
MBWU: Benefit Quantification for Data Access
Function Offloading

Jianshen Liu1, Philip Kufeldt2, and Carlos Maltzahn1

1 University of California, Santa Cruz, Santa Cruz CA 95064, USA
2 Seagate, Longmont CO 80303, USA
{jliu120,carlosm}@ucsc.edu
philip.kufeldt@seagate.com

Abstract. The storage industry is considering new kinds of storage de-
vices that support data access function offloading, i.e. the ability to per-
form data access functions on the storage device itself as opposed to
performing it on a separate compute system to which the storage device
is connected. But what is the benefit of offloading to a storage device
that is controlled by an embedded platform, very different from a host
platform? To quantify the benefit, we need a measurement methodology
that enables apple-to-apple comparisons between different platforms. We
propose a Media-based Work Unit (MBWU, pronounced ”MibeeWu”),
and an MBWU-based measurement methodology to standardize the plat-
form efficiency evaluation so as to quantify the benefit of offloading. To
demonstrate the merit of this methodology, we implemented a prototype
to automate quantifying the benefit of offloading the key-value data ac-
cess function.

Keywords: MBWU · Performance Quantification · Function Offloading
· Efficiency Evaluation · Data Access Function.

1 Introduction

Benefit quantification is critical in value assessment of offloading data access
functions from traditional host platforms to embedded platforms that are ex-
pected to serve beyond the role of transitional storage devices. Though a couple
of frameworks focusing on breaking down the offloading complexity [7,15] have
been proposed in recent research, the fundamental question regarding how much
can be saved from offloading a given data access function to an embedded plat-
form has not been addressed. The challenge is whether to offload a data access
function depends not only on the characteristics of workloads, which essentially
are the function calls organized in some pattern, but also on the performance of
the storage media with which the data access function interacts. In practical envi-
ronments, hardware platforms and workloads of interest may differ significantly;
solutions of benefit quantification focusing on specific functions [9, 23] or using
simplified evaluation models [1, 12] may not apply to a different function. Fur-
thermore, since different storage media have significantly different requirements

ar
X

iv
:1

90
9.

04
55

0v
1 

 [
cs

.D
C

] 
 9

 S
ep

 2
01

9



2 J. Liu et al.

on the bandwidth of various platform resources, the optimal placement of data
access functions in terms of the platform efficiency can be dramatically different.
We propose a Media-Based Work Unit (MBWU, pronounced ”MibeeWu”) and
developed an MBWU-based measurement methodology for the purpose of stan-
dardizing the efficiency comparison for different platforms running a given work-
load over a specific storage media. By evaluating the efficiency of each platform in
terms of its cost ($/MBWU), power (kW/MBWU), and space (m3/MBWU), we
can quantify the benefit of offloading a data access function from traditional host
platforms to embedded platforms. We have implemented a prototype for evalu-
ating key-value data management function offloading and generated instructive
results from our experiment. We discuss MBWU as well as this measurement
methodology in detail in section 2.

Starting from Active Disks [11,14,17,18,22], moving high-selectivity data ac-
cess functions to storage devices gains increasing research interest mainly because
of the conceivable benefits [10] such as reducing the size of data transmission
between hosts and storage devices, reducing total power consumption, increasing
overall resource utilization, and simplifying the application design by leveraging
high-level storage semantics. For example, key-value smart storage devices can
substitute the translation layers from key-value down to physical block address,
which includes a key-value to file translation in the front, a file to logical block
address translation in the middle, and a logical block address to physical block
address translation at the bottom. Besides these benefits, energy consumption is
thought to be another major saving from offloading functions to storage devices.
For example, Choi et al. [3] identified more than 3x energy efficiency with 80%
compute offloaded for data-intensive applications.

Though various benefits have been studied, the storage industry remains
conservative when adding data access functions to storage devices. The main
barrier is that extra processing required in the storage device increases the cost of
the device. Since applications run on system platforms, we believe an increase in
storage device does not necessarily increase the overall platform cost. Considering
the variety of workloads and the diversity of hardware, we need a systematic and
reproducible methodology to quantify the overall benefit of offloading any given
data access function to embedded platforms.

2 The MBWU-based Methodology

2.1 Background

The emergence of various storage technologies has changed the regular for-
mula for constructing storage infrastructure. Historically, this formula was built
around hiding the latency of storage devices using caching. However, innova-
tions of recent NAND and storage-class memory technologies (e.g., V-NAND
[8], 3D XPoint [25]) have altered the cost-optimal placement of various software
and hardware resources [19, 21] since storage media of different performance
impose different demands for the bandwidth of CPU, memory, network, and



MBWU: Benefit Quantification for Data Access Function Offloading 3

storage interface. For example, applications may want memory closer to compu-
tation for slow storage media because hiding data access latency is important,
while the applications may want storage closer to computation for fast media
because high-speed networking fabrics and data buses are expensive. With more
domain-specific processing units (e.g., GPU, Google TPU [27], FPGA) taking
over computations from host CPUs, the storage industry asks itself the same
question: What should be done to improve the cost-efficiency of utilizing a spe-
cific storage media for data access? In terms of the placement of data access
functions, the specific question is: For a given workload, can offloading a data
access function from host platforms to storage devices reduce the overall cost
per performance when the workload uses the same storage media?

2.2 What is MBWU

Host platforms and embedded platforms differ significantly in cost, usage, perfor-
mance, power, and form factor. To compare the cost per performance of different
platforms, we need to have a reference point to normalize the performance value
generated from heterogeneous platforms so that these normalized values are di-
rectly comparable. The reference point is required to be platform-independent
but media- and workload-dependent. The reasons are as follows:

– platform-independence: The reference point should be platform-related
hardware independent. Otherwise, the normalized performance value of a
platform may not be able to represent the efficiency of the platform utilizing
a specific storage media under a workload. For example, if the reference
point relates to a specific CPU architecture, then the normalization for the
performance of a platform using a different CPU is skewed by the efficiency
difference caused by the different CPUs.

– media-dependence: Since the cost-optimal placement of functions is sensi-
tive to types of storage media, the reference point should be media-dependent
so that we can always normalize the performance of different platforms to
the efficiency of utilizing a specific storage media. For this to work, all the
different platforms under test should use the same type of storage media for
performance evaluation.

– workload-dependence: From an application point of view, the perfor-
mance of a platform is the amount of work the platform can do in a unit
of time. To measure the amount of work done, we need to define a unit
of work as the reference point so that the performance of different plat-
forms can be normalized to the number of units they can perform. Since
different workloads have different work definitions, the unit of work should
be measured in workload operations (WOs). Hence, the reference point is
workload-dependent.

The combination of platform-independence and media-dependence indicate that
the reference point can only be media-based. We call this media-based and
workload-dependent reference point MBWU and define it as the highest num-
ber of workload operations per second (WOPS) a given workload on a specific



4 J. Liu et al.

storage media can achieve with all external caching effects eliminated/disabled.
In this definition, workload operations should not be simply interpreted as block
I/Os. For key-value operations as the workload, a WO is a GET, PUT, or DELETE.
For file operations as the workload, a WO is a read or write. On the other hand,
we use the term storage media to express a configuration of storage devices.
For example, a storage media can be a device with six flash chips, or a device
that combines a spinning media, two flash components, and some non-volatile
random-access memory. The MBWU definition has no requirement on what the
storage media should look like, which means our MBWU-based measurement
methodology is seamlessly applicable to different types of storage media. In the
following sections we use the two terms storage media and storage device inter-
changeably. Finally, since an MBWU only depends on a specific storage media
and a given workload, its WOPS should only be throttled by a specific storage
media. Platform-related system resources like CPU, memory, and network can
throttle the WOPS when measuring an MBWU. Resources like memory can also
enhance the WOPS when the data access is from memory instead of storage de-
vices. A throttled or enhanced WOPS number is not an MBWU because it is
platform-dependent.

Once an MBWU is measured, the performance of a platform can be measured
by its maximum MBWUs under the same workload. The greater number of
MBWUs a platform can generate, the higher performance the platform is. The
efficiency of a platform can then be evaluated based on the cost, power, and space
of this platform. For example, if the platform can generate M MBWUs, cost-

efficiency of the platform ($/MBWU) can be calculated by cost(plat)
M . Similarly,

the power-efficiency of the platform (kW/MBWU) can be calculated by amp·volt
1000·M ,

where amp and volt are the current and voltage of the platform respectively when
it was generating M MBWUs. Space-efficiency of the platform (m3/MBWU) can

be calculated in a corresponding manner by volume(plat)
M .

The MBWU-based measurement methodology is intended to be used by stor-
age device and storage system designers to assess whether to pair a given function
to a specific storage media. It is not intended to be used to evaluate online meth-
ods during production workloads, because ensuring the workloads are the same
for different platforms is difficult.

2.3 How to Measure MBWU(s)

Measuring an MBWU for a given workload that uses a specific storage media is
different from measuring MBWUs for a platform except that the storage media
and workload should be the same in these two measurements. To measure a
single MBWU, we need a capable host to drive the peak performance of a given
workload running on a single storage device with all external caching effects
disabled. Since high-selectivity workloads are primarily I/O bound, looking for
such a host is not difficult. The process of measuring MBWUs for a platform is to
measure the maximum steady-state WOPS of the same workload running on the
platform with normal caching configuration. The goal of this measurement is to



MBWU: Benefit Quantification for Data Access Function Offloading 5

evaluate what is the maximum WOPS that is eventually limited by the platform-
related resources instead of storage devices. One way to push the WOPS to the
limit is to replicate the workload on multiple storage devices. Once we have
the value of the maximum WOPS, the MBWUs of this platform is equal to
this value divided by a single MBWU. Figure 1 is an example to show the
general relationship between the number of MBWUs and the number of storage
devices. The increment of MBWUs brought by an additional storage device
decreases as the device number increases until finally no increment exists on the
total MBWUs. The final stable MBWUs is the MBWUs of this platform for the
workload. One reason for the diminishing MBWUs increment shown in the figure
is the increasing average CPU cycles on a single data read due to the increasing
system memory pressure.

Fig. 1. Relationship between the Number of MBWUs and the Number of Storage
Devices

In addition to resources like CPU, memory, and network, the real estate issue
is another important platform-related bottleneck. For example, a limitation on
the available hardware connectors may limit the number of storage devices that
can be attached to a platform, thus throttling the MBWUs of a platform as well.
We have seen this type of limitation in our experiment (Section 3).

2.4 Evaluation Prototype

We chose key-value data management as a function to be offloaded in our study.
The design goal of the evaluation prototype was to provide a framework to
demonstrate the merit of our MBWU-based measurement methodology by au-
tomatically generate reproducible values that represent the benefit of offloading
the key-value data management function for a given workload. Key-value data
management is a typical high-selectivity function due to the massive amount of



6 J. Liu et al.

data needed to move back and forth between different levels of data representa-
tion in response to various operations in data management. For example, we used
RocksDB [2] as the key-value engines to run YCSB [4] workload A. We saw up
to 6x traffic amplification between the key-value data received by the RocksDB
(red dashed line) and the final data written out to the underlying block devices
(red solid line) (Figure 2). Though we used the key-value function as an example,
there is nothing to prevent the MBWU-based measurement methodology from
being applied to other functions, such as read/write functions in the file system
and SELECT/PROJECT functions in the database management system.

Fig. 2. Amplification of Key-value Data Traffic

Our prototype starts with pre-conditioning for NAND-based storage devices
used to store workload data. This process is necessary as it relates to whether
reproducible results are possible. In the prototype, the pre-conditioning is im-
plemented following SNIA performance test specification [20]; it purges the de-
vices followed by performing a workload independent pre-conditioning process.
After the storage devices are pre-conditioned, a number of RocksDB daemons
are started and waiting for connection requests from YCSB. Storage devices,
RocksDB daemons, and the YCSB processes are in a one-to-one relationship.
Therefore, the number of RocksDB daemons is identical to the number of YCSB
processes. The RocksDB daemon is implemented using Java RMI technology [24].
It exposes all public interfaces (e.g., open(), close(), get(), put(), delete()) of a
RocksDB object to network securely by binding this object to an RMI registry
(Figure 3). We have ported the RocksDB daemon program to support not only
x86 and x86 64, but also aarch64 platforms since most embedded platforms use
ARM-based processors. A YCSB process looks up the corresponding RocksDB
object from a specified RMI registry and requests to create a RocksDB instance
on the host of the registry by issuing an open() remote call. This call gives the



MBWU: Benefit Quantification for Data Access Function Offloading 7

RocksDB object the location of a RocksDB options file, which defines the shape
of the internal LSM [6] tree and all the data migration policies for key-value data
management. Having a consistent RocksDB options file for different platforms
avoids using a ”platform optimized” configuration file generated by RocksDB
by default. Once RocksDB instances are successfully created, YCSB can start
filling instances with initial key-value records to support later read/write opera-
tions. The data operation requests generated by YCSB are simply passed down
by calling the exposed RocksDB interfaces. To ensure the final underlying LSM
trees are consistent on platforms of different performance, we added an option to
our prototype to control the speed of data loading. Slowing down the loads gives
RocksDB instances enough system resources to finish regular data compaction
and compression for keeping LSM trees stable. Finally, when the initial data
are loaded, YCSB starts to run the workload specified by a parameter file with
which the target workload is defined. YCSB offers various options to customize
a workload: from the total number of operations, to request distribution, to the
ratio between reads and writes, and so on. A high-level evaluation process of our
prototype is shown in Figure 4.

Fig. 3. Call Graph of RocksDB RMI Server

Depending on the configuration of a platform, the storage devices that RocksDB
instances see can either be physical storage devices at local or network storage
devices managed by any storage disaggregation protocol such as iSCSI [26] and
NVMe-oF [13]. The purge process, however, will always take place on the phys-
ical storage devices. We discuss different storage configurations and how they
affect the cost-efficiency of a platform in Section 3.

Measuring MBWUs requires identifying which system resource is the bottle-
neck. Our prototype will automatically monitor and record utilization of CPU,
memory, device I/O, network, and power for platforms during the whole eval-



8 J. Liu et al.

Fig. 4. A High-level View of the Evaluation Process

uation process. At the end of a measurement, the prototype extracts all useful
information from these logs and generates a platform resource utilization report
for the target workload.

3 Evaluation

The purpose of the evaluation is to demonstrate the use of our evaluation pro-
totype discussed above for quantifying the benefit of offloading the key-value
data management function from traditional host platforms to embedded smart
key-value platforms. A smart key-value platform exposes a key-value interface
instead of a block interface.

3.1 Infrastructure

Figure 5 shows the basic components of the two platforms we set up for com-
parison. For the traditional platform, RocksDB runs on the host and stores data
on either direct-attached storage devices or network storage devices. For the
embedded platform, RocksDB runs on a single board computer (SBC) named
ROCKPro64 [16]. This SBC, together with two adapters and a block storage
device, creates a smart key-value storage device that clients can interact with
through a key-value interface.

3.2 Test Setup and Results

To better understand where the benefit of offloading come from and how much
savings occur regarding benefit, we have designed a set of tests involving three-
stages (Figure 6). Each test was a different setup with different placement of



MBWU: Benefit Quantification for Data Access Function Offloading 9

Fig. 5. Configuration of Our Host Platform and Embedded Platform

either software or hardware components. We used the following workload in all
tests. The key size is 16 bytes, and the value size is 4 KiB. The read/write ratio
is 50/50 following a Zipf [28] distribution for data accessing. Finally, the total
size of dataset is 40 GiB.

Fig. 6. Three-stage Test Setup

The first tests were integrated tests. Both YCSB and RocksDB ran within
platforms and access data from direct-attached storage devices. The purpose
of these tests was to reveal the benefit of leveraging cost-effective hardware to
provide the function of a key-value data store. The first step was to measure
the value of an MBWU. This measurement process went from using one YCSB



10 J. Liu et al.

thread to generate the defined key-value workload to using 32 YCSB threads for
concurrent request generation. The reason we stopped at 32 threads relates to the
use of SATA SSDs in our experiment. SATA interface provides a single command
queue for a depth of up to 32. This feature suggests there is no need to use more
than 32 threads to generate requests if the request generation is not slower than
the request consumed by the underlying storage device. Figure 2 shows that the
YCSB throughput was mostly stable with more than 20 threads. Considering
the amplification factor between the traffic generated by YCSB and the traffic to
the underlying storage device, we thought there was no need to test with more
than 32 threads. However, if the evaluation regards faster storage devices such
as NVMe SSDs, we may need to increase the thread number corresponding to
the capability of the storage interface to measure an MBWU. In our results, we
saw the YCSB reaches peak throughput with 32 threads on the host platform.
We ensured this throughput was the MBWU by carefully examining the resource
utilization report generated by our evaluation prototype. Once a single MBWU is
measured, we can measure the MBWUs for the two platforms. Our host platform
can host up to eight SSDs because it has limited hardware connectors. The
workload performance with eight SSDs, as expected, was neither limited by
the CPU nor the memory. As discussed previously, the real estate issue is one
type of system bottlenecks. This type of bottleneck causes the other system
resources to be underutilized; thus, it is conceivable that it increased the values
of all three metrics ($/MBWU, kW/MBWU and m3/MBWU) for this platform.
Under this restriction, our host platform can generate six MBWUs. Figure 7
shows the evaluation results of the host platform. We skipped some data points
in this and some of the following figures as we believed that those values could
not be the peak performance numbers according to the trends. We applied the
same measurement methodology to the embedded platform, and the results are
shown in Figure 8. Limited by CPU performance of this platform, it can only
generate 0.5 MBWU with a single SSD. After platform MBWUs are measured,
we can compare these platforms using any of the three MBWU-based metrics.
We saw that the embedded platform reduced the $/MBWU by 64% compared to
processing the same key-value workload on the host platform. At the same time,
this platform reduced the kW/MBWU by 39.6% as well. These optimistic results
show that it is worth offloading the key-value data management function to the
embedded platform due to the significant saving from the hardware. Specifically,
compared with the expensive and powerful resources used in the host platform,
the cost reduction of the less powerful resources used in the embedded platform
is greater than the performance reduction of these resources. In other words,
it simply emphasizes the fact that improving the system performance through
scaling out is much more cost-effective than through scaling up.

In network tests, YCSB sent key-value requests through network as opposed
to through local bus in the integrated tests. The introduction of network traffic
may have different impacts on different platforms depending on the availability
of computing resources and the amount of network traffic. For our host platform,
since its throughput performance was not CPU or memory bound in the inte-



MBWU: Benefit Quantification for Data Access Function Offloading 11

(a) Aggregated Throughput (b) Platform Power Consumption

Fig. 7. Integrated Test: Performance of the Host Platform with Different Number of
Storage Devices

Fig. 8. Integrated Test: Evaluation for the Embedded Platform

grated tests, adding the overhead to process network packets has lower perfor-
mance impact than the embedded platform where its CPU was already the per-
formance bottleneck for the defined key-value workload. Therefore, the purpose
of the network tests was to evaluate how the introduction of this front-end net-
work affected the benefit results we obtained from the integrated tests. Figure 9
and 10 respectively show the results of our host platform and embedded platform
for these tests. Based on the results, the host platform can generate 5.2 MBWUs,
and the embedded platform can generate 0.37 MBWUs. With these numbers, we
again compared the two platforms using the $/MBWU and the kW/MBWU met-
rics. We saw that the embedded platform saved 57.86% of $/MBWU compared
to processing the same key-value workload on the host platform. For energy con-
sumption, the embedded platform can reduce the kW/MBWU by 45.9% as well.
The reduction of benefit on $/MBWU is expected since the performance degra-



12 J. Liu et al.

dation on the embedded platform is greater than the performance degradation
on the host platform. Similarly, the percentage of energy saving was increased
because the host platform utilized additional system resources for network traffic
processing, which raised its total power consumption. For the embedded plat-
form, it had already enabled all system resources to process the workload. In
other words, the embedded platform was already under the peak power con-
sumption no matter whether it was required to deal with network traffic.

(a) Aggregated Throughput (b) Platform Power Consumption

Fig. 9. Network Test: Performance of the Host Platform with Different Number of
Storage Devices

Fig. 10. Network Test: Evaluation for the Embedded Platform



MBWU: Benefit Quantification for Data Access Function Offloading 13

Storage disaggregation is known for simplifying and reducing the cost of stor-
age management. It requires additional expense on network infrastructure as the
data lives remotely. The faster the storage devices, the higher network band-
width is required. Hiding the data management traffic within storage devices
is especially attractive in this context due to the high amplification factor for
data access—6x amplification means more than 5x extra expense on the network
to support the bandwidth that is not directly relevant to user applications. In
the case of key-value data management function, data amplification comes from
data compaction and compression that frequently happen behind the scenes of
client applications. In the last test setup, we simulated an environment with
disaggregated storage devices to evaluate how much we can save from removing
the back-end network requirement for data management traffic. The host and
storage devices are connected using iSCSI. Our host platform exactly captured
the cost overhead resulting from the data amplification. On the one hand, the
built-in network interface card (NIC) in our host platform was unable to sup-
port the high bandwidth requirement of the back-end network; we had to install
a capable NIC on it, which increased the cost of this platform. On the other
hand, the new NIC occupied a PCIe slot causing the reduction of the number
of available connectors for storage devices to 4. This reduction exacerbated the
unbalance of system resource utilization on this platform and resulted in a lower
MBWUs number that the platform can generate, thus decreasing the platform
efficiency represented by the three MBWU-based metrics. It is worth mentioning
that keeping the system resource utilization in balance for transitional platforms
is practically untraceable. In the HPC environment, the ratios between different
components in a traditional platform (e.g., the ratio between the number of CPU
cores and the number of NICs, and the ratio between the size of memory and
the number of storage devices) were designed at the time of purchase according
to the requirements of expected workloads. However, the change of workloads
is difficult to predict; should that change, the system resource utilization could
easily become unbalanced. Figure 11 shows the performance results of our host.
In disaggregated tests, the host platform could generate only 3.28 MBWUs. The
number of MBWUs of the embedded platform is the same as in the network tests
since its setup is the same. By putting all these numbers together, the embedded
platform can save 73.4% of $/MBWU and 70.7% of kW/MBWU if we choose
not to use the host platform to process the target key-value workload.

4 Related Work

Choi et al. [3] evaluated the energy efficiency of scale-in clusters that support
in-storage processing using computation and data-movement energy models. Do
et al. [5] suggested offloading selected query processing components to smart
SSDs. The comparisons were conducted based on raw performance metrics such
as elapsed time and energy in Joules, and did not involve any cost comparison.
Floem [15] is a programming system that aims to accelerate NIC applications
development by providing abstractions to ease NIC-offloading design. Biscuit [7]



14 J. Liu et al.

(a) Aggregated Throughput (b) Platform Power Consumption

Fig. 11. Disaggregated Test: Performance of the Host Platform with Different Number
of Storage Devices

is a near-data processing framework. It allows developers to write data-intensive
programs to be offloaded onto storage devices. Both Floem and Biscuit are sim-
ilar to our evaluation prototype in that they provide a way to trial and error
instead of modeling, which is helpful given the complexity of real-world hard-
ware environment. Our MBWU-based measurement methodology differs from all
the previous research in that it focuses on quantifying the benefit of offloading
alternatives.

5 Conclusion

Host platforms and embedded platforms differ greatly in resource allocations and
placements, causing the cost per performance to be significantly different under
the same workload. To quantify the benefit of offloading a given data access
function to an embedded platform, we proposed a novel MBWU-based measure-
ment methodology. The core of this methodology is to construct an MBWU
as a workload-dependent and media-based reference point and use the MBWU
to normalize the performance of different platforms such that the performance
values of these platforms are directly comparable. It is the direct comparability
that enables us to perform apple-to-apple efficiency comparisons for different
platforms. Our evaluation prototype releases the power of this methodology and
automates the evaluation process for quantifying the benefit of offloading the
key-value data management function under a customized workload. Our next
step is to evaluate the benefit of offloading other types of data access functions,
such as data decryption/encryption functions, database select/project functions,
and other data management functions. We believe this measurement methodol-
ogy will be a useful tool as it fills the need for benefit quantification in current
in-storage computing development.



MBWU: Benefit Quantification for Data Access Function Offloading 15

References

1. Boboila, S., Kim, Y., Vazhkudai, S.S., Desnoyers, P., Shipman, G.M.: Active flash:
Out-of-core data analytics on flash storage. In: 012 IEEE 28th Symposium on Mass
Storage Systems and Technologies (MSST). pp. 1–12. IEEE (2012)

2. Borthakur, D.: Under the hood: Building and open-sourcing rocksdb. Facebook
Engineering Notes (2013)

3. Choi, I.S., Kee, Y.S.: Energy efficient scale-in clusters with in-storage processing
for big-data analytics. In: Proceedings of the 2015 International Symposium on
Memory Systems. pp. 265–273. ACM (2015)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143–154. ACM (2010)

5. Do, J., Kee, Y.S., Patel, J.M., Park, C., Park, K., DeWitt, D.J.: Query processing
on smart ssds: opportunities and challenges. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data. pp. 1221–1230. ACM
(2013)

6. Dong, S., Callaghan, M., Galanis, L., Borthakur, D., Savor, T., Strum, M.: Opti-
mizing space amplification in rocksdb. In: CIDR. vol. 3, p. 3 (2017)

7. Gu, B., Yoon, A.S., Bae, D.H., Jo, I., Lee, J., Yoon, J., Kang, J.U., Kwon, M.,
Yoon, C., Cho, S., et al.: Biscuit: A framework for near-data processing of big
data workloads. In: ACM SIGARCH Computer Architecture News. vol. 44, pp.
153–165. IEEE Press (2016)

8. Kang, D., Jeong, W., Kim, C., Kim, D.H., Cho, Y.S., Kang, K.T., Ryu, J., Kang,
K.M., Lee, S., Kim, W., et al.: 256 gb 3 b/cell v-nand flash memory with 48 stacked
wl layers. IEEE Journal of Solid-State Circuits 52(1), 210–217 (2016)

9. Kang, Y., Kee, Y.s., Miller, E.L., Park, C.: Enabling cost-effective data processing
with smart ssd. In: 2013 IEEE 29th symposium on mass storage systems and
technologies (MSST). pp. 1–12. IEEE (2013)

10. Kang, Y., Pitchumani, R., Mishra, P., Kee, Y.s., Londono, F., Oh, S., Lee, J., Lee,
D.D.: Towards building a high-performance, scale-in key-value storage system. In:
Proceedings of the 12th ACM International Conference on Systems and Storage.
pp. 144–154. ACM (2019)

11. Keeton, K., Patterson, D.A., Hellerstein, J.M.: A case for intelligent disks (idisks).
ACM SIGMOD Record 27(3), 42–52 (1998)

12. Kim, S., Oh, H., Park, C., Cho, S., Lee, S.W.: Fast, energy efficient scan inside
flash memory ssds. In: Proceeedings of the International Workshop on Accelerating
Data Management Systems (ADMS) (2011)

13. Minturn, D.: Nvm express over fabrics. In: 11th Annual OpenFabrics International
OFS Developers’ Workshop. Monterey, CA, USA (2015)

14. Ouyang, J., Lin, S., Hou, Z., Wang, P., Wang, Y., Sun, G.: Active ssd design for
energy-efficiency improvement of web-scale data analysis. In: Proceedings of the
2013 International Symposium on Low Power Electronics and Design. pp. 286–291.
IEEE Press (2013)

15. Phothilimthana, P.M., Liu, M., Kaufmann, A., Peter, S., Bodik, R., Anderson,
T.: Floem: a programming system for nic-accelerated network applications. In:
13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18). pp. 663–679 (2018)

16. PINE64: ROCKPro64 4GB Single Board Computer. https://www.pine64.org/

?product=rockpro64-4gb-single-board-computer (February 2019)

https://www.pine64.org/?product=rockpro64-4gb-single-board-computer
https://www.pine64.org/?product=rockpro64-4gb-single-board-computer


16 J. Liu et al.

17. Riedel, E., Gibson, G.: Active disks-remote execution for network-attached stor-
age. Tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF
COMPUTER SCIENCE (1997)

18. Riedel, E., Gibson, G., Faloutsos, C.: Active storage for large-scale data mining
and multimedia applications. In: Proceedings of 24th Conference on Very Large
Databases. pp. 62–73. Citeseer (1998)

19. Shulaker, M.M., Hills, G., Park, R.S., Howe, R.T., Saraswat, K., Wong, H.S.P.,
Mitra, S.: Three-dimensional integration of nanotechnologies for computing and
data storage on a single chip. Nature 547(7661), 74 (2017)

20. Thatcher, J., Kim, E., Landsman, D., Fausset, M., Jones, A.: Solid state storage
performance test specification v2.0.1. Tech. rep., SNIA (Feb 2018)

21. Theis, T.N., Wong, H.S.P.: The end of moore’s law: A new beginning for informa-
tion technology. Computing in Science & Engineering 19(2), 41 (2017)

22. Tiwari, D., Boboila, S., Vazhkudai, S., Kim, Y., Ma, X., Desnoyers, P., Solihin,
Y.: Active flash: Towards energy-efficient, in-situ data analytics on extreme-scale
machines. In: Presented as part of the 11th {USENIX} Conference on File and
Storage Technologies ({FAST} 13). pp. 119–132 (2013)

23. Wang, J., Park, D., Kee, Y.S., Papakonstantinou, Y., Swanson, S.: Ssd in-storage
computing for list intersection. In: Proceedings of the 12th International Workshop
on Data Management on New Hardware. p. 4. ACM (2016)

24. Wikipedia contributors: Java remote method invocation — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Java_

remote_method_invocation&oldid=859953202 (2018), [Online; accessed 5-June-
2019]

25. Wikipedia contributors: 3d xpoint — Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=3D_XPoint&oldid=902944964 (2019),
[Online; accessed 1-July-2019]

26. Wikipedia contributors: Iscsi — Wikipedia, the free encyclopedia. https://en.

wikipedia.org/w/index.php?title=ISCSI&oldid=896076870 (2019), [Online; ac-
cessed 5-June-2019]

27. Wikipedia contributors: Tensor processing unit — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Tensor_processing_unit&
oldid=898169944 (2019), [Online; accessed 9-June-2019]

28. Wikipedia contributors: Zipf’s law — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Zipf%27s_law&oldid=890450623 (2019),
[Online; accessed 10-June-2019]

https://en.wikipedia.org/w/index.php?title=Java_remote_method_invocation&oldid=859953202
https://en.wikipedia.org/w/index.php?title=Java_remote_method_invocation&oldid=859953202
https://en.wikipedia.org/w/index.php?title=3D_XPoint&oldid=902944964
https://en.wikipedia.org/w/index.php?title=3D_XPoint&oldid=902944964
https://en.wikipedia.org/w/index.php?title=ISCSI&oldid=896076870
https://en.wikipedia.org/w/index.php?title=ISCSI&oldid=896076870
https://en.wikipedia.org/w/index.php?title=Tensor_processing_unit&oldid=898169944
https://en.wikipedia.org/w/index.php?title=Tensor_processing_unit&oldid=898169944
https://en.wikipedia.org/w/index.php?title=Zipf%27s_law&oldid=890450623
https://en.wikipedia.org/w/index.php?title=Zipf%27s_law&oldid=890450623

	MBWU: Benefit Quantification for Data Access Function Offloading

