〉 ; (3.22)

dr = P

∞∫

0

∞∫

0

d ε1d ε2
V1V2

E10E20
Q12(r);

Q12(r) =

r∫

0

dr′Pε1l1(r
′)Pε2l1(r

′).

Considering the concept definition of the Cauchy integral principle value
(x0 is the pole of the first order of the function ψ(x)),

P

∞∫

0

ψ(x) dx = lim
Δ→0

⎧
⎨

⎩

⎛

⎝
x0−Δ∫

0

+

∞∫

x0+Δ

⎞

⎠ψ (x)dx

⎫
⎬

⎭ ;

the Leibniz differentiation formula

d

dx

⎛

⎝
β∫

α

f(x, y) dy

⎞

⎠ = f(x, β)
dβ

dx
− f(x, α)

dα

dx
+

β∫

α

df(x, y)
dx

dy

and the integral representation of the Dirac delta function

δ(x− y) =

+∞∫

−∞
dz δ(x− z) δ(z − y).
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Then, considering the expression for the spectroscopic factor, we get from
(3.22):

lim
r→∞(1 + dr) = s−1. (3.23)

Finally, considering (3.23) and (3.20), it follows from (3.19) that the asymp-
totic of the effective electrostatic potential for the nl-photoelectron holds the
Coulomb (∼ r−1) form, when transiting from the one-configuration Hartree–
Fock representation to the wave function (3.1).

In the context of the analytical structure of (3.19), the effect of the post-
collisional interaction can be concretized as follows. According to (3.20) for
the effective occupation numbers and (3.21) for the correlation Dr-potential,
the deep vacancy Auger-decay leads to the redistribution of the n2l2−, n3l3−
shell electron density between the n0l0− shell and the Auger-electron. As a
result, the photoelectron interaction with the parent vacancy slackens, but its
interaction with n2l2−, n3l3− vacancies and the Auger-electron appears.

Considering (3.1) for the photoexcitation cross-section of the atomic deep
shell, we obtain:

σn(ω) =
4
3
π2αa2

0ωn |αω|2
⎛

⎝M +

∞∫

0

d ε1βω1M1

⎞

⎠
2

; (3.24)

ωn = E0 − E(0); ω = E − E(0);

M = 〈Eo|
�

D |0〉 ; M1 = 〈E1|
�

D |0〉 .

Where α is the fine structure constant, a0 is the Bohr radius, E(0) is the
energy of the atom in the ground state, ω is the absorbed photon energy, and
D̂ is the radiative transition operator.

The matrix elements in (3.24) are calculated using the non-orthogonal
orbitals theory (Sect. 2.2.1). The radial part of the wave function of the
nl-photoelectron can be found by solving (3.19). The wave function of the
Auger-electron in (3.19) is obtained at the one-configuration Hartree–Fock
approximation considering the “start-up” nl∗− photoelectron field.

3.1.2 Photoionization of an Atom

The wave function of the photoionization state of the atomic deep shell is
constructed in a form that is identical to (3.1):

|En〉 = α
En

⎛

⎝|E0n〉 +

∞∫

0

∞∫

0

d ε1dn
′βn′

E1 |E1n′〉
⎞

⎠. (3.25)

The following analysis and results are similar to the photoionization of the
atomic deep shell.
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The deep shell ionization goes to the interval (εn, εn + dεn) of the pho-
toelectron energies. As a result, the differential cross-section of the atom
photoionized to the final state (3.25) takes the form:

dσ(ω)
dεn

=
4
3
π2αa2

0 (εn + I) |αωn|2
⎛

⎝M +

∞∫

0

∞∫

0

d ε1dn
′βn′

ω1M1n′

⎞

⎠
2

; (3.26)

where I is the ionization threshold energy of the studied atom shell, and the
structure of the normalization factor is similar to (3.14). Integrating expres-
sion (3.26) gives the photoionization cross-section for the fixed value of the
absorbed photon:

σ(ω) =

∞∫

0

(
dσ (ω)
d εn

)
dεn. (3.27)

3.2 Effect of the Deep Vacancy Auger-Decay
in Excitation/Ionization of an Atom:
Calculating Results

In this section, we shall consider the quantum theory of the post-collisional
interaction (PCI) developed in Sect. 3.1.

As subjects of inquiry, we have chosen the cross-section of the neon atom
1s-3p photoexcitation and the cross-section of the argon atom 1s-εp photoion-
ization. The choice is determined by the following. According to the results
in Table 2.2, the dominant resonance of the differential cross-section of the
elastic X-ray photon scattering by the neon atom is determined by the virtual
1s-3p photoexcitation. But the absolute value of its theoretical intensity is
highly susceptible to the many-particle effect. Therefore, the study of the PCI
effect is of interest mainly at this resonance. For the argon atom (Sect. 2.7.1),
the study of the PCI effect is interesting because of the high sensitivity of the
theoretical scattering cross-section to the many-particle effects in the region
of the 1s-shell ionization threshold.

3.2.1 1s-3p Photoexcitation of Neon

When constructing the wave function (3.1) and (3.19) for the neon atom, we
considered only the main Auger-channel of the 1s-vacancy decay 2p4εd3p,
its contribution to the total Auger-width 0,2660 eV amounts to 62% (see
Table 2.5).

The transition amplitudes in the photoexcitation cross-section (3.24) are
calculated from the formulas (see, for example, [66]):

M =
(
N0lmax

4l0 + 2

)1/2

R
n0l0nl

; lmax = max (l0, l) ; (3.28)
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M1 =
〈
n2l

4l2
2 (L0S0) εl1 (L01S01)n′l;1 P1

∣∣∣ D̂
∣∣∣n2l

4l2+2
2 ;1 S0

〉
=

= N (−1)ϕ
δ (l, l2)

√
2[L0, S0, L01] 〈εl1| r̂ |n2l2〉 〈n′l| n2l2〉 ·

(
l1

∥∥∥C(1)
∥∥∥ l2
)
·
{
L0 l1 L01

1 l2 l2

}
; (3.29)

ϕ = 1 + L01 + L0 + l2; [x] ≡ 2x+ 1;

in the instant case of the closed -shell atom in the ground state. The expression
for the radial part of the 1s-3p transition amplitude R1s3p from (3.28) is given
in Sect. 2.7.1, and it follows from (3.29):

M1 =
2√
3
N 〈ε d| r̂ |2 p0〉 〈3p+| 2 p0〉 , (3.30)

N = 〈1s0| 1s〉2 〈2s0| 2s〉2 〈2p0| 2p〉4 .

The radiative transition operator in (3.28) and (3.30) is taken in the length
form, since considering the RPAE correlations does not lead to more than 0,5%
(neon atom) and 1% (argon atom) changes of the deep 1s-vacancy assisted
M -amplitude. In (3.30), the 1s0−, 2s0−, 2p0− wave functions are deduced by
solving the Hartree–Fock equations (2.26) for the configuration of the neon
atom ground state, the wave function of the Auger-electron is obtained in the
2p43p∗ configuration field with the “start-up” photoelectron, and the 3p+ –
wave function of the photoelectron is deduced by solving (3.19).

For calculating the s-spectroscopic factor of the 1s-vacancy in the vicin-
ity of the Auger-pole, we need an analytical approximation of the function
under the integral sign. Thus, we have chosen the approximation by Lagrange
polynomials of the second order (2.73) and obtained the formula:

s = lim
Δ→0

⎧
⎨

⎩1 +

⎛

⎝
α∫

0

+
∞
∫
β

⎞

⎠ψ (x) dx+D

⎫
⎬

⎭

−1

;

ψ (x) = f (x) · (x0 − x)−2 ; f (x) = V 2 (x) ;
D = (1/Δ) [f (α) + f (β) − 4f (x0)];
α = x0 − Δ; β = x0 + Δ;

where V (x) is the probability amplitude of the 1s vacancy Auger-decay and
if Δ → 0 the integral singularities are balanced out by the singularity of the
D function.

When calculating the correlationDr potential in the sum (3.21), we consid-
ered the harmonics κ = 0 for the direct integral and κ = 1, 3 for the exchange
integral of the interaction between the np-photo- and d-Auger-electrons, and
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Table 3.1. Cross-section of the 1 s − 3 p photoexcitation of the neon atom at one-
configuration (HF) and double-configuration (DHF) Hartree–Fock approximations.
The width for the 1s-vacancy decay 0,50 eV is taken from the experiment [74]. ω is
the absorbed photon energy, s is the spectroscopic factor of the 1 s-vacancy

ω, eV σ, Mb

HF DHF

864,97 0,2200 0,2135
865,22 0,5436 0,5356
865,47 1,0956 1,0956
865,72 0,5436 0,5520
865,97 0,2200 0,2267
s 0,999982

the angular coefficients a0 = 1, b1 = 1/15 and b3 = 3/70 averaged over the
terms of the (pd ; LS )-configuration.

The calculation has shown that the smallness of the values (1–s), Dr, and
their interference in (3.19) practically did not change the wave function of
the 3p-photoelectron of the one-configuration Hartree–Fock approximation.
So, the PCI effect practically does not influence the theoretical intensity and
form of the leading resonance of the differential cross-section for the elastic
scattering of the one-electron approximation. In other words, the effect of
the deep vacancy Auger-decay does not lead to changing the Hartree–Fock
resonances of the differential cross-section of the elastic scattering and forms
only the finite widths of their sections. At the same time, the insignificant
asymmetry (Table 3.1) of the resonance section for the 1s-3p photoexcitation
is determined by the appearance of the amplitude of the transition to the
Auger-decay state M1 from (3.29).

3.2.2 1s-εp Photoionization of Argon

The choice of channel of the 1s-vacancy Auger-decay and the expressions
for the phototransition amplitudes in (3.26) are the same as for the neon
atom. As for the neon atom, the smallness of the values (1 − s), Dr, and their
interference in (3.19) practically does not change the wave function of the
p-photoelectron of the continuous spectrum at the one-configuration Hartree–
Fock approximation. As a result, 0,2% difference of the absolute values for the
HF- and DHF-cross-sections of the argon atom photoionization in the energy
region of the 1s-shell ionization threshold (Table 3.2) is only determined by
the appearance of the amplitude of the transition to the Auger-decay state
M1 from (3.26). Hence, follows the conclusion for the differential cross-section
of the elastic scattering that is the same as for the neon atom.
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Table 3.2. Cross-section of the 1s−εp photoionization of the argon atom at the one-
configuration (HF) and double-configuration (DHF) Hartree–Fock approximations.
The width for the 1s-vacancy decay is 0,69 eV [60]. Other symbols are the same as
in Table 3.1

ω, eV σ · 102, Mb

HF DHF

3197,02 8,000 7,984
3197,70 7,980 7,964
3198,38 7,970 7,954
3209,27 7,500 7,485
s 0,999976

3.2.3 Study of the K-Photoionization of 4Be, 10Ne, and 18Ar
Atoms using the Methods of Multi-channel Resonance
Quantum Scattering Theory

Prior to conducting such a study, we shall define the analytical structure of
the overlap integral for the wave functions of the continuous spectrum of one
symmetry from the non-orthogontal basis sets.

Such integral appears in the theoretical models for describing the PCI
effect, where the idea of two “static” states of the field for the photoelectron
is represented – the parent deep vacancy state and the state of its Auger-
decay [123, 159]. At the same time, it is important to note that the desired
structure should be obtained only by considering the set completeness [119]
of the states being investigated without referring to the analytical structure
of their wave functions. This is determined by the fact that we have at our
disposal, for example, the analytical structure of the Hartree–Fock equation,
but we do not have its analytical solutions. Let us remark that there is no
integral of such type in our developing of the PCI effect theory (Part 3.1).

Below, we shall study [160] the PCI effect using the methods of
the multi-channel resonance quantum scattering theory without consider-
ing the electrostatic interaction between photo- and Auger-electrons in the
state of the deep vacancy Auger-decay. In Sect. 3.3 of our treatise, we shall
demonstrate that it is possible to ignore the mentioned interaction.

Analytical structure of the overlap integral. We shall take a closer look at
the wave functions of the m- and n-electrons of one symmetry of continuous
spectrum from the non-orthogontal basis sets. For the generalized function of
the form

Rn
mk = 〈m+| n〉 〈n| k+〉

we shall find the expression, where the singularities are distinguished. From
condition of the completeness of the |n〉 − states set

∑

n≤f,>f

∞∫

0

dn |nr〉 〈nr′ | = δ (r − r′)
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we deduced the integral equation for the desired function

∞∫

0

dnRn
mk = δ (m− k) − Lmk; Lmk =

∑

n≤f,>f

Rn
mk. (3.31)

Where f is the Fermi level and the integral is defined as
⎛

⎝
∞∫

0

⎞

⎠ = lim
A→0

lim
B→∞

⎛

⎝
B∫

A

⎞

⎠ .

For any x, y > 0, the integral expressions are

δ(x − y) =

∞∫

0

dz δ(x− z) δ(z − y),

1 = (1/2)

∞∫

0

dz [δ(x− z) + δ(z − y)],

we get the solution of (3.31)

Rn
mk = δ(m− n)δ(n− k) − 1

2
[δ (m− n) + δ (n− k)]Lmk. (3.32)

We do not analyze the problem of determining the possible solutions of equa-
tion (3.31) as an inhomogeneous first kind Fredholm integral equation [161]
in the class of generalized functions. We shall mention only the fact that the
problem of finding solutions for integral equations of such type refers to the
class of the improperly posed problems in mathematical physics [162].

It follows from (3.22) for a certain real function of appropriate behavior
ψm [160]:

∞∫

0

dmψm 〈m+| n〉 = ±
⎛

⎝ψ2
n − ψn

∞∫

0

dmψmLmn

⎞

⎠
1/2

, (3.33)

where the sign of the right hand side in expression (3.33) is determined by
the sign of the ψn function.

If returning to the one basis of the single-electron (m,n)-states, we have

Lmn → 0, 〈m+| n〉 → δ(m− n),

and instead of (3.33), we obtain the common result

∞∫

0

dmψm 〈m+| n〉 → ψn.
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The expression (3.33) gives the desired analytical solution of the overlap
integral as a singular kernel of the linear integral operator:

∞∫

0

dx 〈x+ |y 〉
∑

n

ψxn =
∑

n

∞∫

0

dx 〈x+ |y 〉ψxn.

Calculation results. We shall examine the application of the result (3.32).
By the example of the neon atom, we shall construct the expression for the
cross-section of photon absorbing by the atomic 1 s-shell:

σ = σ̄ + μ

∞∫

0

∞∫

0

dmdkAmAk[(ωm + iγ) (ωk − iγ)]−1Qmk; (3.34)

σ̄ = μ
∑

m>f

(γm/π)
(
ω2

m + γ2
)−1

A2
m;

μ =
4
3
π2α a2

0 ω;

ωm = ω − I1s −m; 2γ = Γ1s;

πQmk =

⎛

⎝
∑

n>f

+

ω−I∫

0

dn

⎞

⎠ γnR
n
mk.

In (3.34), we restricted ourselves to considering the main 2p4εd(n, ε′)p(1P1)
channel of the 1 s-vacancy Auger-decay and defined the following values: ω is
the absorbed photon energy, ωm is the energy, and Am is the amplitude of
transition from the atom ground state to the 1s1+mp+(1P1) state without con-
sidering the channel of the 1 s-vacancy Auger-decay; 2γn = Γ(ω − I − n) is the
width for the 1 s-vacancy Auger-decay in the fixed main quantum n-number
state, Γ1s is the total width of the 1 s-vacancy Auger-decay, I is the energy of
the 2 p-shell double ionization threshold, I1s is the energy of the 1 s-shell ion-
ization threshold, α is the fine structure constant, and a0 is the Bohr radius.
The wave function of the photoelectron before the 1 s-vacancy Auger-decay is
deduced by solving the Hartree–Fock equation (2.26) for the 1 s1+mp+(1P1)
configuration. The wave functions of the photo- and Auger-electrons in the
state of the 1s-vacancy Auger-decay are deduced by solving the Hartree–
Fock equations for the 2 p4εd(n, ε′)p(1P1) configuration. In the photon energy
region ω > I1s, the contribution to the cross-section of the 1 s–mp excitation
absorption is reduced by the energy denominator, and it enables us to use the
approximation 〈m+ |n 〉 → δmn for their accounting.

Considering (3.32) from (3.34), we obtain:

(σ − σ̄) /σ0
∼= 1 + π

∑

n>f

(γn − γ0) an ≡ ξ; (3.35)

an = 〈n| (ω − I1s)+
〉2 ;

σ0 = μA2
ω−I1s

; 2 γ0 = Γ (I1s − I) .
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The value (3.35) is numerically studied for atoms of beryllium, neon, and
argon. When energy ω = I1s + 1, 3606 (eV), we obtained: ξ = 0, 9999(4Be);
0, 9993(10Ne); 0, 9990(18Ar).

The overlap integral 〈n |(ω − I1s)+ 〉 can be interpreted from the physi-
cal standpoint as the amplitude of transition between the virtual states of
the photoelectron of the (ω − I1s)p+ continuous and np discrete spectra: the
(ω − I1s)p+ − np transition describes the quantum condensation process of
the continuous spectrum state to the np-state; the np-(ω − I1s)p+ transition
describes the quantum evaporation process of the np-state to the continuous
spectrum state. Such an interpretation does not break the Fermi–Dirac statis-
tics [6, 7] for electrons as fermions, since the amplitudes of the condensation
and evaporation processes for different quantum numbers n do not interfere in
(3.35). The difference of probabilities for these processes is described through
the sum in (3.35) and turns out to be vanishingly small: the competitive pro-
cesses of the quantum evaporation and condensation practically countervail
each other.

This way, in the multi-channel resonance quantum scattering theory (3.34),
as well as in the theory by the authors (Sect. 3.1), the radial relaxation effect
of the wave function of the continuous spectrum εp− photoelectron prac-
tically does not change the photoabsorbtion cross-section calculated at the
one-configuration Hartree–Fock approximation.

3.3 Quantum Theory of the Post-Collisional
Interaction Effect

The attempts to describe in theory the post-collisional interaction effect, in
the context of the perturbation theory [123, 159], have left open the main
question: the question of the convergence of the perturbation theory series in
the interaction operator for the photo- and Auger-electrons of the continuous
spectrum. This question arises from the following condition. It can be shown
(the result by the authors has not been published yet) that in the context of
the first-order perturbation theory in the interaction operator for the photo-
and Auger-electrons of the continuous spectrum, the logarithmic divergence
(if ε→ ε0) of the probability photoionization amplitude:

A (ω, ε) ∝ f (ω, ε) ln
∣∣∣∣
1 +

√
η

1 −√
η

∣∣∣∣ ; η = ε0/ε.

Here ε0 is the resonance value of the Auger-electron energy, ω is the absorbed
photon energy, and f(ω, ε) is the function of appropriate behavior.

No attempts have been made to study the stipulated problem outside
the perturbation theory in the published literature. Actually, the currently
available variants for the generalization of the non-perturbative quantum the-
ory of Fano autoionization [156] are restricted to considering the one-electron
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autoionization channel in the continuous spectrum [163–166] and does not
consider the intrachannel mixing effects of the two-electrons (photo- and
Auger-electrons) autoionization states of the continuous spectrum [167,168].

The theory of the post-collisional interaction effect developed in Sect. 3.1
has the form of the small ϕ12 - parameter perturbation theory. In this part
of our treatise we lift the mentioned restrictions and for the first time outside
the perturbation theory we find the analytical solution of the Schrödinger
equation for the wave function of the interacting continuous spectra system
of the atomic states – the atomic deep shell photoionization state and the
state of the Auger-decay of the deep vacancy with two electrons (photo- and
Auger-electrons) of the continuous spectrum [169–171].

Before developing such a solution, we shall point out two circumstances.
First, in the work [172] the analytical solution of the Schrödinger equation is
obtained for the first time for the wave function of the two interacting electrons
of the continuous spectrum that are moving in the external laser field and
nuclear field with the central Coulomb potential. But this solution as well as
the similar approach to describing the states of the interacting electrons of
the continuous spectrum through the Coulomb functions [173,174] cannot be
accepted. Actually, the wave functions of the one-electron states in atoms are
the solutions of the Hartree–Fock equations, not of the Schrödinger equation,
and they do not belong to the Coulomb function class in the field of the spatial
localization of the atomic deep shell. Secondly, we do not examine the radiative
channels of the deep vacancy decay. It is completely possible to ignore such
channels if we describe the K-photoionization cross-section of the atoms with
the nuclear charge Z ≤ 20. Actually, in this case, the Auger-component of the
total width of the 1s-vacancy decay is 2–3 order greater than the radiative
component [60].

3.3.1 One-channel Variant of the Theory

We shall develop the non-perturbative quantum theory of the post-collisional
interaction effect in two stages. In the first stage (this part of the treatise),
we shall restrict ourselves to examining the one (main) channel of the deep
vacancy Auger-decay. While in the second stage, we shall represent the scheme
of the generalization theory in the case of two and more channels of the deep
vacancy Auger-decay.

Wave function of the system. Let us examine the interacting continua
system of the atomic deep shell photoionization |x+〉− and |xy〉 − states of the
Auger-decay of the resulting deep vacancy with photo- and Auger-electrons of
the continuous spectrum. As an example, we can take the following: |x+〉 →∣∣1s1xp+

〉
and |xy〉 → ∣∣2p4ydxp

〉
at 1 s-shell photoionization of the neon atom.

We obtained the wave function of the xp+− photoelectron here in the field
of one 1 s-vacancy, and the wave functions of the xp-photo- and yd -Auger-
electrons in the field of two 2 p-vacancies.
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The following development of the theory does not depend on the kind
of approximation used in deducing the wave functions basis for one-electron
states though we shall have in mind the Hartree–Fock approximation basis.

The wave function of the system determined above as the eigen function
of the Hamiltonian of the atom

Ĥ |ψω〉 = Eω |ψω〉 ; (3.36)

〈ψω| ψω′〉 = δ (ω − ω′) ;

we shall search in the form of the linear combination

|ψω〉 = aω (|ϕ〉 + |ϕω〉) ; (3.37)

of the wave functions for two integral packs

|ϕ〉 =
∫∫

D

dxdyα(x, y) |xy〉; |φω〉 =

∞∫

0

dxβ(ω, x) |x+〉.

We shall require the following equalities to be realized:

〈x+| Ĥ |y+〉 = Exδ(x− y); 〈ϕ| Ĥ |ϕ〉 = Eϕ;

〈ϕ| ϕ〉 = 1; 〈xy| x′y′〉 = δ(x − x′)δ(y − y′);

〈x+| y+〉 = δ(x− y); 〈x+| xy〉 = 0.

We used here the atomic system of units and determined the following values
Eω = ω + E(0), ω is the energy of the photon absorbed by an atom, E(0) is
the energy of the atomic ground state, Ex is the energy of the atomic single
photoionization, Eϕ is the energy of the localized integral pack |ϕ〉 , and the
two-dimensional region of integration D : 0 ≤ x, y ≤ C.

The system of non-linear integral equations for desired functions aω,
β(ω, x), α(x, y), C follows from (3.36) and (3.37):

∫∫

D

dxdy |α(x, y)|2 = 1; (3.38)

Eϕ = E0 +
∫∫

D

dxdy |α(x, y)|2 (x+ y) + J ; (3.39)

J =
∫∫

D

dxdy α(x, y)
∫∫

D

dx′dy′α (x′, y′)Qyy′
xx′;

Eω = Eϕ +

∞∫

0

dxβ(ω, x)Wx; (3.40)

Wx =
∫∫

D

dydz α(y, z) 〈x+| Ĥ |yz〉;
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Eωxβ(ω, x) = Wx; Eωx = Eω − Ex; (3.41)

aωaω′

⎛

⎝1 +

∞∫

0

dxβ(ω, x)β(ω′, x)

⎞

⎠ = δ(ω − ω′). (3.42)

In (3.39), the following values are determined: E0 is the energy of the deep
vacancy Auger-decay state and J is the energy of the continuous spectrum
photo- and Auger-electrons interaction in the Auger-decay state. The singular
interaction integral Qyy′

xx′ (the linear combination of the F 0-Coulomb and Gk-
exchange integrals) of the photo- and Auger-electrons is determined as the
non-diagonal part of the intrachannel mixing matrix

〈xy| Ĥ |x′y′〉 = (E0 + x+ y) δ(x− x′) δ (y − y′) +Qyy′
xx′.

We shall determine the solution of the equation system (3.40), (3.41) and
(3.42).

We shall keep in mind, that the solution of the equation x f(x) = g(x)
under the given regular function g(x) is the generalized function f(x) =
P [g(x)/x] + c δ(x). This function can be interpreted as the singular kernel of
the linear integral L̂-operator forced on certain function η(x) by convention:

L̂f [η] =

+∞∫

−∞
f(x) η(x) dx = P

+∞∫

−∞

dx

x
g(x) η(x) + c η(0);

where P is the symbol of the main Cauchy principle value and c is any given
value [119].

Then, we obtain:

aω = [γω

(
z2

ω + π2
)
]−1/2; (3.43)

β(ω, x) = Wx[P
(
E−1

ωx

)
+ zωδ (Eωx)]; (3.44)

zω = (Eω − Eϕ − Fω) /γω;

Fω = P

∞∫

0

dx γxE
−1
ωx ; γx = |Wx|2 .

It follows from (3.43) and (3.44) that the values aω, β(ω, x) are the functionals
from the function α(x, y), that turns (3.38) into the identity. For its part, any
real regular function of the following form is in accordance with (3.38):

|α(x, y)|2 = Nf (x, y) ; N−1 =
∫∫

D

dxdy f (x, y).
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As a condition that fixes the analytical structure of the function α(x, y), we
require that the energy Eϕ from (3.39) equals:

Eφ → E0 + C + J. (3.45)

The value C here is defined as the potential difference of the atomic deep shell
ionization and formation of the deep vacancy Auger-decay state.

Then, calculating the double integral in (3.39) we find out that the
condition (3.45) is satisfied in the class of functions:

f(x, y) = η [(C − x− y)2 + (πη)2]−1; (3.46)

η = |V (C)|2 ,

where the V (C) is the amplitude of the deep vacancy Auger-decay. Thus, for
the example initiated above for the 1s-vacancy, Auger-decay of the neon atom
V (C) =

〈
1s1
∣∣ Ĥ
∣∣2p4Cd

〉
.

The parameter η in (3.46) remains arbitrary (the integrating result in
(3.45) does not depend on η). As a consequence, we consider it fixed too,
reasoning from the following additional requirement. The structure of the
J−integral should correspond with the structure (and topology) of the
Goldstone-Hubbard-Feynman diagrams describing the continuous spectrum
photo- and Auger-electrons interaction. Such diagrams are determined and
represented in the work by the authors [155] for the photoelectron of the
discrete spectrum.

The expressions (3.37), (3.43), (3.44), and (3.46) give the analytical solu-
tion of the Schrödinger equation (3.36) that should be found outside the
perturbation theory.

Photoionization cross-section. The obtained solution determines the ana-
lytical structure of the atomic deep shell photoionization cross-section:

σω =
4
3
π2 αa2

0 ω Lω |Xω + (ΔEω/Wω)Yω |2 . (3.47)

In (3.47), the amplitudes are defined as

Xω = 〈0| D̂ |χω〉 ;

|χω〉 = |ϕ〉 + P

∞∫

0

dx (ω − I − x)−1Wx |x+〉;

Yω = 〈0| D̂ |(ω − I)+〉 ;

as well the spectral density of the final states

Lω = γω[(ΔEω)2 + (πγω)2]−1; (3.48)
ΔEω = ω − (I + Fω + J) .
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Where I is the energy of the atomic deep shell ionization threshold and D̂ is
the radiative transition operator.

The absence of analytical solutions for Hartree–Fock equations makes
possible to study the W - and J-integrals using only numerical techniques.
This can be revealed as an independent problem and is the subject of future
inquiry. Here we shall represent the result of the quantitative estimation for
the J-integral at the plane wave approximation

Pk(r) → (2/πk)1/2 sin(kr), k2 = 2x

for the wave functions of the continuous spectrum photo- and Auger-electrons.
We shall examine the main contribution to the J integral from (3.39)

determined by the F 0(xy;x′y′) Coulomb integral. We consider the resonance
(if x + y → C) character of the function α(x, y) and, as a result, confine the
integration domain through the D limits C−2γ ≤ x, y ≤ C. Then, we obtain:

J =

∞∫

0

dr

⎧
⎨

⎩
1
r

r∫

0

dr′R(r, r′) +

∞∫

r

dr′

r′
R(r, r′)

⎫
⎬

⎭;

R(r, r′) = q ψα(r)ψβ(r)ψα(r′)ψβ(r′);

ψα(r) =
1
r

[1 − cos(αr)] ;

α = (8C)1/2 ; β = γ (2/C)1/2; q =
1
γπ3

.

Finally, considering the ψ−functions localized state

lim
r→0,∞

ψα(r) = 0;

and satisfying the inequality C >> 2γ, we have:

J = (γ
√

2/π)2 (2C)−3/2

(
1 + 4 ln

2C
γ

)
;

lim
γ→0

J = 0;

where the values C and γ are in atomic units.
Then, by the example of neon atom having the 1 s-vacancy decay width

2γ1s = 0, 23 eV [129] and the potential difference C = 808, 43 eV, we find out
that the J integral ≈ 10−5 eV. Agreeing with (3.48), the J integral describes
the ionization threshold shift of the deep shell of the one-electron approxima-
tion atom to the short-wave (J ≥ 0) region of the absorbed photon energies.
The obtained value of the J integral is negligible for the neon atom in compar-
ison with the experimental energy value of the 1 s-shell ionization threshold
I1s = 870, 23 eV [125].

By this means, we can predict that the interaction effect of the continuous
spectrum photo- and Auger-electrons for the atoms having nuclear charge
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Z ≤ 20 practically does not change the photoionization cross-section of the
one-electron approximation deep shell. We have obtained this result outside
the limits of the perturbation theory, and thus this result has a fundamental
character for the atomic spectroscopy of the X-ray range.

To complete the creation of the one-channel variant of the non-perturbative
quantum theory for the atomic deep shell photoionization, we shall point out
two conditions.

The first condition: in the limit of neglect of the transition amplitude
to the |ϕ〉 − pack state and γω → 0 the known expression follows from
(3.37) for the photoionization cross-section of the atomic deep shell at the
one-configurational Hartree–Fock approximation [10, 158]:

σω → σHF
ω =

4
3
π2αa2

0ω|Yω |2 .

The second condition: in published literature, the post-collisional interaction
effect is traditionally connected with the energy shift and profile deformation
effect of the Hartree–Fock resonances of photo- and Auger-electron spectra
observed in the experiment [123,175]. To study the electron spectra is not the
aim of our treatise. Here we point once again to the result we have obtained.
Both in absorption and differential cross-sections of the elastic X-ray photon
scattering by an atom, the post-collisional interaction effect is depleted of
“visible” manifestations [171].

3.3.2 Generalization of the Theory

If we have to consider two or more channels of the deep vacancy Auger-decay,
it is possible to generalize the non-perturbative quantum theory outlined in
this part of our treatise in the following manner [170].

In the aggregate of the N localized integral packs of the Auger-decay states
with x-photo- and y-Auger-electrons of continuous spectrum

|ϕi〉 =
∫∫

D

dxdy αi(x, y) |xy, i〉; 〈ϕi| ϕj〉 = δij ;

〈ϕi| Ĥ |ϕj〉 = Hij ; Hii = Eϕi ;
D : 0 ≤ x, y ≤ Ci; i = 1, 2, . . . , N ;

we determine the system of the wave functions

|Φn〉 =
N∑

i=1

ain |ϕi〉; 〈Φn| Φm〉 = δnm. (3.49)

The weight coefficients are deduced using preliminary diagonalization of the
energy matrix and the following is realized (En is the energy of the |Φn〉 state)

〈Φn| Ĥ |Φm〉 = Enδnm; n,m = 1, 2, . . . , N.
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Finally, substituting in the wave function (3.37)

|ϕ〉 →
N∑

n=1

ρn |Φn〉;

Wx → Wnx = 〈Φn| Ĥ |x+〉 ;

to determine the values aω, ρn, αi(x, y), Ci, β(ω, x), we realize the mathemat-
ical methods of the works [156,163,167,168].

Inclusion of the |n+〉 states of the atomic deep shell photoexcitation and
the localized integral packs of the deep vacancy Auger-decay with the photo-
electron of the discrete spectrum in the linear combination (3.49) of the wave
functions

|ϕn
i 〉 =

∫

D

dy αn
i (y) |ny, i〉; 〈ϕn

i | ϕm
j

〉
= δij δnm;

D : 0 ≤ y ≤ Cn
i ;

lets us formulate the non-perturbative quantum theory of the atomic deep
shell excitation/ionization by the X-ray photon.

3.4 Main Results of Chapter 3

1. The quantum theory of the post-collisional interaction effect is developed
when the X-ray photon is absorbed in the region of the atomic deep
shell ionization threshold. The analog of the multi-configurational Hartree–
Fock–Jucys equation is deduced for the wave function of the photoelectron.
The theory being developed predicts among other factors, the width of the
deep vacancy Auger-decay to depend on the absorbed photon energy:

ΓE → Γω = 2π
(
|Vω |2 + Cω

)
;

VE → V (ε = ω − I12 − εn) ≡ Vω .

I12 is the energy of the formation of the deep vacancy Auger-decay, ε is the
Auger-electron energy, and εn is the photoelectron energy. To study this
prediction numerically is not the aim of our treatise, but is of fundamental
interest for the resonance absorption spectroscopy, elastic, and inelastic
X-ray photon scattering by an atom.

2. The analytical structure is determined for the overlap integral of the wave
function of one symmetry continuous spectrum from the non-orthogonal
basis sets. The result is obtained without turning to one or another type of
the wave functions analytical structure of the one-electron states. This way,
it has a general character for any quantum states meeting the condition of
completeness.
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3. Using the methods of the developed theory, as well the multi-channel
resonance quantum scattering theory, the cross-sections of the 1s-3p pho-
toexcitation are calculated for the neon atom as well the cross-sections
of the near-threshold K-photoionization for the atoms of beryllium, neon,
and argon considering the post-collisional interaction effect. It is found
that this effect practically does not change the cross-sections of the one-
configuration Hartree–Fock approximation. As a consequence, the post-
collisional interaction effect practically does not change the calculation
results at one-configuration approximation of the differential cross-sections
of the elastic X-ray photon scattering by an atom in the region of the deep
shell ionization threshold.

4. Outside the limits of the perturbation theory, the analytical solution of the
Schrödinger equation is determined for the wave function of the interacting
atomic states system – the state of the atomic deep shell photoioniza-
tion and the state of the deep vacancy Auger-decay with two (photo-
and Auger-) electrons of continuous spectrum. The solution takes into
account the radial relaxation effects of the photoelectron wave function
and its interaction with the Auger-electron. The scheme for generalizing
the obtained solution is recommended in the case of considering two and
more channels of the deep vacancy Auger-decay, as well the atomic deep
shell photoexcitation states.



4

Many-Particle and Orientation Effects
When Anomalous Elastic X-Ray Photon

Scattering by a Linear Molecule

When measuring the spectral characteristics of the many-electron systems
that do not possess spherical symmetry and are preliminarily constructed
with reference to the polarization vector of the incident photon, the strong
orientation effects are expected to appear. This conclusion of the molecular
spectra theory [176] is studied in the present chapter of our treatise by the
example of developing the quantum theory and calculation methods for the
differential cross-section of the elastic X-ray photon scattering by the linear
molecule having hydrogenic (HF, HCl) and non-hydrogenic (CO) ligands. In
Sect. 4.1, we present the developing of this theory and calculation methods
for the differential cross-section of the process. We determine the analytical
structure of the linear molecule form factor at the one-center approximation
[177] of the wave functions of the molecular orbitals. In Sect. 4.2, we present
the calculation results for differential cross-section of the elastic X-ray photon
scattering in the energy region of the deep orbitals ionization thresholds for
molecules HF, HCl, and CO.

4.1 Differential Cross-Section of the Process

The construction of the differential cross-section for the elastic X-ray photon
scattering by a molecule is the same as for an atom. Not repeating the details
of construction given in Chap. 2, we shall describe only the main structures
and new elements of the theoretical scheme. We shall restrict ourselves to
the case, when the polarization vectors of the incident and scattered photon
are at right angle to the scattering plane. It will be remembered that the
scattering plane is determined as a plane passing through the wave vectors of
the incident and scattered photons.

We shall define the electron ϕnγ wave function being transformed, in accor-
dance with an indecomposable representation γ with the line μ in the shape
of the one-center expansion in functions with the fixed value of the orbital
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moment l:

|ϕnγ〉 = |nγμχ〉 = |nγμ〉 |χ〉, (4.1)

|nγμ〉 =
∞∑

l=0

anγ
l |nγlμ〉,

|nγlμ〉 =
1
r
Pnγ

l (r)Y γμ
l (ϑ, ϕ),

where n is the main quantum number; χ is the spin part of the wave function;
anγ

l are weight coefficients; Pnγ
l (r) is the radial part; and Y γμ

l (ϑ, ϕ) is the
angular part of the wave function of the l- symmetry having a fixed (for a linear
molecule) value of the μ impulsive moment projection on the quantization axis
OZ (linear molecule axis) and r, ϑ, ϕ spherical coordinates.

Thus, the expression for the differential cross-section of the elastic X-ray
photon scattering by a linear molecule takes the form in the atomic system of
units:

dσ⊥/dΩ = r20

∣∣∣∣∣∣
F (θ;ω) +

∑

q

∑

nγ≤f

Qq
nγ(ω)

∣∣∣∣∣∣

2

. (4.2)

q is the irreducible tensor operator for radiative transition, F (θ;ω) is the
form factor of the linear molecule, Qq

nγ(ω) are the Kramers-Heisenberg-Waller
terms for the nγ-molecular orbital, and f is the Fermi level.

Let us define concretely the analytical structures of the functions in (4.2).

4.1.1 Form Factor of the Linear Molecule

In the published literature, the analytical structure of the molecule form factor
has been examined using two approximations: “atoms in molecules” approxi-
mation [178] and approximation of the form factor as an electron inventory in
the molecule [59]. In our treatise, we remove the restrictions of the mentioned
approximations. The result of our construction will be, among other factors,
the fact that the form factor of the linear molecule is a function of its spatial
orientation. This result, however, is missing in the approximation mentioned
above.

Considering (4.1), the exponent expansion in spherical functions (2.20) and
the Wigner–Eckart theorem (2.21) for the form factor of the linear molecule
(μ1 = μ2 = μ), we obtain the expression:

F (θ;ω) =

〈
φ

∣∣∣∣∣∣

N∑

j=1

exp [i (k · rj)]

∣∣∣∣∣∣
ϕ

〉
=
∑

nγ≤f

Fnγ(θ;ω); (4.3)

|φ〉 = (N !)−1/2 det ‖ϕnγ‖ ;

Fnγ(θ;ω) = Nnγ

∑

l1l2

∞∑

t=0

it(2t+ 1) 〈nγl1| jt |nγl2〉Ctμ
l1l2

Pt (cosΘk);
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〈nγl1| jt |nγl2〉 = anγ
l1
anγ

l2

∞∫

0

Pnγ
l1

(r)Pnγ
l2

(r) jt(kr) dr;

k = |k| = |k1 − k2| =
2ω
c

sin
(
θ

2

)
;

Ctμ
l1l2

= (−1)β
(
l1

∥∥∥C(t)
∥∥∥ l2)

(
l1 t l2
−μ 0 μ

)
;

β = l1 − μ; |l1 − l2| ≤ t ≤ l1 + l2 .

Here |ϕ〉 is the wave function of the molecule ground state, Nnγ is the occu-
pation number of the nγ−molecular orbital, Θk is the angle between the
scattering vector and the molecular axis OZ, j t is the t-order Bessel spheri-
cal function of the first kind, P t is the t-degree Legendre polynomial of the
first kind. The value of μ impulsive moment projection is fixed by the term
structure of the molecule ground state (for example, μ = 0 for the term 1Σ of
the molecules studied in the treatise).

When calculating the special functions in (4.3), the following mathematical
facts [179] are realized. We calculated the Legendre polynomials using the
recurrence relation:

(n+ 1)Pn+1(x) + nPn−1(x) = (2n+ 1)xPn(x); n ≥ 1;
P0(x) = 1; P1(x) = x.

The Bessel functions were calculated using the integral approximation (Pois-
son integral):

jn(x) = xn (2nn!)−1

1∫

0

(1 − η2)n cos(xη)dη. (4.4)

The numerical experiments were carried out as shown in the following. For
x→ 0, if n >> 1 using the recurrence relation:

jn+1(x) + jn−1(x) =
1
x

(2n+ 1)jn(x); n ≥ 1;

j0(x) =
1
x

sinx; j1(x) =
1
x

(j0(x) − cosx);

turns out to be an ineffective algorithm. On the other hand, the representation
(4.4) requires for its realization relative dense decomposition of the interval
of integration η ∈ [0; 1].

4.1.2 Anomalous Dispersing Kramers-Heisenberg-Waller Terms

At dipole approximation for N -electron, the irreducible tensor operator of the
photon-linear molecule interaction (length form) is given as [66]:
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D̂q =
N∑

i=1

r̂iC
(1)
qi ; q = 0,±1;

the Kramers–Heisenberg–Waller terms considered in accordance with (1.5)
takes the form:

Qq
nγ(ω) = ξ S

ε>f

ω̄εω
2
ε

ω2 − ω̄2
ε

∣∣∣
(
φnγ ,ε

∣∣∣D̂q

∣∣∣ φ)
∣∣∣
2

; (4.5)

ω̄ε = ωε − iΓnγ/2,

where {ξ = 2/3, q = 0; ξ = 1/3, q = ±1} ; ε is the set of quantum numbers
of the photoelectron; ωε is the transition energy from the ground state to the
excited molecular state; Γnγ is the total width of the vacancy decay of the
excited state.

We shall examine the calculation algorithms for the structural constituents
(4.5).

Matrix elements calculation of the dipole transition operator. According
to Chap. 2, the main many-particle effect, when absorbing the X-ray photon
with the energy close to the atomic deep shell ionization threshold (atom
in molecule), is the electron shell relaxation in the deep vacancy field. And
what is more, in molecules, the relaxation effect can lead to changing the
composition and the degree of the atomic l-components participation in the
wave function of the molecular orbital [180].

In order to consider the relaxation effect, the method of the non-orthogonal
orbitals theory is realized [181], it is given in Sect. 2.2.1. According to this
method, the wave functions |εγ1μ1χ〉 of the excited one-electron states are
determined with provision for the vacancy field, and are non-orthogonal
to the wave functions of the one-electron state of the original molecular
configuration.

Then, the matrix element of the transition operator in (4.5) takes the form:

(φnγ ,ε |D̂q |φ) = N 〈Φγ1μ1
ε | d̂q |nγμ〉 ; (4.6)

|Φγ1μ1
ε 〉 = | εγ1μ1 〉 −

∑

kγμ≤f

〈kγμ| εγ1μ1〉
〈kγμ| kγμ〉 |kγμ〉 ;

〈εγ1μ1| d̂q |nγμ〉 =
∑

ll1

〈εγ1l1| r̂ |nγl〉C1μ1μ
qll1

;

C1μ1μ
qll1

= (−1)β
(
l1

∥∥∥C(1)
∥∥∥ l
)(

l1 1 l
−μ1 q μ

)
;

β = l1 − μ1; q − μ1 + μ = 0;

where N is the product of the overlap integral of the wave functions of
electrons not participating in the transition.

The structure of the transition amplitude in (4.5), when considering
the double excitation/ionization effect of the molecule ground state, will be
represented in Sect. 4.2 (see (4.20)).
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Wave function calculation of the excited states. The construction of the
wave function of the photoelectron for a linear molecule, with ligands being
heavier as hydrogen, deals with the problem of the slow convergence of series
(4.1). In our treatise we shall follow the method described in [181, 182] that
virtually enables to circumvent this difficulty.

According to this method, the wave function of the photoelectron is
constructed as:

|nγμ〉 =
∑

l≤l0

∣∣ψlμ
nγ

〉
+
∑

i≤f

αn
i

∑

l>l0

∣∣∣ψlμ
iγ

〉
, (4.7)

where the functions
∣∣ψlμ

nγ

〉
with l ≤ l0 are determined through the expansion

in basis set ∣∣ψlμ
nγ

〉
= S

k>f
bnγ
kl |klγμ〉+

∑

i≤f

αn
i

∑

l≤l0

∣∣∣ψlμ
iγ

〉
. (4.8)

The wave functions |klγμ〉 here are found by solving the Hartree–Fock
equations: (

Φ̂ − εklγμ

)
|klγμ〉 = 0; (4.9)

where Φ̂ is the Fock integral operator [69].
Considering the states of the continuous spectrum in (4.8), we substitute

the integration domain D : ε ∈ [0;∞) for the domain ε ∈ [0; εmax] and form
the quasidiscrete spectrum:

∫

D

bnγ
εl |εlγμ〉dε→

∑

m

bnγ
ml |mlγμ〉 ;

bnγ
ml = bnγ

ε0l

√
Δεm; |mlγμ〉 = |ε0lγμ〉

√
Δεm;

where the value ε0 is selected in the middle of the partial interval Δεm. The
value εmax is selected under condition of the saturation of the system formu-
lated below – if ε > εmax the computational solution of the system practically
does not change.

After substitution of (4.8) for (4.7) and considering (4.9), we arrive at the
system of algebraic equations:

∑

m

∑

l≤l0

bnγ
ml

(
〈m′l′γμ| Φ̂ |mlγμ〉 − εnγδmm′δll′

)
+

+
∑

i≤f

αn
i

∑

l

〈m′l′γμ| ψlμ
iγ

〉
(εi − εnγ) = 0; (4.10)

∑

m

∑

l≤l0

bnγ
ml

〈
ψl′μ

i′γ

∣∣∣ mlγμ〉 (εi′ − εnγ) δll′ +

+
∑

i≤f

αn
i

(
∑

ll′

〈
ψlμ

iγ

∣∣∣ Φ̂
∣∣∣ψl′μ

i′γ

〉
− εnγδii′

)
= 0; (4.11)
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Fig. 4.1. Orientation of the linear molecule (for example, HCl molecule) with
regard to polarization vectors of the incident (e1) and scattered (e2) X-ray photons
in the schemes of intended anomalous elastic scattering experiment. It is indicated
that k1−, k2− are the wave vectors of the incident and scattered photons; θ is the
scattering angle; OZ is the quantization axis (linear molecule axis); I is the photon
source; and D is the scattered photon detector. The scattering plane goes through
the wave vectors of photons

that determine the desired weight α−, b− coefficients in expansion of the wave
function of the photoelectron.

Spatial orientation of molecule. The spatial orientation types of linear
molecule that are examined in our treatise (schemes for intended experiment)
are represented in Fig. 4.1 by an example of the HCl molecule. Scheme (a):
the molecular axis and the quantization axis OZ are co-directional, the molec-
ular axis is at right angle to the photon polarization vectors and parallel
to the wave vector of the incident photon. Scheme (b): the molecular axis and
the quantization axis OZ are co-directional, the molecular axis is parallel to
the photon polarization vectors and at right angle to the scattering plane.
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We shall find the analytical expressions for the probability of the transition
to (4.5) and for arguments of the Legendre polynomials in the schemes rep-
resented in Fig. 4.1. To be concrete, we shall examine the photon absorption
by 1σ2 -molecular orbital.

Scheme (a): in this case e1,2 = (1; 0; 0) ⇒ (e1 · D) = D̂x and the square
of the matrix element of the transition operator in (4.5) takes the form:

1
2

{∣∣∣
(
1σ
∣∣∣D̂−1

∣∣∣ επ
)∣∣∣

2

+
∣∣∣
(
1σ
∣∣∣D̂+1

∣∣∣ επ
)∣∣∣

2
}

; , (4.12)

where we have considered the connection of the Cartesian and spherical
coordinates of the transition operator D̂x = 1√

2

(
D̂−1 − D̂+1

)
.

In (4.12), the π-symmetry of the photoelectron is held fixed. The photo-
electron escapes along the axis OX, having the projections of the impulsive
moment on the axis OZ that are equal ±1. The projections of the impulsive
moments of the incident photon and the 1σ− molecular orbital on the axis
OZ were zero.

After photon absorption and photoelectron formation, the “zero” survives:
(+1) + (−1) = 0. In addition, if the term of the molecule ground state equals
1Σ, as a result of the transition 1σ → επ the term 1Π :2 Σ⊕2Π →1 Π appears,
where the terms of the molecular core and photoelectron are “summarized”.
The resulting 3Π term of the transition is not realized at the approximation
of the LS -bonding because of the rule of spin selection ΔS = 0.

In Scheme (a), the angle Θk = 1
2 (π − θ), the Legendre polynomials in

(4.3) takes the form:

Pt (cosΘk) → Pt

(
sin

θ

2

)
; (4.13)

and this modifies the scattering angle dependence of the linear molecule form
factor that is determined by Bessel functions.

Scheme (b): in this case e1,2 = (0; 0; 1) ⇒ (e1 · D) = D̂z and the square
of the matrix element of the transition operator in (4.5) takes the form:

∣∣∣
(
1σ
∣∣∣D̂0

∣∣∣ εσ
)∣∣∣

2

; D̂z = D̂0. (4.14)

In (4.14), the σ-symmetry of the photoelectron is held fixed. Essentially, the
photoelectron being incident along the axis OZ must keep the “zero” value of
the projections of impulsive moments on this axis of the incident photon and
1σ-molecular orbital. In addition, if the term of the molecule ground state
equals 1Σ, as a result of the transition 1σ → εσ the term does not change:
2Σ ⊕2 Σ →1 Σ, where the terms of the molecule core and the photoelectron
are “summarized”. The resulting 3Σ term of the transition with ΔS = 1 is
not realized at the approximation of the LS -bonding.

In Scheme (b), the angle Θk = π/2, the Legendre polynomial in (4.3) takes
the form:
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Pt (cosΘk) → Pt(0); (4.15)

and does not depend on the scattering angle, compared to (4.13).
Thus, the range sum in (4.2) in Scheme (a) consists of two terms (q = ±1),

while in Scheme (b) it has only one term (q = 0). In addition, according to
(4.13) and (4.15), the form factor of the linear molecule turns out to be the
function of its spatial orientation types.

4.2 Differential Cross-Sections of the Anomalous Elastic
X-Ray Photon Scattering by a Two-Atom Molecule

As a subject of our inquiry, we have chosen two-atoms of molecules HF, HCl,
and CO in the gas phase. We shall represent the calculation results for the
scattering differential cross-sections in the context of the quantum theory
developed in Sect. 4.1.

4.2.1 Scattering by the Molecules HF and HCl in the Energy
Region of the 1σ− Shell Ionization Threshold

We calculated the one-electron wave functions of the molecules HF and HCl
by solving the system of (4.10) and (4.11). At the same time, we did not
substitute the items with l > l0 for the items of functions of occupied states.
In this case, we obtained the equations for one-electron functions from the
mentioned system, keeping only the first item of the first equation:

∑

m

∑

l≤l0

bnγ
ml

(
〈m′l′γμ| Φ̂ |mlγμ〉 − εnγδmm′δll′

)
= 0. (4.16)

This calculation method is used [183] for studying the role of many-particle
and vibronic effects in making the structure and form of the 1σ− photoab-
sorption spectra of the molecules HF and HCl, this corresponds well with the
experiment [184].

If calculating the wave functions in (4.1), (4.16) and the values (4.2), (4.5),
(4.6), the one-center expansion is restricted by the value of the orbital moment
l0 = 6.

The calculation results are shown in Figs. 4.2 and 4.3.
Let us remark here that in the case of molecules HF and CO (see

Sect. 4.2.2), the form and absolute values of the differential cross-sections of
the elastic scattering practically does not depend on the scattering angle. The
criterion of this independence satisfies the inequality [59]:

R < η = λ ·
(

4π
∣∣∣∣sin
(
θ

2

)∣∣∣∣

)−1

; (4.17)

where R is the internuclear distance, θ is the scattering angle, and λ is the
wave length of the scattered photon. In the region of the deep shell ionization
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Fig. 4.2. Differential cross-section of the anomalous elastic linear polarized (at right
angle to the scattering plane) X-ray photon by the HF molecule for the schemes of
the intended experiment (Fig. 4.1a, b, respectively). ω is the scattered photon energy
and θ is the scattering angle. The experimental energy value of the 1σ shell ionization
threshold is 694,10 eV [184]

thresholds, the inequality (4.17) is fulfilled for molecules HF and CO and is
not fulfilled for molecule HCl as we have wide scattering angles (see Table 4.1).
Thus, for the molecule HCl we represent the calculation results for the scat-
tering angles 0◦ and 90◦, and for molecules HF and CO, only the scattering
angle 90◦.
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Fig. 4.3. Differential cross-section of the anomalous elastic linear polarized (at
right angle to the scattering plane) X-ray photon scattering by the HCl molecule for
schemes of the intended experiment (Fig. 4.1a, b, respectively). ω is the scattered
photon energy and θ is the scattering angle. The theoretical energy value of the 1σ
shell ionization threshold is 2829,50 eV [183]
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Table 4.1. Values R and η from (4.17) in the region of the deep shell ionization
thresholds for molecules HF(1σ), HCl(1σ), CO(2σ)

Molecule R, Å ω, eV λ, Å η, Å

θ = 0◦ θ = 90◦ θ = 180◦

CO 1,128 300 41,36 ∞ 4,66 3,29
HF 0,920 695 17,85 ∞ 2,01 1,42
HCl 1,274 2830 4,38 ∞ 0,50 0,35

The data for the internuclear distances are taken from the works [178, 185]

The resonances of the scattering cross-sections represented in Fig. 4.2, 4.3
are determined by the transitions from the ground state of the molecules HF
(the configuration of the ground state 1σ2 2σ23 σ2 1π4

[
1Σ
]
) and HCl (the con-

figuration of the ground state 1σ2 2σ2 3σ21π4 4σ2 5σ2 2π4
[
1Σ
]
) to the states of

the single photoexcitation 1σ−1nπ
[
1Π
]

(Scheme Fig. 4.1a) and 1σ−1nσ
[
1Σ
]

(Scheme Fig. 4.1b). The broad (Γ = 1, 90 eV) and intensive (oscillator strength
f = 0, 0149) resonance for the molecule HF (n = 4) opens a series of the
1σ → nσ photoexcitation states if the scattered photon energy ω = 687, 30 eV,
as well as the similar (Γ = 1, 80 eV; f = 0, 0036) resonance for the molecule
HCl (n = 6) if ω = 2823, 50 eV. In addition, the first resonance of the 1σ → nπ
photoexcitation appears only if ω = 690, 80 eV for the molecule HF (n = 2)
and ω = 2827, 00 eV for the molecule HCl (n = 3).

It follows from Figs. 4.2 and 4.3 that the transition from scheme (a)
to scheme (b) is accompanied by a profound orientation effect. Actually,
the states of 1σ → 4σ photoexcitation of the molecule HF and 1σ → 6σ
photoexcitation of the molecule HCl become apparent in the differential cross-
section in the form of additional broad resonance of the elastic scattering
[186–188].

4.2.2 Scattering by the Molecule CO in the Energy Region
of the 2σ− Shell Ionization Threshold

In the experimental research of the X-ray [135, 189–194] and electron
[195, 196] spectra of the molecule CO (configuration of the ground state
1σ22σ23σ24σ21π45σ2

[
1Σ
]
) in the region of the deep 2σ-shell ionization

threshold, we can discover their complicated fine structure. The sub-threshold
region of the photoabsorption spectrum contains a very intense first line con-
nected with the 2σ − 2π transition, as well as a series of less intense lines of
the 2σ → n(σ, π) photoexcitation. The post-threshold region of the spectrum,
with an extension ∼25 eV is mainly formed by the processes of the single
2σ → ε(π, σ) photoionization, as well by transitions to the states of multiple
excitation/ionization [193].

Measurements [197,198] and calculation [199] make it possible to evaluate
the integral contribution of the multiple excitations/ionization processes to
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the total intensity of photoabsorption of 25–30% magnitude. At the same
time the calculations [182, 200, 201] show that the thresholds of the onset of
multiple excitation/ionization main channels are situated in close proximity
to the 2σ− shell ionization threshold ω2σ = 296, 05 eV.

By this means, the theory and the experiment show that multiple excita-
tion/ionization effect of the ground state of the CO molecule plays a significant
role in making the structure and form of its photoabsorption spectrum in the
region of the deep 2σ− shell ionization threshold. We can suggest that this
statement remains for the elastic scattering spectra too.

The present part of our treatise is devoted to studying this suggestion.
We calculated the matrix element of the transition operator (4.6) in two

stages. In the first stage, we obtained the one-electron wave functions of the
initial and final states of the transition by solving the multi-centre problem
using the basis set 6–31 GE of the Gaussian functions. The wave functions of
the final states are calculated to the approximation � Z + 1 � for the Fock
operator

(
Φ̂Z+1

)
, and are subsequently transformed to the one-centre form

(4.1). In the second stage, we determined the one-electron wave functions of
the final states of transition in the form (4.1), where the weight coefficients
are deduced by solving the secular (4.16) with operator Φ̂ → Φ̂ − Φ̂Z+1.

To study the influence of the multiple excitation/ionization effect on the
theoretical differential cross-section of the elastic scattering, we considered the
main [182,201] channels of double excitation/ionization:

1π−12π1
(
1,3Σ+;1,3 Σ;1,3 Δ

)
2σ−1εγ;

2σ−1nσ−1
(
3Σ
)
2π1
(
2Π
)
εσ; n = 4, 5;

2σ−15σ−1
(
1,3Σ
)
nσεγ; n = 6, 7. (4.18)

The wave functions of the configurations (4.18) with the segregated ε (γ, σ)−
photoelectron for the fixed term are obtained in the form:

|k; ΓSMΓMS〉 =
∑

i

αki (ΓS)
∣∣2σ−1nγ−1n1γ1 (ξiMΓMS)

〉
; (4.19)

where the basis functions appear as single-determinant wave functions with
uncombined one-electron moments, MΓ, MS correspond with the line of the
indecomposable representation and projection of the total spin momentum,
index i numbers the sets of the quantum numbers of the electron configuration
(ξi), index k numbers the configuration terms, αki(ΓS) are the coefficients of
the multiplet mixing.

Having solved the secular equation, we determined the wave functions of
the final states of the photoabsorption by adding the corresponding functions
of the photoelectrons |εγμχ〉 to the functions (4.19):

|Φk (Γ0S0 = 0)〉 =
1√
2

(∣∣Φk
+−
〉− ∣∣Φk

−+

〉)
;

∣∣Φk
+−
〉

=
∣∣∣∣k; ΓSMΓMS = +

1
2

〉
·
∣∣∣∣εγμχ = −1

2

〉
;
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where the values Γ0 and S0 correspond with the indecomposable representa-
tion and the spin of the configuration term of the final states.

Then, the matrix element of the transition operator to the double excita-
tion/ionization states takes the form:

(
Φk (Γ0S0 = 0)

∣∣∣D̂q

∣∣∣φ
)

=
∑

i

αki (aiAq + βiBq) ; (4.20)

Aq = N

⎛

⎝〈n1γ1μ1| d̂q |2σ〉 −
∑

k̄≤f

〈n1γ1μ1| k̄
〉
⎞

⎠ 〈εγμ| n̄〉 ;

Bq = N

⎛

⎝〈εγμ| d̂q |2σ〉 −
∑

k̄≤f

〈εγμ| k̄〉
⎞

⎠ 〈n1γ1μ1| n̄〉 ;

∣∣k̄
〉 ≡ |kγ2μ2〉 〈kγ2μ2| d̂q |2σ〉 〈kγ2μ2| kγ2μ2〉−1 ;

|n̄〉 ≡ |nγμ〉 〈nγμ| nγμ〉−1
.

The following values are determined: ai, βi are the angular coefficients and
N is the product of the overlap integrals of the electron wave functions, not
participating in the transition. Summing over the terms (index k) is made for
the squares of the transition amplitudes (4.20) in the Kramers-Heisenberg-
Waller terms (4.5).

The calculation results are represented in Fig. 4.4. It follows from Fig. 4.4
that the transition from scheme (b) (series of the 2σ−1nσ photoexcitation
states) to scheme (a) (series of the 2σ−1nπ photoexcitation states) leads to
a profound orientation effect. Actually, in the differential cross-section the
additional giant resonance of scattering appears through the resonance of the
2σ → 2π photoexcitation having a width 0,16 eV, oscillator strength 0,118,
and energy 287,40 eV. At the same time, if we consider the double excita-
tion/ionization effect for the ground state of the molecule CO, it can make
the resonance structure of the differential cross-section of the elastic scattering
more precise.

Since there is no experiment referring to the elastic X-ray scattering by the
linear molecule CO oriented in space, the results of our calculation (including
the calculation for the molecules HF and HCl) have a predictive character. At
the same time the results of our calculations in Fig. 4.5 are compared with the
theoretical results of the work [59] that are only known from the published
literature. We can see that the scattering resonances agree well in the energetic
position and form. The reasons for disagreement in resonance intensity values
can be mainly connected with two factors. The first factor is as follows: the
authors of the work [59] accepted the value 0,097 eV for the width of the 2σ−
vacancy decay, it is 1,65 time less than the value 0,16 eV being accepted by
us. The second factor lies in the fact that the authors of the work [59] did not
consider the double excitation/ionization processes of the ground state of the
molecule CO.
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Fig. 4.4. Differential cross-section of the anomalous elastic linear polarized (at right
angle to the scattering plane) X-ray photon scattering by CO molecule for schemes
of intended experiment (Fig. 4.1a, b, respectively): squares designate the calcula-
tion if only the single excitation/ionization states are considered; the continuous
curve designates the calculation if the double excitation/ionization states are addi-
tionally considered. ω is the scattered photon energy, θ is the scattering angle. The
experimental energy value for the 2σ-shell ionization threshold amount to 296,05 eV
[202]
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Fig. 4.5. Differential cross-section of the anomalous elastic linear polarized (at right
angle to the scattering plane) X-ray photon scattering by CO molecule, not oriented
in space. The continuous curve designates the calculation of the present work, where
the single and double excitation/ionization processes (Γ2σ = 0,16 eV ) are considered;
the broken curve designates the calculation of the work [59] (Γ2σ = 0,097 eV ). The
scattering angle θ = 90◦, ω is the scattered photon energy

4.3 Main Results of Chapter 4

1. The quantum theory and the calculation methods are developed for the
differential cross-section of the elastic X-ray photon scattering in the region
of the deep shell ionization thresholds of the linear molecule.

2. The analytical structure of the form factor for the linear molecule is
determined in the one-center representation of the wave functions of molec-
ular orbitals. The appearance of Legendre polynomials in the form factor
structure determines its dependence on the molecular orientation in space.

3. The influence of the relaxation effects, orientation effects, vibronic effects
(scattering in the region of the ionization 1σ− sthreshold for molecules HF
and HCl), and the processes of additional excitation/ionization of outer
shells (scattering in the region of the ionization 2σ− threshold for molecule
CO) on the differential cross-section of the elastic scattering is studied.
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We shall formulate the main results of our study, devoted to the problem of
theoretically describing the spectral characteristics of the anomalous elastic
X-ray photon scattering by an atom, atomic ion, and linear molecule, with
provision for many-particle effects.

1. In the second-order non-relativistic quantum mechanical perturbation
theory (approximation of the Kramers–Heisenberg–Waller formula), we
have developed the many-particle quantum theory and the calculation
methods for the differential cross-section of the elastic X-ray photon scat-
tering by an atom and atomic ion in the energy region of their deep
shell ionization thresholds. The quantum interference of the many-particle
effects is considered by the structure of the probability amplitude of
the scattering, both to the one- and multi-configuration Hartree–Fock
approximation using the methods of the irreducible tensor operator the-
ory, non-orthogonal orbital theory, the generalized function theory, and
the non-relativistic quantum theory of many bodies.

2. For the components of the elastic scattering amplitude in the region of
the atomic deep shell ionization threshold, we have stated the following:
(a) The form and absolute values of the real component f ′ are mainly

determined by the following many-particle effects:
• In the near sub-resonance and post-threshold regions of scattering

by the single and double ionization processes, the radial relaxation
effects, and the intershell correlation effects

• In the resonance region of the scattering by the single excita-
tion process, the radial relaxation effects, the Auger- and radiative
deep vacancy decay processes, the intershell correlations, and the
multiplet splitting.

The calculation error amounts to a significant value of 40%, with-
out considering the amplitudes of the photon exchange processes
in the real component. We shall remark here that such processes
are attributed to the missing quantum effect in the presentations of
classical physics [203].
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(b) The form and absolute values of the imaginary component f ′′ are
mainly determined by the following many-particle effects:
• In the resonance region of the scattering by the single excita-

tion process, the radial relaxation effects, the Auger- and radiative
deep vacancy decay processes, the intershell correlations, and the
multiplet splitting

• In the near post-threshold region of the scattering by the single and
double ionization processes and the radial relaxation effects. In the
sub-resonance region of the scattering, the imaginary component
is negligibly small.

The calculation error does not exceed 1%, neglecting the amplitudes of
the photon exchange virtual processes in the imaginary component.

3. We have determined the analytical structure of the form factor of the
atom with an arbitrary 2S+1LJ term of the ground state. It is illustrated
that the form factor of the atom is spherically symmetric for the values
of the total moment J = 0, 1/2, while for J ≥ 3/2 and the total orbital
moment L≥1, the spherically non-symmetrical contribution appears.

By the example of the atoms 17Cl, 21Sc, 23V, 35Br, 39Y, and 73Ta hav-
ing one open shell and the total moment J = 3/2 of the ground state, we
have studied the influence of the atom non-sphericity effect on the abso-
lute values and the form of its form factor in the X-ray region of the elastic
scattering. We have determined that this effect leads to the −2 to +3%
change of the form factor values of the spherically symmetric approxima-
tion. At the same time, the departures from the spherically symmetric
approximation have an oscillating character and when the nuclear charge
of the atom increases, they localize in the region of the scattering angles
[0◦, 45◦].

4. Using the example of the neon atom, we have demonstrated that the
electron correlations modify the Hartree–Fock function of the space charge
distribution of the atomic ground state. This is a reason for changing the
absolute values of the atom form factor of the one-electron approximation.
The correlation effects in the case of forward scattering do not change the
Hartree–Fock values of the form factor of neon atom. For any non-zero
values of the scattering angle, the changes are enclosed in the limits from
–0, 15% to +0, 15%.

5. The theoretical study of the differential cross-sections for the anomalous
elastic X-ray photon scattering by atoms with closed (10Ne, 18Ar, 36Kr,
54Xe) and open (11Na, 42Mo, 25Mn [204], 29Cu [205]) shells in the ground
state has made us ascertain the following:
(a) The radial relaxation effect leads to a significant suppression of the

intensity values and a shift in the short-wave region of the resonance
energies, having been calculated without provision for it

(b) In the region of the near-threshold scattering, the radial relaxation
effect leads to the redistribution of the scattering intensity between
the short- and long-wave regions of the scattering cross-section
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(c) When considering the double excitation/ionization processes of the
atomic ground state, it fundamentally determines the value and
direction of the redistribution of the resonance theoretical intensity

(d) Many-particle effects intensify the original character of the X-ray
photon penetration (forward scattering) to the material medium,
comparing with its reflection (backward scattering) by this medium

(e) The more the scattering angle, the more is the influence of the radial
relaxation effects and double excitation/ionization processes of the
atomic ground state on the theoretical values and the form of the
scattering cross-section

(f) According to the increase of the nuclear charge of the atom:
• The influence of the spatial domain of the many-particle effects on

the value and the form of the scattering cross-section corresponds
with the larger scattering angles

• The role of the many-particle effect in its reflecting power decrease
(backward scattering) is strengthened.

We have obtained a good agreement of the calculation results with the
results of the synchrotron experiment for atoms 36Kr and 54Xe. The cal-
culation results in the region of the 1 s-shell ionization threshold have a
predictive character.

The availability of the experimental measurement results for absolute
values and forms of the functions dσ/dΩ and f ′ in the region of the 1 s-
shell ionization threshold of the metal molybdenum has allowed us to
test the theory being developed in this treatise. We have obtained a good
agreement of the theory with the experiment. Thus, the quantum dynam-
ics of the many-particle effects being realized in the form and structure of
the scattering cross-section on virtual level can be experimentally discov-
ered. As a result of the existing dispersion Kramers–Kronig relation, this
conclusion of the treatise also holds for the imaginary component f ′′ mea-
sured in the work [206] (see also the measurements of the f ′′ component
in the region of the 1 s-shell ionization threshold for atoms 29Cu [207] and
50Sn [208]).

6. The theoretical study of the differential cross-section of the elastic X-ray
photon scattering by an atomic ion in the region of the 1 s-shell ionization
threshold by the example of the Ne6+ ion (see also Si4+, Ar8+ [209])
has allowed us to ascertain the following. The transition from atom to
its ion with loss of outer shells is followed by the rearrangement of the
differential cross-section – the energy region of the scattering resonances
become wider, and the resonances themselves take the form of the giant
scattering resonances. At the same time, the effect of the deep vacancy
stabilization becomes dominant compared to the radial relaxation effects
and the multiple excitation/ionization of the ground state of an ion.

The calculation results of the differential cross-section of the anoma-
lous elastic X-ray photon scattering by the Ne6+ ion have a predictive
character.
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7. We have developed the method for considering the set completeness of
the single photoexcitation states when describing in theory the amplitude
of the elastic X-ray photon scattering by an atom (ion). This method has
been realized [210] in the calculation of the scattering cross-sections for
the atom 10Ne and its ion Ne6+ in the region of the 1 s-shell ionization
threshold. The method allows the generalization for the single- and multi-
photon [211–213] absorption processes and the inelastic [214–220] X-ray
photon scattering by an atom (ion).

8. The theoretical study of the post-collisional interaction effect has allowed
us to ascertain the following. In the anomalous dispersing regions of the
elastic X-ray photon scattering by an atom, this effect practically does not
change the scattering cross-sections calculated to the one-electron approx-
imation. This fact has been interpreted from the physical standpoint in
the presentation of the competitive processes of quantum evaporation
and quantum condensation as transitions between virtual states of the
photoelectron of discrete and continuous spectra.

9. Outside the limits of the quantum mechanical perturbation theory, we
have determined the analytical solution of the Schrödinger equation for
the wave function of the system of interacting continuous spectra – the
state of the atomic deep shell photoionization and the state of the Auger-
decay of the deep vacancy having two (photo- and Auger-) electrons of
continuous spectrum. The generalization scheme of obtained solution is
formulated for considering two and more channels of the deep vacancy
Auger-decay, as well the states of photoexcitation of the atomic deep shell.
In presentation of the plane waves for the wave functions of the photo- and
Auger-electrons of the continuous spectrum, we have given the analytical
estimation to the energy values of their electrostatic interaction in the
deep vacancy Auger-decay.

10. In the second-order non-relativistic quantum mechanical perturbation the-
ory (approximation of the Kramers–Heisenberg–Waller formula), we have
formulated the many-particle quantum theory and the calculation meth-
ods for the differential cross-section of the anomalous elastic X-ray photon
scattering by two-atom molecule oriented in space.

11. We have determined the analytical structure of the form factor of the
linear molecule and discovered its dependence on the orientation of a
molecule in space.

12. The theoretical study of the differential cross-sections of the elastic X-ray
photon scattering by the molecules HF, HCl, and CO oriented in space in
the region of the deep molecular orbital ionization thresholds has allowed
us to determine:
(a) The appearance of the orientation effect when changing the schemes

of suggested experiment dealing with elastic scattering
(b) The significant role of the radial relaxation effects and double excita-

tion/ionization processes of the molecule ground state in defining the
structure and form of the scattering cross-section.
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