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Abstract

Parametrization of the neutrino mass matrix in terms of well known mea-

sured quantities is an attractive way to obtain a phenomenologically viable

form. We propose a neutrino mass matrix to predict the value of θ23, θ13 and

∑ mi in terms of the charged lepton masses. For the value of ∑ mi ' 0.17eV,

two of the mixing angles come out as θ23 ∼ 46.08
◦
, and θ13 ∼ 8.69

◦
. However, to

accommodate other oscillation parameters we need to add further perturbation

of the proposed texture. We also present an illustrative model to realize such

texture which is based on type-II seesaw mechanism incorporating the idea of

badly broken or approximate symmetry in which the symmetry breaking effect

is manifested through the matrix elements. Our proposed texture serves as a

leading order approximation of an well descripted neutrino mass matrix.
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1 Introduction

There are different propositions to build a phenomenologically viable neutrino mass

matrix following various mixing schemes. Prior to the fact that θ13 6= 0, the Tribi-

maximal mixing [1, 2] has been widely accepted as a correct description of the neu-

trino mixing. There are several models invoking different flavour symmetries to

obtain the neutrino mass matrix which reconciles with this mixing pattern. Af-

ter the measurement of nonzero θ13, this mixing has been modified in different

ways considering this scheme as a leading order prediction [3]. There are several

other mixing schemes namely, Trimaximal mixing [4, 5, 6, 7, 8], Cobimaximal mix-

ing [9, 10, 11, 12], Bilarge mixing [13] etc. to address nonzero θ13 as well as other

two mixing angles within the experimental ranges. All these mixing schemes are

invoked in models with different flavour symmetries to obtain the most elusive

structure of the neutrino mass matrix. In this regard, we attempt to parametrize

the neutrino mass matrix in terms of some experimentally known quantities. Fol-

lowing we try to write down the neutrino mass matrix in terms of some function of

the charged lepton masses and ∑ mi. One of the possible way to correlate the neu-

trino mass matrix in terms of the charged lepton masses is through the invocation

of some GUT models. However, in the present work we adopt a different approach,

widely investigated earlier, is due to the assumption of broken symmetry ansatz.

To demonstrate our proposed texture we consider a type-II seesaw model. One of

us has been investigated [14, 15] the idea of badly broken symmetry in the context

of the Zee model [16] where the model leads to bimaximal mixing pattern. The cru-

tial difference between the Zee model and the present one is that in the Zee model

the diagonal elements are zero due to SU(2) antisymmetry, whereas in the present

case the diagonal elements are all nonzero.

In the present work we propose a texture of neutrino mass matrix in terms of the

charged lepton masses and a real parameter which is constrained by ∑ mi. Thus the

proposed texture is completely described by the experimentally measured quanti-

ties. The most interesting feature of our proposed matrix is that if we fix the value
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of the real parameter with ∑ mi = 0.17 eV (which is the trace of the matrix) the two

mixing angles naturally come out as θ23 = 46.08
◦

and θ13 = 8.69
◦

which are well

within the 3σ experimental limits of the two mixing angles. We also discussed the

perturbation needed to fit other oscillation data. Further, we have demonstrated

a model based on type-II seesaw mechanism to realize such texture adhering the

ansatz of badly broken symmetry or approximate symmetry. Our plan of the paper

is as follows: Section 2 contains the proposed texture and its perturbative form. An

illustrative model is given in Section 3. In Section 4 we summarise our conclusions.

Masses and mixing angles of the proposed texture is given in Appendix A. Detailed

calculation of the matrix element needed for the illustrative model is presented in

the Appendix B.

2 Proposed Texture

In the present work, we propose a neutrino mass matrix in terms of the charged

lepton masses and ∑ mi. Our proposed mass matrix is given by

m0
ν =



k
6

k
3

√me

mµ

k
3

√
me

mτ

k
3

√me

mµ

k
6

k
3

√
mµ

mτ

k
3

√
me

mτ

k
3

√
mµ

mτ

k
6

 . (1)

The above mass matrix is always real since the phase of ‘k’ can be taken out and

we consider this texture as a leading order. The parameter k can be easily con-

strained by the sum of the three neutrino masses as k = 2 ∑ mi. The expression of

the eigenvalues and the three mixing are presented in Appendix A. We consider

the experimental inputs as described in Table 1 [17]. The most interesting feature

of the above matrix is that for ∑ mi = 0.17 eV, the two mixing angles θ23 and θ13

naturally come out as θ23 = 46.08
◦

and θ13 = 8.69
◦
. Furthermore, the 3σ ranges of

the above two mixing angles restrict the value of the sum mass which is depicted

in Fig.1. Assuming the value of ∑ mi ≤ 0.23 eV [18, 19], we plot the variation of
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Figure 1: Variation of the parameter k with θ13(a), θ23(b), ratios m1/m2 and m2/m3(c)

and ∑ mi(d).
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Table 1: Neutrino oscillation parameters.

Parameter θ
◦
12 θ

◦
23 θ

◦
13

∆m2
21

10−5 × (eV)2
|∆m3l|2

10−3 × (eV)2

3σ ranges (NO) 31.61-36.27 40.9-52.2 8.22-8.98 6.79-8.01 2.431-2.622

3σ ranges (IO) 31.62-36.27 41.2-52.1 8.27-9.03 6.79-8.01 2.413-2.606

Best fit (NO) 33.82 49.7 8.61 7.39 2.525

Best fit (IO) 33.82 49.7 8.65 7.39 2.512

the parameter k with θ13(Fig.1(a)), θ23(Fig.1(b)). Thus for a variation of θ23 and θ13

within 3σ ranges restrict the value of the parameter k as 0.1 eV ≤ k ≤ 0.35 eV which

in turn gives the constraint on ∑ mi as 0.05 eV ≤ ∑ mi ≤ 0.18 eV. Such correlation

between the mixing angles and the sum mass, in our opinion, is very interesting

and could be easily tested in the near future. The hierarchy obtained is inverted as

shown in Fig 1.(c). In Fig 1.(d), the allowed value of ∑ mi vs k, is presented. Further-

more the value of |(mν)|11 is also below the experimental value |(mν)|11 ≤ 0.061 eV

as given in KamLAND-Zen and EXO-200 experiments [20, 21].

Let us point out the major short comings of the proposed texture: (1) θ12 value is

coming out too low, (2) the mass squared differences ∆m2
21 and ∆m2

23 are also out-

side the 3σ experimental ranges. Obviously it needs further modification of the

above texture. In a most general way, we consider modification of the above matrix

texture as

mν =



k
6
+ p1

k
3

√me

mµ
+ p4

k
3

√
me

mτ
+ p5

k
3

√me

mµ
+ p4

k
6
+ p2

k
3

√
mµ

mτ
+ p6

k
3

√
me

mτ
+ p5

k
3

√
mµ

mτ
+ p6

k
6
+ p3

 . (2)

There are now seven real parameters(p1, p2, p3, p4, p5, p6 and k) with which all the

neutrino data can be accommodated. However, for numerical estimation, to find a

minimal number of necessary parameters, we obtain even if p1 = p4 = 0, the above

matrix can still explain all the neutrino oscillation data. One interesting point is

that in this case the hierarchy of neutrino masses become normal(m3 > m2 > m1)
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Figure 2: Variation of the parameter ‘k’ with ratios m1/m2 and m2/m3(a) and

∑ mi(b) after adding perturbation.

which is presented in Fig 2.(a). Furthermore, the upper limit of the ∑ mi is too low

compared to the experimental upper limit, which is shown in Fig 2.(b). The ranges

of the model parameters which satisfy the 3σ ranges of the oscillation data, ∑ mi

and |(mν)|11 values are given as

p2 → (2.4− 3.0)× 10−2eV

p3 → (1.8− 2.5)× 10−2eV

p5 → −(1.15− 1.0)× 10−2eV

p6 → −(2.65− 2.25)× 10−2eV

k ∼ (0.5− 2.8)× 10−2eV.

(3)

Thus the proposed matrix can accommodate seven experimental constraints with

five real parameters. In the next section we present an illustrative model to obtain

such type of neutrino mass matrix.
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3 Illustrative Model

We consider a model based on type-II seesaw mechanism adhering the idea of

badly broken symmetry or approximate symmetry [22]. The philosophy of badly

broken symmetry is that some internal symmetries of a transition matrix elements

become exact in the large value of a kinematical parameter, following the Goldberger-

Treiman relation [23]. Earlier it has been studied in the context of SU(3), chiral

SU(3)× SU(3) groups [24] in the context of hadronic and leptonic currents. In the

present work we invoke this idea in the context of a model based on type-II seesaw

mechanism. Basically, in this approach, we consider the symmetry breaking effect

is proportional to the mass of the charged leptons and the same symmetry breaking

parameter is also responsible for the neutrino sector.

Consider the Lagrangian of a type-II seesaw model as

L = fij(liL)cljL∆ + yijeiLejRφ + h.c.

= fij

(
(νiL)cνjL∆0 + (νiL)cejL∆+ + (eiL)cνjL∆+ + (eiL)cejL∆++

)
+ yijeiLejR

〈
φ0
〉
+ h.c.
(4)

Here we consider a horizontal symmetry SU(3)H [25, 26, 27, 28] which is badly

broken in the flavor space and the amount of symmetry breaking is designated

through the parameter ‘k’. The leptons are considered in a triplet representation of

the SU(3)H group and the matrix element is a component of 3× 3∗ = 1 + 8 of the

same group. We assume the magnitude of the matrix element in the Limit|p| → ∞,

is given by

yi 〈ei(p)|eiei|ei(p)〉 = k2 × Constant. (5)

Evaluating the above matrix element given in the l.h.s. of eqn. (5) we get

yi
1

(2π)3
mei

Eei

uei(p)uei(p) = k2 × Constant (6)

with the normalization condition uei(p)uei(p) = 1 and in the |p| → ∞ limit eqn. (6)

becomes

yimei = k2 × Constant (7)

7



where |p| is included in the constant. Since, yi = mei /
〈
φ0〉 we get m2

ei
= k2.

Next we consider the neutrino part of the Lagrangian and we consider the symme-

try breaking as

fij

{〈
νiL(p)|(νiL)cνjL∆0|νj(p)

〉
+
〈

νiL(p)|(νiL)cejL∆+|ej(p)
〉
+〈

ei(p)|(eiL)cνjL∆+|νj(p)
〉
+
〈

ei(p)|(eiL)cejL∆++|ej(p)
〉}

+ i→ j ∝
√

kik jK
(8)

where ‘K’ is a dimensionless parameter.

Evaluating l.h.s. of eqn. (8), we get

fij

{
mνi + mej + mei + mνj + i→ j

}
= fij.3(mej + mei)

(9)

where we have neglected the neutrino masses compared to the charged lepton

masses. Thus, we get from eqn.(5) and eqn. (9) as

3 fij(mej + mei) =
√

mei mej K (10)

which gives

fij =

√mei mej K

3(mej + mei)
. (11)

Explicit calculation of the evaluation of the above matrix elements are given in the

Appendix B .

The above expression of fij leads to the following tree level matrix of neutrino as

mν =



K
6

K
3

√me

mµ

K
3

√
me

mτ

K
3

√me

mµ

K
6

K
3

√
mµ

mτ

K
3

√
me

mτ

K
3

√
mµ

mτ

K
6


〈

∆0
〉

(12)

and with
〈
∆0〉 ∼ 1 eV and K = 0.34 we get the required angles θ13 ∼ 8.69

◦
,

θ23 ∼ 46.08
◦

as obtained earlier. Further perturbation of the above mentioned

model can be implimented in many different ways, such as, through higher di-

mensional operators or through the invocation of type-I+II mechanism etc. which

will be investigated elsewhere.
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4 Concluding Summary

In the quest towards understanding of an elusive structure of neutrino mass ma-

trix compatible with the extant data, in the present work, we have attempted to

parametrize the neutrino mass matrix in terms of some functions of known exper-

imental quantities. Precisely, in the present case in terms of the charged lepton

masses and ∑ mi. The texture admits 3σ experimental values of θ23 and θ13 angles

and thereby constraint ∑ mi as ∑ mi ≤ 0.18 eV. The hierarchy of the neutrino mass

is inverted. Since the other oscillation data, such as, θ12, ∆m2
21, ∆m2

32 are coming out

outside the present experimental limits, the present texture can be considered as a

leading order texture of the neutrino mass matrix. Further modification of the tex-

ture by adding five extra parameters leads to a complete description of the neutrino

mass matrix. But we agree, in the present work those perturbation parameters are

incorporated in an ad-hoc way.

Next, to realize such correlation between the neutrino mass matrix with the masses

of the charged leptons is implemented through the motivation of badly broken or

approximate symmetry ansatz. We demonstrate in the context of a type-II seesaw

model, invoking the broken symmetry ansatz.

We further optimistically seek for a texture which can be written completely in

terms of the known experimental quantities and will also try to demonstrate in the

context of a well descripted model. Origin of such badly broken symmetry in that

context will also be envisaged elsewhere.
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Appendix A. Explicit expressions of the neutrino masses

and mixing angles of the proposed texture.

In this section we present explicit expressions of the neutrino masses and mixing

angles of our proposed neutrino mass matrix. The expressions for mass eigenvalues

and mixing angles are given by

m1 =
k
6

[
1 +

4.21/3B
mµmτ A

+
A

3.21/3mµmτ

]
,

m2 =
k
6

[
1− 2.21/3(1 + i

√
3)B

mµmτ A
− (1− i

√
3)A

6.21/3mµmτ

]
,

m3 =
k
6

[
1− 2.21/3(1− i

√
3)B

mµmτ A
− (1 + i

√
3)A

6.21/3mµmτ

]
,

θ23 = tan−1


∣∣∣∣∣4
√me

mµ

√
mµ

mτ
− 2
√me

mµ

(
1− 6m3

k

)∣∣∣∣∣∣∣∣∣∣−4
√me

mµ

√
mµ

mτ
+ 2
√

me

mτ

(
1− 6m3

k

)∣∣∣∣∣

 ,

θ12 = tan−1


∣∣∣∣∣∣∣∣∣∣

(
4mµ −mτ + 2mτ

(
6m2

k

)
−mτ

(
6m2

k

)2
)

(
−
√

me

mτ
+ 2
√me

mµ

√
mµ

mτ
+

√
me

mτ

(
6m2

k

))
∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣

(
−
√

me

mτ
+ 2
√me

mµ

√
mµ

mτ
+

√
me

mτ

(
6m1

k

))
(

4mµ −mτ + 2mτ

(
6m1

k

)
−mτ

(
6m1

k

)2
)
∣∣∣∣∣∣∣∣∣∣

 ,

θ13 = sin−1


∣∣∣∣∣∣∣∣∣∣

(
4mµ −mτ + 2mτ

(
6m3

k

)
−mτ

(
6m3

k

)2
)

(
−
√

me

mτ
+ 2
√me

mµ

√
mµ

mτ
+

√
me

mτ

(
6m3

k

))
∣∣∣∣∣∣∣∣∣∣



(13)
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where

B =
(

mem2
µmτ + m3

µmτ + memµm2
τ

)
,

A =

(
432
√

me

mµ
m3

µ

√
me

mτ

√
mµ

mτ
m3

τ+√
186624m2

e m6
µm4

τ − 6912(mem2
µmτ + m3

µmτ + memµm2
τ)

3
)1/3

.

(14)

Appendix B. Evaluation of the matrix elements given in

Section 3.

We consider three lepton doublets (l1,l2,l3) are as a triplet under SU(3)H so that the

term eiej is a component of 3× 3∗ = 1 + 8.

We define

ψ(x) =
1

(2π)3/2

∫
d3p
√

m
E

[
∑

s=1,2
bs(p)us(p)e−ipx + ∑

s=1,2
d†

s (p)vs(p)eipx

]
(15)

with {
bs(p), b†

s′(p′)
}
= δss′(p− p′) (16)

and
|p, s〉 = b†

s (p) |0〉〈
p′, s′|p, s

〉
= δss′(p− p′).

(17)

Thus we get

ψ(x) |p, s〉 = 1
(2π)3/2

∫
d3p′

√
m
E

u′s(p)e−ip′xbs′(p′)b†
s (p) |0〉

=
1

(2π)3/2

√
m
E

us(p)e−ip′x |0〉 .
(18)

Therefore the matrix element comes out as〈
ei(p)|yieiej|ej(p)

〉
= yii

1
(2π)3

mi

Ei
ue

i (p)ue
i (p)

(19)

and using the normalization condition ue
i (p)ue

i (p) = 1 and the relation E = |p|+

m2/2|p| in the Limit |p| → ∞ we get

yimei = k2 × Constant (20)
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which is given in eqn. (7). The neutrino part of the Lagrangian can be evaluated as

fij

〈
νiL(p)|(νiL)cνjL|νj(p)

〉
+ i↔ j

=
1

(2π)3

√
mνj

Ej

√
mνi

Ei
(uνiL)

c(uνj)L + i↔ j.
(21)

Now in the Limit |p| → ∞ we get

lim
|p|→∞

(uνiL)
c(uνj)L =

mνj

2√mνi mνj

(22)

so that we get from Eqn. (21)
1

(2π)3 fijmνi (23)

Similarly evaluating the other terms we get the result given in eqn. (9).

14


	1 Introduction
	2 Proposed Texture
	3 Illustrative Model
	4 Concluding Summary
	5 Acknowledgment
	References
	A Explicit expressions of the neutrino masses and mixing angles of the proposed texture.
	B Evaluation of the matrix elements given in Section 3.

