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Abstract

We proposed an effective acoustic abatement solution comprised of periodic resonators
and multi-panel structures with porous lining here, which can incorporate the wideband
capability of porous materials and the low-frequency advantage of locally resonant struc-
tures together. Theoretical and numerical modeling procedures are developed using the
poroelastic field with periodic boundary conditions and the synthesized resonator forces.
The results obtained compare favorably with the bibliographies and the finite element
models. It is found that the STL of the periodic composite structure can be tuned using
proper porous additions and resonators concerning both the amplitude and the tuning
bandwidth. The results reported illustrate a promising while practical alternative on
low-frequency wideband sound modulation.

Keywords: Wideband acoustic modulation; poroelastic; periodic; composite structures;
locally resonant structures

1. Introduction

Noise issues are frequently found in machineries used in industrial environment. Long-
lasting interests are drawn on related noise abatements. However, as noise sources could
be significant within a wide frequency range, their abatement and modulation are chal-
lenging.

Porous materials are recognized as wideband noise control solutions. Fruitful theoret-
ical and numerical results on the acoustic properties of porous materials were obtained
during the twentieth century [1, 2, 3, 4, 5]. As composite structures composed of porous
materials, such as layered media [6] and multi-layer structures [7, 8, 9], prevail among
noise control applications, research efforts on their sound transmission are remarkable.
However, at low frequencies where the thermal and viscous dissipation are inefficient,
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porous materials are generally considered as ineffective. Recently, some researchers tries
to add resonant structures into the porous matrix to improve the low-frequency perfor-
mance of porous materials [10, 11]. Their results are exciting, however, the microscopic
additions used are difficult to implement and their modeling procedures are too sophis-
ticated.

Periodic structures are promising in low-frequency range due to locally resonant mech-
anism, which is introduced in the seminal work by Liu et al. [12]. Unlike in Bragg
diffraction cases, locally resonant periodic structures can modulate elastic wave at deep
subwavelength. Therefore, to obtain compact and effective low-frequency sound mod-
ulation solutions, researchers worldwide focused their interests on composite structures
with periodic resonators [13, 14, 15, 16], multi-layer microperforated panel structures
[17, 18], periodic Helmholtz resonators [19, 20] or combined locally resonant structures
[21, 22]. Though the results reported in these bibliographies are impressive, however,
locally resonant designs are always only effective in a narrow bandwidth, which is an
inherent drawback. Therefore, efforts on low-frequency wideband acoustic modulation
are prominent. Unfortunately, related results are scarce [13, 14, 18], to the authors’
knowledge.

As periodic structures are promising in low-frequency range, while porous materials
are wideband effective, the motivation here is to combine these advantages together by
incorporating macroscopic locally resonant design into composite structure with porous
lining. Two-dimensional periodic poroelastic composite structures, which comprise multi-
panel structures with porous lining and distributed resonators, are proposed and dis-
cussed. The modeling procedures for periodically rib-stiffened composite structure with
porous lining [23] is adopted and resonator forces are incorporated. The periodic prob-
lem here is finally solved by truncation, and validated by degenerated results and finite
element results. By analyzing the results of the preceding periodic poroelastic composite
structures, we show that low-frequency wideband acoustic modulation can be achieved.

In Section 2, the two-dimensional periodic poroelastic composite model and detailed
model procedures are outlined. Subsequently, in Section 3, model validations and result
discussions are provided. Section 4 ends with conclusions.

2. Two dimensional periodic poroelastic composite structure

The periodic composite structure here comprises a multi-panel structure with porous
lining and distributed resonators, as shown in Fig.1-a and b. The boundary conditions
between the poroelastic domain and an adjacent domain are classified using the notations
in Ref.[7], i.e., B for bonded condition, O for open to an infinite air domain, and U
for adjacent to but not bonded on a solid domain. The periodic resonators can be
simple resonators as shown in Fig.1-c or composite resonators as shown in Fig.1-d and
e (composite resonator A and B respectively). A composite structure comprises a single
panel with periodic composite resonator A is shown in Fig.1-f.

A plane wave transmits through the periodic composite structure with velocity po-
tential Φi = ejωt−jkr, where k = (kx, kz), r = (x, z), j =

√
−1. According to Fig.1-a,

kx = k cosϕ, kz = k sinϕ, here k is the incident wave number, ϕ is the incident elevation
angle. The time dependence ejωt is omitted in the following. Here we make the following
assumptions:
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Fig. 1. Schematic diagram of the periodic composite structure. (a) A single panel composite structure
with porous lining and periodic resonators (OU case, simple resonator). (b) A double panel structure
with porous lining and periodic resonators (BU case, simple resonator). (c) A simple resonator. (d)
Composite resonator A. (e) Composite resonator B. (f) A single panel composite structure with porous
lining and periodic resonators (OU case, composite resonator A).

A1. The composite structure and its adjacent domains are all infinite, therefore no re-
flections from outside the composite structure is considered.

A2. The resonators are periodic along x-axis with a periodic span lx, and multiple dif-
ferent resonators can be placed evenly in a periodic lattice (span).

A3. The composite structure and the resonators are ideally point-connected, therefore
the resultant force of a resonator (simple resonator or composite resonator) simplifies
to a concentrate force.

The above A3, however, is not substantial as distributed forces or moments can also be
conveniently translated to a concentrate force and/or moment; it is provided to show the
essential idea with elegance here.

2.1. Two-dimensional poroelastic domain with periodic boundary conditions

When periodic boundary conditions are present, the poroelastic displacements are as-
sumed to comprise six groups of harmonic components [23]. According to the procedures
provided in Ref.[23], the displacement u = [usx, u

s
z, u

f
x, u

f
z ]T in the periodic poroelastic

domain is obtained as

u =
∑
m

e−jk
m
x x YmemCm (1)

where kmx is the wave number component (along x-axis) of the harmonic components, usi
and ufi (i = x, z) are the displacement of solid and fluid phases respectively; em and Cm
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are

em = [ejk
m
1zz, e−jk

m
1zz, ejk

m
2zz, e−jk

m
2zz, ejk

m
3zz, e−jk

m
3zz] (2)

Cm = [Cm1 , C
m
2 , C

m
3 , C

m
4 , C

m
5 , C

m
6 ]T (3)

Here, e±jk
m
1zz, e±jk

m
2zz, and e±jk

m
3zz are the wave number component (along z-axis) of the

harmonic components; Cm1 (i = 1, 2 . . . 6) are the unknown amplitude of the harmonic
components. In Ref.[23], at normal incidence (Cm5 = Cm6 = 0), a numerical procedure
is used to approximate the absence of wave components in Ym. However, in 2D case,
no numerical approximation is needed and the exact closed-form expressions can be
obtained. Therefore, though the derivation procedures are the same as those in Ref.[23],
the non-zero elements of Ym are provided in Appendix B.

Once the porous displacement u is obtained, the stress components in the periodic
poroelastic field is [23]

σij = 2Neij + (Aes +Qef )δij

s = Qes +Ref (4)

where es = ∂usx/∂x + ∂usz/∂z, ef = ∂ufx/∂x + ∂ufz/∂z; N,A,Q, and R are poroelastic
parameters detailed in Ref.[7, 23], while eij is

eij =

{
∂usi/∂xi, i = j
1
2

(
∂usi/∂xj + ∂usj/∂xi

)
, i 6= j

, δij =

{
1, i = j

0, i 6= j

Here xi and xj denote x or z coordinate; in other variables, i, j denote x or z.

2.2. In-plane and transverse vibration of the plates

As the frequency range discussed is far below the coincidence frequency of the plate
here, the thin plate theory is used; otherwise, the Timoshenko-Mindlin plate theory
should be used. Therefore, in the periodic poroelastic composite structure here, when
in-plane and out-of-plane force or moment is present, the vibration equations of the plate
are [23]

Li(u) = fx, Lt(w) = fz +
∂My

∂x
(5)

where

Li(u) = ρph
∂2u

∂t2
−Dp

∂

∂x

(
∂u

∂x

)
, Lt(w) = D∇4w + ρph

∂2w

∂t2

Here, Li(·) and Lt(·) are the in-plane and out-of-plane vibration operator, u and w are
the in-plane and out-of-plane displacements, fx and fz are the in-plane and out-of-plane
forces, My is the in-plane moment normal to the x − z plane; ρp, h,Dp, and D are the
density, thickness, in-plane stiffness, and the transverse stiffness of the plate.
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Fig. 2. Schematic diagram of the distribution of the spring force. (a) The spring force distribution in
a periodic lattice. (b) The displacements and resultant force in a simple resonator. (c-d) The
displacements and resultant force in composite resonator A and B respectively.

2.3. Periodic resonators and their resultant forces

According to the assumptions A2 and A3, the schematic diagram of the spring forces
(simple resonators) is shown in Fig.2-a; the total number of resonators in a periodic
lattice is denoted as Ns, and the resonator i (i = 1, 2 . . . Ns) is located at xi in the
periodic span.

According to Fig.2-b, we can get the force fi of a simple resonator i as following

fi =
miω

2

1− ω2/[ω2
i (1 + jηi)]

w (6)

where w is the displacement of the plate which the resonators are attached to; ωi =√
ki/mi is the natural circular frequency of the resonator i, mi is its mass, ki is its

spring stiffness, ηi is the spring damping [13].
Meanwhile, according to Fig.2-c and d, the force fi of a composite resonator i (com-

posite resonator A or B) is

fi = X3 · w (7)

where X = [X1, X2, X3]T = HF, H = (K + jωC− ω2M)−1; the matrices K,C,M, and
F of composite resonator A or B can all be got by their dynamic equations [16]. Their
elements are provided in Appendix A.

Therefore, the resultant force Fsum of the periodic resonators is

Fsum =
∑
n

∑
i

βifiδ(x− nlx − xi) (8)

Here, xi is the position of resonator i, xi = ia, a is the distance between two adjacent
resonators; integer n = −∞, . . .+∞, integer i = 0, 1, . . . Ns,

δ(x) =

{
1 x = 0

0 x 6= 0
, βi =

{
1 q = 1, . . . (Ns − 1)

1/2 q = 0 or Ns
(9)

βi is the contribution coefficient of a resonator to lattice n.
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2.4. The acoustic domain and BC conditions

According to the boundary conditions of the periodic composite structure, there ex-
ists one incident acoustic domain, one transmitted acoustic domain, and one or more
intermediate acoustic layers between the porous domain and the multi-panel structure.
The acoustic domains are all assumed linear, and the related velocity potential Φ follows

∇2Φ− 1

c2
∂2Φ

∂t2
= 0 (10)

where c is the corresponding sound velocity.
The boundary conditions between the porous domain and the multi-panel structure

were detailed before [7, 8, 24], therefore, the details are not provided here. However,
different coordinate frames may be used, and the boundary conditions can be different
[23]. Attentions should be paid to the coordinate frame used and the related boundary
conditions.

2.5. The harmonic expansions and system equations

The periodic composite structure comprises acoustic domains, porous domains, multi-
panel structures, and periodic resonators. To show the essential ideas with an elegant
formulation, we limit the multi-panel structure to a single panel or a double panel here.
The boundary conditions can be OU/OB for the single panel cases (Fig.3-a and b), and
BB/BU/UU for the double panel cases (Fig.3-c, d and e).
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Fig. 3. Schematic diagram of different boundary conditions (simple resonators can be replaced by
composite resonators): (a-b) single panel case, OU and OB boundary conditions respectively; (c-e)
double panel case, BB, BU, and UU boundary conditions respectively.

In the following, we use OU case as an example to show the system equations and
the solution procedures. In OU case, the periodic composite structure comprises an
incident acoustic domain, a porous domain, an intermediate acoustic domain, a plate,
and a transmitted acoustic domain (Fig.1-a).

According to the law of refraction and the method of space harmonic series (SHS),
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the velocity potential of the three acoustic domains can be expressed as

Φ1 = e−j(kxx+kzz) +
∑
m

Rm1 e−j(k
m
x x−k

m
z,iz) (11)

Φ2 =
∑
m

Im2 e−j(k
m
x x−k

m
z,az) +

∑
m

Rm2 e−j(k
m
x x−k

m
z,az) (12)

Φ3 =
∑
m

Tm3 e−j(k
m
x x−k

m
z,tz) (13)

where kmz,i, k
m
z,a, and kmz,t are the the wave number component (along z-axis) of the har-

monic components; Rm1 , I
m
2 , R

m
2 , and Tm3 are the amplitude of the wave harmonics which

can be solved by the boundary conditions. kmz,i, k
m
z,a, and kmz,t can be solved by substitut-

ing Eq.(11), (12), and (13) into Eq.(10)

kmz,× =
√
k2 − (kmx )2, k = ω/c× (× = i, a, or t) (14)

Here c× is the sound velocity in the corresponding domain.
In the thin plate, according to the law of refraction and the method of space harmonic

series (SHS), the displacement u = [u,w]T expands to

u =
∑
m

Ume−jk
m
x x (15)

where Um = [Um,Wm]T is the unknown component amplitude vector. In OU case, the
in-plane displacement u is absent, therefore, only amplitude Wm is included.

In OU case, all the boundary conditions at the interfaces of different domains or at
the middle plane are

(i)− ερi ∂Φ1

∂t − s = 0 (ii)− (1− ε)ρi ∂Φ1

∂t − σz = 0

(iii)(1− ε)∂u
s
z

∂t + ε
∂uf

z

∂t = −∂Φ1

∂z (iv)τzx = 0

(v)− ερa ∂Φ2

∂t − s = 0 (vi)− (1− ε)ρa ∂Φ2

∂t − σz = 0

(vii)(1− ε)∂u
s
z

∂t + ε
∂uf

z

∂t = −∂Φ2

∂z (viii)τzx = 0

(ix)∂w∂t = −∂Φ2

∂z

(x)D ∂4w
∂x4 + ρph

∂2w
∂t2 = ρa

∂Φ2

∂t − ρt
∂Φ3

∂t +
∑
n

∑
i βifiδ(x− nlx − xi)

(xi)∂w∂t = −∂Φ3

∂z (16)

where ρ× is the density of the related domain; ε is the porosity of the porous media;
σz, τzx, and s are the normal stress, shear stress and fluid pressure of the solid and fluid
phases in the porous media respectively, and they can be got using Eq.(4).

2.6. The solution procedures (OU case)

In Eq.(16).(x), double or triple summation occurs; therefore, the resonator force term
is rearranged. The cumbersome rearrangement procedures are provided in Appendix C.

Subsequently, according to the orthogonal property below∫ lx/2

−lx/2
e−jk

m
x xejk

p
xxdx =

{
lx, m = p

0, m 6= p
(17)
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where integer m, p = −∞, . . .+∞; Equation (16) becomes

Amxm =
∑
n

Bnxn + p (18)

where

xm = [Cm1 , C
m
2 , C

m
3 , C

m
4 , C

m
5 , C

m
6 ,W

m, Rm1 , I
m
2 , I

m
2 , T

m
3 ]T (19)

Integer m,n = −∞, . . . +∞; Am,Bn and p are provided in Appendix E. To obtain a
numerical solution, the preceding equation Eq.(18) is rearranged using

x̃ = [· · · , xTm−1, xTm, xTm+1, · · · ]T (20)

Ã =



. . .

Am−1
Am

Am+1

. . .

 (21)

B̃ =



...
· · · Bn−1 Bn Bn+1 · · ·
· · · Bn−1 Bn Bn+1 · · ·
· · · Bn−1 Bn Bn+1 · · ·

...

 (22)

p̃ = [· · · , 0T , pT , 0T , · · · ]T (23)

Here, the blank blocks of Ã are all zero, while B̃ is a full block matrix; 0T is a zero 1×14
vector. Subsequently, Eq.(18) becomes

(Ã− B̃)x̃ = p̃ (24)

As the dimension of matrices Ã, B̃, and vectors x̃, p̃ are all infinite, Equation (24) is
an infinite matrix equation, which should be truncated to solve. We will detail the
truncation procedures in the following. When m is truncated to [−m̂, m̂], Ã and B̃ are
truncated to 14M̂ × 14M̂ matrices Ā and B̄, vectors x̃ and p̃ as 14M̂ × 1 vectors x̄ and
p̄, M̂ = 2m̂+ 1; therefore, Equation (24) is solved

x̄ = (Ā− B̄)−1p̄ (25)

Subsequently, the unknown amplitude of the harmonic components are determined.
The sound transmission coefficient τ of the composite structure is [23, 25]

τ(ϕ) =
ρt
ρi

∑
m |Tm3 |2Re(kmz,t)

Re(kz)
(26)

8



Here Re(·) is the real operator for a complex variable. When sound wave transmit through
the composite structure at ϕ ∈ [ϕlim, π/2], where ϕlim is the minimum elevation angle
(that sound can transmit), the sound transmission loss (STL) of the preceding composite
structure is defined as

STL = 10 log(1/τ̄), τ̄ =

∫ π/2
ϕlim

τ(ϕ) sinϕ cosϕ dϕ∫ π/2
ϕlim

sinϕ cosϕ dϕ
(27)

When the unknown velocity amplitudes are obtained, STL can be solved by numerical
integration subsequently.

3. Results and discussions

The convergence characteristics of the periodic poroelastic composite structure are
complicated [23], therefore, a convergence check step, which is confirmed as reliable and
accurate [26, 25, 23], is performed before any further computations to determine the
appropriate m̂. The convergence criteria is chosen as ∆STL = 0.1dB at fmax=10kHz,
i.e., when the variation in STL by changing m̂ (add or minus by one) is less than 0.1dB,
it is considered as converged.

Table 1
Model parameters: air gap thickness ha = 2 mm for the OU case; ha = 14 mm for the BU case; ha1 =
2mm, ha2 = 6 mm for the two air gaps in the UU case; lx = hp, (hp + ha), hp, (hp + ha), and
(hp + ha1 + ha2) for the OB, OU, BB, BU, and UU cases, respectively; the gap properties
ρg = ρi, cg = ci and the transmitted side media properties ρt = ρi, ct = ci

Parameters Descriptions Value
Acoustic media
ρi density (incident side) 1.205 kg/m3

ci sound velocity (incident side) 343 m/s
Panels
h1 panel thickness (incident/single panel) 1.270 mm
h2 panel thickness (transmitted) 0.762 mm
ρp density of face panels 2700 kg/m3

Ep Young’s modulus of face panels 70×109Pa
νp Poisson’s ratio of face panels 0.33
Porous media
ρs bulk density of solid phase 30 kg/m3

ρf density of fluid phase 1.205 kg/m3

Es Young’s modulus (solid phase) 8×105Pa
νs Poisson’s ratio (solid phase) 0.4
ηs loss factor (solid phase) 0.265
ε the porosity 0.9
ε′ the tortuosity 7.8
σ flow resistivity 2.5×104 MKS Rayls/m
hp thickness of porous core 27 mm

The parameter values are provided in Table 1 and used if not specified again. The STL
is calculated in 1/24 octave bands between 10Hz and 10kHz using Simpson’s Rule; the
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integration domain is split into 90 subdivisions. In 2D case, different minimum elevation
angle ϕlim are used [7, 13, 25], either by experiment data or theoretical prediction. To
comply with the bibliographies, in the single panel case here ϕlim is 0 [13, 25], while for
the double panel case, ϕlim is π/10 [7]. As STL is sensitive to the total mass [27], here
the mass ratio γ of the resonators, i.e. the percentage of the resonator mass in the total
mass, is kept constant as γ = 0.2 [13, 16] in the following.

The results of the five different boundary conditions here are fruitful, however, only
some essential thus important results are provided (otherwise given in the supplementary
materials) to report the findings concisely.

3.1. Model validations

To validate the preceding periodic composite model and show the wideband applica-
bility, firstly, the results obtained are compared with the low-frequency results reported
before by degenerated models and those obtained by FEM; secondly, comparisons with
high-frequency results are also reported. The FEM model numerical setups are not de-
tailed here as they are identical to those in Ref.[23] except that it is 2D here.

3.1.1. Low-frequency validations

In the low-frequency range, comparisons with the multiple identical simple resonator
(resonance frequency fr=300Hz) or composite resonator (resonance frequency f01 =300Hz)
results in Ref.[13, 16] are made.
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Fig. 4. Comparison of predictions (lines) versus Ref. [13] (symbols) (a) oblique incidence case
ϕ1 = π/2 or ϕ2 = π/6 and (b) random incidence case, (a1) and (b1) are the schematic diagram
respectively. The frequency range studied is [100Hz, 1kHz].

As shown in Fig.4 and 5, either the oblique incidence case results (Fig.4-a) or the
random incidence case results (Fig.4-b and Fig.5-a to f) all show excellent consistency.

Some of the oblique incidence FEM results are shown in Fig.6 (OB, BB, and UU
cases). As shown, the overall consistency is satisfactory. The results in Fig.4, Fig.5, and
Fig.6 confirmed the validity here in the low-frequency range.

3.1.2. High-frequency validations

In the high-frequency range, result comparisons versus Ref.[13] and FEM are pre-
sented (the resonance frequency fr or f01 is 3kHz if not specified).

Comparisons versus Ref.[13] are shown in Fig.7. As shown, the overall consistency is
satisfactory.
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Fig. 5. Comparison of predictions (lines) versus Ref. [16] (symbols): (a-b) multiple simple resonators,
OU and OB respectively; (c-d) multiple composite resonator A or B, OU case; (e-f) multiple composite
resonator A or B, OB case. The frequency range studied is [10Hz, 1kHz].
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Fig. 6. Comparison of predictions (lines) versus FEM results (symbols): (a-b) OB case, ϕ = π/2, π/3
respectively; (c-d) BB case, ϕ = π/2, π/3 respectively; (e-f) UU case, ϕ = π/4, π/6 respectively. The
frequency range studied is [10Hz, 1kHz].
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Fig. 7. Comparison of predictions (lines) versus Ref. [13] (symbols) (a) oblique incidence case
ϕ1 = π/3 or ϕ2 = π/6, fr=4kHz; (b) random incidence case, fr=300Hz. The frequency range studied
is [1kHz, 10kHz] and [100Hz, 10kHz] respectively.
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Fig. 8. Comparison of predictions (lines) versus FEM results (symbols): (a-b) OB case, ϕ = π/4, π/6
respectively; (c-d) BB case, ϕ = π/4, π/6 respectively; (e-f) BU case, ϕ = π/2, π/3 respectively. The
frequency range studied is [1kHz, 10kHz].

Some oblique incidence result comparisons versus FEM results are shown in Fig.8
(OB, BB, and BU cases). As shown, the results here compare favorably with FEM
results. The results in Fig.7 and Fig.8 confirmed the validity here in the high-frequency
range.

The wideband applicability of the preceding theoretical and numerical periodic com-
posite structure models are confirmed by Fig.4 to Fig.8.

3.2. Influence of porous additions on the STL

To show the influence of porous additions, here we used multiple identical simple res-
onators in a periodic span, where mi=27g, ηi=0.01. Fig.9 (OU and OB cases) shows the
comparisons between the STL of the periodic composite structures (porous + resonator,
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fr=3kHz), multi-panel structures (porous), and plate with periodic simple resonators
(metamaterial plate, fr=3kHz).
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(a) (b) 

Porous + Resonator 
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(a) (b) 

(c) (d) 

Porous + Resonator 
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Fig. 9. Influence of porous additions on the STL (a) OU case and (b) OB case.

From Fig.9, we can see porous additions can improve the STL of the periodic compos-
ite structure away from the resonance frequency, and ease the the STL decrease around
the local resonance. As porous media has wideband attenuation capability, its wideband
improvement is conceivable; meanwhile, around the resonance frequency, its can attenu-
ate the sound transmission even though resonance is prominent. In summary, the STL of
the periodic composite structure can be considered as the superposition of contributions
from porous additions and simple resonators separately.

3.3. Influence of identical simple resonators on the STL

Fig.10 shows the results of the periodic composite structure here with multiple identi-
cal simple resonators (different resonance frequencies respectively) under different bound-
ary conditions (OB, OU, BB and BU cases). Here mi=27g, ηi=0.01.

As shown, notable STL improvement occur around the resonance frequency fr (a local
crest), with a decrease around the subsequent anti-resonance frequencies (a local trough).
The overall STL recovers to the cases without resonators (the solid lines in Fig.10) away
from the resonance frequencies. However, as fr increases, the improvement around the
resonance frequency weakens (Fig.10-a and c f=8kHz, Fig.10-b and d f=7, 8kHz); the
STL shows multiple troughs subsequently. The extra troughs are because of the coupling
between resonators and the corresponding composite structures. Quantitative analyses
on the dispersion relations are in progress.

3.4. Influence of identical composite resonators on the STL

Composite (multiple-degree-of-freedom) resonators can provide better vibration or
wave attenuation [15]. Therefore, two composite resonator cases (Fig.1-d and e) are used
here to evaluate the sound insulation performance. In composite resonator i, we denote
mi

2 = r ·mi
1, ki2 = s·ki1, ζi2 = t·ζi1, and the damping ratio ηin = ζin/2m

i
nω

i
n, ωin =

√
kin/m

i
n

(n=1, 2 for the primary and secondary resonators respectively). If no damping is present
(i.e. ζi1 = ζi2 = 0), the resonance frequencies of composite resonator A are [15, 16]

f1,2 =
ωi1
2π

√
r + s+ rs±

√
(r + s+ rs)2 − 4rs

2r
(28)
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Fig. 10. Influence of identical simple resonators on the STL (a) OB case, (b) OU case, (c) BB case,
and (d) BU case. Different lines (markers) correspond to different resonance frequency cases; the solid
lines show the results without resonators.
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The resonance frequencies of composite resonator B are [16]

f1,2 =
ωi1
2π

√
2r + 2s+ rs±

√
(2r − 2s+ rs)2 + 4rs2

4r
(29) 
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f1,2=2497, 3291Hz 

f1,2=4161, 5485Hz 

f1,2=5825, 7679Hz 

f1,2=2652, 3122Hz 

f1,2=4419, 5204Hz 

f1,2=6187, 7286Hz 

(a) (b) 

(c) (d) 

f1,2=2497, 3291Hz 

f1,2=4161, 5485Hz 

f1,2=5825, 7679Hz 

f1,2=2652, 3122Hz 

f1,2=4419, 5204Hz 

f1,2=6187, 7286Hz 

Fig. 11. Influence of identical composite resonators on the STL (a-b) OB case (composite A and B
respectively) and (c-d) BB case (composite A and B respectively). Different lines (markers) correspond
to different resonance frequency cases; the thick dashed lines (unmarked) show the results without
resonators.

Fig.11 shows the results of the periodic composite structures here with multiple iden-
tical composite resonators (A or B, with different resonance frequencies) under different
boundary conditions (OB and BB cases). Parameter values in Table 2 are used.

Table 2
Parameters of the composite resonators.

Parameters γ mi
1 r s ηi1 ηi2

Values 0.2 30 g 0.0750 0.0625 0.01 0.05

As shown, notable STL improvements occur around the resonance frequencies f1,2
(local crests), with decreases around the subsequent anti-resonance frequencies (local
troughs). The overall STL recovers to the cases without resonators (the thick dashed
lines in Fig.11) away from the resonance frequencies. However, as f1,2 increases, the
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improvement around the resonance frequency weakens; additional STL troughs emerge
subsequently. The extra troughs are analogous to the cases with multiple identical simple
resonators.

3.5. Influence of multiple simple resonators on the STL

Table 3
Parameters of multiple simple resonator cases I and II, the mass ratio γ=0.2; for resonator i, the mass
mi and resonance frequency f ir are mi = m0 + (i− 1)∆m, f ir = 3 + 0.5(i− 1)(kHz), i = 1, . . . Ns,
Ns=4,. . . 7.

Case Description m0 ∆m ηi
I Constant mi msum/Ns 0 0.05
II Increasing mi msum/Ns − (Ns − 1)∆m/2 0.04msum 0.05

Two multiple simple resonator cases are investigated here using the parameters in
Table 3. The STL results of the periodic composite structures are shown in Fig.12 (OB
and BU boundary conditions, case I and II respectively).
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(c) (d) 
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5 
6 

7 

Ns = 4 

Ns = 4 Ns = 4 

No resonator No resonator 

No resonator No resonator 

Fig. 12. Influence of multiple simple resonators on the STL (a-b) OB case (case I and II respectively)
and (c-d) BU case (case I and II respectively).

As shown, the STL can be tuned around the resonance frequencies of the simple
resonators. When the resonance frequencies are in the low-frequency range, the sound
insulation of the periodic composite structure can be improved; however, as the resonance
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frequencies increase, the sound insulation deteriorates and becomes not better than the
cases without resonators. As the resonator number Ns increases, the STL amplitude and
its modulation bandwidth can be tuned in either case I or II. Furthermore, while cases
I and II are analogous, their STL are slightly different. A comparison is made in the
following.

The local STL crests and troughs are caused by the resonance and anti-resonance of
the periodic resonators. The extremum amplitudes and bandwidths are determined by
the damping and resonance frequencies of the resonators. If multiple simple resonators
are properly selected, the STL amplitudes and the bandwidths can be tuned, therefore,
the sound insulation performance here are modulated.

3.6. Influence of multiple composite resonators on the STL

Composite resonators with different resonance frequencies are arranged in a single
lattice using parameters in Table 4; in resonator i, the resonance frequency of the primary
mass is chosen as f i1 = f01 + 500(i − 1)(Hz), i = 1, . . . Ns. The results are shown in
Fig.13 (BB and BU boundary conditions, multiple composite resonator A or B cases
respectively).
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= 3kHz 

= 5kHz 

= 7kHz 

= 3kHz 

= 5kHz 

= 7kHz 

= 3kHz 

= 5kHz 

= 7kHz 

Fig. 13. Influence of multiple composite resonators on the STL (a-b) BB case (different composite
resonator A and B cases respectively) and (c-d) BU case (different composite resonator A and B cases
respectively). The markers show the resonance frequencies (partial, clearly identifiable ones) in the
corresponding cases, and the arrows differentiate resonator cases.

Apart from the resonance frequencies obtained by Eq.(28) and (29), when damp-
ing is included, the characteristic frequencies of composite resonators (A or B) can be
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Table 4
Parameters of the composite resonators

Parameters γ Ns r s ηi1 ηi2
Values 0.2 4 0.0750 0.0625 0.01 0.05

determined by a quartic equation

A4ω
4 +A3ω

3 +A2ω
2 +A1ω +A0 = 0 (30)

For composite resonator A, the coefficients are A4 = r, A3 = −2j(r + t + rt)η1ω1,
A2 = −(r + s + rs + 4tη21)ω2

1 , A1 = 2j(s + t)η1ω
3
1 , and A0 = sω4

1 ; as to composite
resonator B, A4 = r, A3 = −j(2r + 2t+ rt)η1ω1, A2 = −

[
r + s+ 1

2rs+ (4t+ t2)η21
]
ω2
1 ,

A1 = j(2s + 2t + st)η1ω
3
1 , and A0 = 1

4

(
4s+ s2

)
ω4
1 . The characteristic frequencies are

determined by solving these quartic equations.
As shown in Fig.13, the STL can be improved around the resonance frequencies in the

low-frequency range; however, as the resonance frequencies increase, the STL deteriorates
and becomes not better than the cases without resonators. This is analogous to the cases
of simple resonators. Furthermore, the influence of the lower resonance frequencies are
noteworthy compared to the higher ones; in addition, the influence of the latter tends to
vanish, and distinct STL troughs can even be seen because of complex coupling between
the resonators and the structures. Quantitative analyses are in progress at the moment.

3.7. Comparison between different resonator cases

To show the differences between the above four resonator cases, we choose Ns=4,
γ=0.2 (other parameters as those in Table 3 and 4), and the resonance frequencies (f ir
or f i1) as 3000 + 500(i− 1)(Hz), i = 1, . . . Ns, and provide all the results in Fig.14.

As shown in Fig.14, the bandwidths of the two simple resonator cases are almost
coincident as the resonance frequencies are identical, while the STL magnitudes are
different because of different mass distribution, however, the STL differences are tiny as
the mass differences of the resonators are not significant. Compared with simple resonator
cases, the composite resonator A and B cases all show wider working bandwidth, without
significant decrease in STL magnitudes. However, the bandwidth or STL magnitude is
slightly different in the two composite resonator cases. In Fig.14, composite resonator
B cases have larger STL magnitudes, but with narrower working bandwidth, and more
drastic STL decreases beyond these resonance frequencies.

In a word, multiple simple resonator cases are applicable to simple STL modulation
solutions, as both the bandwidths and magnitudes can be tuned as desired; however,
if wider bandwidths are anticipated and a tradeoff in the magnitudes is acceptable,
composite resonator cases can be the right alternatives.

4. Conclusions

By incorporating macroscopic locally resonant design (resonators) into composite
structure with porous lining, we proposed an effective wideband acoustic abatement
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Fig. 14. Comparison of the four resonator cases (a-a1) OU case and (b-b1) UU case. ∆m = 0 and
∆m > 0 correspond to the multiple simple resonator cases I and II respectively. (a1) and (b1) shows
the partial highlighted view of (a) and (b).

solution here, which is comprised of periodic resonators and multi-panel structures with
porous lining.

We found that the STL of the periodic composite structure can be considered as the
superposition of contributions from porous additions and resonators separately, therefore,
it can be tuned using proper resonator arrangements concerning both the amplitude and
the tuning bandwidth. When the resonance frequencies of the resonators are in the low-
frequency range, notable STL improvements occur nearby, with a decrease around the
subsequent anti-resonance frequencies (a local trough); however, as the resonance fre-
quencies increase, the improvement nearby weakens. Meanwhile, the STL amplitude and
its modulation bandwidth can be tuned by different resonator configurations. Compared
to the simple resonator cases, composite resonator cases can obtain wider bandwidths
while a tradeoff in the magnitudes is inevitable.

It is illustrated that the wideband capability of porous materials and low-frequency
advantage of periodic structures can be utilized and incorporated together here. Though
the results are preliminary here, this synergetic effect is exciting, and can be promising
in the research on low-frequency wideband sound modulation.
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Appendix A. The non-zero elements in matrices of composite resonators

The non-zero elements in matrices K,C,M, and vector F of composite resonator A
are

K(1, 1) = ki2, K(1, 2) = −ki2, K(2, 1) = −ki1 − ki2
K(2, 2) = ki2, K(3, 1) = ki1, K(3, 3) = −1

C(1, 1) = ζi2, C(1, 2) = −ζi2, C(2, 1) = −ζi1 − ζi2
C(2, 2) = ζi2, C(3, 1) = ζi1

M(1, 2) = −mi
2, M(2, 1) = −mi

1

F (2) = −ki1 − jωζi1, F (3) = ki1 + jωζi1 (A.1)

The non-zero elements in matrices K,C,M, and vector F of composite resonator B
are

K(1, 1) = −ki1 −
ki2
2 , K(1, 2) =

ki2
2 , K(2, 1) =

ki2
2

K(2, 2) = −ki2, K(3, 1) = ki1, K(3, 2) =
ki2
2 , K(3, 3) = −1

C(1, 1) = −ζi1 −
ζi2
2 , C(1, 2) =

ζi2
2 , C(2, 1) =

ζi2
2

C(2, 2) = −ζi2, C(3, 1) = ζi1, C(3, 2) =
ζi2
2

M(1, 1) = −mi
1, M(2, 2) = −mi

2

F (1) = −ki1 − jωζi1, F (2) = −k
i
2

2 − jω
ζi2
2

F (3) = ki1 +
ki2
2 + jωζi1 + jω

ζi2
2 (A.2)

Appendix B. The coefficient matrices of poroelastic variables

The non-zero elements of coefficient matrix Ym are

Ym(1, 1) = Ym(1, 2) =
jkmx
k21
, Ym(1, 3) = Ym(1, 4) =

jkmx
k22

Ym(1, 5) =
jkm3z
k23
, Ym(1, 6) = − jkm3z

k23

Ym(2, 1) =
jkm1z
k21
, Ym(2, 2) = −Ym(2, 1), Ym(2, 3) =

jkm2z
k22
, Ym(2, 4) = −Ym(2, 3)

Ym(2, 5) = Ym(2, 6) = − jkmx
k23

Ym(3, 1) = Ym(3, 2) = b1
jkmx
k21
, Ym(3, 3) = Ym(3, 4) = b2

jkmx
k22

Ym(3, 5) = g
jkm3z
k23
, Ym(3, 6) = −g jkm3z

k23

Ym(4, 1) = b1
jkm1z
k21
, Ym(4, 2) = −Ym(4, 1), Ym(4, 3) = b2

jkm2z
k22
, Ym(4, 4) = −Ym(4, 3)

Ym(4, 5) = Ym(4, 6) = −g jkmx
k23

Here, k1, k2, k3, b1, b2, and g were detailed before in Ref. [7, 23].
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Appendix C. The summation in Eq.(16).(x)

According to Eq.(6) and the Poisson summation formula [23]∑
m

δ(x−mlx − xi) =
1

lx

∑
m

ej2πm(x−xi)/lx (C.1)

The summation

S =

Ns∑
i=0

∑
m

βiFiδ(x−mlx − xi)

becomes

S =
1

lx

Ns∑
i=0

miω
2βi

1− ω2/[ω2
i (1 + jηi)]

∑
m

∑
n

ej2πm(x−xi)/lxWne−jk
n
xx (C.2)

In the meantime, there is an identity∑
n

∑
m

Wme−jk
m
x xej2πn(x−xi)/lx =

∑
n

Wnej2πn(−xi)/lx
∑
m

e−jk
m
x xej2π(−m)(−xi)/lx (C.3)

where integer m,n = −∞, . . .+∞; its derivation is provided in Appendix D. Accordingly,
Eq.(C.2) becomes

S =
1

lx

Ns∑
i=0

miω
2βi

1− ω2/[ω2
i (1 + jηi)]

∑
n

Wnej2πn(−xi)/lx
∑
m

e−jk
m
x xej2π(−m)(−xi)/lx (C.4)

When the orthogonal property Eq.(17) is used, Eq.(C.4) becomes

1

lx

∫ lx/2

−lx/2
Sejk

p
xxdx =

1

lx

∑
n

Wnej2π(n−p)(−xi)/lx

Ns∑
i=0

miω
2βi

1− ω2/[ω2
i (1 + jηi)]

(C.5)

Equation (16) can then be rearranged into Eq.(18) utilizing Eq.(C.5).

Appendix D. Derivation of the double summation identity

As exp(−jkmx x) · exp(j2πnx/lx) = exp[−jk
(m−n)
x x], the left-hand side of Eq.(C.3)

becomes

+∞∑
n=−∞

(
· · ·+W−1 e−jk

−1−n
x x +W0 e−jk

−n
x x +W1 e−jk

1−n
x x + · · ·

)
ej2πn(−xi)/lx (D.1)

As n = −∞, . . .∞, if the index n loops over (n− 1) to (n+ 1), Eq.(D.1) becomes{
· · ·+

(
· · ·+W−1 e−jk

−n
x x +W0 e−jk

−n+1
x x +W1 e−jk

−n+2
x x + · · ·

)
ej2π(n−1)(−xi)/lx+

+
(
· · ·+W−1 e−jk

−n−1
x x +W0 e−jk

−n
x x +W1 e−jk

−n+1
x x + · · ·

)
ej2π(n+0)(−xi)/lx+

+
(
· · ·+W−1 e−jk

−n−2
x x +W0 e−jk

−n−1
x x +W1 e−jk

−n
x x + · · ·

)
ej2π(n+1)(−xi)/lx + · · ·

}(D.2)
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If the terms with exp[−jk−n−1x x], exp[−jk−nx x], exp[−jk−n+1
x x]...etc. in Eq.(D.2) were

collected individually, Eq.(D.2) becomes{
· · ·+ e−jk

−n−1
x xe−(−n−1)∗

(
· · ·+W−1e−1∗ +W0e0∗ +W1e1∗ + · · ·

)
+ · · ·

+ e−jk
−n
x xe−(−n)∗

(
· · ·+W−1e−1∗ +W0e0∗ +W1e1∗ + · · ·

)
+ · · ·

+ e−jk
−n+1
x xe−(−n+1)∗ (· · ·+W−1e−1∗ +W0e0∗ +W1e1∗ + · · ·

)
+ · · ·

} (D.3)

where ep∗ = ej2πp(−xi)/lx , p ∈ Z. Subsequently, Eq.(D.3) becomes∑
n

∑
m

Wme−jk
m
x xej2πn(x−xi)/lx =

∑
n

Wnen∗
∑
m

e−jk
m
x xe−m∗ (D.4)

Which is∑
n

∑
m

Wme−jk
m
x xej2πn(x−xi)/lx =

∑
n

Wnej2πn(−xi)/lx
∑
m

e−jk
m
x xej2π(−m)(−xi)/lx (D.5)

Appendix E. The non-zero elements of the matrices in Eq.(18)

Denoting kmx , k
m
z,i, k

m
z,a, k

m
z,a, k

m
1z, k

m
2z, and km3z as αm, γi,m, γa,m, γt,m, γ1,m, γ2,m, and

γ3,m respectively; L1 = hp + ha, L2 = hp + ha + h1

2 , L3 = hp + ha + h1, the non-zero
elements of matrix Am are
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Am(1, 1) = −Q0 − b1R0, Am(1, 2) = Am(1, 1), Am(1, 3) = −Q0 − b2R0

Am(1, 4) = Am(1, 3), Am(1, 8) = −jρiεω

Am(2, 1) = −A0 − b1Q0 − 2N0
γ2
1,m

k21
, Am(2, 2) = Am(2, 1)

Am(2, 3) = −A0 − b2Q0 − 2N0
γ2
2,m

k22
, Am(2, 4) = Am(2, 3)

Am(2, 5) = 2N0αm
γ3,m
k23

, Am(2, 6) = −Am(2, 5), Am(2, 8) = −jρi(1− ε)ω

Am(3, 1) = −(1− ε+ b1ε)
γ1,mω

k21
, Am(3, 2) = −Am(3, 1)

Am(3, 3) = −(1− ε+ b2ε)
γ2,mω

k22
, Am(3, 4) = −Am(3, 3)

Am(3, 5) = (1− ε+ gε)αmω
k23

, Am(3, 6) = Am(3, 5)

Am(3, 8) = jγi,m

Am(4, 1) = 2N0
αmγ1,m
k21

, Am(4, 2) = Am(4, 1), Am(4, 3) = 2N0
αmγ2,m
k22

, Am(4, 4) = Am(4, 3)

Am(4, 5) = N0
−α2

m+γ2
3,m

k23
, Am(4, 6) = Am(4, 5)

Am(5, 1) = −(Q0 + b1R0)e−jhpγ1,m , Am(5, 2) = −(Q0 + b1R0)ejhpγ1,m

Am(5, 3) = −(Q0 + b2R0)e−jhpγ2,m , Am(5, 4) = −(Q0 + b2R0)ejhpγ2,m

Am(5, 9) = −jωερae−jhpγa,m , Am(5, 10) = −jωερaejhpγa,m

Am(6, 1) = −(A0 + b1Q0 + 2N0
γ2
1,m

k21
)e−jhpγ1,m , Am(6, 2) = −(A0 + b1Q0 + 2N0

γ2
1,m

k21
)ejhpγ1,m

Am(6, 3) = −(A0 + b2Q0 + 2N0
γ2
2,m

k22
)e−jhpγ2,m , Am(6, 4) = −(A0 + b2Q0 + 2N0

γ2
2,m

k22
)ejhpγ2,m

Am(6, 5) = 2N0
αmγ3,m
k23

e−jhpγ3,m , Am(6, 6) = −2N0
αmγ3,m
k23

ejhpγ3,m

Am(6, 9) = −jω(1− ε)ρae−jhpγa,m , Am(6, 10) = −jω(1− ε)ρaejhpγa,m

Am(7, 1) = −(1− ε+ b1ε)
γ1,mω

k21
e−jhpγ1,m , Am(6, 2) = (1− ε+ b1ε)

γ1,mω

k21
ejhpγ1,m

Am(7, 3) = −(1− ε+ b2ε)
γ2,mω

k22
e−jhpγ2,m , Am(7, 4) = (1− ε+ b2ε)

γ2,mω

k22
ejhpγ2,m

Am(7, 5) = (1− ε+ gε)αmω
k23

e−jhpγ3,m , Am(7, 6) = (1− ε+ gε)αmω
k23

ejhpγ3,m

Am(7, 9) = −jγa,me−jhpγa,m , Am(7, 10) = jγa,mejhpγa,m

Am(8, 1) = 2N0
αmγ1,m
k21

e−jhpγ1,m , Am(8, 2) = −2N0
αmγ1,m
k21

ejhpγ1,m

Am(8, 3) = 2N0
αmγ2,m
k22

e−jhpγ2,m , Am(8, 4) = −2N0
αmγ2,m
k22

ejhpγ2,m

Am(8, 5) = N0
−α2

m+γ2
3,m

k23
e−jhpγ3,m , Am(8, 6) = N0

−α2
m+γ2

3,m

k23
ejhpγ3,m

Am(9, 7) = jω, Am(9, 9) = −jγa,me−jL1γa,m , Am(9, 10) = jγa,mejL1γa,m

Am(10, 7) = −Dα4
m + ρph1ω

2, Am(10, 9) = jωρae−jL2γa,m

Am(10, 10) = jωρaejL2γa,m , Am(10, 11) = −jωρte
−jL2γt,m

Am(11, 7) = jω, Am(11, 11) = −jγt,me−jL3γt,m (E.1)

where Q0, R0, A0, N0, k1, k2, k3, b1, b2, and g are detailed in Ref. [7, 23].
The non-zero elements of vector p are: p(1) = jωερi, p(2) = jω(1− ε)ρi, p(3) = jkz.
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The non-zero elements of matrix Bm in multiple simple resonator cases are provided
here to illustrate the core ideas. Denoting the row and column block index of full block
matrix B̃ as m,n, if Ns > 1 and m 6= n, the non-zero element is

Bm(10, 7) = − 1

lx

[
Ns−1∑
i=1

kimiω
2

ki −miω2
ej2π(n−m)−ia

lx +
1

2

k0m0ω
2

k0 −m0ω2
+

1

2

kNs
mNs

ω2

kNs −mNsω
2

ej2π(n−m)−Nsa
lx

]

If Ns > 1 and m = n, the non-zero element is

Bm(10, 7) = − 1

lx

[
Ns−1∑
i=1

kimiω
2

ki −miω2
+

1

2

k0m0ω
2

k0 −m0ω2
+

1

2

kNs
mNs

ω2

kNs −mNsω
2

]

If Ns = 1, the non-zero element is

Bm(10, 7) = − 1

lx

k1m1ω
2

k1 −m1ω2
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