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Abstract. Proving correctness of distributed or concurrent algorithms
is a mind-challenging and complex process. Slight errors in the reason-
ing are difficult to find, calling for computer-checked proof systems. In
order to build computer-checked proofs with usual tools, such as Coq or
TLA+, having sequential specifications of all base objects that are used
as building blocks in a given algorithm is a requisite to provide a modular
proof built by composition. Alas, many concurrent objects do not have
a sequential specification.
This article describes a systematic method to transform any task, a spec-
ification method that captures concurrent one-shot distributed prob-
lems, into a sequential specification involving two calls, set and get.
This transformation allows system designers to compose proofs, thus
providing a framework for modular computer-checked proofs of algo-
rithms designed using tasks and sequential objects as building blocks.
The Moir&Anderson implementation of renaming using splitters is an
iconic example of such algorithms designed by composition.

Keywords: Formal methods · Verification · Concurrent algorithms ·
Renaming.

1 Introduction

Fault-tolerant distributed and concurrent algorithms are extensively used in crit-
ical systems that require strict guarantees of correctness [23]; consequently, ver-
ifying such algorithms is becoming more important nowadays. Yet, proving dis-
tributed and concurrent algorithms is a difficult and error-prone task, due to the
complex interleavings that may occur in an execution. Therefore, it is crucial to
develop frameworks that help assessing the correctness of such systems.

A major breakthrough in the direction of systematic proofs of concurrent
algorithms is the notion of atomic or linearizable objects [20]: a linearizable
object behaves as if it is accessed sequentially, even in presence of concurrent
invocations, the canonical example being the atomic register. Atomicity lets us
model a concurrent algorithm as a transition system in which each transition
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corresponds to an atomic step performed by a process on a base object. Human
beings naturally reason on sequences of events happening one after the other;
concurrency and interleavings seem to be more difficult to deal with.

However, it is well understood now that several natural one-shot base objects
used in concurrent algorithms cannot be expressed as sequential objects [9,16,34]
providing a single operation.

An iconic example is the splitter abstraction [31], which is the basis of the
classical Moir&Anderson renaming algorithm [31]. Intuitively, a splitter is a con-
current one-shot problem that splits calling processes as follows: whenever p pro-
cesses access a splitter, at most one process obtains stop, at most p − 1 obtain
right and at most p − 1 obtain down. Moir&Anderson renaming algorithm uses
splitters arranged in a half grid to scatter processes and provide new names to
processes. It is worth to mention that, since its introduction almost thirty years
ago, the renaming problem [4] has become a paradigm for studying symmetry-
breaking in concurrent systems (see, for example, [1,8]).

A second example is the exchanger object provided in Java, which has been
used for implementing efficient linearizable elimination stacks [16,24,37]. Roughly
speaking, an exchanger is a meeting point where pairs of processes can exchange
values, with the constraint that an exchange can happen only if the two processes
run concurrently.

Splitters and exchangers are instances of one-shot concurrent objects known
in the literature as tasks. Tasks have played a fundamental role in understand-
ing the computability power of several models, providing a topological view of
concurrent and distributed computing [18]. Intuitively, a task is an object pro-
viding a single one-shot operation, formally specified through an input domain,
an output domain and an input/output relation describing the valid output con-
figurations when a set of processes run concurrently, starting from a given input
configuration. Tasks can be equivalently specified by mappings between topo-
logical objects: an input simplicial complex (i.e., a discretization of a continuous
topological space) modeling all possible input assignments, an output simplicial
complex modeling all possible output assignments, and a carrier map relating
inputs and outputs.

Contributions. Our main contribution is a generic transformation of any task T
(with a single operation) into a sequential object S providing two operations, set
and get. The behavior of S “mimics” the one of T by splitting each invocation
of a process to T into two invocations to S, first set and then get. Intuitively, the
set operation records the processes that are participating to the execution of the
task. A process actually calls the task and obtains a return value by invoking
get. Each of the operations is atomic; however, set and get invocations of a given
process may be interleaved with similar invocations from other processes.

We show that these two operations are sufficient for any task, no matter how
complicated it may be; since a task is a mapping between simplicial complexes,
it can specify very complex concurrent behaviors, sometimes with obscure asso-
ciated operational semantics.
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A main benefit of our transformation is that one can replace an object solving
a task T by its associated sequential object S, and reason as if all steps happen
sequentially. This allows us to obtain simpler models of concurrent algorithms
using solutions to tasks and sequential objects as building blocks, leading to
modular correctness proofs. Concretely, we can obtain a simple transition system
of Moir&Anderson renaming algorithm, which helps to reason about it. In a
companion paper [22], our model is used to derive a full and modular TLA+

proof of the algorithm, the first available TLA+ proof of it.
In Section 2, we explain the ideas in Moir&Anderson renaming algorithm

that motivated our general transformation, which is presented in Section 3. Due
to lack of space, some basic definitions, proofs and detailed constructions are
omitted. They can be found in the extended version [7].

2 Verifying Moir&Anderson Renaming

We consider a concurrent system with n asynchronous processes, meaning that
each process can experience arbitrarily long delays during an execution. More-
over, processes may crash at any time, i.e., permanently stopping taking steps.
Each process is associated with a unique ID ∈ N. The processes can access base
objects like simple atomic read/write registers or more complex objects.

The original Moir&Anderson renaming algorithm [31] is designed and ex-
plained with splitters. Their seminal work first introduces the splitter algorithm
based on atomic read/write registers and discusses its properties. Then, they
describe a renaming algorithm that uses a grid of splitters. The actual imple-
mentation inlines splitters into the code of the renaming algorithm, and their
proof is performed on the resulting program that uses solely read/write registers
as base objects.

The splitter abstraction. A splitter [31] is a one-shot concurrent task in which
each process starts with its unique ID ∈ N and has to return a value satisfying
the following properties: (1) Validity. The returned value is right, down or stop.
(2) Splitting. If p ≥ 1 processes participate in an execution of the splitter, then
at most p−1 processes obtain the value right, at most p−1 processes obtain the
value down, at most one process obtains the value stop. (3) Termination. Every
correct process (which doesn’t crash) returns a value.

Notice that if a process runs solo, i.e., p = 1, it must obtain stop, since the
splitting property holds for any p ≥ 1.

Figure 1 contains the simple and elegant splitter implementation based on
atomic read/write registers from [31] (register names have been changed for
clarity). After carefully analyzing the code, the reader can convince herself that
the algorithm described in Figure 1 implements the splitter specification. The
fact that the implementation is based on atomic registers allows us to obtain
a transition system of it in which each transition corresponds to an atomic
operation on an object. The benefit of this modelization is that every execution of
the implementation is simply described as a sequence of steps, as concurrent and
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initially CLOSED = false
operation splitter():
(01) LAST ← my ID;
(02) if (CLOSED)
(03) then return(right)
(04) else CLOSED ← true;
(05) if (LAST = my ID)
(06) then return(stop)
(07) else return(down)
(08) end if
(09) end if.

Fig. 1. Implementation of a Splitter [31]. Fig. 2. Renaming using Splitters.

distributed systems are usually modeled (see, for example, [19,36])). Although
the splitter implementation is very short and simple, its TLA+ proof is long and
rather complex —particularly when considering that it uses a boolean register
and a plain register only— (see [22] for details).

The renaming problem. In the M -renaming task [4], each process starts with its
unique ID ∈ N, and processes are required to return an output name satisfying
the following properties: (1) Validity. The output name of a process belongs to
[1, . . . ,M ]. (2) Uniqueness. No two processes obtain the same output name. (3)
Termination. Every correct process returns an output name.

Let p be the number of processes that participate in a given renaming in-
stance. A renaming implementation is adaptive if the size M of the new name
space depends only on p, the number of participating processes. We have then
M = f(p) where f(p) is a function on p such that f(1) = 1 and, for 2 ≤ p ≤ n,
p− 1 ≤ f(p− 1) ≤ f(p).

Moir&Anderson splitter-based renaming algorithm. Moir and Anderson propose
in [31] a read/write renaming algorithm designed using the splitter abstraction.
The algorithm is conceptually simple: for up to n processes, a set of n(n +
1)/2 splitters are placed in a half-grid, each with a unique name, as shown in
Figure 2 for n = 5. Each process starts invoking the splitter at the top-left corner,
following the directions obtained at each splitter. When a splitter invocation
returns stop, the process returns the name associated with the splitter. We use
here an adaptive version of their algorithm that allows p participating processes
to rename in at most p(p + 1)/2 names; the original solution in [31] is non-
adaptive and the only difference is the labelling of the splitters in the grid.

Splitters as sequential objects? Although Moir&Anderson renaming algorithm
is easily described in a modular way, the actual program is not modular as
each splitter in the conceptual grid is replaced by an independent copy of the
splitter implementation of Figure 1. Thus, the correctness proof in [31] deals
with the possible interleavings that can occur, considering all read/write splitter
implementations in the grid.
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State: Sets Participants, Stop,Down,Right
all sets are initialized to ∅

Function set(id)
Pre-condition: id /∈ Participants
Post-condition: Participants′ ← Participants ∪ {id}
Output: void

endFunction

Function get(id)
Pre-condition: id ∈ Participants ∧ id /∈ Stop,Down,Right
Post-condition:

D ← ∅
if |Stop| = 0 then D ← D ∪ {stop}
if |Down| < |Participants| − 1 then D ← D ∪ {down}
if |Right| < |Participants| − 1 then D ← D ∪ {right}
Let dec be any value in D
if dec = stop then Stop← Stop ∪ {id}
if dec = down then Down← Down ∪ {id}
if dec = right then Right← Right ∪ {id}

Output: dec
endFunction

Fig. 3. An ad hoc specification of the Splitter.

In the light of the simple splitter based conceptual description, we would
like to have a transition system describing the algorithm based on splitters as
building blocks, in which each step corresponds to a splitter invocation. Such a
description would be very beneficial as it would allow us to obtain a modular
correctness proof showing that the algorithm is correct as long as the building
blocks are splitters, hence the correctness is independent of any particular splitter
implementation.

As it is formally proved in Section 3, it is impossible to obtain such a transi-
tion system. The obstacle is that a splitter is inherently concurrent and cannot
be specified as a sequential object with a single operation. The intuition of the
impossibility is the following. By contradiction, suppose that there is a sequen-
tial object corresponding to a splitter. Since the object is sequential, in every
execution, the object behaves as if it is accessed sequentially (even in presence of
concurrent invocation). Then, there is always a process that invokes the splitter
object first, which, as noted above, must obtain stop. The rest of the processes
can obtain either down or right, without any restriction (the value obtained by
the first process precludes that all obtain right or all down). However, such an
object is allowing strictly fewer behaviors: in the original splitter definition it
is perfectly possible that all processes run concurrently and half of them obtain
right and the other half obtain down, while none obtains stop.
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The splitter task as a sequential object. One can circumvent the impossibil-
ity described above by splitting the single method provided by a splitter into
two (atomic) operations of a sequential object. Figure 3 presents a sequential
specification of a splitter with two operations, set and get, using a standard
pre/post-condition specification style. Each process invoking the splitter, first
invokes set and then get (always in that order). The idea is that the set opera-
tion first records in the state of the object the processes that are participating in
the splitter, so far, and then the get operation nondeterministically produces an
output to a process, considering the rules of the splitter. In Section 3, we formally
prove that this sequential object indeed models the splitter defined above.

Proving Moir&Anderson renaming with splitters as base sequential objects. Us-
ing the sequential specification of a splitter in Figure 3, we can easily obtain
a generic description of the original Moir&Anderson splitter-based algorithm:
each renaming object is replaced with an equivalent sequential version of it, and
every process accessing a renaming object asynchronously invokes first set and
then get, which returns a direction to the process. The resulting algorithm does
not rely on any particular splitter implementation, and uses only atomic objects,
which allows us to obtain a transition system of it. This is the algorithm that
is verified in TLA+ in [22]. The equivalence between the concurrent renaming
specification and the sequential set/get specification imply that the proof in [22]
also proves for the original Moir&Anderson splitter-based algorithm.

3 Dealing with Tasks without Sequential Specification

In this section, we show that the transformation in Section 2 of the splitter task
into a sequential object with two operations, get and set, is not a trick but rather
a general methodology to deal with tasks without a sequential specification. Our
get/set solution proposed here is reminiscent to the request-follow-up transfor-
mation in [25] that allows to transform a partial method of a sequential object
(e.g. a queue with a blocking dequeue method when the queue is empty) into two
total methods: a total request method registering that a process wants to obtain
an output, and a total follow-up method obtaining the output value, or false if
the conditions for obtaining a value are not yet satisfied (the process invokes the
follow-up method until it gets an output). We stress that the request-follow-up
transformation [25] considers only objects with a sequential specification and is
not shown to be general as it is only used for queues and stacks.

Model of computation in detail. We consider a standard concurrent system
with n asynchronous processes, p1, . . . , pn, which may crash at any time dur-
ing an execution of the system, i.e., stopping taking steps (for more detail
see for example [19,36]). Processes communicate with each other by invok-
ing operations on shared, concurrent base objects. A base object can provide
Read/Write operations (also called register), more powerful operations, such as
Test&Set,Fetch&Add,Swap or Compare&Swap, or solve a concurrent distributed
problem, for example, Splitter, Renaming or Set Agreement.
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Each process follows a local state machines A1, . . . , An, where Ai specifies
which operations on base objects pi executes in order to return a response when
it invokes a high-level operation (e.g. push or pop operations). Each of these
base-objects operation invocations is a step. An execution is a possibly infinite
sequence of steps and invocations and responses of high-level operations, with
the following properties:

1. Each process first invokes a high-level operation, and only when it has a
corresponding response, it can invoke another high-level operation, i.e., ex-
ecutions are well-formed.

2. For any invocation inv(〈opType, pi, input〉) of a process pi, the steps of pi
between that invocation and its corresponding response (if there is one),
are steps that are specified by Ai when pi invokes the high-level operation
〈opType, pi, input〉.

A high-level operation in an execution is complete if both its invocation and
response appear in the execution. An operation is pending if only its invocation
appears in the execution. A process is correct in an execution if it takes infinitely
many steps.

Sequential specifications. A central paradigm for specifying distributed problems
is that of a shared object X that processes may access concurrently [19,36], but
the object is defined in terms of a sequential specification, i.e., an automaton
describing the outputs the object produces when it is accessed sequentially. Al-
ternatively, the specification can be described as (possibly infinite) prefix-closed
set, SSpec(X), with all sequential executions allowed by X.

Once we have a sequential specification, there are various ways of defining
what it means for an execution to satisfy an object, namely, that it respects
the sequential specification. Linearizability [20] is the standard notion used to
identify correct executions of implementations of sequential objects. Intuitively,
an execution is linearizable if its operations can be ordered sequentially, without
reordering non-overlapping operations, so that their responses satisfy the speci-
fication of the implemented object. To formalize this notion we define a partial
order on the completed operations of an execution E: op <E op′ if and only
if the response of op precedes the invocation of op′ in E. Two operations are
concurrent if they are incomparable by <E . The execution is sequential if <E is
a total order.

An execution E is linearizable with respect to X if there is a sequential
execution S of X (i.e., S ∈ SSpec(X)) such that: (1) S contains every completed
operation of E and might contain some pending operations. Inputs and outputs
of invocations and responses in S agree with inputs and outputs in E, and (2) for
every two completed operations op and op′ in E, if op <E op′, then op appears
before op′ in S.

Using the linearizability correctness criteria for sequential objects, we can
define the set of valid executions for X, denoted V E(X), as the set containing
every execution E that consists of invocations and responses and is linearizable
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Fig. 4. The Splitter Task for Three Processes.

w.r.t. X. V E(X) contains the behavior one might expect from any building-block
implementation of X, e.g., any algorithm that implements X.

Tasks. A task is the basic distributed equivalent of a function in sequential
computing, defined by a set of inputs to the processes and for each (distributed)
input to the processes, a set of legal (distributed) outputs of the processes,
e.g., [18].

In an algorithm designed to solve a task, each process starts with a private
input value and has to eventually decide irrevocably on an output value. A
process pi is initially not aware of the inputs of other processes. Consider an
execution where only a subset of k ≤ n processes participate; the others crash
without taking any steps. A set of pairs σ = {(id1, x1), . . . , (idk, xk)} is used to
denote the input values, or output values, in the execution, where xi denotes the
value of the process with identity idi, either an input value or an output value. A
set σ as above is called a simplex, and if the values are input values, it is an input
simplex, if they are output values, it is an output simplex. The elements of σ are
called vertices, and any subset of σ is a face of it. An input vertex v = (idi, xi)
represents the initial state of process idi, while an output vertex represents its
decision. The dimension of a simplex σ, denoted dim(σ), is |σ| − 1, and it is full
if it contains n vertices, one for each process. A complex K is a set of simplexes
(i.e. a set of sets) closed under containment. The dimension of K is the largest
dimension of its simplexes, and K is pure of dimension k if each of its simplexes
is a face of a k-dimensional simplex. In distributed computing, the simplexes
(and complexes) are often chromatic: vertices of a simplex are labeled with a
distinct process identities. The set of processes identities in an input or output
simplex σ is denoted ID(σ).
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A task T for n processes is a triple (I,O, ∆) where I and O are pure chro-
matic (n − 1)-dimensional complexes, and ∆ maps each simplex σ from I to a
subcomplex ∆(σ) of O, satisfying: (1) ∆(σ) is pure of dimension dim(σ), (2) for
every τ in ∆(σ) of dimension dim(σ), ID(τ) = ID(σ), and (3) if σ, σ′ are two
simplexes in I with σ′ ⊂ σ then ∆(σ′) ⊂ ∆(σ). A task is a very compact way of
specifying a distributed problem, and indeed typically it is hard to understand
what exactly is the problem being specified. Intuitively, ∆ specifies, for every
simplex σ ∈ I, the valid outputs ∆(σ) for the processes in ID(σ) assuming they
run to completion, and the other processes crash initially, and do not take any
steps.

As an example consider the splitter task [31]. Figure 4 shows a graphic de-
scription of the splitter task for three processes with IDs 1, 2 and 3. The input
complex, shown at the left, consists of a triangle and all its faces. The output
complex, at the right, contains all possible valid output simplexes (the triangle
with all right outputs is not in the complex). The ∆ function maps the input
vertex with ID 1 to the output vertex (1, stop), the input edge with IDs 1 and 2
to the complex with the bold edges in the output complex, and the input triangle
is mapped to the whole output complex. The rest of ∆ is defined symmetrically.

Let E be an execution where each process invokes a task 〈I,O, ∆〉 once.
Then, σE is the input simplex defined as follows: (idi, xi) is in σE iff in E there
is an invocation of task(xi) by process idi. The output simplex τE is defined
similarly: (idi, yi) is in τE iff there is a response yi to a process idi in E. We say
that E satisfies (I,O, ∆) if for every prefix E′ of E, it holds that τE′ ∈ ∆(σE′).

Using the satisfiability notion of tasks we can now consider the set of valid
executions, V E(T ), for a given task T = (I,O, ∆): the set containing every
execution E that has only invocations and responses and satisfies T . Arguably,
the set V E(T ) contains the behavior one might expect from a building-block (e.g.
an algorithm) that implements T .

Modeling tasks as sequential objects. Intuitively, tasks and sequential specifi-
cations are inherently different paradigms for specifying distributed problems:
while a task specifies what a set of processes might output when running con-
currently, a sequential specification specifies the behavior of a concurrent object
when accessed sequentially (and linearizability tells when a concurrent execution
“behaves” like a sequential execution of the object). A natural question is if any
task can be modeled as a sequential object with a single operation, namely, the
object defines the same set of valid executions. A well-known example for which
this is possible is the consensus distributed coordination problem that can be
equivalently defined as a task or as a sequential object (see for example [19]
where it is defined as an object4 and [18] where it is defined as a task).

Lemma 1. Consider the splitter task Tspl = (Ispl,Ospl, ∆spl). There is no se-
quential object Xspl with a single operation satisfying V E(Tspl) = V E(Xspl).

4 Sometimes, for clarity or efficiency, the object is defined with two operations (in the
style of the Theorem 1); however,
consensus can be equivalently defined with one operation.
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State: a pair (σ, τ) of input/output simplexes, initialized to (∅, ∅)

Function set(idi, xi)
Pre-condition: idi ∈ ID ∧ idi /∈ ID(σ)
Post-condition: σ′ ← σ ∪ {(idi, xi)}
Output: void

endFunction

Function get(idi)
Pre-condition: idi ∈ ID ∧ idi /∈ ID(τ)
Post-condition: Let yi be any output value such that τ ∪ {(idi, yi)} ∈ ∆(σ).

Then, τ ′ ← τ ∪ {(idi, yi)}
Output: yi

endFunction

Fig. 5. A Generic Sequential Specification of a Task T = (I,O,∆).

In a very similar way, one can prove that the following known tasks cannot be
specified as sequential objects with a single operation: exchanger [17,37], adaptive
renaming [4], set agreement [10], immediate snapshot [5], adopt-commit [6,13]
and conflict detection [3].5

To circumvent the impossibility result in Lemma 1, we model any given task
T through a sequential object S with two operations, set and get, that each
process access in a specific way: it first invokes set with its input to the task T
(receiving no output) and later invokes get in order to get an output value from
T . Intuitively, decoupling the single operation of T into two (atomic) operations
allows us to model concurrent behaviors that a single (atomic) operation cannot
specify. In what follows, let SSpec(S) be the set with all sequential executions
of S in which each process invokes at most two operations, first set and then get,
in that order.

Theorem 1. For every task T = (I,O, ∆) there is a sequential object S with
two operations, set(idi, xi) and get(idi) : yi, such that there is a bijection α
between V E(T ) and SSpec(S) satisfying that: (1) each invocation or response
of process idi is mapped to an operation of process idi, and (2) each invocation
inv (response resp) with input (output) x is mapped to a completed set (get)
operation with input (output) x.

An implication of Theorem 1 is that if one is analyzing an algorithm that
uses a building-block (subroutine, algorithm, etc.) B that solves a task T , one
can safely replace B with the sequential object S related to T described in the
theorem (each invocation to the operation of B is replaced with an (atomic)
invocation to set and then an (atomic) invocation to get), and then analyze

5 There are non-deterministic sequential specifications of these tasks with unavoidable
and pathological executions in which some operations guess the inputs of future
operations. See [9, Section 2] for a detailed discussion.
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the algorithm considering the atomic operations of S. The advantage of this
transformation is that (1) if all operations in an algorithm are atomic, we can
think that each process takes a step at a time in an execution, hence obtaining a
a transition system with atomic events, (2) at all times we have a concrete state
of S in an execution (which is not clear in a task specification) and (3) given
a state of S, an output for a get operation can be easily computed using the
sequential object S (something that is typically complicated for B as it might
be accessed concurrently).

The construction used (for simplicity) in the proof of Theorem 1 (in the full
version of the paper) might be too coarse to be helpful for analyzing an algo-
rithm. We would like to have a construction producing an equivalent sequential
automaton modeling the task in a simpler way. Consider the simple sequential
object in Figure 5 obtained from any given task T = (I,O, ∆), which is de-
scribed in a classic pre/post-condition form. Intuitively, the meaning of a state
(σ, τ) is the following: σ contains the processes that have invoked the task so far
(this represents the participating set of the current execution) while τ contains
the outputs that have been produced so far. The main invariant of the spec-
ification is that τ ∈ ∆(σ). It directly follows from the properties of the task:
when a process invokes set(idi, xi), we have that τ ∈ ∆(σ ∪ {(idi, xi)}) because
∆(σ) ⊂ ∆(σ ∪ {(idi, xi)}), and when a process invokes get(idi), it holds that
τ ∪ {(idi, yi)} ∈ ∆(σ) because ∆(σ) is a pure complex of dimension dim(σ) and
thus there must exist a simplex in ∆(σ) (properly) containing τ and with an
output for idi. One can formally prove that this sequential object and the one
in the proof Theorem 1 define the same set of sequential executions.

Finally, one can obtain ad-hoc and equivalent specifications for specific tasks,
like the one for splitters in Figure 3 in Section 2.

4 Related Work

Linearizability criteria. Neiger observed for the first time that some fundamen-
tal tasks, like set agreement [10] and immediate snapshot [5], cannot be modeled
as sequential objects [34] (with a single operation). Motivated by the need of
a unified framework for tasks and objects, he proposed set-linearizability [34].
Roughly speaking, a set sequential object is generalization of a sequential object
in which transitions between states involve more than one operation (formally,
a set of operations), meaning that these operations are allowed to occur concur-
rently, and their results can be concurrency-dependent. Set linearizability is the
consistency condition for set-sequential objects, where one needs to find lineariz-
ability points (same as in linearizability) and several operations can be linearized
at the same point (different from linearizability).

Later on, it was again observed that for some concurrent objects it is impos-
sible to provide a sequential specification, and concurrency-aware linearizability
was defined [16]. Set linearizability and concurrency-aware linearizability are
very closely related, both based on the same principle: sets of operations can
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occur concurrently. Also, a non-automatic verification technique for reasoning
about concurrency-aware objects is presented in [16].

Recently it was observed in [9] that some natural tasks specify concurrency
dependencies that are beyond the set-linearizability and concurrency-aware for-
malisms, hence that paper proposed interval linearizability. In an interval-sequen-
tial object not only sets of operations can occur concurrently but some of these
operations might be pending and then overlap operations in the next transition;
thus each operation corresponds to an interval instead of a single point. Interval
linearizability is the related consistency condition in which, for each operation,
one needs to find an interval in which the operation happens. It is shown in [9]
that interval-linearizability is complete for tasks in the sense that it is possible
to specify any task as an interval-sequential object (with a single operation).

Although interval-sequential specifications can model any task, this approach
does not seem to be useful when one is searching for machine-checked proofs of
concurrent algorithms. The main reason is that by replacing a task with its
equivalent interval-sequential object, we obtain a transition system in which one
still needs to think in concurrent behaviors, which is usually hard to deal with. In
contrast, our proposed get-set transformation allows to “decouple” the inherent
concurrency in tasks in a way that in the resulting transition system all events
are atomic, namely, they happen one after the other.

Mechanized Verification of Distributed Algorithms. Mechanized (or machine-
assisted) verification of distributed and concurrent algorithms is usually done
with model checking or theorem proving or a combination of both. Enumerative
model-checking is the oldest fully automatic method with tools like Spin [21]
or TLC, the TLA+ model checker [27]. To avoid the well-known problem of
state explosion, various optimisations such as symmetry or reduction have been
introduced, and recent work is on going on parameterized model checking, for
instance with MCMT (Model Checking Modulo Theory) [14], Cubicle [11] or
ByMC [26]. Nevertheless, automatic verification of a distributed/concurrent al-
gorithm is still restricted to small finite instances of the algorithm or imposes
significant constraints on its description, due to the limited expressiveness of the
specification language.

Fully automatic theorem proving is based on a proof decision procedure. For
useful logics, it is often semi-decidable at best and heavily depends on heuristics
to achieve good performance. Recent work on SMT has made a substantial leap
forward checking complex formulae combining first-order reasoning with deci-
sion procedures for theory such as arithmetic, equality, arrays. Nonetheless, the
overall proof of a distributed algorithm is still largely manual and, when seeking
confidence in this proof, an interactive proof assistant is the current approach.
Several examples of verification of complex distributed algorithms exist: Chord
with Alloy [40], Pastry with TLA+ [30,29], Paxos also with TLA+ [28], snapshot
algorithms in Event-B [2], just to cite a few.

Several wait-free implementations of tasks have been mechanically proven
(e.g. [35,39,12]). However, to the best of our knowledge, no non-trivial algorithm
built upon concurrent tasks have been mechanically proved. Our intuition for
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this situation is that proofs cannot be made modular and compositional when
using bricks which are inherently concurrent if their internal structure must
be visible to take into account this concurrency. Several complex and original
algorithms can be found in the literature such as Moir and Anderson renaming
algorithm [32] that we have considered in this paper, stacks implemented with
elimination trees [37], lock-free queues with elimination [33]. In these papers,
the correctness proofs are intricate as they must consider the algorithm as a
whole, including the tricky part involving wait-free objects, and they have not
been mechanically checked. Our approach which exposes a more simple and
sequential specification (instead of a complex concurrent implementation) seeks
to alleviate this limitation.

5 Final Remarks and Future Work

In this paper, we showed a technique to circumvent the known impossibility of
specifying a task as a sequential object. Our technique consists in modeling the
single operation of the task with two atomic operations, set and get. This trans-
formation leads to a framework for developing transitional models of concurrent
algorithms using tasks and sequential objects as building blocks. As a proof of
concept, we developed in a companion paper [22] a full and modular TLA+ proof
of the Moir&Anderson renaming algorithm [31].

A natural extension of our work is to apply the framework to other concur-
rent algorithms. Another direction is to extend our techniques to the case of
refined tasks and interval-sequential objects, recently defined in [9]. These two
formalisms are generalization of the task and sequential object formalism with
strictly more expressiveness; particularly, contrary to the task formalism, re-
fined task are multi-shot, namely, each process may perform several invocations,
possibly infinitely many.

A third direction is to study if the duality between the epistemic logic ap-
proach and the topological approach shown in [15] might be useful in verifying
concurrent algorithms. Generally speaking, it is shown in [15] that a task can be
represented as a Kripke model with an action model, specifying the knowledge
obtained by processes when solving the task. It could be interesting to explore
how this knowledge could be reflected in our set/get construction and if it could
be useful in proving correctness.
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A Proofs and Extra Material of Section 3

A.1 Model of Computation

We consider a standard concurrent system with n asynchronous processes, p1, . . . , pn,
which may crash at any time during an execution of the system, i.e., stopping
taking steps (for more detail see for example [19,36]). Processes communicate
with each other by invoking operations on shared, concurrent base objects. A
base object can provide Read/Write operations (also called register), more power-
ful operations, such as Test&Set,Fetch&Add,Swap or Compare&Swap, or solve a
concurrent distributed problem, for example, Splitter, Renaming or Set Agreement.

Each process follows a local state machines A1, . . . , An, where Ai specifies
which operations on base objects pi executes in order to return a response when
it invokes a high-level operation (e.g. push or pop operations). Each of these
base-objects operation invocations is a step. An execution is a possibly infinite
sequence of steps and invocations and responses of high-level operations, with
the following properties:

1. Each process first invokes a high-level operation, and only when it has a
corresponding response, it can invoke another high-level operation, i.e., ex-
ecutions are well-formed.

2. For any invocation inv(〈opType, pi, input〉) of a process pi, the steps of pi
between that invocation and its corresponding response (if there is one),
are steps that are specified by Ai when pi invokes the high-level operation
〈opType, pi, input〉.

A high-level operation in an execution is complete if both its invocation and
response appear in the execution. An operation is pending if only its invocation
appears in the execution. A process is correct in an execution if it takes infinitely
many steps.

A.2 Sequential Specifications

A central paradigm for specifying distributed problems is that of a shared object
that processes may access concurrently [19,36], but the object is defined in terms
of a sequential specification, i.e., an automaton describing the outputs the object
produces when it is accessed sequentially.

A sequential object X is specified by a (not necessarily finite and possibly
non-deterministic) Mealy state machine (Q, Inv,Res, δ), where Inv is the set
with all possible invocations to the object and Res is the set with all possible
responses from the object. The responses are determined both by its current
state s ∈ Q and the current input in ∈ Inv. If X is in state q and it receives as
input an invocation in ∈ Inv by process p, then, if (q′, r) ∈ δ(q, in), the meaning
is that X may return the response r to the invocation in by process p, and move
to state q′. Notice that there may be several possible responses (if the object is
non-deterministic), however, it is convenient to assume that the next state q′ is
uniquely determined by the response r, namely, if (q′, r), (q′′, r) ∈ δ(q, in), then
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we have q′ = q′′. Also, it is convenient to require that the object X is total,
meaning that for any state q, δ(q, in) 6= ∅, for all in ∈ Inv.

For any sequence of invocations in0, . . . , inm, a sequential execution of X
starting in q0 is

q0, in0, r0, q1, in1, r1, . . . , qm, inm, rm

where q0 is an initial state of X, and (qi+1, ini+1) ∈ δ(qi, ini). However, given
that we require that the object’s response at a state uniquely determines the
new state, we may denote the execution by

in0, r0, in1, r1, . . . , inm, rm,

because the sequence of states q1, . . . , qm is uniquely determined by q0, and by
the sequences of invocations and responses. Without loss of generality we only
consider sequential automata with a single initial state for each object.

The sequential specification of an object X, SSpec(X), is the set of all its
sequential executions. Notice that SSpec(X) is prefix-closed : if an execution is
in SSpec(X), so is the execution obtained by removing the last invocation and
its response.

Figure 6 presents a sequential specification of the well-known Test&Set ob-
ject, which has been used in a large number of concurrent algorithms (see for
example [19,36]); the specification is presented in the usual pre/post-condition
specification style. Intuitively, the object is initialized to 0 and the first invoca-
tion obtains 0 (the winner) and the rest obtain 1 (the losers).

State: Integer X initialized to 0

Function Test&Set()
Pre-condition: none
Post-condition:

temp← X
X ′ ← 1

Output:
temp

endFunction

Fig. 6. Sequential Specification of Test&Set.

Once we have a sequential specification, there are various ways of defining
what it means for an execution to satisfy an object, namely, that it respects
the sequential specification. Linearizability [20] is the standard notion used to
identify correct executions of implementations of sequential objects. Intuitively,
an execution is linearizable if its operations can be ordered sequentially, with-
out reordering non-overlapping operations, so that their responses satisfy the
specification of the implemented object. To formalize this notion we define a
partial order on the completed operations of an execution E: op <E op′ if and
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only if res(op) precedes inv(op′) in E. Two operations are concurrent if they
are incomparable by <E . The execution is sequential if <E is a total order.

Definition 1. An execution E is linearizable with respect to X if there is a
sequential execution S of X (i.e., S ∈ SSpec(X)) such that

1. S contains every completed operation of E and might contain some pending
operations. Inputs and outputs of invocations and responses in S agree with
inputs and outputs in E.

2. For every two completed operations op and op′ in E, if op <E op′, then op
appears before op′ in S.

Using the linearizability correctness criteria for sequential objects we can
define the set of valid executions for X, denoted V E(X). Arguably, the set
V E(X) contains the behavior one might expect from a building-block (e.g. an
algorithm) that implements X (i.e. all its executions are linearizable w.r.t. X).

V E(X) =
{
E|E has only invocations and responses and is linearizable w.r.t. X

}
A.3 Tasks

Definition of a Task A task is the basic distributed equivalent of a function
in sequential computing, defined by a set of inputs to the processes and for each
(distributed) input to the processes, a set of legal (distributed) outputs of the
processes, e.g., [18]. In an algorithm designed to solve a task, each process starts
with a private input value and has to eventually decide irrevocably on an output
value. A process pi is initially not aware of the inputs of other processes. Consider
an execution where only a subset of k ≤ n processes participate; the others crash
without taking any steps. A set of pairs σ = {(id1, x1), . . . , (idk, xk)} is used to
denote the input values, or output values, in the execution, where xi denotes the
value of the process with identity idi, either an input value or an output value.

A set σ as above is called a simplex, and if the values are input values, it is
an input simplex, if they are output values, it is an output simplex. The elements
of σ are called vertices. An input vertex v = (idi, xi) represents the initial state
of process idi, while an output vertex represents its decision. The dimension of
a simplex σ, denoted dim(σ), is |σ| − 1, and it is full if it contains n vertices,
one for each process. A subset of a simplex, which is a simplex as well, is called
a face. Since any number of processes may crash, simplexes of all dimensions
are of interest, for taking into account executions where only processes in the
simplex participate. Therefore, the set of possible input simplexes forms a com-
plex because its sets are closed under containment. Similarly, the set of possible
output simplexes also form a complex.

More generally, a complex K is made of a set of vertices V (K), and a set of
simplexes (i.e. a set of sets), each simplex being a finite, nonempty subsets of
V (K), satisfying: (1) if v ∈ V (K) then {v} is a simplex of K, and (2) if σ is
a simplex of K, so is every nonempty subset of σ. The dimension of K is the
largest dimension of its simplexes, and K is pure of dimension k if each of its
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simplexes is a face of a k-dimensional simplex. In distributed computing, the
simplexes (and complexes) are often chromatic, since each vertex v of a simplex
is labeled with a distinct process identity. The set of processes identities in an
input or output simplex σ is denoted ID(σ).

Definition 2 (Task). A task T for n processes is a triple (I,O, ∆) where I and
O are pure chromatic (n− 1)-dimensional complexes, and ∆ maps each simplex
σ from I to a subcomplex ∆(σ) of O, satisfying:

1. ∆(σ) is pure of dimension dim(σ),
2. For every τ in ∆(σ) of dimension dim(σ), ID(τ) = ID(σ),
3. If σ, σ′ are two simplexes in I with σ′ ⊂ σ then ∆(σ′) ⊂ ∆(σ).

A task has only one operation, let us call it task(), which process idi may call
with value xi only if (idi, xi) is a vertex of I. The operation task(xi) may return
yi to the process only if (idi, yi) is a vertex of O. A task is a very compact way of
specifying a distributed problem, and indeed typically it is hard to understand
what exactly is the problem being specified. Intuitively, ∆ specifies, for every
simplex σ ∈ I, the valid outputs ∆(σ) for the processes in ID(σ) assuming they
run to completion, and the other processes crash initially, and do not take any
steps.

As with other frameworks for specifying concurrent objects (e.g. linearizabil-
ity for sequential specifications), tasks have their own correctness criteria that
defines the executions satisfying a given task. Let E be an execution where each
process invokes a task 〈I,O, ∆〉 once. Then, σE is the input simplex defined as
follows: (idi, xi) is in σE iff in E there is an invocation of task(xi) by process
idi. The output simplex τE is defined similarly: (idi, yi) is in τE iff there is a
response yi to a process idi in E. We say that E satisfies (I,O, ∆) if for every
prefix E′ of E, it holds that τE′ ∈ ∆(σE′). Note that it might be the case that
dim(τE′) ≤ dim(σE′).

The prefix requirement prevents executions that globally seem correct, but
in a prefix a process predicts future invocations. This requirement has been
implicitly considered in the past by stating that an algorithm solves a task if
any of its executions agree with the task specification.

Using the satisfiability notion of tasks we can now consider the set of valid
executions, V E(T ), for a given task T = (I,O, ∆). Arguably, the set V E(T )
contains the behavior one might expect from a building-block (e.g. an algorithm)
that implements T .

V E(T ) =
{
E|E has only invocations and responses and satisfies T

}
The Splitter Task As an example consider the splitter task [31] defined infor-
mally as follows. Each process invokes splitter with its ID as input and outputs
stop, down or right. For every 0 < k ≤ n, it is required that if k processes invoke
the splitter (note necessarily concurrently), at most one process outputs stop, at
most k − 1 output down and at most k − 1 output right. Formally, the splitter
task Tspl = (Ispl,Ospl, ∆spl) is defined as:
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Fig. 7. (repeated) The Splitter Task for Three Processes.

1. The vertices of the input complex Ispl are all pairs of the form (idi, idi), for
every ID process idi.

2. Ispl is the complex made of the (n−1)-dimensional simplex {(id1, id1), . . . , (idn, idn)}
(and all its faces), with all distinct ID processes id1, . . . , idn.

3. The vertices of the output complex Ospl are all pairs of the form (idi, stop),
(idi, down) and (idi, right) for every ID process idi.

4. Given a simplex τ = {(id1, y1), . . . , (idm, ym)} with vertices in Ospl and an
integer k, let SP (τ, k) be the splitter predicate that holds only if

(a) all idis are distinct,

(b) |Stop| ≤ 1, |Down| ≤ k− 1 and |Right| ≤ k− 1, where Stop = {idi|yi =
stop}, Down = {idi|yi = down} and Right = {idi|yi = right}.

5. Ospl contains every (n − 1)-dimensional simplex τ (and all its faces), such
that SP (τ, n) holds.

6. For every (k−1)-dimensional input simplex σ, ∆spl(σ) contains every (k−1)-
dimensional output simplex τ (and all its faces) such that ID(τ) = ID(σ)
and SP (τ, k) holds.

Figure 7 shows a graphic description of the splitter task for three processes
with IDs 1, 2 and 3. The input complex, shown at the left, consists of a triangle
and all its faces. The output complex, at the right, contains all possible valid
output simplexes (the triangle with all right outputs is not in the complex). The
∆ function maps the input vertex with ID 1 to the output vertex (1, stop), the
input edge with IDs 1 and 2 to the complex with the bold edges in the output
complex and the input triangle is mapped to the whole output complex. The
rest of ∆ is defined symmetrically.

The Exchanger Task A second interesting example is the Java exchanger
object which is informally defined as follows in the Java documentation:
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A synchronization point at which threads can pair and swap elements
within pairs. Each thread presents some object on entry to the exchange
method, matches with a partner thread, and receives its partner’s object
on return.

Clearly the object is informally specified in terms of concurrent executions,
very much in the style of the task formalism. Exchanger objects have been used
in [17] to implement a concurrent stack, and the lack of a sequential specification
of exchangers makes the proof in that paper intricate. Exchanger objects have
also been used in a number of concurrent implementations (e.g. [24,37]).

Exchangers have been used in [17] to implement a concurrent stack, and the
lack of a sequential specification of exchangers makes the proof in that paper
intricate. They have also been used in a number of concurrent implementations,
e.g. [24,37]. More precisely, in [37], Shavit and Touitou present the implementa-
tion of pools and stacks with elimination trees, a form of diffracting trees [38]
which achieves high efficiency at high contention levels. A simplified version of
their algorithm is the following. There are two kinds of opposite requests: en-
queue and dequeue for a stack. The structure is constructed from elimination
balancers that are connected to one another to form a balanced binary tree.
Each leaf of the tree holds a standard concurrent stack implementation (e.g.
with locks). Each internal node of the tree holds a prism and an exchanger. The
prism has an internal state (0 or 1) and two outputs labelled 0 and 1. It routes a
request according to this state: an enqueue request goes on the output labelled
as the internal state, a dequeue request goes on the output labelled as the inverse
of the internal state. The internal state is flipped after each request. This allows
the requests to spread on the tree while ensuring that a dequeue follows the same
path as the most recent enqueue. To speed things up and to avoid contention of
the internal state, two mechanisms are added. First, two concurrent requests of
the same kind are directly routed on both output without changing the internal
state. Secondly, an exchanger is used to pair opposite requests: when both an
enqueue and a dequeue are present, they are matched, they swap their values
and they directly exit the tree without being further propagated (observe that
this version of the exchanger is slightly different than the one above as processes
exchange opposite requests). The actual implementation uses an array of prisms
to avoid the bottleneck of the root and first-levels balancers, however this does
not change the overall specification of the algorithm.

Although there is no sequential specification of exchanger in the literature
(a proof such as the one for lemma 1 shows that there does not exist such a
specification), one can succinctly define it as a task. Intuitively, in order processes
exchange values, an exchanger matches pairs of processes, with the possibility
that some processes are unmatched (marked as matched with a default value
denoted ⊥). The exchanger task Texc = (Iexc,Oexc, ∆exc) is defined as follows.

1. The vertices of the input complex Iexc are all pairs of the form (idi, idi), for
every ID process idi.

2. Iexc is the complex made of the n-dimensional simplex {(id1, id1), . . . , (idn, idn)}
(and all its faces), with all distinct ID processes id1, . . . , idn.
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Fig. 8. The Exchanger Task for Three Processes.

3. The vertices of the output complex Oexc are all pairs (idi, idj) and (idi,⊥),
where idi and idj are distinct process IDs.

4. Given a simplex τ = {(id1, y1), . . . , (idm, ym)} with vertices in Oexc, let
EX(τ) be the exchanger predicate that holds only if
(a) all idi’s are distinct,
(b) idi is matched with a different process or not matched at all: yi ∈
{id1, . . . , îdi, . . . , idm,⊥}, where circumflex (̂) denotes omission,

(c) idi is matched with at most one process, namely, it appears in a second
entry at most once,

(d) matches are consistent, i.e., if yi = idj then yj = idi.
5. Oexc contains every n-dimensional simplex τ = {(id1, y1), . . . , (idn, yn)} (and

all its faces) such that EX(τ) holds.
6. For every (k−1)-dimensional input simplex σ, ∆exc(σ) contains every (k−1)-

dimensional output simplex τ (and all its faces) such that ID(τ) = ID(σ)
and EX(τ) holds.

The exchanger task for three processes with IDs 1, 2 and 3 is depicted in
Figure 8. ∆ maps the input vertex i to (i,⊥) and the edge with IDs i and j to
the complex with edges {(i,⊥), (j,⊥)} and {(i, j), (j, i)}, and the input triangle
is mapped to the whole output complex.

A.4 Modeling Tasks as Sequential Objects

Intuitively, tasks and sequential specifications are inherently different paradigms
for specifying distributed problems: while a task specifies what a set of processes
might output when running concurrently, a sequential specification specifies the
behavior of a concurrent object when accessed sequential (and linearizability
tells when a concurrent execution “behaves” like a sequential execution of the
object).

A natural question is if any task can be modeled as a sequential object with
a single operation, namely, the object defines the same set of valid executions.
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Fig. 9. The one-shot Test&Set Object for Three Processes Modeled as Task.

A well-known example for which this is possible is the consensus distributed co-
ordination problem that can be equivalently defined as a task or as a sequential
object (see for example [19] where it is defined as an object6 and [18] where it
is defined as a task). Another interesting example is the Test&Set atomic oper-
ation that is typically specified through a sequential object, however it can also
be specified as a task. Figure 9 depicts the Test&Set task for three processes (the
specification in Figure 6 is not one-shot but it can be easily made one-shot by
adding that restriction in the pre-condition). In general, this is not the case, as
the following result shows.

Lemma 1 (repeated). Consider the splitter task Tspl = (Ispl,Ospl, ∆spl). There
is no sequential object Xspl with a single operation satisfying:

V E(Tspl) = V E(Xspl).

Proof. Suppose by contradiction that there is such an object Xspl and consider
the following fully concurrent execution for three processes:

E = inv(p1, p1); inv(p2, p2); inv(p3, p3); resp(p1) : down; resp(p2) : down; resp(p3) : right.

For a prefix E′ of E, one can verify that τE′ ∈ ∆spl(σE′); for example, σE =
{(p1, p1), (p2, p2), (p3, p3)}, τE = {(p1, down), (p2, down), (p3, right)} and τE ∈
∆spl(σE). Then, E satisfies Tspl, from which follows that E ∈ V E(Tspl).

Now, our assumption implies that E ∈ V E(Xspl), thus E is linearizable with
respect to Xspl. Without loss of generality suppose that there is a linearization S
of E in which inv(p1, p1); resp(p1) : down is the first linearized operation. Thus,
S is a sequential execution of Xspl, namely, S ∈ SSpec(Xspl). Since SSpec(Xspl)
is prefix-closed and F = inv(p1, p1); resp(p1) : down is a prefix of S, we have
that F ∈ SSpec(Xspl). This is a contradiction because F is indeed an execution

6 Sometimes the object is defined with two operations (in the style of the Theorem 1),
however, consensus can be equivalently defined with one operation.
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which is linearizable with respect to Xspl (F is a linearization of itself), hence
F ∈ V E(Xspl), but F does not satisfy Tspl (clearly τF /∈ ∆spl(σF )), and thus
F /∈ V E(Tspl), which is a contradiction.

In a very similar way one can prove that the exchanger task defined above
and the following known tasks cannot be specified as sequential objects with a
single operation:

1. Adaptive renaming [4]. Processes start with distinct inputs names taken
from the space [1, . . . , N ] and decide distinct outputs names from the space
[1, . . . ,M ], with N >> M . It is required that if k ≤ n processes run
concurrently, the output names belong to [1, . . . , f(k)], for some function
f : 1, . . . , n → {1, . . . , N}, i.e., the output space is on function on the num-
ber of participating processes.

2. Set agreement [10]. It is a generalization of the well-known consensus where
processes propose values and have to agree on at most k proposals.

3. Immediate snapshot [5]. It is a task which plays an important role in dis-
tributed computability [18]. A process can write a value to the shared mem-
ory using this operation, and gets back a snapshot of the shared memory,
such that the snapshot occurs immediately after the write.

4. Adopt-commit [6,13] is a concurrent object which proved to be is useful
to simulate round-based protocols for set-agreement and consensus. Given
an input u to the object, the result is an output of the form (commit, v)
or (adopt, v), where commit/adopt is a decision that indicates whether the
process should decide value v immediately or adopt it as its preferred value
in later rounds of the protocol.

5. Conflict detection [3] is a task that has been shown to be equivalent to
the adopt-commit. Roughly, if at least two different values are proposed
concurrently at least one process outputs true.

To circumvent the impossibility result in the previous lemma, we model any
given task T through a sequential object S with two operations, set and get,
that each process access in a specific way: it first invokes set with its input to
the task T (receiving no output) and later invokes get in order to get an output
value from T . Intuitively, decoupling the single operation of T into two (atomic)
operations allows us to model concurrent behaviors that a single (atomic) oper-
ation cannot specify. In what follows, let SSpec(S) be the set with all sequential
executions of S in which each process invokes at most two operations, first set
and then get, in that order.

Theorem 1 (repeated). For every task T = (I,O, ∆) there is a sequential
object S with two operations, set(idi, xi) and get(idi) : yi, such that there is a
bijection α between V E(T ) and SSpec(S) satisfying that

1. each invocation or response of process idi is mapped to an operation of
process idi,
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2. each invocation inv (response resp) with input (output) x is mapped to a
completed set (get) operation with input (output) x.

Proof. We define S as follows. The sets of invocation and responses, Inv and
Res, of S contain inv(set, idi, xi) and res(set, idi, xi) : void, respectively, for each
input vertex (idi, xi) ∈ I. Similarly, for each output vertex (idi, yi) ∈ O, Inv
and Res contain inv(get, idi) and res(get, idi) : yi.

For every execution E ∈ V E(T ), S has a state sE and the initial state of S
is sξ, where ξ denotes the empty string. We define the transition function δ of
S inductively as:

1. For every execution E ∈ V E(T ) consisting of only one invocation inv(idi, xi)
(i.e. E = inv(idi, xi)), we define

δ(sξ, inv(set, idi, xi)) = {(sE , res(set, idi, xi) : void)}.

2. For every execution E ∈ V E(T ) with the form E = E′·e, for some non-empty
E′ prefix, δ is defined as:

(a) If e = inv(idi, xi), then

δ(sE′ , inv(set, idi, xi)) = {(sE′·e, res(set, idi, xi) : void)}.

(b) If e = res(idi) : yi, then

δ(sE′ , inv(get, idi)) = {(sE′·e, res(get, idi) : yi)}.

Observe that S is a deterministic automaton whose sequential executions are
precisely the executions in V E(T ) (one can think that S is an automaton that
recognizes the language V E(T )). Moreover, each invocation (idi, xi) in an exe-
cution in V E(T ) induces a transition in S with an invocation to set(idi, xi) and,
similarly, each response (idi, yi) in an execution in V E(T ) induces a transition
in S with an invocation to get(idi) whose response value is yi. Thus, the desired
bijection α in V E(T )→ SSeq(S) is precisely obtained from the definition of S.

An implication of Theorem 1 is that if one is analyzing an algorithm that
uses a building-block (subroutine, algorithm, etc.) B that solves a task T , one
can safely replace B with the sequential object S related to T described in
the theorem (each invocation to the operation B is replaced with an (atomic)
invocation to set and then an (atomic) invocation to get), and then analyze
the algorithm considering the atomic operations of S. The advantage of this
transformation is that (1) if all operations in an algorithm are atomic, we can
think that each process takes a step at a time in an execution, hence obtaining
a transition system with atomic events, (2) at all times we have a concrete state
of S in an execution (which is not clear in a task specification) and (3) given
a state of S, an output for a get operation can be easily computed using the
sequential object S (something that is typically complicated for B as it might
be accessed concurrently). In light of this, the construction used (for simplicity)
in the proof of Theorem 1 might be too coarse to be helpful for analyzing an
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State: a pair (σ, τ) of input/output simplexes, initialized to (∅, ∅)

Function set(idi, xi)
Pre-condition:

idi ∈ ID ∧ idi /∈ ID(σ)
Post-condition:

σ′ ← σ ∪ {(idi, xi)}
Output:

void
endFunction

Function get(idi)
Pre-condition:

idi ∈ ID ∧ idi /∈ ID(τ)
Post-condition:

Let yi be any output value such that τ ∪ {(idi, yi)} ∈ ∆(σ)
τ ′ ← τ ∪ {(idi, yi)}

Output:
yi

endFunction

Fig. 10. (repeated) A Generic Sequential Specification of a Task T = (I,O,∆).

algorithm. Thus, we would like to have a construction producing an equivalent
sequential automaton modeling the task in a simpler way.

Consider the sequential object in Figure 5 obtained from any given task T =
(I,O, ∆), which is described in a classic pre/post-condition form. Intuitively,
the meaning of a state (σ, τ) is the following: σ contains the processes that
have invoked the task so far (this represents the participating set of the current
execution) while τ contains the outputs that have been produced so far. The
main invariant of the specification is that τ ∈ ∆(σ). It directly follows from
the properties of the task: when a process invokes set(idi, xi), we have that τ ∈
∆(σ∪{(idi, xi)}) because ∆(σ) ⊂ ∆(σ∪{(idi, xi)}), and when a process invokes
get(idi), it holds that τ ∪ {(idi, yi)} ∈ ∆(σ) because ∆(σ) is pure of dimension
dim(σ) and thus there must exist a simplex in ∆(σ) (properly) containing τ and
with an output for idi. One can formally prove that this sequential object and
the one in the proof Theorem 1 define the same set of sequential executions.

The formal definition of the sequential object in Figure 5 is the following.

1. For every σ ∈ I, and for every τ ∈ O, q(σ,τ) is a state in Q. The initial state
is q(∅,∅).

2. For every input vertex (idi, xi) ∈ I, inv(set, idi, xi) ∈ Inv and res(set, idi, xi) :
void ∈ Res.

3. For each output vertex (idi, yi) ∈ O, inv(get, idi) ∈ Inv and res(get, idi) :
yi ∈ Res.

4. For every state q(σ,τ),
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State: Sets Participants, Stop,Down,Right, all initialized to ∅

Function set(id)
Pre-condition:

id /∈ Participants
Post-condition:

Participants′ ← Participants ∪ {id}
Output:

void
endFunction

Function get(id)
Pre-condition:

id ∈ Participants ∧ id /∈ Stop,Down,Right
Post-condition:

D ← ∅
if |Stop| = 0 then D ← D ∪ {stop}
if |Down| < |Participants| − 1 then D ← D ∪ {down}
if |Right| < |Participants| − 1 then D ← D ∪ {right}
Let dec be any value in D
if dec = stop then Stop← Stop ∪ {id}
if dec = down then Down← Down ∪ {id}
if dec = right then Right← Right ∪ {id}

Output:
dec

endFunction

Fig. 11. (repeated) An ad hoc Specification of the Splitter Task.

(a) for every (idi, xi) such that idi /∈ ID(σ) and σ ∪ {(idi, xi)} ∈ I,

δ(q(σ,τ), inv(set, idi, xi)) = {(q(σ∪{(idi,xi)},τ), res(set, idi, xi) : void)},

(b) for every (idi, yi) such that idi ∈ ID(σ), idi /∈ ID(τ) and τ ∪{(idi, yi)} ∈
∆(σ),

δ(q(σ,τ), inv(get, idi)) contains the transition (q(σ,τ∪{(idi,yi)}), res(get, idi) : yi).

Finally, one can obtain simpler and equivalent specifications for specific tasks,
like we did for the splitter in Section 2. Figure 11 presents such a specification
where σ is represented with the set Participants, τ with the sets Stop,Down
and Right and the splitter predicate in the task is literally expressed in the get
operation. An ad hoc sequential specification of the exchanger is depicted in
Figure 12 (a slight variation gives the exchanger used in [37]).

Correctness and completeness. In the light of the ad hoc sequential specifications
in Figures 11 and 12, consider the following question: how can we know if a given
sequential specification X with get and set operations corresponds to a task T ,
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State: Sets Participants,Matching, both initialized to ∅

Function set(id)
Pre-condition: id /∈ Participants
Post-condition: Participants′ ← Participants ∪ {id}
Output: void

endFunction

Function get(id)
Pre-condition: id ∈ Participants ∧ {id, ·} /∈Matching
Post-condition:

Matched← {id∗|{id∗, ·} ∈Matching}
Free← Participants \Matched
if id ∈Matched then

Let id∗ be the value in Matched such that {id, id∗} ∈Matched
else

Let id∗ be any value in Free ∪ {⊥}
Matching′ ←Matching ∪ {{id, id∗}}

Output: id∗

endFunction

Fig. 12. An ad hoc Specification of the Exchanger.

namely, it actually models T? That is to say, we consider the direction opposite
to Theorem 1, from sequential objects to tasks. One way to obtain such a result is
to show that there is an isomorphism between X and the sequential automaton,
say ST , obtained from the generic construction of Figure 10, instantiated with
T . A second equivalent approach is to verify that X is correct, i.e., it satisfies
the input/output relation of T , and complete, namely, it specifies all possible
executions in V E(T ). Satisfying these two properties implies that X and ST are
isomorphic.

Formally, X is correct w.r.t.T if, for each of its executions E ∈ SSpec(X),
τE ∈ ∆(σE), where σE is the simplex containing an invocation to T for each
(complete) set operation of X in E, with same process and input value, and,
similarly, τE is the simplex containing a response from T for each (complete) get
operation of X in E, with same process output value.

We say that X is complete w.r.t.T if for each execution of E ∈ V E(T ),
SE ∈ SSpec(X), where SE is the sequential execution obtained from E by
replacing each invocation to T in E with a complete set operation of X, with
same process and input value, and each response from T in E with a complete
get operation of X, with same process and output value.

On adaptiveness. An interesting property of the splitter and Test&Set sequential
objects in Figures 6 and 3 is that they do not take into account the number of
processes in the system, namely, the specification is the same for any number
of processes. This property is known as adaptiveness and can be formalized as
follows.



Tasks in Modular Proofs of Concurrent Algorithms 29

Consider an infinite set of processes ID = {p1, p2, . . .}. Consider a distributed
problem that is specified through an infinite family of sequential objects: for ev-
ery finite set S ⊂ ID, let XS be a sequential object for processes in S. The family
of objects is adaptive if for every two sets S ⊂ S′, SSpec(XS) = SSpec(XS′ , S),
where SSpec(XS′ , S) is the subset of SSpec(XS′) with operations of processes
in S.

The notion of adaptiveness for tasks is defined similarly. Consider a dis-
tributed problem that is specified through an infinite family of tasks: for every
finite set S ⊂ ID, let TS = (IS ,OS , ∆S) be a sequential object for processes in
S. The family of tasks is adaptive if for every two sets S ⊂ S′, IS ⊂ IS′ and for
every σ ∈ IS , ∆S(σ) = ∆S′(σ).


	Tasks in Modular Proofs of Concurrent Algorithms

