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Abstract

We propose a novel derivation of the gyrokinetic field-particle Lagrangian for non-collisional ion-electron
plasmas in a magnetic background with strong variations (maximal ordering). Our approach follows the two-
step reduction process, where the guiding-center coordinate transformation is followed by the gyrocenter
coordinate transformation in the single-particle phase space. For the first time both steps are addressed
within a unique methodology, based on near-identity coordinate transformations constructed as polynomial
transforms. These are well-defined transformations composed of a finite number of terms that are linear and
algebraic with respect to the generating functions. The derivation is carried out in a fully non-dimensional
framework, based on parameters governing the magnetic fusion experiments ASDEX Upgrade and ITER.
Our method leads to a gyrokinetic Vlasov-Maxwell model for ions and electrons, derived without the use of
Lie perturbation methods. It is found that, based on the employed ordering, curvature terms such as the
gyro-gauge term and the Baños drift appear at first order in the ion Hamiltonian, whereas ion polarization
terms appear only at second order. By contrast, curvature terms are absent from the first-order electron
Hamiltonian, where instead magnetic flutter plays a role.

1 Introduction

Gyrokinetics is one of the major frameworks used in theoretical and numerical studies of low-frequency turbu-
lence in magnetized fusion plasmas [1, 2]. Gyrokinetic models are based on a change of coordinates in particle
phase space that separates fast from slow dynamics, namely cyclotron motion from drift motion. The idea is
to derive a reduced set of dynamical equations that contain enough information for an adequate description of
low-frequency phenomena in the plasma. As a result, the dimensionality of the problem is reduced and so is
the computational cost in numerical simulations.

In mathematical terms, gyrokinetic theory can be considered as the asymptotic study of the Vlasov-Maxwell
model with strong magnetic background in the quasi-neutral regime. This requires a suitable reformulation
of the equations such that the corresponding asymptotic limit can be carried out in a meaningful way. The
procedure can be understood in the context of averaging the characteristics (or Lagrangian paths) of the Vlasov
equation, as described first in [3]. Rigorous mathematical accounts can be found, for example, in [4–6]. A
first attempt to average the Vlasov-Maxwell system taking into account the self-consistent interaction between
plasma particles and electromagnetic fields can be found in [7].

From another point of view, the studies of [8–11] laid the foundation of “structure-preserving” gyrokinetic
theory. These works first showed that averaging could be carried out on the level of the variational principle,
by transforming the particle Lagrangian (or its corresponding Poisson bracket structure). This strategy has
the advantage of preserving symmetries of the plasma equations during the process of averaging, in particular
their Hamiltonian structure: the averaged equations exactly conserve averaged versions of the true constants
of the motion, such as energy or momentum. Most of the gyrokinetic simulation codes [12–15] are based on
structure-preserving gyrokinetic models and often show improved stability and accuracy. The derivation of
gyrokinetic models has been discussed and reviewed extensively in [2, 16], and references therein. The prevalent
methodology is based on Lie transform perturbation theory, as presented for example in [17, 18], and most of
the recent derivations have been carried out in this framework, as in [19–23].

This work is motivated by the need for an easier access to gyrokinetic theory, without having to rely exten-
sively on Lie perturbation methods. Such methods, despite being mathematically elegant, are formulated in the
language of differential geometry and may thus prevent readers from focusing on the essence of the gyrokinetic
reduction. Here, we propose a different method which is inspired by the guiding-center theory of Littlejohn
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[24]. A similar approach has been suggested recently in [25] and worked out in the long-wavelength regime
of gyrokinetics in [26]. In this work we extend the methodology presented in [26] to address the description
of turbulence on the microscopic scale of plasmas, such as the ion Larmor radius. As in Lie transform per-
turbation theory, our method is also based on near-identity phase-space coordinate transformations. However,
we propose to construct such transformations in a different way. More precisely, our phase-space coordinate
transformations are defined as polynomials of finite degree in powers of a given perturbation parameter, hence
the name “polynomial transforms”. The coefficients of such polynomials are the so-called generating functions
(or generators) and represent the degrees of freedom that allow us to separate fast and slow scales. This ansatz
is conceptually simpler than working with Lie transforms, which are asymptotic series (thus not necessarily
convergent) constructed as products of operator exponentials which feature Lie derivatives along the generating
vector fields. In this work we show that structure-preserving gyrokinetic equations can be derived without the
use of such a complex mathematical machinery.

We follow the strategy of the two-step gyrokinetic reduction, where the guiding-center coordinate transfor-
mation is followed by the gyrocenter coordinate transformation [23]. To derive the reduced equations we apply
polynomial transforms in each of the two steps, leading to a unified methodology for the complete reduction
process. Moreover, in the spirit of asymptotic analysis our derivation is carried out in a fully non-dimensional
framework. The perturbation parameter ε ! 1 in our near-identity coordinate transformations is identified by a
rigorous normalization of the Vlasov-Maxwell model. Our ordering in powers of ε is then based on assumptions
derived from realistic physical scenarios relevant for existing and future fusion experiments, such as the Toka-
maks ASDEX Upgrade and ITER. In this way we clearly separate the physical assumptions (ordering) from
the mathematical model reduction (averaging with polynomial transforms). Our methodology based on a priori
normalization of the physical equations allows us to formulate a gyrokinetic theory for both ions and electrons
within the same physical scenario and assumptions.

This paper is organized as follows. Section 2 introduces the basic equations of the Vlasov-Maxwell model for
a non-collisional magnetized plasma, including a field-theoretic Lagrangian formulation. Section 3 defines the
normalization scheme used for the purpose of non-dimensionalization and derives an ordering pattern based on
physical considerations. Section 4 describes in detail the gyrokinetic reduction procedure, leading from physical
phase-space coordinates to gyrocenter coordinates, and outlines the main results of this work, namely gyrokinetic
Lagrangians for both ions and electrons in maximal ordering, together with the corresponding particle equations
of motion and Maxwell’s equations. Appendix A reviews briefly the field-theoretic Lagrangian formulation of the
Vlasov-Maxwell model. Appendix B repeats some calculations pertaining to the guiding-center transformation,
presented in detail in [26]. Appendix C contains the calculations pertaining to the derivation and proof of
our main results for the gyrocenter transformation, namely Propositions 1-3 for ions and Propositions 4-6 for
electrons.

2 The Vlasov-Maxwell model

We consider a non-collisional plasma composed of ions and electrons described in terms of the distribution
functions fspt, x, vq, where s denotes the particle species, t P R

` denotes the time coordinate, and px, vq P R
3ˆR
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are position and velocity coordinates in phase space. All equations are written in SI units in the following. The
distribution functions fs obey the non-collisional Vlasov equation

Bfs

Bt
` v ¨ ∇fs ` qs

ms

´
E ` v ˆ B

¯
¨ Bfs

Bv
“ 0 , (1)

where qs and ms denote the particle charge and mass, respectively. The electromagnetic fields Ept, xq and
Bpt, xq satisfy Maxwell’s equations

∇ ¨ E “ ρ

ε0

(Coulomb’s law) , (2a)

∇ ¨ B “ 0 (absence of free magnetic poles) , (2b)

∇ ˆ E “ ´ BB

Bt
(Faraday’s law) , (2c)

∇ ˆ B “ µ0J ` ε0µ0

BE

Bt
(Ampère-Maxwell’s law) , (2d)
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where ε0 and µ0 denote the vacuum electric permittivity and the vacuum magnetic permeability, respectively.
The sources ρpt, xq and Jpt, xq are expressed in terms of the distribution functions as

ρ “
ÿ

s

qs ns “
ÿ

s

qs

ż
d3v fspt, x, vq , (3a)

J “
ÿ

s

qs nsus “
ÿ

s

qs

ż
d3v v fspt, x, vq . (3b)

The derivation of the Vlasov-Maxwell system (1)-(3) from an action principle was recognized first by [27].
Denoting by φpt, xq and Apt, xq the electric scalar potential and the magnetic vector potential associated to the
electric and magnetic fields via E “ ´∇φ ´ BA{Bt and B “ ∇ ˆ A, Low’s action principle reads

δ

ż t1

t0

dt pLp ` LEMq “ 0 , (4)

where δ denotes the functional derivative and the Lagrangian is the sum of the electromagnetic free-field La-
grangian

LEM “ ε0

2

ż
d3x

ˇ̌
ˇ̌∇φ ` BA

Bt

ˇ̌
ˇ̌
2

´ 1

2µ0

ż
d3x |∇ ˆ A|2 , (5)

and the particle Lagrangian

Lp “
ÿ

s

ż
d3x0 d3v0 fspt0, x0, v0q Ls . (6)

Here, Ls denotes the single-particle Lagrangian for the respective particle species, defined on the tangent bundle
of the single-particle phase space. In the phase-space coordinates px, vq, the single-particle Lagrangian Ls reads

Ls “ pmsv ` qsAq ¨ .
x ´ Hs with Hs :“ ms|v|2{2 ` qsφ . (7)

Hence, Ls depends implicitly on the potentials φ and A and describes the self-consistent interaction between
plasma particles and electromagnetic fields.

The variational principle (4) leads to the characteristics of the Vlasov equation by computing variations
of Ls with respect to single-particle trajectories pxptq, vptqq, to Coulomb’s law by computing variations with
respect to φ, and to Ampère-Maxwell’s law by computing variations with respect to A. We refer to Appendix
A for more details. Only the non-homogeneous Maxwell’s equations, featuring source terms coupling to the
plasma particles, can be derived from the variational principle. With appropriate initial/boundary conditions,
this results in a well-posed system for pfs, φ, Aq, which describes the self-consistent interaction between plasma
particles and electromagnetic fields.

An important aspect in gyrokinetic theory is the separation of the electromagnetic fields into background
and fluctuating parts. In this work we assume that the magnetic field consists of dynamic fluctuations added to
a static background, while the electric field consists only of dynamic fluctuations (without a static background):

Bpt, xq “ B0pxq ` B1pt, xq , Ept, xq “ E1pt, xq . (8)

A dynamic background electric field E0pt, xq can be studied within the drift-kinetic framework, as in [26], but
is neglected here in order to focus on aspects specific to the gyrokinetic regime. Similarly, the electromagnetic
potentials are written as

Apt, xq “ A0pxq ` A1pt, xq , φpt, xq “ φ1pt, xq , (9)

so that B0 “ ∇ ˆ A0. Therefore, in the variational principle (4) variations have to be computed with respect
to the dynamic potentials φ1 and A1.

3 Normalization and ordering

The formulation of the Vlasov-Maxwell system as a perturbation problem requires the non-dimensionalization
(or scaling) of the physical equations and the subsequent application of an ordering scheme that allows for a
comparison of terms in relation to an asymptotic parameter ε ! 1. Since gyrokinetics is ultimately the theory
of low-frequency dynamics in strongly-magnetized plasmas, the perturbation parameter is typically defined as
the ratio between a characteristic ion turbulence frequency pωi and the ion cyclotron frequency ωci:

ε “ pωi

ωci

. (10)
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Gyrokinetic theory can then be considered formally as the asymptotic analysis of the Vlasov-Maxwell model
in the limit ε Ñ 0. The procedure of non-dimensionalization and the introduction of the scaling parameter ε

in the equations are fundamental. Therefore, we give here a detailed description of both steps, which typically
are not treated extensively in the gyrokinetic literature. We first introduce the generic normalization of the
Low action principle (4) and then suggest an ordering scheme that corresponds to a realistic physical scenario
relevant for existing and future fusion experiments, such as the Tokamaks ASDEX Upgrade and ITER.

3.1 Normalization of the Vlasov-Maxwell model

In order to write the Vlasov-Maxwell model in non-dimensional form, we introduce reference scales (denoted
by a hat) for time, length, and ion and electron velocities:

t “ pt t1 , x “ px x1 , v “
#

pvi v1 ions ,

pve v2 electrons .
(11)

Here, the primed quantities t1, x1, v1 and v2 are non-dimensional and the characteristic velocities for ions and
electrons, pvi and pve, can be chosen differently, which means that v1 and v2 are different velocity coordinates.
We then write the background magnetic field and its corresponding magnetic vector potential as

B0pxq “ pB0 B1
0

ˆ px
ℓ0

x1

˙
, A0pxq “ pA0 A1

0

ˆ px
ℓ0

x1

˙
, (12)

where ℓ0 “ ||∇B0{B0||´1 denotes the length scale of the background magnetic field. Here, the primed functions
B1

0 and A1
0 are dimensionless, of order Op1q and with variations of order Op1q in the limit ε Ñ 0. In particular,

they only take non-dimensional (scaled) arguments. Choosing pA0 :“ pB0ℓ0, we obtain B1
0 “ ∇

1 ˆ A1
0 in the

scaled variables. We remark that for a uniform background magnetic field the considerations for the vector
potential A0 are still valid (A0 “ pB0 ˆ xq{2 in this case). With regard to the dynamic fields B1 and E1, we
denote their length and time scales by ℓ1 and τ1, respectively. For the magnetic and electric fluctuations (and
their corresponding potentials) we write

B1pt, xq “ pB1 B1
1

˜
pt
τ1

t1,
px
ℓ1

x1

¸
, A1pt, xq “ pA1 A1

1

˜
pt
τ1

t1,
px
ℓ1

x1

¸
, (13a)

E1pt, xq “ pE1 E1
1

˜
pt
τ1

t1,
px
ℓ1

x1

¸
, φ1pt, xq “ pφ1 φ1

1

˜
pt
τ1

t1,
px
ℓ1

x1

¸
. (13b)

Choosing pA1 :“ pB1ℓ1 and pφ1 :“ pE1ℓ1, we obtain

B1
1 “ ∇

1 ˆ A1
1 , E1

1 “ ´∇
1φ1

1 ´
pB1ℓ1

pE1τ1

BA1
1

Bt1
, (14)

in the scaled variables. We remark that the amplitudes pA1 and pφ1 depend on the length scale ℓ1 of the
fluctuations. Therefore, if the sizes of the field fluctuations pB1 and pE1 are fixed, small-scale fluctuations are
associated to small potentials, while large-scale fluctuations are associated to large potentials. The size of the
potentials, in turn, plays a role in the ordering of terms in the particle Lagrangian, and thus in the overall
asymptotic expansion.

In the Low action (4) we normalize the electromagnetic free-field Lagrangian (5) as LEM “ pni kB
pTi px3 L1

EM,

where pni denotes a reference ion density, pTi a reference ion temperature, and kB is the Boltzmann constant.
Therefore, we obtain the non-dimensional electromagnetic free-field Lagrangian

L1
EM “ ε0

pE2
1

pni kB
pTi

1

2

ż
d3x1

ˇ̌
ˇ̌∇1φ1

1 `
pB1ℓ1

pE1τ1

BA1
1

Bt1

ˇ̌
ˇ̌
2

´ 1

βi

ż
d3x1

ˇ̌
ˇ̌∇1 ˆ A1

0 `
pB1

pB0

∇
1 ˆ A1

1

ˇ̌
ˇ̌
2

, (15)

where βi “ 2 µ0 pni kB
pTi{ pB2

0 is the ion plasma beta. In order to normalize the single-particle Lagrangian (7), we
note that

.
x represents three components of an element p .x,

.
vq P R

3 ˆR
3 of the tangent space at px, vq P R

3 ˆR
3.

Tangents
.
x have units of velocity and are therefore normalized as

.
x “ ppx{ pt q .

x1. We then normalize the
single-particle Lagrangian (7) as Ls “ ms pv2

s L1
s, obtaining the non-dimensional single-particle Lagrangian

L1
s “ px

pvs
pt

«
v1 ` qs

pB0 ℓ0

mspvs

˜
A1

0 `
pB1ℓ1

pB0ℓ0

A1
1

¸ff
¨ .
x1 ´ |v1|2

2
´ qs

pE1ℓ1

mspv2
s

φ1
1 . (16)
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ASDEX Upgrade ITER

ions electrons ions electrons

major radius R0 rms 1.6 6.2

minor radius a rms 0.8 2.0

toroidal magnetic field BT rTs 3.9 5.3

average particle density xnsy r1020

m3
s 2.0 2.0 1.0 1.0

average thermal energy xTsy rkeV

kB

s 8.7 8.7 8.0 8.8

cyclotron frequency ωcs rHzs 1.9 ˆ 108 6.9 ˆ 1011 2.5 ˆ 108 9.3 ˆ 1011

thermal velocity pvs rm

s
s 6.4 ˆ 105 3.9 ˆ 107 6.2 ˆ 105 3.9 ˆ 107

thermal frequency pωs rHzs 8.0 ˆ 105 4.9 ˆ 107 3.1 ˆ 105 2.0 ˆ 107

Larmor radius ρs rms 3.4 ˆ 10´3 5.7 ˆ 10´5 2.4 ˆ 10´3 4.2 ˆ 10´5

Debye length λs rms 4.9 ˆ 10´5 4.9 ˆ 10´5 6.7 ˆ 10´5 7.0 ˆ 10´5

pωs{ωcs 3.4 ˆ 10´3 5.7 ˆ 10´5 1.2 ˆ 10´3 2.1 ˆ 10´5

v2
s {c2 4.6 ˆ 10´6 1.7 ˆ 10´2 4.3 ˆ 10´6 1.7 ˆ 10´2

λ2
s {a2 3.7 ˆ 10´9 3.7 ˆ 10´9 1.1 ˆ 10´9 1.2 ˆ 10´9

βs 1.2 ˆ 10´2 1.2 ˆ 10´2 2.4 ˆ 10´3 3.2 ˆ 10´3

Table 1: Physical scenarios for magnetic confinement fusion experiments: parameters for the Tokamaks ASDEX
Upgrade [28] and ITER [29]. Note that we choose pB0 “ BT, pns “ xnsy and pTs “ xTsy.

Finally, we normalize the particle Lagrangian of the Low action in the same way as the electromagnetic free-field
Lagrangian, namely as Lp “ pni kB

pTi px3 L1
p, obtaining the non-dimensional particle Lagrangian

L1
p “

ÿ

s

ms pv5
s

pfs

pni kB
pTi

ż
d3x1

0 d3v1
0 f 1

spt1
0, x1

0, v1
0q L1

s . (17)

All dependent variables in the Low action are now expressed in terms of non-dimensional functions. Therefore,
the size of each term is determined only by the size of the non-dimensional coefficients in front of it. Such
coefficients are, in turn, determined by the physical scenario under consideration, as we discuss in the next
section.

3.2 Physical scenario and ordering

The normalization of the Vlasov-Maxwell system described in the previous section is generic. For the purpose of
deriving a set of gyrokinetic equations by asymptotic methods we must quantify the size of the non-dimensional
coefficients appearing in the physical quantities of interest in powers of the perturbation parameter ε. This
process is usually referred to as ordering. Different orderings lead to different perturbation theories and to
reduced models with different physical content. An ordering is thus the mathematical expression of a specific
physical scenario. Two such scenarios for magnetic confinement fusion experiments are listed in Table 1. We
choose as the characteristic length and time scales of observation the minor radius a and the inverse ion thermal
frequency:

px :“ a , pt´1 :“ pωi . (18)
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The ion thermal frequency pωi, that is, the inverse of the time required for an ion to travel the distance a, is
close to the frequency of micro-turbulence observed in Tokamaks [2, 30, 31]. By substituting in (10) the values
shown in Table 1, we then obtain

ε « 10´3 . (19)

Measurements in Tokamaks have shown that fluctuation levels in turbulent plasmas satisfy [16, 30, 31]

pB1

pB0

„
pE1

pB0pvi

« 10´3 « ε . (20)

Moreover, if we consider electrons and deuterium ions we have qe{qi “ ´1 and

me

mi

« 2.7 ˆ 10´3 « ε . (21)

We also notice an ordering pattern in powers of ε in the normalized plasma parameters of Table 1 (last four
non-dimensional parameters). We then apply this ordering to the normalized Low action. By choosing

ℓ0 :“ a , ℓ1 :“ ρi , τ´1
1 :“ pωi , (22)

we satisfy the maximal ordering ℓ1{ℓ0 “ Opεq in the limit ε Ñ 0. More precisely, what we mean here is that
the ratio ℓ1{ℓ0 is approximately ε and therefore it can be considered as a function of order Opεq if we were
taking the formal limit ε Ñ 0 (which we actually never take, as ε is a fixed number and cannot vanish). The
normalized background magnetic field (12) becomes a function of x1, namely B1

0px1q. On the other hand, since
ℓ1{px “ Opεq, the fluctuating electric and magnetic fields and their corresponding potentials become strongly-
varying functions of x1, namely E1

1pt1, x1{εq and B1
1pt1, x1{εq. More precisely, we assume the conventional

gyrokinetic ordering for the fluctuations, namely |kK|ρi “ Op1q and k‖ρi “ Opεq in the limit ε Ñ 0, where
k :“ pk‖, kKq denotes characteristic wave vectors parallel and perpendicular to B0, respectively. Moreover, for
the coefficient appearing in (14) we have

pB1ℓ1

pE1τ1

“
pB1ρi pωi

pE1

“ pωi

ωci

pB1 pvi

pE1

“ ε
pB1

pB0

pB0 pvi

pE1

« ε , (23)

which yields

E1
1 “ ´∇

1φ1
1 ´ ε

BA1
1

Bt1
. (24)

Moreover, the non-dimensional coefficients in the normalized electromagnetic free-field Lagrangian (15) have
the following sizes:

ε0
pE2

1

pnikB
pTi

“ pv2
i

c2

pE2
1

pB2
0pv2

i

pB2
0

µ0pnikB
pTi

« ε3 ,
1

βi

« 1

ε
. (25)

In the normalized particle Lagrangian (17) we set kB
pTe “ kB

pTi and pv3
s

pfs “ pni to fix the characteristic size of the
distribution function. Therefore, in our ordering the normalized ion and electron single-particle Lagrangians
(16) read

L1
i “

ˆ
v1 ` A1

0

ε
` ε A1

1

˙
¨ .
x1 ´ |v1|2

2
´ ε φ1

1 , (26a)

L1
e “

ˆc
me

mi

v1 ´ A1
0

ε
´ ε A1

1

˙
¨ .
x1 ´ |v1|2

2
` ε φ1

1 . (26b)

The only difference between ions and electrons, besides the sign in front of the electromagnetic potentials due
to the negative electron charge, is the factor

a
me{mi « ?

ε multiplying v1 ¨ .
x1, which defines an intermediate

scale that is not an integer power of ε. As the final result of the ordering procedure, we obtain the normalized
Low action principle

δ

ż t1

1

t1

0

pL1
p ` L1

EMq dt1 “ 0 , (27)
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with the Lagrangians given by (omitting the primes for a simpler notation)

L1
p “

ż
d6z0 fipt0, z0q

„ˆ
v ` A0

ε
` ε A1

˙
¨ .
x ´ |v|2

2
´ ε φ1


(28a)

`
ż

d6z0 fept0, z0q
„ˆ?

ε v ´ A0

ε
´ ε A1

˙
¨ .
x ´ |v|2

2
` ε φ1


,

L1
EM “ ε3

2

ż
d3x

ˇ̌
ˇ̌∇φ1 ` ε

BA1

Bt

ˇ̌
ˇ̌
2

´ 1

2 ε

ż
d3x |∇ ˆ A0 ` ε ∇ ˆ A1|2 . (28b)

Taking variations with respect to particle trajectories, φ1 and A1 in (27) leads to the following normalized
Vlasov-Maxwell equations (again omitting the primes):

Bfi

Bt
` v ¨ ∇fi `

„
E1 ` v ˆ

ˆ
B0

ε
` B1

˙
¨ Bfi

Bv
“ 0 , (29a)

?
ε

Bfe

Bt
` v ¨ ∇fe ´

„
E1 ` v ˆ 1?

ε

ˆ
B0

ε
` B1

˙
¨ Bfe

Bv
“ 0 , (29b)

ε2 ∇ ¨ E1 “ ρ , (29c)

∇ ˆ
ˆ

B0

ε
` B1

˙
“ J ` ε3 BE1

Bt
, (29d)

where the normalized charge and current densities are given by

ρ “
ż

d3v fi ´
ż

d3v fe , J “
ż

d3v v fi ´ 1?
ε

ż
d3v v fe . (30)

The factor 1{?
ε in front of the electron current density comes from the different choice of scales for the ion and

electron thermal velocities. From the two Vlasov equations in (29) we deduce the charge conservation law

Bρ

Bt
` ∇ ¨ J “ 0 . (31)

This is also a solvability condition for Maxwell’s equations. Indeed, taking the divergence of Ampère-Maxwell’s
law in (29d), recalling that E1pt, x{εq is strongly-varying in space, and inserting Coulomb’s law from (29c)
yields (31).

The normalized variational principle (27), or the normalized set of equations (29), are a suitable starting
point for our perturbation analysis of the Vlasov-Maxwell system. Let us remark that the majority of gyroki-
netic theories for micro-turbulence have been developed in a homogeneous background for the sake of conceptual
clarity. However, because curvature is important in magnetically confined fusion plasmas (“neo-classical trans-
port”), many of the state-of-the-art numerical codes feature a model with slowly-varying magnetic background,
corresponding to B0pε xq in normalized variables. Curvature terms then appear only at the second order of
the perturbation theory, and are often neglected for simplicity. In this work, we develop a consistent theory
in the maximal ordering, corresponding to B0pxq in normalized variables. This seems to be the scenario for
current Tokamak and Stellarator experiments, but is also interesting for Spheromaks and even for the future
large-scale Tokamak ITER. Reduced equations for smaller background curvature can easily be deduced from
our more general results in maximal ordering.

4 Gyrokinetic reduction

The basic idea of gyrokinetic theory is to replace the exact trajectories of the plasma particles by the trajectories
of their gyrocenters, which move on the time scale of the thermal frequency pωi or slower. The dynamics occurring
at scales faster than the cyclotron frequency ωci are “averaged out” in the gyrocenter picture. However, some
effects of the fast motion of gyration are still present in form of drifts of the gyrocenters. In this section we make
these concepts more precise by analyzing the formal asymptotic limit ε Ñ 0 in the normalized single-particle
Lagrangians (26a)-(26b). From the reduced Lagrangians we then derive the gyrokinetic Vlasov equation for ions
and electrons and define gyrocenter charge and current densities with polarization corrections, thus coupling
plasma particles and electromagnetic fields from the normalized gyrocenter action principle. Primes are omitted
from now on, in order to increase readability.
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Following [32], we intend to replace the particle Lagrangian Lp in the Low action principle (27) by its
gyrocenter representation Lp:

ż
d6z0 rfip0, z0q Li ` fep0, z0q Les «

ż
d6

Z0

”
B˚

‖iFip0, Z0q Li ` B˚
‖eFep0, Z0q Le

ı
,

where d6
Z0 :“ d3X0 dP}0 dµ0 dΘ0 denotes the measure in gyrocenter phase space, Fs denotes the gyrocenter

distribution function, Ls is the corresponding gyrocenter single-particle Lagrangian, to be derived below, and
B˚

}s
is the Jacobian determinant. The gyrocenter coordinates are the gyrocenter position X, the gyrocenter

parallel momentum P}, the gyrocenter magnetic moment µ and the gyro-angle Θ. The single-particle dynamics
in the new coordinates is such that the time evolution of the gyro-angle Θ is decoupled from the rest of the
coordinates, leading to a closed system of equations for the “slow” variables pX, P}q, where µ is a constant of
the motion. The slow system represents the averaged dynamics (see [26] for details).

The phase-space coordinate transformation Z :“ pX, P}, µ, Θq ÞÑ px, vq with Jacobian determinant denoted
by B˚

} is the central object of gyrokinetic theory. It is usually derived in terms of (canonical) Lie transforms of

the fundamental one-form associated to the single-particle Lagrangian Ls [10, 11, 23]. Despite being an elegant
mathematical framework, Lie transform perturbation theory introduces many formal complications, which seem
not to be strictly necessary for averaging. In this work we replace Lie transforms with polynomials of finite degree
in ε, algebraic in the generating functions. We show that also with this different ansatz for the phase-space near-
identity coordinate transformation it is possible to remove the gyro-angle dependence from the single-particle
Lagrangian up to the desired order in ε, without changing its symplectic part (and thus the Jacobian B˚

‖ of

the coordinate transformation). Our polynomial transforms are well-defined coordinate transformations (locally
invertible), in contrast to the asymptotic series in Lie transform perturbation theory, where it is difficult to prove
convergence and existence of the transforms. It is our hope that the simpler derivation based on polynomial
transforms will enable more rigorous mathematical studies of gyrokinetic theory in the future.

4.1 Preliminary transformations

The phase-space coordinate transformation Z ÞÑ px, vq is a composition of several coordinate changes, which
are summarized in Tables 2 and 3 for ions and electrons, respectively. The first transformation moves the
magnetic vector potential A1 from the symplectic part of the single-particle Lagrangian to the Hamiltonian, by
defining the “momentum”

p :“
#

v ` ε A1 ions ,

v ´
?

εA1 electrons .
(32)

This is a near-identity transformation in v in the limit ε Ñ 0, with unit Jacobian determinant. It resembles the
usual transformation to canonical coordinates, but it does not contain the background magnetic vector potential
A0. The new single-particle Lagrangians read

Li “
ˆ

p ` A0

ε

˙
¨ .
x ´

ˆ |p|2
2

` ε Ψ1i ` ε2 |A1|2
2

˙
, (33a)

Le “
ˆ?

ε p ´ A0

ε

˙
¨ .
x ´

ˆ |p|2
2

´
?

ε Ψ1e ` ε
|A1|2

2

˙
, (33b)

where we introduced the generalized potentials

Ψ1s :“
#

φ1 ´ p ¨ A1 ions ,?
ε φ1 ´ p ¨ A1 electrons .

(34)

This first preliminary transformation is not necessary for performing the gyrokinetic reduction. However, it
leads to simpler calculations in the following. Since all dynamic potentials now occur in the Hamiltonian, the
px, pq-coordinate representation is also called the Hamiltonian picture. We also remark that electromagnetic
gauge invariance has been broken by this preliminary coordinate transformation. We then introduce local
cylindrical coordinates in p-space, namely

p‖ :“ p ¨ b0 , µ :“ |b0 ˆ p ˆ b0|2
2B0

, θ :“ arctan

ˆ
p ¨ e1

p ¨ e2

˙
, (35)

where pe1, e2, b0q represents a local static orthonormal basis of R3, given an arbitrary unit vector e1 perpen-
dicular to b0. Denoting by pK :“ b0 ˆ p ˆ b0 the component of p perpendicular to the local background
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physical coordinates

px, vq

Hamiltonian picture

px, pq
p :“ v ` ε A1

angle coordinates

px, p},µ, θq

p} :“ p ¨ b0

µ :“ 1

2B0

|b0 ˆ p ˆ b0|2

θ :“ arctan

ˆ
p ¨ e1

p ¨ e2

˙

guiding-center coordinates

sZ :“ pĎX, sp}, sµ, sθq

x :“ ĎX ` ε ρ̄1i ` ε2ρ̄2i ` ε3ρ̄3i ` ε4ρ̄4i

p} :“ sp} ` ε sG}
1i ` ε2 sG}

2i ` ε3 sG}
3i

µ :“ sµ ` ε sGµ

1i ` ε2 sGµ

2i ` ε3 sGµ

3i

θ :“ sθ ` ε sGΘ
1i ` ε2 sGΘ

2i ` ε3 sGΘ
3i

preliminary gyrocenter coordinates

Z :“ pX, P}, pµ, Θq

ĎX :“ X ` ε2ρ2i ` ε3ρ3i ` ε4ρ4i

sp} :“ P} ` ε G
}
1i ` ε2G

}
2i ` ε3G

}
3i

sµ :“ pµ ` ε G
µ

1i ` ε2G
µ

2i ` ε3G
µ

3i

sθ :“ Θ ` ε GΘ
1i ` ε2GΘ

2i ` ε3GΘ
3i

gyrocenter coordinates

Z :“ pX, P}, µ, Θq
µ :“ pµ ` ε

@
γΘ

2

D
` ε2

@
γΘ

3

D

Table 2: Coordinate changes for ions involved in the phase-space coordinate transformation pX, P}, µ, Θq ÞÑ
px, vq relating physical coordinates and gyrocenter coordinates.
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physical coordinates

px, vq

Hamiltonian picture

px, pq p :“ v ´ ?
ε A1

angle coordinates

px, p},µ, θq

p} :“ p ¨ b0

µ :“ 1

2B0

|b0 ˆ p ˆ b0|2

θ :“ arctan

ˆ
p ¨ e1

p ¨ e2

˙

guiding-center coordinates

sZ :“ pĎX , sp}, sµ, sθq

x :“ ĎX ` ε ρ̄1e ` ε2ρ̄2e ` ε3ρ̄3e ` ε4ρ̄4e

p} :“ sp} ` ε sG}
1e ` ε2 sG}

2e ` ε3 sG}
3e

µ :“ sµ ` ε sGµ

1e ` ε2 sGµ

2e ` ε3 sGµ

3e

θ :“ sθ ` ε sGΘ
1e ` ε2 sGΘ

2e ` ε3 sGΘ
3e

preliminary gyrocenter coordinates

Z :“ pX, P}, pµ, Θq

ĎX :“ X ` ε2ρ2e ` ε
5

2 ρ 5

2
e ` ε3ρ3e ,

sp} :“ P} ` ε G
}
1e ` ε2G

}
2e ,

sµ :“ pµ `
?

ε G
µ

1

2
e

` ε G
µ

1e ,

sθ :“ Θ `
?

ε GΘ
1

2
e

` ε GΘ
1e .

gyrocenter coordinates

Z :“ pX, P}, µ, Θq µ :“ pµ ` ?
ε

A
G

µ

1

2
e

E
´ ε

@
γΘ

3

D

Table 3: Coordinate changes for electrons involved in the phase-space coordinate transformation pX, P}, µ, Θq ÞÑ
px, vq relating physical coordinates and gyrocenter coordinates.
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magnetic field, we have p “ p}b0 ` pK, with pK “ pp ¨ e1qe1 ` pp ¨ e2qe2. From the definition of θ we can write
pp ¨ e1q “ ´

?
2µB0 sin θ and pp ¨ e2q “ ´

?
2µB0 cos θ and thus define a second θ-dependent orthonormal basis

pa0, b0, c0q, with a0 :“ e1 cos θ ´ e2 sin θ and c0 :“ ´e1 sin θ ´ e2 cos θ. We note that b0 ˆ c0 “ a0, Ba0{Bθ “ c0

and Bc0{Bθ “ ´a0, which will be used in later calculations. The transformation to angle coordinates thus reads

p “ p}b0 `
a

2µB0 c0 , (36)

with Jacobian determinant B0. This leads to the single-particle Lagrangians

Li “
ˆ

p}b0 `
a

2µB0 c0 ` A0

ε

˙
¨ .
x ´

˜
p2

}

2
` µB0 ` ε Ψ1i ` ε2 |A1|2

2

¸
, (37a)

Le “
ˆ?

ε p}b0 `
?

ε
a

2µB0 c0 ´ A0

ε

˙
¨ .
x ´

˜
p2

}

2
` µB0 ´

?
ε Ψ1e ` ε

|A1|2
2

¸
. (37b)

4.2 Guiding-center coordinates pĎX , sp‖, sµ, sθq

The guiding-center phase-space coordinate transformation dates back to the pioneering work of [24] and has the
purpose of removing the gyro-angle dependence from those parts of the Lagrangians (37a)-(37b) that do not
depend on the fluctuating potentials φ1 and A1. For this reason, the gyrokinetic literature often describes the
guiding-center phase-space coordinate transformation as a transformation acting on a single-particle Lagrangian
that involves only quantities related to the background magnetic field B0 and does not feature any fluctuating
fields. These are said to be added at a later stage, after the guiding-center coordinate transformation has
been performed. We believe that this description is slightly misleading, as it seems to suggest the idea that
the single-particle Lagrangian is modified by adding terms related to the fluctuating fields during the process
of transforming the phase-space coordinates. In fact, the fluctuating fields are present in the single-particle
Lagrangian since the beginning of the derivation (as it should be, once we identify the physical system that
we want to describe), but their gyro-angle dependence is simply treated at a later stage, after the guiding-
center coordinate transformation has been performed. Following [26], we define the guiding-center coordinate
transformation as a polynomial transform of the form

x :“ ĎX ` ε sρ1s ` ε2sρ2s ` ε3sρ3s ` ε4sρ4s , (38a)

p} :“ sp‖ ` ε sG‖
1s ` ε2 sG‖

2s ` ε3 sG‖
3s , (38b)

µ :“ sµ ` ε sGµ

1s ` ε2 sGµ

2s ` ε3 sGµ

3s , (38c)

θ :“ sθ ` ε sGΘ
1s ` ε2 sGΘ

2s ` ε3 sGΘ
3s , (38d)

where sρns,
sG‖

ns, sGµ

ns and sGΘ
ns denote the generators of the coordinate transformation for the respective particle

species. The generators are functions of the guiding-center coordinates sZ :“ pĎX , sp‖, sµ, sθq and may additionally

depend on time. The guiding-center coordinates are the guiding-center position ĎX, the guiding-center parallel
momentum sp‖, the guiding-center magnetic moment sµ and the guiding-center angle variable sθ. The idea is then
to substitute the coordinate transformation (38) in the single-particle Lagrangians (37a)-(37b), by using the
transformation law of vector fields

.
x “

.ĎX `
4ÿ

n“1

εn .sρns “
.ĎX `

4ÿ

n“1

εn

ˆBsρns

B sZ ¨
.sZ ` Bsρns

Bt

˙
, (39)

to obtain the corresponding guiding-center Lagrangians. The work of [26] showed that the gyro-angle dependence
due to the term

?
2µB0 c0 can be indeed removed via polynomial transforms in maximal ordering. We repeat

these calculations in Appendix B and arrive at

Li „
ˆ

sp‖b0 ` A0

ε

˙
¨

.ĎX ` ε sµ
.sθ ´

”
sH0 ` ε sH1i ` ε2 sH2i ` Opε3q

ı
` Opε4q , (40a)

Le „
ˆ?

ε sp‖b0 ´ A0

ε

˙
¨

.ĎX ´ ε2 sµ
.sθ

´
”

sH0 `
?

ε sH 1

2
e ` ε sH1e ` ε

3

2 sH 3

2
e ` Opε2q

ı
` Opε4q ,

(40b)
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where the symbol „ denotes the equivalence between Lagrangians, namely the fact that two Lagrangians differ
only by the total differential of some scalar function. Moreover, the symbol sOpεnq denotes corrections to the
Hamiltonians of order Opεnq that are independent of the guiding-center angle sθ. The ion and electron guiding-
center Hamiltonians in (40a)-(40b) read

sH0 :“
sp2

‖

2
` sµB0 , sH0 :“

sp2
‖

2
` sµB0 , (41a)

sH1i :“ Ψi ` δH1 , sH 1

2
e :“ p ¨ A1 , (41b)

sH2i :“ 1

2
|A1|2 ` δH2 , sH1e :“ ´φ1 ` 1

2
|A1|2 , (41c)

sH 3

2
e :“ ´δH1 . (41d)

We remark the following comments about the guiding-center single-particle Lagrangians (40a)-(40b):

• The dynamic potentials in the Hamiltonians (41) are evaluated at the physical particle position x{ε:

φ1

´
t,

x

ε

¯
“ φ1

ˆ
t,

ĎX
ε

` sρ1s ` ε sρ2s ` Opε2q
˙

, (42a)

A1

´
t,

x

ε

¯
“ A1

ˆ
t,

ĎX
ε

` sρ1s ` ε sρ2s ` Opε2q
˙

. (42b)

The gyro-angle dependence in the generators sρns occurring in the arguments of the fluctuating potentials
will be removed eventually by the transformation from guiding-center to gyrocenter coordinates, as dis-
cussed in detail in the next section.

• Due to our assumption of maximal ordering, the guiding-center Hamiltonians feature geometric terms
related to the curvature of the background magnetic field, in particular

δH1 “ sµ
„ sp‖

2
p∇ ˆ b0q ¨ b0 ´ sp‖ p∇a0 ¨ c0q ¨ b0


, (43)

and a cumbersome term δH2, which can be deduced from (103) in the appendix. The two terms in (43)
are usually referred to as Baños drift [33] and gyro-gauge term, respectively. The curvature terms are less
important for the electrons, where δH1 appears at order Opε 3

2 q, because of the mass ratio between ions
and electrons of order Op?

εq.

• For electrons, the magnetic perturbations A1 are Op?
εq larger than the electric perturbations φ1. This

can be already foreseen in the normalized Vlasov-Maxwell equations (29) and is due to the mass ratio
between ions and electrons. Moreover, it shows the importance of electron dynamics in electromagnetic
gyrokinetic simulations of fusion plasmas.

• Due to the error term sOpε2q in the electron Hamiltonian, the electron guiding-center single-particle La-
grangian (40b) is less accurate than the ion guiding-center single-particle Lagrangian (40a). This is due to
the fact that the guiding-center magnetic moment sµ has been computed with less precision for electrons
than for ions. We could easily improve the accuracy of sµ for electrons, but, as we can see from (40b), the
dynamic potentials φ1 and A1 play a more prominent role than any curvature terms. In the Hamiltonian,
the term p ¨ A1 of Ψ1 appears at order Op?

εq and the term |A1|2{2 appears at order Opεq, whereas the
first curvature terms appear at Opε 3

2 q. This is in contrast to the ions, where the first curvature term δH1

appears already at order Opεq, which is the same order as Ψ1 and one order lower than the quadratic
term |A1|2{2. In order to achieve an equally accurate description for the electrons, we should truncate the
electron single-particle Lagrangian at order Opε5q: this is beyond the scope of the work presented here,
but does not represent a limitation of the method in general.
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• The Jacobian determinants Js of the guiding-center transformation sZ ÞÑ px, vq can be computed directly
from the symplectic part of the guiding-center single-particle Lagrangians (40a)-(40b):

Ji “ B˚
‖i “ B0 ` ε sp‖ p∇ ˆ b0q ¨ b0 , (44a)

Je “ B˚
‖e “ B0 ´ ε

3

2 sp‖ p∇ ˆ b0q ¨ b0 . (44b)

Such Jacobian determinants are exact because the symplectic forms in (40a)-(40b) remain the same at
any order of the guiding-center expansion, as only the guiding-center Hamiltonians change with increased
order of accuracy (see, for example, [26] for a proof of this statement). The Jacobian determinants confirm
that geometric terms related to the curvature of the background magnetic field appear at order Opεq for
the ions and at order Opε 3

2 q for the electrons, in accordance with the guiding-center Hamiltonians (41).

4.3 Gyrocenter coordinates pX, P‖, µ, Θq

The guiding-center single-particle Lagrangians (40a)-(40b) obtained from the guiding-center coordinate trans-
formation still carry a dependence on the guiding-center angle sθ (the fast variable) in the arguments of the
dynamic potentials (42). Consequently, the guiding-center magnetic moment sµ is not a constant of the motion
and the dynamics of slow and fast variables are still coupled in the guiding-center phase space. The purpose
of the gyrocenter phase-space coordinate transformation is to remove this residual dependence on the angle
variable sθ from the Lagrangians, thus from the Hamiltonians (41). As for the guiding-center coordinate trans-
formation (38), we define the gyrocenter coordinate transformation for ions as polynomial transforms of the
form

ĎX “ X ` ε2ρ2i ` ε3ρ3i ` ε4ρ4i , (45a)

sp‖ “ P} ` ε G
‖
1i ` ε2G

‖
2i ` ε3G

‖
3i , (45b)

sµ “ pµ ` ε G
µ

1i ` ε2G
µ

2i ` ε3G
µ

3i , (45c)

sθ “ Θ ` ε GΘ
1i ` ε2GΘ

2i ` ε3GΘ
3i , (45d)

and the gyrocenter coordinate transformation for electrons as polynomial transforms of the form

ĎX “ X ` ε2ρ2e ` ε
5

2 ρ 5

2
e ` ε3ρ3e , (46a)

sp‖ “ P‖ ` ε G
‖
1e ` ε2G

‖
2e , (46b)

sµ “ pµ `
?

ε G
µ

1

2
e

` ε G
µ

1e , (46c)

sθ “ Θ `
?

ε GΘ
1

2
e

` ε GΘ
1e . (46d)

Here, Z :“ pX, P}, pµ, Θq denote preliminary gyrocenter coordinates, and ρns, G
‖
ns, Gµ

ns and GΘ
ns (with n integer

or half-integer) denote the generators of the coordinate transformation for the respective particle species. Our
preliminary gyrocenter coordinates are the gyrocenter position X, the gyrocenter parallel momentum P}, the
preliminary gyrocenter magnetic moment pµ and the gyrocenter angle variable Θ, also called gyro-angle. The
polynomial transform for the electrons is defined by polynomials in powers of

?
ε because of the mass ratio

between ions and electrons. Moreover, it consists of fewer terms than the ion coordinate transformation because
of the lower accuracy of the electron guiding-center single-particle Lagrangian. If more accuracy is desired, the
number of terms in the polynomial transform can be increased, but this goes beyond the scope of this work.
We also set ρ1s “ 0 a priori: it is, in principle, possible to keep these first-order generators in the calculations
and then find out that they can be set to zero without loss of generality.

We remark the conceptual simplicity of the polynomial transform Z ÞÑ sZ compared to Lie transforms [16]:
for each coordinate, the transformation is a polynomial of finite degree in ε (the degree being adapted to the
desired accuracy of the transformation) and it is moreover linear and algebraic in the generators. By substituting
(45)-(46) in the Lagrangians (40a)-(40b), the gyrocenter generators can be chosen in order to eliminate the
residual dependence on the gyro-angle Θ. The method is analogous to the guiding-center transformation and
it is discussed in detail in [26] for the long-wavelength regime, that is, the case of dynamic potentials with
spatial variations on the macroscopic length scale px. In what follows we apply the same methodology to the
short-wavelength (strongly-varying) regime expressed in (42).

The exact same ideas and computations of the guiding-center transformation can be applied also for the
gyrocenter transformation. In particular, we make use of the equivalence of Lagrangians under the addition of
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the total differential
.
S of arbitrary scalar functions Spt, Zq and write

Li „ Li ` ε2
.
S2i ` ε3

.
S3i , Le „ Le ` ε

5

2

.
S 5

2
e ` ε3

.
S3e , (47)

where the total differential
.
Sns reads

.
Sns “ 1

ε
∇KSns ¨

.
X ` ∇‖Sns b0 ¨

.
X ` BSns

BP}

.
P} ` BSns

Bpµ
.
pµ ` BSns

BΘ

.
Θ ` BSns

Bt
. (48)

Here, ∇K :“ ´b0 ˆ ∇ ˆ b0 and ∇‖ :“ b0 ¨ ∇ denote the gradients with respect to the direction perpendicular
and parallel to the background magnetic field, respectively. We remark that in the derivation of the gyrokinetic
Lagrangians, the scalar functions Sns turn out to be functions of the fluctuating potentials φ1 and A1 and thus
have strong variations in the perpendicular directions, which has to be expressed in (48) by means of the factor
1{ε in front of ∇K.

We summarize our results for ions in Propositions 1-3 and our results for electrons in Propositions 4-6.
Proofs of these propositions are given in Appendix C. The species index is mostly omitted for more readability.

Proposition 1 (ion polynomial transform) The ion guiding-center single-particle Lagrangian (40a),
expressed in the preliminary gyrocenter coordinates pX, P}, pµ, Θq via the polynomial transform (45), is equivalent
to

Li „
ˆ

P‖b0 ` A0

ε

˙
¨

.
X ´ H0 `

3ÿ

n“1

εnLn ` Opε4q , (49)

where H0 “ P 2
‖ {2 ` pµB0 is the lowest-order Hamiltonian and the Lagrangians Ln read

Ln “ γX

n ¨
.

X ` γ‖
n

.
P‖ ` γµ

n

.
pµ ` γΘ

n

.
Θ ´ Hn , (50)

where the components γX

n , γ
‖
n, γµ

n , γΘ
n and the Hamiltonians Hn depend on the generators of the transformation

(45) and are given in Appendix C.

Proposition 2 (preliminary ion gyrocenter Lagrangian) In the Lagrangians Ln of (50) the generators
of the polynomial transform (45) can be chosen such that

Li „
ˆ

P}b0 ` A0

ε

˙
¨

.
X ` ε

`
pµ ` ε

@
γΘ

2

D
` ε2

@
γΘ

3

D˘ .
Θ ´ H0 ` Opε4q , (51)

where
@
γΘ

2

D
and

@
γΘ

3

D
are given in (143) and (154) in Appendix C and, for a given function gpΘq, xgy denotes

its gyro-average and is defined as

xgy :“ 1

2π

ż 2π

0

dΘ gpΘq . (52)

Proposition 3 (ion gyrocenter Lagrangian) The generalized gyrocenter magnetic moment

µ :“ pµ ` ε
@
γΘ

2

D
` ε2

@
γΘ

3

D
(53)

is a constant of the motion, accurate up to order Opε2q, with respect to the dynamics induced by the preliminary
ion gyrocenter single-particle Lagrangian (51). Moreover, there is a one-to-one correspondence µ ÞÑ pµ, which
implies that

Hi :“
P 2

}

2
` pµpµqB0 (54)

is the ion gyrocenter Hamiltonian. In other words, Hi is obtained from H0 by inverting the transformation
pµ ÞÑ µ defined in (53). By expressing (51) in terms of the new gyrocenter coordinates Z :“ pX , P}, µ, Θq, we
obtain the ion gyrocenter single-particle Lagrangian

Li „
ˆ

P}b0 ` A0

ε

˙
¨

.
X ` εµ

.
Θ ´

“
Hi ` sOpε3q

‰
` Opε4q , (55)
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where the symbol sOpε3q denotes corrections to the Hamiltonian of order Opε3q that are independent of the
gyro-angle Θ and Hi “ H0i ` ε H1i ` ε2 H2i, with

H0i “
P 2

}

2
` µB0 , (56a)

H1i “ xΨ1y ` δH1 , (56b)

H2i “ 1

2

@
|A1|2

D
´ 1

2B0

d

dµ

A
ĂΨ1

2
E

´ 1

2B2
0

C´
b0 ˆ ∇K

ĂΨ1

¯
¨ ∇K

ż Θ

dΘ1 ĂΨ1

G

´ 1

B0

C
∇‖

ĂΨ1

ż Θ

dΘ1 ĄA1}

G
` δG2 ` δH2 .

(56c)

Here,

Ψ1 “ Ψ1

ˆ
t,

X

ε
` sρ1i

˙
with sρ1i “

d
2µ

B0pXqa0pX, Θq , (57)

and ĂΨ1 :“ Ψ1 ´ xΨ1y (and the same for A1). Moreover, δG2 is a term related to the curvature of the background
magnetic field, besides δH1 and δH2:

δG2 :“ δG2 ´ 1

2

C
ĂΨ1

B0

ˆ
b0

B0

ˆ ∇KB0

˙
¨ ∇K

ż Θ

dΘ1
ĂΨ1

B0

G

` 1

2

Cˆ
b0

B3
0

ˆ ∇K
ĂΨ1

˙
¨ ∇KB0

ż Θ

dΘ1 ĂΨ1

G
,

(58)

with δG2 given in (141) in Appendix C.

Proposition 4 (electron polynomial transform) The electron guiding-center single-particle Lagrangian
(40b), expressed in the preliminary gyrocenter coordinates pX , P}, pµ, Θq via the polynomial transform (46), is
equivalent to

Le „
ˆ?

εP‖b0 ´ A0

ε

˙
¨

.
X ´ H0 ´

?
ε H 1

2

`
6ÿ

n“2

ε
n

2 L n

2
` Opε 7

2 q , (59)

where H0 “ P 2
‖ {2 ` pµB0 is the lowest-order Hamiltonian, the Hamiltonian H 1

2

reads

H 1

2

“ G
µ

1

2

B0 ` P‖A1‖ `
a

2pµB0 c0 ¨ A1K , (60)

and the Lagrangians L n

2
read

L n

2
“ γX

n

2

¨
.

X ` γ
‖
n

2

.
P‖ ` γ

µ
n

2

.
pµ ` γΘ

n

2

.
Θ ´ H n

2
, (61)

where the components γX
n

2

, γ
‖
n

2

, γ
µ
n

2

, γΘ
n

2

and the Hamiltonians H n

2
depend on the generators of the transformation

(46) and are given in Appendix C.

Proposition 5 (preliminary electron gyrocenter Lagrangian) In the Hamiltonian H 1

2

and in the

Lagrangians L n

2
of (61) the generators of the polynomial transform (46) can be chosen such that

Le „
ˆ?

ε P‖b0 ´ A0

ε

˙
¨

.
X ´ ε2

´
pµ `

?
ε

A
G

µ

1

2

E
´ ε

@
γΘ

3

D¯ .
Θ ´ H0 ` Opε 7

2 q , (62)

where
A

G
µ

1

2

E
and

@
γΘ

3

D
are given in (180) and (186) in Appendix C and, for a given function gpΘq, xgy denotes

its gyro-average as defined in (52).
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Proposition 6 (electron gyrocenter Lagrangian) The generalized gyrocenter magnetic moment

µ :“ pµ `
?

ε
A

G
µ

1

2

E
´ ε

@
γΘ

3

D
(63)

is a constant of the motion, accurate up to order Opεq, with respect to the dynamics induced by the preliminary
electron gyrocenter single-particle Lagrangian (62). Moreover, there is a one-to-one correspondence µ ÞÑ pµ,
which implies that

He :“
P 2

}

2
` pµpµqB0 (64)

is the electron gyrocenter Hamiltonian. In other words, He is obtained from H0 by inverting the transformation
pµ ÞÑ µ defined in (63). By expressing (62) in terms of the new gyrocenter coordinates Z :“ pX , P}, µ, Θq, we
obtain the electron gyrocenter single-particle Lagrangian

Le „
ˆ?

ε P}b0 ´ A0

ε

˙
¨

.
X ´ ε2µ

.
Θ ´

”
He ` sOpε 3

2 q
ı

` Opε 7

2 q , (65)

where the symbol sOpε 3

2 q denotes corrections to the Hamiltonian of order Opε 3

2 q that are independent of the
gyro-angle Θ and He “ H0e ` ?

ε H 1

2
e ` ε H1e, with

H0e “
P 2

}

2
` µB0 , (66a)

H 1

2
e “ P‖A1‖ , (66b)

H1e “ ´ φ1 `
A2

1‖

2
` µ p∇ ˆ A1q ¨ b0 . (66c)

Here, φ1 “ φ1pt, X{εq and the same for A1.

5 Gyrokinetic Vlasov-Maxwell model

We first remark that the Jacobian determinants Js of the gyrocenter coordinate transformation Z ÞÑ px, vq can
be computed directly from the symplectic part of the gyrocenter single-particle Lagrangians (55) and (65) for
ions and electrons, respectively:

Ji “ B˚
}i “ B0 ` ε P} p∇ ˆ b0q ¨ b0 , (67a)

Je “ B˚
}e “ B0 ´ ε

3

2 P} p∇ ˆ b0q ¨ b0 . (67b)

Such Jacobian determinants are exact and have the same form as the corresponding guiding-center Jacobian
determinants in (44) because the symplectic forms in (55) and (65) remain the same at any order of the
gyrocenter expansion, as only the gyrocenter Hamiltonians change with increased order of accuracy (as for
the guiding-center coordinate transformation). The Jacobian determinants (67) confirm that geometric terms
related to the curvature of the background magnetic field appear again at order Opεq for the ions and at order
Opε 3

2 q for the electrons.
The ion gyrokinetic equations of motion for the slow phase-space variables pX , P}q derived from the ion

gyrocenter Lagrangian (55) read

.
X “ 1

B˚
}i

ˆ
ε b0 ˆ ∇Hi ` BHi

BP}
B˚

i

˙
` Opε3q , (68a)

.
P} “ ´B˚

i

B˚
}i

¨ ∇Hi ` Opε3q , (68b)

where the modified magnetic field B˚
i is defined as B˚

i :“ B0 `ε P} ∇ˆb0 and its parallel component is defined
as B˚

}i
:“ B˚

i ¨ b0, which is the ion Jacobian (67a). The gyrokinetic magnetic moment µ is a constant of the

motion accurate up to order Opε3q: .
µ “ Opε3q. Moreover, the dynamics of the gyro-angle Θ is decoupled from

the slow dynamics of pX, P}q and described by
.
Θ “ p1{εqBHi{Bµ ` Opε2q, with the factor 1{ε signifying that

this dynamics is the fastest among all phase-space variables and with larger error terms of order Opε2q. The ion
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gyrocenter distribution function Fipt, X, P}, µq is constant along solutions of (68), where µ is a time-independent
parameter. The electron gyrokinetic equations of motion for the slow phase-space variables pX, P}q derived from
the electron gyrocenter Lagrangian (65) read

.
X “ ´ 1?

ε

1

B˚
}e

ˆ
ε

3

2 b0 ˆ ∇He ´ BHe

BP}

B˚
e

˙
` Opεq , (69a)

.
P} “ ´ 1?

ε

B˚
e

B˚
}e

¨ ∇He ` Opεq , (69b)

where the modified magnetic field B˚
e is defined as B˚

e :“ B0 ´ ε
3

2 P} ∇ ˆ b0 and its parallel component is
defined again as B˚

}e
:“ B˚

e ¨ b0, which is the electron Jacobian (67b). The gyrokinetic magnetic moment µ is a

constant of the motion accurate up to order Opε 3

2 q: .
µ “ Opε 3

2 q. Moreover, the dynamics of the gyro-angle Θ is
decoupled from the slow dynamics of pX, P}q and described by

.
Θ “ ´p1{ε2qBHe{Bµ ` Opε´ 1

2 q, with the factor
1{ε2 signifying again that this dynamics is the fastest among all phase-space variables and with larger error
terms of order Opε´ 1

2 q. The electron gyrocenter distribution function Fept, X, P}, µq is constant along solutions
of (69), where µ is a time-independent parameter.

The non-homogeneous gyrokinetic Maxwell’s equations can be derived from the variational principle by
taking variations of the Low Lagrangian with respect to the electromagnetic fluctuating potentials Φ1 and A1.
After applying identity (79), the weak form of gyrokinetic Coulomb’s law is obtained by taking variations with
respect to Φ1 and reads

0 “
ż

d6
Z

ˆ
B˚

}eFe xδΦ1y ´ B˚
}iFi xδΦ1y

˙

` ε

ż
d6

Z B˚
}iFi

˜
1

B0

d

dµ

A
ĄΨ1i

ĄδΦ1

E

` 1

2B2
0

C´
b0 ˆ ∇K

ĄδΦ1

¯
¨

ż Θ

dΘ1 ∇K
ĄΨ1i

G

` 1

2B2
0

C´
b0 ˆ ∇K

ĄΨ1i

¯
¨
ż Θ

dΘ1 ∇K
ĄδΦ1

G

` 1

B0

C
∇}δΦ1

ż Θ

dΘ1 ĄA1}

G
` δpδG2q

δΦ1

pδΦ1q
¸

,

where δΦ1 denotes an arbitrary test function. Here we neglected all terms of order higher than Opε2q and
Opεq from the ion and electron Hamiltonians, respectively. The terms of order Op1q and Opεq represent the
gyrocenter charge density and the gyrocenter polarization density, respectively. Similarly, after applying again
identity (79), the weak form of Ampère-Maxwell’s law is obtained by taking variations with respect to A1 and
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reads

0 “ ´
ż

d3x

ˆ
∇ ˆ B0 ` ε ∇ ˆ p∇ ˆ A1q

˙
¨ δA1

´
?

ε

ż
d6

Z B˚
}eFe P} δA1} ` ε

ż
d6

Z

«
B˚

}iFi xP ¨ δA1y

´ B˚
}eFe

ˆ
A1}δA1} ` µ p∇ ˆ δA1q ¨ b0

˙ff

´ ε2

ż
d6

Z B˚
}iFi

˜
1

B0

d

dµ

A
ĄΨ1i P ¨ ĄδA1

E
` xA1 ¨ δA1y

` 1

2B2
0

C´
b0 ˆ ∇KpP ¨ ĄδA1q

¯
¨

ż Θ

dΘ1 ∇K
ĄΨ1i

G

` 1

2B2
0

C´
b0 ˆ ∇K

ĄΨ1i

¯
¨

ż Θ

dΘ1 ∇KpP ¨ ĄδA1q
G

` 1

B0

C
∇}pP ¨ δA1q

ż Θ

dΘ1 ĄA1}

G
` 1

B0

C
∇}Ψ1i

ż Θ

dΘ1 ĆδA1}

G

` δpδG2q
δA1

pδA1q
¸

,

where δA1 denotes an arbitrary test function and P :“ P}b0 ` ?
2µB0 c0. As before, we neglected all terms of

order higher than Opε2q and Opεq from the ion and electron Hamiltonians, respectively.

6 Conclusions and outlook

The main results of this work are summarized in Proposition 3 for ions and in Proposition 6 for electrons. We
state the final ion and electron single-particle gyrocenter Lagrangians (55) and (65) in normalized form, obtained
from the consecutive coordinate transformations listed in Tables 2 and 3, respectively. The results obtained
in [23] and in the previous works of [10] and [11] for ions are recovered and augmented by terms related to
the assumption of maximal ordering. In particular, novel terms are the geometric first-order and second-order
corrections δH1, δH2 and δG2, appearing in the first-order and second-order ion gyrocenter Hamiltonians H1i

and H2i in (56), respectively. In particular, the first-order curvature term

δH1 “ µ

„
P}

2
p∇ ˆ b0q ¨ b0 ´ P} p∇a0 ¨ c0q ¨ b0


(70)

should not be neglected when computing ion trajectories in maximal ordering, since it is of the same size as the
curvature term in B˚

i . Moreover, the term

´ 1

B0

C
∇‖

ĂΨ1

ż Θ

dΘ1 ĄA1}

G
, (71)

appearing in the second-order ion gyrocenter Hamiltonian H2i, is also new. It is important to note that this
term arises under the conventional gyrokinetic ordering k}{|kK| “ Opεq (see discussions in section 3.2) and it is
related to fluctuations with non-zero toroidal mode number.

Concerning the electrons, they turn out to be insensitive to magnetic background curvature effects up to
second order in ε, even in maximal ordering. However, terms related to the parallel component of the fluctuating
magnetic vector potential appear in the electron gyrocenter Hamiltonian already at order Op?

εq. Moreover,
the first-order term µp∇ ˆ A1q ¨ b0 “ µB1} represents a correction to the perpendicular electron kinetic energy,
which now reads µpB0 ` εB1}q. This correction is absent for the ions at first order.
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The ion gyrokinetic equations of motion (68) for the slow variables pX, P}q are accurate up to order Opε3q.
The same accuracy is achieved for the conservation of the gyrocenter magnetic moment µ: the corrections
sOpε3q to the ion gyrocenter Hamiltonian in (55) are indeed independent of Θ and do not play a role in the
Euler-Lagrange equation d{dtpBLi{B

.
Θq “ BLi{BΘ.

The electron gyrokinetic equations of motion (69) for the slow variables pX , P}q are accurate up to order

Opεq. By contrast, the conservation of the gyrocenter magnetic moment µ is accurate up to order Opε 3

2 q: the
corrections sOpε 3

2 q to the electron gyrocenter Hamiltonian in (65) are indeed independent of Θ and do not play
a role in the Euler-Lagrange equation d{dtpBLe{B

.
Θq “ BLe{BΘ).

The electron gyrokinetic Lagrangian, and the corresponding gyrokinetic equations of motion, have been de-
rived within an ordering consistent with the ions, despite the order of accuracy of the results being different for
the two species (due to the fact that the gyrocenter magnetic moment µ has been computed with less precision
for electrons than for ions). We conclude that it is possible to derive a set of gyrokinetic Vlasov-Maxwell equa-
tions for ions and electrons within our unique methodology based on guiding-center and gyrocenter polynomial
transforms and within unique ordering assumptions relevant for realistic fusion scenarios (maximal ordering).
Our technique is alternative to the use of Lie transforms and, combined with our rigorous normalization pro-
cedure, can provide useful insights into the derivation of gyrokinetic models and a solid starting point for their
further rigorous mathematical investigation.

We would like to thank Eric Sonnendrücker for supporting our research work and Bruce Scott, Roman
Hatzky and Cesare Tronci for insightful discussions about many of the topics treated in this article. We would
like to thank also Yaman Güçlü for useful suggestions about how to present some of the material discussed here
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EUROfusion Consortium and has received funding from the Euratom research and training program 2014-2018
and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily
reflect those of the European Commission.

A Variational principle

In (6) the single-particle Lagrangian Ls is evaluated at the t-family of maps Ψt : R6 Ñ R
6, parametrically

depending on time. The map Ψt is the flow map of the characteristics of the Vlasov equation (1),

dx

dt
“ v ,

dv

dt
“ qs

ms

”
Ept, xq ` v ˆ Bpt, xq

ı
. (72)

The flow transports a particle that is at z0 “ px0, v0q at the initial time t0 to the phase space position Ψtpz0q at
time t; it is a volume-preserving diffeomorphism, Ψt P DiffvolpR6q. The description of an ensemble of particles
via the particle Lagrangian Lp arises from the single picture in the following way: Newton’s equation of motion
for a charged particle can be deduced from the variational principle

δ

ż t1

t0

Ls

ˆ
zptq, dzptq

dt

˙
dt “ 0 . (73)

The extremum defined by (73) is denoted by zptq “ pxptq, vptqq and is the solution of the Euler-Lagrange
equations, given by (72). Hence, zptq “ Ψtpz0q and (73) can be written as

δ

ż t1

t0

ż
δ6pz1 ´ z0q Ls

ˆ
Ψtpz1q, dΨtpz1q

dt

˙
d6z1 dt “ 0 . (74)

Formally, the ensemble description is obtained by replacing the delta function with the initial particle distribu-
tion, δ6pz1 ´ z0q Ñ fs,0pz1q, which yields

δ

ż t1

t0

ż
fs,0pz1q Ls

ˆ
Ψtpz1q, dΨtpz1q

dt

˙
d6z1 dt “ 0 , (75)

The particle Lagrangian Lp from (6) is obtained by taking the sum over the species and by relabeling the variables
of integration z1 Ñ z0. By construction, the variation (75) with respect to Ψt yields the characteristics of the
Vlasov equation. The Vlasov equation itself enters the picture via the definition

fspt, zq :“
ż

δ6pz ´ Ψtpz0qq fs,0pz0q d6z0 (76)
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of the particle distribution functions. Remark that z P R
6 denote coordinates here and not a path in phase

space. Hence (76) makes the link between Lagrangian paths Ψt and the distribution function fs via fspt, zq “
fs,0ppΨtq´1pzqq, or simply fs “ fs,0 ˝ pΨtq´1. This implies in particular that fs is constant along the Lagrangian
paths,

fspt, Ψtpz0qq “ fs,0pz0q , (77)

which is the statement of the Vlasov equation. Let us now write the characteristic equations in the form

dz

dt
“ F pzq , zpt “ 0q “ z0 , (78)

with the vector field F “ pv, aq, where a “ pqs{msqpE `vˆBq. From the definition of the distribution function
it follows that ż

d6z0 fs,0pz0q Ls

ˆ
Ψt,

dΨt

dt

˙
“

ż
d6z fspt, zq Lspz, F pzqq . (79)

This is easily verified by substituting the definition (76) into the right-hand side and preforming the integration
over z.

B Guiding-center transformation

Here we review how the ion and electron guiding-center Lagrangians (40a)-(40b) are obtained from the polyno-
mial transforms (38), following [26]. In order to shorten the calculations, we use the coordinate pK :“

?
2µB0

instead of the magnetic moment µ introduced in (35). Hence, we have the momentum transformation

pK :“ spK ` ε sGK
1s ` ε2 sGK

2s ` ε3 sGK
3s , (80)

and denote by sZK :“ pĎX, sp‖, spK, sθq the guiding-center coordinates. The final result is then transformed back
to the representation in terms of the magnetic moment. Let us start with the ions and consider the starting
Lagrangian (37a). We substitute the polynomial transform (38), with pK from (80) instead of µ, and expand
in Taylor series around sZ. For instance,

A0pxq “ A0pĎX ` ε sρ1i ` ε2sρ2i ` ε3sρ3i ` ε4sρ4iq

“ A0pĎXq `
“`

ε sρ1i ` ε2sρ2i ` ε3sρ3i ` ε4sρ4i

˘
¨ ∇

‰
A0pĎXq

` 1

2

“`
ε sρ1i ` ε2sρ2i ` ε3sρ3i ` ε4sρ4i

˘
¨ ∇

‰2
A0pĎXq ` . . .

(81)

We also use the equivalence of Lagrangians under the addition of total differentials of arbitrary scalar functions
and the transformation law of tangents (39) (here applied to 9A0pĎXq) to write

A0pĎXq ¨ .sρnipĎX , sp‖, spK, sθ, tq „ ´
.
A0pĎXq ¨ sρnipĎX, sp‖, spK, sθ, tq

“ ´
.ĎX ¨ ∇A0pĎXq ¨ sρnipĎX, sp‖, spK, sθ, tq .

(82)

We then encounter terms like

“
´∇A0pĎXq ¨ sρni ` sρni ¨ ∇A0pĎXq

‰
¨

.ĎX “ ´
“
ρni ˆ p∇ ˆ A0pĎXqq

‰
¨

.ĎX

“ ´
“
ρni ˆ B0pĎXq

‰
¨

.ĎX ,

(83)

in the transformed Lagrangian. The computations for polynomial transforms of arbitrary order have been
carried out in [26]. We repeat here in particular the results from Proposition 1 on page 12 of this work to write
the series expansion of the Lagrangian, up to order N “ 3 (omitting the species index for more readability).
The new Lagrangian written without the dynamical potentials φ1 and A1, which are not transformed in the
guiding-center step, reads

Li „
sL´1

ε
` sL0 ` ε sL1 ` ε2 sL2 ` ε3 sL3 ` Opε4q , (84)

20



where sL´1 “ A0 ¨
.ĎX and

sL0 “ psp‖b0 ` spKc0 ´ sρ1 ˆ B0q ¨
.ĎX ´

sp2
‖

2
´ sp2

K

2
, (85)

sL1 “ p sG‖
1b0 ` sGK

1 c0 ´ sρ2 ˆ B0 ` Q1q ¨
.ĎX ´ sp‖

sG‖
1 ´ spK

sGK
1 ` L1 , (86)

sL2 “ p sG‖
2b0 ` sGK

2 c0 ´ sρ3 ˆ B0 ` Q2q ¨
.ĎX ´ sp‖

sG‖
2 ´ spK

sGK
2 ` L2 , (87)

sL3 “ p sG‖
3b0 ` sGK

3 c0 ´ sρ4 ˆ B0 ` Q3q ¨
.ĎX ´ sp‖

sG‖
3 ´ spK

sGK
3 ` L3 . (88)

In order to determine the guiding-center Lagrangians we need the explicit expressions of

Q1 :“ 1

2
psρ1 ¨ ∇B0q ˆ sρ1 ´ sp‖sρ1 ˆ p∇ ˆ b0q ´ spKsρ1 ˆ p∇ ˆ c0q ´ spK

sGΘ
1 a0 , (89)

and of

L1 :“ ´ 1

2

.sρ1 ¨ psρ1 ˆ B0q ´ .sp‖psρ1 ¨ b0q ´ .spKpsρ1 ¨ c0q `
.sθ spKpsρ1 ¨ a0q ,

L2 :“ ´ .sρ1 ¨ psρ2 ˆ B0q ´
.sG‖

1psρ1 ¨ b0q ´
.sGK

1 psρ1 ¨ c0q `
.sθ sGK

1 psρ1 ¨ a0q

´ .sp‖psρ2 ¨ b0q ´ .spKpsρ2 ¨ c0q `
.sθ spKpsρ2 ¨ a0q

` sp‖ sρ1 ¨ ∇b0 ¨ .sρ1 ` spK sρ1 ¨ ∇c0 ¨ .sρ1 ´ spK
sGΘ

1

.sρ1 ¨ a0

´ 1

3

.sρ1 ¨ rsρ1 ˆ psρ1 ¨ ∇qB0s ´ 1

6
sρ1 ˆ rpsρ1 ¨ ∇q2B0s ¨

.ĎX ,

L3 :“ ´ 1

2

.sρ2 ¨ psρ2 ˆ B0q ´ .sρ1 ¨ psρ3 ˆ B0q

´
.sG‖

2psρ1 ¨ b0q ´
.sGK

2 psρ1 ¨ c0q `
.sθ sGK

2 psρ1 ¨ a0q

´
.sG‖

1psρ2 ¨ b0q ´
.sGK

1 psρ2 ¨ c0q `
.sθ sGK

1 psρ2 ¨ a0q

´ .sp‖psρ3 ¨ b0q ´ .spKpsρ3 ¨ c0q `
.sθ spKpsρ3 ¨ a0q

`
2ÿ

m“1

sG‖
2´m sρ1 ¨ ∇b0 ¨ .sρm ` sp‖

„
sρ2 ¨ ∇b0 ` 1

2
psρ1 ¨ ∇q2b0


¨ .sρ1

`
2ÿ

m“1

sGK
2´m

“
sρ1 ¨ ∇c0 ´ sGΘ

1 a0

‰
¨ .sρm

` spK

„
sρ2 ¨ ∇c0 ´ sGΘ

2 a0 ` 1

2

ˆ
sρ1 ¨ ∇ ` sGΘ

1

B
Bsθ

˙2

c0


¨ .sρ1

´ .sρ1 ¨ rsρ2 ˆ psρ1 ¨ ∇qB0s ´ 3

24

.sρ1 ¨ rsρ1 ˆ psρ1 ¨ ∇q2B0s

´ 1

2
sρ2 ˆ rpsρ1 ¨ ∇q2B0s ¨

.ĎX ´ 1

24
sρ1 ˆ rpsρ1 ¨ ∇q3B0s ¨

.ĎX ,

We remark that the above expansions are straightforward but cumbersome, in particular at higher orders, as in
L3 for example. One could automatize these expansions in a symbolic computer program, similar to the ideas
in [34], where a different approach of setting up the guiding-center transform has been implemented.

In the following we choose the generators sρn, sG‖
n, sGK

n and sGΘ
n in order to cancel as many terms as possible

from the Lagrangians. In sL0 from (85) we require spKc0 “ sρ1 ˆ B0, which can be obtained by setting

sρ1 “ spK

B0

a0 . (90)

Moreover, it has been shown in [26, Theorem 1] that the remaining generators in (86)-(88) can be chosen such
that

sL1 „ sp2
K

2B0

.sθ , sL2 „ ´δH1

B0

.sθ , sL3 „ ´δH2

B0

.sθ , (91)

21



where ´δH1{B0 and ´δH2{B0 are the sθ-averages of the terms multiplying
.sθ in L2 and L3 of (87) and (88),

respectively. It is mandatory to keep these terms in the Lagrangian to avoid secularities in the averaged
equations of motion. Substituting (90) and (91) into (84) yields

Li „
ˆ

sp‖b0 ` A0

ε

˙
¨

.ĎX ` ε

ˆ sp2
K

2B0

´ ε
δH1

B0

´ ε2 δH2

B0

˙ .sθ ´
sp2

‖

2
´ sp2

K

2
` Opε4q , (92)

without the dynamical potentials φ1 and A1. Computing the Euler-Lagrange equation BLi{Bsθ ´ d
dt

BLi{B 9sθ “ 0
and noting that (92) is independent of sθ up to third order, we obtain

d

dt

ˆ sp2
K

2B0

´ ε
δH1

B0

´ ε2 δH2

B0

˙
“ Opε3q . (93)

Hence, the guiding-center generalized magnetic moment

sµ :“ sp2
K

2B0

´ ε
δH1

B0

´ ε2 δH2

B0

(94)

is a constant of the motion accurate up to order Opε3q and should be adopted as one of the coordinates.
As indicated by the notation δH1 and δH2, there is a one-to-one correspondence between the guiding-center
generalized magnetic moment sµ and the guiding-center Hamiltonian sH :

sH :“
sp2

‖

2
` sp2

Kpsµq
2

. (95)

In other words, the guiding-center Hamiltonian is obtained by expressing sp2
K{2 in terms of sµ by inverting the

transformation spK ÞÑ sµ defined in (94). This one-to-one correspondence is typical for polynomial transforms
and occurs also in the gyrocenter transformation. It has an important consequence for the accuracy of the
derived guiding-center Lagrangian, namely it yields

Li „
ˆ

sp‖b0 ` A0

ε

˙
¨

.ĎX ` ε sµ
.sθ ´

“ sH ` sOpε3q
‰

` Opε4q . (96)

Here, the notation sOpε3q denotes corrections to the Hamiltonian sH that are of order Opε3q and independent of
sθ, originating from the inversion of (94). The loss of one order of accuracy in the Hamiltonian from (92) to (96)
occurs because the generalized magnetic moment sµ has been determined only up to Opε2q in (94), implying that
the guiding-center Hamiltonian sH can only be second-order accurate. Is is important to note that neglecting
the second-order term δH2 in (92) leads to a guiding-center Hamiltonian that is only first-order accurate. We
arrive to a similar conclusion for the electrons below.

Let us now identify the higher-order terms δH1 and δH2 in the guiding-center generalized magnetic moment

(94). As mentioned earlier, they are the sθ-averages of the terms multiplying
.sθ in (87) and (88), respectively.

From (87) and (88) we observe that all
.sθ-terms are in L2 and L3. From (90) we deduce that

sρ1 ¨ b0 “ sρ1 ¨ c0 “ 0 ,
.sρ1 “ Bsρ1

Bsθ
.sθ ` rest “ spK

B0

c0

.sθ ` rest . (97)

Therefore, the term multiplying
.sθ in L2, denoted by L

θ
2, reads

L2 “ L
θ
2

.sθ ` rest

“
„

´ spK

B0

c0 ¨ psρ2 ˆ B0q ` sGK
1

spK

B0

` spKpsρ2 ¨ a0q

`sp‖
sp2

K

B2
0

a0 ¨ ∇b0 ¨ c0 ´ 1

3

sp3
K

B3
0

c0 ¨ ra0 ˆ pa0 ¨ ∇qB0s
 .sθ ` rest .

(98)

From b0 ˆ c0 “ a0 it follows that the first and the third term in the above bracket cancel each other. In (86)

the generator sGK
1 is chosen to remove the Hamiltonian and the generator sG‖

1 is chosen to remove the parallel
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component of the vector multiplying
.ĎX. This leads to

sGK
1 “ ´ sp‖

spK

sG‖
1 “ sp‖

spK

ˆ
Q1 ¨ b0 ´ sp2

K

2B0

b0 ¨ ∇a0 ¨ c0

˙
(99)

“ sp‖

B0

„
1

2
spKa0 ¨ ∇b0 ¨ c0 ` sp‖p∇ ˆ b0q ¨ c0 ` spKp∇ ˆ c0q ¨ c0 ´ spK

2
b0 ¨ ∇a0 ¨ c0



“ sp‖

B0

„
´1

2
spKa0 ¨ ∇b0 ¨ c0 ` sp‖p∇ ˆ b0q ¨ c0 ` spK

2
b0 ¨ ∇a0 ¨ c0


,

Here, we used p∇ ˆ c0q ¨ c0 “ b0 ¨ ∇a0 ¨ c0 ´ a0 ¨ ∇b0 ¨ c0 to arrive at the last line. The first correction to the
magnetic moment in (94) can now be given as the sθ-average of L

θ
2, defined in (98),

´δH1

B0

:“ 1

2π

ż 2π

0

dsθ L
θ
2 “ sp‖

B0

sp2
K

2B0

ˆ
´1

2
p∇ ˆ b0q ¨ b0 ` p∇a0 ¨ c0q ¨ b0

˙
. (100)

Here we used that ∇a0 ¨ c0 “ ∇e2 ¨ e1 is independent of sθ as well as the average

1

2π

ż 2π

0

dsθ pa0 ¨ ∇b0 ¨ c0q “ ´1

2
p∇ ˆ b0q ¨ b0 . (101)

The result (100) shows that it is straightforward to compute the inverse of (94) up to first order:

sp2
K

2
“ sµB0

„
1 ` ε

ˆ sp‖

B0

1

2
p∇ ˆ b0q ¨ b0 ´ sp‖

B0

p∇a0 ¨ c0q ¨ b0

˙
` Opε2q , (102)

which corresponds to the term δH1 stated in (43). Let us move on to the computation of δH2. The term

multiplying
.sθ in L3, denoted by L

θ
3, reads

L3 “ L
θ
3

.sθ ` rest

“
˜

´ 1

2

Bsρ2

Bsθ ¨ psρ2 ˆ B0q ` sGK
2

spK

B0

´ B sG‖
1

Bsθ psρ2 ¨ b0q ´ B sGK
1

Bsθ psρ2 ¨ c0q ` sGK
1 psρ2 ¨ a0q

`
2ÿ

m“1

sG‖
2´m sρ1 ¨ ∇b0 ¨ Bsρm

Bsθ ` sp‖

„
sρ2 ¨ ∇b0 ` 1

2
psρ1 ¨ ∇q2b0


¨ spK

B0

c0

` spK

“
sρ1 ¨ ∇c0 ´ sGΘ

1 a0

‰
¨ Bsρ2

Bsθ ` spK

«
1

2

ˆ
sρ1 ¨ ∇ ` sGΘ

1

B
Bsθ

˙2

c0

ff
¨ spK

B0

c0

´ sp
B0

c0 ¨ rsρ2 ˆ psρ1 ¨ ∇qB0s ´ 3

24

sp
B0

c0 ¨ rsρ1 ˆ psρ1 ¨ ∇q2B0s
¸

.sθ ` rest .

The second correction to the magnetic moment in (94) can then be defined as the sθ-average of L
θ
3:

´δH2

B0

:“ 1

2π

ż 2π

0

dsθ L
θ
3 . (103)

The second-order Hamiltonian correction due to the magnetic curvature would then be the sum of (103) and
the second-order term in (118). We see however that such a term is too cumbersome for practical applications,
for instance the implementation in a gyrokinetic simulation code.

We now proceed in the same fashion for the electrons and substitute the polynomial transform (38), with
pK from (80) instead of µ, in the electron starting Lagrangian (37b). We omit again the species index for more
readability. After expanding in Taylor series the static background field, we find the following Lagrangians at
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the respective orders εn, 0 ď n ď 3 (and sL´1 “ ´A0 ¨
.ĎX):

sL0 “ p
?

ε sp‖b0 `
?

ε spKc0 ` sρ1 ˆ B0q ¨
.ĎX ´

sp2
‖

2
´ sp2

K

2
, (104)

sL1 “ p
?

ε sG‖
1b0 `

?
ε sGK

1 c0 ` sρ2 ˆ B0 ` Q1q ¨
.ĎX ´ sp‖

sG‖
1 ´ spK

sGK
1 ` L1 , (105)

sL2 “ p
?

ε sG‖
2b0 `

?
ε sGK

2 c0 ` sρ3 ˆ B0 ` Q2q ¨
.ĎX ´ sp‖

sG‖
2 ´ spK

sGK
2 ` L2 , (106)

sL3 “ p
?

ε sG‖
3b0 `

?
ε sGK

3 c0 ` sρ4 ˆ B0 ` Q3q ¨
.ĎX ´ sp‖

sG‖
3 ´ spK

sGK
3 ` L3 . (107)

We will then need the explicit expressions of

Q1 :“ ´1

2
psρ1 ¨ ∇B0q ˆ sρ1 ´

?
ε sp‖sρ1 ˆ p∇ ˆ b0q ´

?
ε spKsρ1 ˆ p∇ ˆ c0q ´

?
ε spK

sGΘ
1 a0 ,

and of

L1 :“ 1

2

.sρ1 ¨ psρ1 ˆ B0q ´
?

ε
.sp‖psρ1 ¨ b0q ´

?
ε
.spKpsρ1 ¨ c0q `

?
ε
.sθ spKpsρ1 ¨ a0q ,

L2 :“ .sρ1 ¨ psρ2 ˆ B0q ´
?

ε
.sG‖

1psρ1 ¨ b0q ´
?

ε
.sGK

1 psρ1 ¨ c0q `
?

ε
.sθ sGK

1 psρ1 ¨ a0q

´
?

ε
.sp‖psρ2 ¨ b0q ´

?
ε
.spKpsρ2 ¨ c0q `

?
ε
.sθ spKpsρ2 ¨ a0q

`
?

ε sp‖ sρ1 ¨ ∇b0 ¨ .sρ1 `
?

ε spK sρ1 ¨ ∇c0 ¨ .sρ1 ´
?

ε spK
sGΘ

1

.sρ1 ¨ a0

` 1

3

.sρ1 ¨ rsρ1 ˆ psρ1 ¨ ∇qB0s ` 1

6
sρ1 ˆ rpsρ1 ¨ ∇q2B0s ¨

.ĎX .

Here again we choose the electron generators ρn, sG‖
n, sGK

n , and sGΘ
n in order to cancel as many terms as

possible from the Lagrangians. In sL0 from (104) we require ´?
ε spKc0 “ sρ1 ˆ B0, which can be obtained by

setting

sρ1 :“ ´
?

ε
spK

B0

a0 . (108)

The factor
?

ε reflects the smallness of the electron Larmor radius compared to the ion Larmor radius. The
methodology is now the same as for ions. However, the ordering and the signs of the various terms has been
regarded with care. In (105) we require sρ1 ¨ b0 “ 0 and

sρ2 ˆ B0 “ ´
?

ε sGK
1 c0 ´ Q1 ` ε

p2
K

2B0

∇a0 ¨ c0 , (109)

G
‖
1 “ ´ 1?

ε
Q1 ¨ b0 ´

?
ε

sp2
K

2B0

b0 ¨ ∇a0 ¨ c0 , (110)

sGK
1 “ ´ sp‖

spK

sG‖
1 , (111)

which, in contrast to (91), leads to

sL1 „ ´ε
p2

K

2B0

.sθ . (112)

At second order in (106) we can remove all terms except the gyro-averages of the terms multiplying
.sθ, which in

analogy to (98) are given by

L2 “ L
θ
2

.sθ ` rest

“
„

´
?

ε
spK

B0

c0 ¨ psρ2 ˆ B0q ´ ε sGK
1

spK

B0

`
?

ε spKpsρ2 ¨ a0q

`ε3{2sp‖
sp2

K

B2
0

a0 ¨ ∇b0 ¨ c0 ´ ε3{2

3

sp3
K

B3
0

c0 ¨ ra0 ˆ pa0 ¨ ∇qB0s
 .sθ ` rest .

(113)
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Again due to b0 ˆ c0 “ a0, the first and the third term in the above bracket cancel each other. Moreover, from
(110) and (111) we have

sGK
1 “ ´ sp‖

spK

sG‖
1 “ sp‖

spK

ˆ
1?
ε

Q1 ¨ b0 `
?

ε
sp2

K

2B0

b0 ¨ ∇a0 ¨ c0

˙

“
?

ε
sp‖

B0

„
´1

2
spKa0 ¨ ∇b0 ¨ c0 ´ sp‖p∇ ˆ b0q ¨ c0 ´ spKp∇ ˆ c0q ¨ c0 ` spK

2
b0 ¨ ∇a0 ¨ c0



“
?

ε
sp‖

B0

„
1

2
spKa0 ¨ ∇b0 ¨ c0 ´ sp‖p∇ ˆ b0q ¨ c0 ´ spK

2
b0 ¨ ∇a0 ¨ c0


.

(114)

Since the gyro-average of L
θ
2 is the only term that cannot be removed via the generators, we obtain

sL2 „
A

L
θ
2

E .sθ , (115)

where A
L

θ
2

E
“ 1

2π

ż 2π

0

dsθ L
θ
2 “ ε

3

2

sp‖

B0

sp2
K

2B0

„
´1

2
p∇ ˆ b0q ¨ b0 ` p∇a0 ¨ c0q ¨ b0


“ ´ε

3

2

δH1

B0

.

This is the same result as for the ions in (100) but with a factor ε
3

2 . Carrying out the analogous computations
for sL3, we find that generators can be chosen such that sL3 “ Opεq. Therefore, from (112) and (115) we obtain
the electron Lagrangian

Le „
ˆ?

ε sp‖b0 ´ A0

ε

˙
¨

.ĎX ´ ε2

ˆ sp2
K

2B0

` ε
3

2

δH1

B0

˙ .sθ ´
sp2

‖

2
´ sp2

K

2
` Opε4q . (116)

In contrast to (142) and (94) for the ions, for the electrons we have

d

dt

ˆ sp2
K

2B0

` ε
3

2

δH1

B0

˙
“ Opε2q ñ sµ :“ sp2

K

2B0

` ε
3

2

δH1

B0

, (117)

which is however less accurate than for ions, namely only up to order Opε2q. The electron guiding-center
Hamiltonian is obtained from the inverse of the mapping pK ÞÑ sµ:

sµB0 “ sp2
K

2

„
1 ` ε3{2

ˆ sp‖

B0

1

2
p∇ ˆ b0q ¨ b0 ´ sp‖

B0

p∇a0 ¨ c0q ¨ b0

˙

ô sp2
K

2
“ sµB0

„
1 ´ ε3{2

ˆ sp‖

B0

1

2
p∇ ˆ b0q ¨ b0 ´ sp‖

B0

p∇a0 ¨ c0q ¨ b0

˙
` Opε2q ,

(118)

which proves the result (40b) for the electron guiding-center Hamiltonian.

C Gyrocenter transformation: proofs

We collect here the proofs of Propositions 1-3 for ions and of Propositions 4-6 for electrons. The species index
is mostly omitted for more readability.

Proof 1 (ion polynomial transform) Before proving Proposition 1, we remark that the Lagrangians Ln

in (49), for n “ 1, 2, 3, read

Ln :“ γX

n ¨
.

X ` γ‖
n

.
P‖ ` γµ

n

.
pµ ` γΘ

n

.
Θ ´ Hn . (119)

The components γX

n , for n “ 1, 2, 3, are given by

γX

1 “ G
‖
1b0 ´ ρ2 ˆ B0 ` ∇KS2 , (120a)

γX

2 “ G
‖
2b0 ´ ρ3 ˆ B0 ` ∇KS3 ` ∇‖S2 b0 ` F K ` δγX

2 , (120b)

γX

3 “ G
‖
3b0 ´ ρ4 ˆ B0 ` ∇‖S3 b0 ` F‖b0 ` δγX

3 , (120c)
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where the terms F K and F} are defined as

F K “ G
‖
1∇Kρ2 ¨ b0 ´ 1

2
pρ2 ˆ B0q ¨ ∇Kρ2 ` G

µ

1 ∇KGΘ
1 , (121a)

F‖ “ G
‖
1∇‖ρ2 ¨ b0 ´ 1

2
pρ2 ˆ B0q ¨ ∇‖ρ2 ` G

µ

1 ∇‖GΘ
1 , (121b)

and the terms δγX

n , for n “ 2, 3, contain terms related to the curvature of the background magnetic field and
are given by

δγX

2 “ ´ P‖ρ2 ˆ p∇ ˆ b0q , (122a)

δγX

3 “ ´ P} ρ3 ˆ p∇ ˆ b0q ` P} pρ3 ¨ ∇qb0

` G
}
1pρ2 ¨ ∇qb0 ` 1

2
pρ2 ¨ ∇B0q ˆ ρ2 .

(122b)

The components γ
‖
n, for n “ 1, 2, 3, are given by

γ
‖
1 “ 0 , (123a)

γ
‖
2 “ ´b0 ¨ ρ2 ` BS2

BP‖
, (123b)

γ
}
3 “ ´b0 ¨ ρ3 ` BS3

BP}

`
ˆ

G
}
1b0 ´ 1

2
ρ2 ˆ B0

˙
¨ Bρ2

BP}

` G
µ

1

BGΘ
1

BP}

. (123c)

The components γµ

n , for n “ 1, 2, 3, are given by

γ
µ

1 “ 0 , (124a)

γ
µ

2 “ ´GΘ
1 ` BS2

Bpµ , (124b)

γ
µ

3 “ ´GΘ
2 ` BS3

Bpµ `
ˆ

G
}
1b0 ´ 1

2
ρ2 ˆ B0

˙
¨ Bρ2

Bpµ ` G
µ

1

BGΘ
1

Bpµ . (124c)

The components γΘ
n , for n “ 1, 2, 3, are given by

γΘ
1 “ pµ , (125a)

γΘ
2 “ G

µ

1 ` BS2

BΘ
, (125b)

γΘ
3 “ G

µ

2 ` BS3

BΘ
`

ˆ
G

}
1b0 ´ 1

2
ρ2 ˆ B0

˙
¨ Bρ2

BΘ
` G

µ

1

BGΘ
1

BΘ
. (125c)

Finally, the Hamiltonians Hn, for n “ 1, 2, 3, are given by

H1 “ G
µ

1 B0 ` P‖G
‖
1 ` Ψ1 ` δH1 , (126a)

H2 “ G
µ

2 B0 ` pµρ2 ¨ ∇B0 ` P‖G
‖
2 ` 1

2
pG‖

1q2 `
„

psρ2 ` ρ2q ¨ ∇

` p sG‖
1 ` G

‖
1q d

dP‖
` p sGµ

1 ` G
µ

1 q d

dpµ ` p sGΘ
1 ` GΘ

1 q d

dΘ


Ψ1

`
ˆ

G
‖
1

d

dP‖
` G

µ

1

d

dpµ

˙
δH1 ` δH2 ` 1

2
|A1|2 ` BS2

Bt
,

(126b)

H3 “ G
µ

3 B0 ` δH3 , (126c)

where the generalized potential reads

Ψi

ˆ
t,

X

ε
` sρ1pZq, P‖, pµ, Θ

˙
“ φ1

ˆ
t,

X

ε
` sρ1pZq

˙
´ P‖A1‖

ˆ
t,

X

ε
` sρ1pZq

˙

´
a

2pµB0pXq c0pX, Θq ¨ A1K

ˆ
t,

X

ε
` sρ1pZq

˙
,

(127)
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with A1‖ :“ A1 ¨ b0 and A1K :“ b0 ˆ A1 ˆ b0. Moreover, δH1 is the curvature term introduced in (43), we
do not write the explicit expression of δH2, and the explicit expression of δH3 is not relevant for our order of
accuracy.

The results stated in Proposition 1 are obtained by substituting the gyrocenter coordinate transformation
(45) into the guiding-center single-particle Lagrangian (40a) and computing its Taylor expansion in powers of
ε up to order ε3 (starting from 1{ε). We first denote by Γ the symplectic part of the guiding-center Lagrangian
(40a):

Γ :“
ˆ

sp}b0 ` A0

ε

˙
¨

.ĎX ` ε sµ
.sθ . (128)

The coefficients Γn, for n “ ´1, 0, 1, 2, 3, of the Taylor expansion of Γ read

Γ´1 “ A0 ¨
.

X , (129a)

Γ0 “ P}b0 ¨
.

X , (129b)

Γ1 “ G
}
1b0 ¨

.
X ` pρ2 ¨ ∇qA0 ¨

.
X ` A0 ¨ .

ρ2 ` pµ
.
Θ , (129c)

Γ2 “
”
G

}
2 ` P}pρ2 ¨ ∇q

ı
b0 ¨

.
X ` pρ3 ¨ ∇qA0 ¨

.
X ` A0 ¨ .

ρ3

` P}b0 ¨ .
ρ2 ` G

µ

1

.
Θ ` pµ

.
GΘ

1 ,

(129d)

Γ3 “
”
G

}
3 ` P}pρ3 ¨ ∇q ` G

}
1pρ2 ¨ ∇q

ı
b0 ¨

.
X ` pρ4 ¨ ∇qA0 ¨

.
X

` A0 ¨ .
ρ4 ` 1

2
pρ2 ¨ ∇q2A0 ¨

.
X `

”
G

}
1b0 ` pρ2 ¨ ∇qA0

ı
¨ .
ρ2

` P}b0 ¨ .
ρ3 ` G

µ

2

.
Θ ` pµ

.
GΘ

2 ` G
µ

1

.
GΘ

1 .

(129e)

The results for the symplectic part follow by using the equivalence relations (for generic generators ρ and GΘ)

pρ ¨ ∇qA0 ¨
.

X ` A0 ¨ .
ρ „ ´pρ ˆ B0q ¨

.
X , (130a)

P}b0 ¨ .
ρ „ ´P}p∇b0 ¨ ρq ¨

.
X ´ pb0 ¨ ρq

.
P} , (130b)

pρ ¨ ∇qA0 ¨ .
ρ ` 1

2
pρ ¨ ∇q2A0 ¨

.
X „ ´1

2
pρ ˆ B0q ¨ .

ρ

` 1

2
rpρ ¨ ∇B0q ˆ ρs ¨

.
X ,

(130c)

pµ
.
GΘ „ ´GΘ

.
pµ , (130d)

together with the vector identity pρ ¨ ∇qb0 ´ ∇b0 ¨ ρ “ ´ρ ˆ p∇ ˆ b0q, and by adding the terms corresponding
to the total differentials

.
S2 and

.
S3. For the Hamiltonian part, we note that the fluctuating potential Ψ1 must

be first transformed to the guiding-center coordinates sZ and then to the preliminary gyrocenter coordinates Z.
We first recall that in physical coordinates we have

Ψ1

´
t,

x

ε
, p‖,µ, θ

¯
“ φ1

´
t,

x

ε

¯
´ p‖A1‖

´
t,

x

ε

¯
´

a
2µB0pxq c0px, θq ¨ A1K

´
t,

x

ε

¯
. (131)

We shall first substitute the guiding-center coordinate transformation (38). Using that φ1 and A1 in (131) are
normalized functions with size and variations of order Op1q in the limit ε Ñ 0, we can safely expand in a Taylor
series around pĎX{ε ` sρ1, sp‖, sµ, sθq and obtain

Ψ1

´
t,

x

ε
, p},µ, θ

¯
“ Ψ1

ˆ
t,

ĎX
ε

` sρ1psµ, sθq, sp}, sµ, sθ
˙

` ε

ˆ
sρ2 ¨ ∇ ` sG}

1

d

dsp}
` sGµ

1

d

dsµ ` sGΘ
1

d

dsθ

˙
Ψ1 ` Opε2q .

(132)
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The same reasoning applies when we substitute the gyrocenter coordinate transformation (45) into (132),
yielding

Ψ1

´
t,

x

ε
, p},µ, θ

¯
“ Ψ1

ˆ
t,

X

ε
` sρ1ppµ, Θq, P}, pµ, Θ

˙

` ε

„
psρ2 ` ρ2q ¨ ∇ ` p sG}

1 ` G
}
1q d

dP}

` p sGµ

1 ` G
µ

1 q d

dpµ

` p sGΘ
1 ` GΘ

1 q d

dΘ


Ψ1 ` Opε2q .

(133)

This explains the second line of the second-order Hamiltonian H2 in (126b) as well as the expression for Ψ1

given in (127).

Proof 2 (preliminary ion gyrocenter Lagrangian) The components γX

n , for n “ 1, 2, 3, in (120a)-(120c)
vanish if and only if we set

G
‖
1 “ 0 , ρ2K “ b0

B0

ˆ ∇KS2 , (134a)

G
‖
2 “ ´∇‖S2 ´ δγX

2‖ , ρ3K “ b0

B0

ˆ
`
∇KS3 ` F K ` δγX

2K

˘
, (134b)

G
‖
3 “ ´∇‖S3 ´ F‖ ´ δγX

3‖ , ρ4K “ b0

B0

ˆ δγX

3K . (134c)

The components γ
‖
n, for n “ 2, 3, in (123b)-(123c) vanish if and only if we set

b0 ¨ ρ2 “ BS2

BP}
, (135a)

b0 ¨ ρ3 “ BS3

BP}

`
ˆ

G
}
1b0 ´ 1

2
ρ2 ˆ B0

˙
¨ Bρ2

BP}

` G
µ

1

BGΘ
1

BP}

. (135b)

The components γµ

n , for n “ 2, 3, in (124b)-(124c) vanish if and only if we set

GΘ
1 “ BS2

Bpµ , (136a)

GΘ
2 “ BS3

Bpµ `
ˆ

G
}
1b0 ´ 1

2
ρ2 ˆ B0

˙
¨ Bρ2

Bpµ ` G
µ

1

BGΘ
1

Bpµ . (136b)

The Hamiltonians Hn, for n “ 1, 2, 3, in (126a)-(126c) vanish if and only if we set

G
µ

1 “ ´ 1

B0

´
P}G

‖
1 ` Ψi ` δH1

¯
, (137a)

G
µ

2 “ ´ 1

B0

"
pµρ2 ¨ ∇B0 ` P}G

‖
2 ` 1

2
pG‖

1q2 `
„

psρ2 ` ρ2q ¨ ∇

`p sG‖
1 ` G

‖
1q d

dP‖
` p sGµ

1 ` G
µ

1 q d

dpµ ` p sGθ
1 ` GΘ

1 q d

dΘ


Ψ1

`
ˆ

G
‖
1

d

dP}

` G
µ

1

d

dpµ

˙
δH1 ` δH2 ` 1

2
|A1|2 ` BS2

Bt

*
,

(137b)

G
µ

3 “ ´ δH3

B0

. (137c)

The only degrees of freedom left are the arbitrary scalar functions S2 and S3. Since these functions must be
2π-periodic in the gyro-angle Θ, we cannot eliminate γΘ

2 and γΘ
3 , given by (125b)-(125c), entirely from the

Lagrangian. The reason is that the equation BSn{BΘ “ g, for a given function g, has 2π-periodic solutions
Sn if and only if xgy “ 0, where xgy denotes the gyro-average of g defined in (52). Denoting by rg :“ g ´ xgy
the fluctuating part of g (with zero gyro-average), the dependence on the gyro-angle Θ can be removed from
(125b)-(125c) by setting, for n “ 2, 3,

γΘ
n “

@
γΘ

n

D
, (138)
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or, equivalently, by requiring that Sn, for n “ 2, 3, satisfy the differential equations

BS2

BΘ
“ ´ ĂGµ

1 , (139a)

BS3

BΘ
“ ´ ĂGµ

2 ´
Č

G
}
1b0 ¨ Bρ2

BΘ
`

Č1

2
ρ2 ˆ B0 ¨ Bρ2

BΘ
´

Č
G

µ

1

BGΘ
1

BΘ
. (139b)

The solutions of (139) read (with arbitrary lower bound Θ0 of integration)

S2pΘq “ S2pΘ0q ´
ż Θ

Θ0

dΘ1 ĂGµ

1 , (140a)

S3pΘq “ S3pΘ0q

´
ż Θ

Θ0

dΘ1

˜
ĂGµ

2 `
Č

G
}
1b0 ¨ Bρ2

BΘ
´

Č1

2
ρ2 ˆ B0 ¨ Bρ2

BΘ
`

Č
G

µ

1

BGΘ
1

BΘ

¸
.

(140b)

Proof 3 (ion gyrocenter Lagrangian) Before proving Proposition 3, we remark that the δG2 in (58)
reads

δG2 :“
Bˆ

sρ2 ¨ ∇ ` sG‖
1

d

dP‖
` sGµ

1

d

dpµ ` sGΘ
1

d

dΘ

˙
Ψ1

F
. (141)

The term δG2 is linear in the fluctuating potential Ψ1 and couples to higher-order generators of the guiding-
center transformation.

In order to prove our results, we first note that computing the Euler-Lagrange equation BLi{BΘ´ d
dt

BLi{B
.
Θ “

0 for the preliminary gyrocenter single-particle Lagrangian (51), and noting that sOpε3q is independent of Θ, we
obtain

d

dt

`
pµ ` ε γΘ

2 ` ε2γΘ
3

˘
“ Opε3q . (142)

Hence, the gyrocenter magnetic moment µ defined in (53) is conserved with second-order accuracy in ε. Let us
now compute the terms

@
γΘ

2

D
and

@
γΘ

3

D
that define the transformation pµ ÞÑ µ in (53). From (125b) and (137a)

we have @
γΘ

2

D
“ xG

µ

1 y “ ´ xΨ1y
B0

´ δH1

B0

, (143)

where we used the result G
‖
1 “ 0 from (134a) and the fact that the geometric term δH1 does not depend on the

gyro-angle. Moreover, from (125c) we have

@
γΘ

3

D
“ xG

µ

2 y ´ 1

2

BBρ2

BΘ
¨ pρ2 ˆ B0q

F
`

BBGΘ
1

BΘ
G

µ

1

F
. (144)

The gyro-average of G
µ

2 can be computed from (137b), obtaining

xGµ

2 y “ ´ 1

B0

B
P}G

‖
2 `

ˆ
ρ2 ¨ ∇ ` G

µ

1

d

dpµ ` GΘ
1

d

dΘ

˙
Ψ1 ` 1

2

@
|A1|2

DF
(145)

´ xG
µ

1 y
B0

d

dpµδH1 ´ δH2

B0

´ δG2

B0

, (146)

where we used xρ2y “ 0. In order to compute the second term on the right-hand side of (144), the generator
ρ2 is determined by the function S2 via (134a) and (135a). Omitting the arbitrary lower bound of integration
Θ0, we have

S2 “ ´
ż Θ

dΘ1 ĂGµ

1 “
ż Θ

dΘ1
ĂΨ1

B0

, (147)

and, recalling the functional form of Ψ1 in (131), we obtain

BS2

BP‖
“ ´

ż Θ

dΘ1
ĄA1‖

B0

. (148)

Therefore, the generator ρ2 reads

ρ2 “ b0

B0

ˆ ∇K

ż Θ

dΘ1
ĂΨ1

B0

´ b0

ż Θ

dΘ1
ĄA1‖

B0

, (149)
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which leads to

´1

2

BBρ2

BΘ
¨ pρ2 ˆ B0q

F
“ ´1

2

C˜
b0

B0

ˆ ∇K

ĂΨ1

B0

¸
¨ ∇K

ż Θ

dΘ1
ĂΨ1

B0

G
. (150)

In order to compute the last term in (144), we get from (136a)

GΘ
1 “ BS2

Bpµ “
ż Θ

dΘ1 d

dpµ
ĂΨ1

B0

, (151)

yielding BBGΘ
1

BΘ
G

µ

1

F
“ ´ 1

2B2
0

d

dpµ
A

ĂΨ1

2
E

. (152)

In order to get an explicit expression for
@
γΘ

3

D
, we need to compute the right-hand side of (146) term by term.

Using (134b) and the fact that xS2y “ 0 and xδγX

2‖y “ 0 from (122), we find xG
‖
2y “ 0. The second to fourth

terms in (146) read

´ 1

B0

xρ2 ¨ ∇Ψ1y “
Cˆ

b0

B2
0

ˆ ∇K
ĂΨ1

˙
¨ ∇K

ż Θ

dΘ1
ĂΨ1

B0

G

` 1

B0

C
∇‖

ĂΨ1

ż Θ

dΘ1
ĄA1‖

B0

G
,

(153a)

´ 1

B0

B
G

µ

1

d

dpµΨi

F
“ 1

2B2
0

d

dpµ
@
Ψ2

i

D
` 1

B2
0

δH1

d

dpµ xΨiy , (153b)

´ 1

B0

B
GΘ

1

d

dΘ
Ψi

F
“ 1

2B2
0

d

dpµ
A

rΨ2
i

E
, (153c)

where we integrated by parts in order to obtain the last equality. Substitution of (150) and (152)-(153b) into
(144) yields

@
γΘ

3

D
“ ´ 1

2B0

@
|A1|2

D
` 1

2B2
0

d

dpµ
@
Ψ2

1

D

` 1

2

Cˆ
b0

B3
0

ˆ ∇K
ĂΨ1

˙
¨ ∇K

ż Θ

dΘ1 ĂΨ1

G

` 1

B2
0

C
∇}

ĂΨ1

ż Θ

dΘ1 ĄA1}

G
´ δG2

B0

` 1

B2
0

d

dpµ

ˆ
xΨ1y δH1 ` 1

2
δH2

1

˙
´ δH2

B0

.

(154)

The generalized magnetic moment µ can now be computed explicitly as a function of the fluctuating potentials
from (143) and (154). It remains to identify the gyrocenter Hamiltonian. For this purpose, we need to invert
(53) and substitute the result into H0. From

µ “ pµ ` ε
@
γΘ

2

D
ppµq ` ε2

@
γΘ

3

D
ppµq , (155)

we obtain
pµ “ µ ´ ε

@
γΘ

2

D
pµ ´ ε

@
γΘ

2

D
pµqq ´ ε2

@
γΘ

3

D
pµq ` sOpε3q

“ µ ´ ε
@
γΘ

2

D
pµq ` ε2

@
γΘ

2

D
pµq d

dµ

@
γΘ

2

D
pµq ´ ε2

@
γΘ

3

D
pµq ` sOpε3q .

(156)

At order Opε2q we compute the difference

@
γΘ

3

D
´ 1

2

d

dµ

@
γΘ

2

D2 “
@
γΘ

3

D
´ 1

2B2
0

d

dµ
pxΨ1y ` δH1q2

, (157)
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and obtain, using the explicit formulas (143) and (154) for
@
γΘ

2

D
and

@
γΘ

3

D
,

pµ “ µ ` ε

B0

pxΨ1y ` δH1q ` ε2

B0

˜
1

2

@
|A1|2

D
´ 1

2B0

d

dpµ
A

ĂΨ1

2
E

´ 1

2B2
0

C´
b0 ˆ ∇K

ĂΨ1

¯
¨ ∇K

ż Θ

dΘ1 ĂΨ1

G

´ 1

B0

C
∇‖

ĂΨ1

ż Θ

dΘ1 ĄA1‖

G
` δG2 ` δH2

¸
` sOpε3q ,

(158)

where we used the fact that xgy2 ´
@
g2

D
“ ´

@
rg2

D
, for a given function gpΘq. Substituting this into the Hamil-

tonian H0 completes the proof.

Proof 4 (electron polynomial transform) Before proving Proposition 4, we remark that the Lagrangians
L n

2
, for n “ 2, . . . , 6, read

L n

2
“ γX

n

2

¨
.

X ` γ
‖
n

2

.
P‖ ` γ

µ
n

2

.
pµ ` γΘ

n

2

.
Θ ´ H n

2
. (159)

The components γX
n

2

, for n “ 2, . . . , 6, are given by

γX

1 “ ρ2 ˆ B0 , (160a)

γX
3

2

:“ G
}
1b0 ` ρ 5

2

ˆ B0 ` ∇KS 5

2

, (160b)

γX

2 “ ρ3 ˆ B0 ` ∇KS3 ` F 2K , (160c)

γX
5

2

:“ G2}b0 ` ∇‖S 5

2

b0 ` F 5

2
K ` δγX

5

2

, (160d)

γX

3 “ ∇‖S3 b0 ` F 3K ` F3} b0 ` δγX

3 , (160e)

where the terms F n

2
K, for n “ 4, 5, 6, and F3} are defined as

F 2K “ 1

2
pρ2 ˆ B0q ¨ ∇Kρ2 ´ G

µ

1

2

∇KGΘ
1

2

, (161a)

F 5

2
K “ G

}
1∇Kρ2 ¨ b0 ´ G

µ

1

2

∇KGΘ
1 ´ G

µ

1 ∇KGΘ
1

2

´ pρ2 ¨ ∇qA0 ¨ ∇Kρ 5

2

´ pρ 5

2

¨ ∇qA0 ¨ ∇Kρ2 ,
(161b)

F 3K “ G
}
1∇Kρ 5

2

¨ b0 ` 1

2
pρ 5

2

ˆ B0q ¨ ∇Kρ 5

2

´ G
µ

1 ∇KGΘ
1

´ pρ2 ¨ ∇qA0 ¨ ∇Kρ3 ´ pρ3 ¨ ∇qA0 ¨ ∇Kρ2 ,

(161c)

F3} “ 1

2
pρ2 ˆ B0q ¨ ∇‖ρ2 ´ G

µ

1

2

∇‖GΘ
1

2

, (161d)

and the terms δγX
n

2

, for n “ 5, 6, contain terms related to the curvature of the background magnetic field and

are given by

δγX
5

2

“ ´P} ρ2 ˆ p∇ ˆ b0q , (162a)

δγX

3 “ ´P} ρ 5

2

ˆ p∇ ˆ b0q ´ 1

2
pρ2 ¨ ∇B0q ˆ ρ2 . (162b)

The components γ
}
n

2

, for n “ 2, . . . , 6, are given by

γ
}
1 “ γ

}
3

2

“ γ
}
2 “ 0 , (163a)

γ
}
5

2

“ ´b0 ¨ ρ2 `
BS 5

2

BP}
, (163b)

γ
}
3 “ ´b0 ¨ ρ 5

2

` BS3

BP}

` 1

2
pρ2 ˆ B0q ¨ Bρ2

BP}

´ G
µ

1

2

BGΘ
1

2

BP}

. (163c)

31



The components γ
µ
n

2

, for n “ 2, . . . , 6, are given by

γ
µ

1 “ γ
µ

3

2

“ γ
µ

2 “ 0 , (164a)

γ
µ

5

2

“ GΘ
1

2

`
BS 5

2

Bpµ , (164b)

γ
µ

3 “ GΘ
1 ` BS3

Bpµ ` 1

2
pρ2 ˆ B0q ¨ Bρ2

Bpµ ´ G
µ

1

2

BGΘ
1

2

Bpµ . (164c)

The components γΘ
n

2

, for n “ 2, . . . , 6, are given by

γΘ
1 “ γΘ

3

2

“ 0 , (165a)

γΘ
2 “ ´pµ , (165b)

γΘ
5

2

“ ´G
µ

1

2

`
BS 5

2

BΘ
, (165c)

γΘ
3 “ ´G

µ

1 ` BS3

BΘ
` 1

2
pρ2 ˆ B0q ¨ Bρ2

BΘ
´ G

µ

1

2

BGΘ
1

2

BΘ
. (165d)

Finally, the Hamiltonian H1 is given by

H1 “ G
µ

1 B0 ` P}G
}
1 ´ Φ1 ` 1

2
|A1|2

`
d

B0

2pµG
µ

1

2

c0 ¨ A1K ´
a

2pµB0GΘ
1

2

a0 ¨ A1K

´
d

2pµ
B0

a0 ¨ ∇A1 ¨
´

P}b0 `
a

2pµB0c0

¯
` Op

?
εq ,

(166)

where A1K :“ b0 ˆ A1 ˆ b0, as before, and the fluctuating potentials Φ1 and A1 are evaluated at the position
X{ε. We remark that the higher-order Hamiltonians H2 and H3 are not relevant for our order of accuracy.

The result is obtained by substituting the gyrocenter coordinate transformation (45) into the guiding-center
single-particle Lagrangian (40b) and computing its Taylor expansion in powers of

?
ε up to order ε3 (starting

from 1{ε). We denote again by Γ the symplectic part of the guiding-center Lagrangian (40b),

Γ :“
ˆ?

ε sp}b0 ´ A0

ε

˙
¨

.ĎX ´ ε2 sµ
.sθ . (167)

The coefficients Γ n

2
, for n “ ´2, . . . , 6, of the Taylor expansion of Γ read

Γ´1 “ ´A0 ¨
.

X , (168a)

Γ´ 1

2

“ Γ0 “ 0 , (168b)

Γ 1

2

“ P}b0 ¨
.

X , (168c)

Γ1 “ ´pρ2 ¨ ∇qA0 ¨
.

X ´ A0 ¨ .
ρ2 , (168d)

Γ 3

2

“ G
}
1b0 ¨

.
X ´ pρ 5

2

¨ ∇qA0 ¨
.

X ´ A0 ¨ .
ρ 5

2

, (168e)

Γ2 “ ´pρ3 ¨ ∇qA0 ¨
.

X ´ A0 ¨ .
ρ3 ´ pµ

.
Θ , (168f)

Γ 5

2

“
´

G
}
2 ` P}pρ2 ¨ ∇q

¯
b0 ¨

.
X ` P}b0 ¨ .

ρ2 ´ G
µ

1

2

.
Θ ´ pµ

.
GΘ

1

2

, (168g)

Γ3 “ P}pρ 5

2

¨ ∇qb0 ¨
.

X ´ 1

2
pρ2 ¨ ∇q2A0 ¨

.
X ´ pρ2 ¨ ∇qA0 ¨ .

ρ2

` P}b0 ¨ .
ρ 5

2

´ G
µ

1

.
Θ ´ pµ

.
GΘ

1 ´ G
µ

1

2

.
GΘ

1

2

.
(168h)
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The results for the symplectic part follow by using the same equivalence relations used for ions and by adding
the terms corresponding to the total differentials

.
S 5

2

and
.
S3. For the Hamiltonian part, we note that, because

of the guiding-center generator (obtained in Appendix B) (108),

sρ1e “ ´
?

ε

c
2sµ
B0

a0 , (169)

the fluctuating potentials φ1 and A1 can be expanded in a Taylor series around X{ε, yielding

Φ1

´
t,

x

ε

¯
“ Φ1

ˆ
t,

ĎX
ε

´
?

ε

c
2sµ
B0

a0pĎX, sθq ` Opεq
˙

“ Φ1

ˆ
t,

X

ε

˙
´

?
ε

d
2pµ
B0

a0pX , Θq ¨ ∇Φ1

ˆ
t,

X

ε

˙
` Opεq ,

(170)

and the same for A1. This explains the particular form of the Hamiltonian (166).

Proof 5 (preliminary electron gyrocenter Lagrangian) The components γX
n

2

, for n “ 2, . . . , 6, in (160)

vanish if and only if we set

G
}
1 :“ 0 , (171a)

G
}
2 :“ ´∇‖S 5

2

´ δγX
5

2
} ´

?
ε

´
∇‖S3 ` F3} ` δγX

3}

¯
, (171b)

as well as

ρ2K :“ 0 , (172a)

ρ 5

2
K :“ ´ b0

B0

ˆ ∇KS 5

2

, (172b)

ρ3K :“ ´ b0

B0

ˆ
„
∇KS3 ` F 2K `

?
ε

´
F 5

2
K ` δγX

5

2
K

¯
` ε

`
F 3K ` δγX

3K

˘ 
. (172c)

The components γ
}
n

2

, for n “ 5, 6, in (163) vanish if and only if we set

b0 ¨ ρ2 “
BS 5

2

BP}
, (173a)

b0 ¨ ρ 5

2

“ BS3

BP}
` 1

2
pρ2 ˆ B0q ¨ Bρ2

BP}
´ G

µ

1

2

BGΘ
1

2

BP}
. (173b)

The components γ
µ
n

2

, for n “ 5, 6, in (164) vanish if and only if we set

GΘ
1

2

“ ´
BS 5

2

Bpµ , (174a)

GΘ
1 “ ´ BS3

Bpµ ´ 1

2
pρ2 ˆ B0q ¨ Bρ2

Bpµ ` G
µ

1

2

BGΘ
1

2

Bpµ . (174b)

The Hamiltonians H n

2
, for n “ 1, 2, in (166) vanish if and only if we set

G
µ

1

2

“ ´ 1

B0

´
P}A1} `

a
2pµB0 c0 ¨ A1K

¯
, (175a)

G
µ

1 “ ´ 1

B0

#
P}G

}
1 ´ Φ1 ` 1

2
|A1|2

`
d

B0

2pµG
µ

1

2

c0 ¨ A1K ´
a

2pµB0GΘ
1

2

a0 ¨ A1K

´
d

2pµ
B0

a0 ¨ ∇A1 ¨
´

P}b0 `
a

2pµB0c0

¯
` Op

?
εq

+
.

(175b)
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The only degrees of freedom left are the arbitrary functions S 5

2

and S3. As for ions, the dependence on the

gyro-angle Θ can be removed from (165) by setting, for n “ 5, 6,

γΘ
n

2

“
A

γΘ
n

2

E
, (176)

or, equivalently, by requiring that S n

2
, for n “ 5, 6, satisfy the differential equations

BS 5

2

BΘ
“ ĂGµ

1

2

, (177a)

BS3

BΘ
“ ĂGµ

1 ´
Č1

2
pρ2 ˆ B0q ¨ Bρ2

BΘ
`

Č
G

µ

1

2

BGΘ
1

2

BΘ
. (177b)

The solutions of (177) read (with arbitrary lower bound Θ0 of integration)

S 5

2

pΘq “ S 5

2

pΘ0q `
ż Θ

Θ0

dΘ1 ĂGµ

1

2

, (178a)

S3pΘq “ S3pΘ0q `
ż Θ

Θ0

dΘ1

¨
˝ ĂGµ

1 ´
Č1

2
pρ2 ˆ B0q ¨ Bρ2

BΘ
`

Č
G

µ

1

2

BGΘ
1

2

BΘ

˛
‚ . (178b)

Proof 6 (electron gyrocenter Lagrangian) Using that
@
γΘ

2

D
“ ´pµ ´ ?

ε
A

G
µ

1

2

E
, the Euler-Lagrange

equation BLe{BΘ ´ d
dt

BLe{B
.
Θ “ 0 for the preliminary gyrocenter single-particle Lagrangian (62) yields

d

dt

´
pµ `

?
ε

A
G

µ

1

2

E
´ ε

@
γΘ

3

D¯
“ Opε 3

2 q . (179)

Hence, the gyrocenter magnetic moment µ defined in (63) is conserved with first-order accuracy in ε. Let us

now compute the terms
A

G
µ

1

2

E
and

@
γΘ

3

D
that define the transformation pµ ÞÑ µ in (63). From (175) we have

A
G

µ

1

2

E
“ ´ 1

B0

P‖A1‖ , (180)

xGµ

1 y “ ´ 1

B0

ˆ
´ φ1 ` 1

2
|A1|2 ´

@
pc0 ¨ A1Kq2

D
(181)

´
@

pa0 ¨ A1Kq2
D

´ 2pµ xa0 ¨ ∇A1 ¨ c0y
˙

` sOp
?

εq . (182)

Moreover, from (174) we have C
G

µ

1

2

BGΘ
1

2

BΘ

G
“ ´ 1

B0

@
pc0 ¨ A1Kq2

D
. (183)

By computing the additional terms

@
pa0 ¨ A1Kq2

D
“ 1

2

“
pe1 ¨ A1Kq2 ` pe2 ¨ A1Kq2

‰
“ 1

2
|A1K|2 , (184)

and

xa0 ¨ ∇A1 ¨ c0y “ 1

2
pe2 ¨ ∇A1 ¨ e1 ´ e1 ¨ ∇A1 ¨ e2q

“ 1

2
e2 ¨ re1 ˆ p∇ ˆ A1qs “ ´1

2
p∇ ˆ A1q ¨ b0 ,

(185)

we finally obtain
@
γΘ

3

D
“ 1

B0

„
´φ1 ` 1

2
A2

1‖ ` pµ p∇ ˆ A1q ¨ b0


` sOp

?
εq , (186)

where we used the results G
‖
1 “ 0 and ρ2K “ 0 from (171) and (172), respectively. It remains to identify the

gyrocenter Hamiltonian. For this purpose, we need to invert (63) and substitute the result into H0. Thanks to
(180), the inversion is trivial and yields

pµ “ µ `
?

ε
1

B0

P‖A1‖ ` ε
@
γΘ

3

D
pµq ` sOpε3{2q . (187)

Substituting this into the Hamiltonian H0 completes the proof.
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