
Microscopic imaging of non-repetitive dynamic scenes at 5 THz frame rates by 
time and spatial frequency multiplexing 

 
Jungho Moon1,2,+, Seok-Chan Yoon1,2,+, Yong-Sik Lim3, and Wonshik Choi1,2,* 

1Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea 
2Department of Physics, Korea University, Seoul 02841, Korea 

3Department of Nano Science and Mechanical Engineering and Nanotechnology Research Center, 
Konkuk University, Chungbuk 380-701, Korea 

mooon936@gmail.com, sdlkfwpeorup@gmail.com, yslim@kku.ac.kr, *wonshik@korea.ac.kr 

*+82-10-8758-4710 
+: These authors contributed equally to this work. 

 

Abstract 
Femtosecond-scale ultrafast imaging is an essential tool for visualizing ultrafast dynamics in molecular 
biology, physical chemistry, atomic physics, and fluid dynamics. Pump-probe imaging and a streak 
camera are the most widely used techniques, but they are either demanding the repetitions of the same 
scene or sacrificing the number of imaging dimensions. Many interesting single-shot ultrafast imaging 
techniques have been developed in recent years for recording non-repetitive dynamic scenes. 
Nevertheless, there are still weaknesses in the number of frames, the number of image pixels, or 
spatial/temporal resolution. Here, we present a single-shot ultrafast microscopy that can capture more 
than a dozen frames at a time with the frame rate of 5 THz. We combine a spatial light modulator and 
a custom-made echelon for efficiently generating a large number of reference pulses with designed time 
delays and propagation angles. The single-shot recording of the interference image between these 
reference pulses with a sample pulse allows us to retrieve the stroboscopic images of the dynamic scene 
at the timing of the reference pulses. We demonstrated the recording of 14 temporal snapshots at a time, 
which is the largest to date, with the optimal temporal resolution set by the laser output pulse. Our 
ultrafast microscopy is highly scalable in the number of frames and temporal resolutions, and this will 
have profound impacts on uncovering the interesting spatio-temporal dynamics yet to be explored. 
 

Introduction 
The technical advance of generating an ultrashort laser pulse has taken the stroboscopic imaging down 
to events occurring in the picosecond time scales or shorter. One of the most widely used methods is 
the pump-probe imaging, where a pump beam pulse stimulates a sample and an accompanying probe 
pulse reads the changes induced by the pump pulse. The pump-probe techniques have been used to 
visualize the explosion dynamics of water droplet1, the biological spectroscopy of melanin2 and laser 
beam drilling in PMMA3. Since the pump-probe delay should be scanned to map the temporal dynamics, 
it is necessary to irradiate multiple pump pulses for generating identical stimulations in the sample. 
Therefore, the conventional pump-probe methods are not fully compatible with non-repeating 
phenomena such as fluid dynamics4 and explosion dynamics5,6. The demand has grown steadily for 
recording the entire sequence of dynamics induced by a single pump pulse7,8. 
  
Spectral encoding of the spatio-temporal information has been one of the earliest developments for a 
single-shot ultrafast dynamic imaging. For example, a broad spectral bandwidth constituting a single 
short pulse is dispersed in space, and the spatial information encoded in the spectrum is decoded in the 
detection process9. Similarly, the source spectrum is dispersed in time, and the temporal information 
encoded in the spectrum is decoded by the wavelength-dependent spatial mapping10,11. The benefit of 
these spectral encoding methods is the clear separation of spatial or temporal information in the detector 
sensors by their wavelengths, which has resulted in optimal measurement sensitivity. On the other hand, 
the temporal resolution is lower than that set by the original pulse width, since only a partial bandwidth 
is assigned to each spatial or temporal segment. Another noteworthy approach is to introduce 
compressive sensing to the conventional high-speed camera for overcoming its limited field of view. 

mailto:mooon936@gmail.com
mailto:sdlkfwpeorup@gmail.com
mailto:yslim@kku.ac.kr
mailto:*wonshik@korea.ac.kr


Specifically, the use of a streak camera could image 1D dynamic scenes because the other dimension 
in the 2D camera sensor is devoted to recording the temporally sheared information. In the compressive 
sensing approaches, a 2D dynamic scene is spatiotemporally mixed by means of random binary 
encoding, temporal shearing, and so on in such a way that the 2D dynamic scene is compressed into a 
single 2D snapshot. The original 2D dynamic scene was retrieved by solving the inverse problem12,13. 
A similar approach has been taken by using spectral mixing instead of temporal shearing by the streak 
camera14. Because no special preparation of illuminations, such as a train of pulses, is necessary, these 
methods are well suited for imaging with incoherent light as in conventional photography. On the other 
hand, only a sparse and relatively simple object can be imaged because the compressive recording 
makes the problem intrinsically underdetermined. 
 
Ultrafast imaging techniques that maintain the laser pulse’s full temporal resolution and yet are 
applicable to arbitrary complex scenes have been proposed on the basis of multiplexing temporal images 
in the spatial frequency domain. The laser output pulse is divided into a train of reference pulses by 
using beam splitters or similar optics, and the propagation angles of individual pulses are made different 
from one another. Then, the stroboscopic recording of a dynamic scene is achieved by the interference 
of these reference pulses with the sample pulse15-17. Since the carrier spatial frequency varies in the 
interference between each reference pulse and the sample pulse, time-dependent images could be 
obtained by the spatial Fourier transform of the recorded 2D interference image. A similar approach 
uses a train of sample pulses with different orientations of stripe patterns in their intensity as structured 
illuminations to the scene of interest18. The temporal resolution of these approaches is the same as that 
set by the original laser output pulse since the full spectral bandwidth is used in each pulse. The full 
camera pixels can be used for the view field as the temporal information is multiplexed in the spatial 
frequency domain. However, these previous studies required a complex optical system to create a train 
of pulses with different propagation angles and delays. Therefore, only three or four pulses have been 
used so far, meaning that the number of temporal snapshots is limited to just a few.  For pump-probe 
imaging, the two sets of pulse trains need to be prepared, one for probing the sample and the other for 
the reference waves, which makes the system even more complicated.  
 
Here, we developed an ultrafast imaging microscopy based on Time and Spatial-Frequency 
Multiplexing (TSFM) for taking many temporal snapshots of complex scenes and yet achieve the 
optimal temporal resolution set by the light source. Our TSFM imaging system took the stroboscopic 
images by the interference of a sample wave with a train of 14 reference pulses that have various 
propagation angles and time delays. We constructed a unique optical layout composed of a spatial light 
modulator (SLM) and a custom-made echelon window. A 2D diffraction grating pattern was written on 
the SLM to split the laser pulse into multiple pulses with different propagation angles. The echelon 
window added a designed temporal delay to each pulse. The proposed layout is simple, but effective in 
generating so many reference pulses that the conventional beamsplitter-based approaches can’t keep up 
with them. Using the developed system, we demonstrated the phase and amplitude imaging of a single 
100-fs pulse propagating through a turbid medium at 5-THz frame rates. We also visualized the 
femtosecond scale dynamics of a laser ablation for the successive irradiation of laser pulses. In addition, 
we realized a single-shot pump-probe shadowgraph imaging of the laser-induced plasma string in air. 
To make the measurement system simple and scalable in the number of snapshots, a temporally 
stretched probe beam was prepared to cover the entire dynamics, instead of using a train of pulses whose 
temporal delays are matched to those of the reference pulses. Our system features the largest number of 
temporal snapshots demonstrated in the single-shot pump-probe experiments developed so far. 
 

Results 
Principle of TSFM imaging 
To capture the complex-field map of a dynamic scene, 𝐸𝐸𝑆𝑆(𝒓𝒓, 𝑡𝑡), occurring at the object plane 𝒓𝒓 = (𝑥𝑥,𝑦𝑦) 
by the TSFM method, we use specially prepared reference wave composed of 𝑛𝑛 number of multiple 
pulses with different delays 𝜏𝜏𝑗𝑗 and propagation directions 𝒌𝒌R

j , which is denoted by 



𝐸𝐸𝑅𝑅(𝒓𝒓, 𝑡𝑡) = ∑ 𝑎𝑎�𝑡𝑡 − 𝜏𝜏𝑗𝑗�𝑒𝑒−𝑖𝑖𝒌𝒌R
j ∙𝒓𝒓𝑛𝑛

𝑗𝑗=1 .                                                    (1) 
Here 𝑎𝑎�𝑡𝑡 − 𝜏𝜏𝑗𝑗� is the temporal envelop of each reference pulse whose width is set by the laser output 
pulse width in vacuum. Therefore, the total electric field arriving at the camera located at 𝑧𝑧 = 0 is given 
by 

𝐸𝐸(𝒓𝒓, 𝑡𝑡) = 𝐸𝐸𝑆𝑆(𝒓𝒓, 𝑡𝑡) + ∑ 𝑎𝑎�𝑡𝑡 − 𝜏𝜏𝑗𝑗�𝑒𝑒−𝑖𝑖𝒌𝒌R
j ∙𝒓𝒓𝑛𝑛

𝑗𝑗=1 .                                        (1) 
For simplicity, we assumed unity magnification from the object plane to the camera plane. The camera 
records the intensity of the electric field during the exposure time, which is much longer than the pulse 
width of the individual waves. Therefore, the signal recorded at the camera can be written as  

𝐼𝐼(𝒓𝒓) = ∫ �𝐸𝐸𝑆𝑆(𝒓𝒓, 𝑡𝑡) + ∑ 𝑎𝑎�𝑡𝑡 − 𝜏𝜏𝑗𝑗�𝑒𝑒−𝑖𝑖𝒌𝒌R
j ∙𝒓𝒓𝑛𝑛

𝑗𝑗=1 �
2
𝑑𝑑𝑡𝑡∞

0 .                                       (2) 
Then the interference term is given by 

𝐼𝐼𝐴𝐴𝐴𝐴(𝒓𝒓) = ∑ ∫ 𝐸𝐸𝑆𝑆(𝒓𝒓, 𝑡𝑡)𝑎𝑎�𝑡𝑡 − 𝜏𝜏𝑗𝑗�𝑒𝑒−𝑖𝑖𝒌𝒌R
j ∙𝒓𝒓𝑑𝑑𝑡𝑡∞

0
𝑛𝑛
𝑗𝑗=1 + 𝑐𝑐. 𝑐𝑐.                                      (3)   

The electric field of the dynamic scene 𝐸𝐸𝑆𝑆(𝒓𝒓, 𝑡𝑡) is temporally integrated for the duration of the reference 
field, i.e. 𝜏𝜏𝑗𝑗 − 𝛥𝛥𝑡𝑡 ≤ 𝑡𝑡 ≤ 𝜏𝜏𝑗𝑗 + 𝛥𝛥𝑡𝑡, for each reference pulse, which is denoted as 𝐸𝐸�𝑆𝑆�𝒓𝒓, 𝜏𝜏𝑗𝑗�. The spatial-
frequency spectrum of the interference term, 𝐼𝐼𝐴𝐴𝐴𝐴(𝒌𝒌), obtained by the 2D Fourier transform of 𝐼𝐼𝐴𝐴𝐴𝐴(𝒓𝒓) is 
given as 

𝐼𝐼𝐴𝐴𝐴𝐴(𝒌𝒌) = ∑ 𝐸𝐸�𝑆𝑆 �𝒌𝒌 − 𝒌𝒌R
j , 𝜏𝜏𝑗𝑗�𝑛𝑛

𝑗𝑗=1 + 𝑐𝑐. 𝑐𝑐.                                                (4) 

Here 𝐸𝐸�𝑆𝑆 is the spatial Fourier transform of 𝐸𝐸�𝑆𝑆�𝒓𝒓, 𝜏𝜏𝑗𝑗�. By setting the magnitude of 𝒌𝒌R
j  larger than the 

spatial-frequency bandwidth of 𝐸𝐸�𝑆𝑆(𝒓𝒓, 𝑡𝑡)  in the detector plane, the spectrum at each time of 𝜏𝜏𝑗𝑗  is 
separated in the frequency domain. After selecting each spectrum 𝐸𝐸�𝑆𝑆 �𝒌𝒌 − 𝒌𝒌R

j , 𝜏𝜏𝑗𝑗� associated with the 
jth reference wave and taking its Hilbert transform, 𝐸𝐸�𝑆𝑆�𝒓𝒓, 𝑡𝑡 = 𝜏𝜏𝑗𝑗� is obtained. 
 
TSFM imaging system 
The experimental setup for TSFM imaging system for imaging the dynamic evolution of a sample pulse 
gated by the multiple reference pulses is shown in Fig. 1a. A regenerative amplified Ti:Sapphire laser 
system (Coherent Libra-He, center wavelength: 800 nm, repetition rate: 10 kHz, and pulse width: 91 fs 
at full width at half maximum (FWHM)) was used as a light source. Only a single pulse was generated 
at a time using the gated programmable trigger. The output pulse was split by a beam splitter (BS1) and 
polarizing beam splitter (PBS1) into sample (or pump), reference, and probe beams. The sample or 
probe beam collected via the objective lens (OL, Olympus RMS 4X, 0.1 NA) was relayed to a camera 
(sCMOS camera, PCO. Edge 4.2) after recombined with the reference beam by a beam splitter (BS2) 
to form a Mach-Zehnder interferometry. The magnification from the sample plane to the camera was 
13.9, and the field-of-view (FOV) was 515 × 515 𝜇𝜇𝜇𝜇2 with the diffraction-limited spatial resolution 
of 4 µm. Scanning mirrors (SM1 and 2) were installed in the sample and probe arms to adjust the overall 
path-length differences among sample (or pump), probe, and reference beam paths.  
 
To prepare multiple reference pulses with different delays 𝜏𝜏𝑗𝑗 and propagation directions 𝒌𝒌jR, we used an 
SLM (Fourth dimension display, QXGA-R9) and a custom-made glass echelon set in the path of the 
reference beam. The reference pulse was diffracted into different directions, 𝒌𝒌R

(𝑚𝑚,𝑛𝑛) by a 2D diffraction 
grating displayed on the SLM. The grating pattern was comprised of a 2D square array of 7-µm size 
squares with a pitch of 49 µm. Here, m and n indicate the diffraction order along the vertical (Y) and 
horizontal (X) directions, respectively. The diffracted reference pulse was then focused by a lens (L1) 
in such a way that the distance between adjacent diffraction spots is 4.0 mm at the focal plane of the 
lens. The 2D echelon made of a stack of coverglasses (Fig. 1b) was placed on the focal plane of L1, and 
each diffracted pulse was introduced to each part of the echelon with different stacking number of 
coverglasses. In this way, the time delay between the neighboring pulses was set to about 200 fs, which 
is given by the thickness and refractive index of the coverglass. Typically, we chose 14 diffracted pulses 
with diffraction orders m = 1, 2 and −3 ≤ 𝑛𝑛 ≤ 3 in the experiments. Figure 1b indicates the way 
diffraction order (𝜇𝜇,𝑛𝑛) was assigned to each segment in the echelon. For simplicity, we assigned the 



index j to each (𝜇𝜇, 𝑛𝑛) in such a way that the number of stacked coverglasses is increased with the 
increase of j. Therefore, the temporal delay of jth pulse 𝜏𝜏𝑗𝑗 is increased with the increase of j. The pulse 
that travels through one layer of coverglass corresponds to j=1, and its flight time was set as a reference 
point, i.e. 𝜏𝜏𝑗𝑗=1 = 0. Another lens (L2, f=200 mm) delivered these reference pulses to the camera to 
produce off-axis interference with the sample or probe pulse. In order to calibrate the temporal spacing 
between the reference pulses, we recorded the total intensity of interference signals between reference 
pulses and a sample pulse as a function of time delay between the reference and sample arms by 
scanning the scanning mirror (SM1). Figure 1c shows 14 reference pulses whose relative time delays 
were measured to be (𝜏𝜏1,⋯ , 𝜏𝜏14) = (0, 214, 441, 641, 842, 1015, 1215, 1436, 1623, 1810, 2011, 2197, 
2356, and 2555) fs. The intensities of the reference pulses were different depending on the diffraction 
orders, which was accounted for in Fig. 1c and in the image processing step. The width of each pulse 
was measured to be about 150 fs, slightly broader than the original laser pulse width due to the residual 
dispersions in the optical beam paths.  
 
We performed two different types of experiments. The first type of experiment was imaging the 
propagation of the sample pulse through a medium, which includes three experiments conducted in the 
following subsections: single-shot light bullet imaging, light propagation through a dynamic scattering 
medium, and ultrafast videography of glass ablation. In these experiments, a sample pulse was sent 
across a medium through the sample arm, and a TSFM image of scattered waves from the medium was 
recorded by the camera via the side-view objective lens and relay lenses. The second type of experiment 
was the single-shot pump-probe shadowgraph imaging. As an exemplary application, time-resolved 
transmission shadowgraphs of a laser-induced plasma in air were recorded. In this experiment, a strong 
pump pulse was tightly focused in air in order to generate a plasma string. A probe pulse sent from the 
probe arm was transmitted through the plasma string and delivered to the camera via the objective lens. 
The TSFM shadowgraph images of the plasma string were then recorded. 
 
Single-shot light bullet imaging 
We demonstrated a single-shot imaging of the trajectory of the light bullet propagating through a weakly 
scattering medium. A single sample pulse was focused by a spherical convex lens (L3, f = 200 mm) to 
the water bath, where milk was added at the volume ratio of milk: water = 0.1:1. The sample waves 
scattered by the particles of fat and protein in milk were captured by the objective lens, as shown in Fig. 
2a. The single-shot raw interference image taken during the camera’s exposure time of several hundred 
microseconds is shown in Fig. 2b. Since the light bullet reaches the end of the field of view in just 2 ps, 
much shorter than the camera exposure time, the raw image showed the trace of the beam path all the 
way to the bottom of the view field. The inset shows the magnified image indicated by a white dashed 
box, where a 2D stripe pattern was made visible by the interference between the sample and multiple 
reference waves. Figure 2c shows the Fourier transform image of Fig. 2b, where many circular spectra 
were visible because of the multiple reference pulses. Most of the spectra located near the center were 
attributed to the intensity spectra of sample and reference pulses by themselves, and the interference 
among reference pulses was also visible. The spectra we are interested in are the interference between 
the sample beam and reference pulses, which are indicated as red dashed circles along with their 
associated flight times 𝜏𝜏𝑗𝑗. We cropped the spectrum corresponding to each flight time, moved the center 
of the spectrum to the origin, and took its inverse Fourier transform to obtain the stroboscopic sample 
image at the designated flight time. Figure 2d shows a set of images obtained for each 𝜏𝜏𝑗𝑗 indicated 
above each sub-image. We could clearly obtain the trajectory of the light bullet, which was propagating 
from top to bottom. The average spatial intervals of pulses between the snapshots was 45 µm, which 
corresponds to the travel time of light of about 200 fs in water. This agrees well with the temporal pulse 
separation measurements in Fig. 1c. The light bullet size measured by the full-width at half maximum 
of the snapshots in Fig. 2d along the propagation direction about 45 µm, which is equivalent to 200 fs 
in time. This was broader than the original pulse width due to the pulse dispersion within the sample 
and optical beam paths. 
 



Light propagation through a dynamic scattering medium 
We took a single-shot ultrafast image for a short-pulse line beam propagating through a turbid medium. 
To make the line beam instead of a focused beam, the spherical convex lens (L3) was replaced with a 
cylindrical lens (f = 50 mm). We prepared the turbid medium by mixing water and milk with the ratio 
of 1:1. Experiments were performed by the same echelon used in Fig. 2. Figure 3a shows a single-shot 
raw interference image, which was the accumulation of all the light trajectories during the camera 
exposure. We applied Hilbert transform algorithm to this raw image and obtained 14 time-lapse images 
(Fig. 3d). The planar pulse front was attenuated in intensity and broadened in width while propagating 
through a strongly turbid medium. This can be seen clearly in Fig. 3b, which shows the intensity profile 
along the vertical line in the various snapshots in Fig. 3d. To the best of our knowledge, this is the largest 
number of temporal snapshots obtained by the spatial-frequency multiplexing approach. This is also the 
first real-time visualization of a single pulse propagating through a turbid medium, demonstrating that 
our method is applicable to spatially complex scenes. 
 
Since the turbid medium changes over time, the way a pulse propagates through the medium varies with 
time. The turbid medium can be considered to be virtually static during the recording of the series of 
images shown in Fig. 3d because the time for a single pulse to travel through the view field was only 2 
ps, much shorter than the dynamics of milk. On the other hand, when the single-shot ultrafast imaging 
is taken at times longer than the dynamics of milk, microscopic details of speckle fields will be different. 
To verify this, we sent pulses from a laser at a repetition of 60 Hz and recorded the single-shot ultrafast 
images at the same rate as the pulse repetition. We thus obtained the series of images shown in Fig. 3d 
at the repetition rate of 60 Hz. Figure 3e shows magnified images of the area indicated by the square 
box in Fig. 3d at the flight time of 842 fs from individual single-shot ultrafast recordings. Therefore, 
the time difference between the successive images in Fig. 3e is 1/60 second. The speckle granules 
changed with time, and their wavefronts measured by the phase maps (not shown) varied as well. The 
normalized field correlation of the images in Fig. 3e with respect to the first image is shown as blue 
dots in Fig. 3c. The correlation value dropped sharply with the decay constant of 33 ms. 
 
As a control experiment, we recorded the same set of single-shot ultrafast images for a static scattering 
medium made of PDMS (polydimethylsiloxane) mixed with ZnO nanoparticles (see Materials and 
methods for details). Figure 3f shows the similar images as in Fig. 3e, but for this static scattering 
medium. As expected, the images looked almost the same and their field correlations stayed at almost 
unity (red dots in Fig. 3c).  
 
Ultrafast videography of glass ablation 
Laser ablation is a representative non-repetitive process. For the proper understanding of the ablation 
dynamics, it is necessary to record the temporal evolution of a single pulse in the femtosecond timescale. 
However, the irradiation of a single pulse may not fully ablate the medium, and multiple pulses may 
need to be irradiated to the sample to complete the process. In order to record the multiple consecutive 
ablation processes induced by individual pulses in femtosecond timescale over a time span of ~2 ps, 
strong pump pulses were sent through the sample arm at a rate of 60 Hz and were focused onto the 
soda-lime slide glass by the spherical convex lens (L3, f = 50 mm). The energy of each pump pulse was 
about 200 µJ. The first column in Figs. 4a-d show the raw interferograms taken by the camera at 60 Hz. 
Only four representative images are shown here, and the full movie is available at the supplementary 
movie. We could notice that the pulses were initially confined at the surface, but the successive 
irradiation of laser pulses gradually ablated the glass and propagated deeper into the substrate. In this 
process, the portion of the glass hit by the laser pulses was gradually denatured and acted as an effective 
waveguide for the successively incoming laser pulses. After the irradiation of 800 pulses, the glass 
substrate was drilled down to 350 µm. 
 
For each raw image shown in the first column of Figs. 4a-d, we could expand it by the Hilbert transform 
to reveal temporal snapshots at 200 fs intervals as shown in the images from the second to sixth columns. 
These femtosecond-scale snapshots visualized the way each pulse was propagating down the glass 



substrate and inducing the laser ablation. This confirms that our system can investigate ultrafast 
dynamic scenes over long period of time. 
 
Single-shot pump-probe shadowgraph imaging 
So far, we have demonstrated the femtosecond-scale imaging of sample pulses themselves as they 
propagated its way through the sample. Here, we realized a single-shot multi-frame imaging in the 
pump-probe shadowgraph geometry, where the pump-induced transient transmission changes the 
propagation of the probe pulses. In the present implementation, we utilized a single time-stretched probe 
pulse, instead of using a train of multiple probe pulses widely used in the previous studies15,16. This 
makes the experimental setup simple and easily scalable in the number of snapshots.  We observed the 
initial process of generating a plasma string by the irradiation of a strong focused pump pulse to the air 
molecules. Figure 5a shows the schematic geometry of the pump-probe shadowgraph imaging 
experiments. A single pump pulse was focused by an objective lens (L3, Olympus RMS 20X, 0.4 NA) 
to air. The energy of the pump pulse was 300 µJ. After passing twice through a 5-cm thick SF11 glass 
to stretch its temporal width to ~ 2.3 ps, the probe pulse was transmitted through the plasma string. The 
temporally stretched probe pulse, imprinted with femtosecond-scale dynamic scenes of the plasma 
string over a time span of its temporal width, interfered with the train of TSFM reference pulses at the 
camera plane. The single-shot raw interference image taken by the camera is shown in Fig. 5b. Because 
the probe pulse was stretched in time, this image contains the accumulated dynamics of the plasma 
string for ~ 2.3 ps.  Temporal snapshots were recovered at times set by the echelon in the same way as 
in the above experiments. We could expand it by the Hilbert transform to reveal temporal intensity and 
phase maps at 200-fs intervals as shown in Figs. 5c and 5d, respectively. It is noteworthy that the 
dynamics are more clearly visible in the phase maps. The pump pulse has not yet arrived at the first 
snapshot, and then the intensity of the plasma string was gradually increased until the initial 1000 fs. 
The self-focusing phenomenon was visible after 1200 fs. The size of plasma string was reduced, and its 
image contrast was increased in the amplitude maps in Fig. 5c. This experiment showed that our 
reference pulse train scheme could be used to the single-shot pump-probe experiment with great 
scalability in the number of frames. This will be useful in observing the ultrafast dynamics for a long 
duration of times with fine temporal steps. 
 

Discussion 
We proposed a single-shot ultrafast microscopy that can capture 14 snapshots at 200-femtosecond frame 
interval without loss of the temporal resolution of the original laser pulse. A spatial light modulator and 
a custom-made echelon were used to generate a large number of reference pulses having different delays 
and propagation angles. The interference of the sample wave with these reference pulses led to the 
spatial multiplexing of the temporal images in a single-shot 2D image, from which the stroboscopic 
images of a dynamic scene were retrieved. We visualized a single short pulse propagating through a 
turbid medium as it developed spatially complex amplitudes and phase maps. Also, we demonstrated 
the observation of the femtosecond-scale laser ablation process for the successive irradiation of 
ultrashort pulses. Furthermore, we demonstrated a single-shot pump-probe imaging by using a single 
temporally stretched probe pulse and the multiple reference pulses. Our method is highly scalable in 
the number of temporal snapshots retrievable by a single-shot camera recording and yet achieves the 
optimal temporal and spatial resolutions. The number of the temporal snapshots can be increased 
beyond 14 by stacking more coverglasses in the echelon. And the temporal resolution can be flexibly 
adjusted by embedding the echelon in the liquid medium having different refractive index from air. 
Therefore, our proposed method will serve as a versatile tool for investigating various non-repetitive 
dynamic phenomena requiring both high temporal and spatial resolutions. 
 
Methods and Materials 
 



Preparation of static scattering medium 
To make a scattering sample, we added 12 g of ZnO powder to 100 ml of PDMS solution. For a 
uniform thickness across the view field, we placed a 1.5-ml mixed solution in a 150-mm Petri dish 
and rotated it at 500 RPM with a spin coater. This produced a 100-µm-thick scattering layer.  
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Figure 1 

 
Figure 1. Experimental setup for the single-shot ultrafast imaging. (a) Schematic diagram of the 
imaging setup. Reference arm, sample/pump arm, and probe arm are indicated as red, purple, and cyan 
for visibility although their wavelengths are identical. HWP, half wave plate; QWP1 and 2, quarter-
wave plates; PBS1, 2, and 3, polarizing beam splitters; SLM, spatial light modulator; L1-6, lenses; BB, 
beam block; BS1 and 2, beam splitters; SM1 and 2, scan mirrors; OL, objective lens. (b) Echelon 
diagram. On each segment, the number of coverslips (index j in the main text) and the diffraction order 
(m, n) of the diffracted beam by the SLM impinging to the corresponding segment are indicated. (c) 
Interference intensity of multiple reference beams with respect to the single sample pulse taken while 
the path length of the sample beam was scanned by the SM1. All intensity profiles were normalized by 
their maximum intensity. 
 



Figure 2 

 
Figure 2. Single-shot acquisition of multiple temporal images. (a) Schematic geometry of the imaging 
setup capturing the scattered photons of the laser pulse propagating through a weakly scattering medium 
made of milk. (b) Raw interferogram image. Zoom-in image of the dashed square is shown in the inset, 
where interference patterns are visible. Scale bar, 100 µm. (c) Fourier transform of b, where each circle 
indicated by  𝜏𝜏𝑗𝑗 corresponds to the jth temporal frequency spectrum with the carrier frequency  𝒌𝒌R

j . (d) 
Temporal images reconstructed by the Hilbert transform of the circular spectra in c. We can capture the 
light bullet at the time interval of 200 fs on average. Scale bar, 100 µm. Color bar, intensity normalized 
by the maximum intensity in 𝜏𝜏1. 
 
  



Figure 3 

 
Figure 3. Light propagation through static and dynamic scattering media. (a) Raw interference image 
of a line beam propagating through a turbid medium made of milk. Color bar, intensity normalized by 
the maximum intensity in the image. (b) Intensity profiles plotted along the vertical lines shown in d 
for a few representative flight times. Intensity normalized by the maximum intensity in the first profile. 
(c) Normalized field correlation of the images in dynamic sample e with respect to the first image (blue 
dots). Red dots were derived from static sample f. Green curve: exponential curve fitting with the 
temporal decay time of 33 ms. (d) Intensity map of temporal images acquired from a. Recording time 
is indicated in each sub-image. Color bar, intensity normalized by the maximum intensity in the first 
image. (e) Zoom-in image of the white dashed box in d at 𝜏𝜏𝑗𝑗=5 = 840 𝑓𝑓𝑓𝑓 when single-shot images in a 
were recorded at 60 Hz. (f) Same as e, but for a static scattering medium made of scattering particles in 
PDMS. All the scale bars: 100 µm. 
 



Figure 4 

 
Figure 4. Ultrafast videography of the glass ablation by the successive irradiation of ultrashort pulses. 
(a-d) Laser ablation of a glass substrate by the irradiation of four representative laser pulses, i.e. 200th, 
400th, 600th and 800th sample beam pulses, among 800 pulses successively illuminated at the rate of 60 
Hz. The first column shows the raw interference image, and the images from the second to sixth columns 
were the snapshots derived from the raw image. A dotted line indicates the surface of the glass. All scale 
bars, 100 µm.  
 



Figure 5 

 
Figure 5. Single-shot pump-probe ultrafast imaging of a plasma string in the air. (a) Schematic 
geometry for a pump-probe shadowgraph. (b) Raw interferogram image of the plasma string. Scale bar, 
100 µm. (c) Intensity map of temporal images acquired from b. Color bar, intensity normalized by 
background image taken without the pump beam. Scale bars, 50 µm. (d) Phase map of the temporal 
image acquired from b, Color bar, phase in radians.  
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