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Abstract. We study the spatial mode content at the output of a wide-field SU(1, 1)
interferometer, i.e. a nonlinear interferometer comprising two coherently-pumped spatially-
multimode optical parametric amplifiers placed in sequence with a focusing element in between.
This device is expected to provide a phase sensitivity below the shot-noise limit for multiple modes
over a broad angular range. To reconstruct the spatial modes and their weights, we implement
a simple method based on the acquisition of only intensity distributions. The eigenmode
decomposition of the field is obtained through the measurement of the covariance of intensities
at different spatial points. We investigate both the radial and azimuthal (orbital angular
momentum) modes and show that their total number is large enough to enable applications
of the interferometer in spatially-resolved phase measurements.
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1. Introduction

A lot of interest is currently attracted to the so-called SU(1, 1) interferometer [1–4]. This is
a sequence of two coherently pumped optical parametric amplifiers, based on four-wave mixing
(FWM) [2, 4] or parametric down-conversion (PDC) [3]. The second amplifier amplifies or de-
amplifies the radiation from the first one depending on the phase shift in between, and the
interferometer provides sub-shot-noise sensitivity to this phase. Recently a wide-angle version of
such an interferometer has been realized in experiment [5], aimed at various applications, among
them testing the spatially-distributed phase shifts. In particular, sub-shot-noise sensitivity to the
orbital angular momentum (OAM) is expected [6, 7]. All these applications require a large number
of spatial modes covered by the interferometer.

Experimentally quantifying the spatial mode content of a multimode radiation can be a
challenging task. In general, the measurement of the spatial intensity distribution is not sufficient
because of the overlapping of different modes at each point. For this reason, more advanced
techniques need to be used to access the information about the radiation and its orthogonal spatial
components.

In particular, the measurement of the OAM spectrum has raised special interest since its
discovery [8]. The promise of increased capacity for quantum communication due to the discrete
high-dimensional degree of freedom of OAM (unlike polarization) can be only fulfilled if an efficient
detection of the mode spectrum is implemented [9–12]. Different modes are separated by exploiting
the periodical dependence of the phase of the OAM field on the azimuthal angle, either directly or
with interferometric setups.

One direct strategy is to flatten this dependence with a spatial light modulator (SLM) for one
OAM mode at a time and measure the coupling of the diffracted beam into a single-mode fiber
[13, 14]. This strategy provides the distribution of the mode weights, but with some limitations
[15]. Alternatively, the OAM charge of a beam can be converted into the transverse position with
two phase elements [10, 16, 17], which can be replaced by SLMs [18]. In this case, different OAM
modes focus through a lens into separate spots, whose intensity can be simultaneously measured.
It is even possible to profit from the conservation of OAM in frequency upconversion to detect the
modes [19].

The information about the OAM spectrum of a beam can be also indirectly determined by
Fourier transforming the mutual angular coherence function, i.e. the first-order angular correlation
function (CF) [20]. Experimentally, one extracts the CF from the measurement of the visibility
from the interference of the beam under study and its rotated replica [21, 22]. However, such
experiments rely on the fragile stability of interferometers and coincidence techniques over time.
A novel version of this technique demonstrates the measurement of the CF through single-shot
acquisition of interferograms [23, 24], therefore eliminating stability problems. Similarly, this issue
does not play a role if the interference is observed between two different azimuthal parts of the
same beam, like in a double-slit experiment [25].

All these techniques involve a special detection setup with several optical elements. In this work,
we use a technique for reconstructing the shapes and weights of eigenmodes by only acquiring a
sufficient number of 2D intensity distributions. Our method is valid for any radiation with Gaussian
statistics including thermal light and bright twin beams generated through high-gain PDC or FWM.
The technique relies on the Siegert relation between the first- and second-order CFs. Indeed, we
reconstruct the eigenmodes starting from the measurement of the second-order CF, i.e. from the
spatial correlations of intensity fluctuations. The main advantage for such a method is that the
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detection stage contains only a camera [26]. Moreover, under reasonable conditions on the symmetry
of the intensity 2D distribution, one can reconstruct independently the modes in the two degrees
of freedom involved. For example, in the case of cylindrical symmetry one can reconstruct OAM
and radial modes. A similar method can be applied to the time/frequency domain if the detection
device is fast enough to follow the intensity fluctuations in time [27]. The only limitation of our
method is that the phases of radial modes can not be recovered.

Here we apply this method to test a wide-angle SU(1,1) interferometer [5] consisting of two
quadratically nonlinear crystals with a focusing element in between. Both crystals generate high-
gain PDC, and the second crystal amplifies or de-amplifies the radiation generated in the first
one, depending on the phase introduced into the pump beam. At the output, the radiation is
multimode both spatially and temporally, and each mode is populated by bright squeezed vacuum
(BSV). If signal and idler beams can be distinguished (for instance, by considering non-degenerate
frequencies), the BSV manifests twin-beam photon-number correlations [28, 29]. Each beam taken
separately manifests thermal photon statistics.

Below, we present a detailed study of the angular (radial and azimuthal) eigenmodes and their
weights for the output radiation of the wide-angle SU(1,1) interferometer. The OAM modes are
related to the azimuthal angle but their spectrum also depends on the radial angle selected. We
focus our attention on the dependence of the OAM content on the radial angle, but also on the
spectrum averaged over all possible radial angles. We show, in particular, that for larger radial
angles there is a richer spectrum of OAM modes.

2. Covariance of intensities and the Schmidt decomposition

We derive in this Section the general result that links the measurement of the correlations of the
intensity fluctuations of any Gaussian field with its eigenmode decomposition. For a Gaussian field,
all high-order CFs can be expressed as a function of the first-order one. The normally-ordered first-
and second-order spatial CFs in the far field are defined as

G(1)(~q, ~q′) =
〈
E(−)(~q)E(+)(~q′)

〉
, (1)

G(2)(~q, ~q′) =
〈
E(−)(~q)E(−)(~q′)E(+)(~q)E(+)(~q′)

〉
, (2)

with E(+/−) being the positive- and negative-frequency fields, while ~q and ~q′ the transverse
wavevectors of two points in the far field. The link between the two CFs can be found by using the
moment theorem for complex Gaussian processes [30],〈

E(−)(~q)E(−)(~q′)E(+)(~q)E(+)(~q′)
〉

=

=
〈
E(−)(~q)E(+)(~q)

〉 〈
E(−)(~q′)E(+)(~q′)

〉
+〈

E(−)(~q)E(+)(~q′)
〉〈

E(−)(~q′)E(+)(~q)
〉
.

(3)

Indeed, the substitution of Eq. (3) into Eq. (2) and the definition in Eq. (1) leads to the well-known
Siegert relation

G(2)(~q, ~q′) = 〈I(~q)〉〈I(~q′)〉+
∣∣∣G(1)(~q, ~q′)

∣∣∣2 , (4)

where I(~q) = E(+)(~q)E(−)(~q) is the intensity.
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In Sec. 3 we measure a related quantity, namely the covariance Cov(~q, ~q′) = G(2)(~q, ~q′) −
〈I(~q)〉〈I(~q′)〉. The square root of this quantity is then directly proportional to the absolute value
of the first-order CF and this result links the covariance with the coherent modes of the system.
Indeed, according to the classical coherence theory, the first-order CF for a multimode beam can
be written in the form

G(1)(~q, ~q′) =
∑
m,n

λ̃mnũ
∗
mn(~q)ũmn(~q′), (5)

where ũmn are the eigenfunctions and λ̃mn the eigenvalues [30].
Another possibility of introducing eigenmodes is the Schmidt decomposition. Such a modal

decomposition describes efficiently the correlations in a bipartite system. In particular, it can be
used to describe twin beams (idler and signal) at the output of high-gain PDC [31]. Although
a deeper consideration shows that the shapes of the Schmidt modes change with the parametric
gain [32], this effect is small. Accordingly, one can obtain these modes from the decomposition of
the so-called two-photon amplitude (TPA), i.e. the probability amplitude of signal/idler photons
being emitted into plane-wave monochromatic modes with transverse wave-vectors ~qs,i. Provided
that the PDC generation has an axial symmetry (for instance, spatial walk-off is small), the TPA
can be written as

F (~qs, ~qi) =
∑
l,p

√
λlp

ulp(θs)√
θs

eilφs
vlp(θi)√

θi
e−ilφi , (6)

where l, p are, respectively the azimuthal and radial indices, θ = q/k the radial angle, k the
wavevector modulus, and φ = tan−1 qy/qx the azimuthal angle. The coefficients λlp are the Schmidt
eigenvalues with the normalization condition

∑
l,p λlp = 1 and ulp, vlp are the orthonormal radial

modes for signal and idler, considered to be equivalent in the degenerate regime. We would like
to point out that if l 6= 0, the azimuthal eigenmodes are periodic functions of φ and a mode with
number l carries an OAM charge l.

One can show that the coherent modes (5) and eigenvalues of one of the twin beams (signal
or idler) coincide with the Schmidt modes and Schmidt coefficients given in Eq. (6), i.e. λ̃lp = λlp

and ũlp(~q) =
ulp(θ)√

θ
eilφ [33, 34].

Consider the covariance of intensities measured at angles θ, φ and θ′, φ′, defined as
Cov(θ, θ′, φ, φ′) ≡ 〈I(θ, φ)I(θ′, φ′)〉 − 〈I(θ, φ)〉 〈I(θ′, φ′)〉 . (7)

In terms of the Schmidt modes introduced in Eq. (6), this covariance has the form [6, 27]

Cov (θ, θ′, φ, φ′) =

[∑
l,p λlp

ulp(θ)√
θ
eilφ

u∗lp(θ′)√
θ′

e−ilφ
′
]2

+

[∑
l,p λlp

vlp(θ)√
θ
eilφ

v∗lp(θ′)√
θ′

e−ilφ
′
]2

+ 2

∣∣∣∣∑l,p λlp
ulp(θ)√

θ
eilφ

vlp(θ′)√
θ′

eilφ
′
∣∣∣∣2 . (8)

To simplify the reconstruction, in experiment we eliminate one of the twin beams by using
frequency filtering that is asymmetric with respect to the degenerate wavelength. In this way, we
transmit the signal photons and remove their idler matches to study only the autocorrelations of
the intensity fluctuations. Then the last two terms in Eq. (8) disappear, and the covariance takes
the form

Cov(θ, θ′, φ, φ′) =

∑
l,p

λlp
ulp(θ)√

θ
eilφ

u∗lp(θ
′)

√
θ′

e−ilφ
′

2

. (9)
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This relation allows the mode shapes to be reconstructed from the square root of the covariance
using the singular value decomposition.

3. Radiation eigenmodes at the output of the SU(1,1) interferometer

In this Section, we focus our attention on the eigenmode decomposition of the radiation at the
output of the wide-field SU(1, 1) interferometer [5].

3.1. Theory

We derive the Schmidt decomposition for this device using the following theoretical approach. The
emission from first crystal is considered as the input for the second crystal, i.e. an optical parametric
amplifier [28]. We do not have to take into account the diffraction of the emission because of the
focusing element. The parametric gain values in the two crystals are assumed to be different,
G1 6= G2, and the phase of the SU(1,1) interferometer is Φ. We describe the state evolution by
using the squeezing operators Ŝ1, Ŝ2, respectively, for the first and second amplifier. The state at
the output of the system is

|ψ〉 = Ŝ2Ŝ1 |0〉 , (10)

where |0〉 is the vacuum state.
By using the decomposition of the TPA in Eq. (6), one can define the photon annihilation

operators for the collective spatial Schmidt modes [31]. In our case, these Schmidt-mode operators
at the output of the second crystal can be expressed in terms of the initial (vacuum) photon
annihilation operators Âin

lp and B̂in
lp in the corresponding (l, p) Schmidt modes as

Âout
lp = Ŝ†1Ŝ

†
2Â

in
lpŜ2Ŝ1 = Ŝ†1(Âin

lp cosh
√
λlpG2 +

[
B̂in
lp

]†
eiΦ sinh

√
λlpG2)Ŝ1 =

= (Âin
lp cosh

√
λlpG1 +

[
B̂in
lp

]†
sinh

√
λlpG1) cosh

√
λlpG2+

+(
[
B̂in
lp

]†
cosh

√
λlpG1 + Âin

lp sinh
√
λlpG1)eiΦ sinh

√
λlpG2.

(11)

By defining the quantities

weff
1,lp(G1, G2,Φ) = cosh

√
λlpG1 cosh

√
λlpG2 + eiΦ sinh

√
λlpG1 sinh

√
λlpG2,

weff
2,lp(G1, G2,Φ) = sinh

√
λlpG1 cosh

√
λlpG2 + eiΦ cosh

√
λlpG1 sinh

√
λlpG2,

(12)

Eq. (11) can be simplified to

Âout
lp = weff

1,lp(G1, G2,Φ)Âin
lp + weff

2,lp(G1, G2,Φ)
[
B̂in
lp

]†
. (13)

With this result, it is possible to calculate the average number of signal photons in the plane-
wave mode ~q [31],〈

N̂s(~q)
〉

=
∑
l,p

∣∣∣weff
2,lp(G1, G2,Φ)

∣∣∣2 |ulp(θ)|2
θ . (14)

By integrating over the radial angle θ, we get the average total number of signal photons,〈
N̂ tot
s

〉
=
∑
l,p

∣∣weff
2,lp(G1, G2,Φ)

∣∣2 , (15)
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as a sum of the terms
∣∣∣weff

2,lp(G1, G2,Φ)
∣∣∣2 that we identify as the number of photons in the (l, p)

Schmidt mode. In this fashion, we can denote the signal Schmidt eigenvalues as

Λlp =
∣∣weff

2,lp(G1, G2,Φ)
∣∣2 . (16)

If the gains are large enough to satisfy the relations
√
λlpG1/2 � 1 and provided that Φ is not

close to π, we can approximate

Λlp ≈
1

4
sinh2(

√
λlp(G2 +G1))

∣∣1 + eiΦ
∣∣2 . (17)

This approximation is valid as long as

sinh
(√

λlp (G1 +G2)
) ∣∣1 + eiΦ

∣∣� sinh
(√

λlp |G1 −G2|
)
, (18)

hence the condition of Φ 6= π.

3.2. Experimental setup

Figure 1. Experimental setup.

The experimental setup is shown in Fig. 1. The basic parts of the interferometer are a β-barium
borate (BBO) crystal and mirrors M1 and M2. The pump is a Nd:YAG laser emitting 18 ps pulses
at the wavelength 354.67 nm with a repetition rate of 1 kHz. We produce type-I PDC radiation
in the collinear degenerate regime at 709.33 nm. The dichroic mirror DM1 separates the pump
and the down-converted radiation. The pump is reflected back to the crystal by the mirror M1
mounted on the piezoelectric actuator PA in order to control the phase of the interferometer. The
PDC radiation is imaged by the spherical mirror M2 (R = 100 mm) back onto the crystal. With an
average pump power of 60 mW and a FWHM of 300± 10 µm, the PDC emission in the first pass
of the pump beam is multimode even if the parametric gain is high, i.e. G1 = 2.1± 0.3 (measured
as in Ref. [29]). We select a higher gain in the second pass, G2 = 3.3± 0.3, by focusing the pump
beam to a FWHM of 180± 10 µm and controlling the polarisation with the waveplates HWP and
QWP. Indeed, the polarisation is rotated from horizontal to 27 deg by the half-wave plate HWP
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in order to reduce the contribution in the first pass and rotated back to horizontal with the double
pass through the quarter wave-plate QWP.

In the second pass, if the pulses meet again at the crystal, the multimode structure undergoes
amplification/de-amplification depending on the relative phase between pump, signal and idler
beams Φ = Φp − Φs − Φi. The resulting multimode radiation is very similar to the one of a single
crystal with the effective gain G1 +G2, as shown in Eq. 17. The dichroic mirror DM2 reflects the
amplified PDC emission to the detection part, while the dichroic mirror DM3 rejects any residual
pump beam. The band-pass filter BPF (central wavelength 700 nm, bandwidth 10 nm) selects a
frequency band slightly shifted from the degeneracy, so that only one of the twin beams is detected.
At the same time, the shift from degeneracy is so small that we do not expect the signal and idler
eigenmodes to be different. A charge-coupled device (CCD) camera is placed in the far field of the
lens L (focal length f = 4 cm) and has a long-pass filter LPF attached to reduce the contribution
of the stray light to the intensity distributions.

Figure 2. Single-shot far-field 2D intensity distribution at the output of the wide-field SU(1, 1)
interferometer. Two speckles of intensity fluctuations are shown by circles. The phase of the
interferometer Φ is 3.82 rad.

Figure 2 shows the far-field intensity distribution recorded in a single pulse. The distribution
is over two Cartesian angles defined as qx/k and qy/k and it has a FWHM of ∼ 22 mrad. In this
case, the phase Φ is fixed to the value 3.82 rad, i.e. approximately π/5 away from the dark fringe.
This is achieved with a phase-locking arrangement not shown for simplicity in the setup in Fig. 1.
Typically, the spectrum of high-gain PDC radiation would contain correlated intensity fluctuations
at points symmetric with respect to the pump direction (center). Here, these correlations are not
present because only one of the twin beams is selected by non-degenerate filtering. The black and
brown circles highlight especially bright areas (‘speckles’) of the PDC emission [35].
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3.3. Orbital angular momentum spectrum

For the measurement of the OAM spectrum at different radial angles, we keep the phase Φ = 3.82
rad. We acquire 500 single-shot 2D intensity distributions and extract the azimuthal intensity 1D
distribution I(φ) by integrating I(θ, φ) over a range of ±1.1 mrad around each radial angle θ0. For
the resulting 1D distributions, the covariance for the intensities I(φ), I(φ′) at the azimuthal angles
φ and φ′ is experimentally obtained as

Cov|θ=θ′=θ0 (φ, φ′) = 〈I(φ)I(φ′)〉 − 〈I(φ)〉 〈I(φ′)〉 . (19)

Then, the autocorrelation part in Eq. (9) takes the form

Cov|θ=θ′=θ0 (φ, φ′) =

[∑
l

Ll(θ0)eil(φ−φ
′)

]2

, (20)

with Ll(θ0) =
∑
p Λlp |ulp(θ0)|2 /θ0, taking into account the high-gain weights given by Eq. (17).

The covariance distribution turns out to be symmetric and depends only on the difference φ− φ′.

Figure 3. Experimental 1D azimuthal covariance distributions as functions of the difference in
the azimuthal angles φ−φ′ with fixed radial angles ranging from 4 to 16 mrad. The width of the
distribution is larger for smaller radial angles.

In experiment, we average the distribution along the φ + φ′ direction and the result of this
procedure is shown in Fig. 3. Since the possible range for the azimuthal angle is between 0 and
2π, the difference φ − φ′ spans between −2π and 2π. For φ = φ′, the intensity fluctuations are
maximally correlated, as expected for the autocorrelation. At different azimuthal angles φ 6= φ′,
the correlation drops to zero.

If we fix the radial angle θ0 to be small, i.e. choose points closer to the center, the covariance
distribution is broader. Conversely, it gets tighter for large θ0.
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Figure 4. FWHM of the azimuthal covariance distribution shows a decrease as a function of
the radial angle. By multiplying this width by each radial angle, we see that the speckle size in
Cartesian angles is constant.

This trend is presented on the left y-axis in blue of Fig. 4. The covariance has a FWHM
ranging from 2.7 to 0.7 mrad respectively for radial angles 4 and 16 mrad. As one can see in Fig.
2, the azimuthal size of the correlation area [35, 36] is larger for smaller radial angles. At the same
time, the correlation area size should be the same in Cartesian angles qx/k, qy/k as the speckle size
in Fig. 2 is also the same everywhere. By multiplying the covariance FWHM by the selected radial
angle, we see that the correlation area size is constant as expected. We plot the result in orange on
the right y-axis of Fig. 4 and we find an average value of 11± 1 mrad.

Figure 5. OAM spectrum obtained from the covariance measured at radial angles ranging from
4 to 16 mrad. The distributions show a larger number of azimuthal modes for larger radial angles.

By applying the Fourier decomposition to the square root of the covariance (20), we obtain
the distribution of weights Ll(θ0) for the radial angle considered, as shown in Fig. 5. The part of
negative OAM charge is not shown because it is symmetric with respect to l = 0. For larger radial
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angles, the covariance has a steeper dependence on φ − φ′, which corresponds to a larger number
of OAM modes [37]. Accordingly, the number of modes, calculated as 1/ [Ll(θ0)]

2, increases from
3.8± 0.2 to 18.2± 0.6 for θ0 increasing from 4 mrad to 14 mrad.

The weights Ll(θ0) obtained from the covariance at different θ0 contain contributions from
several radial modes. Therefore, we cannot determine the distribution of the weights Λlp for a
fixed p. Nevertheless, it is possible to obtain the average OAM weights over all radial modes, i.e.
Λl =

∑
p Λlp, by integrating the square root of the covariance (20) over the radial angle,ˆ √

Cov|θ=θ′=θ0 (φ, φ′)θ0dθ0 =
∑
l

Λle
il(φ−φ′). (21)

This procedure has been performed in Ref. [5] and resulted in 8 OAM modes.
It is interesting to note that according to Eq. (17), the OAM spectrum remains the same for

different phases of the interferometer. This result has been experimentally confirmed in Ref. [5].

3.4. Radial modes

For reconstructing the radial modes, we integrate the measured distribution I(θ, φ) within a range
of ±0.08 rad around φ = 0 to obtain the radial distribution of intensity I(θ). The radial covariance
distribution is then obtained as

Cov|φ=φ′=0 (θ, θ′) = 〈I(θ)I(θ′)〉 − 〈I(θ)〉 〈I(θ′)〉 . (22)

Figure 6. (a) Covariance distribution for the radial degree of freedom with Φ = 3.82 rad. The
correlation is distributed around the θ = θ′ direction. (b) Theoretical fit of the distribution.

The results for Φ = 3.82 rad are shown in Fig. 6 (a). The correlation of intensity fluctuations
is the highest along the diagonal θ = θ′. Somewhat lower values at small radial angles are probably
caused by a damaged spot on the optical elements. This cannot be usually recognized in the single-
shot spectrum, but it becomes clear by averaging over several pulses. For this reason, we use a
fitting function for the covariance as described in Ref. [32]. The fit requires prior knowledge about
the shape of the intensity distribution and the nature of the correlations, in general not necessary
for the reconstruction of the modes. The result of the fit is shown in Fig. 6 (b) and it shows good
agreement with the experimental covariance.
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In this case, the covariance in Eq. (9) takes the form

Cov|φ=φ′=0 (θ, θ′) =

[∑
p

Λp
up(θ)√

θ

u∗p(θ
′)

√
θ′

]2

, (23)

with Λp =
∑
l Λlp and assuming that the radial modes do not depend strongly on l [6]. By

performing the singular value decomposition on the square root of Eq. (23), we obtain the shapes
and the weights of the Schmidt radial modes.

Figure 7. Shapes (a) and weights (b) of the radial modes. Only the first four mode shapes are
shown (first, second, third and fourth in the colors orange, red, green and blue). The weights
are shown for three different phases of the interferometer, namely Φ = 3.82, 4.02 and 4.22 rad
correspondingly to the colors blue, green and yellow.

The result is shown in Fig. 7. The shapes of the first four modes resemble the Hermite-
Gauss ones, as one would expect for a covariance distribution close to a Gaussian shape. The
distribution of the weights is constant as the phase of the interferometer is changed between the
value Φ = 3.82, 4.02 and 4.22 rad (color blue, green and yellow). The number of modes in this
case is 4.5± 0.2. Accordingly, the total number of spatial modes can be estimated as 34± 2, which
roughly corresponds to the number of speckles within the intensity distribution at the output of
the interferometer (Fig. 2).

4. Conclusion

We have demonstrated the experimental reconstruction of the eigenmodes of a multimode field with
Gaussian intensity fluctuations by using the measurement of intensity distributions. To this end, we
have justified theoretically the link between the measurement of intensity fluctuations correlation
and the equivalent coherent-mode or Schmidt decomposition in the cases of thermal light and bright
twin beams. For the experiment, we employed a wide-field SU(1, 1) interferometer to generate twin
beams and used one of the two beams as a state of light with thermal statistics. By acquiring 500
single-shot far-field intensity spectra we reconstructed the OAM spectrum of our source for several
radial angles and the spectrum averaged over the radial degree of freedom. We also determined the
shapes and weights of the radial modes.

The method we portrayed in our work has the advantage of a simple detection scheme, requiring
only a camera measuring intensity distributions. Moreover, no prior knowledge about the modes
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of the system under study is needed, but simple considerations on the symmetry of the intensity
distribution simplify the treatment. Since the reconstruction relies on the acquisition of several
intensity spectra, instant changes of the mode composition cannot be detected. Another critical
point is that the detection of intensity distributions leaves out the information about the space-
dependent phases of the modes.

This technique should be suitable to quickly identify the mode structure of an unknown stable
system. For instance, we believe one could measure the eigenmode decomposition of a fiber whose
guiding properties are completely unknown. By measuring at the output the intensity distributions
of thermal radiation launched into the fiber, the shapes of the modes can be obtained easily, while
the relative strengths might depend on the coupling of the source. Currently, the most widely
used method is the S2 imaging, which relies on the group delay difference between different modes
propagating and interfering in the fiber [38]. For such a method, a tunable source is essential
to provide the mode shapes and spectrum [39], therefore our reconstruction could offer a valid
alternative.

For the characterization of an SU(1,1) interferometer, an important conclusion is that the use
of a focusing element provides a multimode spatial spectrum at the output: in total, more than
30 spatial modes were measured. This is not the case in a configuration where such an element is
absent [6]. Moreover, the output number of OAM modes can be large (up to 18) if a large radial
angle is selected. Although low-gain PDC provides even larger numbers of OAM modes [23], at high
gain this number is usually reduced. The possibility to have an SU(1,1) interferometer covering a
large number of OAM modes paves the way to sub-shot-noise OAM sensing.
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